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Introduction
Where is statistics headed in the 21st century? What are the main themes in

statistics as it emerges from the 20th century?
In this volume, over 70 leading statisticians and quantitative methodologists from

other disciplines reflect on those questions in vignettes, or short review articles, each
of which discusses an important area of statistics. The vignettes highlight some of the
most important statistical advances and outline potentially fruitful areas of research.
They are not exhaustive reviews, but rather selected “snapshots” of the world of
statistics at the dawn of the 21st century. The purpose of this volume is to examine
our statistical past, comment on our present, and speculate on our future.

A first major theme that emerges is that the development of statistics has been
driven by the broader environment within which it operates: by applications in the
sciences, the social sciences, medicine, engineering, and business, by the appearance
of new types of data demanding interpretation, and by the rapid advance in computer
technology. This is not a new theme, but what does seem without precedent is the
range of applications and new data types that are pushing the discipline forward.
In the 19th and early 20th centuries, statistical development was largely driven by
applications in a small number of areas (astronomy, official statistics, agriculture). In
the second half of the 20th century, statistics has come to be a central part of many
disciplines that involve numerical data, and even nonnumerical data, and much of the
research has been driven by the demand for new methods from the disciplines for
which statistics has become an essential tool.

A second theme is that the computer revolution has transformed statistics. Statis-
tics is largely built on a foundation of mathematics, but over the past 30 years, fast
computing has become a cornerstone. This has made possible new kinds of analysis
and modeling that previously were not only impossible but unthinkable. These range
from the early interactive software such as GLIM in the 1970s, through the bootstrap
and software such as S that allowed easy visual exploration of data in the 1980s, to
the Bayesian revolution of the 1990s made possible by Markov chain Monte Carlo
methods.

Because of this, we have organized this volume around major areas of application
of statistics, leading up to a concluding group of vignettes that discuss the theory and
methods of the discipline in their own right. The volume is divided into four main
sections, each edited by a Guest Editor: Statistics in the Life and Medical Sciences,
Statistics in Business and Social Science, Statistics in the Physical Sciences and
Engineering, and Theory and Methods of Statistics.

Although the coverage of this volume is broad and the topics diverse, the same
themes recur in different contexts, pointing to the underlying unity of the field of
statistics. As one example, consider the analysis of point processes consisting of the
times at which one or several events occur, such as death, divorce, or machine failure.



In the health sciences this is called survival analysis and is discussed by Oakes, in
social science it is called event history analysis and is reviewed by Raftery and by
Xie, and in engineering it is called reliability theory and is reviewed by Lawless. The
underlying analysis strategy is the same in all these areas: the basic primitive is the
hazard rate, and one develops models for this; the Cox proportional hazards model
is influential everywhere. Applications of point processes in seismology are written
about by Vere-Jones, and in the analysis of Internet data by Cleveland and Sun.

The analysis of multivariate discrete data is reviewed in general terms by Fien-
berg, Christensen, and McCulloch, and in the context of wildlife applications by Pol-
lock and of sociology by Raftery. Causal analysis using counterfactuals is discussed
for the health sciences by Greenland and for the social sciences by Sobel. Hierarchi-
cal models and related methods are discussed in general by Carlin and Louis and by
Hobert, and in the context of epidemiology by Thomas, of receiver operating char-
acteristic data by Pepe, of toxicology by Ryan, and of animal breeding by Gianola.
Time series analysis is discussed from different perspectives by Tsay and by Solo.
Coding and information theory are discussed by Rissanen and Yu, and by Soofi.

The development and application of a coherent and comprehensive set of meth-
ods for analyzing medical and public health data is perhaps the greatest collective
achievement of the discipline of statistics in the second half of the 20th century. This
has led to the development of biostatistics, which is a thriving subdiscipline in its
own right, while remaining an integral part of the broader statistics profession. This
seems like a model to follow for other areas where the penetration of statistics has
not yet been as extensive. The first set of vignettes, Statistics in the Life and Medical
Sciences, guest edited by Norman E. Breslow, bears witness to the extraordinary de-
velopment of statistical methods in these areas, as well as the extent of collaborative
work between statisticians and other scientists.

Several cross-cutting themes are apparent in this set of vignettes. They highlight
three main methodologies: causal analysis, survival analysis, and hierarchical mod-
eling, as well as a rich array of applications. Causal analysis using counterfactuals
was pioneered by Neyman and Fisher and applied in medicine in the form of the ran-
domized clinical trial (see Harrington’s vignette); for more recent developments see
Greenland’s vignette. The basic tools of survival analysis have been the Kaplan-Meier
estimator, the logrank test, and Cox’s proportional hazards model; see the vignettes by
Oakes, Thomas, Ryan, Pollock, and Gianola for review and recent developments. Hi-
erarchical modeling and the related generalized estimating equations (GEE) approach
are very important and are reviewed by Gianola, Thomas, and Pepe.

Perhaps the most active area of science at the moment is the study of the genome,
and statistical aspects of this are reviewed by Weir and by Wong. Four areas are
highlighted: the two more established areas of gene location and sequence analysis,
and the two newer and rapidly expanding areas of protein structure prediction and
gene expression data analysis. Other application areas in the life and medical sciences



reviewed include the environment (Guttorp), wildlife population estimation (Pollock),
animal breeding (Gianola), human fertility (Weinberg and Dunson), and toxicology
(Ryan).

The Business and Social Science set of vignettes, guest edited by Mark P. Becker,
reviews the state of statistics in a range of disciplines: finance (Lo), marketing (Rossi
and Allenby), political science (Beck), sociology (Raftery), psychology (Browne),
the law (Eisenberg), and demography (Xie).

The Physical Sciences and Engineering vignettes, guest edited by Diane Lam-
bert, do likewise for disciplines within their scope: atmospheric science (Nychka),
seismology (Vere-Jones), reliability (Lawless), process control (Stoubmos et al.), the
pharmaceutical industry (Gunter and Holder), and manufacturing (Nair, Hansen, and
Shi). The emerging field of the analysis of Internet data is discussed by Cleveland
and Sun.

Bayesian statistics and Markov chain Monte Carlo have had a major impact on
cutting edge statistical practice in the past ten years, and they are mentioned in many
of the vignettes. The Theory and Methods vignettes, guest edited by George Casella,
include several where they are the main focus (Berger, Cappé and Robert, Carlin
and Louis, Gelfand, George). The bootstrap, which ignited the current explosion of
computationally intensive methods in statistics, is reviewed by its inventor, Efron.
Nonparametric and robust methods are reviewed by Fan, Hettmansperger, McKean
and Sheather, Portnoy and He, missing data methods by Meng, and measurement er-
ror models by Stefanski. Likelihood and related foundational concepts are reviewed
by Reid and by Robins and Wasserman, decision theory by Brown and W.E. Straw-
derman, and asymptotics by R.L. Strawderman.

In spite of the broad coverage of this volume, many statistical topics, some of them
very important, have been omitted. We can only plead the impossibility of covering
such a broad and dynamic discipline completely in one volume and mention some of
the omissions that appear to us most glaring. Data collection methods generally get
short shrift in this volume. The design of experiments, which played a major role in
launching modern statistics early in the 20th century, is not represented here in spite
of a recent spurt of interest and new applications. Similarly, survey sampling is not
covered, although the proliferation of new ways of collecting social and behavioral
data through the Internet seems likely to spark a revival of this field.

Exploratory data analysis and visualization do not have a separate vignette, al-
though their influence is apparent in many of the vignettes. Multivariate analysis is not
covered explicitly, although aspects are discussed in Browne’s vignette on psycho-
metrics and in some others. Graphical models, neural networks, and cluster analysis,
in particular, are areas of multivariate analysis that are progressing rapidly at the mo-
ment. There is not a separate vignette about econometrics, but its influence is pervasive
in several of the disciplines reviewed in the Business and Social Science chapter. And
applications of statistics to the arts and the humanities are not mentioned, although



there have been some, for example in history and music. Even topics that are treated
may have been viewed from a limited perspective.

So where is the field of statistics going in the new millennium? While prediction
is hard, especially about the future, it does seem safe to say that new developments
will be driven by new kinds of data requiring analysis and by the development of
computing to make them possible. Gene expression data is one current example of
this, and this is a field where statisticians have rapidly become deeply involved.
Datamining is another; this started life as the analysis of retail barcode data, and
statisticians have become involved more slowly there. One area where statistics has
been largely absent, but where new theory and computing power may allow it to make
a contribution, is the analysis of simulation or mechanistic models, which are mostly
deterministic and dominate scientific endeavor in many disciplines, often largely to
the exclusion of more conventional statistical models. We encourage our successors
to produce a sequel to this work to begin the 22nd century!

This volume shows statistics to be broad and diverse, but we feel that it also
shows the essential intellectual unity of the field. Three basic ideas underlie a great
deal of what statisticians do and are influential in almost every vignette: the represen-
tation of the phenomenon being studied by a probability model, the summarization of
information in the data using the resulting likelihood function, and the basic principle
put forward by Tukey in 1962 that one should look at the data as part of the model-
building process. The methodology for implementing these principles can involve
either mathematics, such as asymptotic approximations, or, increasingly, intensive
Monte Carlo computing, such as the use of simulation to evaluate methods, the boot-
strap, importance sampling, or Markov chain Monte Carlo.

We are very grateful to the many people who have contributed to making this
millennial project a reality, primarily, of course, to the vignette authors themselves
and to the Guest Editors. The vignettes in this volume were first published in the year
2000 in the Journal of the American Statistical Association, of which we were the
editors in that year. We are very grateful to our editorial coordinators, Janet Wilt, Lisa
Johnson, Mary Rogers, and Katherine Roberts, to Mary Fleming and Carol Edwards
and their staff at the American Statistical Association, to Eric Sampson, and to Cathy
Frey and her staff at Cadmus Press. We are also grateful to Jonas Ellenberg, Jim
Landwehr, and Al Madansky for helping to make the publication of the vignettes a
reality. And, finally, we thank Kirsty Stroud, Tom Louis, and Chapman & Hall for
helping us to bring this book to publication.

Adrian E. Raftery, Seattle, WA
Martin A. Tanner, Evanston, IL

Martin T. Wells, Ithaca, NY
February 2001



Chapter 1

Statistics in the Life and Medical Sciences

Norman E. Breslow

One of the pleasures of working as an applied statistician is the awareness it brings
of the wide diversity of scientific fields to which our profession contributes critical
concepts and methods. My own awareness was enhanced by accepting the invitation
from the editors of JASA to serve as guest editor for this section of vignettes celebrating
the significant contributions made by statisticians to the life and medical sciences in
the 20th century. The goal of the project was not an encyclopedic catalog of all the
major developments, but rather a sampling of some of the most interesting work. Of
the 12 vignettes, 10 focus on particular areas of application: environmetrics, wildlife
populations, animal breeding, human fertility, toxicology, medical diagnosis, clinical
trials, environmental epidemiology, statistical genetics, and molecular biology. The
two vignettes that begin the series focus more on methods that have had, or promise
to have, impact across a range of subject matter areas: survival analysis and causal
analysis.

The concept of a counterfactual true treatment effect was introduced by Neyman
for agricultural field experiments in the 1920s, and Fisher’s method of randomization
provided a physical basis for making causal inferences. Bradford Hill’s advocacy
of these principles for use in medicine led to the randomized, double-blind, placebo-
controlled clinical trial. As Harrington points out, this was arguably the most important
scientific advance in medicine during the 20th century. Greenland’s vignette describes
recent theory and methods developed from these same foundations for causal analysis
of observational data that may help sort out some vexing public health issues.

The impact of survival analysis has been immense. Weinberg and Dunson discuss
survival methods for population monitoring of fertility. Ryan describes how transition
rate models for carcinogenicity underlie the analysis and interpretation of data from
the lifetime rodent bioassay, which still strongly influence regulatory policy. Oakes
mentions the importance of multivariate survival methods for genetic epidemiology,
Pollock cites applications to wildlife studies, and Gianola notes increased use of sur-
vival models even in animal breeding. But these many applications still represent only
a small sampling of the whole. Kaplan and Meier’s product limit estimate, Mantel

Norman E. Breslow is Professor of Biostatistics, University of Washington, Seattle, WA 98195 (E-mail:
norm@biostat.washington.edu).



and Peto’s log-rank test and Cox’s proportional hazards regression model are the in-
dispensable tools of a large cadre of statisticians working on clinical trials in industry,
government, and academia. The fact that Cox received the 1990 General Motors prize
for clinical cancer research underscores the enormously beneficial impact of this work
on clinical medicine.

Preventive medicine has been no less affected by the concepts and methods of
survival analysis. The key epidemiologic measure of incidence rate is rooted firmly
in the centuries-old tradition of the life table, whereas the more recent concept of
relative risk is best understood as a ratio of such rates. The proportional hazards
model provided the mathematical foundation for classical epidemiologic methods of
relative risk estimation. It paved the way for modern developments by connecting the
field to Fisher’s likelihood inference and its semiparametric extensions. Particularly
important are the new epidemiologic designs that have been stimulated by ideas
from survival analysis: the nested case-control design, the case-cohort design, the
case-crossover design, and two-phase stratified versions of all of these. The vignettes
by Oakes and Thomas reference some of this work and cite recent, comprehensive
reviews.

Hierarchical modeling is a cross-cutting development whose great importance is
chronicled in several vignettes. Statisticians who have discovered its value in their
own areas of application owe a great debt to the pioneering efforts of those working
in the field of animal breeding, notably Henderson and Patterson and Thompson. Gi-
anola argues that the mixed model equations and their best linear unbiased predictors
(BLUPs) of genetic value are probably “the most important technological contribution
of statistics to animal breeding.” Analogous predictors of random effects in both linear
and nonlinear mixed-effects models play no less a role in spatial statistics. Thomas,
for example, notes their value for smoothing of small area disease rates prior to map
construction.

Although hierarchical modeling can proceed using only the mixed model equa-
tions and restricted maximum likelihood (REML) estimation of variance components,
the advantages of a full Bayes approach are increasingly apparent. Gianola argues that
this provides the only satisfactory solution to assessing uncertainty in variance com-
ponents and BLUPs. Markov chain Monte Carlo (MCMC) calculations, furthermore,
are essential for fitting models with large (he cites a case with 700,000) numbers of
random effects. Thomas calls attention to the importance of Bayes model averaging
techniques in epidemiology. Guttorp cites several applications of MCMC for spatial
prediction in environmental problems, and Wong notes the use of MCMC for mul-
tiple alignment of DNA sequence data. But Bayesians are not alone in their use of
MCMC and other computationally intensive procedures. Efron’s bootstrap has also
dramatically impacted both the theory and practice of statistics. Pollock in particular
notes its application to capture-recapture data.

Public health statisticians tend to favor marginal mean regression models over



their hierarchical counterparts, because the parameters then have a desired interpre-
tation in terms of population averages. The generalized estimating equation (GEE)
approach with a specified “working” correlation matrix, as developed by Liang and
Zeger, has revolutionized the analysis of longitudinal and other forms of clustered
data. Ryan notes the impact of these methods on the analysis of data from reproduc-
tive toxicology studies, where the correlation of outcomes among littermates is of
little intrinsic interest, and Thomas mentions their importance in epidemiology. Pepe
cites both marginal and hierarchical approaches to the analysis of receiver operating
characteristic data.

This series of short vignettes provides a sampling of the fascinating statistical
problems that arise from the life and medical sciences, of the crucial contributions
made by statisticians to those sciences, and of the statistical concepts and techniques
that have led to this success. They confirm that the statistics of the 21st century will
be heavily influenced by the revolutionary developments in technology, particularly
in the information and biomedical sciences, and by the availability of vast new repos-
itories of geographic and molecular data. The authors, referees, and editors who have
contributed their hard work to this project will be amply rewarded if the series helps
to attract students of statistical science into the fields that have so stimulated their
own interest and productivity.



Survival Analysis

David Oakes

1. INTRODUCTION

Survival analysis concerns data on times T to some event; for example, death,
relapse into active disease after a period of remission, failure of a machine component,
or time to secure a job after a period of unemployment. Such data are often right-
censored; that is, the actual survival time Ti = ti for the ith subject is observed only if
ti < ci for some potential censoring time ci. Otherwise, the fact that {Ti ≥ ci} is ob-
served, but the actual value of Ti is not. For example, in a study of mortality following
a heart attack, we will typically know the exact date of death for patients who died, but
for those patients who survived, we will know only that they were alive on the date of
their last follow-up. As an important but sometimes overlooked practical point, these
event-free follow-up times must be recorded to allow any meaningful analysis of the
data. Usually the ci will vary from patient to patient, typically depending on when
they entered the study. The paper of Kaplan and Meier (1958) in this journal brought
the analysis of right-censored data to the attention of mathematical statisticians by
formulating and solving this estimation problem via nonparametric maximum likeli-
hood. Over the next few years, attention focused largely on extending nonparametric
tests, such as logrank, Wilcoxon, and Kruskal–Wallis, to allow for possible right cen-
soring. In this context, Efron (1967) introduced the notion of self-consistency (“to
thine own self be true”), a key to the modern approach to missing-data problems via
the EM algorithm (Dempster, Laird, and Rubin 1977). Breslow and Crowley (1974)
proved the weak convergence of the normalized Kaplan–Meier estimator to Brownian
motion.

2. COX’S PROPORTIONAL HAZARDS MODEL

Emphasis shifted from hypothesis testing to modeling effects of explanatory
variables (“covariates”) on survival following the introduction by Cox (1972) of the
proportional hazards model. Cox’s model includes the unknown baseline hazard as a
nuisance function, but the effects of the covariates on the hazard are modeled via a
simple multiplicative factor.

David Oakes is Professor and Chair, Department of Biostatistics, University of Rochester, Rochester, NY
14642. This work was supported in part by National Cancer Institute grant R01 CA52572.



Specifically, the hazard function lim∆→0+(1/∆)pr(Ti ≤ t+ ∆|Ti ≥ t) for the
survival time Ti of individual i is given by

hi(t) = exp(βxi)h0(t), (1)

where xi is the column vector of covariates, β is a corresponding row vector of
regression coefficients to be estimated, and h0(t) is the baseline hazard function;
that is, the hazard for an individual with x = 0. Cox (1972, 1975) suggested an
ingenious method of estimating β without knowledge of h0(t). The full likelihood,
which involves bothh0(t) andβ, is decomposed into a product of terms corresponding
to the time to the first failure, the identity of the first failure, the gap time between
the first and second failure, the identity of the second failure, and so on. Each term is
taken conditionally on the information given by all previous terms of the sequence.
Cox’s insight was that the usual large-sample properties of the full likelihood function
are inherited by the partial likelihood, consisting of the product of the alternate terms
corresponding to the identities of the successive failures. This product has the form

lik =
∏
i∈D

exp(βxi)∑
Ri

exp(βxj)
, (2)

whereD = {i;Ti ≤ ci} is the set of observed event times andRi = {j : min(Tj , cj) ≥
Ti} is the set of individuals still at risk of an event at time Ti.

Alternative motivations of the partial likelihood estimate can be given from count-
ing process theory (see, e.g., Andersen, Borgan, Gill, and Keiding 1993 for a thorough
review) or from Johansen’s (1983) representation as a semiparametric profile like-
lihood estimator. Johansen’s representation allows many nonstandard problems in
survival analysis to be treated by general techniques for maximizing likelihood func-
tions, such as the EM algorithm. Rigorous proofs of the asymptotic normality of the
partial likelihood estimator β̂ started to appear in preprints around 1977, with the first
published proof given by Tsiatis (1981) based on a careful decomposition of the par-
tial likelihood score function. He showed joint asymptotic normality of {β̂, Ĥ0(t)},
where

Ĥ0(t) =
∑

Ti≤t∧ci



∑
j∈Ri

exp(β̂xj)




−1

is a natural estimator of the cumulative baseline hazard function
∫ t
h0(u) du. An-

dersen and Gill (1982) gave a proof using counting process theory. Prentice and Self
(1983) allowed hazard ratio functions of general form r(βx) to replace the exp(βx)
in (1). Numerous authors (e.g., Efron 1977; Kalbfleisch 1974; Oakes 1977) have
shown that the partial likelihood approach has high efficiency with respect to a fully
parametric approach (assuming, e.g., the Weibull distribution with power-law hazard



function h0(t) = ρtκ) as long as β is not too far from 0 and the censoring pattern
is not too highly dependent on the covariates. Jeong and Oakes (1999) noted that
this high efficiency for estimation of β does not extend to estimation of H0(t), for
which there may be a substantial loss of information, as in the corresponding single-
sample problem (Miller 1981). The relative computational simplicity of Cox’s model
has made it a useful case study for formal semiparametric estimation theory (Begun,
Hall, Huang, and Wellner 1982; Bickel, Klaassen, Ritov, and Wellner 1993).

Following publication of the text by Kalbfleisch and Prentice (1980) and the in-
corporation of software for fitting proportional hazards models into packages such as
BMDP and SAS, this model has, for better or worse, became standard for the anal-
ysis of survival data. But the assumption of proportional hazards has no compelling
mathematical justification and is often found to be false in applications. Cox (1972)
provided a simple test of fit using time-dependent covariates; that is, replacing the xj
in (1) by xj(t) for some prespecified (or at least predictable; see Andersen et al. 1993)
functions xj(t) of time. The propriety of using such variables, and thus in effect sub-
suming nonproportional hazards models within the methodology, is a great strength
of Cox’s approach. Subsequent developments in goodness-of-fit testing emphasized
martingale residuals based on the “observed minus (conditionally) expected” for-
mula familiar in epidemiologic work (see, e.g., Barlow and Prentice 1988; Therneau,
Grambsch, and Fleming 1990). Interestingly, an apparently different approach, via
the so-called “generalized residuals” of Cox and Snell (1968), leads to essentially the
same result.

3. OTHER REGRESSION MODELS

Many competitors to the proportional hazards model have been developed; how-
ever, none allows such a simple semiparametric analysis. In the scale change (accel-
erated life) model, the predictors act by speeding up or slowing down the time scale.
Barring pathological examples involving periodicities (Doksum and Nabeya 1984),
the accelerated life and proportional hazards models can both hold only if the survival
functions follow the Weibull form. The regression coefficients in the two formulations
are related by the factor κ in the index of the power law. Least squares methodology
can be extended to censored data (Buckley and James 1979; Miller 1976), but, as for
uncensored data, is inefficient when the error distribution is nonnormal. Robins and
Tsiatis (1992) developed an efficient approach to semiparametric estimation in the
accelerated life model that extends to a version proposed by Cox and Oakes (1984,
chap. 5), allowing time-dependent explanatory variables that act via a monotonic but
possibly nonlinear transformation of the time scale.

The proportional hazards model is not preserved when a covariate is added to
or removed from the model, as is routinely done by “stepwise selection” procedures,
even when the added term is statistically independent of the other covariates. For



example, suppose that one covariate in a proportional hazards model has hazard ratio
W that follows a gamma distribution and is independent of the other covariates,
so that (1) becomes hi(t) = Wi exp(βxi)h0(t). The resulting model obtained by
integrating over the distribution of W no longer has proportional hazards, and the
effect of the observed covariates is attenuated. In particular, exponentially distributed
Wi lead to the proportional odds model for the survivor function introduced by Bennett
(1983). Murphy, Rossini, and van der Vaart (1997) justified Bennett’s semiparametric
estimation procedure. Hougaard (1986) noticed that the proportional hazards property
is preserved if instead W has a positive stable distribution with index α. Here the
effect of the observed covariates is attenuated by a factor α. An additive model, with
(1) replaced by hi(t) = r(βxi) + h0(t), has some attractions—although a partial
likelihood is no longer available, estimating equations for β can be derived from
counting process theory (Aalen 1978; Lin and Ying 1994).

4. MULTIPLE FAILURE TIMES

Often individuals may experience several different types of events, with possi-
bly more than one event occurring to a subject. Competing risks models apply when
at most one event can occur to a single subject. In competing risks models, the as-
sumption that risks are independent can never be tested satisfactorily, so predicted
survival curves calculated on this assumption can be seriously misleading. Pepe (1991)
proposed that inferences be focused instead on observable quantities such as the cu-
mulative incidence. When each individual can experience multiple events these can
be viewed as transitions of a Markov or semi-Markov process among a variety of
possible states (Prentice, Williams, and Peterson 1981). As long as these transitions
are modeled in a way that respects the time ordering of the events (i.e., intensity
functions at each time are modeled as a function of the entire history of the individual
at that time), the full likelihood for the entire process factors into a product of terms
for each possible transition, and standard asymptotic theory applies. This principle is
violated by “marginal models” in which the intensity of an event of one type at time
t is modeled as a function only of predictors available at t = 0. There may be com-
pelling scientific reasons for the use of a marginal model; for example, to preserve
the comparability between treatment groups in a randomized study, one typically
measures the time to each possible event from the date of randomization rather than
from a previous event. Wei, Lin, and Weissfeld (1989) suggested maximization of the
product of the separate partial likelihood functions for the times to each type of event,
ignoring any previous events. This product is no longer itself a partial likelihood and
a “sandwich” formula must be used to estimate the variance of the estimator. Cai and
Prentice (1995) considered weighting these estimators to achieve greater efficiency.

The partial likelihood argument extends to nested case-control studies in which
the sum in the denominator of the ith term in (2) is taken over the set {i}∪Ci, where Ci



are independent random samples from the set Ri \{i} of event-free individuals in Ri

(Oakes 1981). However, the simpler case-cohort design proposed by Prentice (1986),
in which Ri is replaced by {i} ∪ C, where the single random sample C is chosen
at the outset, does not yield a partial likelihood function. An estimating equation
approach is needed that allows for correlation between the terms of the (pseudo) score
function. Genetic studies involving ascertainment of disease incidence in probands
and relatives of probands lead to still more complex designs and analyses. The AIDS
epidemic has spurred development of methodology to handle more complicated data
structures involving truncation (delayed entry) and/or interval censoring (Lagakos,
Barraj, and DeGruttola 1988). Genetic studies provide a fertile area of application for
multivariate survival analysis, where events to related individuals occur along separate
unrelated time scales. Clayton (1978) introduced a bivariate model for assessing the
dependence between risks of heart attacks in fathers and their sons. The random-
effects (frailty) representation (Oakes 1989) provides a broad class of models for
such data. Fully nonparametric estimation of a bivariate survival distribution under
arbitrary patterns of censorship remains a challenging problem. Estimators have been
proposed by Dabrowska (1988), Prentice and Cai (1992), and others, but whether these
are asymptotically efficient is unknown. Simpler, inefficient estimators are available
under restricted patterns of censorship (Lin and Ying 1993). The idea, familiar in
sampling theory contexts, is akin to weighting each observation by the reciprocal
of the estimated probability that it is uncensored. This approach has been developed
extensively by Robins and coworkers to attack the problem of dependent risks in more
complex models (see, e.g., Robins and Rotnitzky 1992).

5. FUTURE DEVELOPMENTS

The future evolution of survival analysis is far from a predictable process. The
view has been expressed that survival analysis is but a special case of the analysis of
longitudinal data (Diggle, Liang, and Zeger 1994) with incomplete follow-up, so that
it may eventually disappear as a separate field of study. Alternatively, we may focus
on the incompleteness aspect, especially when considering more complex mecha-
nisms for incomplete observations than simple right censoring. From this viewpoint,
correct modeling of the “missingness” mechanism then becomes the crucial element.
The notion of coarsening at random (Gill, van der Laan, and Robins 1997) is one
approach to developing this concept. Hastie and Tibshirani (1990, sec. 8.3) applied
the techniques of generalized additive models to fit time-dependent coefficients in
Cox’s model. A related notion is the use of smoothing or using kernels or polynomial
splines to smooth the underlying baseline hazard function (Kooperberg, Stone, and
Truong 1995).

Survival analysis seems unlikely soon to become extinct (or to reach any other
absorbing state!), because of the ubiquity of this type of data and the mathematical



interest of the problems raised by the development of proper methods of analysis.
As in other fields, the computational Bayesian approach provides an attractive tool
for fitting models whose complexity would rule out other approaches. Sinha and Dey
(1997) gave a comprehensive review of recent such work. Counting processes and
their associated martingales will undoubtedly continue to play an important role in the
theory. The notion of a martingale captures the fundamental characteristic of survival
analysis, that information about events and associated covariates arrives over time,
not all at once, and that information, inferences, and predictions at a specific time
must involve only what is known at that time.
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Causal Analysis in the Health Sciences

Sander Greenland

1. INTRODUCTION

The final quarter of the 20th century witnessed a burgeoning of formal methods
for the analysis of causal effects. Of the methods that appeared in the health sciences,
most can be identified with approaches to causal analysis that originated much earlier
in the century in other fields: counterfactual (potential outcomes) models, graphical
models, and structural equations models. Connections among these approaches were
elucidated during the 1990s, and the near future may bring a unified methodology for
causal analysis. This vignette briefly reviews the counterfactual approach to causal
analysis in the health sciences, its connections to graphical and structural equations
approaches, its extension to longitudinal data analysis, and some areas needing fur-
ther work. For deeper and more extensive reviews, I especially recommend Sobel’s
(1995) discussion of the connections among causal concepts in philosophy, statis-
tics, and social sciences; Pearl’s (2000) unified approach to counterfactual, graphical,
and structural equations models; and Robins’s (1997) review of causal analysis for
longitudinal data.

2. CAUSAL ANALYSIS WITH COUNTERFACTUAL
(POTENTIAL) OUTCOMES

The ideas behind counterfactual analysis of causation can be traced to philoso-
phers in the 18th and 19th centuries (see Lewis 1973; Rubin 1990; Sobel 1995), but
statistical implementations had to await a formal theory for inference from random-
ized experiments (Fisher 1935; Neyman 1923). In its simplest form, dealing with
treatments applied at one point in time and their effect on a subsequent outcome Y ,
one imagines that observational unit i receives exactly one of the J + 1 treatments
listed in the vector x = (x0, . . . , xJ)′. One also imagines that at time of treatment unit
i has an associated vector yi = (y0i, y1i, . . . , yJi)′ of potential outcomes, and that the
actual outcome Yi of unit i equals the potential outcome yji if xj is administered to
unit i;Yi is thus a function of xj . This notation assumes that Yi depends only on the
treatment assigned to unit i, called the no-interference assumption (Cox 1958). We
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can observe element yji of yi only if unit i receives treatment xj ; the remainder of yi
then becomes unobserved, missing, or counterfactual. (The term “missing” suggests
that a potential outcome yji exists as a well-defined characteristic of unit i even when
xj is not administered to unit i, whereas the term “counterfactual” is used to empha-
size the hypothetical, “contrary-to-fact” nature of yji when xj is not administered to
unit i.)

Let ri be the J + 1 element treatment indicator vector for unit i, which has
elements rji = 1 if unit i receives treatment xj and 0 otherwise. Then the observed
treatment and outcome of unit i are Xi = r′

ix and Yi = r′
iyi. We say that receiving

treatment xj instead of x0 (would have) had an effect on Yi if yji �= y0i, for then
Yi differs according to whether unit i receives treatment xj or x0. Also, we say that
yji − y0i is the effect on Yi of receiving xj instead of x0. (If the potential outcomes
are strictly positive, we may instead measure this causal effect by yji/y0i, although
this leads to identification problems (Greenland 1987)). As an example, suppose that
x1 is a new leukemia treatment, x0 is a standard treatment, i indexes patients in a
clinical trial, and Yi is the survival time of patient i from treatment until death. We
imagine that patient iwill survive y1i months under the new treatment and y0i months
under the standard treatment. If i is given the new treatment, ri = (0, 1)′, and we
observe Yi = (0, 1)(y0i, y1i)′ = y1i; y0i is then unobserved, and the effect of the new
treatment on survival Yi is y1i − y0i.

Given that, for every observed unit, only one element of yi can be observed, how
can inference about causal effects proceed? Suppose that our research goals would
be advanced if we could just estimate the average causal effect of receiving treatment
xj instead of treatment x0,

ACEj =
N∑
i=1

(yji − y0i)/N

=
N∑
i=1

yji/N −
N∑
i−1

y01/N = ȳj − ȳ0,

among the N units for which treatment X and outcome Y were observed. Suppose
also that treatment is randomized (or, more generally, that treatment assignment r is
independent of each of the potential outcomes yj), and thatNj > 0 units are observed
at treatment xj , for a total of J + 1 observed subsamples. Then the average outcomes
of the subsamples, ∑

i:rj=1

Yi/Nj =
∑
i:rj=1

yji/Nj ,

will be unbiased estimators of the unobserved total sample means ȳj , and statistical
inferences about these means and their contrasts (such as the ACEj) follow from
randomization theory (see, e.g., Copas 1973; Cox 1958; Rosenbaum 1995; Rubin
1978). The unit-specific potential responses in yi may be replaced by unit-specific



distributional parameters, to better capture random variation in outcomes. For exam-
ple, potential survival times (y0i, y1i)′ may be replaced by expected survival times
µi = (µ0i, µ1i)′ under a log-linear survival time model; the observed survival time
Yi is then drawn from the distribution with expectation r′

iµi.

3. BENEFITS OF THE COUNTERFACTUAL APPROACH

Because counterfactual causal models have been resisted by some authors (e.g.,
Dawid 2000; Salmon 1998; Shafer 1996), it is worth noting the benefits that have
accrued from their use. The following list is only partial, and as yet no alternative
to counterfactuals has led to as many operational techniques (as opposed to informal
guidelines) for causal analysis of health outcomes.

An important development in the final third of the 20th century was the extension
of formal counterfactual models to settings in which the randomization assumption
or the no-interference assumption may fail (Halloran and Struchiner 1995; Lewis
1973; Rubin 1974, 1978; Simon and Rescher 1966). By viewing rji as the “response
observed” (nonmissing) indicator for yji, causal inference can be viewed as a missing-
data problem, opening the way for extending concepts developed for survey response
problems to causal analysis of observational data (Robins, Rotnitzky, and Scharf-
stein 1999; Rubin 1978). One causal analysis methodology arising from this link
is propensity scoring (Joffe and Rosenbaum 1999; Rosenbaum 1995; Rosenbaum
and Rubin 1983), in which one controls confounding via stratification on probabil-
ity of treatment, in much the same manner as survey analyses control selection bias
via stratification on probability of sampling. Another such methodology is marginal
structural modeling, in which one controls confounding via weighting observations
by inverse probability of treatment received, in much the same manner as survey
analyses control selection bias via weighting by the inverse probability of sampling
(Robins, Hernán, and Brumback 2000). Other applications of counterfactual models
have led to new methods for causal inference in the face of noncompliance (Angrist,
Imbens, and Rubin 1996; Balke and Pearl 1997; Robins 1994), and to formal methods
for sensitivity analysis of unmeasured confounding (Copas and Li 1997; Robins et
al. 1999; Rosenbaum 1995).

In addition to giving rise to many techniques for causal analysis, the counter-
factual model also provides a conceptual clarity that can resolve issues left unsettled
by other approaches (Holland 1986; Sobel 1995). For example, the importance of
randomization for causal inference has at times been questioned in modern Bayesian
writings (see, e.g., Howson and Urbach 1993, chap. 11). The counterfactual model
shows the value of randomization in alleviating the profound sensitivity of Bayesian
causal inferences to prior distributions (Rubin 1978). The counterfactual model also
allows mathematically precise distinctions between key concepts in causal analysis
and superficially similar concepts in noncausal (associational) modeling, which are



often confused in observational research. For example, my colleagues and I have
found the model invaluable in clarifying distinctions between direct and indirect ef-
fects (Robins and Greenland 1992), between causal and associational structures for
event histories (Robins, Greenland, and Hu 1999), between causal confounding and
associational collapsibility (Greenland, Robins, and Pearl 1999), between biologi-
cal and statistical interaction (Greenland and Rothman 1998), between attributable
fractions and the probability of causation (Greenland 1999), and between causal and
associational conditional inference (Greenland 1991).

4. CONNECTIONS TO OTHER APPROACHES

Outside of the health sciences, two popular approaches to causal modeling are
causal diagrams and structural equations models. Early versions of these two ap-
proaches appeared by the 1920s in the form of path analysis (see, e.g., Wright 1921),
and connections between the two were appreciated from the start. Figure 1 gives an
example of a causal diagram that encodes a set of qualitative assumptions about the
causal relations among five variablesX1, . . . , X5. For example, presence of a single-
headed arrow from X1 to X3 encodes the assumptions that X1 “directly affects” X3,
whereas absence of such an arrow from X2 to X4 encodes the assumption that X
has no “direct effect” on X4. Causal descriptors such as “direct effect” are taken as
primitives (i.e., undefined starting points) in the theory of causal diagrams; that is,
unlike terms such as “causal effect” in counterfactual models, they have no formal
definition within the theory. But the presence of these causal descriptors distinguishes

Figure 1. An Example of a Causal Diagram (adapted from Pearl 1995).



the theory of causal diagrams from the more general theory of graphical probability
models, and allows translation of results from the latter theory into identification
theorems for causal effects (Pearl 1995, 2000; Spirtes, Glymour, and Scheines 1993).

Another way to formalize assumptions about causal relations is via a system of
causal functional relations, often called a structural equations model. A nonparametric
causal system that encodes the same assumptions as Figure 1 is x1 = f1(ε1), x2 =
f2(ε2), x3 = f3(x1, x2, ε3), x4 = f4(x1, x3, ε4), x5 = f5(x2, x3, x4, ε5), with the
εj here assumed to be jointly independent but not otherwise specified. The presence
of a variable on the right (input) side of an equation encodes the assumption that it
directly affects the variable on the left (output) side, whereas its absence from the right
encodes the assumption that it has no direct effect on the left. Structural equations are
more often presented in a parametric form such as a system of linear equations, which,
however, can encourage confusion with multivariate (noncausal) regression models.
The structural equations format is intended to convey the notion that the functions fi
represent the behavior of causal mechanisms whose inputs are the function arguments,
although some of the inputs (especially the εj) may only represent unmeasured and
possibly random disturbances (Pearl 1995, 2000). Thus each function fj in a system
of structural equations is a hypothesized causal dependence of an output on inputs.
The system comprises these hypotheses and the hypothesis that each dependency is
autonomous; that is, each function is invariant to changes in the form of the other
functions (Simon 1953).

Connections between counterfactual and structural equations models were not
recognized until long after both approaches were established (Simon and Rescher
1966). The range of a structural function corresponds to the set of potential val-
ues for the output variable; these potential outcomes are thus completely (though not
uniquely) indexed by the joint domain of the input variables. That is, a system of struc-
tural equations is a system of functions from inputs to potential outcomes. Structural
equations thus extend the basic counterfactual model, in that the actual outcome from
a given function may serve as an input to subsequent potential outcome functions.

Statistical methods that fully exploited the aforementioned connection had to
await development of a formal theory for causal inference in sequential randomized
experiments. The first complete theory emerged in the 1980s (Robins 1987). The
basis of this theory is the g-computation formula or g-computation algorithm, which
provides the distribution of outcomes in populations of units administered longitudi-
nally randomized treatment protocols (Robins 1997). The formula decomposes this
distribution into a sum of sequential probability products along the different possible
event histories. The formula and the independence assumptions necessary for its ap-
plication to observational studies of effects was first derived using causal tree graphs
(Robins 1987), and can also be derived using directed acyclic graph models and coun-
terfactual models (Pearl 1995; Robins 1997). Statistical models and methods based
on the formula include g-estimation for structural nested models (Robins 1997) and



inverse-probability-of-treatment-weighted estimation for marginal structural models
(Robins et al. 2000). These methods allow causal inferences under much less re-
strictive independence assumptions than those required by standard methods, such
as proportional hazards or generalized estimating equation (GEE) regression (Robins
and Greenland 1994; Robins, Greenland, and Hu 1999); for example, these methods
can provide valid effect estimates even when treatment and confounders vary over
time and treatment affects the confounders.

5. SOME AREAS NEEDING DEVELOPMENT

The models discussed earlier are useful formalizations of causal structures, re-
gardless of study design. From a health sciences viewpoint, however, one of the most
pressing needs is for extension of the resulting statistical methods to case-control data.
As of the time of this writing, I am unaware of formal extensions of propensity scor-
ing or g-estimation to arbitrary case-control studies. Although they can be extended
to case-control studies nested within an enumerated cohort and to case-cohort stud-
ies, most case-control studies arise from unenumerated source populations. Marginal
structural modeling can, however, be applied to arbitrary case-control studies given
a rare-disease assumption (Robins 1999).

There are a number of other research problems for which extensions are needed.
For example, postmarketing surveillance for drug and device side effects typically in-
volves many factors that affect the structure of the observed data, suggesting that fairly
elaborate nonignorable missing-data models will be required for realistic causality
assessments. In problems with multiple levels of unit definition, there is a need for
elaboration of hierarchical (multilevel) counterfactual models to estimate the absolute
and relative impacts of different levels of information. These issues arise, for example,
in comparing the effectiveness of school-based versus community-based vaccination
programs from observational data when both levels of intervention may be present.

There is also a need for performance evaluations and comparisons among spe-
cific causal modeling and fitting techniques. For example, there is as yet only limited
published applications of g-estimation and marginal structural modeling. Issues such
as model misspecification and model diagnostics are as yet largely unexplored. Both
simulation studies and practical experiences would help identify problem areas. Prac-
tical experiences with the newer techniques would be facilitated by distribution of
easily used software for the techniques; so, software is thus another pressing need.

Finally, real data applications of the methods discussed here often involve models
with numerous parameters. Thus it would be of interest to examine the performance of
methods such as propensity scoring, g-estimation, and marginal structural modeling
when combined with techniques for fitting high-dimensional models (e.g., penalized
likelihood and related hierarchical modeling or “shrinkage” techniques).
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Environmental Statistics

Peter Guttorp

1. INTRODUCTION

The field of environmental statistics is relatively young. The term “environ-
metrics” was apparently introduced in a National Science Foundation proposal by
Philip Cox in 1971 (Hunter 1994). During the last decade, the field has achieved
some recognition, in that there now are three journals wholly or partially devoted to
the field (Environmetrics published by the International Environmetrics Society and
Wiley; Ecological and Environmental Statistics published by Kluwer, and Journal
of Agricultural, Biological and Environmental Statistics published by the American
Statistical Association). The ASA has a section on Statistics and the Environment, and
the International Statistical Institute is currently discussing such a section. Volume
12 of the series Handbook of Statistics (Patil and Rao 1994) was devoted to the topic
of environmental statistics. Its 28 chapters constitute an interesting overview over the
field.

In this vignette I present some of the current areas of research in environmental
statistics. This is of course by no means an overview of the field as it stands; rather,
it is a list of areas in which I can see the need for, and largely also the tools for,
methodological developments.

2. ENVIRONMENTAL MONITORING

Environmental monitoring design deals mainly with two quite different sorts of
design problems: monitoring for trend, where spatial and temporal dependence is of
importance, and monitoring for “hot spots,” or regions of local high intensity, which
is often used for monitoring compliance with pollution regulations. The basic theory
of optimal design for spatial random fields was outlined by Ripley (1981, chap. 3).
Among the popular designs are systematic random sampling designs, in which a
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point is chosen uniformly over the study area, and a regular design (consisting of
squares, triangles, or hexagons) is put down starting at the chosen point. When the
sample mean is used to estimate the spatial mean of an isotropic random field over
a region, the regular sampling plans are most efficient (Matérn 1960, chap. 5). The
hexagonal design requires fewer sampling sites than a square or triangular design to
cover the same area, but does not take into account spatial covariance heterogeneity
or temporal nonstationarity. The covariance mapping technique mentioned in Section
3 can be used to deal with spatial heterogeneity, by implementing a spatial design in
the transformed space.

Zidek and coworkers (e.g., Caselton, Kan, and Zidek 1992; Guttorp, Le, Sampson,
and Zidek 1993) have developed an approach to network design that can deal with
heterogeneous random fields. The basic idea is to consider a number of potential
monitoring sites, some of which are gauged and some ungauged. In a multivariate
normal setting, the design maximizes the amount of information (of the Kullback–
Leibler type) about the ungauged sites that can be obtained from the gauged sites.
This can be particularly useful when trying to redesign a current network, by adding
and removing stations.

It is frequently the case that data from a monitoring network will serve more than
one purpose. For example, in analyzing trends in tropospheric ozone (Reynolds, Das,
Sampson, and Guttorp 1998), the data were collected by the state of Washington to
monitor compliance with the Clean Air Act. Consequently, the network was aimed at
finding areas of high air pollution and was changing over time. Statistical methods for
analyzing data from a network adaptively designed to find the extremes of a random
field need to be developed.

In 1989, the U.S. Environmental Protection Agency (EPA) started an ambitious
monitoring program called the Environmental Monitoring and Assessment Program
(EMAP). This was intended to create a “report card” for the state of the U.S. environ-
ment. The basic design of the EMAP study (Overton, White, and Stevens 1990) is a
hexagonal grid, with a random starting point and a side of 27 km, resulting in 12,600
grid points over the continental United States, of which 25 fall in the Delaware Bay
on the eastern U.S. coast, where EMAP has an ongoing study of benthic invertebrates.
The EMAP protocol required revisiting some of the sites on a 3-year rotating basis.
The measurements made at each site (three times each summer) included a bottom
grab sample of benthic organisms, together with measurements of covariates such as
temperature, depth, and salinity.

The basic biological tenet behind this sampling scheme is that environmental
insults affect the distribution of organisms, in that pollution-tolerant species tend to
get a larger proportion of the sample than do pollution-sensitive species. To deal
with species composition data, Aitchison (1986) developed a methodology based on
transforming the proportions from the unit simplex to Euclidean space. The propor-
tions are then treated as multivariate normal data in the transformed space. Billheimer



(1995) extended this model to space–time data, showed how to estimate parameters
using Markov chain Monte Carlo (MCMC) techniques, and how by backtransform-
ing to the simplex the parameters can be given a natural interpretation as proportions
(Billheimer, Guttorp, and Fagan 1999). In fact, it is possible to develop an algebra of
proportions, which allows the statement of common models, such as regression, in
terms of proportions. To account for counts of species from samples, the proportions
are thought of as hidden state variables, and the counts are, for example, conditionally
multinomial given the (unobserved) proportions. Billheimer et al. (1997) analyzed the
spatial distribution of EMAP data from the Delaware Bay, and Silkey (1998) looked
at changes over time.

Another example of compositional data in environmental statistics deals with
particulate matter air pollution. Here the chemical analysis determines the distribu-
tion of chemical species among the particles. Regression on known pollution profiles
enables identification of sources (Park, Spiegelman, and Henry 1999), but the afore-
mentioned compositional analysis approach may yield additional insight, particularly
into seasonal patterns.

3. SPATIAL PREDICTION

Environmental monitoring data are often used to develop regional summaries of
pollution fields. To do so, values at unobserved sites have to be predicted. Geostatisti-
cal methods, such as kriging, were originally developed to do spatial prediction from
a single observation of a network of sites. The main difference in the environmen-
tal context is that we generally have a time series of observations. Where ordinary
geostatistical methods are forced to make strong assumptions on the spatial covari-
ance structure, such as isotropy, these are not needed (and often not warranted) in
the environmental context. Methods are available to study spatially heterogeneous
covariance structures (Guttorp and Sampson 1994). Such methods are needed, for
example, when hydrology or meteorology determines the covariance structure.

Our preferred approach is to use the class of covariance functions of the form
c(x, y) = c0(‖f(x) − f(y)‖), where c0 is an isotropic covariance function and f
is a smooth mapping taking the geographic coordinates (x, y) into a different space
in which covariances are isotropic. (Some facts regarding this class of covariance
functions have been presented by Perrin and Meiring 1999.) The mapping f can
be estimated nonparametrically, and current work involves implementing the fitting
procedure using MCMC techniques.

Given a covariance model, spatial prediction traditionally proceeds as a gener-
alized least squares problem. The standard error of the least squares prediction has
three components: one due to the uncertainty about the random field, one due to the
uncertainty in the covariance estimation, and one due to the choice of c0 and f . Tra-
ditional geostatistical work ignores the second and third components. Use of MCMC



estimation of the covariance function allows direct estimation of the second compo-
nent. Model uncertainty calculations (e.g., Clyde 1999) can be used to estimate the
overall uncertainty by estimating the support of the data for each of several potential
covariance models c0.

4. RISK ASSESSMENT

The EPA is committed to assessing environmental problems using risk analy-
sis. Traditionally, this has been done by putting down a deterministic model of the
relationship between level of pollutant and effect. The typical risk function is a dif-
ferential equation, with parameters that are determined from a variety of sources,
such as laboratory experiments, measurements on exposed individuals, and scientific
consensus. When the model has to do with human health effects, the basis for the risk
function is more often than not experiments on animals, which are then rescaled to
provide a risk function for humans using a fairly arbitrary scaling factor. (For further
discussion of health effects estimation, see the vignette by Thomas 2000.)

Recently, much emphasis has been put on uncertainty analysis of these risk as-
sessments. Primarily, it has been noted that the values of the parameters in the model
are subject to uncertainty, which then propagates through the whole assessment and
results in uncertainty about the final risk. The method of probabilistic risk analysis
(Cullen and Frey 1999) assigns what a statistician would call a prior distribution to
each of the parameters. Typically, the parameters are treated as independent a priori,
with simple marginal distributions such as uniform or normal. The analysis is done
by simulating values from the prior distributions and summarized by producing sim-
ulated confidence intervals for quantiles from the resulting risk distribution. Current
work aims at assessing the uncertainty more accurately by looking at the entire model
uncertainty (e.g., Givens, Raftery, and Zeh 1995; Poole and Raftery 1999). This in-
cludes, in addition to the uncertainty of the parameters mentioned earlier, uncertainty
of the data used to fit and/or assess the model, and uncertainty of the model itself.

5. ENVIRONMENTAL STANDARDS

The detailed understanding of the health effects of a pollutant is one of the tools
needed for setting scientifically valid standards for environmental compliance. As
an example, the U.S. standard for ozone requires that all sites in a region have an
expected number of annual maximum daily 1-hour exceedances of 120 ppb of not
more than one. Such a standard is not enforceable, because the expected number of
exceedances is not directly measurable, and measurements cannot be taken every-
where in the region. Rather, it describes an ideal of compliance and may be termed an
ideal standard. The standard is implemented by requiring that each site in an approved
monitoring network have no more than three exceedances in 3 years. In effect, this



rule applies the law of large numbers to n = 3.
Barnett and O’Hagan (1997) introduced the concept of statistically realizable

ideal standards. Their idea is to combine an ideal standard with a statistically based
rule of implementation. A simple approach to the problem of setting scientifically
defensible environmental standards uses very traditional statistical tools, namely the
Neyman–Pearson approach to hypothesis testing. The basic null hypothesis to be
tested is that the region is in violation of the regulation; that is, in the ozone case, that
the expected number of exceedances is more than one per year. Type I errors are more
serious, as they indicate unacceptable health risks to the population, whereas type
II errors can have serious consequences for the state environmental administrators
in having to develop control strategies that are not strictly speaking needed. When
viewing the EPA regulations from this standpoint, they entail type I error probabilities
that would be viewed as unacceptable by statisticians (Carbonez, El-Shaarawi, and
Teugels 1999; Cox, Guttorp, Sampson, Caccia, and Thompson 1999). In addition,
a statistical approach to testing the basic null hypothesis would use test statistics
different from the number of exceedances.

In air quality data, measurements are generally made on multiple pollutants.
Standards are, however, set on individual pollutants. (In the U.S. these are the criteria
pollutants: carbon monoxide, ozone, particulate matter, sulfur dioxide, and nitrous
oxides.) How to set multivariate standards, taking into account the joint health effect
of several correlated primary and secondary pollutants, is an open problem.

6. GRAPHICAL METHODS

An area of considerable importance in all of modern statistics is the manage-
ment, display, and analysis of massive datasets. Land use data from satellite-based
sensors, automated air quality sensors, and continuous water flow meters are among a
variety of new measurement devices producing vast amounts of data. We are lacking
tools for displaying spatially expressed data with uncertainty measures (see, however,
Lindgren and Rychlik 1995 and Polfeldt 1999 for two approaches). Recent advances
in three-dimensional visualization (virtual reality) allow a viewer to immerse herself
in spatially expressed multivariate data (Cook et al. 1998).

As in all visualization of multivariate data, the tools of linked plots and brushing
are extremely useful. There are promising developments in multi-platform graphical
systems design using Java-based tools (e.g., the ORCA system; Sutherland, Cook,
Lumley, and Rossini 1999). In particular, views of projections of multiple multivariate
time series can yield valuable insights into the temporal structure of values that are
multivariate outliers originating in a particular temporal part of the data, something
that may not be visible in a rotating scatter cloud and even less so in a bivariate
scatterplot matrix.



7. THE FUTURE OF ENVIRONMENTAL STATISTICS

Many important environmental problems directly involve multidimensional, spa-
tially heterogeneous, and temporally nonstationary random fields. My personal belief
is that the development of statistical research tools for classes of such processes may
prove to be the most useful development in the field of environmental statistics. The
multivariate aspect in particular is very important, in that there are few symmetries
in space and time that can be used in setting up models for realistic situations. As an
example, if we are studying the joint distribution of SO2 and SO4 during situations of
similar meteorology, then we will find different space–time correlations for positive
and negative time lags, because most of the SO4 is produced from SO2 emissions. As
pointed out earlier, tools for looking at the joint behavior of several pollutants and for
developing control strategies for their behavior are currently the focus of intensive
research.

This vignette has focused on examples from the air quality arena. There are
equally important, and often more complex, issues in water quality and more generally
in ecological assessment of natural resources. In the long run, a battery of tools
for describing, analyzing, and controlling the state of ecological systems must be
developed. Significant challenges lie ahead for environmental statisticians.
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Capture–Recapture Models

Kenneth H. Pollock

1. INTRODUCTION

Here I briefly review capture–recapture models as they apply to estimation of
demographic parameters (e.g., population size, survival, recruitment, emigration, and
immigration) for wild animal populations. These models are now also widely used in
a variety of other applications, such as the census undercount, incidence of disease,
criminality, homelessness, and computer bugs (see Pollock 1991 for many references).
Although they have their historical roots in the sixteenth century, capture–recapture
models are basically a twentieth century phenomenon. The papers by Petersen and
Lincoln (Seber 1982) from late last century and early this century represent early
attempts by biologists to use capture–recapture methods. Later, as statistical infer-
ence took its modern form and provided powerful tools such as maximum likelihood
methods, biometricians became involved. There has been an explosion of research
that still seems to be accelerating at the century’s end. Fortunately, most of the re-
search is still rooted in the need to solve biological questions. Section 2 reviews closed
models; Section 3, open models; and Section 4, combined methods. I conclude the
article with my views on fruitful current and future research thrusts and how the pace
of change is affecting them.

2. CLOSED MODELS

The most basic model is the Lincoln–Petersen model for a closed population
of size N (an unknown parameter). In one sample some animals are marked (M),
and in a second later sample of size n = (m + n), both marked (m) and unmarked
(u) animals are captured. Simple intuition suggests equating the sample proportion
marked with the population proportion marked m/n = M/N . Thus our estimate is
N̂ = nM/m. This estimator is maximum likelihood under a model with the fol-
lowing assumptions: (a) the population is closed to additions and deletions; (b) all
animals are equally likely to be captured in each sample; and (c) marks are not lost
and not overlooked by the observer (Seber 1982). The second assumption may be
violated in two ways: (a) heterogeneity, which occurs when different animals have
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inherently different capture probabilities; and (b) trap response when the probabil-
ity of capture depends on the animals’ prior capture history. One often samples the
population more than twice. Each time, every unmarked animal caught is uniquely
marked, previously marked animals have their captures recorded, and usually, all an-
imals are released back into the population. This more extensive sampling enables
sophisticated modeling that permits unequal catchability due to heterogeneity and
trap response. Otis, Burnham, White, and Anderson (1978) considered a set of eight
models where capture probabilities vary due to time, heterogeneity, and trap response
in all possible combinations. They also provided a computer program, CAPTURE,
to compute the estimates and select between models. The heterogeneity models that
use a distribution of capture probabilities have caused theoretical difficulty for statis-
ticians. An early ad hoc approach based on the “jackknife” method (Burnham and
Overton 1978) proved quite useful. Later, Chao and colleagues used a method based
on sample coverage (e.g., Lee and Chao 1994). Others have suggested using log-linear
models (Cormack 1989). Maximum likelihood estimation, where the heterogeneity
is modeled as a finite mixture distribution, usually with two or three support points, is
a recent development (Norris and Pollock 1996a; Pledger 2000). Another approach
to modeling heterogeneity uses covariates (Alho 1990; Huggins 1989). Current re-
search is integrating the covariate approach with the distribution approach. Lloyd and
Yip (1991) and others have applied martingales to various closed capture–recapture
models. Another difficulty has been in finding a good method of model selection for
this series of models. The original approach of Otis et al. (1978) does not work well.
I suspect that the finite mixture approaches will aid in solving this problem. There is
also current ongoing research exploring Bayesian methods of comparing models (S.
Ghosh, personal communication). Model averaging may also be used. An interesting
type of removal and recapture combined model, called Markov recapture, was pro-
posed by Wileyto, Ewens, and Mullen (1994), who applied the model to insect pests
in stored grain.

3. OPEN MODELS

Often capture–recapture studies have a long duration, rendering the closed mod-
els impractical. Thus there has been a need for the development of models that allow
for additions (recruits and immigrants) and deletions (deaths and emigrants). The
first general open model was developed independently by Jolly (1965) and by Seber
(1965). Their model, which requires equal catchability and equal survival rates of
all animals at each sampling time, enables one to estimate population sizes, survival
rates, and birth numbers for almost all samples. Detailed treatments have been given
by Pollock, Nichols, Brownie, and Hines (1990) and Seber (1982). Recently there
has been an emphasis on integration of recruitment in the likelihood (Pradel 1996;
Schwarz and Arnason 1996). Since the original Jolly and Seber papers, there has been



much research on modeling survival rates allowing for multiple strata (e.g., sex, age,
location). An important work is that of Lebreton, Burnham, Clobert, and Anderson
(1992). An interesting development has been the shift to fitting large numbers of
models, which has necessitated the development of model selection criteria based on
the Akaike information criterion. The alternative approach of averaging over some
reasonable models is also being considered. The recent book by Burnham and An-
derson (1998) on model selection is very important. Related models based on band
recoveries of exploited animals (Brownie, Anderson, Burnham, and Robson 1985)
have been developed and widely used to analyze band return data on migratory wa-
terfowl and other animals. These models led to important work on the compensatory
versus additive mortality hypotheses for hunting mortality. Recently, these models
have been used in fisheries studies in a slightly different form using instantaneous
rates of fishing and natural mortality (Hoenig, Barrowman, Hearn, and Pollock 1998).
Biologists began to use radio tags as a method of studying animal movements. As the
technology improved and sample sizes increased, this approach has also been used to
estimate survival rates. Early works were by Trent and Rongstad (1974) and Heisey
and Fuller (1985). Pollock, Bunck, and Curtis (1989) used and modified the Kaplan–
Meier method widely used in medical applications of survival analysis for wildlife
telemetry. There have been many articles in the wildlife journals using these methods.
In some cases, the Cox proportional hazards model for relating auxiliary variables
to survival was used. The early survival modeling work considered fixed strata, like
sex, or strata where the transition to the next stage was automatic, as in successive
age classes. Recent works have looked at transitions between stages in a probabilistic
manner. For example, animals may be marked in two different locations and, besides
surviving between periods, may move to another location. Stage-structured models
allow estimation of both the survival and the movement probabilities. Some important
works that outline important theoretical results and provide interesting examples are
those of Brownie, Hines, Nichols, Pollock, and Hestbeck (1993), Hestbeck, Nichols,
and Malecki (1991), Nichols, Sauer, Pollock, and Hestbeck (1992), and Schwarz,
Schweigert, and Arnason (1993). Research in this important area is continuing.

4. COMBINED METHODS

Another focus of research has been to develop combinations of different sam-
pling methods. One early example used a “robust” design that combines both open
and closed models in one analysis (Pollock 1982). Since then, many articles have
used this design for many reasons; for example, to allow for unequal catchability, to
separate recruitment from immigration, and to estimate temporary emigration. Burn-
ham (1993), Barker (1997), and others have developed models for combining tag
returns from dead animals with live recoveries. This research is continuing and ex-
panding to include radio telemetry tagging. Many works have combined line transects



methodology with capture–recapture (e.g., Borchers, Zucchini, and Fewster 1998).
It is also possible to combine change-in-ratio methods and capture–recapture mod-
els. Currently, many large, important monitoring studies rely on indices of relative
population abundance. I believe that there will be the need to include internal valida-
tion in these studies. This will combine the sampling of a small number of the plots
more intensively using mark and recapture or other methods of estimating absolute
abundance with the more extensive but crude sampling for relative abundance.

5. INFLUENCE OF CHANGE ON THE FIELD

5.1 Changing Ecological Paradigms

Early in this century, ecologists emphasized obtaining a population size esti-
mate at a single point in time (Lincoln–Petersen model). Later, emphasis switched
to estimating survival and recruitment for a single population (Jolly–Seber model).
Concern about the assumption of equal catchability led to more general models for
closed populations and to the robust design for open populations. Growing inter-
est in comparing many different ages, sexes, and populations necessitated computer
programs capable of fitting and selecting among many similar, but distinct models.
Separation of emigration estimates from survival estimates cannot be achieved by
the Jolly–Seber model. However, it is feasible in more modern analyses using radio
tags or the combination of dead recoveries and live recaptures. A recent emphasis
on habitat fragmentation has led to metapopulation theory (Hanski and Gilpin 1991).
Metapopulations consist of discrete patches linked by potential movement between
the patches. Stage-structured capture–recapture models that I discussed earlier have
arisen and are evolving to meet the need to estimate patch-specific population sizes,
survival, and movement probabilities. Habitat fragmentation and the explosion of en-
dangered species of plants and animals has brought a growing interest in estimation
of species richness and related parameters. Burnham and Overton (1978) first recog-
nized that capture–recapture methods could be used to estimate the number of species
as well as the numbers of the species. Research will continue on this topic (Nichols,
Boulinier, Hines, Pollock, and Sauer 1998).

5.2 Changing Field Technology

An example of how field technology has changed the models is through the nature
of the mark itself. A simple nonunique mark is all that is needed to fit the Lincoln–
Petersen model for a closed population with two samples. However, individually
identifiable marks are necessary to fit the more general closed models that allow
unequal catchability of animals. Open models that allow additions and deletions to



the population also require unique marks. Use of unique individual marks allows the
monitoring of animals that remain alive and have not emigrated. Radio transmitter
tags, however, allow biologists to also relocate newly dead animals and animals that
have emigrated out of the study area provided that a search, often using a radio
receiver mounted on a plane, is feasible. “Smart” radio tags can provide even more
information, such as continuous location and animal activity summaries. These tags
are likely to be quite common in the future. Another use of technology is use of
radioisotopes for identifying animals so that feces can be examined for marks. In the
future, DNA “fingerprints” will be used to identify animals, which will give rise to
more exciting new modeling efforts.

5.3 Changing Computer Technology

Increasing computer power and user-friendly interfaces have revolutionized the
way statisticians analyze data and capture–recapture is no exception. Now it is com-
mon to fit many related models to a single dataset. Modern computer packages
like MARK (White and Burnham 1999; see also www.cnr.colostate.edu/∼gwhite/
software.html) make this easy with their high power and interactive interfaces. Boot-
strapping and other resampling methods are now commonly used to obtain variances
of estimates (Norris and Pollock 1996b). Computer intensive modern hierarchical
Bayesian methods of analysis are beginning to be used for capture–recapture model-
ing, and I expect this to increase in the future (e.g., Vounastou and Smith 1995; see
also the BUGS software at www.mrc-bsu.cam.ac.uk/bugs/mainpage.html).

5.4 Changing Statistical Theory

Early models used method-of-moments estimators, whereas later, maximum like-
lihood estimators became widely used. Profile likelihood methods of constructing con-
fidence intervals and likelihood ratio tests for comparing models gained favor when
computer capabilities had increased. Goodness-of-fit tests based on distributions that
condition on minimal statistics have been widely used along with the traditional chi-
squared goodness-of-fit test (Pollock, Nichols, Brownie, and Hines 1990). I suspect
to see an increase in model pictorial diagnostics. Classical resampling methods like
the jackknife (Burnham and Overton 1978) and the bootstrap (Norris and Pollock
1996b) are now widely used. Generalized linear models (Cormack 1989) and linear
logistic models (Huggins 1989) with fixed and random effects (Pledger 2000) are now
being used, as are Markov chain Monte Carlo (MCMC) and other modern Bayesian
methods (Vounsatu and Smith 1995).

http://www.cnr.colostate.edu/ 
http://www.cnr.colostate.edu/ 
http://www.mrc-bsu.cam.ac.uk/bugs/


6. CONCLUSION

The continual interaction of animal ecologists and statisticians has been cru-
cial to the development of sound capture–recapture models. In fact, I believe that
all of the important statistical innovations of this century have depended on the in-
teraction of subject matter scientists and statisticians. For example, R. A. Fisher’s
work on experimental design arose out of his position at Rothamsted Agricultural
Experiment Station. Currently, although I believe that more theoretical innovations
are possible, I think a major limitation is the nature and quality of the capture–
recapture data that can be collected in the field. For an example from the recent past,
about 20 years ago, radio tags became widely available to biologists, which has had
a profound influence on model development. Similarly, I suspect that new methods
of data collection will arise, opening up many new and challenging areas of model
development.
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Statistics in Animal Breeding

Daniel Gianola

1. INTRODUCTION

Genetic improvement programs for livestock aim to maximize the rate of increase
of some merit function expected to have a genetic basis. Animals producing progeny
with the highest expected merit are kept as parents of subsequent generations, and
those with the lowest merit are discarded. Merit can be a linear or nonlinear combina-
tion of genetic values for several traits that are economically important. Genetic merit
cannot be observed, so it must be inferred from data. Relevant statistical problems
are (a) assessing whether traits have a genetic basis, (b) developing accurate methods
for inferring merit (“genetic evaluation”), and (c) designing mating plans. I do not
deal with (c) here. The data consist of records of performance, such as growth rate,
milk yield, and composition, records on diseases, egg production in layers, litter size
in pigs, calving difficulty, survival, and length of productive life. Recently, data on
molecular markers have become available, but its use is still at an early stage.

Many traits (continuous or discrete) seem to have a polygenic mode of inheritance
and are subject to strong environmental influences. There are sex-limited traits as
well (e.g., milk production), observable in females only. Often it is more important
to infer the genetic merit of males because of their higher impact on the rate of
improvement. For example, artificial insemination and frozen semen allow dairy bulls
to sire thousands of daughters in several countries, thus generating opportunities for
international sire evaluation, although this requires complex statistical models.

Animal breeding datasets are large (e.g., millions of lactation milk yields in dairy
cattle), multivariate (several traits modeled simultaneously), and seemingly Gaussian
in some instances and nonnormal in others. Data structure can be cross-sectional
or longitudinal (as in a study of growth curves), can be very unbalanced, and with
nonrandomly missing observations. For example, not all first-lactation cows produce
a second lactation, because of sequential selection for low production, reproductive
failure, or disease. Some sires are used more intensively than others, because of differ-
ences in estimated or perceived genetic value. Hence it is not surprising that statistical
science has been important in animal breeding. A review of statistical methods and

Daniel Gianola is Professor, Department of Animal Sciences, Department of Biostatistics and Medical
Informatics, and Department of Dairy Science, University of Wisconsin, Madison, WI 53706 (E-mail:
gianola@calshp.cals.wisc.edu). The author thanks A. Blasco, William Hill, Luc Janss, Lawrence Schaeffer,
Daniel Sorensen, and three anonymous reviewers for their useful comments.



problems discussed over the last 25 years was given by Gianola and Hammond (1990).
Our objective is to describe main developments in statistical methods in animal breed-
ing over the last decades, concentrate on landmarks (Sec. 2), and speculate on some
future issues (Sec. 3).

2. LANDMARKS

2.1 Statistical Genetic Models

Statistical models in animal breeding consist of (a) a mathematical function re-
lating observations to location parameters and random effects (Bayesians view all
unknowns as random); (b) genetic and environmental dispersion parameters, such
as components of variance and covariance; and (c) assumptions about the joint dis-
tribution of the observations and of the random effects. The latter include genetic
components, such as additive genetic values, dominance and epistatic deviations,
and permanent environmental effects; all of these create correlations between cross-
sectional and longitudinal records of performance.

The most widely used (and abused) assumption has been that of normality. A
reason is that many traits seem to be inherited in a multifactorial manner, with a large
number of genes acting, and it is believed that the effects of many gene substitutions
are additive and infinitesimally small. Molecular information suggests that this as-
sumption is often reasonable. Some recent evidence in dairy cattle, using molecular
markers, suggests the presence of “quantitative trait loci” affecting fat percentage
in milk in five chromosomes; this type of investigation is preliminary. If the alleles
(“genes”) at these loci act additively and have small effects, then their sum produces
a normal process right away.

Fisher (1918) gave foundations for the infinitesimal model, describing the statis-
tical implications of Mendelian inheritance. He posited that “observation = genetic
value + residual” and gave a precursor of his analysis of variance, by proposing a
partitioning of genetic variance into additive and dominance components. From this,
the expected correlations between different types of relatives follow. The additive
model was the statistical genetic point of departure for the development of predictors
of breeding value, leading to fairly precise evaluation of dairy sires, and it continues
to be used extensively, although in a sophisticated, vectorial manner. Wright (1921)
arrived at the same results for the additive part using “path coefficients.” This involves
describing a system of correlations via standardized random-effects linear models.
The procedure faded away in animal breeding because of its inability to take into ac-
count interactions and nuisance parameters in a flexible and computationally attractive
manner.

Kempthorne (1954) partitioned the genetic variance further by including inter-
actions called “epistatic” components. He used probability of identity by descent and



described the epistatic variance in terms of several components, depending on the
number of loci involved. This permitted him to express the covariance between traits
measured in relatives in a random mating population as a function of several genetic
components of variance and covariance. Additional extensions are accommodated;
for example, maternal effects and cloning and cytoplasmic inheritance.

2.2 Best Linear Unbiased Prediction

“Predicting” or “estimating” genetic merit in candidates for selection is central.
Lush (1931) gave formulas for assessing the genetic merit of dairy sires and found that
regression to the mean (shrinkage) was needed. He assumed that means and genetic
and environmental components of variance were known. Robertson (1955) showed
that the statistic also stems from a weighted average between “population” information
and data, anticipating a Bayesian interpretation. Henderson (1973) formulated the
problem in a more general framework, and derived what later became known as best
linear unbiased prediction (BLUP). Henderson, Searle, Kempthorne, and vonKrosigk
(1959) posited the linear (univariate or multivariate) mixed-effects model y = Xβ+
Zu + e, where β is a fixed (over repeated sampling) vector and u ∼ N(0,G) and
e ∼ N(0,R) are independent random vectors;X andZ are known incidence matrices;
and G and R are variance-covariance matrices, these being a function of (assumed
known) dispersion parameters. Maximization of the joint density of u and y with
respect to β and u leads to Henderson’s mixed model equations (MME):

[
X′R−1X X′R−1Z

Z′R−1X Z′R−1Z + G−1

][
β̂

û

]
=

[
X′R−1y

Z′R−1y

]
.

Henderson thought that he had maximized a likelihood function, and he viewed β̂
and û as maximum likelihood estimators (MLEs) of β (which it is, under normality)
and of u (which it is not, as this vector is random). In fact, the objective function is a
joint posterior density, in a certain Bayesian setting, or a “penalized” or “extended”
likelihood. This error had a happy ending: Henderson and Searle showed in later
works that even without normality, β̂ is the generalized least squares estimator of β
and û is the BLUP of u. The inverse of the coefficient matrix yields the covariance
matrices of β̂ and of û−u. This holds for multivariate and univariate settings. When
β is known, û is the best linear predictor of u and, under normality, û is the best
predictor in the mean squared error sense. With known β, the predictor gives the
“selection index” derived by Smith (1936) and Hazel (1943) in less general settings.

The MME algorithm has been used world-wide for genetic evaluation of live-
stock, using models where components of u have a genetic meaning. Arguably, it
may be the most important technological contribution of statistics to animal breed-
ing. The order of the system can be in the million of equations, especially for models
(univariate or multivariate) where a random additive genetic effect is fitted for each
animal with a record of production, as well as for animals that appear in the genealogy



and need to be included. Hence iterative methods must be used and approximations
are needed for assessing uncertainty. The MME can be used to advantage in comput-
ing algorithms for several methods of variance component estimation in linear and
generalized mixed-effects linear models.

A question is to how to invert G when the order of u is in the millions, as in
routine genetic evaluation of dairy cows in the United States. Here Henderson (1976)
made a remarkable breakthrough. Suppose that G = G0 ⊗ A, where G0 has order
equal to the number of traits and A is a matrix of “additive genetic relationships.” He
discovered that A−1 could be written directly from a list of parents of the animals,
enabling the use of all available relationships in genetic evaluation. This gave more
precise inferences about genetic values and allowed accounting for biases due to
ignoring many relationships in naive variance component analyses.

2.3 Variance and Covariance Component Estimation

Application of animal breeding theory depends on knowledge of variance and
covariance parameters. Hofer (1998) reviewed a large body of literature on estima-
tion methods. Because the datasets are large and unbalanced, and the models have
a large number of nuisance parameters, simple analysis of variance (ANOVA) type
estimation methods seldom work well. Henderson (1953) described three methods
for unbalanced data. The more general, method 3, uses quadratic forms based on
least squares and yields unbiased estimators. Harvey (1960) implemented method 3
in software for variance and covariance component estimation in animal breeding.
Then minimum norm quadratic unbiased estimation and its minimum variance ver-
sion (under normality) entered into the picture. These estimators can be formulated
in terms of the MME, but optimality requires knowledge of the true parameters. Ani-
mal breeders leaned toward maximum likelihood (ML) instead, assuming normality;
works by Hartley and Rao (1967) and Harville (1977) were influential. Many algo-
rithms for ML can be derived using the MME (Harville 1977). The bias of the MLE
of the residual variance led to great interest in a method called “restricted” maximum
likelihood (REML). Patterson and Thompson (1971) aimed to account for the “loss of
degrees of freedom” incurred in estimating fixed effects, and noted that maximization
of the location invariant part of the likelihood led to estimating equations similar to
those in ANOVA in balanced layouts. The idea was to reduce bias, but was this per-
haps at the expense of precision? A strong argument favoring REML comes from its
Bayesian interpretation. Harville (1974) showed that REML is the mode of the pos-
terior distribution of the variance parameters after integrating the fixed effects (with
respect to an improper uniform prior) out of the joint posterior distribution; hence
the probability calculus takes uncertainty about β into account. Gianola, Foulley,
and Fernando (1986) observed that under Gaussian assumptions, best linear unbiased
estimation (BLUE) and BLUP with the unknown (co)variance parameters evaluated



at the REML estimates corresponds to an approximate integration of the dispersion
parameters. This gives an approximate Bayesian solution to inferences about breed-
ing values when dispersion components are unknown, provided that the restricted
likelihood is sharp enough. This problem lacks a simple frequentist solution.

2.4 Bayesian Procedures

Animal breeders did not remain insensitive to the Bayesian revival that occurred
in the mid-1960s. Lindley and Smith (1972) provided a link between mixed models
and Bayesian approaches. Dempfle (1977) and Rönningen (1971) investigated con-
nections between BLUP and Bayesian ideas. Subsequently, Gianola and Fernando
(1986) suggested the Bayesian approach as a general framework for solving a large
number of animal breeding problems. It was not until the advent of Markov chain
Monte Carlo (MCMC) methods, however, that Bayesian methods were taken seri-
ously. Early applications of Gibbs sampling in animal breeding were discussed by
Wang, Rutledge, and Gianola (1993). An important development was using Bayesian
measures for assessing uncertainty in response to genetic selection (Sorensen, Wang,
Jensen, and Gianola 1994); this is another problem in animal breeding without a
satisfactory frequentist solution.

2.5 Nonlinear and Generalized Linear Models and Longitudinal Responses

Dempster and Lerner (1950) laid out foundations for quantitative genetic analysis
of binary data. Gianola and Foulley (1983) and Harville and Mee (1984) addressed
inferences about fixed and random effects in generalized mixed linear models for
ordered categorical responses. The two approaches give the same answer. This has
been extended to models with Gaussian and categorical responses, to multivariate
binary responses, and to hierarchical models where a categorical response variable
depends on a count with a Poisson conditional distribution. Foulley, Im, Gianola, and
Höschele (1987), Harville and Mee (1984), and Tempelman and Gianola (1996) dis-
cussed estimation of variance components in such settings. For categorical responses,
Gilmour, Anderson, and Rae (1985) described a procedure based on quasi-likelihood.
Their variance component estimators and predictors of random effects lack formal
justification, but reduce to REML and BLUP with Gaussian responses. Sorensen,
Andersen, Gianola, and Korsgaard (1995) presented a fully Bayesian solution for
ordered polychotomies based on Gibbs sampling.

Animal breeders also developed empirical Bayes and REML-type estimators
of breeding values and (co)variance components for linear and nonlinear functions
describing longitudinal trajectories (milk yield, wool growth). These are “random
regression” models. MCMC implementations have been presented as well.

There has been recent interest in modeling individual cow milk yield trajectories;



so random regressions (linear or nonlinear) are natural candidates here. A seemingly
different approach has been that of “covariance” functions, where the covariance
between records of individuals is a continuous function of time. Another area receiving
increased attention has been survival analysis (e.g., Ducrocq and Casella 1996).

2.6 Statistical Computing

Much effort has been devoted to making BLUP and REML computationally
feasible, even in multivariate settings. A comparison of packages was given by Misztal
(1998). Janss and de Jong (1999) fitted an univariate mixed-effects model with about
1.4 million location effects, including almost 700,000 additive genetic values (with
a relationship matrix, A, of corresponding order), to milk yield of Dutch cattle, and
used Gibbs sampling. REML is unfeasible here; so this is a case where MCMC allows
estimating an entire distribution, whereas deterministic likelihood computations break
down.

2.7 Effects of Selection on Inferences

Animal breeding data seldom arise from a purely random mechanism, because
of selection and assortative mating. Except in designed experiments, the history of
the selection process is known incompletely. How robust are inferences if selection
and assortative mating are ignored? Important contributions are those of Kempthorne
and von Krosigk (in Henderson et al. 1959), Curnow (1961), and, notably, Henderson
(1975). When selection is not ignorable, it is essential to model the “missing-data”
process.

3. FUTURE DEVELOPMENTS

With continued growth in computer power and with better algorithms, there will
be more flexibility for fitting more realistic functional forms and distributions, and
for challenging models—an area that has received scant attention. There has been
work on fitting heavy-tailed distributions and on using splines. An area of explo-
sive interest is the use of molecular information in inferences about genetic values
and in gene mapping. Major challenges reside in multipoint linkage analysis and
fine mapping of genes affecting quantitative traits. Animal breeders have assumed
multivariate normality in high-dimensional analyses and at several levels of hierar-
chical models. Violation of normality may not have serious consequences in point
prediction of breeding values, but it may affect entire probabilistic inference ad-
versely. Hence a search for robust methods of inference (especially considering that
some animals receive undeclared preferential treatment) should be in the research
agenda. Model selection issues will surely become more important than in the past.
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Some Issues in Assessing Human Fertility

Clarice R. Weinberg and David B. Dunson

1. INTRODUCTION

While the human population continues to grow, depleting natural resources and
reducing biodiversity, scientists have become concerned about our continued capacity
to reproduce (perhaps a testament to the enduring value that we place on procreation).
Several lines of evidence have contributed to this concern. Ecologists have docu-
mented reproductive abnormalities, including malformations and effects on sexual
dimorphism and behavior, in certain species exposed to polluted waters (Burkhart
et al. 1998; Guillette et al. 1994). Some reports describe declines in the concentra-
tions and quality of human sperm over the past several decades (Swan, Elkin, and
Fenster 1997), and increases in rates of testicular cancer and the birth defect cryp-
torchidism (undescended testicles). Laboratory studies document that certain chem-
icals can mimic and/or disrupt reproductive hormones, and research on endocrine
disruption is flourishing, both epidemiologically and in the laboratory (Daston et al.
1997).

Interest in statistical assessment of reproduction dates back to Galton (1869)
and Fisher (1958). Trying to understand why the families of the English aristocracy
suffered from subfertility, Galton concluded that subfertility confers a selective aris-
tocratic advantage by tending to concentrate a family’s wealth in the estates of fewer
descendents. Fisher studied families and inferred (correctly) that fertility must be
highly heterogeneous across couples, an observation with important implications for
models.

In this article we discuss statistical methods for identifying and characterizing
factors that can modify human fertility, through either unintended effects, as with re-
productively toxic exposures, or through intended interventions, such as contraceptive
methods or clinical treatments for infertility.

2. BACKGROUND

Reproductive systems are highly variable across species. Human females do not
have an estrous cycle. We are not reflex ovulators, like rabbits, that release ova in
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response to coitus. We do not normally give birth to litters. In fact, species display
such a diversity of reproductive strategies that there is no good animal model for
human fertility; we must study humans.

Under regulation by the hypothalamus and pituitary, one of a woman’s two ovaries
releases a mature egg once each menstrual cycle, an event called ovulation. If the egg
is properly swept into the fallopian tube, encounters healthy sperm, is successfully
fertilized, implants in a receptive uterine lining, and avoids rejection by the maternal
immune system, then pregnancy may ensue; otherwise, the uterine lining is menstru-
ally sloughed, and the cycle must begin again.

Human fertility is inherently hard to study. First, the unit of study is the couple (a
complication in itself), and couples vary in their fertility. Empirically, the conception
rate among couples followed after discontinuing contraception decreases markedly
over time. This decline reflects sorting, where the more fertile couples conceive rapidly
and are absent from later risk sets. Determining the sources of such heterogeneity
among couples has long been of interest to demographers (Sheps and Mencken 1973)
and remains a primary challenge for fertility research. A second complicating factor
is that human couples exercise a great deal of control over their reproduction. A third
complication is that humans get multiple opportunities (some intended, some not) to
evidence their fertility, and self-selection plays an important role.

The interplay of these phenomena creates novel forms of confounding. For ex-
ample, among couples recruited for prospective study, an exposure under study may
be correlated with past use of contraception. If smokers have historically taken more
risks than nonsmokers, then the smokers with higher fertility may have had all of their
desired pregnancies through unintended conceptions, leaving only the relatively sub-
fertile smokers to be at risk of a self-identified planned conception. In this way, sorting
can induce spurious associations. Improved statistical tools for studying fertility are
needed for monitoring the reproductive health of a population, for time-to-pregnancy
studies, and for highly detailed prospective studies, where intercourse records are
kept for couples attempting conception and the time of ovulation is identified for
each menstrual cycle at risk. Innovative methods are also needed to model biologic
markers, such as menstrual cycle characteristics, hormone patterns, and properties of
semen.

3. POPULATION MONITORING

In much of the world, fertility is under considerable voluntary control, and our
capacity to reproduce could deteriorate markedly before the usual indices would
pick up the decline. Methods are needed for monitoring a population to establish
a baseline against which future trends can be compared. Unfortunately, there are
currently no methods in place that allow us to determine whether fertility has declined
over recent decades, say, in the United States. A recent idea is based on case-cohort



methods (Olsen and Andersen 1999). Briefly, one samples a subcohort from a defined
population, identifies couples in the subcohort who are trying to conceive, and follows
them for a certain number of months. Pregnancies that occur over follow-up in the
larger population are also identified. Thus, as in a case-cohort design, all “cases” are
identified, and control information comes from a randomly sampled subcohort. The
combined data allow estimation of the survival function (cumulative nonconception
rate) across time.

4. TIME TO PREGNANCY

Studies of the time required for noncontracepting, sexually active couples to
achieve conception can provide estimates of fertility parameters and can permit com-
parative studies of infertility treatments or potentially toxic exposures. Time to preg-
nancy (TTP) is best measured on a discrete scale, because the natural biologic time
unit is the menstrual cycle. TTP can be studied either prospectively or retrospectively,
but accidental pregnancies are usually excluded, because a meaningful TTP cannot
be reconstructed retrospectively and contracepting couples are usually not efficient to
study prospectively. Retrospective studies are either based on women’s recall of past
planned pregnancies (e.g., her first or her most recent), or based on women identified
through an obstetrics service and asked about their current pregnancy. When sampling
is based on the pregnancy, sterile couples are excluded by design, subfertile couples
are underrepresented, and parameter estimates must be interpreted accordingly. In
prospective studies of TTP, the sampling unit is the attempt, not the pregnancy. Such
studies do include couples who fail to conceive, but can be difficult to carry out. This
is particularly true in an occupational setting, where few couples may be at risk of
conception at any given point in time. One can enroll couples who have already been
trying for some time, provided that the left censoring is appropriately accounted for
in modeling. In such a study, one must ascertain the prestudy attempt time (in cycles),
so that couples recruited mid-attempt can be entered into the appropriate cycle-based
risk set for analysis.

Modeling can then proceed according to any of several approaches. One can
simply fit a proportional probabilities model, which is analogous to a proportional
hazards model, except that time is discrete. The baseline conception rate can decline
across menstrual cycles to account for couple-to-couple heterogeneity, and the model
allows estimation of a fecundability ratio (analogous to a hazard ratio) as a summary
measure of effect of an exposure (Weinberg and Wilcox 1998). A beta-geometric
model has also been proposed (Sheps and Mencken 1973) and is simple to fit as a
generalized linear model with an inverse link. For prospective data, one can allow
for a proportion of sterile couples; that is, a probability mass at zero fecundability.
An extension confers robustness against digit preference seen in retrospective studies
(Ridout and Morgan 1991). The beta-based models do not, however, provide a readily



interpretable summary measure of covariate effect, although Crouchley and Dassios
(1998) developed a quantile ratio that has an individual-level interpretation. Heckman
and Walker (1990) outlined a general mixture of geometrics model and developed
goodness-of-fit tests.

One problem with the aforementioned approaches is that although time-dependent
covariates can be formally included, the resulting models are not plausible because
the time-specific conditional fecundability distribution among couples with hetero-
geneous fecundability needs to depend on both the number of prior failures, the
exposures, and the couples’ exposure histories. Scheike and Jensen (1997) proposed
a discrete-time random-effects model that accommodates time-dependent covariates
and also allows for multiple TTPs per couple. Dunson and Zhou (2000) later devel-
oped a probit model with similar advantages, which can additionally account for a
sterile subpopulation of couples.

With studies that allow recruitment mid-attempt, one must deal with left cen-
soring of the survival time. Methods that are fundamentally life table-based (e.g.,
the proportional probabilities model and the beta-geometric) are valid under minimal
assumptions, provided that couples are entered into the appropriate risk sets. The
random-effects models (Dunson and Zhou 2000; Scheike and Jensen 1997) can also
handle left censoring, provided again that couples are not credited with pre-enrollment
failures.

For retrospective studies of TTP in relation to potentially toxic exposures, trends
in prevalence of the exposure through historical time can complicate the analysis.
Even if such exposures are accurately ascertained on a cycle-by-cycle basis, with
proper methods used to treat them as time dependent, bias will result. This problem
was discovered in the context of a study of dental assistants, where wearing latex
gloves was found to confer markedly increased fertility. This was recognized to be
an artifact induced by the fact that when the TTP had been short, the attempt spanned
recent, post-AIDS epidemic time, when glove use was common; when the TTP had
been long, the attempt had begun prior to the AIDS epidemic (Weinberg, Baird, and
Rowland 1993), an era when glove use was rare. Artifacts can also arise due to trends
in initiation of pregnancy attempts over time; for example, from increasingly delayed
child bearing in recent decades in the industrialized world. Such trends over time
can cause older women to appear to be more fertile than young women, based on
retrospective TTP data. Analytic methods that are robust against such distortions
remain to be developed.

5. TIMING OF INTERCOURSE MODELS

It is possible to design a more informative study by prospectively collecting more
detailed data, including dates of menses, ovulation, and unprotected intercourse, for
each couple (Barrett and Marshall 1969; Masarotto and Romualdi 1997). Because



of the large number of possible patterns of intercourse around ovulation, a model is
required to relate the cycle-specific coital histories to the probability of (detectable)
conception. A model advanced by Peter Armitage (personal communication) asserted
simply that batches of sperm that arrive in the female reproductive tract on different
days commingle and then compete independently in fertilizing the egg. If k indexes
the day in relation to ovulation, and variables Xk indicate that there was (1) or was
not (0) intercourse on day k, then the model specifies that

Pr(conception|X) = 1 −
∏
k

(1 − pk)Xk . (1)

The parameters pk are interpretable as the probability that conception would occur
in a cycle in which there was intercourse only on day k, and independence permits
aggregation of the contributions of multiple days in the same cycle. The model is not
biologically plausible, however, because it ignores factors other than the timing of
intercourse. The egg must be viable, the uterine lining must be favorable to implan-
tation, and so on. A later modification (Schwartz, MacDonald, and Heuchel 1980)
includes a susceptibility multiplier that represents the probability that for a menstrual
cycle, all events not related to the timing of intercourse are favorable for initiation of
a detectable conception:

Pr(conception|X) = A

[
1 −

∏
k

(1 − pk)Xk

]
. (2)

Further extensions allow A and the pk’s to depend on covariates (Royston 1982;
Weinberg, Gladen, and Wilcox 1994), and A to be heterogeneous among couples
(Dunson and Zhou 2000; Zhou, Weinberg, Wilcox, and Baird 1996). Such extensions
can be applied to studies of contraceptive efficacy, even studies that include couples
whose use of a method is intermittent (Weinberg and Zhou 1997). More recently,
attention has focused on problems that arise due to unreported intercourse (Dunson
and Weinberg 2000) and errors in the identification of the day of ovulation. The latter
problem produces frame-shift errors where the measured Xk is really Xk+i for all k.

6. MALE BIOMARKERS

Studies of conception are difficult to carry out, and intermediate markers, such
as those based on semen quality, can provide valuable endpoints for identifying and
characterizing toxic effects. Men can be studied whether or not they and their part-
ner are attempting pregnancy, effects detected based on semen are unambiguously
assignable to the man (rather than the couple), and a large sample of gametes is read-
ily available from each man willing to be studied. Computer-assisted semen analysis
(CASA) has made available an array of continuous descriptors of sperm movement
for each sperm studied, based on theX-Y coordinates of the head position at repeated



time points (Perreault 1998), creating almost too much data. Recently, methods have
been developed that are robust to CASA machine settings and enable a reduction in
the dimensionality of the data. Mortimer, Swan, and Mortimer (1996) assessed sperm
activation using the fractal dimension of each sperm’s trajectory. Dunson, Wein-
berg, Perreault, and Chapin (1999) later proposed an exponential model, inspired by
complexity theory, that describes each sperm’s movement using measures related to
displacement velocity, linearity, and predictability of the path. The proposed measures
are currently being evaluated using rodent reproductive toxicity data from a series of
studies conducted by the National Toxicology Program. Videotaped sperm data are
subject to errors that occur as a result of the intersection of sperm paths and loss of
data from sperm that move too quickly off the field. Novel approaches are needed that
avoid the resulting biases and preserve information about the individual movement
patterns.

7. FEMALE BIOMARKERS

Women are more difficult to study than men in that their gametes cannot be sam-
pled except in special clinical settings, such as in vitro fertilization (IVF) protocols,
and one must rely on less direct markers, such as menstrual cycle hormone patterns or
the characteristics of the cycle itself. The menstrual cycle, the time from the beginning
of one menstrual period to the next, can be studied noninvasively, and disturbance of
its length or increases in its variability may indicate reproductive dysfunction. Hor-
mone assays of saliva or urine collected daily can provide additional detail, including
confirmation that ovulation occurred, its timing, and the preovulatory and postovula-
tory patterns of hormone excretion (Waller, Swan, Windham, Elkin, and Lasley 1998).
Comparisons across women are complicated by the existence of metabolic variability
in the fate of hormones from woman to woman. Nonetheless, a recent method that
combines smoothing splines and mixed-effects models has been usefully applied to
hormone data (Brumback and Rice 1998).

This is an area in need of more research. We need methods to enable us to
summarize the important features of the multivariate hormone profile, so that those
optimally predictive features can be studied in relation to outcomes such as conception
or early pregnancy loss. Such summary measures may need to account for frame
shifts, where the event relative to which the hormones are measured (e.g., ovulation)
is measured with some error.

8. DISCUSSION

Fertility has been a fruitful area of research, and interesting statistical problems
persist. Our treatment in this article has been necessarily selective. In particular, we
have focused on methods related to reproductive epidemiology and have limited our



discussion of demographic models. However, the gap between epidemiologic and de-
mographic approaches to fertility analysis has narrowed substantially in recent years.
Demographers have long been interested in biological sources of variability in fertility.
Bongaarts (1978) suggested seven factors through which social, economic, and cul-
tural conditions affect fertility: frequency of intercourse, duration of the fertile period,
contraception, induced abortion, lactational infecundability, spontaneous intrauterine
mortality, and sterility. Until recently, models to account for these factors were overly
simplified. However, hazards modeling has emerged as a promising approach. Frailty
models have been developed that account for heterogeneity, for changing fecundabil-
ity with age and parity (Larsen and Vaupel 1993), for sterility (Wood et al. 1994), and
for hidden physiological processes (Yashin, Iachine, Andreev, and Larsen 1998).

Realistic models are needed that allow for unintended conceptions and that ac-
commodate general covariate effects, including changes across time in exposures and
in the demographics of couples attempting pregnancy. Improved methods for fitting
these models and for including supplemental information from biological studies are
also needed. Areas of considerable interest are the correlation in fertility within fam-
ilies and variation in fecundability across regions. Such dependency can potentially
be accommodated using a multilevel model and may provide important insight into
genetic and environmental influences. Other areas needing statistical development
include the progression through puberty, recovery of fertility following childbirth or
lactation, onset of menopause, evaluation of clinical treatments for infertility, and
assessment of data from couples undergoing IVF.
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Statistical Issues in Toxicology

Louise M. Ryan

1. INTRODUCTION

Toxicology is “the study of the nature and mechanism of toxic effects of sub-
stances on living organisms and other biologic systems” (Lu 1996). Sometimes, data
from human populations serve as the sentinel event indicating adverse health effects
associated with environmental exposures. For example, the serious developmental
effects associated with prenatal methyl mercury exposure were discovered only after
some rural Japanese women ate fish contaminated by effluent from a nearby factory.
Usually, however, the complexity and inherent variability of human populations com-
plicates the evaluation of adverse environmental effects. For this reason, the field of
toxicology has traditionally relied heavily on controlled studies in laboratory animals.
Conducting studies in animals also allows researchers to explore questions that are
difficult or unethical to address in a human population. For example, the pharmaceu-
tical industry assesses safety in controlled animal experiments before products are
used in humans.

This article reviews just a few of the interesting statistical problems in toxicology.
After presenting a short history, I turn to some problems of current interest, followed
by some emerging problems in the field. Many important topics (e.g., the use of
toxicological information to inform risk assessment decisions and policy making) are
touched on only briefly or not at all.

2. A BRIEF HISTORY

Much of modern toxicology and risk assessment have their roots in laws and
regulations designed to ensure food purity and safety. King John of England pro-
claimed the first English food law in 1202, prohibiting the adulteration of bread with
chickpeas and beans! After establishing the Food and Drug Administration (FDA) in
1930, Congress passed the Food, Drug, and Cosmetics Act in 1938, setting the stan-
dards for many of the regulatory practices that protect us today. Among a variety of
amendments to this act is the now-infamous Delaney Clause of 1958, which prohibits
the approval of any food additive shown to cause cancer in humans or animals. Public
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support for the regulatory role of the FDA grew further with events such as the thalido-
mide tragedy of the 1960s. Not until the first half of the 20th century did regulators
begin to consider the broader question of how chemical exposures might affect the
environment in general. At first, the environmental movement focused on ecological
concerns related to fish and wildlife. However, with the provocative 1962 publication
of The Silent Spring (Carson 1962), the public began to realize that environmental
contamination could also affect human health. The environmental movement gained
momentum throughout the 1960s, culminating in 1970 with the first “Earth Day”
and the establishment of the Environmental Protection Agency (EPA). (See the EPA’s
history page at www.epa.gov and the FDA’s at www.fda.gov.)

Statisticians have always played an important role in toxicology and regulatory
science, and this involvement has led to many new statistical innovations. Much of the
earlier work was motivated by pharmacological evaluations, rather than regulatory
science. For example, Bliss (1934) provided one of the earliest applications of probit
regression to fit a dose–response model and calculate the LD50, or the dose that kills
50% of the test animals. Berkson (1944) suggested the logistic model as an alternative.
Feiller’s theorem was suggested as a means to finding a better confidence interval for
the LD50. Finney and others contributed many articles regarding the “bioassay” prob-
lem of comparing the potency of two or more different pharmacological preparations
(see, e.g., Finney 1965).

In the late 1960s and 1970s, statisticians began to address some of the broader
issues raised by the emergence of modern regulatory science. For example, there was a
need to quantify regulatory concepts, such as “acceptable daily intakes” (World Health
Organization 1962), aimed at identifying dose or exposure levels corresponding to
low or zero risk. By this time, toxicologists had put in place the idea of estimating
safe doses by the “no observed adverse effect level” (NOEL or NOAEL), which
corresponds to the highest observed experimental dose level that is not significantly
different from controls with respect to a suitable adverse outcome. Clearly, there are
considerable philosophical problems with this approach, as failure to reject a null
hypothesis of no difference does not mean no difference in reality. In the context of
cancer risk assessment, alternative strategies based on dose–response models have
been accepted for some years now (see Krewski and Brown 1981 for a guide to some
of the earlier literature on this topic). The NOEL approach is still used in the noncancer
settings, although there seems to be widespread support for using a dose–response
approach there as well, based on the “benchmark dose” suggested by Crump (1984).

During the 1980s and 1990s, statistical research in toxicology has specialized
into a number of areas. Toxicology is an enormous field, with scientists interested in
health-related issues ranging from cancer to reproduction, skin irritation, neurotoxic-
ity, nephrotoxicity, and respiratory problems (see Lu 1996 for an interesting review).
Other branches of toxicology (e.g., aquatic toxicology) were developed to study envi-
ronmental effects on the ecosystem. Each of these specialty areas involves a different
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study design, leading to unique and interesting statistical problems. I touch on a few
topics that have been popular with statisticians over the past decade or two: three-state
models for carcinogenicity and the analysis of clustered data and multiple outcomes
from teratology experiments. More detailed discussion on these and other topics can
be found in several excellent texts (see, e.g., Piegorsch and Bailer 1997).

3. LONG-TERM CARCINOGENICITY STUDIES

In a long-term cancer bioassay or carcinogenicity study, control and exposed
mice or rats, usually 50 or 60 per dose group, are observed over a typical lifetime
(24 months) and are examined at death or at the end of the experiment for a variety
of different tumors. Because the high doses given to exposed animals often shorten
their lifetimes due to general toxicity, age-adjusted statistical analyses are needed to
ensure a valid test for carcinogenicity. Prevalence tests (Hoel and Walburg 1972) and
time-to-event analyses (Peto 1974) have been suggested, but these approaches make
strong and unrealistic assumptions about tumor lethality. To address this limitation,
Kodell and Nelson (1980) formulated the problem as the three-state illness-death
model shown in Figure 1.

In the figure, λ(t) represents the instantaneous rate of tumor onset at time t, β(t)
the instantaneous death rate at time t, and α(t, x) the instantaneous death rate at
time t for an animal that developed a tumor at time x. Although the goal is simply
to characterize the effect of exposure on the tumor onset rate, λ(t), the problem is
challenging because tumor onset is unobserved. Kodell and Nelson’s creative sugges-
tion sparked much activity (see, e.g., McKnight and Crowley 1984). Many of these
approaches proved infeasible in practice because they assumed the availability of ex-
tensive interim sacrifice, wherein randomly selected animals are killed at prechosen
times during the experiment and examined for tumors. Dinse (1991) and Lindsey
and Ryan (1993) advocated using semiparametric alternatives that assume either an
additive (α(t, x) = β(t) + ∆) or multiplicative relationship (α(t, x) = β(t)e∆) be-

Figure 1. Three-State Model for Carcinogenicity.



tween the hazards for death with and without tumor. These approaches are appealing
from a biological perspective and can be applied to a standard-sized experiment with
only a single terminal sacrifice. The semiparametric approach is also appealing in
that it reframes the problem to a form more closely related to other familiar statistical
problems. For instance, when ∆ equals 0, we have a current status problem (Keiding,
Begtrup, Scheike, and Hasibeder 1996). Methods for interval censored data are also
relevant. Nonparametric smoothing of the baseline hazards is likely to prove fruitful
in such settings (Betensky, Lindsey, Ryan, and Wand 1999; Kooperberg and Stone
1992). Although statistical research related to the three-state model continues, these
models are still not widely used in practice. Indeed, the method favored of late by the
National Toxicology Program is the poly-k method proposed by Portier and Bailer
(1989).

Carcinogenicity studies have also motivated much interesting work on the use
of historical control data, which can help in the interpretation of a current study,
particularly when control tumor rates are low and when marginal significance levels
are obtained in a test for dose effects (Haseman, Huff, and Boorman 1984). Many
authors have developed statistical methods to incorporate historical data on tumor
incidence rates into the analysis of a current study (e.g., Fung, Krewski, and Smythe
1996). However, these methods are not widely used in practice because they are not age
adjusted. Ibrahim, Ryan, and Chen (1998) developed methods to incorporate historical
information into age-adjusted tests, but these methods require strong assumptions
about tumor lethality. Methods to incorporate historical control information directly
into analyses based on the three-state model would be useful.

An issue of recent interest is whether and how to adjust for animal weight in the
analysis of a carcinogenicity experiment. Ignoring weight in the analysis of carcino-
genicity data may lead to bias because test compounds often cause exposed animals
to weigh less, and lighter animals tend to have a lower incidence of certain tumors
(see Seilkop 1995). The relatively low tumor incidence rate in most experiments
means that there is seldom enough information within any one experiment to support
a regression-based adjustment, and hence historical control data are needed (see also
Ibrahim et al. 1998).

Ensuring good small-sample properties of statistical testing and analysis pro-
cedures and appropriately managing multiple testing represent two additional areas
where statistical research has played an important role. Resource limitations and the
general principle of minimizing animal usage mean that toxicity experiments are often
relatively small. In the absence of strong effects, event rates (e.g., numbers of tumors)
will generally be very low. Sometimes, this can be beneficial. For example, Haseman
(1984) argued that inflation of type I errors due to multiple testing is unlikely to be
a problem in this setting, due to the natural conservativeness of statistical tests in
such settings. The exact approach suggested by Westfall and Young (1993) has had a
strong influence in this area, which continues to generate considerable interest.



4. TERATOLOGY, DEVELOPMENTAL, AND
REPRODUCTIVE TOXICITY STUDIES

A variety of different study designs are available for assessing toxic effects on
reproduction and development in animals. A reproductive toxicity study is designed
to assess whether chemical exposures interfere with successful fertilization or im-
plantation of fertilized ova in the uterus. Much statistical work has been motivated
by developmental toxicity studies concerned with the effects of exposures during
gestation on the offspring themselves. In a typical study, 20–30 pregnant animals
are randomized to each dose group. Typical control litter sizes (number of live-born
offspring) range from around 8–10 in rabbits to 12–15 in mice and rats. Outcomes
measured on the live offspring include presence or absence of malformations, body
weight and size (e.g., crown to rump length), and sometimes organ weights. Account-
ing for the clustering of offspring within a litter and the multiplicity of outcomes has
led to interesting statistical research. Williams (1975) suggested using a beta-binomial
model for dose–response modeling of teratology data. Many people began to advo-
cate using quasi-likelihood as an alternative to likelihood-based methods for clustered
data (see, for example, Williams 1982). The emerging popularity of generalized esti-
mating equations (GEE) and particularly the availability of GEE software (Liang and
Zeger 1986) sparked numerous works motivated by teratology data. Some of the more
interesting and challenging problems are those related to multiple outcomes. Unlike
the carcinogenicity setting, where chemicals usually cause only one or two different
types of cancer, developmental toxicants typically affect various organ systems in the
developing fetus. Correlated multinomial models (Chen, Kodell, Howe, and Gaylor
1991) were suggested for handling hierarchically related outcomes such as death and
malformation. Lefkopoulou, Moore, and Ryan (1989) suggested an approach based
on GEEs for analyzing multiple binary outcomes measured on the same fetus.

Developmental toxicity also generated interesting work on the analysis of mul-
tiple outcome data, particularly of mixed type, for example binary and continuous
outcomes such as weight and malformation from a teratology study. Catalano and
Ryan (1992) and Fitzmaurice and Laird (1995) both proposed solutions that link a
marginal model for one outcome with a conditional model for the other. These ideas
are linked to more general theory related to the general location model of Liu and
Rubin (1998), as well as the chain graph models of Cox and Wermuth (1996).

Aside from the basic challenges of developing good multivariate models, partic-
ularly in the clustered data setting, additional technical challenges arise in applying
these models in real data settings. For example, correlation structures are likely to
change with exposure (Kupper, Portier, Hogan, and Yamamoto 1986). Ignoring this
can lead to bias in the case of likelihood-based models and loss of efficiency for
GEE-based methods. Determining how to use a complex model for risk assessment
purposes—for example, calculating benchmark doses (Crump 1984)—is another area



of interest. Likelihood-based methods may have some advantages for that purpose,
because they more naturally facilitate combining endpoints to calculate an overall
probability of effect (Regan and Catalano 1999).

5. SOME OTHER DESIGNS AND ISSUES

The last two sections touched on statistical problems in the analysis of data from
two common toxicological study designs. Challenging issues arise in various other
settings as well. For example, the EPA is interested in test systems to evaluate neu-
rotoxicity. Methyl mercury and PCBs are examples of chemicals thought to affect
the central nervous system in ways that may be devastating for the developing fetus
and young children (Lu 1996, chap. 16). Quantifying neurotoxicity is complicated,
as effects tend to manifest in relatively subtle behavioral and performance changes.
Current recommended toxicity testing is based on the so-called “functional obser-
vational battery” or FOB (United States Environmental Protection Agency 1995),
which is a set of 20 to 30 items measured on laboratory animals. Statistical methods
for analyzing the FOB are relatively undeveloped at this time. Whereas Blackwell and
Catalano (2001) proposed using latent variable models in this setting, these methods
tend to work well only for fairly large experiments.

The multigenerational toxicity study design also raises a number of interesting
statistical challenges, though there do not appear to be any papers in the statistical
literature on this topic. The design involves exposing male and female animals for 10
weeks prior to breeding. Exposure then continues for the females throughout gestation
and lactation. To evaluate effects on the reproductive functioning of the offspring, a
second generation is bred and reared to reproductive maturity. Endpoints of interest
include the numbers of successful pregnancies and number of live offspring in the
first and second generations, and survival. Opportunities abound for development of
innovative survival analysis models in this context.

6. THE FUTURE?

Advances in molecular biology have led to increased emphasis on mechanisms
of toxicity. Indeed, the EPA is in the process of revising its carcinogen risk assessment
guidelines to accommodate mechanistic considerations. As an alternative to “statis-
tical” models, the toxicological literature increasingly refers to “biologically based
dose response models” (see Moolgavkar, Leubeck, de Gunst, Port, and Schwetz 1990
for an example). Broadly speaking, such models aim to characterize the relationship
between exposure and response by specifying some or all of the biological steps in
between, including dose at the target organ and mechanism of action. Many toxicol-
ogists believe that such models are the key to explaining variability between species
and hence to making effective extrapolation from animals to humans. Despite active



research on the development of biologically based models, they have not been widely
used in real-life risk assessment settings. It is generally difficult to determine the
appropriate biological mechanisms to include in the model, and often there will be a
wide range of expert opinions on this topic. Even when appropriate mechanisms have
been identified, the corresponding model-fitting procedures are complex, requiring
the solution to systems of differential equations characterizing transitions to and from
multiple compartments. In practice, data need to be drawn from several studies or from
the literature, and a relatively advanced knowledge of toxicology is needed. For all
of these reasons, biologically based models tend to be of more interest to biomathe-
maticians than to statisticians, and almost all of the literature on this topic appears in
the toxicological and biomathematics literature. Given that mechanistic models are
most likely here to stay, however, statisticians interested in toxicological applications
will need to invest time learning about basic physiology and the mechanisms of dis-
ease. The development of statistical models to incorporate biomarkers may represent
a middle ground between the two extremes just described and represents a promising
avenue for further research.

The identification of biomarkers such as DNA adducts and genetic markers of
susceptibility and cellular damage have opened new avenues of toxicological research
in human populations. This, along with advances in environmental science leading
to better methods of exposure assessment, has made it possible in some cases (e.g.,
arsenic, passive smoking, butadiene) to use human data for risk assessment. Although
issues of confounding and measurement error are always complications in that setting,
risk assessment based on human data has the major advantage of avoiding the need for
interspecies extrapolation. As the field of environmental epidemiology continues to
evolve, human data likely will play an even greater role in risk assessment. Statistical
methods to adjust for measurement error and to incorporate biomarkers will become
more important than ever.

Today’s rapid changes in information technology are also having an impact on
risk assessment and regulatory science. Society as a whole is more informed about
the potential of drugs and chemicals to affect health and the environment. For exam-
ple, anyone can use the EPA website to access information about toxic waste sites
within their own community. Regulatory agencies are under pressure not only to move
more quickly in establishing regulatory standards, but also to address issues that more
directly affect people’s day-to-day lives. Dealing with complex mixtures is a good
example. Because regulatory toxicology has traditionally focused on characterizing
the risks associated with a lifetime exposure to a single chemical, it often falls short
in real-world settings involving mixtures of different chemicals with nonconstant ex-
posure patterns. Diesel exhaust, for instance, is a complex mixture of benzene, 1,3
butadiene, ethylene dibromide, and many other chemicals. Furthermore, diesel ex-
posure patterns vary dramatically according to traffic patterns. As a result of these
complications, the EPA and other regulatory agencies have struggled for years to set



diesel standards. Tackling a problem like this requires a multidisciplinary effort to
problem solving that in many ways goes against traditional scientific training that
specializes in one narrow field. In some ways, our training as statisticians prepares
us well for the kind of wide-ranging, cross-disciplinary thinking needed in modern
toxicology and risk assessment. As we move into the 21st century, this kind of per-
spective likely will become even more valuable. However, some new statistical tools
may be needed. For example, there likely will be increased demand for ways to syn-
thesize information from many different sources. Although traditional meta-analysis
techniques accomplish this to some extent, a broader approach is needed that can ef-
fectively combine different kinds of information, including subjective expert opinion,
to help inform decision making.

Recently, I had the pleasure of interviewing Professor Fred Mosteller for a
newsletter article, and asked how he thought our profession was doing and what
changes he would like to see. He commented that not enough statisticians were be-
ing trained in policy. While writing this vignette, his comments have come to my
mind several times. There is no doubt that toxicology is a fascinating science that
will continue to yield lots of interesting statistical problems for statisticians to tackle.
However, its real value lies in its potential to inform regulatory decisions and policy
making related to the chemical and drug exposures that we encounter in our daily
lives. Statisticians who choose to work in this interesting area have the potential to
make a real impact as well, though to do so may involve moving beyond the usual
disciplinary boundaries. Although statistical research over the past several decades
has made valuable contributions to the field of toxicology, many of us shy away from
the really difficult problems, such as biologically based models and exposure assess-
ment, that require sophisticated biological as well as statistical knowledge. Many are
predicting that this will change over the next several decades. Our field will need
to become even more interdisciplinary to stay competitive with emerging disciplines
such as computational biology (see Waterman 1998).
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Receiver Operating Characteristic
Methodology

Margaret Sullivan Pepe

1. INTRODUCTION

Diagnostic medicine has progressed tremendously in the last several decades, and
the trend promises to continue well into the next millennium. Advances in technology
provide new methods for detecting disease or physical impairment. Some examples
include the use of biochemical serum markers such as prostate-specific antigen for
prostate cancer and CA-125 for ovarian cancer, of radiographic imaging procedures
such as mammography for breast cancer, and of electrophysical procedures such
as brain stem response testing for hearing impairment. Research studies to assess
the operating characteristics of diagnostic tests are clearly important to ensure that
accurate and cost-effective procedures are selected for widespread use. Development
of appropriate statistical methods for designing such studies and for analyzing data
from them will be key to their success.

A statistical tool that is becoming popular for describing diagnostic accuracy
is the receiver operating characteristic (ROC) curve. To define an ROC curve, first
consider diagnostic tests with dichotomous outcomes, with positive outcomes sug-
gesting presence of disease. For dichotomous tests, there are two potential types of
error. A false-positive error occurs when a nondiseased individual has a positive test
result, and conversely, a false-negative error occurs when a diseased individual has a
negative test result. The rates with which these errors occur, termed the false-positive
and false-negative rates, together constitute the operating characteristics of the di-
chotomous diagnostic test. Statisticians are already familiar with these concepts in
the context of statistical hypothesis testing. ROC curves generalize these notions to
nonbinary tests in the following fashion: Let D be a binary indicator of true dis-
ease status with D = 1 for diseased subjects. Let X denote the test result with
the convention that larger values of X are more indicative of disease. For any cho-
sen threshold value c, one can define a dichotomous test by the positivity criterion
X ≥ c, and calculate the associated error rates. A plot of 1 minus the false-negative
rate (or true positive rate) versus the false-positive rate for all possible choices of c
is the ROC curve for X . By definition, this is a monotone increasing function from
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[0, 1] to [0, 1], with higher curves associated with better tests.
The ROC curve is primarily a descriptive device displaying the range of trade-offs

between true-positive and false-positive rates possible with the test. It transforms the
test results to a scale that pertains to accuracy for detecting disease. This is particularly
useful for comparing tests with numerical results that are on different measurement
scales and for which no meaningful comparisons can be based on the raw data.
Mathematically, the ROC curve can be written as ROC(t) = FD(F−1

D̄
(t)) for t ∈

(0, 1), where FD and FD̄ denote the “survivor” functions for X in the diseased and
nondiseased populations. It follows that the ROC curve is invariant to monotone-
increasing transformations of the data.

2. ORDINAL RATING DATA

Although ROC analysis had its roots in the electronic signal detection theory
developed in the 1950s (Green and Swets 1966), it was not until the early 1980s
that it started to be used in biomedical applications. It became especially popular
in radiology for characterizing the accuracy of diagnostic imaging modalities. In-
deed, most of the statistical methodologic work on ROC analysis has been done in
this context (see Hanley 1998 for a review). Why did it fit particularly well with
the needs in radiology? Because image assessments are made subjectively by radi-
ologists, and implicit criteria for assessments vary among radiologists. To see this,
consider the classic setting where each reader assesses an image on an ordinal scale,
k = 1, . . . ,K, with the lowest category labeled perhaps as “definitely no disease
present” to the highest labeled as “disease definitely present.” It is assumed (Metz
1986) that with each reading, Y , there is a continuous latent decision variable, X ,
and that the reader classifies the image in category k if the decision variable falls
within the interval (τk−1, τk), k = 1, . . . ,K with τ0 = −∞ and τK = +∞. That is,
Y = k if τk−1 < X < τk. Although one cannot know the value of X,K points on
its ROC curve are identifiable, and the whole curve is identifiable under parametric
modeling assumptions. Points for readers using different decision criteria (i.e., dif-
ferent threshold values {τ1, . . . , τK−1}) will simply fall at different locations on the
ROC curve forX . In this way, ROC analysis accommodates variation among readers
in their decision criteria and purports to disentangle this variation from the inherent
discriminatory capacity of the diagnostic test.

The classical approach for estimating an ROC curve in this context is to assume
the binormal model; that is, that some monotone-increasing transformation ofX has a
standard normal distribution in the nondiseased population and a normal distribution
with (mean, SD) = (a, b−1) in the diseased population. The ROC curve for X then
has the form ROC(t) = Φ(a + bΦ−1(t)) for t ∈ (0, 1). Using readings of images
from a set of diseased subjects, {Y D1 , . . . , Y DnD

}, and from a set of nondiseased sub-



jects, {Y D̄1 , . . . , Y D̄nD̄
}, the parameters (a, b) are estimated via maximum likelihood

(Dorfman and Alf 1969). If different readers or different imaging modalities give rise
to different ROC curves, then the data are stratified accordingly and stratum-specific
parameters (as, bs) are estimated. As described later, classical comparisons between
curves are based on the area under the ROC curve, which for the binomial curve is
given by Φ(a/(1 + b2)1/2).

Tosteson and Begg (1988) proposed that ordinal regression modeling methods
could be applied to radiology rating data to make inference about ROC curves. This
opened up avenues for much more sophisticated and flexible ROC analysis than
had been available previously. In the simplest setting, a location ordinal model is
postulated,

P [X < τk] = P [Y ≤ k] = g(Ck − α1D − α2Z − α3Z ·D),

where Z is a vector of covariates and g is a cumulative distribution function. The
ROC curve corresponding toX conditional on Z is then ROCZ(t) = 1 − g(g−1(1 −
t)−α1 −α3Z), which reduces to Φ(Φ−1(t)+α1 +α3Z), for example, when g is the
standard normal cdf. Thus covariates that have no interaction with disease status do
not affect the ROC curve, but are only associated with shifting the operating points
on the curve.

The ability to explore effects of covariates on test accuracy was a huge step for-
ward in the analysis of radiology rating data. Important types of covariates include
characteristics of subjects from which images are taken, characteristics of procedures
used to process images, and characteristics of the readers such as experience or institu-
tional affiliation. Other indicators of disease status such as clinical signs or symptoms,
or indeed the results of another diagnostic test, could also be considered as covariates
in the model. This strategy allows one to assess the incremental value of the imaging
test over and above this information.

The general model proposed by Tosteson and Begg included the possibility for
covariates to affect scale parameters as well and can be written as

P [Y ≤ k] = g({Ck − α1D − α2Z − α3D · Z}/ exp{β1D + β2Z + β3D · Z}).

Synthesis of covariate effects on the ROC curve is not as straightforward as in the
location-only model. However, it does allow for estimation of covariate adjusted ROC
curves. Note that the classic binormal model of Dorfman and Alf (1969) is a special
case of the Tosteson and Begg model, when a probit link function is used and no
covariates are included.

By embedding ROC methodology in the framework of ordinal regression, issues
of correlated data that had previously been difficult to deal with now became much
easier because of the growth in methods for handling clustered data that also occurred
in the 1980s. Toledano and Gatsonis (1995) chose to model marginal probabilities and
account for correlation with GEE, whereas Gatsonis (1995) suggested incorporating



random reader effects into the ordinal regression framework. An advantage of the
latter approach is that it allows for assessment of inter-rater variability in decision
criteria and in accuracy, which is of considerable interest in diagnostic medicine
(Beam, Layde, and Sullivan 1996).

Studies of diagnostic or screening tests often suffer from so-called verification
bias. This occurs when subjects with certain test results, X , or other characteristics,
Z, indicative of disease are more likely to be assessed for disease, D, with the gold
standard than are other subjects. This sort of selection makes practical clinical sense
when the gold standard is invasive or costly, such as requiring surgery for cancer de-
tection. However, it introduces bias into estimates of test accuracy unless adjustments
are made in the analysis. Although some attempts at ROC adjustments had been
made previously, embedding ROC analysis into the ordinal regression framework
again provided access to a rich variety of missing-data techniques that were already
available for generalized linear regression analysis. These include inverse probability
weighting and EM-based maximum likelihood methods.

3. CONTINUOUS DATA

Concepts of ROC have more recently gained popularity in biomedical applica-
tions involving tests with results on non-ordinal scales. Many biochemical
measurements—for example, including serum antigen or enzyme concentrations
(Zweig and Campbell 1993)—are continuous in nature. At first glance, one might
expect that ROC analysis for continuous data would be more straightforward than
it is for ordinal data, because in this setting the decision variable itself is available
rather than just a categorized version. However, new challenges present themselves
with continuous data.

Consider, for example, estimation of the ROC curve from data {Y Di , i = 1, . . . ,
nD, : Y D̄j , j = 1, . . . , nD̄}, whereY Di denotes the test result for the ith diseased study

unit and Y D̄j that for the jth nondiseased unit. The curve R̂OC(t) = F̂D(F̂−1
D (t)),

where F̂D and F̂D̄ are empirical estimators of FD and FD̄ based on {Y Di , i =
1, . . . , nD} and {Y D̄j , j = 1, . . . , nD̄}, is a jagged curve. Curves that incorporate
reasonable smoothness assumptions can be based on parametric or smoothed estima-
tors ofFD andFD̄. However, these estimated ROC curves do not enjoy a fundamental
property of ROC curves—namely, invariance to monotone-increasing transformations
of the data. Metz, Herman, and Shen (1998) noted that classical smooth (parametric)
ROC curve estimators for ordinal data, on the other hand, do have this property. In-
deed, they proposed that smooth ROC curve estimators for continuous data be based
on application of ordinal data methods to categorized versions of the continuous data.

The fact that decision criteria are explicit with continuous data rather than implicit
also impacts on analysis. One has the capacity in practice to specify the decision crite-
rion and thus to control the false-positive rate. Because higher ranges of false-positive



rates may be of no interest for future application of the test, it may be appropriate
to focus the analysis on a restricted range, {ROC(t), t ∈ [0, t0]}, for some t0 < 1.
Wieand, Gail, James, and James (1989) proposed test statistics for comparing ROC
curves over restricted intervals.

For regression modeling of covariate effects on ROC curves, the analog of Toste-
son and Begg’s approach is to model the test outcome with location and scale compo-
nents that are functions of disease status and covariates. This approach again suffers
from lack of invariance to monotone data transformations. Pepe (1997) proposed a
fundamentally different approach to regression. She suggested that instead of mod-
eling the test result and indirectly ascertaining induced covariate effects on the ROC
curve, one could directly model the ROC curve itself. The general model takes the
form

ROCZ(t) = g(Zβ, h(γ, t))

for some specified functions g and h and unknown parameters (β, γ). A special case
of this is the generalized linear model

ROCZ(t) = g(Σγlhl(t) + Zβ),

where h1, . . . , hL are “basis” functions of t and g is a link function. Parameter es-
timation as proposed by Pepe (1997) is cumbersome, although newer approaches to
inference using standard binary regression methods appear promising. Advantages of
direct modeling of ROC curves over modeling the test results have been summarized
(Pepe 1998) and include the ability to (a) restrict inference about ROCs to restricted
ranges of false-positive rates; (b) incorporate interactions between covariate effects
and t, so that covariates have different effects over different ranges of t; and, most
important, (c) compare ROCs for tests with results of numerically different form and
thus cannot be modeled sensibly in a single regression model for test results. Finally,
by omitting the covariate component from the general model, it can be seen that this
framework provides an avenue for developing smooth estimators of the ROC curve
that are invariant to monotone data transformations.

4. THE AREA UNDER THE RECEIVER OPERATING
CHARACTERISTIC CURVE

Traditionally, the area under the ROC curve (AUC) has been used as a summary
index of test accuracy (Hanley 1989). Indeed, comparisons between two diagnostic
tests are classically based on differences between estimated AUC’s. This has long been
the standard of practice in radiology where AUC is estimated with the binormal model
(Swets and Pickett 1982) and for continuous data where nonparametric estimation of
the AUC is possible with the Mann–Whitney U-statistic (Hanley and McNeil 1982).
Regression analysis based on AUC statistics has been proposed. Here an AUC statistic



is calculated as a derived variable from each subset of data that is homogeneous in
regards to covariates, and then a regression model is fit to the AUC’s (Obuchowski
1995). This regression framework, however, is more restrictive than others. It cannot,
for example, accommodate continuous covariates.

The AUC statistic can be interpreted as the probability that the test result from
a randomly chosen diseased individual is more indicative of disease than that from
a randomly chosen nondiseased individual, AUC = P (Xi ≥ Xj |Di = 1, Dj = 0).
Thus it can be thought of as simply a nonparametric measure of the distance between
the distributions of test results for diseased and nondiseased individuals. Despite these
interpretations, however, many investigators find the index unappealing, because it
has no clinically relevant meaning. Another valid concern is that a large part of the area
comes from the rightmost part of the curve that includes false-positive rates unlikely to
be used in practice. If the curves for two tests cross, moreover, a meaningful difference
between the tests over a range of interest might not be picked up by the AUCs. These
considerations lead to consideration of a partial AUC, the area under the ROC curve
in a restricted range of false-positive rates (Thompson and Zucchini 1989; Wieand et
al. 1989).

5. CONCLUDING REMARKS

Methods for evaluating diagnostic tests have not received the same level of at-
tention from biostatisticians as have, say, methods for evaluating new therapeutic
strategies (Begg 1987). With impetus from regulatory agencies and from public health
administrators, it appears that there will be an increasing demand for standards to be
set for the design and analysis of studies evaluating new tests. ROC methodology is
a popular statistical approach in this context. I consider ROC analysis most useful in
the development phase of diagnostic testing. Its purpose is to determine whether a test
has the capacity to effectively discriminate between diseased and nondiseased states.
This is an important property, but it does not necessarily indicate its practical value
for patient care (Zweig and Campbell 1993). Issues of cost, disease prevalence, and
consequences of misdiagnosis will enter into the ultimate evaluation of test usefulness.

I mention in closing some of the major statistical challenges for evaluating diag-
nostic tests in general and for applying ROC methodology in particular. First, in many
settings a definitive gold standard assessment of disease status, D, is not available.
Infection with Chlamydia trachomis, for example, can be assessed only imprecisely
with standard bacterial culture techniques. How can inference for an ROC curve be
accomplished in this setting? Second, the statistical literature on diagnostic testing
typically assumes that the test result is a simple numeric value. However, test results
may be much more complicated, involving several components. Do ROC curves have
a role to play in determining how to combine different sources of information to op-
timize diagnostic accuracy? Third, disease status is often not a fixed entity, but rather
can evolve over time. How can the time aspect be incorporated sensibly into ROC



analysis? Finally, are there alternatives to the ROC curve for describing test accuracy?
For binary outcomes, two ways of describing test accuracy are to report (a) true- and
false-positive rates, and (b) positive and negative predictive values. ROC curves can
be thought of as generalizing the former to continuous tests; that is, ROC curves
generalize the binary test notions of true-positive and false-positive rates to contin-
uous tests. Are there analogs of ROC curves that similarly generalize the notions of
predictive values to continuous tests?

REFERENCES

Beam, C. A., Layde, P. M., and Sullivan, D. C. (1996), “Variability in the Interpretation of Screening
Mammograms by U.S. Radiologists,” Archives of Internal Medicine, 156, 209–213.

Begg, C. E. (1987), “Biases in the Assessment of Diagnostic Tests,” Statistics in Medicine, 6, 411–423.

Dorfman, D. D., and Alf, E. (1969), “Maximum Likelihood Estimation of Parameters of Signal Detection
Theory and Determination of Confidence Intervals—Rating Method Data,” Journal of Mathematical
Psychology, 6, 487–496.

Gatsonis, C. A. (1995), “Random Effects Models for Diagnostic Accuracy Data,” Academic Radiology, 2,
514–521.

Green, D. M., and Swets, J. A. (1996), Signal Detection Theory and Psychophysics, New York: Wiley.

Hanley, J. A. (1989), “Receiver Operating Characteristic (ROC) Methodology: The State of the Art,”
Clinical Reviews in Diagnostic Imaging, 29, 307–335.

(1998), “Receiver Operating Characteristic (ROC) Curves,” Encyclopedia of Biostatistics, 5, 3738–
3745.

Hanley, J. A., and McNeil, B. J. (1982), “The Meaning and Use of the Area Under a Receiver Operating
Characteristic (ROC) Curve,” Radiology, 143, 29–36.

Metz, C. E. (1986), “ROC Methodology in Radiologic Imaging,” Investigative Radiology, 21, 720–733.

Metz, C. E., Herman, B. A., and Shen, J-H. (1998), “Maximum Likelihood Estimation of Receiver Oper-
ating Characteristic (ROC) Curves From Continuously Distributed Data,” Statistics in Medicine, 17,
1033–1053.

Obuchowski, N. A. (1995), “Multireader, Multimodality Receiver Operating Characteristic Studies: Hy-
pothesis Testing and Sample Size Estimation Using an Analysis of Variance Approach With Depen-
dent Observations,” Academic Radiology, 2, 522–529.

Pepe, M. S. (1997), “A Regression Modelling Framework for Receiver Operating Characteristic Curves in
Medical Diagnostic Testing,” Biometrika, 84(3), 595–608.

(1998), “Three Approaches to Regression Analysis of Receiver Operating Characteristic Curves
for Continuous Test Results,” Biometrics, 54, 124–135.

Swets, J. A., and Pickett, R. M. (1982), Evaluation of Diagnostic Systems. Methods From Signal Detection
Theory, New York: Academic Press.

Thompson, M. L., and Zucchini, W. (1989), “On the Statistical Analysis of ROC Curves,” Statistics in
Medicine, 8, 1277–1290.

Toledano, A., and Gatsonis, C. A. (1995), “Regression Analysis of Correlated Receiver Operating Char-
acteristic Data,” Academic Radiology, 2, S30–S36.

Tosteson, A., and Begg, C. B. (1988), “A General Regression Methodology for ROC Curve Estimation,”
Medical Decision Making, 8, 204–215.

Wieand, S., Gail, M. H., James, B. R., and James, K. L. (1989), “A Family of Nonparametric Statistics for
Comparing Diagnostic Markers With Paired or Unpaired Data,” Biometrika, 76, 585–592.

Zweig, M. H., and Campbell, G. (1993), “Receiver-Operating Characteristic (ROC) Plots: A Fundamental
Evaluation Tool in Clinical Medicine,” Clinical Chemistry, 39, 561–577.



The Randomized Clinical Trial

David P. Harrington

1. INTRODUCTION

The randomized clinical trial is among the most important methodological tools
in biostatistics. Some have conjectured that it could be the most significant advance
in scientific medicine in the 20th century (Smith 1998). In the statistical community,
it is the method of choice for controlling confounding in medical studies where two
or more interventions are compared and where the choice of intervention by either
the subject or the study investigator could lead to selection bias. Among physicians,
it is central to evidence-based medicine and is the major step along the way from
treatment choice based on opinion and experience to that based on scientific finding.

Randomization in experimental designs is, of course, not limited to studies of
human subjects. Fisher (1926, 1935) advocated it in the study of biological problems,
and randomization became widely used in agricultural experiments. But randomized
clinical trials in medicine have special features that set them apart from other ex-
perimental designs: the experimental units are human subjects, sometimes diagnosed
with a potentially fatal disease, and the study subjects and their physicians cede treat-
ment choice to a random allocation scheme. A methodologic device for statisticians
supplants one of the central aspects of the patient–physician relationship—personal
choice of treatment. This intrusion into the caregiving role in medicine will always
spark controversy (Hellman and Hellman 1991).

It is impossible to estimate the frequency with which randomized trials have been
used in medicine, but some estimate that the number of randomized trials runs into
the hundreds of thousands (Chalmers 1998). The Cochrane Collaboration (1999) lists
review teams in more than 50 diseases that maintain libraries of reviews of published
trials, and that archive now indexes more than 250,000 trials.

Close relatives of the randomized clinical trial were conducted as early as 1747
(Lind 1753), when James Lind studied six strategies for treating scurvy on the British
ship HMS Salisbury. Although Lind appears to not have assigned his treatments
randomly, he recognized that bias can result when responses are correlated more
with disease characteristics or environmental features than with a putatively success-
ful treatment. He surely sought to avoid the shoals described by his contemporary,
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Thomas Jefferson, in an 1807 letter to Dr. Caspar Wistar: “The patient, treated on
the fashionable theory, sometimes gets well in spite of the medicine. The medicine
therefore restored him, and the young doctor receives new courage to proceed in his
bold experiments on the lives of his fellow creatures” (Jefferson 1984). Lind’s study
design attempted to hold constant the factors within the control of the investigator
(other aspects of diet, the environment of the patient) while varying only the treat-
ment. By today’s standards, Lind’s study was flawed for two reasons: He assigned
only two patients to each treatment (he would not be the last investigator to conduct an
underpowered study), and he apparently failed to recognize that unmeasured patient
characteristics beyond his observation and control could influence results.

The modern randomized trial emerged in the mid-20th century. Some believe
that the 1948 report in the British Medical Journal (Medical Research Council 1948)
of a randomized trial comparing streptomycin with a no-treatment control is the
first detailed published account of randomized treatment assignments. The use of
randomization in that trial was due in large part to the pioneering work of Bradford
Hill. In addition to controlling possible confounding, randomization apparently also
provided an acceptable way to ration the small supply of streptomycin (Doll 1998).
Within 20 years, randomization in medical research had become widely adopted.

In one of the delightful ironies of modern science, the randomized trial “ad-
justs” for both observed and unobserved heterogeneity in a controlled experiment by
introducing chance variation into the study design. If interventions for patients are
chosen by chance, then the law of large numbers implies that the average values of
patient characteristics should be roughly equal in the intervention groups. Under the
null hypothesis of no differential treatment effect, the assigned interventions should
be unimportant labels attached to patients, and the null distribution of a statistic that
compares any two of the groups should, in most cases, cluster around 0. It is a dis-
armingly simple but effective construction.

2. ADAPTIVE RANDOMIZATION AND
SEQUENTIAL DESIGNS

The widespread use of the randomized trial has inspired methodologic research
into the design and analysis of these trials, as well as into the ethical quandaries
that arise. Not surprisingly, each line of research has influenced the other. Specific
randomization strategies became an area of active research in the 1960s. Because
an investigator cannot control the order in which patients are enrolled in a trial, the
sophisticated randomization schemes used in agricultural experiments did not adapt
well to clinical trials. Simple randomization, however, can lead to a lack of balance in
the number of subjects assigned to, say, two treatments and, even more severely, to the
distributions of important prognostic factors between the two treatment groups. Many
remedies have been proposed. The simplest may be Zelen’s (1974) use of randomly



permuted blocks within predefined subgroups (strata) of patients. More complicated
adaptive schemes have been proposed that use biased coin designs to adjust adaptively
randomization fractions to nudge the distributions of treatments overall and within
subgroups toward the desired allocation ratio (usually .5). Efron’s (1971) design
seems to have been the earliest of these; the method of minimization proposed by
Pocock and Simon (1975) has become the most popular of these covariate-adaptive
designs. Other, more controversial designs have addressed some of the ethical issues
of randomization by adapting randomization probabilities to the observed history of
patient responses. “Play the winner” designs (Wei and Durham 1983; Zelen 1969)
favor the treatment arm showing the better outcome at the time of randomization,
with the intent of providing participating physicians partial relief from the dilemma of
continued randomization when therapeutic effects may be emerging. These response-
adaptive designs have had limited practical impact largely because a physician with
knowledge of the history of a trial has some information with which to predict the next
treatment assignment and selectively enroll or withhold patients. A spirited discussion
of a play the winner design in a controversial trial in the treatment of a respiratory
disorder in infants was given by Ware (1989). A useful summary of randomization
methods was given by Kalish and Begg (1985) and more prescriptive advice was
provided by Lachin, Matts, and Wei (1988).

Unlike response-adaptive randomization methods, sequential designs that allow
for early stopping of trials have become widely used. Armitage, McPherson, and
Rowe (1969) provided conceptual and computational results for easy computation
of experiment-wise significance levels when repeated significance tests are used to
monitor a trial as groups of responses become available (see Armitage 1975 for
a more complete account). Several versions of these group-sequential designs that
maintain the specified experiment-wise type I error probability are now commonly
used (Lan and DeMets 1983; O’Brien and Fleming 1979; Pocock 1977; Whitehead
1983). These designs have been extended to allow for early stopping to accept, as well
as to reject, the null hypothesis (Emerson and Fleming 1989; Pampallona and Tsiatis
1994; Whitehead 1983). Jennison and Turnbull (1989) advocated the use of repeated
confidence intervals with confidence coefficients adjusted for multiple “looks” at the
data. Many phase III trials now have sequential designs used by data monitoring
committees that have exclusive access to outcome data, so that treating physicians
and study investigators are no longer aware of developing trends.

To date, sequential methods for clinical trials have been dominated by the fre-
quentist perspective, though some have argued strongly that the Bayesian perspective
should see more use (see, e.g., Freedman, Spiegelhalter, and Parmar 1994).



3. ANALYSIS ISSUES

Many methods of analysis are used with data from clinical trials, but one ques-
tion is especially pertinent to randomized trials: how should a trial be analyzed when
some subjects do not receive their assigned therapy? “Noncompliance” to random-
ized treatment assignment received widespread attention during the early trials of
HIV disease (Robins and Greenland 1994), when substantial fractions of patients on
those trials elected either additional self-medication or stopped therapy altogether,
but the issue arises in nearly all diseases. In many cases the reason for treatment
deviations may be beyond the control of a patient (e.g., inadequate drug supply, an
intolerable side effect), but noncompliance has nevertheless become the technical
term of choice. These discrepancies between the treatment assigned and that actually
received challenge the very foundation of a randomized trial; they begin to “undo” the
randomization when the reasons for those changes are correlated with response. More
directly, randomization allows an investigator to conclude that differences in outcome
between treatment groups were caused by the treatments themselves; noncompliance
threatens that causal link. The data analyst faces a difficult choice: an analysis of
all eligible randomized subjects according to treatment assigned (the intent-to-treat
principle) provides an unbiased test of the null hypothesis of no treatment differences
but produces a potentially biased estimate of treatment effects. An analysis of patients
according to treatment received will very likely produce a test of the null hypothesis
with distorted type I error and often still does not accurately estimate treatment dif-
ferences. Robins and Tsiatis (1991) and others (Fischer-Lapp and Goetghebeur 1999)
have studied structural statistical models, which, under some conditions, restore the
causal interpretation of treatment differences in the presence of noncompliance and
maintain type I error rates.

Problems encountered in the design and analysis of clinical trials have inspired a
rich history of methodologic research in many areas of statistics, and there is certainly
not the space here to discuss any of those results in detail. Survival analysis is widely
used in clinical trials, and much of what is known about the proportional hazards
regression model for right-censored data was originally investigated because of, and
later applied to, data from clinical trials. Exact methods for large but sparse contin-
gency tables are now routinely used in trials with outcomes measured on a categorical
scale. The analysis of quality-of-life data presents difficult problems in nonignorable
missingness that are still under active study. Recent results in the computation of
Bayes procedures are just now spurring increased use of those methods. Vaccine and
screening trials present special issues of design and inference that are far from solved.

4. ETHICAL ISSUES

Many difficult issues intersect the ethical and sociological problems that arise
in medical research. When is it ethical to randomize? The classical ethical theory of



clinical trials presupposes “clinical equipoise” on the question of which treatment in
a trial is preferable, but it is far from clear how to operationalize that abstract notion
of balance in clinical opinion. The ECMO trial in infants (Ware 1989) involved a
therapy that many believed unethical to withhold; others felt just as strongly that the
procedure’s potential benefit had not been established in a properly controlled study.
Peto’s working definition (Peto and Baigent 1998) is perhaps the most practical: “A
patient can be entered if, and only if, the responsible clinician is substantially uncertain
which of the trial treatments would be most appropriate for that particular patient.”

As scientific and commercial organizations expand internationally, clinical judg-
ments are influenced by differences in culture or access to medical care, and equipoise
does not always cross the membrane of national boundaries. Brennan’s (1999) ac-
count (with a rejoinder in Levine 1999) of the debate on the use of a no-treatment
control in a study of perinatal treatment for HIV in Africa, after an effective drug had
been established in United States trials but before that treatment was widely used in
developing countries, provides a fascinating case study and a platform for discussing
pending changes to the Declaration of Helsinki (World Medical Association 1964).

Many randomized trials are too small, so that moderate treatment differences
cannot be distinguished, at least with near certainty, from random fluctuation. Small
trials result from a complex web of constraints, including physician or patient reluc-
tance toward randomization, the increased cost of medical care on a clinical trial,
and/or the lack of an available trial at a patient’s treatment site. The U.S. National
Cancer Institute estimates that approximately 5% of adults with cancer participate in
clinical trials. These small trials lack precision, are of questionable value in general-
izing estimates of treatment differences to the intended target population (Harrington
1999), and violate the implicit contract with study subjects, who believe that their
participation will contribute to the answer of an important pending medical question.
Important statistical research into methods for meta-analyses has helped but not cured
this malady.

Successful trials of new therapeutic interventions may have substantial financial
implications for pharmaceutical companies. Although many countries have codified
regulations on good clinical practice, the specter of a conflict of interest between profit
and the protection of patient rights still exists. A pharmaceutical company benefits
greatly when a drug can be marketed as soon as possible after discovery (patients reap
this benefit as well for effective treatments), but the quest for efficiency and speed
may crowd patient interests, especially when treating physicians are reimbursed for
the costs of placing patients on study.

Investigators and some medical journals have a propensity to publish trials that
demonstrate treatment benefits, leaving the data from equally valuable negative trials
in study archives. The failure to publish may itself be a violation of the implicit contract
with a trial participant, and publication bias may distort even the most careful literature
review by the conscientious clinician.



5. CONCLUSIONS

Despite its blemishes, the arguments that the randomized trial is the best ex-
perimental design for controlling for selection bias are compelling. In the Eastern
Cooperative Oncology Group, where this author works as a statistician, some of the
largest observed “treatment” differences have been between identical treatments in hy-
pothetically identical populations treated on different trials, and no statistical models
could explain those differences. To paraphrase Peto and Baigent (1998), large ther-
apeutic advances are unlikely in major diseases such as cancer, HIV infection, and
cardiovascular disease, and randomized trials are the only way to reliably confirm
important incremental advances that can be distorted or lost altogether in nonran-
domized studies. In cancer and HIV alone, randomized trials have established that
for small enough breast cancer tumors, the far less disfiguring lumpectomy operation
is as effective as complete surgical removal of the affected breast, that most operable
breast cancers are best treated with postoperative chemotherapy, that many forms
of pediatric leukemia are treatable, that the perinatal administration of antiretroviral
agents in HIV-positive pregnant women reduces the risk of transmission of HIV dis-
ease to the newborn, and that combinations of antiretroviral drugs increase the latency
period of the AIDS virus. Similar examples exist in diabetes, cardiovascular disease,
and psychiatric disorders that have changed the practice of medicine dramatically.

There are several excellent texts covering methodologic, regulatory, and ethical
issues in clinical trials. The best places to start discovering the richness of this subject
are the books by Friedman, Furberg, and DeMets (1998), Piantadosi (1997), and
Pocock (1983).
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Some Contributions of Statistics to
Environmental Epidemiology

Duncan C. Thomas

1. INTRODUCTION

The field of epidemiology has come to rely particularly heavily on statistical
methods because of its observational nature and the widespread acceptance of a com-
plex “web of causation” as its conceptual basis. As much of modern chronic disease
epidemiology is oriented to the study of disease incidence data, regression models
for binary, Poisson, and survival time data have figured prominently in epidemiologic
applications. Thus logistic regression for case-control studies and Poisson and Cox
regression models for cohort data have become standard tools in the epidemiologist’s
armamentarium (Breslow and Day 1980, 1987). In other areas, methods of longitu-
dinal data analysis (Liang and Zeger 1986) have provided a similar unified frame-
work for modeling changes in continuous outcomes over time, such as lung function
measurements. Without these important statistical contributions, it is arguable that
epidemiology would not have been able to progress so far in understanding diseases
of complex etiology.

These tools are broadly applicable to the study of many different risk factors, in-
cluding genetic and environmental factors and their interactions, although specialized
techniques have been developed in these two subdisciplines. Environmental epidemi-
ology can in turn be broadly defined as comprising everything that is not genetic (e.g.,
diet, lifestyle factors like smoking, the social milieu, medical exposures, infectious
agents) or narrowly defined as focusing on the exogenous environment (e.g., air and
water pollution, indoor radon, fallout from nuclear weapons development and testing,
electromagnetic fields, pesticides). In this vignette I touch only briefly on statistical
methods in standard risk factor epidemiology (see Thomas 1988, 1998 for more ex-
tensive treatments of that topic) and focus instead on some of the unique problems
that arise in the latter case, owing to the geographically defined nature of many en-
vironmental exposures: (a) evaluations of disease clusters and the spatial distribution
of disease in relation to possible environmental causes using Geographic Information
Systems (GIS); (b) the design of studies involving geographical and temporal com-
parisons; (c) the control of measurement error; and (d) problems of multicollinearity.
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There has been an explosion in the availability of geographically defined data on
health and exposures, and statistical methods to exploit such resources are still in
their infancy.

2. HYPOTHESIS GENERATION USING GEOGRAPHIC
DATA

Public health agencies often find themselves functioning in a reactive mode to
public concerns about disease clusters or point source exposures. Although such ob-
servations are difficult to put in any statistical framework for formal inference because
of their anecdotal nature, this is nonetheless one way by which hypotheses in environ-
mental health are sometimes generated. Other hypotheses are generated by concerns
about low-dose human exposures to substances that are toxic to animals (Ryan 2000)
or by extrapolation to the general population of risks previously studied in highly ex-
posed groups, such as workers exposed to pesticides or vinyl chloride. Although the
investigation of specific disease clusters has seldom yielded clearcut or generalizable
insights (Rothman 1990), mapping disease rates and ecologic regression techniques
for explanatory variables have proven useful. Different environmental exposures are
manifest over quite different scales of spatial variability, but in general one would
expect disease rates to vary smoothly over space and to reflect the aggregate effect
of many different factors, racial, and socioeconomic as well as environmental. This
leads to a classic trade-off between geographic resolution and statistical stability.
On the one hand, fine-scale mapping is desirable to adequately capture the effects
of the many different factors that can influence disease rates, but on the other hand,
the reliability of fine-scale mapping is limited by the frequency of the disease under
study. Many different statistical measures, including the observed disease rates, their
statistical significance, and various combinations thereof, have been used for con-
structing disease maps (Devine, Annest, Kirk, Holmgreen, and Emrich 1991; Pickle,
Mason, Howard, Hoover, and Fraumeni 1987). The most promising development has
been the use of empirical Bayes techniques for smoothing maps of local disease rates
(Clayton and Kaldor 1987; Marshall 1991; Mollie and Richardson 1991), borrowing
strength from nearby areas that presumably share at least some of the same determi-
nants. However, the extent of spatial correlation may also vary locally due to omitted,
misspecified, or imperfectly measured spatial covariates, so that joint modeling of
the means and covariances would be helpful. Euclidean distance may not be the best
metric for drawing such maps, so that factors such as meteorology, topography, and
population density might suggest a more natural metric. For example, Le and Zidek
(1992) described techniques for modeling air pollution based on a transformation of
space to one with uniform spatial correlation, followed by back transformation for
presentation of the final map.

Although an appropriately smoothed map can be useful in itself as a hypothesis-



generating tool, even more useful are spatial regression techniques that can incorporate
geographically defined explanatory data (Mugglin and Carlin 1998; Waller, Louis,
and Carlin 1997). Such techniques were used by Richardson, Monfort, Green, Draper,
and Muirhead (1995), for example, for testing a hypothesis suggested by Henshaw,
Eatough, and Richardson (1990) concerning the risk of leukemia from indoor radon.
They found consistent evidence of spatial clustering of leukemia rates over the 459
districts of England, Scotland, and Wales but no correlation of these rates with either
radon or gamma radiation. Guttorp (2000) gave a review of spatial monitoring and
prediction techniques.

3. ISSUES OF STUDY DESIGN

Because so many environmental exposures like air pollution are geographically
determined, standard epidemiologic designs based on comparisons between individ-
uals may have limited utility. For example, a case-control design with neighborhood
controls (which might be the design of choice for studying individual risk factors)
would be useless for studying outdoor air pollution, because there would be little, if
any, variation in exposure within matched sets. Instead, environmental epidemiolo-
gists tend to rely on geographical and temporal comparisons, or on combinations of
the two. For example, in air pollution research, chronic effects generally have been
studied using “ecologic” designs that relate mean health indices for different cities
to ambient pollution levels averaged over time. The major concern with such com-
parisons is the so-called “ecologic fallacy” (Greenland and Robins 1994) that effects
seen at the group level may not reflect individual-level associations. In large part, this
fallacy arises from uncontrolled confounding and can be addressed by measuring the
relevant confounders at the individual level. This suggests a multilevel design (Navidi,
Thomas, Stram, and Peters 1994; Prentice and Sheppard 1990), in which individu-
als are enrolled in several different communities, data on potential confounders and
outcomes are obtained and controlled at the individual level, and the adjusted com-
munity means are then regressed on community ambient exposures at the ecologic
level. This analysis then correctly allows for uncontrolled between-community resid-
ual variation, with the effective sample size being the number of communities, not the
number of persons. In a variant of this approach (Prentice, personal communication),
cross-sectional surveys are conducted in a large number of communities to obtain
information on the joint distribution of exposures and confounders—but not disease
outcomes—and the resulting means and covariances are then used as predictors in
an ecologic regression analysis of population disease rates. Such designs have great
potential for correlating separate data bases on health (e.g., SEER cancer registries)
and exposure (e.g., the AIRS air pollution data base).

Acute effects have commonly been studied using a time-series design, in which
short-term fluctuations in population disease rates have been correlated with short-



term fluctuations in ambient pollution levels, after filtering out long-term cycles and
trends (Samet, Zeger, and Berhane 1995; Schwartz 1994). A very promising extension
is a parallel implementation of this approach in a nationwide sample of many U.S.
cities (Dominici, Samet, Zeger, and Xu 2000), which is taking the results of separate
time-series analyses in each city to develop an aggregate model for the variability
in pollution mortality coefficients in relation to city-specific predictors, using spatial
smoothing techniques.

In some cases, it may be possible to exploit all three levels of comparison—
between communities, between individuals, and between times—in a single unified
study design and analysis. This is currently being done, for example, in a longitudinal
study of air pollution in school children from 12 southern California communities,
where rates of change in annual lung function measurements are being related to
time-varying and fixed individual covariates and community ambient pollution mea-
surements using a three-level hierarchical mixed model (Gauderman et al. 2000).
Similar analyses of acute effects on school absences are being conducted using mul-
tilevel mixed models for binary time series data. The latter are closely related to the
case-crossover design (Maclure 1991), which compares the covariate values for an
individual at the time of failure to the same person’s covariate values at a sampled
control time. However, subtleties are involved in applying this approach to environ-
mental exposures where the exposure series is seen as fixed rather than random, which
requires careful consideration of the choice of crossover times, particularly for events
that lead to censoring (Lumley and Levy 1999; Navidi 1998). The major advantage
of the case-crossover design over the time-series approach is the ability to incor-
porate individual time-varying covariates either as exposures or as confounders and
modifiers of an ambient exposure effect.

4. EXPOSURE MEASUREMENT ERROR

Environmental exposures are notoriously difficult to measure accurately at the
individual level. Personal dosimeters may not be available or may be expensive or
cumbersome. Past exposures may have to be reconstructed using pathway models (Till
and Meyer 1983). Exposures may be geographically defined, and local or personal
variability may be difficult to assess. Even if measurements are available, they may
be subject to great uncertainty. For all of these reasons, it is important to consider the
influence of exposure errors on the epidemiologic associations.

Available methods are based largely on two different approaches to the prob-
lem, depending upon whether direct measurements are available for each person or
whether exposures are estimated using some prediction model. Again, air pollution
provides a good example to illustrate the issues. Although personal monitors are
available for some air pollutants, it generally is not feasible to obtain direct measure-
ments of personal exposure over an extended period for thousands of study subjects.



Central site monitors have been deployed in many communities to measure ambient
pollution levels over time, but of course provide no information about personal ex-
posures, which are influenced by such factors as time spent outdoors and residential
characteristics like air exchange rates and indoor sources. Personal and “microenvi-
ronmental” measurements on subsamples can be used to build models for individual
exposures that can then be evaluated using questionnaire data for all subjects in the
main study. As a result, each subject can be characterized by a predicted exposure
and a model-based estimate of the uncertainty of that prediction (Navidi and Lur-
man 1995). Such data might be expected to have a Berkson error structure (Berkson
1950), in which the individual’s true exposures are distributed around their model pre-
dictions with some variability. On the other hand, direct measurements of personal
exposures would be expected to have a classical error structure; that is, distributed
around the true values with some measurement error. The implications of these two
error structures is rather different (Thomas, Stram, and Dwyer 1993), with classical
error having a general tendency to bias exposure-response relationships towards the
null, whereas Berkson error does not (at least in linear models) but leads to some
loss of power essentially because the exposure categories begin to overlap. There
is an extensive literature on methods for correcting for exposure measurement error
(Carroll, Ruppert, and Stefanski 1995; Fuller 1987). Dose-reconstruction models of-
ten contain elements of both types of error, since source measurements might have a
classical error component while unmeasured factors would introduce Berkson error;
as a result, individuals with similar histories might have correlated errors, a problem
that has not received adequate attention in the statistical literature. Some of the most
promising approaches involve a combination of exposure measurements and model
predictions in the same analysis. For example, in an analysis of childhood leukemia,
Bowman, Thomas, Jiang, and Peters (1999) used a physically based model to predict
magnetic fields from detailed power line wiring configuration information, fitted to
actual measurements in the children’s homes, and then combined the predicted and
measured fields to assign exposures to individuals. The predicted fields were generally
found to be more strongly related to leukemia than the measurements themselves.

5. STATISTICAL ANALYSIS ISSUES

At the outset, I noted the profound impact on epidemiology generally of the
statistical techniques for modeling event data (Breslow and Day 1980, 1987). A re-
curring theme in epidemiology, and especially environmental epidemiology, is the
time-dependent nature of most exposures, requiring consideration of complex expo-
sure time–response relationships, incorporating such features as latency and mod-
ification by age at exposure and age at risk, duration of exposure, and dose-rate
effects. For example, very sophisticated models incorporating such time-dependent
modifiers have been built for lung cancer risk from radon exposure in miners with ex-



tended and time-varying exposure histories that can be used for projecting risks from
lifetime exposure to domestic radon (Lubin, Boice, and Edling 1994; NAS 1988).
Similar considerations arise in constructing an exposure metric for time-dependent
environmental exposures like air pollution, taking into account possible threshold
and interactive effects. For example, Davidian and Gallant (1992) discussed nonlin-
ear regression techniques for dose–response models with individual random-effects
parameters estimated nonparametrically. (See also Thomas 1988, 1998 for reviews
of descriptive approaches to this problem and Moolgavkar 1986 for a discussion of
biologically based approaches in the context of cancer epidemiology.)

Many environmental exposures occur as complex mixtures whose component
effects may be difficult or impossible to separate, some of whose components may
have synergistic effects. Again taking air pollution as the example, the major pollu-
tants of concern often tend to be highly correlated in time and in space, due in part to
their common sources and in part to atmospheric chemical reactions that convert one
pollutant into another. Furthermore, some pollutants like particulate matter comprise
many constituents with distinct size and chemical composition, which may have dif-
ferent health effects but are too highly correlated to be separated statistically. Simply
putting all of the relevant pollutants (each of which may be measured in various ways
or over different time periods) into a multiple regression model is unlikely to be re-
warding, as the resulting coefficients will be too unstable. Single-pollutant models,
on the other hand, are likely to be misleading because of uncontrolled confound-
ing by other pollutants. To the extent that this problem of multicollinearity derives
from common sources, and hence the relevant agent is the common source rather
than specific pollutants, source apportionment methods (Schauer et al. 1996) may
be helpful for deriving a set of less highly correlated predictors. Alternatively, one
might need to consider a range of alternative two- or three-pollutant models that will
illustrate the effects of a particular pollutant, adjusted for some of the other pollutants.
Greenland (1993) provided a critique of variable selection methods for model build-
ing in epidemiology with multiple exposure factors and advocates empirical Bayes
methods. Bayes model selection and model averaging techniques (George and Mc-
Culloch 1993; Madigan and Raftery 1994; Raftery, Madigan, and Hoeting 1997) may
prove useful for summarizing such analyses, taking into account our uncertainty as to
which are the relevant causal factors. For example, Clyde and DeSimone-Sasinowska
(1997) used Bayes model averaging to examine the association between particulate
air pollution and daily mortality, averaging over the space of all possible models for
adjusting for weather and other confounders. Shaddick, Wakefield, and Elliott (1998)
applied similar methods to multipollutant data. In some cases it may not be possible
to tease apart the effects of different constituents of a complex mixture—it may be the
mixture itself that is the relevant risk factor. On the other hand, if the same component
appears consistently in different studies with different levels of or correlations with



co-pollutants, then that would tend to implicate it as the causal factor, as has been
argued for particulate matter air pollution (Schwartz 1994).

6. CONCLUSIONS AND PRIORITIES FOR
FUTURE DEVELOPMENT

This brief vignette has tried to touch on the key distinguishing aspects of en-
vironmental epidemiology—its reliance on ecologic and other nontraditional epi-
demiologic designs, the problem of exposure measurement error, and the problem of
multicollinearity. Future exploratory studies are likely to rely ever more heavily on
combinations of large data bases, possibly supplemented with specialized studies to
fill in gaps. Methodologic research on the challenges such studies pose, both compu-
tational and conceptual, is badly needed. There are certainly other statistical problems
in this field, many of which are shared with other epidemiologic specialties. However,
greater attention by statisticians to these problems in particular would certainly help
advance the field.
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Challenges Facing Statistical Genetics

B. S. Weir

1. INTRODUCTION

The fields of statistics and genetics grew together during the 20th century, and
each faced a period of tremendous growth as the century ended. At the beginning of
the 21st century, the need for statistical interpretation of genetic data is greater than
ever, and there is a corresponding opportunity for the development of new statistical
methods. This vignette reflects a personal viewpoint and is colored by the recent in-
creased interest in statistical genetics experienced at North Carolina State University.
C. Clark Cockerham, a giant in the field who led the N.C. State program for 40 years,
died 3 years before the century ended.

2. THE GENOME REVOLUTION

The former editor of Science (Abelson 1998) considered that the genome revolu-
tion will have as great an impact on society as the industrial and computer revolutions
before it. Readers of this journal will be familiar with the impact of widely available
computing power on statistical analyses. Students may now be called on to handle
large datasets, replete with missing values, where earlier they had to be taught with
examples of unrealistically small and balanced sets. They can perform computation-
ally intensive procedures of resampling or permutation to avoid invoking asymptotic
theories, and can generate complex posterior distributions by simulation.

The impact of the genome revolution, however, will affect us all. As a conse-
quence of new technologies supporting the Human Genome Project, it is becoming
possible to study all of the genes in an organism at once. The science of genetics in
the last century dealt with a few genes at a time, and indeed the first geneticist looked
at seven single-gene traits in the garden pea. Although Mendel did perform some
three-factor analyses on his data, only very recently have complete catalogs of genes
become available and both the possibility and the necessity for many-gene analyses
arisen. Once the yeast Saccharomyces cerevissiae was sequenced, all 6,200 genes (or
at least the potential coding regions) could be determined by searching the 12 million
base-pair (bp) DNA sequence for features characteristic of genes. DNA subsequences
specific for each of these genes were then constructed on a silicon chip and used to
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determine which genes were being expressed (producing products) in yeast colonies
subject to different environments. Parallel activity is now projected for the human
genome, where maybe 100,000 genes are encoded by about 10% of the 3 × 109 bp
genome. Only a fraction of these genes is expressed in any specific cell of the body,
and that fraction will vary with disease status and environment. Mendel published
data on seven genes with a few thousand observations from 84 crosses of peas. His
human genetics successors will collect data from 100,000 genes in different tissues at
different times from different people in different populations. These expression data,
with their spatial and temporal components, will be vastly more extensive than the
DNA sequence data that are now emerging. Although we can anticipate a summary
of a person’s DNA sequence being encrypted on a credit card-sized medium, at least
that information will not vary from conception until death and will not vary within
the person.

Determining the genetic basis for any character, with the eventual potential for
improving economic traits or correcting human defects, will be a major task facing
21st century geneticists. Extracting signals from very noisy data and accounting for
the substantial interactions will pose severe statistical problems. Although there are
many other tasks assigned to statistical geneticists, that of relating genotype to phe-
notype provides a convenient path for describing past successes and predicting future
problems.

3. LOCATING GENES FOR
DISCRETE CHARACTERS

Assigning genes to chromosomal locations is ultimately a physical exercise, but
much can done with statistical analysis. A very successful approach has been the
detection and estimation of genetic linkage (Ott 1999). Consider two genes A and B
that exist in a population with alternative allelic forms A, a and B, b. Each individ-
ual receives two copies of each gene, one from each parent, so some individuals are
doubly heterozygousAB/ab because one parent transmitted the allelesA,B and the
other transmitted the alleles a, b. The individual in turn may transmit a parental pair
AB or ab or a recombinant pair Ab or aB. The extent to which these two pair types
are not equally probable reflects the degree of linkage between the genes. Completely
linked genes do not allow the production of recombinant pairs of alleles, and unlinked
genes have equal probabilities for parental and recombinant pairs. Genes on different
chromosomes are unlinked. Although the relationship between the degree of linkage
and amount of physical separation on a chromosome is complex, it is generally mono-
tonic, so that evidence for strong linkage suggests close proximity. Linkage studies
are conducted within family pedigrees, and the analysis is made complicated by the
many dependencies among family members. The elegant algorithm of Elston and
Stewart (1971) provided a method for the recursive computation of likelihoods on



pedigrees and gave the basis for computer programs and many subsequent successful
linkage analyses. The use of likelihood methods for genetic data has been advanced
substantially by the many works of E. A. Thompson, whose 1986 book concentrated
on human pedigree analyses.

Linkage analysis rests on the availability of genetic markers; that is, easily scored
heritable units with known chromosomal locations. Statisticians have been substan-
tially involved in developing methods for detecting and estimating linkage from data
collected in a pedigree framework. The task is not a trivial one, however, as the case
of Huntington’s disease shows. Initial evidence for linkage to a marker on human
chromosome 4 was published in 1983 (Gusella et al. 1983), but not until 1993 was
a more precise localization of the gene made (Huntington’s Disease Collaborative
Research Group 1993).

Part of the problem with linkage studies for fine-scale mapping of human disease
genes is that the proportion of recombinant allele pairs for genes closer together than
about 1 million bp is less than 1%, so that these pairs are unlikely to be seen in family
pedigrees of a few hundred people or less. Although there will be strong evidence
for linkage, it will not be possible to provide reliable estimates for recombination
frequencies lower than .01. A population-based sampling framework has thus been
adopted as an alternative to a pedigree-based one. In essence, the data are examined
for evidence of the effects of recombination during all of the previous generations in
which the disease has been present in the population. As with all statistical genetic
endeavors, this approach requires specification of an evolutionary model.

Population-association approaches to gene location have attracted attention from
the pharmaceutical industry. In April 1999, a consortium was announced to develop
300,000 genetic markers for mapping human disease genes. This means that a marker
will be sought about every 10,000 bp, and adjacent markers will have an average
recombination rate of about .0001. The technology to enable scoring of so many
markers is not yet completely in place, and the statistical problems inherent in ad-
dressing such data are formidable. Certainly, data-mining techniques will be used in
place of traditional single-marker analyses.

4. LOCATING GENES FOR
CONTINUOUS CHARACTERS

As difficult as locating genes affecting discrete genes is, at least the dependent
variable, disease status, is assumed known without error. With some exceptions, such
as disease-resistance genes, most economic traits are continuous and have an error
component. Similarly, susceptibility or risk factors for human disease are generally
continuous. These characters may be thought to have a component influenced by a
small number of genes whose location is sought, but also to be influenced by many
other genes and by environmental factors. It is no longer possible to infer the trait



genotype from the phenotype of an individual. This is unlike the case for Huntington’s
disease, where even before the gene was located, it was known that someone with the
disease must have inherited a “disease” allele from at least one parent.

The first published effort to locate genes affecting continuous traits was by Sax
in 1923. He used seed coat color as a marker for seed size in beans. In work that
anticipated much current activity, Thoday (1961) exploited the simplicities following
the crosses between inbred lines of Drosophila selected in opposite directions for the
trait of interest. For most of the 20th century, however, the statistical genetic analysis
of continuous traits was less concerned with identifying the genes than with describ-
ing components of trait variance. Similarity in trait values of individuals known to
be unrelated would reflect environmental factors, whereas similarity of trait values in
unilineal relatives (e.g., half sibs) would reflect the effects of alleles acting singly: the
additive effects. Trait values for bilinear relatives (e.g., full sibs) allowed inferences
to be made for the dominance effects of alleles acting in pairs. Between-gene inter-
actions, known as epistasis, could also be estimated from the covariances of relatives
(Cockerham 1954). The genetic architecture of complex traits thus could be expressed
in terms of components of variance even though the underlying physical basis was
not known. This rich theory now available for quantitative genetics stems from the
monumental paper of Fisher (1918) in which he laid out the partitioning of variance
in work that “presumably led to the analysis of variance” (Moran and Smith 1966).
Fisher’s paper also was crucial in reconciling the opposing views of the Mendelians
and biometricians that featured prominently in the statistical genetic literature at the
beginning of the 20th century. Quantitative genetic theory has been sufficient to allow
prediction of genetic gain from selection schemes proposed for domestic species and
was also useful in describing natural populations. The most comprehensive review is
that of Lynch and Walsh (1998).

Genetic engineering is based on the concept of altering genes by direct manipu-
lation, instead of by the gradual accumulation of desirable genotypes through choice
of the best individuals in selection schemes, and this requires detailed knowledge
of gene location. Early work in such quantitative trait locus (QTL) location simply
compared trait means in classes distinguished by genetic markers. Differences in
means implied an association between marker and trait genes, and possible physical
proximity. The confounding of the magnitudes of trait gene effects and marker gene
location could be removed by considering intervals between pairs of markers, and the
effects of QTLs outside a specific interval could then be removed by partial regression
on other markers. This interval mapping methodology has now progressed to allow
the location of pairs of QTLs and estimation of their effects and interactions (Kao,
Zeng, and Teasdale 1999). Extension to many QTLs and to a wide range of individual
sampling schemes lies ahead. Determining the direct and epistatic effects of all genes
affecting a continuous trait is beyond current statistical methodology, and substantial
experimental design issues remain to be faced.



Design issues also arise in the interpretation of expression array data. The pos-
sibility of screening all genes to determine which ones are being expressed has been
mentioned, but current technology produces data that are continuous in nature, and
levels of expression are revealed by light intensities in hybridization reactions. Local
variation in intensities within an array needs to be factored into comparisons between
arrays (i.e., across environments or genomes). The attention beginning to be paid to
how and when genes act (i.e., functional genomics) has emerged as a new data-rich
field.

5. SEQUENCE ANALYSES

The initial focus of the Human Genome Project has been the production of
DNA sequence information. Prior to this coordinated effort to determine the complete
sequence of man and five model organisms (a bacterium, Escherichia coli; a yeast,
Saccharomyces cerevisiae; a worm, Cenorhabditis elegans; a fruit fly, Drosophila
melanogaster; and the laboratory mouse Mus musculus), DNA sequences tended to
be determined for specific regions or genes in various species. The field of comparative
genomics is building on the availability of homologous sequences—those with shared
ancestry—in different species. Statistical comparisons have already been made to
demonstrate the variation in rates of change in different evolutionary lineages and
to examine rates for pairs of genes (e.g., Muse and Gaut 1997), and more extensive
analyses will be needed as sequence data accumulate.

Although DNA sequences have been termed the “blueprint of life,” it is the
physical structure of proteins that determines function. A great deal of statistical
modeling has been undertaken to relate DNA sequence features to protein structure.
There appear to be selective constraints to preserve protein structure, and this must
affect mutational changes in the underlying DNA sequences. It is not easy to incor-
porate structural features into evolutionary models, and statistical work (e.g., Thorne,
Goldman, and Jones 1996) will also be challenged by more data.

6. CONCLUSION

Genetics is having an impact on almost all aspects of life, with obvious examples
in medicine, agriculture, and forensic science. Along with the burst in the science of
genetics has come a burst in the volume of genetic data, and a consequent need for
new statistical methods. The whole-genome nature of genetic data in the 21st century
means that the single-gene analyses of the twentieth century (e.g., Weir 1998) will
need to be extended.
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Computational Molecular Biology

Wing Hung Wong

1. INTRODUCTION

Molecular biology is one of the most important scientific frontiers in the second
half of the 20th century. During this period, the basic principles of how genetic infor-
mation is encoded in the DNA and how this information is used to direct the function
of a cell were worked out at the molecular level, and methods were developed to
clone, to sequence, and to amplify DNA. As a result, a large amount of biological
sequence information has been generated and deposited into publicly accessible data
bases. Starting from fewer than 1 million base pairs (bp) in 1982, the amount of DNA
sequence data in GenBank has been growing exponentially and had reached 3.4 bil-
lion bp in August 1999. By 2003 there should be close to 20 billion bp in GenBank,
including the complete DNA sequence of the human genome. Parallel to the growth
of DNA sequence data is the rapid accumulation of data on the three-dimensional
structure of biopolymers such as proteins and RNAs. Such structural information,
obtained through time-consuming X-ray crystallography or nuclear magnetic reso-
nance spectroscopy experiments, is key to our understanding of how proteins perform
their functions in the various cellular processes.

The phenomenal growth of DNA sequence data is underpinned by a fundamen-
tal shift in the way such data are produced. Although individual investigators are
still cloning and sequencing specific genes related to particular biological questions,
the bulk of sequence data is currently coming from a number of high-throughput
genome centers. Thus the production of data is decoupled from the biological ques-
tions under investigation. The data are produced and deposited immediately for use by
researchers worldwide to answer a multitude of questions. In the next few years, such
high-throughput data production will spread from genome research to other areas of
biological research. The availability of massive amounts of fundamental data and the
need to extract the embedded information by computational and analytical means
has spurred the development of computational molecular biology and bioinformat-
ics. Here I briefly review selected recent progress and discuss some opportunities for
statistical researchers.

Wing Hung Wong is Professor of Statistics, University of California, Los Angeles, CA. This work is
partially supported by National Science Foundation grant DMS-9703918. The author is grateful to David
Haussler and to Jun Liu for useful comments.



2. SEQUENCE ALIGNMENT AND ANALYSIS

Many components of basic cellular processes are highly conserved, although
their uses and regulation have diverged greatly among extant organisms. Sequence
alignment is the basic tool that allows us to detect these conserved components.
To align two protein sequences, similarity scores are assigned to all possible pairs
of amino acids, and the sequences are aligned to each other so as to maximize the
sum total of scores in the sequence of pairings induced by the alignment. Table 1
displays a part of the alignment of a ribosomal protein from a group of anciently
divergent organisms. The alignment not only establishes the evolutionary linkage
of these proteins, it also suggests a candidate RNA-binding motif in these proteins.
The dashes indicate gaps in the alignment that are allowed at the cost of an additive
penalty to the total score. Because of the gaps, the space of all possible alignments
of two sequences is very large. The beginning of computational molecular biology
can be traced to the development of dynamic programming-based algorithms for the
solution of the optimal global and local alignment problem (Needleman and Wunsch
1970; Smith and Waterman 1981). Later, “word-based” alignment algorithms that may
give suboptimal solutions but are extremely fast were introduced for large database
searches (FASTA by Pearson and Lipman 1988; BLAST by Altschul, Gish, Miller,
Myers, and Lipman 1990). The interpretation of alignment scores was aided by the
derivation of the asymptotic distribution of ungapped alignment scores (Karlin and
Altschul 1990). These classic results have by now become indispensable tools for
all biomedical researchers in their dealing with molecular sequence data. For the
computational biologist, sequence alignment often serves as a key step in the analysis
of protein families, genomes, and phylogenies.

Table 1.    A Part of the Alignment of Four Ribosomal Proteins

NOTE: First row: protein RPL1p from the archaeon A. fulgidus. Second and third rows: RPL1 from the bacteria
E. coli and A. aeolicus. Fourth row: RPL1B from the eukaryote budding yeast. The *’s mark a candidate RNA
binding motif identified from this alignment.



Probabilistic and statistical reasoning has played a central role in recent advances
in this area. In profile analysis (Gribskov, McLachlan, and Eisenberg 1987), a statisti-
cal model was constructed based on prealigned multiple sequences to characterize the
regularity of protein sequence family and to increase the sensitivity of searches. Later,
Lawrence et al. (1993) used a block-based product multinomial model and Bayesian
Monte Carlo computation to perform multiple alignment and to sample and detect
subtle sequence motifs, and Krogh, Brown, Mian, Sjolander, and Haussler (1994) de-
veloped hidden Markov models (HMMs) for protein family with multiple sequences.
(HMM models were used earlier for DNA sequence analysis in Churchill 1992.) A
notable feature of the recent approaches is that the multiple alignment information
is regarded as missing data to be inferred together with other parameters of the sta-
tistical model. In other words, there is a parametric statistical model (e.g., a Markov
chain) that specifies a distribution on the space of multiply aligned sequences. How-
ever, only the sequences are available as data; the information on how they should be
aligned to each other is not available. Advanced statistical modeling and computation
techniques such as the EM algorithm and Markov chain Monte Carlo are typically
used for simultaneous model estimation and multiple alignment (for further review
see Durbin, Eddy, Krogh, and Mitchison 1998; Liu, Neuwald, and Lawrence 1999;
Waterman 1995). The statistical model obtained can be used to score how well a new
query sequence fits the model. It can also be used for database searches. In recent
comparisons of the ability of alignment and search tools to detect distantly related
proteins, statistical model-based search methods are found to provide substantial im-
provement over PSI-Blast, which is currently the most powerful non-model-based
method (Park et al. 1998). In these comparisons, a database of structural classifica-
tion of proteins provides a means for testing the performance of homology detection
(Brenner, Chothia, and Hubbard 1998). These studies also found that sensitivity is
greatly improved if one searches the database based on a family of close homologs
to the query sequence rather than using just the query sequence itself. Such a fam-
ily of homologs can be built up from iterative searches (Neuwald, Liu, Lipman, and
Lawrence 1997). Clearly, the improvement is due to the fact that the initial multiply
aligned sequences provide statistical information on the relative importance of the
various parts of the query sequence.

3. PROTEIN STRUCTURE PREDICTION

Most genes code for protein products. Because the function of a protein is de-
termined by its three-dimensional structure, the ability to predict the structure of a
protein from its amino acid sequence is a fundamental and long-standing problem.
The solution to this problem becomes more urgent with the advent of gene cloning
technology that allows numerous genes in numerous organisms to be cloned and
sequenced before their gene products have been studied. As an example, consider



the recently sequenced genome of the nematode C. elegans. There are about 20,000
predicted coding regions in this 100 million bp genome. The structure or function
of some of these can be predicted by homology modeling using the search tools dis-
cussed in Section 2. However, more than 50% of them turn out to have no sequence
similarity outside of Nematoda. To predict protein structure from such “orphan” se-
quences, computational biologists have in recent years developed an “inverse folding”
approach. This is based on the assumption that there is a small collection of “folds,”
perhaps several hundreds in number, that can be used to model the majority of protein
domains in all organisms (Holm and Sander 1996). A significant fraction of these
folds may already have been sampled in the current data base of experimentally de-
termined structures. The problem of structure prediction is then reduced to the task
of classifying, based on its primary sequence, the protein in question into one of
these folding classes. Statistical reasoning is key to several approaches to this clas-
sification problem. For example, in the “threading” method (Byrant and Lawrence
1993; Jones, Taylor, and Thornton 1992; Sippl and Weitckus 1992), the statistical
models are Gibbs-type models based on sets of “potentials” that parameterize the
propensity for pairs of amino acid residues to be in close contact or to be separated
by a given distance. These parameters were estimated by fitting to data derived from
known structures. To access the compatibility of a query sequence to such a model,
the sequence is aligned (threaded) to the positions in the structure so that its prob-
ability is maximized. In the method of three-dimensional profiling (Bowie, Luthy,
and Eisenberg 1991), the local environmental features, such as degree of exposure
to solvent molecule, are computed for each residue in the structure. Any residue in
a structure is classified according to these environmental features into a number of
classes. In this way, a three-dimensional structure is reduced to a one-dimensional
sequence of environment classes (called a three-dimensional profile). The relative
frequencies of the amino acids in a given environment class were estimated using a
training set of structure data, and these were used to construct scores for the align-
ment of a query sequence to the three-dimensional profile. An attractive feature of
this method is that the alignment step can be implemented efficiently using standard
dynamic programming. Through these and other related algorithms, fold recognition
methods have produced some successful predictions even for proteins that fall in the
“twilight zone” of detectability by sequence comparison (Marchler-Bauer and Byrant
1997).

Instead of fold recognition, one may try to directly compute a protein’s struc-
ture from its sequence based on biophysical considerations. This “protein folding”
problem has been a grand challenge ever since Anfinsen’s experiments more than
30 years ago demonstrated that, at least for some proteins, the sequence of a pro-
tein determines its folded conformation. Typically, one sets up an energy function
based on considerations of known covalent bonding geometry, electrostatic, and van
der Waals forces. Conformation of the protein can then be sampled either by nu-



merically solving the corresponding Newton equation, or by Monte Carlo sampling
of the corresponding Boltzmann distribution (for a review, see Frenkel and Smit
1996). This problem is of interest to computational statisticians interested in simu-
lation and global optimization methodology, as the energy landscape here is much
harder than those we are likely to encounter in most statistical models. If successful,
direct folding certainly would give deeper insight than the inverse approach. Cur-
rently, however, best results are of only modest precision (3–4 angstrom) and are
obtained by using drastically simplified energy functions to reduce the energy and
computational complexity. For small proteins of sizes 30–70 residues, some promis-
ing prediction results have been reported recently (Cui, Chen, and Wong 1997; Srini-
vasan and Rose 1995; Yue and Dill 1996). Further progress on this fundamental
problem may be realized through improvement of the energy functions, multi-level
formulation and search strategy, and efficient usage of commodity cluster computing
resources.

4. GENE EXPRESSION STUDIES

Although different cell types in a multicellular organism have the same genome,
they can have drastically different shapes and structures because the expression levels
of their genes can be very different. Within the same cell, tightly regulated gene ex-
pression is also essential for various processes such as proper response to intercellular
signals, cell division, and cell differentiation. Traditionally, gene expression studies
were carried out in a gene-by-gene manner, and the understanding of expression pro-
file on a global (genome-wide) scale was often lacking. During the past few years,
the development of DNA-array technology has provided the means to monitor the
expression levels of a large number of genes simultaneously. In such “global” expres-
sion studies, messenger RNAs are extracted from the cell culture. Complementary
DNAs (cDNA) are generated from the RNAs and are amplified, labeled, and then
hybridized to a large array of DNA probes immobilized on a solid surface. The array
is then scanned by a laser to obtain the fluorescent signal for each probe region. From
the signal strengths of the probes from a particular gene, one can infer the expres-
sion level of the gene in the cell type under study. Currently, microarray technology
(Schena, Shalon, Davis, and Brown 1995) can print thousands of cDNA spots on a
microscope slide, and light-directed array technology can synthesize up to 400,000
oligonucleotide probes in a small glass chip, with each gene probed by a set of 20–40
probes (Lockhart et al. 1996).

These arrays will be invaluable in diverse areas ranging from yeast genetics to
cancer research. In one example, the temporal program of gene expression accompa-
nying the cellular response to an external condition, such as induced metabolic shift
from fermentation to respiration in yeast (DeRisi, Iyer, and Brown 1997), is studied
by expression profiling of the cells at multiple time points during the experimen-



tally induced shift. In another example, genes involved in complex phenotypes may
be identified by comparing expression profiles of animals with extreme phenotypes
in experimental crosses. Numerous statistical issues arise in connection with these
studies, including

• What is the intrinsic noise characteristics of the data generated by the various
array technologies?

• How to compare signals corresponding to the same gene (or probe) across
different experiments?

• How to cluster genes that show similar expression levels across different time
points, or to identify genes that show differential expression in normal and
cancerous cells?

Careful statistical investigation will be needed to establish the sensitivity of the
techniques in measuring differences in expression levels, to estimate sample sizes in
the planning of large scale experiments, and to design ways to account for the effects
of data-mining and selection from the large number of genes being profiled.

The complete sequences of the yeast and nematode genomes, and the availability
of arrays capable of monitoring gene expression on a genomic scale, offer powerful
tools for dissecting the complex genetic control of early eukaryotic and metazoan life.
There is an unusually rich opportunity to combine recently developed bioinformatic
methods with the new experimental approaches. For example, recently Roth, Hughes,
Estep, and Church (1998) proposed a novel strategy for finding DNA binding motifs
in noncoding regions. Based on expression profile data, they identified clusters of
yeast genes that may be coregulated in induced responses of the yeast cell to various
treatments. For the genes in each cluster, they extracted the corresponding upstream
regions (about 600 bp) from the complete yeast genome and then applied the Bayesian
motif sampler (see Sec. 2) to identify candidate binding sites for gene-regulatory
protein factors. Again, statistical reasoning will play a key role in this and other novel
approaches to the investigation of eukaryotic gene regulation.

5. CONCLUSION

Despite its youth, computational molecular biology is now firmly established as
an important part of cutting-edge biological research. This article has reviewed some
recent developments, but leaves many other important topics untouched. Examples
include physical mapping, sequence assembly, genome annotation, phylogenetic algo-
rithms, and the analysis of EST sequences. There is also a vast literature on statistical
genetic mapping that is reviewed separately by Weir in this series of vignettes. It is
safe to predict that this field will continue its rapid growth and will provide a rich
source of new scientific challenges. Statistical researchers who have core expertise
in data analysis, modeling, and computation and who have acquired a good under-



standing of molecular genetics and cell biology will be well positioned to contribute
to this exciting frontier of research.
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Chapter 2

Statistics in Business and Social Science

Mark P. Becker

This collection of vignettes, the second in a series of four collections to appear
in the Journal of the American Statistical Association in the year 2000, explores the
interdigitation of statistics with business and social science. The 10 vignettes in the
collection cover a broad range of methodologies and applications. The collection
opens with vignettes on finance and marketing, followed by a series of methodologi-
cally focused vignettes on times series and forecasting, contingency tables, and causal
inference. Attention then moves to disciplines, with coverage of political science, psy-
chology, sociology, demography, and the law. The reader of this collection should
gain an appreciation for the history and role of statistical thinking and methodology
in the evolution of studies in business and social science, and for the considerable
promise that exists for continued innovations at the interstices of statistics and these
fields of inquiry.

This collection of vignettes is not meant to be encyclopedic in coverage, and cer-
tainly many additional topics could have been included were there sufficient space.
That said, the authors are to be commended for the quality and scope of their respec-
tive contributions, and one will indeed find discussion of many topics not explicitly
covered by separate or free-standing vignettes, including event-history analysis, struc-
tural equation models, factor analysis, spatial analysis, and the field of economics.

It may seem odd that there is not a separate vignette covering economics, but the
interdigitation of economics and statistics is so complete that explicating the role of
statistics in economics would essentially necessitate an almost complete accounting
of the field of statistics itself. Rather, interlaced through much of the collection are
numerous references to the roles of economics and economists in the development
of statistical methodology in business and social science. The role of economics in
finance is inescapable, and Lo places the principle of supply and demand front and
center in his vignette. Likewise, it is not surprising that much of the methodological
development for empirical marketing studies cited by Rossi and Allenby has some-
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what of an econometric flavor, or that the econometric literature figures prominently
in Tsay’s accounting of time series and forecasting. Economists have long been in-
terested in principles of selection, identifiability, and causation, and this is evident
in Sobel’s contribution. Eisenberg points out that issues of causality also arise in the
application of statistics to legal issues, and econometric methods and language are
prominent in the vignette. Xie takes the viewpoint that demography provides an em-
pirical foundation for social science, with the economic perspective one of several that
shape the field. Beck places the influence of the econometric tradition at the center of
his explication of statistical methodology in political science. Beck’s point is that po-
litical scientists find the econometric approach to methodological developments more
appealing than the statistical approach, because it is in keeping with their primary goal
of evaluating substantive theories, rather than in the more statistical tradition of ex-
ploratory data analysis. I like to couch such discussion in the following terms: If the
model and the data are not congruent, the statistician questions the model, whereas
the economist questions the data. It has been my experience that both sides agree with
this, and neither takes offense at the portrayal. The econometric perspective is not
prominent in Raftery’s account of sociology, but suffice it to say that the viewpoint
taken by Beck is also pervasive in sociology and in the training of sociologists.

Technological innovations and the opportunities that they present for obtaining
new types or massive quantities of data figure prominently in many of the vignettes.
Raftery devotes an entire section to the topic of new data, new challenges, and new
methods, focusing on social networks and spatial data, textual data, narrative and se-
quence analysis, (deterministic) simulation models, and macrosociology. Rossi and
Allenby open their vignette by highlighting the influence of different types of data in
the development of statistical methodology in marketing, drawing attention to inno-
vations such as scanners and web-browsers and the new opportunities and challenges
these present. Browne notes that computer-generated adaptive tests create new chal-
lenges in psychometrics. Eisenberg points out that new sources of data are making it
easier to study how our legal system functions, and identifies the emergence of DNA
evidence as an area where statistical methodology has played a significant role in
determining the outcomes of legal proceedings. The quantity issue is highlighted by
Tsay and by Fienberg. Tsay points out that advances in data acquisition technologies
for financial markets and communications networks are important driving forces for
future time series research. Fienberg notes that even with major advances in com-
puting power and storage technology, the need remains for innovative approaches to
model selection when many variables are to be considered.

Another important theme woven through the collection is the increasing impor-
tance of the Bayesian paradigm across business and social science. It is indeed the
case that the Bayesian paradigm has figured prominently in business applications for
quite some time, but in this collection one sees that recent computational advances,
particularly Markov chain Monte Carlo methodology, are facilitating a more rapid



and broader adoption of Bayesian methodology. The importance of Bayesian thought
and methodology is manifest in the vignettes of Beck, Eisenberg, Lo, Raftery, Rossi
and Allenby, Sobel, and Tsay.

One of the real pleasures of pulling this collection of vignettes together was to
see a large number of themes recur through many of the vignettes. In addition to
those just mentioned, latent variables, ecological regression, nonlinearity, long-range
dependence, graphical models, and networks (social and neural) are among the topics
that reemerge. Latent variables arise in a variety of contexts, including mixture models
and latent trait models, and they figure into most of the vignettes. Beck highlights
the role of political scientists in developing approaches to addressing the ecological
inference problem, and Eisenberg notes the importance of this methodology in voting
rights cases as well as the controversy that surrounds its use. Nonlinearity is a recurrent
theme in various modeling contexts throughout the collection. For example, it arises in
Browne’s vignette in the context of generalizations of structural equation models and
in Tsay’s vignette in the context of nonlinear processes. Both authors point to these as
important areas for future work. Tsay discusses long-range dependence in the context
of data from communications networks and from financial markets, and Lo goes into
some depth on this issue in his discussion of the stochastic nature of financial asset
prices. Fienberg discusses graphical models in the context of log-linear model theory,
and Sobel discusses them in the context of their usage for drawing causal inferences.
Both Fienberg and Raftery note the importance of recent work on social networks, as
well as the importance of work that remains to be done. The vignettes of Lo and of
Rossi and Allenby make references to ways that neural networks are being used in
business applications.

In summary, this collection points to the excitement of past and future develop-
ments arising from the interdigitation of statistics with business and social science.
Though the types of questions arising in the various fields and the motivation behind
them vary to some extent, it is clear that statistical thought and methodology is cen-
tral to advancement of our understanding of human behavior and interactions. The
opportunities presented by new and evolving technologies for collecting more and
better data are abundant, and these will no doubt continue to motivate new statistical
research and applications for many years to come. It is hoped that these vignettes will
stimulate statistical scientists to become more deeply engaged in the challenges and
problems of business and social science. The authors have pointed the way to a wide
array of interesting challenges arising at the interstices of statistics with the economic,
behavioral, and social sciences, and there are suggestions that we stand to profit by
also bringing the biological and physical sciences to bear on some of these challenges.
An attraction of the field of statistics has always been its broad applicability to inter-
esting and important problems, and this collection demonstrates the numerous and
intellectually challenging opportunities for making valuable contributions in various
areas.



Finance: A Selective Survey

Andrew W. Lo

1. INTRODUCTION

Ever since the publication in 1565 of Girolamo Cardano’s treatise on gambling,
Liber de Ludo Aleae (The Book of Games of Chance), statistics and financial markets
have been inextricably linked. Over the past few decades, many of these links have
become part of the canon of modern finance, and it is now impossible to fully ap-
preciate the workings of financial markets without them. In this brief survey, I hope
to illustrate the enormous research opportunities at the intersection of finance and
statistics by reviewing three of the most important ideas of modern finance: efficient
markets, the random walk hypothesis, and derivative pricing models. Although it is
impossible to provide a thorough exposition of any of these ideas in this brief essay,
my less ambitious goal is to communicate the excitement of financial research to
statisticians and to stimulate further collaboration between these two highly comple-
mentary disciplines. It is also impossible to provide an exhaustive bibliography for
each of these topics—that would exceed the page limit of this entire article—and
hence my citations are selective, focusing on more recent and most relevant develop-
ments for the readers of this journal. (For a highly readable and entertaining account
of the recent history of modern finance, see Bernstein 1992.)

To develop some context for the three topics that I have chosen, consider one of
the most fundamental ideas of economics, the principle of supply and demand. This
principle states that the price of any commodity and the quantity traded are determined
by the intersection of supply and demand curves, where the demand curve represents
the schedule of quantities desired by consumers at various prices and the supply curve
represents the schedule of quantities that producers are willing to supply at various
prices. The intersection of these two curves determines an “equilibrium,” a price–
quantity pair that satisfies both consumers and producers simultaneously. Any other
price–quantity pair may serve one group’s interests, but not the other’s.

Even in this simple description of a market, all the elements of modern finance are
present. The demand curve is the aggregation of many individual consumers’ desires,
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each derived from optimizing an individual’s preferences subject to a budget con-
straint that depends on prices and other factors (e.g., income, savings requirements,
borrowing costs). Similarly, the supply curve is the aggregation of many individual
producers’ outputs, each derived from optimizing an entrepreneur’s preferences sub-
ject to a resource constraint that also depends on prices and other factors (e.g., costs of
materials, wages, trade credit). Probabilities affect both consumers and producers as
they formulate their consumption and production plans through time and in the face
of uncertainty—uncertain income, uncertain costs, and uncertain business conditions.

It is the interaction between prices, preferences, and probabilities—sometimes
called the “three p’s of total risk management” (see Lo 1999)—that gives finance its
richness and depth. Formal models of financial asset prices such as those of Breeden
(1979), Lucas (1978), and Merton (1973a) show precisely how the three p’s simul-
taneously determine a “general equilibrium” in which demand equals supply across
all markets in an uncertain world where individuals and corporations act rationally
to optimize their own welfare. Typically, these models imply that a security’s price
is equal to the present value of all future cashflows to which the security’s owner
is entitled. Several aspects make this calculation unusually challenging: individual
preferences must be modeled quantitatively, future cashflows are uncertain, and so
are discount rates. Pricing equations that account for such aspects are often of the
form

Pt = Et

[ ∞∑
k=1

γt,t+kDt+k

]
, (1)

and their intuition is straightforward; today’s price must equal the expected sum of
all future payments Dt+k multiplied by discount factors γt,t+k that act as “exchange
rates” between dollars today and dollars at future dates. If prices do not satisfy this
condition, this implies a misallocation of resources between today and some future
date, not unlike a situation in which two commodities sell for different prices in two
countries even after exchange rates and shipping costs have been taken into account
(a happy situation for some enterprising arbitrageurs, but not likely to last very long).

What determines the discount factors γt,t+k? They are determined through the
equalization of supply and demand, which in turn is driven by the preferences, re-
sources, and expectations of all market participants; that is, they are determined in
general equilibrium. It is this notion of equilibrium, and all of the corresponding
ingredients on which it is based, that lies at the heart of financial modeling.

2. EFFICIENT MARKETS

There is an old joke, widely told among economists, about an economist strolling
down the street with a companion when they come upon a $100 bill lying on the
ground. As the companion reaches down to pick it up, the economist says “Don’t



bother—if it were a real $100 bill, someone else would have already picked it up.”
This humorous example of economic logic gone awry strikes dangerously close to

home for proponents of the efficient markets hypotheses, one of the most controversial
and well-studied propositions in all the social sciences. It is disarmingly simple to
state, has far-reaching consequences for academic pursuits and business practice, and
yet is surprisingly resilient to empirical proof or refutation. Even after three decades
of research and literally hundreds of journal articles, economists have not yet reached
a consensus about whether markets—particularly financial markets—are efficient or
not.

As with so many of the ideas of modern economics, the origins of the efficient
markets hypothesis can be traced back to Paul Samuelson (1965), whose contribution
is neatly summarized by the title of his article, “Proof that Properly Anticipated Prices
Fluctuate Randomly.” In an informationally efficient market, price changes must be
unforecastable if they are properly anticipated; that is, if they fully incorporate the
expectations and information of all market participants. In the context of the basic
pricing equation (1), the conditional expectation operator Et[·] ≡ E[·|Ωt] is defined
with respect to a certain set of information Ωt; hence elements of this set cannot be
used to forecast future price changes, because they have already been impounded
into current prices. Fama (1970) operationalized this hypothesis—summarized in his
well-known expression “Prices fully reflect all available information”—by specifying
the elements of the information set Ωt available to market participants; for example,
past prices, or all publicly available information, or all public and private information.

This concept of informational efficiency has a wonderfully counterintuitive and
“Zen-like” quality to it: The more efficient the market, the more random the sequence
of price changes generated by such a market, and the most efficient market of all is
one in which price changes are completely random and unpredictable. In contrast to
the passive motivation that inspires randomness in physical and biological systems,
randomness in financial systems is not an implication of the principle of insufficient
reason, but instead is the outcome of many active participants attempting to profit from
their information. Motivated by unbridled greed, speculators aggressively pounce
on even the smallest informational advantages at their disposal, and in doing so
they incorporate their information into market prices and quickly eliminate the profit
opportunities that gave rise to their speculation. If this occurs instantaneously, which
it must in an idealized world of “frictionless” markets and costless trading, then prices
must always fully reflect all available information, and no profits can be garnered from
information-based trading (because such profits have already been captured).

Such compelling motivation for randomness is unique among the social sciences
and is reminiscent of the role that uncertainty plays in quantum mechanics. Just as
Heisenberg’s uncertainty principle places a limit on what we can know about an
electron’s position and momentum if quantum mechanics holds, this version of the
efficient markets hypothesis places a limit on what we can know about future price



changes if the forces of financial self-interest are at work.
However, one of the central tenets of modern finance is the necessity of some

trade-off between risk and expected returns, and whether or not predictability in
security prices is inefficient can be answered only by weighing it against the risks
inherent in exploiting such predictabilities. In particular, if a security’s price changes
are predictable to some degree, then this may be just the reward needed to attract
investors to hold the asset and bear the associated risks (see, e.g., Lucas 1978). Indeed,
if an investor is sufficiently risk averse, then he might gladly pay to avoid holding a
security that has unforecastable returns.

Despite the eminent plausibility of such a trade-off—after all, investors must
be rewarded to induce them to bear more risk—operationalizing it has proven a
formidable challenge to both finance academics and investment professionals. Defin-
ing the appropriate measures of risk and reward, determining how they might be linked
through fundamental principles of economics and psychology, and then estimating
such links empirically using historical data and performing proper statistical inference
are issues that have occupied much of the finance literature for the past half-century,
beginning with Markowitz’s (1952) development of portfolio theory and including
Sharpe’s (1964) capital asset pricing model (CAPM), Merton’s (1973a) intertemporal
CAPM, Ross’s (1976) arbitrage pricing theory, and the many empirical tests of these
models. Moreover, recent advances in methods of statistical inference, coupled with
corresponding advances in computational power and availability of large amounts
of data, have created an exciting renaissance in the empirical analysis of efficient
markets, both inside and outside the halls of academia; in earlier work (Lo 1997) I
provided an overview and a more complete bibliography of this literature.

3. THE RANDOM WALK

Quite apart from whether or not financial markets are efficient, one of the most
enduring questions of modern finance is whether financial asset price changes are
forecastable. Perhaps because of the obvious analogy between financial investments
and games of chance, mathematical models of financial markets have an unusually
rich history that predates virtually every other aspect of economic analysis. The vast
number of prominent mathematicians, statisticians, and other scientists who have
applied their considerable skills to forecasting financial security prices is a testament
to the fascination and the challenges that this problem poses.

Much of the early finance literature revolved around the random walk hypothesis
and the martingale model, two statistical descriptions of unforecastable price changes
that were (incorrectly) taken to be implications of efficient markets. One of the first
tests of the random walk was devised by Cowles and Jones (1937), who compared the
frequency of sequences and reversals in historical stock returns, where the former are
pairs of consecutive returns with the same sign and the latter are pairs of consecutive



returns with opposite sign. Many others performed similar tests of the random walk
(see Lo 1997 and Lo and MacKinlay 1999 for a survey of this literature), and with
the exception of Cowles and Jones (who subsequently acknowledged an error in their
analysis), all reported general support for the random walk using historical stock price
data.

However, some recent research has sharply contradicted these findings. Using a
statistical comparison of variances across different investment horizons applied to the
weekly returns of a portfolio of stocks from 1962 to 1985, Lo and MacKinlay (1988)
found that the random walk hypothesis can be rejected with great statistical confidence
(well in excess of .999). In fact, the weekly returns of a portfolio containing an equal
dollar amount invested in each security traded on the New York and American Stock
Exchanges (called an equal-weighted portfolio) exhibit a striking relation from one
week to the next: a first-order autocorrelation coefficient of .30.

An autocorrelation of .30 implies that approximately 9% of the variability of next
week’s return is explained by this week’s return. An equally weighted portfolio con-
taining only the stocks of “smaller” companies, companies with market capitalization
in the lowest quintile, has a autocorrelation coefficient of .42 during the 1962–1985
sample period, implying that about 18% of the variability in next week’s return can
be explained by this week’s return. Although numbers such as 9% and 18% may
seem small, it should be kept in mind that 100% predictability yields astronomically
large investment returns; a very tiny fraction of such returns can still be economically
meaningful.

These findings surprise many economists, because a violation of the random
walk necessarily implies that price changes are forecastable to some degree. But
because forecasts of price changes are also subject to random fluctuations, riskless
profit opportunities are not an immediate consequence of forecastability. Nevertheless,
economists still cannot completely explain why weekly returns are not a “fair game.”
Two other empirical facts add to this puzzle:

1. Weekly portfolio returns are strongly positively autocorrelated, but the re-
turns to individual securities generally are not; in fact, the average autocorrelation—
averaged across individual securities—is negative (and statistically insignificant).

2. The predictability of returns is quite sensitive to the holding period; serial
dependence is strong and positive for daily and weekly returns but is virtually zero
for returns over a month, a quarter, or a year.

For holding periods much longer than 1 week (e.g., 3–5 years), Fama and French
(1988) and Poterba and Summers (1988) found negative serial correlation in U.S.
stock returns indexes using data from 1926 to 1986. Although their estimates of serial
correlation coefficients seem large in magnitude, there are insufficient data to reject
the random walk hypothesis at the usual levels of significance. Moreover, a number
of statistical biases documented by Kim, Nelson, and Startz (1991) and Richardson



(1993) cast serious doubt on the reliability of these longer-horizon inferences.
Despite these concerns, models of long-term memory have been a part of the

finance literature ever since Mandelbrot (1971) applied Hurst’s (1951) rescaled range
statistic to financial data. Time series with long-term memory exhibit an unusually
high degree of persistence, so that observations in the remote past are nontrivially
correlated with observations in the distant future, even as the time span between
the two observations increases. Nature’s predilection toward long-term memory has
been well documented in the natural sciences such as hydrology, meteorology, and
geophysics, and some have argued that economic time series thus must also have this
property.

But, using recently developed asymptotic approximations based on functional
central limit theory, I (Lo 1991) constructed a test for long-term memory that is robust
to short-term correlations of the sort uncovered by Lo and MacKinlay (1988, 1999),
and concluded that despite earlier evidence to the contrary, there is little support
for long-term memory in stock market prices. Departures from the random walk
hypothesis can be fully explained by conventional models of short-term dependence
for most financial time series. However, new data are being generated each day, and
the characteristics of financial time series are unlikely to be stationary over time as
financial institutions evolve. Perhaps some of the newly developed techniques for
detecting long-term memory—borrowed from the statistical physics literature—will
shed more light on this issue (see, e.g., Mandelbrot 1997; Pilgram and Kaplan 1998).

More recent investigations have focused on a number of other aspects of pre-
dictability in financial markets: stochastic volatility models (Gallant, Hsieh, and
Tauchen 1997), estimation of tail probabilities and “rare” events (Jansen and de Vries
1991), applications of “chaos theory” and nonlinear dynamical systems (Hsieh 1991),
Markov-switching models (Gray 1996), and mixed jump-diffusion models (Bates
1996). This research area is one of the most active in the finance literature, with as
many researchers in industry as in academia developing tools to detect and exploit all
forms of predictabilities in financial markets.

Finally, in contrast to the random walk literature, which focuses on the condi-
tional distribution of security returns, another strand of the early finance literature
has focused on the marginal distribution of returns, and specifically on the notion
of “stability,” the preservation of the parametric form of the marginal distribution
under addition. This is an especially important property for security returns, which
are summed over various holding periods to yield cumulative investment returns. For
example, ifPt denotes the end-of-month-t price of a security, then its monthly contin-
uously compounded return xt is defined as log(Pt/Pt−1), and hence its annual return
is log(Pt/Pt−12) = xt + xt−1 + · · · + xt−11. The normal distribution is a member
of the class of stable distributions, but the nonnormal stable distributions have a dis-
tinguishing feature not shared by the normal: they exhibit leptokurtosis or “fat tails,”
which seems to accord well with higher-frequency financial data, such as daily and



weekly stock returns. Indeed, the fact that the historical returns of most securities have
many more outliers than predicted by the normal distribution has rekindled interest
in this literature, which has recently become part of a much larger endeavor known
as “risk management.”

Of course, stable distributions have played a prominent role in the early devel-
opment of modern probability theory (see, e.g., Lévy 1937), but their application to
economic and financial modeling is relatively recent. Mandelbrot (1960, 1963) pio-
neered such applications, using stable distributions to describe the cross-sectional dis-
tributions of personal income and of commodity prices. Fama (1965) and Samuelson
(1967) developed the theory of portfolio selection for securities with stably distributed
returns, and Fama and Roll (1971) estimated the parameters of the stable distribution
using historical stock returns. Since then, many others have considered stable dis-
tributions in a variety of financial applications; McCulloch (1996) has provided an
excellent and comprehensive survey.

More recent contributions include the application of invariance principles of
statistical physics to deduce scaling properties in tail probabilities (Mandelbrot 1997;
Mantegna and Stanley 1999), the use of large-deviation theory and extreme-value
theory to estimate loss probabilities (Embrechts, Kluppelberg, and Mikosch 1997),
and the derivation of option-pricing formulas for stocks with stable distributions
(McCulloch 1996).

4. DERIVATIVE PRICING MODELS

One of the most important breakthroughs in modern finance is the pricing and
hedging of “derivative” securities, securities with payoffs that depend on the prices
of other securities. The most common example of a derivative security is a call option
on common stock, a security that gives its owner the right (but not the obligation,
hence the term “option”) to purchase a share of the stock at a prespecified price K
(the “strike price”) on or before a certain date T (the “expiration date”). For example,
a 3-month call option on General Motors (GM) stock with a $90 strike price gives
its owner the right to purchase a share of GM stock for $90 any time during the next
3 months. If GM is currently trading at $85, is the option worthless? Not if there is
some probability that GM’s share price will exceed the $90 strike price some time
during the next 3 months. It seems, therefore, that the price of the option should be
determined in equilibrium by a combination of the statistical properties of GM’s price
dynamics and the preferences of investors buying and selling this type of security, as
in the pricing equation (1).

However, Black and Scholes (1973) and Merton (1973b) provided a compelling
alternative to (1), a pricing model based only on arbitrage arguments and not on
general equilibrium. [In fact, the Black and Scholes (1973) framework does rely
on equilibrium arguments—it was Merton’s (1973b) application of continuous-time



stochastic processes that eliminated the need for equilibrium altogether (see Merton
1992 for further discussion).] This alternative is best illustrated through the simple
binomial option-pricing model of Cox, Ross, and Rubinstein (1979), a model in which
there are two dates, 0 and 1, and the goal is to derive the date-0 price of a call option
with strike price K that expires at date 1. In this simple economy, two other financial
securities are assumed to exist: a riskless bond that pays a gross rate of return of r
(e.g., if the bond yields a 5% return, then r = 1.05) and a risky security with date-0
price P0 and date-1 price P1 that is assumed to be a Bernoulli random variable:

P1 =

{
uP0 with probability π

dP0 with probability 1 − π,
(2)

where 0 < d < u. Because the stock price takes on only two values at date 1, the
option price takes on only two values at date 1 as well:

C1 =

{
Cu ≡ Max[uP0 −K, 0] with probability π

Cd ≡ Max[dP0 −K, 0] with probability 1 − π.
(3)

Given the simple structure that has been assumed so far, can one uniquely determine
the date-0 option priceC0? It seems unlikely, as we have said nothing about investors’
preferences nor the supply of the security. Yet C0 is indeed completely and uniquely
determined and is a function of K, r, P0, d, and u. Surprisingly, C0 is not a function
of π!

To see how and why, consider constructing a portfolio of ∆ shares of stock and
$B of bonds at date 0, at a total cost of X0 = P0∆ + B. The payoff X1 of this
portfolio at date 1 is simply:

X1 =

{
uP0∆ + rB with probability π

dP0∆ + rB with probability 1 − π.
(4)

Now choose ∆ and B so that the following two linear equations are satisfied simul-
taneously:

uP0∆ + rB = Cu, dP0∆ + rB = Cd (5)

which is always feasible as long as the two equations are linearly independent. This
is assured if u �= d, in which case we have

∆∗ =
Cu − Cd
(u− d)P0

, B∗ =
uCd − dCu
(u− d)r

. (6)

Because the portfolio payoff X1 under (6) is identical to the payoff of the call option
C1 in both states, the total cost X0 of the portfolio must equal the option price C0;
otherwise, it is possible to construct an arbitrage, a trading strategy that yields riskless



profits. For example, suppose thatX0 > C0. By purchasing the option and selling the
portfolio at date 0, a cash inflow ofX0 −C0 is generated, and at date 1 the obligation
X1 created by the sale of the portfolio is exactly offset by the payoff of the optionC1.
A similar argument rules out the case where X0 < C0. Thus the following pricing
equation holds:

C0 = P0∆∗ +B∗ =
1
r

[(
r − d

u− d

)
Cu +

(
u− r

u− d

)
Cd

]
(7)

=
1
r

[π∗Cu + (1 − π∗)Cd], π∗ ≡ r − d

u− d
. (8)

This pricing equation is remarkable in several respects. First, it does not seem to
depend on investors’ attitudes toward risk, but merely requires that investors prefer
more money to less (in which case arbitrage opportunities are ruled out). Second,
nowhere in (8) does the probability π appear, which implies that two investors with
very different opinions about π will nevertheless agree on the price C0 of the option.
Finally, (8) shows that C0 can be viewed as an expected present value of the option’s
payoff, but where the expectation is computed not with respect to the original prob-
ability π, but with respect to a “pseudoprobability” π∗, often called a risk-neutral
probability or equivalent martingale measure. [Contrast (8) with the pricing equation
(1) in which the discount factors γt,t+k are also present.]

That π∗ is a probability is not immediately apparent and requires further argu-
ment. A necessary and sufficient condition for π∗ ∈ [0, 1] is the inequality d ≤ r ≤ u.
But this inequality follows from the assumption of the coexistence of stocks and risk-
less bonds in our economy. Suppose, for example, that r < d ≤ u; in this case, no
investor will hold bonds, because even in the worst case, stocks will yield a higher
return than r. Hence bonds cannot exist; that is, they will have zero price. Alterna-
tively, if d ≤ u < r, then no investor will hold stocks, and hence stocks cannot exist.
Therefore, d ≤ r ≤ umust hold, in which case π∗ can be interpreted as a probability.
The fact that the option price is determined not by the original probability π, but rather
by the equivalent martingale measure π∗, is a deep and subtle insight that has led to an
enormous body of research in which the theory of martingales plays an unexpectedly
profound role in the pricing of complex financial securities.

In particular, Merton’s (1973b) derivation of the celebrated Black–Scholes for-
mula for the price of a call option makes use of the Itô calculus, a sophisticated
theory of continuous-time stochastic processes based on Brownian motion. Perhaps
the most important insight of Merton’s (1973b) seminal paper—for which he shared
the Nobel prize in economics with Myron Scholes—is the fact that under certain
conditions, the frequent trading of a small number of long-lived securities (stocks and
riskless bonds) can create new investment opportunities (options and other derivative
securities) that otherwise would be unavailable to investors. These conditions—now
known collectively as dynamic spanning or dynamically complete markets—and the



corresponding financial models on which they are based have generated a rich litera-
ture and a multitrillion-dollar derivatives industry in which exotic financial securities
such as caps, collars, swaptions, and knock-out and rainbow options are synthet-
ically replicated by sophisticated trading strategies involving considerably simpler
securities.

This framework has also led to a number of statistical applications. Perhaps the
most obvious is the estimation of the parameters of Itô processes that are the inputs
to derivative pricing formulas. This task is complicated by the fact that Itô processes
are continuous-time processes, whereas the data are discretely sampled. The most
obvious method, maximum likelihood estimation, is practical for only a handful of
Itô processes—those for which the conditional density functions are available in
closed form; for example, processes with linear drift and diffusion coefficients. In
most other cases, the conditional density cannot be obtained analytically but can only
be characterized implicitly as the solution to a particular partial differential equa-
tion, the Fokker–Planck or “forward” equation (see Lo 1988 for further discussion).
Therefore, other alternatives have been developed, including generalized method-of-
moments estimators (Hansen and Scheinkman 1995), simulation estimators (Duffie
and Singleton 1993), and nonparametric estimators (Aït-Sahalia 1996).

Because the prices of options and most other derivative securities can be expressed
as expected values with respect to the risk-neutral measure [as in (8)], efficient Monte
Carlo methods have also been developed for computing the prices of these securities
(see Boyle, Broadie, and Glasserman 1997 for an excellent review). Moreover, option
prices contain an enormous amount of information about the statistical properties of
stock prices and the preferences of investors, and several methods have been devel-
oped recently to extract such information parametrically and nonparametrically (e.g.,
Aït-Sahalia and Lo 1998, 2000; Jackwerth and Rubinstein 1996; Longstaff 1995;
Rubinstein 1994; Shimko 1993).

Finally, the use of continuous-time stochastic processes in modeling financial
markets has led, directly and indirectly, to a number of statistical applications in
which functional central limit theory and the notion of weak convergence (see, e.g.,
Billingsley 1968) are used to deduce the asymptotic properties of various estimators,
such as long-horizon return regressions (Richardson and Stock 1990), long-range
dependence in stock returns (Lo 1991), and the approximation errors of continuous-
time dynamic hedging strategies (Bertsimas, Kogan, and Lo 2000).

5. CONCLUSIONS

The three ideas described here should convince even the most hardened skeptic
that finance and statistics have much in common. There are, however, many other ex-
amples in which statistics has become indispensable to financial analysis (see Camp-
bell, Lo, and MacKinlay 1997 and Lo and MacKinlay 1999 for specific references and



a more complete survey). Multivariate analysis, especially factor analysis and prin-
cipal components analysis, are important aspects of mean-variance models of port-
folio selection and performance attribution. Entropy and other information-theoretic
concepts have been used to construct portfolios with certain asymptotic optimality
properties. Nonparametric methods such as kernel regression, local smoothing, and
bootstrap resampling algorithms are now commonplace in estimating and evaluating
many financial models, most of which are highly nonlinear and based on large datasets.
Neural networks, wavelets, support vector machines, and other nonlinear time series
models have also been applied to financial forecasting and risk management. There
is renewed interest in the foundations of probability theory and notions of subjective
probability because of mounting psychological evidence regarding behavioral biases
in individual decisions involving financial risks and rewards. And Bayesian analysis
has made inroads into virtually all aspects of financial modeling, especially with the
advent of computational techniques such as Markov chain Monte Carlo methods and
the Gibbs sampler.

With these developments in mind, can there be any doubt that the intersection
between finance and statistics will become even greater and more active over the next
few decades, with both fields benefiting enormously from the association?
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Statistics and Marketing

Peter E. Rossi and Greg M. Allenby

Statistical research in marketing is heavily influenced by the availability of dif-
ferent types of data. The last 10 years have seen an explosion in the amount and
variety of data available to market researchers. Demand data from scanning equip-
ment have now become routinely available in the packaged goods industries. Data
from e-commerce and direct marketing are growing at an exponential rate and pro-
vide coverage to a wide assortment of different products. Web-based technology has
dramatically lowered the cost of survey research. Web-browsing data provide an im-
portant new source of information about consumer tastes and preferences, which is
becoming available for a large fraction of the total consumer population. In this vi-
gnette we explore some of the implications of this data explosion for the development
of statistical methodology in marketing, with primary emphasis on the explosion in
demand data.

Scanning equipment has provided the market researcher with a national panel of
stores in addition to panels of households, altering the focus of marketing research.
These data have stimulated a large literature on applied demand and discrete choice
modeling. Demand models at the store level typically take the form of multivariate
regression models in which demand for a vector of products is related to marketing
variables such as prices, displays, and various forms of advertising. At the household
level, demand is discrete, and a wide variety of multinomial logit and probit models
have been applied to the data.

Early experience with scanner data revealed that households have very different
patterns of buying behavior that cannot be explained simply by differences in the
marketing environment. Some households, for example, exhibit strong brand loyal-
ties, whereas other households readily switch brands when prices are lowered. Even
at the store level, large differences have been detected in price and local advertising
sensitivity. Initial observations of store and consumer heterogeneity created consider-
able interest in models of observed and unobservable heterogeneity, primarily of the
random-effects form. The development and application of random-effects models in
marketing has been dictated to a large degree by the available inference technology.

The first paper in this area by Kamakura and Russell (1989) used a finite mixture
model of heterogeneity in a logit framework. Kamakura and Russell postulated a
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discrete multivariate distribution for the intercepts and marketing mix variable coeffi-
cients in a multinomial logit model. The ease of computation of finite mixture models
produced a stream of papers applying this idea in a wide variety of other model
contexts. Until quite recently, it was not computationally practical to investigate mul-
tivariate continuous models of heterogeneity in a discrete choice setting. Simulation-
based maximum likelihood (Geweke 1989) and Markov chain Monte Carlo (MCMC)
Bayesian inference methods (Gelfand and Smith 1990) have now made this possible.
Recent work (Allenby and Rossi 1999; Lenk, DeSarbo, Green, and Young 1996) has
documented that finite mixtures provide poor approximations to the high-dimensional
distributions necessary to capture heterogeneity not only in the intercepts, but also in
the slopes of the multinomial choice models. Rossi, McCulloch, and Allenby (1996)
used a multivariate normal distribution of random effects in a Bayesian hierarchical
setting. Observable household characteristics such as demographics are included in
the model by allowing the mean of the random-effects distribution to depend on these
variables. These observable characteristics account for only a small amount of the
total household heterogeneity. Brand preferences and marketing mix sensitivities thus
are revealed primarily by household purchase behavior.

A distinguishing characteristic of random-effects applications in marketing is the
interest not only in the hyperparameters of the random-effects distribution, but also in
making inferences about household parameters. Marketers can use household-level
parameters to target households for customized promotions or to cross-sell other
products. Even at the store level, there is considerable interest in the allocation of
marketing efforts across different geographic areas, which requires the building of
store- or market-level models.

The sampling-theoretic approaches to random-effects models typically average
the model likelihood over the random-effects distribution and provide no natural
way to make household-level inferences. In contrast, Bayesian hierarchical models
provide a natural setting in which inferences can be made concerning both the param-
eters of the random-effects distribution and the household- or store-level parameters.
The combination of ability to make inferences about the random parameter draws
and computational tractability for even very-high-dimensional problems has made
Bayesian hierarchical methods very popular in the empirical marketing literature
(Ainslie and Rossi 1998; Allenby, Arora, and Ginter 1998; Allenby and Lenk 1994;
Allenby, Leone, and Jen 1999; Boatwright and Rossi 1999; Bradlow and Schmittlein
1999; Montgomery 1997; Neelemegham and Chintagunta 1999).

Just as the current statistical literature in marketing was stimulated by the avail-
ability of panel data, we expect the future course of research to be influenced by the
growth in customer transaction databases. Direct marketers, credit card and finan-
cial service marketers, and retailers are now compiling large databases comprised of
customer transactions and marketing contacts. These databases range from a com-
plete record of all customer purchases along with information on other alternatives



considered to much more incomplete data in which only the purchases are recorded
(as in most frequent shopper or loyalty programs) or where only indirect evidence of
product preferences is available (as in web-browsing data).

One of the most basic uses of customer transaction data is to find customers
who are likely to express interest in or purchase a specific product. For example,
a marketer could use credit usage data to find card holders likely to be interested
in an upscale Italian restaurant and then target promotion activities at this subset.
Another common example is the use of house file information in catalog purchases to
identify customers likely to respond to a catalog mailing. The challenge is essentially
a classification task. Can we construct a set of variables summarizing past transaction
data and choose a model form that effectively locates the customers we want to reach?
The industry uses various standard regression and logit models for the most part. Given
the extremely large set of possible variables and functional forms possible, many of the
classification problems are associated with a huge variable selection problem. Also,
there is no particular theoretical reason to believe that standard linear regression or
logistic regression models have the correct functional form. Recent developments in
the statistics literature on variable selection and CART models might find very fruitful
application here (Chipman, George, and McCulloch 1998; George and McCulloch
1995). It may also be useful for firms to build on the current investment in regression
models by considering regression models with coefficients which change depending
on the location in the explanatory variable space. Neural networks models (Ripley
1996) have already found application in predictive model building with marketing
data.

In many instances, firms need to predict the response to a new or modified of-
fering, ranging from new prices for old brands to entirely new offerings. A direct
mail merchant who wants to predict the effects of a price change, for example, needs
information about prices of competing brands. Although this information is often not
available in a firm’s transaction database, it can be imputed by augmenting the trans-
action data with data from other sources. For example, a firm could obtain the data for
a subset of customers by recruiting a panel and having them record their purchases
and prices for the other brands that were considered at the time. Once a joint model
of all causal variables is available for a subset of customers, estimates of price sen-
sitivity and brand preference can be generated from transaction data by constructing
the conditional distribution of these variables given the available information.

Even when data are available to identify the parameters in a customer demand
model, the resulting estimates are sometimes insufficient for marketing decisions. The
brand intercepts, for example, reflect consumer preference for brands net the effects of
price and the other variables that change through time. These preferences are driven by
product attributes, the perceived performance of the brand on these attributes, and the
importance that consumers attach to them. Furthermore, the importance of product
attributes to a consumer can be traced to the concerns, interests, and motives that



the consumer brings to the problem for which the brand is relevant. Understanding
these more primitive constructs is important in many marketing decisions, such as
market segmentation, advertising, and product development. A valuable area for future
research is the merging of survey data with transaction data. For example, in choice
models the brand intercepts reflect preference net the effect of price and other variable
that change over time. Marketers want to relate these preferences to product attributes.
For many products, these attributes are defined subjectively by the consumer. Survey
techniques can be used to assess these attribute levels, which can then be entered into
choice models to parameterize the intercept.

As more demand data become available, demand models can be used to assess
the impact of marketing actions such as changes in price and advertising. Researchers
are becoming increasingly aware that standard regression and choice models are not
always adequate for optimal policy determination as the parameters of these models
are not policy invariant. For example, the price sensitivity parameter in a choice model
can give misleading predictions if the marketing environment is altered significantly.
Dynamic models of consumer choice that take into account price expectations and
inventory decisions are required for policy evaluation (Gonul and Srinivasan 1996).
For example, the effects of a temporary price cut (sale) can be very different in a
market environment with frequent, predictable sales than in an environment with
infrequent sales.

Dynamic considerations also affect the interpretation of the intercept parameters
in choice models. In general, the consumer may dynamically update his or her views
about product quality. For some products, past consumption and/or advertising ex-
posure may lead to “learning” or updates of the intercept values (Erdem and Keane
1996). In models with consumption- or advertising-based updating of brand prefer-
ence, marketing interventions such as temporary price cuts and advertising can have
long-run effects that require a dynamic structural model for policy evaluation.

In addition to dynamic considerations, we must also recognize the fact that the
consumer may not be fully informed about all of the marketing mix variables when
making a purchase decision. Typically, the choice models used in marketing applica-
tions assume that the consumer is aware of the prices of all products in the choice set.
Studies have shown that consumers are not fully aware of prices and engage in a price
search process in which they become selectively informed. This is best modeled in a
search theoretic framework in which the consumer decides to sample or not sample
a price of an item based on the expected return to further search. For example, if the
consumer finds a relatively low price, as judged by the prior, on a preferred item,
then further search may have a negative expected payoff. Estimating and postulating
nontrivial choice models with price search presents an important challenge for the
marketing literature (see Mehta, Rajiv, and Srinivasan 1999 for a pioneering effort).
A search theoretic framework can also shed light on the role of information-style
advertising such as in-store displays and feature ads in local newspapers. A major



role of such advertising is to inform consumers of prices without incurring the cost of
search. Finally, marketers have long debated the possibility of long-term negative ef-
fects of price promotions (frequent sales). In a search model, greater price variability
gives rise to a greater return on search and heightens price sensitivity. A formal search
model can provide marketers with a sense of the trade-off between the long-term and
short-term effects of price promotions.

Reduction in the cost of acquiring survey data will result in increased interest
in statistical and psychometric methods. For example, web-based consumer satisfac-
tion surveys present methodological challenges, including the problem of respondent-
specific scale usage patterns (Rossi, Gilula, and Allenby 1999; Greenleaf 1992). More
generally, survey data provide unique statistical challenges that stem from measure-
ment error problems (see Bagozzi, Yi, and Nassen 1999 for an excellent discussion
of measurement error models), as well as the multivariate aspects of the data (see
DeSarbo, Munrai, and Munrai 1994 for an overview of developments in multidi-
mensional scaling). Low response rates to many marketing surveys also present a
modeling and measurement challenge (see Bradlow and Zaslavsky 1999 for a recent
approach to the problem of “no answer” responses).

In summary, the rapid growth in consumer data has caused a major change in
the sorts of statistical models used by marketing researchers. Many standard models
of demand data are often not sufficient to provide insights into consumer behavior,
nor to deal with the often incomplete nature of demand data available to firms. The
challenge to researchers working in marketing is to develop new statistical tools
appropriate for this data environment, while using models that can shed meaningful
insight on consumer behavior.
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Time Series and Forecasting: Brief History
and Future Research

Ruey S. Tsay

1. A BRIEF HISTORY

Statistical analysis of time series data started a long time ago (Yule 1927), and
forecasting has an even longer history. Objectives of the two studies may differ in some
situations, but forecasting is often the goal of a time series analysis. In this article
I focus on time series analysis with an understanding that the theory and methods
considered are foundations and tools important in forecasting.

Applications played a key role in the development of time series methodology.
In business and economics, time series analysis is used, among other purposes, (a) to
study the dynamic structure of a process, (b) to investigate the dynamic relationship
between variables, (c) to perform seasonal adjustment of economic data such as the
gross domestic product and unemployment rate, (d) to improve regression analysis
when the errors are serially correlated, and (e) to produce point and interval forecasts
for both level and volatility series.

To facilitate discussion, I denote a time series at time index t by zt and let Ψt−1

be the information set available at time t− 1. It is often assumed, but not necessarily
so, that Ψt−1 is the σ field generated by the past values of zt. A model for zt can be
written as

zt = f(Ψt−1) + at (1)

where at is a sequence of iid random variables with mean 0 and finite variance σ2
a. It

is evident from the equation that at is the one-step-ahead forecast error of zt at time
origin t − 1 and, hence, it is often referred to as the innovation or shock of the series
at time t. The history of time series analysis is concerned with the evolution of the
function f(Ψt−1) and the innovation {at}.

The series zt is said to be (weakly) stationary if its first two moments are time-
invariant under translation. That is, the expectation E(zt) = µ is a constant, and the
lag covariance function γl = cov(zt, zt−l) is a function of l only. The autocorrelation

Ruey S. Tsay is H. G. B. Alexander Professor of Econometrics and Statistics, Graduate School of Business,
University of Chicago, IL 60637 (E-mail: ruey.tsay@gsb.uchicago.edu). This work was supported by the
National Science Foundation, the Chiang Ching-Kuo Foundation, and the Graduate School of Business,
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function of a stationary zt is simply ρl = γl/γ0. For a linear series, understanding
the behavior of ρl is the key to time series analysis.

1.1 Unification in Research

The publication of Time Series Analysis: Forecasting and Control by Box and
Jenkins in 1970 was an important milestone for time series analysis. It provided a
systematic approach that enables practitioners to apply time series methods in fore-
casting. It popularized the autoregressive integrated moving average (ARIMA) model
by using an iterative modeling procedure consisting of identification, estimation, and
model checking. In the framework of (1), an ARIMA(p, d, q) model assumes the form

wt = (1 − B)dzt,

f(Ψt−1) = c +
p∑
i=1

φiwt−i −
q∑
j=1

θjat−j , (2)

where p, d, and q are nonnegative integers; c is a constant; and B is the backshift
operator such that Bzt = zt−1. The series wt is referred to as the dth differenced
series of zt. Using polynomials, one can write the ARIMA model in a compact
form, φ(B)(1 − B)dzt = c + θ(B)at, where φ(B) = 1 −∑p

i=1 φiB
i and θ(B) =

1−∑q
i=1 θiB

i are two polynomials in B. The two polynomials φ(B) and θ(B) have
no common factors, and their 0’s are assumed to be outside the unit circle. In practice,
it is common to assume further that at is Gaussian. The foregoing assumptions imply
that zt is stationary if d = 0. When d �= 0, zt is said to contain a unit root or to be
unit-root nonstationary.

Once an ARIMA model is built and judged to be adequate, forecasts of future
values are simply the conditional expectations of the model if one uses the minimum
mean squared error as the criterion. The success of ARIMA models generated sub-
stantial research in time series analysis. However, the history of time series analysis
was not as smooth as one might think. To begin with, time series analysis was origi-
nally divided into frequency domain and time domain approaches. Proponents of the
two approaches did not necessarily see eye to eye, and there were heated debates
and criticisms between the two schools. The time domain approach uses autocorre-
lation function ρl of the data and parametric models, such as the ARIMA models, to
describe the dynamic dependence of the series (see Box, Jenkins, and Reinsel 1994
and references therein). The frequency domain approach focuses on spectral analysis
or power distribution over frequency to study theory and applications of time series
analysis. A power spectrum of a stationary zt is the Fourier transform of the autocor-
relation function ρl (see Brillinger 1975 and Priestley 1981 and references therein).
Cooley and Tukey (1965) made an important advance in frequency-domain analysis
by making spectral estimation efficient.



Times change, and it is fair to say that the sharp separation between the two
approaches is gone. Now, the objective of an analysis and experience of the analyst
are the determining factors between which approach to use. Likewise, the difference
between Bayesian and non-Bayesian time series analyses is also diminishing. There
remain some differences between Bayesian and non-Bayesians in our profession,
but the issue has been shifted to those of practicality rather than philosophy (see
Kitagawa and Gersch 1996 and West and Harrison 1989 and the references therein for
Bayesian time series analysis.) Durbin and Koopman (2000) provided both classical
and Bayesian perspectives in time series analysis.

1.2 Technical Developments

The advances in computing facilities and methods have profound impacts on
time series analysis. Within the so called “traditional analysis” (i.e., linear Gaussian
processes with parametric models) there are many important developments. Outlier
analysis and detecting structural breaks have become an integral part of model diag-
nostics (see, e.g., Chang, Tiao, and Chen 1988 for outlier detection and Martin and
Yohai 1986 for influential functionals). Outlier analysis in time series is concerned
with aberrant observations in zt and at and the changes in the mean of zt and the
variance of at. Many model selection criteria have been proposed to help model se-
lection (e.g., Akaike 1974, Hannan 1980), and some important advances in pattern
identification methods have also been developed; for example, the R- and S-array of
Gray, Kelley, and McIntire (1978) and the extended autocorrelation function of Tsay
and Tiao (1984) that is capable of handling both stationary and unit-root nonstationary
series. Indeed, there have been many developments in ARMA model identification
(see Choi 1992). The exact likelihood method now becomes the standard method of
estimation (Ansley 1979; Hillmer and Tiao 1979). The foregoing developments are
not in isolation with other developments in the area, and their impacts are not limited
to linear Gaussian time series models.

Generally speaking, two important technical advances in the recent history of
time series analysis have generated much interest on the topic. The first advance is
the use of state-space parameterization and Kalman filtering (Harrison and Stevens
1976; Kalman and Bucy 1961 and the references therein). This happened largely in
the 1980s, as evidenced by the explosion in the papers published in statistical journals
that have “state-space” or “Kalman filter” in their titles. A simple state-space model
for zt can be written as

zt = HSt, St+1 = FSt + Rt, (3)

where St is the state vector at time t,H is a row vector relating the observation zt
to the state vector, F is a state transition matrix, and Rt is a state innovation with
mean 0 and a fixed nonnegative definite covariance matrix. The first equation in (3)



is called the observation equation; the second, the state equation. An ARIMA model
in (2) can be put into a state-space model in (3). Similarly, a state-space model in (3)
implies an ARIMA model for zt. However, the correspondence between state-space
models in (3) and ARIMA models in (2) is not one-to-one (see Aoki 1987).

The original purpose of introducing Kalman filter into time series analysis was
mainly to evaluate efficiently the exact Gaussian likelihood function of a model
and to handle missing observations (Jones 1980). The exact likelihood function
of a model can be written as a product of consecutive conditional distributions,
p(z1, . . . , zn) =

∏n
i=1 p(zi|Ψi−1), and the Kalman filter provides closed-form for-

mulas for the evolutions of the conditional mean and conditional variance of zt. The
usefulness of the technique was extended beyond estimation, however. It led to devel-
opments of new methods for signal extraction (Kohn and Ansley 1989; Wecker and
Ansley 1983), for smoothing and seasonal adjustment (Kitagawa and Gersch 1996),
and for renewal interest in structural models (Harvey 1989), among many others.

The second technical advance in recent time series analysis is the use of Markov
chain Monte Carlo (MCMC) methods, especially Gibbs sampling (Gelfand and Smith
1990), and the idea of data augmentation (Tanner and Wong 1987). The applicability
of MCMC methods to time series analysis is widespread, and indeed the technique has
also led to various new developments in time series analysis. (See, e.g., Carlin, Polson,
and Stoffer 1992 for nonnormal and nonlinear state-space modeling and McCulloch
and Tsay 1993 for inference and prediction of autoregressive models with random
mean and variance shifts, including using explanatory variables to estimate transition
probabilities in mean and variance.) The MCMC methodology also led to increasing
use of simulation methods in time series analysis, especially in tackling complicated
problems that were impossible to handle a few years ago.

1.3 Methodological Developments

The past several decades also brought many important advances in time series
methodology.

Nonlinearity and Nonnormality. Theory and methods have been developed for
many nonlinear and non-Gaussian models, marking a generalization of the functional
form f(Ψt−1) in (1). In the statistical literature, Tong (1990) provided an excellent
summary of recent developments in nonlinear models, such as bilinear models and
threshold autoregressive (TAR) models. For a bilinear model, f(Ψt−1) involves some
cross-product terms between zt−i and at−j , where i, j > 0. A TAR model, on the
other hand, uses a piecewise linear model for f(Ψt−1) over a threshold space. For
example, the model

f(Ψt−1) =

{
φ1zt−1 if zt−1 ≥ r

φ2zt−1 if zt−1 < r,



where φ1 �= φ2, is called a two-regime TAR model of order 1 with threshold vari-
able zt−1 and threshold r. This simple TAR model is piecewise linear in the space of
zt−1, not in time. It can produce several nonlinear characteristics commonly observed
in practice, such as asymmetry between increasing and declining patterns in a peri-
odic time series. Many tests now are available to detect nonlinearity in a series, and
some studies show that nonlinear models can indeed improve forecasting in certain
situations (see, e.g., Montgomery, Zarnowitz, Tsay, and Tiao 1998).

In the econometric literature, some important developments in nonlinear models
have also emerged. The advance, however, focuses on the evolution of the conditional
variance of at in (1). Let ht = E(a2

t |Ψt−1) be the conditional variance of at given
Ψt−1. This quantity is referred to as the volatility of at in econometrics and finance.
The autoregressive conditional heteroscedastic (ARCH) model of Engle (1982) as-
sumes that ht is a positive deterministic function of Ψt−1. For the simplest ARCH(1)
model,ht becomesht = α0+α1a

2
t−1, whereα > 0 and 1 > α1 ≥ 0. A special feature

of the ARCH model is that under certain conditions the innovation at is heavy-tailed
distributed and hence is unconditionally non-Gaussian even though it is conditionally
Gaussian. Another feature of ARCH models is volatility clustering. Because volatil-
ity plays an important role in options pricing, the ARCH model has attracted much
attention. Its also leads to the introduction of generalized ARCH (GARCH) models
and stochastic volatility models. In general, the ARCH-family models use a positive
deterministic (typically quadratic) equation to govern the evolution of ht over time,
whereas stochastic volatility models allow ht to have its own innovational series. For
example, a GARCH(1, 1) model assumes the form

ht = α0 + α1a
2
t−1 + β1ht−1, (4)

where α0 > 0, α1 ≥ 0, β1 ≥ 0 and 1 > α1 +β1. A simple stochastic volatility model
may assume the form ln(ht) = α0+ln(ht−1)+vt, where vt is a white noise sequence.
The added innovation vt increases the flexibility of the model as well as complications.
A GARCH model has an ARMA-type representation, so that many of its properties
are similar to those of ARMA models. For example, let ηt = a2

t − ht, which is the
squared innovation without its conditional expectation. Then the GARCH(1, 1) model
in (4) can be written as

a2
t = α0 + (α1 + β1)a2

t−1 + ηt − β1ηt−1, (5)

where it is easy to see that ηt is a martingale difference. The stationarity condition
α1+β1 < 1 of a GARCH(1, 1) becomes apparent from (5). The econometric literature
also concerns the evolution of f(Ψt−1). The Markov switching model of Hamilton
(1989) uses a state variable to govern the choice of a linear model for f(Ψt−1). The
state variable then evolves over time based on a transition probability matrix.

Multivariate Process. Methods for analyzing multivariate series have been
developed, especially in structural specification of a vector system. The usefulness



and need of considering jointly several related time series were recognized a long
time ago (see Quenouille 1957). However, multivariate analysis is often confined to
vector autoregressive (VAR) models. One can think of many reasons for this lack of
progress, but two reasons stand out:

a. The generalization of univariate ARMA models to vector ARMA models en-
counters the problem of identifiability. As a simple illustration, the following bivariate
AR(1) and MA(1) models are identical:

[
z1t

z2t

]
=
[

0 0
2 0

] [
z1,t−1

z2,t−1

]
+
[

a1t

a2t

]
,

[
z1t

z2t

]
=
[

a1t

a2t

]
−
[

0 0
−2 0

] [
a1,t−1

a2,t−1

]
,

where z1t and z2t are two time series and at = (a1t, a2t)′ is a sequence of indepen-
dent bivariate Gaussian random vectors with mean 0 and a constant positive-definite
covariance matrix. From the model, z1t = a1t, so that z1,t−1 = a1,t−1. The equality
of the two models then results from z2t = 2z1,t−1 + a2t = 2a1,t−1 + a2t. Such
exchangeable forms between AR and MA models cannot occur in the univariate case.

b. Multivariate models are much harder to estimate and to understand, and there
is a propensity to use perceived simpler models.

These difficulties have been largely overcome. The identifiability problem can be
solved by using either the Kronecker indices (Akaike 1976) or the scalar component
model (SCM) of Tiao and Tsay (1989). The relationship between Kronecker indices
and orders of SCM was given by Tsay (1991). Both the Kronecker index and SCM can
easily identify the existence of exchangeable models; in fact, both methods identify
the underlying structure of a linear system.

A related development in multivariate time series analysis is the cointegration
of Engle and Granger (1987). Roughly speaking, cointegration means that a linear
combination of marginally unit-root nonstationary series becomes a stationary series.
It has become popular in econometrics because cointegration is often thought of
as the existence of some long-term relationship between variables. In the statistical
literature, the idea of a linear combination of unit-root nonstationary series becoming
stationary was studied by Box and Tiao (1977). Associated with cointegration is the
development of various test statistics to test for the number of cointegrations in a
linear system. Despite the huge literature on cointegration, its practical importance is
yet to be judged (see Tiao, Tsay, and Wang 1993). This is due primarily to the fact
that cointegration is a long-term concept that overlooks the practical effects of scaling
factors of marginal series.

Long-Range Dependence. To model the fact that sample autocorrelation func-
tions in some real-world time series tend to decay much slower than those of an ARMA



model, Granger and Joyeux (1980) and Hosking (1981) introduced the idea of frac-
tional difference to handle what is called long-range dependence in a series. This led to
the development of autoregressive fractionally integrated moving average (ARFIMA)
(p, d, q) model where d is a positive but noninteger real number. The long-range de-
pendence occurs in many fields (see Beran 1994). In finance, it was found that the
squared or absolute returns of an asset typically exhibit long-range dependence (e.g.,
Ding, Granger, and Engle 1993).

Finally, models for time series that assume only discrete values are also available;
see a recent review article by Berchtold and Raftery (1999), which contains many
references. For forecasting, there is a trend toward using the predictive distribution
rather than the mean squared error to evaluate the accuracy of forecasts.

1.4 Theoretical Developments

The most recent widespread theoretical development in time series analysis is
the theory of unit-root. In its simplest case, the theory is concerned with asymptotic
properties of statistics of a random walk process, zt = zt−1 + at, where z0 = 0 and
at is a martingale difference satisfying E(at|Ψt−1) = 0 and E(|at|2+δ) < ∞, where
δ is a positive real number. Consider, for example, the ordinary least squares estimate
φ̂ = (

∑n
i=1 z

2
t−1)

−1(
∑n
i=1 ztzt−1) of the autoregression zt = φzt−1 + εt, where εt

denotes the error term. Unlike in the stationary case, here the limiting distribution
of φ̂ is a functional of a standard Brownian motion. (See Chan and Wei 1988 for a
comprehensive treatment of least squares estimates with various characteristic roots
on the unit circle and Phillips 1987 for a nice treatment of time series regression
with a unit-root.) This newly established asymptotic result is interesting in several
ways. First, it is a case in which the convergence rate of φ̂ is n−1 not the usual n−.5,
where n is the sample size. Second, the mathematics involved are elegant. Third, the
nonstandard limiting distribution is by itself exciting, opening a new set of testing
problems that are of interest to many econometricians and statisticians. In particular,
the unit-root test is to consider the null hypothesis H0 : φ = 1 versus the alternative
hypothesis Ha : φ �= 1 (see Dickey and Fuller 1979).

The unit-root problem has attracted much attention because (a) it provides a
formal test to determine the order of differencing in using ARIMA models, (b) it
opens an area of testing in which the proper test statistic depends on the existence of a
nonzero constant term c in (1) and the multiplicity of the unit root (i.e., d) in (2), and
(c) the other AR and MA parameters, if they exist, become nuisance parameters that
disappear asymptotically, but might have serious implications in finite-sample cases.
A multivariate extension of Chan and Wei (1988) was given by Tsay and Tiao (1990)
and that of the unit-root test is the so-called cointegration test. The unit-root problem
has also been extended to the MA case (see Davis and Dunsmuir 1996).

Another area of theoretical development is the theory of nonlinear models, es-



pecially the issue of geometrical ergodicity and stationarity of nonlinear processes.
For the simple TAR(1) model, Chen and Tsay (1991) and Petruccelli and Woolford
(1984) provided some interesting results. In general, useful theorems for studying
stability of a nonlinear process were given by Meyn and Tweedie (1993) and Tong
(1990, appendices).

The theory of long-range dependent processes and that of processes with heavy-
tailed distributions also mark substantial progress; see Beran (1994), Resnick (1997),
Samorodnitsky and Taqqu (1994), and the references therein.

2. FUTURE RESEARCH

An important driving force of future research in time series analysis is the advance
in high-volume data acquisition. Consider, for instance, transaction-by-transaction
data common in financial markets, or communications networks, and in e-commerce
on the internet. These data are available now and must be processed properly and
efficiently in a globally competitive business environment. But the special features
of the data, such as large sample sizes, heavy tails, unequally-spaced observations,
and mixtures of multivariate discrete and continuous variables, can easily render
existing methods inadequate. Analysis of these types of data will certainly influence
the directions of future time series research.

In my personal opinion, the following topics will attract substantial interest of
time series researchers. First, the use of multivariate models either in a vector ARMA
framework or a state-space form will increase, partly because of the need to study
the dynamic relationships between variables and partly because of the advances in
computing facilities. Part of the work here will be to identify common characteristics
between the marginal series. Second, theory and applications of nonlinear and non-
Gaussian models will continue to flourish. The development here is likely to move
closely with nonparametric methods or computing intensive methods. Within the
parametric framework, we can expect to see new models that use different equations to
govern the evolutions of lower-order conditional moments. Third, heavy-tail modeling
and extreme value analysis will become a necessity in some areas of application, such
as telecommunication and high-frequency financial data analysis. Fourth, there will be
a trend to study not only the usual time series data, but also the time duration between
observations. In other words, times of occurrence will play an increasingly important
role in time series analysis and forecasting. This line of research also marks a marriage
between theories of time series analysis and point processes and between researchers
in econometrics and statistics. Fifth, methods will be developed to efficiently and
effectively process large-scale datasets.

In terms of technical developments, we will continue to see mixtures of Bayesian
and non-Bayesian analyses. The ideas of data augmentation and MCMC methods are



here to stay and will flourish. Data mining will become part of time series data analysis,
and we need to make good use of it.
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Contingency Tables and Log-Linear
Models: Basic Results and New

Developments

Stephen E. Fienberg

1. HISTORICAL REMARKS ON
CONTINGENCY TABLE ANALYSIS

Contingency table analysis is rooted in the turn-of-the-century work of Karl
Pearson and George Udny Yule, who introduced the cross-product, or odds ratio, as
a formal statistical tool. The subsequent contributions by R. A. Fisher linked their
methods to basic statistical methodology and theory, but it was not until 1935 that
Maurice Bartlett, as a result of a suggestion by Fisher, utilized Yule’s cross-product
ratio to define the notion of second-order interaction in a 2×2×2 table and to develop
an appropriate test for the absence of such an interaction (Bartlett 1935). The multi-
variate generalizations of Bartlett’s work, beginning with a 1956 article by Roy and
Kastenbaum, form the basis of the log-linear model approach to contingency tables,
which is largely the focus of this vignette. Key articles in the 1960s by M. W. Birch
(1963), Yvonne Bishop (1975), John Darroch (1962), I. J. Good (1963), Leo Good-
man (1963), and Robin Plackett (1974), plus the availability of high-speed computers,
led to an integrated theory and methodology for the analysis of contingency tables
based on log-linear models, culminating in a series of books published in the 1970s.
(Historical references can be found in various sources including Bishop, Fienberg, and
Holland 1975, Carriquiry and Fienberg 1998, Fienberg 1980, and Haberman 1974.)

The next section outlines some of the basic results on likelihood estimation for
log-linear models used to describe interactions in contingency tables, as the theory
emerged by the early 1970s. I then briefly describe some of the major advances of the
next three decades related to log-linear models. There is now an extensive literature
on other classes of models and other methods of estimation, especially Bayesian, but
I treat these only in passing, not because they are unimportant, but rather because
they draw on similar foundations. Finally, I outline some important open research
problems.

Stephen E. Fienberg is Maurice Falk University Professor of Statistics and Social Science, Department of
Statistics and Center for Automated Learning and Discovery, Carnegie Mellon University, Pittsburgh, PA
15213 (E-mail: fienberg@stat.cmu.edu). This work was supported by National Science Foundation grant
no. REC-9720374.



Many statisticians view the theory and methods of log-linear models for con-
tingency tables as a special case of either exponential family theory or generalized
linear models (GLMs) (Christensen 1996; McCullagh and Nelder 1989). It is true that
computer programs for GLM often provide convenient and relatively efficient ways of
implementing basic estimation and goodness-of-fit assessment. But adopting such a
GLM approach leads the researcher to ignore the special features of log-linear models
relating to interpretation in terms of cross-product ratios and their generalizations,
crucial aspects of estimability and existence associated with patterns of zero cells, and
the many innovative representations that flow naturally from the basic results linking
sampling schemes. One very important development that I do not cover (due mainly
to a lack of space) is the role of general estimating equations and marginal models
for longitudinal data within the GLM framework (see, e.g., Diggle, Liang, and Zeger
1996).

2. SAMPLING MODELS AND BASIC
LOG-LINEAR MODEL THEORY

Let x′ = (x1, x2, . . . , xt) be a vector of observed counts for t cells, structured
in the form of a cross-classification. Now let m′ = (m1,m2, . . . ,mt) be the vector
of expected values that are assumed to be functions of unknown parameters θ′ =
(θ1, θ2, . . . , θs), where s < t.

There are three standard sampling models for the observed counts in contingency
tables. In the Poisson model, the {xi} are observations from independent Poisson
random variables with means {mi}, whereas in the multinomial model, the total count
N =

∑t
i=1 xi is a random sample from an infinite population where the underlying

cell probabilities are {mi/N}. Finally, in the product-multinomial model, the cells
are partitioned into sets, and each set has an independent multinomial structure, as in
the multinomial model.

The following results hold under the Poisson and multinomial sampling schemes:

1. Corresponding to each parameter in θ is a minimal sufficient statistic (MSS)
that is expressible as a linear combination of the {xi}. More formally, if M is used
to denote the log-linear model specified by m = m(θ), then the MSSs are given by
the projection of x onto M, PMx.

2. The maximum likelihood estimator (MLE), m̂, of m, if it exists, is unique
and satisfies the likelihood equations

PMm̂ = PMx. (1)

Necessary and sufficient conditions for the existence of a solution to the likeli-
hood equations, (1), are relatively complex (see, e.g., Haberman 1974). A sufficient



condition is that all cell counts be positive (i.e., x > 0), but MLEs for log-linear
models exist in many sparse situations where a large fraction of the cells have zero
counts.

For product-multinomial sampling situations, the basic multinomial constraints
(i.e., that the counts must add up to the multinomial sample sizes) must be taken into
account. Typically, some of the parameters in θ that specify the log-linear model M
[i.e., m = m(θ)] are fixed by these constraints.

More formally, let M be a log-linear model for m under product-multinomial
sampling that corresponds to a log-linear model M under Poisson sampling such that
the multinomial constraints “fix” a subset of the parameters, θ, used to specify M.
Then the following result holds:

3. The MLE of m under product-multinomial sampling for the model M is the
same as the MLE of m under Poisson sampling for the model M.

The final basic result relates to assessing the fit of log-linear models:

4. Let φ be a real-valued parameter in the interval −∞ < φ < ∞. If m̂ is the
MLE of m under a log-linear model, and if the model is correct, then for each value
of φ, the goodness-of-fit statistic,

K(x, m̂) =
2

φ(φ+ 1)

t∑
i=1

xi

[(
xi
m̂i

)φ
− 1

]
, (2)

has an asymptotic chi-squared distribution with t − s degrees of freedom as sample
sizes tend to infinity, where s is the total number of independent constraints implied by
the log-linear model and the multinomial sampling constraints (if any). If the model
is not correct, then the distribution is stochastically larger than χ2

t−s.

The usual Pearson chi-squared and likelihood-ratio chi-squared statistics are spe-
cial cases of the family of power-divergence statistics defined byK(x, m̂) in (2). The
Pearson statistic chi-squared statistics corresponds to φ = 1, and the statisticG2 cor-
responds to the limit as φ → 0. (For further details on the properties of the general
family of power divergence statistics, see Read and Cressie 1988.)

In the late 1970s, several authors attempted to address the problem of large
sparse asymptotics; for example, for a sequence of multinomially structured tables
in increasing size, where the sample size n and the number of cells t or the number
of parameters s go to infinity in some fixed ratio. Results of Haberman (1977) and
Koehler and Larntz (1980) provide some guidance to statistical practice and suggest
that the usual advice that expected cell counts should be ≥5 is far too conservative
and wasteful of information in large sparse tables.

Bartlett’s (1935) no-second-order interaction model for the expected values in a
2×2×2 table, with entriesmijk, is based on equating the values of the cross-product



ratio, α, in each layer of the table; that is,

m111m221

m121m211
=
m112m222

m122m212
. (3)

Expression (3) can be represented in log-linear form as

logmijk = u+ u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik) + u23(jk), (4)

with suitable linear side constraints on the sets of u terms to achieve identifiability.
All of the parameters in (4) can be written as functions of cross-product ratios

(see Bishop et al. 1975). Applying the basic results for the basic sampling schemes
applied to the 2×2×2 table, we have that the MSSs are the two-dimensional marginal
totals, {xij+}, {xi+k}, and {x+jk} (except for linearly redundant statistics included
for purposes of symmetry), where a “+” indicates summation over the corresponding
subscript. Further, the MLEs of the {mijk} under model (4) must satisfy the likelihood
equations

m̂ij+ = xij+, i, j = 1, 2,

m̂i+k = xi+k, i, k = 1, 2,

and

m̂+jk = x+jk, j, k = 1, 2, (5)

usually solved by some form of iterative procedure. For the example actually consid-
ered by Bartlett, the third set of equations in (5) corresponds to the binomial sampling
constraints.

The class of log-linear models just described for the three-way table generalizes
in a direct fashion to k ≥ 4 dimensions. As long as the models retain a hierarchical
structure (e.g., setting u12(ij) = 0 for all i, j implies setting u123(ijk) = 0 for all
i, j, k), the MSSs are sets of marginal totals of the full table. Further, all independence
or conditional independence relationships are representable as log-linear models,
and these models have estimated expected values that can be computed directly.
A somewhat larger class of log-linear models with this direct, or decomposable,
representation is described later. All log-linear models that are not decomposable
require an iterative solution of likelihood equations.

In a multiway contingency table, the model that results from setting exactly one
two-factor term (and all of its higher-order relatives) equal to 0 is called a partial
association model. For example, in four dimensions, if u12(ij) = 0 for all i, j, then
the MSSs are {xi+kl} and {x+jkl}, and the resulting partial association model cor-
responds to the conditional independence of variables 1 and 2 given 3 and 4. The
corresponding MLEs for the expected cell frequencies are

m̂ijkl =
xi+klx+jkl

x++kl
∀ i, j, k, l. (6)



Bishop et al. (1975) and Whitaker (1990) provided more details on partial association
models and their uses.

3. MAJOR SUBSEQUENT DEVELOPMENTS

3.1 The Graphical Subfamily of Log-Linear Models

A major innovation in log-linear model methods over the past 20 years has been
the development of methods associated with a subfamily of log-linear models known
as graphical log-linear models. Darroch, Lauritzen, and Speed (1980) first described
these models, and the monographs by Lauritzen (1996) and Whitaker (1990) made
accessible most of the subsequent results in the literature.

This approach uses the vertices of a graph to represent variables and the edges
among them to represent relationships. Conditional independence relationships cor-
respond to the absence of edges in such an undirected graph. Models defined solely in
terms of such relationships are said to be graphical. For categorical random variables,
all graphical models are log-linear. The subfamily of graphical log-linear models in-
cludes the class of decomposable models, but not all nondecomposable models are
graphical. Various authors have used graphical log-linear models to simplify ap-
proaches to model search, and they are intimately related to an extensive literature on
collapsibility and estimability of parameters via marginal tables.

3.2 p1 Models for Social Networks

Holland and Leinhardt (1981) introduced a log-linear model for representing
relationships among individuals in a social network. Their model has a graphical
representation, but one that is different from that of the previous section, in that it
links individuals instead of variables. Fienberg, Meyer, and Wasserman (1985) showed
how to explicitly handle social network data and the Holland–Leinhart model and its
extensions in contingency table form using basic log-linear model tools. Wasserman
and Pattison (1996) provided related logistic representations.

3.3 Latent Trait and Rasch Models

In psychological tests or attitude studies, one often is interested in quantifying the
value of an unobservable latent trait, such as mathematical ability or manual dexterity,
on a sample of individuals. Although latent traits are not directly measurable, one can
attempt to assess indirectly a person’s value for the latent trait from his or her responses
to a set of well-chosen items on a test. The simplest model for doing so was introduced



by Rasch (1960). Given responses for n individuals on k binary random variables, let
X denote the n× k matrix of responses for n individuals on k binary variables, and
let α and θ denote the vectors of item and individual parameters. Then the simple
dichotomous Rasch model states that

log[P (Xij = 1|θi, αj)/P (Xij = 0|θi, αj)] = θi − αj . (7)

This is a logit model for the log odds for Xij = 1 versus Xij = 0. We can recast the
observed data xij in the form of a n× 2k array, with exactly one observation for each
level of the first variable.

In the 1980s, Duncan (1983) and Tjur (1982) recognized an important relationship
between the Rasch model and log-linear models for the corresponding collapsed 2k

contingency table. Darroch (1986) and Fienberg and Meyer (1983) represented these
models in terms of the log-linear models of quasi-symmetry, but ignored the moment
constraints described by Cressie and Holland (1983). More recently, Agresti (1993a,
1993b) and others have carried these ideas further for other categorical data problems.

3.4 Multiple-Recapture Models for Population Estimation

If the members of a population are sampled k different times, the resulting re-
capture history data can be displayed in the form of a 2k table with one missing cell,
corresponding to those never sampled. Such an array is amenable to log-linear model
analysis, the results of which can be used to project a value for the missing cell (as in
Fienberg 1972). Major applications of capture–recapture methodology include esti-
mating the undercount in the U.S. decennial census, where k = 2 (see, e.g., the articles
in the special 1993 section of JASA), and the prevalence of various epidemiological
conditions, where typically k ≥ 3.

The use of standard log-linear models in this context presumes that capture prob-
abilities are constant across the population. Agresti (1994) and Darroch, Fienberg,
Glonek, and Junker (1993) used a variation of the Rasch model to allow for spe-
cial multiplicative forms of heterogeneity. Fienberg, Johnson, and Junker (1999)
integrated this form of heterogeneity into the log-linear framework and explicitly
incorporated the moment constraints in a Bayesian implementation.

3.5 Association Models for Ordinal Variables

Log-linear models as described in this article ignore any structure linking the
categories of variables, yet biostatistical problems often involve variables with ordered
categories; for example, differing dosage levels for a drug or the severity of symptoms
or side effects. Goodman (1979) provided a framework for extending standard log-



linear models via multiplicative interaction terms of the form

u12(ij) = u∗
1(i)u

∗
2(j) (8)

to represent a two-factor u-term. This extended class of models, known as association
models, has close parallels with correspondence analysis models and both classes have
been developed and extended by Clogg, Gilula, Goodman, and Haberman, among
others. (For a detailed description of these and other methods for ordinal variables,
see Agresti 1990 and Clogg and Shidadeh 1994.)

3.6 Gröbner Bases and Exact Distributions

Haberman (1974) actually gave the conditional distribution for a table under
a log-linear model given the marginals which are the MSSs under the model. But
actually calculating that conditional distribution is quite complex and most attempts
to work with it have focused solely on the calculation of specific quantiles such as p
values (see, e.g., Agresti 1992). Diaconis and Sturmfels (1998) provided an elegant
solution to the computational problem of computing such “exact” distributions for
multiway contingency tables, using the group theory structure of Gröbner bases and a
Markov chain Monte Carlo algorithm. Applications of this technology for disclosure
limitation can be found in the recent 1998 special issue of the Journal of Official
Statistics, but realistic implementation for high-dimensional tables is still an open
issue.

4. SOME CHALLENGING OPEN PROBLEMS

Although the basic theory of log-linear models and methods for the analysis
of contingency tables was in place over 20 years ago, and there have been major
advances in various related topics over the ensuing years, some problems have eluded
satisfactory solution. First and foremost among these are diagnostics for model fit
and graphical representations for model search. Typical GLM diagnostics are geared
largely to the noncategorical data response situation and most of the other methods
suggested to date are ad hoc at best. Similarly, although graphical model tools have
helped to simplify model search, we have only limited graphical representations to
link to model search methodologies.

Graphical log-linear models gave new impetus to the developments of log-linear
model theory in the 1980s and 1990s, and there were related graphical representations
for social network models linking individuals. But these two graphical representations
remain unconnected. Elsewhere in multivariate analysis, researchers have exploited
the duality between representations in spaces for individuals and for variables. Perhaps
these ideas of duality of representations might allow us to link the two types of
graphical structures into a new mathematical framework.



The problem of assessing bound for the entries of contingency tables given a set
of marginals has a long statistical history going back to work done more than 50 years
ago independently by Bonferroni, Fréchet, and Hoeffding on bounds for cumulative
bivariate distribution functions given their univariate marginals (see Fienberg 1999 for
a review of related literature). For the more general problem of a k-way contingency
table given a set of possibly overlapping marginal totals, there are tantalizing links
to the literature on log-linear models described in this article, including to the recent
work on exact distributions and Gröbner bases described earlier. Implementation of
bounds for large sparse tables is a special challenge.

More generally, as computer power and storage grows, researchers are attempting
to work with larger and larger collections of categorical variables. We need new
methods of model selection that scale up to situations where the dimensionality k of
the table may exceed 100, and we need to revisit the asymptotics that are relevant for
such situations.
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Causal Inference in the Social Sciences

Michael E. Sobel

The subject of causation is controversial. For several hundred years, since Hume,
who essentially equated causation with constant conjunction (“same cause, same ef-
fect”), until recently, theories that view causation as a form of empirical regularity
(predictability) have dominated philosophical discussions of the causal relation. Many
writers who subscribe to this view have also argued that not all regular sequences ev-
idence causation. Thus Hume’s account is regarded as incomplete (nor would this
account be completed by including Hume’s other criteria, temporal priority and con-
tiguity), and it is important to understand just what separates causal from noncausal
sequences. One idea that has been put forth (it can even be found in Hume, though he
appears not to have realized its implications) is that whereas both types of sequences
exhibit de facto regularity, only causal sequences are counterfactually regular. That
is, in both cases, one can state that when the object or event X is present (X = 1),
it is followed by the effect Y (Y = 1), but in the case of a causal sequence, one can
also state that if X is not present, then Y also is not present.

These notions raise epistemological problems. First, the relationships that scien-
tists study rarely hold in every instance. Thus it seems reasonable to entertain notions
of causation that allow us to speak of causation in individual instances and/or that fea-
ture so-called “probabilistic causation.” Second, if a causal relationship must sustain
a counterfactually conditional statement, then additional problems arise because one
can observe the actual states ofX and Y , but not the state of Y that would occur were
X in a state other than its actual state. Thus it is possible that Y = 1 in those instances
where X = 1, but this might be true even if X = 0. Consider the case of weight
loss among motivated persons who take diet pills (X = 1). Intuition suggests that by
controlling who receives (does not receive) diet pills, the possibility of encountering
this situation is reduced. In other words, experiments might be useful for inferring
causation.

In the social sciences, where many of the questions asked do not appear amenable
to experimentation, approaches to inferring causation have been proposed that dif-
fered from those that emerged in the statistical literature on experimental design. Prior
to the development of simultaneous equation models by econometricians and the re-
lated work by Simon (1954) on spurious correlation (which suggested the possibility
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of distinguishing between causal and noncausal associations), many quantitative so-
cial scientists eschewed causal language. Bernert (1983) described the situation in
American sociology. Subsequently, sociologists (e.g., Duncan 1966) discovered path
analysis and disseminated it to other social sciences, promoting its use for drawing
causal inferences and, more generally, promoting the use of causal language. Later, in
an important generalization, Jöreskog (1977) embedded factor analysis from psychol-
ogy and simultaneous equation models from economics into the covariance structure
model, seemingly allowing causal inference with latent causes and effects. (These
models are now commonly called structural equation models or causal models.) More
recently, a literature on graphical models (e.g., Whittaker 1990) has emerged. Use of
these models for drawing causal inferences (e.g., Pearl 1998; Spirtes, Glymour, and
Scheines 1993) is another outgrowth of the foregoing approach and the literature on
path analysis. However, some authors (e.g., Cox and Wermuth 1993) have deliberately
avoided using causal language in conjunction with such models. Other extensions of
Simon’s work are the methods that economists have proposed for assessing so-called
“spurious causation” in time series (Geweke 1984; Granger 1969).

Although the earlier developers of these methods tended, in tandem with the
prevailing currents in philosophy in their day, to equate causality with prediction,
subsequent writers, in tune with later currents, have tended toward the view that
causal relationships sustain counterfactual conditionals. Thus in the literature on si-
multaneous equation models, exogeneous variables (errors are defined so as to be
uncorrelated with these exogenous variables) came to be regarded as potentially ma-
nipulable inputs, and model parameters were interpreted as indicative of what would
happen under interventions (see, e.g., Goldberger 1964, p. 375). Similarly, sociol-
ogists, psychologists, and others speak of parameters in structural equation models
as effects, interpreting these as indicative of what would happen to a response if the
independent variables were manipulated. (For references to this literature, see Sobel
1990.) Similar remarks apply to some treatments of Granger causality. Although it is
recognized that such interpretations are extramathematical and not always warranted,
it is widely believed that these interpretations are licensed when the variables in the
model are ordered properly and the “causal theory” underlying the model is “valid,”
irrespective of study design.

It seems evident that if causation is equated with predictability, then causal in-
ference can be approached using nonexperimental studies and statistical methods
for studying association (as above). In retrospect, it also seems evident that under a
counterfactual account of causation, which involves comparing an observed response
with a response that would have occurred under conditions that were not observed,
an analysis of the causal relationship needs to begin with the use of something like
the notation invented by Neyman (1923) to discuss potential yields in an agricultural
experiment. This notation allows for unambiguous definitions of effects, enabling
evaluation of methods for estimating these.

To illustrate, suppose that the response (Y ) is to be compared under treatment



and no treatment, and there is no interference among units; that is, the response of a
unit does not depend on the treatment received by other units (Cox 1958). Then either
yic, the response of unit i in the absence of treatment, or yit, the response of unit i
under treatment, can be observed. The unit (causal) effect is defined as a function of
the two responses; for example, yit−yic. Although this cannot be observed, Neyman
showed (under a model of assignment equivalent to randomization) that the difference
between treatment and control group means is an unbiased estimator of the average
of the unit effects—the average treatment effect (ATE). Notice that here study design
does enter the picture.

Although the potential outcomes notation was subsequently used in the statis-
tical literature on experiments, Rubin (1974, 1977, 1978, 1980, 1991) applied it to
observational studies to define effects that accorded with a counterfactual account
of causation and to state sufficient conditions (ignorability and strong ignorability)
for estimating these effects consistently (Rosenbaum and Rubin 1983a). Building on
this work, Rubin and coworkers clarified a number of issues important to social and
behavioral scientists, including Lord’s paradox (Holland and Rubin 1983), causal
inference in case-control studies (Holland and Rubin 1988) and causal inference in
recursive structural equation models (Holland 1988).

Increasingly, social statisticians are finding that use of the foregoing framework
above results in greater clarity, enabling precise definitions of causal estimands of
interest and evaluation of methods traditionally used to make causal inferences. An
excellent example of this is the work on instrumental variables by Angrist and Imbens
(1995) and Angrist, Imbens, and Rubin (1996). (For related material, see also Robins
and Greenland 1992.) The idea behind the instrumental variables estimator, which
goes back at least to Wright (1928), is (in econometric parlance) to estimate the effect
of a variable correlated with the error term in a regression (i.e., the variable is not
“exogenous”) by using another variable that is correlated with the response, but that
does not directly affect the response. Angrist et al. (1996) studied this estimator in a
randomized study with noncompliance, showing, under assumptions that they clearly
spelled out, that this estimates a parameter they called the local average treatment ef-
fect (LATE). LATE is the average treatment effect among compliers (those who both
comply with their actual assignment and who would comply with the assignment
not assigned). Although the subpopulation of compliers is not observable, and other
effects may often be of greater interest (e.g., the average effect among the treated),
it nevertheless is of great value to know what the instrumental variables estimator is
actually estimating, and what assumptions are implicit when this estimator is taken
to estimate other parameters; for example, the average treatment effect among the
treated. One of the important assumptions examined in this work is the exclusion
restriction, namely that treatment assignment (as versus treatment received) does not
affect the response. (This restriction appears also in the econometric literature and
can also be formulated in the literature on structural equation models in terms of
direct effects.) Another important assumption, used in conjunction with the exclusion



restriction, is the monotonicity assumption; under this assumption, the latent subpop-
ulation of subjects who would not take treatment when treatment is assigned and who
would take treatment when it is not assigned is nonexistent. Monotonicity is realized
in many policy and prevention studies where only subjects assigned to treatment are
allowed to enroll in the intervention program.

Subsequently, Imbens and Rubin (1997) extended this work, applying likelihood
and Bayesian procedures to estimate LATE in both the case where the exclusion
restriction holds and the case where it does not; they referred to LATE as CACE
(“complier average causal effect”). Little and Yau (1998) estimated LATE by maxi-
mum likelihood in a randomized study of unemployed workers, where the treatment
consists of several training sessions and the response is the reduction in depression;
in this study, almost half of the subjects assigned to treatment did not actually take
the treatment. Whereas Little and Yau assumed that the exclusion restriction holds,
Jo (1999), arguing that there should be a direct effect of treatment assignment on the
response among noncompliers, extended this work to that case.

In observational studies, the assumption that treatment assignment is random,
given observed covariates (strong ignorability), allows consistent estimation of ef-
fects. Matching or stratifying on these covariates is desirable, if possible, facilitating
estimation with minimal additional assumptions. If this is not possible, Rosenbaum
and Rubin (1983a) showed that it suffices to match or stratify on the propensity score.
(In a study with treatment or no treatment, this is the probability of treatment, given the
covariates.) Alternatively, model-based adjustments may be made. However, rarely is
the state of knowledge in the social sciences adequate for a researcher to feel confident
that he or she has measured all of the relevant covariates. The possibility of hidden
bias (relevant unobserved covariates) is great. Thus it is important to develop methods
for assessing the sensitivity of an analysis to this possibility, as in Rosenbaum and
Rubin (1983b). (For further material, see Rosenbaum 1995, who has done extensive
work on this topic.) Economists, who sometimes refer to strong ignorability as selec-
tion on observables (Heckman and Hotz 1989), have also pointed to the importance
of unobserved variables (selection on unobservables), proposing various methods for
using longitudinal data, in conjunction with modeling assumptions, to estimate treat-
ment effects that correct for this type of selection (Heckman and Robb 1985, 1988).
(For a more extensive review of this literature, see Winship and Morgan 1999.)

Another useful approach develops upper and lower bounds on the values of ef-
fects of interest (assuming that the response is bounded). Although these effects are
not identified in observational studies, components of the effects are identified. As-
sumptions about the upper and lower bounds on the nonidentified components are
then used in conjunction with the identified components to obtain the bounds. When
the nonidentified components take on the maximum and the minimum values allow-
able, the bounds can be quite wide. Nonetheless, these can be narrowed considerably
under quite reasonable assumptions compatible with the state of existing knowledge.
Robins (1989) first developed these bounds. Manski (1995) also used these bounds,



and also developed bounds for several other contexts of special relevance to social
scientists.

Although the interplay between statistics and social sciences has proven very
useful, many issues need further work. In Holland’s (1988) work on path analysis,
subjects are randomized to a group encouraged to study and a group not encouraged
to study. The amount of time studied and the score on a subsequent test are recorded.
Assuming that the “direct effect” of encouragement on test scores is 0 for all subjects
(an exclusion restriction) and that the effect of time studied on the response is iden-
tical for all subjects (the assumption of constant effect), the value of this effect is the
instrumental variable estimand. It would be useful to extend this work to psycholog-
ical prevention studies, where the treatment targets several mediators, which in turn
affect the response, and researchers inappropriately use structural equation models
to estimate the effects of the mediators on the response. It would also be useful to
do this without the strong assumption of constant effect typically made in conjunc-
tion with linear models. New study designs for estimating the mediated effects could
then be developed. Second, in psychology and sociology, researchers often use la-
tent variables derived from factor analyses as causes, covariates, and effects. Little
attention has been paid to the issues that arise in attempting to make appropriate
causal inferences in such studies (Sobel 1994, 1997). Finally, social scientists are
often concerned with interdependence among units. One form occurs when the re-
sponse of a subject under a given condition depends on the conditions to which other
subjects are assigned; the assumption of no interference between units, discussed by
Cox (1958) or, in Rubin’s terms, SUTVA or stability, does not hold. Violations of
stability certainly have been alluded to by social scientists (Garfinkel, Manski, and
Michalopolous 1992; Sobel 1995), and some work on this subject has been done in
epidemiology (Halloran and Struchiner 1995), but much remains to be done in both
experimental and nonexperimental contexts.

In most disciplines within the social sciences, empirical work has not yet been
informed by the aforementioned developments. As this changes, a dramatic transfor-
mation should be seen in the way social research is conducted and the purposes that
this research serves. To take but one example, much of quantitative political science
and sociology may be characterized as a highly stylized search for new causes of
effects. Researchers typically begin with one or more outcomes and a list of causes
identified by previous workers. Potentially new causes are then listed; if these account
(“explain”) for additional variability in the response, then the new causes are held to
affect the outcome, and the significant coefficients in the new model are endowed
with a causal interpretation. The process is repeated by subsequent workers, resulting
in further “progress.” When researchers realize that they are merely adding more and
more variables to a predictive conditioning set, one wonders what will take the place
of the thousands of purported (causal) effects that currently fill the journals.
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Political Methodology: A Welcoming
Discipline

Nathaniel L. Beck

1. INTRODUCTION

Although empirical political science can be dated as far back as Aristotle, and
some of the earliest work in statistics was on political methodology (Petty 1690),
the self-definition of political science as a science goes back only a century or so
(with a convenient date being the founding of a “scientific” department at Columbia
University in 1880). Political methodology is a young subfield within political science.
The coming of age of that subfield is best evidenced by the arrival of the journal
Political Methodology, now named Political Analysis. By that date, the subfield of
political methodology is about 25 years old.

Although serious quantitative political analyses were conducted in the 19th and
early 20th centuries (Gow 1985), the increased use of quantitative analysis went
hand-in-hand with the post-World War II “behavioral revolution” in political science
(Dahl 1961). The behavioralists had begun using more and more sophisticated meth-
ods, though few, if any, would have labelled themselves as “methodologists.” The
most sophisticated behavioralists acquired their methodological training from other
disciplines (first sociology, later economics) and usually did not teach courses in
methodology to pass on their sophistication to their graduate students. But starting
some time in the late 1960s, we did begin to develop a small cadre of people who did
at least a portion of their scholarship as methodologists.

Chris Achen, in his final editorial for Political Methodology, summed up the
situation:

When [Political Methodology] began in the mid-1970s, methodology was more often
an avocation than a vocation. No political science journal welcomed methodological ar-
ticles, and many journals rejected them out of hand. Certainly no Political Methodology
Society existed to give shape and organization to the needs of political methodologists.
In the face of these difficulties, John Sullivan and George Marcus created Political
Methodology.. . .By [the 1980s], the field had come of age, and the rapid development
of the last few years were possible (Achen 1985).

Nathaniel L. Beck is Professor, Department of Political Science, University of California, San Diego, La
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In this essay, I look at, from my own perspective, a few major features of this
burgeoning of political methodology and how they might play out in the early part of
the new millennium. In particular, I look at the relationship of political methodology
to other social science disciplines and to statistics. I then look at the changing nature
of data collection.

2. POLITICAL METHODOLOGY AND OTHER
SOCIAL SCIENCES

Political science as a discipline is substantively, not methodologically, defined.
Political scientists use a variety of methods to attack questions related to political
institutions and behavior. Although the methodological issues are defined by our po-
litical questions, we freely use whatever methodological solutions are available. Thus
political methodology has freely drawn on insights from econometrics, psychomet-
rics, sociology, and statistics. One clear trend, however, is our increased reliance on
our own methodological expertise.

Quantitative political analysis in the 1950s and early 1960s was largely the anal-
ysis of contingency tables. By the 1960s, path analysis, imported from sociology, was
becoming the state of the art. By the 1970s, multiple regression had become the dom-
inant tool, as it remains, and political methodology turned more and more to econo-
metrics for its basic tools (and to econometricians for basic training). (Overviews of
the political methodology subfield have been given in Achen 1983 and Bartels and
Brady 1993.)

Whereas political methodologists have always been a diverse lot, the modal
political methodologist looked a lot like an applied econometrician (and had received
advanced training by taking the econometrics sequence at top departments). The ease
of use of modern software has brought a decreasing lag between the introduction of
a new method in econometrics and its use in political science. Thus political science
articles now routinely have citations to state-of-the-art econometrics papers in such
areas as time series analysis, analysis of choice (and other limited dependent-variable
methods), and analysis of duration data.

Although it might be tempting to belittle political methodology in the 1970s and
1980s as a “borrowing” discipline, a fairer assessment would be that it was a “wel-
coming” discipline. Given its substantive political orientation, political methodology
has always been willing to import methods, as long as those methods contributed
to our understanding of political phenomena. Starting in the 1980s, political science
departments even began to hire econometricians (and a few statisticians) as full-time
department members. But these econometricians were judged on how they solved
political science problems, not on the prettiness of their econometrics.

As political methodologists have become better trained, we are now creating
as well as borrowing solutions. The best example of this is the ecological inference



problem. One of the oldest political methodology problems, ecological inference
involves using data observed only on geographic groups to make inferences about
individual-level behavior. Political scientists have always had plentiful ecological
data and have long searched for methods of using such data to assess questions of
interest.

The use of ecological data declined with the publication of Robinson’s (1950)
classic article showing that correlating ecological data did not yield good estimates of
the underlying individual correlations. But the Voting Rights Act, which demanded
analyses of turnout and vote by race, brought a resurgence of interest in ecologi-
cal inference. Unfortunately, the leading technique for analysis, Goodman’s (1953)
regression, was known to produce incorrect individual level-estimates. Thus by the
1980s, the search was on for a good way to do ecological inference.

Although scholars from many disciplines made contributions, a generally work-
able “solution” was recently proposed by the political scientist Gary King (1998).
This solution proceeds by joining the random parameter models with the specific
constraints imposed on those parameters by the nature of ecological data. King’s
method seems to yield good estimates of individual-level parameters and also pro-
vides diagnostics for when the method will fail, and it is now widely used by political
scientists investigating electoral data. It is fitting that political methodologists solved
the oldest problem in political methodology.

My own work has also moved in this direction. Econometricians and biome-
tricians have shown how to analyze longitudinal data; that is, (a small number of)
repeated observations on a (large) sample of individuals. But political scientists are
often concerned with analyzing time series–cross-sectional data on a small number
of countries over a long time span. These data may show temporal and spatial depen-
dence. But the units are fixed and not sampled, and so many of the issues on which
econometricians and biometricians focused are irrelevant; conversely, the political
data have unique features—namely, some form of spatial autocorrelation. To make
matters more complicated, many analyses in international relations use a binary de-
pendent variable (e.g., war or no war). Rather than simply import the inappropriate
but known methods from econometrics and biometrics, a methodology for estimating
the types of models encountered in studies of comparative politics and international
relations was developed (Beck and Katz 1995; Beck, Katz, and Tucker 1998). Politi-
cal science datasets from comparative politics and international relations are different
than datasets from epidemiology, so it makes sense that they should be analyzed using
different methods, and the appropriate methods for the political datasets should be
studied by political methodologists.

Political methodologists have done more than come up with appropriate tech-
niques for analyzing political data. They have also been actively involved in looking
at the underlying unity of political research. Much of political research, particularly
in comparative politics, is inherently qualitative. Early work in political methodology
more or less ignored those doing qualitative work, leaving qualitative analysts ignorant



about issues of inference. But a recent and welcome trend is for political methodol-
ogists to show that the underlying logic of research does not depend on whether it is
qualitative or quantitative and that both are subject to the same methodological issues,
particularly the issue of sampling and case selection (Geddes 1990; King, Keohane,
and Verba 1994). Much of political science is qualitative, but it is still science, and
it is good that political methodologists are taking seriously the methodological prob-
lems faced by qualitative analysts. One consequence of this is the recent explosive
growth in first-rate scientific studies of comparative politics, be they quantitative or
qualitative.

3. POLITICAL METHODOLOGY AND STATISTICS

Whereas political methodology is creating methods to solve political problems, it
still remains a welcoming discipline, drawing heavily on allied disciplines, primarily
econometrics. There is a heartening tendency for political methodology to also draw
heavily on modern statistical methods. The uneasy relationship between political
methodology and statistics is not accidental. To oversimply, statisticians work hard
to get the data to speak, whereas political scientists (and econometricians) are more
interested in testing theory (and hence more interested in whether a model parameter
is large or small, rather than in the exact relationship between a dependent variable
and an independent variable). Much of statistics is data driven; political methodology
is theory driven.

Modern statistics has influenced political methodology in a few ways. Perhaps
the most positive recent innovation has been the acceptance of Bayesian ideas without
the theological wrangling that often accompanies those ideas. Thus King’s work on
ecological analysis was at least partly a function of his use of Bayesian random
parameter models in common use in statistics (Rubin 1981).

The random parameter model will also hopefully solve some of the thornier
problems in comparative politics. Students of comparative politics have typically
assumed that all units are incomparable, and hence did case studies, or have made the
opposite assumption and assumed that all units followed the same underlying process,
and hence used simple regression models. But, as Western (1998) showed, the random
parameter (or hierarchical) model provides a very nice compromise between these
two extreme positions. Countries may differ, but the parameters pertaining to a given
country all reflect draws from a common distribution.

Although both of these methods are Bayesian, both use relatively uninformative
priors and have proven quite acceptable to the typical classicist political methodolo-
gist. It appears that the debate between classicists and Bayesians may be much more
severe when it comes to first principles than it is for actual applications. Whereas
political methodology still follows classical rather than Bayesian principles, we have
become more at ease in thinking about “posterior” distributions, even if we tend not



to call them that. We have also become more at ease with using Bayesian ideas such
as simulation, whether from a “classical” (Herron 2000; King, Tomz, and Wittenberg
2000) or a Bayesian (Jackman 2000) perspective.

Political methodologists have been loathe to abandon the simplicity of the linear
model; again, this is due at least as much to the nature of our theoretical interests as
to our unwillingness to master new and complicated techniques. But even if we are
not interested in every nuance of the relationship between y and x, the assumption
of linearity still may be much too strong. Beck and Jackman (1998) tried to con-
vince political scientists that they could improve on their work by starting with Hastie
and Tibshirani’s (1990) generalized additive model rather than the more ubiquitous
generalized linear model. Similarly, Beck, King, and Zeng (2000) examined neural
networks as a substitute for standard linear models in the study of international con-
flict, where, it was conjectured, the correct model is one of massive interaction rather
than linear additivity; the forecasting properties of the neural network model bore out
this conjecture. Although political methodologists are turning to modern statistics
only slowly, the trend seems clear.

4. DATA

As important as analysis is, no field is better than its data. Political methodology
has been at the forefront of data collection and data dissemination. The Interuniversity
Consortium for Political and Social Research was founded in 1962 at the University
of Michigan. Its mission was to archive and disseminate datasets that could be used
by all researchers. Long before the world wide web made data dissemination easy,
the Consortium housed an enormous archive of data that was made available to all
political scientists. The youngest graduate student had access to the same data as the
most veteran researcher.

Since the 1950s, the single most-used data source in political science has been the
National Election Study’s survey conducted for each Presidential and Congressional
election (often with a panel component). These data were collected according to the
highest standards, with diverse political methodologists having input into the design
of the study. By having a common source of data, political methodologists could
attack research questions without worrying about whether different findings might be
a result of different survey methods or, worse, of inferior survey methods.

Although this high-quality and publicly available dataset allowed for advances
in the discipline, it also imposed a certain uniformity. Political methodologists have
quickly taken advantage of modern advances in computer-assisted telephone (CAT)
interviewing to answer questions that could never have been answered before.

The CAT technology has greatly expanded the ability to do survey experiments
that join the rigor of the experiment with the relevance of the field study (Sniderman
et al. 1991). Thus Johnston, Blais, Brady, and Crete (1992), for example, were able



to convincingly demonstrate via survey experiment that the Liberals in Canada had a
rhetorical advantage early in the 1988 Parliamentary election campaign, but that the
Conservatives effectively countered this over the course of the campaign. This type
of analysis has dramatically enriched our understanding of the electoral process.

5. CONCLUSION

The past quarter-century has seen political methodology come into its own. Polit-
ical science data shares some features with other types of data, and so it is appropriate
that political methodologists learn from other methodological disciplines. But our
data also has some unique properties, so it is critical that political methodologists
analyze and solve the problems that characterize political datasets.

Since Achen wrote his editorial in 1985, the subfield of political methodology
has flourished. A small summer meeting in 1984 of about a dozen scholars at the Uni-
versity of Michigan has become an annual event attended by more than 100 faculty
and graduate students. Political Methodology has become one of the five largest orga-
nized sections in the American Political Science Association; this section publishes
the quarterly journal Political Analysis. Scholars can now publish methodological
articles not only in Political Analysis, but also in all of the leading disciplinary jour-
nals. Departments now advertise for methodologists, and all major departments have
faculty whose principal graduate teaching is devoted to methodology. A good, sub-
stantively trained graduate student will know much more methodology than the most
sophisticated methodologists of 1980.

The challenge comes in remaining open to new methods, particularly related to
the intensive computer analysis of datasets. The cutting-edge political methodologists
have been open to such innovations, but it remains to be seen if they will be successful
in importing such methods into general research.

One such challenge in the next millennium is a sensible treatment of missing
data. Political methodologists have ignored that problem until very recently, but some
recent breakthroughs (King, Honacker, Joseph, and Scheve 1998; Little and Rubin
1987) make it possible that all political scientists can improve their treatment of miss-
ing data. These two works show an interesting relationship between statisticians and
political methodologists. The statistical work, though mathematically persuasive, had
literally no impact on political science practice. But the political science work, build-
ing on the earlier statistical work, clearly showed political scientists how inefficient
their practices were, and how the practice of ignoring missing data led to incorrect
inferences in important substantive arenas. Equally important, the work by the po-
litical methodologists promises to provide a practical solution that can be used by
almost any political scientist with missing data. Political methodology is happy to
import methods (and scholars) from other disciplines, but those ideas must be shown
to solve important problems in political science.
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Statistics in Sociology, 1950–2000

Adrian E. Raftery

1. INTRODUCTION

Sociology is the scientific study of modern industrial society. Example questions
include: What determines how well people succeed in life, occupationally and other-
wise? What factors affect variations in crime rates between different countries, cities,
and neighborhoods? What are the causes of the increasing U.S. divorce rate? What
are the main factors driving fertility decline in developing countries? Why have social
revolutions been successful in some countries but not in others?

The roots of sociology go back to the mid-19th century and to seminal work
by Auguste Comte, Karl Marx, Max Weber, and Emile Durkheim on the kind of
society newly emerging from the industrial revolution. Sociology has used quantitative
methods and data from the beginning, but before World War II the data tended to be
fragmentary and the statistical methods simple and descriptive.

Since then, the available data have grown in complexity, and statistical methods
have been developed to deal with them, with the sociologists themselves often leading
the way (Clogg 1992). The trend has been toward increasingly rigorous formulation
of hypotheses, larger and more detailed datasets, more complex statistical models
to match the data, and a higher level of statistical analysis in the major sociological
journals.

Statistical methods have had a successful half-century in sociology, contributing
to a greatly improved standard of scientific rigor in the discipline. Sociology has made
use of a wide variety of statistical methods and models, but I focus here on the ones
developed by sociologists, motivated by sociological problems, or first published in
sociological journals. I distinguish three postwar generations of statistical methods in
sociology, each defined by the kind of data it addresses. The first generation of meth-
ods, starting after World War II, deals with cross-tabulations of counts from surveys
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and censuses by a small number of discrete variables such as sex, age group, and oc-
cupational category; social mobility tables provide a canonical example. Schuessler
(1980) gave a survey that largely reflects this first-generation work.

The second generation, starting in the early 1960s, deals with unit-level data from
surveys that include many variables. This generation was galvanized by Blau and
Duncan’s (1967) highly influential book The American Occupational Structure, and
by the establishment of Sociological Methodology in 1969 and Sociological Methods
and Research in 1972 as publication outlets. These developments marked the coming
of age of research on quantitative methodology in sociology. The third generation of
methods, starting in the late 1980s, deals with data that are not usually thought of as
cross-tabulations or data matrices, either because the data take different forms, such
as texts or narratives, or because dependence is a crucial aspect. These generations do
not have clear starting points and all remain active today; like real generations, they
overlap.

Today, much sociological research is based on the reanalysis of large high-quality
survey sample datasets, usually collected with public funds and publicly available to
researchers, with typical sample sizes in the range of 5,000–20,000. This has opened
the way to easy replication of results and has helped produce standards of scientific
rigor in sociology comparable to those in many of the natural sciences. Social statistics
is expanding rapidly as a research area, and several major institutions have recently
launched initiatives in this area.

2. THE FIRST GENERATION: CROSS-TABULATIONS

2.1 Categorical Data Analysis

Initially, much of the data that quantitative sociologists had to work with came
in the form of cross-classified tables, and so it is not surprising that this is perhaps the
area of statistics to which sociology has contributed the most. A canonical example
has been the analysis of social mobility tables, two-way tables of father’s against re-
spondent’s occupational category; typically the number of categories used is between
5 and 17.

At first, the focus was on measures of association, or mobility indices as they
were called in the social mobility context (Glass 1954; Rogoff 1953), but these indices
failed to do the job of separating structural mobility from exchange (or circulation)
mobility. It was Birch (1963) who proposed the log-linear model for the observed
counts {xij}, given by

log(E[xij ]) = u+ u1(i) + u2(j) + u12(ij), (1)

where i indexes rows and j indexes columns, u1(i) and u2(j) are the main effects for
the rows and columns, and u12(ij) is the interaction term, measuring departures from



Table 1. Observed Counts From the Largest U.S. Social Mobility Study and Expected Values
From a Goodman Association Model With 4 Degrees of Freedom, Sample Size 19,912

Son’s occupation

Upper nonmanual Lower nonmanual Upper manual Lower manual Farm
Father’s

occupation Obs. Exp. Obs. Exp. Obs. Exp. Obs. Exp. Obs. Exp.

Upper nonmanual 1,414 1,414 521 534 302 278 643 652 40 42
Lower nonmanual 724 716 524 524 254 272 703 698 48 43
Upper manual 798 790 648 662 856 856 1,676 1,666 108 112
Lower manual 756 794 914 835 771 813 3,325 3,325 237 236
Farm 409 386 357 409 441 405 1,611 1,617 1,832 1,832

NOTE: Data from Hout (1983).

independence. The difficulty with (1) for social mobility and similar tables is that the
number of parameters is too large for inference and interpretation; for example, in
the U.S. datasets 17 categories were used, so the interaction term involves 162 = 256
parameters.

A successful general approach to modeling the interaction term parsimoniously
is the association model of Duncan (1979) and Goodman (1979),

u12(ij) =
K∑
k=1

γkα
(k)
i β

(k)
j + φiδ(i, j), (2)

where δ(i, j) = 1 if i = j and 0 otherwise. In (2),α(k)
i is the score for the ith row on the

kth scoring dimension, and β(k)
j is the corresponding score for the jth column; these

can be either specified in advance or estimated from the data. The last term allows a
different strength of association on the diagonal. [Model (2) is unidentified as written;
various identifying constraints are possible.] In most applications to date, K = 1.
Goodman (1979) initially derived this model as a way of describing association in
terms of local odds ratios. He (Goodman 1985) later showed that this model is closely
related to canonical correlations and to correspondence analysis (Benzécri 1976), and
provided an inferential framework for these methodologies. Table 1 shows the actual
counts for a reduced version of the most extensive U.S. social mobility study and
the fitted values from an association model; the model accounts for 99.6% of the
association in the table, and its success is evident.

Hout (1984) extended the range of application of these models by modeling the
scores and diagonal terms in (2) as sums or products of covariates, such as character-
istics of the occupational categories in question; this is an extension of Birch’s (1965)
linear-by-linear interaction model. This has led to important discoveries, including
Hout’s (1988) finding that social mobility is on the increase in the United States.
Biblarz and Raftery (1993) adapted Hout’s models to higher-dimensional tables to
study social mobility in nonintact families, finding that occupational resemblance is



weaker there than in intact families. From sociology, these ideas have diffused to
other disciplines, such as epidemiology (Becker 1989).

An appealing alternative formulation of the basic ideas underlying (1) and (2) is
in terms of marginal distributions rather than the main effects in (1). The resulting
marginal models specify a model for the marginal distributions and a model for the
odds ratios, and this implies a model for the joint distribution that is not log-linear
(Becker 1994; Becker and Yang 1998; Lang and Agresti 1994).

An alternative approach that answers different questions is the latent class model
(Goodman 1974; Lazarsfeld 1950). This represents the distribution of counts as a finite
mixture of distributions in each of which the different variables are independent. An
interesting recent application to criminology was described by Roeder, Lynch, and
Nagin (1999).

2.2 Hypothesis Testing and Model Selection

Sociologists often have sample sizes in the thousands, and so they came up early
and hard against the problem that standard p values can indicate rejection of null
hypotheses in large samples, even when the null model seems reasonable theoreti-
cally and inspection of the data fails to reveal any striking discrepancies with it. The
problem is compounded by the fact that there are often many models rather than
just the two envisaged by significance tests, and by the need to use stepwise or other
multiple-comparison methods for model selection (e.g., Goodman 1971). By the early
1980s, some sociologists were dealing with this problem by ignoring the results of
p value-based tests when they seemed counterintuitive and by basing model selec-
tion instead on theoretical considerations and informal assessment of discrepancies
between model and data (e.g., Fienberg and Mason 1979; Grusky and Hauser 1984;
Hout 1983, 1984).

Then it was pointed out that this problem could be alleviated by instead basing
model selection on Bayes factors (Raftery 1986), and that this can be simply approx-
imated for log-linear models by preferring a model if the Bayes information criterion
(BIC) = deviance − (degrees of freedom) log(n) is smaller (Schwarz 1978). For
nested hypotheses, this can be viewed as defining a significance level for a test that
decreases automatically with sample size. Since then, this approach has been used
in many sociological applications of log-linear models. Kass and Wasserman (1995)
showed that the approximation is quite accurate if the Bayesian prior used for the
model parameters is a unit information prior, and Raftery (1995) indicated how the
methodology can be extended to a range of other models. Weakliem (1999) criticized
the use of BIC on the grounds that the unit information prior to which it corresponds
may be too diffuse in practice. This points toward using Bayes factors based on priors
that reflect the actual information available; this is easy to do for log-linear and other
generalized linear models (Raftery 1996).



3. THE SECOND GENERATION:
UNIT-LEVEL SURVEY DATA

The second generation of statistical models responded to the availability of unit-
level survey data in the form of large data matrices of independent cases. The methods
that have proved successful for answering questions about such data have mainly been
based on the linear regression model and its extensions to path models, structural equa-
tion models, generalized linear models, and event history models. For questions about
the distribution of variables rather than their predicted value, however, nonparamet-
ric methods have proven useful (Handcock and Morris 1998; Morris, Bernhardt, and
Handcock 1994).

3.1 Measuring Occupational Status

Occupational status is an important concept in sociology, and developing a useful
continuous measure of it was a signal achievement of the field. Initially, the status
of an occupation was equated with its perceived prestige, as measured in surveys.
However, surveys could measure the prestige of only a small number of the 800
or so occupations identified in the Census. To fill in the missing prestige scores,
Duncan (1961) regressed the prestige scores for the occupations for which they were
available on measures of the average education and average income of incumbents of
the occupation. He found that the predictions were very good (R2 = .91), and that
the two predictors were about equally weighted. Based on this, he created a predicted
prestige score for all occupations, which became known as the Duncan socioeconomic
index (SEI). The SEI later turned out to be a better predictor of various social outcomes
than the prestige scores themselves. Duncan’s initial work has been updated several
times (Hauser and Warren 1997).

In much social research, particularly in economics, current income is used as a
predictor of social outcomes, but there are good reasons to prefer occupational status.
It has proven to be a good predictor of many social outcomes. Jobs and occupations
can be measured accurately, in contrast to income or wealth, whose measurement
is plagued by problems of refusal, recall, and reliability. Also, occupational status
is more stable over time than income, both within careers and between generations.
This suggests that occupational status may actually be a better indicator of long-term
or permanent income than current income itself. The status of occupations tends to
be fairly constant both in time and across countries (Treiman 1977).

3.2 The Many Uses of Structural Equation Models

Figure 1 shows the basic path model of occupational attainment at the heart of
the work of Blau and Duncan (1967) (see Duncan 1966). Wright (1921) introduced



Figure 1. A Famous Path Model: The process of stratification, U.S. 1962 (Blau and Duncan 1967). The
numbers on the arrows from one variable to another are regression coefficients, .516 is the correlation
between V and X , and the numbers on the arrows with no sources are residual standard deviations. All
the variables have been centered and scaled.

path analysis, and Blalock (1964) gave it a causal interpretation in a social science
context. (See Freedman 1987 and Sobel 1998 for critique and discussion, and Abbott
1998, Pearl 1998, and Sobel 2000 for histories of causality in social science.)

Often, variables of interest in a causal model are not observed directly, but other
variables are observed that can be viewed as measurements of the variables, or “con-
structs” of interest, such as prejudice, alienation, conservatism, self-esteem, discrimi-
nation, motivation, or ability. Jöreskog (1973) dealt with this by maximum likelihood
estimation of a structural equation model with latent variables; this is sometimes called
a LISREL model, from the name of Jöreskog’s software. Figure 2 shows a typical
model of this kind; the goal of the analysis is testing and estimating the strength of the
relationship between the unobserved latent variables represented by the thick arrow.
Diagrams such as Figures 1 and 2 have proven useful to sociologists for specifying
theories and hypotheses and for building causal models.

The LISREL framework has been extended and used ingeniously for purposes
beyond those for which it was originally intended. Muthén (1983) extended it to
categorical variables, and later (Muthén 1997) showed how it can be used to represent
longitudinal data, growth curve models, and multilevel data. Kuo and Hauser (1996)
used data on siblings to control for unobserved family effects on socioeconomic
outcomes, and cast the resulting random effects model in a LISREL framework.
Warren, LePore, and Mare (2001) considered the relationship between the number of
hours that high school students work and their grades; a common assumption might
be that working many hours tends to depress grades. They found that although number
of hours and grades do indeed tend to covary (negatively), the causal direction is the
opposite: Low grades leads to many hours worked, rather than the other way round.



Figure 2. Part of a Structural Equation Model to Assess the Hypothesis That Learned Definitions of Delin-
quency Cause Delinquent Behavior (Matsueda and Heimer 1987). The key goal is testing and estimating the
relationship represented by the thick arrow. The constructs of interest, “Definitions” and “Delinquency”,
are not measured directly. The variables inside the rectangles are measured.

The advent of graphical Markov models (Spiegelhalter, Dawid, Lauritzen, and
Cowell 1993), specified by conditional independencies rather than by regression-like
relationships, is important for the analysis of multivariate dependencies, although
they can seem less interpretable to sociologists. The relationship between these and
structural equation models has begun to be understood (Spirtes et al. 1998). Also,
the LISREL model seems ideally suited to Markov chain Monte Carlo (MCMC)
methods (Gilks, Richardson, and Spiegelhalter 1996), and this is likely to permit useful
extensions of the framework (Arminger 1998; Raftery 1991; Scheines, Hoijtink, and
Boomsma 1999).

3.3 Event History Analysis

Unit-level survey data often include or allow the reconstruction of life histo-
ries. These include the times of crucial events such as marriages, divorces, births,
commitals to and releases from prison, job changes, and going on or off welfare.

The analysis of factors influencing the time to a single event such as death was
revolutionized by the introduction of the Cox (1972) proportional hazards model.
Tuma and Hannan (1984) generalized this approach to allow for repeated events, for
multiple types of events, such as marriages and divorces, and for events consisting of
movement between different types of states, such as different job categories.

Uses of the Cox model in medicine have tended to treat the baseline hazard
nonparametrically, but in social science it has sometimes been found useful to model
it parametrically. For example, Yamaguchi (1992) analyzed permanent employment in
Japan where the surviving fraction (those who never change jobs) and its determinants
are of key interest; he found that covariates were associated both with the timing of
job change and with the surviving fraction.

Social science event history data are often recorded in discrete time (e.g., by year),
either because events tend to happen at particular times of year (e.g., graduating) or
because of measurement constraints. As a result, discrete-time event history models



have been popular (Allison 1982; Xie 1994), and in some ways these are easier to
handle than their continuous-time analogs. Ways of dealing with multilevel event
history data, smoothly time-varying covariates, and other complications have been
introduced in this context (e.g., Fahrmeir and Knorr-Held 1997; Raftery, Lewis, and
Aghajanian 1995).

One problem with social science event history data is that dropping out can be
related to the event of interest. For example, people may tend to leave a study shortly
before a divorce, which will play havoc with estimation of divorce rates. The problem
seems almost insoluble at first sight, but Hill (1997) produced an elegant solution
using the shared unmeasured risk factor (SURF) model of Hill, Axinn, and Thornton
(1993). The basic trick is to observe that although one does not know which of the
people who dropped out actually got divorced soon afterward, one can estimate which
ones were most at risk of divorcing.

4. THE THIRD GENERATION: NEW DATA, NEW
CHALLENGES, NEW METHODS

4.1 Social Networks and Spatial Data

Social networks consist of sets of pairwise connections, such as friendships be-
tween adolescents, sexual relationships between adults, and political alliances and
patterns of marriage between social groups. The analysis of data about such networks
has a long history (Wasserman and Faust 1994). Frank and Strauss (1986) developed
formal statistical models for such networks related to the Markov random field mod-
els used in Bayesian image analysis and derived using the Hammsersley–Clifford
theorem (Besag 1974). This has led to the promising “p∗” class of models for social
networks (Wasserman and Pattison 1996).

Methods for the analysis of social networks have focused mostly on small datasets
with complete data. In practical applications, however, such as the effect of sexual
network patterns on the spread of sexually transmitted diseases (Morris 1997), the
datasets tend to be large and very incomplete, and current methods are somewhat at a
loss. This is the stage that pedigree analysis in statistical genetics was at some years
ago, but the use of likelihood and MCMC methods have led to major progress since
then (Thompson 1998). Social networks are more complex than pedigrees in one way,
because pedigrees tend to have a tree structure whereas social networks often have
cycles, but progress does seem possible.

Most social data are spatial, but this fact has been largely ignored in sociological
research. A major exception is Massey and Denton’s (1993) study of residential
segregation by race, reviving a much older sociological tradition of spatial analysis
in American society (e.g., Duncan and Duncan 1957). More recently, the field of



research on fertility and contraception in Asia (several major projects focused on
China, Thailand, and Nepal) has been making fruitful use of satellite image and
Geographic Information System (GIS) data (e.g., Entwisle, Rindfuss, Walsh, Evans,
and Curran 1997). More extensive use of spatial statistics in sociology seems likely.

4.2 Textual Data

In its rawest form, a great deal of sociological data is textual; for example, in-
terviews, answers to open-ended questions in surveys, enthnographic accounts. How
to analyze such data and draw inference from it is a largely open question. Efforts
at formal analysis have focused on standard content analysis, consisting mainly of
counting words in the text in different ways. It seems likely that using the context in
which words and clauses appear would yield better results. Promising recent efforts
to do just this include Carley’s (1993) map analysis, Franzosi’s (1994) set-theoretic
approach, and Roberts’s (1997) generic semantic grammar, but the surface has only
been scratched. The human mind is very good at analyzing individual texts, but com-
puters are not (at least as yet); in this way the analysis of textual data may be like
other problems such as image analysis and speech recognition. A similar challenge
is faced on a massive scale by information retrieval for the Web (Jones and Willett
1997), where most search engines are based on simple content analysis methods. The
more contextual methods being developed in sociology might be useful in this area
as well.

Singer, Ryff, Carr, and Magee (1998) have made an intriguing use of textual
data analysis, blending quantitative and qualitative approaches. They took a standard
unit-level dataset with more than 250 variables per person and converted them into
written “biographies.” They then examined the biographies for common features and
thinned them to more generic descriptions.

4.3 Narrative and Sequence Analysis

Life histories are typically analyzed by reducing them to variables and doing
regression and multivariate analysis, or by event history analysis. Abbott and Hrycak
(1990) argued that these standard approaches obscure vital aspects of a life history
(such as a professional career) that emerge when it is considered as a whole. They pro-
posed viewing life histories of this kind as analogous to DNA or protein sequences, us-
ing optimal alignment methods adapted from molecular biology (Sankoff and Kruskal
1983), followed by cluster analysis, to detect patterns common to groups of careers.
Stovel, Savage, and Bearman (1996) used these methods to describe changes in career
systems at Lloyds Banks over the past century.

Subsequently, Dijkstra and Taris (1995) extended the ideas to include indepen-
dent variables, and Abbott and Barman (1997) applied the Gibbs sampling sequence



detection method of Lawrence et al. (1993), originally also developed for microbiol-
ogy; this seems to work very well. The approach is interesting, and there are many
open statistical questions.

4.4 Simulation Models

Another way to represent a social process in more detail is via a macrosimulation
or microsimulation model. Such models are often deterministic and quite complicated,
representing systems by different compartments that interact, and each compartment
by a set of differential or difference equations. They have been used to, for example,
explore the implications of different theories about how domestic politics and war
interact (Hanneman, Collins, and Mordt 1995), the social dynamics of collective
action (Kim and Bearman 1997), and the role of sexual networks in the spread of HIV
(Morris 1997 and references therein).

A difficulty with such models is that ways of estimating the many parameters
involved, of assessing the fit of the model, and of comparing competing models are
not well established; all of this tends to be done by informal trial and error. Methods
being developed to put inference for such models on a solid statistical footing in other
disciplines may prove helpful in sociology as well (Guttorp and Walden 1987; Poole
and Raftery 2000; Raftery, Givens, and Zeh 1995).

4.5 Macrosociology

Macrosociology deals with large entities, such as states and their interactions.
As a result, the number of cases tends to be small, and the use of standard statistical
methods such as regression is difficult. This was pointed out trenchantly by Ragin
(1987) in an influential book. His own proposed alternative, qualitative comparative
analysis, seems unsatisfactory, because it does not allow for variability of any kind
and so is sensitive to small changes in the data and in the way the method is applied
(Lieberson 1994).

One solution to the problem is to obtain an at least moderately large sample size,
as Bollen and Appold (1993) were able to do, for example. Often, however, this is
not possible, so this is not a general solution. Another approach is to use standard
regression-type models, but to do Bayesian estimation with strong prior information
if available, which it often is from the practice, common in this area, of analyzing
specific cases in great detail (Western and Jackman 1994). Bayes factors may also
help, as they tend to be less stringent than standard significance tests in small samples
and allow a calibrated assessment of evidence rather than forcing the rejection or
acceptance of a hypothesis (Kass and Raftery 1995). They also provide a way of
accounting for model uncertainty, which can be quite large in this context (Western
1996).



5. DISCUSSION

Statistical methodology has had a successful half-century in sociology, leading
the way in providing models for cross-classifications and developing well-adapted
methods for unit-level datasets. This has contributed to the greatly improved level of
scientific rigor in sociology today.

New kinds of data and new challenges abound, and the area is ripe for statistical
research. Several major institutions are launching initiatives in the area. The University
of Washington has just established a new Center for Statistics and the Social Sciences,
UCLA’s new Statistics Department grew out of social statistics, and there are other
initiatives at the University of Michigan, Columbia University, UC Santa Barbara,
and the universities in North Carolina’s Research Triangle. Harvard’s new Center for
Basic Research in the Social Sciences also emphasizes social statistics. They all join
the most successful effort of this kind to date, the Social Statistics Department at the
University of Southampton.
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Psychometrics

Michael W. Browne

1. INTRODUCTION

To progress, a scientific discipline must develop methodology for obtaining mea-
surements of relevant constructs and to extract meaning from the measurements it
does have. This is not a straightforward matter in psychology. Typically, constructs
of interest are not clearly defined and cannot be measured directly. In addition, the
measurements that are available are subject to substantial measurement error. Conse-
quently, the measurement process often consists of repeated attempts to measure the
same construct in different ways. When the relationship between several constructs
is under investigation, each of the constructs is measured repeatedly, resulting in a
substantial number of measurements. Thus the statistical methodology developed for
the analysis of psychological measurements is typically multivariate.

Because constructs are not clearly defined, the investigator is often not sure
exactly what is being measured. This has led to the concept of a latent or hidden
variable that is not measured directly. Inferences about the latent variable are deduced
from interrelationships between manifest, or observed, variables.

In a broad sense, psychometrics may be regarded as the discipline concerned
with the quantification and analysis of human differences. This involves both the con-
struction of procedures for measuring psychological constructs and the analysis of
data consisting of the measurements made. In this sense, both the construction of a
psychological attitude scale and the analysis of the data resulting from its application
may be regarded as part of psychometrics. In a narrower sense, psychometrics is often
regarded as the development of mathematical or statistical methodology for the anal-
ysis of measurement data in psychology. This methodology is primarily multivariate,
and latent variables feature strongly. It is this aspect of psychometrics that I consider
here.

Although many of the techniques that currently constitute psychometrics date
far earlier, psychometrics emerged as a formal discipline with the formation of the
Psychometric Society in 1935, with L. L. Thurstone as its first president. Thurstone
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had played a leadership role at the University of Chicago in providing methodology
for analyzing measurements of psychological constructs, and students of his featured
strongly among the founding members of the society (Horst and Stalnaker 1986).
From the beginning, the Psychometric Society has had an international membership,
and the proportion of members outside the United States has grown steadily over the
years.

The Psychometric Society produced a journal, Psychometrika, whose stated aim
was the “development of psychology as a quantitative rational science.” Subsequently,
Psychometrika has been joined by other journals with some overlap of subject matter:
Educational and Psychological Measurement, Journal of Educational Measurement,
Journal of Educational and Behavioral Statistics (formerly Journal of Educational
Statistics), Applied Psychological Measurement, Journal of Classification, Psycho-
logical Methods (formerly the Quantitative Methods in Psychology section of Psycho-
logical Bulletin) and Journal of Mathematical Psychology. In addition, two journals
with similar content to Psychometrika have been founded overseas: British Journal
of Mathematical and Statistical Psychology (formerly British Journal of Statistical
Psychology) and Behaviormetrika, a Japanese journal published in the English lan-
guage.

It is conventional to classify psychometrics into three major areas: mental test the-
ory, factor analysis and associated methods, and multidimensional scaling. I consider
each of these separately, and examine some significant work.

2. MENTAL TEST THEORY

Mental test theory is concerned with methodology developed for the analysis
of mental tests. Two general approaches currently in use for the analysis of tests
consisting of dichotomous items are classical test theory and item response theory.
The foundations of classical test theory were laid by Charles Spearman early in the
20th century, and the subject was developed extensively thereafter by a number of
authors. A unified account was first presented by Gulliksen (1950). Some years later,
an advanced treatment was given by Lord and Novick (1968).

The model of classical test theory is of the form

X = T + E,

where the manifest variate X represents scores on a test, T is a latent variate rep-
resenting unobservable true scores, and E represents errors of measurement. This is
essentially a random-effects one-way analysis of variance model, whereT is a random
treatment effect. A central concept of mental test theory is the reliability of a test or
ratio of true score variance, σ2

T , to the variance of the test, σ2
X . Because true scores are

unobservable, additional assumptions are necessary for estimating the reliability. An
example of the type of assumption made to make the estimation of reliability possible



is that of parallel tests; namely, tests with the same true score and with independently
distributed errors with the same variance. These tests have the same reliability, and
the correlation between them provides an estimate of this reliability. Methods are also
available for estimating the reliability of a sum of parallel measurements.

The properties of a test will depend on properties of the items. Classical item
analysis makes use of properties of items such as item difficulty, item variance, and
the item–test correlation. These item properties are dependent on the population.
Consequently, properties of the test change from one population to another.

An advantage of item response theory is that item properties do not depend on
the population under consideration. Consider the normal ogive item characteristic
curve treated extensively by Lord in a series of papers (starting with Lord 1952). The
probability of an examinee correctly answering the gth item in a test is

Pg(θ) =
∫ ag(θ−bg)

−∞

1√
2π

e−(t2/2) dt, (1)

where θ represents the ability of the examinee, ag is a parameter representing the
discriminating power of item g, and bg represents the item’s difficulty. The item
parameters, ag and bg , are invariant over different populations of examinees. An
overview has been given by Lord and Novick (1968).

There is a relationship between the item characteristic curve of item response
theory and the stimulus response curve of bioassay. Equation (1) is familiar as the
equation of probit analysis where θ represents the amount of a dose, Pg(θ) represents
the probability of survival, and the parameters ag and bg represent the intercept and
slope of the linear regression of the probit transformation on the dose. The fundamental
difference between the two applications of (1) is that in probit analysis the value of
θ is known, whereas in item response theory θ represents a latent variable. Because
of this difference, the methodologies of item response theory and bioassay differ. In
the early stages of the development of item response theory (Lawley 1943), θ was
approximated by the total score of a test, and there were strong similarities to bioassay.
As pointed out by Finney (1971, sec. 3.6), bioassay and item response theory had their
origins in psychophysics.

Birnbaum (1968) suggested using the logistic cumulative distribution function
for the item characteristic curve as a more tractable alternative to the normal ogive. He
provided an algorithm for simultaneously estimating the person parameters, θi, i =
1, . . . , N , and the item parameters, ag and bg, g = 1, . . . , p, given scores on each of p
items obtained from a sample ofN persons. In this approach the number of parameters
increases as N increases, leading to computational difficulties in very large samples
and invalidating the asymptotic theory associated with maximum likelihood estimates.
A more tractable logistic item characteristic curve with a single difficulty parameter
was justified by Rasch (1960) and has received considerable attention since then.

Bock and Aitkin (1981) made use of the normal ogive model and avoided the
estimation of person parameters by regarding them as unobserved latent variables



with a specified distribution. Marginal maximum likelihood estimates were obtained
using an EM algorithm.

Modern kernel smoothing methods for nonparametric function estimation are
now being used to advantage in item response theory. Ramsay (1991) has developed
a nonparametric approach that requires prior estimates of examinee ability but avoids
restrictive assumptions on the item characteristic curve. It provides helpful additional
information in the form of option characteristic curves for each option of a multiple
choice item.

The availability of small, powerful, and reasonably priced computers is currently
spurring the computerized administration of adaptive tests. Overall testing time is
reduced by only administering items that are suited to an examinee’s ability level
and avoiding items that are either too difficult or too easy. Methodology (Lord 1980,
chap. 10) based on item response theory makes the use of this computerized approach
possible. Because adaptive tests require substantial pools of items, Embretson (1999)
is developing models, based on cognitive psychological theory, for the computerized
generation of items.

A comprehensive coverage of modern developments in item response theory may
be found in the volume edited by van der Linden and Hambleton (1996).

3. FACTOR ANALYSIS AND ASSOCIATED MODELS

The originator of factor analysis is generally recognized as Charles Spearman,
who developed a factor analysis model with a single common factor representing gen-
eral intelligence during the first quarter of the 20th century. Over time, it became ap-
parent that a single common factor was not sufficient to account for interrelationships
between variables. Several persons advocated the generalization of factor analysis to
multiple common factors. This multiple factor analysis model is a multivariate multi-
ple regression model with manifest dependent variates and latent explanatory variates.
The additional assumption made to enable estimation of the regression weights on
unobservable latent variates, or factor loadings, is that the regression residual variates
are independently distributed.

Prominent among the proponents of the multiple factor analysis model was L. L.
Thurstone (1935), who suggested the centroid method for estimating factor loadings.
The maximum likelihood estimation of factor loadings was first investigated by Law-
ley (1940). Effective computational procedures became available only about 30 years
later when nested algorithms involving eigenvalues and eigenvectors and imposing
inequality constraints on unique variance estimates were discovered independently
by Jöreskog (1967) and by Jennrich and Robinson (1969).

The generalization of factor analysis to several factors introduced a rotational
indeterminacy, and it became necessary to choose a particular solution from an infi-
nite class of equivalent solutions. Thurstone (1935) suggested the principle of simple



structure for choosing an interpretable rotation of the factor matrix and listed five
defining properties. Graphical methods for carrying out rotations by hand were de-
veloped but were very time consuming. With the advent of electronic computers,
methods of rotation that optimized a “simplicity” function were developed. Effective
computerized methods for orthogonal rotation, defining factors to be uncorrelated,
were first developed. The most successful simplicity function for orthogonal rota-
tion was the Varimax criterion proposed by Kaiser (1958) and used to this day. But
Thurstone’s original hand rotation methods were predominantly for oblique rotation,
where common factors are allowed to be correlated. The problem of developing an
effective computerized method for oblique rotation resisted solution for some years
but was finally solved by Jennrich and Sampson (1966). Because of the iterative na-
ture of the rotation process, it seemed impossible, at first, to obtain standard errors
for rotated factor loadings. Solutions were, however, provided by Jennrich and his
coauthors in a series of papers culminating with the one by Jennrich and Clarkson
(1980).

One manner in which difficulties associated with the rotation process can be
avoided is by carrying out a confirmatory factor analysis. This approach bypasses
the rotational indeterminacy of the factor analysis model by prespecifying the values
of some factor loadings. It then becomes possible to generalize the factor analysis
model by imposing a structural equation model on the common factors. The main
initial contributions in this area were made by Jöreskog (1973) with the LISREL
model. Subsequent developments have been concerned with adapting the model to
discrete manifest variables, investigating properties of the estimators, and developing
alternative fitting procedures.

Factor analysis has also been extended to the analysis of three-way matrices,
starting with the work of Tucker (1966) and followed by substantial subsequent devel-
opments. Another innovation by Tucker (1958) related to factor analysis is the latent
curve approach for studying interindividual variation in change over time. This topic
is currently being pursued further using structural equation modeling approaches.

It has been known for many years that asymptotic properties of the method of
maximum likelihood applied to covariance structures are nonrobust to some violations
of normality assumptions. In two technical reports by Anderson and Amemiya that ap-
peared in 1985, surprising results were presented where maximum likelihood applied
to factor analysis yields methodology that is robust to nonnormality under certain cir-
cumstances. (Details and further references may be found in Amemiya and Anderson
1990.) The Anderson and Amemiya technical reports immediately generated a spurt
of research on this topic, much of it strongly influenced by a comprehensive math-
ematical framework for robustness in the analysis of covariance structures provided
by Shapiro (1987). A balanced overview and a synthesis of different approaches was
given by Kano (1993).

At the present time the most challenging problems are generalizations of struc-



tural equation modeling that involve nonlinear functions of latent variables. These
models involve an additional problem, not present in classical linear factor analysis,
in that incorrect assumptions about the distribution of latent variables invalidate the
covariance structure and result in inconsistent estimators. An example is a polynomial
factor analysis model proposed by Kenny and Judd (1984) that has received substan-
tial attention. Difficulties associated with an inappropriate choice of distribution for
the latent variables in the Kenny–Judd model have now been solved by Wall and
Amemiya (2000).

4. MULTIDIMENSIONAL SCALING

Multidimensional scaling was developed for the investigation of distances be-
tween psychological attributes. A method for obtaining coordinates of points from
a matrix of interpoint distances was given by Young and Householder (1938) and
adapted by Torgerson (1958) to the practical situation where distances are measured
subject to error. Shepard (1962) introduced the concept of an arbitrary monotonic
relationship between observed dissimilarities and true distances, and Kruskal (1964)
formalized this approach and provided an algorithm to perform nonmetric multidi-
mensional scaling. Guttman (1968) proposed a rank order approach to deal with the
monotonic relationship between dissimilarities and true distances. His multidimen-
sional scaling methods were used to investigate his radex theory. Guttman (1954)
proposed it as a competitor to factor analysis. Carroll and Chang (1970) provided a
solution to the simultaneous scaling of a number of dissimilarity matrices, thereby
enabling the investigation of interpersonal differences in perceived dissimilarities.

These multidimensional scaling methods were primarily model approximation
procedures that did not make distributional assumptions. They were applied in the
same way to all dissimilarity measures without taking into account how they were
derived from data. In a series of articles, Takane and coauthors developed specific
models with a multidimensional scaling component for different data collection meth-
ods. These models involved distributional assumptions and the method of maximum
likelihood was used to obtain parameter estimates and associated goodness-of-fit tests.
Takane and Sergent (1983) provided an example of this approach and gave further
references. Modern developments in multidimensional scaling were surveyed in the
recent book by Borg and Groenen (1997).

5. CONCLUDING COMMENTS

During the course of the 20th century, psychometrics has developed into a so-
phisticated, mathematically oriented discipline aimed at providing methodology for
handling the particularities of psychological measurement. To do this it has become
strongly computer based and algorithm development has been a component of much



of the research carried out. Much methodology that arose out of psychometrics has
been of use elsewhere. In particular, factor analysis, structural equation modeling
with latent variables and multidimensional scaling are being widely used in a variety
of disciplines and are included in most modern statistical computer packages. Con-
versely, standard statistical methodology is routinely used by research psychologists.
In particular, psychology has a rich tradition of experimental design, and texts on the
topic, such as that of Winer (1971), have had a substantial influence on psychological
research.

REFERENCES

Amemiya, Y., and Anderson, T. W. (1990), “Asymptotic Chi-Squared Tests for a Large Family of Factor
Analysis Models,” The Annals of Statistics, 18, 1453–1463.

Birnbaum, A. (1968), “Some Latent Trait Models and Their Use in Inferring an Examinee’s Ability,”
in Statistical Theories of Mental Test Scores, eds. F. M. Lord and M. R. Novick, Reading, MA:
Addison-Wesley, pp. 397–479.

Bock, R. D., and Aitkin, M. (1981), “Marginal Maximum Likelihood Estimation of Item Parameters:
Application of an EM Algorithm,” Psychometrika, 46, 443–445.

Borg, I., and Groenen, P. (1997), Modern Multidimensional Scaling: Theory and Applications, New York:
Springer-Verlag.

Carroll, J. D., and Chang, J. J. (1970), “Analysis of Individual Differences in Multidimensional Scaling
via an N -Way Decomposition of ‘Eckart–Young’ Decomposition,” Psychometrika, 35, 283–320.

Embretson, S. (1999), “Generating Items During Testing: Psychometric Issues and Models,” Psychome-
trika, 64, 407–433.

Finney, D. J. (1971), Probit Analysis (3rd ed.), Cambridge, U.K.: Cambridge University Press.

Gulliksen, H. (1950), Theory of Mental Tests, New York: Wiley.

Guttman, L. (1954), “A New Approach to Factor Analysis: The Radex,” in Mathematical Thinking in the
Behavioral Sciences, ed. P. Lazarsfeld, New York: Free Press, pp. 258–348.

(1968), “A General Nonmetric Technique for Finding the Smallest Coordinate Space for a Con-
figuration of Points,” Psychometrika, 33, 469–506.

Horst, P., and Stalnaker, J. (1986), “Present at the Birth,” Psychometrika, 51, 3–6.

Jennrich, R. I., and Clarkson, D. B. (1980), “A Feasible Method for Standard Errors of Estimate in Maximum
Likelihood Factor Analysis,” Psychometrika, 45, 237–247.

Jennrich, R. I., and Robinson, S. M. (1969), “A Newton–Raphson Algorithm for Maximum Likelihood
Factor Analysis,” Psychometrika, 34, 111–123.

Jennrich, R. I., and Sampson, P. F. (1966), “Rotation for Simple Loadings,” Psychometrika, 31, 313–323.
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Empirical Methods and the Law

Theodore Eisenberg

For the rational study of the law the black letter man may be the man of the present, but
the man of the future is the man of statistics and the master of economics.

Oliver Wendell Holmes,
The Path of the Law (1897)

One can divide empirical analysis of legal issues into three major branches: (1)
the use of scientific empirical analysis by litigants to attempt to prevail in individual
cases, (2) the use of social scientific empirical analysis in individual cases, and (3) the
use of empirical methods to describe the legal system’s operation. The first two uses
present difficulties that reflect a fundamental limitation on using statistical methods
in law: the difference between establishing statistical association and establishing
actual causation in an individual case filtered through our adversary legal system.
The third use encounters no such obstacle and can aid understanding of how the
legal system operates and inform policymakers. Accurate description of the legal
system’s operation can in turn influence the outcome of specific cases. More important,
accurate description of the legal system can supply the information necessary for
sound policymaking; for example, a substantial body of evidence suggests that our
civil justice system performs quite well.

1. “HARD” SCIENTIFIC EMPIRICAL ANALYSIS

Scientific statistical analysis of evidentiary issues in individual cases is common
in criminal and civil cases. The most important class of scientific evidence relates to
forensic identification. In this field, DNA testing has fostered a revolution. DNA test-
ing has been subjected to levels of rigorous analysis not previously applied to forensic
identification reasoning. The debates generated by DNA testing may reverberate back
onto more traditional forensic identification methods. Pure statistical questions also
arise in a variety of other contexts.

1.1 DNA Testing

DNA matching is now common in criminal and civil cases. Many articles and
books on the subject are available (e.g., Aitken 1995; Roberston and Vignaux 1995;
Schum 1994). Likelihood ratios measure the strength of DNA evidence supporting
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the hypothesis that a suspect is the source of a sample, as against the alternative
hypothesis that someone other than the suspect is the source (e.g., Mellen and Royall
1997). Proper execution of DNA analysis has triggered substantial debate (e.g., Aitken
1995, pp. 92–106; Evett 1991) and has led to two National Research Council (NRC)
reports (NRC 1992, 1996) and to critiques of the NRC reports (e.g., Donnelly and
Friedman 1999; Lempert 1997).

In addition to baseline discussions about DNA evidence, increasing use of DNA
databases in England, Wales, and the United States has generated questions about
the NRC’s approved methods of analyzing and reporting data when a suspect has
been identified through a DNA database search and not from independent related
evidence. The NRC (1996) recommended that when a suspect is found by a search
of a DNA database, the random-match probability “should be multiplied by. . .the
number of persons in the database” (p. 40). Donnelly and Friedman (1999) suggested
that the NRC approach is incorrect (p. 944). In their view, the fact that a DNA match
is “found only after a search does not diminish the value of the evidence;” the NRC
(1996) requires “a testifying expert to drastically understate the value of the evidence”
(p. 933). They base their differences with the NRC on the tendency of statisticians “to
export to the legal context methods that were developed to assist scientific inquiries
and that appear more suitable in that context than in adjudication” (p. 934).

1.2 Implications of the DNA Testing Debates

Notwithstanding the debates, DNA inquiries tend to be regarded as purely sci-
entific. But DNA testing can be viewed as an instance of a larger class of forensic
identification techniques. For example, the question whether two fingerprints, hand-
writings, gun barrels, or hair samples match can be approached through reasoning
applied in the DNA context. Of particular importance is quantifying the probability of
erroneous matches. But this has not been done. Instead, many forensic scientists are
content to assert that no two of these objects can be alike (Saks 1998, p. 1082). Except
for DNA-type matching, forensic identification sciences “have not taken the trouble
to collect data on populations of forensically relevant objects so that the probability
of erroneous matches can be calculated” (pp. 1087–1088). It has been suggested that
the data-based and probabilistic approach of DNA typing will become the norm of
all forensic identification sciences (Saks and Koehler 1991). Seeds of this theme with
respect to human hair comparisons have been given by Fienberg (1989, pp. 64–67).

1.3 Scientific Analysis in Other Contexts

Reasonably pure statistical inquiries arise in many contexts. Illustrations of sci-
entific inquiries include regression estimates of damages in price-fixing cases (Finkel-
stein and Levenbach 1983), estimates of the quantity of drugs handled using predictive



distributions (Aitken, Bring, Leonard, and Papasouliotis 1997), and other sampling
issues, including those relating to tax allocations of sales to different governmental
authorities, sampling for public confusion in trademark cases, sampling to measure
royalties by the American Society of Composers, Authors & Publishers (ASCAP),
and census undercount issues (Finkelstein and Levin 1980, pp. 269–283). The data
available in legal cases often are not ideal. Bayesian techniques for dealing with
missing data in trial testimony have been proposed (Kadane and Terrin 1997).

2. “SOFT” SOCIAL SCIENTIFIC
EMPIRICAL ANALYSIS

Often the empirical question in a case is not of the form typified by whether
DNA matches are the proper way to estimate damages. Rather, it is whether human
beings have behaved in a particular manner that cannot be proven by reference to
physical evidence. In analyzing human behavior in legal disputes, statisticians need
to be aware of their own limitations and the special nature of the adversary process
(Fienberg 1997).

Much of the law relating to the use of social scientific statistics in individual cases
has developed in discrimination cases. Some of the crudest forms of discrimination
can be identified through simple description, without the need for statistical analysis.
For example, the absence over a period of years of any blacks on juries in counties
with substantial black populations establishes the existence of discrimination in juror
selection. (Norris v. State of Alabama 1935). But modern discrimination cases are
rarely so simple.

2.1 The Leading Modern Empirical Case: McCleskey v. Kemp

The most visible modern case relating to use of social scientific statistical proof
in specific cases is a death penalty case, McCleskey v. Kemp (1987). McCleskey,
a Georgia death row inmate, relied on one of the most comprehensive law-related
social science studies ever performed to claim that race had played an improper role
in his case. The study, led by Dr. David Baldus, examined more than 2,000 murders
that occurred in Georgia and considered 230 variables that could have explained
the data on nonracial grounds. The study concluded that defendants charged with
killing white victims were 4.3 times more likely to receive the death penalty than
defendants charged with killing blacks and that black defendants were 1.1 times
more likely to receive the death penalty than other defendants. (Baldus, Woodworth,
and Pulaski 1990). Thus a black defendant who killed a white victim had the greatest
likelihood of receiving a death sentence. Given the many other studies finding a
relation between race of capital case decision making (U.S. General Accounting
Office 1990), McCleskey’s case presented the Supreme Court with a plausible vehicle



in which to rely on empirical social science methodology to influence judicial decision
making in a vitally important area.

Despite the evidence, the McCleskey case foundered on the difference between
a statistical tendency and the legal system’s demand for proof of causation in each
case. The legal system claims to deal in certainty, or at least in direct causation. Social
scientists and statisticians often rely on statistical association without substantial con-
cern about whether the association corresponds with actual causation in a particular
observation.

The Supreme Court relied on this difference to discount McCleskey’s statistical
showing. In a 5–4 decision, in an opinion authored by Justice Powell, the Court held
that general statistical evidence showing that a particular state’s capital punishment
scheme operated in a discriminatory manner does not establish a constitutional vio-
lation. The Court found that the empirical study established “at most. . .a discrepancy
that appears to correlate with race” (481 U.S. at 291 n. 7). The majority opinion stated
that “even a sophisticated multiple-regression analysis such as the Baldus study can
demonstrate only a risk that the factor of race entered into some capital sentencing
decisions and a necessarily lesser risk that race entered into any particular sentencing
decision.”

Because the Supreme Court had sometimes found in jury selection cases that
statistics standing alone were sufficient proof of discriminatory intent, Justice Pow-
ell’s opinion had to distinguish these cases. He explained that the prior jury selection
case had involved less complicated decisions and fewer decision makers. The many
actors and factors in a capital sentencing case increased the likelihood that other fac-
tors were responsible for racial effects, and thus rendered the jury selection precedents
inapplicable. Moreover, this complexity would increase the rebuttal burden intoler-
ably if the state were required to explain statewide statistics. Because the statistical
showing did not constitute a pattern as stark as in early jury discrimination cases, the
Court dismissed the statewide statistics as insufficient to support an inference that the
decision makers in the McCleskey case acted with a discriminatory purpose.

The ruling’s effect on later race-based claims in capital cases has been devastating.
No race-based challenge to a capital sentence has been sustained in the 13 years since
the McCleskey case. In a poignant change of view, Justice Powell reported that he
wished that he could change his deciding vote in the McCleskey case (Von Drehle
1994). In the post-McCleskey era, it has been suggested that analyzing individual
prosecutorial offices’ decision making, rather than statewide data, could overcome
the Court’s concerns in McCleskey (Blume, Eisenberg, and Johnson 1998).

2.2 Voting Rights and Employment Cases

The legal standard applicable to race-based constitutional challenges rendered
the empirical showing in the McCleskey case vulnerable. In two other classes of



discrimination cases, voting discrimination and employment discrimination, litigants
use sophisticated statistical methods, including regression, with somewhat greater
success. One form of voting discrimination, racial dilution claims, usually involves
establishing that black voters are less able than white voters to elect the candidate of
their choice or to otherwise influence the political process. The standard method of
proof in such cases, referred to by the Supreme Court in Thornburg v. Gingles (1986)
and widely relied on by lower courts, is ecological regression. Despite its accep-
tance in court, this technique remains controversial within the statistical community
(Freedman, Ostland, Roberts, and Klein 1999; King 1999).

In employment discrimination cases brought under federal statutes such as Ti-
tle VII of the Civil Rights Act of 1964, the plaintiff need only establish a statistical
disparity to put the burden on the defendant of justifying its hiring practices. In em-
ployment discrimination cases, the Supreme Court has articulated a sensible attitude
about the use of statistics and regression analysis. Under Bazemore v. Friday (1986),
an employment discrimination plaintiff need not find information about all possibly
relevant variables in a statistical model. The Court stated the following:

While the omission of variables from a regression analysis may render the analysis less
probative than it otherwise might be, it can hardly be said, absent some other infirmity,
that an analysis which accounts for the major factors “must be considered unacceptable
as evidence of discrimination.” . . .Normally, failure to include variables will affect the
analysis’ probativeness, not its admissibility.
Importantly, it is clear that a regression analysis that includes less than “all measurable
variables” may serve to prove a plaintiff’s case. A plaintiff in a Title VII suit need
not prove discrimination with scientific certainty; rather, his or her burden is to prove
discrimination by a preponderance of the evidence.. . . [478 U.S. at 400-01 (footnote &
citations omitted)].

Cases that seek to establish violations of Title VII using statistics are called dis-
parate impact cases. However promising the disparate impact standard as articulated
in Bazemore sounds, it is not so easy to prevail in such cases in practice. The Supreme
Court has not approved a showing of disparate impact in an employment case in many
years, although plaintiffs have prevailed in cases in lower courts.

2.3 Empirical Methods in Nondiscrimination Cases

Although discrimination cases receive most of the legal system’s attention, social
scientific statistical analysis plays an important role in other litigation contexts. For
example, with the growing use of trial consultants, defendants who believe that they
cannot obtain a fair trial in the plaintiff’s venue of choice, or who merely wish to
delay proceedings, usually try to demonstrate to the court the existence of local bias.
Statistical analysis using logistic regression suggests that forum in litigation does
matter (Clermont and Eisenberg 1995, 1998). Attempts to demonstrate bias can be



done through statistical analysis of public opinion polls showing the existence of bias
through analysis of simple tables and hypothesis tests using chi-squared distributions.
Such polls are paid for and conducted by the defendant and can be highly suspect.
Published opinions suggest that successful motions based on such polls are difficult
to obtain (First Heights Bank, FSB v. Gutierrez 1993; Rutledge v. Arizona Board of
Regents 1985; State v. Rice 1993). But much of the activity in this field occurs in
preliminary motions that are unlikely to be published and may not be discussed on
appeal.

The dearth of thoroughly reported proceedings enhances the opportunities for
gamesmanship. Leading litigation consulting firms have been known to change the
order and phrasing of questions to elicit the paying client’s desired response. These
results are presented to the court without noting the prior inconsistent practice (Poe,
d/b/a Lake Guide Service v. PPG Industries, Inc. et al. 1994).

3. EMPIRICAL ANALYSIS OF THE
LEGAL SYSTEM

Legal, economic, sociological, psychological, and other scholars regularly use
social science methodology to describe and analyze the legal system. One can confi-
dently forecast increasing use of law-related empirical and statistical analysis. Schol-
ars unconstrained by the need to satisfy legal standards applicable to individual cases
have broad and inexpensive resources available. Growth in online databases, their in-
creasingly facile availability over the internet, and the availability of inexpensive and
sophisticated commercial statistical programs promise to improve statistical training
at the undergraduate level and to facilitate empirical legal research at all levels.

The most important contribution of empirical legal research will not be statisti-
cal analyses that help determine individual cases. Rather, by providing an accurate
portrayal of how the legal system operates, empirical legal analysis can influence not
only individual cases, but also larger policy questions. Much room for progress exists,
because misperceptions about the legal system are common.

3.1 A Nonlitigious Citizenry

Recent studies reveal much about how the system of civil justice works, often with
surprising results. Contrary to popular and professional belief, our legal system is not
dominated by a highly litigious citizenry. Surveys of the general public and detailed
analysis of hospital records show that fewer than 10% of malpractice and product
liability victims initiate legal action (Danzon 1985; Hensler et al. 1991; Report of the
Harvard Medical Practice Study 1990).



3.2 Surprisingly Sober and Predictable Juries

Studies also show that the law functions in a sober and predictable manner in im-
portant and controversial areas. Medical malpractice studies using contingency tables
and regression models find that the quality of medical care is an important determinant
of a defendant’s medical malpractice liability and that care quality and injury sever-
ity are extremely important in determining expected settlements (Farber and White
1991, 1994; Vidmar 1995). Time trend analysis of product liability cases shows no
pro-plaintiff trend during a period when the product liability system was said to be
out of control in favor of plaintiffs (Eisenberg 1999; Eisenberg and Henderson 1992).
Regression analysis of the relation between punitive damages and compensatory dam-
ages shows that punitive awards are strongly tied to the level of compensatory awards
and that not only are jurors not pulling numbers out of the air, but they also are behav-
ing about the same as judges do in punitive damages cases (Eisenberg, LaFountain,
Ostrom, Rottman, and Wells 2000; Eisenberg, Goerdt, Ostrom, Rottman, and Wells
1997). Interview evidence and controlled experiments suggest that jurors are far from
being out-of-control Robin Hoods seeking to steal from the rich and give to the poor
(Hans and Lofquist 1992; Hans and Vidmar 1986; MacCoun 1996).

3.3 Deeper Understanding of Capital Cases

Statistical, psychological, and empirical legal work is yielding deeper under-
standing of behavior in capital cases. Widespread beliefs about states’ propensity to
impose the death penalty are shaped by states with large death row populations, such
as California, Florida, and Texas. Yet none of these states imposes a high number
of death penalties per murder (Blume and Eisenberg 1999, p. 500). Nevada and Ok-
lahoma impose the death penalty at more than twice the rate per murder than any
of these larger states. And, despite the belief of many that the judiciary is largely
politicized, Cox proportional hazard models of which defendants obtain relief from
death row show no effects based on a state’s method of selecting judges.

Empirical studies at the case level also have been revealing. Using Bayesian
hierarchical models, Stasny, Kadane, and Fritsch (1998) reported support for the belief
that jurors who would be excluded from death penalty juries behave differently from
other jurors in non–capital offense trials. Surveys and experiments yield similar results
(Cowan, Thompson, and Ellsworth 1984; Fitzgerald and Ellsworth 1984; Haney,
Hurtado, and Vega 1994). Eisenberg and Wells (1993) used simple hypothesis tests
to show that jurors’ misperceptions about how long a murderer will actually serve in
prison can lead them to impose the death penalty when they otherwise would not, a
result partly relied on by the Supreme Court in Simmons v. South Carolina (1994).
Eisenberg, Garvey, and Wells (2000) analyzed survey data based on interviews with
actual capital case jurors to construct ordered probit models that explain the influence
of race, religion, and attitude toward the death penalty on jurors’ first votes in capital
cases.



3.4 Interpreting Case Outcomes

A persistent issue in interpreting even sound legal system data is that the vast
majority of cases settle and that most settlements are not publicly available. Obser-
vation often is limited to cases that reach trial or appeal. Yet such cases need not be
random samples of all cases. Drawing inferences about the system as a whole can be
difficult when one tends to observe a small and biased subset of cases (Priest and Klein
1984). Despite this selection effect, substantial progress can be made in interpreting
the mass of case outcomes. Iteratively reweighted least squares analysis using delta
method linearization shows a strong correlation, by subject area, between plaintiff
win rates at trial and plaintiff win rates in pretrial stages of adjudication (Eisenberg
1991). A similar correlation exists between adjudicated and settled cases (Eisenberg
1994, pp. 292–293). Thus observers of case outcomes in a subject area at one pro-
cedural stage can make informed assessments of how that category fares at other
stages. Sensitivity to the selection effect does not necessarily preclude the drawing of
reasonable conclusions from observing win rates in adjudicated cases (Clermont and
Eisenberg 1998).

A further selection effect arises because only a small fraction of the vast number
of potential claims result in the filing of a lawsuit. Yet the process through which
cases are selected for litigation cannot be ignored because it does not yield a random
selection of claims. Probit, bivariate probit, and competing risk models that account
for case selection confirms that plaintiff win rates and trial rates can be viewed as
partly a consequence of the selection of disputes for filing (Eisenberg and Farber
1997, 1999).

4. DESIRABLE STATISTICAL CONTRIBUTIONS

Both case-specific and system-wide statistical analysis of legal issues would ben-
efit from advances in statistical methodology. Because many law-related datasets have
sparse cells, there is a need for advances in inferences involving small samples. Legal
data are often categorical, and models often suffer from problems of endogeneity.
Advances in the ease of use of tools for factor analysis of categorical data and for
solving systems of equations involving ordered and categorical response variables are
also needed. Data often cluster on more than one variable; readily accessible meth-
ods for estimating hierarchical models with random coefficients are needed. These
methodological improvements need to be accompanied by greater determination on
the part of government authorities to collect systematic data about the legal system.
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Demography: Past, Present, and Future

Yu Xie

In a classic statement, Hauser and Duncan (1959) defined demography as “the
study of the size, territorial distribution, and composition of population, changes
therein, and the components of such changes” (p. 2). It was fortunate that Hauser
and Duncan explicitly included “composition of population” and “changes therein”
in their definition, for their inclusion has broadened demography to encompass two
types of demography: formal demography and population studies. Formal demogra-
phy, whose origin can be traced to John Graunt in 1662, is concerned with fertility,
mortality, age structure, and spatial distribution of human populations. Population
studies is concerned with population compositions and changes from substantive
viewpoints anchored in another discipline, be it sociological, economic, biological,
or anthropological; its origin can be traced to Thomas Malthus in 1798. By definition,
population studies is interdisciplinary, bordering between formal demography and a
substantive discipline that is often, but not necessarily, a social science.

Defined in this way, demography provides the empirical foundation on which
other social sciences are built. It is hard to imagine that a social science can advance
steadily without first knowing the basic information about the human population that it
studies. As a field of inquiry, demography enjoyed a rapid growth in the 20th century.
For example, the membership of the Population Association of America (PAA), the
primary association for demographers in the U.S. founded in 1931, grew from fewer
than 500 in 1956 to more than 3,000 in 1999. This growth is remarkable given the
virtual absence of demography departments at American universities (with a few
exceptions, such as the University of California Berkeley). To recognize contributions
made by demographers, one only needs to be reminded of factual information about
contemporary societies. Much of what we know as “statistical facts” about American
society, for instance, has been provided or studied by demographers. Examples include
socioeconomic inequalities by race (Farley 1984) and gender (Bianchi and Spain
1986), residential segregation by race (Duncan 1957; Massey and Denton 1993),
intergenerational social mobility (Blau and Duncan 1967; Featherman and Hauser
1978), increasing trends of divorce (Sweet and Bumpass 1987) and cohabitation
(Bumpass, Sweet, and Cherlin 1991), consequences of single parenthood for children
(McLanahan and Sandefur 1994), rising income inequality (Danziger and Gottschalk
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1995), and increasing economic returns for college education (Mare 1995).
Besides providing factual information, demography has also been fundamental

in forecasting future states of human societies. Although demographic forecasting is
subject to uncertainty, as any type of forecasting, demographers are able to predict
future population sizes by age with a high degree of confidence, utilizing information
pertaining to past fertility, regularity in age patterns of mortality, and likely future
levels of mortality. A notable example of demographic forecasting is the work by
Lee and Tuljapurkar (1994, 1997), who demonstrated how demographic forces (i.e.,
projected improvements in longevity) dramatically impact future demands on social
security.

Formal demography and population studies not only take on different subject
matters, but also rely on different methodological approaches. Characteristically, for-
mal demography is built on mathematics and thus is closely tied to mathematical
demography. It has a rich arsenal of powerful research tools, such as life tables and
stable population theory, the latter of which is usually accredited to Alfred J. Lokta in
1922. Note that mathematical models in formal demography sometimes incorporate
stochastic processes. The refinement and formalization of mathematical demography
and its successful application to human populations can be found in works by Coale
(1972), Keyfitz (1985), Preston and Campbell (1993), Rogers (1975), and Sheps and
Menken (1973). In its applications, mathematical demography typically presumes
access to population data and handles heterogeneity through disaggregation (i.e., di-
viding a population into subpopulations).

Methods used in population studies are eclectic, borrowing heavily from sub-
stantive social science disciplines. Given the widespread use of survey data and the
predominant role of statistical inference in all social science disciplines since the
1960s, it should come as no surprise that the characteristic method in population
studies is statistical. [It should be noted that qualitative methods are also used in
demography (Kertzer and Fricke 1997).] The types of statistical methods used by
demographers vary a great deal and change quickly, ranging from path analysis and
structural equations (Duncan 1975) and log-linear models (Goodman 1984) to econo-
metric models (Heckman 1979; Willis and Rosen 1979) and event history models (Ya-
maguchi 1991). Substantive research in population studies usually involves statistical
analysis of sample data (as opposed to population data) in a multivariate framework;
sometimes, researchers develop statistical models to test hypotheses derived from an
individual-level behavioral model. For this reason, population studies is closely tied
to statistical demography.

Although it is useful to draw the distinction between formal demography and
population studies, the boundary between the two is neither fixed nor impermeable.
Indeed, this boundary presents many exciting topics for research. For example, it
is possible, and indeed desirable, to estimate demographic rates from sample data
with statistical models before feeding them as input for mathematical analysis in for-



mal demography (e.g., Clogg and Eliason 1988; Hoem 1987; Land, Guralnik, and
Blazer 1994; Xie 1990; Xie and Pimentel 1992). There are good reasons for using
statistical tools in combination with mathematical models. First, the advancement of
demography has brought with it more, richer, and better data in the form of sample
data; the use of sample data requires statistical tools; and treating sample data as
exactly known quantities runs the danger of being contaminated by sampling errors.
Second, statistical models are better suited for examining group differences through
the use of covariates, for the method of disaggregation presumes a full interaction
model and may lead to inaccurate estimation due to small group sizes. Third, because
observed data may sometimes be irregular or simply missing, statistical models can
help smooth or impute data (e.g., Little and Rubin 1987). Conversely, techniques in
formal demography (e.g., indirect estimation, intercensal cohort comparisons, model
life tables) can also be utilized to improve statistical analysis. For example, math-
ematical relationships for demographic components are often used to correct faulty
data or provide missing data before they are analyzed with statistical techniques.

Let me now turn to the methodological implications of Hauser and Duncan’s two
important phrases “composition of population” and “changes therein” in their defini-
tion of demography. The first phrase refers to population heterogeneity; the second, to
dynamic processes. Population heterogeneity or variability is fundamental to all social
science. As articulated by Mayr (1982), one of the most important and long-lasting
influences of Darwin’s evolution theory is “population thinking,” as distinguished
from “typological thinking” prevalent in physical science. Briefly stated, typological
thinking attempts to discover the “essence” or “truth” in society and human nature.
Once well understood, a scientific concept or law is always generalizable to all settings
at all times. If the observed phenomena appear in disarray, then averages are taken
and deviations are disregarded. In the history of statistics, typological thinking is as-
sociated with the “average man” in Quetelet’s social physics. In contrast, population
thinking makes variations the very subject matter to be studied. It was Francis Gal-
ton, Darwin’s cousin, who introduced population thinking into the field of statistics
and in so doing discovered correlation and regression (see Xie 1988 and references
therein). Demography should pride itself for approaching social phenomena through
population thinking by focusing on variations by group and individual characteristics.
For example, demographers have long been interested in how life chances differ by
gender, age, race, region, and family origin, as well as historical and cultural context.

In studying social changes, demographers have advocated the perspectives of
cohort (Ryder 1965) and life course (Elder 1985). Whereas the latter is concerned
with the occurrences of significant events and transitions over individuals’ lives and
the dependence of these events and transitions on earlier experiences and societal
forces, the former relates individuals’ different experiences at the micro level to so-
cial changes at the macro level. That is, demographers are especially interested in
both age-graded intracohort changes and intercohort changes resulting from cohort



replacement. In addition, demographers also accept the notion that certain temporal
effects are period based, affecting all individuals regardless of age. Due to the linear
dependency of the three measures, however, the conceptual model of age, period,
and cohort is intrinsically underidentified, and its statistical implementation requires
constraining assumptions based on substantive considerations (Mason and Fienberg
1985).

Many of the advances in demography over the past few decades cannot be sep-
arated from the field’s close relationship to statistics. Indeed, it is the integration
of statistical methods into demographic research that has enabled demographers to
study population heterogeneity and change with sample data. A prime example where
statistical methodology has significantly impacted demography is event history anal-
ysis (also called survival models or hazard models). As argued by Tuma and Hannan
(1984), event history analysis is ideally suited for studying social dynamics and so-
cial processes, because it deals with the timing of transitions or event occurrences.
Although event history analysis was invented by demographers in the form of life ta-
bles, the life table approach in mathematical demography assumes population data and
cannot easily incorporate population heterogeneity except by disaggregation. Cox’s
(1972) influential work bridged the gap between life tables and regression analysis by
focusing on estimation of the effects of covariates using sample data. The influence
of Cox (1972) in demography goes beyond his innovative estimation method, for it
represents a shift in methodological orientation toward statistical demography. With
this new orientation, event history analysis is seen as a statistical operationalization
of life tables for sample data, with attention paid primarily to group differences or the
effects of covariates.

Studying population heterogeneity by observed group or individual character-
istics with event history analysis has proven fruitful; see, for example, Thornton,
Axinn, and Teachman’s (1995) study of the effects of education on the likelihood of
cohabitation and marriage and Wu’s (1996) work on the determinants of premarital
childbearing. In addition, demographers have a long-standing concern with unob-
served heterogeneity in event history analysis and life tables (e.g., Sheps and Menken
1973). Unlike in the case of linear models, unobserved heterogeneity uncorrelated
with covariates in event history data could bias estimated hazards through altering
the composition of the exposed population at risk (Vaupel and Yashin 1985). For
example, demographers have long been puzzled as to whether the well-documented
black/white mortality crossover is due to biological selection, in which old blacks are
more fit than old whites (Manton, Poss, and Wing 1979), or due to age misreport-
ing (Preston, Elo, Rosenwaike, and Hill 1996). There are two broad approaches to
handling unobserved heterogeneity: parametric mixture models (see Powers and Xie
2000) and Heckman and Singer’s (1984) nonparametric method that is analogous to
latent class models for contingency tables. To improve identification, demographers
have also capitalized on pooled information from clustered data structures, such as



siblings or twins, assuming unobserved heterogeneity at the cluster level instead of
at the individual level (Guo and Rodriguez 1992; Yashin and Iachine 1997).

As stated earlier, population studies is interdisciplinary, with sociological and
economic demography taking center stage. In both sociology and economics, there
has been a methodological tradition of structural equation models simultaneously
representing multiple processes with strong theoretical priors. Event history analysis
has been incorporated into this framework, with the hazard rate treated as a limited
dependent variable. In this framework, demographers have gone beyond assuming un-
observed heterogeneity orthogonal to covariates. Instead, they consider unobserved
heterogeneity that is selective with respect to observed variables (Lillard, Brien, and
Waite 1995). But identification of such models is difficult and requires pooled infor-
mation from repeated events and strong parametric assumptions.

Where will demography go from here? Although predicting the future inher-
ently carries some risks, past experience provides some basis for making cautionary
conjectures about demography’s future. First, demography, especially in the United
States, has been a very successful interdisciplinary enterprise and will continue to be
one. Not only will it retain sociologists and economists who already strongly identify
themselves with demography, but it will also attract the interest of scholars in other
social and biological sciences. In particular, incorporation of biological approaches in
demographic research looks promising (for a recent example, see Yashin and Iachine
1997). Second, the interdisciplinary nature of demography makes it an ideal locus for
innovating, testing, and popularizing new statistical methods. This means closer ties
between statistical science and demography, as statistical demography continues to
affirm its prominent role in demography. Third, in the burgeoning “information age,”
the public will demand more easily accessible information about the society in which
they live, as exemplified by the strong public interest in the implementation of the
2000 U.S. Census. Demography can play an important role in providing that informa-
tion. The internet is and will continue to be a powerful tool for bringing demographic
information to the general public and policymakers alike.

One substantive area where demography is rapidly making progress is in research
on aging. As the elderly comprise an increasingly large portion of the population in
many societies, including the United States, demographers have become increasingly
interested in aging (e.g., Wachter and Finch 1997). Economists and sociologists are
already busy studying social and economic aspects of aging, such as retirement, health,
residence, economic security, and family support. The demography of aging has also
benefited from contributions from scholars in biology, psychology, public health,
gerontology, and geriatrics. This is an area where the aforementioned conjectures
about the future of demography will likely be manifested, as we will see in the
demography of aging more interdisciplinary work, newer and better applications of
statistical methodology, and provision of more public and scientific information.
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Chapter 3

Statistics in the Physical Sciences and
Engineering

Diane Lambert

No doubt much of the progress in statistics in the 1900s can be traced back to
statisticians who grappled with solving real problems, many of which have roots in
the physical sciences and engineering. For example, George Box developed response
surface designs working with chemical engineers, John Tukey developed exploratory
data analysis working with telecommunications engineers, and Abraham Wald de-
veloped sequential testing working with military engineers. These statisticians had a
strong sense of what was important in the area of application, as well as what statis-
tics could provide. The beginning of the 2000s is a good time to reflect on some of
the current problems in the physical sciences and engineering, and how they might
lead to new advances in statistics—or, at the least, what statisticians can contribute to
solving these problems. My hope is that this set of vignettes will convey some sense
of the excitement over the opportunities for statistics and statisticians that those of us
who work with physical scientists and engineers feel.

The vignettes are loosely grouped by field application, starting with earth sciences
and then moving on to telecommunications, quality control, drug screening, and
advanced manufacturing. Superficially, these areas have little in common, but they do
share some deep similarities. Most of these areas, for example, face new opportunities
and challenges because of our increasing ability to collect tremendous amounts of data.
More and more often, the unit of sample size in the physical sciences and engineering
is not the number of observations, but rather the number of gigabytes of space needed
to store the data. Despite the tremendous advances in raw computational power,
processing so much data can still be painful, and visualizing, exploring, and modeling
the data can be much worse. As Doug Nychka points out, though, one advantage to
working with physical scientists and engineers is that many of them have years of
experience designing systems for collecting, processing, analyzing, and modeling
massive sets of data, and statisticians can learn from their experience. Moreover,
as Bert Gunter and Dan Holder point out, many of the advances are encouraging
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statisticians to collaborate not only with subject matter specialists, but also with
computer scientists.

Another theme in several of the vignettes is that statistical models alone are
likely to be insufficient. What is needed instead are models that incorporate both
scientific understanding and randomness. David Vere-Jones, for example, writes that
progress in earthquake prediction requires advances in understanding the geophysics
that produce earthquakes and progress in building statistical models that respect the
geophysics and are appropriate for highly clustered, self-similar data. Cleveland and
Sun make the same point in the context of internet data: Models are much more
likely to be successful and to play a role in networking if they take into account the
protocols used to pass data around the internet. On a slightly different note, Rissanen
and Yu show that the information theory that underlies signal compression and channel
coding (used in wireless communications, for example) both draws from and adds to
statistics, especially statistical model selection.

Even areas of engineering in which statistics has a long history, like quality
control and reliability, offer new challenges to statistics. As Jerry Lawless points
out, product degradation in dynamic environments leads to models like multivariate
point processes for which inference is barely developed. He also points out that even
the basic steps of defining and measuring quality are problematic in some contexts,
such as software. Zach Stoumbos and his co-authors point out that the gap between
the methods in statistical quality control that statisticians think are needed and what
actually are needed is large and increasing. Finally, Vijay Nair, Mark Hansen, and Jan
Shi make clear that the spatial and temporal statistical models needed in advanced
manufacturing are perhaps more like those needed in geophysics than the statistical
models commonly viewed as relevant to process monitoring.

This set of vignettes shows the enormous opportunities for statisticians to con-
tribute to advances in the physical sciences and engineering while working at the
forefront of statistical methodology. There is a growing sense in some areas of the
sciences and engineering that branches of computer science, such as data mining,
are more appropriate than statistics for understanding massive, complex data. But
this is not so much a threat as an opportunity to learn new ways of working with
data and building models. A continuing, and perhaps more serious threat is the view
that statistical theory is harder, loftier, and a more worthy intellectual pursuit than is
working on serious statistical applications. This easily slips into the view that statis-
ticians involved in applications need to keep up with theory, but statisticians involved
in building theory do not need to be involved in applications. These vignettes, like the
others before it on the life sciences and the business and social sciences in preceding
issues of JASA, show that grappling with methodology to solve real problems in real
applications is as worthy and challenging an intellectual pursuit as can be and the best
way to ensure that theory is worthwhile.



Challenges in Understanding the
Atmosphere

Doug Nychka

Understanding climate change, forecasting the weather for next week, or predict-
ing turbulence for an aircraft flight—each of these activities combines a knowledge
of the atmosphere with data analysis and statistical science. The practical benefits of
these activities to our society and economy are balanced by the fascinating interplay
between the models that describe geophysical processes and need for statistics to
quantify uncertainty and to assimilate observational data.

To provide an overview of statistics in the atmospheric sciences, I have organized
some examples around different scales, from large-scale problems connected with
our climate to the localized phenomenon of clear air turbulence. This scope will
showcase the role of statistics, progressing from a support role in the development
and assessment of numerical climate models, through a partnership in forecasting
weather, and to a central role in predicting small-scale phenomena such as clear air
turbulence. (As a companion to this short article, the reader is referred to Berliner,
Nychka, and Hoar 1999 for a larger set of examples with more detail and an extensive
bibliography.) Before giving these examples, however, I outline some of the physical
principles that underlie atmospheric science.

1. PHYSICAL EQUATIONS FOR THE ATMOSPHERE

The motion and evolution of the atmosphere can be determined from a system of
several nonlinear partial differential equations. These equations, derived from clas-
sical results in thermodynamics and fluid mechanics on a rotating sphere, are well
accepted as the fundamental description of atmospheric flow (see Salby 1996 for an
introduction) and are referred to as the primitive equations. So if a complete physical
description is known, then why is statistics needed? The short answer is that these
equations are simply too complicated to solve in an exact manner for any practical
modeling of the atmosphere. A more deliberate answer is related to scales. The prim-
itive equations afford links between large-scale and small-scale motions. Even if one
wanted to focus on large-scale motions, say in a climate study, it would be necessary
to solve the equations at a much finer scale. This is because energy from smaller
scales feeds back into the larger scale motion.

Another property of the primitive equations is a sensitive dependence on initial
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conditions. This feature comes under the rubric of chaos (see Berliner 1992) and was
noted by E. Lorenz in the 1960s. Suppose that one attempted to solve the primitive
equations using two slightly different initial conditions. The nonlinear components
in the primitive equations would tend to amplify small differences at t = 0 into
significant departures as t increased. Eventually the two solutions would appear to
be independent of one another. Of course this has tremendous practical significance
for forecasting weather. One never knows the state of the atmosphere perfectly, and
although this discrepancy may be small, differences between the forecast and the
true state will diverge exponentially as a function of the forecast time. This property
also has implications for variability among climate experiments, because a climate
situation also depends on initial conditions of the atmosphere and ocean.

2. CLIMATE CHANGE

2.1 General Circulation Models

A focus for climate studies is the use of a general circulation model (GCM).
The development and evaluation of these models provides a rich area for statistical
research. A GCM is an adaptation of the primitive equations to a spatial grid and
discrete steps in time. The initials GCM are sometimes mistaken for “global climate
model,” which is also an apt description. Long-term changes in the earth’s atmosphere
require modeling the large-scale, global motions. It is important for the statistical com-
munity to realize that such models represent the confluence of many scientists’ efforts,
running to many millions of lines of code and requiring high-performance computing
to run at useful levels of resolution. One example, the Community Climate Model
(Kiehl et al. 1998), is typically run on a spatial grid of approximately 8,000 points
at 18 vertical levels with a time step of 20 minutes. A typical climate experiment
might involve stepping the model every 20 minutes for hundreds of years, producing
large and, depending on your definition, massive datasets. Because of the necessity
of dealing with model output, atmospheric scientists are very data savvy, and statisti-
cians can benefit from their experience in manipulating large datasets. The statistics
used to summarize model output are often rudimentary, however, and one challenge
for statistical research is to provide a more comprehensive analysis of GCM output
beyond means and variances. For example, the societal impacts of climate change
might be tied to the occurrence of extreme events, not shifts in mean level. At a more
fundamental level, a GCM is a dynamical system. Delineating the attractor, finding
regimes where the system is nearly linear, and reducing the dimension of the state
vector are important theoretical questions but are made difficult by the sheer size of
the model.



2.2 Subgrid Scale Processes and Parameterizations

Despite its large state vector, a typical GCM such as the Community Climate
Model has grid boxes that are 300 km × 300 km (2.8◦× 2.8◦) at the equator. Features
smaller than these horizontal dimensions cannot be resolved by the model and are
referred to as subgrid scale processes. Although some features of the atmosphere are
of large scale, there are crucial components that are smaller than this grid size; for
example, the strong convection events associated with thunderstorms. In the tropics
these storms generate strong updrafts and are a mechanism for vertical transport in
the atmosphere. Convection also produces clouds that in turn influence the amount
of radiation reaching the surface and the amount trapped by the atmosphere.

Clearly, any model of the atmosphere’s general circulation must account for
localized strong convection, and any model for radiation must include the influence
of clouds. But both of these are subgrid scale processes not directly represented
by the model state vector. These processes are accounted for through a technique
known as parameterization. (This is different from a statistician’s use of this term.)
A parameterization is a function that expresses a spatial average (or higher moments)
of the subgrid scale process in terms of variables that are part of the model’s state
vector. The parameterization is often grounded on physical arguments but can often
involve simplifying approximations and empirically derived relationships. In many
cases GCMs are sensitive to how subgrid scale processes are parameterized, and in
particular climate results hinge on how clouds reflect and absorb radiation.

Statistics has a clear role to play in improving parameterizations. Building on
conventional approaches, one can use observational data to estimate an empirical
regression relationship between subgrid scale processes and the grid values. One
successful example of these ideas is using neural network models to parameterize the
fraction of clouds in a grid box (Bailey, Berliner, Collins, and Kiehl 1999).

The fact that a statistical approach, and most other schemes, does not give perfect
predictions of subgrid scale features raises a deeper conceptual issue concerning
geophysical parameterizations. The subgrid scale processes may be modeled more
realistically with the inclusion of a random component. At some level, the subgrid
scale effects and their resulting feedback to larger scales are not predictable, and
adding a random component is an efficient way to model this uncertainty. GCMs
are deterministic, and so adding a stochastic component would demand a different
perspective. One potential benefit is that the increased variability in the model due
to stochastic terms may provide better simulations for tail behavior and extremes of
climate variables.

2.3 Assessing Climate Change

The ingredients for studying climate change involve both observational data
and climate model output. (Current climate models combine a GCM with an ocean



Figure 1. A Comparison of Observation and Climate Model Results for Annual, Global Average Temper-
ature Anomalies. Deviations in annual global temperature relative to the observed temperatures over the
period 1861–1900. Points are observed average temperatures. Dashed and solid lines are experimental
results from the Climate System Model (CSM), National Center for Atmospheric Research. The dashed line
represents 1870 constant levels of greenhouse gas aerosols; the solid line represents increasing greenhouse
gases and aerosols.

circulation model, a land surface model, and also a model for sea ice.) A summary of
an experiment using the National Center for Atmospheric Research Climate System
Model (Boville and Gent 1998) is given in Figure 1. A “fingerprint” of climate change
(e.g., a spatial pattern of warming temperatures) is estimated from different runs of the
climate model, and the observed data are then regressed on one or more fingerprints.
The strength of the regression
relationship is used to draw inferences for climate change. Many methodological is-
sues are involved in carrying out a standard fingerprint analysis; an important recent
extension is to consider the analysis within a Bayesian framework (Berliner, Levine,
and Shea 1999). The observational record for temperatures is a rich area for spatial
statistics and statistical modeling. Just as the GCMs have model error, the observa-
tional record, especially in the 19th and early 20th centuries, is both irregular and
may include systematic biases. The compilation of monthly or annual means on a
regular spatial grid with reliable measures of uncertainty is a difficult problem, but is
important in any attempt to compare the climate of this century with climate model
simulations.

3. WEATHER FORECASTING

The need for accurate forecasts of the weather is undisputed. In this short overview,
I focus on the statistical foundations of weather forecasts rather than on operational



aspects of implementation or evaluation. Let xt denote the state of the atmosphere
at time t. A caricature of a forecast system is a complicated nonlinear function that
evolves the current state forward one-time step, xt+1 = g(xt). Without any other
information, one would use this relation to make a forecast at time t + 1, plugging
in our best estimate of the current state. Now suppose that atmospheric data, yt, are
available at time t and follow the model yt = h(xt) + et. Here h is a function based
on the measurement process and et is an error term. For most weather forecasts, the
primary observations are vertical profiles of the atmosphere obtained from weather
balloons (rawinsondes), but other information can come from satellite instruments,
Doppler radar, or other surface measurements. Making a forecast has two steps. The
first step assimilates the data to give an updated and hopefully a better estimate of
the current state. In Bayes language, with a prior for xt and a model for yt given
xt, one finds a posterior distribution of xt. The next step is to propagate the state
forward, using g to get a forecast. Formally this is just a change of variables: Given
the posterior distribution for xt, find the distribution of g(xt).

The atmospheric sciences have a mature literature on this basic problem and
solutions when distributions are Gaussian and g and h are approximately linear. Even
with these assumptions, the calculations are formidable: For operational forecasts,
x has a dimension on the order of 106 and y on the order of 105. Gaussian prior
distributions on x depend on covariance matrices that have complex, state-dependent
structure. Nonetheless, these covariance models must have a computationally efficient
representation to make the assimilation with data possible. Statistics can benefit from
the computational tools developed to handle large assimilation problems and can
make contributions to extending the distributional models to non-Gaussian data, such
as precipitation measurements.

The posterior distribution for g(xt), essentially a probabilistic forecast, usually
does not have a closed form. Current practice is to represent the distribution by a
sample of forecasts termed an ensemble. If the ensemble is constructed correctly,
then the variability among ensemble members should reflect the actual uncertainty in
the forecast. For a (Bayesian) statistician, the simplest way to construct the ensemble
is to draw a random sample from the posterior of xt and then propagate each member
of the sample forward by g. There are also more dynamically based strategies that also
involve the form of g. In any case, the key issue is whether measures of uncertainty
for the forecasts stand up to a frequentist criterion.

An important component of the forecast problem is that today’s posterior be-
comes tomorrow’s prior. Thus ensemble of forecasts should be constructed so that
they can function as a prior distribution for xt+1 during the next forecast period. In
general, repetition of the assimilation/forecast cycle is a fertile ground for studying
adaptive estimation, and poses theoretical questions concerning the convergence and
the limiting properties of approximate Bayes procedures.

At a deeper level, the assimilation and forecast problems in meteorology raise
issues of dimension reduction. The folklore in atmospheric dynamics is that the high-



dimensional state vector used to describe the atmosphere at a grid of points actually
lives in much a lower-dimensional manifold. Finding representations of this attractor
would help create ensembles and guide the choice of ensemble size.

4. PREDICTING CLEAR AIR TURBULENCE

Turbulence in the atmosphere and ocean is an area with still many open questions.
In most cases turbulence can be readily identified, but a simple and rigorous definition
of turbulent flow is still elusive. High-altitude, clear air turbulence (CAT) is a serious
problem for aviation. The challenge is to forecast CAT accurately so that aircraft can
be diverted or at least crews can be warned of turbulent regions. CAT is a small-scale
phenomenon often linked to vertical wind shear at the boundaries of the jet stream. But
its exact causes are still uncertain. To make forecasts of CAT, atmospheric scientists
have proposed a number of indices derived from the output of numerical weather
prediction models; for example, Ellrod’s number is a product of the vertical wind
shear and a measure of the horizontal shearing and stretching of the wind field. This
index and others have been found to have some correlation with observed instances
of CAT but also have limitations because of a lack of a physical theory and because
they are calculated from numerical model output run at coarser grids than the spatial
scale of CAT.

A statistical approach to this problem is to use the indices derived on physical
grounds and improved by empirical studies to build a forecast model. The basic form
is a discriminant model where the indices serve as potential covariates and the training
data for model estimation is a heterogeneous mix of pilot reports and accelerometer
instruments on selected aircraft. Figure 2 is an example of a 3-hour period of data

Figure 2. Pilot Reports of Turbulence (◦) and Accelerometer Readings of No Turbulence (+) for December
12, 1997 above 20,000 ft. The regular grid is the resolution of the Rapid Update Cycle-60 numerical model
used to construct indicators of clear air turbulence.



indicating locations of observations and the forecast grid used by the numerical model.
The details of an approach that uses flexible discriminant analysis (linear discriminant
analysis combined with multivariate adaptive regression splines) have been described
by Tebaldi, Nychka, Brown, and Sharman (1999). This study indicates that a statistical
model achieves levels of detection that approach acceptable thresholds for its use as
an operational forecast.

Although we have focused on a particular study involving CAT, many small-
scale features of the atmosphere are difficult or expensive to resolve with traditional
numerical models. Model selection and validation, dimension reduction, departures
from Gaussian distributions, and nonparametric function estimation are all relevant
tools for building forecast models and are also areas of active statistical research.
Note that unlike more generic forecasting or classification problems, problems in
the atmospheric sciences often have a physical underpinning that guides selection of
covariates and model building. Similar to weather forecasting, these problems also
have a sequential aspect and provide the opportunity to use adaptive methods that
improve over time.

5. CLOSING REMARKS

Popular views of statistics in the geophysical sciences often focus on spatial
methods (e.g., Kriging) and time series. Of course, these remain standard methods
for data analysis, and their extension to nonstationary and non-Gaussian processes
poses new research problems. Recently, Bayesian hierarchical models, coupled with
Markov chain Monte Carlo for sampling posteriors, have gained prominence as impor-
tant modeling tools (Wikle, Milliff, Nychka, and Berliner, unpublished manuscript,
2000). One strength of hierarchical models is the ease with which they incorporate
the physical constraints of geophysical processes and their clarity of interpretation.
I hope that this vignette balances some conventional views of geostatistics with an
emphasis on the emerging areas in atmospheric science.

Due to limited space, I have focused solely on the atmosphere. But a complete
understanding of the earth’s environment must include chemical and biological pro-
cesses along with study of the sun. Overlaid on this natural framework is the influence
on physical systems by human activities. These areas challenge statisticians with the
need to work closely with substantive numerical models and large, complicated ob-
servational datasets. I hope that it is clear that no single discipline alone can approach
these problems: The easy stuff has been done! Progress in understanding and fore-
casting the earth’s systems requires collaborative effort among teams of scientists,
including statisticians.
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Seismology—A Statistical Vignette

David Vere-Jones

1. INTRODUCTION

Geophysics, and seismology in particular, has a somewhat uneasy relationship
with statistics. On one side, geophysicists have always been passionate collectors,
processors, and interpreters of observational data. From Halley in the 17th century
to Harold Jeffreys in the 20th century, its leading practitioners have also pioneered
important developments in statistics—in graphical and numerical methods, in the
treatment of errors, in time series analysis, and in many more specialized topics.
On the other side, geophysicists, in common with other physical scientists, tend to
cling to a view of the universe as governed by deterministic differential equations.
Probability models tend to be relegated to the role of describing observational errors,
even where, as in describing the occurrence times of earthquakes, the sources of
uncertainty lie considerably deeper. The upshot is that the general level of statistical
usage among geophysicists, and among seismologists in particular, is very uneven,
from contributions of fundamental importance to disappointing misunderstandings.

The role of seismology within geophysics is greater than its rather special subject
matter might suggest. This is chiefly because for many years measurement of the
reflections and refractions of earthquake waves passing through the earth has provided
an important tool for probing the earth’s inner structure. At the same time, the subject
is kept in the public eye through its applications to engineering, building codes,
insurance, and earthquake prediction. In all of these applications, and at the heart of
the subject itself, statistical problems abound, few of them easy and some challenging
the limits of current statistical methodology. In this vignette I attempt to indicate the
nature of these problems, first by tracing a brief history of seismology, and then by
selecting a few special issues of current interest. Bolt (1988) and Bullen (1963) have
provided useful general introductions to the subject.

2. A BRIEF HISTORY OF SEISMOLOGY, WITH A
STATISTICAL BIAS

2.1 First Stages: 1890–1920

Seismology has little statistical history before the development of the Milne–
Shaw seismograph in the 1890s. Somewhat earlier the theory of wave propagation
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in an elastic medium had been worked out, a qualitative intensity scale for assessing
ground motion had been developed, and there had been attempts to compile lists of
large historical earthquakes. But the Milne–Shaw instrument was the first that was
compact and accurate enough to allow objective measurements of earthquake wave
motion in many different places to be made and compared. Early instruments were
deployed not only in Europe and the United States, but also in Japan, New Zealand,
and China.

With the first reliable instruments came the first reliable data and the beginnings of
seismology as a quantitative scientific discipline. As early as 1894, the Japanese seis-
mologist Omori, studying the aftershocks of large Japanese earthquakes, formulated
the first empirical law of seismology, Omori’s law: the frequency λ(t) of aftershocks
at time t after the main shock decays hyperbolically. This is most commonly quoted
in the generalized form

λ(t) =
A

c

(
1 +

t

c

)−(1+δ)

.

Remarkably, to this day, Omori’s law remains without any clear physical explanation.
It can be modeled to a first approximation as a nonhomogeneous Poisson process
(Jeffreys 1938), and it is used in Ogata’s epidemic-type aftershock sequence (ETAS)
model (Ogata 1988), where every event is supposed to trigger its own aftershocks
(“offspring”), but the models remain at a descriptive level.

The next major stimulus was the 1906 San Francisco earthquake. Challenging
U.S. technical “know-how” at one of its major centers, the earthquake drew forth a
massive technical report (Lawson 1908) that documented the extent and character of
damage and of displacements along and off the San Andreas fault, and thereby laid
the foundations for the field of engineering seismology. In a sequel to this report, H.
F. Reid (1911) set out his elastic rebound theory of earthquakes: On either side of a
major fault, large-scale forces operate to cause relative motion between the two sides
of the fault. Friction opposes the motion. As time passes, the rock material deforms
elastically and strain (deformation), and hence stress (elastic force), accumulate, until
ultimately the strength of the fault is exceeded and the two sides slip in an earthquake;
then the process starts again. Detailed measurements from surveys before and after
the 1906 earthquake strongly supported this hypothesis, which both explained the
origin of the earthquake waves and gave some basis for regarding earthquakes as a
recurrent process.

In broad terms, Reid’s hypothesis has dominated thinking about earthquake
mechanisms ever since its formulation. It lies behind recent stochastic models for
earthquake occurrence, such as renewal or semi-Markov processes with log-normal
interevent times, or the stress-release model, in which the conditional intensity at time
t has the form

λ(t) = exp[a+ bX(t)],



where X(t) = X(0) + ρ(t− γ
∑
ti<t

Xi) is a measure of the current stress level in
the region, theXi being the stresses released in previous events. Once again, however,
the models remain at a broadly descriptive level.

2.2 The Classical Period: 1920–1950

The decades following the 1906 San Francisco earthquake were marked by steady
improvements in instrumentation and data collection. Networks of stations were es-
tablished, and information began to be collected at both global and local levels. The
principal theme was not the study of the earthquakes themselves, however, but rather
the information that they provided about the earth’s interior. As early as 1909, Mo-
horovicic had observed waves apparently reflected from an internal boundary some
kilometers below the earth’s surface, and evidence for other boundaries, including
that of a central core, accumulated.

The disentanglement of such data is a classical inversion problem, the basic un-
known being the velocity structure inside the earth. Many seismologists contributed
to these issues, but the most profound contributions were those of Harold Jeffreys,
later assisted by K. E. Bullen. The notable feature of Jeffreys’s work was its careful
attention to statistical procedures. Like that of Laplace and Gauss before him, Jef-
freys’s fundamental work on probability and statistical inference (Jeffreys 1939) was
underlain by the better part of a decade of experience in the reduction of physical data,
earthquake travel-time data and the establishment of improved procedures for epicen-
ter and hypocenter (three-dimensional) location. The work culminated in 1940 with
the publication of the Jeffreys–Bullen global travel-time tables (Jeffreys and Bullen
1940), which are still used for calculating travel times based on the assumption of a
spherically symmetric globe.

Another important step taken during this period was Richter’s (1935) develop-
ment of an earthquake magnitude scale. Based on the logarithm of the maximum
amplitude recorded on a standard instrument, and adjusted to a standard distance
from the source, this was the first objective measure of the size of an earthquake.
Despite its limitations, such a measure remains an almost indispensible tool for the
quantitative analysis of earthquake catalog data.

Hard on the heels of the magnitude scale came the second empirical law of
seismology, the Gutenberg–Richter frequency-magnitude law. In statistical terms,
this law asserts that magnitudes follow an exponential distribution. If the magnitudes
are related back to physical variables such as the seismic energy release, then this
translates to a power law (Pareto’s law) distribution for the physical variable. In
particular, it suggests that the tails of the energy distribution are of the form

pr(energy > E) ∝ E−α,

where the exponent α is in the range .4–.8.
This law also remains without any universally accepted explanation, although



the problem here is less an absence than a proliferation of models. It puts earthquakes
squarely into the realm of phase–change-like phenomena, associated with features
such as power law distributions of size, long-range spatial and temporal correlations,
and self-similarity. But here there are many possible models, and the Gutenberg–
Richter (G–R) law by itself is not enough to distinguish between them. Nevertheless,
it and Omori’s law provide constraints that any successful model of the earthquake
fracture process must satisfy.

2.3 Time Series Analysis and Explosions: 1945–1970

Time series and geophysics have grown up together, each contributing to the
development of the other, and seismology has been an integral part of this process.
Early time-series work in seismology related to the largely fruitless study of hidden
periodicities in earthquake occurrence. In the period following the Second World War,
however, a number of practical problems pushed time-series methods into the center
of seismological research. The most important of these (not in the least because it
led to substantial increases in funding for seismology) was the problem of detecting
underground nuclear explosions and distinguishing them from earthquakes. The anal-
ysis of data from seismic arrays (i.e., instruments set up in a grid or other structured
pattern) required the solution of further problems. The same period saw the growing
use of explosion seismology (recording of waves from deliberate explosions) to in-
vestigate subsurface structures for oil exploration and other purposes, and of spectral
methods to analyze the response of buildings and other structures to earthquake waves.
As seismic networks became more highly automated, questions arose concerning the
automatic triggering of unmanned equipment and the effective analysis and storage
of data from such equipment. All of these issues required the solution of difficult,
often highly technical problems in time series analysis and engaged the attention of
leading experts in both fields. New ideas arose, such as maximum entropy methods,
and the links between the disciplines remain very close.

2.4 Plate Tectonics and Earthquake Prediction: 1970–Present

Plate tectonics is one of the scientific success stories of the second half of the 20th
century. For seismology, it provided a unifying principle that helped explain many
incompletely resolved issues. It gave meaning to the highly irregular distribution of
seismically active zones around the world, and indicated the nature of the “large-
scale forces” required by Reid’s elastic rebound theory—plate motions, impelled by
convection processes in the earth’s mantle. Collision and subduction zones, rigid
plates and fractured plate-boundaries, mid-ocean ridges, and heat flow and gravity
anomalies were concepts illuminated and coordinated by plate tectonics.

This somewhat euphoric period also saw the first steps in what was to prove a
salutory reminder that the earth does not yield its secrets cheaply. In the lull before



the Chinese cultural revolution, intriguing rumors of eccentric animal behavior and
anomolous physical measurements before large earthquakes emanated from behind
the “bamboo curtain.” These culminated in 1976 with the claimed prediction of the
Haicheng earthquake, leading to the evacuation of residents from their homes and
the consequent saving of many lives. Observers from the international seismological
community visited and confirmed much of the story. American and Japanese scientists,
conscious of the superiority of their technical equipment, were spurred to emulate the
Chinese, again assisted by offerings of additional funds. Only 2 years afterward,
however, the Chinese program suffered a severe reversal with the devastating 1978
Tangshan earthquake. No formal predictions were claimed, and massive losses of both
life and property were incurred. Such has been the progress of earthquake prediction
ever since; each claimed success has been matched by an embarrassing failure to
predict or a false alarm. The unpredicted earthquakes in Northridge, California and
Kobe, Japan, each in the heart of earthquake research territory, did little to help matters.
Funding started to dry up, the credibility of scientists working on prediction was
threatened, and serious doubts were entertained as to whether earthquake prediction
was a feasible or even a desirable accomplishment.

I am more optimistic over these matters than the last paragraph might suggest
(Vere-Jones 1995). The viewpoint is slowly gaining acceptance that predictions must
be couched in terms of probabilities of occurrence. Many embarrassments might have
been avoided had this viewpoint prevailed sooner. Currently, there seem to be two
main stumbling blocks. The first is in the physics, in the lack of an adequate the-
ory of earthquake genesis and growth. The second is the lack of statistical models
for the highly clustered, self-similar types of data from earthquake patterns. In both
areas there is considerable room for improvement and some indication that despite
current pessimism, the problems are starting to yield. Features such as local activa-
tion, foreshocks and precursory swarms, accelerated moment release, and precursory
quiescence do provide some degree of enhancement of background probabilities,
and suggest that the accumulation of stress before a large event may be detectable.
However, the factors are not yet large enough, and the models are not well enough
established, for them to be useful in direct practical applications. Improvements in
data quality and the range of characteristics studied can only lead to improvements
in this situation.

In the meantime, seismology offers statisticians the opportunity to collaborate in
an extremely diverse range of problems. Let me conclude by quoting a few examples
of recent or current work which happen to have caught my interest (but are not claimed
to be representative).

3. SOME RECENT EXAMPLES

Dating of Events Along the New Zealand Alpine Fault. Although this fault
marks a major plate boundary, it has been a seismically quiet zone ever since Euro-



peans arrived about 2 centuries ago. A central issue was to determine whether large
earthquakes had occurred along the fault, and if so, when. A recent workshop brought
together scientists who had been tackling this issue from different points of view:
carbon dating from peat residues, tree ring data, data from lichens growing on the
underside of fallen rocks. As the workshop progressed, the uncertainties in one tech-
nique were resolved by information provided by another. By the time it finished, a
clear answer had emerged—the last major earthquake had occurred in 1717. Before
then, two or three further dates were established, with less certainty, at intervals of
from 100 to 300 years.

A Time Series Problem: Identification of Preseismic and Coseismic Changes in
Water Well Levels. Water level changes have long been touted as an earthquake
precursor. Kitagawa and Matsumoto (1996) finally married data of sufficient quality
to noise-reduction techniques (involving nonlinear filtering) of sufficient sensitivity
to isolate coseismic and some small preseismic signals.

Inversion Problems: Mapping of Slip at Depth and Gravity Anomalies. The
1989 Loma Prieta earthquake was widely felt and caused moderate damage; it did not,
however, break the surface. Using a combination of statistical and geophysical argu-
ments, Arnodottir, Segall, and Matthews (1992) were able to reconstruct the area on
the fault plane that slipped, from measurements taken on the surface across and along-
side the fault. In somewhat related work, Bayesian smoothing methods developed by
Akaike and coworkers have been used to tackle a wide range of geophysical inver-
sion problems; one example is their use by Murata (1992) to map Bouguer density
anomalies.

Forecasting of Large Aftershocks. Matsu’ura (1986) studied the forecasting of
large aftershocks using Ogata’s techniques, based on the ETAS model, for detecting
precursory relative quiescence. This was one of the few techniques to perform credibly
in the Kobe earthquake, in which it gave real-time warnings of major aftershocks.

Fundamental Theory: Mode-Switching in Complex Earthquake Models. A
key theoretical issue is the tussle between rebound-type arguments, suggesting “char-
acteristic earthquakes” at regular intervals, and the G–R law, suggesting extreme
irregularity. In a series of recent articles (e.g., Dahmen, Ertas, and Ben-Zion 1998),
Ben-Zion and colleagues in the United States have demonstrated the existence of
complex systems, imitating features of tectonically driven fault structures, and capa-
ble of existing in two possible modes. The first mode produces more or less stationary
sequences of events following a standard G–R law. The second mode exhibits near
periodic behavior of the elastic-rebound type, with regular occurrence of large “char-
acteristic” events outside the G–R range. The process can flip from one mode to the
other at apparently random instants of time. Does the geological evidence support the
existence of such behavior in real fault systems?

Statistical Seismology and an S-PLUS-Based Software Environment. Recent



work of our own group has focussed on reviewing the applicability of catalog-based
prediction methods to New Zealand data. Working jointly with a group headed by
Professor Ma Li from the Chinese Seismological Bureau, we have developed an
S-PLUS–based software environment (SSLIB; see Harte 1999) for subsetting and
displaying catalog data and for fitting, simulating, predicting, and evaluating a range
of conditional-intensity models.
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Internet Traffic Data

William S. Cleveland and Don X. Sun

Internet engineering and management depend on an understanding of the char-
acteristics of network traffic. Statistical models are needed that can generate traffic
that mimics closely the observed behavior on live Internet wires. Models can be used
on their own for some tasks and combined with network simulators for others. But
the challenge of model development is immense. Internet traffic data are ferocious.
Their statistical properties are complex, databases are very large, Internet network
topology is vast, and the engineering mechanism is intricate and introduces feedback
into the traffic. Packet header collection and organization of the headers into connec-
tion flows yields data rich in information about traffic characteristics and serves as
an excellent framework for modeling. Many existing statistical tools and models—
especially those for time series, point processes, and marked point processes—can
be used to describe and model the statistical characteristics, taking into account the
structure of the Internet, but new tools and models are needed.

1. THE INTERNET

Internet traffic data are exciting because they measure an intricate, fast-growing
network connecting up the world and transforming culture, politics, and business.
A deep understanding of Internet traffic can contribute substantially to network per-
formance monitoring, equipment planning, quality of service, security, and the en-
gineering of Internet communications technology. Two ingredients are required for
this understanding: frameworks for traffic measurement that produce data bearing on
the Internet issues, and statistical models for these data. Measurement has received
expert, effective attention. A good start has been made in modeling, but much more
can be done. This first section contains a description of some of the fundamentals of
Internet communication, serving as a basis for the discussions of measurement and
modeling in later sections.

1.1 Packets and TCP/IP

Each Internet communication consists of a transfer of information from one
computer to another; examples are the downloading of a Web page and the sending
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of an e-mail message. When a file is transferred, it is not sent across the Internet as
a continuous block of bits. Rather, the file is broken up into pieces called packets,
and each packet is sent individually. Many different protocols collectively carry out
the transfer. An Internet protocol is simply a set of rules for communication between
computers. The two core protocols are the TCP (Transmission Control Protocol) and
IP (Internet Protocol).

TCP runs on both computers. It breaks up a file to be transferred into packets,
sends them out from the source headed for the destination, receives them at the
destination, and reassembles them into their proper order. A typical packet size is
1,460 bytes. So if the abstract of this article were sent by e-mail as a text file, about
1,000 bytes, it would fit into a single packet. If the entire article were sent as a
postscript file, about 250 kilobytes, this would take 170 packets.

TCP does the transfer by establishing a connection between the computers. The
connection is not a physical path; rather, it is simply TCP software executing on the
computers in a coordinated fashion, with each aware that it is working with the other.
The connection continues until both sides agree that it is over, or until one side fails to
hear from the other for a specified amount of time. Packets go back and forth between
the two computers. For a packet, the source computer is the one that sends it out, and
the destination computer is the one that receives it.

IP is in charge of routing TCP packets across the Internet. Each computer has an
IP address, a unique 32-bit number. Often, the number is displayed by dividing the
sequence of bits into four 8-bit fields, writing each field as a decimal number between
0 and 255, and then displaying the four numbers separated by dots; an example is
135.104.13.160. The number of possible IP addresses is 232, about 4 billion, but to
show how fast the Internet is growing, plans have been made to switch to 128-bit
addresses.

An IP header is added to each packet. The header includes, among other things,
the source IP address, the destination IP address, and the packet size. Routers are
Internet devices that get the packet to its destination. The packet moves from one
router to the next, each reading the destination address in the header and looking
in a table to find the router to which it should forward the packet. The source, the
series of routers, and the destination form a path across the Internet. The packets of
a single file transfer do not have to follow the same path; for example, if a path in
use at the beginning of the transfer becomes unavailable, then tables are updated by
communication among the routers, and a new path is used.

A TCP header is also added to each packet. The header contains information
to control the connection and to reassemble packets. TCP also creates packets that
contain only headers, but no file information. Control is their only purpose, and
they are generated by both computers. For example, a connection is initiated by one
computer transmitting a synchronization, or SYN, packet to the other. The control
information in headers plays a role in a TCP feedback mechanism that is fundamental



to the operation of the Internet and has a major effect on traffic. TCP sends packets
at a conservative rate at the onset of a connection and then progressively increases
the rate. If a router receives packets faster than it can forward them, it places the
overflow in a buffer; if the buffer overflows, packets are dropped. If packets are
dropped, TCP decreases the transmission rate, retransmits the dropped packets, and
then progressively increases the rate again.

Each TCP connection is set up at the request of an Internet application. For
example, the application HTTP (Hypertext Transfer Protocol) transfers a World Wide
Web page from a server computer to a client computer. SMTP (Simple Mail Transfer
Protocol) sends e-mail. Telnet enables logging on to remote computers, transferring
input on the client to the remote computer, and transferring responses back. FTP
(File Transfer Protocol) transfers files between local and remote computers. A single
invocation of an application can result in many TCP connections. For example, a
Web page request using the most common version of HTTP results in a connection
to transfer the linked file, and a connection for the transfer of each embedded image
file in the linked file.

1.2 Network Topology and End-to-End Connections

The Internet is a network of networks. A simplified but useful view of it involves
end-points, end-networks, and a core. The end-networks are the networks of compa-
nies, universities, and other organizations. The end-points are individual home users,
typically with a single connected computer, although little end-networks are forming
in homes as well. The core is a collection of ISPs (Internet Service Providers) such as
AOL-Time-Warner, AT&T, BBN, and MCI. Each end-point or end-network connects
to an ISP, and the ISPs have interconnection points.

Suppose that a home user downloads a Web page from a large university computer.
An end-to-end connection is established between client and server. The first packet,
the SYN, starts out at the client and goes over a wire to the ISP. Today this wire might
be a phone line or a television cable, and the transmission rate can range from about
28.8 kilobits/sec to 2 megabits/sec. These transmission rates refer to the speed at which
the two devices at the two ends of the wire can send and receive bits; once the bits get
on the wire, they travel at the speed of light. Then the packet moves through the ISP’s
network, perhaps transfers to another ISP, but eventually hits the ISP providing service
to the university. Today ISP backbone wires, which are fiber, have transmission rates
of up to 10 gigabits/sec. Then the packet enters the university network and travels
through the university’s wires and network devices until it is routed to the university
computer with the Web page. Transmission speeds on the university network might
vary over the different links from 10 megabits/sec to 1 gigabit/sec. The travel time of
the packet depends on the distance of the university from the home, the speed of the
link on the path, and the congestion encountered along the way, but times ranging from



tens of milliseconds to the low hundreds are common. When the server receives the
SYN, it sends a control packet back to the client, acknowledging the SYN; the client
then sends a control packet back to the server, acknowledging the acknowledgment,
and the real job begins, transferring information.

2. FLOW MEASUREMENT

One effective framework for traffic measurement is TCP/IP packet header col-
lection, and organization of the headers into TCP connection flows. The framework
has been in place throughout much of the short history of the Internet, and impor-
tant fundamental work has arisen from it (Caceres, Danzig, Jamin, and Mitzel 1991;
Claffy, Braun, and Polyzos 1995; Mogul 1992; Paxson 1997a). This section discusses
the framework and its uses.

2.1 Connection Flows

Consider a wire carrying Internet traffic. An example is the wire that connects a
Bell Labs Research network of about 3,000 machines to the rest of the Internet. We
collect headers on this wire. There are two directions: packets coming into the Bell
Labs network from computers outside, and packets traveling outside from computers
inside. Packets pass by one by one, and packets from different TCP connections are
superposed in the sense that at any one time there can be many TCP connections in
progress, so we might see a packet from one connection, then a packet from a different
connection, and then a packet from the first. We read and copy the TCP/IP headers of
each packet and add a timestamp, the arrival time of the packet. Then an algorithm
is used to disentangle the packets and form individual TCP connection flows. The
headers for each connection flow are stored together in the database in order of arrival
time.

2.2 End-to-End Characteristics

TCP connection flows provide a large amount of information. Each flow is an
end-to-end connection traversing the Internet. For the Bell Labs wire, one end is
a computer inside Bell Labs, and the other end is a computer outside. The TCP/IP
headers contain the IP addresses of the two computers, so we know their location in the
vast Internet topology. Thus flows can be used to study network-wide characteristics.
Here is one example involving HTTP. For this Bell Labs wire, there are no incoming
Web page requests, just outgoing; traffic to and from Bell Labs Web servers passes
over other wires. On the collection wire, the client computers for HTTP (the ones
that request pages) are inside, and the server computers (the ones that supply pages)



are outside. For each HTTP flow, we can compute its duration, the time of the last
packet minus the time of the first packet, and the size of the transferred file. Then
we can divide size by time to get throughput in bytes/sec. This throughput variable
is one measure of the quality of the Web transfers that are requested by users in the
Bell Labs network. Bigger is better. We can study this quality metric and, using the
destination IP address, determine how it varies topologically across the Internet, or
adding the timestamp information, how it varies with time of day and topology. Of
course, we can do the same for other applications as well.

2.3 Aggregate Traffic on the Wire

A TCP connection flow database also provides information about the traffic on
the wire. The TCP/IP headers have the size of each packet in bytes, so together with
the timestamps, we have the aggregated packet process: the arrival times and sizes of
all packets. Studying aggregates is important, because the devices at each end must
handle packets, in time order, and the performance of the devices depends on the
packet interarrival times and the packet sizes. Forming the aggregate of all packets
from the flows takes us back to the packet information in its original state: packets in
time order. But storage by connection flow is still important, because we often study
subaggregate traffic: time-ordered packets from a subset of the flows. For example,
each flow results from an application such as HTTP, FTP, SMTP, or Telnet requesting
a connection and transfer of information; it is important to study aggregate traffic by
application because the packet processes for different applications are different. We
can also study derived processes formed from any subaggregate. A common process
is byte counts, in which time is divided up into intervals of equal length, and the
number of bytes of packets arriving in each interval is computed.

3. MODELING

Internet traffic data are ferocious. Their statistical properties are complex, and
databases are very large. The protocols are complex and introduce feedback into the
traffic system. Added to this is the vastness of the Internet network topology. This
challenges analysis and modeling. Most Internet traffic data can be thought of as time
data: a point process, a marked point process, or a time series. The start times of TCP
connection flows for HTTP on an Internet wire are a point process. If we add to each
of these start times the file size downloaded from the server to the client, the result is
a marked point process. Byte counts of aggregate traffic summed over equally spaced
intervals are a time series. Modeling Internet traffic data will require new approaches,
new tools, and new models for time data. In this section we look back at the cur-
rent body of literature on Internet traffic studies to formulate issues for this new work.



Other such discussions may be found in interesting articles by Willinger and Paxson
(1997) and Floyd and Paxson (1999).

3.1 HTTP Start Times

We begin with an example of traffic data and their analysis, to serve as a backdrop
for the discussion (Cleveland, Lin, and Sun 2000a). The data are HTTP start times on
the Bell Labs wire described earlier. When a Bell Labs user clicks on a link, the linked
file is downloaded from the server outside to the client inside; the client’s HTTP sees
the names of embedded image files and requests that they be downloaded. For the
most prevalent version of HTTP, each file is transferred by its own TCP connection,
so a single click can open many TCP connection flows. The SYN packet sent from the
client that begins the connection travels through the Bell Labs network and arrives on
the measurement wire. As part of the overall header collection, we read and copy the
TCP/IP headers on the SYN, and record the arrival time. The measured HTTP start
time on the wire is a bit later than the actual start time on the client, because it takes
time for the packet to travel from the client to the wire, but there is typically only a
small delay inside the Bell Labs network compared to the travel time outside.

The HTTP start times are a superposition point process. Each user generates an
HTTP start time point process on the wire, and the aggregate start time process is the
superposition of the user point processes. The data used in the study cover the period
November 18, 1998–July 10, 1999. There are 23,008,664 measured start times during
this period. We organized the data into 15-minute blocks. Not every block during the
measurement period appears due to monitor downtime or low usage. We eliminated
blocks for which the monitoring was not operational more than 5% of the full 15
minutes, blocks with fewer than 50 flows, and connections from certain hosts that
developed problems. The result was 10,704 blocks of start times. We assume that the
point process of start times is stationary within a block.

Figure 1(b), an interarrival plot (Cleveland et al. 2000a), displays the 2,515
HTTP start times for one block, 7:45 A.M. to 8:00 A.M. on December 11, 1998. Let sk
for k = 1 to 2,515 be the start times, and let tk = sk − sk−1 for k = 2 to 2,515 be
the interarrival times. On the plot, lk = log2(tk) is graphed against sk, where log2

is the log base 2. The log on the vertical scale is vital, because interarrivals can vary
over 16 powers of 2, a factor of about 64,000, and small intervals are as important
as large ones; the vertical scale provides the requisite resolution to see this variation.
The horizontal scale, however, conveys arrivals and interarrivals on the original scale.
The connection rate over this block in connections per second, or c/s, is 2,515/900 c/s
= 2.8 c/s. Figure 1(a) is an interarrival plot for the block 12:15 P.M. to 12:30 P.M. on
the same day. The connection rate, 20.1 c/s, is greater than that for (b), because more
users are browsing the Web from 12:15 P.M. to 12:30 P.M. than from 7:45 A.M. to 8:00
A.M.; in other words, the amount of superposition is greater in the later period.

Both (a) and (b) show discreteness on the vertical scale, with interarrivals piling



Figure 1. HTTP Start Times. Log base 2 interarrival time is graphed against start time for two 15-minute
blocks of HTTP start times. The connection rate in the (a) is greater than in (b) because there is more Web
usage. The higher rate reduces the amount of autocorrelation of the log interarrival time sequence and
makes the Weibull marginal distribution of the interarrival times closer to an exponential.

up at a few values. This is a network effect, a small delay; each accumulation point
is a time equal to the time it takes to process a packet in the network. For example,
suppose that two SYN packets are back to back, which happens a small fraction of
the time. They arrive on the wire; each is timestamped and then read by the PC. The
interarrival time is the time it takes to read the first packet, which is the packet size
times the wire speed; at the time of collection, the speed was 10 megabits/sec.

The different levels of superposition in Figure 1(a) and 1(b) dramatically change
the statistical properties of the interarrival times. In 1(b), the data form distinct, narrow
vertical bands for which the lk range from about −8 log2 sec to about −2 log2 sec.
The bands are bursts of connections caused by single clicks of individual users. The
number of connections in such bursts can be large because the number of embedded
files has a distribution with a long upper tail (Barford and Crovella 1998; Feldmann
1998). In 1(a), the bursty behavior has disappeared. Because the connection rate is
much higher, the SYNs of more users intermingle, and the behavior of individual
users is broken up. There is another difference between the two panels. The variance
of the lk is less for the higher-rate start times than for the lower. For both cases, the lk
sequence exhibits long-range persistence: a slowly decaying positive autocorrelation
function. In (a), because of the increased superposition, the autocorrelation is much



reduced compared to (b). The marginal empirical distribution of the tk for both (a)
and (b) is well approximated by a Weibull (except for the discreteness), with a shape
parameter λ less than 1, the shape for an exponential, but the value of λ for (b) is
smaller than for (a).

The analysis of the HTTP start times produced the following conclusions (Cleve-
land et al. 2000a). The marginal distribution of the tk is approximately Weibull with
λ less than 1, and as the connection rate increases, λ tends toward 1. The change in
the distribution over the intervals is large; the estimate of λ ranges from about .4 to .9.
The autocorrelation of the lk is described by an exceedingly simple model with two
parameters: white noise plus a long-range persistent time series. The two parameters
are the variances of the two series. As the connection rate increases, the variance of
the persistent series tends toward 0, and the lk tend toward independence. The change
in the autocorrelation function over the intervals is large; the fraction of the variance
of lk accounted for by the persistent series ranges from about .5 to .1.

3.2 Superposition

Aggregated Internet traffic is a superposition of traffic sources. It is vital to exploit
superposition to uncover the characteristics of Internet traffic. In so doing, we exploit
the fundamental structure of the traffic. We can operate mathematically, using the
theory of superposition of point processes, marked point processes, and time series.
We can operate empirically, studying the data and how it changes as the number of
sources changes.

The notion of how we define a source for analysis purposes needs more thought
and trial with data. For example, for the Bell Labs HTTP start times, we can take
sources to be users. However, the Bell Labs network is actually a network of subnet-
works. So we could take each source to be the start times of one subnetwork. There
is another method of approaching superposition that avoids explicit identification of
sources. This is rate superposition; traffic rates are used as a measure of the number
of traffic sources (Cao, Cleveland, Lin, and Sun 2000; Cleveland et al. 2000a). This
method was used in the analysis and modeling of the HTTP start times. A low base
rate was selected, r0, close to the minimum observed rate. Let k be a positive integer.
The start times over a period of 15 minutes in an interval with rate kr0 were taken to be
the superposition of k independent start-time point processes, each with the statistical
properties of the point process in an interval with the base rate. Theoretical results
were derived based on the superposition theory of point processes. The results were
compared to the empirical results, the analyses of the 10,704 intervals of start times;
agreement was excellent. The conclusions about the HTTP start times just presented
resulted from this combination of theory and empiricism.



3.3 Long-Range Persistence and Long Upper Tails

Long-range persistence is pervasive in Internet traffic data. But the pervasiveness
had to be discovered (Leland, Taqqu, Willinger, and Wilson 1994; Paxson and Floyd
1995; Willinger, Taqqu, Leland, and Wilson 1995). Traffic models for voice traffic
developed over the years to serve the telephone network did not apply as might have
been hoped, because voice traffic does not give rise to the same traffic characteristics
as Internet data traffic, which is burstier. As we have seen, the HTTP start times reveal
persistence.

The reason for the increased burstiness in some cases is a combination of superpo-
sition and distributions with very long tails (Crovella and Bestavros 1996; Willinger,
Taqqu, Sherman, and Wilson 1997). Suppose that we look at HTTP byte counts over
equal-length intervals on an Internet wire carrying Web traffic. The counts for each in-
terval result from the superposition of TCP connection flows, each transferring a file.
So the byte counts in an interval are the sum of byte counts in the interval for a num-
ber of ongoing connections. The distribution of Web file sizes has an extremely long
upper tail; in fact, the density falls off for large x like x−β , where 1 < β < 2, which
means the size distribution has an infinite variance (Crovella and Bestavros 1996).
So interspersed among the common-sized files will be immense files; their transfers
raise the byte count level over a very long period, creating positive autocorrelation
extending over a long range of lags.

The discovery of long-range persistence was an important piece of basic science
for the analysis of network traffic, not just because it served to establish a fundamental
characteristic of Internet data, but also because it served notice that the common
practice of simply assuming a model for network traffic was defective and that looking
at data was important. It was also an important discovery for the engineering of the
Internet; the burstiness has required communication algorithms in some cases different
from those that would be needed for much less bursty data (Erramilli, Narayan, and
Willinger 1996) although not in all cases (Ryu and Elwalid 1996).

After the discovery of long-range persistence, a number of methods for charac-
terizing the dependence were used that were appropriate to self-similar processes and
that came from the creative work of Mandelbrot (1968). Consider a stationary time
series yt for integer t. Form a new time series,

y(m)
v = m−H

m∑
k=1

yvm+k,

for integer v and positive integerm. Then yt is self-similar with parameterH if for all
m, the finite-sample distributions of the y(m)

v are the same as those of yt. Self-similar
processes with .5 < H < 1 are persistent processes, and the autocorrelation at lag k
decays like k2(H−1).

But self-similarity in the strict sense is exceedingly restrictive, and Internet data
are not self-similar (Feldman, Gilbert, and Willinger 1998; Floyd and Paxson 1999;



Ribeiro, Riedi, Crouse, and Baraniuk 1999). At very small time scales, hundreds of
milliseconds and less, the behavior of Internet protocols can be dominant, and at time
scales of tens of minutes and more, diurnal variation can be dominant. In between are
the time scales of the persistent processes. Thus there are various components, and
some are persistent. Multifractal wavelet methods have become a widely used tool to
study the components (Feldman et al. 1998; Ribeiro et al. 1999; Riedi and Vehel 1997).
Another approach is to build time domain models and include long-range persistent
components as is done in other disciplines (Haslett and Raftery 1989; Hosking 1981).
This latter approach was used in the analysis of the Bell Labs HTTP start times.

3.4 Nonstationarity

Nonstationarity is as pervasive in Internet traffic data as long-range persistence
(Cao et al. 2000; Cleveland et al. 2000a). However, nonstationarity has received much
less attention. More attention is surely needed, because the nonstationarity can be
major. For example, for the Bell Labs HTTP start times, the autocorrelation function
and univariate distributions changed substantially. The reason for the nonstationarity
is quite simple—changing amounts of superposition. As the number of traffic sources
increases and decreases, statistical properties can change. Byte counts on a wire are
sums of byte counts of the individual sources, and the finite-sample distributions of
sums of random variables can change with the number of terms in the sums. HTTP
start times on a wire are a superposition of the individual traffic sources, and the
finite-sample distributions of the interarrival times of superposed point processes can
change with the number of superposed processes.

3.5 Accounting for Structure and Linking Up With Network Simulators

Willinger and Paxson (1997) argue effectively against black box modeling that
ignores Internet structure. At its most elemental, Internet traffic on a wire consists
of packets arriving through time, a marked point process. The point process is the
packet arrival times, and the mark at each point is multivariate: all of the information
in the TCP/IP headers. And because each packet traverses the Internet end-to-end,
we must add the vast Internet topology to the structure. But just how much of the
structure that we want to invoke in a statistical model will depend on the goal and on
the practicality.

One thing does seem clear, however: If we want to study an aspect of the network
that requires a model to account for TCP feedback at an individual connection level,
then statistical models alone are unlikely to be able to account for packets properly. But
linking up statistical models with network simulators could produce a highly effective
hybrid (Joo, Ribeiro, Feldman, Gilbert, and Willinger 1999). Network simulators such
as NS (McCanne and Floyd 1998) are a big achievement of Internet analysis. To run the



simulator, a network with routers and router algorithms is specified. TCP is simulated
over this network, and packets are produced. There are two places where statistics can
help. One is statistical models of source traffic, which serve as input to the simulation.
The other is statistical models for traffic aspects such as packet interarrival times and
byte counts, built to reflect the characteristics of data on live Internet wires; these
models can be used to validate the simulator output.

4. VERY LARGE DATABASES

Packet header collection can result in a very large database, or VLDB, because
packets come across Internet wires continuously. Even if the total throughput on a wire
is small, the data grow and grow, so the database eventually gets large if collection
continues. Our Bell Labs wire is just a trickle compared with high throughput wires
of Internet ISPs. But after 1 year of collection, our databases of 328 million TCP
connection flows with 6,866 million TCP/IP packet-header pairs took up about 350
gigabytes. An Internet wire with 100 times the throughput of the Bell Labs wire would
reach the same size in about 3.6 days.

4.1 S-Net: A Low-Cost, Distributed Data Analysis Computing Environment

The success of analyzing Internet traffic data depends heavily on an ability to
analyze the traffic VLDB in great detail. We need to explore the raw data in its full
complexity; relying only on summaries is inadequate. We need to study packet-level
processes taking many variables into account; studying only byte counts in equally
spaced intervals is inadequate. Success in detailed intensive analysis depends on the
analyst’s computing environment.

To cope with the VLDB created by the Bell Labs traffic measurements, we de-
veloped S-Net (Cleveland et al. 2000b), a traffic collection and analysis system that
begins with packet collection on a network link and ends with data analysis on a
cluster of Linux PCs running S, a language and system for organizing, visualizing,
and analyzing data (Chambers 1998). Packet capture uses the program tcpdump (Ja-
cobson, Leres, and McCanne 1998) running on a PC with Berkeley Unix, an altered
kernel to enhance performance, time-stamping based on global positioning system
(GPS) clock discipline, and attention to packet drops. The compressed header files
are moved to the cluster of Linux PCs, which are linked by fast switches. Each PC
has one, two, or four processors, and they all have large amounts of disk space. An
algorithm then organizes the header information by TCP connection flow, and the
flows are processed to create flow objects in S. Analysis is carried out in S.

Flows and S flow objects are computed in parallel on all of the PC processors and
are stored on the disks of all machines. S is run on high-end PCs with large amounts
of memory. Each analyst has a low-end PC that stores that user’s S directories. The



analyst logs onto a high-end machine from the home machine to run S, mounting the
home S directories as well as the directories across the cluster housing the S objects.
In other words, each data analysis session is distributed across the cluster.

S-Net has worked quite well. Because the PCs and switches can be inexpensive
and Linux is free, the cluster has a low overall cost. The cluster architecture scales
readily; in our case, PCs and disks have been added and replaced incrementally as
our database has grown. The S flow objects vary according to the specific analysis
tasks; each is designed to enhance computational performance and to make the S
commands that carry out the analysis as simple as possible. S is well suited to the task
of analyzing Internet traffic data; its elegant design, which won it the ACM Software
System Award for 1999, allows very rapid development of new tools.

But surely we can do better than S-Net. We need a whole new architecture for
software for data analysis in networked environments that takes into account, from
the ground up, the distributed nature of the environment. One effort, the Omega
Project (www.omegahat.org), is underway; if it succeeds, then data analysis of kinds,
including Internet traffic modeling, will benefit.

4.2 Visualization Tools: Multipage, Multipanel Displays

As for most databases, visualization tools are vital for analyzing a VLDB. An-
alytic visualization tools support model development. A vital aspect is screen real
estate. Because Internet databases are large and the structure is complex, we must
accept the notion that displays need to cover tens and perhaps hundreds of pages with
many panels on each page. Data visualization is often limited to a display of a set of
data that can be placed all at once in our visual field; so, it can be shocking at first to
contemplate looking at so many pages. But using the structure of trellis display, it is
easy to generate many pages (Becker, Cleveland, and Shyu 1996). Using a document
viewer, it is possible to learn a great deal about Internet traffic data from these mul-
tipage, multipanel (MPMP) displays. Figure 1 is a trellis display with one page and
two panels; it shows the HTTP start times for 2 of 10,704 blocks. It was immensely
informative for modeling the start times to see such displays for hundreds of blocks.
And the only practical medium to communicate these MPMP displays is our medium
of study, the Internet.

4.3 Synchronized Measurement

We can raise the measurement bar even higher. Suppose that traffic is measured
on two or more wires that have some traffic in common, and that time is measured
accurately, perhaps by using a feed from a GPS satellite. Such synchronized mea-
surements can reveal much about the movement of traffic across the Internet (Paxson
1997b). But there has been very little synchronized collection, because it greatly in-

http://www.omegahat.org


creases the already substantial burden of measurement, database management, and
data analysis.

5. CONCLUSIONS

Packet header collection with timestamps and TCP connection flow formation
provide an effective framework for measuring Internet traffic. But the resulting data
are ferocious. They are nonstationary and long-range persistent, and distributions
can have immensely long upper tails. There are many header variables, such as the
source and destination IP addresses, and many variables can be derived from the
header variables, such as the throughput. The structure of these variables is complex.
Added to this is the vastness of the Internet topology and the intricacy and feedback
of Internet protocols.

Challenges for producing tools and models for meeting the ferocity abound; here
is a short list:

• statistical tools and models for point processes, marked point processes, and
time series that account for nonstationarity, persistence, and distributions with
long upper tails

• frameworks for incorporating the structure of the Internet into traffic models
and analyses

• theoretical and empirical exploitations of the superposition of Internet traffic
• methods for measuring and characterizing vast, complex network topologies
• integration of statistical models with network simulators
• synchronized network measurement, and tools and models for comprehending

the results
• methods for viewing MPMP data displays
• low-cost, distributed computing environments for the analysis of very large

databases.
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Coding and Compression: A Happy Union
of Theory and Practice

Jorma Rissanen and Bin Yu

1. INTRODUCTION

The mathematical theory behind coding and compression began a little more
than 50 years ago with the publication of Claude Shannon’s (1948) “A Mathematical
Theory of Communication” in the Bell Systems Technical Journal. This article laid
the foundation for what is now known as information theory in a mathematical frame-
work that is probabilistic (see, e.g., Cover and Thomas 1991; Verdú 1998); that is,
Shannon modeled the signal or message process by a random process and a communi-
cation channel by a random transition matrix that may distort the message. In the five
decades that followed, information theory provided fundamental limits for commu-
nication in general and coding and compression in particular. These limits, predicted
by information theory under probabilistic models, are now being approached in real
products such as computer modems. Because these limits or fundamental communi-
cation quantities, such as entropy and channel capacity, vary from signal process to
signal process or from channel to channel, they must be estimated for each commu-
nication setup. In this sense, information theory is intrinsically statistical. Moreover,
the algorithmic theory of information has inspired an extension of Shannon’s ideas
that provides a formal measure of information of the kind long sought in statistical
inference and modeling. This measure has led to the minimum description length
(MDL) principle for modeling in general and model selection in particular (Barron,
Rissanen, and Yu 1998; Hansen and Yu 1998; Rissanen 1978, 1989).

A coding or compression algorithm is used when one surfs the web, listens to
a CD, uses a cellular phone, or works on a computer. In particular, when a music
file is downloaded through the internet, a losslessly compressed file (often having a
much smaller size) is transmitted instead of the original file. Lossless compression
works because the music signal is statistically redundant, and this redundancy can be
removed through statistical prediction. For digital signals, integer prediction can be
easily done based on the past signals that are available to both the sender and receiver,
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and so we need to transmit only the residuals from the prediction. These residuals
can be coded at a much lower rate than the original signal (see, e.g., Edler, Huang,
Schuller, and Yu 2000).

2. ENTROPY AND LOSSLESS CODING

Shannon considered messages or signals to be concatenations of symbols from
a set A = {a1, . . . , am}, called an alphabet. For example, the alphabet A for an
English message contains the Roman letters and grammatic separation symbols. For
an 8-bit digital music signal, A contains the integers from 0 to 255. A lossless code
is an invertible function C: A → B∗, the set of binary strings or codewords, and
can be represented by nodes in a binary tree as in Figure 1(a). It can be extended to
sequences xn = x1, . . . , xn, also written as x,

C: A∗ → B∗,

by concatenation:C(xxn+1) = C(x)C(xn+1). To make the extended code uniquely
decodable without the use of separating commas, we impose the restriction that no
codeword is a prefix of another. Each codeword node in the tree is then a leaf or an
end-node; Figure 1(b) gives an example.

This prefix requirement implies the important Kraft inequality (see Cover and
Thomas 1991)

∑
i

2−ni ≤ 1, (1)

where ni = |C(ai)| denotes the length of the codeword C(ai) in units of bits for
binary digits, a term suggested by John W. Tukey. The Kraft inequality holds even for
countable alphabets. Because of this inequality, the codeword lengths of a prefix code
define a (sub) probability distribution with Q(ai) ∼ 2−ni . Even the converse is true,
in the sense that for any set of integers n1, . . . , nm satisfying the Kraft inequality,
and in particular for ni = −�logQ(ai)	 obtained from any distribution, there exists a
prefix code with the codeword lengths defined by the integers. This (sub) probability
Q should be viewed as a means for designing a prefix code; it is not necessarily
the message-generating distribution. When the data or message is assumed to be
an independently and identically distributed (iid) sequence with distribution P , an
important practical coding problem is to design a prefix code C with a minimum
expected code length,

L∗(P ) = min
C

∑
i

P (ai)|C(ai)|.

The optimal lengths can be found by Huffman’s algorithm (see Cover and Thomas
1991), but far more important is the following remarkable property, proved readily



Figure 1. Examples of (a) Nonprefix and (b) Prefix Codes for Alphabet A = {a, b, c}.

with Jensen’s inequality. For any prefix code, the expected code length L(Q) satisfies

L(Q) ≥ −
∑
i

P (ai) log2 P (ai) ≡ H(P ), (2)

with equality holding if and only if Q = P or |C(ai)| = − log2 P (ai) for all ai,
taking 0 log2 0 = 0. The lower bound H(P ) is the entropy. Because the integers
�− logP (ai)	 defining a prefix code exceed the ideal code length − logP (ai) by at
most one bit, the optimal code satisfies the inequalitiesH(P ) ≤ L∗(P ) ≤ H(P )+1.
In terms of the n-tuples or the product alphabet, the joint distribution has entropy
nH(P ), within one bit of L∗(Pn). Thus H(P ) gives the lossless compression limit
(per symbol).

Concatenation codes are not well suited for small alphabets or for data modeled
by a nonindependent random process even when the data-generating distribution P
is known. But a different kind of code, arithmetic code, is well suited for coding
binary alphabets and all types of random processes (see Cover and Thomas 1991).
The original version was introduced by Rissanen (1976); a more practical version
was given by Rissanen and Mohiuddin (1989).

For example, consider a binary alphabetA and let {Pn(xn)} denote a collection
of nonzero probability functions that define a random process on A, written simply
as P (xn). When the strings xn are sorted alphabetically, the cumulative probability
C(xn) =

∑
yn<xn P (yn) is a strictly increasing function and can be taken as the

code of xn. A binary tree with s0 as the left descendant node of s gives the recursion

C(xn0) = C(xn), (3)

C(xn1) = C(xn) + P (xn0), (4)

and

P (xni) = P (xn)P (i|xn), i = 0, 1. (5)

A minor drawback of this code is that it is one-to-one only for strings that end in 1. The
main drawback is that even if we begin with conditional probabilities P (i|xn), each



written to a finite precision, the multiplication in the third equation keeps on increasing
the precision, and soon no register can hold the product. To overcome this, the exact
multiplication in (5) is replaced by following P̄ (xni) = �P̄ (xn)P̄ (i|xn)
q, i = 0, 1,
where �z
q denotes the truncation of a fractional binary number z to q digits after the
first 1, as in 0 . . . 01x . . . x. It is then clear that the addition in the update of the code
string can also be done in a register of width q + 1, except for a possible overflow,
which is dealt with through a device called “bit stuffing.” We see in (5) that the code
length is essentially the number of leading 0’s in P̄ (xn0) plus the size of the register
q needed to write down the probability itself. As a result, the mean per symbol code
length exceeds the entropy by no more than 2−q−1.

When the data-generating distributionP is unknown, an adaptive arithmetic code
can be designed based on an estimator ofP , provided that the estimator itself is coded
and transmitted. This leads naturally to the topic of the next section.

3. UNIVERSAL CODING AND THE MINIMUM
DESCRIPTION LENGTH PRINCIPLE

As we have seen, Shannon’s theory of lossless coding requires knowledge of
the probability distribution generating the data. The theory of universal coding ap-
plies when a family of distributions is selected. Consequently, statistical modeling is
indispensable in universal coding. A two-stage universal code based on a family of
distributions comprises the coding of an estimated distribution (the overhead) and the
coding of data using the estimated distribution. A predictive universal coding scheme
requires a predictor based on the past and the coding of the residuals, but no overhead
is needed.

The performance of the distribution estimator or the predictor is evaluated from
the coding point of view. The first question is whether any universal codes exist such
that the per symbol code length, either in the mean or almost surely, approaches the
entropy no matter which distribution in the family generates the data. As a functional
of the process, entropy is similar to the ergodic mean. Thus the existence of a universal
code requires much less than the estimability of the joint distribution of the process.
Two main types of universal codes are in use for data compression. The first, due
to Ziv and Lempel (LZ) (1977, 1978), is fast and efficient for data arising from
written natural languages and is used extensively for file compression (e.g., compress
in the unix system). LZ is based on an efficient parsing algorithm that builds an
increasing tree of phrases. So far, no explicit probabilistic model has been found
for the LZ algorithm. The second type of universal code is based on an explicit
probability model. One good example is Rissanen’s context algorithm, which builds
on the finite state machine defined by context trees. It is slower than LZ, but provides
better compression for image data. Weinberger, Seroussi, and Sapiro’s (1998) LOCO
algorithm is based on the context modeling idea and has been selected as the new



lossless (or nearly lossless) image compression standard JPEG-LS-2000. The mean
per symbol length of the LZ code approaches the entropy at the rate ofO(1/ logn), n
being the length of the string, no matter which process in a large class of stationary
ergodic processes generates the data. Rissanen’s context code for Markov processes
converges at rate .5k logn/n, where k denotes the number of free parameters. The
faster rate of Rissanen’s algorithm under the context model and the fact that it works
for image data suggest that the context model is adequate for images, but not for written
natural languages. On the other hand, the superior empirical performance of LZ for
written natural languages contrasts with its slow rate under stationary and ergodic
assumptions. This raises the question of the appropriateness of such assumptions or
even the whole analysis framework. Perhaps instead of a fixed alphabet, an expanding
alphabet must be modeled to reflect what LZ actually does. This calls for a new class
of statistical analyses based on array asymptotic results.

The theory of universal codes suggests that amount of information in a finite set
of data, given a class of models, can be measured by the shortest universal code length,
called the stochastic complexity, for that class (see Barron et al. 1998). Recent results
show that the stochastic complexity is the minimum in expectation for the worst-case
model. The best universal code defines a universal model that decomposes the data
into noninformative “noise” that cannot be compressed with the given models and
the signal defined by an information-bearing optimal model. This idea generalizes
the usual decomposition of the sufficient statistics. Given several classes of models
for the signal, the minimum description length (MDL) principle searches for the class
with the smallest stochastic complexity, which implies the most efficient removal of
incompressible noise.

Various universal codes have been found to approximate the stochastic complex-
ity to first order (.5k logn/n) for iid Markov time series and other regular parametric
models of dimension k (see Barron et al. 1998). Three such codes are the two-stage,
predictive, and mixture codes. In a two-stage code, the estimated distribution is the
plug-in maximum likelihood estimator (MLE) distribution. In a predictive code, the
predictive distribution uses the MLE plug-in estimator based on the past. A mixture
code is based on the marginal distribution of a model class with respect to a regular
prior. There is an important connection between universal coding and model selec-
tion. Using MDL with a two-stage code gives the conventional Bayesian information
criterion (BIC) model selection criterion, MDL with a predictive gives the accumu-
lated prediction error criterion, and MDL with a mixture code generalizes the Bayes
factor to more than two classes. Thus MDL provides a way to compare frequentist
and Bayesian model selection criteria (see Hansen and Yu 1998).

How MDL can be used to select among complex models such as Bayesian belief
networks remains an open question. Both information theory results (e.g., universal
coding theorems) and statistical evaluation analyses are anticipated.



4. RATE-DISTORTION FUNCTION AND
LOSSY COMPRESSION

Entropy gives the limiting rate for lossless compression, but often the practi-
cal bandwidth of a communication channel or the available disk space for storage
demands a rate lower than the entropy. A compromise is to sacrifice fidelity in the
original message or data in exchange for a lower rate. The mathematical study of this
trade-off is the Shannon’s rate-distortion theory (see Cover and Thomas 1991), and the
practice of coding with loss of information is called lossy compression. For example,
an image retrieved from a remote website is compressed via the lossy compression
standard JPEG. (A more complete review of this area has been given in Berger and
Gibson 1998.)

The rate-distortion function is a sort of entropy function when distortion is al-
lowed between the original data and the coded data. Given a distortion distance d and
a threshold D, the rate-distortion function is defined in the iid case as

R(D) := min
X̂

I(X, X̂),

where

I(X, X̂) =
∫ ∫

f(x, x̂) log f(x, x̂)/[f(x)f(x̂)] dx dx̂

defines the mutual information. Here X is the random variable generating the source
messages, and X̂ is another coded message variable that is within distance D from
X on average. It is a remarkable fact that R(D) is the minimum achievable rate at
distortionD. CalculatingR(D) even in the iid case can be a daunting task, and finding
codes that achieve R(D) is beyond reach except for special cases, such as Bernoulli
and Gaussian. And, of course, speech and image signals are never well modeled by
such processes. Prediction based on time series models and lossy coding of residuals,
which are much closer to iid, are the basic ingredients behind speech coders such as
ADPCM, which codes our telephone conversations.

In statistics, data can be transformed to greatly expand the applicability of con-
ventional models. For decades, transform coding has also been the major approach to
lossy image compression. The current JPEG standard uses discrete cosine transform
(DCT) in a blockwise manner; the next generation, JPEG2000, will be wavelet-based.
In the transform domain, local iid statistical modeling or context-based prediction and
arithmetic coding of the scalar-quantized coefficients has given rise to the state-of-
the art wavelet image coders such as those of LoPresto, Ramchandran, and Orchard
(1997) and Yoo, Ortega, and Yu (1999).

Statistical modeling will also continue to play an essential role in lossy com-
pression. Better predictions based on more sophisticated models will further decrease
the entropy of the residuals to be coded and hence reduce the coding rate. This has
spurred attempts to develop an expansion of the information-theoretic framework to
encompass both estimation and coding limits.



5. CHANNEL CODING AND CHANNEL CAPACITY

Channel coding is about designing codes and efficient decoding algorithms to
combat channel noise. Its goal is to spread out the codewords so that they can be
distinguished with high probability when the noisy signal is received. The theory
of algebraic coding relies on the same combinatorics as does experimental design.
For a channel code, the recovery of codewords from the received signal amounts to
hypothesis testing. Given a received signal, maximum likelihood corresponds to hard
decoding, which uses the most likely code word, and Bayesian methods correspond
to soft decoding, which gives a probability distribution over all possible codewords.

Channel coding was considered in parallel with source coding in Shannon’s
1948 work. He modeled a (single-user) communication channel by a conditional
probability distribution f(y|x) on the output message y given the input message
x. He defined channel capacity C to characterize an (iid) probabilistic channel as
C = maxw(x) I(X,Y ), where the maximization is over input distributions w, which
the designer can select, and the channel output Y is determined by w(x)f(y|x).

Shannon’s channel coding theorem showed, contrary to the popular belief at the
time, that if and only if the average transmission rate is below C, iid messages can be
transmitted with error probability decreasing to 0 by increasing the size of the message
block. This theorem gives the operational meaning of C as the upper bound at which
a channel can carry reliable communication. Shannon (1948) calculated the capacity
of the additive Gaussian white noise channel with a power constraint. This capacity
is being approached by sophisticated coding methods in applications such as space
and satellite communications, audio/video transmission, and CDs and CD-ROMs.

Models for wireless communication channels, such as those in cellular phones,
must be time-varying and must accommodate multiple users (Biglieri, Proakis, and
Shamai 1998; Lapidoth and Narayan 1998). Their decoding is essentially statistical
inference with time-varying time series models. Joint source-channel coding gives
better data throughput, but complicates decoding even further. With limited band-
width to share, any decoding mileage is worthwhile. This demands efficient statistical
inference procedures for special time-varying time series models, and fast algorithms
in applications such as cellular phones. It is safe to say that wireless communication
promises to be another good example of the happy union of theory and practice.
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Statistics in Reliability

Jerry Lawless

1. INTRODUCTION

The term reliability refers to the proper functioning of equipment and systems and
thus encompasses hardware, software, human, and environmental factors. Important
aspects range from the development and improvement of products or systems to
maintenance and performance measurement in the field. This vignette deals with
statistics in reliability, so it emphasizes areas where data collection and analysis play
a major role. Such topics as systems design and qualitative tools such as fault trees
or failure mode and effects analysis are not considered, although they are important
components of reliability engineering (e.g., Hoyland and Rausand 1994).

Historically, both the statistical and engineering development of reliability has
focused on adverse events, or failures, which have undesirable consequences and are
to be prevented or avoided. Consequences may range from rather trivial, as is usually
the case when, for example, a light bulb fails, to grave, as in the case of the Challenger
space shuttle disaster. These examples represent two extremes: events of small impact
that occur frequently in a large population or system and very rare events that have
severe consequences. Only for the former are substantial data on failures available.

As the ability to prevent failures increases, fewer failures are observed. In this case
(and more generally), it is important to measure other things besides physical failure—
in particular, variation in the condition of units or systems over time. “Condition”
refers to factors associated with the system’s performance or likelihood of failure; for
example, the amount of physical or functional degradation in a battery or integrated
circuit. Failure is often defined in terms of degradation reaching a certain level (e.g.,
Meeker and Escobar 1998, chap. 13).

Narrow technical definitions of reliability refer to the probability a system func-
tions “satisfactorily” over some time period, but various aspects are involved. For
manufactured products, reliability and durability are important dimensions of qual-
ity. Reliability is closely connected to risk and safety in settings where failures may
have dire consequences. Economic considerations are often close at hand: in service
systems, the failure to link a customer with a server can negatively impact customer
loyalty; in manufacturing systems, stoppages decrease productivity.
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of Statistics and Actuarial Science, University of Waterloo, Canada.



In this vignette I take a broad view of reliability within the context of system
performance. Statistical science provides tools for understanding, improving, and
maintaining reliability. In the next two sections I review past contributions, then
consider current trends and challenges. The view is necessarily brief and personal,
and space permits only a few references; many are to books or review articles from
which further information can be obtained.

2. HISTORICAL PERSPECTIVE

Many statistical contributions to reliability have revolved around the analysis of
failure or life-time data. Early work (e.g., Ansell and Phillips 1989; Lawless 1983)
emphasized parametric methods based on distributions such as the exponential and the
Weibull. Formal hypothesis tests and estimation were developed for life testing and
reliability demonstration, and statistical procedures were embedded in reliability stan-
dards. Regression methodology provided tools for explanatory analysis of failures,
accelerated testing, reliability improvement experiments, and prediction. Nonpara-
metric and semiparametric methods of lifetime data analysis were developed. The
seminal work of Cox (1972) introduced the proportional hazards regression model
and also drew attention to time-varying covariates. This is tremendously significant
for reliability, because the conditions under which systems operate usually vary over
time. Lifetime data methodology is now included in all of the major statistical soft-
ware packages and is featured in many books (see, e.g., Crowder, Kimber, Smith, and
Sweeting 1991; Kalbfleisch and Prentice 1980; Lawless 1982; Meeker and Escobar
1998; Nelson 1982, 1990).

More or less in parallel with lifetime data analysis, point process methods for re-
peated failures in repairable systems were developed (Ascher and Feingold 1984; Cox
and Lewis 1966). Unfortunately, methods based on Poisson and renewal processes
are not featured explicitly in most software packages, although existing software can
be coerced for analysis in some cases. Recent developments include robust methods
for analyzing rates of occurrence and mean functions (Lawless and Nadeau 1995).

Another important area concerns degradation and, more generally, system con-
dition. There is a long history of work on phenomena such as wear and material
deterioration, and there is increased emphasis on degradation as physical processes
become better understood. Knowledge of degradation processes allows better predic-
tion and prevention of failures, especially when failure is (close to) a deterministic
function of measured degradation. Meeker and Escobar (1998, chaps. 13 and 21) de-
scribed some methodology and applications. A more general concept is the condition
of a unit or system, mentioned in Section 1. Condition measures are used for mainte-
nance scheduling; for example, analysis of metal fragments in oil is used with diesel
engines, and ultrasonic scans and eddy current testing are used to detect material
flaws or deterioration in railway track and aircraft bodies (Olin and Meeker 1996).



Most statistical work to date has addressed the often complex measurement and flaw
detection processes, rather than the linking of condition measurements to reliability
(but see Makis and Jardine 1992; Whitmore, Crowder, and Lawless 1998).

A final consideration is the environment in which a unit or system operates.
Regression analysis for lifetimes or repeated failures allows factors such as stress,
intensity of use, or climate to be considered, and there is extensive development of
specialized areas (e.g., Nelson 1990). Recently, attention has been directed at time-
varying factors or dynamic environments (e.g., Singpurwalla 1995).

In addition to modeling and analysis, the prominent role of study design must be
noted. A well-crafted strategy for experimentation or data collection is essential and
can lead to product or system improvement without much formal analysis. Finally, an
important area that is implicit but not discussed directly here is system structure; that is,
the relationship of components or modules within a system. Work linking component
and system reliability has been useful in system design, reliability prediction, and
maintenance. (Barlow and Proschan 1975 is a fundamental reference; for a more
recent exposition, see Hoyland and Rausand 1994.)

I now turn to some recent trends and challenges. I begin by indicating how
developments in stochastic modeling and event history analysis over the past 30 years
have provided a unified framework for the various aspects of reliability described
earlier.

3. TRENDS AND CHALLENGES

Consider a process or system with the following ingredients, operating on some
time scale t ≥ 0: (a) J different types of events that may occur; (b) a vector Y(t) that
describes the condition of the system, including factors such as degradation; and (c)
a vector x(t) describing fixed or external time-varying factors (e.g., environmental
conditions, stress, load, demand) that affect the system. For simplicity, suppose that
system reliability or performance is measured in terms of the numbers of events of
various types that occur, and for j = 1, . . . , J , defineNj(s, t) as the number of events
of type j that occur over the time interval [s, t]. More generally, however, we may
associate costs or other values with events and use them to quantify reliability.

The field of multivariate counting processes provides models for event occurrence
(e.g., Andersen, Borgan, Gill, and Keiding 1993). Let H(t) denote relevant aspects
of the “history” of events in a system prior to time t, as well as the values of Y(t)
and x(t). Then for j = 1, . . . , J ,

λj(t|H(t)) = lim
∆t→0

Pr{Nj(t, t+ ∆t) = 1|H(t)}
∆t

(1)

are called event intensity functions. If no condition measures are present, then, under
mild assumptions, the intensities (1) specify the process of event occurrences, given



a covariate history {x(t), t ≥ 0}. If condition measures such as degradation are of
interest, then it is necessary to consider the joint process for event occurrences and
Y(t), t ≥ 0. If events are deterministic functions of condition, then only Y(t), t ≥ 0
must be modeled (Meeker and Escobar 1998, chap. 13). The general situation is
more difficult to handle and is a subject of current research (e.g., Singpurwalla 1995;
Whitmore et al. 1998).

Note that (1) covers single failure times, repeated failures of the same type, or
multiple events of different types. By a suitable specification of intensities, we can
allow dependence on prior events in any part of the system and on fixed or time-varying
environmental factors. There is an explicit form for the probability distribution of any
sequence of events (Andersen et al. 1993, sec. 6.1), so that if complete data are
available, then maximum likelihood or Bayesian methods can be readily developed.
For certain models, lifetime data or generalized linear model analysis software may
be coerced for estimation (e.g., Berman and Turner 1992; Therneau 1997).

I now consider some challenges. Promoting existing methodology is, of course,
important, but because failure time analysis and controlled life testing are well un-
derstood, I focus mainly on methodological needs involving field data and complex
systems or processes.

Physical Models for Degradation and Failure. In many areas, the physics of
degradation and failure are sufficiently understood so that statistical modeling and
experimentation can aid reliability improvement (e.g., Meeker and Escobar 1998,
chap. 13; Nelson 1990, chap. 11). Statistical scientists have not been highly involved
in this work, but many opportunities to contribute exist. Major challenges include the
development of methodology for kinetic models with covariates and random effects.

Reliability in Dynamic and Heterogeneous Environments. Systems and prod-
ucts are affected by the conditions under which they operate, and so data on the
environment as well as on system condition or failures must be obtained. It is a statis-
tical challenge to obtain high-quality data relevant to reliability improvement, and to
develop methodology for utilizing these data. To plan warranty coverage for manu-
factured products, for example, we need information about variations in usage across
the population of customers. Prior events may be relevant; in software development,
the analysis of faults detected may take into account code modifications made in re-
sponse to faults discovered earlier (e.g., Dalal and McIntosh 1994). The framework in
(1) provides a general basis for modeling. In testing software, for example, we might
consider an intensity function for the detection of new faults of the form

λ(t|H(t)) = ν(t)
[
g(t) +

∫ t

0
h(t, u) dC(u)

]
, (2)

where ν(t) represents the intensity of testing at time t, C(t) is the cumulative amount
of code modification up to time t, and g(t) and h(t, u) are parametrically specified
functions.



Condition-Based and Usage-Based Monitoring and Maintenance. As condi-
tion measurement technology evolves, opportunities arise for statistical development.
Although the framework in (1) allows one to study the effect of condition measures
on failure, there is little methodology for prediction or decision because of the need
to also model the condition measure process (e.g., Makis and Jardine 1992). In many
settings, a better understanding of the underlying physical processes is needed. A re-
lated issue is the recognition of environmental factors in scheduling maintenance. One
approach concerns time scales, the idea being to select a scale in which failure time is
highly predictable. Operational scales that incorporate stress or usage measures (e.g.,
Duchesne and Lawless 2000) are of particular interest.

Field Data. As the ability to capture field data has increased, opportunities for
management and system improvement arise. Warranty or field return data on products
such as appliances and vehicles are essential for cost prediction and are an important
source of information for reliability improvement (Lawless 1998). Manufacturing,
service, and telecommunications systems generate vast amounts of data that may be
used for reliability improvement, maintenance, or system management. But relevant
data are often missing or mismeasured, and there is no guarantee that factors affecting
reliability are even being monitored. Sometimes service system or network reliability
is assessed in terms of system performance measures (e.g., the fraction of successfully
completed transactions) or some service time distribution (e.g., Becker, Clark, and
Lambert 1998). Challenges in this area include the design of good data collection
processes and the provision of methodology dealing with large volumes of data,
selective observation, missing data, and errors of measurement.

Complex Systems and Networks. The stochastic modeling of systems and
networks has received considerable study (e.g., Barlow and Proschan 1975; references
in Becker et al. 1998), but the literature on data collection and analysis is sparse. Recent
work on networks and graphical models provides insight and some methodology, but
it is an important challenge to develop data analytic tools for studying the reliability
of complex systems and processes. Software reliability is an important special area.

REFERENCES

Andersen, P. K., Borgan, O., Gill, R. D., and Keiding, N. (1993), Statistical Models Based on Counting
Processes, New York: Springer.

Ansell, J. I., and Phillips, M. J. (1989), “Practical Problems in the Statistical Analysis of Reliability Data”
(with discussion), Applied Statistics, 38, 205–247.

Ascher, H., and Feingold, H. (1984), Repairable Systems Reliability, New York: Marcel Dekker.

Barlow, R. E., and Proschan, F. (1975), Statistical Theory of Reliability and Life Testing, New York: Holt,
Rinehart and Winston.

Becker, R. A., Clark, L. A., and Lambert, D. (1998), “Events Defined by Duration and Severity, With an
Application to Network Reliability” (with discussion), Technometrics, 40, 177–194.



Berman, M., and Turner, T. R. (1992), “Approximating Point Process Likelihoods With GLIM,” Applied
Statistics, 41, 31–38.

Cox, D. R. (1972), “Regression Models and Life Tables” (with discussion), Journal of the Royal Statistical
Society, Ser. B, 34, 187–220.

Cox, D. R., and Lewis, P. A. W. (1966), The Statistical Analysis of Series of Events, London: Methuen.

Crowder, M. C., Kimber, A. C., Smith, R. L., and Sweeting, T. J. (1991), Statistical Analysis of Reliability
Data, London: Chapman and Hall.

Dalal, S. R., and McIntosh, A. A. (1994), “When to Stop Testing for Large Software Systems With Changing
Code,” IEEE Transactions on Software Engineering, 20, 318–323.

Duchesne, T., and Lawless, J. (2000), “Alternative Time Scales and Failure Time Models,” Lifetime Data
Analysis, 6, 157–179.

Hoyland, A., and Rausand, M. (1994), System Reliability Theory, New York: Wiley.

Kalbfleisch, J. D., and Prentice, R. L. (1980), The Statistical Analysis of Failure Time Data, New York:
Wiley.

Lawless, J. F. (1982), Statistical Models and Methods For Lifetime Data, New York: Wiley.

(1983), “Statistical Methods in Reliability” (with discussion), Technometrics, 25, 305–335.

(1998), “Statistical Analysis of Product Warranty Data,” International Statistical Review, 66, 41–
60.

Lawless, J. F., and Nadeau, C. (1995), “Some Simple Robust Methods for the Analysis of Recurrent
Events,” Technometrics, 37, 158–168.

Makis, V., and Jardine, A. K. S. (1992), “Computation of Optimal Policies in Replacement Models,” Insti-
tute of Mathematics and its Applications Journal of Mathematics Applied in Business and Industry,
3, 169–175.

Meeker, W. Q., and Escobar, L. A. (1998), Statistical Methods for Reliability Data, New York: Wiley.

Nelson, W. (1982), Applied Life Data Analysis, New York: Wiley.

(1990), Accelerated Testing, New York: Wiley.

Olin, B. D., and Meeker, W. Q. (1996), “Applications of Statistical Methods to Nondestructive Evaluation”
(with discussion), Technometrics, 38, 95–130.

Singpurwalla, N. D. (1995), “Survival in Dynamic Environments,” Statistical Science, 10, 86–103.

Therneau, T. M. (1997), “Extending the Cox Model,” in Proceedings of the First Seattle Symposium on
Biostatistics, eds. D. Y. Lin and T. R. Fleming, New York: Springer, pp. 51–84.

Whitmore, G. A., Crowder, M. J., and Lawless, J. F. (1998), “Failure Inference from a Marker Process
Based on a Bivariate Wiener Model,” Lifetime Data Analysis, 4, 229–251.



The State of Statistical Process Control as
We Proceed into the 21st Century

Zachary G. Stoumbos, Marion R. Reynolds, Jr.,

Thomas P. Ryan, and William H. Woodall

1. INTRODUCTION

Statistical process control (SPC) refers to some statistical methods used exten-
sively to monitor and improve the quality and productivity of manufacturing processes
and service operations. SPC primarily involves the implementation of control charts,
which are used to detect any change in a process that may affect the quality of the
output. Control charts are among the most important and widely used tools in statis-
tics. Their applications have now moved far beyond manufacturing into engineering,
environmental science, biology, genetics, epidemiology, medicine, finance, and even
law enforcement and athletics (see Lai 1995; Montgomery 1997; Ryan 2000). C. R.
Rao (1989) stated: “It is not surprising that a recent book on modern inventions lists
statistical quality control as one of the technological inventions of the past century.
Indeed, there has rarely been a technological invention like statistical quality control,
which is so wide in its application yet so simple in theory, which is so effective in
its results yet so easy to adopt and which yields so high a return yet needs so low an
investment.”

The first control charts were developed by Walter A. Shewhart in the 1920s (see
Shewhart 1931). These simple Shewhart charts have dominated applications to date.
Much research has been done on control charts over the last 50 years, but the diffusion
of this research to applications has been very slow. As Crowder, Hawkins, Reynolds,
and Yashchin (1997) noted, “There are few areas of statistical application with a wider
gap between methodological development and application than is seen in SPC.”
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An examination of what is used in practice and what appears in the SPC literature
shows that there are actually two gaps. There is one gap between applications and
applied research in journals such as the Journal of Quality Technology and Techno-
metrics and another gap between this applied research and the research in some of the
more theoretical statistics journals. The existence of these gaps is disturbing, because
it means that most practitioners have received little of the potential benefit from the
technical advances made in SPC over the last half-century. Here we discuss in detail
the current state of SPC and give our views on some important future research topics.
These topics have good potential to narrow the gaps between applications and applied
and theoretical SPC research.

2. THE PROCESS-MONITORING PROBLEM

The process-monitoring problem can be described in general terms as follows.
LetX represent a quality variable of interest, and suppose that fθθθ(x), the distribution
function of X , is indexed by θ, a vector of one or more parameters. A stable process
that is operating with θ = θ0 is said to be in statistical control. The value of θ0 may
or may not correspond to an ideal (or target) value.

“Murphy’s law” explains the purpose of process monitoring; over time, some-
thing will inevitably change and possibly cause deterioration in process quality. Some-
thing that affects process quality is assumed to be reflected by a change in θ from
the value θ0, so the basic goal of process monitoring is to detect changes in θ that
can occur at unknown times. Many types of changes in θ could occur, such as brief
self-correcting changes or shifts and drifts that persist over long periods if undetected.

Control charts for monitoring θ are based on taking samples from the process and
observing the values of X . A control statistic, say Y , is computed after each sample
and plotted in time order on a control chart. Control limits are constructed such that
a value of Y is very unlikely to fall outside of them when θ = θ0. A value of Y that
falls outside the control limits is taken as a signal that a change in θ has occurred,
and that some appropriate action is required.

At the start of the process, the values of some or all of the components of θ0

may be unknown, and thus a preliminary phase of collecting process data, estimating
parameters, and testing for process stability may be required. Process monitoring can
begin after θ0 is estimated in this preliminary phase.

The crisis and subsequent quality revolution in U.S. industry in the 1980s trig-
gered an increasing emphasis on actively working to improve quality (Deming 1986).
Thus, in addition to detecting undesirable changes in θ, control charts also should
be used to identify improvements in the process. For example, if X is normally dis-
tributed and θ = (µ, σ), then improving quality might correspond to making process
adjustments that will reduce σ (Reynolds and Stoumbos 2000a).



3. TRADITIONAL SHEWHART CONTROL CHARTS

The first control charts proposed by W. A. Shewhart in the 1920s remain in
widespread use today. The Shewhart charts were designed to make it relatively easy
for process personnel without statistical training to set up, apply, and interpret the
charts using only a pencil and paper for calculations. Although it is not often explic-
itly stated, these charts are based on the assumption that fθθθ(x) is one of a few standard
distributions (normal for continuous data, and binomial or Poisson for discrete data),
and that successive observations of X are independent. The control statistic Yk com-
puted after sample k is a function of the data in sample k only. Ease of computation
is emphasized; so, for example, the sample range is typically used as the measure of
dispersion. The design of Shewhart charts is traditionally based on simple heuristics,
such as using samples of four or five observations at suitable sampling intervals, say
every hour, and using “three-sigma” limits set three standard deviations away from
the in-control mean of Yk.

Shewhart charts have functioned as simple graphical tools in a wide variety of
applications. It is not surprising, however, that such simple charts are usually far
from optimal (see Secs. 4 and 5) and may even be inappropriate. For example, with
three-sigma limits, the false-alarm rate is not adjusted to suit the specific conditions
of different applications, and anomalies arise such as lack of lower control limits for
nonnegative statistics. The use of the sample range has continued long after compu-
tational ease ceased to be a primary concern.

Modifying a Shewhart chart can alleviate some of the aforementioned problems,
but a greater disadvantage is that these charts are inefficient for detecting all but
relatively large changes in θ. The increasing emphasis today on high-quality products
increases the importance of detecting small changes in θ.

4. MORE EFFICIENT CONTROL PROCEDURES

Efficient detection of small and moderate shifts in θ requires that the control
statistic in some way accumulate information across past samples. Runs rules, which
are based on patterns of points in a Shewhart chart, help to improve the ability of
Shewhart charts to detect small shifts in θ (Champ and Woodall 1987), but using
these rules is not the best method of detecting small shifts in θ.

A much better method of accumulating information across samples uses a control
statistic that is an exponentially weighted moving average (EWMA) of current and
past sample statistics. In particular, if Ik is the individual statistic for sample k, then
the EWMA control statistic computed after sample k is

Ek = (1 − λ)kE0 +
k∑
i=1

(1 − λ)k−1λIi = (1 − λ)Ek−1 + λIk,

where E0 is the starting value and λ > 0 is the smoothing parameter that determines



the weight given to current data relative to past data. A signal is given if Ek falls
outside of control limits.

The cumulative sum (CUSUM) chart is another highly efficient control chart that
accumulates information over current and past samples. The CUSUM statistic for
detecting a shift from θ0 to a specified alternative θ1 can be written as

Ck = max{0, Ck−1} + ln(fθθθ1(xk)/fθθθ0(xk)),

where C0 is the starting value. A signal is given if Ck exceeds a control limit. Two-
sided CUSUM charts are usually constructed by running two one-sided CUSUM
charts simultaneously.

For a given false-alarm rate, both the EWMA and CUSUM charts are much bet-
ter than a Shewhart chart for detecting small sustained shifts in θ. The CUSUM
chart is optimal for detecting a shift from θ0 to a specified θ1 in that it mini-
mizes the worst mean signal delay for a large class of signal rules with appropri-
ately constrained false-alarm rates (Lorden 1971; Moustakides 1986; Ritov 1990).
A good broad exposition on CUSUM charts from a more applied perspective was
given by Hawkins and Olwell (1998), and discussion of some recent developments
on CUSUM charts has been provided by Reynolds and Stoumbos (1999, 2000b).
For the problem of monitoring the process mean µ, several studies have shown
that the EWMA and CUSUM charts generally have similar detection efficiencies
over a range of shifts in µ (see, e.g., Lucas and Saccucci 1990). The EWMA and
CUSUM charts date from the 1950s (Page 1954 for the CUSUM and Roberts 1959
for the EWMA), but usage of these efficient charts in applications was very infre-
quent for many years. Their usage is steadily increasing, although still relatively
low.

A number of generalized CUSUM schemes proposed over the last three decades
allow for θ1 to be any unknown value in a given interval. These schemes are based on
a generalized likelihood ratio (GLR) or on integrating the likelihood ratio with respect
to a probability distribution of θ (Basseville and Nikiforov 1993; Lai 1995; references
therein). The latter are quasi-Bayesian schemes akin to the procedures discussed in
Section 5. Most generalized CUSUM schemes proposed to date are of mainly theoret-
ical interest, because they cannot be easily expressed by computationally convenient
recursive forms (Lai 1995).

5. BAYESIAN PROCEDURES AND
ECONOMIC MODELS

Bayesian procedures appear to be naturally suited for process monitoring. The
application of Bayesian procedures requires recognition that the form of the a priori
information about θ is not simply a prior distribution, as would be the case in tradi-
tional estimation. In process monitoring, it is assumed that θ will eventually change



from the value θ0 while monitoring is conducted. Thus the prior distribution must
reflect when a change in θ will occur, as well as the type of change that will occur.

Bayesian methods for process monitoring have been available since the works
of Girshick and Rubin (1952), Shiryaev (1963), and Roberts (1966), who placed a
geometric prior distribution with parameter p on the unknown time T of the change in
θ (changepoint), and independently derived what is commonly termed the Shiryaev–
Roberts (S-R) procedure. The S-R control statistic for detecting a shift from θ0 to a
specified alternative θ1 can be expressed in terms of the log-likelihood ratio as

Rk = ln(p+ eRk−1) − ln(1 − p) + ln(fθθθ1(xk)/fθθθ0(xk)),

where R0 is the starting value. A signal is generated if Rk exceeds a control limit,
which in the original work was determined to minimize a cost-based loss function.

Pollak (1985) proved the S-R signal rule to be asymptotically Bayes risk efficient
as p → 0. Basseville and Nikiforov (1993) and Lai (1995) provided good discussions
of the S-R control chart. Bayesian procedures for process monitoring appear to be
unknown to most applied statisticians and industrial engineers and thus are rarely
used in SPC applications.

There is a relatively large volume of applied SPC literature on economic models
(starting with Duncan 1956) related to Bayesian approaches. These economic models
aim to find the optimum control chart design (sample size, sampling interval, and
control limits) to minimize long-term expected costs. The control statistics used in
these models are from standard control charts, such as Shewhart or CUSUM charts,
and thus are not based on a posterior distribution. These models use prior distributions
for the time and size of change in θ and a loss function that accounts for the costs of
sampling, false alarms, and operating out of control. Thus these models have the key
elements that would be used in a Bayesian approach to the problem, except that the
control statistics are not based on a posterior distribution.

Economic models appear to provide a natural approach for process engineers
to use in control chart design and application, because decisions are put into terms
that managers understand (dollars), and the problem is framed in terms of designing
traditional control charts. But, like many purely Bayesian methods, these models
are rarely used by SPC practitioners. There is disagreement among SPC researchers
about the general usefulness of the economic modeling approach. Some researchers
(e.g., Woodall 1986) criticize these models and feel that future SPC research efforts
would be more fruitful in other areas. Other researchers are actively working on these
models and feel that they provide the best approach to control chart design for many
applications (e.g., Keats, Del Castillo, von Collani, and Saniga 1997).

6. MORE EFFICIENT SAMPLING

The standard approach to sampling for a control chart is to use a fixed sampling
rate (FSR) in which samples of fixed size are obtained using a fixed-length sampling



interval. In recent years, variable sampling rate (VSR) control charts have been
developed. VSR charts allow the sampling rate to vary as a function of the process
data. When the data exhibit no evidence of a change in θ, a low sampling rate is used,
but as soon as there is evidence of a possible change in θ, a high sampling rate is used.
If the evidence of a change in θ is strong enough, a VSR chart signals in the same
way as a traditional FSR chart. Using a high sampling rate when there is evidence
of a change in θ results in much faster detection of most shifts in θ, compared to an
FSR chart with the same average in-control sampling rate.

There are several ways to allow the sampling rate to vary as a function of the
process data. One way is to allow the sampling interval to vary (Reynolds, Amin,
and Arnold 1990; Reynolds and Stoumbos 2000a; references therein). Another way
is to allow the sample size to vary. A particularly efficient way to allow the sample
size to vary is to apply a sequential probability ratio test for testing θ0 versus θ1 at
each sampling point (Reynolds and Stoumbos 1998; Stoumbos and Reynolds 1997,
2000a). Tagaras (1998) presented a review of VSR charts.

The great majority of VSR control charts in the literature, including those men-
tioned herein, have been developed for discrete-time models. Recently, several VSR
control charts have been developed for the continuous-time problem of monitoring the
drift coefficient of a Brownian motion process (Assaf, Pollak, and Ritov 1992; Assaf
and Ritov 1989; Srivastava and Wu 1994). Assaf et al. (1992) and Srivastava and Wu
(1994) noted that these continuous-time VSR control charts are quite complicated
to implement in practice and were considered mainly from a theoretical viewpoint,
using diffusion theory.

The disadvantage of VSR charts is, of course, the administrative inconvenience
of the varying sampling rate. However, the ability to make better use of sampling
resources by selectively allocating them to the time periods in which they will be
most effective provides a powerful method for significantly increasing the efficiency
of process monitoring.

7. MULTIVARIATE CONTROL CHARTS

In many SPC applications, the quality of the process will be characterized by
multiple correlated quality variables, and in this situation both the quality character-
istic X and parameter θ will be vectors. In multivariate SPC applications, the most
common approach to process monitoring is to apply separate univariate control charts
for each variable, ignoring the issue of their joint performance.

One approach to constructing a multivariate control chart is based on forming a
single control statistic from the multivariate data in each sample. This control statistic
would usually be a quadratic form involving summary statistics for each variable, and
would be plotted on a Shewhart-type chart (Hotelling 1947). The resulting control
chart has the disadvantage of all Shewhart-type charts; it is inefficient for detecting
small and moderate-sized sustained shifts in θ.



A much better approach is to compute an EWMA or CUSUM statistic for each
variable, and then use a quadratic form to combine these separate univariate statistics
into a single control statistic to be plotted on a control chart as usual (Lowry, Woodall,
Champ, and Rigdon 1992; Mason, Champ, Tracy, Wierda, and Young 1997; references
therein).

8. AUTOCORRELATION

A basic assumption usually made in constructing and evaluating control charts
is that the process data are independent. But autocorrelation is present in many appli-
cations, particularly in cases in which data are closely spaced in time. Relatively low
levels of autocorrelation can have a significant impact on the statistical properties of
standard control charts designed under the assumption of independence. For example,
estimates of θ0 can be severely biased, resulting in a much higher false-alarm rate
than expected. It is not uncommon in applications for standard control charts to be
applied to autocorrelated data. When these control charts do not work properly, ad
hoc adjustments are made to the charts to try to compensate for the autocorrelation.
This clearly is not the best approach to use for the problem of autocorrelation.

In recent years, two basic approaches to dealing with autocorrelation have been
studied in the applied SPC literature. Under both approaches, an underlying time series
model is assumed. The first approach uses the original data in a standard control
chart, but adjusts the control limits to account for the autocorrelation. The second
approach advocates plotting the residuals from the time series model on a standard
control chart (Faltin, Mastrangelo, Runger, and Ryan 1997; Lu and Reynolds 1999;
references therein).

Both of these approaches tend to make the problem of process monitoring appear
simpler than it actually is. If a time series model really captures the in-control behavior
of the process, then the parameters of this time series model become elements of
θ. Thus the complexity of the process-monitoring problem is increased due to the
increase in the number of parameters to estimate and monitor.

Several interesting extensions of CUSUM, GLR, and nonlikelihood control chart
schemes for autocorrelated data have appeared in the engineering literature over the
last three decades. Basseville and Nikiforov (1993) gave a comprehensive overview of
these algorithms in the context of univariate as well as multivariate process-monitoring
applications.

9. STATISTICAL PROCESS CONTROL AND AUTOMATIC
PROCESS CONTROL

The basic philosophy of SPC for improving quality is to detect process changes,
so that the cause(s) of the changes can be investigated. Another approach to improving
quality, sometimes called automatic process control (APC), has been developed in the



engineering literature. APC can be used in situations in which there is autocorrelation
in the data and a mechanism is available to adjust the process when it appears to be
deviating from the desired state. The approach used in APC is to forecast the next
observation, and then use the adjustment mechanism to adjust the process so that
the observation will be closer to the desired state. In APC the process is assumed
to be wandering in some sense, and the adjustment mechanism compensates for this
wandering. Thus the basic philosophy of APC is to compensate for undesirable process
changes, rather than to detect and remove them as in SPC.

The determination of the best adjustment to make in APC requires a model for
process behavior. The optimal adjustment chosen for this model may not work well
in the presence of a process change that alters the model. The need to detect changes
in the underlying model suggests combining SPC monitoring with APC adjustment
to exploit their individual strengths. There has been recent work on combining SPC
and APC, but more work is needed (Box and Luceño 1997; Tsung, Shi, and Wu 1999;
references therein).

10. DIAGNOSTICS

Monitoring, in either the case of a time series model or the case of multiple
variables, involves monitoring multiple parameters. When a control chart signals in
this situation, the parameter(s) that have changed may be difficult to determine. In
addition, with small parameter changes, pinpointing the time of the change may also
be difficult. Thus an important issue with multiple parameters is the ability to diagnose
the type and time of the parameter change that has occurred.

In the case of multivariate data, some work has been done on diagnostics, but
little has been done in the case of time series models. The literature on estimating
changepoints in a sequence of observations is substantial (Basseville and Nikiforov
1993 and references therein). But the problem of estimating the changepoint in process
monitoring is different from the problem for a fixed sequence of observations because
in process monitoring the estimation is done only after a signal by the control chart
(Nishina 1992; Nishina and Peng-Hsiung 1996; references therein). The problem of
diagnostics is one area where the use of Bayesian models, nonlinear filtering theory,
and stochastic calculus seems quite natural and may prove very helpful (Lai 1995;
Stoumbos 1999; Yashchin 1997).

11. PARAMETER ESTIMATION AND NONPARAMETRIC
PROCEDURES

Control chart performance is very sensitive to errors in estimating θ0. For exam-
ple, the false-alarm rate may be much higher or lower than expected unless the dataset
used in the initial phase of estimating θ0 is quite large. The situation is even worse in
more complex situations when multiple parameters must be estimated (Adams and



Tseng 1998; Lu and Reynolds 1999). The effect of errors in estimating θ0 in com-
plex models awaits additional study, and methods for compensating for these effects
remain to be developed.

Traditional Shewhart-type charts are usually based on the assumption that if fθθθ(x)
is continuous, then it will be normal. Almost all work on multivariate control charts is
based on the assumption that fθθθ(x) is multivariate normal. In some cases, the central
limit theorem can be used to justify approximate normality when monitoring means,
but in numerous cases normality is an untenable assumption and one is unwilling to use
another parametric model. A number of nonparametric methods are available for use
in these cases. A more prominent role is expected for nonparametric methods. As data
availability increases, nonparametric methods seem especially useful in multivariate
applications where most methods proposed thus far rely on normality. Nonparametric
multivariate control charts have been studied only very recently and much more
research is needed (e.g., Liu 1995; Stoumbos and Jones 2000; Stoumbos, Jones,
Woodall, and Reynolds 2000).

12. FUTURE DIRECTIONS

Advances in automated manufacturing systems coupled with advances in sensing
and automatic inspection technology will continue to increase the volume of data
available for drawing inferences about many processes. In some applications, this
will change the inference problem from one dependent on scarce data to one based on
plentiful data. However, the emphasis on higher quality will often require measuring
more variables, which in some cases may be expensive and/or time-consuming. Thus
we foresee no reduction in the need for efficient procedures for process monitoring.

In the future, we expect problems to be more diverse, with specialized monitoring
methods required. Multiple quality variables, along with possible autocorrelation in
these variables, will require more complex models with a large increase in the number
of parameters to monitor.

The increasing complexity of problems encountered provides an opportunity
to narrow the gaps between applications and applied and theoretical SPC research.
The Shewhart charts that have dominated industrial applications over the past 75
years were designed to be extremely simple, with a one-size-fits-all approach to their
design and implementation. In the case of relatively simple problems, arguments that
CUSUM or EWMA charts have much better statistical properties convinced only
some industrial practitioners to move beyond using the familiar Shewhart charts.
As problems become more complex, the need for more sophisticated monitoring
procedures will become critical and more obvious to all. Theoretical and applied
research that addresses this need can have a major impact on applications.

The following are some additional research areas that we feel have very good
potential for impacting applications (for some other research topics, see Montgomery
and Woodall 1997 and Woodall and Montgomery 1999):



• Basic and applied research is needed on methods for monitoring multiple
parameters that arise in models for the cases of single or multiple process
variables and/or autocorrelation.

• When multiple parameters are to be monitored, methods are needed for diag-
nosing both the changepoint (Nishina 1992; Nishina and Peng-Hsiung 1996)
and the specific parameter or parameters that have changed (Reynolds and
Stoumbos 2000a). The application of monitoring procedures to complex prob-
lems may require sophisticated efforts in model fitting and parameter estima-
tion, and the effects of the fitting and estimation on the procedures await much
more study. We foresee that VSR approaches can significantly improve the
effectiveness of change-point estimation.

• The robustness of fitted process models and monitoring procedures to model
misspecification needs further study (Stoumbos and Reynolds 2000b). Non-
parametric procedures for multivariate problems are an open field with great
potential.

• Additional basic and applied research is needed on procedures that integrate
SPC and APC methodology.

• The scope of SPC methods should be expanded to include the study of all
variation over time throughout the entire production process (tracking), which
usually includes numerous stages of process steps and product measurement
(Agrawal, Lawless, and Mackay 1999; Hawkins 1991; Lawless, Mackay, and
Robinson 1999).

• A greater synthesis of the theoretical changepoint and applied SPC literatures
is very desirable. Moreover, excellent opportunities exist for cross-fertilization
of ideas from other areas of statistics and stochastic modeling, including epi-
demiology, outlier detection, and especially stochastic calculus and financial
mathematics (Stoumbos 1999).

• The use of complicated models will place even greater emphasis on the de-
velopment of software. In many cases, software will need to be customized
for particular applications.
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Statistics in Preclinical Pharmaceutical
Research and Development

Bert Gunter and Dan Holder

1. INTRODUCTION

Although most statisticians and the public at large are familiar with the role of
statistics in human clinical drug trials, advances in the basic science and technol-
ogy of drug research and development (R&D) have created equally challenging and
important opportunities in the preclinical arena. Preclinical pharmaceutical research
encompasses all aspects of drug discovery and development, from basic research into
how cells and organs work and how disease processes disrupt that work to the de-
velopment, formulation, and manufacture of drugs. The activities that fall under this
rubric include biological and biochemical research using in vitro (“test tube”-based)
and in vivo (whole animal) experiments; genomics, the study of gene expression
in cells, organisms, and populations to determine the molecular biology of disease;
proteomics, the study of protein expression patterns to understand how normal and
disease processes differ; design, synthesis, and selection of diverse chemical and nat-
ural product “libraries” of compounds to screen for desirable biological activity, often
via high throughput, “industrialized” drug screening assays; analytical development
for drug research and manufacturing; animal testing of drug candidates for efficacy
and metabolism and to determine drug toxicity, teratogenicity (fetal and growth ef-
fects), and carcinogenicity; development and scale-up of chemical and fermentation
drug manufacturing processes; and drug formulation and stability testing. This list is
far from complete.

To put these activities into perspective, it can easily cost more than $1 billion
and require 10 to 15 years of R&D to bring out a single new drug, of which only
the last 2–3 involve the FDA-reviewed human trials with which statisticians and the
public are most familiar. So preclinical activities occupy the bulk of the time and
scientific effort. The statistics that support this work cover a broad range of statisti-
cal methods. Sample sizes can range from longitudinal case-control studies of 10 or
fewer animals (although they may produce thousands of data points from continuous
monitoring using sophisticated instruments and telemetry) to hundreds of thousands
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or millions of multivariate records in drug screening and structure searches. All areas
of statistics find useful application, but recent opportunities for nonparametric exper-
imental design, linear and nonlinear longitudinal data modeling, high-dimensional
exploration and visualization, inference using exact permutation methods and boot-
strapping, and pattern recognition, classification, and clustering of large databases are
perhaps noteworthy.

Clearly, in a brief survey like this we can highlight only a couple of examples.
We have chosen chemometrics and genomics because they provide good examples of
the kind of interdisciplinary, data-rich, and nonstandard issues that are increasingly
at the forefront of modern pharmaceutical research. But these examples are just the
tip of a vast and fascinating iceberg.

2. CHEMOMETRICS

Roughly speaking, chemometrics is the statistics of (analytical) chemistry data,
especially spectroscopy data. Physics and chemistry have developed an arsenal of in-
genious tools to probe chemical composition and structure. (A nice internet resource
for spectroscopy is www.anachem.umu.se/jumpstation.htm.) These techniques can
produce (one- and two-dimensional) spectra of exquisite resolution, often with hun-
dreds or thousands of individual peaks. Digitizing translates them to multivariate
vectors of that dimensionality. Chemometrics arose because classical multivariate
normal statistical methods were inadequate for such data and related matters of cali-
bration and quality control.

One typical application will give the flavor of the issues. Suppose that one has,
say, 200 unknown natural chemical extracts from various biological sources that are
tested for antibiotic activity against 30 different pathogens. (Many antibiotics originate
from naturally occurring sources; penicillin and erithromycin are familiar examples.)
Suppose, also, that ultraviolet spectra with (up to) 500 peaks are measured for these
200 extracts, producing a 200 × 500 matrix of spectra, X , and a 200 × 30 matrix of
potencies, Y . Can we determine from these data whether and how the extracts cluster
into groups that may reveal common active chemical components?

Various kinds of clustering might be tried, but the high dimensionality with so
few data points will likely render such approaches ineffective. Rather, it is usually
necessary to first project the data onto a low-dimensional manifold that captures the
“essential” structure, for which variants of principal components analysis (PCA) are
widely used. But what if one or more spectral values for many or even all the extracts
are missing because of, for example, detector noise or sample contamination? Simple
case deletion will lose most of the data, but what kind of imputation is appropriate?
And how does one deal with the isolated outliers far from the main cluster(s) that are
frequently of greatest interest? Standard PCA is a least-squares technique, and high-
dimensional outliers are often missed by such methods. Computational issues are also



critical; one must avoid, for example, calculating the full singular 500×500 covariance
or correlation matrix. Although methods have recently been developed to deal with
some of these issues individually (Little and Rubin 1987; Rousseeuw and Van Driessen
1999), these methods often do not deal with them together, especially when sample
sizes grow to the thousands or hundreds of thousands, which will increasingly be the
case as lab automation technology continues to develop.

Moreover, PCA makes use only of the X data—the spectra. More desirable
would be clustering based on the relationship of the spectra to clusters of similar
potency among the pathogens, which is what would be expected given that different
pathogens are susceptible to different biochemical pathways and, therefore, structures.
Indeed, often the smaller components (i.e., corresponding to smaller eigenvalues)—
representing structures that occur relatively rarely—have the greatest antibiotic effect
on subgroups of the pathogens. These could be overlooked as noise in conventional
PCA. So what is needed is a kind of simultaneous projection procedure in both X
and Y in which variation in the X projection is associated with structural variation
in Y . Such an approach exists; it is called partial least squares (PLS), and was first
developed by Herman Wold and his collaborators (Helland 1988, 1990; Wold 1976),
but there is some controversy regarding its statistical effectiveness (Frank and Fried-
man 1993; Garthwaite 1994; Butler and Denham, 2000). Nevertheless, it is widely
used (Chemometrics Web Resource; Thomas and Haaland 1988, 1990).

One can contemplate doing better by taking advantage of modern computational
power to extend these least squares ideas from variance to more general projection
indices, as with projection pursuit density estimation (Friedman and Stuetzle 1981;
Friedman, Stuetzle, and Schroeder 1984). Wavelet approaches also appear promising
and are being explored as a preprocessing step for initial “signal” compression to
directly reduce dimensionality (Vidakovic 1999). Clearly, much of this is ad hoc,
and it would be desirable to have better theory to guide the efforts, although actual
application must always remain the critical testing ground. In particular, there should
be a role for Bayesian approaches, as Friedman and Frank have already indicated.
Clearly, then, important challenges remain on this interdisciplinary border of statistics,
analytical chemistry, and computer science. The technology driving the needs will
only accelerate.

3. GENOMICS

Advances in molecular genetics have provided various helpful tools for discov-
ering effective therapies for human diseases. To exemplify how molecular genetics
is used in the drug discovery and development process, we focus on one application
where substantial progress has been made.



3.1 Human Gene Hunting

Currently, many researchers are attempting to discover genetic causes for human
diseases. A primary motivation for this research is the belief that this knowledge will
help identify persons at high risk for these diseases and lead to the development of
effective therapies. The hunt for human disease genes is a complex multidisciplinary
challenge in which statistics plays an important role. An approach called positional
cloning has met with some success. This approach is based on analyzing the varia-
tion in molecular markers between diseased and nondiseased individuals. Molecular
marker loci are regions of DNA that vary among individuals and have a known lo-
cation in the human genome. Historically, many of the markers have levels (called
alleles) based on the number of consecutive repeats of a particular DNA pattern. The
markers themselves do not usually affect disease susceptibility; however, because
DNA is passed from parents to offspring in contiguous chunks, loci in close physical
proximity to each other on the same parental chromosome (called “linked” loci) will
tend to be passed on together, whereas loci far apart or on different parental chromo-
somes are passed on independently. Although individuals have two copies of each
chromosome, through a process called recombination, it is a combination of the pair,
rather than entirely one or the other, that is transmitted to offspring. Linkage, or the
closeness of two loci, is usually measured by the recombination fraction, Θ, which
may be defined as the probability that the alleles at the two loci passed on to the
next generation came from different chromosomes of the parental pair. When loci
are very close to each other, they are said to be linked and almost always are passed
on together (Θ ≈ 0). When loci are not very close to each other or are on different
chromosomes, the probability of being transmitted together is close to 1

2 . The basic
strategy is to continually narrow a region suspected of harboring a disease locus by
repeatedly examining sets of markers, finding the ones that appear to be linked to the
putative disease locus, and then looking for a denser set of markers in the areas of
interest and repeating the process. Once a region is sufficiently narrowed, geneticists
identify and examine DNA structures (e.g., genes, promoter regions) in the interval
and try to find one or more etiologic mutations.

Initial searches often use a case-control design because of its relatively lower cost.
Researchers look for associations between marker alleles and disease status using a
group of affected individuals and either a random or a closely matched control group.
The degree of allelic association between a two-level (0, 1) marker allele, M, and a
disease allele, D (affected, not affected), may be defined as δ = Pr(M = 1 and D =
affected) − Pr(M = 1)Pr(D = affected). It can be shown that in a simple idealized
large randomly mating population, δ will decrease by a factor of (1 − Θ) at each
generation (Hartl 1988). Allelic association is often taken as evidence of linkage,
because in this idealized setting at time t, δt = δ0(1 −Θ)t. But, Ewens and Spielman
(1995) showed that allelic association does not necessarily provide evidence of close
linkage. Lack of random mating throughout the entire population (stratification) or the



recent mixture of different populations (admixture) may result in the disease allele and
the associated marker both being more common in some strata (or some populations)
than in others. These types of population heterogeneity may result in spurious allelic
associations when a sample is taken across different populations and/or strata. The
extent to which allelic association in the absence of linkage is problematic is a matter
of some controversy (see, e.g., Risch and Teng 1998).

Family-based studies are alternatives to the case-control design. In these studies,
genotypes and disease statuses are collected for multiple generations in a number
of families, and the transmission of marker alleles from parents to their offspring is
analyzed. When an appropriate genetic model can be posited, a likelihood approach
can be used. This idea is due to Morton (1955), who built on the probability ratio test
of Haldane and Smith (1947) and the sequential sampling of Wald (1947). The basic
idea of this approach is that within the framework of the genetic model for each family,
one may construct a likelihood that is a function of the marker allele frequencies, the
disease frequency, and the recombination fraction, Θ. A full likelihood is constructed
by multiplying (or adding in the log scale) together the likelihood for all of the
individual families. Linkage is assessed by comparing the ratio of the likelihood
function evaluated at arbitrary values of Θ to the likelihood function evaluated at
Θ = 1

2 . (Details and refinements for this approach have been given in Ott 1991, 1992
and Terwilliger and Ott 1994.) This approach is very powerful when a genetic model
can be constructed that accurately describes the number of alleles influencing disease
susceptibility, the probability of the disease manifesting itself given the presence
of a disease allele (penetrance), and the allele frequencies. Although such genetic
models can be reasonably specified for some diseases caused by a single gene with
high penetrance (i.e., a large proportion of individuals with the genetic defect get the
disease), most diseases are likely to be caused by multiple genes, making it difficult
to specify an appropriate genetic model. Hence much of the current interest is in
methods that do not require a detailed specification of the genetic model.

Penrose (1953) suggested analyzing the degree of allele sharing among affected
siblings. When two individuals share the same allele at the same locus, that allele is
said to be identical by state (IBS). If the individuals have inherited the same allele
from the same common ancestor, then the allele is also identical by descent (IBD).
Due to Mendelian inheritance, for a given locus, on average 1

4 of sib pairs will share
2 alleles IBD, 1

2 will share 1 allele IBD, and 1
4 will share no alleles IBD. The idea

behind affected siblings analysis is that excess IBD sharing of a marker allele by
affected sibs is evidence that the marker is linked to the disease allele. When IBD
status can be determined, excess allele sharing can be tested using either a means
test or a goodness-of-fit test (Blackwelder and Elston 1985). In practice, it is often
not possible to determine whether shared alleles are IBD or merely IBS (e.g., if both
mother and father have the allele). Methods of estimating the number of alleles that are
IBD have been worked out by Amos, Dawson, and Elston (1990) and implemented



using a procedure described by Haseman and Elston (1972). Risch (1990) took a
likelihood approach to this problem, and Holmans (1993) showed how the power of
Risch’s method can be improved by restricting maximization to the set of possible
haplotype-sharing probabilities. Kruglyak and Lander (1995) showed how the results
of multiple markers can be used simultaneously. Weeks and Lange (1988) constructed
a test comparing arbitrary affected pedigree members (not necessarily siblings) and
using IBS.

Another group of tests focuses more directly on parental transmission of markers.
Spielman, McGinnis, and Ewens (1993) showed that the probability that a parent
whose two chromosomes carry different values for the marker transmits a specific
marker allele to an affected offspring is a function of both allelic association and the
recombination rate. Accordingly, they devised a McNemar-type test, the transmission
disequilibrium test (TDT), which can be used to test linkage in the presence of allelic
association or allelic association in the presence of linkage for the transmission to one
affected offspring. Martin, Kaplan, and Weir (1997) showed how additional affected
sibs can be incorporated into the test. Later, similar methods were used to construct
tests of these hypotheses for discordant pairs of siblings (Curtis 1997; Spielman
and Ewens 1998) and general sibships containing at least one affected and at least
one unaffected member (Horvath and Laird 1998). Tests of discordant sibships are
especially useful for late-onset diseases in which parental genotypes are often not easy
to obtain. More recently, Schaid (1999) showed that a likelihood ratio test statistic
may be more robust than the TDT over a wide range of genotype relative risk models.

Although positional cloning has already scored some major successes (cystic fi-
brosis, insulin-dependent diabetes mellitus, Alzheimer’s), the best may be yet to come.
Single nucleotide polymorphisms (SNPs) will provide a much denser set of markers,
and DNA microchips will allow researchers to assay thousands of markers at one time.
These advances, along with the likelihood of multiple interacting genes for complex
diseases, will provide many future statistical challenges. A number of excellent web
sites provide information on these topics and give links to software; three of the best
are the Whitehead Institute (http://www-genome.wi.mit.edu/), Rockefeller Univer-
sity (http://linkage.rockefeller.edu/), and, for a wide range of statistical genetics, the
University of Wisconsin (http://www.stat.wisc.edu/biosci/linkage.html#linkage).
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Statistics in Advanced Manufacturing

Vijay Nair, Mark Hansen, and Jan Shi

Statistical concepts and methods have played a critical role in speeding the pace
of industrial development over the last century. In return, industrial applications have
provided statisticians with incredible opportunities for methodological research. The
richness and variety of these applications have had a major influence on the devel-
opment of statistics as a discipline; consider, for example, the extensive research in
statistical process control (SPC) and changepoint detection, dating back to the pio-
neering work of Shewhart in the 1920s, and developments in automatic process con-
trol, design of experiments, sequential analysis, reliability, and so on. Recent efforts
by manufacturers to adopt sustained quality and productivity improvement programs
have generated a renewed interest in and appreciation for statistics in industry. In fact,
fundamental statistical concepts such as understanding and managing variation form
the backbone of popular quality management paradigms and practices.

Many of the traditional SPC concepts and techniques grew in response to the man-
ufacturing environments prevalent several decades ago. Current advanced manufac-
turing and high-technology industries, however, operate under a much more complex
and diverse set of conditions. These changes have important implications for research
directions in industrial statistics, not only in terms of identifying new problems and
developing new methods, but also in reevaluating the paradigms that inspired earlier
approaches. In this vignette we use applications from automotive and semiconductor
manufacturing to illustrate various issues and to discuss future research needs and
directions. The discussion is limited to a few selected topics and is inevitably slanted
toward our own experiences.

1. THE ENVIRONMENT OF
ADVANCED MANUFACTURING

Pressures from the competitive marketplace are forcing manufacturers to contin-
uously reduce product development cycle times. In parallel, the underlying technol-
ogy of products and processes are becoming increasingly complex to keep up with
consumer demands. Thus manufacturers frequently move from design to full-scale
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production well before the technology and the fabrication processes are completely
understood.

Consider the manufacture of semiconductor devices. The critical dimensions of
integrated circuits (ICs, or chips) are very fine: newly developed ICs have features as
small as .16 µm, and any company hoping to remain competitive will have plans to
reduce these sizes to as little as .01 µm in the next 5–10 years. Given the scale of these
devices, ICs are fabricated in a “clean room” through a process involving hundreds
of separate steps and lasting several weeks. The various steps are rarely stable, as
is commonly assumed in the SPC paradigm, and they frequently interact in unex-
pected ways. Such complexity and instability are typical in advanced manufacturing
applications.

2. VOLUME AND COMPLEXITY OF THE DATA

Massive amounts of process and product quality data are now collected routinely,
made possible by advances in computing and data acquisition technologies. Much of
these data have special structures; images, functional data, marked point processes,
and high-dimensional time series are all common.

In IC fabrication, several hundred chips are fabricated simultaneously on a wafer,
and the wafers are themselves processed in groups called lots. Large manufacturing
plants can start thousands of wafers each week. A wide range of measurements are
made on each wafer, including particle data, in-line electrical measurements, and final
probe test data even before the wafers are shipped to be packaged. The final probe
test alone generates a vector of 15- to 20-dimensional measurements for each chip.
In all, as much as 1.5 Gb of data per week are gathered in a typical fabrication. It is
well known that problems in different manufacturing steps will leave telltale spatial
signatures (which can vary within and across lots), so the wafer map data must be
treated as inherently spatial objects.

In the automotive industry, reducing auto body “dimensional” variation is a ma-
jor quality challenge. Auto body assembly involves several hundred parts and more
than 100 assembly stations. With the implementation of in-line optical coordinate
measurement machines (OCMM), tremendous amounts of dimensional data are now
routinely collected. The OCMM measures 100–150 points on each major assembly
with a 100% inspection rate. These data exhibit both spatial and temporal depen-
dence. Both the volume and the complexity of the data dictate the need for fast and
flexible methods of analysis, as well as appropriate environments for computing and
visualization.



Figure 1. A Tonnage Signal Collected From a Sheet Metal Stamping Process. One complete forming cycle
is displayed (b). The response is the total forming force measured by all the tonnage sensors mounted on
the stamping press (a).

3. PROCESS MONITORING FOR DATA WITH COMPLEX
STRUCTURE

Although there has been a tremendous amount of research in process monitoring,
much of it has focused on new and more powerful tests for detecting changes in process
means and variances. The real need in advanced manufacturing applications, however,
is in dealing with processes where the observations have complex structure. Due to
the lack of appropriate statistical methods and software tools for analyzing such data,
practitioners typically force the problem into a more traditional framework, often
resorting to simple overall summary measures that ignore the structure in the data. In
so doing, valuable opportunities for process improvement are lost.

Figure 1 illustrates a tonnage signal collected from a sheet metal stamping pro-
cess. The signal corresponds to a complete forming cycle and measures the total
forming force from all of the tonnage sensors mounted on the stamping press. This
is a typical example of the kind of functional data that are now being collected and
used to monitor and diagnose problems in manufacturing processes. A traditional
approach that treats the data as a vector of multidimensional observations and applies
standard multivariate SPC techniques has been shown to be quite inadequate in this
application (see Jin and Shi 1999, 2000). We return to this application later in the
vignette.

Figure 2 demonstrates why spatial patterns are important in IC data. The rightmost
wafer in this figure is a display of binary (pass/fail) probe test results collected at
the end of the fabrication process. This map can be viewed as the superposition of
the two wafer maps on the left: a cluster of defective chips representing a special or
assignable cause, with a pattern that helps identify the responsible machine or area, and
(essentially) random defects resulting from the overall cleanliness of the fabrication



Figure 2. A Graphical Model for Overall Wafer Yield. The defective chips in the middle wafer occur
essentially at random, whereas those on the left are “clustered,” reflecting a process problem. The final
probe map is a superposition of these two processes.

line. A traditional SPC approach would simply summarize the observed test results
with a single measure, wafer yield. Such an analysis clearly misses critical spatial
information about yield loss. Hansen, Nair, and Friedman (1997) described methods
for monitoring binary spatial processes to detect the presence of spatial clustering.
Because the null hypothesis of complete spatial randomness is too simplistic, they
use a Markov random field to characterize null situations with mild spatial clustering.
This spatial process monitoring effectively complements the information from control
charts that track only yield. However, as was shown by Hansen et al. (1999), this spatial
monitoring tool is only the first step in fully exploiting the spatial character of these
data.

4. BEYOND PROCESS MONITORING: THE REAL
OPPORTUNITIES FOR STATISTICS

4.1 Intelligent Failure Diagnostics

The primary emphasis in SPC has been on monitoring and changepoint detection.
The development of failure diagnostics and root cause determination have typically
been considered to be the domain of experts with subject matter knowledge. In ad-
vanced manufacturing applications where the processes are not well understood, even
the subject matter experts are increasingly relying on in-process and product quality
data for diagnosing process problems. From a statistical viewpoint, there is more in-
formation in the data when a process goes out of control than when it is in control.
This is where the real opportunities are and where we can make important contribu-
tions. Unfortunately, statisticians have been slow in recognizing these opportunities,
and much of the exciting work is being done by nonstatisticians in the engineering
community.

To provide a concrete example of the role that statistics can play in this area, con-
sider again the IC application. The monitoring scheme for spatial data discussed earlier
will trigger an alarm when there is significant spatial clustering as in Figure 2, but it will



not provide any information about the nature of the clusters. As discussed by Hansen
et al. (1999), spatial patterns provide tremendous information about potential process
problems. For example, if the defects concentrate in the center of the wafer, then there
is likely a problem in controlling the thickness of a chemical “resist” deposited on
the surface of the wafer prior to lithography. Hansen et al. (1999) described statisti-
cal techniques for extracting spatial signatures of defect patterns and using them to
immediately identify one or more likely root causes. These methods have been suc-
cessfully deployed within Lucent Microelectronics. Since our original involvement in
this area, many new techniques have appeared, and SEMATECH recently sponsored
an entire conference on spatial statistics and pattern recognition in IC fabrication (see
www.sematech.org/public/resources/stats/Symposium/1999/index.htm).

4.2 Combining Detection and Diagnosis

In high-volume manufacturing environments, there is a need to diagnose process
problems as they occur in real time. The usual two-stage approach of detection fol-
lowed by diagnosis, typically done off-line, is not adequate in this setting. Ideally,
we should integrate statistical methods with underlying engineering knowledge about
potential faults and failure diagnostics to develop a combined approach to detection
and diagnosis. It is reasonable to view this as a classification problem in which the
different classes represent different possible faults or states of the “system” (includ-
ing the null state). An initial specification of these states can be obtained during the
design and development stage, and the specifications can be constantly updated as
on-line process and product quality data are collected and analyzed.

Jin and Shi (1999, 2000) provided a good example of this in the context of
the tonnage signal data for stamping processes (see Figure 1). Their methodology
segments the tonnage signal according to the different stages of the forming cycle and
exploits information about the potential faults and how they will manifest themselves
on the tonnage signal. For example, a flat peak is the result of a loose tie rod, whereas
an oscillating peak indicates a worn bearing (see Figure 1). Jin and Shi (1999, 2000)
described a wavelet-based statistical analysis for feature extraction and used these
features to do process monitoring and fault diagnosis.

Ceglarek and Shi (1996) and Apley and Shi (1998) described another applica-
tion from the automotive industry involving “fixture” failure diagnostics. Design and
maintenance of the fixturing process is an important problem, as the “dimensional”
variation in the auto body panels depends critically on the quality of the fixturing
process. Ceglarek and Shi (1996) described how the engineering knowledge about
the fixture geometry and tooling design layout can be used to develop a model that
relates variations in the sensor measurements to different fixture faults. Apley and Shi
(1998) and Dong (1999) showed that incorporating this information provides tremen-
dous advantage over traditional SPC methods, not only in being able to detect the
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faults quickly, but also in being able to diagnose the problems in real time.
In ongoing research on IC applications, we are studying methods for developing

a library of spatial templates that characterize different process problems and for
classifying observed wafer maps with spatial clustering into one of the templates.

5. DATABASES, COMPUTING, AND VISUALIZATION

As mentioned earlier, advances in sensing and data acquisition technologies have
made it possible to routinely collect massive amounts of data about manufacturing
processes. Statisticians must be involved in all aspects of this data collection process,
ensuring that the right kinds of data are being collected and stored, helping design
appropriate measurement systems (choices of sensors, their location and number,
etc.), assuring data quality, and so on. We have seen two trends in data acquisition
and storage over the last few years.

First, the various streams of data currently pool into different databases. Process
control engineers have one source for machine-level routing and maintenance infor-
mation, whereas yield enhancement engineers pull postproduction tests results from
another source. Recent years have brought a move to centralize data collection, man-
agement, and access, so that factory-wide information soon may be readily applied to
process improvement efforts. Besides creating methods that make use of these new
data sources (an incredible challenge in itself), statisticians have an important role to
play in helping design and implement effective data warehousing solutions.

The second trend that we have observed relates to the information content being
stored in factory databases. As both the complexity and volume of data increase,
space and computing considerations dictate some form of reduction before storage
in a database. At a practical level, this can represent a gain in efficiency, because the
reduced or compressed data might be more readily amenable to SPC methods. (See,
e.g., Jin and Shi 1999, 2000 for the use of statistical techniques for feature-based
data compression in stamping processes.) In general, we expect that statisticians will
be called on to design specialized compression techniques for storing only the most
relevant information. This poses an incredible challenge in that unlike traditional
notions of “sufficiency” for a parametric model, departures from standard operating
conditions can be quite complex and often difficult to anticipate.

Finally, we comment on the role of statistical computing and graphics in advanced
manufacturing. Naturally, the practical success of any industrial application depends
largely on acceptance of new statistical methods by engineers in the factory. In our IC
work, visualization was critical, as was the development of a convenient computing
environment in which to express quantitative ideas about in-line and postproduction
fabrication data. This led to the creation of a software platform, called S-wafers,
that makes use of the object-based facilities of the S language. As a vehicle for
technology transfer, S-wafers supports a range of tasks from generating automated



reports (disseminated via the Lucent intranet in the form of HTML documents and Java
applets) to interactive, specialized analyses on one or more lots. Engineers familiar
with S can immediately augment their routine data analysis (based on a summary-like
yield) with spatial information. We believe that our experience is not unique and that
industrial statisticians who take the challenges of technology transfer seriously are
regularly called on to make use of and to create new and novel tools for computing and
visualization that can be transferred to the engineers responsible for manufacturing.

6. SUMMARY

We close by mentioning two other challenges that face industrial statisticians.
First, a major consequence of the drive to reduce product development cycle times
is that manufacturers are moving away from physical experimentation and testing to
computer modeling and CAD/CAM tools. This presents a wide array of research op-
portunities for statisticians, ranging from model validation and verification to efficient
design and analysis of very high-dimensional computer (or virtual) experiments.

Second, statisticians have too often worked in isolation and developed fragmented
approaches that ignore important information and interactions present in sequential,
multistage manufacturing processes. The complexities of advanced manufacturing
environments dictate that we must work closely with engineers and take a systems
approach to process improvement. Ceglarek, Shi, and Wu (1994), for example, have
described a knowledge-based system for “dimensional” control that has been very
effective in improving the quality of new auto body assembly processes. The method-
ology captures information about the multilevel assembly process and factory lay-
out through a hierarchical structural model. Combining statistical analysis of the in-
process data with information about the assembly architecture and sequence allows
the root causes of process variability to be diagnosed quickly and efficiently.

As all of these examples suggest, statistics has an extremely important role to
play in industry as we move into the data-rich 21st century. These are indeed exciting
times for our profession, with a wide array of interesting research opportunities.
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Chapter 4

Theory and Methods of Statistics

George Casella

The vignette series concludes with 22 contributions in Theory and Methods. It is,
of course, impossible to cover all of theory and methods with so few articles, but we
hope that a snapshot of what was, and what may be, is achieved. This is the essence
of “vignettes” which, according to the American Heritage Dictionary, are “literary
sketches having the intimate charm and subtlety attributed to vignette portraits.”

Through solicitation and announcement, we have collected the Theory and Meth-
ods vignettes presented here. The scope is broad, but by no means exhaustive. Exclu-
sion of a topic does not bear on its importance, but rather on the inability to secure
a vignette. Many topics were solicited, and a general call was put in Amstat News.
Nonetheless, we could not get every topic covered (among other factors, time was
very tight).

There is some overlap in the vignettes, as the authors, although aware of the other
topics, were working independently, and there are places where information in one
vignette complements that in another. Rather than edit out some of the overlap, I have
tried to signpost these instances with cross-references allowing the reader the luxury
of seeing two (or even three) views on a topic. Such diverse accounts can help to
enhance our understanding.

As I hope you will agree, the resulting collection is nothing short of marvelous.
The writers are all experts in their fields, and bring a perception and view that truly
highlights each subject area. My goal in this introduction is not to summarize what is
contained in the following pages, but rather to entice you to spend some time looking
through the vignettes. At the very least, you will find some wonderful stories about the
history and development of our subject. (For example, see the vignettes by McCulloch
and Meng for different histories of the EM algorithm.) Some of the speculation may
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even inspire you to try your hand, either in developing the theory or applying the
methodology.

The question of in which order to present the vignettes was one that I thought
hard about. First, I tried to put them in a subject-oriented order, to create some sort of
smooth flow throughout. This turned out to be impossible, as the connections between
topics are not linear. Moreover, any absolute ordering could carry a connotation of
importance of the topics, a judgment that I don’t feel qualified to make. (Indeed, such
a judgment may be impossible to make.) So in the end I settled for an alphabetical
ordering according to author name. This is not only objective, but also makes the
various vignettes a bit easier to find.



Bayesian Analysis: A Look at Today and
Thoughts of Tomorrow

James O. Berger

1. INTRODUCTION

Life was simple when I became a Bayesian in the 1970s; it was possible to
track virtually all Bayesian activity. Preparing this paper on Bayesian statistics was
humbling, as I realized that I have lately been aware of only about 10% of the ongoing
activity in Bayesian analysis. One goal of this article is thus to provide an overview of,
and access to, a significant portion of this current activity. Necessarily, the overview
will be extremely brief; indeed, an entire area of Bayesian activity might only be
mentioned in one sentence and with a single reference. Moreover, many areas of
activity are ignored altogether, either due to ignorance on my part or because no
single reference provides access to the literature.

A second goal is to highlight issues or controversies that may shape the way that
Bayesian analysis develops. This material is somewhat self-indulgent and should not
be taken too seriously; for instance, if I had been asked to write such an article 10 years
ago, I would have missed the mark by not anticipating the extensive development of
Markov chain Monte Carlo (MCMC) and its enormous impact on Bayesian statistics.

Section 2 provides a brief snapshot of the existing Bayesian activity and empha-
sizes its dramatic growth in the 1990s, both inside and outside statistics. I found myself
simultaneously rejoicing and being disturbed at the level of Bayesian activity. As a
Bayesian, I rejoiced to see the extensive utilization of the paradigm, especially among
nonstatisticians. As a statistician, I worried that our profession may not be adapting
fast enough to this dramatic change; we may be in danger of “losing” Bayesian anal-
ysis to other disciplines (as we have “lost” other areas of statistics). In this regard, it
is astonishing that most statistics and biostatistics departments in the United States
do not even regularly offer a single Bayesian statistics course.

Section 3 is organized by approaches to Bayesian analysis—in particular the
objective, subjective, robust, frequentist-Bayes, and what I term quasi-Bayes ap-
proaches. This section contains most of my musings about the current and future
state of Bayesian statistics. Section 4 briefly discusses the critical issues of computa-
tion and software.
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2. BAYESIAN ACTIVITY

2.1 Numbers and Organizations

The dramatically increasing level of Bayesian activity can be seen in part through
the raw numbers. Harry Martz (personal communication) studied the SciSearch
database at Los Alamos National Laboratories to determine the increase in frequency
of articles involving Bayesian analysis over the last 25 years. From 1974 to 1994,
the trend was linear, with roughly a doubling of articles every 10 years. In the last 5
years, however, there has been a very dramatic upswing in both the number and the
rate of increase of Bayesian articles.

This same phenomenon is also visible by looking at the number of books written
on Bayesian analysis. During the first 200 years of Bayesian analysis (1769–1969),
there were perhaps 15 books written on Bayesian statistics. Over the next 20 years
(1970–1989), a guess as to the number of Bayesian books produced is 30. Over
the last 10 years (1990–1999), roughly 60 Bayesian books have been written, not
counting the many dozens of Bayesian conference proceedings and collections of
papers. Bayesian books in particular subject areas are listed in Sections 2.2 and 2.3.
A selection of general Bayesian books is given in Appendix A.

Another aspect of Bayesian activity is the diversity of existing organizations
that are significantly Bayesian in nature, including the following (those with an active
website): International Society of Bayesian Analysis (http://www.bayesian.org), ASA
Section on Bayesian Statistical Science (http://www.stat.duke.edu/sbss/sbss.html),
Decision Analysis Society of INFORMS (http://www.informs.org/society/da), and
ASA Section on Risk Analysis (http://www.isds.duke.edu/riskanalysis/ras.html).

In addition to the activities and meetings of these societies, the following are
long-standing series of prominent Bayesian meetings that are not organized explicitly
by societies: Valencia Meetings on Bayesian Statistics (http://www.uv.es/∼bernardo/
valenciam.html), Conferences on Maximum Entropy and Bayesian Methods (http://
omega.albany.edu:8008/maxent.html), CMU Workshops on Bayesian Case Studies
(http://lib.stat.cmu.edu/bayesworkshop/), and RSS Conferences on Practical Bayesian
Statistics. The average number of Bayesian meetings per year is now well over 10,
with at least an equal number of meetings being held that have a strong Bayesian
component.

2.2 Interdisciplinary Activities and Applications

Applications of Bayesian analysis in industry and government are rapidly in-
creasing but hard to document, as they are often “in-house” developments. It is far
easier to document the extensive Bayesian activity in other disciplines; indeed, in
many fields of the sciences and engineering, there are now active groups of Bayesian
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researchers. Here we can do little more than list various fields that have seen a con-
siderable amount of Bayesian activity, and present a few references to access the
corresponding literature. Most of the listed references are books on Bayesian statis-
tics in the given field, emphasizing that the activity in the field has reached the level
wherein books are being written. Indeed, this was the criterion for listing an area,
although fields in which there is a commensurate amount of activity, but no book, are
also listed. (It would be hard to find an area of human investigation in which there does
not exist some level of Bayesian work, so many fields of application are omitted.)

For archaeology, see Buck, Cavanaugh, and Litton (1996); atmospheric sci-
ences, see Berliner, Royle, Wikle, and Milliff (1999); economics and econometrics,
see Cyert and DeGroot (1987), Poirier (1995), Perlman and Blaug (1997), Kim,
Shephard and Chib (1998), and Geweke (1999); education, see Johnson (1997);
epidemiology, see Greenland (1998); engineering, see Godsill and Rayner (1998);
genetics, see Iversen, Parmigiani, and Berry (1998), Dawid and Pueschel (1999),
and Liu, Neuwald, and Lawrence (1999); hydrology, see Parent, Hubert, Bobée,
and Miquel (1998); law, see DeGroot, Fienberg, and Kadane (1986) and Kadane and
Schuan (1996); measurement and assay, see Brown (1993) and http://www.pnl.gov/
bayesian/; medicine, see Berry and Stangl (1996) and Stangl and Berry (1998); phys-
ical sciences, see Bretthorst (1988), Jaynes (1999), and http://www.astro.cornell.edu/
staff/loredo/bayes/; quality management, see Moreno and Rios-Insua (1999); social
sciences, see Pollard (1986) and Johnson and Albert (1999).

2.3 Areas of Bayesian Statistics

Here, Bayesian activity is listed by statistical area. Again, the criterion for inclu-
sion of an area is primarily the amount of Bayesian work being done in that area, as
evidenced by books being written (or a corresponding level of papers).

For biostatistics, see Berry and Stangl (1996), Carlin and Louis (1996), and
Kadane (1996); causality, see Spirtes, Glymour, and Scheines (1993) and Glymour
and Cooper (1999); classification, discrimination, neural nets, and so on, see Neal
(1996, 1999), Müller and Rios-Insua (1998), and the vignette by George; contin-
gency tables, see the vignette by Fienberg; decision analysis and decision theory,
see Smith (1988), Robert (1994), Clemen (1996), and the vignette by Brown; design,
see Pilz (1991), Chaloner and Verdinelli (1995), and Müller (1999); empirical Bayes,
see Carlin and Louis (1996) and the vignette by Carlin and Louis; exchangeability
and other foundations, see Good (1983), Regazzini (1999), Kadane, Schervish, and
Seidenfeld (1999), and the vignette by Robins and Wasserman; finite-population
sampling, see Bolfarine and Zacks (1992) and Mukhopadhyay (1998); generalized
linear models, see Dey, Ghosh, and Mallick (2000); graphical models and Bayesian
networks, see Pearl (1988), Jensen (1996), Lauritzen (1996), Jordan (1998), and Cow-
ell, Dawid, Lauritzen, and Spiegelhalter (1999); hierarchical (multilevel) modeling,

http://www.pnl.gov/bayesian/
http://www.pnl.gov/bayesian/
http://www.astro.cornell.edu/staff/loredo/bayes/
http://www.astro.cornell.edu/staff/loredo/bayes/


see the vignette by Hobert; image processing, see Fitzgerald, Godsill, Kokaram, and
Stark (1999); information, see Barron, Rissanen, and Yu (1998) and the vignette by
Soofi; missing data, see Rubin (1987) and the vignette by Meng; nonparametrics
and function estimation, see Dey, Müller, and Sinha (1998), Müller and Vidakovic
(1999), and the vignette by Robins and Wasserman; ordinal data, see Johnson and Al-
bert (1999); predictive inference and model averaging, see Aitchison and Dunsmore
(1975), Leamer (1978), Geisser (1993), Draper (1995), Clyde (1999), and the BMA
website under “software”; reliability and survival analysis, see Clarotti, Barlow,
and Spizzichino (1993) and Sinha and Dey (1999); sequential analysis, see Carlin,
Kadane, and Gelfand (1998) and Qian and Brown (1999); signal processing, see Ó
Ruanaidh and Fitzgerald (1996) and Fitzgerald, Godsill, Kokaram, and Stark (1999);
spatial statistics, see Wolpert and Ickstadt (1998) and Besag and Higdon (1999); test-
ing, model selection, and variable selection, see Kass and Raftery (1995), O’Hagan
(1995), Berger and Pericchi (1996), Berger (1998), Racugno (1998), Sellke, Bayarri,
and Berger (1999), Thiesson, Meek, Chickering, and Heckerman (1999), and the vi-
gnette by George; time series, see Pole, West, and Harrison (1995), Kitagawa and
Gersch (1996) and West and Harrison (1997).

3. APPROACHES TO BAYESIAN ANALYSIS

This section presents a rather personal view of the status and future of five ap-
proaches to Bayesian analysis, termed the objective, subjective, robust, frequentist-
Bayes, and quasi-Bayes approaches. This is neither a complete list of the approaches to
Bayesian analysis nor a broad discussion of the considered approaches. The section’s
main purpose is to emphasize the variety of different and viable Bayesian approaches
to statistics, each of which can be of great value in certain situations and for certain
users. We should be aware of the strengths and weaknesses of each approach, as all
will be with us in the future and should be respected as part of the Bayesian paradigm.

3.1 Objective Bayesian Analysis

It is a common perception that Bayesian analysis is primarily a subjective theory.
This is true neither historically nor in practice. The first Bayesians, Thomas Bayes (see
Bayes 1783) and Laplace (see Laplace 1812), performed Bayesian analysis using a
constant prior distribution for unknown parameters. Indeed, this approach to statistics,
then called “inverse probability” (see Dale 1991) was very prominent for most of the
19th century and was highly influential in the early part of this century. Criticisms
of the use of a constant prior distribution caused Jeffreys to introduce significant
refinements of this theory (see Jeffreys 1961). Most of the applied Bayesian analyses
I see today follow the Laplace–Jeffreys objective school of Bayesian analysis, possibly
with additional modern refinements. (Of course, others may see subjective Bayesian



applications more often, depending on the area in which they work.)
Many Bayesians object to the label “objective Bayes,” claiming that it is mis-

leading to say that any statistical analysis can be truly objective. Though agreeing
with this at a philosophical level (Berger and Berry 1988), I feel that there are a host
of practical and sociological reasons to use the label; statisticians must get over their
aversion to calling good things by attractive names.

The most familiar element of the objective Bayesian school is the use of non-
informative or default prior distributions. The most famous of these is the Jeffreys
prior (see Jeffreys 1961). Maximum entropy priors are another well-known type of
noninformative prior (although they often also reflect certain informative features of
the system being analyzed). The more recent statistical literature emphasizes what
are called reference priors (Bernardo 1979; Yang and Berger 1997), which prove
remarkably successful from both Bayesian and non-Bayesian perspectives. Kass and
Wasserman (1996) provided a recent review of methods for selecting noninformative
priors.

A quite different area of the objective Bayesian school is that concerned with
techniques for default model selection and hypothesis testing. Successful develop-
ments in this direction are much more recent (Berger and Pericchi 1996; Kass and
Raftery 1995; O’Hagan 1995; Sellke, Bayarri, and Berger 1999). Indeed, there is still
considerable ongoing discussion as to which default methods are to be preferred for
these problems (see Racugno 1998).

The main concern with objective Bayesian procedures is that they often utilize
improper prior distributions, and so do not automatically have desirable Bayesian
properties, such as coherency. Also, a poor choice of improper priors can even lead
to improper posteriors. Thus proposed objective Bayesian procedures are typically
studied to ensure that such problems do not arise. Also, objective Bayesian proce-
dures are often evaluated from non-Bayesian perspectives, and usually turn out to be
stunningly effective from these perspectives.

3.2 Subjective Bayesian Analysis

Although comparatively new on the Bayesian scene, subjective Bayesian anal-
ysis is currently viewed by many Bayesians to be the “soul” of Bayesian statistics.
Its philosophical appeal is undeniable, and few statisticians would argue against its
use when the needed inputs (models and subjective prior distributions) can be fully
and accurately specified. The difficulty in such specification (Kahneman, Slovic, and
Tversky 1986) often limits application of the approach, but there has been a consider-
able research effort to further develop elicitation techniques for subjective Bayesian
analysis (Lad, 1996; French and Smith 1997; The Statistician, 47, 1998).

In many problems, use of subjective prior information is clearly essential, and in
others it is readily available; use of subjective Bayesian analysis for such problems
can provide dramatic gains. Even when a complete subjective analysis is not feasible,



judicious use of partly subjective and partly objective prior distributions is often
attractive (Andrews, Berger, and Smith 1993).

3.3 Robust Bayesian Analysis

Robust Bayesian analysis recognizes the impossibility of complete subjective
specification of the model and prior distribution; after all, complete specification
would involve an infinite number of assessments, even in the simplest situations. The
idea is thus to work with classes of models and classes of prior distributions, with
the classes reflecting the uncertainty remaining after the (finite) elicitation efforts.
(Classes could also reflect the differing judgments of various individuals involved in
the decision process.)

The foundational arguments for robust Bayesian analysis are compelling (Kadane
1984; Walley 1991), and there is an extensive literature on the development of robust
Bayesian methodology, including Berger (1985, 1994), Berger et al. (1996), and
Rios-Insua (1990). Routine practical implementation of robust Bayesian analysis will
require development of appropriate software, however.

Robust Bayesian analysis is also an attractive technology for actually implement-
ing a general subjective Bayesian elicitation program. Resources (time and money) for
subjective elicitation typically are very limited in practice, and need to be optimally
utilized. Robust Bayesian analysis can, in principle, be used to direct the elicitation
effort, by first assessing if the current information (elicitations and data) is sufficient
for solving the problem and then, if not, determining which additional elicitations
would be most valuable (Liseo, Petrella, and Salinetti 1996).

3.4 Frequentist-Bayes Analysis

It is hard to imagine that the current situation, with several competing foundations
for statistics, will exist indefinitely. Assuming that a unified foundation is inevitable,
what will it be? Today, an increasing number of statisticians envisage that this unified
foundation will be a mix of Bayesian and frequentist ideas (with elements of the
current likelihood theory thrown in; see the vignette by Reid). Here is my view of
what this mixture will be.

First, the language of statistics will be Bayesian. Statistics is about measuring
uncertainty, and over 50 years of efforts to prove otherwise have convincingly demon-
strated that the only coherent language in which to discuss uncertainty is the Bayesian
language. In addition, the Bayesian language is an order of magnitude easier to un-
derstand than the classical language (witness the p value controversy; Sellke et al.
1999), so that a switch to the Bayesian language should considerably increase the at-
tractiveness of statistics. Note that, as discussed earlier, this is not about subjectivity
or objectivity; the Bayesian language can be used for either subjective or objective
statistical analysis.



On the other hand, from a methodological perspective, it is becoming clear that
both Bayesian and frequentist methodology is going to be important. For parametric
problems, Bayesian analysis seems to have a clear methodological edge, but frequen-
tist concepts can be very useful, especially in determining good objective Bayesian
procedures (see, e.g., the vignette by Reid).

In nonparametric analysis, it has long been known (Diaconis and Freedman 1986)
that Bayesian procedures can behave poorly from a frequentist perspective. Although
poor frequentist performance is not necessarily damning to a Bayesian, it typically
should be viewed as a warning sign that something is amiss, especially when the prior
distribution used contains more “hidden” information than elicited information (as is
virtually always the case with nonparametric priors).

Furthermore, there are an increasing number of examples in which frequentist
arguments yield satisfactory answers quite directly, whereas Bayesian analysis re-
quires a formidable amount of extra work. (The simplest such example is MCMC
itself, in which one evaluates an integral by a sample average, and not by a formal
Bayesian estimate; see the vignette by Robins and Wasserman for other examples).
In such cases, I believe that the frequentist answer can be accepted by Bayesians as
an approximate Bayesian answer, although it is not clear in general how this can be
formally verified.

This discussion of unification has been primarily from a Bayesian perspective.
From a frequentist perspective, unification also seems inevitable. It has long been
known that “optimal” unconditional frequentist procedures must be Bayesian (Berger
1985), and there is growing evidence that this must be so even from a conditional
frequentist perspective (Berger, Boukai, and Wang 1997).

Note that I am not arguing for an eclectic attitude toward statistics here; indeed,
I think the general refusal in our field to strive for a unified perspective has been the
single biggest impediment to its advancement. I am simply saying that any unification
that will be achieved will almost necessarily have frequentist components to it.

3.5 Quasi-Bayesian Analysis

There is another type of Bayesian analysis that one increasingly sees being per-
formed, and that can be unsettling to “pure” Bayesians and many non-Bayesians. In
this type of analysis, priors are chosen in various ad hoc fashions, including choosing
vague proper priors, choosing priors to “span” the range of the likelihood, and choos-
ing priors with tuning parameters that are adjusted until the answer “looks nice.” I call
such analyses quasi-Bayes because, although they utilize Bayesian machinery, they
do not carry the guarantees of good performance that come with either true subjective
analysis or (well-studied) objective Bayesian analysis. It is useful to briefly discuss
the possible problems with each of these quasi-Bayes procedures.

Using vague proper priors will work well when the vague proper prior is a good



approximation to a good objective prior, but this can fail to be the case. For instance,
in normal hierarchical models with a “higher-level” variance V , it is quite common
to use the vague proper prior density π(V ) ∝ V −(ε+1) exp(−ε′/V ), with ε and ε′

small. However, as ε → 0, it is typically the case in these models that the posterior
distribution for V will pile up its mass near 0, so that the answer can be ridiculous if
ε is too small. An objective Bayesian who incorrectly used the related prior π(V ) ∝
V −1 would typically become aware of the problem, because the posterior would not
converge (as it will with the vague proper prior). The common perception that using
a vague proper prior is safer than using improper priors, or conveys some type of
guarantee of good performance, is simply wrong.

The second common quasi-Bayes procedure is to choose priors that span the range
of the likelihood function. For instance, one might choose a uniform prior over a range
that includes most of the “mass” of the likelihood function but that does not extend
too far (thus hopefully avoiding the problem of using a “too vague” proper prior).
Another version of this procedure is to use conjugate priors, with parameters chosen
so that the prior is considerably more spread out than the likelihood function but is
roughly centered in the same region. The two obvious concerns with these strategies
are that (a) the answer can still be quite sensitive to the spread of the rather arbitrarily
chosen prior, and (b) centering the prior on the likelihood is a problematical double
use of the data. Also, in problems with complicated likelihoods, it can be difficult to
implement this strategy successfully.

The third common quasi-Bayes procedure is to write down proper (often conju-
gate) priors with unspecified parameters, and then treat these parameters as “tuning”
parameters to be adjusted until the answer “looks nice.” Unfortunately, one is some-
times not told that this has been done; that is, the choice of the parameters is, after
the fact, presented as “natural.”

These issues are complicated by the fact that in the hands of an expert Bayesian
analyst, the quasi-Bayes procedures mentioned here can be quite reasonable, in that
the expert may have the experience and skill to tell when the procedures are likely to
be successful. Also, one must always consider the question: What is the alternative? I
have seen many examples in which an answer was required and in which I would trust
the quasi-Bayes answer more than the answer from any feasible alternative analysis.

Finally, it is important to recognize that the genie cannot be put back into the
bottle. The Bayesian “machine,” together with MCMC, is arguably the most pow-
erful mechanism ever created for processing data and knowledge. The quasi-Bayes
approach can rather easily create procedures of astonishing flexibility for data anal-
ysis, and its use to create such procedures should not be discouraged. However, it
must be recognized that these procedures do not necessarily have intrinsic Bayesian
justifications, and so must be justified on extrinsic grounds (e.g., through extensive
sensitivity studies, simulations, etc.).



4. COMPUTATION AND SOFTWARE

4.1 Computational Techniques

Even 20 years ago, one often heard the refrain that “Bayesian analysis is nice
conceptually; too bad it is not possible to compute Bayesian answers in realistic situ-
ations.” Today, truly complex models often can only be computationally handled by
Bayesian techniques. This has attracted many newcomers to the Bayesian approach
and has had the interesting effect of considerably reducing discussion of “philosoph-
ical” arguments for and against the Bayesian position.

Although other goals are possible, most Bayesian computation is focused on
calculation of posterior expectations, which are typically integrals of one to thousands
of dimensions. Another common type of Bayesian computation is calculation of the
posterior mode (as in computating MAP estimates in image processing).

The traditional numerical methods for computing posterior expectations are nu-
merical integration, Laplace approximation, and Monte Carlo importance sampling.
Numerical integration can be effective in moderate (say, up to 10) dimensional prob-
lems. Modern developments in this direction were discussed by Monahan and Genz
(1996). Laplace and other saddlepoint approximations are discussed in the vignette
by R. Strawderman. Until recently, Monte Carlo importance sampling was the most
commonly used traditional method of computing posterior expectations. The method
can work in very large dimensions and has the nice feature of producing reliable
measures of the accuracy of the computation.

Today, MCMC has become the most popular method of Bayesian computation, in
part because of its power in handling very complex situations and in part because it is
comparatively easy to program. Because the Gibbs sampling vignette by Gelfand and
the MCMC vignette by Cappé and Robert both address this computational technique,
I do not discuss it here. Recent books in the area include those of Chen, Shao, and
Ibrahim (2000), Gamerman (1997), Robert and Casella (1999), and Tanner (1993).
It is not strictly the case that MCMC is replacing the more traditional methods listed
above. For instance, in some problems importance sampling will probably always
remain the computational method of choice, as will standard numerical integration in
low dimensions (especially when extreme accuracy is needed).

Availability of general user-friendly Bayesian software is clearly needed to ad-
vance the use of Bayesian methods. A number of software packages exist, and these
are very useful for particular scenarios. Lists and descriptions of pre-1990 Bayesian
software were provided by Goel (1988) and Press (1989). A list of some of the
Bayesian software developed since 1990 is given in Appendix B.

It would, of course, be wonderful to have a single general-purpose Bayesian soft-
ware package, but three of the major strengths of the modern Bayesian approach create
difficulties in developing generic software. One difficulty is the extreme flexibility
of Bayesian analysis, with virtually any constructed model being amenable to analy-



sis. Most classical packages need to contend with only a relatively few well-defined
models or scenarios for which a classical procedure has been determined. Another
strength of Bayesian analysis is the possibility of extensive utilization of subjective
prior information, and many Bayesians tend to feel that software should include an
elaborate expert system for prior elicitation. Finally, implementing the modern com-
putational techniques in a software package is extremely challenging, because it is
difficult to codify the “art” of finding a successful computational strategy in a complex
situation.

Note that development of software implementing the objective Bayesian ap-
proach for “standard” statistical models can avoid these difficulties. There would
be no need for a subjective elicitation interface, and the package could incorporate
specific computational techniques suited to the various standard models being consid-
ered. Because the vast majority of statistical analyses done today use such “automatic”
software, having a Bayesian version would greatly impact the actual use of Bayesian
methodology. Its creation should thus be a high priority for the profession.

APPENDIX A: GENERAL BAYESIAN REFERENCES

• Historical and general monographs: Laplace (1812), Jeffreys (1961), Zellner
(1971), Savage (1972), Lindley (1972), Box and Tiao (1973), de Finetti (1974,
1975), Hartigan (1983), Florens, Mouchart, and Roulin (1990)

• Graduate-level texts: DeGroot (1970), Berger (1985), Press (1989), Bernardo
and Smith (1994), O’Hagan (1994), Robert (1994), Gelman, Carlin, Stern,
and Rubin (1995), Poirier (1995), Schervish (1995), Piccinato (1996)

• Elementary texts: Winkler (1972), O’Hagan (1988), Albert (1996), Berry
(1996), Sivia (1996), Antleman (1997), Lee (1997)

• General proceedings volumes: The International Valencia Conferences pro-
duce highly acclaimed proceedings, the last of which was edited by Bernardo
et al. (1999). The Maximum Entropy and Bayesian Analysis conferences also
have excellent proceedings volumes, the last of which was edited by Erick-
son, Rychert, and Smith (1998). The CMU Bayesian Case Studies Workshops
produce unique volumes of in-depth case studies in Bayesian analysis, the last
volume being edited by Gatsonis et al. (1998). The Bayesian Statistical Sci-
ence Section of the ASA has an annual JSM proceedings volume, produced
by the ASA.

APPENDIX B: AVAILABLE BAYESIAN SOFTWARE

• AutoClass, a Bayesian classification system (http://ic-www.arc.nasa.gov/ic/
projects/bayes-group/group/autoclass/)

http://ic-www.arc.nasa.gov/ic/projects/bayes-group/
http://ic-www.arc.nasa.gov/ic/projects/bayes-group/


• BATS, designed for Bayesian time series analysis (http://www.stat.duke.edu/
∼mw/bats.html)

• BAYDA, a Bayesian system for classification and discriminant analysis (http://
www.cs.Helsinki.fi/research/cosco/Projects/NONE/SW/)

• BAYESPACK, etc., numerical integration algorithms (http://www.math.wsu.
edu/math/faculty/genz/homepage)

• Bayesian biopolymer sequencing software (http://www-stat.stanford.edu/
∼jliu/)

• B/D, a linear subjective Bayesian system (http://fourier.dur.ac.uk:8000/stats/
bd/)

• BMA, software for Bayesian model averaging for predictive and other pur-
poses (http://www.research.att.com/∼volinsky/bma.html)

• Bayesian regression and classification software based on neural networks,
Gaussian processes, and Bayesian mixture models (http://www.cs.utoronto.
ca/∼radford/fbm.software.html)

• Belief networks software (http://bayes.stat.washington.edu/almond/belief.
html)

• BRCAPRO, which implements a Bayesian analysis for genetic counseling of
women at high risk for hereditary breast and ovarian cancer (http://www.stat.
duke.edu/∼gp/brcapro.html)

• BUGS, designed to analyze general hierarchical models via MCMC (http://
www.mrc-bsu.cam.ac.uk/bugs/)

• First Bayes, a Bayesian teaching package (http://www.shef.ac.uk/∼st1ao/
1b.html)

• Matlab and Minitab Bayesian computational algorithms for introductory Bayes
and ordinal data (http://www-math.bgsu.edu/∼albert/)

• Nuclear magnetic resonance Bayesian software; this is the manual (http://
www.bayes.wustl.edu/glb/manual.pdf)

• StatLib, a repository for statistics software, much of it Bayesian (http://lib.stat.
cmu.edu/)

• Time series software for nonstationary time series and analysis with autore-
gressive component models (http://www.stat.duke.edu/∼mw/books
software data.html)

• LISP-STAT, an object-oriented environment for statistical computing and dy-
namic graphics with various Bayesian capabilities (Tierney 1991)
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An Essay on Statistical Decision Theory

Lawrence D. Brown

1. A 1966 QUOTATION

The middle third of this century marks the summit of research in statistical
decision theory. Consider this 1966 quotation from the foreword to the volume Early
Statistical Papers of J. Neyman (Neyman 1967), signed “students of J. N. at Berkeley”:

The concepts of confidence intervals and of the Neyman–Pearson theory have proved
immensely fruitful. A natural but far reaching extension of their scope can be found in
Abraham Wald’s theory of statistical decision functions. The elaboration and applica-
tion of the statistical tools related to these ideas has already occupied a generation of
statisticians. It continues to be the main lifestream of theoretical statistics [italics mine].

The italicized assertion is the focus of this vignette. Is the assertion still true today?
If not, what is the current status of statistical decision theory, and what position is it
likely to hold in the coming decades? Any attempt to answer these questions requires
a definition of “statistical decision theory.” Indeed, the answers will be largely driven
by how broadly—or narrowly—the boundaries of decision theory are drawn.

2. THE SCOPE OF STATISTICAL DECISION THEORY

The term “statistical decision theory” appears to be a condensation of Wald’s
phrase “the theory of statistical decision functions,” which occurs, for example, in the
preface to his monograph (Wald 1950) as well as earlier in Wald (1942). Wald viewed
his “theory” as a codification and generalization of the theory of tests and confidence
intervals already developed by Neyman, often in collaboration with E. Pearson. For
clear statements of Wald’s view see the last two paragraphs of the introduction to
Wald’s pivotal paper (Wald 1939), and section 1.7 of his monograph (Wald 1950).
The vignette on hypothesis testing by Marden presents an excellent review of the
various manifestations of hypothesis testing. It is hard to choose a favorite among
the wonderful Neyman–Pearson papers on the foundations of testing and confidence
intervals, but I pick the works by Neyman and Pearson (1933) on testing and Neyman
(1935) on confidence intervals.
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The frequentist approach is the cornerstone of Neyman’s statistical philosophy.
Neyman (1941) provided a graphic demonstration and explanation. Thus one begins
the analysis of any statistical situation with a family of possible distributions for the
data. In the presence of a finite-dimensional parameterization, this can be written as
F = {Fθ : θ ∈ Θ}, but the existence of such a parameterization is only an often-
useful convenience, rather than a formal necessity. One then hypothesizes a possible
rule for solving the problem (a test or confidence interval, or a decision function in
Wald’s more general terminology). The key step is to calculate the distribution of
outcomes from that rule as if the true parameter were a fixed value, θ, and compare
the results of such a calculation at various θ for various possible decision rules.

That “as if θ were fixed” qualification caused considerable confusion in the early
years of the theory, and often continues to do so. It does not mean that θ is fixed.
Neyman and Pearson frequently returned to emphasize that this type of calculation
would guarantee validity “irrespective of the a priori truth.” They denied any pre-
sumption that the statistician would be faced with a long sequence of independent
repetitions of the situation, all having the same value of θ. For example, the landmark
Clopper and Pearson (1934) article on confidence intervals for a binomial parameter
discusses as a particular example what happens if the Clopper–Pearson prescription
is used in a situation where the unknown parameter, p, can take the values 1/3, 1/2,
and 2/3 with a hypothesized skewed a priori distribution. The point of this calculation
is to vividly demonstrate with an example the claim that the proposed intervals have
coverage probability at least the nominal value, and this fact “does not depend on
any a priori knowledge regarding possible values of p.” A subsidiary goal may have
been to investigate by how much this nominal value would be exceeded in such a
plausible example. (The answer was that the true coverage was .9676, as opposed
to the nominal value of .95.) A later discussion related to this general issue appears
in Neyman (1952, p. 211). Brown, Cai, and DasGupta (1999a,b) recently reexam-
ined the problem of binomial confidence intervals and included a reassessment of the
Clopper–Pearson proposal.

3. THE DECISION THEORETIC SPIRIT

According to the foregoing, the spirit of decision theory is pervasive in contem-
porary statistical research. Common manifestations include both mathematical and
numerical attempts to check the frequentist performance of proposed procedures.
This includes comparative investigations of level and power for hypothesis tests or
of precision of proposed estimators as, for example, might occur in a Monte Carlo
comparison of variances and biases. In particular, any presentation of statistical tests
that mentions power is an embodiment of this spirit.

The frequentist interpretation of confidence intervals (and sets) relies on Ney-
man’s previously cited articles as well as Wilson (1927) and the previously cited



work of Clopper and Pearson. Note also the general formulation by Wald and Wol-
fowitz (1939, 1941) of nonparametric confidence bands for a cumulative distribution
function, and their discovery that a fundamental probabilistic question they could not
solve had earlier been settled by Kolmogorov (1933) and Smirnov (1939).

4. SEQUENTIAL ANALYSIS

Wald was justifiably proud of his formulation of sequential decision problems and
his solution of fundamental issues there, as in the optimal property of the sequential
probability ratio test presented by Wald and Wolfowitz (1950). Wald (1947) cited a
few historical precedents in the work of others, but there is no question that this entire
statistical area was his creation. The spirit of his development survives in parts of
contemporary statistics and even flourishes in some, as in the methodology of early
stopping for (sequential) clinical trials; for example, via group sequential testing or
stochastic curtailment. Jennison and Turnbull (1990) contains a fairly recent review
of clinical trials, and Siegmund (1994) provides a broader review of the current status
of Wald’s sequential analysis. As a prelude to my later discussion, let me already note
that in this area the analytic tools originally developed by Wald (and later extended
and refined by others) survive as essential building blocks in contemporary research.

5. MINIMAXITY AS A THEME AND BENCHMARK

I have argued (Brown 1994) that the minimax idea has been an essential founda-
tion for advances in many areas of statistical research. These include general asymp-
totic theory and methodology, hierarchical models, robust estimation, optimal design,
and nonparametric function analysis. The vignette on minimaxity by W. Strawder-
man clarifies and reinforces this assertion. Hence here I do not specifically pursue this
crucial manifestation of the spirit of decision theory, although it is very much present
in the nonparametric examples I describe.

6. BAYESIAN STATISTICS

Not so many years ago, “bayesian statistics” was frequently viewed as the an-
tithesis of “frequentist statistics,” and the feeling among some was that their favorite
of these two theories would eventually triumph as the other failed ignominiously. It
now is apparent that this will not happen. There is much evidence that we are currently
in the midst of a productive amalgamation of these two schools of statistics.

The vignette on Bayesian analysis by Berger describes several different ap-
proaches to Bayesian analysis. Interestingly, none of these is directly the pure fre-
quentist approach, in which the prior is a given distribution with the same frequentist



validity as the family of distributions, F . Such a situation is a conceptual and some-
times realistic possibility, but modern Bayesian statistical techniques are intended to
apply far beyond this possible scenario. Lehmann and Casella (1998, p. 226) provided
for further discussion of this state of affairs.

According to the discussion that began this essay, a pure frequentist Bayesian
approach, where realistic, is firmly within the decision-theoretic realm. Other funda-
mental Bayesian approaches are not, even if they may involve loss functions and even
though they may be justified, at least in part, by the decision-theoretic version of Bayes
theorem that says the Bayes procedure minimizes the expected risk. However, most
of these approaches are neutral rather than antithetical with respect to decision theory.
Many of them involve the use of “objective” priors, such as the Jeffreys prior or the
Bernardo (1979) reference priors. These approaches customarily generate decisions.
As such, they can be viewed as powerful and heuristically appealing mechanisms for
generating plausible decision rules. Having used such a device, the question remains
as to how well the rule that it generates will actually perform in a suitable range of
situations like the one at hand. This decision-theoretic question is implicit but equally
pertinent in varieties of robust Bayesian analyses and is explicit in the realm of Γ-
minimax procedures (see Hodges and Lehmann 1950 for an early decision-theoretic
formulation closely related to the Γ-minimax idea). Answering such a question is
increasingly (and properly) seen as requiring frequentist-style investigations of com-
parative risk through simulations or theoretical calculations. Hence what is emerging
is a figurative marriage of Bayes and Wald.

7. THE DECISION THEORETIC TOOLKIT

I have been arguing in general terms that Neyman and Wald (and also their
collaborators and immediate students) had a particular perspective on statistics, and
that this perspective is alive and thriving in contemporary statistics. Nevertheless,
many statisticians apparently feel that statistical decision theory is moribund—or
even already dead.

Through the decades, various technical analytical tools have been developed by
avowedly decision-theoretic researchers. An assertion that decision theory is dying
is probably more focused on this toolkit than it is on the decision-theoretic spirit I
discussed earlier. Even here, the assertion seems to me in the main to be drastically
mistaken, though one might point to certain tools that are far less broadly useful than
might have been expected at the time they were being developed. I have in mind as an
example of the latter the general complete-class theory involving characterization of
admissible procedures. (Even here there are significant recent contributions relevant
to contemporary methodology; see, e.g., Berger and Strawderman 1996 and Zhao
1999.)

This “toolkit” contains a vast array of analytical weapons for a variety of situa-



tions. Furthermore, it has continually extended and expanded from its original extent
and form. It is impossible in the format of this short, broad survey to carefully trace
the development of even a single important tool from its origins with Neyman or Wald
(and often before them as well). So I discuss only some examples from one particular
area of research, to try to emphasize the vitality and importance of that legacy.

8. NONPARAMETRIC FUNCTION ANALYSIS

8.1 Rates of Convergence

Nonparametric function analysis includes such topics as nonparametric regres-
sion, density estimation, image reconstruction, and aspects of pattern recognition.
As a manifestation of the nonparametric/robust paradigm, it is already heavily in-
fused with the influence of decision theory. For confirmation, note that on Efron’s
(1998) “barycentric picture of modern statistical research,” the topic “robustness,
nonparametrics” describes the point most heavily weighted on the “frequentist” axis,
as opposed to the “Bayesian” and “Fisherian” axes. There should be no debate on this
point. But I want to go further, and describe how several items in the basic toolkit are
of use here.

First, the Waldian notion of loss and risk pervades the topic. A fundamental
feature of this area is the presence of rates of convergence slower than the usual
parametric standard of 1/

√
n. These rates of convergence are for the risk under any of

various loss functions. In particular, the asymptotics cannot be formulated in Fisherian
terms of efficiency, because the optimal-rate risks under (integrated) quadratic loss
must balance squared bias as well as variance. Nevertheless, Fisher information and
the Cramer–Rao inequality occasionally can be useful (as in Brown and Low 1991),
but the spirit and content of such a treatment are more directly descended from the
admissibility argument of Hodges and Lehmann (1951) and the two-dimensional
admissibility argument of Stein (1956b).

A precise description of these convergence rates nearly demands a minimax
formulation. An exception is the early formulation of Rosenblatt (1956) and Parzen
(1962), looking at optimal rates available from the use of nonnegative kernels. Brown,
Low, and Zhao (1997) tried to explain why this is more emphatically so here than in
the classical parametric theory.

Despite its success, there is a not-untypical shortcoming in a literal adoption
of this minimax formulation—it may be unhealthily conservative. The formulation
assumes that the unknown function (e.g., regression function or density) belongs
to a suitably bounded class, usually explicitly involving some sort of smoothness
restriction. For a basic example, in a one-dimensional setting, the assumption might



be that ∫
(f ′′(x))2 dx ≤ B

for a prespecified, but possibly large value of B. Corresponding to this class is an
asymptotically minimax value and procedure. An adequate practical approach to this
asymptotic ideal is achievable with computationally feasible procedures of various
types, such as kernels, splines, and orthogonal series estimators (including wavelets).
However, a procedure that is minimax in this sense, or close to it, may perform
relatively poorly in practice. To see why, consider a typical simple task such as es-
timating an unknown probability density. One may suspect that the true density is
quite “smooth”—perhaps it is thought to have a shape similar to a simple mixture of
normal distributions. Various standard optimal minimax convergence rate procedures
do not utilize that suspicion. Instead, they protect against the possibility that the den-
sity is as extremely wiggly as allowed by the foregoing smoothness restriction. Such
extremely wiggly densities may be felt to be a priori highly unlikely and/or not very
interesting. A current tidal wave of research into “adaptive” estimators is an attempt
to create procedures that circumvent this shortcoming by being simultaneously nearly
minimax for a broad inventory of smoothness classes.

8.2 Hardest Linear Subproblem

The minimax value just mentioned can be discovered to within a startling degree
of accuracy through a very beautiful application of a fundamental device due to Wald in
a form proposed by Stein (1956a) (see Donoho 1994; Donoho and Liu 1991; Donoho,
Liu, and MacGibbon 1990). Consider the entirely classical parametric situation of an
observation from a multivariate normal distribution with identity covariance matrix
but unknown mean. Suppose that one desires to estimate some linear functional of that
mean—for example, its first coordinate—and uses ordinary quadratic loss. Further,
suppose the mean is known to lie in a bounded convex set, S, symmetric about the
origin.

Temporarily restrict the class of available estimators to be linear. Wald’s standard
tool for discovering minimax values is to establish a least favorable distribution.
Here that least favorable distribution turns out to be supported on a one-dimensional
subset of S, say H . That is, for linear estimators, there is a “hardest one-dimensional
subproblem.” The minimax risk for the problem on S unrestricted to linear estimators
cannot be less than that for the unrestricted problem on H . One then gets to look
at an even more classical problem. Let X ∼ N(θ, 1) with θ ∈ (−a, a). What is the
minimax risk (under squared error loss), and what is its relation to the minimax risk
among linear procedures? This question had been studied by Casella and Strawderman
(1981), among others. Extending their result, Donoho et al. (1990) showed that the
ratio of the two risks is never greater than 1.25.



This very classical (but nevertheless recent) minimax theorem about estimation
of a multivariate normal mean can then be carried into the nonparametric realm with
the aid of a further set of decision-theoretic tools for asymptotics largely developed
by Le Cam (see, e.g., LeCam 1953, 1986).

The end result from using this decision theoretic arsenal is a powerful result
enabling one to calculate the (asymptotic) minimax risk to within a factor of 1.25
and, even more important, to know how to get a (linear) procedure that comes within
this factor of being minimax. Interestingly, this idea works for various loss functions
in addition to squared error (see Donoho 1994).

8.3 Asymptotic Equivalence

Further utilization of Le Cam’s decision theoretic ideas has proved valuable in
this area. LeCam (1953, 1964, 1986) created a general concept of equivalence of
statistical problems within the framework of Wald’s decision theory. With the aid of
additional inequalities also due at least partly to Le Cam, one can unify and greatly
simplify asymptotic investigations similar to those sketched earlier.

To explain, I return briefly to a more classical parametric setting. Asymptotic
questions in such settings very often can be efficiently reduced to appropriate ques-
tions involving only normal distributions. These normal distribution settings can ef-
fectively be viewed as the limit of the original problem as the sample size tends
to infinity. This aspect of statistical theory has its roots well before Neyman and
Wald and, I believe, lies well outside the scope of what should be considered char-
acteristically decision theoretic. Nevertheless, both Neyman and Wald recognized its
importance, made important contributions in the area, and incorporated asymptotical
analyses into their basic theories. Prominent examples are Wald’s (1943) proof of the
asymptotic optimality of the likelihood ratio test and Neyman’s (1949) explication of
“best asymptotically normal” procedures.

In an analogous fashion the stochastic formulation of white noise with drift can
serve as a useful, unified limit for nonparametric formulations like those already men-
tioned. Research on this topic is ongoing, but Brown and Low (1996) and Nussbaum
(1996) have given basic results.

By all measures, wavelets provide a powerful new tool for nonparametric function
analysis. The continuing development of this tool has evolved out of a combination
of the function-analytic topic of wavelet bases with an intensive and extensive dose
of decision theory, along with a careful evaluation of the practical problems requiring
the statistical techniques being created. The debt to decision theory will be immedi-
ately evident to any reader of the fundamental works of Donoho and Johnstone and
collaborators (e.g., Donoho and Johnstone 1995, 1998).

In this development there is a continuing expansion of the ideas present in the
minimax treatment of Donoho et al. described previously. I will not go into further



detail about that. Instead, I mention two quite different decision-theoretic aspects.
One is the incorporation of Stein’s unbiased estimate of the risk. Stein’s powerful
technical tool was developed as a more effective way of handling certain admissibility
questions that arose following his surprising discovery of the inadmissibility of the
usual estimator of a multivariate normal mean (see Brown 1979; James and Stein
1961; Stein 1956, 1973, 1981). Donoho and Johnstone (1995) cited this technique
as the defining element of a class of wavelet estimators that they called SURE-type
estimators.

A more unexpected combination of techniques is the application of Benjamini and
Hochberg (1995) in the construction of wavelet estimators. Benjamini and Hochberg
created an interesting new proposal for the problem of multiple comparisons. Their
idea is to control what they term the “false discovery rate” (FDR). The issue of multiple
comparisons is heavily decision theoretic in orientation and development. Neverthe-
less, the basic problem that Benjamini and Hochberg addressed would seem quite
distant from the issues relevant to wavelet estimation. But Abramowich and Ben-
jamini (1995), Abramowich, Benjamini, Donoho, and Johnstone (1999), and John-
stone (1999) described an important and productive connection between FDR and
adaptive wavelet estimation.

9. MONTE CARLO INVESTIGATIONS: A CHALLENGE FOR
FUTURE THEORY

I have been focusing on what I termed the decision-theoretic toolkit. I believe
that this kit is largely complete and that the focus of future research will involve use
of these tools, as in the foregoing stories about nonparametric functional analysis. Of
course, I could be wrong. There is some interesting, continuing toolbuilding going on
(as, e.g., in Eaton 1992). Then, too, maybe some brand new tool is just waiting to be
discovered—perhaps a biased estimate of risk that will prove even more useful than
Stein’s unbiased estimate. Or maybe an accumulation of results developing out of the
current toolkit will become recognized as an independently powerful tool on its own.

However, there is at least one place where I think we are lacking a general
decision-theoretic tool of a new sort. As I have noted, risk comparisons of proposed
procedures are often performed via simulation. (We may be simulating the perfor-
mance of the respective proposals in terms of level and power or expected coverage
and, sometimes, expected length or size, or in terms of bias and variance, or just to
discover their sampling distribution, leaving the determination of comparative risk to
the reader.)

These simulation results can provide important practical validation of an asymp-
totic result or of a persuasive heuristic model. However, they do not have the intel-
lectual force of a mathematical proof. That is, in a complex situation I may be able
to convince you with simulations that procedure A is better than procedure B, but



rarely, if ever, can I prove it that way. This is primarily because simulations can be
performed only at specific alternatives and sample sizes, and there are usually too
many such alternatives of interest for an adequate simulation to be performed at each
one. Hence the decision-theoretic challenge of finding a methodology for converting
the simulational power of the computer into a tool able to deliver the persuasive force
of a mathematical proof.
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Markov Chain Monte Carlo: 10 Years and
Still Running!

Olivier Cappé and Christian P. Robert

1. ITERATION 0: BURNIN’ STEPS

Although Markov chain Monte Carlo (MCMC) techniques can be traced back to
the early 1950s and are almost contemporary with independent Monte Carlo methods,
the use of these techniques has only really taken off in the past 10 years, at least in
“mainstream” statistics, with the work of Gelfand and Smith (1990) and the rediscov-
ery of Metropolis’s and Hastings’s papers. The impact on the discipline is deep and
durable, because these methods have opened new horizons in the scale of the prob-
lems that one can deal with, thus enhancing the position of statistics in most applied
fields. The MCMC “revolution” has in particular boosted Bayesian statistics to new
heights by providing a virtually universal tool for dealing with integration (and opti-
mization) problems. This can be seen in, for instance, the explosion of papers dealing
with complex models, hierarchical modelings, nonparametric Bayesian estimation,
and spatial statistics. This trend has also created new synergies with mathematicians
and probabilists, as well as econometricians, engineers, ecologists, astronomers, and
others, for theoretical requests and practical implications of MCMC techniques.

It is impossible to provide here a complete perspective on MCMC methods and
applications. For this, as well as for other references, we refer the reader to the books
by Gilks, Richardson, and Spiegelhalter (1996) and Robert and Casella (1999). Here
we focus on four particular aspects of MCMC algorithms: theoretical foundations,
practical implementation, Bayesian inference, and prospects.

The Web provides many relevant sites, including the MCMC preprint server (http:
/ /www.statslab.cam.ac.uk/∼mcmc/), which offers a most useful window to the current
research on MCMC; Wilson’s site on perfect simulation (http://dimacs.rutgers.edu/∼
dbwilson/exact.h), which keeps track of papers and applets on this topic; and a
site on convergence control techniques (http://www.ensae.fr/crest/statistique/robert/
McDiag). Even more recent developments allow for on-line computations through
applets, like Breyer’s (http://www.maths.lancs.ac.uk/∼breyer/java.html), which im-
pressively illustrates the behavior of different samplers for simple problems. Note

Olivier Cappé is CNRS Researcher, ENST, Paris, France (E-mail: cappe@tsi.enst.fr). Christian P. Robert
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also that the BUGS and CODA software are freely available at http://www.mrc-
bsu.cam.ac.uk/bu.

2. ITERATION 1: IT DOES CONVERGE!

The idea at the core of MCMC techniques is, a posteriori, quite simple: run a
Markov chain (θ(t)) such that (θ(t)) is irreducible, (θ(t)) is ergodic, and the station-
ary distribution of (θ(t)) is the distribution of interest, π. Once the chain is on the
move, all we need to do is check convergence to this distribution, as this theoretically
should happen by virtue of the ergodic theorem. Moreover, integrals of interest can
be approximated as in independent Monte Carlo studies, because

lim
T→∞

1
T

T∑
t=1

h(θ(t)) =
∫
h(θ) dπ(θ).

This follows from basic Markov chain theory, but the formidable appeal of MCMC
methods is that universal schemes exist to implement this idea: besides the Gibbs sam-
pler (see the Gibbs sampler vignette by Gelfand), the Metropolis–Hastings algorithm
allows one to pick almost any conditional density q(·|θ), and to derive a transition
kernel (i.e., the conditional density of the Markov chain) as

K(θ(t), θ(t+1))

= q(θ(t+1)|θ(t)) min

(
1,
q(θ(t)|θ(t+1))π(θ(t+1))
q(θ(t+1)|θ(t))π(θ(t))

)

+ δθ(t)(θ(t+1))
∫

max

(
0, 1 − q(θ(t)|ξ)π(ξ)

q(ξ|θ(t))π(θ(t))

)

× q(ξ|θ(t)) dξ,

where δθ∗(θ) denotes the Dirac mass in θ∗. The distribution π is then stationary under
the transition K because the (detailed) balance condition holds,

π(θ(t))K(θ(t), θ(t+1)) = π(θ(t+1))K(θ(t+1), θ(t)),

and the chain (θ(t)) is irreducible and ergodic in almost every setting.

It Could Converge Faster . . .

In some cases, ergodicity simply may not be enough to guarantee convergence.
The work in recent years has thus focused on more advanced properties of MCMC
samplers. For instance, a property of interest is geometric ergodicity; that is, the
geometric decrease (in t) of the total variation distance between the distribution at

http://www.mrc-bsu.cam.ac.uk/
http://www.mrc-bsu.cam.ac.uk/


time t and π. Mengersen and Tweedie (1996) established fairly complete conditions
of geometric ergodicity when q(ξ|θ) = g(ξ) (independent samplers) and q(ξ|θ) =
f(ξ − θ) (random walk samplers). Uniform ergodicity is an even stronger type of
convergence, in the sense that the constant C involved in the geometric bound Cρt

(0 < ρ < 1) does not depend on the starting value θ(0). This property cannot hold for
random walks on noncompact sets in general, but can be exhibited for some Gibbs
and independent samplers.

This type of research has practical bearings, moreover, because it allows us to
compare and rank samplers in specific cases (e.g., geometric vs. nongeometric). In
addition, a considerable amount of work has gone into estimation of the geometric
constants C and ρ. The fact that an exact rate is available for some models of interest
obviously is quite a major advance, because it means that precise information is thus
available on the time required by the algorithm to converge. From another point of
view, it also allows the rejection of inefficient sampling schemes. So what appears
at first as a theoretical game ends up after a few years and a considerable amount
of work by Roberts and coauthors (Roberts and Rosenthal 1998, 1999; Roberts and
Tweedie 1999; Rosenthal 1995) as a valuable tool for practical implementation.

. . . By Scaling the Samplers . . .

Metropolis–Hastings algorithms, like their accept–reject counterparts and unlike
the Gibbs sampler, have an average probability ρ > 0 of rejecting the proposed
values. In contrast to the accept–reject setting, a high value of ρ is not a valuable
feature for random walk samplers, as this indicates a propensity to avoid the tails of
π. Gelman, Gilks, and Roberts (1996) characterized this feature more quantitatively by
deriving optimal acceptance rates, which should get close to .234 for high-dimensional
Gaussian models. Similar developments by Roberts and Rosenthal (1998) showed that
this limiting rate is close to .5 for Langevin algorithms.

. . . Or Taking Advantage of the Posterior . . .

The random walk proposal is somehow the obvious choice and is used in the
early works of Metropolis and Hastings. Despite (or because of?) its universality,
it does not always provide satisfactory convergence properties, particularly in large
dimensions. Even though reparameterization and optimal scaling of the proposal may
often improve its performance, the random walk is somehow a shot in the dark.

An improvement that takes advantage of the fact that π is known up to a constant,
while keeping the universality feature, is based on discretization of the Langevin
diffusion

dXt = (1/2)∇ logπ(Xt) dt+ dWt,

which is associated with the stationary distribution π. The discretized version, which



defines a new transition q, is ξt+1 = θ(t) + (σ2/2)∇ logπ(θ(t)) + σεt. It thus adds
a shift term (σ2/2)∇ logπ(θ(t)) to the random walk, which ensures that the moves
are more likely directed toward regions with high values of π than toward zones
of low values of π. This may be detrimental in multimodal setups, because it pulls
the chain back toward the nearest mode, but it has been observed to often speed up
mixing and excursions on the surface ofπ. This practical observation is also backed by
theoretical developments on the superior convergence properties of Langevin MCMC
algorithms. A last word about the universality of this scheme is that it requires very
little additional programming compared to random walk, because computation of the
gradient can be delegated to a numerical procedure, instead of being analytic. This
allows for more universal programming and also for transparent reparameterization.

. . . Or Even Jumping Between Dimensions

For us, if one area must be singled out for its impact, it is the ability to deal with
variable-dimension models, which appear quite naturally in, for example, change-
point problems and latent variable models, as well as in model choice and variable
selection. Although the Gibbs sampler cannot handle such models unless one pro-
vides an encompassing model, MCMC techniques have been devised for this purpose.
The most popular solution by far is the reversible jump technique of Green (1995),
where two models M1 and M2 are embedded in models, M∗

1 and M∗
2 , of identical

dimension, so that a bijection can be constructed between M∗
1 and M∗

2 . Although
this device requires careful implementation, in particular because of the Jacobian of
the transformation from M∗

1 to M∗
2 , it has been used successfully in a considerable

number of settings. Alternatives like jump diffusion (Grenander and Miller 1994)
and birth-and-death process (Stevens 2000) have also been implemented in realistic
settings.

3. ITERATION 2: DOES IT RUN?

It Should Start on Its Own . . .

The main factor in the success of MCMC algorithms is that they can be imple-
mented with little effort in a large variety of settings. This is obviously true of the
Gibbs sampler, which, provided some conditional distributions are available, sim-
ply runs by generating from these conditionals, as shown by the BUGS software.
The advent of the slice sampler (for an introduction, see Robert and Casella 1999,
sec. 7.1.2) even increases this automation. So far, this is not exactly the case with
MCMC samplers; there is no BUMH equivalent to BUGS, for instance! This is ac-
tually rather surprising, given that some Metropolis–Hastings algorithms allow for a



Figure 1. Blocks Used in Modular Programming.

very modular programming (Fig. 1). This is to say, the prior, the likelihood, and the
Metropolis–Hastings method can be programmed as separate blocks (procedures).
For sampling schemes0 like random walks or Langevin diffusions, the scale σ of
the perturbation can be calibrated against the acceptance rate1, and thus computed
automatically. Moreover, these settings allow for straightforward changes of param-
eterization, which corresponds to the definition of a Jacobian procedure2. Finally,
general convergence assessment tools3 can be added to the blocks. This is not exactly
fully automated programming, but it at least gives a hint of what the equivalent of
BUGS could be. Obviously, this global strategy excludes more specific samplers, like
independent samplers, because they depend more strongly on the prior/likelihood,
but it works reasonably well in problems of moderate dimensions.

. . . And Check for Convergence . . .

The main difficulty with MCMC samplers, as compared to Monte Carlo tech-
niques, is that their validity is strictly asymptotic; that is, θ(t) is converging in distribu-
tion to π. This difficulty is reflected in the impossibility of devising a general stopping
rule for MCMC samplers and, correspondingly, by the emergence in the last 10 years
of many partial convergence criteria that focus on specific convergence issues. Several
reviews have appeared in the past (see, e.g., Brooks and Roberts 1998), and they give
a rather exhaustive picture of the state of the art. A feature worth noticing is that the
early debate about parallel versus unique chains (see, e.g., Gelman and Rubin 1992;
Geyer 1992) has somehow died out, and most now agree on using signals that reflect
the diversity of convergence issues and uses of the MCMC sample. This strategy
is somehow conservative, as the chain keeps going until the “slowest” signal turns
green, and bias results from using several stopping rules simultaneously. But these
rules are not used in practice, neither with particular attention to significance level
nor as exact stopping rules; one runs the sampler and checks every 1,000 or 10,000
iterations for sufficient agreement in the stopping rules. A software like CODA (Best,
Cowles, and Vines 1995), which contains a series of general convergence diagnostics,
actually works ex post; that is, once a batch of simulations has been done and signals
whether or not simulations should be continued.



. . . While Improving On-Line

A given sampler will eventually fail to converge in a reasonable time for one
particular problem. Solutions to this potential threat, well illustrated through patho-
logical examples, are (a) to use several samplers simultaneously, in hybrid structures,
(b) to modify temporarily the distribution to simulate, as in tempering, or (c) to adapt
the proposal distribution on line; that is, use the MCMC sample (or samples) up to
iteration T to modify the proposal for iterations T + 1 on. In (c), caution is necessary
to handle the heterogeneity of the chain thus generated, but some advances have been
made in this direction, establishing specific limit theorems and using renewal theory
and nonparametric density estimates.

Another fruitful direction of research covers ways of accelerating MCMC al-
gorithms; that is, to improve excursions over the support of π and/or estimation of
E
π[h(θ)]. These methods include simulated tempering (Neal 1996b), simulated sin-

tering (Liu and Sabati 1999), antithetic variates (Frigessi, Gasemyr, and Rue 2000)
and Rao–Blackwellization (Robert and Casella 1999).

4. ITERATION 3: BOOSTING BAYESIAN INFERENCE

It is simply impossible to give a complete picture of the long-lasting effect of the
seminal work of Gelfand and Smith (1990). We mention here some areas of inference
that strongly benefit from MCMC techniques, stressing first that MCMC has clearly
led to an upsurge in the use of hierarchical modeling in such areas as graphical models,
generalized linear models, and image analysis.

Latent Variable Models

For the most obvious example of all, the mixture of distributions

k∑
i=1

pif(x|ξi),

the advent of MCMC techniques provided a way of approximating the full posterior
distribution for the first time. Since then, many other latent variable models, with
distributions that are naturally expressed as marginals

π(θ) =
∫
π∗(θ, z) dz,

have been processed, thanks to MCMC techniques. These include hidden Markov
and semi-Markov models, ARCH and switching ARMA models, stochastic volatility
and discretized diffusion models, missing data and censored models, and deconvo-
lution models (Robert 1998), with important consequences for econometrics (Kim,



Shephard, and Chib 1998), signal processing (Godsill 1997; Hodgson 1999), telecom-
munication, and finance.

Model Choice

The introduction of reversible jump techniques has been beneficial to the area
of model choice and variable selection, as it allows for prior distributions on the
dimension of a model as well as the parameter of each model. This possibility has led
to a large amount of work on model choice, with new notions like model averaging and
a renewed interest in (intrinsic and fractional) Bayes factors (Key, Perrichi, and Smith
1999). In particular, the advances in graphical models are quite impressive, as we now
see setups in which the graph structures themselves can be simulated, hence allowing
one to draw inference on the connections between variables (see, e.g., Madigan and
York 1995). Furthermore, as this area of research allows local MCMC computations,
with considerable performance improvements, very large and structured models now
can be tackled properly (Giudici and Green 1999).

Nonparametric Bayes

Another area that has changed greatly over the last 10 years is Bayesian non-
parametrics. The tools for density estimation, and curve fitting, and nonparametric
or semiparametric regression are now quite different and improved, as shown by, for
instance, Dey, Müller, and Sinha (1998). Alternatives to the Dirichlet prior, much
criticized for its discrete features, have now appeared, either through the use of other
processes (Beta, Levy) or of infinite mixtures. Reversible jump techniques provide an
entry for density estimation via mixtures with an unknown number of components,
using normal, beta, or Bernstein densities. The use of wavelets and estimation of
wavelet coefficients have also been clearly enhanced by MCMC techniques (Clyde,
Parmigiani, and Vidakovic 1998).

5. ITERATION 4: WHAT’S THE NEXT STEP?

The development of MCMC techniques is far from over, and we cannot predict
what the next major step will be, at either the theoretical or the implementation
level. Nonetheless, we can point out a few emerging, likely, or simply desirable
developments.

Perfect Simulation

Although this area has been on the move since the seminal work of Propp and
Wilson (1996), who showed that it is possible to use an MCMC sampler to simulate



exactly from the distribution of interest by the technique of coupling from the past, it
is yet unclear to us whether this technique will be available for statistical models on a
scale larger than that for a restricted class of discrete models (besides point processes).
Recent innovations like the multigamma coupler (Green and Murdoch 1999) and the
perfect slice sampler (Mira, Møller, and Roberts 1999), which reduce a continuum of
starting chains to a finite number of starting points, are steps in this direction, but the
difficulty of implementation is considerable, and we are still very far from automated
versions.

Adaptive and Sequential Algorithms

A likely development, both in theory and in practice, is increasing study of het-
erogeneous Markov chains and autoadaptative algorithms, as mentioned earlier (see
also Holden 1998). A related area of considerable potential deals with sequential algo-
rithms, where the distribution πn (and possibly the dimension of the parameter space)
varies with time, as in, for instance, tracking. Development of sequential importance
sampling–resampling techniques (Liu and Chen 1998) and advanced importance sam-
pling, which take advantage of the previous simulations to avoid rerunning a sample
from scratch, should be able to face more and more real-time applications, such as
those encountered in finance (Pitt and Shephard 1999), image analysis, signal process-
ing, and artificial intelligence. Higher-order algorithms, like Hamiltonian schemes,
could also offer a better potential to deal with these difficult setups.

Large Dimensions or Datasets

As of yet, too little innovation has been done in dealing with models involving
either a large number of parameters, as in econometric or graphical models, or huge
datasets, as in finance, signal processing, or teletraffic, and the MCMC samplers are
currently limited in terms of the models they can handle. Neural networks, which
have been investigated by Neal (1996a), are a typical example of such settings, but
techniques need be devised for more classical statistical models, where completion,
for instance, is too costly to be implemented. (See Mau and Newton 1997, for an
illustration in genetics.)

Software

We mentioned BUGS and CODA as existing software dedicated to MCMC al-
gorithms (more specifically to Gibbs sampling), but much remains to be done before
MCMC becomes part of commercial software. This implies that each new problem
requires some programming effort, most often in a basic language like Fortran or
C, given that interpreted languages, like S-PLUS or Gauss, have difficulties inher-
ent to Markov chain algorithms. An alternative would be to find ways of completely



vectorizing an MCMC sampler, to allow for parallel programming, but so far little
has been done in that direction. New statistical languages, like the Omega project
(http://www.omegahat.org/), based on Java, may offer a solution, if they take into
account MCMC requirements.
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Empirical Bayes: Past, Present, and Future

Bradley P. Carlin and Thomas A. Louis

1. INTRODUCTION

Despite (or perhaps because of) the enormous literature on the subject, the term
empirical Bayes (EB) is rather difficult to define precisely. To some statisticians, it
refers to a class of models; to others, a style of analysis; to still others, a philoso-
phy for screening statistical procedures. But perhaps any definition must begin with
how EB differs from an ordinary, fully Bayesian analysis. To understand this dis-
tinction, suppose that we have a distributional model f(y|θ) for the observed data
y = (y1, . . . , yn) given a vector of unknown parameters θ = (θ1, . . . , θk). Although
the classical, or frequentist, statistician would assume that θ is an unknown but fixed
parameter to be estimated from y, the Bayesian statistician would place a prior dis-
tribution π(θ|η) on θ, where η is a vector of hyperparameters. With η known, the
Bayesian uses Bayes’s rule to compute the posterior distribution,

p(θ|y,η) =
f(y|θ)π(θ|η)∫
f(y|u)π(u|η) du

=
f(y|θ)π(θ|η)
m(y|η)

, (1)

where m(y|η) denotes the marginal distribution of y.
Ifη is unknown, then information about it is captured by the marginal distribution.

Moreover, if f and π form a conjugate pair of distributions (i.e., if p(θ|y,η) belongs
to the same distributional family as π), thenm(y|η) will be available in closed form.
An EB analysis uses this marginal distribution to estimate η by η̂ ≡ η̂(y) [e.g.,
the marginal maximum likelihood estimator (MLE)] and then uses p(θ|y, η̂) as the
posterior distribution. In contrast, a fully Bayesian analysis (sometimes called Bayes
empirical Bayes, or BEB) augments (1) by a hyperprior distribution, h(η|λ), and
computes the posterior distribution as
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p(θ|y,λ) =
∫
f(y|θ)π(θ|η)h(η|λ) dη∫ ∫
f(y|u)π(u|η)h(η|λ) du dη

=
∫
p(θ|y,η)h(η|y,λ) dη. (2)

The second representation shows that the posterior is a mixture of posteriors (1) con-
ditional on a fixed η, with mixing via the hyperprior, updated by the data y. Both
EB and BEB use the observed data to provide information on η and thus “combine
evidence.” This combining has proven very successful in improving statistical anal-
yses in a broad array of fields, from the estimation of false fire alarm rates in New
York City (combining across neighborhoods; Carter and Rolph 1974) to modeling the
decline in the CD4 counts in HIV-infected men (combining across men; DeGruttola,
Lange, and Dafni 1991).

The “empirical” in EB arises from the fact that we are using the data to help
determine the prior through estimation of the hyperparameter η. Thus the basic dis-
tinction between EB and BEB is inclusion of the uppermost distribution h. (This
uppermost distribution need not be precisely the third stage in the model; see the
hierarchical models vignette by Hobert.) The posterior computed via (2) incorporates
uncertainties associated with not knowing η and is generally preferred to basic EB.
However, performance depends on choice of h—a difficult, important, and ongoing
area of research.

The EB approach essentially replaces the integration in the rightmost part of (2)
by a maximization (a substantial computational simplification), and bases inference
on the estimated posterior distribution p(θ|y, η̂). For example, any measure of the
“middle” of this distribution (mean, median, mode) generally produces a suitable point
estimate for θ. Interval estimates arise similarly; for instance, the upper and lowerα/2
points of the marginal estimated posterior p(θ1|y, η̂) can be taken as a 100×(1−α)%
confidence interval for θ1. But although EB point estimates generally perform quite
well, naive EB interval estimates of this type are often too narrow, as they ignore the
uncertainty in estimating η. Correcting EB intervals to have the desired (frequentist
or Bayesian) coverage level has thus been the subject of significant research interest
(see, e.g., Carlin and Gelfand 1990, 1991; Laird and Louis 1987).

The preceding development outlines what Morris (1983) calls parametric EB
(PEB). Casella (1985) also provided a good introduction to this topic. The approach
assumes the distribution at the penultimate level of the hierarchy, π(θ|η), has a para-
metric form, so that choosing a (data-based) value for η is all that is required to
completely specify the estimated posterior distribution. Alternatively, one can adopt
a nonparametric EB (NPEB) approach, where the distribution at the penultimate level
is known to exist, but its form is specified only generically as π(θ). Pioneered and
championed by Robbins (1955, 1983), and further generalized and modernized by
Maritz and Lwin (1989, sec. 3.4), van Houwelingen (1977), and others, this method
first represents the posterior mean in terms of the unknown prior, then uses the data



to estimate the Bayes rule directly. Recent advances substitute a nonparametric max-
imum likelihood (NPML) estimate of π(θ) (see Laird 1978).

EB has a long, colorful, and sometimes philosophically confused past, a vibrant
present, and an uncertain future. We consider each of these in turn.

2. PAST

Somewhat ironically, the history of EB is not particularly “Bayesian,” and it
certainly has little in common with the traditional, subjectivist Bayesian viewpoint.
As noted earlier, the earliest attempts were of the nonparametric variety and essentially
represented attempts by frequentist decision theorists to use Bayesian tools to produce
decision rules with good frequentist (not Bayesian) properties. For example, working

in the setting where yi|θi ind∼ Poisson(θi) and θi
iid∼ G(·), Robbins (1955) showed that

the NPEB estimator

θ̂NPEB
i = ÊG(θi|yi) = (yi + 1)

#(ys equal to yi + 1)
#(ys equal to yi)

(3)

is asymptotically optimal in that as k → ∞, its Bayes risk converges to the Bayes
risk for the true Bayes rule where G is known. (Despite the name, “Bayes risk”
is the expected value of a loss function, such as the average squared error loss
ASEL(θ̂(y),θ) = 1/k

∑k
i=1(θ̂i(y)− θi)2, where the expectation is taken not condi-

tionally given the data y, but rather jointly over both θ and y.) Asymptotically optimal
estimators can perform very poorly even for fairly large sample sizes, but (3) does
demonstrate the characteristic EB “borrowing strength” from data values other than
yi. Use of the NPML prior, ĜNPML, to compute the alternate estimator EGNPML(θi|yi)
produces substantial benefits over direct estimation of the Bayes rule in (3).

Parametric EB has close ties to Stein estimation, another primarily frequentist
endeavor (see the vignette on minimaxity by W. Strawderman). Stein (1956) showed

that in the case where yi|θi ind∼ N(θi, σ2), i = 1, . . . , k and σ2 is assumed known,

the MLE θ̂
MLE

(y) = y is inadmissible as an estimator of θ. That is, under average
squared error loss there must exist another estimator with frequentist risk no larger
than σ2 for every possible θ value. This dominating estimator was obtained by James
and Stein (1961) as

θ̂JS
i (y) =

[
1 − (k − 2)σ2

‖y‖2

]
yi,

where ‖y‖2 ≡ ∑
y2
i . The connection to PEB was provided later in a celebrated

series of articles by Efron and Morris (1971; 1972a,b; 1973a,b; 1975; 1977). Among

many other things, these authors showed that θ̂
JS

is exactly the PEB point estimator

obtained under the assumption that θi|τ 2 iid∼ N(0, τ 2) where the shrinkage factor
B ≡ σ2/(σ2 + τ 2) is estimated by B̂ = (k − 2)σ2/‖y‖2.



The early EB authors’ consistent use of Bayesian tools to further frequentist
goals while “using the data twice” (first to help determine the prior, then again in
the usual Bayesian way when computing the posterior) was not highly regarded by
the (primarily subjectivist) Bayesian community of the time (e.g., de Finetti, Lindley,
and Savage). In his discussion of Copas (1969), Lindley noted that “there is no one
less Bayesian than an empirical Bayesian”; later in a discussion of Morris (1983), he
described much of the asymptotics supporting NPEB as “technicalities out of control.”
In his discussion of the same work, Dempster borrowed a metaphor of Savage (1961,
p. 578) in describing an empirical Bayesian as someone who “breaks the Bayesian egg
but then declines to enjoy the Bayesian omelette.” Still, the early EB work of the 1950s
and 1960s helped further the rise of objective Bayesian thinking decades before the
Gibbs sampler made such thinking routinely possible and acceptable. Further work
by Morris (1983) and Hill (1990) encouraged a more unifying role for EB, in which
evaluations of procedures could be made by averaging over both the data space Y
and the parameter space Θ, with the EB position emerging as a plausible compromise
between the strict Bayes and frequentist positions.

3. PRESENT

The cumulative impact of EB on statistical applications continues to be enor-
mous. Statisticians and users of statistics, many of whom were trained to distrust
Bayesian methods as overly subjective and theoretically mysterious, can nonetheless
often appreciate the value of borrowing strength from similar but independent ex-
periments. To use another metaphor, EB thus offers a way to dangle one’s legs in
the Bayesian water without having to jump completely into the pool. An electronic
search of the latest Current Index to Statistics on “empirical Bayes” confirms its in-
creasing popularity, yielding a median of 2.5 hits per year during 1964–1969, 11 hits
per year during 1970–1979, 32 hits per year during 1980–1989, and 46 hits per year
during 1990–1996. EB methods have, for example, enjoyed broad application in the
analysis of longitudinal, survival, and spatially correlated data (Clayton and Kaldor
1987; Laird and Ware 1982).

The Bayes/EB formalism also ideally structures combining information from
several published studies of the same research area, a scientific discipline commonly
referred to as meta-analysis (Cooper and Hedges 1994), though in this context primary
interest is in the hyperparameters (η) rather than the parameters from individual
studies (θ). More generally, the hierarchical structure allows for honest assessment
of heterogeneity both within and between groups, such as clinical centers or census
areas. The review article by Breslow (1990) and the accompanying discussion contain
an excellent summary of past and potential future application areas for Bayes and EB
methods in the public health and biomedical sciences.

Important methodologic contributions also continue. For example, Efron (1996)



developed an EB approach to combining likelihoods for similar but independent
parameters θi. In keeping with the EB philosophy, little in the way of Bayesian prior
information is required, and frequentist ideas (such as bias correction and robustness)
are critical to the method. Other important recent EB work includes that on spatial
statistics by Raghunathan (1993) and nonparametric growth curves by Altman and
Casella (1995).

4. FUTURE

Returning to the theme of our opening sentence, one’s view of the future of
EB is indelibly tied to one’s view of its past and present, as well as to one’s own
“upbringing.” One of us (Louis) received his doctorate from Columbia University and
had Herb Robbins as an advisor, and so was exposed to an NPEB framework in which
achieving good frequentist properties was paramount. But Louis’s view then grew to
include parametric approaches and a healthy dose of purely Bayesian thinking. This
leads to an optimistic view of EB’s future, in which more and more applied problems
are tackled using EB methods, which preserve a strong measure of frequentist validity
for the resulting inferences. The other author (Carlin) came along nearly two decades
later, after the appearance of the marvelous PEB discussion paper by Morris (1983)
but just prior to the emergence of the Gibbs sampler and other Markov chain Monte
Carlo (MCMC) tools for implementing fully Bayesian analysis. This author started
from a PEB shrinkage point of view, but one in which EB methods were thought of as
approximations to overly cumbersome fully Bayesian hierarchical analyses. With the
widespread availability of MCMC tools such as the BUGS software (Spiegelhalter,
Thomas, Best, and Gilks 1995), this produces a much more pessimistic outlook for
EB, as the need for such approximations (and the corresponding restrictions on which
models can be handled) has more or less vanished.

Still, fully Bayesian solutions implemented via MCMC are by no means “plug and
play.” Convergence of the algorithms is notoriously difficult to diagnose, with most of
the usual diagnostics having well-known flaws (Cowles and Carlin 1996; Mengersen,
Robert, and Guihenneuc-Jouyaux 1999). Worse, the sheer power of MCMC methods
has led to the temptation to fit models larger than the data can readily support without
a strongly informative prior structure—now something of a rarity in applied Bayesian
work. In cases like this, an EB approach may well be superior to a full hierarchy with
improper priors, as the computation will be better behaved, and thus the associated
underlying theory may be better understood.

As an example of this point, consider the problem of specifying a vague hyper-
prior for a variance component τ 2. The most widespread current choice seems to be
the gamma(ε, ε) prior; that is, with mean 1 but variance 1/ε (see, e.g., Spiegelhal-
ter et al. 1995). But recent work by Hodges and Sargent (2001) and Natarajan and
Kass (2000) showed that such hyperpriors, though appearing “noninformative,” can
actually have significant impact on the resulting posterior distributions. And although



this hyperprior is proper, it is “nearly improper” for suitably small ε, potentially lead-
ing to the aforementioned MCMC convergence failure—or worse, the appearance of
MCMC convergence when in fact the joint posterior is also improper. Thus it might
well be that reverting to an EB approach here (replacing τ 2 by τ̂ 2) will produce a esti-
mated posterior that, though not fully defensible from a purely Bayesian standpoint,
produces improved estimates while also being safer to use and easier to obtain.

Although EB and BEB approaches have proven very effective, they are by
no means a panacea, and continued research and development is needed. We urge
progress in developing hierarchical analyses that are efficient and effective, but also
robust with respect to prior and other specifications. If such robustness is not present,
then the sources of the sensitivity must be investigated, documented, and questioned.
Broadening and deepening our understanding of the influence of the hyperpriorh is an
important aspect of these developments. Finally, we propose that one’s philosophical
bent need not play a significant role in the decision to use EB or vague hyperprior
BEB, as these generally produce procedures with good frequentist, Bayes, and EB
properties (see, e.g., Carlin and Louis 2000, chap. 4).
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Linear and Log-Linear Models

Ronald Christensen

1. INTRODUCTION

In its most general form a linear model is simply a statement that a collection of
random variables y1, . . . , yn have mean values with linear structure. In other words,
if E(yi) = mi, the model is mi = x′

iβ, where xi is a p vector of fixed known
predictor (or classification) variables and β = (β1, . . . , βp)′ is a vector of unknown,
unobservable parameters. Collecting terms into vectors Y = (y1, . . . , yn)′,m =
(m1, . . . ,mn)′, and collecting the x′

is into a matrix X, E(Y) = m = Xβ. By
positing a latent vector of errors e = (e1, . . . , en)′ with E(e) = 0, we can write the
model as Y = Xβ + e. Most often, the yi’s in a linear model are assumed to have a
multivariate normal distribution (see Arnold 1981; Christensen 1996; Seber 1977).

A log-linear model is a statement that, for a collection of random variables
y1, . . . , yn with E(yi) = mi, the model is log(mi) = x′

iβ. If we define a multi-
variate log transformation to be the log applied to each element of a vector, then
the log-linear model can be written as log[E(Y)] = log(m) = Xβ. In a log-linear
model, the yi’s are often assumed to have a multinomial distribution, or they are par-
titioned into groups in which the groups have independent multinomial distributions.
Alternatively, the yi’s can be assumed to be independent Poisson random variables
(see Agresti 1990; Christensen 1997). Log-linear models are also used in survival
analysis as accelerated failure time models, but we do not discuss such applications
here.

Finally, logistic regression and logit models are a special case of log-linear mod-
els. Suppose that yi ∼ bin(Ni, pi). The logistic model has logit(pi) ≡ log[pi/(1 −
pi)] = x′

iβ, or using obvious vector matrix notation, logit(p) = Xβ. Writing
m1i = E(yi) and m2i = E(Ni − yi) and creating corresponding vectors m1 and
m2,

logit(p) = Xβ iff log

(
m1

m2

)
=

[
I X

I 0

][
α

β

]
,

where the β vectors are identical in the two models.
These three applications are all closely related to generalized linear models.
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2. LINEAR MODELS

I think that the future of linear models is much what it was 10 years ago. The
future will involve applications of the current methods (primarily for independent
data) and improvements in the current methods for independent data, but the future
of linear models research lies primarily in developing methods for correlated data.

The basic model is

E(Y) = Xβ, cov(Y) = V(θ)

for some vector of parameters θ that ensures that V(θ) is nonnegative definite. More-
over, multivariate normality is often assumed; that is, Y ∼ N(Xβ,V(θ)). So the
future is in developing and improving statistical procedures for evaluating θ and also
for making predictions and evaluating β when θ must be estimated. Currently, to
simplify the problem, the parameters in θ are often assumed to be unrelated to the
parameters in β. If the parameters are related, then a transformation of the data may
make this assumption plausible. Otherwise, methods such as those discussed for in-
dependent observations by Carroll and Ruppert (1988) are needed. In any case, real
interest focuses on the special cases used in applications involving correlated data.

With spatial data, everything depends on the locations at which data are collected.
If data are collected at locations u1, . . . , un, then we observe dependent variables
y(ui) and predictor vectors x(ui). The universal kriging model is simply the linear
model y(ui) = x(ui)′β+ e(ui). The elements of V(θ) are cov[y(ui), y(uj)]. Much
has been done and much remains to be done on creating good models for V(θ)
and developing appropriate inferential methods (see Christensen 1991; Cressie 1993;
Stein 1999).

To date, the most widely used application has been mixed linear models with
variance components. In a mixed model, V(θ) is a linear combination of σ2

s param-
eters, V(θ) =

∑q
s=0 σ

2
sZsZ

′
s, where the Zs’s are known matrices and, most often,

Z0 = I. Typically, mixed models are written as Y = Xβ +
∑q
s=1 Zsγs + e where

the γs’s are assumed to be independent with E(γs) = 0 and cov(γs) = σ2
sI. (Note

that the dimensions of the γs’s may depend on s.) For expositions near the current
state of knowledge, see Searle, Casella, and McCulloch (1992) and Khuri, Mathew,
and Sinha (1998). In particular, split plot and cluster sampling models are valuable
special cases of mixed models.

An interesting approach to estimating θ in V(θ) is the use of linear and nonlin-
ear model techniques to develop quadratic estimation procedures. Briefly, for mixed
models, V(θ) is linear in its parameters, so one can write a linear model,

E[(Y − Xβ) ⊗ (Y − Xβ)] =
q∑
s=0

σ2
svec(ZsZ′

s).



The σ2
s’s can be estimated by ordinary or weighted least squares or by various itera-

tive procedures. These correspond to different versions of MINQUE and to maximum
likelihood and residual maximum likelihood (REML) estimates. Of course complica-
tions arise from β being unknown, but imposing a translation invariance requirement
involves only simple adjustments and eliminates β from the problem. A more se-
rious difficulty is that the covariance structure of the linear model depends on the
same parameters (the σ2

s’s) as the linear structure. This linearization technique was
initially proposed by Seely (1970). Pukelsheim (1976) provided an appropriate nota-
tion. When V(θ) is not linear in its parameters, methods of nonlinear regression can
be applied to estimation (see Searle et al. 1992, chap. 12, and Christensen 1993 for
details).

The multivariate linear model is also just a special case of the linear model. If we
have q dependent variables listed in the columns of Yn×q with correlated columns
and uncorrelated rows, with the same predictor variables X for each column of Y, but
separate columns of regression parameters for each dependent variable, say Bp×q,
and a conformable error matrix, then we get the standard multivariate linear model
Y = XB + e. The equivalent standard univariate linear model is

vec(Y) = [Iq⊗X]vec(B)+ vec(e), E[vec(e)] = 0, cov[vec(e)] = ΣΣΣ⊗In.

Here θ is the entire matrix ΣΣΣ, but estimation and inference is relatively easy. What is
more interesting is modelingΣΣΣ. For instance, often the rows ofY indicate independent
measurements on different people and the columns indicate successive measurements
on the same person. In this repeated-measures (longitudinal data) setting, modeling ΣΣΣ
as the covariance structure for some time series is a worthwhile approach that needs
continued development (Diggle 1990, chap. 5).

It is pretty obvious that linear models can be used for time series data with the
linear structure modeling trend and V(θ) as the covariance matrix of an appropriate
stationary time series model. It is perhaps less well known that frequency domain time
series is really just an application of mixed linear models. The spectral representation
theorem implies that a stationary process yi can be approximated arbitrarily closely by
a mixed model based on sines and cosines (Doob 1953, p. 486). Define Zk = [Ck,Sk]
with

Ck =
[

cos

(
2π
k

n
1

)
, cos

(
2π
k

n
2

)
, . . . , cos

(
2π
k

n
n

)]′

and

Sk =
[

sin

(
2π
k

n
1

)
, sin

(
2π
k

n
2

)
, . . . , sin

(
2π
k

n
n

)]′
.

Also, for simplicity, assume that n is even. The mixed model for vector Y is

Y = Jα0 +
(n/2)−1∑
k=1

Zkγk + Cn/2αn/2, (1)



where J is a column of 1’s,E(yi) = α0,E(γk) = 0,E(αn/2) = 0, cov(γk) = σ2
kI2,

var(αn/2) = σ2
n/2, cov(γk, γk′) = 0 (k �= k′), and cov(γk, αn/2) = 0. Here

V(θ) =
[(n−1)/2]∑
j=1

σ2
jZjZ

′
j + σ2

n/2Cn/2C′
n/2.

The Ck’s and Sk’s form an orthonormal basis for Rn, so (1) is a saturated model.
What is of more interest is finding reduced models that still explain the data; that
is, identifying the important frequencies. The model is fitted using ordinary least
squares, and because of the orthogonality, statistical analysis is relatively easy. For
example, the periodogram is just the collection of mean squares for the different Zk’s
(see Christensen 1991, chap. IV, for more discussion).

What I find intriguing for the next century is the similarity between this and
wavelet analysis. Wavelets just use an orthonormal basis that is different from the
sines and cosines basis, one in which the elements have a smaller support. In any
case, wavelets fit a saturated linear model and focus on finding reduced models; that
is, identifying the basis members that most help to explain the data. Although one can
always use any basis to explain the data, I am unaware of a wavelet representation
theorem that justifies the analysis in the same way that the spectral representation
theorem justifies use of the mixed model.

These ideas can also be extended to treat nonparametric regression (Zhang 1995).
Suppose that we have simple regression data (xi, yi), i = 1, . . . , n, for which the
xi are restricted to a bounded set, say (0, 1] for convenience. We can redefine a
(nonorthogonal) basis to use in (1),

Ck = [cos(2πkx1), cos(2πkx2), . . . , cos(2πkxn)]′

and

Sk = [sin(2πkx1), sin(2πkx2), . . . , sin(2πkxn)]′,

then fit the saturated model with ordinary least squares and identify important vectors
(predictor variables) in the basis. More generally, known wavelet functions ψj(x)
can be defined on (0, 1], the saturated linear model yi =

∑n
j=1 βjψj(xi) fitted, and

important wavelet functions identified. Typically, many parameters βj will need to be
nonzero to get a good fit; hence, as is often the case, the nonparametric procedure is
actually a very highly parametric procedure. A relatively degenerate example involves
defining functions equivalent to the Haar basis

ψj(x) =




1 x ∈
(
j−1
n , jn

]

0 otherwise
.

Note the small support of each ψj . However, in this case, the vectors

ΨΨΨj = [ψj(x1), ψj(x2), . . . , ψj(xn)]′



are unlikely to define a basis, and the fitting procedure is quite trivial. More interesting
would be to define ψj(x) as the density of a normal that essentially lives on ([(j −
1)/n], j/n], say, N((j/n)− (1/2n), 1/16n2). With this definition of ψj(x), the ΨΨΨj’s
should define a basis. There is great latitude in choosing the ψj’s, but in any case,
after identifying important ψj’s and estimating their βj coefficients, prediction for
any x is trivial.

3. LOG-LINEAR MODELS

I think that the future of log-linear models is much the same as the future of linear
models. The future will involve applications of the current methods and improvements
in the current methods, but in terms of research, the future lies mostly in developing
methods for correlated data.

Graphical log-linear models should continue to be developed to explore the re-
lationships between discrete variables (Christensen 1997, chap. 5; Edwards 1995;
Lauritzen 1996; Whittaker 1990). I expect Bayesian methods for linear, log-linear,
and logistic models to be increasingly incorporated into models for directed acyclic
graphs and chain graphs. In fact, I expect Bayesian logistic regression to thrive quite
generally, because it gives small-sample results relatively simply (Christensen 1997,
chap. 13).

Mixed models have been extended to generalized mixed models that incorporate
random effects into generalized linear models such as log-linear and logistic models
(McGilchrist 1994). These models should see continued development.

Currently, several methods are available for analyzing repeated measurements.
These include generalized estimating equations (Zeger, Liang, and Albert 1988),
generalizations of the Rasch model, (Agresti and Lang 1993; Conaway 1989), and
conditional log-linear models (Gilula and Haberman 1994). This situation should get
sorted out in the next century.

4. THE FUTURE OF PEDAGOGY

Linear models, log-linear models, logistic models, and all other generalized linear
models share a linear structure that largely determines the nature of the model. I think
that we need to start teaching regression and analysis of variance as model-based
approaches to data analysis rather than as parameter-based approaches. If we do that
for linear models, then the modeling skills that we teach will apply to all the other
applications. For example, contrasts, including orthogonal contrasts, are wonderful
for examining balanced analysis of variance problems. But I think that we would be
better off teaching students how to examine the same kinds of things using model-
based approaches that will apply to unbalanced situations and also to nonnormal
models.



To illustrate, consider a linear regression model

yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi, εi’s indep. N(0, σ2).

Suppose that we want to test H0 : β1 + β3 = 5 and β2 = 0. We can rewrite
the hypothesis as H0 : β1 = 5 − β3 and β2 = 0, and create a reduced model by
substitution:

yi = β0 + (5 − β3)xi1 + 0xi2 + β3xi3 + εi, εi’s indep. N(0, σ2).

Rearranging terms gives a reduced model:

yi − 5xi1 = β0 + β3(xi3 − xi1) + εi, εi’s indep. N(0, σ2).

This is just a new linear model with a new dependent variable yi − 5xi1 and one
predictor variable (xi3 − xi1). One can compute SSE and dfE in the usual way for
this reduced model, and simply use these quantities in the usual formula for the F
statistic to get the test. If the data are consistent with the reduced model, then we
have a more precise model than the one we started with. Although testing provides
no assurance that the reduced model is correct, the data are at least consistent with it.
This more precise model can be investigated for the validity of its predictions and its
usefulness in explaining the data collection process.

Reduced model procedures apply to any linear model, and, by incorporating
offsets into generalized linear models, the same reduced model procedures apply to
any model that uses a similar linear structure.

5. CONCLUSIONS

In the 21st century, research on linear and log-linear models will focus on mod-
els and methods for correlated data. Nonetheless, current methodologies should see
increased use and refinement.
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The Bootstrap and Modern Statistics

Bradley Efron

I once began an address to a mathematics conference with the following prepos-
terous question: Suppose that you could buy a really fast computer, one that could
do not a billion calculations per second, not a trillion, but an infinite number. So after
you unpacked it at home, you could numerically settle the Riemann hypothesis, the
Goldbach conjecture, and Fermat’s last theorem (this was a while ago), and still have
time for breakfast. Would this be the end of mathematics?

My question was not a very tactful one, but its intentions were honorable. I was
trying to communicate the current state of statistical theory. From a pre-World War
II standpoint, our current computational abilities are effectively infinite, at least in
terms of answering many common questions that arise in statistical practice. And no,
this has not spelled the end of statistical theory—though it certainly has changed (for
the better, in my opinion) what constitutes a good question and a good answer.

The bootstrap provides striking verification for the “infinite” capabilities of mod-
ern statistical computation. Figure 1 shows a small but genuine example, discussed
more carefully by DiCiccio and Efron (1996) and Efron (1998). Twenty AIDS patients
received an experimental antiviral drug. The Pearson sample correlation coefficient
between the 20 (before, after) pairs of measurements is θ̂ = .723. What inferences
can we draw concerning the true population correlation θ?

An immense amount of prewar effort, much of the best by Fisher himself, was
devoted to answering this question. Most of this effort assumed a bivariate Gaussian
probability model, the classic example being Fisher’s z-transform for normalizing the
correlation distribution. The bivariate Gaussian model, a poor fit to the AIDS data,
was pushed far beyond its valid range, because there was essentially no alternative.

An exception to this statement, almost the only one, was the nonparametric delta
method estimate of standard error, given in terms of sample central moments of various
mixed powers by this heroic formula:

ŜE =
θ̂√
n

{
µ̂22

µ̂2
11

+
1
4

(
µ̂40

µ̂2
20

+
µ̂04

µ̂2
02

+
2µ̂22

µ̂20µ̂02

)
−
(

µ̂31

µ̂11µ̂20
+

µ̂13

µ̂11µ̂02

)}1/2

.

(1)
Formulas like (1) were an important part of the applied statistician’s tool kit, heav-
ily used for approximating standard errors, confidence intervals, and hypothesis tests.
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They still are (sometimes unfortunately), even though we now are armed with more
potent weaponry.

The power of modern computation is illustrated in Figure 1(b), which shows the
histogram of 4,000 nonparametric bootstrap correlation coefficients θ̂∗. Each θ̂∗ was
calculated by drawing 20 points at random, with replacement, from the 20 actual data
points in the left panel, and then computing the Pearson sample correlation coefficient
for this bootstrap data set. (A variant of this algorithm would have been used if we
had wished to bootstrap the Gaussian model.) In total, about 1,000,000 elementary
numerical calculations were required. This is less than 1 second of effort on a modern
computer, even a small one, or perhaps 1 minute if, like me, you prefer to trade some
speed for the programming ease of a high-level language like S-PLUS. The same
computation on Fisher’s “millionaire” mechanical calculator would have taken years
of grinding human effort. Calling today’s computers “infinite” is not hyperbole from
this standpoint.

The sample standard deviation of the 4, 000θ̂∗ values was .0921, which is the
bootstrap estimate of standard error for θ̂. (Here 4,000 is at least 10 times too many
for a standard error, but not excessive for the confidence interval discussion to come.)
This compares with .0795 from (1). An immense amount of effort has been spent
justifying the theoretical basis of the bootstrap (more than 1,000 papers since Efron
1979), but the basic principle is simple, amounting in this case to an application of
nonparametric maximum likelihood estimation:

1. We suppose that the data have been obtained by random sampling from some
unknown probability distribution F (a bivariate distribution in the AIDS example.)

2. We are estimating the parameter of interest θ with some statistic θ̂.
3. We wish to know σF , the standard error of θ̂ when sampling from F .
4. We approximate σF with σF̂ , where F̂ is the empirical distribution of the data

(putting probability 1/20 on each of the 20 data points in the AIDS example).

The Monte Carlo routine for θ̂∗ is just a way of evaluating σF̂ without going
through the kind of Taylor series approximations involved in (1). In addition to being
easier to use and more accurate than the Taylor series approach, it has the great ad-
vantage of being completely general. I could just as well have bootstrapped Kendall’s
tau, or the largest eigenvalue of the sample covariance matrix, or the ratio of 25%
trimmed means. This generality allows the statistician to step fearlessly off the narrow
path of prewar computational feasibility, opening the door to more flexible, realistic,
and powerful data analyses. Computer-based methods, including the bootstrap, have
made statisticians more useful to our scientific colleagues.

The bootstrap began life as a muscularized big brother to the Quenouille–Tukey
jackknife (see Efron and Tibshirani 1993, chap. 11), with the same principal tasks in
mind: routine calculation of biases and standard errors. A more ambitious goal soon
pushed itself forward: automatic computation of bootstrap confidence intervals. A



Figure 1. Study of 20 AIDS Patients Receiving an Experimental Antiviral Drug. Left Panel shows Their
CD4 counts in hundreds before and after treatment; Pearson correlation coefficient θ̂ = .723. Right Panel
Histogram of 4,000 nonparametric bootstrap replications θ̂∗, with solid lines indicating the central 90%
BCa interval for true correlation θ and the dashed lines indicating standard interval endpoints. The
bootstrap standard error is .0921, compared to the nonparametric delta method standard error .0795.

theory of confidence intervals more useful than the “standard intervals” θ̂± 1.645ŜE
must operate at an increased level of theoretical accuracy. Some of the deepest parts
of the 1,000-paper literature concern “second-order accuracy” and how it can be
obtained via the bootstrap. Many authors participated in this work, as documented in
the references.

The solid lines in Figure 1 marked “.05” and “.95” indicate the endpoints of
the “BCa” bootstrap confidence interval (Efron 1987), intended to cover the true
correlation θ with 90% probability. BCa stands for bias-corrected and accelerated,
enough words to suggest some difficulty in pursuing the goal of second-order ac-
curacy. Hall (1988) verified BCa’s second-order accuracy, meaning that the actual
noncoverage probabilities, intended to be 5% at each end of the interval, approach
that ideal with error proportional to 1/sample size. This is an order of magnitude better
than the 1/

√
sample size rate of the standard interval, indicated by the dashed lines in

Figure 1.
The .05 and .95 lines in Figure 1 are not the 5th and 95th percentiles of the

4,000 bootstrap replications. In this case they are the 4.6th and 94.7th percentiles,
though in other examples the disparity could be much larger. Using the “obvious”
percentiles of the bootstrap distribution destroys second-order accuracy. The actual
BCa percentile depend on an automatic algorithm that takes into account the bias and
changing variance of θ̂ as an estimator of θ.

I am going on a bit about the somewhat technical point because it reflects an im-
portant, and healthy, aspect of bootstrap research: the attempt to ground the bootstrap
in the fundamental ideas of statistical theory—in this case coverage accuracy of con-
fidence intervals. New statistical methodology is often applied promiscuously, more



so if it is complicated, computer-based, and hard to check. The process of connecting
it back to the basic principles of statistical inference comes later, but in the long run
no methodology can survive if it flouts these principles. (The criticism process for
bootstrap confidence intervals is still going strong; see Young 1994 and its discus-
sion.) The bootstrap itself was first intended as an explanation for the success of an
older methodology, the jackknife.

Fisher and his colleagues were well aware that the standard intervals gave poor re-
sults for the correlation coefficient. This was the impetus for Fisher’s z-transformation.
But the z-transformation only fixes up the standard intervals for the Gaussian cor-
relation coefficient, while similar breakdowns, usually unrecognized, occur in many
other contexts. Bootstrap confidence intervals automate the z-transform idea, bring-
ing it to bear in a routine way on any estimation problem. The process of grounding
the bootstrap in traditional theory has worked the other way too; quite a bit more has
been learned about the theory of confidence intervals through the effort of applying
it outside the traditional textbook examples.

This same two-way exchange between classic statistical theory and modern
computer-based methodology is going on in other areas of research. Markov chain
Monte Carlo (MCMC) offers a particularly apt example. If the bootstrap is an auto-
matic processor for frequentist inference, then MCMC is its Bayesian counterpart.
The ability to compute a posteriori distributions for almost any prior, not just math-
ematically convenient ones, has deepened the discussion of what those priors should
be. The renewed interest in “uninformative” priors (see, e.g., Kass and Wasserman
1996), connects back to the theoretical basis of bootstrap confidence intervals. Efron
(1998, secs. 6–8) speculated about these connections.

Today’s computers may indeed seem infinitely fast when carrying out traditional
statistical calculations. Not so though for the more ambitious data-analytic tasks
suggested by modern techniques like MCMC and the bootstrap. The possibility of
improved results, and the critical appraisal of just how much improvement has been
achieved, create a demand for still better and inevitably more computationally inten-
sive methodology. Bootstrap confidence intervals, usually an improvement over the
traditional θ̂ ± 1.645ŜE, may still not give very accurate coverage in a small-sample
nonparametric situation like that illustrated in Figure 1. Getting up to “third-order
accuracy” seems to require bootstrapping the bootstrap, as in Beran (1987) and Loh
(1987).

There is some sort of law working here whereby statistical methodology always
expands to strain the current limits of computation. Our job is to make certain that
the new methodology is genuinely more helpful to our scientific clientele, and not
just more elaborate. I would give the statistics community a strong “A” in this regard.
Here is a list (from Efron 1995) of a dozen postwar developments that have had a
major effect on the practice of statistics: nonparametric and robust methods, Kaplan–
Meier and proportional hazards, logistic regression and Generalized Linear Models,



the jackknife and bootstrap, EM and MCMC, and empirical Bayes and James–Stein
estimation.

These topics have something less healthy in common: none of them appears
in most introductory statistics texts. As far as what we are teaching new students,
statistics stopped dead in 1950. An obvious goal, but one that gets lost in an historical
approach to our subject, is to insert intuitively simple and appealing topics like the
bootstrap into the introductory curriculum.

My own education in applied statistics (a very good one in the hands of Lincoln
Moses, Rupert Miller, and Byron Brown) was heavily classical. It has taken me a
long time to get over the feeling that there is something magically powerful about
formulas like (1) and to start trusting in the efficacy of computer-based methods like
the bootstrap for routine calculations. It has been an easier transition for nonroutine
analyses, where classical methods do not exist, though I still find it easy to forget that
today we can answer questions that once were utterly beyond reach.

Figure 2 relates to a recent consulting experience. The figure shows data for the
first five patients of an efficacy study on an experimental antiviral drug. There were
49 patients in the study, each measured on 43 predictor variables and a response,
altogether creating a 49 × 44 data matrix X. The goal of the study was to predict the
responses from some simple function of the 43 covariates. An extensive application of
step-up and step-down regression selection programs, supplemented by the scientific
intuition of the investigators, resulted in a “best” model that used just three simple
linear combinations of the covariates (like the sum of the “x” measurements) while
giving quite accurate predictions,R2 = .73. A reviewer for the medical journal asked
how optimistic this R2 might be given the amount of data mining used.

Figure 2. Data for the First Five of 49 AIDS Patients, Each Measured on 43 Predictors and Response
to an Experimental Antiviral Drug. An extensive data-mining effort produced a three-variable prediction
model with R2 = .73. How optimistic was the R2 value?



Our answer was based on a fundamentally straightforward bootstrap analysis:

1. Construct a bootstrap data matrix X∗, 49 × 44, by resampling the rows of X
(i.e., by resampling the patients).

2. Rerun the step-up/step-down regression selection programs on X∗, including
some allowance for the guidelines of “scientific intuition,” producing a bootstrapped
best prediction rule, sometimes one much different than the original rule.

3. Compute ∆R2∗
, the difference in predictive ability for the bootstrapped rule

on its own bootstrap data set X∗ minus its predictive ability on the original data X.

The average value of ∆R2∗
over 50 bootstrap replications, which turned out to be

.12, then gave a believable assessment of optimism for the originalR2 = .73, leaving
us with a bias-corrected estimate of R2 = .61. Efron and Gong (1983) discussed a
more elaborate example of predictive bias correction.

The prehistory of the bootstrap is heavily involved with the jackknife. Rupert
Miller’s influential article “A Trustworthy Jackknife” (Miller 1964) was a successful
early effort at demystifying what had seemed to be an almost magical device. Miller
and I shared a sabbatical year at Imperial College in 1972–1973, and after one of
Rupert’s lectures David Cox asked me, in a pointed way, if I thought there was
anything to this jackknife business. I took this, correctly, as a hint, and a few years
later decided to make an investigation of the jackknife the subject of the 1977 Rietz
lecture.

An elaborate mechanism called “the combination distribution” was to be the
basis of my lecture, but the more I worked on it the less remained of the mechanism,
until I was left with what seemed at the time a disappointingly simple device. One
of the most helpful references for this work was a technical report by Jaeckel (1972),
unfortunately unpublished, which suggested the kind of σF explanation given earlier.

The lecture (which became the basis of Efron 1979), was given at the Seattle
joint statistical meetings, accompanied by insistent construction noise from the next
room. At the end of the lecture Professor J. Wolfowitz asked me if I had any the-
orems to back up the bootstrap, to which I could only respond that I did not want
to spoil a perfect effort. The name “bootstrap,” suggested by Muenchausen’s fable,
was chosen for euphony with “jackknife,” and I was subsequently very happy to have
given up on “combination distribution.” Some alternative names are reviewed in the
acknowledgment of the 1979 article.

Books by Davison and Hinkley (1997), Efron and Tibshirani (1993), Hall (1992),
and Shao and Tu (1995) provide different views of the bootstrap, and also extensive
bibliographies. Influential articles include those of Bickel and Freedman (1981), Hall
(1988), Romano (1988), and Singh (1981), but this short list excludes so many of even
my personal favorites that I can only fall back on space limitations as an apology.
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Prospects of Nonparametric Modeling

Jianqing Fan

1. INTRODUCTION

Modern computing facilities allow statisticians to explore fine data structures
that were unimaginable two decades ago. Driven by many sophisticated applica-
tions, demanded by the need of nonlinear modeling and fueled by modern computing
power, many computationally intensive data-analytic modeling techniques have been
invented to exploit possible hidden structures and to reduce modeling biases of tra-
ditional parametric methods. These data-analytic approaches are also referred to as
nonparametric techniques. For an introduction to these nonparametric techniques, see
the books by Bosq (1998), Bowman and Azzalini (1997), Devroye and Györfi (1985),
Efromovich (1999), Eubank (1988), Fan and Gijbels (1996), Green and Silverman
(1994), Györfi, Härdle, Sarda, and Vieu (1989), Hart (1997), Hastie and Tibshirani
(1990), Müller (1988), Ogden (1997), Ramsay and Silverman (1997), Scott (1992),
Silverman (1986), Simonoff (1996), Vidakovic (1999), Wahba (1990), and Wand and
Jones (1995), among others.

An aim of nonparametric techniques is to reduce possible modeling biases of
parametric models. Nonparametric techniques intend to fit a much larger class of
models to reduce modeling biases. They allow data to search appropriate nonlinear
forms that best describe the available data, and also provide useful tools for parametric
nonlinear modeling and for model diagnostics.

Over the past three decades, intensive efforts have been devoted to nonparametric
function estimation. Many new nonparametric models have been introduced and a vast
array of new techniques invented. Many new phenomena have been unveiled, and
deep insights have been gained. The field of nonparametric modeling has progressed
steadily and dynamically. This trend will continue for decades to come. With the
advance of information and technology, more and more complicated data mining
problems emerge. The research and applications of data-analytic techniques will prove
even more fruitful in the next millennium.

The field of nonparametric modeling is vast. It has taken many books to describe a
part of the art. Indeed, most parametric models have their nonparametric counterpart. It
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is impossible to give a complete survey of this wide field. Rather, this article highlights
some of the important achievements and outlines some potentially fruitful topics of
research. For a more complete review of the literature, see the aforementioned books
and the references therein.

2. OVERVIEW OF DEVELOPMENTS

2.1 Density Estimation and Nonparametric Regression

Density estimation summarizes data distributions via estimating underlying den-
sities, and nonparametric regression smooths scatterplots via estimating regression
functions. They provide the simplest setup for understanding nonparametric model-
ing techniques and serve as useful building blocks for high-dimensional modeling.
They are relatively well developed and understood.

Many useful techniques have been proposed for univariate smoothing. Among
those, kernel methods (Gasser and Müller 1979; Müller 1988; Rosenblatt 1956; Wand
and Jones 1995), local polynomial methods (Cleveland 1979; Fan 1993; Fan and Gi-
jbels 1996; Stone 1977), spline methods (Eubank 1988; Green and Silverman 1994;
Nychka 1995; Stone, Hansen, Kooperberg, and Truong 1997; Wahba 1977, 1990),
Fourier methods (Efromovich 1999; Efromovich and Pinsker 1982) and wavelet meth-
ods (Antoniadis, 1999; Donoho and Johnstone 1994; Donoho, Johnstone, Kerkyachar-
ian, and Picard 1995; Hall and Patil 1995; Ogden 1997; Vidakovic 1999). Different
techniques have their own merits. Fan and Gijbels (1996, Chap. 2) gave an overview
of these techniques.

Each nonparametric technique involves selection of smoothing parameters. Sev-
eral data-driven methods have been developed. Cross-validation (Allen 1974; Rudemo
1982; Stone 1974) and generalized cross-validation (Wahba 1977) are generally ap-
plicable methods. Yet their resulting bandwidths can vary substantially (Hall and
Johnstone 1992). Plug-in methods are more stable. In addition to the methods sur-
veyed by Jones, Marron, and Sheather (1996), the preasymptotic substitution method
of Fan and Gijbels (1995) and the empirical-bias method of Ruppert (1997) provide
useful alternatives (see also Marron and Padgett 1987).

2.2 Multivariate Nonparametric Modeling

Univariate smoothing techniques can be extended in a straightforward manner to
multivariate settings. But such extensions are not useful, due to the so-called “curse
of dimensionality.” Many powerful models have been proposed to avoid using “sat-
urated” nonparametric models and hence attenuate the problems of the “curse of
dimensionality.” Different models incorporate different knowledge into data analyses



and explore different aspects of data. Examples include additive models (Breiman and
Friedman 1985; Hastie and Tibshirani 1990; Stone 1994), varying coefficient models
(Cleveland, Grosse, and Shyu 1991; Hastie and Tibshirani 1993), low-dimensional
interaction models (Friedman 1991; Gu and Wahba 1993; Stone et al. 1997), multiple-
index models (Härdle and Stoker 1989; Li 1991), and partially linear models (Green
and Silverman 1994; Speckman 1988) and their hybrids (Carroll, Fan, Gijbels, and
Wand 1997; Fan, Härdle, and Mammen 1998), among others (see also semipara-
metric models in Bickel, Klaassen, Ritov, and Wellner 1993). Together they provide
useful tool kits for processing data that arise from many scientific disciplines and for
checking the adequacy of commonly used parametric models.

The area of multivariate data-analytic modeling is very dynamic. A vast array
of innovative ideas has been proposed that rely on certain univariate smoothing tech-
niques as building blocks. These include backfitting methods (Hastie and Tibshirani
1990) and average regression surface methods (Linton and Nielsen 1995; Tjøstheim
and Auestad 1994) for additive modeling, sliced inverse regression method (Duan and
Li 1991; Li 1991) and average derivative methods (Härdle and Stoker 1989; Samarov
1993) for multiple-index models, and combinations of these methods (Carroll et al.
1997), among others. Polynomial splines and smoothing splines can be directly ap-
plied to low-dimensional interaction models.

Tree-based regression models (Breiman, Friedman, Olshen and Stone 1993;
Zhang and Signer 1999) are based on different ideas. They are also powerful tools
for nonparametric multivariate regression and classification.

Nonparametric regression problems arise often from other statistical contexts,
such as generalized linear models and the Cox proportional hazards model. Although
some theory and methods are available, nonparametric techniques are relatively un-
derdeveloped for likelihood and pseudolikelihood models.

2.3 Theoretical Developments

Apart from creative technological inventions, many foundational insights have
been gained, and many new phenomena in infinite-dimensional spaces have been dis-
covered. It is now well known that many nonparametric functions cannot be estimated
at a root-n rate (Donoho and Liu 1991; Farrell 1972), whereas some functionals such
as integrated square densities (Bickel and Ritov 1988; Fan 1991) can be estimated at
a root-n rate. These optimal rates of convergence depend on the smoothness of the
function classes. Adaptive procedures have been constructed so that they are nearly
optimal for each given smoothness of a class of functions (see, e.g., Brown and Low
1996; Donoho et al. 1995; Lepski 1991, 1992). Adaptive estimation based on penal-
ized least squares was discussed by Barron, Birgé, and Massart (1999). Optimal rates
for hypothesis testing have also been developed (see Ingster 1993; Spokoiny 1996).

Optimal rates for multivariate analysis of variance (ANOVA) types of nonpara-



metric models offer valuable theoretical insights into high-dimensional function es-
timation problems (Huang 1999; Stone 1994). It has been shown that asymptotically
estimating a component in additive separable models is just as hard as the case when
the other components are known (Fan, Härdle, and Mammen 1998). This property is
not shared by parametric models.

3. FUTURE RESEARCH

With increasing complexity of statistical applications and the need for refinements
of traditional techniques, the future of nonparametric modeling and its applications
is bright and prosperous. Cross-fertilization of parametric and nonparametric tech-
niques will be fruitful and powerful. Applications of nonparametric techniques to
other scientific and engineering disciplines are increasingly demanding. Some areas
of research are outlined here, but of course the list is far from exhaustive.

3.1 Nonparametric Inferences

Maximum likelihood estimation, likelihood ratio statistics, and the bootstrap
offer generally applicable tools for parametric analysis. Yet there are no generally
applicable principles available for nonparametric inferences. Consider the example
of additive models. How can one construct simultaneous confidence bands for es-
timated functions? Are a set of variables significant in the models? Does a given
nonlinear parametric model adequately fit the data, or is a given nonparametric model
overparameterized? Although there are many collective efforts and much progress
has been made, the area still requires intensive research, and widely applicable meth-
ods should be sought. Recently, Fan, Zhang, and Zhang (2001) made a start in this
direction, proposing a generalized likelihood ratio method and demonstrating that it
has various good statistical properties.

3.2 High-Dimensional Nonparametric Modeling

Many interesting statistical problems are multivariate and high-dimensional, with
a mix of discrete and continuous variables. Although there are a number of cre-
ative nonparametric models, they cannot be expected to handle all of these statistical
problems. A lack of inference tools and software has hampered their applications.
High-dimensional classification problems are increasingly in demand. Applications
of nonparametric modeling techniques to other statistical contexts need further de-
velopment.



3.3 Functional Data Analysis

Massive datasets can now be easily collected for each individual in the form of
curves or images. In ophthalmology, for example, images of a patient’s cornea maps
are recorded along with other demographic and ophthalmic variables. Interesting
questions include studying associations between cornea shapes and demographic and
ophthalmic variables, testing whether there are any differences among two or more
clinical groups or treatment methods, and monitoring regression/progression of clin-
ical surgery. (More examples and problems can be found in Capra and Müller 1997,
Kneip and Gasser 1992, and Ramsay and Silverman 1997.) Feature extractions have
been studied extensively (Ramsay and Silverman 1997). Yet predictions, modeling,
and inferences based on functional data need substantial developments.

3.4 Applications to Other Statistical Problems

Many other statistical problems require data-analytic tools, including telecom-
munications and information engineering, nonlinear time series (Tong 1990; Yao and
Tong 1994), and biostatistics (Hoover, Rice, Wu, and Yang 1998). They offer statis-
ticians enormous opportunities for interdisciplinary collaboration. Context-based ap-
plications of nonparametric techniques will be fruitful. (For more discussion and de-
tails on these topics, see the expanded version of this article at http://www.stat.unc.edu/
faculty/fan.html.)

3.5 Software Developments

Applications of nonparametric techniques have been hampered by lack of soft-
ware. Although many nonparametric techniques have been programmed by individual
researchers, these were written in many computer languages and were tested only for
“in-house” use. Many modern nonparametric techniques are not available in com-
monly used statistical software packages. Research into fast and robust implementa-
tions of nonparametric techniques and their software developments is needed.
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Fan, J., Härdle, W., and Mammen, E. (1998), “Direct Estimation of Additive and Linear Components for
High-Dimensional Data,” The Annals of Statistics, 26, 943–971.

Fan, J., Zhang, C., and Zhang, J. (2001), “Generalized Likelihood Ratio Statistics and Wilks Phenomenon,”
The Annals of Statistics, 29, 153–193.

Farrell, R. H. (1972), “On the Best Obtainable Asymptotic Rates of Convergence in Estimation of a Density
Function at a Point,” Annals of Mathematical Statistics, 43, 170–180.



Friedman, J. H. (1991), “Multivariate Adaptive Regression Splines” (with discussion), The Annals of
Statistics, 19, 1–141.

Gasser, T., and Müller, H-G. (1979), “Kernel Estimation of Regression Functions,” in Smoothing Techniques
for Curve Estimation, New York: Springer-Verlag, pp. 23–68.

Green, P. J., and Silverman, B. W. (1994), Nonparametric Regression and Generalized Linear Models: A
Roughness Penalty Approach, London: Chapman & Hall.

Gu, C., and Wahba, G. (1993), “Smoothing Spline ANOVA With Component-Wise Bayesian ‘Confidence
Intervals,’ ” Journal of Computing and Graphical Statistics, 2, 97–117.

Györfi, L., Härdle, W., Sarda, P., and Vieu, P. (1989), Nonparametric Curve Estimation from Time Series,
Berlin: Springer-Verlag.

Hall, P., and Johnstone, I. (1992), “Empirical Functionals and Efficient Smoothing Parameter Selection”
(with discussion), Journal of the Royal Statistical Society, Ser. B, 54, 475–530.

Hall, P., and Patil, P. (1995), “Formulae for Mean Integrated Squared Error of Nonlinear Wavelet-Based
Density Estimators,” The Annals of Statistics, 23, 905–928.
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Gibbs Sampling

Alan E. Gelfand

1. INTRODUCTION

During the course of the 1990s, the technology generally referred to as Markov
chain Monte Carlo (MCMC) has revolutionized the way statistical models are fitted
and, in the process, dramatically revised the scope of models which can be entertained.

This vignette focuses on the Gibbs sampler. I provide a review of its origins and its
crossover into the mainstream statistical literature. I then attempt an assessment of the
impact of Gibbs sampling on the research community, on both statisticians and subject
area scientists. Finally, I offer some thoughts on where the technology is headed and
what needs to be done as we move into the next millennium. The perspective is,
obviously, mine, and I apologize in advance for any major omissions. In this regard,
my reference list is modest, and again there may be some glaring omissions. I present
little technical discussion, as by now detailed presentations are readily available in the
literature. The books of Carlin and Louis (2000), Gelman, Carlin, Stern, and Rubin
(1995), Robert and Casella (1999), and Tanner (1993) are good places to start. Also,
within the world of MCMC, I adopt an informal definition of a Gibbs sampler. Whereas
some writers describe “Metropolis steps within Gibbs sampling,” others assert that
the blockwise updating implicit in a Gibbs sampler is a special case of a “block-
at-a-time” Metropolis–Hastings algorithm. For me, the crucial issue is replacement
of the sampling of a high-dimensional vector with sampling of lower-dimensional
component blocks, thus breaking the so-called curse of dimensionality.

In Section 2 I briefly review what the Gibbs sampler is, how it is implemented,
and how it is used to provide inference. With regard to Gibbs sampling, Section 3
asks the question “How did it make its way into the mainstream of statistics?” Section
4 asks “What has been the impact?” Finally, Section 5 asks “Where are we going?”
Here, speculation beyond the next decade seems fanciful.

2. WHAT IS GIBBS SAMPLING?

Gibbs sampling is a simulation tool for obtaining samples from a nonnormalized
joint density function. Ipso facto, such samples may be “marginalized,” providing
samples from the marginal distributions associated with the joint density.

Alan E. Gelfand is Professor, Department of Statistics, University of Connecticut, Storrs, CT 06269. (E-
mail: alan@stat.uconn.edu). His work was supported in part by National Science Foundation grant DMS
96-25383.



2.1 Motivation

The difficulty in obtaining marginal distributions from a nonnormalized joint
density lies in integration. Suppose, for example, that θ is a p × 1 vector and f(θ)
is a nonnormalized joint density for θ with respect to Lebesgue measure. Normal-
izing f entails calculating

∫
f(θ) dθ. To marginalize, say for θi, requires h(θi) =∫

f(θ) dθ(i)/
∫
f(θ) dθ, where θ(i) denotes all components of θ save θi. Integration

is also needed to obtain a marginal expectation or find the distribution of a func-
tion of θ. When p is large, such integration is analytically infeasible (the curse of
dimensionality). Gibbs sampling offers a Monte Carlo approach.

The most prominent application has been for inference within a Bayesian frame-
work. Here models are specified as a joint density for the observations, say Y, and the
model unknowns, say θ, in the form h(Y|θ)π(θ). In a Bayesian setting, the observed
realizations of Y are viewed as fixed, and inference proceeds from the posterior den-
sity of θ, π(θ|Y) ∝ h(Y|θ)π(θ) ≡ f(θ), suppressing the fixed Y. So f(θ) is a
nonnormalized joint density, and Bayesian inference requires its marginals and ex-
pectations, as earlier. If the prior, π(θ), is set to 1 and if h(Y|θ) is integrable over θ,
then the likelihood becomes a nonnormalized density. If marginal likelihoods are of
interest, then we have the previous integration problem.

2.2 Monte Carlo Sampling and Integration

Simulation-based approaches for investigating the nonnormalized density f(θ)
appeal to the duality between population and sample. In particular, if we can generate
arbitrarily many observations from h(θ) = f(θ)/

∫
f(θ), so-called Monte Carlo

sampling, then we can learn about any feature of h(θ) using the corresponding feature
of the sample. Noniterative strategies for carrying out such sampling usually involve
identification of an importance sampling density, g(θ) (see, e.g., Geweke 1989; West
1992). Given a sample from g(θ), we convert it to a sample from h(θ), by resampling,
as done by Rubin (1988) and Smith and Gelfand (1992). If one only needs to compute
expectations under h(θ), this can be done directly with samples from g(θ) (see, e.g.,
Ripley 1987) and is referred to as Monte Carlo integration. Noniterative Monte Carlo
methods become infeasible for many high-dimensional models of interest.

Iterative Monte Carlo methods enable us to avoid the curse of dimensionality by
sampling low-dimensional subsets of the components of θ. The idea is to create a
Markov process whose stationary distribution ish(θ). This seems an unlikely strategy,
but, perhaps surprisingly, there are infinities of ways to do this. Then, suppose that
P (θ → A) is the transition kernel of a Markov chain with stationary distribution
h(θ). (Here P (θ → A) denotes the probability that θ(t+1) ∈ A given θ(t) = θ.)
If h(0)(θ) is a density that provides starting values for the chain, then, with θ(0) ∼
h(0)(θ), using P (θ → A), we can develop a trajectory (sample path) of the chain
θ(0),θ(1),θ(2), . . . ,θ(t), . . . . If t is large enough (i.e., after a sufficiently long “burn-



in” period), then θ(t) is approximately distributed according to h(θ).
A bit more formally, suppose that P (θ → A) admits a transition density,

p(η|θ), with respect to Lebesgue measure. Then π is an invariant density for p if∫
π(θ)p(η|θ) dθ = π(η). In other words, if θ(t) ∼ π, then θ(t+1) ∼ π. Also, Γ is

a limiting (stationary, equilibrium) distribution for p if limt→∞ P (θ(t) ∈ A)|θ(0) =
θ) = Γ(A) (and thus limt→∞ P (θ(t) ∈ A) = Γ(A)). The crucial result is that if
p(η|θ) is aperiodic and irreducible and if π is a (proper) invariant distribution of p,
then π is the unique invariant distribution; that is, π is the limiting distribution. A care-
ful theoretical discussion of general MCMC algorithms with references was given by
Tierney (1994). Also highly recommended is the set of three Royal Statistical Society
papers in 1993 by Besag and Green (1993), Gilks et al. (1993), and Smith and Roberts
(1993), together with the ensuing discussion, as well as an article by Besag, Green,
Higdon, and Mengersen (1996), again with discussion.

2.3 The Gibbs Sampler

The Gibbs sampler was introduced as a MCMC tool in the context of image
restoration by Geman and Geman (1984). Gelfand and Smith (1990) offered the
Gibbs sampler as a very general approach for fitting statistical models, extending the
applicability of the work of Geman and Geman and also broadening the substitu-
tion sampling ideas that Tanner and Wong (1987) proposed under the name of data
augmentation.

Suppose that we partition θ into r blocks; that is, θ = (θ1, . . . ,θr). If the current
state of θ is θ(t) = (θ(t)

1 , . . . ,θ(t)
r ), then suppose that we make the transition to θ(t+1)

as follows:

draw θ(t+1)
1 from h(θ1|θ(t)

2 , . . . ,θ(t)
r ),

draw θ(t+1)
2 from h(θ2|θ(t+1)

1 , . . . ,θ
(t)
3 , . . . ,θ(t)

r ),
...

draw θ(t+1)
r from h(θr|θ(t+1)

1 , . . . ,θ
(t+1)
r−1 ).

The distributions h(θi|θ1, . . . ,θi−1, . . . ,θi+1, . . . ,θr) are referred to as the full, or
complete, conditional distributions, and the process of updating each of the r blocks
as indicated updates the entire vector θ, producing one complete iteration of the Gibbs
sampler. Sampling of θ has been replaced by sampling of lower-dimensional blocks
of components of θ.

2.4 How To Sample the θi

Conceptually, the Gibbs sampler emerges as a rather straightforward algorithmic
procedure. One aspect of the art of implementation is efficient sampling of the full



conditional distributions. Here there are many possibilities. Often, for some of the θi,
the form of the prior specification will be conjugate with the form in the likelihood,
so that the full conditional distribution for θi will be a “posterior” updating of a
standard prior. Note that even if this were the case for every θi, f(θ) itself need not
be a standard distribution; conjugacy may be more useful for Gibbs sampling than
for analytical investigation of the entire posterior.

When f(θi|θ1,θ2, . . .θi−1,θi+1, . . .θr) is nonstandard, we might consider the
rejection method, as discussed by Devroye (1986) and Ripley (1987); the weighted
bootstrap, as discussed by Smith and Gelfand (1992); the ratio-of-uniforms method,
as described by Wakefield, Gelfand, and Smith (1992); approximate cdf inversion
when θi is univariate, such as the griddy Gibbs sampler, as discussed by Ritter and
Tanner (1992); adaptive rejection sampling, as often the full conditional density for
θi is log concave, in which case the usual rejection method may be adaptively im-
proved in a computationally cheap fashion, as described by Gilks and Wild (1992);
and Metropolis-within-Gibbs. For the last, the Metropolis (or Hastings–Metropolis)
algorithms—which, in principle, enable simultaneous updating of the entire vector
θ (Chib and Greenberg 1995; Tierney 1994)—are usually more conveniently used
within the Gibbs sampler for updating some of the θi, typically those with the least
tractable full-conditional densities.

The important message here is that no single procedure dominates the others for
all applications. The form of h(θ) determines which method is most suitable for a
given θi.

2.5 Convergence

Considerable theoretical work has been done on establishing the convergence
of the Gibbs sampler for particular applications, but perhaps the simplest conditions
have been given by Smith and Roberts (1993). If f(θ) is lower semicontinuous at 0, if∫
f(θ) dθi is locally bounded for each i, and if the support of f is connected, then the

Gibbs sampler algorithm converges. In practice, a range of diagnostic tools is applied
to the output of one or more sampled chains. Cowles and Carlin (1994) and Brooks
and Roberts (1998) provided comparative reviews of the convergence diagnostics
literature. Also, see the related discussions in the hierarchical models vignette by
Hobert and the MCMC vignette by Cappé and Robert. (In principle, convergence
can never be assessed using such output, as comparison can be made only between
different iterations of one chain or between different observed chains, but never with
the true stationary distribution.)



2.6 Inference Using the Output of the Gibbs Sampler

The retained output from the Gibbs sampler will be a set of θ∗
j , j = 1, 2, . . . , B,

assumed to be approximately iid from h = f/
∫
f . If independently started parallel

chains are used, then observations from different chains are independent but observa-
tions within a given chain are dependent. “Thinning” of the output stream (i.e., taking
every kth iteration, perhaps after a burn-in period) yields approximately indepen-
dent observations within the chain, for k sufficiently large. Evidently, the choice of
k hinges on the autocorrelation in the chain. Hence sample autocorrelation functions
are often computed to assess the dependence. Given {θ∗

j}, for a specified feature
of h we compute the corresponding feature of the sample. Because B can be made
arbitrarily large, inference using {θ∗

j} can be made arbitrarily accurate.

3. HOW DID IT HAPPEN?

The Gibbs sampler was not developed by statisticians. For at least the past half-
century, scientists (primarily physicists and applied mathematicians) have sought to
simulate the behavior of complex probabilistic models formulated to approximate
the behavior of physical, chemical, and biological processes. Such processes were
typically characterized by regular lattice structure and the joint probability distribution
of the variables at the lattice points was provided through local specification; That is,
the full conditional density h(θi|θj , j = 1, 2, . . . , r, j 
= i) was reduced to h(θi|θj ∈
Ni), where Ni is a set of neighbors of location i. But then an obvious question is
whether the set of densities h(θi|θj ∈ Ni), a so-called Markov random field (MRF)
specification, uniquely determines h(θ). Geman and Geman (1984) argued that if
each full conditional distribution is a so-called Gibbs density, the answer is yes and,
in fact, that this provides an equivalent definition of a MRF. The fact that each θi is
updated by making a draw from a Gibbs distribution motivated them to refer to the
entire updating scheme as Gibbs sampling.

The Gibbs sampler is, arguably, better suited for handling simulation from a
posterior distribution. As noted by Gelfand and Smith (1990), h(θi|θj , j 
= i) ∝
f(θ), where f(θ) is viewed as a function of θi with all other arguments fixed. Hence
we always know (at least up to normalization) the full conditional densities needed
to implement the Gibbs sampler. The Gibbs sampler can also be used to investigate
conditional distributions associated with f(θ), as done by Gelfand and Smith (1990).
It is also well suited to the case where f(θ) arises as the restriction of a joint density
to a set S (see Gelfand, Smith, and Lee 1992).

The 1990s have brought unimaginable availability of inexpensive high-speed
computing. Such computing capability was blossoming at the time of Gelfand and
Smith’s 1990 article. The former fueled considerable experimentation with the latter,
in the process demonstrating its broad practical viability. Concurrently, the increasing
computing possibilities were spurring interest in a broad range of complex modeling



specifications, including generalized linear mixed models, time series and dynamic
models, nonparametric and semiparametric models (particularly for censored survival
data), and longitudinal and spatial data models. These could all be straightforwardly
fitted as Bayesian models using Gibbs sampling.

4. WHAT HAS BEEN THE IMPACT?

Previously, within the statistical community, Bayesians, though confident in the
unification and coherence that their paradigm provides, were frustrated by the compu-
tational limitations described in Section 2.1, which restricted them to “toy” problems.
Though progress was made with numerical integration approaches, analytic approx-
imation methods, and noniterative simulation strategies, fitting the rich classes of
hierarchical models that provide the real inferential benefits of the paradigm (e.g.,
smoothing, borrowing strength, accurate interval estimates) was generally beyond
the capability of these tools. The Gibbs sampler provided Bayesians with a tool to fit
models previously inaccessible to classical workers. The tables were turned; if one
specified a likelihood and prior, the Gibbs sampler was ready to go!

The ensuing fallout has by and large been predictable. Practitioners and sub-
ject matter researchers, seeking to explore more realistic models for their data, have
enthusiastically embraced the Gibbs sampler, and Bayesians, stimulated by such re-
ceptiveness, have eagerly sought collaborative research opportunities. An astonishing
proliferation of articles using MCMC model fitting has resulted. On the other hand,
classical theoreticians and methodologists, perhaps feeling somewhat threatened, find
intellectual vapidity in the entire enterprise; “another Gibbs sampler paper” is a fa-
miliar retort.

Though not all statisticians participate, an ideological divide, perhaps stronger
than in the past, has emerged. Bayesians will argue that with a full model specification,
full inference is available. And the inference is “exact” (although an enormous amount
of sampling from the posterior may be required to achieve it!), avoiding the uncertainty
associated with asymptotic inference. Frequentists will raise familiar concerns with
prior specifications and with inference performance under experimental replication.
They also will feel uncomfortable with the black box, nonanalytic nature of the Gibbs
sampler. Rather than “random” estimates, they may prefer explicit expressions that
permit analytic investigation.

Moreover, Gibbs sampling, as a model fitting and data-analytic technology, is
fraught with the risk for abuse. MCMC methods are frequently stretched to models
more complex than the data can hope to support. Inadequate investigation of con-
vergence in high-dimensional settings is often the norm, improper posteriors surface
periodically in the literature, and inference is rarely externally checked.



5. WHERE ARE WE GOING?

At this point, the Gibbs sampler and MCMC in general are well accepted and
utilized for data analysis. Its use in the applied sector will continue to grow. Nonethe-
less, in the statistical community the frenzy over Gibbs sampling has passed, the field
is now relatively stable, and future direction can be assessed. I begin with a list of
“tricks of the trade,” items still requiring further clarification:

• Model fitting should proceed from simplest to hardest, with fitting of sim-
pler models providing possible starting values, mode searching, and proposal
densities for harder models.

• Attention to parameterization is crucial. Given the futility of “transformation
to uncorrelatedness,” automatic approaches, such as that of Gelfand, Sahu,
and Carlin (1995a,b), are needed. Strategies for nonlinear models are even
more valuable.

• Latent and auxiliary variables are valuable devices but effective usage requires
appreciation of the trade-off between simplified sampling and increased model
dimension.

• When can one use the output associated with a component of θ that appears
to have converged? For instance, population-level parameters, which are of-
ten of primary interest, typically converge more rapidly than individual-level
parameters.

• Blocking is recognized as being helpful in handling correlation in the posterior
but what are appropriate blocking strategies for hierarchical models?

• Often “hard to fit” parameters are fixed to improve the convergence behavior of
a Gibbs sampler. Is an associated sensitivity analysis adequate in such cases?

• Because harder models are usually weakly identified, informative priors are
typically required to obtain well behaved Gibbs samplers. How does one use
the data to develop these priors and to specify them as weakly as possible?

• Good starting values are required to run multiple chains. How does one obtain
“overdispersed” starting values?

With the broad range of models that can now be explored using Gibbs sampling,
one naturally must address questions of model determination. Strategies that conve-
niently piggyback onto the output of Gibbs samplers are of particular interest as ad
hoc screening and checking procedures. In this regard, see Gelfand and Ghosh (1998)
and Spiegelhalter, Best, and Carlin (1998) for model choice approaches and Gelman,
Meng, and Stern (1995) for model adequacy ideas.

Finally, with regard to software development, the BUGS package (Spiegelhalter,
Thomas, Best, and Gilks 1995) at this point, is general and reliable enough (with no
current competition) to be used both for research and teaching. CODA (Best, Cowles,



and Vines 1995), is a convenient add-on to implement a medley of convergence di-
agnostics. The future will likely bring specialized packages to accommodate specific
classes of models, such as time series and dynamic models. However, fitting cutting
edge models will always require tinkering and tuning (and possibly specialized algo-
rithms), placing it beyond extant software. But the latter can often fit simpler models
before exploring harder ones and can be used to check individual code.

As for hardware, it is a given that increasingly faster machines with larger and
larger storage will evolve, making feasible the execution of enormous numbers of
iterations for high-dimensional models within realistic run times, diminishing con-
vergence concerns. However, one also would expect that more capable multiprocessor
machines will be challenged by bigger datasets and more complex models, encour-
aging parallel processing MCMC implementations.
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The Variable Selection Problem

Edward I. George

The problem of variable selection is one of the most pervasive model selection
problems in statistical applications. Often referred to as the problem of subset selec-
tion, it arises when one wants to model the relationship between a variable of interest
and a subset of potential explanatory variables or predictors, but there is uncertainty
about which subset to use. This vignette reviews some of the key developments that
have led to the wide variety of approaches for this problem.

1. INTRODUCTION

Suppose that Y, a variable of interest, and X1, . . . ,Xp, a set of potential explana-
tory variables or predictors, are vectors of n observations. The problem of variable
selection, or subset selection as it is often called, arises when one wants to model the
relationship between Y and a subset of X1, . . . ,Xp, but there is uncertainty about
which subset to use. Such a situation is particularly of interest when p is large and
X1, . . . ,Xp is thought to contain many redundant or irrelevant variables.

The variable selection problem is most familiar in the linear regression context,
where attention is restricted to normal linear models. Letting γ index the subsets of
X1, . . . ,Xp and letting qγ be the size of the γth subset, the problem is to select and
fit a model of the form

Y = Xγβγ + ε, (1)

where Xγ is an n × qγ matrix whose columns correspond to the γth subset, βγ is
a qγ × 1 vector of regression coefficients, and ε ∼ Nn(0, σ2I). More generally, the
variable selection problem is a special case of the model selection problem where
each model under consideration corresponds to a distinct subset of X1, . . . ,Xp. Typ-
ically, a single model class is simply applied to all possible subsets. For example, a
wide variety of relationships can be considered with generalized linear models where
g(E(Y)) = α+Xγβγ for some link function g (see the vignettes by Christensen and
McCulloch). Moving further away from the normal linear model, one might instead
consider relating Y and subsets of X1, . . . ,Xp with nonparametric models such as
CART or MARS.

Edward I. George holds the Ed and Molly Smith Chair and is Professor of Statistics, Department of MSIS,
University of Texas, Austin, TX 78712 (E-mail: egeorge@mail.utexas.edu). This work was supported by
National Science Foundation grant DMS-98.03756 and Texas ARP grants 003658.452 and 003658.690.



The fundamental developments in variable selection seem to have occurred either
directly in the context of the linear model (1) or in the context of general model se-
lection frameworks. Historically, the focus began with the linear model in the 1960s,
when the first wave of important developments occurred and computing was ex-
pensive. The focus on the linear model still continues, in part because its analytic
tractability greatly facilitates insight, but also because many problems of interest can
be posed as linear variable selection problems. For example, for the problem of non-
parametric function estimation, Y represents the values of the unknown function,
and X1, . . . ,Xp represent a linear basis, such as a wavelet basis or a spline basis.
However, as advances in computing technology have allowed for the implementation
of richer classes of models, treatments of the variable selection problem by general
model selection approaches are becoming more prevalent.

One of the fascinating aspects of the variable selection problem has been the wide
variety of methods that have been brought to bear on the problem. Because of space
limitations, it is of course impossible to even mention them all, and so I focus on only
a few to illustrate the general thrust of developments. An excellent and comprehensive
treatment of variable selection methods prior to 1990 was provided by Miller (1990).
As I discuss, many promising new approaches have appeared over the last decade.

2. GETTING A GRIP ON THE PROBLEM

A distinguishing feature of variable selection problems is their enormous size.
Even with moderate values of p, computing characteristics for all 2p models is pro-
hibitively expensive, and some reduction of the model space is needed. Focusing on
the linear model (1), early suggestions based such reductions on the residual sum
of squares, which provided a partial ordering of the models. Taking advantage of
the chain structure of subsets, branch and bound methods such as the algorithm of
Furnival and Wilson (1974) were proposed to logically eliminate large numbers of
models from consideration. When feasible, attention was often restricted to the “best
subsets” of each size. Otherwise, reduction was obtained with variants of stepwise
methods that sequentially add or delete variables based on greedy considerations
(e.g., Efroymson 1966). Even with advances in computing technology, these methods
continue to be the standard workhorses for reduction. Extensions beyond the linear
model are straightforward; for example, in generalized linear models by substituting
the deviance for the residual sum of squares.

Once attention was reduced to a manageable set of models, criteria were needed
for selecting a subset model. The earliest developments of such selection criteria, again
in the linear model context, were based on attempts to minimize the mean squared
error of prediction. Different criteria corresponded to different assumptions about
which predictor values to use, and whether they were fixed or random (see Hocking
1976; Thompson 1978 and the references therein). Perhaps the most familiar of those



criteria is the MallowsCp = (RSSγ/σ̂2
full +2qγ−n), where RSSγ is the residual sum

of squares for the γth model and σ̂2
full is the usual unbiased estimate of σ2 based on the

full model. Motivated as an unbiased estimate of predictive accuracy of the γth model,
Mallows (1973) recommended usingCp plots to help gauge subset selection (see also
Mallows 1995). Although Mallows specifically warned against using minimum Cp
as a selection criterion (because of selection bias), minimum Cp continues to be used
as a criterion (and attributed to Mallows to boot!).

Two of the other most popular criteria, motivated from very different viewpoints,
are the Akaike information criterion (AIC) and the Bayesian information criterion
(BIC). Letting l̂γ denote the maximum log-likelihood of the γth model, AIC selects
the model that maximizes (l̂γ − qγ), whereas BIC selects the model that maximizes
(l̂γ − (logn)qγ/2). Akaike (1973) motivated AIC from an information theoretic
standpoint (see the vignette by Soofi) as the minimization of the Kullback–Leibler
distance between the distributions of Y under the γth model and under the true model.
To lend further support, an asymptotic equivalence of AIC and cross-validation was
shown by Stone (1977). In contrast, Schwarz (1978) motivated BIC from a Bayesian
standpoint, by showing that it was asymptotically equivalent (as n → ∞) to selection
based on Bayes factors. BIC was further justified from a coding theory viewpoint by
Rissanen (1978).

Comparisons of the relative merits of AIC and BIC based on asymptotic consis-
tency (as n → ∞) have flourished in the literature. As it turns out, BIC is consistent
when the true model is fixed (Haughton 1988), whereas AIC is consistent if the dimen-
sionality of the true model increases with n (at an appropriate rate) (Shibata 1981).
Stone (1979) provided an illuminating discussion of these two viewpoints.

For the linear model (1), many of the popular selection criteria are special cases of
a penalized sum of squares criterion, providing a unified framework for comparisons.
Assuming σ2 known to avoid complications, this general criterion selects the subset
model that minimizes

(RSSγ/σ̂
2 + Fqγ), (2)

where F is a preset “dimensionality penalty.” Intuitively, (2) penalizes RSSγ/σ̂2 by
F times qγ , the dimension of the γth model. AIC and minimum Cp are essentially
equivalent, corresponding to F = 2, and BIC is obtained by setting F = logn. By
imposing a smaller penalty, AIC and minimumCp will select larger models than BIC
(unless n is very small).

3. TAKING SELECTION INTO ACCOUNT

Further insight into the choice of F is obtained when all of the predictors are
orthogonal, in which case (2) simply selects all of those predictors with t-statistics
t for which t2 > F . When X1, . . . ,Xp are in fact all unrelated to Y (i.e., the full



model regression coefficients are all 0), AIC and minimum Cp are clearly too liberal
and tend to include a large proportion of irrelevant variables. A natural conservative
choice for F , namely F = 2 log p, is suggested by the fact that under this null model,
the expected value of the largest squared t-statistic is approximately 2 log pwhen p is
large. This choice is the risk inflation criterion (RIC) proposed by Foster and George
(1994) and the universal threshold for wavelets proposed by Donoho and Johnstone
(1994). Both of these articles motivate F = 2 log p as yielding the smallest possible
maximum inflation in predictive risk due to selection (as p → ∞), a minimax decision
theory standpoint. Motivated by similar considerations, Tibshirani and Knight (1999)
recently proposed the covariance inflation criterion (CIC), a nonparametric method
of selection based on adjusting the bias of in-sample performance estimates. Yet
another promising adjustment based on a generalized degrees of freedom concept
was proposed by Ye (1998).

Many other interesting criteria corresponding to different choices of F in (2)
have been proposed in the literature (see, e.g., Hurvich and Tsai 1989, 1998; Rao and
Wu 1989; Shao 1997; Wei 1992; Zheng and Loh 1997 and the references therein).
One of the drawbacks of using a fixed choice of F is that models of a particular size
are favored; small F favors large models, and large F favors small models. Adaptive
choices of F to mitigate this problem have been recommended by Benjamini and
Hochberg (1995), Clyde and George (1999, 2000), George and Foster (2000), and
Johnstone and Silverman (1998).

An alternative to explicit criteria of the form (2) is selection based on predictive
error estimates obtained by intensive computing methods such as the bootstrap (e.g.,
Efron 1983; Gong 1986) and cross-validation (e.g., Shao 1993; Zhang 1993). An
interesting variant of these is the little bootstrap (Brieman 1992), which estimates the
predictive error of selected models by mimicking replicate data comparison. The little
bootstrap compares favorably to selection based on minimum Cp or the conditional
bootstrap, whose performances are seriously denigrated by selection bias.

Another drawback of traditional subset selection methods, which is beginning
to receive more attention, is their instability relative to small changes in the data.
Two novel alternatives that mitigate some of this instability for linear models are the
nonnegative garrotte (Brieman 1995) and the lasso (Tibshirani 1996). Both of these
procedures replace the full model least squares criterion by constrained optimization
criteria. As the constraint is tightened, estimates are zeroed out, and a subset model
is identified and estimated.

4. BAYESIAN METHODS EMERGE

The fully Bayesian approach to variable selection is as follows (George 1999).
For a given set of models M1, . . . ,M2p , where Mγ corresponds to the γth subset of
X1, . . . ,Xp, one puts priors π(βγ |Mγ) on the parameters of eachMγ and a prior on



the set of models π(M1), . . . , π(M2p). Selection is then based on the posterior model
probabilities π(Mγ |Y ), which are obtained in principle by Bayes’s theorem.

Although this Bayesian approach appears to provide a comprehensive solution
to the variable selection problem, the difficulties of prior specification and posterior
computation are formidable when the set of models is large. Even when p is small
and subjective considerations are not out of the question (Garthwaite and Dickey
1996), prior specification requires considerable effort. Instead, many of the Bayesian
proposals have focused on semiautomatic methods that attempt to minimize prior
dependence. Indeed, this is part of the appeal of BIC, which avoids prior specifi-
cation altogether, and its properties continue to be investigated and justified (Kass
and Wasserman 1995; Pauler 1998; Raftery 1996). Other examples of Bayesian treat-
ments that avoid the prior selection difficulties in variable selection include the early
proposal of Lindley (1968) to use uniform priors and a cost function for selection, the
default Bayes factor criteria of Berger and Pericchi (1996a,b) and O’Hagan (1995),
and the predictive criteria of Geisser and Eddy (1979), Laud and Ibrahim (1995), and
San Martini and Spezzaferri (1984).

In contrast to the development of Bayesian approaches that avoid the difficulties
of prior specification, the advent of Markov chain Monte Carlo (MCMC) (see the
vignette by Cappé and Robert) has focused attention on Bayesian variable selection
with fully specified proper parameter priors. Bypassing the difficulties of computing
the entire posterior, MCMC algorithms can instead be used to stochastically search
for the high-posterior probability models. The idea is that by simulating a Markov
chain, which is converging to the posterior distribution, the high-probability models
should tend to appear more often, and hence sooner. The resulting implementations
are stepwise algorithms that are stochastically guided by the posterior, rather than
by the greedy considerations of conventional stepwise methods. Such a Bayesian
package is complete; it offers posterior probability as a selection criteria, associated
MCMC algorithms for search, and Bayes estimates for the selected model.

The last decade has seen an explosion of research on this Bayesian variable
selection approach. These developments have included proposals for new prior spec-
ifications that induce increased posterior probability on the more promising models,
for new MCMC implementations that are more versatile and offer improved per-
formance, and for extensions to a wide variety of model classes. Another closely
related development in this context has been the emergence of model averaging as an
alternative to variable selection. Under the Bayesian variable selection formulation,
the posterior mean is an adaptive convex combination of all the individual model
estimates (i.e., a model average). Although model averaging almost always improves
on variable selection in terms of prediction, its drawback is that it does not lead to
a reduced set of variables. Some, but by no means all, of the key developments of
these Bayesian approaches to variable selection and model averaging have been dis-
cussed by Clyde (1999), Clyde, Parmigiani, and Vidakovic (1998), Draper (1995),



George and McCulloch (1993, 1997), Green (1995), and Hoeting, Madigan, Raftery,
and Volinsky (1999).

5. WHAT IS NEXT

Today, variable selection procedures are an integral part of virtually all widely
used statistics packages, and their use will only increase as the information revolution
brings us larger datasets with more and more variables. The demand for variable
selection will be strong, and it will continue to be a basic strategy for data analysis.

Although numerous variable selection methods have been proposed, plenty of
work still remains to be done. To begin with, many of the recommended procedures
have been given only a narrow theoretical motivation, and their operational properties
need more systematic investigation before they can be used with confidence. For ex-
ample, small-sample justification is needed in addition to asymptotic considerations,
and frequentist justification is needed for Bayesian procedures. Although there has
been clear progress on the problems of selection bias, clear solutions are still needed,
especially for the problems of inference after selection (see Zhang 1992). Another
intriguing avenue for research is variable selection using multiple model classes (see
Donoho and Johnstone 1995). New problems will also appear as demand increases
for data mining of massive datasets. For example, considerations of scalability and
computational efficiency will become paramount in such a context. I suppose that all
of this is good news, but there is also danger lurking ahead.

With the availability of so many variable selection procedures and so many dif-
ferent justifications, it has becomes increasingly easy to be misled and to mislead.
Faced with too many choices and too little guidance, practitioners continue to turn
to the old standards such as stepwise selection based on AIC or minimum Cp, fol-
lowed by a report of the conventional estimates and inferences. The justification of
asymptotic consistency will not help the naive user who should be more concerned
with selection bias and procedure instability. Eventually, the responsibility for the
poor performance of such procedures will fall on the statistical profession, and con-
sumers will turn elsewhere for guidance (e.g., Dash and Liu 1997). Our enthusiasm
for the development of promising new procedures must be carefully tempered with
cautionary warnings of their potential pitfalls.
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Robust Nonparametric Methods

Thomas P. Hettmansperger, Joseph W. McKean,

and Simon J. Sheather

1. A SHORT HISTORY OF NONPARAMETRICS FOR
LOCATION PROBLEMS

The terms “nonparametric statistics” and “distribution-free methods” have histor-
ically referred to a collection of statistical tests whose null distributions do not depend
on the underlying distribution of the data. The area has been expanded to include es-
timates and confidence intervals derived from the tests and includes asymptotically
distribution-free tests for complex models as well. It is now generally recognized that
these statistical methods are highly efficient over large sets of possible models and
are robust as well. This was not always the case. The earliest work was by Hotelling
and Pabst in 1936 (references to works in this paragraph can be found in the books
cited in the next paragraph) on rank correlation and by Friedman in 1937 on rank
tests in a two-way design, followed in 1945 with the introduction of the signed rank
and rank sum tests by Wilcoxon. In 1947, Mann and Whitney extended the ideas of
Wilcoxon. All of these rank tests were considered quick and dirty but not competitive
with the presumably more efficient t-tests. This perspective was about to change. In
1948, Pitman developed efficiency concepts in a set of lecture notes that, although
never published, were widely disseminated. During the 1950s and 1960s, Lehmann,
working with Hodges and with his students at Berkeley, showed that rank tests are sur-
prisingly efficient and robust. In fact, the Wilcoxon rank tests are essentially efficient
at the normal model and can be much more efficient than least squares methods when
the underlying distribution of the data has heavy tails. In the early 1960s, Hodges
and Lehmann derived estimates and confidence intervals from rank test statistics and
also introduced aligned rank tests for use in the regression model. In 1967, Hájek and
Šidák published their seminal book on the theory of rank tests.

It is impossible to mention all of the contributions to this early development.
Hence we cite several key monographs that contain many references to this work and
that extended these methods into various settings. Puri and Sen (1971) published a
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monograph on nonparametric methods in multivariate models. This work extended
and applied another major work on asymptotic theory by Chernoff and Savage (1958).
Lehmann’s (1975) book combined applied nonparametric methods with an extensive
appendix on theory. The decade closed with the publication of Randles and Wolfe’s
(1979) introduction to the theory of nonparametric statistics, which provided a set of
tools for the development of nonparametric methods.

2. RANK-BASED PROCEDURES FOR
LINEAR MODELS

The nonparametric procedures (testing and estimation) for simple location prob-
lems offer the user highly efficient and robust methods and form an attractive alterna-
tive to traditional least squares (LS) procedures. LS procedures, however, generalize
easily to any linear model and to most nonlinear models. The LS procedures are not
model dependent. In contrast, there are very few classical nonparametric procedures
for designs other than the simple location designs, and, furthermore, these procedures
vary with the problem. For instance, the ranking procedure for the Kruskal–Wallis test
of treatment effect in a one-way layout is much different than the ranking procedure
for the Friedman test of treatment effect in a two-way design. Further, the efficiencies
of these two procedures differ widely, although both are based on linear rankings.

The generality of LS procedures can readily be seen in terms of its simple geom-
etry. For example, suppose that a vector of responses Y follows a linear model of the
form Y = µ+ e, where e is a vector of random errors, µ ∈ Ω, and Ω is a subspace
of Rn. The LS estimate of µ is the vector ŶLS that lies “closest” to Y when distance
is Euclidean; that is, ‖Y − ŶLS‖LS = min ‖Y −µ‖LS over all µ ∈ Ω, where ‖ · ‖LS

denotes the Euclidean norm. The F test of H0 : µ ∈ ω versus HA : µ ∈ Ω ∩ ω⊥

is based on the standardized difference in squared distances between Y and each
of the subspaces ω ⊂ Ω. These few sentences on geometry form the essence of LS
procedures for any fixed-effects linear model.

Although traditional distribution-free procedures do not generalize to any linear
model, rank-based procedures based on robust estimates of regression coefficients do.
Jureckova (1971) and Jaeckel (1972) obtained rank-based (R) estimates of regression
coefficients for a linear model. Although their estimates are asymptotically equivalent,
Jaeckel’s estimates are based on minimizing a convex function and hence are easily
computable. Furthermore, as discussed by McKean and Schrader (1980), Jaeckel’s
estimates are obtained by minimizing the norm ‖u‖ϕ =

∑n
i=1 a(R(ui))ui,u ∈ Rn,

where a(i) = ϕ(i/(n + 1)) for ϕ(u), a nondecreasing scores function defined on
the interval (0, 1), and R(ui) denotes the rank of ui among u1, . . . , un. The most
popular scores are the Wilcoxon (linear) scores, which are generated by ϕ(u) =√

12(u − (1/2)). (More precisely, ‖u‖ϕ is a pseudonorm on Rn that is analogous
to the LS-centered pseudonorm ‖u‖LS =

∑
i=1(ui − ū)2. This is without loss of



generality, because centered designs can invariably be used in linear model problems
and otherwise signed-rank norms can be used; see Hettmansperger and McKean
1983.)

Rank-based procedures for linear models are then formulated analogous to LS
procedures, except that the norm ‖u‖ϕ is substituted for the Euclidean norm. The R
estimate Ŷϕ minimizes ‖Y −µ‖ϕ over all vectors µ ∈ Ω; that is, Ŷϕ lies “closest”
to Y when the distance is based on ‖u‖ϕ. If the scores are the Wilcoxon scores, then
we call them the Wilcoxon estimates. The rank-based F test of H0 : µ ∈ ω versus
HA : µ ∈ Ω ∩ ω⊥ is based on the standardized difference in distances between Y
and each of the subspaces ω and Ω, when distance is based on the norm ‖u‖ϕ. As
with LS, these few sentences capture the essence of rank-based estimation and testing
for any fixed-effects linear model.

Although in general these rank-based procedures are not distribution free, they
are asymptotically distribution free. In practice, as with a LS analysis, a standardizing
scale must be estimated. Consistent estimates are available. Small-sample studies have
confirmed the validity and power of these rank-based procedures (see McKean and
Sheather 1991).

The rank-based analysis generalizes simple location rank procedures and also
has the same efficiency properties as rank procedures for simple location models.
Depending on knowledge of the error distribution, scores can be chosen to optimize
efficiency. Influence functions of the estimates and tests are bounded in response
space; hence the analysis is robust in response space.

The rank-based estimates are consistent for heteroscedastic models. The analysis
can be modified if the heteroscedasticity is a function of the expected response. Be-
cause the analysis is based on a norm, extensions to generalized linear and nonlinear
models follow similar to the Gauss–Newton development of LS procedures for such
models. Thus the analysis can be extended to logistic regression and time series.

Recently a new and interesting direction emerged for rank-based methods for
multivariate data. The concept of ranking multivariate observations was developed
based on ideas of invariant tests and equivariant estimates. Spatial ranks were defined
that capture the properties of ranks and at the same time are the basis of tests invariant
under rotations and reflections. The same has been done in the general context of
affine transformations.

This work on rank-based procedures has developed over the last 25 years. Mono-
graphs include the books by Hettmansperger (1984), Koul (1992), and Puri and Sen
(1985). The recent monograph by Hettmansperger and McKean (1998) developed
rank-based methods for location through linear models, both univariate and multi-
variate. The unifying theme in this book is the geometry cited earlier and a complete
set of statistical methods are developed and illustrated.



3. HIGH-BREAKDOWN, BOUNDED INFLUENCE ROBUST
ESTIMATES

Although the R estimates based on minimizing the norm ‖ · ‖ϕ are robust in
the Y -space, they are not robust in the x-space (factor space). Although this usually
is not a problem for a controlled design, it can be a major problem when exploring
datasets based on uncontrolled studies. Two important tools for such datasets are
robust procedures with bounded influence in both spaces and diagnostic procedures
that assess the quality of a fit and differentiate between fits. In this section we focus
on bounded influence robust estimates. Although these estimates are robust in both
spaces, they are always less efficient than the estimates discussed in Section 2.

Recent research in robust estimation has focused on the challenge of producing a
regression estimator that combines both local and global stability. The local stability
of an estimator is often assessed by whether its influence function is bounded in
both the x and Y spaces and is continuous. The influence function of an estimator is
an asymptotic notion that describes the standardized effect of a single point on the
estimator. Global stability is usually measured via the breakdown point, the smallest
fraction of contamination that can render the estimator meaningless, which, therefore,
provides an indication of the amount of gross contamination that an estimator can
tolerate.

The generalized rank-based (GR) estimate (Naranjo and Hettmansperger 1994) is
a weighted Wilcoxon with weights depending on factor space. Its influence function is
bounded in both spaces, so it achieves local stability at the price of a loss of efficiency
to the Wilcoxon estimate. Although the GR estimate’s breakdown is positive, it can
be quite small. Thus it does not achieve global stability.

On the other hand, many of the high-breakdown estimators are not locally robust.
In particular, the influence functions of the least trimmed squares (LTS) (Rousseeuw
and Leroy 1987) and other S and generalized S estimators (Rousseeuw and Yohai
1984) are unbounded (e.g., Croux, Rousseeuw, and Hössjer 1994). Davies (1993)
showed that the influence function of the least median squares (LMS) (Rousseeuw
and Leroy 1987) is unbounded at the quartiles ofY . A number of authors have reported
on the local instability of LMS (e.g., Ellis 1998; Hettmansperger and Sheather 1992;
Sheather, McKean, and Hettmansperger 1997; Simpson and Yohai 1998). Rousseeuw,
Hubert, and Van Aelst (1999) now recommend LTS over LMS.

Besides the GR estimate, a number of estimators with bounded and continuous
influence functions are not globally robust. In particular, the breakdown point of a
number of generalized M (GM) estimators, including the optimal Krasker–Welsch
estimator (Krasker and Welsch 1982), tends to zero as the number of predictors
increases.

Simpson, Ruppert, and Carroll (1992) showed how to produce a regression es-
timate that is both locally and globally robust. They considered one-step Newton–
Raphson GM estimators of the Mallows type that use weights based on high-breakdown



initial estimates of location and scatter in factor space. These weights limit the effect
of extreme points in the design space on the estimates. Simpson and Yohai (1998)
studied one-step Newton–Raphson estimators, including the well-known Mallows,
Schweppe, and Hill–Ryan GM estimators. They showed that the choice of the weight
function is crucial, as the Schweppe form and an inadequately weighted Mallows
form produce a one-step estimate that has the same local instability as the initial es-
timate and falsely optimistic estimates of precision. On the other hand, they showed
that the Hill–Ryan form is the most stable in terms of one-step estimation.

Recently, Chang, McKean, Naranjo, and Sheather (1999) proposed a high-
breakdown rank-based (HBR) estimate which is a weighted Wilcoxon estimate with
weights based on both high-breakdown location and scatter estimates over the x space
and initial residuals from a high-breakdown estimate of the regression coefficients.
This estimate has a bounded influence function over both the x and Y spaces and
also has 50% breakdown, provided that the initial estimates also do. In a simulation
study, its stability was a marked improvement over the stability of the initial estimates
(LMS or LTS). Furthermore, it regained some of the efficiency that the GR estimate
loses to the Wilcoxon estimate. Because this estimate is based on minimizing a con-
vex function, the estimates are fully iterated. Thus, unlike GM estimates based on
redescending ψ-functions (Hampel, Ronchetti, Rousseeuw, and Stahel 1986), there
is no possibility that the estimates will fail to converge.

4. DIAGNOSTICS

Regression diagnostics are methods that provide information on the form of the
unknown underlying regression function, the error structure, and any outliers or un-
usual points. Based on first-order asymptotic properties, McKean et al. (1990, 1993)
showed that residual plots based onR estimates andM estimates (based on a convex
loss function) can be interpreted in exactly the same manner as their LS counterparts.
They also proposed numerical diagnostics, including standardized residuals that, sim-
ilar to the LS standardized residuals, correct for both location in factor space and scale
of the errors.

Cook (1998) described a series of graphical techniques that apply to estimates
that are based on convex loss functions and not just on LS. A cornerstone for a number
of these methods is a result due to Duan and Li (1991, Thm. 2.1), which in effect
shows that the fit of any model can be used to obtain information on the form of the
true underlying regression function. Two critical assumptions necessary for this result
to hold are that the loss function is convex and that the distribution of the predictors
is elliptically symmetric. The second assumption is not problematic, as methods exist
for reweighting the predictors to achieve elliptical symmetry (Cook and Nachsteim
1994).

There has also been an increasing realization that residual plots based on high-



breakdown robust fits cannot always be interpreted in exactly the same manner as their
LS counterparts. For example, Rousseeuw, Hubert, and Van Aelst (1999) cautioned
against “wearing LS-colored glasses” when looking at residual plots based on robust
fits. A number of authors have reported a negative correlation in the standard plot
of robust fitted values against residuals (e.g., Cook, Hawkins, and Weisberg 1992;
McKean et al. 1993; Rousseeuw et al. 1999; Simpson and Chang 1997). Using first-
order approximations for robust fitted values and residuals, McKean et al. (1993)
showed that there can be a strong negative correlation between fits based on GM
estimates and their residuals that is induced by the weights and exists whether or
not the correct model has been fit. Simpson and Chang (1997, fig. 2a) provided a
graphic illustration of this phenomenon with the residuals from a three-step GM
estimate. In addition, Rousseeuw et al. (1999) showed that a negative correlation
exists for the deepest fit, a generalization of the univariate median to regression, and
the corresponding residuals.

High-breakdown regression methods ignore the tails of the data in the x-space
by design. This property enables these estimates to protect against a large number of
outliers from a straight line model, for example. However, methods that ignore these
tails do not perform well when they contain much of the information about the form
of the regression function, as is the case for polynomial models (Cook et al. 1992;
McKean et al. 1994). One way to protect against outliers and still be able to detect
and model curvature is to consider at least two estimates, a high-breakdown estimate
and a highly efficient estimate. The high-breakdown estimate can easily detect and
accommodate any outliers from a straight line model, whereas the efficient estimate
can model curvature effectively. A strategy that exists in statistical folklore is to trust
the highly efficient estimate when it agrees with the high-breakdown estimate and
to further investigate the data when a significant difference exists between the two
estimates. McKean, Naranjo, and Sheather (1996) developed graphical and numerical
diagnostics to identify and further understand any such significant differences.

5. CHALLENGES

Rank-based analyses for linear models (controlled studies) offer the user an
attractive highly efficient alternative to LS analyses. Many current problems, though,
involve large messy datasets (uncontrolled studies), which should be fertile ground for
high-breakdown, bounded influence procedures accompanied with valid diagnostic
procedures to identify outliers and influential points. But here, as argued by Carroll,
Ruppert, and Stefanski (1999), the field of “robust statistics lacks success stories.”
We view this as a challenge to develop robust methodologies for such problems. We
cite three important problems in this area.

The bootstrap has become a major statistical tool for accurately assessing vari-
ability in many situations. Bootstraps are often used on large messy datasets where



traditional inference based on the asymptotic distributions of either LS or robust
estimation is highly questionable. A development of bootstrap procedures for high-
breakdown, bounded influence estimates would further the development of valid in-
ference procedures and diagnostic procedures for these large messy datasets.

Quasi-experimental designs and observational studies are uncontrolled studies
often involving a small group of treated subjects versus large group(s) of nontreated
subjects, where the grouping is nonrandomized. A methodology that is finding in-
creasing use in this area is a matching of treated subjects versus control subjects via
a propensity score analysis based on covariates (see Rubin and Thomas 1996). This
methodology includes elements of logistic regression, covariance analysis, and boot-
strap methods for inference. Further, such studies often result in large sample sizes
for the control subjects.

Data mining deals with extremely large datasets that contain many outliers, as
often the data are not clean. Such datasets need robust methods and diagnostic pro-
cedures to determine outliers and model selection.

The most important drawback to the use of robust methods for these problems
is their computational expense. Procedures such as the robust QR decomposition of
Ammann (1993) or the fast LTS and minimum covariance determinant algorithms of
Rousseeuw and Van Driessen (1998, 1999) may be useful for quickly computing the
weights for bounded influence, high-breakdown estimates. This would allow robust
analyses (estimation, inference via bootstraps, and diagnostics for model checking,
outlier determination and differentiation between fits) for large datasets.
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Hierarchical Models: A Current
Computational Perspective

James P. Hobert

1. INTRODUCTION

Hierarchical models (HMs) have many applications in statistics, ranging from
accounting for overdispersion (Cox 1983) to constructing minimax estimators (Straw-
derman 1971). Perhaps the most common use is to induce correlations among a group
of random variables that model observations with something in common; for exam-
ple, the set of measurements made on a particular individual in a longitudinal study.
My starting point is the following general, two-stage HM.

Let (YT
1 ,u

T
1 )T , . . . , (YT

k ,u
T
k )T be k independent random vectors, where T

denotes matrix transpose, and let λ = (λT1 ,λ
T
2 )T be a vector of unknown parame-

ters. The data vectors, Y1, . . . ,Yk, are modeled conditionally on the unobservable
random-effects vectors, u1, . . . ,uk. Specifically, fi(yi|ui;λ1), the conditional den-
sity function of Yi given ui, is assumed to be some parametric density in yi whose
parameters are written as functions of ui and λ1. At the second level of the hierarchy,
it is assumed that gi(ui;λ2), the marginal density function of ui, is some parametric
density in ui whose parameters are written as functions of λ2. (Of course, any of
these random variables could be discrete, in which case we would simply replace
the phrase “density function” with “mass function.”) The Bayesian version of this
model, in which λ is considered a random variable with prior π(λ), is essentially the
conditionally independent hierarchical model of Kass and Steffey (1989).

The fully specified generalized linear mixed model (Breslow and Clayton 1993;
McCulloch 1997), which is currently receiving a great deal of attention, is a special
case. Indeed, many (if not most) of the parametric HMs found in the statistical litera-
ture are special cases of this general HM. Section 2 presents three specific examples,
including a model for McCullagh and Nelder’s (1989) salamander data.

The likelihood function for this model is the marginal density of the observed
data viewed as a function of the parameters; that is,

L(λ; y) =
k∏
i=1

∫
fi(yi|ui;λ1)gi(ui;λ2) dui, (1)
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where y = (yT1 , . . . ,yTk )T denotes the observed data. As usual, Bayesian inference
about λ is made through the posterior density π(λ|y) ∝ L(λ; y)π(λ). In some
applications, inferences about the ui’s may be of interest, but in this article I restrict
attention to inference about λ.

Unfortunately, a HM is simply not useful from a statistical standpoint unless
there exists a computational technique that allows for reliable approximation of the
quantities necessary for inference. Indeed, it has been the ongoing development of
techniques like the EM algorithm (Dempster, Laird, and Rubin 1977; McLachlan
and Krishnan 1997) and Markov chain Monte Carlo (Besag, Green, Higdon, and
Mengersen, 1995; Gelfand and Smith 1990; Tierney 1994) that has enabled statis-
ticians to make use of increasingly more complex HMs over the last few decades.
Section 3 contains a discussion of some key aspects of the computational techniques
currently used in conjunction with Bayesian and frequentist HMs. The context of this
discussion is the model for the salamander data developed in Section 2. Several areas
that are ripe for new research are identified.

2. THREE EXAMPLES

An exhaustive list of all the types of data that can be modeled with the general
HM of Section 1 obviously is beyond the scope of this article. However, I hope that
the three examples outlined here provide the reader with a sense of how extensive
such a list might be. Please note that the notation used in these specific examples is
standard, but not necessarily consistent with that of Section 1.

2.1 Rat Growth Data

Gelfand, Hills, Racine-Poon, and Smith (1990) analyzed data from an experiment
in which the weights of 60 young rats (30 in a control group and 30 in a treatment
group) were measured weekly for 5 weeks starting on day 8. Let yij denote the weight
of the ith rat on day xj = 7j + 1, where i = 1, . . . , 60 and j = 1, . . . , 5. Suppose
that 1 ≤ i ≤ 30 corresponds to the control group.

The following random coefficient regression model was used by Gelfand et al.
(1990). Conditional on a pair of rat-specific regression parameters, αi and βi, it is
assumed that yi1, . . . , yi5 are independent with

yij |αi, βi ∼ N(αi + βixj , σ
2
cI(1 ≤ i ≤ 30) + σ2

t I(31 ≤ i ≤ 60)),

where I(·) is an indicator function. Thus the model allows for a difference between
the variances of the error terms for the control rats and the treatment rats.

Presumably, the experimenters were not interested in the effect of treatment
and control on this particular set of 60 rats, but rather on some population of rats,



of which these 60 can be considered a random sample. Thus instead of taking the
(αi, βi)pairs as fixed unknown parameters, it is assumed that (αi, βi)T , i = 1, . . . , 30,
are iid bivariate normal with mean (αc, βc)T and covariance matrix ΣΣΣc, and that
(αi, βi)T , i = 31, . . . , 60, are iid bivariate normal with mean (αt, βt)T and covariance
matrix ΣΣΣt.

A comparison of the “c” and “t” parameters allows one to make inferences
regarding treatment versus control across the relevant population of rats. Gelfand et al.
(1990) performed a Bayesian analysis with conjugate priors on all of the parameters.
The Gibbs sampler (see the Gibbs sampler vignette by Gelfand) was used to make
inferences.

2.2 Seizure Data

Thall and Vail (1990) described an experiment in which 59 epileptics were ran-
domly assigned to one of two treatment groups (active drug and placebo). The number
of seizures experienced by each patient during four consecutive 2-week periods fol-
lowing treatment were recorded. Let yij denote the number of seizures experienced
by the ith patient over the jth two-week period where i = 1, . . . , 59 and j = 1, 2, 3, 4.
Other available covariates are age and a pretreatment baseline seizure count.

Consider a naive generalized linear model (McCullagh and Nelder 1989) for these
data in which the yij’s are assumed to be independent Poisson random variables whose
means are linked to linear predictors involving the covariates. I refer to this model as
naive for two reasons. First, it is probably reasonable to assume that observations on
two different patients are independent, but it is surely unreasonable to assume that
observations made on the same patient are independent. Second, it appears that these
data are overdispersed with respect to the Poisson distribution; that is, there is more
variability than would be expected under the Poisson assumption.

Booth, Casella and Hobert (2000) suggested the following HM, which allows
for both dependence among an individual’s observations and overdispersion. Let
u1, . . . , u59 be iid N(0, σ2) and think of these as random patient effects. Conditional
on ui, yi1, . . . , yi4 are assumed to be iid negative binomial random variables with
index α and mean µi = exp{xTi β+ui}, where xTi is an appropriately chosen vector
of covariates. More specifically,

P (yij = y|ui;β, α) =
Γ(y + α)
Γ(α)y!

(
α

µi + α

)α(
µi

µi + α

)y
, (2)

where α > 0 and y ∈ {0, 1, 2, . . .}.
The random patient effects induce a positive correlation between counts from

the same patient. Regarding potential overdispersion, note that E(yij |ui) = µi and
var(yij |ui) = µi + µ2

i/α, and that (2) becomes a Poisson probability as α → ∞.
Thus the parameter α allows for overdispersion.



2.3 The Salamander Data

The salamander data consist of three separate experiments, each performed ac-
cording to the design given in table 14.3 of McCullagh and Nelder (1989) and each
involving matings among salamanders in two closed groups. Thus there are a total of
six closed groups of salamanders. Each group contained 20 salamanders: 5 species R
females, 5 species W females, 5 species R males, and 5 species W males. (Actually,
the same 40 salamanders were used in two of the experiments, but we ignore this and
act as if three different sets of 40 salamanders were used because of the long time
delay between these two experiments.) Within each group, only 60 of the possible
100 heterosexual crosses were observed. Let yhij be the indicator of a successful
mating between the ith female and jth male in group h, where i, j = 1, 2, . . . , 10
and h = 1, . . . , 6. Note that for fixed h, only 60 of the possible 100 (i, j) pairs are
relevant. There are four possible sex–species combinations, and the experimenters
collected the data hoping to answer the question: Are there differences in the four
mating success probabilities?

Any two observations involving a common salamander (male or female) should
obviously be modeled as correlated random variables. One way to induce such cor-
relations is through the following HM, which is one of several models introduced
by Karim and Zeger (1992). Let vhi denote the random effect that the ith female in
group h has across matings in which she is involved, and define whj similarly for the
jth male in group h. Let vh = (vh1, . . . , vh10)T and v = (vT1 , . . . ,vT6 )T , and define
wh and w similarly. Likewise, let y1, . . . ,y6 be 60 × 1 vectors containing the binary
outcomes from the six closed groups, and put y = (yT1 , . . . ,yT6 )T .

Conditional on vh and wh, the elements of yh are assumed independent and
such that yhij |vhi, whj ∼ Bernoulli(πhij) with

logit(πhij) = xThijβ + vhi + whj ,

where xThij is a 1 × 4 vector indicating the type of mating (i.e., it contains three 0’s
and a single 1) and β is an unknown regression parameter. Finally, it is assumed that
the elements of v are iid N(0, σ2

v) and independent of w whose elements are assumed
to be iid N(0, σ2

w). In terms of the general HM of Section 1, λ = (βT , σ2
v, σ

2
w)T .

In the next section I look at Bayesian and frequentist versions of this model,
and consider the computational techniques required for making inferences. There are
two main reasons for using this particular dataset: (a) the models give a reasonable
indication of how complex a HM statisticians are currently able to handle, and (b) I
wish to take advantage of the fact that many readers will be familiar with this dataset,
as it has been discussed by so many authors (e.g., Booth and Hobert 1999; Chan
and Kuk 1997; Karim and Zeger 1992; Lee and Nelder 1996; McCullagh and Nelder
1989; McCulloch 1994; Vaida and Meng 1998).



3. COMPUTATION FOR THE SALAMANDER MODEL

The fact that only 60 of the possible 100 heterosexual crosses were observed
in each of the six groups does not complicate the analysis of the data, but it does
complicate notation. Specifically, for h = 1, . . . , 6, we require

Sh = {(i, j) : ith female and jth male in group h were coupled}.

The likelihood function associated with Karim and Zeger’s (1992) model for the
salamander data is

L(β, σ2
v, σ

2
w; y) =

6∏
h=1

Lh(β, σ2
v, σ

2
w; yh), (3)

where, up to a multiplicative constant,

Lh(β, σ2
v, σ

2
w; yh)

=
1

(σ2
vσ

2
w)5

∫ ∫ 
 ∏
(i,j)∈Sk

exp{yhij(xThijβ + vhi + whj)}
1 + exp{xThijβ + vhi + whj}




× exp


− 1

2σ2
v

10∑
i=1

v2
hi − 1

2σ2
w

10∑
j=1

w2
hj


 dvh dwh.

Thus L contains six intractable 20-dimensional integrals, which are due to the crossed
nature of the design. Bayesian and frequentist computations are considered in the
following two sections.

3.1 Bayesian Analysis

A consequence of the complexity of the salamander likelihood function is that, no
matter what (nontrivial) prior is chosen forλ = (βT , σ2

v, σ
2
w)T , the integrals defining

any posterior quantities of interest will not be analytically tractable. Furthermore, the
high dimension of these integrals probably rules out numerical integration. Thus, to
make inferences, one is forced to use either analytical approximations (Kass and Stef-
fey 1989; Tierney, Kass, and Kadane 1989) or Markov chain Monte Carlo (MCMC)
techniques.

Suppose that the Gibbs sampler is to be used to sample from π(λ|y). In an
attempt to be “objective” and simultaneously make the full conditionals needed for
Gibbs as simple as possible, one might choose an improper conjugate prior such as
π(λ) ∝ (σ2

v)
a(σ2

w)b for some a and b (Karim and Zeger 1992). Such priors can,
however, lead to serious problems. For example, depending on the value of (a, b), it
may be the case that all of the full conditionals needed to apply the Gibbs sampler are



proper, whereas the posterior distribution itself is improper (Natarajan and McCulloch
1995). Compounding this potential problem is the fact that an improper posterior may
not be apparent from the Gibbs output (Hobert and Casella 1996). Moreover, even
if π(λ) ∝ (σ2

v)
a(σ2

w)b does result in a proper posterior, it is not a “noninformative”
prior in any formal sense for this HM. Thus it may be the case that the prior is actually
driving the inferences, which is opposite of what was intended. Unfortunately, even
if one is willing to suffer the (sampling) consequences of using a nonconjugate prior,
standard “default” priors such as Jeffreys’s prior are not available in closed form.

To guard against improper posteriors, some authors have suggested using “dif-
fuse” proper priors, which typically means proper conjugate priors that are nearly
improper. Indeed, the author is guilty of making such suggestions: as a prior for a
variance component in a normal mixed model, Hobert and Casella (1996, p. 1469)
suggested using π(σ2) ∝ (σ2)−r−1 exp{−1/sσ2} with small positive values for r

and s. The problem is that these diffuse priors are still not noninformative in any
formal sense and, furthermore, there is empirical evidence that such priors may lead
to very slowly converging Gibbs samplers (Natarajan and McCulloch 1998).

We conclude that choosing a prior forλ is currently a real dilemma for a Bayesian
with no prior information. Consequently, development of reasonable default priors
for λ (of the HM in Sec. 1) seems to be a potentially rich area for future research.
Natarajan and Kass (2000) discuss some recent results along these lines.

Suppose now that π(λ) is a satisfactory prior for the salamander model, and that
the Gibbs sampler is run to produce (v(t),w(t),β(t), σ

2(t)
v , σ

2(t)
w ), t = 0, 1, 2, . . . ,M ,

where t = 0 corresponds to some intelligently chosen starting value. (See C. J. Geyer’s
web page at http://www.stat.umn.edu/∼charlie/ for an interesting discussion of burn-
in and the use of parallel chains in MCMC.) An obvious estimate of E(σ2

v|y) is

1
M + 1

M∑
t=0

σ2(t)
v . (4)

Most statisticians would agree that without an associated standard error, this Monte
Carlo estimate is not very useful. Despite this, estimates based on MCMC are routinely
presented without reliable standard errors. The reason for this is presumably that
calculating the standard error of an estimate based on MCMC is often not trivial.
Indeed, establishing the existence of a central limit theorem (CLT) for a Monte Carlo
estimate based on a Markov chain can be difficult (Chan and Geyer 1994; Meyn and
Tweedie 1993; Tierney 1994). (Readers who are skeptical about the importance of a
CLT should look at the example in sec. 4 of Roberts and Rosenthal 1998.)

The most common method of establishing the existence of CLTs is to show
that the Markov chain itself is geometrically ergodic. Although many Markov chains
that are the basis of MCMC algorithms have been shown to be geometrically ergodic
(e.g., Chan 1993; Hobert and Geyer 1998; Mengersen and Tweedie 1996; Roberts and
Rosenthal 1999; Roberts and Tweedie 1996), myriad complex MCMC algorithms are
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currently in use to which these results do not apply. An example is the Gibbs sampler
for the salamander model (with a proper conjugate prior on λ). Thus another area
of research that is full of possibilities is establishing geometric ergodicity (or lack
thereof) of the Markov chains used in popular MCMC algorithms.

Unfortunately, even if it is known that a CLT exists, estimating the asymptotic
variance may not be easy (Geyer 1992; Mykland, Tierney, and Yu 1995). For example,
to apply the regenerative method of Mykland et al. (1995), a minorization condition
(Rosenthal 1995) must be established. Depending on the complexity of the Markov
chain, this can be a challenging exercise. Thus important work remains to be done on
this topic as well.

3.2 Frequentist Analysis

Now the problem shifts from sampling from the posterior distribution to maxi-
mizing the likelihood function. As mentioned earlier, the likelihood function for the
salamander model involves six intractable 20-dimensional integrals. Evidently, com-
putational techniques that can be used to maximize such complex likelihood functions
must make use of the Monte Carlo method. McCulloch (1997) described and com-
pared three methods for maximizing likelihood functions based on generalized linear
mixed models: Monte Carlo EM (MCEM), Monte Carlo Newton–Raphson (MCNR),
and simulated maximum likelihood. He concluded that MCEM and MCNR are both
generally effective (and better than simulated maximum likelihood), but noted a draw-
back concerning “the complications of deciding whether the stochastic versions of EM
or NR have converged.” Since the appearance of McCulloch’s 1997 article, MCEM
seems to have received more attention than MCNR. Consequently, here I focus on
MCEM.

Most of the problems associated with MCEM, including the one pointed out by
McCulloch, stem from an inability to quantify the Monte Carlo error introduced at
each step of the algorithm. An important area for future research is the development
of methods that will enable one to get a handle on this Monte Carlo error. To explain
this problem in more detail, I consider using MCEM to maximize (3).

Viewing the random effects, v and w, as missing data leads to the following
implementation of the EM algorithm (Dempster et al. 1977). The (r + 1)th E step
entails calculation of

Q(λ|λ(r)) =
6∑

h=1

Eh[log{fh(yh|vh,wh;λ1)gh(vh,wh;λ2)}|yh;λ(r)],

whereλ(r) is the result of the rth iteration of EM, and Eh is with respect to the condi-
tional distribution of (vh,wh) given yh with parameter value λ(r), whose density is
denoted by gh(vh,wh|yh;λ(r)). Once Q has been calculated, one simply maximizes
it over λ to get λ(r+1); that is, perform the (r + 1)th M step.



There is simply no hope of computing Q in closed form, because
gh(vh,wh|yh;λ(r)) involves the same intractable integrals as those found in the like-
lihood function. The MCEM algorithm (Wei and Tanner 1990) avoids an intractable
E step by replacing Q with a Monte Carlo approximation. For example, instead of
maximizing Q, one maximizes

Q̃(λ|λ(r)) =
6∑

h=1

1
M

M∑
l=1

log{fh(yh|v(l)
h ,w(l)

h ;λ1)gh(v
(l)
h ,w(l)

h ;λ2)},

where (v(l)
h ,w(l)

h ), l = 1, 2, . . . ,M , could be an iid sample from gh(vh,wh|yh;λ(r))
or from an ergodic Markov chain with stationary density gh(vh,wh|yh;λ(r)). (Im-
portance sampling is another possibility.)

Of course, there is no free lunch. Although using MCEM circumvents a com-
plicated expectation at each E step, it necessitates a method for choosing M at each
MCE step. If M is too small, then the EM step will be swamped by Monte Carlo
error, whereas too large an M is wasteful. Booth and Hobert (1999) argued that the
ability to choose an appropriate value for M hinges on the existence of a CLT for the
maximizer of Q̃ and one’s ability to estimate the corresponding asymptotic variance.
These authors provided methods for choosing M and diagnosing convergence when
Q̃ is based on independent samples, and showed that their MCEM algorithm can be
used to maximize complex likelihoods, such as the salamander likelihood described
herein. However, it is clear that when the dimension of the intractable integrals in the
likelihood is very large, one will be forced to construct Q̃ using MCMC techniques
such as the Metropolis algorithm developed by McCulloch (1997). The discussion in
the previous section suggests that when Q̃ is based on a Markov chain, verifying the
existence of a CLT for the maximizer of Q̃ and estimating the corresponding asymp-
totic variance can be difficult problems (Levine and Casella 1998). This is another
important and potentially rich area for new research.
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Hypothesis Testing: From p
Values to Bayes Factors

John I. Marden

1. WHAT IS HYPOTHESIS TESTING?

Testing hypotheses involves deciding on the plausibility of two or more hypo-
thetical statistical models based on some data. It may be that there are two hypothesis
on equal footing; for example, the goal of Mosteller and Wallace (1984) was to decide
which of Alexander Hamilton or James Madison wrote a number of the Federalist
Papers. It is more common that there is a particular null hypothesis that is a sim-
plification of a larger model, such as when testing whether a population mean is 0
versus the alternative that it is not 0. This null hypothesis may be something that
one actually believes could be (approximately) true, such as the specification of an
astronomical constant; or something that one believes is false but is using as a straw
man, such as the efficacy of a new drug is null; or something that one hopes is true
for convenience’s sake, such as equal variances in the analysis of variance.

Formally, we assume that the data are represented by x, which has density fθ(x)
for parameter θ. We test the null versus the alternative hypotheses,

H0 : θ ∈ Θ0 versus HA : θ ∈ ΘA,

where Θ0 and ΘA are disjoint subsets of the parameter space. A more general view
allows comparison of several models.

2. CLASSICAL HYPOTHESIS TESTING

In 1908, W. S. Gossett (Student 1908) set the stage for 20th century “classical”
hypothesis testing. He derived the distribution of the Student t statistic and used it to
test null hypotheses about one mean and the difference of two means. His approach
is used widely today. First, choose a test statistic. Next, calculate its p value, which
is the probability, assuming that the null hypothesis is true, that one would obtain a
value of the test statistic as or more extreme than that obtained from the data. Finally,
interpret this p value as the probability that the null hypothesis is true. Of course,
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the p value is not the probability that the null hypothesis is true, but small values do
cause one to doubt the null hypothesis. R. A. Fisher (1925) promoted the p value for
testing in a wide variety of problems, rejecting a null hypothesis when the p value is
too small: “We shall not often be astray if we draw a conventional line at .05.”

Jerzy Neyman and Egon Pearson (1928, 1933) shifted focus from thepvalue to the
fixed-level test. The null hypothesis is rejected if the test statistic exceeds a constant,
where the constant is chosen so that the probability of rejecting the null hypothesis
when the null hypothesis is true equals (or is less than or equal to) a prespecified level.
Their work had major impact on the theory and methods of hypothesis testing.

Test Statistics Became Evaluated on Their Risk Functions. Neyman and Pear-
son set out to find “efficient” tests. Their famous and influential result, the Neyman–
Pearson lemma, solved the problem when both hypotheses are simple; that is, Θ0 and
ΘA each contain exactly one point. Letting 0 and A be those points, the likelihood
ratio test rejects the null hypothesis when fA(x)/f0(x) exceeds a constant. This test
maximizes the power (the probability of rejecting the null when the alternative is true)
among tests with its level. For situations in which one or both of the hypotheses are
composite (not simple), there is typically no uniformly best test, whence different
tests are compared based on their risk functions. The risk function is a function of the
parameters in the model, being the probability of making an error: rejecting the null
when the parameter is in the null or accepting the null when the parameter is in the
alternative.

The Maximum Likelihood Ratio Test Became a Key Method. When a hy-
pothesis is composite, Neyman and Pearson replace the density at a single param-
eter value with the maximum of the density over all parameters in that hypothesis.
The maximum likelihood ratio test rejects the null hypothesis for large values of
supθ∈ΘA

fθ(x)/ supθ∈Θ0
fθ(x). This is an extremely useful method for finding good

testing procedures. It can be almost universally applied; under fairly broad condi-
tions, it has a nice asymptotic chi-squared distribution under the null hypothesis, and
usually (but not always) has reasonable operating characteristics.

2.1 Theory

Abraham Wald (1950) codified the decision-theoretic approach to all of statis-
tics that Neyman and Pearson took to hypothesis testing. Erich Lehmann (1959) was
singularly influential, setting up the framework for evaluating statistical procedures
based on their risk functions. A battery of criteria based on the risk function was
used in judging testing procedures, including uniformly most powerful, locally most
powerful, asymptotically most powerful, unbiasedness, similarity, admissibility or
inadmissibility, Bayes, minimaxity, stringency, invariance, consistency, and asymp-
totic efficiencies (Bahadur, Chernoff, Hodges–Lehmann, Rubin–Sethuraman—see
Serfling 1980).



Authors who have applied these criteria to various problems include Birnbaum
(1955), Brown, Cohen, and Strawderman (1976, 1980), Brown and Marden (1989),
Cohen and Sackrowitz (1987), Eaton (1970), Farrell (1968), Kiefer and Schwartz
(1965), Marden (1982), Matthes and Truax (1967), Perlman (1980), Perlman and
Olkin (1980), and Stein (1956).

A topic of substantial current theoretical interest is the use of algebraic structures
in statistics (see Diaconis 1988). Testing problems often exhibit certain symmetries
that can be expressed in terms of groups. Such problems can be reduced to so-called
maximal invariant parameters and maximal invariant statistics, which are typically
of much lower dimension than the original quantities. Stein’s method (Andersson
1982; Wijsman 1967) integrates the density over θ using special measures to obtain
the density of the maximal invariant statistic, which can then be used to analyze the
problems; for example, to find the uniformly most powerful invariant test.

The real payoff comes in being able to define entire classes of testing prob-
lems, unifying many known models and suggesting useful new ones. For example,
Andersson (1975) used group symmetry to define a large class of models for mul-
tivariate normal covariance matrices, including independence of blocks of variates,
intraclass correlation, equality of covariance matrices, and complex and quaternion
structure. Other models based on graphs or lattices can express complicated indepen-
dence and conditional independence relationships among continuous or categorical
variables (see, e.g., Andersson and Perlman 1993; Lauritzen 1996; Wermuth and Cox
1992; Whitaker 1990). Such “meta-models” not only allow expression of complicated
models, but also typically provide unified systematic analysis, including organized
processes for implementing likelihood procedures.

2.2 Methods

As far as general methods for hypothesis testing, the granddaddy of them all has
to be the chi-squared test of Karl Pearson (1900). Its extensions permeate practice,
especially in categorical models. But the most popular general test is the maximum
likelihood ratio test. Related techniques were developed by Rao (1947) and Wald
(1943). Cox (1961) explored these methods for nonnested models; that is, models
for which neither hypothesis is contained within the closure of the other. The union-
intersection principle of Roy (1953) provides another useful testing method.

The general techniques have been applied in so many innovative ways that it
is hard to know where to begin. Classic works that present important methods and
numerous references include books by Anderson (1984) on normal multivariate anal-
ysis (notable references include Bartlett 1937; Hotelling 1931; Mahalanobis 1930);
Bishop, Fienberg, and Holland (1975) on discrete multivariate analysis (see also
Goodman 1968; Haberman 1974); Barlow, Bartholomew, Bremner, and Brunk (1972)
and Robertson, Wright and Dykstra (1988) on order-restricted inference; and Rao
(1973) on everything.



Fisher (1935) planted the seeds for another crop of methods with his randomiza-
tion tests, in which the p value is calculated by rerandomizing the actual data. These
procedures yield valid p values under much broader distributional assumptions than
are usually assumed. The field of nonparametrics grew out of such ideas, the goal be-
ing to have testing procedures that work well even if all of the assumptions do not hold
exactly (see Gibbons and Chakraborti 1992; Hettmansperger and McKean 1998; and
the robust nonparametric methods vignette by Hettmansperger, McKean, and Sheather
for overviews). Popular early techniques include the Mann–Whitney/Wilcoxon two-
sample test, the Kruskal–Wallis one-way analysis-of-variance test, the Kendall τ and
Spearman ρ tests for association, and the Kolmogorov–Smirnov tests on distribution
functions. Later work extended the techniques. A few of the many important authors
include Akritas and Arnold (1994), Patel and Hoel (1973), and Puri and Sen (1985),
for linear models and analysis of variance, and Chakraborty and Chaudhuri (1999),
Chaudhuri and Sengupta (1993), Choi and Marden (1997), Friedman and Rafsky
(1979), Hettmansperger, Möttönen, and Oja (1997), Hettmansperger, Nyblom, and
Oja (1994), Liu and Singh (1993), Puri and Sen (1971), and Randles (1989) for various
approaches to multivariate one-, two-, and many-sample techniques.

A vibrant area of research today is extending the scope of nonparametric/robust
testing procedures to more complicated models, such as general multivariate linear
models, covariance structures, and independence and conditional independence mod-
els (see Marden 1999 for a current snapshot). More general problems benefit from
the bootstrap and related methods. Davison and Hinkley (1997) provided an intro-
duction, and Beran and Millar (1987) and Liu and Singh (1997) presented additional
innovative uses of resampling.

3. BAYESIAN HYPOTHESIS TESTING

Not everyone has been happy with the classical formulation. In particular, prob-
lems arise when trying to use the level or the p value to infer something about the
truth or believability of the null. Some common complaints are as follows

1. The p value is not the probability that the null hypothesis is true. Gossett (and
many practitioners and students since) has tried to use the p value as the probability
that the null hypothesis is true. Not only is this wrong, but it can be far from reasonable.
Lindley (1957) laid out a revealing paradox in which the p value is fixed at .05, but as
the sample size increases, the Bayesian posterior probability that the null hypothesis
is true approaches 1. Subsequent work (Berger and Sellke 1987; Edwards, Lindeman,
and Savage 1963) showed that it is a general phenomenon that the p value does not
give a reasonable assessment of the probability of the null. In one-sided problems,
where the null is µ ≤ 0 and the alternative is µ > 0, the p value can be a reasonable
approximation of the probability of the null. Because this is the situation that is
obtained in Student 1908, we can let Gossett off the hook (see Casella and Berger



1987; Pratt 1965). Good (1987), and references therein, discussed other comparisons
of p values and Bayes.

2. The p value is not very useful when sample sizes are large. Almost no null
hypothesis is exactly true. Consequently, when sample sizes are large enough, almost
any null hypothesis will have a tiny p value, and hence will be rejected at conventional
levels.

3. Model selection is difficult. Instead of having just two hypotheses to choose
from, one may have several models under consideration, such as in a regression
model when there is a collection of potential explanatory variables. People often use
classical hypothesis testing to perform step-wise algorithms. Not only are the resulting
significance levels suspect, but the methods for comparing non-nested models are not
widely used.

The Bayesian approach to hypothesis testing answers these complaints, at the
cost of requiring a prior distribution on the parameter. It is helpful to break the prior
into three pieces: the density γA of the parameter conditional on it being in the
alternative, the density γ0 of the parameter conditional on it being in the null, and
the probability π0 that the null hypothesis is true. The prior odds in favor of the
alternative are (1 − π0)/π0. Then the posterior odds in favor of the alternative are
a product of the prior odds and the Bayes factor; that is, the integrated likelihood
ratio,

∫
ΩA

fθ(x)γA(θ) dθ/
∫
Ω0
fθ(x)γ0(θ) dθ. Thus the posterior probability that the

null hypothesis is true can be legitimately calculated as 1/(1+posterior odds). These
calculations can easily be extended to model selection.

It is obvious the posterior odds depend heavily on π0. What is not so obvious
is that the posterior odds also depend heavily on the individual priors γA and γ0.
For example, as the prior γA becomes increasingly flat, the posterior odds usually
approach 0. Jeffreys (1939) recommended “reference” priors γA and γ0 in many
common problems. These are carefully chosen so that the priors do not overwhelm
the data. Other approaches include developing priors using imaginary prior data, and
using part of the data as a training sample. Berger and Pericchi (1996) found that
averaging over training samples can approximate so-called “intrinsic” priors. Kass
and Wasserman (1996) reviewed a number of methods for finding priors. Choosing
π0 for the prior odds is more problematic. Jeffreys’s suggestion is to take π0 = 1

2 ,
which means that the posterior odds equal the Bayes factor.

There is growing evidence that this Bayes approach is very useful in practice,
and not just a cudgel for bashing frequentists (see Kass and Raftery 1995 and Raftery
1995 for some interesting applications and references.)

We should not discard the p value all together, but just be careful. A small p value
does not necessarily mean that we should reject the null hypothesis and leave it at
that. Rather, it is a red flag indicating that something is up; the null hypothesis may be
false, possibly in a substantively uninteresting way, or maybe we got unlucky. On the



other hand, a large p value does mean that there is not much evidence against the null.
For example, in many settings the Bayes factor is bounded above by 1/p value. Even
Bayesian analyses can benefit from classical testing at the model-checking stage (see
Box 1980 or the Bayesian p values in Gelman, Carlin, Stern, and Rubin 1995).

4. CHALLENGES

As we move into the next millennium, it is important to expand the scope of
hypothesis testing, as statistics will be increasingly asked to deal with huge datasets
and extensive collections of complex models with large numbers of parameters. (Data
mining, anyone?) The Bayesian approach appears to be very promising for such
situations, especially if fairly automatic methods for calculating the Bayes factors are
developed.

There will continue to be plenty of challenges in the classical arena. In addition
to developing systematic collections of models and broadening the set of useful non-
parametric tools, practical methods for finding p values for projection-pursuit (e.g.,
Sun 1991) and other methods that involve searching over large spaces will be crucial.
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Generalized Linear Models

Charles E. McCulloch

1. INTRODUCTION AND SOME HISTORY

What is the difference, in absolute value, between logistic regression and dis-
criminant analysis? I will not make you read this entire article to find the answer,
which is 2. But you will have to read a bit further to find out why.

As most statisticians know, logistic regression and probit regression are com-
monly used techniques for modeling a binary response variable as a function of one
or more predictors. These techniques have a long history, with the term “probit”
traced by David (1995) back to Bliss (1934), and Finney (1952) attributing the origin
of the technique itself to psychologists in the late 1800s. In its earliest incarnations,
probit analysis was little more than a transformation technique; scientists realized
that the sigmoidal shape often observed in plots of observed proportions of successes
versus a predictor x could be rendered a straight line by applying a transformation
corresponding to the inverse of the normal cdf.

For example, Bliss (1934) described an experiment in which nicotine is applied
to aphids and the proportion killed is recorded. (How is that for an early antismoking
message?) Letting Φ−1(·) represent the inverse of the standard normal cdf, and p̂i the
observed proportion killed at dose di of the nicotine, Bliss showed a plot of Φ−1(p̂i)
versus log di. The plot seems to indicate that a two-segment linear regression model
in log di is the appropriate model. In an article a year later, Bliss (1935) explained the
methodology in more detail as a weighted linear regression of Φ−1(p̂i) on the predictor
xi using weights equal to [niφ(pi)2]/{Φ(pi)[1 − Φ(pi)]}, where φ(·) represents the
standard normal pdf and ni is the sample size for calculating p̂i. These weights can
be easily derived as the inverse of the approximate variance found by applying the
delta method to Φ−1(p̂i).

This approach obviously has problems if an observed proportion is either 0 or 1.
As a brief appendix to Bliss’s work, Fisher (1935) outlined the use of maximum like-
lihood to obtain estimates using data in which p̂i is either 0 or 1. Herein lies a subtle
change: Fisher was no longer describing a model for the transformed proportions, but
instead was directly modeling the mean of the binary response. Users of generalized
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linear models (GLMs) will recognize the distinction between a transformation and a
link.

This technique of maximum likelihood is suggested only as a method of last
resort when the observed proportions that are equal to 0 or 1 must be incorporated in
the analysis. The computational burdens were simply too high for it to be used on a
regular basis in that era.

So, by the 1930s, models of the following form were being posited, and fitting
with the method of maximum likelihood was at least being entertained. With pi
denoting the probability of a success for the ith observation, the model is given by

Yi ∼ indep. Bernoulli(pi)

and

pi = Φ(x′
iβ), (1)

where x′
i denotes the ith row of the matrix of predictors. With a slight abuse of

notation, and to make this look similar to a linear model, we can rewrite (1) as

Y ∼ indep. Bernoulli(p)

and

p = Φ(Xβ) (2)

or, equivalently,

Φ−1(p) = Xβ. (3)

By 1952, this had changed little. In that year Finney more clearly described the use
of maximum likelihood for fitting these models in an appendix titled “Mathematical
Basis of the Probit Method” and spent six pages in another appendix laying out the
recommended computational method. This includes steps such as “34. Check steps
30–33” and the admonishment to the computer (a person!) that “A machine is not a
complete safeguard against arithmetical errors, and carelessness will lead to wrong
answers just as certainly as in nonmechanized calculations.” This is clearly sage
advice against overconfidence in output even from today’s software.

Finney was practically apologetic about the effort required: “The chief hindrances
to the more widespread adoption of the probit method . . . (is) . . . the apparent labori-
ousness of the computations.” He recognized that his methods must be iterated until
convergence to arrive at the maximum likelihood estimates but indicated that “with
experience the first provisional line may often be drawn so accurately that only one
cycle of the calculations is needed to give a satisfactory fit . . . .”



With computations so lengthy, what iterative method of fitting was used? Finney
recommended using “working probits,” which he defined as (ignoring the shift of five
units historically used to keep all the calculations positive):

zi = x′
iβ +

yi − Φ(x′
iβ)

φ(x′
iβ)

. (4)

The working probits for a current value of β were regressed on the predictors using
weights the same as suggested by Bliss, namely [φ(pi)2]/{Φ(pi)[1 − Φ(pi)]} to get
the new value of β.

When I first learned about the EM algorithm (Dempster, Laird, and Rubin 1977),
I was struck by its similarity to Finney’s algorithm. A common representation of (1)
is via a threshold model. That is, hypothesize a latent variable Wi such that

Wi ∼ indep N(x′
iβ, 1). (5)

Then, using Yi = I{Wi>0} yields (1). To implement the EM algorithm, it is natural
to regard the Wi as missing data and fill them in. Once the Wi are known, ordinary
least squares can be used to get the new estimate of β. The E step fills in theWi using
the formula

E[Wi|Yi] = x′
iβ + φ(x′

iβ)
yi − Φ(x′

iβ)
Φ(x′

iβ)[1 − Φ(x′
iβ)]

, (6)

and the M step estimates β as (X′X)−1X′W.
Thus the term added to x′

iβ in the EM algorithm is the same as the term added
using working probits, once they are multiplied by the weight. Practical usage of EM
and working probits, however, shows that working probits invariably converge much
more quickly than EM!

So as early as 1952 many of the key ingredients of GLMs are seen: using “working
variates” and link functions, fitting using a method of iteratively weighted fits, and
using likelihood methods. But lack of computational resources simply did not allow
widespread use of such techniques.

Logistic regression was similarly hampered. Over a decade later, Cox (1966)
stated that “since the maximization of a function of many variables may not be straight-
forward, even with an electronic computer, it is worth having ‘simple’ methods for
solving maximum likelihood equations, especially for use when there are single ob-
servations at each x value, so that the linearizing transformation is not applicable.”
Note the need for simple methods despite the fact that “computers” in 1966 are now
machines.

For the logistic regression model akin to (2), namely

Y ∼ indep. Bernoulli(p)

and

p = 1/(1 + exp[−Xβ]) (7)



or

log[p/(1 − p)] = Xβ,

it is straightforward to show that the maximum likelihood equations are given by

X′Y = X′p. (8)

Becauseβ enters p in a nonlinear fashion in (8), it is not possible to analytically solve
this equation for β. However, using the crude approximation (Cox 1966), 1/(1 +
exp[−t]) ≈ 1/2+ t/6, which clearly is applicable only for the midrange of the curve,
(8) can be rewritten approximately as

X′Y = X′ ( 1
21 + 1

6Xβ
)

= 1
2X

′1 + 1
6X

′Xβ. (9)

This leads to

X′
(
Y − 1

2
1
)

=
1
6
X′Xβ, (10)

which we can solve as

β̂ = (X′X)−1X′6
(
Y − 1

2
1
)

= (X′X)−1X′Y∗, (11)

where Y ∗
i is equal to 3 for a success and −3 for a failure. That is, we can approxi-

mate the logistic regression coefficients in a crude way by an ordinary least squares
regression on a coded Y .

Logistic regression is often used as an alternate method for two-group discrim-
inant analysis (Cox and Snell 1989), by using the (binary) group identifier as the
“response” and the multivariate vectors as the “predictors.” This is a useful alterna-
tive when the usual multivariate normality assumption for the multivariate vectors is
questionable; for example, when one or more variables are binary or categorical.

When it is reasonable to assume multivariate normality, the usual Fisher discrim-
inant function is given by S−1(X̄1 − X̄2), where X̄i is the mean of the vectors for the
ith group. If we code the successes and failures as 1 and −1, then X̄1 − X̄2 = X′Y.
Thus we see that the difference between logistic regression and discriminant function
analysis is 2, in absolute value.

2. ORIGINS

GLMs appeared on the statistical scene in the path-breaking article of Nelder and
Wedderburn (1972). Even though virtually all of the pieces had previously existed,
these authors were the first to put forth a unified framework showing the similarities



between seemingly disparate methods, such as probit regression, linear models, and
contingency tables. They recognized that fitting a probit regression by iterative fits
using the “working probits,” namely (4), could be generalized in a straightforward
way to unify a whole collection of maximum likelihood problems. Replacing Φ−1(·)
with a general “link” function, g(·), and defining a “working variate” via

z ≡ g(µ) + (y − µ)g′(µ) (12)

gave, via iterative weighted least squares, a computational method for finding the
maximum likelihood estimates. More formally, we can write the model as

Yi ∼ indep. fYi
(yi),

fYi
(yi) = exp{(yiθi − b(θi))/a(φ) − c(yi, φ)},

E[Yi] = µi,

and

g(µi) = x′
iβ, (13)

where θi is a known function of β and g(·) is a known function that transforms (or
links) the mean of yi (not yi itself!) to the linear predictor. The iterative algorithm is
used to give maximum likelihood estimates of β.

More important, it made possible a style of thinking that freed the data analyst
from the need to look for a transformation that simultaneously achieved linearity in
the predictors and normality of the distribution (as in Box and Cox 1964).

I think of building GLMs by making three decisions:

1. What is the distribution of the data (for fixed values of the predictors and
possibly after a transformation)?

2. What function of the mean will be modeled as linear in the predictors?
3. What will the predictors be?

What advantages does this approach have? First, it unifies what appear to be very
different methodologies, which helps to understand, use, and teach the techniques.
Second, because the right side of the equation is a linear model after applying the
link, many of the concepts of linear models carry over to GLMs. For example, the
issues of full-rank versus overparameterized models are similar.

The application of GLMs became a reality in the mid 1970s, when GLMs were
incorporated into the statistics package GENSTAT and made available interactively
in the GLIM software. Users of these packages could then handle linear regression,
logistic and probit regression, Poisson regression, log-linear models, and regression



with skewed continuous distributions, all in a consistent manner. Both packages are
still widely used and are currently distributed by the Numerical Algorithms Group
(www.nag.com). Of course, by now, most major statistical packages have facilities
for GLMs; for example, SAS Proc GENMOD.

GLMs received a tremendous boost with the development of quasi-likelihood
by Wedderburn in 1974. Using only the mean-to-variance relationship, Wedderburn
showed how statistical inference could still be conducted. Perhaps surprisingly, given
the paucity of assumptions, these techniques often retain full or nearly full efficiency
(Firth 1987). Further, the important modification of overdispersion is allowed; that
is, models with variance proportionally larger than predicted by the nominal dis-
tribution, say, a Poisson distribution. Such situations arise commonly in practice.
Quasi-likelihood was put on a firmer theoretical basis by McCullagh (1983).

That year also saw the publication of the first edition of the now-classic book Gen-
eralized Linear Models (McCullagh and Nelder 1983). With a nice blend of theory,
practice, and applications this text made GLMs more widely used and appreciated. A
colleague once asked me what I thought of the book. I replied that it was absolutely
wonderful and that the modeling and data analytic philosophy that it espoused was
visionary. After going on for several minutes, I noticed that he looked perplexed.
When I inquired why, he replied “I think it’s terrible—it has no theorems.” Perhaps
that was the point.

3. MAJOR DEVELOPMENTS

GLMs are now a mature data-analytic methodology (e.g., Lindsey 1996) and
have been developed in numerous directions. There are techniques for choosing link
functions and diagnosing link failures (e.g., Mallick and Gelfand 1994; Pregibon
1980) as well as research on the consequences of link misspecification (e.g., Li and
Duan 1989; Weisberg and Welsh 1994). There are techniques for outlier detection
and assessment of case influence for model checking (e.g., Cook and Croos-Dabrera
1998; Pregibon 1981). There are methods of modeling the dispersion parameters as a
function of covariates (e.g., Efron 1986) and for accommodating measurement error
in the covariates (e.g., Buzas and Stefanski 1996; Stefanski and Carroll 1990), as well
as ways to handle generalized additive models (Hastie and Tibshirani 1990).

An extremely important extension of GLMs is the approach pioneered by Liang
and Zeger (Liang and Zeger 1986; Zeger and Liang 1986) known as generalized
estimating equations (GEEs). In my opinion, GEEs made two valuable contributions:
the accommodation of a wide array of correlated data structures and the popularization
of the “robust sandwich estimator” of the variance–covariance structure. Current
software implementations of GEEs are designed mostly to accommodate longitudinal
data structures; that is, ones in which the data can be arranged as repeat measurements
on a series of independent “subjects” (broadly interpreted, of course). The use of the
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“robust sandwich estimator,” which basically goes back to Huber (1967) and Royall
(1986), allows the specification of a “working” covariance structure. That is, the data
analyst must specify a guess as to the correct covariance structure, but inferences
remain asymptotically valid even if this structure is incorrectly specified (as it always
is to some degree). Not surprisingly, the efficiency of inferences can be affected if the
“working” structure is far from truth (e.g., Fitzmaurice 1995).

Distribution theory for modifications of exponential families for use in GLMs
has been developed further by, for example, Jorgensen (1997), and the theory of
quasi-likelihood is detailed in the book-length treatment of Heyde (1997).

4. LOOKING FORWARD

Anyone making predictions runs the risk of someone actually checking later to
see whether the predictions are correct. So I am counting on the “Jean Dixon effect,”
defined by the Skeptic’s Dictionary (http://skeptic.com) as “the tendency of the mass
media to hype or exaggerate a few correct predictions by a psychic, guaranteeing
that they will be remembered, while forgetting or ignoring the much more numerous
incorrect predictions.” Because likelihood and quasi-likelihood methods are based
on large-sample approximations, an important area of development is the construc-
tion of tests and confidence intervals that are accurate in small- and moderate-sized
samples. This may be through “small-sample asymptotics” (e.g., Jorgensen, 1997;
Skovgaard, 1996) or via computationally intensive methods like the bootstrap (Davi-
son and Hinkley 1997; Efron and Tibshirani 1993). The extension of GLMs to more
complex correlation structures has been an area of active research and will see more
development. Models for time series (e.g., Chan and Ledolter 1995), random-effects
models (e.g., Breslow and Clayton 1993; Stiratelli, Laird, and Ware 1984), and spa-
tial models (e.g., Heagerty and Lele 1999) have all been proposed. Unfortunately,
likelihood analysis of many of the models has led to intractable, high-dimensional
integrals. So, likewise, computing methods for these models will continue to be an
ongoing area of development. Booth and Hobert (1999) and McCulloch (1997) used
a Monte Carlo EM approach; Quintana, Liu, and del Pino (1999) used a stochastic
approximation algorithm; and Heagerty and Lele (1998) took a composite likelihood
tack.

Attempts to avoid likelihood analysis via techniques such as penalized quasi-
likelihood (for a description see Breslow and Clayton 1993) have not been entirely
successful. Approaches based on working variates (e.g., Schall 1991) and Laplace
approximations (e.g., Wolfinger 1994) generate inconsistent estimates (Breslow and
Lin 1994) and can be badly biased for distributions far from normal (i.e., the impor-
tant case of Bernoulli-distributed data). Clearly, reliable, well-tested, general-purpose
fitting algorithms need to be developed before these models will see regular use in
practice.

http://www.skeptic.com


The inclusion of random effects in GLMs raises several additional questions:
What is the effect of misspecification of the random-effects distribution (e.g., Neuhaus,
Hauck, and Kalbfleisch 1992) and how can it be diagnosed? What is the best way to
predict the random effects and how can prediction limits be set, especially in small-
and moderate-sized samples (e.g., Booth and Hobert 1998)? How can outlying random
effects be identified or downweighted? All of these are important practical questions
that must be thoroughly investigated for regular data analysis.

The whole idea behind GLMs is the development of a strategy and philosophy for
approaching statistical problems, especially those involving nonnormally distributed
data, in a way that retains much of the simplicity of linear models. Areas in which
linear models have been heavily used (e.g., simultaneous equation modeling in econo-
metrics) have and will see adaptations for GLMs. As such, GLMs will continue in
broad use and development for some time to come.
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Missing Data: Dial M for ???

Xiao-Li Meng

The question mark is common notation for the missing data that occur in most
applied statistical analyses. Over the past century, statisticians and other scientists
not only have invented numerous methods for handling missing/incomplete data,
but also have invented many forms of missing data, including data augmentation,
hidden states, latent variables, potential outcome, and auxiliary variables. Purposely
constructing unobserved/unobservable variables offers an extraordinarily flexible and
powerful framework for both scientific modeling and computation and is one of the
central statistical contributions to natural, engineering, and social sciences. In paral-
lel, much research has been devoted to better understanding and modeling of real-life
missing-data mechanisms; that is, the unintended data selection process that prevents
us from observing our intended data. This article is a very brief and personal tour
of these developments, and thus necessarily has much missing history and citations.
The tour consists of a number of M’s, starting with a historic story of the myste-
rious method of McKendrick for analyzing an epidemic study and its link to the
EM algorithm, the most popular and powerful method of the 20th century for fitting
models involving missing data and latent variables. The remaining M’s touch on the-
oretical, methodological, and practical aspects of missing-data problems, highlighted
with some common applications in social, computational, biological, medical, and
physical sciences.

1. McKENDRICK, A MYSTERY, AND EM

Table 1, adopted from Meng (1997), tells a fascinating story of missing data from
the early part of the 20th century. The first two rows describe an epidemic of cholera in
an Indian village, where x represents the number of cholera cases within a household
and nx is the corresponding observed number of such households. Prior to presenting
this example, McKendrick (1926) derived a Poisson model for such data. However,
the direct Poisson fit, reported in the third row, is so poor that any goodness-of-fit
method that fails to reject the Poisson model must itself be rejected.

Had McKendrick (1926) settled for the simple Poisson model, it would not have
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Table 1. Data and Fitted Values For McKendrick’s Problem

x 0 1 2 3 4 ≥ 5 Total

nx 168 32 16 6 1 0 223
Direct Poisson fit 151.64 58.48 11.28 1.45 0.00 .01 223
McKendrick’s fit 36.89 34.11 15.77 4.86 1.12 .24 93
MLE fit 33.46 32.53 15.81 5.12 1.25 .29 88.46

been the earliest citation in the seminal paper on the EM algorithm by Dempster, Laird,
and Rubin (1977), nor would it have been reprinted in Breakthroughs in Statistics,
Vol. III (Kotz and Johnson 1997). McKendrick’s approach seems rather mysterious,
especially because he did not provide a derivation. He first calculated s1 =

∑
x xnx =

86, s2 =
∑
x x

2nx = 166, and

n̂ =
s2

1

s2 − s1
= 92.45. (1)

Next, he treated n̂ ≈ 93 as the Poisson sample size, and thus estimated the Poisson
mean by λ̃ = s1 /n̂ = .93. The fitted counts were then calculated via n̂λ̃x exp (−λ̃)/x!,
as given in the fourth row of Table 1. The fit is evidently very good for x ≥ 1, but
exhibits an astonishingly large discrepancy for x = 0.

This large discrepancy gives a clue to McKendrick’s approach—there were too
many 0’s for the simple Poisson model to fit. Earlier a lieutenant-colonel in the In-
dian Medical Service and then a curator of the College of Physicians at Edinburgh,
McKendrick had astute insight into the excess 0’s, as he wrote that “[T]his suggests
that the disease was probably water borne, that there were a number of wells, and
that the inhabitants of 93 out of 223 houses drank from one well which was in-
fected.” In other words, a household can have no cases of cholera either because it
was never exposed to cholera or because it was exposed but no member of it was
infected. The existence of these unexposed households complicates the analysis, for
without external information, one cannot distinguish an unexposed from an exposed
but uninfected household. To a modern statistician, this immediately suggests using
the binomial/Poisson mixture model, also known as the zero-inflated Poisson (ZIP)
model (see, e.g., Böhning, Dietz, and Schlattmann 1999), which models a binomial
indicator for the exposure status and, conditional on being exposed, a Poisson vari-
able as before. Although McKendrick (1926) was not explicit, he fit a zero-truncated
Poisson (ZTP) model; that is, he ignored the observed n0 = 168 zero-class count and
used remaining data under the Poisson model to impute the unobserved zero-class
count from the exposed population. Once he had the imputed total, the rest is history.
The ingenious part of McKendrick’s approach is his imputation of the total Poisson
size n via (1), which equates the sample variance with the sample mean. Neither s1

nor s2 is affected by the actual value of n0, yet limn→∞ n̂/n = λ2/(λ2 +λ−λ) = 1,
and thus n̂ is a consistent imputation/estimate of the true Poisson sample size n. The
mystery is then unfolded.



The key ingredients of McKendrick’s approach are to first identify a missing data
structure, perhaps constructed, then impute the missing data, and finally analyze the
completed data set as if there were no missing data. This procedure is a predecessor
of many modern missing-data methods. A key advance of modern methods, thanks
to enormously improved computing power, is iterative repetition of such types of
processes, as in the EM algorithm, or multiple repetitions, as with multiple imputation
(Rubin 1987). The need for this iteration/repetition was recognized by Irwin (1963),
who noted that once an estimator of λ was obtained via McKendrick’s approach,
n can be reimputed by n(t+1) = n(t) exp(−λ(t)) + nobs, where nobs =

∑
x≥1 nx

and t indexes iteration, and in turn λ can be reestimated via λ(t+1) = s1/n
(t+1).

Irwin’s method, though not a special case, resembles the two-step EM algorithm.
In the Expectation step, the complete-data log-likelihood l(θ|Ycom) is imputed by
its conditional expectation Q(θ|θ(t)) = E[l(θ|Ycom)|θ(t), Yobs], where Yobs is the
observed data. In the Maximization step, Q(θ|θ(t)) is maximized as a function of
θ to determine θ(t+1). For the ZTP model, θ = λ, and the M step is the same as
McKendrick’s or Irwin’s; that is, λ(t+1) = s1/n

(t+1). The E step is an improved
version of Irwin’s imputation; that is, n(t+1) = nobs/(1 − exp(−λ(t))). Combining
the E and M steps yields λ(t+1) = (s1/nobs)(1 − exp(−λ(t))), which, like Irwin’s
method, converges to the maximum likelihood estimate, λ̂ = .972, as long asλ(0) > 0.
The fifth row of Table 1 gives the corresponding fit.

McKendrick’s problem also highlights the celebrated idea of data augmentation
when one adopts the binomial/Poisson mixture model. Because a complete sam-
ple is available from this model, there are no missing data in the traditional sense.
Nonetheless, we can view the mixture/exposure indicator as missing data and con-
struct the corresponding EM algorithm (Meng 1997). Purposely constructing missing
data, such as mixture indicators, random effects, and latent factors, is a key contri-
bution of Dempster et al. (1977) and has seen an enormous number of applications
in statistical and scientific studies, as illustrated in Sections 4–6. This, along with a
large number of recent improvements and extensions of EM (see Liu, Rubin, and Wu
1998; McLaughlan and Krishnan 1997; Meng and van Dyk 1997; and the references
therein), has served to substantially increase the applicability and speed of EM-type
algorithms.

2. MISSING-DATA MECHANISM

A profound difficulty in dealing with real-life missing-data problems is to reason-
ably understand and model the missing-data mechanism (MDM), namely the process
that prevents us from observing our intended data. This process is a data selection
process, like a sampling process; yet because it is typically not controlled by or even
unknown to the data collector, it can be subject to all kinds of (hidden) biases, known
collectively as nonresponse bias. Although the general theoretical foundation of sam-



pling processes existed in the early part of the 20th century (e.g., Neyman 1934) and
the impact of selection bias (e.g., from a purposive selection) has long been under-
stood, the corresponding foundation for MDM was not formally developed until much
later, starting with Rubin (1976a). Two key mechanisms introduced by Rubin, namely
missing at random (MAR) and missing completely at random (MCAR), now appear
in most statistical articles that contain analyses of incomplete data, often even with-
out citation. These concepts have also been extended (see, e.g., Heitjan 1997, 1999;
Heitjan and Rubin 1991).

Assuming MCAR basically means that we believe the observed data are a random
subsample of the intended sample, and thus we can analyze it just as we analyze the
intended sample, only with reduced size. Because this assumption is generally very
far from the truth, common convenient approaches such as ignoring any case with
missing values can be strongly biased (see, e.g., Little and Rubin 1987). MAR is a
much weaker assumption, which allows the MDM to depend on observed quantities,
but not on unobserved quantities. Under MAR, we can ignore the MDM in a likelihood
inference based on the observed data without inducing nonresponse bias (but possibly
inducing inefficiency when there is a priori dependence between the estimand and
parameters governing the MDM, i.e., when the parameter distinctness assumption of
Rubin (1976a) is violated; see Shih 1994). However, for sampling-based inference,
it generally requires MCAR to ignore the MDM (see Heitjan and Basu (1996) for
illustrations.)

When the MDM is not MAR (and thus not MCAR), the probability of missing-
ness depends on the unobserved values themselves. The MDM is then generally not
ignorable, meaning that the validity of our inference depends crucially on the partic-
ular model of the MDM we adopt. Because ignorability is fundamentally untestable
from the observed data alone, one must exercise great caution when drawing sub-
stantive conclusions from any inference under a nonignorable model. Sensitivity
analysis to the specification of an MDM model is a necessity, and subjective knowl-
edge can play a critical role, as illustrated by Molenberghs, Goetghebeur, Lipsitz,
and Kenward (1999). Modeling nonignorable MDMs is currently a very active re-
search area with many open problems (see, e.g., Heitjan 1999; Ibrahim, Lipsitz, and
Chen 1999; Mohlenberghs, Kenward, and Lesaffre 1997; Scharfstein, Rotnitzky, and
Robins 1999).

3. MULTIPLE IMPUTATION AND UNCONGENIALITY

The common usage of nonresponse bias for general biases induced by an MDM
reflects the historical fact that nonresponse in sample surveys is the most visible
missing-data problem in general practice, especially in social sciences. Thanks to
the efforts made by many statisticians and social scientists throughout the 20th cen-
tury, we are seeing fewer and fewer articles using convenient missing-data “methods”



such as mean imputation and complete-case analyses without acknowledging their
potential serious flaws. On the other hand, the simplicity of these “methods” is so
attractive that preventing practitioners from being seduced requires scientifically and
statistically more defensible methods with comparable simplicity. Multiple imputa-
tion (Rubin 1987) was motivated by this need. In the context of public-use or shared
databases, the first step of Rubin’s multiple imputation is to have the data collec-
tor build a sensible imputation model given available data and knowledge about the
MDM, which are typically far more comprehensive than what could possibly be avail-
able to an average user (e.g., Barnard and Meng 1999; Meng 1994a; Rubin 1996).
The data collector then draws M (e.g., 5–10) independent samples of all the missing
values, as a set, from the imputation model, thereby creating M completed-data sets
and thus permitting general users to directly assess and account for the increased
variability/uncertainties due to nonresponse. For a user, analyzing a multiply imputed
dataset means conductingM separate complete-data analyses, one for each of theM
completed-data sets, and then combining these M completed-data analysis outputs
using a few general rules. Readers are referred to Schafer (1999) for an updated tu-
torial; Gelman, King, and Liu (1998) for a recent application in public opinion polls;
and Schafer (1997) for a comprehensive treatment of the practical implementation of
Rubin’s multiple imputation, including software.

In the context of public-use data files, there is a crucial separation between the
data collector/imputer and general users. The two parties typically have different
goals, data, information, and assessments and thus often adopt different models or
even different modes of inference. Consequently, the imputation model is usually
uncongenial to the user’s analysis procedure; that is, the latter cannot be embedded
into a (Bayesian) model that is compatible with the imputation model (Meng 1994a).
One way to reduce this uncongeniality, of course, is to encourage more information
exchange, such as having the imputer provide additional imputation quantities be-
yond the imputed datasets (e.g., Meng 1994a; Robins and Wang 2000; Schafer and
Schenker 2000). Although this is clearly a direction for more research, the practical
constraints (e.g., confidentiality, a user’s choice of inferential mode) ensure the issue
of uncongeniality will always remain. Consequently, much research is needed to es-
tablish a more flexible “multiparty” paradigm for comparing and evaluating statistical
procedures, a paradigm that promotes most effective procedures given resource and
practical constraints, rather than those that are misguided by impossible idealizations
(see Rubin 1996), even if such idealizations are sensible in a congenial environment.

4. MCMC AND PERFECT SIMULATION

Constructing unobserved variables—namely, the method of data augmentation
(e.g., Tanner and Wong 1987) or of auxiliary variables (e.g., Besag and Green 1993;
Edwards and Sokal 1988)—has played a critical role in the development of efficient



Markov chain Monte Carlo (MCMC) algorithms. Some recent findings (e.g., Liu
and Wu 1999; Meng and van Dyk 1999; van Dyk and Meng 2001) demonstrate the
seemingly limitless potential of this method. Here I briefly describe one of its uses
for perfect simulation, a rapidly growing area of MCMC—the list of references in
http://dimacs.rutgers.edu/∼dbwilson/exact is updated constantly.

Perfect simulation, or exact sampling, refers to a class of MCMC algorithms
that in finite time provide genuine and independent draws from the limiting (i.e.,
stationary) distribution of a Markov chain. This seemingly impossible task was made
possible by the backward coupling method of Propp and Wilson (1996) which, in
a very rough sense, is a clever stochastic counterpart of the deterministic method
for finding the optimizer by comparing the value of the objective function at each
point. Consequently, this class of methods is most effective with finite-state chains,
though they are by no means restricted to such chains (e.g., Green and Murdoch 1999;
Murdoch 2000; Murdoch and Green 1998).

Indeed, data augmentation can help us to transform a continuous state-space
problem into a finite one. For example, suppose that we are interested in simulating
from p(X) and we can augment this model to p(X,Y ) such that both p(X|Y ) and
p(Y |X) are easy to sample and the augmented variable Y is discrete. We can then
implement a two-step Gibbs sampler, which induces a marginal Markov chain on
Y . Because Y has a finite state space, in some cases we can directly implement the
backward coupling method with this discrete chain to obtain iid draws from p(Y ).
The desired iid draws from p(X) are then obtained easily by drawing from p(X|Y )
given the draws of Y ’s. If the state space of Y is too large for the direct backward
coupling method, then one can try multistage backward coupling (Meng 2000). An
immediate application of this approach is to Bayesian finite mixtures (joint work
with D. Murdoch), where Y is the subpopulation indicator. Readers are referred to
Møller and Nicholls (1999) and the references therein for other methods of using
discrete hidden variables to make perfect simulation effective for routine applications
in statistics.

5. MENDELIAN LIKELIHOODS AND
RELATIVE INFORMATION

It was exactly one century ago when Mendel’s basic theory of heredity was re-
discovered and gained general recognition (e.g., McPeek 1996; Thompson 1996),
marking the real birth of modern genetics. The theory of Mendel (1866) provides
general principles for probabilistic modeling of the inheritance of genes from parents
to offspring. However, in common pedigree analyses, we typically miss some data on
genotype information (e.g., allele types at some genetic markers), on the genealogi-
cal tree (e.g., whether an allele was from the paternal side or the maternal side), and
even on phenotype (e.g., a disease status of an ancestor). Consequently, Mendelian
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modeling and the associated computation are intrinsically problems of missing data,
typically of very high dimension with exceedingly complex structures. Monte Carlo
simulation is an effective general approach for such problems, but its efficiency de-
pends on the choice of an underlying data augmentation scheme. Two common, and
sometime competing, choices are genotypes and inheritance vectors/meiosis indica-
tors, which indicate whether the origin of the gene is grandpaternal or grandmaternal
(see Lander and Green 1987; Thompson 1994, 2000). Once we obtain draws of the
missing data Ymis from p(Ymis|Yobs, θ) (e.g., via MCMC), the computation of the
observed-data Mendelian likelihood ratio L(θ1|Yobs)/L(θ2|Yobs) can be dealt with
effectively via bridge sampling (Bennett 1976; Jensen and Kong 1999; Meng and
Wong 1996) and the reweighted mixture method of Geyer (1991). A currently chal-
lenging problem is to make such methods more accurate for computing the likelihood
ratio when θ1 and θ2 belong to different marker regions (Thompson 2000), and the
warp bridge sampling method (Meng 1999; Meng and Schilling 1999) is a possible
direction to explore, because it increases efficiency by increasing the overlaps of the
underlying densities by warping their shapes. The use of bridge sampling for assess-
ing the convergence of Monte Carlo EM (Wei and Tanner 1990), which is useful
for genetic linkage analysis (Guo and Thompson 1992), was detailed by Meng and
Schilling (1996).

Another important missing-data problem in genetic linkage analysis is estimat-
ing the amount of information in the observed data relative to the total amount of
information that would have been available had there been no missing data. The sta-
tistical literature on the fraction of missing information has been largely focused on
its theoretical properties (e.g., Dempster et al. 1977; Liu 1994; Meng 1994b) and
methodological uses (e.g., Meng and Rubin 1991) in computation and estimation.
However, the focus here is more on design, with the aim of directly guiding follow-up
strategies; for example, using more genetic markers with existing DNA samples ver-
sus collecting DNA samples from additional families, by assessing how much more
information could be obtained if, say, we add more markers. An additional difference
is that, because hypothesis testing is a useful screening tool for linkage studies (e.g.,
Thompson 1996), we need to measure the relative information in the context of hy-
pothesis testing. This requires considering the roles of both the null hypothesis (i.e.,
no linkage) and the alternative hypothesis (as specified by a trait model). Although
this issue does not arise in the estimation context, the basic identities given by Demp-
ster et al. (1977) are fundamental for establishing a general theoretical framework
for studying relative information in the context of hypothesis testing; details will be
given elsewhere (as a joint paper with A. Kong and D. Nicolae).



6. MAPPING THE BRAIN AND THE UNIVERSE

Image reconstruction, a critical component in many medical and physical stud-
ies, is fundamentally another class of missing data problems. In the medical imaging
context, perhaps the best-known example to statisticians is positron emission tomog-
raphy (PET), for which the use of the EM algorithm signifies statisticians’ direct
involvement in the developing stage of the technique (e.g., Lange and Carson 1984;
Shepp and Vardi 1982). The overview given by Vardi, Shepp, and Kaufman (1985),
using brain mapping as an example, showed the intrinsic missing-data nature of PET,
for we cannot directly observe the count of photons emitted from each pixel (i.e., a
location in the brain). In addition, we face missing-data problems such as attenuation
by the body’s tissues and the escape of photons that travel along lines that do not
intersect with any detector. As with linkage analysis, the choice of data augmentation
schemes, or hidden-data spaces, has a direct impact on the speed of computation. As
an example, Fessler and Hero (1995) discussed clever choices of hidden-data spaces
that have made EM-type reconstructions more practical, overcoming the slowness of
early EM reconstructions that use individual pixel counts as hidden states. An algo-
rithmic analysis of the method of Fessler and Hero was given by Meng and van Dyk
(1997) in the framework of the AECM algorithm.

Similar imaging techniques also play an important role in astrophysics, where
the use of EM-type algorithms, such as the Richardson–Lucy algorithm (Lucy 1974;
Richardson 1972), predates the publication of Dempster et al. (1977), though the de-
velopment of fast EM and related Bayesian imaging algorithms has just begun (e.g.,
van Dyk 1999; van Dyk, Connors, Kashyap, and Siemiginowska 2001). The Pois-
son spectral imaging model, designed to analyze data from the Chandra observatory
(launched on the space shuttle Columbia, July 1999) and other upcoming detectors,
is an example of needing efficient methodologies for handling data from the new gen-
eration of high-resolution satellite telescopes. The Poisson model here is designed
to summarize the relative frequency of photon energies (x-ray or γ-ray), collected as
counts in a number of bins, arriving at a detector. The detected photons originate from
many sources (e.g., a “continuum” and a number of “line profiles”) and have been
subject to background contamination, instrument response, and stochastic absorption.
Each of these distortions requires a layer of modeling (e.g., Poisson, multinomial),
forming an overall multilevel hierarchical model for the observed binned energies, a
typical situation with real-data latent-variable modeling. Each of these levels, as well
as any combination or function of them, is a candidate for data augmentation in fitting
the model. An efficient choice can substantially improve the computational speed;
van Dyk (1999) and van Dyk and Meng (1999) gave details and empirical evidences.



7. MILLENNIUM WISHES

The topic of missing data is as old and as extensive as statistics itself—after
all, statistics is about knowing the unknowns. It is thus impossible in a few pages
to discuss all of the main areas of past and present research. Areas not discussed
here include, among many others, noniterative methods (e.g., Baker, Rosenberger,
and DerSimonian 1992; Rubin 1976b), direct maximization of observed-data like-
lihoods (e.g., Molenberghs and Goetghebeur 1997), pattern-mixture models (e.g.,
Little 1993), bootstrap methods (e.g., Efron 1994), estimating equation approaches
(e.g., Heyde and Morton 1996; Robins, Rotnitzky, and Zhao 1994; Lipsitz, Ibrahim,
and Zhao 1999), and potential outcome in causal inferences (e.g., Barnard, Du, Hill,
and Rubin 1998; Rubin 1978). Consequently, the 82 references listed in this article
are really just the tip of the iceberg—even with many missing articles, Meng and
Pedlow (1992) found more than 1,000 EM-related articles, about 85% of which were
in nonstatistical journals. The number must have doubled by now.

Much remains to be done, however. The most pressing task, in my opinion, is
placing further emphasis on the general recognition and understanding, at a conceptual
level, of the necessity of properly dealing with the missing-data mechanism, as part of
our ongoing emphasis on the importance of the data collection process in any mean-
ingful statistical analysis. The missing-data mechanism is in the blood of statistics,
and it is the nastiest and the most deceptive cell, especially for nonstatisticians—why
on earth should anyone be concerned with data that one does not even have? I con-
clude with an excerpt from a referee’s report of Tu, Meng, and Pagano (1994), to
make one of my wishes for the new millennium. Reports like this will soon be of
great value, but only on auction.

The statement, “The naive approach of ignoring the missing data and using only the
observed portion could provide very misleading conclusions” is nonsense to me (and I
think the authors should also recognize it as nonsense in the real world). Similarly, what
does it mean, “When analyzing such missing data, . . .”; if the data are missing, you
can’t analyze them. Except for old, rigid, demanding, clunky data treatment methods
like the Yates algorithm (and except for the ridge problems discussed), it is unlikely
that “. . . the analysis could still be very complicated due to the unbalanced structure
of the observed data . . .” (page 4). Does any chemometrician every (sic) worry about
making “it possible to utilize computer routines already developed for complete-data
maximization”? I don’t think any chemometricians every (sic) use data-specific data-
treatment methods.

(To purchase a copy of this referee report, please dial M for Meng!)
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A Robust Journey in the New Millennium

Stephen Portnoy and Xuming He

A brief search through Current Index to Statistics found more than 3,000 entries
with “robust” or “robustness” as key words. That this number exceeded the number of
appearances for “density,” “rank,” “bootstrap,” “censored,” or “smoothing” suggests
that the name of this field might also be an appropriate appellation for those doing
the research. Here we present a very personal view of a few of the most fundamental
insights offered by the study of robustness and suggest some promising areas for
future robust travel.

1. A PAGE OF HISTORY IS WORTH A VOLUME OF LOGIC
(Oliver Wendell Holmes, 1929)

A common view sees robustness as providing alternatives to least squares meth-
ods and Gaussian theory. Indeed, this approach may be justified by noting that math-
ematical and computational convenience formed the basis for the Gaussian assump-
tions of normality and quadratic loss. In fact, a statistical procedure derived from
the least squares principle may be highly nonrobust against deviations from normal-
ity. For example, Tukey (1960) showed that contamination by just two observations
from a N(0, 9) distribution among 1,000 standard normal observations suffices for
the mean absolute deviation estimator to be more efficient than the sample standard
deviation, which is asymptotically optimal for the Gaussian scale parameter. What
we learn from such examples goes a long way in explaining the extent of research in
robustness mentioned in the abstract.

More generally, robustness can be viewed from many different perspectives, and
its implications have never been constant in history. Box and Tiao (1962) distinguished
two types of robustness: criterion robustness and inference robustness. The former
selects a criterion for statistical optimality and then investigates its variation as the
parent distribution deviates from the form assumed. The latter concerns changes in
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quantities leading to inference (significance levels, coverage probability, etc.). Later
researchers have studied efficiency robustness, qualitative robustness, bias robustness,
Bayesian robustness, and so on.

It is noteworthy that the use of least absolute deviations in a regression prob-
lem predates least squares by half a century. Stigler (1986) discussed this approach
of Boscovich (ca. 1755) and other early alternatives to least squares. More modern
attempts to bypass the strict normality assumption include Pearson curves and other
super-models. The importance of using robust statistical methods was recognized by
eminent statisticians like Pearson, Student, Box, and Tukey. However, the modern the-
ory of robust statistics emerged more recently, led by Huber’s (1964) classic minimax
approach and Hampel’s (1968, 1974) introduction of influence functions. Since then,
several areas of high growth have revolutionized the way statisticians understand the
power of robustness.

Huber (1964) might be considered the first to formalize robustness as “approxi-
mate validity of a parametric model.” Almost all parametric models used in statistical
analysis are approximations to reality. A statistical procedure that is optimal at one
single model is easy to come by but not always trustworthy. Huber introduced a
contamination model and several distance-based neighborhoods, arguing that a good
method of estimation should behave well in a full nonparametric neighborhood of the
assumed model. This obviates the need to construct a finite parameter super-model
and provides protection against small departures in arbitrary directions from a nomi-
nal model. Furthermore, Huber introduced specific optimality criteria (e.g., minimax
asymptotic variance) to develop robust procedures with good finite-sample properties
(see Andrews et al. 1972).

Hampel took a different approach by studying the properties of statistical func-
tionals. A statistical functional maps from the space of probability distribution func-
tions to a parameter space of interest. Typically an estimator or test statistic can be
viewed as a statistical functional evaluated at the empirical distribution. This per-
spective was not totally new, but it provided the springboard for the development
of three important robustness concepts: qualitative robustness (continuity), influence
function (derivative), and breakdown point. Hampel also proposed finding estimators
with optimal efficiency given an upper bound on the influence function (see Hampel,
Ronchetti, Rousseeuw, and Stahel 1986).

Early robustness studies focused on generalized maximum likelihood estimators,
commonly referred to as M estimators. They are obtained either by minimizing a
loss function or solving the associated first-order conditions. Robust choices of the
loss function can be motivated from both Huber’s and Hampel’s approaches for the
location-scale models. In the regression setting, He (1991) showed that obtaining
local robustness requires using information beyond the residuals. Generalized M

estimators use design-based weights on the residuals to achieve this goal.
Although Huber’s original focus was on variance, a combination of the neigh-



borhood concept and Hampel’s functional perspective has led to a more systematic
study of bias robustness. For instance, Donoho and Liu (1988) and He and Simpson
(1993) provided global lower bounds for the bias of statistical functionals under a va-
riety of neighborhoods and showed that minimum distance estimators are often close
to achieving minimax bias. He and Simpson also showed that for high-dimensional
parameters, globally minimax bias functionals have to compromise for lack of local
linearity, suggesting that no optimality criteria (including robustness ones) should be
pushed to their limits. Nevertheless, the use of bias curves for estimating functionals
has led to a number of new proposals (see, e.g., Maronna, Yohai, and Zamar 1993),
and the breakdown functions of He, Simpson, and Portnoy (1990) provided a means
for global robustness assessment of statistical tests.

A robust procedure is expected to work well when there are outliers in the data
that are hard to detect. Traditional methods for outlier detection and diagnostics
often suffer from masking; that is, the appearance of several outliers whose similarity
frustrates the ability of “delete-k” methods to identify them. As a formal notion
in robustness, the breakdown point was made popular at least in part by Donoho
and Huber (1983). Roughly speaking, it is the smallest proportion of outliers that
would in the worst case drive the estimator beyond all bounds. Researchers were
intrigued by the fact that allM estimators have low breakdown points in problems with
multiple parameters. Rousseeuw (1984) opened the door for finding affine-equivariant
estimators with a breakdown point that does not decrease with dimension. A number of
high-breakdown estimators for regression and for multivariate location-scatter models
have been proposed since then. Estimators that combine local stability, good efficiency
at the central model, and a high breakdown point are generally believed to be superior.
Theoretically, a one-step Newton iteration toward a highly efficient generalized M
estimator starting from a high breakdown fit would do the job (see Jurečková and
Portnoy 1987).

Most people view robust statistics as parametric. That is, robust statistics is con-
cerned with deviations from a nominal parametric model. Closely related to this is
what we call nonparametric methods. They include distribution-free methods, such
as rank tests, that are correct for a large class of distributions (see the vignette on ro-
bust nonparametric methods by Hettmansperger, McKean, and Sheather). We use the
following example to illustrate the difference between parametric robustness and non-
parametric statistics. Suppose that a random sample is drawn from a mixture model
with 90% from N(0, 1) and the remaining 10% from N(t, 1) for some large value of
t. If we use a central model of N(θ, 1), then a robust estimate of location would aim
at the center of the majority; that is, θ = 0. Of course, the estimate will be biased
from the contamination, but a robust estimate tries to control the bias regardless of
the size of t. A nonparametric estimate of location would aim at the center of the
mixture distribution, which is not 0 in this case. Therefore, it is important to know
what we are seeking. If we believe in a parametric model that approximates reality



and wish to estimate the parameters associated with the model, then robust estimates
are our best bet. On the other hand, if we consider the data as a sample from a single
population and are interested in a population quantity, then a nonparametric estimate
is more appropriate (see Portnoy and Welsh 1992).

It is not unusual for a nonparametric procedure to be robust at certain models.
For example, the median is a nonparametric statistic, but it is also a highly robust
estimate for estimating the center of a symmetric distribution as a central model. The
same statistic plays two different roles.

Under our view of nonparametrics, we would like to emphasize estimators that
are consistent for their population parameters under a large class of distributions.
Such estimators may or may not be robust for parametric estimation, but there are
well-defined and well-understood population quantities being estimated. In linear
models, robust estimators are typically consistent for the slope parameters when the
errors are iid. For more general error structures, the regression quantiles of Koenker
and Bassett (1978) provide consistent estimates of conditional quantiles in a semi-
parametric sense. Though most useful for analyzing general forms of variability (e.g.,
heteroscedasticity), regression quantiles also provide a natural ordering of structured
data that may be used to construct robust (trimmed) estimates (see, e.g., Ruppert and
Carroll 1980; Koenker and Portnoy 1987). Note that regression quantiles are robust
against gross errors in the response but not in the design.

For multivariate data, efforts have been made to construct the ranks and estimate
the median and other depth contours. Strictly speaking, ranking itself is a univariate
concept. In the multivariate case, it is possible to generalize the concept of ranking by
starting from the center and moving outward. A number of proposals on multivariate
ranks and on data depth are now available, and further research is sure to lead to
consolidation and new standards in this area.

In historical summary, robustness has provided at least three major insights into
statistical theory and practice:

1. Relatively small perturbations from nominal models can have very substantial
deleterious effects on many commonly used statistical procedures and methods (as in
Tukey’s example cited at the beginning of this article).

2. There is a gain in both clarity and generality in considering nonparametric
neighborhoods of a nominal model, and such considerations often suggest optimal
procedures that are especially natural and simple. Huber’s minimax M estimator
serves as a good example in this regard.

3. Robust methods are needed for detecting or accommodating outliers in the
data. (A number of such successful applications are mentioned in the rejoinder to
Rousseeuw and Hubert 1999.)

The discussions in and of Stigler (1977) marked an era of anxiety when we ask
whether robust methods really work with real data. By now, robust methods of various



forms have been in use in almost all areas of statistics and biostatistics and in a broad
variety of scientific fields, including recent ones like computer vision. The question
today is how they can be better used and more widely appreciated.

2. THE FUTURE LIES AHEAD
(Attributed to Governor Brown, 1966)

The best advice for prognosticators is the proverbial, “buy low, sell high.” How-
ever, in the statistical market, mature stocks have gone through their period of explo-
sive growth. In a robust market, some such stocks may continue to pay high dividends.
Some candidates for the advice, “buy high, sell higher,” are the following.

Computational issues, especially for moderately large problems (i.e., with sample
sizen > 1, 000 and parametric dimension p > 10), are sure to remain a major focus of
attention. Computation of an estimator maximizing a multimodal objective function
or solving an equation with multiple roots is generally problematic. When an extensive
search is not practical, approximate algorithms are often used. Some progress has been
made in developing general algorithms (e.g., simulated annealing, genetic algorithms)
and in finding faster algorithms to compute specific robust estimators. As a result,
a number of high-breakdown estimators, such as the least trimmed squares and the
minimum covariance determinant estimator (see Rousseeuw and Van Driessen 1999),
can now be approximately computed much faster than before. However, if the search
is based on random subsamples instead of on all possible candidates, then the resulting
estimator may not share the statistical properties of the mathematical solution. For
example, the idea of a “deepest” point has been used as a robust descriptive means
of identifying the center of a set of observations. Recent work of Rousseeuw and
Hubert (1999) not only has generalized depth to the linear regression setting, but
also has provided a way of defining an estimator of a conditional quantile having
high breakdown and being root-n consistent. There are computational difficulties,
especially if one is to maintain asymptotic distributional properties (as we believe
is necessary). Though it seems possible to obtain a consistent pseudomaximal depth
quantile estimator by searching over ever larger finite subsets of elemental solutions,
the asymptotics developed by Bai and He (1999) would not hold unless the size of the
subsets grows rapidly with the sample size (faster than the order of np/2). This growth
surely precludes computation in moderately large problems. Clearly, new approaches
need to be developed in the future. For estimators of this type, it seems more hopeful
to find computational methods that make good use of the specific properties of the
estimators than to rely on advances in general-purpose optimization algorithms.

Even for convex objective functions, computation in very large samples can be
challenging. Traditionally, computation in such large problems has been restricted to
least squares methods because of timing considerations. Portnoy and Koenker (1997)
recently showed that a combination of stochastic preprocessing and modern interior



point methods can provide an algorithm for L1 estimators in statistical linear models
that is faster than least squares for problems where np > 106 (if p is not too large
compared with n). In general, stochastic preprocessing steps can be extremely useful
both in terms of computation speed, and the ability to analyze the resulting estimator
in statistical terms. Improved computation should permit robust procedures to be used
in computer-intensive areas like data mining.

Asymptotics for increasing parametric dimension also seems a good bet to remain
an active area of research. As suggested by substantial anecdotal evidence and shown
empirically by Koenker (1988), parametric dimension tends to grow inexorably as
the sample size increases. A fairly satisfactory theory for certain M estimators in
regression settings was developed by Portnoy (1985) and many others subsequently,
and some other special cases have been considered (e.g., contingency tables, expo-
nential families, and item response models). However, similar results for more general
procedures in more general models remain to be developed. Present results suggest
that if p is the number of parameters and n is the sample size, then consistency might
be anticipated if p/n → 0. However, asymptotic normality seems to require at least
p2/n → 0, except in cases of somewhat special symmetry. Results for nonsmooth es-
timating equations (like those for regression quantiles) appear especially difficult, and
may require p3/n → 0. Nonetheless, questions of large p asymptotics arise naturally
in a wide variety of multivariate situations, and further work, though theoretically
difficult, will certainly be needed.

Certain minimum distance estimators are known for their robustness without
compromising on asymptotic efficiency. For example, the minimum Hellinger dis-
tance estimator is first-order equivalent to the maximum likelihood estimator but
enjoys a bounded influence function and a high breakdown point at a variety of para-
metric models. This is particularly useful for models with discrete data (see Simpson
1987). For models with continuous data, a smooth density estimate appears to be
needed to compute the Hellinger distance (see Beran 1977; Lindsay 1994). We ex-
pect minimum distance methods to continue to play a role in the development of
robust statistics.

Research on depth and ranks for multivariate data is expected to continue. There is
evidence that work in this area will lead to the development of rank-based multivariate
distribution-free tests and to the understanding of multivariate regression quantiles.
Although they do not fall into the parametric framework of robust statistics, their
interplay with robust statistics must not be ignored. In pursuit of robust procedures,
statisticians have traditionally taken the view of robustifying Gaussian likelihood. It
is also possible to use likelihood directly at a non-Gaussian model. The t-likelihood
has been used in constructing robust estimates in regression (see He, Simpson, and
Wang 2000) and in mixed models (see Welsh and Richardson 1997). This approach
offers some distinctive advantages, including the common appeal of likelihood and
the availability of an objective function (as compared to an estimating equation with



multiple roots). It is highly likely that a shift from super-models to robust models will
offer applied statisticians a more satisfactory solution to robustness needs.

Extensions and applications of insights from robustness will continue to be made
in all areas of statistical research. Clearly, work will continue in such areas as time
series and multivariate analysis seeking procedures robust to distributional perturba-
tion. The problem of outliers has also been recognized recently in the data mining
arena. Some other less studied areas include sequential analysis and design of exper-
iments. More fundamentally, as nominal models become more complex, robustness
to other model departures becomes more important. For example, in nonstationary
models, each observation has its own distribution to be perturbed. Some work on
local bias has application here, and certain models for heteroscedasticity have been
proposed (see Koenker and Zhao 1996) for a recent application to heteroscedastic
time series models). However, it seems extremely hard to imagine how to deal with a
fully nonparametric neighborhood over which all distributions are permitted to vary.
Dependent situations provide a similar problem: Though it is possible to vary the
marginal distribution in stationary time series models, the analysis of fully nonpara-
metric neighborhoods in the space of n-dimensional distributions seems remote even
for stationary nominal models, and may well be hopeless in the nonstationary case.
Nonetheless, the importance and ubiquity of such models suggest the need for further
research and lead us to our final, more speculative prognostications.

As noted earlier, there has been considerable work on finding procedures robust
to marginal distributional perturbation in various dependent models. However, since
the early work of Gastwirth and Rubin (1971) and Portnoy (1977), relatively little
research has been done on robustness to dependent departures from a nominal model.
The problem is defining an appropriate and analyzable neighborhood of dependent
models. One approach from the 1980s considers stationary procedures whose spec-
tra lie in certain “bandwidth-bounded” sets (e.g., Kassam and Poor 1985). The least
favorable distributions are the standard time-domain autoregressive moving average
(ARMA) models. However, in most statistical applications, it is extremely difficult
to relate intuitive properties of reasonable dependent perturbations to the bandwidth
bounds on the spectra. In fact, these bandwidth-bounded processes seem so remark-
ably special as to be inappropriate for most robustness considerations. In our opinion,
fundamentally unsolved problems remain in developing appropriate families of alter-
native dependent models and phrasing appropriate questions whose answers would
clarify robustness. Progress in this area might provide substantial insights and im-
provements in the development of statistical analyses that are not sensitive to the
presence of small but otherwise unknown dependence. Random effects and mixed
models also present a class of models where remarkably little progress has been
made on the robustness front. The difficulty seems clear: Once normality is relaxed,
the choice of an appropriate scale parameter is unclear. Furthermore, nice models for
scale parameters mesh poorly with the additive model for components of variance. For



example, in “repeated measurement” (or “panel data”) models with the effect of the
observation unit being random, a linear model for conditional quantiles at each time
point will no longer be linear across time, because of convolution with the random
effect (except for normal models). Some authors have robustified estimates of vari-
ance components or studied the robustness of standard methods (see, e.g., Richardson
and Welsh 1995), but variances have no special place in nonnormal models. Thus, in
addition to the problem of identifying appropriate neighborhoods, there is the more
fundamental problem of finding and making sense of appropriate parameters. It is
likely that a particular definition must be tailored to each application.

This incomplete list of potential research suggests productive and exciting times
ahead for the robust statistician. We eagerly anticipate the continuing journey.
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Likelihood

N. Reid

1. INTRODUCTION

In 1997 a study conducted at the University of Toronto concluded that the risk of
a traffic accident increased by four-fold when the driver was using a cellular telephone
(Redelmeier and Tibshirani 1997a). The report also stated that such a large increase
was very unlikely to be due to chance, or to unmeasured confounding variables,
although the latter could not be definitively ruled out. Figure 1(a) shows the likelihood
function for the important parameter in the investigators’ model, the relative risk of
an accident. Figure 1(b) shows the log of the likelihood function plotted against
the log of the relative risk. The likelihood function was the basis for the inference
reported. (The point estimate of relative risk from the likelihood function is actually
6.3, although 4.0 was the reported value. The maximum likelihood estimate was
downweighted by a method devised to accommodate some complexities in the study
design.) As with most real life studies, there were a number of decisions related first
to data collection, and then to modeling the observed data, that involved considerable
creativity and a host of small but important decisions relating to details of constructing
the appropriate likelihood function. A nontechnical account of some of these was given
by Redelmeier and Tibshirani (1997c), and a more statistically oriented version was
given by Redelmeier and Tibshirani (1997b). In this vignette I am simply using the
data to provide an illustration of the likelihood function.

Assume that one is considering a parametric model f(y;θ), which is the prob-
ability density function with respect to a suitable measure for a random variable
Y. The parameter is assumed to be k-dimensional and the data are assumed to be n-
dimensional, often representing a sequence of iid random variables:Y = (Y1, . . . Yn).
The likelihood function is defined to be a function of θ, proportional to the model
density,

L(θ) = L(θ; y) = cf(y;θ), (1)

where c can depend on y but not on θ. Within the context of the given parametric
model, the likelihood function measures the relative plausibility of various values
of θ, for a given observed data point y. The notation for the likelihood function
emphasizes that the parameter θ is the quantity that varies, and that the data value
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is considered fixed. The constant of proportionality in the definition is needed, for
example, to accommodate one-to-one transformations of the random variable Y that
do not involve θ, as these clearly should have no effect on our inference about θ.
Another way to say the same thing is that the likelihood function is not calibrated in
θ, or that only relative values L(θ1)/L(θ2) are well determined.

Figure 1. Likelihood and Log-Likelihood Function for the Relative Risk; Based on Redelmeier and Tib-
shirani (1997c).



The likelihood function was proposed by Fisher (1922) as a means of measuring
the relative plausibility of various values of θ by comparing their likelihood ratios.
When θ is one- or two-dimensional, the likelihood function can be plotted and pro-
vides a visual assessment of the set of likelihood ratios. Several authors, beginning
with Fisher, suggested that ranges of plausible values for θ can be directly determined
from the likelihood function, first by determining the maximum likelihood estimate,
θ̂ = θ̂(y), the value of θ that maximizes L(θ; y), and then using as a guideline

L(θ̂)/L(θ) ∈ (1, 3), very plausible;

L(θ̂)/L(θ) ∈ (3, 10), somewhat implausible;

and

L(θ̂)/L(θ) ∈ (10,∞) highly implausible.

The ranges suggested here are taken from Kass and Raftery (1995), attributed to
Jeffreys. Other authors have suggested different cutoff points; for example, Fisher
(1956, p. 71) suggested using 2, 5, and 15, and Royall (1997) suggested 4, 8, and
32. General introductions to the definition of the likelihood function and its informal
use in inference were given by Fisher (1956), Edwards (1972), Kalbfleisch (1985),
Azzalini (1996), and Royall (1997).

2. LIKELIHOOD FUNCTION AND INFERENCE

2.1 Bayesian Inference

Although the use of likelihood as a plausibility scale is sometimes of interest,
probability statements are usually preferred in applications. The most direct way to
obtain these is by combining the likelihood with a prior probability function for θ,
to obtain a posterior probability function,

π(θ|y) ∝ π(θ)L(θ; y), (2)

where the constant of proportionality is
∫
π(θ)L(θ; y) dθ.

This leads directly to Bayesian inferences of this sort: Using the prior density
π(θ), we conclude that values of θ greater than θU have posterior probability less
than .05 and are hence inconsistent with the model and the prior. Jeffreys (1961)
emphasized this use of the likelihood function, and investigated the possibility of using
“flat” or “noninformative” priors. He also suggested the plausibility range described
earlier, in the context of Bayesian inference with a flat prior.

One difficulty in applying Bayesian inference is in constructing a suitable prior,
and interest has been renewed in the construction of noninformative priors, which lead



to posterior probability intervals that are in one way or another minimally affected by
the prior density. One example of a noninformative prior is one for which the posterior
probability limit θU described in the previous paragraph does in fact lead to an interval
that, when considered as a confidence interval, has (at least approximately) coverage
equal to its posterior probability content. If θ is a scalar parameter, then the appropriate
prior is Jeffreys’s prior π(θ) ∝ {i(θ)}1/2, where i(θ) is the Fisher information in the
model f(y; θ),

i(θ) = E

{
∂L(θ;Y )

∂θ

}2

=
∫ {

∂L(θ; y)
∂θ

}2

f(y; θ) dy. (3)

This result was derived by Welch and Peers (1963) in response to a question raised by
Lindley (1958). Unfortunately, there is no satisfactory general prescription for such
a probability matching prior when θ is multidimensional. Another type of noninfor-
mative prior, motivated rather differently, is the reference prior of Bernardo (Berger
and Bernardo 1992). Kass and Wasserman (1996) provided an excellent review of
noninformative priors.

Another difficulty in applying Bayesian inference with multidimensional param-
eters, or in more complex situations, is the high-dimensional integration needed either
to evaluate the normalizing constant in (2) or to compute marginal posterior densi-
ties for particular parameters of interest from the multidimensional posterior. These
difficulties have largely been solved by the introduction of a number of numerical
methods, including importance sampling and Markov chain Monte Carlo (MCMC)
methods. An introduction to Gibbs sampling was given by Casella and George (1992);
see also the vignettes on Gibbs sampling and MCMC methods in this issue.

Bayesian inference respects the so-called likelihood principle, which states that
inference from an experiment should be based only on the likelihood function for
the observed data. Any inference that uses the sampling distribution of the likelihood
function, as described in the next section, does not obey the likelihood principle. The
discovery by Birnbaum (1962) that the principles of sufficiency and conditionality
imply the likelihood principle led to considerable discussion in the 1960s and 1970s
on various aspects of the foundations of inference. A good overview was provided
by Berger and Wolpert (1984). More recently, there has been less interest in these
foundational issues.

2.2 Classical Inference

Frequentist probability statements can be constructed from the likelihood func-
tion by considering the sampling distribution of the likelihood function and derived
quantities. In fact, this is practically necessary from a frequentist standpoint, because
the likelihood map is sufficient, which in particular implies that the minimal sufficient
statistic in any model is determined by the likelihood map L(θ; ·). This is why, for
example, the Neyman–Pearson lemma concludes that the most powerful test depends



on the likelihood ratio statistic.
The conventional derived quantities for a parametric likelihood function are the

score function

l′(θ) = ∂ logL(θ)/∂θ, (4)

the maximum likelihood estimate

sup
θ
l(θ) = l(θ̂), (5)

and the observed Fisher information

j(θ̂) = −∂2l(θ)/∂θ2|θθθ=θ̂θθ, (6)

where l(θ) = logL(θ) is the log-likelihood function.
In the case where Y = (Y1, . . . , Yn) is a sample of iid random variables, the

log-likelihood function is a sum of n iid quantities, and under some conditions on
the model a central limit theorem can be applied to the score function (4). More
general sampling, such as (Y1, . . . , Yn) independent, but not identically distributed,
or weakly dependent, can be accommodated if the model satisfies enough regularity
conditions to ensure a central limit theorem for a suitably standardized version of the
score function. Under many types of sampling, the score function is a martingale, and
the martingale central limit theorem can be applied. Thus for a wide class of models,
the following results can be derived:

l′(θ)T {j(θ̂)}l′(θ) d→ χ2
p, (7)

(θ̂ − θ)T {j(θ̂)}−1(θ̂ − θ) d→ χ2
p, (8)

and

2{l(θ̂) − l(θ)} d→ χ2
p, (9)

whereχ2
p is the chi-squared distribution onpdegrees of freedom andp is the dimension

of θ.
Similar results are available for inference about component parameters: writing

θ = (ψ,λ), and letting λ̂ψψψ denote the restricted maximum likelihood estimate of λ
for ψ fixed,

sup
λλλ
l(ψ,λ; y) = l(ψ, λ̂ψ; y) = lp(ψ), (10)

one has, for example,

2{l(ψ̂, λ̂) − l(ψ, λ̂ψψψ)} d→ χ2
q, (11)



where q is the dimension ofψ. The function lp(ψ) defined in (10) is called the profile
log-likelihood function.

These limiting results are taken as the size of the sample, n, in an independent
sampling context, increases, with the dimension of θ held fixed. More generally,
limit statements can be derived for the limit as the amount of Fisher information in
Y increases.

The approximations suggested by these limiting results, such as

θ̂
·∼ N{θ, j(θ̂)}, (12)

called first-order approximations, are widely used in practice for inference about θ.
The development of high-speed computers throughout the last half of the 20th cen-
tury has enabled accurate and fast computation of maximum likelihood estimators in
a wide variety of models, and most statistical packages have general-purpose routines
for calculating derived likelihood quantities. This has meant in particular that devel-
opment of alternative methods of point and interval estimation derived in the first half
of the century is less important for applied work than it once was.

2.3 Likelihood as Pivotal

A major development in likelihood-based inference of the past 20 years is the
discovery that the likelihood function can be used directly to provide an approximate
sampling distribution for derived quantities that is more accurate than approximations
like (12). The main result, usually called Barndorff-Nielsen’s approximation, was
initially developed in a series of articles in the August 1980 issue of Biometrika
(Barndorff-Nielsen; Cox; Durbin; Hinkley), all of which derived in one version or
another that

f(θ̂;θ|a) .= c|j(θ̂)|1/2 exp{l(θ̂) − l(θ)}. (13)

The right side of (13) is often called Barndorff-Nielsen’s p∗ approximation. This
formula generalizes an exact result for location models due to Fisher (1934). The
renormalizing constant c is equal to (2π)−p/2{1+O(n−1)}. In some generality, (13)
is a third-order approximation, meaning the ratio of the right side to the true sampling
density of θ̂ (given a) is 1 + O(n−3/2). Despite its importance, a rigorous proof of
(13) is not yet available, although Skovgaard (1990) gave a very careful and helpful
derivation. It is necessary to condition on a statistic a so that (13) is meaningful,
because the likelihood function appearing on the right side depends on the data y,
yet it is being used as the sampling distribution for θ̂. The role of a is to complete
a one-to-one transformation from y to (θ̂,a). For (13) to be useful for inference, a
must have a distribution either exactly or approximately free of θ; otherwise, we have
lost information about θ in reducing to the conditional model.

The importance of (13) for the theory of inference is that it shows that the distri-
bution of the maximum likelihood estimator (and other derived quantities) is obtained



to a very high order of approximation directly from the likelihood function, as it is in
a location model.

A result related to (13) and more directly useful for inference is the approximation
of the cumulative distribution function for θ̂. In the case where θ is a scalar, this is
expressed as

Pr(Θ̂ ≤ θ̂; θ|a) = F (θ̂; θ|a) .= Φ(r) + φ(r)
(

1
r

− 1
q

)
, (14)

where

r = sign(q)
√

[2{l(θ̂) − l(θ)}] (15)

and

q = {l;θ̂(θ̂) − l;θ̂(θ)}{j(θ̂)}−1/2, (16)

where l;θ̂(θ) = ∂l(θ; θ̂,a)/∂θ̂. As with (13), this is an approximation with relative
error O(n−3/2). Two advantages of (14) over (13) are that it gives tail areas or p-
values directly, and that it depends on a rather weakly, through a first derivative on
the sample space. Approximation (14) shows that the first-order approximation to
the likelihood ratio statistic [the scalar parameter version of (9)] provides the leading
term in an asymptotic expansion to its distribution, that the next term in the expansion
is easily computed directly from the likelihood function, and that in frequentist-based
inference, the sample space derivative of the log-likelihood function plays an essential
role. This last result has the potential to clarify (and also narrow) the difference
between frequentist and Bayesian inference. Approximation (14) is often called the
Lugannani and Rice approximation, as a version for exponential families was first
developed by Lugannani and Rice (1980). There are analogous versions of (14), (15),
and (16) for inference about a scalar component of θ in the presence of a nuisance
parameter; a partial review was given by Reid (1996), and more recent work was
presented by Barndorff-Nielsen and Wood (1998), Fraser, Reid, and Wu (1999), and
Skovgaard (1996). (See also the approximations vignette by R. Strawderman.)

3. PARTIAL LIKELIHOOD AND ALL THAT

3.1 Nuisance Parameters

I defined at (10) the profile log-likelihood function lp(ψ), which is often used
in problems in which the parameter of the model θ is partitioned into a parameter of
interest ψ and a nuisance parameter λ. Typically λ is introduced into the model to
make it more realistic. More generally, one can define

lp(ψ) = sup
ψψψ=ψψψ(θθθ)

l(θ). (17)



The profile likelihood is not a real likelihood function, in that it is not proportional
to the sampling distribution of an observable quantity. However, there are limiting
results analogous to (7)–(9), such as (11), that continue to provide first-order ap-
proximations. These approximations are expected to be poor if the dimension of the
nuisance parameter λ is large relative to n, as it is known that the results break down
if the dimension of θ increases with n. More intuitively, because no adjustment is
made for errors of estimation of the nuisance parameter in (10) or (17), it is likely
that the apparent precision of (10) or (17) is overstated. Several methods have been
suggested for constructing a likelihood function better suited to problems with nui-
sance parameters. Some models may contain a conditional or marginal distribution
that contains all the information about the parameter of interest, or is at least free
of the nuisance parameter, and this density provides a true conditional or marginal
likelihood. In fact, Figure 1 is a plot of the conditional likelihood of a component of
the minimal sufficient statistic for the model, this likelihood depending only on the
relative risk of an accident and not on nuisance parameters describing the background
risk. More precisely, that model has the factorization

f(y;ψ,λ) ∝ f(s|t;ψ)f(t;ψ,λ), (18)

and Figure 1 shows Lc(ψ) ∝ f(s|t;ψ). The justification for ignoring the term
f(t;ψ,λ) is not entirely clear and not entirely agreed on, although the claim is
usually made that this component contains “little” information aboutψ in the absence
of knowledge of λ. A review of some of this work was given by Reid (1995).

In models where a conditional or marginal likelihood is not available, a natural
alternative is a suitably defined approximate conditional or marginal likelihood, and
approximation (13) has led to several suggestions for modified profile likelihoods.
These typically have the form

lm(ψ) = lp(ψ) − 1
2

|jλλλλλλ(ψ, λ̂ψψψ)| +B(ψ) (19)

for some choice of B(·) of the same asymptotic order as the second term in (18),
typically Op(1). The original modified profile likelihood is due to Barndorff-Nielsen
(1983); Cox and Reid (1987) suggested using (18) withB(ψ) = 0, and several other
versions have been proposed. Brief overviews were given by Mukerjee and Reid
(1999) and Severini (1998).

3.2 Partial Likelihood

In more complex models there is often a partition analogous to (18), say

L(θ; y) = L1(ψ; y)L2(ψ,λ; y) (20)

where it seems intuitively obvious that the second component cannot provide infor-
mation aboutψ in the absence of knowledge of λ. The most famous model for which



this is the case is Cox’s proportional hazards model for failure time data, where L1

depends on the observed failure times and L2 depends on the failure process between
observed failure times. Cox (1972) proposed basing inference about the parameters
of interest on L1, which he called a conditional likelihood, later changed to partial
likelihood (Cox 1975). Cox (1972) also showed that a martingale central limit theo-
rem could be applied to the score statistic computed from L1, leading to asymptotic
normality for derived quantities such as the partial maximum likelihood estimate.

There are many related models where a partial likelihood leads to an adequate
first-order approximation (Andersen, Borgan, Gill, and Keiding 1993; Murphy and
van der Vaart 1997). There is not yet a theory of higher-order approximations in
this setting, however. Likelihood partitions, such as (20), were discussed in some
generality by Cox (1999).

3.3 Pseudolikelihood

One interpretation of partial likelihood is that the probability distribution of only
part of the observed data is modeled, as this makes the problem tractable and with luck
provides an adequate first-order approximation. A similar construction was suggested
for complex spatial models by Besag (1977), using the conditional distribution of the
nearest neighbors of any given point, and using the product of these conditional
distributions as a pseudolikelihood function. A more direct approach to likelihood
inference in spatial point processes was described by Geyer (1999).

3.4 Quasi-Likelihood

The last 30 years have also seen the development of an approach to modeling that
does not specify a full probability distribution for the data, but instead specifies the
form of, for example, the mean and the variance of each observation. This viewpoint is
emphasized in the development of generalized linear models (McCullagh and Nelder
1989) and is central to the theory of generalized estimating equations (Diggle, Liang,
and Zeger 1994). A quasi-likelihood is a function that is compatible with the specified
mean and variance relations. Although it may not exist, when it does, it has in fairly
wide generality the same asymptotic distribution theory as a likelihood function (Li
and McCullagh 1994; McCullagh 1983).

3.5 Likelihood and Nonparametric Models

Suppose that we have a model in which we assume that Y1, . . . Yn are iid from
a completely unknown distribution function F (·). The natural estimate of F (·) is the



empirical distribution function,

Fn(y) =
1
n

n∑
i=1

1{Yi ≤ y}. (21)

Although it is not immediately clear what the likelihood function or likelihood ratio
is in a nonparametric setting, for a suitably defined likelihood Fn(·) is the maximum
likelihood estimator of F (·). This was generalized to much more complex sampling,
including censoring, by Andersen et al. (1993).

The empirical distribution function plays a central role in two inferential tech-
niques closely connected to likelihood inference: the bootstrap and empirical like-
lihood. The nonparametric bootstrap uses samples from Fn for constructing an in-
ference, usually by Monte Carlo resampling. The parametric bootstrap uses samples
from F (·; θ̂), where θ̂ is the maximum likelihood estimator. There is a close con-
nection between the parametric bootstrap and the asymptotic theory of Section 2.3,
although the precise relationship is still elusive. A good review was given by DiCiccio
and Efron (1996).

An alternative to the nonparametric bootstrap is the empirical likelihood function,
a particular type of profile likelihood function for a parameter of interest, treating
the distribution of the data otherwise as the nuisance “parameter.” The empirical
likelihood was developed by Owen (1988), and has been shown to have an asymptotic
theory similar to that for parametric likelihoods.

Empirical likelihood and likelihoods related to the bootstrap were described by
Efron and Tibshirani (1993).

4. CONCLUSION

Whether from a Bayesian or a frequentist perspective, the likelihood function
plays an essential role in inference. The maximum likelihood estimator, once regarded
on an equal footing among competing point estimators, is now typically the basis for
most inference and subsequent point estimation, although some refinement is needed
in problems with large numbers of nuisance parameters. The likelihood ratio statistic
is the basis for most tests of hypotheses and interval estimates. The emergence of the
centrality of the likelihood function for inference, partly due to the large increase in
computing power, is one of the central developments in the theory of statistics during
the latter half of the 20th century.
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Conditioning, Likelihood, and Coherence:
A Review of Some Foundational Concepts

James Robins and Larry Wasserman

1. INTRODUCTION

Statistics is intertwined with science and mathematics but is a subset of neither.
The “foundations of statistics” is the set of concepts that makes statistics a distinct
field. For example, arguments for and against conditioning on ancillaries are purely
statistical in nature; mathematics and probability do not inform us of the virtues of
conditioning, but only on how to do so rigorously. One might say that foundations is
the study of the fundamental conceptual principles that underlie statistical methodol-
ogy. Examples of foundational concepts include ancillarity, coherence, conditioning,
decision theory, the likelihood principle, and the weak and strong repeated-sampling
principles. A nice discussion of many of these topics was given by Cox and Hinkley
(1974).

There is no universal agreement on which principles are “right” or which should
take precedence over others. Indeed, the study of foundations includes much debate
and controversy. An example, which we discuss in Section 2, is the likelihood prin-
ciple, which asserts that two experiments that yield proportional likelihood functions
should yield identical inferences. According to Birnbaum’s theorem, the likelihood
principle follows logically from two other principles: the conditionality principle and
the sufficiency principle. To many statisticians, both conditionality and sufficiency
seem compelling yet the likelihood principle does not. The mathematical content of
Birnbaum’s theorem is not in question. Rather, the question is whether conditionality
and sufficiency should be elevated to the status of “principles” just because they seem
compelling in simple examples. This is but one of many examples of the type of
debate that pervades the study of foundations.

This vignette is a selective review of some of these key foundational concepts.
We make no attempt to be complete in our coverage of topics. In Section 2 we
discuss the likelihood function, the likelihood principle, the conditionality principle,
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and the sufficiency principle. In Section 3 we briefly review conditional inference. In
Section 4 we discuss Bayesian inference and coherence. In Section 5 we provide a
brief look at some newer foundational work that suggests that in complex problems,
the conditionality principle, the likelihood principle, and coherence arguments may
be less compelling than in the low-dimensional problems, where they are usually
discussed.

2. THE LIKELIHOOD FUNCTION AND THE LIKELIHOOD
PRINCIPLE

Consider a random variable Y and a model M = {pθ(·); θ ∈ Θ} for the dis-
tribution of Y . Here each pθ(·) is a density for Y, θ is an unknown parameter, and
the parameter space Θ is a subset of Rk. Assume that we have n iid replicates of Y
denoted by Y n = (Y1, . . . , Yn), generated from pθ0 , where θ0 ∈ Θ denotes the true
value of the unknown parameter θ. Fisher (1921, 1925, 1934) defined the likelihood
function as

Ln(θ) =
n∏
i=1

pθ(Yi).

Of course, the likelihood function appeared implicitly much earlier in the work of
Bayes and Laplace, who used what we now call Bayesian inference to solve statistical
problems. But it was Fisher who first emphasized the essential role of the likelihood
function itself in inference. (See Aldrich 1997, Edwards 1997, and Fienberg 1997,
for discussions on the history of likelihood.)

From a Bayesian perspective, inferences are based on the posterior p(θ|Y n) ∝
Ln(θ)π(θ), where π(θ) is a prior distribution for θ. In the Bayesian framework, the
data enter the inferences only through the likelihood function.

From a frequentist perspective, the likelihood is a source of point and inter-
val estimators. For example, the maximum likelihood estimator (MLE) θ̂n—the
point at which Ln(θ) takes its maximum—is known, under weak conditions, to
be asymptotically normal with the smallest possible asymptotic variance. The set
Cn(c) = {θ; Ln(θ)/Ln(θ̂n) ≤ c} gives the asymptotically shortest, 1 − α confi-
dence set if c is chosen appropriately, if θ is scalar.

The likelihood function is central to many statistical analyses. More controversial
is the role of the likelihood principle (LP). The LP says that when two experiments
yield proportional likelihoods they should yield identical inferences. This principle
of inference is accepted as a guiding principle by some statisticians but is considered
unreasonable by others. Most forms of frequentist inference, such as significance
testing and confidence intervals, violate the LP and so are ruled out if one wishes to
follow the LP. For example, consider the likelihood-based confidence interval Cn(c)
defined earlier. Suppose that two different experiments yielded proportional likeli-



hoods. Then the form of the interval Cn(c) would be the same in the two experiments,
but the coverage probability ascribed to Cn(c) could be different, thus violating the
LP.

A famous example that illustrates the likelihood principle involves binomial
versus negative binomial sampling. Suppose that we want to estimate the probability
θ of “heads” for a coin. In the binomial experiment, we toss the coin n times and
observe the number of “heads” Y . Here n is fixed and Y is random. In the negative
binomial experiment, we observe the number of tossesN required to obtain y “heads.”
Here N is random and y is fixed. Suppose that we observe 3 heads in 5 tosses. Under
binomial sampling, these data yield the likelihood function

L1(θ) =
(

5
3

)
θ3(1 − θ)2.

Under negative binomial sampling, the likelihood function is

L2(θ) =
(

4
2

)
θ3(1 − θ)2.

As functions of θ, these likelihood functions are proportional, so any method that
obeys the likelihood principle should yield identical inferences about θ regardless
of whether the data were obtained by binomial or negative binomial sampling. Fre-
quentist confidence intervals violate the likelihood principle, because the coverage of
an interval is evaluated under hypothetical repetitions of the experiment. The set of
possible outcomes in these hypothetical repetitions will differ, depending on whether
binomial or negative binomial sampling is used. An interesting discussion of this
problem was provided by Lindley and Phillips (1976).

Birnbaum (1962) showed that the likelihood principle follows logically from
two other principles: the conditionality principle (CP) and the sufficiency principle
(SP). A clear exposition of the details of Birnbaum’s theorem and its implications
was given by Berger and Wolpert (1984). This and the next section draw heavily from
that monograph (see also Cox and Hinkley 1974).

The conditionality principle (Cox 1958) says that if we decide which of two
experiments to do by the flip of a fair coin, then the final inference should be the
same as if the experiment had been chosen without flipping the coin. More formally,
the (weak) form of CP can be described as follows. Suppose that we consider two
experiments, E1 and E2, for the same parameter θ. We flip a fair coin and perform
E1 if the coin is “heads” and perform E2 if the coin is “tails.” This is called a “mixed
experiment.” CP asserts that if we obtain “heads” and perform E1, then our inferences
should be identical to the inferences that we would make if E1 were performed
without first flipping the coin (and similarly for E2). The outcome of the coin flip
is an example of an ancillary statistic; that is, a statistic whose distribution does not
depend on the unknown parameter. The sufficiency principle says that two outcomes



of an experiment that yield the same value of a sufficient statistic should yield identical
inferences. Many statisticians find CP and SP quite appealing, yet they do not find
LP appealing, despite the fact the LP follows logically from these two principles. In
fact, Evans, Fraser, and Monette (1986) since showed that LP follows from a slightly
stronger version of CP alone.

The LP and CP have many supporters and detractors. Often, statisticians who find
Bayesian methods appealing favor the LP. A non-Bayesian approach that obeys the LP
was given by Edwards (1972). Those who prefer frequentist methods, as developed
by Neyman, Wald, and others, find LP less compelling. Let us add our own point of
view. The CP seems compelling in simple examples, provided that the experiment
performed gives no additional information about the parameter beyond that contained
in the data. In Section 5 we show that the CP is less compelling in high-dimensional
models.

3. CONDITIONING, ANCILLARITY, AND
RELEVANT SUBSETS

In the preceding section, when we discussed the conditionality principle, it
seemed natural that inferences in the mixed experiment should be made conditionally
on the value of the coin flip. Such inferences would then obey CP. This raises a more
general question: Should inferences be carried out conditionally on an appropriate
statistic? Inferences made conditional on some statistic go under the rubric of “con-
ditional inference.” Conditional inference can be traced back to Fisher (1956), Cox
(1958), and others. The appeal of conditioning is evident from the following simple
example (example 1 of Berger and Wolpert 1984). We observe two iid random vari-
ables Y1 and Y2, where Pθ(Yi = θ − 1) = Pθ(Yi = θ + 1) = 1/2, i = 1, 2. Here θ

is an unknown real number. Let C = {(Y1 + Y2)/2} if Y1 �= Y2 and C = {Y1 − 1}
otherwise. C is a 75% confidence set, although, unlike the typical confidence set, it
contains only a single point. Thus Pθ(θ ∈ C) = .75 for all θ. But when Y1 �= Y2,
we are certain that θ ∈ C and when Y1 = Y2, C contains θ 50% of the time; that
is, Pr(θ ∈ C|Y1 = Y2) = 1/2. This suggests partitioning the sample space into
{B,Bc}, where B = {Y1 �= Y2}, and then reporting different inferences depending
on whether B occurs or does not occur. This is equivalent to reporting inferences
conditional on the statistic S = |Y1 − Y2|. The example is meant to suggest that
inferences will be more intuitively plausible if they are performed conditional on an
appropriate statistic.

If we accept that inferences should sometimes be conditional on something, then
that raises the question of what we should condition on. The most common choices to
condition on are ancillary statistics and relevant subsets. Both concepts were discussed
by Fisher (1956).

An ancillary statistic is a statistic whose distribution does not depend on θ. In the



foregoing example, S = |Y1 −Y2| is ancillary, and it seems quite reasonable to report
a confidence of 1 when S = 1 and a confidence of .50 when S = 0. Specifically, we
report Pθ(θ ∈ C|S = 1) = 1 and Pθ(θ ∈ C|S = 0) = .5. The coin flip in the mixed
experiment described in Section 2 is another example of an ancillary statistic.

Consider a 1 − α confidence set C(Y ); that is, Pθ(θ ∈ C(Y )) = 1 − α for
all θ. We say that B is a relevant subset if there is some ε > 0 such that either
Pθ(θ ∈ C(Y )|Y ∈ B) ≤ (1−α)−ε for all θ orPθ(θ ∈ C(Y )|Y ∈ B) ≥ (1−α)+ε

for all θ. If a relevant subset exists, then it seems tempting to report different inferences
depending on whether Y ∈ B or Y �∈ B. Buehler and Fedderson (1963) and Brown
(1967) showed that there exists a relevant subset even for the familiar Student t

intervals for the mean of a normal. Thus the existence of relevant subsets is far from
pathological.

Bayesian inference is an extreme form of conditional inference, because the pos-
terior conditions on the data itself, as opposed to a conditioning on some statistic.
There have been attempts to build formal, non-Bayesian theories of conditional infer-
ence. The best-known attempt is probably that of Kiefer (1977). Other contributions
have come from Brown (1967, 1978), Buehler (1959), Casella (1987), Cox (1958,
1980), Fraser (1977), and Robinson (1976, 1979). The main idea is to partition the
sample space as Y = ∪sYs and report conditional confidencePθ(θ ∈ C(Y )|Y ∈ Ys)
when Y ∈ Ys.

Conditional inference is appealing because it seems to solve the apparently coun-
terintuitive results like those in the simple example presented at the beginning of this
section. Nevertheless, in many models there is no known ancillary or relevant subset
on which to condition, or there may be many ancillaries, in which case it is not clear
on which to condition. One way to extend the applicability of conditional inference
when there is no exact ancillary is to use approximate conditional inference, in which
one conditions on a statistic that is asymptotically ancillary (see, e.g., Amari 1982;
Barndorff-Nielsen 1983; Cox 1988; Cox and Reid 1987; DiCiccio 1986; Efron and
Hinkley 1978; Robins and Morgenstern 1987; Severini 1993; Sweeting 1992).

Brown (1990) and Foster and George (1996) gave examples in which an estimator
is admissible conditional on an ancillary statistic but is unconditionally inadmissi-
ble. Such examples show explicitly that procedures that obey the CP can have poor
unconditional properties. We discuss this point further in Section 5.

Another situation where conditioning has received attention is in the problem
of estimating a common odds ratio ψ in a series of 2 × 2 tables. Specifically, we
observe independent binomial random variables X0k ∼ bin(n0k, p0k) and X1k ∼
bin(n1k, p1k) k = 1, . . . ,K, where p1k = p0k/(p0k +ψ(1 − p0k)). The likelihood is
L1(ψ)L2(ψ,p0), where

L1(ψ) = f(X1|X+;ψ) =
K∏
k=1

f(X1k|X+k;ψ)



and

L2(ψ,p0) = f(X+;ψ,p0) =
K∏
k=1

f(X+k;ψ, p0k),

where p0 = (p01, . . . , p0K),X1 = (X11, . . . , X1k),X+ = (X+1, . . . , X+K), and
X+k = X0k + X1k. Now the set of row totals X+ is not S ancillary for ψ; that is,
there is no global reparameterization (ψ, θ) such thatψ and θ are variation independent
(i.e., the parameter space is a product space) and such that f(X+;ψ, θ) = f(X+; θ).
Thus the CP does not imply that inference for ψ should be performed conditional
on X+. However, it has been argued that inference for ψ (conditional or uncondi-
tional) should be based on the conditional likelihood L1(ψ) if the marginal likelihood
L2(ψ,p0) contains no independent information about ψ when p0 is unknown. The
conditional MLE maximizing L1(ψ) is asymptotically efficient for ψ both in large-
stratum asymptotics, in which n0k → ∞ and n1k/n0k → ck for each k and in a
sparse data asymptotics, in which K → ∞, n1k and n0k are bounded and the p0k

are drawn independently from a common distribution (Bickel, Klaassen, Ritov, and
Wellner 1993; Lindsay 1980). Thus, asymptotically, L2(ψ,p0) contains no additional
information aboutψ. However, Sprott (1975) provided an interesting example to show
that L2(ψ,p0) can contain some information about ψ. He considered the special case
where n1k = n0k = 1. Suppose that only X+ is observed and X+k = 1 for all k.
Then he argued that for largeK, the hypothesisψ = 1 can be rejected, because for any
p0k, the probability that X+k = 1 when ψ = 1 can never exceed 1/2. Of course, the
information about ψ contained in the marginal law of X+ is asymptotically negligible
as K → ∞ compared to that in L1(ψ), because the conditional MLE is efficient.

Finally, we should add that conditioning is used for other reasons as well;
for example, in the construction of similar tests (Cox and Hinkley 1974, chap. 5;
Lehmann 1986, chap. 4). A general discussion of conditional inference was provided
by Lehmann (1986, chap. 10).

4. COHERENCE AND BAYESIAN INFERENCE

Some researchers have attempted to create a foundationally sound method of
inference by stating axioms for inference and then characterizing all inferential meth-
ods that satisfy these axioms. Often, such axioms are called axioms of coherence, as
they are meant to capture what a coherent (i.e., self-consistent) inference is. Usually,
these arguments lead to conclusions of the form that inferences are coherent if and
only if they are Bayesian. It may appear that this line of research has had a greater
impact on statistical practice than conditioning arguments, because Bayesian methods
have become increasingly popular in practice, whereas conditional inference has not.
However, we believe the increasing use of Bayesian methods has more to do with



their conceptual simplicity as well as advances in computing than with the coherence
arguments. Still, these arguments do add interesting insight into inferential issues.

There are many versions of coherence arguments (see, e.g., de Finetti 1974, 1975;
Freedman and Purves 1969; Heath and Sudderth 1978, 1989; Jeffreys 1961; Ramsey
1930; Regazzini 1987; Savage 1954). Here we describe the Heath–Sudderth approach.
We begin with a model {Pθ; θ ∈ Θ}, where each Pθ is a probability distribution for a
random variable Y . An inference Q is a map that assigns a (possibly finitely additive)
probability measure Qy over Θ to each outcome y. The function Qy is regarded
as a set of probabilities from which bets are made about θ after observing Y = y.
An inference Q is called “coherent” if it is impossible to place a finite number of
bets on subsets of Θ on observing Y = y, which have a strictly positive expected
payoff. Heath and Sudderth proved that an inference Q is coherent if and only if it is a
posterior for some, possibly finitely additive, priorπ over Θ. Formally,Q is a posterior
distribution for the prior π, if for every bounded, measurable function φ(θ, y),

∫ ∫
φ(θ, y)Pθ(dy)π(dθ) =

∫ ∫
φ(θ, y)Qy(dθ)m(dy).

Here, m is the marginal distribution for Y induced by the model and prior; that is,∫
g(y)m(dy) =

∫ ∫
g(y)Pθ(dy)π(dθ) for every bounded, measurable function g(y).

The implication is that inferences are coherent if and only if they are Bayesian.
Such results increase the appeal of Bayesian methods to many statisticians. Of course,
the results are only as compelling as the axioms. Given the choice between a method
that is coherent and a method that has, say, correct frequentist coverage, many statisti-
cians would choose the latter. The issue is not mathematical in nature. The question is
under which circumstances one finds coherence or correct coverage more important.

In some cases it is possible both to be coherent and to have good frequentist
properties, in large samples. Indeed, in a finite-dimensional model, with appropriate
regularity conditions, the following facts are known. Let θ̂n be the MLE, let θ̄ be
the posterior mean, and let Q(dθ|Y n) be the posterior based on n iid observations
Y n = (Y1, . . . , Yn). Then the following hold:

1. θ̄n − θ̂ = OP (n−1).
2. There exist regions Cn such that both

∫
Cn

Q(dθ|Y n) = 1 − α, and Cn has
frequentist coverage 1 − α + O(n−1).

3. If N is any open, fixed Euclidean neighborhood of the true value θ0, then∫
N
Q(dθ|Y n) tends to 1 almost surely.
4. The posterior concentrates around the true value θ0 at rate n−1/2; that is,

Q({θ; |θ − θ0| ≥ ann
−1/2}|Y n) = oP (1) for any sequence an → ∞.

In words, (1) the MLE and posterior mean are asymptotically close, (2) Bayesian
posterior intervals and confidence intervals agree asymptotically, (3) the posterior is
consistent, and (4) the posterior converges at the same rate as the maximum likelihood
estimate. Facts 1, 3, and 4 follow from standard asymptotic arguments (see, Schervish



1995). Fact 2 was shown by Welch and Peers (1963), for the more difficult one-sided
case.

In infinite-dimensional models, the situation is less clear. Consistency is some-
times attainable and sometimes not (see, e.g., Barron 1988; Barron, Schervish, and
Wasserman 1999; Diaconis and Freedman 1986, 1990, 1993, 1997; Doob 1949; Freed-
man 1963, 1965; Freedman and Diaconis 1983; Ghosal, Ghosh, and Ramamoorthi
1999; Schwartz 1960, 1965) for example. Similarly, good rates of convergence are
sometimes possible (see Ghosal, Ghosh, and van der Vaart 1998; Shen and Wasserman
1998; Zhao 1993, 1998). The issue of matching posterior probability and frequentist
coverage has received less attention. While some negative results were reported by
Cox (1993), this topic remains mostly unexplored territory.

5. A LOOK TO THE FUTURE: FOUNDATIONS IN
INFINITE-DIMENSIONAL MODELS

For the most part, foundational thinking has been driven by intuition based on
low-dimensional parametric models. But in modern statistical practice, it is routine to
use high-dimensional or even infinite-dimensional (nonparametric or semiparametric)
methods. There is some danger in extrapolating our intuition from finite-dimensional
to infinite-dimensional models. Should we rethink foundations in light of these meth-
ods? Here we argue that the answer is “yes.” We summarize an example that was
discussed in great detail by Robins and Ritov (1997). To keep things brief and simple,
we give a telegraphic version and omit the details; see the Robins and Ritov article
for a full discussion. Although it will not be immediately obvious, the example stems
from a real problem—the analysis of treatment effects in randomized trials. See also
Robins, Rotnitzky, and Van der Laan (2000).

Let (X1, Y1), . . . , (Xn, Yn) be n iid copies of a random vector (X,Y ), where X

is continuous taking values in the k-dimensional unit cube X = (0, 1)k and Y given
X = x is normal with mean θ0(x) and variance 1. The conditional mean function θ0:
(0, 1)k → R is assumed to be continuous and to satisfy supx∈(0,1)k |θ(x)| ≤ M for
some known positive constant M . Let Θ denote all such functions. The density f0(x)
of X is assumed to belong to the set of densities

FX = {f ; c < f(x) < 1/c for x ∈ X},
where c ∈ (0, 1) is a fixed constant. Our goal is to estimate the parameter ψ0 =∫

X θ0(x) dx. A pair (θ, f) completely determines a law of (X,Y ). The likelihood
function is

L(θ, f) = L1(θ)L2(f)

=

{
n∏
i=1

φ(Yi − θ(Xi))

}{
n∏
i=1

f(Xi)

}
,



where φ(·) denotes the standard normal density. Notice that in this likelihood, the
parameters θ and f are functions. The model is infinite dimensional because the set
Θ cannot be put into a smooth, one-to-one correspondence with a finite-dimensional
Euclidean space. Let X = {Xi; i = 1, . . . , n} denote the observed Xi’s. When f0

is known, X is ancillary. When f0 is unknown, X is still ancillary but in a slightly
different sense. Technically, X is S ancillary for ψ, because the conditional likelihood
given X is a function of θ alone and the marginal likelihood of X is a function of f
alone, θ and f are variation independent (i.e., the parameter space is a product space),
and ψ is a function of θ only (Barndorff-Nielsen 1978; Cox and Hinkley 1974).

Now we shall see that whether or not we know the distribution f0 of the ancil-
lary X has drastic implications for inference, in contrast to the usual intuition about
ancillarity. When f0 is unknown, Robins and Ritov (1997) showed that no uniformly
consistent estimator of ψ0 exists. But when f0 is known, there do exist uniformly con-
sistent estimators ofψ0. In fact, there exist estimators that are

√
n-consistent uniformly

over all θ × f ∈ Θ × FX . For example, define the random variable V = Y/f0(X).
Then V̄ = n−1∑n

i=1 Vi = n−1∑n
i=1 Yi/f0(Xi) is uniformly

√
n-consistent. (Uni-

formity is important because it links asymptotic behavior to finite-sample behavior.
This is especially important in high-dimensional examples; i.e., when k is large.)

This result has implications for many common inferential methods. In particular,
standard likelihood-based and Bayesian estimator methods will fail to be uniformly
consistent. To see this, note that maximum likelihood inference, profile likelihood
inference, and Bayesian inference with independent priors on θ and f all share the
following property: They provide the same inferences for ψ whatever the known
f0 ∈ FX that generated the data. We call such methods strict factorization-based
(SFB) methods. Indeed, in the model with f0 known, any inference method that
satisfies the likelihood principle is SFB. Robins and Ritov (1997) showed that no
SFB estimator can be consistent for ψ0 uniformly over (θ0, f0) ∈ Θ × FX .

The deficiencies in SFB methods extend to interval estimation. Any interval
estimator that is not a function of f0 will not be “valid.” By valid, we mean that under
all (θ0, f0) ∈ Θ × FX the coverage is at least (1 − α) at each sample size n and
the expected length goes to 0 with increasing sample size. There are valid interval
estimators for ψ, but these depend on f0 and hence are not SFB, and they violate LP.
An example of such an interval estimator is V̄ ± dn−1/2, where

d2 =
M 2 + 1
1 − α

∫
X

dx

f0(x)
.

That this has coverage exceeding 1 − α follows from Chebyshev’s inequality. Note
that this interval is not only valid, but its length shrinks at rate n−1/2. However, even
with f0 known, there is no interval estimator that has expected length tending to 0, with
conditional coverage at least 1−α given X, on a set of X with f0 probability 1, for all
θ0 ∈ Θ. Our example is connected to Godambe and Thompson’s (1976) criticism of
likelihood-based inference in the context of finite-population inference from sample



survey data and to the “ancillarity paradoxes” of Brown (1990) and Foster and George
(1996) mentioned earlier. Indeed, the development of Brown (1990) suggests that any
estimator that is unconditionally admissible for squared error loss will fail to be SFB
and hence will violate the LP.

It is often stated that Bayesian inference always satisfies the likelihood principle.
This is correct only when the prior does not depend on the experiment. Consider, for
example, an observer with a prior π that makes θ and f dependent. Now suppose
that this observer learns the true value f0 of f . Then his posterior distribution of θ
and ψ will depend on f0 and thus violate the LP. Note that f0 indexes the experi-
ment being performed. Since, for any two experiments f0 and f∗

0 , the likelihood ratio
L(θ, f0)/L(θ, f∗

0 ) is not a function of θ, any estimator that depends on f0 violates
LP. This result does not contradict Birnbaum’s theorem, because the observer’s in-
ferences also violate the CP because with this prior, knowledge of which experiment
was actually performed (i.e., the true f0 that generated the data) contains information
concerning θ. To see this, consider the extreme case where the observer gets no data
but learns f0. Then observer’s posterior for θ will be the conditional prior π(θ|f0).
However, if the process determining which experiment was chosen had been super-
seded and the experiment had instead been chosen by a coin flip, then the posterior
for θ would be the marginal prior π(θ). In other words, the observer’s inferences are
(correctly) influenced by how the observer got to learn f0.

The example we presented in this section is important for two reasons. First, as
we noted earlier, a version of this problem actually arises in the problem of estimating
treatment effects in randomized trials when the randomization probabilities depend
on observed covariates. Second, the example illustrates the general point that good
frequentist performance and the LP can be in severe conflict in the sense that any
procedure with good frequentist properties must violate the LP. In the future, we
believe that more attention should be directed to examining foundational principles
in infinite-dimensional settings.
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The End of Time Series

V. Solo

1. INTRODUCTION

Just as physicists have spent the last three-quarters of a century working out the
consequences of the quantum mechanics paradigm established by the late 1920s, so
have statisticians spent the last half century working out the consequences of the
statistical paradigm assembled by the end of World War II.

As a branch of statistics, time series has always occupied a special place. Not
only is it mostly practiced by nonstatisticians, but, as a consequence, most of the
innovation has come from outside statistics. But statisticians have nevertheless played
a disproportionate role given their relatively small numbers. A list of areas making
a significant use of time series methods includes communications (Haykin 1983),
control engineering (Ljung 1987), econometrics (Hamilton 1994), geophysics (Aki
and Richards 1980), meteorology (Daley 1991), optical signal processing (Papoulis
1968), signal processing (Kay 1988), and radio astronomy (Steward 1987). In fact,
any applied discipline that makes heavy use of Fourier methods is likely to have some
need for time series.

Before plunging into the details, I outline the dimension of my discussion space.
Some elementary partitions are obvious: discrete and continuous time, stationary and
nonstationary, scalar and vector, linear and nonlinear, time domain and frequency
domain, and parametric and nonparametric. Finally, I observe, less obviously, that
the problems of time series analysis resolve mostly into modeling and/or filtering.
Because each of the resulting 128 cells will have several subheadings, it is clear
that the discussion must be selective! Some of these cells have been well worked
out, others have been barely touched, and others, though much studied, have thrown
up problems that have long resisted solution. Some other topics, such as wavelets
(being time-frequency methods) and semiparametrics, require partitioning to allow
interaction; this results in 2,187 cells!

2. A BRIEF HISTORY OF TIME (SERIES)

The period of interest may be roughly divided into two subperiods: 1945–1975
and 1975–1999. In the first subperiod, the following developments can be identified:
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1. Development of basic filtering and smoothing algorithms, including fast ver-
sions. Thus we have Levinson’s scalar algorithm (Bartlett 1955; Durbin 1960, who
found a variance update missed by Levinson; Wiener 1949, appendix); the vector
version of Levinson’s algorithm (Robinson 1967; Whittle 1963a); the Kalman filter
(Kalman 1960) based on state-space representations. Spectral factorization for pre-
diction filter design is closely related—it is the infinite-dimensional version of the
finite-data Cholesky factorization (of the covariance matrix inverse) achieved by the
Kalman filter. It is quite remarkable that even today, some textbook authors and at least
one distinguished figure do not seem to understand that the Kalman filter can, for ex-
ample, track a unit root process stably. The basic frequency domain smoother is based
on two-sided Wiener filtering (Whittle 1963b). The state-space-based smoothers were
not, despite a common conception, developed by Kalman, but rather by other control
engineers (Bryson and Ho 1969).

2. Development of a thorough-going modeling paradigm, stimulated by Box
and Jenkins (1970) and continuing through the application of the Kalman filter to
likelihood construction (Harvey 1989); development of nonparametric methods of
spectral estimation (Jenkins and Watts 1969).

3. Development of vector time series methods: Brillinger (1981) gave extensions
of classical multivariate analysis methods in a frequency domain context; Hannan
(1970) gave an asymptotic theory as well as the beginnings of a resolution of the
identifiability problem for vector time series. Fundamental insight and associated
methods were provided by Akaike (1974). The identifiability problem was ultimately
fully resolved by the combined efforts of control engineers (Hannan and Deistler
1988; Kailath 1980).

4. Development of a paradigm of asymptotic analysis especially for stationary
time series (Hannan 1970).

By the end of this period, time series had reached a considerable level of maturity.
The second subperiod brought the following:

1. Development of methods and asymptotics for integrated time series, starting
with unit root techniques by Fuller and Dickey (Fuller 1976) and continuing with the
development of cointegration methods (Engle and Granger 1987; Hamilton 1994).
Martingale methods and weak convergence came to the fore here (Hall and Heyde
1980). On the smoothing side, methods based on smoothing splines became important
(Wahba 1990) and are closely related to nonparametric function estimation, as well
as to stochastic estimation with Brownian motion priors.

2. Development of nonparametric methods based on selection of model dimen-
sion. This starts with Akaike (1969), but real understanding develops later (Hannan
and Deistler 1988; Shibata 1976, 1980). Other important developments are those of
Rissanen (1978, 1986) and Schwarz (1978).

3. Slow but accelerating development of nonlinear modeling methods (Tong
1990), aided most recently by the advent of new kinds of simulation methods (Gordon,



Salmond, and Smith 1993; Kitagawa and Gersch 1996).
4. Development of methods for fractional time series modeling (Beran 1994).
5. Further development of vector time series, especially relating to integrated

time series. But other important topics had received substantial treatment, including
linear causality (Caines 1988; Granger 1969) and errors in variables (Anderson and
Deistler 1984; Deistler and Anderson 1989).

6. Development of reliable and easy-to-use software packages and platforms
consequent on the huge gains in computing power in this period.

At the end of this period, time series of integrated processes stood on a firmer footing
and some solid headway had been made on the difficult problem of inference for
fractional time series. Also at last, the possibility for real progression on nonlinear
time series modeling appears. An unfortunate development has been the mistaken
belief in some quarters that frequency domain methods are no longer important.

3. THE LAST FRONTIER

This section discusses some current research directions that hold promise for the
future. The list is not exhaustive and might have included more topics; for example,
wavelets and chaos.

3.1 Parametric Nonlinear Modeling

The problem of fitting nonlinear state-space models to observational data has
been an important open problem for a very long time. Although nonlinear filtering
algorithms were written down (in continuous time) in the 1960s (Jaszwinski 1970),
they were computationally intractable. Recently, however, the development of Markov
chain Monte Carlo simulation methods has opened the possibility for progress in
this area. Significant advances have been made by Gordon et al. (1993), Kitagawa
(1993), and Kitagawa and Gersch (1996), which opens the possibility for progress
on the modeling problem. Some preliminary work in this direction has been done by
Chib, Nardari, and Shephard (1998) who also provided a good set of references. A
very interesting approach has also recently been developed by Gallant and Tauchen
(1998). The potential here is just beginning to be exploited, and basic questions, such
as the convergence of the Monte Carlo filters, are open.

3.2 Nonparametric Nonlinear Modeling

In the last few years, interest has developed in the financial econometrics com-
munity (Campbell, Lo, and MacKinlay 1997) in modeling (e.g., stock prices and
interest rates) with nonlinear stochastic differential equations. Such models are nec-
essary for more accurate forecasting, and also for the valuation of derivative financial



instruments. There is a growing literature here, and the mixture of nonlinearity, non-
parametrics, and stochastic differential equations makes for challenging problems
(Ait-Sahalia 1996; Bosq 1998; Gallant and Tauchen 1998).

3.3 High-Dimensional Vector Time Series

Steady improvements in econometric data collection and storage over the last two
decades have led to the emergence of huge time series datasets. A typical example
might involve several thousand short time series (with, say, 10 years of monthly
observations) all relating to an economic phenomenon of interest. The vector time
series methodology so far developed is incapable of dealing with this kind of dataset,
and yet data of this kind will only grow in occurrence, size, and complexity. Recent
work in this area (Stock and Watson 1998) showed that remarkable forecasting gains
can be made even with simple principal components analyses.

3.4 Variable (Lag) Selection

Results on order selection were mentioned earlier, but the problem of variable
selection is perhaps the major unresolved problem in statistics (Breiman 1992). Given
the widespread use of regression methods, its resolution would have enormous impact
in many disciplines. The results cited earlier cover only restrictive order-selection
problems. Recently, promising new variable selection methods based on least squares
fitting with nonquadratic penalties have appeared (Alliney and Ruzinsky 1994; Chen,
Donoho, and Saunders 1996; Tibshirani 1996). These methods produce solutions
with exactly zeroed coefficients. A deep understanding of their abilities must be
developed from both computational and theoretical perspectives. When the regressors
are orthogonal, these methods collapse to methods that are currently used informally
(i.e., inspection of t values) and also go under the name thresholding when used for
wavelet signal or function estimation (Donoho and Johnstone 1995).

3.5 Functional Data Analysis

Huge time series datasets are appearing not only in econometrics, but also in
areas such as the biomedical sciences. Here the data typically consist of a small
number of very long time series (e.g., 50 independent electrocardiograms each of
length 5,000). There has been some time series work on these singular longitudinal
data analysis problems (Brillinger 1973, 1980; Shumway 1970, 1987), but this work
was not followed up, perhaps because of limited computing facilities. Recently, these
kinds of problems have gained attention under the name “functional data analysis”
(Besse and Ramsay 1986; Ramsay and Silverman 1997). The difference between the
new methodology and the older time series methods is that stationarity is not assumed;
rather, a nonstationary covariance kernel is estimated nonparametrically.



4. THE END

Like all other sciences, time series has been affected by the computing revolution
as well as the growth in data collection capability of the last two decades. These two
factors together have already helped generate new solutions to old problems and
produce quite new and challenging problems. Some have thought that the rise of
great computing power means the demise of theory. The last 150 years of the history
of science and technology includes many examples of marvelous new developments
that displaced old ways and of disciplines (like optics) that have waxed and waned
(several times). But through all this, theory and (now computer) experiments have
continued to go hand in hand. Fluid mechanics and condensed matter physics are
good examples here, as computational power is hugely important in both areas. And
so it is with time series.

Although some parts of the theory have reached considerable maturity, there
remain outstanding problems as well as the constant appearance of new problems.
Furthermore, new tools pop up from time to time; wavelets is the most celebrated
recent example. An end to time series, then, whether in theory or practice, does not
seem to be in sight.

REFERENCES

Ait-Sahalia, Y. (1996), “Testing Continuous Time Models of the Spot Interest Rate,” Review of Financial
Studies, 9, 385–426.

Akaike, H. (1969), “Fitting Autoregressive Models for Prediction,” Annals of the Institute of Statistical
Mathematics, 21, 243–247.

Akaike, N. (1974), “Stochastic Theory of Minimal Realization,” IEEE Transactions in Automated Control,
19, 667–674.

Aki, K., and Richards, P. (1980), Quantitative Seismology: Theory and Practice, New York: W.H. Freeman.

Alliney, S., and Ruzinsky, S. (1994), “An Algorithm for the Minimization of Mixed l1 and l2 Norms With
Application to Bayesian Estimation,” IEEE Transactions in Signal Processing, 42, 618–627.

Anderson, B., and Deistler, M. (1984), “Identifiability of Dynamic Errors in Variables Models,” Journal
of Time Series Analysis, 5, 1–13.

Bartlett, M. (1955), An Introduction to Stochastic Processes, Cambridge, U.K.: Cambridge University
Press.

Beran, J. (1994), Statistics for Long-Memory Processes, London: Chapman and Hall.

Besse, P., and Ramsay, J. (1986), “Principal Components Analysis of Sampled Functions,” Psychometrika,
51, 285–311.

Bosq, D. (1998), Nonparametric Statistics for Stochastic Processes, New York: Springer-Verlag.

Box, G., and Jenkins, G. (1970), Time Series Analysis: Forecasting and Control, San Francisco: Holden-
Day.

Breiman, L. (1992), “The Little Bootstrap and Other Methods for Dimensionality Reduction in Regression:
X-Fixed Prediction Error,” Journal of the American Statistical Association, 87, 738–752.

Brillinger, D. (1973), “The Analysis of Time Series Collected in an Experimental Design,” in Multivariate
Analysis III, New York: Academic Press, pp. 241–256.



(1980), “Analysis of Variance and Problems Under Time Series Models,” in Handbook of Statistics,
Vol. I, Amsterdam: North-Holland, pp. 237–278.

(1981), Time Series: Data Analysis and Theory, San Francisco: Holden-Day.

Bryson, A., and Ho, Y. (1969), Applied Optimal Control, Cambridge, MA: Blaisdell.

Caines, P. (1988), Linear Stochastic Systems, New York: Wiley.

Campbell, J., Lo, A., and MacKinlay, A. (1997), The Econometrics of Financial Markets, Princeton, NJ:
Princeton University Press.

Chen, S., Donoho, D., and Saunders, M. (1996), “Atomic Decomposition by Basis Pursuit,” technical
report, Stanford University.

Chib, S., Nardari, F., and Shephard, N. (1998), “Markov Chain Monte Carlo Methods for Generalised
Stochastic Volatility Models,” technical report, Oxford University, Dept. of Economics.

Daley, R. (1991), Atmospheric Data Analysis, Cambridge, U.K.: Cambridge University Press.

Deistler, M., and Anderson, B. (1989), “Linear Dynamic Errors in Variables, Some Structure Theory,”
Journal of Econometrics, 41, 39–63.

Donoho, D., and Johnstone, I. (1995), “Adapting to Unknown Smoothness via Wavelet Shrinkage,” Journal
of the American Statistical Association, 90, 1200–1224.

Durbin, J. (1960), “The Fitting of Time Series Models,” R.W. I.S.I, 28, 233–244.

Engle, R., and Granger, C. (1987), “Co-Integration and Error Correction: Representation, Estimation and
Testing,” Econometrica, 55, 251–276.

Fuller, W. (1976), Introduction to Statistical Time Series, New York: Wiley.

Gallant, M., and Tauchen, G. (1998), “Reprojecting Partially Observed Systems With Application to Interest
Rate Diffusions,” Journal of the American Statistical Association, 93, 10–25.

Gordon, N., Salmond, D., and Smith, A. (1993), “Novel Approach to Nonlinear/Nongaussian Bayesian
State Estimation,” IEE: Proc.-F, 140, 107–113.

Granger, C. (1969), “Investigating Causal Relations by Econometric Models and Cross-Spectral Methods,”
Econometrica, 37.

Hall, P., and Heyde, C. (1980), Martingale Limit Theory and Its Application, New York: Academic Press.

Hamilton, J. (1994), Time Series Analysis, Princeton, NJ: Princeton University Press.

Hannan, E. (1970), Multiple Time Series, New York: Wiley.

Hannan, E., and Deistler, M. (1988), Statistical Theory of Linear Systems, New York: Wiley.

Harvey, A. (1989), Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge, U.K.:
Cambridge University Press.

Haykin, S. (1983), Communication Systems, New York: Wiley.

Jaszwinski, A. (1970), Stochastic Processes and Filtering Theory, New York: Academic Press.

Jenkins, G., and Watts, D. (1969), Spectral Analysis and Its Applications, San Francisco: Holden-Day.

Kailath, J. (1980), Linear Systems, New York: Wiley.

Kalman, R. (1960), “A New Approach to Linear Filtering and Prediction Problems,” Journal of Basic
Engineering, 82, 35–45.

Kay, S. (1988), Modern Spectral Estimation, Englewood Cliffs, NJ: Prentice-Hall.

Kitagawa, G. (1993), “A Monte Carlo Filtering and Smoothing Method for Non-Gaussian Nonlinear State-
Space Models,” in Proceedings of the Second U.S.–Japan Joint Seminar on Time Series, pp. 110–131.
Institute of Statistical Mathematics.

Kitagawa, G., and Gersch, W. (1996), Smoothness Priors Analysis of Time Series, Berlin: Springer-Verlag.

Ljung, L. (1987), System Identification: Theory for the User, Englewood Cliffs, NJ: Prentice-Hall.

Papoulis, A. (1968), Systems and Transforms With Applications in Optics, Malabar, FL: Krieger.



Ramsay, J., and Silverman, B. (1997), Functional Data Analysis, New York: Springer-Verlag.

Rissanen, J. (1978), “Modeling by Shortest Date Description,” Automatica, 14, 465–471.

(1986), “Stochastic Complexity and Modeling,” The Annals of Statistics, 14, 1080–1100.

Robinson, E. (1967), Multichannel Time Series, New York: Prentice-Hall.

Schwarz, G. (1978), “Estimating the Dimension of a Model,” The Annals of Statistics, 6, 461–464.

Shibata, R. (1976), “Selection of the Order of an Autoregressive Model by AIC,” Biometrika, 63, 117–126.

(1980), “Asymptotically Efficient Selection of the Order of the Model for Estimating Parameters
of a Linear Process,” The Annals of Statistics, 8, 147–164.

Shumway, R. (1970), “Applied Regression and Analysis of Variance for Stationary Time Series,” Journal
of the American Statistical Association, 65, 1527–1546.

(1987), Applied Statistical Time Series Analysis, Englewood Cliffs, NJ: Prentice-Hall.

Steward, E. (1987), Introduction to Fourier Optics, Sussex, U.K.: Ellis Horwood.

Stock, J., and Watson, M. (1998), “Diffusion Indexes,” technical report, Harvard University.

Tibshirani, R. (1996), “Regression Shrinkage and Selection via the Lasso,” Journal of the Royal Statistical
Society, Ser. B, 58, 267–288.

Tong, H. (1990), Non-Linear Time Series, Oxford, U.K.: Oxford University Press.

Wahba, G. (1990), Spline Models for Observational Data, Philadelphia: SIAM.

Whittle, P. (1963a), “On the Fitting of Multivariate Autoregression and the Approximate Canonical Fac-
torisation of the Spectral Density Matrix,” Biometrika, 50, 129–134.

(1963b), Prediction and Regulation by Linear Least Squares Methods, Princeton, NJ: van Nostrand.

Wiener, M. (1949), Extrapolation, Interpolation and Smoothing of Stationary Time Series, New York:
Wiley.



Principal Information Theoretic
Approaches

Ehsan S. Soofi

1. INTRODUCTION

Among the impacts of World War II on the scientific endeavors was the develop-
ment of information entropy in the field of communication engineering by Shannon
(1948). No more than a decade was needed for developing information theoretic prin-
ciples of inference and methodologies based on the entropy and its generalizations
in statistics and physics by Kullback and Leibler (1951), Kullback (1954), Lindley
(1956), and Jaynes (1957).

The fundamental contribution of information theory to statistics has been to
provide a unified framework for dealing with notion of information in a precise and
technical sense in various statistical problems. As Kullback (1959) stated, “We shall
use information in the technical sense to be defined, and it should not be confused with
our semantic concept, though it is true that the properties of the measure of information
following from the technical definition are such as to be reasonable according to our
intuitive notion of information.” In the seminal book, Kullback (1959), a unification of
“heterogeneous development of statistical procedures scattered through the literature”
was attained by “a consistent application of the concepts and properties of information
theory.”

During the 1960s and 1970s, information theoretic methods and principles were
further developed by the continuous endeavors of Kullback and his associates, Lind-
ley and his students, and Jaynes, with important contributions by Zellner and Akaike.
During the 1980s and 1990s, information theoretic methods became integral parts of
statistics and were developed for testing, estimation, prediction, classification, associ-
ation, modeling, and diagnostics with applications in various branches of statistics and
related fields (see, e.g., Alwan, Ebrahimi, and Soofi 1998; Bozdogan 1994; Brockett
1991; Brockett, Charnes, Cooper, Learner, and Phillips 1995; Burnham and Ander-
son 1998; Cover and Thomas 1991; Fomby and Hill 1997; Golan, Judge, and Miller
1996; Kapur 1989; Maasoumi 1993; Pourahmadi and Soofi 2000; Soofi 1994; Soofi,
Ebrahimi, and Habibullah 1995; Theil and Fiebig 1984; Zellner 1997).
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2. INFORMATION FRAMEWORK

Information, in a technical sense, in many seemingly diverse statistical problems
is quantified in a unified manner by using a suitably chosen discrimination information
(Kullback-Leibler, cross-entropy, relative entropy) function

K(f : g) ≡
∫

log
f(x)
g(x)

dF (x) ≥ 0, (1)

where f(x) = dF (x) is a probability density (mass) function, absolutely continuous
with respect to g. Equality holds if and only if f(x) = g(x) almost everywhere.
K(f : g) is the principal information function introduced by Kullback and Leibler
(1951) as a generalization of the information functions developed by Shannon (1948).
The symmetric version of (1), J(f, g) = K(f : g) +K(g : f), was used by Jeffreys
(1946) as a measure of divergence between two distributions, but not as an information
function. The log-ratio in (1) was used by Good (1950) as the weight of evidence for
f(x), given x.

Two information functions of Shannon (1948) are special cases of (1). Shannon’s
entropy is

H(X) ≡ H(f) = −
∫

log f(x) dF (x)

= H(U) −K(f : U), (2)

withU being the uniform distribution. Shannon derived the discrete version ofH(X)
based on a set of axioms of information and named it entropy because of its similarity
with thermodynamics entropy. The continuous version was defined by analogy. In
the discrete case with a finite number of points, H(X) is nonnegative and measures
the expected information in a signal x transmitted without noise from the source X
according to a distribution f(x). The entropy measures uniformity of f(x) and is used
in various fields as measures of disorder, diversity, and uncertainty in predicting an
outcome x. The negative entropy, −H(X) = Ef [log f(X)], is the average log-height
of the density and provides a measure of concentration of the distribution and is used
as a measure of information about x. A distribution f2 is more informative than f1 if
H(f1) −H(f2) > 0.

Shannon’s mutual information function is defined by the expected entropy dif-
ference,

ϑ(Y ∧X) ≡ H(Y ) − Ex[H(Y |x)]
= K[f(x, y) : f(x)f(y)], (3)

where H(Y |x) is the entropy of the conditional distribution f(y|x). The mutual
information is Shannon’s measure of the expected information about Y transmitted



through a noisy channel. As is apparent in (3), ϑ(Y ∧X) is nonnegative and measures
the extent of functional dependency between X and Y ;ϑ(Y ∧X) = 0 if and only if
the two variables are independent.

Kullback and Leibler (1951), based on the Bayes theorem, interpreted (1) as the
expected information inx for discrimination betweenf andg, studied its mathematical
properties, showed its relationship with Fisher information (Fisher 1921), and intro-
duced the notion of discrimination sufficiency. Let Y = T (X) be a transformation,
and let fY (y) and gY (y) denote the distributions induced by T on fX(x) and gX(x),
where f is absolutely continuous with respect to g. ThenK(fY : gY ) ≤ K(fX : gX)
with equality if and only if T is sufficient for discrimination, i.e.,

fY (T (x))
gY (T (x))

=
fX(x)
gX(x)

, (4)

for almost all x. When f = f(x|θ) and g = g(x|θ),K(fY : gY ) ≤ K(fX : gX)
with equality if and only if T is a sufficient statistic for θ. Discrimination sufficiency
is considered to be a generalization of sufficiency in the parametric case.

Kullback (1954) established a number of important inequalities for (1) through
which the basic form of the distribution f∗ that minimizes K(f : g) subject to some
constraints on f was found. Kullback also developed the notion of discrimination
efficiency in terms of K(fY : gY )/K(fX : gX) ≤ 1, with equality if and only if
(4) holds. Information efficiency provides a generalization of parametric estimation
efficiency in terms of the Cramer–Rao inequality.

Kullback (1959) fully developed the theoretical grounds for various applications
of the minimum discrimination information (MDI) statistics. Many of the known
statistical results and procedures to date were shown to be related to (1), and new
results were found. In a very general and formal framework, Kullback (1959) showed
that “grouping, condensation, or transformation of observations by a statistic will,
in general, result in loss of information,” and that “information theory provides a
unification of known results, and leads to natural generalizations and the derivation
of new results.” The MDI model relative to a reference distribution g was obtained
by minimizingK(f : g) with respect to f subject to the information constraint of the
form Ef [Tj(X)] = θj , j = 1, . . . , J . The MDI model, if it exists, is in the form of

f∗(x|θ, g) = Cg(x) exp




J∑
j=1

ηjTj(x)


 , (5)

where ηj = ηj(θ), j = 1, . . . , J are Lagrange multipliers and C = C(θ) is the
normalizing factor. Various MDI procedures, their applications, and computational
algorithms developed by Kullback and his associates for analysis of categorical data
were given by Gokhale and Kullback (1978).

An information processing rule for inference was formulated by Zellner (1988).
The rule is defined in terms of the change in predata and postdata information due to



statistical processing by

∆[fp(θ|x)] ≡ [output information] − [input information], (6)

where the input information is the sum of information in an antedata density fa(θ)
and in the conditional data distribution f(x|θ), and the output information is the sum
of information in the postdata density fp(θ|x) and the predictive density f(x). Zellner
used various logarithmic measures of information in (6) such that

∆[fp(θ|x)] =
∫
fp(θ|x) log

[
fp(θ|x)f(x)
fa(θ)f(x|θ)

]
dθ. (7)

Zellner defined the information conservation principle as ∆[fp(θ|x)] = 0, and
showed that the Bayes rule is the optimal information processing rule, in that
∆[fp(θ|x)] = 0 if and only if fp(θ|x) = fb(θ|x), where fb(θ|x) is the posterior dis-
tribution obtained by updating fa(θ) via the Bayes rule. Kullback, in his discussion
of Zellner’s article, noted that the information processing rule (6) is a discrimination
information function,

∆[fp(θ|x)] = K[fp(θ|x) : fb(θ|x)]. (8)

However, Zellner (1988) maintained that formulation (7) “can be readily generalized
to apply to other information processing problems.” Jaynes, in his discussion of Zell-
ner’s article, emphasized a noteworthy aspect of the information framework by noting
that “the logarithmic measures of information might appear arbitrary at first glance;
yet as Kullback showed, this is not the case.”

3. INFORMATION ABOUT PARAMETER

The most celebrated information measure in statistics is the one developed by
Fisher (1921) for the purpose of quantifying information in f(x|θ) about the param-
eter, given by

F(θ) ≡
∫ [

∂ log f(x|θ)
∂θ

]2

dF (x|θ). (9)

F(θ) is a measure of information in the sense that it quantifies “the ease with which
a parameter can be estimated” by x (Lehmann 1983, p. 120).

Kullback and Leibler (1951) showed that when f = fθ and g = fθ+∆θ belong
to the same parametric family where θ and θ + ∆θ are two neighboring points in
the parameter space Θ, then K(fθ : fθ+∆θ) ≈ 2(∆θ)2F(θ). Thus F(θ) can be
interpreted in terms of the expected information in x for discrimination between the
neighboring points in Θ. Along this line, Rao (1973) reiterated that information about
a parameter should be measured in terms of a discrepancy measure between fθ and



fθ+∆θ and showed that F(θ) is an approximation to the Hellinger distance between
fθ and fθ+∆θ. At the conceptual level, Rao characterized information as follows:
“By information on an unknown parameter θ contained in a random variable or its
distribution, we mean the extent to which uncertainty regarding the unknown value
of θ is reduced as a consequence of an observed value of the random variable” (Rao
1973, p. 331). In Rao’s characterization of information, the existence of uncertainty
about the parameter is presumed, but is not mapped by a probability distribution.

Lindley (1956) was the first to develop a measure of information in data x about
a parameter θ that ranges over the parameter space Θ with the prior distribution
f(θ). Lindley adopted Shannon’s mutual information for measuring the expected
information in data x about θ as

ϑ(Θ ∧X) = H(Θ) − Ex[H(Θ|x)]
= Ex{K[f(θ|x) : f(θ)]}. (10)

Lindley (1961) showed that ignorance between two neighboring values θ and ∆θ in
the parameter space implies that ϑ(Θ∧X) ≈ 2(∆θ)2F(θ). Bernardo (1979a), based
on the second expression, provided an expected utility interpretation of ϑ(Θ ∧ X)
that is now prevalent in Bayesian literature.

Lindley’s measure has been successfully applied in developing information loss
(gain) diagnostics for experimental design, collinearity, dimension reduction, and
censoring problems. This is an active and promising line of research.

In Lindley’s adoption of Shannon’s mutual information, the expected reduction of
uncertainty about θ is computed by averaging the entropy of the posterior distribution
in (10) with respect to the marginal distribution f(x). Zellner (1971) defined an
information function as the difference between the prior entropy and the entropy of
the sampling distribution (likelihood) H[f(x|θ)], averaged with respect to the prior
distribution,

G(Θ) ≡ H(Θ) − Eθ[H(X|θ)]
= Eθ{K[f(x|θ) : f(θ)]}. (11)

The second expression gives an interpretation ofG(Θ) in terms of the discrimination
information function between the likelihood and the prior. Zellner (1997) gave a new
interpretation of G(Θ) in terms of “the total information provided by an experiment
over and above the prior,” defined as I(exp) ≡ H(Θ) −H(Θ, X) = −Eθ[H(X|θ)],
where H(Θ, X) is the entropy of the joint distribution.

The information functions (9)–(11) have played major roles in developing data-
based prior distributions for θ (see, e.g., Yang and Berger 1996). Jeffreys’s invariant
prior is proportional to the square root of Fisher information. The reference priors
proposed by Bernardo (1979b) are obtained by maximizing ϑ(Θ ∧X) with respect
to f(θ) (see Berger 2000). In general, maximization of ϑ(Θ ∧ X) does not give an



explicit solution, and a reference prior is obtained as an approximate solution. The
maximal data information prior (MDIP) maximizes G(Θ), provides solutions in the
form of p(θ) ∝ exp{−H[f(x|θ)]}, and is capable of incorporating side information.
Currently, developing sample-based (objective) priors is an active area of research,
and information theory has much to offer in this endeavor.

4. MAXIMUM ENTROPY

Parallel to the developments of the MDI in statistics by Kullback, Jaynes (1957)
developed the maximum entropy (ME) principle of scientific inference in physics.
The ME distribution is the one that maximizes (2) with respect to f subject to a set
of constraints that reflect some partial knowledge about f . The ME model subject to
moment constraints is given by (5) with g(x) = 1. In the general case, the MDI is
referred to as the minimum cross-entropy principle.

The ME is a formalized approach to developing probability distributions based
on partial knowledge and is considered a generalization of Laplace’s “principle of
insufficient reason” for assigning probabilities (Jaynes 1968). Axiomatic justifications
for the MDI and ME approaches were given by Csiszar (1991) and Shore and Johnson
(1980).

The range of applications of ME is quite broad and provides ample research
opportunities. Some examples are as follows. Many well-known parametric families
of distributions are characterized as ME subject to specific constraints. Developing
ME distributional fit diagnostics requires nonparametric entropy estimation, which is
an active research area (see, e.g., Soofi et al. 1995). In the categorical case, various logit
and log-linear models are derived as MDI and ME solutions subject to various forms
of constraints on covariates and indicators of categories (Gokhale and Kullback 1978;
Soofi and Gokhale 1997). The ME inversion technique is shown to be remarkably
powerful for image recovery (see, e.g., Gull 1989). An entropy-moment inequality
given by Wyner and Ziv (1969) provides a sharp lower bound for the prediction error
variance in terms of the entropy, in the same spirit as the inverse of Fisher information
in the Cramer–Rao inequality (see Pourahmadi and Soofi 2000). Recently, Zellner
proposed the Bayesian method-of-moments (BMOM) procedure, in which data-based
moments for parameters are used for producing postdata (posterior and predictive)
distributions by the ME (see Zellner 1997). The BMOM procedure is a versatile
alternative when a likelihood is not available for application of the Bayes theorem.

5. MINIMUM DISCRIMINATION INFORMATION
LOSS ESTIMATION

A parametric model, f∗(x|θ),θ = (θ1, . . . , θJ)′, derived by the MDI, ME, or
simply assumed, is a convenient mathematical formula that we utilize in practice and



hope that it is a reasonable approximation to the unknown true data-generating distri-
bution f(x). Given a sample x = (x1, . . . , xn) from f(x), it is then natural to estimate
the model in such a way that the model approximation to the data-generating distri-
bution is improved. The MDI or minimum relative entropy loss estimation procedure
serves this purpose.

The loss of approximating f(x) by an estimated model f∗(x|θ̃) is measured
by the information discrepancy K[f(x) : f∗(x|θ̃)]. The MDI or minimum relative
entropy loss estimate of θ is defined by

θ̃MDI = arg min
θθθ
K[f(x) : f∗(x|θ)]. (12)

The entropy loss has been used with frequentist and Bayesian risk functions in var-
ious parametric estimation problems and for model selection (see Soofi 1997 and
references therein).

Akaike (1973) showed that “choice of the information theoretic loss function is a
very natural and reasonable one to develop a unified asymptotic theory of estimation.”
He developed an MDI approach for estimating the parameter θJ of the family of
models f∗(x|θJ) when the dimension J, J = 1, . . . , L is unknown. Akaike (1974)
observed that decomposing the log-ratio in (1) gives

K[f(x) : f∗(x|θ̃J)] = Hf [f∗(x|θ̃J)] −H[f(x)], (13)

where

Hf [f∗(x|θ̃)] ≡ −Ef [log f∗(X|θ̃)]. (14)

The entropy of the data-generating distribution is free of θ̃J , so H[f(x)] in (13) can
be ignored in the minimization. By this clever observation, the cumbersome problem
of minimizing the information discrepancy between the unknown data-generating
distribution and the model is reduced to the simpler problem of maximizing the
expectation in (14). Akaike proposed estimating (14) by the mean log-likelihood
function, which gives

θ̃JMDI = arg max
θθθJ

1
n

log f∗(x|θJ) = θ̂J ,

where θ̂J is the maximum likelihood estimate (MLE) ofθJ under the model f∗(x|θJ).
Thus the MLE minimizes an estimate of the information discrepancy between the
data-generating distribution f(x) and the model f∗(x|θJ) over the parameter space.
When a set of models with various J or in different families is under consideration,
first the parameters of each candidate model are estimated by the MLE, and then
the optimal MDI model in the set is selected. Akaike interpreted this approach as an
extension of the maximum likelihood principle.



Akaike (1973), under the assumption off(x) = f∗(x|θL)withθL = (θ1, . . . , θJ ,

θJ+1, . . . , θL)′, computed an approximate frequentist risk of selecting a submodel of
f∗(x|θ̂L) as

2Eθ̂θθJ
K[f∗(x|θL) : f∗(x|θ̂J)]

≈ − 2
n

log
f∗(x|θ̂J)
f∗(x|θ̂L)

+
2J
n

− L

n
, J ≤ L. (15)

In a problem that n,L, and the likelihood function f∗(x|θ̂L) remain constant, the
minimum risk model is the one that minimizes the information criterion

AIC(J) = −2 log f∗(x|θ̂J) + 2J, J = 1, 2, . . . , L.

Akaike’s work popularized application of an information function among users of
statistics and generated vast interest in developing model selection diagnostics, which
has been a very active line of research for the last quarter of the 20th century.
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Measurement Error Models

L. A. Stefanski

1. INTRODUCTION

Following an invited paper session on errors-in-variables models at the 1983
American Statistical Association Annual Meeting in Toronto, two comments foretold
of change in the study of regression models in which predictor variables are measured
with error. The first was an opinion that the negative connotation of the name “errors-
in-variables models” was a hindrance to the impact of the research on such models.
The second was a complaint that the scope of models studied was not keeping pace
with the complexity of problems encountered in practice.

With regard to names and key words, errors-in-variables models, regression with
errors in x, and measurement error models are still in use. However, publication of
the book Measurement Error Models (Fuller 1987) established the latter as the phrase
associated with the study of regression models in which the independent variables are
measured with error and explains why this vignette shares the same title.

As for the second comment, the fact that statisticians are moving toward more
complex models in general is clear from reading any current issue of JASA. At the
time of the Toronto meetings, the field of measurement error modeling was already
broadening to include more realistic models required for certain applications. In the
period since then, the breadth and complexity of the models studied under the heading
of measurement error models has grown at an ever-increasing rate. This expansion is
straining the terminology, notation, and assumptions that were adequate for describing
linear errors-in-variables models, and also is creating new problems for research.

Despite the rapid developments in the field and the increasing use of measurement
error models in practice over the last 15–20 years, it is likely that many readers are
not familiar with measurement error problems. The sections that follow provide an
introduction to measurement error problems and models and a necessarily cursory
review of the area, emphasizing certain key contributions and current and future
research trends.

L. A. Stefanski is Professor, Department of Statistics, North Carolina State University, Raleigh, NC 27695
(E-mail: stefansk@stat.ncsu.edu). The author thanks JASA for the opportunity to write this vignette and
acknowledges the editor’s welcomed encouragement, the financial support of the National Science Foun-
dation, and the career-long support as well as the specific suggestions of R. J. Carroll and David Ruppert.



2. MEASUREMENT ERROR PROBLEMS

In many areas of application, statistically meaningful models are defined in terms
of variables X that for some reason are not directly observable. In such situations,
it is common for substitute variables W to be observed instead. The substitution of
W for X complicates the statistical analysis of the observed data when the purpose
of the analysis is inference about a model defined in terms of X . Problems of this
nature are commonly called measurement error problems, and the statistical models
and methods for analyzing such data are called measurement error models.

The terminology belies the generality of the class of problems and models con-
noted by the phrase “measurement error.” Its origins lie in the special case in which
the substitute variableW is a measurement (in the usual sense of the word) of the true
value of X . For example, the measured perpendicular distance W that an animal lies
from a transect line can differ significantly from the true distance X depending on
the method of measurement. Similarly, a person’s measured systolic blood pressure
W differs from his or her long-term average systolic blood pressure X because of
significant temporal variation as well as instrument and reader error. These cases are
fundamentally different from the situation in which the ambient concentrations of
NO2 in the bedroom and kitchen of a child’s home W = (W1,W2) are substitutes for
the child’s personal exposure to NO2 X (which is directly measurable via a personal
monitor but not done for reasons of cost or inconvenience). The latter situation is
similar to that in which airborne particulate matter concentration measured daily at
a central location W is used as a substitute for daily average (over a population of
individuals) personal exposure to particulate matter X in time series studies of the
relationship between daily air pollution and daily mortality.

These four examples have in common the feature that for certain statistical anal-
yses, the variable X is preferred over W : Methods for estimating animal abundance
from line-transect data assume that distances are measured without error; for assess-
ing the relationship between heart disease and blood pressure, long-term average
blood pressure is the meaningful risk factor; personal exposure is the relevant risk
factor in studies of the effects of NO2 exposure on respiratory illness in children; and
excess daily mortality due to exposure to particulate matter is more directly related
to average personal exposure than to concentrations measured at central monitoring
stations. These examples also have in common the feature that X is not observable
for each observational unit, whereas W is. The problem is to fit models described in
terms of X (and other observed variables) given data on W (and the other observed
variables).

Other, more detailed descriptions of measurement error problems have been given
by Carroll, Ruppert, and Stefanski (1995) and Fuller (1987).



2.1 Measurement Error in Simple Linear Regression

Consider the usual simple linear regression model Yi = α + βXi + εi, i =
1, . . . , n. Suppose that the observedWi = Xi+Ui, whereUi represents measurement
error. Let β̂Y |W denote the slope estimator from the least squares regression of Y on
W . Similarly let β̂Y |X denote the slope estimator obtained by least squares regression
of Y on X . Then in the seemingly benign case in which the measurement errors
Ui have mean µU = 0 and constant variance σ2

U and are independent of the true
predictors Xi and the equation errors εi, it transpires that β̂Y |W = λ̂β̂Y |X + op(1),
where λ̂ = s2

X/(s
2
X + s2

U ), where s2 denotes the sample variance of the subscript
variable. Because 0 < λ̂ < 1, a consequence of ignoring measurement error is
attenuation (bias toward 0) in the slope estimator.

This simple model illustrates the key features of measurement error in regression
models: The parameters of interest (α, β) appear in the regression model forE(Y |X),
which depends on the unobserved variable X; the second component of the model
relates the observed substitute variable W to X (in this case via the additive error
model W = X + U , note that in this case E(W |X) = X); and the model fit
to the observed data results in biased estimators of the parameters of interest. A
less obvious feature that it shares with other measurement error models is a lack
of identifiability. The regression parameters (α, β) cannot be consistently estimated
without additional data (e.g., replicate measurements) or additional information in
the form of distributional or moment restrictions on the error distributions or the
distribution ofX . An often-studied, early version of the model known as the classical
errors-in-variables model (Fuller 1987, sec. 1.3) incorporates the assumption that the
ratio of error variances η = σ2

ε/σ
2
U is known. Under this identifiability assumption,

the regression parameters are consistently estimated using the method of orthogonal
least squares, formulated and described more than 100 years ago by R. J. Adcock
(1877, 1878). However, the historical importance of the model in which the ratio of
error variances is assumed known is greater than its practical significance (Carroll et
al. 1995; Carroll and Ruppert 1996). Finally, it is important to distinguish between the
classical errors-in-variables model and the classical error model. The latter phrase
refers only to the measurement error component of a model and describes the additive
error model W = X + U , with U and X independent (or uncorrelated).

3. LINEAR ERRORS-IN-VARIABLES MODELS

Generalizations and variations of linear error-in-variables models were stud-
ied extensively in the 100 years following Adcock’s description of orthogonal least
squares. The major generalizations include multiple and multivariate multiple linear
regression, in which one or more predictor variables are measured with error and some
predictor variables are error free. The major variations depend on assumptions about
the unobserved predictors and the type of data or distributional (moment) information



available, ensuring identifiability of the regression parameters.
In functional errors-in-variables models, the unobserved Xi are modeled as un-

known, nonrandom constants (parameters), whereas in structural errors-in-variables
models, the observables and unobservables jointly vary in repeated sampling. For
example, consider modeling the relationship between aquatic species diversity Y and
acid-neutralizing capacityX , given measurements of (Y,X) from each of n lakes. If
the only lakes of interest are those represented in the sample, then it is appropriate to
modelXi, i = 1, . . . , n, as unknown constants. Alternatively, if the lakes represented
in the data are a random sample from a large population of lakes, then it is appropriate
to model Xi, i = 1, . . . , n, as iid random variables.

Parameters are identified under a wide variety of combinations of error distri-
butional or moment restrictions and the existence of additional data (e.g., replicate
measurements), each giving rise to a unique and interesting inference problem. Dis-
cussion of the numerous variations of the model, the methods of analysis adapted to
each, and the early contributions of many well-known statisticians to the field were
provided by Madansky (1959). Sprent (1989) provided a more recent overview of the
field, including references to other key review articles.

The traditional distinction in the literature between functional models and struc-
tural models is, for some applications, not as relevant as the distinction between
functional modeling and structural modeling as defined by Carroll et al. (1995, sec.
1.2), which facilitates classification of estimation methods based on the strength of the
assumptions made about the latent variablesX1, X2, . . .. However, functional models
played an important role in the study of measurement error models and in statistics
more generally.

In a functional errors-in-variables model, the unobserved latent variables are un-
known parameters. Consequently, for a functional model with sample size n, and
hence measurements on n latent variables, the unknown parameter vector includes
(X1, X2, . . . , Xn) and so has dimension increasing linearly with sample size. Func-
tional errors-in-variables models are practical and classical examples of models with
infinitely many nuisance parameters, for which the deficiencies of maximum like-
lihood estimation are now well known. The pioneering work of Neyman and Scott
(1948) and Kiefer and Wolfowitz (1956) on estimation in the presence of numerous
nuisance parameters had significant impact not only on the direction of research in the
errors-in-variables literature, but also on the course of research in statistics in general.

4. MEASUREMENT ERROR IN NONLINEAR MODELS

In the 1980s, the research emphasis in measurement error models shifted to prob-
lems in which the model of interest defined in terms of X is something other than
a linear model. With increasing frequency, articles appeared on nonlinear regres-
sion models with errors in both variables, generalized linear models with predictor



variables measured with error, and nonparametric distribution/density/regression es-
timation in the presence of measurement error. But these are not the first investigations
of measurement error in nonlinear models. Eddington (1913) studied distribution esti-
mation, and Trumpler and Weaver (1953, sec. 1.56) described an interesting approach
to nonlinear regression errors-in-variables problems; however, these researches were
the exceptions, whereas by the late 1980s, the focus of measurement error modeling
research was on nonlinear models.

The early research in errors-in-variables models was driven by applications in
the physical sciences, especially astronomy, and soon thereafter also by econometric
applications. Much of the current research in nonlinear measurement error models
is motivated by applications in the health sciences; this is especially true of research
in generalized linear measurement error models. The article by Carroll, Spiegelman,
Lan, Bailey, and Abbott (1984) on measurement error in binary regression marks
the shift in emphasis from linear to nonlinear measurement error models, and is
noteworthy for breaking ground in the application of measurement error modeling in
the health sciences and in the study of generalized linear models with measurement
error.

Greater variety in the types of error model (the model relating the observed W
and unobserved X) studied also characterizes the recent research in measurement
error modeling. The so-called Berkson error model, wherein the observed values
W are fixed in repeated sampling and the X values vary (Berkson 1950), which is
little studied in linear models because of the lack of rectifiable problems that it causes,
plays a more significant role in the study of nonlinear measurement error models. The
distinction between Berkson error and classical error models is subtle but important
because of the very different problems associated with each (Carroll et al. 1995, sec.
1.3; Fuller 1987, sec. 1.6.4). A frequently cited example due to Fuller (1987, sec.
1.6.4) illustrates the key feature of Berkson error. Consider an experiment in which
the quality of cement, Y , is to be studied as a function of the amount of water in the
mixture. The amount of water is controlled by setting a metered valve to specified
values. Because of fluctuations in water pressure and inaccuracies in the metered
valve, the true amount of water in a mixture, X , differs from the prescribed amount
W . Note that W is controlled as part of the experimental design and is not random.
In replication of the experiment at the same value ofW , the true amountX will vary.
If the valve is correctly calibrated, then a reasonable model is X = W + U , where
U is a mean-0 error regardless of the value of W . Thus for unbiased Berkson error,
E(X|W ) = W , whereas for unbiased classical error, E(W |X) = X .

There are experimental and sampling designs/studies in which the pure forms
of error models (classical and Berkson) arise naturally, and hence their importance
in applied and theoretical work. However, there are applications where neither error
model is directly applicable (measuring a child’s exposure to NO2 and measuring
average exposure to particulate matter are two such examples), although either may



be appropriate after transformation of the raw measurements (error calibration and
regression calibration; Carroll et al. 1995, sec. 1.3). An incorrect assumption about
the error model has the potential of causing problems as great as those created by
ignoring measurement error completely. Thus correct error model identification is
crucial to the successful use of measurement error models.

4.1 A Logistic Regression Measurement Error Model

Logistic regression is a common, important nonlinear model in which measure-
ment error is frequently a concern. The simple version of the model described in this
section illustrates key features of measurement error in nonlinear models.

The model discussed herein is not unlike that used by MacMahon et al. (1990) to
investigate attenuation due to measurement in their study of blood pressure, stroke, and
coronary heart disease. MacMahon et al. (1990) described the practical consequences
of failing to adjust for attenuation (which they refer to as regression-dilution bias)
and emphasized the need to account for measurement in the analysis of their data.

Consider the logistic regression model for the dependence of the binary re-
sponse Y on the scalar predictor X in which Pr(Y = 1|X) = H(α + βX), where
H(t) = {1 + exp(−t)}−1. Given data (Xi, Yi), i = 1, . . . , n, maximum likelihood
estimation requires numerical maximization. Now suppose that Xi is not observed,
but the measurement Wi = Xi + Ui with additive independent error is observed.

Because the maximum likelihood estimates have no closed-form expression,
the effect of substituting Wi for Xi in logistic regression is not easily determined.
Although it is generally true that the estimate of β is attenuated as in the case of linear
regression, and by approximately the same factor, this is not always the case (Stefanski
and Carroll 1985). The logistic model is typical in this regard in that assessing the
effects of measurement error on estimates in nonlinear models is intrinsically more
difficult than in linear models (Carroll et al. 1995, sec. 2.5).

Estimation in the logistic model with normally distributed measurement error
usually proceeds under the assumption that the error variance is known, or that it is
independently estimable, say from replicate measurements or validation data. The
model is identified more generally, but in this case identifiability does not imply the
ability to obtain estimators with acceptable finite-sample properties (Carroll et al.
1995, sec. 7.1.1). A number of estimation methods have been studied for this model
and were described by Carroll et al. (1995). One such method, chosen because of its
link to the work of Neyman and Scott (1948), is described next.

Consider the functional version of the logistic measurement error model with
errors, Ui, that are normally distributed with known variance σ2

U . In this case, the



density of (Yi,Wi) is

fYW (y, w|β0, βx, Xi)

= {H(α+ βXi)}y{1 −H(α+ βXi)}1−y 1
σU

φ

(
w −Xi

σU

)
,

where φ( ) is the standard normal density function. The functional maximum likeli-
hood has n+ 2 parametersX1, . . . , Xn, α, β, and its maximization does not produce
consistent estimators of the logistic regression parameters (Stefanski and Carroll
1985).

However, examination of the foregoing density reveals that the parameter-
dependent statistic ∆i = Wi + Yiσ

2
Uβ is sufficient for the unknown Xi in the sense

that the conditional distribution of (Yi,Wi) given ∆i does not depend on the nuisance
parameter Xi. This fact can be exploited to obtain unbiased estimating equations
for the regression parameters (α, β) using either conditional likelihood methods or
mean-variance function models (based on the conditional moments of Yi given ∆i)
and quasi-likelihood methods. Estimating equations derived in these ways is called
conditional scores, and the corresponding estimators are called conditional score
estimators.

Conditioning on sufficient statistics is a common strategy for eliminating nui-
sance parameters, and it applies more generally to measurement error models. The
key features of the logistic model with normal measurement error are that both com-
ponent models are exponential family densities. Thus there are a number of other
generalized linear measurement error models to which conditioning approach ap-
plies. Details and examples of the method for logistic regression and generalizations
to other generalized linear models with measurement error have been provided by
Carroll et al. (1995, sec. 6.4) and Stefanski and Carroll (1987).

This section closes with some numerical results providing an empirical illus-
tration of attenuation and the conditional score estimation method described earlier.
The data used are a subset of the data from the Framingham Heart Study and con-
sist of two measurements (from two exams 2 years apart) of systolic blood pressure
(SBP) and an indicator of coronary heart disease for each of 1,615 individuals. Blood
pressure measurements are transformed so that the variables used in the analyses are
Y,W1, and W2, where Y is the binary indicator and Wi is the natural logarithm of
the measured SBP from the ith exam, i = 1, 2. The model assumed is that W1 and
W2 are iid normal replicate measurements ofX , defined here as an individual’s long-
term, mean log-transformed SBP. In other words Wi = X + Ui, i = 1, 2, where Ui
is normally distributed with mean 0 and variance σ2

U . The error variance estimated
from the replicates is σ̂2

U = .006. Define W = (W1 +W2)/2 and note that W is the
preferred measurement of X with an error variance of σ2

U/2 (with estimate .003).
The three unbiased measurements ofX(W1,W2,W ) permit an empirical demon-

stration of attenuation due to measurement error. The measurement error variances



of W1 and W2 are equal and are twice as large as the measurement error variance of
their average W . Thus it would be expected that the attenuation due to measurement
error in the regressions of Y on W1 and Y on W2 is equal, whereas the regression of
Y on W should manifest less attenuation.

The estimates of slope from the logistic regressions of Y on W1 and Y on W2

are 2.98 and 2.86, with an average of 2.92. The estimate of slope from the logistic
regression of Y on W is 3.30. In the absence of appropriate standard errors, it is
unreasonable to claim that these estimates provide proof of attenuation due to mea-
surement error; however, the relationships among the estimates, 2.98 ≈ 2.86 < 3.30,
are consistent with what is known about measurement error and attenuation—the
larger the measurement error, the greater the attenuation.

The conditional score estimate of slope using W as the measurement of X and
assuming that the error variance is known and equal to .003 (a reasonable assumption
in light of the large degrees of freedom associated with this variance estimate) is 3.75.
Note that this estimate exceeds 3.30. This is as expected, because the latter estimate
is attenuated, whereas the conditional score estimate completely corrects (at least in
theory) for the attenuation due to measurement error.

The reasonableness of the conditional score estimate can be argued using a simple
jackknife-like bias adjustment. Note that for the measurements with error variance of
.006, the average estimated slope is 2.92 (corresponding to the average of the leave-
one-out estimates in a typical jackknife analysis—in the present case, one of the
two measurements is left out). For the measurement with error variance of .003, the
estimated slope is 3.30 (corresponding to the full-data estimate in the usual jackknife
setting—in the present case, no measurements are left out). A linear, jackknife-like
bias correction extrapolates this trend to the case of zero measurement error resulting
in the jackknife, bias-adjusted estimate 2(3.30) − 2.92 = 3.68, whose closeness to
the conditional score estimate (3.75) is not unexpected.

The reason that the jackknife-like estimate works is because bias (attenuation)
due to measurement error is a function of the measurement error variance in much
the same way that for nonlinear estimators in general, finite-sample bias is a function
of inverse sample size. This fact is the basis of a jackknife-like method for reducing
measurement error bias that uses simulated measurement error as an alternative to
deleting measurements (Carroll et al. 1995; Cook and Stefanski 1994; Stefanski and
Cook 1995).

5. FUTURE RESEARCH TRENDS

Carroll et al. (1995) described a number of viable methods of inference in non-
linear measurement error models, ranging from simple moment-based methods for
reducing measurement error bias to fully specified parametric-model maximum like-
lihood, including semiparametric and flexible-parametric maximum likelihood. Fur-



ther methodological developments are inevitable in light of the increasing variety of
problems tackled under the heading of measurement error modeling.

However, the long-term viability of the field will be determined by how mea-
surement error models and methods are integrated into the sciences from which they
evolved. The recent methodological developments form a foundation for inference
in measurement error models, and what is needed now are strategies for implement-
ing these methods in the commonly encountered, practical situations in which model
formulation is a necessary part of the data analysis. Some relevant areas of research
are model selection, model robustness, and variable selection in the presence of mea-
surement error.

Structural measurement error modeling is appealing because of its simplicity.
Once a model is specified, maximum likelihood estimation is an obvious alternative.
However, full specification of a structural measurement error model requires a model
for the response variable given X and other observable predictors, a model relating
W and X possibly depending on other observables, and a model for the distribu-
tion of X . Thus model selection and robustness in measurement error models are
multifaceted problems that are further complicated by the fact that parameter identi-
fiability is often achieved through some combination of supplementary data and error
model assumptions. In the worst of cases in which neither replicate measurements
nor validation data (observational units on which both X and W are observed) are
available, model parameter estimates are largely determined by assumptions about
the type of error model and magnitude of the error variance. In the best of cases in
which internal validation data are available (X and W observed on a subsample of
the main-study observational units—in which case the problem can also be viewed
as a missing-data problem; Carroll et al. 1995, sec. 1.8) there are data for estimating
error-model parameters, but seldom are the validation data sufficient for error-model
selection.

The fundamental inference problems on which model building and variable se-
lection procedures depend are more complicated in measurement error models, es-
pecially with multiple correlated predictors measured with error. Known results on
the adverse effects of measurement error on hypothesis tests (Carroll et al. 1995, sec.
11.3) indicate the need to account for the effects of measurement error when using
(W,Y ) to select variables or build models for (X,Y ). In recent investigations of the
health effects of particulate matter (Lipfert and Wyzga 1995; Schwartz, Dockery, and
Neas 1996), wherein both coarse and fine particulates are measured with error, mea-
surement error has been invoked to explain patterns of statistical (non) significance
in the analysis of the observed data (coarse and fine particulate measured at central
sites). The fact that measurement error affects variable selection and model building
is not in dispute, although the severity of its effect in multivariable models is not
known. Model building and variable selection in the presence of measurement error
is a potentially interesting and useful topic of study.
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Higher-Order Asymptotic Approximation:
Laplace, Saddlepoint, and Related Methods

Robert L. Strawderman

1. INTRODUCTION

Approximation is ubiquitous in both statistical theory and practice. Many approx-
imations routinely used in statistics can be derived by approximating certain integrals
and are asymptotic in nature. That is, such approximations are typically developed
under the assumption that some quantity connected to the amount of information
available (e.g., sample size) becomes infinitely large. In the case of approximating
density and distribution functions, one example here is “local linearization” (i.e., the
delta method combined with the central limit theorem). This method of approxima-
tion has a long history, with roots that can be traced back to the time of Laplace and
Gauss (i.e., early 1800s). In general, local linearization leads to approximations that
are accurate to “first order.” Methods of “higher-order” asymptotic approximation,
in principle more accurate than those of first order, include Edgeworth expansion,
tilted Edgeworth expansion, and saddlepoint approximations for density and distribu-
tion functions. A related technique for approximating integrals known as Laplace’s
method has been a popular tool in recent work in Bayesian inference and random-
and mixed-effects models.

In the last 20 years or so, the statistical literature on higher-order asymptotic ap-
proximation has grown significantly. As this article is not meant as a comprehensive
review of the area, many useful and interesting contributions have necessarily been
left out. For example, the vast literature on Edgeworth expansion is essentially ig-
nored. The significant recent growth has not been limited to applications of Laplace’s
method and saddlepoint approximation. However, much of the work reviewed in Sec-
tion 3 is connected to these basic methods of integral approximation at some level,
and these works have arguably had the most significant influence on development in
the area of higher-order asymptotic approximation to date. A parallel motivation for
writing this article, emphasized primarily in Section 2, is that Laplace and saddle-
point approximations exist independently of statistics and have substantially broader
applicability than is often recognized.

Robert L. Strawderman is Associate Professor, Department of Biometrics, Cornell University, 434 Warren
Hall, Ithaca NY 14853 (E-mail: rls54@cornell.edu).



2. ASYMPTOTIC APPROXIMATIONS
FOR INTEGRALS

2.1 Laplace’s Method

It is well known that the initial development of an asymptotic theory now central
to both statistical theory and practice originated with Laplace’s seminal work on the
central limit theorem, a result first read before the Paris Academy in 1810 (Stigler
1986). Perhaps less well known is that Laplace’s original development of the central
limit theorem actually made use of Laplace’s method for approximating integrals and
Fourier inversion. Indeed, Laplace’s method was actually conceived earlier in 1774
as part of the solution to a problem left unsolved by Thomas Bayes that involved
finding the posterior distribution of a binomial probability under a uniform prior.
This led to an asymptotic approximation to the (now) well-known incomplete beta
function. In 1785, Laplace refined and used his method of approximation in devising
a Fourier-type inversion formula for point probabilities derived from the generating
function for a sum of independent discrete random variables, solving a problem that
had stymied the likes of Abraham De Moivre, Thomas Simpson, and Joseph Lagrange.
These asymptotic approximations also provided the impetus for his development of
the central limit theorem. Laplace’s work here grew into a considerably more general
analysis of the behavior of sums of independent random variables by the time his
monograph Théorie analytique de probabilités was published in 1812.

Laplace’s method is designed to approximate integrals of the form

I(λ) =
∫ b

a

f(t)eλφ(t) dt (1)

as λ → ∞, where [a, b] ⊆ R and f(t) and φ(t) are real-valued functions with
certain properties. The intuition underlying Laplace’s method is very simple and is as
follows. Suppose that f(t) and φ(t) are smooth functions independent of λ and that
tmax = maxt∈[a,b] φ(t) maximizes eλφ(t) for any λ > 0. Suppose further that eλφ(t)

becomes very strongly peaked at t = tmax and decreases rapidly away from t = tmax

on [a, b] as λ → ∞; that is, φ(tmax) < 0. Then, as λ → ∞, it is generally true that
the major contribution to I(λ) comes from the behavior of the integrand in a small
neighborhood about tmax. One common form of this result, valid when φ(·) has a
unique maximum on (a, b) and generally stated under strong smoothness conditions,
is

I(λ) ≈
(

2π
λ|φ′′(tmax)|

)1/2

f(tmax)eλφ(tmax). (2)

The right side is usually referred to as the (first-order) Laplace approximation to
I(λ). A standard heuristic derivation of (2) from (1) proceeds by Taylor expansion,



and eventually involves evaluating the integral of the kernel of a normal density
function (see, e.g., Bleistein and Handelsman 1975, chap. 5).

The form of the expansion (2) is directly tied to the presence of the normal density
function, and the usual heuristic derivation based on Taylor expansion arises because
of the inherent smoothness assumption on φ(·) in a neighborhood about t = tmax. A
considerably more general approximation to (1), requiring no smoothness conditions
on f(·) or φ(·), has been given by Fulks (1960). Basically, in line with the foregoing
intuition, all that is really required is that the integral eventually exists and that f(·)
and φ(·) admit asymptotic expansions of a certain form in a neighborhood of the
critical point tmax. A parallel version of this result is available for multivariate integrals
(Fulks and Sather 1961). One important consequence of these results is that locally
quadratic behavior of φ(·) near tmax (i.e., “asymptotically normal” behavior) is not a
required assumption for the successful application of Laplace’s method. However, in
cases where such locally quadratic behavior does not hold, the form of the resulting
approximation generally differs from (2).

2.2 Saddlepoint Approximations

Laplace’s method for approximating integrals can be viewed as a special case of
a more general class of methods for approximating integrals known as saddlepoint
methods. The saddlepoint method and an important special case known as the method
of steepest descent are designed to approximate integrals of the Laplace type in which
both the integrand and contour of integration are allowed to be complex valued. The
origin of the method of steepest descent has been traced back to a posthumous work of
Riemann (1863) and was placed on a more rigorous foundation by Debye (1909). The
exact origin of the saddlepoint method is less clear. These methods of approximation
are probably the most well known of all procedures for determining the asymptotic
behavior of integrals. Excellent introductions to the basic principles underlying the
method of steepest descent and saddlepoint approximations were provided by de
Bruijn (1961), Bleistein and Handelsman (1975), and Ablowitz and Fokas (1997). I
now summarize these methods, combining the important points made by these three
authors.

Consider the problem of approximating

I(λ) =
∫
C

f(z)eλφ(z) dz (3)

as λ → ∞, where z = a + ib is complex valued, C is a curve (i.e., contour) in the
complex plane C, and φ(z) and f(z) are analytic functions of z in a region D ⊂ C
that contains C. The goal of both the saddlepoint method and the method of steepest
descent is to derive an approximation to (3) as λ → ∞. Evidently, (1) is a special
case of (3) in which C, φ(·), f(·), and z are all real valued. However, the asymptotic



approximation of (3) brings with it a number of additional considerations and difficul-
ties that do not present themselves in the approximation of (1). For example, because
φ(z) is complex valued, the integrand in (3) can oscillate very rapidly as λ → ∞,
instead of decaying to 0 exponentially fast.

The basic idea behind steepest descent approximation is to deform the contour
C in such a way so as to pass through important critical points of φ(z) and ensure
that the imaginary portion of φ(z) is constant on this new contour. The deformation
of contours is a common technique in complex analysis that is justified by Cauchy’s
closed-curve theorem (e.g., Bak and Newman 1996). The ability to deform the contour
C into a new contour C∗ on which the imaginary portion of φ(z) is constant is quite
important. In particular, it eliminates the rapid oscillation of the integrand for large
λ, leaving an integral that is more amenable to approximation via Laplace’s method.

It is a well-known fact from complex analysis that the paths on which the imag-
inary portion of φ(z) are constant are also paths for which the real part of φ(z), say
u(z), either decreases or increases the fastest (e.g., Bleistein and Handelsman 1975,
sec. 7.1). The paths on which u(z) decreases the fastest are known as paths of steep-
est descent; hence the name of the method. Typically, steepest descent paths pass
through a point (or points) z0 for which φ′(z) = 0 (i.e., saddlepoints), and, much
like Laplace’s method, the major contributions to I(λ) come from the behavior of the
integrand in a neighborhood of these points. In the case where u(z) is maximized at
a point interior to the path C, the following expansion often holds (Watson 1944, sec.
8.3):

I(λ) = eλφ(z0)

[
f(z0)

(
− 2π
λφ′′(z0)

)1/2

+ O(λ−3/2)

]
. (4)

The method of steepest descent is a special case of the more commonly used saddle-
point method. In the saddlepoint method, the original steepest descent contour C∗ is
replaced by a new contour C∗∗ that coincides with C∗ over only a small segment,
say S∗. The coincidental segment S∗ is chosen to contain a relevant saddlepoint; that
is, a point for which φ′(z) = 0. The remainder of the contour C∗∗ is set to be a
conveniently parameterized descent contour. As before, deformation of the original
contour C into C∗∗ is justified by Cauchy’s closed-curve theorem and is generally
done because (a) the steepest descent contour C∗, though often easy to characterize
locally, is difficult to characterize globally; and (b) under sufficient smoothness con-
ditions, the main contribution to the integral as λ → ∞ comes from the behavior
of the integrand about the saddlepoint. The resulting saddlepoint approximation is
obtained by approximating the integral over S∗ via the method of steepest descent
and showing that the contributions to the integral over C∗∗ − S∗ are asymptotically
negligible.



3. SOME KEY DEVELOPMENTS IN STATISTICS

In my opinion, eight articles have had the most significant influence on the de-
velopment of higher-order asymptotic approximations in statistics. In order of pub-
lication, these are the articles of Daniels (1954), Barndorff-Nielsen and Cox (1979),
Barndorff-Nielsen (1980), Lugannani and Rice (1980), Barndorff-Nielsen (1983),
Barndorff-Nielsen (1986), Tierney and Kadane (1986), and Skovgaard (1987). As
remarked earlier, I do not mean to imply that these are the only important works in
the area of asymptotic approximation, for this is clearly not the case. However, I think
that it can be successfully argued that these works contain the key developments from
which most, if not all, of today’s statistical literature on the topic of higher-order
asymptotic approximation has been generated. I should note that, except for the ar-
ticles of Daniels (1954) and Barndorff-Nielsen and Cox (1979), the order in which
the articles are discussed here should not necessarily be taken as an implication of
relative importance.

Daniels (1954) introduced the saddlepoint method to statisticians in the context
of approximating the density of a sample mean of n iid random variables X1 . . . Xn.
This was accomplished by using the saddlepoint method described in Section 2.2 to
derive an approximation to the Fourier inversion integral representation of the density
of the sample mean; that is, to

fx̄(x) =
n

2πi

∫ τ+i∞

τ−i∞
en[K(z)−zx] dz,

where K(t) is the cumulant-generating function for X1. This integral is exactly of
the form (3) with a particularly simple choice of the contour C, f(z) ≡ 1, λ = n, and
φ(z) = K(z) − zx. Applying (4) leads to the relation

fx̄(x) =
(

n

2πK ′′(t0)

)1/2

en[K(t0)−t0x] × (1 + O(n−1)), (5)

where t0 uniquely solves K ′(t0) = x and thus depends on x. Daniels demonstrated
to the statistical community that substantial improvements over approximations pro-
vided by both the central limit theorem and Edgeworth expansions could be obtained
with this method of approximation. Daniels also connected the saddlepoint approx-
imation to an “exponentially tilted” version of the Edgeworth expansion, the latter
being a particularly statistical interpretation of the more general technique of saddle-
point approximation. These important results were largely overlooked by statisticians
for the next 25 years or so. For example, although the article of Daniels (1954) has
probably been referenced more than any other article in statistical work on higher-
order asymptotics, most of these references appear in works published in 1979 or
later.

Although Daniels (1954) is generally credited with introducing saddlepoint meth-
ods (and tilted Edgeworth expansion) to statistics, the work of Barndorff-Nielsen and



Cox (1979) really represents the cornerstone of development for much of the future
work in the area of higher-order asymptotic approximation in statistics. Many of
the key ideas that now permeate the literature were given by Barndorff-Nielsen and
Cox (1979), including (a) a statistically oriented approach to devising higher-order
asymptotic expansions (i.e., through tilted Edgeworth expansion); (b) further devel-
opment of the “double saddlepoint” approximation for conditional distributions, a
technique originated by Daniels (1958); (c) introduction of the “single-saddlepoint”
approximation to conditional distributions; and (d) insights into the value and use
of these methods in unconditional and conditional likelihood inference. The ideas
and observations presented in the discussion to this article also provide a window on
useful future developments; see in particular the comments of Durbin, Peers, Lindley,
Bickel, Hampel, and Hinkley.

In work on higher-order approximations to tail probabilities, it is a virtual guaran-
tee that either one or both of the articles by Lugannani and Rice (1980) and Skovgaard
(1987) will be referenced. According to Jensen (1995, p. 88), Lugannani and Rice
(1980) were the first to derive a saddlepoint approximation to the tail probability
P{X̄ ≥ x} that was uniformly valid throughout the range of x. Previous attempts by
others generally led to approximations that performed poorly either for x near E[X]
or for x in the tails of the distribution. For a random variable Xn, one general form
of this approximation is

P{Xn ≥ x} ≈ 1 − Φ(rn) + φ(rn)(w−1
n − r−1

n ), (6)

where rn and wn depend on the cumulant-generating function of Xn, its first two
derivatives, and x. In certain cases, rn takes the form of a likelihood ratio statistic and
wn takes the form of a Wald statistic. Under favorable conditions, the relative error
of (3.2) is O(n−3/2) for rn bounded. The apparent simplicity of (6) and its excellent
properties are probably the main reasons why the article of Lugannani and Rice (1980)
is one of the most referenced in the statistical literature on tail probability approx-
imations. This is interesting, as the article itself is generally difficult to follow and
provides little useful insight into how (6) is obtained. In this regard, a very useful and
important expository article is that of Daniels (1987), where an exceptionally clear
discussion and derivation of (6) is given in the case of a sample mean. Quite general
forms of (6), derived without any reference to probability or sample means, can also
be found in the literature prior to the work of Lugannani and Rice (1980) (see, e.g.,
Bleistein and Handelsman 1975, sec. 9.4; Olver 1974, sec. 9). Some interesting sta-
tistical articles only partially representative of the diversity of applications of (6) and
related formulas include (in order of publication) those of Robinson (1982), Daniels
(1983), Fraser (1990), Barndorff-Nielsen (1991), DiCiccio and Martin (1991), Wood,
Booth, and Butler (1993), Skates (1993), and Booth, Hall, and Wood (1994). More
recently, Zheng (1998) combines (6) and bootstrap calibration in order to construct
confidence sets for parameters of lattice distributions. Another recent article is that



of Strawderman and Wells (1998), which derives single-saddlepoint approximations
of the form (6) for the conditional distribution of the common odds ratio in k 2 × 2
tables. Their approximations also apply more generally to noncentral hypergeometric
distributions and sums of non-iid Bernoulli random variables.

Skovgaard (1987) developed an approximation for conditional probabilities of the
form P{Ȳ ≥ y|X = x} by combining (6) with the technique of double-saddlepoint
approximation. Skovgaard’s work represents a substantial generalization of the work
of Barndorff-Nielsen and Cox (1979), as his approximation is for tail probabilities
(i.e., instead of a conditional density) and allows for the marginal distributions of Ȳ
and X to be lattice, continuous, or a mix of the two. The form of this approximation is
the same as (6), with rn and wn suitably defined. In part due to its relative simplicity,
Skovgaard’s work has been instrumental in developing tail probability approximations
in the realm of conditional inference. Two useful papers here include those by Davison
(1988), who showed how Skovgaard’s approximations could be used for conditional
inference in certain generalized linear models, and Kolassa and Tanner (1994), who
showed how to combine Gibbs sampling and Skovgaard’s approximation for carrying
out conditional inference in generalized linear models.

We now turn to the important work of Barndorff-Nielsen (1980, 1983, 1986)
and the rather substantial number of related articles that this work has generated
on increasing our understanding of the properties of likelihood, with a particular
focus on the connections between likelihood and higher-order asymptotics. Daniels
(1958) observed that for n iid observations for an exponential family with canonical
parameter θ, (5) could also be written as

( n

2π

)1/2
[i(θ̂)]−1/2 L(θ|t(x))

L(θ̂|t(x))
, (7)

where t(x) is sufficient for θ, θ̂ is the maximum likelihood estimator (MLE), i(θ̂)
is the expected information matrix evaluated at θ = θ̂, and L(θ|t(x)) is the likeli-
hood function. Barndorff-Nielsen (1980) showed that (7), with i(θ̂) replaced by the
observed information evaluated at θ = θ̂, leads to either an exact or a very accurate
approximation to the conditional distribution of the MLE given an ancillary statis-
tic in transformation and exponential families. The resulting density approximation,
generally referred to as the p∗ formula, was explored further by Barndorff-Nielsen
(1983), where such results are extended to more general parametric models. It is per-
haps worth pointing out here that although the p∗ approximation can be motivated
without the use of Laplace or saddlepoint approximations (e.g., Barndorff-Nielsen
1988), strong connections to these methods of integral approximation are also un-
deniable (e.g., Barndorff-Nielsen 1990a; Fraser 1988). The likelihood vignette by
Reid discusses the origin and properties of the p∗ approximation from a likelihood
perspective in more detail.

More directly useful for inference are tail probability approximations. As dis-
cussed earlier, the approximations of Lugannani and Rice (1980) and Skovgaard



(1987) are derived directly using saddlepoint methods and can be applied provided
that the relevant cumulant-generating function is available or can be computed. How-
ever, asymptotic approximations for carrying out conditional inference for a single
parameter in the presence of nuisance parameters that are likelihood based also ex-
ist. These approximations rest on the same considerations as those underlying the
p∗ formula and largely stem from Barndorff-Nielsen (1986), who developed the r∗

approximation for a single component of a MLE based on a mean and variance–
adjusted version of a signed log-likelihood ratio statistic. The resulting tail proba-
bility approximation takes the general form (6) and is computed via the “modified
directed likelihood” (e.g., Barndorff-Nielsen and Cox 1994, sec. 6.6). This approxi-
mation has strong connections to various corrected versions of profile likelihood (see,
e.g., Barndorff-Nielsen 1994). In particular, as shown by Pierce and Peters (1992), r∗

involves two main corrections to the usual profile likelihood, one that adjusts for the
presence of nuisance parameters and the other that attempts to make an adjustment
for a lack of normality (i.e., as measured through the curvature, or, equivalently, the
amount of information, about the parameter of interest in the profile log-likelihood).
One difficulty with the original r∗ approximation is the need to explicitly specify
an ancillary statistic. This fact spurred considerable additional research in this area,
and simpler versions of the r∗ approximation that avoid this difficulty were given
by Barndorff-Nielsen (1991, 1994); DiCiccio and Martin (1993) considered a related
approximation with a more Bayesian flavor. As discussed by Reid (1996), in addition
to being less accurate, the computations required for these alternative approximations
are still quite difficult. This especially holds true outside canonically parameterized
exponential and transformation families. For more extensive reviews of recent work
see the review articles of Reid (1995, 1996). (For a summary of the many results
in this area largely due to Barndorff-Nielsen, see Barndorff-Nielsen and Cox 1994,
chap. 8.)

To this point, not much has been said about Laplace’s method. Although ap-
plications of Laplace’s method do appear sporadically in the statistics and applied
probability literature prior to 1986, its current popularity can be traced to the impor-
tant article of Tierney and Kadane (1986) on approximating posterior expectations.
Tierney and Kadane (1986) convincingly demonstrated that Laplace’s approximation
holds significant practical value for Bayesians. In particular, they showed how to
accurately approximate posterior expectations of the following general form:

E[w(θ)|data] =
∫
eln(θ)+g(θ)π(θ) dθ∫

eln(θ)π(θ) dθ
, (8)

where ln(θ) is the log-likelihood function computed from data, π(θ) is the prior,
and w(θ) = eg(θ) is a smooth positive function of θ. With suitable manipulation
(and conditions), the above may be placed in a form to which the Laplace approxi-
mation of Section 2.1 can be separately applied to the numerator and denominator,
producing an accurate approximation to (8). Follow-up articles by Kass, Tierney,



and Kadane (1988) and Tierney, Kass, and Kadane (1989) further extended these
results and also provided discussion on some practical issues involved in using these
approximations. Aside from providing a useful method that continues to facilitate
complicated Bayesian computations, the Tierney and Kadane article is important out-
side its Bayesian context, as it clearly renewed general interest in Laplace’s method
among statisticians working in many different areas of statistics (e.g., mixed-effects
and measurement error models).

4. WHERE SHOULD WE GO FROM HERE?

There are many distinct directions in which the field of asymptotic approxima-
tions in statistics could proceed, but here I discuss only two: improving accessibility
and applicability and encouraging fruitful combinations between computing power
and asymptotic approximation.

4.1 Accessibility and Applicability

Casella, DiCiccio, and Wells (1995), in a discussion to a review article of Reid
(1995) on conditional inference, remarked that a major failing of present literature
on conditional inference is that it “has been developed by the cognoscenti for their
use.” Although this statement is rather strong (and obviously irked Reid, as seen in
her rejoinder), it also contains some unfortunate truth. There is no doubt that the
results being developed in the conditional inference school of asymptotics have led
to profound new insight into the role and properties of likelihood. However, far less
has been accomplished in the way of convincing the statistical community that such
results are useful at interesting levels of generality. Of greatest use to practitioners are
tail probability formulas, for these form the core of most inferential procedures. Such
formulas are generally couched in the form (6), and at first sight appear exceedingly
simple—that is, of course, until one delves further into the compact notation used
in defining rn and wn. One then finds that computation of (6) is generally very
complicated, involving, for example, derivatives of the log-likelihood function with
respect to the MLE. More work in this area is needed before this statistically driven
version of higher-order asymptotic theory attains some reasonable level of practical
utility. Some useful recent progress is evident (see, e.g., Severini 1999).

In terms of expanding applicability, it is worth emphasizing a point that has been
made a number of times in the past: that although saddlepoint and p∗-type approxi-
mations coincide in certain cases, they are also distinct entities. Saddlepoint approxi-
mations and related methods are purely mathematical tools designed to approximate
integrals of a given form, such as (5). In contrast, p∗-type formulas have a deeper
philosophical motivation rooted within basic tenets (and controversies) of statistical
theory. The development of a purely statistical theory of higher-order asymptotic ex-



pansion based on the principles of likelihood and conditional inference is attractive.
However, I would argue that despite some claims to the contrary, this necessarily
limits general applicability. For example, such a theory does not cover much of the
current research today on estimators derived from more general estimating equations.
This fact does not seem to bother those working in the area of conditional inference,
the justification being that such inferential methodologies are “at odds with the view-
point of conditionality” (Barndorff-Nielsen and Cox 1994). But whether this truly
represents a problem is entirely a function of one’s inferential philosophy. Irrespec-
tive of existing dogma, an important fact to keep in mind is that the statistical models
used in most real problems are no longer dominated by those amenable to purely
likelihood-based analyses, and that more accurate inferences than those provided by
first-order arguments are in general quite desirable, whatever the inferential context.

4.2 Computing and Asymptotics

Asymptotic approximations in statistics can be extremely complex. Efforts to
keep such approximations manageable often result in nebulous error terms of the
form O (something small). These O(·) error terms describe the “asymptotic order”
of approximation and generally receive a misplaced level of trust. Significant dis-
crepancies between two approximations claimed to be accurate to the same general
asymptotic order (consider, e.g., single versus double saddlepoint approximations)
often can be explained in terms of what is not captured by the leading term of their
respective expansions, or, more precisely, what is hidden within the respective O(·)
error terms. Although this fact is well known, it is often ignored because establishing
sharp error bounds requires substantial knowledge regarding the global asymptotic
behavior of the integrand.

In univariate problems, there is really no need to rely on asymptotic expansions at
all, because most reasonable numerical quadrature routines can yield “exact” results
to user-controlled levels of error. A distinct advantage of numerical quadrature is that
one need not rely on a O(·) error term that represents some vague, hypothetical level
of accuracy under a given set of assumptions that may or may not hold. However, a
difficulty is that two different representations of the same exact integral can exhibit
substantially different numerical behavior. Such difficulties are of especially signifi-
cant concern in the computation of integrals with rapidly oscillating integrands, such
as Fourier inversion integrals (see, e.g., Davis and Rabinowitz 1984). Few existing
quadrature schemes seem to exploit the basic principles that underlie the theory of
asymptotic expansion. For certain classes of integrands, preliminary transformations
may create integrals amenable to asymptotic approximations. As many approxima-
tions can be viewed as “one-point” quadrature routines, such preliminary transforma-
tions should improve both the efficiency and the accuracy of numerical quadrature
routines. For example, this basic idea underlies the results of Liu and Pierce (1994),



who proposed a method for improving the efficiency of Gauss–Hermite quadrature.
Combining the principles of asymptotic expansion with numerical quadrature in

the multivariate setting is also possible, though more problematic. Some work in this
area has been done (see, e.g., DiCiccio, Kass, Raftery, and Wasserman 1997 for results
relevant to the computation of Bayes factors, and Kolassa 1999 for progress in the area
of combining Gibbs sampling and Skovgaard’s approximation for computing condi-
tional distribution functions in generalized linear models). Genz and Monahan (1998)
devised stochastic integration rules for multivariate integrals of form

∫
g(x)p(x) dx,

where p is either a multivariate normal or t density; adaptation of these efficient rou-
tines to Laplace-type integrals seems feasible and may significantly widen their scope
of applicability. Arguably, with today’s computing power, many lower-dimensional
problems can be handled efficiently in such a manner. Gelman and Meng (1998)
discussed interesting “path sampling” Monte Carlo methods for high-dimensional in-
tegration problems that originate from the statistical physics literature. These methods
are designed to reduce high-dimensional integration problems to problems of much
lower dimension. The results of DiCiccio et al. (1997), who considered combining
Laplace’s method with bridge sampling (a special case of path sampling), suggest
that fruitful combinations of path sampling methods and asymptotic approximation
may be possible.
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Minimaxity

William E. Strawderman

1. INTRODUCTION

A minimax statistical decision procedure is, by definition, one that minimizes
(over the class of procedures) the maximum (over the parameter space) of the risk
function. Minimaxity is occasionally put forward as a principle roughly in the form
that “one should use a minimax procedure in any statistical problem” (see, e.g., Berger
1985; Robert 1994). However, it seems to typically be the case that the principle is put
forward mainly for the purpose of refuting it. In fact, there may be no statistician who
actively supports the minimax principle as a prescription for action. Nonetheless, the
study of minimaxity has been an important part of theoretical statistics for more than
50 years, has led to a deeper understanding of various areas of statistics, has provided
useful new procedures, and as Brown (1994) argued, has been an organizing theme for
many statistical developments. (See also the vignette on decision theory by Brown.)

2. MINIMAX ESTIMATION

There is no universally successful method for finding a minimax estimator (or
procedure, more generally). Two methods have proven particularly helpful: the least
favorable prior approach and the invariance approach.

2.1 The Least Favorable Prior Approach

The basis of the least favorable prior approach is the following result.

Proposition 1. If δ is a Bayes estimator with respect to a prior distribution
π and if the Bayes risk r(π) is equal to the supremum risk, supθ R(θ, δ), then δ is
minimax (and π is a least favorable prior).

A closely related result is the following.

Proposition 2. If πn is a sequence of priors n = 1, 2, . . . and δ is an estimator
such that limn→∞ r(πn) = supθ R(θ, δ), then δ is a minimax estimator (and πn is a
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Brunswick, NJ 08903 (E-mail: straw@stat.rutgers.edu). This research was supported by National Science
Foundation grant DMS-9704524.



least favorable sequence).
The term least favorable (sequence) refers to the fact that for any other prior,

π′, r(π′) ≤ r(π)(r(π′) ≤ limn→∞ r(πn)). Hence a prior that is least favorable
(to the statistician) gives the largest possible Bayes risk and is in this sense the most
difficult prior distribution to deal with. (For proofs of Propositions 1 and 2, see Berger
1985, sec. 5.3, or Lehman and Casella 1998, sec. 5.1.)

An easy corollary of Proposition 1 is that a constant risk Bayes estimator is
minimax. Here is a well-known example.

Example 1. Let X have a binomial distribution with parameters n (known)
and p (unknown). Consider estimation of the parameter p with squared error loss
L(p, δ) = (δ − p)2. A beta prior with parameters α = β =

√
n/2 gives the Bayes

estimator (X +
√
n/2)/(n +

√
n), which has constant risk 1/[4(1 +

√
n)2] and is

hence minimax by Proposition 1.
In this example it would perhaps be difficult to guess that this particular prior

would be least favorable. And, in fact, the minimax estimator is generally considered
to not be particularly good. The maximum likelihood estimator (MLE) and uniformly
minimum variance unbiased (UMVU) estimator,X/n = p̂, has a risk ([p(1 − p)]/n)
that (for moderate or large n) is much better in a neighborhood of p = 0 or p = 1
and only slightly worse in a neighborhood of p = 1

2 .
In fact, if we change the loss to L(δ, p) = (δ − p)2/p(1 − p), then the estimator

p̂ = X/n has constant risk (= 1/n) and is Bayes with respect to the uniform [beta
(1, 1)] prior. Hence p̂ is minimax for this natural loss. The uniform prior might well
be considered a more natural guess as a least favorable prior. This example illustrates
that minimaxity considerations can be, and often are, quite sensitive to the choice of
loss function.

Another interesting feature of this example is that although the minimax estimator
for each of the losses is unique, the least favorable prior in each case is not unique.
For example, for squared error loss, any prior whose first n+ 1 moments match that
of the beta (

√
n/2,

√
n/2) prior will give rise to the same Bayes minimax estimator.

Proposition 2 is useful in finding minimax estimators in certain situations where
there is no proper least favorable prior. Perhaps the best-known example of this phe-
nomenon is estimation of the mean of a normal distribution. We discuss this in the
following example.

Example 2. Let X have a normal distribution with mean θ and variance 1.
We wish to estimate θ with squared error loss L(θ, δ) = (δ − θ)2. The more general
case of a sample of size n from a normal distribution with known variance, σ2, can
be reduced to the foregoing by sufficiency (and change of scale). Of course, X has
constant risk equal to 1, and it is perhaps natural to think that X can be shown to
be minimax by Proposition 1. However, an easy and well-known result states that an
unbiased estimator, δ, can be Bayes with respect to π under squared error loss if and



only if the integral with respect to the prior π of the risk of δ is equal to 0 (see, e.g.,
Bickel and Mallows 1988). AsX has constant risk equal to 1, the integrated risk with
respect to any prior will be 1 and not 0. HenceX cannot be Bayes with respect to any
(proper) prior, and Proposition 1 cannot be used to deduce minimaxity. Intuitively,
it seems that a least favorable prior would be uniformly distributed on (−∞,∞),
but this measure would not be a proper (integrable) prior. Proposition 2 comes to the
rescue here in the following way. Let the prior, πn, be a normal distribution with mean
0 and variance n. The Bayes estimator [n/(n+ 1)]X has Bayes risk, r(πn), equal to
n/(n + 1), which approaches R(θ,X) = supθ R(θ,X). Hence X is minimax, and
the sequence πn is least favorable. The sequence of priors, πn, is becoming more and
more spread out and in a sense may be said to be approaching a uniform distribution
on (−∞,∞).

It is worth noting that “the uniform distribution on (−∞,∞)” (i.e., Lebesgue
measure), may be formally treated as a “prior.” The usual formal calculations result
in a proper posterior distribution—in fact, the normal distribution with mean X and
variance 1. HenceX is in this sense a “Bayes” estimator with respect to the (improper)
uniform prior distribution on (−∞,∞).

The minimax estimator in this example is unique, although the least favorable
sequence is not. Interestingly, up to constant multiples, the “uniform” prior is the
unique generalized prior with X as a formal Bayes estimator.

2.2 The Invariance Approach

Location, scale, and location-scale families are examples of so-called group fam-
ilies to which invariance methods may be applicable. Under mild conditions (e.g.,
transitivity and local compactness) on the group of transformations (on the parameter
space), a minimum risk equivariant (MRE) procedure may be found as a general-
ized or formal Bayes procedure with respect to the right-invariant (generalized) prior
distribution. If, further, the group is amenable (see, e.g., Bondar and Milnes 1981),
then the MRE is also minimax. This so-called Hunt–Stein theorem relies in part on
a version of Proposition 2. Berger (1985) gave an accessible version of the develop-
ment of the MRE as a generalized Bayes estimator with respect to the right-invariant
measure, and Bondar and Milnes (1981) discussed a development of the Hunt–Stein
theorem. Lehmann (1986) provided for a proof of the Hunt–Stein theorem for hypoth-
esis testing, and Lehmann and Casella (1998, p. 421) gave a discussion and further
references. Among the most important examples is the following.

Example 3. Suppose that X = (X1, X2, . . . , Xn) has density f(X1 −θ,X2 −
θ, . . . ,Xn−θ),−∞ < θ < ∞, with respect to Lebesgue measure onRn. We wish to
estimate θ with squared error loss L(θ, δ) = (δ− θ)2. Here the distribution of X is a
location family, and the problem is invariant under the location group. An equivariant



estimator, δ, is one such that δ(X1+a,X2+a, . . . ,Xn+a) = δ(X1, X2, . . . , Xn)+a
for all X, a. The group Ḡ acting on the parameter space is the one-dimensional
location group. It is both transitive and locally compact. Hence the MRE is given by
the generalized Bayes estimator with respect to the right-invariant measure, which in
this case is Lebesgue measure. The estimator is called Pitman’s estimator. The group
is also amenable, and hence Pitman’s estimator is minimax. Pitman’s estimator is
given in this case by

δ(X) =

∫∞
−∞ θf(X1 − θ,X2 − θ, . . . ,Xn − θ) dθ∫∞
−∞ f(X1 − θ,X2 − θ, . . . ,Xn − θ) dθ

.

2.3 Additional Methods, Examples, and Comments

Minimax procedures exist under general conditions. Proposition 1 may be used
quite generally in finite-parameter and finite-action problems. Game theoretic tech-
niques and linear programming techniques are occasionally useful. If in a particular
problem with loss L(θ, δ), we have an admissible procedure, δ, with positive risk
R(θ, δ), then δ will be an admissible procedure with constant risk for the problem
with loss L(θ, δ)/R(θ, δ). Because constant-risk admissible procedures are easily
seen to be minimax, δ is minimax in the new problem. This again indicates the sen-
sitivity of minimaxity to choice of loss function.

Minimaxity may also be affected by restrictions on the parameter space. Consider
the following alteration of Example 2.

Example 2 (continued). Suppose we know that θ ≥ 0. In this example X
remains a minimax estimator, but it is not unique. Two alternative minimax estimators
are max(X, 0) and the generalized Bayes estimator with respect to the uniform prior on
[0,∞). There are, in fact, many generalized priors giving rise to minimax procedures.

If we further restrict θ to lie in the compact interval [a, b], then X is no longer
minimax, because the estimator that truncates X at a and at b,min[max(X, a), b],
has a risk that is everywhere strictly less than 1, the risk of X . Compactness of [a, b]
and continuity of all risk functions imply that the supremum risk is also strictly less
than 1. The minimax procedure in this case is unique and is Bayes with respect to
a unique prior supported on a finite set of points. If the interval [a, b] is sufficiently
small (b − a < 1.05), then the prior puts mass 1

2 at a and b. The number of support
points of the prior grows with b − a in a way that still is not well understood (see
Casella and Strawderman 1981 for more details). Bickel (1981) found the weak limit
of the sequence of least favorable priors, renormalized to the interval [0, 1].



3. MULTIPARAMETER ESTIMATION

One of the most important developments in decision theory was the discovery by
Stein (1956) that the usual estimator (i.e., the vector of sample means) of the mean
vector of a multivariate normal population is inadmissible under sum of squared error
loss. Because the usual estimator is minimax in this setting (independent copies of
the sequence of priors in Example 2 and Proposition 2 work), any improvement is
also minimax. As Brown (1994) pointed out, it is not clear whether admissibility or
minimaxity is the main focus or the beneficiary of the discovery, although it is clear
that research in both of these decision theory foci received a boost and greatly ben-
efited from Stein’s fundamental and monumental discovery. The following example
illustrates some of the developments.

Example 4. Let X = (X1, . . . , Xp) have a p-variate normal distribution with
mean vector θ = (θ1, . . . , θp) and covariance matrix σ2I where I is the p×p identity
matrix. Let the loss be L(θ, δ) =

∑
(δi− θi)2 = ‖δ− θ‖2. Baranchik (1970) showed

that an estimator of the form (1−{[ar(X′X)σ2]/X′X})X dominates the estimator X
provided that 0 < a ≤ 2(p−2) and r(X′X) is nondecreasing and bounded between 0
and 1. The case r(·) ≡ 1 is the result of James and Stein (1961). An enormous literature
developed in several directions. Efron and Morris (1971, 1972, 1973) developed a
variety of estimators of the foregoing form in this and related settings and studied them
from the perspective of empirical Bayes estimation (see the empirical Bayes vignette
by Carlin and Louis). Strawderman (1971) found proper Bayes minimax estimators of
Baranchik’s form for five and more dimensions. Berger (1976), Bhattacharya (1966),
Bock (1975), Efron and Morris (1971, 1972, 1973), Strawderman (1978), and others
studied the problem when the covariance was not a multiple of the identity or loss
was not ‖δ − θ‖2. Berger (1975), Brandwein and Strawderman (1978, 1980), and
Strawderman (1974) found explicit improvements for distributions other than the
normal and losses other than quadratic. Hwang and Casella (1982) and others found
improved confidence sets centered at James–Stein-type estimators. It seems plausible
that the development of robust Bayes procedures and hierarchical Bayes procedures
owes much to Stein’s discovery. Much of the development of such Stein-type or
shrinkage-type procedures moved away from questions of minimaxity to questions
of empirical, hierarchical, or robust Bayes estimation, but a great deal of the impetus
for these studies lies in the fact that the James–Stein estimator not only beats the
“usual” estimator everywhere, but it wins by a large margin in a relatively small
neighborhood of the origin. Indeed, if the covariance matrix is the identity, then the
risk at θ = 0 of the James–Stein estimator underL(θ, δ) = ‖δ−θ‖2 is 2, compared to
p, the constant risk of the usual estimator. This amounts to a nearly 100% improvement
for large p. Hence if one has reasonably good prior information, then large gains are
possible at no cost.

The Stein phenomenon has been demonstrated to persist in virtually all multi-



parameter problems (with noncompact parameter space). Berger (1980), Casella and
Strawderman (1994), Clevenson and Zidek (1975), and Hwang (1982) have explored
a variety of other distributional settings.

4. MINIMAX TESTS

Minimaxity ideas can be useful in a variety of hypothesis testing settings. Con-
sider testing H : θ ∈ ΩH versus K : θ ∈ ΩK . The following is an example of how
least favorable distributions can lead to a uniformly most powerful (UMP) test in a
situation where one might not be expected to exist.

Example 5. Suppose that X1, . . . , Xn are iid N(θ, σ2) with both θ and σ2

unknown. Suppose that we wish to test H : σ2 ≤ σ2
0 versus K : σ2 > σ2

0. General
theory tells us that there is a uniformly most powerful unbiased (UMPU) test for
this problem, but we typically do not expect a UMP test. Lehmann (1986, sec. 3.9)
showed that for this problem (and not for testing H : σ2 ≥ σ2

0 versus K : σ2 < σ2
0),

one can find, for any (θ1, σ
2
1) in K, a prior distribution, π, over H such that the

Neyman–Pearson level-α test, φπ , for testing H ′ : f(X) =
∫
Pθ,σ2(X) dπ(θ, σ2)

versus K ′ : (θ1, σ
2
1) is level α for H versus K and does not depend on (θ1, σ

2
1).

A Proposition 1-type result implies that the resulting test is UMP for H versus K.
The UMP test is, of course, the test that rejects if

∑
(Xi − X̄)2 > σ2

0χ
2
n−1,α where

χ2
n−1,α is the upper 100α percentile of a chi-squared distribution with n− 1 degrees

of freedom.
One may in a similar manner replace both H and K by prior distributions and

use the Neyman–Pearson lemma to find a best level-α test of the reduced hypotheses.
This device can be most helpful when H and K are not contiguous (e.g., when there
is an indifference zone ΩI ). Huber’s theory of robust tests is based on such a device
(see, e.g., Huber 1981; Lehmann 1986).

5. ASYMPTOTIC MINIMAXITY AND
OTHER CONSIDERATIONS

Minimaxity considerations have played a role in asymptotics and optimal design
of experiments. I briefly visit these areas in this section. LeCam (1953) developed
a theory of local asymptotic minimaxity (LAM) and showed the MLE to be LAM
under weak conditions.

Pinsker (1980) developed exact asymptotic minimax rates and constants for a
class of (nonparametric) function estimation problems. He showed that in certain cases
the asymptotic minimax risk among linear procedures coincides with the asymptotic
minimax risk. Donoho and Liu (1991) demonstrated that under weak conditions, the
minimax linear risk is not greater than 1.25 times that for all estimators. Minimaxity



has also had an important role to play in the theory of optimal experimental design,
essentially beginning with the work of Kiefer and Wolfowitz (1959).

6. IS MINIMAXITY Y2K COMPATIBLE?

It is interesting to speculate on the role of minimaxity in the post-Y2K era.
Actually, it is even necessary, because the editor directed that I do so! Here are some
possibilities.

Bayesians have spent considerable effort on developing “objective” (nonsubjec-
tive) priors—also referred to as default or reference priors (Berger and Bernardo 1992;
Bernardo 1979; Jeffreys 1961)—or probability matching priors (Datta and Ghosh
1995). (Also see the Bayes vignette by Berger.) Recent attention has largely focused
on the multiparameter case, as Jeffreys’s prior seems well accepted in the single-
parameter case. It may be worthwhile to search for default priors from a risk-based
(i.e., minimax) perspective. For example, one might search for a parameterization for
which the Fisher information matrix is a constant multiple of the identity (when such
exists) and take as a default prior a bounded superharmonic function on the boundary
between proper and improper priors. Such a prior in the normal (identity covariance)
case would give admissible minimax estimators. Such procedures might well have
good Bayesian and frequentist properties over fairly broad classes of problems.

Componentwise thresholding in wavelet estimation problems is justified in part
on the basis of asymptotic minimaxity considerations. It is possible that a combination
of thresholding and Stein-type estimation might allow improved estimation in certain
problems. For example, the Stein estimation might reasonably be applied to the larger-
scale components, and thresholding applied to those with smaller scales.

In any event, it seems likely that minimaxity as an idea, an ideal, an organizing
theme, or as a useful touchstone will continue to play an important role in statistical
developments well into the new era.
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Afterword

George Casella
I hope that you have done what I just did—sat down and read this entire collection

of vignettes. If you haven’t, please treat yourself and do it right now. Make it a vacation
reading project . . . teach a special topics class that reads through the vignettes . . . but
please don’t miss them!

These thought-provoking pieces have many common themes, and only through
reading the collection in its entirety will the themes become clear. I’m sure that I did
not see all of them, but a few themes that emerge are as follows:

• Large datasets. We have to develop all sorts of tools to handle massive datasets.
This means not just data mining, but also computational and inferential tools.

• High-dimensional/nonparametric models. The simple parametric model may
not yet be dead, but it is dying. Hierarchical, robust, semiparametric and nonparamet-
ric, high-dimensional parametric, measurement error, and more are what we are going
to be doing. (Check out Efron’s discussion of bootstrapping a data-mining excursion.)

• Accessible computing. Many of the vignettes call for more accessible com-
puting, whether it be MCMC, robust methods, nonparametrics, or other. We now
need the generation beyond S-PLUS—more user friendly and able to easily do very
sophisticated analyses.

• Bayes/frequentist/who cares? The empirical Bayesian is not a Bayesian. The
Bayesian who uses MCMC needs frequentist methods. Maybe we are finally learning
that we are statisticians, and should use whatever are the best available methods to
solve the problem at hand. Which brings me to . . .

• Theory/applied/why differentiate? Good statistics does not exist in a vacuum.
Throughout these vignettes, we constantly see that good (and interesting and even
elegant) theory arises from trying to solve real problems. So there is no distinction
between the applied and the theoretical statistician. We all must know both ends of
our field!

My colleague Marty Wells made an interesting observation about the theory/
applied pseudodistinction. He said that the applied statistician, who never knows
what problem will be presented, has to be prepared to use almost any branch of math-
ematics or statistics to provide an answer. (In recent years, to solve real problems,
I have seen the use of complex analysis, functional analysis, differential equation
theory, Markov chain and martingale theory, abstract algebra, and nonlinear opti-
mization theory, to name a few.) Compared to the theoretical statistician, the applied
statistician may need an as broad, or an even broader, understanding of mathematics
and theoretical statistics. So as theory and applications become more intertwined,
thorough knowledge of each becomes even more crucial.
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