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Introduction to Computational Fluid Dynamics introduces all the primary com-
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courses in thermodynamics, fluid mechanics, and heat and mass transfer. Chap-
ters cover discretisation of equations for transport of mass, momentum, and
energy on Cartesian, structured curvilinear, and unstructured meshes; solution
of discretised equations, numerical grid generation, and convergence enhance-
ment. The book follows a consistent philosophy of control-volume formulation
of the fundamental laws of fluid motion and energy transfer and introduces a
novel notion of “smoothing pressure correction” for solution of flow equa-
tions on collocated grids within the framework of the well-known SIMPLE
algorithm.

There are over 50 solved problems in the text and over 130 end-of-chapter
problems. Practicing industry professionals will also find this book useful for
continuing education and refresher courses.
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Nomenclature

Only major symbols are given in the following lists.

AE, AW, AN ,

AS, AP, Sp, Ak Coefficients in Discretised Equations
B Body Force (N/kg) or Spalding Number
C p Constant-Pressure Specific Heat (J/kg-K)
Cv Constant-Volume Specific Heat (J/kg-K)
D Mass Diffusivity (m2/s)
e Turbulent Kinetic Energy or Internal Energy (J/kg)
f Fanning Friction Factor Based on Hydraulic Diameter
Gr Grashof Number
h Enthalpy (J/kg) or Heat Transfer Coefficient (W/m2-K)
k Thermal Conductivity (W/m-K)
M Molecular Weight or Mach Number
Nu Nusselt Number
P Peclet Number
Pc Cell Peclet Number
Pr Prandtl Number
p Pressure (N/m2)
q Heat Flux (W/m2)
q ′′′, Q′′′ Internal Heat Generation Rates (W/m3)
R Residual or Gas Constant (J/kg-mol-K)
Re Reynolds Number
S, Su Source Term
Sc Schmidt Number
St Stanton or Stefan Number
T Temperature (◦C or K)
t Time (s)
u, v, w x-, y-, z-Direction Velocities (m/s)
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xiv NOMENCLATURE

ui Velocity in xi , i = 1, 2, 3 Direction
V Volume (m3)

Greek Symbols

α Under relaxation Factor or Thermal Diffusivity (m2/s)
β Under relaxation Factor for Pressure or

Coefficient of Volume Expansion (K−1)
δ Boundary Layer Thickness (m)
� Incremental Value
ε Turbulent Energy Dissipation Rate (m2/s3)
	 Stream Function or Weighting Factor
� General Variable or Dimensionless Enthalpy

 General Exchange Coefficient = µ, ρD, or k/Cp
κ Constant in the Logarithmic Law of the Wall
µ Dynamic viscosity (N-s/m2)
ν Kinematic Viscosity (m2/s)
ω Species Mass Fraction or Dimensionless Coordinate
ρ Density (kg/m3)
λ Second Viscosity Coefficient or Latent Heat (J/kg)
λ1 Multiplier of p − p
σ Normal Stress (N/m2)
θ Dimensionless Temperature
τ Shear Stress (N/m2) or Dimensionless Time

Subscripts

P, N, S, E, W Refers to Grid Nodes
n, s, e, w Refers to Cell Faces
eff Refers to Effective Value
f Refers to Cell Face
l Liquid or Liquidus
m Refers to Mass Conservation, Mixture, or Melting Point
s Solid or Solidus
sm Refers to Smoothing
sup Superheated
T Transferred Substance State
xi Refers to xi , i = 1, 2, 3 directions

Superscripts

l Iteration Counter
o Old Time
u, v Refers to Momentum Equations
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NOMENCLATURE xv

− Multidimensional Average
′ Correction

Acronyms

1D One-Dimensional
2D Two-Dimensional
3D Three-Dimensional
ADI Alternating Direction Implicit
CDS Central Difference Scheme
CFD Computational Fluid Dynamics
CG Conjugate Gradient Method
CONDIF Controlled Numerical Diffusion with Internal Feedback
DNS Direct Numerical Simulation
GMRES Generalised Minimal Residual Method
GS Gauss–Seidel Method
HDS Hybrid Difference Scheme
HRE High Reynolds Number Model
IOCV Integration over a Control Volume Method
LHS Left-Hand Side
LRE Low Reynolds Number Model
LU Lower-Upper Decomposition
ODE Ordinary Differential Equation
PDE Partial Differential Equation
POWER Power-Law Scheme
RHS Right-Hand Side
SIMPLE Semi-Implicit Method for Pressure Linked Equations
TDMA Tridiagonal Matrix Algorithm
TSE Taylor Series Expansion Method
TVD Total Variation Diminishing
UDS Upwind Difference Scheme
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Preface

During the last three decades, computational fluid dynamics (CFD) has emerged as
an important element in professional engineering practice, cutting across several
branches of engineering disciplines. This may be viewed as a logical outcome
of the recognition in the 1950s that undergraduate curricula in engineering must
increasingly be based on engineering science. Thus, in mechanical engineering
curricula, for example, the subjects of fluid mechanics, thermodynamics, and heat
transfer assumed prominence.

I began my teaching career in the early 1970s, having just completed a Ph.D. de-
gree that involved solution of partial differential equations governing fluid motion
and energy transfer in a particular situation (an activity not called CFD back then!).
After a few years of teaching undergraduate courses on heat transfer and postgrad-
uate courses on convective heat and mass transfer, I increasingly shared the feeling
with the students that, although the excellent textbooks in these subjects empha-
sised application of fundamental laws of motion and energy, the problem-solving
part required largely varied mathematical tricks that changed from one situation to
another. I felt that teachers and students needed a chance to study relatively more
real situations and an opportunity to concentrate on the physics of the subject. In
my reckoning, the subject of CFD embodies precisely this scope and more.

The introduction of a five-year dual degree (B.Tech. and M.Tech.) program at IIT
Bombay in 1996 provided an opportunity to bring new elements into the curriculum.
I took this opportunity to introduce a course on computational fluid dynamics and
heat transfer (CFDHT) in our department as a compulsory course in the fourth
year for students of the thermal and fluids engineering stream. The course, with an
associated CFDHT laboratory, has emphasised relearning fluid mechanics and heat
and mass transfer through obtaining numerical solutions. This, of course, contrasts
with the analytical solutions learnt in earlier years of the program. Through teaching
of this CFDHT course, I discovered that this relearning required attitudinal change
on the part of the student. Thus, for example, the idea that all 1D conduction
problems (steady or unsteady, in Cartesian, cylindrical, or spherical coordinates,
with constant or variable properties, with or without area change, with or without

xvii
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internal heat generation, and with linear or nonlinear boundary conditions) in a
typical undergraduate textbook can be solved by a single computer program based
on a single method is found by the students to be new. Similarly, the idea that
a numerical instability in an unsteady conduction problem essentially represents
violation of the second law of thermodynamics is found to be new because no book
on numerical analysis treats it as such. Nothing encourages a teacher to write a book
more than the discomfort expressed by the students. At the same time, it must be
mentioned that when a student succeeds in writing a generalised computer program
for 1D conduction in the laboratory part of the course through struggles of where
and how do I begin, of debugging, of comparing numerical results with analytical
results, of studying effects of parametric variations, and of plotting of results, the
computational activity is found to be both enlightening and entertaining.

I specifically mention these observations because, although there are a number
of books bearing the words Computational Fluid Dynamics in their titles, most em-
phasise numerical analysis (a branch of applied mathematics). Also, most books, it
would appear, are written for researchers and cover a rather extended ground but are
usually devoid of exercises for student learning. In my reckoning, the most notable
exception to such a state of affairs is the pioneering book Numerical Heat Trans-
fer and Fluid Flow written by Professor Suhas V. Patankar. The book emphasises
control-volume discretisation (the main early step to obtaining numerical solutions)
based on physical principles and strives to help the reader to write his or her own
computer programs.

It is my pleasure and duty to acknowledge that writing of this book has been
influenced by the works of two individuals: Professor D. B. Spalding (FRS, formerly
at Imperial College of Science and Technology, London), who unified the fields of
heat, mass, and momentum transfer, and Professor S. V. Patankar (formerly at
University of Minnesota, USA), who, through his book, has made CFD so lucid
and SIMPLE.1 If the readers of this book find that I have mimicked writings of these
two pioneers from which several individuals (teachers, academic researchers, and
consultants) and organisations have benefited, I would welcome the compliment.

I have titled this book as Introduction to Computational Fluid Dynamics for two
reasons. Firstly, the book is intended to serve as a textbook for a student uninitiated in
CFD but who has had exposure to the three courses mentioned in the first paragraph
of this preface at undergraduate and postgraduate levels. In this respect, the book
will also be found useful by teachers and practicing engineers who are increasingly
attracted to take refresher courses in CFD. Secondly, CFD, since its inception,
has remained an ever expanding field, expanding in its fundamental scope as well
as in ever new application areas. Thus, turbulent flows, which are treated in this
book through modelling, are already being investigated through direct numerical
simulation (DNS). Similarly, more appropriate constitutive relations for multiphase

1 The reader will appreciate the significance of capital letters in the text.
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flow or for a reacting flow are being explored through CFD. Newer application areas
such as heat and mass transfer in biocells are also beginning to be explored through
CFD. Such areas are likely to remain more at the research level than to be part
of regular practice and, therefore, a student, over the next few years at least, may
encounter them in research at a Ph.D. level. It is my belief that the approach adopted
in this book will provide adequate grounding for such pursuits.

Although this is an introductory book, there are some departures and basic novel-
ties to which it is important to draw the reader’s attention. The first of these concerns
the manner in which the fundamental equations of motion (the Navier–Stokes equa-
tions) are written. Whereas most textbooks derive or write these equations for a
continuum fluid, it is shown in the first chapter of this book that since numerical
solutions are obtained in discretised space, the equations must be written in such a
way that they are applicable to both the continuum as well as the discretised space.
Attention is also drawn to use of special symbols that the reader may find not in
common with other books on CFD. Thus, a mass-conserving pressure correction is
given the symbol p′

m to contrast with the two other pressure corrections, namely, the
total pressure correction p′ and the smoothing pressure correction p′

sm. Similarly,
the velocities appearing at the control-volume faces are given the symbol uf,i to
contrast with those that appear at the nodal locations, which are referred to as ui .
Again, in a continuum, the two velocity fields must coincide but, in a discretised
space, distinction between them preserves clarity of the physics involved. Novelty
will also be found in the discussion of physical principles behind seemingly mathe-
matical activity governing the topics of numerical grid generation and convergence
enhancement. It is not my claim that the entire material of the book can be covered
in a single course on CFD. It is for this reason that 1D formulations are empha-
sised through dedicated chapters. These formulations convey most of the essential
ingredients required in CFD practice.

The ambience of academic freedom, the variety of facilities and the friendly
atmosphere on the campus of IIT Bombay has contributed in no small measure to
this solo effort at book writing. I am grateful to my colleagues for their coopera-
tion in many matters. I am particularly grateful for having had the association of
a senior colleague like Professor S. P. Sukhatme (FNA, FNAE, former Director,
IIT Bombay). It has been a learning experience for me to observe him carry out a
variety of roles (including as writer of two well-received textbooks on heat transfer
and solar energy) in our institute with meticulous care. Hopefully, some rub-off is
evident in this book. I have also gained considerably from my Ph.D. and M.Tech. stu-
dents who through their dissertations have helped validate the computer programs
I wrote.

I would like to express my special gratitude to Mr. Peter Gordon, Senior Editor
(Aeronautical, Biomedical, Chemical, and Mechanical Engineering), Cambridge
University Press, New York, for his considerable advice and guidance during prepa-
ration of the manuscript for this book.
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Finally, I would like to record my appreciation of my wife Suranga, son
Kartikeya, and daughter Pankaja (Pinky) for bearing my absence on several week-
ends while writing this book.

Mumbai
June 2004 Anil W. Date
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1 Introduction

1.1 CFD Activity

Computational fluid dynamics (CFD) is concerned with numerical solution of dif-
ferential equations governing transport of mass, momentum, and energy in moving
fluids. CFD activity emerged and gained prominence with availability of com-
puters in the early 1960s. Today, CFD finds extensive usage in basic and applied
research, in design of engineering equipment, and in calculation of environmental
and geophysical phenomena. Since the early 1970s, commercial software packages
(or computer codes) became available, making CFD an important component of
engineering practise in industrial, defence, and environmental organizations.

For a long time, design (as it relates to sizing, economic operation, and safety) of
engineering equipment such as heat exchangers, furnaces, cooling towers, internal
combustion engines, gas turbine engines, hydraulic pumps and turbines, aircraft
bodies, sea-going vessels, and rockets depended on painstakingly generated empir-
ical information. The same was the case with numerous industrial processes such
as casting, welding, alloying, mixing, drying, air-conditioning, spraying, environ-
mental discharging of pollutants, and so on. The empirical information is typically
displayed in the form of correlations or tables and nomograms among the main
influencing variables. Such information is extensively availed by designers and
consultants from handbooks [55].

The main difficulty with empirical information is that it is applicable only to
the limited range of scales of fluid velocity, temperature, time, or length for which
it is generated. Thus, to take advantage of economies of scale, for example, when
engineers were called upon to design a higher capacity power plant, boiler furnaces,
condensers, and turbines of ever higher dimensions had to be designed for which
new empirical information had to be generated all over again. The generation of
this new information was by no means an easy task. This was because the informa-
tion applicable to bigger scales had to be, after all, generated via laboratory-scale
models. This required establishment of scaling laws to ensure geometric, kinematic,
and dynamic similarities between models and the full-scale equipment. This activity

1
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2 INTRODUCTION

required considerable experience as well as ingenuity, for it is not an easy matter
to simultaneously maintain the three aforementioned similarities. The activity had
to, therefore, be supported by flow-visualization studies and by simple (typically,
one-dimensional) analytical solutions to equations governing the phenomenon un-
der consideration. Ultimately, experience permitted judicious compromises. Being
very expensive to generate, such information is often of a proprietary kind. In more
recent times, of course, scaling difficulties are encountered in the opposite direction.
This is because electronic equipment is considerably miniaturised and, in mate-
rials processing, for example, the more relevant phenomena occur at microscales
(even molecular or atomic scales where the continuum assumption breaks down).
Similarly, small-scale processes occur in biocells.

Clearly, designers need a design tool that is scale neutral. The tool must be
scientific and must also be economical to use. An individual designer can rarely, if
at all, acquire or assimilate this scale neutrality. Fortunately, the fundamental laws of
mass, momentum, and energy, in fact, do embody such scale-neutral information.
The key is to solve the differential equations describing these laws and then to
interpret the solutions for practical design.

The potential of fundamental laws (in association with some further empiri-
cal laws) for generating widely applicable and scale-neutral information has been
known almost ever since they were invented nearly 200 years ago. The realisation
of this potential (meaning the ability to solve the relevant differential equations),
however, has been made possible only with the availability of computers. The past
five decades have witnessed almost exponential growth in the speed with which
arithmetic operations can be performed on a computer.

By way of reminder, we note that the three laws governing transport are the
following:

1. the law of conservation of mass (transport of mass),
2. Newton’s second law of motion (transport of momentum), and
3. the first law of thermodynamics. (transport of energy).

1.2 Transport Equations

The aforementioned laws are applied to an infinitesimally small control volume
located in a moving fluid. This application results in partial differential equations
(PDEs) of mass, momentum and energy transfer. The derivation of PDEs is given in
Appendix A.1 Here, it will suffice to mention that the law of conservation of mass is
written for a single-component fluid or for a mixture of several species. When ap-
plied to a single species of the mixture, the law yields the equation of mass transfer
when an empirical law, namely, Fick’s law of mass diffusion (m ′′

i = −ρ D ∂ω/∂xi ),

1 The reader is strongly advised to read Appendix A to grasp the main ideas and the process of
derivations.
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1.2 TRANSPORT EQUATIONS 3

is invoked. Newton’s second law of motion, combined with Stokes’s stress laws,
yields three momentum equations for velocity in directions x j (j = 1, 2, 3). Similarly,
the first law of thermodynamics in conjunction with Fourier’s law of heat conduction
(qi,cond = −K ∂T /∂xi ) yields the so-called energy equation for the transport of tem-
perature T or enthalpy h. Using tensor notation, we can state these laws as follows:

Conservation of Mass for the Mixture

∂ρm

∂t
+ ∂(ρm u j )

∂x j
= 0, (1.1)

Equation of Mass Transfer for Species k

∂(ρm ωk)

∂t
+ ∂(ρm u j ωk)

∂x j
= ∂

∂x j

[
ρm Deff

∂ωk

∂x j

]
+ Rk, (1.2)

Momentum Equations ui (i = 1, 2, 3)

∂(ρm ui )

∂t
+ ∂(ρm u j ui )

∂x j
= ∂

∂x j

[
µeff

∂ui

∂x j

]
− ∂p

∂xi
+ ρm Bi + Sui , (1.3)

Energy Equation – Enthalpy Form

∂(ρm h)

∂t
+ ∂(ρm u j h)

∂x j
= ∂

∂x j

[
keff

C pm

∂h

∂x j

]
+ Q′′′, (1.4)

where enthalpy h = C pm (T − Tref), and

Energy Equation – Temperature Form

∂(ρm T )

∂t
+ ∂(ρm u j T )

∂x j
= ∂

∂x j

[
keff

C pm

∂T

∂x j

]
+ Q′′′

C pm
. (1.5)

In these equations, the suffix m refers to the fluid mixture. For a single-
component fluid, the suffix may be dropped and the equation of mass transfer
becomes irrelevant. Similarly, the suffix eff indicates effective values of mass dif-
fusivity D, viscosity µ, and thermal conductivity k. In laminar flows, the values
of these transport properties are taken from property tables for the fluid under
consideration. In turbulent flows, however, the transport properties assume values
much in excess of the values ascribed to the fluid; moreover, the effective transport
properties turn out to be properties of the flow [39], rather than those of the fluid.

From the point of view of further discussion of numerical methods, it is indeed
a happy coincidence that the set of equations [(1.1)–(1.5)] can be cast as a single
equation for a general variable �. Thus,

∂(ρm �)

∂t
+ ∂(ρm u j �)

∂x j
= ∂

∂x j

[

eff

∂�

∂x j

]
+ S�. (1.6)
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Table 1.1: Generalised representation of transport equations.

Equation Φ Γeff (exch. coef.) SΦ (net source)

1.1 1 0 0
1.2 ωk ρm Deff Rk

1.3 ui µeff −∂p/∂xi + ρm Bi + Sui

1.4 h keff / C pm Q′′′

1.5 T keff / C pm Q′′′ / C pm

The meanings of 
eff and S� for each � are listed in Table 1.1. Equation 1.6 is
called the transport equation for property �. The rate of change (or time derivative)
term is to be invoked only when a transient phenomenon is under consideration.
The term ρm � denotes the amount of extensive property available in a unit volume.
The convection (second) term accounts for transport of � due to bulk motion. This
first-order derivative term is relatively uncomplicated but assumes considerable
significance when stable and convergent numerical solutions are to be economically
obtained. This matter will become clear in Chapter 3. Both the transient and the
convection terms require no further modelling or empirical information.

The greatest impediment to obtaining physically accurate solutions is offered by
the diffusion and the net source (S ) terms because both these terms require empirical
information. In laminar flows, the diffusion term represented by the second-order
derivative offers no difficulty because 
, being a fluid property, can be accurately
determined (via experiments) in isolation of the flow under consideration. In tur-
bulent (or transitional) flows, however, determination of 
eff requires considerable
empirical support. This is labelled as turbulence modelling. This extremely com-
plex phenomenon has attracted attention for over 150 years. Although turbulence
models of adequate generality (at least, for specific classes of flows) have been pro-
posed, they by no means satisfy the expectations of an equipment designer. These
models determine 
eff from simple algebraic empirical laws. Sometimes, 
eff is also
determined from other scalar quantities (such as turbulent kinetic energy and/or its
dissipation rate) for which differential equations are constituted. Fortunately, these
equations often have the form of Equation 1.6.

The term net source implies an algebraic sum of sources and sinks of �. Thus,
in a chemically reacting flow (combustion, for example), a given species k may
be generated via some chemical reactions and destroyed (or consumed) via some
others and Rk will comprise both positive and negative contributions. Also, some
chemical reactions may be exothermic, whereas others may be endothermic, making
positive and negative contributions to Q′′′. Similarly, the term Bi in the momentum
equations may represent a buoyancy force, a centrifugal and/or Coriolis force, an
electromagnetic force, etc. Sometimes, Bi may also represent resistance forces.
Thus, in a mixture of gas and solid particles (as in pulverised fuel combustion), Bi

will represent the drag offered by the particles on air, or, in a fluid flow through a
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densely filled medium (a porous body or a shell-and-tube geometry), the resistance
will be a function of the porosity of the medium. Such empirical resistance laws are
often determined from experiments. The Sui terms represent viscous terms arising
from Stokes’s stress laws that are not accounted for in the ∂

∂x j
[µeff

∂ui

∂x j
] term in

Equation 1.3.

1.3 Numerical Versus Analytical Solutions

Analytical solutions to our transport equations are rarely possible for the following
reasons:

1. The equations are three-dimensional.
2. The equations are strongly coupled and nonlinear.
3. In practical engineering problems, the solution domains are almost always

complex.

The equations, however, can be made amenable to analytical solutions when
simplified through assumptions. In a typical undergraduate program, students de-
velop extensive familiarity with such analytical solutions that can be represented
in closed form. Thus, in a fluid mechanics course, for example, when fully devel-
oped laminar flow in a pipe is considered, a student is readily able to integrate the
simplified (one-dimensional) momentum equation to obtain a closed-form solution
for the streamwise velocity u as a function of radius r. The assumptions made are
as follows: The flow is steady and laminar, it is fully developed, it is axisymmetric,
and fluid properties are uniform. The solution is then interpreted to yield the scale-
neutral result f × Re = 16. The friction factor f is a practically useful quantity
that enables calculation of pumping power required to force fluid through a pipe.
Similarly, in a heat transfer course, a student learns to calculate reduction of heat
transfer rate when insulation of a given thickness is applied to a pipe. In this case,
the energy equation is simplified and the assumptions are as follows: Heat transfer is
radial and axi symmetric, steady state prevails, and the insulation conductivity may
be constant and there is no generation or dissipation of energy within the insulation.

In both these examples, the equations are one dimensional. They are, there-
fore, ordinary differential equations (ODEs), although the original transport equa-
tions were PDEs. In many situations, in spite of the assumptions, the governing
equations cannot be rendered one dimensional. Thus, the equations of a steady,
two-dimensional velocity boundary layer or that of one-dimensional unsteady heat
conduction are partial differential equations. It is important to recognise, how-
ever, that there are no direct solutions to partial differential equations. To obtain
solutions, the PDEs are always first converted to ODEs (usually more in number
than the original PDEs) and the latter are solved by integration. Thus, in an un-
steady conduction problem, the ODEs are formed by the method of separation of
variables, whereas, for the two-dimensional velocity boundary layer, the ODE is
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formed by invoking a similarity variable. In such circumstances, often the solution
is in the form of a series. We assume, of course, that the reader is familiar with the
restrictive circumstances (often of significant practical consequence) under which
such analytical solutions are constructed.

Analytical solutions obtained in the manner described here are termed exact
solutions. They are applicable to every point of the time and/or space domain. The
solutions are also called continuous solutions. All the aforementioned solutions are
well covered in an undergraduate curriculum and in textbooks (see, for example,
[34, 80, 88]).

Unlike analytical solutions, numerical solutions are obtained at a few chosen
points within the domain. They are therefore called discrete solutions. Numerical
solutions are obtained by employing numerical methods. The latter are really an
intermediary between the physics embodied in the transport equations and the
computers that can unravel them by generating numerical solutions. The process
of arriving at numerical solutions is thus quite different from the process by which
analytical solutions are developed.

Before describing the essence of numerical methods, it is important to note
that these methods, in principle, can overcome all three aforementioned imped-
iments to obtaining analytical solutions. In fact, the history of CFD shows that
numerical methods have been evolved precisely to overcome the impediments in
the order of their mention. Thus, the earliest numerical methods dealt with one-
dimensional equations for which analytical solutions may or may not be possible.
Methods for two-dimensional transport equations, however, had to incorporate sub-
stantially new features. In spite of these new features, many methods applicable to
two-dimensional coupled equations could not be extended to three-dimensional
equations. Similarly, the earlier methods were derived for transport equations cast
in only orthogonal co-ordinates (Cartesian, cylindrical polar, or spherical). Later,
however, as computations over complex domains were attempted, the equations
were cast in completely arbitrary curvilinear (ξ1, ξ2, ξ3) coordinates. This led to
development of an important branch of CFD, namely, numerical grid generation.
With this development, domains of arbitrary shape could be mapped such that
the coordinate lines followed the shape of the domain boundary. Today, complex
domains are mapped by yet another development called unstructured mesh gener-
ation. In this, the domain can be mapped by a completely arbitrary distribution of
points. When the points are connected by straight lines, one obtains polygons (in
two dimensions) and polyhedra (in three dimensions). Several methods (as well as
packages) for unstructured mesh generation are now available.

1.4 Main Task

It is now appropriate to list the main steps involved in arriving at numerical solutions
to the transport equation. To enhance understanding, an example of an idealised
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Figure 1.1. Typical two-dimensional domain.

combustion chamber of a gas-turbine engine will be considered.

1. Given the flow situation of interest, define the physical (or space) domain of
interest. In unsteady problems, the time domain is imagined. Figure 1.1 shows
the domain of interest of the idealised chember. Fuel and air streams, separated
by a lip wall, enter the chamber at the inflow boundary. The cross section of the
chamber is taken to be a perfect circle so that a symmetry boundary coinciding
with the axis is readily identified. The enclosing wall is solid and the burnt
products of combustion leave through the exit boundary. Because the situation
is idealised as a two-dimensional axisymmetric domain that will involve fluid
recirculation, there are four boundaries of interest: inflow, wall, symmetry, and
exit.

2. Select transport equations with appropriate diffusion and source laws. Define
boundary conditions on segments of the domain boundary for each variable �.
Also, define the fluid properties. The boundary segments have already been iden-
tified in Figure 1.1. Now, since air and fuel mix and react chemically, equations
for � = u1, u2, u3 (swirl velocity), T or h, and several mass fractions ωk must be
solved. The choice of ωk will of course depend on the reaction model postulated
by the analyst. Further, additional equations must be solved to capture effects
of turbulence via a turbulence model. This matter will become clear in later
chapters.

3. Select points (called nodes) within the domain so as to map the domain with a
grid. Construct control volumes around each node. In Figure 1.2, the domain of
interest is mapped by three types of grids: Cartesian, Curvilinear, and Unstruc-
tured. The hatched portions show the control volumes and the filled circles are
the nodes. Note that in the Cartesian grids, the control volumes near the slanted
wall are not rectangular as elsewhere. This type of difficulty is overcome in the
curvilinear grids where all control volumes are quadrilaterals and the grid lines
follow the contours of the domain boundary as required. The unstructured grid is
completely arbitrary. Although most control volumes are triangular, one can also
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Figure 1.2. Different types of grids.

have polygons of any number of sides. This activity of specifying coordinates
of nodes and of specification of control volumes is called grid generation.

4. Integrate Equation 1.6 over a typical control volume so as to convert the partial
differential equation into an algebraic one. This is unlike the analytical solutions
in which the original PDEs are converted to ordinary ones. Thus, if there are
N V variables of interest and the number of nodes chosen is N P , one obtains
a set of N V × N P algebraic equations. The process of converting PDEs into
algebraic equations is called discretisation.

5. Devise a numerical method to solve the set of algebraic equations. This can be
done sequentially, so that N P equations are solved for each � in succession. Al-
ternatively, one may solve the entire set of N V × N P equations simultaneously.
The construction of the overall calculation sequence is called an algorithm.

6. Devise a computer program to implement the numerical method on a computer.
Different numerical methods require different amounts of computer storage and
different amounts of computer time to arrive at a solution. Aspects such as
economy in terms of number of arithmetic operations, convergence rate, and
stability of the numerical method are thus important.
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7. “Interpret the solution:” The numerical solution results in values of each �

at each node. Such a � field provides the distribution of � over the domain.
The task now is to interpret the solution to retrieve quantities of engineering
interest such as the friction factor, a Nusselt number at the wall, or average
concentrations of CO, fuel, and NOx at the exit from a combustion chamber.
Sometimes the field may be curve-fitted to take the appearance of an analytical
solution. Similarly, the derived quantities may also be curve-fitted to take the
appearance of an experimentally derived correlation for ready use in further
design work.

8. “Display of results:” Since a numerical solution is obtained at discrete points,
the solution comprises numbers that can be printed in tabular forms. The in-
convenience of reading numbers can be circumvented by plotting results on a
graph or by displaying the � fields by means of contour or vector plots. Fortu-
nately, such graphic displays can now be made using computers. This activity
is called postprocessing of results. The commercial success of computer codes
often depends on the quality and flexibility of their postprocessors.

The primary focus of this book is to explain procedures for executing these
steps. Computer code developers and researchers adopt a variety of practices to
implement the procedures depending on their background, familiarity, and notions
of convenience. Clearly biases are involved.

In this book, emphasis is laid on physical principles. In fact, the attitude is one
of relearning fluid mechanics and heat and mass transfer by obtaining numerical
(as opposed to restrictive analytical) solutions. The book is not intended to provide
a survey of all numerical methods; rather, the objective is to introduce the reader
to a few specific methods and procedures that have been found to be robust in a
wide variety of situations of a specific class. The emphasis is on skill development,
skills required for problem formulation, computer code writing, and interpretation
of results.

1.5 A Note on Navier–Stokes Equations

The law of conservation of mass for the bulk fluid together with Newton’s second
law of motion constitutes the main laws governing fluid motion. As shown in
Appendix A, the equations of motion are written in differential form and, therefore,
assume existence of a fluid continuum. In this section, attention is drawn to an
often overlooked requirement that assumes considerable importance in the context
of CFD in which numerical solutions are obtained at discrete points rather than at
every point in space as in a continuum.

Attention is focussed primarily on the normal stress expressions given in
Appendix A (see Equations A.15). As presented in Schlichting [65], the normal
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stresses are given by

σx = −p + σ ′
x = −p + q + τxx = −p + q + 2µ

∂u

∂x
, (1.7)

σy = −p + σ ′
y = −p + q + τyy = −p + q + 2µ

∂v

∂y
, (1.8)

σz = −p + σ ′
z = −p + q + τzz = −p + q + 2µ

∂w

∂z
. (1.9)

In these normal stress expressions, σ ′ is called the deviotoric stress and the
significance of quantity q in its definition requires elaboration. Schlichting [65]
and Warsi [86], for example, define a space-averaged pressure p as

p = −1

3
(σx + σy + σz). (1.10)

Now, an often overlooked requirement of the Stokes’s relations is that, in a
continuum, p must equal the point value of pressure p and the latter, in turn, must
equal the thermodynamic pressure pth. Thus,

p = p = pth = p − q − 2

3
µ � · V . (1.11)

In the context of this requirement, we now consider different flow cases to derive
the significance of q.

1. Case 1 (V = 0): In this hydrostatic case,

p = p − q. (1.12)

But in this case, p can only vary linearly with x, y, and z and, therefore, the point
value of p exactly equals its space-averaged value p in both continuum as well
as discretised space and hence q = 0 exactly.

2. Case 2 (µ = 0 or � · V = 0): Clearly when µ = 0 (inviscid flow) or � . V = 0
(constant-density incompressible flow) Equation 1.12 again holds. But, in this
case, since fluid motion is considered, p can vary arbitrarily with x, y, and z
and, therefore, p may not equal p in a discrete space. To understand this matter,
consider a case in which pressure varies arbitrarily in the x direction, whereas
its variation in y and z directions is constant or linear (as in a hydrostatic case).
Such a variation is shown in Figure 1.3. Now consider a point P. According to
Stokes’s requirement pP must equal pP in a continuum. However, in a discretised
space, the values of pressure are available at points E and W only, and if these
points are equidistant from P then pP = 0.5 (pW + pE). Now, this pP will not
equal pP, as seen from the figure, and therefore the requirement of the Stokes’s
relations is not met.

However, without violating the continuum requirement, we may set

q = λ1 (p − p), (1.13)
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Figure 1.3. One-dimensional variation of pressure and stokes’s requirement.

where λ1 is an arbitrary constant. In most textbooks, where a continuum is
assumed, λ1 is trivially set to zero.

3. Case 3 (µ �= 0 and � · V �= 0): This case represents either compressible flow
where density is a function of both temperature and pressure or incompressible
flow with temperature-dependent density. Thus,

p = p −
(

q + 2

3
µ � · V

)
. (1.14)

In this case, Stokes’s requirement will be satisfied if we set

q = λ1 (p − p) + λ � · V, (1.15)

where λ is the well-known second viscosity coefficient whose value is set
to − (2/3)µ even in a continuum.

It is instructive to note the reason for setting λ = −(2/3)µ. For, if this were not
done, it would amount to

(1 − λ1) (p − p) � · V =
(

λ + 2

3
µ

)
(� · V )2. (1.16)

Clearly, therefore, the system will experience dissipation (or reversible work
done at finite rate since � · V is associated with the rate of volume change) even
in an isothermal flow [65, 86]. This is, of course, highly improbable.2

Thus, the Stokes’s relations require modifications in a continuum when com-
pressible flow is considered, and a physical explanation for this modification can
be found from thermodynamics. Now, the same interpretation can be afforded to
the λ1 (p − p) part of q in Equation 1.13 or 1.15. This term represents a necessary
modification in a discretised space. This is an important departure from the forms
of normal stress expressions given in standard textbooks on fluid mechanics. It will
be shown in Chapter 5 that recognition of the need to include this term is central to
prediction of smooth pressure distributions via CFD in discrete space [17].

2 Schlichting [65] shows this improbability by considering the case of an isolated sphere of a com-
pressible isothermal gas subjected to uniform normal stress. Now if λ is not set to − (2 / 3) µ, the
gas will undergo oscillations.
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Before leaving this section, it is important to note that since p must equal p
in a continuum (see Equation 1.11), the former must essentially be the hydrostatic
pressure, irrespective of the flow considered. Mathematically, therefore, we may
define p as

p = −1

3
(σx + σy + σz) = 1

3
(px + py + pz), (1.17)

where px is a solution to ∂2 p/∂x2 = 0, py is a solution to ∂2 p/∂y2 = 0, and pz is
a solution to ∂2 p/∂z2 = 0.

In effect, therefore, the equations of motion (also called the Navier–Stokes
equations) valid for both continuum and discrete space must read as

ρ
D u

Dt
= −∂(p − q)

∂x
+ ∂τxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z
, (1.18)

ρ
D v

Dt
= −∂(p − q)

∂y
+ ∂τxy

∂x
+ ∂τyy

∂y
+ ∂τzy

∂z
, (1.19)

ρ
D w

Dt
= −∂(p − q)

∂z
+ ∂τxz

∂x
+ ∂τyz

∂y
+ ∂τzz

∂z
, (1.20)

where q is given by Equation 1.13 for incompressible (viscous or inviscid) flow and
by Equation 1.15 for compressible flow. In spite of this recognition, the equations
are further discussed (in conformity with standard textbooks) for a continuum only
with λ1 = 0, but the existence of finite λ1 will be discovered in Chapter 5 where
solutions in discrete space are developed.

1.6 Outline of the Book

The book is divided into nine chapters. Chapter 2 deals with one-dimensional (1D)
conduction in steady and unsteady forms. In this chapter, the main ingredients of a
numerical procedure are elaborately introduced so that familiarity is gained through
very simple algebra. Chapter 3 deals with the 1D conduction–convection equation.
This somewhat artificial equation is considered to inform the reader about the nature
of difficulty introduced by convection terms. The cures for the difficulty developed
in this chapter are used in all subsequent chapters dealing with solution of transport
equations.

Chapter 4 deals with convective transport through boundary layers. This is an
important class of flows encountered in fluid dynamics and heat and mass transfer.
The early CFD activity relied heavily on solution of two-dimensional (2D) parabolic
equations (a subset of the complete transport equations) appropriate to boundary
layer flows. In this chapter, issues of grid adaptivity and turbulence modelling are
introduced for external wall boundary layers and free-shear layers and for internal
(ducted) boundary layer development.
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Chapter 5 deals with solution of complete transport equations on Cartesian grids.
Only 2D flow situations that may involve regions of fluid recirculation are consid-
ered. The transport equations now take the elliptic form. In essence, this chapter
introduces all ingredients required to understand CFD practice. In this sense, the
chapter provides a firm foundation for development of solution procedures employ-
ing curvilinear and unstructured grids. The latter developments are described in
Chapter 6.

Chapters 7–9 deal with special topics in CFD. In Chapter 7, the reader is in-
troduced to the topic of phase change. In engineering practice, heat and mass
transfer are often accompanied by solid-to-liquid, liquid-to-vapour, and/or solid-to-
vapour (and vice versa) transformations. This chapter, however, deals only with
solidification/melting phenomena in one dimension to develop understanding of
the main difficulties associated with obtaining numerical solutions. Chapter 8 deals
with the topic of numerical grid generation and methods for curvilinear and unstruc-
tured grid generation are introduced. Finally, in Chapter 9, methods for enhancing
the rate of convergence of iterative numerical procedures are introduced.

There are three appendices. Appendix A provides the derivation of the transport
equations. In Appendix B, a computer code for solving 1D conduction problems is
given. This code is based on material of Chapter 2. Appendix C provides a computer
code for 2D conduction–convection problems in Cartesian coordinates. This code
is based on material of Chapter 5. Familiarity with the use of these codes, it is
hoped, will provide readers with sufficient exposure to enable development of their
own codes for boundary layer flows (Chapter 4) , for employing curvilinear and
unstructured grids (Chapter 6), for phase change (Chapter 7), and for numerical
grid generation (Chapter 8).

At the end of each chapter, exercise problems are given to enhance learning.
Also, in each chapter, sample problems are solved and results are presented to aid
their interpretation.

EXERCISES

1. Express full forms of the Sui terms in Equation 1.3 for i = 1, 2, and 3. Show
that if µ and ρ are constant then, for an incompressible fluid, Sui = 0.

2. Consider Equations 1.1–1.5. Assuming SI units, verify that units of each term
in a given equation are identical.

3. Show that summing of each term in Equation 1.2 over all species of the mixture
results in the mass conservation equation (1.1) for the mixture.

4. Consider the plug-flow thermo-chemical reactor (PFTCR) shown in Figure 1.4.
To analyse such a reactor, the following assumptions are made: (a) All �s vary
only along the length (say, x) of the reactor. (b) Axial diffusion and conduction
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Figure 1.4. Schematic of a plug-flow reactor.

are neglected. (c) Heat (qw W/m2), mass (Nw kg/m2-s), and work (Ẇext W/m3)
through the reactor walls may be present. (d) The cross-sectional area A and
perimeter P vary with x.

Following the practice adopted in Appendix A, apply the fundamental laws
to a control volume A�x . Hence, show that

A
∂ρm

∂t
+ ∂ṁ

∂x
= Nw P (Bulk Mass) ,

A
∂(ρm u)

∂t
+ ∂(ṁ u)

∂x
= −A

∂p

∂x
+ (Nw u − τw ) P (Momentum),

A
∂(ρm ωk)

∂t
+ ∂(ṁ ωk)

∂x
= Rk A (Species),

A
∂(ρm h)

∂t
+ ∂(ṁ h)

∂x
= (Q′′′ − Ẇext) A + A

D P

Dt
+ Nw P

u2

2
+ (qw + Nw hw) P (Energy),

where ṁ = ρm A u and hw is the specific enthalpy of the injected fluid.

5. Consider the well-stirred thermo-chemical reactor (WSTCR) shown in Fig-
ure 1.5. A WSTCR may be likened to a stubby PFTCR having fixed volume
Vcv = A �x so that in all the PFTCR equations

∂	

∂x
= �	

�x
= 	2 − 	1

�x
.

Further, in a WSTCR, it is assumed that all 	s take values of state 2 as soon
as the material and energy flow into the reactor. Assuming uniform pressure
( p1 = p2), show that

Vcv
∂ρm

∂t
= ṁ1 − ṁ2 + ṁw Vcv (Bulk Mass),

Vcv
∂(ρm u)

∂t
= (ṁ u)1 − (ṁ u)2

+ (ṁw u − Ẇshear) Vcv (Momentum),

Vcv
∂(ρm ωk)

∂t
= (ṁ ωk)1 − (ṁ ωk)2 + (Rk + ṁk,w) Vcv (Species),
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Figure 1.5. Schematic of a well-
stirred reactor.

Vcv
∂(ρm h)

∂t
= (ṁ h)1 − (ṁ h)2 + ṁw

(
hw + u2

2

)

+
(

Q̇w + Q′′′ − Ẇext + ∂p

∂t

)
Vcv (Energy),

where Q̇w = qw P �x/Vcv is the wall heat transfer per unit volume, Ẇshear =
τw P �x/Vcv is the work due to wall shear, and ṁw = ∑

ṁk,w = Nw P �x/Vcv

is the mass injection through the boundary per unit volume.

6. The well-known thermodynamic open system having fixed volume Vcv is the
same as the WSTCR. To derive the familiar form, consider flow of a pure-
substance so that the species equation is redundant and ρm = ρ. Further, neglect
viscous dissipation, radiation, and chemical heats. Also, let mw = 0. Hence,
show that

Ṁcv = d Mcv

dt
= ṁ1 − ṁ2, (1.21)

Ėcv = d Ecv

dt
= Q̇w − Ẇext + (ṁ h)1 − (ṁ h)2, (1.22)

where Mcv = ρ Vcv, Ecv = Mcv e, and the symbol e stands for specific internal
energy.

7. Consider a constant-volume and constant-mass (i.e., ṁ1 = ṁ1 = ṁw = 0)
WSCTR with Q̇w = Ẇext = 0. Neglect heat generation due to viscous dis-
sipation and radiation so that Q′′′ = Q̇chem + dp/dt . For such a reactor, show
that the species and energy equations are given by

ρm
d ωk

d t
= Rk and ρm

d e

d t
= Q̇chem.

Typically, Rk is a function of temperature T. How will you determine T ?
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Figure 1.6. Equilibrium of an isothermal gas.

8. Consider a constant-pressure and constant-mass reactor so that volume change
is permitted. Assume Qw = 0. Hence, show that

d Mcvωk

d t
= Rk Vcv and

d Hcv

d t
= Q̇chem Vcv,

where Vcv = Mcv Ru T / (p Mmix), Ru is the universal gas constant, the mixture
molecular weight Mmix = (

∑
k ωk/Mk )−1, T = Hcv/(Mcv C pmix ), and Hcv =

ρm Vcv h.

9. Consider a 2D natural convection problem in which the direction of gravity is
aligned with the negative x2 direction. Use the definition of the coefficient of
cubical expansion β = −ρ−1

ref ∂ρ/∂T and express the B2 term in Equation 1.3
in terms of β. Now, examine whether it is possible to redefine pressure as,
say, p∗ = p + ρref g x2 in Equations 1.3 for i = 1 and 2. If so, recognise that
ρref g x2 is nothing but a hydrostatic variation of pressure.

10. Consider a frictionless piston–cylinder assembly containing isothermal gas
as shown in Figure 1.6. The assembly is perfectly insulated. Now, consider
the unlikely circumstance in which the external pressure p is not equal to
internal pressure p. Discuss the consequences if the gas temperature is to remain
constant.
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2 1D Heat Conduction

2.1 Introduction

A wide variety of practical and interesting phenomena are governed by the 1D heat
conduction equation. Heat transfer through a composite slab, radial heat transfer
through a cylinder, and heat loss from a long and thin fin are typical examples. By
1D, we mean that the temperature is a function of only one space coordinate (say x
or r). This indeed is the case in steady-state problems. However, in unsteady state,
the temperature is also a function of time. Thus, although there are two relevant
independent variables (or dimensions), by convention, we refer to such problems as
1D unsteady-state problems. The extension dimensional thus always refers to the
number of relevant space coordinates.

The 1D heat conduction equation derived in the next section is equally applicable
to some of the problems arising in convective heat transfer, in diffusion mass transfer,
and in fluid mechanics, if the dependent and independent variables of the equation
are appropriately interpreted. In the last section of this chapter, therefore, problems
from these neighbouring fields will be introduced. Our overall objective in this
chapter is to develop a single computer program that is applicable to a wide variety
of 1D problems.

2.2 1D Conduction Equation

Consider the 1D domain shown in Figure 2.1, in which the temperature varies only
in the x direction although cross-sectional area A may vary with x .

The temperature over the cross section is thus assumed to be uniform. We shall
now invoke the first law of thermodynamics and apply it to a typical control volume
of length �x . The law states that (Rate of energy in) − (Rate of energy out) + (Rate
of generation of energy) = (Rate of change of Internal energy), or

Qx − Qx+�x + q ′′′ A �x = ∂

∂t
[ρ A �x C T ] W, (2.1)

17



P1: IWV/ICD
0521853265c02 CB908/Date 0 521 85326 5 May 25, 2005 10:49

18 1D HEAT CONDUCTION
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Figure 2.1. Typical 1D domain.

where q ′′′ (W/m3) is the volumetric heat generation rate, C denotes specific heat
(J/kg-K), and Q (W) represents the rate at which energy is conducted. Further, it
is assumed that the control volume �V = A (x) × �x does not change with time.
Similarly, the density ρ is also assumed constant with respect to time but may vary
with x. Therefore, dividing Equation 2.1 by �V , we get

Qx − Qx+�x

A �x
+ q ′′′ = ρ

∂(C T )

∂t
. (2.2)

Now, letting �x → 0, we obtain

− 1

A

∂ Q

∂x
+ q ′′′ = ρ

∂(C T )

∂t
. (2.3)

This partial differential equation contains two dependent variables, Q and T.
The equation is rendered solvable by invoking Fourier’s law of heat conduction.
Thus,

Q = − k A
∂T

∂x
, (2.4)

where k is the thermal conductivity of the domain medium. Substituting Equation
2.4 in Equation 2.3 therefore yields

∂

∂x

[
k A

∂T

∂x

]
+ q ′′′ A = ρ A

∂(C T )

∂t
. (2.5)

It will be instructive to make the following comments about Equation 2.5.

1. The equation is most general. It permits variation of medium properties ρ, k,
and C with respect to x and/or t.

2. The equation permits variation of cross-sectional area A with x. Thus, the equa-
tion is applicable to the case of a conical fin, for example. Similarly, the equation
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Figure 2.2. Grid layout practises.

is also applicable to the case of cylindrical radial conduction if it is recognised
that A = 2 × π × r , and if x is replaced by r.

3. The equation also permits variation of q ′′′ with T or x. Thus, if an electric current
is passed through the medium, q ′′′ will be a function of electrical resistance and
the latter will be a function of T. Similarly, in case of a fin losing heat to the
surroundings due to convection, q ′′′ will be negative and it will be a function of
the heat transfer coefficient h and perimeter P.

4. Equation 2.5 is to be solved for boundary conditions at x = 0 and x = L (say).
Thus, 0 ≤ x ≤ L specifies the domain of interest.1

2.3 Grid Layout

As mentioned in Chapter 1, numerical solutions are generated at a few discrete
points in the domain. Selection of coordinates of such points (also called nodes) is
called grid layout. Two practises are possible (see Figure 2.2).

Practise A
In this practise, the locations of nodes (shown by filled circles) are first chosen
and then numbered from 1 to N. Note that the chosen locations need not be
equispaced. Now the control volume faces (also called the cell faces) are placed
midway between the nodes. When this is done, a difficulty arises at the near-
boundary nodes 2 and N − 1. For these nodes, the cell face to the west of node 2

1 Numerical solutions are always obtained for a domain of finite size. In many problems, the boundary
condition is specified at x = ∞. In this case, L is assumed to be sufficiently large but finite.
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Figure 2.3. Typical node P – Practise A.

is assumed to coincide with node 1 and, similarly, the cell face to the east of node
N − 1 is assumed to coincide with node N. As such, there is no cell face between
nodes 1 and 2, nor between nodes N − 1 and N . The space between the adjacent
cell faces defines the control volume. In this practise therefore the nodes, in gen-
eral, will not be at the centre of their respective control volumes. Also note that
if N nodes are chosen, then there are N − 2 control volumes.

Practise B
In this practise, the location of cell faces is first chosen and then the grid nodes
are placed at the centre of the control volumes thus formed. Note again that the
chosen locations of the cell faces need not be equispaced. Both practises have their
advantages and disadvantages that become apparent only as one encounters multi-
dimensional situations. Yet, a choice must be made. In this chapter, much of the
discussion is carried out using practise A, but it will be shown that a generalised
code can be written to accommodate either practise.

2.4 Discretisation

Having chosen the grid layout, our next step is to convert the PDE (2.5) to an
algebraic one. This process of conversion is called discretisation. Here again, there
are two possible approaches:

1. a Taylor series expansion (TSE) method or
2. an integration over a control volume (IOCV) method.

In both methods, a typical node P is chosen along with nodes E and W to east
and west of P, respectively (see Figure 2.3). The cell face at e is midway between P
and E, likewise, the cell face at w is midway between P and W.

Before describing these methods, it is important to note an important aspect of
discretisation. Equation 2.5 is a partial differential equation. The time derivative
on the right-hand side (RHS), therefore, must be evaluated at a fixed x . We choose
this fixed location to be node P. The left-hand side (LHS) of Equation 2.5, however,
contains a partial second derivative with respect to x and, therefore, this derivative
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must be evaluated at a fixed time. The choice of this fixed time, however, is not so
straightforward because over a time step �t , one may evaluate the LHS at time t,
or t + �t , or at an intermediate time between t and t + �t . In general, therefore,
we may write Equation 2.5 as

ψ (L H S)n
P + (1 − ψ) (L H S)o

P = RH S|P (2.6)

where ψ is a weighting factor, superscript n refers to the new time t + �t , and
superscript o refers to the old time t. If we choose ψ = 1 then the discretisation is
called implicit, if ψ = 0 then it is called explicit, and if 0 < ψ < 1, it is called semi-
implicit or semi-explicit. Each choice has a bearing on economy and convenience
with which a numerical solution is obtained. The choice of ψ is therefore made by
the numerical analyst depending on the problem at hand. The main issues involved
will become apparent following further developments.

2.4.1 TSE Method

To employ this method, Equation 2.5 is first written in a nonconservative form.
Thus,

LHS|P = k A
∂2T

∂x2
+ ∂(k A)

∂x

∂T

∂x
+ q ′′′ A, (2.7)

RHS|P = ρ A
∂(CT )

∂t
. (2.8)

Equation 2.7 contains first and second derivatives of T with respect to x. To
represent these derivatives we employ a Taylor series expansion:

TE = TP + �xe
∂T

∂x

∣∣∣∣
P

+ �x2
e

2

∂2T

∂x2

∣∣∣∣
P

+ · · · , (2.9)

TW = TP − �xw
∂T

∂x

∣∣∣∣
P

+ �x2
w

2

∂2T

∂x2

∣∣∣∣
P

+ · · · . (2.10)

From these two expressions, it is easy to show that

∂T

∂x

∣∣∣∣
P

= �x2
w TE − �x2

e TW + (�x2
e − �x2

w) TP

�xe �xw (�xe + �xw)
, (2.11)

∂2T

∂x2

∣∣∣∣
P

= �xw TE + �xe TW − (�xe + �xw) TP

�xe �xw (�xe + �xw)/2
. (2.12)

Note that, in Equations 2.9 and 2.10, terms involving derivative orders greater
than 2 are ignored. Therefore, Equations 2.11 and 2.12 are called second-order-
accurate representations of first- and second-order derivatives with respect to x.
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Now to evaluate the time derivative, we write

(C T )n
P = (C T )o

P + �t
∂(C T )

∂t

∣∣∣∣
P

+ · · · , (2.13)

or

∂(C T )

∂t

∣∣∣∣
P

= (C T )n
P − (C T )o

P

�t
. (2.14)

In Equation 2.13, derivatives of order higher than 1 are ignored; therefore,
Equation 2.14 is only a first-order-accurate representation of the time derivative.2

Inserting Equations 2.11 and 2.12 in Equation 2.7 and Equation 2.14 in Equation
2.8 and employing Equation 2.6, we can show that[

ρ �V Cn

�t

∣∣∣∣
P

+ ψ (AE + AW )

]
T n

P = ψ
[
AE T n

E + AW T n
W

]+ S, (2.15)

with

AE = 2

�xe

[
(k A)P + �xw

2

d (k A)

d x

∣∣∣∣
P

]
�x

(�xe + �xw)
, (2.16)

AW = 2

�xw

[
(k A)P − �xe

2

d (k A)

d x

∣∣∣∣
P

]
�x

(�xe + �xw)
, (2.17)

S = [
ψ q ′′′,n

P + (1 − ψ) q ′′′,o
P

]
�V + (1 − ψ)

[
AE T o

E + AW T o
W

]
+
[

ρ �V Co

�t

∣∣∣∣
P

− (1 − ψ) (AE + AW )

]
T o

P , (2.18)

where �V = A �x . Note that if the cell faces were midway between adjacent nodes,
2�x = �xe + �xw. Before leaving the discussion of the TSE method, we make
the following observations:

1. Calcuation of coefficients AE and AW requires evaluation of the derivative
d (k A)/d x |P. This derivative can be evaluated using expressions such as (2.11)
in which T is replaced by k A.

2. For certain variations of (kA) and choices of �xe and �xw, AE and/or AW can
become negative.

3. For certain choices of �t , the multiplier of T o
P in Equation 2.18 can become

negative.
4. In steady-state problems, �t = ∞ and T o has no meaning. Therefore, in such

problems, ψ always equals 1.

2 Clearly, it is possible to represent the time derivative to a higher-order accuracy. However, the
resulting expression will involve reference to T n, T 0, T 00, and so on.
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From the point of view of obtaining stable and convergent numerical solutions,
observations 2 and 3 are significant. The associated matter will become clear in a
later section.

2.4.2 IOCV Method

In this method, the RHS and LHS of Equation 2.5 are integrated over a control
volume �x and over a time step �t . Thus,

Int (LHS) =
∫ t ′

t

∫ e

w

∂

∂x

[
k A

∂T

∂x

]
d x d t +

∫ t ′

t

∫ e

w
q ′′′ A d x d t, (2.19)

where t ′ = t + �t . It is now assumed that the integrands are constant over the time
interval �t . Further, q ′′′ is assumed constant over the control volume and since the
second-order derivative is evaluated at a fixed time, we may write

Int (LHS) =
[

k A
∂T

∂x

∣∣∣∣
e

− k A
∂T

∂x

∣∣∣∣
w

]
�t + q ′′′

P A �x �t. (2.20)

It is further assumed that T varies linearly with x between adjacent nodes. Then

∂T

∂x

∣∣∣∣
e

= TE − TP

�xe
,

∂T

∂x

∣∣∣∣
w

= TP − TW

�xw
. (2.21)

Note that when the cell faces are midway between the nodes, these represen-
tations of the derivatives are second-order accurate (see Equation 2.11). Using
Equation 2.21 therefore gives

Int (LHS) =
[

k A

�x

∣∣∣∣
e

(TE − TP) + k A

�x

∣∣∣∣
w

(TW − TP)

]
�t

+ q ′′′
P A �x �t. (2.22)

Similarly,

Int (RHS) = ρ A

∫ t ′

t

∫ e

w

∂(C T )

∂t
dx dt

= (ρ A �x)P [(C T )n − (C T )o ]P . (2.23)

Substituting Equations 2.22 and 2.23 into the integrated version of Equation 2.6,
therefore, we can show that[

ρ �V Cn

�t

∣∣∣∣
P

+ ψ (AE + AW )

]
T n

P = ψ
[
AE T n

E + AW T n
W

]+ S, (2.24)
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where

AE = k A

�x

∣∣∣∣
e

(2.25)

AW = k A

�x

∣∣∣∣
w

(2.26)

S = [
ψ q ′′′,n

P + (1 − ψ) q ′′′,o
P

]
�V

+ (1 − ψ)
[
AE T o

E + AW T o
W

]
+
[

ρ �V Co

�t

∣∣∣∣
P

− (1 − ψ) (AE + AW )

]
T o

P . (2.27)

Note that Equation 2.24 has the same form as Equation 2.15, but there are
important differences:

1. Coefficients AE and AW can never be negative since k A/�x can only assume
positive values.

2. AE and AW are also amenable to physical interpretation; they represent
conductances.

3. Again, in steady-state problems,ψ = 1 because�t = ∞. In unsteady problems,
for certain choices of �t , however, the multiplier of T o

P can still be negative.
This observation is in common with the TSE method.

2.5 Stability and Convergence

Before discussing the issues of stability and convergence, we recognize that there
will be one equation of the type (2.24) [or (2.15)] for each node P. To minimize
writing, we designate each node by a running index i = 1, 2, 3, . . . , N , where i = 1
and i = N are boundary nodes. Thus, Equations 2.24 are written as

APi Ti = ψ [ AEi Ti+1 + AWi Ti−1 ] + Si , i = 2, 3, . . . , N − 1, (2.28)

where superscript n is now dropped for convenience. In these equations, APi

represents multiplier of TP in Equation 2.24.
It will be shown later that this equation set can be written in a matrix form

[A][T] = [S], where [A] is the coefficient matrix and [T] and [S] are column vectors.
This set can be solved by a variety of direct and iterative methods. The methods
yield converged solutions only when the condition for convergence (also known as
Scarborough’s criterion [64]) is satisfied. To put it simply, the criterion states that

Condition for Convergence

ψ [|AEi | + |AWi |]
|APi | ≤ 1 for all nodes, (2.29)
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Figure 2.4. Explicit procedure.

ψ [|AEi | + |AWi |]
|APi | < 1 for at least one node. (2.30)

Condition for Stability
In unsteady problems, the stability of the calculation procedure, however, requires
that the coefficient of T o

i contained in the Si term always be positive.3 It will be
shown in the next section that this implies a restriction on the permissible size of
the time step.

2.5.1 Explicit Procedure ψ = 0

In this case, Equation 2.28 will read as[
ρ �Vi Cn

i

�t

]
Ti = AEi T o

i+1 + AWi T o
i−1 + q ′′′,o

i Ai �x

+
[
ρ �Vi Co

i

�t
− (AEi + AWi )

]
T o

i . (2.31)

Equation 2.31 shows that the values of Ti at a new time step are now calculable
explicitly in terms of values T o

i−1, T o
i , and T o

i+1. Terms containing Ti+1 and Ti−1

do not appear on the RHS. Therefore, the equation is explicit and no iterations are
required. This situation is also depicted in Figure 2.4. Thus, starting with known
initial temperature distribution at t = 0, one can evaluate temperatures at each new
time step. Such a solution procedure is called a marching solution procedure. It is
very easy to devise computer code for a marching procedure.

In an explicit procedure, the issue of convergence is irrelevant but the stability
of the calculation procedure requires that the coefficient of T o

i always be positive.
From Equation 2.31 it is clear that this requirement is satisfied when

�t <

[
ρ �Vi Co

i

AEi + AWi

]
min

. (2.32)

3 This condition of positiveness is strictly meant for the case of ψ = 0. For ψ = 1, the condition
is automatically satisfied. For 0 < ψ < 1, however, the condition again holds but can be violated
without impairing stability of the solution procedure. This is discussed in Section 2.5.2.
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Figure 2.5. Bonding of plastic sheets – Problem 1.

Mathematically more rigorous arguments concerning this stability condition
will be discussed in the next chapter. Here we consider a problem4 to develop
essential understanding.

Problem 1 [80]
Two plastic sheets, each 5 mm thick, are to be bonded together with a thin layer
of adhesive that fuses at 140◦C. For this purpose, they are pressed between two
surfaces at 250◦C (see Figure 2.5). Determine the time for which the two sheets
should be pressed together, if the initial temperature of the sheets (and the ad-
hesive) is 30◦C. For plastic sheets, k = 0.25 W/m-K, C = 2,000 J/kg-K, and
ρ = 1,300 kg/m3.

Solution
In this problem, we measure x from the edge of one of the sheets as shown. We
divide the domain of 10 mm such that �x = 2 mm. This will yield seven grid
nodes, as shown in Figure 2.5. Note that the distance between nodes 1 and 2 and
that between 6 and 7 will be 1 mm. In this problem, area A is constant and may
be assigned value of 1 m2 (say). Also, since there is no internal heat generation,

4 The USER file for this problem is given in Appendix B.
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Table 2.1: Explicit procedure with ∆t = 10 s (stable).

Time 0 mm 1 mm 3 mm 5 mm 7 mm 9 mm 10 mm

0 250 30 30 30 30 30 250
10 250 135.7 30 30 30 135.7 250
20 250 165.3 55.43 30 55.43 165.3 250
30 250 179.6 75.72 42.22 75.22 179.6 250
40 250 188.5 92.5 58.33 92.5 188.5 250
50 250 195.0 107.4 74.82 107.4 195.0 250
60 250 200.4 120.6 90.5 120.6 200.4 250
70 250 205.1 132.6 105.0 132.6 205.1 250
80 250 209.3 143.4 118.3 143.4 209.3 250
90 250 213.0 153.2 130.3 153.2 213.0 250

100 250 216.4 162.1 141.3 162.1 216.4 250

q ′′′ = 0. We solve this problem by an explicit method (ψ = 0) and employ the IOCV
method.5

We now note that ρ Ai �xi C = 1,300 × 1 × 0.002 × 2,000 = 5,200, AW2 =
0.25 × 1/0.001 = 250, AWi = 0.25 × 1/0.002 = 125 for i = 3 to N − 1,
AEN−1 = 0.25 × 1/0.001 = 250, and AEi = 0.25 × 1/0.002 = 125 for i = 2 to
N − 2. Therefore, the applicable discretised equations are

5,200

�t
T2 = 250 T o

1 + 125 T o
3 +

(
5,200

�t
− 375

)
T o

2 , (2.33)

5,200

�t
Ti = 125

(
T o

i−1 + T o
i+1

)+
(

5,200

�t
− 250

)
T o

i , (2.34)

for i = 3, 4, and 5 and

5,200

�t
TN−1 = 125 T o

N−2 + 250 T o
N +

(
5,200

�t
− 375

)
T o

N−1. (2.35)

Finally, the boundary conditions are T1 = 250 and TN = 250. These conditions
apply because it is assumed that when the sheets are pressed, the thermal contact
between the sheets and the pressing surface is perfect.

This set of discretised equations dictates that �t must be less than 5,200/375 =
13.87 s (see Equation 2.32). We therefore carry out two sets of computations, one in
which �t = 10 s (see Table 2.1) and another in which �t = 20 s, so that the stability
condition is violated (see Table 2.2). In both cases, computations are stopped when
T4 (x = 5 mm) exceeds 140◦C.

Table 2.1 clearly shows monotonic evolution of temperature within the sheets
and thus accords with our expectation. The time for which the two sheets should

5 Note that because in this problem k A is constant, the coefficients AEi , AWi , and APi will be
identical in both the IOCV and TSE methods.
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Table 2.2: Explicit procedure with ∆t = 20 s (unstable).

Time 0 mm 1 mm 3 mm 5 mm 7 mm 9 mm 10 mm

0 250 30 30 30 30 30 250
20 250 241.5 30 30 30 241.5 250
40 250 148.0 131.7 30 131.7 148.0 250
60 250 238.3 90.63 127.8 90.63 238.3 250
80 250 178.6 179.5 92.05 179.5 178.6 250

100 250 247.7 137.0 176.1 137.0 247.7 250

be pressed together can be determined by interpolation as (t − 90)/(100 − 90) =
(140 − 130.33)/(141.31 − 130.33) or at t = 98.8 s. This calculated time, of course,
need not be considered accurate. Its accuracy can be ensured by repeating calcu-
lations with increasingly smaller �x (increasingly greater number of nodes) and
by taking ever smaller values of �t . Further, note that the temperature distribu-
tions at any time t are symmetric about x = 5 mm. This is because of the sym-
metry of the boundary and the initial condition. Now, unlike in Table 2.1, the
results presented in Table 2.2 show zigzag or nonmonotonic evolution of temper-
ature. For example, at any x, the temperature first rises (as expected) and then
falls (against expectation). In fact, the reader is advised to carry the computations
well beyond 100 s or with larger values of �t . Then, it will be found that the
evolved temperatures will show even more unexpected trends. That is, the interior
temperatures will exceed the bounds of 30◦C and 250◦C. Clearly, this is in vio-
lation of the second law of thermodynamics. Results of Table 2.2 are, therefore,
unacceptable.

2.5.2 Partially Implicit Procedure 0 < ψ < 1

In this case, if the condition of positiveness of the coefficient of T o
P is invoked then

�t must obey the following constraint:

�t <

[
ρ �Vi Co

i

(1 − ψ) (AEi + AWi )

]
min

. (2.36)

However, computations of the previous problem will show that stable (monotoni-
cally evolving) solutions can be obtained even with

�t <

[
ρ �Vi Co

i

(1 − 2ψ) (AEi + AWi )

]
min

for ψ < 0.5, (2.37)

and, for ψ ≥ 0.5, �t can be chosen without any restriction. Clearly, therefore,
condition (2.36), though valid, is too restrictive on the time step. The reader
will appreciate this matter by solving Exercise 29. The more rigorous proof



P1: IWV/ICD
0521853265c02 CB908/Date 0 521 85326 5 May 25, 2005 10:49

2.5 STABILITY AND CONVERGENCE 29

∆tt +

t

NEW

OLD

ii −  1   i  + 1

Figure 2.6. Implicit procedure.

can be developed by carrying out the stability analysis described in the next
chapter.

2.5.3 Implicit Procedure ψ = 1

In this case, Equation 2.28 will read as[
ρ �Vi Cn

i

�t
+ AEi + AWi

]
Ti = AEi Ti+1 + AWi Ti−1 + q ′′′

i �Vi

+ ρ �Vi Co
i

�t
T o

i . (2.38)

This equation is implicit because the RHS also contains reference to tempera-
tures at the new time step. Further, note that the multiplier of T o

i is always positive
and, therefore, Equation 2.38 is unconditionally stable irrespective of the time step.
The situation of Equation 2.38 is shown in Figure 2.6. Because of its implicitness,
Equation 2.38 must be solved iteratively, so that we may write

APi T l+1
i = AEi T l+1

i+1 + AWi T l+1
i−1 + Si , i = 2, 3, . . . , N − 1, (2.39)

where l is the iteration number.
Now, in the IOCV method, the condition of convergence (2.29) is always satisfied

because the AP coefficient is the largest (see Equation 2.38) and condition (2.30) is
satisfied at the boundary node. Also, AE and AW are always positive (see Equations
2.25 and 2.26).

The overall procedure can thus be described through the following steps:

1. Specify T o
i for i = 1 to N and set Ti = T o

i .
2. Begin a new time step. Choose �t .
3. Solve Equation 2.39 to obtain T l+1

i .
4. Check convergence by calculating the fractional change FCi = (T l+1

i −
T l

i )/T l
i .

5. If FCi,max > convergence criterion (CC) go to step 3 by setting T l
i = T l+1

i ; else,
go to step 6.

6. Set T o
i = Ti and go to step 2.
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Table 2.3: Implicit procedure with ∆t = 10 s.

Time 0 mm 1 mm 3 mm 5 mm 7 mm 9 mm 10 mm

0 250 30 30 30 30 30 250
10 250 92.96 40.79 33.50 40.79 92.96 250
20 250 131.6 55.5 40.65 55.5 131.6 250
30 250 156.2 71.04 50.51 71.04 156.2 250
40 250 172.6 86.07 62.06 86.07 172.6 250
50 250 184.1 100.1 74.41 100.1 184.1 250
60 250 192.5 112.9 86.92 112.9 192.5 250
70 250 199.1 124.7 99.19 124.7 199.1 250
80 250 204.4 135.4 110.9 135.4 204.4 250
90 250 208.9 145.2 122.1 145.2 208.9 250

100 250 213.3 154.2 132.0 154.2 213.3 250
110 250 216.1 162.2 142.1 162.2 216.1 250

The specification of procedural steps is called an algorithm. To illustrate the al-
gorithm, we again consider Problem 1. Then, using the IOCV method, the equations
to be solved are(

5,200

�t
+ 375

)
T2 = 250 T1 + 125 T3 + 5,200

�t
T o

2 , (2.40)

(
5,200

�t
+ 250

)
Ti = 125 (Ti−1 + Ti+1) + 5,200

�t
T o

i i = 3, . . . , N − 2,

(2.41)

(
5,200

�t
+ 375

)
TN−1 = 125 TN−2 + 250 TN + 5,200

�t
T o

N−1. (2.42)

It is now possible to cast our algorithm in the form of a computer program. This
matter is taken up in a later section. Here, results of computations with �t = 10
and 20 s are presented in Tables 2.3 and 2.4, respectively.

Table 2.4: Implicit procedure with ∆t = 20 s.

Time 0 mm 1 mm 3 mm 5 mm 7 mm 9 mm 10 mm

0 250 30 30 30 30 30 250
20 250 121.6 55.52 42.51 55.52 121.6 250
40 250 164.7 84.10 62.90 84.10 164.7 250
60 250 184.5 109.9 84.94 109.9 184.5 250
80 250 201.2 131.9 108.5 131.9 201.2 250

100 250 210.4 150.4 129.1 150.4 210.4 250
120 250 217.2 166.0 147.1 166.0 217.2 250
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From the computed results, we make the following observations:

1. The temperature evolutions are monotonic irrespective of the time step since
there is no restriction on the time step in the implicit procedure.

2. With �t = 10 s, the time for pressing is evaluated at 107.81 s and with �t = 20 s
at 112.09 s. Again these times are not necessarily accurate. Accuracy can only
be established by repeating computations with ever smaller values of �t and
�x till the evaluated total time is independent of the choices made.

3. Comparison of results in Table 2.3 with those in Table 2.1 shows that temperature
evolutions calculated by the implicit procedure are more realistic. Note, for
example, that T4 in the explicit procedure does not even recognise that heating
has started for the first 20 s. Of course, this lacuna can be nearly eliminated by
taking smaller time steps.

4. For the same time step, the explicit procedure reaches T4 = 140 in 10 time
steps. The implicit procedure has, however, required 11 time steps. In addition,
at each time step, a few iterative calculations have been carried out. Thus,
in this example, the implicit procedure involves more arithmetic operations
than the explicit procedure. This, however, is not a general observation. When
�x and �t are reduced to obtain accurate solutions, or when coefficients AE
and AW are not constant but functions of temperature (through temperature-
dependent conductivity, for example), or when q ′′′ = q ′′′ (T ) is present, one
may find that an implicit procedure may yield more economic solutions than the
explicit procedure because the former enjoys freedom over the size of the time
step.

2.6 Making Choices

In the previous two sections, we have introduced TSE and IOCV methods as well as
explicit and implicit procedures. Here, we offer advice on the best choice of combi-
nation, keeping in mind the requirements of multidimensional problems (including
convection) to be discussed in later chapters. Further, we also keep in mind that
coefficients AE and AW are in general not constant. This makes the discretised
equations nonlinear.

1. Note that the TSE method casts the governing equations in non-conservative
form whereas the IOCV method uses the as-derived conservative form. As we
shall observe later, this matter is of considerable physical significance when
convective problems are considered.

2. In the TSE method, coefficients AE and AW carry little physical meaning. In
the IOCV method, they represent conductances.

3. In the TSE method, Scarborough’s criterion may be violated. In the IOCV
method, this can never happen.
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4. The question of invoking explicit procedure arises only when unsteady-state
problems are considered. The implicit procedure, in contrast, can be invoked
for both unsteady-state as well as steady-state problems. In fact, in steady-state
problems (�t = ∞) the implicit procedure is the only one possible.6

5. The explicit procedure imposes restriction on the largest time step to obtain
stable solutions. The implicit procedure does not suffer from such a restriction.

In view of these comments, the best choice is to employ the IOCV method with
an implicit procedure. Throughout this book, therefore, this combination will be
preferred.

2.7 Dealing with Nonlinearities

Now that we have accepted a combination of IOCV with the implicit procedure, we
restate the main governing discretised equation (equations 2.38 and 2.39) but in a
slightly altered form:

(APi + Spi ) T l+1
i = AEi T l+1

i+1 + AWi T l+1
i−1 + Sui , i = 2, 3, . . . , N − 1,

(2.43)

APi = AEi + AWi , (2.44)

AEi = k A

�x

∣∣∣∣
i+1/2

, (2.45)

AWi = k A

�x

∣∣∣∣
i−1/2

, (2.46)

Sui = ρ �Vi Co
i

�t
T o

i , Spi = ρ �Vi Cn
i

�t
. (2.47)

In these equations, the q ′′′ term is deliberately ignored because it is a problem-
dependent term. The altered form shown in Equation 2.43 will be useful in dealing
with nonlinearities. Also, a generalised computer code can be constructed around
Equation 2.43 in such a way that preserves the underlying physics. The nonlinearities
can emanate from three sources:

1. if q ′′′ is a function of T
2. if conductivity k is a function of T or changes abruptly, as in a composite material

and/or
3. boundary conditions at x = 0 and x = L .

6 Some analysts employ an explicit procedure even for a steady-state problem. In this case, calcu-
lations proceed by introducing a false or imaginary time step. Hence, such procedures are called
false transient procedures.
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In the following, we discuss methods for dealing with nonlinearities through
modification of Sui and Spi .

2.7.1 Nonlinear Sources

Consider a pin fin losing heat to its surroundings under steady state by convection
with heat transfer coefficient h. Then, q ′′′ will be given by

q ′′′
i = − hi Pi �xi (Ti − T∞)

Ai �xi
, (2.48)

where Pi is the local fin perimeter. Therefore,

q ′′′
i �Vi = −hi Pi �xi (Ti − T∞). (2.49)

When this equation is included in Equation 2.43, it is obvious that Ti will now
appear on both sides of the equation. One can therefore write the total source term
as

Source term = Sui + hi Pi �xi (T∞ − Ti ). (2.50)

This prescription can be accommodated by updating Sui and Spi as

Sui = Sui + hi Pi�xi T∞,

Spi = Spi + hi Pi �xi , (2.51)

where Sui and Spi on the RHSs are the original quantities given in Equation 2.47.
Note that, in this case, the updated Spi is positive and, therefore, there is no

danger of rendering APi + Spi negative. Thus, Scarborough’s criterion cannot be
violated. However, if we considered dissipation of heat due to an electric current or
chemical reaction (as in setting of cement) then, because heat is generated within
the medium, q ′′′

i = a + b T m
i , where b is positive. In this case, Sui = Sui + a �Vi

and Spi = Spi − b T m−1
i �Vi . But now, there is a danger of violating Scarbor-

ough’s criterion and, therefore, one simply sets Sui = Sui + q ′′′
i �Vi and Spi is not

updated.
Accounting for the source term in the manner of Equation 2.51 is called source

term linearization [49]. We shall discover further advantages of this form when
dealing with the application of boundary conditions.

2.7.2 Nonlinear Coefficients

Coefficients AEi and AWi can become functions of temperature owing to thermal
conductivity as in k = a + b T + c T 2. Thus, ki+1/2 in AEi (see Equation 2.45),
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Figure 2.7. Interpolation of conductivity.

for example, may be evaluated in two ways:

ki+1/2 = a + b Ti+1/2 + c T 2
i+1/2, Ti+1/2 = 0.5 (Ti + Ti+1) (2.52)

or

ki+1/2 = 0.5 [ k (Ti ) + k (Ti+1) ] . (2.53)

Both of these representations are pragmatically acceptable but neither can be
justified on the basis of the physics of conductance. To illustrate this point, let us
consider a composite medium consisting of two materials with constant conduc-
tivities k1 and k2 (see Figure 2.7). In this case, we lay the grid nodes i and i + 1
in such a way that the cell face i + 1/2 coincides with the location where the two
materials are joined. Thus, there is a discontinuity in conductivity at the i + 1/2
location.

Now, in spite of the discontinuity, the heat transfer Qi+1/2 on either side of
i + 1/2 must be the same. Therefore,

Qi+1/2 = k1 Ai+1/2
Ti − Ti+1/2

xi+1/2 − xi
, k1 = ki , (2.54)

Qi+1/2 = k2 Ai+1/2
Ti+1/2 − Ti+1

xi+1 − xi+1/2
, k2 = ki+1. (2.55)

Eliminating Ti+1/2 from these equations gives

Qi+1/2 = Ai+1/2

[
xi+1/2 − xi

ki
+ xi+1 − xi+1/2

ki+1

]−1

(Ti − Ti+1). (2.56)

We recall, however, that our discretised equation was derived on the basis of
linear temperature variation between nodes i and i + 1 (see Equation 2.21). This
implies that

Qi+1/2 = A

�x

∣∣∣∣
i+1/2

ki+1/2 (Ti − Ti+1). (2.57)
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Comparing Equations 2.56 and 2.57, leads to

ki+1/2 = �xi+1/2

[
xi+1/2 − xi

ki
+ xi+1 − xi+1/2

ki+1

]−1

. (2.58)

If the cell face were midway between the nodes then this equation would read as

ki+1/2 = 2

[
1

ki
+ 1

ki+1

]−1

. (2.59)

These equations suggest that the conductivity at a cell face should be eval-
uated by a harmonic mean to accord with the physics of conductance. We shall
regard this as a general practise and extend it to the case when thermal conduc-
tivity varies with temperature. Thus, instead of using either Equation 2.52 or 2.53,
Equation 2.58 will be used with ki and ki+1 evaluated in terms of temperatures
Ti and Ti+1, respectively. Further, note that if conductivity is constant, ki+1/2 =
ki = ki+1.

2.7.3 Boundary Conditions

In practical problems, three types of boundary conditions are encountered:

1. Boundary temperatures T1 and/or TN are specified.
2. Boundary heat fluxes q1 and/or qN are specified.
3. Boundary heat transfer coefficients h1 and/or hN are specified.

Our interest in this section lies in prescribing these boundary conditions by
employing Su and Sp for the near-boundary nodes.

Boundary Temperature Specified
For the purpose of illustration, consider the i = 2 node, where T1 is specified. Then,
Equation 2.43 will read as

(AP2 + Sp2) T l+1
2 = AE2 T l+1

3 + AW2 T l+1
1 + Su2, (2.60)

where Su2 and Sp2 are already updated to account for any source term. Equation
2.60 can be left as it is but we alter it via a three-step procedure in which we set

Su2 = Su2 + AW2 T1,

Sp2 = Sp2 + AW2,

AW2 = 0.0. (2.61)
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With this specification, AP2 will now equal AE2 because AW2 is set to zero,
but the coefficient of T l+1

2 remains intact because Sp2 has been updated. Thus,
the boundary condition specification is accomplished by snapping the boundary
connection in the main discretised equation.

Heat Flux Specified
Let heat flux q1 be specified at x = 0 (see Figure 2.8) Then, temperature T1 is
unknown and heat transfer will be given by

Q1 = A1 q1 = AW2 (T1 − T2), (2.62)

T1 = A1 q1

AW2
+ T2. (2.63)

From Equation 2.60, it is clear that one can apply the boundary condition by
employing the following sequence:

1. Calculate T1 from Equation 2.63.
2. Update Su2 = Su2 + A1 q1 and Sp2 = Sp2 + 0.
3. Set AW2 = 0.

The qN -specified boundary condition can be similarly dealt with by altering
AEN−1 and SuN−1.

Heat Transfer Coefficient Specified
In this case, let h1 be the specified heat transfer coefficient (see Figure 2.8 again)
and let T∞ be the fluid temperature adjacent to the surface at x = 0. Then,

Q1 = A1 q1 = A1 h1 (T∞ − T1) = AW2 (T1 − T2). (2.64)

Therefore,

T1 = T2 + (A1 h1/AW2) T∞
1 + (A1 h1/AW2)

. (2.65)
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In this case, the boundary condition can be implemented via the following steps:

1. Calculate T1 from Equation 2.65.
2. Update

Sp2 = Sp2 +
[

1

A1 h1
+ 1

AW2

]−1

and Su2 = Su2 +
[

1

A1 h1
+ 1

AW2

]−1

T∞.

3. Set AW2 = 0.

Thus, for all types of boundary conditions, we are able to find appropriate Su
and Sp augmentations and then set the boundary coefficient of the near-boundary
node (AW2 in our examples) to zero. The usefulness of this practise will become
apparent when we consider the issue of convergence enhancement of the iterative
solution procedures of 2D equations in Chapter 9.

2.7.4 Underrelaxation

In a nonlinear problem, if k and/or q ′′′ are strong functions of temperature then, in
an iterative procedure, as the temperature field changes, the coefficients AP , AE ,
and AW and the source S may change very rapidly from iteration to iteration. In
such highly nonlinear problems, the iterative solution may yield oscillatory or erratic
convergence or may even diverge. Therefore, it is desirable to restrict the changes in
temperature implied by Equation 2.43. Such a restriction is called underrelaxation.
It can be effected by rewriting Equation 2.43 as

T l+1
i = α

[
AEi T l+1

i+1 + AWi T l+1
i−1 + Sui

]
APi + Spi

+ (1 − α) T l
i , (2.66)

where 0 < α ≤ 1. If α = 1, no underrelaxation will be effected. If α = 0, no change
will be effected, therefore, this case is not of interest. The underrelaxation can be
effected without altering the structure of Equation 2.43 by simply augmenting Su
and Sp before every iteration. Thus,

Sui = Sui + (1 − α)

α
(APi + Spi ) T l

i , (2.67)

Spi = Spi + (1 − α)

α
(APi + Spi ). (2.68)

If the coefficients AEi and AWi were constants and not functions of T then it is
also possible to take 1 ≤ α < 2. This is called overrelaxation. Typically, compared
to the case of α = 1, the convergence rate with overrelaxation is faster up to a
certain optimum αopt, but for α > αopt, the convergence rate again slows down, so
much so that it may be even slower than that with α = 1. The magnitude of αopt is
problem dependent.
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2.8 Methods of Solution

When coefficients AEi , AWi , and APi are calculated and Sui and Spi are suitably
updated to account for the effects of source linearization, boundary conditions, and
underrelaxation, we are ready to solve the set of equations (2.43) at an iteration
level l + 1. There are two extensively used methods for solving such equations.

2.8.1 Gauss–Seidel Method

The Gauss–Seidel (GS) method is extremely simple to implement on a computer.
The main steps are as follows:

1. At a given iteration level l, calculate coefficients AE , AW , AP , Su, and Sp
using temperature T l for i = 2 to N − 1

2. Hence, execute a DO loop:

100 FCMX = 0
DO 1 I = 2, N-1
TL = T(I)
ANUM = AE(I)∗T(I+1) + AW(I)∗T(I-1) + SU(I)
ADEN = AE(I) + AW(I) + SP(I)
T(I) = ANUM / ADEN
FC = (T(I) - TL) / TL
IF (ABS(FC).GT.FCMX) FCMX = ABS(FC)

1 CONTINUE

3. If FCMX > CC, go to step 1.

The method is also called a point-by-point method because each node i is visited
in succession. The method is very reliable but requires a large number of iterations
and hence considerable computer time, particularly when N is large.

2.8.2 Tridiagonal Matrix Algorithm

In the tridiagonal matrix algorithm (TDMA), Equation 2.43 is rewritten as

Ti = ai Ti+1 + bi Ti−1 + ci , (2.69)

where

ai = AEi

APi + Spi
, bi = AWi

APi + Spi
, ci = Sui

APi + Spi
. (2.70)

Note that since Spi ≥ 0, ai and bi can only be fractions. Equation 2.69 represents
(N − 2) simultaneous algebraic equations. In matrix form, these equations can be
written as [A] [T] = [C], where the coefficient matrix [A] will appear as shown
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Figure 2.9. Diagonally dominant matrix [A].

in Figure 2.9. Notice that the coefficient of Ti occupies the diagonal position of
the matrix with −ai and −bi occupying the neighbouring diagonal positions. All
other elements of the matrix are zero. The matrix [A] thus has diagonally dominant
tridiagonal structure. This structure can be exploited as follows. Let

Ti = Ai Ti+1 + Bi , i = 2, . . . , N − 1. (2.71)

Then

Ti−1 = Ai−1 Ti + Bi−1. (2.72)

Now, substituting this equation in Equation 2.69, we can show that

Ti =
[

ai

1 − bi Ai−1

]
Ti+1 +

[
bi Bi−1 + ci

1 − bi Ai−1

]
. (2.73)

Comparison of Equation 2.73 with Equation 2.71 shows that

Ai = ai

1 − bi Ai−1
, (2.74)

Bi = bi Bi−1 + ci

1 − bi Ai−1
. (2.75)
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Thus, Ai and Bi can be calculated by recurrence. The implementation steps are
as follows:

1. Prepare ai , bi , and ci for i = 2 to N − 1 from knowledge of the T l
i distribution.

2. From comparison of Equations 2.69 and 2.71, set A2 = a2 and B2 = c2 (because
b2 = 0 via the boundary condition specification). Now evaluate Ai and Bi for
i = 3 to N − 1 by recurrence using Equations 2.74 and 2.75.

3. Evaluate Ti by backwards substitution using Equation 2.71, that is, from
i = N − 1 to 2. Note that since we prescribe boundary conditions such that
AEN−1 = 0, it follows that AN−1 = 0.

4. Evaluate fractional change as before and go to step 1 if the convergence criterion
is not satisfied.

The TDMA is essentially a forward elimination (implicit in the recurrence
relations) and backward substitution procedure in which temperatures at all i are
updated simultaneously in step 3. Hence, the TDMA is also called a line-by-line
procedure to contrast it with the point-by-point GS procedure introduced earlier.
Further, we note that if ai , bi , and ci were constants and not functions of T then
the TDMA would yield a solution in just one iteration whereas the point-by-point
procedure would require several iterations even when coefficients are constants.

2.8.3 Applications

To illustrate performance of the methods just described, we consider two steady-
state problems.7

Problem 2 – Rectangular Fin [80]
A rectangular fin of length 2 cm, thickness 2 mm, and breadth 20 cm is attached
to a plane wall as shown in Figure 2.10. The wall temperature Tw = 225◦C
and ambient temperature T∞ = 25◦C. For the fin material, k = 45 W/m-K and
the operating h = 15 W/m2-K. Determine the heat loss from the fin and its
effectiveness. Assume the tip heat loss to be negligible.

Solution
The exact solution to this problem is

T − T∞
Tw − T∞

= cosh m (L − x)

cosh m L
, Qloss = √

h P k A (Tw − T∞) tanh (m L),

(2.76)

where m = √
h P /k A. In our problem, perimeter P = 2 × 20 = 40 cm, area A =

20 × 0.2 = 4 cm2, and L = 2 cm. Therefore, m = 18.257m−1 and Qloss = 23 W.

7 The USER files for these problems are given in Appendix B.
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Figure 2.10. Rectangular fin – Problem 2.

To obtain a numerical solution, let us take N = 7 so that we have five control
volumes of length �x = 0.4 cm. Thus, we have a uniform grid. Using definitions
(2.25) and (2.26), it follows that AW2 = 45 × 4 × 10−4/0.002 = 9 and AWi = 4.5
for i = 3 to 6. Similarly, AEi = 4.5 for i = 2 to 5 and AE6 = 9. The boundary
conditions are T1 = 225 and q7 = 0 (negligible tip loss).

Further, Sui = hi P �xi T∞ = 15 × 0.4 × 0.004 × 25 = 0.6 and Spi = 15 ×
0.4 × 0.004 = 0.024. Now, from an equation such as (2.63), T7 = 0 + T6 = T6.
Thus, our discretised equations are

T1 = 225,

[9 + 4.5 + 0.024] T2 = 4.5 T3 + 9 T1 + 0.6,

[4.5 + 4.5 + 0.024] Ti = 4.5 Ti+1 + 4.5 Ti−1 + 0.6, i = 3, 4, 5,

[4.5 + 0.024] T6 = 4.5 T5 + 0.6,

T7 = T6.

In this problem, the conductivity, area, perimeter, and heat transfer coefficient
are constants. Therefore, coefficients AEi and AWi do not change with iterations.
Thus, after carrying out the developments of Section 2.7.3, it is possible to construct
a coefficient table. The relevant quantities are shown in Table 2.5.

The solutions obtained using the GS method are shown in Table 2.6. No
underrelaxation is used. Entries for l = 0 indicate the initial guess for tempera-
tures (assuming a linear variation). At subsequent iterations, maximum fractional
change (FCMX) reduces monotonically from 0.01 at l = 1 to 0.000092 at l = 24.

The convergence criterion was set at 10−4. The converged solution compares
favourably with the exact solution although only five control volumes have been
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Table 2.5: Coefficients in the discretised
equation – Problem 2.

i 2 3 4 5 6

AWi 0 4.5 4.5 4.5 4.5
AEi 4.5 4.5 4.5 4.5 0
Sui 2025.6 0.6 0.6 0.6 0.6
Spi 9.024 0.024 0.024 0.024 0.024

used. Greater accuracy can be obtained with finer grids; however, this will require
more computational effort.

From the converged solution, the fin heat loss is estimated as Qloss = AW2 ×
(T1 − T2) = 9 (225 − 222.42) = 23.26 W. This also compares favourably with the
exact solution already mentioned.

Table 2.7 shows the execution of the same problem using TDMA. The table
shows values of Ai and Bi derived from Table 2.5 and Equations 2.74 and 2.75. Since
these are constants, solution is now obtained in only one iteration. Also, the initial
guess becomes irrelevant. The estimated heat loss is Qloss = 9 (225 − 222.45) =
22.967 W.

Thus, compared to GS, the TDMA procedure is considerably faster. Experience
shows that this conclusion is valid even in nonlinear problems. For this reason, the
TDMA is the most preferred solution procedure in generalised codes.

Problem 3 – Annular Composite Fin
Consider an annular fin put on a tube (of outer radius r1 = 1.25 cm), as shown
in Figure 2.11. The fin is made from two materials: The inner material has radius
r2 = 2.5 cm and conductivity k2 = 200 W/m-K and the outer material extends
to radius r3 = 3.75 cm and has conductivity k3 = 40 W/m-K. The fin thickness
t = 1 mm. The tube wall (and hence the fin base) temperature is T0 = 200◦C. The

Table 2.6: Solution by Gauss–Seidel method – Problem 2.

l FCMX 0 cm 0.2 cm 0.6 cm 1.0 cm 1.4 cm 1.8 cm 2.0 cm

0 225 223 219 215 211 207 205
1 0.01 225 222.65 218.31 214.15 210.08 209.1 209.1
2 0.0034 225 222.42 217.77 213.44 210.77 209.78 209.78
3 0.0021 225 222.24 217.32 213.54 211.16 210.18 210.18
...

...
...

...
...

...
...

...
...

22 0.00012 225 222.41 218.28 215.22 213.19 212.19 212.19
23 0.00011 225 222.41 218.30 215.24 213.21 212.21 212.21
24 0.000092 225 222.42 218.31 215.25 213.23 212.23 212.23
Exact − 225 222.58 218.52 215.51 213.49 212.49 212.37
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Table 2.7: Solution by TDMA – Problem 2.

x (cm) 0 0.2 0.6 1.0 1.4 1.8 2

Ai − 0.333 0.598 0.711 0.772 0.0 −
Bi − 149.78 89.628 63.776 49.357 212.375 −
l = 1 225 222.45 218.40 215.38 213.37 212.37 212.37
Exact 225 222.58 218.52 215.51 213.49 212.49 212.37

fin surface experiences heat transfer coefficient h = 20 W/m2-K and the ambient
temperature is T∞ = 25◦C. Assuming conduction to be radial, estimate the heat
loss from the fin and the fin effectiveness. Neglect heat loss from the fin tip.

Solution
In this problem, if the origin x = 0 is assumed to coincide with the base of the
fin, then at any radius r, area A = 2π r t = 2π (r1 + x) t and perimeter P = 2 ×
(2π r ) = 2 × [2π (r1 + x)]. The multiplication factor 2 in P arises because the fin
loses heat from both its faces. Further, since the fin material is a composite, grids
must be laid such that the cell face coincides with the location of the discontinuity
in conductivity. Therefore, we adopt practise B and specify cell-face coordinate (xc)
values. Choosing N = 8 and equal cell-face spacings, we have six control volumes
of size �x = (r3 − r1)/(N − 2) = 0.4167 cm. This grid specification provides
three control volumes in each material. The boundary conditions at the fin base
and fin tip are T (1) = 200 and qN = 0, respectively. Finally, the heat loss from the
fin is accounted for in the manner of Equations 2.51.

r
1

r2

r3

t

TUBE

ANNULAR

FIN

MATERIAL  K

MATERIAL  K

2

3

T0

h

Τ 8

Figure 2.11. Annular fin of composite material – Problem 3.



P1: IWV/ICD
0521853265c02 CB908/Date 0 521 85326 5 May 25, 2005 10:49

44 1D HEAT CONDUCTION

Table 2.8: Solution by TDMA (N = 8) – Problem 3.

x × 103 0 2.083 6.25 10.417 14.58 18.75 22.917 25.0

A × 105 7.845 7.845 10.5 13.1 15.7 18.3 20.9 23.6
T 200 196.7 192.43 189.4 183.38 177.39 174.63 174.63

The predicted temperature distribution in the fin is shown in Table 2.8 and plotted
(open circles) in Figure 2.12. From the table, the heat loss Q = −k2 A ∂T /∂x |x=0 =
−200 × 7.845 × 10−5 (196.7 − 200)/2.083 × 10−3 = 24.86 W. To evaluate fin
effectiveness, the maximum possible heat loss from the fin is evaluated from
2 × h × π (r2

3 − r2
1 ) × (T0 − T∞) = 27.49 W. Therefore, the predicted effective-

ness � = 24.86/27.49 = 0.9046.

To carry out the grid-independence study, computations are repeated for N = 16
and N = 32. These results are also plotted in Figure 2.12. The figure shows that
results for N = 16 (open squares) and N = 32 (solid line) almost coincide. Thus,
in this problem, results obtained with N = 16 may be considered quite accurate
for engineering purposes. This is also corroborated by the computed Q and � for
the two grids. For N = 16, the computed results are Q = 24.933 and � = 0.907;
for N = 32, they are Q = 24.941 and � = 0.9073. Note also the change in the

0.0000 0.0050 0.0100 0.0150 0.0200 0.0250
170

180

190

200

X (meters)

T

N = 8

N = 16

N = 32

Figure 2.12. Variation of temperature with X – Problem 3.
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slope of the temperature profile at the point of discontinuity (x = 0.0125 m) in
conductivity. Finally, by assigning different values to k2, k3, r2, r3, and t , it would
be possible to carry out a parametric study to aid optimisation of fin volume and
economic cost in a separate design study.

2.9 Problems from Related Fields

Quite a few problems from the fields of fluid mechanics, convective heat transfer,
and diffusion mass transfer are governed by equations that bear similarity with
Equation 2.5. Only the dependent variable, the coefficients, and the source term
need to be interpreted appropriately. We discuss such problems next.

Fully Developed Laminar Flow
Steady, fully developed laminar flow in a tube is governed by

∂

∂r

(
µ2π r

∂u

∂r

)
− 2π r

d p

d z
= 0, (2.77)

where u is velocity parallel to the tube axis and the pressure gradient is a negative
constant. Since velocity u is directed in the z direction, it can be treated as a scalar
with respect to the r direction. Comparison with Equation 2.5 shows that T ≡ u,
∂x ≡ ∂r , A ≡ 2πr , k ≡ µ, and q ′′′ ≡ −d p/d z. For a circular tube, u = 0 at r = R
(tube radius) and ∂u/∂r = 0 at the tube axis r = 0. Equation 2.77 is also applicable
to an annulus with boundary conditions u = 0 at r = Ri and r = Ro. Similarly, the
equation is applicable to flow between parallel plates if we set A = 2π r = 1 and
∂x ≡ ∂r ≡ ∂y, where y is measured from the symmetry axis.

Fully Developed Turbulent Flow
In this case, if Boussinesq approximation is considered valid then the axial velocity
is governed by

∂

∂r

{
(µ + µt) 2π r

∂u

∂r

}
− 2π r

d p

d z
= 0, (2.78)

where the turbulent viscosity µt = ρ l2
m

∣∣ ∂u
∂r

∣∣ with

lm =

⎧⎪⎪⎨
⎪⎪⎩

κ y

[
1 − exp

(
− y+

26

)]
for

y

R
< yl,

0.085 R for
y

R
> yl,

(2.79)

where κ = 0.41, y = R − r , yl  0.2, and y+ = y
√

τw/ρ /ν with τw the shear
stress at the wall (i.e., τw = µ∂u/∂y |y=0). Clearly, Equation 2.78 can be solved
iteratively by estimating the turbulent viscosity distribution from the velocity
gradient.
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Fully Developed Heat Transfer
The equation governing laminar fully developed heat transfer in a tube is given by

∂

∂r

(
k 2π r

∂T

∂r

)
− 2π r ρ C p ufd

∂T

∂z
= 0, (2.80)

where ufd = 2 u (1 − r2/R2) or can be taken from the numerical solution of Equa-
tion 2.77. Evaluation of ∂T /∂z can be carried out from the boundary conditions at
the tube wall as follows.

Constant Wall Heat Flux: From the overall heat balance and from the condition
of fully developed heat transfer [33], it can be shown that

∂T

∂z
= dTb

dz
= 2 qw

ρ C p u R
. (2.81)

Therefore, Equation 2.80 can be written as

∂

∂r

(
k2πr

∂T

∂r

)
− 8π

r

R

(
1 − r2

R2

)
qw = 0. (2.82)

Thus, if ∂r is replaced by ∂x , A by 2πr , and q ′′′ by − 4 (1 − r2/R2) qw/R, Equa-
tion 2.82 is same as the steady-state form of Equation 2.5.

Constant Wall Temperature: In this case, the condition of fully developed heat
transfer implies that

∂T

∂z
= (Tw − Tb)−1 dTb

dz
= (Tw − Tb)−1 2 k ∂T /∂r |r=R

ρ C pu R
, (2.83)

where Tb is the mixed-mean or bulk temperature. Thus, by setting q ′′′ =
−4 k/R (1 − r2/R2) (Tw − Tb)−1 ∂T /∂r |r=R , Equation 2.80 is same as Equa-
tion 2.5. However, Tb and ∂T /∂r |r=R must be evaluated at each iteration. The
bulk temperature Tb is evaluated as

Tb =
∫ R

0 ρ C p u T 2π r dr∫ R
0 ρ C p u 2π r dr

. (2.84)

Thermal Entry Length Solutions
Consider laminar flow between two parallel plates separated by distance 2b. When
Pr >> 1, it is possible to obtain the variation of the heat transfer coefficient h with
axial distance z by solving the following differential equation:

∂

∂y

(
k

∂T

∂y

)
= ρ C p ufd

∂T

∂z
, (2.85)
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where

ufd = 3

2
u

(
1 − y2

b2

)
(2.86)

and y is measured from the symmetry axis. The initial condition is T = Ti at z = 0
and the symmetry boundary condition is ∂T /∂y = 0 at y = 0. At y = b, however,
T = Tw if both walls are at constant wall temperature, or, if constant wall heat
flux is specified, then k ∂T /∂y |b = qw. For this problem, if we set y ≡ x , z ≡ t ,
q ′′′ = 0, A = 1, and C p ufd ≡ 1.5 u (1 − y2/b2) C p then Equation 2.85 is the same
as Equation 2.5 in which the unsteady term is retained.

Diffusion Mass Transfer
In a binary mixture of species i and j , the equation (in spherical coordinates)
governing radial diffusion of j in a stationary medium i is given by

∂

∂r

{
ρm D 4π r2

(1 − ω j )

∂ω j

∂r

}
= ρm 4πr2 ∂ω j

∂t
, (2.87)

where ω j is the mass fraction of j in the mixture and D is the mass diffusivity.
Thus, if we set ∂r ≡ ∂x , A = 4π r2, k = ρm D/(1 − ω j ), C p = 1, T = ω j , and,
q ′′′ = 0 then this equation is the same as Equation 2.5. To solve the equation,
one will need boundary conditions at r = ri and r = ro and the initial condition
at t = 0. Estimation of penetration depth during surface hardening of materials,
estimation of leakage flow of gases from storage vessels, or estimation of burning
rate of volatile fuel in still surroundings are some of the mass transfer problems
of interest. The reader is referred to the unified formulation of the mass transfer
problem by Spalding [72] and to the book by Gupta and Srinivasan [26].

EXERCISES8

1. Show that the derivative expressions in Equation 2.21 are second-order accurate
if the cell face is midway between adjacent nodes.

2. A slab of thickness 2b is initially at temperature T0. At t = 0, the boundary
temperatures at x = −b and +b are raised to Tb and maintained there. The
exact solution for evolution of temperature in this case is given by

T − Tb

T0 − Tb
= 2

∞∑
n=1

sin (λn b)

λn b
cos (λn x) exp

(−α λ2
n t
)
,

where λn b = (2 n − 1)π/2. Hence, considering the data of Problem 1 in the
text, write a computer program to determine the value of t for the centerline

8 All numerical problems given in these exercises can be solved by the generalised computer code
given in Appendix B.
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temperature to reach 140◦C. What is the minimum value of n required to obtain
an accurate estimate of t?

3. Repeat Problem 1 from the text using both explicit and implicit methods by
choosing N = 7, 12, and 22. Determine the largest allowable time step in the
explicit case. Compare your solution for the time required for adhesion with
the exact solution determined in the previous problem.

4. Evaluate SuN−1 and SpN−1 for an unsteady problem when TN is specified as a
function of time. Assume an arbitrary value of ψ .

5. Consider a time-varying heat-flux-specified condition at i = 1. Hence, derive
Su2 and Sp2 for arbitrary ψ . Confirm the validity of the three-step procedure
following Equation 2.63 for ψ = 1.

6. Repeat Exercise 5 for a time-varying heat transfer coefficient boundary condi-
tion. Hence, confirm the validity of the procedure following Equation 2.65 for
ψ = 1.

7. Confirm the correctness of Equations 2.67 and 2.68.

8. Verify the entries in Tables 2.5 and 2.7 by carrying out the necessary
calculations.

9. Develop a TDMA routine in which the postulated equation is

Ti = Ai Ti−1 + Bi .

10. Consider a slab of width b = 20 cm. At x = 0, T = 100◦C and at x = b, q = 1
kW/m2. The heat generation rate is q ′′′ = 1,000 − 5 T W/m3. Calculate the
steady-state temperature distribution with and without source-term linearisa-
tion. Compare the number of iterations required in the two cases for N = 22
and 42. Also calculate the heat flux at x = 0 and Tb and check the overall heat
balance. Take k = 1 W/m-K. Use TDMA.

11. Consider a nuclear fuel rod of length L and diameter D. The two ends of the rod
are maintained at T0. The internal heat generation rate is q ′′′ = a sin (πx/L),
where x is measured from one end of the rod and a is an arbitrary constant. The
rod loses heat by convection (coefficient h) to a coolant fluid at T∞.

(a) Nondimensionalise the steady-state heat conduction equation and identify
the dimensionless parameters. [Hint: Define θ = (T − T∞)/(T0 − T∞),
x∗ = x/L , P1 = a L2/k (T0 − T∞), and P2 = 4 h L2/(k D).]

(b) Compute the temperature distribution in the rod and compare with the exact
solution for 0 < P1 , P2 < 10. Use source-term linearisation and TDMA.
Carry out an overall heat balance from the computed results

(c) Solve the problem for P1 = P2 = 10 using different underrelaxation pa-
rameters 0 < α < 2 for N = 22 and N = 42. Determine αopt in each case.
Use uniform grid spacing and the GS procedure.
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Figure 2.13. Circumferential fin.

12. Exploit the symmetry in Exercise 11 at L/2 and compute the temperature
distribution over 0 ≤ x ≤ L/2. Compare the value of TL/2 with the exact
solution.

13. Consider the fin shown in Figure 2.13. The following are given: T∞ = 25◦C,
Tf = 200◦C, B = 2 mm, L = 6 mm, tube diameter D = 4 mm, kfin = 40 W/m-
K, h = 20 W/m2-K, and hi = 200 W/m2-K.

(a) Write the appropriate differential equation for steady-state heat transfer
and the boundary conditions to determine the temperature distribution in
the fin.

(b) Discretise the equation assuming six nodes (four control volumes) and list
AE , AW , Su, Sp, and AP for each node.

(c) Evaluate the effectiveness of the fin.

14. Consider a rod of circular cross section (L = 10 cm, d = 1 cm, k = 1 W/m-K,
ρ = 2,000 kg/m3, and C = 850 J/kg-K). The rod is perfectly insulated around
its periphery. At t = 0, the rod is at 25◦C. For t > 0, Tx=0 = 25◦C and Tx=L =
25 + t(s)◦C. Compute temperature distribution in the rod as a function of x
and t over a period of 15 min using ψ = 0, 0.5, and 1. Also determine qx=0 as
a function of time and plot the variation. Take N = 22 and �t = 5 s in each
case.

15. Consider a rod of circular cross section (L = 10 cm, d = 1 cm, k = 1 W/m-K,
ρ = 2,000 kg/m3, and C = 850 J/kg-K). The rod is initially at 600◦C. The
temperatures at the two ends of the rod are suddenly reduced to 100◦C and
maintained at that temperature. The rod is also cooled by natural convection
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to surroundings at 25◦C. If h = 3 (Trod − T∞)0.25 W/m2-K, perform the
following:

(a) Compute the variation of h with time at x = 5 cm and x = 9 cm over a
period of 1 min. Take �t = 1 s and ψ = 1 and use TDMA.

(b) Compute the percentage reduction in the energy content of the rod at the
end of 1 min.

(c) Extend the calculation beyond 1 min and estimate the time required to reach
near steady state. (Hint: You will need to specify a criterion for steady state.)

16. Consider an unsteady conduction problem in which T1 is given. However, at
x = L , the heat transfer coefficient is specified. By examining the discretised
equation for a general node i , for node i = 2, and for node i = N − 1, determine
the stability constraint on �t . Assume uniform control volumes, constant area,
and conductivity with q ′′′ = 0 and ψ = 0.

17. A semi-infinite solid is initially at 25◦C. At t = 0, the solid surface (x = 0) is
suddenly exposed to qw = 10 kW/m2. A thermocouple is placed at x = 1 mm
to apparently measure the surface temperature. Compute the temperature distri-
bution in the solid as a function of x and t and estimate the error in the thermo-
couple reading as a function of time. Carry out computations up to 1 s. Given
are the following: k = 80 W/m-K, ρ = 7, 870 kg/m3, and C = 450 J/kg-K.
[Hint: The boundary condition at x = ∞ is TL = 25◦C at all times. Choose
sufficiently large L (say 1 cm) and execute with �t = 0.01 s.]

18. A laboratory built in the Antarctic has a composite wall made up of plaster
board (10 mm), fibreglass insulation (100 mm), and plywood (20 mm). The
inside room temperature is maintained at Ti = 293 K throughout. The plywood
is exposed to an outside temperature To that varies with time t (in hours) as

To =

⎧⎪⎨
⎪⎩

273 + 5 sin
( π

12
t
)

for 0 ≤ t ≤ 12 h,

273 + 30 sin
( π

12
t
)

for 12 ≤ t ≤ 24 h.

(a) Compute the heat loss to the outside over a typical 24-h period (i.e., under
periodic steady state) in J/m2.

(b) Plot the variation of interface temperatures between the plasterboard and
the fibreglass and between the fibreglass and the plywood as a function of
time. Assume: hi = 15 W/m2-K and ho = 60 W/m2-K. Material properties
are given in Table 2.9.

19. Solve for fully developed laminar flow in a concentric annular (r∗ = Ri/Ro =
0.6) duct. Compare the predicted velocity profile with the exact solution [33]

u

u
= 2

A

[
1 −

(
r

Ro

)2

+ B ln

(
r

Ro

)]
,
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Table 2.9: Properties of the wall materials.

Material ρ (kg/m3) C (J/kg-K) k (W/m-K)

Plasterboard 1000 1380 0.15
Fibreglass 30 850 0.038
Plywood 545 1200 0.1

where B = (r∗2 − 1)/lnr∗ and A = 1 + r∗2 − B. Hence, compare the pre-
dicted friction factor based on a hydraulic diameter Dh = 2 (Ro − Ri) with

( f Re)Dh = 16

A

(
1 − r∗2

)
.

20. Solve Equation 2.78 for turbulent flow in a circular tube and compare your
results with the expressions [33]

u

uτ

=

⎧⎪⎨
⎪⎩

y+, y+ ≤ 11.6

2.5 ln

[
y+ 1.5 (1 + r/R)

1 + 2 (r/R)2

]
+ 5.5, y+ > 11.6.

Also compare the predicted friction factor f with f = 0.079Re−0.25 for Re <

2 × 104 and with f = 0.046Re−0.2 for Re > 2 × 104. Plot the variation of total
(laminar plus turbulent) shear stress with radius r . Is it linear? (Hint: Make sure
that the first node away from the wall is at y+ ∼ 1.)

21. Engine oil enters a tube (D = 1.25 cm) at uniform temperature Tin = 160◦C.
The oil mass flow rate is 100 kg/h and the tube wall temperature is maintained at
Tw = 100◦C. If the tube is 3.5 m long, calculate the bulk temperature of oil at exit
from the tube. The properties of the oil are ρ = 823 kg/m3, C p = 2,351 J/kg-K,
ν = 10−5m2/s, and k = 0.134 W/m-K. Plot the axial variation of Nusselt num-
ber Nux and bulk temperature Tb,x and compare with the exact solution given
in Table 2.10.

Table 2.10: Thermal entry length solution – Tw =
constant [33].

(x/R)/(Re Pr ) Nux (Tw − Tb)/(Tw − Tin)

0 ∞ 1.0
0.001 12.80 0.962
0.004 8.03 0.908
0.01 6.0 0.837
0.04 4.17 0.628
0.08 3.77 0.459
0.10 3.71 0.396
0.20 3.66 0.190
∞ 3.66 0.0



P1: IWV/ICD
0521853265c02 CB908/Date 0 521 85326 5 May 25, 2005 10:49

52 1D HEAT CONDUCTION

22. It is proposed to remove NO from exhaust gases of an internal combustion
engine by passing them over a catalyst surface. It is assumed that chemical
reactions involving NO are very slow so that NO is neither generated nor
destroyed in the gas phase. At the catalyst surface, however, NO is absorbed
at the rate of ṁ ′′ = Kρmω0, where the rate constant K = 0.075 m/s and ω0

is the mass fraction of NO at the catalyst surface. In the exhaust gases (T =
500◦C, p = 1 bar, M = 30) the mole fraction of NO is XNO = 0.002. Now,
it is assumed that NO diffuses to the catalyst surface over a stagnant layer of
1 mm with effective diffusivity = 3 × D, where D = 10−4 m2/s. Determine
the steady-state absorption rate (kg/m2-s) of NO and its mass fraction at the
surface.

23. The mass fraction of carbon in a low-carbon steel rod (2 cm diameter) is 0.002.
To case-harden the rod it is preheated to 900◦C and packed in a carburising
mixture at 900◦C. The mass fraction of carbon at the rod surface is now 0.014
and is maintained at this value. Calculate the time required for the carbon mass
fraction to reach 0.008 at a depth of 1 mm from the rod surface. Assume radial
diffusion only. In this case, cross-sectional area A = 2πr . However, since the
penetration depth is only 10% of the rod radius, one may take A = 2π R =
constant (i.e., assume plane diffusion). Compare the time required in the two
cases. Take the diffusivity of carbon in steel to be D = 5.8 × 10−10 m2/s.

24. Gaseous H2 at 10 bar and 27◦C is stored in a 10-cm inside diameter spher-
ical tank having a 2-mm-thick wall. If diffusivity of H2 in steel is D =
0.3 × 10−12 m2/s and solubility S = 9 × 10−3 kmol/m3-bar, estimate the time
required for the tank pressure to reduce to 9.9 bar. Also, plot the time variation
of tank pressure pH2 and the instantaneous hydrogen loss rate. Take ρsteel =
8,000 kg/m3. The density of hydrogen at the inner surface of the tank is given
by ρH2,i = SpH2 MH2. Is an exact solution possible for this problem?

25. Consider steady-state heat transfer through the composite slab shown in
Figure 2.14. Assume k1 = 0.05 (1 + 0.008 T ), k2 = 0.05 (1 + 0.0075 T ), and
k3 = 2 W/m-K, where T is in degrees centigrade. Calculate the rate of heat
transfer and the temperatures of the two interfaces. Ignore radiation.

26. Repeat Exercise 25 including the effect of radiation. The emissivities at x = 0
and x = 17 cm are 0.1 and 0.8, respectively. In this problem, one must use the
concept of effective heat transfer coefficient heff = h + hrad. Thus, at x = 0,
for example,

heff = 50 + 0.1σ (T∞ + Tx=0)
(
T 2

∞ + T 2
x=0

)
,

where the Stefan–Boltzmann constant σ = 5.67 × 10−8 W/m2−K4, and T∞
Tx=0 are in Kelvin.

27. Consider fully developed turbulent heat transfer in a circular tube under con-
stant wall heat flux conditions. Equations 2.80 and 2.81 are again applicable
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1 2

5 cm 10 cm

h = 50 W/m2-K

h = 5 W/m2-K

T = 600 C8

3

2 cm

T = 50 C8

Figure 2.14. Composite slab.

but the fully developed velocity profile is determined from Exercise 19.
Also, k in Equation 2.80 is replaced by (k + kt), where kt = C pµt/Prt. Cal-
culate the Nusselt number Nu for different Reynolds numbers at Prandtl
numbers Pr = 1, 10, and 100. Take Prt = 0.85 + 0.039 (Pr + 1)/Pr . Com-
pare your result with following correlations: (a) Nu1 = 0.023 Re0.8 Pr0.4

and (b) Nu2 = 5 + 0.015 Rem Prn , where m = 0.88 − 0.24 (4 + Pr )−1 and
n = 0.333 + 0.5 exp (−0.6 Pr ).

28. Consider laminar fully developed flow and heat transfer in a circular tube under
constant wall heat flux conditions. The fluid is highly viscous. Therefore, Equa-
tion 2.80 must be augmented to account for viscous dissipation µ (∂u/∂r )2.
Calculate Nu and compare your result with Nu = 192/(44 + 192Br ), where
the Brinkman number Br = µu2 / (qw D). In this problem, Equation 2.81 must
be modified as follows:

∂T

∂z
= dTb

dz
= 2 (qw + 4µu2/R)

ρ Cp u R
.

Explain why.

29. Repeat Problem 1 from the text using ψ = 0.3 and ψ = 0.7. Choose N = 7.
Determine the largest allowable time step using constraints (2.36) and (2.37).
Compare your solution for the time required for adhesion with the exact solution
determined in Exercise 2.

30. Consider fully developed laminar flow of a non-Newtonian fluid between two
parallel plates 2b apart. For such a fluid, the shear stress is given by

τyx = µ

∣∣∣∣∂u

∂y

∣∣∣∣
n−1

∂u

∂y
,
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where n may be greater or less than 1. For n = 1, a Newtonian fluid is retrieved.
Compare the computed velocity profile with the exact solution

u

u
= 2 n + 1

n + 1

[
1 −

( y

b

)(n+1)/n
]

,

where y is measured from the symmetry axis.

31. In Exercise 30 consider fully developed heat transfer under an axially constant
wall heat flux condition. Compare your computed result for this case with

Nu = h Dh

k
= 12

(4 n + 1) (5 n + 2)

32 n2 + 17 n + 2
,

where hydraulic diameter Dh = 4b.
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3 1D Conduction–Convection

3.1 Introduction

Consider a 1D domain (0 ≤ x ≤ L) through which a fluid with a velocity u is
flowing. Then, the steady-state form of the first law of thermodynamics can be
stated as

∂qx

∂x
= S, (3.1)

where

qx = qconv
x + qcond

x = ρ C p u T − k
∂T

∂x
. (3.2)

These equations are to be solved for two boundary conditions, T = T0 at x = 0
and T = TL at x = L . It is further assumed that ρ u is a constant as are properties
C p and k.

Our interest in this chapter is to examine certain discretisational aspects as-
sociated with Equation 3.1. This is because in computational fluid dynamics
(momentum transfer) and in convective heat and mass transfer, we shall recur-
ringly encounter representation of the total flux in the manner of Equation 3.2.
Note that if u = 0, only conduction is present and the discretisations carried
out in Chapter 2 readily apply. However, difficulty is encountered when con-
vective flux is present. The objective here is to understand the difficulty and
to learn about commonly adopted measures to overcome it. In the last section
of this chapter, stability and convergence aspects of explicit and implicit proce-
dures for an unsteady equation in the presence of conduction and convection are
considered.

3.2 Exact Solution

Because our interest lies in examining the discretisational aspects associated with
convective–conductive flux, we take the special case of S = 0. For this case, an

55
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Figure 3.1. Effect of P – exact solution.

elegant closed-form solution is possible. Thus, we define

� = T − T0

TL − T0
, (3.3)

X = x

L
, (3.4)

P = ρ C p u

k/L
= Convective flux

Conduction flux
, (3.5)

where P is called the Peclet number. Therefore, Equations 3.1 and 3.2 can be
written as

∂

∂ X

[
P � − ∂�

∂ X

]
= 0 (3.6)

with � = 0 at X = 0 and � = 1 at X = 1. The exact solution is

� − �X=0

�X=1 − �X=0
= � = exp (P X ) − 1

exp (P) − 1
. (3.7)

The solution is plotted in Figure 3.1 for both positive and negative values of P.
Negative P implies that the fluid flow is from x = L to x = 0 (or u is negative).
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It will be instructive to note the tendencies exhibited by the solution.

1. Figure 3.1 shows that irrespective of the value of P, � always lies between 0
and 1. This means that � at any x is bounded between its extreme values.

2. When P = 0, the conduction solution is obtained and, as expected, the solution
is linear.

3. At X = 0.5 (i.e., at the midpoint)

� (0.5) = exp (0.5 P) − 1

exp (P) − 1
. (3.8)

It is seen from the figure that as P → +∞, � (0.5) → 0 and as P → −∞,
� (0.5) → 1. Thus, at large values of |P|, the midpoint solution tends to a value
at the upstream extreme.

This last comment is particularly important because a large |P| implies domi-
nance of convection over conduction. As we will shortly discover, the main difficulty
in obtaining numerical solution to Equation 3.6 is also associated with large |P|.

3.3 Discretisation

Equation 3.6 will now be discretised using the IOCV method. Then with reference
to Figure 2.3 of Chapter 2, we have∫ e

w

∂

∂ X

[
P � − ∂�

∂ X

]
d X = 0, (3.9)

or

P �e − ∂�

∂ X

∣∣∣∣
e

− P �w + ∂�

∂ X

∣∣∣∣
w

= 0. (3.10)

Now, as in the case of conduction, it will be assumed that � varies linearly between
adjacent nodes. Also, though not essential, we shall assume a uniform grid so
that �Xe = �Xw = �X . Thus, since the cell face is midway between adjacent
nodes,

�e = 1

2
(�E + �P), �w = 1

2
(�W + �P) (3.11)

and

∂�

∂ X

∣∣∣∣
e

= �E − �P

�X

∂�

∂ X

∣∣∣∣
w

= �P − �W

�X
. (3.12)

This practise of representing cell-face value and cell-face gradient is called the
central difference scheme (CDS). Substituting Equations 3.11 and 3.12 in Equa-
tion 3.10, we have

P

2
(�E − �W) − 1

�X
[�E − 2�P + �W ] = 0. (3.13)
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Clearly, the first term represents the net convection whereas the second term rep-
resents the net conduction. However, note that, unlike in the conduction term, �P

does not appear in the convection term.
Equation 3.13 will now be rewritten in the familiar discretised form to

read as

AP �P = AE �E + AW �W, (3.14)

where

AE =
(

1 − Pc

2

)
, (3.15)

AW =
(

1 + Pc

2

)
, (3.16)

AP = AE + AW = 2, (3.17)

and

Pc = P �X = u L

α

�x

L
= u �x

α
, (3.18)

where α = k/(ρ C p) is the thermal diffusivity and Pc is called the cell Peclet num-
ber. If we now invoke Scarborough’s criterion, it is clear that Equation 3.14 will be
convergent only when AE and AW are positive. This implies that the condition for
convergence is

|Pc | ≤ 2. (3.19)

Thus, when convection is very large compared to conduction, to satisfy condition
(3.19), one will need to employ very small values of �X or a very fine mesh.
However, this can prove to be very expensive.

The more relevant question, however, is, Why do AE and/or AW turn neg-
ative when convection is dominant? The answer to this question can be found
in Equation 3.11, where, contrary to the advice provided by the exact solution,
the cell-face values are linearly interpolated between the values of � at the adja-
cent nodes. Note that when Pc > 2 and large, the exact solution gives �e → �P

and �w → �W. Similarly, when Pc < −2, �e → �E and �w → �P. In Equa-
tion 3.11, we took no cognizance of either the direction of flow (sign of Pc) or its
magnitude.

To obtain economic convergent solutions, therefore, one must write

�e = ψ �P + (1 − ψ)�E, �w = ψ �W + (1 − ψ)�P, (3.20)
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where ψ is sensitized to the sign and the magnitude of Pc. Note that, in Equa-
tion 3.11, we took ψ = 0.5, an absolute constant.

3.4 Upwind Difference Scheme

The upwind difference scheme (UDS) was originally proposed in [8] but later in-
dependently developed by Runchal and Wolfshtein [60] among others. The scheme
simply senses the sign of Pc but not its magnitude. Thus, instead of Equation 3.11,
we write

P �e = 1

2
[P + |P|] �P + 1

2
[P − |P|] �E, (3.21)

P �w = 1

2
[P + |P|] �W + 1

2
[P − |P|] �P. (3.22)

These expressions show that when P > 0, �e = �P and �w = �W. Similarly,
when P < 0, �e = �E and �w = �P. That is, the cell-face values always pick
up the upstream values of � irrespective of the magnitude of P, hence, giving
rise to the name of this interpolation scheme as the upwind difference scheme.1

Substituting these equations in Equation 3.10, we can show that Equation 3.14 again
holds with

AE = 1 + 1

2
(|Pc | − Pc), (3.23)

AW = 1 + 1

2
(|Pc | + Pc), (3.24)

and AP = AE + AW . Equations 3.23 and 3.24 show that, irrespective of the mag-
nitude or sign of P (or Pc), AE and AW can never become negative. Also, AP
remains dominant. Therefore, obstacles to convergence are removed for all values
of Pc. This was not the case with CDS.2

1 Physically, the UDS can be understood as follows: Imagine standing at the middle of a long cor-
ridor at one end of which there is an icebox (at Tice) and at the other end a firebox (at Tfire).
Then, neglecting radiation, the temperature experienced by you will be Tm = 0.5 (Tice + Tfire)
when the air in the corridor is stagnant and heat transfer is only by conduction. Now, imag-
ine that there is air-flow over the firebox flowing through the corridor in the direction of the
icebox. You will now experience Tm that weighs more in favour of Tfire than Tice. The reverse
would be the case if the airflow was from the icebox end and towards the firebox end. The UDS
takes an extreme view of both situations and sets Tm = Tfire in the first case and Tm = Tice in the
second case.

2 Incidentally, with respect to Equation 3.20, we may generalise AE and AW coefficients for both
CDS and UDS in terms of ψ as

AE = 1 − (1 − ψ) Pc, AW = 1 + ψ Pc, (3.25)

ψ = 0.5 (CDS), ψ = 1

2

(
1 + |Pc|

Pc

)
(UDS). (3.26)
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Table 3.1: ΦP values for ΦE = 1 and ΦW = 0.

Pc Exact CDS UDS HDS Power

10 0.454e−4 −2 0.0833 0.0 0.0
8 0.335e−3 −1.5 0.100 0.0 0.40e−4
6 0.247e−2 −1.0 0.125 0.0 0.17e−2
4 0.018 −0.5 0.167 0.0 0.0187
2 0.119 0.0 0.25 0.0 0.123
1 0.269 0.25 0.333 0.25 0.271
0 0.5 0.5 0.5 0.5 0.5

−1 0.731 0.75 0.667 0.75 0.729
−2 0.881 1.0 0.75 1.0 0.981
−4 0.982 1.5 0.833 1.0 1.0
−6 0.998 2.0 0.875 1.0 1.0
−8 1.0 2.5 0.900 1.0 1.0

−10 1.0 3.0 0.917 1.0 1.0

3.5 Comparison of CDS, UDS, and Exact Solution

To compare the exact solution with CDS and UDS formulas, let L = 2�x . Then,
it can be shown that (see Equation 3.7)

� =
[

1 − exp (2 Pc x∗) − 1

exp (2 Pc) − 1

]
�W +

[
exp (2 Pc x∗) − 1

exp (2 Pc) − 1

]
�E, (3.27)

where x is measured from node W and x∗ = x/(2�x). Therefore, �P (x∗ = 0.5)
is given by

�P =
[

1 − exp (Pc) − 1

exp (2 Pc) − 1

]
�W +

[
exp (Pc) − 1

exp (2 Pc) − 1

]
�E, (Exact).

(3.28)

The corresponding CDS and UDS formulas are

�P = 1

2

(
1 − Pc

2

)
�E + 1

2

(
1 + Pc

2

)
�W (CDS), (3.29)

�P =
[

1 − 0.5 (Pc − | Pc |)
2 + | Pc |

]
�E +

[
1 + 0.5 (Pc + | Pc |)

2 + | Pc |
]

�W (UDS).

(3.30)

In general, �E and �W may have any value. However, to simplify matters,
we take the case of �E = 1 and �W = 0 and study the behaviour of �P with Pc.
Values computed from Equations 3.28–3.30 are tabulated in Table 3.1 and plotted in
Figure 3.2. Two points are worth noting:

1. The CDS goes out of bounds for |Pc| > 2. For this range, the CDS is also not
convergent as was noted earlier. It is a reasonable approximation to the exact
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Figure 3.2. Comparison of CDS and UDS with exact solution.

solution when |Pc| → 0. In spite of this, mathematically speaking, CDS is taken
as the best reference case to compare all other differencing approximations
because the CDS representation evaluates both convective and conductive con-
tributions with the same approximation. That is, the spatial variation of � is
assumed to be linear between adjacent grid nodes.

2. Although UDS is convergent at all values of Pc and nearly approximates the
exact solution for |Pc| → ∞, it is not a very good approximation to the exact
solution at moderate values of |Pc|. Also, UDS deviates from CDS for |Pc| < 2.

3.6 Numerical False Diffusion

It was already noted that CDS is mathematically consistent. We consider the CDS
formula (3.13) again and write it as

Pc

2
(�E − �W) − [�E − 2�P + �W ] = 0 (CDS). (3.31)

Now, consider UDS formula (3.30) for Pc > 0 (say):

Pc (�P − �W) − [�E − 2�P + �W ] = 0 (UDS). (3.32)
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To compare CDS and UDS formulas, we modify Equation 3.32 to read as3

Pc

2
(�E − �W) −

(
1 + | Pc |

2

)
[�E − 2�P + �W ] = 0 (UDS). (3.33)

Comparison of Equation 3.33 with the CDS formula (3.31) raises several inter-
esting issues:

1. Recall that the first term in Equation 3.31 corresponds to the convective con-
tribution whereas the second term corresponds to the conductive contribution.
Further, since P is constant, we may view Equation 3.6 as

P
∂�

∂ X
− ∂2�

∂ X2
= 0. (3.34)

If we discretise both the first and the second derivative through a Taylor series
expansion, it will be found that the CDS formula (3.31) represents both the
derivatives to second-order accuracy.

2. Equation 3.32, in contrast, suggests that UDS represents the convective contri-
bution to only first-order accuracy, whereas the conductive contribution is still
represented to second-order accuracy. Mathematically speaking, therefore, the
estimate of the convective contribution will have an error of O (�x).

3. In Equation 3.33, this error is reflected in the augmented conduction coefficient
because the convective term is now written to second-order accuracy as in the
CDS formula. Mathematically speaking, therefore, it may be argued that the
second-order-accurate UDS formula represents discretisation with augmented
or false conductivity kfalse = ρ C p |u |�x/2. In fact, it can be shown that Equa-
tion 3.33 is nothing but a CDS representation of

∂

∂x

[
ρ C p u T −

(
k + ρ C p |u |�x

2

)
∂T

∂x

]
= 0. (3.35)

Thus, if the last comment is given credence, then clearly the UDS represents
distortion of reality and is therefore a poor choice. Yet, the closeness of the UDS
result to the exact solution shown in Figure 3.2 suggests that the so-called false
conductivity is indeed needed. In fact, it is this false conductivity that reduces the
value of the effective Peclet number and thereby ensures convergence of the UDS
formula for all Peclet numbers.

Patankar [49] has therefore argued that to form a proper view of false diffusion,
it is necessary to compare the UDS with the exact solution rather than with the
second-order-accurate CDS formula. This is yet another example where the TSE
method is found wanting.

Of course, this is not to suggest that the UDS formula is the best representation
of reality. The properties embodied in the UDS formula suggest that one can derive
other variants that will sense not only the sign of Pc but also its magnitude. Further

3 Equation 3.33 can also be derived for Pc < 0.
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considerations associated with false diffusion in multidimensional flows will be
discussed in Chapter 5.

3.7 Hybrid and Power-Law Schemes

Spalding [75] derived a hybrid difference scheme (HDS) such that, in Equation 3.20,
ψ is given by

ψ = 1

Pc

[
Pc − 1 + max

(
−Pc, 1 − Pc

2
, 0

)]
(HDS). (3.36)

Similarly, Patankar [49] argued that the best representation is the exact solution
itself (see Equation 3.28). However, this will require evaluation of exponential terms
and this is not economically attractive in practical computing. Therefore, he chose
to mimic Equation 3.28 through a power-law scheme, which implies that

ψ = [Pc − 1 + max (0, −Pc)] /Pc

+ max
{
0, (1 − 0.1|Pc|)5

}
/Pc (Power law). (3.37)

With these two expressions for ψ , it is now possible to construct AE and AW
coefficients (see Equation 3.25) for the HDS and power-law schemes. The resulting
implications for �P are tabulated in Table 3.1. Notice that for |Pc| ≤ 2, the HDS
results match exactly with those of the CDS. For |Pc| > 2, the HDS assumes that
|Pc| = ∞ or, in other words, conduction flux is set to zero. This may be considered
too drastic but it nonetheless ensures positivity of coefficients for all values of Pc.
The results from the power-law scheme, of course, do mimic the exact solution
quite well.

3.8 Total Variation Diminishing Scheme

The difference schemes discussed so far are found to be adequate when the spatial
variation of � is expected to be smooth and continuous. Often, however, the �

variation is almost discontinuous (as across a shock). To capture such variation,
extremely small values of �x become necessary, resulting in uneconomic com-
putations. However, if coarse grids are employed then UDS, HDS, or power-law
schemes produce smeared shock predictions.

Total variation diminishing (TVD) schemes enable sharper shock predictions
on coarse grids. In these schemes, in addition to magnitude and sign of Pc, the
nature of the variation of � in the neighbourhood of node P is also sensed. Thus,
instead of Equations 3.21 and 3.22, we write

P �e = 1

2
(P + |P|) [ f +

e �E + (1 − f +
e )�W

]
+ 1

2
(P − |P|) [ f −

e �P + (1 − f −
e )�EE

]
, (3.38)
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P �w = 1

2
(P + |P|) [ f +

w �P + (1 − f +
w )�WW

]
+ 1

2
(P − |P|) [ f −

w �W + (1 − f −
w )�E

]
, (3.39)

where the fs are the appropriate weighting functions to be determined from

f = f (ξ ) = f

(
�U − �UU

�D − �UU

)
(3.40)

with suffix D referring to downstream, U to upstream, and UU to upstream of U.
The f +

e , for example, is thus a function of (�P − �W)/(�E − �W) and f −
e is a

function of (�E − �EE)/(�P − �EE). Here, EE refers to the node east of node E
and WW to the node west of node W.

It is interesting to note that if f equals its associated ξ then Equations 3.38 and
3.39 readily retrieve the UDS formula. Therefore, writing

f (ξ ) = ξ + fc (ξ ) (3.41)

we can show that

P �e = P �e |UDS + 1

2
(P + |P|) f +

ce (�E − �W)

− 1

2
(P − |P|) f −

ce (�EE − �P), (3.42)

P �w = P �w |UDS + 1

2
(P + |P|) f +

cw (�P − �WW)

− 1

2
(P − |P|) f −

cw (�E − �W). (3.43)

Substituting the last two equations in Equation 3.10, we can show that

AP �P = AE �E + AW �W + STVD, (3.44)

where AE , AW , and AP are the same as those for the UDS and the additional
source term STVD contains the fc terms in Equations 3.42 and 3.43, which the
reader can easily derive. The fc (ξ ) functions for some variants of TVD schemes
are tabulated in Table 3.2.

To appreciate the implications of the TVD scheme, consider the case in which
Pc > 0. Then, from Equation 3.42, P �e = P �P + P f +

ce (�E − �W) and ξ =
(�P − �W)/(�E − �W). Therefore, using the Lin–Lin scheme, for example, we get

�P, ξ � (0, 1),

2�P − �W, ξ ∈ (0, 0.3),
�e =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(3.45)3

4
�P + 3

8
�E − 1

8
�W, ξ ∈ (0.3, 5/6),

�E, ξ ∈ (5/6, 1.0).
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Table 3.2: Function fc (ξ).

Scheme Range of ξ f c

Second-order −∞ < ξ < ∞ ξ /2
UPWIND

QUICK [42] −∞ < ξ < ∞ 3/8 − ξ /4
HLPA [90] ξ � [ 0, 1 ] 0

ξ ∈ [ 0, 1 ] ξ (1 − ξ )

Lin–Lin [43] ξ � [ 0, 1 ] 0
ξ ∈ [ 0, 0.3 ] ξ

ξ ∈ [ 0.3, 5/6 ] 3/8 − ξ / 4
ξ ∈ [ 5/6, 1 ] 1 − ξ

Thus, for positive Pc, whereas UDS will always return �e = �P, the TVD scheme
returns different values of �e depending on the value of ξ (or shape of the local
� profile). In fact, as the last expression shows, even a downwind value may be
returned. The TVD schemes thus typically switch among upwind, central-like, and
downwind (DDS) schemes.

3.9 Stability of the Unsteady Equation

We now consider the unsteady conduction–convection equation

ρ C p
∂T

∂t
+ ρ C p u

∂T

∂x
= k

∂2T

∂x2
, (3.46)

where all properties and u (positive) are constant. Now, let X = x/λ, τ = α t/λ2,
and P = u λ/α, where λ is an arbitrary length scale to be further defined shortly.
Then, Equation 3.46 will read as

∂T

∂τ
+ P

∂T

∂ X
= ∂2T

∂ X2
. (3.47)

3.9.1 Exact Solution

If at t = 0, with T = T0 sin (X ), the exact solution to Equation 3.47 is

T = T0 exp (−τ ) sin (X − P τ ). (3.48)

The solution represents a wave that moves P �τ to the right in each time interval
�τ . The amplitude of the wave is T0 exp (−τ ). Thus, over a time interval �τ , the
amplitude ratio (or the amplitude decay factor) AR is given by

AR = T0 exp [−(τ + �τ )]

T0 exp (−τ )
= exp (−�τ ). (3.49)
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To understand the relevance of AR, let TP be the temperature at XP after the
first time step. Then, from Equation 3.48, it follows that

TP

T0 sin (XP + ε)
= exp (−�τ ) = AR, (3.50)

where the wave propagation speed ε is given by

εexact = −P �τ = −u �t

λ
. (3.51)

Finally, we note that the arbitrary length scale λ is nothing but the wave-
length and the propagation speed depends on λ. This dependence on λ is called
dispersion.

3.9.2 Explicit Finite-Difference Form

Since P > 0, using UDS, the explicit discretised form of Equation 3.47 will read as

TP = AE T o
E + AW T o

W + {1 − (AE + AW ) } T o
P , (3.52)

where

AE = �τ

�X2
, AW = �τ

�X2
+ P

�τ

�X
. (3.53)

Now, consider the first time step. Then, T o
P = T0 sin (XP), T o

E = T0 sin (XP +
�X ), and T o

W = T0 sin (XP − �X ). Therefore, after some manipulation, it can be
shown that

TP

T0 sin (XP)
= [1 − (AE + AW ) (1 − cos�X ) ] ×

[
1 + tan εED

tan (XP)

]
, (3.54)

where

tan εED = (AE − AW ) sin (�X )

1 − (AE + AW ) (1 − cos�X )
. (3.55)

In these equations, the suffix ED denotes explicit differencing. Now, consider the
identity

sin (XP + εED) = sin (XP) cos (εED)

[
1 + tan εED

tan (XP)

]
. (3.56)

Substituting Equation 3.56 in Equation 3.54, it follows that

ARED = TP

T0 sin (XP + εED)
= 1 − (AE + AW ) (1 − cos�X )

cos εED
. (3.57)

Now, let us consider tendencies of ARED and tan εED for fine (�X → 0) and
coarse (�X → π ) grids.4 These are shown in Table 3.3.

4 Note that 1 − cos �X = 2 sin2 (�X/2).
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Table 3.3: Comparison of exact and explicit-differencing solutions.

Exact Fine grid Coarse grid

Wave speed −P �τ εED → −P �τ εED → 0

AR exp (−�τ ) 1−0.5 (AE+AW ) �X2

cos εED

1−2 (AE+AW )
cos εED

The table shows that, for fine grids, εED behaves in a correct manner but, for
coarse grids, εED does not demonstrate the expected dependence on λ. Therefore, for
reasonable accuracy, �X � 1, which implies that one must live with dispersion.
Now, instability occurs when absolute amplitude ratio exceeds 1. Thus, for stability,

|AR| =
∣∣∣∣ TP

T0 sin (XP + ε)

∣∣∣∣ < 1. (3.58)

From Table 3.3, therefore, we must have∣∣∣∣1 − 4
�τ

�X2
− 2 P

�τ

�X

∣∣∣∣ < 1 (coarse grid),

∣∣∣∣1 − �τ

(
1 + P

�X

2

)∣∣∣∣ < cos εED (fine grid). (3.59)

These equations show that, to meet the stability requirement, �τ must be limited
to a small value. In pure conduction (P = 0), we had already stated these require-
ments and showed consequences of their violation through a worked example. For
the entire range of Ps, however, it is best to observe the following conditions for
stability [76]:

�τ

�X2
<

1

2
and P

�τ

�X
< 1. (3.60)

The first condition is operative when P → 0; the second when P is large.

3.9.3 Implicit Finite-Difference Form

The implicitly discretised form of Equation 3.47 will read as

(1 + AE + AW ) TP = AE TE + AW TW + T o
P . (3.61)

Therefore, substituting for TP, TE, TW, and T o
P for the first time step, we can show

that

(1 + AE + AW ) sin (XP + ε) = AE sin (XP + �X + ε)

+ AW sin (XP − �X + ε)

+ sin (XP) exp (�τ ), (3.62)
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where ε is given by Equation 3.51. To derive an expression for tan εID (where the
subscript ID stands for implicit differencing), therefore, let XP = 0. Then, from
Equation 3.62, it can be shown that

tan εID = (AE − AW ) sin (�X )

1 + (AE + AW ) (1 − cos�X )
. (3.63)

Equation 3.63 again shows that, as �X → 0, εID → εexact. Also, notice that the
denominator of this equation with a plus sign before (AE + AW ) is not the same
as the denominator in Equation 3.55. The plus sign indicates that the propagation
wave will be more severely damped than in the explicit procedure and this damping
will be greater for large �X (small wavelength) than for small �X . Now, to derive
an expression for ARID, let XP = π/2. Then, using Equations 3.62 and 3.63, we
can show that

ARID = TP

T0 sin (xP + εID)
= cos εID

1 + (AE + AW ) (1 − cos�X )
. (3.64)

Again, this expression is different from Equation 3.57. Equation 3.64 shows
that when �X and εID are small, ARID = [

1 + (AE + AW )�X2/2
]−1 =

(1 + �τ )−1 ∼ 1 + �τ → exp (−�τ ) as required. When �X = π (i.e., for a coarse
grid), however, ARID = cos εID/[1 + 2 (AE + AW )].

These remarkable results show that ARID can never be greater than 1 because
neither AE nor AW can be negative. Thus, the implicit discretisation is uncondi-
tionally stable and there is no restriction on the time step. Again, in pure conduction
(P = 0), we had demonstrated this result in Chapter 2 through a worked example.
The implicit discretisation is thus safe. The only disadvantage is that the discretised
equation must be solved iteratively rather than by a marching procedure, which is
possible in an explicit scheme.

The conclusions arrived at in this section apply equally to variables other than
T, to nonuniform grids, to �-dependent coefficients, and to multiple dimensions.

EXERCISES

1. Derive Equation 3.7.

2. Show that the CDS formula (3.31) is second-order accurate for both the first
and the second derivatives.

3. Show that the UDS formula (3.32) represents convection to only first-order
accuracy.

4. Show that the UDS formula is a CDS representation of Equation 3.35.

5. Show correctness of the HDS (3.36) and power-law (3.37) expressions by
recalculating the �P values shown in Table 3.1.
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6. Consider the steady 1D conduction–convection problem discussed in this chap-
ter. Assume a nonuniform grid (i.e., �xe �= �xw). Hence, derive expressions for
AE , AW , and AP using the power-law scheme. If �E = 1 and �W = 0, calcu-
late �P for Pce = u �xe/α = −10, −5, −1, 0, 1, 5, and 10 when �xe/�xw =
1.2. [Hint: Start with Equation 3.20 with ψe = F(Pce ) and ψw = F(Pcw).]

7. Show that if f in Equation 3.40 equals its associated ξ , Equations 3.38 and 3.39
will yield the UDS formula. Hence, derive Equations 3.42 and 3.43 and the
expression for the STVD term in Equation 3.44.

8. Use �E = 1 and �W = 0 and determine the variation of �P with Pc for the
TVD scheme when �EE = 5 and �WW = −0.1. Assume −200 < Pc < 200
and use the Lin–Lin and HLPA schemes. Assume a uniform grid. Compare
your results with those given in Table 3.1 and comment on the result. (Hint:
Iterations are required.)

9. Show that for a general differencing scheme, the false conductivity is given
by kfalse = ρ Cp u �x (ψ − 0.5), where ψ is defined by Equation 3.20. Hence,
compare kfalse for UDS and HDS and comment on the result. Assume a uniform
grid.

10. Runchal [61] developed a controlled numerical diffusion with internal feed-
back (CONDIF) scheme capable of sensing the shape of the local � profile.
According to this scheme, AE and AW in Equation 3.14 are given by

AE = 1 +
(

1 + 1

R

) [ |Pc| − Pc

4

]
, AW = 1 + (1 + R)

[ |Pc| + Pc

4

]
,

where

R = ∂�/∂ X |e
∂�/∂ X |w = (�E − �P)�Xw

(�P − �W)�Xe
.

Further, the values of R are constrained as follows: If R < 1/Rmax then R =
1/Rmax; if R > Rmax then R = Rmax. Typical values assigned to Rmax vary
between 4 and 10. Assuming a uniform grid, show that

(a) If R = 1, the CONDIF scheme is the same as the UDS.

(b) CONDIF represents both convection and diffusion terms to second-order
accuracy irrespective of the sign and the magnitude of the Peclet number.

(c) Taking �W = 0 and �E = 1, compare values of �P for | Pc | < 20 with the
exact solution given in Table 3.1. Carry out this comparison for Rmax = 4
and 10.

11. Derive Equations 3.55, 3.57, 3.63, and 3.64.

12. Starting with Equation 3.59, show the correctness of Equations 3.60.

13. Verify that T = T0 exp (−τ ) sin (X ) is an exact solution to the unsteady heat
conduction equation ∂T /∂τ = ∂2T /∂ X2.
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14. It is desired to investigate stability of the equation in Exercise 13 for differ-
ent values of weighting factor ψ (see Equation 2.6) so that the equation will
read as

∂T

∂τ
= ψ

∂2T

∂ X2
+ (1 − ψ)

∂2T o

∂ X2
.

(a) Obtain a discretised analogue of this equation and substitute the exact
solution for temperatures at P, E, and W. Set XP = π/2 and show that

exp (−�τ ) = 1 − 4 A (1 − ψ) sin2 (�X/2)

1 + 4 A ψ sin2 (�X/2)
,

where A = AE = AW = �τ/(�X )2.

(b) Hence, show that AR for any XP is given by

AR = TP

T o
P

= exp (−�τ ).

(c) For stability, |AR| < 1. Hence, show that for ψ < 0.5, the solution is sta-
ble when A < 0.5/(1 − 2ψ) whereas, for 0.5 ≤ ψ ≤ 1, the solution is
unconditionally stable.
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4 2D Boundary Layers

4.1 Governing Equations

It will be fair to say that the early developments in CFD and heat and mass transfer
began with calculation of boundary layers. The term boundary layer is applied to
long and thin flows: long in the streamwise direction and thin in the transverse
direction. The term applies equally to flows attached to a solid boundary (wall
boundary layers) as well as to jets or wakes ( free-shear layers).

Calculation of boundary layer phenomena received a considerable boost follow-
ing the development of a robust numerical procedure by Patankar and Spalding [50].
This made phenomena that were either impossible or too cumbersome to calculate
by means of earlier methods (similarity, nonsimilarity, and integral) amenable to
fast and economic computation. The procedure, for example, permitted use of vari-
able properties, allowed for completely arbitrary variations of boundary conditions
in the streamwise direction, and led to several new explorations of diffusion and
source laws. Thus, calculation of free or forced flames or wall fires could be carried
out by considering the detailed chemistry of chemical reactions. Similarly, cal-
culation of turbulent flows (and development of turbulence models, in particular)
could be brought to a substantial level of maturity through newer explorations of
diffusion and source laws governing transport of variables that characterise turbu-
lence. Computer programs based on the Patankar–Spalding procedure are available
in [50, 77, 10]. There are also other methods, for example, the Keller–Box method
described in [35].

The emphasis in this chapter is on describing the Patankar–Spalding procedure
using simple notation. The procedure generalises all two-dimensional boundary
layer phenomena by introducing the coordinate system shown in Figure 4.1. This
system permits consideration of

1. axisymmetric as well as plane flows,
2. wall boundary layers as well as free-shear layers, and
3. internal (or ducted) as well as external boundary layers.

71
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Axisymmetric Body

E Boundary

I Boundary

Axis of Symmetry

rI
x

r

α

Boundary Layer

y

Figure 4.1. The generalised coordinate system.

Following the generalised manner of presentation introduced in Chapter 1, the
equations governing steady two-dimensional boundary layer phenomena can be
written as

∂(ρ u r �)

∂x
+ ∂(ρ v r �)

∂y
= ∂

∂y

[
r 
�

∂�

∂y

]
+ r S�, (4.1)

where � stands for u (streamwise velocity), w (azimuthal velocity), T (tempera-
ture), h (specific enthalpy), and ωk (mass fraction). The meanings of 
� and S� are
given in Table 4.1. The source terms of the u and w equations assume axisymmetry
and ∂p/∂r → 0 so that ∂p/∂x = dp/dx . In writing the energy equation in terms
of T , we assume the specific heat to be constant. Note that in the presence of mass
transfer, ρ and 
 represent mixture properties and, in turbulent flows, the suffix eff
(for effective) must be attached to 
. Later, we shall find that � may also represent
further scalar variables such as turbulent kinetic energy k and its dissipation rate ε.
Independent variables x and y are shown in Figure 4.1 and are applicable to both
axisymmetric and plane flows. In the latter, r = 1. It will be shown later that r , y,
and angle α(x) are connected by an algebraic relation.

Table 4.1: Generalized representation of
boundary layer equation.

Φ ΓΦ SΦ

1 0 0
u µ −dp/dx + Bx

w µ 0
ωk ρ Dk Rk

T k/Cp Q′′′/Cp

h k/Cp Q′′′
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x

y

ymax

Too Fine Too Coarse

Wasted Nodes

(a)

x

ω

(b)

I Boundary

E Boundary

Figure 4.2. Notion of adaptive grid.

Equation 4.1 is to be solved with appropriate boundary conditions at I (inner)
and E (external) boundaries and an initial condition at x = x0 (say) for each �.
Although the I boundary with radius rI (x) is shown as a wall boundary, it may
well be an axis of symmetry with rI (x) = 0. Similarly, although the E boundary is
shown as a free boundary, it may be a wall boundary. Thus, the specification of the
three types of flows mentioned here can be sensed through appropriate designation
of I and E boundaries as free, wall, or symmetry boundaries.

Finally, we note that Equation 4.1 is parabolic. This implies that the values of
� at a given x are influenced only by � – values upstream of x ; values downstream
of x have no influence. Our task now is to discretise Equation 4.1.

4.2 Adaptive Grid

It is well known from boundary layer theory that, in general, boundary layer thick-
nesses of velocity and other scalar variables can grow or shrink in an arbitrary
manner in the streamwise direction. Also, for a given domain length L (say) in
the x direction, the maximum values of thicknesses for different �s are a priori not
known. This makes the choice of ymax [see Figure 4.2(a)] difficult if the (x , y) coor-
dinate system is used. Further, in this system, for a given number of nodes in the
y direction, the boundary layer region of interest may be occupied by too few grid
nodes, resulting in wasted nodes. Similarly, in some other regions, there may be
more nodes than necessary for accuracy. What one would ideally like is a grid that
expands and contracts with the changes in boundary layer thickness preserving the
same number of grid nodes in the transverse direction at each axial location. Such
a grid (called an adaptive grid) is shown in Figure 4.2(b) with coordinates x and
ω, where ω is defined as

ω = ψ − ψI

ψE − ψI
, 0 ≤ ω ≤ 1, (4.2)
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and where ψ is the stream function defined by

∂ψ

∂x
= −ρ v r, (4.3)

∂ψ

∂y
= ρ u r. (4.4)

Thus, at any x

ψ =
∫

ρ u r dy + C, (4.5)

where C is a constant. The y coordinate is thus related to ψ and the latter, in turn, is
related to ω via Equation 4.2. Suffixes I and E, of course, refer to inner and external
boundaries.

4.3 Transformation to (x, ω) Coordinates

Our task now is to transform Equation 4.1 from the (x , y) coordinate system to
the (x , ω) coordinate syatem. To do this, we shall follow the sequence (x, y) →
(x, ψ) → (x, ω). Making use of the mass conservation equation (� = 1), we can
write Equation 4.1 in nonconservative form as

ρ

[
u

∂�

∂x
+ v

∂�

∂y

]
= 1

r

∂

∂y

[
r 


∂�

∂y

]
+ S. (4.6)

Now, the transformation (x , y) → (x, ψ) implies that

∂

∂x

∣∣∣∣∣y = ∂ψ

∂x

∂

∂ψ

∣∣∣∣
x

+ ∂

∂x

∣∣∣∣
ψ

, (4.7)

∂

∂y

∣∣∣∣
x

= ∂ψ

∂y

∂

∂ψ

∣∣∣∣
y

= ρ r u
∂

∂ψ

∣∣∣∣
y

. (4.8)

Substituting these equations in Equation 4.6, we can show that

∂�

∂x

∣∣∣∣
ψ

= ∂

∂ψ

[
ρ r2 u 


∂�

∂ψ

]
+ S

ρ u
. (4.9)

Further, the (x, ψ) → (x, ω) transformation implies that

∂�

∂x

∣∣∣∣
ψ

= ∂�

∂x

∣∣∣∣
ω

+ ∂ω

∂x

∣∣∣∣
ψ

∂�

∂ω

∣∣∣∣
x

, (4.10)

but, from Equation 4.2,

∂ω

∂x

∣∣∣∣
ψ

= ψ−1
EI

[
∂ψ

∂x
− ∂ψI

∂x
− ω

∂ψE I

∂x

]
ψ

= −ψ−1
EI

[
∂ψI

∂x
+ ω

∂ψE I

∂x

]
, (4.11)



P1: IWV
0521853265c04 CB908/Date 0 521 85326 5 May 25, 2005 11:7

4.3 TRANSFORMATION TO (x, ω) COORDINATES 75

where, for convenience,

ψEI ≡ ψE − ψI. (4.12)

Thus, substituting Equation 4.11 in Equation 4.10, we can write Equation 4.9 as

∂�

∂x

∣∣∣∣
ω

+ (a + b ω)
∂�

∂ω

∣∣∣∣
x

= ∂

∂ψ

[
ρ r2 u 


∂�

∂ψ

]
+ S

ρ u
, (4.13)

where

a ≡ −ψ−1
EI

∂ψI

∂x
, (4.14)

b ≡ −ψ−1
EI

∂ψE I

∂x
. (4.15)

Now, invoking Equation 4.2 again, we obtain

∂

∂ψ
= ψ−1

EI

∂

∂ω
. (4.16)

Therefore, Equation 4.13 can be written as

∂�

∂x

∣∣∣∣
ω

+ (a + b ω)
∂�

∂ω

∣∣∣∣
x

= ∂

∂ω

[
c

∂�

∂ω

]
x

+ S

ρ u
, (4.17)

where

c ≡ ψ−2
EI ρ r2 u 
. (4.18)

Equation 4.17 represents Equation 4.1 in the (x , ω) coordinate system in
nonconservative form. To develop the conservative counterpart, the equation is
written as

∂�

∂x

∣∣∣∣
ω

+ ∂

∂ω

[
(a + b ω)� − c

∂�

∂ω

]
− �

∂

∂ω
(a + b ω) = S

ρ u
, (4.19)

where, since a and b are not functions of ω,

�
∂

∂ω
(a + b ω) = b �. (4.20)

Now, consider the identity

ψ−1
EI

∂

∂x
(ψEI �) = ∂�

∂x
+ �ψ−1

EI

∂ψEI

∂x
= ∂�

∂x
− b �. (4.21)

Using the last two equations, we can write Equation 4.19 as

∂

∂x
[ψEI �] + ∂

∂ω

[
ψEI

{
(a + b ω)� − c

∂�

∂ω

}]
= ψEI S

ρ u
. (4.22)

This is the required boundary layer equation in the (x , ω) coordinate system
written in conservative form. It will be useful at this stage to interpret the terms
in Equation 4.22. Thus, from Equations 4.12 and 4.5, it is easy to show that ψEI
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represents the total streamwise mass flow rate through the boundary layer at any x .
Similarly, making use of the definitions of a, b, and c and using Equation 4.16, we
can show that

ψEI

{
(a + b ω)� − c

∂�

∂ω

}
= r ṁ � − r 


∂�

∂y
, (4.23)

where

∂

∂ω
= ψEI

ρ r u

∂

∂y
(4.24)

and

r ṁ = r ρ v = (1 − ω)rI ṁI + ω rE ṁE

with ṁE = (ρ v)E, ṁI = (ρ v)I. (4.25)

Thus the total transverse mass flux ṁ at any y is a weighted sum of mass fluxes at
the inner (ṁI) and external (ṁE) boundaries in the positive y direction. Equation 4.23
therefore represents the total convective–diffusive flux in the y direction. Then by
substituting Equation 4.23, Equation 4.22 can be written as

∂

∂x
[ψEI �] + ∂

∂ω

[
r ṁ � − r 


∂�

∂y

]
= ψEI S

ρ u
. (4.26)

4.4 Discretisation

Figure 4.3 shows the (x, ω) grid at streamwise location x . Suffix u refers to upstream
and d refers to downstream. Note that nodes N, P, and S are not equidistant because
�ω, in general, will not be uniform. This will become apparent in a later section.
To derive the discretised version of Equation 4.26, each term in the equation will
be integrated over the control volume. Thus, assuming source term S to be constant
over the control volume, we have∫ xd

xu

∫ n

s

ψEI S

ρ u
dx dω =

∫ xd

xu

∫ n

s

S

ρ u
dx dψ =

∫ xd

xu

∫ n

s
S r dx dy

= S rP �x �y = S �V, (4.27)

where

�V = rP �x �y. (4.28)

Similarly, the streamwise convection term integrates to∫ xd

xu

∫ n

s

∂

∂x
[ψEI �] dx dω = [

(ψEI �)d − (ψEI �)u
]

P
�ω. (4.29)
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Figure 4.3. The (x, ω) grid.

Finally, the convection–diffusion term in the transverse direction integrates to

∫ xd

xu

∫ n

s

∂

∂ω

[
r ṁ � − r 


∂�

∂y

]
dx dω =

{
r ṁ � − r 


∂�

∂y

}
n

�x

−
{

r ṁ � − r 

∂�

∂y

}
s

�x . (4.30)

Equation 4.30 implies that the net flux at the cell faces is uniform between xu

and xd. Now, assuming linear variation of � between adjacent nodes gives

∂�

∂y

∣∣∣∣
n

=
(
�d

N − �d
P

)
�yn

,
∂�

∂y

∣∣∣∣
s

=
(
�d

P − �d
S

)
�ys

, (4.31)

where �yn = yN − yP and �ys = yP − yS. Note that the �s are evaluated at xd

rather than midway between xu and xd. However, assuming that �x is small, this
liberty is permissible.

The next task is to evaluate convective fluxes at the cell faces. To do this, we
may use any of the schemes introduced in the previous chapter but, following
Patankar [52], we use the exponential scheme that follows from the exact solution
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to the equation

∂

∂y

[
r ṁ � − r 


∂�

∂y

]
= 0. (4.32)

Then, it follows that

�n = �d
P + (

�d
N − �d

P

) [exp (Pcn/2) − 1

exp (Pcn) − 1

]
, (4.33)

�s = �d
S + (

�d
P − �d

S

) [exp (Pcs/2) − 1

exp (Pcs ) − 1

]
, (4.34)

where, the cell Peclet numbers are evaluated using the harmonic mean (see Equa-
tion 2.58):

Pcn = ṁn �yn


n
= ṁn

[
yn − yP


P
+ yN − yn


N

]
, (4.35)

Pcs = ṁs �ys


s
= ṁn

[
ys − yS


S
+ yP − ys


P

]
. (4.36)

Thus, substituting Equations 4.33–4.36 in Equation 4.30 and combining the
latter with Equations 4.27 and 4.29, we can show that the discretised version of
Equation 4.26 takes the following form:

AP �d
P = AN �d

N + AS �d
S + AU �u

P + S �V, (4.37)

where

AN = rn ṁn �x

exp Pcn − 1
, (4.38)

AS = rs ṁs �x exp Pcs

exp Pcs − 1
, (4.39)

AU = ψu
EI �ω, AP = AU + AN + AS. (4.40)

In deriving the AP coefficient, use is made of the mass conservation equation. Thus,∫ n

s

∂

∂x
(ρ r u) dy = −

∫ n

s

∂

∂y
(ρ r v) dy

= − (rn ṁn − rs ṁs) (4.41)

= ∂

∂x

∫ n

s

∂ψ

∂y
dy

= �ω

�x

(
ψd

EI − ψu
EI

)
. (4.42)

Finally, the node-indexed version of Equation 4.37 can be written as

APj � j = AN j � j+1 + ASj � j−1 + AU j �
u
j + Sj �Vj (4.43)
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for j = 2, 3, . . . , J N − 1. Note that superscript d is now dropped for
convenience.

4.5 Determination of ω, y, and r

Equation 4.43 represents a set of algebraic equations at a streamwise location xd.
These equations can be solved by TDMA when values of �u

j at xu are known along
with the two boundary conditions at xd (i.e., at j = 1 and j = J N ). Thus, starting
with x = x0 (say), one can execute a marching procedure taking step �x . This
situation is very much like the unsteady conduction problem in which the marching
procedure is executed with time step �t .

Thus, at x = x0, the u j ∼ y j relationship is assumed to have been prescribed
either from experimental data or from an analytical solution. One can use this
prescription to set ω j once and for all. Let

ω j = ωP, ωc, j = ωs, ψ j = ψP, ψc, j = ψs,

y j = yP, yc, j = ys, r j = rP, rc, j = rs, (4.44)

where, at x = x0, y j ( j = 1, 2, . . . , J N ) are known. Thus, one can set yc,1 = yc,2 =
y1 where y1 refers to the I boundary and yJ N to the E boundary. Now, from the
geometry of Figure 4.1, it follows that r j and rc, j can be evaluated from the formula

r = rI + y cos (α), (4.45)

where α is function of x . This completes the grid specification at x = x0.
For evaluation of ω j , we first calulate ψ j . Thus, setting ψ1 = ψc,1 = ψI (say),

where ψI is arbitrarily chosen, one can use Equation 4.5 to set all other ψ j . The
relevant discretised equations are

ψc, j = ψc, j−1 + (ρ r u) j−1 (yc, j − yc, j−1), j = 2, 3, . . . , J N , (4.46)

ψ j = ψ j−1 + 0.5
{

(ρ r u) j + (ρ r u) j−1
}

(y j − y j−1), j = 2, 3, . . . , J N .

(4.47)

It is now a simple matter to evaluate ω j and ωc, j using definition (4.2). Thus,
ω j at y j represents the ratio of streamwise mass flow rate from y1 = yI to y j to the
total mass flow rate from yI to yE at x = x0. It is now assumed that this ratio remains
intact at all values of x and thus the ω j distribution does not change throughout the
domain in the x direction.

Note, however, that the physical distance y (and therefore r) must go on changing
at different values of x as the boundary layer grows or shrinks. We thus seek the
y j ∼ ω j relationship applicable to every x .
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Plane Flow
From Equations 4.4 and 4.2, it can be shown that

y = ψEI

∫ ω

0

d ω

ρ u
= I (say). (4.48)

Thus, knowing the initially set values of ω j and ωc, j , y j and yc, j can be estimated.
Note that ψEI and ρ u will change with x . Therefore, y will also change with x .

Axisymmetric Flow
In this case, from Equation 4.45, it follows that

ψEI

ρ u
d ω = (rI + y cos α) dy (4.49)

and, therefore, from Equation 4.48

I = rI y + cos α
y2

2
. (4.50)

The solution to this quadratic equation suitable for computer implementation is

y = 2 I

rI + (
r2

I + 2 I cos α
)0.5 , (4.51)

where I is given by Equation 4.48. Now, knowing y j and yc, j in this manner, r j

and rc, j can be evaluated using Equation 4.45.

4.6 Boundary Conditions

At the E and I boundaries, three types of boundary conditions are possible: sym-
metry, wall, or free stream. We discuss them in turn.

4.6.1 Symmetry

There can be no mass flux across the symmetry plane. Also, ∂�/∂n|b = 0, where
suffix b denotes the E or I boundary node. This implies that

�b = �nb and ṁb = 0, (4.52)

where suffix nb stands for near-boundary node. A further consequence of the
ṁb = 0 condition is that ∂ψb/∂x = 0 or ψb = constant. The boundary condition
can be effected by setting AS2 = 0 at the I boundary or ANJ N−1 = 0 at the E
boundary.
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4.6.2 Wall

The term wall signifies a solid boundary. However, it must be remembered that
when a gas flows over a liquid surface, the gas–liquid interface too will act like a
wall. For different �s, the wall boundary conditions are also different. We consider
them in turn.

Velocity Variables � = u or w
For these variables,

ub = uwall, wb = wwall. (4.53)

Thus, if the surface is rotating about the axis of symmetry (see Figure 4.1) with
angular velocity �, then the surface fluid velocity will be wwall = rI �. Similarly,
the streamwise velocity will always be zero unless the surface itself is moving with
velocity uwall. Equation 4.53, therefore, signifies the no-slip condition.

In some circumstances, a fluid may be injected (by blowing) into the boundary
layer or the boundary layer fluid may be withdrawn (by suction) through the wall.
Alternatively, in case of evaporation or surface burning, mass will be transferred into
the boundary layer. In all such cases ṁb is known or knowable and the consequence is

ψb (x) = ψb (x − �x) − rb ṁb �x . (4.54)

Thermal Variables � = T or h
For these variables, typically two types of conditions are specified. In the first, the
value of the variable itself is specified. Thus,

Tb = Twall (x), hb = hwall (x). (4.55)

In the second, the heat flux qb is specified. Then, at the I boundary, for example,

qb = − k
∂T

∂y

∣∣∣∣
y=0

= − k

C p

∂h

∂y

∣∣∣∣
y=0

= −

∂h

∂y

∣∣∣∣
y=0

. (4.56)

The flux boundary condition is effected by adding qb �x to the source term of
Equation 4.43 for j = 2 and, further, by setting AS2 = 0, the values of Tb or hb can
be extracted in the usual manner. A similar procedure is adopted if qb is specified
at the E boundary.

In a chemically reacting boundary layer, the mass transfer flux at the wall ṁ ′′
b is

given by

ṁ ′′
b = (hb − hT)−1

∑
k

[
ρm Dk

∂ωk

∂y
hk + km

∂T

∂y

]
y=0

, (4.57)

where hT is the enthalpy of the mixture deep inside the I boundary. If the Lewis
number is taken to be unity (i.e., Pr = Sc) or a simple chemical reaction (SCR)
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is assumed with equal specific heats then this relationship can be simplified
to [33]

ṁ ′′
b = (hb − hT)−1 


∂h

∂y

∣∣∣∣
y=0

. (4.58)

Knowing ṁ ′′
b, boundary condition hb can be extracted.

Mass Transfer Variables Φ = ωk

The most common boundary condition [33] for these variables at the I boundary,
for example, is

ṁ ′′
b = rb ṁb = (ωk,b − ωk,T)−1 
k

∂ωk

∂y

∣∣∣∣
y=0

, (4.59)

where ωk,T refers to the mass fraction deep inside the I boundary. The suffix T, thus,
represents the transferred substance state and ωk,T must be known. Equation 4.59 is
again a flux condition, therefore, it can be treated in the manner of the qb condition
just described. Again, from the converged solution, ωk,b can be extracted.

When heterogeneous chemical reactions occur at the wall, ṁb is typically given
by the Arrhenius relationship, which yields

ṁb = f (ωk,b, Tb). (4.60)

The exact implementation of the boundary condition for a heterogeneous reaction
requires modification of Equation 4.59. This is explained later through an example
of carbon burning (see Equation 4.129).

In problems involving evaporation or condensation, the value of ωk,b itself can
be specified from the equilibrium relation (or saturation condition).

ωk,b = f (Tb). (4.61)

Thus, in mass transfer problems with or without surface chemical reaction, ṁb can
be known and this knowledge can be used to evaluate ψb from Equation 4.54. It is
important to remember, however, that the most general problem of mass transfer is
usually quite complex and, therefore, several manipulations are typically introduced
to simplify the boundary condition treatment [33, 38].

4.6.3 Free Stream

The free-stream boundary condition has relevance only when external1 boundary
layers are considered. The free stream is really a fictitious boundary and is identified

1 In internal flows, only wall or symmetry conditions are relevant because in these flows the flow
width is a priori known. Thus, for developing flow between two parallel plates a distance b apart,
for example, the flow width b remains constant with x . However, in 2D plane diffusers or nozzles,
b may vary with x but still be known a priori.
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with the notion that the variation in � in the transverse direction asymptotically
approaches a value �∞ (say) there. Thus, the fictitious notion of a boundary layer
thickness is associated with

� − �I

�∞ − �I
= A, (4.62)

where suffix I refers to the inner boundary (wall or symmetry) and A is typically
taken to be 0.99 by convention. Note, however, that this boundary layer thickness
will be different for different meanings of� and the magnitude of thickness typically
depends on the Prandtl number2 Pr� defined as

Pr� ≡ ν


�

. (4.63)

The Prandtl number is a property of the fluid. In fact, in Table 4.1, we may replace
k/Cp by µ/PrT and ρ Dk by µ/Prωk .

There is one further notion associated with the free stream. If we assume the
E boundary to be the free boundary (see Figure 4.1), the flow region above the
boundary can be taken to be a region in which there is no transverse convection or
diffusion and

�b = �∞ (x), (4.64)

where �∞ (x) is specified. However, the physical location where this boundary
condition is to be applied is not a priori known because of the asymptotic nature
of variation of � in the vicinity of this boundary. To circumvent this problem,
Patankar and Spalding [50] relied on estimating the entrainment rate (−ṁE) into
the boundary layer that occurs from the fluid above the E-boundary.

Thus, as previously mentioned, since there is no net flux of � in the transverse
direction, from Equation 4.17, it follows that

(a + b ω)E
∂�

∂ω

∣∣∣∣
E

= ∂

∂ω

[
c

∂�

∂ω

]
E

. (4.65)

However, at the E boundary, ω = 1. Therefore,

(a + b ω)E = a + b = −ψ−1
EI

∂ψE

∂x
. (4.66)

Thus, Equation 4.65 can be written as

∂ψE

∂x
= −ψEI

(
∂�

∂ω

)−1
∂

∂ω

[
c

∂�

∂ω

]
= −ψEI

∂

∂�

[
c

∂�

∂ω

]

= − ∂

∂�

[
r 
�

∂�

∂y

]
= −rE ṁE. (4.67)

2 The term Prandtl number applies to variables T and h. When � = ωk , the appropriate dimensionless
number is called the Schmidt number (Sc). For velocity variables, of course, Pr� = 1. We thus use
Pr� generically to cover all �s.
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 JN

 JN + 1

 JN − 1

E Boundary

y

y∆

∆

Figure 4.4. The grid construction near the E
boundary.

Now, to estimate the required ṁE, we adopt the following special procedure.
Since the E boundary is located at j = J N (see Figure 4.4),

∂

∂�

[
r 
�

∂�

∂y

]
J N

=
(

∂�

∂y

)−1 [

�

∂2�

∂y2
+ ∂
�

∂y

∂�

∂y

]
J N

rJ N . (4.68)

However, near the E boundary, ∂
�/∂y|J N can be set to zero. Now, let �y be the
distance between the J N and J N − 1 nodes. We next construct an imaginary node
J N + 1 at �y above the E boundary. Then,

∂�

∂y

∣∣∣∣
J N

= �J N+1 − �J N−1

2�y
,

∂2�

∂y2

∣∣∣∣
J N

= �J N+1 − 2�J N + �J N−1

�y2
. (4.69)

Noting that �J N+1 = �J N = �∞, we can simplify the derivative expressions fur-
ther and, therefore, Equation 4.68 can be written as

∂

∂�

[
r 
�

∂�

∂y

]
J N

 2
r 
�

�y

∣∣∣∣
J N

= 2rJ N 
�

yJ N − yJ N−1
. (4.70)

Thus, from Equation 4.67, since rJ N = rE

ṁE,std  − 1

rE

∂ψE

∂x
 2
�,E

yJ N − yJ N−1
. (4.71)

Using the above estimate, it follows that

ψE (x)  ψE (x − �x) − 2rE 
�,E �x

yJ N − yJ N−1
. (4.72)

With this estimate, it is now possible to evaluate coefficients in Equation 4.43. This
is because, when the E boundary is a free boundary, the I boundary can only be a
wall or a symmetry boundary for which ψI(x) is already known.

Equation 4.71 is of course an approximate formula for ṁE. To derive an exact
formula, we note that 
� will be different for different �s and, as already noted,
the respective boundary layer thicknesses will also be different. Our interest lies in
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selecting that � for which the thickness is largest. Usually, the largest thickness
will correspond to the largest 
�, and for this selected �, we evaluate

R = |�J N − �J N−1|
��∗ , ��∗ = 10−3 (say), (4.73)

where ��∗ is a sufficiently small reference quantity. Since Equation 4.43 is it-
eratively solved, Patankar [52] has suggested the following formula for exact
evaluation:

ṁE (exact) = ṁE,std × Rn, (4.74)

where, from computational experience, n  0.1 is found to be a convenient value
in most cases. Thus, when Equation 4.43 has converged, ψE, as evaluated from
Equation 4.72, will provide a correct estimate of total mass flow rate ψEI = ψE − ψI

through the boundary layer at the given x . Once this mass flow rate is known, the
y dimension and hence the largest boundary layer thickness among all �s can be
estimated.

4.7 Source Terms

4.7.1 Pressure Gradient

In external boundary layers, the pressure gradient is specified or indirectly evaluated
from

dp

dx
= −ρ U∞

d U∞
d x

, (4.75)

where U∞ (x) is specified. In internal flows, however, a special procedure must be
adopted to specify the pressure gradient. The procedure relies on satisfying the
overall mass flow rate balance at every streamwise location x . Thus, in a general
duct, let Ad (x) represent the duct area between the axis of symmetry (I boundary)
and the wall (E boundary). Then

Ad =
∫ E

I
r dy = ψEI

∫ 1

0

dω

ρ u
. (4.76)

Therefore,

Ad

ψEI
= C (constant) =

∑ �ω j

ρ j u j
. (4.77)

The task now is to replace u j in terms of the pressure gradient. To do this,
Patankar [52] writes the discretised version of the momentum equation as

APj u j = AN j u j+1 + ASj u j−1 + D j − �Vj px , (4.78)
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where px is the pressure gradient and D j contains source terms arising from other
body forces. To solve this equation by TDMA, let the postulated equation be

u j = A j u j+1 + B j − R j px , (4.79)

where R1 = RJ N = 0. Then, the recurrence relations will take the following form:

A j = AN j

DE N
, B j = ASj B j−1 + D j

DE N
, R j = ASj R j−1 + �Vj

DE N
, (4.80)

where DE N = APj − ASj A j−1. Note that A(2), B(2), and R(2) can be recovered
from Equation 4.78. Therefore, the coefficients in Equation 4.80 can be determined
for j = 3 to J N − 1 by recurrence. Now, let u j be further postulated as

u j = Fj − G j px , (4.81)

where, again by recurrence, Fj and G j can be determined for j = J N − 1 to 2 by

Fj = A j Fj+1 + B j , G j = A j G j+1 + R j , (4.82)

where A(J N ) = G(J N ) = 0. Thus, it is possible to replace u j in Equation 4.77 by
Equation 4.81. The replacement yields a nonlinear equation in px :∑ �ω j

ρ j (Fj − G j px )
− C = 0. (4.83)

This equation can be solved by Newton–Raphson iterative procedure:

px = p∗
x + C − S1

S2
,

S1 =
∑ �ω j

ρ j (Fj − G j p∗
x )

,

S2 =
∑ �ω j G j

ρ j (Fj − G j p∗
x )2

, (4.84)

where p∗
x is the guessed pressure gradient. Iterations are continued until |C − S1| <

10−4 C . Usually, about five iterations suffice.
Finally, we note that in free-shear flows, the pressure gradient is zero.

4.7.2 Q′′′ and Rk

The source terms in the energy and mass transfer equation depend on the problem
at hand. In general, however,

Q′′′ = Q̇rad + Q̇cr + µ�v + D p

D t
+ Q̇md, (4.85)

where Q̇rad = ∂qrad,y/∂y represents the radiation contribution, Q̇cr repre-
sents the generation rate due to endothermic or exothermic chemical reac-
tions, µ�v = µ (∂u/∂y)2 represents the viscous dissipation effect, D p/D t =



P1: IWV
0521853265c04 CB908/Date 0 521 85326 5 May 25, 2005 11:7

4.8 TREATMENT OF TURBULENT FLOWS 87

u ∂p/∂x represents the pressure–work effect in steady flow, and Q̇md =
∂/∂y {(∑all k ρ Dk ∂ωk/∂y) hk} represents the contribution of species diffusion
mass transfer having specific enthalpy hk . If hk equals mixture enthalpy h then
Q̇md = 0.

When no chemical reaction is present, Rk = 0. However, for a reacting boundary
layer, Rk will be finite for each species because each may be generated via some
reactions and destroyed via some other reactions among the postulated chemical
reactions. Very often, for gaseous fuels and for highly volatile solid/liquid fuels,
an SCR can be assumed [73]. The SCR is specified as

1 kg of fuel + Rst kg of oxidant → (1 + Rst) kg of product, (4.86)

where Rst is the stoichiometric ratio for the fuel under consideration. Thus, there
are three species and one must specify Rfu, Rox, and Rpr. However, in an SCR,
Rfu = Rox/Rst = −Rpr/(1 + Rst) so that no net mass is generated or destroyed as a
result of chemical reaction. This enables construction of a conserved scalar variable
	 = ωfu − ωox/Rst = ωfu + ωpr/(1 + Rst) when mass diffusivities of all species
are taken equal. Thus, one may now solve only for ωfu and 	 with R	 = 0 instead
of three variables. Further, Q̇cr = |Rfu|�Hc where �Hc is the heat of combustion
of the fuel. The value of Rfu is obtained from a reaction rate law

Rfu = Rfu,kin = − A exp

(
− E

Ru T

)
ωm

fu ωn
ox, (4.87)

where, preexponential constant A and constants E , m, and n are specified for the
fuel [82] and Ru is the universal gas constant.

If turbulent reacting flow is considered then the effective Rfu is given by a variant
[44] of the eddy-breakup model due to Spalding [74],

Rfu = −ρm
ε

e
min

{
A ωfu, A

ωox

Rst
, A′ ωprod

(1 + Rst)
, Rfu,kin

}
, (4.88)

where A = 4 and A′ = 2. The postulated arguments in favour of this expression
are beyond the scope of this book.

4.8 Treatment of Turbulent Flows

In turbulent flows, 
� in Table 4.1 will assume an effective value. Thus, following
Equation 4.63, we have


�,eff = µ

Pr�

+ µt

Prt,�
, (4.89)

where suffix t denotes the turbulent contribution. The task now is to represent µt and
Prt,� via modelled expressions. This exercise, called turbulence modelling, implies
validity of the Boussinesq approximation for turbulent viscosity. Although there
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are many variants, all turbulence models of this type stem from a dimensionally
correct representation

µt ∝ ρ l v′, (4.90)

where v′ is the representative velocity fluctuation scale in the transverse direction
y and l is a representative length scale. Two turbulence models used extensively for
boundary layer calculations are described in the following.

4.8.1 Mixing Length Model

Since v′ is responsible for transverse momentum transfer, it may be written in
dimensionally correct form as

v′ = lm

∣∣∣∣∂u

∂y

∣∣∣∣ (4.91)

so that

µt = ρ l2
m

∣∣∣∣∂u

∂y

∣∣∣∣ , (4.92)

where lm is called Prandtl’s mixing length. Now, because the velocity gradient can
be evaluated from the solution of the momentum equation, lm must be prescribed to
complete evaluation of µt. Kays and Crawford [33], after extensive investigations
of a variety of wall-boundary-layer flows have prescribed the following formulas:

κ y

[
1 − exp

(
− y+

A+

)]
, for

y

δ
< 0.2, (4.93)

lm =

⎧⎪⎪⎨
⎪⎪⎩ 0.085 δ for

y

δ
≥ 0.2, (4.94)

where y is the normal distance from the wall, δ is the velocity-boundary-layer
thickness and κ = 0.41. Further,

y+ = y uτ

ν
, uτ =

√
τw

ρ
, τw = µ

∂u

∂y
|w. (4.95)

Finally, the value of A+ is sensitised to effects of suction or blowing and local
pressure gradient in a generalised manner as

A+ = 25
[

a
{
v+

w + b p+/
(
1 + c v+

w

) }+ 1
]−1

, (4.96)

where

p+ = µ
d p

d x

(
τ 3

w ρ
)−0.5

, v+
w = vw

uτ

, (4.97)

and a = 7.1, b = 4.25, and, c = 10.0. If p+ > 0 then b = 2.9 and c = 0.
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Laminar-to-Turbulent Transition
To predict laminar-to-turbulent transition, the effective value of 
� is written as


�,eff = µ

Pr�

+ ϒ
µt

Prt,�
, (4.98)

where the intermittancy factor ϒ is given [1] by

ϒ = 1 − exp

{
−5

(
x − xts

xte − xts

)}
. (4.99)

In this equation, xts and xte denote the start and the end of transition, respectively.
When x = xte, ϒ = 1 and a fully turbulent state is reached. For x = xts, ϒ = 0 and
the flow is laminar. There are several empirical relations proposed in the literature
for estimating xts and xte; here, two will be given.

Abu-Ghannam and Shaw Model
In the Abu-Ghannam and Shaw [1] model

Reδ2,s = U∞ δ2,s

ν
= 163 + exp

[
m

(
1 − T u

6.91

)]
, (4.100)

where m (K > 0) = 6.91−12.75K + 63.64K 2 and m (K < 0) = 6.91− 2.48K −
12.27K 2 and K = − δ2

2/ν (d U∞/d x). Here, δ2,s is the boundary layer momentum
thickness at x = xts. These relations thus identify xts. The value of xte is identified
with

xte = xts + 4.6
ν∞
u∞

σo

B
, (4.101)

where B(K < 0) = 1, B(K > 0) = 1 + 1710 K 1.4 exp −(1 + T u3.5)0.5, and σ0 =
105 (2.7 − 2.5 T u3.5) (1 + T u3.5)−1. Here, T u is the turbulence intensity in the free
stream.

Cebeci Model
In the Cebeci [4] model

Reδ2 = 1.174

(
1 + 22400

Rex

)
Re0.46

x , (4.102)

xte = xts + 60
ν∞
U∞

Re−2/3
x , (4.103)

where Rex = U∞ x /ν.

4.8.2 e–ε Model

In this model, the turbulent viscosity is determined from solution of two partial
differential equations for scalar quantities e (turbulent kinetic energy) and ε
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(turbulent energy dissipation3). Thus,

µt = Cµ ρ
e2

ε
. (4.104)

Fortunately, the modelled equations for e and ε can also be cast in the form of
Equation 4.1. Thus, we have

Turbulent Kinetic Energy Equation

� = e, 
e = µ + µt

Prt,e
, Se = G − ρ ε∗ (4.105)

and

Energy Dissipation Rate Equation

� = ε∗, 
ε∗ = µ + µt

Prt,ε∗
,

Sε∗ = ε∗

e
[C1 G − C2 ρ ε∗] + 2ν µt

(
∂2u

∂y2

)2

, (4.106)

where

ε∗ = ε − 2ν

(
∂
√

e

∂y

)2

, (4.107)

and

G = µt

(
∂u

∂y

)2

. (4.108)

In these equations, Launder and Spalding [40] specify Prt,e = 1, Prt,ε∗ = 1.3,
C1 = 1.44,

Cµ = 0.09 exp

[ −3.4

(1 + Ret/50)2

]
, (4.109)

and

C2 = 1.92
[

1 − 0.3 exp −Re2
t

]
, (4.110)

where the turbulence Reynolds number Ret = µt/µ. The e−ε model described
here, called the Low Reynolds number (LRE) turbulence model, permits applica-
tion of boundary conditions e = ε∗ = 0 at the wall. Further, the model is equally
applicable to prediction of laminar-to-turbulent transition and one need not in-
voke the intermittency factor required in the mixing length model. In fact, Jones
and Launder [30] have successfully applied the model even to the case where a
turbulent boundary layer reverts to a laminar boundary layer becuase of strong
free-stream acceleration. Several changes to the e–ε model have been proposed by
different authors. The more recent among these, for example, are listed in [9].

3 Here ρ ε is the turbulent counterpart of the µ �v term introduced in Equation 4.85.
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4.8.3 Free-Shear Flows

In free-shear flows, the mixing length is given by

lm = β (yE − yI), (4.111)

where the E boundary is free and the I boundary is the symmetry axis. The value of
constant β depends on the type of flow. According to Spalding [78] β = 0.09 for
a plane jet, β = 0.075 for a round jet, and β = 0.16 for a plane wake. In general,
however, β must be regarded as an arbitrary constant whose value is determined
from experiment.

When the e–ε model is used, Equations 4.105 and 4.106 are directly applicable.
However, because of the absence of a wall, there will be no region where Ret → 0.
Also, the wall-correction terms ∂

√
e/∂y and 2ν µt (∂2u/∂y2)2 vanish. As such, the

model will reduce to

� = e, 
e = µ + µt

Prt,e
, Se = G − ρ ε, (4.112)

� = ε, 
ε = µ + µt

Prt,ε
, Sε = ε

e
[C1 G − C2 ρ ε ] , (4.113)

with C1 = 1.44, C2 = 1.92, Cµ = 0.09, Prt,e = 1.0, and Prt,ε = 1.3. This set is
called the High Reynolds number (HRE) model.

4.9 Overall Procedure

4.9.1 Calculation Sequence

The previous sections have provided all the essentials to construct the calculation
procedure. This is listed in the following.

Evaluations at x0

1.Choose x0, where the initial profiles � (y j ) are specified for j = 1, 2, . . . , J N
for the chosen J N .

2.Calculate r j knowing α (x0).
3.Set xu = x0 and evaluate ω j ( j = 1, 2, . . ., J N ) from specified u j for a chosen

value of ψu
I . This sets ψu

E and hence ψu
EI.

Begin a New Step
4.Choose �x so that xd = xu + �x . Calculate ρ j , µ j , and C p j from appropriate

known functions of scalar �u
j . Specify or calculate ṁI or ṁE as described in

Section 4.6.
5.Choose relevant � and calculate coefficients and source terms in Equation 4.43

using upstream values. Note that if � = u, the pressure gradient for internal
and external flows must be appropriately evaluated. Now solve Equation 4.43
using TDMA.
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6.Reset y j , r j using the u j just calculated. Also reset ψb for a free boundary
(b = E or I).

7.Go to step 5 and repeat until convergence of all relevant �s is reached.
8.Calculate integral quantities δ1, δ2, Cfx , Stx , etc.
9.Set xu = xd and �u

P = �P and return to step 3 to execute a new step.
10.Continue untill the domain of interest in the x direction is covered.

4.9.2 Initial Conditions

For internal flows, the flow width at x = x0 = 0 is known and it is easy to specify
all φ(y j ). For external wall boundary layers, the initial profiles by necessity are
to be specified at x = x0 to avoid singularity at x = 0 where the boundary layer
thickness is zero. A suitable choice of x0 can be made assuming Rex0 = 103 (say).
If and when experimentally measured starting profiles are not available, one may
choose the generalised polynomial velocity profile used in the integral method of
laminar boundary layer analysis:

u

u∞

∣∣∣∣
x0

= 2η − 2η3 + η4 + λ

6

[
η − 3η2 + 3η3 + η4

]
, (4.114)

where η = y / δ and

λ = δ2

ν

d U∞
d x

∣∣∣∣
x0

. (4.115)

With reference to Figure 4.1, the region 0 < x < x0 will typically connote a
stagnation flow region for which λ = 7.052 and δ  2.65 x0 Re−0.5

x0
. If one is dealing

with a flat surface, however, one may set λ = 0 and evaluate δ  5.83 x0 Re−0.5
x0

[65].
Thus, one is now free to choose the y j distribution and evaluate u j from equation
4.114.

With these specifications, calculations can continue from the laminar region
through the transition region and ending in the turbulent region. If, however, the
flow was turbulent from the start of the boundary layer, it is advisable to use an
experimentally generated velocity profile. Alternatively, one may use

u

u∞

∣∣∣∣
x0

=
( y

δ

)1/7
, (4.116)

where δ  0.37 x0 Re−0.2
x0

. Similar starting profiles for other �s can also be pre-
scribed using results from the integral method. For example, for a scalar variable
s = h or ωk , the initial profiles may be specified as follows:

s − sw

s∞ − sw

∣∣∣∣
x0

= 2ηs − 2η3
s + η4

s (Laminar)

= η1/7
s (Turbulent), (4.117)

where ηs = y/δs and δs = δ/Pr or δ/Sc.
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For free-shear flows, again x0 must be chosen to avoid the elliptic flow region
very close to where a jet or a wake originates. For advice on the choice of x0 and
the u(y) profile, the reader is referred to Schlichting [65].

4.9.3 Choice of Step Size and Iterations

Iterative calculation is required to deal with nonlinearities arising out of implicit-
ness. In the present procedure, nonlinearities arise from four sources:

1. They can arise from dependence of coefficients and sources in Equation 4.43
on other scalar �s. Thus, the source term Rk in the equation for ωk may depend
on T , and ρ, and 
� may depend on ωk and T .

2. At a downstream station, y j are not a priori known and therefore the values �yn,
�ys required in several evaluations are not known. These y j s can be evaluated
only after the �d

j profile is established.
3. In external boundary layers and free-shear flows, the flow width at a downstream

station is not known and we wish to select the largest width among all �s. This
is done via Equation 4.74.

4. In internal flows, the pressure gradient is not known at a downstream station.

By choosing a small enough �x , one can make the procedure completely non-
iterative. This can be achieved by evaluating AN , AS, and S in terms of upstream
values. We, however, prefer partial linearization. Thus, whereas the different �s
required in the evaluation of AN , AS, and S are taken from the upstream station, y j

are established through an iterative solution of equations for all relevant �s. With
this choice, experience shows that we may choose

�x  0.25 δu
2 . (4.118)

This choice ensures both economy and accuracy. However, situations may arise
when larger step sizes are also permissible.

4.10 Applications

Flat Plate Boundary Layer
Figure 4.5 shows computed results of friction coefficient C fx and Stanton number
Stx for a flat plate boundary layer. Computations were begun with a laminar velocity
(with λ = 0 in Equation 4.114) and temperature profiles prescribed at Rex0 = 103

with J N = 102. Such a large number of (nonuniform) grid points are necessary
to resolve the profiles in the vicinity of the wall and in the turbulent range. In the
mixing length model, transition is sensed by the Cebeci model (Equations 4.102
and 4.103). In the LRE model, the transition is sensed automatically. It is seen that
the mixing length model predicts transition at a higher Rex than the LRE model.
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Figure 4.5. Flat plate boundary layer.

The predicted values of C fx and Stx are compared with well-known correlations
derived from integral analysis. The agreements are satisfactory.

Figure 4.6 shows the velocity and temperature profiles in wall coordinates.
The predictions of the mixing length model [Figure 4.6(a)] nearly agree with the
two-layer prescriptions of the law of the wall [33] except in the very outer layers.
The predictions from the LRE model [Figure 4.6(b)] are somewhat higher than
those of the law of the wall. The dimensionless temperature is defined as T + =
(T − Tw)ρ C p uτ /qw.

Burning of Carbon
We consider burning of carbon in a laminar plane stagnation flow of dry air so that
the free-stream velocity varies as U∞ = Cx . The surface is held at constant wall
temperature Tw. The objective is to predict the burning rate of carbon as a function
of Tw. The postulated chemical reactions at the surface are [82] as follows:

Reaction 1

C∗ + O2 → CO2, �H1 = 32.73 MJ/kg of C,

k1 =
⎧⎨
⎩

593.83 Tg exp (−18,000/Tw) m/s, Tw < 1,650 K,

(2.632 × 10−5 Tw − 0.03353) Tg (m/s), Tw > 1,650 K,

ṁ ′′
c1w = ρw k1

MC

MO2

ωO2 kg/m2−s (4.119)

where Tg is the near-wall gas temperature,
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Figure 4.6. Velocity and temperature profiles at Rex = 5 × 106.

Reaction 2

C∗ + 1

2
O2 → CO, �H2 = 9.2 MJ/kg of C,

k2 = 1.5 × 105 exp (−17,966/Tw) m/s,

ṁ ′′
c2w = 2ρw k2

MC

MO2

ωO2 kg/m2-s, (4.120)

and

Reaction 3

C∗ + CO2 → 2 CO, �H3 = −14.4 MJ/kg of C,

k3 = 4.016 × 108 exp (−29,790/Tw) m/s,

ṁ ′′
c3w = ρw k3

MC

MCO2

ωCO2 kg/m2-s. (4.121)

The above 3 reactions are surface reactions. In addition, we have the following
gas-phase reaction:
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Reaction 4

CO + 1

2
O2 → CO2, �H4 = 10.1 MJ/kg of CO,

k4 = 2.24 × 1012 exp (−20,137/T ) s−1,

RCO = ρ1.75 k4 ωCO

(
ωO2

MO2

)0.25 (
ωH2O

MH2O

)0.5

, (4.122)

where ωH2O is treated as a parameter of the problem. The steam mass fraction is, of
course, small enough so that it does not take part in other possible reactions. These
rate laws are taken from Smoot and Pratt [68] and Turns [82].

The problem thus requires solution of equations for � = u, ωO2, ωCO2, ωCO, and
enthalpy h. We define h = C p (T − Tref) so that the source terms for each of the
variables are

Su = ρ C2 x �V, (4.123)

SωO2
= −1

2

MO2

MCO
RCO �V, (4.124)

SωCO2
= MCO2

MCO
RCO �V, (4.125)

SωCO = − RCO �V, (4.126)

Sh = RCO �H4 �V . (4.127)

The total carbon burn rate is given by

ṁ ′′
c = ṁ ′′

c1w + ṁ ′′
c2w + ṁ ′′

c3w. (4.128)

To effect the wall boundary condition for mass fractions, we modify Equa-
tion 4.59 to account for surface reaction:

ṁ ′′
c = (ωk,w − ωk,T)−1

(
ρ Dk

∂ωk

∂y

∣∣∣∣
y=0

+ ṁ ′′
ωk

)
, (4.129)

where ṁ ′′
ωk

is the surface generation rate of species k and ωk,T = 0 for all species.
After discretisation, the wall mass fractions can be deduced from

ωO2,w = ρ D/�y ωO2,nw − (ṁ ′′
c1w + 0.5 ṁ ′′

c2w) MO2/MC

ρ D/�y + ṁ ′′
c

, (4.130)

ωCO2,w = ρ D/�y ωCO2,nw + (ṁ ′′
c1w − ṁ ′′

c3w) MCO2/MC

ρ D/�y + ṁ ′′
c

, (4.131)

ωCO,w = ρ D/�y ωCO,nw + (ṁ ′′
c2w + 2 ṁ ′′

c3w) MCO/MC

ρ D/�y + ṁ ′′
c

, (4.132)
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and the enthalpy at the wall boundary is given by

hw = C p (Tw − Tref). (4.133)

With this enthalpy, we account for the surface heat generation via the source
term Sh for the near-wall (suffix nw) control volume. Thus, for j = 2

Sh = Sh +
[

ṁ ′′
c Cpc (TT − Tref) +

∑
k

ṁ ′′
ckw �Hk

]
�x, (4.134)

where TT = Tw and the carbon specific heat is C pc = 1,300 J/kg-K. In the free
stream at the E boundary, we specify U∞ = Cx , T∞ = 298 K, ωO2,∞ = 0.232,
ωCO,∞ = 0.0, and ωCO2,∞ = 0.0. The reference temperature is taken as Tref = T∞
so that h∞ = 0.

To start the computations, it is assumed that for the starting length x0 (Rex0 =
1,000), the surface is inert. So, the inlet profiles for mass fractions and enthalpy
are easily specified as uniform, corresponding to the free-stream state. The velocity
profile is of course derived from Equation 4.114 with λ and δ corresponding to the
stagnation flow condition. Computations are now continued till Rex = 105 so that
the combustion is well established and the burn rate is constant with x . The density
and viscosity are assumed to vary over the width of the boundary layer according to

ρ = p Mmix

Ru T
, (4.135)

µ = 18.6 × 10−6

(
T

303

)1.5 [303 + 110

T + 110

]
N-s/m2, (4.136)

where p = 105 N/m2 and Ru = 8,314 J/kmol-K. The molecular weight of the
mixture is evaluated from

Mmix =
[

ωO2

MO2

+ ωCO2

MCO2

+ ωCO

MCO
+ ωN2

MN2

+ ωH2O

MH2O

]−1

, (4.137)

where ωN2 = 1 − ωO2 − ωCO2 − ωCO − ωH2O. The gas specific heat is, however,
assumed constant and is calculated from Cp = 919.2 + 0.2 Tm J/kg-K and Tm =
0.5 (Tw + T∞). Computations are carried out for 800 < Tw < 2,000 K and Pr =
0.72. The value of the Schmidt number is uncertain in this highly variable property
reacting flow. Following Kuo [38], we take the Schmidt number for all species as
0.51. To facilitate evaluation of RCO, the water vapour fraction is taken as ωH2O =
0.001, but the vapour is assumed chemically inert.

For the purpose of comparison with published [38] experimental data, the pre-
dicted burning rate is normalised with respect to the diffusion controlled burning
rate. Thus we form the ratio

BRR = ṁ ′′
c (predicted)

ṁ ′′
c (dc)

, (4.138)
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Figure 4.7. Variation of BRR, ωO2,w, ωCO2,w, and ωCO,w with Tw.

where the denominator is estimated4 for the stagnation flow from [33]

ṁ ′′
c (dc) = 0.57

x

µ∞
Pr0.6

Re0.5
x ln (1 + B)

(
Pr

Sc

)0.4 ( Tw

T∞

)0.1

(4.139)

and the driving force B = 0.174. Figure 4.7 shows the variation of the ratio BRR
with Tw. The experimental data for the burn rate are shown by filled circles. Data
are predicted with (solid lines) and without (dashed lines) Reaction 1 to ascertain
the influence of this reaction at low temperatures. It is seen that the experimental
BRR has considerable scatter and exceeds unity, against expectation. However, this
may be due to the normalising factor used by Kuo [38]. Nonetheless, the data show
a mild plateau for 1,100 < Tw < 1,400. This tendency is nearly predicted by the
present computations, particularly when Reaction 1 is included. For Tw > 1,350, the
experimental data show a sudden rise that is again observed in present predictions.
The predicted BRR → 1 at 1,800 K as expected. However, for Tw < 1,000 K,
the present data grossly underpredict the experimental data; the underprediction is
greater when Reaction 1 is ignored.

4 Equation 4.139 is derived from Reynolds-flow model developed by Spalding [73] assuming fluid
properties in the free-stream state and then corrected for property variations through the boundary
layer.
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The predicted wall mass fractions for CO, O2, and CO2 are also plotted in
Figure 4.7. The wall mass fraction ωO2,w, starting from 0.232 at 800 K, decreases
rapidly to zero at Tw ∼ 1,300 K. Note that ωO2,w decreases more rapidly when
Reaction 1 is included, as expected. The wall mass fraction ωCO2,w gradually in-
creases with temperature, peaks at Tw = 1,300 K, and then rapidly falls to zero.
In this range where ωCO2,w is significant, the BRR indicates a mild plateau after
an initial rapid rise with temperature. The ωCO,w, however, increases with wall
temperature. At Tw > 1,300, CO evolution becomes significant, indicating domi-
nance of Reaction 3. At very high temperatures, this reaction becomes the most
dominant and combustion is now diffusion controlled with ωO2,w = ωCO2,w = 0
and ωCO,w → 0.406. Overall, Reaction 1 is important at low temperatures and
Reaction 3 is important at high temperatures. It must be noted that although the
tendencies predicted here are similar to the similarity solution for BRR obtained
by Kuo [38], the quality of predictions in combustion calculations greatly depends
on the accuracy of the assumed reaction-rate laws.

Entrance Region of a Pipe
We consider simultaneous development of velocity and temperature profiles in the
entrance region of a pipe of radius R. The flow is laminar (Re = 500) and the
fluid Prandtl number Pr = 0.7. An axially constant wall temperature boundary
condition is assumed. In this axisymmetric flow, the I boundary coincides with the
pipe axis and the E boundary with the pipe wall. Computations are performed with
a J N = 25 nonuniform grid with closer spacings near the wall. The axial locations
are determined from x = L (I − 1/ I M AX − 1)1.5, where L = 0.2 × R × Re and
I is the axial step number. Figure 4.8 shows the computed variations of f × Re,
Nux , and velocity u at the pipe axis with x+ = (x/R)/ Re / Pr . Also plotted in the
figure are previous numerical solutions for Nux reported in [33]. It is seen that the
present solutions match perfectly with the previous solutions. The f × Re product
also varies as expected with asymptotic approach to 16.0. Similarly, the velocity
u/u at the pipe axis also reaches 2.0 at large x+.

Similar computations are now carried out at higher Reynolds numbers
(1,000 < Re < 10,000) including the transition range. For this purpose, the LRE
model is used and computations are performed with a J N = 47 nonuniform grid.
Here, IMAX = 1,000 and L = 100 × D. Figure 4.9 shows variation of f, Nu
(Pr = 0.7 and 5.0), and uaxis/u with Reynolds number in the fully developed state
(X/D = 100). It is seen that for Re < 1,600, the characteristics correspond to those
of a laminar flow (uaxis/u = 2.0). Accoring to the model, transition occurs abruptly
and appears to extend up to Re ∼ 2,500, as evident from the Nu predictions. The
uaxis/u ratio now drops suddenly from its laminar value of 2.0. At Re = 10,000,
uaxis/u = 1.246. For Nu, the expected trend is again observed. In the laminar range,
Nu approaches the analytically derivable fully developed value of 3.667 for Tw =
constant boundary condition for both Prandtl numbers. The thermal development
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Figure 4.8. Entrance region of a pipe – laminar flow.
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Figure 4.10. Variation of u+ and Ret with y+ – pipe flow.

length is a function of Pr in laminar flow [33]. In turbulent flow, X/D = 100 is
sufficient for fully developed flow and heat transfer and, therefore, the predicted
values of Nu match well with the well-known correlation Nu = 0.023 Re0.8 Pr0.4.
In the turbulent range, the friction factor also corroborates f = 0.079 Re−0.25

well.
Figure 4.10 shows the fully developed velocity profile in wall coordinates at

Re = 3,000 and 10,000. In the transition range, the sublayer is thick. At Re =
10,000, the predicted profile nearly coincides with the wall law up to y+ = 30 and
then departs in the outer layers. The figure also shows variations of turbulence
Reynolds number Ret = µt/µ. At Re = 3,000, the maximum value of Ret is lower
than that at Re = 10,000. All these tendencies accord with expectation.

EXERCISES

1. Starting with Equation 4.17, derive Equations 4.22 and 4.26 in their conserva-
tive form.

2. Verify Equations 4.37–4.40 through detailed algebra.

3. Derive an equation for ṁI,std, similar to Equation 4.71, when the free-stream
boundary is located at the I boundary.

4. Derive recurrence relations (4.80) and (4.82).

5. Show that when Ret is large, the LRE model reduces to the HRE model given
in Equations 4.112 and 4.113.
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Φ

Uo

Figure 4.11. Flow over a spinning cone.

6. It is desired to calculate turbulent boundary layer development so that the initial
velocity profile may be given by Equation 4.116. Choose a distribution of y j

(0 < y < δ) such that (ω j+1 − ω j )/ (ω j − ω j−1) = 1.2 for all j.

7. Consider flow across a long horizontal cylinder of radius R. It is desired to cal-
culate boundary layer development near the forward stagnation point. Specify
variation of α and rI with x . Also specify the starting velocity profile.

8. In Exercise 7, it is of interest to calculate the mass transfer of an inert substance
in the forward stagnation region. Specify the starting mass fraction profile and
select the appropriate boundary conditions for the mass-fraction variable ω and
u. (Hint: Use the integral method to specify the ω profile.)

9. It is desired to calculate boundary layer development over a cone spinning with
angular velocity � (see Figure 4.11). Write the governing equations and the
boundary conditions at the I and E boundaries for this problem. Also provide
initial conditions. (Hint: Assume that the spinning rate is high so that centrifugal
and Coriolis forces must be considered. Also, ∂p/∂r is not negligible. Hence,
dp/dx will vary with y.)

10. Consider an adiabatic wall 2 m high, as shown in Figure 4.12. The bottom 1 m
is covered with a thick layer of highly volatile solid material having latent heat
λfu. The fuel burns in stagnant dry air under natural convection conditions.
Assume SCR (4.86) with reaction rate given by (4.87).

(a) Write all relevant equations governing the phenomenon of burning along
with their source terms. (Hint: Use the Boussinesq approximation for the
buoyancy term.)

(b) Write boundary conditions at the I boundary to determine the burning rate.
Also write conditions at the E boundary. [Hint: In this problem, the adiabatic
condition implies that Tb = TT. Further, the burning surface temperature
will equal the evaporation (or boiling) point temperature Tbp and is a known
property. Further, the SCR assumption implies that ωfu = ωox = 0 at the
burning surface.]
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Figure 4.12. Burning from a vertical wall.

(c) Write initial conditions for each variable assuming pure natural convection
heat transfer between x = 0 and x = x0.

11. In the stagnation-flow carbon-burning problem described in the text, the water
vapour was treated as inert and its mass fraction was held constant. However,
water vapour can react with carbon, resulting in the following two additional
surface reactions:

C∗ + H2O → CO + H2

C∗ + 2H2 → CH4.

The reaction rate of the first reaction is about twice that of Reaction 3
(i.e., 2 k3). For the second reaction, k = 0.035 exp (−17,900/Tw). Assuming
ωH2O,∞ = 0.01, write the equations to be solved along with their source terms
and boundary conditions. [Hint: You will need to postulate the following ad-
ditional gas-phase reactions to approximately account for the presence of H2,
H2O, and CH4:

CH4 → 1

2
C2H4 + H2,

RCH4 = 1020.32 exp

(
−24,962

T

)
ρ1.97

m ω0.5
CH4

ω1.07
O2

ω0.4
H2

[
M0.5

CH4

M1.07
O2

M0.4
C2H4

]
,

C2H4 → 2 CO + 2 H2,

RC2H4 = 1017.7 exp

(
−25,164

T

)
ρ1.71

m ω0.9
C2H4

ω1.18
O2

ω−0.37
CH4

[
M0.1

C2H4

M1.18
O2

M−0.37
CH4

]
,
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H2 + 1

2
O2 → H2O,

RH2 = 1016.52 exp

(
−20,634

T

)
ρ1.71

m ω0.85
H2

ω1.42
O2

ω−0.56
H2

[
M0.15

H2

M1.42
O2

M−0.56
C2H4

]
,

with �HCH4 = 50.016 MJ/kg, �HC2H4 = 47.161 MJ/kg, and �HH2 =
120.9 MJ/kg. The reaction rates for these reactions are obtained from Turns
[82].]
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5 2D Convection – Cartesian Grids

5.1 Introduction

5.1.1 Main Task

In the previous chapter, we considered convective–diffusive transport in long
(x direction) and thin (y direction) flows. This implied that although convective
fluxes were significant in both x and y directions, significant diffusion fluxes oc-
curred only in the y direction; diffusion fluxes in the x direction are negligible. We
now turn our attention to flows in which diffusive fluxes are comparable in both x
and y directions. Thus, the general transport Equation (1.25) may be written1 as

∂(ρ �)

∂t
+ 1

r

∂(r q j )

∂x j
= S, j = 1, 2, (5.1)

where

q j = ρ uf j � − 
eff
∂�

∂x j
. (5.2)

In Equation 5.2, the first term on the right-hand side represents the convective
flux whereas the second term represents the diffusive flux. Note that suffix f is
attached to the velocity appearing in the convective flux; the significance of this
suffix will become clear in a later section. In Equation 5.1, r stands for radius.
This makes the equation applicable to axisymmetric flows governed by equations
written in cylindrical polar coordinates. When plane flows are considered, r = 1 and
Equation 1.25 is readily recovered. By way of reminder, we note that � may stand
for 1, ui (i = 1, 2), u3 (velocity in the x3 direction), ωk , T or h, and e and ε, and

eff is the effective exchange coefficient (see Equation 4.89).

Flows with comparable convective–diffusive fluxes in each direction occur rou-
tinely in most practical equipment although they are usually three dimensional.
Here, only 2D situations are considered for convenience and because the primary

1 Note that ρm signifying mixture density is now written as ρ for convenience.

105
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Figure 5.1. 2D flow situation.

objective is to learn the main issues of discretisation. Figure 5.1 shows a practical
situation that can be represented by 2D equations (5.1). The figure shows flow at
the connection between two pipes of different diameters. The flow is assumed to
be axisymmetric. Immediately downstream of the pipe enlargement, the flow will
exhibit recirculation and thus, in the absence of any predominant flow direction,
convective–diffusive fluxes in the x1 and x2 directions will be comparable. This
implies that property � at any x1 in the recirculation region will be influenced
by property values both upstream as well as downstream of x1. Similar two-way
influence is also expected in the x2 direction. Such two-way influences are called
elliptic influences [49] and, therefore, Equation 5.1 is an elliptic partial differential
equation.2

5.1.2 Solution Strategy

Before discretising Equation 5.1, we shall make distinction between the following
two problems:

1. the problem of flow prediction and
2. the problem of scalar transport prediction.

Here, scalar transport means transport of all �s (u3, ωk , T , h, e, ε, etc.) other than
velocities (� = u1, u2) that are vectors. Note that u3, although a vector, is included
in the list of scalars. This is because variations in direction x3 are absent and, with
respect to x1 and x2 directions, u3 may be treated as a scalar. The reason for this
distinction between scalars and vectors is twofold.

It is clear from Equation 5.2 that calculation of scalar transport will be facilitated
only when the velocity field is established. In fact, if source S and the properties

2 The reader will recall the equation a �xx + 2 b �xy + c �yy = S (�x , �y, �, x, y), where, when
the discriminant b2 − a c = 0, the equation is parabolic; when b2 − a c < 0, the equation is elliptic;
and when b2 − a c > 0, the equation is hyperbolic.
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ρ and 
 were not functions of scalar �s then the flow equations for � = u1, u2

will be independent of the scalar transport equations. This is the first reason for
distinguishing the flow-field equations from other scalar transport equations. To
appreciate the second reason, we first set out the equations governing the flow field
(the Navier–Stokes equations):

∂(ρ)

∂t
+ 1

r

∂

∂x1
{r ρ uf1} + 1

r

∂

∂x2
{r ρ uf2} = 0, (5.3)

∂(ρ u1)

∂t
+ 1

r

∂

∂x1
{r ρ uf1 u1} + 1

r

∂

∂x2
{r ρ uf2 u1}

= − ∂p

∂x1
+ 1

r

∂

∂x1

[
r µeff

∂u1

∂x1

]
+ 1

r

∂

∂x2

[
r µeff

∂u1

∂x2

]
+ Su1, (5.4)

∂(ρ u2)

∂t
+ 1

r

∂

∂x1
{r ρ uf1 u2} + 1

r

∂

∂x2
{r ρ uf2 u2}

= − ∂p

∂x2
+ 1

r

∂

∂x1

[
r µeff

∂u2

∂x1

]
+ 1

r

∂

∂x2

[
r µeff

∂u2

∂x2

]
+ Su2. (5.5)

A few comments having a bearing on the solution strategy are now in order.

1. In Equations 5.3–5.5, there are three unknowns (u1, u2, and p). Therefore, the
equation set is solvable.

2. In boundary layer flows, the pressure gradient is specified (external flows) or is
evaluated via the overall duct mass flow rate balance (internal flows). In elliptic
flows, however, ∂p/∂x1 and ∂p/∂x2 are not a priori known.

3. Thus, if we regard Equation 5.4 as the determinant of u1 field and Equation 5.6
as the determinant of u2 field, then the pressure field can be established only via
the mass conservation equation (5.3). The situation is somewhat similar to the
case of internal boundary layer flows but is not as straightforward.

4. The suffix f is attached to velocities satisfying the mass conservation equa-
tion. The velocity field without suffix f may or may not satisfy mass conserva-
tion directly although, in a continuum, it is expected that the ui and ufi fields
are identically overlapping and, therefore, the former must also satisfy mass
conservation.

5. The reader may find this distinction between the ui and ufi fields somewhat
unfamiliar. This is because most textbooks a priori assume a fluid continuum.
Numerical solutions are, however, developed in a discretised space and the
distinction mentioned here becomes relevant. This will become clear in a later
section.

These points reveal the fact that there is no explicit differential equation for
determination of the pressure field with p (or its variant) as the dependent variable.
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Figure 5.2. The staggered grid.

Such an equation, however, can be derived from explicit satisfaction of the mass
conservation equation. In the sections to follow, the SIMPLE method for determi-
nation of the pressure field is presented. This method was developed by Patankar
and Spalding [51]. It is among the most extensively used methods in CFD practice.
In fact, most CFD packages employ this method. The acronym SIMPLE stands for
Semi-Implicit Method for Pressure-Linked Equations.3

The original SIMPLE method [51] was derived for Cartesian grids in which
the scalar �s (including pressure p) and the velocity vectors were defined in a
staggered arrangement (see Figure 5.2). To understand this arrangement, consider
typical node P (i, j) with the surrounding control volume whose faces are located
at e, w, n, and s. In the staggered arrangement, pressure pi, j is stored/defined at
the node P. The same holds for other scalars �i, j . However, the vector uf1 (i, j) is
stored at the cell face w and vector uf2 (i, j) is stored at cell face s. Thus, the vectors
and the scalars are stored in staggered locations. It is easy to identify appropriate
control volumes surrounding the cell-face locations as shown in Figure 5.2. Thus,
in the (i, j) address system, there are three partially overlapping control volumes.

Now, the SIMPLE method requires that to determine the pressure field, the
mass conservation equation must be satisfied over the control volume (ne-se-sw-
nw) surrounding node P where pi, j is stored. Thus, using the IOCV method, the
discretised version of Equation 5.3 is written as

[(ρ r uf1)e − (ρ r uf1)w] �x2 + [(ρ r uf2)n − (ρ r uf2)s] �x1 = − (ρP − ρo
P

) �V

�t
,

(5.6)

3 In compressible flows, p = ρ Rg T , where Rg is the gas constant, must be added to the equation
set (5.3–5.6). This equation of state is used to determine density ρ.
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where �V = rP �x1 �x2 and superscript o represents values at the old time.
Superscript n is dropped for convenience.

Equation 5.6 indicates that the velocities with suffix f appear at the cell faces
of the control volume surrounding node P. Therefore, in SIMPLE-staggered, mo-
mentum equations, Equation (5.4) is solved over control volume n-nW-sW-s and
Equation 5.6 is solved over the control volume w-wS-eS-e without explicit commit-
ment to satisfy mass conservation over these control volumes. The overall strategy
for solution of the flow equations is as follows:

1. Guess a pl field and solve momentum equations (5.4) and (5.6) over control
volumes surrounding cell faces to yield ul

f1 and ul
f2 fields.

2. These fields, in general, will not satisfy the mass conservation equation (5.6).
3. Derive a mass-conserving pressure-correction equation to satisfy mass conser-

vation over the control volume surrounding node P.
4. Use the pressure correction p′ so determined to correct the guessed pressure

pl and velocities ul
f1 and ul

f2.

For a complete description of the SIMPLE-staggered method, the reader is
referred to [49, 51].

5.2 SIMPLE – Collocated Grids

5.2.1 Main Idea

Although the SIMPLE-staggered grid method enjoyed considerable success par-
ticularly when Cartesian grids were employed, the procedure was found to be in-
convenient when curvilinear or unstructured grids were to be employed to compute
over ever more complex domains. Further, even on Cartesian grids, the process of
discretisation required considerable book keeping because the dimensions of the
control volumes of vector and scalar variables were different.

Since the early 1980s, therefore, researchers began to explore the possibility
of implementing the SIMPLE procedure using collocated variables.4 That is, the
velocity and the scalar variables were to be stored/defined at the same node P (i, j).
This, it was felt, would permit attention to be directed to a single transport equation
(5.1), thereby reducing the book-keeping requirements considerably.

Although convenient, this departure also brought within its wake a major diffi-
culty with respect to the pressure-field prediction. It was found that if the pressure-
correction equation as derived for staggered grids was used to predict pressure on
collocated grids, the predicted pressure distribution showed zigzagness. Depending
on the identified cause of this problem, different researchers (see, for example, [59])

4 In the literature, the procedure with collocated variables is sometimes referred to as a procedure
employing nonstaggered or collocated grids.
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Figure 5.3. The collocated grid.

proposed different cures with differing amounts of complexity. Here, we shall de-
scribe the method developed by Date [14] that elegantly eliminates the problem of
the zigzag pressure prediction. It will be shown in a later section that this matter is
connected with the recognition of the need to modify the normal-stress expression
as discussed in Chapter 1.

5.2.2 Discretisation

For collocated variables, we need to consider only one control volume (hatched)
surrounding typical node P, as shown in Figure 5.3. Further, the cell faces are
assumed to be midway between the adjacent nodes. As usual, using the IOCV
method (dV = r dx1 dx2), we integrate Equation 5.1 so that∫ n

s

∫ e

w

1

r

{
∂(r q1)

∂x1
+ ∂(r q2)

∂x2

}
dV =

∫ n

s

∫ e

w

[
S − ∂(ρ �)

∂t

]
dV . (5.7)

Now, replacing the qs from Equation 5.2, we can show that

[Ce �e − de (�E − �P)] − [Cw �w − dw (�P − �W)]

+ [Cn �n − dn (�N − �P)] − [Cw �w − dw (�P − �W)]

= S �V − (ρ � − ρo �o)P
�V

�t
, (5.8)
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where the convective coefficients are given by

Ce = ρe re uf1,e �x2, Cw = ρw rw uf1,w �x2,

Cn = ρn rn uf2,n �x1, Cs = ρs rs uf2,s �x1, (5.9)

and the diffusion coefficients are

de = 
eff,e re �x2

�x1e
, dw = 
eff,w rw �x2

�x1w
,

dn = 
eff,n rn �x1

�x2n
, ds = 
eff,s rs �x1

�x2s
. (5.10)

Now, in terms of the notation just introduced, the discretised mass conservation
equation (5.6) (with � = 1) can be written as

(
ρP − ρo

P

) �V

�t
+ Ce − Cw + Cn − Cs = 0. (5.11)

Further, the expressions for C � at the cell faces can be generalised to account
for any of the convection schemes introduced in Chapter 3. When this is done and
Equation 5.11 is employed, it can be shown that Equation 5.8 reduces to

AP �P = AE �E + AW �W + AN �N + AS �S + D, (5.12)

where

AE = de [A + max (−Pce, 0)] , Pce = Ce/de, (5.13)

AW = dw [A + max (Pcw, 0)] , Pcw = Cw/dw, (5.14)

AN = dn [A + max (−Pcn, 0)] , Pcn = Cn/dn, (5.15)

AS = ds [A + max (Pcs, 0)] , Pcs = Cs/ds, (5.16)

AP = AE + AW + AN + AS + ρo
p �V

�t
, (5.17)

D = S �V + ρo
P �V

�t
�o

P. (5.18)

In these equations

1 (UDS)

max (0, 1 − 0.5 |Pc|) (HDS)
A =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩max

{
0, (1 − 0.1 |Pc|)5

}
(Power)

1 − 0.5 |Pc| (CDS). (5.19)

From the point of view of computer coding, the utility of this generalised rep-
resentation for all variables (scalars as well as vectors) is obvious.
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5.2.3 Pressure-Correction Equation

In the collocated-grid SIMPLE algorithm, the nodal velocities are determined using
Equations 5.12 written for � = u1 and u2. The pressure gradients appearing in the
source terms of these equations are of course evaluated by central difference [for
example, ∂p/∂x1|P = (pl

E − pl
W)/ (2�x1), where pl is the guessed pressure field

and l is the iteration number]. The task now is to correct the ul
i and pl fields such

that mass conservation over the control volume surrounding node P is satisfied. To
do this, and to remain consistent with the SIMPLE-staggered grid, we imagine that
the momentum equations are also being solved for the cell-face velocities ul

fi . The
discretised versions of these imagined equations with underrelaxation will appear as

ul+1
f1 = α

APuf1

[∑
k

Ak ul+1
f1,k − �V

∂pl+1

∂x1
+ Dl

u1

]
+ (1 − α) ul

f1, (5.20)

ul+1
f2 = α

APuf2

[∑
k

Ak ul+1
f2,k − �V

∂pl+1

∂x2
+ Dl

u2

]
+ (1 − α) ul

f2, (5.21)

where Dl
u1

and Dl
u2

contain source terms (if any) other than the pressure gradient,
α is the underrelaxation factor, and the summation symbol indicates summation
over all immediate neighbours of the cell-face location under consideration. Thus,
when Equation 5.20 is written for cell face e, for example, running counter k refers
to locations ee, Ne, w, and Se. Now, at iteration level l + 1, it is expected that

∂(ρl+1)

∂t
+ 1

r

∂

∂x1

{
r ρl+1 ul+1

f1

}+ 1

r

∂

∂x2

{
r ρl+1 ul+1

f2

} = 0. (5.22)

Substituting Equations 5.20 and 5.21 in Equation 5.22 we can show that

∂(ρl+1)

∂t
+ 1

r

∂

∂x1

{
r ρl+1 ul

f1

}+ 1

r

∂

∂x2

{
r ρl+1 ul

f2

}

= 1

r

∂

∂x1

[
r ρl+1 α

APuf1

{
APuf1 ul

f1 −
∑

k

Ak ul+1
f1,k + �V

∂pl+1

∂x1
− Dl

u1

}]

+ 1

r

∂

∂x2

[
r ρl+1 α

APuf2

{
APuf2 ul

f2 −
∑

k

Ak ul+1
f2,k + �V

∂pl+1

∂x2
− Dl

u2

}]
.

(5.23)

To develop the pressure-correction equation, we introduce the following
substitutions:

ul+1
f1 = ul

f1 + u′
f1, ul+1

f2 = ul
f2 + u′

f2, pl+1 = pl + p′
m, (5.24)
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where, p′
m is the mass-conserving pressure correction. Thus, Equation 5.23 will

read as5

1

r

∂

∂x1

{
ρl+1 r α �V

APuf1

∂p′
m

∂x1

}
+ 1

r

∂

∂x2

{
ρl+1 r α �V

APuf2

∂p′
m

∂x2

}

= ∂(ρl+1)

∂t
+ 1

r

∂

∂x1

{
r ρl+1 ul

f1

}+ 1

r

∂

∂x2

{
r ρl+1 ul

f2

}

−
[

1

r

∂

∂x1

{
ρl+1 r α �V

APuf1
Ruf1

}
+ 1

r

∂

∂x2

{
ρl+1 r α �V

APuf2
Ruf2

}]
, (5.25)

where residuals per unit volume, Ruf1 and Ruf2, are given by

Ruf1 = APuf1 ul
f1 −∑

Ak ul
f1,k − Dl

u1

�V
+ ∂pl

∂x1
, (5.26)

Ruf2 = APuf2 ul
f2 −∑

Ak ul
f2,k − Dl

u2

�V
+ ∂pl

∂x2
. (5.27)

The discretised version of the mass-conserving pressure-correction Equation
5.25 will read as

AP p′
m,P = AE p′

m,E + AW p′
m,W + AN p′

m,N + AS p′
m,S − ṁP + ṁR, (5.28)

where

AE = ρl+1 r2 α �x2
2

APuf1

∣∣∣∣
e

, AW = ρl+1 r2 α �x2
2

APuf1

∣∣∣∣
w,

AN = ρl+1 r2 α �x2
1

APuf2

∣∣∣∣
n

, AS = ρl+1 r2 α �x2
1

APuf2

∣∣∣∣
s

.

AP = AE + AW + AN + AS, (5.29)

ṁP = (
ρl+1 r ul

f1

∣∣
e
− ρl+1 r ul

f1

∣∣
w

)
�x2

+ (
ρl+1 r ul

f2

∣∣
n
− ρl+1 r ul

f2

∣∣
s

)
�x1 + (

ρl+1
P − ρo

P

) �V

�t
, (5.30)

ṁR = AE Ruf1 �x1|e − AW Ruf1 �x1|w + AN Ruf2 �x2|n − AS Ruf2 �x2|s.
(5.31)

A number of comments with respect to Equations 5.25–5.31 are now in order.

1. On both staggered and collocated grids, the pressure is stored at node P and the
mass conservation equation is solved over the control volume surrounding node
P. Therefore, Equation 5.25 is applicable to both types of grids.

5 In deriving Equation 5.25, it is assumed that
∑

k Ak u′
f1,k = ∑

k Ak u′
f2,k = 0. This is consistent

with the SIMPLE-staggered grid practice [51].
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2. In incompressible flows, density is independent of pressure. Therefore, ρl+1 =
ρl = ρ (say). Derivation of the pressure-correction equation for compressible
flow is left to the reader as an exercise (see Date [15, 17]).

3. On staggered grids, the momentum equations are solved at the cell faces and,
therefore, residuals Ruf1 and Ruf2 must vanish at full convergence, rendering
ṁR = 0. Although this state of affairs will prevail only at convergence, one
may ignore ṁR even during iterative solution. Thus, effectively, the pressure-
correction equation applicable to computations on staggered grids is

1

r

∂

∂x1

{
ρl+1 r α �V

APuf1

∂p′
m

∂x1

}
+ 1

r

∂

∂x2

{
ρl+1 r α �V

APuf2

∂p′
m

∂x2

}

= ∂(ρl+1)

∂t
+ 1

r

∂

∂x1

{
r ρl+1 ul

f1

}+ 1

r

∂

∂x2

{
r ρl+1 ul

f2

}
. (5.32)

This equation is derived in [51] via an alternative route. It is solved with the
boundary condition

∂p′
m

∂n

∣∣∣∣
b

= 0. (5.33)

The explanation for this boundary condition is given in a later section.
4. On collocated grids, cell-face velocities must be evaluated by interpolation

to complete evaluation of ṁP because only nodal velocities ui are computed
through momentum equations. Thus, ṁP in Equation 5.30 is evaluated as

ṁP = (
ρl+1 r u l

1

∣∣
e
− ρl+1 r u l

1

∣∣
w

)
�x2

+ (
ρl+1 r u l

2

∣∣
n
− ρl+1 r u l

2

∣∣
s

)
�x1 + (

ρl+1
P − ρo

P

) �V

�t
. (5.34)

Now, to evaluate ui , we use multidimensional averaging rather than simple one-
dimensional averaging. Thus, for example,

u l
1,e = 1

2

[
1

2

(
ul

1,P + ul
1,E

)+ �x2,n ul
1,se + �x2,s ul

1,ne

�x2,n + �x2,s

]
,

ul
1,se = 1

4

(
ul

1,P + ul
1,E + ul

1,S + ul
1,SE

)
,

ul
1,ne = 1

4

(
ul

1,P + ul
1,E + ul

1,N + ul
1,NE

)
. (5.35)

Similar expressions can be derived for other interpolated cell-face velocities.
5. On collocated grids, we do not explicitly satisfy momentum equations at the

cell-face locations. Therefore, there is no guarantee that ṁR will vanish even at
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convergence. We, therefore, write Ruf1,e in Equation 5.31, for example, as

Ruf1,e = APuf1 ul
f1 −∑

Ak ul
f1,k − Dl

u1

�V

∣∣∣∣∣
e

+ ∂pl

∂x1

∣∣∣∣
e

. (5.36)

This equation is the same as Equation 5.26 written for location e, but the net
momentum transfer terms are again multidimensionally averaged. This averag-
ing is done because, when computing on collocated grids, one does not have the
cell-face coefficients Ak .6 Now, again using Equation 5.26, we get

APuf1 ul
f1 −∑

Ak ul
f1,k − Dl

u1

�V

∣∣∣∣∣
e

= Ruf1,e − ∂pl

∂x1

∣∣∣∣∣
e

. (5.37)

Thus, effectively,

Ruf1,e = Ruf1,e − ∂pl

∂x1

∣∣∣∣∣
e

+ ∂pl

∂x1

∣∣∣∣
e

. (5.38)

6. Now, Ruf1,e is again evaluated in the manner of Equation 5.35. Thus, Ruf1,e will
contain residuals only at nodal locations P, E, N, S, NE, and SE. These residuals
will of course vanish at full convergence because momentum equations are
being solved at the nodal positions. Therefore, Ruf1,e = 0 and

Ruf1,e = ∂pl

∂x1

∣∣∣∣
e

− ∂pl

∂x1

∣∣∣∣∣
e

. (5.39)

The practice followed here is same as that followed on staggered grids (see
item 3).

7. Now, to evaluate the multidimensionally averaged pressure-gradient in Equation
5.39, we write

∂pl

∂x1

∣∣∣∣∣
e

= 1

2

[
1

2

(
∂pl

∂x1

∣∣∣∣
P

+ ∂pl

∂x1

∣∣∣∣
E

)
+ �x2,n ∂pl/∂x1

∣∣
se

+ �x2,s ∂pl/∂x1

∣∣
ne

�x2,n + �x2,s

]

= 1

4

[
pl

E − pl
W

�x1,e + �x1,w
+ pl

EE − pl
P

�x1,e + �x1,w

]

+ 1

4

�x2,s

�x2,n + �x2,s

[
pl

E + pl
NE − pl

P − pl
N

�x1,e

]

+ 1

4

�x2,n

�x2,n + �x2,s

[
pl

E + pl
SE − pl

P − pl
S

�x1,e

]
. (5.40)

6 Note that, in principle, evaluation of these coefficients can be carried out. However, the com-
putational effort involved will be prohibitively expensive in multidimensions. For example, in a
three-dimensional calculation, one will need to evaluate eighteen extra coefficients at the cell faces
in addition to the six coefficients evaluated at the nodal locations.
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To simplify the evaluation, we introduce the following definitions:

px1,P = �x1,w pE + �x1,e pW

�x1,w + �x1,e
, (5.41)

px2,P = �x2,s pN + �x2,n pS

�x2,s + �x2,n
, (5.42)

pP = 1

2
(px1,P + px2,P), (5.43)

px1,E = �x1,e pEE + �x1,ee pP

�x1,e + �x1,ee
, (5.44)

px2,E = �x2,s pNE + �x2,n pSE

�x2,s + �x2,n
, (5.45)

pE = 1

2
(px1,E + px2,E). (5.46)

Substituting these definitions in Equation 5.40 and replacing pEE and pW in
favour of pE and pP, we can show that

∂pl

∂x1

∣∣∣∣∣
e

= 1

2

[
pl

E − pl
P

�x1,e
+ p l

E − p l
P

�x1,e

]
= 1

2

∂(pl + p l)

∂x1

∣∣∣∣
e

, (5.47)

and, therefore, from Equation 5.39

Ruf1,e = 1

2

∂(pl − p l)

∂x1

∣∣∣∣
e

= ∂p′
sm

∂x1

∣∣∣∣
e

, (5.48)

where

p′
sm = 1

2
(pl − p l). (5.49)

The suffix sm here stands for smoothing pressure correction.
8. Repeating items 4, 5, 6, and 7 at other cell faces, we obtain

Ruf1,w = ∂p′
sm

∂x1

∣∣∣∣
w

, Ruf2,n = ∂p′
sm

∂x2

∣∣∣∣
n

, Ruf2,s = ∂p′
sm

∂x2

∣∣∣∣
s

. (5.50)

Thus, substituting these equations in Equation 5.31, it follows that

ṁR = AE
∂p′

sm

∂x1
�x1

∣∣∣∣
e

− AW
∂p′

sm

∂x1
�x1

∣∣∣∣
w

+ AN
∂p′

sm

∂x2
�x2

∣∣∣∣
n

− AS
∂p′

sm

∂x2
�x2

∣∣∣∣
s

. (5.51)

9. In evaluating coefficients AE , AW , AN , and AS, we need AP coefficients
at the cell faces (see Equation 5.29). However, these can be evaluated by
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one-dimensional averaging as

APuf1
e = 1

2

(
APu

P + APu
E

)
,

APuf2
n = 1

2

(
APu

P + APu
N

)
, (5.52)

where APu = APu1 = APu2 on collocated grids.

These derivations show that Equations 5.30 and 5.31 can be replaced by Equa-
tions 5.34 and 5.51, respectively. Thus, the mass-conserving pressure-correction
equation (5.25) can be effectively written as

1

r

∂

∂x1

{
ρl+1 r α �V

APuf1

∂p′
m

∂x1

}
+ 1

r

∂

∂x2

{
ρl+1 r α �V

APuf2

∂p′
m

∂x2

}

= ∂(ρ)

∂t
+ 1

r

∂

∂x1

{
r ρl+1 u1

l
}+ 1

r

∂

∂x2

{
r ρl+1 u2

l
}

−
[

1

r

∂

∂x1

{
ρl+1 r α �V

APuf1

∂p′
sm

∂x1

}
+ 1

r

∂

∂x2

{
ρl+1 r α �V

APuf2

∂p′
sm

∂x2

}]
.

(5.53)

This equation represents the appropriate form of the mass-conserving pressure-
correction equation on collocated grids.

5.2.4 Further Simplification

It is possible to further simplify Equation 5.53. To understand this simplification,
consider, for example, the grid disposition near the west boundary as shown in
Figure 5.4. When computing at the near-boundary node P (2, j), the pressure
gradient ∂p/∂x1|P must be evaluated in the momentum equation for velocity u1,P.
This will require knowledge of the boundary pressure pb = p (1, j). On collocated
grids, this pressure is not known and, therefore, is evaluated by linear extrapolation
from interior flow points. Thus,

pb = LbE

LPE
pP − LbP

LPE
pE, (5.54)

where L denotes length. The same procedure is adopted at Nb and Sb. Now, assuming
that the pressure variation near a boundary is locally linear in both x1 and x2

directions, it follows that

pb − pb = pP − pP or p′
sm,b = p′

sm,P, (5.55)
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E

2, j

2, j + 1

3, j1, jq

Φ

2, j − 1

θ
Nb

b

Sb

1, j

N

S

i = 1

P Figure 5.4. West boundary, i = 1.

and, therefore,

∂p′
sm

∂x1

∣∣∣∣
b

= ∂p′
sm

∂n

∣∣∣∣
b

= 0. (5.56)

The same condition is also applicable to p′
m (see Equation 5.33). Now, Equa-

tion 5.53 shows that multipliers of gradients of p′
m and p′

sm are identical and, since
the boundary conditions for these two variables are also identical, we may write the
mass-conserving pressure correction equation in the following form:

1

r

∂

∂x1

{



p′
1

∂p′

∂x1

}
+ 1

r

∂

∂x2

{



p′
2

∂p′

∂x2

}

= ∂(ρl+1)

∂t
+ 1

r

∂

∂x1

{
r ρl+1 u l

1

}+ 1

r

∂

∂x2

{
r ρl+1 u l

2

}
, (5.57)

where 

p′
1 = ρl+1 r α �V/APuf1 and 


p′
2 = ρl+1 r α �V/APuf2. Equation 5.57

must be solved with the following boundary condition:

∂p′

∂n

∣∣∣∣
b

= 0, (5.58)

where the total pressure correction p′ is given by

p′ = p′
m + p′

sm, (5.59)

and the discretised form of Equation 5.57 is

AP p′
P = AE p′

E + AW p′
W + AN p′

N + AS p′
S − ṁP, (5.60)

where ṁP is given by Equation 5.34 and the coefficients by Equation 5.29. In
passing we note that Equation 5.57 for collocated grids has great resemblance
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to Equation 5.32, which is applicable to staggered grids, although the dependent
variables have different meanings.

5.2.5 Overall Calculation Procedure

The sequence of calculations on collocated grids is as follows.

1. At a given time step, guess the pressure field pl
i, j . This may be the pressure field

from the previous time step.
2. Solve (see the next section) the momentum equations (5.12) once each for

� = u1 and u2 with problem-dependent boundary conditions. Designate the
velocity fields so generated by ul

1 and ul
2.

3. Form ṁi, j (Equation 5.34) using multidimensional7 interpolations of cell-face
velocity. Now, solve Equation 5.60 with boundary condition (5.58) iteratively
to yield the total pressure-correction p′

i, j field. The number of iterations may
not exceed 5 to 10.

4. Recover the mass-conserving pressure correction via Equation 5.59. Thus,

p′
m,i, j = p′

i, j − p′
sm,i, j = p′

i, j − 1

2

(
pl

i, j − pl
i, j

)
, (5.61)

where p l
i, j is evaluated from Equation 5.43.

5. Correct the pressure and velocity fields according to

pl+1
i, j = pl

i, j + β p′
m,i, j , 0 < β < 1, (5.62)

ul+1
1,i, j = ul

1,i, j − r α �x2

APu1

∣∣∣∣
i, j

(p′
m,i+1/2, j − p′

m,i−1/2, j ), (5.63)

ul+1
2,i, j = ul

2,i, j − r α �x1

APu2

∣∣∣∣
i, j

(p′
m,i, j+1/2 − p′

m,i, j−1/2). (5.64)

Note that APu1 = APu2.
6. Solve the discretised equations (5.12) for all other scalar �i, j relevant to the

problem at hand.
7. Check convergence through evaluation of residuals (see the next section) for

momentum and scalar � equations. Care is, however, required in calculation of
mass residuals as will be discussed shortly.

8. If the convergence criterion is not satisfied, treat pl+1 = pl , �l+1 = �l and
return to step 2

9. To execute the next time step, set all �o = �l+1 and return to step 1.

7 Although multidimensional interpolation is prescribed, in actual computations, one-dimensional
interpolations suffice in most applications.
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5.3 Method of Solution

5.3.1 Iterative Solvers

Equations 5.12 for any � and Equation 5.60 for p′ have the same form, which for
any node (i, j) can be generalised as

(APi, j + Spi, j )�
l+1
i, j = AEi, j �

l+1
i+1, j + AWi, j �

l+1
i−1, j

+ ANi, j �
l+1
i, j+1 + ASi, j �

l+1
i, j−1 + Sui, j , (5.65)

where Su = D, AP = AE + AW + AN + AS, and Sp = (ρo �V /�t). Note
that Su and Sp can be further augmented to effect underrelaxation, boundary
conditions, and to some extent domain complexity. If there are I N nodes in
the i direction and J N nodes in the j direction, Equation 5.65 represents a set
of (I N − 2) × (J N − 2) equations for the interior nodes for each �. These
equations can be solved by matrix-inversion-type direct methods. However, in
multidimensional convection, iterative methods are usually preferred in which
Equation 5.65 is solved sequentially for each �. There are two extensively used
methods of this type: GS and alternating direction integration (ADI).

Gauss–Seidel (GS) Method
In the GS method, for each �, coefficients AE, AW, AN , AS, Su, and Sp
are evaluated based on � values at iteration level l for each node (i, j), i = 2
to I N − 1 and j = 2, J N − 1. Then the nodal value is updated in a double DO loop:

DO 1 J = 2, JN-1
DO 1 I = 2, IN-1
ANUM = AE (I, J)*FI(I+1, J) + AW(I, J)*FI(I - 1, J)

+ AN(I, J)*FI(I, J + 1) + AS(I, J)*FI(I, J - 1)
+ SU(I, J)

ADEN = AP(I, J) + SP(I, J)
FI(I, J) = ANUM / ADEN

1 CONTINUE

This method is sometimes called a point-by-point method because each node
(i, j) is visited in turn. Note that as one progresses from i = 2 and j = 2, some
of the neighbouring � values are already updated whereas others still retain their
values at iteration level l. Thus, the net evaluation is really a mixed evaluation. Yet,
at the end of the DO loop, values at all nodes are treated as having (l + 1)-level
values. Convergence is declared when the residuals (see the next subsection) fall
below a certain low value. This iterative method, though very robust and simple to
implement, is very slow to converge.
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ADI Method
The ADI method is a line-by-line method in which Equation 5.65 is first solved for
all j = constant lines (say). This is called the j-direction sweep. The solution thus
obtained may be called the �l+1/2 solution. Now, using this solution, Equation 5.65
is again solved for i = constant lines to generate the �l+1 solution. This is called
the i-direction sweep. The implementation details are as follows. For the j sweep,
Equation 5.65 is written as

(APi, j + Spi, j )�
l+1/2
i, j = AEi, j �

l+1/2
i+1, j + AWi, j �

l+1/2
i−1, j + S Ji, j , (5.66)

where

S Ji, j = ANi, j �
l
i, j+1 + ASi, j �

l
i, j−1 + Sui, j . (5.67)

Now, dividing by coefficient of �i, j , Equation 5.66 for fixed j can also be written as

�
l+1/2
i = ai �

l+1/2
i+1 + bi �

l+1/2
i−1 + ci , i = 2, . . . , I N − 1, (5.68)

where ai = AEi, j /(APi, j + Spi, j ), bi = AWi, j /(APi, j + Spi, j ), and ci = S Ji, j/

(APi, j + Spi, j ).
It is clear that Equation 5.68 can be solved using TDMA for each j = 2 to

J N − 1 to complete the j sweep. To execute the i sweep, Equation 5.65 is again
written as

(APi, j + Spi, j )�
l+1
i, j = ANi, j �

l+1
i, j+1 + ASi, j �

l+1
i, j−1 + SIi, j , (5.69)

where

SIi, j = AEi, j �
l+1/2
i+1, j + AWi, j �

l+1/2
i−1, j + Sui, j . (5.70)

Equation 5.69 can again be cast in the form of Equation 5.68 and subsequently
solved for each i = constant line by TDMA. The two sweeps complete one iteration.
Thus, in the ADI method, the domain is swept twice per iteration. In spite of this,
the procedure proves to be much faster than the GS procedure. In Chapter 9, some
additional methods for convergence enhancement are described.

5.3.2 Evaluation of Residuals

The convergence of the iterative procedure is checked by evaluating the imbalance
in Equation 5.12. Thus, for each �, we evaluate

R� =
⎡
⎣ ∑

all nodes

{
AP �P −

∑
k

Ak �k − D

}2
⎤
⎦

0.5

. (5.71)

When the maximum value of R� among all �s is less than the convergence criterion
(typically 10−5), the iteration is stopped. Often, R� is normalized with a reference
quantity specific to a problem having units of AP �.
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Special care is, however, needed for the mass residual. On staggered grids, the
mass residual Rm is checked via Equation 5.30 [51]. That is,

Rm =
[ ∑

all nodes

(ṁP)2

]0.5

. (5.72)

However, on collocated grids, one cannot use this equation directly because ṁi, j �= 0
even at convergence. Therefore, Equation 5.72 is written as

Rm =
⎡
⎣ ∑

all nodes

(
AP p′

m,i, j −
∑

k

Ak p′
m,k

)2
⎤
⎦

0.5

, (5.73)

where AP and Ak are coefficients of the pressure-correction equation. It will
be recognized that this equation simply represents the discretised version of the
left-hand side of Equation 5.32 (or see Equation 5.28 with ṁR = 0). Thus, Rm is
evaluated after p′

m,i, j is recovered in step 4 of the calculation procedure. This is
an important departure from the staggered-grid practice that a casual reader may
overlook.

5.3.3 Underrelaxation

Global Relaxation
As mentioned in Chapter 2, in steady-state problems (�t → ∞), underrelaxation
is effected by augmenting Su and Sp as

Sui, j = Sui, j + B �l
i, j , Spi, j = Spi, j + B, B = (1 − α)

α
(APi, j + Spi, j ),

(5.74)

where α is the underrelaxation factor and l is the iteration level. The value of α is
the same for all nodes but it may be different for different �s. This is called global,
or constant, underrelaxation.

False Transient
In multidimensional problems, underrelaxation is often effected in another way.
Thus, consider a steady-state problem in which �t = ∞ and, therefore, the transient
term is zero. However, one can imagine that the steady state is achieved following
a transient and each time step is likened to a change in iteration level by one. In
this case, �o

i, j may be viewed as �l
i, j and the time step �t as the false-transient

step. Then, combining Equation 5.65 with Equation 5.74, we can deduce that the
resulting equation may be viewed as one in which

αeff,i, j = APi, j + Spi, j

APi, j + Spi, j + (ρo �V/�t)i, j
, (5.75)
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where the suffix eff is added for two reasons. Firstly, note that this equation arises
out of comparison with Equation 5.74; secondly, αeff is not a global constant but
will vary for each node (i, j). In fact, this variation also proves to be most appropri-
ate. This can be understood as follows. When APi, j + Spi, j is small, the change in
� from iteration level l to l + 1 will be large (see Equation 5.65). It is precisely this
large change that is to be controlled by underrelaxation. Equation 5.75 shows that
αeff is indeed small when APi, j + Spi, j is small. Conversely, when APi, j + Spi, j

is large, the implied change in � is small; therefore, we can afford a larger value
of α. Thus, underrelaxation through the false-transient method is proportionate to
the requirement. Of course, the smaller the value of the false �t , the smaller is the
value of the estimated αeff.

Although in most nonlinear problems use of constant α suffices, the false-
transient method needs to be invoked when couplings between equations for dif-
ferent �s are strong or when the source terms for a given � vary greatly over a
domain or when the initial guess of different variables is very poor. Most practi-
tioners invoke the false-transient method when the global underrelaxation method
fails.

5.3.4 Boundary Conditions for Φ

In fluid flow and convective transport, five types of boundaries are encountered:
inflow, outflow or exit, symmetry, wall, and periodic. At all these boundaries, mainly
three types of conditions are encountered:

1. �b specified,
2. ∂�/∂n|b specified, and
3. ∂2�/∂n2|b specified,

where n is normal to the boundary. We shall discuss each boundary type separately.

Inflow Boundary
At the inflow boundary, values of all variables are specified and are therefore
known.8 Thus, at a west boundary (see Figure 5.4), for example, we can write

Su2, j = Su2, j + AW2, j �1, j , Sp2, j = Sp2, j + AW2,J , AW2, j = 0.

(5.76)

8 Care is needed in specifying inflow conditions for turbulence variables e and ε. Typically, ein =
(T u uin)2, where T u is the prescribed turbulence intensity. Now, the dissipation is specified through
the definition of turbulent viscosity. Thus, εin = Cµ ρ e2/(µ VISR), where the ratio VISR = µt/µ

is assumed (typically, of the order of 20 to 40). In practical applications, T u and VISR are rarely
known and, therefore, the analyst must assume their magnitudes.
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Figure 5.5. Exit and periodic boundaries.

Wall Boundary
At the wall, either �b or its flux qb is specified. For the first type, Equation 5.76
applies. If flux is specified, then at the west boundary again,

Su2, j = Su2, j + A1, j q1, j , �1, j = A1, j q1, j

AW2, j
+ �2, j , AW2, j = 0,

(5.77)

where A1, j = r j �x2 j is the boundary area.9

Symmetry Boundary
At this boundary, there is no flow normal to the boundary and no diffusion either.
Thus, with reference to Figure 5.4, for a scalar �, q1, j = 0.0. For vectors, the normal
velocity component u1 (1, j) = 0 and u2 (1, j) = u2 (2, j). In all cases, AW2, j = 0.

Outflow Boundary
The outflow boundary is one where the fluid leaves the domain of interest. The
boundary condition at the outflow or exit plane is most uncertain. To understand
the main issues involved, consider Figure 5.5(a) in which de represents the outflow
boundary. Now to affect the boundary condition, we may assume that the Peclet
number (u1 �x1/
)|b is very large. In this case, the AE coefficient of all near-
boundary nodes will be zero and, therefore, no explicit boundary condition �b or
∂�/∂n|b is necessary. In many circumstances, this assumption may not be strictly
valid. One way to overcome this difficulty is to shift boundary de further down-
stream than required in the original domain specification. Thus, one carries out
computations over an extended domain and effect AE = 0 at the new location of
de. A third alternative is to assume that a fully developed state prevails at de so that
both the first as well as the second normal derivatives are zero. Most researchers
prefer to set the second-order derivative to zero and extract �b by extrapolation
while the transport equation is solved with AE = 0.

9 In turbulent flows, the wall boundary requires special attention when the HRE form of the e–ε

model is employed. This matter will be taken up in the next section.
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Since none of these alternatives can be relied upon, it is advisable to ensure
that the overall mass balance for the domain is maintained throughout the iterative
process. This means that the exit-mass flow rate must equal the known inflow
rate. Thus, after effecting the boundary condition (marked by superscript *, say)
according to any of the alternatives just described, it is important to correct the
boundary velocities as

u1b = u∗
1b F, u2b = u∗

2b F, F = ṁin

/∑
ṁ∗

exit, (5.78)

where ṁ∗
exit is evaluated from the starred velocity boundary condition.

Periodic Boundary
Figure 5.5(b) shows flow between parallel plates with attached fins. In this case,
after an initial development length, the flow between two fins will repeat exactly.
Such a flow is called periodically fully developed flow and the periodic boundary
condition will imply

�1, j = �I N ,J N+1− j = 0.5 (�2, j + �I N−1,J N+1− j ),

u2 (1, j) = −u2 (I N , j) = 0.5 (u2 (2, j) − u2 (I N−1,J N+1− j)), (5.79)

where I N and J N are the total number of nodes in the i and j directions, respec-
tively. Note that in this boundary condition specification, the u2 velocity has anti-
periodicity whereas all other �s have even periodicity.

5.3.5 Boundary Condition for p′
m

The boundary condition for p′
m is given by Equation 5.33. The reason for this can

be understood from step 3 of the calculation procedure. When this step is executed,
the ul

i fields along with their boundary values ul
i,b are already known. Now, when

the p′ equation is solved, it is assumed that these boundary values are correct and,
therefore, require no further corrections.

If we now consider Equation 5.12 for � = ul+1
1 and � = ul

1 and subtract the
latter equation from the former, with u′

1 = ul+1
1 − ul

1, we have

AP u′
1,P =

∑
Ak u′

1,k − �V
∂p′

m

∂x1

∣∣∣∣
P

,

where ks represent neighbours of P. Also,
∑

Ak u′
1,k = 0 through our assumption

introduced in Section 5.2.3. This explains the form of velocity correction introduced
in Equation 5.63 for an interior node. The same arguments apply to the u2 velocity
corrections given in Equation 5.64.

Now, if the preceding equation is written for the boundary nodes (P = b),
clearly u′

1,b = 0 because no corrections are to be applied to the boundary velocities.
Therefore, ∂p′

m/∂x1|b = 0. This is boundary condition (5.33). In discretised form,
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Figure 5.6. Node tagging.

the boundary condition is implemented by setting the boundary coefficient of the
pressure-correction equation to zero for the near-boundary node.

Sometimes, we may have a boundary on which pressure is specified and, there-
fore, remains fixed. For such boundaries, p′

m,b = 0.

5.3.6 Node Tagging

In Chapter 2, we emphasised that the introduction of Su and Sp can facilitate writing
of generalised computer codes by capturing a large variety. In multidimensional
codes, further variety can be captured by tagging each node of the domain with a
number. This is intended to facilitate handling of

1. different types of boundary conditions over different portions of the same phys-
ical boundary and

2. domains that are not perfect rectangles.

Figure 5.6 shows an arbitrary domain a-b-c-d-e-f-g-h-i-j, which we shall call the
domain of interest. However, we regard it as a part of a rectangular domain a-m-n-l
with nodes i = 1 to I N and j = 1 to J N . This will create areas b-c-d-m, f-g-n-e,
and j-l-h-i, which are not of interest. We term them as inert or blocked areas. Now,
coordinates x1i and x2 j are chosen so that the implied cell-face locations exactly
coincide with the boundaries of the domain of interest. This ensures that our domain
of interest is filled with full (not partial) control volumes as shown in the figure.
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Node tagging is now accomplished using the following convention:

1. NTAG (I, J) = 0 identifies all nodes interior to the domain. That is, nodes falling
on the boundaries a-m, m-n, n-l, and l-a are excluded.

2. NTAG (I, J) = 1 identifies all interior nodes in the inert areas.
3. NTAGW (I, J) = 11, 12, 13, 14, 15 identifies nodes adjacent to the WEST

boundary with 11 for inflow boundary, 12 for symmetry boundary, 13 for exit
boundary, 14 for wall boundary, and 15 for periodic boundary. NTAGW is zero
for all other nodes.

4. Similarly, NTAGE (I , J) = 21, 22, 23, 24, 25 identifies nodes adjacent to the
EAST boundary, NTAGS (I , J) = 31, 32, 33, 34, 35 identifies nodes adjacent to
the SOUTH boundary, and NTAGN (I, J) = 41, 42, 43, 44, 45 identifies nodes
adjacent to the NORTH boundary.

Using this convention (which is quite arbitrary), NTAGW will have a fi-
nite number for i = 2 and j = 2, 3, . . . , 7 (boundary a-b) and for i = 6 and
j = 8, 9, . . . , J N − 1 (boundary c-d). Similarly, NTAGN will be finite for j = 7
and i = 2, 3, 4, 5 (boundary b-c), for j = J N − 1 and i = 6, 7, 8, 9, and again for
j = 7 and i = 10, 11, . . . , I N− 1 (boundary f-g). NTAGS and NTAGE can be
similarly specified.

The choice of numbers 11, 12, 13, etc. in NTAGW is arbitrary but brings one
advantage. That is, for near-west boundary nodes, NTAGW/10 = 1 in FORTRAN
and, therefore, a WEST boundary is readily identified. Similarly, NTAGN/40 = 1
readily identifies a NORTH boundary. Once this identification is done, the actual
numbers (11, 12, etc.) identify the type of boundary condition and therefore Sui, j

and Spi, j for the near-boundary nodes can be set up. This facilitates specification of
different boundary conditions at the same physical boundary. Thus, if boundary a-b
is a wall, a part of it may be insulated and the rest may receive heat flux. Similarly,
with respect to mass transfer, a part may be inert but the rest may experience a finite
mass transfer flux.

Finally, at the inert or blocked node where NTAG (I, J) = 1, one simply specifies

Sui, j = 1030 �desired, Spi, j = 1030. (5.80)

Examination of Equation 5.65 will show that since APi, j can never be very large,
these settings render �i, j = �desired at the inert nodes. In Figure 5.6, the inert
regions are outside the domain of interest. However, it is easy to appreciate that
one can even have inert regions that are enclosed by the overall domain of interest
(hence the term blocked region), as shown in Figure 5.7. The figure also shows
how a domain with irregular boundaries may be specified by node tagging. Here,
the irregular boundary is approximated by a staircase-like zigzag boundary.10 Such

10 The accuracy of the solution will of course depend on the number of steps into which the true
boundary is subdivided.
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an approximation of the true boundary is permissible when the flow is in the x3

direction (i.e., u3 is finite but u1 = u2 = 0 as in the case of laminar fully developed
flow in a duct) because the replacement does not imply a rough wall.11 If, however,
the velocity components u1 and u2 were finite, it would be advisable to map the
domain by curvilinear or unstructured grids (see Chapter 6) so that the staircase
boundary approximation does not interfere with the expected fluid dynamics (see
Exercises 16 and 17).

Finally, note that the exit and wall boundaries may be specified in more than one
way, as discussed in the previous subsection. Thus, at a wall one may specify
temperature or heat flux. One can introduce further identifying tags for each
type.

5.4 Treatment of Turbulent Flows

5.4.1 LRE Model

In multidimensional elliptic flows, the concept of mixing length is not very useful.
This is because it is difficult to invent a three-dimensional (3D) algebraic prescrip-
tion for the mixing length. As was learnt in the previous chapter, however, the LRE
e–ε model is general and does not require any input that depends on the distance

11 The replacement will also be permissible in a pure conduction problem.
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from the wall. The 2D elliptic version of this model can be described via Equation 5.1
for � = e and ε∗ with the following definitions of the source terms [9]:

Se = G − ρ ε∗, (5.81)

Sε∗ = ε∗

e

[
C1 G − C2 ρ ε∗]+ Eε∗, (5.82)

where

G = µt

[
2

(
∂u1

∂x1

)2

+ 2

(
∂u2

∂x2

)2

+
(

∂u2

∂x1
+ ∂u1

∂x2

)2
]

, (5.83)

ε∗ = ε − 2ν

[(
∂
√

e

∂x1

)2

+
(

∂
√

e

∂x2

)2
]

, (5.84)

Eε∗ = 2ν νt

[(
∂2u1

∂x2
1

)2

+ 2

(
∂2u1

∂x1 ∂x2

)2

+
(

∂2u1

∂x2
2

)2

+
(

∂2u2

∂x2
1

)2

+ 2

(
∂2u2

∂x1 ∂x2

)2

+
(

∂2u2

∂x2
2

)2
]

. (5.85)

The expressions for C1 and C2 are the same as those given in Chapter 4. The
LRE e−ε∗ model permits use of the e = ε∗ = 0 condition at a wall boundary.
Although this is a distinct advantage of the model, accurate predictions require a
very large number of nodes, as was learnt through boundary layer predictions. In
two dimensions, if more than one boundary is a wall then the number of nodes
required becomes very large indeed. This is because, to resolve the inner layer
near a wall, which typically spans to y+ = y uτ /ν = 100, one may need 60–80
nodes with the first node as close as y+ = 1 whereas the outer layer may require
no more than 20–30 nodes. Physically, the inner layer occupies a very thin region
near a wall.12 Thus, computations with the LRE model in 2D and 3D elliptic flows
can be quite expensive. In the interest of economy of computations, therefore, it is
desirable if an adaptation can be made that restricts calculations only to the outer
layers.

5.4.2 HRE Model

In a large majority of flow situations, as is well known, the inner layer exhibits near
universality with respect to velocity and temperature profiles – the so-called laws

12 In a fully developed flow in a pipe (radius R), for example, R+ = R uτ /ν = (Re/2)
√

f/2. Using
f = 0.046 Re−0.2, we estimate that at Re = 50,000 (say), R+ = 1,285. This shows that the inner
layer is less than 10% of the radius.
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of the wall. In the two-layer approach, these laws are given by13

u+ =

⎧⎪⎨
⎪⎩

u

uτ

= y+, y+ < 11.6,

1

κ
ln
[
E y+] , y+ > 11.6,

(5.86)

where κ = 0.41, E = 9.072, and wall-friction velocity uτ = √
τw/ρ. Similarly, the

temperature law is given by

T + = − (T − Tw)ρ C p uτ

qw
= Prt (u+ + P F), (5.87)

where Prt = 0.9 and

P F =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Pr

Prt
− 1

)
u+, y+ < 11.6,

9.24

[ (
Pr

Prt

)0.75

− 1

)]

×
[

1 + 0.28 exp

(
−0.007

Pr

Prt

)]
, y+ > 11.6.

(5.88)

These specifications are empirical but, in the range 30 < y+ < 100, they are
reasonably accurate. One can thus exploit this near universality to eliminate the
inner layer almost completely from the calculations and compute only in the outer
layers. In the outer layers, turbulence is vigorous and Ret = µt/µ is large (hence
the acronym HRE for high Reynolds number model) so that ε∗ → ε and, therefore,
the source terms are given by

Se = G − ρε, Sε = ε

e
[C1 G − C2 ρ ε] , (5.89)

where C1 = 1.44 and C2 = 1.92. The task now is to modify our discretised equa-
tions for the near-wall boundary node P such that the implications of the laws of the
wall are embodied in the equations.14 To achieve this goal, we note the following
two characteristics of the 30 < y+ < 100 region in which the near-wall node P is
assumed to have been placed. These are

uτ = C1/4
µ

√
e, (5.90)

G = ρ ε. (5.91)

Let node P be adjacent to south node b (see Figure 5.8). We shall consider each
variable in turn.

13 In all derivations in this subsection, distance y and x2 are used interchangeably.
14 In the literature, this is called the wall function treatment [39].
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Figure 5.8. Wall function treatment.

� = u1

For an impermeable wall, Cs = 0 and, therefore, AS = µeff �x1/yP. Also, the
no-slip condition requires that u1b = 0 at the stationary wall. Thus

τw = µeff
∂u1

∂y

∣∣∣∣
y=0

= µeff

yP
(u1P − u1b) = µeff

yP
u1P. (5.92)

Now, replacing u1P from Equation 5.86, we can show that

µeff

yP
= τw

u1P
= ρ κ uτ

ln (E y+
P )

, (5.93)

where y+
P = yP uτ /ν. Therefore, using Equation 5.90, we get

µeff

yP
=

⎧⎪⎪⎨
⎪⎪⎩

µ

yP
, y+ < 11.6,

ρ κ C1/4
µ

√
eP

ln (E yP C1/4
µ

√
eP/ν)

, y+ > 11.6.

(5.94)

Thus, for variable � = u1, for the near-wall node P, we may set

Su = Su + 0, Sp = Sp + µeff

yP
�x1, AS = 0. (5.95)

� = e
A further characteristic of the inner layer is that the shear stress through the layer
is constant and hence equals τw. Also, experimental data demonstrate that in the
30 < y+ < 100 region, ∂e/∂y  0. Therefore, AS = 0. The implications of the
law of the wall thus can be absorbed through redefinition of Se for point P:

Se = GP − ρ εP, (5.96)

where

GP  µeff

(
∂u1

∂y

)2

= µeff

(
u1P

yP

)2

= τw
∂u1

∂y
(5.97)



P1: IWV
0521853265c05 CB908/Date 0 521 85326 5 May 20, 2005 12:28

132 2D CONVECTION – CARTESIAN GRIDS

and, using Equation 5.91,

εP = 1

yP

∫ yP

0
ε dy = τw

ρ yP

∫ yP

0

∂u1

∂y
dy = u2

τ u1P

yP
(5.98)

or, using Equations 5.90 and 5.93,

εP = C3/4
µ e3/2

P

κ yP
ln (E y+

P ). (5.99)

It is now easy to effect the boundary condition via

Sue = Sue + µeff u2
1P �VP

y2
P

, (5.100)

Spe = Spe + ρ C3/4
µ e1/2

P

κ yP
ln (E y+

P )�VP. (5.101)

� = ε

To evaluate εP, we combine Equations 5.91 and 5.97 so that

εP = τw

ρ

∂u1

∂y
= u2

τ

∂u1

∂y
. (5.102)

But, from Equation 5.86, ∂u1/∂y = uτ /(κ y). Therefore,

εP = u3
τ

κ yP
= C3/4 e3/2

P

κ yP
. (5.103)

To effect this condition, we set

Suε = 1030 εP, Spε = 1030. (5.104)

� = T
In this case, AS = 
eff �x1/yP, where 
eff = keff/C p. Again, we set AS = 0 and
absorb the boundary condition via an augmented source. Thus

SuT = SuT + 
eff �x1

yP
(Tb − TP) = SuT + qw

C p
�x1. (5.105)

Substituting for (Tb − TP) from Equation 5.87, it follows that


eff

yP
= ρ uτ

Prt (u+
1P + P F)

. (5.106)

Thus, if qw is specified, we set

SuT = SuT + qw

C p
�x1, SpT = SpT + 0, (5.107)
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and recover Tb from Equation 5.105. Similarly, if the wall temperature Tb is specified
then

SuT = SuT + 
eff �x1

yP
Tb, SpT = SpT + 
eff �x1

yP
, (5.108)

and qw is recovered from Equation 5.105. For further refinements of the wall-
function approach, see references [41, 69].

� = ωk

It is not clear if universal mass transfer laws exist for all mass transfer rates. Fol-
lowing theory developed by Spalding [73], however, it is possible to show that


eff

yP
= ρ uτ

Prt (u+
1P + P F)

ln (1 + B)

B
, (5.109)

where the Spalding number B is given by

B = ωk,P − ωk,b

ωk,b − ωk,T
, (5.110)

and ωk,T is the mass fraction deep inside the wall from where mass transfer is taking
place. Note that as B → 0, ln (1 + B) → B. Further, P F is still given by Equation
5.88 but with Pr replaced by Schmidt number Sc. All other adjustments are the
same as those for the temperature variable.

5.5 Notion of Smoothing Pressure Correction

It is important to consider the notion of smoothing pressure correction introduced
in our analysis of the collocated-grid calculation procedure. This is because, in
the original SIMPLE-staggered grid procedure, such a smoothing correction is not
required. However, its introduction is vital if zigzag pressure prediction is to be
avoided on collocated grids, particularly when coarse grids are used. To understand
the importance of smoothing correction, we consider computation of laminar flow
in a square cavity (see Figure 5.9) of side L that is infinitely long in the x3 direction.
The top side (the lid) of this cavity is moving in the positive x1 direction with
velocity Ulid (say). Because of the no-slip condition, the linear lid movement sets
up fluid circulation in the clockwise direction. In this case, steady-state equations
for � = u1, u2, and p′ need to be solved.

Figure 5.10 shows the computed distribution of pressure for Re = Ulid L/ν =
100. In Figure 5.10(a), solutions obtained with a 15 × 15 grid are shown at the ver-
tical midplane (x1/L = 0.5). The solutions are obtained using both staggered and
collocated grids with identical grid dispositions. However, in the latter, smoothing
pressure correction is not applied (see step 4 of the calculation procedure). It is clear
that whereas the staggered-grid procedure produces a smooth pressure distribution,
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Figure 5.9. Square cavity with a moving lid.

the predicted pressure on the collocated grid is zigzag. Note that the zigzagness
is most pronounced in regions where the staggered-grid pressure distribution con-
siderably departs from linearity. Figure 5.10(b) shows the results obtained with a
41 × 41 grid. Notice that the pressures predicted on both grids are nearly identical
and smooth. This suggests that pressure smoothing is in fact not required when fine
grids are used. In Figure 5.10(c), the coarse-grid solutions are repeated but now
the smoothing pressure correction is applied. It is seen that the predicted pressure
distribution on collocated grids is now smooth though not in exact agreement with
the staggered-grid pressure distribution because of the coarseness of the grid and
also because p is evaluated by multidimensional averaging.

Then, what is the role of the smoothing pressure correction? This can be under-
stood from definition (5.49). The smoothing correction represents the difference
between the point value of pressure p and the control-volume-averaged pressure
p. The latter is defined by Equation 5.43 as the average of linearly interpolated
pressures in the x1 and x2 directions. Thus, p′

sm can be finite only when spatial
variation of pressure p multidimensionally departs from linearity. This is the case
at the midplane of the square cavity. On coarse grids, we observe zigzagness if
smoothing is not applied. However, when grids are refined, p′

sm → 0. That is, as a
continuum is approached, no smoothing should be required. The role of smoothing
pressure correction is thus simply to predict smooth pressure distribution on coarse
grids.

We now recall the quantity λ1 (p − p) introduced in the normal stress expression
in Chapter 1. It was stated in that chapter that λ1 is trivially zero in a continuum but
is finite in discretised space. We have recovered λ1 = 0.5 in our definition of p′

sm.
But, as the grid size is refined, one approaches a continuum and, therefore, λ1 can
be set to zero to predict smooth pressure distributions as shown in Figure 5.10(b).

As a corollary, we may now view pressure zigzagness as a spatial counterpart of
the oscillating compressible sphere of isothermal gas explained by Schlichting [65].
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Figure 5.10. Pressure variation with
and without smoothing.
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On collocated grids, when density is constant and steady state prevails (as in our
calculation of the square cavity problem), ṁP = ρ ∇ �V and thus ṁ P �= 0, as was
recognized in Section 5.3.2. Now, as our control volume is fixed, ∇ �V �= 0 (which
implies rate of volume change) creates dissipation in the system. It is this dissi-
pation that generates p different from p. We had anticipated this result in Chapter
1. The need for p′

sm = 0.5 (p − p) discovered through our discretisation of equa-
tions applicable to a continuum is therefore not surprising. In summary, therefore,
introduction of p′

sm simply accounts for the dissipation introduced in the system.
Further discussion of smoothing pressure correction can be found in [16, 17].

Finally, we note that equation 5.41 suggests that px1,P is a solution to the dis-
cretised version of

∂2 p

∂x2
1

∣∣∣∣
P

= 0, (5.111)

and, similarly, px2,P (Equation 5.42) is a solution to the discretised version of

∂2 p

∂x2
2

∣∣∣∣
P

= 0. (5.112)

These deductions were also anticipated in Chapter 1.
Before considering applications of our SIMPLE-collocated procedure, it would

be of interest to examine the effect of introduction of p′
sm on the convergence rate

of the solution procedure. To do this, we plot variation of momentum and mass
residuals with iteration number l for the case of 41 × 41 grid solutions shown in
Figure 5.10(b). Figure 5.11 shows these variations for staggered and collocated
grids. The initial guess and the underrelaxation factors are identical in the two
computations. The figure shows that the convergence histories are almost identi-
cal on both types of grids. Further, computations were stopped when momentum
residuals fell below 10−5. At this stage of convergence, the mass residuals are seen
to be smaller by an order of magnitude. Thus, we may conclude that our SIMPLE-
collocated grid procedure is successful in mimicking the SIMPLE-staggered grid
procedure in all respects.

The convergence rate of an iterative procedure greatly depends on the ini-
tial guess for the relevant variables. Among the different variables, the initial
guess for pressure is perhaps the most difficult to provide. Further, in deriving
the pressure-correction equation, quantities

∑
Ai u′

i and
∑

Ai v
′
i are set to zero.

Thus, the pressure-correction equation is only an approximate one. In spite of this,
computational experience shows that the predicted pressure-correction distribution
provides very good velocity corrections, which are proportional to the pressure-
correction gradient (see Equations 5.63 and 5.64), but a rather poor correction of
pressure itself.
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Figure 5.11. Convergence histories.

To appreciate this experience, we consider a 1D flow through a porous medium15

having porosity ε (= volume of fluid/total volume). Then, the governing mass
conservation and momentum equations are given by

d (ρ∗ u)

d x
= 0, (5.113)

d

d x
(ρ∗ u u) = −d p

d x
+ 2µ∗ d2 u

d x2
− µ∗ ε R u, (5.114)

where ρ∗ = ρ/ε2, µ∗ = µ/ε, and u is the superficial fluid velocity through the
porous medium. The medium resistance parameter R = 1/K , where K is the perme-
ability of the medium. If we assume that fluid density is constant then d u/d x = 0
and the momentum equation will reduce to d p/d x = −µ∗ ε R u. Therefore, taking
ρ = µ = 1, ε = 0.1, and R = 4 × 105 gives the exact solution

u = 1, p = 4 × 105(1 − x/L),

where L is the domain length.
We solve this 1D problem using the 2D computer program given in Appendix C16

in two ways. In Problem 1, the initial guess for pressure is taken from the exact

15 The author is grateful to Prof. D. B. Spalding for recommending this problem for inclusion in this
book.

16 The relevant USER file for this fixed-pressure boundary condition problem is given in Appendix C.
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Table 5.1: Porous medium – Problem 2.

l x/L 0.0 0.25 0.50 0.75 1.0

0 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
1 0.266E+01 0.266E+01 0.106E−02 0.284E−06 0.284E−06
2 0.737E+00 0.737E+00 0.705E+00 0.146E+01 0.146E+01
3 0.114E+01 0.114E+01 0.913E+00 0.919E+00 0.919E+00
4 0.982E+00 0.982E+00 0.974E+00 0.103E+01 0.103E+01
5 0.101E+01 0.101E+01 0.992E+00 0.992E+00 0.992E+00
6 U 0.999E+00 0.999E+00 0.998E+00 0.100E+01 0.100E+01
7 0.100E+01 0.100E+01 0.999E+00 0.999E+00 0.999E+00
8 0.100E+01 0.100E+01 0.100E+01 0.100E+01 0.100E+01
9 0.100E+01 0.100E+01 0.100E+01 0.100E+01 0.100E+01

10 0.100E+01 0.100E+01 0.100E+01 0.100E+01 0.100E+01
11 0.100E+01 0.100E+01 0.100E+01 0.100E+01 0.100E+01
12 0.100E+01 0.100E+01 0.100E+01 0.100E+01 0.100E+01

0 0.400E+06 0.000E+00 0.000E+00 0.000E+00 0.000E+00
1 0.400E+06 0.295E+06 0.283E+06 0.155E+06 0.000E+00
2 0.400E+06 0.266E+06 0.192E+06 0.837E+05 0.000E+00
3 0.400E+06 0.294E+06 0.211E+06 0.993E+05 0.000E+00
4 0.400E+06 0.294E+06 0.202E+06 0.958E+05 0.000E+00
5 0.400E+06 0.298E+06 0.202E+06 0.982E+05 0.000E+00
6 P 0.400E+06 0.299E+06 0.201E+06 0.987E+05 0.000E+00
7 0.400E+06 0.299E+06 0.201E+06 0.993E+05 0.000E+00
8 0.400E+06 0.300E+06 0.200E+06 0.996E+05 0.000E+00
9 0.400E+06 0.300E+06 0.200E+06 0.998E+05 0.000E+00

10 0.400E+06 0.300E+06 0.200E+06 0.999E+05 0.000E+00
11 0.400E+06 0.300E+06 0.200E+06 0.999E+05 0.000E+00
12 0.400E+06 0.300E+06 0.200E+06 0.100E+06 0.000E+00

12 p′
m/p 0.000E+00 0.114E−03 −0.150E−03 0.341E−03 0.000E+00

12 p′
sm/p 0.000E+00 −0.963E−04 0.188E−03 −0.288E−03 0.000E+00

solution given here, but velocity u = 0 at all nodes. In Problem 2, p(1) = 4 × 105

and p (I N ) = 0, but p = 0 at all interior nodes of the domain. Again u = 0 at
all nodes. Thus, in both problems, the guessed velocity is zero and the boundary
pressures are held fixed so that p′ (1) = p′ (I N ) = 0. Relaxation parameters are
taken as α = β = 1.

For Problem 1, by solving for u and p′, the exact solutions (not shown here)
for p and u are obtained in just one iteration although the initial guess for u was
zero. This is because the initial guess for pressure was itself the exact solution and,
therefore, required no correction.

Table 5.1 shows evolutions with iteration number l for Problem 2. Notice that
because of the poor initial guess for pressure, the exact velocity solution is obtained
in eight iterations whereas the correct pressure prediction requires twelve iterations.
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Figure 5.12. Reinforced concrete slab.

Thus, the correct velocity solution is indeed obtained earlier in the iteration process.
The last two rows in the table show values of p′

m/p and p′
sm/p at convergence. They

are indeed small within round-off errors and become even smaller if the iterations
are continued.

The general lesson learnt from the example here is that, in a pure flow problem,
overall convergence rate is controlled by the evolution of the pressure variable for
which there is no exact equation.

5.6 Applications

In this section, a few problems are solved to illustrate the application of the proce-
dure just described. The problems are solved using the generalised computer code
given in Appendix C. The reader will find it useful to read the typical USER files
given in this appendix to understand the details of implementation.

Conduction Problem
Figure 5.12 shows a concrete slab with I-section steel beams embedded for re-
inforcement. The conductivities of steel and concrete are 100 and 1 W/m-K,
respectively. The lower surface of the slab is at 80◦C and the upper surface is ex-
posed to the environment at 20◦C with a heat transfer coefficient of 1.75 W/m2-K.
It is required to determine the steady-state temperature distribution in the slab.17

In this problem, ui = 0; therefore, solution need be obtained for � = T only.
The governing differential equation is

∂

∂x1

[
K

∂T

∂x1

]
+ ∂

∂x2

[
K

∂T

∂x2

]
= 0. (5.115)

Equation 5.115 must be solved on the smallest domain, exploiting symmetries.
Thus, the chosen domain is 0 ≤ x1 ≤ 0.5 and 0 ≤ x2 ≤ 1.0, with x1 = 0 and
x1 = 0.5 taken as symmetry boundaries. The boundary conditions at the top and
bottom of the slab are shown in the figure.

17 This problem is taken from the book by Patankar [53].
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Figure 5.13. Isotherms – conduction in a re-
inforced cement concrete slab.

Figure 5.13 shows the computed temperature contours. Computations were car-
ried out by employing harmonic-mean conductivities at the cell faces. This is im-
portant because conductivities of concrete and steel are different (see interfaces
IB1, IB2, JB1, JB2, JB3, and JB4 marked on Figure 5.13). A 13(x1) × 22(x2) grid
is employed. The figure shows that, in the middle of the slab, the temperature is
almost uniform in both steel and concrete. The maximum temperature, 80◦C, is
prescribed at the lower boundary and the predicted temperature at the top convec-
tive boundary is almost uniform at 54◦C. The heat loss through the top boundary
is thus calculated at 60 W/m2 and this also equals the heat gain through the bottom
boundary since steady-state conditions prevail. Note that if the I-section beams
were not present, one would have 1D heat conduction through concrete alone and
the heat loss would then be 38.2 W/m2. The presence of high-conductivity I-section
beams has enhanced the rate of heat transfer.

Periodic Laminar Flow and Heat Transfer
Compact heat exchangers often employ an offset-fin configuration to enhance con-
vective heat transfer at the expense of an increased pressure drop. However, when ge-
ometric parameters are suitably chosen, the overall thermo-hydraulic performance
(i.e., increased heat transfer for the same pumping power or reduced pumping power
for the same heat duty) is improved, resulting in a compact heat exchanger design.
Figure 5.14 shows an array of interrupted plates or blocks, which may be regarded
as a 2D idealisation of the offset-fin heat exchanger; the flow width in the x3 direc-
tion is large. The length and the width of each block are L and t, respectively, and
the transverse pitch is H.
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Figure 5.14. Flow in an interrupted passage.

Clearly, under periodically fully developed flow and heat transfer past the blocks,
suitably defined variables will exhibit distance periodicity 2L . Thus, for computa-
tional purposes, the smallest representative domain (or module) will be A-B-C-D-
E-F, as marked in Figure 5.14. Planes A-B-C and D-E-F will experience symmetry
boundary condition whereas boundaries A-F and C-D will be periodic. Equations
for � = u1, u2, T and for p′ must be solved over this domain.

For the flow variables, the distance periodicity can be accounted for by setting

p (x1, x2) = −β x1 + po (x1, x2), (5.116)

where β is the overall pressure gradient (a constant because the flow is fully devel-
oped) and po is the superposed pressure that is periodic [54]. The same situation
also holds for the velocities. Thus, the boundary conditions at planes A-F and
C-D are

po (0, x2) = po (2L , x2), ui (0, x2) = ui (2L , x2). (5.117)

Note that parts of A-F and C-D are solid walls. The symmetry and wall bound-
ary conditions require no elaboration. With the introduction of variable po, it will
be appreciated that the u1 and u2 momentum equations are solved with source
terms β − ∂po/∂x1 and −∂po/∂x2, respectively, and the p′ equation will provide
corrections to pressure po. In fact, the equations are solved with an assumed value
of β and the average streamwise velocity is evaluated from the resulting predicted
velocity field at convergence. The total mass flow through the module can be es-
timated at any transverse plane but we may evaluate it at plane A-F (say) so that
ṁ = ∫ H/2

0 ρ u1 dx2 and define uav based on the frontal area, as is the practice in
heat-exchanger design. Thus,

uav = ṁ/ (ρ H/2). (5.118)
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The friction factor and Reynolds number are defined as

f = 2β H

2ρ u2
av

, Re = ρ uav 2 H

µ
. (5.119)

It is difficult to specify exact thermal boundary conditions at the blocks in a
real heat exchanger. Nonetheless, we may assume that each block or plate delivers
heat flux qw (say) along its perimeter so that the total heat transfer will be Q =
qw (2 L + 4 t/2) and the total bulk temperature rise across the module will be �Tb =
Q/(ṁ C p). Thus, the periodic temperature boundary condition will be

T (0, x2) = To (0, x2) − 0.5�Tb,

T (2L , x2) = To (2L , x2) + 0.5�Tb,

To (0, x2) = To (2L , x2). (5.120)

In Equations 5.117 and 5.120, all variables must be evaluated at x1 = 0 (I = 1)
and x1 = 2L(I = I N ). This evaluation is done as follows:

� (1, J ) = � (I N , J ) = 0.5 [� (2, J ) + � (I N − 1, J )], (5.121)

where � = po, ui , T and it is assumed that the chosen grid disposition is such
that x1 (I N ) − x1 (I N − 1) = x1 (2) − x1 (1). Solution of the temperature equation
enables evaluation of the mean bulk temperature Tb = 0.5 (Tb,AF + Tb,CD), where
the bulk temperatures at the periodic planes are evaluated from

Tb,AForCD =
∫ H/2

0 ρ C p u1 T dx2∫ H/2
0 ρ C p u1 dx2

. (5.122)

Finally, the Stanton number St is evaluated as

St = hav

ρ C p uav
, (5.123)

where the average heat transfer coefficient is evaluated from

hav = 1

(2L + 2t)

∫
qw

Tw,s − Tb
ds, (5.124)

and s is measured along the heated surfaces. Computations are performed for air
(Pr = 0.7) with a 38(x1) × 36(x2) grid and the results are shown in Figure 5.15.
In all computations, L/H = 1.0 and t/H is varied. Also plotted in the figure are
experimental data of Kays and London as read from reference [54]. These data
have been obtained for t/H = 0.05, L/H = 1.14 (instead of 1 in the present case),
and the (x3-direction width)/H = 5.9. Therefore, the geometric data approximate
the present 2D computational domain. It is seen from the figure that the predicted
friction factor data (solid lines) are in very good agreement with the experimental
data (open circles). The predicted St × Pr2/3 (dashed lines) trend, however, de-
viates from the experimental data (open squares). But, as indicated earlier, it is
difficult to approximate the exact boundary conditions of the experiment, which
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Figure 5.15. Offset Fin (L/H ) = 1 – variation of f and St × Pr 2/3 with Re.

involved condensing steam for heating. This condition implies a nearly uniform
temperature at the blocks. However, then, the heat transfer, unlike the flow, will
not be periodically fully developed. According to [54], the effect of this deviation
from the experimental condition on predicted St may not be greater than 10%. The
reader should note that such departures from exact experimental conditions are
often made in CFD analysis.

The figure further shows that the effect of t/H on f is more significant than
on the Stanton number. An approximate analysis carried out in [33] shows that the
effect of a finite thickness fin is to create continuously disrupted laminar boundary
layers on the fin surface and thus achieve enhanced heat transfer. Thus, although it
is important to include the effect of a finite fin thickness in the analysis, the results
show that fin thickness must be optimised in order not to exact a severe penalty in
pressure drop.

To demonstrate the effect of Re, velocity vectors and temperature (T −
Tmin)/(Tmax − Tmin) contours at an interval of 0.1 are plotted for t/H = 0.3 at
three different Reynolds numbers in Figure 5.16. In each case, the core flow is
nearly parallel to the x1 axis but the strength of flow circulation in the fin-wake
regions increases with Reynolds number. Similarly, as Re increases, the tempera-
ture contours are seen to be closer near the heating surfaces, indicating higher heat
transfer rates at higher Re.

Turbulent Flow in a Pipe Expansion
We now consider turbulent flow and heat transfer at a pipe expansion, as shown in
Figure 5.1. The radius ratio (R2/R1) of the two pipes is 2. For prediction purposes,
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Figure 5.16. Offset Fin (L/H = 1, t/H = 0.3) – vector & temperature plots.

the HRE e–ε model is used. The predictions18 will be compared with the experimen-
tal data of Krall and Sparrow [36] for Pr = 3.0 and of Runchal [62] for Pr = 1,400.
Krall and Sparrow made measurements in a pipe with radius R2 in which an ori-
fice of radius R1 is fitted. Downstream of the orifice, a constant wall heat flux is
supplied. Runchal employed a converging nozzle (with exit-end radius R1) fitted
in a pipe of radius R2. He employed an electro-chemical mass transfer technique
to measure variation of mass transfer Stanton number downstream of the nozzle.
The technique involves use of a NaOH solution whose Schmidt number (>1,000)
depends on the solution concentration. The electro-chemical technique measures
transfer of ferrocyanide ions to ferricyanide ions at a cathode surface embedded in
the pipe wall to estimate the rate of mass transfer. These rates are, however, very
low so that the mass transfer measurements can readily simulate the heat transfer
situation with Sc = Pr . The electro-chemical technique simulates a Tw = constant
condition.

18 The USER file for this problem is given in Appendix C.
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Figure 5.17. Sudden expansion, with R2/R1 = 2 and qw = constant.

In both cases, the domain downstream of the orifice or nozzle is considered. At
the inlet section, the specifications are uin = 4 × u, ein = (0.1 × uin)2, and εin is
evaluated from the specification µt/µ = Cµ ρ e2

in/εin = 0.003 Re for 0 ≤ r < R1

and uin = 0 (wall) for R1 ≤ r ≤ R2. The Reynolds number of the larger pipe is
defined as Re = ρ u 2 R2/µ. Computations are carried out with ρ = 1 and u = 1
and R2 = 1. Thus, Re is varied by varying µ. The Nusselt numbers at different
axial locations are evaluated from Nux = qw 2 R2/K (Tw − Tb), where Tb is the
bulk temperature and Tw is the wall temperature at each x .

In the computations, 67 (streamwise) × 28 (radial) nodes were used with closer
spacings in the recirculation region to accurately predict the point of reattachment.
Because of the close near-wall spacings, it was not possible to ensure that the
first node away from the wall will have sufficiently large y+ at all axial stations.
Therefore, the two-layer wall function is active for velocity (see Equation 5.86).
For the temperature equation, P F is given by Equation 5.88.

In Figure 5.17, predicted Nux/Nufd are compared with the experimen-
tal data of Krall and Sparrow. Here, as per their recommendation, Nufd =
0.0123 Re0.874 Pr0.4. In these computations, the reattachment point is predicted at
x/(2 R2) ≈ 1.84 at all Reynolds numbers. The predicted Numax locations (≈1.81)
thus appear to coincide with the point of flow reattachment. The high values of
Numax/Nufd indicate that the recirculation region is by no means dead with respect
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Figure 5.18. Sudden expansion, with R2/R1 = 2 and Tw = constant.

to heat transfer, although the flow velocities are very low there. This is a spe-
cial characteristic of recirculating regions in which fluid mixing is enhanced. The
predictions also appear to nearly match the trends shown by the experimental data,
although the exact magnitudes of Numax are not well predicted.

A similar comparison with the data of Runchal is shown in Figure 5.18. Here,
Z = x/(R2 − R1) and St = Nux/(Re Pr ) so that the predicted flow reattachment
occurs at Z = 7.43. The predictions, however, show that the maximum St occurs at
nearly Z ≈ 3.55. Thus, the point of reattachment and maximum heat transfer do not
coincide. The experimental data, however, indicate that maximum St occurs at Z ≈
6.5. Thus, clearly our wall-function treatment with respect to heat transfer is in need
of further refinement for very large Pr . It is possible to do so by invoking a three-
layer model for heat transfer and setting different limits on the three layers. However,
this is not done here to draw the reader’s attention to the need for such empirical
adjustments. At the same time, it must be noted that the electro-chemical technique
really simulates the Tw = constant boundary condition only over a patch occupied
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Figure 5.19. Natural convection mass transfer.

by the cathode but remains inert to mass transfer on remaining portions of the wall.
This may be an added reason for lack of correspondence between predictions and
experiment. Modelling for separated flow regions at high Pr numbers is an area in
which basic research is hampered by the extremely sharp variations of temperature
in the near-wall region where, although the turbulent viscosity may be negligible,
turbulent conductivity may still be significant. Thus, a constant Prt assumption
may not be justified.

Natural Convection Mass Transfer19

Figure 5.19 shows an open channel (width l and height h) placed inside a wider
channel of width L and height H . The wider channel is closed at the top. The inner
channel wall thickness is t. Both the channels are long in the x3 direction. The inner
channel has water whereas the wider channel has brine at its floor (x2 = 0). The
temperatures of water, brine, and the gas (air + water vapour) are the same and
equal to the ambient temperature. In this isothermal case, evaporation will ensue
because of the difference in vapour pressures at the water (high) and the brine
(lower) surface. The vapour pressure at the brine surface can be altered by altering
brine concentration. Thus, a mass transfer driving force is established.

The inner channel may be viewed as the well-known Stefan tube in which the
evaporation rate of water can be analytically evaluated under the assumption that

19 The USER file for this problem is given in Appendix C.
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the fluid inside the channel is stagnant. However, in the present case, because of the
density gradient caused by the vapour-pressure difference, a mass transfer buoyancy
force will induce fluid motion. The objective, therefore, is to examine the range of
mass transfer Grashof numbers Grm for which the stagnant flow assumption may
be reasonably justified. Such an inquiry has been undertaken by McBain et al. [47]
in which the inner channel is a circular tube placed inside a cubical enclosure. We
have modified this 3D configuration to accommodate a 2D analysis in Cartesian
coordinates.

We define L∗ = L/ l, H∗ = H/ l, h∗ = h/ l, and t∗ = t/ l. In this case equa-
tions for � = u1, u2, ω, and p′ must be solved. Invoking the Boussinesq approx-
imation, except for the gravity-affected source term in the u2-momentum equa-
tion, we assume the density will be constant. Also viscosity and mass diffusivity
are assumed constant. Thus, the governing equations can be nondimensionalised
using u∗

i = ui/(ν/ l), p∗ = (p + ρ g x2)/ρ (ν/ l)2, ω∗ = (ω − ω0)/(ω1 − ω0), and
x∗

i = xi/ l. The relevant source terms are

Su∗
1
= −∂p∗

∂x∗
1

, Su∗
2
= −∂p∗

∂x∗
2

+ Grm ω∗, Sω∗ = 0, (5.125)

where Grm = g βm (ω1 − ω0) l3/ν2 and βm = ρ−1 ∂ρ/∂ω∗.
The boundary conditions are

u∗
i = 0,

∂ω∗

∂n∗ = 0 on all walls, (5.126)

where n is normal to the walls. The x∗
1 = 0 line is the symmetry boundary and

computations are performed over the domain to the right of the symmetry line. The
mass transfer boundary conditions on the floor (x∗

2 = 0) are

u∗
1 = 0,

u∗
2 = Sc−1 (ω∗

1 − ω∗
T)−1 ∂ω∗

∂x∗
2

∣∣∣∣
x∗

2 =0

, ω∗ = ω∗
1 (water),

u∗
2 = Sc−1 (ω∗

0 − ω∗
T)−1 ∂ω∗

∂x∗
2

:

∣∣∣∣
x∗

2 =0

, ω∗ = ω∗
0 (brine), (5.127)

where ω∗
1 = 1 and ω∗

0 = 0.
These specifications indicate that in the present mass transfer problem, the

momentum equations are coupled with the mass transfer equation in two ways,
firstly, through the source term Grm ω∗ and, secondly, through the floor boundary
condition. The dimensionless total evaporation flux is, therefore, given by

Fconv = 2 Sc−1 (1 − ω∗
T)
∫ 1/2

0

∂ω∗

∂x∗
2

∣∣∣∣
x∗

2 =0

dx∗
1 . (5.128)
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Table 5.2: Normalized evaporation rate R.

Grm 1 10 100 500 1,000 2,000 3,000
R 0.7065 0.7086 0.7293 0.756 0.768 0.781 0.792

For a Stefan tube, the pure diffusion mass transfer rate is given by

Fdiff = ln (1 + B)

Sc h∗ , (5.129)

where the Spalding number B = −1/(1 − ω∗
T ). Therefore, the flux ratio R will be

a functional given by

R = Fconv

Fdiff
= f (Grm, H ∗, L∗, h∗, t∗, Sc, B). (5.130)

In the present computations, h∗ = 2, L∗ = 16, H∗ = 8, t∗ = 0.1, and Sc =
0.614 are fixed. Also, in a typical evaporation problem, B is small. We take ω∗

T = 50,
giving B = 0.0204. Thus, with these specifications, R is a function of Grm only.
Computations have been performed with 37 × 37 grid points with closer spacings
near the inner channel wall and near the floor. Initially, only the mass transfer
equation is solved. This corresponds to a stagnant fluid case. If ω∗ = 0 at x∗

2 = h∗

then the evaporation flux will be given by Equation 5.129. However, in the present
configuration, ω∗ �= 0 at x∗

2 = h∗ because the boundary condition is applied at
the brine surface. This results in R = 0.704 for this limiting case. Now, the mass
transfer equation is solved together with the flow equations for different values of
Grm. Table 5.2 shows the results of computations. It is seen that the ratio increases
with Grm. A similar trend has been observed in [47]. To ensure convergence,
solutions for lower Grm were used to obtain solutions for higher Grm.

The trend observed in the R ∼ Grm relation is further demonstrated in Fig-
ure 5.20 through contour and vector plots over the domain 0 < x∗

1 < 2.5 and
0 < x∗

2 < 5.5. The figure shows that the inner channel remains nearly stagnant
at Grm = 10. For higher Grm, the region near the top of the inner channel is influ-
enced by the recirculation outside the channel.

False Diffusion in Multidimensions
In Chapter 3, the question of numerical false diffusion was explored through the 1D
conduction–convection equation. Here, this matter is again considered for multidi-
mensional flows through a problem devised by Raithby [57] (see Figure 5.21). We
consider a square domain of unit dimensions through which a fluid moves with an
angle θ with the x axis. The viscosity and conductivity of the fluid are zero so that
transport of temperature occurs by pure convection with Peclet number P = ∞.
At a certain streamline at y0 = 0.5 (1 − tan θ ), a step discontinuity in tempera-
ture is imposed as shown in the figure. Thus, T = 1 above the streamline and T = 0
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Figure 5.20. Contours of ω∗ (at an interval of 0.05) and velocity vectors for natural convection evapo-
ration.
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Figure 5.21. Transport of a step discontinuity.

below it. Now, since P = ∞, the discontinuity must be preserved in the direction
of the flow.

To examine the capability of the UDS for this large Peclet number case, the
velocities are prescribed as u = U cos θ and v = U sin θ at all nodes and the tem-
perature boundary conditions are as shown in Figure 5.21. The equation for T will
read as

∂T

∂x
+ tan θ

∂T

∂y
= 0. (5.131)

This equation is solved for different angles θ on a 12 × 12 grid. Figure 5.22
shows the predicted T profiles at midplane x = 0.5. It is seen that the profiles
are smeared. The profiles deviate from the exact solution; the deviation increases
as θ increases and reaches maximum at θ = 45 degrees. Now, the profiles can
be smeared only if numerical diffusion is present. This suggests that when the
flow inclination with respect to the grid line is large, the numerical diffusion is
also large. Conversely, if θ = 0 or 90 degrees, the discontinuity in the temperature
profile should be predicted. This is indeed verified by numerical solutions (not
shown in the figure). Wolfshtein [89] has devised a method for estimating the false
diffusivity (see exercise 12).

What is observed here with UDS remains valid for all convection schemes,
although the profile-shape-sensing CONDIF and TVD schemes demonstrate re-
duced deviations and, therefore, reduced numerical diffusion. However, recognis-
ing the angular dependence of false diffusion, some CFD analysts have proposed
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Figure 5.22. Midplane temperature profiles – UDS.

convection schemes that sense the angle θ . In effect, they postulate flow-oriented
interpolations of cell-face values rather than use the nodal values straddling the cell
faces.

EXERCISES

1. Starting with Equation 5.8, validate the generalisations shown in Equation 5.19.
Hence, show the correctness of Equation 5.17 for each convection scheme.

2. Derive the value of A in Equation 5.19 for the exponential scheme.

3. Show that if the CONDIF scheme (see Chapter 3, Exercise 10) is used
then, for a nonuniform grid, the coefficients AE and AW in Equation 5.12,
for example, will read as

AE = de

[
1 + |Pce | − Pce

4

]
+ dw

R∗
x

[ |Pcw | − Pcw

4

]
,

AW = dw

[
1 + |Pcw | + Pcw

4

]
+ de R∗

x

[ |Pce | + Pce

4

]
,

where R∗
x = (�E − �P)/(�P − �W) × �xw/�xe.

(Hint: Recognise that CONDIF is essentially a CDS whose coefficients are
modified to take account of the shape of the local � profile).

4. Using the substitutions shown in Equation 5.24, derive Equation 5.25. Hence,
using the IOCV method, derive Equation 5.28.
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Figure 5.23. Long chamber of Exercise 11.

5. Starting with Equation 5.40, derive Equation 5.47.

6. Show the validity of Equations 5.55 and 5.56.

7. Identify the differences and similarities between Equations 5.57 for collocated
grids and Equation 5.32 for staggered grids.

8. Confirm that on collocated grids APu1 = APu2 .

9. It is of interest to derive a total pressure-correction equation for compressible
flows in which p = ρRgT . To do this, start with Equation 5.57 and write

ρl+1 = ρl + ρ ′
m = ρl + p′

m

Rg T
= ρl + (p′ − p′

sm)

Rg T
.

With this substitution show that the p′-equation takes the form of a general trans-
port equation for any � with appearance of convection–diffusion-like terms.
Also, Vsound = √

γ Rg T . Hence, show the Mach number dependence in the
equation. If CDS is used, can the coefficients in the discretised equation (5.60)
turn negative? If yes, suggest a remedy.

10. Explain the need for evaluating the mass residual via Equation 5.73 when
computing on collocated grids.

11. Consider the chamber shown in Figure 5.23. The chamber is long in the
z-direction so that the flow and heat transfer can be considered 2D. Assume
that all relevant dimensions are given. The flow enters the chamber with
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Figure 5.24. Estimating false diffusion.

velocity uin (as shown) and temperature Tin. The chamber walls and the lip
separating the inflow and outflow are adiabatic. Allow for the presence of a
buoyancy effect,

(a) Write the appropriate differential equations and the boundary conditions
for all relevant variables.

(b) Carry out any necessary node tagging, defining clearly the convention
used. For example, along AB, NTAGW (2, J) = 14 (say) to indicate the
west adiabatic wall boundary.

12. Solve the problem of false diffusion discussed in the text for the case of θ = 45
degrees in which the boundary conditions are as shown in Figure 5.24. Take L =
100 and y0 = x0 = 2�S, where �S = �X = �Y . The situation is therefore
akin to that of a temperature source convected by U . Now, define orthogonal
coordinates ξ and η as shown. Use UDS. Obviously, the maximum temperature
Tmax will occur at η = 0 for each ξ . Now, locate the value of η1/2 corresponding
to T/Tmax = 0.5. Hence, plot the computed results as T/Tmax versus η/η1/2 for
different values of ξ/�S > 50. Show that the profies collapse on a single curve

T

Tmax
= exp

{
− ln (2)

(
η

η1/2

)2
}

,

where η1/2/�S = (ξ/�S)0.5. This equation is similar to the solution to the
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Figure 5.25. Refractory furnace.

equation of a wake,

U
∂T

∂ξ
− 
false

∂2T

∂η2
= 0,

T

Tmax
= exp

(
− U η2

4
false ξ

)
.

Hence, show that 
false ∼ 0.361U�S

13. Derive Equation 5.94.

14. Consider a long furnace made from refractory brick (k = 1.0 W/m-K), as shown
in Figure 5.25. The temperature of the inside surface is 600◦C whereas the
outside surface is exposed to an environment at 30◦C with heat transfer coeffi-
cient h = 10 W/m2-K. Determine the heat loss from the furnace wall.

15. Consider two parallel plates that are infinitely long in the x1 and x3 directions.
Fins are attached to the plates in a staggered fashion, as shown in Figure 5.26.

2L

2B

H

δ

X2

X1

FINS

Figure 5.26. Flow and heat transfer in a staggered fin array.
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Figure 5.27. Fully developed flow in an ellipse.

The flow is in the x3 direction. The plates receive constant heat flux qw in the
flow direction but, at any section x3, their temperature Tw is constant in the x1

direction. The flow and heat transfer are fully developed.

(a) Assuming laminar flow, identify the equations and the boundary conditions
governing the flow and heat transfer

(b) Nondimensionalise the equations and show that

f Re = F

(
H

B
,

L

B
,

δ

B

)
, Nu = F

(
H

B
,

L

B
,

δ

B
,

kfin

kfluid

δ

H

)
.

(c) Compute f and Nu for B = L = 1, H = 1.2, and δ = 0.05. Take Cfin =
kfin/kfluid = 0, 10, and 100. (Hint: Note that the fin half-width δ/2 must be
treated as a blocked region through which 1D heat conduction takes place.)

16. Consider fully developed laminar flow in a duct of elliptic cross section, as
shown in Figure 5.27. The flow is in the x3 direction.

(a) Write the PDE governing distribution of the u3 velocity. Identify the small-
est relevant domain, exploiting the available symmetries.

(b) The duct wall boundary of the domain is curved. This boundary can be
approximated by a series of steps. Hence, lay an appropriate Cartesian grid.
Solve the governing equation and evaluate f × Re for B/A = 0.125, 0.25,
0.5, and 1.0.

17. Consider laminar flow between two parallel plates 2B apart, as shown in Fig-
ure 5.28. The plates are infinitely long in the x3 direction. Flow, with uniform
axial velocity, enters at x1 = 0. At a distance S from the entrance, an infinitely
long cylinder of radius R is placed at the axis of the flow channel. The flow
leaves the channel in a fully developed state.

(a) Ideally, the flow situation should be computed with curvilinear or unstruc-
tured grids. However, an analyst decides to compute it using a Cartesian
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Figure 5.28. Flow in a parallel-plate channel.

mesh. What is the main difficulty that the analyst will face if the drag
offered by the cylinder is to be accurately determined.

(b) Select the domain length from fluid dynamic considerations. Assume that
the Reynolds number based on the channel hydraulic diameter is 40 and
S/R = 3 and B/R = 10.

(c) How should the drag coefficient CD of the cylinder be determined from the
converged solution in discretised form?

18. Consider laminar flow between two parallel plates separated by distance 2b.
Specify the fully developed axial velocity profile at the inflow plane and zero
axial velocity gradient at exit. Adapt the 2D computer program in Appendix
C for this problem and solve with and without smoothing pressure correction.
Observe the predicted velocity and pressure profiles in the two cases. Do you
notice any difference? If not, explain why.

19. Engine oil enters a tube (diameter = 1.25 cm) at uniform temperature Tin =
160◦C. The oil mass flow rate is 100 kg/hr and the tube wall temperature is
maintained at Tw = 100◦C. If the tube is 3.5 m long, calculate the bulk tem-
perature of oil at exit from the tube and the total pressure drop. The properties
of oil are as follows ρ = 823 kg/m3, C p = 2,351 J/kg-K, ν = 10−5 m2/s, and
k = 0.134 W/m-K. Plot the axial variation of Nusselt number Nux and the
bulk temperature Tb,x . Assume that the oil enters the tube with uniform veloc-
ity. (Hint: You will need to provide close grid spacings near the tube wall to
capture steep variations of temperature owing to the high Prandtl number. The
grid spacings along the tube axis may expand in the direction of the flow.)

20. Air at 7 bar and 100◦C enters a nuclear reactor channel (width = 3 mm, length
L = 1.22 m) at the rate of 7.5 kg/s-m2. The heat flux at the channel walls is
given by qw = 900 + 2,500 sin (π x1/L) W/m2. Plot the variation of Tw, Tb, and
Nu with axial distance x1 and find the location of maximum wall temperature.
Assume fully developed flow and evaluate properties at 250◦C.
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Figure 5.29. Flow in a channel containing rods.

21. Consider fully developed turbulent flow in a pipe of radius R. Assuming that
the inner layer extends up to y+ = 100 from the wall, estimate the inner layer
thickness as a fraction of R for Re = 5,000, 25,000, 75,000, and 100,000.

22. Air at 30◦C enters a tube (diameter D = 5.0 cm) of a solar air-heater with a
uniform velocity of 10 m/s. The tube is 2.1 m long. The tube wall tempera-
ture is 90◦C. Determine the exit bulk temperature and the pressure drop. Also
determine the length-averaged Nusselt number. Use the HRE model.

23. Repeat Exercise 22 assuming that the tube is rough with roughness height
yr/D = 0.01. Use the HRE model. For a rough surface, the velocity profile
near a wall is given by [65]

u+ = 1

κ
ln

[
y

yr

]
+ 8.48.

This equation can be cast in the form of Equation 5.86 so that

u+ = 1

κ
ln
[
Er y+] , Er = exp (8.48κ)

y+
r

.

Thus, the wall-function treatment remains valid with E replaced by Er. Simi-
larly, P F (Equation 5.88) must be replaced by P Fr = 5.19 Pr0.44 y+0.2

r − 8.48
with Prt = 1 [22]. (Hint: You will need to modify the BOUND subroutine and
STAN function in the Library file in Appendix C to account for yr.)

24. Consider steady turbulent flow in a two-dimensional plane channel (see Fig-
ure 5.29) containing an array of rods (of diameter D). Flow enters at x1 = 0
with uniform velocity u1,in. It is of interest to determine the pressure drop
over length L . To reduce the computational effort in this densely filled flow
situation, model the flow as a porous-body flow in which it is assumed that the
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Figure 5.30. Idealised desert cooler.

channel contains no rods but the effect of their presence is captured through two
artifacts:
(i) The effective fluid density, viscosity, and pressure are taken as �	, where
� = ρ, (µ + µt), and p, respectively, where 	 is the porosity defined as

	 = fluid volume

physical volume
.

(ii) The source terms in the u1 and u2 momentum equations are augmented
by including local flow resistance offered by the rods through experimentally
determined friction factors fu1 and fu2 defined as

fui = �p

0.5ρ ui |Vtot| = F

(
SL

D
,

ST

D
, ReD,tot

)
,

where Vtot =
√

u2
1 + u2

2 and ui are superficial velocities. Function F ( ) is
assumed known but note that SL and ST must be re-defined for the u2

velocity.

(a) Write the equations to be solved and choose an appropriate exit bound-
ary condition assuming L/(2B) = 10. Specify the inlet conditions for all
variables including the variables characterising turbulence.

(b) Discuss whether the effect of flow resistance terms could be accounted for
through source-term linearisation.

25. Figure 5.30 shows an idealised desert cooler in which hot air (40◦C and 10%
relative humidity) enters the cooler inside through the 10-cm-wide gap with a
velocity of 40 m/s. The air picks up moisture at the wet pad, which is supplied
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with water at 25◦C. The humidified air becomes cooler and leaves through the
front grill.

(a) State the equations governing the cooling process and identify the main
variables �.

(b) Specify the appropriate exit boundary condition. Assume an equilibrium
condition at the wet pad. The wet pad is rough with roughness height 5
mm. The top and bottom walls are smooth and may be taken as insulated.

(c) Determine the average outflow temperature, relative humidity, humid-air
velocity, and the rate of moisture pickup.
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6 2D Convection – Complex Domains

6.1 Introduction

In practical applications of CFD, one often encounters complex domains. A domain
is called complex when it cannot be elegantly described (or mapped) by a Cartesian
grid. By way of illustration, we consider a few examples.

Figure 6.1 shows the smallest symmetry sector of a nuclear rod bundle placed
inside a circular channel of radius R. There are nineteen rods: one rod at the channel
center, six rods (equally spaced) in the inner rod ring of radius b1, and twelve rods in
the outer ring of radius b2. The rods are circumferentially equispaced. The radius of
each rod is ro. The fluid (coolant) flow is in the x3 direction. The flow convects away
the heat generated by the rods and the channel wall is insulated. It is obvious that a
Cartesian grid will not fit the domain of interest because the lines of constant x1 or x2

will intersect the domain boundaries in an arbitrary manner. In such circumstances,
it proves advantageous to adopt alternative means for mapping a complex domain.
These alternatives are to use

1. curvilinear grids or
2. finite-element-like unstructured grids.

6.1.1 Curvilinear Grids

It is possible to map a complex domain by means of curvilinear grids (ξ1, ξ2) in
which directions of ξ1 and ξ2 may change from point to point. Also, curvilinear
lines of constant ξ1 and constant ξ2 need not intersect orthogonally either within the
domain or at the boundaries. Figure 6.2 shows the nineteen-rod domain of Figure 6.1
mapped by curvilinear grids. The figure shows that curvilinear lines generate clearly
identifiable quadrilateral control volumes. When the IOCV method is used, the task
is to integrate the transport equations over a typical control volume. To facilitate this,
it becomes necessary to first transform the transport equations written in Cartesian

161
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R

b2

b1

r0

Channel

Wall
North

South

East

Central Rod

West

X2

X1

Figure 6.1. Example of a complex domain.

coordinates to curvilinear coordinates via transformation relations

x1 = F1 (ξ1, ξ2), x2 = F2 (ξ1, ξ2). (6.1)

In general, these functional relationships must be developed by numerical grid
generation techniques (see Chapter 8). The grids shown in Figure 6.2 are in fact
generated by numerical means. For simpler domains, however, the functional rela-
tionships can be specified by algebraic functions. The new set of transport equations
in curvilinear coordinates are developed in Section 6.2.

One advantage of mapping domains by curvilinear grids is that one can still
retain the familiar (I, J ) structure to identify a node (or the corresponding control
volume) because, as can be seen from Figure 6.2, along any curvilinear line ξ1, the
total number of intersections with constant-ξ2 lines remains constant and vice versa.
Further advantages of this identifying structure will become clear in Section 6.2.

6.1.2 Unstructured Grids

Another alternative for a complex domain is to map the domain by triangles or any
n-sided polygons (including quadrilaterals) or any mix of triangles and polygons.
Figure 6.3 shows the mapping of a nineteen-rod bundle by triangles as an example.
In this case, the rods are arranged in such a way that the smallest symmetry sector

ξ2

ξ1

X1

X2

Figure 6.2. Nineteen-rod bundle – curvilinear grids.
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Figure 6.3. Nineteen-rod bundle – unstructured grid.

is a doubly connected domain. Such mapping can be generated by commercially
available grid generators such as ANSYS. Each triangle may now be viewed as a
control volume over which the transport equations are to be integrated to arrive at
the discretised equations. The process of generating the latter equations is described
in Section 6.3.

It will be recognized that a triangle is a very convenient elemental construct
because it can map any convex intrusion or concave extrusion at the domain bound-
aries. More importantly, triangles can also effectively skirt any blocked region within
the overall domain, as shown in Figure 6.3. Such skirting cannot be elegantly ac-
complished if curvilinear grids are used for mapping.

The flexibility offered by mapping by triangulation is thus obvious. Further, it is
not necessary that all triangles be of the same size or shape. In spite of this flexibility,
it becomes necessary to make a significant departure from curvilinear grid practise
with respect to node identification when unstructured grids are used. It is obvious
from Figure 6.3, for example, that one cannot readily identify elements (or nodes)
by employing the familiar (I, J ) structure as was possible with curvilinear grids.
Elements, perforce, must be identified serially with a single identifier N (say). As
will be shown in Section 6.3, commercial codes such as ANSYS identify elements in
any arbitrary order. Thus, an element having identifier N will interact with elements
having arbitrary identifying numbers without any generalisable rules. This contrasts
with the case of curvilinear grids in which a control volume (I, J ) will always
interact with control volumes identified by (I + 1, J ), (I − 1, J ), (I, J + 1), and
(I, J − 1).

This serial numbering has consequences for solution of discretised equations
evolved on an unstructured grid. This will become clearer in Section 6.3. In passing,
we note that there are a variety of methods for triangulation. Automatic triangulation
requires detailed considerations from the subject of computational geometry. In
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Chapter 8, some simpler approaches will be introduced. Most CFD practitioners,
however, employ commercially available packages such as ANSYS for unstructured
grid generation.

6.2 Curvilinear Grids

6.2.1 Coordinate Transformation

Our first task is to transform the transport equations in Cartesian coordinates to
those in curvilinear coordinates. Thus, employing the chain rule, we can write the
first-order derivatives as

∂

∂x1
= ∂ξ1

∂x1

∂

∂ξ1
+ ∂ξ2

∂x1

∂

∂ξ2
, (6.2)

∂

∂x2
= ∂ξ1

∂x2

∂

∂ξ1
+ ∂ξ2

∂x2

∂

∂ξ2
. (6.3)

The next task is to determine derivatives of ξ1 and ξ2 with respect to x1 and x2

knowing functions (6.1). To do this, we note that

d x1 = ∂x1

∂ξ1
d ξ1 + ∂x1

∂ξ2
d ξ2, (6.4)

d x2 = ∂x2

∂ξ1
d ξ1 + ∂x2

∂ξ2
d ξ2. (6.5)

These relations can be written in matrix form as |dx | = |A||dξ |, or∣∣∣∣dx1

dx2

∣∣∣∣ =
∣∣∣∣∂x1/∂ξ1 ∂x1/∂ξ2

∂x2/∂ξ1 ∂x2/∂ξ2

∣∣∣∣
∣∣∣∣d ξ1

d ξ2

∣∣∣∣ . (6.6)

Now, manipulation of Equations 6.4 and 6.5 will show that

d ξ1 = 1

Det A

[
cof

(
∂x1

∂ξ1

)
d x1 + cof

(
∂x2

∂ξ1

)
d x2

]
, (6.7)

d ξ2 = 1

Det A

[
cof

(
∂x1

∂ξ2

)
d x1 + cof

(
∂x2

∂ξ2

)
d x2

]
, (6.8)

where cof denotes cofactor of and Det A stands for determinant of A. Thus, from
the last two equations, it is easy to deduce that

∂ξ1

∂x1
= 1

Det A
cof

(
∂x1

∂ξ1

)
= 1

Det A

(
∂x2

∂ξ2

)
= β1

1

Det A
, (6.9)

∂ξ1

∂x2
= 1

Det A
cof

(
∂x2

∂ξ1

)
= − 1

Det A

(
∂x1

∂ξ2

)
= β2

1

Det A
, (6.10)
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∂ξ2

∂x1
= 1

Det A
cof

(
∂x1

∂ξ2

)
= − 1

Det A

(
∂x2

∂ξ1

)
= β1

2

Det A
, (6.11)

∂ξ2

∂x2
= 1

Det A
cof

(
∂x2

∂ξ2

)
= 1

Det A

(
∂x1

∂ξ1

)
= β2

2

Det A
, (6.12)

where the βs are called the geometric coefficients and are given by

β1
1 = ∂x2

∂ξ2
, β2

1 = −∂x1

∂ξ2
, β1

2 = −∂x2

∂ξ1
, β2

2 = ∂x1

∂ξ1
. (6.13)

Further, it follows that

Det A = ∂x1

∂ξ1

∂x2

∂ξ2
− ∂x1

∂ξ2

∂x2

∂ξ1
= β1

1 β2
2 − β1

2 β2
1 = J, (6.14)

where symbol J stands for the Jacobian of the matrix A. We can now rewrite
Equations 6.2 and 6.3 as

∂

∂x1
= 1

J

[
β1

1

∂

∂ξ1
+ β1

2

∂

∂ξ2

]
, (6.15)

∂

∂x2
= 1

J

[
β2

1

∂

∂ξ1
+ β2

2

∂

∂ξ2

]
. (6.16)

6.2.2 Transport Equation

The first task is to transform the general transport equation (5.1) from the (x1, x2)
coordinate system to the (ξ1, ξ2) coordinate system using relations (6.15) and (6.16).
Thus,

r
∂(ρ �)

∂t
+ 1

J

[
β1

1

∂(r q1)

∂ξ1
+ β1

2

∂(r q1)

∂ξ2
+ β2

1

∂(r q2)

∂ξ1
+ β2

2

∂(r q2)

∂ξ2

]
= r S.

(6.17)

This equation can also be written as

r J
∂(ρ �)

∂t
+ ∂

(
β1

1 r q1
)

∂ξ1
+ ∂

(
β1

2 r q1
)

∂ξ2
+ ∂

(
β2

1 r q2
)

∂ξ1
+ ∂

(
β2

2 r q2
)

∂ξ2

= r q1

[
∂β1

1

∂ξ1
+ ∂β1

2

∂ξ2

]
+ r q2

[
∂β2

1

∂ξ1
+ ∂β2

2

∂ξ2

]
+ r J S. (6.18)

Using definitions (6.13), however, we can show that the terms in the square brackets
are identically zero. Hence, Equation 6.18 can be written as

r J
∂(ρ �)

∂t
+ ∂

∂ξ1

(
β1

1 r q1 + β2
1 r q2

)+ ∂

∂ξ2

(
β1

2 r q1 + β2
2 r q2

) = r J S.

(6.19)
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Using Equation 5.2, it is now possible to replace Cartesian fluxes q1 and q2. After
some algebra, it can be shown that

r J
∂(ρ �)

∂t
+ ∂

∂ξ1

[
ρ r Uf1 � − r


eff

J
d A2

1

∂�

∂ξ1

]

+ ∂

∂ξ2

[
ρ r Uf2 � − r


eff

J
d A2

2

∂�

∂ξ2

]

= ∂

∂ξ1

[
r


eff

J
d A12

∂�

∂ξ2

]
+ ∂

∂ξ2

[
r


eff

J
d A12

∂�

∂ξ1

]
+ r J S,

(6.20)

where

d A2
1 = (

β1
1

)2 + (
β2

1

)2
,

d A2
2 = (

β1
2

)2 + (
β2

2

)2
,

d A12 = β1
1 β1

2 + β2
1 β2

2 (6.21)

and the contravariant flow velocities are given by

Uf1 = β1
1 uf1 + β2

1 uf2 = ∂x2

∂ξ2
uf1 − ∂x2

∂ξ1
uf2, (6.22)

Uf2 = β1
2 uf1 + β2

2 uf2 = ∂x1

∂ξ1
uf2 − ∂x1

∂ξ2
uf1, (6.23)

where uf1 and uf2 are the Cartesian velocity components.

6.2.3 Interpretation of Terms

Several new terms appearing in Equation 6.20 can be interpreted using vector
mathematics.

Elemental Area
The elemental area d Ai normal to the (ξ j , ξk) plane is given by

d �Ai =
(

∂�r
∂ξ j

× ∂�r
∂ξk

)
dξ j dξk, (6.24)

where the position vector �r = �i x1 + �j x2 + �k x3. For our 2D case, if we set i = 1,
j = 2, and k = 3 then ∂�r/∂ξ3 = ∂x3/∂ξ3 = 1 because the x3 and ξ3 directions
coincide and are normal to the (ξ1, ξ2) plane. Thus, taking unit dimension in the x3

direction gives

d A1 =
∣∣∣∣ ∂�r
∂ξ2

∣∣∣∣ dξ2 =
∣∣∣∣�i ∂x2

∂ξ2
− �j ∂x1

∂ξ2

∣∣∣∣ dξ2 = ∣∣�i β1
1 + �j β2

1

∣∣dξ2

=
√(

β1
1

)2 + (
β2

1

)2
dξ2. (6.25)
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Similarly, it can be shown that

d A2 =
√(

β1
2

)2 + (
β2

2

)2
dξ1. (6.26)

Comparison of the last two equations with Equations 6.21 shows that d A1 and
d A2 represent areas with dξ1 = dξ2 = 1.

Elemental Volume
The volume element in curvilinear coordinates is given by

dV = ∂�r
∂ξi

·
(

∂�r
∂ξ j

× ∂�r
∂ξk

)
dξi dξ j dξk . (6.27)

Thus, taking i = 1, j = 2, and k = 3, it follows that

dV = ∂�r
∂ξ1

· ∂�r
∂ξ2

dξ1 dξ2 = (
β1

1 β2
2 − β2

1 β1
2

)
dξ1 dξ2. (6.28)

Comparison of Equation 6.28 with Equation 6.14 shows that the Jacobian J is
nothing but element volume dV with dξ1 = dξ2 = 1.

The Normal Fluxes
Note that Equation 6.20 can be written in the following form:

r J
∂(ρ �)

∂t
+ ∂

∂ξ1
[r qξ1 ] + ∂

∂ξ2
[r qξ2 ] = r J S, (6.29)

where qξ1 and qξ2 are given by

qξ1 = ρ Uf1 � − 
eff

J

(
d A2

1

∂�

∂ξ1
+ d A12

∂�

∂ξ2

)
, (6.30)

qξ2 = ρ Uf2 � − 
eff

J

(
d A2

2

∂�

∂ξ2
+ d A12

∂�

∂ξ1

)
. (6.31)

With reference to Figure 6.4, these expressions represent total (convective + dif-
fusive) transport of � normal to the two curvilinear directions, respectively. The
convective transport ρ Ufi � is thus directed normal to the constant-ξi lines. In other
words, Ufi is directed along the contravariant base vector �ai . Note that, in general,
lines of constant ξ1 and ξ2 do not intersect orthogonally. Thus, the total normal
diffusive contribution is made up of two components. The first, containing d A2

i , is
due to the property gradient along the covariant base vector direction �ai , the second,
containing d A12, is due to the property gradient along the direction ξ j , j �= i . If
the intersection of coordinate lines were to be orthogonal, d A12 = 0. Also, from
Equations 6.13, it is clear that d A12 can be both positive as well as negative.
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w

Figure 6.4. Definition of node P and contravariant flow velocities.

6.2.4 Discretisation

Our next task is to discretise Equation 6.20 for the general variable �. To do this, we
define the typical node P of a curvilinear grid as shown in Figure 6.4. The cell faces
(ne-se, se-sw, sw-nw, and nw-ne), as in the case of Cartesian grids, are assumed to
be midway between the adjacent nodes. In curvilinear coordinates, �ξ1 = �ξ2 = 1,
as already explained. Then, using the IOCV method, integration1 of Equation 6.20
over the control volume surrounding node P gives

rP JP

�t

(
ρP �P − ρo

P �o
P

) + [Ce �e − de (�E − �P)]

− [Cw �w − dw (�P − �W)]

+ [Cn �n − dn (�N − �P)]

− [Cs �s − ds (�P − �S)]

= ACe (�ne − �se) + ACw (�sw − �nw)

+ ACn (�ne − �nw) + ACs (�sw − �se)

+ rP JP S, (6.32)

1 Each term in Equation 6.20 is integrated as∫ n

s

∫ e

w
(Term)dξ1 dξ2.
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where the convective coefficients are given by

Ce = ρe re Uf1,e = ρe re
[
β1

1e u1e + β2
1e u2e

]
,

Cw = ρw rw Uf1,w = ρw rw
[
β1

1w u1w + β2
1w u2w

]
,

Cn = ρn rn Uf2,n = ρn rn
[
β2

1n u1n + β2
2n u2n

]
,

Cs = ρs rs Uf2,s = ρs rs
[
β2

1s u1s + β2
2s u2s

]
, (6.33)

and the diffusion coefficients are

de =
(
r 
eff d A2

1

)
J

∣∣∣∣∣
e

, dw =
(
r 
eff d A2

1

)
J

∣∣∣∣∣
w

,

dn =
(
r 
eff d A2

2

)
J

∣∣∣∣∣
n

, ds =
(
r 
eff d A2

2

)
J

∣∣∣∣∣
s

,

ACe = (r 
eff d A12)

J

∣∣∣∣
e

, ACw = (r 
eff d A12)

J

∣∣∣∣
w

,

ACn = (r 
eff d A12)

J

∣∣∣∣
n

, ACs = (r 
eff d A12)

J

∣∣∣∣
s

. (6.34)

In evaluating the convective coefficients (or the mass fluxes at the cell faces),
the u at the cell faces are evaluated by linear interpolation from neighbouring
nodal velocities. For example, u1e = 0.5 (u1P + u1E). Similarly, the values of �

at the control-volume corners are also linearly interpolated. For example, �ne =
0.25 (�P + �E + �NE + �N). Finally, we note that the diffusion coefficients again
have dimensions of conductance.

Equation 6.32 applies to � = u1, u2 and all other scalar variables. When � = 1,
however, we recover the mass-conservation equation. Thus,

rP JP

�t

(
ρP − ρo

P

)+ Ce − Cw + Cn − Cs = 0. (6.35)

Now, making use of this equation, we can recast Equation 6.32 again in the following
familiar form

AP �P = AE �E + AW �W + AN �N + AS �S + D, (6.36)

where the convective–diffusive coefficients AE, AW, AN, and AS are given by

AE = de [A + max (−Pce, 0)], Pce = Ce/de,

AW = dw [A + max (Pcw, 0)], Pcw = Cw/dw,

AN = dn [A + max (−Pcn, 0)], Pcn = Cn/dn,

AS = ds [A + max (Pcs, 0)], Pcs = Cs/ds,

AP = AE + AW + AN + AS + r ρo J

�t

∣∣∣∣
P

. (6.37)
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In these expressions, A is given by the convection scheme employed (see Chapter
5) and source D is given by

D = rP JP S + r ρo J

�t

∣∣∣∣
P

�o
P

+ ACe (�ne − �se) + ACw (�sw − �nw)

+ ACn (�ne − �nw) + ACs (�sw − �se). (6.38)

6.2.5 Pressure-Correction Equation

The appropriate total pressure-correction equation in Cartesian coordinates has
already been derived in Chapter 5 (see Equations 5.57 with boundary condition
5.58). Transforming this equation to curvilinear coordinates, we obtain2

∂

∂ξ1

[
ρ r α d A2

1

APuf1

∂p′

∂ξ1

]
+ ∂

∂ξ2

[
ρ r α d A2

2

APuf2

∂p′

∂ξ2

]

= r J
∂(ρ)

∂t
+
(
ρ rU l

1

)
∂ξ1

+
(
ρ rU l

2

)
∂ξ2

. (6.39)

When Equation 6.39 is solved, the p′ distribution is obtained. The next task is to
recover the mass-conserving pressure correction p′

m = p′ − p′
sm. To evaluate p′

sm,
we need to calculate p = 0.5 (px1

+ px2
) from solution of Equations 5.111 and

5.112. Thus, to calculate px1
, for example, we write

∂2 pl

∂x2
1

∣∣∣∣
P

= ∂

∂ξ1

[
β1

1 β1
1

J

∂pl

∂ξ1
+ β1

1 β1
2

J

∂pl

∂ξ2

]
P

+ ∂

∂ξ2

[
β1

2 β1
1

J

∂pl

∂ξ1
+ β1

2 β1
2

J

∂pl

∂ξ2

]
P

= 0. (6.40)

With reference to Figure 6.4, the discretised version of Equation 6.40 reads as

β1
1 β1

1

J

∣∣∣∣
e

(
pl

E − pl
P

)+ β1
1 β1

2

J

∣∣∣∣
e

(
pl

ne − pl
se

)

− β1
1 β1

1

J

∣∣∣∣
w

(
pl

P − pl
W

)− β1
1 β1

2

J

∣∣∣∣
w

(
pl

nw − pl
sw

)

+ β1
1 β1

2

J

∣∣∣∣
n

(
pl

ne − pl
nw

)+ β1
2 β1

2

J

∣∣∣∣
e

(
pl

N − pl
P

)

− β1
1 β1

2

J

∣∣∣∣
s

(
pl

se − pl
sw

)− β1
2 β1

2

J

∣∣∣∣
s

(
pl

P − pl
S

) = 0. (6.41)

2 In Equation 6.39, cross-derivative terms containing d A12 are dropped. This is because the pressure-
correction equation is essentially an estimator of p′

m and, therefore, in an iterative procedure the
truncated form presented in Equation 6.39 suffices. It is of course possible to recover the effect of
the neglected term in a predictor–corrector fashion. U are contravariant mean velocities.
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Therefore, separating the solution for pl
P, we get

px1,P = pl
P = A

B
,

A = {
β1

1,e β1
1,e pE + β1

2,e β1
1,e (pne − pse)

}/
Je

+ {
β1

1,w β1
1,w pW − β1

2,w β1
1,w (pnw − psw)

}/
Jw

+ {
β1

2,n β1
2,n pN + β1

2,n β1
1,n (pne − pnw)

}/
Jn

+ {
β1

2,s β
1
2,s pS − β1

2,s β
1
1,s (pse − psw)

}/
Js,

B = β1
1,e β1

1,e

Je
+ β1

1,w β1
1,w

Jw
+ β1

2,n β1
2,n

Jn
+ β1

2,s β
1
2,s

Js
. (6.42)

Similarly, evaluation of px2
is accomplished from ∂2 pl/∂x2

2 = 0 and evaluation
of p is completed.

6.2.6 Overall Calculation Procedure

The overall calculation procedure on curvilinear grids is nearly the same as that on
Cartesian grids. Some important features are highlighted in the following:

1.Read coordinates x1 (i, j) and x2 (i, j) for i = 1, 2, . . . , I N and j =
1, 2, . . . , J N . Hence calculate the geometric coefficients β i

j and areas and vol-
umes once and for all.

2.At a given time step, guess the pressure field pl
i, j . This may be the pressure field

from the previous time step.
3.Solve, using ADI, Equation 6.20 for Cartesian velocity components � = ul

1

and ul
2 with appropriate boundary conditions (see next subsection).

4.Evaluate Uf1 and Uf2 from Equations 6.22 and 6.23. In these evaluations, the
cell-face velocities uf1 and uf2 are evaluated by arithmetic averaging. Hence,
evaluate the source term of the total pressure-correction equation (6.39). Solve
Equation 6.39 to obtain the p′

i, j field.
5.Evaluate pi, j as described in the previous subsection. Hence recover p′

m,i, j to

correct pressure as pl+1
i, j = pl

i, j + β p′
m,i, j .

6.Correct Cartesian velocities as

ul+1
1,P = ul

1,P − ρ r α

APu1

[(
β1

1

)
P

(p′
m,e − p′

m,w) + (
β1

2

)
P

(p′
m,n − p′

m,s)
]
, (6.43)

ul+1
2,P = ul

2,P − ρ r α

APu2

[(
β2

1

)
P

(p′
m,e − p′

m,w) + (
β2

2

)
P

(p′
m,n − p′

m,s)
]
. (6.44)

Note that APu1 = APu2.
7.Solve for other relevant scalar �s.
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Figure 6.5. Node tagging, for a curvilinear grid with a 180◦ bend.

8.Check convergence through evaluation of residuals for momentum and scalar �

equations. Evaluate the mass source residual Rm as appropriate for collocated
grids (see Chapter 5).

9. If the convergence criterion is not satisfied, treat pl+1 = pl , �l+1 = �l and
return to step 3.

10.To execute the next time step, set all �o = � and return to step 2.

6.2.7 Node Tagging and Boundary Conditions

Because of the applicability of the (i, j) structure on curvilinear grids, there are
many features that are in common with those described for Cartesian grids. Thus,
one can readily use Su and Sp in Equation 6.36 to effect underrelaxation and
boundary conditions. Node tagging too can be done as described in Chapter 5.
Care, however, is needed in identification of the boundary type. To illustrate this,
consider the computational domain for a flow in a duct with a 180◦ bend shown
in Figure 6.5. The index I increases with ξ1 and J with ξ2. The flow enters at
the west boundary. The west boundary is identified with I = 1, east with I = I N ,
south with J = 1, and north with J = J N . Note that although in the physical
domain (as drawn) the east boundary appears to the west, in the computational
domain it is identified I = I N and the J index is seen to run downwards. Thus,
NTAGE (I N − 1, J ), J = 2, 3, . . . , J N − 1 will be tagged with 21, 22, 23, or 24
depending on the type of boundary condition. Similarly, the south boundary in the
return flow channel of the bend coincides with J = 1 but, in the physical domain,
it is above the north boundary.
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(2, J)Figure 6.6. Gradient boundary condition.

To illustrate implementation of flux (or normal-gradient) boundary condition,
consider the west boundary shown in Figure 6.6. Let q be the specified flux. Then

q d A1 = −
 d A1
∂�

∂n

∣∣∣∣
(1, j)

= −


J

[
d A2

1

∂�

∂ξ1
+ d A12

∂�

∂ξ2

]
(1, j)

= AW2, j (�1, j − �2, j ) + (ACw)2, j (�sw − �nw). (6.45)

However, this representation involves �sw and �nw, which are again boundary
locations. Therefore, it is advisable to represent the normal flux directly as

q d A1 = −
 d A1
∂�

∂n

∣∣∣∣
(1, j)

= −
 d A1

�n
(�2, j − �1, j ), (6.46)

where the normal distance is given by

�n =
(

β1
i

∂x1

∂ξi
+ β2

i

∂x2

∂ξi

)/
d Ai . (6.47)

It is now possible to extract an expression for �1, j and implement the boundary
condition using Su and Sp in the manner described in the previous chapter. The exit
boundary condition where the second derivative of a scalar variable is set to zero
can also be derived from this condition. Specification of the exit boundary condition
for velocity, however, requires care. This is because the boundary conditions are
known only in terms of boundary-normal and tangential velocity components. The
Cartesian velocity components are then extracted from this specification. More
discussion of this matter is presented in the next section. Boundaries at which
� is specified require no elaboration. Finally, the wall-function treatment for the
HRE turbulence model requires special care because the wall shear stress must
be evaluated from the wall-normal gradient of velocity parallel (tangential) to the
wall. Details of these and other issues of discretisation can be found in Ray and
Date [58].
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Figure 6.7. Vertex and element numbering on an unstructured grid.

6.3 Unstructured Meshes

6.3.1 Main Task

As mentioned in Section 6.1.2, a typical domain may be mapped by triangular,
quadrilateral, and/or n-polygonal elements. Here, we again consider a relatively
simple domain shown in Figure 6.7. The domain is mapped by triangles using
ANSYS. The domain consists of two horizontal parallel plates in which a circular
arc bump is provided at the bottom plate. Flow enters the left vertical boundary and
leaves through the right vertical boundary.

When a domain is mapped in this way, ANSYS generates two data files:

1. a vertex file and
2. an element file.

The entries of these two files are shown in Table 6.1. They correspond to Figure 6.7.
In this figure, there are 42 vertices and 59 elements. Note that the vertex numbering
is completely arbitrary. The vertex file provides serial numbers of vertices along with
their x1, x2, and x3 coordinates. Since the domain is two dimensional, all x3 are zero.
The element file, in contrast, provides serially numbered elements (shown inside
triangles) along with the identification numbers of three vertices (since triangular
elements are generated) that form the element. Like vertex numbering, element
numbers are also assigned arbitrarily.

There are a variety of ways in which transport equations can be discretised on
an unstructured grid. The two principal ones are [83] (a) a vertex-centred approach
and (b) an element-centred approach.

Vertex-Centred Approach
In the vertex-centred approach, the collocated variables � are defined at the vertices.
Thus, vertices are treated as nodes. When the transport equations are discretised, a
variable at node P (say) is related to variables at vertices in the immediate neigh-
bourhood of P with which node P is connected by a line. The vertex and element
files contain sufficient information to identify vertex or node numbers of vertices
with which node P is connected. Such a data structure needs to be generated by
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Table 6.1: Vertex and element files.

Vertex file Element file

NV x1 x2 x3 NE NV1 NV2 NV3

1 0.5 0.0 0.0 1 24 33 25
2 1.5 0.0 0.0 2 24 32 33
3 1.5 1.0 0.0 3 19 39 25
4 −1.5 1.0 0.0 4 39 24 25
5 −1.5 0.0 0.0 5 25 33 42
6 −0.5 0.0 0.0 6 42 33 17
...

...
...

...
...

...
...

...
11 1.3229 1.0 0.0 12 18 42 4

...
...

...
...

...
...

...
...

24 −1.2708 0.2978 0.0 26 29 35 34
...

...
...

...
...

...
...

...
31 0.509 0.3404 0.0 33 34 35 15

...
...

...
...

...
...

...
...

39 −1.3958 0.2127 0.0 56 7 8 27
40 1.357 0.2127 0.0 57 9 10 26
41 1.357 0.7659 0.0 58 19 25 18
42 −1.3958 0.7659 0.0 59 20 21 24

writing a separate computer program. It is clear from Figure 6.7 that different ver-
tices will have different numbers of neighbouring vertices. In this approach, to
adopt an IOCV method for discretisation, one needs to construct a control volume
surrounding node P. Figure 6.8(a) shows a typical vertex P along with its neigh-
bours. Different approaches are possible for the control-volume construction, but
the one adopted here is as follows:

1. Identify elements having a common vertex at P.
2. Locate centroids of each element. This can be done by using known coordinates

of vertices of each element.
3. Connect the successive centroids by straight lines (shown dotted in Figure 6.8).

The dotted lines will enclose P and thus form a control volume surrounding
P. Such a construction at all vertices will yield a non-overlapping set of control
volumes. Discretisation can now be carried out for a typical control volume.

One disadvantage of this approach concerns application of boundary conditions.
Thus, consider a vertex (or a node) at the junction of two boundaries as shown in
Figure 6.8(b). Now, if the boundary conditions at the two boundaries of the junction
are different, the boundary condition at the junction node cannot be uniquely de-
fined. It is possible to overcome this difficulty but only at the expense of additional
bookkeeping.
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Figure 6.8. Vertex-centred unstructured grid.

Element-Centred Approach
In contrast to the vertex-centred approach, the element-centred approach regards
each triangular (or polygonal) element itself as the control volume [see Fig-
ure 6.9(a)]. Then, node P is defined at the centroid of the element such that

xi,P = 1

3
(xi,1 + xi,2 + xi,3), i = 1, 2, (6.48)

and the coordinates of vertices 1, 2, and 3 are known from the vertex file. Note
that node P will be identified by the identifier of the element to which it belongs
because node P will always remain enclosed within its surrounding control volume.

In this case, node P will have only three neighbours since triangular elements are
considered. The identification numbers of neighbouring elements are, however, not
a priori known. However, these can be determined from the element file because
two neighbouring elements must share the same two vertices. To establish this
connectivity between elements, a separate computer program must be written.

1

2 3

P

B

P

1

(a) (b)

3

2

BOUNDARY

Figure 6.9. Element-centred unstructured grid.
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The lines joining vertices will henceforth be called control volumes or cell faces
and elements will be referred to as cells. Thus, a triangular element will have three
cell faces. The same logic extends to polygonal cells. Now, it is easy to recognize that
when nodes are defined at the centroids of cells, there is no node at the boundary
to facilitate implementation of the boundary conditions. Therefore, a boundary
node must be defined. We adopt the convention that the boundary node shall be at
the center of the cell face coinciding with the domain boundary. This is shown in
Figure 6.9(b) by point B. It will be recognised that even if there is a change in
boundary condition on either side of a vertex, the boundary condition can now be
effected without any ambiguity.

Practitioners of CFD familiar with control-volume discretisation on structured
grids prefer the element-centred approach [5, 46, 20] rather than the vertex-centred
approach. In the discussion to follow, therefore, the element-centred approach is
further developed.

6.3.2 Gauss’s Divergence Theorem

The transport equation (5.1) in Cartesian coordinates is again considered here but
without the presence of r for brevity.3 The equation is rewritten as

∂(ρ �)

∂t
+ ∂ qi

∂xi
= ∂(ρ �)

∂t
+ div (�q) = S, (6.49)

where the vector �q = �i q1 + �j q2 and �i and �j are unit vectors along Cartesian coor-
dinates x1 and x2, respectively.

To implement the IOCV method, Equation 6.49 is now integrated over the
elemental control volume shown in Figure 6.9. Thus, with the usual approximations,
we have (

ρP �P − ρo
P �o

P

) �V

�t
+
∫

�V
div (�q)dV = S �V, (6.50)

where �V is the volume (i.e., the area in the 2D domain with unit dimension in the
x3 direction) of the cell surrounding P. This cell volume can be calculated knowing
the coordinates of the vertices.

The second term on the left-hand side will now be evaluated by invoking Gauss’s
divergence theorem [70] applicable to a singly connected region. Thus,∫

�V
div (�q)dV =

∫
C

�q · �A, (6.51)

where
∫

C is a line integral along the bounding surfaces (or lines in two dimensions)

of the control volume and �A is the local area vector normal (pointing outwards) to

3 This neglect in no way disqualifies the developments to follow.



P1: IWV
0521853265c06 CB908/Date 0 521 85326 5 May 25, 2005 11:10

178 2D CONVECTION – COMPLEX DOMAINS

P
E

b

a

e ξ1

ξ2

c

b

a

e

c

E

P

ξ1

ξ2

n

n

(a) (b)

Figure 6.10. Typical cell face ab.

the bounding surface (line). The direction of C is anticlockwise. To make further
progress, the line integral is replaced by summation. Thus,∫

C
�q · �A =

N K∑
k=1

(�q · �A)k, (6.52)

where N K = 3 for a triangular element and k stands for the kth face of the control
volume. Thus, the line integral is discretized into N K segments.

To evaluate the dot product �q · �A at each cell face k, consider Figure 6.10, where
evaluation at face ab (say) shared by neighbouring cells P and E is to be carried out.
Let line PE be along the ξ1 direction and line ab be along the ξ2 direction, where the
latter direction is chosen such that Jacobian J (see Equation 6.14) is positive. Let
lines PE and ab intersect at e. Now, depending on the shapes of cells P and E, e may
lie within ab [Figure 6.10(a)] or on an extension of ab [Figure 6.10(b)]. Further, let
�n be the unit normal vector to ab pointing outwards with respect to cell P as shown
in the figure. Then, using Equation 6.25, we get

�A = Aab · �n = �i ∂x2

∂ξ2
− �j ∂x1

∂ξ2
= �i β1

1 + �j β2
1 , (6.53)

where

β1
1 = x2b − x2a, β2

1 = −(x1b − x1a), (6.54)

Aab = Ack =
√(

β1
1

)2 + (
β2

1

)2 = area of face ab, (6.55)

and c is the midpoint of ab. The coordinates of c are

xi,c = 1

2
(xi,a + xi,b). (6.56)

Substituting Equation 6.53 in Equation 6.52, we have

(�q · �A)ck = (�q · �n)ck Ack = (
β1

1 q1 + β2
1 q2

)
k

=
2∑

i=1

(
β i

1 qi

)
k

= (qn Ac)k . (6.57)
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We now recall that

qi = ρ ui � − 

∂�

∂xi
, i = 1, 2. (6.58)

Therefore,

(qn Ac)k = ρck �ck

2∑
i=1

(
β i

1 ui

)
ck

− 
ck

2∑
i=1

(
β i

1

∂�

∂xi

)
ck

. (6.59)

Now, for brevity, we introduce following notation:

Cck = ρck

2∑
i=1

(
β i

1 ui

)
ck

(cell-face mass flow) (6.60)

and

−
ck Ack
∂�

∂n

∣∣∣∣
ck

= −
ck

2∑
i=1

(
β i

1

∂�

∂xi

)
ck

(normal diffusion). (6.61)

Thus, the total transport across the kth cell face is given by

(�q · �A)ck = Cck �ck − 
ck Ack
∂�

∂n

∣∣∣∣
ck

. (6.62)

Note that the normal diffusion is evaluated directly in terms of a normal gradient
rather than in terms of resolved components in ξ1 and ξ2 directions as was done
on curvilinear grids (see Equations 6.30 and 6.31). It is this feature that makes our
diffusion transport evaluation equally applicable to 3D polyhedra.

The convective and diffusive contributions to total transport across each cell
face k must now be evaluated. In the literature [19, 46, 20], these contributions
are evaluated in a variety of ways, but without invoking any line structure. The
approach adopted here recognises the importance of a line structure analogous to
the one available at the cell face of a structured grid. The existence of such a line
structure at the cell face of an unstructured grid, however, is not obvious because the
line joining cell centroids P and E intersects cell face ab in an arbitrary manner, as
shown in Figure 6.10. Therefore, a line structure must be deliberately constructed.
This matter is considered in the next subsection.

6.3.3 Construction of a Line Structure

Our interest is to evaluate total transport (Equation 6.62) normal to the kth cell face.
To carry out this evaluation, consider the more general face construction shown in
Figure 6.10(b). This figure is again drawn more elaborately in Figure 6.11 to carry
out the necessary construction of a line structure.

The construction begins by drawing two normals (shown by dotted lines) to ab
passing through e and c. Now, two lines parallel to ab are drawn passing through
nodes P and E. Let the line through P intersect the face normal through e at P1 and
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Figure 6.11. Construction of a line structure at cell face ab.

that through c at P2. Note that these intersections at P1 and P2 will be orthogonal.
Similarly, let the face-parallel line through E intersect the two normals at E1 and
E2, respectively.

With this construction, it is clear that Equation 6.62 must be evaluated along the
line P2–c–E2. These evaluations, it will be appreciated, will now be similar to the
evaluations carried out at the cell face of a structured grid control volume. In the next
two subsections, the convective and diffusive contributions are evaluated separately.

6.3.4 Convective Transport

Following the usual methodology, the convective transport term in Equation 6.62
is evaluated as

Cck �ck = Cck[ fck �P2 + (1 − fck)�E2]k, (6.63)

where fck are weighting factors that depend on the convection scheme used. If, for
example, the UDS is used, then

fck (UDS) = 0.5

(
1 + |Cck |

Cck

)
, (6.64)



P1: IWV
0521853265c06 CB908/Date 0 521 85326 5 May 25, 2005 11:10

6.3 UNSTRUCTURED MESHES 181

where, following Equation 6.60,

Cck = ρck

[
β1

1 u1 + β2
1 u2

]
ck

. (6.65)

Now, ρck , u1,ck , and u2,ck are linearly interpolated according to the following general
formula:4

	ck = [ fm,c 	E2 + (1 − fm,c)	P2]. (6.66)

In this evaluation the weighting factor can be deduced from the geometry of con-
struction shown in Figure 6.11 as

fm,c = lP2 c

lP2 E2

= lP1 e

lP1 E1

= lP e

lP E
, (6.67)

where lp e and lP E can be evaluated from known coordinates of points P, e, and E.

6.3.5 Diffusion Transport

For evaluation of diffusion transport in Equation 6.62, the face area Ack is known
from Equation 6.55 and 
ck can be evaluated from the general formula (6.66) or
by harmonic mean. It remains now to evaluate the face-normal gradient of �. To
do this, it is first recognised that point c, in general, will not be midway between
points P2 and E2. Therefore, to retain second-order accuracy in the evaluation of
this gradient, we employ a Taylor series expansion.

�P2 = �c − lP2 c
∂�

∂n

∣∣∣∣
c

+ l2
P2 c

2

∂2�

∂2n

∣∣∣∣
c

+ · · · , (6.68)

�E2 = �c + lE2 c
∂�

∂n

∣∣∣∣
c

+ l2
E2 c

2

∂2�

∂2n

∣∣∣∣
c

+ · · · . (6.69)

Eliminating the second derivative from these two equations and using Equation
6.67, we can show that

∂�

∂n

∣∣∣∣
c

= �E2 − �P2

lP2 E2

− 1 − 2 fm,c

fm,c (1 − fm,c)

[
fm,c �E2 − �c + (1 − fm,c)�P2

lP2 E2

]
,

(6.70)

where, from our construction,

lP2 E2 = lP1 E1 = �lPE · �n =
∣∣∣∣∣

2∑
i=1

β i
1 (xi,E − xi,P)

∣∣∣∣∣
/

Ac. (6.71)

4 Note that this interpolation can also be performed multidimensionally as stated in Chapter 5. Thus,
one may write

	ck = 1

2
[ fm,c 	E2 + (1 − fm,c)	P2 ] + 1

4
(	a + 	b).
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In Equation 6.70, the first term on the right-hand side represents first-order-
accurate evaluation of the normal gradient whereas the second term imparts second-
order accuracy. In this latter term, if �c is evaluated from general formula (6.66)
then the term will simply vanish. To retain second-order accuracy, therefore, �c

must be interpolated along direction ab. Now, since point c (see Figure 6.11) is
midway between a and b,

�ck = 0.5 (�ak + �bk). (6.72)

Using Equations 6.70 and 6.72, therefore, we can express the total diffusion trans-
port as

−
(


A
∂�

∂n

)
ck

= −dck (�E2 − �P2)k + dck Bck

[
fm,c�E2 − �c + (1 − fm,c)�P2

]
k
,

(6.73)

where

dck = (
 A)ck

lP2 E2

(6.74)

and

Bck = 1 − 2 fm,c

fm,c (1 − fm,c)
. (6.75)

It will be recognised that dck is nothing but the familiar diffusion coefficient
having significance of a conductance. The symbol Bck is introduced for brevity.

6.3.6 Interim Discretised Equation

At this stage of development, it will be instructive to recapitulate derivations fol-
lowing Equation 6.50. Thus, the volume integral in this equation is replaced by a
summation of face-normal contributions in Equation 6.52. The total (convective +
diffusive) face-normal contribution at any face is then represented in Equation 6.62.
The convective component of the total face-normal contribution is given by Equa-
tion 6.63 and the diffusive component by Equation 6.73. Therefore, Equation 6.50
may now be written as

(
ρP �P − ρo

P �o
P

) �V

�t

+
N K∑
k=1

Cck

[
fc �P2 + (1 − fc)�E2

]
k

−
N K∑
k=1

dck (�E2 − �P2)k

+
N K∑
k=1

dck Bck

[
fm,c �E2 − �c + (1 − fm,c)�P2

]
k

= S �V . (6.76)
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This discretised equation, however, is of little use because the values of variables
at fictitious points P2 and E2 and at vertices a and b are not known. We must therefore
relate values at these fictitious points to the values at nodes P and E. This matter is
developed in the next subsection.

6.3.7 Interpolation of Φ at P2, E2, a, and b

If it is assumed that the � variation between P and P2 is linear then to first-order
accuracy

�P2 = �P + ��P = �P + �lPP2 · ∇ �P, (6.77)

where

�lPP2 = �i (x1,P2 − x1,P) + �j (x2,P2 − x2,P), (6.78)

and

∇ �P = �i ∂�

∂x1

∣∣∣∣
P
+ �j ∂�

∂x2

∣∣∣∣
P

. (6.79)

Taking the dot product in Equation 6.77 therefore gives

��P =
2∑

i=1

(xi,P2 − xi,P)
∂�

∂xi

∣∣∣∣∣
P

, (6.80)

where xi,P2 − xi,P must be evaluated in terms of points whose coordinates are known.
Thus

xi,P2 − xi,P = xi,P2 − xi,c + xi,c − xi,P. (6.81)

However, from the construction shown in Figure 6.11,

xi,P2 − xi,c = xi,P1 − xi,e. (6.82)

Therefore, Equation 6.81 is further reformulated as

xi,P2 − xi,P = [xi,P1 − xi,e + xi,e − xi,P] + xi,c − xi,e. (6.83)

Now, the equation to the face-normal passing through e is given by

�n =
�i (x1,e − x1,P1) + �j (x2,e − x2,P1)

lP1e
=

�i β1
1 + �j β2

1

Ac
, (6.84)

therefore

xi,P1 − xi,e = − lP1e

Ac
β i

1 (6.85)

and Equation 6.83 can be written as

xi,P2 − xi,P = lxi + dxi , (6.86)
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where

lxi = xi,e − xi,P − lP1e

Ac
β i

1 (6.87)

dxi = xi,c − xi,e = 1

2
(xia + xib) − xie, (6.88)

lP1e = �lPe · �n =
∣∣∣∣∣

2∑
i=1

(xi,e − xi,P)β i
1

∣∣∣∣∣
/

Ac. (6.89)

Now, since coordinates of e, P, a, and b are known, using Equations 6.86 and
6.80, we can write Equation 6.77 as

�P2 = �P + ��P = �P +
2∑

i=1

(lxi + dxi )
∂�

∂xi

∣∣∣∣
P

. (6.90)

Invoking similar arguments, it can be shown that

�E2 = �E + ��E = �E +
2∑

i=1

[
dxi − (1 − fm,c)

fm,c
lxi

]
∂�

∂xi

∣∣∣∣
E

. (6.91)

Now, �a and �b are evaluated as the average of two estimates in the following
manner:

�a = 0.5
[
�P + lPa ∇ �P + �E + lEa ∇ �E

]
, (6.92)

�b = 0.5
[
�P + lPb ∇ �P + �E + lEb ∇ �E

]
. (6.93)

6.3.8 Final Discretised Equation

Substituting Equations 6.90 to 6.93 in Equation 6.76 and performing some algebra,
we can write the resulting discretised equation as

(
ρP �P − ρo

P �o
P

) �V

�t
+

N K∑
k=1

Cck [ fc �P + (1 − fc)�E]k

−
N K∑
k=1

dck (�E − �P)k

= S �V +
N K∑
k=1

Dk, (6.94)

where

Dk = −dck Bck[ fm,c �E2 − 0.5 (�a + �b) + (1 − fm,c)�P2]k

+ dck (��E − ��P)k − Cck [ fc ��P + (1 − fc)��E]k . (6.95)
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Further Simplification
Grouping terms in �P and �E,k together, we can write Equation 6.94 as[

ρP
�V

�t
+

N K∑
k=1

(Cck fck + dck)

]
�P =

N K∑
k=1

{dck − (1 − fck)Cck} �E,k

+ S �V + ρo
P

�V

�t
�o

P +
N K∑
k=1

Dk . (6.96)

It is possible to simplify this equation further. Thus, let coefficient of �Ek be AEk .
Then,

AEk = dck − (1 − fck)Cck . (6.97)

Now, for � = 1 (i.e., the mass conservation equation), Equation 6.76 gives

(
ρP − ρo

P

) �V

�t
+

N K∑
k=1

Cck = 0, (6.98)

or

ρP
�V

�t
= ρo

P

�V

�t
−

N K∑
k=1

Cck . (6.99)

Now, let AP be the multiplier of �P in Equation 6.96. Then using Equations
6.97 and 6.99, it follows that5

AP = ρP
�V

�t
+

N K∑
k=1

{dck + fck Cck} (6.100)

= ρo
P

�V

�t
+

N K∑
k=1

{dck − (1 − fck) Cck} (6.101)

= ρo
P

�V

�t
+

N K∑
k=1

AEk . (6.102)

Thus, Equation 6.96 can be compactly written as

AP �l+1
P =

N K∑
k=1

AEk �l+1
Ek + S �V + ρo

P

�V

�t
�o

P +
N K∑
k=1

Dl
k . (6.103)

5 Note the similarity of Equation 6.102 with Equation 6.37 derived for curvilinear grids.
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The following comments are now in order:

1. Equation 6.103 has the familiar form in which the value of �P is related to its
neighbors �Ek .

2. Superscripts l and l + 1 are now added to indicate that terms Dk containing
Cartesian derivatives of � are treated as sources and therefore lag behind by
one iteration. The same applies to the source term S. A method for evaluating
nodal Cartesian derivatives is developed in the next subsection.

3. Equation 6.103 applies to an interior node. When the control volume adjoins
a boundary, one of the cell faces will coincide with the boundary. In this case,
�Ek for the boundary face will take the value of �B, where B is shown in Fig-
ure 6.9(b). For different types of boundaries, boundary conditions are different
for different variables. Therefore, Equation 6.103 must be appropriately mod-
ified to take account of boundary conditions. This matter will be discussed in
Section 6.3.10.

6.3.9 Evaluation of Nodal Gradients

To evaluate the Dk terms in Equation 6.103, Cartesian gradients of � must be
evaluated (see Equations 6.90 to 6.93). This evaluation is carried out as follows:

∂�

∂xi

∣∣∣∣
P

= ∂�

∂xi

∣∣∣∣∣
P

= 1

�V

∫
�V

∂�

∂xi

∣∣∣∣
P

dV . (6.104)

The volume integral here can again be replaced by a line integral and subsequently
by summation. Thus

∂�

∂xi

∣∣∣∣
P

= 1

�V

∫
C

(
β i

1 �
)

c
= 1

�V

N K∑
k=1

(
β i

1 �
)

ck
, (6.105)

where

�ck = [ fmc �E2 + (1 − fmc)�P2 ]k

= [ fmc (�E + ��E) + (1 − fmc)(�P + ��P)]k . (6.106)

The appearance of ��P in Equation 6.106 suggests that Equation 6.105 is
implicit in ∂�/∂xi (see Equation 6.90). However, since the overall calculation
procedure is iterative, such implicitness is acceptable.

6.3.10 Boundary Conditions

To describe application of boundary conditions, consider a cell near a bound-
ary (Figure 6.12) with face ab coinciding with the domain boundary. Note that
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B = c = e

P2

b

ξ2

n

a

BOUNDARY  FACE

INFLUX   FB

P

ξ1

Figure 6.12. Line structure for a near-boundary cell.

a boundary node B has already been defined [see Figure 6.9(b)] such that

xi,B = 1

2
(xi,a + xi,b). (6.107)

Thus, since the boundary node is midway between a and b, from the construction
shown in Figure 6.11, it is easy to deduce that points B, c, and e will coincide on
the boundary face. Therefore, to represent transport at the boundary, an outward
normal (shown by a dotted line) is drawn through B. Now, let line PP2 be orthogonal
to this normal and therefore parallel to ab. With this construction, the total outward
transport through ab can be written as (see Equation 6.62)

(�q · �A)B = CB �B − (
 A)B
∂�

∂n

∣∣∣∣
B

, (6.108)

where

CB = ρB
(
β1

1 u1 + β2
1 u2

)
B

, (6.109)

CB �B = CB
[

fB �P2 + (1 − fB)�B
]
. (6.110)

Now the cell-face normal gradient is represented by the first-order backward-
difference formula

∂�

∂n

∣∣∣∣
B

= (�B − �P2)

lP2B
. (6.111)

In both Equations 6.110 and 6.111,

�P2 = �P + ��P = �P + �lPP2 · ∇ �P = �P +
2∑

i=1

(xi,P2 − xi,P)
∂�

∂xi

∣∣∣∣
P

.

(6.112)
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It is easy to show that

xi,P2 − xi,P = lxi = xi,B − xi,P − lP2B

AB
β i

1, (6.113)

lP2B =
∣∣∣∣∣

2∑
i=1

(xi,B − xi,P)β i
1

∣∣∣∣∣
/

AB. (6.114)

Thus, Equation 6.108 can be written as

(�q · �A)B = CB [ fB (�P + ��P) + (1 − fB)�B] − dB [�B − �P − ��P] ,

(6.115)

where the diffusion coefficient is given by

dB = 
B AB

lP2B
. (6.116)

Using Equation 6.115, implementation of boundary conditions for scalar and
vector variables will be discussed separately.

Scalar Variables: For the near-boundary cell, Equation 6.103 is first rewritten
as [

ρo
P

�V

�t
+

N K−B∑
k=1

AEk

]
�l+1

P =
N K−B∑

k=1

AEk �l+1
Ek + ρo

P

�V

�t
�o

P

+ S �V +
N K−B∑

k=1

Dl
k − (�q · �A)B (6.117)

where N K − B implies that the boundary face contribution is excluded from the
summation and accounted for through the −(�q · �A)B term. This accounting can
now also be done via Su and Sp as

Su − Sp �P = −(�q · �A)B

= −CB [ fB (�P + ��P) + (1 − fB)�B]

+ dB [�B − �P − ��P] . (6.118)

Thus, when �B is specified, it is possible to write

Su = −CB [ fB ��P + (1 − fB)�B] + dB [�B − ��P] ,

Sp = CB fB + dB. (6.119)

Sometimes, boundary influx FB = 
B ∂�/∂n |B is specified. Then, it can be
shown that

Su = −CB [ fB ��P + (1 − fB)�B] + FB AB,

Sp = CB fB. (6.120)
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These two types of scalar boundary conditions typically suffice to affect physical
conditions at inflow, wall, exit, and symmetry boundaries of the domain.

Vector Variables: At inflow and wall boundaries, the velocities ui,B are known
and, therefore, Equations 6.119 readily apply. Care is, however, needed when exit
and symmetry boundary conditions are considered. Thus, at the symmetry boundary,
the known conditions are

CB = ρB

2∑
i=1

β i
1 ui,B = 0, (6.121)

∂Vt

∂n

∣∣∣∣
B

= 0 or Vt,B = Vt,P2, (6.122)

where Vt is the velocity tangential to face ab, which is therefore directed along ξ2

(see Figure 6.12). Therefore, the unit tangent vector �t can be written as

�t = �i lx1 + �j lx2, (6.123)

where, lxi are given by Equation 6.87. Thus, the tangential velocity is given by
Vt = �V · �t = ∑2

i=1 lxi ui and Equation 6.122 can be written as

2∑
i=1

lxi ui,B =
2∑

i=1

lxi ui,P2 =
2∑

i=1

lxi (ui,P + �ui,P). (6.124)

Individual values of ui,B can now be determined from simultaneous solution of
Equations 6.121 and 6.124.

At the exit boundary, boundary-normal gradients of both normal and tangential
velocities are zero. Thus

∂Vt

∂n

∣∣∣∣
B

= 0 or Vt,B = Vt,P2, (6.125)

∂Vn

∂n

∣∣∣∣
B

= 0 or Vn,B = Vn,P2 . (6.126)

Equation 6.125 is the same as Equation 6.122 and, therefore, Equation 6.124 readily
applies. The normal velocity component, however, is Vn = �V · �n and Equation
6.126 will read as

2∑
i=1

β i
1 ui,B =

2∑
i=1

β i
1 ui,P2 =

2∑
i=1

β i
1 (ui,P + �ui,P). (6.127)

Again, the individual components ui,B can be determined from simultaneous solu-
tion of Equations 6.124 and 6.127.
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6.3.11 Pressure-Correction Equation

In Chapter 5, the total pressure-correction equation in Cartesian coordinates was
derived to read as

∂

∂xi

[



p′
i

∂p′

∂xi

]
= ∂

(
ρ ul

i

)
∂xi

+ ∂ρ

∂t
, (6.128)

where



p′
i = ρ α �V

APui
. (6.129)

In this definition of 
 p′
, α and APui are, respectively, the underrelaxation factor and

the AP coefficient used in the momentum equations. Invoking the Gauss theorem
again, the discretised version of Equation 6.128 will read as

AP p′
P =

N K∑
k=1

AEk p′
Ek −

N K∑
k=1

Cck − (
ρP − ρo

P

) �V

�t
+

N K∑
k=1

D p′
k , (6.130)

where AP = ∑N K
k=1 AEk and

AEk = d p′
ck = (
 p′

A)ck

lP2E2

. (6.131)

Two comments are now important:

1. The D p′
k term in Equation 6.130 will contain Cartesian gradients of p′. However,

during iterative calculation, since the pressure-correction equation is treated only
as an estimator of p′, D p′

k is set to zero.

2. Evaluation of 

p′
ck in Equation 6.131 will require evaluation of �V and APui

at the cell face (see Equation 6.129). The evaluation of cell-face volume can
be accomplished via a fresh construction at the cell face as shown in Fig-
ure 6.13. The construction involves drawing lines parallel to ab passing through
P2 and E2. Then, two lines parallel to normal �n (and, hence, parallel to line
P2E2) are drawn through a and b. The resulting rectangle c1–c2–c3–c4 will have
volume

�Vck = lab × lP2E2 × 1 = Ack lP2E2 . (6.132)

Using this equation therefore gives

AEk = α (ρ A2)ck

APu
ck

, (6.133)

where APu
ck = APu1

ck = APu2
ck can be evaluated from formula (6.66).6

6 Alternatively, one may evaluate APu
ck exactly by carrying out a structured-grid-like discretisation

over the control volume c1–c2–c3–c4. This is left as an exercise.
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b

c

c3

c4

c1

c2

n

E2

P2

a

Figure 6.13. Construction of a cell-face con-
trol volume.

Thus, the final discretised pressure correction equation is

AP p′
P =

N K∑
k=1

AEk p′
Ek −

N K∑
k=1

Cck − (
ρP − ρo

P

) �V

�t
, (6.134)

where AEk is given by Equation 6.133. Equation 6.134 must be solved with
∂p′/∂n |B = 0, which can be accomplished simply by setting AEk = 0 for the
boundary face. After solving Equation 6.134, the mass-conserving pressure cor-
rection is recovered as p′

m = p′ − p′
sm = p′ − 0.5 (pl − pl).

Evaluation of p
Recall that pP = 0.5 (px1

+ px2
), where pxi

is determined from solution of
∂2 p/∂x2

i |P = 0. Thus px1
, for example, is evaluated from

1

�V

∫
∂2 p

∂x2
1

∣∣∣∣
P

dV = 1

�V

∫
C

β1
1

∂p

∂x1

∣∣∣∣
ck

= 1

�V

N K∑
k=1

β1
1

∂p

∂x1

∣∣∣∣
ck

= 0. (6.135)

Now, the pressure gradient at the cell face is evaluated by applying Gauss’s theorem
over the volume c1–c2–c3–c4. Then, it can be shown that

∂p

∂x1

∣∣∣∣
ck

= �x2,E2 pE2 + �x2,b pb + �x2,P2 pP2 + �x2,a pa

�Vck
, (6.136)

where

�x2,E2 = (x2,c3 − x2,c2),

�x2,b = (x2,c4 − x2,c3),

�x2,P2 = (x2,c1 − x2,c4),

�x2,a = (x2,c2 − x2,c1).
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However, note that

�x2,E2 = −�x2,P2 = x2,b − x2,a = β1
1

and

�x2,a = −�x2,b = x2,E2 − x2,P2 = x2,E1 − x2,P1 = β2
1

∣∣∣∣∣
2∑

i=1

β i
1(xi,E − xi,P)

∣∣∣∣∣
/

A2
c .

Making these substitutions in Equation 6.136 and carrying out the summation
indicated in Equation 6.135, and further separating out px1,P = pP, we obtain an
explicit equation for px1,P that reads as px1,P = A/B, where

A =
N K∑
k=1

[(
β1

1

)2
(pE + �pE − �pP)

]/
�Vck

−
N K∑
k=1

[
β1

1 (x2,E2 − x2,P2) (pb − pa)
]/

�Vck, (6.137)

and

B =
N K∑
k=1

(
β1

1

)2
/

�Vck, (6.138)

where pb and pa are evaluated using Equations 6.92 and 6.93. Similarly, we obtain
an equation for px2,P = A/B, where

A =
N K∑
k=1

[(
β2

1

)2
(pE + �pE − �pP)

]/
�Vck

−
N K∑
k=1

[
β2

1 (x1,E2 − x1,P2) (pb − pa)
]/

�Vck (6.139)

and

B =
N K∑
k=1

(
β2

1

)2
/

�Vck . (6.140)

6.3.12 Method of Solution

Our interest is in solving the set of equations (6.103) for all interior nodes P. Thus, if
there are N E elements, there are N E equations for each variable. Again, equations
for each variable are solved sequentially (see the next subsection). It has been noted
that the AP coefficients will dominate over the neighbouring coefficients AEk . But,
the positions of AEk in the coefficient matrix [A] will be arbitrary because of the
manner in which neighbouring nodes are numbered during grid generation using
ANSYS. This is unlike the case of structured grids (both Cartesian and curvilinear)
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where AP occupies the diagonal positions and the neighbouring coefficients occupy
the off-diagonal positions, forming a pentadiagonal matrix (in the 2D case). It is
this special feature of the structured grids that permitted employment of the ADI
solution method.

The arbitrary [A] matrix formed on unstructured grids is called a sparse matrix.
For such matrices, rapidly convergent methods such as conjugate-gradient (CG)
and generalised minimal residual (GMRES) are available [3]. These methods are
particularly attractive when the number of elements and, hence, the number of
equations requiring simultaneous solutions are large. Description of these methods
is considered beyond the scope of the present book. However, the diagonally
dominant position occupied by the AP coefficient in our equations still permits
employment of the simple point-by-point GS procedure. Thus, the equations can
be solved by a simple routine as follows:

DO 1 N = 1, NE
SUM = SU(N)
DO 2 K = 1, NK(N)
NEBOR = NHERE(N, K)

2 SUM = SUM + AE(N, K) * FI(NEBOR)
FI(N) = SUM / (AP(N) + SP(N))

1 CONTINUE

where NK(N) stores the number of neighbours of node N, NHERE (N, K) stores
the element number of the kth neighbouring node of N, and source term SU (N)
and AP (N) and SP (N) have already been calculated.

6.3.13 Overall Calculation Procedure

The important features of the overall calculation are described through the proce-
dural steps that follow.

Preliminaries
1.Read element and vertex files. Determine neighbouring elements of each node

N to form NHERE (N , K). This is done by searching the shared vertices between
neighbouring elements. Note that there will be no neighbouring elements when
a boundary face is encountered. At such a face, a boundary node is created
and such nodes are identified with numbers NE + 1, NE + 2, etc., where NE
are the total number of elements read from the element file. The coordinates of
interior nodes are calculated using Equation 6.48 and of boundary nodes using
Equation 6.107.

2.Tag the boundary nodes with identification numbers for inflow, symmetry, wall,
and exit boundaries. Note that here boundary nodes rather than near-boundary
cells are tagged. This is unlike the practice on structured grids.
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3.Knowing coordinates of nodes and vertices, calculate β i
1, lxi , dxi for i = 1, 2 and

fm,c and Ac for each face of every node. This is a once-and-for-all calculation
and all these quantities are stored in two-dimensional arrays (N , K). In addition,
�V is calculated for each cell.

Solution Begins
4.At a given time step, guess the pressure field pl .
5.Solve Equation 6.103 for � = ul

1 and ul
2. The solution is preceded by evaluation

of AE (N , K) and AP (N), SP (N), and the entire source term SU (N) in Equation
6.103. It is assumed that SU and SP are appropriately modified to account for
boundary conditions.

6.Perform a maximum of ten iterations on Equation 6.134 for p′. Here AE (N , K)
are evaluated from Equation 6.133 and the source term containing mass fluxes
is evaluated from Equation 6.65.

7.Recover the p′
m distribution from p′

m = p′ − 0.5 (pl − pl), where pl is evalu-
ated from Equations 6.137 to 6.140.

8.Apply pressure and velocity corrections at each node. Thus

pl+1
P = pl

P + β p′
m,P, 0 < β < 1, (6.141)

ul+1
i,P = ul

i,P − α �V

APui

∂p′
m

∂xi

∣∣∣∣
P

, (6.142)

where the pressure gradient is evaluated using Equations 6.105 and 6.106. The
mass-source residual Rm is evaluated from Equation 5.73, where AP and Ak

coefficients are the same as in Equation 6.134.
9.Solve Equation 6.103 for all other relevant scalar �s.

10.Check convergence by evaluating residual R� via the imbalance in Equation
6.103 for each � as explained in Chapter 5. Special care is again needed in
evaluation of the mass residual Rm. This is evaluated from the imbalance in
Equation 6.134 in which p′ is replaced by p′

m.
11. If the convergence criterion is not satisfied, treat pl+1 = pl and �l+1 = �l and

return to step 5.
12.To execute the next time step, set all �o = �l+1 and return to step 4.

6.4 Applications

Flow over Banks of Tubes
In shell-and-tube heat exchangers, the flow on the shell side takes place over a bank
of tubes several rows deep. The flow is aligned at various angles to the axis of
the tubes. However, for preliminary design work, the flow may be assumed to be
transverse to the axis (i.e., a cross flow). This configuration has been extensively re-
searched and experimentally determined data are available [91] for different values
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Figure 6.14. Flow across banks of tubes.

of aligned and staggered arrangement of tubes. The important geometric param-
eters are (see Figure 6.14) longitudinal pitch SL, transverse pitch ST, and tube
diameter D. Here, we consider cases of SL/D = ST/D = 2 for the inline array and
SL/D = ST/D = 1.5 for the staggered array.

For the purposes of computations, however, the smallest symmetric domain
must be considered. Such domains are mapped by curvilinear grids as shown in
Figure 6.15. In these domains, the north and south boundaries are partly symmetric
and partly occupied by tube wall but the west and east boundaries are periodic. Note,
however, that in the inline array, the periodicity is even whereas a cross-periodicity
occurs in the staggered array with respect to the u2 velocity. Computations have
been performed using 45 × 15 grids for the inline array and 41 × 15 grids for the
staggered array. For turbulent flow, the standard HRE model with two-layer wall
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Figure 6.15. Computational domains for inline and staggered arrays.
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Figure 6.16. Variation of f and Nu with Re for ST/D = SL/D = 2.

functions has been used with one modification. Thus, in Equation 5.87, (u+ + P F)
is replaced by [κ−1 ln (E y+) + P F]. All predictions are performed for Pr = 0.7
and a constant wall heat flux (qw) boundary condition is assumed at the tube walls.
For laminar flow, global underrelaxation is used to procure convergence whereas
for turbulent flow, a false transient technique is used. The friction factor and
Nusselt number are evaluated as

f = 0.5
dp

dx

SL

ρ V 2
max

, Nu = h D

K
= qw D

K (T w − Tin)
, (6.143)

respectively, where T w is the average wall temperature over forward and rear tubes
and Tin is the bulk temperature at the inlet periodic boundary. For the chosen values
of SL and ST, Vmax = uin, the bulk velocity at the inlet periodic boundary. Finally,
the Reynolds number is defined as Re = ρ Vmax D/µ. Since the flow is periodic,
the average streamwise pressure gradient is specified and Re is the output of the
solution.

Figure 6.16 shows the predicted f (open circles) and Nu (open squares) for the
inline array. For the 2 × 2 array and Re > 2,000, correlations due to Grimison [25]
[Nu = 0.229 Re0.632 (dotted line)] and Zhukauskas [91] [Nu = 0.23746 Re0.63 for
Re < 2 × 105 and Nu = 0.01842 Re0.81 for 2 × 105 < Re < 2 × 106 (solid line)]
are plotted in the figure. These correlations are developed for constant tube-wall
temperature but are used as a reference for the constant wall heat flux predictions
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Figure 6.17. Variation of f and Nu with Re for ST/D = SL/D = 1.5.

considered here. It is well known that for near-unity Prandtl numbers, turbulent
flow correlations are typically insensitive to the type of boundary condition. The
figure shows that the present turbulent-flow Nu predictions are in good agreement
with the correlations. Similar agreement is also obtained by Antonopoulos [2]. The
friction-factor data of Zhukauskas are read from an available graph and are shown
by a solid line. The presently predicted turbulent-flow friction-factor data are seen
to be substantially above the experimental data. Unfortunately, predicted friction-
factor data are not reported in [2]. In the laminar range, however, the friction-factor
data show the expected steeper slope with Re but no correlations are available for
comparison.

Figure 6.17 shows a similar comparison for the staggered array. Here again,
the turbulent-flow friction-factor data show gross overprediction but Nu data are
in excellent agreement with the correlation due to Zhukauskas. The laminar-flow
Nu shows a peculiar decline at Re ∼ 120. This is because of the change in the flow
structure at this Reynolds number, which in turn alters the temperature distribution.
For Re < 120, the maximum temperature occurs at the rear tube, whereas for
Re > 120, the maximum temperature occurs at the forward tube.

In summary, we may state that for both inline and staggered arrays, the predicted
turbulent Nu data are in good agreement with the experimental correlations but the
predicted turbulent f data are in poor agreement with the Zhukauskas correlations.
Although the latter correlations are taken as standard, it may be noted that there
are other researchers whose experimental correlations for f are in much closer
agreement with the present predictions.
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Figure 6.18. Velocity vectors, turbulent kinetic energy, and turbulent viscosity for an inline array.

Figures 6.18 and 6.19 show typical plots of velocity vectors and contours of
turbulent kinetic energy (e/V 2

max) and turbulent viscosity (µt/µ). The vectors show
regions of separation and reattachment behind the forward tube. The energy con-
tours (range: 0–0.1, interval: 0.005) show that the energy levels are high near the
solid walls where the flow shear is also high. The energy levels in the flow sepa-
ration region are not insignificant. For the inline array, the viscosity contours for
Re = 12,000, (range: 0–400, interval: 20) and for Re = 81,500, (range: 0–3,000,
interval: 150) show that turbulent viscosity is high near the walls, where kinetic
energy is high. The levels of viscosity, however, increase with increase in Reynolds
number as expected. The viscosity contours for a staggered array show similar
trends. However, notice that at similar Reynolds numbers (for Re = 12,417, range:
0–200, interval: 10; for Re = 105, range: 0–2,000, interval: 100) the viscosity levels
are lower than those found for the inline array.

Gas-Turbine Combustion Chamber
Flow in a gas-turbine combustion chamber represents a challenging situation in
CFD. This is because the flow is three dimensional, elliptic, and turbulent and

VELOCITY VECTORS

Re = 12400

KINETIC ENERGY TURBULENT VISCOSITY

Re = 100000

Figure 6.19. Velocity vectors, turbulent kinetic energy, and turbulent viscosity for a staggered array.
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Figure 6.20. Idealised gas-turbine combustion chamber.

involves chemical reaction and the effects of radiation. In addition, the fluid proper-
ties are functions of both temperature and the composition of combustion products
and the true geometry of the chamber (a compromise among several factors) is
always very complex.

Figure 6.20 shows an idealised chamber geometry. The chamber is taken to
be axisymmetric of exit radius R = 0.0625 m and length L = 0.25 m. In actual
combustion, aviation fuel (kerosene) is used but we assume that fuel is vaporised
and enters the chamber with air in stoichiometric proportion. That is, 1 kg of
fuel is premixed with 17.16 kg of air. Thus, the stoichiometric air/fuel ratio is
Rstoic = 17.16. The fuel–air mixture enters radially through a circumferential slot
(width = 3.75 mm located at 0.105 L) with a velocity of 111 m/s and a temperature
of 500◦C (773 K). Additional air is injected radially through a cylindrical portion
(called casing) of the chamber through two circumferential slots.7 The first slot
(width = 2.25 mm located at 0.335 L) injects air (called secondary air) to sustain a
chemical reaction in the primary zone; the second slot (width = 2.25 mm located
at 0.665 L) provides additional air (called dilution air) to dilute the hot combustion
products before they leave the chamber. The secondary air is injected with a velocity
of 48 m/s and a temperature of 500◦C. The dilution air is injected at 42.7 m/s and
500◦C. The mean pressure in the chamber is 8 bar and the molecular weights of
fuel, air, and combustion products are taken as 16.0, 29.045, and 28.0, respectively.
The heat of combustion Hc of fuel is 49 MJ/kg.

With these specifications, we have a domain that captures the main features of
a typical gas-turbine combustion chamber. The top panel of Figure 6.21 shows the
curvilinear grid generated to fit the domain. In actual computations, the domain
is extended to L = 0.8 m to effect exit boundary conditions. A 50 (axial) × 32
(radial) grid is used. In this problem, inflow (at three locations), wall (west, north,
and part of south), symmetry, and exit boundaries are encountered. Equations for
� = u1, u2, p′, e, ε, and T must be solved in an axisymmetric mode. In addition,

7 In actual practise, radial injection is carried out through discrete holes. However, because account-
ing for this type of injection will make the flow three dimensional, we use the idealisation of a
circumferential slot.



P1: IWV
0521853265c06 CB908/Date 0 521 85326 5 May 25, 2005 11:10

200 2D CONVECTION – COMPLEX DOMAINS

GRID

VECTOR PLOT

TURBULENT VISCOSITY

0.3
0.5

0.6

0.1 0.9

Figure 6.21. Grid and flow variables for a gas-turbine combustion chamber.

equations for scalar variables ωfu and a composite variable 	 = ωfu − ωair/Rstoic

must also be solved. The latter variable is admissible because a simple one-step
chemical reaction,

(1) kg of fuel + (Rst) kg of air → (1 + Rst) kg of products,

is assumed to take place. Thus, there are eight variables to be solved simultaneously.
The source terms of flow variables remain unaltered from those introduced in
Chapter 5, but those of T, ωfu, and 	 are as follows:

Sωfu = − Rfu, S	 = 0, ST = Rfu Hc

C p
, Rfu = C ρ ωfu

ε

e
, (6.144)

where the volumetric fuel burn rate Rfu kg/m3-s is specified following Spalding
[74] with C = 1. This model is chosen because it is assumed that the fuel-burning
reaction is kinetically controlled8 rather than diffusion controlled. Note that in the
specification of ST, the radiation contribution is ignored.

8 Ideally, Rfu should be taken as the minimum of that given by expression (6.144) and the laminar
Arrhenius expression for the fuel under consideration. Here, Equation 6.144 is used throughout the
domain so that the burn rate is governed solely by the turbulent time scale ε/e. For further variations
on Spalding’s model, see [44, 24].



P1: IWV
0521853265c06 CB908/Date 0 521 85326 5 May 25, 2005 11:10

6.4 APPLICATIONS 201

The combustion chamber walls are assumed adiabatic. The inflow bound-
ary specifications, however, require explanation. At the primary slot, u1 = 0,
u2 = 100, e = (0.005 × u2)2, ε = Cµ ρ e2/(µ Rµ), where viscosity ratio Rµ =
µt/µ = 10, T = 773, ωfu = (1 + Rstoic)−1, and 	 = 0. At secondary and dilution
slots, u2 = −48 and −42.5, respectively, and e = (0.0085 × u2)2, Rµ = 29, T =
773, ωfu = 0, and 	 = −1/Rstoic are specified. Finally, fluid viscosity is taken as
µ = 3.6 × 10−4 N-s/m2 and specific heats of all species are assumed constant
at C p = 1,500 J/kg-K. The density is calculated from ρ = 8 × 105 Mmix /(Ru T ),
where Ru is the universal gas constant, M−1

mix = ωfu/Mfu + ωair/Mair + ωpr/Mpr,
and the product mass fraction is ωpr = 1 − ωfu − ωair.

In this problem, the equations are strongly coupled and an initial guess for
variables is difficult to determine a priori. To ensure convergence, therefore, the
false-transient technique is used with �t = 10−5. Convergence is declared when
residuals for all variables (except e and ε) are less than 10−3. Further, it is ensured
that the exit mass flow rate equals (within 0.1%) the sum of the three flow rates
specified at the slots. A total of 12,500 iterations are required.

In the middle panel of Figure 6.21, the vector plot is shown. The plot clearly
shows the strong circulation in the primary zone with a reverse flow near the axis
necessary to sustain combustion. All scalar variables are now plotted as (� − �min)/
(�max − �min) in the range 0–1 at a contour interval of 0.1. For turbulent viscosity,
µt,min = 0 and µt,max = 0.029; for temperature, Tmin = 773 K and Tmax = 2,456 K
(adiabatic temperature = 2,572 K); for fuel mass fraction, ωfu,min = 0 and ωfu,max =
0.055066, and for composite variable, 	min = −0.058275 and 	max = 0. The bot-
tom of Figure 6.21 shows that high turbulent viscosity levels occur immediately
downstream of the fuel injection slot and secondary and dilution air slots because
of high levels of mixing.

The top panel of Figure 6.22 shows that the fuel is completely consumed in the
primary zone. Sometimes, it is of interest to know the values of mixture fraction
f = fstoic + 	 (1 − fstoic), where fstoic = (1 + Rstoic)−1. From the contours of 	

shown in the middle panel of Figure 6.22, therefore, values of f and concentra-
tions of air and products can be deciphered. The temperature contours shown on
the bottom panel of Figure 6.22 are similar to those of 	. This is not surprising
because although T is not a conserved property, enthalpy h = C p T + ωfu Hc, like
	, is conserved and ωfu  0 over a greater part of the domain. The temperatures,
as expected, are high in the primary zone and in the region behind the fuel injection
slot, but the temperature profile is not at all uniform in the exit section. Combustion
chamber designers desire a high uniformity of temperature in the exit section to safe-
guard the operation of the turbine downstream. Such a uniformity is often achieved
by nonaxisymmetric narrowing of the exit section. However, accounting for this
feature will make the flow three dimensional and hence is not considered here.

It must be mentioned that combustion chamber flows are extensively investi-
gated through CFD for achieving better profiling of the casing, for determining
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Figure 6.22. Scalar variables for a gas-turbine combustion chamber.

geometry of injection holes to achieve high levels of mixing, for determining exact
location of injection ports to minimize NOx formation, to achieve uniformity of
exit temperatures, and to take account of liquid-fuel injection from burners and
consequent fuel breakup into droplets.

Laminar Natural Convection in an Eccentric Annulus
Kuehn and Goldstein [37] measured heat transfer in horizontal eccentric cylinders
(radius ratio Ro/Ri = 2) containing nitrogen (Pr = 0.706). The inner cylinder is
maintained hot at temperature Th and the outer cylinder is maintained at colder
temperature Tc. The positive vertical eccentricity ε/L = 0.652, where L = Ro −
Ri. This problem has been computed by employing curvilinear grids by Karki and
Patankar [32] and Ray and Date [58] among many others. Here, the problem is
computed employing triangular (1,340 cells) as well as quadrilateral (1,320 cells)
meshes as shown in Figure 6.23. The symmetry about the vertical axis is exploited.
Corresponding to experimental conditions, the Rayleigh number Ra = g β (Th −
Tc)L3/(ν α) = 4.8 × 104 is chosen. At this value of Ra, the flow remains laminar
in all regions of the cavity between the cylinders.
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Figure 6.23. Unstructured meshes for natural convection in an eccentric annulus.

In [37], the experimental data are plotted in the form of a local conductivity
ratio Keq, which is defined as

Keq,i (θ ) = qw,i (θ )Ri

K (Th − Tc)
ln

Ro

Ri
, Keq,o (θ ) = qw,o (θ )Ro

K (Th − Tc)
ln

Ro

Ri
, (6.145)

where θ = 0 corresponds to the top of the cylinders and θ = 180 refers to the bot-
tom. The heat fluxes at the inner (qw,i) and outer (qw,o) cylinders are the output
of the computed solution. Figure 6.24 shows a comparison of predicted and exper-
imental (open symbols) data. At the inner hot cylinder, the computed data from
the triangular mesh (solid lines) are in superior agreement with the experimental
data than those obtained from the quadrilateral mesh (dotted lines). The reverse,
however, is the case at the outer cold cylinder. The prediction of peak Keq,o at
small angles (i.e., near the top) is in poor agreement with experimental data on
both meshes. The cause of this discrepancy between predictions on the two meshes
can be attributed to the small difference in the predicted recirculating flow struc-
ture (see Figure 6.25) near the top. This difference arises because, compared to
the quadrilateral mesh, there are very few cells in the triangular mesh in the top
region (see Figure 6.23). Also, the orientations of cell faces with respect to the local
direction of the total velocity vector on the two meshes are different. Thus, although
the UDS is employed in the calculations on both meshes, false-diffusion errors can
be different. The effect of flow angle in causing false diffusion was discussed in
Chapter 5. The disagreement with experimental data may be due to inadequate cor-
respondence between experimentally and numerically realised boundary conditions
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Figure 6.24. Keq versus θ for natural convection in an eccentric annulus.

in this region. It must be mentioned, however, that the results with quadrilateral
meshes compare extremely favourably with previous curvilinear grid predictions
[32, 58]. It is for this reason that many CFD analysts prefer to use quadrilateral
elements near curved surfaces while still employing triangular elements away
from such surfaces. Thus, they prefer to use mixed elements for the domain as
a whole.

Figure 6.25 shows the vector plots on the two meshes. It is seen that there is
a strong upward flow near the hot inner cylinder where density is lower. Mass
conservation, however, requires that circulation be set up with a downwards flow
near the outer cylinder. There is, however, a region of weak contrarotating circulation

TRIANGULAR QUADRILATERAL

Figure 6.25. Vector plots for natural
convection in an eccentric annulus.
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Figure 6.26. Temperature contours (range: 0–1; interval: 0.05) for natural convection in an eccentric
annulus.

near the top of the cylinders and the region near the bottom is seen to be almost
stagnant. Figure 6.26 shows the predicted isotherms on the two meshes. They
are nearly identical. These isotherms corroborate the interferograms measured by
Kuehn and Goldstein [37]. Finally, the angularly integrated average value of K eq

must be identical (so that overall heat balanced is checked) at both inner and outer
surfaces of the cylinders. This value was computed at 2.68 on the quadrilateral
mesh and at 2.79 on the triangular mesh.

2D Plane Convergent–Divergent Nozzle
Figure 6.27 shows a convergent–divergent plane nozzle whose width in the x3

direction is large so that the flow may be considered 2D. The bottom bound-
ary represents the axis (centerline) of the nozzle whereas the top boundary is a
wall. The flow enters the left boundary and leaves through the right boundary.
The total length L of the nozzle is 11.56 cm and the throat is midway. The half-
heights of the nozzle at entry, throat, and exit are 3.52 cm, 1.37 cm, and 2.46 cm,

Figure 6.27. 2D plane convergent–divergent nozzle.
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Figure 6.28. Variation of pressure and mach number in the nozzle.

respectively. The inlet Mach number is Min = 0.232 and the exit static pressure
is p / p0 = 0.1135, where p0 is the stagnation pressure. The stagnation enthalpy
is assumed constant. For these specifications, experimental data are available [45].
This flow has been computed by Karki and Patankar [31] using curvilinear grids
and the UDS scheme with µ = 0 (i.e., Euler equations are solved). Here, the flow
is computed using an unstructured mesh and the TVD scheme (Lin–Lin scheme,
see Chapter 3) again with µ = 0. At the inflow plane, since Min is known, uin,
Tin, and pin are specified using standard isentropic relationships [28]. At the exit
plane, except for pressure (which is fixed), all other variables are extrapolated from
the near-boundary node values. At the upper wall, a tangency condition is applied.
This condition is the same as the symmetry condition. At the axis, the symmetry
condition is again applied. The pressure distribution is determined by discretising a
compressible flow version of the total pressure-correction equation (see exercise 9
in Chapter 5). For velocities, equations for � = u1, u2 are solved and temperature is
recovered from the definition of stagnation enthalpy. Finally, density is determined
using the equation of state p = ρ Rg T . Computations are performed using 570
elements as shown in Figure 6.27.

The implementation of the TVD scheme on an unstructured mesh needs expla-
nation. As mentioned in Chapter 3, the TVD scheme requires four nodes straddling
a cell face. Thus, in addition to fictitious nodes P2 and E2, a node W2 is selected
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Figure 6.29. Mach number contours (range: 0.2–2.0, interval: 0.1) for a plane nozzle.

to the left of P2 and a node EE2 is selected to the right of node E2. The locations of
these nodes are such that lc−P2 = lP2−W2 and lc−E2 = lE2−EE2 where l is the length
measured along the normal to the cell face (see Figure 6.11). Now, it is easy to
work out the algebra of the TVD scheme in which �W2 = �P + lP−W2 ∇ �P and
�EE2 = �E + lE−EE2 ∇ �E.

Figure 6.28 shows the predicted variations of pressure (dashed line) and Mach
numbers (solid line) at the upper wall and the centerline. The experimental data
(open circles) for pressure have been read from a figure in [31]. It is seen that
the agreement between experiment and predictions is satisfactory. Note that the
predicted Mach number at the upper wall passes through M = 1 exactly at the throat
(X/L = 0.5) and reaches a supersonic state M = 2.01 at exit. At the centerline,
however, the M = 1 location is downstream of the throat. Computations of this
type can be used to design a convergent–divergent nozzle to obtain a desired exit
Mach number. Finally, Figure 6.29 shows the iso-Mach contours. Notice that the
iso-Mach lines are slanted.

6.5 Closure

In this chapter, procedures for solution of transport equations on curvilinear and
unstructured meshes have been described. By way of a closure, it will be useful to
note a few important points.

1. Both procedures require special effort to generate curvilinear or unstructured
grids. Some methods for grid generation are introduced in Chapter 8.

2. On curvilinear grids, the familiar (I, J ) structure of Cartesian grids remains
available. This permits adoption of the fast converging ADI method (as well as
some others discussed in Chapter 9) for solution of discretised equations.

3. On unstructured grids, owing to lack of a regular node-addressing structure,
a simple point-by-point GS method must be adopted for solution. It is well
known that this method is slow to converge, but the convergence rate can be
enhanced by adopting fast matrix-inversion techniques such as CG or GMRES.
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Figure 6.30. Some 3D polyhedral cells.

These techniques for sparse matrices become productive when the number of
elements is large.

4. It may surprise the reader to note that the unstructured grid procedure is the most
general. Since the procedure can handle any polygonal cells (in two dimensions),
the Cartesian and curvilinear grids are already included. In the latter cases,
however, the advantages of an (I, J ) structure must be sacrificed.

5. The procedure for unstructured grids developed in this chapter can be straight-
forwardly extended to 3D polyhedral cells (see Figure 6.30). The only difference
in three dimensions is that all evaluations with i = 1, 2 must now be carried
out over i = 1, 2, and 3. By way of illustration, consider the line structure at
the triangular cell face of a tetrahedral cell shown in Figure 6.31(a). Two lines
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Figure 6.31. Construction at the polygonal cell face.
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normal to the cell face are drawn through c and e. Now, imagine a plane through
P parallel to the cell face. This plane will orthogonally intersect the two nor-
mals at P1 and P2. A similar face-parallel plane through E will intersect the
two normals at E1 and E2. Necessary evaluations of face-normal transport can
now be carried out along the line P2−c−E2. Similarly, the construction of a
control volume at the cell face is shown in Figure 6.31(b) when the cell face is
triangular. To evaluate β i

1, while direction ξ1 is along PE, directions ξ2 and ξ3

may be chosen along any two sides of the triangle rst with origin at r, s, or, t. The
actual directions are determined by requiring that Jacobian J be positive. Simi-
larly, to affect vector boundary conditions, two tangent vectors �t1 and �t2 must be
defined at the boundary cell face. Out of these, �t1 (say) may be chosen along PP2

and direction of �t2 can be determined using the direction of the normal to the
boundary cell face so as to form an orthogonal frame �t1, �t2, �n. The reader may
find these figures useful for developing a 3D unstructured grid procedure [18].

6. Because of its generality, commercial codes are increasingly adopting unstruc-
tured grids. Although generality is welcome, the codes must rely heavily on
polyhedral mesh generators as well as on creation of special routines for pro-
cessing of computed results. Such postprocessors typically create contour, vec-
tor, and/or surface plots. For comparison of computed results with experimental
data, however, one often needs to resort to interpolations. The reader will ap-
preciate this difficulty because whereas most detailed measurements in a flow
are carried out along a single straight line at a time, the grid nodes generated by
packages such as ANSYS may not fall on a single line (in two dimensions) or
even in a single plane (in three dimensions).

7. Despite the above-mentioned difficulty, unstructured grid codes are most versa-
tile and, therefore, suitable for complex domains encountered in industrial and
environmental applications.

EXERCISES

1. Derive expressions for β i
j (i = 1, 2, 3 and j = 1, 2, 3) for a 3D curvilinear grid.

2. Using Equations 6.24 and 6.27, express d Ai and dV for a 3D curvilinear grid.

3. Starting with the p′ equation in Cartesian coordinates (see Chapter 5), derive
Equation 6.39. Identify the neglected terms in Equation 6.39 and explain how
the effect of these terms can be recovered in a predictor–corrector fashion.

4. Analogous to Equation 6.42, derive an expression for px2,P.

5. Derive Equations 6.91, 6.92, and 6.93.

6. Derive Equation 6.113.

7. Using Equations 6.121 and 6.122, derive explicit symmetry boundary condi-
tions for u1,B and u2,B.
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8. Using Equations 6.125 and 6.126, derive explicit exit boundary conditions for
u1,B and u2,B.

9. A boundary receives radiant influx FB = εσ (T 4
∞ − T 4

B ). Derive expressions for
Su and Sp for the node adjacent to this boundary and evaluate TB.

10. Derive an exact expression for APu
ck by control-volume discretisation over cell-

face control volume c1–c2–c3–c4 shown in Figure 6.13.

11. Show that x2,E2 − x2,P2 = | ∑2
i=1 β i

1 (xi,E − xi,P)|β2
1/A2

c.

12. Verify Equations 6.139 and 6.140 in the evaluation of px2,P.

13. Starting with Equation 6.62, derive an expression for total convective–diffusive
transport at the cell face of a tetrahedral element.

14. In Exercise 13, if the cell face were a boundary face, how would you determine
the tangent vector �t2 if �t1 is along PP2?

15. Carry out discretisation of convection terms using a TVD scheme on an un-
structured mesh.

16. Consider node P surrounded by nodes M1, M2, and M3 of an unstructured
mesh shown in Figure 6.32. Each element is a perfect equilateral triangle (each
side 1 cm). Table 6.2 gives coordinates of vertices surrounding these nodes.
In a particular problem, the fluid properties (ρ = 1.2 kg/m3 and viscosity µ =
15 × 10−6N-s/m2) are assumed constant so that the equations for flow and
energy transfer are decoupled. Steady state prevails. The converged velocity
distributions (u and v) are shown in Table 6.3.

Now, the energy equation is being solved and the prevailing temperatures
at nodes neighbouring P are as shown in Table 6.3. Take 
T = µ/Pr with
Pr = 0.7. The source term in the energy equation is zero. The convection

Table 6.2: Coordinates of vertices.

1 2 3 4 5 6

x (cm) 0.5 1.0 0.0 0.5 1.5 −0.5
y (cm) 0.866 0.0 0.0 −0.866 0.866 0.866
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Table 6.3: Current distribution of u, v, and T .

Φ P M1 M2 M3

u (m / s) 1.1 2.1 −0.3 −0.8
v (m / s) −0.8 −1.0 −1.5 −0.8
T (◦C) ? 65 80 72

terms are discretised using UDS. The equation is being solved with αT = 1.
The objective of this problem is to determine TP.

Tabulate intermediate calculations (in consistent units) to your answer in the
form of Table 6.4 and, hence, determine TP. Does TP weigh heavily in favour
of TM2? If yes, explain why.

17. An analyst computes flow over a cylinder placed between two parallel plates as
shown in Figure 5.28 using an unstructured mesh. The objective is to predict
the drag coefficient (CD) of the cylinder as a function of Reynolds number. The
definition of CD is

CD = Fpres + Ffric

0.5ρ U 2
o A

,

where Fpres and Ffric are net pressure and frictional forces, respectively, acting
on the cylinder in the negative x1 direction, Uo is the uniform axial velocity at
the channel entrance, and the cylinder projected area A = D × 1.

After solving for the flow, the analyst evaluates the forces as

Fpres = 2 ×
∑
KB

(pB − pin)β1
1 ,

Ffric = −2 ×
∑
KB

µ

⎡
⎣ (u1 + �u1)P lx1 + (u2 + �u2)P lx2

lP2B

√
l2
x1

+ l2
x2

⎤
⎦ β1

1 ,

where pin is the average pressure at the channel entrance and KB are total
number of cells near the cylinder boundary (see Figure 6.33). Examine whether
the analyst’s evaluations are correct.

18. In Exercise 17, heat transfer from the cylinder is considered with a con-
stant wall temperature boundary condition. How will you evaluate local and

Table 6.4: Intermediate tabulation – energy equation.

Face k β1
1 β2

1 fm Afk lP2E2 Cck fck dck AEk

1
2
3
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P

B
X2

X1

Symmetry Axis

Cylinder
Boundary

Figure 6.33. Cells near the cylinder boundary.

averaged heat transfer coefficients at the cylinder surface after a converged
temperature solution is available? The temperature of the fluid entering the
channel is Tin whereas the channel walls are maintained at Twc. Write the ex-
pressions in discretised form. The heat transfer coefficient is defined as h =
qw/(Tw − Tref). What should be the relevant reference temperature Tref for this
problem?

19. In the study of boundary layer development in the presence of favourable pres-
sure gradients, an apparatus shown in Figure 6.34 is constructed. It is then
assumed that in the presence of a sloping wall, the local free-stream velocity
varies as U∞(x) = Uo (1 + x/L). An analyst desires to verify this assumption
by carrying out computation of the flow from entry to exit as an elliptic flow and
allowing for the presence of the plate of thickness t . The following information
is given: Uo = 1.8 m/s, L = 1 m, H = 0.7 m, and air is at 30◦C and 1 atm.

(a) Write the equations and the boundary conditions governing the flow. Hence,
identify the relevant �s assuming turbulent air flow.

(b) Which turbulence model will you use? HRE or LRE?

(c) Which type of grid will you prefer? Curvilinear or unstructured?

Uo

x

L

H

H

2

Boundary Layer Development

in favourable pressure gradient

U    (x)

Sloping Wall

8

Figure 6.34. Boundary layer development in a wind tunnel.
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Symmetry Plane
4a

r
Symmetry Plane

ΦΦ

X1

X2

a) MOON SHAPED DUCT b) CORDOID DUCT

a
b

Figure 6.35. Complex ducts.

20. Consider fully developed laminar flow through the two complex ducts shown
in Figure 6.35. The flow is in the x3 direction. The figure shows half cross
sections in both cases with symmetry planes parallel to the x1 axis. It is desired
to predict f × Re for the ducts. The geometric details are as follows:

Moon-shaped duct: a = b = 3 units and � = 60◦,

Cordoid duct: r = 2a (1 + cos�), a = 2 units, 0 < � < π.

What type of grid will you prefer for computation? Curvilinear or unstructured?
Draw a hand sketch to explain the reasons for your choice.



P1: IBE
0521853265c07 CB908/Date 0 521 85326 5 May 25, 2005 11:14

7 Phase Change

7.1 Introduction

There is hardly a product that, during its manufacture, does not undergo a process of
melting and solidification. Engineering processes such as casting, welding, surface
hardening or alloying, and crystallisation involve phase change. The processes of
freezing and thawing are of interest in processing of foods. Phase-change materials
(PCMs) are used in energy storage devices that enable storage and retrieval of
energy at nearly constant temperature.

The phenomenon of melting or solidification is brought about by a process
of latent heat (λ) transfer at the interface between solid and liquid phases. For a
pure substance, throughout this process, the temperature Tm (melting point) of the
interface remains constant whereas in the liquid and solid phases, the temperatures
vary with time. Both λ and Tm are properties of a pure substance. Within each of
the single phases, heat transfer is essentially governed by a process of unsteady heat
conduction, although, under certain circumstances, convection may also be present
in the liquid phase under the action of body (buoyancy, for example) or surface
(surface tension) forces.

There are two approaches to solving phase-change problems:

1. the variable domain formulation and
2. the fixed domain (or fixed-grid) formulation.

In the first approach, which has several variants, two energy equations are solved
in the solid and the liquid phases with temperatures Ts and Tl, respectively, as
dependent variables. In addition to the initial (i.e., at t = 0) and the domain bound-
ary conditions, the following interface conditions are also invoked to match the
temperatures of the two phases:

Ts = Tl = Tm, (7.1)

ks
∂Ts

∂n

∣∣∣∣
i

− kl
∂Tl

∂n

∣∣∣∣
i

= ρλVi, (7.2)

214
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where n is normal to the interface and Vi is the instantaneous velocity of the
interface in the direction of the normal. In a finite domain, the solid and liquid
regions thus enlarge or contract as time progresses. Hence, we use the designation
variable domain formulation. The interface, of course, moves through the domain
and, at a given instant, may assume arbitrary shape. The arbitrariness may arise
from the boundary shape, boundary conditions, or the presence of convection in
the liquid phase. The variable domain formulation thus requires tracking of the
interface location at every instant of time to effect condition (7.2). In complex
three-dimensional domains, such tracking can turn out to be very cumbersome.

In this chapter, only the fixed domain formulation will be considered. This
formulation treats enthalpy h (sensible + latent heat) rather than temperature T as
the main dependent variable in the energy equation. In the absence of internal heat
generation, this equation can be written as

∂(ρ h)

∂t
+ ∂

∂x j
(ρ u j h) = ∂

∂x j

(
K

∂T

∂x j

)
, (7.3)

where the velocity u j may be finite only in the liquid phase and zero in the solid
phase. The equation is applicable to both solid and liquid phases and, therefore,
to the entire domain including the interface. Thus, the interface condition (7.2) is
already satisfied. Equation 7.3, however, contains two dependent variables (h and T )
and a set of relations (known as the equations of state) between them must be
specified. With this specification, the equation can be readily adapted to compu-
tations on a fixed grid through which the interface moves with time. Thus, the
phase-change problems too can be computed with a generalised computer code.
This fixed-grid formulation is also referred to as the enthalpy formulation in the
literature.

There are a variety of phase-change problems. For example, in casting, only the
total solidification time may be of interest; the domain is finite. In such problems,
the interface need not be explicitly tracked. In contrast, in problems such as welding
and surface hardening, it is important to identify the heat-affected zone and interface
tracking is essential. In impure materials and alloys, latent heat transfer takes place
over a range of temperatures (Tm − ε < T < Tm + ε) that demarcate what is known
as the mushy zone. The properties of the mushy zone, however, must be known or
modelled. There are other problems in which the thermo-physical properties of
the two phases not only are different (ice water, for example) but are nonlinear
functions of temperature, concentration, velocity gradients (in liquid phase), and/or
local porosities. Equation 7.3 can readily capture such a variety.

The problem of solving Equation 7.3 through discretised equations is not
straightforward; therefore, in the next two sections, only 1D problems will be con-
sidered to explain the main ideas. This will provide sufficient grounding to the
reader to understand extensions to multidimensions through indicated references.
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Tm

Tl

Tsup

Tw

Ts

Xi(t)

X

SOLID LIQUID

INTERFACE

Figure 7.1. 1D phase-change
problem.

7.2 1D Problems for Pure Substances

7.2.1 Exact Solution

It is important to note that there are very few exact solutions to phase-change
problems even in one dimension. To appreciate the nature of the solution, consider
the problem shown in Figure 7.1. An initially (t = 0) superheated liquid (Tsup > Tm)
in a semi-infinite domain is subjected to temperature Tw (< Tm) at x = 0 and this
temperature is maintained for all times t > 0. Solidification commences instantly
and the interface moves to the right. The instantaneous location of the interface
X i (t) is shown in the figure. The task is to predict velocity d X i(t)/d t as a function
of time and the temperature distributions in each phase as a function of x and t .

The governing equation for this problem will be

∂(ρ h)

∂t
= ∂

∂x

(
K

∂T

∂x

)
, (7.4)

with T (x, 0) = Tsup, T (0, t) = Tw, and T (∞, t) = Tsup. The liquid is of course
stagnant. The exact solution for this problem was developed by von Neumann [23].
The solutions for the solid and liquid phases read as

Ts − Tm

Tw − Tm
= 1 − erf (x/

√
4αs t)

erf (X i/
√

4αs t)
, (7.5)

Tl − Tm

Tsup − Tm
= 1 − erfc (x/

√
4αl t)

erfc (X i/
√

4αl t)
, (7.6)

where α is the thermal diffusivity and suffixes s and l refer to solid and liquid phases,
respectively. Now, since these solutions hold for all values of X i, by inspection,
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we must have

X i ∝ √
t or X i = C

√
t, (7.7)

where C can be determined from the interface condition (7.2). The transcendental
equation for determination of C thus becomes

ρ λC

2
= Tm − Tw

erf (C/
√

4αs)

Ks√
π αs

exp (−C2/4αs)

+ Tm − Tsup

erfc (C/
√

4αl)

Kl√
π αl

exp (−C2/4αl). (7.8)

This transcendental equation shows that C = C (Tm − Tw, Tm − Tsup, Ks, Kl,

αs, αl). Thus, C will be different for each initial and boundary condition and for each
specification of physical properties. The value of C must be iteratively determined
to calculate d X i (t)/d t from Equation 7.7 and hence to calculate the temperature as
a function of x and t from Equations 7.5 and 7.6. It can be shown that the system is
governed by a dimensionless number, called the Stefan number, which is defined as

St = Cps (Tm − Tw)

λ
. (7.9)

The larger the value of St, the faster is the interface movement. A further point to
note is that, although the temperature profiles show discontinuity at the interface,
they are smooth within each phase and the variation of T with t at any x is also
continuous and smooth.

7.2.2 Simple Numerical Solution

It might appear that it is a straightforward matter to discretise Equation 7.4 to ob-
tain a numerical solution. However, there is a difficulty associated with predicting
continuous temperature histories when a numerical solution is obtained. To ap-
preciate the difficulty, we assume uniform and equal properties for both phases
(i.e., ρs = ρl = ρ, Cps = Cpl = C p, and Ks = Kl = K ). Thus, Equation 7.4 can be
written as

∂�

∂τ
= ∂2θ

∂ X2
, (7.10)

where

� = h − hs

λ
(dimensionless enthalpy), (7.11)

θ = Cp (T − Tm)

λ
(dimensionless temperature), (7.12)

τ = α t

L2
(dimensionless time), (7.13)

X = x

L
(dimensionless length). (7.14)
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Table 7.1: Equations of state.

State T = f (h) h = f (T )

Solid T = h/C p h = C p T
for h < hs for T < Tm

Liquid T = (h − λ)/C p h = C p T + λ

for h > hl for T > Tm

Interface T = Tm h = C p Tm + hps (t)
for hs < h < hl

∫ t+�t
t (d hps/d t) d t = λ

In these equations, L is the domain length where the boundary condition corre-
sponding to x = ∞ is specified and hs = C p Tm is the solidus enthalpy. There are
two ways to connect h to T (or � to θ ) via the equations of state, as shown in
Table 7.1 and Figure 7.2. In Table 7.1, hl = C p Tm + λ is the liquidus enthalpy and
hps (t) is the psuedo-enthalpy in whose definition �t is not a priori known.

When h = f (T ) relationships are used, clearly one would require a procedure for
determining the integral constraint at the interface. Such a procedure is developed
in [85]. We shall, however, consider T = f (h) relationships so that

θ = � for � ≤ 0 (solid), (7.15)

θ = 0 for 0 ≤ � ≤ 1 (interface), (7.16)

θ = � − 1 for � ≥ 1 (liquid). (7.17)

Now, assuming the IOCV method and using a uniform grid, it is a simple matter
to show that

�l+1
j = �τ

�X2

(
θ l+1

j+1 − 2 θ l+1
j + θ l+1

j−1

)
+ �o

j , (7.18)

where superscript n is dropped for convenience, but superscript l + 1 is retained
to indicate that Equation 7.18 must be solved iteratively to satisfy the equations of

Tm

h

hl

T

λ

SOLID LIQUID

h s

Figure 7.2. Equation of state for a pure
substance.
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state. The overall calculation procedure will be as follows:

1. At τ = 0, specify initial condition θo
j for j = 1 to N . Hence, evaluate �o

j . Set
θ j = θo

j .

2. Choose �τ to begin a new step.
3. Solve Equation 7.18 once using the GS method to obtain the �l+1

j distribution.

4. Determine θ l+1
j using equations of state (7.15) to (7.17) and return to step 3 to

carry out the next iteration.
5. After a few iterations, the change in �l+1

j between successive iterations will be
small and convergence is obtained.

6. Set �o
j = � j and return to step 2 to execute the next time step.

Problem 1
To appreciate the nature of the numerical solution, consider a problem with the
following specifications:

ρ = 1 kg/m3, C p = 2.5 MJ/kg-K, K = 2W/m-K ,

λ = 100 MJ/kg, Tm = 0◦C, L = 1m,

T (x, 0) = Tsup = 2◦C, and Tw = T (0, t) = −10◦C

For this problem St = 0.25 and, as evaluated from Equation 7.8, C = 5.767 ×
10−4. A numerical solution is executed with initial conditions θ (τ = 0) = 0.05
and � (τ = 0) = 1.05. The boundary condition is θ (X = 0) = −0.25. The time
step is determined from �τ/�X2 = 0.2 and the computations are carried out
till τ = 1.6 (or nearly 23 days). Two grid spacings are considered: �X = 0.2
(N = 7) and �X = 0.0769 (N = 15). At each time step, a converged solution
is obtained in 5–11 iterations. The exact and the numerical solutions for temper-
ature at x = 0.5 m are plotted in Figure 7.3 as a function of time. The figure shows
a wavy temperature history. The waviness, however, decreases with refinement
of the grid size. When �X is reduced still further so that N = 51 (say), the re-
sults (not shown) indicate that the exact and the numerical solutions nearly co-
incide. That is, the essentially wavy solution now appears smooth, albeit at the
expense of significantly increased computer time. A few comments are therefore in
order:

1. The numerical procedure is very simple and can be easily extended to multidi-
mensional problems. However, to obtain non-wavy solutions, an extremely fine
mesh size is required. This can be very uneconomical.

2. Why does waviness occur? This can be appreciated from Figure 7.4, where a
phase-change node j is considered. When the interface resides within the control
volume surrounding node j (so that 0 < � j < 1), θ j = 0 (see Equation 7.16).



P1: IBE
0521853265c07 CB908/Date 0 521 85326 5 May 25, 2005 11:14

220 PHASE CHANGE
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= 

0.
5 

m
)

St = 0.25

Figure 7.3. Solution for �τ/�X2 = 0.2.

Thus, throughout the period of interface transit through the control volume, the
nodal temperature at the phase-change node remains stationary at θ j = 0. As
a result, the temperature history demonstrates a wavy pattern. However, when
�x → 0 (or grid spacing is reduced) the transit time itself is reduced and hence
the predicted history appears smooth.

3. The calculation procedure, of course, necessitates a point-by-point GS iteration
method for solution of Equation 7.18. This is because bookkeeping is required
in step 4 of the procedure for each node to identify whether the node is in solid
(� j < 0), in liquid (� j > 1), or undergoing phase change (0 < � j < 1). This
bookkeeping can again be expensive in terms of computer time. It also prevents
use of a line-by-line procedure such as the TDMA.

j j + 1j − 1

SOLID LIQUID

Xi(t)

∆x

Figure 7.4. Typical phase-change node.
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4. The interface location can be identified from the location of θ = 0, but, as
already explained, this will again predict a wavy interface history. Instead, one
may use variable � to predict the interface history. This is because � j is nothing
but the liquid fraction of the control volume surrounding phase-change node
j . Thus, at any time instant, one may simply add �X for all nodes for which
� j < 0 (i.e., solid nodes) and further add (1 − � j )�X for the node for which
0 < � j < 1 and ignore all nodes for which � j > 1. The sum will readily predict
the instantaneous value of X i and this prediction will appear smooth but not
accurate on a coarse grid. This alternative procedure will again require book-
keeping.

These comments indicate that the simple procedure needs refinement in terms
of both economy and convenience.

7.2.3 Numerical Solution Using TDMA

To eliminate the bookkeeping requirements, the θ ∼ � relations (7.15) to (7.17)
must be generalized [11] by writing

θ = � + �′, (7.19)

where

�′ = 1

2
[|1 − �| − |�| − 1] . (7.20)

Equation 7.20 ensures that �′ = 0 in solid (� < 0), �′ = −� during phase change
(0 < � < 1), and �′ = −1 in liquid (� > 1). Using Equation 7.19, we can reex-
press Equation 7.10 as

∂�

∂τ
= ∂2�

∂ X2
+ ∂2�′

∂ X2
(7.21)

and the discretised version will read as1(
1 + 2

�τ

�X2

)
�l+1

j = �τ

�X2

(
�l+1

j+1 + �l+1
j−1

)

+ �τ

�X2
(�′

j+1 − 2�′
j + �′

j−1) + �o
j , (7.22)

where �′ values lag behind � values by one iteration. Thus, in step 4 of the simple
numerical procedure described in the previous subsection, �′

j (rather than θ j ) are
evaluated using Equation 7.20 and the bookkeeping requirement is eliminated. The

1 It is assumed that the reader will be able to make necessary changes to the discretised equation for
j = 2 and j = N − 1 nodes to account for any type of boundary condition.
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introduction of the variable �′ yields two further advantages:

1. The terms containing �′ and �o can be treated as sources. Thus, at the current
iteration level, Equation 7.22 can be solved by TDMA. This can achieve con-
siderable economy in computer time. For example, for the problem considered
in the previous subsection, with N = 51, the TDMA solution turns out to be
nearly 2.5 times faster than the GS solution.

2. It is easy to recognize that at each time step, when a converged solution is
obtained, X i (τ ) can be estimated from the simple formula

X i =
N−1∑
j=2

(1 + �′
j )�X. (7.23)

This is because (1 + �′
j ) represents the solid fraction for each node j . Again,

the bookkeeping requirement is eliminated.

Although useful for obtaining faster solutions on fine grids, the introduction
of the �′ variable does not eliminate the problem of wavy temperature histories
on coarse grids. This is because the replacement indicated in Equation 7.19 still
renders θ = 0 at the phase-change node (0 < � j < 1). In the next subsection, it
will be shown that accurate solutions can be obtained even on coarser grids while
still employing the TDMA procedure. Thus, we seek an economic solution that
combines the beneficial effects of computations at fewer nodes with the speed of
the line-by-line procedure.

7.2.4 Accurate Solutions on a Coarse Grid

To prevent θ from remaining stationary at zero at the phase-change node,
Equation 7.19 is rewritten as

θ = � + �′′, (7.24)

where

�′′ = �′ + θpc, (7.25)

with, θpc denoting the nodal value of θ at the phase-change node 0 < � j < 1. Note
that θpc = 0 at all single phase nodes. Making these substitutions in Equation 7.18
leads to (

1 + 2
�τ

�X2

)
�l+1

j = �τ

�X2

(
�l+1

j+1 + �l+1
j−1

)

+ �τ

�X2
(�′′

j+1 − 2�′′
j + �′′

j−1) + �o
j . (7.26)
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This equation is the same as Equation 7.22 except that �′ is replaced by �′′ and the
latter will again lag behind � by one iteration. Equation 7.24 is therefore amenable
to solution by TDMA.

To make further progress, a procedure for evaluating �′′ or, in effect, θpc must be
set out since �′ can be evaluated from its definition (7.20). Thus, consider Figure 7.4
again and define

�X i = X i − X j , (7.27)

where X i is the location of the interface where θ is truly zero and X j is the coordinate
of node j . At the time instant considered in the figure, therefore, �X i is positive
and we may evaluate θpc, j by linear interpolation as

θpc, j =
[

�X i

�X i + �X

]
θ j−1. (7.28)

At another earlier time instant, �X i may be negative (X i < X j ) and we may write

θpc, j =
[ |�X i|
|�X i| + �X

]
θ j+1. (7.29)

Note, however, that for both positive or negative values of �X i

�X i = X i − X j = (0.5 − �pc, j )�X = (0.5 + �′
pc, j )�X (7.30)

since �pc, j = −�′
pc, j at the phase-change node. Equations 7.28 and 7.29 therefore

can be generalised to read as

θpc, j = F

2

[
(A + |A|) θ j−1 − (A − |A|) θ j+1

]
, (7.31)

where

A = 0.5 + �′
pc, j

|0.5 + �′
pc, j | + 1

(7.32)

and

F = − (1 + �′
j )�

′
j

(1 − � j )� j
. (7.33)

In these equations, F = 0 at the single phase nodes (rendering θpc = 0) but
F = 1 at the phase-change node as desired. Thus, the phase-change node tempera-
ture can be evaluated without bookkeeping. Therefore, in step 4 of our calculation
procedure, �′′

j is also evaluated without bookkeeping.
Problem 1 of Section 7.2.2 is now solved again for the coarse grid with N = 7

(or �X = 0.2) for St = 0.25, and the predicted temperature history is shown in
Figure 7.5. Now, even the coarse grid solution is nearly accurate. In the same figure,
computations for St = 1 (C = 1.075 × 10−3) and St = 3 (C = 1.6 × 10−3) are
also shown and the grids used are indicated in the figure. Again, smooth histories
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Figure 7.6. Solutions for X i(t).

are predicted that agree with the exact solution well. In each case, solutions are
obtained with �τ/�X2 = 2, which is 10 times larger than that used in Figure 7.3.
Thus, inclusion of θpc, j permits the use of coarse grids and allows large time steps
and yet yields accurate solutions. This finding is particularly important for multi-
dimensional problems. Figure 7.6 shows the variation of X i (as calculated using
Equation 7.23) with time. It is seen that as the Stefan number increases, the interface
moves faster. Notice that for St = 1 and St = 3, the computations are carried on
even after the complete domain is solidified; hence, the interface location appears
to remain stationary at 1 m.

7.3 1D Problems for Impure Substances

In impure materials or alloys, phase change takes place over a range of temperatures
Ts < T < Tl where Ts and Tl may be termed as solidus and liquidus temperature,
respectively. Here, we shall permit different properties of solid and liquid phases.
The h ∼ T relation, therefore, may appear as shown in Figure 7.7. In this figure,
the region (also called the mushy region) between Ts and the fusion temperature Tm

is shown blank because the h ∼ T relation may take a variety of forms in different
materials.

The energy equation (7.4) will again be applicable. To account for different
properties of the two phases, however, the following dimensionless variables
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h

hl

hs

Ts Tm

SOLID MUSH LIQUID

λ Figure 7.7. h ∼ T relation for an impure
material.

are employed:

� = h − hs

λ
, hs = Cps Ts, (7.34)

θ = C ps (T − Ts)

λ
, (7.35)

τ = αs t

L2
, (7.36)

X = x

L
, (7.37)

ρ∗ = ρ

ρs
, k∗ = K

Ks
, C∗

p = C p

C ps
. (7.38)

Therefore, Equation 7.4 can be written as

∂(ρ∗ �)

∂τ
= ∂

∂ X

(
k∗ ∂θ

∂ X

)
(7.39)

and the equations of state will take the form

θ = � for � ≤ 0, (7.40)

θ = f (�) for 0 < � < 1, (7.41)

θ = θm + C ps

C pl
(� − 1) for � > 1. (7.42)

For alloys, function f (�) may take a variety of forms. For Al–4.5% Cu alloy, for
example, Voller and Swaminathan [85] have used the following general relationship:

� =
[

θ − θs

θl − θs

]n

for θs < θ < θl (7.43)
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and

� = 1 for θl < θ < θm, (7.44)

where θs < θl < θm, and the values of these temperatures and n (0.2 to 0.5) are
known. In another form, known as Schiel’s equation, the relationship is given by

θ = θs for 0 < � < �s, (7.45)

� =
[

θ − θm

θl − θm

]− β

for �s < � < 1, (7.46)

� = 1 for θl < θ < θm, (7.47)

where β = (1 − γ )−1 and γ is the partition coefficient. The values of γ , φs, and θl

are known.
The discretised version of Equation 7.39 will read as[

ρ∗
P �X

�τ
+ k∗

e + k∗
w

�X

]
�P =

(
k∗

e

�X

)
�E +

(
k∗

w

�X

)
�W

+
(

k∗
e

�X

)
(�′′

E − �′′
P) +

(
k∗

w

�X

)
(�′′

W − �′′
P)

+ ρ∗
P �X

�τ
�o

P. (7.48)

The trick now is to correctly interpret function f (�) so as to calculate θpc since
�′ (see Equation 7.20) can be easily calculated from �. This will enable calculation
of �′′ (see Equation 7.25).

Problem 2
To illustrate the procedure, consider a specific case of Al–4.5% Cu alloy for which
the data are as follows and Schiel’s equation is used:

Ks = 200 W/m-K, Kl = 90 W/m-K,

C ps = 900 J/kg-K, C pl = 1,100 J/kg-K,

ρs = ρl = 2,800 kg/m3,

λ = 3.9 × 105 J/kg, L = 0.5 m,

and

Ts = 821 K, Tl = 919 K, Tm = 933 K.

The initial state is superheated Tin = 969 K and Tw (x = 0) = 573 K, with γ =
0.14 (or β = 1.163).



P1: IBE
0521853265c07 CB908/Date 0 521 85326 5 May 25, 2005 11:14

228 PHASE CHANGE

1.0

LIQUID

SOLID

Φ

θlθs = 0

θ

s

Φ

θm

Figure 7.8. Schiel’s function.

Thus, solidification commences instantly and calculations can be executed with

θin = 0.341538, �in = 1.10154, �′
in = −1,

θw = �w = −0.5723,

θs = 0, �s = 0.089,

θl = 0.226154, �l = 1.0,

θm = 0.258462, �m = 1.0.

Figure 7.8 shows the Schiel’s function. We now specify θpc for the range 0 <

� < 1 for which �′ = −�.

0 < � < �s: In this range, θs = 0 remains stationary. Therefore, we may
employ Equation 7.31.

�s < � < �l: In this range, from Equation 7.46,

θpc, j = θm + (θl − θm)�− 1 /β. (7.49)

θl < θ < θm: In this range, � remains constant at 1. Therefore, the right-hand
side of Equation 7.39 can be equated to zero. Therefore, the solution in discretised
form is

θpc, j = k∗
e θE + k∗

w θW

k∗
e + k∗

w

. (7.50)
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� > 1: Although this is a single-phase region, to account for property variation,
we set

θpc, j = θm − (� − 1)

(
1 − C ps

C pl

)
. (7.51)

Thus, θpc is specified for the entire � > 0 range rather than being restricted to the
0 < � < 1 range. Following Voller and Swaminathan [85], computations are car-
ried out using �x = 0.01 m (or N = 52) and �t = 5 so that �τ = αs �t/�x2 =
3.96825. Equation 7.48 is solved using TDMA at each time step. It is found that
a maximum of two iterations are required to reduce the residual in the equation to
less than 10−5. Figure 7.9(a) shows the time variation of the interface. In this case,
the interface location is identified with � = 0 [see definition (7.34)]. The computed
results are compared with the solution obtained by Voller [84] using the heat bal-
ance integral method (HBIM) since exact solution is not available for this highly
nonlinear case. The present computations show some waviness that is also observed
in [85] where computations are carried out using the h = f (T ) relationship rather
than the T = f (h) relationship used here. Figure 7.9(b) shows the temperature
histories at a few values of x . The solutions demonstrate jaggedness (typical of a
highly nonlinear θ–� relation) that is also observed by Chiu and Caldwell [6], who
used what is called Broyden’s method.

Finally, we note that the method presented in this section can also be ex-
tended to the case when phase change takes place at a unique temperature, that
is, θs = θl = θm = 0. Because then, f (�) = 0 (see Equation 7.41) and one can
readily adopt Equation 7.31 to evaluate θpc. Similarly, the present method can also
be extended to multidimensional phase-change problems. The only care required is
in the evaluation of θpc because several nodes can undergo phase change simulta-
neously. In Date [12, 13], the necessary considerations and the associated algebra
are explained.

EXERCISES

1. Write a general computer program for solving transcendental equation (7.8)
[63]. Hence, determine the value of C for the two materials and conditions
given in Table 7.2.

2. Modify Equation 7.22 for node j = 2, when the heat transfer coefficient h is
specified at boundary x = 0.

3. Show the validity of Equation 7.23 in a solidification problem.

4. With respect to Figure 7.4, demonstrate the correctness of Equation 7.30 and
hence of Equation 7.31.

5. Show the correctness of Equation 7.51 for � > 1.
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Table 7.2: Properties for Exercise 1.

ρ Cps Cpl ks kl λ Tw Tm Tl

2,180 1,549 1,549 0.49 0.49 1.37 ×105 200 220 230
2,800 900 1,100 200 90 3.9 ×105 573 933 933

6. In an energy storage device, a PCM is sandwiched between two streams of
heat transfer fluid (HTF) as shown in Figure 7.10. The HTF flows at 200◦C
with heat transfer coefficient 300 W/m2-K. The PCM is initially in a sat-
urated state (Tm = 220◦C) and its thickness is 8 cm. Estimate the time for
heat (sensible + latent) recovery and the quantity recovered. The PCM proper-
ties are as follows: ρ = 2,180 kg/m3, C p = 1,549 J/kg-K, K = 0.49 W/m-K,
and λ = 1.37 × 105 J/kg.

7. Consider solidification of a PCM contained in a spherical vessel of radius R.
Initially, the PCM is at temperature Tin = Tm. The vessel wall temperature is
Tw < Tm and held constant with respect to time. Assuming only radial heat
transfer, the applicable energy equation is

A
∂(ρ h)

∂t
= ∂

∂r

(
K A

∂T

∂r

)
,

where A = 4π r2.

(a) Nondimensionalise this equation assuming constant properties.

(b) Discretise the equation and write a computer program to solve the discre-
tised equations. Use of a nonuniform grid with closer spacings near r = R
and r = 0 is desirable. Take ρ = Cp = k = λ = 1, R = 1, and Tm = 0 and
compute for Tw = −0.1, −1.0, and, 10.0.

(c) Plot the variation of interface location Ri/R as a function of dimensionless
time in each case and estimate total solidification time. Compare your
results with those of [7].

8. Repeat Exercise 7 for a superheated PCM so that Tin > Tm. Take Tw = −1.0
and use three values of Tin: 0.1, 1, and 2.

PCM 8 cm

200°C

h

h HTF

HTF 200°C

Figure 7.10. Phase-Change Energy Storage Device – Exercise 6.
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9. Repeat Exercise 7 assuming that the convective heat transfer coefficient h and
associated ambient temperature T∞ < Tm are specified at r = R and Tw is
unknown. Show that, in this problem, the interface movement is governed by
two parameters: the Stefan number St = C p (Tm − T∞)/λ and the Biot number
Bi = h R/ KPCM. Assume T∞ = −1 and Tm = 0 and compute for Bi = 1, 5,
and 10. Plot the variation of Tw and Ri with time in each case.



P1: KsF/ICD
0521853265c08 CB908/Date 0 521 85326 5 May 10, 2005 16:28

8 Numerical Grid Generation

8.1 Introduction

As mentioned in Chapter 6, curvilinear grid generation for 2D domains involves
specification of functions

x1 = x1 (ξ1, ξ2), x2 = x2 (ξ1, ξ2), (8.1)

where ξ1, ξ2 are curvilinear coordinates and x1, x2 are Cartesian coordinates. These
two functions can be generated in two ways: (1) by algebraic specification or
(2) by differential specification.

Algebraic specification is typically employed in 1D problems but can also be
employed in 2D problems when the domain is simple (Section 8.2). For complex do-
mains, however, differential grid generation is preferred. In this type, functions (8.1)
are generated by solving differential equations with dependent variables x1 and x2.
The differential equations can be of parabolic, hyperbolic, or elliptic type [81]. How-
ever, we shall consider the most commonly used elliptic grid generation technique
(Sections 8.3 and 8.4)

The unstructured meshes again can be generated in a variety of ways. Two types
will be considered: (1) generation by exploiting structuredness and (2) automatic
mesh generation (Section 8.5).

8.2 Algebraic Grid Generation

8.2.1 1D Domains

The objective of grid generation is to locate nodes such that they are closely spaced
in regions where the dependent variable � in the transport equations is expected to
have steep gradients and sparsely spaced in regions where the gradients are small.
This ensures that accurate solutions are economically obtained.

233
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Figure 8.1. Effect of n on a 1D grid.

Consider a 1D domain of length L with N nodes so that there are N − 2 control
volumes. One may now specify either the node coordinates x(i) or the cell-face
coordinates xc(i), where the latter occupies location of cell face w to the west of
node P. Two useful algebraic formulas for node-coordinate determination are

x(i)

L
=
[

i − 1

N − 1

]n

, (8.2)

and

x(i)

L
= 1 −

[
1 − i − 1

N − 1

]n

, (8.3)

where n takes arbitrary positive value. For n = 1, these relationships are linear,
implying uniform node spacing. According to relation (8.2), when n > 1, the
grid is fine near x = 0 and becomes progressively coarser towards x = L [see
Figure 8.1(a)]. When n < 1, however, the grid is coarse near x = 0 and becomes
uniformly fine near x = L . Relation (8.3) is employed when these trends are to be
reversed [see Figure 8.1(b)]. In either case, once the x coordinates are known, the
cell-face coordinates xc can be determined by requiring that the cell face be midway
between the adjacent nodes, as has been our preferred practice. Conversely, one can
specify node coordinates xc(i) via formulas of this type and then determine the x
coordinates.

8.2.2 2D Domains

In 2D domains, often the shape of the domain boundaries as well as the coordinates
can be specified by algebraic equations. One such example is that of an eccentric
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Ri

Ro

R∗

Θ ε
Figure 8.2. Eccentric annulus.

annulus shown in Figure 8.2. In this case, the grid coordinates can be generated
from

x1 = R cos θ, x2 = R sin θ, (8.4)

R∗ = −ε sin θ +
√

R2
0 − (ε cos θ )2, (8.5)

where −π/2 ≤ θ ≤ π/2 , Ri ≤ R ≤ R∗, and ε is eccentricity. When ε = 0, a con-
centric annulus is generated. Shah and London [66] have given results for fully
developed laminar flow and heat transfer in several ducts of noncircular cross sec-
tion. The domains of such ducts (sine, ellipsoid, cordoid, etc.) can be mapped by
relationships of the type given here.

8.3 Differential Grid Generation

8.3.1 1D Domains

In algebraic specification, the fineness of grid spacings could be controlled using
formulas (8.2) and (8.3). This can also be done by solving a differential equation.
To understand the main ideas, consider the differential conduction equation

d2T

d x2
+ q ′′′

k
= 0, (8.6)
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Table 8.1: Solution to Equation 8.7.

No. q′′′(x) T

1 0 x

2 a x
[
1 − a

2k (1 − x)
]

3 b x x
[
1 − b

6k (1 − x2)
]

4 b (1 − x) x
[
1 − b

3k

{
1 − x

2 (3 − x)
}]

with boundary conditions T = 0 at x = 0 and T = 1 at x = 1. The solution to the
equation is

T = −
∫ x

0

[∫ x

0

q ′′′

k
dx

]
dx +

[
1 +

∫ 1

0

(∫ x

0

q ′′′

k
dx

)
dx

]
x . (8.7)

This solution is now evaluated for different assumptions for the variation of q ′′′

with x. The solutions are shown in Table 8.1 and Figure 8.3 with a = 2, b = 3, and
conductivity k = 1 in all cases. Clearly, the variation of T is controlled by variation
of q ′′′ with x.

Now, to make Equation 8.6 a determinant of grid node locations, we simply
interchange the roles of x and T . Thus, the solution for q ′′′ = b x , for example, is

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

X

1

2

4

3

T

Figure 8.3. Effect of q′′′(x) function.
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Figure 8.4. Differential construction of a 2D curvilinear grid.

taken as

x = T

[
1 − b

6k
(1 − T 2)

]
, 0 ≤ T ≤ 1. (8.8)

By assigning different values to T in the specified range, we can get as many values
of x(i) as desired. To generalise this idea, we may state that the appropriate equation
for determination of node coordinates is

d2 ξ

d x2
= c (ξ ), (8.9)

where c (ξ ) is a stretching function to be specified by the analyst. To generate a
solution of the form shown in Equation 8.8, Equation 8.9 must be inverted. This
matter will be discussed in Section 8.3.3.

8.3.2 2D Domains

To understand the extension of the aforementioned notion to 2D domains, consider
the domain shown in Figure 8.4. We now consider two problems with different
boundary conditions. Figure 8.4(a) shows the probable solution to the first problem
T = T1 (say) governed by

∂2T1

∂x2
1

+ ∂2T1

∂x2
2

= q ′′′
1

k
, (8.10)



P1: KsF/ICD
0521853265c08 CB908/Date 0 521 85326 5 May 10, 2005 16:28

238 NUMERICAL GRID GENERATION

with boundary conditions T1 = 0 (south), T1 = 1 (north), and ∂T1/∂n = 0 (east
and west), where n is normal to the boundary. Similarly, Figure 8.4(b) represents
the probable solution to the second problem T = T2 (say) governed by

∂2T2

∂x2
1

+ ∂2T2

∂x2
2

= q ′′′
2

k
, (8.11)

with boundary conditions T2 = 0 (west), T2 = 1 (east), and ∂T2/∂n = 0 (north and
south). The solutions to Equations 8.10 and 8.11 therefore can be written as

T1 = T1 (x1, x2), T2 = T2 (x1, x2). (8.12)

Each isotherm (T1 and T2) thus represents sets of values of x1 and x2. In
Figure 8.4(c), the two solutions are superposed. The isotherms now take the appear-
ance of a body-fitted curvilinear grid. Now, as in the previous section, Equation 8.12
can also be written by simply interchanging the roles of T and x . Analogous to Equa-
tion 8.9, therefore, we may state that the appropriate equations for determination
of coordinates x1 and x2 are

∇2 ξ1 = ∂2ξ1

∂x2
1

+ ∂2ξ1

∂x2
2

= P (ξ1, ξ2), (8.13)

∇2 ξ2 = ∂2ξ2

∂x2
1

+ ∂2ξ2

∂x2
2

= Q (ξ1, ξ2), (8.14)

where ξ1 and ξ2 are curvilinear coordinates and P and Q are stretching functions.

8.3.3 Inversion of Determinant Equations

To make Equations 8.9 (in the 1D domain) and 8.13 and 8.14 (in 2D domains)
determinants of Cartesian coordinates, they must be inverted. Thus, for the 1D
domain, we have

∂

∂x
= ∂ξ

∂x

∂

∂ξ
. (8.15)

Now, if directions x and ξ coincide (∂ξ/∂x = 1) then Equation 8.9 can be written
as

∂2 x

∂ ξ 2
= C, (8.16)

with x = 0 at ξ = 0 and x = L at ξ = 1. Grid coordinates x(i) can now be deter-
mined for various choices of C .

For 2D domains, however, the matter is not so simple and requires vec-
tor analysis. Thus, we recall that a covariant base vector (tangent to coordinate
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direction ξi ) is defined as

�ai = d �r
d ξi

= �i ∂x1

∂ξi
+ �j ∂x2

∂ξi
+ �k ∂x3

∂ξi
. (8.17)

Similarly, the contravariant base vector (normal to coordinate surface ξi = constant)
is defined as

�a i = ∇ ξi = �i ∂ξi

∂x1
+ �j ∂ξi

∂x2
+ �k ∂ξi

∂x3
= �a j × �ak/J, (8.18)

where J is the Jacobian. Now, from Green’s theorem [70], for any quantity (vector
or scalar) �,

∇ � = 1

J

3∑
i=1

∂

∂ξi

[�a j × �ak

] · � =
3∑

i=1

∂

∂ξi

[�ai �
] =

3∑
i=1

�a i ∂�

∂ξi
(8.19)

since ∂ �a i/∂ξi = 0. Therefore,

∇2 � = ∇ · ∇ � =
[

3∑
i=1

�ai ∂

∂ξi

]
.

[
3∑

l=1

�al ∂�

∂ξl

]

=
3∑

i=1

3∑
l=1

�a i · �a l ∂

∂ξi

(
∂�

∂ξl

)
+

3∑
i=1

3∑
l=1

�a i ∂ �a l

∂ξi

∂�

∂ξl
.

(8.20)

If we now set � = ξl (a scalar), then

∇2 ξl =
3∑

i=1

�a i ∂ �a l

∂ξi
. (8.21)

Substituting Equation 8.21 in Equation 8.20 gives,

∇2 � =
3∑

i=1

3∑
l=1

�a i · �a l ∂

∂ξi

(
∂�

∂ξl

)
+

3∑
l=1

∇2 ξl
∂�

∂ξl
. (8.22)

In two dimensions (∂/∂x3 = ∂/∂ξ3 = 0), Equation 8.22 will read as

∇2 � = �a1 · �a1 ∂2�

∂ξ 2
1

+ 2 �a1 · �a2 ∂2�

∂ξ1 ∂ξ2
+ �a2 · �a2 ∂2�

∂ξ 2
2

+ ∇2 ξ1
∂�

∂ξ1
+ ∇2 ξ2

∂�

∂ξ2
. (8.23)
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The dot products are now easily evaluated from Equations 8.17 and 8.18. Thus

�a1 · �a1 = 1

J 2

[(
∂x1

∂ξ2

)2

+
(

∂x2

∂ξ2

)2
]

= α/J 2,

�a1 · �a2 = − 1

J 2

[
∂x1

∂ξ1

∂x1

∂ξ2
+ ∂x2

∂ξ1

∂x2

∂ξ2

]
= −β/J 2,

�a2 · �a2 = 1

J 2

[(
∂x1

∂ξ1

)2

+
(

∂x2

∂ξ1

)2
]

= γ /J 2. (8.24)

Employing these relations and using Equations 8.13 and 8.14, we can show that

∇2 � = 1

J 2

[
α

∂2�

∂ξ 2
1

− 2β
∂2�

∂ξ1 ∂ξ2
+ γ

∂2�

∂ξ 2
2

]
+ P

∂�

∂ξ1
+ Q

∂�

∂ξ2
. (8.25)

We now replace � by x1 and x2 and note that ∇2 x1 = ∇2 x2 = 0. Then, the
equations for x1 and x2 will read as

α
∂2x1

∂ξ 2
1

− 2β
∂2x1

∂ξ1 ∂ξ2
+ γ

∂2x1

∂ξ 2
2

= −J 2

[
P

∂x1

∂ξ1
+ Q

∂x1

∂ξ2

]
, (8.26)

α
∂2x2

∂ξ 2
1

− 2β
∂2x2

∂ξ1 ∂ξ2
+ γ

∂2x2

∂ξ 2
2

= −J 2

[
P

∂x2

∂ξ1
+ Q

∂x2

∂ξ2

]
, (8.27)

where

J = ∂x1

∂ξ1

∂x2

∂ξ2
− ∂x2

∂ξ1

∂x1

∂ξ2
. (8.28)

To determine functions (8.1), therefore, Equations 8.26 and 8.27 must be solved
simultaneously with the boundary conditions specified at ξ1 = 0, ξ1 = ξ1max, ξ2 =
0, and ξ2 = ξ2max. Note that Equations 8.26 and 8.27 are coupled and nonlinear
because α, β, and γ are themselves functions of dependent variables x1 and x2.
Further, we note that the equations contain both the first and second derivatives and,
if −J 2 P and −J 2 Q are regarded as velocities, the equations have the structure of
a general transport equation.

It might appear that Equations 8.26 and 8.27 can be easily discretised and solved.
However, there is a difficulty associated with the application of boundary conditions.
The difficulty can be understood as follows. In fluid flow problems, we would often
desire that the grid lines intersect orthogonally with the boundary. Thus, at the north
and south boundaries, for example, we would desire that ∂x1/∂ξ2 = 0. However,
once this specification is made, we cannot specify x1 on these boundaries. This is
because if Dirichlet and Neumann boundary conditions are specified at the same
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Figure 8.5. Grid line construction – Sorenson’s method.

boundary, than the problem becomes overspecified or ill-posed. Therefore, we can
specify either the value of ∂x1/∂ξ2 or of x1. However, if only one of these two
boundary conditions is specified then the converged solutions to Equations 8.26
and 8.27 often demonstrate grid-node clustering in some portions of the domain
and highly sparse node distributions in other regions.

Ideally, one would like to have complete freedom to choose x1 and x2 locations
on the boundaries and yet achieve orthogonal intersection (or at any other desired
angle) of the grid lines with the boundaries. The method of Sorenson [71] allows
precisely this freedom. The method is described in the next section.

8.4 Sorenson’s Method

8.4.1 Main Specifications

Sorenson’s method permits coordinate and coordinate-gradient specification for the
same variable x1 or x2 at two of the four boundaries of the domain. Thus, let ξ2 = 0
(south) and ξ2 = ξ2max (north) be these two boundaries as shown in Figure 8.5. We
now define

� s0 = [
� x2

1 + � x2
2

]0.5

ξ2=0
(8.29)

or, in the limit,

d s0

d ξ2
=
[(

∂x1

∂ξ2

)2

+
(

∂x2

∂ξ2

)2
]0.5

ξ2=0

. (8.30)
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Note that� s0 is the physical distance between boundary node 1 and its neighbouring
interior node 2 in the ξ2 direction. Similar definitions are introduced at the north
boundary ξ2 = ξ2max.

Now, let θ0 be the angle of intersection between ξ1 and ξ2 grid lines at ξ2 = 0.
Then,

∇ ξ1 · ∇ ξ2 = | �a1 | | �a2 | cos θ0. (8.31)

Using Equation 8.19, however, it follows that

∇ ξ1 · ∇ ξ2 =
[

∂ξ1

∂x1

∂ξ2

∂x1
+ ∂ξ1

∂x2

∂ξ2

∂x2

]
ξ2=0

=
⎡
⎣{( ∂ξ1

∂x1

)2

+
(

∂ξ1

∂x2

)2
}0.5 {(

∂ξ2

∂x1

)2

+
(

∂ξ2

∂x2

)2
}0.5

cos θ0

⎤
⎦

ξ2=0

,

(8.32)

but, from the definitions of β
j

i introduced in Chapter 6,

∂ξ1

∂x1
= 1

J

∂x2

∂ξ2
,

∂ξ2

∂x1
= − 1

J

∂x2

∂ξ1
,

∂ξ1

∂x2
= − 1

J

∂x1

∂ξ2
,

∂ξ2

∂x2
= 1

J

∂x1

∂ξ1
. (8.33)

Substituting these definitions and using Equation 8.30, we can write Equation 8.32
as

−
[
∂x2

∂ξ1

∂x2

∂ξ2
+ ∂x1

∂ξ1

∂x1

∂ξ2

]
ξ2=0

=
⎡
⎣d s0

d ξ2

{(
∂x2

∂ξ1

)2

+
(

∂x1

∂ξ1

)2
}0.5

cos θ0

⎤
⎦

ξ2=0

.

(8.34)

Evaluation of ∂x1/∂ξ2 and ∂x2/∂ξ2

To make further progress, we must evaluate ∂x1/∂ξ2 and ∂x2/∂ξ2 at ξ2 = 0. This
can be done using Equation 8.34. Thus,

cos θ0 = −
[
∂x2

∂ξ1

∂x2

∂ξ2
+ ∂x1

∂ξ1

∂x1

∂ξ2

]⎡⎣d s0

d ξ2

{(
∂x2

∂ξ1

)2

+
(

∂x1

∂ξ1

)2
}0.5

⎤
⎦

−1

ξ2=0

.

(8.35)

Therefore, since sin θ0 =
√

1 − cos2 θ0,

sin θ0 =
[
∂x2

∂ξ2

∂x1

∂ξ1
− ∂x1

∂ξ2

∂x2

∂ξ1

]⎡⎣d s0

d ξ2

{(
∂x2

∂ξ1

)2

+
(

∂x1

∂ξ1

)2
}0.5

⎤
⎦

−1

ξ2=0

.

(8.36)
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Now, solving Equations 8.35 and 8.36 simultaneously, we can show that

∂x1

∂ξ2
|ξ2=0 = −d s0

d ξ2

{
∂x1

∂ξ1
cos θ0 + ∂x2

∂ξ1
sin θ0

} [(
∂x2

∂ξ1

)2

+
(

∂x1

∂ξ1

)2
]−0.5

ξ2=0

,

(8.37)

∂x2

∂ξ2
|ξ2=0 = d s0

d ξ2

{
∂x1

∂ξ1
sin θ0 − ∂x2

∂ξ1
cos θ0

} [(
∂x2

∂ξ1

)2

+
(

∂x1

∂ξ1

)2
]−0.5

ξ2=0

.

(8.38)

Identical expressions can be developed for ∂x1/∂ξ2 and ∂x2/∂ξ2 at ξ2 = ξ2max.

8.4.2 Stretching Functions

Sorenson [71] defines P and Q functions as

P (ξ1, ξ2) = P (ξ1, 0) exp (−a ξ2) + P (ξ1, ξ2max) exp {−c (ξ2max − ξ2)} , (8.39)

Q (ξ1, ξ2) = Q (ξ1, 0) exp (−b ξ2) + Q (ξ1, ξ2max) exp {−d (ξ2max − ξ2)} , (8.40)

where a, b, c, and d are positive constants to be chosen by the analyst. Now, for
convenience, we introduce the following symbols:

L1 = − (LHS of Equation 8.26)/J 2

and

L2 = − (LHS of Equation 8.27)/J 2.

Thus,

L1 (ξ2 = 0) = P (ξ1, 0)
∂x1

∂ξ1

∣∣∣∣
ξ2=0

+ Q (ξ1, 0)
∂x1

∂ξ2

∣∣∣∣
ξ2=0

, (8.41)

L2 (ξ2 = 0) = P (ξ1, 0)
∂x2

∂ξ1

∣∣∣∣
ξ2=0

+ Q (ξ1, 0)
∂x2

∂ξ2

∣∣∣∣
ξ2=0

. (8.42)

Therefore, using the definition of J (see Equation 8.28), we get

P (ξ1, 0) = 1

J

[
L1

∂x2

∂ξ2
− L2

∂x1

∂ξ2

]
ξ2=0

, (8.43)

Q (ξ1, 0) = 1

J

[
L2

∂x1

∂ξ1
− L2

∂x2

∂ξ1

]
ξ2=0

. (8.44)
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Identical expressions again emerge for P (ξ1, ξ2max) and Q (ξ1, ξ2max). One can
thus prescribe P and Q functions over the whole domain using Equations 8.39 and
8.40.

8.4.3 Discretisation

Equations 8.26 and 8.27 can be written in the following general form:

P∗ ∂�

∂ξ1
− α

∂2�

∂ξ 2
1

+ Q∗ ∂�

∂ξ2
− γ

∂2�

∂ξ 2
2

= −2β
∂

∂ξ1

(
∂�

∂ξ2

)
, (8.45)

where � = x1, x2, P∗ = −P J 2, and Q∗ = −Q J 2. Equation 8.45, being of the
conduction–convection type, can be discretised using the UDS to yield

AP �P = AE �E + AW �W + AN �N + AS �S + S, (8.46)

where

AE = αP + 1

2
(| P∗

P | − P∗
P ),

AW = αP + 1

2
(| P∗

P | + P∗
P ),

AN = γP + 1

2
(| Q∗

P | − Q∗
P),

AS = γP + 1

2
(| Q∗

P | + Q∗
P),

AP = AE + AW + AN + AS,

S = −2βP (�ne − �nw − �se + �sw). (8.47)

Equation 8.46 can be solved using the ADI method.

8.4.4 Solution Procedure

Sorenson’s method can be implemented through the following steps.

Initialisation
1.Choose coordinates x1 (ξ1, 0), x2 (ξ1, 0), x1 (ξ1, ξ2max), and x2 (ξ1, ξ2max) on the

south and north boundaries, respectively. Also specify x1 (0, ξ2) (west) and
x1 (ξ1max, ξ2) (east).

2.Specify1 �s0 and �smax and θ0 and θmax. For orthogonal intersection, θ = π/2.
3.Let P (ξ1, ξ2) = Q (ξ1, ξ2) = 0.

1 It will be appreciated that this liberty to specify �s0 and �smax can be very useful when south
and north boundaries are walls and the HRE e–ε turbulence model is employed. One can therefore
place the first node away from the wall in the range 30 < y+ < 100.
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4.From the known coordinates on the south and the north boundaries, interpolate
x1 (ξ1, ξ2) and x2 (ξ1, ξ2) to serve as the initial guess. Usually, linear interpolation
between corresponding points on the south and north boundary for each ξ1

suffices.
5.Now evaluate ∂x1/∂ξ1, ∂x2/∂ξ1, ∂x1/∂ξ2, and ∂x2/∂ξ2 at ξ2 = 0 and ξ2 = ξ2max.

These remain fixed for all subsequent operations.

Iterations Begin
6.Evaluate L1 and L2 at ξ2 = 0 and ξ2 = ξ2max. In these evaluations, the second-

order derivatives at ξ2 = 0, for example, are represented as follows:

∂2�

∂ξ 2
2

= 1

2
(−7�i,1 + 8�i,2 − �i,3) − 3 (�i,2 − �i,1), (8.48)

∂2�

∂ξ 2
1

= �i+1,1 − 2�i,1 − �i−1,1, (8.49)

∂

∂ξ1

(
∂�

∂ξ2

)
= 1

2

(
∂�

∂ξ2

∣∣∣∣
i+1

− ∂�

∂ξ2

∣∣∣∣
i−1

)
. (8.50)

7.Use equations such as 8.43 and 8.44 to evaluate P (ξ1, 0), Q (ξ1, 0), P (ξ1, ξ2max),
and Q (ξ1, ξ2max).

8.Using the preceding information and already chosen2 constants a, b, c, and d,
evaluate P (ξ1, ξ2) and Q (ξ1, ξ2) at all nodes in the domain. Between iterations,
underrelaxation in evaluation of P and Q is advised.

9.Specify boundary conditions for x2 at the west and east boundaries. Here, care
must be taken to take account of the type of grid being generated. If an H- or
C-type grid is being generated, one must specify the x2 from known equations
of the west and east boundaries since x1 values are already known (see step 1).
Alternatively, one may specify the ∂x2/∂ξ1 condition to let the ξ2 = constant line
intersect the boundary at a desired angle. If an O-type grid is being generated
then one specifies periodic condition � (0, ξ2) = � (ξ1max, ξ2).

10.Solve Equation 8.45 for � = x1, x2 and check convergence.
11. If the convergence criterion is not met, go to step 6.

8.4.5 Applications

H Grid
Figure 8.6 shows the grid for a flow between parallel plates with a constriction.
South (x2 = 0) is the axis of symmetry, north is a wall, west (x1 = −8) is the

2 Typically, a = b = c = d = 0.7. If too small a value is used (0.2, say), the effect of the constants
decays slowly away from the south/north boundaries. If too large a value is chosen, the effect decays
very rapidly.
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Figure 8.6. Example of H – grid.

inflow boundary, and east (x1 = 20) is the exit boundary. The channel half-width
is b = 1 and the constriction height is δ. The constriction profile for the range
−x0 < x1 < x0 is given by

x2

b
= 1 − δ

2 b

(
1 + cos

π x1

x0

)
.

The figure shows the grid generated with �s0 = �smax = 0.035, δ/b = 2/3,
and x0/b = 4. The grids, 32 in the ξ1 direction and 15 in the ξ2 direction, are
generated using the following boundary conditions.

South: x2 = 0, for −8 < x1 < 20.
North: x2 = 1 for −8 < x1 < −x0, x2 = f (x1) for −x0 < x1 < x0 and, x2 = 1

for x0 < x1 < 20, where f (x1) is the constriction shape function already mentioned.
West: x1 = −8, ∂x2/∂ξ1 = 0.
East: x1 = 20, ∂x2/∂ξ1 = 0.
To maintain clarity, the generated grids are shown in Figure 8.6 for −6 < x1 < 5

only. Three values of constants (1.0, 0.75, and 0.5) are used and are indicated
in the figure. For the largest value, the ξ2 grid lines are more evenly spaced in
the range 0.25 < x2 < 0.8. For smaller values, the grid nodes are attracted more
towards the north and the south boundaries, yielding fewer nodes in the middle range
of x2.
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Figure 8.7. Example of C – grid.

C Grid
Figure 8.7 is an example of the C grid. The figure shows a channel with a 180◦

bend. The inner radius of the bend is Ri = 1 and the outer radius is Ro = 2. The
flow enters the west boundary and exits from the east boundary. There are 30 nodes
in the I (or, ξ1) direction and 12 nodes in the J (or, ξ2) direction. The grids are
generated using the following specifications:

West: x1 = 0, ∂x2/∂ξ1 = 0, x2 (1, 1) = 1, and x2 (1, J N ) = 2.
East: x1 = 0, ∂x2/∂ξ1 = 0, x2 (1, 1) = −1, and x2 (1, J N ) = −2.
South: x2(i, 1) = 1 for i = 1 to 8, x1 (8, 1) = x1 (8, J N ) = 5, x1 (i, 1) =

x1 (8, 1) + Ri (cos θ − 1), x2 (i, 1) = Ri sin θ for i = 9 to 23, x2(i, 1) = −1 for
i = 24 to I N , and x1 (24, 1) = x1 (24, J N ) = 5.

North: x2(i, J N ) = 2 for i = 1 to 8, x1 (i, J N ) = x1 (8, J N ) + Ro (cos θ − 1),
x2 (i, J N ) = Ro sin θ for i = 9 to 23, and x2(i, J N ) = −2 for i = 24 to I N .

In these specifications, θ varies from 0◦ to 180◦. The grids are generated with
�s0 = �smax = 0.05 and a = b = c = d = 0.7. The ξ2 grid lines show much
closer spacings near the north boundary than near the south boundary.

O Grid
Figure 8.8 shows 74 (ξ1 or circumferential) × 25 (ξ2 or radial) grids around the
GE90 gas-turbine blade whose surface (south boundary) coordinates are known.3

The outer circle (radius = 3× the axial chord) forms the north boundary. The west
and east boundaries are periodic and, therefore, x1 and x2 coordinates at i = 1 and
i = I N coincide. The figure also shows details of the grid structure near the trailing
and leading edges of the blade.

It must be remembered that grid generation is somewhat of an art because
different choices of node locations on the boundaries and the constants in the

3 Although a more practical situation involves a cascade of blades, here the blade is treated as an
isolated airfoil.
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Figure 8.8. Example of O – grid.

stretching functions can produce different grid spacings and stretchings inside the
domain. One needs to make a few trials before accepting the generated grid. A
graphics package such as TECPLOT for mesh visualisation is therefore neces-
sary. The package also has a zooming facility to permit visualisation of dense-grid
regions.

8.5 Unstructured Mesh Generation

8.5.1 Main Task

Unstructured mesh generation essentially involves two tasks:

1. locating vertices in the domain and
2. creating vertex and element files (as mentioned in Chapter 6).

These tasks can be carried out in a variety of ways. The two most commonly used
are the following:

1. Locating vertices by curvilinear grid generation so that a regular (i, j) structure
is readily available for vertex numbering.

2. Locating vertices according to rules that yield arbitrary vertices without (i, j)
structure. In this automatic grid generation method, node numbering requires
care.

These alternatives are considered next for further explanation.
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Figure 8.9. Linear numbering of a structured grid.

8.5.2 Domains with (i, j ) Structure

Consider the complex domain shown in Figure 8.9. The domain is laid with a
curvilinear structured grid. A typical vertex (i, j), therefore, will have eight im-
mediate neighbours: (i + 1, j), (i + 1, j + 1), (i, j + 1), (i − 1, j + 1), (i − 1, j),
(i − 1, j − 1), (i, j − 1), and (i + 1, j − 1). We now designate each vertex by a
one-dimensional address system rather than a two-dimensional one. Thus, vertex
(i, j) can be referred to by vertex number N V (say), where

N V = i + ( j − 1) × I N . (8.51)

In Figure 8.9, nodes are linearly numbered for a grid with I N = 9 and J N = 5.

According to Equation 8.51, vertex (I N , J N ) will be referred to by NVMAX =
I N × J N , whereas for vertex (1, 1), N V = 1. Now, since coordinates of vertices
are known, one can readily form the vertex file.

With this linear numbering, one can construct a minimum of two triangular
elements out of each quadrilateral element. This formation can be of two types
as shown in Figure 8.10. In each case, elements must be numbered along with
the associated three vertex numbers to form the element file. This task can be
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a) TYPE 1 b) TYPE 2

Figure 8.10. Construction of triangular elements from a quadrilateral element.

accomplished by a simple routine as follows:

C *** FOR NV (ODD), TYPE1 , FOR NV (EVEN), TYPE2 (IN, JN KNOWN)
NE1=0
DO 1 J=1,JN-1
DO 1 I=1,IN-1
NV=I+(J-1)*IN
NE1=NE1+1
NE2=NE1+1
M=MOD(NV,2)
NV1=NV
NV2=NV1+IN
NV3=NV2+1
NV4=NV1+1
IF(M.EQ.1)THEN
WRITE(6,*)NE1,NV1,NV3,NV2
WRITE(6,*)NE2,NV1,NV4,NV3
ELSE IF(M.EQ.0)THEN
WRITE(6,*)NE1,NV1,NV4,NV2
WRITE(6,*)NE2,NV4,NV3,NV2
ENDIF
NE1=NE2

1 CONTINUE

Figure 8.11 shows the element numbering for the grid shown in Figure 8.9. The
numbering is carried out using the routine given here.

8.5.3 Automatic Grid Generation

Automatic grid generation (AGG) is used to generate elements having desired
properties and desired density (i.e., clustering). For example, when 2D triangular
elements are generated, one may desire that each element has a prespecified area or
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Figure 8.11. Unstructured mesh.

that no included angle shall exceed 90◦. There are several ways in which this may
be achieved and the subject matter is as much an art as it is a science. Fortunately,
useful reviews of methods for AGG are published from time to time and the reader
is referred to one such review [27] by way of an example.

Methods for AGG can be classified based on element type, element shape, mesh
density control, and time efficiency. The most popular mesh-generation methods
first create all vertices (boundary and interior) and then connect them by lines to
form triangles. The question then arises as to what is the best triangulation on a
given set of points. The most popular principle for triangulating is called Delaunay
triangulation.

To understand the scheme, consider a set of vertices on a domain as shown in
Figure 8.12. In this figure, triangle A represents a Delaunay triangle because the
circumcircle passing through the three vertices encloses no other vertices. This,
however, is not true for triangle B, which is therefore not a Delaunay triangle. It is
obvious that if the set of vertices were arbitrarily chosen, and their locations were
fixed, then it would be difficult to meet the requirement of Delaunay triangulation.
Without proof, we state that Delaunay triangulation is achieved in such a way that
thin elements are avoided [27] whenever possible.
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A

B

Figure 8.12. Delaunay triangulation
principle.

Among the many methods available for triangulation, perhaps the most
convenient is the triangulation by point insertion method. The method is executed
in three steps (see Figure 8.13):

1. Define and discretise domain boundaries. Straight boundaries can be discretised
by employing formulas such as Equation 8.2 or by a cubic-spline technique [63].
Curved boundaries, however, require further care.

2. Triangulate the boundary points using the Delaunay triangulation principle. This
creates new vertices interior to the domain.

3. Triangulate the remaining interior domain by point insertion. Starting from an
existing pair of vertices (1 and 2, say), a third vertex can be searched under a
variety of constraints. One such constraint is the aspect ratio AR = ri / (2rc),
where ri is the radius of inscribed circle and rc is the radius of circumscribed
circle.4 The new inserted vertex is now placed at the circumcentre of the triangle
1–2–3 with minimum AR.

One can thus complete the triangulation of the entire domain. These three steps
can be cast in the form of an algorithm and a computer program can be written
for its implementation. A computer program based on a method by Watson [87] is
available in [67]. The next task is to create the data structure. This refers to creation
of vertex and element numbering to prepare the required vertex and element files.
Several commercial packages for AGG are available that can create mixed elements
and three-dimensional polyhedra. Using these packages, meshes can be generated

4 Here, ri = A/s, rc = 0.25 × a × b × c/A, semiperimeter s = (a + b + c)/2, and area A =√
s (s − a) (s − b) (s − c). a, b, and c are lengths of sides of the triangle 1-2-3.
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Figure 8.13. Point insertion technique.

to describe flow over an entire aircraft or over and through a car (including the
engine space below the bonnet). In such applications, millions of elements are
needed and the question of the efficiency with which an AGG algorithm is devised
becomes important. The task of AGG has thus assumed considerable significance
to be recognised as a specialised branch of CFD.

EXERCISES

1. Derive formulas analogous to Equations 8.2 and 8.3 to determine the distribu-
tion of xc(i).

2. Generate x1 and x2 coordinates of an ellipsoidal duct by algebraic grid genera-
tion, exploiting symmetry.

3. Starting with Equation 8.19, derive Equations 8.26 and 8.27.

4. Discretise Equation 8.45.

5. Develop a generalised computer program to solve Equation 8.45 for � = x1

and x2. (Hint: You will need to develop a USER file and a LIBRARY file.
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L1 L2

S

P

t

a b

c d

e
f

g
h

Figure 8.14. Flow over a cascade of louvres.

The USER file should execute the first two steps of the calculation procedure
described in Section 8.4.4.)

6. It is desired to determine drag coefficient of a cascade of louvres as shown in
Figure 8.14. For this purpose, an analyst selects the domain a–b–c–d–e–f–g–h.
Use the computer program developed in Exercise 5 to generate curvilinear
grids and provide boundary conditions for x1 and x2. Take ab = 1, L1 = 1.5,
L2 = 1.0, S = 0.25, P = 0.5, t = 0.05, and cd = 1.5.

7. Repeat Exercise 6 for the GE90 gas-turbine blade cascade shown in Figure 8.15.
The coordinates5 of the suction and pressure surface of the blade are given in
Table 8.2 (30 points on the suction surface and 46 points on the pressure surface).
The other dimensions are as follows: axial chord Cax = 12.964 cm, pitch P =
13.811 cm, blade inlet angle β1 = 35◦, and blade outlet angle β2 = −72.49◦.
(Hint: If more points are required on the blade surface, their coordinates can
be generated using spline interpolation [63].)

8. Consider flow in a duct of square cross section in which a twisted tape has been
inserted as shown in Figure 8.16. The width of the tape equals the duct-side
length D. This three-dimensional flow can be analysed by generating 2D grids
at several cross sections along the axis at different angles � from the vertical.
One such section A–A at angle � = 22.5◦ is shown in the figure. The thickness

5 The author is grateful to Prof. R. J. Goldstein of the University of Minnesota for providing the
coordinate data.
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Figure 8.15. Schematic of a gas-turbine blade cascade.

of the tape δ/D = 0.04. The flow is symmetric about the tape with secondary
flow being transferred through the gaps c–d and e–f. Therefore, curvilinear
grids may be generated over only half of the duct cross section. Select west,
north, east, and south boundaries and adapt the computer program of Exercise 5
to generate the curvilinear grid. Also specify the boundary conditions for the
velocity components ui , i = 1, 2, and 3. (Hint: For the purpose of generat-
ing the curvilinear grid, assume δ = 0 to avoid any sharp protrusion into the
domain.)

9. The vertex file for the domain of Figure 8.9 is given in Table 8.3. Reading this
file, prepare an element file using the routine given in Section 8.5.2 to generate
a triangular mesh as shown in Figure 8.11. Now, with reference to Chapter 6,
develop a computer program to do the following:

(a) Identify neighboring element numbers of each element. Store this infor-
mation in array NHERE (N, K).

(b) Define boundary nodes B and assign node numbers to them.
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Table 8.2: Coordinates of suction (upper half) and pressure (lower half)
surfaces – GE90 blade.

x1/Cax x2/Cax x1/Cax x2/Cax x1/Cax x2/Cax

0.0000 0.0242 0.2365 0.2752 0.7735 −0.1793
0.0014 0.0377 0.2989 0.2886 0.8071 −0.2703
0.0063 0.0550 0.3656 0.2868 0.8383 −0.3621
0.0155 0.0759 0.4328 0.2684 0.8678 −0.4545
0.0296 0.1001 0.4967 0.2348 0.8959 −0.5473
0.0484 0.1269 0.5556 0.1878 0.9229 −0.6404
0.0722 0.1565 0.6083 0.1304 0.9491 −0.7338
0.1014 0.1878 0.6552 0.0646 0.9747 −0.8273
0.1376 0.2200 0.6942 −0.0025 0.9997 −0.9210
0.1822 0.2506 0.7364 −0.0897 1.0000 −0.9235

0.0000 0.0242 0.1147 0.0124 0.7238 −0.3864
0.0009 0.0146 0.1434 0.0190 0.7603 −0.4915
0.0031 0.0079 0.1760 0.0244 0.7950 −0.5183
0.0052 0.0038 0.2133 0.0273 0.8282 −0.5854
0.0070 0.0013 0.2551 0.0256 0.8603 −0.6531
0.0085 0.0000 0.3006 0.0180 0.8914 −0.7212
0.0098 −0.0007 0.3478 0.0035 0.9218 −0.7897
0.0120 −0.0018 0.3950 −0.0175 0.9515 −0.8585
0.0153 −0.0031 0.4412 −0.0452 0.9807 −0.9274
0.0205 −0.0046 0.4857 −0.0789 0.9828 −0.9306
0.0279 −0.0055 0.5286 −0.1184 0.9859 −0.9327
0.0384 −0.0054 0.5695 −0.1626 0.9895 −0.9336
0.0522 −0.0035 0.6088 −0.2112 0.9932 −0.9330
0.0694 0.0003 0.6441 −0.2596 0.9968 −0.9309
0.0903 0.0058 0.6853 −0.3222 0.9992 −0.9276

– – – – 1.0000 −0.9235

(c) Calculate geometric coefficients B11 (N , K) and B21 (N , K); cell-face
area ACF (N , K); lengths LP2E2 (N , K), LX1 (N , K), LX2 (N , K), DX1
(N , K), and DX2 (N , K); and weighting factor FM (N , K).

(d) Calculate the cell volume VOL (N) of each element.
Including the boundary nodes, what is the total number of nodes, NMAX?

10. To dispel the idea that unstructured meshes must necessarily be triangular or
polygonal, an analyst maps a complex domain with essentially a Cartesian
mesh, as shown in Figure 8.17. Now, it is seen that cells with more or less
than four faces occur near an irregular boundary (see the enlarged view) and
the dimensions of such cells can be determined from the known coordinates
of the irregular boundary. Essentially, therefore, the mesh can be generated by
algebraic specification. It is also possible to obtain any desired cell density. Of
course, to do this automatically, a computer program must be written. Further,
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Table 8.3: Vertex file data.

NV x1 x2 NV x1 x2 NV x1 x2 NV x1 x2

1 0 0 13 33 1 25 78 27 37 0 27
2 8 −3 14 50 6 26 82 41 38 10 27
3 10 −6 15 78 15 27 84 51 39 20 28
4 35 −4 16 83 26 28 0 20 40 33 29
5 54 4 17 88 40 29 12 18 41 46 33
6 79 13 18 92 51 30 22 18 42 55 36
7 87 26 19 0 14 31 32 18 43 62 39
8 91 40 20 12 10 32 48 21 44 66 45
9 100 51 21 23 8 33 58 27 45 66 51

10 0 6 22 32 8 34 67 35
11 10 0 23 48 11 35 74 43
12 22 0 24 70 20 36 75 51
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Figure 8.16. Flow in a duct of square cross section containing a twisted tape.
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ENLARGED   VIEW

Figure 8.17. Flow over a multielement airfoil.

note that cells identified by filled circles, though rectangular, may have more
than four neighboring cells.

(a) Identify the number of neighbouring cells for the two cells marked with
filled circles.

(b) Examine whether the discretisation procedure described in Chapter 6 can
be employed for such a mesh.

11. It is desired to generate an essentially quadrilateral unstructured mesh for the
moon-shaped duct shown in Figure 6.35.The duct shape, however, is such that in
some portions of the duct the elements must be triangular to avoid unnecessary
concentration of nodes. Write a computer program to generate such a mixed-
element grid and generate vertex and element files.
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9 Convergence Enhancement

9.1 Convergence Rate

In all the preceding chapters it was shown that discretising the differential transport
equations results in a set of algebraic equations of the following form:

AP�P =
∑

Ak�k + S, (9.1)

where suffix k refers to appropriate neighbouring nodes of node P. In pure conduc-
tion problems (� = T ), Ak and S may be functions of T . In the general problem
of convective–diffusive transport, � may stand for any transported variable and Ak

and S may again be functions of the � under consideration or any other � relevant
to the system. In curvilinear grid generation, � = x1, x2, and Ak and S are again
functions of x1 and x2. In all such cases, if there are N interior nodes, we need
to solve N equations for each variable � in a prespecified sequence. An iterative
solution is particularly attractive when the algebraic equations for different �s are
strongly coupled through coefficients and sources.

In an iterative procedure, convergence implies numerical satisfaction of Equa-
tion 9.1 at each interior node for each �. This satisfaction is checked by the residual
in Equation 9.1 at each iteration level l (say). Thus

R�
P = AP �l

P −
∑

Ak �l
k − S. (9.2)

The whole-field convergence is declared when

R� =
[∑

all nodes

{
R�

P

}2
]0.5

Rnorm
< CC, (9.3)

where CC stands for the convergence criterion and Rnorm is a dimensionally correct
normalising quantity defined by the CFD analyst. For example, in a problem with
total inflow ṁ in and average property �in, Rnorm = ṁ in × �in (say). If no such
representative quantity is found then Rnorm = 1. Ideally, CC must be as small as

259
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the machine accuracy will permit but typically CC = 10−5 (say) suffices for most
engineering applications.

The convergence rate C R may be defined as

C R = −d R�

dl
, (9.4)

where l is the iteration level. Economic computations will require that C R must
be as high as possible. Algebraic equation solvers such as the GS, the TDMA, and
the ADI introduced in Chapter 5, however, demonstrate the following convergence
rate properties:

1. Overall C R is higher when Ak and S are constants rather than when they are
dependent on �.

2. The initial (small l) C R is high but progressively decreases as convergence is
approached.

3. C R is higher when the Ak are small (for example, coarse grids) than when they
are large (fine grids).

4. C R is higher when Dirichlet boundary conditions are specified at all boundaries
than when Neumann (or gradient) boundary conditions are specified. This is one
reason why the pressure-correction equation is slow to converge.

5. The convergence history (i.e., R� ∼ l relationship) is typically monotonic when
Ak and S are constants but can be highly nonmonotonic (or oscillatory) when
the equations are strongly coupled.

This last point is concerned with the stability of the iterative procedure. The
reader may wish to relate this phenomenon with damping of waves discussed in
Chapter 3.

The C R of the basic iterative methods (GS and ADI for 2D problems) can be
enhanced by several techniques. Here, a few of them that have the facility of being
incorporated in a generalised computer code will be considered. It is important to
note, however, that all convergence enhancement techniques essentially take ever
greater account of the implicitness embodied in the equation set (9.1). Thus, it is
recognised that �P is implicitly related not only to its immediate neighbours but also
to its distant neighbours. The objective, therefore, is to strengthen this relationship
with the distant neighbours.

The merit of this observation has already been sensed in Chapter 2, where
convergence rates of GS (point-by-point) and TDMA (line-by-line) procedures
were compared for a 1D problem. In this chapter, the main interest is to consider
2D problems. The enhancement techniques considered can also be extended to 3D
problems.
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9.2 Block Correction

The block-correction technique is used to enhance the convergence rate of the ADI
method. Thus, we rewrite Equation 9.1 as

APi, j �i, j = AEi, j �i+1, j + AWi, j �i−1, j

+ ANi, j �i, j+1 + ASi, j �i, j−1 + Sui, j , (9.5)

where

APi, j = AEi, j + AWi, j + ANi, j + ASi, j + Spi, j . (9.6)

Equation 9.5 is written such that the boundary coefficients of the near-boundary
nodes are zero and the boundary conditions are absorbed through Su and Sp, as
explained in Chapter 5. Thus,

AW2, j = AEI N−1, j = ASi,2 = ANi,J N−1 = 0. (9.7)

The central idea of the block-correction technique is that an unconverged field
�l

i, j is corrected by adding uniform correction �i along lines of constant i . Thus,
let

�i, j = �l
i, j + �i . (9.8)

Now, the correction �i is chosen such that the integral conservation over all control-
volumes on a constant-i strip is exactly satisfied. The equation governing �i is thus
obtained by a two-step procedure. First, Equation 9.8 is substituted in Equation 9.5
so that

APi, j

(
�l

i, j + �i

) = AEi, j

(
�l

i+1, j + �i+1
)+ AWi, j

(
�l

i−1, j + �i−1
)

+ ANi, j

(
�l

i, j+1 + �i

)+ ASi, j

(
�l

i, j−1 + �i

)
+ Sui, j . (9.9)

Then all such equations for j = 2, 3, . . . . , J N − 1 are added. Thus, one obtains

B Pi �i = B Ei �i+1 + BWi �i−1 + BSi , i = 2, . . . , I N − 1, (9.10)

where

B Pi =
J N−1∑

j=2

(APi, j − ANi, j − ASi, j ),

B Ei =
J N−1∑

j=2

AEi, j ,

BWi =
J N−1∑

j=2

AWi, j , (9.11)
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and

BSi =
J N−1∑

j=2

[
AEi, j �

l
i+1, j + AWi, j �

l
i−1, j + ANi, j �

l
i, j+1

+ ASi, j �
l
i, j−1 + Sui, j − APi, j �

l
i, j

]
. (9.12)

It will be recognized that the quantity inside the summation in Equation 9.12 is
simply −R�

i, j (see Equation 9.2) at iteration level l. Further, Equation 9.10 can be
easily solved by TDMA. In this equation, B EI N−1 = BW2 = 0 (see Equation 9.7)
and hence �I N and �1 are not needed. A similar exercise in the j direction will
result in an equation for � j .

The overall procedure is as follows:

1. Solve Equation 9.5 once using ADI to arrive at the �l
i, j field.

2. Form the B coefficients in Equation 9.10 and solve this equation by TDMA to
yield �i corrections. Reset �i, j according to Equation 9.8.

3. Repeat step 2 to yield � j corrections and reset �i, j again.
4. Return to step 1 if the convergence criterion is not satisfied.

The block-correction procedure generally produces considerably faster con-
vergence than the ADI method but, in certain circumstances, it may produce an
erroneous solution or even divergence. Such a circumstance may arise when � is
highly nonuniform and �i or � j may produce over- or undercorrections. There-
fore, the block-correction procedure may be treated as an optional convergence
enhancement device.

9.3 Method of Two Lines

In the ADI method, two sweeps are alternately executed in i and j directions (see
Chapter 5). Within each sweep, however, the TDMA is executed only along a
single line so that � values of that line are updated simultaneously. To enhance
the convergence rate, it is possible to devise a TDMA procedure for two, three, or
multiple lines. By way of illustration, we consider the method of two lines [56, 21]
in which the following definition is introduced:

�∗
i, j+1 = �i, j . (9.13)

Consider lines j and j + 1 for the sweep in the i direction. The discretised equations
along these lines will read as

APi, j �
∗
i, j+1 = AEi, j �

∗
i+1, j+1 + AWi, j �

∗
i−1, j+1

+ ANi, j �i, j+1 + ASi, j �i, j−1 + Sui, j , (9.14)

APi, j+1 �i, j+1 = AEi, j+1 �i+1, j+1 + AWi, j+1 �i−1, j+1

+ ANi, j+1 �i, j+2 + ASi, j+1 �∗
i, j+1 + Sui, j+1. (9.15)
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In writing these equations, it is again assumed that Equation 9.7 holds. Now let

aei = AEi, j

APi, j
, ae∗

i = AEi, j+1

APi, j+1
,

awi = AWi, j

APi, j
, aw∗

i = AWi, j+1

APi, j+1
,

ani = ANi, j

APi, j
, an∗

i = ANi, j+1

APi, j+1
,

asi = ASi, j

APi, j
, as∗

i = ASi, j+1

APi, j+1
,

di = Sui, j

APi, j
, d∗

i = Sui, j+1

APi, j+1
. (9.16)

Using these definitions, Equations 9.14 and 9.15 can be written as

�∗
i, j∗ = aei �

∗
i+1, j∗ + awi �

∗
i−1, j∗ + ani �i, j∗ + bi , (9.17)

�i, j∗ = ae∗
i �i+1, j∗ + aw∗

i �i−1, j∗ + as∗
i �∗

i, j∗ + b∗
i , (9.18)

where

j∗ = j + 1, (9.19)

bi = asi �i, j−1 + di , (9.20)

b∗
i = an∗

i �i, j+2 + d∗
i . (9.21)

Equations 9.17 and 9.18 represent two equations with suffix j∗. Our interest is
to solve them simultaneously. To do this, let

�∗
i = A∗

i �∗
i+1 + B∗

i �i+1 + C∗
i , (9.22)

�i = Ai �i+1 + Bi �
∗
i+1 + Ci , (9.23)

where suffix j∗ is dropped for convenience. We now evaluate �∗
i−1 from Equa-

tion 9.22 and substitute this into Equation 9.17. After some algebra, it can be
shown that

�∗
i = α1i �

∗
i+1 + α2i �i + α3i , (9.24)

where

α1i = aei

1 − awi A∗
i−1

,

α2i = awi B∗
i−1 + ani

1 − awi A∗
i−1

,

α3i = awi C∗
i−1 + bi

1 − awi A∗
i−1

. (9.25)
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Similarly, evaluating �i−1 from Equation 9.23 and substituting in Equation 9.18,
we have

�i = β1i �i+1 + β2i �
∗
i + β3i , (9.26)

where

β1i = ae∗
i

1 − aw∗
i Ai−1

,

β2i = aw∗
i Bi−1 + as∗

i

1 − aw∗
i Ai−1

,

β3i = aw∗
i Ci−1 + b∗

i

1 − aw∗
i Ai−1

. (9.27)

If we now substitute Equation 9.26 in Equation 9.24, then comparison with Equa-
tion 9.22 will show that

A∗
i = α1i

1 − α2i β2i
,

B∗
i = α2i β1i

1 − α2i β2i
,

C∗
i = α2i β3i + α3i

1 − α2i β2i
. (9.28)

Similarly, substituting Equation 9.24 in Equation 9.26 and comparison with
Equation 9.23 will show that

Ai = β1i

1 − α2i β2i
,

Bi = β2i α1i

1 − α2i β2i
,

Ci = β2i α3i + β3i

1 − α2i β2i
. (9.29)

The overall two-line TDMA procedure is thus as follows:

1. Consider j and j∗ = j + 1 lines.
2. Form as, a∗s, d, and d∗ according to Equation 9.16 for i = 2, 3, . . . , I N − 1.
3. Form bi and b∗

i from Equations 9.20 and 9.21 for i = 2, 3, . . . , I N − 1.
4. Evaluate αs, βs, As, Bs, and Cs for i = 2, 3, . . . , I N − 1 by recurrence. Note

that A∗
1 = B∗

1 = C∗
1 = A1 = B1 = C1 = 0.

5. Hence solve Equations 9.22 and 9.23 by back substitution (i.e., i = I N − 1
to 2).

6. Set �i, j = �∗
i and �i, j+1 = �i .



P1: IWV/KCX P2: IWV
0521853265c09 CB908/Date 0 521 85326 5 May 11, 2005 15:41

9.4 STONE’S METHOD 265

7. Go to step 1 with the next value of j (i.e., j = j + 1).
8. Repeat steps 1–7 until j = J N − 2.

A similar procedure can be executed for sweep on the j direction. Finally, we
note that a procedure for simultaneous solution for three, four, or more consecutive
lines can also be devised but the associated algebra is very tedious. It will be realised
that if a simultaneous solution procedure is devised for all lines in a given direction,
one will have a procedure that is equivalent to the matrix inversion method for the
whole field.

9.4 Stone’s Method

As mentioned in Section 9.1, the convergence rate is sensitive to the structure of
the coefficient matrix. Stone [79] devised a whole-field procedure that reduces this
sensitivity. To apply the method, it is first necessary to change the 2D node address
(i, j) to the 1D address N . Thus,

N = i + ( j − 1) × I N , (9.30)

where N = 1, . . . , Nmax and Nmax = I N × J N . Equation 9.5 therefore can be
written as

APN �N = AEN �N+1 + AWN �N−1

+ ANN �N+I N + ASN �N−I N + SuN . (9.31)

In matrix form, this equation can be written as

| A | |� | = | Su |. (9.32)

Figure 9.1 shows the fully expanded form of Equation 9.32. Note that matrix A has
a maximum of five nonzero elements in each row.

The main idea in Stone’s method is to represent matrix A as a product of two
matrices, U and L . Thus, the L matrix (or lower matrix) is formed in such a way
that all entries above the diagonal are zero. The diagonal element is occupied by 1,
and positions of −AW and −AS in the A matrix are now taken by BW and BS
(say). Similarly, in the U matrix (or upper matrix) all elements below the diagonal
are set to zero; the diagonal elements are occupied by B P and elements occupying
positions −AE and −AN are replaced by B E and B N , respectively. The L and U
matrices are shown in Figure 9.2. Note that the size of L and U matrices is again
Nmax × Nmax.

Unfortunately, the product matrix |U | × |L| does not produce the A matrix
exactly. Instead, a matrix shown in Figure 9.3 is produced. This matrix has
two additional nonzero entries that occupy positions N W (i − 1, j + 1) and
SE(i + 1, j − 1). In terms of elements of the U and L matrices, the elements of
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max

3

2

1

Su

Su

Su

SuAP1 −AE1 −AN1

AP2−AW2 −AE2 −AN2

1

2

3

4

5

6

7

8

9

Nmax

1 2 3 4 5 6 7 8

APN −AEN −ANN−AWN

0 0 00 0 0

0 0 0 0 0

−ASN 00 0 0 0

0 0 0000

9 max

−AP−AWmax max00−ASmax00

0

0

0

IN

I

J
ΦΦ

ΦΦ

1
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Φ

Φ

Ν

max

Figure 9.1. Matrix representation of Equation 9.31.
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BPN
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Figure 9.2. The L and U matrices.



P1: IWV/KCX P2: IWV
0521853265c09 CB908/Date 0 521 85326 5 May 11, 2005 15:41

9.4 STONE’S METHOD 267

CE1 CN1

CP2CW2 CE2 CN2

1

2

3

4

5

6

7

8

9

Nmax

1 2 3 4 5 6 7 8

CPN CEN CNNCWN

0 0 0 00 CNW1

0 CNW2 0 0 0

CSN 0 CSEN 0 0 CNWN

0 0 0000

9 max

CPmaxCWmax0CSEmaxCSmax00

0

0

0

IN

CP1

Figure 9.3. Product matrix |U | × |L|.

the product matrix are given by

C PN = B PN + B EN BWN+1 + B NN BSN+I N ,

−C EN = B EN ,

−C NN = B NN ,

−CWN = BWN B PN ,

−C SN = BSN B PN ,

−C SEN = B EN BSN+1,

−C N WN = B NN BWN+I N . (9.33)

Thus, the product matrix equation |U | × |L| × |�| = |Su| will imply

C PN �N = C EN �N+1 + CWN �N−1 + C NN �N+I N + C SN �N−I N

+ C SEN �N+1−I N + C N WN �N−1+I N + SuN , (9.34)
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and the structure of the product matrix will take the form

|U | |L| |�| = |A + D| |�| = |Su|. (9.35)

This structure is clearly not the same as that of Equation 9.32 because matrix A
is augmented by D. Stone, however, postulated that Equation 9.34 will be a good
approximation to Equation 9.32 if the following substitutions are made:

�N−1+I N = αs (�N−1 + �N+I N − �N ), (9.36)

�N+1−I N = αs (�N+1 + �N−I N − �N ), (9.37)

where 0 < αs < 1 is an arbitrary constant to be chosen by the analyst. Making the
above substitutions in Equation 9.34 gives

[C PN + αs (C N WN + C SEN )] �N

= (C EN + αs C SEN )�N+1 + (CWN + αs C N WN )�N−1

+ (C NN + αs C N WN )�N+I N + (C SN + αs C SEN )�N−I N + SuN .

(9.38)

Equation 9.38 now has the same structure as Equation 9.31. Therefore, replacing
the Cs in Equation 9.38 via Equations 9.33 and comparing the coefficients with
those in Equation 9.31, we can show that

B EN = −AEN/(1 + αs BSN+1), (9.39)

B NN = −ANN/(1 + αs BWN+I N ), (9.40)

B PN = APN + αs (B NN BWN+I N + B EN BSN+I N )

− (B EN BWN+1 + B NN BSN+I N ), (9.41)

BWN = −(AWN + αs B NN BWN+I N )/ B PN , (9.42)

BSN = −(ASN + αs B EN BSN+1)/ B PN . (9.43)

Now, it is expected that the product matrix will be a close approximation to the A
matrix (i.e., D → 0). In actual solving, therefore, the product matrix equation is
written as

|A + D| |�l+1| = |A + D| |�l | + |Su| − |A| |�l |. (9.44)

We now define

|δ| = |�l+1| − |�l |, (9.45)

|R| = −[|A| |�l | − |Su|], (9.46)
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where δ is the change in � over one iteration and R is the negative of the nodal
residual. Therefore, Equation 9.44 can be written as

|A + D| |δ| = |R| = |U | |L||δ|. (9.47)

The overall procedure is thus as follows:

1. Form elements of the residual RN matrix from AP , AE , AW , AN , AS, and Su.
2. Form BWN , BSN , B EN , B NN , and B PN by recurrence (i.e., from N = Nmax

to 1) using Equations 9.39–9.43. Store BWN and BSN .
3. Form |V | = |L| |δ| = |R| |U |−1. This implies that

VN = (RN − B EN VN+1 − B NN VN+I N )/B PN (9.48)

for N = Nmax, . . . , 1.
4. Hence, determine |δ| = |V | |L|−1, which implies

δN = VN − BSN δN−I N − BWN δN−1 (9.49)

for N = 1, . . . , Nmax.
5. Update �l+1

N = �l
N + δN .

In Stone’s method, αs turns out to be problem dependent. However, advice on
the choice of αs,max is available in [29].

9.5 Applications

In this section, convergence enhancement procedures described in the previous
sections will be tested against four problems. In each problem, convergence rate
and computation times for different grid sizes are recorded. A depiction of typical
convergence history in Problem 4 is also provided.

Consider a rectangular domain 0 ≤ X ≤ a and 0 ≤ Y ≤ b. Assume steady-state
heat conduction with the following boundary conditions:

Problem 1: T (0, Y ) = T (a, Y ) = T (X, 0) = 0, T (X, b) = Tb = 1, a = 2,
and b = 1.

Problem 2: T (0, Y ) = T (a, Y ) = T (X, 0) = 0, T (X, b) = Tb = 1, a = 5,
and b = 1.

Problem 3: T (0, Y ) = T (a, Y ) = T (X, b) = 0, h (X, 0) = 5, T∞ = 20, a =
2, and b = 1.

Problem 4: Same as Problem 3 but with temperature-dependent conductivity
k = kref (1.0 + 0.1 T + 0.001 T 2).

In each problem, the residual (see Equation 9.3) is reduced to 10−5 and no
underrelaxation is employed.
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Table 9.1: Problem 1 (I N = 33, JN = 17).

Procedure Iterations CPU (s)

GS 403 121
ADI 104 44
Block correction 30 11
Two-line TDMA 37 22
Stone (αs = 0.8) 48 22
Stone (αs = 0.9) 31 16

Table 9.2: Problem 2 (JN = 17).

I N = 33 I N = 53

Procedure Iterations CPU (s) Iterations CPU (s)

GS 299 93 366 138
ADI 43 22 83 43
Block correction 24 11 34 22
Two-line TDMA 17 11 30 17
Stone (αs = 0.9) 18 11 27 17

The exact solution for Problems 1 and 2 is given by

T

Tb
= 2

π

∞∑
n=1

[1 − cos(nπ )]

n sinh(n π b/a)
sin (n π x/a) sinh (n π y/a). (9.50)

Table 9.1 shows results for Problem 1. The results show the expected trend in
that the ADI procedure is faster1 than the GS procedure. The block correction,
two-line TDMA, and Stone’s procedures are considerably faster. On this relatively
coarse grid (though sufficient for obtaining accurate solutions) Stone’s procedure
is faster when αs = 0.9 than when αs = 0.8.

Table 9.2 shows results for Problem 2. Here, the a dimension is increased but
I N still equals 33. The AE and AW coefficients become smaller than those in
Problem 1. This results in faster convergence in all methods. When I N = 53, the
AE and AW coefficients again become bigger and the convergence rate decreases.

The exact solution to Problem 3 is given by

T

T∞
=

∞∑
n=1

An sin (n π x/a) [ e−n π y/a − ( e−2 n π b/a en π y/a )],

An = 2 h

k

[
1 − cos (n π )

n π

] [
h

k
(1 − e−2 n π b/a) + n π

a
(1 + e−2 n π b/a )

]−1

.

1 Note that the CPU times mentioned in the table depend on the processor used. The quoted times thus
have no intrinsic relevance; they are mentioned for the purpose of comparison between different
methods.
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Table 9.3: Problem 3 h boundary condition.

I N = 33, JN = 17 I N = 81, JN = 41

Procedure Iterations CPU (s) Iterations CPU (s)

GS 514 160 3,259 3,433
ADI 129 44 847 1,115
Block correction 209 77 159 242
Two-line TDMA 63 27 288 472
Stone (αs = 0.9) 107 39 213 286

Table 9.4: Problem 4 variable conductivity
(I N = 81, JN = 41).

Procedure Iterations CPU (s)

GS 3,546 4,100
ADI 893 1,256
Block correction 133 208
Two-line TDMA 299 550
Stone (αs = 0.9) 236 337

The results are shown in Table 9.3. Here, owing to heat transfer coefficient bound-
ary condition at Y = 0, both T0 and q0 are not a priori known. Therefore, in this
problem with a nonlinear boundary condition, the computer times are greater
than in Problem 1 for the I N = 33 and J N = 17 grid. However, despite the
nonlinear boundary condition, GS and ADI showed monotonic convergence (not
shown here) whereas the block correction, two-line TDMA, and Stone’s methods
showed mildly oscillatory convergence. On both grids, Stone’s method is attrac-
tively fast. Incidentally, for such problems, Patankar [53] recommends that conver-
gence may be checked by overall domain heat balance rather than by the magni-
tude of the residual. In the present problem, the overall heat balance was satisfied
within 0.0025%.

Table 9.4 shows results for Problem 4. In this problem, conductivity varies with
temperature so that coefficients AE , AW , AN , and AS change with iterations.
Computations are carried out for a very fine grid. The convergence rate now slows
down compared with the rates mentioned for Problem 3. For this problem, the
convergence history (Rl/R1) is plotted in Figure 9.4. It is seen that, in all methods,
the initial C R is high but decreases with increase in l. For the block-correction
procedure, however, the initial rate is almost maintained throughout the iterative
process, yielding the overall fastest convergence rate . The overall heat balance was
satisfied within 0.025%.
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Figure 9.4. Convergence history for Problem 4.

EXERCISES

1. Derive appropriate block-correction equations for lines of constant j .

2. Starting with Equation 9.16, derive Equations 9.28 and 9.29.

3. Derive equations of two-line TDMA for lines of constant i and i + 1.

4. Starting with Equation 9.34, derive Equations 9.39–9.43.

5. Using the notation of the program LIB2D.FOR in Appendix C, write subrou-
tines to implement block-correction, two-line TDMA, and Stone’s procedures.
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APPENDIX A

Derivation of Transport Equations

A.1 Introduction

In the study of transport phenomena in moving fluids, the fundamental laws of
motion (conservation of mass and Newton’s second law) and energy (first law of
thermodynamics) are applied to an elemental fluid. Two approaches are possible:

1. a particle approach or
2. a continuum approach.

In the particle approach, the fluid is assumed to consist of particles (molecules,
atoms, etc.) and the laws are applied to study particle motion. Fluid motion is then
described by the statistically averaged motion of a group of particles. For most ap-
plications arising in engineering and the environment, however, this approach is too
cumbersome1 because the significant dimensions of the flow are considerably big-
ger than the mean-free-path length between molecules. In the continuum approach,
therefore, statistical averaging is assumed to have been already performed and the
fundamental laws are applied to portions of fluid (or control volumes) that contain
a large number of particles. The information lost in averaging must however be
recovered. This is done by invoking some further auxiliary laws and by empirical
specifications of transport properties such as viscosity µ, thermal conductivity k,
and mass diffusivity D. The transport properties are typically determined from ex-
periments. Notionally, the continuum approach is very attractive because one can
now speak of temperature, pressure, or velocity at a point and relate them to what
is measured by most practical instruments.

Guidance for deciding whether the particle or continuum approach is to be used
can be obtained from the Knudsen number K n = l/L , where l is the mean-free-path
length between molecules and L is a characteristic dimension (say, the radius of

1 This can be appreciated from Avogadro’s number, which specifies that, at normal temperature and
pressure, a gas will contain 6.022 × 1026 molecules per kmol. Thus in air, for example, there will
be 1016 molecules/mm3.

273
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a pipe) of the flow. When K n is very small (<10−5), the continuum approach is
considered valid. In engineering and environmental flows, therefore, the continuum
approach is adopted.

Control Volume
The notion of a controlvolume (CV) is very important in the continuum approach.
The CV may be defined as a region in space across the boundaries of which matter,
energy, and momentum may flow; it is a region within which source or sink of the
same quantities may prevail. Further, it is a region on which external forces may
act.

In general, a CV may be large or infinitesimally small. However, consistent with
the idea of a differential in a continuum, an infinitesimally small CV is considered.
Thus, when the laws are to be expressed through differential equations, the CV is
located within a moving fluid. Again, two approaches are possible:

1. a Lagrangian approach or
2. a Eulerian approach.

In the Lagrangian approach, the CV is considered to be moving with the fluid
as a whole. In the Eulerian approach, in contrast, the CV is assumed fixed in space
and the fluid is assumed to flow through and past the CV. Except when dealing
with certain types of unsteady flows (waves, for example), the Eulerian approach is
generally used for its notional simplicity. Also, measurements made using stationary
instruments can be directly compared with the solutions of differential equations
obtained using the Eulerian approach.

Finally, it is important to note that the fundamental laws define total flows of
mass, momentum, and energy not only in terms of magnitude but also in terms of
direction. In a general problem of convection, neither magnitude nor direction is
known a priori at different positions in the flowing fluid. The problem of ignorance
of direction is circumvented by resolving velocity, force, and scalar fluxes in three
directions that define the space.

In the derivations to follow, the three chosen directions will be along Cartesian
coordinates. The derivations are carried out using the continuum approach within a
Eulerian specification of the CV. Figure A.1 shows the considered CV of dimensions
�x1, �x2, and �x3 located at (x1, x2, x3) from a fixed origin.

A.2 Mass Conservation – Fluid Mixture

The law of conservation of mass states that

Rate of accumulation of mass (Ṁac) = Rate of mass in (Ṁin)

− Rate of mass out (Ṁout).
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Thus, with reference to Figure A.1, we have

Ṁac = ∂(ρm �V )

∂t
, (A.1)

Ṁin = ρm �x2 �x3 u1 |x1 + ρm �x3 �x1 u2 |x2

+ ρm �x1 �x2 u3 |x3, (A.2)

Ṁout = ρm �x2 �x3 u1 |x1+�x1 + ρm �x3 �x1 u2 |x2+�x2

+ ρm �x1 �x2 u3 |x3+�x3 . (A.3)

Dividing each term by �V (constant) = �x1 �x2 �x3, we have

∂ρm

∂t
= (ρm u1 |x1 − ρm u1 |x1+�x1 )

�x1

+ (ρm u2 |x2 − ρm u2 |x2+�x2 )

�x2
+ (ρm u3 |x3 − ρm u3 |x3+�x3 )

�x3
. (A.4)

Now, letting �x1, �x2, �x3 → 0, this equation can be written as

∂ρm

∂t
+ ∂(ρm u1)

∂x1
+ ∂(ρm u2)

∂x2
+ ∂(ρm u3)

∂x3
= 0. (A.5)

Equation A.5 represents the mass conservation law in conservative differential
form. When the spatial derivatives are expanded, the equation can be written in the
following nonconservative form:

∂ρm

∂t
+ u1

∂ρm

∂x1
+ u2

∂ρm

∂x2
+ u3

∂ρm

∂x3
= −ρm

[
∂u1

∂x1
+ ∂u2

∂x2
+ ∂u3

∂x3

]
, (A.6)

or

D ρm

D t
= −ρm � · V . (A.7)

For a single-component fluid, the mixture density ρm may be replaced by ρ.

A.3 Momentum Equations

Newton’s second law of motion states that for a given direction

Rate of accumulation of momentum (Momac)

= Rate of momentum in (Mom in)

− Rate of momentum out (Momout)

+ Sum of forces acting on the CV (Fcv).
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Thus, with respect to Figure A.1, we can write the contributions in the x1 direction
as

Momac = ∂(ρm �V u1)

∂t
, (A.8)

Momin = (ρm �x2 �x3 u1) u1 |x1 + (ρm �x3 �x1 u2) u1 |x2

+ (ρm �x1 �x2 u3) u1 |x3, (A.9)

Momout = (ρm �x2 �x3 u1) u1 |x1+�x1 + (ρm �x3 �x1 u2) u1 |x2+�x2

+ (ρm �x1 �x2 u3) u1 |x3+�x3,

Fcv = − (σ1 |x1 − σ1 |x1+�x1 )�x2 �x3 + (τ21 |x2+�x2 − τ21 |x2 )�x3 �x1

+ (τ31 |x3+�x3 − τ31 |x3 )�x1 �x2 + ρm B1 �V, (A.10)

where B1 is the body force per unit mass, the σ s are tensile normal stresses, and τ s
are shear stresses. Now, dividing by �V and letting �x1, �x2, �x3 → 0, it can be
shown that

x1 Direction Momentum Equation

∂(ρm u1)

∂t
+ ∂(ρm u1 u1)

∂x1
+ ∂(ρm u2 u1)

∂x2
+ ∂(ρm u3 u1)

∂x3

= ∂(σ1)

∂x1
+ ∂(τ21)

∂x2
+ ∂(τ31)

∂x3
+ ρm B1. (A.11)

A similar exercise in the x2 and x3 directions will yield

x2 Direction Momentum Equation

∂(ρm u2)

∂t
+ ∂(ρm u1 u2)

∂x1
+ ∂(ρm u2 u2)

∂x2
+ ∂(ρm u3 u2)

∂x3

= ∂(τ12)

∂x1
+ ∂(σ2)

∂x2
+ ∂(τ32)

∂x3
+ ρm B2. (A.12)

x3 Direction Momentum Equation

∂(ρm u3)

∂t
+ ∂(ρm u1 u3)

∂x1
+ ∂(ρm u2 u3)

∂x2
+ ∂(ρm u3 u3)

∂x3

= ∂(τ13)

∂x1
+ ∂(τ23)

∂x2
+ ∂(σ3)

∂x3
+ ρm B3. (A.13)

A few comments on these equations are now in order:

1. By making use of Equation A.5, the left-hand sides of Equations A.11, A.12,
and A.13 can be replaced by ρm D(u1)/D t , ρm D(u2)/D t , and ρm D(u3)/D t ,
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respectively. Such equations are called nonconservative forms of momentum
equations.

2. Equations A.5, A.11, A.12, and A.13 define the fluid motion completely.
However, they contain twelve unknowns (three velocity components and nine
stresses). By invoking the rule of complementarity of stresses (i.e., τi j = τ j i , i �=
j), the unknowns can be reduced to nine. Still, the number of unknowns exceeds
the number of available equations (four).

3. A solvable system must have the same number of unknowns and equations. To
do this, Stokes’s stress laws are invoked:

Stress Laws

τi j = µ

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (A.14)

σi = −p + σ ′
i = −p + 2µ

(
∂ui

∂xi

)
(no summation), (A.15)

where σ ′
i is called the deviatoric stress,2 p is pressure (compressive), and µ is

the viscosity of the fluid.3

4. When Equations A.14 and A.15 are substituted in Equations A.11, A.12, and
A.13, the new equations can be compactly written in tensor notation as

Momentum Equations ui (i = 1, 2, 3)

∂(ρm ui )

∂t
+ ∂(ρm u j ui )

∂x j
= ∂

∂x j

[
µeff

∂ui

∂x j

]
− ∂p

∂xi
+ ρm Bi + Sui . (A.16)

This equation is the same as Equation 1.3 in Chapter 1. The three equations
(A.16) now contain only four unknowns (u1, u2, u3, and p). Along with Equa-
tion A.5, therefore, there are as many unknowns as there are equations.

2 In Chapter 1, the deviatoric stress is expressed as

σ ′
i = 2 µ

(
∂ui

∂xi

)
+ q

and significance of q is explained in Section 1.5.
3 In turbulent flows, the total stress comprises additive contributions of laminar and turbulent com-

ponents. The turbulent stress τ t
i j = −ρm u′

i u′
j is again represented in the manner of Equation A.14

by invoking turbulent viscosity µt. This is known as the Boussinesq approximation. Then the total
stress τ tot

i j in a turbulent flow is given by

τ tot
i j = τi j + τ t

i j = (µ + µt)

(
∂ui

∂x j
+ ∂u j

∂xi

)
− 2

3
ρm e δi j ,

where δi j is the Kronecker delta and e = ∑3
i=1 u′

i u′
i/2 is the kinetic energy of velocity fluctuations.
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5. In incompressible flows, the densityρm is externally specified as a constant or as a
function of temperature and the sum of partial densities of mixture components.
In compressible flow, however, the density is recovered from an equation of
state. Thus, according to the law of corresponding states, for reduced4 pressure
pr < 0.5 and reduced temperature Tr > 1.5, the density is calculated from the
perfect gas relation

ρm = p

Rg T
= p Mg

Ru T
, (A.17)

where Mg is the molecular weight of the gas and Ru is the universal gas constant.

A.4 Equation of Mass Transfer

The conservation of mass for species k of the mixture is stated as

Rate of accumulation of mass (Ṁk,ac) = Rate of mass in (Ṁk,in)

− Rate of mass out (Ṁk,out)

+ Rate of generation within CV (Rk).

To apply this principle, let ρk be the density of the species k in a fluid mixture
of density ρm. Similarly, let Ni,k be the mass transfer flux (kg/m2-s) of species k in
the i direction. Then

Ṁk,ac = ∂(ρk �V )

∂t
,

Ṁk,in = N1,k �x2 �x3 |x1 + N2,k �x3 �x1 |x2 + N3,k �x1 �x2 |x3,

Ṁk,out = N1,k �x2 �x3 |x1+�x1 + N2,k �x3 �x1 |x2+�x2 + N3,k �x1 �x2 |x3+�x3 .

Dividing each term by �V and letting �x1, �x2, �x3 → 0, we get

∂(ρk)

∂t
+ ∂(N1,k)

∂x1
+ ∂(N2,k)

∂x2
+ ∂(N3,k)

∂x3
= Rk . (A.18)

Now, the total mass transfer flux Ni,k is the sum of convective flux due to bulk fluid
motion (with each species having the same velocity as the bulk fluid) and diffusion
flux (m ′′

i,k). Thus,

Ni,k = ρk ui + m ′′
i,k . (A.19)

4 Reduced pressure and temperature are defined as pr = p/pcr and Tr = T/Tcr, where the suffix cr
stands for the critical point.
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Under certain restricted circumstances of interest in this book, the diffusion flux
is given by Fick’s law of mass diffusion

m ′′
i,k = − D

∂ρk

∂xi
, (A.20)

where D (m2/s) is the mass diffusivity.5 Substituting Equations A.19 and A.20 in
Equation A.18, we can show that

∂(ρk)

∂t
+ ∂(ρk u1)

∂x1
+ ∂(ρk u2)

∂x2
+ ∂(ρk u3)

∂x3
= ∂

∂x1

(
D

∂ρk

∂x1

)
+ ∂

∂x2

(
D

∂ρk

∂x2

)

+ ∂

∂x3

(
D

∂ρk

∂x3

)
+ Rk . (A.21)

It is a common practise to refer to species k via its mass fraction ωk defined as

ωk = ρk

ρm

∑
all species

ωk = 1. (A.22)

Using this definition, Equation A.21 can be compactly written as

∂(ρm ωk)

∂t
+ ∂(ρm u j ωk)

∂x j
= ∂

∂x j

(
ρm D

∂ωk

∂x j

)
+ Rk . (A.23)

Note that when the mass transfer equation is summed over all species of the
mixture, the mass conservation equation for the bulk fluid (Equation A.5) is re-
trieved. This is because

∑
Rk = 0. That is, when some species are generated by

a chemical reaction, others are destroyed so that there is no net mass generation in
the bulk fluid.

A.5 Energy Equation

The first law of thermodynamics, when considered in rate form (W/m3), can be
written as

Ė = Q̇conv + Q̇cond + Q̇gen − Ẇs − Ẇb, (A.24)

where

Ė = Rate of change of energy of the CV,

Q̇conv = Net rate of energy transferred by convection,

Q̇cond = Net rate of energy transferred by conduction,

5 The mass diffusivity is defined only for a binary mixture of two fluids 1 and 2 as D12. In mul-
ticomponent gaseous mixtures, however, diffusivities for pairs of species are nearly equal and a
single symbol D suffices for all species. Incidentally, in turbulent flows, this assumption of equal
(effective) diffusivities has even greater validity.
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Q̇gen = Net volumetric heat generation within the CV,

Ẇs = Net rate of work done by surface forces, and

Ẇb = Net rate of work done by body forces.

Each term will now be represented by a mathematical expression.

Rate of Change
The equation for the rate of change is

Ė = ∂(ρm eo)

∂t
, eo = e + V 2

2
= h − p

ρm
+ V 2

2
, (A.25)

where e represents specific energy (J/kg), h is specific enthalpy (J/kg), and V 2 =
u2

1 + u2
2 + u2

3. In the expression for eo, contributions from other forms of energy
(potential, chemical, electromagnetic, etc.) are neglected.

Convection and Conduction
Following the convention that heat energy flowing into the CV is positive (and vice
versa), it can be shown that

Q̇conv = −∂
∑

(N j,k eo
k )

∂x j
, (A.26)

where N j,k is given by Equation A.19. Now, since all species have the same
velocity,

Q̇conv = − ∂

∂x j

∑ [
N j,k (hk − pk/ρk + V 2/2)

]
, (A.27)

where pk is the partial pressure of species k. After some algebra, it can be shown
that

Q̇conv = −∂(ρm u j eo)

∂x j
−

∂
(∑

m ′′
j,k hk

)
∂x j

. (A.28)

The conduction contribution is given by Fourier’s law of heat conduction, so
that

Q̇cond = −∂q j

∂x j
= ∂

∂x j

[
km

∂T

∂x j

]
. (A.29)

Volumetric Generation
Two principal components of volumetric energy generation are chemical energy
(Q̇chem) and radiative transfer (Q̇rad). Thus,

Q̇gen = Q̇chem + Q̇rad. (A.30)
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The chemical energy is positive for exothermic reactions and negative for en-
dothermic reactions. Evaluation of Q̇chem depends on the chemical reaction model
employed in a particular situation. The Q̇rad term represents the net radiation ex-
change between the control volume and its surroundings. Evaluation of this term, in
general, requires solution of integro-differential equations [48]. However, in certain
restrictive circumstances, the term may be represented analogous to Q̇cond with k
replaced by radiation conductivity krad as

krad = 16σ T 3

a + s
, (A.31)

where σ is the Stefan–Boltzmann constant and a and s are absorption and scattering
coefficients, respectively.

Work Done by Surface and Body Forces
Following the convention that the work done on the CV is negative, it can be shown
that

−Ẇs = ∂

∂x1
[σ1 u1 + τ12 u2 + τ13 u3] + ∂

∂x2
[τ21u1 + σ2 u2 + τ23 u3]

+ ∂

∂x3
[τ31 u1 + τ32 u2 + σ3 u3] , (A.32)

−Ẇb = ρm (B1 u1 + B2 u2 + B3 u3). (A.33)

Adding these two equations and making use of Equations A.11–A.14 can show
that

− (Ẇs + Ẇb) = ρm
D

D t

[
V 2

2

]
+ µ�v − p � · V, (A.34)

where V 2/2 is the mean kinetic energy and the viscous dissipation function is given
by

�v = 2

[(
∂u1

∂x1

)2

+
(

∂u2

∂x2

)2

+
(

∂u3

∂x3

)2
]

+
(

∂u1

∂x2
+ ∂u2

∂x1

)2

+
(

∂u1

∂x3
+ ∂u3

∂x1

)2

+
(

∂u3

∂x2
+ ∂u2

∂x3

)2

. (A.35)

Combining Equations A.24–A.35 therefore leads to

∂ρm eo

∂t
+ ∂(ρm u j eo)

∂x j
= ∂

∂x j

[
km

∂T

∂x j

]
−

∂
(∑

m ′′
j,k hk

)
∂x j

+ D

D t

[
V 2

2

]
− p � . V + µ�v + Q̇chem + Q̇rad.

(A.36)
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By using Equation A.5, the left-hand side of this equation can be replaced by
ρm D eo/D t . Further, if eo is replaced by enthalpy h (see Equation A.25), Equa-
tion A.36 can also be written as

ρm
D h

D t
= ∂

∂x j

[
km

∂T

∂x j

]
−

∂
(∑

m ′′
j,k hk

)
∂x j

+ µ�v + D p

D t
+ Q̇chem + Q̇rad.

(A.37)

For reacting or nonreacting mixtures and under various assumptions listed in
[33], it is possible to combine energy transfer by conduction and mass diffusion so
that Equation A.37 may also be written as

ρm
D h

D t
= ∂

∂x j

[
km

Cpm

∂h

∂x j

]
+ µ�v + D p

D t
+ Q̇chem + Q̇rad. (A.38)
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APPENDIX B

1D Conduction Code

B.1 Structure of the Code

The 1D conduction code is divided into two parts:

1. a user part containing files COM1D.FOR and USER1D.FOR and
2. a library part containing file LIB1D.FOR.

The user part is problem dependent. Therefore, the two files in this part are
used to specify the problem to be solved. In contrast, the library part is problem
independent. Thus, the LIB1D.FOR file remains unaltered for all problems. In this
sense, the library part may be called the solver whereas the user part may be called
the pre- and postprocessor.

This structure is central to creation of a generalised code. To execute the code,
USER1D.FOR and LIB1D.FOR files are compiled separately and then linked before
execution. The COM1D.FOR is common to both parts and its contents are brought
into each subroutine or function via the “INCLUDE” statement in FORTRAN.
Variable names starting with I, J, K, L, M, and N are integers whereas all others are
real by default. The list of variable names with their meanings is given in Table B.1.
The listings of each file are given at the end of this appendix.

B.2 File COM1D.FOR

In this file, logical, real, and integer variables are included. The PARAMETER
statement is used to specify the maximum array dimension IT and values of π ,
GREAT, and SMALL. The latter are frequently required for generalised coding. The
variable names are given in a labelled COMMON as in COMMON/BOUND/. . . ,
where BOUND is the label. Here, variables of relevance to boundary conditions
are included. If required, the user may add more variable names or arrays for the
specific problem at hand as shown at the bottom of the file.

284
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Table B.1: List of variables 1D for conduction code.

Variable Meaning

ACF Array containing cross-sectional area (m2) at cell face w
AE, AW Array containing east and west coefficients
AL Domain length (m)
AP Array containing coefficient of variable �P

COND Array containing conductivity (W/m-K) at node P
CONDREF Reference conductivity
CC Convergence criterion
DELT Time step (s)
DUM1,DUM2 Dummy arrays
FCMX Maximum absolute fractional change
GAUSS Logical – refers to Gauss–Seidel method
GREAT Parameter having a large value 1030

H1SPEC Logical – refers to h-boundary condition at node 1
HB1 Heat transfer coefficient (W/m2-K) at node 1
HB1O Heat transfer coefficient at node 1 at old time
HBN Heat transfer coefficient at node N
HBNO Heat transfer coefficient at node N at old time
HNSPEC Logical – refers to h-boundary condition at node N
HPREF Heat transfer coefficient at any x
HPREFO Heat transfer coefficient at any x at old time
ISTOP STOP index – used in unsteady problems
IT Parameter containing array size
ITER Iteration counter
ITERMX Maximum number of allowable iterations
N Total number of nodes
NTIME Current time counter
PERIM Array containing perimeter (m) at any x
PI Value of π

PSI Variable 	 for choosing explicit/implicit scheme
Q1SPEC Logical – refers to q-boundary condition at node 1
QB1 Heat flux (W/m2) at node 1
QB1O Heat flux at node 1 at old time
QBN Heat flux at node N
QBNO Heat flux at node N at old time
QNSPEC Logical – refers to q-boundary condition at node N
RHO Array for density (kg/m3)
RP Relaxation parameter α

SMALL Parameter having a small value 10−30

SP Array containing Sp
SPH Array containing specific heat (J/kg-K) at node P
SPHREF Reference specific heat
STAB Array for storing boundary coefficients
STEADY Logical – refers to steady-state calculation
SU Array containing Su

(continued)
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Table B.1 (continued )

Variable Meaning

T Array containing temperature (◦C or K)
T1 Temperature at node 1
T1O Temperature at node 1 at old time
T1SPEC Logical – refers to T -boundary condition at node 1
THOMAS Logical – refers to TDMA
TIMEMX Maximum allowable time
TINF Temperature T∞
TINFO Temperature T∞ at old time
TINF1 Temperature T∞ near node 1
TINFN Temperature T∞ near node N
TINF1O Temperature T∞ near node 1 at old time
TINFNO Temperature T∞ near node N at old time
TN Temperature at node N
TNO Temperature at node N at old time
TNSPEC Logical – refers to T -boundary condition at node N
TO Array containing temperature at old time
TTIME Total current time
UNSTEADY Logical – refers to unsteady-state calculation
VOL Array containing cell volume (m3)
X Coordinate of node P (m)
XCELL Logical – refers to cell-face coordinate specification
XCF Coordinate of cell face at w
XNODE Logical – refers to node coordinate specification

B.3 File USER1D.FOR

This is the main control file at the command of the user. The first routine
PROGRAM ONED is the command routine from where subroutine MAIN is called.
The latter is the first subroutine of the LIB1D.FOR file. When all operations are
completed, PROGRAM ONED calls the RESULT subroutine, which is a part of
the USER1D.FOR file.

Following the listing of the COM1D.FOR file, listings of two USER1D.FOR
files are given. They correspond to the two solved problems in Chapter 2. The reader
is advised to refer to these files as well as to Table B.1 to understand the description
of each routine in USER1D.FOR file.

BLOCK DATA This routine at the end of the USER1D.FOR file specifies all the
problem-dependent data such as properties, boundary conditions, and other control
parameters. It is assumed that all data are given in consistent units. Here, SI units
are used except for the grid data XCF or X, which are dimensionless. The physical
coordinates in meters are then evaluated by multiplying by AL (the domain length)
in PROGRAM ONED. Dimensionless specification provides better appreciation of
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nonuniformity (if any) in the specified grid. When a nonuniform grid is specified,
it is advisable to ensure that the ratio of two consecutive cell sizes does not
exceed 2.

Subroutine INIT In this routine, an initial guess for T at ITER = 0 in a steady-
state problem or at t = 0 in an unsteady-state problem is given. In a steady-state
problem, the number of iterations (and hence the computer time) greatly depends
on how close the initial guess is to the final converged solution. In the fin prob-
lem (Problem 2, Chapter 2), a linear temperature profile is given with T 1 = 225
(given) and TN = 205 (which is guessed) although the converged solution is
nonlinear.

Subroutine NEWVAL In this routine, boundary conditions at a new time (if dif-
ferent from the initial time) are specified.

Subroutine PROPS In this routine, thermal conductivity and specific heat are
given. They may be functions of x , t , or T. The density is of course constant in our
formulation (see Chapter 2).

Subroutine SORCE A problem-dependent source (q ′′′ �V ) is given in this routine.
It may be a function of T , x , and/or 	.

Subroutine INTPRI This routine prints the converged solution at the current time
step. The routine can also be used to store current values in dummy arrays DUM1
and DUM2 for later printing or plotting. Here, the STOP condition may be given.

Functions HPERI, AREA, and PERI These function routines calculate heat trans-
fer coefficient at node I and area and perimeter at location X or XCF as per the
specifications in their arguments. Note that heat transfer coefficients may be func-
tions of T , x , and/or t .

Subroutine RESULT In this last routine, the converged solution is printed along
with evaluation and printing of derived parameters. For example, in Problem 2
of Chapter 2, it is of interest to calculate heat loss from the fin as well as fin
effectiveness and compare them with the exact solutions. This routine can also be
used to create files containing results for postprocessing using graphics packages
such as GNUPLOT or GRAPHER.

B.4 File LIB1D.FOR

Subroutine MAIN All subroutines in the code are called from this subroutine.
First, subroutines GRID and INIT are called. Then, starting with TTIME = 0, an
outer DO loop (3000) is initiated to begin calculations at a time step NTIME and
TTIME is incremented by DELT. Subroutine NEWVAL is called to set boundary
conditions at a new time step. Then, iterations are carried out in an inner loop
(1000) in which subroutines PROPS, COEF, SORCE, BOUND, and SOLVE are
called in turn. The SOLVE routine returns the value of FCMX. If this value is less
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than 10−4, the inner loop is exited; otherwise a further iteration is carried out by
returning to “1000 ITER = ITER + 1.” In a steady-state problem, a minimum of
two iterations are performed. If the problem is steady, there is no need to carry out
calculations at a new time step and, therefore, the outer loop is also now exited and
control is transferred to statement “5000 CONTINUE.” If the problem is unsteady,
subroutines UPDATE and INTPRI are called and the outer loop continues.

Subroutine GRID In this routine, depending on logical XCELL or XNODE, co-
ordinates XCF or X are set and area, perimeter, and cell volume are calculated and
printed. It is always desirable to check these specifications in the output file OO
(see PROGRAM ONED).

Subroutine COEF In this routine, coefficients AE and AW are evaluated. Note
that cell-face conductivities are evaluated by harmonic mean.

Subroutine BOUND This routine implements specified boundary conditions at
I = 1 and I = N. The implementation is carried out by updating Su and Sp at
near-boundary nodes as explained in Chapter 2.

Subroutine SOLVE In this routine, Su and Sp are further updated if the problem
is unsteady. Also, if the stability criterion is violated, a warning message is printed.
AP and Su are further augmented to take account of the underrelaxation factor.
Thus, all coefficients are ready to solve the discretised equations. This is done by
GS or by TDMA depending on the user choice specified in the BLOCK DATA
routine.

Subroutine UPDATE This routine sets all new variables to their “OLD”
counterparts.

Subroutine PRINT The arguments of this general routine carry the variable F and
its logical name “HEADER” specified from point-of-call. The routine is written
to print six variables on a line. If N > 6, the next six variables are printed on the
next line, and so on. The values are printed in E-format but the user may change to
F-format, if desired.

COMMON BLOCK COM1D.FOR
C *** THIS IS COMMON BLOCK FOR 1-D CONDUCTION PROGRAM

PARAMETER(IT=50,PI=3.1415927,SMALL=1E-30,GREAT=1E30)
LOGICAL T1SPEC,H1SPEC,Q1SPEC,TNSPEC,HNSPEC,QNSPEC
LOGICAL STEADY,UNSTEADY,GAUSS,THOMAS,XCELL,XNODE
COMMON/BOUNDS/T1SPEC,H1SPEC,Q1SPEC,TNSPEC,HNSPEC,QNSPEC
COMMON/STATE/STEADY,UNSTEADY,GAUSS,THOMAS,XCELL,XNODE
COMMON/CVAR/T(IT),TO(IT),SPH(IT),COND(IT),RHO(IT)
COMMON/COORDS/X(IT),XCF(IT),ACF(IT),PERIM(IT),VOL(IT),AL
COMMON/COEFF/AP(IT),AE(IT),AW(IT),SU(IT),SP(IT),STAB(IT)
COMMON/CONTRO/ITERMX,N,RP,RSU,FCMX,CC,ISTOP
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COMMON/CTRAN/DELT,TIMEMX,MXSTEP,PSI,ITER,NTIME,TTIME
COMMON/CPROPS/CONDREF,RHOREF,SPHREF
COMMON/CDAT1/T1,TN,QB1,QBN,HB1,HBN,TINF1,TINFN,HPREF,TINF
COMMON/CDAT1/QB1O,QBNO,HB1O,HBNO,TINF1O,TINFNO,HPREFO,TINFO
COMMON/CDUM/DUM1(5000),DUM2(5000),DUM3(5000)

C ADDITIONAL PROBLEM-DEPENDENT VARIABLES
C VARIABLES FOR PROB2

COMMON/CP2/BREADTH,THICK
C VARIABLES FOR PROB3

COMMON/CRADS/R1,R2,R3

USER File for Problem 1 – Chapter 2
C *************************************************

PROGRAM ONED
INCLUDE ’COM1D.FOR’

C *************************************************
OPEN(6,FILE=’OO’)
WRITE(6,*)’ **********************************************’
WRITE(6,*)’ ADHESION OF PLASTIC SHEETS - PROB1-CHAPTER2’
WRITE(6,*)’ **********************************************’
DO 1 I=1,N

1 XCF(I)=XCF(I)*AL
CALL MAIN
CALL RESULT
STOP
END

C *************************************************
SUBROUTINE INIT
INCLUDE ’COM1D.FOR’

C *************************************************
C GIVE INITIAL GUESS AT TIME=0.0 OR AT ITER=0 FOR STEADY STATE

TIN=30
DO 1 I=1,N
T(I)=30
IF(I.EQ.1.OR.I.EQ.N)T(I)=250

1 CONTINUE
RETURN
END

C *************************************************
SUBROUTINE NEWVAL
INCLUDE ’COM1D.FOR’

C *************************************************
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C SET NEW VALUES OF HB1,HBN,QB1,QBN,TINF1,TINFN OR SOURCES
RETURN
END

C *************************************************
SUBROUTINE PROPS
INCLUDE ’COM1D.FOR’

C *************************************************
C COND(I) AND SPH(I) ARE DEFINED AT NODE P

DO 1 I=1,N
RHO(I)=RHOREF
COND(I)=CONDREF

1 SPH(I)=SPHREF
RETURN
END

C *************************************************
SUBROUTINE SORCE
INCLUDE ’COM1D.FOR’

C *************************************************
C FORM PROBLEM DEPENDENT SOURCE TERM INCLUDING SU AND SP

DO 1 I=2,N-1
SU(I)=SU(I)+0.0

1 CONTINUE
RETURN
END

C *************************************************
SUBROUTINE INTPRI
INCLUDE ’COM1D.FOR’
CHARACTER*20 HEADER

C *************************************************
WRITE(6,*)’ TIMESTEP = ’,NTIME,’ TOTAL TIME = ’,TTIME

C PRINT TEMPERATURES AT THE CURRENT STEP
HEADER=’ TEMP ’
CALL PRINT(T,HEADER)

C STORE MID-POINT TEMPERATURE
DUM1(NTIME)=T(4)

C GIVE STOP CONDITION
IMID=4
IF(T(IMID).GT.140)ISTOP=1
RETURN
END
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C *************************************************
C FUNCTION ROUTINES
C *************************************************

FUNCTION HPERI(II)
INCLUDE ’COM1D.FOR’

C H AT PERIMETER
I=II
HPERI=HPREF*0.0+X(I)*0.0+T(I)*0.0
RETURN
END

C --------------------------------------------
FUNCTION AREA(XX)
INCLUDE ’COM1D.FOR’

C AREA OF CROSS-SECTION
AREA=1.0+0.0*XX
RETURN
END

C --------------------------------------------
FUNCTION PERI(XX)
INCLUDE ’COM1D.FOR’

C PERIMETER
PERI=0*XX
RETURN
END

C *************************************************
SUBROUTINE RESULT
INCLUDE ’COM1D.FOR’
CHARACTER*20 HEADER

C *************************************************
HEADER=’ FINAL-TEMP ’
CALL PRINT(T,HEADER)
HEADER=’ X(I) ’
CALL PRINT(X,HEADER)
HEADER=’ XCF(I) ’
CALL PRINT(XCF,HEADER)

C EXTRACT PROBLEM DEPENDENT PARAMETERS IF ANY
WRITE(6,*)’ PRINT MID-POINT TEMPERATURE’
DO 1 I=1,NTIME
TT=FLOAT(I)*DELT

1 WRITE(6,*)TT,DUM1(I)
TNOW=DUM1(NTIME)
TOLD=DUM1(NTIME-1)
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TT=FLOAT(NTIME-1)*DELT
TIME=(140-TOLD)/(TNOW-TOLD)*DELT+TT
WRITE(6,*)’ TIME FOR ADHESION = ’,TIME
RETURN
END

C *************************************************
BLOCK DATA
INCLUDE ’COM1D.FOR’

C *************************************************
C LOGICAL DECLARATIONS

DATA STEADY,UNSTEADY,GAUSS,THOMAS/.FALSE.,.TRUE.,.TRUE.,.FALSE./
C --------------------------------------------
C CONTROL PARAMETERS
C FULLY IMPLICIT (PSI=1),FULLY EXPLICIT (PSI=0),SEMI IMPLICIT (0<PSI<1)

DATA PSI,DELT,MXSTEP,ITERMX,RP,CC/0.0,10,10000,500,1.0,1E-5/
C --------------------------------------------
C BOUNDARY SPECIFICATION

DATA T1SPEC,Q1SPEC,H1SPEC/.TRUE.,2*.FALSE./
DATA TNSPEC,QNSPEC,HNSPEC/.TRUE.,2*.FALSE./
DATA T1,TN,QB1,QBN,HB1,HBN/250.0,250.0,0.0,0.0,0.0,0.0/

C DATA TINF,TINF1,TINFN,HPREF/25,150,250,12.0/
DATA CONDREF,RHOREF,SPHREF/0.25,1300,2000.0/

C --------------------------------------------
C GRID SPECIFICATION

DATA XCELL,XNODE/.TRUE.,.FALSE./
DATA N,AL/7,0.01/
DATA XCF/0.0,0.0,0.2,0.4,0.6,0.8,1.0,43*1.0/
END

USER File for Problem 2 – Chapter 2
C *************************************************

PROGRAM ONED
INCLUDE ’COM1D.FOR’

C *************************************************
OPEN(6,FILE=’OO’)
WRITE(6,*)’ **********************************************’
WRITE(6,*)’ RECTANGULAR FIN - PROB2-CHAPTER2’
WRITE(6,*)’ SOLVE BY GS AND TDMA’
WRITE(6,*)’ **********************************************’
DO 1 I=1,N
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1 XCF(I)=XCF(I)*AL
CALL MAIN
CALL RESULT
STOP
END

C *************************************************
SUBROUTINE INIT
INCLUDE ’COM1D.FOR’

C *************************************************
C GIVE INITIAL GUESS AT TIME=0.0 OR AT ITER=0 FOR STEADY STATE

BB=(TN-T1)/AL
DO 1 I=1,N

1 T(I)=T1+BB*X(I)
RETURN
END

C *************************************************
SUBROUTINE NEWVAL
INCLUDE ’COM1D.FOR’

C *************************************************
C SET NEW VALUES OF HB1,HBN,QB1,QBN,TINF1,TINFN OR SOURCES

RETURN
END

C *************************************************
SUBROUTINE PROPS
INCLUDE ’COM1D.FOR’

C *************************************************
C COND(I) AND SPH(I) ARE DEFINED AT NODE P

DO 1 I=1,N
COND(I)=CONDREF

1 SPH(I)=SPHREF
RETURN
END

C *************************************************
SUBROUTINE SORCE
INCLUDE ’COM1D.FOR’

C *************************************************
C FORM PROBLEM DEPENDENT SOURCE TERM INCLUDING SU AND SP

DO 1 I=2,N-1
TERM=HPERI(I)*PERIM(I)*(XCF(I+1)-XCF(I))
SU(I)=SU(I)+TERM*TINF
SP(I)=SP(I)+TERM
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1 CONTINUE
RETURN
END

C *************************************************
SUBROUTINE INTPRI
INCLUDE ’COM1D.FOR’

C *************************************************
RETURN
END

C *************************************************
C FUNCTION ROUTINES
C *************************************************

FUNCTION HPERI(II)
INCLUDE ’COM1D.FOR’

C H AT PERIMETER
I=II
HPERI=HPREF+X(I)*0.0+T(I)*0.0
RETURN
END

C --------------------------------------------
FUNCTION AREA(XX)
INCLUDE ’COM1D.FOR’

C AREA OF CROSS-SECTION
AREA=BREADTH*THICK+0.0*XX
RETURN
END

C --------------------------------------------
FUNCTION PERI(XX)
INCLUDE ’COM1D.FOR’

C PERIMETER
PERI=2*BREADTH+0.0*XX
RETURN
END

C *************************************************
SUBROUTINE RESULT
INCLUDE ’COM1D.FOR’
CHARACTER*20 HEADER

C *************************************************
HEADER=’ FINAL-TEMP ’
CALL PRINT(T,HEADER)

C EXTRACT PROBLEM DEPENDENT PARAMETERS IF ANY
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C EXACT SOLUTION
AM=SQRT(HPREF*PERIM(2)/CONDREF/ACF(2))
QLOSS=SQRT(HPREF*PERIM(2)*CONDREF*ACF(2))*(T1-TINF)*TANH(AM*AL)
EFF=TANH(AM*AL)/(AM*AL)
WRITE(6,*)’ EXACT SOLUTION ’
WRITE(6,*)’ QLOSS = ’,QLOSS,’ EFF = ’,EFF

C NUMERICAL SOLUTION
QLOSS=ACF(2)*CONDREF*(T(1)-T(2))/(X(2)-X(1))
QMAX=2*AL*BREADTH*HPREF*(T(1)-TINF)
EFF=QLOSS/QMAX
WRITE(6,*)’ NUMERICAL SOLUTION ’
WRITE(6,*)’ QLOSS = ’,QLOSS,’ EFF = ’,EFF
RETURN
END

C *************************************************
BLOCK DATA
INCLUDE ’COM1D.FOR’

C *************************************************
C LOGICAL DECLARATIONS
C *** DECLARE STEADY OR UNSTEADY AND SOLUTION METHOD

DATA STEADY,UNSTEADY,GAUSS,THOMAS/.TRUE.,.FALSE.,.TRUE.,.FALSE./
C --------------------------------------------
C CONTROL PARAMETERS
C FULLY IMPLICIT(PSI=1),FULLY EXPLICIT(PSI=0),SEMI IMPLICIT (0<PSI<1)

DATA PSI,DELT,MXSTEP,ITERMX,RP,CC/1.0,5,100,500,1.0,1E-5/
C --------------------------------------------
C BOUNDARY SPECIFICATION

DATA T1SPEC,Q1SPEC,H1SPEC/.TRUE.,2*.FALSE./
DATA TNSPEC,QNSPEC,HNSPEC/.FALSE.,.TRUE.,.FALSE./
DATA T1,TN,QB1,QBN,HB1,HBN/225.0,205.0,0.0,0.0,0.0,0.0/
DATA TINF,TINF1,TINFN,HPREF/25,0.0,0.0,15.0/
DATA CONDREF,RHOREF,SPHREF/45.0,1.0,1.0/

C --------------------------------------------
C GRID SPECIFICATION

DATA XCELL,XNODE/.TRUE.,.FALSE./
DATA N,AL/7,0.02/
DATA XCF/0.0,0.0,0.2,0.4,0.6,0.8,1.0,43*1.0/

C PROBLEM DEPENDENT PARAMETERS (IF ANY)
DATA BREADTH,THICK/0.2,0.002/
END
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USER File for Problem 3 – Chapter 2
C *************************************************
C THIS IS USER FILE USER1D.FOR - A. W. DATE
C *************************************************

PROGRAM ONED
INCLUDE ’COM1D.FOR’

C *************************************************
OPEN(6,FILE=’OO’)
WRITE(6,*)’ **********************************************’
WRITE(6,*)’ ANNULAR COMPOSITE FIN - PROB3-CHAPTER2’
WRITE(6,*)’ SOLVE BY TDMA’
WRITE(6,*)’ **********************************************’
DX=(R3-R1)/FLOAT(N-2)
XCF(1)=0
XCF(2)=0.0
DO 1 I=3,N

1 XCF(I)=XCF(I-1) + DX
CALL MAIN
CALL RESULT
STOP
END

C *************************************************
SUBROUTINE INIT
INCLUDE ’COM1D.FOR’

C *************************************************
C GIVE INITIAL GUESS AT TIME=0.0 OR AT ITER=0 FOR STEADY STATE

T(1)=T1
T(N)=TN
RETURN
END

C *************************************************
SUBROUTINE NEWVAL
INCLUDE ’COM1D.FOR’

C *************************************************
C SET NEW VALUES OF HB1,HBN,QB1,QBN,TINF1,TINFN OR SOURCES

RETURN
END

C *************************************************
SUBROUTINE PROPS
INCLUDE ’COM1D.FOR’

C *************************************************
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C COND(I) AND SPH(I) ARE DEFINED AT NODE P
RR=R2-R1
DO 1 I=1,N
IF(X(I).LT. RR)COND(I)=200
IF(X(I).GT. RR)COND(I)=40

1 SPH(I)=SPHREF
RETURN
END

C *************************************************
SUBROUTINE SORCE
INCLUDE ’COM1D.FOR’

C *************************************************
C FORM PROBLEM DEPENDENT SOURCE TERM INCLUDING SU AND SP

DO 1 I=2,N-1
TERM=HPERI(I)*PERIM(I)*(XCF(I+1)-XCF(I))
SU(I)=SU(I)+TERM*TINF
SP(I)=SP(I)+TERM

1 CONTINUE
RETURN
END

C *************************************************
SUBROUTINE INTPRI
INCLUDE ’COM1D.FOR’

C *************************************************
RETURN
END

C *************************************************
C FUNCTION ROUTINES
C *************************************************

FUNCTION HPERI(II)
INCLUDE ’COM1D.FOR’

C H AT PERIMETER
I=II
HPERI=HPREF+X(I)*0.0+T(I)*0.0
RETURN
END

C --------------------------------------------
FUNCTION AREA(XX)
INCLUDE ’COM1D.FOR’

C AREA OF CROSS-SECTION
AREA=2*PI*(R1+XX)*THICK
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RETURN
END

C --------------------------------------------
FUNCTION PERI(XX)
INCLUDE ’COM1D.FOR’

C PERIMETER
PERI=4*PI*(R1+XX)
RETURN
END

C *************************************************
SUBROUTINE RESULT
INCLUDE ’COM1D.FOR’
CHARACTER*20 HEADER

C *************************************************
HEADER=’ FINAL-TEMP ’
CALL PRINT(T,HEADER)

C EXTRACT PROBLEM DEPENDENT PARAMETERS IF ANY
QLOSS=ACF(2)*COND(1)*(T(1)-T(2))/(X(2)-X(1))
QMAX=2*PI*(R3**2-R1**2)*HPREF*(T(1)-TINF)
EFF=QLOSS/QMAX
WRITE(6,*)’ NUMERICAL SOLUTION ’
WRITE(6,*)’ QLOSS = ’,QLOSS,’ EFF = ’,EFF

C PLOT TEMP PROFILE
OPEN(12,FILE=’TEXT3.DAT’)
WRITE(12,*)’TITLE = ANNULAR FIN’
WRITE(12,*)’VARIABLES = XX TT ’
WRITE(12,*)’ZONE T = ZONE1, I = ’,N,’ ,F = POINT’
DO 51 J=1,N

51 WRITE(12,*)X(J),T(J)
CLOSE(12)
RETURN
END

C *************************************************
BLOCK DATA
INCLUDE ’COM1D.FOR’

C *************************************************
C LOGICAL DECLARATIONS
C *** DECLARE STEADY OR UNSTEADY AND SOLUTION METHOD

DATA STEADY,UNSTEADY,GAUSS,THOMAS/.TRUE.,.FALSE.,.FALSE.,.TRUE./
C --------------------------------------------
C CONTROL PARAMETERS
C FULLY IMPLICIT (PSI=1),FULLY EXPLICIT (PSI=0),SEMI IMPLICIT (0<PSI<1)
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DATA PSI,DELT,MXSTEP,ITERMX,RP,CC/1.0,5,100,500,1.0,1E-5/
C --------------------------------------------
C BOUNDARY SPECIFICATION

DATA T1SPEC,Q1SPEC,H1SPEC/.TRUE.,2*.FALSE./
DATA TNSPEC,QNSPEC,HNSPEC/.FALSE.,.TRUE.,.FALSE./
DATA T1,TN,QB1,QBN,HB1,HBN/200.0,150.0,0.0,0.0,0.0,0.0/
DATA TINF,TINF1,TINFN,HPREF/25,0.0,0.0,20.0/
DATA CONDREF,RHOREF,SPHREF/1.0,1.0,1.0/

C --------------------------------------------
C GRID SPECIFICATION

DATA XCELL,XNODE/.TRUE.,.FALSE./
DATA N/8/

C PROBLEM DEPENDENT PARAMETERS (IF ANY)
DATA THICK/0.001/
DATA R1,R2,R3/0.0125,0.025,0.0375/
END

Library File LIB1D.FOR
C *************************************************
C THIS IS LIBRARY LIB1D.FOR - A. W. DATE
C *************************************************

SUBROUTINE MAIN
INCLUDE ’COM1D.FOR’

C *************************************************
WRITE(6,*)’ ***************************************’
IF(THOMAS)WRITE(6,*)’ SOLUTION BY TDMA’
IF(GAUSS)WRITE(6,*)’ SOLUTION BY GAUSS SIEDEL’
WRITE(6,*)’ ***************************************’

C*** CALCULATE CELL FACE COORDINATES, AREA AND VOLUME.
CALL GRID

C*** SPECIFY INITIAL TEMPERATURE DISTRIBUTION (USER FILE)
CALL INIT
ISTOP=0
IF(STEADY)PSI=1.0
IF(UNSTEADY)THEN
DO 101 I=1,N

101 TO(I)=T(I)
IF(PSI.EQ.0.0)ITERMX=0
ENDIF
TTIME=0.0

C*** BEGIN TIME STEP
TIMEMX=MXSTEP*DELT
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DO 3000 NTIME=1,MXSTEP
TTIME=TTIME+DELT

C SET NEW VALUES AT THE BOUNDARY OR SOURCES (USER FILE)
IF(UNSTEADY)CALL NEWVAL

C*** BEGIN ITERATIONS AT A TIME STEP
IF(PSI.NE.0.0)WRITE(6,*)’ ITER FCMX ’
ITER=0

1000 ITER=ITER+1
C CALL PROPERTIES ROUTINE (USER FILE)

CALL PROPS
C*** CALCUALTE THE COEFFICIENTS AW AND AE

CALL COEF
C*** CALCULATE THE SOURCE TERMS SU AND SP (USER FILE)

CALL SORCE
C*** SPECIFY THE BOUNDARY CONDITIONS

CALL BOUND
C*** SOLVE THE DISCRETISED EQUATION

CALL SOLVE
C*** WRITE RESIDUAL, CHECK CONVERGENCE

WRITE(6,500)ITER,FCMX
IF(ITER.GT.ITERMX) GO TO 2000
IF(STEADY.AND.ITER.EQ.1)GO TO 1000
IF(FCMX.GT.CC) GO TO 1000

2000 CONTINUE
IF(STEADY)GO TO 5000

C END OF TIME STEP
C UPDATE OLD TEMPERATURES AND PRINT OUT VARIABLES (USER FILE)

CALL INTPRI
CALL UPDATE
IF(ISTOP.EQ.1)GO TO 5000
IF(TTIME.GT.TIMEMX)GO TO 5000

3000 CONTINUE
5000 CONTINUE
500 FORMAT(I5,6X,E10.3)

RETURN
END

C *************************************************
SUBROUTINE GRID
INCLUDE ’COM1D.FOR’
CHARACTER*20 HEADER

C *************************************************
C GRID DATA ARE GIVEN IN BLOCK DATA (USER FILE)
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IF(XCELL)THEN
XCF(2)=XCF(1)
X(1)=XCF(1)
DO 1 I=2,N-1

1 X(I)=0.5*(XCF(I)+XCF(I+1))
X(N)=XCF(N)
ELSE
XCF(1)=X(1)
XCF(2)=X(1)
DO 2 I=3,N-1

2 XCF(I)=0.5*(X(I)+X(I-1))
XCF(N)=X(N)
ENDIF

C CALCULATE PERIMETER,CELL-FACE AREA AND CELL VOLUME
C AREA AND PERI ARE FUNCTION ROUTINES (USER FILE)

DO 3 I=1,N
ACF(I)=AREA(XCF(I))
PERIM(I)=PERI(X(I))

3 CONTINUE
DO 4 I=2,N-1

4 VOL(I)=AREA(X(I))*(XCF(I+1)-XCF(I))
HEADER=’ X(I) ’
CALL PRINT(X,HEADER)
HEADER=’ XCF(I) ’
CALL PRINT(XCF,HEADER)
HEADER=’ CELL FACE AREA ’
CALL PRINT(ACF,HEADER)
HEADER=’ PERIMETER ’
CALL PRINT(PERIM,HEADER)
HEADER=’ CELL-VOLUME ’
CALL PRINT(VOL,HEADER)
RETURN
END

C *************************************************
SUBROUTINE COEF
INCLUDE ’COM1D.FOR’

C *************************************************
DO 1 I=2,N-1

C INITIALISE SU ANS SP
STAB(I)=0.0
SU(I)=0.0
SP(I)=0.0
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LW=0
LE=0
IF(I.EQ.2)LW=1
IF(I.EQ.N-1)LE=1
DXE=X(I+1)-X(I)
DXEP=X(I+1)-XCF(I+1)
DXEM=XCF(I+1)-X(I)
DXW=X(I)-X(I-1)
DXWP=X(I)-XCF(I)
DXWM=XCF(I)-X(I-1)

C*** CALCULATE CELL FACE CONDUCTIVITY BY HARMONIC MEAN.
CONDSME=DXE/(DXEM/COND(I)+DXEP/COND(I+1))*(1-LE)+LE*COND(I+1)
CONDSMW=DXW/(DXWP/COND(I)+DXWM/COND(I-1))*(1-LW)+LW*COND(I-1)
AW(I)=CONDSMW*ACF(I)/DXW
AE(I)=CONDSME*ACF(I+1)/DXE

1 CONTINUE
RETURN
END

C *************************************************
SUBROUTINE BOUND
INCLUDE ’COM1D.FOR’

C *************************************************
STAB(2)=AW(2)
STAB(N-1)=AE(N-1)

C*** FOR I=1 BOUNDARY
IF(T1SPEC) THEN
SU(2)=SU(2)+AW(2)*(PSI*T(1)+(1-PSI)*(TO(1)-TO(2)))
SP(2)=SP(2)+AW(2)*PSI
AW(2)=0.0
ELSE IF(Q1SPEC) THEN
SU(2)=SU(2)+ACF(2)*(PSI*QB1+(1-PSI)*QB1O)
T(1)=QB1*ACF(2)/(AW(2)+SMALL)+T(2)
AW(2)=0.0
ELSE IF (H1SPEC) THEN
TERM1=HB1*ACF(2)+SMALL
TERM2=AW(2)+SMALL
TERM=1/(1/TERM1+ 1/TERM2)
SU(2)=SU(2)+PSI*TERM*TINF1+TERM1*(1-PSI)*(TINF1O-TO(1))
SP(2)=SP(2)+PSI*TERM
T(1)=(T(2)+TERM1/TERM2*TINF1)/(1+TERM1/TERM2)
AW(2)=0.0
ENDIF
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C*** FOR I=N BOUNDARY
IF(TNSPEC) THEN
SU(N-1)=SU(N-1)+AE(N-1)*(PSI*T(N)+(1-PSI)*(TO(N)-TO(N-1)))
SP(N-1)=SP(N-1)+AE(N-1)*PSI
AE(N-1)=0.0
ELSE IF(QNSPEC)THEN
SU(N-1)=SU(N-1)+ACF(N)*(PSI*QBN+(1-PSI)*QBNO)
T(N)=QBN*ACF(N)/(AE(N-1)+SMALL)+T(N-1)
AE(N-1)=0.0
ELSE IF(HNSPEC) THEN
TERM1=HBN*ACF(N)+SMALL
TERM2=AE(N-1)+SMALL
TERM=1/(1/TERM1+ 1/TERM2)
SU(N-1)=SU(N-1)+PSI*TERM*TINFN+TERM1*(1-PSI)*(TINFNO-TO(N))
SP(N-1)=SP(N-1)+PSI*TERM
T(N)=(T(N-1)+TERM1/TERM2*TINFN)/(1+TERM1/TERM2)
AE(N-1)=0.0
ENDIF
RETURN
END

C *************************************************
SUBROUTINE SOLVE
INCLUDE ’COM1D.FOR’

C *************************************************
DIMENSION AA(IT),BB(IT)

C*** ASSEMBLE SU AND SP TERMS
DO 1 I=2,N-1
IF(UNSTEADY)THEN
BP=RHO(I)*SPH(I)/DELT*VOL(I)
SP(I)=SP(I)+BP
SU(I)=SU(I)+(1-PSI)*(AE(I)*TO(I+1)+AW(I)*TO(I-1))
SU(I)=SU(I)+(BP-(1-PSI)*(AE(I)+AW(I)))*TO(I)

C CHECK FOR STABILITY CONDITION
TERM=BP-(1-PSI)*(AE(I)+AW(I)+STAB(I))
IF(TERM.LT.0.0)WRITE(*,*)’ COEF OF TPOLD IS NEGATIVE AT I = ’,I
ENDIF
AP(I)=PSI*(AE(I)+AW(I))+SP(I)

C UNDER-RELAX
E=(1.-RP)/RP*AP(I)
AP(I)=AP(I)+E
SU(I)=SU(I)+E*T(I)

1 CONTINUE
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FCMX=0.0
C ------------------------------------------------
C*** SOLVE BY GAUSS-SIEDEL METHOD
C ------------------------------------------------

IF(GAUSS)THEN
DO 2 I=2,N-1
TL=T(I)
ANUM=PSI*(AE(I)*T(I+1)+AW(I)*T(I-1))+SU(I)
T(I)=ANUM/AP(I)
DIFF=(T(I)-TL)/(TL+SMALL)
IF(ABS(DIFF).GT.FCMX)FCMX=ABS(DIFF)

2 CONTINUE
ENDIF

C ------------------------------------------------
C*** SOLVE BY TDMA
C ------------------------------------------------

IF(THOMAS)THEN
C CALCULATE COEFFICIENTS BY RECURRENCE

AA(2)=PSI*AE(2)/AP(2)
BB(2)=SU(2)/AP(2)
DO 3 I=3,N-1
DEN=1.0-PSI*AW(I)/AP(I)*AA(I-1)
AA(I)=PSI*AE(I)/AP(I)/(DEN+SMALL)

3 BB(I)=(PSI*AW(I)*BB(I-1)+SU(I))/AP(I)/(DEN+SMALL)
C BACK SUBSTITUTION

DO 4 I=N-1,2,-1
TL=T(I)
T(I)=AA(I)*T(I+1)+BB(I)
DIFF=(T(I)-TL)/(TL+SMALL)
IF(ABS(DIFF).GT.FCMX)FCMX=ABS(DIFF)

4 CONTINUE
ENDIF
RETURN
END

C *************************************************
SUBROUTINE UPDATE
INCLUDE ’COM1D.FOR’

C *************************************************
C RESET OLD VALUES

DO 200 I=1,N
200 TO(I)=T(I)

QB1O=QB1
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QBNO=QBN
HB1O=HB1
HBNO=HBN
TINF1O=TINF1
TINFNO=TINFN
HPREFO=HPREF
TINFO=TINF
RETURN
END

C *************************************************
SUBROUTINE PRINT(F,HEADER)
INCLUDE ’COM1D.FOR’
CHARACTER*20 HEADER

C *************************************************
DIMENSION F(IT)
WRITE(6,*)’*****************************************’
WRITE(6,*)’DISTRIBUTION OF ’,HEADER
IB=1
IE=IB+6
IF(IE.GT.N)IE=N

100 CONTINUE
WRITE(6,500)(F(I),I=IB,IE)
WRITE(6,600)(I,I=IB,IE)
IF(IE.LT.N) THEN
IB=IE+1
IE=IB+6
IF(IE.GT.N)IE=N
GO TO 100
ENDIF
WRITE(6,*)’*****************************************’

500 FORMAT(7E10.3)
600 FORMAT(4X,I3,6I10)

RETURN
END
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2D Cartesian Code

C.1 Structure of the Code

The structure of the 2D Cartesian code is similar to that of the 1D conduction
code. The code is again divided into two parts: The problem-dependent user part
containing files COM2D.FOR and USER2D.FOR and the problem independent
library part that contains the LIB2D.FOR file.1 The listings of each file are given
at the end of this appendix. The list of variable names with their meanings is given
in Table C.1.

C.2 File COM2D.FOR

In this file, again logical, real, and integer variables are included. All other contents
of this file bear the same description as the COM1D.FOR file.

C.3 File USER2D.FOR

This is the main control file at the command of the user. The first routine PROGRAM
MAIN is the command routine from where subroutine MAINPR is called. The
latter is the first subroutine of the LIB2D.FOR file. Here, listings of USER files are
given for three problems solved in Chapter 5. These are (a) 1D porous body flow,
(b) turbulent flow in an axisymmetric pipe expansion, and (c) natural convection
evaporation.

BLOCK DATA This routine at the end of the USER2D.FOR file specifies all the
problem-dependent data such as control parameters, relaxation parameters, Prandtl
numbers, flow conditions, equations to be solved, and convection scheme used. The

1 The library file does not contain two features that can be generalised. These are (a) modifications
to coefficients of the pressure-correction equation for a compressible flow and (b) modifications
for a fixed pressure boundary condition. However, these can be incorporated by the user via the
ADSORB.FOR routine in the USER file.

306
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Table C.1: List of variables for 2D Cartesian code.

Variable Meaning

AE, AW Array containing east and west coefficients
AN, AS Array containing north and south coefficients
AMW Mass influx at the wall (kg/m2-s)
AP Array containing coefficient of �P

AP1 Array containing coefficient of p′
P

APU, APV Array containing coefficient of uP and vP

AXISYMM Logical – =.TRUE. refers to axisymmetric case
CAPPA Constant in log law of the wall
CC Convergence criterion
CCTM Stop condition for unsteady problem
CD1 Constant in e–ε turbulence model
CD2 Constant in e–ε turbulence model
CONMAS Logical – refers to imposition of mass balance at exit plane
D Array for turbulent energy dissipation rate ε

DELT Time step (s)
DENSIT Reference density (kg/m3)
DO Array for ε at old time
DP1 Periodic pressure change in I direction
DP2 Periodic pressure change in J direction
DXMI Array containing increment X (I) − X (I − 1)
DXP Array containing increment XC (I + 1) − XC (I)
DYMI Array containing increment Y (J) − Y (J − 1)
DYP Array containing increment YC (J + 1) − YC (J)
E Array for turbulent kinetic energy e
ELOG Constant in log law of the wall
EO Array for e at old time
FDIF Array for storing �l+1 − �l or � − �o

FTRAN Logical – refers to false transient solution
GAMMA Multiplier of p – p
GRCELL Logical – refers to specification of cell-face coordinates
GRNODE Logical – refers to specification of node coordinates
GREAT Parameter having a large value 1030

HH Array containing enthalpy variable (J/kg)
HYBRID Logical – refers to hybrid convection scheme
IN Maximum number of nodes in I direction
INM IN–1
IPERIOD Index for periodicity in I direction – see BLOCK DATA
IPREF I index of reference point of pressure
IREAD = .TRUE. when file NSIN is to be read
IT Parameter containing array size in I direction
IWRITE = .TRUE. when file NSOUT is to be written
JN Maximum number of nodes in J direction
JNM JN−1
JPERIOD Index for periodicity in J direction – see BLOCK DATA

(continued)
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Table C.1 (continued )

Variable Meaning

JPREF J index of reference point of pressure
JT Parameter containing array size in J direction
MFREQ NSOUT file written after every MFREQ iteration
MXGR Parameter containing bigger of IT and JT
MXIT Maximum number of allowable iterations
MXSTEP Maximum number of allowable time steps
NITER Iteration count
NPERIOD = 1 for periodic boundary condition, = 0 otherwise
NSWEEP Array containing maximum sweeps per iteration
NTAG Array for identifying interior nodes
NTAGE Array for identifying east near-boundary nodes
NTAGN Array for identifying north near-boundary nodes
NTAGS Array for identifying south near-boundary nodes
NTAGW Array for identifying west near-boundary nodes
NTIME Current time step number
NVAR Maximum number of variables solved
O Array for mass fraction ω

P Array for pressure (N/m2)
PI Parameter π

PO Array for pressure at old time
POWER Logical – refers to power-law scheme
PP Array for pressure correction
PR Array for fluid Prandtl number
PRT Array for turbulent Prandtl number
PSM Array for smoothing pressure correction
QW Array for wall-heat in flux (W/m2)
R Array for storing radius at the node
RC Array for storing radius at the south cell face
RHO Array for density (kg/m3)
RNORM Array for storing residual normalising factors
RP Array relaxation parameter α

RSDU Array for storing maximum residual
SMALL Parameter having a small value 10−30

SLVE Logical array for specifying variable to be solved
SP Array containing Sp
SPH Array for specific heat (J/kg-K)
STEADY Logical – refers to steady-state calculation
STIME Time at the start of a transient
TTIME Total time after NTIME steps
SU Array containing Su
T Array containing temperature (◦C or K)
TAUW Array containing shear stress at the wall (N/m2)
TO Array containing temperature at old time
TURBUL Logical – refers to turbulent flow
U Array containing u1 velocity
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Variable Meaning

UNSTDY Logical – refers to unsteady-state calculation
UO Array containing u1 velocity at old time
UPWIND Logical – refers to upwind difference scheme
V Array containing u2 velocity
VISCOS Reference viscosity (N-s/m2)
VIS Array containing laminar viscosity
VIST Array containing turbulent viscosity
VO Array containing u2 velocity at old time
VOL Array containing cell volume (m3)
W Array containing u3 velocity
WO Array containing u3 velocity at old time
X Coordinate of node I (m)
XC Coordinate of cell face at w
Y Coordinate of node J (m)
YC Coordinate of cell face at s

user may introduce additional problem-dependent indices such as IB1, IB2, etc. The
grid coordinate data may be normalised or real.

Subroutine TITLE In this routine, the problem-specific title is inserted.

Subroutine INIT In this routine, the best known initial guesses for all relevant
variables are given. Also, known INFLOW conditions are specified.

Subroutine BSPEC Here, boundary types are specified. Identifiers for boundary
type and boundary condition are declared by logical variables such as WEST or
SYMM. WALLT and WALLQ stand for, respectively, temperature and heat influx
specified at wall boundaries. EXIT1 and EXIT2 stand for exit boundary conditions.
When EXIT1, the first normal derivative at the boundary is set to zero, for EXIT2,
the second normal derivative is zero. BLOCK identifies blocked regions of the
domain. These specifications must be made carefully and a hand sketch of the
domain will assist correct specifications. Also, reference may be made to the node-
tagging section in Chapter 5.

Subroutine ADSORB This routine is used to add any special source terms for
each variable solved. The standard source terms are included in the SORCE routine
in LIB2D.FOR file. The routine is also used to overwrite USER-defined specifica-
tions for density, specific heat, and viscosity. The routine is also used to specify
a fixed-pressure boundary condition. Further, the routine is used to give periodic
boundary conditions.

Subroutine RESULT In this routine, the final converged solutions are printed. The
routine is also used to extract useful parameters such as friction factor or Nusselt
number from the converged solution. This routine is also used to create output files
for contour and vector plots using graphics packages such as TECPLOT.
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Subroutine OMEGA In this routine, the user sets out solution of the mass transfer
equation(s) as well as the enthalpy equation by defining new variables O (I, J) and
HH (I, J). If the problem is unsteady then OO (I, J) and HHO (I, J) must also be
defined. If there are several mass fractions solved (as in a combustion problem),
then additional variable names must be defined and declared in the COM2D.FOR
file. For all these variables, subroutine COEF is first called. Then, source terms and
boundary conditions are specified for each variable with appropriate updates of Su
and Sp. Finally, the variable under consideration is solved by calling the SOLVE
routine. The USER file for the evaporation problem shows how this is done by
solving for the vapor mass fraction.

C.4 File LIB2D.FOR

Subroutine MAINPR This is the main routine from which all other routines are
called for program execution. The sequence of calling is important.

Subroutine INITIA Here, all variables are initialised.

Subroutine TAG In this routine node tagging is accomplished. The routine is
called from subroutine BSPEC in the USER2D.FOR file. CHAR1 and CHAR2
carry logical variables whereas IB, IL and JB, JL carry specification limits in the I
and J directions. Note that NTAG (I, J) = 1 for the blocked region; it is already set
to zero in routine INITIA otherwise.

Subroutine BOUND This routine implements the boundary conditions. The rou-
tine can be written more compactly. Here, boundary conditions for west, east, south,
and north are written explicitly for ease of understanding. Note that periodic bound-
aries are treated as inflow boundaries. Therefore, velocities at such boundaries must
be provided by the user in the ADSORB routine in the USER2D.FOR file. The
routine provides boundary conditions for only six variables: u, v, w, e, ε, and T .
For all other variables such as mass fractions or enthalpy, the boundary conditions
are given in the routine OMEGA in the USER2D.FOR file.

Subroutine GRID In this routine, node and/or cell-face coordinates are evaluated
depending on logical specifications GRCELL and GRNODE. Also, repeatedly used
incremental distances and cell volume are calculated and stored. The sum of cell
volumes must equal the domain volume. Hence, the latter is printed via SUMVOL.
The USER should always check SUMVOL in output file OO opened in PROGRAM
MAIN. Note that R (J) and RC (J) are set to 1 for the plane case but are equated to
Y (J) and YC (J), respectively, for the axisymmetric case.

Subroutine COEF In this routine, coefficients AE, AW, AN, and AS are calcu-
lated for transport equations and for the pressure-correction equation. Note that, in
evaluation of transport equation coefficients, the cell-face viscosities are evaluated



P1: ICD/GKJ P2: IWV
0521853265appc CB908/Date 0 521 85326 5 May 25, 2005 11:59

APPENDIX C. 2D CARTESIAN CODE 311

by harmonic mean. Similarly, care is exercised in evaluation of periodic boundary
coefficients in the pressure-correction equation.

Subroutine SORCE This routine includes standard source terms for all variables.
Thus, for u and v velocities, pressure-gradient terms are included but body force
terms are excluded. In the turbulent kinetic energy source term, the near-wall bound-
ary node is excluded as required for implementation of the high Reynolds number
(HRE) turbulence model (see Chapter 5). For the LRE model, the USER will have
to modify entries in BOUND and SORCE routines. For temperature, the standard
source term is set to zero. To include effects of viscous dissipation or heat genera-
tion due to chemical reaction or radiation, the ADSORB routine in the USER file
must be used.

Subroutine APCOF In this routine the coefficient of �P is assembled by adding
SP (I , J) and dividing by α. The APU and APV coefficients store the AP coefficient
of the two momentum equations whereas AP1 stores the coefficient of p′

P.

Subroutine PROPS Here, density, specific heat, and viscosity variables are spec-
ified. If BSOR (8) is .TRUE. then the default specifications can be overwritten in
the ADSORB routine in the USER2D.FOR file.

Subroutine UNST In this routine, Su and Sp are appropriately updated for truly
unsteady or false-transient calculation.

Subroutine UPDATE In this routine, all new time values are set in old time
values.

Subroutine INFLUX In this routine values of ṁ� at inlet boundaries are evaluated
for all variables to form the RNORM array. The latter is used to normalise the
residual calculation in subroutine SOLVE.

Subroutine MASBAL This routine calculates the domain exit mass flow rate based
on specifications of velocity boundary conditions in subroutine BOUND. However,
this mass flow rate must be the same as the sum of all mass flow rates specified at
the inlet boundaries. During an iterative solution, this balance is rarely maintained.
Therefore, before solving the pressure-correction equation, the prevailing exit-plane
velocities are uniformly corrected in this routine by the ratio of inlet to exit mass
flow rates.

Subroutine PVCOR In this routine, the mass-conserving pressure-correction p′
m

is first recovered and then pressure and velocities are corrected. The smoothing
pressure-correction p′

sm is stored for printing when desired. The routine also cal-
culates the mass residual Rm, as explained in Chapter 5.

Subroutine BOUNDP In this routine, boundary pressures are extrapolated from
near-boundary values as explained in Chapter 5. Note that p′

m values are also
extrapolated to effect correct velocity corrections at the near-boundary nodes in
routine PVCOR. Further, care is exercised to effect correct interpolation of pressure
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at the periodic boundaries. When BSOR (9) is .TRUE., fixed-pressure conditions
are given in the ADSORB routine of the USER2D.FOR file.

Subroutine INDATA This routine simply writes out input data given in BLOCK
DATA in the OO file for verification.

Subroutine SOLVE This routine solves the discretised equations by the ADI
method. At the start of this routine (i.e., at iteration level l) residuals are calcu-
lated at each node and the root-sum-square value of residuals is stored in RSUM.

Subroutine SOLP This routine is the same as the SOLVE routine but is exclusively
used for the pressure-correction equation. Note that subroutine BOUNDP is called
at each sweep when a periodic boundary condition is specified.

Subroutine EQN In this routine the outer DO loop (2000) is initiated for an
unsteady calculation and the inner loop (1000) carries out iterative calculations.
For each chosen variable (specified by logical SLVE), subroutines COEF, SORCE,
BOUND, APCOF, and SOLVE are called in turn. To carry out appropriate updates
of Su and Sp, UNST and ADSORB routines are also called. When all relevant
variables are covered, subroutine PROPS is called to update the properties. Then,
the maximum residual among all variables is stored in RSTOP. In a steady-state
problem, if the convergence criterion is satisfied, the inner loop is exited and control
is returned to the subroutine MAINPR. In an unsteady problem, upon exiting the
inner loop, subroutine UPDATE is called to reset the values and the STOP condition
is based on the maximum value of FDIF. The outer loop is continued until the
maximum number of steps specified in BLOCK DATA is executed. At each time
step, however, the inner loop is executed for the MXIT number of iterations. In
many problems, because of the impossibility of specifying good initial guesses, the
number of iterations required may run into the thousands. For this reason, variables
are written out in file NSOUT at every MFREQ iteration, where MFREQ is set in
the BLOCK DATA routine.2

Subroutine TDMA This routine calculates the recurrence coefficients and carries
out back substitution as required in TDMA execution.

Subroutine OPT In this routine, all variables are written out in binary form in file
NSOUT.

Subroutine IPT In this routine, all variables are read in binary form from file NSIN.
Therefore, before execution of the program in a continuation can commence, file
NSOUT must be copied to file NSIN.

Subroutines PRINTK This routine is used to print out 2D variables.

2 At every iteration, the three main residuals for u, v, and p′ are stored in arrays RESIU(NITER),
RESIV(NITER), and RESIM(NITER). Their evaluation has been commented on. However, the
USER may activate this evaluation to enable printing of residual history in the RESULT routine
when required.
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Subroutines PR1D This routine is used to print out 1D variables.

Function STAN This function routine is called from subroutine BOUND to im-
plement a wall-function boundary condition for temperature and mass-fraction
variables in a turbulent flow. The routine evaluates the Stanton number based on
specification of PF, which the USER may change if required. For mass-fraction
variables, the function is called from routine OMEGA.

Functions FINTW, FINTE, FINTS, and FINTN These function routines evalu-
ate variable � at cell faces, w, e, s, and n, respectively, using linear interpolation.

COMMON BLOCK COM2D.FOR
C*******************************
C THIS IS COM2D.FOR
C ******************************
C IT AND JT CHANGE WITH THE PROBLEM

PARAMETER(IT=37,JT=37,MXGR=37)
PARAMETER(GREAT=1.0E+20,SMALL=1.0E-20,PI=3.1415926)
LOGICAL TURBUL,STEADY,UNSTDY,FTRAN,CONMAS,AXISYMM,BSOR
LOGICAL UPWIND,HYBRID,POWER,SLVE,IREAD,IWRITE
LOGICAL GRCELL,GRNODE

C
COMMON/CFLOW/TURBUL,STEADY,UNSTDY,FTRAN,CONMAS,AXISYMM
COMMON/SCHEME/UPWIND,HYBRID,POWER,SLVE(7),IREAD,IWRITE
COMMON/CGRID/IN,JN,INM,JNM,IPREF,JPREF,CORP,NPERIOD,MFREQ

1 ,GRCELL,GRNODE
COMMON/CONTR1/CC,MXIT,CCTM,MXSTEP,DELT,STIME,TTIME
COMMON/CONTR2/RP(9),NSWEEP(7),NITER,RSDU(7),FDIF(7),RNORM(7)
COMMON/CPROP/DENSIT,VISCOS,PR(7),PRT(7),RHO(IT,JT)

1 ,SPHEAT,SPH(IT,JT),VIS(IT,JT),VIST(IT,JT),GAMMA
COMMON/CTURB/CD1,CD2,CMU,ELOG,CAPPA
COMMON/CTAG/NTAG(IT,JT),NTAGW(IT,JT),NTAGE(IT,JT)

1 ,NTAGS(IT,JT),NTAGN(IT,JT)
COMMON/COFV/AW(IT,JT),AE(IT,JT),AS(IT,JT),AN(IT,JT)
COMMON/CSOR/SU(IT,JT),SP(IT,JT),BSOR(9)
COMMON/CAP/AP1(IT,JT),AP(IT,JT),APU(IT,JT),APV(IT,JT)
COMMON/CVAR/U(IT,JT),V(IT,JT),W(IT,JT),P(IT,JT)

1 ,E(IT,JT),D(IT,JT),T(IT,JT),PP(IT,JT),PSM(IT,JT)
COMMON/CVAO/UO(IT,JT),VO(IT,JT),WO(IT,JT),PO(IT,JT)

1 ,EO(IT,JT),DO(IT,JT),TO(IT,JT),RHOO(IT,JT)
COMMON/CORD/X(IT),Y(JT),XC(IT),YC(JT),R(JT),RC(JT)

1 ,DXMI(IT),DYMI(JT),DXP(IT),DYP(JT),VOL(IT,JT)
COMMON/CHEAT/QW(IT,JT),TAUW(IT,JT),AMW(IT,JT)
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COMMON/CPERIOD/DP1,DP2,IPERIOD,JPERIOD
COMMON/CDUMT/DUM1(IT,JT),DUM2(IT,JT),DUM3(IT,JT)
COMMON/CRES/RESIU(5000),RESIV(5000),RESIM(5000)

C ADDITIONAL PROBLEM-DEPENDENT COMMON STATEMENTS
COMMON/CEVAP/IB1,IB2,JB1,GRM,SC,OBR,OWT,O(IT,JT),HH(IT,JT)
COMMON/CKRAL/D2,D1,U2,U1
COMMON/CPOROS/UU(IT,50),PRES(IT,50),PPP(IT,50),PPS(IT,50)

1 ,EPSI,RESIST,PIN

1D Porous Body Problem – Chapter 5
The USER file that follows shows how a fixed-pressure boundary condition (i.e.,
p′ = 0) is implemented in the ADSORB subroutine.

C **************************************
C THIS IS USER FILE POROS.FOR - PFIX BOUNDARY CONDITION
C **************************************

PROGRAM MAIN
INCLUDE ’COM2D.FOR’
OPEN(UNIT=6,FILE=’OO’)
WRITE(*,*)’-------- output is in OO file --------------’

C **** INITIAL DATA
WRITE(*,*)’GIVE ----- MXIT,IREAD,GAMMA’
READ(*,*)MXIT,IREAD,GAMMA
DX=1/FLOAT(IN-1)
X(1)=0.0
DO 1 I=2,IN

1 X(I)=X(I-1)+DX
Y(1)=0
Y(2)=0.5
Y(3)=1.0
INM=IN-1
JNM=JN-1
VISCOS=VISCOS/EPSI
DENSIT=DENSIT/EPSI**2

C
CALL MAINPR
STOP
END

C **************************************
SUBROUTINE TITLE
INCLUDE ’COM2D.FOR’

C **************************************
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WRITE(6,*)’*************************************************’
WRITE(6,*)’ PROGRAM TO CALCULATE POROS MEDIUM FLOW ’
WRITE(6,*)’*************************************************’
RETURN
END

C **************************************
SUBROUTINE INIT
INCLUDE ’COM2D.FOR’

C **************************************
C INITIAL GUESS

PIN=RESIST
DO 1 I=1,IN
DO 1 J=1,JN

C P(I,J)=PIN*(1-X(I)/X(IN))
1 CONTINUE

P(1,2)=PIN
RETURN
END

C **************************************
SUBROUTINE BSPEC
INCLUDE ’COM2D.FOR’

C **************************************
C **** PROVIDE BOUNDARY & BLOCKED REGIONS
C

CHARACTER*10 BLOCK,WEST,EAST,SOUTH,NORTH
CHARACTER*10 INFLOW,EXIT1,SYMM,EXIT2,WALLT,WALLQ,PERIOD
DATA BLOCK,WEST,EAST,SOUTH,NORTH
1 /’BLOCK’,’WEST’,’EAST’,’SOUTH’,’NORTH’/
DATA INFLOW,EXIT1,SYMM,EXIT2,WALLT,WALLQ,PERIOD
1 /’INFLOW’,’EXIT1’,’SYMM’,’EXIT2’,’WALLT’,’WALLQ’,’PERIOD’/

C ***** BLOCKED REGIONS
C CALL TAG(BLOCK,BLOCK,2,IB1-1,JB2,JNM)
C CALL TAG(BLOCK,BLOCK,IB1,INM,2,JB1-1)
C ***** DEFINES W & E BOUNDARIES

CALL TAG(WEST,EXIT1,2,2, 2,JNM)
CALL TAG(EAST,EXIT1,INM,INM,2,JNM)

C ***** DEFINES N&S BOUNDARIES
CALL TAG(NORTH,SYMM,2,INM,JNM,JNM)
CALL TAG(SOUTH,SYMM,2,INM,2,2)
RETURN
END
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C **************************************
SUBROUTINE RESULT
INCLUDE ’COM2D.FOR’

C **************************************
CHARACTER*20 HEADER
JSTEP=-1
WRITE(6,*)’ NITER=’,NITER
HEADER=’ U-VEL’
CALL PRINTK(U,1,IN,2,JNM,HEADER,JSTEP)
HEADER=’ PRESS’
CALL PRINTK(P,1,IN,2,JNM,HEADER,JSTEP)
OPEN(12,FILE=’PORU.DAT’)
WRITE(12,*)’IN = ’,IN
WRITE(12,*)’ X(I) = ’
WRITE(12,500)(X(I),I=1,IN)
WRITE(12,*)’ U- VELOCITY ’
DO 11 NN=1,NITER-1

11 WRITE(12,500)NN,(UU(I,NN),I=1,IN)
CLOSE(12)
OPEN(13,FILE=’PORP.DAT’)
WRITE(13,*)’IN = ’,IN
WRITE(13,*)’ X(I) = ’
WRITE(13,500)(X(I),I=1,IN)
WRITE(13,*)’ PRESSURE’
DO 12 NN=1,NITER-1

12 WRITE(13,500)NN,(PRES(I,NN),I=1,IN)
CLOSE(13)
OPEN(14,FILE=’PORPP.DAT’)
WRITE(14,*)’IN = ’,IN
WRITE(14,*)’ X(I) = ’
WRITE(14,500)(X(I),I=1,IN)
WRITE(14,*)’ PPM’
DO 122 NN=1,NITER-1

122 WRITE(14,500)NN,(PPP(I,NN),I=1,IN)
CLOSE(14)
OPEN(15,FILE=’PORPS.DAT’)
WRITE(15,*)’IN = ’,IN
WRITE(15,*)’ X(I) = ’
WRITE(15,500)(X(I),I=1,IN)
WRITE(15,*)’ PPS’
DO 222 NN=1,NITER-1

222 WRITE(15,500)NN,(PPS(I,NN),I=1,IN)
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CLOSE(15)
600 FORMAT(2X,7E10.3)
500 FORMAT(I4,2X,7E10.3)

RETURN
END

C **************************************
SUBROUTINE ADSORB(NN)
INCLUDE ’COM2D.FOR’

C **************************************
N=NN
GO TO (10,20,30,40,50,60,70,80,90),N

C *** FOR PRESSURE CORRECTION - PFIX CONDITION
10 CONTINUE

SP(2,2)=SP(2,2)+RHO(1,2)*(R(2)*DYP(2))**2/APU(2,2)
SP(INM,2)=SP(INM,2)+RHO(IN,2)*(R(2)*DYP(2))**2/APU(INM,2)
GO TO 1000

C *** FOR U-VEL
20 CONTINUE

DO 21 I=2,INM
TERM=U(I+1,2)/DXMI(I+1)*DYP(2)+U(I-1,2)/DXMI(I)*DYP(2)
SU(I,2)=SU(I,2)+TERM*VISCOS
SP(I,2)=SP(I,2)+VISCOS*DYP(2)*(1./DXMI(I+1)+1./DXMI(I))

21 SP(I,2)=SP(I,2)+VISCOS*RESIST*EPSI*VOL(I,2)
GO TO 1000

C *** FOR V-VEL
30 GO TO 1000
C *** FOR W-VEL
40 GO TO 1000
C *** FOR K. ENERGY
50 GO TO 1000
C *** FOR DISSIPATION
60 GO TO 1000
C *** FOR TEMPERATURE
70 GO TO 1000
C *** FOR FLUID PROPERTIES
80 GO TO 1000
C *** CALLED FROM BOUNDP
90 P(1,2)=PIN

P(IN,2)=0
PP(IN,2)=0
PP(1,2)=0

C DUMMY VARABLES FOR UU,PRES,PPP,PPS FOR PRINTING
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DO 91 I=1,IN
UU(I,NITER)=U(I,2)
PPS(I,NITER)=PSM(I,2)/(P(I,2)+SMALL)
PRES(I,NITER)=P(I,2)
PPP(I,NITER)=PP(I,2)/(P(I,2)+SMALL)

91 CONTINUE
1000 CONTINUE

RETURN
END

C **************************************
SUBROUTINE OMEGA
INCLUDE ’COM2D.FOR’

C **************************************
C SPECIES EQUATION

RETURN
END

C **************************************
BLOCK DATA
INCLUDE ’COM2D.FOR’

C **************************************
C **** INITIAL DATA(make sure that IN,JN equal IT,JT)

DATA CC,IPREF,JPREF,MXIT,GAMMA/1.0E-06,3,2,55,0.5/
DATA CCTM,MXSTEP,DELT,STIME,MFREQ/1.0E-06,65,1.00,0.0,20/

C PP U V W E D T VIS P
DATA RP/1.0,0.95,0.5,0.5,0.5,1.0,1.0,1.0,0.95/
DATA NSWEEP/ 1, 1 , 1 , 1 , 1 , 1 , 1 /
DATA PR/1.0,1.0,1.0,1.0,1.0,1.0,0.7 /
DATA PRT/1.0,1.0,1.0,1.0,1.0,1.3,0.9 /
DATA DENSIT,VISCOS,SPHEAT/1.0,1.0,1.0/
DATA CD1,CD2,CMU,ELOG,CAPPA/1.44,1.92,0.09,9.793,0.4187/

C **** LOGICAL DATA
DATA TURBUL, STEADY, UNSTDY, FTRAN , CONMAS, AXISYMM

1 /.FALSE.,.TRUE., .FALSE., .FALSE., .FALSE., .FALSE./
DATA UPWIND,HYBRID,POWER/.TRUE.,.FALSE.,.FALSE./
DATA SLVE/2*.TRUE.,5*.FALSE./
DATA BSOR/.TRUE.,.TRUE.,6*.FALSE.,.TRUE./
DATA IREAD,IWRITE/.FALSE. ,.TRUE./

C PERIODIC BC
DATA IPERIOD,JPERIOD/0,0/
DATA DP1,DP2/0.0,0.0/

C **** READ GRID DATA
DATA GRCELL,GRNODE/.FALSE.,.TRUE./
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DATA IN,JN/5,3/
DATA EPSI,RESIST/0.1,4E5/
END

Pipe-Expansion Problem – Chapter 5
In the USER file that follows see how inlet conditions for e and ε are given in the INIT
subroutine. Also, in the BLOCK DATA routine, see that CONMAS and AXISYMM
are set active. The pipe-expansion step is designated by JB1. The file is first executed
with NTEMP = 0 and only flow variables are calculated. Then, reading NSIN, the
temperature equation is solved with NTEMP = 1. Also, in subroutine RESULT,
note how the reattachment length and Nusselt numbers are evaluated.

C **************************************
C THIS IS USER FILE FOR PIPE-EXPANSION
C **************************************

PROGRAM MAIN
INCLUDE ’COM2D.FOR’
OPEN(UNIT=6,FILE=’OO’)
WRITE(*,*)’-------- output is in OO file --------------’

C **** INITIAL DATA
INM=IN-1
JNM=JN-1
D2=2.0
D1=1.0
U2=1.0

C
WRITE(*,*)’ IF NTEMP = 1, ONLY TEMP SOLUTION ’
WRITE(*,*)’GIVE ----- MXIT,IREAD,DELT,VISCOS,NTEMP ’
READ(*,*)MXIT,IREAD,DELT,VISCOS,NTEMP
IF(NTEMP.EQ.1)THEN
SLVE(1)=.FALSE.
SLVE(2)=.FALSE.
SLVE(3)=.FALSE.
SLVE(5)=.FALSE.
SLVE(6)=.FALSE.
SLVE(7)=.TRUE.
ENDIF
PRT(7)=0.85+0.0309*(PR(7)+1)/PR(7)
REY=U2*D2*DENSIT/VISCOS
WRITE(6,*)’ REYNOLDS NO = ’,REY

C
CALL MAINPR
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STOP
END

C **************************************
SUBROUTINE TITLE
INCLUDE ’COM2D.FOR’

C **************************************

WRITE(6,*)’*******************************’
WRITE(6,*)’ PROGRAM TO CALCULATE SUDDEN EXPANSION D2/D1 = 2 ’
WRITE(6,*)’ KRALL AND SPARROW ’
WRITE(6,*)’*******************************’
RETURN
END

C **************************************
SUBROUTINE INIT
INCLUDE ’COM2D.FOR’

C **************************************
C INITIAL GUESS

RATIO=10*0.563E-3/VISCOS
UBAR=U2
DO 10 I=1,IN
QW(I,JN)=1.0
DO 10 J=1,JNM
U(I,J)=UBAR
U(1,J)=(D2/D1)**2*UBAR
IF(J.GE.JB1)U(1,J)=0.0
IF(TURBUL)THEN
E(I,J)=0.1*0.1*U(I,J)**2
D(I,J)=CMU*DENSIT*E(I,J)**2/VISCOS/RATIO
ENDIF

10 CONTINUE
RETURN
END

C **************************************
SUBROUTINE BSPEC
INCLUDE ’COM2D.FOR’

C **************************************
C **** PROVIDE BOUNDARY & BLOCKED REGIONS

CHARACTER*10 BLOCK,WEST,EAST,SOUTH,NORTH
CHARACTER*10 INFLOW,EXIT1,SYMM,EXIT2,WALLT,WALLQ,PERIOD
DATA BLOCK,WEST,EAST,SOUTH,NORTH
1 /’BLOCK’,’WEST’,’EAST’,’SOUTH’,’NORTH’/
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DATA INFLOW,EXIT1,SYMM,EXIT2,WALLT,WALLQ,PERIOD
1 /’INFLOW’,’EXIT1’,’SYMM’,’EXIT2’,’WALLT’,’WALLQ’,’PERIOD’/

C ***** BLOCKED REGIONS
C CALL TAG(BLOCK,BLOCK,IB1,IB2-1,JB1,JNM)
C ***** DEFINES W & E BOUNDARIES

CALL TAG(WEST,INFLOW,2,2, 2,JB1-1)
CALL TAG(WEST,WALLQ,2,2,JB1,JNM)
CALL TAG(EAST,EXIT2,INM,INM,2,JNM)

C ***** DEFINES N&S BOUNDARIES
CALL TAG(NORTH,WALLQ,2,INM, JNM,JNM)
CALL TAG(SOUTH,SYMM,2,INM,2,2)
RETURN
END

C **************************************
SUBROUTINE RESULT
INCLUDE ’COM2D.FOR’

C **************************************
CHARACTER*20 HEADER
DO 1 J=1,JN
DO 1 I=1,IN

1 VIST(I,J)=VIST(I,J)/VISCOS

JSTEP=-1
WRITE(6,*)’ NITER=’,NITER
HEADER=’ U-VEL’
CALL PRINTK(U,1,IN,1,JN,HEADER,JSTEP)
HEADER=’ V-VEL’
CALL PRINTK(V,1,IN,1,JN,HEADER,JSTEP)
HEADER=’ PRESS’
CALL PRINTK(P,1,IN,1,JN,HEADER,JSTEP)
IF(TURBUL)THEN
HEADER=’ K ENERGY’
CALL PRINTK(E,1,IN,1,JN,HEADER,JSTEP)
HEADER=’ DISS’
CALL PRINTK(D,1,IN,1,JN,HEADER,JSTEP)
HEADER=’ MUT’
CALL PRINTK(VIST,1,IN,1,JN,HEADER,JSTEP)
ENDIF
IF(SLVE(7))THEN
HEADER=’ TEMP’
CALL PRINTK(T,1,IN,1,JN,HEADER,JSTEP)
ENDIF
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C
STEP=2.0*R(JN)
XATTCH=0.0
COND=VISCOS*SPHEAT/PR(7)
DO 10 I=2,INM
XX=X(I)-XC(1)
IF(U(I,JNM).GT.0.0.AND.U(I-1,JNM).LT.0.0)THEN
BB=(U(I,JNM)-U(I-1,JNM))/DXMI(I)
AA=U(I,JNM)-BB*X(I)
XATTCH=-AA/BB-XC(1)
ENDIF
FLUX=QW(I,JN)
SHEAR=ABS(TAUW(I,JN))
UPLUS=U(I,JNM)/SQRT(SHEAR/DENSIT)
YPLUS=(Y(JN)-Y(JNM))*SQRT(SHEAR/DENSIT)/VISCOS
TW=T(I,JN)
ANUM=0.0
DEN=0.0
DEN1=0.0
DO 11 J=2,JNM
ANUM=ANUM+T(I,J)*ABS(U(I,J))*R(J)*DYP(J)
DEN=DEN+ABS(U(I,J))*R(J)*DYP(J)
DEN1=DEN1+U(I,J)*R(J)*DYP(J)

11 CONTINUE
TB=ANUM/DEN
UBAR=DEN1*2/R(JN)**2
ANU=FLUX/(TW-TB+SMALL)*2.0*R(JN)/COND
XX=XX/STEP
REY=UBAR*DENSIT*2*R(JN)/VISCOS
ANUTH=0.0123*REY**0.874*PR(7)**0.4
ANUR=ANU/ANUTH
WRITE(6,*)XX,ANUR,UPLUS,YPLUS

10 CONTINUE
WRITE(6,*)’ ANUTH = ’, ANUTH,’ REY = ’,REY

XATTCH=XATTCH/STEP
WRITE(6,*)’ ATTACHMENT X = ’,XATTCH
IBEG=2
IEND=35
ITOT=IEND-IBEG+1
OPEN(12,FILE=’EXPN.DAT’)
WRITE(12,*)’TITLE = EXPANSION - KRALL’
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WRITE(12,*)’VARIABLES = XX YY UU VV TT ’
WRITE(12,*)’ZONE T = ZONE1, I = ’,ITOT,’, J = ’,JN,’ ,F = BLOCK’
DO 111 J=1,JN

111 WRITE(12,*)(X(I),I=IBEG,IEND)
DO 112 J=1,JN

112 WRITE(12,*)(Y(J),I=IBEG,IEND)
DO 113 J=1,JN

113 WRITE(12,*)(U(I,J),I=IBEG,IEND)
DO 114 J=1,JN

114 WRITE(12,*)(V(I,J),I=IBEG,IEND)
DO 115 J=1,JN

115 WRITE(12,*)(T(I,J),I=IBEG,IEND)
CLOSE(12)
RETURN
END

C **************************************
SUBROUTINE ADSORB(NN)
INCLUDE ’COM2D.FOR’

C **************************************
N=NN
GO TO (10,20,30,40,50,60,70,80,90),N

C *** FOR PRESSURE CORRECTION
10 GO TO 1000
C *** FOR U-VEL
20 GO TO 1000
C *** FOR V-VEL
30 GO TO 1000
C *** FOR W-VEL
40 GO TO 1000
C *** FOR K. ENERGY
50 GO TO 1000
C *** FOR DISSIPATION
60 GO TO 1000
C *** FOR TEMPERATURE
70 GO TO 1000
C *** FOR FLUID PROPERTIES
80 GO TO 1000
C *** CALLED FROM BOUNDP
90 CONTINUE
1000 CONTINUE

RETURN
END
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C **************************************
SUBROUTINE OMEGA
INCLUDE ’COM2D.FOR’

C **************************************
RETURN
END

C **************************************
BLOCK DATA
INCLUDE ’COM2D.FOR’

C **************************************
C **** INITIAL DATA(make sure that IN,JN equal IT,JT)

DATA CC,IPREF,JPREF,MXIT,GAMMA/1.0E-05,10,10,55,0.5/
DATA CCTM,MXSTEP,DELT,STIME,MFREQ/1.0E-05,65,1.00,0.0,20/

C PP U V W E D T VIS P
DATA RP/1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.5,0.1/
DATA NSWEEP/ 10, 1 , 1 , 1 , 1 , 1 , 1 /
DATA PR/1.0,1.0,1.0,1.0,1.0,1.0,3.0 /
DATA PRT/1.0,1.0,1.0,1.0,1.0,1.3,0.9 /
DATA DENSIT,VISCOS,SPHEAT/1.0,0.5E-3,1.0/
DATA CD1,CD2,CMU,ELOG,CAPPA/1.44,1.92,0.09,9.793,0.4187/

C **** LOGICAL DATA
DATA TURBUL, STEADY, UNSTDY, FTRAN , CONMAS, AXISYMM

1 /.TRUE.,.TRUE., .FALSE., .TRUE., .TRUE., .TRUE./
DATA UPWIND,HYBRID,POWER/.TRUE.,.FALSE.,.FALSE./
DATA SLVE/3*.TRUE.,.FALSE.,2*.TRUE.,.FALSE./
DATA BSOR/9*.FALSE./
DATA IREAD,IWRITE/.FALSE. ,.TRUE./

C PERIODIC BC
DATA IPERIOD,JPERIOD/0,0/
DATA DP1,DP2/0.0,0.0/

C **** READ GRID DATA
DATA GRCELL,GRNODE/.TRUE.,.FALSE./
DATA IN,JN/67,24/
DATA JB1/14/
DATA YC/0.0,0.0,0.02,0.05,0.08,0.1,0.15,0.2,0.25

1 ,0.30,0.35,0.40,0.45,0.5
1 ,0.55,0.6,0.65,0.70,0.75
1 ,0.8,0.85,0.9,0.95,1.0/

DATA XC/0.0,0.0,0.03,0.06,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45
1 ,0.50,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95,1.0,1.05
1 ,1.12,1.2,1.3,1.4,1.5,1.6,1.75,1.9,2.05,2.2,2.4,2.6,2.8
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1 ,3.0,3.3,3.6,3.9,4.2,4.5,5.0,5.5,6.5,7.0,7.5,8.0,8.5,9.0
1 ,9.7,10.5,11.5,12.5,14.0,16.0,18.0,21.0,25.0,29.0,33.0
1 ,38.0,43.0,48.0,53.0,58.0/

END

Natural Convection Evaporation – Chapter 5
The USER file that follows shows implementation of the mass transfer equation in
subroutine OMEGA. In this subroutine, first coefficients of the discretised equation
(AE, AW, AN, and AS) are evaluated through CALL COEF(0,SC,0.9), where Prt =
0.9 is inserted though not required in actual calculations because the flow is laminar.
Then, since there is no source term (case of inert mass-transfer), no update of Su
and Sp is made.3 Now, boundary conditions are given where the mass transfer flux
AMW(I, 1) at the south wall is evaluated. Then, the equation is solved through CALL
SOLVE(0,RPO,RSU), where RPO is the underrelaxation factor. In the ADSORB
subroutine, the source term in the v equation is added to account for buoyancy.
Density is taken to be constant.

C **************************************
C THIS IS USER FILE NATURAL CONVECTION MASS TRANSFER
C **************************************

PROGRAM MAIN
INCLUDE ’COM2D.FOR’
OPEN(UNIT=6,FILE=’OO’)
WRITE(*,*)’-------- output is in OO file --------------’

C **** INITIAL DATA
INM=IN-1
JNM=JN-1
SC=0.614
OBR=50
OWT=50

C
WRITE(*,*)’GIVE ----- MXIT,IREAD,GRM ’
READ(*,*)MXIT,IREAD,GRM
CALL MAINPR
STOP
END

C **************************************
SUBROUTINE TITLE
INCLUDE ’COM2D.FOR’

C **************************************

3 In a combustion problem, source terms must be calculated for each � = ω j of interest.
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WRITE(6,*)’***************************************’
WRITE(6,*)’ WATER EVAPORATION BY NATURAL CONVECTION ’
WRITE(6,*)’***************************************’
RETURN
END

C **************************************
SUBROUTINE INIT
INCLUDE ’COM2D.FOR’

C **************************************
C INITIAL GUESS (ONLY HEAT FLUX NEEDS TO BE SPECIFIED)

DO 10 I=1,IN
DO 10 J=1,JN
O(I,J)=0.0
IF(I.LT.IB1)O(I,1)=1.0

10 CONTINUE
RETURN
END

C **************************************
SUBROUTINE BSPEC
INCLUDE ’COM2D.FOR’

C **************************************
C **** PROVIDE BOUNDARY & BLOCKED REGIONS
C

CHARACTER*10 BLOCK,WEST,EAST,SOUTH,NORTH
CHARACTER*10 INFLOW,EXIT1,SYMM,EXIT2,WALLT,WALLQ,PERIOD
DATA BLOCK,WEST,EAST,SOUTH,NORTH
1 /’BLOCK’,’WEST’,’EAST’,’SOUTH’,’NORTH’/
DATA INFLOW,EXIT1,SYMM,EXIT2,WALLT,WALLQ,PERIOD
1 /’INFLOW’,’EXIT1’,’SYMM’,’EXIT2’,’WALLT’,’WALLQ’,’PERIOD’/

C ***** BLOCKED REGIONS
CALL TAG(BLOCK,BLOCK,IB1,IB2-1,2,JB1-1)

C ***** DEFINES W & E BOUNDARIES
CALL TAG(WEST,SYMM,2,2, 2,JNM)
CALL TAG(WEST,WALLQ,IB2,IB2, 2,JB1-1)
CALL TAG(EAST,WALLQ,INM,INM,2,JNM)
CALL TAG(EAST,WALLQ,IB1-1,IB1-1,2,JB1-1)

C ***** DEFINES N&S BOUNDARIES
CALL TAG(NORTH,WALLQ,2,INM, JNM,JNM)
CALL TAG(SOUTH,WALLQ,2,IB1-1,2,2)
CALL TAG(SOUTH,WALLT,IB2,INM,2,2)
CALL TAG(SOUTH,WALLT,IB1,IB2-1,JB1,JB1)
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RETURN
END

C **************************************
SUBROUTINE RESULT
INCLUDE ’COM2D.FOR’

C **************************************
CHARACTER*20 HEADER
JSTEP=-1
WRITE(6,*)’ NITER=’,NITER
HEADER=’ U-VEL’
CALL PRINTK(U,1,IN,1,JN,HEADER,JSTEP)
HEADER=’ V-VEL’
CALL PRINTK(V,1,IN,1,JN,HEADER,JSTEP)
HEADER=’ PRESS’
CALL PRINTK(P,1,IN,1,JN,HEADER,JSTEP)
HEADER=’ OMEGA’
CALL PRINTK(O,1,IN,1,JN,HEADER,JSTEP)
HEADER=’ AMW’
CALL PRINTK(AMW,1,IN,1,JN,HEADER,JSTEP)

C CALCULATE NORALISED EVAPORATION RATE
SUMWAT=0.0
DX=0.0
DO 1 I=2,IB1-1
DX=DX+DXP(I)

1 SUMWAT=SUMWAT+AMW(I,1)*DXP(I)
VBAR=SUMWAT/DX
SUMBR=0.0
DO 2 I=IB2,INM

2 SUMBR=SUMBR+AMW(I,1)*DXP(I)
C DIFFUSION LIMIT

B=(0-1)/(1-OWT)
DL=VISCOS/SC/YC(JB1)*ALOG(1+B)
WRITE(6,*)’ DIFFUSION LIMIT = ’,DL
WRITE(6,*)’ ACTUAL FLUX = ’,VBAR
RR=VBAR/DL
WRITE(6,*)’ RATIO = ’,RR,’ GRM = ’,GRM,’ B = ’,B
WRITE(6,*)’ SUMWAT = ’,SUMWAT,’ SUMBR = ’,SUMBR
WRITE(6,*)’ OWT = OBR = ’,OWT
IEND=30
JEND=33
OPEN(24,FILE=’EVAP.DAT’)
WRITE(24,*)’TITLE = EVAPORATION’
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WRITE(24,*)’VARIABLES = XX YY UU VV OO ’
WRITE(24,*)’ZONE T = ZONE1, I = ’,IEND

1 ,’ , J = ’,JEND,’ ,F = BLOCK’
DO 11 J=1,JEND

11 WRITE(24,*)(X(I),I=1,IEND)
DO 12 J=1,JEND

12 WRITE(24,*)(Y(J),I=1,IEND)
DO 13 J=1,JEND

13 WRITE(24,*)(U(I,J),I=1,IEND)
DO 14 J=1,JEND

14 WRITE(24,*)(V(I,J),I=1,IEND)
DO 15 J=1,JEND

15 WRITE(24,*)(O(I,J),I=1,IEND)
CLOSE(24)
RETURN
END

C **************************************
SUBROUTINE ADSORB(NN)
INCLUDE ’COM2D.FOR’

C **************************************
N=NN
GO TO (10,20,30,40,50,60,70,80,90),N

C *** FOR PRESSURE CORRECTION
10 GO TO 1000
C *** FOR U-VEL
20 GO TO 1000
C *** FOR V-VEL
30 DO 31 J=2,JNM

DO 31 I=2,INM
31 SU(I,J)=SU(I,J)+GRM*O(I,J)*VOL(I,J)*(1-NTAG(I,J))

GO TO 1000
C *** FOR W-VEL
40 GO TO 1000
C *** FOR K. ENERGY
50 GO TO 1000
C *** FOR DISSIPATION
60 GO TO 1000
C *** FOR TEMPERATURE
70 GO TO 1000
C *** FOR FLUID PROPERTIES
80 GO TO 1000
C *** CALLED FORM BOUNDP - FOR PRESSURE
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90 CONTINUE
1000 CONTINUE

RETURN
END

C **************************************
SUBROUTINE OMEGA
INCLUDE ’COM2D.FOR’

C **************************************
C SOLVE FOR MASSFRACTION

CALL COEF(0,SC,0.9)
C BOUNDARY CONDITIONS

DO 2 J=2,JNM
AW(2,J)=0.0
O(1,J)=O(2,J)
AE(INM,J)=0.0
O(IN,J)=O(INM,J)
IF(J.LT.JB1)THEN
AE(IB1-1,J)=0.0
O(IB1,J)=O(IB1-1,J)
AW(IB2,J)=0.0
O(IB2-1,J)=O(IB2,J)
ENDIF

2 CONTINUE
DO 3 I=2,INM

C NORTH WALL
AN(I,JNM)=0.0
O(I,JN)=O(I,JNM)

C TIP WALL
IF(I.GT.IB1-1.AND.I.LT.IB2)THEN
AS(I,JB1)=0.0
O(I,JB1-1)=O(I,JB1)
ENDIF

C WALL-WATER AND BRINE
IF(I.LE.IB1-1.OR.I.GE.IB2)THEN
DELTA=Y(2)-Y(1)
TERM=VIS(I,1)/DELTA/SC
OTT=OWT
IF(I.GE.IB2)OTT=OBR
B=(O(I,2)-O(I,1))/(O(I,1)-OTT)
AMW(I,1)=TERM*ALOG(1+B)

C WALL VELOCITY
V(I,1)=AMW(I,1)/RHO(I,1)
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ENDIF
3 CONTINUE

RPO=1.0
DO 4 J=2,JNM
DO 4 I=2,INM
SUM=AW(I,J)+AE(I,J)+AS(I,J)+AN(I,J)

4 AP(I,J)=(SUM+SP(I,J))/RPO
C SOLVE THE O EQN

CALL SOLVE(O,RPO,RSU)
DO 5 J=1,JN
DO 5 I=1,IN
IF(O(I,J).GT.1.0)O(I,J)=1.0

5 IF(O(I,J).LT.0.0)O(I,J)=0.0
RETURN
END

C **************************************
BLOCK DATA
INCLUDE ’COM2D.FOR’

C **************************************
C **** INITIAL DATA(make sure that IN,JN equal IT,JT)

DATA CC,IPREF,JPREF,MXIT,GAMMA/1.0E-05,10,10,55,0.5/
DATA CCTM,MXSTEP,DELT,STIME,MFREQ/1.0E-05,65,1.00,0.0,20/

C PP U V W E D T VIS P
DATA RP/1.0,0.5,0.5,1.0,1.0,1.0,1.0,1.0,0.1/
DATA NSWEEP/ 10, 1 , 1 , 1 , 1 , 1 , 1 /
DATA PR/1.0,1.0,1.0,1.0,1.0,1.0,0.7 /
DATA PRT/1.0,1.0,1.0,1.0,1.0,1.3,0.9 /
DATA DENSIT,VISCOS,SPHEAT/1.0,1.0,1.0/
DATA CD1,CD2,CMU,ELOG,CAPPA/1.44,1.92,0.09,9.793,0.4187/

C **** LOGICAL DATA
DATA TURBUL, STEADY, UNSTDY, FTRAN , CONMAS, AXISYMM

1 /.FALSE.,.TRUE., .FALSE., .FALSE., .FALSE., .FALSE./
DATA UPWIND,HYBRID,POWER/.TRUE.,.FALSE.,.FALSE./
DATA SLVE/3*.TRUE.,4*.FALSE./
DATA BSOR/2*.FALSE.,.TRUE.,6*.FALSE./
DATA IREAD,IWRITE/.FALSE. ,.TRUE./

C PERIODIC BC
DATA IPERIOD,JPERIOD/0,0/
DATA DP1,DP2/0.0,0.0/

C **** READ GRID DATA
DATA GRCELL,GRNODE/.TRUE.,.FALSE./
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DATA IB1,IB2,JB1,IN,JN/16,21,24,37,37/
C h=2 AND H = 8

DATA YC/0.0,0.0,0.02,0.04,0.07,0.12,0.18,0.25,0.35,0.5
1 ,0.65,0.8,0.95,1.1,1.25,1.4,1.55,1.7,1.8,1.85,1.9
1 ,1.95,1.98,2.0
1 ,2.02,2.05,2.1,2.2,2.4,2.8,3.3,4.0,5.0,6.0,7.0,7.5,8.0/

C L/2 = 8, t = 0.1, l/2=0.5
DATA XC/0.0,0.0,0.02,0.04,0.07,0.1,0.15,0.2,0.25,0.3,0.35,0.4

1 ,0.43,0.46,0.48,0.5
1 ,0.52,0.54,0.56,0.58,0.6
1 ,0.62,0.65,0.7,0.8,0.9,1.0,1.2,1.5,2.0,3.0,4.0,5.0
1 ,6.0,7.0,7.5,8.0/

END

Library File LIB2D.FOR
C *******************************************
C THIS IS LIBRARY FILE LIB2D.FOR ---- A W DATE
C RESIDUALS ARE STORED FOR PLOTTING IN SUBROUTINE EQN
C *******************************************

SUBROUTINE MAINPR
INCLUDE ’COM2D.FOR’

C *******************************************
NPERIOD=0
CALL TITLE
CALL GRID
CALL INITIA
CALL BSPEC
CALL INIT
CALL PROPS
CALL INDATA
CALL INFLUX
IF(IREAD) CALL IPT
IF(UNSTDY)CALL UPDATE
CALL EQN
CALL BOUNDP
IF(IWRITE)CALL OPT
CALL RESULT
RETURN
END

C *******************************************
SUBROUTINE INITIA
INCLUDE ’COM2D.FOR’
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C *******************************************
DO 1 J=1,JN
DO 1 I=1,IN
PP(I,J)=0.0
P(I,J)=0.0
U(I,J)=0.0
V(I,J)=0.0
W(I,J)=0.0
E(I,J)=0.0
D(I,J)=0.0
T(I,J)=0.0
QW(I,J)=0.0
VIS(I,J)=VISCOS
VIST(I,J)=0.0
RHO(I,J)=DENSIT
RHOO(I,J)=DENSIT
AW(I,J)=0.0
AE(I,J)=0.0
AS(I,J)=0.0
AN(I,J)=0.0
APU(I,J)=GREAT
APV(I,J)=GREAT
AP1(I,J)=GREAT
AP(I,J)=GREAT
NTAG(I,J)=0
NTAGW(I,J)=0
NTAGE(I,J)=0
NTAGS(I,J)=0

1 NTAGN(I,J)=0
RETURN
END

C *******************************************
SUBROUTINE TAG(CHAR1,CHAR2,IB,IL,JB,JL)
INCLUDE ’COM2D.FOR’

C *******************************************
CHARACTER*10 CHAR1,CHAR2
IF(CHAR2.EQ.’PERIOD’)NPERIOD=1
DO 1 J=JB,JL
DO 1 I=IB,IL
IF(CHAR1.EQ.’BLOCK’)THEN
NTAG(I,J)=1
GO TO 1
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ENDIF
IF (CHAR1.EQ.’WEST’)THEN
IF(CHAR2.EQ.’INFLOW’)NTAGW(I,J)=11
IF(CHAR2.EQ.’SYMM’ )NTAGW(I,J)=12
IF(CHAR2.EQ.’EXIT1’ )NTAGW(I,J)=13
IF(CHAR2.EQ.’EXIT2’ )NTAGW(I,J)=15
IF(CHAR2.EQ.’WALLT’ )NTAGW(I,J)=14
IF(CHAR2.EQ.’WALLQ’ )NTAGW(I,J)=16
IF(CHAR2.EQ.’PERIOD’ )NTAGW(I,J)=17
ELSE IF(CHAR1.EQ.’EAST’)THEN
IF(CHAR2.EQ.’INFLOW’)NTAGE(I,J)=21
IF(CHAR2.EQ.’SYMM’ )NTAGE(I,J)=22
IF(CHAR2.EQ.’EXIT1’ )NTAGE(I,J)=23
IF(CHAR2.EQ.’EXIT2’ )NTAGE(I,J)=25
IF(CHAR2.EQ.’WALLT’ )NTAGE(I,J)=24
IF(CHAR2.EQ.’WALLQ’ )NTAGE(I,J)=26
IF(CHAR2.EQ.’PERIOD’ )NTAGE(I,J)=27
ELSE IF(CHAR1.EQ.’SOUTH’)THEN
IF(CHAR2.EQ.’INFLOW’)NTAGS(I,J)=31
IF(CHAR2.EQ.’SYMM’ )NTAGS(I,J)=32
IF(CHAR2.EQ.’EXIT1’ )NTAGS(I,J)=33
IF(CHAR2.EQ.’EXIT2’ )NTAGS(I,J)=35
IF(CHAR2.EQ.’WALLT’ )NTAGS(I,J)=34
IF(CHAR2.EQ.’WALLQ’ )NTAGS(I,J)=36
IF(CHAR2.EQ.’PERIOD’ )NTAGS(I,J)=37
ELSE IF(CHAR1.EQ.’NORTH’)THEN
IF(CHAR2.EQ.’INFLOW’)NTAGN(I,J)=41
IF(CHAR2.EQ.’SYMM’ )NTAGN(I,J)=42
IF(CHAR2.EQ.’EXIT1’ )NTAGN(I,J)=43
IF(CHAR2.EQ.’EXIT2’ )NTAGN(I,J)=45
IF(CHAR2.EQ.’WALLT’ )NTAGN(I,J)=44
IF(CHAR2.EQ.’WALLQ’ )NTAGN(I,J)=46
IF(CHAR2.EQ.’PERIOD’ )NTAGN(I,J)=47
ENDIF

1 CONTINUE
RETURN
END

C *******************************************
SUBROUTINE BOUND(NN)
INCLUDE ’COM2D.FOR’

C *******************************************
N=NN
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DO 1 J=2,JNM
DO 1 I=2,INM
VOLP=VOL(I,J)
RHOP=RHO(I,J)

C *** BLOCKED REGION
IF(NTAG(I,J).EQ.1)THEN
IF(N.EQ.2)SU(I,J)=GREAT*U(I,J)
IF(N.EQ.3)SU(I,J)=GREAT*V(I,J)
IF(N.EQ.4)SU(I,J)=GREAT*W(I,J)
IF(N.EQ.5)SU(I,J)=GREAT*E(I,J)
IF(N.EQ.6)SU(I,J)=GREAT*D(I,J)
IF(N.EQ.7)SU(I,J)=GREAT*T(I,J)
SP(I,J)=GREAT
GO TO 1
END IF

C *** WEST BOUNDARY
LW=NTAGW(I,J)
IF(LW.EQ.0)GO TO 100
AWNOW=AW(I,J)

C INLET
IF(LW.EQ.11.OR.LW.EQ.17)THEN
AW(I,J)=0.0
IF(N.EQ.2)SU(I,J)=AWNOW*U(I-1,J)+SU(I,J)
IF(N.EQ.3)SU(I,J)=AWNOW*V(I-1,J)+SU(I,J)
IF(N.EQ.4)SU(I,J)=AWNOW*W(I-1,J)+SU(I,J)
IF(N.EQ.5)SU(I,J)=AWNOW*E(I-1,J)+SU(I,J)
IF(N.EQ.6)SU(I,J)=AWNOW*D(I-1,J)+SU(I,J)
IF(N.EQ.7)SU(I,J)=AWNOW*T(I-1,J)+SU(I,J)
SP(I,J)=AWNOW+SP(I,J)
ENDIF

C SYMMETRY
IF(LW.EQ.12)THEN
IF(N.EQ.2)SP(I,J)=AWNOW+SP(I,J)
AW(I,J)=0.0
IF(N.EQ.2)U(I-1,J)=0.0
IF(N.EQ.3)V(I-1,J)=V(I,J)
IF(N.EQ.4)W(I-1,J)=W(I,J)
IF(N.EQ.5)E(I-1,J)=E(I,J)
IF(N.EQ.6)D(I-1,J)=D(I,J)
IF(N.EQ.7)T(I-1,J)=T(I,J)
ENDIF

C EXIT
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IF(LW.EQ.13.OR.LW.EQ.15) THEN
AW(I,J)=0.0
RATIO=(X(I)-XC(I))/DXMI(I+1)
IF(LW.EQ.13)RATIO=0.0
IF(N.EQ.2)U(I-1,J)=U(I,J)-RATIO*(U(I+1,J)-U(I,J))
IF(N.EQ.3)V(I-1,J)=V(I,J)-RATIO*(V(I+1,J)-V(I,J))
IF(N.EQ.4)W(I-1,J)=W(I,J)-RATIO*(W(I+1,J)-W(I,J))
IF(N.EQ.5)E(I-1,J)=E(I,J)-RATIO*(E(I+1,J)-E(I,J))
IF(N.EQ.6)D(I-1,J)=D(I,J)-RATIO*(D(I+1,J)-D(I,J))
IF(N.EQ.7)T(I-1,J)=T(I,J)-RATIO*(T(I+1,J)-T(I,J))
ENDIF

C WALL
IF(LW.EQ.14.OR.LW.EQ.16) THEN
AW(I,J)=0.0
DELTA=X(I)-XC(I)
AREA=R(J)*DYP(J)
UWAL=U(I-1,J)
VWAL=V(I-1,J)
WWAL=W(I-1,J)
VISWAL=VIS(I-1,J)
ANG=ATAN(W(I,J)/(V(I,J)+SMALL))
VT=(V(I,J)-VWAL)*COS(ANG)+(W(I,J)-WWAL)*SIN(ANG)
VTTAU=CMU**0.25*SQRT(ABS(E(I,J)))
YPLUS=VTTAU*DELTA*RHOP/VISWAL
EYPLUS=ELOG*YPLUS
TMULT=VISWAL*AREA/DELTA
TAUW(I-1,J)=VISWAL*VT/DELTA
IF(TURBUL)TAUW(I-1,J)=RHO(I-1,J)*VTTAU**2
IF(YPLUS.GT.11.6)TMULT=RHOP*CAPPA*VTTAU*AREA/ALOG(EYPLUS)
IF(N.EQ.2) THEN
SU(I,J)=AWNOW*UWAL+SU(I,J)
SP(I,J)=AWNOW+SP(I,J)
ELSE IF(N.EQ.3) THEN
SU(I,J)=TMULT*VWAL+SU(I,J)
SP(I,J)=TMULT+SP(I,J)
ELSE IF(N.EQ.4) THEN
SU(I,J)=TMULT*WWAL+SU(I,J)
SP(I,J)=TMULT+SP(I,J)
ELSE IF(N.EQ.5) THEN
GENR=TMULT*VT/AREA*VT/DELTA
TERM=RHOP**2*CMU*ABS(E(I,J))/VISWAL
IF(YPLUS.GT.11.6)
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1 TERM=RHOP*VTTAU*ALOG(EYPLUS)*CMU**0.5/CAPPA/DELTA
SU(I,J)=GENR*VOLP+SU(I,J)
SP(I,J)=TERM*VOLP+SP(I,J)
ELSE IF(N.EQ.6) THEN
TERM=VTTAU**3/CAPPA/DELTA
SU(I,J)=GREAT*TERM
SP(I,J)=GREAT
ELSE IF(N.EQ.7) THEN
IF(TURBUL)THEN
UPLUS=ABS(VT)/VTTAU
STANTON=STAN(UPLUS,YPLUS,PR(7),PRT(7))
TERM=RHOP*ABS(VT)*AREA*STANTON
ELSE
TERM=VISWAL/(PR(N)*DELTA)*AREA
ENDIF
IF(LW.EQ.14)THEN
SU(I,J)=TERM*T(I-1,J)+SU(I,J)
SP(I,J)=TERM+SP(I,J)
QW(I-1,J)=TERM/AREA*(T(I-1,J)-T(I,J))*SPH(I-1,J)
ELSE IF(LW.EQ.16)THEN
SU(I,J)=QW(I-1,J)*AREA/SPH(I-1,J)+SU(I,J)
T(I-1,J)=QW(I-1,J)/TERM*AREA/SPH(I-1,J)+T(I,J)
ENDIF
ENDIF
ENDIF

C *** EAST BOUNDARY
100 LE=NTAGE(I,J)

IF(LE.EQ.0)GO TO 200
AENOW=AE(I,J)

C INLET
IF(LE.EQ.21.OR.LE.EQ.27)THEN
AE(I,J)=0.0
IF(N.EQ.2)SU(I,J)=AENOW*U(I+1,J)+SU(I,J)
IF(N.EQ.3)SU(I,J)=AENOW*V(I+1,J)+SU(I,J)
IF(N.EQ.4)SU(I,J)=AENOW*W(I+1,J)+SU(I,J)
IF(N.EQ.5)SU(I,J)=AENOW*E(I+1,J)+SU(I,J)
IF(N.EQ.6)SU(I,J)=AENOW*D(I+1,J)+SU(I,J)
IF(N.EQ.7)SU(I,J)=AENOW*T(I+1,J)+SU(I,J)
SP(I,J)=AENOW+SP(I,J)
ENDIF

C SYMMETRY
IF(LE.EQ.22)THEN
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IF(N.EQ.2)SP(I,J)=AENOW+SP(I,J)
AE(I,J)=0.0
IF(N.EQ.2)U(I+1,J)=0.0
IF(N.EQ.3)V(I+1,J)=V(I,J)
IF(N.EQ.4)W(I+1,J)=W(I,J)
IF(N.EQ.5)E(I+1,J)=E(I,J)
IF(N.EQ.6)D(I+1,J)=D(I,J)
IF(N.EQ.7)T(I+1,J)=T(I,J)
ENDIF

C EXIT
IF(LE.EQ.23.OR.LE.EQ.25) THEN
AE(I,J)=0.0
RATIO=(XC(I+1)-X(I))/DXMI(I)
IF(LE.EQ.23)RATIO=0.0
IF(N.EQ.2)U(I+1,J)=U(I,J)+RATIO*(U(I,J)-U(I-1,J))
IF(N.EQ.3)V(I+1,J)=V(I,J)+RATIO*(V(I,J)-V(I-1,J))
IF(N.EQ.4)W(I+1,J)=W(I,J)+RATIO*(W(I,J)-W(I-1,J))
IF(N.EQ.5)E(I+1,J)=E(I,J)+RATIO*(E(I,J)-E(I-1,J))
IF(N.EQ.6)D(I+1,J)=D(I,J)+RATIO*(D(I,J)-D(I-1,J))
IF(N.EQ.7)T(I+1,J)=T(I,J)+RATIO*(T(I,J)-T(I-1,J))
ENDIF

C WALL
IF(LE.EQ.24.OR.LE.EQ.26) THEN
AE(I,J)=0.0
DELTA=XC(I+1)-X(I)
AREA=R(J)*DYP(J)
UWAL=U(I+1,J)
VWAL=V(I+1,J)
WWAL=W(I+1,J)
VISWAL=VIS(I+1,J)
ANG=ATAN(W(I,J)/(V(I,J)+SMALL))
VT=(V(I,J)-VWAL)*COS(ANG)+(W(I,J)-WWAL)*SIN(ANG)
VTTAU=CMU**0.25*SQRT(ABS(E(I,J)))
YPLUS=VTTAU*DELTA*RHOP/VISWAL
EYPLUS=ELOG*YPLUS
TMULT=VISWAL*AREA/DELTA
TAUW(I+1,J)=-VISWAL*VT/DELTA
IF(TURBUL)TAUW(I+1,J)=RHO(I+1,J)*VTTAU**2
IF(YPLUS.GT.11.6)TMULT=RHOP*CAPPA*VTTAU*AREA/ALOG(EYPLUS)
IF(N.EQ.2) THEN
SU(I,J)=AENOW*UWAL+SU(I,J)
SP(I,J)=AENOW+SP(I,J)
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ELSE IF(N.EQ.3) THEN
SU(I,J)=TMULT*VWAL+SU(I,J)
SP(I,J)=TMULT+SP(I,J)
ELSE IF(N.EQ.4) THEN
SU(I,J)=TMULT*WWAL+SU(I,J)
SP(I,J)=TMULT+SP(I,J)
ELSE IF(N.EQ.5) THEN
GENR=TMULT*VT/AREA*VT/DELTA
TERM=RHOP**2*CMU*ABS(E(I,J))/VISWAL
IF(YPLUS.GT.11.6)

1 TERM=RHOP*VTTAU*ALOG(EYPLUS)*CMU**0.5/CAPPA/DELTA
SU(I,J)=GENR*VOLP+SU(I,J)
SP(I,J)=TERM*VOLP+SP(I,J)
ELSE IF(N.EQ.6) THEN
TERM=VTTAU**3/CAPPA/DELTA
SU(I,J)=GREAT*TERM
SP(I,J)=GREAT
ELSE IF(N.EQ.7) THEN
IF(TURBUL)THEN
UPLUS=ABS(VT)/VTTAU
STANTON=STAN(UPLUS,YPLUS,PR(7),PRT(7))
TERM=RHOP*ABS(VT)*AREA*STANTON
ELSE
TERM=VISWAL/(PR(N)*DELTA)*AREA
ENDIF
IF(LE.EQ.24)THEN
SU(I,J)=TERM*T(I+1,J)+SU(I,J)
SP(I,J)=TERM+SP(I,J)
QW(I+1,J)=TERM/AREA*(T(I+1,J)-T(I,J))*SPH(I+1,J)
ELSE IF(LE.EQ.26)THEN
SU(I,J)=QW(I+1,J)*AREA/SPH(I+1,J)+SU(I,J)
T(I+1,J)=QW(I+1,J)/TERM*AREA/SPH(I+1,J)+T(I,J)
ENDIF
ENDIF
ENDIF

C *** SOUTH BOUNDARY
200 LS=NTAGS(I,J)

IF(LS.EQ.0)GO TO 300
ASNOW=AS(I,J)

C INLET
IF(LS.EQ.31.OR.LS.EQ.37)THEN
AS(I,J)=0.0
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IF(N.EQ.2)SU(I,J)=ASNOW*U(I,J-1)+SU(I,J)
IF(N.EQ.3)SU(I,J)=ASNOW*V(I,J-1)+SU(I,J)
IF(N.EQ.4)SU(I,J)=ASNOW*W(I,J-1)+SU(I,J)
IF(N.EQ.5)SU(I,J)=ASNOW*E(I,J-1)+SU(I,J)
IF(N.EQ.6)SU(I,J)=ASNOW*D(I,J-1)+SU(I,J)
IF(N.EQ.7)SU(I,J)=ASNOW*T(I,J-1)+SU(I,J)
SP(I,J)=ASNOW+SP(I,J)
ENDIF

C SYMMETRY
IF(LS.EQ.32)THEN
IF(N.EQ.3)SP(I,J)=ASNOW+SP(I,J)
AS(I,J)=0.0
IF(N.EQ.3)V(I,J-1)=0.0
IF(N.EQ.2)U(I,J-1)=U(I,J)
IF(N.EQ.4)W(I,J-1)=W(I,J)
IF(N.EQ.5)E(I,J-1)=E(I,J)
IF(N.EQ.6)D(I,J-1)=D(I,J)
IF(N.EQ.7)T(I,J-1)=T(I,J)
ENDIF

C EXIT
IF(LS.EQ.33.OR.LS.EQ.35) THEN
RATIO=(Y(J)-YC(J))/DYMI(J+1)
IF(LS.EQ.33)RATIO=0.0
AS(I,J)=0.0
IF(N.EQ.2)U(I,J-1)=U(I,J)-RATIO*(U(I,J+1)-U(I,J))
IF(N.EQ.3)V(I,J-1)=V(I,J)-RATIO*(V(I,J+1)-V(I,J))
IF(N.EQ.4)W(I,J-1)=W(I,J)-RATIO*(W(I,J+1)-W(I,J))
IF(N.EQ.5)E(I,J-1)=E(I,J)-RATIO*(E(I,J+1)-E(I,J))
IF(N.EQ.6)D(I,J-1)=D(I,J)-RATIO*(D(I,J+1)-D(I,J))
IF(N.EQ.7)T(I,J-1)=T(I,J)-RATIO*(T(I,J+1)-T(I,J))
ENDIF

C WALL
IF(LS.EQ.34.OR.LS.EQ.36) THEN
AS(I,J)=0.0
DELTA=Y(J)-YC(J)
AREA=RC(J)*DXP(I)
UWAL=U(I,J-1)
VWAL=V(I,J-1)
WWAL=W(I,J-1)
VISWAL=VIS(I,J-1)
ANG=ATAN(W(I,J)/(U(I,J)+SMALL))
VT=(U(I,J)-UWAL)*COS(ANG)+(W(I,J)-WWAL)*SIN(ANG)



P1: ICD/GKJ P2: IWV
0521853265appc CB908/Date 0 521 85326 5 May 25, 2005 11:59

340 APPENDIX C. 2D CARTESIAN CODE

VTTAU=CMU**0.25*SQRT(ABS(E(I,J)))
YPLUS=VTTAU*DELTA*RHOP/VISWAL
EYPLUS=ELOG*YPLUS
TMULT=VISWAL*AREA/DELTA
TAUW(I,J-1)=VISWAL*VT/DELTA
IF(TURBUL)TAUW(I,J-1)=RHO(I,J-1)*VTTAU**2
IF(YPLUS.GT.11.6)TMULT=RHOP*CAPPA*VTTAU*AREA/ALOG(EYPLUS)
IF(N.EQ.2) THEN
SU(I,J)=TMULT*UWAL+SU(I,J)
SP(I,J)=TMULT+SP(I,J)
ELSE IF(N.EQ.3) THEN
SU(I,J)=ASNOW*VWAL+SU(I,J)
SP(I,J)=ASNOW+SP(I,J)
ELSE IF(N.EQ.4) THEN
SU(I,J)=TMULT*WWAL+SU(I,J)
SP(I,J)=TMULT+SP(I,J)
ELSE IF(N.EQ.5) THEN
GENR=TMULT*VT/AREA*VT/DELTA
TERM=RHOP**2*CMU*ABS(E(I,J))/VISWAL
IF(YPLUS.GT.11.6)

1 TERM=RHOP*VTTAU*ALOG(EYPLUS)*CMU**0.5/CAPPA/DELTA
SU(I,J)=GENR*VOLP+SU(I,J)
SP(I,J)=TERM*VOLP+SP(I,J)
ELSE IF(N.EQ.6) THEN
TERM=VTTAU**3/CAPPA/DELTA
SU(I,J)=GREAT*TERM
SP(I,J)=GREAT
ELSE IF(N.EQ.7) THEN
IF(TURBUL)THEN
UPLUS=ABS(VT)/VTTAU
STANTON=STAN(UPLUS,YPLUS,PR(7),PRT(7))
TERM=RHOP*ABS(VT)*AREA*STANTON
ELSE
TERM=VISWAL/(PR(N)*DELTA)*AREA
ENDIF
IF(LS.EQ.34)THEN
SU(I,J)=TERM*T(I,J-1)+SU(I,J)
SP(I,J)=TERM+SP(I,J)
QW(I,J-1)=TERM/AREA*(T(I,J-1)-T(I,J))*SPH(I,J-1)
ELSE IF(LS.EQ.36)THEN
SU(I,J)=QW(I,J-1)*AREA/SPH(I,J-1)+SU(I,J)
T(I,J-1)=QW(I,J-1)/TERM*AREA/SPH(I,J-1)+T(I,J)
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ENDIF
ENDIF
ENDIF

C *** NORTH BOUNDARY
300 LN=NTAGN(I,J)

IF(LN.EQ.0)GO TO 1
ANNOW=AN(I,J)

C INLET
IF(LN.EQ.41.OR.LN.EQ.47)THEN
AN(I,J)=0.0
IF(N.EQ.2)SU(I,J)=ANNOW*U(I,J+1)+SU(I,J)
IF(N.EQ.3)SU(I,J)=ANNOW*V(I,J+1)+SU(I,J)
IF(N.EQ.4)SU(I,J)=ANNOW*W(I,J+1)+SU(I,J)
IF(N.EQ.5)SU(I,J)=ANNOW*E(I,J+1)+SU(I,J)
IF(N.EQ.6)SU(I,J)=ANNOW*D(I,J+1)+SU(I,J)
IF(N.EQ.7)SU(I,J)=ANNOW*T(I,J+1)+SU(I,J)
SP(I,J)=ANNOW+SP(I,J)
ENDIF

C SYMMETRY
IF(LN.EQ.42)THEN
IF(N.EQ.3)SP(I,J)=ANNOW+SP(I,J)
AN(I,J)=0.0
IF(N.EQ.3)V(I,J+1)=0.0
IF(N.EQ.2)U(I,J+1)=U(I,J)
IF(N.EQ.4)W(I,J+1)=W(I,J)
IF(N.EQ.5)E(I,J+1)=E(I,J)
IF(N.EQ.6)D(I,J+1)=D(I,J)
IF(N.EQ.7)T(I,J+1)=T(I,J)
ENDIF

C EXIT
IF(LN.EQ.43.OR.LN.EQ.45) THEN
AN(I,J)=0.0
RATIO=(YC(J+1)-Y(J))/DYMI(J)
IF(LN.EQ.43)RATIO=0.0
IF(N.EQ.2)U(I,J+1)=U(I,J)+RATIO*(U(I,J)-U(I,J-1))
IF(N.EQ.3)V(I,J+1)=V(I,J)+RATIO*(V(I,J)-V(I,J-1))
IF(N.EQ.4)W(I,J+1)=W(I,J)+RATIO*(W(I,J)-W(I,J-1))
IF(N.EQ.5)E(I,J+1)=E(I,J)+RATIO*(E(I,J)-E(I,J-1))
IF(N.EQ.6)D(I,J+1)=D(I,J)+RATIO*(D(I,J)-D(I,J-1))
IF(N.EQ.7)T(I,J+1)=T(I,J)+RATIO*(T(I,J)-T(I,J-1))
ENDIF

C WALL
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IF(LN.EQ.44.OR.LN.EQ.46) THEN
AN(I,J)=0.0
DELTA=YC(J+1)-Y(J)
AREA=RC(J+1)*DXP(I)
UWAL=U(I,J+1)
VWAL=V(I,J+1)
WWAL=W(I,J+1)
VISWAL=VIS(I,J+1)
ANG=ATAN(W(I,J)/(U(I,J)+SMALL))
VT=(U(I,J)-UWAL)*COS(ANG)+(W(I,J)-WWAL)*SIN(ANG)
VTTAU=CMU**0.25*SQRT(ABS(E(I,J)))
YPLUS=VTTAU*DELTA*RHOP/VISWAL
EYPLUS=ELOG*YPLUS
TMULT=VISWAL*AREA/DELTA
TAUW(I,J+1)=-VISWAL*VT/DELTA
IF(TURBUL)TAUW(I,J+1)=RHO(I,J+1)*VTTAU**2
IF(YPLUS.GT.11.6)TMULT=RHOP*CAPPA*VTTAU*AREA/ALOG(EYPLUS)
IF(N.EQ.2) THEN
SU(I,J)=TMULT*UWAL+SU(I,J)
SP(I,J)=TMULT+SP(I,J)
ELSE IF(N.EQ.3) THEN
SU(I,J)=ANNOW*VWAL+SU(I,J)
SP(I,J)=ANNOW+SP(I,J)
ELSE IF(N.EQ.4) THEN
SU(I,J)=TMULT*WWAL+SU(I,J)
SP(I,J)=TMULT+SP(I,J)
ELSE IF(N.EQ.5) THEN
GENR=TMULT*VT/AREA*VT/DELTA
TERM=RHOP**2*CMU*ABS(E(I,J))/VISWAL
IF(YPLUS.GT.11.6)

1 TERM=RHOP*VTTAU*ALOG(EYPLUS)*CMU**0.5/CAPPA/DELTA
SU(I,J)=GENR*VOLP+SU(I,J)
SP(I,J)=TERM*VOLP+SP(I,J)
ELSE IF(N.EQ.6) THEN
TERM=VTTAU**3/CAPPA/DELTA
SU(I,J)=GREAT*TERM
SP(I,J)=GREAT
ELSE IF(N.EQ.7) THEN
IF(TURBUL)THEN
UPLUS=ABS(VT)/VTTAU
STANTON=STAN(UPLUS,YPLUS,PR(7),PRT(7))
TERM=RHOP*ABS(VT)*AREA*STANTON
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ELSE
TERM=VISWAL/(PR(N)*DELTA)*AREA
ENDIF
IF(LN.EQ.44)THEN
SU(I,J)=TERM*T(I,J+1)+SU(I,J)
SP(I,J)=TERM+SP(I,J)
QW(I,J+1)=TERM/AREA*(T(I,J+1)-T(I,J))*SPH(I,J+1)
ELSE IF(LN.EQ.46)THEN
SU(I,J)=QW(I,J+1)*AREA/SPH(I,J+1)+SU(I,J)
T(I,J+1)=QW(I,J+1)/TERM*AREA/SPH(I,J+1)+T(I,J)
ENDIF
ENDIF
ENDIF

1 CONTINUE
RETURN
END

C *******************************************
SUBROUTINE GRID
INCLUDE ’COM2D.FOR’

C *******************************************
C CALCULATE CELL-FACE COORDINATES

IF(GRNODE)THEN
XC(2)=X(1)
YC(2)=Y(1)
XC(1)=XC(2)
YC(1)=YC(2)
DO 1 I=3,INM

1 XC(I)=0.5*(X(I)+X(I-1))
XC(IN)=X(IN)
DO 2 J=3,JNM

2 YC(J)=0.5*(Y(J)+Y(J-1))
YC(JN)=Y(JN)
ENDIF

C CALCULATE NODE COORDINATES
IF(GRCELL)THEN
X(1)=XC(2)
Y(1)=YC(2)
DO 11 I=2,INM

11 X(I)=0.5*(XC(I)+XC(I+1))
DO 12 J=2,JNM

12 Y(J)=0.5*(YC(J)+YC(J+1))
Y(JN)=YC(JN)
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X(IN)=XC(IN)
ENDIF

C *** CALCULATE INTERPOLATION FACTORS
DXMI(1)=0.0
DO 4 I=2,IN

4 DXMI(I)=X(I)-X(I-1)
DYMI(1)=0.0
DO 5 J=2,JN

5 DYMI(J)=Y(J)-Y(J-1)
DO 6 J=1,JN
R(J)=1.0
RC(J)=1.0
IF(AXISYMM)THEN
R(J)=Y(J)
RC(J)=YC(J)
ENDIF

6 CONTINUE
C *** CALCULATE CELL VOLUME

SUMVOL=0.0
DO 7 J=2,JNM
DO 7 I=2,INM
VOL(I,J)=R(J)*(XC(I+1)-XC(I))*(YC(J+1)-YC(J))
SUMVOL=SUMVOL+VOL(I,J)

7 CONTINUE
WRITE(6,*)’ DOMAIN VOLUME = ’,SUMVOL

C *** CALCULATE AREAS
DO 9 I=1,INM
DXP(I)=(XC(I+1)-XC(I))

9 DXP(IN)=0.0
DO 10 J=1,JNM
DYP(J)=(YC(J+1)-YC(J))

10 DYP(JN)=0.0
RETURN
END

C *******************************************
SUBROUTINE COEF(NN,PRN,PRTN)
INCLUDE ’COM2D.FOR’

C *******************************************
N=NN
IF(N.EQ.1) GO TO 1000

C COEFFICIENTS OF TRANSPORT EQUATIONS
PRINV=1./PRN
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PRTINV=1.0/PRTN
DO 1 J=2,JNM
DO 1 I=2,INM
SU(I,J)=0.0
SP(I,J)=0.0

C *** DIFFUSION COEFFICIENTS AND INTERPOLATED VALUES
LW=NTAGW(I,J)/10
LE=NTAGE(I,J)/20
LS=NTAGS(I,J)/30
LN=NTAGN(I,J)/40

C **** LAMINAR VISCOSITY
TERMW=(X(I)-XC(I))/VIS(I,J)+(XC(I)-X(I-1))/VIS(I-1,J)
VISW=DXMI(I)/TERMW*(1-LW)+LW*VIS(I-1,J)
TERME=(XC(I+1)-X(I))/VIS(I,J)+(X(I+1)-XC(I+1))/VIS(I+1,J)
VISE=DXMI(I+1)/TERME*(1-LE)+LE*VIS(I+1,J)
TERMS=(Y(J)-YC(J))/VIS(I,J)+(YC(J)-Y(J-1))/VIS(I,J-1)
VISS=DYMI(J)/(TERMS+SMALL)*(1-LS)+LS*VIS(I,J-1)
TERMN=(YC(J+1)-Y(J))/VIS(I,J)+(Y(J+1)-YC(J+1))/VIS(I,J+1)
VISN=DYMI(J+1)/TERMN*(1-LN)+LN*VIS(I,J+1)

C **** TURBULENT VISCOSITY
IF(TURBUL)THEN
TERMW=(X(I)-XC(I))/VIST(I,J)+(XC(I)-X(I-1))/VIST(I-1,J)
VISTW=DXMI(I)/TERMW*(1-LW)+LW*VIST(I-1,J)
TERME=(XC(I+1)-X(I))/VIST(I,J)+(X(I+1)-XC(I+1))/VIST(I+1,J)
VISTE=DXMI(I+1)/TERME*(1-LE)+LE*VIST(I+1,J)
TERMS=(Y(J)-YC(J))/VIST(I,J)+(YC(J)-Y(J-1))/VIST(I,J-1)
VISTS=DYMI(J)/TERMS*(1-LS)+LS*VIST(I,J-1)
TERMN=(YC(J+1)-Y(J))/VIST(I,J)+(Y(J+1)-YC(J+1))/VIST(I,J+1)
VISTN=DYMI(J+1)/TERMN*(1-LN)+LN*VIST(I,J+1)
ENDIF

C *** CONVECTION COEFFICIENTS
CW=FINTW(RHO,I,J)*FINTW(U,I,J)*R(J)*DYP(J)
CE=FINTE(RHO,I,J)*FINTE(U,I,J)*R(J)*DYP(J)
CS=FINTS(RHO,I,J)*FINTS(V,I,J)*RC(J)*DXP(I)
CN=FINTN(RHO,I,J)*FINTN(V,I,J)*RC(J+1)*DXP(I)

C **** DIFFUSION COEFFICIENTS (ALLOWANCE FOR BLOCKED REGIONS )
TERM=(1-LW)/DXMI(I)+LW/(X(I)-XC(I))
DW=(VISTW*PRTINV+VISW*PRINV)*R(J)*DYP(J)*TERM
TERM=(1-LE)/DXMI(I+1)+LE/(XC(I+1)-X(I))
DE=(VISTE*PRTINV+VISE*PRINV)*R(J)*DYP(J)*TERM
TERM=(1-LS)/DYMI(J)+LS/(Y(J)-YC(J))
DS=(VISTS*PRTINV+VISS*PRINV)*RC(J)*DXP(I)*TERM
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TERM=(1-LN)/DYMI(J+1)+LN/(YC(J+1)-Y(J))
DN=(VISTN*PRTINV+VISN*PRINV)*RC(J+1)*DXP(I)*TERM

C *** CALCULATE CELL-PECLET NUMBERS
PECLW=CW/(DW+SMALL)
PECLE=CE/(DE+SMALL)
PECLS=CS/(DS+SMALL)
PECLN=CN/(DN+SMALL)

C *** CONVECTION SCHEMES
IF(UPWIND)THEN
AAW=1.0
AAE=1.0
AAS=1.0
AAN=1.0
ELSE IF(HYBRID)THEN
AAW=AMAX1(0.0,1.-0.5*ABS(PECLW))
AAE=AMAX1(0.0,1.-0.5*ABS(PECLE))
AAS=AMAX1(0.0,1.-0.5*ABS(PECLS))
AAN=AMAX1(0.0,1.-0.5*ABS(PECLN))
ELSE IF(POWER)THEN
AAW=AMAX1(0.0,(1.-0.1*ABS(PECLW))**5)
AAE=AMAX1(0.0,(1.-0.1*ABS(PECLE))**5)
AAS=AMAX1(0.0,(1.-0.1*ABS(PECLS))**5)
AAN=AMAX1(0.0,(1.-0.1*ABS(PECLN))**5)
ENDIF

C *** TOTAL COEFFICIENTS
AW(I,J)=DW*(AAW+AMAX1(PECLW,0.0))
AE(I,J)=DE*(AAE+AMAX1(-PECLE,0.0))
AS(I,J)=DS*(AAS+AMAX1(PECLS,0.0))
AN(I,J)=DN*(AAN+AMAX1(-PECLN,0.0))

1 CONTINUE
GO TO 2000

C COEFFICIENTS OF PRESSURE CORRECTION EQUATION
1000 DO 2 J=2,JNM

DO 2 I=2,INM
PP(I,J)=0.0
SP(I,J)=0.0
SU(I,J)=0.0
LW=NTAGW(I,J)/10
LE=NTAGE(I,J)/20
LS=NTAGS(I,J)/30
LN=NTAGN(I,J)/40
LB=1-NTAG(I,J)
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DXW=X(IN)-X(INM)
DXE=X(2)-X(1)
DYS=Y(JN)-Y(JNM)
DYN=Y(2)-Y(1)

C WEST
SUMW=FINTW(APU,I,J)
AW(I,J)=FINTW(RHO,I,J)*(R(J)*DYP(J))**2/SUMW*(1-LW)*LB
IF(NTAGW(I,J).EQ.17)THEN
JJ=J
IF(IPERIOD.EQ.1)JJ=JN-J+1
RHOW=(DXW*RHO(2,J)+DXE*RHO(INM,JJ))/(DXE+DXW)
SUMW=(DXW*APU(2,J)+DXE*APU(INM,JJ))/(DXE+DXW)
AW(I,J)=RHOW*(R(J)*DYP(J))**2/SUMW*2*LB
ENDIF

C EAST
SUME=FINTE(APU,I,J)
AE(I,J)=FINTE(RHO,I,J)*(R(J)*DYP(J))**2/SUME*(1-LE)*LB
IF(NTAGE(I,J).EQ.27)THEN
JJ=J
IF(IPERIOD.EQ.1)JJ=JN-J+1
RHOE=(DXW*RHO(2,JJ)+DXE*RHO(INM,J))/(DXE+DXW)
SUME=(DXW*APU(2,JJ)+DXE*APU(INM,J))/(DXE+DXW)
AE(I,J)=RHOE*(R(J)*DYP(J))**2/SUME*2.0*LB
ENDIF

C SOUTH
SUMS=FINTS(APV,I,J)
AS(I,J)=FINTS(RHO,I,J)*(RC(J)*DXP(I))**2/SUMS*(1-LS)*LB
IF(NTAGS(I,J).EQ.37)THEN
II=I
IF(JPERIOD.EQ.1)II=IN-I+1
RHOS=(DYS*RHO(I,2)+DYN*RHO(II,JNM))/(DYN+DYS)
SUMS=(DYS*APV(I,2)+DYN*APV(II,JNM))/(DYN+DYS)
AS(I,J)=RHOS*(RC(J)*DXP(I))**2/SUMS*2.0*LB
ENDIF

C NORTH
SUMN=FINTN(APV,I,J)
AN(I,J)=FINTN(RHO,I,J)*(RC(J+1)*DXP(I))**2/SUMN*(1-LN)*LB
IF(NTAGN(I,J).EQ.47)THEN
II=I
IF(JPERIOD.EQ.1)II=IN-I+1
RHON=(DYS*RHO(II,2)+DYN*RHO(I,JNM))/(DYN+DYS)
SUMN=(DYS*APV(II,2)+DYN*APV(I,JNM))/(DYN+DYS)
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AN(I,J)=RHON*(RC(J+1)*DXP(I))**2/SUMN*2.0*LB
ENDIF

2 CONTINUE
2000 CONTINUE

RETURN
END

C *******************************************
SUBROUTINE SORCE(NNV)
INCLUDE ’COM2D.FOR’

C *******************************************
DIMENSION PROD(IT,JT)
N=NNV
GO TO (10,20,30,40,50,60,70),N

C *** FOR PRESSURE CORRECTION
10 DO 11 J=2,JNM

DO 11 I=2,INM
CW=FINTW(RHO,I,J)*FINTW(U,I,J)*R(J)*DYP(J)
CE=FINTE(RHO,I,J)*FINTE(U,I,J)*R(J)*DYP(J)
CS=FINTS(RHO,I,J)*FINTS(V,I,J)*RC(J)*DXP(I)
CN=FINTN(RHO,I,J)*FINTN(V,I,J)*RC(J+1)*DXP(I)
SM=CE-CW+CN-CS
IF(UNSTDY)SM=SM+(RHO(I,J)-RHOO(I,J))/DELT*VOL(I,J)
SU(I,J)=SU(I,J)-SM*(1-NTAG(I,J))

11 CONTINUE
GO TO 1000

C *** FOR U-VELOCITY
20 DO 21 J=2,JNM

DO 21 I=2,INM
DPDX=(FINTE(P,I,J)-FINTW(P,I,J))/DXP(I)
SU(I,J)=SU(I,J)-DPDX*VOL(I,J)*(1-NTAG(I,J))

21 CONTINUE
GO TO 1000

C *** FOR V-VELOCITY
30 DO 31 J=2,JNM

DO 31 I=2,INM
DPDY=(FINTN(P,I,J)-FINTS(P,I,J))/DYP(J)
SU(I,J)=SU(I,J)-DPDY*VOL(I,J)*(1-NTAG(I,J))
VISP=VIS(I,J)+VIST(I,J)
IF(AXISYMM)SP(I,J)=SP(I,J)+VISP/R(J)**2*VOL(I,J)

31 CONTINUE
GO TO 1000

C *** FOR W-VELOCITY
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40 DO 41 J=2,JNM
DO 41 I=2,INM
SU(I,J)=SU(I,J)+0.0

41 CONTINUE
GO TO 1000

C *** FOR KINETIC ENERGY
50 DO 51 J=2,JNM

DO 51 I=2,INM
IF(NTAG(I,J).EQ.1)GO TO 51
LW=NTAGW(I,J)
LE=NTAGE(I,J)
LS=NTAGS(I,J)
LN=NTAGN(I,J)

C EXCLUDE NEAR-WALL NODE
IF(LW.EQ.14.OR.LW.EQ.16)GO TO 51
IF(LE.EQ.24.OR.LE.EQ.26)GO TO 51
IF(LS.EQ.34.OR.LS.EQ.36)GO TO 51
IF(LN.EQ.44.OR.LN.EQ.46)GO TO 51

C PRODUCTION TERMS
DUDX=(FINTE(U,I,J)-FINTW(U,I,J))/DXP(I)
DVDX=(FINTE(V,I,J)-FINTW(V,I,J))/DXP(I)
DUDY=(FINTN(U,I,J)-FINTS(U,I,J))/DYP(J)
DVDY=(FINTN(V,I,J)-FINTS(V,I,J))/DYP(J)
TERM=2.0*(DUDX**2+DVDY**2)+(DUDY+DVDX)**2
IF(AXISYMM)TERM=TERM+2*(V(I,J)/R(J))**2
PROD(I,J)=VIST(I,J)*TERM
ENP=AMAX1(E(I,J),0.0)
SU(I,J)=PROD(I,J)*VOL(I,J) +SU(I,J)
SP(I,J)=RHO(I,J)**2*CMU*ENP/(VIST(I,J)+SMALL)*VOL(I,J)+SP(I,J)

51 CONTINUE
GO TO 1000

C *** FOR DISSIPATION
60 DO 61 J=2,JNM

DO 61 I=2,INM
IF(NTAG(I,J).EQ.1)GO TO 61
RHOP=RHO(I,J)
VOLP=VOL(I,J)
DPEP=ABS(D(I,J)/(E(I,J)+SMALL))
SU(I,J)=CD1*RHOP*DPEP*PROD(I,J)*VOLP +SU(I,J)
SP(I,J)=CD2*RHOP*DPEP*VOLP+SP(I,J)

61 CONTINUE
GO TO 1000
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C *** FOR TEMPERATURE
70 DO 71 J=2,JNM

DO 71 I=2,INM
SU(I,J)=SU(I,J)+0.0

71 CONTINUE
1000 CONTINUE

RETURN
END

C *******************************************
SUBROUTINE APCOF(NN)
INCLUDE ’COM2D.FOR’

C *******************************************
N=NN
RPINV=1./RP(N)
DO 1 J=2,JNM
DO 1 I=2,INM
SUM=AW(I,J)+AE(I,J)+AS(I,J)+AN(I,J)
IF(N.EQ.1)AP1(I,J)=(SUM+SP(I,J))*RPINV
IF(N.GT.1)AP(I,J)=(SUM+SP(I,J))*RPINV
IF(N.EQ.2)APU(I,J)=AP(I,J)
IF(N.EQ.3)APV(I,J)=AP(I,J)

1 CONTINUE
RETURN
END

C *******************************************
SUBROUTINE PROPS
INCLUDE ’COM2D.FOR’

C *******************************************
DO 1 J=1,JN
DO 1 I=1,IN
SPH(I,J)=SPHEAT
RHO(I,J)=DENSIT
VIS(I,J)=VISCOS
IF(TURBUL)THEN
VISO=VIST(I,J)
VIST(I,J)=(CMU*RHO(I,J)*E(I,J)**2/(D(I,J)+SMALL)*RP(8)

1 +(1.-RP(8))*VISO)
IF(VIST(I,J).LE.0.0)VIST(I,J)=SMALL
ENDIF

1 CONTINUE
IF(BSOR(8))CALL ADSORB(8)
RETURN
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END
C *******************************************

SUBROUTINE UNST(NN)
INCLUDE ’COM2D.FOR’

C *******************************************
N=NN
DO 1 J=2,JNM
DO 1 I=2,INM
SUU=SU(I,J)
TERM=RHO(I,J)*VOL(I,J)/DELT*(1-NTAG(I,J))
IF(UNSTDY)THEN
TERM=TERM*RHOO(I,J)/RHO(I,J)
IF(N.EQ.2)SU(I,J)=TERM*UO(I,J)+SUU
IF(N.EQ.3)SU(I,J)=TERM*VO(I,J)+SUU
IF(N.EQ.4)SU(I,J)=TERM*WO(I,J)+SUU
IF(N.EQ.5)SU(I,J)=TERM*EO(I,J)+SUU
IF(N.EQ.6)SU(I,J)=TERM*DO(I,J)+SUU
IF(N.EQ.7)SU(I,J)=TERM*TO(I,J)+SUU
ELSE IF(FTRAN)THEN
IF(N.EQ.2)SU(I,J)=TERM*U(I,J)+SUU
IF(N.EQ.3)SU(I,J)=TERM*V(I,J)+SUU
IF(N.EQ.4)SU(I,J)=TERM*W(I,J)+SUU
IF(N.EQ.5)SU(I,J)=TERM*E(I,J)+SUU
IF(N.EQ.6)SU(I,J)=TERM*D(I,J)+SUU
IF(N.EQ.7)SU(I,J)=TERM*T(I,J)+SUU
ENDIF
SP(I,J)=TERM +SP(I,J)

1 CONTINUE
RETURN
END

C *******************************************
SUBROUTINE UPDATE
INCLUDE ’COM2D.FOR’

C *******************************************
DO 1 J=1,JN
DO 1 I=1,IN
RHOO(I,J)=RHO(I,J)
PO(I,J)=P(I,J)
UO(I,J)=U(I,J)
VO(I,J)=V(I,J)
WO(I,J)=W(I,J)
EO(I,J)=E(I,J)
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DO(I,J)=D(I,J)
TO(I,J)=T(I,J)

1 CONTINUE
RETURN
END

C *******************************************
SUBROUTINE INFLUX
INCLUDE ’COM2D.FOR’

C *******************************************
DO 1 N=1,7

1 RNORM(N)=0.0
DO 2 J=2,JNM
DO 2 I=2,INM
IF(NTAGW(I,J).EQ.11) THEN
CW=ABS(RHO(I-1,J)*U(I-1,J)*DYP(J)*R(J))
VT=SQRT(U(I-1,J)**2+V(I-1,J)**2+W(I-1,J)**2)
RNORM(1)=RNORM(1)+CW
RNORM(2)=RNORM(2)+CW*VT
RNORM(3)=RNORM(2)
RNORM(4)=RNORM(2)
RNORM(5)=RNORM(5)+CW*ABS(E(I-1,J))
RNORM(6)=RNORM(6)+CW*ABS(D(I-1,J))
RNORM(7)=RNORM(7)+CW*ABS(T(I-1,J))
ELSE IF(NTAGE(I,J).EQ.21) THEN
CE=ABS(RHO(I+1,J)*U(I+1,J)*DYP(J)*R(J))
VT=SQRT(U(I+1,J)**2+V(I+1,J)**2+W(I+1,J)**2)
RNORM(1)=RNORM(1)+CE
RNORM(2)=RNORM(2)+CE*VT
RNORM(3)=RNORM(2)
RNORM(4)=RNORM(2)
RNORM(5)=RNORM(5)+CE*ABS(E(I+1,J))
RNORM(6)=RNORM(6)+CE*ABS(D(I+1,J))
RNORM(7)=RNORM(7)+CE*ABS(T(I+1,J))
ELSE IF(NTAGS(I,J).EQ.31) THEN
CS=ABS(RHO(I,J-1)*V(I,J-1)*DXP(I)*RC(J))
VT=SQRT(U(I,J-1)**2+V(I,J-1)**2+W(I,J-1)**2)
RNORM(1)=RNORM(1)+CS
RNORM(2)=RNORM(2)+CS*VT
RNORM(3)=RNORM(2)
RNORM(4)=RNORM(2)
RNORM(5)=RNORM(5)+CS*ABS(E(I,J-1))
RNORM(6)=RNORM(6)+CS*ABS(D(I,J-1))
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RNORM(7)=RNORM(7)+CS*ABS(T(I,J-1))
ELSE IF(NTAGN(I,J).EQ.41) THEN
CN=ABS(RHO(I,J+1)*V(I,J+1)*DXP(I)*RC(J+1))
VT=SQRT(U(I,J+1)**2+V(I,J+1)**2+W(I,J+1)**2)
RNORM(1)=RNORM(1)+CN
RNORM(2)=RNORM(2)+CN*VT
RNORM(3)=RNORM(2)
RNORM(4)=RNORM(2)
RNORM(5)=RNORM(5)+CN*ABS(E(I,J+1))
RNORM(6)=RNORM(6)+CN*ABS(D(I,J+1))
RNORM(7)=RNORM(7)+CN*ABS(T(I,J+1))
ENDIF

2 CONTINUE
DO 3 N=1,7
TERM=ABS(RNORM(N))

3 IF(TERM.LT.10.*SMALL)RNORM(N)=1.0
WRITE(6,*)’ RNORM VALUES’
WRITE(6,*)(RNORM(N),N=1,7)
RETURN
END

C *******************************************
SUBROUTINE MASBAL
INCLUDE ’COM2D.FOR’

C *******************************************
SUMFW=0.0
SUMFE=0.0
SUMFS=0.0
SUMFN=0.0
DO 2 J=2,JNM
DO 2 I=2,INM
IF(NTAGW(I,J).EQ.13.OR.NTAGW(I,J).EQ.15) THEN
CW=RHO(I-1,J)*U(I-1,J)*DYP(J)*R(J)
SUMFW=SUMFW+CW
ELSE IF(NTAGE(I,J).EQ.23.OR.NTAGE(I,J).EQ.25) THEN
CE=RHO(I+1,J)*U(I+1,J)*DYP(J)*R(J)
SUMFE=SUMFE+CE
ELSE IF(NTAGS(I,J).EQ.33.OR.NTAGS(I,J).EQ.35) THEN
CS=RHO(I,J-1)*V(I,J-1)*DXP(I)*RC(J)
SUMFS=SUMFS+CS
ELSE IF(NTAGN(I,J).EQ.43.OR.NTAGN(I,J).EQ.45) THEN
CN=RHO(I,J+1)*V(I,J+1)*DXP(I)*RC(J+1)
SUMFN=SUMFN+CN
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ENDIF
2 CONTINUE

SUMF=ABS(SUMFW)+ABS(SUMFE)+ABS(SUMFS)+ABS(SUMFN)
FACTOR=RNORM(1)/(SUMF+SMALL)
WRITE(6,8787)FACTOR
WRITE(*,8787)FACTOR

C APPLY MASS CONSERVATION AT EXIT
IF(CONMAS)THEN
DO 3 J=2,JNM
DO 3 I=2,INM
IF(NTAGW(I,J).EQ.13.OR.NTAGW(I,J).EQ.15) THEN
U(I-1,J)=U(I-1,J)*FACTOR
V(I-1,J)=V(I-1,J)*FACTOR
W(I-1,J)=W(I-1,J)*FACTOR
ELSE IF(NTAGE(I,J).EQ.23.OR.NTAGE(I,J).EQ.25) THEN
U(I+1,J)=U(I+1,J)*FACTOR
V(I+1,J)=V(I+1,J)*FACTOR
W(I+1,J)=W(I+1,J)*FACTOR
ELSE IF(NTAGS(I,J).EQ.33.OR.NTAGS(I,J).EQ.35) THEN
V(I,J-1)=V(I,J-1)*FACTOR
U(I,J-1)=U(I,J-1)*FACTOR
W(I,J-1)=W(I,J-1)*FACTOR
ELSE IF(NTAGN(I,J).EQ.43.OR.NTAGN(I,J).EQ.45) THEN
V(I,J+1)=V(I,J+1)*FACTOR
U(I,J+1)=U(I,J+1)*FACTOR
W(I,J+1)=W(I,J+1)*FACTOR
ENDIF

3 CONTINUE
ENDIF

8787 FORMAT(50X,F10.4,F10.4)
RETURN
END

C *******************************************
SUBROUTINE PVCOR
INCLUDE ’COM2D.FOR’

C *******************************************
C **** APPLY SMOOTHING PRESSURE CORRECTION

DO 4 J=2,JNM
DO 4 I=2,INM
PMX=(DXMI(I)*P(I+1,J)+DXMI(I+1)*P(I-1,J))/(DXMI(I)+DXMI(I+1))
PMY=(DYMI(J)*P(I,J+1)+DYMI(J+1)*P(I,J-1))/(DYMI(J)+DYMI(J+1))
PSM(I,J)=(P(I,J)-(PMX+PMY)/2.0)*GAMMA
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PP(I,J)=(PP(I,J)-PSM(I,J))*(1-NTAG(I,J))
4 CONTINUE
C *** APPLY MASS-CONSERVING PRESSURE CORRECTION

PREF=0
RSP=0.0
DO 6 J=2,JNM
DO 6 I=2,INM
P(I,J)=P(I,J)+(PP(I,J)-PREF)*RP(9)*(1-NTAG(I,J))
IF(ABS(PP(I,J)).GT.RSP)RSP=ABS(PP(I,J))

6 CONTINUE
FDIF(1)=RSP
CALL BOUNDP

C *** CORRECT VELOCITIES
RSU=0.0
RSV=0.0
DO 1 J=2,JNM
DO 1 I=2,INM
PSMW=FINTW(PP,I,J)
PSME=FINTE(PP,I,J)
PSMS=FINTS(PP,I,J)
PSMN=FINTN(PP,I,J)

C CORRECT U-VELOCITY
IF(SLVE(2))THEN
DPDX=(PSME-PSMW)/DXP(I)
UDASH=-DPDX*VOL(I,J)/APU(I,J)*(1-NTAG(I,J))
IF(ABS(UDASH).GT.RSU)RSU=ABS(UDASH)
U(I,J)=U(I,J)+UDASH
ENDIF

C CORRECT V-VELOCITY
IF(SLVE(3))THEN
DPDY=(PSMN-PSMS)/DYP(J)
VDASH=-DPDY*VOL(I,J)/APV(I,J)*(1-NTAG(I,J))
IF(ABS(VDASH).GT.RSV)RSV=ABS(VDASH)
V(I,J)=V(I,J)+VDASH
ENDIF

1 CONTINUE
FDIF(2)=RSU
FDIF(3)=RSV

C CHECK MASS RESIDUAL
SUM=0.0
DO 9 J=2,JNM
DO 9 I=2,INM
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TERM=AE(I,J)*PP(I+1,J)+AW(I,J)*PP(I-1,J)
1 +AN(I,J)*PP(I,J+1)+AS(I,J)*PP(I,J-1)-AP1(I,J)*PP(I,J)

IF(TERM.GT.GREAT*0.01)TERM=0.0
SUM=SUM+TERM**2*(1-NTAG(I,J))

9 CONTINUE
RSDU(1)=SQRT(SUM)/RNORM(1)
RETURN
END

C *******************************************
SUBROUTINE BOUNDP
INCLUDE ’COM2D.FOR’

C *******************************************
DO 2 J=2,JNM
DO 2 I=2,INM
IF (NTAG(I,J).EQ.1) GO TO 2
LW=NTAGW(I,J)/10
LE=NTAGE(I,J)/20
LS=NTAGS(I,J)/30
LN=NTAGN(I,J)/40
DXW=X(IN)-X(INM)
DXE=X(2)-X(1)
DYS=Y(JN)-Y(JNM)
DYN=Y(2)-Y(1)

C EAST-WEST PERIODICITY
IF(NTAGW(I,J).EQ.17.OR.NTAGE(I,J).EQ.27)THEN
JJ=J
IF(IPERIOD.EQ.1)JJ=JN-J+1
ENDIF
IF(LW.EQ.1) THEN
RATIO=(X(I)-XC(I))/DXMI(I+1)
P(I-1,J)=P(I,J)-RATIO*(P(I+1,J)-P(I,J))
PP(I-1,J)=PP(I,J)-RATIO*(PP(I+1,J)-PP(I,J))
IF(NTAGW(I,J).EQ.17)THEN
PMEAN=(DXW*P(2,J)+DXE*P(INM,JJ))/(DXE+DXW)
P(1,J)=PMEAN+DP1/2.0
PPMEAN=(DXW*PP(2,J)+DXE*PP(INM,JJ))/(DXE+DXW)
PP(1,J)=PPMEAN
ENDIF
ENDIF
IF(LE.EQ.1) THEN
RATIO=(XC(I+1)-X(I))/DXMI(I)
P(I+1,J)=P(I,J)+RATIO*(P(I,J)-P(I-1,J))
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PP(I+1,J)=PP(I,J)+RATIO*(PP(I,J)-PP(I-1,J))
IF(NTAGE(I,J).EQ.27)THEN
PMEAN=(DXW*P(2,JJ)+DXE*P(INM,J))/(DXE+DXW)
P(IN,J)=PMEAN-DP1/2.0
PPMEAN=(DXW*PP(2,JJ)+DXE*PP(INM,J))/(DXE+DXW)
ENDIF
ENDIF

C NORTH-SOUTH PERIODICITY
IF(NTAGS(I,J).EQ.37.OR.NTAGN(I,J).EQ.47)THEN
II=I
IF(JPERIOD.EQ.1)II=IN-I+1
ENDIF
IF(LS.EQ.1) THEN
RATIO=(Y(J)-YC(J))/DYMI(J+1)
P(I,J-1)=P(I,J)-RATIO*(P(I,J+1)-P(I,J))
PP(I,J-1)=PP(I,J)-RATIO*(PP(I,J+1)-PP(I,J))
IF(NTAGS(I,J).EQ.37)THEN
P(I,1)=(DYS*P(I,2)+DYN*P(II,JNM))/(DYN+DYS)
P(I,1)=P(I,1)+DP2/2.0
PP(I,1)=(DYS*PP(I,2)+DYN*PP(II,JNM))/(DYN+DYS)
ENDIF
ENDIF
IF(LN.EQ.1) THEN
RATIO=(YC(J+1)-Y(J))/DYMI(J)
P(I,J+1)=P(I,J)+RATIO*(P(I,J)-P(I,J-1))
PP(I,J+1)=PP(I,J)+RATIO*(PP(I,J)-PP(I,J-1))
IF(NTAGN(I,J).EQ.47)THEN
P(I,JN)=(DYS*P(II,2)+DYN*P(I,JNM))/(DYN+DYS)
P(I,JN)=P(I,1)-DP2/2.0
PP(I,JN)=(DYS*PP(II,2)+DYN*PP(I,JNM))/(DYN+DYS)
ENDIF
ENDIF

2 CONTINUE
IF(BSOR(9))CALL ADSORB(9)
RETURN
END

C *******************************************
SUBROUTINE INDATA
INCLUDE ’COM2D.FOR’

C *******************************************
WRITE(6,*)’*** THIS IS COLLOCATED GRID PROGRAM ***’
WRITE(6,*)’*************************************’



P1: ICD/GKJ P2: IWV
0521853265appc CB908/Date 0 521 85326 5 May 25, 2005 11:59

358 APPENDIX C. 2D CARTESIAN CODE

WRITE(6,*)’GRID INFORMATION’
WRITE(6,*)’ IN = ’,IN,’ JN = ’,JN
WRITE(6,*)’ X - COORDINATES ’
CALL PR1D(X,1,IN)
WRITE(6,*)’ Y - COORDINATES ’
CALL PR1D(Y,1,JN)
WRITE(6,*)’ XC - COORDINATES ’
CALL PR1D(XC,1,IN)
WRITE(6,*)’ YC - COORDINATES ’
CALL PR1D(YC,1,JN)
WRITE(6,*)’ DXMI’
CALL PR1D(DXMI,1,IN)
WRITE(6,*)’ DYMI’
CALL PR1D(DYMI,1,JN)
WRITE(6,*)’ PRESSURE REFERENCE POINT IPREF = ’,IPREF,

1 ’ JPREF = ’,JPREF
WRITE(6,*)’RELAXATION PARAMETERS ARE’

WRITE(6,*)’ RP(1) = ’,RP(1),’ RP(2) = ’,RP(2),’ RP(3) = ’,RP(3),
1 ’ RP(4) = ’,RP(4),’ RP(5) = ’,RP(5), ’ RP(6) = ’,RP(6),
1 ’ RP(7) = ’,RP(7),’ RP(8) = ’,RP(8), ’ RP(9) = ’,RP(9)

WRITE(6,*)’FLUID VISCOSITY = ’,VISCOS
WRITE(6,*)’FLUID DENSITY = ’,DENSIT
WRITE(6,*)’FLUID PRANDTL NUMBERS ARE’

WRITE(6,*)’ PR(1) = ’,PR(1),’ PR(2) = ’,PR(2),’ PR(3) = ’,PR(3),
1 ’ PR(4) = ’,PR(4),’ PR(5) = ’,PR(5),’ PR(6) = ’,PR(6),
1 ’ PR(7) = ’,PR(7)

IF(TURBUL) THEN
WRITE(6,*)’TURBULENT PRANDTL NUMBERS ARE’
WRITE(6,*)

1 ’ PRT(1) = ’,PRT(1),’ PRT(2) = ’,PRT(2),’ PRT(3) = ’,PRT(3),
1 ’ PRT(4) = ’,PRT(4),’ PRT(5) = ’,PRT(5), ’ PRT(6) = ’,PRT(6),
1 ’ PRT(7) = ’,PRT(7)

ENDIF
IF(STEADY)WRITE(6,*)’ STEADY FLOW CALCULATIONS’
IF(UNSTDY)WRITE(6,*)’ UNSTEADY FLOW CALCULATIONS’
IF(FTRAN)WRITE(6,*)’ FALSE TRANSIENT DELT = ’,DELT
IF(CONMAS)WRITE(6,*)’ MASS BALANCE IS IMPOSED’
IF(UPWIND)WRITE(6,*)’ CONVECTION SCHEME = UPWIND ’
IF(HYBRID)WRITE(6,*)’ CONVECTION SCHEME = HYBRID ’
IF(POWER)WRITE(6,*)’ CONVECTION SCHEME = POWER LAW’
WRITE(6,*)’ THE FOLLOWING EQUATIONS ARE SOLVED’
IF(SLVE(1))WRITE(6,*)’ PRESSURE CORRECTION EQUN.’
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IF(SLVE(2))WRITE(6,*)’ U-VELOCITY ’
IF(SLVE(3))WRITE(6,*)’ V-VELOCITY ’
IF(SLVE(4))WRITE(6,*)’ W-VELOCITY ’
IF(SLVE(5))WRITE(6,*)’ T. KINETIC ENERGY’
IF(SLVE(6))WRITE(6,*)’ DISSIPATION ’
IF(SLVE(7))WRITE(6,*)’ TEMPERATURE’
WRITE(6,*)’******************************************’
RETURN
END

C *******************************************
SUBROUTINE SOLVE(F,RPP,RSUM)
INCLUDE ’COM2D.FOR’

C *******************************************
DIMENSION F(IT,JT)
DIMENSION SA(MXGR),SB(MXGR),SS(MXGR),PSI(MXGR)

C *** CALCULATION OF RESIDUALS
RS=0.0
DO 10 J=2,JNM
DO 10 I=2,INM
TERM=AW(I,J)*F(I-1,J)+AE(I,J)*F(I+1,J)

1 +AS(I,J)*F(I,J-1)+AN(I,J)*F(I,J+1)
TERM=TERM+SU(I,J)-F(I,J)*AP(I,J)*RPP
FACTOR=1.0
IF(SP(I,J).GT.GREAT*1.0E-10)FACTOR=0.0
TERM=TERM*FACTOR

10 RS=RS+TERM*TERM
RSUM=SQRT(RS)

C*** J-DIRECTION SWEEP
DO 51 J=2,JNM
DO 52 I=2,INM
SOR=SU(I,J)
DEN=1.0/(AP(I,J)+SMALL)
SOR=SOR+(1.-RPP)/(DEN+SMALL)*F(I,J)
SA(I)=AE(I,J)*DEN
SB(I)=AW(I,J)*DEN
SS(I)=(AS(I,J)*F(I,J-1)+AN(I,J)*F(I,J+1)+SOR)*DEN

52 CONTINUE
PSI1=F(1,J)
PSIN=F(IN,J)
CALL TDMA(2,INM,PSI1,PSIN,SA,SB,SS,PSI)
DO 53 I=2,INM
LP=NTAG(I,J)
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53 F(I,J)=PSI(I)*(1-LP)+LP*F(I,J)
51 CONTINUE
C*** I-DIRECTION SWEEP

DO 54 I=2,INM
DO 55 J=2,JNM
SOR=SU(I,J)
DEN=1.0/(AP(I,J)+SMALL)
SOR=SOR+(1.-RPP)/DEN*F(I,J)
SA(J)=AN(I,J)*DEN
SB(J)=AS(I,J)*DEN
SS(J)=(AW(I,J)*F(I-1,J)+AE(I,J)*F(I+1,J)+SOR)*DEN

55 CONTINUE
PSI1=F(I,1)
PSIN=F(I,JN)
CALL TDMA(2,JNM,PSI1,PSIN,SA,SB,SS,PSI)
DO 56 J=2,JNM
LP=NTAG(I,J)

56 F(I,J)=PSI(J)*(1-LP)+LP*F(I,J)
54 CONTINUE

RETURN
END

C *******************************************
SUBROUTINE SOLP
INCLUDE ’COM2D.FOR’

C *******************************************
DIMENSION SA(MXGR),SB(MXGR),SS(MXGR),PSI(MXGR)
DO 100 L=1,NSWEEP(1)

C*** J-DIRECTION SWEEP
DO 51 J=2,JNM
DO 52 I=2,INM
SOR=SU(I,J)
DEN=1.0/(AP1(I,J)+SMALL)
SOR=SOR+(1.-RP(1))/DEN*PP(I,J)
SA(I)=AE(I,J)*DEN
SB(I)=AW(I,J)*DEN
SS(I)=(AS(I,J)*PP(I,J-1)+AN(I,J)*PP(I,J+1)+SOR)*DEN

52 CONTINUE
PSI1=PP(1,J)
PSIN=PP(IN,J)
CALL TDMA(2,INM,PSI1,PSIN,SA,SB,SS,PSI)
DO 53 I=2,INM
LP=NTAG(I,J)
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53 PP(I,J)=PSI(I)*(1-LP)+LP*PP(I,J)
51 CONTINUE
C*** I-DIRECTION SWEEP

DO 54 I=2,INM
DO 55 J=2,JNM
SOR=SU(I,J)
DEN=1.0/(AP1(I,J)+SMALL)
SOR=SOR+(1.-RP(1))/DEN*PP(I,J)
SA(J)=AN(I,J)*DEN
SB(J)=AS(I,J)*DEN
SS(J)=(AW(I,J)*PP(I-1,J)+AE(I,J)*PP(I+1,J)+SOR)*DEN

55 CONTINUE
PSI1=PP(I,1)
PSIN=PP(I,JN)
CALL TDMA(2,JNM,PSI1,PSIN,SA,SB,SS,PSI)
DO 56 J=2,JNM
LP=NTAG(I,J)

56 PP(I,J)=PSI(J)*(1-LP)+LP*PP(I,J)
54 CONTINUE

IF(NPERIOD.EQ.1)CALL BOUNDP
100 CONTINUE

RETURN
END

C *******************************************
SUBROUTINE EQN
INCLUDE ’COM2D.FOR’

C *******************************************
MWRITE=NITER+MFREQ
IF(NITER.EQ.0)NITER=1
NADD=MXIT

5555 NBEGIN=NITER
MXIT=NITER+NADD
DO 2000 NTIME=1,MXSTEP
TTIME=STIME+NTIME*DELT
DO 1000 NITER=NBEGIN,MXIT

C **** U-VELOCITY
IF(SLVE(2))THEN
CALL COEF(2,PR(2),PRT(2))
CALL SORCE(2)
IF(UNSTDY.OR.FTRAN)CALL UNST(2)
CALL BOUND(2)
IF(BSOR(2))CALL ADSORB(2)
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CALL APCOF(2)
CALL SOLVE(U,RP(2),RSU)
RSDU(2)=RSU/(RNORM(2)+SMALL)
CALL BOUND(2)
ENDIF

C **** V-VELOCITY
IF(SLVE(3))THEN
CALL COEF(3,PR(3),PRT(3))
CALL SORCE(3)
IF(UNSTDY.OR.FTRAN)CALL UNST(3)
CALL BOUND(3)
IF(BSOR(3))CALL ADSORB(3)
CALL APCOF(3)
CALL SOLVE(V,RP(3),RSU)
RSDU(3)=RSU/(RNORM(3)+SMALL)
CALL BOUND(3)
ENDIF

C **** PRESSURE CORRECION
IF(SLVE(1))THEN
CALL MASBAL
CALL COEF(1,PR(1),PRT(1))
CALL SORCE(1)
IF(BSOR(1))CALL ADSORB(1)
CALL APCOF(1)
CALL SOLP
CALL PVCOR
ENDIF

C **** W-VELOCITY
IF(SLVE(4))THEN
CALL COEF(4,PR(4),PRT(4))
CALL SORCE(4)
IF(UNSTDY.OR.FTRAN)CALL UNST(4)
CALL BOUND(4)
IF(BSOR(4))CALL ADSORB(4)
CALL APCOF(4)
CALL SOLVE(W,RP(4),RSU)
RSDU(4)=RSU/(RNORM(4)+SMALL)
CALL BOUND(4)
ENDIF

C **** KINETIC ENERGY
IF(TURBUL)THEN
IF(SLVE(5))THEN
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CALL COEF(5,PR(5),PRT(5))
CALL SORCE(5)
IF(UNSTDY.OR.FTRAN)CALL UNST(5)
CALL BOUND(5)
IF(BSOR(5))CALL ADSORB(5)
CALL APCOF(5)
CALL SOLVE(E,RP(5),RSU)
RSDU(5)=RSU/(RNORM(5)+SMALL)
CALL BOUND(5)

C **** DISSIPATION
CALL COEF(6,PR(6),PRT(6))
CALL SORCE(6)
IF(UNSTDY.OR.FTRAN)CALL UNST(6)
CALL BOUND(6)
IF(BSOR(6))CALL ADSORB(6)
CALL APCOF(6)
CALL SOLVE(D,RP(6),RSU)
RSDU(6)=RSU/(RNORM(6)+SMALL)
CALL BOUND(6)
ENDIF
ENDIF

C **** TEMPERATURE
IF(SLVE(7))THEN
CALL COEF(7,PR(7),PRT(7))
CALL SORCE(7)
IF(UNSTDY.OR.FTRAN)CALL UNST(7)
CALL BOUND(7)
IF(BSOR(7))CALL ADSORB(7)
CALL APCOF(7)
CALL SOLVE(T,RP(7),RSU)
RSDU(7)=RSU/(RNORM(7)+SMALL)
CALL BOUND(7)
ENDIF

C **** SPECIES AND ENTHALPY
CALL OMEGA

C **** PROPERTIES
CALL PROPS

C **** CHECK MAX RESIDUALS
RSTOP=AMAX1(RSDU(1),RSDU(2),RSDU(3),RSDU(4),RSDU(5)

1 ,RSDU(6),RSDU(7))
C STORE RESIDUALS FOR PLOTTING
C RESIU(NITER)=RSDU(2)
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C RESIV(NITER)=RSDU(3)
C RESIM(NITER)=RSDU(1)

IF(STEADY)WRITE(6,1919)NITER,(RSDU(N),N=1,7)
IF(STEADY)WRITE(6,1919)NITER,(FDIF(N),N=1,4)
IF(STEADY)WRITE(*,1919)NITER,(FDIF(N),N=1,4)
IF(STEADY)WRITE(*,1919)NITER,(RSDU(N),N=1,7)

1919 FORMAT(1X,I6,7(E10.3))
IF(RSTOP.LT.CC) GO TO 1100

C INTERMEDIATE WRITE-OUT
IF(MWRITE.EQ.NITER)THEN
MWRITE=NITER+MFREQ
CALL OPT
WRITE(*,*)’OUTPUT IS WRITTEN AT NITER = ’,NITER
WRITE(6,*)’OUTPUT IS WRITTEN AT NITER = ’,NITER
ENDIF

1000 CONTINUE
1100 IF(STEADY)RETURN

CALL UPDATE
WRITE(6,*)’NTIME = ’,NTIME,’ TTIME = ’,TTIME
WRITE(6,*)(RSDU(N),N=1,7)
WRITE(6,*)(FDIF(N),N=1,7)

2000 CONTINUE
RETURN
END

C *******************************************
SUBROUTINE TDMA(IB,IL,Y1,YN,BA,BB,BS,YY)
INCLUDE ’COM2D.FOR’

C *******************************************
DIMENSION BA(MXGR),BB(MXGR),BS(MXGR),YY(MXGR),A(MXGR),B(MXGR)
A(IB)=BA(IB)
B(IB)=BB(IB)*Y1+BS(IB)
DO 1 I=IB+1,IL
TERM=1.0-BB(I)*A(I-1)
A(I)=BA(I)/(TERM +SMALL)

1 B(I)=(BB(I)*B(I-1)+BS(I))/(TERM+SMALL)
YY(IL)=B(IL)+A(IL)*YN
DO 2 I=IL-1,IB,-1

2 YY(I)=A(I)*YY(I+1)+B(I)
RETURN
END
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C *******************************************
FUNCTION STAN(UPLUS,YPLUS,PR,PRT)

C *******************************************
C LAMINAR SUB LAYER

IF(YPLUS.LT.11.6)THEN
PF=(PR/PRT-1)*UPLUS
ELSE

C TURBULENT LAYER
PF=9.24*((PR/PRT)**0.75 -1.0)*(1+0.28*EXP(-0.007*PR/PRT))
ENDIF
STAN=1./(PRT*UPLUS*(PF+UPLUS))
RETURN
END

C *******************************************
FUNCTION FINTW(F,II,JJ)
INCLUDE ’COM2D.FOR’

C *******************************************
DIMENSION F(IT,JT)
I=II
J=JJ
LW=NTAGW(I,J)/10
TW=((X(I)-XC(I))*F(I-1,J)+(XC(I)-X(I-1))*F(I,J))/DXMI(I)
FINTW=TW*(1-LW)+LW*F(I-1,J)
RETURN
END

C *******************************************
FUNCTION FINTE(F,II,JJ)
INCLUDE ’COM2D.FOR’

C *******************************************
DIMENSION F(IT,JT)
I=II
J=JJ
LE=NTAGE(I,J)/20
TE=((X(I+1)-XC(I+1))*F(I,J)+(XC(I+1)-X(I))*F(I+1,J))/DXMI(I+1)
FINTE=TE*(1-LE)+LE*F(I+1,J)
RETURN
END

C *******************************************
FUNCTION FINTS(F,II,JJ)
INCLUDE ’COM2D.FOR’
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C *******************************************
DIMENSION F(IT,JT)
I=II
J=JJ
LS=NTAGS(I,J)/30
TS=((Y(J)-YC(J))*F(I,J-1)+(YC(J)-Y(J-1))*F(I,J))/DYMI(J)
FINTS=TS*(1-LS)+LS*F(I,J-1)
RETURN
END

C *******************************************
FUNCTION FINTN(F,II,JJ)
INCLUDE ’COM2D.FOR’

C *******************************************
DIMENSION F(IT,JT)
I=II
J=JJ
LN=NTAGN(I,J)/40
TN=((Y(J+1)-YC(J+1))*F(I,J)+(YC(J+1)-Y(J))*F(I,J+1))/DYMI(J+1)
FINTN=TN*(1-LN)+LN*F(I,J+1)
RETURN
END

C *******************************************
SUBROUTINE OPT
INCLUDE ’COM2D.FOR’

C *******************************************
OPEN(12,FILE=’NSOUT’,FORM=’UNFORMATTED’)
WRITE(12)NITER,TTIME
DO 1 J=1,JN
DO 1 I=1,IN
WRITE(12)P(I,J),U(I,J),V(I,J),W(I,J),E(I,J),D(I,J),T(I,J)
WRITE(12)VIS(I,J),VIST(I,J),RHO(I,J),SPH(I,J)
WRITE(12)QW(I,J),AMW(I,J),TAUW(I,J),O(I,J),HH(I,J)

1 CONTINUE
CLOSE(12)
RETURN
END

C *******************************************
SUBROUTINE IPT
INCLUDE ’COM2D.FOR’

C *******************************************
OPEN(13,FILE=’NSIN’,FORM=’UNFORMATTED’)
READ(13)NITER,STIME
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DO 1 J=1,JN
DO 1 I=1,IN
READ(13)P(I,J),U(I,J),V(I,J),W(I,J),E(I,J),D(I,J),T(I,J)
READ(13)VIS(I,J),VIST(I,J),RHO(I,J),SPH(I,J)
READ(13)QW(I,J),AMW(I,J),TAUW(I,J),O(I,J),HH(I,J)

1 CONTINUE
CLOSE(13)
RETURN
END

C *******************************************
SUBROUTINE PR1D(F,IB,IL)
INCLUDE ’COM2D.FOR’

C *******************************************
DIMENSION F(MXGR)
I1=IB
IE=I1+10
IF(IE.GT.IN)IE=IL

100 CONTINUE
WRITE(6,500) (F(I),I=I1,IE)
WRITE(6,600) (I,I=I1,IE)
IF(IE.LT.IL) THEN
I1=IE+1
IE=I1+10
IF(IE.GT.IL)IE=IL
GO TO 100
ENDIF

500 FORMAT(11F10.4)
600 FORMAT(1X,6H ,I3,11I10)

RETURN
END

C *******************************************
SUBROUTINE PRINTK(F,IB,IL,JB,JL,HEADER,JSTEP)
INCLUDE ’COM2D.FOR’

C *******************************************
CHARACTER*10 HEADER
DIMENSION F(IT,JT)
WRITE(6,*)’*************************************’
WRITE(6,*)’ DISTRIBUTION OF F(I,J) ’,HEADER
WRITE(6,*)’*************************************’
I1=IB
IE=I1+11
IF(IE.GT.IL) IE=IL
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100 CONTINUE
DO 1 J=JL,JB,JSTEP

1 WRITE(6,500)J,(F(I,J),I=I1,IE)
WRITE(6,600) (I,I=I1,IE)
IF(IE.LT.IL) THEN
I1=IE+1
IE=I1+11
IF(IE.GT.IL) IE=IL
GO TO 100
ENDIF

500 FORMAT(I3,12E10.3)
600 FORMAT(1X,6H ,I3,11I10)

RETURN
END
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