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Preface

The research of distributed systems encompasses many areas of computer science
and engineering and is among the fastest growing subjects in the last decade.
The computing trend that processor technology, driven by the Moor’s Law, hits
performance and power walls, and cloud computing permeates into every aspect
of our life, dramatically changes the landscape of computing, making parallel
and distributed computing a key norm of the computer science and engineering
discipline. There is a paradigm shift that local computers no longer have to do
all the heavy lifting. Instead, due to the technology advance of networking and
virtualization, applications become “services” that can be purchased on demand.
The emerging cloud computing model leverages remote hardware and software
resources, and fuels rapid application development innovation with highly scalable
and efficient computing infrastructure. Since cloud features resource provisioning
elasticity, computing and storage can be packaged as metered services, known as
utility computing. There is no doubt that cloud and utility computing will be one of
the key driving forces to transform the entire computing industry.

Designing efficient resource management strategies is among the key issues in
a cloud and utility computing environment. The introduction of socioeconomic
approaches into distributed computing research opens tremendous research oppor-
tunities. This book presents cost-effective resource management strategies in cloud
and utility computing, based on Dr. Han Zhao’s doctoral research (Zhao, H:
Exploring Cost-Effective Resource Management Strategies in the Age of Utility
Computing. Ph.D. dissertation, Department of Computer and Information Science
and Engineering, University of Florida (2013)). We have further extended the
content to cover additional aspects in the field that we feel are relevant and
interesting. We hope this book will help facilitate your understanding of this
interesting subject.

Gainesville, FL, USA Han Zhao
Xiaolin Li
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Chapter 1
Introduction

Abstract We are entering an era of “Everything-as-a-Service” where resources
are shared at an unprecedented scale. The so called utility computing model,
built upon cloud computing infrastructures, becomes ubiquitous in the enterprise
IT landscape. In this chapter, we first introduce recent advances in the study of
the economics of cloud computing, known as Cloudnomics. Next, we describe
the motivation behind cost-effective resource management design in Cloudnomics.
We also summarize relevant research to the study of resource management in utility
and cloud computing. At the end of this chapter, we describe the fundamental
research challenges, present our design evolutions with regard to these challenges,
and sketch our proposed solutions.

1.1 Resource Management in Utility and Cloud Computing

Distributed computing paradigms have undergone profound changes in the past
decade. The emerging cloud computing [6, 14, 21, 23, 49, 54] and utility comput-
ing [42, 43] model promise to deliver agile, metered computing services to both
business and scientific communities. To cope with the change, it is of paramount
importance to develop efficient and flexible resource management strategies. How-
ever, the problem of managing resource allocations in a cloud and utility computing
environment is challenging because both resources and administrative parties who
operate these resources feature diverse heterogeneity. As cloud proliferates, scalable
resource sharing platform instantiated on multiple resource providers becomes
cheaper and more accessible. Hence, strategy design for resource management
should equally address the heterogeneous interests of various involved parties who
pursue maximum economic benefits. As a result, an inter-disciplinary research
approach that combines economic models in social computing scenarios with
algorithmic design in computer science becomes a viable option for researchers to
build cost-effective resource scheduling strategies.

H. Zhao and X. Li, Resource Management in Utility and Cloud Computing,
SpringerBriefs in Computer Science, DOI 10.1007/978-1-4614-8970-2__1,
© The Author(s) 2013
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2 1 Introduction

1.1.1 Cloudnomics: Discover Economics in Cloud Computing

The fast development of parallel and distributed computing paradigms, driven
by the increasing demand for computing power and network bandwidth, spurs
the development of a variety of massively distributed computing platforms, such
as Peer-to-Peer (P2P), Cluster, and Grid Computing emerging in academic and
industrial communities. Most recently, we have witnessed the commoditization
of computing, storage, network, and software: resources alone have become the
subject of commercial transactions. The emerging Cloud Computing paradigm is
gaining momentum as the industry realizes the economic benefits. As estimated
by Gartner R� [26], more than 50% of Global 1,000 companies will have stored
customer-sensitive data in the public cloud by year-end 2016. For big players, cloud
computing presents new opportunities to take advantage of their technology edge on
computing infrastructure and IT services, allowing them to build ecosystems in the
application world. For small companies, adopting cloud computing librates them
from purchasing and maintaining resources, therefore greatly improves productivity
and reduces time to market.

As cloud computing represents a big leap forward for distributed computing, it
also brings new varieties to the design space. Performance still matters, but more
importantly, it is performance per dollar that matters the most in cloud and utility
computing. A new concept called Cloudnomics [18, 50] emerges from the cloud
marketplace, concerning about the economics of the cloud. Essentially, lowering
the cost of deploying new services and applications to the cloud is of every bit as
much value as meeting service demand for organizations transiting to cloud. When it
comes to research, Cloudnomics opens up many possibilities to apply economic and
game theories to the scheduling and management of cloud resources. In this book,
we present our research findings for cost-effective resource management strategy
design in cloud and utility computing.

1.1.2 Motivation

Resource management, which concerns the efficient and effective acquisition and
deployment of computational, storage and networking resources, is among the most
important research topics in utility and cloud computing. Conventional methods
for resource management, mostly centralized, are difficult to adapt to the growing
complexity of modern heterogeneous distributed environments. This growing com-
plexity is mainly caused by two phenomena. First, the distributed system becomes
more loosely coupled, as its scale increases dramatically in the past few years.
Today’s distributed computing platform grows from clusters in a single laboratory
to multiple geographically distributed computational sites, each of them composed
of hundreds of computational nodes and featuring high autonomy. Second, com-
putational devices become more heterogeneous than ever before. Many types of
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devices nowadays are capable of offering computing power that is only available
on supercomputers decade ago, including tablet computers, smartphones, gaming
consoles, etc. As a result, the increasing scalability and heterogeneity bring many
challenges to effective resource management strategy design.

To address these challenges, researchers have proposed many resource manage-
ment solutions to tackle the growing complexity, both theoretically and practically.
Among them, one type of approach is to use market oriented mechanisms to regulate
the scheduling decision making process. The market oriented mechanisms regard
distributed computing units as economically rational individuals in the human
society, and characterize the cooperation and competition process using economic
theory. Such a socioeconomic approach most naturally models the system since
it precisely capture the essential features of the modern heterogeneous distributed
environments, and scales well to larger and more complex loosely coupled dis-
tributed platforms.

The utility computing model offers rental-based access to a massive pool of
computational power and provides metering and accounting functions for resource
usage. This service provisioning model has quite a long history (e.g., [25]), but
only becomes popular as cloud computing prevails. Cloud computing eliminates
the heavy economic burden of resource setup and operational cost for industry,
and liberates the software development process by offering on-demand service
provisioning. The utility computing model is mostly built on a cloud-based infras-
tructure, and defines accounting policies for resource acquisition. It helps users
gain access to computational resources at a tremendous scale. When we step
into the age of cloud and utility computing, we expect to see new computing
paradigms implementing “Everything-as-a-Service” and to be charged at reasonable
rate. Most importantly, cost-effective resource management strategies are highly
desirable so that resources are utilized at low cost, and as efficiently as possible.
Again, the increasing scalability and heterogeneity present tremendous challenges,
as one needs to cope with varying provider-side resource availability and pricing,
as well as fluctuating user-side application configuration and demand. Especially,
we recognize three fundamental issues that govern the exploration in cost-effective
resource management strategies in this book.

1. The flourish of virtualization technology enables more flexible resource aggre-
gation and presents an exponential search space for optimization.

2. The heterogeneous nature of user interests has direct impact on resource
management decisions.

3. Financial cost plays an important role in determining the achievable application
performance.

To address these issues, we develop several resource management strategies that
achieve cost-effectiveness and flexibility with regard to various scheduling contexts
in cloud and utility computing. The research presented in this book highlights
these challenges and provides a set of possible solutions for cost-effective resource
management. Our study seeks to investigate economic models and their implication
to the utility-oriented scheduling problems.



4 1 Introduction

1.2 Summary of Related Research

In this section, we briefly summarize prior literature related to the research findings
presented in this book.

1.2.1 Applying Socioeconomic Approach to Utility
and Cloud Computing

In recent years, we have witnessed a burst of research efforts that study the appli-
cation of economic and game theory for resource management in heterogeneous
distributed systems [2,5,10,12,14,27,30]. An early work proposing computational
economy for resource scheduling was presented in [51]. The authors presented
two different market strategies for grid computing, namely commodities market
and auction. The advantage of using auctions in a computational economy is that
it’s beneficial to discover commodity prices through strategic mechanism design.
This trend is largely contributed to the following observations: design similarity
of economic market mechanisms and distributed system scheduling principles; and
role similarity of realistic rational individuals and egocentric heterogeneous com-
puters. Therefore, market-oriented methods derived from game theory are extremely
helpful in modeling behaviors of benefit-driven agents. Methods using game theory
converge to system equilibrium state on the basis of revenue maximization. The key
challenge is to identify a suitable objective function that defines target performance
optimization in term of utility. Example applications of economic methods have
been proposed for various scheduling topics including but not limited to dynamic
resource sharing [44], workload balancing [22,31] and promoting incentives in grid
and P2P systems [40]. The recent development of cloud computing technologies
also urges researchers to investigate the application of auctions to manage and
schedule cloud resources [13, 24, 53].

Depending on assumptions on individual computing resource contributor, the
market oriented methods can be categorized as cooperative or noncooperative. The
cooperative methods [41] take advantage of cooperative behaviors of individual sites
for optimal performance scheduling, while the noncooperative methods [32, 37]
explore the inherent self-interested nature of computer peers and design negotiation
strategies towards utility maximization. As the distributed computing platforms
become more loosely coupled, we envision that hybrid architecture is more suitable
to model modern distributed systems, where cooperation and non-cooperation
coexist at various scheduling and management levels. This is well conformed to
distributed computing platforms at global scale, e.g., P2P desktop grid systems
such as Cohesion [45] and OurGrid [17]. Further, we argue that current literature
of market oriented approaches suffers from the following problems: (1) inaccurate
modeling of egocentric agent behaviors; (2) lack of efficient resource management
mechanism design for multi-criteria optimization; and (3) insufficient research



1.2 Summary of Related Research 5

investigation on ideas from other disciplines, mainly from economic and financial
fields. In this book, we strive to address these issues in our research for cost-effective
resource management strategy design.

1.2.2 Cost-Benefit Analysis for Utility and Cloud Computing

Cloud computing has drawn significant attentions from the industry as well as the
scientific community in the past a few years. We introduce some representative
examples in this section. A number of prior works [9,20,48] have attempted to study
the cost-benefit of running computational and data intensive applications in cloud.
For instance, Iosup et al. [34] analyzed the performance of cloud computing services
for scientific computing workloads and evaluated the cost models in popular
commercial cloud computing platforms. Kondo et al. [35] compared the perfor-
mance and monetary cost-benefits of clouds for desktop grid applications, ranging
in computational size and storage. Assunção et al. [7] conducted a cost-benefit
analysis of using cloud computing to extend the capacity of clusters. In addition
to computational cost, moving and storing large data set in cloud also incurs huge
cost comparable [20]. Therefore, application service providers are highly motivated
to carefully plan for resource usage in accordance with the estimated workload. For
resource rental planning in cloud markets, various optimization models based on
(non-)linear programming were proposed. For example, Goudarzi and Pedram [28]
formulated the multi-dimensional SLA-based resource allocation problem as a
mixed integer non-linear programming problem, and provided a heuristic solution
based on force-directed scheduling. Qian and Medhi [39] presented an optimization
model for minimizing server operational cost in data centers. We will propose a
novel resource rental planning design in Chap. 2.

1.2.3 Merging Peer-to-Peer Computing with Cloud Computing

Cloud computing is promising in meeting the ever-increasing computational
requirements. However, it is confronted with significant challenges on increasing
scalability and complexity. One promising solution is to utilize the untapped
resources interconnected in a Peer-to-Peer (P2P) manner. The idea of leveraging
P2P technologies is not new. The so-called volunteer computing model [3], uses
cycle scavenging and low-end desktop machines for computationally intensive
applications. Compared to a centralized model, the P2P-based desktop grid
computing systems achieves low cost and more flexibility, making it a good
candidate for processing embarrassingly parallel computational workloads.
Example projects include Condor [38], BOINC [4], Entropia [15], and
GridSAT [16]. Interested readers can refer to our survey work in this field [57].
Cloud computing can also inherit the merits of P2P technologies and achieve higher
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flexibility for resource allocation. A few P2P cloud systems have been proposed
to avoid centralized bottleneck in cloud storage [52], and to gain more flexibility
in task and resource management [8, 29]. A P2P communication infrastructure
is also suitable for resource-constrained mobile devices better utilize cloud
services [33, 36]. The lack of centralized coordination presents many challenges in
building a P2P cloud system. We will discuss relevant issues and propose a resource
trading framework in Chap. 3.

1.2.4 Cloudnomics in Practice

Due to the service-oriented paradigm shift, utility and cloud computing
revolutionize the way IT services are delivered. There are several projects (e.g.,
[11, 47]) that attempt to build a cloud economy. The economy allows users to bid
for resource quotas, or bundles of resources for long-term use. SpotCloudTM [46] is
a market place for cloud capacity trading. Some projects aim to realizing a virtual
computational cloud across multiple administrative domains, e.g., CometCloud [19]
and 4CaaSt [1]. In Chap. 4, we present a novel resource rental and lease platform
called CloudBay. It is designed to bridge the scattered scientific communities in
support of efficient running of High Performance Computing (HPC) applications.

1.3 Contributions

In this section, we briefly summarize the research contributions presented in this
book. We start from a list of challenges for designing cost-effective resource
management strategies in utility and cloud computing. We then describe the
evolution of our design and methodologies to overcome these challenges. We finally
present a solution summary and the organization of this book to facilitate the
exploration of the readers.

1.3.1 Challenges

Similar to the motto for the Olympics known as “Faster, Stronger, Higher”, the trend
for building loosely coupled distributed systems is “Faster, Larger, Cheaper” that
strive to keep up with the increasing volume of data. Many distributed computing
service providers offer global span infrastructures featuring long-haul networks
and multi-site coordination. As a result, it is harder to maintain homogeneity
within the system. New challenges for managing resource allocation rise when
heterogeneity exists and affects scheduling. Here we present three challenges to
resource management in utility and cloud computing. For each challenge listed
below, we describe an example scenario that will be addressed in later chapters.
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1. Challenge: The optimization complexity is greatly increased when cost factor
comes into account.

Scenario: Data transfer service is priced at x dollars per GB and storage service
is priced at y dollars per GB�month.
Question: Should we cache the input data or transfer input on demand in order to
provide best cost-effective computing service?

2. Challenge: Resource demands critical to allocation decisions are fluctuating all
the time.

Scenario: Alice reserves a number of VM instances for some project using
reservation pricing with 1-year contract, but the project is canceled after 3
months.
Question: How to cut monetary loss caused by the unexpected event? Or better
yet, make profit from it?

3. Challenge: The flourish of cloud services present exponential combination of
choices to end users.

Scenario: Bob can deploy his application service on A servers of type B from
resource provider C , or on X servers of type Y from resource provider Z.
Question: Which option gives Bob better cost-effective results?

1.3.2 Design Evolution

Consider a resource customer wishing to obtain a set of computational resources
from a publicly accessible resource pool, as illustrated in Fig. 1.1. One of the major
challenges is how to meet the computational service demand while at the same time,
reduce resource acquisition cost. We model the resource customer to be utility-
driven, i.e., they are interested in profitable trading activities and independently
make management decisions. This section summarizes our design evolution of cost-
effective resource management strategies for the utility-driven resource customer.

The first resource management strategy design presented in this book focuses
on interactions between the resource customer and the resource provider, as
illustrated in Fig. 1.2. In particular, we focus on optimal strategy design for utility-
oriented cloud resource rental planning. Cloud computing revolutionizes the use
and deployment of IT services and spurs the emergence of Application Service
Providers (ASPs) who provide managed application hosting services using cloud
resources. With the knowledge of resource pricing options, a major issue faced by
ASPs is how to intelligently plan resource usage for a certain time horizon in order
to minimize rental cost while meeting the projected demand schedule. We found that
little work has been devoted to leverage application elasticity (through job spawning
and migration) to lower resource rental cost [58]. What’s more interesting is that
resource pricing can be dynamic (e.g., as we see in Amazon R�’s spot instance
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Fig. 1.1 A user facing resource acquisition and management challenges

Fig. 1.2 Design revolution 1: managing resource rental

market), making it more difficult to choose the best resource rental option under
uncertainties of resource availability. We highlight these challenges and present our
design in Chap. 2.

The second design takes one step further, presenting an efficient and fair resource
trading framework among resource customers, as depicted in Fig. 1.3. We propose a
set of utility-based multitenancy negotiation protocols to facilitate resource trading
activities. In a multi-tenant environment, it is critical to satisfy different user
interests in a fair, manageable, and productive way. Our research on this topic [56]
uses a multi-agent approach that: (1) models tenants as utility-driven, intellectual
individuals; (2) quantifies allocation benefit and loss using well-designed valuation
functions; and (3) establishes a resource trading framework that evolves towards
better allocation state when agents only make self-benefit trade decisions.
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Fig. 1.3 Design revolution 2: managing resource trading

Finally, we design CloudBay [59], a cloud-based middleware platform for cross-
domain resource sharing. This design aims at providing a resource trading platform
that let people rent and lease computational resources just like they buy and sell
their common commodities on eBay. It features a flexible architecture in which
privately owned resources form the networked computing utilities, as illustrated in
Fig. 1.4. Therefore, it is most challenging to our research on cost-effective resource
management strategy design. We present the prototype design of CloudBay as our
initial efforts of implementing High Performance Computing (HPC)-as-a-Service.
CloudBay deploys HPC and cloud services (e.g., MPI, Hadoop) on dedicated
hosts contributed by scientific communities. Similar to the PlanetLab project, it
provides purpose-built software from ground up, including an operating system.
Prepackaged software services are encapsulated in virtual containers called Cloud
Appliances. Two important services are considered as essential building blocks to
enable CloudBay’s functionalities: (1) autonomic networking service, which offers
labor-free resource bundling based on a virtualized P2P networking library; and (2)
preemptive job scheduling service, which uses Condor to manage job submission,
checkpointing and preemption.
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Fig. 1.4 Design revolution 3: managing resource sharing

1.3.3 Summary of Solutions

1.3.3.1 An Optimization Strategy Design for Cloud Resource
Rental Planning

We conduct a thorough investigation of the cloud resource rental planning problem.
Modeling as a mixed integer linear program, we solve the optimal resource rental
problem under deterministic pricing constraints. Further, we run time series analysis
on the complete history of Amazon R�’s spot price variations, and propose an
alternative solution that applies a stochastic optimization approach (multistage
recourse) to the resource rental planning problem in order to cope with the stochastic
pricing challenge. Through thorough investigation which uses Amazon R�’s EC2
market as a case of study, we conclude that we cannot count on prediction results
since the data correlation is weak. On the contrary, the stochastic optimization
approach is more effective in hedging against pricing uncertainties. Combining the
deterministic and stochastic optimization approaches, this work presents empirical
values for ASPs to deploy cost-effective application services in cloud.

1.3.3.2 An Efficient and Fair Resource Trading Framework
for Community Cloud

Inspired by previous studies in artificial intelligence, we present a unified model that
uses a directed hypergraph to simultaneously capture resource allocation efficiency
and unbalance amongst agents. When budget constraint presents, we propose a set
of heuristic algorithms that work on distributed environment and guide agents to
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spontaneously trade resources. Through theoretical analysis, we show that these
trading activities will improve the resource allocation within the community cloud.
This resource trading framework is designed to enhance resource management
in a highly collaborative resource sharing environment. For example, enabling
resource trading in popular cloud resource market such as Amazon R� EC2 will grant
customers with “subleasing” rights, making it more attractive to cloud customers
wishing a more cost-effective resource provisioning solution.

1.3.3.3 A Cloud Middleware for Scalable Resource Sharing

We propose a novel system design, CloudBay, which is a flexible resource manage-
ment middleware to accommodate both quality-sensitive and cost-sensitive service
requests. CloudBay’s service scheduling scheme is inspired by eBay’s transaction
model, where customers can choose to “buy-it-now” or bid for an item. Therefore,
CloudBay is viewed as the eBay of scientific computing resources that allows
researchers to rent or release resources in a global research cloud just like they
buy and sell daily commodities on eBay. Depending on user’s willingness to pay
(WTP), CloudBay prioritizes user service requests and schedule them accordingly.
We propose a novel auction form [55] that uses proxy iterative bidding to achieve
efficient auction outcome. The proposed utility model maintains incentive compati-
bility as in VCG auction, and is computationally tractable in winner determination.
We validate the prototype of CloudBay across a variety of open and private cloud
platforms, including university clusters, FutureGrid, and Amazon R� EC2. Results
show that CloudBay makes good use of idle resources and provides easy-to-access
resources to researchers in a fair manner.

1.4 Organization

The contents of this book are organized as follows. In Chap. 2, we propose a
fine-grained resource rental planning design for both flat-rate and spot markets.
In Chap. 3, we formulate a resource trading framework for a community-based
cloud computing environment. Chapter 4 describes our proof-of-concept design
and implementation of a resource sharing market place. Finally, in Chap. 5, we
summarize our research findings and discuss future research directions.
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Chapter 2
Optimal Resource Rental Management

Abstract Application services using cloud computing infrastructure are prolifer-
ating over the Internet. In this chapter, we study the problem of how to minimize
resource rental cost associated with hosting such cloud-based application services,
while meeting the projected service demand. This problem arises when applications
incur significant storage and network transfer cost for data. Therefore, an Appli-
cation Service Provider (ASP) needs to carefully evaluate various resource rental
options before finalizing the application deployment. We choose Amazon R� EC2
marketplace as a case of study, and analyze the optimal strategy that exploits the
tradeoff of data caching versus computing on demand for resource rental planning in
cloud. Given fixed resource pricing, we first develop a deterministic model, using a
mixed integer linear program, to facilitate resource rental decision making. Next, we
investigate planning solutions to a resource market featuring time-varying pricing.
We conduct time-series analysis over the spot price trace and examine its pre-
dictability using Auto-Regressive Integrated Moving-Average (ARIMA). We also
develop a stochastic planning model based on multistage recourse. By comparing
these two approaches, we discover that spot price forecasting does not provide our
planning model with a crystal ball due to the weak correlation of past and future
price, and the stochastic planning model better hedges against resource pricing
uncertainty than resource rental planning using forecast prices.

This chapter is organized as follows. Section 2.1 provides an overview of the
problem and summarizes our proposed optimal planning methods. Section 2.2
surveys the related work. In Sect. 2.3, we formulate the system model, provide
a deterministic planning model for the resource rental problem, and evaluate the
performance of the deterministic pricing resource planning approach. Finally, in
Sect. 2.4, we analyze the predictability of Amazon R� EC2 spot pricing using time-
series analysis techniques, propose a stochastic optimization model to solve the
rental planning problem, and perform simulations to compare the two approaches.
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2.1 Overview

The emerging cloud computing model, with its virtually infinite resources and
elasticity, liberates organizations from the expensive infrastructure investment.
As a result, more and more Application Service Providers (ASPs) recognize the
separation between the actual application and the infrastructure necessary to run it,
and begin to deploy applications on resources rented from infrastructure providers.
According to a recent forecast by Gartner R� [16], Software-as-a-Service and Cloud-
based business application services will grow from $13.4 billion in 2011 to $32.2
billion in 2016.

In cloud computing, a major issue faced by the ASPs is how to minimize the
resource rental cost while meeting their application service demand. Significant
research efforts have been directed toward developing optimal resource provisioning
schemes to meet service requirements (avoid the cost due to over-provisioning and
the penalty due to under-provisioning) [7, 17, 23, 28, 30]. These works, although
offer effective resource provisioning controls in response with varying workload,
are still coarse-grained in terms of exploring application elasticity with regard to
different resource pricing options. We believe that resource rental planning should
be conducted in a cost-aware manner to reduce ASPs’ operational cost. Specifically,
we propose a fine-grained planning scheme to regulate the rental activities on a
time-slotted basis, exploring hourly charging rate of various types of resources, in
order to meet the projected service demand and minimize resource rental cost at
the same time. Complementary to prior resource scaling solutions, our approach
focuses on application scaling that optimizes resource rental plan in cloud without
compromising the service-level agreement.

In addition to the planning optimization complexity, another obstacle lies in the
uncertainty of computational resource pricing. This challenge is encountered in the
spot resource market emerged in recent years. In a spot resource market, depending
on the resource supply and demand level, the unit price of a computational instance
is fluctuating all the time. For example, at the time Amazon R� first launched its
spot instance service in December 2009, an auction mechanism was employed
to determine instance pricing. Since spot instances leverage idle cycles from the
regular on-demand server pool, they are auctioned off at a price much lower than
that of the regular on-demand instances most of the time. As a result, this real-time
bidding market has attracted many ASPs who wish to increase server capacity at low
cost. There is a growing research interest in utilizing spot instance service. However,
modeling and analyzing spot instance pricing is largely neglected due to the lack of
demand and resource provision information. We believe that our study is helpful
to understand spot pricing, and more importantly, to improve resource utilization
under spot pricing.

The research presented in this chapter represents our initial design for cost-
effective resource utilization and management in utility and cloud computing.
In particular, we develop optimal resource rental planning strategies for fixed pricing
and stochastic pricing resource markets, respectively. The first part of this chapter
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presents our approach for a fixed pricing resource market. Given a forecast demand
schedule, the ASP needs to periodically review the running progress of the deployed
service and make optimal job allocation as well as resource rental decisions so as not
to waste money on excessive computation, storage or data transfer. We formulate a
deterministic planning model for resource rental decision making over a specific
planning horizon. The solution to this model serves as a guide to make cost-effective
resource rental decisions in real time. We show that our planning model is especially
useful for high-cost Virtual Machine (VM) classes. This is because cost saving from
our model primarily comes from eliminating unnecessary job running by decreasing
VM rental frequency. From this perspective, our model formulation is aligned with
the dynamic lot-sizing model commonly encountered in the field of production
planning.

Next, we analyze and solve the fine-grained cloud resource rental planning prob-
lem under the pricing uncertainty challenge. In particular, two possible solutions
are jointly explored. We systematically analyze the predictability of Amazon R�
EC2 spot pricing and use the predictive prices to perform planning. Furthermore,
we propose a multistage resource model for stochastic resource rental planning.
This model decomposes the stochastic process of decision making under varying
price into sequential decision making processes with the aid of price distribution
at various stages. As such, the stochastic optimization problem is transformed
into a large-scale deterministic optimization problem. Through simulations, we
demonstrate that the stochastic planning approach is more cost-effective than
predictive planning.

2.2 Related Work

Nowadays, a wide variety of computational and data intensive applications utilize
cloud to their benefit. Therefore, it becomes imperative to understand the cost-
benefit of running resource-demanding applications in cloud in order to make
cost-effective resource rental decisions. Cloud computing eliminates up-front setup
and operational cost for distributed resources. However, moving and storing large
data set in cloud incur significant cost comparable to the computing cost [13].
Efforts have been made to mitigate such cost in cloud [22, 29]. In this chapter, we
present a planning model that optimizes resource usages for elastic applications with
comprehensive cost considerations.

Finding an optimal resource utilization strategy is challenging for both cloud
infrastructure providers and application service providers who rely on rented infras-
tructure. From the perspective of the cloud infrastructure provider, the challenge is
how to reduce the operational cost and maximize leasing revenue. Many existing
research has focused on this aspect. The general problem of minimizing resource
allocation cost while meeting job demand is NP-hard [9]. Resource scheduling for
the emerging spot market was proposed in [31]. The proposed framework includes:
(1) a market analyzer periodically forecasting supply and demand, (2) a capacity
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planner determining the spot price based on the forecast results, and (3) a VM
scheduler maximizing the revenue by solving a NLIP model for the scheduling
problem. From the perspective of the application service providers, the challenge
becomes how to minimize resource rental cost while meeting service demand from
customers. Many resource planning schemes rely on predictive workload assess-
ment [17, 21]. Our work takes one step further that presents an application scaling
control model based on the forecast demand. Our model takes full consideration of
various resource types and their associated costs within a cloud resource market,
and strives to find the optimal tradeoff among various resource usage in resource
rental allocation.

The stochastic planning model proposed in this chapter deals with the price
uncertainty in the spot resource market. Such a spot market is either formed by
multiple resource providers [10] or by a single resource provider. Amazon R� EC2
spot market is the most representative example that attracts significant research
attentions. Researchers are interested in utilizing spot instances to temporarily
add capacity to dedicated clusters during peak periods [19]. The biggest concern
for utilizing spot instances is that it is hard to guarantee resource availability.
Recent works [3, 20] addressed this problem using statistical analysis. Notably,
Ben-Yehuda et al. [1] reversely engineered spot prices by constructing a spare
capacity pricing model based on existing price traces. However, the effectiveness of
these approaches is still unclear due to unsubstantiated assumptions on Amazon R�
EC2 spot service. In this chapter, we take EC2 as a case study and targets at a
general spot resource market where prices are market-driven and users bid according
to their true valuations (simple-minded assumption). The most relevant works to
this study are presented in [8, 25]. In [8], the authors presented an optimal VM
placement algorithm that minimizes the cost of resource provisioning in a multiple
cloud providers environment, and in [25], the authors proposed a profit-aware
dynamic bidding algorithm to optimize ASP’s profits in EC2 spot market. Our
work’s application scenario is different from [8], and we develop our model based on
realistic application and price traces. Comparing with [25], our approach proposes a
different model that takes storage and network transfer cost into account in addition
to computational instance bidding.

2.3 Deterministic Resource Rental Planning

Resource rental planning entails the acquisition and allocation of computational
and storage resources to applications so as to satisfy demand over a specified
time horizon. An application scaling control scheme is proposed to optimize rental
decision on a time slotted basis. In this section, we target at a fixed pricing cloud
resource market. After describing the system model, we model the rental planning
problem using a mixed integer linear program.
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Fig. 2.1 System model for the resource rental planning problem

2.3.1 System Model

We present a scenario where an ASP offers some computational and data intensive
application services (example services are data visualization, data analytics, data
indexing, etc.) to customers over a network. Instead of using local resources,
the tasks of computation and data storage are completely outsourced to a shared
resource pool operated by some Infrastructure-as-a-Service (IaaS) provider(s),
shown in Fig. 2.1. The depicted system model resembles a broad range of practical
examples in today’s cloud-based service market. For instance, the ASP could be
mapped to some Software-as-a-Service provider who offers routine data analytics
to its customer firms, or some academic institution that provides scientific data
visualization services to the general public.

As illustrated in Fig. 2.1, resource usage incurs monetary cost to the ASP in
various forms. Rental activities are charged throughout the life cycle of the deployed
service as follows. First, input data is imported into the cloud from the local storage
media, introducing network transfer-in cost. Next, a number of VM instances
(hereby referred as Virtual Servers, or VS for short) are launched to perform data
processing tasks. Each of them costs certain amount of money depending on both
VS unit price and rental duration. After the computational jobs are completed,
results and logs are saved to cloud storage, and may later be dumped into local
persistent storage. Many often the data size is large (e.g., images or videos) and
incurs significant storage and network transfer-out cost for the ASP. The storage cost
may also apply to input data already fetched into the cloud but not processed yet.
Finally, high performance applications often feature tremendous I/O requirements
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and some resource provider will charge for I/O activities. When performing resource
rental planning, an ASP needs to consider all costs described above in order to
understand the cost-benefit ratio of possible choices.

Now, considering an ASP rents a number of VSs from the cloud resource market
for the purpose of data processing and presentation, in order to achieve resource
auto-scaling for efficient resource utilization, the first step is to identify the client
workload pattern and build a forecast demand schedule for each VM. Once the
forecast demand pattern is built up, the ASP is able to schedule resource rental
through job addition, replication, migration and removal.

2.3.2 Optimizing Planning for Deterministic Pricing Market

The first resource rental planning model targets at an on-demand resource market
where each VS costs a fixed amount of money. Each VS belongs to a specific
VS type specifying the hardware configuration. We assume the applications to
be elastic and composed of jobs easy to scale gracefully and automatically. For
example, applications processing Bags-of-Tasks (no job dependencies). Similar
to [14], we are interested in self-aware solutions that can plan resource usage of
cloud applications under various pricing. The planning horizon T is divided into
fixed time slots t D 1; : : : ; T . We refer the start of each time slot as a decision
point. At each decision point, a rental operation is performed to access the most
cost-effective resource available for the application.

Let T be the set of decision points. The goal of resource rental planning is to
minimize the total rental cost associated with processing the forecast workload over
the planning horizon T . In order to accomplish this goal, three sets of variables are
introduced to identify the rental decisions to be made at each decision point. The first
set of variables, ˛i;t , denotes the amount of data to be processed by the application
during time slot t on a type-i VS. Next, at the end of slot t , we use ˇi;t to represent
the desired storage space for holding the data. Finally, let binary decision variables
�t denote if powering on a type-i VS is needed at time slot t . ˛i;t and �i;t specify
how to make use of the computational resources to control the application progress,
while ˇi;t determines the amount of storage resources to reserve in a cloud market.
If all these variables are determined, an application scaling control policy is formed
to guide the rental activities in the cloud market for optimal resource utilization.

A number of cost parameters are associated with our resource rental optimization
problem. Specifically, the rental cost (processing cost) for type-i VS in time slot t

is Cp.i; t/, and the storage rental cost per data unit for slot t is Cs.t/. As presented
earlier in Sect. 2.3.1, many IaaS providers charge nontrivial cost for data transfer
across the cloud boundary. For each time slot t , let Cio.t/ be the I/O cost for data
transfer from and to the cloud storage, and let CCf .t/ and C�f be the cost for
transferring into and out of the cloud, respectively. In addition to the cost parameters,
we assume the customer’s demand function is D.�/, where D.i; t/ denotes the
forecast workload demand profile for a type-i VS in slot t . We summarize the
notation used throughout the chapter in Table 2.1.
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Table 2.1 Summary of notations

Variables

˛i;t
Output data size generated by one
type-i VS in time slot t

ˇi;t
Storage space for data produced by
one type-i VS at the end of slot t

�i;t
Binary decision variable representing rental decision
of one type-i VS in time slot t

Parameters
T Set of time slots
I Set of VS types
Cp.i; t / VS rental cost (per type-i VS � slot duration)
Cs.t/ Storage cost (per data unit � slot duration)
Cio.t/ I/O operation cost (per data unit � slot duration)
C

C

f .t/ Network transfer-in cost (per data unit � slot duration)
C �

f .t/ Network transfer-out cost (per data unit � slot duration)

D.i; t /
Demand to be satisfied for one type-i
VS at the end of slot t

P.i/
Average bottleneck resource consumption rate (per data unit
generated) for one type-i VS

Q.i; t /
Bottleneck resource available for one type-i
VS in time slot t

˚i
Average output-to-input ratio for one
type-i VS (application specific)

With all the prerequisites, we formulate the rental payment function following a
linear cost model. More specifically, the rental cost is linearly proportional to the
consumed resource amount as well as to the duration of the rental period. Naturally,
our objective function aims at minimizing the rental cost for each type-i VS over
the entire planning horizon T . At each decision point, a fixed rental cost Cp.i; t/ is
charged if the ASP decides to rent one type-i VS (�i;t D 1). Now, given the presence
of this computational resource cost, the ASP may choose to make full use of the VS
capacity so as to meet the forecast workload demand over a number of future time
slots. However, doing so will increase the storage and I/O cost as more workload is
processed earlier in time. As such, the planning problem emerges as the ASP needs
to carefully trade off the computational rental cost versus storage and data migration
costs. In production planning, similar problems are recognized as the dynamic lot-
sizing problem. The solution to the dynamic lot-sizing problem determines the
optimal frequency of setups so as to minimize the total cost within the resource and
demand constraints. In the context of cloud computing, we formulate the planning
problem under fixed resource pricing as the Deterministic Resource Rental Planning
(DRRP) problem. DRRP models cloud resource rental on a per-VS basis, forming a
fine-grained control policy for rental planning. The complete model formulation is
given as follows.
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min
X

t2T
.CCf .t/ � ˚i � ˛i;t C .Cs.t/ C Cio.t//

� ˇi;t C C�f .t/ � D.i; t/ C Cp.i; t/ � �i;t / (2.1)

s:t:

ˇi;t�1 C ˛i;t � ˇi;t D D.i; t/; i 2 I ; t 2 T (2.2)

P.i/ � ˛i;t � Q.i; t/; i 2 I ; t 2 T (2.3)

˛i;t � B � �i;t ; i 2 I ; t 2 T (2.4)

ˇi;0 D "; i 2 I (2.5)

˛i;t ; ˇi;t 2 RC; i 2 I ; t 2 T (2.6)

�i;t 2 f0; 1g; i 2 I ; t 2 T (2.7)

Note that the objective function does not take I/O and storage cost for input data
into account. This is because we assume that input data is brought into cloud on
the fly to complete the computational jobs. Another option is to copy all input data
once and store them in cloud throughout the entire planning horizon. The decision
on which option is better depends on the data access pattern and the duration
of planning horizon. Here, we assume that input data is “transfer-on-demand” to
simplify the presentation.

Constraint (2.2) is analogous to the inventory balance constraint in the dynamic
lot-sizing problem. It specifies that workload demand should be met at any time
slot. At slot t , the data stored at the previous time slot ˇi;t�1, and the data generated
in the current slot ˛i;t , are combined together to serve the forecast demand profile
emerged in the current time slot, i.e., ˇi;t�1 C ˛i;t � D.i; t/. The overprovisioning
amount becomes the storage amount ˇi;t at the end of t . The initial storage space
is set to be some constant " in constraint (2.5), depending on the specific planning
scenario. Next, let P.i/ be the average bottleneck resource consumption rate for one
type-i VS, and let Q.i; t/ denote the bottleneck resource available for one type-i VS
in t , constraint (2.3) ensures that the workload processing rate does not saturate the
available bottleneck resource.

Constraint (2.4) is often referred to as the forcing constraint. It states that there
will be no data generated in t if no rental decision is made (�i;t D 0). B is set to
be a very large constant that exceeds the maximum possible value of ˛i;t . Finally,
constraints (2.6) and (2.7) specify domains of the variables.

The formulation of DRRP is a mixed integer linear program (MILP) that is
NP-complete in nature. With reasonable input size, this problem can be solved using
standard techniques such as the branch-and-bound(B&B) method. These algorithms
are implemented in many optimization software packages. For more details with
regard to the algorithms, we refer readers to [32].
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2.3.3 Evaluation of DRRP

We consider three VS classes I = {c1.medium, m1. large, m1.xlarge}, and perform
simulations to evaluate the solution to DRRP based on realistic pricing and
application-usage scenarios. The rental planning decisions are calculated in an
hourly basis, spanning over daily planning horizon (24 h). The MILP formulation is
solved by the CPLEXTM [12] solver integrated in AIMMS 3.11 [2]. We sample the
hourly data processing demand from a normal distribution N .0:4; 0:2/ (expressed
in the unit of Gigabyte). It is assumed that the software required by the application
services has been configured on virtual servers rented from the cloud market.
Therefore, we do not take the initial environment preparation into account.

The cost parameters used in model formulations are set according to Amazon R�’s
EC2 on-demand pricing policy.1 Specifically, the hourly on-demand VS rental costs
are f$0:2; $0:4; $0:8g for the three VS classes. Using Elastic Block Store (EBS), the
storage cost is $0:1 per GB/month, and 0:1 per million I/O operations. The inbound
and outbound transfer cost is $0:1 and $0:17 per GB. In order to provide realistic
parameter estimates in our proposed models, we refer to a recent paper [4] studying
the cost and performance of running scientific workflow applications on Amazon R�
EC2. Based on the 3-year cost of a mosaic service (generated by an astronomical
application Montage, see [18] for details) hosted on EC2, we normalize the I/O
cost to $0:2 per GB, and set ˚i to 0:5 for all i 2 I . According to the data
provided in [4] (runtime, input and output volume, etc.), the virtual servers are able
to offer sufficient resources for serving the randomly generated demand. Therefore,
constraint (2.3) in DRRP is omitted.

We first show the cost-saving advantage of our proposed solution over resource
rental without planning. The results are shown at the upper side of Fig. 2.2.
In our simulation, per-VS costs over daily planning horizon for both schemes are
compared. From the results, we observe that cost derived from solving DRRP is
significantly lower than that of the no-planning solution. As VS becomes more
powerful, the cost reduction becomes more significant. Especially, the cost reduction
for VS of class m1.xlarge achieves nearly 50% drop off. This is because compared
to the no-planning solution, the cost reduction primarily comes from the saving of
computational cost (virtual servers are turned off in cloud when demand is satisfied
by cached data in cloud storage). Therefore, more saving is expected for high-cost
VS classes. The cost structure for each VS class is presented in the lower side of
Fig. 2.2. The proportion of computational cost is relatively stable in all three classes.
However, we observe that more money is spent on I/O and storage as VS becomes
more powerful. This is because more powerful VS incurs higher VS rental cost each
time the rental decision is made. As a result, an ASP tends to utilize caching more
often to serve the customer demand and rents VS less frequently.

1Amazon R� has declared lower pricing for EC2 when we prepared this manuscript. Since our
simulation is based on [4], the study presented here is by no means up-to-date, but serves as a
representative case of study.
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Fig. 2.2 Cost analysis of DRRP

Next, we conduct a sensitivity analysis to the solution for DRRP and plot the
results in Fig. 2.3. We define cost ratio as the cost of rental planning based on DRRP
to the cost of resource rental without planning. The base ratio (67%) is set to the cost
ratio of VS class m1.large calculated in the last simulation. From this base ratio, we
first vary the weights of I/O and computational cost gradually. In one direction, we
keep the I/O cost fixed and increase the computational cost with a fixed step of 0:1,
and then we increase the I/O cost in the other direction similarly. The result showed
in the left part of Fig. 2.3 clearly demonstrate that the cost reduction achieved by
solving DRRP becomes more salient for expensive computational resources. This
conclusion confirms the analysis we previously provided. The impact of demand
is investigated in the right part of Fig. 2.3. In particular, we alter the mean of
the demand distribution from 0:2 to 1:6 GB/h. As more demand is generated for
services, the computational resources tend to be kept busy all the time because the
current storage cannot meet the demand. As a result, cost reduction is not noticeable
for heavy service demand.
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Fig. 2.3 Sensitivity analysis for DRRP

2.4 Dealing with Spot Pricing Uncertainty in Cloud

In this section, we extend the resource rental planning model by including cost
uncertainty. Such uncertainty is introduced by many IaaS providers who offer
a spot pricing option for idle computational resources. Example markets can be
found in [15, 26]. The price fluctuation of spot resources over time creates time
series data for analysis. Using Amazon R�’s spot market as a case of study, we
take two routes to attack the resource rental planning problem with spot pricing
uncertainty. First, we apply time series forecasting to spot price history crawled
from [11]. The prediction results are then fed into our deterministic planning
model (hereafter labeled as predictive planning). Next, we propose an alternative
approach that leverages the price distribution information (hereafter labeled as
stochastic planning). A dynamic programming algorithm is also presented to solve
the stochastic optimization problem. We compare the two approaches in the end of
this section.

Before we proceed, a few assumptions need to be clarified. First, we assume that
ASPs will bid truthfully in the spot resource acquisition process. This assumption
is in line with the assumption made in [20]. With this assumption, an ASP will
not bid strategically. In fact, whether strategic bidding is helpful to achieve some
desired level of resource availability is controversial. On the one hand, by exploiting
prior price history, it is viable to optimize bidding using probabilistic models for a
single bidder [3]. On the other hand, one should also consider bidding strategies
of other bidders before making decisions. From a game theoretic perspective,
intentionally overbidding or underbidding is not a dominant strategy (e.g., if every
bidder overbids, the spot price increases, only benefiting the IaaS provider). Second,
an out-of-bid event occurs when an ASP’s bid price is lower than the spot price.
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If an out-of-bid event happens, the ASP needs to rent the desired number of virtual
servers from the regular on-demand resource market in order to meet the demand
requirement.

2.4.1 Predictive Planning in Amazon R� Spot Market

2.4.1.1 Introduction

In this study, we use Amazon R�’s spot instance market as a case of study for price
prediction and cost optimization. Launched on December 2009, Amazon R�’s spot
instance market offers a new way to purchase EC2 instances in a discount rate.
It allows cloud customers to bid on unused server capacity and use them as long
as the bid exceeds the current spot price, which is updated periodically based on
supply and demand. Payment in spot instance auction is uniform, i.e., all winners
in the auction will pay a per-unit price equal to the lowest winning bid (a.k.a the
spot price). While running spot instances saves huge cost (typically over 60 %
according to [27]), it also introduces significant uncertainty for resource availability.
As a result, previous resource rental planning model based on deterministic resource
pricing does not apply.

If one is able to forecast spot prices with relatively high accuracy, then these
predictions can be used to instantiate the DRRP model presented in Sect. 2.3.2 to
obtain a near-optimal solution. However, performing forecasting is challenging for
customers because they do not possess the global information of supply and demand
as Amazon R� does. In [31], the authors attempted to predict customer demand from
the view of an IaaS provider. They proposed a simple auto-regression model for
prediction but no prediction results were reported due to the lack of realistic demand
information. Another study on the predictability of Amazon R�’s spot instance price
was presented in [20]. Their work focused on achieving availability guarantee with
spot instances, and used a quantile function of the approximate normal distribution
to predict when the autocorrelation of current and past price is weak. When the
autocorrelation is strong, a simple linear regression prediction model was adopted.
However, we found that such an approximation is inaccurate in some test cases
that cannot be taken as a generic approach. In this section, we will assess the
predictability of spot instance price based on a statistical approach (ARIMA), and
estimate the prediction errors using empirical data set.

2.4.1.2 Methodology

We collected the historical data (published in [11]) for spot price variation from
February 1, 2010 to June 22, 2011. The data source represents spot price variations
for Linux instances in us-east-1 region. The data size is approximately 100K
records. We employ a statistical approach to analyze the predictability of Amazon R�
EC2 spot pricing, and plot the results in Fig. 2.4.
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Fig. 2.4 Analyzing the predictability of Amazon R� EC2 spot price. (a) Box-and-Whisker dia-
gram; (b) frequency analysis; (c) histogram plot; (d) price decomposition; (e) correlation analysis;
(f) 24-h prediction

The first step in our investigation is to identify the outliers in the original
data set. Figure 2.4a plots the box-and-whisker diagram for the spot price data
set corresponding to four different Linux VM classes. The outliers are identified
as those points beyond the whiskers (1:5 IQR (interquartile range) of the upper
quartile). We can see that more outliers present in more powerful VM class,
indicating increasing price dynamics in more powerful types. However, even for
the most powerful instance (c1.xlarge), the number of outliers still contributes a
trivial amount to the overall data set (<3 %).
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Having trimmed out the outliers, we still cannot apply standard time series
analysis because the derived data set is unequally spaced with inconsistent sampling
intervals, as shown in Fig. 2.4b. It plots the daily price update frequency for VS of
class linux-c1-medium. For that reason, we further convert the data into equally
spaced time series data with a regular update frequency of 24 times per day. At the
start of each hour, the spot price is set to be the most recent updated price in the last
hour. If no update appears in the last hour, the spot price is unchanged.

We have performed various experiments on this converted data set, each with
different time scale of prediction (both short-term and long-term). Here we show a
representative prediction result for instance of class linux-c1-medium over a period
of 2 months. Specifically, we use the data ranging in [12/1/2010, 1/31/2011] as the
estimation data set, and data in 2/1/2011 as the validation data set. In other words,
the data collected from the 2-month historical records is used to provide the next-day
price forecasting. In Fig. 2.4c, we plot the histogram and density of the selected data.
We also randomly generate the same number of points from a normal distribution
characterized by the three main measures in quantitative statistics (mean, variance
and standard deviation), and plot the curve in Fig. 2.4c for comparison. Examination
of the Shapiro-Wilk test result (omitted here) verifies that the pricing data does not
fit the normal distribution.

In order to identify patterns in the selected series and perform prediction, we
use the ARIMA approach developed by Box and Jenkins [6], which retains great
flexibility in recognizing data patterns and is relatively lightweight compared to
machine learning techniques such as artificial neural networks or support vector
machines. Two common processes are used in ARIMA to identify the correct
time series pattern. The first process is the Auto-Regressive (AR) process that
decomposes observations into a random error component and a linear combination
of prior observations. The second process is called the Moving Average (MA)
process. In MA, each observation is made up of a random error component, and
a linear combination of prior random errors. Given a time series of data Xt , the
general form of an ARIMA process is given as follows:

 
1 �

pX

iD1
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qX

iD1
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!
"t ; (2.8)

where L is the lag operator, �i and �i are the parameters for AR and MA
process, respectively, and "t are error terms. The key to the ARIMA model is to
identify parameters p (AR parameter), d (differencing pass), and q (MA parameter)
correctly. This is achieved through a series of steps. First, we verify that our
test data series is statistically stationary (statistical properties such as mean and
variance are constant over time), and does not require further differencing. The
decomposition of the selected series is presented in Fig. 2.4d, where the original
time series is decomposed into three parts: trend, seasonal, and random noise.
We can see that the target series does not exhibit clear trend, but advertises certain
cyclic pattern as shown in the seasonal decomposition. For that reason, we revise
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our prediction approach by employing a Seasonal ARIMA (SARIMA) model,
which takes the seasonal component into account. It can be expressed as SARIMA,
.p; d; q/�.P; D; Q/24, which includes the seasonal parameters for price prediction.

The next step for identifying the SARIMA model parameters is to plot the cor-
relograms for autocorrelation function (ACF) and partial autocorrelation function
(PACF), as displayed in Fig. 2.4e. These two functions help to detect trend and
seasonality of the selected series. Note that the x-axis is normalized by frequency
so that 1:0 corresponds to lag D 24. From the graphs we observe that, the selected
series has certain degree of correlation with its past at certain lag value, e.g., lag D 3,
because these values exceed the 95 % confidence limit. However, such a correlation
is not strong enough since its value is still far from 1:0 (which indicates perfect
correlation).

Finally, the identification of the most appropriate model parameters is achieved
by the forecast package developed in R [24]. In the forecast package, the calling
of auto.arima function will return the best model according to Akaike information
criterion (AIC) or Bayesian information criterion (BIC) values. The function per-
forms a search over possible models within the order constraints provided. Through
extensive trials, we found that most test series fit SARIMA .2; 0; 1 or 2/�.2; 0; 0/24

best. The prediction result for the selected series is shown in Fig. 2.4f. The solid
points and the hollow points represent the predicted and the actual prices on
February 1st, 2011, respectively. The horizontal dashed line represents the average
price in the selected data series, while the fluctuating solid lines represent spot
price variation in the past 48 h. We observe that the predicted prices are mostly
hanging over the average price line. While this model returns the least prediction
error compared to other models, its mean squared prediction error (MSPE) is only
slightly better than the simple prediction using the expected mean value.

2.4.2 Stochastic Planning for Spot Pricing Market

2.4.2.1 Solution Overview

In addition to the predictive planning approach, we propose an alternative approach
that takes the stochastic nature of the spot pricing into account. We model the
fluctuation of the spot instance rental cost Cp.i; t/ as a stochastic process Cp with
state space S. Cp is a collection of S-valued random variables on a probability space
˝ indexed by the time slot set T , i.e., Cp for class-i instance is a collection:
fCp.i; t/ W t 2 T g. The true valuations of the spot prices over the planning
horizon are represented by set: fcCp.i; t/ W t 2 T g. The goal of the stochastic
resource rental planning is to optimize the expected overall cost over the complete
state and probability space. In particular, the objective function (2.1) in DRRP can
be reformulated as follows:
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ıexp D ECp

(
X

t2T
.CCf .t/ � ˚i � ˛i;t C .Cs.t/ C Cio.t//

�ˇi;t C C�f .t/ � D.i; t/ C Cp.i; t/ � �i;t /

)
;

(2.9)

where ıexp is the expected total cost. The optimization model now becomes to
minimize (2.9), subject to constraints (2.2)–(2.7). We summarize our solution to
stochastic resource planning as follows.

1. Generate bid prices cCp.i; t/ for the class-i VS at every t 2 T , based on the true
valuations.

2. Calculate the base probability distribution according to the pricing history.
3. Derive new probability distributions at all t 2 T according to the base

distribution and the bid price.
4. Reformulate using a multistage recourse approach, based on the newly generated

distributions.
5. Solve the deterministic equivalent reformulation.

Due to the possibility of losing the auction, the actual realizations of spot prices
are possibly different at multiple decision points. Steps (1)–(3) summarize our
solution to this challenge. We call our proposed approach bid-dependent dynamic
sampling. After calculating the distributions, a multistage resource model is used to
optimize the expected total cost.

2.4.2.2 Bid-Dependent Dynamic Sampling

Let Si be the finite state space for the spot price of a class-i VS. A base probability
distribution is the summarized discrete probability distribution over a selected
historical price series: P r.Cp.i; t/ D si /; si 2 Si . This distribution cannot be
used in our stochastic optimization model because it does not include the risk of
out-of-bid. Therefore, we propose to use the following approach to dynamically
generate the probability distribution at every decision point t . The values in the finite
state space Si is sorted in the ascending order (no equivalent values are present in
Si ). Suppose the fixed on-demand cost is �i . At each decision point, we keep all
the probability distributions for those prices in the base distribution whose values
are less than the bid prices, i.e., si � cCp.i; t/. The rest of the distributions are
substituted by the following probability representing the likelihood of the out-of-
bid event.

P r.Cp.i; t/ D �i / D 1 �
X

si�bCp.i;t /

P r.Cp.i; t/ D si / (2.10)

Note that it is impossible to generate the precise distribution at each decision
point because we do not know the actual realization of the spot price in advance.
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t = 0 t = 1 t = 2 t = T

Fig. 2.5 An example of multistage scenario tree: each leaf vertex represents a scenario, and each
non-leaf vertex represents an intermediate state within the planning horizon. A probability is
associated with each branch representing the likelihood of state transition

Therefore, the dynamically generated distribution based on the ASP’s bid price is an
approximation to the actual spot price distribution. However, stochastic planning
using this approximated distribution outperforms deterministic planning using fixed
cost parameters. We will illustrate this point as well as the impact of approximation
precision to stochastic planning in the later part of this section.

2.4.2.3 Transforming Using Multistage Recourse

We formulate the problem of Stochastic Resource Rental Planning (SRRP) as a
stochastic optimization problem, and build a multistage recourse model to solve this
problem. The multistage recourse model allows the application planner to adopt a
decision policy that can respond to random events as they unfold. Initially, decisions
are made given present resources. As time evolves, possible adjustments (recourse
actions) become available to the application planner. As to SRRP, rental planning
decisions at various decision points are recourse variables.

The dynamic stochastic spot prices are represented in a multistage scenario tree,
G D .V ; E /, presented in Fig. 2.5. A scenario tree has T C 1 stages. The first stage
represents the current state of the world, and all subsequent stages correspond to
the future time slots when new information is available to the application planner.
A vertex v in stage t 2 T stands for the state of the system that can be distinguished
by information available up to stage t . Each vertex v 2 V , except the root vertex
(indexed as v D 0), has a unique parent vertex �.v/. The probability associated
with the state represented by vertex v is pv . Let �.v/ denote the time stage of vertex
v in the tree, we have:

P
�.v/Dt pv D 1. Each non-leaf vertex v is the root of the

subtree: G .v/ D .V 0 � V ; E 0 � E / containing all descendants of vertex v. The
complete tree is represented by G D G .0/.

Let the set of leaf vertices of G .0/ be L , and let the set of vertices on the path
from the root to vertex v be P.v/. If v 2 L , then P.v/ represents a scenario
of the problem describing a joint realization of the stochastic parameters over
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all stages. Otherwise, P.v/ denotes a partial realization of the problem up to the
stage �.v/. With the notations defined above, a decision variable Xi;t defined in the
deterministic problem is replaced by a set of scenario-dependent decision variables
(recourse variables) presented below.

Xi;t ) fXi;vj�.v/ D tg; t 2 T (2.11)

The multistage scenario tree is perfectly balanced because each path from root to
leaf vertex has the same length T . However, the numbers of possible states appeared
in each stage are not necessarily equal because of the bid-based dynamic sampling
process presented in Sect. 2.4.2.2. Given a scenario tree with a scenario set S , the
ASP wishes to set a policy that makes different resource rental decisions under
different scenarios. For a scenario Sj 2 S , decisions made at stage t if encountered
by scenario Sj is a vector:

f˛i;v; ˇi;v; �i;vg; v 2 Sj (2.12)

The solution must conform to the flow of available information (non-
anticipativity). It guarantees that decisions do not rely on information that is not yet
available.

2.4.2.4 Deterministic Reformulation of SRRP

Having built the multistage recourse model, we derive a deterministic equivalent
formulation of SRRP. In the reformulation, the time-dependent decision variables
are eliminated. The new formulation introduces a set of new variables that are
indexed by the vertices presented in G .0/. Each variable indexed by vertex v is
associated with a probability pv . As such, the goal of resource rental planning is to
solve MILP with regard to the scenario tree. The complete deterministic equivalent
formulation of SRRP is given below:

min
X

v2V
pv � .CCf .�.v// � ˚i � ˛i;v C .Cs.�.v//C

Cio.�.v/// � ˇi;v C C�f .�.v// � D.i; �.v//C
Cp.i; �.v// � �i;v/ (2.13)

s:t:

ˇi;�.v/ C ˛i;v � ˇi;v D D.i; �.v//; i 2 I ; v 2 V (2.14)

P.i/ � ˛i;v � Q.i; v/; i 2 I ; v 2 V (2.15)

˛i;v � B � �i;v; i 2 I ; v 2 V (2.16)
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ˇi;0 D "; i 2 I (2.17)

˛i;v ; ˇi;v 2 RC; i 2 I ; v 2 V (2.18)

�i;v 2 f0; 1g; i 2 I ; v 2 V (2.19)

Since variables at each t 2 T are associated with a number of possible
realizations, solving SRRP is equivalent to solving a large-scale MILP. There exist
a number of standard techniques to solve this problem, for example, using Benders
decomposition [5]. However, due to the huge search space for optimization, they
are only suitable for performing short-term resource rental decisions. Fortunately,
efficient algorithms are developed that approximate the objective with runtime
proportional to the number of nodes on the multistage scenario tree. Readers can
refer to Sect. 2.4.2.6 in [32] for more detailed discussions.

2.4.2.5 Evaluation of Stochastic Rental Planning Model

In this section, we perform simulations to evaluate the solution to SRRP model.
The simulation setting is based on realistic spot pricing history and application-
usage scenario presented in Sect. 2.3.3. First, imagine an oracle who knows all the
future realizations of spot prices in advance, and takes them as inputs to the DRRP
model. We denote the cost generated by this method as the ideal case cost for fine-
grained resource rental planning. We then compute the overpay percentages against
the ideal case cost for all other approaches. The price distribution is drawn from the
same representative data set described in Sect. 2.4.1.2, paragraph 3. The results are
plotted in Fig. 2.6. Here, we use the prediction values obtained from the approach
described in Sect. 2.4.1 as the bid prices, because they are the best approximation
values we can obtain using statistical analysis of past price history. The cost derived
by solving SRRP using forecast prices is labeled as “stochastic planning”, and the
cost of solving its DRRP counterpart and the cost of using on-demand virtual servers
are labeled as “predictive planning” and “on-demand-deterministic”, respectively.
It is not surprising to see that the deterministic planning scheme using on-demand
virtual instances yields the most overpay. In addition, stochastic planning is more
cost efficient than predictive planning for all three VS types. This is because
planning using price distributions is more adaptive to the uncertain availability of
spot resources than deterministic planning, and the approximation errors introduced
by bidding are “diluted” by fine-grained scenario division at each decision point.
When considering the price distribution at every decision point, stochastic planning
better hedges against the risk of the unexpected out-of-bid event compared to rental
planning based on forecasting values in predictive planning. We also mimic a
common bid strategy that ASPs bid a fixed price equal to the expected mean price of
the historical data, and compare its cost derived by stochastic and predict planning.
The results shown on Fig. 2.6 draw the same conclusion that stochastic planning has
better cost advantage.

Next, we investigate the impact of bid price approximation precision to the
stochastic planning approach with regard to cost reduction for VS type c1.medium.
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Fig. 2.6 Comparing predictive and stochastic planning

This evaluation is necessary because according to Sect. 2.4.2.1, the solution quality
of stochastic planning is closely related to the true valuation cCp.i; t/, which is
inaccurate in nature with respect to the actual spot price. Taking the cost derived
by actual realization of spot price as the baseline cost, we create artificial bid prices
that are ˙2 % to 10 %2 deviated from the actual price realizations, and measure
the cost deviation from the baseline cost introduced by the approximation errors.
The results converted to percent errors against the baseline cost are plotted in
Fig. 2.7. Clearly, the errors increase as approximation becomes less accurate. We use
the mean squared prediction error (MSPE) to measure the approximation errors.
The MSPE of our best approximation achieved based on the method presented
in Sect. 2.4.1 falls between that of 2 and 4 % deviation of the model. However,
the actual percent error using our approximation is �12 % from the baseline cost.
A possible explanation is that our approximations present a mixture of over- and
under-estimations of the actual price realizations, thus are different from the pattern
of the artificial approximated bid prices we created in the simulation. In conclusion,
if one bids according to the best approximation result in practice, the percentage
error introduced by approximation is generally acceptable.

2Prices that are more than˙10 % from the actual prices are out of the actual price range.
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Chapter 3
Efficient and Fair Resource Trading
Management

Abstract In this chapter, we investigate the resource trading problem in a utility
and cloud computing setting where multiple tenants communicate in a Peer-to-
Peer (P2P) fashion. Enabling resource trading in cloud unleashes the untapped
cloud resources, thus presents a flexible solution for managing resource allocation.
However, finding an efficient and fair resource allocation is challenging mainly
due to the heterogeneity of resource valuations. Our work first develops a utility-
oriented model to support resource negotiation and trading. Based on this model,
we adopt a multiagent-based technique that allows a group of autonomous tenants
to reach an efficient and fair resource allocation. Further, we add budget limitation
to each tenant and propose a directed hypergraph model to facilitate resource
trading amongst heterogeneous tenants. We develop a directed hypergraph model to
facilitate trading decision making, and design a class of heuristic-based distributed
resource trading protocols in favor of different performance metrics.

The rest of the chapter is organized as follows. We first present an overview
of the proposed research in Sect. 3.1. We then summarize the related work in
Sect. 3.2. In Sect. 3.3, we describe the problem setting and quantify the objectives
of the resource trading problem. In Sect. 3.4, we introduce a multiagent-based
technique to achieve optimal resource trading efficiency and fairness. Section 3.5
further investigates allocation strategies with limited budget. We propose a novel
directed hypergraph model and develop a series of distributed resource trading
protocols based on heuristic approaches. Finally, Sect. 3.6 shows simulation results
and analyzes their implications.

H. Zhao and X. Li, Resource Management in Utility and Cloud Computing,
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3.1 Overview

Nowadays, the utility and cloud computing model is mostly vendor driven, with
users having no control over the data or the technology supported by the cloud. Such
a vendor-driven model, although convenient to use, brings many issues to light, e.g.,
failure of monocultures, tradeoff between convenience and control, and concerns
about environmental impact [5]. To address these issues, researchers have proposed
an alternative model that provides a collaborative resource sharing platform that
forms a community-based cloud computing environment [16,18,24]. Different from
the centralized vendor model, this community-based cloud leverages under-utilized
networked private resources for infrastructure support. Tenants within the same
community cloud typically share common security and compliance concerns, and
may delegate management to some trusted third-party organization.

Similar to the centralized vendor-driven model, the community-based model
offers computation and storage resources as metered services. Therefore, the design
goal of the shared cloud resource platform should not only focus on the quality
of computing service, but should equally address the economic aspect such that
tenants receive cost-effective cloud service provisioning. While managing resource
allocation is relatively straightforward in the centralized vendor-driven model (e.g.,
Amazon R�’s on-demand and spot instance pricing), it is particularly challenging
due to the heterogeneity in the multitenancy environment. In a community cloud,
we are facing a free market where tenants are only incentivized to accept profitable
resource exchange. As a result, a well designed multitenancy resource trading
protocol is highly desirable to effectively regulate the management of resource
allocation.

In this chapter, we study the distributed resource trading problem in a
community-based utility and cloud computing environment, and propose a set of
multitenancy resource trading protocols to jointly optimize resource allocation
efficiency and fairness. Specifically, better efficiency refers to the increased
aggregate valuations of all the tenants, and better fairness is interpreted as reduced
envy between every pairwise combination of tenants. Our solution follows a market-
oriented design principle, and uses a directed hypergraph model to integrate these
two seemingly conflicting design objectives into one unified resource trading
framework. It directly extends the work of Chevaleyre [10], and further addresses
the challenge of budget limited resource trading. With systematic analysis of
the resource trading market, a set of heuristic-based distributed resource trading
protocols are developed and evaluated.

The comprehensive study presented in this chapter has broad utility in the
growing world of “everything-as-a-service”. It characterizes the extent to which
independent and self-interested tenants interact with each other. Our analysis shows
that incentive preserving resource exchanges tend to benefit the system, both from a
global view of the overall service efficiency and from a local view of the improved
service quality valuation. Moreover, the proposed resource trading approaches are
complementary to the vendor-driven cloud computing. For example, consider user
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Alice rents a virtual machine from Amazon R� with reserved instance pricing. After
Alice finishes her job and before the lease expires, Alice might “sublease” this
virtual machine to user Bob in order to partially compensate for her resource
rental cost.

3.2 Related Work

The study described in this chapter presents distributed protocol design to jointly
optimize resource trading efficiency and fairness. As the organization of distributed
resource evolves towards a more hierarchical architecture [20], distributed algo-
rithms designed for solving combinatorial multi-criteria optimization problems
become more attractive. Common optimization techniques include machine learn-
ing [26], evolutionary algorithms [13], swarm intelligence [25], and socialeconomy
approaches [21, 27]. All these approaches share a common flavor that involves
interacting entities evolving towards the optimal solution (by following certain
learning or negotiation rules). Our proposed approach falls into the category of
socialeconomy approaches. They are built based on the observation that resource
management in distributed systems shares common features with commodity
allocations driven by market power in the economic study. It is widely adopted
to create a computational economy for grid computing [1, 6] and the emerging
cloud computing [7,30]. In an early study, Wolski et al. [32] presented two different
market strategies for controlling resource allocation, namely commodities markets
and auction. The commodities markets strategy treats disparate resources as inter-
changeable commodities, while auction requires orchestration from a centralized
auctioneer for collecting bids and determining winners. Our proposed resource
trading framework is designed for a community cloud environment, and belongs to
the commodities market category. In particular, we propose a P2P resource trading
market for managing cloud resource allocation. Example research related to this
notion includes [12, 31]. In [12], a P2P data replication system was proposed to
improve fault-tolerance of digital collections in library. In [31], the authors proposed
a multiple currency economy that any peer can issue its own currency. Different
from their design, peers directly exchange resources in our distributed resource
trading design.

In this chapter, two economic metrics are used to quantify the quality of an
allocation: efficiency in terms of overall social welfare, and fairness in terms of
envy-freeness. The metric of efficiency is important to characterize the achievable
system performance, and was studied in a number of publications [3, 17, 34].
Meanwhile, the metric of fairness highlights individual’s utility such that each
individual achieves the maximum contentment of its allocated share [14]. Compared
to efficiency, the envy-free fairness has generally received far less attentions.
A related work targeting grid computing is found in [28]. Using game theory, the
authors tackled a multicriteria optimization problem with the aid of axiomatic theory
of equity. The authors concluded that for fair and feasible scheduling on global scale
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computational grid, a strong community control is required. The research conducted
in this chapter approaches the multicriteria optimization problem from a different
angle, and further investigates how to balance the two metrics amongst budget-
aware distributed tenants.

Our proposed protocols utilize a directed hypergraph model. A hypergraph
is an extension of the graph concept that one edge (called a hyperedge) can
connect an arbitrary set of vertices rather than two. A hypergraph model is flexible
and informative to use in algorithm design as it generalizes the graph. For that
reason, it becomes attractive to improve algorithm performance in various research
domains, e.g., page reputation computation for search engines [2], cellular mobile
communication [29] and memory management [19]. For large-scale scientific
computing, Çatalyürek and Aykanat [9] proposed a multilevel partitioning approach
for mapping repeated sparse matrix-vector computations to multicomputers using
hypergraph. Their approach significantly reduces communication overheads while
achieving drastically improved mapping results. In their hypergraph model, hyper-
edges represent affinity among subsets of the data, and the weights reflect the
strength of this affinity. We model the resource trading problem in a similar manner
that aims to optimize the aggregate weights of the directed hypergraph model.

3.3 A Distributed Resource Trading Framework

This section presents the design overview of a distributed resource trading frame-
work for the community cloud. In Sect. 3.3.1, we depict the resource trading system
model. In Sect. 3.3.2, we clarify the problem assumptions, define the goals for
resource trading, and formulate the problem.

3.3.1 System Model

Consider a scenario where a number of highly autonomous tenants connected
in a P2P manner, each holding a set of indivisible resources. A resource is an
abstraction of hardware bundle or software service, e.g., Virtual Machine (VM),
computational time, etc. These resources form a publicly accessible resource pool,
and they are completely allocated to all the tenants initially, as described in Fig. 3.1.
All tenants form a collaborative community with common purposes and concerns.
The underlying P2P communication infrastructure ensures that every tenant is able
to talk to every other tenant within the same community (they may not communicate
directly, but there is at least one communication path between every pairwise tenants
on the topology). For this study, we do not consider dynamic tenants join and leave.
We also assume that the distributed system is reliable. Any resource can be assigned
to any tenant, incurring certain benefit and cost that may vary depending on the
specific resource-tenant assignment. Each tenant can be involved in any number of
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Fig. 3.1 Multitenancy resource trading: system model

resource trading activities, following the specific tenant negotiation protocol. The
distributed resource trading results in a remapping of resources to tenants. We call
each instance of such a resource remapping matchmaking. Tenants are incentivized
to purchase under-utilized resources from the tenants who currently hold them. As
a result, the system evolves towards better resource utilization in the long run.

Formally, let P D fp1; : : : ; png be the finite set of tenants, and let R D
fr1; : : : ; rmg be the finite set of indivisible resources. Typically we have jRj > jPj.
This, however, is not necessarily always the case, i.e., some tenants may obtain
empty allocation. A matchmaking is defined as a mapping A : P ! 2R. More
specifically, we have the following definition:

Definition 3.1 (Matchmaking). A matchmaking A D fA1; A2; : : : ; Ang is a map-
ping A : P ! 2R satisfying: Ai

T
Aj D ;, and

S
Ai D A.

The condition of
S

Ai D A ensures that the final matchmaking result is a
complete allocation.
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3.3.2 Problem Statement

For each tenant, we assume a private valuation model, indicating that tenants are
mutually blind to each other and evaluate individual allocation independently. The
valuation of pi is defined by the valuation function Vi .�/, Vi .;/ D 0 and Vi .Ai / �
Vi .A

�
i / for all Ai 	 A�i . Moreover, we assume the valuation function is modular,

i.e., Vi .Ai [ Aj / D Vi .Ai / C Vi .Aj / � Vi .Ai \ Aj / for all Ai ; Aj � A.
Our first goal for distributed resource trading protocol design is to achieve opti-

mal matchmaking efficiency such that the social welfare, i.e., ! D Pn
iD1 Vi .Ai /, is

maximized.

Definition 3.2 (Efficiency). Let � be the set of all possible matchmaking results,
an efficient matchmaking is an allocation A D fA1; A2; : : : ; Ang that maximizes the
social welfare: !max D maxA2�

P
pi2P Vi .Ai /.

The efficiency criterion reflects the overall system performance. For example,
suppose there are two resources, one with 2 cores C 1G memory and the other one
with 1 core + 2G memory, also assuming user Alice has a CPU-bound job and user
Bob has a memory-bound job. Therefore, Alice has higher valuation for the first
resource while Bob prefers the second resource. By assigning the first resource to
Alice and the second to Bob, the aggregate valuation is maximized, and the system
features best job turnaround time.

We define a resource-bundle as a collection of one or more resources held by any
tenant pi , i.e., a resource-bundle is a non-empty subset of Ai . We define a Deal as
the basic event in the multitenancy resource trading framework. A deal represents
the process of resource-bundle transfer from one tenant to another. In order to
acquire resources from another tenant, certain amount of compensation is necessary
to complete the deal. A Payment Function 'i;j defines this compensation amount
pi pays to pj . If 'i;j is negative, then pi receives money from pj . Each tenant keeps
a record of its payment history. Formally, we define pi ’s Balance as the summation
of its withdrawals and deposits in all deals pi is involved in: �i D P

'i . All tenants
are utility-driven that seek to make profit at each deal. Formally, suppose after a
deal, the allocation of pi becomes QAi , a deal must be a Rational Deal (RD) if and
only if Vi . QAi / � Vi.Ai / � 'i;j for all pi 2 P. Note that the requirement of rational
deal applies to both tenants involved in the deal, thus is a bilateral constraint. The
Utility of pi is given as Ui.Ai / D Vi .Ai/ � �i .

The second goal of our protocol design is to promote fairness within the system.
By associating the valuation and payment function, fairness denotes to envy-free [4]
amongst all tenants, indicating that no tenant would get better off by swapping its
allocation with another peer though a rational deal. Specifically, the definition of a
fair allocation is given as follows.

Definition 3.3 (Fairness). Let � be the set of all possible matchmakings, a match-
making result is characterized as fair iff there exists A D fA1; A2; : : : ; Ang 2 �

such that: (a) 8pi ; pj 2 P; pi and pj has direct connection; and (b) Vi .Ai / � �i �
Vi .Aj / � �j .
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The fairness criterion is in line with the envy-free definition given out in [10]
that takes transferable utility into account. The authors proved that a Efficient
and Envy-Free (EEF) state always exists. Here, we further extend their result by
adding topology constraint to the fairness definition. Our definition limits envy-free
states to neighboring tenants. This is justifiable as the underlying communication
topology might not be a fully connected network. In addition, a common practice in
distributed systems is to employ a budget transfer mechanism to enforce incentives
for community control [22]. For example, in P2P and social networks, some form of
digital cash, or numerical reputations representing trust relationships may be used
for rewarding and punishing certain actions. We formally define budget constraint
as follows.

Definition 3.4 (Budget). Budget bt
i expresses maximum amount pi is able to offer

after t deals. Let b0
i be the initial budget initially, we have:

bt
i D b0

i � �t
i

Given any initial allocation, the goal of this study is to investigate to what
extent efficiency and fairness can be achieved in the multitenancy resource trading
framework described above, and to design resource trading protocols to guide tenant
interactions evolving towards system-wide efficiency and fairness. We analyze
situations with and without the budget limitation. From now on, we label the
scenario with budget constraint as budget-aware, and refer to the later scenario
as budget-unaware.

3.4 Budget-Unaware Resource Trading Protocol

In this section, we develop a resource trading protocol without the presence of
budget constraint. Our protocol design is based on the multiagent-based resource
allocation optimization framework presented in [10].

3.4.1 Preliminaries

By following certain payment rules, we will show that the resource trading protocol
is capable of reaching topology-wide efficiency as well as envy-free fairness upon
convergence. A topology-wide efficient allocation is an allocation such that for
every tenant, the allocation for the sub-topology consisting of that tenant and
its direct neighbors is efficient, i.e., the matchmaking achieves maximum social
welfare on the sub-topology. We introduce topology-wide efficiency because for
a partially connected communication topology, a globally efficient matchmaking is
not guaranteed unless the order of resource trading is carefully planned. An example
is given out in [33], Sect. 3.4.1.
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In the resource trading framework, each tenant completes transactions with
neighbors using only rational deals (RD), and obtains or loses resource bundle
accordingly. An RD indicates that the transaction is beneficial for pushing resources
to tenants who value them more. In fact, ANY sequence of RD executions will
achieve efficiency with regard to the underlying communication topology. This is
due to the following observations: (1) RD increases social welfare according to its
definition; and (2) if no more RD is possible, then the matchmaking must reach the
maximum possible social welfare. Given modular valuation function, we have the
following proposition.

Proposition 1 (Convergence to Efficiency [15]). Any sequence of RD involving
any number of resource exchanges will eventually yield to topology-wide efficiency.

The reasoning behind Proposition 1 is fairly simple. Each RD results in
remapping of resources to tenants with higher interests. When no RD is possible
with respect to the communication topology, the system converges to a topology-
wide efficient state. Another implication is that the final state is independent of
the execution order of RDs. Now suppose after an execution of an RD, the current
allocation becomes QA. Since the deal is bilaterally beneficial to both tenants involved
in the deal, we calculate the payment range with the following equations.

Vi . QAi / � Vi .Ai / � 'i;j

Vj . QAj / � Vj .Aj / � �'i;j

(3.1)

By solving this equation, the result of the payment function 'i;j falls into the
range of ŒVj .Aj / � Vj . QAj /; Vi . QAi / � Vi.Ai /	, i.e., the rational payment range.

3.4.2 A Multiagent Based Optimization Approach
for Resource Trading

This section introduces the theoretical foundation of our multitenancy resource
trading protocol design. It is mainly based on the theoretical framework developed
by Chevaleyre et al. [10, 11] for multiagent systems. One central conclusion is
that resource allocation efficiency and fairness can be simultaneously achieved in
a multiagent negotiation framework. In order to achieve this state, a proper payment
function was selected to deal with the increased social surplus !. QA/ � !.A/ after
each deal. In particular, a payment function called Globally Uniform Payment
Function (GUPF) was proposed. Suppose A and QA are allocations before and after
an RD execution, respectively, the GUPF is defined as follows.

GUPF: 'i D ŒVi . QAi/ � Vi .Ai /	 � Œ!. QA/ � !.A/	

n
(3.2)
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Equation (3.2) is labeled as globally uniform because this payment is imposed
on all tenants. For tenants who do not involved in the deal, Vi . QAi / � Vi .Ai/ equals
to zero, so each of them receives an equal share of the social surplus created by
the trading activity. Note that GUPF is within the bound of rational payment (3.1).
In addition to GUPF, a one-off payment amount at initial is introduced. The initial
payment amount, called initial equitability payment, is defined as: '0 D Vi .A

0
i / �

!.A0/

n
. The main purpose for this payment function is to “level the playing field”.

The next two theorems show that imposing initial equitability payment and GUPF
for resource trading leads to efficient and fair matchmaking. The following theorem
shows that individual utility is invariant after every RD.

Theorem 3.1. If each tenant pays initial equitability payments at start and pays
GUPF after each RD executes, then all tenants share the same utility: Ui.Ai / D
!.A/

n
after each RD.

With this invariant, we prove the following theorem. Note that our version
is slightly different from that presented in [10], as we target at topology-wide
efficiency and use a more strict assumption of modular domain.

Theorem 3.2 (Convergence to Efficiency and Fairness [10]). When all valua-
tions are modular and budget limitation is not a concern, paying initial equitability
payment at start and GUPF after each RD for every pi 2 P will converge to
a matchmaking state that achieves both topology-wide efficiency and envy-free
fairness.

More details about these two theorems and the implementation of the protocol
are described in the Sect. 3.4 of [33].

3.5 Budget-Aware Resource Trading Protocol

3.5.1 Modeling Resource Trading Using a Directed
Hypergraph

When budget constraint is imposed, the convergence to the optimal matchmaking
state might not exist. In this section, we develop a directed hypergraph model for
community-based cloud resource trading. A hypergraph is a generalization of the 2D
graph that an edge can connect a set of vertices. If the hypergraph is directional, an
edge (a.k.a. a hyperarc) connects a hypernode (head) with a set of hypernodes (tail
set). The motivation behind the directed hypergraph model lies in its implication for
one-to-many relationship. A 2D graph merely models connectivity among tenants,
but cannot represent task allocation and envy relationship among them. A directed
hypergraph is more informative, succinctly capturing the scenario that a resource is
held by some tenant, but inspires more interest from some other tenants each holding
a set of resources.



46 3 Efficient and Fair Resource Trading Management

Allocation
Matrix

Envy
Matrix

m

i

1

j

j

m

n
n

n

nn

1
1 1
10

0 0
01

0
10

0 0

01 0

Fig. 3.2 A directed hypergraph model. The proposed directed hypergraph model derives from an
m � n � n hyperspace. A hypernode is a point mapping allocation and envy relationship on the
hyperspace. A hyperarc connects a hypernode v 2 V with a set of other hypernodes belonging to a
common tenant and has envy relationship with the v’s host tenant. An example directed hypergraph
is shown on the right side

We propose two matrices to build up a hyperspace. The first matrix is an
Allocation Matrix (AM). It is an m � n matrix that takes binary values, representing
current resource matchmaking state for all tenants. Each entry ˛i;j in AM is defined
as follows.

˛i;j D
�

1 tenant j holds resource i

0 otherwise

The second matrix is an Envy Matrix (EM) representing current matchmaking
unfairness (or envy relationship). Suppose we have two tenants, Alice and Bob. Bob
is said to envy Alice when Bob has higher valuation for some resource currently
allocated to Alice. Again, we use binary values to represent the envy relationships.
Formally, An Envy Matrix is a n � n matrix defined as follows.

"i;j D
�

1 pi is envies pj

0 otherwise

Combining the allocation matrix and the envy matrix, we are ready to unifying
allocation and envy relationships into one directed hypergraph model. We first create
a three-dimensional space, m�n�n, as shown in the left side of Fig. 3.2. A directed
hypergraph H D .V; E/ is composed of a finite non-empty set V of hypernodes and
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a finite non-empty set E of hyperarcs. Using the coordinates of the hyperspace, we
define the hypernode as follows. A hypernode v (3.3) is a three-tuple .x; y; z/, where
x 2 R represents the resource, y 2 R represents the tenant currently holding x, and
z is some tenant has envy relationship with y, i.e., z 2 P; "y;z D 1. A hyperarc e (3.4)
is a pair < T; h >, where T � V is the tail of e and h 2 V n T is its head. The tail
set T includes those hypernodes whose host tenants involved in envy relationships
with the host of the head.

Hypernode: A hypernode is a three-tuple:

v D .x; y; z/ 2 V

s.t. x 2 R

y 2 P; and ˛x;y D 1

z 2 P; and "y;z D 1 (3.3)

Hyperarc: A hyperarc e 2 E is an ordered pair < T; h > iff:

e D< T; h >2 E

s.t. h D .x1; y1; z1/ 2 V

v D .x2; y2; z2/ 2 T � V

y2 D z1 (3.4)

Each tenant can establish a local view of the directed hypergraph. The hyperarcs
imply potential transactions to be negotiated. In a distributed environment, when
one transaction is accomplished using an RD, resource allocation changes which
might affect other resource trading activities. Building a directed hypergraph is thus
helpful to evaluate the quality of trading selections. For example, there are many
applications of the optimal structures in the proposed directed hypergraph model,
such as optimal spanning hypertree and optimal edge cover. Readers can find more
information in Sect. 3.5.2 of [33].

3.5.2 Protocol Design

When proposing for resource trade, a tenant rationally calculates its payment
amount. When the budget limitation bi is imposed on pi 2 P, the rational payment
amount 'i;j for trade proposal is in the range of:

'i;j 2 ŒVj .Aj / � Vj . QAj /; minfVi. QAi / � Vi .Ai /; big	: (3.5)
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Protocol 1: (a) V-BaMRT (b) E-BaMRT (c) P-BaMRT
begin

for pi 2 P do
Establishes local view with neighboring peers;
// --Trade Proposal- -
while pi has at least one envious neighbor do

a) Sorts potential transactions based on envy degree;
b) Selects pj with the highest envy degree drop;
c) Selects payment within the range defined by Equation 3.5;
if pj accepts offer then
�Make payments;
� Removes pj from its envy list

// --Offer Selection- -
while conflicting offers arrival do

Selects offer with;

8
<̂

:̂

(a) highest social welfare gain, or

(b) largest envy degree decrease, or

(c) highest transaction profits

Accepts offer;
Receives payments and updates local view;

According to analysis in Sect. 3.4.2, resource allocation in the community cloud
evolves towards efficient and fair state when tenants pay initial equitability '0 and
GUPF in BuMRT. However, when budget limitation presents, tenants do not always
abide by these routine payments. Therefore, we are interested in investigating the
transition of resource allocation states, when tenants pay different amounts as long
as the amounts fall in the range of (3.5). In this section, we propose a series of
heuristic-based BaMRTs. These protocols confine the trading activities of each
tenant to neighboring peers, allowing them to conduct local negotiations. However,
they are different with each other in terms of trading selection criterion. The
complete description of the proposed BaMRT protocols are illustrated in Protocol 1.

Tenants delegate trading controls to trading agents who perform two basic
operations periodically: proposing trade and selecting offer. When proposing a
trade, the agent simply selects the neighboring peer who he envies most as the
trading partner. In order to quantify the matchmaking unfairness between pairwise
trading partners, we use the following equation to define the envy degree on a
particular hyperarc.


i;j D maxfUi. QAi ; Q�i / � Ui.Ai ; �i /; 0g
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The trading agent may select any payment amount within the rational range.
A tenant can set up a predefined payment policy for the trading agent. For example, a
conservative policy results in resource acquisition with low cost, while an aggressive
policy helps funding peer tenants to conduct further trades, and might benefit more
in return. We will evaluate different payment policies in the performance evaluation
section. When multiple offers arrive, each trading agent needs to carefully evaluate
trading decisions with a local view of the directed hypergraph model. This is
especially important when offers conflict with each other since the resource can
only be granted to one neighbor. In our design, each trading agent employs a hill
climbing technique to negotiate resource trading with neighboring peers. The hill
climbing algorithm is fast and effective in finding a local optimal matchmaking.
The local optimal offer selection decision must be rational, as the payment amounts
conforming to RD increase the overall social welfare (Proposition 1). In other words,
if a trade occurs, the allocation efficiency is reinforced, and the corresponding envy
relationship between the trading parties is eliminated.

We propose three versions of BaMRT in favor of different trading selection
criterion. Each of them follows different paths to reach the local minimum. The
first version labeled as Valuation oriented BaMRT (V-BaMRT), let trading agents
select trades with the highest social welfare gain. In the second version, each agent
selects the neighboring peer who he envies most as the trading partner. We label this
version of BaMRT as Envy oriented BaMRT (E-BaMRT). Finally, we propose
Profit oriented BaMRT (P-BaMRT), in which agents select offers that will bring
in the highest transaction profits (defined as the difference of payment and gained
valuation). These protocols work similarly to BuMRT except that they do not require
message broadcasting to redistribute social wealth within the community.

3.6 Performance Evaluation

In this section we investigate the performance of the proposed protocols through
three different sets of simulations. First, we implement BuMRT and validate its
achievable efficiency and fairness. In the second set of simulations, three versions
of BaMRT presented in Protocol 1 are compared in various norms. Finally, we
evaluate the performance impact of different payment selection policy and initial
budget settings for BaMRT.

3.6.1 Simulation Settings

We instantiate the matchmaking framework to a generalized distributed computing
environment, and implement the resource trading protocols using SimGrid [8].
The core scheduling and communication functions are implemented using the
application-level simulation interfaces provided by the MSG module of SimGrid.
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A community cloud platform with 20 computational nodes (tenants) is simulated.
We also creates 800 synthetic task units (resources). To create a heterogeneous
platform, we assign different computational and networking settings to the com-
putational nodes. As such the same task unit presents different values to different
nodes. In SimGrid, this information is encapsulated in separate XML files. Node i ’s
satisfaction of its current allocation is quantified by a concave valuation function
Vi .�/, where Vi .x/ defines the utility of node i obtaining x tasks [23]. The concavity
assumption indicates that the marginal valuation diminishes when the allocation
increases. Specifically, we use the following concave function to represent valuation,

Vi .x/ D c � xr ;

where the constant coefficient c is set to 10:0, and r is randomly generated in the
range of .0:2; 0:6/.

We primarily use four metrics to evaluate the performance of the proposed
protocols. First, we use social welfare to quantify the allocation efficiency. Second,
in order to validate fairness, the total envy degree amongst all nodes is recorded
after each transaction. In addition, two nodes that envy each other form an envious
pair. The total number of envious pairs is also counted throughout the negotiation
process. Finally, we measure system profit as an indication of system’s side utility.
For each transaction, the profit earned is the difference of buyer’s valuation and
the associated payment amount. The system profit is thus defined as the cumulative
profit earned in all transactions.

3.6.2 Evaluation of BuMRT

In the first set of simulations, nodes negotiate with each other using BuMRT until
convergence is reached. The results are plotted in Fig. 3.3. At the start of each
simulation, 800 task units are randomly mapped to 20 nodes. We generate three
topology profiles representing different network configurations. The first topology
profile (labeled as “fully connected”) describes a fully connected mesh network,
and the rest profiles describe two relatively sparse network topologies. The fully
connected topology has a total node degree of 20 � 19 D 380. The node degrees
of the other two profiles are normalized relative to the fully connected profile.
We use these normalized values, 0:45 and 0:72, to represent the connectivity of
both profiles. In order to validate efficiency, we also implement a self-adaptive
auction algorithm [34] that achieves maximum social welfare when tasks are
allocated. This result, labeled as “optimal” in Fig. 3.3a, defines the global optimal
social welfare. From Fig. 3.3a, we observe that in all topology profiles, the overall
social welfare increases all the time and converges after around 24 transactions.
In addition, for the fully connected network, the final allocation achieves the
maximum social welfare when converges. Figure 3.3b, c show that all simulations
converge to fair state where all envy relations are eliminated. Note that after each



3.6 Performance Evaluation 51

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25

S
oc

ia
l W

el
fa

re
 

Deal Number

fully connect
partially connect: 0.72
partially connect: 0.45

auction 0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25

To
ta

l E
nv

y 
D

eg
re

e

Deal Number

fully connect
partially connect: 0.72
partially connect: 0.45

a b

-20
0

20
40
60
80

100
120
140
160
180

0 5 10 15 20 25

E
nv

io
us

 P
ai

r 
N

um
be

r

Deal Number

fully connect
partially connect: 0.72
partially connect: 0.45

c

Fig. 3.3 Performance evaluation for budget-unaware case. (a) Measurement of efficiency;
(b) measurement of fairness: envy degree; (c) measurement of fairness: envious pair

transaction, both envy degree and envious pair number do not necessarily decrease.
This can be explained as follows: although the overall unfairness will be eliminated
eventually, each single transaction only eliminates envy between the two trading
partners, but may create envy relationship between other pairs. Another interesting
observation for Fig. 3.3 is that the initial matchmaking unfairness is closely related
to the network connection degree. This is because envy relation is more likely
to present if more nodes are connected. Moreover, more connected network also
means more opportunities for tasks to be assigned to nodes who value them more.
Therefore, the achievable local efficiency is more likely to increase as the network
becomes more connected.



52 3 Efficient and Fair Resource Trading Management

150

200

250

300

350

0 2 4 6 8 10 12 14 16

S
oc

ia
l W

el
fa

re

Deal Number

VHCN
EHCN
UHCN

0

20

40

60

80

0 2 4 6 8 10 12 14 16

P
ro

fit
s

Deal Number

VHCN
EHCN
UHCN

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16

To
ta

l E
nv

y 
D

eg
re

e

Deal Number

VHCN
EHCN
UHCN

100

110

120

130

140

150

160

170

180

190

0 2 4 6 8 10 12 14 16

E
nv

io
us

 P
ai

r 
N

um
be

r

Deal Number

VHCN
EHCN
UHCN

a b

c d

Fig. 3.4 Performance evaluation for budget-aware case. (a) Efficiency improvement; (b) profits
gain; (c) fairness improvement: envy degree; (d) fairness improvement: envious pair

3.6.3 Evaluation of BaMRT

Next, we add budget limitation to each node and compare the performance of
different versions of BaMRT presented in Sect. 3.5. The node and the task unit
number are set to be 20 and 800 respectively. Based on the analysis of the
average transaction payment range, we assign each node an initial budget of 100.
When a transaction is completed, the node who makes payment will deduct the
corresponding amount from its balance. Conversely, its trade partner will add the
same amount to its balance. For fair comparison, all simulations are conducted using
the same setting (valuation functions and initial allocation). All simulations use a
same fully-connected network. The comparison results are exhibited in Fig. 3.4.
From these results, we draw the conclusion that the performance of each protocol
is primarily influenced by the offer selection strategy. In V-BaMRT, the offer brings
the most social welfare growth is selected. Therefore in Fig. 3.4a we observe that
V-BaMRT leads to the highest local efficiency when converged. Similarly, Fig. 3.4c,
d show that E-BuMRT performs better in promoting fairness. And not surprisingly,
the overall profits gain is in favor of U-BuMRT, as shown in Fig. 3.4b.
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3.6.4 Sensitivity Analysis

In this section, we investigate the impact of different payment selection strategies
and initial budget settings. The configuration parameters are kept the same as in
Sect. 3.6.3.

As analyzed in Sect. 3.5.2, each tenant can set up arbitrary payment policy for
the trading agent. A conservative policy results in resource acquisition with low
cost, while an aggressive policy helps funding other tenants to conduct more trading
activities. Which policy gives better result depends on the offer selection strategies
and initial budget distribution. We modify the simulation code to let each node
select payment amount within the allowed range deterministically. Specifically, let
the payment selection range be .low; high/, we devise three deterministic payment
selection strategies for evaluation:

• Aggressive: payment D low C 0:75 � .high � low/

• Modest: payment D low C 0:5 � .high � low/

• Conservative: payment D low C 0:25 � .high � low/

We compare the aggregate profits of the system in Fig. 3.5. Each value is the
average result of 20 simulation runs. The result suggests that more aggressive
bidding behavior will result in higher system profits at convergence. This can be
explained that if all nodes offer higher at each deal, more nodes will get funded that
lead to more transactions. As a result, the micro-economy of the small computing
community is boosted.

Finally, we alter the initial budget assignment and measure its impact to the
system envy degree. Taking initial budget of 100 to be the base case (marked as
“1X”), the startup fund for each node is altered from 0:5 to 2 times of 100. Again
we average the result of 20 simulation runs. The comparison is visualized in Fig. 3.6.
We observe that for the case of abundant initial fund assignment, the convergence
value is close to that achieved by BuMRT. When the initial budget reaches 200,
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all protocols converge to an envy degree of 0 as if there are no budget constraint.
On the contrary, for a poorly funded computing community, the trading activities are
more likely to freeze due to lack of budget, resulting in potential longer convergence
time and higher degree of unfairness.
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Chapter 4
Flexible Resource Sharing Management

Abstract This chapter presents CloudBay, an online resource trading and leasing
platform for multi-party resource sharing. It is a proof-of-concept design bridging
the gap between resource providers and resource customers. With the help of Cloud-
Bay, the untapped computing power privately owned by multiple organizations
is unleashed. The design and implementation of the CloudBay project presents
the most challenge to our exploration of cost-effective resource management
strategy design. Following a market-oriented design principle, CloudBay provides
an abstraction of a shared virtual resource space across multiple administration
domains, and features enhanced functionalities for scalable and automatic resource
management and efficient service provisioning. CloudBay distinguishes itself from
existing research and contributes in mainly two aspects. First, it leverages scalable
network virtualization and self-configurable virtual appliances to facilitate resource
federation and parallel application deployment. Second, CloudBay adopts an eBay-
style transaction model that supports differentiated services with different levels of
job priorities. For cost-sensitive users, CloudBay implements an efficient match-
making algorithm based on the auction theory and enables opportunistic resource
access through preemptive service scheduling. The proposed CloudBay platform
stands between HPC service sellers and buyers, and offers a comprehensive solution
for resource advertising and stitching, transaction management, and application-to-
infrastructure mapping. In this chapter, we present the design details of CloudBay,
and briefly discuss lessons learnt and challenges encountered in the implementation
process.

The rest of the chapter is organized as follows. We will first present an overview
for the CloudBay project in Sect. 4.1. Next, we survey the related system design
and implementation in Sect. 4.2. In Sect. 4.3, we describe the design of CloudBay
and the implementation of network virtualization tools facilitating resource sharing.
In Sect. 4.4,we explain the details of the job scheduling algorithms in CloudBay.
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Finally, the evaluation results of our prototype CloudBay implementation are
presented in Sect. 4.5. The original text of this chapter was published in [37], and
we refer the readers to [36] for more detailed discussion of the subject.

4.1 Overview

Utility and cloud computing reshape the way IT services are delivered with
its ability to elastically grow and shrink the resource provisioning capacity on
demand. This computing paradigm shift launches a new chapter for e-science and
e-engineering applications that offers High Performance Computing (HPC) at scale.
For example, the recent published top500 list includes Amazon R�’s EC2 virtual
cluster composed of over one thousand cc2.8xlarge instances [16]. In order to
realize HPC-as-a-service with the full potential of utility and cloud computing,
it is best to take advantage of resources in an open marketplace across multiple
clouds [18]. However, two major challenges still remain to be addressed. First,
although end users are liberated from the arduous task of resource configuration,
this burden is transferred to computational resource providers. Existing work either
limits service to local area connectivity [1], or requires nontrivial resource and
networking setup among all resource contributors [8]. Second, there lacks a flexible
application-to-infrastructure mapping mechanism that accommodates differentiated
service requirements, and at the same time, maintains high efficiency for resource
allocation across multiple clouds. Finally, it is critical to implement a fair pricing
scheme in a multi-party cloud computing environment for both resource sellers and
customers.

To overcome these hurdles, we propose a proof-of-concept design, CloudBay,
as a full-fledged solution for computational resource sharing and trading in an
open cloud environment. CloudBay addresses the first challenge by incorporating
decentralized self-configurable networking and self-packaging cloud toolsets. This
design breaks the barrier of proprietary clouds and reduces efforts for resource
joining, maintenance and query. It also helps cloud resource customers to deploy and
maintain their applications using the shared cloud infrastructure. To address the sec-
ond challenge, CloudBay implements an eBay-style transaction model. Specifically,
user requests are classified as quality-sensitive and cost-sensitive depending on the
offers the users are willing to make. The service scheduler in CloudBay assigns
higher priorities to quality-sensitive service requests, and allows opportunistic
provisioning of under-utilized resources through preemptive application execution.
The competition among cost-sensitive service requests are resolved by an efficient
auction mechanism that guarantees resource access for those users who value them
the most. Service scheduling in CloudBay also supports distributed sites bid for
jobs for optimal system-wide performance. Our proposed market-driven solution
differs from Amazon R�’s on-demand and spot IaaS in the following two aspects:
(1) CloudBay allows user requests to be partially fulfilled, whereas EC2 spot
market only supports all-or-none resource acquisition. This feature is useful as HPC
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users often have fuzzy resource demand [4]. (2) Resource auction in CloudBay is
based on a novel Ausubel auction model [3] that encourages truthful bidding (i.e.,
bidders bid based on their true valuation), and achieves Vickrey efficiency compared
with Amazon R�’s spot market auction. The development of CloudBay is still in
progress and more features will be added in future. We believe that the exploratory
investigation presented in this study can open up significant perspectives of merging
HPC and cloud computing in the long run.

In summary, we demonstrate that the following features render CloudBay a
favorable design for HPC-as-a-service in an open cloud environment:

• Scalable resource federation: Leveraging P2P-based virtual networking,
CloudBay achieves scalable resource sharing by disseminating routing
information in a decentralized fashion.

• Self-configurable resource provisioning: We develop a number of programs
to automate network configuration and application deployment in CloudBay.
Our work greatly simplifies the task of resource providers and provides timely
services to the end users.

• Fair resource allocation: A fair allocation of resources allows the service
qualities received by end users to be roughly proportional to the costs they pay.
In CloudBay, we implement an efficient eBay like matchmaking mechanism to
achieve this goal.

• Flexible resource usage: CloudBay accommodates a variety of resource usage
models and offers differentiated levels of services to end users. For example, it
can support both rigid and flexible parallel application execution.

4.2 Related Work

There has long been significant interest in investigating the application of economic
approaches for resource management in distributed systems. According to Wolski
et al. [33], two types of market strategy are commonly used in a computational
economy, namely commodities markets and auctions. Auctions are simple to
implement and are efficient to sell off computing cycles to contending users.
Therefore, auctions achieved wide applications in early computational ecosystems
such as Spawn [29], Popcorn [24], and Tycoon [20]. In Faucets [17], auction is
conducted to determine the optimal placement of jobs on computational servers.
Another early project was Nimrod/G [6], where grid resources were allocated
based on user-negotiated contracts with the resource sellers. Most systems were
designed for early distributed computing infrastructure such as dedicated clusters
and computational grids, and did not account for the latest technology advance in
networking and hardware virtualization.

In utility and cloud computing, due to the service-oriented paradigm shift,
market-driven distributed systems become commercialized in the next-generation
data centers. However, the role of CloudBay is not to serve as yet another IaaS,
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PaaS, or SaaS provider, but rather to bridge the scattered HPC resources and the
scientific community in support of HPC application development and delivery. The
most related work to CloudBay was proposed in [27], where the authors built an
experimental resource market inside GoogleTM. The major differences between the
two works are presented as follows:

• Deployment scope: The resource market created by CloudBay can span multiple
networking-layer domains, whereas in [27], the resource market was built upon
resources connected by a intra-company network. The capability of traversing
NAT/firewalls using P2P virtual networking earns CloudBay a wider deployment
scope.

• Scheduling model: CloudBay supports immediate service scheduling with
transparent job preemption, whereas in [27], auctions were conducted in a
periodic manner, and cannot be triggered if the auctioneer did not collect enough
bids. As a result, the possible chance of resource utilization during the time of
bid window is lost.

• Pricing algorithm: In addition to the auction procedure, CloudBay adopts an
incentive-compatible payment scheme to regulate bidder behaviors.

Besides the auction approach, many researchers attempted to design incentive-
compatible resource allocation mechanisms for individually rational market partic-
ipants. For example, Teo and Mihailescu [28] developed a strategy-proof pricing
scheme for multiple resource type allocations. In [7], Carroll and Grosu designed
an online scheduling algorithm MPJS for malleable parallel jobs with individual
deadlines. These methods are effective for distributed settings where agents are
individual rational and are non-cooperative in a dynamic market.

4.3 Design

4.3.1 Architecture

Figure 4.1 depicts the architecture of CloudBay. The design goal of CloudBay is to
provide a suite of tools that facilitate computational resource sharing and enhance
application-to-infrastructure mapping. To fulfill this goal, CloudBay is designed as
a service-oriented architecture that seamlessly bridges the gap between applications
and resources. First, CloudBay provides resource virtualization services on top of
the bare hardware, including: (1) a P2P virtual networking tool that supports scalable
and cross-domain resource stitching; and (2) an application-aware VM image called
Cloud Appliance that packages grid/cloud computing toolsets and self-configurable
networking facilities. With the support of the virtualization service, computational
resources residing on different domains can be easily connected together to form an
ad-hoc cluster over wide-area networks.

Next, accompanied by the virtualization services, CloudBay offers market-
oriented resource-request matchmaking services for both quality-sensitive and
budget-sensitive users. The core functionalities include: (1) an account manager
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managing resource seller and buyer accounts; (2) a transaction negotiator that helps
to arrange user requests based on the supply and demand level of the current
resource market; (3) an auction engine that resolves resource competition when
necessary; and (4) a payment collector that collects fees for resource rental. We will
cover the details of the market-driven service scheduling scheme in Sect. 4.4.

Finally, CloudBay offers a variety of popular programming models for deploying
and running distributed applications. This is achieved by interfacing with pre-
packaged software supporting application compilation, run-time configuration and
job management. For example, the current implementation of Cloud Appliance
image packages MPI library and MyHadoop [19] for HPC application tuning and
running. Additional functionalities such as interfacing with users, monitoring and
profiling are traversal to the entire CloudBay service stack.

4.3.2 Use Case

Figure 4.2 illustrates a simple working scenario in CloudBay. A resource customer
submits a bid request (detailed in Sect. 4.4.1) to the CloudBay server seeking
to access resources within his budget constraint (step 1�). The CloudBay server
accepts the bid request and places the request together with other bid requests in the
system. If the request cannot be satisfied by the current resource supply, a dynamic
ascending auction is launched by the centralized auction engine (step 2�). Suppose
this user wins 6 VM instances as a result of the auction, the CloudBay server will
automatically provide connectivity that bundles the allocated instances into a cluster
(step 3�). The bundle now becomes invisible to other users and is isolated from other
resources in the system. CloudBay employs Condor [11] to manage user submitted
jobs, and randomly designates a node within the winning bundle as the head node.
The job submitted by the user will be forwarded to a local client node running the
condor_schedd daemon, and CloudBay will let Condor take over the rest of the
work (step 4�).
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4.3.3 Virtualization

This section introduces our previous work on platform, resource and network virtu-
alization. These techniques form the basis of scalable and self-configurable resource
sharing in CloudBay. Since this study mainly focuses on resource management and
service scheduling issues, we only present an overview of these virtualization tools,
and refer the readers to [15, 30, 32] for implementation details.

4.3.3.1 IP-Over-P2P (IPOP) [15, 32]

Just as modern economy is built upon transport infrastructure and freight dis-
tribution networks, CloudBay demands scalable and easy-to-deploy networking
technologies that support seamless resource stitching and provisioning. CloudBay
is designed to provide infrastructure support to scale up to large numbers of
geographically distributed resources over wide-area networks. Therefore, in the
design of CloudBay, we employ a self-configurable virtual IP network, IP-over-P2P
(IPOP) [30], to offer routing capabilities for heterogeneous and self-government
peers. IPOP leverages Brunet, a P2P library [30], to unify decentralized com-
puting resources into a ring-structured overlay for routing IP. The development
of IPOP is aligned with recent research on virtual private cloud [10, 12, 34].
CloudBay uses IPOP to enable elastic resource provision and relinquish, and
attains the following benefits: (1) scalable network management, because routing
information is self-configured and disseminated over the network in a decentralized
fashion. In addition, P2P paradigm efficiently handles node arrivals and departures.
(2) Resilient to failure, as P2P networks offer more robustness against failure and
system dynamics than centralized network management. (3) Easy accessibility.
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IPOP incorporates a decentralized approach to traverse NAT/firewalls. All these
benefits make IPOP a perfect candidate for resource bridging in CloudBay.

4.3.3.2 Cloud Appliance

Cloud Appliance directly extends our previous work of Grid Appliance [30].
It packages cloud computing toolsets into an application-aware virtual machine
image (available in VMware, Virtual Box and KVM), and supports on-demand
resource clustering. A resource provider may choose to launch a Cloud Appliance on
the physical host machine, which will automatically place the contributed resource
slice into the global CloudBay resource pool. Alternatively, a resource provider may
also choose to install separate CloudBay package on the fly (e.g., the package grid-
appliance-base offers virtual networking functionality and can be installed from
Ubuntu). In essence, a Cloud Appliance is an integrated middleware that encapsu-
lates a full job scheduling software stack. It hides the heterogeneity of various cloud
platforms and provides a uniform interface to different cloud resource providers.
Cloud Appliance also allows resource customers to run unmodified, binary software
executables without imposing platform-specific APIs that applications must be
bound to. Scheduling service in Cloud Appliance directly interfaces with the Condor
scheduler for job management. Finally, Cloud Appliance offers sandboxing security
such that undesirable behaviors are confined to an isolated VM instance.

Cloud Appliance can be easily deployed on typical x86-based machines. Cloud
Appliance can utilize recursive virtualization, which had been supported with
hardware support in mainframe hypervisors, but has only recently begun to be
supported and its performance implications understood as hardware virtualization
in x86 has matured [5]. In our design, the lower-layer virtual machine monitor
has the role of encapsulating and distributing the CloudBay stack in a way that
makes for simple deployment on a variety of resources, while the upper-layer virtual
machine monitor has the role of hosting user’s computation. We integrate a set of
configuration scripts with Cloud Appliance to ease the process of resource provi-
sioning. When a transaction completes successfully on CloudBay’s resource market,
Cloud Appliances automatically discover each other and configure themselves into
a deliverable resource bundle to serve the job execution request from the winning
customer. We have achieved scalable deployment of Cloud Appliances and active
user feedbacks from various institutions, as shown in Fig. 4.3.

4.3.4 Autonomic Resource Pooling

This section presents the implementation details of resource pooling in CloudBay.
Resource pooling involves the development of: (1) a centralized resource pool
accessible to all users; and (2) an isolated resource pool allocated to a particular user.
Our implementation uses a centralized approach to provide autonomic services for
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Fig. 4.3 Snapshot of the deployment of Cloud Appliance. Left: A total of 509 IPOP virtual
network nodes are distributed across PlanetLab and Archer [2] resources. Right: Available number
of resources in the virtual appliance Condor pool as nodes are progressively turned on at five
different institutions and autonomously join the pool

resource configuration and management. Specifically, a resource manager process,
running side-by-side with the Condor central manager, is implemented on the
CloudBay server that helps to monitor and manage active resources in the system.
We automate the resource joining process by packing a booting script written in
Python into the Cloud Appliance VM image. To contribute a VM instantiated by
the Cloud Appliance, a resource provider first submits a resource join request from
a web interface, and then downloads a certified configuration file bound to the VM.
This process is termed as “floppy insertion” in CloudBay.

The front end of CloudBay is implemented using Django [13], allowing users
to easily interact with the server. When a resource bundle is allocated to some
request, the resource manager process will create a new configuration file (floppy)
for each VM within the bundle. In our previous implementation [31], users have
to manually configure the allocated resource bundle through the web interfaces.
Whereas in CloudBay, the resource manager automatically locates the VMs based
on their addresses on the IPOP virtual network and transfers the floppies to them via
scp. This autonomic floppy insertion process enables CloudBay to form an isolated
resource pool upon request and greatly simplifies resource allocation.

4.4 Market-Driven Service Scheduling

This section presents the design details for user service scheduling in CloudBay.
We focus on the eBay-style differentiated service provisioning, HPC job submis-
sion, and the design of the auction engine.
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4.4.1 Model

We consider the resource pool of CloudBay consisting of dedicated and high-
performance computing and storage facilities (e.g., clusters and network shared
file systems) that span across organizational and national boundaries. Leveraging
techniques presented in Sect. 4.3, these facilities are easy to confederate within
a common resource namespace, forming what is referred to as a science cloud.
Note that CloudBay does not target at non-dedicated and cheap resource in the
volunteer computing model because it is hard to guarantee quality of service for
quality-sensitive HPC users in a highly dynamic environment. On the resource
market formed by CloudBay, resource providers partition their resources into
standard sized resource slices that are instantiated using Cloud Appliances, and
delegate the task of negotiation and selling to CloudBay. The resource rental model
in CloudBay is similar to that used in Amazon R� EC2, where users purchase
computing services in the unit of instance�hours. However, rather than providing
IaaS where users have complete control over the allocated VMs and build their own
software stacks, CloudBay is more PaaS-oriented that packs a computing platform
and job management functionalities as a service.

Let R be the set of VM instances within the global resource pool. CloudBay
allows for V classes of VM instances to be created by resource providers (e.g.,
small, medium and large VM instances). All instances within the same class, i.e.,
Rv 2 R; v 2 V , have homogeneous configurations. We denote the set of user
requests by U , each request U 2 U is limited to a set of VM instances within the
same class. If a user wishes to run a job on a set of heterogeneous resources, he can
simply create a request group in CloudBay that bundles the VMs granted by all the
requests sharing the same job configuration.

The need for differentiated service provisioning is imminent because it improves
utilization of the infrastructure. Traditional HPC centers allow different job priority
classes and use backfilling scheduling [21] to reduce fragmentation of system
resources, while modern IaaS providers in cloud computing tend to jointly schedule
on-demand and opportunistic resource requests, as is the case of Amazon R�’s
launch of spot market in addition to the on-demand service. As HPC merges with
cloud computing, the question becomes, how to implement the differentiated request
model in modern HPC centers equipped with cloud infrastructure? In CloudBay,
we develop a service scheduling approach inspired by the transaction model used in
eBay. Before we proceed to describe our approach, we clarify the assumptions and
specifications of the user request model in the next few paragraphs.

CloudBay adopts a market-oriented approach for resource management. In par-
ticular, resource pricing in CloudBay is driven by the supply and demand on the
market. When user demand is greater than resource supply, resource prices increase
that only those resource access requests with sufficient rental prices are satisfied.
On the other hand, when user demand falls below the supply level, resource prices
decrease that only those resources with sufficiently low leasing prices are allocated.
These two cases are symmetric that we can similarly use “sell-it-now” and “bid”



66 4 Flexible Resource Sharing Management

options to differentiate different types of resource sellers. In this chapter, we will
focus on the case when demand is greater than resource supply.

We define two types of user requests in CloudBay.

• buy-request1—submitted by quality-sensitive users and is analogous to the
option of buy-it-now on eBay. The submitted job is likely to be associated
with a deadline, and the interruption in service is generally undesirable (non-
preemptive). Note that we cannot promise immediate access to the resource
because the system might become so congested filling with non-preemptive jobs.

• bid-request—submitted by budget-sensitive users and is analogous to those who
bid on goods on eBay wishing to find a deal. There is no deadline associated
with bid-requests. The bidder may specify a expected duration of job execution,
or simply let it run to completion. The jobs are characterized as failure resilient
that interruption in service does not compromise the computation integrity.

Let U b stand for a bid request, and let U q stand for a buy-request, U b; U q 2 U .
A buy-request U q consists of the number of VM instances to boot, and the expected
renting duration. The expression of a bid-request is slightly more complex because
it defines flexible configuration parameters. A bid-request is a tuple composed of
four elements: U b

i D fv; pi ; ni ; �i g, where v 2 V is the requested VM class, pi is
the bid price for a unit VM instance in unit time, ni is the requested VM number,
and �i is the desired renting duration.

Given a mixture of the two types of user requests, the goal of service scheduling
is to achieve fair pricing while maintaining high utilization of the infrastructure.
With different context, market fairness could have different meanings. Here by fair
pricing we mean: (1) jobs associated with high bids should take precedence over
low-bid jobs; and (2) market price of resources is not over- or under-valuated.
By high infrastructure utilization we mean that the matchmaking service should
make resource allocation decisions in a timely manner, and grants resource access
rights to end users whenever there is a chance. We will illustrate the design details
of service scheduling in CloudBay in the later sections.

4.4.2 Job Submission

CloudBay directly interfaces with Condor for job management because of Condor’s
ability to support both dedicated and opportunistic job execution. We create a
uniform web interface that allows users to upload executables and job configuration
files to the CloudBay server. The job submission process in CloudBay is illustrated
in Fig. 4.4. First, when a resource bundle is allocated to serve a request, the
CloudBay server will send the job to a gateway node within the winning bundle

1The buy-request can be viewed as a special case of bid-request where users are willing to pay a
fixed predefined amount.
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running the condor_schedd daemon. After that, the local Condor server will fetch
the job information and schedule the job in the local pool (see the left of Fig. 4.4).
If this job gets preempted some time later, the CloudBay server will store the
computing state (through checkpointing) as well as the original job configuration.
Suppose after a while, a new pool of resources become available again, the
CloudBay server will redirect the job information to a gateway node in the new
pool to resume the job execution (see the right part of Fig. 4.4).

4.4.3 Economy Bootstrapping

CloudBay customers buy computing services using virtual currencies circulated in
the system. The recent emergence of the Bitcoin [23] system seems to provide a
plausible solution to the implementation of the virtual currencies used in CloudBay.
This is because due to the underlying communication infrastructure, the transaction
model used in CloudBay is P2P in nature, which matches well with Bitcoin’s
design principle. For resource providers, CloudBay adopts a closed-loop funding
policy [20] to encourage contribution, i.e., each provider is assigned an initial
allotment of funds at join time, and earns funds by providing HPC services to
resource customers.

4.4.4 Service Scheduling

The procedure for request scheduling in CloudBay is summarized in Algorithm 1.
In order to eliminate request queueing, the transaction negotiator tries to make an
allocation decision whenever a service request arrives. An incoming request issued
by some quality-sensitive user takes precedence over all bid requests and gain access
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Algorithm 1: Request scheduling in CloudBay

begin
examine incoming request type
case buy-request

if supply 	 demand then
allocate VMs as requested

else if 9 unfinished bid jobs AND their aggregate resource occupation 	 demand
then

preempt jobs from low-bid to high until demand is satisfied
else

negotiate with the user with two options
� try at a later time
� pay large fine for immediate resource access

case bid-request
if supply 	 demand then

allocate VMs as requested and collect payments accordingly
else

start a two-stage Ausubel auction, reconsider bid-requests for all incomplete
jobs
allocate according to the auction result

to the desired resource bundle whenever possible (lines 3–12). On the other hand,
if an incoming request is of bid type, it is scheduled to compete for resources
with other bid requests when current resource supply cannot meet its demand. The
auction engine will trigger a two-stage Ausubel auction (line 17) to resolve the
competition.

The original Ausubel auction (also known as the efficient ascending auction)
was proposed in [3], and possesses two appealing properties that make it a good
match for our design goal. First, it is computationally tractable. Second, it employs
a non-linear payment method to eliminate the incentives of strategic bid behaviors.
However, we cannot directly apply the original Ausubel auction to our scheduling
context because of the following difficulties: (1) Ausubel auction uses iterative
price adjustment to balance market demand and supply. In practical algorithmic
design, the convergence to market equilibrium state might take long time due to
price oscillating around the market clearing price. The reason behind this is that it’s
impossible to determine the step length for price adjustment unless we know the
search stop point (the market clearing price) in advance. (2) Some bidders have all-
or-none resource acquisition preference. They may suddenly drop out of the auction
when price is adjusted. If that is the case, the market equilibrium state may not exist
at all. In order to determine resource allocation, we have to extend the feasible region
for the solution. Specifically, suppose n bidders bid for m VM instances of certain
class v. Let each bidder’s demand be d t

i at auction round t (the auction is iterative).
We relax the convergence condition of

Pn
iD1 d t

i D m to
Pn

iD1 d t
i � m. Note that
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Algorithm 2: The first stage of the modified Ausubel auction

begin
sort pk

i in L in non-decreasing order
break ties in L

// find market clearing price p�

while search range > 1 do
t  � t C 1

locate medium bid pt in search range
for every bidder i do

d t
i D arg maxkfpk

i > ptg
if
Pn

iD1 d t
i > m then

shrink search range to the first half of L

else if
Pn

iD1 d t
i < m then

shrink search range to the second half of L
else

return current bid value as p�

break

if
Pn

iD1 d t
i ¤ m then fail to clear the market

// search for a feasible solution closest to p�

backtrack to find the first value making
Pn

iD1 d t
i > m

return the immediately preceding bid in L

announce winners according to the returned price

such relaxation will result in efficiency loss. However, as we use backtracking to
find the closest point to equilibrium state, such loss is relatively small.

In the original Ausubel auction, the payment calculation is carried out along
with the procedure to search for the market equilibrium price. We propose a two-
stage Ausubel auction to overcome the first difficulty. In the first stage (summarized
in Algorithm 2), the algorithm quickly locates a final market price. With this
information, we can decide the price adjustment step and simulate the original
Ausubel payment calculation procedure in the second stage. We assume user’s
valuation to resource bundle is monotonic and strictly concave, i.e., allocated
resources exhibit diminishing rewards to users. For a given VM class v, let pk

i

(we omit v for brevity of notations) be user i ’s bid price for the kth allocated
instance�unit time. This information is collected from the bid submission interface,
and is saved in the database of CloudBay’s server. To obtain the market clearing
price, we perform a binary search on a sorted list of such bid prices. When two bids
submitted by two different users tie with each other, the algorithm assigns higher
priority to the bid submitted at an earlier wall clock time. If the algorithm fails
to converge to a market clearing price, it will backtrack to find the best feasible
allocation yielding

Pn
iD1 d t

i � m. The final allocation for each user is determined
by evaluating the marginal bid vector using the returned final market price.
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4.4.5 Payment Accounting

In the second stage, the auction engine simulates the auctioneer-bidder communi-
cations as proposed in the original Ausubel auction [3] in an iterative manner. The
payment collector interacts with the auction engine in order to calculate payment
amounts for all bidders. We briefly summarize the payment accounting method
as follows. First, at each round t , the auctioneer calculates the aggregate reserved
bundle �t

i for bidder i by comparing the market supply against the aggregate demand
from i ’s opponents:

�t
i D maxf0; m �

X

j¤i

d t
j g (4.1)

Accordingly, the round reserved bundle � is defined as the difference of the
aggregate reserved bundle at adjacent rounds:

�1
i D �1

i

�t
i D �t

i � �t�1
i .t > 1/ (4.2)

Note that �t
i � 0 because the aggregate demand from i ’s opponents is weakly

diminishing. If �t
i > 0, then this amount of allocation is referred to as “clinched”

by bidder i at current round price pt . Suppose i wins Ai at the final round T , the
total payment of i is calculated as:

Pi .Ai / D
TX

tD1

pt �t
i (4.3)

Accordingly, the auction revenue Q for the final allocation A is given by:

Q.A/ D
nX

iD1

Pi .Ai / (4.4)

One virtue of the Ausubel auction is that it replicates the outcome of the static
Vickrey auction. This property is desirable because untruthful users experience
degraded performance in computing markets [25]. The proposed auction is incentive
compatible (proof detailed in [3]), and results in fair market pricing upon conver-
gence.

4.4.6 Discussion

Our scheduling decision is made upon request. This might cause constant thrashing
of the low-bid requests. In fact, such an effect is a tradeoff to reduced resource
utilization in periodic scheduling. To alleviate this problem, we can compensate



4.5 Evaluation 71

the preempted low-bid jobs for a small amount. As the compensation accumulates,
the job becomes more resilient to preemption. This is an interesting topic because
doing so seems to violate our design goal of fairness. We will explore this issue in
our future research.

4.5 Evaluation

4.5.1 Resource Pooling

We develop and deploy an experimental CloudBay platform composed of 32 VM
instances, with 20 of them setup on FutureGrid [14], 8 on Amazon R� EC2, and 4 on
local lab machines at the University of Florida. Each instance is equipped with 1:5 G
memory and 1 virtual CPU core running at 2:66 GHz, and is pre-configured with
Condor supporting both dedicated and opportunistic scheduling. The CloudBay
server process is implemented and run on a separate machine that also works as
the head node for the global Condor resource pool.

First, we examine the setup time for creating an isolated bundle of VM instances.
In particular, the setup time is the time elapsed from the moment an allocation
decision is made until all resources in the bundle are shown using the condor_status
command. According to Sect. 4.3.4, the setup time comprises: (1) generating floppy
file for network configuration; and (2) notifying the VM instance within the
winning bundle about the information of the new Condor head node by transferring
the floppy file and modify the local Condor configuration. Figure 4.5 shows the
measurement of bundle setup time for multiple VM instances cross three different
sites and on FutureGrid only. We observe that the setup time displays an increasing
trend as the number of VM instances increases for both experiments. Since cloud
users typically request resources over hours, the experiment results indicate that
automatic resource pooling in CloudBay imposes a trivial overhead to the total
resource rental period.

Next, we investigate the performance of CloudBay virtual networking by stress
testing the Hadoop cluster with and without IPOP virtual network, respectively.
Specifically, we deploy a CloudBay Hadoop cluster, with two VM instances hosted
on the UF campus network, and the other two VM instances hosted on Amazon R�’s
EC2 platform. All instances have the same resource configuration with EC2’s
m1.large instance type. For the purpose of performance comparison, we also
setup a EC2 homogeneous Hadoop cluster connected by EC2’s internal network.
Two MapReduce programs, wordcount and terasort, are selected as benchmark
programs. For each program, we vary the input file size from 0:5 to 2:5 G, and
measure the completion time of all the map and reduce tasks. The results are shown
in Fig. 4.6a, b. From the figure, we observe that the heterogeneous networking
environment in CloudBay virtual cluster achieves broader deployment scope at the
cost of degraded execution time. Using the Hadoop monitoring tool, we observe that
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Fig. 4.5 Experiment for autonomic resource pooling

Fig. 4.6 Performance evaluation for virtual networking. (a) WordCount; (b) Terasort

the two local nodes greatly straggle the program progress due to the intermediate
data transfer from the EC2 site (the master node is located at EC2 side). In addition,
the performance gap in terms of completion time difference is relatively consistent
in the wordcount program, but increases significantly as the input data size grows.
This phenomenon is primarily contributed to the difference of intermediate data
transfer between the map and the reduce phase. For wordcount, the size of the word
list generated from the map tasks is almost the same for all input,2 while for terasort,

2We simply append the same text to generate larger size of input.
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the size of the intermediate data for the reduce tasks is increasing all the time. As the
data sharing problem becomes more serious in a virtual cloud environment [35], the
research for location-aware scheduling mechanism for data-intensive applications is
therefore imperative in the future development of CloudBay.

4.5.2 Service Scheduling

This section studies CloudBay’s ability to schedule mixed-type service requests.
Our investigation answers two questions from different perspectives. First, from
the perspective of the resource providers, we are interested in understanding how
much resource time is consumed by frequent preemptions of low-bid service
requests (preemption overhead). Next, from the perspective of the end users, we
are concerned about the perceived lag of service completion (service delay) against
the willingness to pay for the service (offered price).

The CloudBay platform is in prototyping stage and does not accumulate enough
user base. Therefore, our evaluation is simulation-based. We implement a discrete-
event simulator using the Simpy [26] simulation package based on Python. In the
simulation, we create 512 single-core VM instances to serve incoming user requests.
Each request can ask for up to 32 instances for running applications. The requested
VM number per request is uniformly distributed in the range of .0; 32	. For buy-
requests, the resource reservation price in a unit of time is set to 20. According
to Amazon R�’s spot price history [9], we set the offered prices for bid-requests
to fall in the range of .0; 20/, and follows a normal distribution with � D 8

and 
 D 4. The job arrival process is assumed to follow a Poisson distribution.
By varying the rate parameter �, we can simulate system behaviors under different
workloads. We generate synthetic user-requested resource usage times based on
a realistic workload scenario described in [22]. The workload traces include a
Condor workload from the University of Notre Dame, and an on-demand IaaS cloud
workload from the University of Chicago Nimbus science cloud. Based on these
traces, the requested times are set spanning a relatively long period of time (e.g., a
typical request will ask for resource rental over several hours).

In the first set of simulations, we assume the preemption time is linearly
proportional to the number of VM instances to relinquish and reset. The pre-
emption process includes the time to save program state (checkpointing), restart
the networking configuration process and reconfigure local Condor service. This
process can take several minutes for repooling a large number of VM instances.
Figure 4.7 shows the results calculated over a 1-month period simulation run. We
vary the percentage of bid requests to generate different flows of incoming requests.
The labels of high, medium, and low workload correspond to the average system
utilization of 83:3, 66:5, and 53:4 %, respectively. Note that the presented results
are relative measurements, e.g., the bid overhead is measured as the preemption
loss with regard to the total resource time occupied by bid-requests, not to resource
time occupied by all requests. Therefore, the overall overhead is approximately the
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Fig. 4.7 Evaluation of the overhead due to preemption

weighted sum of bid-request and buy-request overhead. When less bid requests are
present, they are subject to frequent preemption by the dominant buy requests. As a
result, we observe spikes at the initial phase for bid requests. However, the overall
overhead is relatively stable in all the tested scenarios, contributing around 1:8 % to
the total busy resource cycles, indicating that CloudBay is suitable for processing
high throughput service requests in an open cloud environment.

In the second set of simulations, we create 2,000 synthetic requests and investi-
gate the average service delay with regard to different user bid prices. The service
delay factor is defined as the ratio of the actual service completion time to the user
requested time. A factor of 1:0 means there is no service delay. We conduct five
simulation runs with varying percentages of bid request from 30 to 70 %. For each
run, the system utilization averages at around 83 %, and the total simulated time is
about 50 days. The results are shown in Fig. 4.8. As we expected, higher bid price
leads to less service delay in general. However, we also observe a few irregular
points on the figure, and the less bid requests a curve gets, the more wrinkled a
curve exhibits. This can be explained as follows: (1) a low-bid request might get
scheduled without blocking simply because there are available slots in the system;
(2) the bid price is randomly generated for each request such that the number of bid
requests for a particular price is insufficient. In general, we conclude that CloudBay
achieves fair resource allocation for serving differentiated user requests.
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Fig. 4.8 Service delay factor vs. offered price
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Chapter 5
Conclusion and Future Work

Abstract We have explored the design space for cost-effective and flexible resource
management strategies in utility and cloud computing. In this final chapter, we
summarize our findings and discuss related future work directions based on the
solutions depicted in this book.

5.1 Concluding Remarks

In this book, we have explored the design space for cost-effective and flexible
resource management strategies in utility and cloud computing, and proposed a
few novel solutions to address the challenges of scalability and heterogeneity.
In the second chapter, we investigated the problem of fine-grained resource rental
management in utility and cloud computing, and developed solutions for both
deterministic and stochastic resource pricing settings. Our optimization models
were based on a thorough rental cost analysis of elastic application deployment
in the cloud resource market. When resource pricing is fixed, we observed the
cost tradeoff between computing and storage emerges in time-slotted resource
provision scheduling. Based on this observation, we formulated a deterministic
optimization model that effectively minimizes rental cost of virtual servers while
covering customer demand over certain planning horizon. In addition, we took one
step further to analyze the predictability of spot resource prices using Amazon R�’s
spot instance price trace, and proposed an alternative stochastic optimization model
that seeks to minimize the expected resource rental cost given the presence of spot
price uncertainty. Simulations based on realistic settings clearly demonstrated the
advantage of the stochastic optimization approach over the predictive approach in
rental cost reduction. We also studied the impact of various parameter settings on the
performance of both models. We believe the proposed solutions for rental planning
offer effective means for resource rental management in practice.

In the third chapter, we presented the management problem of resource trading
in a community-based cloud computing environment. The goal of this study is to
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investigate the interactions among independent and rational resource traders, and
to establish effective and easy-to-implement negotiation protocols for system-wide
allocation efficiency and fairness. Towards this goal, we first adopted a multiagent-
based optimization framework and analyzed the optimal results without concerning
about budget limitation. Next, we proposed a novel directed hypergraph model
that combines allocation and envy relationship in a three-dimensional hyperspace.
This model effectively captured the impact of trading selection decisions from a
global point of view. When budget limitation is imposed, we developed a set of
distributed resource trading protocols based on heuristic approaches. Simulation
results show that the proposed protocols perform well in a wide range of settings.
We expect that the solution for resource trading management presented in this
chapter would open new vistas for designing effective resource management
strategies.

Finally, we presented CloudBay, a novel resource sharing middleware stack
composed of resource management software stack from ground up. Equipped with
virtual networking and application-aware virtual appliances, CloudBay achieves
ad-hoc self-organization, discovery and grouping of distributed resources without
incurring extra deployment and management efforts from both resource providers
and end users. Moreover, CloudBay implements a market-driven service scheduling
policy that accommodates a mixture of user request models, and efficiently dis-
tributes idle resources to users in a cost-effective manner. The pricing and payment
accounting policies boosts utilities for multiple parties, and features fair resource
allocation for customers. Utilizing services provided by CloudBay, researchers
with domain knowledge can comfortably deploy their parallel applications using
popular parallel programming models on a resource bundle assembled from multiple
organizations. We have already deployed virtual appliances across a variety of
open and private cloud platforms, including university clusters, FutureGrid, and
Amazon R� EC2. We expect that our experiences gained from the design and
implementation of CloudBay would open a new research avenue for realizing HPC-
as-a-service, and push the boundary for new cloud computing usage models.

5.2 A Look into the Future

The research of distributed systems encompasses many areas of computer science
and is among the fastest developing fields in the past decade. As resource man-
agement needs to cope with the growing complexity of the distributed systems, the
exploration presented in this book is just a starting point. We expect the design
space to be growing tremendously as distributed systems scale. In particular, this
book focuses on the improvement of resource management in distributed systems
involving mutually distrustful components. This problem will become more and
more important as present and future big data applications call for scalable and
reliable computing platforms. The following quote from IEEE Distributed Systems
Online [1] published a decade ago has foreseen this challenge, “. . . In the past,
our approach has been to build systems involving mutually trusting and mutually
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cooperating subsystems . . . We need architectures that support cooperation for
achieving a common goal but that do not require subsystems to make strong assump-
tions about peers”. Opportunities are emerging to use user-centric approaches that
cater to highly dynamic participants. These approaches, such as game theory and
auction theory, will inevitably present a substantial body of research for resource
management in the years to follow.

Efficiently managing resource allocation is of paramount importance in almost
all disciplines of distributed computing. In particular, we are interested in three
directions that have the most momentum. The first direction is Scientific Computing
which applies computational resources to scientific problems. The theoretical peak
performance of a single modern GPU has reached 3.7TFLOPS, almost two times
as fast as that of the world’s fastest supercomputer in year 2000. Such technology
advance in computing enables scientists to tackle computing demanding prob-
lems with large and costly simulations. Designing efficient resource management
strategies for scientific computing is difficult for three reasons. First, uncertainty
is ubiquitous in scientific modeling, making resource allocation requirements
changing all the time. Second, the need for online processing of the scientific
data sets introduces additional demands to computational, storage, and network
resource management. Finally, many scientific computing applications involve
legacy codes and systems, requiring tremendous efforts to transit to new computing
infrastructure. Utility computing and infrastructure clouds offer great potential for
scientific users, and we believe the marriage of scientific computing and the cloud
will create an exciting perspective in the long run, especially for loosely coupled
large-scale HPC applications. This book has presented some of our preliminary
research findings on this topic. In the future, we expect to see more research
addressing cost and privacy issues of the cloud. In addition, the scientific community
needs to invest substantial amount of time and money in developing utility- and
cloud-aware tools and services for existing scientific applications and workflows.

The second direction is Big Data which deals with high-volume information
storage, query and analysis. Interest in big data has given rise to building distributed
systems geared for data-intensive processing, and resource management plays
a central role in supporting big data applications. In order to handle massive
data and meet the performance critical real-time demand, resource management
should be agile to allow flexible deployment and provisioning. New platforms
have been introduced for big data applications, e.g., Hadoop for better parallelism
in computing, and NoSQL for scalable unstructured data storage. The resource
management solutions thus need to improve in light of changes in the big data
landscape. When evaluating a new resource management solution, performance
along with other factors such as deployment complexity, cost, and interoperability
with existing solutions, combine to influence the quality of the solution. In this
book, we follow this general idea and conduct cost-benefit analysis to resource
management in a utility-oriented setting. Another interesting problem is to tradeoff
reliability vs. availability of resource allocation, as both resource providers and
customers need to determine the allocation of reserved and on-demand resources
to minimize waste. Big data applications in cloud also bring more challenge for
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gracefully handling of resource loss and reallocation. In general, much research and
development remain to be carried out to catch up with the ever-increasing pace of
data grow.

Finally, as Mobile and Embedded Computing proliferate in recent years, effi-
cient resource management is in urgent need to offload heavy computational
tasks for mobile and embedded devices. Because these devices are architecturally
heterogeneous and resource constrained, they become more and more relied on the
cloud computing infrastructure. In order to guarantee Quality-of-Service (QoS) for
applications, it is critical to effectively manage resource sharing in data center, and
offer more capable network interconnection with enhanced switching and routing.
We investigated the economics of resource sharing in this book, and our focus is
mainly on the management of computational resource. In the future, we plan to
explore management strategies towards network resource sharing. The emerging
Software Defined Networking (SDN) technology separates control plan from the
data plan and provides centralized control functions with a SDN controller. With
this change, it is interesting to examine how multiple network flows belonging
to different applications should be shared, scheduled, and priced in modern data
centers.
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