
Lecture Notes in Statistics 185
Edited by P. Bickel, P. Diggle, S. Fienberg, U. Gather,

I. Olkin, S. Zeger



Adrian Baddeley

Pablo Gregori

Jorge Mateu

Radu Stoica

Dietrich Stoyan

(Editors)

Case Studies in Spatial Point Process Modeling

With 107 Figures



Adrian Baddeley Pablo Gregori Jorge Mateu
Department of Mathematics Department of Department of
University of Western Mathematics Mathematics

Australia Universitat Jaume 1 of Universitat Jaume 1 of
Nedlands 6907 Australia Castellon Castellon
adrian@maths.uwa.edu.au Castellon 12071 Spain Castellon 12071 Spain

gregori@mat.uji.es mateu@mat.uji.es

Radu Stoica Dietrich Stoyan
INRA - Biometrie, Institut für Stochastik

Domaine St. Paul, Prüferstraße 9
Site Agroparc TU Bergakademie Freiberg
84914 Avignon, Cedex 9, D-09596 Freiberg

France Germany
Radu.Stoica@avignon.inra.fr stoyan@orion.hrz.tu-freiberg.de

Library of Congress Control Number: 2005931123

ISBN-10: 0-387-28311-0
ISBN-13: 978-0387-28311-1

Printed on acid-free paper.

© 2006 Springer Science+Business Media Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer Science+Business Media Inc., 233 Spring Street,
New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and retrieval, electronic adap-
tation, computer software, or by similar or dissimilar methodology now known or hereafter
developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the
former are not especially identified, is not to be taken as a sign that such names, as understood by
the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Camera ready copy provided by the editors.

Printed in the United States of America. (SBA)

9 8 7 6 5 4 3 2 1

springeronline.com



Preface

The week before Easter 2004 a conference on spatial point process modelling
and its applications was held in Benicàssim (Castellón, Spain). The organizers
targeted two aims. The first goal was to bring together most of the known
people to guarantee the high scientific quality of the meeting to foster the
theoretical and practical use of spatial point processes. The second one con-
sisted of enabling young researchers to present their work and to obtain a
valuable feed-back coming from the reknown specialists in the domain. The
contributions of all the participants were published in the proceedings book
of the conference.

The majority of the contributions in this book represents the reviewed
version of the papers presented during the conference. In order to offer the
reader a larger spectrum of this domain, authors that could not attend the
conference were also invited to contribute.

The book is constituted by 16 chapters divided in three parts and gathering
44 authors coming from 13 different countries.

The first part of the volume – represented by its two first contributions –
is dedicated to basic notions and tools for understanding and manipulating
spatial point processes.

In the first contribution, D. Stoyan presents a general overview of the
theoretical foundations for spatial point process. The author defines a point
process and a marked point process, and describes the construction of the first
and second order moment measures, which leads to the nowadays well known
summary statistics such as the K-function, L-function or the pair-correlation
function. The Poisson point process plays an important role, since in practice
it is often used as null model for hypothesis testing and as reference model
for the construction of realistic models for point patterns.

The second contribution, written by A.J. Baddeley and R. Turner, enters
directly in the “flesh” of the problem presenting the concrete use of spatial
point processes for modelling spatial point patterns, via the spatstat package
– a software library for the R language. Four main points can be tackled by
this package: basic manipulation of point patterns, exploratory data analysis,
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parametric model-fitting and simulation of spatial point processes. The very
important issue of model validation is also addressed. The contribution con-
tains also the necessary mathematical details and/or literature references in
order to avoid the use of this software as a “black box”. Two complete case
studies are presented at the end of the contribution.

There is no serious practical application without a rigourous theoretical
development. Therefore the second part of the book is more oriented towards
theoretical and methodological advances in spatial point processes theory.
Topics of this part of the book contain analytical properties of the Poisson
process (presented in the contribution by S. Zuyev), Bayesian analysis of
Markov point processes (by K. K. Berthelsen and J. Møller), statistics for
locally scaled point processes (by M. Prokěsová, U. Hahn and E. B. Vedel
Jensen), nonparametric testing of distribution functions in germ-grain models
(by Z. Pawlas and L. Heinrich), and principal component analysis applied to
point processes through a simulation study (by J. Illian, E. Benson, J. Crawford
and H. Staines). Remarkable is the fact, that almost all these contributions
show direct applications of the presented development.

The third part of this volume is entirely dedicated to concrete, precise case
studies, that are solved within the point processes theory. The presented ap-
plications are of big impact: material science (by F. Ballani), human epidemi-
ology (by M. A. Mart́ınez-Beneito et al.) , social sciences (by N.A.C. Cressie,
O. Perrin and C. Thomas-Agnan), animal epidemiology (by Webster et al. and
P.J. Diggle, S. J. Eglen and J. B. Troy), biology (by F. Fleischer et al. and
by A. Stein and N. Georgiadis), and seismology (by J. Zhuang, Y. Ogata and
D. Vere-Jones and by A. Veen and F.P. Schoenberg). In their contributions,
the authors show skill and cleverness in using, combining and continuously
evolving the point processes tools in order to answer the proposed questions.

We hope the reader will enjoy reading the book and will find it instructive
and inspiring for going a step further in this very open research field.

The Editors are grateful to all the authors that made possible finishing
the book within an acceptable time scheduling. A word of thanks is given to
Springer-Verlag and, in particular, to John Kimmel for creating the opportu-
nity of making this project real.

Castellón (Spain) Adrian Baddeley
May 2005 Pablo Gregori

Jorge Mateu
Radu Stoica

Dietrich Stoyan
Editors
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23. Antonio López-Qúılez Departament d’Estad́ıstica i Investigació Oper-
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Fundamentals of Point Process Statistics

Dietrich Stoyan

Institut für Stochastik, Technische Universität Bergakademie Freiberg,
Agricolastr. 1, 09596 Freiberg, Germany, stoyan@orion.hrz.tu-freiberg.de

Summary. Point processes are mathematical models for irregular or random point
patterns. A short introduction to the theory of point processes and their statistics,
emphasizing connections between the presented theory and the use done by several
authors and contributions appearing in this book is presented.

Key words: Marked point processes, Second-order characteristics, Spatial point
processes overview, Statistical inference

1 Basic Notions of the Theory of Spatial Point Processes

The following text is a short introduction to the theory of point processes
and their statistics, written mainly in order to make this book self-contained.
For more information the reader is referred to the text [2] and the books
[7, 16, 20, 21].

Point processes are mathematical models for irregular or random point
patterns. The mathematical definition of a point process on R

d is as a random
variable N taking values in the measurable space [N,N ], where N is the family
of all sequences {xn} of points of R

d satisfying the local finiteness condition,
which means that each bounded subset of R

d contains only a finite number of
points. In this book only simple point processes are considered, i.e. xi �= xj if
i �= j.

The order of the points xn is without interest, only the set {xn} matters.
Thus the xn are dummy variables and have no particular interpretation; for
example x1 need not be the point closest to the origin o.

The σ-algebra N is defined as the smallest σ-algebra of subsets of N to
make measurable all mappings ϕ �→ ϕ(B), for B running through the bounded
Borel sets.

The reader should note that the term “process” does not imply a dynamic
evolution over time and therefore the phrase “random point field” would be a
more exact term; it is used in [21]. Spatio-temporal point processes explicitly
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involving temporal as well as spatial dispersion of points constitute a separate
theory, see the paper by Zhuang et al. in this volume.

The distribution of a point process N is determined by the probabilities

P(N ∈ Y ) for Y ∈ N .

The finite-dimensional distributions are of particular importance. These are
probabilities of the form

P(N(B1) = n1, . . . , N(Bk) = nk)

where B1, . . . , Bk are bounded Borel sets and n1, . . . , nk non-negative integers.
Here N(Bi) is the number of points of N in Bi. The distribution of N on [N,N ]
is uniquely determined by the system of all these values for k = 1, 2, . . .. A
still smaller subsystem is that of the void probabilities

vB = P(N(B) = 0) = P(N ∩ B = ∅)

for Borel sets B. Here N denotes the set of all points of the point process, the
so-called support. If the point process is simple, as assumed here, then the
distribution of N is already determined by the system of values of vK as K
ranges through the compact sets.

Let B be a convex compact Borel set in R
d with o being an inner point

of B. The contact distribution function HB with respect to the test set B is
defined by

HB(r) = 1 − P(N(rB)) = 0) for r ≥ 0 . (1)

In the special case of rB = b(o, r) = sphere of radius r centred at o the contact
distribution function is denoted as F (r) or Hs(r) and called the spherical
contact distribution function or empty space distribution function. It can be
interpreted as the distribution function of the random distance from the origin
of R

d to the closest point of N . The function HB(r) is of a similar nature, but
the metric is given by B.

A point process N is said to be stationary if its characteristics are invariant
under translation: the processes N = {xn} and Nx = {xn +x} have the same
distribution for all x in R

d. So

P(N ∈ Y ) = P(Nx ∈ Y ) (2)

for all Y in N and all x in R
d. If we put Yx = {ϕ ∈ N : ϕ−x ∈ Y } for Y ∈ N

then equation (2) can be rewritten as

P(N ∈ Y ) = P(N ∈ Y−x) .

The notion of isotropy is entirely analogous: N is isotropic if its characteristics
are invariant under rotation. Stationarity and isotropy together yield motion-
invariance. The assumption of stationarity simplifies drastically the statistics
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of point patterns and therefore many papers in this book assume at least
stationarity.

The intensity measure Λ of N is a characteristic analogous to the mean of
a real-valued random variable. Its definition is

Λ(B) = E (N(B)) for Borel B . (3)

So Λ(B) is the mean number of points in B. If N is stationary then the
intensity measure simplifies; it is a multiple of Lebesgue measure νd, i.e.

Λ(B) = λνd(B) (4)

for some (possibly infinite) non-negative constant λ, which is called the inten-
sity of N it can be interpreted as the mean number of points of N per unit
volume.

The point-related counterpart to F (r) or Hs(r) in the stationary case is
the nearest neighbour distance distribution function G(r) or D(r), i.e. the d.f.
of the distance from the typical point of N to its nearest neighbour.

Note that the application of F (r) and G(r) in the characterization of point
processes is different. This is particularly important for cluster processes. In
such cases G(r) mainly describes distributional aspects in the clusters, while
F (r) characterizes particularly the empty space between the clusters. This
different behaviour also explains the success of the J-function introduced by
[12] defined as

J(r) =
1 − G(r)

1 − F (r)
for r ≥ 0. (5)

2 Marked Point Processes

A point process is made into a marked point process by attaching a character-
istic (the mark) to each point of the process. Thus a marked point process on
R

d is a random sequence M = {[xn;mn]} from which the points xn together
constitute a point process (not marked) in R

d and the mn are the marks cor-
responding to the xn. The marks mn may have a complicated structure. They
belong to a given space of marks M which is assumed to be a Polish space. The
Borel σ-algebra of M is denoted by M. Specific examples or marked points
are:

• For x the centre of a particle, m the volume of the particle;
• For x the position of a tree, m the stem diameter of the tree;
• For x the centre of an atom, m the type of the atom;
• For x the location (suitably defined) of a convex compact set, m the centred

(shifted to origin) set itself.

Point process statistics often uses constructed marks. Examples are:
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• m = distance to the nearest neighbour of x;
• m = number of points within distance r from x.

The marks can be continuous variables, as in the first two examples, indi-
cators of types as in the third example (in which case the terms “multivariate
point process” or “multitype point process” are often used, in the case of
two marks the term “bivariate point processes”) or actually very complicated
indeed, as in the last example which occurs in the marked point process in-
terpretation of germ-grain models (see [20]).

There is a particular feature of marked point processes: Euclidean motions
of marked point processes are defined as transforms which move the points
but leave the marks unchanged. So Mx, the translate of M by x, is given by

Mx = {[x1 + x;m1], [x2 + x;m2], . . .} .

Rotations act on marked point processes by rotating the points but not alter-
ing the marks.

A marked point process M is said to be stationary if for all x the translated
process Mx has the same distribution as M . It is motion-invariant if for all
Euclidean motions m the process mM has the same distribution as M .

The definition of the intensity measure Λ of a marked point process M is
analogous to that of the intensity measure of M when M is interpreted as a
non-marked point process:

Λ(B × L) = E (M(B × L)) .

When M is stationary

Λ = λ × νd × PM , (6)

where PM denotes the mark distribution.

3 The Second-order Moment Measure

In the classical theory of random variables the moments (particularly mean
and variance) are important tools of statistics. Point process theory has ana-
logues to these. However, numerical means and variances must be replaced by
the more complicated moment measures.

The second-order factorial moment measure of the point process N is the
measure α(2) on R

2d defined by

∫

R2d

f(x1, x2) α(2)(d(x1, x2)) = E

⎛
⎝ ∑ �=

x1,x2∈N

f(x1, x2)

⎞
⎠ (7)

where f is any non-negative measurable function on R
2d. The sum in (7) is

extended over all pairs of different points; this is indicated by the symbol
∑�=

.
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It is

E (N(B1)N(B2)) = α(2)(B1 × B2) + Λ(B1 ∩ B2)

and

var (N(B)) = α(2)(B × B) + Λ(B) − (Λ(B))2 .

If N is stationary then α(2) is translation invariant in an extended sense:

α(2)(B1 × B2) = α(2)((B1 + x) × (B2 + x))

for all x in R
d.

Suppose that α(2) is locally finite and absolutely continuous with respect to
Lebesgue measure ν2d. Then α(2) has a density ̺(2), the second-order product
density :

α(2)(B1 × B2) =

∫

B1

∫

B2

̺(2)(x1, x2)dx1dx2 . (8)

Moreover, for any non-negative bounded measurable function f

E

⎛
⎝ ∑ �=

x1,x2∈N

f(x1, x2)

⎞
⎠ =

∫ ∫
f(x1, x2)̺

(2)(x1, x2)dx1dx2 .

The product density has an intuitive interpretation, which probably accounts
for its historical precedence over the product measure and the K-function
introduced below. (Note that there are also nth order product densities and
moment measures.) Suppose that C1 and C2 are disjoint spheres with centres
x1 and x2 and infinitesimal volumes dV1 and dV2. Then ̺(2)(x1, x2)dV1dV2 is
the probability that there is each a point of N in C1 and C2. If N is stationary
then ̺(2) depends only on the difference of its arguments and if furthermore N
is motion-invariant then it depends only on the distance r between x1 and x2

and it is simply written as ̺(2)(r). The pair correlation function g(r) results
by normalization:

g(r) = ̺(2)(r)/λ2. (9)

Without using the product density ̺(2), the second factorial moment mea-
sure can be expressed by the second reduced moment measure K as

α(2)(B1 × B2) = λ2

∫

B1

K(B2 − x)dx

= λ2

∫

Rd

∫

Rd

1B1(x)1B2(x + h)K(dh)dx . (10)
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The term λK(B) can be interpreted as the mean number of points in B\{o}
under the condition that there is a point of N in o. The exact definition of K
uses the theory of Palm distributions, see [20].

If a second-order product density ̺(2) exists, then there is the following
relationship between ̺(2) and K:

λ2K(B) =

∫

B

̺(2)(x)dx for Borel B . (11)

The description of the second moment measure simplifies still further in
the motion-invariant case (when isotropy is added to stationarity). It then
suffices to consider the second reduced moment function K or Ripley’s K-
function defined by

K(r) = K(b(o, r)) for r ≥ 0 .

The quantity λK(r) is the mean number of points of N within a sphere of
radius r centred at the typical point, which is not itself counted.

The K-function is very popular in point process statistics and the present
book contains many interesting applications. Also K plays some role in point
process statistics, namely in the context of directional analysis, see [20,
Sect. 4.3].

Other functions than K are often used to describe the second-order be-
haviour of a point process. Which function is to be preferred depends mainly
on convenience, but also on statistical considerations. Some functions origi-
nate from the physical literature in which they have been used for a long time.
The most important for the present volume are: The pair-correlation function
g:

g(r) = ̺(2)(r)/λ2

and the L-function:

L(r) = ((K(r)/bd))
1/d

, (12)

where bd is the volume of unit sphere of R
d. The pair correlation function

satisfies

g(r) =
dK(r)

dr

/(
dbdr

d−1
)
. (13)

The forms of these functions correspond to various properties of the under-
lying point process. Maxima of g(r), or values of K(r) larger than bdr

d for r
in specific intervals, indicate frequent occurrences of interpoint distances at
such r; equally minima of g(r) or low values of K(r) indicate inhibition at
these r’s. Model identification may be suggested by comparison of empirical
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pair-correlation functions, or reduced second moment functions, with model-
related theoretical counterparts. The book [21] contains a big collection of pair
correlation functions which may help the reader in statistical applications to
find a good model for his/her data.

In the case of multivariate point processes it is useful to consider the
function Kij defined by

λj · Kij(r) = mean number of j-points in b(o, r)
given that there is an i-point at o .

In this case refined pair correlation functions gij(r) can be defined. [21, Sect.
4.6] suggest further characteristics for such processes, namely mark connection
functions pij(r). Similar characteristics were also defined for point processes
with real-valued marks, called mark correlation function.

4 Introduction to Statistics for Planar Point Processes

General remarks

The theory of statistics for point processes comprises a part of spatial statis-
tics as described by [6] and [18]. Point process statistics as such is particularly
powerful. For the theory the reader is referred to [2, 7, 16, 20, 21]. The following
text describes briefly the estimation of some of the important non-parametric
summary statistics such as intensity λ, empty function F or spherical contact
distribution Hs, nearest neighbour distance distribution function G or D and
the second-order characteristics g, K and L. These characteristics play also an
important role in the parametric case, which uses point process models. For
such statistical analysis they are used for constructing minimum contrast esti-
mators, i.e. for parameter estimation via least squares (and related) methods,
see [21]. In analogy to classical statistics, functional summary characteristics
such as L, D or Hs (the latter two are distribution functions) are of particular
interest for tests. In contrast, characteristics which are density functions, such
as g or the probability density function for D, are more useful and simpler for
exploratory analysis. However, the contribution by Diggle et al. shows that
for clever statisticians also the K-function is an excellent tool in exploratory
analysis.

Often statistical analysis of a point process depends on observation of one
sample only, and that via a bounded sampling window W . Patterns arising
in forestry, geology, geography, and ecology are often truly unique samples
of a stochastic phenomenon. In other cases data collection is so complicated
that only one sample is collected. Typically, in such cases it is assumed that
the observed patterns are samples of stationary ergodic point processes, an as-
sumption not susceptible to statistical analysis if there is only one sample, but
one that is necessary if any statistical analysis is to be possible. Throughout
this section ergodicity is assumed. In practice, either it is plausible from the
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very nature of the data, or else one must proceed on an ad hoc basis as if the
assumption were true, and subject one’s conclusions to the proviso that while
the summary characteristics may be of possible value in the non-stationary
case they will not then have the same interpretation. For example, an empirical
point density (a mean number of points per unit area) can still be calculated
even if the observed point pattern is non-stationary. It has value as a descrip-
tion of the spatial average behaviour of the pattern but does not possess all
the properties of an estimator of a stationary point process intensity.

An ever present problem of spatial statistics is that of edge-effects. The
problem intervenes in point process statistics in the estimation of g, K, Hs,
and D, where for every point information from its neighbourhood is required,
which is often not completely available for points close to the edge of the
window W of observation.

Two simple methods to correct edge-effects are plus and minus sampling.
In plus-sampling all points of the pattern in the window W are considered
and, if necessary, information from outside of the window is taken to calculate
the summary characteristics. So plus-sampling may require more information
than that contained in W . In contrast, minus-sampling uses only a subset of
the points in W , namely those for which the contributions for the summary
characteristics can be completely calculated. In this way biases are avoided
but losses of information accepted.

For some of the characteristics considered more economical edge-corrections
are available. It is important to note that different forms of edge-corrections
are necessary; they are tailored to the summary characteristics of interest. All
the edge-corrections appearing in this contribution can be considered to be
Horvitz-Thompson estimators, see [2].

The aim of edge-corrections is to obtain unbiased estimators or, at least,
ratio-unbiased estimators (quotients where numerator and denominator are
unbiased).

Estimation of the intensity λ

The classical and best estimator of the intensity λ is λ̂, where

λ̂ = N(W )/νd(W ) (14)

is the number of points in W per area of W . Straightforward calculation
shows it to be unbiased. If N is ergodic then λ̂ is strongly consistent, in
the sense that λ̂ → λ almost surely as the window size is increased. Below
other intensity estimators will appear which are used for the construction
of ratio-unbiased estimators of functional summary characteristics. They are
particularly adapted to the characteristic of interest and ensure small mean
squared errors.
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Estimation of second-order characteristics

The reduced second-order moment measure, more precisely λ2K(B), can be
estimated by κs(B), where

κs(B) =
∑ �=

x,y∈N∩W

1B(y − x)

νd(Wx ∩ Wy)
, (15)

valid for bounded Borel B such that νd(W ∩ Wz) is positive for all z in B.
This is an unbiased estimator. The problem is the factor λ2, see below. For
B = b(o, r), an unbiased estimator of λ2K(r) is obtained.

In the isotropic case a better estimator of λ2K(r) is available:

κi(r) =
∑

x,y∈N∩W

1(0 < ‖x − y‖ ≤ r)k(x, y)

νd(W (‖x−y‖))
(16)

for 0 ≤ r < r∗ where

r∗ = sup
{
r : νd

(
W (r)

)
> 0
}

and

W (r) = {x ∈ W : ∂(b(x, r)) ∩ W �= ∅} ,

and, in the planar case, k(x, y) = 2π/αxy where αxy is the sum of all angles
of the arcs in W of a circle centre x and radius ‖x − y‖. If αxy = 0 then
k(x, y) = 0. Generalization to the d-dimensional case is straightforward.

It is known that κi(r) has a smaller mean squared error than κs(r) if the
point process analysed is really isotropic. But κi(r) is sensitive to deviations
from the isotropy assumption. Thus it may be preferable to use always κs(r)
instead of κi(r).

Estimators of K(B) and K(r) are obtained by division by estimators of λ2.
(Note that here is not written “squared estimators of λ”.) Some statisticians
use

λ̂2 = n(n − 1)/νd(W ),

where n is the number of points in the window W . This estimator is unbi-
ased in the case of a Poisson process. [22] recommend the use of (λ̂V (r))2 as
estimator of λ2 with

λ̂V (r) =
∑

x∈N

1(x)νd(W ∩ b(x, r))

/⎛
⎝dbd

r∫

0

ud−1γW (u)du

⎞
⎠ ,

where γW (r) is the isotropic version of the set covariance of the window W ;
for parallelepipedal and spherical windows formulas are available. Note that
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Fig. 1. Square roots of mean squared errors of L-estimators for a Poisson process
of intensity λ = 100 in the unit square.
−−−−− = Ripley’s estimator with λ̂,
− − − = Ohser-Stoyan’s estimator with λ̂,
− · − = Ripley’s estimator with known λ,
· · · = Ohser-Stoyan’s estimator with λ̂V (r)

the intensity estimator depends on the variable r. Its use reduces drastically
the mean squared error of the K(r)-estimator.

For statistical purposes it is useful to stabilize variances. This can be done
by using the L-function, estimating L(r) by

L̂(r) = (K̂(r)/bd)
1/d (17)

where K̂(r) is one of the estimators of K(r). [22] verified for d = 1, 2, 3 the

stabilization effect. The mean squared error of L̂(r) with λ̂V (r) is very small
and nearly independent of r, see Fig. 1. This figure also shows that Ripley’s
estimator κi(r) is in this isotropic case better than κs(r). Furthermore, it
demonstrates that adaption of intensity estimators is really important: If λ is
known (as it is possible in simulations), this does not help and leads to bad
estimates of second-order characteristics. On the other hand, κs(r) combined

with λ̂V (r) is better than κi(r) with λ̂. Figure 1 shows the mean squared
error for a Poisson point process with λ = 100. The values for other λ can
be obtained by multiplication with 10/

√
λ. For other models the behaviour is

similar; for regular processes the mean squared error is smaller and for cluster
processes larger.
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Since the K-function is so successful in point process statistics, also an
analogue was defined for the inhomogeneous case, see [3] and the contribution
by Webster et al. in this book.

The product density ̺(2) can be estimated by an edge-corrected density
estimator such as

ˆ̺(2)(r) =
∑

x,y∈N∩W

k(‖x − y‖ − r)

dbdrd−1νd(Wx ∩ Wy)
(18)

where k is a kernel function, see [22]. The best kernel function is the box
kernel

k(x) = 1[−h,h](x)/2h,

where h is the bandwidth, and not the Epanechnikov kernel. If motion-
invariance is sure, the edge-correction term νd(Wx ∩ Wy) can be replaced
by νd(W

||x−y||)/k(x, y) (as in Ripley’s estimator of the K-function).
Estimators of the pair correlation function are obtained by division of the

product density estimators by estimators of λ2. The best known estimator is
(λ̂S(r))2 with

λ̂S(r) =
∑

x∈N

1W (x)νd−1(W ∩ ∂b(x, r))
/(

dbdr
d−1γW (r)

)
(19)

found by the astronomers [8] and [11].
A very good approximation of the variance of the pair correlation function

estimator obtained by combination of (18) and (19) is

σ2(r) =

h∫
−h

(k(s))2ds · g(r)
1
2dbdrd−1γW (r)λ2

for r ≥ 0. (20)

Some statisticians estimate the pair correlation function using formula
(13), starting from an estimate of the K-function and using numerical differ-
entiation, see e. g. the contributions of Illian et al. and Stein and Georgiadis.
This is probably a reaction on the fact that until now (March 2005) kernel
estimators of g(r) are only available if the window W is circular or rectan-
gular, but that there is in R an estimator of K(r) for arbitrary polygonal
windows. But numerical differentiation is probably a method of minor quality
(note the analogy to probability density estimation, where numerical differ-
entiation of the empirical distribution function is not very popular) and the
situation could be easily changed: In the source code of a K-estimation pro-
gram only some lines must be changed, instead of 1(0 < ‖x−y‖ ≤ r) the term
k(‖x−y‖−r)/(dbdr

d−1) must be inserted; the main work for the K-estimator,
the determination of the Horvitz-Thompson weights, can be used also in the
case of pair correlation estimation. The estimator can still be improved by
using λ̂S(r) instead of λ̂.
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The variability of all these estimators is difficult to analyse, so usually
simulations are made, see e. g. [22]. In the Poisson process case some analytical
calculations have been carried out, see [8, 11, 19].

Estimation of the spherical contact distribution Hs

It is well known that

Hs(r) = P(o ∈ N ⊕ b(o, r)) for r ≥ 0 .

Thus Hs(r) is equal to the areal fraction of the random closed set

Ξ = N ⊕ b(o, r) =
⋃

x∈N

b(x, r) .

An unbiased estimator is given by

Ĥs(r) =

νd

(
(W ⊖ b(o, r)) ∩ ⋃

x∈N

b(x, r)

)

νd(W ⊖ b(o, r))
(21)

for 0 ≤ r ≤ 1
2diam(W ). In this estimator the principle of minus-sampling is

used.
Many statisticians determine the measures in numerator and denominator

by means of a grid. [5] produced an algorithm which determines the exact
areas (d = 2) and volumes (d = 3).

By the way, K. Mecke had the idea to introduce summary characteris-
tics which use instead of the Lebesgue measure, which plays an important
role in the definition of Hs(r), other Minkowski measures, in the planar case
length and Euler characteristic. The paper [15] demonstrates the use of the
corresponding characteristics in point process statistics for patterns of tree
locations and shows that they give valuable information which Hs(r) cannot
offer.

Estimation of the nearest neighbour distance distribution function

Recall that the nearest-neighbour distance distribution function is the distri-
bution function of the distance from the typical point to its nearest neighbour.
It can be also defined based on a marking of the points x of the process with
the distance d(x) from x to its nearest neighbour. The resulting marked point
process M inherits the stationarity property from N = {xn}. The correspond-
ing mark distribution function is precisely D or G. This formulation via M
clarifies the logic behind the expression for estimating D.

The first estimator to be described is the minus-sampling or border esti-
mator:
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D̂b(r) =
∑

[x;d]∈M

1W⊖b(o,r)(x)1(0 < d ≤ r)/N(W ⊖ b(o, r)) for r ≥ 0 . (22)

This is probably the most natural estimator. Only the points in the eroded
window W ⊖ b(o, r) are used for the estimation. If N is ergodic then D̂b

is asymptotically unbiased. But additionally to the fact that this estimator
ignores unnecessarily many of the points in the window (those which have
the nearest neighbour in W ), it has the disadvantage to be sometimes not
monotonic increasing in r and to exceed the value 1.

Another unbiased estimator has been suggested in [9], which does not
suffer from these disadvantages and uses an edge-correction which could be
called “nearest neighbour correction”:

D̂H(r) = D̂H(r)/λ̂H for r ≥ 0 (23)

where

D̂H(r) =
∑

[x;d]∈M

1W⊖b(o,d)(x)1(0 < d ≤ r)
/
νd(W ⊖ b(o, d))

and

λ̂H =
∑

[x;d]∈M

1W⊖b(o,d)(x)
/
νd(W ⊖ b(o, d)).

The principle underlying D̂H(r) is simple: To use precisely those points
x for which it is known that the nearest neighbour is both within W and
closer than r to x. The estimator D̂H(r) is unbiased for λD(r), while λ̂H is
an unbiased intensity estimator, which is adapted to D̂H(r). (The proof of
unbiasedness uses one of the deeper results of the theory of point processes,
the Campbell-Mecke theorem.)

[23] compared by simulation the estimation variances of the above estima-
tors of D(r) or G(r) (and further estimators such as the Kaplan-Meier esti-
mator) for Poisson, cluster and hard-core processes and found that Hanisch’s
estimator is the best one.

It is not difficult to construct also estimators of the distribution function
of the distance to the second, third, . . . neighbour or of probability density
functions of neighbour distance functions with Hanisch’s edge correction.

Application of the various summary characteristics

Second-order summary characteristics such as K(r), L(r) and g(r) and dis-
tance characteristics such as G(r) and F (r) belong to the toolbox of spatial
statisticians. In particular physicists follow the “dogma of second-order” and
believe that second-order characteristics (in particular the pair correlation
function) yield the best information (and all information needed). Also promi-
nent statisticians tend to believe this. For example, [14] and [17] compared
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the use of Hs and K in point process statistics and came to the conclusion
that second-order characteristics such as K are more suitable than functions
such as D or Hs for model testing (via simulation tests) or for parameter es-
timation (via minimum contrast method). However, the paper by [1] showed
that there are point processes which are different in distribution but have
identical K-function. So it is at least useful to use other characteristics as
supplementary summary characteristics. Particularly useful are K. Mecke’s
morphological functions, the use of which is demonstrated in [15]. The family
of these functions includes the spherical contact distribution function. Their
advantage as alternative summary characteristics results also from the fact
that these characteristics are of a stationary and not of a Palm nature.

Simulation methods in point process statistics

Modern point process statistics uses simulation methods in a large extent.
They are used simply for generating point patterns in the context of model
choice, but also for parameter estimation and model test. The reader is re-
ferred to [16].

Here only some short remarks on simulation tests are given since such
tests appear in some contributions of this book. Such tests, introduced to
point process statistics by [4] and [17], provide a flexible means of statistical
investigation.

Suppose the hypothesis to be considered is that a given point pattern,
observed through a window W , is a sample of a point process N . One chooses
a test characteristic χ, such as

λ̂ ,

sup
r1≤r≤r2

∣∣∣L̂(r) − r
∣∣∣ ,

sup
r1≤r≤r2

∣∣∣D(r) − Ĥs(r)
∣∣∣

and calculates its value χo for the given sample. This value is compared with
the ordered sample

χ(1) ≤ χ(2) ≤ . . . ≤ χ(m)

obtained by simulating N m times, observing it through the window W , and
then calculating the statistic χ for each simulation by the same estimator as
for the sample.

If χ0 takes a very small or very large position in the series of ordered χ(k),
then the hypothesis may be cast in doubt. It is then possible to perform a
test of the hypothesis at an exact significance level: for example a two-sided
test of significance level α = 2k/(m + 1) is obtained by the rejection of the
hypothesis when
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χ0 ≤ χ(k) or χ0 ≥ χ(m−k+1) .

When using functional summary characteristics such as L(r) or G(r) it is
popular to generate by simulation confidence bands and to observe whether
the empirical summary characteristic is completely within the band. In the
negative case the model hypothesis is rejected. For this test the error prob-
ability is difficult to determine exactly. The contributions by Diggle et al.
and Mart́ınez-Beneito et al. in this book give instructive examples: Diggle et
al. speak carefully about “envelopes from 99 simulations”, while Mart́ınez-
Beneito et al. use the term “95% confidence band”. (For every fixed r they
are right, but for the function graph as a whole the band is too broad and a
test based on such a band has an error probability greater than 0.05.)

It is recommended to use in a simulation test of goodness-of-fit another
summary characteristic than that used for estimating model parameters. For
example, if the parameter estimation is based on second-order characteristics,
then distance distributions should be used in the model test.

5 The Homogeneous Poisson Point Process

The Poisson point process is the simplest and most important model for ran-
dom point pattern. It plays a central role as null model and as a starting point
for the construction of realistic models for point patterns; it is the model for a
completely random point pattern (CSR = complete spatial randomness). Sim-
ulation procedures often include the construction of a Poisson point process,
which is then modified into the form required.

A stationary Poisson point process N is characterised by two fundamental
properties:

(i) Poisson distribution of point counts: the number of points of N in a
bounded Borel set B has a Poisson distribution of mean λνd(B) for some
constant λ;

(ii) Independent scattering : the numbers of points of N in k disjoint Borel
sets form k independent random variables, for arbitrary k.

Property (ii) is also known as the “completely random” or “purely ran-
dom” property.

The positive number λ occurring in (i) is the intensity of the stationary
Poisson point process. It gives the mean number of points to be found in a
unit volume, and it is given by

λνd(B) = E(N(B)) for all bounded Borel sets B .
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Basic properties

Let N be a stationary Poisson point process of intensity λ. From properties
(i) and (ii) the whole distribution of the stationary Poisson point process can
be determined once the intensity λ is known.

(a) Finite-dimensional distributions. It can be shown directly from (i) and (ii)
that if B1, . . . , Bk are disjoint bounded Borel sets then the random vari-
ables N(B1), . . . , N(Bk) are independent Poisson distributed with means
λνd(B1), . . . , λνd(Bk). Thus

P(N(B1) = n1, . . . , N(Bk) = nk)

=
λn1+...+nk(νd(B1))

n1 · . . . · (νd(Bk))nk

n1! · . . . · nk!
exp

(
−

k∑

i=1

λνd(Bi)

)
(24)

(b) Stationarity and isotropy. The stationary Poisson point process N is sta-
tionary and isotropic.

(c) Void-probabilities. The void-probabilities of the Poisson process are

vB = exp(−λνd(B)) . (25)

The contact distribution functions are given by

HB(r) = 1 − vrB = 1 − P(N(rB) = 0) for r ≥ 0 .

In the particular, the spherical contact distribution function is

Hs(r) = 1 − exp(−λbdr
d) (26)

for r ≥ 0.
(d) Conditioning. If N is a stationary Poisson point process then one can

consider the restriction of N to a compact set W under the condition
that N(W ) = n. The point process formed by these n points in W has
the same distribution as n independent and uniformly in W distributed
points.

Summary characteristics

The nearest neighbour distance distribution function is given by

D(r) = 1 − exp
(
−λbdr

d
)

(27)

for r ≥ 0.
The right-hand sides of (26) and (27) are equal, i.e. the spherical con-

tact distribution function and nearest neighbour distance distribution for the
stationary Poisson point process are equal.
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The reduced second-order moment measure function K is equal to the
Lebesgue measure and it is

K(r) = bdr
d for r ≥ 0 .

Consequently, the L-function has the simple form

L(r) = r

and the pair correlation function is still simpler:

g(r) = 1.

The general Poisson point process

The stationary Poisson point process has an intensity measure which is pro-
portional to Lebesgue measure. The mean number of points per unit area
does not vary over space. Many point patterns arising in applications exhibit
fluctuations that make such a lack of spatial variation implausible.

The general Poisson point process N provides a more general stochastic
model, appropriate for such point patterns. It is characterised by a diffuse
measure Λ on R

d which is called the intensity measure of N and which is
the intensity measure of that point process. A general Poisson point process
N with intensity measure Λ is a point process possessing the two following
properties:

(i’) Poisson distribution of point counts: the number of points in a bounded
Borel set B has a Poisson distribution with mean Λ(B)

P(N(B) = m) = (Λ(B))m · exp(−Λ(B))/m! for m = 0, 1, 2, . . . .(28)

(ii’) Independent scattering : the numbers of points in k disjoint Borel sets
form k independent random variables.

It is clear from property (i’) that such a process N is not stationary in
general.

If the measure Λ has a density with respect to Lebesgue measure then it
can be written as

Λ(B) =

∫

B

λ(x)dx for Borel sets B .

The density λ(x) is called the intensity function of the general Poisson point
process. It has an appealing and intuitive infinitesimal interpretation: λ(x)dV
is the infinitesimal probability that there is a point of N in a region of in-
finitesimal volume dV situated at x.
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Simulation of a stationary Poisson point process

The starting point for simulating the stationary Poisson point process is the
uniform distribution property (d) above. Thus the simulation of a stationary
Poisson point process in a compact region W falls naturally into two stages.
First the number n of points in W is determined by simulating a Poisson
random variable, and then the positions of the points n in W are determined
by simulating independent uniform points in W .

A general Poisson point process can be simulated by means of a thinning
procedure, see [20].

Statistics for the stationary Poisson point process

The discussion of the central role of the stationary Poisson point process es-
tablishes the importance of statistical methods for deciding whether or not a
given point pattern is Poisson, while the estimation of the only model param-
eter, intensity λ, follows (14). This section is a brief survey of such methods.
It confines itself to the case of planar point patterns; the methods presented
carry over to point patterns on the line, in space, and on a sphere.

Probably all functional summary characteristics have been used for such
tests. The until now most successful and most popular tests use the L-function.
In that case the test statistics is

τ = max
r≤r0

|L̂(r) − r|

with L̂(r) being Ripley’s estimator using (16) and (14), with λ̂2. Here r0 is
an upper bound on the interpoint distance r, perhaps 25 % of window side
length.

If τ is large, then the Poisson hypothesis has to be rejected. (The alterna-
tive hypothesis is “no Poisson point process” without further specification.)
The critical value of τ for the significance level α = 0.05 is

τ0.95 = 1.45
√
a/n , (29)

where a is the window area and n the number of points observed [19, p. 46].
This formula was obtained by simulations and can be used if nur3

0/a
2 is small

for a “wide range of” r0. (Here u is the boundary length of W .) For α = 0.01
the factor 1.63 can be used. [10] found that the choice of r0 is more important
than it seems when reading [19] and [21]. They also showed that the use of

λ̂V (r) improves the power of the test.
In the case of not rectangular windows simulation tests can be used.

6 Other Point Processes Models

There are many other, more complicated but for applications more realistic
point process models. Examples are cluster processes (see the contribution by
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Fleischer et al. in this book) and Markov point processes. The latter play a
role in several contributions in this book; another name for them is Gibbsian
point process, and there are relationships to Statistical Physics where the idea
of such processes was originally developed.

A particular case are pairwise interaction processes, where the correlations
or interactions of points are modelled in an additive form by contributions
coming from point pairs. The contribution by Diggle et al. in this book gives
an introduction to these processes which may be sufficient for this book. For
more details the reader is referred to the nice book [13].
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1 Introduction

This paper describes practical techniques for fitting stochastic models to spa-
tial point pattern data using the statistical language R. The techniques are
demonstrated with a detailed analysis of two real datasets.

We have implemented the techniques as a package spatstat in the R lan-
guage. Both spatstat and R are freely available from the R website [19].

Sections 2 and 3 introduce the spatstat package. Theory of point process
models is covered in Sect. 4, while Sect. 5 describes how to fit models in
spatstat, and Sect. 6 explains how to interpret the fitted models obtained
from the package. Models involving external covariates are discussed in Sect. 7,
and models for multitype point patterns in Sect. 8. Estimation of irregular
parameters is discussed in Sect. 9. Section 10 discusses formal inference for
models. Examples are analysed in Sects. 11–12.

2 The spatstat Package

We assume the reader is conversant with basic ideas of spatial point pattern
analysis [28, 68] and with the R language [38, 40, 56].

Spatstat is a contributed R package for the analysis of spatial point pattern
data [4]. It contains facilities for data manipulation, tools for exploratory data
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analysis, convenient graphical facilities, tools to simulate a wide range of point
pattern models, versatile model-fitting capabilities, and model diagnostics. A
detailed introduction to spatstat has been provided in [4]. Here we give a brief
overview of the package.

2.1 Scope

Spatstat supports the following activities. Firstly basic manipulation of
point patterns is supported; a point pattern dataset can easily be created,
plotted, inspected, transformed and modified. Exploratory data analysis
is possible using summary functions such as the K-function, pair correla-
tion function, empty space function, kernel-smoothed intensity maps, etc. (see
e.g. [28, 68]). A key feature of spatstat is its generic algorithm for parametric
model-fitting of spatial point process models to point pattern data. Models
may exhibit spatial inhomogeneity, interpoint interaction (of arbitrary order),
dependence on covariates, and interdependence between marks. Finally, sim-
ulation of point process models, including models fitted to data, is supported.

Figure 1 shows an example of a point pattern dataset which can be handled
by the package; it consists of points of two types (plotted as two different
symbols) and is observed within an irregular sampling region which has a
hole in it. The label or “mark” attached to each point may be a categorical
variable, as in Fig. 1, or a continuous variable.

Fig. 1. Artificial example demonstrating the complexity of datasets which spatstat

can handle

Point patterns analysed in spatstat may also be spatially inhomogeneous,
and may exhibit dependence on covariates. The package can deal with a variety
of covariate data structures. It will fit point process models which depend on
the covariates in a general way, and can also simulate such models.

2.2 Data Types in spatstat

A point pattern dataset is stored as a single “object” X which may be plotted
simply by typing plot(X). Here spatstat uses the object-oriented features of
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R (“classes and methods”) to make it easy to manipulate, analyse, and plot
datasets.

The basic data types in spatstat are Point Patterns, Windows, and
Pixel Images. See Fig. 2. A point pattern is a dataset recording the spa-
tial locations of all “events” or “individuals” observed in a certain region. A
window is a region in two-dimensional space. It usually represents the “study
area”. A pixel image is an array of “brightness” values for each grid point in
a rectangular grid inside a certain region. It may contain covariate data (such
as a satellite image) or it may be the result of calculations (such as kernel
smoothing).

Fig. 2. A point pattern, a window, and a pixel image

A point pattern is represented in spatstat by an object of the class "ppp". A
dataset in this format contains the coordinates of the points, optional “mark”
values attached to the points, and a description of the spatial region or “win-
dow” in which the pattern was observed. Objects of class "ppp" can be created
using the function ppp, converted from other data using the function as.ppp,
or obtained in a variety of other ways.

In our current implementation, the mark attached to each point must be
a single value (which may be numeric, character, complex, logical, or factor).
Figure 3(a) shows an example where the mark is a positive real number. A
multitype point pattern is represented as a marked point pattern for which the
mark is a categorical variable (a “factor” in R). Figure 3(b) shows an example
where the mark is a categorical variable with two levels (i.e. a bivariate point
pattern).

If X is a point pattern object then typing X or print(X) will print a short
description of the point pattern; summary(X) will print a longer summary; and
plot(X) will generate a plot of the point pattern on a correct scale. Numerous
facilities are available for manipulating point pattern datasets.

3 Data Analysis in spatstat

3.1 Data Input

Point pattern datasets (objects of class "ppp") can be entered into spatstat

in various ways. We may create them from raw data using the function ppp,
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(a) (b)

Fig. 3. Examples of marked point patterns. (a) continuous marks. Mark values (tree
diameters) represented as radii of circles. The Longleaf Pines dataset, available as
longleaf. (b) categorical marks. Mark values (cell types) represented as different
graphical symbols. Hughes’ amacrine cell dataset, available as amacrine

convert data from other formats (including other packages) using as.ppp, read
data from a file using scanpp, manipulate existing point pattern objects using
a variety of tools, or generate a random pattern using one of the simulation
routines.

Suppose, for example, that we have data for a point pattern observed in
the rectangle [0, 10] × [0, 4]. Assume the Cartesian coordinates of the points
are stored in R as vectors x and y. Then the command

X <- ppp(x, y, c(0,10), c(0,4))

creates a point pattern object containing this information.

3.2 Initial Inspection of Data

Chatfield [15] emphasises the importance of careful initial inspection of data.
The same principles apply to point pattern data. A point pattern dataset
should be inspected for the following: omission of data points; transcription
errors; data file format violations; incorrect scaling of the coordinates; flipping
of the axes; errors in delimiting the boundary; errors in inclusion/exclusion
of points near the boundary; incorrect interpretation of the data type of the
marks (e.g. categorical or continuous); inconsistency with plots of the same
data in the original source publication; coarse rounding of the Cartesian co-
ordinates; use of values such as 99 or −1 to indicate a missing value; incorrect
software translation of the levels of a factor; and duplicated points.

Inspection can be accomplished in spatstat mainly with the commands
plot, print, summary, identify, hist (to examine values of the Cartesian
coordinates) and nndist (to detect duplicated points).
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3.3 Exploratory Data Analysis

Before stochastic modelling of a point pattern dataset is attempted, and cer-
tainly before any formal hypothesis testing is contemplated, the data should
be subjected to exploratory data analysis (EDA). General principles of EDA
are outlined in [15, 18, 24, 71, 72]. Numerous tools for exploratory analysis of
spatial point pattern data are surveyed in [22, 26, 28, 59, 61, 67, 68, 72].

In particular, the assumption of stationarity (“spatial homogeneity”) is
an essential requirement for many of the classical methods for spatial point
pattern analysis [22, 26, 28, 58, 59, 61, 67, 68]. It seems clear that many real
point patterns cannot be described as stationary [54, 69], and the use of the
classical methods on such data would be invalid. Hence it is extremely impor-
tant that the homogeneity of a point pattern dataset be critically evaluated.
Techniques for analysing nonstationary (“spatially inhomogeneous”) patterns
are less developed [3, 52, 53, 54, 55, 69].

An exploratory analysis should typically begin with an assessment of spa-
tial inhomogeneity using tools such as the kernel smoothed estimate of inten-
sity [25] (available in spatstat as ksmooth.ppp), or LISA (Local Indicators of
Spatial Association) methods [1, 21, 20]. The dataset could also be partitioned
manually using the subset operator [] or the commands cut and split.

If a simple form of spatial inhomogeneity (such as a gradient from left
to right) is suspected, this trend can be fitted using parametric methods as
described in Sect. 6.

If the data are judged to be spatially homogeneous, the next step would
be exploratory analysis using standard summary statistics such as Ripley’s
K-function. A wide choice of summary statistics is now available [22, 28, 61,
68, 67]. In spatstat the available choices include Kest, which estimates the K-
function [58, 59],[68, Chap. 15]; Fest, estimating the empty space function
F [59, 61] also known as the contact distribution function [68, Chap. 15]
and point-event distance function [26, Sect. 2.4]; Gest, estimating the nearest
neighbour distance distribution function G [26, Sect. 2.3],[68, Chap. 15]; pcf,
the pair correlation function [68, Chap. 15]; Jest, the function J(r) = (1 −
G(r))/(1 − F (r)) of [48]; Kmeasure, the reduced second moment measure [9,
10], [68, pp. 245, 247], [67]; and analogues of these functions for multitype and
marked point patterns [49].

However if the data are judged to be spatially inhomogeneous, then at
present there is limited scope for further exploratory analysis. One exception
is the inhomogeneous K-function [3] implemented in spatstat as Kinhom.

4 Point Process Models

The spatstat package can fit parametric models of spatial point processes to
point pattern data. This section describes the relevant class of models, and
the next section explains how to fit them using spatstat.
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A typical realisation of a point pattern X in the bounded region W ⊂ R
2

will be denoted
x = {x1, . . . , xn}

where xi ∈ W are the individual points of the process, and the total number
of points n ≥ 0 is not fixed.

4.1 Formulation of Models

The point process models fitted in spatstat are Gibbs point processes, cf.
[5, 47, 51]. The scope of possible models is very wide: they may include spatial
trend, dependence on covariates, interpoint interactions of any order (i.e. we
are not restricted to pairwise interactions), and dependence on marks.

Each model will be specified in terms of its conditional intensity rather
than its likelihood. This turns out to be an intuitively appealing way to for-
mulate point process models, as well as being necessary for technical reasons.

The (Papangelou) conditional intensity is a function λ(u,x) of spatial lo-
cation u ∈ W and of the entire point pattern x. Roughly speaking, if we
consider an infinitesimal region around the point u of area du, then the condi-
tional probability that the point process contains a point in this infinitesimal
region, given the position of all points outside this region, is λ(u,x) du. See
[5, 17] and the excellent surveys by Ripley [61, 62].

For example, the homogeneous Poisson process (complete spatial random-
ness, CSR) has conditional intensity

λ(u,x) = β (1)

where β is the intensity (expected number of points per unit area). The in-
homogeneous Poisson process with local intensity function β(u), u ∈ R

2, has
conditional intensity

λ(u,x) = β(u). (2)

The Strauss process, a simple model of dependence between points, has con-
ditional intensity

λ(u,x) = βγt(u,x) (3)

where t(u,x) is the number of points of the pattern x that lie within a distance
r of the location u. Here γ is the interaction parameter, satisfying 0 ≤ γ ≤ 1,
and r > 0 is the interaction radius.

The conditional intensity is a useful modelling tool because its functional
form has a straightforward interpretation. The simplest form is a constant,
λ(u,x) ≡ β, which corresponds to “complete spatial randomness” (a uni-
form Poisson process). In most applications, this would be the null model.
A conditional intensity λ(u,x) which depends only on the location u, say
λ(u,x) = β(u), corresponds to an inhomogeneous Poisson process with inten-
sity function β(u). In this case the functional form of β(u) indicates the type
of inhomogeneity (or “spatial trend”).
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A conditional intensity λ(u,x) which depends on the point pattern x,
as well as on the location u, corresponds to a point process which exhibits
stochastic dependence between points. For example, in the Strauss process
(3) with γ < 1, dependence between points is reflected in the fact that the
conditional probability of finding a point of the process at the location u is
reduced if other points of the process are present within a distance r. In the
special case γ = 0, the conditional probability of finding a point at u is zero if
there are any other points of the process within a distance r of this location.

4.2 Scope of Models

Our technique [5] fits any model for which the conditional intensity is of the
loglinear form

λ(u,x) = exp(ψTB(u) + ϕTC(u,x)) (4)

where θ = (ψ,ϕ) are the parameters to be estimated. Both ψ and ϕ may be
vectors of any dimension, corresponding to the dimensions of the vector-valued
statistics B(u) and C(u,x) respectively.

The term B(u) depends only on the spatial location u, so it repre-
sents “spatial trend” or spatial covariate effects. The term C(u,x) represents
“stochastic interactions” or dependence between the points of the random
point process. For example C(u,x) is absent if the model is a Poisson process.

Gibbs models may require reparametrisation in order to conform to (4).
For example, the Strauss process conditional intensity (3) satisfies (4) if we
set B(u) ≡ 1 and C(u,x) = t(u,x), and take the parameters to be ψ = log β
and ϕ = log γ.

In practice there is an additional constraint that the terms B(u) and
C(u,x) must be implemented in software. Some point process models which
belong to the class of Gibbs processes have a conditional intensity which is
difficult to evaluate. Notable examples include Cox processes [8]. For these
models, other approaches should be used [51].

4.3 Model-fitting Algorithm

Our software currently fits models by the method of maximum pseudolikeli-
hood (in Besag’s sense [13]), using a computational device developed for Pois-
son models by Berman & Turner [12] which we adapted to pseudolikelihoods
of general Gibbs point processes in [5]. Although maximum pseudolikelihood
may be statistically inefficient [42, 43], it is adequate in many practical appli-
cations [63] and it has the virtue that we can implement it in software with
great generality. Future versions of spatstat will implement the Huang-Ogata
improvement to maximum pseudolikelihood [39] which is believed to be highly
efficient.

Let the point pattern dataset x consist of n points x1, . . . , xn in a spatial
region W ⊆ R

d. Consider a point process model governed by a parameter
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θ and having conditional intensity λθ(u,x). The pseudolikelihood [13] of the
model is

PL(θ;x) =

n∏

i=1

λθ(xi;x) exp

(
−
∫

W

λθ(u;x) du

)
(5)

The maximum pseudolikelihood estimate of θ is the value which maximises
PL(θ;x). Now discretise the integral in (5) to obtain

∫

W

λθ(u;x) du ≈
m∑

j=1

λθ(uj ;x)wj . (6)

where uj ∈ W are “quadrature points” and wj ≥ 0 the associated “quadrature
weights” for j = 1, . . . ,m. The quadrature scheme should be chosen so that
(6) is a good approximation.

The Berman-Turner [12] device involves choosing a set of quadrature
points {uj} which includes all the data points xi as well as some other
(“dummy”) points. Let zj be the indicator which equals 1 if uj is a data
point, and 0 if it is a dummy point. Then the logarithm of the pseudolikeli-
hood can be approximated by

log PL(θ;x) ≈
m∑

j=1

[zj log λθ(uj ;x) − wjλθ(uj ;x)]

=

m∑

j=1

wj(yj log λj − λj) (7)

where yj = zj/wj and λj = λθ(uj ,x). The key to the Berman-Turner device
is to recognise that the right hand side of (7) has the same functional form as
the log likelihood of m independent Poisson random variables Yj with means
λj and responses yj . This enables us to maximise the pseudolikelihood using
standard statistical software for fitting generalised linear models.

Given a point pattern dataset and a model of the form (4), our algorithm
constructs a suitable quadrature scheme {(uj , wj)}, evaluates the vector val-
ued sufficient statistic sj = (B(uj), C(uj ,x)), forms the indicator variable zj

and the pseudo-response yj = zj/wj , then calls standard R software to fit the
Poisson loglinear regression model Yj ∼ Poisson(λj) where log λj = θsj . The

fitted coefficient vector θ̂ given by this software is returned as the maximum
pseudolikelihood estimate of θ. For further explanation see [5]. Advantages of
using existing software to compute the fitted coefficients include its numerical
stability, reliability, and most of all, its flexibility.

5 Model-fitting in spatstat

5.1 Overview

The model-fitting function is called ppm and is strongly analogous to lm or
glm. In simple usage, it is called in the form
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ppm(X, trend, interaction, ...)

where X is the point pattern dataset, trend describes the spatial trend (the
function B(u) in equation (4)) and interaction describes the stochastic de-
pendence between points in the pattern (the function C(u,x) in equation (4)).
Other arguments to ppm may provide covariates, select edge corrections, and
control the fitting algorithm.

For example

ppm(X, ˜1, Strauss(r=0.1), ....)

fits the stationary Strauss process (3) with interaction radius r = 0.1. The
spatial trend formula ˜1 is a constant, meaning the process is stationary. The
argument Strauss(r=0.1) is an object representing the interpoint interaction
structure of the Strauss process with interaction radius r = 0.1.

Similarly

ppm(X, ˜x + y, Poisson())

fits the non-stationary Poisson process with a loglinear intensity of the form

β(x, y) = exp(θ0 + θ1x + θ2y)

where θ0, θ1, θ2 are (scalar) parameters to be fitted, and x, y are the Cartesian
coordinates.

5.2 Spatial Trend Terms

The trend argument of ppm describes any spatial trend and covariate effects. It
must be a formula expression in the R language, and serves a role analogous to
the formula for the linear predictor in a generalised linear model. See e.g. [72,
Sect 6.2].

The right hand side of trend specifies the function B(u) in equation (4) fol-
lowing the standard R syntax for a linear predictor. The terms in the formula
may include the reserved names x, y for the Cartesian coordinates. Spatial
covariates may also appear in the trend formula as we explain in Sect. 7.

Effectively, the function B(u) in (4) is treated as the “systematic” com-
ponent of the model. Note that the link function is always the logarithm, so
the model formula in a ppm call is always a description of the logarithm of
the conditional intensity.

The default trend formula is ˜1, which indicates B(u) ≡ 1, corresponding
to a process without spatial trend or covariate effects. The formula ˜x indicates
the vector statistic B((x, y)) = (1, x) corresponding to a spatial trend of the
form exp(ψB((x, y))) = exp(α + βx), where α, β are coefficient parameters
to be estimated, while ˜x + y indicates B((x, y)) = (1, x, y) corresponding to
exp(ψB((x, y))) = exp(α + βx + γy).
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A wide variety of model terms can easily be constructed from the Cartesian
coordinates. For example

ppm(X, ˜ ifelse(x > 2, 0, 1), Poisson())

fits an inhomogeneous Poisson process with different, constant intensities on
each side of the line x = 2.

spatstat provides a function polynom which generates polynomials in 1 or
2 variables. For example

˜ polynom(x, y, 2)

represents a polynomial of order 2 in the Cartesian coordinates x and y. This
would give a “log-quadratic” spatial trend.3

Similarly

˜ harmonic(x, y, 2)

represents the most general harmonic polynomial of order 2 in x and y.
Other possibilities include B-splines and smoothing splines, fitted with bs

and s respectively. These terms introduce smoothing penalties, and thus pro-
vide an implementation of “penalised maximum pseudolikelihood” estimation
(cf. [30]).

The special term offset can also be used in the trend formula. It has the
same role in ppm as it does in other model-fitting functions, namely to add
to the linear predictor a term which is not associated with a parameter. For
example

˜ offset(x)

will fit the model with log trend β + x where β is the only parameter to be
estimated.

Observed spatial covariates may also be included in the trend formula; see
Sect. 7 below.

5.3 Interaction Terms

The dependence structure or “interpoint interaction” in a point process model
is determined by the function C(u,x) in (4). This term is specified by the
interaction argument of ppm, which is strongly analogous to the family

argument to glm. Thus, interpoint interaction is regarded as a “distributional”
component of the point process model, analogous to the distribution family
in a generalised linear model.

The interaction argument is an object of a special class "interact".
The user creates such objects using specialised spatstat functions, similar to
those which create the family argument to glm. For example, the command

3 We caution against using the standard function poly for the same purpose here.
For a model formula containing poly, prediction of the fitted model can be erro-
neous, for reasons which are well-known to R users. The function polynom pro-
vided in spatstat does not exhibit this problem.
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Strauss(r=0.1)

will create an object of class "interact" representing the interaction function
C(u,x) for the Strauss process (3) with interaction radius r. This object is
then passed to the model-fitting function ppm, usually in the direct form

ppm(cells, ˜1, Strauss(r=0.1))

The following functions are supplied for creating interpoint interaction struc-
tures; details of these models can be consulted in [5].

Poisson . . . . . . . . . . . Poisson process
Strauss . . . . . . . . . . . Strauss process
StraussHard . . . . . . Strauss process with a hard core
Softcore . . . . . . . . . . Pairwise soft core interaction
PairPiece . . . . . . . . Pairwise interaction, step function potential
DiggleGratton . . . Diggle-Gratton potential
LennardJones . . . . Lennard-Jones potential
Geyer . . . . . . . . . . . . . Geyer’s saturation process
OrdThresh . . . . . . . . Ord’s process, threshold on cell area

Note that ppm estimates only the “canonical” parameters of a point process
model. These are parameters θ such that the conditional intensity is log-
linear in θ, as in equation (4). Other so-called “irregular” parameters (such
as the interaction radius r of the Strauss process) cannot be estimated by
the Berman-Turner device, and their values must be specified a priori, as
arguments to the interaction function. Estimation of irregular parameters is
discussed in Sect. 9.

For more advanced use, the following functions will accept “user-defined
potentials” in the form of an arbitrary R language function. They effectively
allow arbitrary point process models of these three classes.

Pairwise . . . . Pairwise interaction, user-supplied potential
Ord . . . . . . . . . . Ord model, user-supplied potential
Saturated. . . Saturated pairwise model, user-supplied potential

6 Fitted Models

The value returned by ppm is a “fitted point process model” of class "ppm". It
can be stored, inspected, plotted, predicted and updated. The following would
be typical usage:

fit <- ppm(X, ˜1, Strauss(r=0.1), ...)

fit

plot(fit)

pf <- predict(fit)

coef(fit)



34 Adrian Baddeley and Rolf Turner

Methods are provided for the following generic operations applied to "ppm"

objects:
print Print basic information
summary Print extensive summary information
coef Extract fitted model coefficients
plot Plot fitted intensity
fitted Compute fitted conditional intensity or trend at data points
predict Compute predictions (spatial trend, conditional intensity)
update Update the fit

Printing the fitted object fit will produce text output describing the fitted
model. Plotting the object will display the spatial trend and the conditional
intensity, as perspective plots, contour plots and image plots.

6.1 Interpretation of Fitted Coefficients

The easiest way to interpret a fitted point process model is to print it at the
terminal. The print method attempts to produce a comprehensible descrip-
tion. For example,

> ppm(swedishpines, ˜1, Strauss(7))

Stationary Strauss process

First order term:

beta

0.01823799

Interaction: Strauss process

interaction distance: 7

Fitted interaction parameter gamma:

[1] 0.2472

Thus the fitted model is the stationary Strauss process (3) with parameters
β = 0.01823799 and γ = 0.2472.

Alternatively the coefficients of the fitted model may be extracted using
coef. These should be interpreted as the canonical parameters θ = (ψ,ϕ)
appearing in (4). For example

> u <- ppm(swedishpines, ˜1, Strauss(7))

> coef(u)

(Intercept) Interaction

-4.004248 -1.397759

Comparing (4) with (3) we see that the usual parameters β, γ of the Strauss
process are β = expψ and γ = expϕ, so typing

> exp(coef(u))

(Intercept) Interaction

0.01823799 0.24715026
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shows that the fitted parameters are β = 0.0182 and γ = 0.2472.
If the model includes a spatial trend, then the fitted canonical coefficients

of the trend will be presented using the standard R conventions. For example

> ppm(swedishpines, ˜x)

Nonstationary Poisson process

Trend formula: ˜x

Fitted coefficients for trend formula:

(Intercept) x

-5.13707319 0.00462614

indicates that the fitted model is a Poisson process with intensity function

β((x, y)) = exp(−5.13707319 + 0.00462614x).

In more complex models, the interpretation of the fitted coefficients may de-
pend on the choice of contrasts for the coefficients of linear models. For
example, if the treatment contrasts [72, sect 6.2] are in force, then a model
involving a factor will be printed as follows:

> ppm(swedishpines, ˜factor(ifelse(x < 50, "left", "right")))

Nonstationary Poisson process

Trend formula: ˜factor(ifelse(x < 50, "left", "right"))

Fitted coefficients for trend formula:

(Intercept)

-5.075

factor(ifelse(x < 50, "left", "right"))right

0.331

The explanatory variable is a factor with two levels, left and right. By de-
fault the levels are sorted alphabetically. Since we are using the treatment con-
trasts, the value labelled “(Intercept)” is the fitted coefficient for the first level
(left), while the value labelled “right” is the estimated treatment contrast
(to be added to the intercept) for the level right. This indicates that the fitted
model is a Poisson process with intensity exp(−5.075) = 0.00625 on the left
half of the dividing line x = 50, and intensity exp(−5.075 + 0.331) = 0.00871
on the right side.

6.2 Invalid Models

For some values of the parameters, a point process model with conditional
intensity (4) may be “invalid” or “undefined”, in the sense that the corre-
sponding probability density is not integrable. For example, the Strauss pro-
cess (3) is defined only for 0 ≤ γ ≤ 1 (equivalently for ϕ ≤ 0); the density is
not integrable if γ > 1, as famously announced in [44].

A point process model fitted by ppm may sometimes be invalid in this sense.
For example, a fitted Strauss process model may sometimes have a value
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of γ greater than 1. This happens because, in the Berman-Turner device,
the conditional intensity (4) is treated as if it were the mean in a Poisson
loglinear regression model. The latter model is well-defined for all values of the
linear predictor, so the software does not constrain the values of the canonical
parameters ψ,ϕ in (4).

The spatstat package has internal procedures for deciding whether a fitted
model is valid, and for mapping or “projecting” an invalid model to the nearest
valid model. Currently these procedures are invoked only when we simulate a
realisation of the fitted model. They are not invoked when a model is printed
or when it is returned from ppm, so that the printed output from ppm may
represent an invalid model.

6.3 Predicting and Plotting a Fitted Model

The predict method for a fitted point process model computes either the
fitted spatial trend

τ(u) = exp(ψ̂B(u)) (8)

or the fitted conditional intensity

λθ̂(u,x) = exp(ψ̂B(u) + ϕ̂C(u,x)) (9)

at arbitrary locations u. Note that x is always taken to be the observed data
pattern to which the model was fitted.

The default behaviour is to produce a pixel image of both trend and condi-
tional intensity, where these are nontrivial. A typical example is the following:

data(cells)

m <- ppm(cells,˜polynom(x,y,2),Strauss(0.05), rbord=0.05)

trend <- predict(m,type="trend",ngrid=100)

cif <- predict(m,type="cif",ngrid=100)

The resulting objects trend and cif are pixel images. One could then plot
the resulting surfaces with calls like

persp(trend)

persp(cif, theta=-30,phi=40,d=4,ticktype="detailed",zlab="z")

We caution again that the result of predict may be incorrect if the trend
formula of the point process model contains one of the functions poly, bs, lo,
or ns.

The plot method (plot.ppm) will take a fitted point process model and
plot the trend and/or the conditional intensity. By default this surface is
calculated at a 40 × 40 grid of points on the (enclosing rectangle of) the
observation window. The plots may be produced as perspective plots, images,
or contour plots. For example

plot(fit,cif=FALSE,how="persp")

will generate a perspective plot of the fitted trend, where fit is the fitted
model.



Modelling Spatial Point Patterns in R 37

0 50 100 150 200

0
5

0
1

0
0

1
5

0
2

0
0

Fitted trend 

x

y

Fig. 4. Contour plot of fitted log-cubic trend for Longleaf Pines data (locations
only) obtained using plot.ppm

7 Models with Covariates

In order to model the dependence of a point pattern on a spatial covariate,
there are several requirements. First, the covariate must be a quantity Z(u)
observable (in principle) at each location u in the window (e.g. altitude, soil
pH, or distance to another spatial pattern). There may be several such co-
variates, and they may be continuous-valued or factors. Second, the values
Z(xi) of Z at each point of the data point pattern must be available. Thirdly,
the values Z(u) at some other points u in the window must be available. The
accuracy of the algorithm depends on the number of these additional points
and on their spatial arrangement. For a good approximation to the pseudo-
likelihood, the density of the additional points should be high throughout the
window.

The argument covariates to the function ppm specifies the values of the
spatial covariates. It may be either a data frame or a list of pixel images.

(a) If covariates is a list of pixel images, then each image is assumed to
contain the values of a spatial covariate at a fine grid of spatial locations.
The names of the list entries should be the names of the covariates used
in the trend formula when you call ppm.

(b) If covariates is a data frame, then the ith row of the data frame is
expected to contain the covariate values for the ith “quadrature point”
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(see below). The column names of the data frame should be the names of
the covariates used in the trend formula when you call ppm.

7.1 Covariates in a List of Images

The format (a), in which covariates is a list of images, would typically be
used when the covariate values are computed from other data.
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Fig. 5. The Chorley-Ribble data [27]. Cases of cancer of the larynx (•) and lung (+)
in the Chorley-Ribble region of Lancashire, England, and the location of a disused
industrial incinerator (⊕)

For example, Fig. 5 shows a spatial epidemiological dataset containing
a point pattern X of disease cases, and another point pattern Y of control
cases. We want to model X as a point process with intensity proportional to
the local density ̺ of the susceptible population. We estimate ̺ by taking a
kernel-smoothed estimate of the intensity of Y. Thus

rho.hat <- ksmooth.ppp(Y, sigma=1.2)

ppm(X, ˜offset(log(rho)), covariates=list(rho=rho.hat))

The first line computes the values of the kernel-smoothed intensity estimate
at a fine grid of pixels, and stores them in the pixel image object rho.hat

(plotted in Fig. 6). The second line fits the Poisson process model with log
intensity

log λ(u) = ψ + log ̺(u) (10)

where ψ is an unknown parameter; that is, it fits the Poisson model with
intensity

λ(u) = µ̺(u) (11)
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where µ = eψ is the only parameter to be estimated. Note that covariates

must be a list, even though there is only one covariate. The variable name
rho in the model formula must match the name rho in the list.
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Fig. 6. Kernel smoothed intensity estimate ̺̂(u) of the lung cancer data from Fig. 5,
which serves as a spatial covariate for modelling the laryngeal cancer data

Typical output is as follows:

> ppm(X, ˜offset(log(rho)), Poisson(), data=list(rho=rho.hat))

Nonstationary Poisson process

Trend formula: ˜offset(log(rho))

Fitted coefficients for trend formula:

(Intercept)

-2.889

This indicates that the estimate of the parameter ψ in (10) is ψ̂ = −2.889.
Equivalently the estimate of µ in (11) is µ̂ = e−2.889 = 0.056.

More complex models may be fitted to explore other effects by adding
terms to the trend formula. For example

ppm(X, ˜ x + offset(log(rho)), data=list(rho=rho.hat))

would fit a nonstationary Poisson model with intensity

β((x, y)) = eψ+ϕx̺((x, y)).

Covariates represented by pixel images in spatstat may have values that are
numerical, complex, logical, or character strings. Unfortunately a pixel image
in spatstat cannot have categorical (factor) values, because R refuses to create
a factor-valued matrix. In order to represent a categorical variate as a pixel
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image, the categorical values should be encoded as integers (for efficiency’s
sake) and assigned to an integer-valued pixel image. Then the model formula
should invoke the factor command on this image. For example if fim is an
image with integer values which represent levels of a factor, then

ppm(X, ˜factor(f), Poisson(), covariates=list(f=fim))

fits the nonstationary Poisson process with an intensity that depends on the
levels of this factor. Care must be taken to ensure the correct interpretation
of the factor levels [72, p. 22 ff.].

7.2 Covariates in a Data Frame

Typically we would use the data frame format (b) if the values of the spatial
covariates can only be observed at certain locations. We need to force ppm to
use these locations to fit the model. That is, these locations must be used as
the quadrature points uj in the Berman-Turner approximation (6).

The function ppm may be called in the form

ppm(Q, trend, interaction, ...)

where Q is a “quadrature scheme” and the other arguments are unchanged.
A quadrature scheme in spatstat is an object of a special class "quad" which
comprises both “data points” (the points of the observed point pattern) and
“dummy points” (some other locations in the window). It is usually created
using the function quadscheme.

In the present context we will need to create a quadrature scheme based
on the spatial locations where the covariate Z has been observed. Then the
values of the covariate at these locations are passed to ppm through the data
frame covariates.

For example, suppose that X is the observed point pattern and we are
trying to model the effect of soil acidity (pH). Suppose we have measured the
values of soil pH at the points xi of the point pattern, and stored them in a
vector XpH. Suppose we have measured soil pH at some other locations u in
the window, and stored the results in a data frame U with columns x, y, pH.
Then do as follows:

Q <- quadscheme(data=X, dummy=list(x=U$x, y=U$y))

df <- data.frame(pH=c(XpH, U$pH))

Then the rows of the data frame df correspond to the quadrature points in
the quadrature scheme Q. To fit just the effect of pH, we type

ppm(Q, ˜ pH, Poisson(), covariates=df)

where the term pH in the formula ˜ pH agrees with the column label pH in the
argument covariates = df. This will fit an inhomogeneous Poisson process
with intensity that is a loglinear function of soil pH. We could can also try
(say)
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ppm(Q, ˜ pH, Strauss(r=1), covariates=df)

ppm(Q, ˜ factor(pH > 7), Poisson(), covariates=df)

ppm(Q, ˜ polynom(x, 2) * factor(pH > 7), covariates=df)

8 Fitting Models to Multitype Point Patterns

The function ppm will also fit models to multitype point patterns. A multitype
point pattern is a point pattern in which the points are each classified into
one of a finite number of possible types (e.g. species, colours, on/off states). In
spatstat a multitype point pattern is represented by a "ppp" object X whose
marks are a factor. Fig. 3(b) shows an example.

Currently, ppm will not fit models to a marked point pattern if the marks
are not a factor.

8.1 Conditional Intensity

A multitype point process in a region W ⊂ R
2, with a set M of pos-

sible types, may be regarded as a point process in W × M. Let y =
{(x1,m1), . . . , (xn,mn)} denote a typical realisation of the process, where
xi ∈ W are the locations and mi ∈ M the corresponding marks (types).

The conditional intensity is now of the form λ((u,m),y), where u ∈ W
and m ∈ M. It has the interpretation that λ((u,m),y) du is the conditional
probability of finding a point of type m in an infinitesimal neighbourhood of
the point u, given that the rest of the process coincides with y.

This introduces some subtleties. A conditional intensity function which is
constant,

λ((u,m),y) = β (12)

corresponds to a process in which the points of each type m ∈ M constitute
a uniform Poisson process with intensity β. By standard properties of the
Poisson process [45], this is equivalent to a marked Poisson process of total
intensity Mβ (where M is the number of possible types M = |M|) in which
the points have independent random marks, with equal probability 1/M for
each possible type.

A conditional intensity function which depends only on the marks,

λ((u,m),y) = βm (13)

where βm, m ∈ M are constants, is a marked Poisson process of total inten-
sity µ =

∑
m βm, in which the points have independent random marks, with

probability pm = βm/µ for type m.
The most general multitype Poisson process has conditional intensity

λ((u,m),y) = βm(u) (14)
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where βm(u),m ∈ M are arbitrary nonnegative integrable functions. This
process has total intensity µ(u) =

∑
m βm(u). The marks are independent

but not identically distributed: a point at location u has conditional mark
distribution pm(u) = βm(u)/µ(u) for m ∈ M.

8.2 Multitype Models

Trend Component

In order to represent the dependence of the trend on the marks, the trend
formula passed to ppm may involve the reserved name marks.

The trend formula ˜1 states that the trend is constant and does not depend
on the marks, as in (12). The formula ˜marks indicates that there is a separate,
constant intensity for each possible mark, as in (13). If a uniform multitype
Poisson process is to be fitted to data, the usual intention is to allow for
different intensities for each mark, so the appropriate call would be

ppm(X, ˜ marks, Poisson())

The result of fitting this model to the data in Fig. 3(b) yields the following
output.

Stationary multitype Poisson process

Possible marks: off on

Intensity: Trend formula: ˜marks

Fitted intensities:

beta_off beta_on

88.68302 94.92830

This indicates that the fitted model is a multitype Poisson process with in-
tensities 88.7 and 94.9 for the points of type “off” and “on” respectively.

In more elaborate cases, the trend formula may involve both the marks
and the spatial locations or spatial covariates. For example the trend for-
mula ˜marks + polynom(x,y,2) signifies that the first order trend is a log-
quadratic function of the Cartesian coordinates, multiplied by a constant fac-
tor depending on the mark. The formulae

˜ marks * polynom(x,2)

˜ marks + marks:polynom(x,2)

both specify that, for each mark, the first order trend is a different log-
quadratic function of the Cartesian coordinates. The second form looks
“wrong” since it includes a “marks by polynom” interaction without hav-
ing polynom in the model, but since polynom is a covariate rather than a
factor this is is allowed, and makes perfectly good sense. As a result the two
foregoing models are in fact mathematically equivalent. However, the fitted
model objects will give slightly different output.
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For example, the first model ˜marks * polynom(x,2) fitted to the data
in Fig. 3(b) gives the following output (assuming options("contrasts") is
set to its default, namely the “treatment” contrasts):

Nonstationary multitype Poisson process

Trend formula: ˜marks * polynom(x, 2)

Fitted coefficients for trend formula:

(Intercept) markson

4.3127945 0.2681231

polynom(x, 2)[x] polynom(x, 2)[xˆ2]

0.4651860 -0.2363352

markson:polynom(x, 2)[x] markson:polynom(x, 2)[xˆ2]

-0.6781045 0.4023491

This form of the model gives two quadratic functions: a “baseline” quadratic

P0(x, y) = 4.3127945 + 0.4651860x − 0.2363352x2

and a quadratic associated with the mark level “on”,

Pon(x, y) = 0.2681231 − 0.6781045x + 0.4023491x2.

The baseline quadratic is the logarithm of the fitted trend for the points of
type off, since off is the first level of the factor marks. For points of type
on, since we are using the treatment contrasts, the log trend is

P0(x, y) + Pon(x, y) = 4.580918 − 0.2129185x + 0.1660139x2.

On the other hand, when the model ˜marks + marks:polynom(x,2)) is
fitted to the same dataset, the output is

Nonstationary multitype Poisson process

Trend formula: ˜marks + marks:polynom(x, 2)

Fitted coefficients for trend formula:

(Intercept) markson

4.3127945 0.2681231

marksoff:polynom(x, 2)[x] markson:polynom(x, 2)[x]

0.4651860 -0.2129185

marksoff:polynom(x, 2)[xˆ2] markson:polynom(x, 2)[xˆ2]

-0.2363352 0.1660138

This says explicitly that the log trend for points of type off is

Qoff(x, y) = 4.3127945 + 0.4651860x − 0.2363352x2

while for points of type on it is

Qon(x, y) = 4.580918 − 0.2129185x + 0.1660139x2.

Hence the two fitted models are mathematically identical.
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Interaction Component

For the interaction component of the model, any of the interactions listed
above for unmarked point processes may be used. However these interactions
do not depend on the marks. We have additionally defined two interactions
which do depend on the marks:

MultiStrauss multitype Strauss process
MultiStraussHard multitype Strauss/hard core

For the multitype Strauss process, a matrix of “interaction radii” must be
specified. If there are m distinct levels of the marks, we require a matrix
r in which r[i,j] is the interaction radius rij between types i and j. For
the multitype Strauss/hard core model, a matrix of “hardcore radii” must be
supplied as well. These matrices will be of dimension m × m and must be
symmetric.

9 Irregular Parameters

As explained in Sect. 4.2, our model-fitting technique [5] estimates the pa-
rameters θ which appear in loglinear form (4) in the conditional intensity.
We call these “regular” parameters, while other model parameters are called
“irregular”. Most of the familiar point process models have irregular parame-
ters controlling the scale or range of interaction: an example is the interaction
radius r of the Strauss process (3). Irregular parameters cannot be estimated
directly using our algorithm, and must be given a fixed value in any call to
ppm.

Very little theory is available about the estimation of irregular parameters.
An exception is the case of hard-core radii. For example, consider the classical
hard-core process, which is the special case of the Strauss process (3) with
γ = 0. It can easily be shown [64] that the maximum likelihood and maximum
pseudolikelihood estimate of r is

r̂ = min
i

min
j �=i

||xi − xj ||,

the minimum interpoint distance in the point pattern x.
Some irregular parameters can be determined from the pair correlation

function or the K-function [28, 29, 34]. For the Strauss process with γ < 1,
the pair correlation function has a jump at r. This leads to a useful procedure
for estimating r called the “cusp method” [34, 66], [68, p. 333]. These methods
are not yet implemented in spatstat.

One general strategy available in spatstat for estimating irregular param-
eters is profile pseudolikelihood [5, Sect. 8.2]. Let θ and ψ denote the regu-
lar and irregular parameters respectively, and write the pseudolikelihood as
PL(θ, ψ;x). Define the profile pseudolikelihood for ψ to be
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PPL(ψ;x) = max
θ

PL(θ, ψ;x), (15)

the maximum value of pseudolikelihood obtained by maximising over the reg-
ular parameters with ψ held fixed. Then the maximum pseudolikelihood esti-
mate of ψ is the value which maximises the profile pseudolikelihood,

ψ̂ = argmaxψ PPL(ψ;x). (16)

In spatstat the profile pseudolikelihood (15) can be evaluated for any given
value of ψ by fitting the model with this value of ψ using ppm. The result-
ing fitted model object has a component named maxlogpl which gives the
maximised log pseudolikelihood.

For example, the following code computes the maximum pseudolikelihood
estimate of the interaction radius r in the Strauss process model for the cells
dataset.

data(cells)

rval <- seq(0.01, 0.2, by=0.01)

prof <- numeric(length(rval))

for(i in seq(rval)) {

fit <- ppm(cells, ˜1, Strauss(r=rval[i]),

correction="translate")

prof[i] <- fit$maxlogpl

}

iopt <- min(which(prof == max(prof)))

rhat <- rval[iopt]

Note that the same edge correction must be used to fit each model in order
that the pseudolikelihood values be comparable. The example above shows
the translation edge correction. If the border edge correction is used, the
correction distance rbord should be fixed at the maximum interaction radius
of all models to be fitted.

For diagnostic purposes the profile pseudolikelihood prof should be plotted
against the r argument rval to verify that the function has a unique global
maximum. In the example shown above, there is an unambiguous peak in
profile likelihood at r̂ = 0.1. Section 12.2 gives an example where more care
is required.

10 Model Validation

Having fitted a point process model to data, it is important to “validate” the
model, i.e. to check formally or informally that the model is a good fit to
the data, and that all terms in the model are appropriate [2, 16, 24, 72], [50,
Chap. 12].
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10.1 Residuals and Diagnostics

Residuals from the fitted model are an important diagnostic tool in other
areas of applied statistics, but in spatial statistics they have only recently been
developed [7, 46, 65]. The residuals and diagnostic plots introduced in [7] are
available in spatstat. The function diagnose.ppm is the analogue of plotting
the residuals against the covariates in a linear model, while qqplot.ppm is the
analogue of a Q–Q plot of the residuals in a linear model.

These techniques are particularly well suited to detecting spatial inho-
mogeneity. For example, Fig. 7 (left) shows a point pattern simulated from
the Poisson process with intensity λ(x, y) = 300 exp(−3|x − 0.5|) in the unit
square. We then fitted the incorrect model, a uniform Poisson process, to
these data. The right side of Fig. 7 shows the result of diagnose.ppm for this
incorrect model. The striking deviations of the plots from their nominal (con-
stant) values indicate clearly that the model is inappropriate, and suggest the
form of departure from the model. For detailed information and examples, see
[7] and the help files for these functions.
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Fig. 7. Demonstration of diagnostic tools in spatstat. (Left) data point pattern, a
realisation of an inhomogeneous Poisson process; (Right) diagnostic plots (generated
by diagnose.ppm) for an incorrect model, a uniform Poisson process, fitted to the
data

10.2 Formal Inference

Techniques

Formal hypothesis tests are often applied in spatial statistics for the following
purposes:

1. to test whether the point pattern is a realisation of a uniform Poisson
process (complete spatial randomness or CSR);
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2. to assess the goodness-of-fit of a point process model that has been fitted
to the point pattern data;

3. to select models (e.g. to decide whether a particular term in a point process
model may be omitted).

The first type of test is the most popular in applications, following Ripley
[57, 59]. However, this test may often be inappropriate or uninformative: we
usually know that the data are not completely random, and a formal confirma-
tion of this statement is not scientifically informative since it does not indicate
the kind of departure from complete randomness. Normally the second and
third types of tests are more useful in modelling.

Statistical theory of parameter estimation and hypothesis testing for spa-
tial point processes is rather limited. See the recent surveys of Møller and
Waagepetersen [51, Chaps. 8–10], Diggle [28, Chap. 2] and van Lieshout [47,
Chap. 3].

Techniques available for formal inference depend on the class of models
envisaged. For Poisson processes (homogeneous or inhomogeneous), much
of the classical theory of maximum likelihood is applicable, including the
likelihood ratio test. Goodness-of-fit tests based on the χ2 distribution are
also possible after discretisation (binning) of the data. For Cox processes,
estimation methods include minimum contrast [51, p. 182] and maximum like-
lihood in special cases [51, Sect. 10.3]. In the latter case, a likelihood ratio
test is applicable. For Gibbs processes, we may use Monte Carlo maximum
likelihood [51, Sect. 9.1.4] which provides approximate maximum likelihood
estimates, confidence intervals and likelihood ratio tests. Bayesian inference
has also also been developed [51, Sects. 9.3, 10.4]. For Gibbs processes, we
may also use maximum pseudolikelihood [51, Sect. 9.2]. Maximum pseudo-
likelihood estimates are known to be consistent and asymptotically normal
in some contexts [42, 43], but at the time of writing there is no statistical
theory for hypothesis tests based on the pseudolikelihood. For general point
processes which can be simulated, some elementary simulation-based infer-
ence is feasible [51, Chap. 8]. The canonical example is the Monte Carlo test
[14, 37, 59]. Monte Carlo tests based on envelopes of simulations of the K-
function (and other summary functions) are very popular [28].

It is not known whether maximum likelihood estimation is optimally ef-
ficient [23, Sect. 8.5.8], [60]. Little is known about the power of the various
tests mentioned above [28, p. 28]. The distributional information required for
statistical inference can often be obtained only by using Monte Carlo meth-
ods. For example, simple formulae for the variance of estimators are available
only for the uniform Poisson process [61, Sect. 3.3], but the Fisher informa-
tion matrix for a general Gibbs process can be estimated by MCMC methods
[32, 33], [47, p. 103].

Implementation in spatstat

Spatstat includes the following support for formal inference.
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For Poisson processes, since maximum pseudolikelihood is equivalent to
maximum likelihood, models fitted using ppm can be compared using the like-
lihood ratio test. The function anova.ppm performs analysis of deviance and
reports p-values for the likelihood ratio test.

For example, suppose we wish to test the null hypothesis that the point
process is a homogeneous Poisson process, against the alternative that it is
an inhomogeneous Poisson process with intensity of the form

λ(x, y) = exp(a + bx) .

The likelihood ratio test is performed as follows, assuming X is the point
pattern dataset.

fit0 <- ppm(X, ˜1, Poisson())

fit1 <- ppm(X, ˜x, Poisson())

anova(fit0,fit1)

For Gibbs processes, spatstat provides a simulation algorithm rmh, an im-
plementation of the Metropolis-Hastings algorithm. This implementation will
simulate a wide range of models, including models fitted to data by ppm.
The algorithm handles arbitrary first-order trends, using a renormalisation
technique [6, Sect. 10.4]. Trends may be specified as symbolic functions, as
pixel images, or using a fitted model object. However, due to the high com-
putational load, interpoint interaction terms in the conditional intensity are
calculated in Fortran. This restricts the range of models that can be sim-
ulated. Currently the available interaction terms include Poisson, Strauss,
Strauss/hard core, soft core, Geyer saturation process, multitype Strauss, mul-
titype Strauss/hard-core, and the general stationary pairwise interaction with
step-function potential.

Here are two examples of the use of rmh(); see the help file in spatstat for
a plethora of other examples.

m <- list(cif="strauss",par=c(beta=2,gamma=0.2,r=0.7),

w=c(0,10,0,10))

X1 <- rmh(model=m,start=list(n.start=80),

control=list(nrep=5e6,nverb=1e5))

fit <- ppm(cells, ˜1, Strauss(0.1))

X2 <- rmh(fit,start=list(n.start=200),

control=list(nrep=1e5,nverb=5000))

The user may exploit rmh to perform simulation-based inference. Currently,
inferential techniques must be implemented by hand: an example is given in
Sect. 11.4. Future extensions of the package will include basic support for
simulation-based inference.

Pseudolikelihood Ratio and Monte Carlo Tests

A reasonable substitute for the likelihood ratio test statistic for a general
Gibbs process is based on the log pseudolikelihood ratio. Consider a null hy-
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pothesis H0 and an alternative H1, and suppose H0 is contained in H1. Denote
the point pattern dataset by x. Let θ̂0 = θ̂0(x) be the estimate of the canoni-

cal parameters (by maximum pseudolikelihood) under H0, and θ̂1 = θ̂1(x) the
estimate under H1. The test statistic will be twice the log pseudolikelihood
ratio

∆ = ∆(x) = 2
(
log PL(θ̂1(x);x) − log PL(θ̂0(x);x)

)
(17)

analogous to the deviance in likelihood theory. The following simple function
calculates the quantity ∆ from two fitted model objects in spatstat.

delta <- function(model0, model1)

2 * (model1$maxlogpl - model0$maxlogpl)

However we emphasise again that there is no statistical theory available
to support inferential interpretations of ∆. We explore a distributional ap-
proximation for ∆ in Sect. 11. Alternatively one may simply use ∆ as the
test statistic in a Monte Carlo test. Suppose for example that H0 is a simple
hypothesis (i.e. in which θ0 is fixed). Generate m independent realisations
x(1), . . . ,x(m) from the null hypothesis. Compute the corresponding values of
the test statistic, say ∆i = ∆(x(i)) for i = 1, . . . ,m. Compute the rank of ∆
in the set of values {∆1, . . . , ∆m} ∪ {∆}, that is, R = 1 +

∑m
i=1 1{∆i > ∆}.

Then under H0, the rank R is uniformly distributed on {1, 2, . . . ,m + 1}, as-
suming there are no ties. Hence, the test which rejects H0 when R ≤ k has
size α = k/(m + 1) exactly, if H0 is simple. The associated p-value is

p =
R

m + 1
. (18)

Gamma Approximation to Distribution of Pseudolikelihood Ratio

Another possibility is to approximate the null distribution of the log pseu-
dolikelihood ratio statistic ∆ by a Gamma distribution. The Gamma family
is chosen simply because it is a flexible class of distributions, and because it
includes the χ2 distribution, which is the asymptotic null distribution of the
likelihood ratio test statistic.

Given some realisations from the null distribution of ∆, we fit a Gamma
distribution using the method of moments, then calculate a critical value or
p-value for the observed ∆ statistic based on this fitted Gamma distribution.
The p-value so obtained will be called the “gamma p-value”, in contrast to
the “Monte Carlo p-value” given by (18). The gamma approximation offers a
substantial economy in the number of replicates used in the simulations. Of
course this economy comes at the cost of placing trust in the approximation.

Some minimal experimentation indicates that the fit is generally good in
the upper tail. See Fig. 8.
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11 Harkness-Isham Ants’ Nests Data

11.1 Description of Data

Figure 9 shows a point pattern data set recorded by Professor R.D. Harkness
at a site in northern Greece, and described and analysed in [35]. The points
record the locations of two species of ants: 68 nests of Messor wasmanni and
29 nests of Cataglyphis bicolor , in an irregular region 425 feet in diameter.
Covariate information is also provided: the bold diagonal line in the Fig. 9
indicates a boundary between vegetation types, “field” and “scrub”, while the
two closely-spaced parallel lines delimit a foot track.
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Fig. 8. Assessment of the gamma distribution approximation to the null distribu-
tion of the log pseudolikelihood ratio statistic ∆. Calculated for the test for between-
species interaction described in Sect. 11. (Top) P–P and Q–Q plots comparing the
empirical null distribution of ∆ (from simulations of H0) with the gamma distribu-
tion; (Bottom) analogous plots for i.i.d. random Gamma variates

Interest in these data focuses on whether there is evidence of spatial inhi-
bition between Messor nests, and of a tendency for Cataglyphis nests to be
situated close to Messor nests. Harkness and Isham suggested that the two
species have a relationship similar to that of predator and prey. Messor is a
harvester which collects seeds for food and builds nests composed mainly of
seed husks. Cataglyphis is a forager which eats dead insects and other arthro-
pods, and, while not preying upon the Messor ants, feeds upon dead Messors
which have been killed by a predatory spider.

Rectangular subsets of the data were analysed in [5, 35, 36, 41, 70] and
[63, Sect. 5.3]. Most of these analyses have used the dashed rectangles labelled
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A and B in Fig. 9, which were defined by Harkness and Isham. The current
analysis is, to our knowledge, the first to treat the full data set in its original
(polygonal) window.

A

B

Fig. 9. Harkness-Isham ants’ nests data [35, Fig. 1]. Locations of nests of two species
of ants, Messor wasmanni (△) and Cataglyphis bicolor (◦) in an irregular region
425 feet in diameter. Additional markings explained in the text. North at top of
figure. Data reproduced by kind permission of Profs. R.D. Harkness and V. Isham

The nest locations (in units of half-feet) were kindly provided by Professor
V. Isham. The polygonal window and the extra features (foot track, field-scrub
boundary, rectangles A and B) were digitised by the first author from Fig. 1
in [35]. The full dataset is now available in spatstat as ants. Dr A. Särkkä also
kindly provided a version of the subset in rectangle A which was analysed in
her work [63].

Harkness and Isham [35] concluded from their analysis of rectangular sub-
sets A and B that there is spatial dependence in the location of the nests, both
within- and between-species. Results for subsets A and B were similar, sug-
gesting that the field-scrub boundary has no effect. Särkkä [63] concluded from
an analysis of subset A that there was strong inhibition among Cataglyphis
nests, but obtained conflicting conclusions (depending on the choice of tech-
nique) about any dependence between species.

11.2 Exploratory Analysis

Our analysis of the full dataset in spatstat begins with exploratory methods
(Sect. 3.3). Kernel-smoothed intensity estimates for the nests of each species
(see Fig. 10) are plotted by the code at the top of the next page.
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smoothants <- lapply(split(ants), ksmooth.ppp)

plot(smoothants$Cataglyphis, main="Cataglyphis nests")

plot(smoothants$Messor, main="Messor nests")

The results suggest some slightly nonstationary trends in nest abundance.
Messor nests are absent close to the track, and close to the eastern corner of
the polygon. Cataglyphis nests are absent from the northeast border. We may
also plot, for example, the ratio of these intensity estimates by

cata <- smoothants$Cataglyphis

mess <- smoothants$Messor

ratio <- im(cata$v/mess$v, cata$xcol, cata$yrow)

plot(ratio, main="Cataglyphis-to-Messor ratio")

A plot of this ratio appears roughly constant and suggests that the same slight
inhomogeneity may affect both species equally.

The next step might be to assess within- and between-species interaction
by computing exploratory summary functions. Spatstat provides multitype
versions of the standard summary functions F , G, K, J and the pair correla-
tion function. In the notation of [49], for a stationary multitype point process,
Fi denotes the empty space function F for the pattern consisting solely of
points of type i, while F• is the ordinary empty space function of the process
of all points regardless of type. Gij is the distribution function of the distance
from a typical point of type i to the nearest point of type j, while Gi• is the
distribution function of the distance from a typical point of type i to the near-
est point regardless of type. Similarly Kij is the K-function based on distances
from points of type i to points of type j only, while Ki• is the K-function
for distances from points of type i to points of any type. The pair correlation
function ̺ij is defined by ̺ij(t) = [(d/dt)Kij(t)]/(2πt), analogously to the
univariate case, and similarly for ̺i•. Finally the J functions are defined [49]
by Jij(t) = (1 − Gij(t))/(1 − Fi(t)) and Ji•(t) = (1 − Gi•(t))/(1 − Fi(t)).
Diagnostic interpretation of these functions is described in [49, 68].

The spatstat function alltypes will compute these statistics and return
an array of functions. For example

antsF <- alltypes(ants, "F")

plot(antsF)

computes the functions Fi (for i = Cataglyphis and i = Messor) and plots
them. Similarly

antsG <- alltypes(ants, "G")

plot(antsG)

computes the functions Gij for each i, j and plots them as a 2 × 2 array of
panels, shown in Fig. 11. Similarly for the functions Kij and Jij . Algebraic
transformations of these functions can be plotted easily using the R syntax
for formulas.
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Fig. 10. Kernel smoothed intensity estimates for the two species of ants’ nests

For example the corresponding L functions Lij(t) =
√

Kij(t)/π may be
plotted by

antsK <- alltypes(ants, "K")

plot(antsK, sqrt(trans/pi) ˜ r)

The last line invokes plot.fasp. The second argument to plot.fasp is a
model formula representing the variables which should be plotted. Here trans
refers to the translation-correction estimate of Kij . These plots all appear
to evince some indication of between-species attraction and of within-species
repulsion, at least over certain distance ranges. Plots based on the rectangular
subset used by Särkkä are reasonably consistent in their appearance with those
plots based on the full data set.

The pair correlation functions ̺ij are obtained from the Kij estimates
using pcf:

antsK <- alltypes(ants, "K")

antspcf <- pcf(antsK)

plot(antspcf)

This plot, shown in Fig. 12, tells a somewhat different story. It suggests that
there is strong inhibition between Messor nests at all scales, while there is
inhibition between Cataglyphis and Messor nests up to 10 half-feet and no
interaction at longer distances. Between Cataglyphis nests there is a suggestion
of short-scale inhibition and medium-scale attraction. For comparison we also
show in Fig. 13 the pair correlation plot for rectangular subset A. This suggests
inhibition for all combinations of nests.
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Fig. 11. Estimates of the cross-type nearest neighbour functions Gij for the full
ants’ nests data

11.3 Modelling

Takacs & Fiksel [70] and Särkkä [63, Sect. 5.3] fitted a Strauss/hard core model
(amongst other models) to assess the evidence of within- and between-species
dependence. Let y = {(x1,m1), . . . , (xn,mn)} denote a typical realisation of
the process, where xi ∈ W are the locations and mi ∈ M the corresponding
marks (types). The Strauss/hard-core model has conditional intensity

λ((u, k),y) = βm

∏

i

g(k,mi, ||u − xi||) (19)

where

g(k,m, d) =

⎧
⎨
⎩

0 if d < hkm

γmk if hkm ≤ d ≤ rkm

1 if d > rkm

Here βm > 0 are parameters influencing the intensity of the process, and
γkm > 0 are interaction parameters similar to the Strauss interaction param-
eter γ and satisfying γmk = γkm. The parameters hkm > 0 are “hard-core
distances” satisfying hmk = hkm, while rkm > 0 are “interaction distances”
analogous to the Strauss interaction radius r, and satisfying rmk = rkm and
rkm > hkm. The process is well-defined and integrable provided either that
hmm > 0 for all m, or that γkm ≤ 1 for all k,m.

This model is chosen for its simplicity and flexibility in allowing for
both negative and positive association within- and between-species. It is cer-
tainly a tentative model, and indeed pairwise interaction models such as the
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Fig. 12. Estimates of the cross-type pair correlation functions ̺ij for the full ants’
nests data

Strauss/hard core model are sometimes regarded as inadequate for describing
clustering.

Denoting the two types Cataglyphis and Messor by C and M respectively,
the model has 5 regular parameters (the intensities βC , βM and interaction pa-
rameters γCC , γMM , γCM ) and 6 irregular parameters (the hard core distances
hij and interaction distances rij).

To reduce the computational load we estimate the hard core distances by
their maximum likelihood (and maximum pseudolikelihood) estimates, which
are the corresponding minimum interpoint distances, obtained by

d <- pairdist(ants)

mks <- ants$marks

tapply(d, list(mks[row(d)], mks[col(d)]), min)

Note that if rounding is performed, then these values must be rounded down-
ward, to ensure that the model still has nonzero likelihood. The resulting
values are ĥMM = 18.7, ĥCC = 4.9 and ĥCM = 12.2 (in half-feet). For the
values of the Strauss interaction radii we adopted the same values as Takacs
& Fiksel [70] and Särkkä [63], namely rMM = rCC = rCM = 90 half-feet.

The model was fitted to the full dataset as follows.
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Fig. 13. Estimates of the pair correlation functions for Särkkä’s version of the ants’
nests data

rr <- matrix(90,2,2)

hh <- matrix(c(5.0,12.2,12.2,18.7),2,2)

types <- levels(ants$marks)

Int <- MultiStraussHard(types, rr, hh)

fit <- ppm(ants, ˜marks, Int, correction="border", rbord=90)

Note that the trend formula must be ˜marks in order to allow different inten-
sity values βM , βC for the two species.

Printing the fitted model object fit shows the fitted values of all parame-
ters. It is necessary to select a value for the correction argument specifying
the edge correction for the pseudolikelihood [5]. Here we fitted the model using
the “border” correction. Alternative choices of edge correction yield different
fitted parameter values, as shown in the following table.

Edge correction βC × 104 βM × 104 γCC γMM γCM

Border 0.92 8.69 0.50 0.68 1.12
Translation 0.72 2.35 0.75 0.90 1.11

None 0.71 2.33 0.72 0.88 1.13
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Evidence for between-species dependence is quantified by the Strauss inter-
action parameter γCM , which is slightly greater than unity, suggesting moder-
ate positive association. The estimates of within-species interaction γCC , γMM

are below unity, suggesting inhibition.
These conclusions should be compared to those of Särkkä’s [63] analysis

of the subset of data in the rectangle labelled A in Fig. 9. She obtained
γ̂CM = 0.88, which would indicate inhibition between species. For the sake
of direct comparison, we also fitted the Strauss/hard core model to the data
used by Dr Särkkä and kindly supplied by her. Several small differences can
be observed between Särkkä’s dataset and the subset of our data indicated
by rectangle A. These may be attributed to slight differences in digitising
Fig. 1 of [35]. In Särkkä’s dataset the minimum interpoint distance between
Cataglyphis and Messor nests is 11.2 half-feet rather than 12.2.

Changing the inter-species hard core distance to hCM = 11.2, we fitted the
Strauss-hard core model to Särkkä’s version of the data in rectangle A. This
also allows us to compare four different edge corrections for the pseudolikeli-
hood [5] which are implemented for rectangular windows, namely the border,
periodic and translation edge corrections, and Ripley’s isotropic correction.

The choice of edge correction appeared to have a substantial impact upon
the results. (As a matter of convenience Särkkä used a periodic edge correc-
tion in her analysis, and a stochastic approximation to the pseudolikelihood.)
Our estimates of γCM , based upon Särkkä’s data, are 1.37 (border correc-
tion), 0.99 (periodic edge correction), 1.20 (translation correction) and 1.00
(Ripley isotropic correction). These estimates are larger than Särkkä’s value
of 0.88, and two of them are larger than unity, consistent with between-species
attraction.

We also fitted the same model (i.e. with smaller hCM = 11.2) to the
complete data set, in its polygonal window, resulting in γCM estimates of
1.33 (border correction) and 1.12 (translation correction). In this case both
estimates are greater than 1, perhaps substantially greater. The evidence at
this point is thus somewhat contradictory. The exploratory summary functions
F , G, K, J suggest interspecies attraction, while the pair correlation function
exhibits no sign of between-species interaction. Four of the six estimates of
γCM are larger than unity, again suggesting interspecies attraction. Formal
methods may be useful at this point.

11.4 Formal Inference

We conducted formal hypothesis tests for the presence of inter-species inter-
action using the methods described in Sect. 10.2. The null hypothesis of no
inter-species interaction can be formulated as

H0 : γCM = 1, hCM = 0

which implies that the nests of the two species are independent point processes
of Strauss-hard core type.
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The Strauss interaction radii were held fixed at 90 half-feet in all instances.
Under the null hypothesis, the cross-species interaction radius rCM is not
identifiable, since it plays no role in the model when γCM = 1. Hence rCM

should not be estimated from simulations of H0. The within-species interaction
parameters γCC , γMM were held fixed to reduce computational load, but they
could have been estimated instead.

Under the null model, there are no interaction terms between nests of
different species. In spatstat, assigning a value of NA to an irregular parameter
will cause the interpoint interaction term associated with this parameter to be
omitted from the analysis. Thus our null model is represented by assigning NA

values to every off-diagonal entry in the matrices of hard core distances and of
Strauss interaction distances. The following code fits the null and alternative
hypotheses to the data and evaluates the log pseudolikelihood ratio statistic
∆:

Str1 <- matrix(c(90, 90, 90, 90), 2,2)

Str0 <- matrix(c(90, NA, NA, 90), 2,2)

Hard1 <- matrix(c(5.0, 12.2, 12.2, 18.7), 2,2)

Hard0 <- matrix(c(5.0, NA, NA, 18.7), 2,2)

Int0 <- MultiStraussHard(types, Str0, Hard0)

Int1 <- MultiStraussHard(types, Str1, Hard1)

fit0 <- ppm(ants, ˜marks, Int0, correction="translate")

fit1 <- ppm(ants, ˜marks, Int1, correction="translate")

dobs <- 2 * (fit1$maxlogpl - fit0$maxlogpl)

To generate 99 realisations from the null distribution of ∆ we proceed as
follows:

dvalues <- numeric(99)

for(i in 1:99) {

Xsim <- rmh(fit0)

hc1 <- nnd(Xsim)

hc0 <- matrix(NA, 2, 2)

diag(hc0) <- diag(hc1)

Int0sim <- MultiStraussHard(types, Str0, hc0)

Int1sim <- MultiStraussHard(types, Str1, hc1)

fit0sim <- ppm(Xsim, ˜marks, Int0sim,

correction="translate")

fit1sim <- ppm(Xsim, ˜marks, Int1sim,

correction="translate")

dvalues[i] <- 2 * (fit1sim$maxlogpl - fit0sim$maxlogpl)

}

where nnd is a small function to compute the minimum nearest-neighbour
distances between each pair of types:

nnd <- function(X) {

mks <- X$marks
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d <- pairdist(X)

tapply(d, list(mks[row(d)], mks[col(d)]), min)

}

The resulting Monte Carlo test for between-species interaction gave a p-value
(18) of 0.18, based on 99 simulations from the null model as above. Using the
gamma approximation (Sect. 10.2) based on a separate set of only 30 simulated
realisations from the null model, the approximate p-value obtained was 0.1885.
(Validity of this approximation is confirmed by Fig. 8 in Sect. 10.2.) Thus there
appears to be no evidence of between-species interaction.

We then checked whether there was evidence of any interaction at all. In
this case the null model simply consists of two independent Poisson processes,
of different intensities. This is fitted by calling ppm with the trend given as
˜marks and the interaction as Poisson. The alternative model was taken to be
the full model, including both between- and within-species interactions. We
obtained a Monte Carlo p-value of 0.03, and a gamma approximation p-value
of 0.0402, thus providing evidence that some sort of interaction is present.

If we eliminate between-species interaction from the model, we can test
for within-species interaction either for both species simultaneously, or in the
context of univariate models fitted to each species separately. The p-values for
the simultaneous test were 0.03 (Monte Carlo) and 0.0021 (gamma) indicating
some evidence of within species interaction. The test based on univariate mod-
els gave p-values for the Messor ants of 0 (Monte Carlo) and 0.004 (gamma)
and for the Cataglyphis ants of 0.64 (Monte Carlo) and 0.6279 (gamma), sug-
gesting that there is within-species interaction among the Messor ants, but
not among the Cataglyphis ants.

Finally, as a check on the absence of between-species interaction, we per-
formed a test in terms of a univariate model fitted to the Messor ants con-
ditional upon the Cataglyphis ants. This model used the Strauss/hard core
interaction as before, but added a trend term, the trend being a log-linear
function of distance to the nearest Cataglyphis nest. The null model was
formed simply by omitting the trend term. The empirical p-values for this
test were 0.18 (Monte Carlo) and 0.1108 (gamma), which are again consistent
with the hypothesis of no between-species interaction.

11.5 Incorporation of Covariates

In addition to recording the locations of the ants’ nests, Harkness [35] noted
a boundary between “field” and “scrub” crossing the middle of the study
region, and a foot track running close to the perimeter. The relevance of these
geographical features to the ants’ nests pattern can easily be assessed using
spatstat. Here we demonstrate the use of the modelling software to formulate
and fit point process models which depend on covariates (Sect. 7).

A very simple model for “field/scrub” effect is one in which the intensity
of the process is a different, constant value on each side of the field/scrub
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boundary. In more complicated models, the intensity might also depend on
distance from the field/scrub boundary.

It is convenient to use the function fsdistance(x,y) which is displayed
on p. 60. This function computes the signed distance from any location (x, y)
to the field/scrub boundary. A point (x,y) belongs to the field region if
fsdistance(x,y) > 0.

The simplest sensible model, in which intensity of each species is a differ-
ent, constant value on each side of the field/scrub boundary, can be fitted by
including a covariate which is a two-level factor, indicating whether the point
in question is in field or scrub. One way to do this is by means of the function
fsfac(x,y) shown below.

fsdistance <- function(x,y) {

ends <- ants.extra$fieldscrub

para <- c(diff(ends$x),diff(ends$y))

perp <- c(para[2], -para[1])

unit <- perp/sqrt(sum(perpˆ2))

cbind(x,y) %*% unit - (ends$x[1] * unit[1] +

ends$y[1] * unit[2])

}

fsfac <- function(x,y) {

factor(ifelse(fsdistance(x,y) > 0, "field", "scrub"))

}

The desired model can then be fitted via:

ppm(ants, ˜ marks * fsfac(x,y), Poisson())

Note carefully that the variable names x and y in the call to ppm above, are
reserved names which refer to the Cartesian coordinates in the quadrature
scheme. The code above exploits the fact that the chosen covariate can be
expressed as a function of the Cartesian coordinates. If this is not true, then
the covariates must be supplied either as pixel images or as columns in a data
frame, as explained in Sect. 7.

The fitted model output (after rounding) is

Nonstationary multitype Poisson process

Trend formula: ˜marks * fs(x, y)

Fitted coefficients

(Intercept) marksMessor fsfac(x,y)scrub

-9.35 0.52 -0.77

marksMessor:fsfac(x,y)scrub

0.97

Since field is the first level of the factor fsfac(x,y), this output indicates
that the fitted intensities are as follows:
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Cataglyphis Messor
Field exp(−9.35) exp(−9.35 + 0.52)

= 0.9 × 10−4 = 1.5 × 10−4

Scrub exp(−9.35 − 0.77) exp(−9.35 + 0.52 − 0.77 + 0.97)
= 0.4 × 10−4 = 1.7 × 10−4

These values could also have been obtained by geometrically dividing the
study region into two subregions and counting the numbers of nests of each
species in each subregion. They show that Cataglyphis has a marked preference
for the field region, while Messor nests have approximately equal intensity in
field and scrub regions. This finding was reported by Harkness & Isham [35].

However, these differences are not significant according to the (asymptotic)
likelihood ratio test for a field/scrub effect. Typing

fit1 <- ppm(ants, ˜ marks * fsfac(x,y), Poisson())

fit0 <- ppm(ants, ˜ marks, Poisson())

anova(fit0, fit1, test="Chi")

yields a p-value of 0.12 (with reference to the χ2
2 distribution).

Interpoint interaction may be incorporated, and probably should be incor-
porated, even into the simplest model. For example, we may fit

ppm(ants, ˜ marks * fsfac(x,y), Int1)

where Int1 is the interaction object representing the multitype Strauss/hard
core model, constructed in the previous section using MultiStraussHard. The
fitted intensity parameters β are as follows.

Cataglyphis Messor
Field 1.0 × 10−4 2.0 × 10−4

Scrub 0.3 × 10−4 2.0 × 10−4

This strengthens the earlier suggestion that Cataglyphis nests have an affinity
for field over scrub while Messor nests are indifferent.

Extending the model further, we might fit a trend (in either or both of
the types) depending on the distance from the field/scrub boundary, as well
as on the distinction between field and scrub. Assuming that the dependence
on distance is loglinear, the model can be fitted by

fsdist <- function(x,y) { abs(fsdistance(x,y)) }

ppm(ants, ˜ marks * fsdist(x,y) * fsfac(x,y), Int1)

This trend is essentially the simplest which can be fitted and which makes
full use of all the variables of interest. It is admittedly arbitrary, but should
have a reasonable chance of revealing a trend dependent upon the field/scrub
dichotomy if such a trend exists.

We tested for a trend of the specified form, first in terms of a model al-
lowing for both between- and within-species interactions, and then in terms
of the model which appears most appropriate in the light of the tests pre-
viously conducted, namely a model in which there is interaction within the
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Messor species only. Testing for the trend yielded empirical p-values of 0.32
(Monte Carlo) and 0.3692 (gamma) when the full multivariate Strauss/hard
core interaction was used, and of 0.50 (Monte Carlo) and 0.5709 (gamma)
when the within-Messor-only interaction was used. Thus there is no evidence
of a field/scrub effect, at least as described by a model of this form. Models
involving smooth intensity functions can also be fitted in the same style.

12 The Queensland Copper Data

12.1 Data and Previous Analyses

The Queensland copper data, shown in Fig. 14, were introduced and analysed
by Berman [11]. They consist of a point pattern of 67 copper ore deposits,
and a line segment pattern of 146 geological features, called ‘lineaments’, ob-
tained from an intensive geological survey of a 70 × 158 km region in central
Queensland, Australia. It is of interest to find any association between the
copper deposits and the lineaments. Since the lineaments are visible on satel-
lite images, they might be used to guide the search for copper deposits, by
predicting regions of high intensity for the copper points.

Fig. 14. Copper ore deposits (◦) and lineaments (—) in a region of central Queens-
land. North at top of frame. Reproduced by kind permission of Dr A Green,
Dr J Huntington, Dr M Berman and the Royal Statistical Society

Berman [11] developed formal tests for dependence of the points upon the
lineaments, based on measuring the distance from each point to the nearest
lineament. The points are assumed to constitute an inhomogeneous Poisson
process, with an intensity that depends on distance to the nearest lineament.
The null hypothesis is that the intensity is constant.

Let X denote the copper point process and L the lineament process. All
analysis will be performed conditionally upon L. In [11] it is assumed that X
is conditionally Poisson given L, with intensity function of the form

λX|L(u) = ̺(d(u, L)) (20)
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where d(u, L) denotes the shortest distance from the point u to the nearest
lineament, and ̺ is an unknown function. Under this assumption, the observed
distances di = d(xi, L) for all points xi ∈ X are i.i.d. The null hypothesis,
that ̺ is constant, corresponds to assuming a known distribution for the
di (determined by the geometry of L) and hence can be tested using the
Kolmogorov-Smirnov or other tests of goodness-of-fit. For details see [11].

For geological reasons, lineaments lying in different spatial orientations
have typically been created at different epochs. Hence Berman [11] also con-
sidered the possibility that the intensity of the points depends only upon
distance to lineaments lying in a particular subset of orientations. This subset
consists of those lineaments having an angle (measured in the anticlockwise
direction from the horizontal, with 0◦ pointing east) between 120◦ and 160◦.
He also considered the subset whose angles lie between 10◦ and 40◦, but found
the results from this latter set not to differ from the results for all lineaments.

Berman concluded that there is some evidence of dependence of the in-
tensity of points upon the lineaments, when the entire window is considered,
but speculated that this dependence might be a spurious artifact due to the
scarcity of points in the northern half of the window. When he restricted at-
tention to the southern half of the window (shown in Fig. 15) he found no
evidence of association between points and lineaments.

Fig. 15. Southern half window of the Queensland copper data

The data in the southern half window were re-analysed in [7, 31]. Both
analyses concluded that there is no evidence of dependence.

12.2 Analysis

In this work we re-visit these data, making use of the spatstat package. The
convenient model-fitting and simulation facilities of spatstat make it easy to
conduct tests of association between the points and lineaments, and to explore
other aspects of the nature of these data. In particular we investigate the
assumption that the points are conditionally Poisson. Attention is mainly
restricted to the southern half window, but a further analysis of the entire
window is discussed briefly.

We test for dependence of the points on the lineaments, using three simple
parametric loglinear models for the intensity of the points given the lines:
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λ(u) = β exp{αd} (21)

λ(u) = β exp{α1d + α2d cos θ + α3d sin θ} (22)

λ(u) = exp{α0,i + α1,id}, i = 1, . . . , 3 . (23)

These models are expressed in terms of d = d(u, L), the distance from a
point u to the nearest lineament, and θ = θ(u, L), the spatial orientation
of the lineament closest to u (measured as an anticlockwise angle from the
east-pointing direction). Model (23) is obtained by dividing the angle θ into
classes, with breakpoints determined by the lineament subsets investigated by
Berman in [11]. These breakpoints are 10◦, 40◦, 120◦,and 160◦. There were
no lineaments in the intervals [0◦, 10◦] nor [160◦, 180◦] so there are effectively
three classes. The index i = 1, . . . , 3 is determined by the class in which the
angle θ falls.

Under the assumption that the points, given the lineaments, are a reali-
sation of an (inhomogeneous) Poisson processes we may apply the likelihood
ratio test. The three models (and the null model comprising a constant in-
tensity Poisson process) are fitted as follows. First we construct a data frame
Cov containing the desired covariates: it has columns d (the distance to the
nearest lineament), angle (the angle made by this nearest lineament with
the horizontal) and cat.ang (the categorical variable or factor resulting from
classifying angle into three groups).

data(copper)

attach(copper)

Q <- quadscheme(SouthPoints,nd=c(24,106))

UQ <- union.quad(Q)

Cov <- makecov(UQ, SouthLines)

The function makecov is a one-off utility which performs the analytic geometry
of computing distances between points and line segments. The implementation
of such calculations will change shortly. Interested readers should contact the
authors for further information.

The three models (21)–(23) can then be fitted, along with the null model,
as follows

F0 <- ppm(Q)

F1 <- ppm(Q, ˜d, covariates=Cov)

F2 <- ppm(Q, ˜d + I(d * sin(angle)) + I(d * cos(angle)),

covariates=Cov)

F3 <- ppm(Q, ˜d * cat.ang, covariates=Cov)

These models are Poisson by default. Note that expressions like d*sin(angle)
must be protected by I() within a call to ppm() to ensure that * is interpreted
as multiplication.

The likelihood ratio test for each successive pair of models can now be
performed using anova.ppm, or by hand as indicated in Sect. 10. The resulting
p-values are as follows.
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Model Statistic p-value
1 0.5613 0.4538
2 6.0080 0.1112
3 3.7561 0.5850

Another subdivision of the lineament orientations with breakpoints of 0◦, 60◦,
120◦ and 180◦, resulted in a likelihood ratio statistic of 7.7873 with p-value
0.1684.

There is thus no evidence of dependence of the points upon the linea-
ments, at least in the forms of these models. Thus our conclusions here are in
agreement with the previous analyses [7, 11, 31].

However, the foregoing analyses assume that the copper points form an (in-
homogeneous) Poisson process given the lineaments. This assumption should
be validated. One possibility is to use the residual plots described in Sect. 10.1;
an analysis of these data is reported in [7].

Alternatively we may use the inhomogeneous version of the K-function,
Kinhom(r) introduced in [3]. This requires the intensity function of the cop-
per point process, evaluated at the data points. We estimated the intensity
function in four ways: from the three foregoing parametric models, and also
non-parametrically.

The parametric estimates are straightforward. The fitted intensity at the
data points is provided by fitted.ppm. Thus for example

lambda <- fitted(F1)

K1 <- Kinhom(SouthPoints, lambda)

plot(K1)

computes the inhomogeneous K-function based on the intensity function λ
estimated under the model (21), and plots the result.

For the non-parametric estimate of the intensity function, we assume (20)
holds, where the form of the function ̺ is not specified. We make use of the
following relationship [31]. Suppose X and L are jointly stationary. Let FL be
the empty space function for the L process, that is, FL(t) is the cumulative
distribution function of the distance from an arbitrary point in the plane to
the nearest lineament in L. Let GXL be the cumulative distribution function of
the distance from a typical point of the process X to the nearest line segment
in L. Then if (20) holds, we have

GXL(t) =

∫ t

0
̺(s)dFL(s)∫∞

0
̺(s)dFL(s)

(24)
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From this it follows that

̺(t) = µ
dGXL(t)/dt

dFL(t)/dt
(25)

where

µ =

∫ ∞

0

̺(s)dFL(s) = E(̺(d(u, L))

is the intensity of X. The moment estimator of µ is µ̂ = n(X)/|W |.
To estimate dGXL(t)/dt and dF (t)/dt we can compute empirical estimates

of F and G, fit smoothing splines, and take the derivatives of the splines. Es-
timates of F and G can be computed using standard methods. At the time of
writing, these methods must be implemented by hand for line segment pat-
terns. Future extensions of spatstat will include support for these calculations.
The graph of ̺̂(t) is shown in Fig. 16.
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Fig. 16. Estimate of the function ̺(t) in (20) obtained using by substituting spline
estimates in (25)

There were very substantial differences in the appearance of the inten-
sity surfaces computed by different parametric methods, and by the non-
parametric methods. Despite this, the four estimates of the inhomogeneous
K-function turned out to be virtually identical to each other, and to the
estimated conventional K-function, for each window. Plots of one of the inho-
mogeneous K-function estimates and of the conventional K-function estimate
are shown in Fig. 17. The explanation is that the inhomogeneous K-function
depends only on the estimated intensity values at the points of the point
pattern. These intensity values were approximately constant for these data.

The K functions suggest that there is positive association between the cop-
per deposits, conditioned on the lineaments. Again, we would like to be able
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Fig. 17. Inhomogeneous K-function (solid line), conventional K-function (dotted
line) and theoretical K-function under CSR (dashed line) for the Queensland copper
data. Inhomogeneous version computed using parametric model (22)

to test this formally, and this requires a class of models which allow for pos-
itive association or clustering. One convenient choice is the Geyer saturation
model [32].

In order to fit the Geyer model we need to estimate the “irregular” param-
eters of the model, namely the interaction radius r > 0 and the saturation
number s. Rough estimates may be found by searching over a small set of
integer values for s (1 to 5 inclusive) using profile pseudolikelihood. Note that
the maximum over r of the log pseudolikelihood (for a fixed value of s) must
occur at one of the interpoint distances of the observed pattern.

The values obtained for the estimates of the irregular parameters were
r̂ = 1.18 and ŝ = 2 respectively. Similar estimates (r̂ = 1.05 and ŝ = 2) were
obtained when we also included in the model a trend of the form (22) along
with the Geyer interaction. Sample plots of the profiles, for the trend-included
setting, are shown in Fig. 18. The profile over r for s = 5 is very similar to
that for s = 4 and is omitted to save space.

The profile log pseudolikelihood in Fig. 18 is shown only for r ≤ 10 km.
Localised sharp peaks occur for some larger values of r, and in fact the overall
unconstrained maximum occurs at r = 10.62 and s = 1. However, this value
of r is not credible. The associated estimate of γ is 94.272, which would cause
immensely strong clustering. Plots of the estimated G and K functions and
the pair correlation function suggest an interaction range between 1 and 3
km. It seems plausible that the value of r = 10.62 is a numerical artifact,
since it is just slightly larger than the maximum nearest neighbour distance
in the data, and the observation window has a width of only 35 km. We
therefore decided to dismiss the profile peaks for r > 10 as anomalies. This
example illustrates the delicacy of estimating irregular parameters and the
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need to check the results of a maximisation algorithm. For interaction radii it
is probably sensible to restrict the search range to the interval from 0 to the
maximum nearest neighbour distance.
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Fig. 18. Profile log pseudolikelihood for a Geyer model, as a function of interaction
radius r, for several values of the saturation parameter s. Southern half window.
Trend from model (22) included in the fit

We tested the model with trend given by model (22) and interaction given
by Geyer(1.05,2) against the null model with trend only. We also tested a
stationary model with Geyer(1.18,2) interaction against a completely null
(i.e. constant intensity Poisson) model.

In the first case we obtained a log pseudolikelihood ratio statistic ∆ =
57.35, a Monte Carlo p-value of 0.01, and a gamma approximation p-value of
4.6× 10−6. In the second case ∆ = 59.36, with Monte Carlo p-value 0.01, and
gamma p-value of 4.8 × 10−11.
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These tests appear to confirm the impression given by the K-function
plots that there is positive association between the points. Given that there is
attraction, the tests for dependence of the points upon the lineaments, based
upon inhomogeneous Poisson models, cannot be considered valid. However we
can now conduct tests allowing for the apparent interaction. The test of trend
(given by model (22)) plus Geyer(1.05,2) against Geyer interaction only
gave ∆ = 4.75, with a Monte Carlo p-value of 0.12, and a gamma p-value of
0.144. Thus when interaction is allowed for, the evidence of dependence of the
points upon the lines is still “insignificant” and is in fact slightly weaker than
if we assume the points to arise from an (inhomogeneous) Poisson process.

12.3 North-South Effect

We now briefly consider the complete data set rather than the southern half
window. In particular we focus on Berman’s conjecture that the apparent
dependence of points on lineaments, when the entire window is considered,
might be a spurious artifact due to the scarcity of points in the northern half of
the window. If this is indeed the case, then it may be possible to adjust for the
low intensity in the northern half window by introducing a trend depending
upon the spatial covariates x and y.

One convenient class of models uses the smoothing term s in the trend
formula. For example

Q <- quadscheme(copper$points, nd=c(34,75))

F0 <- ppm(Q,˜s(y),use.gam=TRUE)

fits a Poisson model with a smooth trend in the y coordinate (Northing) only.
We may test this null model against more elaborate models such as

UQ <- union.quad(Q)

Cov <- makecov(UQ, copper$lines)

F1 <- ppm(Q, ˜s(y) + d + I(d * sin(angle)) +

I(d * cos(angle)), covariates=Cov, use.gam=TRUE)

F2 <- ppm(Q, ˜s(y) + d * cat.ang, covariates=Cov,

use.gam=TRUE)

The likelihood ratio test of models F1 and F2 against model F0 turned out
to have values of 18.22 and 9.96 on 3 and 9 degrees of freedom respectively.
(Note that for the full window, all five angle categories are non-empty.) The
corresponding p-values are 0.0003 and 0.3537. Thus there appears to remain
an indication of dependence of the points on the lineaments via model (22)
(although not via model (23)) for the full data set, even after a spatial trend
(depending on the x and y coordinates) is allowed for.

The foregoing likelihood ratio test may be criticised since we had already
demonstrated an interpoint interaction in the southern half window. Instead
we should be conducting Monte Carlo tests involving an interpoint interaction
term. The Geyer model irregular parameters may be estimated for the full
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window by profiling, yielding r̂ = 1.18 and ŝ = 2 (as for the southern half
window when no trend is included. The estimates of the irregular parameters
were the same for the full window whether a lineaments-dependent trend was
allowed for or not.) We might thus set out to test the null model

F0 <- ppm(Q, ˜s(y), Geyer(1.18,2), covariates=Cov,

use.gam=TRUE)

against (for instance)

F1 <- ppm(Q,˜ s(y) + d * cat.ang, Geyer(1.18,2),

covariates=Cov, use.gam=TRUE)

Notice that here, as elsewhere, we propose to conduct inference conditionally
on the fitted values of the irregular parameters. This is done mainly to save
computational time. A definitive formal analysis should also look at the effect
of estimating the irregular parameters.
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Strong Markov Property of Poisson Processes
and Slivnyak Formula

Sergei Zuyev

Department of Statistics and Modelling Science, University of Strathclyde,
Glasgow, G1 1XH, UK, sergei@stams.strath.ac.uk

Summary. We discuss strong Markov property of Poisson point processes and the
related stopping sets. Viewing Poisson process as a set indexed random field, we
demonstrate how the martingale technique applies to establish the analogues of the
classical results: Doob’s theorem, Wald identity in this multi-dimensional setting.
In particular, we show that the famous Slivnyak-Mecke theorem characterising the
Poisson process is a consequence of the strong Markov property.

Key words: Gamma-type result, Poisson point process, Slivnyak formula, Strong
Markov property

1 Filtrations and Stopping Sets

To outline the idea of this paper, let us start with an example of a temporal
stochastic process, i. e. a random function ξ • (ω) = {ξt(ω)}t≥0, ω ∈ Ω indexed
by one-dimensional parameter t ≥ 0 which we refer as time. Surely, this map
from sample space Ω into the appropriate function space over [0,∞) should
be measurable with respect to a suitably chosen σ-algebra. However, such a
definition is usually too general as it does not describe the temporal evolution
of ξ • . Therefore it is useful to define a growing sequence of σ-algebras F[0,s]

of subsets of Ω representing the process’ history up to time s, and impose the
condition that the restriction of ξ • onto time interval [0, s], i. e. the function
{ξt(ω)}t∈[0,s], should be F[0,s]-measurable for all s ≥ 0. Of course, this is
a stronger notion of measurability for the random function which is called
progressive measurability. The system of growing σ-algebras F[0,s] is called
filtration.

One of the central notions for temporal processes is the stopping time. It is
a random variable τ such that event {ω ∈ Ω : τ(ω) ≤ s} is F[0,s]-measurable
for all s ≥ 0. In words, the fact that τ is observed before time s is defined
only by the history F[0,s] up to time s only. With every stopping time one
may associate the corresponding stopping σ-algebra which is the collection of
events
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Fτ = {Σ ∈ F[0,∞] : Σ ∩ {ω : τ(ω) ≤ s} ∈ F[0,s] for all s ≥ 0} . (1)

The main object of our study here are point processes in a general space.
We shall see how far we can mimic the above objects in this intrinsically multi-
dimensional setting. We treat point processes as random countable measures
and as we will see, their usual definition actually assumes the progressive
measurability. Specifically, let X be a locally compact separable topological
space (LCS-space) which we call a phase space of the process and B be its
Borel σ-algebra. X plays the role of the index set [0,∞) above – we typically
consider X = R

d for simplicity. Let N be a set of counting measures on B, so
that a measure φ ∈ N , if φ(B) ∈ {0, 1, 2, . . . } = Z+ for any Borel B. Any such
measure can be represented as the sum of unit masses: φ =

∑
i δxi

, where xi

are not necessarily different and δx(B) = 1B(x). We call the support points
particles.

A point process N = N(ω) is a [F , Ξ]-measurable mapping from some ab-
stract probability space (Ω,F ,P) into the measurable space [N , Ξ] of count-
ing measures. σ-algebra Ξ is generated by the sets of the type {φ ∈ N :
φ(B) = k}, B ∈ B, k ∈ Z+. This is a natural definition of measurability for
point processes as this makes the events of type {ω ∈ Ω : N(ω,B) = k}
measurable. Often [Ω,F ] is taken to be [N , Ξ] itself and N is identity map-
ping. Such processes are called canonically defined. From now on we consider
canonically defined processes and write φ (a point configuration) instead of ω
to stress that and give up notation Ξ in favour of F .

The intensity measure of a point process N = N(φ) defined on Borel
B ∈ B as λN (B) = EN(B). The Campbell measure is a measure C(dφdx) on
F ⊗ B defined on Σ × B as C(Σ × B) = EN(φ,B)1Σ(φ). We observe that
C(Σ × • ) as a measure on B is absolutely continuous with respect λN (dx),
thus there exists a Radon-Nikodym derivative Px

N (Σ) which is a measurable
function of x ∈ X, but which can also be chosen to be a probability measure
on [N ,F ] called the Palm distribution corresponding to N at x. By definition
the following identity called refined Campbell theorem holds:

E

∫
F (φ, x)N(dx) =

∫
Ex

NF (φ, x)λN (dx) (2)

for any measurable function F . The Palm measure Px
N is concentrated on

configurations φ such that φ({x}) > 0 and can be regarded as a distribution
of a random configuration conditioned on having a particle at x.

Let F,K be the system of closed and compact subsets of X respectively.
Then for every K ∈ K one may define the σ-algebra FK which is gener-
ated by the sets {φ ∈ N : φ(B ∩ K) = k}, B ∈ B, k ∈ Z+. Similarly
to one-dimensional case, the following properties allow us to call the system
{FK}, K ∈ K a filtration:

• monotonicity: FK1
⊆ FK2

for any two compact K1 ⊆ K2;
• continuity from above: FK = ∩∞

n=1FKn
if Kn ↓K.
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By construction, the restriction of the point process N onto K is FK-
measurable, so N is automatically progressively measurable and {FK}, K ∈ K

is thus the natural filtration associated with the process. We see a complete
analogy when one-dimensional parameter t – time is replaced now by a com-
pact set K. To pursue this analogy we need a notion of a random compact
set which supersedes a random time.

A random closed set N is a measurable mapping N : [N ,F ] �→ [F, σf ],
where σf is the σ-algebra generated by the system {F ∈ F : F ∩K �= ∅}, K ∈
K.

A random compact set S = S(φ) is called a stopping set (more precisely,
{FK}-stopping set) if the event {φ : S(φ) ⊆ K} is FK measurable for all
K ∈ K. It is a natural generalisation of the notion of a stopping time: knowing
the configuration of N(φ) inside a compact K is sufficient to conclude whether
S(φ) ⊆ K or not.

Similarly to (1), with each stopping set S there is an associated stopping
σ-algebra:

FS = {Σ ∈ F : Σ ∩ {φ : S(φ) ⊆ K} ∈ FK for all K ∈ K} .

It can be shown that

S(φ) = S(φ|S(φ)) and F (φ) = F (φ|S(φ)) (3)

if F is FS-measurable. Here and afterwards, φ|B( • ) = φ(B ∩ • ) denotes re-
striction of a counting measure φ onto B This stems from [7, Prop. 3] on
the structure of the stopping σ-algebra and reflects the fact that to decide
whether S is a stopping set or not, one only needs to know configuration in S
itself. Since non-random compacts are also stopping sets, then (6) also covers
(4).

Perhaps, the simplest of stopping set is based on the stopping time: if τ
is a finite stopping time in 1D case, then the set [0, τ ] is a compact {F[0,s]}-
stopping set. More complex examples. Assume that X is a metric space and
N(X) ≥ k almost surely for some k ≥ 1. Then the smallest closed ball B(x0)
centred in a given point x0 containing k points of the process inside is a
stopping set. Indeed, given realisation N(φ), start “growing” a ball from x0

increasing its radius from 0 to infinity and stop when it first accumulates k
points (or maybe more at once, when the process points are not always in a
general position or may overlap). Then whatever compact K is considered,
either we stop before this growing ball touches the complement Kc, so that
B(x0) ⊆ K, or we reach Kc and thus B(x0) �⊆ K. Either way, we only used
point configuration inside K to decide whether or not B(x0) ⊆ K, i. e. this
event is FK-measurable.

This observation actually shows a very useful way to establish the stopping
property: if there is a one-parameter sequence of growing compact sets which
eventually leads to construction of the random compact, then this compact
is a stopping set. Consider X = R

2 and N(φ) containing almost surely at
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least one particle in each of the four quadrants. Assume also that N does not
contain multiple points and that all the particles are in a general position
(no three points are aligned and no four points lie on a circle). Construct the
Voronoi cell centred in the origin O with respect to N(φ)∪{O}. It consists of
the points which are closer to O than to any particle from N(φ). Its vertices
are the centres of the balls which have the origin and exactly two particles
of N(φ) on their boundaries and no point of N(φ) inside. The union F (φ)
of these balls is known as the Voronoi flower or fundamental region as the
geometry of the cell is completely determined by F . Let us show that F is a
stopping set.

Let S0 be the largest disk centred on the positive x-axis passing through
the origin and one of the particles (call it x1), and not having any particles in
its interior (see Fig. 1). The right bisector of O and x1 can be seen on the figure;
it is the side of the Voronoi polygon cut by the positive x-axis. Now consider
the continuum of disks passing through O and x1, with centre moving upward
along this right bisector. Stop when this “growing” disk first hits another
particle (which is labelled x2). This disk is B1. In a similar fashion, we move
a circle-centre along the next right-bisector, stopping the growing disk (which
passes through O and x2) when it hits another particle, x3. The last of these
constructions stops when x1 is encountered by a growing disk. This algorithm
successfully constructs the Voronoi flower F = S0 ∪B1 ∪ . . . Bn, if the cell has
n sides.

A Poisson process with intensity measure λ(dx) is a point process Π with
the following two properties: the variables Π(B1), . . . , Π(Bk) are mutually
independent for disjoint B1, . . . , Bk for any k; and Π(B) follows Poisson dis-
tribution with parameter λ(B). As a result, for any Borel set B and any
functional F (φ), φ ∈ N one has:

∫
F (φ)P(dφ) =

∫
F (φ|B + φ|Bc)P(dφ)

=

∫∫
F (φ|B + φ′|Bc)P(dφ)P(dφ′)

=

∫∫
F (φ + φ′)PB(dφ)PBc(dφ′) , (4)

where PB is the restriction of P onto the σ-algebra FB . The property (4) re-
flects complete independence of the Poisson process distribution due to which
P = PB⊗PBc . In particular, a Poisson process is a Markov process. Therefore
it also possesses the strong Markov property :

∫
F (φ)P(dφ) =

∫∫
F (φ|S(φ) + φ′|Sc(φ))P(dφ)P(dφ′) (5)

for every compact stopping set S, see [5, Thm. 4].
Relation (5) can also be expressed as

E[F (Π) FS ](φ|S(φ)) = ESc(φ)F (φ|S(φ) + Π) (6)
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O

Bn

x1

B1

x2

x3

B2

S0

Fig. 1. Incremental construction of the Voronoi flower. Stopping set S0 is shaded.
Direction of the circle-centre move is shown by arrows

(more exactly, this is one of versions of the conditional expectation).

2 Slivnyak Theorem for Locally Defined Processes

It is common in stochastic geometry and other applications to have another
point process Φ which is defined as a function of the reference process N .
For instance, Φ may be the process of vertices of the Voronoi tessellation con-
structed with respect to planar process N . The way this process is constructed
uses only local information to decide where the positions of Φ-particles are.
Assume for simplicity that N is simple, i. e. with probability 1 it does not
contain multiple particles. Then, given a configuration φ of the reference pro-
cess N , the points of Φ(φ) have the following identifying property: x ∈ Φ(φ)
if and only if there is a ball centred at x which contains exactly 3 φ-particle
on its boundary and no φ-particle inside. A way to establish if x ∈ Φ(φ) is
simple: start “blowing” a ball centred at x until it hits a φ-particles. Call
that inflated ball with at least one particle on the boundary S(x, φ). As we
already discussed above, S(x, φ) is a stopping set. Then we just count how
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many φ-particles are on the boundary, if there are 3 of them, then x ∈ Φ(φ),
otherwise x �∈ Φ(φ). With this example in mind, call a point process Φ(φ)
locally defined if for every x ∈ X there is a compact stopping set S(x, φ) such
that the event {x ∈ Φ(φ)} is FS(x)-measurable.

Now we are ready to formulate our main result.

Theorem 1. Let Φ be a locally defined point process on the canonical proba-
bility space of a Poisson process with distribution P and S(x, φ) be the corre-
sponding defining family of stopping sets. Then for λΦ-almost all x ∈ X and
a measurable function F (φ) one has

Ex
ΦF =

∫
F (φ)Px

Φ(dφ) =

∫∫
F
(
φ|S(x,φ) + φ′|Sc(x,φ)

)
Px

Φ(dφ)P(dφ′) . (7)

Proof. The statement of the theorem is equivalent to the fact that for all
B ∈ B one should have

∫∫
F (φ)1B(x)Px

Φ(dφ)λΦ(dx)

=

∫∫∫
F
(
φ|S(x,φ) + φ′|Sc(x,φ)

)
1B(x)Px

Φ(dφ)P(dφ′) .

By the Campbell theorem (2), this is equivalent to

∫∫
F (φ)1B(x)Φ(φ,dx)P(dφ)

=

∫∫∫
F
(
φ|S(x,φ) + φ′|Sc(x,φ)

)
1B(x)Φ(φ,dx)P(dφ)P(dφ′) . (8)

Apply identity (5) to the left hand side of (8). By the local definition of Φ
and by (3) one has Φ(φ|S(x,φ) +φ′|Sc(x,φ)) = Φ(φ|S(x,φ)) = Φ(φ). The result is
indeed the right hand side, and the proof is complete.

A few remarks are now in order.
A result similar to (7) was first established in [4] for the above example of

the nodes of the Voronoi tessellation constructed with respect to a stationary
Poisson process. The proof there uses particular geometric properties of the
empty Delaunay disks (S(x) in our notation) and cannot be ported to our
general setting. In this above form, the result was shown in [1] for the case of
stationary processes. In the stationary case the Palm distribution is just no
longer a function of x, so it is covered by the same identity (7).

Consider the case when the Poisson process Π is simple and Φ coincides
with Π itself. It is trivially locally defined: the stopping sets S(x) are just the
singletons {x}. Now the formula (7) transforms into

∫
F (φ)Px(dφ) =

∫
F (δx + φ′)P(dφ′) =

∫
F (φ + δx)P(dφ) (9)



Strong Markov Property and Slivnyak Formula 83

which is exactly the Slivnyak’s theorem, see [3, 6]. So this Slivnyak-Mecke
characterising formula is no more than another face of the Strong Markov
property of the Poisson process.

The proof of the theorem used only the strong Markov property (5) of the
Poisson process distribution P which, in turn, was a consequence of the com-
plete independence property (4). Thus Theorem 1 also holds for completely
independent point processes. Such processes are, in fact, a superposition of
two independent point processes: a counting measure concentrated on a non-
random at most countable set of atoms and a Poisson process with a diffuse
intensity measure, see [2, Thm. 2.4.VIII]. This Poisson process is thus sim-
ple. We saw, however, that when the first component is absent, the theorem
implies identity (9) which characterises Poisson point process distribution, as
was proved in [3]. Thus, as a by-product we have shown that there is no simple
complete independent point process other than Poisson.

Let us also mention another generalisation of the idea of locally defined
point processes to higher dimensional random sets. For simplicity of formula-
tions, we only deal with the phase space X = R

d.
Consider an n-dimensional (n < d) random fiber process, i.e. a random

closed set Φ on the Poisson process’ probability space [N , Ξ] such that its n-
dimensional intensity measure λΦ( • ) = EHn( • ∩Φ) is non-trivial and σ-finite
(Hn is the n-dimensional Hausdorff measure in R

d).
As above, call Φ locally defined if for every x ∈ X there is a compact

stopping set S(x, φ) such that the event {x ∈ Φ(φ)} is FS(x)-measurable.
A visual example may provide the collection of n-dimensional edges of the
Voronoi cells constructed with respect to the particles of the process. A point
x belongs to n-dimensional edge if and only if the glowing ball centred at x
will hit at least d − n + 1 particles at once, see Fig. 2.

Similarly to point process case, one may introduce the Campbell measure
C(Σ × B) = E1ΣHn(B ∩ Φ) and its Radon-Nikodym derivative

Px
Φ(Σ) =

dC(Σ × • )

dλΦ
(x), Σ ∈ Ξ ,

which is called the Palm probability (more exactly, its version which is a
probability measure on Ξ).

Now, the proof of Theorem 1 can be carried through to give us a similar
result:

Theorem 2. Assume that the fiber process Φ is locally defined. Then For-
mula (7) holds for Φ and its Palm distribution.
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Fig. 2. Edges of the Voronoi cells and the corresponding defining stopping sets
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Summary. Recently Møller, Pettitt, Berthelsen and Reeves [17] introduced a new
MCMC methodology for drawing samples from a posterior distribution when the
likelihood function is only specified up to a normalising constant. We illustrate the
method in the setting of Bayesian inference for Markov point processes; more specif-
ically we consider a likelihood function given by a Strauss point process with priors
imposed on the unknown parameters. The method relies on introducing an auxil-
iary variable specified by a normalised density which approximates the likelihood
well. For the Strauss point process we use a partially ordered Markov point process
as the auxiliary variable. As the method requires simulation from the “unknown”
likelihood, perfect simulation algorithms for spatial point processes become useful.

Key words: Bayesian inference, Markov chain Monte Carlo, Markov point process,
Partially ordered Markov point process, Perfect simulation, Spatial point process,
Strauss process

1 Introduction

Markov point processes [14, 16, 19] are models for point processes with inter-
acting points, and they constitute one of the most important classes of spatial
point process models. The basic problem with parametric inference for such
point processes is the presence of a normalising constant which cannot be eval-
uated explicitly, cf. Chap. 9 in [19]. So far most work on parametric inference
for Markov point processes have concentrated on parameter estimation based
on maximum pseudo likelihood estimation [1, 5, 13] or approximate maximum
likelihood estimation using Markov chain Monte Carlo (MCMC) algorithms
[9, 10, 18, 19]. Apart from a few papers [3, 12], very little has been done on
Bayesian inference for Markov point processes.

In this paper we consider the problem of simulating from a posterior den-
sity

π(θ|y) ∝ π(θ)π(y|θ) (1)

when the likelihood
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π(y|θ) = qθ(y)/Zθ (2)

is given by an unnormalised density qθ(y) with an unknown normalising con-
stant (or partition function) Zθ. By “unknown”, we mean that Zθ is not
available analytically and/or that exact computation is not feasible. Indeed
this is the case when (2) is a likelihood function for a parametric family of
Markov point process models, cf. [16, 19].

For example, consider a Strauss process defined on a region S ⊂ R
2 of area

|S| ∈ (0,∞). This has a density

π(y|θ) =
1

Zθ
βn(y)γsR(y) (3)

with respect to µ, which denotes a homogeneous Poisson point process on S
with intensity one. Further, y is a point configuration, i.e. a finite subset of
S; θ = (β, γ,R), with β > 0 (known as the chemical activity in statistical
physics), 0 < γ ≤ 1 (the interaction parameter), and R > 0 (the interaction
range); n(y) is the cardinality of y; and

sR(y) =
∑

{ξ,η}⊆y:ξ �=η

1[‖η − ξ‖ ≤ R]

is the number of pairs of points in y within a distance R from each other.
Figure 1 shows a realisation y of a Strauss point process, where sR(y) is given
by the number of pairs of overlapping discs with diameter R/2 and centred at
the points in y. For γ = 1, we obtain a homogeneous Poisson process on S with
intensity β. For γ < 1, typical realisations look more regular than in the case
γ = 1. This is due to inhibition between the points, and the inhibition gets
stronger as γ decreases or R increases. The normalising constant is unknown
when γ < 1, since

Zθ = e−|S| + e−|S|
∞∑

n=1

βn

∫

S

· · ·
∫

S

γsR({y1,...,yn}) dy1 · · · dyn

where the n-fold integrals are unknown, cf. [14].
It is not straightforward to generate samples from (1) by MCMC algo-

rithms: Consider a Metropolis-Hastings algorithm, see e.g. [20]. If θ is the
current state of the chain generated by the algorithm, and if a proposal θ′

with density p(θ′|θ) is generated, then θ′ is accepted as the new state with
probability α(θ′|θ) = min{1, H(θ′|θ)}, and otherwise we retain θ. Here

H(θ′|θ) =
π(θ′|y)p(θ|θ′)

π(θ|y)p(θ′|θ)

is the Hastings ratio. By (2),

H(θ′|θ) =
π(θ′)qθ′(y)p(θ|θ′)

π(θ)qθ(y)p(θ′|θ)

/
Zθ′

Zθ
(4)
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Fig. 1. Realisation of a Strauss point process on the unit square, with (β, γ, R) =
(100, 0.5, 0.05), and generated by perfect simulation algorithm (dominated CFTP,
see[15]). Circles centred at points have radii 0.025.

is unknown, since it depends on the ratio of unknown normalising constants
Zθ′/Zθ.

Because of their intractability, earlier Bayesian work on Markov point
processes attempted to avoid algorithms involving unknown normalising con-
stants. An example in connection to spatial point processes is Heikkinen and
Penttinen [12], who instead of estimating the entire posterior distribution,
focused on finding the maximum a posteriori estimate for the interaction
function in a Bayesian model where the likelihood function is given by a pair-
wise interaction point processes (like the Strauss process) and its normalising
constant is unknown. Recently, Berthelsen and Møller [3] performed a more
detailed Bayesian MCMC analysis, using path sampling [8] or, as it is known
in statistical physics, thermodynamic integration, for estimating the ratio of
normalising constants.

Section 2 considers the approach introduced by Møller et al. [17] which
avoids approximations of (ratios of) normalising constants such as those dis-
cussed above. Their approach consists in introducing an auxiliary variable x
into a Metropolis-Hastings algorithm for (θ, x) so that ratios of normalising
constants no longer appear but the posterior distribution for θ is retained.
Access to algorithms for making perfect (or exact) simulations [2, 11, 15, 19]
from (2) is an important ingredient as explained later. Section 3 applies this
approach to a Bayesian analysis of a Strauss process. This section has earlier
been published as a part of the research report [17]. Finally, Sect. 4 contains
some concluding remarks.
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2 Auxiliary Variable Method

Consider the general setting (1) when Zθ in (2) is unknown. The method
described in this section applies for Markov point process models as well as
many other statistical models with an unknown normalising constant, cf. [17].

We introduce an auxiliary variable x defined on the same space as the state
space of y. Assume that x has a normalised conditional density f(x|θ, y), so
that the joint density of (θ, x, y) is given by

π(θ, x, y) = f(x|θ, y)π(y|θ)π(θ).

The posterior density with π(y|θ) given by (2),

π(θ, x|y) ∝ f(x|θ, y)π(θ)qθ(y)/Zθ

still involves the unknown Zθ.
A Metropolis-Hastings algorithm for drawing from π(θ, x|y) has a Hasting

ratio given by

H(θ′, x′|θ, x) =
π(θ′, x′|y)p(θ, x|θ′, x′)

π(θ, x|y)p(θ′, x′|θ, x)

=
f(x′|θ′, y)π(θ′)qθ′(y)p(θ, x|θ′, x′)

f(x|θ, y)π(θ)qθ(y)p(θ′, x′|θ, x)

/
Zθ′

Zθ

where p(θ′, x′|θ, x) is the proposal density for (θ′, x′). The proposal density
can be factorised as

p(θ′, x′|θ, x) = p(x′|θ′, θ, x)p(θ′|θ, x) (5)

and the choice of proposal distribution is arbitrary from the point of view of
the equilibrium distribution of the chain of θ-values. Hence we may take the
proposal density for the auxiliary variable x′ to be the same as the likelihood,
but depending on θ′, rather than θ,

p(x′|θ′, θ, x) = p(x′|θ′) = qθ′(x′)/Zθ′ . (6)

Then

H(θ′, x′|θ, x) =
f(x′|θ′, y)π(θ′)qθ′(y)qθ(x)p(θ|θ′, x′)

f(x|θ, y)π(θ)qθ(y)qθ′(x′)p(θ′|θ, x)
(7)

does not depend on Zθ′/Zθ, and the marginalisation over x of the equilibrium
distribution π(θ, x|y), gives the desired distribution π(θ|y). In contrast to (4)
we now have a much simpler problem of finding the ratio of the distributions
of the proposed and current auxiliary variable, f(x′|θ′, y)/f(x|θ, y), the other
factors in (7) presenting no difficulty in evaluation.

Henceforth, for simplicity, we assume that

p(θ′|θ, x) = p(θ′|θ) (8)
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does not depend on x. For simulation from the proposal density (5) we suppose
that it is straightforward to make simulations from p(θ′|θ) but not necessarily
from p(x′|θ′, θ, x); for p(x′|θ′, θ, x) given by (6) appropriate perfect simulation
algorithms [2, 11, 15, 19] are used to avoid convergence questions of straight-
forward MCMC algorithms.

A critical design issue for the algorithm is to choose an appropriate aux-
iliary density f(x|θ, y) and proposal density p(θ′|θ) so that the algorithm
has good mixing and convergence properties. Assume for the moment that
Zθ is known and the algorithm based on (4) has good mixing properties.
If we let f(x|θ, y) = qθ(x)/Zθ, then by (8), (7) reduces to (4), and so the
mixing and convergence properties of the two Metropolis-Hastings algorithms
using (4) and (7) are the same. Furthermore, recommendations on how to
tune Metropolis-Hastings algorithms to obtain optimal acceptance probabili-
ties may exist in the case of (4). This suggests that the auxiliary distribution
should approximate the distribution given by qθ,

f(x|θ, y) ≈ qθ(x)/Zθ. (9)

It is interesting to notice that if equality holds in (9), then the states from
the chain for the auxiliary variable x can be interpreted as posterior predic-
tions. Choices where (9) are satisfied will be discussed in the following. One
particular choice is

f(x|θ, y) = qθ̃(y)/Zθ̃, (10)

where θ̃ is fixed. This choice is expected to work well if the posterior distri-
bution is concentrated around θ̃.

3 The Strauss Process

The Strauss process (3) is an example of a so-called locally stable point pro-
cess, and in fact most Markov point processes used in applications are locally
stable [9, 19]. Locally stable point processes can be simulated perfectly by
an extension of the Propp-Wilson CFTP algorithm, called dominated CFTP,
see [15]. Maximum likelihood and maximum pseudo likelihood estimation for
the Strauss process is well established [1, 3, 5, 9, 10, 13, 18, 19].

3.1 Specification of Auxiliary Point Processes

In Sect. 3.2 we consider results for three different kinds of auxiliary variables
(referred to as auxiliary point processes) with densities f = f1, f2, f3 with
respect to µ. In the sequel, for simplicity, we fix R, though our method ex-
tends to the case of varying interaction radius, but at the expense of further
calculations.
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The simplest choice of an auxiliary point process is a homogeneous Poisson
point process on S. We let its intensity be given by the MLE n(y)/|S| based
on the data y. This auxiliary point process has density

f1(x|θ, y) = e|S|−n(y)(n(y)/|S|)n(x)
, (11)

see e.g. [19]. We refer to (11) as the fixed Poisson process.
The second choice takes the interaction into account. Its density is given

by
f2(x|θ, y) ∝ β̂n(x)γ̂sR(x) (12)

where (β̂, γ̂) is the MLE based on y and approximated by MCMC methods
(for details, see Sect. 3 in [3]). We refer to (12) as the fixed Strauss process

and to (β̂, γ̂) as the MCMC MLE.
The densities f1 and f2 do not depend on the parameters β and γ, and

they are both of the type (10). The third choice we consider takes both inter-
action and parameters into account, but not the data y. Its density is more
complicated to present, but it is straightforward to make a simulation in a
sequential way: Assume for instance that S is rectangular (the following easily
extends to a general region S). Choose a subdivision Ci, i = 1, . . . ,m of S
into, say, rectangular cells Ci of equal size. The simulation is then done in a
single sweep, where the cells are visited once in some order. Each visit to a
cell involves updating the point configuration within the cell in a way that
only depends on the point configuration within the cells already visited.

Specifically, let I = {1, . . . ,m} be the index set for the subdivision and
for each i ∈ I let Xi be a point process on Ci. Furthermore, we introduce
a permutation ρ : I �→ I of I; we shall later let ρ be random but for the
moment we condition on ρ. Then, let Xρ(1) be a homogeneous Poisson point
process on Cρ(1) with intensity κ1 and for i = 2, . . . ,m, conditional on Xρ(1) =
x1, . . . , Xρ(i−1) = xi−1, let Xρ(i) be a homogeneous Poisson point process on
Cρ(i) with intensity κi, where κi may depend on x1, . . . , xi−1 (which is the
case below). Then X = ∪m

i=1Xi is a point process which is an example of a
so-called partially ordered Markov model (POMM).

POMMs were introduced by Cressie and Davidson [6] who applied
POMMs in the analysis of grey scaled digital images. POMMs have the attrac-
tive properties that their normalising constants are known (and equal one),
and that they can model some degree of interaction. Cressie, Zhu, Baddeley
and Nair [7] consider what they call directed Markov point processes (DMPP)
as limits of POMM point processes. Such processes are similar to our POMM
point process X.

When specifying κi, i ∈ I we want to approximate a Strauss point process.
To do so we introduce the following concepts and notation. To each cell Ci,
i ∈ I we associate a reference point ξi ∈ Ci. Two cells Ci and Cj , i �= j, are said
to be neighbour cells if ‖ξi−ξj‖ ≤ RP , where RP > 0 is the POMM interaction
range (to be specified below). Further, for a given point configuration x ⊂ S,
let ni(x) = n(x ∩ Cρ(i)) denote the number of points in cell Cρ(i), and let
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si,RP ,ρ(x) =
∑

j∈I:j<i nj(x)1[‖ξρ(j) − ξρ(i)‖ ≤ RP ] be the number of points in
the cells Cρ(j), j < i, which are neighbours to Cρ(i) (setting s1,RP ,ρ(x) = 0).
Note that we have suppressed the dependence on {Ci : i ∈ I} and {ξi : i ∈ I}
in the notation. Setting κi = βP γ

si,RP ,ρ(x)

P we have that X is a POMM point
process with density

fP (x|βP , γP , RP , ρ) = exp
(
− βP

∑

i∈I

|Cρ(i)|γ
si,RP ,ρ(x)

P

)
β

n(x)
P

∏

i∈I

γ
ni(x)si,RP ,ρ(x)

P

(13)
with respect to µ.

Cressie et al. [7] use a Strauss like DMPP which obviously suffers from
directional effects (incidentally this does not show up in the examples they
consider). In order to eliminate directional effects in our POMM point process
we consider ρ as a random variable uniformly distributed over all permuta-
tions of I independent of (θ, y). Moreover, we assume that x given (θ, y, ρ)
has density f3 as specified below. Letting ρ be a random variable requires a
slight modification of the auxiliary variable method: each Metropolis-Hastings
update consists in first proposing new values of θ and ρ and then conditional
on these proposals proposing a new value of x. Using a uniform proposal
ρ′ the Hastings ratio (7) is modified by replacing f(x′|θ′, y)/f(x|θ, y) with
f3(x

′|θ′, ρ′, y)/f3(x|θ, ρ, y) when (θ, x, ρ) is the current state of the chain and
(θ′, x′, ρ′) is the proposal; for further details, see Appendix A.

It remains to specify f3 and (βP , γP , RP ) in terms of θ = (β, γ,R). Let
(βP , γP , RP ) = g(θ) ≡ (g1(θ), g2(θ), g3(θ)) where g : (0,∞)× (0, 1]× (0,∞) �→
(0,∞)×(0, 1]×(0,∞) is a function specified as follows. Conditional on (θ, ρ, y),
the POMM auxiliary point process has density

f3(x|θ, ρ, y) = fP (x|g(θ), ρ). (14)

When specifying g we note that for point configurations x (except for a null
set with respect to a homogeneous Poisson process),

∑
i∈I si,RP ,ρ(x) tends to

sRP
(x) as m → ∞. This motivates setting g3(θ) = R when the cell size is

small compared to R. We would like that

(g1(θ), g2(θ)) = E[argmax(β̃,γ̃)fP (Y |β̃, γ̃, R, ρ)] (15)

where Y is a Strauss process with parameter θ = (β, γ,R) and ρ is uniformly
distributed and independent of Y . As this expectation is unknown to us, it is
approximated as explained in Appendix B. In Table 1, Sect. 3.2, we refer to
(15) as the “MLE”. For comparison, we also consider the identity mapping
g(θ) = θ in Sect. 3.2. In Table 1 we refer to this case as the “identity”.

3.2 Results for the Auxiliary Variable Method

In our simulation study, the data y is given by the perfect simulation in Fig. 1,
where S = [0, 1]2, β = 100, γ = 0.5, R = 0.05, n(y) = 75, and sR(y) = 10. For
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the MCMC MLE, we obtained β̂ = 108 and γ̂ = 0.4. A priori we assume that
R = 0.05 is known and β and γ are independent and uniformly distributed
on (0, 150] and (0, 1], respectively; perfect simulations for β > 150 can be
slow [2, 3]. For the POMM point process we divide S into m = N2 square
cells of side length 1/N . Below we consider the values N = 50, 100, 200, or
in comparison with R = 0.05, 1/N = 0.02, 0.01, 0.005. Further details on the
auxiliary variable method can be found in Appendix A.

The results are summarised in Table 1 for the different auxiliary processes,
and in the POMM case, for different choices of N , the function g in (14), and
proposal distributions. Experiments with the algorithm for the fixed Poisson
and Strauss and the POMM processes with smaller values of N showed that
trace plots of n(x) and sR(x) (not shown here) may exhibit seemingly sat-
isfactory mixing properties for several million updates and then get stuck –
sometimes for more than 100,000 updates. Therefore we consider the fraction
of acceptance probabilities below exp(−10) as an indicator for the mixing
properties of the chain. Table 1 also shows the mean acceptance probability
and the lag 100 autocorrelation of β and γ.

Aux. proc. g Prop σβ Prop σγ MAcP Extr cβ cγ

Fixed Poisson 2 0.05 0.128 0.151 0.88 0.53
POMM (N=100) identity 2 0.05 0.171 0.127 0.86 0.54
POMM (N=200) identity 2 0.05 0.213 0.064 0.85 0.47
POMM (N=50) MLE 2 0.05 0.246 0.055 0.85 0.46
Fixed Strauss 2 0.05 0.393 0.031 0.79 0.46
POMM (N=100) MLE 4 0.1 0.298 0.030 0.52 0.21
POMM (N=200) MLE 4 0.1 0.366 0.014 0.41 0.14
POMM (N=100) MLE 2 0.05 0.321 0.013 0.79 0.38
POMM (N=200) MLE 2 0.05 0.406 0.002 0.75 0.33

Table 1. Empirical results: For each auxiliary process considered, one million up-
dates were generated. “Aux. Proc.” is the type of auxiliary process used; g is the
type of mapping used for each POMM point process (see the end of Sect. 3.1);
“Prop σβ” and “Prop σγ” are the proposal standard deviations for β and γ; “MAcP”
is the mean acceptance probability; “Extr” is the fraction of acceptance ratios below
exp(−10); cβ and cγ are the lag 100 autocorrelation for β and γ

The different cases of auxiliary processes in Table 1 are ordered by the val-
ues of “Extr” (the fraction of extremely low acceptance probabilities). Seem-
ingly the results for the autocorrelations depend predominantly on the choice
of proposal standard deviations for β and γ. Using the POMM point process
with N = 200 and g = MLE appears to give the best mixing. Fig. 2 shows the
marginal and joint posterior distributions for β and γ when using the POMM
process with N = 200, g = MLE, and proposal standard deviations for β
and γ equal to 2 and 0.05. From Fig. 2 it can be seen that the MCMC MLE
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(γ̂, β̂) = (0.4, 108) is not far from the approximative posterior mode obtained
by simulation. This is of course to be expected since we have a uniform prior
for (γ, β). The marginal posterior modes are close to the posterior mode, since
the posterior has nearly elliptical contours.

Despite a seemingly fair number of points in the data, Fig. 2 shows a rather
large degree of posterior uncertainty about β and γ. The posterior distribution
of β suggests that the upper bound of 150 on β should be slightly increased,
however we do not expect that increasing this bound would affect the overall
picture.
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Fig. 2. Empirical marginal posterior distributions of β (left plot) and γ (centre plot)
generated using a POMM auxiliary process with N = 200 and g = MLE. Empirical
joint posterior distribution of (β, γ) (right plot) where “.” denotes the approximate
posterior mode and “+” denotes the approximate MLE.

In conclusion, to obtain a significant improvement by using a POMM aux-
iliary process with g = MLE compared to using a fixed Strauss process, a cell
side length less than about R/10 is needed. Computer times show that using
the POMM with N = 100 are not much slower than using the fixed Strauss
process. For N = 200 the POMM takes twice as long as for N = 100.

4 Concluding Remarks

The technique used in this paper adds significantly to the ability of simulation-
based Bayesian inference for Markov point processes, which previously have
been subject to one or another approximate analysis. By using the auxiliary
variable method presented here in conjunction with perfect sampling, we re-
move the need for estimating ratios of normalising constants.

We have demonstrated that a workable auxiliary variable distribution has
the attribute of closely matching the unnormalised likelihood, while not re-
quiring the computation of a normalising constant. Perhaps the most impor-
tant consequence of this is that the proposal for the auxiliary variable is then
very similar to its full conditional density, which we expect to promote good
mixing. For the simulation study in Sect. 3 a POMM is a more appropriate
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choice of auxiliary variable than an auxiliary variable density based on the
unnormalised likelihood evaluated at the MLE.

To the best of our knowledge, prior specification for Markov point pro-
cesses has so far not been discussed much in the literature (however, see [12]
and [3]). Here we have chosen uniform priors to keep things simple as our
main purpose is to illustrate the auxiliary variable method for Markov point
processes. Choosing another prior, our choice of proposal density p(θ′|θ) may
be different, but otherwise the method is the same.

In [4] we use the auxiliary variable method for a semi-parametric inhomo-
geneous Markov point process, using again a POMM auxiliary point process.

Appendix A

We now give details for the auxiliary variable method considered in Sects. 3.1
and 3.2.

Consider first the Metropolis-Hastings algorithm for (θ, x) updates using
either a fixed Poisson or a fixed Strauss auxiliary variable distribution, see (11)
and (12). Recall that θ = (β, γ,R) where R = 0.05 is fixed. As initial values
we choose θ = (n(y), 1, 0.05) and x is a realisation of a Poisson point process
on S = [0, 1]2 with intensity n(y). Then, if (θ, x) comprises the current state
of the Metropolis-Hastings algorithm with θ = (β, γ,R), the next state is
generated as follows with f in step 3 replaced by either f1 (fixed Poisson
case) or f2 (fixed Strauss case).

1. Draw proposals β′ and γ′ from independent normal distributions with
means β and γ.

2. Generate a realisation x′ from a Strauss process specified by θ′ =
(β′, γ′, R) and using dominated CFTP.

3. With probability

min
{

1,1[0 < β′ ≤ 150, 0 < γ′ ≤ 1]×
(
β′

β

)n(y)(
γ′

γ

)sR(y)
f(x′|y, θ′)

f(x|y, θ)
βn(x)γsR(x)

β′n(x′)γ′sR(x′)

}

set θ = θ′ and x = x′, otherwise do nothing.

The standard deviations of the normal distributions in step 1 can be adjusted
to give the best mixing of the chain.

Consider next using a POMM auxiliary process. Then an extra auxiliary
variable, the random permutation ρ, and an additional step is required in the
update above. If the current state consists of (β, γ), ρ, and x, then steps 1
and 2 above are followed by

3. Generate a uniform random permutation ρ′.
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4. With probability

min
{

1,1[0 < β′ ≤ 150, 0 < γ′ ≤ 1]×
(
β′

β

)n(y)(
γ′

γ

)sR(y)
f3(x

′|y, θ′, ρ′)

f3(x|y, θ, ρ)
βn(x)γsR(x)

β′n(x′)γ′sR(x′)

}

set (θ, ρ, x) = (θ′, ρ′, x′), otherwise do nothing.

Here f3 is given by (14).

Appendix B

When the mapping g in Sects. 3.1 and 3.2 is not the identity, it is specified as
follows.

Based on the range of the empirical posterior distributions in the fixed
Strauss case (not shown here) we define a grid G = {50, 52, . . . , 150} ×
{0.1, 0.2, . . . , 1.0} × {0.05}. For each grid point θ = (β, γ,R) ∈ G, using
dominated CFTP, we generate 10 independent realisations x(1), . . . , x(10) of
a Strauss point process with parameter θ together with the generation of 10
independent random permutations ρ(1), . . . , ρ(10). For θ ∈ G, g(θ) is given by

(g1(θ), g2(θ)) =
1

10

10∑

i=1

argmax(β̃,γ̃)fP (x(i)|β̃, γ̃, R, ρ(i)),

and g3(θ) = R. For (β, γ, 0.05) �∈ G, we set g(β, γ, 0.05) = g(β̃, γ̃, 0.05) where
(β̃, γ̃, 0.05) ∈ G is the grid point closest to (β, γ, 0.05).

Fig. 3 shows g1(β, γ,R) − β and g2(β, γ,R) − γ for a range of β and γ
values when N = 200. Results for N = 50 and N = 100 are almost identical
to those for N = 200. In cases of strong interaction, i.e. for combinations
of low values of γ and high values of β, the parameters βP = g1(β, γ,R)
and γP = g2(β, γ,R) in the POMM process are much smaller than β and
γ in the Strauss process. This is explained by the fact that the interaction
in the POMM auxiliary process is weaker than in the Strauss process when
(βP , γP , RP ) = (β, γ,R).
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Fig. 3. Plot of difference between g(θ) and θ for θ ∈ G: g1(β, γ, R) − β (left) and
g2(β, γ, R) − γ (right).
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Michaela Prokešová1, Ute Hahn2 and Eva B. Vedel Jensen3

1 Charles University, Department of Probability, Sokolovská 83, 18675 Praha 8,
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Summary. Recently, locally scaled point processes have been proposed as a new
class of models for inhomogeneous spatial point processes. They are obtained as
modifications of homogeneous template point processes and have the property that
regions with different intensity differ only by a location dependent scale factor. The
main emphasis of the present paper is on analysis of such models. Statistical methods
are developed for estimation of scaling function and template parameters as well as
for model validation. The proposed methods are assessed by simulation and used in
the analysis of a vegetation pattern.

Key words: Inhomogeneous spatial point processes, Local scaling of point pro-
cesses, Model validation and simulation

1 Introduction

The present paper deals with statistical analysis for inhomogeneous point
processes that are obtained by local scaling. In these point processes, local
geometry is constant, that is, subregions of the inhomogeneous process with
different intensity appear to be scaled versions of the same homogeneous pro-
cess. This property is characteristic of locally scaled point processes and not
present in the other models for inhomogeneous point processes discussed in
[9]. Such patterns occur for example in vegetation of dry areas, as shown in
Fig. 1. Heterogeneity on a small scale is largely due to a patchy soil mosaic
combining drier, sandy soils with clay textured soils of higher water capacity
[1]. Where water or other resources are short, plants grow sparsely and keep
larger distances between individuals than in regions with better supply.

Naturally there is no preference for a direction, and therefore the vegeta-
tion pattern is locally isotropic. Local scaling of an isotropic template process
yields locally isotropic patterns in contrast to transformation of an isotropic
template process [13].
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Fig. 1. (Left part) Map of 171 individuals of a Scholtzia aff. involucrata in Australian
bush on a 22 × 22 m square; (Right part) Two rectangular subregions with different
intensity were rescaled such that they have the same number of individuals by unit
area. Data from [1]

Similar locally scaled structures are found in arrangements of solid bodies
with constant shape but location dependent size, such as the sinter filter
discussed in [9] or in sponges with constant porosity but small pore size close
to the surface and large pore size in the interior.

Locally scaled point processes are finite point processes derived from a
homogeneous template process which describes the interaction between points
and is responsible for the local geometry of the resulting pattern. We will put
the major focus on Markov template processes. Inhomogeneity is introduced
through a location dependent function that gives the local scale, as explained
in detail in Sect. 2 below.

Fitting a model to a given pattern thus consists of finding the parameters
inherited from the template and choosing an appropriate scaling function. This
can be achieved by simultaneous maximum (pseudo)likelihood estimation as
discussed in Sect. 3. A less time consuming procedure is two step maximum
likelihood estimation where the parameters of the template are estimated after
having determined the scaling function. Sect. 4 is centred on two step esti-
mation, which is assessed and demonstrated by a simulation study presented
in Sect. 5. Sect. 6 addresses possibilities to estimate the scaling function by
other methods.

A widely used popular method for model validation in the homogeneous
case is to compare the empirical K-function with the theoretically known or
simulated K-function of the fit. An inhomogeneous analogue of the K-function
is proposed in Sect. 7. Furthermore we suggest an inhomogeneous version of
the Q2-statistic recently proposed by [8] for model validation of homogeneous
point processes.

Finally, a statistical analysis of the point pattern in Fig. 1 is presented in
Sect. 8.



Statistics for Locally Scaled Point Processes 101

2 Locally Scaled Point Processes

In this section, we introduce the locally scaled point processes and discuss
some of their basic properties.

Let X be a finite point process, defined on a full-dimensional bounded
subset X of R

k. We suppose that X has a density fX with respect to the
restriction of the unit rate Poisson point process Π to X . Let ν∗ = (ν0, . . . , νk)
be the set of d-dimensional volume measures (Hausdorff measures) νd in R

k,
d = 0, 1, . . . , k. Let us suppose that fX is of the following form

fX(x) ∝ g(x; ν∗), x ⊂ X finite , (1)

where the function g is scale-invariant, i.e.

g(c x; ν∗
c ) = g(x; ν∗) , (2)

for all x and c > 0. Here, ν∗
c = (ν0

c , . . . , ν
k
c ) and νd

c (A) = νd(c
−1A), A ∈ Bk.

The classical homogeneous point processes have densities with this property.
The process X will serve as a template process. In order to construct a

locally scaled version of X with scaling function c : R
k → R+, we replace the

d-dimensional volume measure νd in R
k with a locally scaled version

νd
c (A) =

∫

A

c(u)−dνd(du) , A ∈ Bk ,

d = 0, 1, . . . , k. In what follows, we assume that the scaling function c is
bounded from below and from above, i.e. 0 < c < c(u) < c, u ∈ R

k. Further-
more, we will assume that g(·; ν∗

c ) is integrable with respect to the Poisson
point process Πc with νk

c as intensity measure. A locally scaled point process
Xc on X with template process X is then a finite point process defined by the
following density with respect to Πc

f
(c)
Xc

(x) ∝ g(x; ν∗
c ) . (3)

Note that the density of Xc with respect to Π is

fXc
(x) = exp

(
−
∫

X

[c(u)−k − 1]νk(du)

)∏

x∈x

c(x)−k × f
(c)
Xc

(x) . (4)

Example 1. The Strauss process X with intensity parameter β > 0, interaction
parameter γ ∈ [0, 1] and interaction distance δ > 0 is given by the density

fX(x) ∝ βn(x)γs(x), x ⊂ X finite ,

where n(x) is the number of points in x and s(x) is the number of δ-close
pairs, cf. [15]. The density is of the form (1) with

g(x; ν∗) = βν0(x)γ
∑ �=

{u,v}⊆x
1{ν1([u,v])≤δ}

,
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where the superscript �= in the summation indicates that u and v are different.
It is easy to check that this function is indeed scale-invariant. The locally
scaled Strauss process Xc has density with respect to Πc of the form

f
(c)
Xc

(x) ∝ βn(x)γsc(x) ,

where

sc(x) =

�=∑

{u,v}⊆x

1{ν1
c ([u, v]) ≤ δ} .

Fig. 2 shows locally scaled Strauss processes on X = [0, 1]2 with scaling func-
tion of the exponential form

cθ(u) =

√
1 − e−2θ

2θ
eθu1 , u = (u1, u2) ∈ X , θ ∈ R

1, (5)

for 4 different values of the inhomogeneity parameter θ ∈ {0.25, 0.5, 1, 1.5}.

The normalisation
√

1−e−2θ

2θ ensures that the 4 point patterns have approxi-

mately the same number of points (see Sect. 4.2 for details).

Fig. 2. Simulation of locally scaled Strauss processes on [0, 1]2 with exponential
scaling function (5) for θ ∈ {0.25, 0.5, 1, 1.5} (from left to right) and template
parameters β = 250, γ = 0.3 and δ = 0.05

⊓⊔

Example 2. The area-interaction point process with intensity parameter β >
0, interaction parameter γ > 0 and interaction distance δ > 0 is given by the
density

f(x) ∝ βn(x)γ−ν2(Uδ(x)), x ⊂ X finite ,

where Uδ(x) =
⋃

x∈x b(x, δ) is the union of balls with centres in x and radius
δ. For γ > 1 the point pattern appears clustered, for γ < 1 regular, cf. [5].
The density is again of the form (1) with scale invariant

g(x; ν∗) = βν0(x)γ−ν2(∪x∈x{v∈X : ν1([v,x])≤δ}) .



Statistics for Locally Scaled Point Processes 103

The locally scaled area-interaction process has density with respect to Πc of
the form

f
(c)
Xc

(x) ∝ βn(x)γ−ν2
c (Uc,δ(x)) ,

where Uc,δ =
⋃

x∈x bc(x, δ) and bc(x, δ) = {v ∈ X : ν1
c ([v, x]) ≤ δ} is the

scaled ball. Fig. 3 shows locally scaled area-interaction processes with the same
scaling function (5) as in Example 2. The value of the interaction parameter

γ was chosen so that γ−πδ2 ≈ 0.1 and the point patterns are visibly clustered.

Fig. 3. Simulation of locally scaled area-interaction processes on [0, 1]2 with ex-
ponential scaling function (5) for θ ∈ {0.25, 0.5, 1, 1.5} (from left to right) and
template parameters β = 180, γ = 6.7 · 1031 and δ = 0.1

⊓⊔

The Strauss process and the area-interaction process are examples of point
processes from two large classes of homogeneous template processes, viz. the
distance-interaction processes and the shot noise weighted processes. For these
two classes, it has been shown in [9] that the Papangelou conditional intensi-
ties λXc

of the locally scaled process Xc and λX of the template process X,
respectively, satisfy

λXc
(x | x) = c−k

0 λX(
x

c0
| x

c0
) , (6)

if the scaling function c is constant and equal to c0 in a scaled neighbourhood
of x. If we let dx be an infinitesimal region around x and νk(dx) the k-
dimensional volume (Lebesgue measure) of dx, then λ(x | x)νk(dx) can be
interpreted as the conditional probability of finding a point from the process
in dx given the configuration elsewhere is x, cf. e.g. [10]. Since the right-hand
side of (6) is the conditional intensity of a globally scaled template process
with scaling factor c0, it is expected that the locally scaled process appears
as a scaled version of the template process if the scaling function is slowly
varying compared to the interaction radius. The development of further formal
reasoning, supporting this statement, seems very hard.

It is also of interest to study the unconditional intensity function λc(x), x ∈
X , of the locally scaled process. Let us suppose that the template process X
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is homogeneous with intensity λ0 (X may, for instance, be defined on a torus
with periodic boundary conditions). Then

λc(x) = c(x)−kλ0, x ∈ X , (7)

holds if the template process is Poisson or the scaling function is constant.
Also, (7) holds for any locally scaled distance-interaction process in R

1, see the
Appendix. The equality (7) is expected to hold approximately if the scaling
function is slowly varying, compared to the interaction radius.

For statistical inference of locally scaled models, we will distinguish two
cases. In fully parametric models, both the scaling function c and the homo-
geneous template process X are specified by a set of parameters. In semipara-
metric models only the template process is parametrically specified.

In the following, the parameters of the template process are denoted by
ψ, and θ is the parameter of the scaling function (i.e. inhomogeneity param-
eter) in fully parametric models. The parameter space of a fully parametric
model is Θ × Ψ , while, in semiparametric models, the scaling function can be
any function in the space C+ of measurable positive functions, satisfying the
regularity conditions mentioned above.

A particularly attractive parametric form of the scaling function is the
exponential form

cθ(u) = α(θ) eθ·τ(u), u ∈ R
k , (8)

where θ ∈ Θ ⊆ R
l, α(θ) ∈ R+, · indicates the inner product and τ(u) ∈

R
l. A locally scaled model with an exponential scaling function is called an

exponentially scaled model. Note that if τ(u) = u, then scaled distances can
be calculated explicitly. Using the coarea formula we get

ν1
c ([u, v]) =

∫

[u,v]

α(θ)−1e−θ·x ν1(dx)

=

∫ 1

0

ν1([u, v]) α(θ)−1e−θ·(u+t(v−u)) d t

= ν1([u, v])
[cθ(u)−1 − cθ(v)

−1]

θ · (v − u)
, u, v ∈ R

k .

3 Simultaneous Maximum (Pseudo)likelihood
Estimation of Scaling Function and Template Parameters

In a fully parametric model, the likelihood factorizes as, cf. (4),

L(θ, ψ;x) = L0(θ;x) × L1(θ, ψ;x) , (9)

where L0 is the likelihood of an inhomogeneous Poisson point process Πc with

intensity measure νk
c , and L1(θ, ψ;x) = f

(c)
Xc

(x;ψ) is the density of the scaled
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process Xc with respect to Πc. Recall that the scaling function is parametrised
by θ, i.e. c = cθ.

Maximum likelihood estimation is most feasible in exponential families,
since it amounts to moment estimation there. Most popular homogeneous
Markov point process models are partially exponential, and the set ψ splits
into two components – the nuisance parameters and the remaining parame-
ters, that form exponential family parameters given the nuisance parameters.
Since the likelihood in Markov point processes is known only up to the nor-
malizing constant, one has to resort to MCMC methods for MLE, cf. e.g. [11].
Whilst moment estimation in these models can be done relatively precisely
with affordable effort, estimation of the normalizing constant entails numeri-
cal pitfalls and should be avoided as much as possible. This suggests that MLE
should be done on a grid of nuisance parameters, since given this component,
the remaining parameters are exponential family parameters. In locally scaled
processes, the inhomogeneity parameter also acts as a nuisance parameter.

Usually, the point process Xc is observed in a sampling window W ⊆ X .
In such cases, a conditional likelihood may be used, based on the conditional
density of Xc ∩ W given Xc ∩ W c = xW c where xW c is a finite subset of W c.
Since

fXc
(· | xW c) ∝ fXc

(· ∪ xW c) ,

it follows from (4) that (9) still holds for the conditional likelihoods. This
result is mainly of interest for locally scaled Markov point processes.

A less computational demanding procedure is based on the pseudolikeli-
hood function, see [4] and references therein. The pseudolikelihood function
of a point process density f with respect to a Poisson point process with
intensity measure µ, based on observation in W , is defined by

exp

(
−
∫

W

[λ(u | x) − 1]µ(du)

) ∏

x∈x∩W

λ(x | x\{x}) , W ⊆ X ,

where x is the realised point pattern in X and

λ(u | x) =
f(x ∪ {u})

f(x)
, u /∈ x ,

is the Papangelou conditional intensity associated with f .
Based on observation in W , let PLW (θ, ψ;x) be the pseudolikelihood func-

tion for the density fXcθ
( · ;ψ) with respect to the unit rate Poisson point pro-

cess and let PLW,1(θ, ψ;x) be the pseudolikelihood for the density f
(cθ)
Xcθ

( · ;ψ)

with respect to the Poisson point process with intensity measure νk
cθ

. Then,
using (4), we find

PLW (θ, ψ;x) = L0(θ;x ∩ W ) × PLW,1(θ, ψ;x) . (10)

Note that
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λθ,ψ(u | x) = cθ(u)−k λ
(cθ)
θ,ψ (u | x) , u /∈ x ,

where λθ,ψ and λ
(cθ)
θ,ψ are the conditional intensities associated with fXcθ

and

f
(cθ)
Xcθ

, respectively.

A proof of (10) can be constructed as follows. ¿From (4), we get

PLW (θ, ψ;x)

= exp(−
∫

W

[λθ,ψ(u | x) − 1]νk(du))
∏

x∈x∩W

λθ,ψ(x | x\{x})

= exp(−
∫

W

[cθ(u)−k − 1]νk(du))
∏

x∈x∩W

cθ(x)−k

× exp(−
∫

W

[λ
(cθ)
θ,ψ (u | x) − 1]cθ(u)−kνk(du))

∏

x∈x∩W

λ
(cθ)
θ,ψ (x | x\{x})

= L0(θ;x) × PLW,1(θ, ψ;x) .

As the values of the scaled interaction statistics (e.g. scθ
(x) in the Strauss

model) and subsequently the values of λ
(cθ)
θ,ψ (u | x) depend on the inhomogene-

ity parameter θ, the latter is a nuisance parameter also in the pseudolikelihood
estimation. This means we have to evaluate the profile pseudolikelihood on a
grid of nuisance parameters similarly to the maximum likelihood approach.
However, this is much less computational intensive in maximum pseudolike-
lihood estimation than in maximum likelihood estimation, since PL1 can be
calculated directly without having to estimate an unknown normalizing con-
stant by simulation as it is the case with L1.

4 Two Step Maximum Likelihood Estimation of Scaling
Parameters Prior to Template Parameters

The structural similarity of the full likelihood in locally scaled models and
the full likelihood in transformation models for point processes suggests that
partial likelihood inference as in the paper [14] will be successful also for locally
scaled models. [14] estimated the inhomogeneity parameters by maximizing
the Poisson part L0 of the likelihood only, assuming no interaction. They
chose an exponential model for the inhomogeneity function, since this largely
simplifies calculations.

Below, this approach is followed for the locally scaled models. In Sect. 4.1,
we find the maximum likelihood estimate θ̂0 of θ on the basis of L0 and, in
Sect. 4.2, it is shown that θ̂0 can be regarded as an approximate moment
estimator. In Sect. 4.3, estimation of the template parameters is considered.
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4.1 Estimation of Scaling Parameters, Using the Poisson
Likelihood

We suppose that the scaling function is of the form

c(u) = α eθ·τ(u), u ∈ R
k , (11)

where θ ∈ Θ ⊆ R
l and α ∈ R+. In addition to the inhomogeneity parameter θ,

the scaling function contains a global scaling parameter α. For the moment,
these two parameters vary in a product set Θ × R+.

Then, the Poisson part of the likelihood of the process Xc, observed in a
set W , is

L0(θ, α;x ∩ W ) = exp

(
−
∫

W

(α−ke−k θ·τ(u) − 1) νk(du)

)
×

∏

x∈x∩W

(α−ke−k θ·τ(x)) .

The log-likelihood becomes

l0(θ, α;x ∩ W ) =

∫

W

1 νk(du) −
∫

W

α−ke−k θ·τ(u) νk(du)

−k n(x ∩ W ) lnα +
∑

x∈x∩W

(−k θ · τ(x)) .

Assume that n(x∩W ) > 0 and ‖τ(u)‖ eθ·τ(u) is uniformly bounded in u ∈ W
and θ ∈ Θ. Then by differentiating we get l + 1 equations

kα−k−1

∫

W

e−k θ·τ(u) νk(du) = k n(x ∩ W )α−1

α−k

∫

W

kτi(u)e−k θ·τ(u) νk(du) = k
∑

x∈x∩W

τi(x), i = 1, . . . , l .

Dividing the last l equations by the first equation we get the vector equation

t(x ∩ W )

n(x ∩ W )
= m(θ) , (12)

where t(x ∩ W ) =
∑

x∈x∩W τ(x) and

m(θ) =

∫
W

τ(u)e−k θ·τ(u) νk(du)∫
W

e−k θ·τ(u) νk(du)
. (13)

Thus the estimate of θ does not depend on the estimate of the constant α and
furthermore the estimate depends only on the statistic t(x ∩ W )/n(x ∩ W ).

It turns out that we get exactly the same estimate of θ if we impose the
following normalizing condition on cθ
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∫

W

cθ(u)−k νk(du) = νk(W ) , (14)

implying that

α = α(θ) =

[∫

W

e−k θ·τ(u)νk(du) / νk(W )

]1/k

. (15)

To see this, note that under (15), the Poisson likelihood takes the form

L0(θ;x ∩ W ) = exp

(
−
∫

W

(α(θ)−ke−kθ·τ(u) − 1) νk(du)

)

×
∏

x∈x∩W

(α(θ)−ke−k θ·τ(x))

=

(
α(θ)−k exp

(
−kθ · t(x ∩ W )

n(x ∩ W )

))n(x∩W )

.

Taking the logarithm and differentiating with respect to θ, we again get the
vector equation (12). As we shall see in Sect. 4.2, (14) appears to be a very
natural condition.

The existence and uniqueness of a solution θ̂0 to (12) have been studied in
[14] in a closely related set–up where the parameter of interest was θ̃ = −k θ.
The same type of arguments applies here. Using (15), it is seen that

{
α(θ)−k

νk(W )
e−k θ·τ(u) : θ ∈ Θ

}

is an exponential family of densities on W , with respect to νk. If the family is
regular, then the function m in (13) is a bijection of Θ on intS where S is the
convex support of the family, cf. e.g. [6]. Thus, under these conditions, there
is a unique solution to (12) if n(x ∩ W ) > 0 and t(x ∩ W )/n(x ∩ W ) ∈ intS.

Example 3. Let τ(u) = u and W = [0, 1]k. Then, Θ = R
k

cθ(u) = α(θ)eθ·u ,

α(θ) =

(
k∏

i=1

1 − e−k θi

k θi

)1/k

,

and m(θ) = (m1(θ), . . . ,mk(θ)) where

mi(θ) =
1 − e−k θi − k θie

−k θi

k θi(1 − e−k θi)
, i = 1, . . . , k .

⊓⊔
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4.2 Statistical Properties of θ̂0

The estimator θ̂0 is the maximum likelihood estimator of θ if the template
process is Poisson. It is also possible to give theoretical support to the use of
θ̂0 for general template processes, as shown below.

Proposition 1. Suppose that the intensity of the locally scaled process Xcθ

satisfies
λθ,ψ(u) = cθ(u)−kλ0ψ . (16)

Then,
Eθ,ψ[t(Xcθ

∩ W )]

Eθ,ψ[n(Xcθ
∩ W )]

= m(θ) .

Proof. We use the following version of the Georgii-Nguyen-Zessin formula for
Xcθ

, cf. [12],

Eθ,ψ

∑

x∈Xcθ

h(x) =

∫

Rk

h(x)λθ,ψ(x)νk(dx) .

We get

Eθ,ψ[t(Xcθ
∩ W )] = Eθ,ψ

∑

x∈Xcθ
∩W

τ(x)

=

∫

W

τ(x)λθ,ψ(x)νk(dx)

= λ0ψ

∫

W

τ(x)cθ(x)−kνk(dx) .

In particular,

Eθ,ψ[n(Xcθ
∩ W )] = λ0ψ

∫

W

cθ(x)−kνk(dx) . (17)

The result now follows directly. ⊓⊔

If (16) holds, θ̂0 can thus be regarded as a moment estimator.
As mentioned in Sect. 2, the equation (16) holds if the template process

is homogeneous and the scaling function is constant. More interestingly, (16)
holds for a not necessarily constant scaling function for distance-interaction
processes in R

1, see the Appendix. Generally, equation (16) is expected to hold
approximately if the scaling function varies slowly compared to the interaction
radius.
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4.3 Estimation of the Template Parameters

Having estimated the scaling parameter θ we can proceed by the estimation of
the template process parameters. We will here concentrate on the case where
the pseudolikelihood PLW,1(θ̂0, ψ;x) from the decomposition (10) is used. In
the following we discuss the practical implementation of this method for the
locally scaled models. We consider general parametric scaling functions.

Recall that the pseudolikelihood PLW,1(θ, ψ;x) for the density f
(cθ)
Xcθ

( · ;ψ)

with respect to the Poisson point process with intensity measure νk
cθ

, based

on observation in a window W ⊂ R
k, is defined as follows

PLW,1(θ, ψ;x) = exp

(
−
∫

W

[λ
(cθ)
θ,ψ (u | x) − 1] νk

cθ
(du)

)
× (18)

∏

x∈x∩W

λ
(cθ)
θ,ψ (x | x\{x}) . (19)

In the second step of the two-step estimation procedure we fix the scaling pa-
rameter θ to θ̂0 and maximize PLW,1(θ̂0, ψ;x) exp(−νk

c
θ̂0

(W )) as a function

of ψ. This can be done in a way similar to the procedure used in the homo-
geneous case, cf. [4]. We partition W into a finite number of cells Ci, each
containing one dummy point ui, i = 1, . . . , l. The union of the dummy points
and the points of the observed pattern is denoted {uj : j = 1, . . . ,m}. Fur-
thermore let Ci(j) be the unique cell containing uj , j = 1, . . . ,m, with dummy
point ui(j). Then we approximate the integral in the pseudolikelihood by

∫

W

λ
c

θ̂0

θ̂0,ψ
(u | x)νk

c
θ̂0

(du) ≈
m∑

j=1

λ
c

θ̂0

θ̂0,ψ
(uj | x\{uj})wj ,

where

wj =
νk(Ci(j))

cθ̂0
(ui(j))k

1

(1 + n(x ∩ Ci(j)))
≈ νk

c
θ̂0

(Ci(j))
1

(1 + n(x ∩ Ci(j)))
. (20)

Here, n(x ∩ Ci(j)) is the total number of observed points in the cell Ci(j).

νk(Ci(j)) / cθ̂0
(ui(j))

k approximates νk
c

θ̂0

(Ci(j)) if the cells Ci(j) are sufficiently

small, such that the scaling function c is approximately constant in Ci(j).

Let us denote λ
c

θ̂0

θ̂0,ψ
(uj | x\{uj}) by λj , j = 1, . . . ,m. The pseudolikelihood

can then be approximated as a weighted likelihood of independent Poisson
variables yj with means λj and weights wj

log(PLW,1(θ̂0, ψ;x) exp(−νk
c

θ̂0

(W ))) ≈
m∑

j=1

(yj log λj − λj)wj , (21)

yj =
1

wj
1{uj ∈ x} , j = 1, . . . ,m . (22)
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When the conditional intensity λ
c

θ̂0

θ̂0,ψ
is of exponential family form, (21) can

easily be maximised, using standard software for generalised linear models.

5 Simulation Study

In order to further study the properties of the estimation procedure proposed
in Sect. 4, a simulation study was carried out. The simulation experiment
concerns the exponentially scaled Strauss point process with scaling function

cθ(u) =

√
1 − e−2θ

2θ
eθu1 , u = (u1, u2) ∈ R

2 , (23)

observed on the unit square W = [0, 1]2. We used four different values of
the inhomogeneity parameter θ ∈ {0.25, 0.5, 1, 1.5}. For the template Strauss
process we fixed the interaction radius δ to 0.05 and used a dense set of
γ-values in {0.01, 0.02, . . . , 1.00}. For β, we used the two values of 250 and 100
to investigate the influence of the total intensity. Note that θ = 1.5 represents
quite strong inhomogeneity, compare with Fig. 2.

For each combination of the parameters, 1000 point patterns were gen-
erated using MCMC and the distribution of θ̂0 was approximated by the
empirical distribution from the 1000 realisations. To reduce the edge effects
in the simulation the process was generated on a bigger window [−0.2, 1.5] ×
[−0.5, 1.5] so that

⋃
x∈[0,1]2 bc(x, 2δ) was included in this bigger window.

Fig. 4 shows the empirical mean values for the estimator θ̂0. Since the
function m defined by (13) is concave and t(x ∩ W )/n(x ∩ W ) was found

to be approximately unbiased for m(θ), θ̂0 tends to overestimate θ. This can
be seen in Fig. 4 for θ = 1.5 and 1, however the relative bias is not larger
than 1% and it does not depend on the interaction parameter γ. The 95%
envelopes for θ̂0 are also shown in Fig. 4 and for reasonably high number of
observed points (i.e. β = 250) the inhomogeneity is reliably detected by θ̂0.

Notice, for example that for θ = 1, 95% of the estimates θ̂0 falls into the
interval [0.75, 1.25] and even for θ = 0.25 – an inhomogeneity often hardly

recognizable from the realisations, 97.5% of the θ̂0 estimates are larger that
zero.

Note that since the scaling function has been normalised as in (14), (16)
implies that

Eθ,ψ n(Xcθ
∩ W ) = λ0ψν

k(W ) , (24)

i.e. the mean number of points in W does not depend on the inhomogeneity
parameter θ. Since (16) does not hold exactly for the Strauss process, we
investigated whether (24) holds approximately, using the simulated data. The
approximation is excellent in this example, cf. Fig. 5.

Let us next study the estimation of the template parameters. The den-
sity of the Strauss process is of exponential family form with one nuisance
parameter δ – the interaction radius (see Example 1). Thus ψ = (β, γ, δ) and
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Fig. 4. Empirical mean values and 95% envelopes for the estimator θ̂0 for four dif-
ferent values of the inhomogeneity parameter θ (values are indicated in the plots)
and for template parameter β = 250 (full drawn lines, resp. dashed lines for en-
velopes) and β = 100 (dashed lines, resp. dotted lines for envelopes), as a function of
the template parameter γ. The central lines in the envelope plots are the empirical
means again.

log λj = log β + sc(uj ;x) log γ ,

where
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Fig. 5. Comparison of the intensities Eθ,ψ n(Xcθ
∩ W ) (estimated by averages over

200 realisations) on the unit square W for the exponentially scaled Strauss point
process Xcθ

with different θ ∈ {0.25, 0.5, 1, 1.5} (dashed, chain-dotted, full and dotted

curves) and the intensity of the template processes λ0ψνk(W ) (crosses) as a function
of the template parameter γ. Results are showed for two different values of the
template parameter β = 100 and 250 and the same δ = 0.05 for all the processes.
Since for each beta the differences between all the four curves and the crosses are
hardly distinguishable we found a perfect agreement with equation (24)

sc(uj ;x) =
∑

x∈x\{uj}

1{ν1
c ([uj , x]) ≤ δ} .

To find the estimate of ψ we have to compute and compare the profile
pseudolikelihood

PLW,1(δ) = max
β,γ

PLW,1(θ̂0, β, γ, δ;x)

on a grid of values of δ. We let βδ and γδ be the values of β and γ at which

PLW,1(θ̂0, ·, ·, δ;x)

is maximal (the subscript δ indicates the dependence on δ). In Figs. 6 and 7
we illustrate the procedure on a simulated exponentially scaled Strauss point
pattern with the scaling function (23) and parameters θ = 1, β = 250, γ =
0.25, δ = 0.05, W = [0, 1]2. The parameter θ has been fixed to the correct
value and a regular grid of 100 × 100 dummy points was used. In the plots
presented in Figs. 6 and 7, the profile pseudolikelihood and the estimates β̂δ

and γ̂δ are plotted as functions of the nuisance parameter δ. The jaggedness of
the plots is due to the discontinuity of the interpoint distance function sc as a
function of δ. In Fig. 6 we used no border correction (the pseudolikelihood (18)
with x replaced by x∩W ) while in Fig. 7 we used a border correction of ν1

c =
0.05 (the psedolikelihood (18) with W replaced by an irregular observation

window W̃ = {u ∈ W : ν1
c (u, ∂W ) > 0.05}, where ∂W denotes the boundary

of W ).
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Fig. 6. Profile pseudolikelihood estimation of the template parameters β, γ, δ of a
simulated exponentially scaled Strauss process on [0, 1]2 without any border correc-
tion. The first picture shows the data x. In the 3 graphs, the profile pseudolikelihood
and the corresponding estimates β̂δ and γ̂δ are plotted as functions of δ. The final
estimates δ̂ = 0.0508, β̂ = 283, γ̂ = 0.23 are indicated by the dotted lines. The true
values are δ = 0.05, β = 250, γ = 0.25.

The obtained estimates of ψ are in good agreement with the true values,
especially the estimate of the interaction radius is very precise. It is also
important that the estimates with and without border correction do not differ
substantially (which is probably caused by the sufficiently large number of
observed points in W ).

The results concerning pseudolikelihood estimation were confirmed in re-
peated simulation experiments.

6 Two Step Inference Where Scaling Function Is
Estimated Using Other (non ML) Methods

Going one step further, one could also estimate c in some other way from the
local intensity

λc(u) = Eλc(u | Xc) ,

u ∈ X , of the locally scaled process Xc, using the approximate relation

λc(u) ≈ c(u)−kλ0 , (25)
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Fig. 7. Profile pseudolikelihood estimation of the template parameters β, γ, δ of a
simulated exponentially scaled Strauss process on W = [0, 1]2 with border correction
ν1

c = 0.05. The first picture shows the same data used in Fig. 6. The full circles are
the data points used for the estimation. The 3 graphs are constructed as in Fig. 6.
The obtained estimates are δ̂ = 0.0508, β̂ = 282, γ̂ = 0.22. The true values are
δ = 0.05, β = 250, γ = 0.25.

where λ0 is the intensity of the template process. In order to estimate the
scaling function, we could use an estimate λ̂c(u) of the local intensity, and set

ĉ(u) =
[
Cλ̂c(u)

]−1/k

,

where C = 1/λ0 is some constant that can be arbitrarily fixed. For conve-
nience, one may choose C = 1.

If, in a parametric setting, λ̂c(u) is the maximum likelihood estimator
of the intensity of an inhomogeneous Poisson process, then ĉ(u) is the same
partial MLE as the one based on L0. On the other hand, λc(u) can also be
estimated non parametrically, for example, using kernel methods or Voronoi
tessellations. Or parametrically by other methods than maximum likelihood,
e.g. regression methods.

7 Model Validation

Since the two-step estimation procedure, suggested in the present paper, can
only be justified theoretically in special cases, it is particularly important
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to develop effective procedures for model validation. This is the topic of the
present section. For non-Poisson point processes only little is known about
the theoretical distribution of characteristics that can be used for model vali-
dation. Therefore tests are usually simulation based.

In the case of homogeneous point processes, the probably most popu-
lar tests are based on second order summary statistics such as Ripley’s K-
function, see e.g. [7] and [11]. [3] extend the definition of the K-function and
other second order characteristics to a certain type of inhomogeneous point
processes, so called second order intensity reweighted stationary processes.
This class of processes comprises inhomogeneous processes obtained by inde-
pendent thinning, but does not include locally scaled processes (apart from
the Poisson process).

[8] consider another so-called Q2 statistic for tests against Poisson pro-
cesses, which simply spoken amounts to a goodness-of-fit test for the frequency
distribution of number of neighbours in an r-neighbourhood. In this section
we investigate how K-functions and Q2-statistics can be adapted to locally
scaled inhomogeneous point processes.

7.1 The K-function

Let λ0 and K0 denote the intensity and K-function of the template process,
and let K0 := λ0K0. A ratio-unbiased estimator of K0(r) is given by

K̂0(W, r) =
1

n(x ∩ W )

∑

x∈x∩W

∑

y∈x\{x}

1{ν1([x, y]) ≤ r} ,

where x is an observed point pattern from the stationary point process X.
In order to obtain an estimate of K0(r), K̂0 is combined with an estimate of
λ0. If instead a locally scaled point pattern x is observed, we suggest to use a
locally scaled analogue of K̂0(W, r), viz.

K̃0(W, r) =
1

n(x ∩ W )

∑

x∈x∩W

∑

y∈x\{x}

1{ν1
c ([x, y]) ≤ r} . (26)

Note that K̃0(W, r) is ratio-unbiased for K0(r) if c is constant. Further-

more, K̃0(W, r) is ratio-unbiased for general scaling functions and distance-
interaction point processes defined on an interval I of R

1. To see this, we
use that in R

1 a locally scaled distance-interaction process Xc has the same
distribution as h(X) where h is a 1-1 differentiable transformation of I onto
I with (h−1)′ = c−1. (A proof of this result can be found in the Appendix.)
Therefore, we have
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E(
∑

x∈Xc∩W

∑

y∈Xc\{x}

1{ν1
c ([x, y]) ≤ r})

= E(
∑

x∈h(X)∩W

∑

y∈h(X)\{x}

1{ν1([h−1(x), h−1(y)] ≤ r})

= E(
∑

x∈X∩h−1(W )

∑

y∈X\{x}

1{ν1([x, y]) ≤ r}) .

Accordingly, the ratio-unbiasedness of K̃0 follows from the ratio-unbiasedness
of K̂0. Generally, K̃0 is expected to be (approximately) ratio-unbiased if r is
small such that c varies little in a scaled neighbourhood. In any case, one
should use simulations of the scaled null hypothesis model, not only of the
template, for model validation.

A further simplification is accomplished by applying ν1
c ([x, y]) ≈ 2/(c(x)+

c(y)) × ν1([x, y]), which was introduced for distance-interaction processes in
[9]. The corresponding statistic

Ǩ0(W, r) =
1

n(x ∩ W )

∑

x∈x∩W

∑

y∈x\{x}

1{ν1([x, y]) ≤ 1
2 (c(x) + c(y))r} , (27)

is particularly useful if c is estimated nonparametrically, because it requires
evaluation of c only in the data points.

In practical situations, both λ0 and c have to be estimated from the
data. As discussed in the preceding sections, the estimation of c cannot
be separated from the estimation of λ0. Since the template is unique only
up to a constant scale factor which determines λ0, the scaling function c
is unique only up to a constant as well. We suggest to normalize c such
that νk

c (W ) = νk(W ), see (14). Thus, we set λ̂0 := n(x ∩ W )/νk(W ) since
En(Xc ∩ W ) =

∫
W

λc(x) νk(dx) ≈
∫

W
λ0c(x)−k νk(dx) = λ0 νk(W ). In what

follows, we use the notation K̃0(W, r) for K̃0(W, r)/λ̂0.

7.2 The Q2 Statistic

The Q2-statistic proposed by [8] is (in the simplest case) based on the numbers
Mℓ(W, r) of points in W with ℓ r-close neighbours, ℓ = 0, 1, . . . , q. For a
homogeneous Poisson point process, the expectation µ and the covariance
matrix Σ of the vector M = (M0,M1, . . . ,Mq)

⊤ can easily be calculated. A
finite range dependency argument is used to show that the statistic

Q2 = (M − µ)⊤Σ−1(M − µ)

(squared Mahalanobis distance) is asymptotically χ2-distributed for increasing
size of the observation window W . By simulation experiments, [8] showed that
Q2 discriminates well between patterns from a mixed cluster and regular point
process and the Poisson process.
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Since µ and Σ can also be calculated for an inhomogeneous Poisson point
process, it would be possible to use the same Q2-statistic also for tests of inho-
mogeneous Poisson processes. However, the expected number of neighbours in
a ball of radius r around a point x would depend on the local intensity λ(x).
Thence, inhomogeneity introduces much extra variation to M which would
largely cut down the diagnostic value of Q2.

This effect can be avoided by adjusting r to the local intensity. We propose
to replace the Euclidean neighbour distance by the locally scaled neighbour
distance. In an inhomogeneous Poisson point process with intensity λc(x) =
c(x)−kλ0, the number of r-scaled-close neighbours of a point x is Poisson
distributed with parameter λ0ν

k
c (bc(x, r)). Since

νk
c (bc(x, r))

νk(b(x, r))
→ 1 as r → 0 ,

the distribution of r-scaled-close neighbours does hardly depend on the loca-
tion for small r, and is close to the distribution of r-close neighbour number
in the homogeneous case.

The local scaling analogue of Mℓ is

Mℓinhom(W, r) =
∑

x∈x∩W

1{n(bc(x, r) ∩ x \ {x}) = ℓ} . (28)

Since calculation of µ and Σ is feasible only for the Poisson point process
with slowly varying scaling function, we suggest to do simulation tests. This
would allow to test any hypothesis. While any distance between observed and
expected neighbour number distribution can be used, we still recommend to
use the statistic Q2, however to replace µ and Σ with estimates obtained by
simulation. Note that the simulations for estimating µ and Σ are not to be
reused for the test.

8 Data Analysis

The map shown in Fig. 1 was recorded in the Australian heath. This veg-
etation is subjected to regular fires, the study area having been last burnt
ten years before the collection of data [1]. The species under study, Scholtzia
aff. involucrata, is a long lived shrub that regenerates from root stock af-
ter fire yielding daughter plants that stand close together. Furthermore, seed
germinates after fire, with young plants coming up within a distance of at
most 2m of the parent plant. However, only very few seedlings survive the
dry summer (Paul Armstrong, personal communication). These facts explain
the slight clustering observable in the point pattern of plant locations. The
heterogeneous intensity is likely to be due to soil mosaic, affecting mostly the
seedlings that are very sensitive to shortage of water.
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For the Scholtzia data set, a test on complete spatial randomness and
homogeneity based on quadrat counts was highly significant. The point pat-
tern appears inhomogeneous, particularly in the y-direction, and clustered.
We therefore need to model attractive interaction between the plants. The
exponentially scaled area-interaction model appears to be a good candidate
because the area of a location dependent neighbourhood around each plant
enters explicitly into the model density.

We used the two-step fitting procedure. For convenience we rescaled the
data to the unit square W = [0, 1]2. As the pattern exhibits obvious inho-
mogeneity in the vertical direction but appears quite homogeneous in the
horizontal direction we used an exponential scaling function of the form

c(u) =

√
1 − e−2θ

2θ
eθu2 , u = (u1, u2) ∈ R

2 . (29)

Based on L0(θ;x ∩ W ) we obtained the following estimate of θ

θ̂0 = 1.0839 ,

with α(θ̂0) = 0.6391, see (15).

Secondly, we maximised the pseudolikelihood PLW,1(θ̂0, ψ;x) with θ̂0

fixed. The density of the area-interaction process is of an exponential fami-
ly form with one nuisance parameter δ – the interaction radius. As for the
Strauss process, ψ = (β, γ, δ) and for the estimation we use the same weights
as in (20) and

log λj = log β − ν2
c (Uc,δ(uj ;x)) log γ ,

Uc,δ(uj ;x) = {y ∈ W : ν1
c ([y, uj ]) ≤ δ, ν1

c ([y,x\{uj}]) > δ} .

We used a grid of 100 × 100 dummy points which were equidistant in the
horizontal direction and ν1

c
θ̂0

– equidistant in the vertical direction (actually

this means that the dummy points were ν1
c

θ̂0

– equidistant in both directions –

compare with (29) ).
We maximised the profile pseudolikelihood on a grid of δ-values. The main

problem is the computation of the scaled volumes ν2
c (Uc,δ(uj ;x)) for all the

points uj , j = 1, . . . ,m. This can be done only approximately. To approximate
these scaled volumes with a reasonable precision it is necessary to compute
the scaled distances from the points {uj , j = 1, . . . ,m} to each point in a very
fine grid of points in W . This job is computationally quite demanding.

The approximate profile pseudolikelihood PLW,1(θ̂0, ψ;x) was computed
with border correction ν1

c = 0.05. This degree of border correction was chosen
as a compromise between minimizing the bias caused by missing unobserved
points and not excluding too many observed points from the estimation (with
the chosen border correction one forth of the points was not used in the
estimation). The profile pseudolikelihood and estimates of the parameters as
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Fig. 8. Pseudolikelihood estimation of the template parameters β, γ, δ of the expo-
nentially scaled area-interaction process for the plant data from Fig. 1 rescaled to
[0, 1]2 with border correction ν1

c = 0.05. The graphs show the profile pseudolikeli-
hood and the corresponding estimates β̂δ and γ̂δ as functions of δ. The last graph of

γ̂−πδ̂2

shows the strength of the attractive interaction. The resulting estimates are
δ̂ = 0.085, β̂ = 184, γ̂ = 3.99 · 1026.

functions of δ are plotted in Fig. 8. Note that the curves are smoother than
in the case of the Strauss process because now the interaction function is
continuous as a function of δ. We obtained the following values

δ̂ = 0.085 , β̂ = 184 , γ̂ = 3.99 · 1026 , γ̂−πδ̂2

= 0.25 . (30)

The value of γ̂−πδ̂2

is included because it gives a better impression of the
strength of the interaction, as this is actually the term which appears in the
template density. The fit indicates a slightly clustered point pattern as we
expected.

For model validation we used the K̃0(W̃ , r) and Q2 statistics from Sect. 7.

Fig. 9 shows the locally scaled estimate K̃0(W̃ , r) with W̃ = {u ∈ W :
ν1

c (u, ∂W ) > 0.05} (full-drawn line) together with the empirical mean and

95% envelopes for K̃0(W̃ , r) calculated from 399 simulations under the fitted
exponentially scaled area-interaction model (dashed lines). The locally scaled

estimate K̃0(W̃ , r) for the plant data lies inside the envelopes of the fitted
area-interaction model.

Next we tested the locally scaled Poisson hypothesis on the plant data.
We used the
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Fig. 9. The estimate K̃0 for the plant data (full drawn line) and mean and 95%

envelopes for K̃0 for the exponentially scaled area-interaction model (dashed lines)

Q2
P = (Minhom − µP )⊤Σ−1

P (Minhom − µP )

statistic with r = 0.05 and Minhom = (M0inhom, . . . ,M6inhom) defined by (28).
The subscript P indicates that in the formula for Q2 we use as µ and Σ the
mean µP and the covariance matrix ΣP of Minhom for the fitted locally scaled
Poisson model with θ = θ̂0. The values of µP and ΣP were estimated from
8000 simulated realisations of the fitted locally scaled Poisson model.

The simulation test (using 399 realisations of the hypothesis locally scaled

Poisson model with θ = θ̂0) gives the p-value of 0.05. Thus the plant data is
not very well described by the Poisson model.

Then we used the Q2
A statistic (i.e. the mean value µA and covariance

matrix ΣA of Minhom are computed for the fitted exponentially scaled area-
interaction model) for testing of the fitted locally scaled area-interaction
model. The test gave the p-value of 0.106.

Appendix: Proof of Equation (16) for
Distance-Interaction Processes in R

1

Let us suppose that X is a distance-interaction process on an interval I = [a, b]
of R

1 with density

fX(x) ∝ βn(x)
∏

y⊆2x

ϕ({ν1([u, v]) : {u, v} ⊆ y, u �= v}) ,

where ⊆2 indicates that y should have at least two elements. The density of
Xc is then

fXc
(x) ∝

∏

x∈x

c(x)−1 × βn(x)
∏

y⊆2x

ϕ({ν1
c ([u, v]) : {u, v} ⊆ y, u �= v}) .
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Let us consider the 1-1 differentiable transformation h of I onto I defined by

h−1(x) =

∫ x

a

c(u)−1du .

Then, the density of Xc can be rewritten as

fXc
(x) ∝

∏

x∈x

Jh−1(x) × fX(h−1(x)) .

It follows that Xc is distributed as h(X). In particular, for A ∈ B(I),

En(Xc ∩ A) = En(X ∩ h−1(A))

=

∫

h−1(A)

λ0dx

=

∫

A

c(u)−1λ0du ,

or
λc(u) = c(u)−1λ0 .
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Republic, pawlas@karlin.mff.cuni.cz

2 Institute of Information Theory and Automation, Academy of Sciences of the
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Augsburg, Germany, lothar.heinrich@math.uni-augsburg.de

Summary. Germ-grain models are random closed sets in the d-dimensional Eu-
clidean space R

d which admit a representation as union of random compact sets
(called grains) shifted by the atoms (called germs) of a point process. In this note
we consider the distribution function F of an m-dimensional random vector describ-
ing shape and size parameters of the typical grain of a stationary germ-grain model.
We suggest a ratio-unbiased weighted (Horvitz-Thompson type) empirical distribu-
tion function F̂n to estimate F , based on the corresponding data vectors of those
shifted grains which lie completely within the sampling window Wn ⊆ R

d. Since, as
Wn increases, the empirical process F̂n(t) − F (t) (after scaling) converges weakly
to an m-parameter Brownian bridge process, it is possible for the particular case
where m = 1, to examine the the goodness-of-fit of observed data to a hypothesised
continuous distribution function F , analogous to the Kolmogorov-Smirnov test.

Key words: Germ-grain model, Horvitz-Thompson-type estimator, Kolmogorov-
Smirnov test, Multivariate empirical process, Weak convergence

1 Introduction

Let K′ be the family of non-empty compact subsets of the d-dimensional
Euclidean space R

d endowed with the Hausdorff metric making K′ to a Polish
space with Borel σ-algebra B(K′). A point process on the metric space K′ is
called a particle process, see [7], Chap. 4, for details.

Further let K′
0 = {K ∈ K′ : c(K) = 0}, where c(K) ∈ R

d denotes a
reference point assigned to each K ∈ K′ such that the mapping K �→ c(K) is
(B(K′),B(Rd))-measurable and equivariant under translations (i.e. c(K+x) =
c(K) + x for all K ∈ K′ and x ∈ R

d). The most frequent choices of c(K) are
lexicographical minimum of the set K or a centroid of K.
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Now, a particle process can be defined by means of a marked point process

Ψm =
∑

i≥1

δ[Xi,Ξi] (1)

in R
d with the mark space K′

0. A germ-grain model Ξ is then defined to be
the union set

Ξ =
⋃

i≥1

(Xi + Ξi). (2)

The points {Xi}i≥1 are called germs and {Ξi}i≥1 are the grains of the germ-
grain model (2).

Throughout this note we work under the following basic assumptions:

(A1) The unmarked point process Ψ(·) := Ψm(·×K′
0) =

∑
i≥1 δXi

(·) is simple
and weakly (second-order) stationary with finite and positive intensity λ.

(A2) The grains {Ξi}i≥1 are independent copies of Ξ0 and independent of Ψ .
The random compact set Ξ0 (called the typical grain) has distribution Q on
K′

0.

(A3) There exists a number q ≥ d such that

E‖Ξ0‖q < ∞, where ‖K‖ = sup{‖x‖ : x ∈ K} for K ∈ K′
0. (3)

(A4) The convex compact sampling window Wn ⊆ R
d expands without

bounds in all directions such that for q ≥ d from (3)

Hd−1(∂Wn)

|Wn|1−1/q
≤ c0 < ∞ and ρ(Wn) −→

n→∞
∞,

where Hk denotes the k-dimensional Hausdorff measure on R
d, | · | = Hd(·)

is the Lebesgue measure on R
d, b(x, r) designates the ball of radius r > 0

centred at x ∈ R
d and ρ(Wn) = sup{r > 0 : b(x, r) ⊆ Wn, x ∈ Wn} is the

inball radius of Wn.

(A5) The reduced covariance measure γ
(2)
red (see [2], Chap. 10.4) of Ψ is of

bounded total variation.

Let f(Ξ0) = (f1(Ξ0), . . . , fm(Ξ0)) be an m-dimensional random vector
with distribution function

F (t) = P(f(Ξ0) ≤ t) = P(f1(Ξ0) ≤ t1, . . . , fm(Ξ0) ≤ tm), (4)

t = (t1, . . . , tm) ∈ R
m. The vector f(Ξ0) can describe various shape and size

parameters of the typical grain.
We assume that only a single realisation of the germ-grain models (2) can

be observed in Wn and that the data vectors f(Ξi) are available for all shifted
grains Xi +Ξi lying completely in Wn. In other words, the germ-grain model
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(2) consists either of isolated grains or the overlapping effects do not prevent
the exact measurement of the vectors f(Ξi) as, for example, in the case of
fibre or manifold processes.

Our aim is to construct an estimation of distribution function (4) with good
asymptotic properties based on the data vectors f(Ξi) of grains satisfying
Xi +Ξi ⊆ Wn. This sampling procedure (minus-sampling) leads to a weighted
estimator of the form

λ̂F (t) =
∑

i≥1

1{Xi+Ξi⊆Wn}

|Wn ⊖ Ξ̌i|
1(−∞,t](f(Ξi)), t = (t1, . . . , tm) ∈ R

m, (5)

where (−∞, t] =
∏m

i=1(−∞, ti], 1B is the indicator function of a set or event
B and A ⊖ B̌ = {x : x + B ⊆ A} is the erosion of A by B. From Campbell’s
theorem for stationary marked point processes (see Chap. 4.2 in [8] or Chap.
10.5 in [2]) it follows that

Eλ̂F (t) = λ

∫

K′
0

∫

Rd

1Wn⊖Ǩ(x)

|Wn ⊖ Ǩ| 1(−∞,t](f(K)) dxQ(dK) = λF (t),

which shows that (5) is an unbiased estimator of λF (t). In Sect. 2 we define

the empirical distribution function F̂n(t) as the ratio of λ̂F (t) and λ̂F (∞).
As an immediate consequence of the weak convergence of the corresponding
m-variate empirical process (7) stated in Sect. 3 (Theorem 1), a Kolmogorov-
Smirnov test can be established at least for m = 1 and continuous F (·).
In Sect. 4 this result will be applied to real data taken from some porous
ceramic material. The empirical distribution functions of the volume and of
some shape characteristic of the typical pore are compared with corresponding
hypothesised distribution functions.

2 Empirical Distribution Functions

A quite natural empirical counterpart of the distribution function (4) is given
by

F̃n(t) =
1

Nn

∑

i≥1

1{Xi+Ξi⊆Wn}1(−∞,t](f(Ξi)), t = (t1, . . . , tm) ∈ R
m,

where Nn =
∑

i≥1 1{Xi+Ξi⊆Wn} is the number of completely observable grains

in Wn. However, it turns out that the empirical distribution function F̃n(t)
is not close enough to F (t) in order to provide a zero mean weak limit of√

|Wn|
(
F̃n(t) − F (t)

)
. It is intuitively clear that smaller particles are more

likely to lie completely in Wn than larger ones. Therefore, we need to weight
the event {Xi + Ξi ⊆ Wn} by an appropriate factor. We define the empirical
distribution function based on (5) by
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F̂n(t) =
1

λ̂n

∑

i≥1

1{Xi+Ξi⊆Wn}

|Wn ⊖ Ξ̌i|
1(−∞,t](f(Ξi)), t = (t1, . . . , tm) ∈ R

m, (6)

where

λ̂n =
∑

i≥1

1{Xi+Ξi⊆Wn}

|Wn ⊖ Ξ̌i|

is an unbiased estimator of the intensity λ. Therefore, F̂n(·) is a so-called
ratio-unbiased estimator of F (·).

3 Weak Convergence of an Empirical Multiparameter
Process

To construct asymptotic goodness-of-fit tests for the distribution function F (·)
we use the weak convergence of the m-parameter empirical process

Yn(t) =
√

Ψ(Wn)
(
F̂n(t) − F (t)

)
, t ∈ R

m. (7)

The process (Yn(t), t ∈ R
m) has random jumps depending on the weights

|Wn ⊖ Ξ̌i|−1. Its trajectories belong to the Skorohod space D(Rm), see [1] for
m = 1 and [4] for m ≥ 2, of right continuous real functions on R

m with finite
left limits existing everywhere. For a precise definition of the limits, see [4, 6].

Theorem 1. Under the assumptions (A1)–(A5), the sequence (Yn(t), t ∈
R

m)n≥1 defined by (7) converges weakly (as n → ∞) in D(Rm) to a zero
mean Gaussian process (Y (t), t ∈ R

m) with covariance function EY (s)Y (t) =
F (s ∧ t) − F (s)F (t), where s ∧ t = (min(s1, t1), . . . ,min(sm, tm)).

The proof and further details can be found in [3]. In the case m = 1
the Gaussian limit process Y (·) has the same finite-dimensional distributions
as W o(F (·)), where W o(·) denotes the Brownian bridge process being a zero
mean Gaussian process on [0, 1] with covariance EW o(s)W o(t) = s∧t−st, see
[1]. This case is of special interest for testing the goodness-of-fit of a continuous
distribution function F (t) = P(f(Ξ0) ≤ t), t ∈ R. Using the continuous
mapping theorem (see [1], Theorem 2.7) we get the following

Corollary 1. Under the assumptions of Theorem 1 for m = 1, we have

P
(

sup
t∈R

|Yn(t)| ≤ x
)

−→
n→∞

P
(

sup
t∈R

|W o(F (t))| ≤ x
)

for x > 0 .

Furthermore, if F (·) has no jumps then the limit P(supt∈[0,1] |W o(t)| ≤ x) does
not depend on F (·) and coincides with the Kolmogorov distribution function

K(x) = 1 + 2

∞∑

k=1

(−1)ke−2k2x2

for x > 0.
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4 Centres of Pores in a Ceramic Coating

Corollary 1 enables us to perform a Kolmogorov-Smirnov test in analogy to
the classical case of i.i.d. samples drawn from an unknown source with one
or several hypothetical distribution functions. The Kolmogorov-Smirnov test
requires the continuity of the hypothesised distribution of the data implying
that the critical values of the test statistic do not depend on this distribution.

In what follows we present a practical application to the microstructure of
ceramic plasma-sprayed coatings. A specimen has been prepared in the Insti-
tute of Plasma Physics, Academy of Sciences of the Czech Republic, Prague.
The data analysed here (kindly provided by Dr. Pavel Ctibor) consist of ap-
proximately convex pores in a three-dimensional sampling window Wn. For
further details about the data set, see [5], where the spatial distribution of
particles has been investigated.

Fig. 1. The 3D specimen of plasma-sprayed ceramic coating

The specimen is a rectangular block with dimensions 450×350×240 µm, it
was subsequently sliced to obtain serial sections of small distance perpendic-
ular to the grinding direction (see Fig. 1). In the two-dimensional image of a
section (Fig. 2) both cracks and approximately convex pores can be observed.
Using image analysis technique the parameters of only approximately convex
pores were measured. The centroid coordinates, size and shape of individual
pores were determined. In particular, for each observable pore we get the vol-
ume, the maximal diameter and the minimal diameter. The sample of centres
of pores is shown in Fig. 3. The number of shifted grains Xi + Ξi (pores)
lying completely in Wn is Nn = 1976 and the number of reference points Xi

(centroids) in Wn is Ψ(Wn) = 2085. Note that the shape of Wn entails that
each of the eroded windows Wn ⊖ Ξ̌i is a rectangular block with dimension
depending on the widths of Ξi measured parallel to the edges of Wn. This
fact facilitates considerably the computation of the weighted estimator (6).

At first we consider the distribution of volume of the typical grain, i.e. we
put f(Ξ0) = |Ξ0|. Since very small particles could not be detected and so are
omitted in the study, there exists a lower threshold a > 0 such that F (a) = 0
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Fig. 2. The binary image of the 2D microstructure in a section including pores and
cracks

Fig. 3. The sample of the point process Ψ observed in the rectangular block Wn

and F (t) > 0 for t > a. Similarly, the absence of large pores indicates the
existence of an upper bound b > 0. At the first glance and supported by
the experience of the material scientists, the empirical distribution function
F̂n(t) seems to be approximately Pareto distributed. Thus, we will examine
the null hypothesis that the distribution function P(f(Ξ0) ≤ t) coincides with
a truncated Pareto distribution function F0(·) given by

F0(t) = 1 −
(a
t

)c

× bc − tc

bc − ac
, a ≤ t ≤ b.
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Correcting sampling bias effects by the weights |Wn ⊖ Ξ̌i| we modify the
maximum likelihood method leading to the following estimates of the location
parameters a > 0, b > 0 and the shape parameter c > 0, respectively:

â = 31.462 µm3,

b̂ = 6152.056 µm3,

ĉ = 1.012.

Here, it should be noted that the weak convergence of the empirical process
(7) stated in Theorem 1 does not hold in general when parameters in F (·) are
replaced by corresponding (maximum likelihood) estimators. For this reason

we are not allowed to plug in the parameter estimates â, b̂ and ĉ in the
hypothesised distribution function F0(·). This fact is already well-known from
the classical i.i.d. case and can be interpreted as higher sensitivity of the
Kolmogorov-Smirnov test against the null hypothesis.

However, the above estimates give us at least a hint about where the true
parameters could be located. We have chosen a small discrete grid around the
parameters estimated from the data and calculated the maximal deviations.
The best fit was obtained for a = 30.9, b = 6500 and c = 1.005. We perform
the test for these values.

In Fig. 4 the plot of the empirical distribution function F̂n(·) defined by
(6) is compared with the hypothesised distribution function F0(·), where the
curves are plotted in log-scale.

log a log b t

F̂n(e
t) F0(e

t)

Fig. 4. The empirical distribution function of volume (dashed line) and fitted trun-
cated Pareto distribution function (solid line)

The maximal deviation of F̂n(·) from F0(·) is supt∈R
|F̂n(t)−F0(t)| = 0.025.

This means that supt∈R
|Yn(t)| = 1.141 is not greater than 1.358 (= 95%-

quantile of the Kolmogorov distribution function) and so the null hypothesis
is not rejected at the 5%-level.
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We have also computed the maximal deviation of F̃n(·) from F0(·) which
is slightly higher than the value for F̂n(·): supt∈R

|F̃n(t) − F0(t)| = 0.030.
As a second example we choose the shape parameter f(Ξ0) being equal to

the natural logarithm of the ratio of the maximal diameter and the minimal
diameter of the typical grain. Suggested by material scientists we check the
null hypothesis whether the corresponding shape parameter of the pores in
our specimen is Weibull distributed with parameters α = 1.04 and β = 0.31

F0(t) = 1 − e−(t/β)α

, t ≥ 0.

The functions F̂n(t) and F0(t) are compared in Fig. 5, where again the log-
scale is used. The maximal deviation is supt∈R

|F̂n(t)−F0(t)| = 0.020 implying
that supt∈R

|Yn(t)| = 0.934. Hence, the null hypothesis is again not rejected
at the 5%-level.

0 t

F̂n(e
t) F0(e

t)

Fig. 5. The empirical distribution function of a shape parameter (dashed line) and
the hypothesised distribution function (solid line)

5 Conclusion

In summary our tests confirm the conjectures of the material scientists on
the distributions of volume and shape of the pores. Our sampling window
is large enough and so we can trust in the asymptotics. On the other hand,
since the data are based on sections, the knowledge of volume and shape of
individual pores is not precise. We should also be aware that Theorem 1 and
our goodness-of-fit test rely essentially on the independence assumption (A2).
There are grounds for the assumption that more or less weak dependencies
between neighbouring pores exist. Mathematically spoken, the system of pores
modelled by (2) is driven by a stationary marked point process (1) involving
dependencies between different grains as well as between grains and germs.
Under certain mixing and regularity conditions an analogue to Theorem 1
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seems provable but the covariance structure of the corresponding limit process
would be more complicated than that of Y (·). A detailed study of such weakly
dependent structures with applications to testing the goodness-of-fit of certain
marginal distributions of the typical grain should be a meaningful subject of
future research.
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Summary. There is a need to characterise spatial point patterns of ecological plant
communities in which a very large number of points exist for many different plant
species. We further investigate principal component analysis for spatial point pat-
terns using functional data analysis tools on second-order summary statistics as
introduced in [10, 11]. The approach is used to detect different types of point pat-
terns in a multi-type pattern to classify the species by their spatial arrangement. The
developed method is evaluated in a detailed feasibility study, giving rise to a num-
ber of recommendations including the choice of the appropriate summary statistic.
In addition, we investigate the performance of the method under noisy conditions
simulating a number of settings typically occurring in an ecological context. Over-
all, the method produces stable results, the best results being achieved when the
pair-correlation function is used. In all settings the level of noise needs to be very
high to invalidate the results.

Key words: Ecological plant communities, Functional data analysis, Functional
principal component analysis, Multi-type spatial point patterns

1 Introduction

The study of patterns in ecosystem diversity and functioning is driven by the
need to understand the processes that organise ecological communities. The
link between ecosystem function, observed at the level of the community, and
ecosystem diversity, manifest at the scale of the individual plant, has long been
a subject of debate in ecology, and arises as a consequence of the spatial mix-
ing of individuals over time. Understanding the mechanisms that promote and
sustain biodiversity and allow a large number of species to coexist is therefore
a key interest within community ecology [14, 16]. Species coexistence in turn
is directly linked to local inter- and intraspecific competition structures in a
community [6], and spatial processes play a fundamental role within ecology
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and particularly in plant ecology, since plants are non-motile organisms. Each
plant has a dependence on local growing conditions in its respective location
[20]. Plants interact mainly with their immediate neighbours so an approach
that models the exact location of a plant will support the elicitation of the
underlying processes which have caused the observed pattern and thus yield
an understanding of community dynamics and consequently the mechanisms
involved in the functioning of ecosystems [8, 9]. Spatial point processes would
appear to be an ideal tool to investigate the interaction structure between
individual plants, since they are statistical models describing the exact loca-
tions of objects in space (see, e.g. [4, 5, 15]). Model parameters reflect overall
properties of the observed pattern that are of ecological interest, for instance
strength and direction of interaction among individuals [13].

However, the pattern of a typical plant community, may be very complex,
due to the large number of individuals and species and the resulting extremely
large number of potential inter- and intra-species interactions. [11] and [10]
introduce a methodology that may be used to reduce the dimensionality of a
spatial point pattern dataset. Functional data analysis tools [17, 18] are ap-
plied to the second-order statistics of multi-type point processes, in particular
to L-functions and pair-correlation functions, to derive a PCA method for
spatial point pattern data.

This paper assesses in detail the feasibility of the approach through a
simulation study in order to make recommendations as to which second-order
summary statistic is the most appropriate. The recommendations are derived
from simulated spatial point patterns with different characteristics, including
random, regular and clustered patterns.

An important consideration with respect to ecological data is that recorded
data are susceptible to a certain amount of noise, unlike simulated patterns.
This paper therefore also investigates the performance of the method under
noisy conditions simulating a number of settings typically occurring in eco-
logical data set construction. This is done in order to provide information to
the applied researcher as to when the method fails and how detailed the data
recording has to be for the method to classify patterns properly.

Section 2 briefly summarizes the approach introduced in [11] and [10]. In
Sect. 3 we describe an extended simulation study used to assess the perfor-
mance of the method under the assumption of homogeneity. Section 4 exam-
ines the performance of the methods with added noise typical of data collection
in the context of ecological studies. Section 5 briefly describes the results from
an application of the method to a data set.

2 Methods

2.1 Functional Data Analysis

For a detailed introduction to functional data analysis see [17] and [18]. In
functional data analysis observations are functions and these are interpreted as
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single entities rather than as consecutive measurements. Generally speaking,
the record of a functional observation x consists of n pairs (tj , yj), where yj

is an observation of x(tj) at time tj . Since the functions are usually observed
at only a finite number of values of t, interpolation or smoothing techniques
have to be applied to yield a functional representation of the data.

For functional PCA (see [12, 17, 18]) consider function values xi(t) and
define fi(w) =

∫
w(t)xi(t) dt, where w(t) is a weight function. Maximise

N−1
N∑
i

f2
i (w) under the constraint ‖w‖2 =

∫
w(t)2 dt = 1 and get an

eigenequation ∫
v(t, s)w(s) ds = λw(t) (1)

with variance-covariance function v(t, s) = N−1
N∑

i=1

xi(t)xi(s). The solution to

this eigenequation with the largest eigenvalue solves the maximisation prob-
lem and will be denoted by w1 with corresponding scores fi1 = fi(w1). The
second largest eigenvalue with eigenfunction w2 yields the second principal
component with scores fi2 etc. Further analysis will mainly examine the scores
fik for each of the curves on the first p principal components, where typically
p ≪ N .

2.2 Functional Principal Component Analysis of Second-Order
Summary Statistics

Let Z be a spatial point process on R
2. Let X be a multitype point process

X = {(ζ,mζ) : ζ ∈ Z} with mζ ∈ M and M = {1, . . . , k} a set, where no
other marks are available, and subprocesses Xi ⊂ X with Xi = {(ζ,mζ) :
ζ ∈ Z and mζ = i} and i = 1, . . . , k. Consider a realisation x of X and use
second-order summary statistics to characterise the spatial behaviour of the
individual subpatterns xi. Apply a functional principal component analysis
to the smoothed L-functions or pair-correlation functions to group the point
patterns by their spatial behaviour.

We estimate the L-functions using the following estimator for the K-
function [19]:

K̂ = n−2|A|
∑∑

ζ �=ξ

w−1
ζ,ξId(dζ,ξ),

where n is the number of points in region A ∈ R with area |A|, dζ,ξ is the
distance between point ζ and ξ and wζ,ξ is an edge correction factor – the
proportion of the circle with centre ζ passing through ξ which lies in A. Clearly,

L̂(r) =

√
K̂/π. Note that we plot L̂(r) − r when visualising results.

For the pair-correlation function, we apply spline smoothing to Z(r) =
K̂(r)
πr2 , constrain Z(0) = 1 and estimate its derivative.
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We smooth the estimated second-order summary statistics using B-splines
(see [7]), i.e. splines with compact support, as they are capable of picking up
local features. We subsequently perform a functional PCA on the smoothed
functions. Through this, the subprocesses may be grouped on the basis of
their scores on the principal components. We use hierarchical cluster analysis
on these scores, in particular Ward’s methods [2], to detect clusters of simi-
lar second-order summary statistics and hence groups of point processes with
similar spatial behaviour. The result of the cluster analysis is plotted in a
dendrogram and, together with a plot of the first p principal components, will
reveal groups of points processes with different spatial behaviour. In addition,
the finer structure of the dendrogram will display similarities between individ-
ual patterns. Thus the dendrogram summarises the most distinctive features
in the population as well as the position of the individual species within the
structure.

See Fig. 1 for an example using simulated data of 20 clustered and 20
random patterns (for more details on the simulations see Sect. 3). Figure 1
a) shows the smoothed L-functions, 1 b) the first two principal components,
1 c) a plot of the scores of all patterns on the first principal components and
d) 1 a dendrogram of the scores.
Also note, that L(r)-values for regular patterns tend to lie in [0, r] whereas
L(r)-values for clustered patterns are usually larger than r with no upper
bound. Hence, if we want to distinguish between clustered, random and regular
patterns, the difference between the L-function for a clustered pattern and a
random pattern tends to be larger than the difference between the L-function
for a regular pattern and a random pattern. In analogy to the approach taken
in a standard PCA context when variables have been measured on different
scales, we perform a FPCA on the correlation matrix rather than on the
covariance matrix. I.e. equation (1) now becomes

∫
v∗(t, s)w(s) ds = λw(t),

where v∗ is the correlation function v(t, s) = N−1
N∑

i=1

x∗
i (t)x

∗
i (s), i.e. the co-

variance function of a standardised data matrix x∗. A similar situation occurs
when the pair-correlation function is being used – regular and random pattern
appear more similar than clustered and random patterns so the correlation
matrix will be used instead. The simulation study in Sect. 3 has investigated
this aspect and compares the performance of the two statistics in this context.

3 Feasibility Study

In a detailed simulation study we examine the capability of the approach to
separate groups of simulated point patterns with different spatial behaviour.
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Fig. 1. Results from a functional principal component analysis on L-functions for 20
clustered and 20 random patterns, (a) smoothed L-functions; (b) first two principal
components; (c) a plot of the scores of all patterns on the first principal components;
(d) dendrogram of the scores

The aim is to validate the methodology in general and also to identify which
second-order summary statistic should be used with real data.
In the simplest case, a set of 20 homogeneous Poisson cluster processes [5]
were simulated on the unit square with a parent process of intensity c = 10
and daughter processes with radius rad = 0.025. In addition a set of 20
binomial process, i.e. Poisson processes with a fixed number of points, were
generated. L-functions as well as pair-correlation functions were calculated for
each of the patterns. These were smoothed with 10 cubic B-splines and then
submitted to a functional principal component analysis followed by a cluster
analysis of their scores in the first two principal components. The method was
capable of distinguishing the two groups of patterns perfectly: there was no
misclassification, either with L-functions or with pair-correlation functions. A
similar result was achieved with two sets of 20 random and 20 regular (hard
core) processes, respectively [4].

In order to assess the sensitivity of the method when the groups of pat-
tern become increasingly similar, Strauss processes [21] with different levels of
regularity were compared to hard core processes. The interaction parameter
was chosen as γ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, where we have a
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hard core process if γ = 0 and a Poisson process if γ = 1. Each of the ten
sets was compared to 20 simulated Strauss processes with complete inhibition
(hard core process) with a radius rad = 0.05. There was only a small number
of misclassifications when repulsion was very strong, i.e. when the two groups
of processes were very similar. See Table 1 for an overview of these results.

Table 1. Percentage of misclassified processes after FPCA on L-functions and pair-
correlation functions when comparing a group of hard core processes (very strong
repulsion) to a group of processes with different levels of repulsion

repulsion weak (γ = 0.9) medium (γ = 0.5) strong (γ = 0.1)

L-function 0% 0% 10 %
pair-correlation f. 0% 0% 5%

Three groups – 20 regular, 20 random and 20 clustered process – were
simulated to investigate the performance of the method with regular, clustered
and random patterns. When using the L-function, 90.36% of the variation
amongst the functions could be explained by the first two PC’s when the
covariance matrix was used which could be increased to 94.94% by using the
correlation matrix. When the pair-correlation function was used, both the
approach using the covariance matrix and the approach using the correlation
matrix, could account for 99.5% of the variation. Figures 2 and 3 show that
for both summary statistics, the three clusters were clearly identified by the
method, and in both cases the regular patterns seemed more similar to the
random ones, as predicted. The three clusters appear more distinct when the
pair-correlation is used as a summary statistic.

4 Erroneous Data

The performance of the method when used with noisy data was assessed, since
data used in ecological studies are susceptible to error, in particular when data
collection is challenging, as for example in [1]. Indeed, identifying the exact
location of a plant and distinguishing individuals may be a complex task in
itself [20].

In order to investigate the robustness of the method, three different types
of error common to ecological applications were considered:

a) The location was inaccurately recorded due to human error or technical
problems.

b) The location was recorded on a grid. This grid is fine enough that the
probability for any resulting cell to contain more than one data point is
very small. Nevertheless, strictly speaking the recorded location does not
reflect the exact location of the individual plants.
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data. For a) an increasing degree of random noise is deliberately added to
the original locations; for b) the data are discretised; and for c) an increasing
number of marks from one species are randomly replaced by marks of another
species. In all three cases, the focus is to identify the degree of distortion
that may be introduced whilst still preserving sufficiently accurate results, in
order to provide the ecologists with an indication as to the degree of quality
required.

4.1 Inaccurate Location

In order to mimic erroneously recorded locations, sets of clustered, random
and regular point patterns were generated as described in Sect. 3. Subse-
quently, values from a normal distribution N(0, σ2) were generated and added
to the original x- and y-coordinates. Here, the strength of noise is reflected in
the size of σ2.

Note that after this procedure the pattern generated from homogeneous
Poisson processes will still show complete spatial randomness whereas the
clustered and regular processes will become increasingly similar to the Poisson
processes. The simulation study was undertaken in order to reveal exactly
what degree of inaccuracy would result in the procedure failing and thus to
advise ecologists on the accuracy needed for data collection.

Figures 4 (a) and (b) show the number of misclassifications for different
degrees of noise, for simulations where clustered versus random and regular
versus random patterns were generated as in Sect. 3 and the analysis was done
using the L-function. Figures 4 (c) and (d) show the analogous results for the
pair-correlation function.

For the analyses with the L-function, results become increasingly unre-
liable from a standard deviation of 0.2 onwards for clustered patterns and
from 0.03 for regular patterns. Since the patterns have been generated on the
unit-square, 0.2 is equivalent to 20% of the plot size, and 0.03 to 3% of the
plot size. Translated into practical terms, this means that for a data set as
in [1] where the locations have been recorded on a 22 m ×22 m plot, the 2σ
region for the noise has a width of 1.32 m for regular patterns and 8.80 m for
clustered patterns. The results are similar for the pair-correlation with results
getting increasingly unreliable from a standard deviation of 0.26 onwards for
clustered patterns and from 0.05 for regular patterns.

4.2 Data Collected on a Grid

Spatial point process models assume that the location of objects has been
recorded on a continuous scale. In practice, however, this is not the case since
data is typically sampled from a discretised space due to real world constraints.
Ecologists typically record a plant’s location on a grid, as in for example [1].
This grid has a very fine resolution such that it is very unlikely for any two
points to appear in the same grid cell but this is not impossible. Here, we
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Fig. 4. Number of misclassifications as a function of the strength of noise. (a) clus-
tered patterns, L-function; (b) regular patterns, L-function; (c) clustered patterns,
pair-correlation function; (d) regular patterns, pair-correlation function

generate patterns as in 3 and then modify the location to an increasingly
coarse grid by rounding the coordinates.

Figure 5 shows the number of misclassifications resulting from an increas-
ingly coarse grid. Figures 5 (a) and (b) show the results when the L-function
was used for clustered and regular patterns, respectively. Figure 5 c and d
show the analogous results when the pair-correlation function was used.

The results are very similar, for both regular and clustered patterns as
well as for the two summary statistics. Misclassifications only occur when the
grid becomes as coarse as consisting of 4 × 4 = 16 cells. Hence, the method
only fails when the grid has been extremely coarse-grained, so coarse that this
choice of grid would be highly impractical in application. In order to measure
the exact location of 20 sets of approximately 100 points each, a grid of this
coarseness would not be chosen. Also, note that, theoretically, spatial point
processes are defined as simple processes where the probability of two points
occurring at the same location is 0 [15]. However, the finer structure is lost
leading to less detailed results and changing the relative differences between
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species. Thus, the relative position of the individual patterns in the hierarchy
is obscured and changed.

4.3 Wrong Species Recorded

In practice, human error might lead to the data collector recording the wrong
species. This can be the result of a number of mistakes, such as misrecorded
species and other technical problems. Most of these problems are not system-
atic and will not be considered here. We consider a situation where individ-
ual plants from one specific species have been erroneously recorded as being
another specific species with a different spatial behaviour. We assume it is
unlikely that it is an arbitrary misclassification, but with one with similar
phenotypic characteristics since this is the most likely error that can happen.

In order to mimic this situation, sets of regular and random as well as
clustered and random patterns were simulated as described above (see 3).
Subsequently, individuals from one of the clustered or regular patterns, re-
spectively, were randomly labelled with the label of one of the random pat-
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terns with increasing probability. For two point patterns x and y let d(x, y)
be the Euclidean distance between the score vectors of the corresponding first
principal components. For two sets of point patterns x = {x1, . . . , xn} and
y = {y1, . . . , ym} we can now calculate the average of these distances for pat-
tern xi to the other patterns in its group relative to the average distance of
pattern xi to all other patterns, i.e. we use the relative distance defined by

rd(xi,x,y) =
(n − 1)−1

∑n
j=1 d(xi, xj)

(n − 1)−1
∑n

j=1 d(xi, xj) + m−1
∑m

k=1 d(xi, yk)

and assess the performance of the method on rd, assuming that a pattern will
be classified into the group that it is closer to. If the distance to the original
group is larger than the distance to the wrong group, i.e. when rd(xi,x,y) ≥
0.5, the modified pattern is more likely to be wrongly classified.

Figure 6 shows the results from 100 simulations for regular patterns with
complete inhibition versus random patterns, using the L-function. rd(xi,x,y)
is plotted as a function of the probability of an individual point in a subpattern
being re-labelled.
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Fig. 6. rd(xi,x,y) as a function of the probability of an individual point in a sub-
pattern being re-labelled for regular with complete inhibition and random patterns
using the L-function

Figure 7 shows a plot of how an individual subpattern slowly ”moves” from
it’s own group of regular patterns into the other group of random patterns
with increasing probability of an individual point in a subpattern being re-
labelled (see circle).
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Fig. 7. Relative distance

From a probability of re-labelling of more than 0.24 onwards rd(xi,x,y) ≥
0.5 in the case of regular versus random patterns when L-functions are being
used. It increases to 0.27 for the pair-correlation function in the same setting,
and to 0.32 and 0.36 in the case clustered versus random patterns, for L-
function and pair-correlation function, respectively.

5 Application

In [11] the methods investigated here are applied to a data set as described
in [1]. This data set is a multi-type spatial point pattern formed by a natural
plant community in the heathlands of Western Australia, consisting of the
exact locations of 6378 plants from 67 species on a 22m by 22m plot. The
data have been recorded on a fine grid; there is only one instance of two
plants appearing in the same grid-cell. Since both the simulations described
above revealed that the pair correlation function yields more reliable results
in this context, these were estimated for all species with an abundance larger
than 20. The functions were smoothed using 10 cubic b-splines and a FPCA
was performed on these functions.
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The first principal component represents clustering at close distances and
the second clustering at larger distances (for details see [11]). Figure 8 shows
the result of the cluster analysis of the scores on the first two principal com-
ponents. Four different groups of patterns can be identified. The first group
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Fig. 8. Dendrogram for the Western Australian data set after cluster analysis
(Ward’s method) of the scores on the first two principal components

scores low on the first principal component. This indicates that the patterns in
this group show slight repulsion at close distances i.e. they are patterns with
a hard core. The second group scores low on both PCs, i.e. some repulsion to
randomness at close and further distances. The third group scores high on the
first PC so shows clustering at closer distances, i.e. no hard core. The fourth
group scores even higher on the first PC so shows stronger clustering at closer
distances and no hardcore again.
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6 Discussion

We derive principal component analysis for spatial point patterns by applying
functional principal component analysis to the second-order summary statis-
tics of multi-type spatial point patterns. This yields a classification of the
subpatterns into groups of similar spatial arrangement.

A feasibility study revealed that the method was capable of distinguishing
clearly between both clustered versus random, and regular versus random pat-
terns. Furthermore, the method proved to be sensitive enough to distinguish
between rather similar types of patterns, i.e. patterns with a very similar de-
gree of regularity. Overall, the results were very similar for L-functions and
pair-correlation functions, with slightly better results for the pair-correlation
function in some situations. This might have been a result of the cumulative
nature of the L-function.

In a setting where regular, random and clustered patterns are present, the
regular patterns appear more similar to the random patterns than do the clus-
tered patterns, and as a consequence are more difficult to distinguish from the
random patterns. Here again, the pair-correlation function produced slightly
better results with a clearer classification. However, the observed similarity be-
tween regular and random arises as an inherent property of the classifications
of the patterns themselves. Whilst there is a finite limit to the spacings and in-
hibition associated with regular patterns, there is no limit (in principle) to the
spacings and attractions associated with clustered patterns. Therefore there
may be a ”tending to unbounded” difference between random and clustered
patterns, whereas the regular patterns are constrained to complete inhibi-
tion. Consequently, when interpreting the results from a principal component
analysis this will have to be kept in mind when comparing the strength of
clustering with respect to the strength of regularity.

A detailed simulation study investigated the performance of the method
in the presence of noise typical of ecological data. When random noise was
added to the location of individuals, the method proved to be very stable. Only
strong degrees of noise lead to serious misclassifications. Similarly, when data
were discretised into a grid of increasing coarseness, only a very coarse grid
prohibited the overall classification of the subpatterns into the largest groups.
However, the finer similarity structure becomes lost as a result of less precise
data. Finally, the probability of an individual species being classified into a
group with different spatial behaviour was only high when the probability of
the species to be misidentified was at least 0.24.

In all three cases, again, the pair-correlation function yields slightly better
results. Overall, the results from the study enable us to inform the applied
researcher about the degree of noise which will invalidate the analysis. Due to
the ongoing technological development, larger numbers of similar data sets,
as described in [3], will become available. Hence, there is much room for an
extension of the approach, for example to incorporate interspecies interac-
tions based on two-dimensional L-functions or pair-correlation functions, or
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to incorporate marks into the analysis using a mixed (i.e. functional and non-
functional) principal component analysis.
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On Modelling of Refractory Castables
by Marked Gibbs and Gibbsian-like Processes

Felix Ballani
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Summary. The modelling of self-flowing refractory castables, a special kind of
concrete, is discussed. It consists of two phases: a system of randomly distributed
spherical hard grains and a cement matrix. The focus is on marked Gibbs and
Gibbsian-like processes but also some other models are discussed. It turns out that a
particular canonical marked Gibbsian-like process is useful for modelling the samples
and more plausible than the classical stationary marked Gibbs process.

Key words: Canonical Gibbsian-like process, Marked Gibbs point processes, Random-
shift model, Refractory castables

1 Introduction

Concrete is an important building material, widely used for example in dams,
highways and buildings. Its versatile use derives from the numerous types of
its composition. Concrete can often be considered to be a two-phase material,
consisting of a system of randomly distributed hard grains embedded in a
matrix, which is the binding system and constitutes the second phase.

Important subjects of engineering research for concrete are its mechanical
properties, such as cold pressure strength and fracture behaviour, and perco-
lation properties, see e. g. [5]. These properties are closely related to the inner
geometrical microstructure. They are not merely determined by the volume
fraction of the particle phase. Therefore, statistical analysis of this structure
and its modelling are very important.

Useful models of concrete belong to the class of models of randomly hard
particles, and of hard spheres, respectively, if the grains are assumed to be
spherical as in the present contribution. Such models are also of interest in
many other fields of engineering and materials research, for example in the
context of sinter metals or granular matter. Most notably the models devel-
oped by engineers and physicists are very successful [5, 15, 21, 30], but they
are mathematically intractable. Even simulation is often not straightforward.
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(a) CT image (b) reconstructed sample

Fig. 1. Visualization of a sample of concrete. The black spheres in (a) are pores.

There are indeed simpler models based on Poisson processes like the Matérn
model, the Stienen model, the lilypond model and the dead leaves model.
But the small volume fraction of space occupied by the spheres makes these
models unsuitable for a successful application in the present contribution.

As described in Sect. 2, the samples which are discussed here consist of
spherical grains with varying sizes. Some of the corresponding classical mod-
els from spatial statistics and statistical physics make use of a proposal size
distribution which differs from an observable resulting size distribution. This
is discussed e.g. in [17] and [25] and leads in the case of modelling a sample
to the problem of determining the right proposal distribution, see [28]. There-
fore, after a discussion of the stationary marked Gibbs process in Sect. 3, a
particular canonical Gibbsian-like process will be introduced in Sect. 4 which
does without a proposal size distribution. For these and some other models it
is investigated how far they can serve as models for the concrete samples.

2 The Data

The examined material is a special concrete, which ranks among the class of
self-flowing refractory castables. In the following a sketch of data extraction
is given. Afterwards some statistics is presented.
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Fig. 2. Estimated probability density function of radii of the concrete samples:
Sample A (—), sample B (- - -)

2.1 Production and Data Extraction

With the goal of varying the cold crushing strength under strong pressure,
particles (called refractory aggregates) are added to a compound consisting of
cement, water and superplasticiser. The three main steps of the production are
dry-mixing, wet-mixing and firing at 1000◦C. The result is a concrete which
essentially consists of two phases, namely of grains and the matrix (the binding
system). Usually the grains have an irregular shape, with some similarity to
convex polyhedra. Especially for research purposes, castables with spherical
grains consisting of corundum were manufactured in Freiberg, as described in
[11]. Samples of size 10×10×10 mm3 were cut out of larger cylindrical samples
of the castables and investigated by computerised tomography (CT). For the
following treatment of the obtained three-dimensional images it was helpful
to have spherical grains. The data were processed by methods of Bayesian
image analysis (cf. e. g. [14],[29]). That means that configurations of non-
overlapping ideal spheres which matched the CT images best were searched
for. The applied optimization technique was simulated annealing as described
in [29]. Existing air pores were ignored and added to the matrix phase. The
result of this reconstruction, samples of the sphere centres xi and radii ri,
are considered as data from a marked point process in which the radii are
the marks associated with the points xi. Figure 1 shows one of the samples
geometrically, both as a CT image and reconstructed as a sample of ideal
spheres.

The following statistical analysis is based on the reconstructed point pro-
cess data of two samples A and B and uses methods commonly applied to
point processes and random sets (cf. [24]).

2.2 Statistics

The numbers of spheres are 1454 in sample A and 1862 in sample B, and
the volume fractions are 0.368 and 0.423, respectively. Figure 2 shows the
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Fig. 3. Estimated characteristics of the concrete samples: Sample A (—), sample
B (- - -)

empirical distributions of radii of the spheres for the two samples. The particles
of both samples come from the same material and thus differ only statistically.
The mean radius for sample A is 0.376 mm and 0.373 mm for sample B, both
with standard deviation 0.055 mm.

Figure 3(a) shows the empirical pair correlation functions of the point
patterns of sphere centres, obtained by the method described in [20] and [26].
Here, some form of short-range order is observable, which appears to extend
to about 1.5 mm.

The mark correlation functions kmm(r) for the radius marks (see [26])
given in Fig. 3(b) show that there is some form of spatial correlation between
the spheres. The curves indicate a tendency connected with the property of
the spheres to be “hard”: the price two spheres have to pay for being close
together is to have both a radius which is smaller than the mean radius. This
geometrical repulsion property is true for distances smaller than 0.8 mm.
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Figure 3(c) shows the distribution function of the nearest-neighbour dis-
tance, a further characteristic of the point pattern of sphere centres.

Finally, the set-theoretic summary statistic “spherical contact distribution
function” Hs(r) [24] shown in Fig. 3(d) characterizes the structure in another
way. It is the distribution function of the random distance from a randomly
chosen point in the matrix to the closest point on any sphere surface.

The following sections introduce several models for random systems of hard
spheres and discuss whether they fit the samples of concrete in a suitable way.
The choice of this kind of models is in accordance with the prior information
of non-overlapping ideal spheres used for the reconstruction in Sect. 2.1, and
no further restriction of the investigated models is necessary.

3 The Stationary Marked Gibbs Process

The concept of marked Gibbs processes is based on ideas from statistical
physics. The special case of identical hard spheres is a frequently used model
investigated in many papers and books, see [15] and the references therein.
The case of spheres with random radii is discussed more rarely [17, 21], but for
this case there are also papers which study statistical problems, both for the
canonical and grand canonical (even stationary) case (see [7, 28]). Analogous
problems in the planar case are studied in [1, 9, 10, 12, 13] and [22].

Firstly, the stationary case of a Gibbs process of polydisperse hard spheres
is investigated. For exact definitions the reader is referred to [17, 21] and [26].
Heuristically, one can think of a marked Gibbs process as an independently
marked Poisson process under the condition that the spheres do not intersect,
where the radii are the marks.

The stationary marked Poisson process is completely characterised by an
intensity λ and a density function m(r) of the radius distribution, which could
be called “proposal” radius distribution (cf. [25]). The radii in accepted sam-
ples tend to be smaller than the radii corresponding to the mark distribution
of the initial Poisson process. This can best be explained with a simulation
method for the stationary marked Gibbs process, namely the Metropolis-
Hastings algorithm, see [20]. If one tries to add a new sphere with radius
according to the proposal radius distribution to the current configuration, it
is more likely that a smaller sphere is accepted because of the non-overlapping
condition. Therefore, there is a further radius distribution, the radius distri-
bution of the Gibbs process, which is called “resulting” radius distribution,
and its density function is denoted by m∗(r). λ and m(r) are quantities which
cannot be observed directly in samples if one supposes that they are Gibb-
sian, whereas m∗(r) can be observed. It is known that proposal and resulting
quantities are related by

λ∗m∗(r) = λm(r)(1 − VV )(1 − Hs(r)), (1)
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Fig. 4. Radius probability density functions: empirical distribution (—), proposal
distribution (- - -), resulting distribution (· · · )

as shown in [17], where λ∗ is the intensity of the Gibbs process, Hs(r) is the
spherical contact distribution of the random set resulting from the union of
all spheres of the Gibbs process, and VV is the corresponding volume fraction.

For fitting the marked Gibbs process to the concrete samples, relation (1)
can be applied for estimating the proposal intensity and radius distribution:
λ∗, the resulting radius distribution m∗ and the spherical contact distribution
function Hs can be estimated from the samples, and λm can then be deter-
mined. Figure 4 shows the estimated density function of the proposal distri-
bution using relation (1) and the corresponding resulting distribution, which
was obtained by simulating the Gibbs process via the Metropolis–Hastings
algorithm. The resulting density function (· · · ) widely differs from the empir-
ical radius probability density function (—); when the model is correct, both
functions should be close together. For testing the statistical procedure, the
same method was used again, but now starting from the resulting distribu-
tion shown in Fig. 4 and the corresponding spherical contact distribution. In
this case the method worked well: the proposal distribution was reproduced
exactly, because one is now working in the world of Gibbs distributions. This
suggests to conclude that the model of a stationary marked Gibbs process is
not appropriate for the concrete data. This statement should be independent
of the choice of the used particular simulation method.

A similar result is obtained if one tries to construct a proposal intensity
and radius distribution which definitely reproduces the right resulting radius
distribution and volume fraction. To achieve this aim, in [28] a statistical
method is described in another context. This method is complicated and la-
borious. For this reason the proposal quantities are determined instead via
the so-called Percus-Yevick approximation [15]. It is a well-established tool
in statistical physics for solving problems, first investigated for the stationary
Gibbs process of monodisperse hard spheres. This approximation can also be
derived for the case of polydisperse hard spheres, see e.g. [28], and leads to the
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following relation between λ∗m∗(r) and λm(r). (A comparison with (1) shows
that the exp(·)-term is in fact the Percus-Yevick approximation of 1−Hs(r).)

λ∗m∗(r) = λm(r)(1 − ζ3) exp

(
−8r3ζ0 + 12r2ζ1 + 6rζ2

1 − ζ3

−24r3ζ1ζ2 + 18r2ζ2
2

(1 − ζ3)2
− 24ζ3

2

(1 − ζ3)3

)
,

(2)

where ζk = λ∗2kπR∗
k/6, and R∗

k is the kth moment of m∗(r). Hence, for the
estimation of λm(r) one only needs to know λ∗ and m∗(r). Applying this
to the concrete data, the Metropolis–Hastings algorithm does reproduce the
resulting radius distribution and the volume fraction but now the spherical
contact distribution differs considerably.

Besides the question whether this model is appropriate for the concrete
samples and the difficulties of determining the right proposal quantities a
further aspect should be mentioned. In the beginning of the production process
of the castables, the size distribution of the used corundum balls is fixed once
and for all since after that no particle is sorted out. Therefore, the observed
radius distribution is the only one, and there is no interpretation for the
“proposal” radius distribution of the marked Gibbs process. Sections 4 and 5
discuss models which try to overcome this problem.

4 The Random-Shift Model

In the following a modified process is introduced which has some similarities
to marked Gibbs processes. It is called random-shift model. The aim is to avoid
the use of a proposal size distribution as is needed for the model in Sect. 3.
This constraint to one size distribution seems to be feasible only as a finite
process of hard spheres but not as a stationary one.

4.1 Definition

Let the system of hard spheres live in a (bounded) cuboid region W =
[0, a1] × [0, a2] × [0, a3] where periodic boundary conditions are assumed. Let
the number of spheres be n and the radii of these n spheres be fixed.

A configuration of spheres is denoted by (x1, r1), . . . , (xn, rn), where the xi

are their centres and the ri their radii, ordered in decreasing size. Of course,
the xi are elements of W . The energy of such a configuration is

Er1,...,rn
(x1, . . . ,xn) =

∑

i<j

φij(xi,xj),

where the radii-dependent hard-sphere pair potential φij is given by
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φij(xi,xj) =

{
∞ if ‖xi − xj‖ ≤ ri + rj ,

0 otherwise,

and ‖ · ‖ is the distance due to the periodic boundary conditions, given by

‖x‖ =
√

(min(x1, a1 − x1))2 + (min(x2, a2 − x2))2 + (min(x3, a3 − x3))2

for x = (x1, x2, x3) ∈ W . Any configuration with vanishing energy consists of
nonoverlapping spheres and is therefore called admissible. Only the centres of
the spheres are variable; the radii are fixed. Hence, admissibility depends on
the xi.

A distribution similar to a Gibbs distribution can be constructed as follows.
For Borel subsets B1, . . . , Bn of W set

Π∗
r1,...,rn

(B1 × · · · × Bn)

=
1

Zr1,...,rn

∫

B1

· · ·
∫

Bn

exp (−Er1,...,rn
(x1, . . . ,xn)) dx1 . . .dxn

where

Zr1,...,rn
=

∫

W

· · ·
∫

W

exp (−Er1,...,rn
(x1, . . . ,xn)) dx1 . . .dxn

is the radii-dependent partition function. The distribution Π∗
r1,...,rn

is not
symmetric. A permutation of the sets Bi yields different values because the
{ri} are ordered and in general not pairwise equal. In order to obtain a dis-
tribution not distinguishing points, Π∗

r1,...,rn
is symmetrised by permutation

as follows:

Πr1,...,rn
(B1 × · · · × Bn)

=
1

n!Zr1,...,rn

∑

(i1,...,in)

∈Perm(n)

∫

Bi1

· · ·
∫

Bin

exp (−Er1,...,rn
(x1, . . . ,xn)) dx1 . . .dxn.

The integrand exp (·) is in fact {0, 1}-valued. Πr1,...,rn
has therefore a density

with respect to a binomial point process with n i.i.d. points in W with values
k/(n!Zr1,...,rn

), k ∈ {0, 1, . . . , n!}. Because of the sum in Πr1,...,rn
the random-

shift model is Gibbsian-like but not of pure Gibbsian type.

4.2 Simulation

Like many other models of spatial statistics and statistical physics the random-
shift model is mathematically intractable. Therefore simulation is the main
tool for its investigation. To simulate the random-shift model various methods
are possible. The method which is recommended and used for this contribution
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Fig. 5. Pair correlation function of the concrete sample (—), of the random-shift
model (−−), of the ordered RSA model (· · · ) and of the dense random packing (– · –)

is practically the same as the original method of [19] and explains the name
random-shift model.

One starts with some configuration of non-overlapping spheres with the
prescribed radii. This can be obtained by simulations as e. g. described in
Sect. 5, or one simply takes the respective concrete sample itself. Then the
spheres are shifted randomly, avoiding overlappings. This method works well
for the volume fractions observed in the concrete samples. For higher volume
fractions more sophisticated simulation methods are necessary, e. g. molecular
dynamics [27] and simulated tempering [6, 18].
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Fig. 6. 99% envelopes of the L-function (deviations from the L-function of the
concrete sample) for the random-shift model (—)
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Fig. 7. Mark correlation function of the concrete sample (—), of the random-shift
model (−−) and of the ordered RSA model (· · · )
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Fig. 8. Spherical contact distribution function of the concrete sample (—), of the
random-shift model (−−) and of the ordered RSA model (· · · )

4.3 Fitting

In order to fit the random-shift model to the concrete samples, it was simulated
with exactly the same radii as in the samples. Figure 5 shows the pair corre-
lation functions. The differences for sample A are smaller than for sample B.
The goodness-of-fit is tested by an L-test as described in [20] and [26], which
consists in comparing the empirical L-function with simulated L-functions.
The differences of the simulated L-functions are very small compared to the
values of L(r) − r for r less than the smallest possible sphere centre distance
because L(r) = 0 in that range. Therefore, instead of plotting L(r) − r as
proposed in [20], Fig. 6 shows the difference between the empirical L-function
and the 99% envelopes calculated from 999 simulations of the random-shift
model. Hence, the r-axis corresponds to the empirical L-function. This formal
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Fig. 9. Distribution functions of nearest-neighbour distance of the concrete sample
(—), of the random-shift model (−−) and of the ordered RSA model (· · · )
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Fig. 10. 99% envelopes of the D-function for the random-shift model (—)

test suggests rejection of the random-shift model, for sample B clearer than
for sample A.

A similar behaviour can be observed with the distribution functions of the
nearest-neighbour distance. The curves in Fig. 9 are close together but the
respective test with the 99% envelopes for the random-shift model suggests
again rejection.

A further check shows the radius correlation functions in Fig. 7 and the
spherical contact distribution functions in Fig. 8. For both characteristics it
seems that the random-shift model is at least better than the ordered RSA
model (cf. Sect. 5).
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5 Further Models

Besides marked Gibbs processes one can think about other models of hard
spheres for the concrete samples, see also [3].

5.1 Dense Random Packings

Dense random packings try to model structures which are obtained when a
container including hard particles is shaken so that the system of particles
forms a close but still random packing. At present dense random packings
are only defined by some well-defined algorithms, see [27]. These include the
Lubachevsky-Stillinger protocol [16] and the force-biased algorithm [4]. The
latter was applied to the samples of concrete and seems not to be a suitable
model because of considerable differences of the respective pair correlation
functions, see Fig. 5.

5.2 The Ordered RSA Model

Another possibility are simple sequential inhibition (SSI) or, as called by
physicists, random sequential adsorption (RSA) models. In these models
spheres are placed sequentially and randomly in some bounded region, and
no overlapping is allowed. In the case of random sphere radii there are two
variants.

In the “classical” RSA model (see e. g. [8]) for each attempt at placing
a new sphere, a new radius is generated with respect to some given (pro-
posal) radius distribution. New spheres, which intersect successfully placed
spheres, are rejected. This process is stopped when it is impossible to place
any new sphere. During this placement procedure there is the tendency to
accept smaller spheres more often than larger spheres because the available
space reduces. Therefore, in this variant of the RSA model one has also to
discriminate between a proposal and a resulting radius distribution as in the
stationary marked Gibbs process in Sect. 3; for a discussion see [25]. But the
actual problem is the maximum reachable volume fraction of spheres, which
is too low for an application in the case of the concrete samples.

This problem can be overcome by a variation of the RSA model in the
sense of [5]: A fixed number of spheres is placed where all radii are generated
before the placing procedure. In order to assure that the larger spheres can be
placed, the spheres are placed from largest to smallest. If a placement trial is
not successful, then it is repeated with the same radius but with a new random
centre. Therefore, any radius generated at the beginning is kept. Only those
attempts are accepted where all spheres can be placed. This variation leads
to higher possible volume fractions of spheres and also seems to be a passable
model for the samples of concrete, see Figs. 5, 7, 8 and 9.
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6 Conclusions

As already set out in Sect. 3, the well-known model of a stationary marked
Gibbs process does not seem to be appropriate for the concrete samples. In-
stead the newly developed model of Sect. 4, the random-shift model, is better,
though not entirely satisfactory, because it is formally rejected by some tests.
The extent of the differences seems to depend on the volume fraction; for
sample A the fit by the random-shift model is better than for sample B. One
reason for these differences may be indeed a different compound of spheres.
This is e. g. indicated by a smallish increase of the first maximum of the pair
correlation functions of the samples in comparison to the random-shift model
(see Fig. 5) which may reflect that in the samples spheres may sometimes
be relatively close together. Besides that, rejection can also be a statistical
problem because the sample size of order 1000 is quite large compared with
the sample size of order 100 that until now have usually been used in point
process statistics. This large sample size leads to very small fluctuations in
the estimated characteristics of the random-shift model.

Compared to other possible models like the dense random packing model
and the ordered RSA model, the random-shift model seems to be better not
only because of the comparison of several statistics (Figs. 5–10). Firstly, the
author is convinced that the grains in the refractory castables are wrapped up
by a thin cement film which therefore are not in direct contact. This is well-
reflected by the random-shift model. Furthermore, the random-shift model
might be arguably better because the simulation method described in Sect. 4
resembles the process of producing concrete that includes such operations as
mixing, stirring and grains pushing away other grains. Nevertheless, because
of the pair correlation functions (Fig. 5) one may think about a model in-
termediate between the random-shift model and the random packing model;
even for higher volume fractions of spheres the pure packing model may be
preferable.
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[10] M. Goulard, A. Särkkä and P. Grabarnik. Parameter estimation for
marked Gibbs processes through the maximum pseudolikeliood method.
Scandinavian Journal of Statistics, 23:365–379, 1996.
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Summary. Spatial statistics have broadly been applied, developed and demanded
from the field of epidemiology. The point process theory is an appropriate framework
to analyse the spatial variation of risk of disease from information at individual level.

We illustrate an application of point pattern tools to study a few legionnaire’s
disease outbreaks. Specifically, these techniques are applied to explore the geograph-
ical distribution of cases resulting from three legionnaire’s disease outbreaks that
occurred successively in Alcoi, a city placed in the East of Spain.
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1 Introduction

Spatial statistics have broadly been applied, developed and demanded from
the field of epidemiology. This discipline covers the study of the distribution
and determinants of health-related states or events in specified populations,
and the applications of this study to control health problems [14]. The distri-
bution of health events can be studied depending on population groups, risk
factors, time or space, and that last factor is the reason why spatial statistics
is so important in epidemiology. There are several monographs [1, 12, 15, 16]
devoted to such applications and a wide bibliography regarding this topic.
Interestingly, the problem of analyzing the geographical variation of risk of
disease in a given region, so common in epidemiology, has led to important
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developments in spatial statistics and continues offering new challenges to it.
This fact motivates that developments of both topics are intimately related.

The statistical methods to analyse the spatial distribution of a disease de-
pend mainly on the type of available data. Not too long ago, the information
mostly consisted of area-level counts of cases, the areas usually being admin-
istrative units that constitute a partition of the region of interest. Lattice
methods, based on the comparison of observed to expected (according to a
certain standard) counts, are the most appropriate and flexible tool to analyse
this type of data. Nevertheless, in the last years medical databases have expe-
rienced a great improvement and individual location of cases are starting to
be collected. Moreover, Geographic Information Systems (GIS) are becoming
a daily tool in epidemiology and they easily allow to geocode the spatial com-
ponent of the information stored in those databases. All these advances make
possible to work with individual data instead of aggregated ones. Therefore,
the use of techniques capable to deal with this kind of information is becom-
ing more popular and demanded [7, 8, 10]. The point process theory is an
appropriate framework to analyse the spatial variation of risk of disease from
information at individual level.

The present work illustrates an application of point pattern tools to study
a few legionnaire’s disease outbreaks. Specifically, these techniques are applied
to explore the geographical distribution of cases resulting from three legion-
naire’s disease outbreaks that occurred successively in Alcoi, a city placed in
the East of Spain.

The present contribution is structured in five sections, this introduction
being the first one. In Sect. 2 it is described the case study that motivates the
present work. Section 3 presents the methodology used to study the configu-
ration of cases resulting from the scenario described in the previous section.
Results derived from such application are presented in Sect. 4. The last section
is devoted to discuss the results and findings of this work.

2 Case Study Description

In 1976 the American Legion, an ex-military association, organised a meet-
ing in Philadelphia (USA) to commemorate the signature of the United States
Declaration of Independence. More than 180 delegates got ill during the meet-
ing and 29 of them finally died. These people suffered legionnaire’s disease,
a respiratory illness unknown until that time. The origin of this disease is
Legionella pneumophila, a bacterium that develops in humid and warm envi-
ronments if appropriate nutrients are present. Bacterium transmission occurs
by inhalation from contaminated aerosols present in the environment, whereas
its ingestion is inoffensive. So all devices able to produce aerosols are a threat
for public health since they are potential emitters of the bacteria in the case
that they were colonised by them. In urban areas there are plenty of places
with the appropriate conditions to develop legionella’s colonies and spread
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them. Examples of this kind of devices, among others, are cooling towers
associated to air conditioning systems and industrial processes, evaporative
coolers, showers and fountains. Therefore a special surveillance should be done
to this kind of installations to prevent bacterial growth, which in turn could
produce a legionnaire’s disease outbreak when spread out on the atmosphere.

Alcoi is an industrial city placed at the oriental side of Spain with about
60000 inhabitants in 2003. The textile industry is the main economic sector in
this town and a great proportion of its population works for this industry. The
textile production has a long tradition in Alcoi and as a consequence there is
a high number of factories placed in the urban area, with all the problems and
threats for health that it entails. In particular, the industrial cooling towers
of these factories spread aerosols uninterruptedly into the atmosphere so they
are a potential source of transmission of legionella. The presence of cooling
towers, the peculiar orographic conditions and the soil properties of this region
provokes very favorable conditions to legionnaire’s disease outbreaks occur.
All these particular facts promote that this disease can be considered nearly
endemic in this city unless a prevention effort is carried out.

Strikingly, from September 20th, 1999 to December 1st, 2000 three con-
secutive outbreaks of legionnaire’s disease occurred in Alcoi. The first of them
lasted from September 20th, 1999 to February 27th, 2000 with 36 people af-
fected, the second outbreak extended from April 9th, 2000 to July 30th, that
year with a total of 11 persons ill and the third and biggest one began the
September 9th and lasted to December 1st, 2000 affecting to 97 people. It
was suspected that the source of the outbreaks could be one or several of the
cooling towers (colonised by the bacteria) placed inside the urban area of the
city. A key epidemiological issue that arose from the successive outbreaks was
to assess whether or not the geographical distribution of the cases could be
considered “random” (according to the population at risk in Alcoi). If the
answer is negative, it would be a symptom of an extra aggregation present
in the spatial distribution of the cases, as a consequence of one or more local
sources of emission of the bacteria. In that case it would also be very inter-
esting to determine the areas in the city with higher risk of disease, to focus
on those locations the search of the installations that could be involved in the
spreading of the outbreak.

Opposite to applications in other fields, the hypothesis of complete spatial
randomness usually lacks of sense in epidemiological studies. This is due to
the fact that the intensity of the cases depends directly on that of the pop-
ulation at risk across the region of interest. Moreover, the incidence of the
disease can be also influenced by other personal factors, for example the age,
gender or immune deficiency conditions. Therefore, the fact that the cases
do not present the same distribution that general population should not be
surprising. Thus, the main question in this kind of studies is if the spatial
distribution of the observed cases can be considered a random sample of one
population with similar characteristics to those presented in the cases. If not,
we can conclude that there exist an exogenous factor that is influencing the
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geographical distribution of the cases over the city. To contrast this fact it
has been collected a matched population sample. All the individuals collected
had an admission to hospital for other reason different to legionnaire’s disease
in the same period than the cases in the first outbreak, the same gender and
they shared approximately the same age. No more samples were collected for
the other two outbreaks because risk factors and populational characteristics
of the cases were very similar to those in the first one. Thus the cases in all
three outbreaks were compared against the same sample, that is intended as
a collection of people with similar features as the cases but that have not con-
tracted the disease. The individuals in this sample are known in epidemiology
as controls and 65 of them were included in the study. So the main interest
of the study will rely on the comparison of the distribution of the available
cases and controls. Fig. 1 shows the spatial distribution of cases for the three
outbreaks and controls.

To our knowledge little has been studied about the distribution of le-
gionnaire’s disease cases in urban areas. [2] shows that sporadic cases of this
disease over the Scottish city of Glasgow presented aggregations in its spatial
distribution, although the time between the dates pointed no common source
for the cases. There are other works, though, where it is first established the
hypothetical location of the sources responsible for the outbreak and then it
is tested if the proximity to those places increases the risk of observing a case.
In this sense, [4] states that risk decreases in a 20% for each 0.1 mile (0.16
km) increase in distance from cooling tower. [3] show that the relative risk to
get the disease for those people living less than that distance from a cooling
tower is 3 times bigger than the risk for those people living more than 1 km
away. They also established that the radius of influence of a cooling tower in
an outbreak was about 500 m.

3 Methods

Four point patterns are considered, taking as events the residence locations
of the cases in the three consecutive outbreaks and in the control set. Home
addresses of all cases and controls were geocoded in a georeferenced map of
the city (scale 1:2000).

A proper description of a point pattern can be obtained by a trend mea-
sure, as the density of events across the region, and a dispersion measure.
Both characteristics are related with moment measures of the point process
that is assumed to have generated the pattern, the intensity function and the
Ripley’s K-function [17], respectively.

The estimation of the intensity function can be performed by kernel
smoothing [6], that is, the estimation of the density in a generic point (x, y)
of the study region is given by
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Fig. 1. Point patterns of cases and controls

λ̂h(x, y) =

n∑

i=1

fh[(x, y) − (xi, yi)]

where n is the number of events in the point process and fh(x, y) is the
kernel function, a bivariate and symmetric density function which depends on
parameter h, called bandwidth, that accounts for local variation and controls
the degree of smoothing. The larger is h the smoother is the resulting surface.
A wise choice of this parameter is crucial, even more important than the choice
of the kernel function [19].

The kernel function employed was the quartic kernel whose expression is

fh(a, b) =

{
3

πh2 (1 − a2+b2

h2 )2 if a2 + b2 ≤ h2

0 if a2 + b2 > h2



174 Mart́ınez-Beneito et al.

The K-function can be estimated by means of the average number of fur-
ther points within distance r of an arbitrary point, divided by the overall
density of the points. An edge-correction is required to avoid biasing the es-
timation due to non-recording of points outside the study region.

Comparison of cases and controls processes can be done on the basis of
their degree of aggregation, that is, with Kcases(r) and Kcontrols(r), because:

• Kcontrols(r), shows the aggregation due to distribution of population, with
similar characteristics as cases, at risk in the city.

• Kcases(r), collects the aggregation due to distribution of population at risk
in the city plus the additional one due to the disease.

If the origin of the disease is not environmental, then there will not be
any additional aggregation in the cases and both processes will show similar
K-functions, that is, Kcases(r) = Kcontrols(r). Otherwise, cases will tend to
be more concentrated around or near the source or sources.

To check up to what extent differences between patterns can be due to
chance, D(r) = Kcases(r) − Kcontrols(r) can be defined and the following
hypothesis test carried out:

H0 : D(r) = 0,

for all r. This test is solved using random labelling [11]. It is based on simu-
lations and basically consists in putting all cases (ncases events) and controls
(ncontrols events) together and then repeat many times the following steps:

1. Choose ncases points randomly of the ncases + ncontrols events and assign
them the label of “case”. Also, label the remaining points as “control”.

2. With events labelled as cases and controls, calculate Kcases(r) and
Kcontrols(r), respectively, for a set of distances {r1, . . . , rk} chosen before
hand.

3. Calculate D(ri) = Kcases(ri) − Kcontrols(ri),∀i = 1, . . . , k.

Once the simulation is done, we have got a large number of values of D(r)
under the null hypothesis. Percentiles 2.5% and 97.5% can be obtained from
the simulated values for each distance ri providing approximate limits of the
95% confidence band for D(r). The observed value of D(r) with original cases
and controls can be represented beside this confidence band. If the original
D(r) lies within the band, it means that there is no evidence against null
hypothesis. If it goes out above the upper limit, it means that for that spe-
cific distance there is greater aggregation of cases than controls. Conversely,
an observed D(r) under the lower limit indicates inhibition between cases,
showing less aggregation than controls for that distance.

A plot of D(ri), ∀i = 1, . . . , k, and their 95% confidence limits would help
to quickly visualise the distance values for which cases exhibit more aggre-
gation than controls, but it should not be interpreted as a formal hypothesis
test, since it would imply multiple testing (a statistical test for each distance)
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and, therefore, the significance level would be much higher than the nominal
0.05. To avoid that problem, Diggle and Chetwynd [9] propose the statistic

D =
∑k

i=1
D(ri)√

V ar[D(ri)]
to test the global difference of aggregations between

cases and controls patterns. The value of V ar[D(ri)] under the null hypothesis
can also be computed from random labelling simulations.

Apart from the test to know if there is greater aggregation in cases than
controls, another interesting task is to obtain a risk surface and to determine
the zones of the city where disease had more impact and that are likely to
contain or be near to the cooling towers that flow out the bacteria.

A possible risk measure is given by the difference between the observed
probability to be case and the expected one. From intensities of both point
patterns, λcases(x, y) and λcontrols(x, y), the probability for an event at point
(x, y) to be a case can be estimated as:

p(x, y) =
λcases(x, y)

λcases(x, y) + λcontrols(x, y)

whereas expected probability to be case for the whole city can be computed:

pE =
ncases

ncases + ncontrols

so a measure of risk R(x, y) could be given by the difference between the
observed probability and the expected one, that is:

R(x, y) = p(x, y) − pE

The respective intensity functions can be approached with kernel esti-
mation, and the observed probability p(x, y) expressed using the following
variable Z associated to events:

Zi =

{
1 if the i-th event is a case
0 if the i-th event is a control

So the kernel estimator of the observed probability p(x, y) is:

p̂h(x, y) =

∑n
i=1 fh[(x, y) − (xi, yi)]zi∑n
i=1 fh[(x, y) − (xi, yi)]

where n = ncases +ncontrols is the number of events (either cases or controls)
and h is the parameter that tunes smoothing of the intensity.

The bandwidth h can be chosen using the maximum likelihood cross-
validation method proposed by Kelsall and Diggle [13]. It is based on the
likelihood calculated for the binary regression framework of the risk measure.

In addition to the value of the risk function, it is interesting to assess its
statistical significance. This can be done using the simulations provided by
the random labelling. In each iteration, not only Kcases(r),Kcontrols(r) and
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D(r) are calculated, but also R(x, y). The rank of the observed risk among
the simulated ones is computed afterwords, to obtain a Monte Carlo p-value
representing the statistical significance of the risk value.

All computations were made using R language and the free distribution
library Splancs [18].

4 Results

Spatial distributions of cases in the three outbreaks and controls were com-
pared by means of second order properties. Estimated K-functions are shown
in Fig. 2A. Disease patterns present greater values of K than population pat-
tern at any distance between 0 and 400 meters, suggesting that cases are much
more crowded than controls.

The differences between Kcases(r) and Kcontrols(r) are gathered in D(r)
and tested by random labelling. Results for the three outbreaks can be seen in
Figs. 2B, 2C and 2D. Since D(r) is above the upper bands, it seems clear that
D(r) > 0, that is, cases show patterns more aggregated than that of controls.

D statistic was calculated for the comparison of each outbreak pattern
and control pattern, and also for the comparison among the three outbreaks.
Results are given in Table 1.

Table 1. D statistic comparing K-functions, with p-value of random labelling test
between brackets

Controls Outbreak 1 Outbreak 2

Outbreak 1 101.54 (0.046)
Outbreak 2 140.07 (0.026) 69.66 (0.249)
Outbreak 3 285.79 (0.000) 121.70 (0.047) 8.26 (0.923)

Results of D statistic confirm an evidence of higher aggregation of cases
than of controls. This reinforces the environmental origin of the disease.

Risk surfaces, as well as their statistical significance, were estimated for
each outbreak. In the kernel estimation method, the bandwidth h was se-
lected attending to maximum likelihood criterion simultaneously for all three
outbreaks, obtaining an optimum value of 550 meters. With this bandwidth,
smoothed images of risk and contour lines for the statistically significant val-
ues, are produced and shown in Figs. 3, 4 and 5.

In these risk maps, the darker zones correspond to those points where
R(x, y) is higher, that is, where the probability of an event to be case is
upper than expected. Similar areas are highlighted as regions with statistically
significant risk, one in the north-east and another one in the south-west of the
city. Though the upper zone is more evident in the first and second outbreaks,
and lower zone is clearly marked in the third outbreak.
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Fig. 2. Comparison of K-functions: Estimation of K-function for cases in the three
outbreaks and controls (A); D function for cases in each outbreak versus controls
(B, C and D), dashed lines represent 95% confidence bands using random labelling

5 Discussion

Point pattern analysis allows to study disease outbreaks in urban areas. In
this context, aggregation of cases according to administrative divisions entails
an important loose of information that may be not feasible to tackle the ana-
lysis. So data analysts of epidemiological problems should be aware of this
collection of techniques that profit individual geographic information when-
ever it is available. Moreover, point pattern methodology provides more ac-
curate conclusions than the lattice one because the former provides its results
in a continuous domain while the latter one does not provide any information
under the administrative division.
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Fig. 3. Risk map for first outbreak, contour lines represent 5% significance risks
using random labelling, •=cases ◦=controls.

One of the limitations of the analysis is that addresses of residence were
geocoded assuming implicitly that home was the place of exposure for all
cases, which might not be too realistic. Also, many cases were retired people
who did not work but used to go for a walk. It turned out that there were
a couple of routes quite common in the city for those people, and of course
the bacterium could have been inhaled during those walks, even if the walk
lasted one hour or even less. Nevertheless it is a fact that people spend a big
amount of time in their homes and so it is expected that the pattern observed
in the analysis could reflect the variation of risk along the city. Moreover, in
the third outbreak, three cases did not get out home during the latency period
of the disease (it ranges from 2 to 10 days) and their apartments were placed
in the main cluster of cases. This fact supports the results of the study.

Another issue of discussion concerns about cases and controls matching. [5]
shows an adaptation of point pattern methodology to that kind of designs. The
controls for the present work have been sampled in a 1 case - 2 control basis,
but only for the first outbreak. The other ones do not dispose of matched
controls. It was neither possible to get such control for every case in the
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Fig. 4. Risk map for second outbreak, contour lines represent 5% significance risks
using random labelling, •=cases ◦=controls

first outbreak, in fact there were only 65 controls available for 36 cases. It
has to be also taken into account that the hospital where cases and controls
were compiled from covers the whole population, so it is not expected to
find a strong spatial association between the matching pairs. This impression
is confirmed by the fact that the mean distance between cases’ homes and
their matched controls ones is 1.65 km while that distance for cases and not
matched controls is 1.59 km, even lesser than that for the matched ones. So
it has not been considered as necessary to use the matched methodology for
this work.

Conclusions from the present job have a great value from an epidemiologi-
cal view. The first conclusion that can be extracted is that cases show a more
aggregated pattern than controls in all three outbreaks. This fact suggests the
presence of a mechanism that concentrates the incidence of the disease around
some specific locations, maybe due to the effect of one or more risk facilities
that could have been colonised by the bacteria. But the most valuable con-
clusion of such aggregation is that it can be discarded that the origin of the
outbreak comes from the main water supply of Alcoi which provides water for
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Fig. 5. Risk map for third outbreak, contour lines represent 5% significance risks
using random labelling, •=cases ◦=controls

the whole population. If it would have been that way, the distribution of cases
and controls would be more similar because the exposition to the bacteria in
the whole city would be the same for all the population and it would not be
expected to observe the patterns that have occurred. So the study supports
the environmental origin of the outbreaks as was thought previously. As a
consequence the efforts to stop the outbreaks should be focus on the search
of risk facilities within the zones with higher risk in the city, that could be
involved in the spread of the bacteria.

Comparison of K-functions between different outbreaks reveals that these
do not have exactly the same behavior in relation to aggregation of patterns.
This fact does not allow to perform a joint analysis of all the three outbreaks
against the controls. Moreover the results of the analysis show that the first
outbreak has a less aggregated pattern than the third one and it is not be-
lievable that those differences can be attributed to chance.

Estimation of risk and p-value surfaces mean a valuable tool from an epi-
demiological point of view. These representations provide a useful plot to
guide the efforts of health intervention policy in an outbreak detection prob-
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lem. In our particular study we can appreciate that risk estimation points
towards a multifocal origin of the outbreaks in all three cases. But we can
see that although the three outbreaks point more or less the same areas as
regions of risk, there are some features that distinguish them. For example,
the proportion of people involved in each cluster or the spreading of cases in
the different outbreaks.
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Summary. People can be located according to their residence, their place of work,
their doctor’s office, their pharmacy, and so forth. It is sometimes of interest to look
for patterns in people’s locations in relation to their behaviours.

In this article, we are particularly interested in the cost of patients’ prescriptions
per doctor consultation. In particular, we consider the common problem brought
about by aggregation when only the less-precise locational information and the as-
sociated variable ’average prescription amount per consultation’ are available.

We build a spatial regression model for the spatially aggregated data depending
on covariates. We fit initially a non-spatial version of the model to the doctor-
prescribing data. We then consider spatial dependence in the data after the large-
scale variation has been accounted for, and propose a final model that explains
doctors’ prescribing patterns.

Key words: EDA, ESDA, Region of Midi-Pyrenees (France), Spatial analysis of
doctors’ prescribing patterns, Spatial regression

1 Introduction

People can be located according to their residence, their place of work, their
doctor’s office, their pharmacy, and so forth. It is sometimes of interest to
look for patterns in people’s locations in relation to their behaviors. In this
article, we are particularly interested in the cost of patients’ prescriptions per
doctor consultation, during the period January 1, 1999-December 31, 1999, in
the region of southwest France known as the Midi-Pyrénées.

Because of confidentiality requirements or the manner in which data are
recorded, the precise locations of residences or doctors’ offices are unknown. As
a consequence, the locational data are less precise, but this does not prevent
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a spatial analysis from being carried out. For example, in the Midi-Pyrénées
region, there are 268 cantons with at least one doctor, and the data we have
are organised by these cantons; that is, individual prescription amounts are
aggregated to an average amount per consultation, where the average is taken
over all consultations in a given canton in 1999.

Consider the i-th canton. Point-level spatial data are (sij , Y (sij)), where
sij is the location (residence or pharmacy or ...) of the j-th prescription
amount Y (sij) in canton i, j = 1, . . . , Ei, and Ei is the number of consul-

tations in canton i in 1999. Aggregated spatial data are (i,
Ei∑

j=1

Y (sij)/
Ei∑

j=1

1),

where, in general, there are i = 1, . . . , n cantons of interest. Aggregated data
come from the Union Régionale des Caisses d’Assurance Maladie (URCAM),
which is interested in relations between the many variables they collect. In
this paper, we shall focus on the activity of all the general-practitioner doctors
in the n = 268 cantons, after elimination of the cantons that have no doctors;
in particular, we consider the dependent variable,

Yi ≡ average prescription amount (in FF) per consultation , (1)

where FF denotes French Francs and i = 1, . . . , 268.
To get (1), there is {(sij , Y (sij))} an underlying (marked) spatial point

pattern, where {sij : j = 1, . . . , Ei} are well defined locations (e.g., patients’
residences) of all prescriptions written in the i-th canton in 1999, and Y (·) is
the “mark” variable given by the prescription amount. Then the point pattern
over the whole Midi-Pyrénées region is

Z ≡
n⋃

i=1

{sij : j = 1, . . . , Ei} . (2)

An analysis of the marked point pattern (Z, Y ) could proceed in ways de-
scribed in [2, Ch. 8], or in [4, Ch. 15], provided the point pattern (2) and the
mark variable Y (·) are available. This article considers the common problem
brought about by aggregation when only the less-precise locational informa-
tion (e.g., canton neighbourhood structure) and the associated variable (1)
are available. Importantly, the aggregation has consequences for the statisti-
cal analysis, which we shall demonstrate in the sections that follow.

In Sect. 2, we build a spatial regression model for the spatially aggregated
{Yi} depending on p covariates {xki}; k = 1, . . . , p. In Sect. 3, we fit initially
a non-spatial version of the model in Sect. 2 to the doctor-prescribing data
{Yi} using two covariates: percentage of patients 70 or older and per-capita
income. The fit is done in a series of exploratory-data-analysis (EDA) steps
that recognize that aggregation demands a careful weighted analysis. Section 4
is concerned with spatial dependence in the data after the large-scale variation
(i.e., covariates and heteroskedasticity) has been accounted for; through ESDA
(exploratory spatial data analysis) we look for spatial dependence and propose
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a final model that explains doctors’ prescribing patterns. Section 5 contains
discussion and conclusions.

2 Spatial Regression Model

Because of the spatial nature of locations {sij}, we expect that the data
aggregated into cantons show spatial dependence. To model this dependence,
we use a Markov random field known as the conditional autoregressive (CAR)
model, which has a joint Gaussian distribution. With sufficient aggregation,
the central limit theorem tells us that the variable,

Yi ≡
Ei∑

j=1

Y (sij)/

Ei∑

j=1

1 ; i = 1, . . . , n , (3)

is approximately Gaussian. That is, Y ≡ (Y1, . . . , Yn)′ is modelled as:

Y ∼ Gau(µ, Σ) , (4)

a multivariate Gaussian distribution with mean µ ≡ (µ1, . . . , µn)′ and (n×n)
variance-covariance matrix Σ. What makes (4) a CAR model is that Σ takes
on a special form:

Σ = (I − C)−1M , (5)

where C ≡ (cij), cii = 0; i = 1, . . . , n, and M ≡ diag(τ2
1 , . . . , τ

2
n) are parame-

ters in the conditional distributions,

Yi|Y−i ∼ Gau(µi +

n∑

j=1

cij(Yj − µj), τ
2
i ) , (6)

for Y−i ≡ (Y1, . . . , Yi−1, Yi+1, . . . , Yn)′ and i = 1, . . . , n. The {cij} are spatial-
dependence parameters and the {τ2

i } are heteroskedasticity parameters that
together satisfy:

M−1C is symmetric (symm.) ;

M−1(I − C) is positive-definite (p.d.) ;
(7)

see [1].
We assume that covariates are included in the model linearly through

µ = Xβ, where β is a (p×1) vector of regression parameters; p < n. Also, we
assume that the conditional variances τ2

1 , . . . , τ
2
n are known up to a normalising

constant (as is the case when the data are rates); that is, M = Φτ2, where
Φ ≡ diag(φ1, . . . , φn) is a known (n × n) diagonal matrix. Finally, we assume
that C is a function of a (q × 1) vector of spatial-dependence parameters γ,
which we write as C(γ).
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To summarize, the CAR model we shall consider in this article is,

Y ∼ Gau(Xβ, (I − C(γ))−1Φτ2) , (8)

which is clearly a special case of a general linear model. We shall make infer-
ence on parameters β, τ2, and γ through maximum likelihood estimation. The
joint Gaussian form of the CAR model means that its normalising constant
is known analytically and can be evaluated straightforwardly when n is mod-
erate in size. When n is large, [3] shows that maximum likelihood estimation
can be achieved through Monte-Carlo-based algorithms.

Under the CAR model (8), the parameter space is

P ≡ {β, τ2,γ : β ∈ R
p ; τ2 > 0 ; γ ∈ R

q ; p + q < n ;

Φ−1(I − C(γ)) is symm., p.d.} . (9)

To estimate the parameters, we use maximum likelihood estimation. The like-
lihood is

ℓY(β, τ2,γ) ≡ {(2πτ2)−n/2|Φ|−1/2/k(γ)} ×
exp{−(1/2)(Y − Xβ)′Φ−1(I − C(γ))(Y − Xβ)/τ2} ,

where the normalising constant is k(γ) ≡ |I − C(γ)|−1/2.
We now show that a simple transformation reduces the problem to one

where conditional variances are equal (conditional homoskedasticity). Write

Ỹ ≡ Φ−1/2Y . (10)

Then

Ỹ ∼ Gau(X̃β, (I − C̃(γ))−1τ2) ≡ Gau(X̃β, Σ̃) , (11)

where X̃ ≡ Φ−1/2X and C̃(γ) ≡ Φ−1/2C(γ)Φ1/2. Since the information con-

tent of Ỹ and Y is identical, inference on β, τ2, and γ can be based equiva-
lently on the likelihood of Ỹ,

ℓ
Ỹ

(β, τ2,γ) ≡ {(2πτ2)−n/2/k(γ)} (12)

× exp{−(1/2)(Ỹ − X̃β)′(I − C̃(γ))(Ỹ − X̃β)/τ2} .

Notice that with regard to the normalising constant, it is immaterial whether
C(γ) or C̃(γ) is used in its evaluation:

k(γ) = |I − C(γ)|−1/2 = |Φ1/2(I − C̃(γ))Φ−1/2|−1/2

= |I − C̃(γ)|−1/2 .

The negative loglikelihood is,

L
Ỹ

(β, τ2,γ) ≡ − log ℓ
Ỹ

(β, τ2,γ) . (13)
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Consider γ ∈ P, fixed for the moment; then minimising L
Ỹ

with respect to
β(∈ R

p) and τ2(> 0) is easily seen to yield estimates:

β̂(γ) = (X̃ ′(I − C̃(γ))X̃)−1X̃ ′(I − C̃(γ))Ỹ (14)

τ̂2(γ) = (Ỹ − X̃β̂(γ))′(I − C̃(γ))(Ỹ − X̃β̂(γ))/n . (15)

Substituting these estimates back into L
Ỹ

given by (13), we obtain a negative
log profile likelihood:

L
Ỹ

(γ) ≡ L
Ỹ

(β̂(γ), τ̂2(γ),γ) (16)

= (n/2)(log(2π) + 1) + log k(γ) + (n/2)

× log[Ỹ′(I − C̃(γ)){I − X̃(X̃ ′(I − C̃(γ))X̃)−1X̃ ′(I − C̃(γ))}Ỹ/n] .

Minimising this with respect to γ ∈ P yields the maximum likelihood estima-
tor, which we denote as γ̂. Then the maximum likelihood estimators of the
regression parameters, the variance parameter, and the spatial-conditional-
autoregressive coefficients are, respectively, β̂(γ̂), τ̂2(γ̂), and C(γ̂).

For the rest of this article, we model the spatial dependence in C(γ)
through just one real parameter γ; specifically, we assume that

C(γ) = γH , (17)

where H ≡ (hij) is a known (n × n) matrix whose diagonal elements are zero
and such that

H̃ ≡ Φ−1/2HΦ1/2 , (18)

is symmetric. Finally, (11) becomes

Ỹ ∼ Gau(X̃β, (I − γH̃)−1τ2) , (19)

where X̃ ≡ Φ−1/2X, and H̃ ≡ Φ−1/2HΦ1/2 is symmetric.
A simple analysis with no spatial dependence gives

var(Yi) =

Ei∑

j=1

var(Y (sij))/E
2
i = σ2

Y /Ei ,

assuming that var(Y (sij)) ≡ σ2
Y , a constant. In the presence of spatial de-

pendence, we model the conditional variances to be proportional to {1/Ei},
respectively:

var(Yi|Y−i) = τ2/Ei ; i = 1, . . . , n . (20)

That is, in terms of (8), Φ = diag(E−1
1 , . . . , E−1

n ), and recall from (17) that
C(γ) ≡ γH. Reference [3] shows that in order for γ to be interpretable as a
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unitless correlation parameter, one should use the spatial-rates CAR model ;
that is,

hij =

{
(Ej/Ei)

1/2 ; j ∈ N(i)
0 ; otherwise ,

where N(i) ⊂ {1, . . . , i−1, i+1, . . . , n} is a prespecified neighbourhood set that
represents the cantons that are neighbours of canton i; i = 1, . . . , n. For the
268 cantons of interest in the Midi-Pyrénées, we computed the centroids {si}
and we defined {N(i)} by N(i) ≡ {j : 0 < d(si, sj) ≤ 30 km}; i = 1, . . . , 268,
where d(·, ·) denotes Euclidean distance in the cartographic projection NTF
(nouvelle triangulation de la France). The consequence of all these model
specifications is:

Yi|Y−i ∼ Gau

⎛
⎝(Xβ)i + γ

⎧
⎨
⎩
∑

j∈N(i)

(Ej/Ei)
1/2(Yj − (Xβ)j)

⎫
⎬
⎭ , τ2/Ei

⎞
⎠ ,

where (Xβ)i denotes the i-th element of Xβ; i = 1, . . . , n. Equivalently,

Y ∼ Gau(Xβ, (I − γH)−1Φτ2) ;

or equivalently,

Ỹ ∼ Gau(X̃β, (I − γH̃)−1τ2) , (21)

where recall from (11) that X̃ = Φ−1/2X, and it it straightforward to derive
that

H̃ =

{
1 ; j ∈ N(i)
0 ; otherwise ,

(22)

which we shall refer to as the neighbourhood matrix. (The matrix H̃ has 0-1
entries and simply records which cantons are neighbours of each other.)

3 Weighted Regression Analysis

In this section, we focus on a non-spatial maximum-likelihood approach to
explain Y in terms of x1, per-capita income, and x2, percentage of patients
70 or older. Two analyses are given. The unweighted analysis does not recog-
nize the importance of a changing denominator {Ei} in the rates {Yi}. The
weighted analysis recognizes that a rate Yi with a larger denominator Ei is
more precise and so should get more weight in both non-spatial and spatial
regressions.

From Fig. 1, we can contrast the scatterplots of the dependent variable Y
against x1 and x2, with and without weighting. The comparison clearly shows
that the correlation between Y and x2 and between Y and x1, is stronger after
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weighting has been carried out. Specifically, in the top two panels of Fig. 1
we plot {Yi} versus {xki}, and in the bottom two panels we plot weighted

variables {Ỹi} versus {x̃ki}, whose definitions are given in (10) and just below
(11).

Fig. 1. Comparison of unweighted (top) and weighted (bottom) scatterplots. In the
weighted scatterplots, the point beyond the main cluster is due to the canton of
Toulouse

It should be remembered that there is a column of 1s in the matrix X re-
ferred to in (8). We write x0 ≡ (1, . . . , 1)′ and hence from (11), x̃0 ≡ Φ−1/2x0.

We next examine Fig. 1.2, the partial residual plots of Ỹ against x̃1 (re-
spectively, x̃2), after accounting for the variable x̃0. We see that the depen-
dence between prescription amount and percentage of patients 70 or older, is
stronger than that between prescription amount and per-capita income. This
is confirmed by a t-statistic of 7.56 for the estimate of the former regression
coefficient, compared to a t-statistic of −4.48 for the estimate of the latter
regression coefficient. Further partial residual plots of Ỹ against x̃1, after ac-
counting for both x̃0 and x̃2 (not shown), revealed that per-capita income
had no extra explanatory power in the presence of percentage of patients 70
or older. That is, in the regression, E(Y) = β0x0 + β1x1 + β2x2, exploratory
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and confirmatory analyses have led us to put β1 = 0. Therefore, from now on,
we shall keep only x2 (and the intercept 1) as an explanatory variable for Y.

Comparing now the unweighted and weighted (non-spatial) regressions of
Y against x2, we see in Table 1 that the maximum likelihood estimates of the
regression parameters (β0, β2) (their corresponding standard deviations are
indicated in parentheses) and the coefficients of determination R2 are different.
In particular, R2 for the weighted analysis is a lot larger than the unweighted
one, supporting the importance of recognizing inherent heteroskedascity when
modelling rates.

Table 1. Comparison of unweighted and weighted (non-spatial) regressions

β0 β2 R2

unweighted 230.2491 3.5361 0.1139
(11.4566) (0.6048)

weighted 236.1941 3.1292 0.9673
(6.8033) (0.4145)

Fig. 2. Comparison of partial residual plots for weighted (non-spatial) regressions
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4 Weighted Spatial Regression Analysis

We now inspect the residuals from the unweighted and weighted non-spatial
regressions for presence of spatial autocorrelation. We shall use Moran’s con-
tiguity ratio (e.g., [2], p. 442) to measure this spatial autocorrelation, with the

contiguity matrix as H̃, where recall that H̃ is the neighbourhood matrix with
0-1 entries given in (22). For the 268 cantons of interest in the Midi-Pyrénées,
recall that we defined j to belong to the neighbourhood N(i) if the centroids
of the j-th and i-th cantons are less than or equal to 30 km apart. To present
the results, we use plots from the GeoXp package4, which in this case consists
of a map of the Midi-Pyrénées region on the left and a Moran plot on the
right; see Figs. 3 and 4. (For a given variable Z and a given contiguity matrix
W , the Moran plot is a scatterplot of WZ against Z.) Define

ε̂
uns ≡ Y − β̂uns

0 x0 − β̂uns
2 x2

to be the residuals of the unweighted non-spatial model, and

ε̂
wns ≡ Ỹ − β̂wns

0 x̃0 − β̂wns
2 x̃2

to be the residuals of Ỹ from the weighted non-spatial model, where the regres-
sion parameters (β0, β2) are in each case estimated by maximum likelihood,
according to the model assumed.

Figures 3 and 4 present respectively the Moran plots based on ε̂
uns and

on ε̂
wns, where the matrix W = H̃ was used in both cases. They both ex-

hibit significant spatial autocorrelation; the p-value is more significant for the
weighted model, with a value of 8.7935× 10−12 (and Moran’s contiguity ratio
equal to 2.0772), compared with 4.2337×10−7 for the unweighted model (and
Moran’s contiguity ratio equal to 1.5067).

To take into account the spatial autocorrelation demonstrated just above,
we now turn to the CAR model presented in Sect. 1.2. As in Sect. 1.3, we
can fit an unweighted or a weighted model: The weighted CAR model is given
by (21), and the unweighted CAR model corresponds to putting τ2

i ≡ τ2;
i = 1, . . . , n, in (6). The unweighted CAR model we use is,

Y ∼ Gau(Xβ, (I − γH̃)−1τ2) , (23)

where recall that H̃ is the neighbourhood matrix with 0-1 entries. The results
of maximum-likelihood fitting [3] are shown in Table 2. The t-statistic related
to the spatial-dependence parameter γ is equal to 6.1723 for the unweighted
CAR model and is equal to 11.9168 for the weighted CAR model. This con-
firms that there is significant spatial dependence in both models (assuming the
models’ respective correctness), and it appears that the spatial dependence is
stronger in the weighted model.

4 a Matlab toolbox downloadable at
http://www.univ-tlse1.fr/GREMAQ/Statistique/geoxppage.htm
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Fig. 3. Map of n = 268 centroids in units of km (cartographic projection NTF) and
Moran plot of the residuals from the unweighted, non-spatial regression

In order to compare the four models (unweighted non-spatial, weighted
non-spatial, unweighted CAR, and weighted CAR), we propose to use a cross-
validation-type criterion,

CV ≡
n∑

i=1

[Yi − Ê(Yi|{Yj : j ∈ N(i)})]2,

as the basis of the comparison. That is, CV is the sum of squared prediction
errors.

The comparison based on CV is only indicative, since it depends on
the dataset at hand. Based on (6), the estimated conditional expectation,

Ê(Yi|{Yj : j ∈ N(i)}), in the formula for CV is computed as follows:

Unweighted non-spatial (uns):

β̂uns
0 x0,i + β̂uns

2 x2,i .

Weighted non-spatial (wns):

β̂wns
0 x0,i + β̂wns

2 x2,i .

Unweighted CAR (ucr):
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Fig. 4. Map of n = 268 centroids in units of km (cartographic projection NTF) and
Moran plot of the residuals from the weighted, non-spatial regression

β̂ucr
0 x0,i + β̂ucr

2 x2,i + γ̂ucr
n∑

j=1

I(j ∈ N(i))(Yj − β̂ucr
0 x0,j − β̂ucr

2 x2,j) .

Weighted CAR (wcr):

β̂wcr
0 x0,i+β̂wcr

2 x2,i+γ̂wcr
n∑

j=1

(Ej/Ei)
1/2I(j ∈ N(i))(Yj −β̂wcr

0 x0,j −β̂wcr
2 x2,j) ,

where I(·) is the indicator function and the parameters β0, β2, and γ are
estimated by maximum likelihood for the respective models.

The values of CV for the four models are shown in Table 3. The table
confirms that it is better to use a spatial model than a non-spatial model,
and it is better to use a weighted regression than an unweighted regression.
That is, based on this small evaluation study, weighted spatial regression offers
the smallest sum of squared prediction errors. We conclude that a canton’s
prescription amount per consultation is positively related to its percentage of
patients 70 and older, and that errors from this regression relationship are
both heteroskedastic and spatially dependent. This proper modelling of the
error structure leads to efficient inference on the regression parameters.
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Table 2. Comparison of weighted and unweighted CAR model fits

β0 β2 τ2 γ

unweighted CAR 227.6205 3.5763 1750.5399 0.0471
(13.3159) (0.6515) (152.8731) (0.0076)

weighted CAR 245.2020 2.5324 30576927.6248 0.0515
(8.1155) (0.4881) (2664826.93) (0.0043)

Table 3. Comparison of four models based on the cross-validation criterion CV

unweighted weighted

non-spatial 514407.09 510833.31

spatial 476124.80 463754.04

5 Discussion and conclusions

Point patterns are often aggregated into counts within spatially contiguous
regions. The counts are typically transformed to rates, but any statistical
analysis should account for the inherent heteroskedasticity associated with a
dependent variable that is a rate. Furthermore, spatial dependence that is
perhaps due to a misspecified regression relationship, should be included in
the model.

Through the use of a dataset where the rate is prescription amount per
consultation, in cantons of the Midi-Pyrénées in southwest France, we illus-
trate the importance of doing a weighted (both non-spatial and spatial) ana-
lysis. The denominators of the rates control the weights; specifically, both
response (i.e., rate) and covariates are multiplied by the square root of the
corresponding denominator and an unweighted (both non-spatial and spatial)
analysis is carried out. Our results show that the unweighted analysis is a
much blunter tool for analyzing the data; with a weighted analysis, we are
able to explain much more of the variability through the candidate covariates,
we are able to account for the remaining variability with a spatially dependent
error term, and the resulting weighted spatial (CAR) model has the smallest
sum of squared prediction errors.
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Summary. This chapter describes progress towards the development of more ob-
jective methods for discriminating between the neuropathological features produced
by different TSE strains, in particular with respect to the vacuolation of brain tissue.
We examine data on patterns of vacuolation in the brain tissue of mice challenged
with different TSEs, and assess three separate aspects of the pattern: vacuole counts;
vacuole sizes; and spatial distribution of vacuoles. The long-term goal is to develop
a discriminant rule which can be used to identify a particular TSE strain should it
arise in a group of animals.

Key words: Replicated spatial data, Spatial patterns of vacuolation in the brain
tissue of mice, Transmissible spongiform encephalopathies (TSEs)

1 Introduction

Transmissible spongiform encephalopathies (TSEs) are a group of related fa-
tal neurodegenerative disorders, affecting a number of animal species [7, 10].
There are several strains including Bovine Spongiform Encephalopathy (BSE)
in cattle, scrapie in sheep and new-variant Creutzfeldt-Jakob Disease (vCJD)
in humans. Some of these can be divided; there are numerous strains of scrapie
for example, but there is only one strain of BSE in the UK. TSEs exhibit a
number of distinctive neuropathological features including spongiform change,
characterised by the appearance of lesions, or vacuoles (small, rounded holes),
in brain tissue. Other symptoms of TSEs vary but commonly include alter-
ations of temperament and lack of physical coordination, for example an un-
steady gait or involuntary jerking.
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Strain-typing, the process of distinguishing between and identifying strains,
is an important tool in facilitating our understanding of the pathology, epi-
demiology and transmission of these diseases. TSE strains vary in a number
of respects, including the length of their incubation period and the severity
and distribution of the lesions they create in the brain [2]. Strains also differ
in terms of their transmissibility, both within and between species. Strain-
typing allows us to quantify these differences, as well as enabling exploration
of the links between TSEs occurring naturally in different species. Notably,
strain-typing led to the discovery that BSE and vCJD were related and that
humans could have contracted vCJD by eating beef originating from BSE-
affected cattle [3].

Lesion profiling was first described in [6] and remains the most commonly
used method of TSE strain-typing. Its focus is the vacuolation occurring in
the brain tissue of affected animals. Usually, the disease is inoculated into
mice to determine infectivity or to identify the TSE strain. Severity of vacuo-
lation is rated on a 0–5 scale in each of nine pre-defined regions of the mouse
brain, located on four vertically cut two-dimensional sections of brain tissue. A
severity score of 0 corresponds to no vacuolation, while 5 corresponds to very
severe vacuolation. Fraser and Dickinson include a diagram in [6], illustrating
the definition of the regions of interest.

A plot of region versus severity score, known as a lesion profile, helps
to determine the strain because different strains have been found to show
distinctive shapes. Figure 1 shows examples of typical lesion profile scores
from BSE and scrapie-challenged mice. The scores shown are averages from
experiments on three groups of mice, profiled at the Veterinary Laboratories
Agency in Weybridge, UK. Two of the groups had been challenged with scrapie
and one with BSE.

2 4 6 8
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Typical lesion profiles

Region no.
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Fig. 1. Typical lesion profile scores for mice challenged with BSE (solid line), and
representative Scrapie (dashed and dotted lines)

This method has several limitations. Foremost amongst these are the sub-
jectivity and imprecision involved in assessing vacuolation severity. The 0-5
scale is based only loosely on the number of vacuoles in the region, for example
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a score of 3 is defined as “moderate numbers of vacuoles, evenly scattered”. In
addition, lesion profiling does not take into account, for example, the distribu-
tion of vacuole sizes or their spatial arrangement. Note also that the ordering
of the regions along the x-axis in Fig. 1 is arbitrary.

This contribution describes progress towards the development of more ob-
jective methods for discriminating between the neuropathological features pro-
duced by different TSE strains, in particular with respect to the vacuolation
of brain tissue. We examine data on patterns of vacuolation in the brain tis-
sue of mice challenged with different TSEs, and assess three separate aspects
of the pattern: vacuole counts; vacuole sizes; and spatial distribution of vac-
uoles. The long-term goal is to develop a discriminant rule which can be used
to identify a particular TSE strain should it arise in a group of animals.

2 Data Collection

We describe the sample material under study, and the processes by which the
data for our analyses are extracted.

2.1 Sample Material

Slides of brain tissue sections from mice challenged with BSE or scrapie are
provided by the Veterinary Laboratories Agency (UK). The mice are all of the
RIII line, which is a standard inbred strain of mice used in laboratory studies
to eliminate genetic variability from scientific testing. We focus upon three
regions, the paraterminal body, thalamus and tectum of the midbrain. Each
section is strongly stained, with the vacuolation presenting as white holes.
Figure 2 illustrates severe vacuolation.

Fig. 2. Severe vacuolation in the hippocampus region of a scrapie-affected mouse
brain

For each mouse, the TSE strain (BSE or scrapie) is known, along with
covariate information such as mouse gender and whether the mouse was chal-
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lenged with sheep or cattle material. Scrapie-challenged mice have been cate-
gorised only by gender, and were all challenged using wild-type ovine material
of mixed strain. Scrapie isolations from natural cases appear to be a mixture
of strains upon first passage into mice. However, upon serially passaging the
infection from one mouse to another, the dominant scrapie strain can be dis-
tinguished. The use of serial passage enables the original isolate to be refined
until it exhibits a constant presentation, which may be identified by compari-
son to the presentation of other known strains. Only single-passaged material
was available in the current study, but we intend to apply our methods also
to multiply-passaged “pure” strains, and we would expect these to yield more
consistent results. Using these pure strains would enable us to compare differ-
ent strains of scrapie, as well as contrasting mixed-strain scrapie with BSE.
Mice challenged with bovine BSE material, of which there is only one known
strain in the UK, have been further categorised by whether the cattle were
in a pre-clinical or terminal condition. Pre-clinical cattle were killed at a pre-
determined time-point, while terminal cattle were killed when they began to
show end-stage clinical signs, to limit suffering. Mice challenged with ovine
BSE material are categorised by the length of time between the sheep being
challenged and its pre-determined time of death (10, 16 or 22 months).

For each combination of covariates, there are a number of replicated exper-
iments, or groups of mice which have been challenged using an equal volume
of the same inoculum. Replication offers the opportunity to quantify variabil-
ity at different levels of the experiment, and to identify differences between
groups of mice with respect to the neuro-anatomical features of interest.

Table 1 summarises the available material. This is limited by difficulties
in obtaining usable samples. For each combination of covariates, there are
between 1 and 4 replicates, each consisting of between 4 and 9 mice. There
are 84 mice in total.

Some data are missing as a result of sections being inaccurately cut. Sec-
tions from seven mice have a missing paraterminal body, two have a missing
thalamus and one has a missing tectum. These missing sections arise for rea-
sons unrelated to the disease, and can therefore be treated as missing com-
pletely at random, in the sense of [9].

Table 1. Experimental design (15 groups of replicates)

BSE Cattle BSE Sheep Scrapie
Status Time post-challenge (sheep)

Pre-clinical Terminal 10 mnth 16 mnth 22 mnth

No. males/ 4/4 2/2 3/2 3/3 4/5 1/3
females in 4/3 2/3 3/2 3/5 1/3
each group 5/2 2/2 2/2
of replicates 2/2

Total no. mice 26 13 5 11 17 12
(male/female) (15/11) (6/7) (3/2) (6/5) (7/10) (4/8)
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We have no reason to expect differences in spatial distribution between
males and females, nor are these suggested by exploratory data analysis.
Hence, for the spatial analysis, we ignore sex. Severity of vacuolation is, how-
ever, believed to differ between the sexes, with females having a greater num-
ber of vacuoles on average. For the analyses of vacuole counts and vacuole
sizes, therefore, sex is considered as an additional covariate.

2.2 Extraction of Data from the Sample Material

The software Histometrix (Medical Solutions plc, Nottingham, UK) allows
microscopy slides to be viewed and manipulated on the computer screen. In
particular, coordinates of individual vacuoles and a polygonal border for each
region can be downloaded. We use a tool within the software to define the
edges of each vacuole, and the edges of the regions of interest. Coordinates
defining these edges are saved and downloaded into statistical software. Some
of the subjectivity and imprecision of lesion profiling is removed by using the
computer to generate vacuole counts, rather than making a judgement based
on visual impression. The software we used can detect vacuoles automatically
but is only able to record spatial coordinates for manually defined vacuoles,
hence we retain a degree of subjectivity.

The images are first registered to a common set of coordinates by choosing
one physical point in the brain tissue to be the (0, 0) spatial coordinate for all
mice, as shown in Fig. 3. The orientation of the regions is fixed by choosing
any two points along their bottom edge and rotating the image around the
(0,0) point until these lie in a horizontal line.

Fig. 3. Registration points ([0,0] coordinates) for the three tissue regions: (a)
paraterminal body; (b) thalamus; (c) tectum of midbrain

In order for a pair of coordinates to relate to an approximately equivalent
physical location in the brains of different mice, we scale the patterns to a
common area. Scaling alters vacuole sizes and distances between vacuoles,
but inspection of the patterns suggests that this is desirable, since vacuoles in
larger brains also tend to be larger in size. In effect, the disease in a larger brain
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appears as a magnification of the disease in a smaller brain. Scaling ensures
that distances and relative vacuole sizes are comparable between patterns.

Once the polygonal regions have been registered and scaled, those within
each group of replicates are overlaid and their intersection is used as the
common region for that experiment. Any vacuoles outside this intersection
are discarded.

3 Methods

Vacuole counts, vacuole sizes and spatial distributions of vacuoles are assessed
in three separate analyses. In each analysis, an individual mouse contributes a
single response from each of the three brain tissue regions (tectum of midbrain,
thalamus and paraterminal body), and these are assessed separately.

In the study, there are 15 replicated experiments, each replicate consisting
of a group of mice challenged with the same inoculum. These 15 inocula can
be categorised into 6 distinct types according to the specific origin of the
material, as defined by a combination of covariates, which are: source animal
(cattle or sheep), TSE strain (BSE or scrapie), and stage of infection. The 6
types for which we have data, form the column headings in Table 1.

Within each analysis, we investigate whether there are significant differ-
ences between the 15 groups of replicates. If there are, we sequentially fit and
compare simpler models to assess whether significant proportions of this vari-
ation are explained by differences in the origin of the infection (source animal,
TSE strain and stage of infection), or more simply by the TSE strain alone.
We also consider the possibility that the inoculum and/or covariate informa-
tion are important for one TSE strain but not the other. For the analyses
of counts and sizes, we include mouse sex as an additional factor. In each
case, a model consisting only of TSE strain is directly compared with the null
model in order to obtain a significance level for the difference between BSE
and scrapie.

For the counts and sizes, we compare model fits using the scaled deviance
statistic and the F -statistic. For the spatial analysis we assess the sources of
variation by comparing second moment summaries using appropriate Monte
Carlo tests, as in [4, 5].

3.1 Vacuole Counts

Vacuole counts are modelled using a quasi-Poisson log-linear model with dis-
persion parameter φ equal to the variance-to-mean ratio. The saturated model
allows a separate mean count for each mouse. More parsimonious sub-models
are compared using a scaled deviance criterion as follows. Let Rs and Rc be
the residual deviances for the simpler and more complicated sub-models, on
ds and dc degrees of freedom, respectively. To test the adequacy of the simpler
model, we compare D = (Rs − Rc)/(Rc/dc) with critical values of χ2

q, where
q = ds − dc.
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Fig. 4. Histograms of logged mean scaled vacuole sizes. (a) is the paraterminal
body, (b) the thalamus and (c) the tectum

3.2 Vacuole Sizes

Each of the brain tissue regions has been scaled to a common area of 1µm2;
we analyse the scaled vacuole sizes, but report sizes in units of 106µm2, which
has the effect of putting the units on approximately the same scale as the
original. For each vacuole, the image analysis software records the lengths,
r1 and r2, of the two principal radii, and we approximate each vacuole as an
ellipse, hence area = πr1r2.

The response for each mouse is the logarithm of the observed mean vacuole
size. Figure 4 suggests that the variation in log-mean-size is approximately
Gaussian and so we analyse these data using a Gaussian linear model. Note
that by summarising the scaled vacuole sizes from each mouse by a single log-
mean, we allow for the fact that individual sizes within mice are dependent.

The procedure for fitting and comparing models for the mean scaled vac-
uole sizes is essentially the same as for the vacuole counts, except that the
scaled deviance statistic is replaced by a standard F -statistic,

F =
(Rs − Rc)/q

Rc/(n − dc)

where now n is the number of mice, Rs and Rc are residual sums of squares
and we compare F with critical values of Fq,n−dc

.

3.3 Spatial Distribution

We use the inhomogeneous K-function [1] to summarise each spatial pattern
by its degree of regularity or aggregation, allowing for a spatially varying
intensity.

We compare groups of mice, with groups defined in three ways in turn:
by specific inoculum; by the type of the inoculum (as defined by the differ-
ent combinations of covariates shown in Table 1); and by TSE strain alone.
We then suggest sources of variation in the data by comparing the attained
significance level for group differences across these three analyses.
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The Inhomogeneous K-function

Ripley [8] introduced the K-function in the setting of stationary point pro-
cesses. In the current application, we observe systematic spatial trends in
intensity arising from differences in the physical structure, and susceptibility
to TSE infection, of different parts of the brain tissue. Baddeley et al [1],
proposed a non-stationary extension of the K-function, Kinhom(t), which al-
lows the underlying process to have a spatially varying intensity, λ(x). In our
estimation of Kinhom(t) we apply Ripley’s isotropic edge correction [8].

Estimating the Underlying Intensity Function

We use a kernel smoothing procedure to estimate λ(x). As noted in [1], it
is difficult to distinguish between variation due to λ(.) and variation due to
spatial interaction, using data from a single point pattern realisation. Our
approach alleviates this difficulty by exploiting the replicated nature of the
data as follows.

Assume that mice within each group of replicates have proportional in-
tensity functions, i.e. if λij(.) is the intensity function for the jth mouse in
the ith group, then λij(x) = αijλi(x). Inspection of the data supports this
as a reasonable approximation. The K-function is invariant under scaling of
λ(x), and therefore provides a summary of the spatial distribution which is
complementary to the information provided by vacuole counts. Within each
group of replicates, we superimpose the points from all replicates and obtain
kernel intensity estimates at the locations of each vacuole in the superim-
position, using a standard Gaussian kernel. Note that the argument for the
bias-correction recommended by [1] when estimating both λ(x) and Kinhom(t)
from a single pattern does not apply when replicated data are available.

We choose the kernel smoothing parameter, h, using a cross-validation
procedure. For m replicates in the ith group, let xjk denote the location of

the kth vacuole in the jth replicate, and f̂ (−j)(x;h) the kernel estimate with
smoothing parameter h, obtained by omitting the jth replicate from the data
and scaled to integrate to one over the study region. Then, the cross-validation
criterion chooses h to maximise

L(h) =
m∑

j=1

nij∑

k=1

log f̂ (−j)(xjk),

where nij is the number of points in the ijth pattern. We scale each kernel
estimate to integrate to 1, so that L(h) can be interpreted as a cross-validated
log-likelihood. We then estimate the constants of proportionality as α̂j =
nij/ni, where ni =

∑
j nij .
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Comparing Replicated Spatial Point Patterns

Two statistics for comparing two or more groups of replicated spatial data
using the K-function of [8] have been proposed [4, 5]. We modify the proposal
in [5] by replacing K(t) with Kinhom(t) throughout.

Let K̂ij(t) denote the estimate of Kinhom(t) for the jth replicate in the ith
experimental group. We then estimate group-mean K-functions by

K̄i(t) = n−1
i

ni∑

j=1

nijK̂ij(t)

where nij is the number of points in the jth replicate within the ith group
and ni =

∑
j nij . Similarly, we estimate an overall mean K-function by

K̄(t) = n−1

g∑

i=1

niK̄i(t)

where n =
∑

i ni.
The statistic to test for significant differences amongst the groups is then

Dg =

g∑

i=1

∫ t0

0

w(t)ni

[
K̄i(t) − K̄(t)

]2
dt.

The choice of t0 should capture the range of distances over which spatial
interactions between vacuoles are thought to operate; in the absence of scien-
tific guidance on this point, a sensible upper limit is one quarter the width of
the region. For the weighting function w(t), we use w(t) = t−2 to reflect the
asymptotic variance of K̂(t) for a Poisson process. The statistic Dg is loosely
analogous to a residual sum of squares in a conventional one-way ANOVA.

Because the distribution of Dg is intractable, we use the following Monte
Carlo significance test of the null hypothesis of no difference between the
groups. We first compute a set of residual K-functions,

Rij(t) = n
1
2
ij

{
K̂ij(t) − K̄i(t)

}

The Rij(t) are approximately exchangeable under both the null and al-
ternative hypotheses. We now randomly permute the Rij(t) to give a set of
permuted residual K-functions R∗

ij(t) and calculate

K̂∗
ij(t) = K̄(t) + n

− 1
2

ij R∗
ij(t).

We then use the K̂∗
ij(t) to compute a realisation D∗ from the approximate

sampling distribution of D under the null hypothesis. Repeated sampling of
D∗ leads to a Monte Carlo significance test. If Dg is the rth smallest amongst
(Dg, D

∗
1 , . . . , D

∗
N ), then the attained significance level of a test of the null

hypothesis of no group differences is given by p = r/(N + 1).
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In addition to conducting a test of significance, a graphical display of
estimated individual and group-mean K-functions is often informative. We
plot K̂(t) − πt2, a quantity with an expected value of zero under complete
spatial randomness (CSR), to facilitate visual inspection.

4 Results

4.1 Vacuole Counts

We present the results for each region in turn. Outputs from the models for
counts are summarised in Table 2. For scrapie-affected mice, the mean counts
are 232 in the paraterminal body, 162 in the thalamus and 88 in the tectum.
For the BSE-affected mice, the mean counts are 47 in the paraterminal body,
40 in the thalamus and 37 in the tectum. There is thus a suggestion that
scrapie mice demonstrate more severe vacuolation than BSE mice. In addition,
there may be greater disparity between counts in the three regions for scrapie
mice. We now consider the quasi-Poisson log-linear modelling approach as
described in Sect. 3.1.

For the paraterminal body, extra-Poisson variation is substantial (φ̂ =
174.19). There is a significant difference between BSE and scrapie-challenged
mice (D = 35.25, p < 0.01). However, a model which combines all BSE mice
into one group but retains the three distinct groups for scrapie mice according
to specific inoculum, offers a significant improvement over a model in which
scrapie mice are also defined as a single group (D = 37.08, p < 0.01). There
is no benefit in separating groups of BSE mice according to covariate infor-
mation or inoculum (D = 13.99, p = 0.23) and the effect of mouse sex is not
significant (D = 0.05, p = 0.83). Quasi-Poisson modelling can therefore distin-
guish between BSE and scrapie mice in the paraterminal body, and there are
no significant differences between mice challenged with BSE from different
inocula. Variation between inocula remains important, however, for scrapie
mice.

In the thalamus, extra-Poisson variation is again substantial (φ̂ = 68.71).
There is a significant difference between the counts for BSE and scrapie-
challenged mice (D = 47.58, p < 0.01) but again, a model combining all BSE
mice but retaining the distinction between mice challenged using different
scrapie inocula proves significantly better than a model which also combines all
scrapie mice (D = 19.24, p < 0.01). There is no improvement made by splitting
BSE groups according to inoculum (D = 5.31, p = 0.26) and the inclusion of
sex offers no significant improvement over the null model (D = 0.26, p = 0.61).
BSE and scrapie can be distinguished but variation between scrapie mice
challenged using different inocula is still significant.

Finally, within the tectum, extra-Poisson variation is again evident (φ̂ =
20.85). As in the other two regions, there is a significant difference between
BSE and scrapie-challenged mice (D = 27.36, p < 0.01) but in contrast to
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Table 2. Comparisons and deviance reduction statistics for quasi-Poisson log-linear
models of vacuole counts from the paraterminal body, the thalamus and the tectum
of the midbrain. Inoculum indicates specific material used. Inoculum origin indicates
combination of covariates. Model (a) is all mice grouped by inoculum origin, model
(b) is BSE grouped by inoculum origin, scrapie by inoculum, and model (c) is BSE
all combined, scrapie grouped by inoculum

Model Deviance df Model comparison df D

Paraterminal body

Null 7070.8 76
Sex 7066.2 75 Null vs Sex 1 0.05
Inoculum 2049.3 62 Null vs Inoculum 14 151.94
(a) 3529.4 71 (a) vs Inoculum 9 44.78
(b) 2253.8 69 (b) vs Inoculum 7 6.19
(c) 2511.6 73 (c) vs Inoculum 11 13.99
TSE strain 3787.3 75 TSE strain vs (c) 2 37.08

Null vs TSE strain 1 35.25

Thalamus

Null 3336.3 81
Sex 3325.4 80 Null vs Sex 1 0.26
Inoculum 959.8 67 Null vs Inoculum 14 165.90
(a) 1302.7 76 (a) vs Inoculum 5 23.94
(b) 1030.3 74 (b) vs Inoculum 7 4.92
(c) 1104.3 78 (c) vs (b) 4 5.31
TSE strain 1376.6 80 TSE strain vs (c) 2 19.24

Null vs TSE strain 1 47.58

Tectum of midbrain

Null 1360.7 82
Sex 1298.8 81 Null vs Sex 1 3.86
Sex + inoculum 666.0 67 Sex vs 14 63.65

Sex + inoculum
Sex * inoculum 498.6 53 (Sex +) vs 14 17.80

(Sex *) inoculum
Sex + (a) 777.7 76 Sex + (a) vs 9 11.23

Sex + inoculum
Sex + TSE strain 860.1 80 Sex + TSE strain vs 4 8.12

Sex + (a)
Null vs TSE strain 1 27.36

the other two regions, mouse sex is marginally significant (D = 3.86, p =
0.05). Source inoculum is significant (D = 63.65, p < 0.01), but interaction
between sex and inoculum is non-significant (D = 17.80, p = 0.22). Finally, a
model which includes sex and combines the groups of replicates which share
covariate information, does not give a significant improvement over a model
which categorises the mice only by TSE strain (D = 8.12, p = 0.09).
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Conclusions

The preferred model for both the paraterminal body and the thalamus com-
bines all mice challenged with BSE into one group but retains a distinction
between the three groups of mice challenged with scrapie. For the tectum, the
model again separates BSE and scrapie but combines all scrapie mice into one
group. Sex is included in the preferred model for the tectum data only.

In the paraterminal body and thalamus, counts in this study differed sig-
nificantly between groups of scrapie-challenged mice challenged using different
inocula, but this was not the case for BSE-challenged mice. It may be that
this variation could be reduced by using mice challenged with a pure strain
of scrapie. In the tectum, groups of mice with the same covariate informa-
tion (TSE strain, cattle or sheep origin and stage of infection) were similarly
affected, but there were significant differences in the counts between groups
whose covariate information differed. Overall, the counts differed between the
three regions to a greater extent for scrapie mice than BSE mice and the
results overall indicate a clear potential for count data to be useful in distin-
guishing TSE strains.

4.2 Vacuole Sizes

Simple analysis of the scaled vacuole size data indicates that the mean logged
vacuole sizes are more variable between source groups in the paraterminal
body (mean = 3.134, sd = 0.168) and the tectum (mean = 3.342, sd = 0.125)
than in the thalamus (mean = 3.213, sd = 0.058). We proceed to fit a Gaussian
linear model in each region, with the results summarised in Table 3.

For the paraterminal body, sex significantly improves the null model (F =
8.10, p = 0.01), and the model is further improved by grouping the mice
according to the specific inoculum used (F = 2.13, p = 0.02), but not by
an interaction term (F = 1.08, p = 0.40). A model consisting only of TSE
strain is not significantly better than the null model (F = 0.03, p = 0.86),
suggesting that there is no consistent difference between BSE and scrapie.
The preferred model combines groups of mice sharing covariate information
(same TSE strain, source animal (cattle or sheep) and stage of infection).
The ability to distinguish between scrapie and BSE may be being limited by
the significant variation between BSE-challenged mice whose inoculum is of a
different origin.

In the thalamus, neither sex nor inoculum significantly improve the null
model (F = 0.94, p = 0.33 and F = 0.34, p = 0.99 respectively). The
difference between BSE and scrapie-challenged mice is also non-significant
(F = 0.20, p = 0.66). In summary, there is no evidence of significant variation
in scaled vacuole sizes above and beyond differences between individual mice.

We consider finally the tectum. The effect of specific inoculum is significant
(F = 2.00, p = 0.03), but the model fit is not compromised by combining the
three scrapie groups whilst maintaining the distinction between BSE mice
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Table 3. Comparisons and standard F statistics for Gaussian log-linear models of
scaled vacuole sizes from the paraterminal body, the thalamus and the tectum of
the midbrain. Inoculum indicates specific material used. Inoculum origin indicates
combination of covariates. Model (a) is all mice grouped by inoculum origin, model
(b) is BSE grouped by inoculum origin, scrapie grouped by inoculum, model (d) is
BSE grouped by inoculum, scrapie all combined

Model Deviance df Model comparison (q, n − dc) F

Paraterminal body

Null 6.615 76
Sex 5.970 75 Null vs Sex (1, 75) 8.10
Sex + inoculum 4.012 61 Sex vs (14, 61) 2.13

Sex + inoculum
Sex * inoculum 3.036 47 (Sex +) vs (14, 47) 1.08

(Sex *) inoculum
Sex + (a) 4.710 70 Sex + (a) vs (9, 61) 1.18

Sex + inoculum
Sex + TSE strain 5.967 74 Sex + TSE strain vs (4, 70) 4.67

Sex + (a)
TSE strain 6.613 75 Null vs TSE strain (1, 75) 0.03

Thalamus

Null 4.169 81
Sex 4.120 80 Null vs Sex (1, 80) 0.94
Inoculum 3.890 67 Null vs Inoculum (14, 67) 0.34
TSE strain 4.159 80 Null vs TSE strain (1, 80) 0.20

Tectum of midbrain

Null 4.758 82
Sex 4.727 81 Null vs Sex (1, 81) 0.54
Inoculum 3.370 68 Null vs Inoculum (14, 68) 2.00
(a) 4.278 77 (a) vs Inoculum (9, 68) 2.04
(b) 4.259 75 (b) vs Inoculum (7, 68) 2.56
(d) 3.390 70 (d) vs Inoculum (2, 68) 0.20
TSE strain 4.686 81 Null vs TSE strain (1, 81) 1.24

challenged using different inocula (F = 0.20, p = 0.82). Mouse sex is again
not significant in comparison with the null model (F = 0.54, p = 0.46). A
model consisting only of TSE strain does not show a significant improvement
on the null model (F = 1.24, p = 0.27). We therefore conclude that there is
no significant evidence of a difference between BSE and scrapie, but there are
strong differences between BSE mice challenged using different inocula which
are not merely a result of differing covariate information.

Conclusions

The preferred models for each region differ considerably. For the paraterminal
body, the chosen model divides the mice into groups according to shared
covariate information, and sex is also included as a factor. In the thalamus,
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we are forced to accept the null model as there is no significant evidence of
variation beyond individual differences. For the tectum, the preferred model
divides the mice into groups according to the specific inocula used. Sex is not
included in the model for the tectum data.

Scaled vacuole sizes in the tectum and paraterminal body do not appear
to help us distinguish BSE from scrapie. However, the method of modelling
sizes is clearly able to distinguish between groups of mice challenged using
different inocula. With a larger sample size, and using pure strains of scrapie,
it is possible that differences between TSE strains could be detected. Again,
the precise interpretation of the results differs between regions. In the parater-
minal body, for example, scaled vacuole sizes appear to be strongly associated
with the covariates but do not significantly differ between groups of mice which
share the same covariate information but have been challenged using different
source material. In the tectum, there is again no significant difference between
mice challenged with different scrapie inocula but there is significant variation
between groups of mice challenged with different BSE inocula, irrespective of
whether these groups share covariate information. Scaled vacuole size differs
by sex in the paraterminal body but not in the thalamus or tectum.

4.3 Spatial Distribution of Vacuoles

TSEs cause progressive degeneration of neurological tissue, through the for-
mation of vacuoles, and a spatial analysis of the resulting point patterns of
vacuole centres may be a useful complement to the analysis of counts and
sizes.

In each of the three tissue regions, the estimated K-functions indicate sub-
stantial variation between the different groups of mice, with vacuoles tending
to be aggregated in some groups and regularly spaced in others (Figs. 5–7).

Paraterminal body

The group-mean inhomogeneous K-function estimates for the paraterminal
body are shown in Fig. 5. Monte Carlo testing shows a significant difference
between strains (Fig. 5(c), p = 0.03), suggesting that within the paraterminal
body at least, the locations of vacuoles may have a role to play in strain
typing. The average K-function suggests that the arrangement of vacuoles
within the paraterminal body of scrapie mice is aggregated over the range of
spatial interaction studied, in comparison with that for BSE affected mice,
for whom the arrangement appears much closer to spatially random. Monte
Carlo significance tests provide no evidence of significant differences in spatial
arrangement between the groups of replicates (Fig. 5(a), p = 0.11) or the
combination of groups sharing covariates (Fig. 5(b), p = 0.10).
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Fig. 5. Group means K̄i(t) − πt2 in paraterminal body region. (BSE groups are

shown as solid lines and scrapie groups as dashed lines). (a) shows groups of mice
combined by inoculum (replicated experiments) (b) shows groups combined accord-
ing to shared covariate information, and (c) shows BSE groups and scrapie groups
combined
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Fig. 6. Group means K̄i(t) − πt2 in thalamus region. (BSE groups are shown as

solid lines and scrapie groups as dashed lines). (a) shows groups of mice combined
by inoculum, (b) shows groups combined according to shared covariate information,
and (c) shows BSE groups and scrapie groups combined

Thalamus

Figure 6 shows the group mean inhomogeneous K-function estimates for the
thalamus. As with the paraterminal body, a significant difference is found
between BSE and scrapie (Fig. 6(c), p = 0.05). Over the range of spatial in-
teraction studied, a similar pattern of aggregation in scrapie-affected thalamus
and a pattern close to complete spatial randomness in BSE-affected thalamus
is observed. No significant differences are found between groups as defined by
specific inoculum (Fig. 6(a), p = 0.10) or combination of covariates (Fig. 6(b),
p = 0.14).

Tectum of Midbrain

Figure 7 indicates wide variation in the K-function estimates for the tectum.
There are marginally significant differences between groups of mice challenged
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Fig. 7. Group means K̄i(t) − πt2 in tectum of midbrain region. (BSE groups are

shown as solid lines and scrapie groups as dashed lines). (a) shows groups of mice
combined by inoculum, (b) shows groups combined according to shared covariate
information, and (c) shows BSE groups and scrapie groups combined

using inocula of different origin (Fig. 7(b), p = 0.06) and between strains (Fig.
7(c), p = 0.07).

Conclusions

In the paraterminal body, the thalamus, and to a lesser extent in the tectum,
the analysis finds significant differences between BSE and scrapie. The lack
of significant differences amongst more finely divided groups suggest either
that the corresponding effects are relatively small or that more replicates are
needed to achieve the required sensitivity. The nature of the difference in
spatial patterns between mice challenged with BSE and scrapie is strikingly
similar for the three brain tissue regions (Figs. 5c, 6c and 7c).

5 Discussion

It is encouraging that there is complementary information to be found in each
of the analyses of counts, scaled sizes and spatial distribution. This suggests
that an assessment based on one aspect of the vacuolation alone, as in lesion
profiling, is at best incomplete, and may be neglecting useful information.

In particular, because the K-function is invariant to scale-changes in in-
tensity and we allow proportional, rather than identical, intensity surfaces for
different mice within each group, the spatial analysis is strongly complemen-
tary to the count analysis. Our current analyses of vacuole size is confined
to an analysis of average vacuole size within each individual pattern. A com-
prehensive analysis would need to recognise that size is a quantitative mark
attached to each vacuole location, i.e. a marked point process.

The results from each of the three analyses are markedly different, but
in combination could provide a useful tool for discriminating between TSE
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strains and helping to identify the strain of TSE affecting a given group of
animals. The mice in this study were affected with known TSE strains and we
have to date made no attempt to identify unknown strains using these tech-
niques. However, our results suggest that there are clear pathological differ-
ences, at least between BSE and scrapie, and these differences may ultimately
be used to develop recognisable “fingerprints”, indicating a particular disease.

As an example, the vacuoles in all of the studied brain regions of a group
of scrapie-affected mice are likely to be aggregated, but mild aggregation in
the tectum of midbrain only may be indicative of BSE. The scrapie-affected
mice may also show greater differences in vacuole counts across the three
regions, and in particular a much lower count in the tectum than in the other
two regions. A similar count in all three regions may be suggestive of BSE.
Finally, the average scaled vacuole size may provide useful information about
the strength of the particular inoculum used. For a given mouse, this will
assist the interpretation of a simple vacuole count.

The differences between the three regions are informative in terms of
counts, scaled sizes and spatial distribution. As an obvious extension to this
work, we propose to investigate whether similar analyses in each of the nine
regions as defined in the lesion profiling system might be used to highlight fur-
ther differences between strains. The groups and numbers of replicates stud-
ied here are small, and it is encouraging that the differences between groups
and/or strains are sufficiently strong to be detected using our proposed ap-
proaches.

The methods outlined have thus far been applied to two TSE strains,
namely BSE and a mixed-strain scrapie. Multiple passaging of the scrapie
infection can lead to the identification of known strains, which will produce
more consistent, distinguishable patterns. Since the material available for this
study was only single-passaged, we are unable to say whether the mice in
different replicated experiments have been challenged with the same strain
of scrapie, as this would only become clear upon further passage. Some of
the differences between scrapie groups could, therefore, be attributable to
differences in strain between the inocula used. It is our intention to apply these
methods to known strains, allowing us to discover whether the methods can
help distinguish between different scrapie strains as well as between generic
scrapie and BSE.
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Summary. We are interested in studying the spatial dependency between the po-
sitions of on and off cholinergic amacrine cells because we hope this will tell us
something about how the two cell types emerge during development.

Our goal in is to demonstrate how recently developed Monte Carlo methods
for conducting likelihood-based analysis of realistic point process models can lead
to sharper inferences about the bivariate structure of the data. In particular, we
will formulate and fit a bivariate pairwise interaction model for the amacrines data,
and will argue that likelihood-based inference within this model is both statistically
more efficient and scientifically more relevant than ad hoc testing of benchmark
hypotheses such as independence.

Key words: Bivariate pairwise interaction processes, Cholinergic amacrine cells,
Likelihood-based inference, Monte-Carlo methods

1 Introduction

1.1 Biological Background

Humans and many vertebrates have a very highly specialised visual system
that allows us to perceive the world. Our capacity to see begins at the back of
the eye, where a neural structure called the retina converts light into electrical
activity. The retina is a three-dimensional structure, composed of several types
of cell (Fig. 1). The light is first converted into neural activity by the photore-
ceptors, which then pass their signals through several types of interneuron.
Eventually the activity reaches the retinal ganglion cells, which then send the
signals to the brain.

There are many different types of neuron in the retina; with a few excep-
tions, each type of neuron is arranged in a regular fashion so that the visual
world is systematically sampled, without leaving any “holes” in visual space.
In this contribution, we will focus on the spatial positioning of two types of



216 Peter J. Diggle, Stephen J. Eglen and John B. Troy

retinal neuron, known as the cholinergic amacrine cells [12, 23]. These in-
terneurons modulate the pattern of visual information as it passes through
the retina, and are thought to play an important role in the detection of mo-
tion in particular directions [11]. There are two types of cholinergic amacrine
cell, depending on the depth within the retina at which the cell body is found.
Cells found within the inner nuclear layer are termed “off” cells here, whilst
cells found in the ganglion cell layer are termed “on” cells.

Fig. 1. Cross-section through the different layers of the retina. Layers are named
to left, for reference. (OS: outer segments; ONL: outer nuclear layer; OPL: outer

plexiform layer; INL: inner nuclear layer; IPL: inner plexiform layer; GCL: ganglion

cell layer). Light enters the eye through the front (at bottom) and travels through
the retina where it is converted to electrical activity by the photoreceptors. Two
main cell types can be classified into “on” (open circles) or “off” (filled circles)
depending on whether the cell is excited by an increase or a decrease in illumination.
Cholinergic amacrine cells (AC) are found at two different layers, whereas retinal
ganglion cells (RGCs) are normally all located within the GCL. RGCs are the only
cells that send their information along the optic nerve to the brain. Many cell types
have been omitted from this diagram for simplicity

We are interested in studying the spatial dependency between the positions
of on and off cells because we hope this will tell us something about how
the two cell types emerge during development: do the two cell types emerge
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from a single undifferentiated population, or do they develop independently
of each other? Also, in more general terms, this question that we ask here
about the cholinergic amacrine cells could be asked of other cell types. In
the special case when the two types of retinal neuron are in different layers,
existing approaches [6] may be suitable to test for independence. However,
these techniques are a priori invalid when both cell types occur in the same
layer, because in these circumstances the physical space required by each cell
formally precludes statistical independence of the two component arrays.

The data that we shall analyse are shown in Fig. 2. This shows a single,
bivariate spatial point pattern taken from the retina of a rabbit, in which
the two types of point correspond to the positions of the centres of 152 “on”
and 142 “off” amacrine cells; these data are from [25] and were kindly made
available to us by Prof. Abbie Hughes. For a general discussion of the biological
background to these data, see [17].

The pattern has been recorded within a rectangular section of the retina,
of dimension 1060 by 662 µm. Visually, both on and off cells exhibit patterns
which are more regular than would be the case for completely random pat-
terns, i.e. realisations of homogeneous Poisson point processes. In particular,
there is a pronounced inhibitory effect, meaning that no two on cells, and no
two off cells, can be located arbitrarily close together. The inhibitory effect is
much less pronounced between cells of opposite type. For example, the mini-
mum observed distance between any two on cells is 21.4µm, between any two
off cells is 15.8µm, and between any pair of on and off cells is 5µm. We shall
use 1µm as the unit of distance throughout.

Previous analyses of the data have been reported by [6], where non-
parametric methods led to the conclusion that the two component patterns
were approximately independent, and by [8] and [7] who used the data to il-
lustrate the fitting of univariate models by ad hoc and likelihood-based meth-
ods, respectively. Our goal in the current contribution is to demonstrate how
recently developed Monte Carlo methods for conducting likelihood-based ana-
lysis of realistic point process models can lead to sharper inferences about the
bivariate structure of the data. In particular, we will formulate and fit a bi-
variate pairwise interaction model for the amacrines data, and will argue that
likelihood-based inference within this model is both statistically more efficient
and scientifically more relevant than ad hoc testing of benchmark hypotheses
such as independence.

One major limitation of the analysis reported here is that the data are un-
replicated, i.e. they consist of a single point pattern. The literature on the sta-
tistical analysis of replicated spatial point pattern data is surprisingly sparse.
[9] and [2] consider methods based on pooled estimates of non-parametric
functional summary statistics such as the K-function [19, 20]. [10] compare
parametric and non-parametric approaches to testing for differences between
replicated patterns in two or more experimental groups. We are assembling
a collection of replicated patterns of retinal cells and intend to analyse these
using parametric, likelihood-based methods of the kind described in the cur-
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Fig. 2. The cholinergic amacrine data (on and off cells are shown as open and

closed circles, respectively). The rectangular region on which the cells are observed
has dimension 1060 by 662 µm. Cell bodies are drawn to scale (10 µm diameter).
Cells of opposite polarity (on vs off) can partially overlap, since they are located in
different layers, but cells of like polarity never overlap

rent contribution. We will report separately on the analyses of these data in
due course.

2 Pairwise Interaction Point Processes

2.1 Univariate Pairwise Interaction Point Processes

Markov point processes were introduced by [21]. [24] discusses their construc-
tion, properties and uses as statistical models for spatial point patterns.

Pairwise interaction point processes are perhaps the most widely used
sub-class of Markov point processes, In particular, they provide a flexible,
parsimonious class of models for point patterns which display varying degrees
of spatial regularity, as exhibited by our data.

Let X = {xi : i = 1, ..., n} be an observed spatial point pattern on a planar
region A, hence each xi ∈ A and all points in A are observed. According to the
scientific purpose of the analysis, it may be more natural to treat n as fixed
or random. Here, our focus is on the nature of the interactions amongst the
individual cells which determine their overall spatial pattern, given their num-
ber. We therefore treat n as fixed. We call the points of the process events to
distinguish them from arbitrary points x ∈ A. In a pairwise interaction point
process, the likelihood ratio for X with respect to a homogeneous Poisson
process of unit intensity takes the form
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cβn
n∏

i=2

i−1∏

j=1

h(||xi − xj ||). (1)

In (1), || · || denotes Euclidean distance, h(r) : r ≥ 0 is the pairwise inter-
action function, β reflects the intensity of the process and c is a normalising
constant whose analytic form is typically intractable.

The essence of the model (1) lies in the interaction function, h(·). When
h(r) = 1 for all r, the process is a homogeneous Poisson process of intensity
β. When h(r) = 0 for 0 ≤ r ≤ δ, no two events can occur less than a
distance δ apart and the process is said to display strict inhibition. Values
of h(r) intermediate between zero and one correspond to non-strict forms of
inhibition in which close pairs of events are relatively unlikely, but not ruled
out completely. The smallest distance ρ such that h(r) = 1 for all r > ρ is
called the range of the process. Models with h(r) > 1 for certain ranges of r
are potentially invalid because the likelihood ratio (1) may not be integrable
over A; an early example is the [22] model for clustering, subsequently shown
by [? ] to be invalid. In theory, models with h(r) = 0 for r ≤ δ and h(r) > 1
for δ < r < ρ could be used to model aggregated spatial patterns, but in
practice such models are not very useful because they correspond to very
extreme forms of spatial aggregation, in a sense made precise by [14].

In (1), conditioning on the observed number of events in A leads to a joint
probability density function for X, proportional to

f(X) =

n∏

i=2

i−1∏

j=1

h(||xi − xj ||). (2)

In the general inhibitory case, i.e. when h(r) ≤ 1 for all r, and when n
is large, the distinction between processes with a fixed or random number of
events in A is relatively unimportant for most purposes (but see below for an
example to the contrary). In what follows, we shall consider only the case of
fixed n. Hence, we do not attempt to make inferences about the intensity of
the process, but only about the form of the interaction function h(r) = h(r; θ).
The log-likelihood for θ is then given by

logL(θ) = log f(X; θ) + log c(θ) (3)

where c(θ) is the normalising constant for (2). Figure 3 shows a realisation
of a process with interaction function h(r) = 1 − exp(−r/φ) for each of φ =
0.01, 0.05, 0.10, 0.15 and, in each case, n = 100 events on the unit square.
The progressive development of spatial regularity as the value of φ increases
is clear. The simulations were generated on a toroidal region which was then
unwrapped to form the unit square A; this counteracts a tendency for events
to be artificially concentrated near the edge of A when the model is strongly
inhibitory, i.e. in the present context, when φ is large. Note also that the
distinction between fixed and random n becomes important as the strength
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of the interaction function increases with φ. Because of the need to place
exactly 100 events in A, then as φ increases the patterns generated by the
model will, with high probability, assume approximately a close-packed lattice
configuration and further increases in φ will have no discernible effect.

Fig. 3. Simulated realisations of pairwise interaction point processes each with 100
events on the unit square and interaction function h(r) = 1−exp(−r/φ). The values
of φ are 0.01 (top-left), 0.05 (top-right), 0.1 (bottom-left) and 0.15 (bottom-right)
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2.2 Bivariate Pairwise Interaction Point Processes

A bivariate spatial pattern consists of two sets of locations corresponding to
two distinguishable types of event, which in our application are the on and
off cells.

Let X1 = {x1i : i = 1, ..., n1} and X2 = {x2i : i = 1, ..., n2} represent a
bivariate spatial point pattern of events in a region A. A bivariate pairwise
interaction model is specified by three interaction functions, h11(·), h22(·) and
h12(·), which operate between pairs of events of type 1, pairs of events of type
2, and pairs of events of opposite type, respectively. Then, if we condition on
the observed numbers of events, n1 and n2, the probability density of (X1, X2)
is proportional to

f(X1, X2) = P11P22P12, (4)

where

P11 =

n1∏

i=2

i−1∏

j=1

h11(||x1i − x1j ||), (5)

P22 =

n2∏

i=2

i−1∏

j=1

h22(||x2i − x2j ||), (6)

and

P12 =

n1∏

i=1

n2∏

j=1

h12(||x1i − x2j ||). (7)

Equation (4) is a natural bivariate counterpart of (2). An important feature
of the bivariate model is that its marginal properties depend on all three
interaction functions. To illustrate this, we use the family of simple inhibitory
interaction functions,

hij(r) =

{
0 : r < δij

1 : r ≥ δij
(8)

and specify δ11 = δ22 = 0.025. If we also specify δ12 = 0, then the two
component processes are independent copies of a univariate simple inhibition
process. The left-hand panel of Fig. 4 shows a realisation of this bivariate pro-
cess. The two univariate components each display spatial regularity because
of the inhibition effect but, because the two components are independent, ar-
bitrarily close pairs of opposite type can and do occur. If we now introduce a
strongly inhibitory interaction between events of opposite type by specifying
δ12 = 0.1, the effect is very different, as shown in the right-hand panel of
Fig. 4. The cross-inhibitory effect between events of opposite type leads to
component patterns which are marginally spatially aggregated, albeit with a
clearly discernible local inhibitory effect, and jointly spatially segregated.



222 Peter J. Diggle, Stephen J. Eglen and John B. Troy

Fig. 4. Simulated realisations of bivariate pairwise interaction point processes each
with 50 events of either type on the unit square and simple inhibitory interaction
functions. In both panels, the minimum permissible distance between any two events
of the same type is 0.025. In the left-hand panel, the two component patterns are
independent. In the right-hand panel, the minimum permissible distance between
any two events of opposite types is 0.1

3 Monte Carlo Likelihood Inference

The generally agreed “gold standard” for statistical estimation and hypoth-
esis testing is to use likelihood-based methods; specifically, within a classical
inferential framework, estimates should be maximum likelihood estimates and
tests should be likelihood ratio tests.

The difficulty with applying this gold standard to our model is that the
normalising constant for the joint probability density of (X1, X2), and hence
the likelihood function for θ, is intractable. [16] provided an ingenious solution
to this problem, which allows us to use simulations of the process at any fixed
value θ0 to compute an approximation to the likelihood ratio with respect
to θ0 for any value of θ. In the present context of pairwise interaction point
processes, the argument runs as follows – we describe only the univariate case
explicitly, but the extension to bivariate processes is obvious.

Let c(θ) be the normalising constant associated with the model (2), hence

c(θ)−1 =

∫
f(X; θ)dX

Now, for any fixed θ0, write

c(θ)−1 =

∫
f(X; θ) × c(θ0)

c(θ0)
× f(X; θ0)

f(X; θ0)
dX, (9)

define q(X; θ, θ0) = f(X; θ)/f(X; θ0) and re-arrange the right-hand-side of
(9) to give
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c(θ)−1 = c(θ0)
−1Eθ0

[q(X; θ, θ0)].

Hence, the normalised joint density for X can be expressed as

g(X; θ) = c(θ0)f(X; θ)/Eθ0
[q(X; θ, θ0)].

Since θ0 is a constant, it follows that the maximum likelihood estimator θ̂
maximises

Lθ0(θ) = log f(X; θ) − log Eθ0 [q(X; θ, θ0)]. (10)

The Monte Carlo method replaces the expectation on the right-hand-side of
(10) by a Monte Carlo estimate, computed from s replicate simulations. Hence
the Monte Carlo maximum likelihood estimate maximises

Lθ0,s(θ) = log f(X; θ) − log s−1
s∑

j=1

[q(Xj ; θ, θ0)], (11)

where the Xj : j = 1, ..., s are simulated realisations with θ = θ0.
Whilst the computations needed to secure a sufficiently accurate approx-

imation can be time-consuming, the implication of Geyer and Thompson’s
work is that in principle there is no obstacle to using likelihood-based infer-
ence rather than the more ad hoc methods which are traditionally used to
analyse spatial point pattern data. For a more detailed account, see [15].

Note that (11) defines a whole family of estimation criteria according to
the choices made for θ0 and s, and that for given s the extent of the stochastic
variation introduced by the Monte Carlo simulation depends crucially on the
choice of θ0. In practice, the method works best when θ0 is close to θ̂. Our
approach has been to conduct a sequence of numerical optimisations of (11),
updating θ0 to the current maximising value after each stage until no further
material change occurs, and increasing s until the Monte Carlo component of
variance is negligible compared with the inherent uncertainty in θ̂ as measured
by the Hessian matrix.

Whilst we favour Monte Carlo likelihood-based methods for formal para-
metric inference, in our opinion more ad hoc methods still have a useful role to
play in the overall analysis. We use them to provide good initial values of θ0 for
the Monte Carlo likelihood calculations, and as checks on the goodness-of-fit
of the final models produced by the likelihood-based analysis.

4 Analysis of the Amacrines Data

4.1 Exploratory Analysis

A standard tool for exploratory analysis of spatial point pattern data is the
K-function, introduced by [19, 20] and, in the bivariate case, by [18]. In its
basic form, the K-function describes the second-order properties of a station-
ary spatial point process. [1] extend its definition to include processes with
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spatially varying intensities. For the current application, we shall assume a
spatially constant intensity.

Figure 5 shows the estimates K̂ij(r)−πr2 for the amacrines data. The sub-
scripts i and j refer to the type of event, types 1 and 2 corresponding to on
and off cells, respectively. We favour plotting estimates K̂ij(r) − πr2, rather

than the K̂ij(r) themselves because πr2 is the natural benchmark relative
to which we can assess both departure from complete spatial randomness in
the component patterns, and departure from independence between the two
components of the bivariate pattern. Note firstly that K̂11(r) and K̂22(r) are
close together, suggesting that they may be generated by the same underlying
process. Also, both estimates follow the parabola −πr2 at small distances, i.e.
K̂11(r) = K̂22(r) = 0, confirming the visual impression of a strict inhibitory
effect within each of the component patterns. In contrast, K̂12(r) − πr2 fluc-
tuates around zero at small r. This behaviour, coupled with the fact that the
sampling variance of K̂12(r) increases with r, is consistent with the component
processes being approximately independent. Note also that the magnitude of
the difference between K̂11(r) and K̂22(r) derives from the combination of
sampling variation in the estimates and the difference, if any, between the
two underlying theoretical functions; it therefore provides an informal upper
bound for the sampling variation, and on this basis we can conclude that the
much larger difference between the K̂jj(r) and K̂12(r) is incompatible with
random labelling.
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Fig. 5. Estimates of the K-functions for the on and off cells. Each plotted function
is K̂(r) − πr2. The dashed line corresponds to K̂11(r) (on cells), the dotted line to
K̂22(r) (off cells) and the solid line to K̂12(r). The parabola −πr2 is also shown as
a solid line
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4.2 Structural Hypotheses for the Amacrines Data

The exploratory analysis suggests that, purely from a statistical perspective,
an inhibitory, bivariate pairwise interaction process with independent compo-
nents and a common underlying model for the two components may provide
a reasonable fit to the data. For many retinal cells, the hypothesis of statis-
tical independence is strictly implausible because their cell bodies lie in the
same cellular layer and two cells cannot occupy the same space. A more ap-
propriate benchmark hypothesis, which we shall call functional independence
is that the only form of interaction between type 1 and type 2 events is a
simple inhibitory effect due to the physical size of the cells, i.e. an interaction
function h12(r) of the form given by (8), with the value of δ12 no greater than
the typical size of an individual cell.

A second hypothesis which is of some biological interest is common com-
ponents, by which we mean that the data are generated by a bivariate model
with h11(r) = h22(r). Our analysis will therefore include formal tests of sta-
tistical independence, structural independence and common components.

4.3 Non-parametric Estimation

We use the method of maximum pseudo-likelihood [3, 4] to obtain non-
parametric estimates of the interaction functions h11(r) and h22(r). Formally,
this is achieved by fitting a deliberately over-parameterised model in which
the interaction function is assumed to be piecewise constant, with the heights
of the pieces as its parameters.

Figure 6 shows the results. The estimates of the two interaction functions
are quite similar, adding weight to the evidence for a common components
model.

Figure 6 also suggests what approximate shape a more parsimonious
parametric model for the interaction functions would need to accommo-
date. We shall use functions hij(·) within the parametric family h(r, θ) where
θ = (δ, φ, α) and

h(r; θ) =

{
0 : r ≤ δ

1 − exp[−{(r − δ)/φ}α] : r > δ
(12)

This allows a wide range of inhibitory interactions within and between types
by varying the corresponding parameter vectors θ11, θ22 and θ12 so as to define
the corresponding interaction functions hij(r) = h(r; θij).

Because a large value for the parameter α allows h(r) to take values close
to zero even for relatively large values of r, we might expect the parameters
of (12) to be poorly identified. Our response to this, following the discussion
in Sect. 4.2, is to treat the values of δ11 and δ22 as fixed constants with a
common value 10, corresponding to the approximate physical size of the cells
[5, 13]. Of course, the model is at best an approximation to nature, and we
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Fig. 6. Non-parametric maximum pseudo-likelihood estimates of the pairwise in-
teraction functions for on cells (solid line) and for off cells (dashed line)

should not over-interpret this precise value; rather, it represents a plausible
lower limit on the physical size of the cells. As we shall see, the model can still
capture an effective inhibition distance between cells which is substantially
greater than 10.

It is harder to argue for an a priori fixed value of δ12 because of the
vertical displacement between the mature on and off cells. The on cells lie
somewhat deeper than the off cells and a pair of cells of opposite type could
in principle be almost co-located in the planar projection of the data. We
shall therefore treat δ12 as a parameter to be estimated; as discussed earlier,
inference concerning δ12 is of some biological interest in its own right.

4.4 Univariate Parametric Analysis

Under the working assumption of statistical independence, we can analyse the
two patterns separately and investigate whether a common set of parameters
provides a good fit to both. This analysis is also useful as a prelude to a
bivariate analysis, whether or not the independence hypothesis is sustainable.

To obtain initial values for numerical optimisation of the Monte Carlo log-
likelihood, we fitted the parametric form of h(r; θ) to each non-parametric
estimate of h(r) shown in Fig. 6 by ordinary least squares. We then obtained
Monte Carlo maximum likelihood estimates of φ and α separately for each of
the two patterns, progressively increasing the number of Monte Carlo samples
from 10 to 1000, until the estimates stabilised.

To test whether a common set of parameters fitted both patterns, we re-
peated the optimisation process, but now maximising a pooled Monte Carlo
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log-likelihood with common parameter values for the two component patterns.
The resulting log-likelihood ratio test statistic was D = 1.36 on two degrees
of freedom, corresponding to p = 0.244. We therefore accepted the common
components hypothesis, which gave us the parameter estimates shown in Ta-
ble 1. Approximate standard errors, and the correlation between φ̂ and α̂,
were derived from the estimated Hessian matrix of the pooled Monte Carlo
log-likelihood at its maximum. All optimisations used the built-in optim()

function within R; for details, see http://www.r-project.org. Figure 7 com-
pares the fitted, common parametric form of h(r) with the two non-parametric
estimates. The fit appears to be satisfactory, but we postpone a formal
goodness-of-fit assessment until we have fitted a bivariate model.

Table 1. Monte Carlo maximum likelihood estimates, standard errors and correla-
tion, assuming independence between on and off amacrine cell patterns and common
parameter values

Parameter Estimate Std Error Correlation

φ 49.08 2.51
α 2.92 0.25 -0.06
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Fig. 7. Non-parametric maximum pseudo-likelihood estimates of the pairwise in-
teraction functions for on cells (solid line) and for off cells (dashed line), together
with parametric fit assuming common parameter values for both types of cell (dotted
line)
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4.5 Bivariate Analysis

The first stage in the bivariate analysis is a simple likelihood ratio rest of
statistical independence against functional independence. To do this, we first
begin by estimating δ12, obtaining the maximum likelihood estimate δ̂12 = 4.9.
We then construct a likelihood ratio test of any fixed value of δ12 against
δ12 = 4.9. The set of values not rejected at the 5% level defines a Monte
Carlo 95% confidence interval for δ12. Note that all values of δ12 greater than
5, the smallest observed distance between a pair of cells of opposite type,
are automatically excluded according to the likelihood criterion, because all
such values are incompatible with the data. The resulting 95% confidence
interval is 2.3 ≤ δ12 < 5.0. In particular, this interval excludes zero, implying
that statistical independence is rejected at the conventional 5% level; more
precisely, the attained significance level of the likelihood ratio test of statistical
independence against functional independence is p = 0.021 (test statistic D =
5.30, P(χ2

1 > 5.30) = 0.021).
We next investigate whether there is any further degree of dependence

between the on and off cells by introducing additional parameters φ12 and
α12, holding the remaining parameters fixed at φ11 = φ22 = 49.08, α11 =
α22 = 2.92, δ11 = δ22 = 10 and δ12 = 4.9. The likelihood ratio test statistic to
compare functional independence against the general bivariate model is D =
0.30 on 2 degrees of freedom, corresponding to p = 0.861. Hence, functional
independence is not rejected.

To assess the goodness-of-fit to the bivariate, functional independence
model we first use the K-function [19, 20]. We define three test statistics

Tij =

150∑

r=1

[{K̂ij(r) − K̄ij(r)}/r]2 (13)

where K̂ij(r) is the estimate of Kij(r) calculated from the data and K̄ij(r) the
corresponding mean of estimates from 99 simulations of the fitted model. The
three statistics of interest are T11 (on cells), T22 (off cells) and T12 (dependence
between on and off cells). The attained significance levels of the three Monte
Carlo tests were 0.11, 0.05 and 0.25 respectively, indicating a reasonable over-
all fit; an admittedly conservative bound for the combined significance level
is 0.05 × 3 = 0.15. Figure 8 shows the three estimated K-functions together
with the pointwise envelopes from 99 simulations of the fitted model. Although
the estimated functions drift briefly outside the simulation envelopes at large
values of r, the estimates themselves are imprecise at large values of r, as
indicated by the widths of the simulation envelopes. This also explains why
we have chosen to discount progressively the influence of estimates K̂ij(r) at
large values of r in our construction of the test statistics (13).

The K-functions assess the goodness-of-fit in terms of second-moment
properties. For a complementary goodness-of-fit assessment we now consider
nearest neighbour properties. Let Gij(r) denote the distribution function of
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the distance from an arbitrary type i event to the nearest (other) event of type
j; note that, in contrast to the K-functions, in general G12(r) �= G21(r). Figure
9 shows the four estimated G-functions together with the pointwise envelopes
from 99 simulations of the fitted model. As in the case of the K-functions,
the estimated G-functions for the data generally lie within the simulation en-
velopes, suggesting a good fit. For a more formal assessment, we define test
statistics analogous to (13), namely

T ∗
ij =

100∑

r=1

[{Ĝij(r) − Ḡij(r)}]2. (14)

5 Conclusions

The attained significance levels of the four Monte Carlo tests based on T ∗
11,

T ∗
22, T

∗
12 and T ∗

21 were 0.45, 0.08, 0.07 and 0.07 respectively, again indicating
a reasonable overall fit. Note that in the nearest neighbour test statistics (14)
the upper limit r = 100 can be any value which covers the full range of all of
the nearest neighbour distributions, also that there is no particular need to
weight the contributions to the T ∗

ij from different distances r.

5.1 Statistical Summary

The bivariate pattern of the displaced amacrine cells is well described by a
pairwise interaction point process with functional independence between the
two component processes, i.e. the interaction between the on and off cells has
a simple inhibitory form, h(r) = 0 for r < δ12, h(r) = 1 for r ≥ δ12, with

estimated value δ̂12 = 4.9µm.
The two component patterns can be fitted with a common interaction

function of the form (12) with estimated parameter values δ̂jj = 10.0µm,

φ̂ = 49.1µm, α̂ = 2.92. The resulting fitted interaction function represents a
strongly inhibitory interaction within each component pattern, with an effec-
tive inhibition distance of about 20µm and an effective range of about 90µm.

5.2 Biological Implications

The results from the bivariate analysis indicate that there is a small spatial
dependency between the positioning of the on and off cells, since one of our
conclusions is that δ12 is non-zero. This may appear to conflict with earlier
assumptions of independence between the two types [6]. However, one advan-
tage of the likelihood-based analysis over the earlier approach is that we can
create 95% confidence intervals (here 2.3 ≤ δ12 < 5.0). Hence, the interaction
distance between the on and off cells is around 5 µm at most, which is smaller
than the typical cell diameter (∼ 10µm). Therefore, any dependency in the
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positioning of the two types is quite weak. However, this dependency might
reflect some early positioning constraints between the two cell types, as would
occur if, for example, immature cells were positioned in the same layer before
migrating to separate layers at a later developmental stage. By repeating the
analysis on many data sets of cholinergic amacrine cells, we aim to determine
how consistent is the evidence for this weak dependence between patterns
formed by the two types of cell.
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Summary. Point process characteristics like for example Ripley’s K-function, the
L-function or Baddeley’s J-function are especially useful for cases of data with sig-
nificant differences with respect to intensities. We will discuss two examples in the
fields of cell biology and ecology were these methods can be applied. They have
been chosen, because they demonstrate the wide range of applications for the de-
scribed techniques and because both examples have specific interest- ing properties.
While the point patterns regarded in the first application are three dimensional, the
second application reveals planar point patterns having a vertically inhomogeneous
structure.

Key words: Baddeley’s J-function, Centromeric Heterochromatin Structures, CSR,
Planar Sections of Root Systems in Tree Stands, Ripley’s K-function

1 Introduction

The analysis of spatial point patterns by means of estimated point process
characteristics like for example Ripley’s K-function [36], the L-function or
Baddeley’s J-function [7, 46] has proven to be a very useful tool in Stochastic
Geometry during the last years (see e.g. [11, 37, 42] and [43]). They offer the
possibility to get not only qualitative knowledge about the observed spatial
structures of such point patterns, but to quantify them for specific regions
of point-pair distances. Other advantages of these methods compared to al-
ternative techniques of spatial analysis like e.g. Voronoi tessellations [26, 30]
or minimum spanning trees [14, 15] is their independence of underlying point
process intensities, in other words of the average number of points per unit
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square. Therefore they are especially useful for cases of data with significant
differences with respect to intensities. We will discuss two examples in the
fields of cell biology and ecology were these methods can be applied. They
have been chosen, because they demonstrate the wide range of applications
for the described techniques and because both examples have specific interest-
ing properties. While the point patterns regarded in the first application are
three dimensional, the second application reveals planar point patterns having
a vertically inhomogeneous structure. For a more extensive description of the
studied cases, the reader is referred to [4, 5], and [17, 40, 41], respectively.

1.1 Analysis of Centromeric Heterochromatin Structures

The first example deals with the structure of the cell nucleus, notably the
distribution of centromeres, during differentiation (maturation) of myeloid
cells. These are the precursors of white blood cells and are normally found
in the bone marrow. During differentiation, myeloid cells acquire specialised
functions by activating a strictly defined set of genes and producing new
proteins. In addition, other genes whose function are not needed in maturated
cells become silenced. The mechanisms regulating the activity of genes during
differentiation remain to be defined in detail.

The architecture of the cell nucleus during the interphase, i.e. the time be-
tween consecutive cell divisions, is determined by the packaging of the DNA
molecule at various levels of organisation (chromatin structure). The open
state of DNA is referred to as euchromatin, whereas heterochromatin is the
condensed form of DNA. The production of gene transcripts (mRNA) requires
the molecules of the transcriptional machinery to access the DNA molecule.
Thus, the regulation of DNA packaging represents an important process for
controlling gene activity, i.e. the synthesis of mRNA [9]. In general, transcrip-
tional activity appears to be impeded by a restrictive (compacted) packaging
of DNA [34]. This way, the hetrochromatin compartment is an important reg-
ulator of gene transcription and, hence, influences the biological function of
cells.

There has been a great interest in investigating the processes governing
the organisation of chromatin. Whereas the regulation at the level of nucle-
osomes, e.g. through biochemical modifications of histones, is now becoming
elucidated, the long-range remodelling of large portions of the DNA molecule
(higher-order chromatin structure) proceeds by yet unknown rules. The con-
densed form of DNA, i.e. heterochromatin, is generally associated with the
telomeres and centromeres of chromosomes [35]. These regions can also induce
transcriptional repression of nearby genes [34]. Consequently, the distribution
of these regions should be changed during cellular differentiation that is as-
sociated with a marked alteration of the profile of activated genes. In fact,
previous studies described a progressive clustering of interphase centromeres
during cellular differentiation of lymphocytes and Purkinje neurons [1, 31].
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However, the overall structural characteristics of the centromeric heterochro-
matin compartment, e.g. with respect to spatial randomness, remain to be
determined.

Leukaemias are malignant neoplasias of white blood cells. They repre-
sent an interesting biological model to study cellular differentiation since they
can develop at every level of myeloid differentiation. A particular type, acute
promyelocytic leukaemia (APL), is characterised by a unique chromosomal
translocation fusing the PML gene on chromosome 15 with the gene of the
retinoic acid receptor alpha on chromosome 17 [10]. Due to the function of
the resulting fusion protein, cellular differentiation is arrested at the level
of promyelocytes. However, pharmacological doses of all-trans retinoic acid
(ATRA) can induce further differentiation of these cells along the neutrophil
pathway [16].

In a recent study, the three-dimensional (3D) structure of the centromeric
heterochromatin was studied in the NB4 cell line which was established from
a patient with APL [24]. The 3D positions of centromeres served as a sur-
rogate marker for the structure of centromeric heterochromatin. Due to the
diffraction-limited resolution of optical microscopy, the notion “chromocen-
ter” was used to define clusters of centromeres with a distance below the limit
of optical resolution. During differentiation of NB4 cells as induced by ATRA,
a progressive clustering of centromeres was implied from a decreased number
of detectable chromocenters. The 3D distribution of chromocenters was eval-
uated by analysing the minimal spanning tree (MST) constructed from the
3D coordinates of the chromocenters. The results obtained by this method
suggested that a large-scale remodelling of higher order chromatin structure
occurs during differentiation of NB4 cells.

1.2 Planar Sections of Root Systems in Tree Stands

In our second example we examine the spatial distribution of tree root pat-
terns in pure stands of Norway Spruce (Picea Abies) and European Beech
(Fagus sylvatica (L.) Karst.). While there exists knowledge about the ver-
tical root distribution which can usually be described by one-dimensional
depth functions [21, 33], early studies assumed that rooting zones are com-
pletely and almost homogeneously exploited by roots [23]. In recent studies
it is however shown that fine roots concentrate in distinct soil patches and
that they proliferate into zones of nutrient enrichment and water availabil-
ity [6, 38]. Hence a horizontal heterogeneity of the spatial distribution of fine
roots might be expected. Trench soil profile walls can be used for the assess-
ment of two-dimensional root distributions, regarding the roots on the wall as
points of different diameter. A new method provided (x,y)-coordinates of each
root greater than 2 mm [40]. Using this method, small roots with a diameter
between 2 mm and 5 mm were examined in 19 pits on altogether 72 m2 of
soil profiles on monospecific stands of European Beech and of Norway Spruce.
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1.3 Detection of Structural Differences

So to summarize, our aims in both studied applications were quite similar
from a mathematical point of view. First, as it is generally the case in such a
spatial analysis, to compare our data sets with the null model of the homoge-
neous Poisson process, otherwise described as ’complete spatial randomness’
(CSR) [11]. If such a hypothesis can be rejected, a goal is to detect structural
differences between the two regarded groups in the data, namely nuclei from
non-differentiated and differentiated NB4 cells in the first application and
beech roots and spruce roots in the second one. For the cell nuclei example
we were especially interested in an explanation for the decreasing number of
chromocenters during differentiation, while for the tree roots a main aim was
to quantify the degree of root aggregation, i.e. the degree of intensity of the
exploitation of the soil resources by each tree species. Another question of
interest is to provide a suitable and not too complicated mathematical model
for underlying generating point processes. Finally, of course it is a necessity
to obtain an interpretation of the results from the biological standpoint.

2 Image Data

As it has been mentioned in Sect. 1, there were two different data sets consid-
ered, three dimensional point patterns in cell nuclei of a NB4 cell line and two
dimensional point patterns in profile walls of European Beech and Norway
Spruce.

2.1 NB4 Cell Nuclei

The procedures for cell culture of NB4 cells, specimen preparation, immunoflu-
orescence confocal microscopy and image analysis are described in detail in
[4]. In the following two paragraphs the applied techniques are summarised.

Sample Preparation and Image Acquisition

Differentiation of NB4 cells was induced by incubating cells with 5 µmol/l
ATRA (Sigma, St.Louis, MO) for 4 days. Visualization of centromeres was
based on immunofluorescence staining of centromere-associated proteins with
CREST serum (Euroimmun Corp., Gross Groenau, Germany). Nuclear DNA
was stained with YoPro-3 (Molecular Probes). Two channel acquisition of
3D images was performed by confocal scanning laser microscopy (voxel size:
98 nm in lateral and 168 nm in axial direction).
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Image Segmentation

Segmentation of chromocenters as stained by CREST serum was performed
in two steps. First, objects at each confocal section were segmented by edge
detection followed by a conglomerate cutting procedure. In a second step,
3D chromocenters were reconstructed by analyzing series of 2D profiles. The
centre of gravity was used to define the 3D coordinates for each chromocenter.
The final analysis included 28 cell nuclei from untreated controls with 68
chromocenters on average and 27 cell nuclei from ATRA-differentiated NB4
cells with 57 chromocenters on average (see Fig. 1).

Fig. 1. Projections of the three dimensional chromocenter location patterns of an
undifferentiated NB4 cell (left) and a differentiated NB4 cell (right) onto the xy-
plane

2.2 Profile Walls

For details of site description, pit excavation and root mapping and already
attained results, see [40]. Our investigations are based upon this article and
thus only a short summary of the most important facts is given.

Site Description

Data collection took place near Wilhelmsburg, Austria (exact location at
48◦05′51′′N , 15◦39′48′′E) in adjoining pure stands of Fagus sylvatica and of
planted Picea abies. One experimental plot of about 0.5 ha was selected within
each stand. The sites were similar in aspect (NNE), inclination (10%) and al-
titude (480 m). The characteristics of the spruce and beech stands, e.g. the
age (55 and 65 years), the dominant tree height (27 m and 28 m) and the
stand density (57.3 and 46.6 trees /ha), also were similar to each other. The
soils with only thin organic layer (about 4 cm) can be classified as Stagnic
Cambisols developed from Flysch sediments. Annual rainfall in Wilhelmsburg
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averages 843 mm with a mean summer precipitation from May to September
of 433 mm. The mean annual temperature is 8.4◦ C, and the mean summer
temperature is 15.7◦ C.

Pit Excavation and Root Mapping

In every stand 10 soil pits with a size of 2×1 m were excavated. Thus up to 20
profile walls could be obtained in each stand. In most cases 13−19 trees were
within a radius of 10 m around the pit centre. The minimum distance from
the pit centre to the nearest tree ranged from 0.5 m to 2.8 m. On each wall
all coarse roots were identified and divided into living and dead. All living
small roots (2 − 5 mm) were marked with pins and digitally photographed.
These pictures were evaluated and a coordinate plane was drawn over each
profile wall W , so that every root corresponds to a point xn in the plane.
Thus, for each profile wall W , a point pattern {xn} ⊂ W of root locations
was determined.

Data Description

Root mapping was performed on 20 profile walls of Fagus sylvatica and on
16 profile walls of Picea abies (see Fig. 3). The profile walls B with area
νd(B) = 200 cm × 100 cm are regarded as sampling windows of stochastic
point processes in R

2.

Fig. 2. Data collection
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Fig. 3. (a) an original sample of roots for Picea abies; (b) the transformed sample for
Picea abies; (c) an original sample of roots for Fagus sylvatica; (d) the transformed
sample for Fagus sylvatica

3 Statistical Methods and Results

Data analysis for all data groups was performed using the GeoStoch li-
brary system. GeoStoch is a Java-based open-library system developed by
the Department of Applied Information Processing and the Department
of Stochastics of the University of Ulm which can be used for stochastic-
geometric modelling and spatial statistical analysis of image data ([27, 28],
http://www.geostoch.de).
For both study cases it is important to notice that, considering estimated
point process characteristics, means for each group were regarded. This is due
to the fact that variability inside a single group (European Beech and Norway
Spruce or NB4 cell nuclei, respectively) was large compared to the differences
between the two groups for each studied case (tree roots and cell nuclei). For
functions, these means were taken in a pointwise sense.

3.1 3D Point Patterns of Chromocenters in NB4 Cells

The real sampling regions for the cell nuclei are not known, therefore as-
sumed sampling regions were constructed as follows: For all three coordinates
the smallest and largest values appearing in a sample were determined and de-
noted as xmin, xmax, ymin, ymax, zmin and zmax respectively. Then the 8 ver-
tices of the assumed sampling cuboid were given by all possible combinations
of the three coordinate pairs {xmin, xmax}, {ymin, ymax} and {zmin, zmax}.
Although we performed statistical tests on stationarity and isotropy of the
regarded point fields which showed results in favor of such assumptions, we
would like to consider stationarity and isotropy as prior assumptions that are
not under investigation. This is due to the fact that the numbers of points
per sample do not seem to be large enough to provide reliable information
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on both properties, especially with regard to the three dimensionality of the
data. Therefore formal tests can be only hints that such assumptions might
not be badly chosen.

Intensities and Volumes

It is already known from [4] that the average number of detected chromocen-
ters was significantly decreased during differentiation. Regarding the volumes
of the assumed sampling cuboids, the hypothesis of having the same volume
before and after differentiation could not be rejected (α = 0.05), observing
mean volumes of 429.507 µm3 before differentiation and 470.929 µm3 after-
wards. Hence the intensity estimate λ̂ of detected chromocenters of NB4 cells,
that means the average number per unit volume (see Formula (3) in Ap-
pendix A, is significantly decreased as well.

Averaged Estimated Pair Correlation Function

Figure 4 shows estimations ĝ(r) of the pair correlation function g(r) for c =
0.06, where c determines the bandwidth of the Epanechnikov kernel used in
the definition of ĝ(r); see Formula (11) in Appendix A. It is clearly visible
that the frequency of point-pair distances for a distance between 350 nm and
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Fig. 4. Averaged estimated pair correlation functions ĝ(r) using Epanechnikov ker-
nel and parameter c = 0.06. The group of undifferentiated NB4 cells is denoted by
+, while the group of differentiated NB4 cells is denoted by o
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Fig. 5. Averaged estimated functions L̂(r), where + denotes the group of undiffer-
entiated NB4 cells and o denotes the group of NB4 differentiated cells

800 nm is higher before than after differentiation of NB4 cells. Also a hardcore
distance r0 of about 350 nm can be recognised which is determined by the
diffraction-limited spatial resolution of the microscopic imaging method. This
means that all point pairs have a distance bigger than r0. Note that the smaller
hardcore values for larger values of c are due to the increased bandwidths of
the Epanechnikov kernel in these cases. The results for the estimated pair
correlation functions do not depend on the fact that the two groups have
different numbers of detectable chromocenters.

Averaged Estimated L-function

We consider the estimator L̂(r) for L(r) given in Formula (17) of Appendix A.

Figure 5 shows the estimated averaged L-function L̂(r) while Fig. 6 shows

L̂(r) − r where the theoretical value r for Poisson point processes has been
subtracted; see Formula (16) in Appendix A.

A similar scenario as for the pair correlation function is observed. Espe-
cially for small point-pair distances between 350 nm and 500 nm, there is
a higher percentage of point pairs before than after ATRA-induced differen-
tiation of NB4 cells. While for the group of undifferentiated cells the graph
L̂(r) − r has a mostly positive slope in this region, which is an indicator for
attraction, the group of differentiated NB4 cells shows a negative slope which
is a sign for rejection. The same hardcore distance r0 ≈ 350 nm is visible.
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Fig. 6. Averaged estimated functions L̂(r) − r, where + denotes the group of NB4
undifferentiated cells and o denotes the group of NB4 differentiated cells

Again the results do not depend on the different numbers of detectable choro-
mocenters.
Performing a Wilcoxon-Mann-Whitney test for the two group samples for
fixed radii shows a significant difference in the values of L-functions before
and after differentiation for all radii between 350 nm and 1300 nm, especially
for the region between 500 nm and 700 nm (α = 0.05).

Averaged Estimated Nearest-Neighbor Distance Distribution and
Averaged Estimated J-function

The structural conclusions obtained from the results for the estimated point
field characteristics D̂H(r) and Ĵ(r) were very similar compared to the av-
eraged estimated pair correlation function ĝ(r) and the averaged estimated

L-function L̂(r), where D̂H(r) and Ĵ(r) are given by Formulae (18) and (22)

in Appendix A. Therefore the averaged estimates D̂H(r) and Ĵ(r) are not
displayed here. Again a hardcore distance of 350 nm can be recognised and
the two different groups show strong differences in their behavior especially
for a range between 350 nm and about 800 nm.

3.2 2D Point Patterns in Planar Sections of Root Systems

From [40] it was already known that the depth densities of the roots of Nor-
wegian Spruce and European Beech can be approximated by exponential and
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gamma distributions respectively. The data has been homogenised with re-
spect to the vertical axis in order to allow the assumptions of stationarity
and isotropy for models of generating point processes. A suitable homoge-
nization can be based on the well-known fact that each random variable Y
with a continuous distribution function FY can be transformed to a uniformly
distributed random variable U on the interval [0, 1] by

U = FY (Y ). (1)

Therefore, by denoting the original depths, the total depth of the sampling
window and the transformed depths as horig, htot and htran respectively, we
get

htran =
F ∗(horig)

F ∗(htot)
htot, (2)

where F ∗(x) symbolizes the suitable distribution function, i.e. the exponential
distribution function in the case of Norway Spruce and the gamma distribu-
tion function in the case of European Beech. The total depth was given as
htot = 100 cm. For each sampling window parameters of the distribution func-
tions F ∗(x) are estimated individually using maximum-likelihood estimators.
Notice that in the following, first only vertically homogenised data is regarded
(see Fig. 3), that means considering the vertical coordinate a uniform distribu-
tion on [0, htot] can be assumed. Later on, an inverse transformation is applied
to obtain inference for the original data.

Intensities

The average number of points for the samples of Picea abies is significantly
higher than for the samples of Fagus sylvatica (α = 0.05). Since sampling
windows have the same sizes, the same result is obtained regarding the esti-
mated intensities per cm2 (λ̂spruce = 0.00403 vs. λ̂beech = 0.00262). Notice
that the following results for the considered point process characteristics are
independent of this fact since the functions are scaled with respect to the
intensities.

Isotropy and Complete Spatial Randomness

Isotropy was tested by determining the directional distribution of the angles
of point pairs to the axes in a quadratic sampling window and testing them
for uniform distribution. The hypothesis of isotropy could not be rejected
(α = 0.05), hence in the following isotropy is assumed. The quadrat count
method [43] was used to test on complete spatial randomness. Here, using
a 4 × 4 grid, the hypothesis that the given point patterns are extracts of
realisations of homogeneous Poisson processes was rejected (α = 0.05).
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Averaged Estimated J-function

In Fig. 7 the averaged estimated J-functions Ĵ(r) for both groups are dis-
played. There is a clear indication for attraction between point pairs of a
distance less than 12 cm, since both functions are below 1 in this region and
have a negative slope. A second observation is that the graph of Picea abies
lies beneath the graph of Fagus sylvatica, which means that the point pairs of
spruces are more attracted to each other than the point pairs of beeches for
such distances. Notice that for radii larger than 20 cm the estimator becomes
numerically unstable, and therefore should not be taken into further consid-
eration. Also one should keep in mind that the J-function is a cumulative
quantity.

0
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5 10 15 20 25 30

Radius r

Fig. 7. Averaged estimated J-functions for Picea abies (·) and Fagus sylvatica (♦)

Averaged Estimated L-function

In Fig. 8 the graphs for the averaged estimated values of L̂(r) − r are shown.
Since in the Poisson case L(r) ≡ r a positive slope means that there is an
attraction, while a negative slope indicates repulsion. Again there are signs
of attraction for small point-pair distances, less than 9.5 cm and less than
13.5 cm respectively, and the attraction seems to be stronger for Picea abies
compared to Fagus sylvatica since the slope of L̂(r)−r is bigger. The negative
values for very small distances might indicate a slight hardcore effect between
the points.

Averaged Estimated Pair Correlation Function

Further indication for an attraction between point pairs of distances less than
14 cm is provided by the averaged estimated pair correlation functions ĝ(r)



Analysis of Spatial Point Patterns 247

0

0.5

1.0

1.5

2.0

2.5

10 20 30 40 50

Radius r

Fig. 8. Averaged estimated functions L̂(r)−r for Picea abies (·) and Fagus sylvatica

(♦)

displayed in Fig. 9. Again a stronger attraction is observed for the spruces
since the function runs above the function for beeches for r less than 9 cm.
Both functions are above 1 for r < 14 cm.
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Fig. 9. Averaged estimated pair correlation functions ĝ(r) for Picea abies (·) and
Fagus sylvatica (♦), estimated using Epanechnikov kernel with parameter c = 0.15

3.3 Model Fitting for the Root Data

Homogeneous Matérn-Cluster Model

Regarding the results of the estimated point process characteristics described
before and because of its simplicity, Matérn-cluster processes are chosen as
a model for the underlying point processes; see Appendix B for a definition.
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Using once more the natural intensity estimator given in Formula (3) of Ap-

pendix A, the parameter λmc was estimated as λ̂mc

spruce
= 0.00403 and

λ̂mc

beech
= 0.00262, respectively. Concerning the regarded point-pair dis-

tances a range from 0 cm to rmax = 50 cm has been chosen, where rmax

equals half the minimum of the given depth and width. The parameters R
and λe are estimated by minimum-contrast estimators, which are computed
by numerical minimization of the integral

∫ rmax

0

(ĝ(r) − gtheo(r))
2dr, (3)

where ĝ(r) is the averaged estimated pair correlation function given in For-
mula (11) of Appendix A for the Epanechnikov kernel with c = 0.15, and
gtheo(r) is the theoretical value for the pair correlation function of the Matérn-
cluster process with parameters λe, R and λmc. Since the parameter λmc has
already been estimated, the minimization of the integral in (3) yields an es-
timation for the pair of parameters R and λe. The obtained estimates are

R̂spruce = 4.9 cm and λ̂e

spruce
= 0.00690 for spruce roots, while for beech

roots R̂beech = 7.4 cm and λ̂e

beech
= 0.00603 are obtained.

Model Conclusions

The given point patterns are modelled as extracts of realisations of stationary
Matérn-cluster processes with estimated intensities λ̂spruce

mc = 0.00403 and

λ̂beech
mc = 0.00262, with cluster radii R̂spruce = 4.9 cm and R̂beech = 7.4 cm,

and with parent-process intensities λ̂e

spruce
= 0.00690 and λ̂e

beech
= 0.00603.

In order to get an idea for the degree of clustering, the quantity

λ̂t =
λ̂mc

λ̂eπR2
(4)

was evaluated. For Picea abies one gets λ̂t

spruce
= 0.00774, while for Fagus

sylvatica λ̂t

beech
= 0.00253 is obtained. From the estimated parameters one

can conclude that there is stronger clustering within a smaller cluster radius
for spruce roots, while for the beech roots the clustering is weaker, but the
cluster radius is slightly larger.

Inhomogeneous Matérn-Cluster Model

For the original data, which shows a vertical distribution property, the Matérn-
cluster model fitted for the homogeneous case has to be retransformed, where
the inverse transformation

horig = (F ∗)−1(
F ∗(htot)

htot
htran) (5)
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of the depth is considered, with (F ∗)−1(y) representing the generalised inverse
function of F ∗(x). Then, in the retransformed model, the parent process is
given by an inhomogeneous Poisson process with intensity function

λe(x, y) = λe(y) = λe
f∗(y)

F ∗(htot)
htot, (6)

where x and y represent the horizontal and vertical coordinate, f∗(x) is the
density function of the suitable distribution function F ∗(x) (exponential dis-
tribution for spruces and gamma distribution for beeches), λe is the intensity
of the parent process of the homogeneous model and htot represents the to-
tal depth of the sampling window. The cluster regions are no longer circles,
but the images of these circles under the mapping given in (5). They can be
written as

{(x, y) : (x − xp)
2 + (F ∗(y) − F ∗(yp))

2(
htot

F ∗(htot)
)2 ≤ R2}, (7)

where the corresponding parent point is denoted as (xp, yp). Since the mean
total number of points in the given window as well as the mean total number
of points in a cluster stay the same compared to the homogeneous model,
the intensity function for the inhomogeneous Matérn cluster point process is
given as

λmc(x, y) = λmc(y) = λmc
f∗(y)

F ∗(htot)
htot, (8)

where λmc is the corresponding intensity of the homogeneous model. Fig. 11
shows a realisation of the inhomogeneous Matérn-cluster model, which cor-
responds to the homogeneous realisation displayed in Fig. 10 using an expo-
nential depth distribution. Note that only those simulated data shown in the
upper part of Fig. 11 should be used for interpretation purposes. In the lower
part of Fig. 11 the influence of transformation and retransformation of data
clearly dominates the original spatial structure of those (sparse) root data
with larger vertical depths.

Fig. 10. Realization of the homogeneous Matérn-cluster model fitted in the case of
Picea abies
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Fig. 11. Realization of the retransformed inhomogeneous Matérn-cluster model

4 Discussion

In both studied cases clear differences between two biologically distinct groups
can be recognised using estimated point process characteristics. Apart from re-
jecting in all cases the null hypotheses of having homogeneous Poisson process
as generating processes for the observed point patterns, it has been possible
in the first example to detect a distance region where the number of chromo-
centers differ strongly between the non-differentiated and the differentiated
state of NB4 cell nuclei. In the second example differences in the clustering
behavior of the fine roots for European Beech compared to Norway Spruce
have become visible. Apart from that a simple point process model has been
fitted to the tree root data.

4.1 NB4 Cell Nuclei

The centromeric regions of chromosomes represent an important part of the
heterochromatin compartment in interphase nuclei. A previous study was fo-
cused on the quantitative description of three dimensional distribution pat-
terns of centromeric hetrochromatin in NB4 cells using features of the MST
[4]. From a mathematical point of view, this approach has several disadvan-
tages. Quantities like the MST edge lengths or their variance are strongly
dependent on the mean number of points per volume unit. Apart from that,
the methods applied in the present study allow to get inference about dif-
ferent specific regions of point pair distances. Thus, this approach provides
the opportunity for a more detailed analysis of three dimensional centromere
distributions.
Notice that, although the observed point patterns are finite and bounded, it
can be assumed that they are realisations of stationary point processes re-
stricted to a bounded sampling region. This notional step is supported by the
fact that tests for isotropy and stationarity do not show any significant rejec-
tions and that the volumes of the assumed sampling regions before and after
differentiation are of comparable sizes. The method of assuming unbounded
stationary point processes as sources for observed realisations restricted to a
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bounded sampling region is a quite common practice since very often data is
given in finite sampling regions and behave in a rather different non-stationary
way outside of these regions [12, 39].

Due to the assumption that the observed point samples in the bounded
sampling regions are extracts of unbounded realisations of stationary point
processes it is necessary, although having only bounded sampling regions, to
perform edge-corrections in order to insure compatibility with the applied
methods. We want to emphasize that this procedure has its statistical justi-
fication in the facts that tests for isotropy and stationarity do not show any
significant rejections and that the sampling regions have similar volumes.
Other types of estimators apart from spatial Horvitz-Thompson style estima-
tors, e.g. of Kaplan-Meier type [3] and other techniques of edge corrections
might also be applicable.
Clustering of chromosomal regions in interphase cell nuclei is supposed to be
an important mechanism regulating the functional architecture of chromatin.
In our previous study, we observed a progressive clustering of centromeric het-
erochromatin after differentiation of NB4 cells with ATRA [4]. These clusters
(chromocenters) represent groups of centromeres with a distance below the
limit of spatial resolution of optical microscopy. In the present study, we have
analysed the distance of these chromocenters and found a higher frequency of
distances between 350 nm and 800 nm for undifferentiated cells in compari-
son to ATRA-differentiated NB4 cells (Figs. 4 and 6). These new data imply
the existence of heterochromatin regions with a range of 350 nm to 800 nm
containing functionally related centromeric zones. The centromeres in these
regions cluster during ATRA-induced differentiation of NB4 cells as demon-
strated by the decreased number of detectable chromocenters, i.e. groups of
centromeres within a sphere with a diameter of less than 350 nm. The exis-
tence of heterochromatin regions containing centromeres of specific chromo-
somes would imply that the restructuring of these chromosome territories has
to proceed in a coordinated nonrandom way during the differentiation-induced
”collapse” of these heterochromatin zones. This model is in accordance with
a topological model for gene regulation based on the structural remodelling
of chromosome territories during modulation of transcription [9, 32].

Another important result of the present study is the finding that the 3D
distribution of chromocenters is not completely random in undifferentiated
as well as in ATRA-differentiated NB4 cells. These findings, thus, rejects a
previous hypothesis which was based on the comparison of centromere distri-
butions in NB4 cells with simulated completely random patterns using MST
features [4]. The result of the present study is in accordance with other studies,
which suggested that interphase centromeres are not arranged in a completely
random way [18, 22]. Importantly, investigations of interphase chromosome
positions indicate that a strictly maintained structure of chromatin appears
to be necessary for a normal function of cells even in tumours [8].
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4.2 Planar Sections of Root Systems

The point process characteristics using the transformed data described the
two dimensional distribution of small roots in pure stands of Picea abies and
Fagus sylvatica. The results for such homogenised data using the averaged es-
timated pair correlation function (Fig. 9) show that attraction can be observed
for point pairs with distances less than approximately 14 cm. It means that
roots of both species tend to cluster in areas up to this diameter. As roots re-
act to nutrient enriched soil patches by enhanced growth and greater biomass
in these areas [13, 29], this attraction of roots within this diameter could also
be a direct link to a local occurrence of soil resources. On the other hand, for
very small distances of less than 0.5 cm there is a hardcore property in the
homogeneous case, which can possibly be explained by the thickness of the
regarded roots. Also, as the small roots are associated to the uptake-oriented
fine roots, concentration of the small roots in clusters of smaller diameters (i.e.
less than 0.5 cm) is not reasonable. In this context it is important to notice
that these structural differences are independent of the observed significant
difference in the average number of detected points (roots) for the samples of
Picea abies and Fagus sylvatica.
The homogenised point patterns were modelled as Matérn-cluster processes
with estimated parameters described in Sect. 3.2. The Matérn-cluster model
chosen has some serious advantages. First the model is of a certain simplicity
and theoretical values for point process characteristics are known. Even more
important is that the sample data is fitted well by this model. The estimated
point process characteristics using the Matérn-cluster processes further differ-
entiated between the species. The results show for spruces a stronger cluster-
ing in a smaller range of attraction (R̂spruce = 4.9 cm), while the clustering is

weaker for beeches, but the range of attraction (R̂beech = 7.4 cm) seems to be
slightly larger. This finding is in accordance with another investigation [41]
calculating influence areas for each root. Their results indicated that the root
system of spruce requires more roots to achieve a similar degree of space acqui-
sition and thus beech exploits patchily distributed soil resources at lower root
numbers. In summary there is a combination of two effects, the depth distri-
bution already described in [40] and the cluster effects analysed in the present
paper. Structural differences between spruce and beech indicated in [41] have
been mathematically described. Stronger clustering in the case of spruce than
in the case of beech can be seen also regarding the characteristics mentioned
above as well as by a comparison of the estimated parameters for the ho-

mogeneous model λ̂t

spruce
= 0.00774 vs. λ̂t

beech
= 0.00253, keeping in mind

that the estimated parent intensities are almost equal (λ̂p

spruce
= 0.00690 vs.

λ̂p

beech
= 0.00603). The previous GIS-based investigation of root distribution

[41] was not able to quantify the differences of clustering between the two
species so precisely as the applied modelling by point processes.
Finally a non-homogeneous Matérn-cluster model has been constructed by a
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retransformation of the homogeneous model, thereby reflecting the observed
depth distribution of the tree roots. The visualisation of the retransformed
data suggests a depth-dependent size and shape of root clusters. Close to the
soil surface, roots form clusters along the horizontal axis. This shape agrees
also with the horizontally distributed root points in the original samples (c.f.
Fig. 3). Horizontally distributed roots as well as the shape of generated clus-
ters may reflect the attractive soil patches in the nutrient-rich topsoil layers.
Deeper, the real size of clusters is larger and more circular. However, because
the transformation and retransformation of root data at low intensities in the
deep parts of the soil profile makes the results unstable, the lower third of
Fig. 11 is not really useful for interpretation of spatial structures. The inves-
tigated small roots were also described regarding water and nutrient uptake
[25] and mediates to the most active fine roots (< 2 mm). Thus, clusters of
small roots reflect the presence of nutrient patches or zones of better water
availability [20, 33, 38]. As the number of small roots and their clustering was
independent of the distance to the surrounding trees and of their diameter
[41], the root clusters are suggested as an inherent property of below-ground
space acquisition.
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Appendix A: Point Process Characteristics and their
Estimators

In the following let x = {xn} be a random point process in R
d, where d ∈

{2, 3, . . .} and let N(B) = #{n : xn ∈ B} denote the number of points xn of
x located in a sampling window B

Intensity Measure

The intensity measure Λ is defined as

Λ(B) = EN(B) (1)

for a given set B. Hence Λ(B) is the mean number of points in B. In the
homogeneous case it suffices to regard an intensity λ since then

Λ(B) = λνd(B) (2)

where νd(B) denotes the volume of B. A natural estimator for λ is given by
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λ̂ =
N(B)

νd(B)
. (3)

However, for the estimation of the nearest-neighbour distance distribution a
different estimator

λ̂H =
∑

xn∈B

1B⊖b(o,s(xn))(xn)

νd(B ⊖ b(o, s(xn)))
(4)

is recommended [45], where s(xn) denotes the distance of xn to its nearest
neighbour and b(x, r) is the ball with radius r and midpoint x.
Notice that, following the recommendation in [44], λ2 has been estimated by

λ̂2 =
N(B)(N(B) − 1)

(νd(B))2
, (5)

since even in the Poisson case (λ̂)2 is not an unbiased estimator for λ2.

Moment Measure and Product Density

Let B1 and B2 be two sets. The second factorial moment measure α(2) of x
is defined by

α(2)(B1 × B2) = E(
∑

x1,x2∈N
x1 �=x2

1B1(x1)1B2(x2)). (6)

Often α(2) can be expressed using a density function ̺(2) as follows

α(2)(B1 × B2) =

∫

B1

∫

B2

̺(2)(xi, xj)dxidxj . (7)

The density function ̺(2) is called the second product density. If one takes
two balls C1 and C2 with infinitesimal volumes dV1 and dV2 and midpoints x1

and x2 respectively, the probability for having in each ball at least one point
of x is approximately equal to ̺(2)(x1, x2)dV1dV2. In the homogeneous and
isotropic case ̺(2)(x1, x2) can be replaced by ̺(2)(r), where r = ||x1 − x2||.
As an estimator

̺̂(2)(r) =
1

dbdrd−1

∑

xi,xj∈B
i�=j

kh(r − ||xi − xj ||)
νd(Bi ∩ Bj)

(8)

has been used [44], where kh(x) denotes the Epanechnikov kernel

kh(x) =
3

4h
(1 − x2

h2
)1(−h,h)(x), (9)

Bxj
= {x + xj : x ∈ B} is the set B translated by the point xj , and the sum

in (8) extends over all pairs of points xi,xj ∈ B with i �= j. The bandwidth

h has been chosen as h = cλ̂−1/d with a fixed parameter c.
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Pair Correlation Function

The product density ̺(2)(r) is used to obtain the pair correlation function
g(r) as

g(r) =
̺(2)(r)

λ2
. (10)

The pair correlation function at a certain value r can be regarded as the
frequency of point pairs with distance r, where g(r) = 1 is a base value.
The pair correlation function can be estimated by the usage of estimators for
̺(2)(r) and λ2 respectively. In particular, we consider the estimator

ĝ(r) =
̺̂(2)(r)
λ̂2

, (11)

where λ̂2 and ̺̂(2) are given by (5) and (8), respectively. Note that g(r) ≥ 0 for
all distances r. In the Poisson case gPoi(r) ≡ 1, therefore g(r) > 1 indicates
that there are more point pairs having distance r than in the Poisson case,
while g(r) < 1 indicates that there are less point pairs of such a distance.

K-function

Ripley’s K-function [36] is defined such that λK(r) is the expected number of
points of the stationary point process x = {xn} within a ball b(xn, r) centred
at a randomly chosen point xn which itself is not counted. Formally

λK(r) = E
∑

xn∈B

N(b(xn, r)) − 1

λνd(B)
. (12)

The K-function has been estimated by

K̂(r) =
κ(r)

λ̂2
, (13)

where

κ(r) =
∑

xi,xj∈B
i�=j

1b(o,r)(xj − xi)

|Bxj
∩ Bxi

| , (14)

For Poisson processes it is easy to see that KPoi(r) = bdr
d.

L-function

Often it is more convenient to scale the K(r) in order to get a function equal
to r for the Poisson case. Hence L(r) is defined as
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L(r) = d

√
K(r)

bd
, (15)

where bd denotes the volume of the d-dimensional unit sphere. Thus, in the
Poisson case, we have

L(r) − r = 0. (16)

A natural estimator for L(r) is given by

L̂(r) =
d

√
K̂(r)

bd
. (17)

Nearest-Neighbor Distance Distribution
The nearest-neighbour distance distribution D is the distribution function
of the distance from a randomly chosen point xn of the given stationary
point process x to its nearest neighbour. Hence D(r) is the probability that
a randomly chosen point xn of x has a neighbour with a distance less than
or equal to r. According to [45] we used the Hanisch estimator D̂H(r) =

DH(r)/λ̂H [2, 19] with

D̂H(r) =
∑

xn∈B

1B⊖b(o,s(xn))(xn)1(0,r](s(xn))

νd((B ⊖ b(o, s(xn)))
. (18)

A useful property of the nearest-neighbour distance distribution is that in the
case of stationary Poisson processes we have

DPoi(r) = 1 − exp (−λbdr
d). (19)

Therefore one can conclude that D(r) < DPoi(r) indicates rejection between
points, on the other hand D(r) > DPoi(r) indicates attraction, keeping in
mind that the nearest-neighbour distance distribution function is a cumulated
quantity.

Spherical Contact Distribution Function

The spherical contact distribution function Hs(r) is the distribution function
of the distance from an arbitrary point, chosen independently of the point
process x, to the nearest point belonging to x. Notice that the value Hs(r)
can be interpreted as the probability that at least one point xn of x is in the
sphere of radius r centred at the origin. As an estimator for Hs(r),

Ĥs(r) =
νd((B ⊖ b(0, r))

⋃
xn∈B b(xn, r))

νd(B ⊖ b(0, r))
(20)

is used.



Analysis of Spatial Point Patterns 257

J-function

Based on Hs(r) and on D(r), Baddeley’s J-function is defined by

J(r) =
1 − Hs(r)

1 − D(r)
. (21)

where

Ĵ(r) =
1 − Ĥs(r)

1 − D̂(r)
, (22)

is a natural estimator for J(r). In the case of Poisson point processes JPoi(r) ≡
1 and therefore if J(r) > 1 one can conclude that there is repulsion between
point pairs of distance r. On the other hand if J(r) < 1 there is attraction
between point pairs compared to the case of complete spatial randomness.

Appendix B: Matérn-Cluster Model

The Matérn-cluster point process xmc is based on a Poisson process with
intensity λe whose points are called parent points. Around each parent point
a sphere with radius R is taken in which the points of the Matérn-cluster
process are scattered uniformly where the number of points in such a sphere
is Poisson distributed with parameter Rdbdλt. Notice that λt is the mean
number of points per unit area generated by a single parent point in a sphere
of radius R. Since the parent points themselves are not part of the Matérn-
cluster process, its intensity is given as

λmc = Rdbdλtλe. (23)

Thus, the Matérn-cluster point process xmc is uniquely determined by three
of the four parameters λe, λt, R and λmc Obviously, for small distances, points
of the Matérn-cluster process are attracted to each other, in other words there
is a bigger expected number of points of xmc in a sphere around an arbitrarily
chosen point of xmc than for Poisson processes of comparable intensity λPoi =
λmc. For xmc, closed formulae for the point process characteristics described
in Appendix A are known [43].
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Summary. Quantitative descriptions of animal species’ distributions at the ecosys-
tem level are rare. In this study we used marked spatial point pattern analysis to
characterize herd spatial distributions of several species comprising a savanna large
herbivore community in Laikipia, central Kenya. Points are the herd centres, marks
are the herd sizes. Previous research [15] identified possible discrepancies between
prey and non-prey species on the basis of the nearest neighbour distance function. In
this paper we make a similar distinction and analyse possible consequences. Analysis
concentrated on Ripley’s K-function on several data subsets. A digitised boundary
of the area has been included. The herd patterns of Thomson gazelle and of the
plains zebra were modelled with a Strauss marked point process. The pattern of the
Thomson gazelle showed a single mode, whereas that of the plains zebra showed
multiple modes. This can be well explained by the ecosystem behavior (habitat
specialist versus habitat generalist) of the two species.

Key words: Herbivores, Laikipia, Nearest neighbour distances, Savanna, Spatial
point pattern

1 Introduction

Herbivores living freely in nature tend to aggregate in groups or herds of
various sizes. These herds usually do not randomly distribute and therefore
display spatial distribution patterns [15]. An explanation for variation in an-
imal grouping and distribution can be given on the basis of physiological
grounds, invoking metabolic requirements, on ecological grounds, invoking
habitat preference [8], feeding style, competition, facilitation [1, 11], and food
distribution [17], and on climatic grounds [18]. In the past, both a statistical
and an ecological study have been devoted to modelling herds of herbivores
in space [14, 15]. None of these studies, however, employs a marked point pat-
tern spatial statistics approach – herd size has not been taken into account so
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far. A marked point pattern analysis explicitly uses the locations of herds and
distances between the herds, whereas the size of a herd is likely to be related
with ecological conditions.

Advances in Global Positioning System technology (GPS; see [19]), and
spatial point pattern analysis [3, 13], permitted us to characterize spatial dis-
tributions of the nine most abundant large herbivore species in the Laikipia
ecosystem of central Kenya. The data, representing marked point measure-
ments of herds, were collected in 1996 during a total count of wildlife in an area
of 7,100 km2, using 10 aircraft equipped with GPS receivers [5]. Apart from
the characterization, also herd size has been measured by counting the number
of animals grouping together. We distinguish and further differentiate those
that can be preyed upon by large carnivores (Plains zebra Equus burchelli
(Gray)), impala Aepyceros melampus, Grant’s gazelle Gazella grantii, eland
Taurotragus oryx and hartebeest Alcelaphus buselaphus), those that are too
large to be preyed upon (buffalo Syncerus caffer, elephant Loxodonta africana
and giraffe Giraffa, camelopardalis) and those that are too small to be preyed
upon (Thomson’s gazelle Gazelli thomsoni (Gunther)).

Three methods of spatial point pattern analysis were used to characterize
the distributions of wild herbivore herds for each species separately, and for
all species combined: the marked K-function, the pair correlation function
and fitting of the Strauss process to both the marked and the unmarked point
process. Possible causes of observed patterns of dispersion within and among
species are discussed.

The aim of this study has been to further explore the relations between
herds of different animals species and combinations of species using marked
points processes. We aimed to combine the sizes of the herds as additional
information, having in mind that large herds of herbivores may show different
behavior than herds of a smaller size. The study is illustrated with the unique
point pattern data set from the Laikipia area.

2 Materials and Methods

2.1 Distribution Data

Data in this study were collected during a total count within Laikipia District
over three days in September 1996 ([5]; the region is also described in [6]). The
area of 7,100 km2 was divided into daily counting blocks of approximately
200 to 300 km2, and each block was allocated to one aircraft per day. Ten
high winged aircraft were used simultaneously to systematically search each
block. Each aircraft flew at heights between 70 and 130 m above ground level,
following transects spaced 1 km apart. Whenever an animal or a group of
animals was spotted, the aircraft deviated from its flight-line to circle the
observed animals until their number was counted. Geographical co-ordinates
of positions of the centers of the herds were recorded using a Trimble GPS
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receiver. Overlaps and double counts at the boundaries of the blocks were
identified and subtracted from the total wildlife numbers as a correction for
count overlaps. This resulted in a data set of 1828 locations where at least
one animal was observed (Fig. 1).

The observation of one or more animals at a given location is termed a
herd. We make the basic assumption that each location is equally likely to
host a herd. Deviations from randomness may occur due to external factors
influencing the pattern. Such deviations are then of interest, both for the
animals individually, and in their mutual relationships. Estimates of disper-
sion used here were affected by subjective variation among observers in their
assignment of individuals to a her, but to the same degree.

In total, 55,201 animals of the 9 species were observed in this study, dis-
tributed over 3,025 herds. The maximum herd size equals 473 animals, whereas
322 solitary animals were observed, i.e. herds of size 1. Abundance varied
widely among the nine species, largest herds occurring for plains zebra (Ta-
ble 1). Also mean herd size varied widely, with plains zebra having the most
herds (1,034) and a median herd size of (18 individuals herd−1). The Thom-
son gazelle has less herds (211), and the animals tend to aggregate in herds
of a smaller size (12 individuals herd−1). Densities, i.e. number of herds per
km2, varies between the species in the area, the highest density occurring for
Plains zebra (average intensity = 0.160 herds km2).

Table 1. Summary statistics of the two selected animal species, preyed and non-
preyed species and all species

Process Species No.of Total Group size Average
herds count mean median stdev intensity

X1 Plains zebra 1,034 31,517 30.48 18 39.7 0.160
X2 Thomson’s gazelle 211 4,255 20.17 12 31.0 0.0326

X̃1 Preyed Species 2,365 45,576 20.22 10 29.8 0.365

X̃2 Non-preyed Species 660 9,445 15.30 8 23.1 0.102
X• All Species 3,025 55,201 19.15 10 28.6 0.479

From a previous study [15] there was evidence that prey preference comple-
mentarity was an important factor in the distribution of herds. We found that
herds of mid-sized prey species such as the plains zebra, which are more likely
to be preferred by the dominant predators in this ecosystem (hyenas, lions
and leopards), are expected to display less aggregated (even random) distri-
butions. By contrast, herds of the smallest-sized species (Thomson’s gazelle),
as well as those of large-sized herbivores, are expected to experience lower
predation pressure, and thus to be more aggregated. The Thomson gazelle,
though, does not necessarily experience low predation pressure, as they are
preyed upon by jackals.

To investigate prey preference, the dataset was split into two subsets: the
combined data for large- and small-sized (habitat specialist or ’non-preferred’
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prey) species, and on the combined data for the mid-sized (habitat generalist
or ’preferred’ prey) species. If habitat preference complementarity was oper-
ating, the result should be a tendency by both groups to shift towards a more
regular dispersion pattern. If prey preference complementarity was operating,
the result for the non-preferred prey group should be to remain aggregated,
while the preferred prey group should become regularly spaced.

2.2 Measures of Dispersion

Spatial processes yielding herds of various sizes are characterised by a simple
stochastic model applied to a region A, here the Laikipia area. Herds Y are
represented by the coordinates of their centre of gravity and the animal species
and are marked by the observed number of animals. Marks, contained in a
set M . A marked point process is hence denoted by (Y,M). As a result, A is
summarised by a marked point pattern, consisting of the presence of at least
one herbivore.

To describe the spatial point pattern generated by the distribution of the
herbivores, we let (Y,M) be a nine-variate point process in A with jointly
stationary components. The process consisting of all marked points regardless
of type is denoted by (X•,M) = ∪9

i=1(Xi,Mi), where (Xi,Mi) denotes the
marked point process for the ith herbivore. Similarly, the set (Y,M) can be
decomposed as well into sets X• = ∪2

i=1X̃i with X̃1 corresponding to the
preyed species and X̃2 to the non-preyed species, respectively. The density
of the processes is denote by λ, λi for each of the nine species and λ̃ for
the preyed and nonpreyed species. In this paper, statistical inference for Y
is based on distances. Although patterns may be non-stationary for several
reasons, we take stationary processes as the starting point for our research.
Non-homogeneity then appears as a result from the analysis, and could be
analysed on the basis of [4].

The marked K-function

We consider the K-function to an arbitrary marked point pattern, in this
study the centres of the herds. We consider here small herds and solitary
species (herds of size up to 5), medium size herds (herds of sizes 6–25) and
large sized herds (herds of sizes > 25 animals) and applied the multitype
K-function.

We assume that X can be treated as a realisation of a stationary (spatially
homogeneous) random spatial point process in the plane, observed through a
bounded window W . The window W is in this study given by the edge of the
Laikipia area. For edge correction we applied two correction procedures:

• the border method or reduced sample estimator [12]. This is the least effi-
cient (statistically) and the fastest to compute.

• the translation correction method [9].
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All species

Preyed species Non−preyed species

Thomson gazelles Plain zebra

Fig. 1. Marked spatial point patterns of herds for the nine herbivores (top), the
preyed and non-preyed species (center) and the Thomson gazelle and plains zebra
(bottom) in the study area
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For the analysis we have used the spatstatmodule in R ([2]). This dis-
plays the theoretical K-function for the Poisson type of model, under the
assumption of isotropy, a border-corrected estimate of the K-function and a
translation-corrected estimate of the K-function.

The pair correlation function

In this study we applied the pair correlation function of a stationary point
process. First, the K-function is estimated and then a numerical derivative is
taken. Irregularity of the window may be a drawback for this approach, but
dealing with this requires specific software that is adjusted to this window,
followed by numerical differentiation. At present, and in the frame of this
study, our way is a clear direction to proceed. Commonly, smoothing splines
approximate the derivative. Three numerical methods are available for the
smoothing spline operations:

• apply smoothing to the K-function and estimate its derivative;

• apply smoothing to Y (r) = K(r)
2π·r constraining Y (0) = 0, and estimate the

derivative of Y ;

• apply smoothing to Y (r) = K(r)
π·r2 constraining Y (0) = 1, and estimate its

derivative.

The last option seems to be the best at suppressing variability for small
values of r. However it effectively constrains g(0) = 1. If the point pattern
seems to have inhibition at small distances, the second option effectively con-
strains g(0) = 0. The first option seems comparatively unreliable.

Fitting the Strauss process

For the different spatial patterns, a Strauss process has been fitted [7, 16]. The
Strauss process on A with parameters β > 0 and 0 ≤ γ ≤ 1 and interaction
radius δ > 0 can be described as a model with the conditional intensity

λ(u, y) = β · γt(u,y) (1)

where t(u, y) is the number of points of Y that lie within a distance δ of
the location u. If γ = 1 then the Strauss process reduces to the homoge-
neous Poisson process. Fitting was done by visual inspection of the observed
intensities.

3 Results

3.1 Spatial Point Patterns

Spatial point patterns for the plains zebra and for the Thomson gazelle are
displayed in Fig. 1, where the herd sizes are displayed as the size of the
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circles. Clearly, the Thomson gazelle clusters in the South Western part of
the area, the Plains zebra is more regularly distributed with both a high
density and a highly aggregated spatial point pattern, showing evidence of
clustering throughout the area. The Thomson gazelle shows clustering in the
South-Western part. Both species appear to exhibit some aggregation. At a
somewhat higher level, the preyed animals do not show any clustering, and
the non-preyed species again show some clustering within the south-western
sub-area. Finally, the plot of the combined spatial pattern is fairly dense with
no apparent spatial pattern. A section with almost no herds occurs in the
northern part of the area.

Figure 2 shows the three versions of the marked K(r) functions, for the
set of all herds (top), the preyed and the non-preyed species and for the
individual Thomson gazelle and Plains zebra, respectively. The two corrected
marked K-functions are relatively close together, but differ markedly from the
theoretical one, as might be expected. In particular, the marked K-function
for the Thomson gazelle shows a noisy behavior, but none of the latter two
seems to deviate much from a quadratic behavior.

Pair correlation functions (fig. 3) were estimated for both the Thomson
gazelle and the Plains zebra individually. Both pair correlation functions show
an alternating sequence of values. Non of the two pictures shows a hard core,
therefore the two species have herds that may be close to each other. The
maximum for both species occurs at approximately 2 km, showing that this
distance is preferred for herds of both species. A peak at 1 km for the Thomson
gazelle is probably caused by the relatively low number of data. A much higher
peak occurs for the Thomson gazelle (up to 5) as compared to the Plains zebra
(up to 2.2). Therefore, the distribution of Plain’s zebra herds is somewhat
closer to the Poisson process than that of the Thomson gazelle. Further, the
tail of the pair correlation function is thinner for the Plains zebra than for the
Thomson gazelle, at least for distances larger than 10 km. This indicates that
randomness occurs for distances beyond 10 km for the Plains zebra, whereas
that for the Thomson gazelle only appear for distances of 25 km and more.
Herds of the Plains zebra do not show any regularity beyond distances of 10
km, whereas the Thomson gazelle shows regularity for distances up to 25 km.

A similar picture emerges when considering Strauss models. We first fit-
ted those processes to the unmarked patterns (fig. 4) and applied distance
parameters of 25 km for the Thomson gazelle and 15 km for the Plains zebra.
These choices of parameters well represent the key factors for the distribution:
a single mode distribution for the Thomson gazelle, with a peak somewhere in
the South Western part of the Laikipia area, and a multi-modal distribution
for the Plains zebra, representing their large abundance throughout the area.

We finally repeated fitting of the Strauss process to the marked process as
well. Marked Strauss processes rarely occur in the literature [10]. We redis-
tributed the marks according to herd size. Marks = 1 were assigned to herds
of size up to 5, marks = 2 to herds of sizes 6–25, and marks = 3 to herds of
sizes > 25 animals. As such, small, medium and large herds are distinguished
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Fig. 2. Estimated marked K(r) functions for herds of the nine herbivores (top), the
preyed and non-preyed species (center) and the Thomson gazelle and plains zebra
(bottom). The solid line is the theoretical K(r), the dashed one is the K(r) corrected
for boundary of the area, the dotted one is the translation corrected K(r)
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Fig. 3. Estimated pair correlation functions for the Thomson gazelle (left) and
plains zebra (right)
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Fig. 4. Estimated unmarked Strauss process for the Thomson gazelle (left), using
an r = 25 km parameter and the plains zebra (right), using an r = 15 km parameter.

for the two species (fig. 5. The results thus obtained do not violate earlier
results.

4 Discussion

In this study we have used standard statistical software to analyse the data
[2]. As a consequence, methods for stationary point patterns have been used,
whereas some species, e.g. the Thomson gazelle, showed some clear non-
stationarity. Currently, however, non-stationary analysis tools are not readily
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Fig. 5. Estimated marked Strauss process for the Thomson gazelle (top), using an
r = 25 km parameter and the plains zebra (bottom), using an r = 15 km parameter.
Marks are equal to 1 (left), 2 (middle) and 3 (right)

available. Non-standard software may serve as an extension in a future study.
Also, a different method of estimating the pair correlation function, such as
differentiating the K(r)− function, might give different results. Our method
is one possible method at hand, and it remains to be seen whether other
methods might lead to different conclusions.

Spatial aggregation is a frequently encountered dispersion pattern in
ecosystems, due to prevalence of potent aggregating forces such as habitat
specificity, social structure and organization, philopatry, predator avoidance,
and limited dispersal. Herbivore species in this study are subject to all these
forces. Also the sizes of the herds in the study area are influenced not only by
natural forces affecting herd dispersion, but also by ’unnatural’ factors, such
as displacement of wildlife by humans, cultivation, and livestock. In ecosys-
tems such as this, where wildlife are displaced from some areas by humans
and livestock, all species are likely to violate the assumption of random dis-
persion patterns typically made when sample counting. Factors that have a
potentially organizing influence on herds within species, such as territoriality
(Thomson’s gazelle), or intra-specific competition, may have been operating.
By contrast, plains zebra harems are known to associate and disassociate on
a daily and seasonal basis (Rubenstein. pers. comm.), but this evidently does
not result in significant aggregation at the landscape level. At least in this
woodland-dominated habitat, ’exogenous’ forces such as patchiness of pre-
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ferred habitat are more likely account for aggregations of Thomson’s gazelle
herds, which prefer open, short grassland.

Factors causing herds of individual species to be aggregated or randomly
dispersed in relation to their sizes either 1) complement each other when
combined across space, or 2) are organised by factors that exert their influence
on the entire community, or both. As an example of the former, which we refer
to as ’habitat preference complementarity’, we expect habitat generalists not
only to be randomly dispersed, but also to be more abundant than habitat
specialists. Also we expect specialists to be clustered in larger herds, then
generalists. Plains zebra showed random distributions, but without overall
association between rank of relative abundance and dispersion pattern (P >
0.05). By contrast, habitat specialists are expected to be aggregated within
preferred patches, to display lower herd densities in transitional habitats, and
to be absent from unsuitable habitats. When all species are pooled, the net
effect is for herds to become regularly spaced across the landscape.

As an example of the latter, which we refer to as ’prey preference com-
plementarity’, predators are hypothesised to have a disaggregating effect on
dispersion of preferred prey herds, which, when prey species are pooled, is
manifested as an organizing effect by predators on the dispersion of preferred
prey. Herds of preferred prey species, which could be aggregated in the ab-
sence of predation, react to predator functional responses by moving apart,
becoming less aggregated, and alleviating pressure exerted by predator func-
tional responses. Since predator functional responses are cued to multiple
prey species, the net effect on combined prey herds is to cause a more regular
pattern of dispersion.

We observe Thomson’s gazelle as a small-sized species requiring open habi-
tats with low biomass, and plains zebra as mid-sized species distributed across
a variety of savanna habitats featuring grasslands associated with a range of
tree densities. Because extreme habitat types, featuring either high or low
vegetation biomass, are likely to be rarer and more patchy than intermediate
habitat types, herbivore species preferring extreme habitat types are likely to
display more aggregated distributions than are species preferring intermediate
habitat types.

5 Conclusions

Combination of GPS technology with spatially explicit statistical techniques,
in particular the marked K-function and the point correlation function, yield
novel ways of characterizing dispersion patterns of wild herbivore herds and
corresponding herd sizes. In particular, we found an interesting difference be-
tween the pair correlation function for the plains zebra with a correlation
length of approximately 10 km and that of the Thomson gazelle with a cor-
relation length of approximately 25 km.
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Also, the herd patterns of Thomson gazelle was modelled with a Strauss
marked point process, showing a single mode, whereas the herd pattern of
the plains zebra showed multiple modes. This can be well explained by the
ecosystem behavior (habitat specialist versus habitat generalist) of the two
species.
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Summary. It is natural to use a branching process to describe occurrence pat-
terns of earthquakes, which are apparently clustered in both space and time. The
clustering features of earthquakes are important for seismological studies.

Based on some empirical laws in seismicity studies, several point-process models
have been proposed in literature, classifying seismicity into two components, back-
ground seismicity and clustering seismicity, where each earthquake event, no matter
it is a background event or generated by another event, produces (triggers) its own
offspring (aftershocks) according to some branching rules. There are further ideas
on probability separation of background seismicity from the clustering seismicity
assuming a constant background occurrence rate throughout the whole studied re-
gion and other authors proposed a stochastic declustering method and made the
probability based declustering method practical.

In this paper, we show some useful graphical diagnostic methods for improving
model formulation.

Key words: Branching processes, Patterns of earthquakes, Point process models,
Stochastic declustering

1 Introduction

It is natural to use a branching process to describe occurrence patterns of
earthquakes, which are apparently clustered in both space and time. The clus-
tering features of earthquakes are important for seismological studies. For the
purpose of long-term earthquake prediction, such as zoning and earthquake
hazard potential estimation, people try to remove the temporary clustering
to estimate background seismicity; on the other hand, for short-term or real-
time prediction, we need a good understanding to earthquake clusters. Thus,
separating background seismicity from earthquake clusters is believed to be
of central importance.

Based on some empirical laws in seismicity studies, several point-process
models have been proposed in [3, 4, 6, 9, 11, 12, 15]. In general, all of those
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models classify seismicity into two components, background seismicity and
clustering seismicity, where each earthquake event, no matter it is a back-
ground event or generated by another event, produces (triggers) its own off-
spring (aftershocks) according to some branching rules.

The ideas on probability separation of background seismicity from the
clustering seismicity first appears in Kagan and Knopoff [7]. They assume a
constant background occurrence rate throughout the whole studied region,
which should be location dependent as we can see in this article. Zhuang et
al. [22, 23] propose a stochastic declustering method and made the probability-
based declustering method practical. The core of the stochastic declustering
method is an iterative approach to simultaneously estimate the background
intensity, assumed to be a function of spatial locations but constant in time,
and the parameters associated with clustering structures. Making use of these
estimates and the thinning operation, one can obtain the probabilities for each
event being a background event or a triggered event. These probabilities are
the key to realising stochastic versions of the clustering family trees in the
catalogue, and, of course, also to separating the background events from the
earthquake clusters.

Because these probabilities are estimated through a particular model, the
closeness between the model and the reality is the essentially important fac-
tor that influences the output. The closer the model to the real data, the
more reliable the output. Of course, some model selection procedures can be
used to choose the best model among many models fitted to the same set
of data. But these procedures usually give us only a number indicating the
overall goodness-of-fit for the model, and rarely tell whether there are some
good points in a model even if its overall fit is not the best. Moreover, it
is also difficult to find clues about how to improve the formulation of the
clustering models through model selection procedures. In this paper, we are
going to show some useful graphical diagnostic methods for improving model
formulation.

2 The Space-time ETAS Model

Model formulation

In empirical studies on seismicity, the Omori law ([14, 18]; and see, [19], for
a review) has been used to describe the decay of aftershock frequencies with
time, i.e.,

n(t) =
K

(t + c)p
, (1)

where n(t) is the occurrence rate of events at the time t after the occurrence
of the mainshock, and K, c and p are constants. Another commonly accepted
empirical law is the Gutenberg-Ritcher law, which describes the relationship
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between the magnitudes and occurrence frequencies of earthquakes, taking
the form

log10 N(≥ M) = a − bM, (2)

i.e., the number of earthquake events in a catalog decreases exponentially
when we increase the magnitude threshold.

The above empirical laws have been considered as the foundation for statis-
tical modelling in seismicity. Several point process models have been proposed
by [3, 4, 6, 9, 11, 12, 15]. Those models classify seismicity into two components,
background seismicity and clustering seismicity, where each earthquake event,
no matter it is a background event or generated by another event, produces
(triggers) its own offspring (aftershocks) according to some branching rules.
All these models can be formulated in the form of the conditional intensity
function (see, e.g., [5, Chap. 7]), i.e., at time t, location (x, y) and magnitude
M , the conditional intensity function is defined by

λ(t, x, y,M)dtdxdy dM = E[N(dtdxdy dM)|Ht], (3)

where Ht is the observational history up to time t, but not including t. In this
study, we base our analysis on the formulation of the space-time epidemic
type aftershock sequence (ETAS) model (see [12]),

λ(t, x, y,M) = λ(t, x, y)J(M) (4)

λ(t, x, y) = µ(x, y) +
∑

i: ti<t

κ(Mi)g(t − ti)f(x − xi, y − yi|Mi), (5)

where

1. µ(x, y) is the background intensity, a function of spatial locations but
constant in time;

2. κ(M) is the expected number of events triggered from an event of magni-
tude M , given by

κ(M) = A exp[α(M − MC)], M ≥ Mc; (6)

where A and α are constant, and MC is the magnitude threshold (see
[20]);

3. g(t) is the p.d.f of the occurrence times of the triggered events, taking the
form

g(t) =
p − 1

c

(
1 +

t

c

)−p

, t > 0; (7)

i.e., the p.d.f form of (1);
4. f(x, y|M) is the p.d.f of the locations of the triggered events, which is

formulated as

f(x, y;M) =
1

2πDeα(M−MC)
exp

[
− x2 + y2

2Deα(M−MC)

]
(8)
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for the short-range Gaussian decay (light tail), or

f(x, y;M) =
q − 1

πDeα(M−MC)

(
1 +

x2 + y2

Deα(M−MC)

)−q

; (9)

for the long-range inverse power decay (heavy tail); and
5. J(M) is the probability density of magnitudes for all the events, taking

the form of the Gentenburg-Richter law, i.e.,

J(M) = βe−β(M−Mc), for M ≥ Mc (10)

where β is linked with the Gutenberg-Richter’s b-value in (2) by β =
b log 10 and Mc is the magnitude threshold considered.

In the text below, we call an ETAS model Model I or Model II, if it is
equipped with (8) or (9), respectively. The expected number of offspring that
an event can trigger, κ(M) in (6), is also called its triggering ability.

In (6), (8) and (9), the spatial scaling factor for the direct aftershock region
is proportional to the triggering ability of the ancestor. This judgment is from
[20]. In the Sect. 6, we will use the stochastic reconstruction method to verify
whether it is a good choice.

Maximum likelihood estimates

Given a set of observed earthquake data, say {(ti, xi, yi,Mi) : i = 1, 2, . . . , N},
if the background rate µ(x, y) = νu(x, y) where u(x, y) is known, the parame-
ters in (5) can be estimated by maximizing the log-likelihood (cf. [5], Chap. 7)

logL(θ) =
∑

j:(tj ,xj ,yj)∈S×[T1,T2]

log λ(tj , xj , yj) −
∫∫

S

∫ T2

T1

λ(t, x, y)dt dxdy,

(11)
where the parameter vector is, respectively, θ = (ν,A, α, c, p,D) for Model I,
and θ = (ν,A, α, c, p,D, q) for Model II, and j runs over all the events in the
study region S and time period [T1, T2]. Because the events occurring outside
of the study region, or before the study time period, may also trigger seismicity
inside the study region and time period, particularly the large ones, we include
these events in the observation history Ht and call them complemental events.
Events inside the study space-time zone conversely, are called target events.

The thinning method and stochastic declustering

The technical key point of the stochastic declustering method is the thinning
operation to a point process (i.e., random deletion of points, c.f. [8, 10]).
Observe (5), the relative contribution of a previous ith event to the total
seismicity rate at the occurrence time and location of the jth event, (tj , xj , yj),
is
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ρij =

{
ζi(tj , xj , yj)/λ(tj , xj , yj), when j > i,

0, otherwise,
(12)

where
ζi(t, x, y) = κ(Mi)g(t − ti)f(x − xi, y − yi;Mi), (13)

represents the rate triggered by the ith event. That is to say, for each j =
1, 2, . . . , N , if we select the jth event with probability ρij , we can realise
a subprocess that consists of the direct offspring of the ith event. In this
way, ρij can be naturally regarded as the probability that the jth event is a
direct offspring of the ith event. Similarly, the probability that the event j is
a background event is

ϕj =
µ(xj , yj)

λ(tj , xj , yj)
. (14)

and the probability that the jth event is triggered is given by

ρj = 1 − ϕj =
∑

i

ρij , (15)

In other words, if we select each event j with probabilities ϕj , we can then
form a new processes, the background subprocess with a rate function µ(x, y),
and its complement, the clustering subprocess.

Variable kernel estimates of seismicity rates

The total spatial seismicity rate can be estimated by using variable kernel
estimates

m̂(x, y) =
1

T

∑

j

Zhj
(x − xj , y − yj), (16)

where T is the length of the time period of the process, subscript j runs over all
the event in the process and Z is the Gaussian density function. The variable
bandwidth hj (the standard deviation of the Gaussian density) is determined
by

hj = max{ǫ, inf(r : N [B(xi, yi; r)] > np)}, (17)

where ǫ is the allowed minimum bandwidth, B(x, y; r) is the disk of radius
r centred at (x, y), and np is a positive integer, i.e., hj is the distance to its
npth closest neighbour.

Once the thinning probabilities {ϕj} are obtained, we can estimate the
spatial background seismicity rate by using weighted variable kernel estimates
[22],

µ̂(x, y) =
1

T

∑

j

ϕjZhj
(x − xj , y − yj), (18)

where T , Z and hj are defined as in (16).
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By simply taking the difference between the total seismicity rate and the
background seismicity rate, we can get the estimate of the clustering rate
function, i.e., the estimate of the clustering rate is

Ĉ(x, y) = m̂(x, y) − µ̂(x, y) =
1

T

∑

j

(1 − ϕj)Zhj
(x − xj , y − yj) (19)

Estimation algorithm

Background seismicity and the parameters can be determined in the cluster-
ing structures simultaneously using an iterative approach [22, 23]. Firstly, we
assume some initial background seismicity rate, using the maximum likeli-
hood procedure to obtain the parameters in the branching structure. We then
calculate the background probabilities {ϕj : j = 1, 2, · · ·N} for all of the
events using (14). Substituting these ϕj into (18) we get a better estimate
of the background seismicity rate, and use this newly estimated background
seismicity rate to replace the initial background rate. We repeat these steps
many times until the results converge.

3 Data and Preliminary Results

Two of sets of data are considered in this study. The first data set is the
JMA catalogue in a range of longitude 121◦ – 155◦E, latitude 21◦ ∼ 48◦N ,
depth 0∼100 km, time 1926/Janary/1∼1999/December/31 and magnitude
≥ MJ4.2. The second data set is the Taiwan CWB (Center Weather Bureau)
catalogue in a range of longitude 120◦ ∼ 123◦E, latitude 21◦ ∼ 25.2◦N ,
depth 0∼55 km, time 1900/Janary/1∼2001/December/31, and magnitude
≥5.3. There are 19,139 and 892 events in the JMA data set and the Taiwan
data set, respectively.

For an earthquake catalogues covering records of a long history, complete-
ness and homogeneity are always problems causing troubles for statistical ana-
lysis. To tackle these problems, we choose a target space-time range, in which
the seismicity seems to be relatively complete and homogeneous. The incom-
pleteness of the early period and inhomogeneity in the JMA data set can be
easily seen from Figs. 1. We choose the target range of longitude 130◦ – 146◦E,
latitude 33◦ – 42.5◦N , a time period of 10,000 – 26,814 days after 1926/Jan/1,
and same depth and magnitude ranges as the whole data set. With similar
reason, we chose the target range as time 1941/Janary/1∼2001/December/31,
longitude 120◦ ∼ 122◦E, latitude 22◦ ∼ 25◦ for the Taiwan CWB data
(Fig. 2). There are 8283 and 491 events occurring in the target space-time
range of the JMA data set and the Taiwan data set, respectively.

We fit both models I and II to both the JMA and the Taiwan data. The
results are outlined in Table 1. Model II fits better than Model I for both data
sets, indicating that the locations of triggered events decay in a long range
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Fig. 1. Seismicity in the Japan region and nearby during 1926–1999 (MJ ≥ 4.2). (a)
Epicenter locations; (b) Latitudes of epicenter locations against occurrence times.
The shaded region represents the study space-time range
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Fig. 2. Epicenter locations of earthquakes in the Taiwan region during 1900–2000
(M ≥ 5.3) and subdivision. Sizes of the circle indicate magnitudes from 5.3 to 8.2.
The arrow indicates the Chi-Chi earthquake (1999/9/21, MS7.3)
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Table 1. Comparison between results obtained by fitting Models I and II respec-
tively to the selected JMA and Taiwan data

Data Model A α c p D q log L
mag−1 day deg2

JMA I 0.191 1.365 1.726×10−2 1.089 1.414×10−3 na -45,658
II 0.198 1.334 1.903×10−2 1.103 8.663×10−4 1.691 -45,068

TW I 0.182 1.694 6.692×10−3 1.150 2.868×10−3 na -1,411.1
II 0.234 1.504 5.089×10−3 1.141 3.194×10−3 1.839 -1,397.6

rather than a short range. We will show this conclusion in a more explicit way
in coming Sect. 6.

For illustration, the spatial variation of the estimated background rate
obtained from fitting Model II to the Japan region is shown in Fig. 3.
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Fig. 3. Estimated background rate µ̂ in Equation (18) in the study region (unit:
events/(degree2×74 years))

4 Residual Analysis for the Whole Process

The goodness-of-fit of the space-time ETAS model to the earthquake data can
be found by using residual analysis. For example, Ogata et al. [13] re-fitted the
data with a time-variant version of a space-time ETAS model and then took
the ratio between its conditional intensity and the conditional intensity of the
stationary ETAS model as the residual process. Schoenberg [16] proposed the
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thinning residuals, i.e., to keep each event i with probability

min{λ(tk, xk, yk) : k = 1, · · · , N}
λ(ti, xi, yi)

to obtain a homogeneous Poisson process, which is essentially the analogue of
the Stoyan and Grabarnik weights in spatial point process [17], as discussed
in this section.

Because the process

IB, t ≡
∫ t

0

∫∫

B

N(dxdy du) − λ(u, x, y)dxdy du (20)

is a zero-mean martingale as a function of t (see, e.g., [2], for justification),
where B is an arbitrary regular spatial region,

E

[∫ t

0

∫

B

h(u, x, y){N(dxdy du) − λ(u, x, y)dxdy du}
]

= 0, (21)

for any predictable function h(t, x, y). If we take h(t, x, y) = 1/λ(t, x, y), then

E

⎡
⎣ ∑

i:(ti,xi,yi)∈B

wi

⎤
⎦ = |B| (22)

where | · | represents the volume or the Lebesgue measure, and we also call
wi = h(ti, xi, yi) the Stoyan-Grabarnik weight [1, 17]. Baddeley et al. [1] called∑

i:(ti,xi,yi)∈B

wi − |B| as the inverse-lambda residual.

To apply the above Stoyan-Grabarnik weights to the Taiwan data, we
consider the following functions,

s1(t) =
∑

i: ti<t

wi, (23)

s2(x) =
∑

i: xi<x

wi, (24)

s3(y) =
∑

i: yi<y

wi. (25)

If the target space-time range is a direct product of intervals, s1, s2 and s3

should increase with a constant rate approximately. The results for the Taiwan
data are plotted in Fig. 4. We can see that there are some departures of s1,
s2 and s3 from their expectation. In Fig. 4(a), the slope of the cumulative
wights against the time axis changes at the years around 1940 and 1975,
or even around 1994. These changes are mainly caused by the changes of
the monitoring systems. In Fig. 4(b), along the latitude axis, the seismicity
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Fig. 4. Results from residual analysis for the Taiwan catalogue. The cumulative
weights against times, latitudes and longitudes are plotted in (a), (b), and (c),
respectively

pattern changes around 22◦N and 24◦N . In Fig. 4(c), along the longitude
axis, the accumulation rate of the weights changes around 120.5◦E, 121.5◦E
and 122.5◦E, showing differences in seismicity from the west to the east. More
detailed explanations on these results and the local tectonic structures in the
Taiwan region can be found in [21].

If we set h(t, x, y) ≡ 1 or h(t, x, y) = 1/
√

λ(t, x, y), then we form up the
raw residual and the Pearson residual, respectively [1]. Both of them can be
used for the residual analysis as well as the inverse-lambda residual.

5 Verifying Stationarity of the Background

In the ETAS model, we assume that the background process is stationary. To
test this assumption, we set



Diagnostic Analysis of Space-time Branching Processes 285

h(t, x, y) =
u(x, y)

λ(t, x, y)
, (26)

in (21) and then, according to (14),

S(t) ≡ E

⎡
⎣ ∑

i: (ti,xi,yi)∈[0,t)×B

ϕi

⎤
⎦ = t

∫∫

B

u(x, y)dxdy (27)

where B is a spatial region. If the model fits the seismicity well or the back-
ground occurrence rate is constant in time, the function S(t) defined by (27)
increases approximately in a constant rate with time t. If the slope of S(t) de-
creases, we call it quiescence in background seismicity, or simply background
quiescence; otherwise, if the slope of S(t) increases, we call it an activation in
the background seismicity, or simply background activation.

As given in Fig. 5(a), the background seismicity S(t) in Region A shows
a quiet period from 1960-1990, followed by recovery of activity culminating
with the Chi-Chi rupture. In Region B, the background seismicity given in
Fig. 5(b), shows steady activity after the 1940’s. This indicates a conspic-
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Fig. 5. Cumulative background seismicity S(t) in (27) (black step lines), cumulative
clustering seismicity #(t)−S(t) (dark gray step lines) and cumulative total seismicity
#(t) (light gray step lines) for Regions A and B (see Fig. 2). The magnitudes against
the occurrence times of the events are plotted in the lower part of each panel

uously quiet period lasting up to several decades, prior to recovery of the
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activity, culminating in the1999 Chi-Chi earthquake (MS7.3), while we find
that other major seismic regions remain active stationarily as Region B. [21]
interpreted this phenomenon as an effect of the aseismic slip in the Chi-Chi
rupture fault, whereby the inland region around the Chi-Chi source becomes
a stress-shadow.

6 Verifying Formulation of Branching Structures by
Stochastic Reconstruction

As mentioned in Sect. 2, if we select each event j with probabilities ρij , ρj or
ϕj , we can get a new process being the triggered process by the ith event, the
clustering process or the background processes, respectively. That is to say, we
can separate the whole catalogue into different family trees. This method tack-
les the difficulties in testing hypotheses associated with earthquake clustering
features, which are caused by the complicated overlapping of the background
seismicity and different earthquake clusters in both space and time. We can
repeat such thinning operations for many times to get different stochastic ver-
sions of separations of the earthquake clusters. The non-uniqueness of such
realisations illustrates the uncertainty in determining earthquake clusters, and
thus repetition can help us to evaluate the significance of some properties of
seismicity clustering patterns. However, we can also implement these tests
by working with the probabilities ϕj and ρij directly. In this section, we will
show how to use these probabilities to reconstruct the characteristics asso-
ciated with earthquake clustering features. More examples can be found in
[23].

Location distributions

Define the standardised distance between a triggered event j and its direct
ancestor, assumed i, by

rij =

√
(xj − xi)2 + (yj − yi)2

D exp[α(Mi − Mc)]
. (28)

From (8) and (9), rij has a density function of

fR(r) = 2re−r2

, r ≥ 0; (29)

for Model I and

fR(r) =
2r(q − 1)

(1 + r2)q
, r ≥ 0; (30)

for Model II, respectively. The distribution with a density of (29) is called a
Rayleigh distribution. On the other hand, fR(r) can be reconstructed through
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f̂R(r) =

∑
i,j ρijI(|rij − r| < ∆r/2)

∆r
∑

i,j ρij
, (31)

where ∆r is a small positive number, and I is the index function such that

I(x) =

{
1, if the logical statement x holds,
0, else.

(32)

The comparison between f̂R and fR for the two models are shown in Fig. 6. It
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Fig. 6. Reconstruction results for the distribution of the standardised triggering
distances f̂R(r) in (31) (gray circles) by using Model I (a) and Model II (b) for the
JMA catalogue. The theoretical curves of fR(r) in (29) and (30) are plotted in solid
lines in (a) and (b), respectively

can be seen that, if Model I is used, the reconstructed probability density of the
standardised distances between the ancestors and the direct offspring is quite
different from the theoretical one. When Model II is used, the reconstructed
probability density is very close to the theoretical one. These results confirm
that the aftershocks decay in a long range in space rather than a short range
[4, 3, 12]. These results also imply the robustness of the reconstruction method,
for we can get a reconstructed probability density function very close to the
corresponding function in Model II, even if an improper model like Model I
is employed.

Since Model II fits the seismicity much better than Model I, we only con-
sider Model II for reconstruction in the following sections.

Difference in triggering ability between the background events and
the triggered events

The triggering abilities of an event sized M from all the events, the background
events and the triggered events in a catalogue can be reconstructed by using
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κ̂(M) =

∑
i

∑
j ρijI(|Mi − M | < ∆M/2)∑
i I(|Mi − M | < ∆M/2)

(33)

κ̂b(M) =

∑
i

∑
j ϕiρijI(|Mi − M | < ∆M/2)∑
i ϕiI(|Mi − M | < ∆M/2)

(34)

and

κ̂t(M) =

∑
i

∑
j(1 − ϕi)ρijI(|Mi − M | < ∆M/2)∑
i(1 − ϕi)I(|Mi − M | < ∆M/2)

, (35)

respectively, as shown in Fig. 7. Both the background events and the trig-
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Fig. 7. Reconstruction of the triggering abilities, κ̂b(M) in (34) of the background
events and κ̂t(M) in (35) of the triggered events for (a) the JMA catalogue and (b)
the simulated catalogue. For comparison, the empirical functions of the triggering
abilities, κ̂(M) in (33) for all the events are plotted in gray circles, and the corre-
sponding theoretical functions, κ(M) = Aeα(M−MC), are represented by the straight
lines

gered events generate offspring approximately according to different exponen-
tial laws. For the same ancestor magnitude, a triggered event generates more
offspring than a background event. The higher is the magnitude, the smaller
is the difference. Applying the same procedures to a synthetic catalogue sim-
ulated by using the ETAS model with the same background rate and the
same parameters estimated from the JMA catalogue, the results show that
there is no differences in triggering abilities between these two types of events,
indicating that these differences are not caused by numerical procedures.

In the ETAS model, the background events and triggered events generate
offspring in the same way. The reconstruction results show that it is a possible
direction to improving the current ETAS models to have different exponential
laws for the triggering abilities of these two types of event. One reason for the
higher triggering abilities of the triggered events may be because they occur
in an environment where the stress field is adjusting to the stress changes
caused by their ancestors.
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Distributions of offspring locations from different magnitude
classes

Because of the historical reasons mentioned in Sect. 2, we model the distri-
bution of locations of the direct offspring from an earthquake as an inverse
power one with a scaling factor associated with the ancestor’s magnitude,
Deα(M−MC). Immediate questions for such a choice are:

(a) Is this scaling factor necessary? Or, can we use a constant D0 to replace
the scaling factor Deα(M−MC) in the model?

(b) Is it necessary to link the scaling factor to the triggering ability, or should
we introduce a new parameter γ instead of α for the scaling factor?

To answer the above questions, for a small interval M of magnitudes, we
select the pairs {(i, j)} such that Mi ∈ M and then estimate the scaling factor
DM for M in the following way. Given ρij , consider the following pseudo log-
likelihood function,

logL =
∑

Mi∈M

∑

j

ρij log

[
(q − 1)D(q−1)Rij

(R2
ij + D)q

]
, (36)

where Rij is the distance between the events i and j. To maximize it, let

∂ logL

∂D

∣∣∣∣
D=DM

= 0,

i.e.,
q − 1

DM

∑

Mi∈M

∑

j

ρij − q
∑

Mi∈M

∑

j

ρij

R2
ij + DM

= 0. (37)

Thus, we can construct the following iteration to solve the above equation

D
(n+1)
M =

(q − 1)
∑

Mi∈M

∑
j ρij

q
∑

Mi∈M

∑

j

ρij

R2
ij + D

(n)
M

. (38)

Figure 8 shows the values of DM against the magnitude classes. We can see
that values of DM have a slope different from κ(M). Thus, it is not suitable use
κ(M) as the scaling factor, a better choice is to introduce another parameter
γ as the coefficient in the exponential part.

7 Conclusion

In this paper, we have outlined the general routines of using the ETAS model
to fit the clustering features of earthquake processes and some methods on
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Fig. 8. Re-estimated DM for the JMA catalogue (left) and the simulated catalogue
(right). Theoretical fitting curves, Deα(M−MC), are represented by the straight lines

how to evaluate the goodness-of-fit. The results show that the ETAS model
is a good starting point for modelling the earthquake clusters.

We use the inverse-lambda residuals to test the overall goodness-of-fit, and
departures from their expectation may indicate some essential features of the
data, such as data inhomogeneity caused by the changes of monitoring abili-
ties or different local tectonic environment. The stationarity of the background
process is tested by using the function S(t) defined in (27), which helps us to
detect the existence of quiescence or activation in background seismicity prior
to some large earthquakes. For the components associated with the branching
structure, we make use of the stochastic reconstruction method. We first re-
construct the distribution of the locations of the triggered events relatively to
their parents, which is shown to have a heavy tail than a light tail. We have
also shown that a background event triggers less children than an triggered
events of the same magnitude, and that the two exponential laws, one for the
triggering ability and the other for the spatial density of the offspring, should
have different exponents. All of these indicate that the methods discussed in
this article are powerful in testing the hypotheses associated with earthquake
clusters, and in finding clues for improving the model formulation.
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Summary. We investigate the properties of a weighted analogue of Ripley’s K-
function which was first introduced by Baddeley, Møller, and Waagepetersen. This
statistic, called the weighted or inhomogeneous K-function, is useful for assessing the
fit of point process models. The advantage of this measure of goodness-of-fit is that
it can be used in situations where the null hypothesis is not a stationary Poisson
model. We note a correspondence between the weighted K-function and thinned
residuals, and derive the asymptotic distribution of the weighted K-function for a
spatial inhomogeneous Poisson process. We then present an application of the use
of the weighted K-function to assess the goodness-of-fit of a class of point process
models for the spatial distribution of earthquakes in Southern California.

Key words: Goodness-of-fit of spatial point process models, Inhomogeneity, Spatial
distribution of earthquakes, Weighted Ripley’s K-function

1 Introduction

Ripley’s K-function [21], K(h), is a widely used statistic to detect clustering
or inhibition in point process data. It is commonly used as a test, where the
null hypothesis is that the point process under consideration is a homogeneous
Poisson process and the alternative is that the point process exhibits cluster-
ing or inhibitory behavior. Previous authors have described the asymptotic
distribution of the K-function for simple point process models including the
homogeneous Poisson case (see [11],Rip88 and [27, pp. 28–48]).

The K-function has also been used in conjunction with point process resid-
ual analysis techniques in order to assess more general classes of point pro-
cess models. For instance, a point process may be rescaled (see [16, 17, 24])
or thinned [25] to generate residuals which are approximately homogeneous
Poisson, provided the model used to generate the residuals is correct. The
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K-function can then be applied to the residual process in order to investigate
the homogeneity of the residuals, and the result can be interpreted as a test
of the goodness-of-fit of the point process model in question. Hence, residual
analysis of a point process model involves two steps, the transformation of the
data into residuals and a subsequent test for whether the residuals appear to
be well approximated by a homogeneous Poisson process.

Of course, other methods for assessing the homogeneity of a point process
exist, including tests for monotonicity [23], uniformity (see [9, 14, 15]), and
tests on the second and higher-order properties of the process (see [4, 8, 12]).
Likelihood statistics, such as Akaike’s Information Criterion (AIC, [1]) and the
Bayesian Information Criterion (BIC, [26]) are often used to assess more gen-
eral classes of models; see e.g. [18] for an application to earthquake occurrence
models.

We focus here on Ripley’s K-function, in particular on a modified version
of the statistic which we call the weighted K-function, KW , and which was
first introduced as the inhomogeneous K-function in [2]. It may be used to
test a quite general class of null hypothesis models for the point process under
consideration and it provides a direct test for goodness-of-fit, without having
to assume homogeneity or to transform the points using residual analysis, the
latter of which often introduces problems of highly irregular boundaries and
large sampling variability when the conditional intensity in question is highly
variable (see [25]).

This paper is outlined as follows. In Sect. 2, the definitions of the ordi-
nary and weighted K-functions are reviewed, a connection between KW and
thinned residuals is noted, and the asymptotic distribution of KW is derived
under certain conditions. The weighted K-function is then used in Sect. 3
to assess the goodness-of-fit for competing models for the spatial background
rate of California earthquakes. Some concluding remarks are given in Sect. 4.

2 The Weighted K-function

In this section, we derive its distributional properties of the weighted K-
function, KW (h), under certain conditions. KW (h) is a weighted analogue of
Ripley’s K-function and it is similar to the mean of K-functions applied to a
repeatedly thinned point pattern, denoted here as KM (h), an application of
which can be found in [25]. We begin with a review of Ripley’s K-function.

2.1 Ripley’s K-function and Variants

Consider a Poisson process of intensity λ on a connected subset A of the
plane R2 with finite area A, and let the N points of the process be labelled
{p1, p2, . . . , pN}. Ripley’s K-function K(h) is typically defined as the average
number of further points within h of any given point divided by the overall
rate λ, and is most simply estimated via
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K̂(h) =
1

λ̂N

∑

r

∑

s �=s

1(|pr − ps| ≤ h), (1)

where λ̂ = N/A is an estimate of the overall intensity, 1(·) is the indicator
function and h is some inter-point distance of interest. As pointed out in
[28], one can also estimate K(h) using an estimator for the squared intensity

λ̃2 = N(N − 1)/A2:

K̃(h) =
1

λ̃2A

∑

r

∑

s �=s

1(|pr − ps| ≤ h). (2)

In applications, estimates of K are typically calculated for several different
choices of h. For a homogeneous Poisson process, the expectation of K̂(h) is
πh2 (similarly for K̃(h)). Values which are higher than this expectation indi-
cate clustering, while lower values indicate inhibition. However, it should be
noted that a point pattern can be clustered at certain scales and inhibitory
at others. Note also that two very different point processes may have identi-
cal K-functions, as K(h) only takes the first two moments into account. An
example of such a situation can be found in [3].

Under the null hypothesis that the point process is homogeneous Poisson
with rate λ, K̂(h) is asymptotically normal:

K̂(h) ∼: N

(
πh2,

2πh2

λ2A

)
, (3)

as the area of observation A tends to infinity (see p. 642 of [6] or pp. 28–48
of [22]). As is pointed out in [28], it is crucial to use an estimate of λ or λ2

rather than their true values, even if they are known. Situations where the
true intensity is known can arise in simulation studies, where one may feel
tempted to plug in the true value for the intensity in (1) or (2). Somewhat
surprisingly, however, using the true value for λ or λ2 will actually inflate the
variance of K̂(h) by a factor of 1 + 2πh2λ (see [11]).

Several variations on K̂(h) have been proposed. Many deal with corrections
for boundary effects, as found in [13, 19, 21]. Variance-stabilizing transforma-
tions of estimated K-functions which are more easily interpretable have been
proposed (see [5]), such as L̂(h) and L̂(h) − h where

L̂(h) =

√
K̂(h)

π
. (4)

2.2 Definition and Distribution of the Weighted K-function

Suppose that a given planar point process in a connected subset A of R2

with finite area A may be specified by its conditional intensity with respect
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to some filtration on A, for (x, y) ∈ A (see [7]). The point process need not
be Poisson; in the simple case where the point process is Poisson, however,
the conditional intensity and ordinary intensity coincide. Suppose that the
conditional intensity of the point process is given by λ(x, y).

The weighted K-function, used to assess the model λ0(x, y), may be de-
fined as

KW (h) =
1

λ2
∗A

∑

r

wr

∑

s �=r

ws1(|pr − ps| ≤ h) (5)

where λ∗ := inf{λ0(x, y); (x, y) ∈ A} is the infimum of the conditional inten-
sity over the observed region for the model to be assessed and wr = λ∗/λ0(pr),
where λ0(pr) is the modelled conditional intensity at point pr.

One can think of the weighted K-function as a combination of Ripley’s
K-function and the thinning method used for residual analysis in [25]. In [25],
K(h) is repeatedly applied to thinned data where the probability of retaining a
point is inversely proportional to the conditional intensity at that point. The
computation of the weighted K-function KW (h) uses these same retaining
probabilities as weights for the points in order to offset the inhomogeneity of
the process. By incorporating all pairs of the observed points, rather than only
the ones that happen to be retained after an iteration of random thinning,
the statistic KW (h) eliminates the sampling variability in any finite collec-
tion of random thinnings. Indeed, simulations appear to indicate that KW (h)
has approximately the same distribution as KM (h), the mean of K-functions
on a repeatedly thinned point pattern, as the number of random thinnings
approaches infinity.

We conjecture that, provided the conditional intensity λ is sufficiently
smooth, KW (h) will be asymptotically normal as the area of observation A
approaches infinity. Indeed, for the Poisson case where λ is locally constant

on distinct subregions whose areas A
(n)
i are large relative to the interpoint

distance hn, we have the following result.

Theorem 1. Let N (n) be a sequence of inhomogeneous Poisson processes with

intensities λ(n) and weighted K-functions K
(n)
W , defined on connected subsets

A(n) ⊂ R2 of finite areas A(n). Suppose that for each n, the observed region

A(n) can be broken up into disjoint subregions A(n)
1 ,A(n)

2 , . . . ,A(n)
In

each having

area A
(n)
i = A(n)/In, and that the intensity λ

(n)
i is constant within A(n)

i .

Suppose also that for some scalar λmin, 0 < λmin ≤ λ
(n)
i < ∞ for all i, n.

In addition, suppose that, as n → ∞, In → ∞ and h2
n/A

(n)
i → 0. Further,

assume that the boundaries of A(n)
i are sufficiently regular that the number of

pairs of points (pr, ps) with |pr − ps| ≤ hn such that pr and ps are in distinct

subregions is small, satisfying R(n) := 1
A(n)

∑
pr,ps

1(|pr−ps|≤hn)1(i �=j)

λ
(n)
i λ

(n)
j

→ 0 in

probability as n → ∞, where the sum is over all pr ∈ A
(n)
i , ps ∈ A

(n)
j . Then

K
(n)
W (hn) is asymptotically normal as n → ∞:
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K
(n)
W (hn) − πh2

n√
2πh2

n

A(n)H((λ(n))2)

∼: N (0, 1) ,

where H
(
(λ(n))2

)
represents the harmonic mean of the squared intensity

within the observed region A(n).

Proof. We first show that K
(n)
W (hn) can be represented as the arithmetic mean

of K-functions computed individually on each of the squares i = 1, 2, . . . , In,
plus the remainder term R(n) defined above:

K
(n)
W (hn) =

1

λ2
∗A

(n)

∑

r

wr

∑

s �=r

ws1(|pr − ps| ≤ hn) (6)

=
1

λ2
∗A

(n)

In∑

i=1

λ2
∗

(λ̂
(n)
i )2

∑

ri

∑

si �=ri

1(|pri
− psi

| ≤ hn) + R(n) (7)

=
1

In

In∑

i=1

1

(λ̂
(n)
i )2A

(n)
i

∑

ri

∑

si �=ri

1(|pri
− psi

| ≤ hn) + R(n)

=
1

In

In∑

i=1

K̂
(n)
i (hn) + R(n) (8)

Since the intensity λ
(n)
i is constant on each square A(n)

i , the weights wr, ws

assigned to a pair of points in A(n)
i within distance hn are each λ2

∗/(λ̂
(n)
i )2,

which is used in going from (6) to (7). Thus, since R(n) converges to zero
in probability by assumption, the distribution of the weighted K-function is
equivalent to that of the mean of the In ordinary K-functions in (8).

Under the conditions of the theorem, K̂
(n)
i is asymptotically normal from

[22], and since the point process on A(n)
i is homogeneous Poisson with rate

λ
(n)
i ≥ λmin > 0, the variance of K̂

(n)
i is bounded above by the variance of a

homogeneous Poisson process on A(n)
i with rate λmin. This implies that the

collection of random variables

⎧
⎨
⎩

K̂
(n)
i (hn)−πh2

n

In

√
V ar

(
K̂

(n)
i (hn)

)

⎫
⎬
⎭ satisfies the Lindeberg

condition (see e.g. [10, p. 98]), and therefore the mean 1
In

∑In

i=1 K̂
(n)
i (hn) is

asymptotically normal. The variance of K
(n)
W (h) = V ar

(
1
In

∑In

i=1 K̂
(n)
i (h)

)
+

o(n), which can be computed as
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(
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(n)
i (h)

)

=
1

I2
n

In∑

i=1

2πh2

(λ
(n)
i )2A

(n)
i

=
2πh2

A(n)H
(
(λ(n))2

) , (9)

where (9) follows from the fact that A
(n)
i = A(n)/In.

⊓⊔

Note that a variance-stabilised version of the weighted K-function can be
defined in analogy with (4), namely:

LW (h) =

√
KW (h)

π
. (10)

3 Application

The test statistic KW (h) in (5) is applicable to a very general class of planar
point process models. We investigate their application to models for the spatial
background rate for the occurrences of Southern California earthquakes.

3.1 Data Set

Data on Southern California earthquakes are compiled by the Southern Cal-
ifornia Earthquake Center (SCEC). The data include the occurrence times,
magnitudes, locations, and often waveforms and moment tensor solutions,
based on recordings at an array of hundreds of seismographic stations located
throughout Southern California, including over 50 stations in Los Angeles
County alone. The catalog is maintained by the Southern California Seismic
Network (SCSN), a cooperative project of the California Institute of Technol-
ogy and the United States Geological Survey. The data are available to the
public; information is provided at http://www.data.scec.org.

We focus here on the spatial locations of a subset of the SCEC data occur-
ring between 01/01/1984 and 06/17/2004 in a rectangular area around Los
Angeles, California, between longitudes −122◦ and −114◦ and latitudes 32◦

and 37◦ (approximately 733 km × 556 km). The data set consists of earth-
quakes with magnitude not smaller than 3.0, of which 6,796 occurred within
the given 21.5-year period. The epicentral locations of these earthquakes are
shown in Fig. 1.
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Fig. 1. Earthquakes in Southern California 1984-2004: The data set consists of 6796
earthquakes with magnitude 3.0 or larger

3.2 Analysis

Spatial background rates are commonly estimated by seismologists by smooth-
ing the larger events only. For instance [18] suggests anisotropic kernel smooth-
ing of larger events in order to estimate the spatial background intensity for
all earthquakes. In this application, we investigate various spatial background
seismicity rate estimates involving kernel smoothings of only the 2030 earth-
quakes of magnitude 3.5 and higher, by using KW (h) to assess their fit to the
earthquake data set. The local seismicity at location (x, y) may be estimated
using a bivariate kernel smoothing µ(x, y) of the events of magnitude at least
3.5. Figure 2 shows such a kernel smoothing, using an anisotropic bivariate
normal kernel with a bandwidth of 8 km and a correlation of −0.611. That is,

µ(x, y) =
N∑

r=1

f(x − xr, y − yr), (11)

where the sum is over all points (xr, yr) with magnitude mr ≥ 3.5, and f
is the bivariate normal density centred at the origin with standard deviation
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Fig. 2. Kernel smoothing of seismicity in Southern California 1984-2004: An
anisotropic bivariate normal kernel with a bandwidth of 8 km (ρ = −0.611, σx =
σy = 8 km) is applied to 2030 earthquakes with magnitude not smaller than 3.5

σx = σy = 8 km and correlation ρ = −0.611. This correlation is estimated
using the empirical correlation of the values of xr and yr, and the bandwidth
is selected by inspection. The agreement of Figs. 1 and 2 does not seem grossly
unreasonable.

Since such a kernel smoothing uses only the observed seismicity over the
last 20 years (a relatively small time period by geological standards), one may
wish to allow for the possibility of seismicity in regions where no earthquakes
of magnitude 3.5 or higher have recently been observed. One way to do this
is by estimating the spatial background intensity via a weighted average of
the kernel-smoothed seismicity of magnitude at least 3.5 and a positive con-
stant representing an estimate of the spatial background intensity under the
assumption that the process is homogeneous Poisson. Hence we consider the
estimate of the form

λ̂a(x, y) = aµ(x, y) + (1 − a)ν, (12)
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where ν = N/A is the estimated conditional intensity for a homogeneous
Poisson model and a is some constant with 0 ≤ a ≤ 1.
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Fig. 3. Weighted L-function for competing models: The difference between the
weighted L-function and its expectation h is shown for different values of a in the
background intensity model λ̂a as described in (12). The dashed and dotted lines
are 95% bounds for LW (h) − h using model λ̂a=0.7 based on the theoretical result
of Theorem 1 (dashed) and simulations (dotted)

Instead of plotting the weighted K-function for visual inspection, we will
show the difference between LW (h) as given by (10) and its expectation h,
because the latter highlights the departures of the estimate from its hypothet-
ical expectation. Figure 3 shows LW (h)−h applied to several spatial intensity
estimates, each of the form (12), using different values for the parameter a.

For the competing estimates λ̂a, a takes on the values 0.5, 0.6, 0.65, 0.7, 0.75,
0.8, and 0.9, where a darker line color indicates a higher value of a. The lower
values of a give more weight to the homogeneous background rate than higher
values of a.

High values of a, such as a = 0.9 or greater, fit very poorly to the data,
especially for small values of h, as shown in Fig. 3. For such values of a,
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the intensity estimate gives most of the weight to the kernel smoothing, so
that pairs of small earthquakes in areas where there were no earthquakes of
magnitude greater than or equal to 3.5 have a very small probability and
are hence given enormous weight in the computation of KW . Similarly, for
values of a = 0.6 or less, the intensity estimate gives too much weight to the
homogeneous Poisson component and too little to the kernel smoothing of the
large events, so that the resulting model underpredicts the intense clustering
in the data occurring around the larger events.

For larger values of h, LW (h) tends to be smaller than its expectation.

This is due to the fact that all the models λ̂a inspected in this work include
a background intensity component which is too high in those areas of Fig. 1
where no earthquakes occur. Under any of the proposed models, one would
expect more earthquakes very far from the regions of high seismicity than
actually occurred, and the absence of pairs of such earthquakes leads to values
of LW (h) which are significantly smaller than expected.

In order to pick the best model λ̂a, attention should be focused on the
smaller values of h, especially since the assumption in Theorem 1 that λ
be locally constant is clearly invalidated if many pairs of points which are
within distance h have very different estimated intensities. For small values
of h, Theorem 1 may not be grossly inappropriate since the models for λ
are continuous in this example. As shown in Fig. 3, LW (h) − h seems to
decrease towards its expectation for most small values of h, indicating a rather
satisfactory fit for values of a approaching a = 0.7 from either direction. This
value of a appears to offer better fit than other values of a (and certainly is
far better than the conventional a = 1.0). However, even for a = 0.7, for h in
the range of 0.3km to 1.3km, the values of LW (h)−h exceed the 95% bounds
for LW (h) − h, which are shown as dashed and dotted lines in Fig. 3.

The dashed lines in Fig. 3 are derived using the result in Theorem 1 for
model λ̂a=0.7. The dotted lines are based on empirical 95% bounds for LW (h)−
h based on 150 simulations of model λ̂a=0.7. The simulated bounds line up
quite well with the theoretical bounds, which indicates that the conditions
of the theorem are sufficiently satisfied in our application. In particular, the
observed area seems to be sufficiently large, the intensity sufficiently smooth
(at least for the values of h used in this work), and boundary effects do not
seem to affect the estimation of KW (h) in any substantial way.

In summary, the data set contains many more small earthquakes in areas
far removed from any of the larger events than predicted by a kernel smooth-
ing of the larger events only, and clearly contains much more clustering than
would be predicted by a homogeneous Poisson model. However, there is sig-
nificant short-range clustering of the smaller earthquakes that occur in these
locations not covered by the larger events, which explains the positive de-
parture of LW (h) for small ranges of h. At the same time, the total number
of earthquakes occurring in these remote areas is small; that is, the prepon-
derance of these smaller earthquakes are occurring much closer to the large
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events than one would expect from a homogeneous Poisson process, which
explains why LW (h) is smaller than expected for larger values of h. Although
a mixture of a kernel smoothing of the larger events and a homogeneous Pois-
son background appears to fit much better than either of these individually,
no such mixture can thoroughly account for the observed patterns mentioned
above.

4 Concluding Remarks

The application of the weighted K-function to spatial background rate esti-
mates for Southern California seismicity shows the power of KW in testing
for goodness-of-fit. The weighted K-function is easily able to detect the ma-
jor departures from the data for simple kernel or Poisson estimates of the
spatial distribution of earthquakes. In addition, even for the optimally-chosen
mixture model for the background events, the weighted K-function is able to
detect deficiencies and to indicate potential areas for improvement.

KW has some advantages to alternative goodness-of-fit procedures like
thinning or re-scaling, especially in situations where the intensity on the ob-
served region has high variability. For the mixture estimate with a=0.7, for
instance, estimates of λ̂a ranged from 0.0049978 to 0.96792. With intensity
estimates varying over such a wide range, the application of thinning proce-
dures can by quite problematic. Since the estimated lowest intensity is very
low, only very few points will be kept after a random iteration of thinning,
which introduces a high degree of sampling variability. Re-scaling procedures,
on the other hand, would lead to highly irregular boundaries, which would
make it rather difficult to compute any test statistics on the re-scaled process.

In contrast to standard kernel smoothing of the larger events in the cata-
log, the method of spatial background rate estimation which mixes the kernel
estimate with a homogeneous constant rate appears to offer somewhat su-
perior fit to the SCEC dataset. This suggests that spatial background rate
estimates in commonly used models for seismic hazard, such as the epidemic-
type aftershock sequence (ETAS) model of [18], might possibly be improved
in this way as well. Seismologically, the results are consistent with the notion
that Southern California earthquakes, though certainly far more likely to oc-
cur on known faults, can potentially occur on unknown faults as well, and
these faults may be quite uniformly dispersed. The results suggest that a spa-
tial background rate estimate incorporating both of these possibilities could
provide improved fit to existing models for seismic hazard. Such a modifica-
tion may be especially relevant given the occurrences in California of blind
(i.e. previously unknown) faults such as the one which ruptured during the
Northridge earthquake in 1994, causing at least 33 deaths and 138 injuries as
well as extensive public and private property damage [20].

Further study is needed in order to confirm the seismological results sug-
gested herein, for several reasons. First, it remains to be seen whether the fea-
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tures observed here may be reproduced elsewhere or are particular to Southern
California. Second, in the estimation of the intensities of the form (12), the
bandwidth and choice of kernel were not optimally selected, but chosen rather
arbitrarily. Another issue worth mentioning is that the earthquakes of magni-
tude greater than 3.5 were used both in the fitting and in the testing. This is in
keeping with common practice in seismology, though in statistical terms this
is certainly non-standard. Also note that the clustering of small earthquakes
in areas where the model assigns low intensity, as suggested by the high values
of LW (h) − h for small h in Fig. 3, may or not be causal clustering. That is,
these high values of LW (h)−h may be attributable to clustering of these small
earthquakes not accounted for by any mixture model of type (12), or may in-
stead be attributable to inhomogeneity of the process not accounted for by the
model. However, the weighted K-function cannot discriminate between these
alternatives. It is similarly unclear how robust the estimator KW (h) is to vari-
ous departures from our assumptions, and in particular whether the weighted
K-function is more or less robust than alternative measures of goodness-of-fit,
such as thinned and re-scaled residuals. This is an important subject for fu-
ture research. In addition, the problem of boundary effects in the estimation
of the weighted K-function has not been addressed in this paper. Instead, we
have attempted to give a simplified presentation in introducing KW (h) and
its application. It should be noted, however, that exactly the same standard
boundary-correction techniques which are used for the ordinary K-function
(see Sect. 2.1) can be used for the weighted K-function as well. Fortunately, in
our application the fraction of points within distance h of the boundary was
so small for all values of h considered as to make such considerations rather
negligible.
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