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Preface 

The purpose of this book is to present the solution of a range of ri-
gid body mechanics problems using a matrix formulation of vector alg-
ebra. The treatment has other notable features. It employs a coherent 
letter and number suffix notation and also exploits the relationship 
between the orthogonal transformation matrix and angular velocity. 
Particular emphasis is placed upon the positioning of appropriate fr-
ames of reference and specifying their relative position. 

In writing this text it has been assumed that the reader will have a 
knowledge of mathematics and mechanics normally associated with the 
first year of an Engineering Degree course. 

The plan of the book is simple. There are four chapters, Chapter 1 
Kinematics, Chapter 2 Dynamics, Chapter 3 Solution of Kinematics Pro-
blems and Chapter 4 Solution of Dynamics Problems. Chapters 1 and 2 
give a succinct statement of the essential theory formulated in terms 
of matrix algebra, while Chapters 3 and 4 give a selection of solved 
problems and problems for solution. The reader is therefore advised to 
study the problems to which reference is made at various points in the 
text as they occur. A proper approach to the solution of dynamics pr-
oblems demands that kinematic considerations have priority. It is su-
ggested, therefore, that the reader studies Chapters 1 and 3 before 
proceeding the Chapters 2 and 4. Answers to the problems for solution 
are provided, with some indication of the salient features of their 
solution in most cases. 

Coventry 1980 T. Crouch 



Principal Symbols and Notation 

The following lists give only the principal use of the symbols for 
scalar quantities. A given symbol might be used to denote a variety 
of physical quantities. The interpretation to be given to a symbol 
will be clear from the context in which it is employed. 

Kii 

1 

a, 
r, 

a, 

ω, 

ω, 

I 

2 

nem< atics 

Scalars 

b, 
s, 

S, 

Ω 

Ω 

c, 
t 

Ύ r 

d, 

Θ, 

Vectors 

u, 

♦ l 

v, 

Φ 

w, 
Length, components of vectors 

Angles 

Components of angular velocity 

Components of angular acceleration 

Direction cosine 

With the exception of the lower case Greek letter omega, upper case 
letters written inside braces are used to designate vector quantities 
as follows: 

{R} Position and relative position 

{v} Linear velocity 

{A} Linear acceleration 

{B} Any vector 

{ω} Angular velocity 

{(I)} Angular acceleration 

These general symbols for vector quantities are qualified in two ways 
by appropriate suffixes. Thus 

Κϊι or Ken*! 
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specifies the position of the point A measured in frame 1, where Oj, 
often omitted, is the origin of frame 1, while 

specifies the position of the point B relative to the point A measured 
in frame 4. It so happens the the relative position vector is indep-
endent of the frame in which its is measured, but the number suffix is 
retained for reasons explained in the text. 

Similarly, 

W l l °r iVAO!^ and fV,Q)3 

specify the velocity of the point A relative to Οχ measured in frame 
1 and the velocity of the point P relative to the point Q measured in 
frame 3 respectively. 

Also 

K J l ° r iAAOl} a n d KcJl 
specifiy the acceleration of the point A relative to the point Οχ mea-
sured in frame 1 and the acceleration of the point D relative to the 
point C measured in frame 1 respectively. 

Numbers are also used as suffixes inside the braces to qualify posit-
ion, velocity and acceleration. Thus 

{R^i , {V^i and {A^h 

specify the position, velocity and acceleration respectively of the 
centre of mass of body 4 measured in frame 1. 

The angular velocity vector is qualified by number suffixes. Thus 

{033)2 o r ί ω 3 2 } 

specify the angular velocity of body 3 measured with respect to body 
2 or the angular velocity of body 3 relative to body 2. A similar not-
ation is used for angular acceleration. The angular velocity and acc-
eleration vectors can be further qualified by lower case superscript 
letters inside the braces. Thus 

{ ω2}1 and { ω 2 ) 1 

specify, respectively, the components of the angular velocity vector 
normal to and parallel to to some line joining points(specified in a 
particular context) fixed in body 2. Similarly, 

K A } I and KAJI 

specify, respectively, the components of the linear acceleration of B 
relative to A normal to and parallel to the line joining B and A. 

The usual modulus notation is employed to indicate the magnitude of a 
vector. Thus 
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Ii and [ω2Ii °x I ω21 I 

are magnitudes of the corresponding vectors. In the case of the rela-
tive position vector, which is independent of the frame used for its 
measurement the number suffix is omitted. Thus the magnitude of 

KAJI = KAK = K A L 
i s w r i t t e n 

Ι Λ Α Ι · 

A vector can be described by resolving it along the axes of a partic-
ular reference frame, when it is said to be referred to that frame. 
The frame to which a vector is referred is written outside the braces 
after the first number suffix and separated from it by a solidus or 
oblique stroke.Thus 

KAJI/3 

us 

w3 

is the column matrix which describes the velocity of B relative to A, 
measured in frame 1, in frame 3. 

3 The transformation or rotation matrix 

The transformation matrix is a 3x3 orthogonal matrix of direction co-
sines written 

[ a ] . 

It is used to change the frame to which a vector is referred. If, for 
example, a vector {B}n is referred to frame 1, then the transformation 
matrix which changes the reference frame to frame 2 is 

[ * l ] 2 

Thus 
{ B } n / 2 = U i l 2 { B } n / 1 

The transformation matrix can be regarded as the matrix which specif-
ies a rotation, or sequence of rotations, which a frame undergoes to 
align it with another. If, for example, frame 1 is to be aligned with 
frame 2, then the rotation matrix would be written 

[ 12 h · 

If this alignment is achieved by a sequence of simple rotations about 
a single axis of appropriately positioned intermediate frames 3 and 4, 
then this operation would be specified by the product of rotation 
matrices 

[ l2 h = I *3 li[ Zk ]3[ £2 ]k . 
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Dynamics 

1 Scalars 

A, B, C, D, E, 
F, I , J

 Terms in the i n e r t i a matr ix 

k
 Spring r a t e , constant 

m
 Mass 

T
 Kinetic energy 

V
 Potential energy 

g
 Magnitude of gravitational acceleration 

W
 Work 

The general symbols can be qualified by appropriate suffixes. 

1 can take the suffixes xx, xy, xz etc. to denote the axes involved. 
A, B, C etc. can take number suffixes to denote the reference frame. 

m can take a suffix P to indicate that it refers to a particle, or a 
number suffix to indicate the body to which it refers. 

T can take a suffix P to indicate that it refers to a particle, or a 
number suffix to indicate the body to which it refers. It can be fur-
ther qualified to indicate that the energy is evaluated at some part-
icular position. Thus, for example 

is the rotational kinetic energy in body 4 when in some position def-
ined by the angle a. V can be qualified in a similar manner. 

W can take suffix statements such as A+B->C to specify the path tr-
aced out by the point of application of the force involved. 

2 Vectors 

Upper case letters written inside braces are used to designate vector 
quantities as follows: 

{F} Force 

{G} Linear momentum 

{H} Angular momentum (Angular momentum) 

{L} Couple moment 

{M} Force moment 

{w} Weight 

{v} Vector operator del 

The general symbols for vector quantities are qualified in two ways by 
appropriate suffixes and also by superscripts. 

In the case of the force vector, number suffixes inside the braces are 
used to specify a contact force between two bodies. As, for example, 
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{F23} 

which is the force on body 2 due to body 3. Similarly, 

{L23} 

is the couple on body 2 due to body 3. Also 

{F2} 

is the external force on body 2. It might be, for example, 

{F2} = {F23} + {F21+} + {F25} + 

where 3, 4 and 5 are bodies which exert a force on body 2. A similar 
notation can be used in respect of couples. Components of{F} and {L} 
can be singled out by writing an appropriate superscript inside the 
braces, as for example, 

{Fx} and {Ly} 

o r 

{Fn} and {Lp} 

where the superscripts n and p refer to components parallel to some 
reference direction. 

A number suffix is used outside the braces to specify the frame to wh-
ich the vector is referred. Thus 

{F34}3 

is the column matrix which describes the force on body 3 due to body 
4 which is referred to frame 3. The {L} can be similarly subscripted. 

In the case of linear momentum a number suffix inside the braces spe-
cifies the body concerned and the first number suffix outside the br-
aces specifies the frame in which the momentum is measured. This frame 
will invariably be an inertial reference frame which, in this text, is 
always designated 1. It is always included by way of emphasis. The se-
cond number suffix outside the braces, written after a solidus, spec-
ifies the frame to which the vector is referred. Thus 

{£3}ιΛ 

is the column matrix which describes the linear momentum of body 3, 
measured with respect to frame 1, the vector being referred to frame 4. 

In the case of angular momentum of a body about its centre of mass, a 
number suffix inside the braces specifies the body concerned and the 
number suffixes outside the braces have the same significance as in 
the case of linear momentum. Thus 

{Η3}ΐΛ 

is the column matrix which describes the angular momentum of body 3 
about its centre of mass, measured with respect to frame 1, the vec-
tor being referred to frame 4. If the angular momentum about a point 
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other than the cen t re of mass i s to be spec i f i ed , point Q say, then 
t h i s i s wr i t t en 

{H3oliA · 

In the case of the moment vector, a single letter suffix is used to 
specify the point about which moments are taken and a single number 
suffix outside the braces specifies the frame to which both force and 
position vectors are referred. Thus 

{MA}3 

is the column matrix which describes the moment of a force, or system 
of forces and couples about A, the vector being referred to frame 3. 

In the case of the weight vector, a number suffix specifies the body 
to which it refers and a single number suffix outside the braces sp-
ecifies the frame to which the vector is referred. Hence 

{w4}2 

is the column matrix which describes the weight of body 4, the vector 
being referred to frame 2. 

3 The inertia matrix 

The inertia matrix is a 3x3 symmetric matrix written 

I I] 

Number suffixes are used in the same way as for vectors. Thus 

[I3]3/3 

describes the inertia of body 3, measured with respect to frame 3 and 
referred to frame 3. Unless expressly stated otherwise, the centre of 
of mass of body 3 will be at the origin of frame 3. Similarly, 

describes the inertia of body 3, measured with respect to frame 4 and 
referred to frame 5. 



Chapter 1 

Kinematics 

1.1.The Position Vector 

The position of a point depends upon the datum used for its measure-
ment. Consider three bodies of a system of bodies designated 1, 2, 3 
etc. Let a system of co-ordinate axes be fixed in a convenient 
position in each of the bodies as shown in Fig. 1.1. A point P3 in 
body 3 can have its position measured relative to each set 

of axes or frame of reference. The vector ΟχΡ3 is the position of P3 

measured in frame 1, the vector O2P3 is the position of P3 measured 

in frame 2 and the vector 03P3 is the position of P3 measured in 
in frame 3. 

Let {R} be used to represent the position vector, and in particular 
represent 

OiP3 by {RP 3 0 1} 1 or simply {Rp3}1 , 

O2P3 by {Rp302}2 or simply {Rp3}2 , 

olT3 by {RP 3 0 3} 3 or simply {Rp3}3 

and so on. The suffix outside the braces is used to indicate the frame 
in which the position of P3 has been measured. 

The position vector can be specified by components along any one set 
of co-ordinate axes or reference frame, when it is said to be 
referred to that set of axes or reference frame. The reference frame 
is indicated by a second suffix, so that 

represents the column matrix which specifies the position of P3 

1 
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Fig. 1.1 

measured in frame 1 and referred to frame 1, where a^, bi and cT are 
the components of the vector along x1; ya and zx respectively. 
Similarly, 

K3} 2/3 
a3 

b3 

C 3 

represents the column matrix which specifies the position of P3 
measures in frame 2 and referred to frame 3. 

While the particular case of the position vector has been considered, 
it will be clear that, in general, a vector canonly be completely 
specified by a column matrix when the frame used for its measurement 
and the frame used for reference are quoted. Some vectors are, however, 
independent of any reference body and in such cases a single suffix 
outside the braces can be used to indicate the frame to which the 
components of the vector are referred. 

1.2.The Relative Position Vector 

Let A and B be two points fixed in body 3. Then by reference to 
Fig. 1.2, which is drawn two dimensionally for ease of illustration, 
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and 

Also 

and 

{M3 = W s + ΚΑϊ3 

K2>3
 + K U = K } 3 

iR
02}3

 + W 2 = K>3 · 
Subtraction of Eq. 1.4 from Eq. 1.3 gives 

iM 2 - Kh = ίΜ 3 - {RJ3 
and therefore 

KJ, = { R B A } 3 * 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

It is thus clear that the relative position vector does not depend 
upon the reference body used for its measurement, but the matrix 
which specifies the vector will depend upon the frame to which it is 
referred. Thus, for example, while 

Κ Λ / 5 = KA} 3 / 5 KA> 5 / 5 e t c . , 

K A ) , / 3 * Κ Λ / 2 * KA}2/i
 e t c · 

Strictly therefore, in the case of the relative position vector, the 
first suffix which denotes the reference body used for its measure-
ment is not necessary, but it is wise to retain it because when time 
derivatives are considered it will be found that, for example 

^ΚΑΪ^^ΛΑΪ!/ 
dt 

Refer to Problem 3.1 and Problem 3.23. 

1.3.Transformation of Vectors 

Let {B} be any vector where n is the reference body used for its 

measurement. If the frame to which it is referred is designated 1, 
then the column matrix representing the vector would be written 

{B} n/i vi 

and if the vector was referred to frame 2 then its column matrix 
representation would be written 

{B} 
n/2 

r2 

v2 
w2 
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Fig. 1.2 

as shown in Fig. 1.3. It is necessary, given {B} , to find {B} , n/i n/2 

and vice versa. Consider the u component of {B} . as a vector in 

frame 2 as shown in Fig. 1.4a. Let 

£ , I and l 
X2X1 Y2X1 Z2X1 

be the direction cosines of u^ with respect to the x2 / y2 and
 ζ2 

axes respectively. Then the components of ui along x2 , y2 and z2 
are respectively 

Ui£ , Ui£ and Ui£ 
1 X2*l l Y2X1 Z2X1 

Similarly, by reference to Fig. 1.4b, the components of νχ along x2, 
y2 and z2 are respectively 
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Fig. 1.3 

VIA , VIA and vi5, „ 1 *2Yi x Y2Y1 x z2Yi 

Also, the components of wx along x2 , Y2
 a n d z2 a r e respectively 

Wi£ , Wi£ and wi£ 
1 X2Z1 i Y2 Z1 Z 2 Z 1 

Adding corresponding components gives 

U 2 = U l * X 2 : t l
 + V l i X 2 Y l

 + W l * X 2 Z l 

Vo = Ui £ + ViJl + Wi Ä 
2 * Y2^1 X Y2Yl l Y2Z1 

w 2 = ^ι£„ ν + Vi& ττ + WXÄ, „ z x Z2Xi
 x Z2Y1 Z 2 Z 1 

These equations can be written in the form 
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Uj in frame 2 

(a) 

y i 

v ? i n frame 2 

l = £, 
x2Yi y i X 2 

Y2Y1 *ΎΐΥ2 

F i g . 1 .4 

o r 

where 

u2 

v2 

w2 

{B} 

x 2 x x 

I 

I z2xl 

x2yl 
I 

YlYl 

z2Yl 

n / 2 = [ A l l 2 i B } n / l 

Ϊ Ai l 2 

X o X 

£ 
2 ^ 1 

~Y2*1 

Z 2 X ! 

X 2 Y l 

I 
Y2Y1 

I 
z 2 Y l 

x2zJ 
Y 2 Z 1 
z2zlJ 

Γ Ί 

Γ1 

Γ1 

[wij 

£ 
X 2 Z i 

Y 2 Z 1 
Z 2 Z 1 

( 1 . 6 ) 

( 1 . 7 ) 

( 1 . 8 ) 

is the transformation matrix which transforms the components of a 
a vector from frame 1 to frame 2. Remember, the 'direction1 of the 
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of t h e t r a n s f o r m a t i o n i s from 1 to 2 

[<& 
Similarly, it can be shown that 

or 

where 

vi 

{B} 
n/i 

z z 
xxx2 xiy2 

Z Z 
Ylx2 YlY2 

z z 

m
 zl x2 zlY2 

= [Ä2]liB}n / 2 

[ Ä2l 1 = 

ΧχΧ2 
I 
y i x 2 

I 
zTx2 

X l y 2 

I 
Y1Y2 

I 
ZlY2 

Reference to Fig. 1.4 and Eqs. 1. 

1st. column 

of [ Ζλ] 2 

x2xx 

I 
Y2X1 

x x z 2 

Ylz2 

'1^2 

U 2 

V 2 

w 2 

X l z 2 

Ylz2 
I zl z 2| 

and 1.11 shows that 

(1.9) 

(1.10) 

(1.11) 

z xlx2\ 
XlY2i 

Z2X1 I I xl z2 

Direction cosines of xx 

relative to frame 2 

1st. row 

of [ Z2] 1 

and 

Thus 

2nd. column 

of [ £1] 2 

3rd. column 

Of [ £χ] 2 

[ Ail 2" = [ Ä2] 1 

χ2Υΐ 

—4 Υ2Υι 
z2Yl 

— r — 
Direction cosines of yi 
relative to frame 2 

Ylx2 
lYiY2^ 
I 
Ylz2 

X 2 Z X 

I 
Y2Z1 
Z2Z1 

"T 

zl x2 
lzlY2l 
zlz2 

Direction cosines of zχ 
relative to frame 2 

2nd. row 

of [ £2] 1 

3rd. row 

Of [ £2] ! 

where the superscript T indicates the transpose. Also 

[ ̂ 21*1 = [ Ail 2· 

(1.12) 

(1.13) 

It should be particularly noted that transforming a vector changes 
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only the frame to which the vector is referred and has no influence 
on the frame in which the measurement is made. 

1.4.The Rotation Matrix for Simple Rotations 

The transformation matrix [ £2] l ^
s t n e matrix which transforms a 

vector from frame 2 to frame 1. It can be usefully regarded as 
having another role. Consider the case of two frames, 1 and 2 which 
have their x axes aligned and arranged so that a positive rotation of 
frame 1 through a about the x^ axis aligns yj with y2 and z^ with z2 
as shown in Fig. 1.5a. 

Frame 1 rotates a about Xjto align with frame 2 

1 a about xj 2 

Fig. 1.5a 

By reference to Eq. 1.11 the terms in [ £2] i for this particular case 
are 

£ = cosO = 1, £ ~ COSTT/2 = 0, £ „ = COSTT/2 = 0, xTx2 xl Y 2 x2z2 

£ = COSTT/2 = 0, £ = cosa, £ „ = cos (π/2+ a) = -sina 
Ylx2 YlYl Ylz2 

£ = COSTT/2 = 0, £ = cos(ir/2-a) = sina, £ „ cosa zix2
 / zxy2 zxz2 

and therefore 

[ A21 1 = 

1 0 0 

0 cosa - s i n a 

0 s i n a cosa 

(1.14) 
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Thus, [ &2ί l can be taken to represent the positive rotation a about 
the χχ axis which frame 1 must undergo to align it with frame 2, or 
alternatively, the rotation of frame 2 about the x 2 axis in moving 
from alignment with frame 1 to its given position. The direction of 
rotation indicated by the rotation matrix [ £2] l

 i s thus from 1 to 2 

M> 
Compare this with its transformation interpretation, 

cosß 0 sin 

0 1 0 

sinß 0 cos 

Frame 1 rotates 8 about yj to align w.ith frame 2 

1 B about yi 2 

Fig. 1.5b 

Figure 1.5b shows the case in which frames 1 and 2 have their y axes 
aligned and arranged so that frame 1 aligns with frame 2 when frame 1 
undergoes the positive rotation $ about the yj axis. In this case 

[ £21 2J 1 

cosp 

0 

-sin3 

0 

1 

0 

sin 

0 

cos 

(1.15) 

Similarly, in Fig. 1.5c a rotation of frame 1 through γ about the zl 
axis aligns frame 1 with frame 2 giving 

[ 421 1 = 

cosy 

siny 

0 

-siny 

cosy 

0 

0 

0 

1 

(1.16) 

Equations 1.14, 1.15 and 1.16 are important results which are used 
repeatedly in the solution of problems and they must therefore be 
commited to memory. 
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l *2h = 

cosy -siny 0 

siny cosy O 

0 0 1 

Frame 1 rotates y about Zj to align with frame 2 

1 y about Ζγ 2 

Fig. 1.5c 

1.5-Consecutive Rotations 

If the angular position of frame/ 4 relative to frame 1 is defined by 
the rotation matrix 

[ lh\ i I 

l 
zlXl+ 

χ4Υ4 
lYiYk 
I 

ziYh 

lYizh 
l 

:l z4 

(1.17) 

Cy 

S y 

0 

- s y 

cy 

0 

°1 
0 

l l 

1 

P 
L° 

0 

ca 

s a 

0 

- s a 

c a j 

cß 

0 

L-S3 

0 

1 

0 

S3 

0 

cß. 

then it is always possible to replace the matrix by a product of 
three matrices such as, for example, 

[ £4] 1 = 

each of which represents a simple rotation of frame 1. Note that 
here c has been written for cos and s for sin to effect an economy of 
space and effort. 

Figure 1.6 shows frames 1, 2, 3 and 4. The origins of frames 2 and 3 
are coincident with the origin of frame 1. Frame 4 is also shown 
copied with its origin coincident with that of frame 1. Frame 2 is 
positioned such that the z2 axis is coincident with the zj axis and 
the x2 axis is perpendicular to the y^ axis. Thus the rotation of 
frame 2 about the x2 axis makes it possible to align the y4 axis with 
the y4 axis. Frame 3 is positioned such that the x3 axis is 
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1 γ about ζχ 2 a about x2 3 β about y3 4 

Fig. 1.6 

coincident with the x2 axis and the y3 axis is coincident with the 
copied y4 axis. The z3 and x3 axes are thus in the ζ4χ4 plane of the 
copied frame 4. Thus frame 1 can be aligned with frame 4 by the 
following simple rotations 

1 γ about zi 2 a about x2 3 β about y3 4 
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[ Äif] 1 = l Ä2l l l £3] 2l ÄI+] 3 

Cy -Sy θ Ι Γ ΐ 0 Ό 

Sy Cy 0 0 Ca - S a 

0 0 1 0 Sa ca 

C3 

0 

s 3 

0 

1 

0 

S 

0 

c 

cycß - sysasf 

syc3 + cysasi 

-cas3 

Hence
,
 by Eqs

.
 1.17 and 1.18 

S i n a = lZiYk ' 

-Syca cys3 + sysac3 

Cyca Sys3 ~ Cysac3 

Sa cac3 

and 

-tany = I /% 
*ιΥ4 YiYk 

" t a n 3 = £
Z l x /

£ z i z ^ 

Refer to Problem 3.2 and Problems 3.24 and 3.25. 

(1.18) 

(1.19) 

(1.20) 

(1.21) 

1.6.Successive Transformation of Vectors 

It is frequently necessary to transform vectors from one frame to 
another in cases where the alignment between frames cannot readily be 
achieved by a simple rotation about an axis of one of the frames. In 
such cases it is possible to choose convenient intermediate frames 
which can be readily aligned by simple rotations. 

Consider the system of Fig. 1.7 in which body 2 rotates about the Ζγ 
axis fixed in body 1 and body 3 turns on body 2 about the y2 axis 
fixed in body 2 and also rolls on body 1. Frame 1 can be aligned with 
frame 3 by the following simple consecutive rotations 

1 y about Ζγ 2-3 about y2 3 

and therefore 

I A3] 1 = t *2] 1
1 £ 3 ] 2 = 

Thus, for P a point in body 3 

cy 

sy 

0 

- S y 

Cy 

0 

0 

0 

1 

c3 

0 

| s 3 

0 

1 

0 

- s 

0 

c 

| R O A / 1 " { R 0 3 ° 2 } 1 / 1 + i R " 3 } l / l 

' * 2 ' ι Κ 3 ο Λ / 2
 + [ ^ ι [ * 3 ΐ ι Κ θ 3 } 3 / 3 
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Cy -sy 0 

Sy Cy 0 

0 0 lj 

+ 

P 
a 

L°-
Cy -sy 0 

sy cy 0 

.° ° im 

~cß 

0 

^sß 

0 

1 

0 

-sßl 

0 

cßj 

Tb"1 

c 

L d -
( 1 . 2 2 ) 

{R0302}2/2 

Τ777777Ύ7Ύ777 
cosß 0 -sinß 

G &3Ü2 = 0 1 O 

in3 O cosß 

Note. The rotation of frame 3 
relative to frame 2 is negative. 

U23i 
cosy -siny 0 

siny cosy 0 

0 0 1 0 i , 0 2 

hL 
»Υ2 2- -

///V/V 

;d 
Ύ7777Ύ77777777777 

Κθ3>3/3 = 

Y3 

Fig. 1.7 

If y is known in terms of time (and if body 3 rolls without slip on 
body 1, 3 is also known) then the final expression for 

{ R P O 2 } I 7 I 

is readily differentiated with respect to time, even when b, c and d 
are known functions of time, to obtain a general expression for the 
velocity of P. It is thus possible to obtain a general expression for 
velocity and acceleration of points in complicated systems when less 
systematic methods would require considerably more ingenuity and have 
less chance of producing the correct result. 

Suppose it is necessary, in a more general case, to find {B} , from 



14 Matrix Methods in Engineering Mechanics 

{ B } n / 5 . Then 

{ Β } η Λ = [ Α 5 ] ^ ί Β } η / 5 , 

{ Β } η / 3 = [9"*]*{Β}η/ι> = 1 ^ 1 3 [ A 5 U i B } n / 5 * 

{ Β } η / 2
 = [ ι*] 2 { Β } η / 3

= Ι £ s l 2 l H 1 3 [ £ s l ^ ί Β } η / 5 
a n d 

{ Β } η / ι = [ ^ 1 ι { Β } η / 2 = 1 ί 2 ] l [ £ s l 2 [ £ ί + 1 3 [ ^ 1 ^ { Β } η / 5 

= U 5 1 ΐ { Β }
η / 5 * ( 1 β 2 3 ) 

There is, of course, no need for the frames to be numbered consec-
utively. Thus {B} . might equally well be given by 

where 

or 

{B}n/i = l ZQ] ll £21 8[ £3l 2l M 3[ £5] 7{B} n / 5 (1.24) 

[ Ä5I 1 = Ϊ *21 1
[ £3l 2i A4] 3[ £5] 4 (1.25) 

I A5] ! = [ £8] χ[ £21 el Ä3] 2[ M 3lÄ5] 7 . (1.26) 

The transformation thus proceeds from right to left, 5 to 4 to 3 to 2 
to 1, or 5 to 7 to 3 to 2 to 8 to 1. 

In the alternative rotation role, the matrix product is read from 
left to right. Frame 1 can be aligned with frame 5 by the following 
successive rotations 

rotate frame 1 to align with frame 2, 
rotate frame 2 to align with frame 3, 
rotate frame 3 to align with frame 4 

and 
rotate frame 4 to align with frame 5. 

1.7.The Velocity and Acceleration of a Point 

Figure 1.8 shows a point P at time t when it is coincident with a 
a point A fixed in frame 1 and also at time t + At when it is 
coincident with point B fixed in frame 1. The change in position of 
P which occurs in time At is represented by the vector 

{ARp} 

when the change is measured with respect to or measured in frame 1. 
Thus 

{AR ]■! = {R } X I - {R } 
p p |t+At P 

= K h " K h = (RBA1I t1·27) 
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Path of P drawn on 
frame 1 

Fig. 1.8 

and the velocity is given by 

{V h = Limit{AR^}i 
A t-°-£F— 

If {AR }I is specified by 
ΔΧχ 

Ayi 

Δζ ι 

then 

{ARpli/i = 

{Vp}i/i = LimitjARph/! 
At-K) 

L i m i t 
At-K) 

Axi/At 

Ayi/At 

AZi/At_ 

= 

*i! 

yi; 

-Zl· 

= {Rp}l/1 = 4 K l l / 1 
dt 

The acceleration of P is given by 

(1.28) 

(1.29) 

MMAERBM - B 
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{Ml/1 ^ ^ {VP }l/l = { V p l l / 1 = { K p l l / l 
d t 

= Limit{AV}i/i = Limit 
At-K) —7Γ At->0 

At 

AXi/At 

Ayi/At 

AZi/At 

= 

xil 
yi 

/zij 

(1.30) 

If the change in position of P is measured with respect to another 
frame, say frame 2, which is moving relative to frame 1, then by 
considering the situation shown in Fig. 1.9, drawn two dimensionally 
for ease of illustration, 

Path of P drawn on 
frame 1 

Frame 2 a t t f At 

F i g . 1.9. 

{ΔΚ ρ } : 

t+At 

t+At 

{ARph = { R B } 2 | - { R A } 2 

= {\h 
t+At 

ΚΪ: 
t+At 

(1.31) 
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and s i n c e 

K M ¥ {RAh 
t+At 

{ARph * {ARph . 

T h e r e f o r e , in g e n e r a l 

{vph ¥ {vp}2 . 

The v e c t o r 

{ARp}i 

can be referred to frame 2 so that 

{ARp}i/2 = [ Ml 2{ARp}i/l = 

ΔΧ2 

Ay2 
Az2 

Hence 
{Vp}l/2 

(1.32) 

can be defined as 

{ v p h / 2 = L imi t {ARpJx/2 = L imi t 
At+O At At-K) 

Ax2/At 

Ay2/At 

Az2/At 

Now 

[Al l 2 L i m i t J A R p } ! / ! = [ * ΐ ] 2 { ν ρ } ι / ι ( 1 . 3 3 ) 
At+0 

At 

{vp}i/2 * p j i / 2 

can also be written 

{ R p } l / 2 = [ A l l 2 { R p } l / l = U l i 2d { R p l l / 1 = [ Ä i l 2 { V p } i / i , 
dt 

but it is important to note that while 

Kh/i = £ K ^ i / i ' { R
P } i /2 ^ d {Rp}i/2 · 

d t d t 

In general, a vector specified by a column matrix has its time deriv-
ative determined by differentiating each element of the matrix with 
respect to time only if it is referred to the frame used for its 
measurement. Thus 

d {B} 
dt 

n/n {έ} n/n (1.34) 
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where the dot is taken as an instruction to differentiate each term 
in the ίΒ} , matrix only when the suffixes are the same. The vector 

{B>i/2 is not obtained by differentiating each term of {B)i/2 with 

respect to time since {B>i/2 i-
s defined by 

{B)i/2 = [Ail 2{Bh/i · 

The relationship between 

{B}w2 and d {B}i/2 
dt 

is readily determined by differentiating the relationship 

{B}l/2 = [AX] 2{3}i/i . 

Thus 

§: { B > i / 2 = [d 
dt Ldt 

[ Ai l 2 

[ d [ Ζλ] 2 

ί Β } ι / ι + I ^1] 2 { B } V 1 

{ B } i / ! + ( B } 1 / 2 (1.35) 

and therefore only if the first term on the right hand side of 
Eq. 1.35 is a null matrix will 

{Bh/2 

be equal to 

d {Bh/2 . 
dt 

Notably this is true for certain descriptions of the angular velocity 
vector by virtue of the relationship between the derivative of the 
rotation matrix and angular velocity.(See section 1.9). 

Refer to Problem 3.3 and Problems 3.2 6 to 3.29. 

1.8.Small Rotations 

A body, body 4, moves relative to body 1 such that frame 4 moves from 
alignment with frame 2, which is fixed relative to frame 1, to align-
ment with frame 3 which is also fixed relative to frame 1. It is 
always possible to move frame 4 from alignment with frame 2 to align-
ment with frame 3 by a maximum of three simple rotations such as 

2 αι about x2 i 3i about y. j γχ about z. 3 

where frames i and j are frames intermediate between frames 2 and 3. 
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i £3i 2 = i .̂ ] 2[ £. ]. r Ä3] 

and if the angles alf 3i and γ1 are small, then 

O 

I A3I 2 = " < * 1 

1 

1 

0 

3i 

0 

1 

0 

0 i 
0 

1 

1 

Ύ1 

0 

-Yl 
1 

0 

0 

0 

1 

1 o 

10 1 

|0 αχ 

"l 

I Ύ1 " ot 1 Bi 

L<*iYi - Bi 

When second and higher order products are neglected 

1 "Yl 3i 

Ύ 1 1 -06 i 

-3i αι 1 

An alternative combination of rotations could be 

-Yl 3i 

1 - αχΒιΥΐ -αι 

«1 + Υΐ3ι 1 

I A3] 2 = 

2 α2 about x2 i γ2 about z. j 32 about y. 3 

in which case 

l Ä3] 2 

1 0 

0 1 -

0 a2 

1 

Ύ2 + ot232 

α2Ύ2 " 32 

1 -Ύ2 

Ύ2 1 

0 0 

1 

0 

0 

1 

0 

-Ύ2 

1 - α232Ύ2 

a2 " Y232 

32 

■ a 2 

1 

0 

1 

and when second and higher order products are neglected 

'3J 2 

1 -γ2 32 

Ύ2 1 -»2 

"32 «2 1 

Examination of the other four possible combinations of rotations 
would show that the form of [ £3] 2 is the same as the two previous 
cases and therefore independent of the order of 'addition' of the 
small rotations. It is therefore possible to write 

[Ä3] 2
 = 

-Y 

1 
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This vector l i k e property can be used to t r e a t small r o t a t i o n s l i k e 
vec to r s . Thus 

{Δθι+}2 

can be regarded as a vector of magnitude 

|ΔΘ4 I 2 = /(a
2 + 32 + γ2) 

which is the angle through which body 4 rotates when frame 4 moves 
from alignment with frame 2 to alignment with frame 3, the angle 
being measured with respect to frame 2. The column matrix represen-
tation of this vector is thus 

{ΔΘ4}2/2 (1.36) 

but since frame 2 is fixed relative to frame 1, {Δθι+>2 is equally 
well { Δ Θ i+} i and therefore 

{Δθι+}1/2 = (1.37) 

1.9. Angular Velocity and the Derivative of the Rotation Matrix 

Consider the motion of body 4 relative to a reference body 1. Let A 
and B be points fixed in body 4. Then 

Let frames 2 and 3, fixed relative to frame 1, be arranged such that 
frame 4 (fixed in body 4) moves from alignment with frame 2 at time t 
to alignment with frame 3 at time t + At. At time t 

[ HI i = I M l F 

Κ Α Κ Λ = K A K / 2 

Similarly, at time t + At 

K A H / I = f*3l Ι Κ Α Κ Λ · 

Now 

{ARBA}i/1 = K J i / i 
t+At 

a n d 

K A H / I 

= [[ *31 l -I *2l Ο Κ Α Κ Λ · 
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The c h a n g e i n a n g u l a r p o s i t i o n o f frame 4 w h i c h o c c u r s i n t i m e At i s 

l ΔΑι̂ Ι ! = [ H I 1 
t + A t 

- I Aifl i = [ A3] 1 - I A 2 ] ! 

and s i n c e 

I ^ 3 ] 1 = [ A 2 1 i l A3] 2 

[ ΔΑ 4 ] i = [ £ 2 ] T [ [ £ 3 ] 2 - [ 1 ] ] . 

NOW 

[ A 3 ] 3* 2 [ 1 ] = 

0 

Ύ 

3 

-Y 

0 

a 

3 

- a 

0 

which is a skew-symmetric matrix which can be formed from the column 
matrix of Eq. 1.37. It is thus possible to define a skew-symmetric 
form of the angular rotation matrix as 

[ ΔΘ4] i/2 = 

0 

Ύ 
-γ 
0 (1.38) 

and therefore 

[ Mk] 1 = [ l2\ x [ ΔΘ4] 1 / 2 · 

Hence, by reference to the footnotes on pages 22 and 23, t which 
show how the transformation of the skew-symmetric form of a column 
matrix is effected., 

[ Δ Θ 4 ] i / 2 = [ ii] 2 [ Δ Θ 4 ] i / i [ A i l 2 

s o t h a t 

[ A i l i + l i = [ Ä 2 ] i [ Αχ ] 2 [ Δ θ ^ ] i / i [ H i l l = [ Δ Θ 4 ] i / ! [ Ä 2 ] ! · ( 1 . 3 9 ) 

The angular velocity of body 4 relative to body 1 is defined by 

{ωι+}ι = LimitfAeit } 1 
At-K) At 

( 1 . 4 0 ) 

and t h e r e f o r e 

I ***! 1 = L i m i t ! Δθι+l i / i 
At-K) ~ ^ 

[ Ä2] 1 = [ ω 4 ] i / ι ί Ä2] 1 

= [ ω^] ι / ι [ ßi+] 1 ( 1 . 4 1 ) 

Thus, in general 
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d [ £ ] = [ £ ] = [ ω ] . [ £ ] 
-=·, m n m n m n / n m n 
d t 

( 1 . 4 2 ) 

Now 

s o t h a t 

ί Δ Κ Β Α ^ / ΐ = Ι Δ ^ ] i t ^A^A = I Δ θ ^1 l / l l ^2] I { R B A } 4 / 4 

( v B A h / i = L i m i t i A e i , ] i / i [ £2] i { R B A } v ^ 
At-K) At 

I f 

t h e n 

W h / i 

K A ^ / I 

[ ω4] ! / i [ £2] I { R B A } I + / 2 = l ω4] I / I { R B A } I / I . ( 1 . 4 3 ) 

a n d { R B A } I / I 

0 - ω ω 
z y 

ω 0 - ω 
Z X 

-ω ω 0 

1 -

X 

y 
z 

/ 

*" 

X 

y 

z 

= 

ζ ω 
y 

χω 
z 

y ω 

- γω 

- ζ ω 

- Χω 

V e c t o r s c o r r e s p o n d i n g t o t h e a b o v e s t a t e m e n t s a r e shown i n F i g . 1 . 1 0 . 

f The r e l a t i o n s h i p b e t w e e n t h e t r a n s p o s e a n d i n v e r s e o f t h e t r a n s -
f o r m a t i o n m a t r i x 

Now { B } n / l = l ^ 2 J i { B } n / 2 a n d s i n c e I ( B } n / l | = I { B }
n / 2 ' ' 

{B}T , {B} , = {B}T , {B} 7 J n / i J n / i n / 2 n / 2 

A l s o 

{B} n / i V 2 
1 , = {Bl , n / i n / 2 

H e n c e 

[ £ 2 l l { B } n / o a n d { B } n / i = { B ) n / o [ £ 2 ] i . 

{ B } n / 2 [ £ 2 ] ι [ £ 2 ] ι ( Β } η / 2 = { Β } _ / Λ { Β } 
n/2 n/2 

which requires that 

[ ̂ 2lli Ä2l 1 = I 1 1 o r I ^2l! = I 2̂l l1 
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1.10.The Relative Velocity of Points Fixed in a Rigid Body 

Consider two points A and B fixed in body 2 which is moving relative 
to body 1. The velocity of B relative to A, measured in frame 1 and 
referred to frame 1 is given by 

K A W I
 = ίω2) V i i V l i / 1 ( 1 ' 4 4 ) 

as shown in section 1.9 and the relative disposition of the vectors 
corresponding to this statement is illustrated in Fig. 1.11. Note 
particularly that the relative velocity vector 

is perpendicular to the plane containing the vectors {ω2}ι and {^ΒΑ}· 

If 

\v
BA\l = v ' I ω2 I l = ω and |RßA| = r 

then 

v = (üjsin0)r or v = wirsinO) 

as can be seen from Fig. 1.12. 

The component of angular velocity along AB does not contribute to-
wards 

and cannot therefore be found from {v~ }i. If {ω?}ι is to be found, 
1 BA J A 

t The transformation of the skew-symmetric form of a matrix 

Consider the vector product of the vectors described by {B} . 
n/i 

and { C } n / i 

{A}n/i = l B 1n/i { C }n/l ' 

Therefore 

l £ l l 2 { A } n / i = [ £l1 2 [ B , n / i l ^ll2( £l1 2 { C }n/i 

or 

( A } n / 2 = ( M ] 2 I B l n / i [ M l T
2 { C } n / 2 

which r e q u i r e s t h a t 

[ B ] n / 2 = \%x\ 2 l B ] n / 1 [ A i ] 2 · 
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yi χι 

Angular velocity Relative position 

Relative velocity 

Fig. 1.10-

and not simply its component perpendicular to AB, then more informat-
ion about the motion must be provided, for example the component of 
angular velocity along AB. 

Consider the problem of finding {ω2}ι/ι given {V A}i/i and { R }I/I· 
_ _ · . * B A ' H A ' Write 

V„ R - B A J 1 / 1
 = ^ V ^ ' ίω2}ι/ι = ίω} and 

for economy of space and effort. Now 

{V} = [ ω ]{R} 

and if this equation is premultiplied by [R], then 

BAii/i = {R> 

(1.45) 
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F i g . 1 . 1 1 . 

F i g . 1 . 1 2 , 

[ R]{V} = [ R][ bo ]{R} . 

The right hand side of this equation can be expanded using the relat-
ionship 

[ A ] [ B ] { C } = { B } ( { A } T { C } ) - { C } ( { A } T { B } ) 

t o g i v e 

[ R ] { V } = U } ( { R } T { R } ) - { R } ( { R } T ( W } ) 

and therefore 
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) } = [ R l t V l j+ ({R> U } ) { R } 

= ίω" } + {ωΡ} ( 1 . 4 6 ) 

where {ω"} is the component of {ω} normal to the plane containing {R} 
and {V} which is determinate, while {ωρ} is that component of 
parallel to {R}. {ωρ} depends upon {ω} , which is to be determined, 
and is therefore indeterminate from a knowledge of {R} and {V} alone. 
The vector {ωη} is illustrated in Fig. 1.13. 

{ωη> 

Fig. 1.13. 

The reader should appreciate that it is not possible to find {ω} from 
Eq. 1.45 as follows 

{V} -[ R](ü)} 

-[ R] 1{V} = {ω} 

since [R] is singular, its determinant being zero. 

If both sides of Eq. 1.45 are premultiplied by [ ω ] , then it is easy 
to show that 

{R} 
]{V} ( u r {R}) ίω} (1.47) 

and therefore the component of {R} normal to the plane containing {ω} 
and {V} is defined, but not that parallel to {ω}. 

Refer to Problems 3.4 and 3.5 and Problems 3.30 and 3.31. 

1.11. The Central and Instantaneous Axes 

Let P be a point in or attached to body 2 which is such that its vel-
ocity, measured with respect to body 1, is parallel to the angular 
velocity vector {0)2)1· Such a point is said to be on the central axis 
for the motion of body 2 relative to body 1. 
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Central axis parallel 

to {ω2}χ 

Fig. 1.14. 

If A is a point fixed in body 2 which has a known velocity, then 

{Vph/ ! = { v A } 1 / x + { v P A } 1 / x 

or 

{ V p } i / i = { V j i / i + [ ω 2 ] ι / ι { Κ ρ Α } 1 / 1 

which , f o r t h e immediate pu rpose can be a b b r e v i a t e d t o 

{Vp} = {VA} + [ω]{Κρ Α} 

fo r economy of e f f o r t . S ince {ω} and {vp} a r e p a r a l l e l 

Ι ω ] { ν ρ } = {0} = Ιω]{ν Α } + [ω][ω]{Κ ρ Α } 

and t h e r e f o r e , u s i n g t h e e x p a n s i o n f o r a v e c t o r t r i p l e p r o d u c t g iven 
i n S e c t i o n 1 .10 , 

{0} = [ω]{ν Α } + ({u)}T{RpA}){üj} - ({ω}Τ{ω}) {RpA} 

g i v i n g 
Ιω]{ν Α } (ίω> {Κ,Α}) 

t R P A } = ι ,2 + ΓΤ^ U } · 
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T h u s , t h e p o s i t i o n o f P r e l a t i v e t o A c a n b e c o n s i d e r e d t o b e made u p 
of two p a r t s a s shown i n F i g . 1 . 1 4 . I n t r o d u c e a p o i n t Q on t h e c e n t r a l 
a x i s s u c h t h a t 

[ ω 2 1 ι / ι { ν } i y i 

(Vli/i e - , ,2 · 11.48) 

QA is perpendicular to both {v }x and the central axis, and the vector 

{R } is determinate. The vector 

( W ^ / i i ^ } V 1 ) 
{Rpojl/l = ~ ,2 W h / l (1.49) 

I ω 2 I l 

is parallel to the angular velocity vector and indeterminate. 

The velocity of Q, and therefore that of P, or any point on the cent-
ral axis, can be found from 

{VQ}i/i = {VA}17 1 + {VQ A} 1 / X = {VA}17 1 + [uzh/xlR^h/x 

1 ω2 h/ll ω2 h/1 {V.} i/i 
= {vji/l + , ,2 / ■ (1-50) 

I " 2 I 1 

Using the expansion for the vector triple product given in Section 
1.10 to expand the second term on the right hand side of this equation 

({ω}Τ{νΑ}) ({ω}Τ{ω}) 
{VQ} = {Vj + Γ- ^ - ί ω } - {Vj 

I ω I I ω I 

and since the last term on the right hand side of this equation is 
simply {v } 

({^}i/ifv
Ali/i' 

I v J l / l = 2 W h / i (1.51) 
Ιω2 I 1 

For a similar point S relative to some point B fixed in body 2 

, , ({ω2}^/ΐ{ν
Β}ΐ/ΐ) 

{Vj i / ! = ~ l { ω 2 > ΐ / ΐ ( 1 . 5 2 ) 

| ω 2 I 1 

and s i n c e 

{\h = iv
Qh * 

ίω2}ι/ι{VA}i/i = ίω2}ι/ι{Vß}\/i = constant. (1.53) 

Hence the quantity 
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ίω2}ι/ι{
v
A}l/l 

|ω2 I l 

is also a constant for the motion. It has the dimensions length per 
unit angle and can thus be though of as representing the distance 
through which the body would advance along the central axis per unit 
angle of rotation if the instantaneous motion persisted. 

If the instantaneous motion of the central axis is zero, then the cen-
tral axis is called the instantaneous axis. 

If two bodies having relative motion have points in them, or attached 
to them, which have no relative motion at all times, then such points 
are on the permanent axis for the relative motion of the bodies. 

A determination of the position of the central axis, instantaneous 
axis for the relative motion of two bodies allows the direction of the 
vector representing their relative angular velocity to be determined. 

Refer to Problem 3.6 and Problems 3.32 and 3.33. 

1.12. The Relative Acceleration of Points Fixed in a Rigid Body 

For points A and B fixed in a rigid body, body 2, moving relative to 
body 1 

ίνΒΑ^/ι = Ι ω 2 ΐ ι / ι ί *2li{RBAh/2 . (1.54) 

Differentiating to obtain the acceleration of B re la t ive to A 

iABA^/l = I ̂ 2 l l / l l ^2 l l { R B A } 2 / 2 + 

[ ^ ] i / i [ w 2 ] i / i [ ^ ] i | R B A h / 2 ( 1 . 5 5 ) 

s i n c e { R
B A } 2 / 2 i s constant. Hence 

(ABA}l/l = [ [ i 2 h / l + [ω21ΐ / ΐ ] {*BAll/l ( 1 ' 5 6 ) 

and since 

[« 2 1 1 / 1 {R B A } 1 / 1 = {VBA}1/1 

the acceleration can also be written 

Κ Α Ϊ Ι / 1 = ϊω2]1 / ι{ΚΒ Α}ι/ι + [ω 2 ] 1 / 1 {Υ Β Α } 1 / 1 (1.57) 

The vector corresponding to 

I ω2 ] ! / ! {RBA}l/l 

is perpendicular to the plane containing {ω2}\ and {^ΒΑ}· The vector 
corresponding to 



Matrix Methods in Engineering Mechanics 

ί ω 2 ] 1 / 1 { Κ Β Α } ι / 

[ ω 2 ] 1 / 1 { ν Β Α } 1 / 1 

Fig. 1.15, 

[ω21ΐ/ΐ{νΒΑ}1/1 

is perpendicular to the plane containing {u^H and {RBA}· These comp-
onent accelerations are shown in Fig. 1.15. 

Alternativley, if the equation 

{ v B A } V i = ι » 2 ΐ , | ν , Α 1 1 / 2 

i s d i f f e r e n t i a t e d w i t h r e s p e c t t o t i m e , t h e n 

{ΛΒ Α}ΐ/1 = [ ω 2 ] ι / ι [ * 2 ΐ ΐ { ν Β Α } ι / 2 + ^ 2 l l | t { V B A } l / 2 

and 

Κ Α ^ Λ = [ ω 2 ΐ ΐ / 2 { ν Β Α } 1 / 2 + a t { V B A } l / 2 (.1.58) 

Also, the acceleration of B relative to A can conveniently be resolved 
inot two comonents, one parallel to BA, the other normal to BA. Thus 

ΚΑίι/ι = ΚΑΪΙ/Ι
 +
 K A I I / I ^1·59) 

as shown in Fig.1.16. The magnitude of { A ^ A } I parallel to {RßA} is 
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Fig . 1.16. 

' V J i = l ^ j i c o s a 
I V M V J i 

IV cosa 

K A J V I K A J I / I 
rv 

and therefore 

iABA}l/l = K A I I 
K A I I / 1 i ^ A i l / l f V i l / l K A l l / l 

IV lv 
i R BA^/ l 

BA ' 

[ [ i 2 l i / i + [«ozh/i] K J i / i j K A } i / i 

As {RRA} i s perpendicular t o the vec tor corresponding to 

[ " 2 h / i { R B A } i / i , K A J I / I { I i 2 l i / i { R B A } i / i } 

i s zero . Hence 

( K A ) i / i l » 2 h / i l ω2 l i / i { V i i/i> { V l i / i 
Κ Α ^ Λ = 

IV 
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g i v i n g 

K A i l / 1 
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( - { R B A } V I [ " 2 I I / 1 { V B A } 1 / 1 ) { R B A } 1 / 1 

K A I 2 

= C- ( ί ω ζ Ι ι / ι ί Β , Λ ί ι / ι ) T { V B A } I / I M R B A } I / I 

K A I 2 

I ^ B A I 2 

a s shown i n F i g . 1 . 1 7 . 

( 1 . 6 0 ) 

ίΑϊΑ}ι/ι = ' ^ Ί / Ι Κ Α Ι Ι / Ι - [ ω " ] I / I { V BAJI / I 

I ^ A I 2 

KA>I - r 

l V ) l / l = t " 2 ] l / l { R B A } l / l 

[ R BA-1I / IKA)I / I 
{ ω 2 > ι / ι 

I « . A I 

F i g . 1 . 1 7 . 

A l s o , i f 

K A W / I 

r 2 

S 2 

t 2 

and { R B A } i / i = Yi 
z2 

then since the vectors are at right angles to each other 

{^ΑΪ Vi^BA^/l = ° Ο Γ Χ2Γ2 + Y2S2 + Z2"t2 = 0 . (1.61) 

The vectors ίω2}ι and {ω2)ι can be resolved parallel and normal to 

{RßA} SO that 
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o r 

{ ü ) 2 h = {ω"} ι + { ( 4 h ( 1 . 6 2 ) 

and 

{0)2)1 = "Γω2}ι + ίω2>ι . (1.63) 

Thus, in cases where the constraints on the motion are such that the 
paral le l components are zero, 

K J 1 / 1 = [ω η
2 ] ι / 1 {ν Β Α } ι / ι = [ωη

2]5/ ι{ΚΒ Α}ι / ι (.1.64) 

and 

Κ Α Ϊ Ι / 1 = ί ώ 2 ΐ ι / ι Κ Α } ι / ι
 ( 1 . 6 5 ) 

. . . . _ Ι ^ Α Ι Ι / Ι Κ Α Ϊ Ι / Ι 
{ω2)ι/ι - γ—~—-

 (1.66) 

Ι«ΒΑΙ 

as shown in Fig.1.17 

1.13. The Relative Acceleration of Coincident Points Which Have 

Relative Motion 

Consider the motion of two bodies, bodies 2 and 3, which are moving 
relative to a reference body 1, and constrained such that 

{ω2)ι = {w3)i 

Let A2 and A3 be convenient coincident points on bodies 2 and 3 resp-
ectively which have relative ̂ notion. Then 

l R A 3 A 3 } l / l = i R A 3 A 2 } 2 / l = l A 2 h { R A 3 A 2 } 2 / S (1.67) 

since the points are coincident. Differentiating Eq.1.67 with respect 
to time to obtain the relative velocity of these two coincident points 
gives 

i V A 3 A 2 ) l / l = I " 2 ] l / l U 2 h { R A 3 A 2 } 2 / 2 + I *2 h {RA ̂  } 2 /2 

= I ? - 2 l l { V A 3 A 2 } 2 / 2 = < V A 3 A 2 } 2 / 1 ( 1 " 6 8 ) 

s i n c e 

{ R A , A j 2 / 2 
, 3 A 2 

is a null matrix. Differentiating Eq. 1.68 with respect to time to ob-
tain the relative acceleration gives 
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i A A 3 A 2 } l / l = I « 2 ] l / l U 2 l l { V A 3 A 2 } 2 / 2 

• + 1 ω 2 ] 1 / 1 [ ^ 2 ] 1 { ν Α 3 Α 2 } 2 / 2 + [ ^ 2 ] 1 { A A 3 A 2 } 2 / 2 

a n d t h e r e f o r e 

1 . 1 4 . D i f f e r e n t i a t i o n of t h e A n g u l a r V e l o c i t y V e c t o r , a S p e c i a l C a s e 

C o n s i d e r t h e a n g u l a r v e l o c i t y v e c t o r r e p r e s e n t e d by t h e m a t r i x 

{ ω 2 } ι / 2 

which specifies the angular velocity of body 2 measured with respect 
to body 1 by referring it to frame 2 which is fixed in body 2. Now 

ίω2>ΐ/2 = I #-1 h W h / l 

and therefore 

^{ω2>ι/2 = I ωχ ]2/2[ *ι ]2{ω2}ι/ι
 + I M ]2{ω2 } i/i · d-70) 

Since 

fωχ}2/2 = -ίω2}!/2 

Eq. 1.70 can be written 

^■{ω2)ι/2 = -[ ω2 Ιι/2{ω2}1/2 4- {ω2}}/2 . (1.71) 

The vector product 

[ ω2 ]ι/2ίω2}!/2 

is a null matrix, so that Eq. 1.71 reduces to 

{ω2}χ/2 = ^ { ω 2 } 1 / 2 . (1.72) 

Thus 

{ω2>!/2 

is unique in that it is determined by differentiating each element of 

{ω2}ι/2 

with respect to time. Note particularly that 

{ω2>ι/η ? 5ξ;{ω2}1/η 

unless frame n is fixed relative to frame 2. 
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1.15. Relative Angular Velocity 

Consider, for example, the situation in which bodies 2, 3 and 4 have 
motion relative to body 1 and relative to each other. Then(Fig. 1.18a) 

ίω^ΐι = {ω2)ι + ίω3)2 + ^4)3 (1.73) 

1 ^ 4 1 **2 2 **3 3 ^ 4 

or (Fig.1.18b) 

{ω3)2 = {ω4)2 + {ω3)4 (1.74) 

2 -► 3 2 **4 4- +»3 

or (Fig.1.18c) 

{ω3)2 = {ω^ι + {ω2)4 + {ω3)2 (1.75) 

1 ► 3 1 ► 4 4 ^ 2 2 ► 3 

and so on. 

To write Eqs. 1.73, 1.74 and 1.75 in column matrix form requires that 
the vectors be referred to the same frame, If, for example, the vectors 
of Eq. 1.74 are referred to frame 3, then 

{ ω 3 ) 2 / 3 = { 0 ) 4 ) 2 / 3 + { ω 3 Η / 3 ( 1 . 7 6 ) 

{ ω 3 } 2 / 3 = { 0 ) 4 ) 2 / 3 + Ϊ A4 1 3 { ω 3 ) 4 / 4 . ( 1 . 7 7 ) 

As might be expected, equations like Eq. 1.77 can be derived by diff-
erentiating the relationship between the appropriate rotation matrices. 
Take the example of deriving the column matrix form of Eq. 1.73. Now 

[ A4 h = I *2 hi £3 hi H h 

and on differentiation this becomes 

N i f l i / i l ^ l ! = [ o>2.]i/ i[ A4 h + [ Ä2 h i ω3 ] 2 / 2 l A4 h 

+ [ £3 h i ω4 ] 3 / 3 [ £4 h · 

P o s t m u l t i p l y i n g t h i s e q u a t i o n by [ £1 14 g i v e s 

[ o > 4 h / i = [ o ) 2 h / i + [ Ä2 h i ω3 ] 2 / 2 l A4 ]2I Αχ ]4 

+ I *3 h i ω4 l 3 / 3 l H h i Ai K 
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F i g . 1 . 1 8 , 

= [ ω 2 1 ι / ι + [ Ä2 ] ! [ W 3 ] 2 / 2 [ A2 1Ϊ + I Ä 3 111 ^ ] 3 / 3 I £ 3 l l 

= [ ω 2 1 ι / ι + [ ω 3 ] 2 / ι + ί ω ι + 1 3 / χ 

which , w r i t t e n in t h e column form r a t h e r t h a n t h e skew symmetric form, 
becomes 

W h / l = ΐ ω 2 > l / l + ί ω 3 } 2 / ! + ί ω ι + } 3 / 1 . 

S i m i l a r l y , t h e column v e c t o r form of Eq. 1.75 can be d e r i v e d from 

[A3 h = [ A4 lit ^2 KI £3 12 · 
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1 .16. R e l a t i v e Angular A c c e l e r a t i o n 

Consider, for example, the situation in which bodies 2 and 3 have 
motion relative to body 1 and relative to each other. Then 

{ω3}1/1 = {ω2)ι/ι + [ Ä2 11 -C ω3 } 2/2 (1.78) 

Differentiating Eq. 1.78 gives 

{ ω 3 } 1 / 1 = { ω 2 ) ΐ / ι + [ ω 2 h / i l Ä2 1 ι ί ω 3 } 2 / 2 + [ Ä2 h ί Ü)3 > 2 / 2 

( 1 . 7 9 ) 

The middle term on the right hand side of this equation can be reduced 
using Eq. 1.78. Thus 

[ ω2 h/i[ A2 ]ι{ω3}2/2 = Ϊ ω2 ] γ /λ { { ω 3 } λ /λ - {ω2}1/1} 

[ ω2 ]ι/ι(ω3 >!/! 

since 

[ ω2 ]χ/ι{ω2}1/1 

is a null matrix. Equation 1.7 9 can thus be written 

ίω3}ι/ι = ίω2}1/1 + [ ω2 ]ι/ι{ω3}1/1 + ίω3}2/2. (1.80) 

Refer to Problems 3.7 to 3.22 and Problems 3.34 to 3.51. 



Chapter 2 

Dynamics 

2.1.Newton's Laws of Motion 

Dynamics is concerned with the relationships between force, mass, 
energy and motion. For Engineering applications, except those dealing 
with nuclear and fast moving electron phenomena, the Newtonian model 
of mass, space, time and force is adequate. 

Newton (1642 - 1727) in his "Philosophiae Naturalis Prinoipia Mathem-
atical of 1687 enunciated three laws or axioms relating force and 
motion which can be stated as follows: 

1 A particle will continue in a state of rest, or of uniform motion in 
a straight line, unless it is compelled to change that state by forces 
impressed upon it. 

2 A change of motion with respect to time is proportional to the 
motive force impressed. 

3 For every force acting on a particle, there is a corresponding force 
exerted by the particle. These forces are equal in magnitude, but 
opposite in direction. 

The first law implies the existence of an inertial frame of reference. 
Consider the following hypothetical experiment. Erect a set of co-
ordinate axes in deep space remote from any other matter and project 
a particle successively along each axis. If the axes are not accel-
erating and not rotating, then the force free motion will persist 
along the axis which it was projected. Such a set of axes is said to 
be inertial. No set of axes is truly inertial, but a set of axis fixed 
in the ffixed' stars are very nearly inertial and must be used, for 
example,in space ballistics. For most Engineering applications forces 
can be predicted assuming that a reference frame fixed in the earth is 
inertial. In this text the inertial reference is always designated 1. 

The "motion" of the second law is measured by the momentum of the 
particle, which is the product of its mass and inertial velocity.Thus, 
by Newton's second law 

38 
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{Fp} « d{mp{vph}/dt - d{Gp}i/dt (2.1) 

where {Fp} is the external force or impressed force on the particle of 
mass nip and {νρ}χ is the velocity of the particle measured with resp-

ect to an inertial reference frame. For a particle of constant mass, 
Eq. 2.1 becomes 

{Fp} = kmp{Aph = kd{Gph/dt (2.2) 

which, for consistent units, reduces to 

{Fp} = ™?{\}i = d{Gph/dt . (2.3) 

When the arbitrary units of mass and acceleration chosen are the kilo-
gramme (kg) and the metre/second (m s"2), then the corresponding 
unit of force is the newton (N). Thus Eq. 2.3 is used to define force 
and requires that the force vector 

be that vector which is identical to the mass-acceleration vector 

MMl = d{Gp}l/dt· 
{F } is the vector which describes the external force and requires no 

suffix outside the braces to specify the frame used for its measure-
ment since this is implicit in the accleration which it produces. 
When Eq. 2.3 is expressed in its column matrix form, the frame to 
which the force vector is referred is specified by a single suffix 
outside the braces. Thus, when the vectors are referred, for example, 
to frame 3, the column matrix form of Eq. 2.3 would be written 

{ F p } 3 = iH p {A p } 1 / 3 = d { G p } 1 / 3 / d t . (2.4) 

2.2.The Measurement of Force 

While Eq. 2.3 defines force, it is not convenient to use it directly 
to calibrate force measuring devices or force transducers. The most 
accurate method is that of using the fact that the force of attract-
ion of the earth on a mass m is mg, where g is the local gravitational 
accleration. The force mg can be applied to the transducer directly, 
or with less accuracy, through a system of levers. 

Force meters take a wide variety of forms. At one end of the scale 
there is the dial test indicator type of device which can be used, for 
example, in the static calibration of materials testing machines, and 
at the other end of the scale is the piezo-electric force transducer 
with its sophisticated charge amplifier, capable of measuring force 
over a frequency range of zero hertz to several kilohertz and of meas-
uring small changes of force in the presence of large mean forces. 
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2 . 3 Work , P o t e n t i a l and K i n e t i c E n e r g y 

L e t a p a r t i c l e move f rom a p o i n t 

{ R p h / i = t o t h e p o i n t { R p } i / i = 

u n d e r t h e a c t i o n o f a f o r c e 

{Fph = 

The work done is given by 

B 

w A->B {Fp^dfRph/! = (F dx + F dy + F dz) 
x y z 

(2.5) 

where 

If 

d{Rp}i/i = 

dx 

dy 

dz 

{Fp}^d{Rp}1/1 = -dV, 

that is it is an exact differential, then 

w. -dv = -(vB 

A 

V (2.6) 

where 

Hence 

giving 

V = f(x, y, z) 

= -(F dx + F dy + F dz) 
x y u z 

F = -
3V 
dx 

F = - 1Y 
y ay 

a„a P, . - f (2.7) 

When Eq. 2.6 holds, the work done is dependent only upon the position 
of the points A and B, that is it does not depend upon the path traced 
out by the point in moving from A to B. V is known as potential energy. 
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I f a v e c t o r o p e r a t o r {V}i (de l ) i s d e f i n e d by 

' d 
3x 

41 

{V}· 3 
3y 

3 
3z 

(2.8) 

then for the case in which the work done is not path dependent, 

1 T n r ~ i , „ r -,Τ. ■ { F p } l d { R p } l / l = dV = { V l i V d J R p } ! / ! 

o r 
{F p } ; { V } X V ( 2 . 9 ) 

If both sides of Eq. 2.9 are premultiplied by 

11 ~ 

0 

3 
3z 

3 
" ay 

_ 3 
~ 3z 

0 

3 
3x 

3 
3y 

3 
" 3x 

0 

then 
I VliiFpJi = - [ V h i V h V . 

The right hand side of Eq. 2.10 is 

(2.10) 

3 
3y 

3_ 
3z 0 T-

3 
3z 

3 
"3x 

3 1 
3y 

3 
3x 

0 

Γ 3V 
3X 

3V 
3y 

3V 

L 3Z -

= 

32V 
2 

3 V 
3z3y 3y3z 

32V 
3z3x 
2 

3 V 

2 
3 V 
3z3z 
2 

3 V 
3y3x 3x3y 

-!?y + i& 
3z 3y 

3FV 
3z 

3FV 

3x 

_χ+ lEy 
3y 3x 

which is a null vector since 

Hence 

2 
3 V 32V 

3qi3q2 3q23qi 

I V h 0 (2.11) 

when the work done by {Fp}i is independent of the path which its point 
of application traces out. 

As a slight digression, it is interesting to note that 
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[ V ] { B ) , 

where {B} is any vector, is known as the curl or rotation (rot.) of 
{B}. The reason for the use of this term is somewhat obscure, but if 
the reader cares to find 

^h{\A}l/l = ίν]1[ω2] l/l{VBAh/i 

where {ω2}ι/ι is treated as a constant, then it will be found that 

[ V ] l i V B A ^ / l = 2 ί ω 2 > 1 / 1 / 

when the reason for the use of the terms curl and rot will seem more 
understandable. 

It is also of interest to note that the vector 

{ν}χφ , 

where φ is any scalar, is known as the gradient of φ or grad φ. 

Since 

Eq. 2.5 can be written 

W. 

► B 

i A p } V i 3 t { R
P h / i d t = mP ( M i / i f V p h / j d t 

[ v , } i / i { A ^ } i / i « i t = mp Wi/ihWi/^ 

(v dv + v d v + v dv ) x x y y z z 

P , 2 2 2N 

— (V + V + V ) 
n x y z 

B mp 

A 2 
| v p M A 

= T - T 
P ' B P ' A 

( 2 . 1 2 ) 

w h e r e m 2
 m m

P 

Tp = — | V p h = - { V p h / i f V p h / ! = — { V p } 1 / 3 { V p } 1 / 3 ( 2 . 1 3 ) 

i s t h e k i n e t i c e n e r g y o f t h e p a r t i c l e . C o m b i n i n g E q s . 2 . 6 and 2 . 1 2 
g i v e s 
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W = - ( v - V ) = T - T 
A-HB V B A ' P ! B P ' A 

o r Tp I A + V A = T P 'B + V B = c o n s t a n t ( 2 . 1 4 ) 

when the reason for the introduction of the negative sign in Eq. 2.6 
becomes clear. Thus, for the case in which potential energy is defined, 
that is Eq. 2.6 is valid, the sum of kinetic energy and potential en-
ergy is constant throughout the motion and the force {F } is said to 
be conservative. 

2.4. The Activity of a Force and its Relationship to the Rate of 

Change of Kinetic Energy 

The activity, power or rate of working of a force is defined as the 
scalar product of the force and the velocity of its point of applica-
tion. Hence, for the case in which {F } acts on a particle of mass m 

A c t i v i t y = {Fp}\{Vp}l/l = n i p t A p t f / x i V p h / ! 

= ™ p { V p } V i { A p i i / i = m p l V p t f / ^ V p h / ! 

= Η ΐ ρ { ν ρ Γ 1 / 3 { ν ρ } 1 / 3 . ( 2 · 1 5 ) 

Now 
TP = - H V p h / l K h / ! 

and m 
Tp = — { V p h / i i V p h / ! + {V?}l/l{Vp}l/l 

Hence 

= n > P { V p } T / i { V p } i / i · ( 2 . 1 6 ) 

Tp = Π Ι ρ ί ν , ΐ Τ / ΐ ί ν , , } ! / ! = {Fp }I{Vp } i / i 

= ™r{Vp}\/l{VF}l/3 = { F p } T 3 { V p } l / 3 · ( 2 - 1 7 ) 

2 . 5 . I m p u l s e and Momentum 

Now -, 
{ F p K = m

 d 

and therefore 

Λ« 1 

i = m p d t i V p i i / i = d t i G p h / i 

[ F p h d t = mp { {Vp } l 7 l | t 2 - {Vph/^J 
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p i / i l , 2 - < G p l i / i l t l ( 2 - 1 8 > 

where the time integral of the force jF } is known as the impulse of 
the force. 

2.6. Centre of Mass 

If a rigid body, body 2, is composed of n particles of mass m. , then 
the total mass of the body is given by 

m2 = > m . (2.19) 
- / 1 

1 
Also, if the body is positioned relative to some reference frame, 
frame 3, then the position of the centre of mass of body 2, C2 is 
given by 

n 

iRC203}3/3 = {R2}3/3 = i ^ ^
1 " ' {R>l3/3 (2.20) 

1 

where {R.}3/3 is the position of m. measured in frame 3 and referred 

to frame 3. In particular, if the origin of frame 3 is at C2 / then 

n 

m. {R.}3/3 (2.21) 

1 

is a null vector. 

Similarly, for a system of bodies 2, 3 and 4 making the composite body 
5 positioned relative to frame 6, the position of the centre of mass 
of the composite body 5, C , is given by 

FL „ U /G = R 

m 2 { R 2 } 6 / 6 + m 3 { R 3 } 6 / 6 + " M R s k / e 

c 0 16/6 - 1 " 5 Ϊ 6 / 6 m + m_ + m 5 U 6 

(2.22) 

In particular, if the origin of frame 6 is at C , then 

m2{R2}6/6 + ̂ 2{R3}6/6 + mi^R^Je/e (2.23) 

is a null vector. 

Refer to Problems 4.1 to 4.15 and Problems 4.44 to 4.47. 
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2.7. Force Moment, Moment of Momentum and Moment of Rate of Change of 

Momentum 

A force has, in addition to its capacity to cause or tend to cause a 
change of the state of the translational motion of a body, a capacity 
to cause or tend to cause a change of the rotational motion of a body. 
The magnitude of this turning effect or moment about a point is the 
product of the magnitude of the force and the distance from the point 
to the line of action of the force measured along a line at right an-
gles to the line of action of the force" as shown in Fig. 2.1. Hence 

M. = R. NA ' (2.24) 

Fig. 2.1. Fig. 2.2. 

In the more general situation of Fig. 2.2, where a point B on the line 
of action of {F} is given relative to A, the point about which the 
moment is to be determined, using {RRA} / the moment in each of the 
directions x, y and z is given by 

M4 = yF 
A z 

zF 

M = zF - xF 
A X 2 

(2.25) 

MA = xF 
A y 

yF 

This set of equations can be arranged in vector and matrix form as 

Γ Μ Χ 1 
A 

My 

A 
M 

L A J 

= 

o 
z 

- y 

-z 

0 

X 

-zF + yF 
y z 

zF - xF 
X Z 

-yF + xF 

or 

K } = [ ^ { F } ( 2 . 2 6 ) 
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Where i t i s necessary to specify the frames to which the vec tors are 
r e f e r r ed , then, for example 

Κ^ = [RBA]2/2lFl2 · (2.27) 

That the moment vector {MA} is perpendicular to the plane containing 
the vectors {RRA} and {F} is readily shown by the fact that 

( M A } T K A 1 a n d { M
A } T i F i 

are zero. 

Fig. 2.3, 

The magnitude of the moment vector is given by 

M. Κ, F sine 
as can be seen from Fig. 2.3 which shows the x y plane in which the 
{R } and {F} vectors lie. 

The concept of force moment can usefully be extended to that of moment 
of momentum or angular momentum and the rate of change of moment of 
momentum or the rate of change of angular momentum. Thus, for example, 
the moment of momentum of a particle is written 

{Hp}i/i = [R.Ji/ilGph/1 = mp[RBA]i/i{vp}i/i · (2.28) 

Similarly, the moment of the rate of change of momentum is written 

[R.Ji/ilGph/1 ̂ , ^ ν Κ ί ν · (2'29) 

Refer to Problems 4.16 to 4.22 and Problems 4.48 to 4.53. 
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2.8. The Linear Momentum of a Rigid Body 

The linear momentum of a particle of body 2 of mass m at P, measured 
with respect to frame 1 and referred to frame 1, is given by 

{Gp }i/i = m. { V p } l 7 l . 

The total linear momentum of body 2 is thus 

{G2}i/i = 2^m. I
vp}i/i 

where the summation is effected over the whole of body 2. Now 

{ V p } i / i = { V z h / x + [ ω 2 ] i / i { R p C } i / i 

and therefore the linear momentum of body 2, measured with respect to 
frame 1 and referred to frame 1 is given by 

lG2}l/l = 2 mi ̂ V2 1 1/1 + ^ 1 ^ ^*1 l/lt^C^/l 

and therefore the linear momentum of body 2, measured with respect to 
frame 1 and referred to frame 1, is given by 

{G2 } l/i = ^Μ^Ϊι/ι + 2
 mi l ω21 V^cti/i 

The factors {v2}i/i and [ ω2] i/i can be taken outside the summation 

sign since they are characteristics of the body rather than the part-
icle. Thus 

{G2}i/i = {v2}!/i ^ m. + [ ω21 i/i ^ m. {Rpc}i/i 

= m2{v2}1 / 1 (2.30) 

since 
m2 = / m, . and 2 mi Kcli/i = ί°1 

being the first moment of mass of the body about its centre of mass. 
By differentiation of Eq. 2.30 

{G2}i/i = m 2 { v 2 h / i = m2{A2}l/l (2.31) 

and this can be equated to the total external force on body 2 referred 
to frame 1 since the internal forces on the particles of the body sum 
to zero. 

2.9. The Moment of Momentum of a Rigid Body About its Centre of Mass 

Refer to Fig. 2.4 which shows body 2 moving relative to an inertial 
frame 1. The angular velocity of the body is {ω2}χ and the velocity of 
its centre of mass {ν2}ι· The momentum of a particle of the body at P, 
which has a mass m. , measured in frame 1 and referred to frame 1 is 

MMAEBBM - C 
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Fig. 2.4, 

given by 

Opcli/i"»! {Vph/i = [RpC]2/im. {
vp}i/i 

and therefore the moment of momentum of body 2 about its centre of 
mass, measured in frame 1 and referred to frame 1, is given by 

{H2}i/i = 2
mi I^PcWifMi/i 

where the summation is effected over the whole of body 2. Since 

{Vp}i/i = {V2}i/i + ίω2] i/i{Rpc}2/i 

= {V2 } 1/1 -. [RPc]2/li M 1/1 

the moment of momentum can be written 

{ H 2 } I / I = 2 m i ^ c l z / i ( i V 2 ^ / i " [ ^ c l z / i i ^ l i / i 

= - 2 m i ^ l i / i K c ^ / i 

= -tv2]i/i ( 2 m i K d V i ) 

+ 2 " ^ [R*ciVl { ω 2 } 2 -r 1 / 1 
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The factors {v2}i/i and ίω2}ι/ι can be taken outside the summation 
sign since they are characteristics of the body rather than the part-
icle. Now 

2 ^ {RPC}2/1
 = {°ϊ 

since this term is the first moment of the body about its centre of 
mass. Hence 

- [Σ^[^] 2 / 1 { ω 2 > ι / ι ( 2 . 3 2 ) l H 2 } l / l 

and on d e f i n i n g 

[l2]2/l = 2 " m i [^clz/l 
which is the inertia matrix for body 2 measured with respect to frame 
2 and referred to frame 1, 

(2.33) 

{ H 2 } 1 / 1 = [ ΐ 2 ] 2 / ΐ ί ω 2 } ι / ι ( 2 . 3 4 ) 

S i n c e 

[ R ] 2 / 2 = [ Αχ] 2 [ R ] 2 / i [ £ i l \\ Ail 2 [ R ] 2 / l i M l 2 

= [ All 2 W 2 if All 2 . 

[ I 2 J 2 / 2 = 2 " ^ ^ R PC^2/2 = ^ " ^ l £ l 1 2 ^ R P C ^ 2 / 2 [ £ 1 ] 2 

= I Ml 2 [ 2 "mi ^ C ^ / l ] I Ml 2 

= f Ail 2 [ l 2 ] 2 / l t Ail I (2.35) 

which is the inertia matrix for body 2, measured with respect to frame 
2 and referred to frame 2. Similarly 

If 

then 

[ l 2 ] 2 / l = I All 2 [ l 2 ] 2 / 2 l Ml 2 

{ R p c } 2 / 2 = 

KJ 2 / 2 

0 

z 

- y 

- ( y 2 

x y 

x z 

- z 

0 

X 

+ z 2 ) 

y] 
- x 

OJ 

Γ ° 
z 

L-y 

x y 

- ( x 2 + 

z y 

- z 

0 

X 

z 2 ) 

y 

- x 

0_ 

x z 

z y 

- ( x 2 + y 2 ) J 
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L I 2 j 2 / 2 

Σ m i ( y 

Σ _ m i x y 

2 ~m.χζ 

E 
X 2 X2 

2 2 v* 
+ z ) > -m. xy 

'S in. (x + z ) 2 ~ra· ZY 

V-m. zy 
Σ-», 
2 m. (x2 + y2) 

I I 
X 2 y 2 X 2 Z 2 

X 2 y 2 y 2 y 2 z 2 y 2 

^2^2 y 2 z 2 Z 2 Z 2 j 

( 2 . 3 6 ) 

Thus, in g e n e r a l , t h e i n e r t i a m a t r i x i s symmet r ic . In p a r t i c u l a r , fo r 
example 

x 2 x 2 Σ 2 2 

m. (y + z ) 
is the moment of inertia of body 2 about the x axis (see Fig. 2.5), 
while 

i = y -m. 
X2Y2 *-* l 

xy 

is the xy product of inertia. 

The statement of Eq. 2.36 is tedious to write out and it can be abbr-
eviated to, for example, 

[l^J 2/2 

A D E 

D B F 

E F C 

' LI2J2/2 -

I I I x xy xz 
I I I xy y yz 

L xz yz z 

or any other such convenient contraction. 

2.10. The Relationship Between Moments of Inertia Measured in 

Different Frames 

By reference to Fig. 2.6 it can be seen that the inertia matrix for 
body 2, measured in frame 3 and referred to frame 3 is given by 

[I2Ü3/3 = J " ^ L_RPJV3 = 2 " ^ LXcJs/S + [R2j 3/3 

= 2"^ ^C^V3 + [R^l 3/3 

= 2 " ^ [ ^ ^ 2 / 3 + [R2]3/3 0pC]2/3 

+ D*pCl2/3 [>2]3/3 + [R2]l/3 

-i 2 
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F i g . 2 . 5 . 

F i g . 2 . 6 . 

Now 

and 
2 "mi LR2] 3/3 [RpC]2/3 = - [ > 2 ] 2 / 3 ^ ^ ^ C ^ / S 

2 " m i [ R PC^2/3 [ R 2]3 /3 = J - n i . [ R p c ] 2 / 3 ^ 3 / 3 

are both null matrices since the origin of frame 2 is at the centre of 
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m a s s o f body 2 . Hence 

[*2] 3/3 = V -m. [RpC]2/3 - ^Χ ™. [R2]3/3 
2 

= [ J 2 ] 2 / 3 " m2 [R2] 3 /3 

and by Eq. 2.3 5 

[l2]3/3 = I A2] 3 [l2]2/2l Ä2] 3 " m2[R2]3/3 · (2.36) 

Refer to Problems 4.23 to 4.25 and Problems 4.54 to 4.56. 

2.11. The Rate of Change of Angular Momentum of a Rigid Body About its 

Centre of Mass 

Equation 2.34 gives the angular momentum of body 2 about its centre of 
mass, measured in frame 1 and referred to frame 1, as 

{H2}1/l = [T2]2/1ίω2}ι/ι 

and this can be written 

{H2 } 1/1 = [ Ä2] 1 [l2]2/2[ £2]'ί{ω2}1/ι 

by Eq. 2.35. This expression for angular momentum is readily differen-
tiated because 

[i2] 2/2 

the inertia matrix for body 2, measured in frame 2 and referred to 
frame 2, is a constant since frame 2 is fixed in body 2. Hence 

{Ö2}1/1 = I ω2] i/i [l2] 2 /ι{ω 2} 1 / 1 

+ [ £2] 1 [l2] 2/2 [ ωι] 2/ 2 [ Ιγ\ 2{ω2}!/ι 

+ [̂ 2] 2/1ί ω2 Ϊl/I -

The m i d d l e t e r m on t h e r i g h t h a n d s i d e of t h i s e q u a t i o n c a n be w r i t t -
en 

"I *2l 1 [ l 2 ] 2 / 2 l * i l 2[ ω2] l / l l Ä i l l t Äil 2 { ω 2 } ! / ι 

= "I A2] 1 [ l 2 ] 2 / 2 [ £1] 2[ ω2] ι / ι { ω 2 ) ι / ι = {0} 

s i n c e T 
[ ω 1J 2/2 = ~I ω2

ΐ
 1/2 = ~[ Äll 2

ί

 ω2
ΐ
 1/1 t Äl 1 2 

and 
[ω2]i/i{ω2)ι/ι = {0} . 

Hence 



and 
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{Ö2 } 1/1 = I ω21 1/1 [ I 2 ] 2 / 1 ί ω 2 } ΐ / ΐ + [ Ι 2 ] 2 / 1 ί ω 2 h / 1 ( 2 . 3 8 ) 

{ Η 2 } ΐ / „ = [ω 2 1 ΐ / „ [ ΐ 2 ] 2 / η ί ω 2 } ι / „ + [ Ι 2 ] 2/η ί ω2 } ι / „ . ( 2 . 3 9 ) 

This rate of change of angular momentum is identically equal to the 
sum of the moment of the external forces about C and the external 
couples acting on body 2. 

Refer to Problems 4.2 6 to 4.32 and Problems 4.57 to 4.61. 

2.12. The Moment of Momentum of a Rigid Body About Any Point Q and 

the Rate of Change of Moment of Momentum About That Point 

Fig. 2.7, 

The moment of momentum of body 2 about any point Q, measured in frame 
1 and referred to frame 1, is given by (Fig. 2.7) 

{ H 2 Q } I / I = 2 m i ΐ Λ α ^ / ι Ι Μ ι / ι 

= ^ ^ [ [RCQ]l/i + [KpcWi] { Mi / i 

+ ί ω21 1/1 {RpC } 2 / 2 
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= 2 m i I>CQ1VI{V2H/I + [ 2 ^ ^ d v i ] ίν2}ι/ι 

+ [RC Qll/l [ a )2l 1/1 2 ^ ^ P c ' 2 / 1 

+ I 2" m i ^ c l z / i W h / i 

and s i n c e t h e second and t h i r d t e rms on t h e r i g h t hand s i d e of t h i s 
e q u a t i o n a r e n u l l m a t r i c e s 

{H 2 Q } l / l = m 2 [ R C Q ] l / l { v 2 } i / i + { H 2 h / i . (2 .40) 

Hence, by d i f f e r e n t i a t i o n , 

{H 2 o} i / i = m 2 [ v c Q ] 1 / 1 { v 2 } 1 / 1 + m2[RCQ] 1/1 {A 2 } i / i + { H 2 h / i 

(2.41) 

2.13. The Relationship Between the Moment of the External Forces and 

Couples on a Rigid Body About Any Point Q and the Rate of Change of 

Moment of Momentum About That Point 

Let {F. } be the external force on a particle of body 2 of mass m. at 
P. In the case of a rigid body the internal forces cancel out in1 pairs 
and therefore 

where {F2} is the total external force on body 2. Let the body also be 
acted upon by external couples which reduce to { L 2 } . The moment of 
the external forces and couples about Q is given by 

'{M2Q}I = 2^Q^/
l{ Fi }l + iL2}l 

= 2 [RPJi/ii
Fi }i + iL2} 1 -2[RQ]I/I{FI }I 

= {M2o}l - m2[RQ]1/1{A2}i/i (2.42) 

since 

{Fj }l = lF2}l = {G2}l/l = m2{A2}1 / 1 

Now the rate of change of angular momentum about 0, the origin of an 
inertial frame, is equal to the moment of the external forces and 
couples about that point. Thus 

{M20}l = {H20}l/i (2.43) 
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and s ince 

{H2oh/i = 2 m i [RPOJ i/i t M i / 1 

= 2 ^ [ R p ] i / i i v p } i / i " [ R Q ^ / i 2 m i { V P } I / I 

= { H 2 O } l / i - m 2 [ R Q ] i / i { v 2 } i / i 

t h e n , by d i f f e r e n t i a t i o n , 

{ H 2 Q } I / I = { H 2 o } i / i - ™i[\]i/i{V2}i/i - m2 [ > Q ] i / i { A 2 } i / i 

(2.44) 

By Eq. 2 .43 in Eq. 2 .42 

{H2o}l/l = lM2Q}i + m2[Ro]i/i{A2}!/i 

and this result in Eq. 2.44 gives 

{M2oh = {H2Q}i/l
 + m2[VQ] i/i {Vi)\/\ 

S u b s t i t u t i n g fo r { H 2 Q } 1 /\ from Eq. 2 . 4 1 g i v e s 

{M2 Qh = ni2[VCQ] 1 / 1 { V 2 } 1 / 1 + m2[RC Q] 1 / 1 { Λ 2 } 1 / 1 

+ n i 2 [ V Q ] 1 / l { v 2 } l / l + { H z } ! / ! 

and s i n c e 

i V
Q } l / l + i V C Q ^ / l = i V 2 } l / l 

this reduces to 

{M2Q}i/i = m2[RCQ]i/i{A2}!/i + {62}i/i. (2.45) 

Thus, for the particular case in which Q is at C, 

{M2}i = {H2}i/i (2.46) 

and for the case in which Q is at 0 

{M20}i = mzMi/itAzh/i + {H2}i/i = {H20}i/i. (2.47) 

2.14. The Kinetic Energy of a Rigid Body 

The kinetic energy of body 2 is given by 

2τ2 = 2
m i lvpl? = 2m* iW^M1/» ( 2 · 4 8 ) 

where n is any reference frame. Now, by reference to Fig. 2.4, 

MMAER3M - C* 



56 Matrix Methods in Engineering Mechanics 

W p } 1 / n = { V 2 } 1 / n + [ω2] l / j R p c J a / » 

and therefore, using an abbreviated form of the statements 

(Vp)V„{Vp)l/n = {{V} + [u)]{R}}
T{{V} + [ω]{ΐυ} 

Θ Θ Θ 
= {V}T{V} + { [ U ] { R } } T { V } + {V}T[to]{R} 

Θ 
+ {[ ω] {R}}T[ ω] {R}. 

The summation involving term 3 will be zero since 

{v2}i/„ and {u)2h/n 

are constants for the body. Term 2 can be written 

{-[R] {u)}}T{V} = -{W}
T[R]T{V} = {a)}T[R]{V} 

so that the summation involving this term is also zero. Term 4 can be 
written 

{-[R] {Ü)}}T{-[R] {ω}} = {{W}
T[R]T}{[R] {ω}} = -U}T[R]2{co} 

Equation 2.48 thus reduces to 

2T2 = ^™.{V2}\/n{V2}l/n + 2 "mi { w 2>Vn [ R p C ] 2 / n ^ 2 > l / n 

= m 2 { v 2 } * / n { v 2 } l / n + U 2 } * / n [ l 2 ] 2 / n { ω 2 } ι / η 

= { V 2 } ! / n { G 2 } 1 / n + { ω 2 } ^ / η { Η 2 } 1 / η 

= 2T 2 , + 2T 2 . ( 2 . 4 9 ) 
^ - t r a n s l a t i o n ^ r o t a t i o n 

2.15. The Rate of Change of Kinetic Energy of a Rigid Body 

Equation 2.49 can be written in the abbreviated form 

2T2 = m{V}
T{V} + {ω}Τ[Ι]{ω} . 

Hence, by differentiation 

2T2 = m{A}
T{V} + m{V}T{A} + {ω}Τ[Ι]{ω} 

+ {ω}Τ{[ ω ][ I ]{ω} + [ I ]{ω}} . 

Now 
{ ω } Τ [ ω ] = {[ ω ] Τ { ω } } Τ = {-[ ω ] { ω } } Τ 

w h i c h i s z e r o . A l s o 
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{ ω } Τ [ Ι ] { ω } = { [ Ι Ι { ω } } Τ { ω } = ί ( ! ) } Τ [ Ι ] { ω } . 

H e n c e , s i n c e 

{A}T{V} = {V}T{A} , 

T 2 = m 2 { A 2 } * / n { V 2 } ! / n + ί ω 2 } * / η [ Ι 2 ] 2 / „ { ω 2 } 1 / η 

= { M V * { G 2l l /n + ίω 2 }^ /η{Η 2 } 1 /η . 
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(2.50) 

2.16. The Special Case of the Motion of a Solid of Revolution 

Links in three dimensional mechanisms can frequently be treated as 
solids of revolution, which are constrained by connections to them 
that exert no moment about the axis of generation, and consequently, 
if at some time the motion about this axis is zero, then it will al-
ways be zero. 

Consider the case of a solid of revolution, body 4, which has its axis 
of generation along the x4 axis. If ω = 0 , then 

{Ek)l/k = [^K/itWh/it = 

J 

0 I 

o o 

= i = Ι ί ω ^ Η / ^ 

0 0 

0 

J 

o r 

{Hit} 1/1 = H^h/l (2.51) 

and the angular momentum vector is parallel to the angular velocity 
vector. Also 

0 

ω 
z 

ω 
y 

+ 

" j 

0 

0 

— ω 
z 

0 

0 

0 

I 

0 

ω 
y 

0 

0 

o] 
0 

I 

J 

0 

0 

~0 " 

ω 
y 

ω 

0 0 

I 0 

0 I 1 

0 

ω 

ω 

= 1 { ω } i /i± 

[Hif } 1/1 = Ι ί ώ ι < } 1 / 1 
( 2 . 5 2 ) 
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and the rate of change of angular momentum vector is parallel to the 
angular velocity vector. Further, the rotational kinetic enegy and its 
rate of change are given by 

2T 4 r o t = * ω ι Ή / ΐ {Hl+} I / 1 = ^^Ji/iWh/i = Ι Ι ω ^ Ι ΐ C 2 . 5 3 ) 

and 

Ä r o t = f i i f } i / i { H f } i / i = ifiifJi/iWh/i ( 2 . 5 4 ) 

2 . 1 7 . R o t a t i o n About a Fixed Axis 

Cons ider t h e mot ion of body 4 abou t t h e zi+ a x i s which remains p a r a l l e l 
t o and f ixed w i th r e s p e c t t o an i n e r t i a l a x i s z j . Then 

{ H L + J I / 4 = [ ω 4 ] χ / 4 [ ΐ 4 ] 4 / ι + { ω 4 h / ^ + [ ΐ ι+] ^ / ι + { ω 4 } χ/ι^ 

0 

ω 
ζ 

0 

+ 

- ω 
ζ 

0 

0 

A 

D 

Ε 

D 

Β 

F 

0 

0 

0] 

Ε" 

F 

C 

A 

D 

Ε 

1Γ ο 
0 

ω 
J L ζ. 

D 

Β 

F 

= 

Ε 

F 

CJ 

0 

0 

ω 
L ζ . 

- . 2 I 
Εω - FÜÜ 

2 
Fco + Εωτ ζ ζ 1 
CÖ) ζ 

( 2 . 5 5 ) 

Refer to Problems 4.33 to 4.40 and Problems 4.62 to 4.83. 

2.18. Principal Axes and Principal Moments of Inertia of a Rigid Body 

With a Plane of Symmetry 

Let y2Z2 plane be the plane of symmetry of body 2 as shown in Fig. 2Λ 
Since 

2 XY = 0 and V zx = ° 

the inertia matrix will be of the form 

[i2] 2/2 

0 0 

0 B5 
0 F2 C2J 

Thus, for frame 3 positioned as shown in Fig. 2.8, 

or 

[ l 2 ] 2 / 3 = I ^2 ] 3 [ l 2 J 2 / 2 l *2 1* 

[ *3 l 2 [ l 2 ] 2 / 3 = [ l 2 ] 2 / 2 l *2 1* 
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1 
2 

1 

x2 

rV 

| 3 C 

1 

Z-2 

- X l 

——· 

C 

zx = O 

z y ^ o 

3 a about x ? 2 

F i g . 2 . 8 . 

1 0 0 

O c a sa 

O - s a ca 

A3 O O 

O B 3 F 3 

O F 3 C3 

A2 

0 

0 

0 

B 2 

F 2 

0 

F 2 

c2 

1 

0 

0 

0 

ca 

- S a 

0 

sa 

ca 

A3 0 O 

0 B3ca + F3sa F3Ca + C3sa 

[0 -B3sa + F3Ca ~F3Sa + C3Ca 

A2 0 O 

O B2ca - F2sa B2sa + C2Ca 

0 F2ca + C2sa F2sa + C2ca 

In particular 

B3cosa + F3sina = B2cosa - F2sina 

and 

giving 

-33sina + F3cosa = F2cosa - C2sina 

B? - B3 F2 - F3 

tana = 
Fo + Fq Be 

(2.56) 
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and 
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B3 + (C2 + B 2 ) B 3 + F3 + B 2 C 2 - F 2 = O (2.57) 

Now the equation to a circle drawn on the xy plane, centred at (a,0) 
and of radius r is 

? 2 2 2 x - 2ax + a + y - r = 0 . 

Comparing corresponding terms in this equation and those in Eq. 2.57 

x 3 B3, y s F3, 2a = C2 + B2 , a - r s B2C2 - F2 

and therefore 

CCj B2) 
+ F2 

F 

F2 

F3 

0 

B3 

V / ^ ^ 1 ^""\ 

z3 \ 

c3 

c2 
P 

! / 

Q 

z2 

B2 

/ 

V 

I a 

R 

( 

B,C 

S 

Γ y2 

B2 - C2)/2 

B2> C2 

F2> 0 

B3> B2 

F3> 0 

a < 0 

Fig.2.9. 

The circle corresponding to Eq. 2.57, for 

B2 > C2 and F2 > O 

is shown in Fig. 2.9. B2 and C2 have been set off along an axis para-
llel to the y2 axis and F2 has been set off along an axis parallel to 
the z2 axis to define the position of points V and R. A circle through 
these points, with its centre on the line OQ, centred at Q where 

OQ = (C2 + B2)/2, 

has a radius 
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RQ = y{(B2 - C2)
2/4 + F|} 

as required. For frame 3, obtained by rotating frame 2 through the 
angle a about x 2 , i.e. [ i2 H corresponding to a negative rotation, 
B2 > B3, F3 < F2 and 

tana = TS 
F2 - F3 Fo - Fq 

PT B3 - C2 C2 - B3 

The reader is invited to draw the circle for other cases, e.g. 

(a) B2 > C2, F3 > 0, B3 < B2 , 

(b) B2 < C2, F3 > 0, B3 > C2 and 

(c) B2 < C2, F3 < 0, B3 > C2. 

and indentify the position of the point P in relation to V(C ,F ) from 
which frames 2 and 3 can be drawn in their correct relative positions 
with the correct angle a between them. 

There will clearly be an angle a given by 

F2 

tana = 
Bq 

for which the product of inertia term F3 is zero. The moments of in-
ertia in this case are the principal moments of inertia of the body. 
Also, the axes of frame 3 for this condition are the set of principal 
axes corresponding to the point C in body 2.There is a set of prin-
cipal axes and principal moments of inertia for every point in the 
plane of symmetry. 

2.19. Principal Axes and Principal Moments of Inertia For Any Rigid 

Body 

The inertia matrix for body 2, measured with respect to frame 3 and 
referred to frame 3, is written 

[I2] 3/3 

and it will, in general, be of the symmetric form 

A D E 

D B F 

E F C, 

It will always be possible to find a frame 4, with the same origin as 
that of frame 3, such that 

[I2]3/h 

is of the form 
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λι 

0 

0 

0 

λ 2 

0 

0 

0 

λ 3 

where \ \ , λ2 and λ3 are the principal moments of inertia of body 2 for 
the point corresponding to the origin of frame 3. The set of principal 
axes through a given point are such as to make the product of inertia 
terms in the inertia matrix referred to them equal to zero. 

It is necessary to find, for the given inertia matrix 

[*2]3/3 f [χ2]3/4 and [ £3 ]k 

such that 

[ ΐ 2 ] 3 Λ = [ £ 3 lif [ l 2 ] 3 / 3 l *3 1Ϊ ( 2 · 5 8 ) 

T is a diagonal matrix. On premultiplying Eq. 2.58 by [ £3 ]ι+ it becomes 

[ *3 lU I 2 ]3 /4 = [I2] 3/3l *3 Ü 

ai bx ex 
a 2 ^2 c 2 
a3 fc>3 C3 

λχ 0 0 

0 λ2 0 

0 0 λ3 

A D E 

D B F 

E F C 

a i 

a 2 

a 3 

b i C! 

b2 c2 

b3 c3 

aiAi 

a2A x 

a 3 x l 

b i ^ 2 

b 2 λ 2 

b 3 A 2 

^ιλ3 

c2*3 

C 3 A 3 

aiA + a2D + a 3E 

a xD + a 2B + a 3F 

a xE + a2F + a3C 

biA + b 2D + b 3 E 

bxD + b 2 B + b 3F 

b x E + b 2 F + b 3 C 

Equating the first columns of these matrices gives 

ai^i = aiA + a2D + a 3E 

a2Ai = a^D + a2B + a 3F 

a3Ai = aiE + a2F + a3C 

and this set of equations can be written in the form 

etc. 

(2.59) 
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D a 2 + E a 3 = 0 

X j ) a 2 + F a 3 = 0 

F a 2 + (C - \i)a3 = 0 
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( 2 . 6 0 ) 

A - λχ 

D 

E 

D 

B 

F 

E 

F 

C -■ xiJ 

fal" 
a 2 

La3 
= 

o1 

0 

0 1 
J 

( 2 . 6 1 ) 

o r 

D 

B 

F 

E ] 

F 

C \ 

[al~ 
a 2 

La3. 
= λ ! 

"ail 
a 2 

. a 3 j 

which can be abbreviated to 

[I2] 3/3 ̂ a> = Xlia> · 

The set of homogeneous equations Eqs. 
ant of the square matrix in Eqs. 2.61 

(2.62) 

(2.63) 

2.60 require that the determin-
is zero. Thus 

Ί E 

F 

C - λχ 

which leads to the cubic equation 

D 

B - Xj 

F 

= 0 

\\ - (A + B + C)Xi + (AB + BC + AC - F2 

+ AF2 + BE2 + CD2 - ABC - 2DEF = 0 . 

E2 - D2)λχ 

(2.64) 

This equation has three positive real roots corresponding to the three 
principal moments of inertia λ1, λ2 and X3. If each of these three 
roots is substituted, in turn, in Eq. 2.62 three separate {a}'s are 
determined which correspond to the three columns 

[af 
a 2 

L a 3 . 

"bll 
b 2 

. b 3 j 

and c2 

c 3 

Of 

I ̂3 1Ϊ 

Equations of the form of Eqs. 2.62 occur frequently in the solution of 
physical problems so that computer programmes to solve them are read-
ily available, especially for the case in which the square matrix is 
symmetric. Their solution longhand, even with a calculator, is tedious, 

The quantities λχ λ2 and λ3, the principal moments of inertia, are the 
eigenvalues of the inertia matrix 
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[τΐ]3/3 

and t h e t h r e e columns {a} a r e i t s eigenvectors. 

That t h e t h r e e columns {a} a r e o r t h o g o n a l (as t h e y must b e , be ing c o l -
umns of a t r a n s f o r m a t i o n m a t r i x ) i s r e a d i l y shown a s f o l l o w s . On w r i t -
ing 

[I2Ü3/3 = [ i ] 

[ l ] { a } = Ai ia} (2.65) 

[ l ] { b } = A2{b} . (2.67) 
and 

Also 

or 

{[l]{b}}T = A2{b}
T 

{ b } 1 [ i ] 1 = { b } ' [ i ] = x 2 { b } ' 

and thus, on postmultiplication by {a} 

{b}T[l]{a} = X2{b}
T{a} . 

T Futher, on postmultiplying Eq. 2.65 by {b} , 

{b}T[l]{a} = Aiib}T{a} . (2.68) 

On subtracting Eq. 2.68 from Eq. 2.67 

(A2 - λι)ib}
T{a} = 0 

and this requires that the columns {b} and {a} be orthogonal since 
their scalar product is zero. 

Refer to Problems 4.41 and 4.43 and Problems 4.84 and 4.85. 



Chapter 3 

Solution of Kinematics Problems 

3.1 Solved Problems 

Problem 3.1. A point P moves in a circular path of radius a so that 
the angle Θ it subtends at the centre 0 of the circle increases 
uniformly with time. Find for the frames chosen in Fig. 3.1a 

d K o h / 2 . d Koh/2 d {Rp0h/i = {vpo}vl 

dt dt ' dt 

{Wl/2 = Κοϊΐ/2 = L i m i t { A R p o } 1 / 2 

At->0 At 

and 

d Λ θ Η / 2 ' Ι Κ Ο Η Λ ' l iVPoH/l = KoH/1 
dt" d t d t 

{ V p o } i / 2 = {Apo^l/2 = L i m i t { A V p o } 1 / 2 
At"° "At 

Solution. Now 

Also 

{Rp 0 } 2 /2 

Koh/i 

and t h e r e f o r e d {R p n }2/2 = 

dt 

acose 

asine 

0 

and therefore {Rp0}i/2 = = KoW*' 

65 
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Frame 2 rotates about 0 

and the x2 axis passes 

through P 

Path of P drawn 

y on frame 1 

Fig. 3.1a. 

(Draw the components of acos0 and asine along the x2 and 

Thus 

"o" 

dt 

By r e f e r e n c e t o F i g . 3 .1b i t can be seen t h a t 

and 

Hence 

and 

ί Δ Κ Ρ θ } ΐ / 2 

ί^οΠ/ι = 

-a(l - cosA0) 

asinAG 

0 

-a(l - cosA6)cos6 - asinAGsine 

asinAGcosG - a(l - cosA0)sine 

0 

| {Rp0}i/i = ae 
at 

-sine 

cose 

0 

= Limit{ARpo}1/1 = {vp h 
At"0 "At 

{Vp0}i/2
 = \\o\\/i = Limit{ARp0}i/2 = ae 

At-MD At 

Also 
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asinABcose 

-a (1 - cosA9)sin 

a(l - cosA9)cose + asinAesine 

F i g . 3 . 1 b . 

and 

* J W v * 
d t 

I iVPoH/2 
d t 

d 2 { R p 0 } i / i = d { ν ρ ο } ι 7 ι = {^0}χ/ι = a e 2 

d t d t 

-cos6 

-sine 

0 

By reference to Fig. 3.1c 

{nV,0}l/2 

-a sinA0 
2 

-2a sin (ΔΘ/2) 

0 

and therefore 
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W i l t + W i = ivp}i|t +At 

Fig. 3 .1c. 

fVpoli/2 = l A P o ) i / 2 = Limit{AVp o}1 / 2 = at 
At-K) - ^ 

-1 

0 

0 

Frame 2 rotates about Oj 

and the x2 axis passes 

through P 

Path of P drawn 

on frame 1 

Fig. 3.Id. 

It should be noted that the results obtained are peculiar to the axes 
chosen in Fig. 3.1a, and that if, for example, the axes of Fig. 3.Id 
were chosen, then different results would have been obtained for the 
given motion. The importance of specifying the axes being used is 
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thus clear. The reader is invited to solve this problem for the axes 
of Fig. 3.Id. 

Problem 3.2. The position of frame 4 relative to frame 1 is specified 
by 

0.741516 0.45315 -0.4947311 

[ Äif] 1 = -0.595012 0.78485 -0.172904 

0.309955 0.4226 0.85165 

Find the consecutive rotations α, ß and γ necessary to align frame 1 
with frame 4 when they are performed in the following order: 

(a) 1 γ about zx 2 a about x2 3 β about y3 4 , 

(b) ί γ about zj 2 β about y2 3 a about x3 4 , 

(c) l a about X] 2 β about y2 3 γ about z3 4 , 

(d) l a about xj 2 γ about z2 3 β about y3 4 

Solution, (a) 

[ Äi+1 i 

cy 

sy 

0 

-Sy 0 

Cy 0 

0 1 

CyCß - sysasß 

sycß - cysasß 

-casß 

1 0 

0 ca 

0 Sa 

•-syca 

cyca 

sa 

0 

-sa 

ca 

cß 0 s£ 

0 1 0 

-sß 0 c£ 

cysß + sysacß 

sysß - cysacß 

cacß 

Referring to the terms in the given and derived matrices using the 
usual a.. notation 

a3 2 = 0.4226 = sina , a = 25 . 

a 1 2/a 2 2 = 0.45315/0.78485 = -tany , 

a3l/a33 = 0.309955/0.85165 = -tanß 

-30" 

= -20" 
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(c) 

[ Hi>) 1 = 

Cy -Sy 0 

Sy Cy 0 

0 0 1 

bye 3 cysßsa - Syca 

sycß sysßsa + cyCa 

-S3 cßsa 

c3 

0 

S3 

0 

1 

0 

S3] 
0 

cß 

[1 
0 

0 

0 

ca 

sa 

0 

-Sa 

Ca 

Cys3ca + sysa 

Sys3ca - cysa 

c3ca 

.o 
a31 = 0.309955 = -sin3 , 3 = -18.06 

a 2 i / a n = -0.59012/0.741516 = tany , y 

a32/a33 = 0.4226/0.85165 = tana , a = 26.4 

[ JLk] i = 

1 0 

0 ca 

0 sa 

c3cy 

Sas3cy 

-cas3cy 

0 

-sa 

ca 

0 

-si 

0 

1 

0 

S3] 
0 

c3J 

cy 

sy 

0 

38.74" 

o 

-Sy 0 

Cy 0 

0 1 

-c3sy 

-sas3sy 

cas3sy 

S3 

-sac3 

cac3 

Cd) 

a13 = -0.494731 = sin3 , 3 = -29.65 . 

al2/all = 0.45315/0.75151 = tany , y = - 3 4 . 4 3 ' 

l 2 3 / a 3 3 = - 0 . 1 7 2 9 0 4 / 0 . 8 5 1 6 5 = - t a n a , a = 1 1 . 4 8 ° . 

[ ÄlJ k\ 1 

1 0 

0 ca 

0 sa 

cyc3 

0 I 

-sa 

CaI 

|cy -sy 0 

sy cy 0 

[o o i 

c3 0 

0 1 

-S3 0 

-sy cys3 

Casyc3 + sas3 cacy casys3 - Sac3 

sasyc3 -- cas3 Sacy Sasys 3 - cac3 

s 

0 

c 

. 

L12 0 . 4 5 3 1 5 = - s i n y , y = - 2 6 . 9 5 u . 

a3 2/a 2 2 = 0.4226/0.78485 = tana , a = 38.13 

al3/all = -0.494731/0.741516 = tan3 , 3 = - 49.04 o 

A summary of these results is as follows: 
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(a) 

(b) 

(c) 

(d) 

a 

25 

26 .3 

11.48 

38 .13 

(3 

- 2 0 

- 1 8 . 0 6 

- 2 9 . 6 5 

- 3 3 . 7 1 

Ύ 

- 3 0 

- 3 8 . 7 4 

- 3 1 . 4 3 

- 4 9 . 0 4 

Problem 3.3. Body 2 rotates about an axis fixed in body 1 and body 3 
slides on body 2 as shown in Fig. 3.3a. Obtain expressions for 

{VAh/i , {VAh/2 , { A h / ! and {A h/2 

where A is a point fixed in body 3, 

Zl 

I, 
A fixed in body 3 

B fixed in body 2 

\ΖάΛ 

M7, 

Yi 

Yi 

Path of A drawn on 

body 1 

1 γ about z\ 2 

Fig. 3.3a. 
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Solution, Now 

{ R A h / i = l* 2 ] i {R A } 2 /2 = 

cy 

sy 

0 

-SY 

cy 

0 

0 

0 

1 

0 

y 

o 

and therefore, by differentiation with respect to time 

Kh/i = 

r-Sy 

Cy 

0 

YY 

"cy" 

sy 

0 j 

-Cy 

-Sy 

0 

+ y 

°1 
0 

oj 
"-syl 

Cy 

o J 

ΓοΊ 
y 

l0J 

= 

+ 

Cy -Sy 

Sy Cy 

0 0 

Π-yycy + ysy 

-yysy + ycy 

L ° 

ol 
0 

lj 

Γο 
• 
y 

L° 

• (1) 

The acceleration is obtained by a further differentiation with 
respect to time 

i\} i/i -yy 

= -2Yy 

cy 

sy 

0 

- y'y 

cy 

sy 

0 

• 2 
- γ y 

-sy 

cy 

0 

+ y 

-sy 

cy 

0 

+ {y 

-cy| 

sy 

0 J 

["cy" 

Sy 

L° 

- yy 

'cy"1 

sy 

0 _ 

- γ y 

-sy" 

Cy 

^0 

+ y 

"-syn 

Cy 

_ 0 

From Eq. 1 

{ V A h / 2 = I ^ll 2 { V A h / i 

cy 

-sy 

0 

Sy 

Cy 

0 

°1 
0 

lj 
-ΎΥ 

"cy' 

Sy 

0 

+ y 

-sy 

cy 

0 

= 

-yy] 
« 
y 

o J 
S i m i l a r l y , from Eq. 2 

(2) 

(3 ) 

{ A A h / 2 = [*ll 2{A A }i / i 

= -2yy 

Γι' 
Ü 

0 
- ΎΥ 

Ί" 
Ü 

0 

.2 
- γ y 

ΌΊ 
1 

0 

+ Υ (4 ) 

Vectors corresponding to Eqs. 3 and 4 are shown in Fig. 3.3b. It 
should be noted that the component velocities and accelerations are 
independent of y when the vectors are referred to frame 2. When 
applying the results of kinematic analysis to dynamics problems it 
will be found convenient to 'work in' a frame for which the 
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components of as many vectors as possible are as simple as possible. 
Skill in solving problems is thus largely a matter of the judicious 
choice of a system of axes. 

Yi 

ίΑΑ}ι/2 = "(2γγ + yy) 

Fig. 3.3b. 

The corresponding expressions for the velocity and acceleration of a 
point B fixed in body 2 with which A is coincident are obtained from 
Eqs. 3 and 4 by setting y and y equal to zero. Hence 

M B'1/2 YY and {\h/2 yy 

1 

0 

0 

+ 
. 2 
Ύ y 

0 

- 1 

0 
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Problem 3 . 4 . Body 2 i s moving r e l a t i v e t o body 1 such t h a t , a t a g iven 
i n s t a n t , t h e v e l o c i t i e s of p o i n t s B and C f i x e d i n body 2 r e l a t i v e t o 
A f i x e d i n body 2 a r e g iven by 

Κ Α Ϊ Ι / Ι = n/s and { v c A h / i = m/s 

The position of B and C relative to A are 

K A W I and { R C A h / i = 

Find 
{ ω 2 } i / i , v and w . 

Solution, Let 

{ ω 2 ) ι / ι 

Then 

KA} V1 

0 _ω 

ί ν Β Α ^ / ΐ { Κ Β Α } ΐ / 1 = [3 

ω 
z 

- ω 
L y 

" 0 

ω 
2 

- ω 
L y 

0 

ω 
X 

- ω 
z 

0 

ω 
X 

- ω 
3 

0 

ω 
1 

0 

1Γ 2 Ί 
y 

1 = 
χ I I 

II -2 J 

- ω - 2 ω 
ζ y 

2ω + 2ω 
Ζ X 

-2ω + ω 
y x 

■5ω + 6ω 
ζ y 

8ω - 6ω 
Ζ X 

-8ω + 5ω 
y ι 

, (1) 

, (2 ) 

5] 6 + 4 - 10 = 0 (3) 

(which means that the data are correct) and 

{ V C A 1 I / I { R C A ) I / I = [ l V W] 8 + 5v + 6w = 0 (4) 

There are five unknown quantities (ω , ω , ω , ν and w) and therefore 
five independent equations must be selected.2 Only two of Eqs. 1 and 
Eqs. 2 are independent and by selecting two from each, together with 



Solu t ion of Kinematics Problems 

Eq . 4 , t h e f i v e i n d e p e n d e n t e q u a t i o n s become 

75 

-2ω 
y 

6ω 
y 

-
4-

-

+ 

ω 
z 

ω 
z 

5ω 
z 

8ω 
z 

V 

5v + 6w 

= 

= 

= 

= 

= 

3 

2 

1 

0 

- 8 

(5) 

-6ω 

These equations have the solution (see the Appendix) 

ω = 3.25 rad/s, ω = -0.875 rad/s, ω = -1.25 rad/s, 

v = -2 9.5 m/s and w = 2 3.25 m/s. 

As a check on the work it should be found that 

Now 

K c ^ / i K c H / i = ° 

K c h / i = {vBAh/i - {vcA}i/i = 

Γ 3 " 

4 

5 

-

" 1 

- 2 9 . 5 

2 3 . 2 5 

2 

3 3 . 5 

- 1 8 . 2 5 

m / s 

and 

KcJi/ι = ( R BA1I / I - K A W I = 

"2] ΓδΊ Γ-βΊ 

1 - 5 = -4 

-2 6 -8 

giving for the required scalar product of relative velocity and 
position 

23.5 -18.25] = -12 - 134 + 146 = 0 

as it should be. 

Appendix. 

Solution of Eqs. 5. 

These equations can be written in the matrix form 
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0 

1 

0 

-6 

0 

-2 

0 

6 

0 

0 

-1 

1 

-5 

8 

0 

0 

0 

0 

-1 

5 

0 

0 

0 

0 

6 

and solved by computer. However, with a limited number of equations 
the work involved in reducing the square matrix to echlon form, or 
even diagonalising it, is tolerable. The procedure, no more than a 
systematic elimination process, is set out in detail below. The first 
stage, if necessary, is to make the first term of the first column 
non-zero by equation interchange. 

i 
ii 
iii 
iv 
V 

i x 6 
iv 

I 
i 
ii 
iii 
iv 
V 

ii x 3 
iii 

i 
ii 
iii 
iv 
V 

iii x 1 
iv x 8 

i 
ii 
iii 
iv 
V 

iv x 5 
v x 8 

1 
0 
0 
-6 
0 

6 
26 

0 

1 
0 
0 
0 
0 

I 
1 
0 
0 
0 
0 

4 

1 
0 
0 
0 
0 

0 
-2 
6 
0 
0 

0 
0 

0 

0 
-2 
6 
0 
0 

-6 
_6 

0 

0 
-2 
0 
0 
0 

0 
-2 
0 
0 
0 

1 
-1 
-5 
8 
0 

6 
_8 

14 

1 
-1 
-5 
14 
0 

-3 
-5 

-8 

1 
-1 
-8 
14 
0 

■112 
112 

0 

1 
-1 
-8 
0 
0 

0 
0 
0 

-1 
5 

0 
-1 

-1 

0 
0 
0 

-1 
5 

0 
0 

0 

0 
0 
0 
-1 
5 

0 
-8 

-8 

0 
0 
0 

-8 
5 

-40 
40 

0 
0 
0 
0 
6 

0 
0 

0 

0 
0 
0 
0 
6 

0 
0 

0 

0 
0 
0 
0 
6 

0 
0 

0 

0 
0 
0 
o I 
6 1 

0 
48 

2 
3 
1 
0 

-8 

12 
0_ 
TO 

2 
1 3 

1 
12 -· 

-8 

9 

±_ 
-\ r\ 
iu — 

2 
3 
1 O *+. 
Λ-KJ ^*" 

12 
-8 

140 
96 

236 -

2 
3 
10 
236 -

-8 

1180 
- 64 

I 0 48 1116 

I ω 
X 
ω 
y 
ω 
z 

V 

1 w 

= 

3 

2 

1 

0 

-8 J 

so that the equations finally become 
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2 

3 

10 

236 

1116 

from which the unknowns are readily determined. 

1 

0 

0 

0 

0 

0 

-2 

0 

0 

0 

1 

-1 

-8 

0 

0 

0 

0 

0 

-8 

0 

0 

0 

0 

0 

48 

ω 

ω 
1 Λ 

ω 
2 

V 

w 

Problem 3.5. Figure 3.5 shows a schematic arrangement of an offset 
crank and connecting rod mechanism. The frame of the mechanism is 
body 1, the crank OA body 2 and the connecting rod AB body 3. Refer-
ence frame 1 is arranged with its z\ axis along the axis about which 
the crank rotates and so that OA lies in the Xiyi plane. The end B of 
the connecting rod is constrained to move along a straight line PQ in 
the ΥιΖχ plane and parallel to the xj axis. 

Formulate equations which will permit a determination of the veloc-
ities 

{VBh/i , {VBAh/i , {ωη3}ι/! and {vc}i/! 

for any position of the mechanism. In particular, evaluate the above 
velocities for the case in which the angular velocity of the crank is 
10 rad/s and a = 30°. 

Solution. All vectors will be measured in and referred to frame 1 and 
therefore the 1/1 suffix can be omitted throughout the solution. 
Now 

KA} = K l - K } 
X3 

\Υ3 

la 

= 

X 

0 

a 

-

x2 

Yll 
0 

where a = 50 mm and 

KA} = Kl· 

(1) 

- {vA} 

u3 

v3 

™3 

= 

V 

0 

0 

-

u2 

v2 

W2J 

In this case w2 = 0 and therefore w3 
the sake of generality. Also, since 

(2) 

0, but they are retained for 
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Path of A drawn on 
frame 1 

AC = CB 

oq = 50 

OA = 50 i 

AB = 250 

Path of B drawn en-
frame 1 

Spherical joint 

F i g . 3 . 5 . 

{VfiA} i s p e r p e n d i c u l a r t o {RßA} / 

K A } T { v B A } = o 

[x3 Υ3 ^] U3 

V 3 

3 W 

= 0 

u3x3 + V3V3 + w3a = 0 . (3) 

Equations 2 and 3 can be combined to give the single set of equations 

— -K) 
1 

0 

0 

0 

1 

0 

0 

0 

1 

Y3 o 

U3 

V3 

W 3 

V 

-u2 

-W2 

0 

(4) 

i R o p } / l R o P 
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Equations 4 are of the form 

0]{Vo} = {V..} (5) 

where the A matrix is a characteristic of the mechanism, the V. 

matrix is a column of 'knowns' and the V matrix is a column of o 
'unknowns1

.
 The set of equations has the solution 

79 

{V0J = [A]" {V.} (6) 

The angular velocity of the connecting rod and the linear velocity of 
the point C on it can thus be found from 

t«3> = KJ{V B A } - 1 , 
0 

23 

-Y3 

-Z3 

0 

*3 

Y3 

-*3 

0 

u3 

v3 
w3 

= 

ω 

ω 

ω 

(7) 

where r = 1KB, and 

{vc} = {vj + K3]{RCA} 

u2 

v2 

w2 

+ 

0 

ω 
z 

-ω 
V 

-ω 
z 

0 

ω 
X 

ω 
y 

-ω 
X 

0 

X3/2 

y 3 / 2 

Z 3 / 2 

In the above equations 

y3 = -asina , Χ3 = /(b^ 

x = acosa + X3 , u2 = x2
 = ^ acosa = -aasina 

2 2 . 2 x c - a sin α) , 

dt 
and 

where 

v2 = y2 = d asina = aacosa 
dt 

250 mm and c = 50 mm. 

(8) 

The above relationships could be embodied in a computer programme to 
evaluate the required velocities. 

For the case in which ά = 10 rad/s and a = 30 

y3 = -25 mm , x3 = 243.7 mm , u2 = -250 mm/s 
and 

v3 = 433 mm/s , 

when Eqs. 4 become 

MMAERBM - D 
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1 

0 

O 

243.7 

0 

1 

O 

-25 

O 

0 

1 

50 

- l l 
0 

0 

°J 

fu3" 
v 3 

w 3 

[v 

" 250 l 

-433 

0 

Oj 

-44.43 

433 

O 

and their solution gives 

KA} = 

Also, by Eqs. 7 and 8 

Γ 0.346' 

{ω"3} = -0.035 

-1.706 

mm/s and {v} = 

rad/s and {v} = 

-294 

0 

0 

-272 

216 

0 

mm/s 

mm/s 

Problem 3.6. A circular disc, body 2, of radius a rolls and slips on 
a plane, body 1. The motion is such that the plane of the disc is in 
the ζχΧ} plane and the path of the point of contact is the χχ axis. 
for points specified as follows: 

C the centre of the disc, 
A a point fixed on the periphery of the disc which is at 

some instant at the point of contact, 
Z a point on the line joining A and C, 
B a point fixed on the periphery of the disc which is 

instantaneously at the point of contact, 
D a point fixed in frame 3 as shown in Fig. 3.6a, where 

[i3)1 is unit matrix, 

E a point which moves along the xj axis such that it 
remains coincident with D 

F a point fixed in frame 1 which is coincident with B, and 

f ind 

{M1/1 

{M1/1 

{Mi / 1 ' 

{Rch/i , K h / i ' K c H / i ■ K h / i 

{vc}Vi , {vA}1/x , {v A C } v l , {v D } v l 

{vBCh/i , {\}\/i , K h / i , {AAh/i 
and 

Use the expression for 

{vzh/i 
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I p=o 

a d -*"Xco8«) 

777??\ 
°. M 

'4?//////////, 
x + a 3 - a λ s i n e a λβΐηβ 

1 β about y 2 - β about y p 3 

Fig. 3.6a. 

to locate the instantaneous axis for the motion of the disc relative 
to the plane. Also locate the central axis for the motion of the 
disc relative to the plane using both 

{V A h/ i and {V h / χ , 

and show, in each case, that it is an instantaneous axis. 

Solution. Let the points C, Z and A be initially on the z\ axis. When 
the disc turns through the angle 3 the centre of the disc, C, moves 
through 

aß + x 

aß being that part of the displacement due to the rotation of the 
disc and x that part of the displacement due to slip at the point of 
contact. The position of the point Z is thus given by 
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Κϊι/ι = 
x + aß - Xasß 

0 

a - Xacß 

as can by seen by r e f e r e n c e t o F i g . 3 . 6 a . T h e r e f o r e 

K h / i = {R z } i / i | x = 0 

x + a£ 

0 

a 

K h / i = {Rz}i/i λ=0 

x + a (β - s β) 

0 

a(l - cß) 

and 

0 K c h /i = {RAli/i " {Rcli/i = a 

Differentiating Eq. 1 with respect to time gives 

x + aß - Aaßcf 

0 

Xaßsß 

and therefore 

KH/i = { ν ζ } ι / ι | λ = ο = 

x + a£ 

0 

O 

= * { R c } i / i , 
d t 

x + a ß ( 1 - cß ) 

O 

a ß s ß 

{νΑ}ι/ι = { v z h / i | x = 1 = 

{ V A C } i / ! = { V A } 1 / 1 - { V C } 1 7 1 = aß 

(1) 

(2) 

= d { R A } i / i , 
d t 

-cß 

O 

sß 
a t 

a n d 

{vB}i/i = { v A h / i L = 0 

It can thus be seen that when rolling without slip is taking place 
the point B is at rest relative to frame 1. Also 



Solution of Kinematics Problems 83 

Now 

{VBCh/i = { ν Β } ι Λ - {V c h/ ! = 

KH/i = Kh/i + Kcli/i = 

- 1 

0 
o 

x + af 

O 

O 
= {RfcJi/i 

and t h e r e f o r e 

{v D h/ i = { v E } V l = 
x + a£ 

O 

O 

Figure 3.6b shows a velocity diagram which illustrates the above 
results. 

o,f 

iVBF>! 
b {v > 

a$ 

c,e,d 

Fig. 3.6b. 

Differentiating Eq. 2 with respect to time gives 

\2 

{Mi/ i = 
x + a ß ( 1 - Xc$) + Aaß s i 

O 

Xa(3s3 + ß2c3) 

and t h e r e f o r e 

K h / i = (Azh/iL= 0 

x + a 3 

0 

O 
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Κϊι/i '= Κϊ ! / l λ=1 

x + a 3 ( 1 - c 3 ) + a3 si 

0 

a ( 3 s 3 + 3 2 c 3 ) 

a n d 

{ A B } I / I = { A A } 1 / 1 | ¥ d { v B } V l = 
d t 

{ A B C } i / i = { A j i / i > { A c h / i 

-a3 

0 

a 3 J 

* 4 ivBCH/i = 
d t 

- a 3 

0 

0 

The instantaneous axis for the motion of the disc relative to the 
plane will intersect the line CB at some point for which 

z l i / i | 3 = 0 " 

x + a 3 -

0 

. 0 

- Aa3~ 

= 

"o m 

0 

_0_ 

as shown in Fig. 3.6c. The position of the instantaneous axis is 
therefore given by 

λ = 1 + x/a3 . 

If x > 0 then λ > 1 and the instantaneous axis is below B. 

If x < 0 and x < a3 then λ < 1 and the instantaneous axis is between 

B and C. 

If x < 0 and x > a3 then λ < 0 and the instantaneous axis is above C. 

Let Q be a point on the central axis for the motion of the disc 
relative to the plane. Then by Eq. 1.48 

{ROA}l/l = [ω21 i/i{VAh/i = 1 QA 

I I 2 I ω 2 I 1 

a s 3 

0 

- x / 3 - a ( l - c3 ) 

0 

0 

1 

0 

0 

0 

l l 
0 

0J 

x + a 3 ( 1 - c3) 

0 

Now 

KAH/I = Kli/i - Kli/i = 

as3 

0 

-a(l - c3) 

and therefore 
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QC = a + x/3 or λ = 1 + x/a3 

which means that Q is at rest, making the central axis an instan-
taneous axis. It is left as an exercise for the reader to find a 
point S relative to C on the central axis and show that S is at rest 
relative to the plane. 

Fig. 3.6c. 

Problem 3.7. Body 4 consists of a circular disc of radius na, a 
straight rod and a small sphere. The axis of the rod lies along the 
polar axis of the disc and one end of the rod is attached to a plane 
face of the disc. The small sphere is attached to the other end of 
the rod as shown in Fig. 3.7a. The sphere fits in a hemi-spherical 
socket in body 1 such that its centre lies in the plane on which the 
circumference of the disc rolls without slip. 

For the case in which body 4 rolls at a constant rate and the point of 
contact of the disc completes one circuit on body 1 in time T, find, 
for the frames shown 

{Vch/3, {VA}i/3 and {AA}l / 3 , 

where A is a point fixed on the periphery of the disc at the point of 
contact between the disc and body 1 at some instant of time. 

Draw an appropriate angular velocity vector diagram abd use it to 
find 

ίω2>ι/3 / ίωι+>3/3 and * (ωι+}1/3 . 
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OA - Instantaneous ax i s for the motion of body k 

r e l a t i v e to body 1 

1 Ύ about ζΛ 2 α about x_ 3 P about y k 

Fig. 3.7a. 

The reference frames are located as follows: 

Frame 1 has its χχ and yi axes fixed in the plane on which 
the disc rolls and its zj axis perpendicular to this plane. 

Frame 2 has its z2 axis coincident with the zj axis and 
rotates about the ζχ axis so that the y2 axis always passes 
through the point of contact between the disc and the plane. 

Frame 3 is positioned relative to frame 2 by rotating it 
from coincidence with frame 2 through the angle a about the 
x2 axis when the y3 axis lies along the axis of the rod. 
The angle a is a fixed angle. 

Frame 4 is fixed in body 4 such that the y3 and ŷ  axes 
coaxial and the x^z^ axes lie in the face of the disc to 
which the rod is attached. Frame 4 thus rotates relative to 
frame 3 about the y3 axis during the motion. 
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Now 
{R

ch/1 = [ £ 2 ] 1[ *3l 2 { R c } 3 / 3 

and therefore 

{Vc } i / i = { R c h / i = ί ω 2 ] l / l l A2] i l £ 3 ] 2 { ^ } 3 / 3 

+ l Ä2] ι [ ω 3 ] 2 / 2 [ £31 2 { R c } 3 / 3 

+ I Α2] ΐΐ Ä3] 2 { R c } 3 / 3 · 

Since {ω 3} 2 is a null vector, a being a constant, and {Rc}3 

vector, C being a fixed point in frame 3, Eq. 1 reduces to 

{Vc}i/i = [ω2] i/i[£2] i[ A3.] 2 { R C } 3 / 3 . 

The y2 axis completes one revolution in time T and therefore 

|ω2| i = 2π/Τ = Ω = y 

giving 

{ω 2 } 1 / 1 

Also, since 

and 

[ *2] i = 

{Rc}3/3 

ογ -sy 0 

sy cy 0 

0 0 1 

~0 

a 

0 

, ί Ä31 2 = 0 ca -sa 

0 sa ca 

Eq. 2 reduces to 

{Vc}i/i = -^aca 

cy 

sy 

0 

= -2iracosa 

cosy 

siny 

0 

Therefore 

{Vc}i/3 = [ *21 3[ ilil 2{vc}i/i = -ßacosa 

Now {A }i/i is readily found from Eq. 3 

{Ac}i/i = {Vch/ i = "Ω acosa 

-smy 

cosy 

0 

MMAERBM - D* 

87

(1)

null

(2 )

(3)

(4)

(5)
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o r more c i r c u i t o u s l y f rom E q . 2 , r e m e m b e r i n g t h a t Ω i s a c o n s t a n t , 

{ A c h / i = { V c } i / i = [ ω 2 ] ? / ι [ Α 2 ] 1ΙΑ3] l { R c h / 3 · 

The reader is asked to evaluate this expression for the acceleration 
of C to establish that it does give the result of Eq. 5. Hence 

{ A
c h / 3 = ί Ä21 3! Ä l l 2{A } i / i = - f i 2 a c o s a 

0 

-cosa 

sina 

The position of A, where A is fixed in body 4 on the periphery of the 
disc as shown in Fig. 3.7b, is given by 

Kh/i = Kh/i + Kch/i 
(6) 

w h e r e 

KJ h/h 

0 

0 

- n a 

a c o n s t a n t , a n d t h e r e f o r e , s i n c e {(03)2 i s a n u l l v e c t o r 

{ V A } i / i = { V c } i / i + [ [ ω 2 ] 1 / X [ A2] i l Ä3] 2[ lh\ 3 

+ I A2] i t l3] 2 [ ω ι + ] 3 / 3 [ H I 3 ] { R A C } ^ / 4 · ( 7 ) 

Therefore 

Now 

and 

giving 

since 

{ V A } i / 3 = [ * i ] 3 { V A } i / i = i A 2 ] 3 [ Ä i ] 2 { V A } i / i 

= { V
c } l / 3 + [ [ A2] 3Ϊ Ai l 2 [ ω 2 ] ! / ! [ Ä2] j [ £ 3 ] 2 

+ [ Ä2] 3 [ Äil 2 [ A2] i t £3] 2Ϊ ω^] 3 / 3 ] [ M 3 { R A C } ^ / 4 · 

[ Ä2] 3 [ A J 2 [ ω 2 ] i / i [ £ 2 ] x [ £3] 2 = [ Äi] 3 [ ω 2 ] ι / χ [ £ι]*ξ = [ ω 2 1 ι / 3 

ί Ä21 3l ÄiJ 2 [ £ 2 ] ι [ £ 3 1 2ί ωι+] 3 / 3 = ί Αχ] 3 [ Ä31 ι [ ω^] 3 / 3 = I ω^] 3 / 3 

{ V A } i / 3 = { V c } i / 3 + [ ί ω 2 ] ι / 3 + I ωι+1 3 / 3 ] [ Ä^I 3 { R A C h / 4 

= i V
c } l / 3 + Ι ω ^ ] i / a i Ä ^ ] 3 { R A C } i f / i f ( 8 ) 

{ωΐψ}! = {ω 2 >ι + { ω ^ } 3 , {ω3>2 b e i n g a n u l l v e c t o r . 
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7///////: — \ 

F i g . 3 . 7 b . 

On w r i t i n g 

{ ω 2 ) ι / 3 = l Αχ] 3 ί ω 2 } ι / ι = 

0 

s a 

ca 

, { ω ι + } 3 / 3 = 

0 

ω 

0 

a n d 

[ JU] h\ 3 

c3 0 s3 
0 1 0 

-S3 Ο c3 

Eq. 8 becomes 

{ V A h / 3 = ^aca 

Γ-ι~ 
0 

L ° 

+ Ω 

0 - C a Sa 

ca 0 0 

- s a O O 

+ ω 

0 0 1 

0 0 0 

- 1 0 0 

c3 O S3 
0 1 0 

-S3 0 c3 

0 

O 

-na 

and this reduces to 

{V A } i / 3 = 

-fiacosa - nacos3( f t s ina + ω ) 

- f inacosas in3 

nas in3 (Ωε ίηα + ω ) 
y 

When 3 = O, t h e v e l o c i t y of A i s z e r o s i n c e i t i s t h e n a t t h e 
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of contact between the plane and the d i s c . Hence 

[ °" 
0 

L°. 
= 

- ß a c a -

0 

m o 

- n a ( f i s a + ω ) 
y 

{νΑ}ι/3|β=0 = 

which gives ω = 3 = -Ω/sina since n = tana. 
y 

Therefore 

{ωι+ } k -Γ3/3 

0 

-Ω/sina 

0 

, [ JU1 3 = 

c3 O -S3 

0 1 0 

S3 0 c3 

where 3 = fit/sina. 
The velocity of A, measured in frame 1 and referred to frame 3, is 
thus given by 

{VAh/3 = ttacosa 
cos3 - 1 

tanasin3 

sin3 

Now 
{VA}i/i = [*31 ιί

ν
Α}ι/3 

(9) 

differentiates to 

{ A A } l / l = [ω 3 ] i / i [ A3] l { V A } i / 3 + [ Ä3] 1* { v J i / 3 
dt 

and since {ω3>2 is a null vector 

K h / 3 = [ Αχ] 3{ΑΑ}ι/ι = [ω2] 1/3 {VA} i/3 + d { V A } 1 / 3 

dt 

0 -Ca sa 

ca 0 0 

-sa 0 0 

c3 - 1 

tan3sa 

S3 

+ ß3aca 

-S3 

tanac3 

c3 

2 
Ω a 

-sin3/tana 
2 2 

cos3(l + cos a) - cos a 
2 

cos3cos a/tana 

(10) 

The angular velocity vector diagram shown in Fig. 3.7a is constructed 
as follows: 

{ω2>ι is represented by the vector· 1 ^ 2 of magnitude Ω parallel 
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ficos a/sinct 

Fig, 3.7c. 

to and in the direction of the z\ axis. 
{033)2 is a null vector and the points 2 and 3 are therefore co -
incident. 
{00̂ )3 is represented by the vector 3 **4 parallel to OC or the y3 
axis. Point 4 is not yet located on this vector. 
Point 0 is fixed in both body 4 and body 1. Also, the point in the 
disc at the point of contact with body 1 is instantaneously at rest 
with respect to body 1. The y2 axis is thus the instantaneous axis 
for the relative motion of bodies 4 and 1. The vector diagram can 
thus be completed by drawing a line parallel to to the y2 axis 
through point 1. Point 4 is given by the intersection of this vector 
with the vector representing {0)4)3 o n which point 4 was to be located. 
The vector representing {ωι+)3 is thus directed negatively along the 
y3 axis while the vector representing {ωι+)ι (1 ► 4) is directed 
negatively along the y2 axis. 

It is therefore possible, having drawn the angular velocity vector 
diagram, to obtain the magnitude of the vectors and hence deduce 
their column matrix form. If 

|ω2 I 1 
= Ω then I ωi+ I 3 = Ω/sina and I ω ι + I = Ω/tana 

Since the angular velocity vector diagram is 'fixed1 in frames 2 and 
3, it is easy to obtain the matrices which describe the various 
angular velocities by reference to Fig. 3.7c. Hence 
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and 

{ω2>ι/3 = Ω 

0 

sina 

cosa 

/ ί ωι+ } 3/3 = "Ώ/sina 

{ω ̂ }j/3 = Ω/tana 

0 

-cosa 

sina 

Problem 3.8. Figure 3.8 shows the schematic arrangement of a mechanism. 
Body 2 rotates at a constant rate of 6 rad/s about the yi axis of a 
frame fixed in body 1 so that point B moves in a circular path, 
centred at 0, in the xizi plane. Body 4 rotates about an axis fixed 
in body 1 which is parallel to the z\ axis so that point A moves in a 
circular path, centred at C, in the xiyi plane. Body 3 couples bodies 
2 and 4 by means of spherical joints at A and B. 

Find, for the given configuration of the mechanism, 

W h / l / {ωη3}ι/ι , f ώ ι+} i /1 and {ω^}ι/ι . 

Solution. All vectors will be measured in and referred to frame 1 and 
therefore the 1/1 suffix can be omitted throughout the solution. 
Now 

ΚΒΪ = K> - K} 
'2~ 

4 

0 

-
o" 
0 

- 4 

= 
" 2 1 

4 

4 

and 

gxving 

{VB} = [ω2] {RB} 

KcJ = Kl + {VAB} 

0 

0 

6 

0 

0 

0 

" 6 1 
0 

OJ 

Γ o 
0 

[-4 
= 

241 
0 

_ 0 J 
cm/s 

(1) 

(2) 

Γο" 
V 

[0 

= 

"24" 

0 

0 

+ 

u 

v 

W 1 

cm/s (3) 

Also, since 

K B } T K B } = o 2u + 4v + 4w = 0 . (4) 
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*f cm 

Fig. 3.8, 

Equations 3 and 4 can be combined to give the single set of equations 

Γΐ 0 0 
0 1 0 

0 0 1 

0 

- 1 

2 4 4 0 0 

■24 

o (5) 

{RAJT Μκ Γ Α }/Ι* , C A J ' ' C A 

and t h e y have t h e s o l u t i o n 

[u v w V] = [-24 12 0 12] cm/s . 
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Now 

g i v i n g 

A l s o 
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{VAC} = [ a ) , ] { R A C } 

0 

12 

0 

{ ω ΐ ι } 

ω 
z 

0 

0 

0 

0 

OJ 

Γ-2* 
0 

L °-
= 

ol 
-2ω 

z 
0 J 

0 

0 

- 6 

r a d / s 

6 J L AB J L AB J -;-? 
3 6 

0 

4 

4 

- 4 

0 

2 

4 

-2 1 

o 

- 2 4 

12 

o 
= -2 

3 

2 

4 

- 5 

r a d / s . 

The a c c e l e r a t i o n of t h e p o i n t s A, B and C a r e r e l a t e d by 

(6) 

The directions of the normal components of acceleration are specified 
by 

and 

K J T K c } =0 , [r, 

- 2 r u + 0 s u + o t u = 0 

Κ Β » Λ Β } = 0 , [r3 

2 ro + 4sq + 4 t : 

S 4 = 0 

(7) 

(8) 

The parallel component acceleration terms of Eq. 6 are evaluated as 
follows. 

2 2 .2 
| V A B | = 2 4 + 1 2 + 0 720 c m 2 / s 2 , 

KJ = lvABl {Κ,ΛΪ " " I g 
- 36 
. 2 

"2" 

4 

I4 . 
= -

"40 Ί 
80 

. 8 0 -

cm/s , 
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and 

W --lvBi K]_ = . ^ 
2 16 

1̂ 1 

o" 
0 

Γ 4 . 

= 

0 1 

0 

144 J 

Kc» = AC '{***} 

AC 

cm/s" 

144 
4 

" 2 " 

0 

0 

= 

72 1 

0 

0 J 

cm/s 

These results in Eq. 6 give 

Γ 7 2 " 

0 

0 

+ 

r 4 

s 4 

t i* 

= 

0" 

0 

144 

-

"4o" 

80 

80 

+ 

rs1 
S 3 

fc3 i 

(9) 

E q u a t i o n s 7 , 8 and 9 can be combined i n t o a s i n g l e s e t of e q u a t i o n s 

1 0 0 

0 1 0 

0 0 1 

0 0 0 

0 10 0 

- 1 

0 

0 

0 

1 - 2 

0 

0 

- 1 

0 

0 

0 

1° 

°1 
0 

- 1 

0 

o| 

°J 

Γ31 
I 3 

ΓΊ = 

r i + 

Sl+ 

Γ 0" 

0 

144 

+ 

"40" 

80 

80 

+ 

72 1 

0 

0 

-KJ1 

and they have the solution 

[r3 s3 t3 r,, sk ,] - [: 
Hence 

Jo 

0 

4 

-4 

0 

0 

(10) 

112 8 

-4 

0 

2 

-64 0 -72 0 J cm/s' 

4] 
- 2 

°J 

Γ112" 

8 

L-64_ 
= 

-el 
16 

.-12J 
rad/s' 

and 

^ = KcjKJ = i 
AC 

0 

0 

0 

0 

0 

- 2 

0 

2 

0 

0 

- 7 2 

0 

= 

0 

0 

36 

rad/s 

If the velocity determining equations had been written more generally 
then they would have appeared thus, 
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Ulf 

Vif 

Wk 

= 
u2 

v 2 

0 

+ 
u3 

v 3 

w 3 

( V A J T { R A J = 0 , X3U3 + y 3 v 3 + Z3W3 = 0 

a n d 

{ V A C } T { R A C } = ° ' X l+U l+ + ^ V l + + ° w^· AC J L AC 

in which case their combined matrix form would be 

0 

1 

0 

*3 Y3 

o 0 

0 o 

o 
0 

1 
z 3 

o 
o 

-1 

o 

o 
0 

-x4 

0 

0 

-1 

0 

o 

o 

0 1 
0 

1 

0 

z j 
0 J 

[̂ 3 
v 3 

w 3 

u 4 

V i f 

[Wi+ 

- u 2 l 
- v 2 

0 

0 

0 

0 \ 

(11) 

On comparing the accleration determining equations, Eqs. 10, with the 
above velocity determining equations it will be clear that their 
form is the same. It is 

Matrix characteristic 

of mechanism 

geometry. 

Matrix 

of 

unknowns, 

'Outputs1 

Matrix 

of 

knowns. 

'Inputs' 

These matrices can be partitioned as follows. The 'characteristic' 
matrix becomes 

- 1 

L K B m 0 J 
L 0 J L - { H A C } T J 

L o j 
The 'output' matrices for velocity and acceleration determination are 
respectively 

and 
KB} 

Kell 
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The 'input' matrices for velocity and acceleration determination are 
respectively 

and 

-{vB} 

. {o} 

A recognition of these characteristics in the formulation of the 
problem is particularly useful when a computer is employed to solve 
the equations. 

Problem 3.9. In the linkage shown in Fig. 3.9 a rod, body 2, has its 
end A constrained to move along the xj axis of frame 1 fixed in body ] 
The rod is also constrained so that it slides through a diametral 
hole in a sphere, body 3, at C. The sphere is free to rotate in a 
block which constrains the centre of the sphere to move along a path 
DE, which is fixed in body 1, in the y\Z\ plane and parallel to the 
ζχ axis. 

In the given position of the linkage the velocity and acceleration of 
A and C, the centre of the sphere, are respectively 

{vAh/ i 

M i / i 
100 

81 

m / s { v c } i / i m / s 

m/s and { A r } w i = 100 C ' ~5T 
m/s^ 

Find 

{ω"}ι/ι , {VBC}i/i , {ABC}2/1 and {ω^ΐΐ/ΐ 

Solution. Since the suffixes are, with one exception 1/1 throughout 
the solution they can be omitted in other than the exceptional case. 
The exception is the vector 

Kc}* 
(See paragraph 1.13 and in particular Eqs. 1.69 and 1.70). 
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B on body 2 

C on body 3 

Path of C drawn on 
body 1 

Path of A 
drawn on 
body 1 

0 . 4 m 

z i 

0 . 2 m 

F i g . 3 . 9 , 

Now 

Kl = 
- 0 . 4 

0 

0 
> Κϊ = 

0 

0.4 

- 0 . 2 

and t h e r e f o r e 

Also 

and 

I f 

0 

0 . 4 

0 . 2 

-

- 0 . 4 

0 

0 

= 0 .2 

2 

2 

- 1 
K B } = m . 

{vRJ = a n d {VB C} = V{RB A} 

(1) 

(2) 

(3) 

t h e n E q s . 2 and 3 become 
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u 
V 

w 

+ V 
3 

2 

2 

-1 

= 

0 

0 

1 

-

2 

0 

0 

and 

2u + 2v - w = 0 

Equations 4 and 5 can be written 

(4) 

(5) 

1 

0 

0 

2 

0 

1 

0 

2 

0 

0 

1 

-1 

2/3 

2/3 

-1/3 

o 

u 
V 

w 

v 

-2 

0 

1 

0 

(6) 

To determine velocities for a series of configurations of the linkage 
it would be advantageous to express Eqs. 6 in the more general form 

1 

0 

0 

0 

1 

0 

0 

0 

1 

KA} 

ΚΛ} 0 

M ~ M 
(7) 

The solution of Eqs. 6 give 

-4 

K.) ■ | m/s and { v } = 5 
B C 9 

-2 

-2 

1 

m/s. 

The angular velocity of the rod, body 2, is given by 

{""} = K J K A I = 0-2x2 0.2x2 
0.36x9 

0 

-1 

-2 

1 

0 

2 

2 

-2 

o 

-4 

5 

2 

= 10 
9 

1 

0 

2 

r a d / s . 

The acceleration of B relative to A parallel to {î ,.} is given by 

KAI = RIKJ = 10X2 10x2 
9x9 

0 

2 

0 

-2 

0 

1 

0 

-1 

-4 

5 

2 

- 100 
81 

-2 

-2 

1 

m/s' 

and the accleration of C relative to B which is normal to {RfiA} is 
given by 
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2[ω η
2 ]{ν Β € }* = 2x10x5 

0 

2 

0 

-2 

0 

1 

ol 
-1 

ol 

-2 

-2 

1 

= 100 
81 

4 

-5 

~2 

m/s' 
9x9 

For the relative acclerations 

Κϊ = W + {\J + iA
CB} 

= K) +
 KAJ

 + K A l + 2 K 2 ] { v C B l + { A C B } 2 / 1 (8) 

K A * + K . h / 1 = {\} - {AA} - { d - 2[ω"2]<ν„} 

+ Αί^ΑΪ- = 100 

IHBAI 8 1 

0 - 5 + 2 - 4 

0 - 0 + 2 + 5 

6 - 0 - 1 + 2 

A l s o , s i n c e 

K A } Κ Λ Ι = ° 

(9) 

i t f o l l o w s t h a t t h e a c c e l e r a t i o n d e t e r m i n i n g e q u a t i o n s can be w r i t t e n 
i n t h e combined form 

1 

0 

0 

2 

0 

1 

0 

2 

0 

0 

1 

-1 

2/3 

2/3 

-1/3 

o 

r 

s 

t 

U 
= 222 

81 

- 1 

1 

1 

o 

The s o l u t i o n of Eqs . 10 g i v e 
1 

f O - loo 3 

- 1 

n / s 2 and { A C B } 2 / I = 2 2 2 
81 

-2 

-2 

1 

m/s 

(10) 

The angular acceleration of body 2 is given by 

I2*i = Μ Κ Α Ι -°·^οο 
O . J O X o l 

" 0 
-1 

-2 

1 

0 

2 

2] 
-2 

OJ 

Γ λ ' 
3 

[-1 
= 

*-14.4l 

4.8 

19.2 j 

r a d / s . 
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Problem 3.10. The position of a point P is measured in a reference 
frame 4 which is fixed in the earth as shown in Fig. 3.10. Obtain an 
expression for 

where frame 1 is fixed in the stars(an inertial frame of reference). 

znz2 

I Γ about Z| 2 γ about z2 3 a about x3 4 

. *3 

F i g . 3 . 1 0 . 

Solution. Introduce a frame 2 with its origin at the centre of the sun 
such that the y2 axis passes through the centre of the earth. Also 
introduce a frame 3 which is fixed in the earth with its z3 axis 
parallel to the Z2 axis of frame 2. Hence 

{ωι+ΐι = {ω2)ι + {0)3} 2+ {ωι+>3 = (ω3}χ 

since {ω4}3 is a null vector. Therefore 

{ω3}1/ι+ = {ωι^χ/4 = [ £3] t+ { ί ω2 > l/l + ίω3}2/2} 

1 

0 

0 

0 

c a 

- S a 

0 

sa 

ca_ 

Γο" 

p 
[Ω 

+ 
"° 1 
0 

ω 
- e J 

= (Ω + 

0 

sa 

ca 

since [ l\\ 2 and [ Ä21 3 have no effect of the transformation of {ω2}ι/ι 
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a n d {0)3}2 /2 · N o w 

Κ0Π/Ι = i A 2 l l i A 3 ] 2 [ £ i f ] 3 { R i o } i f / i f 

w h i c h , on d i f f e r e n t i a t i o n w i t h r e s p e c t t o t i m e g i v e s 

{ V p o h / i = [ [ ω 2 ] ι / ι ϊ £ι*1 i + [ A21 ! [ ω 3 ] 2 / 2 Ϊ M 3]{Rp0}if /H 

+ i H i I { V P 0 K A 

and therefore 

ίν
Ρ0^/^ = [t ω2ΐ i/M- + ίω31 2 A ] { R p 0 } i f A + { V P 0 K A 

= [ω 3 ] ΐ / ι + ί ^ ο ^ 4 + { V P O ^ A 

0 

ca 

S a 

- c a 

0 

0 

S a 

0 

0 

" x ' 

y 
z 

+ 

X 

Y 
z 

( j ( z s i n a - y c o s a ) + x 

wxcosa + y 

-ooxsina + z 

where ω = Ω + ω . S i n c e 
e 

{ V p o } ! / i = [ H l l { V p o } 1 / i + / 

{ A p o h / i = ί ω ι ί ] ι / ι [ £ 1 ί ] ι { ν ρ ο } ι Λ + [ A i J i d { V p o } 1 / 4 

dt 

and therefore 

Ko^A = [ωι+1 i / W v p o } i / 4 + d { ν ρ ο } ι / ί + 
d t 

O - c a s a 

ca O O 

- s a O O 

ω ( z s a - y e a ) + x 

üaxca + y 

- i juXSa + z 

u)(zsa - y e a ) + x 

ωχοα + y 

- toxsa + z 
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x - ω x - 2ü)(yca - zsa) 

yc a) + 2ωχοα 
2 % ~ · 

zs a) - 2u)XSa 
^ - 6 

103 

y + ω (zsaca 
2 / z + ω (ysaca 

= 72.7x10" rad / s therefore terms 

involving ω and Ω can be neglected. Thus 

zsinct) 

ΚοϊιΛ 
x - 2ω (ycosa 

y + 2ω xcosa 
e 

z - 2ω xsina 

Accelerations measured in frame 4, x, y and z, will thus be close to 
those measured in frame 1, provided that the accelerations ω x, ω y 
and ω z are small compared with x, y and z. 

Problem 3.11. Figure 3.11 shows part of an epicyclic gear train in 
which the epicyclic arm, body 2, and the annular wheel, body 4, are 
driven at a constant rate relative to the gear case, body 1. The 
planet wheel, body 3, is carried on the arm and meshes with the 
annular wheel. 

At a given instant of time, frames 1, 2, 3 and 4 are aligned and B on 
the planet wheel is coincident with C on the annular wheel. In the 
subsequent motion frames 2 and 4 rotate about the yx axis through the 
angles a and 3 respectively relative to frame 1, while frame 3 rotates 
relative to frame 2 about the y3 axis through the angle γ. Obtain a 
general expression for 

Koh/2 

Solution. Now 

KoJl/l = [ £ 2 1 l { R
A O } 2 / 2 + ϊ Μ li Ä3] 2 K J 3 / 3 

and therefore 

{VBoll/l = 1 ω 2 ] 1/1[ £2l l{RAO}2/2 + I ω21 1/1 [ Ä2] 1 [ * 3] 2 { \ A } 3/3 

+ [ l2\ ll ω3] 2 / 2 [ £3] 2{RBA}3/3 

{ V B O } I / 2 = [ω2] i / 2 { R A O } 2 / 2 

+ [ ί ω 2 ΐ ΐ /2 + t ω3] 2 / 2 ] [ £3] 2 { R B A } 3 / 3 

o r 
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4\ 

>U* 
ya 

i i 

HC 

m 
N 

M 
1 a about yj 2 γ about y2 3 

1 β about γι 4 

F i g . 3 . 1 1 . 

= naa 

0 

0 

1 

0 

0 

0 

l] 
0 

oj 

Γ I ] 
0 

L oj 

• · . + (a + y ) a 

" 0 

0 

- 1 

0 

0 

0 

l ] 
0 

°J 

cy 

0 

- s y 

0 

1 

0 

syl 
0 

cyj 

Γι 1 
0 

1°. 
f · · . -a (a + γ ) s i n y 

O 

-naa - a ( a + y)cosy 
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Also 

{Rco}i/i = IH1 i{RC0K/4 

and therefore 

{vcoii / i = Ι ω ^ i / i l H I i { R c o } i 4 / 4 
o r 

i V C o J l / 2 = [ ω ^ 1/21 £ll 2Ϊ ^1 l{Rc o}tA 

= maß 

0 0 1 

0 0 0 

1 0 0. 

Ca 0 -sa] 

0 1 0 

Sa 0 caj 

cosßsina - sinßcosa 

0 

(cosßcosa + sinßsina) 

cß 

0 

L-sß 

0 

1 

0 

sß 

0 

cße 

1 

0 

_0 

where m = (n +1). Equating 

Κ θ ϊ ΐ Λ ΐ Λ
 t 0 Κ 0 } ΐ / 2 

γ=0 α=0 
ß=0 

gives γ = m(ß - α) and a + γ = mß - ηά = p. Therefore 

{ V B 0 } 1 / 2 = -a 
p s m y 

0 

ηά + pcosy 

where γ = m(ß - a)t, t being the time which has elapsed since B and C 
were coincident. Hence 

{ A B 0 } 1 / 2 = Ι ω 2 1 1 / 2 { ν Β Ο } 1 / 2 + d { V B O } 1 / 2 

dt 

= -aa 

0 

0 

1 

0 

0 

0 

1 

0 

oj 

Γ p s y 

0 

[ η ά + pcy 
+ aPY 

- c y 

0 

sy 

2 · 2 -i 

■ (ap cosy + net ) 

ap s m y 
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Problem 3.12. Body 2 rotates at a constant rate of relative to body 1 
about the z\ axis as shown in Fig. 3.12a. Body 2 carries a rotor,body 
3, which rotates at a constant rate ω relative to body 2 about an 
axis which is parallel to the x2 axis. 

Find 
{w3}i/2 r ίω3Η/1 r ί ω 3 } χ y2

 a n d ^Ζ^Ι/\· 

Illustrate the results by drawing appropriate vectors. 

ί ω 2} 

1 γ abou t Zj 2 a abou t x 2 3 

V_ 

1 > 

* 3 

T T T 

Κ ω 3 } 2 

. y 2 

F i g . 3 .12a . 

Solution. Now 

{ω3>ι = {ω2 } } + {0)3)1 

as shown in Fig. 3.12b. Hence 

{ω 3 } 1 / 1 = {ω2>ι/ι + {ω3}2/ΐ 

= ίω2 h/1 + I Ä21 1ίω3 h/2 (1) 
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0 

0 

Ω 

+ 

cy 

sy 

0 

- s y 

cy 

0 

°1 
0 

1J 

Γω 

P 
o 

= 

oüCOSy 

ojs iny 

Ω 

a s show i n F i g . 3 . 1 2 c . 

zx , z 2 

ΐω 2 } 

(2) 

A l s o 

F i g . 3 . 1 2 b . 

{ ω 3 } 1 / 2 = [ £ ΐ 1 2 { ω 2 } ι / ι + ί ω 3 } 2 / 2 

o] 
0 

l j 

Γ0" 
P 
[Ω 

+ 
ω 

0 

o t 

= 
ω 

0 

Ω J 

Cy Sy 

- S y Cy 

w ° ° 
or alternatively, 

{0)3)1/2 = [ Ιλ] 2 { ω 3 } 1 / 1 . 

Differentiation of Eq. 1 with respect to time gives 

{ ω 3 ) ι / ι = { ω 2 > ΐ / ΐ + ί ω21 ι / 1 [ Ä 2I 1 ί ω 3 > 2 / 2 + I £ 2 ΐ 1 ί ω 3 > 2 / 2 / 

but in this case {002)1 and {0)3)2 a r e null vectors since Ω and ω are 

constants. Therefore 

{ ω 3 } x/! = [ ω21 \/\[ £21 1 {ω3 )2/2 

and since, from Eq. 1 

[Ä 2 ]ΐ{ω 3 ) 2 /2 = {ω3 ) 3 n/1 {ω2 ) 2*1/1 

ίω3)ι/ι = [ ω21 l/i{{ω3}χ/ι - {ω2}χ/ι} = [ ω2] χ/ι{ω3}ι/ι 

because 
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[ ω21 l / l W h / i 

i s a n u l l m a t r i x . Hence 

{ω3>ΐ/ΐ 

as shown in Fig. 3.12d. 

0 

Ω 

0 

-Ω 

0 

0 

0 j 
0 

o 

Γωθγ 

cosy 

Ω 

= 

- ω Ω ε ί η γ 

ωΩοοεγ 

0 

Fig. 3.12c 

Alternatively, "C ω 3 } l /l c a n ^ e obtained directly by differentiation of 
Eq. 2. Also 

{ω 3 } 1 / 2 = f *il 2iu3}l/l = 

c y 

s y 

0 

s y 

cy 

0 

0 

0 

1 

-ωΩ sy 

ωΩογ 

o 
= 

0 

ωΩ 

0 

Alternatively 

{ ω 3 } 1 / 2 = I ω21 ΐ/2{ω3}1/2 + d {^^\/2 
/ dt 

0 

Ω 

0 

"ο 
ωΩ 

0 

-Ω 

0 

0 

• 

0 

0 

OJ 

ω 

0 

[Ω 
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/ ' ■ 

Fig. 3.12d. 

Problem 3.13. Figure 3.13a shows a part section of a ball thrust race. 
Determine, for the case in which the upper track, body 2, runs at a 
constant angular velocity relative to the lower track, body 1, and 
the balls roll without slip, the angular acceleration of a typical 
ball, body 4. Also find the linear acceleration of the centre of mass 
C of the ball and the velocity with which the cage rubs on the ball. 

Solution. Consider the motion of the ball and in particular its ang-
ular velocity. There will be a component of angular velocity parallel 
to the y3 axis of a frame fixed in the cage, body 3, as a result of 
the velocity which A has relative to B. The component angular velocity 
parallel to the x3 axis must be zero since there is no slip at the 
points of contact A and B.If the ball has a component angular velocity 
parallel to the z3 axis, then an instant later when the line BCA has 
moved to the position indicated in Fig. 3.13b a component of this 
angular velocity will exist parallel to the x3 axis. Since this com-
ponent parallel to the x3 axis must be zero, so alos must the compon-
ent parallel to the z3 axis. The relative positions of the frames 
indicated in Fig. 3.13a are thus adequate in the description of the 
motion. While the angle Θ can be made positive, the angles γ and 3 
will not necessarily be positive. 

Consider the point 0 as a point fixed in body 2 and also as a point 
fixed in an imaginary extension of body 4. Such points have no rel-
ative motion and are therefore points on the instantaneous axis for 
the relative motion of bodies 2 and 4. Further consider a point A in 
body 2 and as a coincident point in body 4. Such points have, instan-
taneously, no relative motion and are similarly points on the instan-
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Θ about z 2 ft about z. 3 & about y, k 

Fig. 3.13a. 

taneous axis for the motion of body 2 relative to body 4. Hence OA is 
the instantaneous axis for the relative motion of bodies 2 and 4 and 
{ωι+12 i s parallel to OA. By a similar argument, the vector { ω ^ } ! is 
parallel to OB. The angular velocity vector diagram can thus be cons-
tructed as follows. 

{ω 2 } i 

{ωι+ } ι 

{ω4 } 2 

(ω3 }]_ 

{ω3 } h 

*-2 ω long and parallel to the Ziaxis. 

► 4 parallel to OB. The position of point 4 is 
not defined at this stage. 

► 4 parallel to OA. The intersection of lines 
1 4 and 1 2 fixes the position of point 4. 

^ 3 parallel to the zj axis. The position of 
point 3 on 1 2 is not defined at this stage. 

^ 3 . If the ball had a spin about the axis AC, 
then an instant later the existence of such 
an angular velocity would require a compon-
ent angular velocity parallel to the x 3 
axis, and this is not possible as explained 
above. Thus 4 ► 3 is parallel to the y3 
axis and this vector fixes the position of 
3 on the line 1 2. 

The angular velocity vector diagram is thus as shown in Fig. 3.13c. 
The vector { ω 3 } 2 is negatively directed along the z3 axis and there-
fore γ is negative. Similarly, since {ωι+}3 is negatively directed 
along the y3 axis β is negative. 

Now 

{ω^}χ = {a)2)i + {ω3>2 + {ω^} 3 (1) 
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Fig. 3.13b. 

and therefore, by reference to the angular velocity vector diagram, 

W h / 3 = ίω2>ι/3 + ίω3}2/3 + W > 3 / 3 

D 1 
(2) 

"o" 
0 

ω 

+ 

0 

0 

_-ω/2_ 

+ 
" 0 

- η ω / 2 

m o 
= 

* ° 1 
- η ω / 2 

. ω/2 j 

The angular acceleration of body 4, measured in frame 1 and referred 
to frame 3, is given by 

{ωι+Ιχ/3 = [ ω3] 1/3{ωι+}1/3 + d {u)k}l/3 

dt 
(3) 

From Eq. 2 

{ω3}ι/3 = (ωι+}1/3 - ίωι+}3/3 

and this result in Eq. 3, noting the the last term in this equation 
is a null matrix, gives 

{ωι+ΐχ/s = - [ ω4] 3 / 3 W h / 3
 = " η ω 

4 

0 

0 

1 

0 

0 

0 

- l l 
0 

oj 

Γ o] 
-n 

L λ1 

= η_ω_ 
4 

The velocity of the centre of the ball is found by noting that C is a 

MMAERBM - E 
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Instantaneous ax i s for the 
motion of body k r e l a t i v e 

z1 to body 2 

|V | 1= u>na/2 

Instantaneous axis for the 
motion of body k r e l a t i v e B 
to body 1 

Fig 0 3 . 1 3 c . 

fixed point in frame 3, is given by 

{ V c } i / 3 = {Vi+Ji/3 = [ ω3] 1/3 {R c } 3 /3 = ϋ§α 

0 0 - 1 

0 0 0 

1 0 0 

nag) 
2 

-1 

0 

0 

The acceleration of the centre of the ball is thus 

{ V i + h / 3 = [ ω 3 ] i / 3 {Vi,} i / 3 + d {vh}l/3 
dt 

and since the last term in this equation is a null matrix, 

{Ai+} I / 3 = n a j / 
4 

The rubbing velocity between D a point on the ball (Fig. 3.13c) 
a corresponding point on the cage, will be given by 

0 

1 

0 

- 1 

0 

0 

ol 
0 

OJ 

Γ-Γ 
0 

L ° . 

2 
= nao) 

4 

o" 
- 1 

. oJ 
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i V D C } l / 3 " {
V E C } l /3

 = [ ω^ 1/3{RÖ C}3/3 ~
 [ω^ 1 / 3 { ̂  c } 3 / 3 

= I ωι+l 3/3IRDC13/3 

η ω 
2 

0 

0 

1 

0 

0 

0 

- 1 

0 

o 

a 

0 

o 
= naw 

2 

0 

0 

1 

Problem 3.14. Determine the angular velocity and acceleration of a 
roller in a taper roller thrust bearing for the case in which the 
inner ring is fixed and the outer ring is driven at a constant ang-
ular velocity. Assume that rolling without slip takes place at the 
roller and ring contacts. Also determine the maximum rubbing velocity 
of the cage on a roller. 

Solution. Figure 3.14 shows a half section of a taper roller thrust 
bearing. The fixed inner ring is designated 1, the cage 2, a roller 4 
and the outer ring 5. Frames of reference have been introduced with 
the relative positions indicated. The angular velocity vector diagram 
is constructed as follows. 

{ω5}1 1—^5 long and parallel to the z^ axis. 

{ωι+ΐ! 1—**4 parallel to the generator of the cone on the 
inner ring in the given section. The position 
of point 4 is not defined at this stage. 

{ω5}ΐ4 5 — ^ 4 parallel to the generator of the cone on the 
outer ring given in the section. The inter-
section of lineds 1 4 and 5 4 fixes the pos-
ition of the point 4. 

{0114)3 3—^4 parallel to the z 3 or roller axis to fix the 
position of point 3 on the line 1 5. Points 
3 and 2 are coincident because frames 2 and 
3 have no relative motion. Hence {ωι+^ = 
{ω4 } 2· 

By the application of the sine rule to triangles 145 and 124 

I ωι* I 1 g ) S i n ( 6 + β) 
s i n 2 ß 

I ω2 I 1 = cos in(6 -l- ß) s i n f 
s i n 2 ß s i n 0 

and 

J4 I 2 = QüSin(e + ß) s i n ( 6 ß) . 
sin2ßsin0 

Hence 
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zl f z2f z5 

2,S 1 ψ about Zl 2 θ about x2 3 φ about z3 4 

1 a about Zi 5 

F i g . 3 . 1 4 . 

W h / 3 = | ωι+ | l 
o 
s i n £ 

cos f 

{ ω 2 ) ι / 3 = I ω 2 | i 

0 

s i n e 

cose 

and 

Now 

and 

{ ω ^ } 3 / 3 - { ω ^ } 2 / 3 = I ωι+ | 2 

{ ω 4 } 1 / 3 - [ω 2 ] l / 3 W h / 3 + <| ί ω 4 } 1 / 3 

dt 

{ωί+Ιχ/3 = {ω2)ι/3 + {ω3}2/3 + ί ω ̂  } 3 / Ξ 

giving 
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{ ω ι * } ι / 3 = l ω21 ΐ / 3 { ω ι + } 3 / 3 

ω 2 1 i | ω 4 1 2 

0 

ce 
-se 

-ce 
0 

0 

s 
0 

0 

I ω 2 I 1 I ω 4 I 2COSG 

- 1 

0 

0 

since {ω3}2/3 and diüJi+l1/3/dt are null matrices. 

The magnitude of the maximum rubbing velocity between cage and roller 
is given by 

a I ω i| I 2 

where a is the magnitude of the position of B relative to A or the 
maximum roller diameter. 

Problem 3.15. A rotor, body 4, turns at a constant rate ω8 relative 
to a bearing, body 3, about the y3 axis as shown in Fig.3.15a. The 
bearing is free to turn with respect to body 2 about the x2 axis and 
body 2 rotates at a constant rate Ω about the zj axis in body 1. Find 
{ωι+Ιχ/2 f°r t n e c a s e in which ά and ä are not zero. 

Solution. Now 

{ωι+j-! = {ω2}ι + {ω3>2 + {ωΐψ^ 

and therefore 

t ω^ } 1 /1 = {ω2}ΐ/ι + [^2]ΐ{ω3}2/2
 + I *-ΐ\ 1 [ Ä 3I 2 ί ^k } 3/3 · 

Since {ώ2}ι and {ώ^}3 are null vectors 

{"if }ι/ι = [ω2ΐΐ/ΐ[Α2]ι{ω3}2/2
 + l ̂ Ι ΐίω3 }2/2 

+ [ ω2ΐ l/ll M i l A3] 2{ω 4} 3/ 3 

+ l Ä2] i[ ω31 2/2l
 Α3Ϊ 2ίω 4} 3/ 3 . 

On premultiplication by [ £χ] 3 and on the introduction of appropriate 
[A3]ι[&il 3 products, this equation becomes 

{ώι+}1/3 = [ £x] 3[ ω2] l/ll £3] it Αχ] 3[ Ä2] ΐίω3}2/2 

+ I All 3Ϊ Ä2] ΐ{ώ3>2/2 
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+ I Αχ] 3 [ ω 2 ] i / i [ Ä3] i [ Ä J 3 [ £ 2 1 l l Ä3] 2 { ω ι + } 3 / 3 

+ [ * l l 3l * 2 ] 1Ϊ ω 3 ] 2 / 2 1 M 2 { ω 1 + } 3 / 3 

= [ ω21 ι / 3 { ω 3 } 2 / 3 + ί ω 3 } 2 / 3 + [ ω 2 ] ι / 3 ί ωι+ } 3 / 3 

+ I ω 3 ] 2 / 3 ί ω 4 } 3 / 3 

= [ ω21 ι / 3 { ί ω 3 } 2 / 3 + ί ω ι * } 3 / 3 } + [ ω 3 ] 2 3 ί
 ω i+ ^ 3 / 3 

+ ί ω 3 > 2 / 3 · 

1 ^abou t ζ 2 α about χ . 3 ß about y *f 

Fig. 3.15a. 

Writing ά = ω and evaluating individual terms in the above equation 

{ω2>ι/3 = [ Ä2] 3[ Äi] 2{ω2}χ/ι = Ω 

0 

Sa 

ca 

{ω3}2/3 = [
 £2l 3^3*2/2 
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y2 

C o m p o n e n t s o f {ω^}1 a l o n g t h e a x e s o f f r a m e 2 

ί2ω5 cosa 

x2 component z2 component 

y2 component 

F i g . 3 . 1 5 b . 

a n d 

l ω21 1 / 3 { ί ω 3 } 2 / 3 + { ω ι * } 3 / 3 } = Ω 

O - c a s a 

ca 0 O 

-Sa 0 O 

l ω3ΐ 2 / 3 ^ 4 Ϊ3 /3 = ω ω 8 

0 

0 

0 

0 

0 

1 

= Ω 

°1 
- 1 

oj 

- a s ^α 

ωθα 

[ -ωεα 

Γο" 
1 

Lo 
= ωω8 

Ό 
0 

1 

T h e r e f o r e 

{ω^ } i / 3 

ω - Ωω8 c o s a 

iiaicosa 

ωω, - Ωωείηα 

and 
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{ώι+ } χ/2 = I £3] 2 W h / 3 = 

ώ - Ωω8 cosa 

Ωω - ωω8 sina 

ωω„ cosa 

The terms in this last statement for the angular acceleration are 
shown in Fig. 3.15b. The reader is invited to determine {ωι+Ιι/2 and 
then determine {ωι+}ι/2 from 

{ ω ι + > 1 / / 2
 = l ω 2 ΐ 1 / 2 Ϊ ω ι + } ΐ / 2 + <■* { w i + h / 2 · 

dt 

Problem 3.16. In the system of Fig. 3.16 body 2 turns at a constant 
rate relative to body 1 about the z\ axis. Body 3 is free to turn on 
body 2 about the y2 axis and rolls on body 1. Conditions are such that 
on the line of contact between bodies 1 and 3 the velocity of slip is 
zero at the point A. Determine the rubbing velocity at B and D. 
Locate a point Q on the central axis for the for the motion of body 3 
relative to body 1 and show that it is on the line OA. Also show that 
instantaneously the velocity of Q measured in frame 1 is zero, i.e. 
OQA is the instantaneous axis for the motion of body 3 relative to 
body 1. 

Solution. The angular velocity vector diagram is constructed as 
follows. 

{0)2)1 1—**2 ω long parallel to the Ζγ axis. 

{ω3}2 2 — ^ 3 parallel to the y2 axis. The position of 
point 3 is not defined. 

{ω3}1 1—^3 parallel to OA, the instantaeous axis for 
the motion of body 3 relative to body 1. 
The intersection of lines 2 3 and 1 3 
defines the position of point 3. 

By reference to the angular velocity vector diagram 

{0)3)1/2 = ί ω 2 )" 1 /2 + f ω 3 J 2/2 

For the point B, fixed in body 3 

iVBO^/2 = l ω 3 ΐ 1 / 2 Ι ^3 ] 2 { R B O } 3 / 3 

Γο" 
o 

■ ω 

+ 
" 0 

- o j a / r 

_ 0 

= 
" ° 1 
- Q i a / r 

ω J 
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[o - l -
1 0 

La/r 0 

facos3 - b" 
r s in3 

[as in 3 

a / r l 
0 

0 J 

• 

|"c3 
0 

L s 3 

0 

1 

0 

-S3] 
0 

c3j 

Γ 0 
b 

1-r 

1 γ about Z] 2 p about y2 3 

l-i 

Fig. 3.16. 

The rubbing velocity at B is thus given by 

1 

{ V B O H / 2 | 3 = 0 = «(a-b) ' 

Similarly, the velocity of rubbing at D is given by 

"l 

I f Q i s a p o i n t on t h e c e n t r a l a x i s , t h e n by Eq. 1.4* 

{RoJl/2\o=0 = Ιω31 l / 2 { V B O } l / 2 I ( 3=0 

2 
I ω 3 | 1 

MMAERBM - E* 
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= (a - b) 

a2/r2 + 1 

O 

1 

a/r 0 

1 

0 

0 

- a / r l 
0 

0 J 

Γι 1 
0 

L° J 

r(a - b) 
2 2 

a + r 
and for 3 = 0 

i R QO } l /2 = { ^ o l l / ^ + { R Q B } I / 2 

0 

b 

r 

+ r ( a - b) 
2 2 

a + r z 

0 

r 

a 

= ab + r 2 

2 , 2 

a + r 

0 

a 

- r 
- M R A „ J Λ Ο » / 2 

showing that Q is on the line OA. Also, since 

fV)i/2|e=o = lu)3] i / 2 { R
Q o } l / 2 | ß = o 

0 

1 

a / r 

- 1 

0 

0 

- a / r 
0 

0 J 

0 

a 

1 -r 
= 

0 

0 

0 

= λω 

OQA is the instantaneous axis for the motion of the roller relative 
to body 1. 

Problem 3.17. In the system of Fig. 3.17 bodies 2 and 3 are connected 
by a simple pin joint, the axis of which is parallel to the y3 axis. 
Body 2 is free to turn relative to body 1 about the ζχ axis and body 
4 is free to turn relative to body 3 about the z3 axis. Body 5 is to 
rotate relative to body 1 about the Zi axis. Find, for the case in 
which body 4 rolls without slip on body 5, 

ΐ ω * + } ΐ / 3 a n d f w i t l i / 3 

when bodies 2 and 3 are driven at constant rates 002 and ω5 respec -
tively relative to body 1. 

Solution. Now 

{RA0}i/i = I W i / i + K.h/i 

= 1 A2I it I s ! 2 { R B 0 } 3 / 3 + ( *2l ll *3l 2( M s i ^ K / 1 * 
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I γ about z, 2 Θ about y3 3 φ about z34 

I β about Z| 5 

Fig. 3.17 

giving 

iVAoJl/l = [ ω 2 ] 1 / 1 [ £ 2 ] l [ £ 3 l 2 { R B O } 3 / 3 

+ [ω21 l / i l Ä2] i [ A3] 2 { Κ Α Β } ^ / 4 

+ [ £21 if Ä3] 2 [ ωι,] 3 / 3 [ H I 3 { R A B h / 4 ' 

since {ω3}2 is' a null vector and therefore 

ί ν Α θ ϊ ΐ / 3 = [ ω 2 ΐ l / 3 { R B O i 3 / 3 

+ [l ω2ΐ 1/3 + l ω ^] 3/3J I H l 3 { R
A B }h/h 

H e n c e 

i V A 0 } l / 3L = φ=0 
(JU2 

0 - c 6 0 

C0 0 S6 

0 - s 0 O 

0 

0 

- a 
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0)2 

o -ce o 
ce o se 
o -se o 

0 

1 

0 

- 1 

0 

0 

0" 

0 

0̂  

rb/2" 
0 

L° 

c ^ a s i n e + caboose 
2 

\°' 
1 

Lo. 

+ bj> 
2 

"°1 
1 

. 0 J 

Also 

g i v i n g 

S ince 

0 

1 

0 

- 1 

0 

0 

0 

0 

ol 

f-c/2 
0 

L o 
~ SSi.5 

T 

0 

- 1 

. o 

K D h / l = I £ 5 l l { R E D } 5 / 5 and { V E D h / 5 = [ ω5] ι / 5 {RED} 5/5 

i V E B } l / 5 | ß = 0 = ω 5 

{ V A O ^ / 3 | n = { V E B } 1 / 5 | 
1φ=0 '3=0 ' 

φ = ω2{ (2a/b) sine - cose} - (c/b)o)5 

By reference to Fig. 3.17 

tane = tan(( )2) = b/2a + c/r = br + 2ac 
1 - bc/2ar 2ar - bc 

where r2 = 4a2 + b2 - c2, giving 

sine = (br + 2ac)/R and cose = (2ar - be)/R 

where R = /{(br + 2ac)2 + (2ar - bc)2} = (r2 + c2) . 

With these values for sine and cose the expression for φ reduces to 

φ = c(u)2 - ω5) /b. 

Therefore 

W h / 3 = ί ω 2 ) ι / 3 + { ω 4 } 3 / 3 

o>2 

- s ine 

0 

cose 
+ c (ω2 l i ) 

This expression for {ωι+}ι /$ can also be determined from the angular 

velocity vector diagram of Fig. 3.17. {ω2>ι and {035)1 are drawn para-
llel to the zj axis. (001+} 3 drawn parallel to OB and {0)5}̂  drawn para-
llel to 0A, the instantaneous axis for the motion of body 4 relative 
to body 3, intersect to define the position of point 4. From the 
diagram 
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((1)2 + o))tan0 = (0)5 + o))tan02 

ω = ω5tan0 2 ~ ω2tanθ 

123 

t a n e - t a n e 2 

and t h e r e f o r e 

| φ·| = Ü) + (02 = (ω5 - o)2)tane2 = σ(ω 5 - u2)/b · 

cose c o s e ( t a n e - t an62) 

which conf i rms t h e p r e v i o u s r e s u l t . 

The a n g u l a r a c c e l e r a t i o n {ui+}\/3, s i n c e ditoi*} χ / 3 / d t i s n u l l , i s g iven 
by 

{ωι + } 1 / 3 = [ ω3] ι / 3 { ω ι + } 1 / 3 = [ ω2] ι / 3 ίω 4 } 3 / 3 

= C ü 2 (.0)2 ~ ω δ ) 

ο -ce ο 
ce ο se 
ο -se ο 

= o^csine (ü)2 ~ ω5) 

Problem 3.18. In the system of Fig. 3.18 bodies 2 and 3 rotate about 
axes fixed in body 4. The relative motion of bodies 2 and 3 is gov-
erned by mating bevel gear wheels cut in them. Body 2 rotates about 
an axis fixed in body 1, while body 3 rolls without slip on body 1. 
For the case in which body 2 is driven at a constant rate relative to 
body 1, draw the angular velocity vector diagram for the system and 
hence determine 

{ω3 } i/t+ and ίω3}1/ι+ . 

Also determine 

Κ ο ϊ ι Λ ' Κ ο ^ Λ a n d Κ ο ϊ ι Λ 

where A is a point fixed in body 3 which is shown at the point of 
contact with body . 

Solution. The angular velocity vector diagram is constructed as 
follows. 
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{ω2)ι 1—■** 2 ω long and parallel to the yi axis. 

{ω3}2
 2—**3 parallel to the common generator of the 

pitch cones of the mating bevel gear wheels, 
the instantaneous axis for the relative 
motion of bodies 2 and 3. The position of 
point 3 is not defined at this stage. 

{ω3>ι 1—^3 parallel to the instantaneous axis for the 
relative motion of bodies 1 and 3, OA. 
Lines 2 3 and 1 3 intersect to define the 
position of point 3. 

{ωι+13 3—^4 p a r a l l e l to OC. 

{ω^ι 1—*-4 parallel to the γ\ axis. 

-Γωμ} 

{(ύ\ } i 

{ω2>ι 

x3 /χ4 

1 β about γι 2 φ about y2 4 α about xk 3 

Fig. 3.18. 

From the angular velocity vector diagram, writing |ω^|2 = ωχ, 

I oj 3 I ι+ = n u ) ] _ f | ü ) 2 | i = ω = O- + λ η ) ω ΐ / Ιωι+Ιι = ηλωχ = rXu> 

a n d 

w h e r e 

| ω 3 | 4 = rw 

r = n / ( l + λη) 

Now 
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{(03)1 = {0)2)1 + {ω^}2 + {0)3)1+ 

= {ωι+)ι + {103)1+ 

and t h e r e f o r e 

{ω 3 } 1/1+ = {ωι+}χ/ι+ + {ω3)ι+/ι+ 

= our 

The a n g u l a r a c c e l e r a t i o n {033)1/1+, s i n c e d{(o3} i / i + / d t i s n u l l , 
by 

{ ω 3 ) ι / ι + = [ ωι+] ι / ι + ί ω 3 } ι / ι + = [ ωι+] ι/ι+{ ω3 } ι+/ι+ 

0 

λ 

0 

+ cor 

- 1 

0 

0 

= ωη 

1 + λη 

- 1 

λ 

0 

2 2Λ 

= ω r λ 

0 

0 

- 1 

0 

0 

0 

1 

0 

OJ 

- 1 

0 

L ° 

2 2 
= ω η λ 

( 1 + λ η ) 2 

0 

0 

1 

Since C is a point fixed in frame 4 

{ν
αο)ΐΛ

 = ^ ^ l/k{\0}h/k = ωΓλ 

0 

0 

- 1 

0 

0 

0 

1 

0 

o 

a 

0 
0 

waAn 

0 

0 

-1 1 + λη 

Also, for A a point fixed in body 3, 

{RAO}i/i = K o W i + Kc^/i 

= I Aifl l { R c o } i + A + I Ä 3 ] l { R A C } 3 / 3 

and t h e r e f o r e 

{ V A 0 } i / i = [ωι+] i / i [Äi+J i{Rc o}i+/ i+ + [ ω 3 ] i / i [ i3] 1 { \ c } 

o r , n o t i n g t h a t a i s n e g a t i v e , 

^ Α Ο ^ Λ = l ωΐ+] Ι Λ ^ ϋ Ο ^ Λ + [ ω 3 ] l/kl £ s l 4 i R A c J 3 / 3 

= war + ωΓ 

0 

0 

λ 

0 

0 

- 1 

λ 

1 

0 

1 

0 

1° 

0 

c a 

- S a 

0 

s a 

c a j 

Γ ° 
-Xa 

L 0 
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fxsina 

= ωaλn s i n a 

1 + λη cosa - l l 

{ Α Α Ο } 1 Λ = Ι ω , ] 1 Λ { ν Α Ο } ι Λ + d {V A 0 } 1 / l t 
at 

2 2Λ 

ω ar λ 

0 

0 

λ 

0 

0 

0 

λ] 
0 

oj 

f· 

Asa 

Sa 

ca - 1 

2 2 
+ ω ar λ 

λοα 

ca 

-Sa . 

2 2 2, 
= ω a n λ 

X(2cosa - 1) 

cosa 

(1 + λη) [-(1 + λ )sin«J 

Problem 3.19. Figure 3.19 shows a bevel wheel epicyclic gear train in 
which body 2 is driven at a constant rate ω relative to body 1. 
Determine 

{ωι+Ιι/3 a n d {ω5ΐΐ/ΐ 

Solution. The angular velocity vector diagram is constructed as foll-
ows. 

{ω2 } i 

ίω5}ι+ 

1 — 

2 ω long and parallel to the Χχ axis. 

4 parallel to OA/ the common generator of the 
pitch cones on bodies 1 and 4. 

-► 4 parallel to the z axis. Lines 1 4 and 2 4 
intersect to define the position of point 4, 

. ►'5 parallel to the χχ axis. 

[ ► 5 parallel to OB, the common generator of the 
pitch cones on bodies 4 and 5. Lines 1 5 
and 4 5 intersect to define the position of 
point 5. 

The angles specified in Fig. 3.19 are related to the gear teeth 
numbers by the following expressions 

sinB = (tx - t5)/2ti+ , cos3 = CD/OC , 

tana = AC/OC = 2ti+cos3/(t1 + t5)and sin<j> = t^ina/t^. 
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ίω5>! 

V//////A ψ^ψψί^^^^^^^ 

m 
V 

1 ψ about X! 2 8 about y2 3 γ about z3 4 

1 Θ about Xi 5 

F i g . 3 .19 

A p p l i c a t i o n of t h e s i n e r u l e t o t h e a n g u l a r v e l o c i t y v e c t o r d iagram 
t r i a n g l e 124 g i v e s 

| ü ) 2 | i / s i n a = Ιωι+Ιχ/είηίφ + α) = Ι ω ^ ^ / β ί η φ . 

The r e l a t i o n s h i p φ + α = $ + π/2 can be used t o e l i m i n a t e φ t o g i v e 

| u ) 2 | i / s i n a = Ι ω ^ Ι ι / c o s ß = | ωι+ | 3 /cos (.3 - a) . 

Hence 

{ ω ^ Ι ι / 3 = cocosß 
s i n a 

^ J- 1 / 3 

s i n a 

0 

- c o s a 

= CuCOSi 

I 

0 

■cota 

a n d 
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{ωι+}3/3 = tdcostß - α) 
s i n a 

0 

0 

-1 

In this case the required angular acceleration of body 4 is given by 

{ω^ > i /3 = [ ω21 l / 3 W > 3 / 3 

Γθ -S3 0 

~cos(3 - a) 
s i n a 

s3 0 -cß 

0 c3 0 

= ω
2 ^ / { 4 ^ - ( t x - t 5 ) 2 } 

2 t* 

A p p l i c a t i o n of t h e s i n e r u l e t o t h e a n g u l a r v e l o c i t y v e c t o r d iagram 
t r i a n g l e 145 g i v e s 

| ü ) 5 | i / s i n 2 a = | ωι* | i/sin(<|> + 2a) = | (D i J i / cos ( a + 3) 

and t h e r e f o r e 

|ω 5|! = 2üCOs3cosa/cos(a + 3) 

giving 

[l 
{ ω 5 } 1 / 1 = ω(1 + ti/t5) 0 

I 0 

Problem 3.20. Hookefs joint, shown diagrammatically in Fig. 3.20, is 
a device for coupling shafts which have intersecting non colinear 
axes. With this arrangement the output shaft, body 4, has a variable 
angular velocity when the input shaft, body 2, is driven at a cons-
tant rate relative to the bearings, body 1, in which the shafts are 
constrained to turn. Find 

W h / 5 / {ω3}2/2
 a n d {ω4}3/3< 

Solution. Frame 4, fixed in the output shaft, can be reached from 
frame 1, fixed in the bearings, by either of the sequences of rota-
tions indicated in Fig. 3.20. Hence 

WJl/l = W h / l + [ Ä2] 1 ίω3 }2/2
 + I A2] li A3] 2ίω^ }3/3 (-I) 

= -C ω5 > 1/1 + ί £5l 1 ί ωι+ } 5/5 (2) 
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where { ω 5 } ! i s a n u l l v e c t o r . 

129 

z, 
I β About u Z oC fcboüt JZr 3 tfabout Z& ̂  

I Θ a b o u t Z^S φ A b o u t u s 4" 

F i g . 3 . 2 0 . 

By Eq. 1 

Olli 

r -sine" 

cose 

0 

= 0)2 

Ό" 
1 

mom 

+ 1 

c3 0 si 

0 1 0 

-S3 0 cf 

c3 0 S3 
0 1 0 

-S3 0 c3 

ac3 + YS3ca 

0)2 - ysa 

-as3 + YC3cy 

1 0 0 

0 ca -sa 

0 sa ca 

By Eq. 2 

sine 
cose 

0 

= 

ce 
se 

0 

-se 
ce 

0 

0 

0 

1 

ωΐψ 

From the z component of Eqs. 3 

a = ycosa/tan3 

(3) 

(4) 

(5) 

and from the y component of Eqs. 4 ω^ = J.£y Eq. 5 and the x compon-
ent of Eqs. 3 

γ = -o)i+sin3cose/cosa 

By Eq. 6 and the y component of Eqs. 3 

(6) 
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ω^ = ( j 2 / ( cose - s i n f t s i ne t ana ) (7) 

A relationship between a, 3 and Θ can be found by comparing corres-
ponding terms in the two expressions for [ i^] 1# 

U i J i = 

C0C(f) - S 0 C 0 S 

εθοφ c0 s0s 

-s<$> O c | J 

cßcy + sßsyca -c$sy + s3cysa sßca 

syca cyca -sa 

-s3cy + cßsysa sßsy + c3cysa cßca 

and therefore 

a 2 3/al3 = tane = -tana/sin^ 

Hence, by Eqs. 7 and 9 
2 2 

ωι+ = u)2cos0/(l - sin 0cos 3) 

and 

{ u i i + l w s = Ü 3 2 C Q S 9 

2 2 1 - sin ecos l 

Also, by Eqs. 5, 6, 9 and 10 

I °°^+ I 3 = Y = -<jO2Sin3sin0cos0/(l + tan 0sin 3) 
2 2~ 1

 -
 sin 0cos t 

and 

giving 

J3 I 2 -Ü2sin0cos0 

c o s 3 d - sin20cos23) 

ίωι+}3/3 = |ωι+ | 3 

and 

{ω 3 } 2 / 2 = |ω3I2 

(8) 

(9) 

(10) 

(11) 

(12) 
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Problem 3.21. Figure 3.21 shows a shaft, body 2, and and axle and 
disc, body 3, coupled by a constant velocity joint. The shaft turns 
at a constant rate ω2 about the y^xis relative to body 1 and the 
disc rolls without slip on body 1. An imaginary body 4 is introduced 
to assist in a description of the kinematic properties of the joint. 
The relative angular velocities 

{ ω2 } 4
 an<3 ί ̂ 3 } ΐψ 

are such that their magnitudes are equal. Construct the angular vel-
ocity diagram and use it to determine 

ίω3}ι/5 . 

The reader is referred to Morrison,J.L.M. and Crossland,B. (1964). 
An Introduction to the Mechanics of Machines^Longmans,London. 
Chap.2,p.123. for a description of the Birfield universal joint. 

Solution. The angular velocity vector diagram is constructed as foll-
ows. 

{ω2)ι 1 *~2 ω2 long and parallel to the y± axis. 

{0)3}! 1' ^ 3 parallel to OP, the instantaneous axis for 
the relative motion of bodies 3 and 1. The 
position of point 3 is not defined. 

{0)2)4 4 ^ 2 parallel to the yi axis. The position of 
point 4 is not defined. 

{0)4)5 5 ■ ► 4 a null vector, points 4 and 5 are coincident. 

{ω 3} 5 5 ,» »» 3 parallel to the x5 axis. 

Since 

Iω2 U = I ω3 U 

the angles 432 and 423 are equal so that the angle 132, the inclin -
ation of {ω 3} 2 to OP, is (90° - γ)/2. Now the bisector of the angle 
AOC is inclined at 

(90° + γ)/2 - γ = (90° - γ)/2 

to OP and {ω 3} 2 is therefore parallel to OP.This allows the vectors 
1 ► 3 and 2 ► 3 to be drawn on the vector diagram to locate the 
point 3, and consequently the coincident points 4 and 5. Let 

I ω 2 U = I ω 3 U = ω · 
Then 

I 033 I 1 = ojcosy and t a n y = (ω - ÜJ 2 ) /ÜJCOSY , 
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ΑΓ2 

Constant velocity joint 

B about y 2 φ about y2 ^ - 0 about z. 5 a about x 3 

Fig. 3.21 

giving 

Therefore 

ω = α)2/(1 - silly) and |ω5|ι = o)2siny/(l - siny) 

{^3)1/5 = o)2COSy 

1 - siny [ O 

-cosy 

-siny 

and 

giving 

ί ω5 ̂  1 /5 = o)2siny 

1 - siny 

s m y 

- c o s y 

0 

ί ω 3 } ! / 5 = [ω 5 ] 1 /5^ ω 3 >1 /5 = ü)2sycy 

(1 - sy ) 

0 

0 

cy 

0 

0 

sy 

- c y 

- s y 

0 1 

- c y 

- s y 

L ° 

= o)2sinycosy 

(1 - siny)' 
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Problem 3.22. Body 2 moves from a position in which frame 2 fixed in 
it is aligned with frame 1, to a position in which frame 2 is aligned 
with frame 3. This motion can be reduced to a linear displacement of 
a point in body 2 combined with a rotation about some axis. Find the 
direction of the axis and the angle through which the body rotates. 

The plate in Fig. 3.22a is to be moved from the position ABC to the 
position A'B'C1 by a simple rotation about some axis. Determine the 
direction of the axis and the magnitude of the rotation about the 
axis. 

Solution. One approach to the solution of this problem exploits two 
of the properties of the similarity transformation. A similarity 
transformation of the square matrix [ A] is given by 

[B] = [ T ] [ A] [ T ] - 1 ( 1 ) 
or 

= [ T] - 1 [ A] [ T] ( 2 ) 

where [ T] is a nonsingular matrix of the same order as [ A] . [ B] is 
is said to be similar to [ A] . 

The particular similarity transformation to be employed here is 

[B] = [ I] [ A] [ i] ~l (3) 

where [B] is a given transformation matrix and [ i] is a transformation 
matrix which is to be determined. 

The particular properties of the similarity transformation to be 
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exploited here are: 

(a) that [B] and [A] have equal eigenvalues and 

(b) that [ B] and [A] have equal traces. 

These properties can be shown to exist as follows. Consider the equ-
ation 

[A] {X} = λ{Χ} (4) 

The values of λ which satisfy this equation are the eigenvalues of 
[AJand the {X}'s are its eigenvectors. Premultiplication of Eq. 4 by 

[ £] and the introduction of [ £] "" [ i] gives 

~l[ I] {X} = λ[ I] {X} [ £][ A] [ £] 

and by Eq. 3 

[B] [ i] {X} = λ[ £1 {X} 

or 

where 

[B] {Y} = λίΥ} 

[ A] {X} = {¥} 

(5) 

(6) 

Hence the eigenvalues of [Bl are equal to the eigenvalues of [ A] and 
their eigenvectors are related by Eq. 6. 

The equation 

[A] {X} = λ{Χ} 

can be written 

[[A] - λ[ ll] {X} = {0} 

and if {X} is not null, then 

det[[ A] - λ[ 1]] = 0 . (7) 

Writing 

[A] a2 

a3 

bi 

b2 

b3 
c3 

gives the requirement of Eq. 7 as 

ai 

a2 

a3 

bi 

b2 - λ 

b3 

c2 

c3 

= 0 

or 
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(ai λ){(b2 - λ)(c3 - λ) - b3c2} 

- bx{a2(c3 - λ) - a3c2} 

+ c1{a2b3 - a3(b2 - λ)} = 0 

and this expands to 

- (ai + b2 + c3)λ' 0. (8) 

If λι, λ2 and λ3 are the eigenvalues, then 

(λ - λχ) (λ - λ2) (λ - λ3) = 0 
or 

λ3 - (λχ + λ2 + λ3)λ
2 + = 0, (9) 

Thus, the trace of [ A] , a^ + b 2 + c3, is the sum of the eigenvalues 
of either [A] or [ B] . 

Let {C} be a vector which is parallel to the axis about which body 2 
rotates when frame 2 moves from alignment with frame 1 to alignment 
with frame 3. The components of such a vector {C} will be the same 
when referred to either of the frames 1 or 3. Therefore 

{c}3 = {ch = [ £3 M c h 

and since the length of the vector {C} is unimportant, 

[ ̂3 hich = x{ch 

also satisfies the requirement for {C}. Hence, for a given [ £ 3 h , 
the direction of {C} can be determined. 

The angle through which frame 2 turns about an axis parallel to C 
while it moves from alignment with frame 1 to alignment with frame 3 
can be found by considering the following sequence of rotations 

1 γ about zx 4 3 about yi+ 5 Θ about x5 6 

so that 

6-3 about y6 7 -γ about Z7 3 

[ a3 h = ί Η l i t £ 5 !«+[ ^6 1st £7 lei £3 1? 

= [ JU l i t £5 M Ä6 1st £5 l" [ H h 

- 1 
= [ £5 ]x[ i6 ]5[ £5 h 

The net rotation is thus θ , while 

-1 
[ £3 h = I *5 hi ̂ 6 Is! £5 h 

is a similarity transformation. The traces of [ £3 ]χ and [ £6 ] 5 are 
thus equal, allowing Θ to be determined. 
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C o n s i d e r t h e e q u a t i o n 

[ £3 h i C h = {C>i 

o r 

[ [ Ä 3 I 1 - I 1 ] ] { c } i = { 0 } 

D 

G 

A 

D 

G 

B 

b 2 - 1 

H 

c 
F 

c 3 * - l j 

Γχ 

y 

I z 

= 
* ° 1 

0 

.oj 
B 

E 

H 

c] 
F 

j \ 

Γχ 

y 

Lz 
= 

"0 1 

0 

.0 J 

Ax + By + Cz = 0 

Dx + Ey + Fz = 0 . 

Gx + Hy + Jz = 0 

Putting z = 1, since the length of {C} is unimportant, these equations 
reduce to 

Ax + By + C = 0 

Dx + Ey + F = 0 

giving 

x = 

-c 
- F 

1 A 

D 

B 1 

E 1 
B 1 

E | 

(FB - CE)/(AE - CE) (10) 

and 

A 

D 

1A 

D 

-c 1 
-F 1 

B 1 

E 

(DC - AF)/(AE - CE) (11) 

The direction of the axis about which rotation takes place is thus 
determined. Now 

I *6 l5 

1 0 

o ce 

O s0 

0 

-se 

ce 

and since 

trace!£311= trace[£6 ] 5 , 
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cose = (aj + b2 + c3 - l)/2 (12) 

The magnitude of the angle through which frame 2 turns about an axis 
parallel to the vector {C} in moving from alignment with frame 1 to 
alignment with frame 3 is thus determined. The direction of the rot-
ation remains to be determined. Recalling that [ £3 h can be regarded 
as being made up of three column vectors 

I *3 h = [ U x 3 h U y 3 h U, 3>i] = 
ax B C 

D b2 F 

G H c3 

where { £x 3 } 1 , { ly 3 } 2 and { iz 3 } 1 are the direction cosines of the X3, 
y3 and z3 axes respectively, with respect to frame l.Thus, a well 
proportioned sketch of frame lr the vector {C} and, say, the ζχ axis 
will allow the direction of the rotation to be determined as shown in 
Fig. 3.22b. 

Fig. 3.22b. 

The plate of Fig. 3.22a can be moved from the position ABC to the 
position A'B'C1 by a number of alternative rotation sequences. 
Consider four of the possible alternatives. 

1. Refer to Fig. 3.22c. 

[ £3 h = 
c3 0 si 

0 1 0 ' 

-S3 0 ci 

0 

0 

1 

0 

1 

0 

1] 
0 

oj 

cy -sy 0 

Sy Cy 0 

0 0 1 

-1 0 0 

0 - 1 0 

0 0 1 

0 0 1 

0 - 1 0 

1 0 0 
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*1 fZ2fZ3 

1 ir/2 about γι 2 ττ about z2 3 

Fig. 3.22c 

2. Refer to Fig. 3.22d 

1*3 h = 

cy -sy 0 

sy cy 0 

0 0 1 

c3 0 S3 

0 1 0 

-S3 0 c3 

- 1 0 0 

0 - 1 0 

0 0 1 

0 

0 

1 

0 

1 

0 

- l " 

0 

0 . 

= 
0 0 1 

0 - 1 0 

1 0 0 

3. Refer to Fig. 3.22e. 

1 A3 l i = 

= 

c 3 

0 

- S 3 

r° 
0 

[1 

0 

1 

0 

0 

1 

0 

S3 

0 

c 3 , 

- i i 
0 

oj 

1 

0 

1° 
"l 

0 

_0 

0 

c a 

s a 

0 

- 1 

0 

0 

- s a 

ca_ 

o" 
0 

- 1 _ 

= 
0 

0 

1 

0 

- 1 

0 

1 

0 

0 

[ £3 ]i is thus independent of the sequence of rotations. Of course 
[£3]! can be formed immediately by reference to Fig. 3.22a. 
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z l f Z i t , X 3 

1 π a b o u t Zj 4 - π / 2 a b o u t y^ 3 

F i g . 3 .22d . 

y i f Y 2 

Xl / z 3 

1 - T T / 2 a b o u t y i 2 π a b o u t x 2 3 

F i g . 3 . 2 2 e . 
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1 -ß about Yi 5 Θ about x5 6 3 about y6 3 

Fig. 3.22f. 

4. Refer to Fig. 3.22f. 

Hence 

Also 

[ I 3 II 

fcß 0 

[0 1 

Ls3 0 
r 2 
c 3 + 
S0s3 

[s3c3 + 

[b o 
0 -1 

ll 0 

-S3* 

0 

c3. 

[l 
0 

1° 
s23c9 

s3c3c9 

ll 

0 

ll 
• 

o o 1 

C0 -S0 

so cej 

Γ c3 

0 

[-S3 

-S0c3 s3c3 -

c0 -s0c3 

s0c3 s23 + 

0 S3 

1 0 

0 c3 

■ s3c3c 

c23c0 

cose -1, giving 

cos23 + sin23(-1) = 0 or cos2 3 = 0, giving 

Or, by reference to Eqs. 12 , 10 and 11 respectively, 

cose = (0 - 1 + 0 - l)/2 = -1 , giving 0 = ir, 

a n d x = {0 - l(-2) }/{(-D (-2) - 0} = 1 

y = {(0)(1) - (-1)(0)}/{(-1)(-2) - 0} = 0 

thus confirming the previous result. 
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3.2. Problems For Solution 

Problem 3.23. A disc, body 2, rotates at a constant rate ω about an 
axis which is fixed in body 1 and perpendicular to its plane. A point 
P moves with a velocity of magnitude v on the surface of the disc in 
a circular path of radius a which has its centre on the axis of rot-
ation of the disc. Show that, for the frames specified in Fig. 3.23, 

{Rph/i = 

COS(ü) + Ω) t 

sin(o) + Ω) t 

0 

d { R p h / i = { R p h / i = { V p h / i = a(u) + Ω) 
d t ' 

- s in(o) + ti) t 

cos(ω + Ω)t 

0 

and 

d { V p h / i = { V p h / i = {Ap}i / i 
d t 

- ( ω 2 + v 2 / a 2 + 2üV/a) {Rp J x / i 

{Vp } i / 2 = a ( w + Ω) 

{Vp}i/3 = a(W + Ω) 

- s i n f i t 

cosΩt 

0 

0 

1 

0 

9 2 

{ ^ 1 1 / 2 = ~(ω a + v / a + 2ων) 

2 2 

{ A p}l /3 = ~(ω a + v / a + 2ων) 

where Ω = v / a . 

Problem 3.24. A vector is specified by 

{Β}ι/ι> = 

cosΩt 

s inΩt 

0 

"l 

0 

0 

-0.56813 

0.76761 

1.00000J 

Find 

{B}l/l 
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f o r t h e c a s e i n w h i c h 

[ H h = 

0.741516 0.45315 -0.494731 

-0.595012 0.784856 -0.172904 

0.30995 0.4226 0.85165 

(Comment. It will be found that {Έ>}\/\ = {Β}χ/t+ .It is clear that the 

vector {B>i has special properties in relation.to the given [Ä^li. 

The components of this vector are the same along the axes of both 
frames. Frame 1 can be aligned with frame 4 by rotating it about an 
axis parallel to {B} 1 # 

Path of P drawn 
on body 2 

C>t + vt/a 

Fraae 3 rotates about 0 and the x, axia 

passes through P. 

1 o)t about z 2 1 Λ + vt/a about z 3 

Fig. 3.23. 

Problem 3.25. Frame 1 can be aligned with frame 2 by a simple positive 
rotation a about the xj axis. Thus 

[ a 2 Jl 

1 0 0 

0 cosa -sina 

0 sina cosa 

Show that d[ l2 h/^t
 c a n ^e written [ a ][ Z2 h where 

[ a ] = 

0 0 0 

0 0 -a 

0 a 0 

Repeat the problem for the case in which alignment is achieved by a 



Solution of Kinematics Problems 143 

simple positive rotation about either γλ or z1 # 

Problem 3.26. Aircraft A and B fly in the xjyi plane as shown in Fig. 
3.26. Aircraft A flies in a circular path, centred at 0 and of radius 
a, at a constant speed vA , while aircraft B flies at a constant speed 
v on a straight path parallel to the yi axis and at a distance b from 
it. 

Find the velocity of B relative to A which is measured in and referred 
to a frame 2 fixed in aircraft A/When aircraft A is at A and aircraft 
B is at B . Also find the corresponding acceleration. 

(Assistance. 

{R B A } 2 / 2 = U i l 2 { R B A h / i = U i h K J a / i 

K A W Z = d{RBA^/2/
dt and KA}2/2 =

 diVBA}2/2/dt. 

Also 

{\J i/i -

b - acosö 

asine 

0 

ν Β * 

Θ about z, 2 

Fig. 3.26, 

Problem 3.27. Aircraft A flies at a constant speed vA in a circular 
path of radius a drawn on the xiyi plane. Aircraft B flies at a cons-
tant speed v in a circular path drawn on a plane parallel to the y\Zi 
plane as shown in Fig. 3.27. 

Find the velocity and acceleration of B relative to A which are meas-
ured in and referred to frame 2 fixed in aircraft A,when aircraft A 
is at A and aircraft B is at B . 

o o 

Also, find the velocity and acceleration of A relative to B which are 
measured in and referred to frame 3 fixed in aircraft B,when aircraft 
B is at B and aircraft A is at A 

MMAERBM - F 
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(Assistance. 
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KA} 1/1 
c - acos6 

bsina - asine 

b(l - cosa) 

where Θ = v t/a and a = v t/b.) 

Path of A drawn on frame Path of Θ drawn on frame I 

Fig. 3.27. 

Problem 3.28. Figure 3.2 8 shows frame 3 positioned in relation to 
frame 1. A vector referred to frame 3 has the components 

Show that the vector is referred to frame 1 by the transformation 

x l 

Yi 

Z l 

= 

COS6COSd) 

sinecosct) 

s i n 9 

- s i n e 
cosB 

0 

-cosesind) 
- s ines ind) 

COScb 

Problem 3.29. Figure 3.29 is drawn to show the relative positions of 
frames 1 and 2. The Ζγ axis is perpendicular to the plane ABE, the γλ 
axis perpendicular to AB and in the plane ABE and the x2 axis is along 
AB. Find [i2li . Frame 1 can be aligned with frame 2 by either of the 
sequences of rotations given in Fig. 3.29. Show that a = -35°, 
3 = 23.83°, γ = 29.96°, φ = -37.57° and ψ = 41.45°. 

(Assistance. 
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Z| 

10 

/Zz ^^^/ 

B 

A 

7 

T 

Fig. 3.28, 

I a about x, 3 ß about y3 4 χ about z4 2 

I φ about Z| 5 ψ about x5 2 

F i g . 3 . 2 9 . 

and 

i N z 2 J i = [ R A B ] V I K B H / I / I [ R A B ] I / I { R A B J I / I I 

= [ R EA] i / i i R E A J i / i / l [ R E A ] I / I { R E A J I / I I ' 

Kzh = [ N z 2 ] l t N x 2 H / l [ N Z 2 ] l { N X 2 } 1 | 

K 2 ^ = {RAB}l/l/l
RAB 

where {N}x is unit vector, in the direction specified by the suffix, 
referred to frame 1. Hence 

[*2h = [{NX2h {Ny2h {NZ2}X] 

Problem 3.30. An aircraft flies in a horizontal circular path, of 
radius a, drawn on an earth fixed frame 1, which has its χχΥχ plane 
tangential to the surface of the earth as shown in Fig. 3.30a. The 
velocity of the aircraft has a constant magnitude v and it is tracked 
by a radar antenna, body 3, at 0. Show that the acceleration of the 
aircraft, measured in the earth fixed frame 1 and referred to frame 3 
fixed in the antenna as shown in Fig. 3.30b, is given by 

ίΑΑθίι/3 = (vVa) 

-cosßcos(y - Θ) 

sin(y - Θ) 

cos(y - Θ) 

where 
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tany = (b + as ine) /acosö 

and 2 2 

tanß = h//(a + 2absin6 + b ) . 

Also show that the acceleration of the aircraft, measured in frame 3 
and referred to frame 1, is given by 

K o W l = | K o ^ / l " [ω3]ι/ι{νΑΟ}3/ι 
dt 

where 
{ v A O } 3 / 1 = { v A O h / i - r « 3 h / i { R A O h / i · 

Fig. 3.30. 

Problem 3.31. Points A and B fixed in body 2 have velocities given by 

KoWl = ϊ ω2 l i / i { R A O } i / i 
and 

{ v B O h / i = I ^ I I / I I R B O I I / I 

respectively relative to point 0 which is also fixed in body 2. 
Show that, given information about the relative positions of points 0, 
A and B, and the linear velocities of points A and B relative to 0, 
the angular velocity of body 2 can be determined from 

W h / i = [vA O]1 / 1{vB O}1 / 1/({vA O}Vi{RB O}i/i) 

= KolviKoWi/tKo^/iKoWi) 
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provided t h a t the po in t s 0 , A and B are not c o l l i n e a r . 

(Assis tance. Multiply the f i r s t two equat ions by 

[ v B 0 ] i / i and [ ν Α Ο ] χ / 1 

147 

respectively and expand their right hand sides using the vector triple 
product expansion 

[A][B]{C} = ({A}T{C}){B} - ({A}T{B}){C} ). 

Problem 3.32. At a certain instant of time body 3 (the connecting rod 
of Problem 3.5) has a motion specified as follows 

and 

Kh/i = 

K}i/i = 

ίω3}ι/χ = 

43.3 

25 

0 

-249 

433 

0 

{Ml/1 = 

n/s ' Κϊΐ/l = 

286.9 

0 

. 50 

-294 " 

0 

0 

mm/s 

0.346 

-Ο.Ό355 

-1.706 

rad/s 

where A and B are points fixed in body 3. 
Obtain the equation to the central axis for the motion of body 3 
relative to body 1 and find the point at which the axis meets the 
X\Yi plane. Also find the velocity of the axis. 

Problem 3.33. In the system shown in Fig. 3.33, body 3 turns relative 
to body 2 about the xi axis and body 2 turns relative to body 1 about 
the ζχ axis. Show that 

KoJl/2 = 

-(jübsina 

üoa - abcosa 

absina 

where ω = γ and A is fixed in body 3 as shown. Hence show that 
2 

{RQA}I/2 = I
 ω3 ]ΐ/2{νΑΟ}ι/2/|ω3| 1 

= 1/(ω2 + a2) 

2 
-ω a wabcosa 

-ω bsina a bsina 

(oaa + a bcosa 

where Q is a point on the central axis corresponding to A for the 
motion of body 3 relative to body 1, and 
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2 
{ R S c } l / 2 = [ ω 3 1 ΐ / 2 { ν € 0 } ι / 2 / | ω 3 I ! 

= 1 / (ω + α ) 

-ω a 

0 

awa 

where S is the point on the central axis corresponding to C for the 
motion of body 3 relative to body 1. 
Find 

^RQA^/2|a=0 

for the case in which body 3 rolls without slip on body 1 at Β(ά = 
-u)a/b) . Also show that 

K c h / 2 = ab/(a
2 + b2) 

for this case and hence show that S is on the line OB. 

\ ; 

Zj OC = a 

CB = b 

Ύ 3 

Y2 

Z2 

! \ / y////////s i 
,777 7-/-ΛΓ? ~r 7~7~/~r-^ 

1 9Ζ///Χ'/Ζ'/}χ. 
1 γ about Zj 2 a about x2 3 

Fig. 3.33 

Find 

and 

{ω3}1/2{νΑΟ}1/2 / {ω3}ι/2{ν€0}1/2 

iVSoJl/2 = {Vco}l/2 + ^ 3 ] 1 / 2 { R s c } 1 / 2 . 

(Assistance. Obtain the expression for the velocity of A by differ-
entiating the equation 

i R A o H / l = [ * 2 h { R c o } 2 / 2 + [ Ä 2 l l [ A 3 ] 2 { R A C } 3 / 3 U 
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Problem 3.34. One set of rotations for positioning body 4 relative to 
body 1 is shown in Fig. 3.34. This particular sequence of angles are 
known as Euler angles. Show that 

{co^h/4 = 

Γ ω χ " 
ωγ 

L ω ζ 

= ψ 

"εθεφ" 

S0Cc{) 

cö 

+ θ 

οφ" 

-s<|> 

0 

+ Φ 

'ο"! 
ο 

mi\ 

είηθείηφ coscj 

είηθοοβφ -sincj 

cose 0 

ol 
0 

l j 

ΓΦ I 
1 * 

Θ 
1 · 

L Φ J 
and hence, by inversion, that 

= 1/sine 

είηφ 

είηθσοεφ 

-σοεθβίηφ 

οοεφ 

- ε ΐ η θ ε ϊ η φ 

-σοεθοοεφ 

0 1 
0 

s i n e ! 

Γ ω χ Ί 
ωγ 

[ ω ζ J 

I ψ about ζ, 2 θ about χ2 3 φ about ζ3 4 xj 

F i g . 3.34 

Note that with this set of angles difficulties will arise when Θ is 
close to ni (n = 0,1....). 
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Problem 3 . 3 5 . One s e t of r o t a t a t i o n s fo r p o s i t i o n i n g body 4 r e l a t i v e 
t o body 1 i s shown i n F i g . 3 . 3 5 . Th i s p a r t i c u l a r sequence of a n g l e s 
a r e known as Bryan t a n g l e s . Show t h a t 

Wh/*+ 

COS0COS<i) 

-cosQsinty 

s i n e 

and' h e n c e , by i n v e r s i o n , t h a t 

Γ ω χ " 

ωΥ 

[_ωζ ^ 
= Ψ 

Οβθφ' 

-C0Scf> 

se 
L J 

+ Θ 

'εφ" 

σψ 

0 

+ Φ 

01 
0 

mi j 

sinc{ 

coscf 

O 

= l / co s6 

ΟΟΞφ 

εϊηφσοεθ 

-cososine 

-sine 

οοεφοοεΕ 

είηφείηΕ 

0 

0 

cose 

I ψ about x, 2 Θ about y2 3 φ about z3 4 

Fig. 3.35. 

To what do these relationships reduce when ψ, θ and φ are small 
angles? Note that with this set of angles difficulties will arise when 
Θ is close to (TT/2) + n (n = 0,1....). 

Problem 3.36. In Fig. 3.36 body 2 turns about the ζχ axis at a const-
ant rate relative to body 1 and body 3 turns about the z3 axis at a 
constant rate relative to body 2. 
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Find, for the given axis system, 

where B is a point fixed in body 3. Point B should first be treated 
as a moving point in frame 3, where frame 3 is fixed relative to frame 
2 and aligned with it. Point then should then be treated as a point 
fixed in the rotating frame 3 as shown. 

Fig. 3.36. Fig. 3.38. 

Problem 3.37. Find 

{Wl/2 
in the system of Fig. 3.36, where the point P#moves along the radial 
line AB fixed in body 3 at the constant rate x = v. 

Problem 3.38. In Fig. 3.38 body 2 turns about the zj axis at a cons-
tant rate relative to body 1 and body 3 turns about the x3 axis at a 
constant rate relative to body 2. Find, for the given axis system, 

ίΑΒθίΐ/2· 

Problem 3.39. Figure 3.39 shows a#wheel and axle system. The axle, 
body 2, turns at a constant rate γ = ω relative to body 1 about the 
zj axis. The wheel, body 3,rolls without slip on body 1. Obtain exp-
ressions for 

{ V Q O } i / 2 / { A
Q O } l / 2 a n d { I ) 3 h / 2 

where Q is a point fixed in body 3 as shown. Sart with the relation-
ship 

{ R Q 0 h / l = [ * 2 h { R c o } 2 / 2 + [ * 2 h [ * 3 ] 2 { R Q C h / 3 

MMAEBBM - F· 



152 Matrix Methods in Engineering Mechanics 

and a p p l y t h e c o n d i t i o n t h a t 

{Vpoh/2 

is a null vector when γ = 3 = 0 to show that 3 = -wa/r and hence that 
3 is a negative angle, P being a point on the periphery of the wheel 
then at the point of contact between the wheel any body 1. 

Alternatively, after justifying the given angular velocity vector 
diagram, use its properties to obtain 

lVQO}l/2 ' 

Find 

{ V p o h / 2 and { A p o } l / 2 

when P i s a t A, B , and D. 

F i g . 3 . 3 9 . 

Problem 3.40. Figure 3.40 shows a^wheel and axle system. The axle, 
body 2, turns at a constant rate γ = ω2 relative to body 1 about the 
zi axis. The wheel, body 3,#rolls without slip on body 4 which is 
turning at a constant rate φ = ωι+ relative to body 1 about the z\ 
axis. Verify the given angular velocity vector diagram (drawn for 
γ> φ) and use it to determine 

{ü)3li/2 and {ω3}ι/2. 

Obtain expressions for 

{VAO}i/2 and {A A O} l / 2 
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where A i s a point fixed on the periphery of the wheel as shown. 

Fig. 3.40. 

Problem 3.41. Figure 3.41 shows a wheel and axle system. A wheel and 
axle are rigidly connected and constitute body 4, while a wheel, body 
5 is free to turn on the axle.The system moves on the inner surface 
of a conical track, body 1, so that the centre line of the axle rem-
ains parallel to a generator of the conical track and the centre of 
the axle C, traces out a circular path of radius R drawn on body 1. 
The velocity of C is given by 

Koll/2 = V 
-1 

0 
o 

Verify the given angular velocity vector diagram for the system, 
which is drawn for the case in which the wheels roll without slip, 
and use it to determine 

ίωι+}1/3, (ω5}1/3, ίωι+}1/3 and {ω5}ι/3 . 

What is the velocity of slip at D if body 5 siezes on the axle and 
body 4 continues to roll without slip at E? 

Problem 3.42. Figure 3.42 shows a rotating and telescoping antenna. 
Body 2 rotates at a constant rate 3 relative to body 1 about the ζγ 
axis. Body 3 rotates at a constant rate a relative to body 2 about 
the x2 axis and is extending at the constant rate z = v. Obtain exp-
ressions for 

{ω3}ι/2, (ω3>ΐ/2/ {VA Oh/2 and {A A O } I/ 2 . 
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Fig. 3.41. 

Fig. 3.42. 

Problem 3.43. An articulated trailer is shown diagrammatically in 
Fig. 3.43. It consists of rigid members OA, body 3, ABCD, body 3, and 
two similar wheels, bodies 4 and 5, which are free to rotate relative 
to body 3 about the common axis CBD. The wheels roll without slip on 
a plane, body 1, which is parallel to the plane which contains OA and 
ABCD. OA and ABCD are joined by a smooth pivot at A which allows rel-
ative motion about an axis through A which is perpendicular to the 
plane on which the wheels roll. 

Determine the attitude, Θ, of AB relative to OA when OA rotates at a 
constant rate relative to body 1 about the z\ axis. Also determine 
the angular velocity of each wheel under the above conditions and the 
accelerations of E and F when they are in contact with the plane. 
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1 a about Z] 2 -Θ about z23 -ß[ about y3 4 

3 -p? about y^ 5 

Fig. 3.43, 

(Assistance. Find 

{VE0}l/3 

starting with the relationship 

Koll/1 = [ ^ 2 ] l { R A O } 2 / 2 + [ A 2 111 £3 ] 2 { R D A } 3 / 3 

+ [ Ä2 l i t *3 l2l *3 M ^ K / 4 

and apply the condition 

iVEo}i/3|ßi=0 

is a null vector to obtain 

λi§ = a(cose + λχ). 

When rolling without slip is taking place Θ = 0, giving cose = ■λι) 
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problem 3.44. In the system shown in Fig. 3.44 body 2 turns at a con-
stant rate ω relative to body 1 about the z\ axis. Body 3 is constr-
ained to turn about the y2 axis in body 2 and roll without slip on 
body 1. Body 4 is contrained to rotate at a constant rate ω8 relative 
to body 3 about an axis parallel to the z3 axis. Find {ωι+Ιι/3 · 

1 9 about Zj 2 γ about y2 3 β about z3 

Fig. 3.44. 

Problem 3.45. Figure 3.45 shows the arrangement of a conical thrust 
bearing which employs balls constrained by a track on which the balls 
roll without slip at the two points of contact, A and B, with the 
track. The balls also roll without slip on the shaft which carries an 
axial load. The track is designated body 1, the shaft body 5 and a 
typical ball body 4. Verify the given angular velocity vector diagram. 
For the case in which the shaft is driven at the constant rate φ = ω 
relative to the track, show that 

W h / 3 = {ω2}ι/3
 + ί ω4 > 3/3 

[0 
ys ina - 3 

l ycosa 

totanij; 

1 - tanij; 

= Φ(γ/Φ) 

0 

s i n a 

cosa 

Γ 0 Ί 

- ( s i n a + cosa) 

ncosa 

- Β/γ 

where 

tana = n + 1, tanψ = 1 - ncosf 

1 + n(l + sine) 
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γ _ ntanip and 
1 - tanij; 

Also show that 

{ωι+Ιι/3 
2 2 

ηω tan ψ 
(1 - tanψ) 

γ ncosa 

How should the angle Θ be determined to ensure that rubbing between 
the balls and shaft will not occur at F? 

K-s>i 

1 γ about Zj 2 a about x2 3 β about y3 4 

1 φ about z i 5 

Fig. 3.45. 

Problem 3.46. Figure 3.4 6 shows the arrangement of an automotive diff-
erential. The bevel pinion, body 2, is driven from the engine via a 
gear box and meshes with the crown wheel, body 3. The crown wheel 
carries planetary pinions of which body 4 is typical. These planetary 
pinions mesh with wheels 5 and 6 attached to the road wheels. Verify 
the given angular velocity vector diagram which is drawn for the case 
in which 

{ω2>ι/ι = ίω5}ι/ι 

and the road wheel speeds are unequal. Hence determine {ω^}i/3.Find 
|ω5|ι to make |ω6|ι zero. What will |ω^|3 be under these conditions? 
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—ιΓ^<£^,— 

t, teeth 

<L 

Fig. 3.46. 

Problem 3.47. Figure 3.47 shows part of an epicyclic bevel wheel gear 
train.Verify the given angular velocity vector diagram which is drawn 
for the case in which 

{ωο } 2*1/1 and {ω 3 } 3 J 1/1 

where ω and Ω are constants (ω > Ω) . Find 

{ωι±}ι/2 and {ωι+Ιχ/2 · 

Also find 

{VAO}i/2 and {A A O} 1 / 2 

where A is a point fixed in body 4 as shown. 
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Fig. 3.47. 

Problem 3.48. In the system of Fig. 3.48 a rotor, body 4, runs at a 
constant speed ω relative to an axle, body 3. The axle is pivoted to 
a rotating support, body 2. For the case in which body 2 is driven at 
the constant rate Ω = a relative to body 1, show that 

{ ω 4 ) \ ρ 

ω - Ωεΐηβ 

ficosß 

{ ωι, } Ml/3 

-ßftcosß 

Lol̂ cosB + 3 

3(ω + Ωεΐηβ) 

M l / 3 

0 

ü(a + bcosß) 

-bß 

and 

^ \ 1 / 3 

-Ω (a + bcosß )cosß - bß" 

-2bßfisinß 2 
-Ω (a + bcosß) s i n 3 - b3 
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° I 

Λ-f-
N ^ d j ^ ^ -

1 ο about 2] 2 ρ about y2 3 φ about x3 4 

^ig. 3.48. 

Problem 3.49. In the system shown in Fig. 3.49, body 2 is free to rot-
ate about the Zj axis fixed in body 1 and the bevel wheel, body 4, 
which is mounted on body 3, meshes with a bevel wheel which is integ-
ral with body 2 and a bevel wheel, body 5, which is free to turn rel-
ative to body 2. Justify the given angular velocity vector diagram. 
For the case in which body 2 turns at the constant rate Ω relative to 
body 1 and body 3 rolls without slip on body 1, determine 

{ ω ι + } 1 / 2 ^ { w 5 l i / 2 / ί ω ι + Ι ι / 2 a n d { 0 ) 5 ) 1 / 2 · 

Problem 3.50. Figure 3.50 shows a mechanism. Body 2 rotates about the 
Yl axis fixed in body 1. Body 3 slides in a radial groove cut in body 
2. Body 4 has shperical ends which fit in hemishperical seatings cut 
in bodies 1 and 3. Determine, for the given position of the mechanism, 
the velocity and acceleration of sliding of body 3 relative to body 4 
and the angular velocity and acceleration of body 4 relative to body 1 
for the case in which 

{ω2)ι/ι 

0 

10 
o 

rad/s and {ω2)ι/ι 

0 

-100 

0 

rad/s 
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{ω2}, 

Fig. 3.4 9 

Problem 3.51. A thin uniform disc, of radius b, rolls without slipping 
on an inertial horizontal plane. In preparation for analysing the mot-
ion of the disc it is necessary to obtain expressions for the velocity 
and acceleration of the centre of the disc and its angular velocity 
and acceleration. For the frames specified in Fig. 3.51, show that 

ίω3 h / 3 

ipcose 

ψείηθ 

, {ωι+Ιχ/3 

ipcose 

ψείηθ + 

Wh/3 
θφ + ψοοβθ + ψθβΐηθ 

θ - ψθσοβθ 

ψθοοεθ + ψείηθ + φ 
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Fig. 3.50. 

y3 \ 

'////?////// 

Fig. 3.51. 
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Vu 1 /3 = b 

0 

ψ3Ϊηθ + 

and 

{ M l / 3 

• 2 . 2 · · . -ψ s i n Θ - ψφ3ΐηθ - ( 

i^s ine + 20ij)cos0 + φ 
• 2 . 
ψ sinöcose + ψφοοεθ 



Chapter 4 

Solution of Dynamics Problems 

4.1.Solved Problems 

Problem 4.1. A particle of mass m is moving under the action of a force 
{F }. The acceleration of the particle is measured with respect to an 
inertial frame 1 and another frame, frame 2, which is moving relative 
to frame 1. Under what circumstances will the force predicted from 
accelerations measured relative to the moving frame be equal to the 
measured forces. 

Solution. The measured force will be given by 

{Fm}2 = m[l1 ]2{Ap}i/i = m[ *! ]2{{AA}i/i + {ApAh/i} (1) 

where the position vectors are defined in Fig. 4.1. The force predic-
ted from measurements relative to the moving frame 2 will be given by 

{Fp}2 = m{Ap A} 2 / 2 (2) 

Now 

{ R P A } 2 / 2 = l M ] 2 { R p A h / i / 

{ V p A } 2 / 2 = [ ω 2 ] ΐ / 2 [ * 1 l 2 { R p A } l / l + Ϊ *1 h {V p A} i / i 

and 
ί Α Ρ Α ^ / 2 = l^2 ] V 2 [ £ l ] 2 l R p J l / l + 1ω2 l l / 2 [ ^1 l 2 { R p A } l / l 

+ 2[ω2]1/2[ Äi ]2{VpA}1/1 + [ £χ ]2{ΑρΑ}1/1. (3) 

Thus the measured and predicted forces will be equal only if 

(i) {A }I is a null vector or {V A}I is constant, that is the 

velocity of the origin of frame 2 must be zero or constant when meas-
ured with respect to an inertial reference, and 

164 
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Fig. 4.1. 

(ii) both {ω2}ι and {0)2)1
 a r e null vectors, that is the ang-

ular velocity and angular acceleration of frame 2 must be zero when 
measured with respect to an inertial reference. 

Problem 4.2. A particle of mass m moves in the gravitational field of 
the earth. Find the work done by the force which the field exerts on 
the particle and the change of potential when it moves from point A 
to point B as shown in Fig. 4.2. 

Solution. 

A-*B 
{F} T d{R} = 

A J 

[ 0 

A 

0 - m g ] "dx 

dy 
dz 

mgz mg(hB - h A ) . 
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Fig. 4.2. 

In this case 

3Υ "Sx 

and therefore by Eq. 2.11, the work done is independent of the path 
traced out by the particle in moving from A to B. Thus 

dW dV = {F} d{R} 

dV = mgdz 

and the change of potential is given by 

^ B 

mgdz = mg(hB - h j = - W A ^ 

Problem 4.3. A helical spring, of stiffness k, is stretched in the 
direction of its length. Obtain an expression for the work done by the 
force which the spring exerts and relate this to the change of poten-
tial. 

Solution. If the natural length of the spring is a,then by reference 
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/ 

l·-

Spr 

\ r 
V 

Spring 
force 

k (x8 - a) 

k(xA - a ) 

ng stiffness k 

\ Λ Λ Λ r-

vvvv 
a 

_!̂ _ 

A iF] 

' 
k 

^ 

B 

Fig. 4.3. 

to Fig. 4.3 it can be seen that the magnitude of the force exerted by 
the spring is given by 

k(x - a) . 

Hence 

and since 

{F} 

W 

k ( x 

0 

0 

X 

0 

0 . 
r 

- a)" 

d{Rp} = 

[dxl 
0 

.0 j 

giving 

Since 

,*B 

w. {FKd{R} = 

A 

k(x2/2 - ax) 

[ - k (x - a) 0 0 dx 

0 

0 

x. 

k(xB
2 - x*) + ka(xB - xA) 
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dy 3z 

t h e s p r i n g f o r c e i s c o n s e r v a t i v e and t h e change of p o t e n t i a l i s 

B A w. 

The increment of elastic strain energy stored in the spring is found 
from the area under the spring force versus extension graph, which is 
given by 

(k(xß - a) + k(.xA - a)}(xB - xA) 

{k(xB +x A) - 2ka}(xB - xA) 

ψΧΒ - XA> " ka(xB - V ' 

which is the change of potential. 

Problem 4.4. A helical spring, of stiffness k = 5 kN/m, is fitted with 
shperical ends which fit into spherical sockets. The sockets are loc-
ated in parts of a mechanism which have relative motion. In the un-
stretched condition the distance between the centres of the spherical 
ends is a = 10 cm and initially the co-ordinates of the socket centres 
A and A are 

{ V = cm and {V} = 
Find the work done by the force which the spring exerts when the soc-
ket centres move the to points which have the co-ordinates 

I V - cm and {R } 

as shown in Fig. 4.4. Assume that the frictional effects due to the 
sockets can be neglected. 

So lution • Le t Κ 2 Ρ ι } τ = l z] 

where Ρχ and P2 are points on the paths A1B1 and A2B2 respectively. 
The length of the spring at any extension is thus 



Solu t ion of Dynamics Problems 

F i g . 4 . 4 , 

\S 

>A2 

r = |R P p | = Ax2 + y2 + z2) . 
p l p 2 

The magnitude of the spring force i s thus given by 

M r - a) 

and the force exerted by the spr ing i s therefore 

( F ) = = - k ( r - a) 
x / r 
y / r 
z / r 

The work done is thus given by 

A I ->B l***! 
A o-^B 

iF} d { R p 2 P i } 

2^"a 2 %) 

M r - a) [ x y z] ~dx ' 

dy 

dz 

If the spring force is conservative then [ V] {F} wil 
as it is in this case since 
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8FX = _3FX = _8Fy = dFy = 3jTz = ^ F z 

3y 8z dx 3z 3x By 

Hence 

dV 
k ( a - r ) x d „ + k ( a - r ) y , + k Ca - r ) : idz 

and therefore 

V = 
k(a - r) x 

dx + fi(y,z) , 

and 

V 

V = 

k (a - r) y .. , * , \ —* —*-*- dy + f2(x,z) 

k(a - r)z dz + f3(x,y) 

Now 

kx 
k(x - ax/r) dx = -j kar 

and 

k(y - ay/r)dy = -^ - kar 

k(z - az/r)dz = -y - kar . 

The functions 

ί.λ(γ,ζ), f2(X/Z) and f 3 (x,y) 

are thus zero or constants and the potential is therefore given by 

V = |(x2 + y2 + z2) - ka/(x2 + y2 + z2) + c . 

The work done is therefore 

W. 
A i ->B 

k / 2 , 2 , 2 N l l / , 2 , 2 , 2v 

^•(x + y + z ) + k a / ( x + y + z ) 

= " ^ ( R. 2 ' B o B 2 M 
2 " | R A . A . I 2 ) + k a ( | R _ _ I - | R A_ I) L 2 A 1 • 2 * 1 L 2 A 1 
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In this particular case 

and 

giving 

6 - 3 

7 + 3 

8 + 2 

3 

10 

10 

Κ2Αι1
 = 

" 5 - 2 " 

6 + 2 

[5 + l e 

= 
"31 

8 | 

. 6 J 

cm ' l * * R I = / 2 0 9 c m 

B 2 B ! 

cm, |R I = /109 cm, 
A o A 2 A 1 

W. 
A i ->B r Bi 

2.5(209 - 109) + 5x10(/209 - /109) 

A2+B2 = - 49.2 kN m"1 cm2 

= - 49.2 (kN m"1 cm2) (103 N kN"1) (lo"4 m2 cm"2) 

= - 4.92 J. 

Problem 4.5. Show that the force 

{F} 

3x - 2y 

y + 2z 

where x, y and z are measured in metres, is non-conservative. 

Find the work done when the force moves its point of application from 
the point 

Kl to the point { R } = 

2 

3 

L5 J 
m 

t, y = 3t2/4 and z = 5t3/8 

when the paths of the point are 

(a) the curve x 

(b) the straight lines 

A(0, 0, 0) m to C(2, 0, 0) m 

C(2, 0, 0) m to D(2, 3, 0) m 

D(2, 3, 0) m to B(2, 3, 5) m 

(c) the straight line 

A(0, 0, 0) m to B(2, 3, 5) m. 
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Solution. I f V e x i s t s t h e n 

s - * - *■ 3 V = y + 2z and - |ϊ = x2, 
9Υ 3z 

which require that 

V = ^ - 2xy + f i C y , z) , 

V = Ϊ + 2zy + f 2 ( X / z) 

and 
- V = - x 2 z + f 3 ( x , y ) . 

From these results it is not possible to construct a function 

V = f(x, y, z) 

since, for example the term - x2z in the third expression for V is 
not contained in the first and could not be accounted for in the un-
known function fγ (y, z) which does not contain x. The force must 
therefore be non-conservative. 

Fig. 4.5, 

The various paths are shown in Fig. 4.5. 

(a) Let P be a point on the path AB. Then 
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and 

g i v i n g 

KJ = 

F = 

r t -
3 t 2 / 4 

|_5t3/8_ 

m ' d i R p A } = 

"3t - 3 t 2 / 2 

3 t 2 / 4 + 5 t 3 / 4 

_ - t 2 

N 

f 

A-H8 

» B 

iF} T d{R p A } 

^ A 

2 

" 1 

3 t / 2 
_15t 2 /8 j 

d t m 

,3t - f t 2 f t 2
 + | t 3 - t 2 , 

·> 0 3 t / 2 
1 5 t 2 / 8 

d t 

n , 3.2 , 9.3 , 15.4 15,i+, ,, (3 t - -jt + -g-t + -g-t g-t ) d t 

2 ^ 2 3 2 ^ 
17 

(b) Let P be a p o i n t on each p a r t of t h e p a t h . From A t o C, fo r which 
y = z = 0 f and t h e r e f o r e 

{F} = 

3x 

O 

- x 2 

N ' { R PAJ = ra and dfR \ = 
dx 

0 

0 
m 

The work done i s t h u s 
2 

W. 
A->B 

3x dx = | x 2 
= 6 J . 

*/ o 

From C to D, for which x = 2 and z = 0, and therefore 

"6 - 2yl 

{F} = |y I N , {R } 

-4 

ra and d{RpJ = 

0 

dy 

O 
m 

The work done is thus 
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W„ 

Matrix Methods in Engineering Mechanics 

^ 3 
. 3 

9 Y dy = Ϊ J. 
0 

From D to B, for which x = 2 and y = 3, and therefore 

2 

3 {F} 

0 

3 + 2z 

-4 

The work done is thus 

N' i W = m and dJRpJ 

0 

0 

dz 

W_ 4 dz = - 4z 20 J. 

(c) Let P be a point on the straight line AB. Then 

KJ 
2t 

3t 

5t 

m / d { R
P A } dt m and {F} = 

The work done is thus 

1 

w. 

13t 

-4t2 
N. 

(39t - 20t2)dt = -^t 2 - ^ t 3 - 21 j 
" 6 J 

^ o 

When a closed path is traced out, such as for example ACDB and the 
straight line to A, the work done is not zero as it would be in the 
case of a conservative force, but there is a net expenditure of energy. 
In the present example 

W
A ^ ^ D = 6 + 4 · 5 - 20 = - 21.5 J, 

while for the straight line path between A and B 

77 
WB A = - WA „ J , 

giving a net expenditure of - 103/3 J. 

Problem 4.6. A particle of mass m rests on a rough horizontal surface. 
Obtain an expression for the work done by the force which the surface 
exerts on the particle when there is relative motion and hence show 
that there is no potential associated with the force. Assume that the 
friction force is independent of the* relative velocity and proportion-
al to the normal force between the particle and the surface (Coulomb 
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f r i c t i o n ) . 

Determine t h e work done 

A->B 

when the path of the particle is part of a circle which has the equ-
tion 

2 , 2 2 

x + y = a 

and the points A and B are (0, -a) and (0, a) respectively. Also det-
ermine the work done 

W 
A->C->B 

when the particle moves along the path A to C and then to B along the 
x axis such that A, C and B are the following points: 

A(a, 0), C(c, 0) and B(b, 0) 

where c > b and c > a. 

Solution. When the particle moves relative to the surface there are 
four forces acting on it. These are the weight force mg vertically 
down, a normal force mg on the particle due to the surface vertically 
up, a friction force,which is y times the normal force, along the sur-
face and tangential to the path of the particle on the surface dir-
ected so that it opposes the motion and an externally applied force 
causing the motion. These forces are shown in Fig. 4.6a. 

Υ7777777Γ77777777, 

External force 
on particle 
causing 
motion^ 

Direction of 
motion of particle 
relative to plane 

Force on particle due 
to the plane 

Fig. 4.6a. 

MMAERBM -
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Now t h e work d o n e i s g i v e n by 

_ B 

w 

B A B 

T 

A-^B 
{F} d{R} = 

A *-' 

Also, by reference to Fig. 4.6b, 

Fxdx + Fydy = 

A 

F ds 

Direction of particle 
motion along curve -

Path of particle 
on surface 

Force on particle 
due to surface 

where 

and 

giving 

Fig. 4.6b. 

ymgdx/ds and Fy = - ymgdy/ds, 

ds = /{(dx)2 + (dy)2} = dx/{l + (Dy)2} 

Dy = dy/dx, 

VJA ymg {dx + (Dy)dy}//{1 + (Dy)2} 
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= - ymg {dx + (Dy)2dx}//{1 + (Dy) 2} 

- ymg /{l + (Dy) } dx (1) 

Since 
/{l + (Dy) } 

is not an exact differential, the work done will depend on the path 
between A and B, so that the friction force ymg has no potential 
associated with it and it is therefore non-conservative. 

Fig. 4.6c. 

For the case in which the particle moves along a circular path as 
shown in Fig. 4.6c 

r 
A->C-HB ymg /(l + x /y )dx = - ymga 

dx 

/(a2 - x2) 
1 0 

- ymgasin (x/a) - ymgaiT 

on interpreting the upper and lower limits as the physics of the prob-
lem requires (Fig. 4.6d). Of course it is much easier to find the 
work done from 
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W A->C-HB |F|ds = - ymga 

Note that, for example, 

x/a 

Fig. 4.6d. 

W4 Λ „ = - ymg dy = - 2ymga ^ W 
A->C->B 

When the particle moves along a path which does not have a finite der-
ivative at all points, the path must be divided into segments which do 
have finite derivatives at all points. This is a requirement because 
Dy of Eq. 1 must be finite in the range of integration. Thus in the 
case of motion along the the path ACB as shown in Fig. 4.6e the work 
done must be evaluated in two parts 

W, and W„ 

Thus 

W. 
A->C 

(- ymg)dx and W 
C->B 

(.+ ymg) dx 

giving 

WA->C->B
 = " y m 9( c ~ a) + umgib - c) 

- 2ymgc + ymg(a + b) 

ymg(a + b - 2c) . 
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C l e a r l y t h e work done i s n o t conse rved a s a v a i l a b l e mechan i ca l e n e r g y . 

> s / / / / / / T " 

A mg 

////////// 
F o r c e s f o r m o t i o n from 

mg A t o C. 

= M e c h a n i c a l e n e r g y / 
'///, d i s s i p a t e d // / / 

Fig. 4.6e. 

Problem 4.7. A particle of mass m is attached to one end of an elastic 
string which is fixed at the other end. The free length of the string 
is a and its stiffness is k. Obtain an expression for the potential of 
the system when it is constrained to move in the vertical plane and 
the string remains straight. 

Solution. The system is shown in Fig. 4.7a. The gravitational poten-
tial, using the x axis as datum, is 

- mgrcose 

and the potential due to strain energy is 

k(r - a)2/2. 

The total potential can thus be written 

2 
V = - mgrcose + k(r - a) /2 +

 c 
where c is a constant. 
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V////A 

τ g 

mgcose 

F i g . 4 . 7 a . 

In this case the potential of the system is expressed in terms of r 
and rather than z and x. It is interesting therefore to find what 
significance could be attached to 

since 

Hence 

3V 
3r 

3V 
8z 

3V 
8r 

and w 

= - F 
z 

= mgc< 

and _3V 
9x 

- k(.r - a) = F say, 

which is clearly the force along r giving rise to the potential. Also 

- mgrsine = F say, AY 
3Θ 

but this does not have the dimensions of force as might at first be 
expected, since the differentiation was with respect to an angle and 
not a length. Nevertheless, it is convenient to regard FQ as a 'force' 
which influences Θ in the way that Fr influences r. FQ is in fact 
called a generalised force. 

The reader is invited to show that for the frames specified in Fig.4.7b 

Γ- ksine(r - a) 

{Fh = O 

[ mg - kcose(r - a)J 

from the expression for V by substituting 

rcose = z and r = /(z + x
2) 

and hence finding 
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1 θ about Yi 2 

Fig. 4.7b. 

{F}2 = [ ̂ il 2{F>1 · 

How do the terms in {F}2 compare with F and F ? 

Problem 4.8. The position of a system can be specified by the position 
of a point on a rotating z2 axis as shown in Fig. 4.8(see Problem 4.7). 
Show that {V}2V, del V referred to rotating frame 2, is given by 

{v}2v = 

r i avl 
r 30 

1 ° 
3V 

L 8 r J 

Solution. Now 

o r 

o r 

and 

{ F h d i R h / ! = - dV 

{ V } * V d { R } 1 / : l = dV 

{V}2V[ lY\ 2 d { R } 1 / 1 = dV 

[ *i ] 2 < H R h / i = [ A i l 2 { { R r h / i d r + { R ^ x / x d e } 

= { R r J l / 2 d r + { R e } l / 2 d 6 

(1) 
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{ R r h / i = feiRh/i and {R0}lA = f g i R h / 

Also, since 

« - g * ♦ Ä " ' 
Eq. 1 can be written 

[A- B C] { { R r } 1 / 2 d r + {R } 1 / 2 d e } 

where 

Now 

and 

H -̂  * H « 

{ V } 2 V = 

{ R > 1 / 1 = [ A2 l i { R > 2 / 2 = 

rsine 

0 

rcose 

8r {R>i/i = {Rr>i/i 

sine 

0 

COS0 

i R r h / 2 = [Äi J 2 { R r h / i = 

{ R } 1 / 1 = { R h / 1 = 

rcose 

0 

-rsine 

< V V 2 = [Ax ] 2 iR 0 >i / i 

Subs t i tu t ion of these l a s t r e s u l t s in Eq. 2 gives 

[A B C ] | o" 
0 
1 

dr + r 
V 
0 

. 0 . 

de 

= ^Έ d r + 
3V 
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and therefore 

rA = 1Y 
3Θ 

Hence 

{ R p } 2/ 2 = <R> 2 / 2 

1 Θ a b o u t y : 2 

F i g . 4 . 8 

{ v } 2 v = 

« '-ill 

i 1Y 
r 8Θ 

C = 3V 
3 r 

_3V 
dr 

and B = 0 . 

a s r e q u i r e d . C l e a r l y , {V>iV i s r e a d i l y found from 

{V}XV = [ l2 li{V}2V . 

Problem 4.9. A particle, which has a mass of 2 kg, is subjected to a 
force 

{F)i = 

12t* 

18t - 8 

- 6t 

where t is in seconds. When t = 0 the particle is at the position 

{R}i/i|t=o = 

and its velocity is 

m 

MMAERBM - G* 
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{v}i/i|t=o = 
m/s. 

Determine for the particle 
(a) the velocity at any time t, 
(b) the position at any time t, 
(c) the kinetic energy at t = 2 s, 
(d) the work done in the period t = 0 2 to t 
(e) the momentum at t = 2 s and 
(f) the impulse of the force in the period t 

2 s, 

0 s to t = 2 s 

Solution. Now 

{F>! = m{Ah/i 

and therefore 

{ A h / ! = { V h / l = j ; { F h = 

Hence, by integration of Eq. 1, 

{Vh/i = {Rh/i 

6t 

9t - 4 

- 3t 

m/s . 

and since 

{V} 
!/l t=0 

1 = 

3 " 

8 

- 4 

[2 t 2 1 
4 . 5 t 2 - 4 t 

- 1 . 5 t 2 

+ 

V 
3 

V 

V 
3 

m / s , 

{Vh/i = 

2t° + 3 

4.5t2 - 4t + 8 

1.5t - 4 

Integration of Eq. 2 gives 

m / s 

{R} V1 

0 . 5 t + 3 t 

1 . 5 t 3 - 2 t 2 + 8 t 

- 0 , 5 t 3 - 4 t 

and s i n c e 

{ R } i / i | t = 0 = 

6 

2 

8 
m 

(1)

(2)
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{R} i / i 

From Eq. 2 

0.5tH + 3t + 6 

1.5t3 - 2t* + 8t - 2 

- 0 .5 t 2 - 4t + 8 

2 2 2 / „ 2 
l v l l t=2 = 1 9 + 1 8 + ( " 1 0 ) = 7 8 5 m / s 

and therefore 

ΙΐΙι 
1 t=2 2 IV ' ! t=2 = 785 J 

Also, since 

T | t = o = § { s 2 + 8* + (-4>2> = 89 J* 

ΔΤ = 696 J. 

The work done is given by 

W = m i d i R h / ! {F>id {R}l7ldt 
dt 

{Fh{V}1/:idt 

so that for this case 

W = [ 12t 18t - 8 - 6t] 

·> o 

2t + 3 

4.5t2 - 4t + 8 

- 1.5t2 - 4 

dt 

(24t5 + 90t3 - 72t2 + 200t - 64)dt 

= (4t6 + 22.5t4 - 24t3 + 100t2 - 64t) 
0 

= 696 J 

and this is the same as the change if kinetic energy, 

Now 
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{Gh/χ = miVh/χ = 2 

and therefore 

{G}l/l|t=2 = 

The impulse of the force is 

38 

36 

20 

2t° + 3 

4.5t2 - 4t + 8 

- 1.5t2 - 4 

kg m/s, 

kg m/s 

{F}xdt = 

o 

32 

10 

- 12 

12t 

18t - 8 

- 6t 

dt = 

4tJ 

9t2 - 8t 

- 3t2 

kg m/s 

and since 

{G}Vi|t=o 

6 

16 

- 8 

kg m/s , 

Δίθι/ι = {G}i/i|t=2 - iGJi/x |t=B0 

which is the impulse of the force. 

32 

10 

- 12 

kg m/s 

Problem 4.10. A body of mass m = 4 kg is free to move along a smooth 
vertical rod. One end of a spring is attached to the body at A by a 
smooth pin joint and the other end of the spring is attached to a 
fixed point 0 by a similar joint as shown in Fig. 4.10. The free 
length of the spring, measured between the centres of the pin joints, 
is a = 10 cm and the stiffness of the spring is k = 0.5 kN/m. Find the 
velocity of the mass if it moves from rest when OA is horizontal to 
the position in which A is h = 15 cm below its original position. 

Solution. If the gravitational potential is measured relative to the 
Χχ axis as datum then 

V A
 = k^rA " a^ / 2 a n d V B

 = k^rB " a^ / 2 " m 9 h · 
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Hence 

r . (20 cm) 

a (10 cm) 

ΛΛΛΛΛΛΛΑ 
k ( 0 . 5 kN/m) 

r_ (25 cm> 

F i g . 4 . 1 0 . 

m (4 kg) 

h 
(15 cm) 

AV = VD - V = 2 5 0 { ( 2 5 - 10) 
B A 

= - 27610 N cm 

= - 276.1 J . 

Since energy is conserved 

1 A A ' B B 

In this case Tl = 0 and therefore 
1 A 

T I B = VA * VB = " A V 

(20 - 10) } - 4x981x15 

4i . 2 

||V|i = 276.1 
Hence 

|V|! = 11.75 m/s 

and 

{V} 
i/i 

o 

0 

11.75 

m/s . 
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Problem 4.11. A particle of mass m is constrained to move along a 
smooth helical path, of radius a and lead angle a, which has its axis 
vertical. 

Determine the velocity of the particle when it moves from rest through 
the vertical distance h. 

Also find the magnitude of the force which the path exerts on the 
particle in terms of the magnitude of the velocity of the particle. 

Solution. Let the magnitude of the particle velocity {V}\ be 

|vh = v. 

The kinetic energy is thus 

T = mv2/2. 

The potential energy of the particle relative to the position in which 
the kinetic energy was zero is 

V = - mgh 

and since the system is conservative 

0 = T + V, 

giving 

v = /(.2gh) . 

Let the particle be treated as a moving point in the rotating frame 2 
as shown in Fig. 4.11. Then 

{R}i/i = [ *2 li{R}2/2 

where 

{R}2/2 = 

Hence 

{ V } 1 / : L = [ ω2 h / i l Ä2 l i { R } 2 / 2 + l £ 2 h i R h / 2 

{ V } ! / 2 = I ω2 1 ΐ / 2 ί Κ Ϊ 2 / 2 + { R } 2 / 2 

0 

ω 

0 

- ω 

0 

0 

0 

0 

o 

a 

0 

z 

+ 

0 

0 

z 

= 

0 

aw 

z 

w h e r e ω = γ . 
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Yi 

1 
1 Axis of 

helix 

i '*Λ 
1 ^ 

0 

3j ' 

\ 

fog 

*1 

-f· 
F 

, z2 

-

0 

z 1 

^ 

Zl 

Axis of 
helix 

fZ2 

1 ., 

0. 

1 
mg 

1 γ about z j 2 a about x2 3 

■λ~ 
p / 

Vz \ y i 

F i g . 4 . 1 1 . 

S ince t h e l e a d a n g l e of t h e h e l i x i s a , 

t a n a = z/(aw) , 

•{Vh/2 = 

0 

z / t a n a 

z 

and 

Now 

v = z /{ ( 1 / t a n a) + 1} = z / s i n a . 

{V>i/ i = [ A2 l l i V } l / 2 

and t h e r e f o r e 

{A}!/ i = [ ω2 h / i l A2 h i V } i / 2 + [ Ä 2 l l L i V } 1 / 2 

d t 

o r 
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{ A h / 2 = ί ω2 ] i / 2 i V } 1 / 2 + d_ { ν } χ / 2 

dt 

0 -ω 

ω 0 

[o o 

Γ 2 Ί -ω a 

wa 
• · 

L z 

= 

0 

0 

OJ 

0 

aw + 

C 

aw 

*z* 

" · 2 2 " -z /atan.a 

z/tana 
• · 
z 

Let the force on the particle due to the path which is referred to 
frame 3 be 

{F}3 = 

-F 
X 

0 

-F 
The equation of motion for the particle is thus 

[ £3 ]2{F}3 + {W}2 = m{A>i/2 

1 0 

O ca 

0 sa 

F 
X 

F sina 
z -F cosa +

 mg 
*- z 

0 

-Sa 

Ca 

Γ-F " 
X 
0 

-F 
L z. 

+ 

"o " 
0 

mg 

= m 

"Z /atana 

z/tana 

z 

-mz /atan a 

mz/tana 

mz 

Eliminating F between the y and z component equations gives 

. 2 z = gsm a 

and since the particle is released from rest at time t = 0, 

and 

z = gsin a t 

2 2 

z = gsin a t /2, 

The time to move vertically through the distance h is thus given by 

t = /(2h/gsin a) 

Also 

and 

2 2 / mv cos a/a 

F = mgcosa , 
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giving 

|F| = mgcosa/{(v cos a/a g ) + 1} 

Problem 4.J.2. A particle is released from rest relative to the earth 
at a height h above the earth, which is much less than the radius of 
the earth, and at a place where the latitude is a. Obtain an express-
ion for its position measured in and referred to a set of axes fixed 
in the earth. Neglect the effects of air resistance. 

Solution. Select a set of axes as shown in Fig. 3.10, where 0 is vert-
ically below the point at which the particle is released. 

2 
Neglecting terms in ωβ and Ω 

{A>1/4 = 

x - 2ω6 (ycosa - zsina) 

y + 2d)excosa 

z - 2ω„ xsina 

as obtained in Problem 3.10. 

The equation of motion for the particle is 

{F}4 = miAhA 

0 

-mg 

0 

x - 2ωε (ycosa - zsina) 

y + 2ωβ xcosa 

z - 2ωε xsina 

(1) 

The y component equation can be integrated to give 

y + 2ü)excosa = -gt + A 

and since y = 0 and x = 0 when t = 0, A = 0, giving 

y + 2ω xcosa = -gt . (2) 

The z component equation can be similarly integrated to give 

z - 2ω xsina = B 
e 

and since z = 0 and x = 0 when t = 0, B = 0, giving 

z - 2ω xsina = 0 . (3) 
e 

Substituting Eqs. 2 and 3 in the x component equation of Eqs. 1 gives 
2 

x - 2ω {cosa(-gt - 2ω xcosa) + 2ω xsin a} = 0 
e e e 

which reduces to 
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x + 2ω gtcosa = 0 (4) 

2 
when terms in ω are neglected. Equation 4 integrates to give 

2 
x + ω gt cosa = C 

and since x = 0 when t = 0, C = 0, giving 

x = - ω gt cosa . (5) 
e 

Equation 5 integrates to give 

3 
x = - (ω gt cosa)/3 (6) 

since the constant of integration is zero. Substituting Eq. 6 in Eqs. 
2 and 3 gives 

and 

y = -gt + (2ω gt cos a)/3 

z = -(2ω gt sinacosa)/3 , 

which reduce to 

y = -gt 
and 

z = 0 

2 

on neglecting terms in ω . Hence 

Y = -tgt2)/2 + h (7) 

and 

z = 0 (8) 

and the path of the particle drawn on frame 4 is given by 

{RH/i+ = 

3 
-(ω gt cosa)/3 

-(gt2)/2 + h 

Problem 4.13. A straight rigid rod is constrained to rotate at a con-
stant rate ω with its longitudinal axis in the horizontal plane as 
shown in Fig. 4.13a. A particle, of mass m, moves along the rod with-
out appreciable frictional constraint under the action of a spring of 
stiffness k. 

For the case in which the spring force is zero when x = 6, obtain an 
expression for the motion of the mass along the rod when it is rel-
eased from rest relative to the rod and x is then equal to 6. Assume 
that the motion is always controlled by the elastic characteristics 
of the spring. 
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1 γ about z i 2 Λ 
"FV ̂ ^ 

M 

^ = f 

W 

m(x - ω χ) 

—o 

Fig. 4.13a. Fig. 4.13b. 

Solution. Let the particle be treated as a point moving along the 
axis of the rotating frame 2. Then 

{ R c } i / l = [ ^ l i | R c | 2 / 2 

and therefore 

{ V c h / i = [ ω 2 h / i i l2 h { R c } 2 / 2 + [ Ä 2 ] I { R C } 2 / 2 

{ V c } i / 2 = I ω2 ] 1 / 2 { R c } 2 / 2 + { R c } 2 / 2 

0 

ω 

0 

-ω 

0 

0 

0 

0 

0 

X 

0 

0 

+ 
X 

0 

0 

= 
X 

ωχ 

0 

Now 

{ v c } i / i = [ A 2 h { v c } i / 2 

and t h e r e f o r e 

{ A c } i / i = [ ω 2 ] ι / ι [ £ 2 ] 1 { ν ( 3 } 1 / 2 + [Ä 2 ] 1 d _ { V c } 1 / 2 

d t 

o r 

{ A c } i / 2 = 1ω 2 ] 1 / 2 { V c } 1 / 2 + d _ { V c } l / 2 

d t 

0 

ω 

0 

-ω 

0 

0 

o] 
0 

oj 

Γχ 

ωχ 

L° 
+ 

X 

ωχ 

_0 

= 
-ω x + x 

2ωχ 

0 

where ω i s c o n s t a n t . 
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The equation of motion i s t hus , by reference to Fig. 4.13b, 

{W3}2 + { F 3 2 } 2 = m { A c } ! / 2 

Γ o" 
0 

[-mg 

+ 

- k ( x -

F 
y 

F 
L z 

- 6) 

= m 

-ω x + x 

2ωχ 

0 

From the x component equation 
2 

m(x - ω x) = -k(x - δ) 

2 2 p x + ω x = ω δ 

where 2 2 

ω = ω 
2 2 

ω and ω = k/m . 

Taking Laplace transforms, writing 

L{x(t) } = X(s) , 

7 2 ω 6 

s X - so + ω X = ~^— 

or 

X = ω 6 / 2 , 2N S(s + ω ) 
+ δ-

s + ω 

By reference to tables of transform pairs 

■(.1 - COStO t) + OCOSü) t 

2. 

-(1 - r cost») t) 

where 
r = ω/ω = ω/im/k) . 

Problem 4.14. A simple pendulum, of length b, hangs at rest from a 
support C. C is made to move in a horizontal circular path drawn on an 
inertial reference body at the uniform rate 

ω = /(.g/2b) . 

Find the position of the pendulum bob as a function of time. Assume 
that the radius of the path of C, a, is much less than b and that 
therefore the vertical movement of the bob can be neglected. 
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1 γ about zj 2 

Fig. 4.14. 

Solution. The system is as shown in Fig. 4.14. Let the pendulum bob be 
treated as a moving point in the rotating frame 2. Then, writing 

{Rph = { R } 1' 

{R>i/i = I *2 hiR>2/2 

where 

{R} 2/2 

a + x 

y 

since z ̂ . 0. Hence 

( V l i / 2 = [ ω 2 ] l / 2 ^ R ^ 2 / 2 + {^2/2 

0 -ω 

ω 0 

0 0 

-o>y + x 

ω(a + χ) 

0 

0 

0 

oj 

a + x 

y 

Lo 
■ 

+ y 

+ 

X 

y 
. 0 

(1) 
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{ A h / 2 = ίω 2 h / 2 { V h / 2 + d _ { V h / 2 
dt 

0 

ω 

0 

-ω 

0 

0 

ol 
0 

oj 

Γ-ωγ + x 

L>(a + x) 

L° 
+ y + 

-ωγ + 

ωχ + 

0 

-ω (a + x) - 2ü)y + x 
2 . . . 

-ω y + 2ωχ + y 

0 
The force on the bob due to the string is 

(F}2 = F{RCp}2/2/|RCPl 

= F 

-x/b 

-y/b 

1 

and the equation of motion can be written as 

{F}2 + {W}2 = m{A}1/2 

x / b 

y / b 

1 

+ mg 

0 

0 

. - 1 . 

= m 

-ω (a + x) - 2ojy + x 
2 ^ · 

-ω y + 2ωχ + y 
. 0 

From the z component equation 

F = mg . 

With this result, and writing 

g/b = 4ω , 

the x component equation becomes 
2 2 . . . 

-3ω x = -ω a - 2u)y + x . 

Similarly, the y component equation becomes 

-3
ω
 y = 2ω

χ
 + y

 . 

2 

(s2 + 3ω2)Χ = ^-^ + 2o)SY 

and 

Taking Laplace transforms of Eqs. 4 and 5, the initial conditions be­
ing zero,

(2)

(3)

(4)

(5)

(6)
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(s2 + 3ω2)Υ = -2u)sX . 

Eliminating X between these last two equations gives 

(7) 

Y = -
_ 3 
2ω a 

(s2 + 9ω2)(s + ω2) 

and by reference to tables of transform pairs 

Also 

y = yyCsinSkJt ~ 3s inωt ) . 

X = 
2 2 

ω a( , s + 3ω ) 

s ( s 2 + 9 ω 2 ) ( s 2 + ω2) 

Hence 

ω a 3ω 

( s 2 + 9 ω 2 ) ( s 2 + ω2) s ( s 2 + 9 ω 2 ) ( s 2 + ω2) 

and 

2 I 1 x = ω a i — - ( c o s i o t - cos3a ) t ) + 
8ω2 

■5 2 Q 2 

i(j) οω 

3 1 
•coswt + -cos3ü)t 24ω' 

12 (4 - 3coso)t - cos3ωt) 

and 

{ R } 2 / 2 = T2 

16 - 3cosωt - cos3ojt 

sin3ωt - 3sino)t 

0 

U h / l = ft 

coswt -s incot 0 

s i n ω t cosωt 0 

0 0 1 

16 - 3coso)t - cos3o)t 

s i n 3 ω t - 3 s i n ω t 

0 

a 
12 

16coso)t - cos2ωt - 3 

16sino)t - sin2u)t 

0 
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Problem 4.15. Derive an expression for the motion of the bob of a long 
simple pendulum taking into account the rotation of the earth about 
its axis. 

Solution. 

Point of _ 
suspension 

Fig. 4.15a. 

From Problem 3.10, the acceleration of a point relative to an inertial 
set of axes referred to frame 4 fixed in the earth, as shown in Fig. 
3.10, is given by 

{A} l/k 

x + 2u)zsina 

y + 2ooxcosa 

z - 2u)xsina 

for the case in which y can be neglected and ω 

By reference to Fig. 4.15a, 

{\)k/k = {RAk/if = 
and

 Κ Α ^ Λ -
-x 

a 

-z 
when y is much less than a. 

(1) 
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The force on the bob due to the string is

199

F[-~/a]
-z/a

The equations of motion for the bob are thus

[ _~g] + F[-~/a] m[~: ~:~:~::]
o -z/a z - 2wxsina

and these can be rewritten

(2)

F
rn

2wxcosa + g ~ g (3)

x + 2wzsina + w2x
n

z -
2

where wn = g/a.

If the initial conditions are

o

o

(4)

(5)

x(O) A, x(O) = 0, z (0) = 0 and Z(.0) = 0,

then the Laplace transforms of Eqs. 4 and 5 become
2 2

S X - sA + 2wsinasX + w X 0 ( 6)
n

2 2
S Z - 2wsina(sX - A) + w Z = o. (7)n

On writing

2wsina = B,

As(s 2 2 + B2)+ W

X n
s2+ (2w 2 + B2)s + 4w

n n
and

(8)

z AB ( 9)

The roots of the denominators of Eqs 8 and 9 are

s = ± jwn/(l + 2wsina/wn )

s = + jwn/(l - 2wsina/wn )

and since w is much less than w these roots can be written approx-
imately as n
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s = + j(oo + w s i n a ) = + j ω l 

and 
s = + j (ω - tos ina ) = + Ί ω ο . 

— n ^ 

The i n v e r s e t r a n s f o r m s of Eqs 8 and 9 can t h u s be de t e rmined g i v i n g 

A 

and 

X = - ^ ( c O S ü J i t + COSü)2t) 

z = ^ - t s i n ü i t + s inü)2 t ) 

(10) 

(11) 

using the fact that ω is much less than ω . The reader is invited to 
complete the intermediate steps required to determine the inverse 
transforms. 

Fig. 4.15b. 

Equations 10 and 11 can be rewritten 

x = ACOSÜ) tcos(tosinat) 
n and 

z = Acoso) t sin(wsinat) 
n 

by use of appropriate trigonometric identities. Thus 

(12) 

(13) 

W1*/" ACOSü) t 

cos (tjQSinat) 

O 

sin(üsinat) 

and if this vector is referred to frame 5 positioned relative to frame 
4 as shown in Fig. 4.15b (that is frame 5 rotates 'against1 the dir-
ection of rotation of the earth), then 
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{R Ah/5 = ll>hh{\}k/i* = Acoso)nt 

The pendulum bob is thus seen to move with simple harmonic motion 
along a line which rotates relative to the earth with the angular vel-
ocity ωεΐηα as shown in Fig. 4.14b. Of course the bob is moving along 
a line fixed in inertial space while the earth rotates underneath it. 

Problem 4.16. A homogeneous solid is in the form of a truncated sect-
or of a sphere as shown in Fig. 4.16a. Find the position of the cent-
re of this solid when a = 10 cm, acosa - h = 2 cm and a = 15°. 

Fig. 4.16a. 

Solution. The reference frame chosen is as shown in Fig. 4.16b. The 
centre of mass is clearly on the x axis. Consider the solid as being 
made up of two parts, one of which is body 2, a truncated cone, and 
the other body 3, a spherical cap. The composite body is designated 4. 
By reference to Fig. 4.16b 

(% acosa 

m2 = ρττγ dx , 

acosa - h 

where p is the density of the material of the solid, and since 

y = xtana , 
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_ a 

mq ρπγ^αχ = ρττ 

acosa 
3 

(a2 - x2)dx 

acosa 

£ ^ { 2 - cos2a(3 - cos2a) } 

Fig. 4.16b.

f
acosa,

P1Ttan 2a,

acosa, - h

Fig. 4.16c.

Also

2
p~t~n U{a 3cos 3 u + {acosu _ h)3} • (1)

facosu

acosa,

2(p7TY dx)x

- h

x 3dx

- h

Therefore

3{ 4 4 (acos N _ h)4}
{R~} = _ a cos a, - ~

4{a 3cos 3 a, - (acosa, - h) 3}

(2)

(3)

By reference to Fig. 4.16c,

(4)



Solu t ion of Dynamics Problems 203 

s i n c e 

2 2 2 
y = a - x . 

A l s o 
Ä a 

™ 3 { R 3 } = ( ρ π γ d x ) x 

^ acosa 

= £^—-{1 - cos2a(2 - cos2a) } . (5) 

Therefore 

J D M - 3a{l - cos a(2 - cos a)} 
tK3J " ; ; < 

By Eq. 1 

4 {2 - cosa(3 - cos2a)} 

m 3 o 3 
— = 0.0718{10 x 0.8705 - 8} = 20.785 cm 
p π 

and by Eq. 4 

m ^ io3 
-4 = - ^ { 2 - 0.9659(3 - 0.93301) } = 1.15 cm3. 

ρπ J 
By Eq. 2 

m2tR2} _ o.0718{lOl+x 0.7587 - 16} = 132.33 cm4 

ρπ 

and by E q . 5 

(6) 

m 3 { R 3 } 1 0if 4 
- u {1 - 0 . 9 3 3 0 1 ( 2 - 0 . 9 3 3 0 1 ) } = 1 1 . 2 1 7 cm . ρπ 4 

Hence 

n^JR*} + m3{Rx
3} 

ΐΐΐ2 + m 3 

132.33 + 11.217 
20.785 + 1.15 

= 6.54 cm. 
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Problem 4 . 1 7 . F i g u r e 4 .17 shows a machine p a r t made from a homogeneous 
m a t e r i a l . Loca t e i t s c e n t r e of m a s s . 

Fig. 4.17. 

Solution. Treat the machine part as the composite body 7, being made 
up of the bodies 2, 3, 4 and 5 and the hole 6. If the density of the 
material is , then the masses of the various parts are 

m2 = ( ρ τ τ χ 2 . 5 2 χ 5 ) / 4 = 2 4 . 5 4 3 p , 

m 3 = p x 2 . 5 x 8 x 5 = ΙΟΟρ , 

and 

m^ = p x 2.5 x 2.5 x 5 = 31.25p, 

m5 = (p x 2.5
2x 4)/(4 x 2) = 9.82p 

m6 = -(ρττχΐ.5 x 2.5)/4 = - 4.42p 

so that 
m7 = 161.2p 

The positions of the centres of mass of bodies 3, 4, 5 and 6 relative 
to the centre of mass of body 2 are 

{Rc3c2> = 

6.5 

1.25 

O 
cm. K..«J = cuc k^2 

3.75 

5 

1.25 
cm, 
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K.,r.J = 
5^2 

11.03 

0.75 

0 

cm and {R } = 
6^2' 

7.5 

2.5 

0 
cm. 

(It is easy to show that the centre of mass of a semi-circular cylin-
der of radius a is 43/3π from the plane of the diameteral surface). 
Hence, the position of the centre of mass of the composite body 7 
relative to the position of the centre of mass of body 2 is given by 

{*, C 7 C 7^2 

, =
 m 3 { R c , C ^ + m ^ R C u C ^ + m5{R

C,C J " m*{Rcc J 1 5^ 2 ' 
ΠΙ7 

100 

6.5 

1.25 

.0 

+ 31.25 

3.75 

5 

1.25 

+ 9.82 

11.03 

0.75 

L 0 

- 4.42 

7.5 

2.5 

,0 

5.22 

1.72 

0.24 
cm. 

161.2 

Problem 4.18. Show that the moment of a force about a given point is 
independent of the position vector chosen, provided that it starts at 
the given point and terminates on the line of action of the force. 

Fig. 4.18, 
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Solution. Refer t o F i g . 4 . 1 8 . Le t A be t h e p o i n t about which t h e mom-
e n t of {F} i s t o be d e t e r m i n e d . I f B and C a r e any p o i n t s on t h e l i n e 
of a c t i o n of {F} , t h e n 

{MA} = [RCA]{F} 

{RCAJ = Κ Α Ϊ + K B ! ' 

and 

Hence 

and s i n c e 

{ R n J = A{F} 

where λ i s a s c a l a r , 

{M } = [RBA]{F} + X[F]{F} t^JtF} 

because the vector product of the force vector with itself is a null 
vector. Thus, since B is any point on the line of action of the force 
vector, the moment vector is independent of the position vector chosen. 

Problem 4.19. A vertical mast, which is supported at the ground in a 
smooth spherical cup, is held erect by guy ropes as shown in Fig. 4.19. 
If the resultant force on the mast due to the guy ropes is to be vert-
ically down, find the guy rope tensions in AD and AB and the force on 
the mast at A in terms of the tension in the guy rope AC. 

Solution. Let body 6 be the device to which the ropes are attached and 
which transmits the resultant force to the mast, body 2. Then the 
forces on body 6 are 

{F63} = F - -

DA 

{*W = F, 

D 

25 

KA} 

X A I 

0 

- 1 5 

- 2 0 
= Fn 

0 

- 0 . 6 

- 0 . 8 
= Fi > 

a i ] 
b i 

. c i J 

21.47 

5 

6 

-20 

= F„ 

0.233* 

0 .279 

0 .931 
= FB 

" a 2 " 

b 2 

. C 2 j 

and 
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F i g . 4 . 1 9 . 

{ F 6 5 } = P, 
KJ 

CA ' 23 .15 

-10 

6 

-20 

= F„ 

0.432* 

0.259 

0.864 

= F c 

"a3l 
b3 

.C3j 

due to the guy ropes, and 

{F62} = 

due to the mast. 

For body 6, since its mass acceleration is zero, 

{F63} + {FGI.} + {F65} + {F62} = {0} 

[al" 
bi 

Lci. 

+ FB 

"a2" 

b2 

. C 2 . 

+ Fc 

"a3~ 

b3 

. c 3 . 

+ F 

"0" 

0 

i a 

= 

" o 1 

0 

-° J 
From the x component equation 

a3 

a7 Fc 0.233 xc 
FB = 

(-0.432) 
1.85F„ 

MMAERBM - H 
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and from the y component equation 

b3 b3 b3 / b2a3 \ 
F = - p - F = — I - 1 I F 
D bi c bj B bi I b3a2 / c 

_ 0.259 / 0.279x(-0.432) 
(-0.6) I 0.259x0.233 - 1 I Fc = 1.294FC 

Also, from the z component equation, 

cxb3 / b2a3 \ c2a3 

b3a 3a2 Τ Γ ' °3 I Fc 

■(-0.8)xl.294 + 
(-0.931)(-0.432) 

0.233 (-0.864) 

= 3.625F„ 

Problem 4.20. A uniform rectangular trapdoor, of mass m, is connected 
to fixed points at 0 and D in a horizontal plane by smooth hinges as 
shown in Fig.4.20a . A string is attached to the mid point of the edge 
parallel to the hinged edge and is used to support the door at an angle 
Θ to the horizontal. The string is also attached to a fixed point A. 

Find, for a range of values of Θ from 0° to 90° at 10° intervals, the 
string tension and hinge forces if the hinge at D is not capable of 
exerting a force in the direction of the hinge axis. 

Solution. By reference to Fig. 4.20b, 

{F23} = F - , {F2tf} = 
F4 

0 

F5 

Now 

{F25} = 

W = 

F2 

LF3 

-1 

0 

2 

and {w2} = mg 

* ' {RA} = 

COS6 

0 . 7 

[sine. 
= 

"p Ί 
0 . 7 

-Q J 
m , 
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A ^ 

Fig. 4.20a. Fig. 4.20b. 

and 

<M 

KAI 

o 
1.4 

0 

m , M = 
0 . 5 c o s e ' 

0 . 7 

0 . 5 s i n 6 e 

= 

"0.5P1 

0 . 7 

p.5Q 1 

-d + cose) 
-0.7 

2 - sine 

-d + P) 

-0.7 

2 - Q 

|RBA| = R = /{(l + P) +0.7 + (2 - Q) } . 

Taking moments about 0, which for equilibrium gives a null vector as 
a resultant, 

[VHF^} + [ R
A ]{ F 2 3 } + [ R C ] { W 2 } = {o} 

0 0 1.4] 
0 0 0 1 

- 1 . 4 0 0 J 

+ mg 

0 

0.5Q 

0 . 7 

F Ί 
0 

UJ 
■0.5Q 

0 

0 .5P 

♦5 
b 
2 

0 

- 2 

0 

- 1 

o] 
1 

oj 

- d -P) 

- 0 . 7 

2 - Q 

0.7 ] 

-0.5P 

o J 

f °" 
0 = 

' ° 1 
0 

- ° J 
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1.4F5 
0 

[-I.4F4J 
♦S 

' 1 . 4 

- ( 2 P + Q) 

m 1 + P 

= mg 
" ° 1 
- 0 . 5 P 

. ° J 
(1) 

Also, for equilibrium, the sum of the forces is a null vector 

{F2h} + {F23} + {F25} + {W2} = {0} 

L*5j 
♦I 

(1 + P)" 

0 . 7 

2 " p 

+ 

Γ Ί 

F 2 

. F 3 . 

+ mg 

0* 

0 

- 1 _ 

= 
' °1 

0 

mo\ 
(2) 

Equations 1 and 2 can be combined into the single martrix given below 
when mg is taken as unity, so that the forces will be expressed as 
multiples or sub-multiples of the weight of the trapdoor. 

1 0 0 1 

0 1 0 0 

0 0 1 0 

0 0 0 0 

0 0 0 0 

0 0 0 - 1 . 4 

0 

0 

1 

1 . 4 

0 

0 

- ( 1 + P ) / R 

- 0 . 7 / R 

(2 - Q) /R 

1 . 4 / R 

- ( 2 P + Q) /R 

(1 + P ) / R J 

F l 

F 2 

F 3 

F 4 

F 5 

IF 

0 

0 

1 

0 . 7 

- 0 . 5 P 

0 

which is of the form 

[A] {F} = {B} 

and therefore 

{F} = [ Α Γ ^ Β } [C]{B} 

A programme to effect the necessary computation, written in a Basic 
language, together with the print out for the 0° , 50° and 90° posit-
ions are given below. 

It is always advisable to check the result of a particular computation, 
which does not involve any special conditions such as for example the 
90° position, for which the string tension is zero and F3 = F5 = 0.5mg, 
by longhand methods to ensure that the programming is correct. The 
reader is invited to do this. It is however reassuring to find that 
the computed results give the correct values for the 90° position. 
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Programme 

100 
110 
120 
13a 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 
420 
430 

Print out 

DIM A(6,6), C(6,6), F(6,l), B(6,l) 
FOR Tl = 0 TO 90 STEP 10 
PRINT "TRAPDOOR ANGLE « ";T1 
PRINT 
T = Tl/57.296 
P = COS(T) 
Q = SIN(T) 
R = SQR((1+P)f2 + ·7+2 + (2-Q)+2) 
MATA = ZER 
A(l,6) = -(1+P)/R 
A(2,6) = -.7/R 
A(3,6) = (2-Q)/R 
A (.4,6) = 1.4/R 
A(5,6) = -(2*P+Q)/R 
A(6,6) = (1+P)/R 
A(l,l) = 1 
A(2f2) = 1 
A (3,3) = 1 
A(l,4) = 1 
A(3,5) = 1 
A(4,5) = 1.4 
A(6,4) = -1.4 
MATB = ZER 
B(3,l) = 1 
B(4,l) = .7 
B(5,l) = -.5*P 
MATC = INV(A) 
MATF = C*B 
PRINT "F1=";F(1,1);"F2=n;F(2,1);HF3=";F(3,1) 
PRINT "F4=";F(4/1);"F5=";F(5,1);"F6=";F(6,1) 
PRINT 
PRINT 
NEXT Tl 
END 

TRAPDOOR ANGLE = 0 

Fl = .142857 F2 = .175 F3 = .25 
F4 = .357143 F5 = .25 F = .72844 

TRAPDOOR ANGLE = 50 

Fl = 7.35285E-02 F2 = .109658 F3 = .46335 
F4 = .183821 F5 = .343346 F = .34003 

TRAPDOOR ANGLE = 90 

Fl = 8.63530E-07 F2 = 2.11564E-06 F3 = .5 
F4 = 2.15883E-06 F4 = .499997 F = 4.76918E-06 
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Problem 4.21. A straight uniform rod, of length 2a and mass m, rests 
on the ground and the top horizontal edge of a wall as shown in Fig. 
4.21.If no slip occurs at the point of contact between the rod and the 
ground, obtain an expression for Θ when slip is about to occur at the 
point of contact between the rod and the wall. 

Also find the force at A when slip is about to occur. 

Solution. Refer to the ground as body 1, the wall as body 2 and the 
rod as body 3. The rod is in equilibrium under the action of 

{F 3 1 } at A, {W3} vertically down through C and 

{F32} at B. 

Fig. 4.21. 

When slip is about to occur at B, {F 3 2 } is the vector sum of a force 

{F32} which is normal to the plane containing AB and BD, and a force 

{F32} along BD which is directed such as to oppose the relative motion 

between bodies 2 and 3. Unit vector perpendicular to {R } and {R } 

and in the direction of {F 3 2 } is given by 



Hence 

and s i n c e 

and 
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ΓΚΒΑΙΚΒΪ/ΙΕΚΒΑΙΚ^Ι . 

{F"2} ^ [ K B A H W / K K B A I K , , } ! 

^ A H ^ J = 

[ « B A I K , , } ! = x A d 2 + h2) , 
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0 

d 

- h 

- d 

0 

X 

hi 

-x 

OJ 

[x 
0 

L° 
= X 

" °1 
d 

-hj 

{F32} = 
/ ( d 2 + h2) 

0 

d 

-h 

Also 

{FP
32} = yF 

-1 

0 

0 

For e q u i l i b r i u m , t h e sum of t h e moments of t h e f o r c e s on body 3 about 
A i s z e r o 

[RCJ{W3} + [RBA]{Fn3 2} + [RB A ]{F P
3 2 } = {0} 

and since 

K A } = Κ Α ' Ϊ ΪΑ"Ι = A x 2 +a*2 + *2> 

0 -d h 

d 0 -x 

-h x 0 

+ yF 

mga 
/(x2 + d2 + h2) 

0 

-1 

0 
/(d2 + h2) 

r - l " 

0 

L o . 

" 

= 
"ol 

0 

. 0 j 

From the y component equation, writing d/h = λ, 

2- — = yd or tane = *- = y/(l + λ ) 
/(d + h ) 

and from the x component equation 



2J4 

/ 2 2 

F/(d + h ) = 
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mgad 

/(.x2 + d2 + h2) 

which reduces to 

F = 
mgaA 

2, 2X h(l + λ2)/(1 + μΖλΖ) 

by use of the result from the y component equation. 

Also, for equilibrium, the sum of the forces on the rod is zero 

{W3} + {F32} + {F31} = {0} 

mg 

and therefore 

F = 

/(d2 + h2) 

Γ o " 

d 

- h 

+ yF 

"-1" 

0 

0 

+ 

"F 
X 

F 
y 

F 

= 

' 0 * 

0 

0 ! 

ymgA 

(1 + λζ)/(1 + μ2λ2) 

λ 
F = mg 1 
y I (1 + λ2)3/2/(1 + μ2λ2) 

and 

F = mgA 

(1 + λ2)3/2/(1 + μ2λ2) 

If slip is to occur before the rod falls down the face of the wall, 
then 

2 2 2 2 

x + d + h < 4a 

requiring 

2 2 2 2 2 

(1 + λ )(1 + y λ ) ^ 4a /h 

μ 4 f/{(4a2/n2)/(l + λ*) - l} 

Problem 4.22. Any given system of forces and couples can be reduced to 
a single force {F} through a given point 0 and a couple {L} as shown 
in Fig. 4.22a. The force {F} is independent of the choice of the point 
0 but the couple {L} is not. In general the force and couple vectors 
will not be parallel. Consider the problem of reducing the {F} and {L} 
system to a force {F} through some point A, to be determined, and a 

couple {Lp} which is that component of {L} parallel to {F}. 
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Find {L } and the point at which the line of action of {F} cuts the xz 
plane for the case in which 

{F} = 

10 

6 

4 

kN and {L} 

6 

3 

-6 

kN m. 

Solution. 

|L|COS8= g> <F) 

ti*> = a r m {F> 
|F| IFI 

Fia. 4.22a. Fig. 4.22b. 

The couple vector which is parallel to the force vector is given by 

{Lp} 
{L} {F} {F} {L}'{FHF} X{F} 

as illustrated in Fig. 4.22b. Thus 

or 

{L} = {I/} + {Ln} 

{Ln} = {L} - {Lp} 

where {Ln} is normal to the force vector {F}. If {Ln} is to be repla-
ced by moving the line of action of {F} so that it passes through some 
point A, then the position of A relative to 0 is given by 

iL"> = [RAo]<F} 

and t h e r e f o r e 

{L} - { L p } = [R A O ]{F> 

{L·} - X{F} = - I F ] { R A O } 

MMAERBM - V 
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P r e m u l t i p l y i n g t h i s e q u a t i o n by [ F ] g i v e s 

[ F ] { L } - M F K P ) = - [ F ] [ F ] { R A O } 

and t h e r e f o r e 

[ F ] { L } = C{F}T{R }}{F} - C i F } T { F } ) { R A O } 
AO J 

f rom w h i c h 

{*AJ = 
Ü F } T { R A o } ) [ F ] { L } 

-{F} + 

One οΓ the points satisfying this equation is on a line through 0 per-
pendicular to the plane containing {F} and {L} which is 

[F]{L> 

l o n g and i n t h e d i r e c t i o n of 

[ F ] { L } . 

The force {F} through this point A, together with {Lp} is the wrench 
equivalent to {F} through 0 and {L}. 

For the particular system given in the problem 

[F]{L> _ _1_ 
ι„ι2 152 

The equation to the line along which {F} lies is thus 

0 

4 

6 

- 4 

0 

10 

6 

- 1 0 

0 

6 

3 

- 6 

= 

- 0 . 3 1 6 

0 . 5 5 3 

- 0 . 0 3 9 5 

x - xA y - yA z - zA 

w h e r e 

{HP} = , {RA} = 

LZA 

and i , m and n are the direction cosines of {F}. Thus, for y = 0 

and 

x = xA - £yA/m = -0.316 - 10x0.553/6 = -1.237 m 

z = zA - nyA/m = -0.0395 - 4X0.553/6 = -0.407 m. 

giving 

w 
y=0 

-1.237 

0 

-0.407J 
m. 
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Problem 4.23. Prove the perpendicular axis and parallel axis theorems 
for a plane lamina. 

Solution. 

Fig. 4.23a. Fig. 4.23b. 

Perpendicular axis theorem. 
Refer to Fig.4.23a showing a lamina, body 2, in the X3Z3 plane with O3 
at any point in the plane. The moment of inertia of the lamina about 
the X3 axis is given by 

= V m. (z 2 + y 2 ) 
x3 x3 « " 

= 2 m i z + Zmiy' 
= 1 + 1 

V3 V3 Z3 Z 3 

Thus, the moment of inertia of a lamina about an axis perpendicular to 
its plane through any point 0 is the sum of the moments of inertia 
about any two mutually perpendicular axes in the plane of the lamina 
which pass through 0. If in particular 

then 

I = 1 
?3 V3 z3 z3 

I = 2 1 = 2 1 
X 3 X 3 ^3*3 z 3 Z 3 

Parallel axis theorem. 
Refer to Fig. 4.23b showing a lamina, body 2, in the x2z2 plane with 
the origin of frame 2 at the centre of mass of the lamina. The moment 
of inertia of the lamina about the x3 axis is 

*3 3 

2 2 

= 2 m i { w + y) + z > 
2 2 2 

= V m. d + 2d V m. y + V m. (y + z ) 
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= m,2d + I 
x2 χ2 

since 2m.y = 0. 

Thus, the moment of inertia of a lamina about any axis exceeds the in-
ertia about a parallel axis through the centre of mass of the lamina 
by the product of the mass of the lamina and the square of the dist-
ance between the parallel axes. 

Problem 4.24. Find, for the thin uniform circular disc, body2, of Fig. 
4.24 

[l2]2/2
 a n d [12)2/3 

Solution. The moment of inertia of the element shown about the y2 axis 
is 

2 

p r de dr r , 

where is the mass per unit area of the disc. The total moment of in-
ertia is thus 

V2 V2 

a Λ2ττ 
3 

r d r 

0 ·> 

d e = 2πρ 
3 h 

r d r = p-rra / 2 
d 0 

and s i n c e m2 = p^a , 

I = m 2 a 2 / 2 
y 2 Y2 

By the perpendicular axis theorem of Problem 4.23 

2 
I = 1 = m2a /4 
X 2 X 2 z 2 z 2 *-

and therefore, since the product of inertia terms are zero by symmetry 

[ I 2 ] 2 / 2 
moaz 1 0 0 

0 2 0 

0 0 1 

Now 

[ I 2 J 2 / 3 = Ϊ *2 13ÜI2Ü2/21 M 3 
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y3 2 γ about z2 3 

and therefore 

Fig. 4.24. 

[i2] 
moa' 

2/3 

Cy 

Sy 

0 

sy 

Cy 

0 

0 

0 

1 

1 

0 

0 

0 

2 

0 

0 

0 

1 

Cy 

Sy 

[o 

- S y 

cy 

0 

0 

0 

1 

moa' 
2 - cos2y sinycosy 0 

2 sinycosy 2
 -
 sin y 0 

0
 0 1 

Problem 4.25. Obtain the inertia matrix for a three-bladed airscrew 
referred to a set of axes which are fixed in the engine and which have 
their origin on the srew axis and in the plane of rotation of the 
screw. 

Solution. Refer to the engine fixed frame as 0 and number the blades 
2, 3 and 4 as shown in Fig.4.25. Frames 2, 3 and 4 have their origins 
coincident with that of frame 0, thus departing from the usual conven-
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t i o n o f p o s i t i o n i n g t h e o r i g i n o f a f r a m e n u m b e r e d t o c o r r e s p o n d w i t h 
t h a t o f t h e b o d y a t t h e c e n t r e o f m a s s o f t h a t b o d y . 

F i g . 4 . 2 5 , 

I f t h e b l a d e s a r e t r e a t e d a s s i m p l e s t r a i g h t r o d s , t h e n 

[ l 2 ] 2 / 2 = [ l 3 ] 3 / 3 = [ i i t K / i f 

1 0 0 

0 J 0 

0 0 1 

and if the whole screw is body 5, then 

[ I 5 ] 5 / 0 = Γ Ι 2 ] 2 / 0 + [ Ι 3 ] 3 /0 + [ l i t ] if/0 

= [ Α 2 ] θ [ ΐ 2 ] 2 / 2 Ϊ * 2 ] ο + [ £ 3 1 θ [ ΐ 3 ] 3 / 3 [ ^3 ^ 

+ I AI» l o D u K / i J H ]Q · 

Now 

[ ^2 l0 = 

Ϊ Alt lo = 

1 0 O 

O C0 -S0 

0 s0 c0 
r I A3 l0 = 

1 0 O 

O ο ( α - θ ) s ( a - 0 ) 

O - s ( a - e ) ο ( α - θ ) 

1 0 0 

O c ( 0 + a ) - s ( 0 + a ) 

O s ( 0 + a ) c ( 0 + a ) 

1 0 O 

O c ( 0 - a ) - s ( e - a ) 

O s ( e - a ) c ( 0 - a ) 



and therefore 

[l2]2/0 = 
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I 0 

0 J c 2 0 + l s 2 0 

o -(.i - Jisece Js2e + ic2( 

o 
-Ci - J). sec0 
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and 

[13] 3 /0 

[ l»* ] i f /0 = 

1 0 O 

0 J c 2 ( 0 + a ) + l s 2 ( 0 + a ) - ( I - J ) s ( θ + a ) C ( θ + α ) 

O - ( I - J ) s ( e + a ) c ( 6 + a ) J s 2 ( 0 + a ) + l c 2 ( 0 + a ) 

1 0 0 

O J c 2 ( 9 - a ) + I s 2 ( 6 - a ) - ( I - J ) s ( 0 - a ) c ( 0 - a ) 

0 - ( I - J ) s ( 9 - a ) c ( e - a ) J s 2 ( 0 - a ) + l c 2 ( 0 - a ) 

F o r a = 2TT/3 

S6C0 + s ( 0 + a ) c ( 0 + a) + s ( 0 - a ) c ( 0 - a) 

= O . 5 { s 2 0 + s 2 ( 0 + a) + s2(Θ - a ) } 

= O , 

c 2 0 + c (0 + a) + c (0 - a) 

= 0 . 5 { 1 + c20 + 1 + c 2 ( 0 + a) + 1 + c 2 ( 0 - a ) } 

= 1 .5 

a n d , s i m i l a r l y 

s 2 0 + s 2 (Θ + a) + s 2 (Θ - a) 

= 1.5 

for all values of Θ: Hence 

[I5Ü5/0 = 

31 O O 

O 1.5(1 + J) 0 

0 0 1.5(1 + J) 

Problem 4.26. The uniform rectangular parallelepiped shown in Fig.4.26 
a is machined from a steel forging and fixed to a light shaft with its 
axis along BD. The shaft runs in bearings, which can be considered in-
ert ial, at a constant rate of 1 000 rev/min. Determine the angular 
momentum and the rate of change of angular momentum of the parallel-
epiped referred to a frame fixed in it. 
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Fig. 4.26a. 

Solution. 
Since the density of steel is about 7.8 g/cm3 , the mass of the body 
is 

m2 = 16x12x15x7.8xlO~
3 = 22.46 kg . 

Mow 

T&2 

ίτ2] k/k ~ [I2] 2/2 - To 

,2 , ,2 

a + b 

0 

0 

az + cz 

0 

0 

b2 + c2 

748.7 0 0 

0 900.3 0 

O O 690.6 

kg ra 

To refer [l2]2/4 t o frame 2 it is necessary to find [fLi+)2· Frame 4 can 

be aligned with frame 2 by the sequence of rotations shown in Fig.4.26b 
where 

cosa = 0.8, sina = 0.6, cos3 = 10/12.5 = 0.8 
and 

sinß = 7.5/12.5 = 0.6 . 

Hence 

ί H ]2 * f *3 hl *>k h 

c3 0 -s3 

0 1 0 

s3 0 c3 

1 0 0 

0 ca sa 

0 -sa ca 



Solution of Dynamics Problems 

Fig. 4.26b. 

c3 sasB -cas£ 

O ca sa 

s3 -sac3 cac£ 

0.8 0.36 -0.48 

0 0.8 0.6 

0.6 -0.48 0.64 

Therefore 

[ l 2 ] 2 / 2 = I H l 2 [ l 2 ] 2 / i f l * if Λ 

Also 

755 60.4 -8.35 

60.4 825 -80.5 

-8.35 -80.5 760 

|ω2|ι = 2πχ1 000/60 = 104.7 rad/s 

kg m 
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g i v i n g 
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{ ω 2 } ι / ι = ί ω 2 } ι / 2 = 104.7 

{ H 2}l /2 - [τΐ] 2 / 2 ^ 2 h / 2 

r a d / s , 

= 104.7 

755 60.4 - 8 . 3 5 

60.4 825 - 8 0 . 5 

- 8 . 3 5 - 8 0 . 5 760 

kg m / s 

- { H 2} l / 

F i g . 4 . 2 6 c . 

Since {ω2}ι/2 i-
s a null matrix, 

{02}l/2 = I ω2ΐ 1/2 [X2j 2/2ίω2>ΐ/2 = ί
 ω2ΐ 1/2{H2}1/2 

= 104.7 

0 - 1 0 

1 0 0 

0 0 0 

874" 

- 8 428 

m 79 572 
= 

882 

- 91.5 

0 

kN m. 
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Problem 4.27. The uniform rotor, body 3, of Fig. 4.27a runs on body 2 
with a constant angular velocity of magnitude ω, while body 2 rotates 
relative to an inertial frame 1 with a constant angular velocity of 
magnitude Ω. Find, for the axes shown 

[>3]3/i * {H3h/i / {H3I1/1 , {H3}i/2 and {E3}1y2 . 

Solution. 

" 0 " 

Λ 

[0 
/ { ω 3> 2 / 2 -

αι 

0 

0 

1 β about yj 2 a about x2 3 

Fig. 4.27a. 

By reference to Fig. 4.27b 

{ ω 3 } 1 / 1 = { ω 2 ) ι / ι + [ £ 2 Μ ω 3 } 2 / 2 

= Ω 

" cß 

0 

r s ß 

0 

1 

0 

sßl 

0 

cßj 

[ω 

0 

L°. 
= 

(JUCOSBI 

Ω 

- u ) s i n ß j 

and 

{ω3}ι/2 = I Αχ ]2{ω3)ι/ι 

(1) 

cß 

0 

_sß 

0 

1 

0 

- s ß l 

0 

cßj 

Γ ωσβ 

Ω 

[-U)Sß 

= 

ω 

Ω 

0 j 

(2) 

Equations 1 and 2 are illustrated in Fig.4.27c. Differentiation of 
Eq. 1 gives 
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and 

ί ω 3 1 ι / ι = 

Ü)(3S3" 

0 

o)3c3 

F i g . 

= -ωΩ 

4 . 2 7 b 

s in3l 
0 

c o s 3 

{ ^ 3 ) 1 / 2 = [ £ i M w 3 h / i = " ω Ω 

0 

1 

0 

-S3] 
0 

C 3 j 

[sß" 
0 

[c3. 
= 

0 1 

0 

-ωΩ] 

(3) 

(4) 

Alternatively, 

{ ω 3 } ! / 2 = ί ω2 ] ι / 2 ί ω 3 } ι / 2 + d { ω ^ } Ί / 9 
d t 

= Ω 

0 

0 

1 

0 

0 

0 

ι] 
0 

oj 

ω 

Ω 

[ο_ 
+ 

"ο" 
0 

_0_ 

= 
ο 1 
0 

_-ωΩ^ 

Since body 3 i s a s o l i d of r e v o l u t i o n , t h e a x i s of g e n e r a t i o n be ing 
t h e x 3 a x i s 

D^h/s = 
J o 0 

0 1 0 

0 0 1 
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{ ω 3} 1/ 1 and {o>3h/2 

F i g . 4 . 2 7 c . F i g . 4.27d 

Therefore 

[ I 3 Ü 3 / 2 = I *3 12 [ I 3 J 3 /3 l *3 1* 

1 

0 

0 

J 

0 

0 

0 

C a 

sa 

0 

I 

0 

0 

- s a 

CaJ 

0* 

0 

I 

J 

0 

[0 

. 

0 

I 

0 

0 

0 

IJ 

1 

p 
[0 

0 

C a 

- s a 

0 

sa 

ca 

(5) 

Also 

[ i s L / l = 1 *2 U [ l 3 ] 3 / 2 l *2 ll 

c3 

0 

S3 

0 

1 

0 

S3 

0 

C3J 

J 

0 

[0 

0 

I 

0 

0 

0 

IJ 

C3 

0 

[_s3 

0 

1 

0 

- S 3 

0 

c3j 

Jcos23 + Isin23 0 (I - J)sin3cos£ 

0 1 0 

(I - J)sin3cos3 0 Jsin23 + Icos2£ 

(6) 

Now 

{H3 } x / ! = [ ΐ 3 ] 3 / ΐ ί ω 3 } 1 / ι = [ £ 2 11 [ i 3] 3 / 2 ! *2 l l ί ω3 > 1 / l 
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and 

cß 0 sß 

0 1 0 

-sß 0 cß 

Jü)COSß 

ΙΩ 

-Jrnsinß 

J 

0 

0 

0 

I 

0 

ol 
0 

ijl 

cß 

0 

sß 

0 -sß 

1 0 

0 cß 

Ω 

-UiSf: 

{H3}l/2 = ί *1 ]2{H3}l/l 

cß 0 -s 

0 1 0 

sß 0 c 

Γ Jü)Cß 

Ι Ω 

[-J(jüSß_ 

= 

Jω 1 

Ι Ω 

.0 J 

Jcoflsinnt 

\ XZ . *3 

{H3}i/2 and {Ha}!/! 

F i g . 4 . 2 7 e . 

or alternatively 

{H3} 1/2 = [I3J 3 / 2 ^ 3 } 1 / 2 

Equations 7 and 8 are illustrated in Fig. 4.27d. 

Differentiation of Eq. 7 gives 

{H3}l/1 = 

-JωΩsß 

0 

-Ja^cß 

= -Jcof 

sinß 

O 

cosß 

and 

(7 )

(8)

(9)
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{ H 3 } l / 2 = I M l 2 { H 3 } l / l 

229 

-JÜ)£2 

c3 
0 

_s$ 

0 

1 

0 

- sß l 
0 

cßj 

S 3 

0 

L c 3 . 

= -Joofi 

0 ! 

0 

1 
-

(10) 

A l t e r n a t i v e l y 

{ H 3 } l / 2 = ί ω 2 ] 1 / 2 { H 3 } 1 / 2 + d _ { H 3 } l / 2 
dt 

{03}l/2 = I ω3 li/2 [l3] 3/2^ 3>l/2 + [i 3] 3/2 ί ω3 }α / 2 

The reader is asked to evaluate these two alternative expressions for 
the rate of change of angular momentum of body 3 , measured in frame 1 
and referred to the rotating frame 2. Equations 9 and 10 are illustr-
ated in Fig. 4.27e. 

Problem 4.28. Body 2 has the inertia matrix 

[l2]2/2 = 
7 0 0 

0 25 0 

0 0 32 

kg m 

and is constrained so that it is free to rotate about its centre of 
mass. At time t = 0 its angular velocity is 

(ω2 } 2 J- 1/2 

4/5 

0 

3/5. 

rad/s 

Obtain an expression for (ω2)ι/2
 a t a n Y subsequent time t, for the 

case in which there are no external couples acting on the body and the 
only external force has a line of action through the centre of mass of 
the body. 

Solution. Let the angular velocity of the body at any time t be 

{ω2}χ/2 

and therefore 
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{ ω 2 > ΐ / 2 = ^ 4 - W h / 2 

For the motion subsequent to t = O, since there are no external cou-
ples 

{O} = {0212/2 = t ω2 h/2 [I2] 2/2Ϊω2>1/2 + [la] 2/2 ί ^2 > 1/2 

0 

ω 
z 

- ω 
y 

+ 

z 

0 

ω 
X 

Ί ο 
0 25 

0 0 

ω 
y 

X 

0 J 

0~ 

0 

32 

7 

0 

L ° 
ω 

X 

ω 
• y 

I ω 

0 

25 

0 

0 
ο 
32 

These equations reduce to 

01 + ω ω = 0 , 
χ y z 

ω + ω ω = 0 
y χ ζ 

and 

(1) 

(2) 

16ω + 9ω ω = 0 . 
ζ χ y 

(3) 

If Eg. 1 is multiplied by ω and Eg. 2 by u then 
x y 

ω ω 
X X 

ω ω 
y y 

+ ω ω ω 
χ y ζ 

- ω ω ω 
χ y ζ 

= 0 

= 0 

and these equations sum to give 

Hence 

ω ω + ω ω = 0 
χ χ y y 

(4) 

ω -τ. ω dt + 
χ at χ 

ω -j-,ω dt = 0 
yat y 

or 2 J. 2 - TV 

ω ■- + ω = A 
x y When t = 0 

ω = 4Ω/5 and ω = 0 giving A = 16Ω /25 

and therefore 
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ω2 + ω2 = 1 6 Ω 2 / 2 5 (5) 
x y 

If Eq. 2 is multiplied by 9ω and Eq. 3 is multiplied by ω then 
y z 

9(i) (ij - 9ω ω ω = 0 
y y x y z 

16ω ω + 9ω ω ω = 0 
ζ ζ χ y ζ 

and these equations sura to give 

9ω ω + 16ω ω = 0 
y y z z 

which integrates to 

)ω2 + 16ω2 = 144Ω /25 . (6) 
y z 

From Eq. 2 

d JJ_ y -τ. ω = ω ω or dt = 
a t y χ ζ ω ω 

and by substitution from Eqs. 5 and 6 

do) 
dt = 

/{ (144Ω2/25) - 9ω }{ (16Ω /25). - ω }/16 

4dü) 
y 

3{ (4Ω/5)2 - ω } 
y J 

This equation integrates to 

5 -1 

t = ψ- tanh (5ω /4Ω) 
ou y 

since ω = 0 when t = 0. Therefore 
y 

ω = η£ tanh(3Ωt/5) 

and by Eqs. 5 and 6 

ωχ = 4 rV{l - t a n h 2 ( 3 Ω t / 5 ) } 

ω = Τ Γ / { 1 - t a n h 2 ( 3 Ω t / 5 ) } . 
z D l J 

It is thus seen that while the component angular velocity along the y2 

axis(the axis corresponding to the intermediate principal moment of 
inertia) is initially zero, finally the angular velocity is wholly al-
ong this axis. A graph showing the variation of the component angular 
velocities with time is shown in Fig. 4.28. 

The reader will have noted that a special set of initial conditions 
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have been chosen t o g i v e a s o l u t i o n i n a c l o s e d form. Had an a r b i t r a r y 
s e t of i n i t i a l c o n d i t i o n s been c h o s e n , an i n t e g r a l of t h e form 

/ ( l - ao)2) (1 - bo>2) 

would have to be effected. This is one form of elliptic integral which 
does not have a closed form solution. 

Problem 4.29. Body 2 is moving in free space relative to an inertial 
frame 1 such that 

{ω2}ι/2 and [l2]2/2 = 

A 0 0 

0 B 0 

0 0 C 

where A, B and C are not equal th each other, when it is subjected to 
a small external impulsive couple. Determine whether or not the sub-
sequent motion is stable. 

Solution. Let the angular velocity of the body after the impulse be 

{ω2>ι/2 

Ω + ω 

ω 

ω 
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where ωχ, ωγ and ωζ are small compared with Ω. The equation of motion 
after the impulse is 

{0} = { H 2 } i / 2 = [ ω2 1 ΐ / 2 [ Ι 2 ] 2 / 2 ί ω 2 } ΐ / 2 + [ i 2 ] 2 / 2 ί ω 2 > 1 / 2 

0 

ω 
z 

ω 

ω 
ζ 

0 

Ω+ω 

y 
(Ω+ω ) 

A 

0 

0 

0 

Β 

0 

οΊ 
0 

cj 

Ω + ω 
y 

ω 

A 

0 

0 

0 

Β 

0 

οΊ 
0 

cj 

X 

ω 
• y 

ω 

and these equations reduce to 

(C - B)ω ω + Αω = 0 
y z x 

and 

Now 

(A - C)(Ω + ω )ω + Βω = 0 
x z y 

(B - A) (Ω + ω ) ω + Cw = 0 
x y z 

ω ω << Ωω and ω ω << Ωω 
χ ζ ζ χ y y 

so that the equations can be further reduced to 

(C - B) ω ω + Αω = 0 
y z x 

(A - C)Ωω + Βω = 0 

(B - A)Ωω + Cw = 0 . 
y 2 

Differentiating Eq. 2 with respect to time gives 

B 
ω = - ω 

Ω(Α - C) Y 

and this result in Eq. 3 leads to 

s + (A - C)(A - Β)Ω2
 ω = 0 m 

BC 

(1) 

(2) 

(3) 

If 
(A - C) (A - B) < 0 

then the motion will be unstable. Consider the three possible altern-
atives. 
Case (i) If A - C > 0 and A - B > 0, or A is greater than either B 
or C then 

(A - C) (B - C) > 0 
and the motion is stable with a natural frequency of 
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Ω/{ (A - C) (A - B) /BC} 

Case(ii) If A - C < 0 and A - B < O, or A is less than either B or 
C then 

(A - C) (A - B) > 0 

and the motion is stable. 
Case(.iii) If A - C < O and A - B > 0, or A lies between B and C 
then 

(A - C) (A - B) < 0 

and the motion is unstable. 

Thus, if the body is rotating steadily about a principal axis for wh-
ich the inertia is intermediate between the other principal moments 
of inertia, then any small external disturbance will give rise to an 
unstable motion. If the motion is about either of the other axes then 
the motion will be stable. 

Problem 4.30. A body which has axial symmetry as shown in Fig. 4.30a 
is moving without constraint in deep space. Examine its angular mot-
ion. 

Solution. One set of axes which are convenient for this study are as 
shown in Fig.4.30b.Frame 4 is fixed in the body with its origin at the 
centre of mass and the zi+ axis is along the axis of symmetry. Frame 4 
is positioned relative to an inertial frame 1 through the intermediate 
frames 2 and 3 as follows: 

(i) frame 2 rotates through the angle ψ about an axis parallel to the 
zi axis, 

(ii) frame 3 rotates through the angle Θ about the x2 axis and 

(iii) frame 4 rotates through the angle φ about the z3 axis. 

The angular velocity of body 4 relative to the inertial reference 1 is 
thus given by 

{a)h}i = {(02)1 + ίω 3} 2 + {ωι+} »M3 

where 

and 

{ω2>ι/ι = {ω2)ι/2 = , ίω3}2/2 = ίω3}2/3 

{ωι+}3/3 
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Fig. 4.30a. 

The component angular velocity ψ is#the angular velocity of precess-
ion. The component angular velocity Θ is the angular velocity of nut-
ation and the x2 axis is the line of nodes. The Z3 axis is the spin 
axis, the angular velocity of spin being ψοοεθ + φ. 

The angular velocity vector for body 4 measured in frame 1 and refe-
rred to frame 3 is given by 

{ωι+}1/3 = ίω2>ι/3 + ίω3>2/3
 + ί ω ι+ } 3/3 

= [£2]3{ω2}ι/2
 + ^ ω3^2/2 + ίωι+}373 

1 0 0 

0 c6 S0 

0 -s0 C0 

Γο" 
0 

U . 
+ 

" Θ " 
0 

, 0_ 

+ 
οΐ 
0 

. Φ I 

ψβίηθ 

ψοοβθ + φ 

(1) 

Also, if the angular velocity vector for body 4 measured in frame 1 
and referred to frame 4 is given by 

{ωι+>ι/ι+ 
ω 
X 

ω 
(2) 
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/ V Z2 

1 f about z, 2 t about x2 3 f about z3 4 

F i g . 4 . 3 0 b . 

t h e n 

W h / 3 = l H J3 ί ω4 ϊ 1/U = s<j> 

o 

εφ 

C(J) 

0 

ol 
0 

l j 

ω 1 x 

ω 
y 

I- Z J 

a n d 

ω coscb - ω s i n d 
x y 

ω s ind) + ω c o s d 
x y 

3 t i w 4 > l / 4 = (ωι+ΐχ/ΐψ = 

ω ' 
x 

ω 
• y 
ω 

L z _ 

(3) 

(4) 

The angular momentum and rate of change of angular momentum of body 4 
measured in frame 1 and referred to frame 4 are, respectively 

{ H U l / H = [ l i f ] i t / i t ίωΐψ} ι+/ι*ΐωΐψ J ! / ^ 

"I 

0 

0 

0 

I 

0 

o] 
0 

J | 

Γ ω 
X 

ω 
y 

ω 
L z . 

= 

Ίω Ί 
X 

Ιω 
y 

J ω J 
z J 

(5) 
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{H„}, J/I < 1 

Direct precess: 

a n d 

F i g . 4 . 3 0 c . 

{Hi+Ji / i f = I ω 4 h / 4 [ l i t ] i + / i f { u > i t } 1 / i + + [ l i t ] if/i* ί ω 4 } j / t 

Ι ω - ( I - J ) ω ω 
x y z 

Ιω + ( I - J ) ω ω 
y x z 

Jω 

(.6) 

The reader is invited to show that the result obtained from 

{ Η 4 } ΐ Λ = l ω 4 l i / i f {Η 4 } χ / 4 + g ^ { H , , } ! / ^ 

is the same as that above. 

Since there are no external couples on the body {H4} is a null vec-

tor, one immediate result of which is that ω = 0 . Also, the {H^}} 

vector is of constant magnitude and fixed directionally in inertial 

space. As a matter of convenience, let the {H.I+}I vector be directed 

along the z1 axis as shown in Fig. 4.30c. If {H^}! is fixed in iner-

tial space then θ must be zero, Θ being given by 

tane = Ιω /JÜJ (7) 
y z ' 

The angular velocity vector {ω^ΐχ is inclined at the angle 3 to the 
z3 axis given by 

tanß = ω /ω 
y z 

(8) 

From the angular velocity vector diagram of Fig. 4.30d, since 
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Fig. 4.30d. 

tan3 = J/Itane , 

ψ _ J_ 

(9) 

ψοοεθ + φ Icos6 

and therefore 

ψ = ^ 
(ι - j)cose 

or alternatively 

(10) 

s i n e 
Ψ 

s i n ( 9 s m ß 
(11) 

w h e r e I ω*+1 l 

The angular velocity vector diagram of Fig. 4.30d can be related to 
the taper roller thrust bearing of Problem 3.14. The angular motion of 
an axially symmetric free body can thus be seen to be equivalent to 
rolling of a cone fixed in the body, the body cone, on a cone fixed in 
inertial space-, the space cone, as shown in Fig. 4.30e. 

To this point the body has been assumed to be rod-shaped and therefore 
such that J/I < 1. In this case 3 < Θ and the precessional motion is 
said to be direct. The body and space cone configuration corresponding 
to 

I < J/I < 2 

for a disc-shaped body is as shown in Fig. 3.40f. Here 3 > Θ and the 
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Spaot eon· 

Direct precession 

Fig. 4.30e. 

Body cone 

Retrograde precession 

Fig. 4.30f. 

precessional motion is said to be retrograde. 

The motion can also be examined by effecting a direct solution of the 
equations of motion, Eqs. 6, which can be written 

Λω = 0 

ω + Αω 
y χ 

(12) 

(13) 
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w h e r e A = ( I - JLu) / J , a c o n s t a n t . M u l t i p l i c a t i o n o f t h e s e e q u a t i o n s 
by ω and ω r e s p e c t i v e l y and a d d i n g g i v e s 

• · 
ω ω + ω ω = 0 . 

χ χ y y 

This equation integrates to 
2 2 

ω + ω = constant (14) 

x y 

and since ω is constant 
z 
2 2 2 

ω + ω + ω = constant (15) 

x y z 

which, as might be expected, indicates that the rotational kinetic 
energy is constant.The result obtained by differentiating Eq. 13 with 
respect to time, when substituted in Eq. 12 is 

ω + A ω = 0 (16) 
y y 

and therefore 

ω = PcosAt + QsinAt (.17) 

and 
ω = PsinAt + QcosAt (18) 

where P and Q are constant of integration. To relate these equations 
for ωγ and ωχ to the previous result, the initial conditions must be 
selected to correspond to the axis system chosen. By Eqs. 1,2 and 10 

A = (I " J ) ω = (I ; J ) (icose + φ) = φ. 
J Z J 

Also, when φ = 0, ω = ψείηθ and ω = 0, giving P = ψεχηθ, Q = 0, • . y ·
 x 

ω = ψειηθσοεφ and ω = ψβΐηθεΐηφ. 

Problem 4.31. A uniform rod, body 3, having a circular cross section 
of radius a and length b, is mounted in a frame, body 2, as shown in 
Fig. 4.31. The motion of body 3 relative to body 2 about the central 
pivot can be considered free from fictional constraint. The frame is 
driven at a constant rate Ω relative to an inertial body 1. 

Find, for the case in which b/a > /3, the frequency of small oscilla-
tions of body 3 when it is positioned such that α = ττ/2. 

Also find for the case in which body 3 is released from rest relative 
to body 2 when a = 0, a when a = π/2. 
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Solution. Now 

ίω3>! = {ω2}ι + ί ω 3 } 2 

and t h e r e f o r e 

f ω3 > 1/3 = I *2 1 ' 3 ί ω 2 Ϊ ΐ / 2 + -I *2 h ί ω 3 ϊ 2 / 2 

1 

0 

0 

0 

c a 

- S a 

0 

s a 

c a j 

a 

Ω 

L ° . 
= 

a 

ficosa 

- f t s i n a 

= 
ω 

X 

ω 
y 

ω 
- z 

\2ΖΔ 

WÄ\ 

- L . 

[ 3 f 
E^i 

1 ß about γι 2 a about x2 3 

F i g . 4 . 3 1 . 
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g i v i n g 

{ω3 } 1 / / 3 = 5 ^ { ω 3 } ι / 3 = 

The e q u a t i o n of mot ion f o r body 3 i s 

{^32)3 = { H 3 J 1 / 3 = [ ω3 ] i / 3 [ l 3 ] 3 / 3 { ω 3 } ι / 3 + [ i 3 ] 3 / 3 { ω 3 } χ / 3 

- a f i s i n a 

- a Q c o s a 

= 
ω 

X 

ω 
y 

ω 
L- z J 

0 

L 
y 

L 
z 

= 

( I -

Jw 
z 

- d -

J ) ω ω + Ιω 
y z x 

J ) ω ω + Ιω 
y x z J 

where 
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JL32}3 i s t h e c o u p l e w h i c h b o d y 2 e x e r t s on b o d y 3 r e f e r r e d t o f r a m e , 

Ί o o" 

M 3 3 0 J 0 

0 0 1 

, I = m 3 { ( b 2 / 1 2 ) + ( a 2 / 4 ) } 

and 

J = m 3 a / 2 , 

The x c o m p o n e n t e q u a t i o n o f m o t i o n c a n b e w r i t t e n 
2 

l a - ( I - J)Q s i n a c o s a = 0 . 

To consider small motions of body 3 relative to the position in which 
a = a , the sinacosa product can be written 

o 

sinCa + a) cos (a + a) = -~sin2 (.a + a) 
o o Z o 

where a is now redefined as a small displacement from the a position. 
If a = π/2, then 

o 

7rs in2 (.a + a) = -^ε ίηθπ + 2a) = - 7 r s in2a - - a 2 o 2 2 

and the equation of motion for small movements relative to the a = 
π/2 position can be written 

·. , (I - J)n Λ a + -» - a = 0 

so that the natural frequency of small vibrations about this position 
is 

provided 

Now 

ω = Ω/(.Ι - J)/I 

1 > J or
 ΤΣ

 + τ > f2 > Ue- I > /3 

(I - J)Ω . -da 2 . 
a = = sinacosa or a^— = ω sinacosa 

I aa n 

and 

/· a ,π/2 

ada = ω sinad(sina) 

•2 2 2 . 
a = ω (sin a) 

π/2 

0 
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I t i s s u g g e s t e d t h a t t h e r e a d e r f i n d s 

{L32}3' (
L32)2/ (L32llf {L2l}2 a n d {L2l}l 

for the case in which α = π/2 and a steady state vibration 

a = Asina) t 
n 

is taking place. 

243 

Problem 4.32. A uniform ring is pivoted to a shaft which rotates in 
fixed bearings as shown in Fig. 4.32a. The motion of the ring about 
its pivot relative to the shaft is controlled by a spring which exerts 
no torque on the ring when the axis of the ring is at 70° to the axis 
of the shaft. 

Determine the stiffness of the spring if the axis of the ring is to be 
30° to the axis of the shaft when the shaft speed is 200 rad/s. What 
will be the attitude of the ring when the shaft speed is 100 rad/s? 

3 
The ring, which is of brass (density 8 200 kg/m >, has the following 
dimensions:external diameter 7 cm, internal diameter 6 cm and length 
1 cm. 

Solution. 

1 γ about Zj 2 a about x2 3 

Fig. 4.32a. 

The reader is left to show that 

m3 = 0.0837 kg 

and 
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[ι 3] 3 / 3 

1 0 0 

0 1 0 

0 0 J 

= 10 

45 0 0 

O 45 O 

O O 89 

kg m 

I f t h e s p r i n g e x e r t s no t o r q u e on t h e r i n g when t h e a x i s of t h e r i n g 
i s a t 70° t o t h e s h a f t a x i s t h e n i t w i l l e x e r t a t o r q u e a b o u t t h e x 2 
a x i s equa l t o 

ΚΘ/57.3 

when the ring turns through the angle Θ (.in degrees) as indicated in 
Fig. 4.32b, where k is the spring stiffness. 

y3 (200 rad/s) 

ω = 200 rad/s 

Angle ring axis makes with shaft axis(a) 

Fig. 4.32b. Fig. 4.32c 

When the shaft is running at a constant speed and the ring is at rest 
relative to the shaft 

{ω2>ι/ι = {ω3>ι/ι = i^^l/l = 

{ω3}ι/3 = [ l2 1 3 ί ω 3ϊΐ/2 

Ό 

oosina 

ÜJCOSOI 

and {0)3} 1/1 is a null matrix. The equation of motion for the ring 

{L3 i +}3 = {H 3 }l /3 = [ ω3 l i / 3 [ l 3 ] 3 / 3 U 3 h / 3 

t h u s becomes 

ke 
57.3 CJ - I ) s i n a c o s a 
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This equation is illustrated in Fig. 4.32c. On substitution of the 
values appropriate to a speed of 200 rad/s, the equation becomes 

|y£j = 4x10 xlO (.89 - 45) xO. 5x0. 866 

giving 
k = 1.09 N m/rad. 

When ω = 100 rad/s 
h _6 

1,096 = 10 xlO (89 - 45)sin(140 - 2el . 
57.3 2 

By trial and error Θ 10° 

The reader is invited to determine the natural frequency of the ring 
at each speed. Reference to Problem 4.31 will help in an approach to 
this problem. 

Problem 4.33. Figure 4.33a shows a part section of a ball thrust race. 
Determine the angular velocity of the upper track relative to the lo-
wer fixed track when there is slip between the ball and the track at 
each point of contact. 

Solution. 

1 Θ about z 2 % about i. 3 B about y, k 

Fig. 4.33a. 

From Problem 3.13 

naoj { A i + h / 3 = —4 

0 

-1 

o 
and W h / 3 = —T— 

[ 1 

P 
Lo 
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Now 
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2 ^ 
{Hi+Ji/3 = [ l i f K / 3 i w i f } I / 3 = - ^ - ^ j -

"l 

0 

p 

0 

1 

0 

ol 
0 

l j 

Γιΐ 
0 

Lo j 

2 2 
mna ω 

10 

Taking moments about B, by reference to Fig. 4.33b, 

[R A B ] 3 / 3 { Ρ 4 2 } 3 = ^ [ R C B ] 3 / 3 { A I + } I / 3 + { H I + J I / 3 

2a 

1 

0 

0 

ol 
0 

oj 

|>f 
I 2 

L F 3 . 

2 2 
mna ω 

f rom w h i c h 

Fo = 
7mnaa) 

40 

0 

1 

p 

- 1 

0 

0 

o] 
0 

oj 

Γ o l 
- 1 

L ° j 

2 2 
mna ω 

10 

[1 
0 

lo 

»Kl· -

{vUh 
Wlh 

K l > 3 

< l · 

F i g . 4 . 3 3 b . 
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Equa t ing a p p l i e d and e f f e c t i v e f o r c e s 

{F42I3 '+ {Fi+ih = ™{&k}i/3r I F 2 + F 5 

L F 3 J LF6J 

from which 
3πlnaω 

40 

F i g . 4 . 3 3 c . 

If P is the axial load on each ball then 
9 _ 2 

F 2 7mnaü) , 2 - , 5 3iunaü 

T = -ÄÖT = k ^ and ΊΓ = TOP~ 
= k, 

When slip is about to occur, first at A, 

= p = kiü)] 

as shown in Fig. 4.33c. In general 

F2 + F5 = ^ 

and when ω > ωχ, F2 = pP- In this case 

2 

pP + F5 = mnao) 

or 
F 2 0 

"p- = -4p- " P = k2w - P-

MMAERBM -
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When slip occurs at B 

F5 
P~ 
5 2 

^— = y and 2μ = k2o)2 
giving 

2 = 8yP 
2 mna 

Problem 4.34. A rotor, body 4, is mounted in gimbals as shown in Fig. 
4.34. The inertia matrices for the elements are given by 

and 

A 2 

0 

0 

J 

0 

0 

0 0 " 

B2 0 

0 C2 

0 0" 

I 0 

0 I 

. 

A3 0 0 

0 B3 0 

0 0 C3 

[l 2] 2 / 2 = 0 B2 0 , [l3]3/3 

Du] h/h 

Obtain expressions for γ and θ for the case in which the system moves 
from rest when subjected to each of the following disturbances 

(i) a couple 

{L2}2 = 

applied suddenly and 

(ii) a small mass m is placed on the inner gimbal at B such that 

R. Bc'3/3 

Assume that friction effects can be neglected, the rotor runs at a 
constant high speed ω , the motion of the inner gimbal about the y2 
axis is small, the angular velocity products due to γ and θ can be 
neglected and the mass acclerations due to m can be similarly neglec-
ted. 

Solution. Angular velocities and accelerations are given by 

ίω2)ι/2 

0 " 

0 

Ύ 

, { ω 2 } ! / 2 = 

"0 

0 

. Ύ 
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i 1^/ Outer 
X/V i gimbal 

~r 

1 

tg 

1 γ about zi 2 e about y2 3 f about xj 4 

Fig. 4.34. 

ysine 

Θ 

ycose 

= 

ω 
X 

ω 
y 

ω 
L Z J 

^ 3 h / 3 

ίω3}ι/3 

{ωι+}1/3 

Rates of change of angular momenta are given by 

ω 

ω 
#y 
ω 
z 

"ω -f 
X 

ω 
y 
ω 
_ z 

— 

- ω 

"-γείηθ - γθοοεθ 

Θ 

ycosG - γθείηθ 

and {ωι+Ιχ/3 = 

ω 
X 
ω 
y 

ω 
z 

f 

+ 

+ 

i 
ωω 

z 
ωω 1 

y J 

{H2}i/: 

and 

0 

0 

C2Y 

Jo) 

,{H3}l/3 = 

Aoti) + (CQ - B Q ) ω ω 
° x ° ° y z 

Βοω + (Ao ~ C Q ) ω ω 
° y ° ° x z 

C3ÜJ + (B3 - A3) ω ω 

Ιω + ηω + (J - I) ω ω 
y z x z 

Ιω - hω - (J - I)ω ω 
z y x y 

lHull/3 

where h = Joi. The reader is advised to justify these results. 
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T a k i n g momen t s a b o u t C, f o r b o d y 2 , 

{L2}2 + {L23}2 = {H2}1 / 2 , (1) 

for body 3, 

{L32}3 + {L3l+}3 = {H3}1 / 3 (2) 

and for body 4 

{L„3"}3 = {Ml/3 . (3) 

Combining Eqs. 2 and 3 

{ L 3 2 } 3 = { H ^ h / 3 + { H 3 } l / 3 . (4) 

C o m b i n i n g E q s . 4 and 1 

{ L 2 } 2 = [l3]2 { { H ^ h / 3 + { H 3 I 1 / 3 ) + { H 2 } i / 2 . (5) 

On n e g l e c t i n g t h e t e r m s i n v o l v i n g p r o d u c t s of γ and θ , t h e a p p r o x i m -
a t e e q u a t i o n s of m o t i o n b e c o m e , f rom E q . 4 

L 2 

L 3 

( J + A3)ω 

( I + Bo)ω 
. y 

( I + C3) ω - 1ΐω 

( I + Bo)ω + ηω 0 y z 
(6) 

and f rom Eq . 5 

Li* 

L6 

c0 0 s6 

0 1 0 

i-s0 0 c9 

( J + A3)ω 

( I + B 3 ) ω + hu> 
y z 

( I + Cq) ω - hü 

0 

0 

C 2 Y 

(7) 

Taking the y equation from Eqs. 6 and the z equation from Eqs. 7, for 
Θ small 

L2 = Αθ + ηγ 

L6 = Βγ - he 

where A = I + B3 and B = I + C2 + C3. 

(8) 

(9) 

For the case in which the system moves from rest when a couple of mag-
nitude a is applied to body 2, the Laplace transform of these equat-
ions, for zero initial conditions is 

0 = As0 + hr 

and 

* = Bs2r s hs0 

where the Laplace transform of {Θ (.t) } = 0(s) = 0 and the Laplace tran-
sform of {y(t)} = r(s) = Γ. Hence 

r = * 
B s(s2 + u)2) 



and 

Solution of Dynamics Problems 251 

Θ = -M 
9 9 9 AB s (s + ω ) 

2 2 

where ω = h /AB. Therefore 
n 

2 
γ = A£(l - coso) t)/h 

and 

θ = -Λ(.ω t - sina) t)/ηω 
n n ' n 

Since Θ increases without limit, these solutions cease to be valid 
shortly after the motion starts. 

For the case in which the system moves from rest after the mass m is 
placed on body 3 as described 

5 ^ = A s
2e + h s r 

S 

and 

Hence 

and 

0 = Bsr - ηθ . 

Γ _ mgah 
2 / 2 , 2. 

AB s (s + ω ) 

Q = mgaB 

h s(s2 + ω2) 

Therefore 

γ = mga (ω t - sina) t)/hω 
n n n 

and 
2 Θ = mgaB(l - cosu t) /h 

Problem 4.35. Body 4 is in motion relative to an inertial reference, 
body 1, Vectors can be referred to either frame 2 or frame 3, so that 

and 

2 V r a n s = ΙΪΙ4 { V 4 } \ / „ { V 4 } λ / η 

where n is either 2 or 3. Show that 
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3Ti,r ot /9ω 
 ̂ X 

3Tur ot /3ω 

aTi+r ot /3ÜJ 

= { V ü ) } n A r 0 t = {Hifll/n 

a n d 

where 

3 T u t r ans / 3 v 
x 

3 T u t r a ns /dV 
y 

ΒΤι+t r a ns /dV 

= {V
v } η Τ ^ Γ . η . = {Gk}l/n 

ί ω ^ ι / η and {V^jx/n 

In the system of Fig. 4.35 body 2 turns at a constant rate Ω2 relative 
to body 1 and body 5 turns at a constant rate Ω5 relative to body 1. 
Body 4 rolls without slip on body 5. Obtain expressions for 

{H4}i/3 

by determining 

{ ν ω } η
τ ^ ο ί and 

Also show t h a t 

Git} 1/3 / {Hi+li/2 and { G ^ I / 2 

V Tut r a n s . 
v J n ^ 

{ v J s C l V o t + V r a n s ) = { H 4 0 } 1 / Ξ 

Solution. I f 

[i l t j l t /n = 

A D E 

D B F 

E F C 

t h e n 

2TUrot = Γ ω ω ω 1 
l χ y zj 

A 

D 

E 

D 

B 

F 

E~ 

F 

C 

ω 1 
X 

ω 
y 

ω 
L z J 

= Αω2 + Βω2 + CÜ)2 + 2 (ϋω ω + Εω ω + Fco ω ) 
χ y ζ x y χ ζ y z 

a n d 
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1 γ about z i 2 ot about x2 3 ß about y-$ 4 

1 φ about z j 5 
bcosa(Ω2 - n5)/a - ii5sina 

F i g . 4 . 3 5 . 

A l s o 

3 1 V o t / 3 ω 
 ̂ X 

8Tj,r ot / 9 ω 
y 

9 Ί \ Γ ot / 3 ω 

Αω + Dai + Εω 
χ y z 

Du) + Βω + FÜ) 
χ y ζ 

Εω + Fu) + Cu) 

2 T i + t r a n s = Ι Π ^ Γ ν + V + v l 

= { H W I / Π . 

= m 4 ( v + v + v ) 

a n d 
9 T u t r a n s / 9 V 

 ̂ X 

9 T u t r a n s / 9 V 
H y 

| 9 1 V r a ns / 9 V ^ 

F r o m F i g . 4 . 3 5 

= ΠΙ4 = { G l + J l / n 

{ ω ί + } 1 / 3 = 

0 

-{bcosa(fi2 - ß5)/a - Ω53ΐηα} 1 = 
" ° 1 

ω 
y 

ω 
L z -· 

and 

{ ω 1 + } 1 / 2 = ί Ä3 ] 2 ί ω^ } 1 / 3 = 

0 

u ) v coso i - ωζ s i n a 



254 

A l s o 

Matrix Methods in Engineering Mechanics 

{ v 4 } 1 / 3 = b f i 2 c o s a 

- 1 

0 

L 0. 

= 

V 
X 

0 

_0 

= 

-bu) 
z 

0 

_ 0 , 

Hence 

a n d 

A l s o 

a n d 

2Tl +rot = { ω ί + } 1 / 3 [ ΐ ι , ] ι + / 3 { ω ι + } 1 / 3 

0 ω ω 
L y z J 

I 

0 

0 

0 

J 

0 

o] 
0 

IJ 

[~o 1 
ω 

y 

ω 1 
»- z J 

_ 2 2 — Jo) + Ιω 
y z 

3 - 4 Γ M l / 3 

2 l \ t r a n s = m^ { V 4 } λ / 3 { V^ } 2 / 3 = ITl̂ V^ 

Vv } 31 V r a ns = \ G 4 I 1/3 

Now 

w h e r e 

2Tt+rot = (ωμ } ! / 2 [ l 4 ] ί + / 2 { ω 4 ) i / 2 

[ Ι ^ ] ι + / 2 = ί *3 12 Dlif]i*/3l *3 12 = 

1 0 0 

0 B F 

0 F C 

a n d 

2 ? 
B = J c o s a + I s i n a , F = ( J 

. 2 2 
C = J s m a + I c o s a . 

I ) s i n a c o s a 

Hence 

a n d 

2 T u r o t = ΒΩ^ + ΟΩ^ + 2Ffi Ω 

V ( o T u r o t 

0 

ΒΩ 
y 

FQ 
y 

+ ΡΩ 
z 

+ 0Ω 
z . 

= 

0 

h 

h 

l4 I 1/2 
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where 

and 
h = JOJ cosa - Ιω s ina 

y y z 

h = Ju) s ina + Ιω cosa 
z y z 

The total kinetic 'energy of body 4 is given by 

2 ( T l + r o t + 1 \ t r a n s ) = ί ω ^ } ι / 3 | ΐ 4 | ^ y 3 Ϊ ω ^ Ϊ ΐ / Ξ 

and 

2 2 2 2 
J(JU + Ι ω + rrihb ω 

y z z 

• 3 -Li* 

O 

JüJ 
y o 

(I + m^b ) . 

{ H 4 f ) } l / 3 

Problem 4 . 3 6 . De t e rmine , f o r t h e sys tem of F i g . 4 . 3 5 , 

43 13 [FI+ 5 } 3 and I ■'■•it 3 J 3 

Assume t h a t { F \ 5 } 3 , { L * 3 } 3 and {1^3)3 are zero and t h e c e n t r e of mass 
of body 4 i s a t C. 

Solution. Now 

{ H i + o l l / 3 = {«ϋ} ΐ /3 + m i t [ R c o ] 3 / 3 { V 4 } 1 / 3 

= {Hi+Ji/3 + niu [ R C Q ] 3 / 3 [ ω4 ] l / 3 { R c o } 3 / 3 

= [CI4"U/3 " mt+ [R
co^ 3/3J { ω ι ^ ΐ / 3 

= [l i t] 3/3 f ωι+ } xy3 

1 0 0 

0 J 0 

0 

Ju) 

|0 0 I + mi+b'JLi^J | ( I + m4b ) ω_ 

which conf i rms t h e r e s u l t of Problem 4 . 3 5 . Hence 

{Hi40}l/3 = l ω3 l l / 3 {H^o } l / 3 

0 

Ca 

Sa 

- C a 

0 

0 

Sa 

0 

0 

0 

h 
y 

h 
. z _ 

= Ω2 

h s i n a -
z 

0 

0 

- h cosa 
y 
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s ince d{Ek0}i/3/dt i s a nu l l ma t r ix . 

Fig. 4.36. 

Taking moments about 0 for body 4, by reference to Fig. 4.36, 

{Litah + [RAoTa/sfFifsh + [R
CCJ 3/3 {w4} 3 = { H 4 0 } I / 3 

0 

0 

L 2 

+ 

0 

- a 

- b 

a 

0 

0 

b 

0 

OJ 

Γ1 
0 

LF2. 

+ m 4 g 

0 

0 

- b 

0 

0 

0 

b 

0 

OJ 

0 

- S a 

| - c a 

h sina - h cosa 
z y 

0 

0 
From the x component equation 

2 
F2 = m^gcosa + fi2{Ja) sina - (I + m^b )ω cosa}/b 

and from the y component equation Fi = 0 . L2 is thus also zero. 

Equating applied and effective forces for body 4 

{F1+3}3 + {F45J3 = mI+{Al+}l/3 

[F31 

\ k 

L F 5 . 
+ 

"0 1 

0 

.F2j 

= mi+fi2bcosa 
0 

-cosa 

sina 
2 2 

and therefore F3 = 0, F4 = mi+fi2bcos a and 

F5 = mttfi2bsinacosa - F2 
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Problem 4.37. A thin uniform straight rod, body 3, of length a and 
mass m, rests with ine end on a smooth vertical surface while the oth-
er end is retained in a smooth spherical bearing which is a fixed dis-
tance d ('< a) from the vertical surface as shown in Fig. 4.37a. The 
rod is released from rest in the postion where a = ö.Find the value of 
a at which contact between the vertical surface and the rod ceases. 

Solution. 

Fig. 4.37a. 

Moments about A, by reference to Fig. 4.37b, 

[R C A ]2/2{W 3 1 2 + O B A ] 2 / 2 { F } 2 = m [ R C A ] 2 / 2 { A 3 } l / 2 

+ [*3 l2{H 3 } l /3 · 

E v a l u a t i o n of t e rms in Eq. 1 , n o t i n g t h a t 3 i s c o n s t a n t , 

Κ Α Ϊ Ι / I = IU2] l / 2{R C A }2 /
2 r 

{V 3 }l /2 = I ω2 h / 2 { R C A h /
2 

(1) 

0 

0 

0 

0 

0 

ω 

ol 
-ω 

r-d/2" 
0 

L r / 2 -

cor 
~ 2 

"ol 
1 

0 j 

where ω = a, 

{A3}i/2 = I ω2 ]l/2{V3}i/2 + Jt{V3}i/2 
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cosp - d/a 

sinß - r/a 

r - /(a2 - d2) 

Fig. 4.37b. 

2 
ω r 

0 

0 

p 

0 

0 

1 

°1 
- 1 

oj 

Γ0" 
1 

IP. 
2 

"o" 
1 

pm 

r 
"2 

Ό 1 

ώ 

2 _ω J 

ίω3}ι/3 = ίω2}ι/2 = i ^ih^lH/l 

d/a 0 -r/a 

0 1 0 

r/a 0 d/a 

T i " 

0 

L° 
a 

" d l 

0 

r j 

{ ω 3 } ι / 3 = 3 t ^ 3 } 1 / 3 = -

[HCA]2/2{W3}2 - φ \ 

mg 
2 

Γθ - r °1 
r 0 d 1 

|p -d oj 

Γ r s i n a " 

- d c o s a 

1 d s i n a 

Γι 
0 

L° 

r 

0 

cot 

- s a 

0 " 

s a 

ca 

0 

o 

- 1 
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[ R B A ] 2 / 2 { F } 2 = 

m [ R C A ] 2 / 2 { A 3 } i / 2
 = 

259 

0 

r 
0 

- r 

0 

- d 

°1 
d 

oj 

[F* 

0 

L°. 
= F r 

o1 

1 

0m 

mr 
" 4 

"o 
r 

0 

- r 

0 

- d 

ol 
d 

OJ 

i°" 
I · 

ω 
2 L ω 

mr 
4 

ojr 
2- , 

-ω α 
j-ΐύά j 

ίΗ3 } 1/3 = l ω3 h/3 [I3] 3/3 f ω3 } !/3 + [l3] 3/3 { ω3 } ι/3 

Π1(ι) 

12 

0 -r 

r O 

O d 

0 

1 

0 

61 
0 

lj 

[~d] 
0 

L r J 

maw 
12 

0 o 
o 1 
o o 

ol 
0 

l j 

[d 

P 
Lr. 

mr 
12 

0 Ί 
2, q 

_ w a
 J 

and 

{H3}l/2 = ί ^3 l2{H3}l/3 = T | 

d / a 0 r / a 

0 1 0 

- r / a 0 d / a 

0 

-ω d 

(oa 

mr 
2 

cor 
2 . 

-ω α 
ojd 

The momen t s e q u a t i o n c a n t h u s b e w r i t t e n 

mg 
2 

From the x component equation 

r s i n a 

- d c o s a 

d s i n a 

+ F r 

" 0 " 

1 

0_ 

mr 
4 

(Lr 
2 , -ω d 

-aid 

mr 
12 

ojr 1 

-ω d 

(Ld J 

3a, 
2r 

sina 

•da _ 3a 

and since ω = a, 

3g . __ _„ . 
a = Trsma or a-5— = -^-sina 

2r da 2r 

This equation integrates to give 

ω = —2(c o se _ cosa) 

since the initial conditions are α = Θ and a = 0. 
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From t h e y c o m p o n e n t e q u a t i o n 

F 
2 

- mgdcosa __ πΐω d 
2r 3 

= 5S£(3cosa - 2cos0) 

and therefore F = O when cosa = (2cos0)/3. 

Alternatively, the angular velocity of body 3 can be determined from 
considerations of energy. However, force determination requires addit-
ional effort. Now 

Τ 3 Ι α = 3f{V 3 }V2{ V 3}l /2 + 2 i a ) 3 } l / 3 [ l 3 ] 3 / 3 ^ 3 h / 3 

S ince 

o r 

2 2 2 2 
πΐω r πΐω r 

" 8 24 

e n e r g y i s c o n s e r v e d 

To 1 + Vq 1 = To 
3 Ι α = θ 3 ΐ α = θ 3 

2 2 m g r c o s e πΐω r 
° 2 " 6 

ω = — ( c o s ö - c o s a ) r 

2 2 
ιηω r 

6 

1 + Vo 1 
'α ° ' a 

m g r c o s a 
2 

. 

Problem 4.38. A massive uniform rod, body 2, which is a solid of rev-
olution, is constrained to move such that one end of its axis of gen-
eration B traces out a straight vertical path, while the other end A 
traces out a straight horizontal path as shown in Fig. 4.38.The cons-
traints are conservative and exert no moment about the axis of gener-
ation of the rod. 

Find the initial motion of the rod if it falls from rest in the posit-
ion shown. Neglect the mass of the constraining bodies 3 and 4. 

Solution, Since the constraints are conservative 

{Fy31h and {F^h 

are zero so that {F31} and {F^i} do no work. 

Using the principle that the activity (rate of working) of the exter-
nal forces is equal to the rate of change of kinetic energy, in this 
case, 
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Path of A 
drawn on 
frame 1 

Path of A 
drawn on 
frame 1 

Fig. 4.3* 

{V2}I/l{W2}i = m2{V2}I/i {A2 }I/I + Ιίω2}ι/ιίω2>1/1 (D 

where I is the moment of inertia of body 2 about an axis perpendicular 
to the axis of generation which passes through C, the centre of mass. 
In the solution of this problem all vectors will be measures in and 
referred to frame 1 so that the 1 and 1/1 suffixes can, from this po-
int, safely be omitted. 

Now 
{V2 

and since {v 

= V. 

and 

11 vectoj 

0.5[RBA]{U2} 

{V2}
T = -0.5{[R B J { CO 2 } }

T = 0.5{a>2}
T[RBA] . 

A 

v2 

"A J ' l ~^ J l~ CA J 

is a null vector 

This result reduces Eq. 1 to 
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Now 

0.5[RB A]{W2} = 0.5m2[RB A]{A2} + 1{ω2) 

i V = {AA} + {ABA} 

and since {ω2)ι is a null vector, {
A»A}i

 i s also null. Hence 

KJ = Kl + K, 
[" o" 

- 1 

L ° 
= A A 

* l" 

0 

0 

+ 

"r2l 
s 2 

. f c 2 d 

and 
[ Α Β Α Γ Κ Λ 1 = 0 or [r 2 s 2 t 2 = 0 

These equations combine to give 

1 

0 

- 1 

0 

1 

1 

ol 
1 

ol 

[r2~ 
s 2 

LV 
= 

["AA1 
0 

0 

since t2 = 0. This set of equations has the solution 

n r 2 ' 

s 2 

L A B J 

= A A 

' - l ] 
- 1 

l ! 

Now 
C«.A] K , 

{ ω ο } = 

and 

{A2} = {AA}- 0 . 5 [ R B J { J , 2 } = {AA} · 

S u b s t i t u t i n g Eqs . 3 and 4 i n Eq. 2 

0.5[RBJ{W2} = o.SmaO^J { A J -

Ι^ΒΛΙ2 

° · 5 [ * Β Α ] 2 Κ Α } 

Ι^ΒΛΙ2 

^ Ι Κ Β Λ Ι 2 [ R B A ] { A ; , 

12 I«., 

(2 )

(3)

(4)
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and this reduces to 

0.25m2 |XJ
2{A° } m2 ~ rfr, 1 ~ r- Γ, 1 L BA J l B A J z r n i 0.5{W2} = 0.5m2{A.} ■ + — {A_J 

\**< 12 
BA 

0.5g = 0.5A. 

Γι" 
0 

Lo. 
- —1 

12 

0 

1 

1 

1 

0 

- 1 

1' 

1 

oj 

2 "-Γ 

- 1 

L o j 

\ 
+ — 

12 

"-1 1 

- 1 

L o J 

giving 

0 

- 1 

0_ 
= 6 A A 

1 

0 

0 
- A A 

3 

3 

_o m 

+ A A 

- 1 

- 1 

_ 0 u 

6g 

AA = 1.5g and Αβ = 1.5g. 

Hence 

and 

KJ = l··5* 

{ω2} = 0.5g 

-1 

-1 

0 

0 

- 1 

- 1 

1 

0 

- 1 

i l 
1 

oj 

Γ-ιΙ 
- 1 

L °J 

{A2} = 1.5g 

= 0.5g 

- 0.25g 

0 

- 1 

- 1 

1 

0 

- 1 

i l 
1 

1J 

|"-il 
1 

L 2 J 

= 0.75g 

Problem 4.39. A uniform rod, body 2, which is a solid of revolution, 
is constrained to move such that one end of its axis of generation B 
traces out a straight vertical path while the other end A traces out 
a straight horizontal path as shown in Fig. 4.39.The constraints are 
conservative and exert no moment about the axis of generation of the 
rod. The rod moves from rest under the action of gravity from the pos-
ition in which B is yi vertically above 0. Obtain expressions for the 
velocity of B and the angular velocity of the rod. 

Solution. For a conservative system 

i n i t i a l l y 
(T 2 + V2) , , . = (T 2 + V 2 ) , 

t a l l y 
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0 + mgh. = | { V 2 } ^ / 1 { V 2 } 1 / 1 + ^ { ω 2 } 1 / ι { ω 2 } 1 / 1 + mghf 

where I i s t h e moment of i n e r t i a of t h e rod about an a x i s pe rpend icu -
l a r t o t h e a x i s of g e n e r a t i o n t h r o u g h t h e c e n t r e of mass C. 

Path of B drawn 

on frame 1 

Fig. 4.39, 

In the solution of this problem all vectors will be measured in and 
referred to frame 1 and therefore the 1/1 suffixes can be safely 
omitted. 

It is necessary to obtain expressions for {v2} and {ω2} in terms of 
{VB}. Let 

{ω2 } = 

and therefore 

W = K l + Ιω21 {RAJ 

V. 

1 

0 

0 
= V B 

0 

- 1 

0 

+ 

0 

ω 
z 

-ω 

- ω 
z 

0 

ω 

ω 
y 

- ω 
X 

o 

Γ X 

- y 

a 

w h e r e x = | / Cb - a - y ) 
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^ 2 } T { R B A } = Χωχ - γω + awz = 0 

Hence 

'"x - y a 

y x 0 

a 0 - x 

O a y 

and by row reduction 

ol 
0 

0 

1J 

ω 
X 

ω 
y 

ω 
z 

KJ 

" ° 1 
0 

-v» 
0 J 

rb2 

y 

a 

0 

0 

X 

0 

a 

0 

0 

- x 

y 

ol 
0 

0 

- 1 

ω 

ω 

ω 
1 s 

V 

-aV. 

V 

This set of equations has the solution 

V 

-a/bz 

ay/b x 

(b2 - a2)/b2x 

y/x 

Now 

{v2} = {vj + {v I CB 

= {VR} - 0.5[R ]{ω2} AB-

and 

V " y/x 
-1 

. o 

mV2 

2T5 

2Tn 

-(1 + y2/x2) 

mV„ 

12b" 
,2 

a2y2 

4x2 

(b2 

(b2 

2 N 2 a2) 

mV, 
^r(b2 - a2) 

12x2 

The energy equation thus reduces to 
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mgy. mV2 (b2 - a2) ragyf 
0 + L = , + 

6x' 

and t h e r e f o r e 

and 

where 

3g(.y - y )(b - a - y ) 
V2 = = 

B 1̂ 2 _ 2 

{ ω 2 > = V„ 

b" - a ' 

- a / b 2 

a y / b 2 x 

(b2 - a 2 ) / b 2 x 

Y/x = Y f / / ( b 2 - a 2 - yf
2) 

Problem 4.40. Figure 4.40 shows the schematic arrangement of a mechan-
ism which is driven through the given position by an external couple 
{L2} applied to body 2. Determine that pert of the couple which is 
necessary to overcome the inertia of body 3. Treat body 3, which has 
a mass of 0.5 kg, as a solid of revolution with its axis of generation 
along AB. The centre of mass of body 3 is at C and its moment of iner-
tia about an axis perpendicular to AB through C is 40xl0-it kg m2. Ass-
ume that the angular velocity of body 3 about AB is zero. 

Also determine the forces on the bearings 5, 6, 7 and 8. Bearings 5 
and 7 carry only radial loads while bearings 6 and 8 carry both radial 
and axial loads. 

The following data applies to the mechanism in the given position: 

Ίθ" 

{ * A B } l / l = 

{ ω 2 } ι / ι 

10 

20 

20 

0 ~ 

-6 

0 

cm ' i R c ß } i / i - 3 

r a d / s , {ω3>ι / ι 

20 

20 

cm 

-2 

-4 

5J 

r a d / s 

{ü)h } M l / 1 = 

o 
o 

1-6 

r a d / s , { V B } 1 / 1 = 
|120Ί 

0 

O j 

cm/s , 

KJi/i = 
o 

60 

0 

cm/s , {V A B } i / i 

-120 

- 60 

0 

cm/s 
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0*1 
2 

0 cm/s 

720 and 

{ω3}1/1 

- 8 

16 

-12 

rad/s' 

267 

Solution, 

Fig. 4.40. 

The velocity and acceleration of the centre of mass, C, of body 3 re-
main to be determined. Since all vectors will be measured in and ref-
erred to frame 1, the 1 and 1/1 suffixes can be omitted throughout the 
solution. 

{V3} = {VB} + [ ω 3 ]{R( CB 

120 

0 

0 
♦ i 

0 

5 

4 

-5 

0 

-2 

-4] 
2 

oj 

[10* 
20 

L20. 

= 
"8θ1 
20 

oj 
cm/s 
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K*} 

CB 
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2 

~2 

V, CB' r , 2 0 0 0 
" ^ B C J 3xlOC 

CB 

"-10" 

-20 

.-20. 

1 
3 

-200] 

-400 

.-400j 

c m / s ' 

[ ^ 1 { R } 

0 

12 

16 

12 

0 

-8 

16 

8 

0 

10 

20 

20 

1 
3 

560 

40 

0 

c m / s " 

and 

M = KJ + {*£,} + {A"Q CB 

360 

- 3 60 

1 7 6 0 

c m / s 

T a k i n g momen t s a b o u t B f o r b o d y 3 

[K A J{F 3 U = m3[R_ J { A 3 } + 1{ω3} 

10" 

0 

20 

20 

-20 

0 

10 

2θ1 
10 

°J 
[Fi1 
F2 

lFsJ 
0.5x10 -k 

0 

20 

20 

-20 

0 

10 

20 

-10 

0 

360 

-360 

[1760 

+ 40x10 -4 16 

-12 

and applying the condition that the rate of supply of energy to body 4 
is zero 

{F3U
T{VAH} = 0 

which, in this case, simply requires that F2 = 0.Hence 

{F3,l 

Equating applied and effective forces for body 3 

0 . 5 4 

0 

1 . 0 1 7 7 

N . 

{F34} + { F 3 2 } = πι 3 {Α 3 } 



"Ff 
0 

LF2. 

+ 
>f 
F 5 

. F 6 j 
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36θ1 
-360 

1760 | 
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0 .5x10" 

Hence 

{F32} = 

0 .06 

-0 .6 

1.916 

Taking moments about D for body 2 

{L*} + [ R
E J { F 2 6 l + [ R B D ] { F 2 3 } = {0} 

+ 10 -2 
0 

0 

4 

0 

0 

0 

- 4 ~ | 

0 

OJ 

[F71 

\FQ\ 

LF9J 

+ 10 -2 
0 

20 

2 

20 

0 

0 

2 

0 

o 

- 0 . 0 6 
0 . 6 

- 1 . 9 1 6 
= 

0 

0 

0 

giving 
Ϊ - 2 F7 = 0.032 N, F9 = 2.042 N and L = -1.2x10" N m. 

Equating the forces on body 2 to zero 

{F23} + {F25} + {F26} = {0} 

0.06 

0 . 6 

1.916_ 

+ 
> i o " 
0 

_ F 1 2 _ 

+ 

Ό.03 
F 8 

_2.042_ 
= 

*0 Ί 

0 

_0 ^ 

and therefore 

[L2} = 1.2x10' -2 N m , {F26} = 

0.03 

-0.06 

2.042 

and 

{F25} = 

0.03 

0 

-0.126 

N. 

Taking moments about G for body 4 

[RAG]{F^} + [*FG]{*\7} = {0} 

0 - 4 0 

4 0 10 

0 -10 0 

- 0 . 5 4 

0 

- 1 . 0177 

+ 

0 

8 

0 

- 8 

0 

0 

ol 
0 

OJ 

| > 1 3 " 
F ! l + 

L° 

= 
"o π 

0 

0 j 
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giving 

{F47} = 
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1.542 

O 

0 

Equating the external forces on body 4 to zero 

{Fk3} + {Fk7} + {F^} = {0} 

- 0 . 5 4 

0 

- 1 . 0 1 7 7 

+ 

"1 .542" 

0 

. 0 

+ 
> 1 5 " 

F i e 

_F17. 

= 
" °1 

0 

0 J 

giving 

{F̂ el = 

-1.002 

0 

1.0177 

N 

The value of L obtained earlier can be confirmed by equating the act-
ivity of {L2} to the rate of change of kinetic energy of body 3. 

{ω2> {L2} = m3{v3} JA3} + 1{ω3} {ω3} 

[θ -6 oj = ο^χΐο^[8ο 20 0] 360 

-360 

1760 

giving 

2x40*10 _*+ [-2 -4 5] 
16 

-12 

L = -1.2 10~2 N m. 

Problem 4.41. Determine, for the uniform hemisphere, body 2, of Fig. 
4.41a 

[X2]3/3 f \j-l\l/l ' [I2K/4 a n d [^ΐδ/δ 

where frame 5 is the set of principal axes which has its origin at A. 
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5 a about X5 4 

Fig. 4.41a. 

Solution. The mass of the hemisphere is given by 

2 2 
pir(a - y ) d y = ρ π 

" 0 

and if the centre of mass is at C 

2v - Σ a y 
- 2 3 
- lP*a 

0 

m R 
co ' 

ρπ (a2 - y 2)dy y = ρπ 
2 2 h 

a^L - X 
2 4 

- 1 ^ 
- jPira 

J 0 

giving 

lRcol = 8a· 

Terms in the inertia matrix are determined as follows. The moment of 
inertia of the elemental disc about the y3 axis is given by 

ρπ(*2 I r2)d?(a2 - y2) 

MMAERBM -
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the product of i t s (mass/2) times the rad ius squared. Hence 

Λ a 

[ 4 ] 3/3 = 
P 7 r ( a 2 - y 2 ) d y ( a 2 _ y 2 ) 

0 

2.Σ 
2 

h 2 2 2 y~ a y - 3a y - * 4 5 2 2 
y-p-pTCa = ■=■ m a 

0 

The moment of inertia of the elemental disc about the X3 or z3 axis 
is given by 

ρπ , 2 2.2 _ , '2 2N , 2 
■^-(a - y ) dy + pir(a - y ) dy y 

the moment of inertia of the elemental disc about the x axis plus 
the mass of the disc times the distance between the x and x3 axes 
squared. Hence 

[ I 2 j 3/3 ~ K ] 3/3 - £ ^ ( a 2 - y 2 ) 2 d y + p n ( a 2 - y 2 ) d y y 2 

0 

I D D •5-i 
By symmetry, the product of inertia terms are zero and therefore 

2 _ 2 | 
ίτ2] 3/3 = "5 ma^ 

1 0 0 

0 1 0 

0 0 1 

Since frames 2 and 3 are aligned 

[ I2 J3 /3 = [ l 2 ] 2 / 2 " m [ R c o ] 3 / 3 

a n d , s i n c e 

i R c o i 3 / 3 " 8"a 

'2_ 

[ I 2 J 2 / 2 = [ I 2 J 3 / 3 + m [ R c o ] 3 / 3 

2 2 
-F ma 
D 

1 

0 

0 

0 

1 

0 

0 

0 

0 

Λ. 9 2 
+ 64 m a 

- 1 

0 

0 

0 

0 

0 

0 

0 

- 1 
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"83 0 CT 

0 128 0 

0 O 83 . 
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Also, since frame 4 is aligned with frame 2 and 

' h / h 

0 

3/8 

-1 

[*2!UA
 = [Χ2]2/2 - m[R ]h/ 

ma 
320 

ma' 
40 

CAJ 

83 0 o" 

0 128 0 

0 0 83 

5 6 0 0 

0 56 15 

0 15 16 

ma 
64 

7 3 0 0 

0 64 24 

0 24 9 

Let [£4]5 be the transformation matrix which relates the position of 
frame 4 to the set of principal axes, frame 5, at A. Then 

[I2Ü5/5 = [ J 2 ] V 5 = I ^ l 5 [ l 2 ] k/h\ H Is ' 

where [ ^ l ^ / s i-s a d i a g o n a l m a t r i x , o r 

(1) 

0 0 

cot sot 

- S a Ca 

A5 0 0 

0 B5ca C5sa 

0 -B 5 sa C5ca 

As 
0 

0 

-

sa 

ca 

0 

B5 

0 

= 

0 

0 

c5 

"Ai* 

0 

0 

A4 

0 

0 

0 

Bh 

F4 

0 

FJ 
cj 

1 

0 

L ° 

0 

ca 

-sa 

0 

sa 

caj 

o o 
B^ca - Fi+sa Bi+sa + F^ca 

F^ca - Ct+sa Fi+sa + Ci+ca 

Hence 
B5cosa = Bi^cosa - Fi+sina , 

- B 5 s i n a + Ft+cosa - C^sina 

and t h e r e f o r e , e l i m i n a t i n g B5 , 

tana 

1 - tan2a 

tan2a 
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tan2a 

A l t e r n a t i v e l y 

Matrix Methods in Engineering Mechanics 

Ft, B h — B 
tana = 

h ~ D 5 

C4 - B5 

giving, on eliminating a, 

2 2 

B5 - (Β4 + C1JB5 + B4C4 - F4 = 0 

the equation to Mohr's circle. 

Fig. 4.41b. 

By reference to the Mohr's circle of Fig. 41b, B5 is readily 
be 

61ma2/40 or llma2/40. 

From Eq. 2 

tan2a = j ^ 2 * 1 ^ = -0.75 

giving 
a = -18.43° or 71.56° 

Alternatively, from Eq. 3 

tana = 15 
16 - 61 and a = -18.43 

(2)

(3)

(4)

seen to
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t ana = 
15 

16 1 1 = 3 and a = 71.56 

As a check on t h e work, s i n c e s i n a = - 1 / / 1 0 and cosot = 3 / / 1 0 , by subs-
t i t u t i o n of t h e r e s u l t s i n Eq. 1 

O 2 W 5 - 40Ö 

m a ' 
40 

/10 

0 

I ° 
[56 
0 

L 0 

0 

3 

1 

0 

61 

0 

0 

-1 

OJ 

0] 
0 

11J 

56 

0 

L ° 

. 

0 

56 

15 

0 

15 

Oj 

Γ/10 

0 

L ° 

0 

3 

-1 

0 

1 

0 

Problem 4.42. A uniform thin straight rod, body 2, has a mass m and 
length 2b. Find, for the axis system shown in Fig. 4.42, 

and 
[ l 2 ] 2 / 2 / [ I 2 J 2 / i f / [ I 2 Ü 3 / 3 > [^llh/k / D ^ s / S 

[ I 2 ] 5 / 6 · 

Solution. It is easy to show that 

[ I2J2/2 = LI2J 2/2 = " 3 " 

and since body 2 is a thin rod 

K] 2/2 0 

A l s o , by symmetry, t h e p r o d u c t s of i n e r t i a a r e z e r o . Hence 

[I2Ü2/2 =Ψ 

1 0 0 

0 0 0 

0 0 1 

The inertia matrix for body 2, measured in frame 2 and referred to 
frame 4, is given by 

[ l 2 ] 2 / 2 = [ i2] u [ l 2 ] 2 / 2 [ *2 ]l 

mb2 

3 

1 0 0 

0 c a Sa 

0 - s a c a 

1 

0 

0 

0 

0 

0 

0] I 
0 

lj 

1 0 0 

0 ca - s a 

0 sa ca 
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mb 
3 0 s i n α s m a c o s a 

0 s i n a c o s a c o s a 

k 

A -

z3 

/ <■ 

\ 73 

b 

/ / 
C 

z2 

72 - 2 

b 

"7^ 

' 76 

3 a a b o u t Xj 4 

5 ß a b o u t z 5 6 

Fig. 4.42. 

Since frame 3 is aligned with frame 2 the inertia matrix for body 2, 
measured in frame 3 and referred to frame 3, is given by 

[i2] 3/3 [i2] 2/2 >[K,J 3/3 

m b 2 

3 

4 m b 2 

3 

1 

0 

0 

[l 
0 

1.0 

0 

0 

0 

0 

0 

0 

01 
0 

l j 

0 

0 

1 

- m 

b 

0 

0 

0 

0 

0 

0 

0 

- b 

Since the origins of frames 3 and 4 are coinicident the inertia matrix 
for body 2, measured in frame 4 and referred to frame A, is given by 

M ^ A = [ *3 Κ [ ΐ 2 ] 3 / 3 Ϊ *3 ΐΐ 
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1 

0 

0 

0 
. 2 

sin a 
sinacosa 

0 

sinacosa 

cos a 

4mb2 

3 

Since frame 5 is aligned with frame 2 the inertia matrix for body 2, 
measured in frame 5 and referred to frame 5, is given by 

2 

[ I 2 J 5 / 5 = [ ΐ ? ] 2 / 2 " m [ R
C B l 5 / 5 

mb 
3 

m 
3 

"l 

0 

.0 

~4b2 

3c 

( 

lb 

0 0 

0 0 

0 1. 

. 

3ab 0 

3a2 

0 3 

0 
2 

a 

m 

'-b2 

-ab 

0 

+ 4b2. 

-ab 
2 

-a 
0 

0 

0 

-(a2 + b2)J 

The inertia matrix for body 2, measured in frame 5 and referred to 
frame 6 is given by 

[ I 2 L / 6 = Ϊ Ä 5 l 6 [ l 2 ] 5 / 5 l *5l6 

m 

-S3 0 

cß 0 

0 1 

3(a2+b2) 

A 

D 

0 

D 

B 

0 

oil 
0 

cj 
-si 

0 

2, 2 

Si 

0 

3 
4b +3a -6a b 7ab -6a b 

7ab3-6a3b 13a2b2 

0 

0 
2, 2 4b +3a +7a b 

Problem 4.43. Body 5 is made up from three uniform thin rods, bodies 
2, 3 and 4, as shown in Fig.4.43a. Determine the position of the cen-
tre of mass, C, of body 5 relative to the centre of mass, A, of body 
2 and hence determine 

[lsjs/5 · 

Also find the position of the set of principal axes, frame 6, at C and 
the principal moments of inertia associated with this frame. 

Solution. The position of the centre of mass of body 5 relative to A 
is given by(the 2/2 suffix being understood) 
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Fig. 4.43a 

KA} = 
4m{RBJ + 2m{RDA} 

12m 

Hence 

_1_ 
12 

4 

*-2a" 

3a 

0 

+ 2 

"-4al 

3a 

a j 

- a 

6 

- 8 1 

9 

1 _ 

BC B A CA 

and 

DC 

Γ-12" 

18 

L o . 

a 
6 

" - 8 * 

9 

1 . 

a 
6 

" - 4 Ί 

9 

_ - l j 

= iV CA J 

Γ-24" 

18 

L 6 . 

a 
6 

' - 8 ' 

9 

. 1 . 

a 
6 

- 1 6 1 

9 

5 J 

Since frames 2, 3 and 4 are aligned with frame 5, the inertia matrix 
for body 5, measured in frame 5 and referred to frame 5, is given by 

2 2 

[ I s l s / S = [ l 2 ] 2 / 2 - 6 m [ R A C ] 5 / 5 + [ l 3 ] 3 / 3 " 4 m [ X j 5 / 5 

and s i n c e 



[ l2]2/2 « f f 

Γτ 1 _ ma 

' \j*\ 3 /3 - iß" 
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324 0 O" 

0 0 O 

0 0 324 

12 0 0 

0 12 0 

0 0 0 

279 

0 0 0 

0 96 0 

0 0 96 

6m[RAC]5/5 = i f 

-246 - 2 1 6 

-216 - 1 9 5 

- 24 27 

- 24 

27 

-435 

and 

4 m [ R B C J 5 / 5 = l g 

2 m [ R D C ] 2
5 / 5 = 5£f 

- 1 6 4 - 7 2 8 

- 72 - 3 4 - 18 

8 - 1 8 - 1 9 4 

- 1 0 6 - 1 4 4 - 80 

- 1 4 4 - 2 8 1 45 

- 80 45 - 3 3 7 

Γτ 1 — m £ 

L i5J 5 /5 - Yt 

852 432 96 

432 618 - 5 4 

96 - 5 4 1 386 

I f f r a m e 6 i s a s e t o f p r i n c i p a l a x e s a t C, t h e n 

[is] 5/6 = I ̂ 5 16 [I5] 5/5Ϊ *<5 

0 0 

0 0 

{a}J 

{b}J 

(O1 

A 

D 

E 

D 

B 

F 

E] 

F 

cj 
{a} {b} {c} 

where λ^, λ2 and λ3 are the principal moments of inertia which are 
found from 

(A + B + C) λ + (AB + BC + AC - F - E 

ABC - 2DEF) = 0 . 

D2) λ 

+ (AF2 + BE2 + CD2 

In this case the above equation reduces to 

λ3 - 2 856λ2 + 2 365 200λ - 458 459 136 

which is of the form 

αλ + Βλ - γ = 0. 
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This equation must have th ree pos i t i ve r e a l roo t s which can be found 
using the root locus method by wr i t ing i t in the form 

*U - γ /β) = 

λ 2 U - a) 
-1 = l e J JTT 

Taking the view that λ is the complex number σ + jω , the poles(x) and 
zeros(o) of the left hand side of the equation can be plotted as shown 
in Fig. 4.43b. 

Fig. 4.43b. 

On the line joining the pole at a and the zero at γ/£ 

(λ γ/ß) _ Arg-
λ"(λ - α) 

Thus, three values of λ can be found which satisfy the condition 

Ίλ - γ/£ >1λ_ 193.835 3σ3 
= 1, 

Iλ I Iλ - α| | λ ζ | |λ - 2 856I σ χ σ 2 

By trial and error, a value of λχ = 278.35 gives 

2 365 200x84.515 = l 0 0 0 9 ̂  

278.352x2 577.65 

By further trial and error 

λ2 = 1 170 (1.000 3) and 

λ3 = 1 408 (1.000 3). 

Now λι + λ2 + λ3 - 2 85 6, which is the magnitude of the coefficient of 
λ in the λ equation as it should be. Also 

λι x λ2 x λ3 « 458 542 656 

which is acceptably close to the magnitude of the λ° term in the λ eq-
uation. 
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The columns {a}, {b}, {c} of 

can be found by evaluating a column of 

Adjoint[x[l] - [isjs/s] = [iC}i {C}2 {C}2] 

say {C>i , for the three values of X . Hence 

{C.h = 
\r - (B + c) Xj + B C - F' 

DXJ + EF - CD 

EXi + DF - BE 

giving 

{a} = 
ΛΡΐ + qf + rf) 

and 

{c} 
^(P3 + q§ + r§) 

Pi 

qi 

P3 

q3 

r 3 

{b} = 
2-/(p2 + q2 + r2) 

P2 

q2 

r2 

The columns of [ £5 ]6 corresponding to λχ = 278.35f X2 = 1 170 and 
Λi = 1 408 are respectively 

{a} = 

-0.608 4 

0.788 3 

0.091 2 

, ib} = 

0.764 9 

0.616 8 

-0.185 7 

and {c} = 

0.264 7 

0.079 1 

0.961 1 

Transformation using these columns gives 

"278.13 1.30 

»2 
[is] 5/6 - yf 

-2.95 

1.30 1174 86.59 

2.95 86.59 1 402 

Better estimates of the principal moments of inertia are 

\l = 278.17, X2 = 1 174.12 and X3 = 1 403.71 

and the corresponding columns of the transformation matrix are 

{a} = 

-0.608 6 

0.788 2 

0.091 2 

{b} = 

0.766 2 

0.613 7 

-0.190 7 

and {c} = 

0.206 3 

0.046 2 

0.977 4 

Transformation using these colums gives 
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[is] 5/6 

Matrix 

ma2 

18 

Methods in Eng: 

2 7 8 . 1 9 

- 5 . 3 4 x 1 0 

- 0 . 0 1 

Lneering Mechanics 

- 5 . 3 4 x 1 0 " 0 . 0 1 

1 1 7 4 . 1 2 0 . 0 8 

0 . 0 8 1 4 0 3 . 7 4 

4.2 Problems For Solution 

Problem 4.44. At a particular instant of time, a particle has the vel-
ocity 

10 

- 6 

12 

m/s {vh/i = 

and the force acting on it is 

{F}l = 

What is the power, rate of working or activity of the force? 

40 

20 

30 

Problem 4.45.Show that the force 

{F} 
2xy + z3 

x2 

3xz2 

is conservative and hence obtain an expression for the work it does 
when its point of application moves from point A to point B. 

Problem 4.46. In the system shown in Fig. 4.46, a small block of mass 
m, body 2, is constrained to move in a circular path, drawn on an iner-
tial frame 1, which lies in the vertical plane. Motion of body 2 is 
induced by a light spring, body 3, which has an unstretched length r 
and stiffness k. Find, for the case in which the block moves from rest 
at A to B, when the length of the spring is r, 

{VDh/2, {F2i}2, {F23h and {AD}1 / 2. 

Also find the above vectors when the y coordinate of B is 1.452 times 
it former value. What is the y coordinate of B when the block first 
comes to rest after its release from A? 

Neglect the effects of the mass of the spring and assume that the sys-
tem is conservative. Also, assume that the centre of mass of the block 
is at D and the force due to the spring is at all times along CD. 

Take a = 0.05 m, b = 0.1 m, r = 0.5 m, k = 357 kN/m and m2 = 0.5 kg. 
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Fig. 4.46, 

Problem 4.47. The position of a system can be specified by the posit-
ion of a point P on a rotating z3 axis, which is positioned relative 
to frame 1 as shown in Fig. 4.47. Show that {V}3V, i.e. del V referred 
to the rotating frame 3, is given by 

iV}3V = 

1 
r 

1 

8V 
8Θ 

3V 
rsine 3φ 

3V 
9r 

Problem 4.48. A couple is formed by a pair of parallel forces which 
are equal in magnitude, but opposite in direction as shown in Fig.4.48. 
Show that the moment of the couple is independent of the point A about 
which its turning effect is computed. 

Problem 4.49. A given force (F) passes through the point P as shown 
in Fig. 4.49. Obtain an expression for the component of the moment of 
{F} about a given point A which is parallel to a line through A and a 
further point B. 
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1 4 about Zj 2 Θ about y2 3 

Fig. 4.47, Fig. 4.48. 

Fig. 4.49. 
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Problem 4.50. A system of forces and couples, all of which are referr-
ed to the same frame, act on body 2 and is specified as follows: 

{F 23 . 

{F 24 . 

{F25} = 

{L23} = 

kN through the point {RA} = 

kN through the point {R } 

kN through the point {R 

m, 

m, 

kN m and {L26} = kN m. 

Find the resultant force and couple of the system for the point 

0] [l 
0 m and (b) {Rß} = 1 

0 11 
(a) {RQ} = m. 

F i g . 4 . 5 1 . 
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Problem 4.51. Figure 4.51 shows a structure subjected to an external 
force {Fi+J. The members of the structure, bodies 2,3 and 4 are supp-
orted at their ends by fittings which are incapable of inducing bend-
ing effects. For the case in which 

find 
{F21}, {F31} and {Fhl} 

Koi = 

{F,} = 

2 

0 

[ 5 

- l " 

2 

5 

m> Κο ϊ = 

- 5 

0 

5_ 

ra' iRco) = 

kN and | R D R | = 0 . 7 5 | R C ß | 

- 2 

5 

6 
m 

Problem 4.52. Figure 4.50 shows a mechanism which is maintained in the 
given position by an external couple 

{L2}l = 

when an external force 

{F 3 Jl 

-200 

200 

-100 

is applied to body 3 at C. Determine L and the forces due to the bear-
ings at D, E, F and H. Obtain any necessary data from Problem 4.40. 

Problem 4.53. Figure 4.53 specifies the positions of the lines of act-
ion of the following forces: 

{F,} 

0 

0 

-8 

0 

0 

2 

N, {F2 

N, {F5} = 

10 

o 
o 

o 

-5 

0 

N, 

N and {F6 

N, 

Find the resultant force and the moment of the forces about 0. Reduce 
this force and moment combination to a force and a couple such that 
the force and couple vectors are parallel. Obtain the position of a 
point G on the line of action of the force relative to 0. 
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F i g . 4 . 5 3 . 

c2 

2 I \ 

\ 

γ^-
c 

2 2 

2 

m-

1 β about y2 3 

F i g . 4 . 5 4 . 
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Problem 4 . 5 4 . Determine 

[Χ2]2/2 

for the uniform rectangular parallelepiped shown in Fig. 4.54. Also 
determine 

[Γ2]2/3 

and hence show that when b = c, the inertia matrix is invariant for 
the [ £21 3 transformation. 

Fig. 4.55. 

Problem 4.55. Figure 4.55 shows a uniform, solid right circular cone. 
Demonstrate that the centre of mass is in the position shown. Also, 
determine 

[ l 2 ] 2 / 2 , [ l 2 ] 3 / 3 a n d [^l\h/k · 

Problem 4.56. An aircraft with a two bladed airscrew flies at a steady 
rate in a circular path such that the angular velocity of the fuselage 
about an axis perpendicular to the plane of the wings has a magnitude 
Ω relative to inertial axes as shown in Fig. 4.56. Determine the cou-
ple which the engine must exert on the airscrew to maintain a constant 
speed of rotation ω. 

Problem 4.57. An aircraft, body 2, is rolling at a constant rate 

{ω2}l/2 = 
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1 γ about Zj 2 a about x2 3 

Fig. 4.56. 

To induce this motion, the control surfaces, collectively designated 
body 3, must exert a couple 

{L23}2 

while the aerodynamic couple opposing the motion is 

{L2}2 = 

The rotational inertia of the aircraft can be described by 

[l2] 2/ 2 = 

-CO) 

0 

0 

A 0 -E 

0 B 0 

-E 0 C 

•Determine 

{L 23 12 

Problem 4.58. Figure 4.58 shows a circular saw arranged to cut grooves 
wider than the saw blade thickness by changing the plane of rotation 
of the blade. This is achieved by clamping the saw blade to the motor 
shaft between washers which have surfaces mating with the saw blade 
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i n c l i n e d t o t h e m o t o r s h a f t a x i s . O b t a i n e x p r e s s i o n s f o r 

{L 2 3}2 and { L 2 3 l i 

when t h e saw b l a d e i s d r i v e n a t t h e c o n s t a n t r a t e ω. T a k e 

[I3] 3 / 3 

1 0 0 

0 1 0 

0 0 J 

Evaluate the expression for {L23}2
 f o r the case in which 

and 
I = 6x10 kg m , J = 12x10 kg m ,ω s 3 600 rev/min 

a = 10° . 

1 γ about Z] 2-a about x2 3 

Fig. 4.58. 

Problem 4.59. Figure 4.59 shows a diagrammatic arrangement of a device 
used to measure rate of rotation relative to an inertial frame. The 
rotor, body 4, is driven at a constant high speed Ω (16 000 rev/min) 
relative to the gimbal, body 3. The gimbal is mounted in bearings in 
the case of the device, body 2. The motion of the gimbal relative to 
the case is controlled by a torsion spring, of rate k, and a viscous 
damper which exerts a couple on the gimbal proportional to the relat-
ive angular velocity between gimbal and case, the constant of propor-
tionality being c. Show that the angular displacement of the gimbal 
relative to the case about the x2 output axis is proportional to the 
rate at which the case turns about the y2 input axis relative to an 
inertial frame. Neglect the effects due to the inertia of the gimbal. 

Problem 4.60. A rotor, body 4, of Fig. 4.60a runs at a constant rate 
ω in bearings, bodies 5 and 6. The bearings are mounted on a disc, body 
2, which turns at a constant rate γ, relative to an inertial reference, 
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Input axis 

1 ß about yi 2 a about x2 3 γ about z3 4 

Fig. 4.59, 

a 

zl 'z2 

/M 

z3 

Ψ-
■ ^ D 

i; 
Fig. 4.60a. Fig. 4.60b. 

in bearings, bodies 7 and 8f as shown in Fig. 4.60b. Determine the 
forces 

{F45} 3 

Fl 
F 2 

F 3 

■ {F46}3 = 

0 

Fk 

F 5 

' 1F28 ?2 ~ 

F6 
F7 

and 
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1F27}2 ~ 

F9 

Fio 

O 

due to the motion of the rotor. 

Problem 4.61. A solid uniform rotor, body 3, of length b and diameter 
2a, is mounted on a light shaft, body 2. The shaft rotates at a cons-
tant rate Ω in bearings, bodies 4 and 5, which can be considered iner-
tial. The centre of mass of the rotor is a distance e from the axis of 
the shaft and the axis of generation of the rotor is inclined to the 
shaft axis at the angle a as shown in Fig. 4.61. Determine 

{F21+}2 and {F 2 5 } 2 . 

Neglect the effects due to the weight of the rotor. 

Fig. 4.61. 

Problem 4.62. A uniform rectangular parallelepiped of cross-sectional 
dimensions 2a by 2b and length 2c, is supported by a smooth pivot as 
shown in Fig. 4.62. Determine the attitude of the parallelepiped when 
the system rotates about the vertical Χχ axis at the constant rate Ω. 
Calculate the particular value of γ when Ω = 5 rad/s, e = 0.3 m and 
(a) 2a = 0.08 m,2b = 0.16 m and 
(b) 2a = 0.16 m,2b = 0.08 m. 

Problem 4.63. A straight uniform rod, body 3, of length 2b and mass m, 
is connected by a smooth pin joint at one end to a vertical shaft, 
body 2, as shown in Fig. 4.63. The shaft is driven at a constant rate 
Ω relative to an inertial bearing, body 1. Obtain an expression for 
the steady state attitude of the rod. Deduce expressions for the natu-
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1 a about Xj 2 γabout z2 3 

F i g . 4 . 6 2 . 

i γ about Z\ 2 a about x2 3 

F i g . 4 . 6 3 . 
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ral frequency of small vibrations of the rod (a) in the vertical pos-
ition and Cb) the inclined equilibrium position a0. Also obtain an ex-
pression for the couple which the vertical shaft exerts on the rod. 

Examine the motion of the rod for the case in which b = 0.92 m and (i) 
Ω = 2 rad/s and (ii) Ω = 4 rad/s. 

Problem 4.64. A uniform rod, body 3.,, having a circular cross section of 
radius a and of length b, is mounted in a frame, body 2, as shown in 
Fig. 4.64. The motion of body 3 relative to body 2 is controlled by a 
torsion spring and torsion damper. The spring has a torsional stiff-
ness k and the torsion damper exerts a viscous couple equal to cd. 
Frame 2 is driven at a constant rate Ω relative to bearings fixed in 
an inertial body 1. 

Obtain the equation of motion for the rod when the motion relative to 
the equilibrium position a = a is small. Consider the cases for which 
the spring couple is zero when0 Ca)_ a = 0 , (b) a = π/6, (c) a = π/4 
and ('d) a = ττ/2. 

S?-η· 

1 β about γι 2 a about x2 3 

Fig. 4.64, 

Problem 4.65. A uniform solid rotor, body 4, is constrained as shown 
in Fig. 4.65. Body 4 turns freely relative to the pivoted axle body 4. 
Body 3 can turn freely relative to body 2 about a pivot at A.Find 

'4513 

IFi 

1° 
1*2 

and {F32}3 = 
|F3 

for the case in which bodies 2 and 5 are driven at the constant resp-
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'π-Θ 

^ 

ι -

1 γ about zj 2 a about x2 3 ψ about y3 4 

1 β about z, 5 

Fig. 4.65. 

<ω,>3 

"\ / θ 

\ ^ " ^ ^ W 5 

ίω^ΪΝ. 

2 

U2h 

ective rates ω and Ω relative to the inertial body 1 and body 4 rolls 
without slip on body 5. Also, determine 

Tl+ = Ti|r ot + T i + t r a n s 

Neg lec t t h e we igh t of body 3 and t a k e 

[li+] i+/u = 
1 0 0 

0 J 0 

0 0 1 

Problem 4.66. A uniform rotor, body 4, is constrained as shown in Fig. 
4.66. Body 4 turns freely relative to the pivoted axle body 3. Body 3 
can turn freely relative to body 2 about a pivot at A. Find 
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{F inh = 
Fl 

0 

F 2 | 

and { F 3 2 l 3 = 
F 3 

F 4 

F 5 

fo r t h e c a s e in which body 2 i s d r i v e n a t t h e c o n s t a n t r a t e ω r e l a t i v e 
t o t h e i n e r t i a l body 1 and body 4 r o l l s w i t h o u t s l i p on body 1 . Neg-
l e c t t h e weight of body 3 and t a k e 

[*k]k/k = 

1 0 0 

0 J 0 

0 0 1 

2 

/, /, 

22 

\ " ^ 

LAV 
7 1 / 
VA 1 

1 Ύ about Z] 2 a about xj 3 | about ŷ  

Fig. 4.66. 

Problem 4.67. A solid uniform right circular cone, body 4, rolls at a 
constant rate and without slipping when supported as shown in Fig.4.67, 
Determine the contact forces 

{F 45 J 2 
Fl 

F2 

F3 

and {FI,6}2 = 0 

F5 

for the case in which |ω^|j = ω. Take 
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[I-] h/h 

I O O 

0 J O 

0 0 1 

^^m\ 5^^.ilb?^^^ m 

F i g . 4 . 6 7 . 

Problem 4.68. A uniform solid rotor, body 4, is constrained as shown 
in Fig. 4.68. Body 4 turns freely relative to the pivoted axle body 3, 
Body 3 can turn freely relative to body 2 about the pivot at A. Find 

{P it 5 1 2 o 

F2 

when the given angular velocity vector diagram applies and 
are constants. Neglect the weight of body 3 and take 

and 

[ i i f l i f A = 

1 0 0 

0 J 0 

0 0 1 

Problem 4.69. Body 4, which is a uniform solid of revolution, is con-
strained as shown in Fig. 4.69. Find the constant value of 

|ω2|ΐ = ß 

for the case in which 

ω3 j 2 -

[ F u l l = 

0 and | ω LH [ 3 = ω, a c o n s t a n t . Also f i n d 

|Fl 

| F 2 

| F 3 
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z5 

Take 

r//̂ i j Ί1» 

1 γ about z\ 2 a about X2 3 f about y3 

1 -ß about zi 5 

Fig. 4.68. 

[ij h/k 

1 0 0 

0 J 0 

0 0 1 

Problem 4.70. In the system of Fig.4.70 the uniform heavy rotor, body 
5, rotates relative to the light pivoted axle, body 3, at the constant 
high speed ω. Body 2 is driven at the constant rate ά relative to an 
inertial body 1. Show that, for small values of 3, 

.2 
+ (I + mb(a + b) - J}a = mgb - Ja 

I + mb I + mb 

where 

DUKA = 
J 0 0 

0 1 0 

0 0 1 
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ß about y 2 Θ about z; 3 f about y, 4 

Fig. 4.69. 

1 a about zt 2 ^ about y2 3 <̂> about x3 4 

Fig. 4.70. 

Problem 4.71. The uniform rotor and attached light shaft, body 4, sho-
wn in Fig. 4.71, turns at a constant high speed ω relative to body 3. 
The motion of body 3 relative to body 2 is constrained by torsionally 
elastic supports of combined stiffness k. Body 2 is driven at a const-
ant rate γ = Ω(<<ω) about the vertical z, axis of an inertial frame 1. 
Show that, when 3 is small and the inertia of body 3 is neglected, 

2^2 (ma Ω + k) n _ mga JGUS" 

I + ma^ I + ma2 

299
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2 p about y; 1 

Fig. 4.71. 

Take 

[iukA = 
J 0 0 

0 1 0 

0 0 0 

Problem 4.72. A high speed rotor, body 4, is supported pendulously in 
gimbals as shown in Fig. 4.72. The outer gimbal, body 2, is free to 
rotate about the xj axis fixed in an inertial reference, while the in-
ner gimbal, body 3, which supports the rotor directly, is free to rot-
ate about the y2 axis fixed in the outer gimbal. Obtain the equations 
of motion for the system making the following assumptions: 

(i) the angular velocity of the rotor relative to the inn-
er gimbal is constant, 

(ii) the mass of bodies 2 and 3 is negligible, 

(iii)the angular motion of bodies 2 and 3 relative to the 
given position is small and 
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2'Vl V ' 

Λ ν ι ^ / 

ί / / / /] I 

I Ιΐ7/^Ί 

t/κ/Λ 

about y2 3 γ about 

Fig. 4.72. 

Take 

(iv) the ah products can be neglected. 

[lul^A = 
I 

0 

0 

0 

I 

0 

0 

0 

J 

Problem 4.73. A high speed rotor, body 4, is mounted in gimbals, bod-
ies 3 and 2, as shown in Fig. 4.73. The motion of the inner gimbal rel-
ative to the outer gimbal is controlled by a spring, body 5, of tors-
ional stiffness k. The outer gimbal, body 2, is free to rotate about 
a horizontal axis through 0. Obtain the equations of motion for the 
system appropriate to small displacements from the equilibrium posit-
ion shown. Take 

[it+l h/k 

0 0 

0 

0 

A 2 

0 

0 

J 

0 

0 

B 2 

0 

0 

0_ 

r 

0 " 

0 

c2 

f [I3]3/3 = 

0 

B 3 

0 

0 

0 

c3. 

[ l 2 ] 2 / 2 = 

and assume that the centres of mass of bodies 2, 3 and 4 are at C. 

Problem 4.74. A high speed rotor, body 4, is mounted in a light frame, 
body 3, as shown in Fig.4.74. The frame can turn freely about a hori-
zontal axis through A which is fixed in body 2. Body 2 is driven at 
the constant rate β = Ω relative to an inertial frame 1. Obtain the γ 
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• 

OA = a 
AC = b 

I g 

Y3 

4 

H c 
x 3 / x l 4 

1 a about x\ 2 γ about z2 3 ß about 

Fig.4.73, 

1 p about γι 2 γ about z2 3 a about z3 4 

Fig. 4.74. 

equation of motion for the case in which γ is small. Also obtain the 
γ equation for small values of γ about the γ = γ position. 

Problem 4.75. A uniform rotor, body 4, is mounted on a light shaft, 
body 3, as shown in Fig. 4.75, the position for which 6 = 0 . The rot-
or turns at a constant rate ω relative to the shaft. The shaft is mou-
nted in bearings, bodies 5 and 6, which are fixed in an inertial body 
1. Motion of the system is induced by applying an external couple 

{L 3 12 ~ 

to the shaft, the motion of the shaft being opposed by a torsion spr-
ing, body 7, of stiffness k. Determine the y equation of motion, 

{F 35/2 -

Pi 
F 2 

F 3 ! 

and ' 36 ί 2 - 0 

IF 5 



Solution of Dynamics Problems 

V//M 

1 3 about y, 2 γ about z2 3 ψ about x3 4 

Fig. 4.75. 

Problem 4.76. A uniform rotor, body 3, is mounted in bearings in body 
2 and turns at a constant rate ω relative to it. Body 2 is mounted in 
bearings, bodies 4 and 5, which are fixed in an inertial body 1. The 
motion of body 2 relative to body 1 is opposed by a torsion spring, 
body 6, of stiffness k. Determine the natural frequency of the system 
by an energy method. Neglect the effects due to the inertia of body 2. 
btain expressions for the bearing forces 

■2hl2 and {F25}2 

F4 

0 

for the case in which the system is excited by an external couple 

J2 I 2 

which is adjusted such as to make 

γ = Asinpt. 

Problem 4.77. Figure 4.77 shows, diagrammat 
tures of a vibration absorber which employs 
rotor, torsion spring and damper. The vibra 
characteristics of which are to be modified 
torsionally elastic shaft and a rotor, body 
ional stiffness k0 and the rotor an inertia 
high speed rotor, body 4, is mounted in a g 
of the gimbal relative to body 2 is control 

ically, the essential fea-
a gimbal mounted high speed 
ting system, the vibration 
can be represented by a 
2. The shaft has a tors-
J0 about the z2 axis. The 
imbal, body 3. The motion 
led by a damper and a spring. 

MMAERBM - L 
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i VV777 

Fig. 4.76. 

Fig. 4.77. 

The damper exerts a couple C|Ü>3|2 such as to oppose the relative mot-
ion. The spring has a torsional stiffness k. The system is excited by 
an external couple 

{L2J: 
0 
o 

Show that, when άγ products are neglected and a is small, the equations 
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t h e e q u a t i o n s of mot ion can be w r i t t e n 

J Y + h a + k y = £ 
o o 

l a - ηγ + ca + ka = 0 , 

305 

and 

where 

[lit] k/k = 

I 

0 

0 

0 

J 

0 

0 

0 

0 

Iω 4 I 3 = ω and Jü) . 

F u r t h e r show t h a t , on t a k i n g Lap lace t r a n s f o r m s of t h e above e q u a t i o n s 
of mot ion and w r i t i n g t h e i n i t i a l c o n d i t i o n s equa l t o z e r o , t h e y can 
be w r i t t e n 

and 

T_ 

L 

A 
L 

I s + e s + k 
J o l s 4 + cJ s 3 + (kJ + k I + h 2 ) s 2 + ck s + kk 

hs 

Jols4 + cJ0s
3 + (kJ0+ k0I + h

2) s2 + ck0s + kko 

where Γ, A and L are the transforms of γ, α and I respectively. 

The reader is referred to Green, W. (1954) Theory of Machines f Blackie, 
London for a numerical analysis of this device. The reader is also re-
ferred to Inglis, C. (1951) Applied Mechanics for Engineers, Cambridge 
University Press, Cambridge for a discussion on gyroscope principles 
and applications. 

Problem 4.78. A vehicle, body 3, travels due north with a velocity 
v = aR relative to the earth as shown in Fig. 4.78. A rotor, body 5, 
which is driven at a constant high speed ω relative to a gimbal, body 
4, is mounted in the vehicle. The gimbal is free to turn relative to 
the vehicle about the vertical ŷ  axis. Show that, when products of 
γ = Ω, a and 3 are neglected, the equation of motion for the rotor red-
uces to 

, Ϊ1Ω 

4- —cosasinB Fcosß 

where 

[lsls/5 = 

I 

0 

0 

0 

I 

0 

0 

0 

J 

and h = JOJ 

and hence that the axle of the rotor has a north seeking property, but 
there is a steady state deflection 

tanß = v/(^Rcosa) 

from true north. 
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Fig. 4.78. 

Problem 4.79. A thin uniform circular disc, body 4, of radius r rolls 
without slipping on an inertial horizontal surface, body 1, as shown 
in Fig. 4.79. The path of the centre of mass of body 4, drawn on body 
1 is a circle of radius a. Show that the velocity of the centre of 
mass of the disc is given by 

2 4a2gtana 
V = -r Γ2 = · 6a + r s m a 

Also show t h a t 

{ F . i k = 

Problem 4.80. A thin uniform rod, body 2, is retained in a smooth sph-
erical bearing fixed in an inertial body 1 at one end and is supported 
at a point B part way along its length on a smooth horizontal ridge on 
body 3, fixed relative to body 1, as shown in Fig. 4.80. Given the rel-
ative positions of A, B, C and D, derive a set of equations from which 
the following could be determined at the instant the rod is released 
from rest: 

(i) the angular acceleration of the rod, 
(ii) the force on the rod at A and 
(iii) the force on the rod at B. 

Organise the equations into the matrix form 

[a]{b} = {c} 

0 

mv /a 

mg 

where {b} is a column of unknown quantities and [ a ] is an array of 
known quantities. 



Solut ion of Dynamics Problems 

xis for the motion 7ZZVZ7/\ 
of body 4 relative to body 1 ////////// 1 

1 γ about zt 2 a about x2 i β about y3 

F i g . 4 . 7 9 . 

1 

F i g . 4 . 8 0 . 

MMAEBBM - M 
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Problem 4 . 8 1 . A p r o j e c t i l e , body 2 , which can be t r e a t e d a s a homogen-
eous s o l i d of r e v o l u t i o n , has t h e a n g u l a r v e l o c i t y 

{ ω 2 ) ι / 2 

as shown in Fig. 4.81. The y2 axis is the axis of generation of the 
projectile and frame is is inertial. Show that the frequency of the 
oscillations resulting from an externally applied impulsive couple 
which is perpendicular to the axis of generation is, in the absence of 
damping effects, given by 

|A - B L 

where 

[l2]2/ 2 = 
B O O 

0 A O 

O 0 B 

Fig. 4.81. 

Problem 4.82. A thin uniform disc, body 4, of radius a and mass m is 
mounted on a light shaft. The shaft runs in a bearing, body 3 as shown 
in Fig. 4.82. Body is freely pivoted to body 2 and body 2 is free to 
turn about a vertical axis. The disc is released from rest in the pos-
ition shown with body 4 rotating at a high speed ψ0 = ω relative to 
body 3. Show that when the mass of bodies 2 and 3 is neglected 

ω = ψ >sinß (2ü)sin3) /(5cos 3) 

and 
ψ = ω(1 + 2tanzB) . 

Note that since there are no external couples on the disc about the 
and z2 axes there can be no change of angular momentum about them. 
Use the principle of energy conservation to determine ω for a given 
maximum value of β. 

Y3 
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dMl 

1 φ about 2) 2 -f about x2 3 ψ about z3 4 

Fig. 4.82. 

Problem 4.83. If a rigid body, body 2, is not subjected to external 
couples, then the equation for its rotational motion can be written 

[Ι2]2/2ίω2>ι/2 + l
 ω2 11/2 [τΐ] 2/2ίω2}l/2 = {0} 

where 

[i2] 2/2 

A 0 0 

0 B 0 

0 0 C 

Show that, on premultiplying this equation by {ω2)ι/2,
 t n e rotational 

kinetic energy of body 2 is constant. 

Also show that, on premultiplying the equation by 

{ω2}1/2 [l2]2/2 -

the angular momentum of body 2 is constant. 

Problem 4.84. Figure 4.84 shows a mechanism which is driven through 
the position for which Θ = 30° by an external couple applied to body 
2 

J2 ί 1 -
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F i g . 4 . 8 4 -

when 

{ ω 2 ) ι / ι = 

0 

0 

100 

r a d / s and { ω 2 } ι / ι 

0 

0 

-10* 

rad/s^ 

Body 3 is a solid of revolution with its axis of generation along AB, 
the line joining the frictionless ball joints at its ends. The mass of 
body 3 is 0.6 kg and its moment of inertia about an axis through C, 
the centre of mass, and perpendicular to AB is 0.005 kg m" . Determine 
that part of Lz which is due to the mass of body 3. Neglect the effect 
of the weight of body 3. 

Also determine the forces on bodies 2 and 4 due to the short bearings 
5, 6, 7 and 8. Bearings 5 and 7 can sustain only radial forces while 
bearings 6 and 8 can sustain both radial and axial forces. 

Problem 4.85. Figure 4.85 shows a solid uniform wedge, body 2.Determ-
ine 

[i2] 3/3 

A3 0 0 

0 B3 F3 
0 F3 C3 

and [l2]2/2 

A2 0 0 

0 B2 F2 
0 F2 C2 

in terms of the dimensions of the wedge. 

Also determine, for the case in which a, b and c are in the ratio 
5:3:2, 
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[I2] 3 Λ 

Ah 0 0 

0 Bk 0 

0 0 Ck 

[ 2 j 2 / 5 = 

A5 0 0 

0 B 5 0 

0 O C5 

[ A3 ]i+ and [ £2 15 ' 

where frames 4 and 5 a r e s e t s of p r i n c i p a l axes c o r r e s p o n d i n g t o t h e 
p o i n t s A and C r e s p e c t i v e l y . 

Fig. 4.85. 

Problem 4.86. Body 4 is a composite of the uniform steel bodies 2 and 
3 as shown in Fig. 4.86. Determine 

[li*] i*/4 and [iitju/s 

where frame 5 is the set of principal axes through C, the centre of 
mass of body 4. Also find 

[ ak ]5 . 
3 

Take the density of steel as 7.8 g/cm . 

MMAERBM -
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Dimensions in cm 

20 

3U 

Zi» 

\ c 

z3 

B 

X 

X<f 

70 

Fig. 4.86. 



Answers to Problems for Solution 

Chapter 3 

26-

2 7 . 

< V B A > 2 / S 
' t = 0 

= {vB - (vAb/a)} 

2 , 2 , 
fABAt2/2 = U 2 v A v B / a ) - (2a + b j v ^ / a ' ) 

11=0 

K A W * ! 

{ \ A } 2 / 2 

t = 0 

t = 0 

{vB - ( v A c / a )} 

(2v A v B /a) - v * c / a 2 

v ' / b 

2 8 . 

2 9 . 

1 Θ abou t Zj 2 -φ abou t y 2 3 

[ I 2 Ji 

cose 

sine 

0 

-sine 

cose 

0 

0 

0 

1_ 

[ *3 12 = 

οοβφ 

0 

_sincj) 

0 

1 

0 

-sincj)] 

0 

COSφJ 

o 2 Jl 

0.7926 0 .457 0.4036 

-0.6097 0.594 0.5247 

0 0.662 0 .7495 
( c t d . ) 

313 
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c y c ß - s y c ß s ß 

s y c a + s a c y s ß c a c y - s a s y s ß ^ S a c ß 

s y s a - c a c y s ß s a c y + c a s y s ß c a c ß 

οφ εφοψ -βφεψ 

-βφ σφσψ -οφεψ 

0 sip οψ J 

3 . 3 0 . S t a r t w i t h 

i R A 0 } 3 / 3 = l £ 2 hl *1 J 2 { R A O } l / l 

3 . 3 2 , 

2 4 J 1.6 

1 4 0 . 3 

4 6 . 5 1 . 

19 

9 . 7 5 

- 1 

- 4 8 

nun { R S B } i / i 

0 

1 6 5 . 4 6 

- 3 . 4 4 

mm fV^/i 

{ v o } i / i = 1 , 1 9 

D i r e c t i o n c o s i n e s o f {103)1/ j 

cosa = ττ^Ιτ = ° · 1 9 8 7 cosß = TifSM1 = - ° · 0 2 0 4 

mm/s 

-1.706 
-0.9798 COSy = 73T03T 

Equation to central axis, X(x,y,z) 

I I _ x - 286.9 _ y - 165 z - 46.5 
1 XQI 0.1987 -0.0204 -0.9789 

z = 0, x = 287 mm, y = 164.5 mm. 

3.36. 

KoJl/l = I A2 l l { R A O } 2 / 2 + t * 2 h { R B A } 2 / 2 

c o s ß 

s i n ß 

b 

{ R B A } 2 / 2 = n a 

I V ^ / 1 = [ Ä 2 h { R A O } 2 / 2 + [ ^2 l l i Ä3 ] 2 { R B A } 3 / 3 

[ R B A h / 3 p 
b 
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3 . 3 7 , 

3 . 3 8 . 

3 . 3 9 . 

fVBoH/2 = 

K o l l / 2 = 

- a a - na(.a + ß) s i n i 

n a ( a + ß ) c o s ß 

0 

- n a ( a + ß) c o s ß 
• 2 , · · ν 2 . 

- a a - na (a + ß) s m f 

{ t t p o h / l = l Ä 2 h { R A 0 h / l + I A2 l! l £3 ] 2 { R p A } 3 / 3 

-aa - x(a + ß) sinß + vcosi 

x(.a + ß)cosß + vsinß 

0 

WV* 

Koll/2 = 

fVOoll/2 = 

ίΆ00}ΐ/2 = 

(Apo}i/2 = ω' 

~2v(a + ß)sinß - x(.a + ß) cosß 

2v(a + ß)cos - x(a + ß) sinß - aa 

2aybsiny -ca 
• 2 · 2 

■a
 (
a + bcosy) - by cosy 

-by siny 

a{(bcosß/r) - 1} 

bsinß 

|_absinß/r 
lVP0}l/2 = 

a(cosf 

rsinß 

a sinß 

- 1) 

-bsinß(1 + a2/r2) 

a{(2bcosß/r) - 1} 

L a bcosß/r 

-rsinß(1 + a2/r2) 

a(2cosß - 1) 

a2cosß/r 

(ctd.) 
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P o s i t i o n 
of P 

{ V p o h / 2 

{ A p o } 1 / 2 

A 

3 = 0 

2 
ω 

ί °" 
0 

L ° . 

0 

a 

a 2 / r . 

B 

3 = π / 2 

ω 

2 
ω 

- a 

r 

a 

' r ( l + a 2 / r 2 ) ~ 

- a 

0 

E 

3 = π 

ω 

2 
ω 

[-2a 
0 

L 0 . 

0 

- 3 a 

.-aVr 

D 

3 = - π / 2 

ω 

2 
ω 

- a 

- r 

. - a 

~ - r ( l + a 2 / r 2 ) ~ 

- a 

. 0 

3 . 4 0 . 

λ — 0)14/0)2 ί ω 3 } 4 / ü ) 2 1 0 ) 3 ^ 2 / 2 = ω2 ft - 1) 

0 

a / b 

0 

3 . 4 1 . 

{ ω 3 } 3 J" 1/2 ~ ω2 

0 

a (A - 1) 

1 

ί ω 3 } 1 / 2 = ω2 Cλ - 1) 

- a / b 

0 

0 . 

l v
A O h / 2 = ao)2 

ί Α Α θ ί ΐ / 2 = a ^ 

- ( λ - l ) c o s 3 - 1 

b s i n 3 / r 

- U - U s i n ß 

-{b 2 + (λ - 1) 2 } s i n 3 / a b 

-2( 'λ - l j c o s ß - 1 
2 

a ( λ - 1) c o s 3 / b 

{ ω ι + } 1 / 3 = γ 

0 

■ (R + a c o s a ) / r 

c o s a 

^ ω ι + Η / 3 = Ύ c o s a (R + a c o s a + r s i n a ) 

1 / r 

0 

0 

{ t i ) 5 h / 3 = Ύ c o s a ( R - a c o s a + r s i n a ) 

1 / r 

0 

0 

( c t d . ) 
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3 . 4 2 , 

3 . 4 3 , 

{ V DO}I /3 = { V
D E } l / 3 = 2a;cosa 

{ ω 3 } 1 / 2 

KOK/* 

1 Α Α θ ' ΐ / 2 = 

ί ω 3 ) ΐ / 2 = 

-zßsina 

zacosa + vsina 

-zasina + vcosa 

-23(vsina + zacosa) 
• · 2 · 2 

2vacosa - (a + 3 )zsina 
• 2 

-2vasina - za cosa 

{VE0}i/3 = aa 

-s ine - λ2 

cose + λι + X3sin3i 

o 
+ ae -λι 

o 

+ aX3 

3iCos3i 

-Θ sin3i 

3isin3i 

λ 3 31 = a(sine + λ2) λ332 = a(sine - λ2) 

{A E O } 1 / 3 = ίω3 ] i / 3 { V E O } 1 / 3 + —{V E O } 1 / 3 

For Θ = 0 and a and 3i cons tants , when E i s a t the point of contact 
. d i s a nul l vector . Hence 

d t i W i / ' ; 
α , θ , & ι c o n s t a n t 

= aa 

0 

λ 3 3 i c o s 3 i 

0 

+ aX3 

\i s m 3 i 
0 

3icos3iJ 

When E i s a t the point of contac t , 3χ = 0 and 

iAEA^/3 = a a 2 ( s i n e + λ2) 

0 

1 

(sine + λ 2 ) /λ 3 
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3 . 4 4 . 

W h / 3 

η ω ( Ü J C O S Y - ω ) 
s 

- ωω sinv 
s 
2 . 

- ηω smy 
3.45. To ensure that rubbing does not occur at F arrange that F is on 
OE. 

3.46. 
W h / 3 = W h / 3 + ί ω4 } 3/3 

t 2 / t 3 

0 

0 

+ {Ω - ( w t 2 / t i ) } 

0 

0 

t 5 / t 4 

3 .47 . 

{wi+ll /3 = ω{Ω - (u ) t 2 / t i )} 

0 

t 2 t 5 / t 3 t 4 

0 

ω6 I ! = (2ü)t2/t3) I ω4 I 3 = ^{Ω - (ü)t2 / t 3 ) }/t»+ 

{ωι+}1/2 

0 

- t 3 (ω - Ω)/th 

Ω 

{ωι+Ιΐ/2 = ω (ω - Ω) 

t 3 / t 4 

0 

0 

lVAotl/2 = 

1ΑΑθίΐ/2 = 

■air - t3Rcos3(u) - Ω)/tt+ 

ΩΚεΐηΒ 

t3Rsinß(cju - Ω)/tk 

2 2 2 
R s i n ß { t 3 ( ü ) - Ω) / t i t " ω Ω ^ 

-ω2τ + R c o s 3 { t 3 ( ü ü - Ω ) 2 Α ξ - t3ü>(ü) - Ω)Αζ+} 

Rt 3 COSß(ω - Ω) 2/t\ 

3.49. From the angular ve loc i t y vector diagram 

| ω 3 | 2 = tia/b = Γ3Ω |ωΐ||3 = nr3Ω = ri+Ω 

1 ω 5 1 2 = 2r 3 Ω = r 5Ω 

{ω^ >ι / 3 = Ω 

sin[ 

r 4 + cosß 

W h / 3 = Ω" 

r 3 (cosß - r j 

-ri+sinß 

- r 3 s inß 

from which {ωι+}ι/2 and {ωι+}ι/2 can be determined on premult iplying 
the above r e s u l t s by 

(ctd.) 
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3 . 5 0 . 

3 . 5 1 . 

I *3 h = 

c o s ß 0 - s i n £ 

0 1 0 

s i n ß 0 cos£ 

{ ω 5 } 1 / 2 = Ω 

iViv: = 

{ ω " } ΐ / 1 = 

t A A C ^ / l = 

^ o " / i 

0 

" 2 r 3 

1 

0 

0 

- 1 . 1 

( ω 5 } ι / 2 = 2 Γ 3 Ω 

m / S i A A C ^ / l = 

0 

o 
- 8 . 7 7 5 

m / s ' 

- 1 . 7 6 8 

1 . 9 8 9 

1 . 9 7 7 6 , 

0 

-8.775J 

0 

0 

- 1 2 . 3 6 

r a d / s ί ω " } ! / ! = 

5 . 7 3 8 

5 . 8 4 2 

1 5 . 5 8 4 

r a d / s 

m / s 2 K R I I / I = 

m / s 2 i A B C } l / l 

7 . 5 4 

- 4 . 4 

- 1 . 1 2 7 

2 . 2 

4 . 4 

2 . 4 5 8 

m / s 

m / s ' 

2 [ ω 2 h / i { V A C } 2 / i = 

- 2 2 . 1 

0 

0 

m / s ^ 

W h / l { ω 2 ) ι / ι + [ £ 2 Μ ω 3 } 2 / 2 + [ ^2 h [ A 3 ] 2 ί ωμ } 3 / 3 

0 1 0 0 

0 cip - ε ψ 

0 εψ cψJ 

1 0 0 

O οψ - ε ψ 

O sip οψ 

0 

ce 

0 

0 S0 

1 O 

■S0 O C0 

{ 0 ) 4 ) 1 / 3 = - ί ωι+ ] 3 / 3 { ω 3 } 1 / 3 + ^ { ω ι + } 1 / 3 

( c t d . ) 

MMAERBM -
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{VCA}l/3 = f ω^ l i / 3 [ £4 ] 3 { R C A } i t / i t 

= b 

-(^sin0 + φ)βϊηφ 

Cosine + φ)αο3φ 

- Θ COScf + i|;COS0sin(f 

i V Cp}l /3 = i V C A } l / 3 L = 0 = i V ^ l / 3 

{ M 1 / 3 = [ω3 ] l / 3 { V 4 } i / 3 + ^ { V ^ J j / 3 



Answers to Problems for Solution 

Chapter 4 

640 W 
2 2 3 , B 

W
A_^B = (x y + z x + c ) | A 

y = 0 . 1 7 2 2 m 

0 . 9 9 8 

( V
D } l / 2 = m/s { F 2 1 } 2 = 

{ F 23}2 -

y = 0 . 2 5 m 

KW/2 = 

N K h / 2 = 
- 9 . 2 1 

- 1 . 9 9 4 

O 

O 

- 2 . 6 8 6 

O 

2 
m/s 

{F 2 3 J 2 

1 . 4 9 5 

O 

_0 

1 . 3 8 2 

- 6 . 2 7 6 

0 

m/s { F 2 1 } 2 = 

N { A D } i / 2 = 

O 

1 .59 

. 0 

-5 .72 

-4 .46 

O 

m / s 

y = 0 . 1 2 1 4 m 

{Rp} = {R} 

[sinGcoscf) 

{ R } i / i = r είηθείηφ 

cose 
1/1 = r 

COS0COS(f 

cosesincf 

-sine 

321 

4.44.

4.45.

4.46.

4.47.
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K h / 3 = r { R J i / i = 

{ * } V 1 

sin9coscf> 

sin9sini j> 

COS9 
Kl 1 / 3 

- s i n G s i ^ 

ΞίηθθΟΒφ 

0 

"θ 

0 

1 

{ R J l / 3 = 

0 

| r s ine 

0 

4 . 4 8 . 

4 . 4 9 . 

= K]|F) + [[R.J + [R C B ] ]{ -F} 

W = CRpA]{F} K A } T { M A } = i R ^ M M j c o s e 

Component parallel to AB 

= ί « . Α ϊ Τ { Μ Α } / | Η , Α Ι 

4 . 5 0 . 

4 . 5 1 . 

W - ( { R B A J M M A } ) { R , A } / | R „ 

{F2 

{ F 2 1 } = 

Γ 9 ' 
10 

L 9 -
kN {M0} = 

Γ 1 .218" 

- 3 . 2 1 8 

l·3 . 8 6 _ 

6" 

10 

. 6 . 

kN m {MB} = 

kN { F 3 1 } = 

- 0 . 9 5 6 * 

1 . 1 9 5 

_ 0 .239_ 

kN 

" 7 

10 

_ 5 

kN m 

{F 4 1 I " 

\ ° 
o 

1-1 

. 6 6 9 ] 

023 

38 J 
kN 

4 . 5 2 . 

4 . 5 3 . 

{ L 2 } I 

{ F 4 7 } = 

! > } = 

0 

- 2 0 

0 

|50 

0 

O 

10 

- 7 

O 

N m { F 2 6 } = 

Γ- 5o Ί 
- 2 0 0 

[ l 090J 
N F 2 5 ! -

150 

0 

270 

' 4 8 . 

N {M J = 

50 

O 

[280 

47 

2 

-42 

N m 

t c t d . 
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K.J = 
1.973 

2 .819 

2.342 

{ι.Ρ 

30 .60 

- 2 1 . 4 2 

0 

N in 

[ i 2 ] 

[i2] 

2 / 2 

2 / 3 

A O O 

O B O 

O O C 

Ac23 + Cs2f 

A = m(.a2 + b 2 ) / 1 2 

B = m(b2 + c 2 ) / 1 2 

C = m(a2 + c 2 ) / 1 2 

0 

B 

O 

A) sßc3 tc 
0 

As23 4- Cc2f [(C - A) S3c3 

c , t h e n A = C and [ l 2 ] 2 / 3 i s i n v a r i a n t 

[i2l /» 

I 

0 

0 

0 

I 

0 

0 

0 

J 

J = 3mr /10, a constant. 

I = 3m(r2 + h2/4)/20 

I = 3m(r2 + 4h2)/20 

I = 3m(r2 + 2h2/3)/20 

Let the engine be body 2 and the airscrew body 3, 

[l O ol Γ ω 

[I3] 3/3 ~ J O 0 O ίω3}!/2 = O | {^3)2/2 = 

0 0 1 Ω 

O 

ωΩ 

O 

[13] 3 2 = J 
0 

s2a 

O 

-SaCa 

c a 

{L32}2 ~ J 

1 

0 

O -saca 

(fi2sin2o)t)/2 

ωΩ(1 - cos2ωt) 

-ωΩsin2ωt 

{L32}2 -
Cd) 

2„ 
ω Ε 

JL32}2 - ω2(α I)sinacosa 

-1 

O 

O 

(ctd.) 

4.54.

If b =
4.55.

n = 2

n = 3

n = 4

4.56.

4.57.

4.58.
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'-cosy! 

{L 32/1 

4.59. 

W h / 3 

{ωι+Ιχ/3 

[Hifh/3 

{L32}3 -

(J - I)sinacosa 

a 

ßcosa 

Ω - ßsina 

-siny 

0 

|L32I = 525 N m 

3 sina << Ω and a small 

α + Ωβ 

Ωα 

-laß + aß) 

Jßß + iä 

ΙΩα 

-J(aß + aß). 

-ka - ca 

L 

<< αΩ and a small 

where [ i i j ^/i+ 
1 0 0 

0 1 0 

0 0 J 

.. , c · , k JQ; 
α ϊ"01 ϊ"α = ~I~ 

For a 

4 . 6 0 . 

s u s t a i n e d c o n s t a n t r a t e t u r n a = (Jf iß) /k 

[ l J i + Λ = 

J 0 0 

0 1 0 

0 0 J 

{Hl+}1/3 = Jyu) 

4 . 6 1 . 

4 . 6 2 . 

Fl = mry s i n a F 2 = - (mbry 2 cosa ) / (a + b) F 3 = Jyaj/(a + b) 

Fk = - ( m a r y 2 c o s a ) / ( a + b) F 5 = -Jyu) / (a + b) 

F6 = -(Jyu)COSa)/d F 7 = (mcry - JyoüSina)/d 

F8 = 0 F 9 = (Jycocosaj/d 

Fj o = - m r y 2 ( l + c /d) + ( Jya js inaJ /d 

h = rafi {12e + (b2 - 3 a 2 ) s i n a } / ( 1 2 t a n a ) 
X 

{Fy
2k}2 = (ma2ed - \ ) / (c + d) 

{F2 5 } 2 = (n^ 2 ec + h ) / ( .c ■+ d) 

3gatany = Ω {3ae + 4 ( a 2 - b 2 ) s i n y } 

(a) γ = 37.4° (b) γ = 43.2° (by t r i a l ) 
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4 . 6 3 , 

{ ω 3 } ι / 3 = 

{ R 3 0 } l / 3 

"a 

fisina 

ficosa 

= 
"ω Ί 

X 
ω 

y 
ω 

- z J 

{ V 3 } l / 3 = 

Γ bω Ί 
y 

-bco 
X 

0 J 

4 2 
Γω 

X 

ω 
y 

L° 
= 

h 1 
X 

h 
y j 

0 J 

{ H 3 o h / 3 = Ι ω 3 l l / 3 { H 3 o } l / 3 + | t { H 3 „ } l / 3 

h - h ω 
x y z 

h + h ω 
y x z 

h ω - h ω 
y x x y 

{ L 3 2 } 3 + [ R c o ] 3 / 3 { W 3 } 3 = { H 3 o } l / 2 

ä + { ( 3 g / 4 b ) . — Ω c o s a j s i n a = 0 

Small vibrations about a = O 

ä + {(3g/4b) - Ω2}α = 0 ω2 = (,3g/4b) - Ω2 
n 

Stable if Ω < 3g/4b 

Small vibrations about a . Let Ω be the Ω which gives the a equil-
ibrium position 

2 " 2 2 

cosa = 3g/4bΩ a + Ω sin a a = 0 
o o o o 

ω2 = Ω2 (1 - ggVlöb^4) 
n o o 

Stable if Ω2 > 3g/4b. 
o 

Ω = 2 rad/s. a = 0. ω = 2 rad/s(0.32 Hz) 
o n 

cosa = 2(>1). No stable vibration in the inclined position. 
o 

Ω = 4 rad/s. a = 0. Ω { 8. No stable vibration in the vertical pos-
ition. 

cosa = 0.5. a = 60°. ω = Ω sina = 3.464 rad/s(0.55 Hz) 
o n o o 

{ L 3 2 } 3 = 8 m b ^ a c o s a / 3 . 

4 . 6 4 . 

[is] 3 / 3 

1 0 0 

0 J 0 

0 0 1 ( c t d . ) 
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l a + c a + ( J - Ι )Ω s i n a c o s a + ka = 0 

l a + c a + 0 . 5 ( J - I ) f i 2 s i n 2 ( a + a) + ka = 0 
o 

= 0 l a + c a + { ( J - I ) Ω + k}a = 0 

= π / 6 l a + ca + { 0 . 5 CJ - Ι ) Ω 2 + k } a = / 3 (.1 - J ) Ω 2 / 4 

= ττ/4 i ä + ca + ka = ( I - J )Ω 

= ΤΓ/2 i ä + ca + { ( I - J ) Ω 2 + k}a = 0 

4 . 6 5 . 

4 . 6 6 . 

4 . 6 7 , 

4 . 6 8 , 

4 . 6 9 . 

= O F 2 = {Jabü)(oa - n ) } / d ( b - c) + mg 

F 4 = -rabü) F 5 = - F 2 

2 2 2 2 
= 0 F 2 = πΐω s i n a ( c + d c o s a ) + ω ( J c o s a + I s i n a ) / a 

+ mgcosa 

Fo = 0 Fi, = -mou cosa(c + dcosa) 

F5 

Pi 

(a 

(a 

2 9 2 

= -mgcosa - ω (Jcos a + Isin a)/a 

2 2 = Fk = O F2 = -moo bsin a 

c)F5 = mg(a - bcosa) 

- c)F3 = mg(bcosa 

i3 2 tana{ ( I + mb ) s i n a + J c o s a} 

2 2 2 2 
c) + ω t a n a { ( I + mb ) s i n a + J c o s a} 

FT = 0 •{Joj(a + b) (Ω + ω) } / ( r b ) + mg 

• _ - h - / { h 2 + 4mgacos0 ( J - I - m a 2 ) } 
3 9 

2 c o s 9 ( J - I - ma ) 
2 2 

Fj = πΐω s i n e c o s B F 2 = mg F 3 = -πΐω s i n O s m i 

4 . 7 0 . 

{ ω ι + } 1 / 3 

- a s i n 3 + ω 

a c o s ß 

= 

I- -1 
ω 

X 

ω 
y 

ω 
L Z J 

ί ω ι + Ι ι / 3 

( V i t J i / 3 = 

-aBcosB 

aojcos3 + 3 

ωβ - a 3 s i n £ 

0 

a ( a + b c o s 3 ) 

-b3 

= 

ω 
X 

ω 
y 

ω 
L z J 

( c t d . ) 
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{ A i f l i / 3 = 

- a (a + b c o s ß ) - bß 

- 2 a ß b s i n ß 

- α s i n ß ( a + b c o s ß ) - b£ 

4 . 7 1 , 

mgbcosß = 

W h / 3 = 

ί ώ ^ > χ / 3 = 

( A L . 1 I / 3 = 

( J - I ) ω ω + Ιω - mba 
χ y y z 

-

-1 
ω 

X 

ω 
y 

ω 
L z -1 

ω - Ωβίη ί 

ß 

ωοοεβ 

ojßcosß 

β + ωΩσοεβ 

ωβ 

- ( ü ) 2 a c o s 2 ß + a ß " ) 

- 2 ü ) a ß s i n ß 

- ( ü ) 2 a s i n ß c o s ß + aß) 

{ V i . l i / 3 = 

0 

ftcosf 

- a ß 

= 

ω 1 
X 

ω ι 
y 1 

ω 
u z J 

mga - kß = ( J - I ) ω ω + Ιω - maa 
x z y z 

4 . 7 2 , 

I Ii+ I i+/i+ -

{ ω 1 + } 1 / 3 

{ ω ι + Ι χ / 3 = 

[Αι*}ι /3 = 

1 0 0 

0 1 0 

0 0 J 

cicosß 

ß 

ω + a s i n ß 
K f l / 3 = 

J(i3 

- a ß 

a a c o s ß 

0 

ωβ + a c o s ß - a ß s i n £ 

ß - amcosß 

a s i n ß + a ß c o s ß 

- a a 2 s i n ß c o s ß - aß 

- 2 a a ß s i n ß + a a c o s f 
• 2 . 2 2 

aß + aa c o s ß 

4 . 7 3 , 

mga 

hß + ( I + m a 2 ) a 

-ha ■+ ( I + ma 2 ) ß 

J a ß 

{w} = {Wi } + {w2} + {w3} m = mj + m2 + m3 h = Ju> 

( c t d . ) 

http://Al.1i/3


328 

4 . 7 4 , 

Matrix Methods in Engineering Mechanics 

ί ω 3 ) ι / 3 = 

a c o s y 

a s i n y 

[Ύ 

__ 
ω 

X 

ω 
y 

ω 
Z j 

W h / 3 ω + ω 
y 

( ω ι + } 1 . / 3 

ω - ωω 
X Ζ 

ω 
#y 

ω + ωω 

[Lh3}3 = { f M i / 3 

{L3 ι+ } 3 + {L3 2 } 3 + {L3 5 } 3 = { ^ h / S 

{L3 2 } 3 + {L3 5 } 3 = ί Η 3 ΐ ΐ / 3 + { H i +}l /3 

{ L 2 1 } 2 + [ R C 0 ] 2 / 2 { W } 2 = m [ R
c 0 ^ 2 / 2 { A c o ^ / 2 + { ή 2 ί ΐ / 2 

+ I A3l 2 { { H 3 } l / 3 + { H U 1 / 3 ! 

- k y = ( I + C 3 ) y + ha 

( I + A2 + A3 + ma ) a - hy -mga 

^ 3 ) 1 / 3 

K l l / 3 = 

{H^A1 1/3 = {Hi.Ji/3 + mlRcAla/afVifJi/s 

fisiny 

ficosy 

Ύ 

b ; 

0 

- Ω ( a 4 

= 

ω 
X 

ω 
y 

ω 
z J 

- b s i n y ) 

{ ω 4 } 1 / 3 = 

= 

V 
X 

0 

V 

ω + ω 
X 

ω 
y 

ω 
ζ 

J (. ω + ω ) -
X 

Ιω 
y 

Ιω + mbv 

- mbv 
ζ 

= 

h 

h 

h 

{ H ^ A J I / 3 = I ω3] l/3{tti+A}i/3 + d t ^ ^ ^ 1 / 3 

h ω 
z y 

h ω 
X Z 

h ω 
y x 

- h ω 
y z 

- h ω 
Z X 

- h ω 
x y 

+ 

+ 

+ 

h 
X 

h 
y 

h 
z 

{ L 2 3 } 3 + [ R C A ] 3 / 3 { W l + } 3 = { Η 4 Α } 1 / 3 

- m g b s i n y = Ιω ω - {J(a) + ω ) - mbv }ω + Ιω + mbv 
X V * ' 
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S m a l l y h = Jo> 

( I + m b 2 ) y + { ( I - mb - J ) Ω 2 + mgb}y = (h + π ^ Ω ) Ω 

y i s g i v e n by 

( I - mb 2 - J ) Ω s i n y = (h + π ^ Ω ) Ω - m g b t a n y 
o o 2 2 2 

(I + rab )y + (I - mb - J)
 Ω
 sinycosy = (.h + mabΩ)

 Ωοοεγ 

- mgbsiny 

Ay + Bsinycosy = Ccosy - Dsiny 
2 2 

Ay + {B(cos y - sin y ) + Csiny + Dcosy }y 
o o o o 

= Ccosy - Dsiny - Bsiny cosy 
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4 . 7 5 . 
W h / 3 = { ω 2 ) ι / 3 + { ω ι + } 3 / 3 , { ω 3 } 2 / 2 i s n u l l 

siny"] 

c o s y 

0 J 
2 -

Co) 
y 

Cd) ω 
. x y 

y 

h 
X 

h 
y 

h ω 
y x 

+ 

ω 1 

0 

0 J 
= 

^ 0 

- h ω 
K Z _ 

} 

ω 
X 

ω 
y 

0 

1 / 3 

+ ω 

r 

= 

L 

K h / 3 = 
J 

J ( o ) 
X 

( I + 

0 

h = 
X 

h = 
y 

+ ω) 

m c ) ω 
y 

-

J w + h 
X 

I ω 
o y 

0 

0 

-CO) 
L yJ 

~Ju + h 
X 

I ω 
o y 

0 

{Ai+l i /3 

{ 6 ^ } l / 3 = 

Moments about 0 

{ L 7 } 2 + { L 2 } 2 + [ R A O ] 2 / 2 { F 3 5 } 2 + [ R B A ] 2 / 2 { F 3 6 } 2 

+ t ^ 3 l 2 [ R c o ] 3 / 3 i A i ] 3 | W ^ l = [A31 2 { H ^ 0 } l / 3 

Equating applied to effective forces 

{ F 3 5 } 2 + { F 3 6 } 2 + [ ÄX] 2 {W l + } 1 = m[ A3] 2 { A 4 } 1 / 3 

(a + b ) F ! = ( I - J ) 3 s i n y c o s y - h $ c o s y + mbcß c o s y 

- m g c o s B ( c c o s y + b) 

(a + b)Fi+ = - ( I - J ) 3 2 s i n y c o s y + hfScosy + macf3 c o s y 

m g c o s 3 ( c c o s y - a ) 
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(a + b ) F 3 = - ( J - I ) B s i n y c o s y + m b c ß c o s y - m g b s i n £ 

(a + b ) F 5 = ( J - I ) ß s i n y c o s y + m a c ß c o s y - mgas inf t 

F 2 = O 

L = 3 ( J s i n 2 y + I ^ c o s 2 y ) + m g c c o s y s i n f t + k£ 

4 . 7 6 . 
{ω 3 } 1 / 2 = {ω2}ι/2 + ίω3}2/2 

0 

0 

Ύ 

+ 

ω 

0 

0 

= 

ω 

0 

Ύ 

[V3}i/2 = Ι ω2 ll/2{Rco}2/2 = 

- C y 

Ο 

0 

ί Α 3 } ΐ / 2 = I ω2 h / 2 { V 3 } l / 2 + 5 t {V3 } 1/2 = 

-Cy 

-cy 

0 

2Τ 3 = ί ω 3 } ' ϊ / 2 Ϊ ΐ 3 h / 2 ^ 3 } i / 2 + {V3 } \ / 2 {V3 } 1 /1 

= Jω + ( I + mc ) γ 

V6 = k y 2 / 2 

For a conservative system T3 + Vg = constant 

§t(T3 + v6) = 0 (I + mc2)y + ky = 0 

ω2 = k/(I + mc2) = k/I_ 

{ H 3 0 } l / 2 = {H 3 }l /2 + m [R c o J2 /2{V 3 } l / 2 

Jo> 1 Γ3Τ3/3ω 

o = o 

i n ; I 13τ3/θγ 

{ H 3 o } l / 2 = l ω 2 h / 2 { H 3 o } l / 2 + ^ { Η 3 θ } ΐ / 2 

o 

J ^ y 

I Ύ 
( c t d . ) 
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Moments a b o u t 0 

{ L 2 } 2 + { L 2 6 } 2 + [ R A O ] 2 / 2 { F 2 i f } 2 + [ R B O ] 2 / 2 { F 2 5 } 2 

+ [ R c o ^ / 2 { W 3 } 2 = { H 3 0 } l / 2 

E q u a t i n g a p p l i e d t o e f f e c t i v e f o r c e s 

{W 3 } 2 + { F 2 l + } 2 + { F 2 5 } 2 = m { A 4 } l / 2 
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b F 5 - a F 2 = mgc 

a F j - bF^ = Jioy 

I γ + ky = L 
o ' 

Fx + F^ = -mcy 
• 2 F 2 + F 5 = -mcy 

F 3 - mg = 0 

L = (k - I p ) A s i n p t 

4 . 7 7 . 

(a + b ) F x = Jo )Apcosp t + mbcAp s i n p t 
2 

(a + b)Fi+ = - J o j A p c o s p t + macAp s i n p t 
2 2 (a + b)F2 = -mgc + mabAp cos pt 
2 2 (a + b)F5 + mgc - macAp cos pt 

W h / 3 = 

{Huh/s 

{ Η 4 } ΐ / 3 = 

1 L 3 2 } 3 ~ 

a 

ysina + 

ycosa 

Ιω 
X 

J(ü) 
y 

Ιω 
z 

ή + 
X 
ή 
y 
ή + 
z 

Ca -

L2 

L3 

ω 

+ ω) 

h ω 
z y 

h ω 
y x 

ka 

= 

+ 

- h 
y 

- h 
X 

fa 

ω 
X 

ω 
y 

ω 
z 

h " 
X 

h 
y 
h 

z -J 

ω 
z 

ω 
y J 

+ ω 

f } 1/3 

{L2}2 + {^23}2 ~ {
H2}l/2 

(ctd.) 
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4 . 7 8 , 

{L 2 J 2 ~ 

0 

0 

k 
o 

Ύ + £ 

= {H 2 } l / 2 + [Ä3 ] 2 ( H 4 ) l / 3 

W h / 4 = I Ä2 Κ ί ω 2 > ι / 2 + l £ 3 U W h / 3 + W h / 4 + {ω5 

acosß - fisinßcosa 

ß + fisina 

ä s i n ß + 3 + ΩσοβΒσοεα + ω 

ω 
X 

ω 
y 

ω + ω 

4 . 7 9 . 

[ 5 ί ΐ Λ 

ηω + Ιω 
Ζ X 

-ηω + Ιω 
. χ y 

Jω 
L ζ 

= {L 5 4 J 4 

Li 

0 

L2 

W h / 3 = ^ ω2 > l/3 + W h / 3 

0 

sina 

cosa 

+ ω 

W h / 3 = 
- w a 

0 

L ° 

= 
-v ] 

0 

0 _ 

0 

■{ (a/r) + sina} 

0 

{A4}1/3 = v /a 

0 

-a/r 

cosa 

0 

-cosa 

sina 

2 2 
iw4h/3 = (v cosa)/a 

(a/r) + sina 

0 

0 

Moments about A 

[ l ^ J s / s W h = m[RCA]3/3{Ai+}1/3 + W } l / 3 

2 2 2 2 2 . 
v rsma , v rcosa , v rcosa , v r smacosa 

grsina = + 7-1 + — + 
4a 4a 4a' 

External forces equal to mass acceleration 

W } 2 + W i } 2 = ni{A4}1 / 2 

4.80. Moments about C 

[ R
B J l / l { F 2 3 } l + [ R A C ] l / l { F 2 l } l = {H 2 } l / 1 

( 
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{F23} is perpendicular to the plane containing BC and BD. Hence 

{F23}i = P W I / I K D H / I / I W I / I K D I I / I I 

{ H 2 } I / I = i Ä 2 h [ l 2 ] 2 / 2 [ ^2 ] l i i 2 > l / l 

since {ω2)ι is a null vector. Also, since the external forces on body 
2 have no moment about the x2 axis, {0)2)1 must be perpendicular to 
BC and 

Kc}i/i
{i2h/i = o 

External forces equal mass acceleration 

{W2}i + {F2i}i + {F23}i = m{A2}i/i = m[RBC]i/iii2>i/i 

a5 

* 3 

0 

b 2 

b 3 

= 

1 ° 1 
0 

I 0 I 

c 

0 

[ a x ] = [ A2 la [ l 2 ] 2 / 2 l * 2 l i [ a 2 ] = [ R C A ] i / i 

- 1 0 0 

[a!» 1 = m [ R C A ] 1 / 1 [ a 5 ] = 0 - 1 

0 0 

[ a 6 I = [RBC] 1/1 {RDB} 1/1/I [RBC] 1/1 K B 11/1 

l a 7 l = { R B D } V I ( a 8 ] = [ 0 0 0 ] 

[ b j ] = { ω 2 ) ι / ι [ b 2 ] = { F 2 1 } ! 

b 3 = F c = {W2}j 
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{ H 2 } l / 2 = {0} { ω 2 } ι / 2 

Βω - (A - B)ω ω = 0 
χ y ζ 

{ ω 2 > ι / 2 = 

Γ ω 1 
X 

ω 
• y 

1 ω 
L z J 

Αω = 0 

Βω + (Α - Β)ω ω = 0 
Ζ X Ζ 

ω = 0 and ω = c o n s t a n t = Ω 
y y 

D i f f e r e n t i a t e E q . 3 w i t h r e s p e c t t o t i m e 

Βω + Ω (A - B) ω = 0 
Z X 

S u b s t i t u t e E q . 4 i n t o E q . 1 

.. , Ω2(Α - B ) 2 _ n ω + ω = 0 

B2 

The equation in ω can be similarly obtained. 

4 . 8 2 . 
W h / 3 = ί ω 2 } ι / 3 + ί ω 3 } 2 / 3 + { ω 4 } 3 / 3 

0 

φ ε ΐ η β 

icosß 
+ 

- ß 

0 

0 

+ 

0 

ψ 
0 

= 

- ß 

ψ - i s i n 
(fcosß 

{ Η 4 θ } ΐ / 3 = [1h]k/3iui[}i/3 - m[R A O ] 3 / 3 { ω 3 } 1 / 3 

= m a z / 4 

- 5 3 

2(ψ - φ ε ί η β ) 

5<fcosß 

{HL^O } 1/3 I = ma2/2 
•t=0 

The component of angular momentum about y3 is constant and therefore 

ω = ψ - φείηβ 

or 
ψ = ω + φεΐηβ 

{Hi+oll/2 = [ *3 hiHi+oh/3 

The component of angular momentum about z2 is constant and therefore 
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g i v i n g 

and 

0 = -2 (ψ - <fsin3)sinß + 5£cos 

φ = 2(osin3/5cos3 

ψ = ω(1 + 2 t a n 2 3 / 5 ) 

2Τι, = {ωι + } 1 / 3 {Η ι + ο}ι / 3 

/ 4 ^ - 3 ω <Jcos3j = ma "53 

2ω 

5<£cos3 

C o n s e r v a t i o n of ene rgy 

(2Ί \ + 2V0 = (2Th + 2V4) 
3=φ=0 3=0 

Hence 
2 2 

ω = lOgcos 3/asinf 

For 3 = 30°, ω = 12//a rad/s. 

4.83. 
[ I ]{ω} + [ ω][Ι] {ω} = {0} 

{ω}Τ[Ι]{ω} + {ω}Τ[ ω ][ I ]{ω} = 0 

The second term on the left hand side of this equation is zero and the 
first term is the rate of change of kinetic energy, which is zero. The 
kinetic energy is thus a constant. 

{ω}Τ[ I] [ I ]{ω} + {ω}Τ[ I ] [ω] [ I ]{ω} = 0 

The second term on the left hand side of this equation is zero and 
the first term integrates to 

Since 

{ω} [ Ι ] [ Ι ] { ω > = c o n s t a n t . 

{H} = [1]{ω} and {H}T = { ω } Τ [ Ι ] Τ = { ω } Τ [ Ι ] 

{H} {H} = c o n s t a n t . 

4 . 8 4 . S u f f i x e s 1/1 a r e o m i t t e d t h r o u g h o u t . 

{R AO J 

6.928 

4 

0 
cm K 

- 6.928 

-27.644 

9.373 
cm 

( c t d . ) 
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K B } = 

Κ,ΑΪ = 

0 

- 3 . 4 8 5 

. - 9 . 3 7 3 . 

400 

-166 .586 

. - 1 9 5 . 6 5 

C m iVAol = 

-400 

692.82 

0 

cm/s 

cm/s {VBD} 

{V3} = {VA} + 2/3{VBA} = 
-133.3 

581.72 

-130.43 

0 

526.2 

195 .65 

cm/s 

cm/s 

( ω 3 } = 

" 7 

2 

[13 

.744] 

.66 

.568 , 

Koi = 

K A ) = 

K A J = 

Γ 

ίω 3 } = 

- 6 9 2 . 8 
-400 

. 0 . 

Γ 17 .4 " 

69.42 

[-23.54. 

[275 .4 

- 4 0 . 8 5 

[ 80 

-.212.4 

350.7 

877.3 

r a d / s {ω4} = 

m / s 2 {A"A0} = 

»/s2 K J = 

*/*2 KJ = 

r a d / s {a)k} = 

-56.14 

0 

0 

400 

- 6 9 2 . 8 

0 

0 

- 1 0 9 . 8 3 

.-295.4 . 

O 

- 9 5 4 . 4 

. 354 .8 

10182 

O 

O 

r a d / s 

m/s z 

m / s ' 

m / s ' 

r a d / s z 

{A3} = { A j + 2 /3 {ABA} + 2 /3 {A^ 

- 97 .6 

-1074 

39 .6 

m / s 

Equations for the motion of body 3 

[ R R A ] | F 3 ^ = m [ R ] { A 3 } + 1{ωη
3} 

( c t d . ) 
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{F 3 4 } + {F32} = ra{A3} 

{^3,}T{VBD} = 0 

{F3,} = 

74 

- 41.6 

-111.8 

N {F32} = 

-132.6 

-602.7 

135.6 

N 

The rate at which energy is supplied to body 2 can be equated to the 
rate of change of kinetic energy of body 3. 

{ü)2}
T{L2} = Ι{ω3}

Τ{ω3} + m{V3}
T{A3} 

L = -36.45 N m 
z 

Moments about F for body 2 

{L2} + [R E F ] { F 2 5 } + [ R A F ] { F 2 3 } = {0} 

[F25} = 

-1185 

- 534 

0 

N {L2} = 

0 

0 

-36.4 

N m 

Equating external forces on body 2 to zero 

{F25} + {F23} + {F26} = {0} 

{F26} = 

-120.7 

68.7 

135.6 

Moments about H for body 4 

[ R
B J i F ^} + [REJ{F^} = { 0 } 

{F,y} = 
0 

-417.7 
-155.3 

Equating external forces on body 4 to zero 

{Fh3} + {Fk7} + {FkQ} = {0} 

74 

376 

43.5 
{F k8 J N 
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4 . 8 5 . Te rms i n [ l 2 ] 3 / 3 

A3 = m ( b 2 + 3 a 2 ) / 6 = 84m/6 B 3 = m ( b 2 + 2 c 2 ) / 6 = 17m/6 

C3 = m ( 3 a 2 + 2 c 2 ) / 6 = 83m/6 F 3 = - m a b / 4 = - 2 2 . 5 m / 6 

Te rms i n [12]*+/*+ 

A2 = m(b + a2)/18 = 34m/18 B2 = m(6c
2 + b2)/18 = 33m/18 

C2 = m(6c
2+ a2)/18 = 49m/18 F2= -mab/36 = -7.5m/18 

[ £4 ]3 3 a about x3 4 a = 17° 

Terms i n [ l 2 ] 3 / 4 

A4 = 84m/6 Bh = lOm/6 Ci+ = 8 8 . 9 m / 6 

[ l2 Is 2 a a b o u t x 2 5 a = 2 1 . 5 8 ° 

Te rms i n [ l 2 ] 2 / 5 

A5 = 34m/18 B 5 = 30m/18 C 5 = 52m/l£ 

4 . 8 6 . 

{ R
B C } 3 / 3 = 

3 . 3 4 7 

1 2 . 2 7 3 

4 . 4 6 3 

c m { R r A } 2 / 2 = 

11.653 

42.727 

15.537 

cm 

z z 
[ l i f K / 4 = [ l 2 ] 2 / 2 - m 2 [ R A C ] 2 / 2 + [ I 3 J 3 / 3 ~ ™Λ\,^\1/Ζ 

[I ,] 

[I , ] 

h/h 

k/5 

117 -12.56 - 1.04 

- 12.56 52.6 - 16.75 

■ 1.04 -16.75 100 

kg m 

1^15 = 

119.4 

0 

0 

0.9679 

-0.2142 

0.1314 

0 

45.17 

0 

0.1688 

0.9417 

0.2909 

0 

O 

104.79 

0.1861 

0.2594 

-0.9477 

kg m 
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