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Preface

The purpose of this book is to present the solution of a range of ri-
gid body mechanics problems using a matrix formulation of vector alg-
ebra. The treatment has other notable features. It employs a coherent
letter and number suffix notation and also exploits the relationship
between the orthogonal transformation matrix and angular velocity.
Particular emphasis is placed upon the positioning of appropriate fr-
ames of reference and specifying their relative position.

In writing this text it has been assumed that the reader will have a
knowledge of mathematics and mechanics normally associated with the
first year of an Engineering Degree course.

The plan of the book is simple. There are four chapters, Chapter 1
Kinematics, Chapter 2 Dynamics, Chapter 3 Solution of Kinematics Pro-
blems and Chapter 4 Solution of Dynamics Problems. Chapters 1 and 2
give a succinct statement of the essential theory formulated in terms
of matrix algebra, while Chapters 3 and 4 give a selection of solved
problems and problems for solution. The reader is therefore advisedto
study the problems to which reference is made at various points inthe
text as they occur. A proper approach to the solution of dynamics pr-
oblems demands that kinematic considerations have priority. It is su-
ggested, therefore, that the reader studies Chapters 1 and 3 before
proceeding the Chapters 2 and 4. Answers to the problems for solution
are provided, with some indication of the salient features of their
solution in most cases.

Coventry 1980 T. Crouch



Principal Symbols and Notation

The following lists give only the principal use of the symbols for
scalar gquantities. A given symbol might be used to denote a variety
of physical quantities. The interpretation to be given to a symbol
will be clear from the context in which it is employed.

Kinematics

1 Scalars

a, b, ¢, 4, u, v, w,

r, s, t Length, components of vectors

a, B, v, 6, ¢, V¥ Angles

w, 9 Components of angular velocity

é, O Components of angular acceleration
2 Direction cosine

2 Vectors

With the exception of the lower case Greek letter omega, upper case
letters written inside braces are used to designate vector quantities
as follows:

(R} Position and relative position
{v} Linear velocity

{n} Linear acceleration

{B} Any vector

{w} Angular velocity

{0} Angular acceleration

These general symbols for vector quantities are qualified in two ways
by appropriate suffixes. Thus

{R,}, or {RAOI}I

x1iii
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specifies the position of the point A measured in frame 1, where 0,
often omitted, is the origin of frame 1, while

{RBA}u

specifies the position of the point B relative to the point A measured
in frame 4. It so happens the the relative position vector is indep-
endent of the frame in which its is measured, but the number suffix is
retained for reasons explained in the text.

Similarly,

vyl or {v and {VPQ}3

A01}1
specify the velocity of the point A relative to 0O; measured in frame
1 and the velocity of the point P relative to the point Q measured in
frame 3 respectively.

Also

{a,}1 or {AAOI} and {a .}

specifiy the acceleration of the point A relative to the point O; mea-
sured in frame 1. and the acceleration of the point D relative to the
point C measured in frame 1 respectively.

Numbers are also used as suffixes inside the braces to qualify posit-
ion, velocity and acceleration. Thus

R}y, {Vy}; and (A},

specify the position, velocity and acceleration respectively of the
centre of mass of body 4 measured in frame 1.

The angular velocity vector is qualified by number suffixes. Thus
{wg}g or {wgz}

specify the angular velocity of body 3 measured with respect to body

2 or the angular velocity of body 3 relative to body 2. A similar not-
ation is used for angular acceleration. The angular velocity and acc-
eleration vectors can be further qualified by lower case superscript
letters inside the braces. Thus

{w;}l and {w%}l

specify, respectively, the components of the angular velocity vector
normal to and parallel to to some line joining points(specified in a
particular context) fixed in body 2. Similarly,
n
{aj }1 and {a} h

specify, respectively, the components of the linear acceleration of B
relative to A normal to and parallel to the line joining B and A.

The usual modulus notation is employed to indicate the magnitude of a
vector. Thus
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IR, |1+ Vg, |1 and Jua1 or |uai]

are magnitudes of the corresponding vectors. In the case of the rela-
tive position vector, which is independent of the frame used for its
measurement the number suffix is omitted. Thus the magnitude of

{Rygahr = (R, }u = {RBA},‘

is written

[RBAI'

A vector can be described by resolving it along the axes of a partic-
ular reference frame, when it is said to be referred to that frame.
The frame to which a vector is referred is written outside the braces
after the first number suffix and separated from it by a solidus or
oblique stroke.Thus

uj

{Veati/s = | vs
W3

is the column matrix which describes the velocity of B relative to A,
measured in frame 1, in frame 3.

3 The transformation or rotation matrix

The transformation matrix is a 3x3 orthogonal matrix of direction co-
sines written

(21

It is used to change the frame to which a vector is referred. If, for
example, avector {B}, is referred to frame 1, then the transformation
matrix which changes the reference frame to frame 2 is

[ 2112

Thus
{B}, s, = (01 12{B}; /1.

The transformation matrix can be regarded as the matrix which specif-
ies a rotation, or sequence of rotations, which a frame undergoes to

align it with another. If, for example, frame 1 is to be aligned with
frame 2, then the rotation matrix would be written

[ 2214

If this alignment is achieved by a sequence of simple rotations about
a single axis of appropriately positioned intermediate frames 3 and 4,
then this operation would be specified by the product of rotation
matrices

[ 2217 = (231708413080 1y



xvi Principal Symbols and Notation
Dynamics

1 Scalars

ki
S0
°
r

~ ~

Terms in the inertia matrix

Spring rate, constant

Mass

Kinetic energy

Potential energy

Magnitude of gravitational acceleration
Work

T a g 3 3 & "9

The general symbols can be qualified by appropriate suffixes.

I can take the suffixes xx, xy, xz etc. to denote the axes involved.
A, B, C etc. can take number suffixes to denote the reference frame.

m can take a suffix P to indicate that it refers to a particle, or a
number suffix to indicate the body to which it refers.

T can take a suffix P to indicate that it refers to a particle, or a
number suffix to indicate the body to which it refers. It can be fur-
ther qualified to indicate that the energy is evaluated at some part-
icular position. Thus, for example

Tyr ot Eu

is the rotational kinetic energy in body 4 when in some position def-
ined by the angle o. V can be qualified in a similar manner.

W can take suffix statements such as A+B ~+C to specify the path tr-
aced out by the point of application of the force involved.

2 Vectors

Upper case letters written inside braces are used to designate vector
quantities as follows:

Force

Linear momentum

Angular momentum (Angular momentum)

Force moment
Weight

{
{
{
{
{
{
{

< = 2 0D o HA

}
!
!
} Couple moment
J
J
}

Vector operator del

The general symbols for vector quantities are qualified in two ways by
appropriate suffixes and also by superscripts.

In the case of the force vector, number suffixes inside the braces are
used to specify a contact force between two bodies. As, for example,
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{F23}

which is the force on body 2 due to body 3. Similarly,

{Las}

is the couple on body 2 due to body 3. Also

{Fy}

is the external force on body 2. It might be, for example,

{Fol = {Fa3} + {Fou} + {Fas} + ...,

where 3, 4 and 5 are bodies which exert a force on body 2. A similar
notation can be used in respect of couples. Components of {F} and {L}
can be singled out by writing an appropriate superscript inside the
braces, as for example,

{F*} and (1)}
{F"} anda {L*}

where the superscriptsnand p refer to components parallel to some
reference direction.

A number suffix is used outside the braces to specify the frame to wh-
ich the vector is referred. Thus

{F3uls

is the column matrix which describes the force on body 3 due to body
4 which is referred to frame 3. The {L} can be similarly subscripted.

In the case of linear momentum a number suffix inside the braces spe-

cifies the body concerned and the first number suffix outside the br-

aces specifies the frame in which the momentum is measured. This frame
will invariably be an inertial reference frame which, in this text, is
always designated 1. It is always included by way of emphasis. The se-
cond number suffix outside the braces, written after a solidus, spec-

ifies the frame to which the vector is referred. Thus

{G3}1 /4

is the column matrix which describes the linear momentum of body 3,
measured with respect to frame 1, the vector being referred to frame 4.

In the case of angular momentum of a body about its centre of mass, a
number suffix inside the braces specifies the body concerned and the
number suffixes outside the braces have the same significance as in
the case of linear momentum. Thus

{H3}1

is the column matrix which describes the angular momentum of body 3
about its centre of mass, measured with respect to frame 1, the vec-
tor being referred to frame 4. If the angular momentum about a point
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other than the centre of mass is to be specified, point Q say, then
this is written

{H3Q}1/u

In the case of the moment vector, a single letter suffix is used to
specify the point about which moments are taken and a single number
suffix outside the braces specifies the frame to which both force and
position vectors are referred. Thus

{m, 13

is the column matrix which describes the moment of a force, or system
of forces and couples about A, the vector being referred to frame 3.

In the case of the weight vector, a number suffix specifies the body

to which it refers and a single number suffix outside the braces sp-
ecifies the frame to which the vector is referred. Hence

{wylo

is the column matrix which describes the weight of body 4, the vector
being referred to frame 2.

3 The inertia matrix
The inertia matrix is a 3x3 symmetric matrix written
[I1
Number suffixes are used in the same way as for vectors. Thus
[15]a/3
describes the inertia of body 3, measured with respect to frame 3 and

referred to frame 3. Unless expressly stated otherwise, the centre of
of mass of body 3 will be at the origin of frame 3. Similarly,

[T3]u/s

describes the inertia of body 3, measured with respect to frame 4 and
referred to frame 5.



Chapter 1

Kinematics

1.1. The Position Vector

The position of a point depends upon the datum used for its measure-
ment. Consider three bodies of a system of bodies designated 1, 2, 3
etc. Let a system of co-ordinate axes be fixed in a convenient
position in each of the bodies as shown in Fig. 1.1. A point Pj3 in
body 3 can have its position measured relative to each set

———
of axes or frame of reference. The vector 0;P; is the position of Pjq
—
measured in frame 1, the vector 0O,P3; is the position of P3; measured

—-
in frame 2 and the vector 0O3P3 is the position of P; measured in
in frame 3.

Let {R} be used to represent the position vector, and in particular
represent
—_—

0,P3 by {RP301}1 or simply {RP3}1 ,

—

0,P3 by {RP302}2 or simply {Rra}z ,
—_—

03P; by {R }3 or simply {R

P 303 P3}3

and so on. The suffix outside the braces is used to indicate the frame
in which the position of P3; has been measured.

The position vector can be specified by components along any one set
of co-ordinate axes or reference frame, when it is said to be
referred to that set of axes or reference frame. The reference frame
is indicated by a second suffix, so that

a)

{RPS}I/I =|b

c1

represents the column matrix which specifies the position of Pj3
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Fig. 1.1

measured in frame 1 and referred to frame 1, where a;, b; and c; are
the components of the vector along x;, y; and z; respectively.
Similarly,

as

{er}z/s = |bs

C3

represents the column matrix which specifies the position of Py
measures in frame 2 and referred to frame 3.

While the particular case of the position vector has been considered,
it will be clear that, in general, a vector canonly be completely
specified by a column matrix when the frame used for its measurement
and the frame used for reference are quoted. Some vectors are, however,
independent of any reference body and in such cases a single suffix
outside the braces can be used to indicate the frame to which the
components of the vector are referred.

1.2. The Relative Position Vector

Let A and B be two points fixed in body 3. Then by reference to
Fig. 1.2, which is drawn two dimensionally for ease of illustration,
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{rRg}, = {R}, + {Ry, ], (1.1)

and

{RB}Z = {RA}Z * {RBA}z . (1.2)
Also

{Roz}s + {Rn}z = {RB}3 (1.3)
e {Roz}s + {RA}Z = {RA}S . (1.4)

Subtraction of Eg. 1.4 from Eg. 1.3 gives

{rg}, - (R}, = {Rg}, - {R,},
and therefore

{RBA}2 = {RBA}3 . (1.5)
It is thus clear that the relative position vector does not depend
upon the reference body used for its measurement, but the matrix

which specifies the vector will depend upon the frame to which it is
referred. Thus, for example, while

{RBA}l/s = {RBA}B/S = {RBA}S/S etc.,
{RBA}l/a # {RBA}1/2 # {RBA}z/l etc.

Strictly therefore, in the case of the relative position vector, the
first suffix which denotes the reference body used for its measure-
ment is not necessary, but it is wise to retain it because when time
derivatives are considered it will be found that, for example

%t{RBA}Z/Z # %t{RBA}l/Z .

Refer to Problem 3.1 and Problem 3.23.

1.3. Transformation of Vectors

Let {B}n be any vector where n is the reference body used for its
measurement. If the frame to which it is referred is designated 1,
then the column matrix representing the vector would be written
uy
{B}n/l = Vi
w1

and if the vector was referred to frame 2 then its column matrix
representation would be written

Uz
{B}n/z = Vo

w2
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X3

{FkA}s

or

{®,,}2

a3
{RgJays = {bs}
o

R, }s

or

{R,A}z

b,

Fig. 1.2

as shown in Fig. 1.3. It is necessary, given {B}n/1 to find {B}n/z
and vice versa. Consider the u component of {B}n/1 as a vector in
frame 2 as shown in Fig. 1l.4a. Let

L 2 and 2

Xox1" Tyox) ZyX]
be the direction cosines of u; with respect to the x, , y, and z,
axes respectively. Then the components of u; along x, , y, and z,
are respectively

and uif

u; e
Vigoxy 7 Blhyoxg ZyX}

Similarly, by reference to Fig. 1 .4b, the components of v; along x,,
yo, and z, are respectively
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(a) Y1

Z

Fig. 1.3

vy y V124 and vyt

X2Y1 YoY1 Z2Y1

Also, the components of w; along x, , y, and z, are respectively

and w2 .

WI£X221 P Wity,z, Zy2)

Adding corresponding components gives

u, = ujl + vt + wit

2 Txox L %,y %524
Vo = Ujl Vil + wyt

2 Tryox, Yy yozg
Wy = U 8 + vy + wi .

2 Vrz,x, z,v1 12,2y

These equations can be written in the form
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u; in frame 2

L 2
(a) zy Y2X, X1Y2

2 = 2
X2¥1 Y1X2
2 = 2
Ya2¥1 Y1¥2
2 =3
Z2Y1 Y122

v,in frame 2

(b) .
Fig. 1.4
% 2 %
Y X2X) X2Y1 Xp2Z|| Wy
2 2 2
Va| = | Y2X) Yo¥1 Yo2z1i|vy (1.6)
2 2 2
W2 22X 22¥Y1 2221||wW)
or
{B}n/2 = [21]2{B}n/1 (1.7)
where
2 2 2
X2X) X2Y1 X2
% L L
[2112 =]7¥Y2x) Yo¥Y1 Y22 (1.8)

) ) )
22X 22¥Y1 222

is the transformation matrix which transforms the components of a
a vector from frame 1 to frame 2. Remember, the 'direction' of the
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of the transformation is from 1 to 2

2 %T\ .
L 1] 2

Similarly, it can be shown that

u jlX1X2 jlX1Y2 Qxlzz uz
Vil = QY1X2 QY1Y2 Qlez \£ (1.9)
Lwl jl21X2 jl21Y2 jl2122 W2
or
{B}n/1 = [ﬁzll{B}n/2 (1.10)
where

[ [ [
X1Xp X1Y2 X122
[ [ [
[22]1 =] y1%2 Yi1Y2 vizal. (1.11)
) [ [
21X 21Y2 2122

Reference to Fig. 1.4 and Egs. 1.8 and 1.11 shows that

jz'X2X]_ = jz‘X]_Xz
lst. column [ = 2 1st. row
-4 Y2Xj3 X1Yop
[l = 2 !
of [ 21) 2 29X X129 of [ 2211
i )

Direction cosines of x
relative to frame 2

% = %
X2¥Y1 YiX2
2nd. column ) = 2 2nd. row
c —4 Yo¥Yi YiYo4p—— p
of [2;] 2 = [ of [ 251
102 22Y1 Y122 21
1
Direction cosines of y;
relative to frame 2
and
£ = %
X221 21X>
3rd. column 3 = L 3rd. row
— Y221 Z1Yo4 .
of 121)> zzzzl - Qzlzz of [251
1 T
Direction cosines of z;
relative to frame 2
Thus T _
[ 219 = [ 8259] (1.12)

where the superscript T indicates the transpose. Also
(2201 = 121 2. (1.13)

It should be particularly noted that transforming a vector changes
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only the frame to which the vector is referred and has no influence
on the frame in which the measurement is made.

1l.4.The Rotation Matrix for Simple Rotations

The transformation matrix (%,]; is the matrix which transforms a
vector from frame 2 to frame 1. It can be usefully regarded as
having another role. Consider the case of two frames, 1 and 2 which
have their x axes aligned and arranged so that a positive rotation of
frame 1 through o about the x; axis aligns y; with y, and z, with z,
as shown in Fig. 1l.ba.

o] o]

cosa -sina

sina cosa

Frame 1 rotates a about x,to align with frame 2

1 « about x; 2

Fig. l.5a

By reference to Eg. 1l.ll the terms in [ %;]; for this particular case
are

[ = cosO =1, ¢ = cosn/2 = 0O, & = cosn/2 = 0O

X1X) " TRy / " Tx12, / !

2 = cosrnr/2 = 0, % = cosa, & = cos(w/2+ a) = ~sina
YiXo / " Ty1v2 " Tyiza /

[ = cost/2 = 0, & = cos(n/2=a) = sina, & = cOSa
Z1X) / " Tz1y2 /2-a) " Tz12y

and therefore
1 0 0
[%2211 = |O cosa -sina{ . (1.14)
0

sinag cOsa
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Thus, [%2] 1 can be taken to represent the positive rotation a about
the x; axis which frame 1 must undergo to align it with frame 2, or
alternatively, the rotation of frame 2 about the x, axis in moving
from alignment with frame 1 to its given position. The direction of
rotation indicated by the rotation matrix [2,]1; is thus from 1 to 2

L4

Compare this with its transformation interpretation.

cosB (0]
[&21 = o] 1
o]

Z2

|
|
1
1
1
1
]
i

Y1

Frame 1 rotates B about y; to align with frame 2

/—_\
1 g8 about y; 2

Fig. 1.5b

Figure 1.5b shows the case in which frames 1 and 2 have their y axes
aligned and arranged so that frame 1 aligns with frame 2 when frame 1
undergoes the positive rotation B8 about the y; axis. In this case
cosgB o} sinB
2217 = o] 1 o] . (1.15)
~sing ] cosB

Similarly, in Fig. l1.5c a rotation of frame 1 through y about the z;
axis aligns frame 1 with frame 2 giving

cosy -siny 0]
[25]1, = siny cosy O} . (1.16)
o 0 1

Equations 1.14, 1.15 and 1.16 are important results which are used
repeatedly in the solution of problems and they must therefore be
commited to memory.
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o]
41
o]
1
X1

Frame 1 rotates y about 2z; to align with frame 2

cOSsYy -siny
zy [2211 = |siny cosy
o] o

Y2

1 y about z; 2

Fig. l.5c

1.5.Consecutive Rotations

If the angular position of frame 4 relative to frame 1 is defined by
the rotation matrix

2 I 2
X1Xy X1Yy X12y
2 [3 2

Yi1Xy Yi¥y Y12y

2 2 2
Z1Xy Z1Yy 212y

[ 241, = ’ (L.17)

then it is always possible to replace the matrix by a product of
three matrices such as, for example,

cy =-sy oOfl1 o 0 c8 O sB
[24], = sy Cy olio ca -sa 0 1 0 ,
0 0 1{}j0 sa Ca j|-sB 0 CcB

each of which represents a simple rotation of frame 1. Note that
here ¢ has been written for cos and s for sin to effect an economy of
space and effort.

Figure 1.6 shows frames 1, 2, 3 and 4. The origins of frames 2 and 3
are coincident with the origin of frame 1. Frame 4 is also shown
copied with its origin coincident with that of frame 1. Frame 2 is
positioned such that the z, axis is coincident with the z; axis and
the x, axis is perpendicular to the y, axis. Thus the rotation of
frame 2 about the x, axis makes it possible to align the y, axis with
the y, axis. Frame 3 is positioned such that the x; axis is
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. Y
1 y about zy 2 a about x, 3 B about y; 4

Fig. 1.6

coincident with the x, axis and the y3; axis is coincident with the
copied y, axis. The z3; and x3 axes are thus in the z,x, plane of the
copied frame 4. Thus frame 1 can be aligned with frame 4 by the
following simple rotations

1 y about z; 2 o about x, 3 8 about yj; 4
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giving
[ 2411 = [ 2211023100 241 3
%y -sy o}l 0] 0] cB ] S8
= Isy Cy o]0 co ~sa o] 1 o]
LO (0] 1ji0 SO cal] ~s8B (0] CcB
%ycs - sysasB -sycCa cysB + sysacsB
= |sycB + CysasB Ccyca sysB - cysacB| . (1.18)
|—CasB Sa cacB
Hence, by Egs. 1.17 and 1.18
sina = 2 1.19
¢ z1yy ' ( )
-tany = % 2 1.20
Y= vy ( )
and
-tang = /L . (1.21)

zzlxq zlz"
Refer to Problem 3.2 and Problems 3.24 and 3.25.

1.6.Successive Transformation of Vectors

It is frequently necessary to transform vectors from one frame to
another in cases where the alignment between frames cannot readily be
achieved by a simple rotation about an axis of one of the frames. In
such cases 1t is possible to choose convenient intermediate frames
which can be readily aligned by simple rotations.

Consider the system of Fig. 1.7 in which body 2 rotates about the z;
axis fixed in body 1 and body 3 turns on body 2 about the y, axis
fixed in body 2 and also rolls on body 1. Frame 1 can be aligned with
frame 3 by the following simple consecutive rotations

7

1 y about z; 2 -8 about y, 3

and therefore

cy -sy (0] CcB (0] -SB
[ 2317 = [ 221102312 = Isy Cy 0 0 1 0
(0] (0] 1 S8 0 CcB

Thus, for P a point in body 3

{RP02}1/1 B {R0302}1/1 " {RP°3}1/1

lﬂzll{R0302}2/2 + [2211[2311{Rp03}3/3



Kinematics

cCy -8y
Sy Ccy a
0 0 1 |{o]
cy -sy O0][ece o -sg]{b
+ |sy cy 0 0 1 0 c (1.22)
0 0 1] s8 0 cgjid
P
Y3
e v % 7
cosB o) -sing ] 01 1 a
(23] = [O 1 0o I
sing o] cosBJ ! b
Note. The rotation of frame 3 {&03}3/3 =]c
relative to frame 2 is negative.
"cosy -siny 0|
[2,); = |siny cosy o] S
0 o 1] 01,05 3
/ Y3
O3
*p
-

X1

Fig. 1.7
If vy is known in terms of time (and if body 3 rolls without slip on
body 1, B is also known) then the final expression for

{RP°2}1/1

is readily differentiated with respect to time, even when b, ¢ and d
are known functions of time, to obtain a general expression for the
velocity of P. It is thus possible to obtain a general expression for
velocity and acceleration of points in complicated systems when less
systematic methods would require considerably more ingenuity and have
less chance of producing the correct result.

from

Suppose it is necessary, in a more general case, to find {B}n/1
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{B}n/s' Then
{B]'n/L+ = [QS]H{B}n/S [
{B}n/3 = [ 2yl 3{B}n/,+= [ 2£y4] 30 251 '*{B}n/s v
{B}n/2 = [ 23] Z{B}n/3= [ 231 50 241 30 25] q{B}n/S
and
{B}n/l = [22]1{B}n/2= [12]1[13]2[2413[2514{8}11/5
= [25]1{8}1’1/5 . (1.23)

There is, of course, no need for the frames to be numbered consec-
utively. Thus {B}n/1 might equally well be given by

{B}n/l = [28]1[22]8[23]2[17]3[15]7{3}1,1/5 (1.24)
where

[ 2511 = [ 22010 23) ol 241 30 251y (1.25)
or

{2517 = [ 251 10 220 gl 231 20 271 3[ 25)1 7 . (1.26)

The transformation thus proceeds from right to left, 5 to 4 to 3 to 2
to l, or 5 to 7 to 3 to 2 to 8 to 1.

In the alternative rotation role, the matrix product is read from
left to right. Frame 1 can be aligned with frame 5 by the following
successive rotations

rotate frame 1 to align with frame 2,

rotate frame 2 to align with frame 3,

rotate frame 3 to align with frame 4
and

rotate frame 4 to align with frame 5.

1.7.The Velocity and Acceleration of a Point

Figure 1.8 shows a point P at time t when it is coincident with a

a point A fixed in frame 1 and also at time t + At when it is
coincident with point B fixed in frame 1. The change in position of
P which occurs in time At is represented by the vector

{ar, }1

when the change is measured with respect to or measured in frame 1.
Thus

]
)
|
—~—
)

{ARp}l

(1.27)

1
——
e
—
—~—

o)
3
—
—
——
w’JU
RS
e
—
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Path of P drawn on
frame 1

Fig. 1.8
and the velocity is given by
{v,}1 = Limit{ar,}, . (1.28)
AE~>O T
1f {aR,}1 is specified by
AX,
{ARP}I/I =AY
AZl
then AxXq1/Mt %4
{v,}1/1 = Limit{aR,}, ) = Limit|ayi/at| = |1
bt~0 t At>0 AZl/At él
= {Ry}1/1 = %t{RP}l/l (1.29)

The acceleration of P is given by

MMAERBM - B



16 Matrix Methods in Engineering Mechanics

(A }1/1 = %t{vp}l/l ={v,hhi,1 = (R }11

AXl/At 321

= Limit{aV,};,1 = Limit|ay;/at| = |§ (1.30)
At+0 ————— At+0 .
At Az /At Z

If the change in position of P is measured with respect to another
frame, say frame 2, which is moving relative to frame 1, then by
considering the situation shown in Fig. 1.9, drawn two dimensionally
for ease of illustration,

Path of P drawn on Path of P drawn on
frame 2 frame 1

X1

—_—
o>
<
——
N
|
—_—
<
—
N
|
——
N

= {ry}» - {r }2| (1.31)

—_
>
—
—
]
—_
u’JU
—
N
1
—_
o
>
—
N

t+At t+At
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and since

R # {R ,
{ A}z' {r, }2 -

{ar, }1 # {sR,}, .

Therefore, in general
v, 1 # (v, ]2

The vector

{ARP}I
can be referred to frame 2 so that
AX,
{aR }1/2 = 1211 2{aR }1/1 = |4y (1.32)
Azoy
Hence
{Vpti/2
can be defined as
AXo /At
{vphi/2 = Limit{ARP}l/Z = Limit [Ay,/At
A0 —% B0 4z, /at
=1[121]2 Limit{ARP}l/l = [QI]Z{VP}I/I (1.33)
At —/—m8m
At
Now
(v, hh/2

can also be written

{Rp}l/z =121 2{R }1 /1 = llllzgt{RP}l/l =211 2{V, }1/1,

but it is important to note that while
= d , # d
{RP}1/1 at{RP}l/l (R, }1/2 Ht{RP}l/Z

In general, a vector specified by a column matrix has its time deriv-
ative determined by differentiating each element of the matrix with
respect to time only if it is referred to the frame used for its
measurement. Thus

d {B} (1.34)

3t n/n = {B}n/n
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where the dot is taken as an instruction to differentiate each term
in the {B}n/n matrix only when the suffixes are the same. The vector

{é}l/z is not obtained by differentiating each term of {B};/, with
respect to time since {é}l/z is defined by

{B}1/2 = [2112(B}1 5
The relationship between

{B};,, and d {B},
/2 at /2

is readily determined by differentiating the relationship
{BY1/2 = [ 2112(B}1 1

Thus
d {B}; = |d [ 211 1{B}1 + [ 2] {é}l 1
= /2 S 2 /1 112 /
d [ 2] '{B}l 1t {é}l (1.35)
112 / /2

and therefore only if the first term on the right hand side of
Eq. 1.35 is a null matrix will

{B}1/2
be equal to

d {B}1/»
dt

Notably this is true for certain descriptions of the angular velocity
vector by virtue of the relationship between the derivative of the
rotation matrix and angular velocity. (See section 1.9).

Refer to Problem 3.3 and Problems 3.26 to 3.29.

1.8.Small Rotations

A body, body 4, moves relative to body 1 such that frame 4 moves from
alignment with frame 2, which is fixed relative to frame 1, to align-
ment with frame 3 which is also fixed relative to frame 1. It is
always possible to move frame 4 from alignment with frame 2 to align-
ment with frame 3 by a maximum of three simple rotations such as

///"‘_“~\\ ///"—_*\\\\

2 a; about x, i p; about Yy j y; about zj 3

where frames i and j are frames intermediate between frames 2 and 3.
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Thus

(312 = (81202123,

and if the angles a,, 8; and y; are small, then

1 o 0 1 o gfr -v; o
[ 23], = o 1 —ay o 1 0 yi 1 o
0« 1 |[-81 o 1]lo o 1
1 -Y1 B1
= |y1 = @181 1 - o181y =o1f-
o1y — B a1 + y1B1 1

When second and higher order products are neglected

1 -y B1
(2312 = {v1 1 oy e
-8 oy 1

An alternative combination of rotations could be

///”——-‘\\\~_///”—_‘“\\\~

2 ap about x; i y, about z; j B2 about yj 3

in which case

1 o ollr -y, o 1 0 B>
[23]2 = {O 1 ~a2 |l Y2 1 0 (0] 1 (e}
0O ap, 1|0 o} 1{|-8, O 1

(1 ~Y2 B2

= |¥2 + ag2B82 1 - azBz2y2  ~o2

L*2Y2 — B2 a2 = Y282 1

and when second and higher order products are neglected

1 ~Y2 B2
2312 = | v2 1 -apy.
-B2 a9 1

Examination of the other four possible combinations of rotations
would show that the form of [ %3], is the same as the two previous
cases and therefore independent of the order of 'addition' of the
small rotations. It is therefore possible to write

1 -y B
[ 2317 = Y 1 =a| .
-8 o 1
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This vector like property can be used to treat small rotations like
vectors. Thus

{ae6y},

can be regarded as a vector of magnitude

|A91+|2 = /(cxz + 82 + Y2)

which is the angle through which body 4 rotates when frame 4 moves
from alignment with frame 2 to alignment with frame 3, the angle
being measured with respect to frame 2. The column matrix represen-
tation of this vector is thus

[¢)
{Aeq}z/z = |8 (L.36)
Y

but since frame 2 is fixed relative to frame 1, {A6,}, is equally
well {A04}; and therefore

a
{Aeq}l/g = {B| . (1.37)
Y

1.9. Angular Velocity and the Derivative of the Rotation Matrix

Consider the motion of body 4 relative to a reference body 1. Let A
and B be points fixed in body 4. Then

{RBA}I/I = {RBA}“/l = llqll{RBA}q/q .
Let frames 2 and 3, fixed relative to frame 1, be arranged such that
frame 4 (fixed in body 4) moves from alignment with frame 2 at time t
to alignment with frame 3 at time t + At. At time t

[ 2417 = [2217 ,

{Ry buyu = {Rg tuy2

{Rgabi/1 = L2l Ry Juyu -

Similarly, at time t + At

{RBA}1/1 = llall{RBA}u/u

and

Now

{ARBA}I/I = {RBA}I/I’t+At - (g, 111 .

= [[ 2311 =251 1]{%,\}4/4 .
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The change in angular position of frame 4 which occurs in time At is

LAZy) g = [ 2411 - l2y)a| =108%3)1 = [22],
t+At t
and since
[ 23] 7 = [221 102312
(A2411 = (250102315 - 111] .
Now
0 -y B
[231, - [11 = Y 0 -a
-8 o 0

which is a skew-symmetric matrix which can be formed from the column
matrix of Eq. 1.37. It is thus possible to define a skew-symmetric
form of the angular rotation matrix as

o -y B
[ ABy] 1/2 = Y 6} = (1.38)
-8 o 0
and therefore
(82417 = [ 221 10864]1/2 -

Hence, by reference to the footnotes on pages 22 and 23, + which
show how the transformation of the skew-symmetric form of a column
matrix is effected,

[484] /2 = 121121A9411/1[111£
so that
[AR4]1 1 = [ 220110211 21 4841 1/1[ QI]TZ = [A84] 1/1[9,2] 1. (1.39)

The angular velocity of body 4 relative to body 1 is defined by

{wy}; = Limit{aey}; (1.40)
At->0 At
and therefore
[Eq] 1 = [Limit[ £84] 1/1][ 2211 = [wyl 1/1[ 291
At->O — T
At
= (1.41)

twgly /108411

Thus, in general
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dte o= el o= ted el (1.42)
dt
Now
{ary, b1/ = 180 1{Ry, Fuyn = 18841 1 /10220 1{Ry, Ju /e
so that
{VhA}l/l = Limit(864] 1,7 [ 221 1{Ry, }u
At>O —]/————
At
= lwul1/1l1211{RBA}u/2 = lwul1/1{RBA}1/1- (1.43)
If
w X
X
{““at}l/l = w, and {RBA}l/l =1y
(.UZ yA
then
o} —w, v, Zmy - Yu,
{VBA}l/l = w, 0 TR YT Re, T o2Zw
-w w (0] z Yw = Xw
Yy x . X y

Vectors corresponding to the above statements are shown in Fig. 1.10.

+ The relationship between the transpose and inverse of the trans-
formation matrix

Now {B}n/1 = [22]1{B}n/2 and since ]{B}n/1] = I{B}n/zl’

T T
Also
_ T _ T T
{B}n/1 = [22]1{B}n/2 and {B}n/1 = {B}n/zlzzll
Hence

(Bl ), 220 102211 (B}, = (B}, (B},

which requires that

[2,0112,01 = (11 or (2,07 = (2,170



Kinematics 23

1.10. The Relative Velocity of Points Fixed in a Rigid Body

Consider two points A and B fixed in body 2 which is moving relative
to body 1. The velocity of B relative to A, measured in frame 1 and
referred to frame 1 is given by

{VBA}l/l = [wzll/l{RBA}l/l (1.44)

as shown in section 1.9 and the relative disposition of the vectors
corresponding to this statement is illustrated in Fig. 1l.1ll. Note
particularly that the relative velocity vector

{vi

is perpendicular to the plane containing the vectors {w,}; and {R
If

BA}'

|
€
o]
o]
0
o]

[Vgalt = v, Juo|

then

v = (wsing)r or v w(rsine)
as can be seen from Fig. 1.12.

The component of angular velocity along AB does not contribute to-
wards

(Ve 11

and cannot therefore be found from {V . If {wy}; is to be found,

BA}I

+ The transformation of the skew-symmetric form of a matrix

Consider the vector product of the vectors described by {B}n/1

and {C}n/1

{A}n/1 = [B]n/l{C}n/l
Therefore

T
[2112{A}n/1 = [21!2[Bln/1[21]212112{C}n/l

or

T
= B
{A}n/z [21] 2[ ]n/llzllz{C}n/z
which requires that

[Bl,,, =[%1120Bl /1215

MMAERBM - B8*
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[
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| | l
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z
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x
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XU)I

Xw
Y

Relative velocity

Fig. 1.10.

and not simply its compconent perpendicular to AB, then more informat-
ion about the motion must be provided, for example the component of
angular velocity along AB.

Consider the problem of finding {wy};/; given {VBA}l/l and {RBA}l/l.
Write

Vg b1 = V), (w2}iyp = {w}and (R, }i1/) = (R}
for economy of space and effort. Now
{Vv}l = [w{R} (1.45)

and if this equation is premultiplied by [R], then
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Fig. 1.12.

[RHV} = [RIlwHR},

The right hand side of this equation can be expanded using the relat-
ionship

[ANBI{C} = {B}({A} {C}) - {C}({a}"(B})
to give
[RIV} = {0} ({RY {R}) - {R}({R} {u})

and therefore
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T
(o} = [RIVD , (R {u)) g,
IR IR|
= {u"} + (") (1.46)

where {w"} is the component of {w} normal to the plane containing {R}
and {V} which is determinate, while {w’} is that component of
parallel to {R}. {w’} depends upon {w} , which is to be determined,
and is therefore indeterminate from a knowledge of {R} and {V} alone.
The vector {w"} is illustrated in Fig. 1.13.

{u"} = .Lgl{%}_
IR
yo
\\\\
‘\

Fig. 1.13.

The reader should appreciate that it is not possible to find {w} from
Egq. 1.45 as follows

{Vv} = -IRHuw}

“[R17HV) = {u)
since [R] is singular, its determinant being zero.

If both sides of Eq. 1.45 are premultiplied by [w]l , then it is easy
to show that

T

2 2 (1.47)
lwl [w]

and therefore the component of {R} normal to the plane containing {w}
and {Vv} is defined, but not that parallel to {w}.

Refer to Problems 3.4 and 3.5 and Problems 3.30 and 3.31.

1.11. The Central and Instantaneous Axes

Let P be a point in or attached to body 2 which is such that its vel-
ocity, measured with respect to body 1, is parallel to the angular
velocity vector {w;};. Such a point is said to be on the central axis
for the motion of body 2 relative to body 1.
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Z1

to {w,}hy

Fig. 1.14.

If A is a point fixed in body 2 which has a known velocity,

(v,tiyi = {v,hi/1 + (V. hipn
or

(Vvphir = (V,hiyr + tea iRy b1 1
which, for the immediate purpose can be abbreviated to
{v,} = {v,} + 1wir,,}

for economy of effort. Since {w} and {VP} are parallel

[w]{VP} = {0} = [w]{VA} + [w][w]{RPA}

Central axis parallel

27

and therefore, using the expansion for a vector triple product given

in Section 1.10,

{0} = twl{v,} + ({u}"{R, D {w} - ({u} {u)(R,,]}

giving Hv,} et {r, 1
(Ryg} = = II:“ .
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Thus, the position of P relative to A can be considered to be made up
of two parts as shown in Fig. 1.14., Introduce a point Q on the central
axis such that

Loz 1 1 {V, 1o pn

{Roatr/1 = . (1.48)

2
|w2‘1

QA is perpendicular to both {V,}, and the central axis, and the vector

{ROA} is determinate. The vector
- (Lwz31 /11y, J1 /1)
[Rpgli/1 = | |2A A {wa}y 1 (1.49)
i w2 |1

is parallel to the angular velocity vector and indeterminate.

The velocity of Q, and therefore that of P, or any point on the cent-
ral axis, can be found from

{VQ}I/I = {v,hip + {VQA}I/I = {v,hipr + [w2]1/1{RQA}1/1

[w211/1[w211/1{VA}1/1

= {v,hh,1 + . (1.50)

2
|w2|1

Using the expansion for the vector triple product given in Section
1.10 to expand the second term on the right hand side of this equation

({w} {v, b ({0} {u})

{VQ} = {VA} t ———Aw} - ————1V,
lwl |l

and since the last term on the right hand side of this equation is
simply {V,}

({w2}§/l{vA}1/l)

{VQ}I/I = {wz by 1 (1.51)

7
lwa |y
For a similar point S relative to some point B fixed in body 2

({w2}€/l{vn}1/l)

{vghir = {wa}1/1 (1.52)

2
|z |1

and since
{Vs}l = {VQ}I 4

{NZ}I/I{VA}I/I = {wz}l/l{vn}l/l = constant. (1.53)

Hence the quantity
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{wrt1/1{V, 11

2
lwa 1

is also a constant for the motion. It has the dimensions length per
unit angle and can thus be though of as representing the distance
through which the body would advance along the central axis per unit
angle of rotation if the instantaneous motion persisted.

If the instantaneous motion of the central axis is zero, then the cen-
tral axis is called the instantaneous ‘axis.

If two bodies having relative motion have points in them, or attached
to them, which have no relative motion at all times, then such points
are on the permanent axis for the relative motion of the bodies.

A determination of the position of the central axis, instantaneous
axis for the relative motion of two bodies allows the direction of the
vector representing their relative angular velocity to be determined.

Refer to Problem 3.6 and Problems 3.32 and 3.33.

1.12. The Relative Acceleration of Points Fixed in a Rigid Body

For points A and B fixed in a rigid body, body 2, moving relative to
body 1

{Vgahi/1 = tuali it 22 1 {Ry, }ay2 - (1.54)

Differentiating to obtain the acceleration of B relative to A

A b = Loz 1022 iRy, Yayn +
Lzl /1lw2 1y /102211 {Ry, }ay2 (1.55)
since {R ,},/, is constant. Hence
. 2
Al = [lw211/1 + lw211/1] {Regabi 1 (1.56)

and since

twa i 1{Rg, b = {v hipn
the acceleration can also be written

{ag,}1ir = teahi i {Ry, hi/n + twa i n (v, hi (1.57)
The vector corresponding to

twz /1{Ry, 111

is perpendicular to the plane containing {w,}; and {RBA}. The vector
corresponding to
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Lo di/1{R /1

Fig. 1.15.

two h/1{Vy, ha

is perpendicular to the plane containing {w,;}; and {RBA}. These comp-
onent accelerations are shown in Fig. 1.15.

Alternativley, if the equation
{(Veahipr = teanivg b o
is differentiated with respect to time, then
d
{Ag hipr = teehi it n{vg, hize + 10 higelvy, hiye

and

{ABA}l/z = lwzll/z{VBA}l/z + %E{VBA}l/Q . (1.58)

Also, the acceleration of B relative to A can conveniently be resolved
inot two comonents, one parallel to BA, the other normal to BA. Thus

{ag i1 = {A;A}l/l + {A:A}l/l (1.59)

as shown in Fig.l.16. The magnitude of {A;,}, parallel to {rR ,} is
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{A:A}l {ABA}l {A;A}l
Ny B
. —»~——v————;;fjj
\\ ’// [
A
. AN :>,///
(SR Y
l/’ i // Y1
-
X1
Fig. 1.16.
2 IRyl 125,11

ABAII = IABAIICOSa = TR T cosa
Rea

{RBA}i/l{ABA}I/I

IRy !

and therefore

P {RBA}I/I {RBA}i/I{ABA}I/I{RBA}I/I

{A;A}l/l = |a,, 11 = >
IRy, | | Ry, |
T
{Rgh1/1 . 2
= [[w2]1/1 + [wzll/l]{RBA}l/l} {Rygati/1e
IRy, |
As {R,,} is perpendicular to the vector corresponding to

twa 1 /1{Ry }1/17 {RBA}i/l{ [&211/1{RBA}1/1}
is zero. Hence

(R, V1102 hi/1lwa i/ R /0 Ry, bi 0
LNE

{AQA}I/I =
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(~{Ry /10w 1T /1{vg s Ja/0) (R 1i/a
2
IR, , |

(= {lwzll/l{%A}l/l] T{VBA}I/I){RBA}I/I
IR, |°

giving 2
[Veal1{Rg 11

IR, |°

(1.60)

{A:A}l/l = -

as shown in Fig. 1.17.

{uwhH
B
v, . h
{ry,}
A
{a;, 1
{A:A}l/l = Loy ]f/l{RBA}I/l = [w.;]l/l{vnA}l/l {A:A}x/l = [15“211/1{1?,“}1/1
ViR @iy, - Dol
IR, |° [Rg,a !
Fig. 1.17.
Also, if
ry X2
{A;A}l/l =|s2| and (R, li/1 = |v2] .
t, Z;

then since the vectors are at right angles to each other
T
{RBA}I/I{A;All/l = 0 Or Xjsro + y528, + z2ot, = O . (l1.61)
The vectors {w,}; and {w,}; can be resolved parallel and normal to

{Ry,} so that
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{wp}ly = {wr}] + {uh) (1.62)
and
{&2}1 = {&2}1 + {ég}l . (1.63)

Thus, in cases where the constraints on the motion are such that the
parallel components are zero,

n n 2
{A:A}l/l = [w2]1/1{VBA}1/1 = lw211/1{RBA}1/1 (1.64)
and
{A;A}l/l = l&311/1{RBA}1/1 (1.65)

or n
[RBA|1/1{ABA}1/1

2
IR, |

{apli/1 = (1.66)

as shown in Fig.1.,17

1.13. The Relative Acceleration of Coincident Points Which Have

Relative Motion

Consider the motion of two bodies, bodies 2 and 3, which are moving
relative to a reference body 1, and constrained such that

{wz}l = {wg}l

Let A, and A; be convenient coincident points on bodies 2 and 3 resp-
ectively which have relative motion. Then

O
{RA3A3}1/1 = {RA3A2}2/1 = [2211{RA3A2}2/2 =10 (1.67)
0O

since the points are coincident. Differentiating Egq.l1.67 with respect
to time to obtain the relative velocity of these two coincident points
gives

{VA3A2}1/1 = [w211/1l£211{RA3A2}2/2 + lﬁzll{éAaAz}z/z

[1211{VA3A2}2/2 = {VA3A2}2/1 (1.68)
since
{RA3A2}2/2

is a null matrix. Differentiating Eg. 1.68 with respect to time to ob-
tain the relative acceleration gives
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{AA3A2}1/1 = [w211/1[22]1{VA3A2}2/2
+ [w211/1[1211{VA3A2}2/2 + [1211{AA3A2}2/2

and therefore

{AA3A2}1/1 = 2 w2]l/l{vA3A2}2/l + {AA3A2}2/1. (1.69)

1.14. Differentiation of the Angular Velocity Vector, a Special Case

Consider the angular velocity vector represented by the matrix

{w2}1/2

which specifies the angular velocity of body 2 measured with respect
to body 1 by referring it to frame 2 which i3 fixed in body 2. Now

{wody/2 = 121 12{w2}1 1y
and therefore
d .
EE{w2}1/2 =lwylazal 211w}y /gy + [2y12{waly /e (1.70)
Since
{wiltayo = ={wshy /2
Eg. 1.70 can be written
d _ .
gg{wz}l/z = ~lwylysoluwstyyo + {w2ly/o (1.71)
The vector product
lwply/2{walyy/o
is a null matrix, so that Eg. 1.71 reduces to
{wptryo = %§{w2}1/2 . (1.72)
Thus
{wy}1/2
is unique in that it is determined by differentiating each element of
{w2ti/2
with respect to time. Note particularly that

d
{woti1/m # gelwzti/n

unless frame n is fixed relative to frame 2.



Kinematics 35

1.15. Relative Angular Velocity

Consider, for example, the situation in which bodies 2, 3 and 4 have
motion relative to body 1 and relative to each other. Then(Fig. 1.18a)

{wy = {wo hy + {w3ls + {wy s (1.73)

l— 4 l— 2 2— 3 3—— 4

or (Fig.l.18b)

{wzlsy = {wylo + {wgly (1.74)
2—» 3 22— 4 4{—— 3
or (Fig.l.18c)
{ws = {wy 1 + {woly + {wyls (1.75)
l1—»3 11— 4 4 —— 2 2—» 3

and so on.
To write Egqs. 1.73, 1.74 and 1.75 in column matrix form requires that

the vectors be referred to the same frame, If, for example, the vectors
of Eq. 1.74 are referred to frame 3, then

lwgla s = {wyla/s + lwslyys (L.76)

or

{wg}g/g {wu}z/g + [2@]3{(»3}1.,,/1, . (1.77)

As might be expected, equations like Eq. 1.77 can be derived by diff-
erentiating the relationship between the appropriate rotation matrices.
Take the example of deriving the column matrix form of Eq. 1.73. Now

[ 2417 = 0282 110 231208413

and on differentiation this becomes

oyl 1108411 = Lwp /10241 + Ui ilws lp /20 20 02

+ [lellwag/glilu]g-

Postmultiplying this equation by [ £; 1y gives

lwy 1 /1 = lwaly/r + 122N lw3zla/a0 84102081 1y

+ o3 loyls/zl 2, 13020 1y
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w11 /1 [Q211[w312/2[Q21§ + llslllwuls/alisl{

lwupli/1 + lwgla/1 + Twylsz/

which, written in the column form rather than the skew symmetric form,
becomes

{wuyly/r = {wolyi/r + {wzla/r + {eyls/r
Similarly, the column vector form of Eqg. 1.75 can be derived from

[ 2317 = [ 24 170221408515
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1.16. Relative Angular Acceleration

Consider, for example, the situation in which bodies 2 and 2 have
motion relative to body 1 and relative to each other. Then

{w3}1/1 = {wz}l/l + [22]1{w3}2/2 (1.78)
Differentiating Eq. 1.78 gives

{wsti/1 = {wpbi/1 + Lwali/1l 8 h{wsda/p + 122 11{03)2/2
(1.79)

The middle term on the right hand side of this equation can be reduced
using Eq. 1.78. Thus

twp i1l 22 i{esta/e = Twp li/1{{wstyi/r = {wali/a ]

twy hy/1{wsty

since
twz l/1{wz by /1

is a null matrix. Equation 1.79 can thus be written

{o3t1/1 = {opd1/1 + Lwglinlwsdi/y + {wsdayo. (1.80)

Refer to Problems 3.7 to 3.22 and Problems 3.34 to 3.51.



Chapter 2

Dynamics

2.1l.Newton's Laws of Motion

Dynamics 1is concerned with the relationships between force, mass,
energy and motion. For Engineering applications, except those dealing
with nuclear and fast moving electron phenomena, the Newtonian model
of mass, space, time and force is adequate.

Newton (1642 - 1727) in his "Philosophiae Naturalis Principia Mathem-
atica" of 1687 enunciated three laws or axioms relating force and
motion which can be stated as follows:

1 A particle will continue in a state of rest, or of uniform motion in
a straight line, unless it is compelled to change that state by forces
impressed upon it.

2 A change of motion with respect to time is proportional to the
motive force impressed.

3 For every force acting on a particle, there is a corresponding force
exerted by the particle. These forces are equal in magnitude, but
opposite in direction.

The first law implies the existence of an inertial frame of reference.
Consider the following hypothetical experiment. Erect a set of co-
ordinate axes in deep space remote from any other matter and project

a particle successively along each axis. If the axes are not accel-
erating and not rotating, then the force free motion will persist
along the axis which it was projected. Such a set of axes is said to
be inertial. No set of axes is truly inertial, but a set of axis fixed
in the 'fixed' stars are very nearly inertial and must be used, for
example,in space ballistics. For most Engineering applications forces
can be predicted assuming that a reference frame fixed in the earth is
inertial. In this text the inertial reference 1is always designated 1.

The "motion" of the second law is measured by the momentum of the

particle, which is the product of its mass and inertial velocity.Thus,
by Newton's second law

38
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{F,} = a{m {v, }1}/at « d{g, },/dat (2.1)

where {FP} is the external force or impressed force on the particle of
mass m, and {V}}l is the velocity of the particle measured with resp-
ect to an inertial reference frame. For a particle of constant mass,
Egq. 2.1 becomes

{F,} = xm {2 }1 = kd{G, },/at (2.2)

which, for consistent units, reduces to
{Fp} =m{n }1 =dfg},/at . (2.3)

When the arbitrary units of mass_and acceleration chosen are the kilo-
gramme (kg) and the metre/second2 (m s-2), then the corresponding

unit of force is the newton (N). Thus Eq. 2.3 is used to define force
and requires that the force vector

{Fp}

be that vector which is identical to the mass=-acceleration vector

m,{a, }1 = d{g, }./at.
{FP} is the vector which describes the external force and requires no

suffix outside the braces to specify the frame used for its measure-
ment since this is implicit in the accleration which it produces,
When Eq. 2.3 is expressed in its column matrix form, the frame to
which the force vector is referred is specified by a single suffix
outside the braces. Thus, when the vectors are referred, for example,
to frame 3, the column matrix form of Eq. 2.3 would be written

{Fp}s = mp{AP}1/3 = d{G, }13/dt. (2.4)

2.2.The Measurement of Force

While Eq. 2.3 defines force, it is not convenient to use it directly
to calibrate force measuring devices or force transducers. The most
accurate method is that of using the fact that the force of attract-
ion of the earth on a mass m is mg, where g is the local gravitational
accleration. The force mg can be applied to the transducer directly,
or with less accuracy, through a system of levers.

Force meters take a wide variety of forms. At one end of the scale
there is the dial test indicator type of device which can be used, for
example, in the static calibration of materials testing machines, and
at the other end of the scale is the piezo-electric force transducer
with its sophisticated charge amplifier, capable of measuring force
over a frequency range of zero hertz to several kilohertz and of meas-
uring small changes of force in the presence of large mean forces.
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2.3 Work, Potential and Kinetic Energy

Let a particle move from a point

X X

A B
{Rp}l/l = | Ya to the point {Rp}l/l = |y,
z z
A B

under the action of a force

The work done is given by

B B
Wess = {FP}gd{RP}l/l = (F dx + F dy + F_dz) (2.5)
YA A
where
dx
a{r }y 1 = jdy | .
dz
If
{FP }Tld{Rp}l/l = _dvl

that is it is an exact differential, then

W, . = | -av o= -(v, - v (2.6)
A
where V= f(x, vy, z) .
Hence
- 8V v MY
dav = X dx + 3y dy + "z dz
= -(F. dx + F dy + F dz)
b4 y z
giving N\ ) )
F_ = % ! Fy 5y and F, Y (2.7)

When Eq. 2.6 holds, the work done is dependent only upon the position
of the points A and B, that is it does not depend upon the path traced
out by the point in moving from A to B. V is known as potential energy.
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If a vector operator {v}; (del) is defined by

{V}l = , (2.8)

{1

[on]
N

then for the case in which the work done is not path dependent,

"{FP}Ed{RP}l/l = 4av = {V}EVd{RP}l/l

or
{Fo}1 = =~ {vhhv . (2.9)

If both sides of Eq. 2.9 are premultiplied by

9 9
© 32 3y
9 9
tvhir =132 % 7“3
9 9
3y 3% ©
then
(v {F, }: = - (v {viv. (2.10)

The right hand side of Eq. 2.10 is

o o _afav) [ afvo_aiv ] [lom,, am]
3z 3y X 323y dydz o0z 3y
-3 0 2 ||av|_ |_afv_ , 3%v | _| 23E_ 3F
5z X Yy 3Z93X 3z92 3z X
IR TN ) 2’v_ _ 3°v _ BE., BF,
dy 3x 3z L ENEES axayJ 3y BXJ
which is a null vector since
2 2
sV _ 3y
391349, 99,9q;
Hence
(v {F,}1 =0 (2.11)

when the work done by {Fp}; is independent of the path which its point
of application traces out.

As a slight digression, it is interesting to note that
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[vI{B} ,
where {B} is any vector, is known as the curl or rotation (rot.) of

{B}. The reason for the use of this term is somewhat obscure, but if
the reader cares to find

(VI {Vga b/ = 1V hitwal s iV, ti
where {wy};,/; is treated as a constant, then it will be found that
tvin{vy, b = 2Tws b/,

when the reason for the use of the terms curl and rot will seem more
understandable.

It is also of interest to note that the vector
{V}1¢ ’
where ¢ is any scalar, is known as the gradient of ¢ or grad ¢.

Since

Eg. 2.5 can be written

B B

Waop =M {AP}Tl/lg—t{Rp}l/ldt =m, {AP}Tl/l{VP}l/ldt

A A
AB B
T T
=m, v, hh/i{a, hdat = my v h/gelve hohat
YA “ A
~B
=m, (vdv + vdv + v dv )
X X y y z z
YA
m m
P 2 2 2 P 2
=?(vx+vY+vz)A=-2—[|VP[1|B'lvplllA}
=T, |, - T, |, (2.12)
where m, 2 m, T m, T
T, = ?lvpll = —2—{‘7,,}1/1{‘7,,}1/1 = “2—{‘7,,}1/3{‘7,,}1/3 (2.13)

is the kinetic energy of the particle. Combining Egs. 2.6 and 2.12
gives
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Woog = (Vg - V) = TPIB
or

T +v =T

P|A u PIB + Vv, = constant (2.14)

when the reason for the introduction of the negative sign in Eqg. 2.6
becomes clear. Thus, for the case in which potential energy is defined,
that is Eq. 2.6 is valid, the sum of kinetic energy and potential en-
ergy is constant throughout the motion and the force {pr is said to
be conservative.

2.4. The Activity of a Force and its Relationship to the Rate of

Change of Kinetic Energy

The activity, power or rate of working of a force is defined as the
scalar product of the force and the velocity of its point of applica-
tion. Hence, for the case in which {F, | acts on a particle of mass m,

Activity = {Fp}{{vp}l/l = mp{AP}{/l{vp}l/l
= mp{vp}{/l{Ap}l/l = mp{vp}{/l{vp}l/l
= m {V, 11319, 11 s (2.15)
Now m
T, = f{vp}{/l{vphﬂ
and m
T, = —;- W vy b + v, {0, 1
= mp{vp}{/l{vp}l/l . (2.16)
Hence . ; ) ;
T, =m v, i1V b1 = {Fpt3ivy b
= mP{VP}Tl/a{VPhﬁ = {Fp}g{vphﬁ . (2.17)
2.5. Impulse and Momentum
Now
{F b1 = mp%f{vp}l/l = Qg{Gp}l/l

and therefore
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= hnl, g hl (2.18)

where the time integral of the force {FP} is known as the impulse of
the force.

2.6. Centre of Mass

If a rigid body, body 2, is composed of n particles of mass m , then
the total mass of the body is given by '

m, . (2.19)

Also, if the body is positioned relative to some reference frame,
frame 3, then the position of the centre of mass of body 2, C, is
given by

n
1
{RC203}3/3 = {Rots/3 = . :g m {R }3/3 (2.20)
1
where [R }3/3 is the position of m, measured in frame 3 and referred

to frame 3. In particular, if the origin of frame 3 is at C, , then

Iz

mi{Ri}3/3 (2.21)

—

is a null vector.
Similarly, for a system of bodies 2, 3 and 4 making the composite body

5 positioned relative to frame 6, the position of the centre of mass
of the composite body 5, C , is given by

mZ{R2}6/6+ ms5{R3ts s+ my{R3fs /6

{RCSOG}G/G = {RS}G/G = m2 + m3 + my
(2.22)

In particular, if the origin of frame 6 is at C , then
my{Rote e + Ma{Rate e + mMu{Ry}s /6 (2.23)

is a null vector.

Refer to Problems 4.1 to 4.15 and Problems 4.44 to 4.47.
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2.7. Force Moment, Moment of Momentum and Moment of Rate of Change of

Momentum

A force has, in addition to its capacity to cause or tend to cause a
change of the state of the translational motion of a body, a capacity
to cause or tend to cause a change of the rotational motion of a body.
The magnitude of this turning effect or moment about a point is the
product of the magnitude of the force and the distance from the point
to the line of action of the force measured along a line at right an-
gles to the line of action of the force as shown in Fig. 2.1. Hence

M, [ = [Ry, | [F] (2.24)

{F}

v Vero < %/A ,ﬂ o

{RNA} z Fx
Yy
A X

Fig. 2.1. Fig. 2.2.

! e
X

In the more general situation of Fig. 2.2, where a point B on the line
of action of {F} is given relative to A, the point about which the
moment is to be determined, using {RBA} , the moment in each of the
directions x, y and z is given by

X

MA = sz - sz

MYA = 2zF_ - XF, (2.25)
z

MA = xFy - ny

This set of equations can be arranged in vector and matrix form as

MA o} -z Yy Fx —sz + sz

M| = o -x{|F | = | 2F - XF
A y x z
z

M -y X 0 Fz —ny + xFy

or
(2.26)

=
>
|

A
o
>

—
)
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Where it is necessary to specify the frames to which the vectors are
referred, then, for example

M} = [Ry, ]a/2{F}2 © (2.27)

That the moment vector {M } is perpendicular to the plane containing
the vectors {RBA} and {F}'is readily shown by the fact that

1 (R} and (M }7{F]

are zero.

Fig. 2.3.

The magnitude of the moment vector is given by
M| = IRy, |F|sins

as can be seen from Fig. 2.3 which shows the X Y, plane in which the

{Ry,} and {F} vectors lie.

The concept of force moment can usefully be extended to that of moment
of momentum or angular momentum and the rate of change of moment of
momentum or the rate of change of angular momentum. Thus, for example,
the moment of momentum of a particle is written

1 = [Rg 1116 b1 = mp [Ry, 11V, b - (2.28)

Similarly, the moment of the rate of change of momentum is written

[RBA]I/l{éP}l/l = my[RBA]I/l{Ay}l/l . (2.29)

Refer to Problems 4.16 to 4.22 and Problems 4.48 to 4.53.
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2.8. The Linear Momentum of a Rigid Body

The linear momentum of a particle of body 2 of mass m at P, measured
with respect to frame 1 and referred to frame 1, is given by

{Ghiyr =m (v}, .

The total linear momentum of body 2 is thus

{Gohr/1 = :E:mi{vp}l/l

where the summation is effected over the whole of body 2. Now

vphiyr = {vahin + twrl1/1{R 111

and therefore the linear momentum of body 2, measured with respect to
frame 1 and referred to frame 1 is given by

{Gah1/1 = Zi m {vy}y /1 + Zgzmi[w2]1/1{Rpc}l/1

and therefore the linear momentum of body 2, measured with respect to
frame 1 and referred to frame 1, is given by

{G2}1/1 = :E:mi{vz}1/1 + Zi m fwl1 1 {R o hiyt
The factors {Vz}l/l and [wyl /1 can be taken outside the summation

sign since they are characteristics of the body rather than the part-
icle. Thus

{62} /1 = {V2}1/1‘25 moo+ [wyly 25 m {R,.}1,1

my {V,}1 /1 (2.30)

sinee mp = 22 m. and ZS mi{RPC}l/l = {o}

being the first moment of mass of the body about its centre of mass.
By differentiation of Eg. 2.30

{G2}1/1 = ma{Voli/1 = mp{a, )y, (2.31)
and this can be equated to the total external force on body 2 referred

to frame 1 since the internal forces on the particles of the body sum
to zero.

2.9. The Moment of Momentum of a Rigid Body About its Centre of Mass

Refer to Fig. 2.4 which shows body 2 moving relative to an inertial
frame 1. The angular velocity of the body is {w,}; and the velocity of
its centre of mass {V,},;. The momentum of a particle of the body at P,
which has a mass mo, measured in frame 1 and referred to frame 1 is

MMAERBM - C
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given by
[Rpcll/lmi{vp}l/l = [Rpcl2/lmi{vp}l/l

and therefore the moment of momentum of body 2 about its centre of
mass, measured in frame 1 and referred to frame 1, is given by

{Hoty )y = 25 mi[Rpc]2/l{Vp}l/l

where the summation is effected over the whole of body 2. Since

(vetiy1 = Vol + 1ealy f1{RyFo

{(Vohir = [Rpclaitenl i

the moment of momentum can be written
{Hohy = 22 m [Rycl2/n

- Zzlm [V2]1/1{RPC}2/1

+ > e [Rgla/i[Ryglaituadip

-[v2]h {:E:mi{Ryc}Z/l}
+ [Z_mi [Rpc]g/l]{‘”Z}l/l

Ay

Vabiyr - [Rpc]2/l{w2}l/l}
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The factors {V2}1/1 and {wy}; /1 can be taken outside the summation

sign since they are characteristics of the body rather than the part-
icle. Now

25 m {R,.}2/1 = {0}

since this term is the first moment of the body about its centre of
mass. Hence

2
{Habyyy = [Z —m, [Rpc 2/1 | {wat1 (2.32)
and on defining
2
(12]21 = Z_mi (Recla/1e (2.33)

which is the inertia matrix for body 2 measured with respect to frame
2 and referred to frame 1,

{Ho}1 1 = [Tadopnfwahi o - (2.34)

Since
2

[R]% /2 = llll2[R]2/1[111£l2112[R]2/1[211£

= (2112 [R]2 100017

2
[12J2/2 = :E:—mi[RPc}g/z = zg-mi[21]2[RPc]2/2[11]£
[21]2 [ 22 -mi[RPc]2/1] (2115

[1112[12]2/1l1112 (2.35)

-

which is the inertia matrix for body 2, measured with respect to frame
2 and referred to frame 2. Similarly

- T
(12121 = 10112 [T2]2 /20 2002
If i
{Rpc}z/z =
L Z
then
) e -z Y 0 -z y
[Rpc 2/2 = z 0 -X z 0 -X
LY OojL-Y X 0
—-(y2 + 22) Xy XZ
= Xy _(X2 + 22) zy
| x=z zy —(x2 + y2)
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and

[1.] 2/2 =

Z m, (y2 + 22) z:—mi Xy Z —m, Xz
Z -m Xy z m, (x2 + 22) Z -m, 2y
Z -m Xz z:—mi zy Zmi (x'2 + y2)

I I
XoXo X2Y2 X227
I I I (2.36)
X2¥Y2 Y2Y2 22Y2
I I I
X2Zyp Y222 2229

Thus, in general, the inertia matrix is symmetric. In particular, for
example

2 2
IX2X2 —Zmi (y + z7)

is the moment of inertia of body 2 about the x axis (see Fig. 2.5),
while

IX2Y2 = Z -m, Xy

is the xy product of inertia.

The statement of Eg. 2.36 is tedious to write out and it can be abbr-
eviated to, for example,

A D E IX Ixy IXZ
[(12]2/2=|{p B F| . [T2]2/2 = Iy Iy Iys
E F C

I I I
Xz vz z

or any other such convenient contraction.

2.10. The Relationship Between Moments of Inertia Measured in

Different Frames

By reference to Fig. 2.6 it can be seen that the inertia matrix for
body 2, measured in frame 3 and referred to frame 3 is given by

Z_mi [RP}§/3 - Z‘mi ':[Rpcj3/3 + [R2]3/3]
zz‘m; [[Rpc]2/3 + [R2]3/3} ’

:g:_mi[ [Rpclé/a + [R2]3/3[RPC]2/3
+ [Rycla/a[Rals s + [R2]§/3] .

2

[I2]3/3
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2 2
= +
L, = 20 M (v0 20 ,

IYzYz = ZE mi(x2 + z%) ‘//‘,/// \\\:\\\\\\\
Tz,2, © Zmi RS ‘\ . ' \

23
{r, }3
»/
X3 03 {Rz}; -
Y3

Fig. 2.6.

Now

Z_mi [sz 3/3 [RPC] 2/3 = -[R2]2/3 Z m, [Rpc]2/3
z—mi [Rpc] 2/3[R2] 3/3 = [ Z—mi [ch]2/3] [r,] 3 /3

are both null matrices since the origin of frame 2 is at the centre of

and
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mass of body 2. Hence

[1213/3 = ?‘mi [Rpc]§/3 - Zm* [Rz]é/a

Ly

2
[12]2,3 =~ m2[R2]3/3
and by Eg. 2.35

2
(12155 = [2213[12]2/212212 - mz[R2]3/3 . (2.36)

Refer to Problems 4.23 to 4.25 and Problems 4.54 to 4.56.

2.11. The Rate of Change of Angular Momentum of a Rigid Body About its

Centre of Mass

Equation 2.34 gives the angular momentum of body 2 about its centre of
mass, measured in frame 1 and referred to frame 1, as

fHohi 1 = [T2]o nlwahi

and this can be written

{Hobi /1 = 12201 [T2]2 21 221 1 8w2 by

by Eg. 2.35. This expression for angular momentum is readily differen-
tiated because

(12]2/2
the inertia matrix for body 2, measured in frame 2 and referred to
frame 2, is a constant since frame 2 is fixed in body 2. Hence
{Hobr 1 = twal 11 [T2] o1 {w2dy )
+ 1201 [Ta]o ol el o0l 21 2{wa by /1
+ [12]2 1f02dy )1

The middle term on the right hand side of this equation can be writt-
en

T
—lle1[12}2/2l21121w211/11211212112{w2}1/1

= -1 2511 [To] o 0021 2l wal 1 /1 {wa} /1 = {0}

since T
lwiloye = -Twaliy/2 = =001 2lwply /1l 21] 2

and
Iwgll/l{wg}l/l = {0}

Hence
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{Hohh 1 = twal i [To]ojntua by jn + (T2]2 106221 1 (2.38)

and

[Hobijm = Lol 1/n [T2]o/mluodism + [To]lo/nluadijm.  (2.39)

This rate of change of angular momentum is identically equal to the
sum of the moment of the external forces about C and the external
couples acting on body 2.

Refer to Problems 4.26 to 4.32 and Problems 4.57 to 4.61.

2,12. The Moment of Momentum of a Rigid Body About Any Point Q and
the Rate of Change of Moment of Momentum About That Point

Q

Fig. 2.7.

The moment of momentum of body 2 about any point Q, measured in frame
1 and referred to frame 1, is given by (Fig. 2.7)

{Haghi /1 = Zmi [Rpoli/1{vy hin
22’% [ [RCQ 1/1 * [Rpc]Z/l] [ {vahi

+ Lwzl1/1{Rygl2y2 }
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= zglm (Regli/1{Vati/n + [:E:mi[RPc]z/l] {v2h p1
+ [RCQ]l/llwzl1/1;E:mi{RPC}Z/z

+ [ zg-mi[RPc]z/l] {w2l1,h

and since the second and third terms on the right hand side of this
equation are null matrices

{Hogt1/1 = mz[RCQ]l/l{Vz}l/l + {Hy}1 /1 (2.40)

Hence, by differentiation,

{ﬁzq}l/l = mz[VgQ]1/1{Vz}1/1 + mz[RCQ 1/1{a2} 0 4 {ﬁ2}1/1

(2.41)

2.13. The Relationship Between the Moment of the External Forces and
Couples on a Rigid Body About Any Point O and the Rate of Change of
Moment of Momentum About That Point

Let {F. }] be the external force on a particle of body 2 of mass m at
P. In the case of a rigid body the internal forces cancel out in pairs

and therefore

Dir ) = {r)

where {Fz} is the total external force on body 2. Let the body also be
acted upon by external couples which reduce to {Lz}. The moment of
the external forces and couples about Q is given by

Z[RPQ]l/l{Fi}l + {LZ}I
DR IualE b+ )y - > [RyTu R

M0} - m[Ry]11{A2 )1 pn

{Mzq 11

(2.42)

since

{F, 11 = {F2}1 = {G2}1 /1 = ma{B2}
Now the rate of change of angular momentum about O, the origin of an
inertial frame, is equal to the moment of the external forces and

couples about that point. Thus

{Myo}, = {ﬁzo}1/1 (2.43)
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and since

{HZQ}I/I = :S mi[RPQ]l/l{VP}l/l
ZS’W Ry Th /1 {Vp b1 - [RQ]1/1:51W {Vp}l/l

= {Hypoh1 1 - mZ[RQ]l/l{VZ}l/l

il

then, by differentiation,

{QZQ}1/1 = {é20}1/1 - mz[VQ]1/1{V2}1/1 - mz[RQ]1/1{A2}1/1

(2.44)

By Eq. 2.43 in Eqg. 2.42

{ézo}l/l = {Mpq}, + mz[Rqu/l{A2}1/1
and this result in Eg. 2.44 gives

{Maghr = {H2q}1 /1 + ma[Vo] 1 i {Vohi 1
Substituting for {ﬁzq}l/l from Eq. 2.41 gives

{Mpq}, = mz[VCQ 1/1{V2bi 1+ mZ[RCQ]l/I{AZ}l/l

+ mZ[VQ]l/l{VZ}l/l + {éz}l/l

and since

{VQ}1/1 + {VCQ}1/1 = {Vv.hi 1
this reduces to

{Magl1 /1 = mZ[RCQll/l{AZ}I/l + {H2 b1 0 (2.45)

Thus, for the particular case in which Q is at C,

M}y = {H2 ] 1 (2.46)

and for the case in which Q is at O

{Myo}1 = my[Ry]1 /1 {B2 b1 /1 + {Hab1/n = {Haohifae (2.47)

2.14. The Kinetic Energy of a Rigid Body

The kinetic energy of body 2 is given by

2
2, = S vl = D> v e (Vb (2.48)

where n is any reference frame. Now, by reference to Fig. 2.4,

MMAERBM - C*
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(Vo bia = {Volim + twal iy {Rpclaym

and therefore, using an abbreviated form of the statements

V11 /e Y, b1/m = {1V} + Lol (R}}T {1V} + [w] {R}}

® ® ©

(VT VY + {1l IRIT IV + (V1 1wl (R}

©

+ {1wl {R}}T [ 0] {R}.

The summation involving term 3 will be zero since
{Vali/n and {wz}i/,

are constants for the body. Term 2 can be written
{-IR {u}}TIV) = (" (RT{V) = {w} (RI{V)

so that the summation involving this term is also zero. Term 4 can be
written

{-IR {w}} " {-IRI {w}} = {{}(RITHIR (w}} = ~{} (R 2 {0}

Equation 2.48 thus reduces to

]

2T, Zmi {VZ}'g/n {VZ}l/n + Z _mi {U’Z}'Il‘/n [Rpc]g/n{(‘)Z}l/n

mz{Vz}Tl/n{Vz}l/n + {wz}Tl/n (T2]a/mtws}i/m
= {VZ}{/n{GZ}l/n + {wz}g/n{Hz}l/n

2T, (2.49)

rotation

2T2translation

2.15. The Rate of Change of Kinetic Energy of a Rigid Body

Equation 2.49 can be written in the abbreviated form
2T, = m{v} {V} + {u} [I1{e} .
Hence, by differentiation
2, = m{aY (v} + miviT{al + (o) T 1w}
+ {0 {loNT1{w} + (T1{0}}

Now
{0} 1wl = (11" tw}}" = [-lo1le}}”

which is zero. Also
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(o} TIHoY = {ITH}} e = {0 1T Hot .
Hence, since

(att vy = (vitiay ,

Ty = mZ{AZ}{/n{VZ}l/n + {&2}{/n11212/n{w2}1/n

1

{AZ}’]]:.‘/“{GZ}I/n + {l:)z}{/n{Hz}l/n . (2.50)

2.16. The Special Case of the Motion of a Solid of Revolution

Links in three dimensional mechanisms can frequently be treated as
solids of revolution, which are constrained by connections to them
that exert no moment about the axis of generation, and consequently,
if at some time the motion about this axis is zero, then it will al-
ways be zero.

Consider the case of a solid of revolution, body 4, which has its axis

of generation along the x, axis. If w = 0, then
J oj| O
{Hh}l/h = [IH]H/u{wq}l/q = |0 I 0 wy
(0] (0] I w_
(0]
= Tiw | = T{usly y
wz
or
{Hyl1 /1 = Tlwy b (2.51)

and the angular momentum vector is parallel to the angular velocity
vector. Also

{Hubi/u = Tos L/l Tulu/ufond /e + [ Tulu/ulowd/y
0 -w w-l J 0 ollo
z y

= w (0] (0] (0] I Ol w
z Y
-w (0] (0] (0] I W
Y A z

g o olfo
+ |0 I o) (:Jy = I{‘U}l/lt

(0] (0] I W,

or . )
{Hubi/1 = Tleshi fn (2.52)
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and the rate of change of angular momentum vector is parallel to the
angular velocity vector. Further, the rotational kinetic enegy and its
rate of change are given by

2
2T, = {wu}{/l{Hu}l/l = I{wh}g/l{wh}l/l = Tlwy|1 (2.53)

rot

and

T, . = {&u}g/l{Hu}l/l = I{oy ] /1 {wn 1 ) (2.54)

ro

2.17. Rotation About a Fixed Axis

Consider the motion of body 4 about the 2z, axis which remains parallel
to and fixed with respect to an inertial axis z;. Then

{ﬁu}l/u = [wull/u[Iu]u/u{wu}l/u + [Iu]u/u{@u}l/u

o -u olfa »p E]fo
=|e, o offp B Ff|O
o of]|JE F cflu
A bp E|lo Eb - Ful
+|p B Fllo| = |Fa + B (2.55)
E F cCllw Cw

Refer to Problems 4.33 to 4.40 and Problems 4.62 to 4.83.

2.18. Principal Axes and Principal Moments of Inertia of a Rigid Body

With a Plane of Symmetry

Let y,z, plane be the plane of symmetry of body 2 as shown in Fig. 2.8.

Since
ny=o and sz=0

the inertia matrix will be of the form

A, O 0
[Iz] 2/2 = (0] B2 F2 .
o} F, C,

Thus, for frame 3 positioned as shown in Fig. 2.8,

[Iz]z/a = lﬂzla[Izlz/zlﬂzlg
or

lﬁalg[Iz]z/a = [Iz]z/zllzlg
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Z2 Z, z3
x |-x //
2
z
— - v
X2 !C ¢ ;a 2
[ Y3
zy # O
Zx = 0 3 o about x, 2
1 4
(o] ;Ex
- - - - Y2
f x
\‘/
Yy
xy =0
X2
Fig. 2.8.
(1 o olla; o o a, o oll1 o o
ca salj O By F3 =0 B, Fyl| O Co Sa
LO -sa caf| O F3 Cg 0 F Cy|l] O -sa ca
A3 O 0
0] Bica + Fg3sa Figca + Cgsa
_O —Bgsa + F3Ca —nga + CgCG
A, O 0]

In particular

Bjcosa + F3sina

= 1|0

0 Foco + Cosa

Byca - Fysa Bjysa + Chca

Fzsa + Czca

= Bycosa - Fysina

Focosa - Cpsina

Fp - F3

and
~Bjsino + Fj3coso =
giving
Bz_Bg
tano =
T F, + F,

T, - B;

(2.56)
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and
2 2 2
B3 + (C, + B,)By + F3 + B,C, - Fp, = O . (2.57)

Now the equation to a circle drawn on the xy plane, centred at (a,O0)
and of radius r is

x? - 2ax + a? + y2 -r? = o.
Comparing corresponding terms in this equation and those in Eq. 2.57

x = By, ¥y = F3, 2a = C, + By, a? - r’= B,C, - F%

» _ (C2 ~ Ba) 2
r°- = ) + Fy .
F By
By> Cy
Fo> O
F, 4 R B3> B,
z F3> O
3
a < O
Fj
0 Q B,C
ZZ y3
' S
Cs : /‘_/ﬁ
S|
P : T Y2
Ca
—— (B, - C,)/2
By

Fig.2.9.

The circle corresponding to Eq. 2.57, for

B, > Cy and F, > O
is shown in Fig. 2.9. B, and C, have been set off along an axis para-
llel to the y, axis and F, has been set off along an axis parallel to

the z, axis to define the position of points V and R. A circle through
these points, with its centre on the line 0Q, centred at Q where

0Q = (Cy + B,)/2,

has a radius
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2 2
RO = [{(B, - C;)°/4 + F3}

as required. For frame 3, obtained by rotating frame 2 through the
angle o about x,, i.e. [&, 13 corresponding to a negative rotation,
Bz > B3, F3 < F2 and

Fp - F3 Fp, - F3
PT  B; - C, T, - B,

The reader is invited to draw the circle for other cases, e.qg.

(a) BZ > C2, F3 > 0, B3 < Bz ’

(b) B2 < C2, F3 > 0, B3 > Cz and

(C) B2 < C2, F3 < 0, B3 > Cz-
and indentify the position of the point P in relation to V(C ,F ) from
which frames 2 and 3 can be drawn in their correct relative positions

with the correct angle o between them.

There will clearly be an angle o given by

B, - B3 Fy
tanog = =

for which the product of inertia term F3 is zero. The moments of in-
ertia in this case are the principal moments of inertia of the body.
Also, the axes of frame 3 for this condition are the set of principal
axes corresponding to the point C in body 2.There is a set of prin-
cipal axes and principal moments of inertia for every point in the
plane of symmetry.

2.19. Principal Axes and Principal Moments of Inertia For Any Rigid

Body

The inertia matrix for body 2, measured with respect to frame 3 and
referred to frame 3, is written

[T2]3/3

and it will, in general, be of the symmetric form

A D E
D B Fi .
E F C

It will always be possible to find a frame 4, with the same origin as
that of frame 3, such that

[12]3/u

is of the form
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Ay O 0
0 A, O
0 0 A3

where A;, Xp and X3 are the principal moments of inertia of body 2 for
the point corresponding to the origin of frame 3. The set of principal
axes through a given point are such as to make the product of inertia
terms in the inertia matrix referred to them equal to zero.
It is necessary to find, for the given inertia matrix

(12]3/5 +[T2]3,4 and [ 231y

such that

[12]3/u = 11314[12]3/31231£ (2.58)

is a diagonal matrix. On premultiplying Eq. 2.58 by [£3]£ it becomes

[Qalzflzjs/u = [12]3/31231£

a; by cil[r» O 0
an b2 CoH (0] AZ 0 =
asj b3 Cy _O 0] A3

D Elja; b, C1
D B Flla, b, Co
E F Cllas bj C3

alkl bIAZ C1X3

asii box, Corz | =
aghi bixs C3A3

aijA + ap;D + ajE biA + b,D + bjiE
a;bD + a,B + ajsF b1D + byB + bjiF etc.
aiE + a,F + ajC bi1E + b,F + bj3C

Equating the first columns of these matrices gives

aiji; = ajA + a,D + ajE
asA; = alD + a,B + a3F (2.59)
asix; = a1E + aF + aj3C

and this set of equations can be written in the form
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(A - Xy)a; + Da, + Eay =0
Da; + (B - xy1)a, + Fa; =0 (2.60)
Ea; + Fa, + (C - )\1)33 = 0
or
A -2, D E a; 0
D -3,  F a,| = |0 (2.61)
|E F C - A1l a; 0
or
A b Elfa; a,
D B F aon = )\1 a2 (2.62)
-E F C a3 a3
which can be abbreviated to
[12]3/3{3} = x{al . (2.63)

The set of homogeneous equations Egs. 2.60 require that the determin-
ant of the square matrix in Egs. 2.61 is zero. Thus

- A\ D
B - )\,
F

H oo P

a9 o
1]
O

- )\1
which leads to the cubic equation

3

A} - (A +B + C)A] + (AB + BC + AC - F2 - E?

- D)y

2 _ ABC - 2DEF = O . (2.64)

+ AF? + BE® + CD
This equation has three positive real roots corresponding to the three
principal moments of inertia X;, X; and i3. If each of these three
roots is substituted, in turn, in Eqg. 2.62 three separate {al's are
determined which correspond to the three columns

a, b, =31
a, b, and cy
as b3 C3
of
T
[ 2314

Equations of the form of Egs. 2.62 occur frequently in the solution of
physical problems so that computer programmes to solve them are read-
ily available, especially for the case in which the square matrix is
symmetric. Their solution longhand, even with a calculator, is tedious.

The quantities A; Xy and i3, the principal moments of inertia, are the
etgenvalues of the inertia matrix
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[12]3/3
and the three columns {a} are its eigenvectors.
That the three columns {a}l are orthogonal (as they must be, being col-
unns of a transformation matrix) is readily shown as follows. On writ-

ing

[12]3/3 = [1]

[z1]1{a} = a;{a} (2.65)
and [1]1b} = a,(b} . (2.67)
Also

(1] e1}1" = 2, ib)"
or

1y [1]" = ;T[] = A, (b)]
and thus, on postmultiplication by {a}
tb}' [1](a} = r,{b} (a}

Futher, on postmultiplying Eq. 2.65 by {b}" ’
T T
{b} [I]{a} = a;{b} {a} . (2.68)
On subtracting Eq. 2.68 from Egq. 2.67

(A, - 21){b} fa} = 0

and this requires that the columns {b} and {al be orthogonal since
their scalar product is zero.

Refer to Problems 4.41 and 4.43 and Problems 4.84 and 4.85.



3.1 Solved Problems

Chapter 3

Solution of Kinematics Problems

Problem 3.1. A point P moves in a circular path of radius a so that
the angle 8 it subtends at the centre O of the circle increases
uniformly with time. Find for the frames chosen in Fig. 3.la

and

Solution.

Also

gt{Rpo}z/z , gt{R.,o}l/z

{Viohi/2 =

%t{Rpo}l/l =

{ﬁpo}l/z =

Limit{aR,  }1/2 &
0 TR e

{Vpo}l/l'

2
a 2{Rpo}1/2 ' gt{vpo}l/z ' gt{vpo}l/l = {a,,hi 1

dt
{(Veotiy2 = {80112 = Limit{av, h 2 -
At»O ——p———
At
Now
E
{RPo}z/z = {0 | and therefore %t{RPo}z/z =
0
lacoso
{Rro}l/l = |asiné| and therefore {RP0}1/2 =
e

65

= {Ryot2y2-
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\ Frame 2 rotates about O

and the X, axis passes

through P
[}

X)

/*\\path of P drawn
e

on frame 1

Fig. 3.la.

(Draw the components of acos6® and asiné along the x, and y, axes).
Thus
0]

a = j10]| .
at{R,,o}l/z °

By raference to Fig. 3.lb it can be seen that

~-a(l - cosAs)

{ARpo}l/z = | asinao (1)
0]
and
-a(l - cosbAB)cosd - asinA6sineg
{ARPo}l/l = asinp6cose - a(l - cosAb)sing| . (2)
0]
Hence
. -sine
4 {Rol11 = a8 coso| = Limit{aR, b1 = {V,ohi
dat o At-0 <t
and

{(Vooli/2 = {Rygl1/2 = Tgéi‘(i)t{ARpo}l/z = aeflf.
At 0]

Also
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x, at t + At

asinAgcosd

-a(l -~ cosAg8)sind

I*———¥ 1

l ~~asinaAg

M /\,

™S a(l - cosA8)

o l x4

dt

and

ézz{RP0}1/1

dt

By reference to Fig.

{AV 1/2 =

and therefore

Rootiyz =

a(l - cosad)cossd + asinadsing

Fig. 3.1b.

@]

%t{vpo}l/z =

@]
@]

-Ccos6

2
d {v,ohi1 = {Bot11 = ae | -sine | .
dt o

3.1c
-a sinAs
2
-2a sin (48/2)
(0]

67
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2aésin(46/2)cos (86/2)

¥4

!

t+ Ot

o

\

~
e
\,
A

ab
x2 .
2a6sin? (48/2)

Y2
{VP}-Ilt +{AVP}1 = {YVP}1lt¢At
o™
Fig. 3.lc.
) -1
(Veoli/z = {8,112 = kiTét{Avpo}l/z = as | 0.
At 0
Y2 *2
Frame 2 rotates about 0,

and the x, axis passes

through P

Path of P drawn

on frame 1

Fig. 3.1d.

It should be noted that the results obtained are peculiar to the axes
chosen in Fig. 3.la, and that if, for example, the axes of Fig. 3.1d
were chosen, then different results would have been obtained for the
given motion. The importance of specifying the axes being used is
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thus clear. The reader is invited to solve this problem for the axes

of Fig. 3.1d.

Problem 3.2. The position of frame 4 rel
by
0.741516 0.45315

[ 2417 = -0.595012 0.78485
0.309955 0.4226

Find the consecutive rotations o, B and
with frame 4 when they are performed in

ative to frame 1 is specified

-0.494731
-0.172904
0.85165

vy necessary to align frame 1
the following order:

P s ™

(a) 1 y about z; 2 a about x,
///—~—~‘\\&

(b) 1 v about z; 2 B about y,
/’_\

(c) 1 o about x; 2 g about y,

(d) 1 o about x; 2 y about z,

3 B about y3 4 ,
3 o about x3; 4 ,
3 y about zj 4 R

T =
3 B about y3 4 .

Solution. (a)

-CY =Sy ol o}

[ 2411 = | sY cy o}|0 Ca
_O o} 1o Sa

-cycB - SysasB ~SyCa

= | SYCB = CySaSB CycCa
_-caSB So

Referring to the terms in the given and

usual aij notation

(0] CcB (0] sB
~-sa 0 1 0
co {| ~sB 0 CcRB

cysB + sysoacB
SYsSB = CysacB

cacB

derived matrices using the

as, = 0.4226 = sina , o = 25°.

alz/azz 0.45315/0.78485 = -t

asi/ass = 0.309955/0.85165 = -

any , Yy = -30°.

tang , g = —200.



70 Matrix Methods in Engineering Mechanics
(b) ~
cy -sy 0 cg O sl 1l 0 0
[ 241, = }sy Cy 0 0 1 e} e} Coa -Sa
p 0} 1|{-sp O cBi| O So Ca
[cycp cysBsa - syco cysBca + sysa
= [SYCB sysfsa + Ccyca sysBca — Cyso .
L~SB cBsa CcBca
az; = 0.309955 = -sing , B8 = -18.06° .
asj/a;; = -0.59012/0.741516 = tany , vy = -38.74° .
aj,/as; = 0.4226/0.85165 = tana , o = 26.4° .
(c) _
1 o} o} CcB (6] sBlcy -sy (0]
{2yl = |O ca -so 0 1 0 Sy cy 0
1O Sa Ca {|—-s8B e} cBi|O e} 1
[cBcy -cBsy sB
= |sasBcy -SasSBSY -sacB | .
[-casBgcy casBsy cacs
aj; = -0.494731 = sing , B = -29.65°.
ayp,/a;; = 0.45315/0.75151 = tany , vy = -34.43° .,
az3/azy = -0.172904/0.85165 = -tana , o« = 11.48°.
(a)
1 0 0 cy -sy e} cR 0 SB
[yl = |O ca -sallsy cy e} e} 1 e}
0 Sa cal]O e} 1 sB 0 (o1}
cycB ~-sy CcysB
= JjcasycB + sasp cacy CausSysSB = sSacCB .
sasycB8 — casB sacCy SaSyYS8 = CacCB
aj, = 0.45315 = ~siny , vy = -26.95°.
asp/az, = 0.4226/0.78485 = tana , o = 38.13°.
ay3/a;; = -0.494731/0.741516 = tang , B = - 49.04°,

A summary of these results is as follows:
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o® g°
25 =20

26.3 -18.06
11.48 -29.65
38.13 -33.71

o]
%

-30
-38.74
-31.43

-49.04 .

71

Problem 3.3. Body 2 rotates about an axis fixed in body 1 and body 3
slides on body 2 as shown in Figqg.

{VA}I/I ’

{v,hio + {31

where A is a point fixed in body 3.

]ZI

Z2

7

(o]

N4

Obtain expressions for

and {Zx\} 1/2

A fixed in body 3

B fixed in body 2

e e e ]

Z

X2

S
1 vy about z; 2

Fig.

>
T _path of A drawn on

body 1

.3a.
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Solution. Now

cy =-sy olfo
{RA}I/I = [lzlr{RA}z/z = 18y cy olly
(0] (6] 1{|o

and therefore, by differentiation with respect to time

&

-Sy ~-Cy of|o cy -Sy 0
{vihiy1 = v| ev -sy o||y| + |s¥ cy
0 0 oj|o 0 0 1{{o
cy -sy] -yycy + ysy
= -yy|svy| + y| cy| = [-yysy + yoy| . (1)
0 o | 0

The acceleration is obtained by a further differentiation with
respect to time

Ccy Cy -5y =Sy -Cy
‘e . .2 . ..
{Abir = -vylsy] - Yy|sy| = v y|cy| +y| ev| + v¥| sy
0 0 0 0 0
Cy Ccy -SY -5y
= -2yylsy| - Yy|sy| - ¥ y|ey| +¥| ov] . (2)
0 0 0 0
From Eq. 1
{v,hi/2 = 12112{v, }ann
sy .
cy sy O cy Sy Yy
= |-sy oy of|-vylsy| +y|cvl]=|¥v |- (3
0 0 1 0 0 0
Similarly, from Eq. 2
{2, b2 = 1211208, 1
1 1 0 )
.o . 2 .
= =2yy|O0| - yy|O|- v y{l |+ y|l]. (4)
0 0 0 0

Vectors corresponding to Egs. 3 and 4 are shown in Fig. 3.3b. It
should be noted that the component velocities and accelerations are
independent of y when the vectors are referred to frame 2. When
applying the results of kinematic analysis to dynamics problems it
will be found convenient to 'work in' a frame for which the
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components of as many vectors as possible are as simple as possible.
Skill in solving problems is thus largely a matter of the judicious
choice of a system of axes.

Yy

X1

X2

2vy + ¥y
Y
. o2
Y - Yy
o] Y2
v
X1
X Y1
1 [¢]
.o . . 2
{AA}l/? = -(2yy + yy)|Oo |+ (y = ¥y ¥l
o] 0
Fig. 3.3b.

The corresponding expressions for the velocity and acceleration of a
point B fixed in body 2 with which A is coincident are obtained from
Egs. 3 and 4 by setting ¥y and ¥ equal to zero. Hence
-1 -1 ) 0
{vphi/o = yy| o] and {aj}liy2 = Vy| O + v y|-1
O O e}
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Problem 3.4. Body 2 is moving relative to body 1 such that,at a given
instant, the velocities of points B and C fixed in body 2 relative to
A fixed in body 2 are given by

3 1
{VBA}l/l = 14| m/s and {VCA}1/1 =|vim/s
|5 w

The position of B and C relative to A are

2 8
{%A}l/l = 1 m and {RCA}I/I = 5 m .
-2 6

Find
{w2t1/1 +» v and w

Solution. Let

{wrl1 /1 wo|.

Then _ 5 _
37 0 —w W 2 W - 2w
z y z y
{VBA}1/1 =|4]=| o, o} —u_ Li=1| 20, + 20|, (1)
5 tw W ¢} -2 2w+ W
J y x J y x
1] e -w w {8 -50 + 6w
z y z Yy
{(Veabhi1 =] v |= | o 0 —u 5] = 8w, - 6w | , (2)
Y {:w w o] 6 -8w + Sw
. y X - y X
v, 11/11R,  } 1)) = 3 4 s)f2]l=6+4-10=0 (3)
1
-2
(which means that the data are correct) and
T
v, e, b= v wf8]l=8+s5v+ew=0. (4
6
There are five unknown quantities (w_, w w o, Vv and w) and therefore

five independent equations must be selec%ed Only two of Egs. 1 and
Egs. 2 are independent and by selecting two from each, together with
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Eg. 4, the five independent equations become

=20 - W = 3
y z
w + W = 2
X z
6w~ Sw = 1
-6w + 8w - Vv = 0
x z

5v + 6w = -8
These equations have the solution (see the Appendix)
w o= 3.25 rad/s, w, = -0.875 rad/s, w, = -1.25 rad/s,
v = -29.5 m/s and w = 23.25 m/s.

As a check on the work it should be found that

{VBC}E/I{RBC}I/I =0

Now
3 1
Vaehi/n = Vg hin = v b = 4| - |F29.5
5 23.25
2
= 33.5 |m/s
-18.25
and
8 -6
{RBC}I/I = {Rg b1 ~ (R, bipn = | L =5 |=|~4|m
-2 6 -8

giving for the required scalar product of relative velocity and
position

P 23.5 —18.25] -6 | = -12 - 134 + 146 = O
-4
-8

as it should be.

Appendix.
Solution of Egs. 5.

These equations can be written in the matrix form

(5)
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0 -2 -1 0 0 w_ 3
(0] 1 (0] (0] wy 2
6 -5 0 = 1

z
-6 0 8 -1 o|{v 0
(0] (0] (0] 6 -8

and solved by computer. However, with a limited number of equations
the work involved in reducing the square matrix to echlon form, or
even diagonalising it, is tolerable. The procedure, no more than a
systematic elimination process, is set out in detail below. The first
stage, if necessary, is to make the first term of the first column
non-zero by equation interchange.

i 1 0 1 0o o0 2
ii o -2 -1 0O o 3
iii 0 6 -5 0O o© 1
iv -6 0 8 -1 0 0
v 0 0 0 5 6 -8
ixé6 6 0 6 0O 0 12
iv -6 0 8 -1 @) 0
y o o 14 -1 o 12—
i 1 0 1 0O o© 2
ii o [ -1 0 0O 3
iii 0 6 -5 0O o© 1
iv 0 0 14 -1 © 12 -—rd
v 0 0 0 5 6 -8
ii x 3 -6 -3 0O o© 9
iii 6 =5 0O O 1
) o -8 O O 10 —
i 1 0 1 0O o© 2
ii o -2 -1 0O __ 0O 3
1ii 0 0 -8 0 0 10 a—
iv 0 0 14 -1 o 12
\4 0 0 0 5 6 -8
iii x 14 -112 o o 140
iv x 8 112 -8 © 96
’ o -8 © 236 —
i 1 0 1 0O o© 2
ii o =2 -1 0O o 3
iii 0 o -8 0O 0 10
iv 0 0 (0] -8 0] 236 -—1
v 0 0 0 5 6 -8
iv x 5 -40 O 1180
v x 8 40 48 - 64
} 0 48 1116

so that the equations finally become
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1 1 0 0 w, 2

0 -2 -1 0 o) vy

0 0 -8 0 0 w,| = 10
0 0 0 -8 0 v 236
_O 0 0 0 48{| w 1116

from which the unknowns are readily determined.

Problem 3.5. Figure 3.5 shows a schematic arrangement of an offset
crank and connecting rod mechanism. The frame of the mechanism is
body 1, the crank OA body 2 and the connecting rod AB body 3. Refer-
ence frame 1 is arranged with its z; axis along the axis about which
the crank rotates and so that OA lies in the x;y; plane. The end B of
the connecting rod is constrained to move along a straight line PQ in
the y12z; plane and parallel to the x; axis.

Formulate equations which will permit a determination of the veloc-
ities

{(vyhipr v {vgahipn o {e3hipn and (v hipn

for any position of the mechanism. In particular, evaluate the above
velocities for the case in which the angular velocity of the crank is
10 rad/s and a = 30°.

Solution. All vectors will be measured in and referred to frame 1 and
therefore the 1/1 suffix can be omitted throughout the solution.
Now

{Rgat = {Rg} - {»,}

X3 X Xo
Y3 =10 -~ Y2 (1)
a a o}

where a = 50 mm and

{vgat = {vg} - {v,}

uj \Y Us
Vg3 = 10 - {val (2)
W3 0 Wo

In this case wy, = O and therefore w3y = O, but they are retained for

the sake of generality. Also, since
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- ™ Path of A drawn on

/ frame 1
* /
N

Spherical joint

Path of B drawn JR\\\\\\ Spherical joint
frame 1

Fig. 3.5.

is perpendicular to {R

{V BA} ’

sal

R, } {vy,) =0

[X3 Y3 a] Uy =0
V3
W3
ugzxsg + v3ys + wga = O . (3)

Equations 2 and 3 can be combined to give the single set of equations

1 0 0 -1 uj -u,

0 1 0 ofl{vs ~V o -{v,}

0 0 1 0 w3 - -Wy (4)
X3 Y3 a 0 \Y% 0
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Equations 4 are of the form
[a){v,} = {v,} (5)

where the A matrix is a characteristic of the mechanism, the Vi
matrix is a column of 'knowns' and the VO matrix is a column of

'‘unknowns'. The set of equations has the solution
-1
tvol = [2} {vi} | (6)

The angular velocity of the connecting rod and the linear velocity of
the point C on it can thus be found from

0 ~Z3 y3l||us W,
n
{u3} = [RyaJ{V4a) = Lz o0 “X3|{ V3| = [w, (7)
2 r |-¥Ys X3 O |}ws w,
IRy, |
where r = |R | and
n
{vg} = {v,} + [v3] 1R}
u, 0 —w, W, x3/2
vy | + w, 0 - {1Ys/2 ] . (8)
Wo —u)y wx 0 Z3/2
In the above equations
y3 = —asina , X3 = /(b2 - c? - azsinza) '
X = acosa + X3 , Uy = X, = d acosa = -aasina
dt
and
Vy =y, = d asina = aacosa
dt
where
b = 250 mm and ¢ = 50 mm.

The above relationships could be embodied in a computer programme to
evaluate the required velocities.

For the case in which a = 10 rad/s and o = 30°

i

Y3 -25 mm , x3 = 243.7 mm , u, = -250 mm/s

and
vy = 433 mm/s ,

when Egs. 4 become

MMAERBM - D
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o) 0o -11[u; 250
1 o) ol{ vs -433
o) 1 ol|ws| ~ o)
-25 50 of|lv o)

and their solution gives

{v

Also, by Egs.

{3}

~-44.43 -294
= |-433 mm/s and {VB} = O | mm/s
0 0
7 and 8
0.346 -272
= |-0.035| rad/s and {v,} = | 216 | mm/s
-1.706 0

Problem 3.6.
a plane, body 1.

A circular disc, body 2, of radius a rolls and slips on

The motion is such that the plane of the disc is in

the z:x; plane and the path of the point of contact is the x; axis.
for points specified as follows:

the centre of the disc,

a point fixed on the periphery of the disc which is at
some instant at the point of contact,

a point on the line joining A and C,

a point fixed on the periphery of the disc which is
instantaneously at the point of contact,

a point fixed in frame 3 as shown in Fig. 3.6a, where

[23) 1 is unit matrix,
a point which moves along the x; axis such that it

remains coincident with D
a point fixed in frame 1 which is coincident with B,

R, bisv o {R i1 o (R hin o (Rl o AR L1+ {RCH 1

{VZ}I/I ' {Vb}l/l ' {VA}I/I ' {VAC}I/I » {vphi {VE}I/II

{vgti1 {VBC}1/1 ’ {AZ}1/1 »{aghir o {3 b 2 {Bghiop

C
A
Z
B
D
E

and F

find

and

{ABC}I/I-

Use the expression for

{v

L1171
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a(1 < Acosg)

N

Mgy

e

o, 1

x +ag -a )\ sing a)sing

&B‘i’x

/’_—\\/—_\
1 B ahout ¥, 2 = g about Y5 3

Fig. 3.6a.

to locate the instantaneous axis for the motion of the disc relative
to the plane. Also locate the central axis for the motion of the
disc relative to the plane using both

{VA}I/I and {Vc}l/l r

and show, in each case, that it is an instantaneous axis.

Solution. Let the points C, Z and A be initially on the z; axis. When
the disc turns through the angle g the centre of the disc, C, moves
through

ag + x
apg being that part of the displacement due to the rotation of the

disc and x that part of the displacement due to slip at the point of
contact. The position of the point Z is thus given by
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X + ag - lasB
{R,}1/1 = |0 (1)
a - xacpg

as can by seen by reference to Fig. 3.6a. Therefore

[x + aB
{Rc}l/l = {Rz}1/1|>\=o =10
La

"x + a(B - sB)
{R 11,1 = {Rz}l/l!x=o = |0

la(l - cs)
and
~3SR
{Ryebisr = (R, hi1 - {Rgbijn = a0 |
-cB

Differentiating Eq. 1 with respect to time gives
X + ap - Aapcs

{v,}1,1 = |0 (2)
Aaéss

and therefore

% + ag
Vel = {Vz}l/llFo =10 = d {rR;hi/1
0 dt
% + ag(l - c¢B)
fvihi1 = {Vz}l/l!Fl = 0' = %t{RA}l/l ’
LaBsB
-CB
viehiyr=1{v,hhpo - vl = ag| 0 | = %t{RAC}l/l
sB
and
%
{vphiy1 = {VA}1/1|B=O = |o|.
0

It can thus be seen that when rolling without slip is taking place
the point B is at rest relative to frame 1. Also
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83
-1
{VBC}l/l ={v,hi/1 - {vihi/1 = as| o .
0
Now
X + ag
{RD}I/I = {Rc}l/l + {Rbc}l/l =10 = {RE}I/I
0O
and therefore
X + aé
{vphiyr = {v;hiy1 = |0 .
0
Figure 3.6b shows a velocity diagram which illustrates the above
results.

Fig. 3.6b.

Differentiating Eg. 2 with respect to time gives

¥ 4+ ag(l - Arcp) + Aaész
{Az}l/l =10
ra(Bsg + B2cB)

and therefore

% + af
{achi1 = {AZ}1/1|A=0 = |0
0O
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[% + aB(l -cg) + af’ss

{2, i = {Az}l/llx=l =10 . '
La(Bss + £°cB)

s
{aghip1 = {AA}1/1|B=O = 0.2 # %t{VB}l/l o
| ag 0
and -ag -ap
{achin = {3 hy - {aghhyr = | o # %t{VBC}1/1= o .

ag? 0

The instantaneous axis for the motion of the disc relative to the
plane will intersect the line CB at some point for which

X + ag - raB o)
{Vi}1/1|s=o =10 =|o0
(0] (6]

as shown in Fig. 3.6c. The position of the instantaneous axis is
therefore given by

A =1+ ﬁ/aé .

If X > O then A > 1 and the instantaneous axis is below B.

If x < O and X < aé then X < 1 and the instantaneous axis is between
B and C.

If X < O and x > aé then A < O and the instantaneous axis is above C.

Let Q be a point on the central axis for the motion of the disc
relative to the plane. Then by Eg. 1.48

0O 0 1lf{x + af(l - cp)
{RQA}I/I = [wpl1/1{V, }1 /1 ifo o ojjo
2 B1-1 0 O|{aBsB
lwa |1
asg
= (0] .
-x/f - a(l - cB)
Now ase
{RBA 1/1 = {RB}1/1 - {RA}1/1 =10
-a(l - cB)

and therefore
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]RQCI = a+x/B or A=1+ x/ap
which means that Q is at rest, making the central axis an instan-
taneous axis. It is left as an exercise for the reader to find a
point S relative to C on the central axis and show that S is at rest
relative to the plane.

X1

%
El

Fig. 3.6c.

Problem 3.7. Body 4 consists of a circular disc of radius na, a
straight rod and a small sphere. The axis of the rod lies along the
polar axis of the disc and one end of the rod is attached to a plane
face of the disc. The small sphere is attached to the other end of
the rod as shown in Fig. 3.7a. The sphere fits in a hemi-spherical
socket in body 1 such that its centre lies in the plane on which the
circumference of the disc rolls without slip.

For the case in which body 4 rolls at a constant rate and the point of

contact of the disc completes one circuit on body 1 in time T, find,
for the frames shown

{voti/s {V b3 and {Aa,}1/3

where A is a point fixed on the periphery of the disc at the point of
contact between the disc and body 1 at some instant of time.

Draw an appropriate angular velocity vector diagram abd use it to
find

{w2}1/3 [ {wq}g/g and .{wq}]j/g .
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2,3
luslz = ©

{ayts = {uy¥e

OA - Instantaneous axis for the motion of body 4
relative to body 1

/\\/—\\
1 Y about z, 2 9 about x, 3 P about 3 4

Fig. 3.7a.

The reference frames are located as follows:

Frame 1 has its X; and y; axes fixed in the plane on which
the disc rolls and its z; axis perpendicular to this plane.

Frame 2 has its z,; axis coincident with the z; axis and
rotates about the z; axis so that the y, axis always passes
through the point of contact between the disc and the plane.

Frame 3 is positioned relative to frame 2 by rotating it
from coincidence with frame 2 through the angle a about the
X, axis when the yj; axis lies along the axis of the rod.
The angle o is a fixed angle.

Frame 4 is fixed in body 4 such that the y3 and y, axes
coaxial and the x,z, axes lie in the face of the disc to
which the rod is attached. Frame 4 thus rotates relative to
frame 3 about the yj axis during the motion.
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Now
{R.}1/1 = 122010231 2{R }3/3

and therefore
{Vebin = AR 11 = twaly it 22010231 2 {R  }3 /3
+ [1211[w312/2[1312{RC}3/3

+ [1211[2312{§C}3/3 . (1)

Since {w3}, is a null vector, a being a constant, and {ﬁc}g is a null

vector, C being a fixed point in frame 3, Eq. 1 reduces to

{vili/1 = twalynl220 10231 2{R }3 /3 - (2)

The y; axis completes one revolution in time T and therefore

lwplq = 20/T = @ = ¥
giving

{wz}l/l = Q{0

Also, since

cy  —-Sy 0 1 0 o)
[2217 = |sy cy O, [231 = |0 Cuo -so
) 0 1 0 Sa co
and
{R.}3/3 = |a
Eg. 2 reduces to
cy cosy
{Vc}l/l = —Qlacajsy| = —2na;05a siny| . (3)
0 O
Therefore
1
{voti/s = 125030211 2{V }1/1 = -Racosa|O| . (4)
0
Now {A }1,1 is readily found from Eq. 3
-siny
. 2
{a.hhpr = {Vv;hh1 = -2 acosa| cosy (5)

0

MMAERBM - D*
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or more circuitously from Eg. 2, remembering that Q@ is a constant,

{achi/n = {vehin = lw21§/1l221112311{RC}3/3~

The reader is asked to evaluate this expression for the acceleration
of C to establish that it does give the result of Eg. 5. Hence

O
2
{AC}1/3 = llz]g[lllz{AC}l/l = -Q acosa|-cosa
sina

The position of A, where A is fixed in body 4 on the periphery of the
disc as shown in Fig. 3.7b, is given by

{R, b1 = {RC}1/1 + {R,chi 1

{RC}1/1 + 11211[131211u13{RAC}u/u (6)
where
(0]

{RAC}u/u = o) '
-na

a constant, and therefore, since {w3}, is a null vector
v,hiop = {V§}1/1 + [lw211/1[1211[1312[2u13

+ llzl1ll3121wu13/3llu13]{RAc}u/u . (7)

Therefore
{v,hi/s = ta1a{v,}1/1 = 120300102 {V, }1 1
{Vehiys + [12213121121w211/112211[2312

+ [2213[111212211ll3121w413/3]l2u13{RAC}u/u

o 22130210 2l waly /1l 221108312 = ll1131w211/1[211§ = lw2l1/3
and
(220 3t &9l ol 2ol a0 &3 2l wyl 3 /3 = [ 21130 231 1lwyl 3 /3 = lwyl 3/3
giving
vihis = {v.hi s + [lwzll/a + lwula/a]llula{RAc}u/u
= {Vg}l/a + lwu11/312u13{RAc}u/u (8)
since

{wy}1 = {wol1 + {wyls , {w3l, being a null vector.
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Fig. 3.7b.
On writing
o} o}
fwatiys = 1211 3lwabri/n = @fsa ) {wyls/s = w
Cco

and
cB (0] sB

[2u]3= o} 1 o}
-sB o} cB

Eg. 8 becomes

-1 (0] -Cao so
{VA}1/3 = Qaca| O| +|@qf ca o) o)
0 -Sa o} (6]
0 0 1 cB 0 sB 0
+ wy o} (0] (0] (0] 1 (0] (0]
-1 0 0 -SB 0 cBg |t -na
and this reduces to
-Qacoso - nacosB(Qsino + wy)
{v,}1/5 = | -onacosasing .

nasing (Qsino + wy)

When B = 0, the velocity of A is zero since it is then at the point

89
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of contact between the plane and the disc. Hence

0 -Qaco = na(fsa + my)
{VA}1/3|B=O =10 | = (6]
0 0]
which gives v, = g = -Q/sino since n = tana,.
Therefore
0 (o]} 0 -sB
{mu}g/g = |=-@/sina| , [ 2413 = {0 1 0
o} SB 0 cB
where 8 = Qt/sina.

The velocity of A, measured in frame 1 and referred to frame 3, is
thus given by

cosp - 1
{v,}1/3 = facosa|tanasing | . (9)
sing
Now
1/1 = 3l 1/3
{v,}ti1 =231 {v, }1,

differentiates to

{8, hi/1 = tesl 1 al23) 1{V, }1ys + lﬁallgt{VA}l/a

and since {w3}, is a null vector

{2, b1z = tears{a b1 = twala{v b /s + %t{VA}l/a
0 -Ca sallcg - 1
2
= Q acal co 0 (0] tanfsa
-Sa e} e} sB
_SB
+ Qéacu tanacpg
cBg
-sing/tana
2 2 2
= Q"a| cosB(l + cos a) - cos a (10)
cosBcosza/tana

The angular velocity vector diagram shown in Fig. 3.7a is constructed
as follows:

{wp}; is represented by the vector 1 — 2 of magnitude Q@ parallel



Solution of Kinematics Problems 91

{uwy} \

\ Q/sina

\
\ tuz Qcosu__,

[ = - JR
! 1 1
. {wu}y
1
I R/tana |
4 - 1
X -
-
\ -
\ P )
Qcosa —* P “#~—-Qcos a/sina
-~
\\ P
-~
\/
Fig. 3.7c.

to and in the direction of the z; axis.

{w3}, is a null vector and the points 2 and 3 are therefore co -
incident.

{wy}3 is represented by the vector 3 ——4 parallel to OC or the yj
axis. Point 4 is not yet located on this vector.

Point O is fixed in both body 4 and body 1. Also, the point in the
disc at the point of contact with body 1 is instantaneously at rest
with respect to body 1. The y, axis is thus the instantaneous axis
for the relative motion of bodies 4 and 1. The vector diagram can
thus be completed by drawing a line parallel to to the y, axis
through point 1. Point 4 is given by the intersection of this vector
with the vector representing {wy}; on which point 4 was to be located.
The vector representing {wyl}s is thus directed negatively along the
y3; axis while the vector representing {wy}; (1=——* 4) is directed
negatively along the y, axis.

It is therefore possible, having drawn the angular velocity vector
diagram, to obtain the magnitude of the vectors and hence deduce
their column matrix form. If

lus |1 = @ then |wy|s = ©/sina and luy]1 = o/tana .
Since the angular velocity vector diagram is 'fixed' in frames 2 and

3, it is easy to obtain the matrices which describe the various
angular velocities by reference to Fig. 3.7c. Hence
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-

(0} (0]
{wp}1/3 = @isina| , {wyl3z/3 = =9/sina|l
cosa | [0}
and ~
(0}
{wy}y /3 = 9/tanaj-cosa | .
_ sina

Problem 3.8. Figure 3.8 shows the schematic arrangement of a mechanism.
Body 2 rotates at a constant rate of 6 rad/s about the y; axis of a
frame fixed in body 1 so that point B moves in a circular path,

centred at O, 1in the x3;z; plane. Body 4 rotates about an axis fixed
in body 1 which is parallel to the z; axis so that point A moves in a
circular path, centred at C, in the x;y1 plane. Body 3 couples bodies

2 and 4 by means of spherical joints at A and B.

Find, for the given configuration of the mechanism,

{oyti/1 + {w3hipr + (dydin and {&%} /1 -

Solution., All vectors will be measured in and referred to frame 1 and
therefore the 1/1 suffix can be omitted throughout the solution.
Now

{Ryg} = (R} = {Ry}

2 0
= (41 - of = cm (1)
0 -4 4
and
0 0 -6 o) 24
{vg} = twl {Ry} = 0 oll o]l = | o] cm/s (2)
6 0 of[-4 0
giving
{Viel = 1y} + {v,}
0 24 u
v = o| + v cm/s . (3)
[0} [0}

Also, since

{vg'{R,} =0, 20+ 4av+4w=0. (4)
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T

’

Spherical joints
at A and B

Fig. 3.8.
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Equations 3 and 4 can be combined to give the single set of equations

(l 0 0 u r—24
10 1 0 |[-li|v 0 -{v,}
o o 1 w | 0
T
{RAB} _{RCA}/|RCA|

and they have the solution

[u v w V] = [-24 12 0 121 cm/s.
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Now
{Vict = tual (R}
0] 0] —w, oil=-2 0]
1z | = w, 0] 0] O = [|-2w
6} ¢} ¢} ¢} 0] 6}
giving
6}
{wy} = 0 | rad/s .
-6
Also
0] -4 4 |1-24 2
{51 = RVl = Ll ¢ o -2 12| = -2| 4 |radass.
P 361 4 2 oJ 0 35
IR, g |

The acceleration of the points A, B and C are related by

{2, = {a,} + {a,,}
{AZC} + {al = {a)} + (a5, + {a),} . (6)

The directions of the normal components of acceleration are specified
by

{A:C}T{RAC} =0, [rq Sy tq] -—2 = 0
0O
i 0]
or
—2]:‘1_‘ + Os, + Oty, = 0O (7)
and Wt .
a0 VR, =0, [rs syt 27|: 0
4
4
or )
2r3 + 483 + 4t3 =0 . (8)

The parallel component acceleration terms of Eq. 6 are evaluated as
follows.

2 2 2

lv,g =24 + 12 + 0 = 720 cm?/s2,
, 2 40
P _ — - _ 2
{ah .} Vgl {Rgat = 7%2 41 = -|80 | ecm/s” ,
5 4 80
IR,
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2 0
P -
fagh = =Ivg L R} _ 596 o
16 -4
| Ry |
and
) 2
P = =
{AAC} - IVAcl {RCA} - L% 0
_ 4
2 0
These results in Egq. 6 give
72 ry 0 40
O + | sy = ol - 80| +
0 ty 144 80

(0]
_ 2
= O jcm/s” ,
144
(72
2
= Of{cm/s .
0}
s
S3 - (9)
ts

Equations 7, 8 and 9 can be combined into a single set of equations

(1 0o o -1 o olfr;]
0 1 o0 O -1 o0f|ss
0o 01 0o O =-1|{t3}| _
olo o s
0|0 O 0| 0 oOflty

T T

and they have the solution

[r3 S3 t3 ry Sy tq] =

Hence
(i3} = [Res) (Bs} = L] @
36 -4
2
IR, p |
and
0
{(&y) = [RAC}{A:C} = 1o
AL A 1
2 0 -
IR, |

ol [40] [727]
o|+|80of+]| O
144 |80 0 (10)
0
0
L o J

=72 O] cm/sz.

-4 4{(112 -8
-2 8| = | 16| rad/s?
2 o[ -64 -12
0 o} 0
21|-72] = 0 rad/sz.
o) o} 36

If the velocity determining equations had been written more generally

then they would have appeared thus,
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uy U»n
V| = | V2
Wy 0
T
{VAB} {RAB}
and

Ve b (R

in which case their combined matrix form would

1 o o
o 1

1
X3 Y3 23
0o o0 o©
lo o o

=0

=0

-1
0
o)
o)

-Xy
0

us
V3 ’
w3

¢ X3U3 + y3V3 + Z3wg

¢ XUy + ypvy + 0wy

0

-1
0
0

-y
0

On comparing the accleration determining equations, Egs.

Owlh31
O [|vs
=1 [{ws
O f{luy
~Zy[{vy
O Wy

L

~-up

-v,

O O O O

-

Matrix Methods in Engineering Mechanics

It

it

be

. (11)

10, with the

above velocity determining equations it will be clear that their

form is the same. It is

Matrix characteristic
of mechanism

geometry.

These matrices can be partitioned as follows. The

matrix becomes

-~

o)

P
!
l-{=

...]
| I WU

| 'Outputs'

Matrix 1
of

unknowns.

Matrix
of

knowns.

' Inputs']

'characteristic'

The 'output' matrices for velocity and acceleration determination are

respectively
(V) (), 1]
and
{Vie! {a,c}
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The 'input' matrices for velocity and acceleration determination are
respectively

and

-{ag} - {al;} - {2}

| {o}

A recognition of these characteristics in the formulation of the
problem is particularly useful when a computer is employed to solve
the equations.

Problem 3.9. In the linkage shown in Fig. 3.9 a rod, body 2, has its
end A constrained to move along the x; axis of frame 1 fixed in body 1.
The rod is also constrained so that it slides through a diametral

hole in a sphere, body 3, at C. The sphere is free to rotate in a
block which constrains the centre of the sphere to move along a path
DE, which is fixed in body 1, in the y;z; plane and parallel to the

z, axis.

In the given position of the linkage the velocity and acceleration of
A and C, the centre of the sphere, are respectively

2 0
{VA}l/l =|0|m/s , {V(;}l/l = 10| m/s
(0] 1
5 0
{AA}I/I = 100} 0 m/s2 and {Ac}l/l = 1l00f0 m/s’.
81 81
0 6
Find
{o2bi/1 + {Vgchin v {Bggl2/1 and {82}1/1+

Solution. Since the suffixes are, with one exception 1/1 throughout
the solution they can be omitted in other than the exceptional case.
The exception is the vector

{agehe o

(See paragraph 1.13 and in particular Egs. 1.69 and 1.70).



98 Matrix Methods in Engineering Mechanics

B on body 2
C on body 3

Path of C drawn on
body 1

Path of A
drawn on

body 1
z]
Fig. 3.9.
Now )
-0.4 0
{ RA } = 0 m, { RB } = 0.4
0 -0.2
and therefore
0 -0.4 2
{RAB} = 0 - o} = 0,2
-0.2 _ O -1
Also
fvel = {v, b + {v} + {v, .}
and
T
{RBA} {ViA} =0
If
u
{Vgal = |vianda {v .} = vir,,}
w
IRy, |

then Egs.

2 and 3 become

m
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u 2 0 2
vi+ V| 2y=]0|~-]0 (4)
w 3 -1 1 0
and
2u + 2v - w =0 (5)

Equations 4 and 5 can be written

1 0 0 2/3||u -2

0 1 0 2/3 vy _ . (6)
o O 1 -1/3||w 1

2 2 -1 0 \%

To determine velocities for a series of configurations of the linkage
it would be advantageous to express Egs. 6 in the more general form

1 (0] (0] { u
Ryl {vel - {v,}
1 e} BA v ¢ A
o o 1 IRmAlllw]= . (7)
T
{Rrg,} o \ o
The solution of Egs. 6 give

-4 -2
{VBA} = 2| 5{m/s and {VBC} = 5{-2 | m/s.

9 2 9 1

The angular velocity of the rod, body 2, is given by

0 1 211 -4 1
{w3} = [RBA]{VBA} = 0.2x2 |-1 o =2|| 5| = lojo | rad/s.
BB 039, 5, o] . 9,

The acceleration of B relative to A parallel to {RBA} is given by

4

o -2 o)|-4 -2
{AgA} = [mZ]{VBA} = 10x2|2 0 -1 5| = 100]|-2 m/sz

and the accleration of C relative to B which is normal to {R,,} is
given by
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-2 o][-2 4
2[5 ]{v, } = 2xloxsl2 o -1f|-2] = 100)-5 m/s”.
% 1o 1 o)l 1l-2

For the relative acclerations

{a,}

{a,} + {n5,} + {25}

+

= {a,} + (a5} + {ap, b+ 2[03]{vee} + {aggla/n (8

or

{A;A} + {ACB}Z/l = {a.} - {a,} - {A:A} - Z[MEJ{VCB}

r O-5+2-4
+ MRl C100lo -0 42 4+ 5], (9)
t IRy, | 8llg -0 -1+2

Also, since

{RBA}T{A;A} =0,

it follows that the acceleration determining equations can be written
in the combined form

1 0 0 2731 (x -1
0 1 0 2/3|1s 1
o o 1 -1/3|le|T 2R . (10)
2 2 -1 0 A 0
The solution of Egs. 10 give
1 -2
n 2 2
{a;,} = 700| 3|m/s® and {A . },/1 = 700|-2|m/s".
BA CB —_
8T |_; 8T | ,

The angular acceleration of body 2 is given by

o 1 211 ~-14.4

{03} = [Ry,]{A5.} = 0.2x700(-1 o -2| 3 4.8 rad/s’.
—  0.38xBLI 5, »  ofl—1 19.2
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Problem 3.10. The position of a point P is measured in a reference

frame 4 which is fixed in the earth as shown in Fig. 3.10. Obtain an
expression for

{AP0}1/1+

where frame 1 is fixed in the stars(an inertial frame of reference).

21 Z;

- S
I'T" about z, 27y about z, 3@4

Solution. Introduce a frame 2 with its origin at the centre of the sun
such that the y, axis passes through the centre of the earth. Also
introduce a frame 3 which is fixed in the earth with its zj; axis
parallel to the z, axis of frame 2. Hence

{wyly = {wadr + {watzs + {wyls = {wgh
since {wy}3 is a null vector. Therefore

{wg}l/q = {wu}1/u = llglu{{w2}1/1 + {w3}2/2}

1 (0] (0] (0] o} (0]
= |0 ca sa o| + |O = (0 + w_)|sa
o} -sa co. Q w co.

€

since [ 2115 and [%5] 3 have no effect of the transformation of {w>2l1/3
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and {mg}z/z. Now

{Rpoti/1 = L2110 23150 241 3{Ry o }u yu

which, on differentiation with respect to time gives

{(Veohi/1 = [twal i il 2uly + [22h 1l wsl 220240 3 [{Rygbu s
PO / / o

+ lﬁull{vpo}u/u

and therefore
{Vpo}l/u = [lwzll/u + lwalz/u]{RYO}u/u + {Vpo}u/u

lwsll/u{RPo}u y t {Vpo}u/u

fl

o} -Cco saf| X x
= w| Cca 0] ] yi{ + §
-So 0 (0] z z
w(zsina - ycosa) + X
= | wxcosa + ¥
-pxsina + z
where v = @ + W, . Since
{(Vooti/1 = 1241 1 {V, 11 pus
{Apol1/1 = tusl s pil2ud 1 {V, o b py + lﬁullgt{vpo}1/u
and therefore
{A?o}l/u = lwu11/u{VP0}1/u + g {Vpo}l/u
t
0 =-co solf[w(zsa - yca) + x
=wl Co 0] ) wxXca + &
-Sa o} o} -wxSo + 2

w(Zsa - yca) + X
+ | wkca + ¥

. .
~wXsSo + 2
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- 2 . .
X - w x = 2u({yca - zsa)
=¥ + w’(zsaca - ycla) + 2wxcal.
. 2 .
z + w (ysaco - zs%a) - 2wxsa
Now @ = ZOOxlO'9 rad/s and w, = 72.7xlO'6 rad/s therefore terms

involving w2 and Q@ can be neglected. Thus

- 2u_(ycosa - Zsina)

.
.

Zkacosa .

{20t/

Ni
+

A .
- 2wex51na

Accelerations measured in frame 4, ¥, ¥ and 7, will thus be close to
those measured in frame 1, prov1ded that the accelerations w, x, w, Y
and w, z are small compared with ¥, ¥ and Z.

Problem 3.1l. Figure 3.1l shows part of an epicyclic gear train in
which the epicyclic arm, body 2, and the annular wheel, body 4, are
driven at a constant rate relative to the gear case, body 1. The
planet wheel, body 3, is carried on the arm and meshes with the
annular wheel.

At a given instant of time, frames 1, 2, 3 and 4 are aligned and B on
the planet wheel is coincident with C on the annular wheel, In the
subsequent motion frames 2 and 4 rotate about the y; axis through the
angles o and B respectively relative to frame 1, while frame 3 rotates
relative to frame 2 about the yj3; axis through the angle y. Obtain a
general expression for

{ABO}I/Z .

Solution. Now

{Ryoti/1 = 12201 {R, oy + 102010231 2{Ry, }35/3

and therefore

{VBO}I/I = lw2]1/1[22]1{RA0}2/2 + lwzl1/1122111%312{RBA}3/3

+ 122 1lw3l 220 231 2 {Ry, Y3 /3

or
{VBO}1/2 = lwal1/2{R )22

+ [lwzll/z + lwalz/z]llalz{RBA}a/a
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T Ye

o , I
4 !
4 Ef ;N\\ﬁi A}
) Yz | f—~
NS '\L < .

g

;l | : 1
. NN Z T ey
1l a about y; 2 y about y, 3

S
1 8 about y, 4

o o 1}i1
=na&ooooJ
-1 o ojlo
0 o 11 cy o sylf1
+ (& +y)ajo o oflo 1 o
-1 O Off-sy O «cyiloO

. . .
~a(a + vy)siny
O .
-na¢ - a(a + y)cosy
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Also
{Rco}l/l = [ﬂull{Rco}u/u

and therefore

{(Veoti1 = lwull/lllull{RCO}u/u
or
{Veoti/2 = Lyl 1o 210 20840 1{R g Fu s
[0 o0 1 ca O =-sa cB O sBi|1l
=mag|l o o oflo 1 oflo 1 ollo
-1 O O© sa O cajt=-sg8 O c¢cB]|O
[ cosBsina - sinBcosa
= maé o}
|- (cosBcosa + sinBsina)
where m = (n +1). Equating
{Vgot1/2 to {V,,ti/2
BO ¥=0 coll/ 4=0
B=0
gives y = m(fg - &) and & + vy = mf - nd = p. Therefore
psiny
{Vgol1/2 = -ajo
né + pcosy
where y = m(g - at, t being the time which has elapsed since B and C
were coincident. Hence
{Agoti/2 = lwzll/z{VBo}l/z + %t{vno}l/z
0O 0O 1]j psy -Cy
= -aa| 0 0 o||loO + apy| O
-1 0 O|{né& + pcy sy
2 .2
-(ap cosy + na’)
= (0] .

2 .
ap siny
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Problem 3.12. Body 2 rotates at a constant rate of relative to body 1
about the z; axis as shown in Fig. 3.12a. Body 2 carries a rotor,body
3, which rotates at a constant rate w relative to body 2 about an

axis which is parallel to the x, axis.

Find .
{wstr 2 v tegdr 1 v fwszly e and {wghy /.
Illustrate the results by drawing appropriate vectors.

{wy, 1

N|

L
%, x5 {w3l,

Fig. 3.12a.

Solutzon., Now
{wz}y = {wad; + {w3zly
as shown in Fig. 3.12b. Hence

{wgti/n = {wad1 /1 + {wzl2 g

{wad1 /1 + (220 1{w3lz /2 (1)
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0 cy -Sy Of|w wCosy
= 0|+ |sy cy 0{|0 | = |wsiny (2)
Q 0] 0] 14]0 Q

as show in Fig. 3.1l2c.

Fig. 3.12b.

Also
lwgti/o = 1011 2lw i1 + {wslsy/o
cy Sy oflo w w
= |=-SYy cy o|{o| + =10
0 0 1o O Q

or alternatively,
{wsly/p = 121V o{ws}y1/1 -
Differentiation of Eq. 1 with respect to time gives

{oagt11 = {aatin + Lwala i 8ol lesly/n + 1250 1{a3}, 0,

but in this case {&,}; and {w3}, are null vectors since @ and w are
constants. Therefore

{&3}1/1 = [w2]1/1[22]1{w3}2/2
and since, from Eq. 1
U221 1{wsloyo = {wzhr /1 = {wadi/n

{d3}1/1 = twal y i {lesdti/n = {wali/1} = twal1n{wshi

because
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Lwal 1/1{wad1 1

is a null matrix.

{é3}1 1

as shown in Fig,

Alternatively, {é3}1/1 can be obtained directly by differentiation of

Eq. 2. Also

{d3}1 /2

Alternatively

{&3}1/2

3.12c

Fig.

cy sy
[21) p{wgly /1 = [=sy cy
o o

lwal1/2{wgliyn + 4 {wgli/o
dt

o -2 o]l 0
) o olloj+]o
0 o ofle o
o

w .

Hence
0 -Q O jwcy -wRsiny
=10 o} Oljwsyl = wicosy
0 0 o8 0
3.124.

0
0
1

-wisy
wfcy
0

0
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wRCcosy

Fig. 3.12d.

Problem 3,13. Figure 3.13a shows a part section of a ball thrust race.
Determine, for the case in which the upper track, body 2, runs at a
constant angular velocity relative to the lower track, body 1, and
the balls roll without slip, the angular acceleration of a typical
ball, body 4. Also find the linear acceleration of the centre of mass
C of the ball and the velocity with which the cage rubs on the ball.

Solution. Consider the motion of the ball and in particular its ang-
ular velocity. There will be a component of angular velocity parallel
to the y; axis of a frame fixed in the cage, body 3, as a result of
the velocity which A has relative to B, The component angular velocity
parallel to the x3 axis must be zero since there is no slip at the
points of contact A and B.If the ball has a component angular velocity
parallel to the z3; axis, then an instant later when the line BCA has
moved to the position indicated in Fig. 3.13b a component of this
angular velocity will exist parallel to the X3 axis. Since this com-
ponent parallel to the xj3 axis must be zero, so alos must the compon-
ent parallel to the z3 axis. The relative positions of the frames
indicated in Fig. 3.13a are thus adequate in the description of the
motion. While the angle 6 can be made positive, the angles y and B8
will not necessarily be positive.

Consider the point O as a point fixed in body 2 and also as a point
fixed in an imaginary extension of body 4. Such points have no rel-
ative motion and are therefore points on the instantaneous axis for
the relative motion of bodies 2 and 4. Further consider a point A in
body 2 and as a coincident point in body 4. Such points have, instan-
taneously, no relative motion and are similarly points on the instan-
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T T — T T

T e
1 © about z, 2 \6 about z, 3 %about 3 4

Fig. 3.13a.

taneous axis for the motion of body 2

relative to body 4. Hence 0OA is

the instantaneous axis for the relative motion of bodies 2 and 4 and

{wy}, is parallel to OA. By a similar

argument, the vector {wy}; is

parallel to OB. The angular velocity vector diagram can thus be cons-

tructed as follows.

{wo }q 1 —=2 u long and parallel to the z;axis.

{wy 1 1 — 4 parallel to
not defined

{wy o 2 —s 4 parallel to
1 4 and 1 2

{wsh 1 — 3 parallel to

OB. The position of point 4 is
at this stage.

OA. The intersection of lines
fixes the position of point 4.

the z; axis. The position of

point 3 on 1 2 is not defined at this stage.

{wsly 4 —= 3, If the ball had a spin about the axis AC,
then an instant later the existence of such
an angular velocity would require a compon-

ent angular

velocity parallel to the xj3

axXis, and this is not possible as explained

above. Thus

4 —> 3 is parallel to the yj;

axis and this vector fixes the position of
3 on the line 1 2.

The angular velocity vector diagram is thus as shown in Fig. 3.13c.
The vector {w3}, is negatively directed along the z; axis and there-
fore y is negative. Similarly, since {wy}3; is negatively directed

along the y; axis g is negative,

Now

oyl = {wydy + {w3zly + {wyls (1)



Solution of Kinematics Problems 111

Fig. 3.13b.

and therefore, by reference to the angular velocity vector diagram,

{wyl1/3 = {wad1y/a + {wslayz + {wnlzy/s

O (0] O O
= |0 |+ 0 + |=nw/2| = |-nw/2{ . (2)
w -w/2 0 w/2

The angular acceleration of body 4, measured in frame 1 and referred
to frame 3, is given by

{oydr1/3 = twsli/s{wydi/zs + 4 {wuli/s (3)
dt

From Eq. 2
{wzt1/3 = {wyl1/3 = {wyls/s

and this result in Egq. 3, noting the the last term in this equation
is a null matrix, gives

o o -1 O
L] 2
{wq}1/3 = - [wgl3/3{wq}1/3 = =-nw {O O Of[=-n
411 o of] 1]
1
2
=nw 0.
4 O

The velocity of the centre of the ball is found by noting that C is a

MMAERBM - E
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\wula = nw/2 'VA[I - wna Instantaneous axis for the
motion of body 4 relative
1 to body 2

0 - —— 73

Instantaneous axis for the
motion of body 4 relative B |
to body 1

|

| @
nw/2 _Jl

o

Fig. 3.1l3c.

fixed point in frame 3, is given by

o o -1
{Vh}l 3 = {Vy}1/3 = lwsl1,3{R.}3/3 = nawlo 0 ol 1
/ / /3% t3/ 7
1 o o)
-1
= naw| O} .
2]l o

The acceleration of the centre of the ball is thus

{Vuti/3 = twsl1/3{vu}i/s + %t{Vu}1/3

and since the last term in this equation is a null matrix,

-1 o]|-1 o]
2 2
{Ay}1/3 = naw' |1 o of|l o]l =naw|-1;.
4 0 o} o} 4 0

The rubbing velocity between D a point on the ball (Fig., 3.13c) and E,
a corresponding point on the cage, will be given by
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{Vpctiys - {(Vecliys = Lwyd 1/3{R otz — lwsl1/3{Ryc}a/s

Lwyl 3/3{R }s/s

0 0 -1} a 0
= nw(0 0] 0}l 0 | = naw|O | .
2 2
1 0 O]l O 1

Problem 3,14, Determine the angular velocity and acceleration of a
roller in a taper roller thrust bearing for the case in which the
inner ring is fixed and the outer ring is driven at a constant ang-
ular velocity. Assume that rolling without slip takes place at the
roller and ring contacts. Also determine the maximum rubbing velocity
of the cage on a roller.

Solution. Figure 3.14 shows a half section of a taper roller thrust
bearing. The fixed inner ring is designated 1, the cage 2, a roller 4
and the outer ring 5. Frames of reference have been introduced with
the relative positions indicated. The angular velocity vector diagram
is constructed as follows.

{ws )y l—»5 long and parallel to the z; axis.

{wy 1y 1— 4 parallel to the generator of the cone on the
inner ring in the given section. The position
of point 4 is not defined at this stage.

{wgly 5—= 4 parallel to the generator of the cone on the
outer ring given in the section. The inter-
section of lineds 1 4 and 5 4 fixes the pos-
ition of the point 4.

{wyls 3— 4 parallel to the z3 or roller axis to fix the
position of point 3 on the line 1 5. Points
3 and 2 are coincident because frames 2 and
3 have no relative motion. Hence {wyl3 =
{wq}z.

By the application of the sine rule to triangles 145 and 124

lwyly = wsin(e + B) , jwy|1 = wsin(e + B)sing
sin2g SinZ2Bsiné
and
lwy|, = wsin(e + B)sin(o - 8).

sinZ2Bsin®d

Hence
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Z1r Z24 25 ///\/ {

/ o]
2y 1 y about z; 2 ¢ about X2 3 ¢ about z, 4

S
I o about z; 5

Fig. 3.14,
0 0
{wslyy/z = oy 1] sing| {woty1/3 = woly|sine and
COSsB cos9
0
{ontsys = {uylyss = loyfo| 0] .
1
Now ‘
{oydr/s = lwply/3funty /g + % {oyly /3
t
and
lowti/s = fwolyys + {wslays + {uyls/s

giving
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{5u}1/3 = lwzll/a{wu}a/a
o} -c6 s8] O

lwzllfwulz co o 0 0
-s6 0 0 1

-1

lwa]1]wy]zcose| 0
0

since {w3},/3 and dfwy};/3/dt are null matrices.

The magnitude of the maximum rubbing velocity between cage and roller
is given by

alwulz

where a is the magnitude of the position of B relative to A or the
maximum roller diameter.

Problem 3.15, A rotor, body 4, turns at a constant rate w, relative
to a bearing, body 3, about the y3; axis as shown in Fig.3.l15a. The
bearing is free to turn with respect to body 2 about the x, axis and
body 2 rotates at a constant rate g about the z; axis in body 1. Find
{&4}1/2 for the case in which & and d are not zero.

Solution., Now
{fwyl; = {waly + {w3zly + {wyl;
and therefore
{undr1/1 = {w2li/1 + [ %20 11wslayn + 22110831 2wy} /3.
Since {w,}; and {&,}3 are null vectors
{4311 = lwal 1 /10820 1{w3da 2 + (221 1{03}2 2
+ [wal /10221 1023 2{wylay/s
+ [22]1[w3]2/2[23]2{wq}3/3 .

On premultiplication by [21] 3 and on the introduction of appropriate
[ 23] 102113 products, this equation becomes

{ayd1/3 = 1210 3lwal 1 /10830 10 211 30 22) 1{w3}2 /0

+ 121130221 1{d3}2/2
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+ [21]3[w2]1/1[23]1[21]3[22]1[23]2{w4}3/3

+ [21]3[22]1[w3]2/2[23]2{wq}3/3

1l

lwol 1/3{wszla/a + {waloy/z + [wol1/3{wyls/s

+ (w3l /3{lwylay s

i

[w2]1/3{{w3}2/3 + {wq}3/3} + [w3ly 3lwuls/s

+ {&3}2/3 .

Fig. 3.1lb5a.

Writing & = w and evaluating individual terms in the above equation
(6]
{w2}1/3 = [12]3[21]2{&\2}1/1 = Qlsal| ,
ca
w
{w3}2/3 = [12]3{&\3}2/2 = |0},

O
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Components of {&q}lalong the axes of frame 2

Z3
Yg\
w, Cosa yz\
—Q /X2
/ . w, Cosa
w
Qw, cosa
X, component Z, component
Z; | 2
ws Sina
Yz\ Q- }
Quw \ N
w Y- .

Fig. 3.15b.
0 =Ca
[wol 1/3{{0)3}2/3 + {wq}g/g} = Q| ca 0
-Sa o}
[=uw, ca
= Q] wco
| ~wsa
and
o o ol
[w3]2/3{w4}3/3 = wwg |O O =1{{1l] = wu,
o 1 ollo
Therefore

y, component

o - Quws COSa

{&4}1/3 = | Qucosa

and

wws = Qwsina

Z2

wuw, Cosa

~
e

w

e

ww, sina

e

117
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0 - flw, GOsa
{onl1/2 = (231 2{wy}1/3 = [ Q0 = ww,sina| .
ww, COsa
The terms in this last statement for the angular acceleration are

shown in Fig.3.15b. The reader is invited to determine {wy},/; and
then determine {a&,};/; from

{ayty o = twal 1 ofwylyp + % {wsdr 2 -
t

Problem 3.16. In the system of Fig. 3.16 body 2 turns at a constant
rate relative to body 1 about the z; axis. Body 3 is free to turn on
body 2 about the y, axis and rolls on body l. Conditions are such that
on the line of contact between bodies 1 and 3 the velocity of slip is
zero at the point A, Determine the rubbing velocity at B and D.

Locate a point Q on the central axis for the for the motion of body 3
relative to body 1 and show that it is on the line OA. Also show that
instantaneously the velocity of Q measured in frame 1 is zero, i.e.
OQA is the instantaneous axis for the motion of body 3 relative to
body 1.

Solutizon. The angular velocity vector diagram is constructed as
follows.

{woly 11— 2 ¢ long parallel to the z; axis.

{w3l, 2~=3 parallel to the y, axis. The position of
point 3 is not defined.

{wsl}y 1~ 3 parallel to OA, the instantaeous axis for
the motion of body 3 relative to body 1.
The intersection of lines 2 3 and 1 3
defines the position of point 3.

By ref=zrence to the angular velocity vector diagram

0 0 0
{w3}1/2 = {wz}l/z + {wg}z/z = |0} + |-wa/r| = [-wa/r} .
w 0 w

For the point B, fixed in body 3

{Vgolti/2 = Lwsliyal 231 2{R, }3/3
BO
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o -1 -a/r|{cg O -sp 0
= |l 0 (0] (0] 1 (0] b
_a/r 0 0 sg O cB8 || -r
facos8 - b
= w|rsing .
Lasins
1 y about z; 2 B about y, 3
|z
Z2
3 wa/r
{waky
4o 2 L —] v 3L 2 _
~ 2
piRCR ) Al T
i {wy¥
7 7 470 ¥ {w3ky Lre
1 B A D
i -1
A A 7

Fig. 3.l6.

The rubbing velocity at B is thus given by

-

1
w(a=b) O | .

Lo

{VB0}1/2l8=O -

Similarly, the velocity of rubbing at D is given by

1
w(a=c)y |O |.
LO

{Veoli/2 } g=0

If Q is a point on the central axis, then by Eq.

{RQB}1/2|6=O = [w3]1/2{vno}1/2§g=o

lus s

MMAERBM - E*

1.48
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0 -1 -a/r|i 1l
= (a - b) 1 0 o} o}
az/r2 + lla/r O 0 0
o}
=r{a - b)lr
a? + r? |a

and for B = O

{RQO}I/Z = {Rgot1/2 + {RQB}I/Z

0 0 0

= - = 2 =
b {+ r(a b)|r as + r a A{RAO}l/z
~r a’? + r? |a a’ + r?l-r

showing that Q is on the line OA. Also, since

{VQO}I/Z'Bzo = [(.\)3] I/Z{RQO}]'/Z‘B:O
0 -1 -a/r ] 0
= aw il 0 0 aj= |0
a/r 0 0 -r 0

OQA is the instantaneous axis for the motion of the roller relative
to body 1.

Problem 3.17. In the system of Fig. 3.17 bodies 2 and 3 are connected
by a simple pin joint, the axis of which is parallel to the yj3 axis.
Body 2 is free to turn relative to body 1 about the z; axis and body
4 is free to turn relative to body 3 about the z; axis., Body 5 is to
rotate relative to body 1 about the z; axis. Find, for the case in
which body 4 rolls without slip on body 5,

{wy}1/3 and {oy}1/3

when bodies 2 and 3 are driven at constant rates w; and ws respec -
tively relative to body 1.

Solution. Now

{&oh/1={%oh/1+{&5hﬂ

l2211[2312{RBO}3/3 + 1121112312l2u13{RAB}u/4 ’
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(ws +w) tan 8,

/‘\\ /\
| y about z, 2 8 about y3 3@4

2T
| 8 about z, 5
Fig. 3.17

giving
{Vioh1/1 = Lwal 11022010231 o{Ry }3/3
+ lwzl1/111211[2312{RAB}u/u
+ (ﬁzl1(13121w413/3(1413{RAB}u/q '

since {w3}, ig a null vector and therefore

{Viohi/3 = twal1/3{Ry )33
+ [[w211/3 + [wula/a]lluia{RAB}Q/q .
Hence
0 -c6 O )

= wo |CH o) soef| O
0 ~-s8 O |{-a

{VA0}1/3|¢=O

(2a)

121




122 Matrix Methods in Engineering Mechanics

O =c®# O o =1 o0lIfb/2
+ lusjce 0 s8] + 4|1 o oflio
0O =-s6 O o o0 ojfjo
0 0 [0
= wpasiné|-1| + wobcose |1l | + gi 1.
0 2 o] 2 o)
Also
{RED}I/I = 12511 {R,p}s/5 and {V, }1/s5 = lwsll/s{RED}s/s
giving o -1 0][-c/2 0
{VEB}1/5’8=O = ws|l O Offl O = %?5 -1].
O 0 OjL o 0
Since
{V,oli/3 {veati/s
A0ll/ l¢=O epll/ (B=O ,
$ = wy{(2a/b)sing - cos6} - (c/b)uws .

By reference to Fig. 3.17

tan6 = tan(6; + 8,) = b/2a + c/r = br + 2ac
1 - bc/2ar 2ar - bc
where r? = 4a? + b? - c2, giving
sing = (br + 2ac)/R and cos6 = (2ar - bc)/R
where R = V{(br + 2ac)2 + (2ar - bc)2} = (r? + c%y .

With these values for sine and cos6 the expression for $ reduces to
é = clwy = ws)/b.
Therefore

{wytr/3 = {uptiys + {wylazs

-sinb 0
= wy| O + clwy, = ws)|Og.
cos8 b 1

This expression for {wu}1/3 can also be determined from the angular

velocity vector diagram of Fig., 3.17. {wz}; and {ws}; are drawn para-
llel to the z; axis. {wy,}3 drawn parallel to OB and {ws}, drawn para-
llel to OA, the instantaneous axis for the motion of body 4 relative
to body 3, intersect to define the position of point 4. From the
diagram
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(w2 + w)tane = (w5 + w)tan92
giving

w = wgtanby, = wortansd

tane = tane,

and therefore

[$| = w + wy, = (ws = wp)tanb2 = c(wg = wy)/b .
cos®o cosb (tane - tané,)

which confirms the previous result.

The angular acceleration {&u}1/3, since d{wy},/3/dt is null, is given
by

{&u}l/s = twsli/3{wydy /3 = [waly/3{wylsys

O -c6 O o}
= cwy(wy = wsg)lce o} sef| o
b 0 -s86 O 1
)
= wpoc8inb(wys - wg)|l |.
b 0

Problem 3.18. In the system of Fig. 3.18 bodies 2 and 3 rotate about
axes fixed in body 4. The relative motion of bodies 2 and 3 is gov-
erned by mating bevel gear wheels cut in them. Body 2 rotates about
an axis fixed in body 1, while body 3 rolls without slip on body 1.
For the case in which body 2 is driven at a constant rate relative to
body 1, draw the angular velocity vector diagram for the system and
hence determine

{w3}1/|+ and {&3}1/1.; N
Also determine
{Vco}l/‘-) ’ {VAo}l/u and {AAO}I/'*

where A is a point fixed in body 3 which is shown at the point of
contact with body .

Solution. The angular velocity vector diagram is constructed as
follows.



124 Matrix Methods in Engineering Mechanics

{wo}1 l1—=2 o long and parallel to the y; axis.

{wsls 2— 3 parallel to the common generator of the
pitch cones of the mating bevel gear wheels,
the instantaneous axis for the relative
motion of bodies 2 and 3. The position of
point 3 is not defined at this stage.

{wah l—= 3 parallel to the instantaneous axis for the
relative motion of bodies 1 and 3, OA.
Lines 2 3 and 1 3 intersect to define the
position of point 3.

{wyls 3—» 4 parallel to OC.

{wy 1—=4 parallel to the y; axis.

{wy X4

AT Foo
1%{ N7 twh

i .
nt teeth O [ T~
\

t teethX]

T T

1 g about y; 2 ¢ about y, 4 « about x, 3

Fig. 3.18.

From the angular velocity vector diagram, writing |wq]2 = Wiy
|w3|u = nm1,|m2|1 = w =(1 + an)u, |w4|1 = NAw; = riw

and

lugly = ro
where

r =n/(l + An).

Now
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fwsly = {wody + {wyly + {w3ly
= {wyl) + {w3ly
and therefore

{wztijuw = lusli/u + {wsly

0 -1 -1
= pr|x| + wr| O] = wn A
0 0 1 + x| o0

The angular acceleration {&3}1/u, since d{w3},/4/dt is null, is given
by

{&3}1/u = loyl1/ulwzdin = w1 /u{wgly sy

o o 1[-1 0]
2 2 2 2
= w&>r Al O 0 0 o| = w n i ol .
-1 o oll o (L + ) |1

Since C is a point fixed in frame 4

{Veoti/u = Luwl 1 /u{Reotuyy = wrrj 0 0 0
-1 0 o0jlo]
0
- _wain o].
1 + An -1

Also, for A a point fixed in body 3,
{Rohi/1 = {Rohin + (R, hi
= 1230 1{Rgbu/u + 1231 1{R, }3/3

and therefore

{VA0}1/1 = Lwyl 110240 1{Re g buyy + lwall/lllall{RAc}a/a ’

or, noting that o is negative,

Vioti/w = twal 1 /u{Regluyu + Lwsl 1/l 231 4 {R, }3 /3
0 o o At o olflo
=war| O] + wr| O o 1lij|lo ca sofl=ia

=X\ - =1 OJLO =sa ca 0
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Asina

= gain Sina .

1 + xn}| cosa = 1
Hence
{Baoli/n = twydyw{v, b /n + %t{VAO}l/'*
o 0 A Asa ACa
2 2 2 2

= w ar Ax{ 0 O O]]| sa + w ar A| Ca

-x 0 O]ice -1 ~-sa

A(2cosa - 1)

2 2.2
wamn i coSsa .
(L + a2 =(1 + 2?)sina

Problem 3.19. Figure 3.19 shows a bevel wheel epicyclic gear train in
which body 2 is driven at a constant rate u relative to body 1.
Determine

{&4}1/3 and {ws};/1 .

Solution. The angular velocity vector diagram is constructed as foll=-
OowWS.

{wo 3y 1l— 2 y long and parallel to the x; axis.

{wy 1l -~—» 4 parallel to OA, the common generator of the
pitch cones on bodies 1 and 4.

{wyls 2 — 4 parallel to the z axis. Lines 1 4 and 2 4
intersect to define the position of point 4.

{wg ) 1 — 5 parallel to the x; axis.

{wsly 4 — 5 parallel to OB, the common generator of the
pitch cones on bodies 4 and 5. Lines 1 5
and 4 5 intersect to define the position of
point 5.

The angles specified in Fig. 3.19 are related to the gear teeth
numbers by the following expressions

sing (t; - ts5) /2ty , cosp = CD/OC ,

tana AC/0C = 2tycosg/(t; + ts)and sin¢ = t;sinae/ty.
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(ws}l

{mk}l
J e
7
1i\a
t teeth//’;:’:%S /' t, teeth
C
z, d
/ o ! 4
5 g
\s\; N - %ts teeth
1
D) = AYAN | 5 A,
T A D 1. .
/dF§§ NN N )
X3
NN T~

N
§5 P e
1 ¢ about x; 2 g8 about y; 3 y about z3 4

RS
1 o about x; 5

Fig. 3.19

Application of the sine rule to the angular velocity vector diagram
triangle 124 gives

|wp|1/sina = |wy|1/sin(¢ + o) = |wy|3/sing .
The relationship ¢ + a« = B + /2 can be used to eliminate ¢ to give
|wp|1/sina = |wy|1/cosB = |wy|3/cos(B = a) .
Hence
sina I
{wy}y /3 = wcosg| O = wcosB| O
Sina|_-osa -cota

and
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0

{wq}3/3 = gcos(B - o)l O .
sino -1

In this case the required angular acceleration of body 4 is given by

{oy1/3 = lwp) 1 3lendays
o -sg o] o
mZCOS(B - a)|{sB O =~cB 0
sing o cg O J{-1]

Wit V{4t2 = (ty - t) 211

2t2 LO

Application of the sine rule to the angular velocity vector diagram
triangle 145 gives

lws|1/sin2a = |wy|1/sin(¢ + 2a) = |w,|1/cos(a + 8)

and therefore

|ws|) = 2ucospcosa/cos(a + B)
giving
1
lusti /1 = o(l + £1/t5)] 0
0

Problem 3,20. Hooke's joint, shown diagrammatically in Fig. 3.20, is
a device for coupling shafts which have intersecting non colinear
axes. With this arrangement the output shaft, body 4, has a variable
angular velocity when the input shaft, body 2, is driven at a cons-—
tant rate relative to the bearings, body 1, in which the shafts are
constrained to turn. Find

{wyd1/5, {w3la/o and {wylz/3.

Solution. Frame 4, fixed in the output shaft, can be reached from
frame 1, fixed in the bearings, by either of the sequences of rota-
tions indicated in Fig. 3.20. Hence

{wydr /1 = {wadin + 0820 1{wgla o + 122010 23) 2{wsls s (1)

{wsti/1 + 1251 1{wyls/s (2)
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where {ws}; is a null vector.

S
lpnm?Zxamwﬁsmmm54

Vg:::;::5 ¢ &bwtzs4

xl
Y
Fig. 3.20.
By Eq. 1
-sing 0 cg o sgl|fa
wy| cose| = wo|l | + 0 1 © 0
0 0 -sg O cBJLo
cB O sBl|{l O 0 0
+ 0 1 © 0O co =-sal|O
-sg O cB|{|O sa co ;
acB + ysBca
= wy = ‘;Su (3)
—&ss + §c6cy
By Eq. 2
-sine6 c6 =-s8 O]]O
wy| cose| = |se ce O} ¢ (4)
0 0 0 1}]]0
From the z component of Egs. 3
& = ycosa/tang (5)

and from the y component of Egs., 4 wy = $€By Eg. 5 and the x compon-
ent of Egs. 3 e

vy = ~wysinpgcose/cosa (6)

By Eqg. 6 and the y component of Egs. 3
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wy = wo/(cos6é - sinBsinbtana) . (7)

A relationship between o, B and 6 can be found by comparing corres=
ponding terms in the two expressions for [24] ;.

[ cocy =-s6 cbs¢

{2yl =| sece ch sBs¢

|~s¢ o} Cco¢

[ cBcy + sBsyca =cBsy + sBcysa SBCa

=] syca cyca -sa (8)

:SBCY + CBsysa sBsy + cBcysa CBcCa
and therefore
aps3/ays = tane = -tana/sing. (9)

Hence, by Egs. 7 and 9

wy = wpcos6/(l - sinzecoszs)
and
(0]
{w4}1/5 = wpyCOSH 1 (10)

1l - sinzecoszs (e}

Also, by Egs. 5, 6, 9 and 10

lwy]g = = -wysinBsinbcossV (1 + tan’6sin’g)

=y =
l - sinzecoszs
and
|w3|2 = & = ~wosingcosH
cosg(l - sin?pcos?B)
giving
"o
{wuytsys = |wy|sfo (11)
Ll.
and
1]
{wg}z/z = |w3|2 0} . (12)
[ O ]
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Problem 3.21, Figure 3.21 shows a shaft, body 2, and and axle and
disc, body 3, coupled by a constant velocity joint. The shaft turns
at a constant rate w,; about the y;axis relative to body 1 and the
disc rolls without slip on body 1. An imaginary body 4 is introduced
to assist in a description of the kinematic properties of the joint.
The relative angular velocities

{wz}q and {0)3}4

are such that their magnitudes are equal. Construct the angular vel-
ocity diagram and use it to determine

{&3}1/5 .

The reader is referred to Morrison,J.L.M. and Crossland,B. (1964).
An Introduction to the Mechanics of Machines,Longmans,London,
Chap.2,p.123., for a description of the Birfield universal joint.

Solution., The angular velocity vector diagram is constructed as foll-
OowWS.

{ws }y l— 2 w, long and parallel to the y; axis.
{wzh 1l—— 3 parallel to OP, the instantaneous axis for
the relative motion of bodies 3 and 1. The

position of point 3 is not defined.

{wor}y 4 —» 2 parallel to the y; axis. The position of
point 4 is not defined.

{oyls 5 — 4 a null vector, points 4 and 5 are coincident.
{w3ls 5 «——= 3 parallel to the x5 axis.

Since
lwafu = fosly

the angles 432 and 423 are equal so that the angle 132, the inclin -
ation of {w3}l, to OP, is (90° - y)/2. Now the bisector of the angle
AOC is inclined at

(90° + y) /2 = y = (90° - v)/2
to OP and {w3l}, is therefore parallel to OP.This allows the vectors

l— 3 and 2 — 3 to be drawn on the vector diagram to locate the
point 3, and consequently the coincident points 4 and 5. Let

lwzlu = Iwalu = W
Then

]w3|1 = gcosy and tan§ = (w = wp)/wcosy ,
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Constant velocity joint _— - A b

/
/ {Paf / C98 {@ah

{4

1 F, about ¥, 2 ¢ avout y, 4 - Xabont 2, 5 a about X5 3

Fig. 3.21
giving
w = wy/(l - siny) and |ws|; = wysiny/(l - siny).
Therefore
[-cosy]
{w3ly1/5 = wpcosy [-siny
1l - siny| O i
and F cine
siny
{w5}1/5 = wpsiny |[—-cosy
1 - siny| O i
giving
0 O =-Cy || -cy
L] 2
{w3}1/5 = [w5]1/5{w3}1/5 = wySYCy 0 0 -sy || =-sy
71 - - 2
(1 - sy)“|cy sy 0] 0

O
2 .
wpySinycosy O | .

- - \Z
(1 = siny) "~ {-1
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Problem 3.22. Body 2 moves from a position in which frame 2 fixed in

it is aligned with frame 1, to a position in which frame 2 is aligned
with frame 3. This motion can be reduced to a linear displacement of

a point in body 2 combined with a rotation about some axis. Find the

direction of the axis and the angle through which the body rotates.

The plate in Fig. 3.22a is to be moved from the position ABC to the
position A'B'C' by a simple rotation about some axis. Determine the
direction of the axis and the magnitude of the rotation about the
axis.

Fig. 3.22a.

Solution. One approach to the solution of this problem exploits two
of the properties of the similarity transformation. A similarity
transformation of the square matrix [A] is given by

[ B [TI(AI[TI ! (1)

or

[T~ AIT] (2)

where [T] is a nonsingular matrix of the same order as [A]l. [B] is
is said to be similar to [A]).

The particular similarity transformation to be employed here is
[Bl = [R1[AI[&] ] (3)

where [B] is a given transformation matrix and [2] is a transformation
matrix which is to be determined.

The particular properties of the similarity transformation to be
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exploited here are:
(a) that [B] and [A] have equal eigenvalues and
(b) that [B] and [A] have equal traces.
These properties can be shown to exist as follows. Consider the equ-
ation

[A]l {X} = a{X} (4)
The values of X which satisfy this equation are the eigenvalues of
[Al and the {X}'s are its eigenvectors. Premultiplication of Eq. 4 by

[ 2] and the introduction of [&] ~'[2] gives
[RITAIL2] T 2] (X} = AL2] {X)

and by Eq. 3
[BI[ 2] {X} = Xf2]{Xx}

or

{B1{Y} Ay} (5)

where

i

{21 {X} {y} . (6)

Hence the eigenvalues of [B] are equal to the eigenvalues of [A] and
their eigenvectors are related by Eqg. 6.

The equation
(Al {X} = A{X}
can be written
[tar - an}xy = (0}

and if {X} is not null, then

gettal - arn] =o. (7)
Writing
ap b C
fA]=]ax by cp

as b3 Cj

gives the requirement of Eg. 7 as

a;y = A bl (o3}
asn b2 - A Co = 0
asg b3 Cyg = A

or
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(a; = M) {(by = ) (c3 = A) = bscy)
- bl{az(C3 - X) - 33C2}
+ Cl{azbg - az(by, = A)} =0

and this expands to

A= (a; by C)AT F v uw . =0 (8)
If X1, X, and i3 are the eigenvalues, then
(X-Xl)(X"Xz)(X—Xg):O
or
3 2
AT = (X1 A FADAT 4+ o . . . . . = 0, (9)

Thus, the trace of [A] , a; + by, + c3, is the sum of the eigenvalues
of either [A] or [B].

Let {C} be a vector which is parallel to the axis about which body 2
rotates when frame 2 moves from alignment with frame 1 to alignment
with frame 3. The components of such a vector {C} will be the same
when referred to either of the frames 1 or 3. Therefore

{Cly = {C}; =18311{CHh
and since the length of the vector {C} is unimportant,
[2317{C}; = A{ChHh

also satisfies the requirement for {C}. Hence, for a given [%31]; ,
the direction of {C} can be determined.

The angle through which frame 2 turns about an axis parallel to ¢
while it moves from alignment with frame 1 to alignment with frame 3
can be found by considering the following sequence of rotations

e ™

1 y about z; 4 8 about y, 5 8 about x5 6

/‘\/\

6-g about yg 7 -y about z; 3

sO that

{2311 [ 24 110 8514l 26150 27 161 2317

=1 =1
[ oy 10851yl 8g1sl 251y [ 284 1h

[2s 170261502517 .

The net rotation is thus & , while
-1
[2317 = 185111 %s150 %5 ]

is a similarity transformation. The traces of [4%31; and [ 4g s are
thus equal, allowing 6 to be determined.
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Consider the equation

[2311{C}y = {Ch
or

[tean - 111)icyy = (0}

a; =1 B C X 0o
b, -1 F y| =10

G H cy = 1|z 0

A B Cl[x

D E Flly| =

{G H Jjlz 0

Ax + By + Cz = O
Dx + Ey Fz = 0 .
Gx + Hy + Jz = O

+

Putting z = 1, since the length of {C} is unimportant, these equations
reduce to

AX + By + C =0
Dx + Ey + F = 0O

giving
=
x =1l-F E = (FB - CE)/(AE - CE) (10)
A B
.
and
lA -cl
y =1{D =~F = (DC - AF)/(AE - CE) (11)
A B
o =l

The direction of the axis about which rotation takes place is thus
determined. Now

1 0 0
{215 = |O ch -8
0 s co

and since

tracef{ 231, = tracelfgls
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cose = (a; + by, + c3 = 1)/2 . (12)

The magnitude of the angle through which frame 2 turns about an axis
parallel to the vector {C} in moving from alignment with frame 1 to
alignment with frame 3 is thus determined. The direction of the rot-
ation remains to be determined. Recalling that [231; can be regarded
as being made up of three column vectors

ay B C
(231, = [{Jlx3}1 {2, 3} {123}1] -lp b, F
G H C3

where {f,3}1, {%y3}; and {2,3}; are the direction cosines of the xg3,
y3 and z3 axes respectively, with respect to frame l.Thus, a well
proportioned sketch of frame 1, the vector {C} and, say, the z; axis
will allow the direction of the rotation to be determined as shown in
Fig. 3.22b,

2]

Fig. 3.22b.

The plate of Fig. 3.22a can be moved from the position ABC to the
position A'B'C' by a number of alternative rotation sequences.
Consider four of the possible alternatives.

1. Refer to Fig. 3.22c.

[ cg 0 sglflcy =-sy O]
[e31; = 0 1 O sy Cy
|-se 0 cg]lo o 1]
o o 11[-1 o 0] o o 1
= 0 1 © (0] -1 ol= 1o -1 of -
-1 o oJlo o 1] [t o o
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By
Al\

'// \\ Yi1.¥2

YT Cq1,4,C»
‘\\\‘
\\
2 i:> By
. /’
////C3 \,//
¥3 .
‘ Az ,A3
X1722,23
%3 B;
— T
1 7/2 about y; 2 w about z, 3
Fig. 3.22c
2. Refer to Fig. 3.224.
-cY -sy O cg O sB
[23]; = | sy cy O 0 1 O
e 0 1]L~-sB8 O cB
(-1 o o]fo o -1 o o 1
= 0O -1 of||l]o 1 o} =1]0 =-1 0O .
L o o 1]{1 o o 1 o o
3. Refer to Fig. 3.22e.
cg o sgl[1 o o
[23); = 0 1 O O ca =sa
-sB O CSJ 0O sao Co,
o o =111 o o o o 1
= o 1 oo =1 of = {0 =1 0.
1 o ojlo o -1 1 o o

[ 2317 is thus independent of the sequence of rotations. Of course
[23]1; can be formed immediately by reference to Fig. 3.22a.
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Z1,Z4 X3
B,
Alshy 1
//’
pd
By -°
4
////m
1
!
Cy,C3

YurY3 \\\\

X123

Bj

/’_'\
1 n about z; 4 -n/2 about y, 3

Fig. 3.22d.

214X2
a ’///,////ifz

B

2\2//2

</ \ /YIIYZ

N C1,C2
N

C3

Y3 \\\\

- Bs

T *M_“\\\n\///”‘_‘_’“\ﬂn\
1 -n/2 about y; 2 w about x; 3

Fig. 3.22e.

139
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z)
Zs
X3
¥3 z3
Y&
//\\ T T
1 -8 about y; 5 8 about x5 6 8 about yg 3
Fig. 3.22f.
4, Refer to Fig. 3.22f.
(g o =-sslf1 o 0 cg O sB
[231; = {0 1 0 O c8 =-s86 0 1 O
LSB 0 cBJlO sb cojl—-sp O cB
—c28 + 528c8 -s8cB SBCB = sSBcBCH
= 1s0s8 co -s6ch
|sBcs + sBceco  secp  s°B + clpco
o o 1
= 0 =1 ol .
11 0 1
Hence
cos® = =1, giving 6 = 71 .
Also ,
cos“ g + sinzs(-l) = 0 or cos28 = 0, giving

Or, by reference to Egs. 12,

cosf = (O -1+ 0 - 1)/2 =
{0 - 1(-2)}/{(-1) (-2)
y = {(0) (1) -

thus confirming the previous result,

x=
and

10 and 11 respectively,

-1, giving 6 = =,

-0} =1
(=1) (0) 3/1(-1) (=2)

-0} =0

B

/4.
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3.2.Problems For Solution

Problem 3,23, A disc, body 2, rotates at a constant rate w about an
axXis which is fixed in body 1 and perpendicular to its plane. A point
P moves with a velocity of magnitude v on the surface of the disc in
a circular path of radius a which has its centre on the axis of rot-
ation of the disc. Show that, for the frames specified in Fig. 3.23,
cos(w + Q) t
{R,}1/1 = afsin(w + 2)t] ,
o)

-sin(w + Q) t

{Rp}l/l = {ép}l/l = {VP}I/I = alw + Q) cos(w + Q)t ’
t
0

o o

%t{V}}l/l = {9}}1/1 = {A, hh

It

-’ + vi/a® + 20v/2) {Ry }1 1

-sin@Qt
{V,}1/2 = alw + @) | cosat| ,
o)
o)
{VP}1/3 =a(w + 2)f1]),
o)
cost
{A7}1/2 = —(w’a + v’/a + 2uv)|sinat
o)
and
1
_ 2 2
{Ap}l/a = -(wa+v /a+ 2uv)|O0
o)

where Q = v/a.

Problem 3.24, A vector is specified by

-0.56813
{B}l/l+ = 0.76761 .
1.00000

Find

{Bh /1
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for the case in which

0.741516 0.45315 -0.494731
[ 241, =|=-0.595012 0.784856 -0.172904] .
0.30995 0.4226 0.85165

(Comment. It will be found that {B}l/l = {B}l/q .Tt is clear that the
vector {B}; has special properties in relation. to the given [2,];.

The components of this vector are the same along the axes of both
frames. Frame 1 can be aligned with frame 4 by rotating it about an
axis parallel to {B};.

Path of P drawn
on body 2

WOt o+ vt/a

Frame 3 rotates about O aand the X3 axis

passes through P.

ST T g
17Ut about z, 2 1 b/)t + vt/a about z,'3

Fig. 3.23.

Problem 3.25. Frame 1 can be aligned with frame 2 by a simple positive
rotation o about the x, axis. Thus

1 0 0
[251;, = |0 cosa -sina | .
0 sina cosa

Show that dl &, 1;/dt can be written [all %, 1; where

o 0o o0
lal=]0 0O =-af.
0O & O

Repeat the problem for the case in which alignment is achieved by a
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simple positive rotation about either y; or z;.

Problem 3.26., Aircraft A and B fly in the x;y; plane as shown in Fig.

3.26. Aircraft A flies in a circular path, centred at O and of radius
a, at a constant speed v, , while aircraft B flies at a constant speed
v, on a straight path parallel to the y; axis and at a distance b from

it.
Find the velocity of B relative to A which is measured in and referred
to a frame 2 fixed in aircraft A,when aircraft A is at A0 and aircraft

B is at B, . Also find the corresponding acceleration.

(Assistance.
{RBA}z/z = [QIIZ{RBA}I/I =121 12{Rg, }2 1

{Veataye = alry, }osozat and {a,,}>/2 = a{vy, )2 2/dt.

Also
b - acoss
{RBA}1/1 = |vgt - asine| . )
O

\ Y,

T T
1 6 about z, 2

Fig. 3.26.

Problem 3.27. Aircraft A flies at a constant speed v, in a circular
path of radius a drawn on the X, y; plane. Aircraft B flies at a cons-
tant speed Vg in a circular path drawn on a plane parallel to the y;z;
plane as shown in Fig. 3.27.

Find the velocity and acceleration of B relative to A which are meas-
ured in and referred to frame 2 fixed in aircraft A,when aircraft A
is at A0 and aircraft B is at Bo.

Also, find the velocity and acceleration of A relative to B which are
measured in and referred to frame 3 fixed in aircraft B,when aircraft
B is at B0 and aircraft A is at A .

MMAERBM - F
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(Assistance.
c - acosb

{RBA}1/1 = | bsina - asins
b(l - cosa)

where 8 = vAt/a and o = vBt/b.)

Path of &4 drawn on frame | Path of 8 drown on frame |
.

/
I vat/0 about 7, I vg 170 about x, 3

Fig. 3.27.

Problem 3.28. Figure 3.28 shows frame 3 positioned in relation to
frame 1. A vector referred to frame 3 has the components

X
R

Yy
V4

¢

Show that the vector is referred to frame 1 by the transformation

X3 cosfcosd -sin® -cosfsing Xp
vi| = |sinscos¢ cosH -sinfsind Yy
Z sina 0 cosd z¢

Problem 3.29. Figure 3.29 is drawn to show the relative positions of
frames 1 and 2. The z; axis is perpendicular to the plane ABE, the y;
axis perpendicular to AB and in the plane ABE and the x, axis is along
AB, Find [%,]1; . Frame 1 can be aligned with frame 2 by either of the
seguences of rotations given in Fig. 3.29. Show that o = -35°,

B = 23.83%, y = 29,96°, ¢ = =37.57° and ¢y = 41,45°.

(Assistance.
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2y
10

n
8 /

3

L3
e — -
| a about x, 3 B aboutys 4 y about z4 2

/\\
! ¢ about z, 5 ¥ about xs 2

Fig. 3.28. Fig. 3.29.

{sz}l = [RAB]l/l{RAB}1/1/|[RAs]l/l{RAB}l/ll
[REA]I/l{REA}l/l/‘[REA]I/l{REA}1/1| ’
{Ny2}1 = [N22]1{Nx2}1/|[N22]1{Nx2}1|

and
{Nx2}1 = {RAB}l/l/lRABI

where {N}; is unit vector, in the direction specified by the suffix,
referred to frame 1. Hence

an = [v, b By h g bl

Problem 3.30. An aircraft flies in a horizontal circular path, of
radius a, drawn on an earth fixed frame 1, which has its x;y; plane
tangential to the surface of the earth as shown in Fig. 3.30a. The
velocity of the aircraft has a constant magnitude v and it is tracked
by a radar antenna, body 3, at O. Show that the acceleration of the
aircraft, measured in the earth fixed frame 1 and referred to frame 3
fixed in the antenna as shown in Fig. 3.30b, is given by

-cospcos(y - 6)
{AA0}1/3 = (v®/a) sin(y - @)
cos(y = 9)

where
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il

tany (b + asin®) /acos®

and

tang h//(a2 + 2absing + bz).

Also show that the acceleration of the aircraft, measured in frame 3
and referred to frame 1, is given by

{AA0}3/1 = %t{VAO}S/l = [w311/1{VA0}3/1

where
Viols/1 = {V,ohi/1 = tushi/i{R b -

8= vtia

P
(l:) I ¥ abaot 2,1 -8B nbgR\IS

Fig. 3.30.

Problem 3.31. Points A and B fixed in body 2 have velocities given by

{(Viohi/1 = tea i 1{R, b 1
and
{Vioti/1 = 1wl /i{R 1 1
respectively relative to point O which is also fixed in body 2.
Show that, given information about the relative positions of points O,

A and B, and the linear velocities of points A and B relative to O,
the angular velocity of body 2 can be determined from

lwyly 1 = [VA0]1/1{VBO}1/1/({VA0}§/1{R30}1/1)

= [Vno]1/1{VAo}l/l/({vno}i/l{RAo}l/l)
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provided that the points O, A and B are not collinear,

(Assistance. Multiply the first two equations by
[Vno]l/1 and [VAo]l/1

respectively and expand their right hand sides using the vector triple
product expansion

[ANBI{C} = ({A} {chH{B} - ({a} {BH{C} ).

Problem 3.32. At a certain instant of time body 3 (the connecting rod
of Problem 3.5) has a motion specified as follows

43.3 (286.9

{rR,}1/1 = |25 mm, {Ry}1/1
0 L 50

i

o} mm ,

-249 [-294

{vilhiyr1=] 433 | mn/s , {V,}1 1
0

O | mm/s

and
0.346

-0.0355]| rad/s
-1.706

{wz3ti1/1

where A and B are points fixed in body 3.

Obtain the equation to the central axis for the motion of body 3
relative to body 1 and find the point at which the axis meets the
X1y plane. Also find the velocity of the axis.

Problem 3.33. In the system shown in Fig. 3.33, body 3 turns relative
to body 2 about the x; axis and body 2 turns relative to body 1 about
the z, axis. Show that

-wbsina
{VA0}1/2 = wa - abcosa
absino
where o = § and A is fixed in body 3 as shown. Hence show that

2
{Roati/2 = twsliy2{v, b2 /leslhy

2 .
-w a = wabcoso

. 2 .
l/(w2 + az) -w bsina - azbsina

. 2
woa + o bcosa

where Q is a point on the central axis corresponding to A for the
motion of body 3 relative to body 1, and
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{Rgel1/2 = tesh2{v  h 2/lw3[§
/ / /
-wza
= 1/(° + 4] o
awa

where S is the point on the central axis corresponding to C for the
motion of body 3 relative to body 1.
Find

{RQA}I/Z'a=O

for the case in which body 3 rolls without slip on body 1 at B(o =
-wa/b) . Also show that

-b
{Ryc}1/2 = ab/(a® + b%)| ©

-a
for this case and hence show that S is on the line OB.

1

P
|

-

2T TTATIT
G0N0
s 7

1 ,"///// DDA
’// ///I/I/I;I/I;I/' ’ ////'

mﬁ\

1 y about 2z; 2 o about x, 3 B

Fig. 3.33

Find

{wa}f/z{VAo}l/z ' {ws}ﬁ/z{vco}l/z

and
{Vsoti/2 = {Vco}l/z + lwsh/2{Rschiyo -

(Assistance. Obtain the expression for the velocity of A by differ-
entiating the equation

{Ryoti/1 = 12211 {R g }ay2 + (22 1102312{R, . }3/3 )
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Problem 3.34, One set of rotations for positioning body 4 relative to

body 1 is shown in Fig. 3.34. This particular sequence of angles are
known as Euler angles. Show that

Wy s0s¢ cé 0]
{wydr/u = |w, | = ¥|s6ce| + 8|-s¢| + §|O
Wy cé 0 1

sinfésing cos¢ 0 &

= |sin6cos¢ =-sing oll 8

cos6 0 1 &

and hence, by inversion, that

S De e

sing cos¢ Wy
= 1/sin6 | sinécos¢ -sinésing wy
sing

-cos6sing -cosf8cosé

2,22
Y3

/|
!

| ¢ about z, 2 8 about x, 3 ¢ about z; 4

Fig. 3.34

Note that with this set of angles difficulties will arise when 6 is
close to nr (n = 0,1l....).
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Problem 3.35. One set of rotatations for positioning body 4 relative
to body 1 is shown in Fig. 3.35. This particular sequence of angles
are known as Bryant angles. Show that

Wx cocy So 0
{wu}l/q =lwy | = v|-cos¢| + 6|lce| + ¢]O
| we s8 o} 1
cosbcosd sing o} @
= | —cosfsing cos¢ ol{é
| sine 0 Ljlé
and hence, by inversion, that
& cOSs¢ -sind 0 Wy
8§ | = 1/cos® singcos® COS¢$COSsH 0 wy,
¢ -cos¢sing sin¢sin®  cosd||w,
Xi4Xz
v

1 ¢ about x, 2 8 about y, 3 ¢ about z; 4

Fig. 3.35.

To what do these relationships reduce when ¢, 6 and ¢ are small
angles? Note that with this set of angles difficulties will arise when
8 is close to (n/2) +n (n = 0,1....).

Problem 3.36. In Fig. 3.36 body 2 turns about the z; axis at a const-
ant rate relative to body 1 and body 3 turns about the z3 axis at a
constant rate relative to body 2.
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Find, for the given axis system,

{Ano}l/z

where B is a point fixed in body 3. Point B should first be treated

as a moving point in frame 3, where frame 3 is fixed relative to frame
2 and aligned with it. Point then should then be treated as a point
fixed in the rotating frame 3 as shown.

Fig. 3.36. Fig. 3.38.

Problem 3.37. Find

{Apot1/2

in the system of Fig. 3.36, where the point P moves along the radial
line AB fixed in body 3 at the constant rate x = v.

Problem 3.38. In Fig. 3.38 body 2 turns about the z; axis at a cons-
tant rate relative to body 1 and body 3 turns about the xj3; axis at a
constant rate relative to body 2. Find, for the given axis system,

{Bgoli/ae

Problem 3.39. Figure 3.39 shows a wheel and axle system. The axle,
body 2, turns at a constant rate y = w relative to body 1 about the
z; axis. The wheel, body 3,rolls without slip on body l. Obtain exp-
ressions for

{VQO}l/z ' {AQ0}1/2 and {a3}y 2

where Q is a point fixed in body 3 as shown. Sart with the relation-
ship

{RQ0}1/1 = 12211{Rco}2/2 + llzllllslz{RQC}s/s

MMAERBM - F*
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and apply the condition that

{Vpoli/2
is a null vector when vy = B = 0 to show that é = —-pa/r and hence that
8 is a negative angle, P being a point on the periphery of the wheel

then at the point of contact between the wheel any body 1.

Alternatively, after justifying the given angular velocity vector
diagram, use its properties to obtain

{VQ0}1/2 .
Find
{Vpoli/2 and {3, }./.

when P is at A, B, and D.

- T e T -
I yabout z 2 sabout y, 3

-

Fig. 3.39.

Problem 3.40. Figure 3.40 shows a wheel and axle system. The axle,
body 2, turns at a constant rate y = w, relative to body 1 about the
z,; axis. The wheel, body 3, rolls without slip on body 4 which is
turning at a constant rate ¢ = wy relative to body 1 about the z;
axig. Verify the given angular velocity vector diagram (drawn for

vy> ¢) and use it to determine

{w3z}y /2 and {ég}l/z.
Obtain expressions for

{VAO}I/Z and {AAO}I/Z
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where A is a point fixed on the periphery of the wheel as shown.

{3}z

tan”! (/)

4 {u2hy

T T T
1 v about z; 2 B ahbout yy 3
T
17¢ about z; 4

Fig. 3.40.

Problem 3.41l. Figure 3.41 shows a wheel and axle system. A wheel and
axle are rigidly connected and constitute body 4, while a wheel, body
5 is free to turn on the axle.The system moves on the inner surface
of a conical track, body 1, so that the centre line of the axle rem-
ains parallel to a generator of the conical track and the centre of
the axle C, traces out a circular path of radius R drawn on body 1.
The velocity of C is given by

-1

{Veoti/2 = V| O
)

Verify the given angular velocity vector diagram for the system,
which is drawn for the case in which the wheels roll without slip,
and use it to determine

{ML{»}I/?)I {‘*’5}1/31 {t:)g}l/g and {535}1/3 .

What is the velocity of slip at D if body 5 siezes on the axle and
body 4 continues to roll without slip at E?

Problem 3.42. Figure 3.42 shows a rotating and telescoping antenna.
Body 2 rotates at a constant rate g relative to body 1 about the z;
axis. Body 3 rotates at a constant rate o relative to body 2 about
the X, axis and is extending at the constant rate z = V. Obtain exp-
ressions for

fwsti/2, {o3di/2, {V,o}1/2 and {3, }1/2 -
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T T T T T T
T¥about 2z, 2 o avout x, 37 ¢ avout ys b

- -
3 B avout y55

Fig. 3.41.

~
1 g about z; 2 « about x; 3

Fig. 3.42.

Problem 3.43. An articulated trailer is shown diagrammatically in
Fig. 3.43. It consists of rigid members OA, body 3, ABCD, body 3, and
two similar wheels, bodies 4 and 5, which are free to rotate relative
to body 3 about the common axis CBD. The wheels roll without slip on
a plane, body 1, which is parallel to the plane which contains OA and
ABCD. OA and ABCD are joined by a smooth pivot at A which allows rel-
ative motion about an axis through A which is perpendicular to the
plane on which the wheels roll.

Determine the attitude, 8, of AB relative to OA when OA rotates at a
constant rate relative to body 1 about the z; axis. Also determine
the angular velocity of each wheel under the above conditions and the
accelerations of E and F when they are in contact with the plane.
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-

- - e T RN
1 a about z, 2 -8 about z;3 —f, about y, 4

e ~
3 -g, about y; 5

Fig. 3.43.

(Assistance. Find

{VEO}1/3
starting with the relationship

{Reoti/1 = 122 iR, gFo /o + 102 103 12{R, ]

Reoli/1 = D22 iR g2 /2 + 122 1123 121R;, 13 /3

L2 il 23120 23 1L+{RED}J+/J+

and apply the condition

{VE0}1/3181=O
is a null vector to obtain

2B = alcose + A1).

When rolling without slip is taking place § = 0, giving cosg = =-ij).
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Problem 3.44. In the system shown in Fig. 3.44 body 2 turns at a con-
stant rate w relative to body 1 about the z; axis. Body 3 is constr-
ained to turn about the y, axis in body 2 and roll without slip on
body 1. Body 4 is contrained to rotate at a constant rate o, relative
to body 3 about an axis parallel to the zj3; axis. Find {w4}1/3 .

; _ | 4
(/ f ///,{ q w, . }

o ‘\ - 3 - \";n
l// // -—{I Tar7s ! -
N TR

L
1\&.—- oC = na l
: P J‘;
! : ///
FEESNN S ANNNN
I3

P e
1 3 about z; 2 y about y, 3 g about zj 4

Fig. 3.44.

Problem 3.45. Figure 3.45 shows the arrangement of a conical thrust
bearing which employs balls constrained by a track on which the balls
roll without slip at the two points of contact, A and B, with the
track., The balls also roll without slip on the shaft which carries an
axial load. The track is designated body 1, the shaft body 5 and a
typical ball body 4. Verify the given angular velocity vector diagram.
For the case in which the shaft is driven at the constant rate ¢ = w
relative to the track, show that

{wyly /s = {wptyy/z + {wyls/s

0 0

= | ysinoa = 8| = $(v/d)! sina - B/¥
ycosa cosa

0

= —wtany -(sinoa + cosa)

1 - tany ncosa
where
tano = n + 1, tany = 1 - ncoso ’

1 + n(l + sinsg)
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% _ ntany and ? _ 1 .
[ 1 - tany Y ncosa
Also show that
1
2 2
{on}1/3 = _nhw tan y || |

2
(1 - tany) o

How should the angle 6 be determined to ensure that rubbing between
the balls and shaft will not occur at F?

I,

T T ——— T — T
1l v about 2; 2 o about x; 3 B about y; 4

LT
1 ¢ about 2z, 5 4

Fig. 3.45.

Problem 3.46. Figure 3.46 shows the arrangement of an automotive diff-
erential. The bevel pinion, body 2, is driven from the engine via a
gear box and meshes with the crown wheel, body 3. The crown wheel
carries planetary pinions of which body 4 is typical. These planetary
pinions mesh with wheels 5 and 6 attached to the road wheels. Verify
the given angular velocity vector diagram which is drawn for the case
in which
(0]
{wz}l/l =10 ’ {w5}1/1 =

O O ©

W

and the road wheel speeds are unequal. Hence determine {&h}1/3.Find
|ws|, to make |wg|; zero. What will |wy|3; be under these conditions?
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\ H t, teeth
\ ! :

T

3

-
Ya about x, 3 [ about z

-~
14 about x5

~
! 1 7§ about x, ¢ -
- o

<, apout z, 2

Fig. 3.46.

Problem 3.47. Pigure 3.47 shows part of an epicyclic bevel wheel gear

train.Verify the given angular velocity vector diagram which is drawn
for the case in which

¢}
¢}

{waby 1 = and  {wzl; 1 =

0 O O

w
where w and Q are constants (w > Q). Find
{os}1/2 and  {ayli/p
Also find
{Vyot1/2 and {A, } /2

where A is a point fixed in body 4 as shown.
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1

A\ T .
! 2 tq teeth\ | i

3 alfl o m s _-*,IO_ I
—g_#._ﬁrw r >\

Y2 / t, teeth \

AW S
AN\ - -

" N 4
\¥ 7
o L 7
— T T TN S R

1 y about z; 2 B about y, 4

T 2
1 é about z; 3

Fig. 3.47.

Problem 3.48. In the system of Fig. 3.48 a rotor, body 4, runs at a
constant speed w relative to an axle, body 3. The axle is pivoted to
a rotating support, body 2. For the case in which body 2 is driven at
the constant rate @ = o relative to body 1, show that

—u) - Qsing
{un,}l/g = é 7

LcosB

b—éQcosB ]
{&u}l/g = wQcosB + é ’

| B(w + Qsing)]

-

0
Vit /s = Q(a + bcosg)
-bg

and
2 . 2
-Q" (a + bcosB)cosg - bg
{au}1 /3= |-2bbesing
5 .
-0 (a + bcosg)sinpg - bR
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2

22 23

1l o about z; 2 g about y, 3 ¢ about x3 4

Fig. 3.48.

Problem 3.49. In the system shown in Fig. 3.49, body 2 is free to rot-
ate about the z; axis fixed in body 1 and the bevel wheel, body 4,
which is mounted on body 3, meshes with a bevel wheel which is integ-
ral with body 2 and a bevel wheel, body 5, which is free to turn rel-
ative to body 2. Justify the given angular velocity vector diagram.
For the case in which body 2 turns at the constant rate § relative to
body 1 and body 3 rolls without slip on body 1, determine

{wytr1/20 fostiyo, {wyt1/, and {wsli/

Problem 3.50. Figure 3.50 shows a mechanism. Body 2 rotates about the
y; axis fixed in body 1. Body 3 slides in a radial groove cut in body
2. Boay 4 has shperical ends which fit in hemishperical seatings cut
in bodies 1 and 3. Determine, for the given position of the mechanism,
the velocity and acceleration of sliding of body 3 relative to body 4
and the angular velocity and acceleration of body 4 relative to body 1
for the case in which

o) O

. 2
{w2lr1 1 = |10 rad/s and {wy}y/; = |-100| rad/s
O 0
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n teeth
oc

A G
|
I

Y3¢¥s

nt teeth —T
% l
7

1 A\

L T~
3
|
|

7 Z 2<A/ 7

1 ¢ about z; 2 -g about y, 3 y about z3 4

/_\
2 -~y about y; 5

{ugl,

Fig. 3.49

Problem 3.51. A thin uniform disc, of radius b, rolls without slipping
on an inertial horizontal plane. In preparation for analysing the mot-
ion of the disc it is necessary to obtain expressions for the velocity
and acceleration of the centre of the disc and its angular velocity
and acceleration. For the frames specified in Fig. 3.51, show that

icose -icose
tugliys = |6 o Loyl = |8 ,
| ¥sine [¢sine + ¢

-

86 + vcose + ¢bsine]
{&4}1/3 =16 - @écose ’
|idcose + ysine + ¢ |
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and

{veh /s

fayh /s

1

Solution of Kinematics Problems
[0

@sine + é
L—©
r .2 .. .« 2
= 51n29 - Y$sin6 - 6

psing + 286jcoss + &

2 .o g
| ¥ s1nocoso + yYpcoss - 6
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Chapter 4

Solution of Dynamics Problems

4.1.Solved Problems

Problem 4.1. A particle of mass m is moving under the action of a force
{F }. The acceleration of the particle is measured with respect to an
inertial frame 1 and another frame, frame 2, which is moving relative
to frame 1. Under what circumstances will the force predicted from
accelerations measured relativc to the moving frame be equal to the
measured forces.

Solution. The measured force will be given by
{F"}, = mley{a i =mioy {{a iy + {a, }i/i} (D)

where the position vectors are defined in Fig. 4.1. The force predic-
ted from measurements relative to the moving frame 2 will be given by

{7}, = m{Aa,,}2/2 (2)
Now
{RPA}Z/Z = [QIIZ{RPA}I/II
{(vpdayse = twalizalar 2R, i1 + 10 iV, i
and . 2
{APA}Z/Z = [wzll/zmllz{RPA}l/l + [“’Z]I/Z[Q'I]Z{RPA}I/I
+2twa it 21 2V, i + 0 2{Aa, b1 (3)

Thus the measured and predicted forces will be equal only if

(i) {a,}1 is a null vector or {V,}: is constant, that is the

velocity of the origin of frame 2 must be zero or constant when meas-
ured with respect to an inertial reference, and

164
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Z)
Z, m

{Re )\

X2

Y)

Frame ! is inertial

Fig. 4.1.

(ii) both {w,}; and {w,}; are null vectors, that is the ang-
ular velocity and angular acceleration of frame 2 must be zero when
measured with respect to an inertial reference.

Problem 4.2. A éarticle of mass m moves in the gravitational field of
the earth. Find the work done by the force which the field exerts on
the particle and the change of potential when it moves from point A
to point B as shown in Fig. 4.2.

Solution.
B B
— T —_ —
WA_>B = {F} d{R} = [O 0 mg] | dx
A A dy
dz
hB
= - mgz = - mg(hB - hA)
h
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Fig. 4.2.

In this case

aF. _ 3%,

Yy TR ©

and therefore by Eq. 2.11, the work done is independent of the path
traced out by the particle in moving from A to B. Thus

aw = - av = {F} da{R}

or
dv = mgdz

and the change of potential is given by

B

mgdz = mg(h, - h,) = - W

By

Problem 4.3. A helical spring, of stiffness k, is stretched in the
direction of its length. Obtain an expression for the work done by the
force which the spring exerts and relate this to the change of poten-
tial.

Solution. If the natural length of the spring is a,then by reference
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Spring
force I

Ko 7
3

kix, —a)

Spring stiffness k

to Fig. 4.3 it can be seen that the magnitude of the force exerted by
the spring is given by

kix - a).
Hence
- k(x - a)
{F} = 0
and since
X dx
{RP} = 0 ’ d{RP} = 0
0 0
giving
~ B B
—_ T p— - -
WA_>B = {F} d{R} = - k(x a) 0 o0i}ldx
A A 0
0
) X
= - k{x°/2 - ax)
%A
2 2
= - %(xB - xA) + ka(xB - xA).

Since
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a_F.xz Ex =
3y | oz ©

the spring force is conservative and the change of potential is

Vg = Va T T Waip -
The increment of elastic strain energy stored in the spring is found
from the area under the spring force versus extension graph, which is
given by

{k(xB - a) + k(xA - a)}(xB - X

)

A
2
_ {k(xB + xA) - 2ka}(xB - xA)
- 2
2 _ 2 - -
= %(XB x37) ka (xg x,)

which is the change of potential.

Problem 4.4. A helical spring, of stiffness k = 5 kN/m, is fitted with
shperical ends which fit into spherical sockets. The sockets are loc-
ated in parts of a mechanism which have relative motion. In the un-
stretched condition the distance between the centres of the spherical
ends is a = 10 cm and initially the co-ordinates of the socket centres
A and A are

2 5
R =1{-2 d R =6 .
{ Al} : cm and | Az} cm

Find the work done by the force which the spring exerts when the soc-
ket centres move the to points which have the co-ordinates

3 6
{RBI} = |-3| cm and {RBz} ={7 |cm
-2

as shown in Fig. 4.4. Assume that the frictional effects due to the
sockets can be neglected.

Solution. Let {erpl}T =[x y z]

where P, and P, are points on the paths A;B; and A,B, respectively.
The length of %he spring at any extension is thus
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Fig. 4.4,

r=1R, | = /(x> +y®+z% . (1)

P Py
The magnitude of the spring force is thus given by
k(r - a)

and the force exerted by the spring is therefore

; x/r
{F} = Fy = -k(r - a)|y/r
. z/r
The work done is thus given by
B
T
WA1+B1 - {F} d{RPzPl}
Aos>B o A
B
= - ELE_%_EL [ x v z] [dx (2)
A dy
dz

If the spring force is conservative then [ V] {F} will be a null vector,
as it is in this case since
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Q

B - 3% 2Fy 2By _ 23F,

Y 5z~ 3%~ sz _ 3x a3y - 0O
Hence
qv = k(a - r)xdx + k(a - r)ydy 4 kla - r)zs,
r r r
and therefore
(‘
v = k(a - r)x dx + £,(y,2z) ,

Vv = k_(a—_r_).xdy + fZ(XIZ)

r
J
and
r k(a - r)z
vV = ——jL:?———— dz + f3(x,y)
J
Now n ,
_ kx
k(x - ax/r)dx = - - kar
J
)
ky?2
k(y - ay/r)dy = 7¥ - kar
1Y)
and , ,
k(z - az/r)dz = %; - kar

The functions

fi1(y,2), £,(x,2) and f3(x,y)
are thus zero or constants and the potential is therefore given by

v = —]2E(x2 + y2 + 22) - ka/(x? + y%2 + z2) + ¢

The work done is therefore
B

_ _k, 2 2 2 2 2 2
WAI_>B1 = -3 +y" +2z7) + kav(x“ + y° + z°) .
A,B
_ _k 2 2
- 5([ BZBII [RAZAII )+ ka(lRB2B1[ - [RA2A1[)'
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In this particular case

6 - 3] [3]
{RBZBI} = |7+ 3}|= [l0o]| cm, IRBzBll = /209 cm
18 + 2] 110
and ~ : L
{RA2A1} = =|8 | cm, A2A1| = /109 cm,
giving
W, ,g. = = 2.5(209 - 109) + 5x10(v¥209 - Y109)
178
A27B2 = 49,2 kN m™! cm®
= - 49.2 (kN m ' cm?) (10° N kN" 1) (107" m® em”?)
= - 4.92 J.

Problem 4.5. Show that the force

3x - 2y
{F} = y + 2z N ,
-x2

where x, y and z are measured in metres, is non-conservative.

Find the work done when the force moves its point of application from
the point

0
{R,} = |0 |m to the point (R} = {3 |m
0

when the paths of the point are
(a) the curve x = t, y = 3t /4 and z = 5t3/8
(b) the straight lines

A(O, O, Oy m to C(2, O, O) m
c(2, 0, 0O) m to D(2, 3, O) m
p(2, 3, 0) m to B(2, 3, 5) m

(c) the straight line

A(0O, O, 0) m to B(2, 3, 5) m.
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Solution. If V exists then

A/ - - v -3V _ p2
% - 3x 2y, 3y y + 2z and 7z X<,
which require that
2
-V = %? - 2xy + £1(y, 2) ,
2
-V = % + 2zy + £,(x, 2z)
and
-V =-x%2 + £3(x, y).

From these results it is not possible to construct a function
v =£f(x, vy, z)

since, for example the term - xzz in the third expression for V 1is
not contained in the first and could not be accounted for in the un-
known function f£;(y, z) which does not contain x. The force must
therefore be non-conservative.

8(2,3,5Im

X=C(2,0,0)m

Fig. 4.5.

The various paths are shown in Fig. 4.5.

(a) Let P be a point on the path AB. Then



and
F =
giving
WA+B
Let P be a

(b)
y =2z = 0, and

{F}

The work done i

A~>B

Prom C to D, fo

{F}

The work done is

Solution of Dynamics Problems

t 1
= {3t?/4 | m , af{r,} = [3t/2 | at m
st®/8 15t2/8
3t - 3t°/2
3t2/4 + 5t3/4] N
_t2
A B
= | {FY'a{R, ,}
J A
2
f\
= |3t - %tz 2% ¢ 26° —eh[ 1 ae
J o 3t/2
15t%/8
a2
= | (3t - %tz + §t3 + %t'* 18—51:"‘)dt
0
2 2
_ 3,2 _t 9 4 _ 17

point on each part of the path. From A to C,
therefore

3x X dx
o | N, {R,}=|0|nm and d4{R,,} =|0
-x2 0 o}
s thus
2
2
= |3xax = 3x*| = 64.
0
0
r which x = 2 and z = 0, and therefore
6 - 2y 2
Y N, {R,}) =|y|[m and da{Rr,} =
-4 o 3
thus

173

for which
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=

I
W<

[oN)
W<

I
NI

Il
Nof o
[

From D to B, for which x = 2 and y 3, and therefore

0 2 0
{F} =3 + 2z] N, {RPD} =[3|m and d{RPD} = |0 | m
-4 b4 dz
The work done is thus
5
5
W = -4 dz = -~ 4z = - 20 J.

D->B 0
0
(c) Let P be a point on the straight line AB. Then

2t 2 0
{RPA} =|3t|m, d{RPA} =}3]dtm and {F} = 13t| N.
5t 5 -4t?

The work done 1is thus

39,2 _ 203 _ 71
2 3 0 6

J

When a closed path is traced out, such as for example ACDB and the
straight line to A, the work done is not zero as it would be in the
case of a conservative force, but there is a net expenditure of energy.
In the present example

wA+C+D+B =6+ 4.5 - 20 = - 21.5 J,

while for the straight line path between A and B

_ _ _ 17
Woon = Wesp = < J

giving a net expenditure of - 103/3 J.

Problem 4.6. A particle of mass m rests on a rough horizontal surface.
Obtain an expression for the work done by the force which the surface
exerts on the particle when there is relative motion and hence show
that there is no potential associated with the force. Assume that the
friction force is independent of the' relative wvelocity and proportion-
al to the normal force between the particle and the surface (Coulomb
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friction).
Determine the work done

W
A->B

when the path of the particle is part of a circle which has the equ-
tion

2

X~ o+ y2 = a2

and the points A and B are (0, -a) and (O, a) respectively. Also det-
ermine the work done

wA ->C->B

when the particle moves along the path A to C and then to B along the
X axis such that A, C and B are the following points:

A(a, 0), C(c, 0) and B(b, 0)

where ¢ > b and ¢ > a.

Solution. When the particle moves relative to the surface there are
four forces acting on it. These are the weight force mg vertically
down, a normal force mg on the particle due to the surface vertically
up, a friction force,which is u times the normal force, along the sur-
face and tangential to the path of the particle on the surface dir-
ected so that it opposes the motion and an externally applied force
causing the motion. These forces are shown in Fig. 4.6a.

mg

xs

ng

External force

¥ on panicle/’
causing
motion

Direction of
motion of particle
relative to plane

Force on particle due
to the plane

Fig. 4.6a.

MMAERBM - G
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Now the work done is given by

B B B
T
W, = | {F} a{r} = F,dx + Fydy = |Flds
A v A A

Also, by reference to Fig. 4.6b,

pDirection of particle path of particle

motion along curve \\\\\\\ .

y Force on particle
due to surface
mg

dy umgdx/ds a
PRI N
l‘/ym/gkvmr;dy/ds
Y
x L dx
r
Fig. 4.6b.
F, = - umgdx/ds and F, = - umgdy/ds,
where ) ) )
ds = /{(dx)" + (dy) "} = dx/{1 + (Dy) "}
and
Dy = dy/dx,
giving
B
2
W,,p = - wmg | {dx + (Dy)dy}//{1l + (Dy)"}

L%

A
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B
= - umg | {dx + (Dy)’dx}//{l + (Dy)?*}
A
B
= - umg | /{1 + (Dy) ) dx . (1)
A

Since 2
Y{1 + (Dy) 1}

is not an exact differential, the work done will depend on the path
between A and B, so that the friction force umg has no potential
associated with it and it is therefore non-conservative.

Fig. 4.6c.

For the case in which the particle moves along a circular path as
shown in Fig. 4.6c

0 A 0
f dx
2,02 _
W, coB - umg ’ V(1 + x°/y“)dx = umga > >
| (a® - x7)
LO v

-1
- uymgasin ~ (x/a) = - umganm

0

on interpreting the upper and lower limits as the physics of the prob-
lem requires (Fig. 4.6d). Of course it is much easier to find the

work done from
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'1T/2
WA+C+B = !F[ds = - umga de = - umgam .
=n/2
sin”'x/a
B
™~
/5 c
A : x/a
Fig. 4.6d.
Note that, for example,
a
Wasoos = ~ WM9 | dy = - 2umga # W, o . .
-a

When the particle moves along a path which does not have a finite der-
ivative at all points, the path must be divided into segments which do
have finite derivatives at all points. This is a reguirement because
Dy of Eg. 1 must be finite in the range of integration. Thus in the
case of motion along the the path ACB as shown in Fig. 4.6e the work
done must be evaluated in two parts

WA+C and WC+B
Thus
c ~ b
WA+c = (- pmg)dx and Wc»n = (+ pmg)dx
a c
giving
W, ,cop = — umg(c - a) + umg(b - c)

= -~ 2umgc + umg{(a + b)

= pmg(a + b - 2¢)
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Clearly the work done is not conserved as available mechanical energy.

z
ng
F
ng I ‘
/ 7/
Forces for motion from
mg A to C.
x
Y
B
——
A ol
x

Friction
force

Work done N
bl

/// ¢ x

"= Mechanical energy

dissipated A
VLol /

NN

Fig. 4.6e.

Problem 4.7. A particle of mass m is attached to one end of an elastic
string which is fixed at the other end. The free length of the string
is a and its stiffness is k. Obtain an expression for the potential of
the system when it is constrained to move in the vertical plane and
the string remains straight.

Solution. The system is shown in Fig. 4.7a. The gravitational poten-
tial, using the x axis as datum, is

- mgrcosb

and the potential due to strain energy is
k(r - a)’/2.

The total potential can thus be written
V = - mgrcos8 + k(r - a)2/2 + c

where ¢ is a constant.
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OP = r(>a)

rcosé

o

/ ™~ ~_mgcos8

X /
mgsind
/
/
z / mg
S/

S

Fig. 4.7a.

In this case the potential of the system is expressed in terms of r
and rather than z and x. It is interesting therefore to find what
significance could be attached to

%g and %% '
since
%g = - F and %¥ = - F .
Hence
- %% = mgcosé -~ k(r - a) = F  say,

which is clearly the force along r giving rise to the potential. Also

- — = - mgrsing = Fe say,

but this does not have the dimensions of force as might at first be
expected, since the differentiation was with respect to an angle and
not a length. Nevertheless, it is convenient to regard Fg as a 'force’
which influences 6 in the way that F, influences r. Fg is in fact
called a generalised force.

The reader is invited to show that for the frames specified in Fig.4.7b

-~ ksine (r - a)
{F}; = 0
mg - kcose(r - a)

from the expression for V by substituting
2 2
rcose =z and r = V(z° + x°)

and hence finding
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X2

X1

Z)

P

-

mg

1 ¢ about y; 2

Fig.

{F}, = [211,{F};

4.7b.

2
and Fe.
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Problem 4.8. The position of a system can be specified by the position
of a point on a rotating z, axis as shown in Fig. 4.8 (see Problem 4.7).

Show that {v},v, del

Solution.

or

or

and

V referred to rotating frame 2,

is given by

1av
r 36
{\7}2V = (e}
3V
or
Now
T
{F}ld{R}l/l = - dv
{v}]Vd{R}; ,y = av

{V}gvlillzd{R}l/l = dv

[2112d{R}y /1 = [2112 {{R }1,1dr + (R }1/1d6)

{R,}1/2dr + {Ry}1/0de



p)
EE{R}1/1°
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where 5
{r i =s{Rb1/1 and {R,}1 .1
Also, since
_ v v
av = = dr + 4= de
Eq. 1 can be written
ta. B¢ [{R }1 .dr + {Re}l/zde]
_ 3V 3V
=3¢ 9 * g 4o
where
A
{V}zv = B .
C
Now
rsiné
{R}1/1 = [22]1{R}2/2 =10
rcoso
sin®
9
E—E{R}l/l = {R'}1/1 = |0 '
coso
0
(R Y12 =12112{R 311 = |0,
1
rcoseo
a p—
EE{R}l/l {Re}l/l = 0
-rsing
and
r
{Re}1/2=[21]2{Re}1/1 =|(0].
0

Substitution of these last results in Eq. 2 gives

[A B

Cl

0

1

Ot dr + r{o0o|{ ds

1

0

3v
or

oV
dr + ﬁd@

(2)
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X2

X1

(o]

{Ry}2/2 = {R}yy2 = {OJ

r

22

1 8 about y; 2

Fig. 4.8
and therefore
_ 3V _ 1 sv 3V _
rA = Y] or A = T E;g ’ c = 3T and B = O.
Hence
1av
r 98
{viv = |0
v
ar

as required. Clearly, {v};V is readily found from

{VhiVv =128, 11{v},V .

Problem 4.9. A particle, which has a mass of 2 kg, is subjected to a
force

12t
{F}; = |18t - 8 N
- 6t

where t is in seconds. When t = O the particle is at the position
6

{R}1 /1 t=0 = |~ 2 m

and its velocity is

MMAERBM - G*
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3

{V}l/l t=0 = 8 m/s.
-4

Determine for the particle

(a)
(b)
(c)

the
the
the

velocity at any time t,
position at any time t,
kinetic energy at t = 2 s,

(d) the work done in the period t = 0 2 to t = 2 s,
(e) the momentum at t = 2 s and
(f) the impulse of the force in the period t = 0 s to t 2
Solution. Now
{F}; = m{A}1/1
and therefore 6t2
{A}l/l = {V}l/l = %{F}l =19t - 4 m/sz.
- 3t
Hence, by integration of Eq. 1,
-2t2 v
. 2 x
{V}l/l = {R}l/l ={ 4.5t = 4t| + Vy
- 1.5t7 v
L 2
and since b
{V}l/l t=0 = 8 nm/s,
= J
2t® + 3
{V} 1= [4.5t% - 4t + 8| m/s .
- 1.5t% - 4
Integration of Eq. 2 gives
n
0.5t + 3t x
{R}; 1 = [1.5¢° - 2t® + 8| + |y
- 0.5t3 - 4t z

and since

{R}l/l t=0 = |- 2 m ,

S.

(1)

(2)
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0.5t" + 3t + 6
2
{R}l/l = l.5t3 -2t + 8t - 2 m,
- 0.5t% - 4t + 8

From Eq. 2

|v|flt=2 = 19° +18° + (-10)° = 785 m?/s2
and therefore

T|eep = %|v|f|t=2 =785 J
Also, since

T| o = 232 + 87 + (-0)%) = 89 g,

AT = 696 J.
The work done is given by

(\
W= | {F}A{R},; = |{F}1d {R}; 1dt
dt

LY,

= | {FI1{V], prdt
J

so that for this case

2

[12¢° 18t - 8 - etif2t® + 3 at
0 4.,5t% - 4t + 8
- 1.5t% - 4

=
il

2

(24t° + 90t° - 72t% + 200t - 64)dt

0
2

3 2
(at® + 22.5¢"7 = 24t° + loot’ - 64t) i

696 J
and this is the same as the change if kinetic energy.

Now
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2¢% + 3
G}y = m{vly,y = 2|4.5t% - 4t + 8| kg m/s
- 1.5t% - 4
and therefore
38
{G}l/l £=2 = 36 kg m/s.
- 20
The impulse of the force is
2 r? [12¢? at3 2
{F},dt = 18t - 8|dt = [9t® - 8t
0 Jo|- st - 3t? 0
32
= 10} kg m/s
- 12
and since
6
{G}l/l £=0 = 16 kg m/s ,
32
A{G}l/l = {G}l/l =2 ~ {G}i 1 t=0 = 1o kg m/s
- 12

which is the impulse of the force.

Problem 4.10. A body of mass m = 4 kg is free to move along a smooth
vertical rod. One end of a spring is attached to the body at A by a
smooth pin joint and the other end of the spring is attached to a
fixed point O by a similar joint as shown in Fig. 4.10. The free
length of the spring, measured between the centres of the pin joints,
is a = 10 cm and the stiffness of the spring is k = 0.5 kN/m. Find the
velocity of the mass if it moves from rest when OA is horizontal to
the position in which A is h = 15 cm below its original position.

Solution. If the gravitational potential is measured relative to the
Xy axis as datum then

2 2
v, = k(rA - a) /2 and Vg = k(rB - a) /2 - mgh.
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1/ L Ll

r, (20 cm) T
| A .
! |
T

7, a (10 cm)

m (4 kg)

-| /
fe) A
< VAVAVAVAVAVAVA -
N . Xy
1 \ k (0.5 kN/m)

r. (25 cm . (15 c¢m)

Fig. 4.10.

Hence

V.= 250{(25 - 10)% - (20 - 10)2} - 4x981x15

av B A

1]
<
1

- 27610 N cm

- 276.1 J .
Since energy is conserved

T|, +V, =T, +V, .
In this case T|, = O and therefore

T =V, -V, = -V

Hence
and

{V}l/l = (e} m/S .
11.75
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Problem 4.11. A particle of mass m is constrained to move along a
smooth helical path, of radius a and lead angle o, which has its axis
vertical.

Determine the velocity of the particle when it moves from rest through
the vertical distance h.

Also find the magnitude of the force which the path exerts on the
particle in terms of the magnitude of the velocity of the particle.

Solution. Let the magnitude of the particle velocity {V}; be
vl = v.

The kinetic energy is thus
T = mv2/2.

The potential energy of the particle relative to the position in which
the kinetic energy was zero is

V = - mgh
and since the system is conservative

o]

T + V,
giving

/{(2gh) .

I

v

Let the particle be treated as a moving point in the rotating frame 2
as shown in Fig. 4.11. Then

{R}l/l I2211{R}2/2

where
a
{R}2/2 = (0] .
2
Hence
{V}l/l = (0’2]1/1[942]1{1?}2/2 + [22]1{1.2}2/2
or
{(V}1/2 = twyly/2{R}2 /0 + {1.2}2/2
0 -w olla 0 0
= lw [0} offoj+jJo0 = | aw
0 o o0fflz z 2

where w = Q.
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P

l Axis of

"\
. z3 v helix
Z] 4 2 21.2;

1l y about z; 2 a about x; 3

Fig. 4.11.

Since the lead angle of the helix is o,

and

Now

tana

{V}l/l

and therefore

or

= é/(aw) [
o}
{V}i/, = | z/tana
z

é/{(l/tanza) + 1} = z/sina.

[12]1{V}1/2

Aty 1 = lwp 11022 11{V}y /0 + [22]1%_ (V12
t

189
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{A}1/2 = [w2]1/2{V}1/2 + d {V}1/2
dt
'o -w olfo o)
= |w 0 ollaw| + | aw
0 o0ffz z
-
-2 .
-w a —zz/atan?a
= wa = éytana .
i . o

Let the force on the particle due to the path which is referred to
frame 3 be

-F
X

{Fl; = 0}
-F

z

The equation of motion for the particle is thus

[231,{F}3 + {W}, = m{A}1/2

1 o o 1[-F, 0 -2%/atana
0 Ca -sa (0] + |0 =m ;/tana

0 Sa Coa -Fz mg z

F -méz/atanza

Fzsina = mg/tana .
-F_cosa +mg mZ

Eliminating F between the y and z component equations gives
. .2

z2 = gsin'o

and since the particle is released from rest at time t = O,
3 .2
Z2 = gsina t

and

z gsin%xt2/2.

The time to move vertically through the distance h is thus given by
t = /(2h/gsin’q).

Also

2
nv cosza/a

|
I}

and

|
I

mgcosa ,
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giving

IF| = ngcosav{ (v cos’a/a’g?) + 1} .

Problem 4.12. A particle is released from rest relative to the earth
-at a height h above the earth, which is much less than the radius of
the earth, and at a place where the latitude is o. Obtain an express-
ion for its position measured in and referred to a set of axes fixed
in the earth. Neglect the effects of air resistance.

Solution. Select a set of axes as shown in Fig. 3.10, where O is vert-
ically below the point at which the particle is released.

. . 2 2
Neglecting terms in w, and @

X - 24, (ycosa - zsina)
{A}l/h = & + 2w,icosa
z - 2w, XSing

as obtained in Problem 3.10.
The equation of motion for the particle is

{F}, = m{A}{/y

0 ¥ - 2w, (ycosa - zsina)
-mg| = m|y + 2w, Xcosa (1)
0 % - 2uwexsina

The y component equation can be integrated to give
y + 2weXcosa = -gt + A

O and Xx = O when t = 0, A = 0, giving

and since §
y + 20_xcosa = -gt . (2)
The z component equation can be similarly integrated to give
z - 2mcxsinu = B
and since z = 0 and X = O when t = 0, B = 0, giving
z - 2u_xsina = O . (3)
Substituting Egs. 2 and 3 in the x component equation of Egs. 1 gives
X - 20_{cosa(-gt - 2w xcosa) + 2wexsin2a} =0

which reduces to
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X + 2uw_gtcose = O (4)
2
when terms in w ~are neglected. Equation 4 integrates to give

. 2
X + wcgt cosa = C

and since x O when t = 0, C = 0, giving

x - wcgtzcosa . (5)

Equation 5 integrates to give

X = -(mcgt3cosa)/3 (6)

since the constant of integration is zero. Substituting Eq. 6 in Egs.
2 and 3 gives

y = -gt + (2mfgt3cos2a)/3
and

. 2
z —(chgt3sinacosa)/3 '

which reduge to

y = -gt
and .
z =0

. . 2
on neglecting terms in w_. Hence

y = -(gt’) /2 + h (7)
and

z =0 (8)
and the path of the particle drawn on frame 4 is given by
3
—(wcgt cosa) /3

{R}q/q = -(gtz)/z + h .
0

Problem 4.13. A straight rigid rod is constrained to rotate at a con-
stant rate w with its longitudinal axis in the horizontal plane as
shown in Fig. 4.13a. A particle, of mass m, moves along the rod with-
out appreciable frictional constraint under the action of a spring of
stiffness k.

For the case in which the spring force is zero when x = §, obtain an
expression for the motion of the mass along the rod when it is rel-
eased from rest relative to the rod and x is then equal to §. Assume
that the motion is always controlled by the elastic characteristics
of the spring.



Solution of Dynamics Problems 193

zy

Y7 about 22 E] Y| wt
y about z, 2, x -—_ 4& .
m 2mux
A A A A =, 2
VAR AR VAR Ve i Z I St b M

\_ L ) ° ~— T E T

A1, .

N7 r,
Fig. 4.13a. Fig. 4.13b.

Solution. Let the particle be treated as a point moving along the Xq
axis of the rotating frame 2. Then

{Re}ipr = 122 h{R }2/ 0
and therefore

{Vc}l/l = Iw211/111211{RC}2/2 + 11211{RC}2/2

or
{velije = tws i y2{R}2/2 + {R.}2/2
o} -w Ol x X x
= |uw o} OO} + 10} = jwx]| .
o} Ojto o} o}
Now

{(vehiyr = (22 11{v }1/2
and therefore

{3, b1 = Lwgl1 /108, {V /o + llzllgE{Vc}l/z

or

{agh1/2 = twad1/2{vg b2 + %E{Vc}l/z

0 -w olf x X -0 x + X
= |w o} Ol wx| + |wx] = 2wx
0 0 ol O 0 o}

where w is constant.
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The equation of motion is thus, by reference to Fig. 4.13b,

{wsls + {F32}2 = m{a }/2

2
0 -k(x - §) -0 X + X
o} + Fy = m| 2wx
-mg F O

From the x component equation

2
mix - w x) = -k(x =~ §)
X + wzx = w26
n o
where
2 2 2
w o= w2 - w and o = k/m
n [+ o

Taking Laplace transforms, writing

L{x(t)} = X(s),

2
ws
s2X - 56 4 wlX = 2
n S
or
2
X=uw6 21 + S .
s(s” + w’) s° + w;

X = — (1 - cosw t) + dcosw t
n n

2

= ——(1 - r coswnt)

where

r = w/wo = w/(m/k)

Problem 4.14. A simple pendulum, of length b, hangs at rest from a
support C. C is made to move in a horizontal circular path drawn on an
inertial reference body at the uniform rate

w = /(g/2b) .
Find the position of the pendulum bob as a function of time. Assume

that the radius of the path of C, a, is much less than b and that
therefore the vertical movement of the bob can be neglected.
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VA

/g
7z

1l y about z; 2

Fig. 4.14.

Solution. The system is as shown in Fig. 4.14. Let the pendulum bob be
treated as a moving point in the rotating frame 2. Then, writing

{R,}1 = {R}1,
{R}l/l = [22]1{R}2/2
where
a + x
{RYz/2 = |y
(0]

since z ~ O. Hence

{V}l/z = [wzll/z{R}z/z + {ﬁ}z/z
[0 -0 o]fa + x x
= |w o olly + |y
o} o} 0lLO o}

[—wy + X
= |w(a + X) + y (1)
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and
{A}l/z = [w2]1/2{V}1/2 + QW{V}1/2
dt

‘O -w Ol -wy + X ”m& + x

= lw 0 olfwla + x) +v| +|owx +y
LO 0 0 jLO (0]
- 2 . .
-w (a + x) - 2uy + X

= |-w?y + 20x + vy . (2)
L O

The force on the bob due to the string is
{Fl, = F{Ry, }2/2/1Rg, |

-x/b
F|-y/b
1

and the equation of motion can be written as

{F}, + {W}, = m{A}, ,

-x/b 0 —w?(a + x) - 20y + X (3)
Fl-y/bl+ mg| Oj=m -wzy + 20x + §
1 -1 0

From the z component equation
F =mg .
With this result, and writing
g/b = 4%,
the x component equation becomes
-3w?x = ~w?a - 20y + X . (4)
Similarly, the y component equation becomes
“3u’y = 20% + ¥ . (5)

Taking Laplace transforms of Egs. 4 and 5, the initial conditions be~
ing zero,

2

2 w a

(s + 3w)x = + 2wsY (6)

and
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2

(s> + 302)Y = -2wsX . (7)

Eliminating X between these last two equations gives
3
2w a

Y = -
+ 9w2)(s + wz)

(s?

and by reference to tables of transform pairs

y = f%(sin3mt - 3sinwt).

Also
X = w a(_s2 + 3w2)
s(_s2 + 9w2)(52 + mz)
2
= mza[ 2S 2 7o T 2 gm 2 2
(s + 9w ) (s + ) s(s+ 9w ) (8° + w’)
and
X = wla { 2(COSmt - cos3wt) +
8w
—LE - 32c05mt + lzcos3mt
3w 8w 24w
= f%(4 - 3coswt - cos3wt).
Hence
(16 - 3coswt - cos3wt
{R}p /5 = f% sin3wt - 3sinwt
O
and
[coswt ~sinet Ol 16 - 3coswt - cos3wt
_ a |sinwt coswt Of| sin3wt - 3sinuwt
(Rhi1 = 13
0 o 1jio

[16coswt - cos2ut - 3
l6sinwt - sin2wt .
0

A

Ko
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Problem 4.15. Derive an expression for the motion of the bob of a long
simple pendulum taking into account the rotation of the earth about

its axis.

Solution.

Point of B
suspension ]

7
//// Verticalt

7

West

Fig. 4.15a.

From Problem 3.10, the acceleration of a
set of axes referred to frame 4 fixed in
3.10, is given by

2wzsina

+

.
atiyy = |y
:Z.

2wXCOSa

+

2pxsina

for the case in which y can be neglected
By reference to Fig. 4.15a,

0]

{Ryluyw =1af, {Rybuyy =
0
when y is much less than a.

|
NONOX

’

/

point relative to an inertial
the earth, as shown in Fig.

(1)

and o = w, .

=X

4
o

and  {Ry, }u,
-2
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The force on the bob due to the string is

-x/a
F{R, Ju u/IRg, | = F| 1
-z/a
The equations of motion for the bob are thus
0 ~-x/a X + 2wzsina
-mg] + F| 1 = m{y + 2wXcosa
0 ~z/a Z - 2uxXsing

and these can be rewritten

F .

o 2uxcosa + g v g

- .- 2

X + 2wzsinog + w x = 0
n

. .o 2

z - 2wxsina + w 2 = O
n

where w: = g/a.
If the initial conditions are
x(0) = A, x(0) = 0, z(0) = 0 and z(0) = O,
then the Laplace transforms of Egs. 4 and 5 become
52X - sA + 2wsinasX + w:x =0
2

2
s 2 - 2uwsina(sX - A) + wnZ = 0.

On writing

2wsina = B,
As(s® + w: + B2)
RN (20> + BY)s + w
and
7= - AB

M
52+ (2w3+ B2)s + o

The roots of the denominators of Egs 8 and 9 are
s = + jwn/(l + 2wsina/uw_)

s = + jwn/(l - 2wsinu/wn)

199

(2)

(3)

(4)
(5)

(6)
(7)

(8)

(9)

and since w is much less than W, these roots can be written approx-

imately as
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0
I
+

j(wn + wsina) = + juw;
and
s = + j(mn - wsina) = + Jjuws.

The inverse transforms of Eqs 8 and 9 can thus be determined giving

X = %(Cosmlt + coswayt) (10)

and a
z = E(Sinmlt + sinwsyt) (11)

using the fact that w is much less than w . The reader is invited to
complete the intermediate steps required to determine the inverse
transforms.

N
Zy
Yur ¥s
s
wsinat 4 -wsinat about y, 5
Lo X
Fig. 4.15b.
Equations 10 and 11 can be rewritten
X = Acost:cos(msinat) (12)
and
z = Acosw;tsin(msinut) (13)

by use of appropriate trigonometric identities. Thus

cos (wusinoat)
{RA}u/u = Acosmnt 0
sin(wsinat)
and if this vector is referred to frame 5 positioned relative to frame

4 as shown in Fig. 4.15b (that is frame 5 rotates 'against' the dir-
ection of rotation of the earth), then
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1

{Ry}sys = (24 15{R }uu = Acosut|o | .
(0]

The pendulum bob is thus seen to move with simple harmonic motion
along a line which rotates relative to the earth with the angular vel-
ocity wsine as shown in Fig. 4.14b. Of course the bob is moving along
a line fixed in inertial space while the earth rotates underneath it.

Problem 4.16. A homogeneous solid is in the form of a truncated sect-
or of a sphere as shown in Fig. 4.16a. Find the position of the cent-
re of this solid when a = 10 cm, acosa - h = 2 cm and o = 15°.

fl
|

¥</ .
-

|

a

Fig. 4.16a.

Solution. The reference frame chosen is as shown in Fig. 4.16b. The
centre of mass is clearly on the x axis. Consider the solid as being
made up of two parts, one of which is body 2, a truncated cone, and
the other body 3, a spherical cap. The composite body is designated 4.
By reference to Fig. 4.16b

acosa

_ 2
m, = pry“dx ,
acosa - h

where p is the density of the material of the solid, and since

y = xXtana ,
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y Y
pd 3

y = xtan

L ¢ N\ .

Y ///// \u

1

X
X

\ 2 2 2
X +vy =a

N

A

X ___ﬁx X ‘_“dx
Fig. 4.16b. Fig. 4.16c.
acosa
my = pﬂtanza xzdx
acoso - h
2
= BlE%E—g{agcosaa + (acosa - h)°} . (1)
Also
acosa acosaq
my{R5} = (pry?dx)x = prtan’a x3ax
acosa - h acosa - h
2
= BEE%ﬂ—g{aucosqa - (acosa - h)“}. (2)
Therefore
{Rz} - g{a:cos:a - (acosa - h):} . (3)
4{a"cos”o - (acosa - h)”}

By reference to Fig. 4.1l6c,

a a
2
m3 = pry dx = pw (a2 - xz)dx
acosa acoso
oma’

]

——y—{Z - cosza(3 - cosza)} (4)
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since
y2 = a? - x2.
Also
a
x 2
m3{R3} = (pry dx)x
acosa
pﬂau 2 2
= —jr—{l ~ cos“a(2 - cos“a)l} . (5)
Therefore
_ 2 _ 2
{RE} _ 3af{l - cos®a(2 coi a) } (6)
4 {2 - cosa(3 - cos“a)l
By Eq. 1
ms 3 3
E? = 0.0718{10°x 0.8705 - 8} = 20.785 cm

and by Eq. 4

m
3
3% = lg{z - 0.9659(3 - 0.93301)} = 1.15 cm®.

By Eq. 2

mz{R2} _ 0.0718{10"x 0.7587 - 16} = 132.33 cm"

pm 4

and by Eq. 5

m3 {R3 }
pT

]

10" 4
{1 - 0.93301(2 - 0.93301)} = 11.217 cm .
Hence

my{R3} + m3{R3}

{rRy} =
mys + I3

132.33 + 11.217
20.785 + 1.15

= 6.54 cm.
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Problem 4.17. Figure 4.17 shows a machine part made from a homogeneous
material. Locate its centre of mass.

Zy)

Cy Zg Yu

5
2.5 ai
~
~
,""
|
'
-+
—~.
;
-

13

5 2.5
) _i 3
—_— - .
! All dimensions given
4 Yu | in centimetres.
N % 1.5 dia.
~ c, X .
! .

v 2 Y2 Ca X3 — -
Cs Xg ‘
c, *2

Fig. 4.17.

Solution. Treat the machine part as the composite body 7, being made
up of the bodies 2, 3, 4 and 5 and the hole 6. If the density of the
material is , then the masses of the various parts are

m, = (prx 2.5%x 5)/4

I

24.543p,

m3 = p X 2.5 x 8 x5 = 100p,

m, = p X 2.5 x 2.5 x5 = 31.25p,

ms = (p x 2.5%% 4)/(4 x 2) = 9.82p
and )

mg = —(prx1.5 x 2.5)/4 = - 4.42;
so that

m; = 161.2p

The positions of the centres of mass of bodies 3, 4, 5 and 6 relative
to the centre of mass of body 2 are

6.5 3.75
{RC3CZ} = {1.25| cm, {RCucz} = |5 cm,
0 1.25
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11.03 7.5
{Rcscz} =1| 0.75| cm and {Rcscz} =12.5| cm.
0 (0]

(It is easy to show that the centre of mass of a semi-circular cylin-
der of radius a is 4a/3w from the plane of the diameteral surface).
Hence, the position of the centre of mass of the composite body 7
relative to the position of the centre of mass of body 2 is given by

{RC7‘32} - my
6.5 3.75 11.03 7.5
100(1.25] + 31.25|5 + 9.82| 0.75} - 4.42]|2.5
0 1.25 0 0
161.2
5.22
= 11,72 cm.
0.24

Problem 4.18. Show that the moment of a force about a given point is
independent of the position vector chosen, provided that it starts at
the given point and terminates on the line of action of the force.

Fig. 4.18.
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Solution. Refer to Fig. 4.18. Let A be the point about which the mom-

ent of {F} is to be determined. If B and C are any points on the line
of action of {F}, then

{m,} = [re,]{F}
and

{Reat = {Rg 1 + (R} -
Hence

b = IRy, ] + [Rpl] (1w
and since

{Rgp}

= A{F}
where » is a scalar,

{m,} = [R,,J{F} + M(FUF} = [R,,](F}

because the vector product of the force vector with itself is a null
vector. Thus, since B is any point on the line of action of the force
vector, the moment vector is independent of the position vector chosen.

Problem 4.19. A vertical mast, which is supported at the ground in a
smooth spherical cup, is held erect by guy ropes as shown in Fig. 4.19.
If the resultant force on the mast due to the guy ropes is to be vert-
ically down, find the guy rope tensions in AD and AB and the force on
the mast at A in terms of the tension in the guy rope AC.

Solution. Let body 6 be the device to which the ropes are attached and
which transmits the resultant force to the mast, body 2. Then the
forces on body 6 are

(0] (0] ap
_ {RDA} _ FD — _
{Fesl = F = —|-15| = F [-0.6| = F |b1| ,
IRpal 25| 50 -0.8 oy
5 0.233
Rl Ty 22
{Feu} = F, = 6|=r, |0.279| = F | b,
[Rgal 21475, -0.931 oy

and
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I\z* {Pe2}
A

-10 -0.432 a

{RCA} FC :

{F¢s} = F = 6| =F_ | 0.259 | = F_{by
CIrR..| 23.15 ¢ ¢

CA * -20 -0.864 C3

due to the guy ropes, and

0

{Feo} = |0
F

due to the mast.

For body 6, since its mass acceleration is zero,

{Fesl + {Feu} + {Fgs} + {Feo} = {0}

a, as aj 0 0
FD bl + FB bs + FC b3 + F|IO|=1]10 (1)
c1 co C3 1 0

From the x component equation

a3 (-0.432)
Fy =~ 3, F¢ =~ ~0.233 Fc © 1.85F,

MMAERBM - H
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and from the y component equation

b3 b3 b3 b2a3
FD=—FI—FC--1)—1FB=I_D_1_ b3a2_l FC.
_ 0.259( 0.279x(-0.432) _ _
- (-0.6)(0.259xo.233 1) Fo = 1.294F;

Also, from the z component equation,

c1bjz [ brag Cza3
TE (B ) a3

o)
fl

C

(-0.931) (-0.432)
0.233

~-(-0.8)x1.294 +

(-0.864) | F

3.625Fc

Problem 4.20. A uniform rectangular trapdoor, of mass m, is connected
to fixed points at O and D in a horizontal plane by smooth hinges as
shown in Fig.4.20a . A string is attached to the mid point of the edge
parallel to the hinged edge and is used to support the door at an angle
8 to the horizontal. The string is also attached to a fixed point A.

Find, for a range of values of 6 from 0° to 90° at 10° intervals, the
string tension and hinge forces if the hinge at D is not capable of
exerting a force in the direction of the hinge axis.

Solution. By reference to Fig. 4.20b,

{Ry o} Fu
{Fo3} = F | Al . {Fau} =0 '
RBA FS
F (0]
{Fo5} =|F,| and {w,} = mg| O
Fj -1

Now

o
»
1
(@]
=]
>’JU
It
o
~
I
0 O v
~
3

2 sin®
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lg {F23} A*

mg

A

Fs
Fig. 4.20a. Fig. 4.20Db.
0.5cosH 0.5P
{Ry} = |1.4f m , {Rr;} =]|0.7 = 10.7 {m,
0 0.5sind 0.5Q0
-(1 + coss) -(1 + P)
{r,,} = {-0.7 = 1-0.7 m
2 - sineé 2 -0Q
and 2 2 2
IR ,| = R=/Y{(1L +P) +0.7 + (2-0Q) }.

Taking moments about O, which for equilibrium gives a null vector as
a resultant,

[RD]{qu} + [RA]{an} + [Rcl{wz} = {o}

o o 1.4)F, o -2 olf[-(1 -p)
o o o o |+ % 2 o0 1||-0.7
-1.4 0 o =, o -1 off 2 -0
o -0.50 0.7 o 0
+ mglo.50 o -0.5p|| o|=1]o0
0.7 0.5p O -1 0



210 Matrix Methods in Engineering Mechanics

1.4Fs 1.4 0
0 + % -(2P + Q) = mg|-0.5P (1)
~1.4F, 1+ 0P 0

Also, for equilibrium, the sum of the forces is a null vector

{Fou} + {Fas} + {Fas5} + {wy} = {0}

Fq -(1 + p) F1 (0] (0]
0 + % -0.7 +{F,| +mg| Ol =0 (2)
Fs 2 -p Fj -1 o)

Equations 1 and 2 can be combined into the single martrix given below
when mg is taken as unity, so that the forces will be expressed as
multiples or sub-multiples of the weight of the trapdoor.

[1 0o o 1 o -(1+p/R]|[F] o ]
0O 1 o 0O O =0.7/R F, o)
0o 01 o 1 (2 - Q) /R || F3 1
0O 0 0 0 1.4 1.4/R Fy| 0.7
O 0 0 0 0O =—(2P + Q)/R||F;5 -0.5P
|0 0 0 ~-1.40 (L +P)/RJ|F | | 0]
which is of the form
(Al {F} = {B}
and therefore
{F} = (A1"}{B} = [C1{B} .

A programme to effect the necessary computation, written in a Basic
language, together with the print out for the 0°, 50° and 90° posit-
ions are given below.

It is always advisable to check the result of a particular computation,
which does not involve any special conditions such as for example the
90° position, for which the string tension is zero and F3 = Fs5 = 0.5mg,
by longhand methods to ensure that the programming is correct. The
reader is invited to do this. It is however reassuring to find that
the computed results give the correct values for the 90° position.
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Programme

100 DIM aA(6,6), C(6,6), F(6,1), B(6,1)
110 FOR Tl = O TO 90 STEP 10

120 PRINT "TRAPDOOR ANGLE = ";Tl
130 PRINT

140 T = T1/57.296

150 P = COS(T)

160 Q = SIN(T)

170 R = SQR((1+P)+2 + .742 + (2-Q)+2)
180 MATA = ZER

190 A(l1,6) = -(1+P)/R
200 A(2,6) = -.7/R

210 A(3,6) = (2-Q)/R
220 A(4,6) = 1.4/R

230 A(5,6) = -(2*P+Q) /R
240 A(6,6) = (1+P)/R
250 A(l,l) =1

260 A(2,2) =1

270 A(3,3) =1

280 aA(l,4) =1

290 A(3,5) =1

300 A(4,5) = 1.4

310 A(6,4) = -1.4

320 MATB = ZER

330 B(3,1) =1

340 B(4,1) = .7

350 B(5,1) = -,5*p

360 MATC = INV(A)

370 MATF = C*B

380 PRINT "Fl=";F(l,1l);"F2=";F(2,1);"F3=";F(3,1)
390 PRINT "F4=";F(4,1) ;"F5=";F(5,1);"F6=";F(6,1)
400 PRINT

410 PRINT

420 NEXT Tl

430 END

Print out
TRAPDOOR ANGLE = O

.142857 F2
.357143 F5

.175 F3 = .25
.25 F = ,72844

Fl
F4

TRAPDOOR ANGLE = 50

7.35285E-02 F2 = ,109658 F3 = .46335
.183821 F5 = .343346 F = ,34003

Fl
F4

TRAPDOOR ANGLE = 90

2.11564E-06 F3 = .5
.499997 F = 4.76918E-06

Fl
F4

8.63530E-07 F2
2,15883E-06 F4
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Problem 4.21. A straight uniform rod, of length 2a and mass m, rests
on the ground and the top horizontal edge of a wall as shown in Fig.
4.21.1f no slip occurs at the point of contact between the rod and the
ground, obtain an expression for 6 when slip is about to occur at the
point of contact between the rod and the wall.

Also find the force at A when slip is about to occur.

Solution. Refer to the ground as body 1, the wall as body 2 and the
rod as body 3. The rod is in equilibrium under the action of

{F31} at A, {w3} vertically down through C and

{F32} at B.

{R,}

LRELYS]

{= 07y J{Ry Y

BD

}

Fig. 4.21.

When slip is about to occur at B, {F32} is the vector sum of a force
{F%z} which is normal to the plane containing AB and BD, and a force
{F%,]} along BD which is directed such as to oppose the relative motion

between bodies 2 and 3. Unit vector perpendicular to {R, } and {Rrj,}
and in the direction of {F3,} is given by
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(Re Al 1Ry 11 [Ry T{RG H -

Hence
{F32} = PR, 1 {Ryp /1 [Ry , ] {Ryp } |

and since

o =-d hilx 0
Ry iRy} =1 @ o -xflo]=x]|4d
-h X olio ~-h
and
2
| Rya Ry}l = /(@ + 0,
0
n d
{F32} = —F—— .
32 Y(da? + h?) |-h
Also
-1
{F3.} = wF| O
0

For equilibrium, the sum of the moments of the forces on body 3 about
A is zero

[RCA]{Wa} + [RBA]{ng} + [r,,]{F52} = {0}

and since

X
{Rg,}
BA a
{Real = IR, | = a| .,
CA CA 2 2 2
IRy, | J(x* +d% +h%) |
o -d h o o
d 0 -x 38 -1 + S —1 a
-h x o J(x® +d% + h%) | /(a® + h%) |
-1 o
+ uF| O =10
o} o}
From the y component equation, writing d/h = 2,
___EEE——?_ = yd or tand = g = u/(1 + AZ)
Y(d° + h")

and from the x component equation
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mgad
+a? + hz)

2 2
F/(d + h) = ,
Y (x

which reduces to

mgaj
h(l + ¥)AL + ua?)

F =

by use of the result from the y component equation.

Also, for equilibrium, the sum of the forces on the rod is zero

{w3} + {F32} + {F3:} = {0}

0 0 -1 F_ 0
mg -1 | + 2F —| a|+wF[ o]+ |F | =0
0 7@+ ) |y 0 F 0
and therefore
F = pmg A
x 2 2.2
(L + 29)Y(1L + u29)
A
F =mg{l -
y (1 +25H372/1 + u2r?)
and
_ mg i
F, = 2,3/2 :

(1 + 123937271 + u22 Y

If slip is to occur before the rod falls down the face of the wall,
then

2 2 2 2
x +d +h < 4a

or

A
=~
bl
N
~N
o2
N

2 2 2
(L + 2 ) (L + u a)

requiring

2 2
v 2 Wua'msa

+
>
—
1
-
——

Problem 4.22., Any given system of forces and couples can be reduced to
a single force {F} through a given point 0 and a couple {L} as shown
in Fig. 4.22a. The force {F} is independent of the choice of the point
O but the couple {L} is not. In general the force and couple vectors
will not be parallel. Consider the problem of reducing the {F} and {L}
system to a force {F} through some point A, to be determined, and a

couple {L’} which is that component of {L} parallel to {(F}.
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Find {1’} and the point at which the line of action of {F} cuts the xz
plane for the case in which

10 6
{F} = 6 | kN and {L} = 3 | kN m.
4 -6
Solution.
o Y,

. |LICOSQ= (L_}T(—F).
{Fi
o]

Ly (F} {F}
Irl IF]

{1’} =

>
Fiag. 4.22a. Fig. 4.22b.

The couple vector which is parallel to the force vector is given by

T T
= iny (F} {F} _ AL} (FI{F} _ y p

{r?} 5
Fl IF| |7

as illustrated in Fig. 4.22b. Thus

L} = {1 + "}
oxr
(L"} = (L} - {L"}
where {L"} is normal to the force vector {F}. If {L"} is to be repla-

ced by moving the line of action of {F} so that it passes through some
point A, then the position of A relative to O is given by

(L") = [R,,J{F}
and therefore

{L} - {L*}

[R,,](F}

{L} - A {F} = -[F1{R, ]

MMAERBM - H*
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Premultiplying this equation by [F] gives

[FI{L} - MFHF} = ~[FIFHR, }

and therefore

-tFHL} = ({F}Y {R, D {F} - ({FY{FH{R

AO}

from which
{F¥ {r, )b (FHL)
{Rol = ——C—{F} + —~ .
|7 |7
One i the points satisfying this equation is on a line through O per-
pendicular to the plane containing {F} and {L} which is

[FI1{L}
|F|?

long and in the direction of
[FI1{L} .

The force {F} through this point A, together with {I’} is the wrench
equivalent to {F} through 0 and {L}.

For the particular system given in the problem

o -4 61 6 -0.316
[F]{g} 1%7 o -10||3|=1| 0.553 | m .
|F|
-6 10 0f]|-6 -0.0395

The equation to the line along which {F} lies is thus

X - X, Yy - v, z -z,
2 m n
where
b4 X,
Rl=|v| . ]} =]|y,
VA ZA

and ¢, m and n are the direction cosines of {F}. Thus, for y = 0O

X =x, = zyA/m = -0.316 - 10x0.553/6 = -1.237 m
and
z =2z, - nyA/m = -0.0395 - 4X0.553/6 = -0.407 m.
giving
-1.237
{R, } =] o0 m.

-0.407
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Problem 4.23. Prove the perpendicular axis and parallel axis theorems
for a plane lamina.

Solution.

Fig. 4.23a. Fig. 4.23b.

Perpendicular axis theorem.

Refer to Fig.4.23a showing a lamina, body 2, in the x3z3 plane with O3
at any point in the plane. The moment of inertia of the lamina about
the x; axis is given by

= zmi (22 + y2)

:SIW 22 + :SI% y2

= I + I .
Y3753 Z3Z%3

I
X3 %3

Thus, the moment of inertia of a lamina about an axis perpendicular to
its plane through any point O is the sum of the moments of inertia
about any two mutually perpendicular axes in the plane of the lamina
which pass through 0. If in particular

I I
¥y3 Y3 Z3 23

1

then

It
1
N
H

.

I 271
X3%3 y3v3 Z3%3

Parallel axis theorem.

Refer to Fig. 4.23b showing a lamina, body 2, in the x,z, plane with
the origin of frame 2 at the centre of mass of the lamina. The moment
of inertia of the lamina about the x3 axis is

I Zmi{(d+y)2+zz}

*3 ¥3

2

E:mid2 + 2dzmiy +§:mi (y2 + z )
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2
=mpd + I
x2 X2

since Zmiy = 0.

Thus, the moment of inertia of a lamina about any axis exceeds the in-
ertia about a parallel axis through the centre of mass of the lamina
by the product of the mass of the lamina and the square of the dist-
ance between the parallel axes.

Problem 4.24, Find, for the thin uniform circular disc, body2, of Fig.
4.24

(12]2/2 and [12]2/s .

Solution. The moment of inertia of the element shown about the y, axis
is

2
prdedr r ,

where is the mass per unit area of the disc. The total moment of in-
ertia is thus

a 27 a
3 3 4
I = r dr de = 2wp r dr = pwa /2
y2 Y2
0 0 0
. 2
and since my, = pwa ,
I = mya?/2 .
Y2 ¥2

By the perpendicular axis theorem of Problem 4.23

2
I =TI = moa /4
X2%2 222

and therefore, since the product of inertia terms are zero by symmetry

mpa? l 0o O
o 2 0.
0O o 1

I
(12]2/2 Z

Now

[12]2/3 llzls[Iz]z/zllzlg
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220 23

n»
Y
¥2 Y3 2 y about z; 3
X3
Fig. 4.24
and therefore
m2a2 cy sy O}j]|]l1l O O]fcy =-sy O
[I2]2/3 = -sy cy O]|O0 2 O] sy cy O
4 0 0 1{fo O 1|0 0 1
- 2 ;
m2a2 2 cos“y sinycosy (0]
. .2
= sinycosy 2 - sin"y O .
4 0 0 1

Problem 4.25. Obtain the inertia matrix for a three-bladed airscrew
referred to a set of axes which are fixed in the engine and which have
their origin on the srew axis and in the plane of rotation of the
screw.

Solution. Refer to the engine fixed frame as 0 and number the blades
2, 3 and 4 as shown in Fig.4.25., Frames 2, 3 and 4 have their origins
coincident with that of frame O, thus departing from the usual conven-
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tion of positioning the origin of a frame numbered to correspond with
that of the body at the centre of mass of that body.

\\\ ! Z2

N \\ -
~' -7

o@z -t -

om:“3 / |

— -
076 + 2a about x 4

a = 2n/3 z3

|
)

Fig. 4.25.

If the blades are treated as simple straight rods, then

I O O
[12]2/2 = [13]3/3 = [Iq]q/q = |0 J O
0O o I

and if the whole screw is body 5, then

(Ts]s/0 = [T2]2/0 + [T3]l3/0 + [Tuluyo

T T
[2210[T2]2 2022 30 + [2330[T3]3 302310

+ llulo[lu1u/ullulg .

Now _
1 © 0 1 o 0
[221g = |O ¢c®6 =-s6} , [23)g = |O c(6+a) -s(6+a)
|0 s8 ch O s(8+a) c(8+a)
1 o 0 1 o 0
[24 09 = |O c(a-8) s(a-8)] = |0 c(e-a) =s(&-a)
|0 -s(a-6) c(a=-0) 0 s(6-a) c(f-a)
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0 0

[12]2/0=|0 Jc?6 + Is®s -(1 - J)sece| ,

[0 -(1 - g)sece gs%e + 1c’e

I 0 0 T
[13]3/0= Jc2 (8+a) + Is2(e+a) —-(I~J)s(08+a)c(6+a)

[0 =(I-J)s(6+a)c(+a)  JIs®(8+a) + Ic?(o+a)]

and

[ 0 0 ]
[T4]u /0= Jc?(6=a) + Is?(8-a) ~=(I~J)s(6-a)c(6-a)

0 -(I-3)s(9-a)c(6-a) JIs®(8-a) + Ic”(0=a)]

For a = 21/3

s8chd + s(6 + a)c(e + o) + s(6 - a)c(e - a)

0.5{s26 + s2(8 + o) + s2(8 - a)}
= Q0 ,

2 2
c?8 +c (8 +0a) +C (8 - a)

0.5{1 + c286 + 1 + c2(8 + o) + 1 + c2(8 = a)}
= 1.5
and, similarly
s?0 + s%(8 + o) + s2(8 - a)
= 1.5

for all values of 6, Hence

3T O o)
[Is]s/o = 0 1.5(x + J) © .
0O © 1.5(1 + J)

Problem 4.26. The uniform rectangular parallelepiped shown in Fig.4.26
a is machined from a steel forging and fixed to a light shaft with its
axis along BD. The shaft runs in bearings, which can be considered in-
ertial, at a constant rate of 1 000 rev/min. Determine the angular
momentum and the rate of change of angular momentum of the parallel-
epiped referred to a frame fixed in it.
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Fig. 4.26a.

Solution.
Since the density of steel is about 7.8 g/cm® , the mass of the body
is

3

m, = 16x12x15x7.8x10 ° = 22.46 kg .
Now
a? + b? ) 0
)
(T2]u/u = [12]2/2 = 3| © a? + c? 0
0 o] b2 + ¢?
748.7 0 0
= 0 900.3 0 kg m> .
0 0 690.6

To refer [Izlz/u to frame 2 it is necessary to find [2,1,. Frame 4 can

be aligned with frame 2 by the sequence of rotations shown in Fig.4.26b
where
cosa = 0.8, sina = 0.6, cosB = 10/12.5 = 0.8

and
sing = 7.5/12.5 = 0.6 .
Hence
cB O -sBi|l 0 0
[yl = 1231202413 = |O 1 0 0 Co Sa

s O cBl]]O =so cCa
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Xy + Xy

T ——T
4 ¢ about x, 3 g about yz 2

¥s.¥2

Fig. 4.26b.

cB sasf -casB 0.8 0.36 -0.48
=10 co So = |0 0.8 0.6
sB -—sacB cach 0.6 -0.48 0.64
Therefore
T
[12]2/2 = 12412 [1212/41 2y 12
755 60.4 -8.35
= | 60.4 825 -80.5 kg m°.
-8.35 -80.5 760
Also

lwp |1 = 2wx1l 000/60 = 104.7 rad/s



224 Matrix Methods in Engineering Mechanics

and
0
{lwohy y = {wp}y /0 = 104.7(0 rad/s,
1
giving
{Hah1 2 = [T2]2 2lwstr )
755 60.4 -8.35]] O
= 104.7| 60.4 825 -80.5 0
-8.35 =80.5 760 1
- 874
= |- 8428 | kg m'/s
79 572

X2

AN
’/ {#2h/, \>
i< —>
~ .
> {w2)i 1 e ////
Y2 \ i/ ////

S

Z2

Fig. 4.26c.

Since {éz}l/z is a null matrix,
{Boh1 2 = twal 1 o[Io]a 2fuati o = Twsly s2{Ha}y 2
o -1 o]}- 874 882

104.7|1 O O||- 8 428 = |~ 91.5| kN m.
0 o O 79 572 0
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Problem 4.27. The uniform rotor, body 3, of Fig. 4.27a runs on body 2
with a constant angular velocity of magnitude w, while body 2 rotates
relative to an inertial frame 1 with a constant angular velocity of
magnitude Q. Find, for the axes shown

[13]3,1 » {H3}i/1 » {f3l1,1 + {H3}1/p and {3}/, .

Solution.

Y).] o] (o
~t {‘“2}1/! = ["-J /{Wa}z/z =l°

o ol

AR
=

V.-

1

RN

1 # about y; 2 a about x; 3

Fig. 4.27a.

By reference to Fig. 4.27b

{wsly/1 = {waly/1 + 12211 {uwsls/2

o} cg O sBl|lw wCOSB
= Q{1 | + 0 1 O O |= Q (1)
0 -sB O cB|{O -~wsing

and

{wzti/2 = 121 12{ws}1 /1

cR O -sB8 wCR
0 1 0 Q =
sg O CcB|{-wsSB

€

o]

(2)

o

Equations 1 and 2 are illustrated in Fig.4.27c. Differentiation of
Eg. 1 gives
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{uzhy

zr\\\
w
a
Y10 Y2
1
3

i tug),

a = wt

{wy},

Fig. 4.27b.

-wBsB sing]
{wgd1/1 =] O = Q|0 (3)
-wpcp cos8B |
and
cg 0 -sg]fsg 0
{o3d1/0 = (21 1p{w3l1/ = =w0fo 1 o flo|=|o0]| .(4)
|SB O cB || cB —wf
Alternatively,
{wzty/o = Lwpli/2{wgli/s + A {wsdy/
dt
0O 0 1lifw 0 0
= Q) O O Ooffaef +j01} = ¢} .
-1 0 offo (6] —wf

Since body 3 is a solid of revolution, the axis of generation being
the x; axis

(13]3/3

il
o O 4
O H O
H O O
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wsingt

Jwsinat

Jucosat

—/’
~ \\\\\\\
\\\\\\\\ Xx
{wily/y and fwzhi/z
X

{#:h/y anda {H3}1/;

luglz = w

Fig. 4.27c. Fig. 4.27d
Therefore
T
[13]5/2 = 12312[T3)3 30 2512
[1 o olla olfi o o
= |0 Ca =-sa|llO I O co So
LO sa calfl O I||O -sa ca
(g 0 o
=j0 I O (5)
0 0 1
Also
T
[13]3/1 = 12,11 [T3]3/20%2 1
[ c8 0 sglf[g o oOlfcs 0 -sB
= (0] 1 O O I O0}f|o 1 (0]
|—S8 O cgj|lO0O O I s O CcB
ﬁcosZB + Isinzs O (I - J)singcosB
= |0 I 0 . (6)
| (I - J)singcosg O JsinZB + Tcos’B
Now

{H3}1/1 = [T3]s/1lesztih = [22]1[13]3/2[22]€{w3}1/1
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[ c8 o0 sglfg o olfecs o -sp wCB

=] 0 1 o |fo I o}|o 1 0 Q
(-sB O cBj{O0O O I]JisB O CcB jl-wsB
[ JwCcosB
| ~-Jwsing

and
{H3}1/2 = (21 12{Hs}1 1

cB O -sB JwcB Jw

= {0 1 0 IQ = (IQ , (8)
sp O cB||-JusB 0

Y1 ¢ Y2

/\ Juncosat
Junsinat

e

z
1 X5

Xt

i SN X2 0 X3
{fahij2 and {Ash
Fig. 4.27e.
or alternatively
{Hsti/2 = [T3]s/20w3d1/0

Equations 7 and 8 are illustrated in Fig. 4.274.

Differentiation of Egqg.

7 gives
~JwNsB sinB
{ﬁ3}1/1 = o) = ~Jwf |O {9)
-JwCB COSB

and
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{53}1/2 = 121 1,{A3}1 )
cf O -sBl| s8 o}
-Jw@|0 1 O ||O0 [ = -Jwg|O . (10)
sB O CcB|{ cB 1
Alternatively

{A3}1/2 = Lwa i 2{H3}1 /2 + @ {H3}y /0

&

or
{A3}1/2 = twsli/o[T3)a/2{wadiya + [I3]3/2{03}1/2

The reader is asked to evaluate these two alternative expressions for
the rate of change of angular momentum of body 3, measured in frame 1
and referred to the rotating frame 2. Equations 9 and 10 are illustr-
ated in Fig. 4.27e.

Problem 4.28. Body 2 has the inertia matrix

7 0 O

2

(1,]2/, = |0 25 0| kgm
o o 32

and is constrained so that it is free to rotate about its centre of
mass. At time t = O its angular velocity is

4/5
{wal1 /2 = Q10 rad/s
3/5
Obtain an expression for {w,};/, at any subsequent time t, for the
case in which there are no external couples acting on the body and the

only external force has a line of action through the centre of mass of
the body.

Solution. Let the angular velocity of the body at any time t be

w
X

{w2}1/2 = w

w
z

y

and therefore
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o
. a WX
{w2}1/2 = at{wg}l/z = wy .

W
z

For the motion subsequent to t = O, since there are no external cou-
ples

I

{o} = {H2}12 = twa 12 (T2]2 2twady 0 + [T2]2 2002112

(0] (0] -w w 7 (0] Oljlw
z y X
Of = w -w o0 25 Oflw
z X vy
0 -w w 0 0 32|l w
vy X z
7 o olle
-X
+ 10 25 0 wy
0O 0 32fla
These equations reduce to
6 +tww =0, (1)
X vy z
é + w w =0 (2)
y X z
and
166 + % w = O . (3)
z Xy

If Eq. 1 is multiplied by w_ and Eq. 2 by W then

ww +www =0
X X x vy z

ww o= ww o
Yy ¥ Xy z

0

and these equations sum to give

ww +ww =0. (4)
L y oy
Hence
s! d —
wxathdt + wyatwydt =0
or
w2 + w? = A
x y
When t = 0O

w, = 42/5 and w =0 giving A = 160°%/25

and therefore
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2
w? + w? = 160°/25 (5)
x \
If Eq. 2 is multiplied by 9wy and Eq. 3 is multiplied by w then
9w w - 9w w w = O
Yy v
16w &z + 9% ww =0

and these equations sum to give
9w &+ 16w @ = O
Y Y z z

which integrates to

2 2 2
9wy + 16wz = 1449 /25 . (6)
From Eq. 2
dw
d y
-, w = ww or dt =
dt’y x z wx wz

and by substitution from Egs. 5 and 6
dw
Yy

dt = 2 2 2 2
v{(1440°/25) - 9wy}{(169 /25) - wy}/16

4dw
y

3{(40/5) 2 - wf}

This equation integrates to

_ 5 -1
t = 35 tanh (5wy/4Q)

since W = O when t = 0. Therefore
w =22 Lanh(3at/5)
y 5

and by Egs. 5 and 6

w = %/{1 - tanh2(3Qt/5)}
w = 353/{1 - tanh?(30t/5)} .

It is thus seen that while the component angular velocity along the y»
axis(the axis corresponding to the intermediate principal moment of
inertia) is initially zero, finally the angular velocity is wholly al-
ong this axis. A graph showing the variation of the component angular
velocities with time is shown in Fig. 4.28.

The reader will have noted that a special set of initial conditions
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[AY
o
08
[®]
ot
o6
o4 - 2
kvl
W
o2 - [
o i . 1 1 1 1 1 i I J
1 2 3 4 Y [ 7 8 9 1o

Fig. 4.28.
have been chosen to give a solution in a closed form. Had an arbitrary

set of initial conditions been chosen, an integral of the form

duw
/(1 - aw?) (1 - bw?)

would have to be effected. This is one form of elliptic integral which
does not have a closed form solution.

Problem 4.29. Body 2 is moving in free space relative to an inertial
frame 1 such that

Q A 0 O
{wp}1/2 = |0| and (1,]2/2 = {0 B o],
o o 0 C

where A, B and C are not equal th each other, when it is subjected to
a small external impulsive couple. Determine whether or not the sub-
sequent motion is stable.

Solution. Let the angular velocity of the body after the impulse be

Q + w
X
{m2}1/2 = 1w

w
z

y
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where w,, w, and w, are small compared with Q. The equation of motion
after the impulse is

{o} = {Hy}1/0 = lwp V1/2[T2]0/2{wad1 /0 + [12]2/2{52}1/2

o} o} w, wy A O Ol + w

O = -w, 0 -(Q+w )| O B O w,
o} w Q+w (0] O O Cfluw
M z

A o olflw

.X

+ {0 B Ol|lw

LY

O O Cilw

and these equations reduce to
(C~Bww + Ao =0
y z x

(A -C)(a + wx)wz + Bu =0

and .
(B -~ A)(q + wx)wy + Cw =0 .

Now
w w << Quw and w w << Quw
X z z X Yy Yy

so that the equations can be further reduced to

(C - Blu w, + A&x =0 (1)
(A - C)au, + B&y =0 (2)
(B - Aow + c&z =0 . (3)

Differentiating Eq. 2 with respect to time gives

. B

o =-—B 3
a(a - 7

and this result in Eg. 3 leads to

2
5o+ Az QBB g

Yy BC Yy

If
(A -C)(A-B) <O

then the motion will be unstable. Consider the three possible altern-
atives.
Case (i) If A -C >0 and A - B > 0, or A is greater than either B
or C then

(A ~-C)(B-C) >0
and the motion is stable with a natural frequency of



234 Matrix Methods in Engineering Mechanics
o/{(an - c)(a - B)/BC} .

Case(ii) If A -C< 0O and A - B s O, or A is less than either B or
C then
(A -C)(A-B) >0

and the motion is stable.
Case(iii) If A -C <O and A - B > 0, or A lies between B and C
then

(A -C)(A-B) <0
and the motion is unstable.

Thus, if the body is rotating steadily about a principal axis for wh-
ich the inertia is intermediate between the other principal moments
of inertia, then any small external disturbance will give rise to an
unstable motion. If the motion is about either of the other axes then
the motion will be stable.

Problem 4.30. A body which has axial symmetry as shown in Fig. 4.30a
is moving without constraint in deep space. Examine its angular mot-
ion.

Solution. One set of axes which are convenient for this study are as
shown in Fig.4.30b.Frame 4 is fixed in the body with its origin at the
centre of mass and the z, axis is along the axis of symmetry. Frame 4
is positioned relative to an inertial frame 1 through the intermediate
frames 2 and 3 as follows:

(i) frame 2 rotates through the angle y about an axis parallel to the
z, axis,

(ii) frame 3 rotates through the angle 8 about the x, axis and

(iii) frame 4 rotates through the angle ¢ about the z; axis.

The angular velocity of body 4 relative to the inertial reference 1 is
thus given by

{wu}l = {wZ}l + {w3}ls + {wyls

where

o]
{w2}1/1 = {w2}1/2 =10} , {w3}2/2 = {w3}2/3

e
[
o O @

and

{wu}3/3 =

l
O O e
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Z2y,22

Fig. 4.30a.

The component angular velocity b is the angular velocity of precess-
ion.The component angular velocity 86 is the angular velocity of nut-
ation and the x, axis is the line of nodeg. The z3 axis is the spin
axis, the angular velocity of spin being ycose + ¢.

The angular velocity vector for body 4 measured in frame 1 and refe-
rred to frame 3 is given by

{wylr/3 = {waliys + {wslay/s + {wylsys

[22]3{w2}1/2 + {w3}2/2 + {w4}3/3

(1 o olfo 6 o)
= |0 ce s8|{O|+10} + |0
0 -s8 cojld 0 ¢
E
_ |ysineg (1)
[ycose + §

Also, if the angular velocity vector for body 4 measured in frame 1
and referred to frame 4 is given by

w
fwyli/y = o, (2)

w
z



236 Matrix Methods in Engineering Mechanics

T — T — T T
1 ¢ about z; 2 8 about x; 3 ¢ about 23 4

Fig. 4.30b.

then
cy -s¢ O w
lonty/s = [y 13lundryy = |s¢ cé Of]w,
0 0 1 w,
wxcos¢ - wysin¢
= |w sing + w, COSY (3)
wz
and
(Lx
Gelunhiyy = (ol = 5, (4)
5]

z

The angular momentum and rate of change of angular momentum of body 4
measured in frame 1 and referred to frame 4 are, respectively

I O O W wa
{Hotbry = [Iu]u/u{wu}l/u =10 T Offu | = |Tu (5)
0 0 Jliw Juw

z z
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21422

{u.}h J/t <1
{wyda sz dmo = {oyFiya

Direct precession 1

Fig. 4.30c.
and
{ﬁu}1/u = Toy i/ [Tulu/wfwedyzn + [Tulu/alondy /g
Iéx - (I - Do,
= I(Ly + (I - Do, ; (6)

Jo
z
The reader is invited to show that the result obtained from

. d
{Hyhiw = twsliu{Hy b1y + ac {Hy}1 /4
is the same as that above.

Since there are no external couples on the body {ﬁq} is a null vec-
tor, one immediate result of which is that &z = 0. Also, the {H,};
vector is of constant magnitude and fixed directionally in inertial
space. As a matter of convenience, let the {H,}; vector be directed
along the z; axis as shown in Fig. 4.30c. If {Hu}l is fixed in iner-

:ial space then & must be zero, 6 being given by

tans = Imy/sz (7)

The angular velocity vector {wy}; is inclined at the angle B to the
Z3 axis given by

tang = wy/ouz (8)

From the angular velocity vector diagram of Fig. 4.30d, since
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Fig. 4.30d.
tang = J/Itans , (9)
v - J
ycoss + ¢ Icose
and therefore
J,=___J¢__._.._ , (10)
(I - J)coss
or alternatively
W 9 - ¥
sin#d sin(e - B) sing (11)

where |wy|; = w.

The angular velocity vector diagram of Fig. 4.30d can be related to
the taper roller thrust bearing of Problem 3.14. The angular motion of
an axially symmetric free body can thus be seen to be equivalent to
rolling of a cone fixed in the body, the body cone, on a cone fixed in
inertial space, the space cone, as shown in Fig. 4.30e.

To this point the body has been assumed to be rod-shaped and therefore
such that J/I < 1. In this case B < 6 and the precessional motion is
said to be direct. The body and space cone configuration corresponding
to

I < J/I < 2

for a disc-shaped body is as shown in Fig. 3.40f. Here 8 > & and the
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é
{uyhy a0
1172
{by}s
\<<3 \\\
N Bpace cone 2,3
{wshy [
0 P {uzh | ¥
Body cone N
~ y.
c 2

Direct precession

Fig. 4.30e.

»
.

Space cone

{wyy 11

Vcosd - ¢

Body cone

Retrograde precession /%/ [ 3

Fig. 4.30f.

precessional motion is said to be retrograde.

The motion can also be examined by effecting a direct solution of the
equations of motion, Egs. 6, which can be written

w - Awy =0 (12)

w o+ Auox =0 (13)
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where A = (I - J)lw /J, a constant. Multiplication of these equations
z .
by W, and o, respectively and adding gives

This equation integrates to

2
w o+ wf = constant (14)

x-

and since w, is constant
2 2
wo o+ W+ W = constant (15)

which, as might be expected, indicates that the rotational kinetic
energy is constant.The result obtained by differentiating Eq. 13 with
respect to time, when substituted in Eq. 12 is

. 2
W + A w, = 0 (16)

and therefore

w, PcosAt + QsinAt (17)
and

w
x

PsinAt + QcosAt (18)

where P and Q are constant of integration. To relate these equations
for Wy and w, to the previous result, the initial conditions must be
selected to correspond to the axis system chosen. By Egs. 1,2 and 10

_ (1 -3 _ (T -3, s s
A . —~—3———(wcose + $) = 9.
Also, when ¢ = O, woo= ysing and w =0, giving P = {sin®, Q = O,
w, = ysingcosé and w, o= psingsing.

Problem 4.31, A uniform rod, body 3, having a circular cross section
of radius a and length b, is mounted in a frame, body 2, as shown in
Fig. 4.31. The motion of body 3 relative to body 2 about the central
pivot can be considered free from fictional constraint. The frame is
driven at a constant rate Q relative to an inertial body 1.

Find, for the case in which b/a > Y3, the frequency of small oscilla-
tions of body 3 when it is positioned such that o = n/2.

Also find for the case in which body 3 is released from rest relative
to body 2 when a = 0, a when a = n/2.
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Solution. Now
{wgly = {wr}l; + {w3ly
and therefore

fwshiys = (22 13lwady /o + 122 3luwglayn

1 o olla a
= |0 Ca sall Q| = Qcosa| =
O =-sa calfO -Nsina

2, a—
1 ,/// ; 1

+ . }
vl 7 T S N

X21X3

T - T T -
1l B about y; 2 a about x; 3

Fig. 4.31.
giving
a ®
. 4a . . X
{wg}l/g = ag{wg}l/g = |=a@slina| = ?y .
-aQCcosa w

The equation of motion for body 3 is

_:; l"—-‘_—T‘_'*' | __E;ﬁ"Ynh

241

{L32}s = {As}1/3 = Twsliys[T3]asalusdiys + [T3]s/3l03}/s

0 (I - Do w + I
. y z X
L = Jw
b4 z R
L (I -~ Nw v + Iw
z y x z

where
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{L32}3 is the couple which body 2 exerts on body 3 referred to frame,

I O O
[13]s 3 = |0 T o, T =my{(b’/12) + (a®/4)}
0O 0O I

and
2
J = m3a /2.
The x component equation of motion can be written
. 2
Io - (I - J)Q sinacosa = O.

To consider small motions of body 3 relative to the position in which
@ = a the sinacosa product can be written

sin{(a + a)cos{(a + a) = lsinZ(a + a)
o o 2 o

where o is now redefined as a small displacement from the a, position.
If a, = m/2, then

lsinZ(a + qg) = lsin(_n + 2a) = - lsin2a 2 =g
2 ° 2 2

and the equation of motion for small movements relative to the a, =
m/2 position can be written

(1 -3a

a + T a =0

so that the natural frequency of small vibrations about this position
is

w = Qv(I - J)/1

provided
2 2 2
b a a . b
I>J0rﬁ+z >§ y l.€. g>|/3
Now
2 .
o= =32 oinicosa or 432 = wlsinacosa
I da n
and
a /2
.. 2 . .
ada = w sinad (sina)
0 0
.2 w/2

Q
I

2
w (sinza)
0
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It is suggested that the reader finds
{E32}3r {Lsz)as {Lsz}is {L21}, and {1}
for the case in which a = /2 and a steady state vibration
a = Asinwnt

is taking place.

Problem 4.32. A uniform ring is pivoted to a shaft which rotates in
fixed bearings as shown in Fig. 4.32a. The motion of the ring about
its pivot relative to the shaft is controlled by a spring which exerts
no torque on the ring when the axis of the ring is at 70° to the axis
of the shaft.

Determine the stiffness of the spring if the axis of the ring is to be
30° to the axis of the shaft when the shaft speed is 200 rad/s. What
will be the attitude of the ring when the shaft speed is 100 rad/s?

3
The ring, which is of brass (density 8 200 kg/m ), has the following
dimensions:external diameter 7 cm, internal diameter 6 cm and length
1 cm.

Solution.

SIS

Y2

e e
1 y about z; 2 a about x; 3

Fig. 4.32a.

The reader is left to show that

m3 = 0.0837 kg

and
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I 0 0 45 o o ,
[13]s3=|o 1 o|=10" |0 45 o|kgm .
0o 0o J 0O O 89

If the spring exerts no torque on the ring when the axis of the ring
is at 70° to the shaft axis then it will exert a torque about the x,
axis equal to

k6/57.3

when the ring turns through the angle ¢ (in degrees) as indicated in
Fig. 4.32b, where k is the spring stiffness.

{L3u}s

w = 200 rad/s

{&3h ‘

Spring couple and
Effective couple

w = 100 rad/s

30° o 70N 90°
| = 40 |

y3 (200 rad/s) = |
Y2 Angle ring axis makes with shaft axis(a)

Fig. 4.32b. Fig. 4.32c

When the shaft is running at a constant speed and the ring is at rest
relative to the shaft

o
{w2}1/1 = {w3}1/1 = {w3}1/2 =10 ,

w

0

{wg}l/g [lzlg{wg}l/z = |wsina

wCcosa

and {&3}1/1 is a null matrix. The equation of motion for the ring

{Lauls = {H3t1/3 = Twsli/3[T3]s/stuwsdy s

thus becomes

1 1
k6 _ o2,
7.3 Ol= w(J I)sinacosa|O .
(0] 0
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This equation is illustrated in Fig. 4.32c. On substitution of the
values appropriate to a speed of 200 rad/s, the equation becomes

4 -6
%253 = 4x10 x10 (89 - 45)x0.5x0.866

giving
k =1.09 N m/rad.

When w = 100 rad/s

N -6
1.096 _ 10 x10 (89 - 45)sin(140 - 2¢) .
57.3 2

O

By trial and error 6 = 10

The reader is ‘invited to determine the natural frequency of the ring
at each speed. Reference to Problem 4.31 will help in an approach to
this problem.

Problem 4.33. Figure 4.33a shows a part section of a ball thrust race.
Determine the angular velocity of the upper track relative to the lo-
wer fixed track when there is slip between the ball and the track at
each point of contact.

Solution.

T ——" T e T
170 about 2, 2 ¥ adout z, 3 B about 7, &

Fig. 4.33a.
From Problem 3.13
0 ) 1
na . n
{Ay)i/3 = f -1| and {wyliyz = —%— ol .
0 0
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Now
I 2ma? no’ oo
{H4}1/3 = [14]4/3{‘04}1/3 == I O 1 O
O 0 1
— mnazm2
10 :
6]

Taking moments about B, by reference to Fig. 4.33b,

[RABja/a{Fuz}s = m[RCB]s/s{Au}l/z + {Au}1 s

0 -1 O||F; 5 2 o -1 O 0
mna“w
2a|l O O{F,| = — 1 O Off{-1| +
o) O O]|F;3 ¢} 0O O© e}
from which
2
_ Tmnaw
F2 == =25 —
{Fl2}s
A l {Plz}a
Yy :

Mass of
ball m.

z3 “IA“ll _mn:nz . |
L—————— <:;\ °:
i

'
m
Y3 €
<} Yu
X3
[8 ]y = mna’a?

10

Fig. 4.33b.

o O =
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Equating applied and effective forces

{Fuzls -+ {Fu1ls

from which

2
3mnaw

Fs = - 7716

Ll ]

Fy
Fp|{ +
Fj

= m{AH}l/SI

/PZ/P,-<4-1
.

Fa/P , © > w)

Fs/P , » > u)

Fs/P , w < w

1.
|

2

w2

Fig. 4.33c.

If P is the axial load on each ball then

When slip is about to occur, first at A,

F, 2

as shown in Fig. 4.33c. In dgeneral
2

F, + Fg = mzaw
and when w > w;, F, = uyP. In this case
mnaw2
WP + F5 = =5
or
F 2 2
5 _ mnaw _
—_ ——— - n = Kow - 3.

P ~ 4p

MMAERBM - 1*

Fy
2
Fs5|= mnaw
Fg 4
2
= k3w -

-1

247
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When slip occurs at B

Fs 2
P_ u and 2}] = k2w2

giving

e
NN
|
BIOO
ol k=
Wity

Problem 4.34. A rotor, body 4, is mounted in gimbals as shown in Fig.
4.34. The inertia matrices for the elements are given by

—AZ 0 0 A3 O 0
[12]2/2 =10 By O ,[Ig]g/g = |0 B3y O
LO (0] C2 O 0O C3‘
and i
J 0 O
[14] w/u = I O
0 o I

Obtain expressions for y and 8 for the case in which the system moves
from rest when subjected to each of the following disturbances

(i) a couple
o
{L2}, = |0
A

applied suddenly and

(ii) a small mass m is placed on the inner gimbal at B such that

a

{Ryelasa = |0 .
b

Assume that friction effects can be neglected, the rotor runs at a
constant high speed w , the motion of the inner gimbal about the y,
axis is small, the angular velocity products due to y and 6 can be
neglected and the mass acclerations due to m can be similarly neglec-
ted.

Solution. Angular velocities and accelerations are given by
0 0

{wptr/2 =[O}, {wady/p = |0

Y ¥



{wslis

{wgly/3

{ Wy 1 1/3
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Z1r Z2

Outer

1 gimbal

A

7
z3 g
Rotor
B 4

==

Inner 3
gimbal M
Y3 Y2

Fig. 4.34.
—&sineﬂ w
. X
= 5} = |w ’
. y
YCcoOs#® w
J z
w -ysine ~ ybcoss
X
=leo | = |8 ,
.y .. e »
W, Yycos6 - y6siné
(0w + w ©
X . . X
= and = + .
W, {wyli/3 ?y ww,
w w o+ ww
L z z Yy

Rates of change of angular momenta are given by

{ﬁ2}1/2

and

{Hy}1/3

where h = Jw. The

[ 0
=10 ,{H3}1/3 =
_02§
[ g
'X
=|Iw + he + (J =-
y z
Iv. - he - (J -
L~z y

reader is advised t

A3(:)x + (C3 - B3)wywz
B3?y + (A3 - C3)wxwz
Cyw + (Bg - Ag)wxwy
Iw w

X z
o w

Xy

o justify these results.

249
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Taking moments about C, for body 2,

{Lats + {Las}y = {ﬁz}l/z ’ (1)
for body 3,

{Laols + {Lauls = {ﬁ3}1/3 (2)

and for body 4

{Lysls = {ﬁu}l/a . (3)
Combining Egs. 2 and 3
{Li32}s = {Hy}liy/s + {H3l1/3 & (4)

Combining Egs. 4 and 1

{Lata = 12312 l{ﬁu$1/3 + {ﬁa}l/a‘ + {ﬁZ}l/Z' (5)

On neglecting the terms involving products of § and § , the approxim-
ate equations of motion become, from Eq. 4

L] (3 + B3)o
Lo| = [(1 + B3)&y + ho_ (6)
| L3 | L(I + C3)wz - hwy

and from Eq. 5

Ly | (ce o0 so6][(T + apo o
X

Ll = |0 1 o ||(I #B3)u + ho | + |O . (7
Yy z .

LGJ :Se 0 co (I + Cg)wz - hwy C2‘Y

Taking the y equation from Egs. 6 and the z equation from Egs. 7, for
8 small

L, = A6 + hy (8)

Lg = By - hé (9)
where A = I + B3 and B = I + Cy, + Cj.
For the case in which the system moves from rest when a couple of mag-

nitude 2 is applied to body 2, the Laplace transform of these equat-
ions, for zero initial conditions is

O = As® + hrT
and

2 _ Bs?r - hso

S

where the Laplace transform of {6(t)} = 0(s) = @ and the Laplace tran-
sform of {y(t)} = I'(s) = I'. Hence
2 1

r == > 5
B s(s° + w“)
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and
_he 1

0 = [ S —
2 2
AB SZ(S + wn)

N

where w: = h"/AB. Therefore

AL(l - cosw t)/h’

<
]

and

@
]

—l(wnt - Sinwnt)/hwn

Since 6 increases without limit, these solutions cease to be valid
shortly after the motion starts.

For the case in which the system moves from rest after the mass m is
placed on body 3 as described

2
9%5 = As 0 + hsT
and
O = Bsl' - ho .
Hence
r _ mgah 1
AB s (8" + w’)
and
o = mgaB 1 . .
h s(s’® + wn)
Therefore
Yy = mga(wnt - s:.nwnt)/hwn
and

§ = mgaB(l - cos«nnt)/h2 .

Problem 4.35. Body 4 is in motion relative to an inertial reference,
body 1, Vectors can be referred to either frame 2 or frame 3, so that

2Turot = {wq}g/n[Iq]q/n{mg}l/n
and
2Tytrans = mu{Vu}g/n{Vh}l/n

where n is either 2 or 3. Show that
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[ Tyrot /30
8Tyrot /u | = [V}, Turor = {Hy}y
[ 3Tyr ot /3w,

and
(9T ytrans /3v_
Bthrans/BVy ={Vv}nT1+trans = {Gu}l/n
ATytrans /3V
z
where
w
X X
loyty/m=]uw | and {(Viti/a = v,
w
z N z

In the system of Fig. 4.35 body 2 turns at a constant rate Q, relative
to body 1 and body 5 turns at a constant rate Q5 relative to body 1.
Body 4 rolls without slip on body 5. Obtain expressions for

{Euby /3 0 {Gutiys » {Huli/e and {eyh)o

by determining
{Vw}anrot and {V }nTL\ttrans.

Also show that

{Vw}3(T1+rot + Tytrans) = {H40}1/3

Solution. If

A D E
[Iq] q/n = D B F
E F C
then
2Turot = [mx w wz] A W

and
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bcosa(f; - Qg5)/a

Q5sina /

(2, - Qs)sina

2

T —— T —— T
1 y about z; 2 &« about x, 3 g about y3 4

e ———
1 ¢ about z; 5

beosa (2; - f15)/a - Gssina
Fig. 4.35.
dTy,r ot /wa Aw + Dwy + sz
3Tyrot /3w | = |Dw + Bw + Fu | = {Huli/m
3Tyr ot /sz wa + me + Cuw,
Also
2T,trans = mq[vx + v +vifv] = my(vi + vi o+ v
y 2 x x y z
y
z
and
3thrans/3vx v
3Tytrans [V | = my|v | = {Gulim -
dTytrans /3V, v,
From Fig. 4.35
¢} ¢}
{wuyt1/3 = |-{bcosa(Q, - @s5)/a - Qssina}| = Wy
QoCOSsa w,
and
¢} ¢}
{wq}l/z = [231{wy}1 /3 = [wyCOSa — w, Sina| = | Qy .

wy sino + w; COSa Q2
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Also
-1 v -buw
X z
{VH}I/B = bﬁzcosa ol =10 = (0]
0 K o)
Hence
T
2Tyrot = {wyd1/3[Tulu/alondy/s
=[0 o, wZ]IOOO
O J Ollw
y
_O O I W
= Jw + Iw
and
{v laTurec = {Hy}y 3
Also
T 2
2Tytrans = my{Vu}1/3{Vi}r /s = myv]
and
{Vv}gTL}trans = {Gq}l/g
Now
2Tyrot = {uwy)y /2 [Tu]u/2lwuli /o
where
I O O
T
[Tu]u/2 = 1231, [Tu]uy/sl 2312 = |0 B F
O F C
B = Jcoszu-FIsinza , F = (J - I)sinacosa
and 9 )
C = Jsin“a + Icos a
Hence
2 2
2TL+r ot = BQY + CQZ + ZFQsz
and
0 o}
{Vw}zThrot = BQy + FQZ = hy = {H'-i}l/2
h

FQ + CQ
y z
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where

h

Jw coso - Tw sina
y y z

and
h = mesina + Iwzcosa

z

The total kinetic ‘energy of body 4 is given by

T
2(Tyrot + Tytrans) = {wq}1/3|Iq|q/3{wq}1/3
T
+ my {Vi i1 /3iViti s
= wa + wa + mubzwf

and o

{v JaTy = Jwy = {Huo}1/3
(T + mubz)wz

Problem 4.36. Determine, for the system of Fig. 4.35,

{Fusts + {Fysts and {nLus}s

Assume that {Flc}; ,{Li3}; and [L}3}; are zero and the centre of mass
of body 4 is at C.

Solution. Now

{Hyotr/s = {Hyliys + mu[Rcola/a{Vu}l/a

{HH}I/H + mu[RCO]3/3lwu11/3{RCO}3/3

[[Iu]u/B ~ my [R, 5/3]{wu}1/3

[Tuls/3twyd1/s

I O O 0 0 0O
=10 J O w = Jw = |h
2 Yy Yy 2 Yy

0] (¢} I + ITlL,b u)z (I + mub )w7 hz

which confirms the result of Problem 4.35. Hence

{ﬁuo}1/3 = lwyl1/3{Hyot1/3
0 -Ca Ssal|O hzsina - hyCOSa
= Q, ca 0 O ||h| = 2,0

~-Sa o) o) h o)
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since d{H,o}1,3/dt is a null matrix.

\21,22

“‘klAh | 1= m.,nﬁbcosa

Taking moments about O for body 4, by reference to Fig. 4.36,

{Lysls + [R, ls/3{Fusts + [Reolay/siwyls = {Huo}1/3

0 O a bjlF, 0O O b 0
0 + |-a O O}jo +mugl O O O]f}j-sa
Ly :b O O||F, -b 0 O]|-ca
h sina - h cosa
z y
= 92 0O .
0

From the x component equation
. 2
F, = mygcosa + QZ{Jwy51na - (I + myb)w cosal/b
and from the y component equation F; = O. L, is thus also zero.

Equating applied and effective forces for body 4

{Fy3ts + {Fus}s = my{an}1/s

Fjy 0 0
Fui{ + |0 = muﬂgbCOSa ~-cosa
Fg F, sina

and therefore F3 = 0, F, = muﬂgbcosza and

Fg = muﬂgbsinacosa - F, .
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Problem 4.37. A thin uniform straight rod, body 3, of length a and
mass m, rests with ine end on a smooth vertical surface while the oth-
er end is retained in a smooth spherical bearing which is a fixed dis-
tance d (< a) from the vertical surface as shown in Fig. 4.37a. The
rod is released from rest in the postion where o = ©v.Find the value of
o at which contact between the vertical surface and the rod ceases.

Solution.

Fig. 4.37a.

Moments about A, by reference to Fig. 4.37b,
[RCAjz/z{Wa}z + [RBAjz/z{F}z = m[RCA]2/2{A3}l/2

+ 123 1{f3}1 s . (1)

Evaluation of terms in Eg. 1, noting that B8 is constant,

{Rgat1/1 = twalijo{R, taya o
O O oil-d4/2 (0]
r
{Vitiya = [wzll/z{RCA}z/z =]0 O -w|| O (|= '%r 1
0 w 0 r/2 0
where @ = &,

{B3}1/2 = twali/2{V3tiye + %t{Va}l/z
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/\/‘\\
1 a about x; 2 p about y; 3

7
/4"3}
cosp = 4/a P

'
sing = r/a /,/'
r = /(a2 - a% ,J'

X1X2

Fig. 4.37b.

, o o olfo _fo 0
—-“’—roo—ll-“’_zr.1=_%t;
o 1 ollo 0 w?

{wgti/s = {wadi/2 = [2213{ws}y /0

d/a 0 -r/alll el
= u|O 1 0 ol = g’- ol,
r/a O d/alj{o r
. d
. _d o
{w3}1/3 = a‘t{wg}l/g =3 ol ,
r
fo -r olft o o 0

[RCA]z/z{Wa}z =Mir o dl|lo co saf||l O

[ rsino
m
= ?? -dcoso ’

| dsino
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-r Oj|F o)
[RBA]Z/Z{F}Z = |r O d||0| = Fr] 1l
o -a ojlo Ko
o -r ollo or
m[RCA]Z/Z{AS}l/Z = '%% r 0 d &2 = %f -o2al ,
0 -d Oflw -ud

{é3}1/3 = (w3li/3[T3]s/sfwsdiys + [T3]3/3{ds}1ys

,jo -r o]fo o o]fa
_ mw _
= 37 r (0] d|iio 1 ojlo
o 4 oJjo o 1j|r
.o olfa o
ma _mr| 2
3310 1 =1z [vd
0 1]|r _wa
and
d/a O r/a 0
o g mr 2
{Hali/s = 1 231,{H3} /5 = | © 1 0 ~w d
-r/a 0 d/a wa
wr
.
=5 . dal .
wd

The moments equation can thus be written

rsina 0 wr wr

mg |_ - mri_ 2 mr|_ 2

5 dcosa | + Fr| 1l ] T da| + 12 ? al .
dsina 0 ~wd wd

From the x component equation

w = 23sina
2r

and since w

I
Q
~

- 3g . 3g .
o = 2dsina or o2 = 29sina .
2r o r

This equation integrates to give

2
w = %g(cose - cosa)

since the initial conditions are o« = § and o = O.
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From the y component equation

F = mgdcosa _ mw?d

2r 3
_ mgd _
= 2r(3cosa 2cosb)
and therefore F = 0 when cosa = (2cosb) /3.

Alternatively, the angular velocity of body 3 can be determined from
considerations of energy. However, force determination requires addit-
ional effort. Now

T3l = Vsl Vst + %{w3}§/3[13]3/3{w3}1/3

2.2 2_2 2.2
_Mwr Mer _ MerT
8 24 6 :

Since energy is conserved

T3Ia=e + V3‘a=e = T31u + V3!a
5 2.2
mgrcosf _ mw'r mgrcosa
O + 3 3 + )
or
w2 = %g(cose - cosa) .

Problem 4.38. A massive uniform rod, body 2, which is a solid of rev-
olution, is constrained to move such that one end of its axis of gen-
eration B traces out a straight vertical path, while the other end A
traces out a straight horizontal path as shown in Fig. 4.38.The cons-
traints are conservative and exert no moment about the axis of gener-
ation of the rod.

Find the initial motion of the rod if it falls from rest in the posit-
ion shown. Neglect the mass of the constraining bodies 3 ané 4.

Solution. Since the constraints are conservative
Y X
{r3:}1 anda {Fy1}h
are zero so that {F3;} and {F4;} do no work.
Using the principle that the activity (rate of working) of the exter-

nal forces is equal to the rate of change of kinetic energy, in this
case,
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Path of B
drawn on
frame 1

{w2}

.
Xy
o Path of a !i,&?_‘ !
drawn on

frame 1

1 } !
path of A AN
7 i on
Fig. 4.38.
T T T .
{vohi jifwaly = mpfvoly /1{asti /0 + Tlwp by s1{wady 51 (1)
/ / / / /

where I is the moment of inertia of body 2 about an axis perpendicular
to the axis of generation which passes through C, the centre of mass.
In the solution of this problem all vectors will be measures in and
referred to frame 1 so that the 1 and 1/1 suffixes can, from this po-
int, safely be omitted.

Now
(o} = (v} + 1wz {Ry,}

and since {Vv,} is a null vector
{Vz} = _O'SERBA]{MZ}

and

fvp}T = ~0.5{[R,, J{ws2}" = 0.5{us} [R,] .

This result reduces Eq. 1 to
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0.5[R, ,J{W,} = 0.5m,[R,, ]{Az]} + T{u;} (2)
Now
{ag} = {a,1 + {a,,}
and since {w,}; is a null vector, {A:A}l is also null. Hence
{a,} = {a,} + {n;,}
(0] 1 r2
Aj|-1|=A,0] +|s;
0 0 t,
and
T
(2, P Ry} =0 or [r; s t2] -1l =0
1
-1
These equations combine to give
1 (@] (@] r2 _AA
(@] 1 1 Sz = (0]
-1 1 © AB o}
since t, = 0. This set of equations has the solution
r2 -1
So = AA -1
A, 1
Now N
{woy} = (3)
2
IRy, |
e IRy 2 A0
. 0.5 RBA ABA
(a2} = {n,}- 0.5[%,, (o) = {a,} - . (4)
IRy, |
Substituting Egs. 3 and 4 in Eq. 2
0.5[Rr,,1%{a;,}
0.5[r,, ]{w,} = 0.5mp R, ]¢{ {A,} - r !2
B A

+ m21R3A12 [RBA]{A;A}

12 ENE

BA
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and this reduces to

0.25m;[R,,]%{a],} ™

0.5{W,} = 0.5m,{a,} -

2 BA
|RBA] 12
0 o 1 11%[-1 -1
A, a,
0.59|=-1| = 0.5a,|0} - —=|-1 o 1} |-1| + —=|-1
A 12 12
0 0 -1 -1 O o) 0
0 1 3 -1
6gi-1|=6A,10| - A, 3] +na, |1
0 0 0 0
giving
A, = 1.5g and A, = 1.5qg.
Hence
-1
n
{ag,} = 1.59{-1},
0
o 1 -1 -1
{w,} = 0.5g|-1 © -1| = 0.5q} 1
-1 -1 o]| o
and
1 o 1 1i|[- 1
{a,} = 1.59|0| - 0.25g|-1 o 1 1| =0.75g|-1
0 -1 -1 1} 2 0

Problem 4.39. A uniform rod, body 2, which is a solid of revolution,
is constrained to move such that one end of its axis of generation B
traces out a straight vertical path while the other end A traces out

a straight horizontal path as &hown in Fig. 4.39.The constraints are
conservative and exert no moment about the axis of generation of the
rod. The rod moves from rest under the action of gravity from the pos-
ition in which B is y; vertically above 0. Obtain expressions for the
velocity of B and the angular velocity of the rod.

Solution. For a conservative system

(Ty + V,),

initially (T2+V2)

finally
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m T I T

0 + mgh, = 3{Va}l1,/1{Vali/1 + Fluahij1{wz}1 /1 + mgh

where I is the moment of inertia of the rod about an axis perpendicu-
lar to the axis of generation through the centre of mass C.

-

|__——-Path of B drawn

/ on frame 1

zZ1

Path of A draw:
on frame 1 k
~

In the solution of this problem all vectors will be measured in and

referred to frame 1 and therefore the 1/1 suffixes can be safely
omitted.

Tt ?s necessary to obtain expressions for {V,} and {w,} in terms of
V. . Let
B

{ws} =

[
€

and therefore

(v} = {vg} + twa (R}
1 0 0 —w, w, X
ValO] = Vg e «, o T TY
0 0 - w 0 a

where x = |/(b® - a? - yH| .
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Also
T
{wy} {RBA} = Xeo = yu +aw =0.

Hence

X =y a 0 w 0

Yy X 0 wy o)

a -X o} w, —VB

0 a y =1 VA 0

and by row reduction

.2

o o N U
P O X O

0 O}lw -av.
x B
0 O {ilw _ o}
y = .
-X 0 w, VB
y -1 v, 0

This set of equations has the solution

- 2
. -a/b
w ay/bzx
w | T VB| (b2 - a?)/p2x|
|V v/x
Now
{val = {v } + {v,}
= {vy} - 0.5[R, 1{uy}
v | ¥/%
B
=2t |
@]
mvs 2 /ep2 mvs 2 2
2T2trans =T(l+y/x) =4x—2(b - a“)
and )
mv. 2,2 2 _ a2y2
2w, | = B laz 4 alyt, (b7 - a%)
re 12b X X
2
mvV,
= -2 (2 - a% .
12x2

The energy equation thus reduces to

265
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ngy, mV&(b2 - a%)
0 + = +
2 6x2 2

mngy,

and therefore

2 2 2
) 3gly; - yg(b -a -y.)

Vg = b2 - a2
and
-a/b?
{wr} = Vg ay/bzx
(b% - a?)/b%x
where

y/x =y, //(b? - a® - y?)

Problem 4.40. Figure 4.40 shows the schematic arrangement of a mechan-
ism which is driven through the given position by an external couple
{L,} applied to body 2. Determine that pert of the couple which is
necessary to overcome the inertia of body 3. Treat body 3, which has

a mass of 0.5 kg, as a solid of revolution with its axis of generation
along AB. The centre of mass of body 3 is at C and its moment of iner-
tia about an axis perpendicular to AB through C is 40x10~% kg m2. Ass-
ume that the angular velocity of body 3 about AB is zero.

Also determine the forces on the bearings 5, 6, 7 and 8. Bearings 5
and 7 carry only radial loads while bearings 6 and 8 carry both radial
and axial loads.

The following data applies to the mechanism in the given position:

10 10
1
{RAB}1/1 = 20 cm , {RCB}I/l =’§ 20 cm
20 20
[ 0] -2
{w2}1/1 = |-6 | rad/s , {wg}l/l = % -4| rad/s
0 | 5
F 07 120
{oy}y1 = | O|rad/s , {VB}l/l = ol em/s ,
{'6J 0]
0 =120
{(Viub1y1 = | 60| em/s v {V, }11 = |- 60| em/s

0 0
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0
n 2
{agoti/n = {ag0hi1 = 0| cm/s
720
and
-8
{&%}1/1 = 16 rad/s2 .
-12
Solution.
10 cm 4 om
F
v,
10 cm
A
N //
\ //
./\\
\\
!
Y1
20 cm
‘Spherical joints
]at A and B

Fig. 4.40.

The velocity and acceleration of the centre of mass, C, of body 3 re-
main to be determined. Since all vectors will be measured in and ref-

erred to frame 1, the 1 and 1/1 suffixes can be omitted throughout the
solution.

{va} = {vg} + Tws1{Rr ]}
120 o -5 -4l[10 80
= ol + % 5 o 2{20{ =120/ cm/s
0 4 -2 ol 20 0
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|V ’2 ~-10 -200
P CB _ 2000 _ 1 2
{ACB} . lz{ c} = 3x7o5| 20| = 3|-400 cm/s
CB -20 -400
{Aggl = 1031 {R,}
0O 12 16l 10 560
= 3|-12 o 8| 20| = 3| 40| cn/s?
-1l6 -8 O}l 20 (0]
and
{ag} = {8} + {ag,) + {a},}
360
= % - 360 cm/s2 .
1760

Taking moments about B for body 3

(RygJ{Fsu} = mg[Re ] {As} + T(03)

o -20 20]|[F, .| o -20 20][ 360
107?20 o -lo|lF,| =222 |20 o -lo||-360
20 10 ol F, -20 10 o]l1760

- 8

+ 40x107% 16

12

and applying the condition that the rate of supply of energy to body 4
is zero

{Fau}T{VAH} =0

which, in this case, simply requires that F, = O.Hence

0.54
{F3u} = |0 N
1.0177

Equating applied and effective forces for body 3

{Fau} + {F3.} = my{ng}
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Fi Fy ) 360
0| + |Fs| = 9;2%&9__ -360
F, Fg 1760
Hence
0.06
{F3,} = [|-0.6 N
1.916

Taking moments about D for body 2

{Lo} + [RED]{er} + [Ry J{F23} = {o}

0 o o -4|[F, o 20 2]1[-0.06 0
L{+ 107%|o 0o of|Fg| + 107*|-20 o o}| 0.6 =lo
0 4 0 Of|Fq 2 0 0j{-1.916 0
giving
F; = 0.032 N, Fg = 2.042 N and L = -1.2%10%? N m.
Equating the forces on body 2 to zero
{Fas3} + {Fas} + {Fa6} = {0}
-0.06 Fig 0.03 0
-1.916 Fio 2.042 o
and therefore
6} 0.03
[L,} = 1.2x107%[1| Nm , {F,g} = |-0.06 | N
0 2.042
and
0.03
{F,s} = | o0 N.
-0.126
Taking moments about G for body 4
(R, {Fusl + [R ] {Fus} = {O}
o -4 o}[-0.54 0 -8 0lfF,, o
4 o 1o|| o + 18 0 O|lFy4| =1{0
0o =10 0}{-1.0177 6} 0 0]i0 0
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giving
1.542
{Fys} = |0 N.
o)

Equating the external forces on body 4 to zero

{Fys3} + {Fys} + {Fys} = {0}

-0.54 | 1.542 Fi5] [o
0 + |0 + |Figl| = [o
-1.0177] o) Fi 0
giving .
-1.002
{Fys} = | © N
| 1.0177

The value of L obtained earlier can be confirmed by equating the act-
ivity of {Lz} to the rate of change of kinetic energy of body 3.

fwr 3 (Lo} = ma{vs}  {as} + T{u3) (0%}

[o -6 o]fo] = 94§§l9:i[80 20 o] 360

L -360

o) 1760
2x40x10-"
+ 2240407 [y a4 s][- 8
16
-12
giving
L =-1.2 102 N m.

Problem 4.41. Determine, for the uniform hemisphere, body 2, of Fig.
4.41a

(12]sss + [12]2y2 v [T2]uyw and [12]5/5

where frame 5 is the set of principal axes which has its origin at A.
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2 2
/la - y)

ol _+-

T
5 a about xg 4

Fig. 4.41la.

Solution. The mass of the hemisphere is given by

a

a
m = pTr(a2 - yz)dy = pmw [azy - %3] = %pna3
0 0
and if the centre of mass is at C
a a
mchol = pTr(a2 - yz)dy y = pm [§;X2 - ¥“] = %pnau
0 0
giving
'Rcol - %a.

Terms in the inertia matrix are determined as follows. The moment of
inertia of the elemental disc about the y3 axis is given by

%)

2 2
pr{a ; v )dy(a2 -y

MMAERSBM - K
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the product of its (mass/2) times the radius squared. Hence

a
2 2
[13]3/3 = pr(a > b )dy(az )
O
5 a
= %} aqy - £a’y? % = f%pwas = % ma?
0]

The moment of inertia of the elemental disc about the x3 or zj3 axis
is given by

2 2.2 2 2 2
%}(a -y )dy+ pn(a” - y)dy y

the moment of inertia of the elemental disc about the X axis plus
the mass of the disc times the distance between the x and x; axes
squared. Hence °

a
[12]3/3 = [15]3/3 = "4—“(a2 - y3)%dy + pn(a? - y¥Hdy y?
0
= f%onas - % ma? .

By symmetry, the product of inertia terms are zero and therefore

1 0 0O
ma?lo 1 © .
o o0 1

(5,118}

[IzJa/a

Since frames 2 and 3 are aligned
2
[12]3/3 = [12]2/2 - m[RCO]3/3
and, since

0

_ 3
{Regtsss = gall
(e}

2
(I2]2/2 = [T2]3/3 + m[RCO]3/3

1 0 O -1 0 0
= 2 a2 9 a2
= g ma o 1 o + 6d ma 0 O o]
O 0O O o o -1



Solution of Dynamics Problems 273

83 0 0

2

_ ma
= 355| © 128 o
0 0o 83

Also, since frame 4 is aligned with frame 2 and

0

{RCA}u/u = a|3/8
-1

2
(12]u/u = [T2]2/2 - m[RCA]u/u

) 83 0 0 , 73 o) 0
ma ma
- ma 4 24
156 O 128 o| + %37 o 6
{o 0O 83 o 24 9
, 56 o o
- ma
= 70 0O 56 15
L O 15 16

Let [ 24 15 be the transformation matrix which relates the position of
frame 4 to the set of principal axes, frame 5, at A. Then

[12]5/5 = [1214/5 = Iﬁuls[lzju/ulﬁulg ' (1)
where [12]4/5 is a diagonal matrix, or

T T
(24 5[T2]uy/s = [To]u/ul 2415

1 o oflas o o a, o olf1 o o
0 ca salfO Bs; O =30 By Fu{|l O Ca  Ssa
|10 —-sa ca]l]O 0 Csg 0] Fy Cyuj{O =-sa ca
(a5 O 0 A, O 0

0 Bsca Cgsal = {0 Byca - Fyso Byso + Fycaj .
LQ -Bgsa Csca o) Fyca — Cysa Fysa + Cyca

Hence
Bgcosa = Bycosa - Fysina ,

-Bgsina + Fycosa - Cysina
and therefore, eliminating By ,
tana  _ tan2a _ Fy
1 - tanza 2 C1+ - By

or
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2Fy,
= 0— 2
tan2a & - B, (2)
Alternatively
tano = -y = o (3)

giving, on eliminating «o,

2 2
BS - (Bu + CL;)BS + B'-#C'-# - Fu

It
o

(4)

the equation to Mohr's circle.

Fk

(159 (25)

s (203~ B C
\ Zu -

cg (11) T

Cy, (16) Cy- By (-40)

B, (56)

By (61)

Fig. 4.41b.

By reference to the Mohr's circle of Fig. 41lb, Bs is readily seen to
be

61ma2/4o or llma2/4o.

From Egq. 2

tan2q = Iggélgg = =0.75

giving
a = -18.43° or 71.56°

Alternatively, from Eg. 3

_ 15 _ _ 1 _
tana = m = § and o = 18.43

or
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_ 15 _ o
tana = 16 =11 = 3 and o = 71.56 .
As a check on the work, since sina = -1/Y10 and cosa = 3//10, by subs-
titution of the results in Eq. 1
,[710 o ol]fse o o][vio o o
[12]u/s = Jo5| © 3 -1}| o 56 15 o 3 1

o 1 oflo 15 of o -1 o

0 0 11]

Problem 4.42. A uniform thin straight rod, body 2, has a mass m and
length 2b. Find, for the axis system shown in Fig. 4.42,

[12]2/2 ' [12]2/u v [T2)3/3 [Izlu/u v [T21s/5
and

[IZ]S/S .

Solution. It is easy to show that

mb?

(12]2/2 = [12]2/2 = 3

and since body 2 is a thin rod

[1212/2 =0 .

Also, by symmetry, the products of inertia are zero. Hence

2
[12]2/2 = 2

o O +
o O O
= O O

The inertia matrix for body 2, measured in frame 2 and referred to
frame 4, is given by

T
[12]2/2 = 1204 [Tg]o/20 2210y
1 o o]t o oll1 o o)
_ mb?
= = 0 ca sallO O O}{O0O co -sca
O =-so Co{/O O 1][O s«o Co.
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0 0

) 1
mb L2 .
= =5 O sin o sinacosa

. 2
O sinacosa cos’a

2y 2,

A~ Y3
¢ .
b b
1
[o4
A ]
Yy, — YT < |
X3, %y . X2
2a I -
./ Y6
B ¥s

T T
3 a about x3 4

P
5 B about zg5 &

Fig. 4.42,

Since frame 3 is aligned with frame 2 the inertia matrix for body 2,
measured in frame 3 and referred to frame 3, is given by

2
[12]3/3 = [12]2/2 - m[RCA]a/a

1 0o o -b- 0 O
= %?2 0o 0o ol-m|lo o o
o o 1 0 o -b?
1 o o
= 5%92 o 0 ©
o 0o 1

Since the origins of frames 3 and 4 are coinicident the inertia matrix
for body 2, measured in frame 4 and referred to frame 4, is given by

(T2]u/u = llaluflzja/allal{
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1 (¢} (¢}
4mb? .2 .
= -3 O sin‘ao sinacosa
|0 sinacosa cos?a

Since frame 5 is aligned with frame 2 the inertia matrix for body 2,
measured in frame 5 and referred to frame 5, is given by

2
[12]5/5 = [T2]2/2 - m[Repls/s

1 o o© ~-b -ab (0}
mb2 2
=3 O O O}f - m|-ab =-a (0}
o o 1 0 0 -(a’ + b?

4b? 3ab ©

Tl 3ab 3a2 (e}

3
0 0 3a’ + 4b?

The inertia matrix for body 2, measured in frame 5 and referred to
frame 6 is given by

[12]5/6 = 11516[1215/511512

cg -sp olfa b o]l o)
sB cgp OffD B O [—ss cBg O
C
2.2

o] o) 1jLlo © 1

4b +3a —Ga b 7ab -6a b (0]
m 7ab -6a b l3a b o}
3(a?+p%) | o 0 4b“+3a"+7a’p?

Problem 4.43. Body 5 is made up from three uniform thin rods, bodies

2, 3 and 4, as shown in Fig.4.43a. Determine the position of the cen-
tre of mass, C, of body 5 relative to the centre of mass, A, of body

2 and hence determine

(15]s/5

Also find the position of the set of principal axes, frame 6, at C and
the principal moments of inertia associated with this frame.

Solution. The position of the centre of mass of body 5 relative to A
is given by(the 2/2 suffix being understood)
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-2a -4a -8
- - a
=73 4| 3aj + 2| 3a s
0 a 1
Hence
(Ryeh = {Rgut = {Rg, 1
~-12 -8 -4
= a -2 = a
=z 18 3 9 3 9
0 1 -1
and
{Ryet = IRy, 1 = (R,
-24 -8 -16
= 2 - a =2
= 7 18 ¢ 9 € 9
6 1 5

Since frames 2, 3 and 4 are aligned with frame 5, the inertia matrix
for body 5, measured in frame 5 and referred to frame 5, is given by

2 2
(1s]s/s = [T2]2/2 - 6m[RAC]5/5 + [T3]a/3 - 4m[RBC]5/5

2
+ [1u]uyu - 2m[R  Js5/5

and since
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,[324 o© 0 ,]0 0 o0
ma ma
[I2}2/2=ﬁ 0O O Of » [13]3/ =l—8- 0 96 o 4
| 0 0 324 o o 96
2”12 0 o
ma
[Iq]q/q =13 o 12 o ¢,
L O 0O ©
, 2'—246 -216 - 24]
m[R, ]s/5 = Tg |-216 =195 27|,
|- 24 27 -435
,[-164 =72 8
2
am[R, J5/5 = 75 |- 72 -34 - 18
| 8 -18 -194
and N
-106 -144 - 80
2 ma2
2m[R ]5/5 = 15 | -144 -281 45
|- 80 45 =337
852 432 96
[15)5/5 = %% 432 618 -54
96 -54 1 386
If frame 6 is a set of principal axes at C, then
T
(Ts5]5/6 = [2516[Ts]s/s50 2516
T
A3 0 O {a}'{|a D E
o 2, ol = [tyfp B Fllta} (b} fc}
0O 0 13 e 7 oc
where Ay, X, and )3 are the principal moments of inertia which are

found from

2

+ cD2

+ (AF’ + BE Cp? - ABC - 2DEF) 0

In this case the above equation reduces to

A3

- 2 856X% + 2 365 2001 - 458 459 136

which is of the form

MMAERBM - K*

3 2 2 2
-(A + B+ C)» + (AB + BC + AC - F - E

2
- D)2
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This equation must have three positive real roots which can be found
using the root locus method by writing it in the form

BIA = v/B) _ ) — 147,
AZ(A - o)

Taking the view that A is the complex number ¢ + jw , the poles(x) and
zeros (o) of the left hand side of the equation can be plotted as shown
in Fig. 4.43b.

Juw 51 o2
o3
—
Double ~~ Y/8B b 22 A3 a c
pole (193.835) (2 856)
Fig. 4.43b.

On the line joining the pole at o and the zero at vy/8

m .

Arg(g - y/8) _
AT (r = o)

Thus, three values of X can be found which satisfy the condition

sla - v/8] _ 8ln - 193.835] _ B3 _ |
A2 1a = a]  |a%]]x - 2 856] oy0,
By trial and error, a value of A; = 278.35 gives

2 365 200x84.515

> =1.000 9 .
278.35%°%2 577.65

By further trial and error

Ao 1 170 (1.000 3) and
A3 = 1 408 (1.000 3).

Now A3 + X + A3 = 2 856, which is the magnitude of the coefficient of
A% in the X equation as it should be. Also

A1 X X2 x i3 = 458 542 656

which is acceptably close to the magnitude of the A° term in the A eg-
uation.
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The columns {a}, {b}, {c} of
[ 2516
can be found by evaluating a column of

adjoine[a{1] - [Is]s/s] = [tc}, tcyz (cly] o

say {C}; , for the three values of ‘A . Hence

A - (B +C)) + BC - F2 B,
{c,}, = |Dy + EF - CD =|q
E)x; + DF - BE ri
giving
1 p1 ] p2
{a} = > a; i, {b} = > 12 5| 92
/(p1 + qi + rY) r /(pz + dz + r3) rs
and
1 Ps]
{c} = s | -
2 2 2
/(p3 + qf + r3) rs)
The columns of [1512 corresponding to A; = 278.35, 3, = 1 170 and
X1 = 1 408 are respectively
-0.608 4 0.764 9 0.264 7
{a} = 0.788 3, {b} = 0.616 8| and {c} = [0.079 1
0.091 2 -0.185 7 0.961 1

Transformation using these columns gives

278.13 1.30 -2.95
_ ma? 1.30 1174 86.59) -
[15)s/6 = 18
-2.95 86.59 1 402

Better estimates of the principal moments of inertia are
Xy = 278.17, X =1 174.12 and Ax3 = 1 403.71

and the corresponding columns of the transformation matrix are

-0.608 6 0.766 2 0.206 3
{a} =| 0.788 21 , {b} = 0.613 71 and {c} = |0.046 2{ .
0.091 2 ~0.190 7 0.977

Transformation using these colums gives
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=4
,|278.19 . ~5.34x10 0.0l
[Ts]s,e = Tg | -5-34x107 1 174.12 0.08
-0.01 0.08 1 403.74

4.2 Problems For Solution

Problem 4.44. At a particular instant of time, a particle has the vel~
ocity
10

{vhipy = {- 6|m/s
12

and the force acting on it is

40
{F}, = |20 ]| N.
30

What is the power, rate of working or activity of the force?

Problem 4.45.Show that the force

2xy + z3

(7} = | 2

3xz?
is conservative and hence obtain an expression for the work it does
when its point of application moves from point A to point B.

Problem 4.46. In the system shown in Fig. 4.46, a small block of mass
m, body 2, is constrained to move in a circular path, drawn on an iner-
tial frame 1, which lies in the vertical plane. Motion of body 2 is
induced by a light spring, body 3, which has an unstretched length r
and stiffness k. Find, for the case in which the block moves from rest
at A to B, when the length of the spring is r,

{vpti/ar {Fa1la,  {F23}2 and  {a }, /2.

Also find the above vectors when the y coordinate of B is 1.452 times
it former value. What is the y coordinate of B when the block first
comes to rest after its release from A?

Neglect the effects of the mass of the spring and assume that the sys-
tem is conservative. Also, assume that the centre of mass of the block
is at D and the force due to the spring is at all times along CD.

Take a = 0.05m, b =0.1m, r = 0.5 m, k = 357 kN/m and mz = 0.5 kg.
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x1

ri_
P U ¢
1 -g about z, 2 F

Fig. 4.46.

Problem 4.47. The position of a system can be specified by the posit-
ion of a point P on a rotating z3 axis, which is positioned relative
to frame 1 as shown in Fig. 4.47. Show that {V}3V, i.e. del V referred
to the rotating frame 3, is given by

r -

1av
r 96
_ 1 EAY
V33V = | r5ine 39| -
v
| or

Problem 4.48. A couple is formed by a pair of parallel forces which
are equal in magnitude, but opposite in direction as shown in Fig.4.48.
Show that the moment of the couple is independent of the point A about
which its turning effect is computed.

Problem 4.49. A given force {F} passes through the point P as shown
in Fig. 4.49. Obtain an expression for the component of the moment of
{F} about a given point A which is parallel to a line through A and a
further point B.
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2y,2;

Z3

X3

Y2:¥3

X1

e ——
1 ¢ about z; 2 § about y,; 3

Fig. 4.47. Fig. 4.48.
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Problem 4.50. A system of forces and couples, all of
ed to the same frame, act on body 2 and is specified

[ 4
{Fp3} =| 3 | kN through the point {R,} =
L O 3
f'5 -
{Fp,} =|5 |kN through the point (R } =
{Fa5} =| 2 | kN through the point {R. } =
L 4 i
' X
{51 = kNm and {L,¢} = | O kN m.
L 6 ] -3

285

which are referr-

as

follows:

m,

m,

Find the resultant force and couple of the system for the point

0
(a) {R} =]o|m and (b) {Ry} = |1 |m.
0

L

Fig. 4.51.
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Problem 4.51. Figure 4.51 shows a structure subjected to an external
force {Fq}. The members of the structure, bodies 2,3 and 4 are supp-
orted at their ends by fittings which are incapable of inducing bend-
ing effects. For the case in which

2] -5 -2
{Ro} =|0|m (R} =] 0lm (R }=|5|m
5 | 5
-1
{Fo} = | 2| kn and |R | = 0.75|R,, |
find
{F21}, {Fs1} and ({F,} .

Problem 4.52. Figure 4.50 shows a mechanism which is maintained in the
given position by an external couple

{L2} =L
Lo
when an external force

[ -200
{F3}, = | 200| N
| -100

is applied to body 3 at C. Determine L and the forces due to the bear-
ings at D, E, F and H. Obtain any necessary data from Problem 4.40.

Problem 4.53. Figure 4.53 specifies the positions of the lines of act-
ion of the following forces:

e [10]
[r,} = o|N, {Fr,} = o|N, ({F3}=1[6]N,
| -8 | O] o
Is) [ 0] 0
{F,} = |0 |N, ({Fs} = |-5|N and {F¢} = |-8 |N.
| 2 | O] o

Find the resultant force and the moment of the forces about 0. Reduce
this force and moment combination to a force and a couple such that
the force and couple vectors are parallel. Obtain the position of a
point G on the line of action of the force relative to O.
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Fig. 4.53.

Z) z2

\ 2 2
C b
X, \ _— ¢ Y2
,/‘/
X3
c a
1 g about y, 3 2
¢ Y2
X2

Fig. 4.54.
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Problem 4.54. Determine

[Iz]z/z

for the uniform rectangular parallelepiped shown in Fig. 4.54. Also
determine

[1,]2/3

and hence show that when b = ¢, the inertia matrix is invariant for
the [ 2;,] 3 transformation.

Xy x, %,

—_—T

0.25h

Fig. 4.55.

Problem 4.55. Figure 4.55 shows a uniform, solid right circular cone.
Demonstrate that the centre of mass is in the position shown. Also,
determine

[12]2720 [T2]3/3 and [T2]u/4 -

Problem 4.56. An aircraft with a two bladed airscrew flies at a steady
rate in a circular path such that the angular velocity of the fuselage
about an axis perpendicular to the plane of the wings has a magnitude
2 relative to inertial axes as shown in Fig. 4.56. Determine the cou-

ple which the engine must exert on the airscrew to maintain a constant
speed of rotation w.

Problem 4.57. An aircraft, body 2, is rolling at a constant rate

{ozhi/2 =

C O =
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T — T
1 y about 2; 2 a about X, 3

Fig. 4.56.

To induce this motion, the control surfaces, collectively designated
body 3, must exert a couple

while the aerodynamic couple opposing the motion is

—Cuw

{Ly}, = | o |.
(0]

The rotational inertia of the aircraft can be described by

A O =-E
[1212/2 = O B (0]
-E O C

-Determine
{Las}a -

Problem 4.58. Figure 4.58 shows a circular saw arranged to cut grooves
wider than the saw blade thickness by changing the plane of rotation
of the blade. This is achieved by clamping the saw blade to the motor
shaft between washers which have surfaces mating with the saw blade
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inclined to the motor shaft axis. Obtain expressions for
{Lz23}2 and {L23}y

when the saw blade is driven at the constant rate w. Take

0

0

J
(L
J

= 12x10°

[13]3,3 =

o O H
O H O

Evaluate the expression for 2312 for the case in which

6

-6 2
I 6x10 kg m,

kg mz,w = 3 600 rev/min
and

a = 10°.

Lk

Y1

2y

Saw blade

- -

| \ i Work

—
1 v about z; 2-a about x; 3

Fig. 4.58.

Problem 4.59. Figure 4.59 shows a diagrammatic arrangement of a device
used to measure rate of rotation relative to an inertial frame. The
rotor, body 4, is driven at a constant high speed & (16 000 rev/min)
relative to the gimbal, body 3. The gimbal is mounted in bearings in
the case of the device, body 2. The motion of the gimbal relative to
the case is controlled by a torsion spring, of rate k, and a viscous
damper which exerts a couple on the gimbal proportional to the relat-
ive angular velocity between gimbal and case, the constant of propor-
tionality being c. Show that the angular displacement of the gimbal
relative to the case about the x, output axis is proportional to the
rate at which the case turns about the y,; input axis relative to an
inertial frame. Neglect the effects due to the inertia of the gimbal.

Problem 4.60. A rotor, body 4, of Fig. 4.60a runs at a constant rate
w in bearings, bodies 5 and 6. The bearings are mounted on a disc, body
2, which turns at a constant rate y, relative to an inertial reference,
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Input axis
Case t;;

\ 2
| Torsion
spring
Rotor
' 4
Z X2
7 \ 6
2 ! Gimbal 3 L
—— e D B
output 7' ! T I
axis <§Q
I f
K/ Torsion
damper

1 g about y; 2 a about x; 3 y about 23 ¢

Fig. 4.59.

P s e
1"y about z; 2 u about z; 3 ¢ about xy 4 2

21,22 23
o

|

' l : 2 I c

gLl

=]

D
1 4

]1/8

_?%LE

Fig. 4.60a. Fig. 4.60b.

in bearings, bodies 7 and 8, as shown in Fig. 4.60b. Determine the
forces

F, o) Fg
{Fusts = |Fa| + {Fuels = |Fu|, {Fagl, = |Fy
Fj Fg Fg

and
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Fq
{Fa7}2 = |F1g
(0]

due to the motion of the rotor.

Problem 4.61. A solid uniform rotor, body 3, of length b and diameter
2a, is mounted on a light shaft, body 2. The shaft rotates at a cons-
tant rate @ in bearings, bodies 4 and 5, which can be considered iner-
tial. The centre of mass of the rotor is a distance e from the axis of
the shaft and the axis of generation of the rotor is inclined to the
shaft axis at the angle o as shown in Fig. 4.61. Determine

{Foul, and {Fps},.

Neglect the effects due to the weight of the rotor.

P
1 vy about z; 2 -a about x; 3

S
N
(.
-
N
N

2a

c 4a

Fig. 4.61.

Problem 4.62. A uniform rectangular parallelepiped of cross-sectional
dimensions 2a by 2b and length 2c, is supported by a smooth pivot as
shown in Fig. 4.62. Determine the attitude of the parallelepiped when
the system rotates about the vertical X; axis at the constant rate Q.
Calculate the particular value of y when @ = 5 rad/s, e = 0.3 m and
(a) 2a = 0.08 m,2b = 0.16 m and

(b) 2a = 0.16 m,2b = 0.08 m.

Problem 4.63. A straight uniform rod, body 3, of length 2b and mass m,
is connected by a smooth pin Jjoint at one end to a vertical shaft,
body 2, as shown in Fig. 4.63. The shaft is driven at a constant rate
@ relative to an inertial bearing, body 1. Obtain an expression for
the steady state attitude of the rod. Deduce expressions for the natu-
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Xz
l x)

2a
P P
1 a about x| 2 y about z, 3

Fig. 4.62.

Y2

{ws}
P P
1 vy about z; 2 aabout x; 3

Fig. 4.63.
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ral frequency of small vibrations of the rod (a) in the vertical pos-
ition and (b} the inclined equilibrium position a,. Also obtain an ex-
pression for the couple which the vertical shaft exerts on the rod.

Examine the motion of the rod for the case in which b = 0.92 m and (i)
Q = 2 rad/s and (ii) 9 = 4 rad/s.

Problem 4.64. A uniform rod, body 3, having a circular cross section of
radius a and of length b, is mounted in a frame, body 2, as shown in
Fig. 4.64. The motion of body 3 relative to body 2 is controlled by a
torsion spring and torsion damper. The spring has a torsional stiff-
ness k and the torsion damper exerts a viscous couple equal to ca.
Frame 2 is driven at a constant rate @ relative to bearings fixed in
an inertial body 1.

Obtain the equation of motion for the rod when the motion relative to

the equilibrium position o = a is small. Consider the cases for which
the spring couple is zero when®(a) a =0, (b) a« = w/6, (c) a = n/4

and (d) a = w/2. ° > ’

2,
=
7

NN
=

T — T T
1 g about y; 2 a about x; 3

Fig. 4.64.

Problem 4.65. A uniform solid rotor, body 4, is constrained as shown
in Fig. 4.65. Body 4 turns freely relative to the pivoted axle body 4.
Body 3 can turn freely relative to body 2 about a pivot at A.Find

Fy Fgq
{Fys}ts = |O and {F3,}; = |Fy4
F, Fs

for the case in which bodies 2 and 5 are driven at the constant resp-



Solution of Dynamics Problems 295

P —
2 h
N It A_‘ 3 c Y3:¥y
. . L{—- - 1
o <y, T I

{wu}s 2,3

{uwyls
{uwz}y

\ {uwsh]

/

{uy 2y

s e .
1 y about z; 2 a about x, 3 ¢ about y; ¢
T T
1 g about z; 5

Fig. 4.65.

ective rates w and 2 relative to the inertial body 1 and body 4 rolls
without slip on body 5. Also, determine

Ty = Turot + Tutrans -

Neglect the weight of body 3 and take

I (0] (0]
[Tylusw = |0 3 oOf .
0] (0] I

Problem 4.66. A uniform rotor, body 4, is constrained as shown in Fig.
4.66. Body 4 turns freely relative to the pivoted axle body 3. Body 3
can turn freely relative to body 2 about a pivot at A. Find
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Fi Fj
{Fu1ls = o0 and ({F3p}; = |Fy
F» Fs

for the case in which body 2 is driven at the constant rate w relative
to the inertial body 1 and body 4 rolls without slip on body 1. Neg-
lect the weight of body 3 and take

I 0 (0]
LJusw = [0 3 o
(0] (0] I

S -

-~ S
2 a about x; 3 ¢ about y; 4

R
1 v about 2z,

Fig. 4.66.

Problem 4.67. A solid uniform right circular cone, body 4, rolls at a
constant rate and without slipping when supported as shown in Fig.4.67.
Determine the contact forces

Fl Fq
{Fysl, = | F, and {Fys}l, = |O
Fj Fs

for the case in which |wy|; = w. Take
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I (0] (0]
[Iu]u/u =0 J o0
0 0

e —— e —"
{y about z; 2 & about x, 3 4 about y; 4

Small groove

2,2,

oc ¥3.¥y
I = Db
¢ L 2,3

¥2

N
NS
|
.
FEA
N
N
N

Fig. 4.67.

Problem 4.68. A uniform solid rotor, body 4, is constrained as shown

in Fig. 4.68. Body 4 turns freely relative to the pivoted axle body 3.

Body 3 can turn freely relative to body 2 about the pivot at A. Find
Fi

{Fys}, =
Fs

when the given angular velocity vector diagram applies and and
are constants. Neglect the weight of body 3 and take

I 0 O
(1.Ju/w =0 3 o0
o o I

Problem 4.69. Body 4, which is a uniform solid of revolution, is con-
strained as shown in Fig. 4.69. Find the constant value of

lwa|1 = 8
for the case in which

lwsl, = 6 = 0 and lwyl3 = w, a constant. Also find

{Fy1}1 = |F2
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l'-ﬁ about z; S

Fig. 4.68.
Take
o} o}
[Iu]u/u =jo0 g
0 (0] I

Problem 4.70. In the system of Fig.4.70 the uniform heavy rotor, body
5, rotates relative to the light pivoted axle, body 3, at the constant
high speed w. Body 2 is driven at the constant rate o relative to an
inertial body 1. Show that, for small values of g,

44 (I +mbla+b) - 338", _ mgb - Jiw
I+ mb2 I+ mb2
where
J o} o}
[Tu]u/y = j0 1

@]
]
=
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LT T e T T T T
T B about y 2 @ about z; ! ¢ about y. 4

Fig. 4.69.

z)

l
Zy ‘g 4

NNANNN

e e e
1 o about z) 2 g about y, 3 ¢ about x; 4

Fig. 4.70.

Problem 4.71. The uniform rotor and attached light shaft, body 4, sho-
wn in Fig. 4.71, turns at a constant high speed , relative to body 3.
The motion of body 3 relative to body 2 is constrained by torsionally
elastic supports of combined stiffness k. Body 2 is driven at a const-

ant rate y = g(<<y) about the vertical z,; axis of an inertial frame 1.
Show that, when g is small and the inertia of body 3 is neglected,

é + (ma2§22 + k)B - mga - Juwd
I + ma? I + ma?
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T e P
1 y about 2z, 2 g about y. 3 a about x: 4

Fig. 4.71.

Take
J (6] 6]
[Iu]u/y =0 I o
6] 6] 6]

Problem 4.72. A high speed rotor, body 4, is supported pendulously in
gimbals as shown in Fig. 4.72. The outer gimbal, body 2, is free to
rotate about the x; axis fixed in an inertial reference, while the in-
ner gimbal, body 3, which supports the rotor directly, is free to rot-
ate about the y, axis fixed in the outer gimbal. Obtain the equations
of motion for the system making the following assumptions:

(1) the angular velocity of the rotor relative to the inn-
er gimbal is constant,

(ii) the mass of bodies 2 and 3 is negligible,

(1i1i) the angular motion of bodies 2 and 3 relative to the
given position is small and
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T
I'a about x, 2 B about y, 3 y abmx{

Fig. 4.72.

(iv) the of products can be neglected.

Take
I e} e}
[Iu]u/u =10 0
Q] 0 J

Problem 4.73. A high speed rotor, body 4, is mounted in gimbals, bod-
ies 3 and 2, as shown in Fig. 4.73. The motion of the inner gimbal rel-
ative to the outer gimbal is controlled by a spring, body 5, of tors-
ional stiffness k. The ocuter gimbal, body 2, is free to rotate about

a horizontal axis through 0. Obtain the equations of motion for the
system appropriate to small displacements from the equilibrium posit-
ion shown. Take

I 0o O A; O 0
[1,Juyw =0 3 oy, [I3]s/3 =0 By O},
o o o 0 o) Cs
(A, o] o]
[Iz]z/z = 10 B, 0
0 0 Co

and assume that the centres of mass of bodies 2, 3 and 4 are at C.

Problem 4.74. A high speed rotor, body 4, is mounted in a light frame,
body 3, as shown in Fig.4.74. The frame can turn freely about a hori-
zontal axis through A which is fixed in body 2. Body 2 is driven at

the constant rate B = n relative to an inertial frame 1. Obtain the y
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Im
|Y2
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[ o
L - \® X2
\ g
by (2
v
l 1
3! g
— 2
oA = a
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A3

e -_]
_er‘lar)!u 1 B . H X3 ,Xy

/\\/\\
1 o about x) 2 y about z; Bmy\\ 1 B about y; 2 vy about z; 3 « about z; 4

Fig.4.73. Fig. 4.74.

equation of motion for the case in which y is small. Also obtain the
y equation for small values of y about the y = Y, position.

Problem 4.75. A uniform rotor, body 4, is mounted on a light shaft,
body 3, as shown in Fig. 4.75, the position for which g = 0. The rot-
or turns at a constant rate w relative to the shaft. The shaft is mou-
nted in bearings, bodies 5 and 6, which are fixed in an inertial body
1. Motion of the system is induced by applying an external couple

{L3}, =

o B O

to the shaft, the motion of the shaft being opposed by a torsion spr-
ing, body 7, of stiffness k. Determine the y equation of motion,

F Fuy
{F35}, = | F and {F3g}, = |0
Fj Fg
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1 3 about y,‘} y about z, 3 ¢ about x3 4
Fig. 4.75.

Problem 4.76. A uniform rotor, body 3, is mounted in bearings in body
2 and turns at a constant rate w relative to it. Body 2 is mounted in
bearings, bodies 4 and 5, which are fixed in an inertial body 1. The
motion of body 2 relative to body 1 is opposed by a torsion spring,
body 6, of stiffness k. Determine the natural frequency of the system
by an energy method. Neglect the effects due to the inertia of body 2.
btain expressions for the bearing forces

E‘l F‘u
{Foulo = |Fo| and ({F,5}, = |Fs
Fy 0

for the case in which the system is excited by an external couple

{Lo}, =

o O O

which is adjusted such as to make

vy = Asinpt.

Problem 4.77. Figure 4.77 shows, diagrammatically, the essential fea-
tures of a vibration absorber which employs a gimbal mounted high speed
rotor, torsion spring and damper. The vibrating system, the vibration
characteristics of which are to be modified, can be represented by a
torsionally elastic shaft and a rotor, body 2. The shaft has a tors-
ional stiffness k;, and the rotor an inertia J, about the z, axis. The
high speed rotor, body 4, is mounted in a gimbal, body 3. The motion

of the gimbal relative to body 2 is controlled by a damper and a spring.

MMAERBM - L
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P e
1 y about z; 24 about x; 3

Fig. 4.76.

1 4 about z; 2 o about x, 3 g about y; 4 v, 77

1

1 N A0
- — Ot
S\S |

57,

X2 X3

N

Fig. 4.77.

The damper exerts a couple clws|, such as to oppose the relative mot-
ion. The spring has a torsional stiffness k. The system is excited by
an external couple

{L2}, =

= O O

Show that, when ay products are neglected and o« is small, the equations
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the equations of motion can be written

Joy+ha+koy=£

and . )
Ia - hy + co + ka = 0 ,
where
I o} o}
[1]u/s =0 3 o , luyls = w and h = Ju.
O o} 0

Further show that, on taking Laplace transforms of the above equations
of motion and writing the initial conditions equal to zero, they can
be written

2

Is“ + cs + k

4 3 2y &2
Is’ + cJ;s” + (kJ,+ k, I + h")s® + ck;s + kk/

L J

o

and

A hs
L J,Is' + cd,s® + (kJg+ k,I + h?)s® + ck,s + kk,

where T, A and L are the transforms of y, a and % respectively.

The reader is referred to Green, W. (1954) Theory of Machines, Blackie,
London for a numerical analysis of this device. The reader is also re-
ferred to Inglis, C. (1951) 4pplied Mechanics for Engineers, Cambridge
University Press, Cambridge for a discussion on gyroscope principles
and applications.

Problem 4.78. A vehicle, body 3, travels due north with a velocity

v = &R relative to the earth as shown in Fig. 4.78. A rotor, body 5,
which is driven at a constant high speed w relative to a gimbal, body
4, is mounted in the vehicle. The gimbal is free to turn relative to
the vehlcle about the vertical y3 axis. Show that, when products of

Y = Q, & and B are neglected, the equation of motlon for the rotor red-
uces to

B+ Moosgsing = Zcoss
I I
where I 0 0
[Is]s/s = |0 1T o0} and h = Ju
(6] 0] J

and hence that the axle of the rotor has a north seeking property, but
there is a steady state deflection

tang = v/ (QRcosa)

from true north.
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P et i, Tt
)y ahbout ¢y 2 « aboul x, 37 abonl yy; 47 aboul ¢, %

Fig. 4.78.

Problem 4.79. A thin uniform circular disc, body 4, of radius r rolls
without slipping on an inertial horizontal surface, body 1, as shown
in Fig. 4.79. The path of the centre of mass of body 4, drawn on body
1 is a circle of radius a. Show that the velocity of the centre of
mass of the disc is given by

v2 _ _4a’gtano
ba + rsino

Also show that

(0]
{Fuils = mv? /a

mg

Problem 4.80. A thin uniform rod, body 2, is retained in a smooth sph-
erical bearing fixed in an inertial body 1 at one end and is supported
at a point B part way along its length on a smooth horizontal ridge on
body 3, fixed relative to body 1, as shown in Fig. 4.80. Given the rel-
ative positions of A, B, C and D, derive a set of equations from which
the following could be determined at the instant the rod is released
from rest:

(i) the angular acceleration of the rod,

(ii) the force on the rod at A and

(iii) the force on the rod at B.

Organise the equations into the matrix form

fal{b} = {c}

where {b} is a column of unknown quantities and [a] is an array of
known quantities.
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21022

Instantaneous axls for the motlion
of body 4 relative to body 1

- TT— T
1 y about 2z; 2 a about x; 3 g about y; 4

Fig. 4.79.

2y

Fig. 4.80.
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Problem 4.81. A projectile, body 2, which can be treated as a homogen-
eous solid of revolution, has the angular velocity

e}
{w2}1/2 = Q
e}

as shown in Fig. 4.8l. The y, axis is the axis of generation of the
projectile and frame is is inertial. Show that the frequency of the
oscillations resulting from an externally applied impulsive couple
which is perpendicular to the axis of generation is, in the absence of
damping effects, given by

A - B
B Q
where
B (0] 0
[12]2,2 = |O 0
0 0 B

Fig., 4.81,.

Problem 4.82. A thin uniform disc, body 4, of radius a and mass m is
mounted on a light shaft. The shaft runs in a bearing, body 3 as shown
in Fig. 4.82. Body is freely pivoted to body 2 and body 2 is free to
turn about a vertical axis. The disc is released from rest in the pos-
ition shown with body 4 rotating at a high speed Yy, = w relative to
body 3. Show that when the mass of bodies 2 and 3 is neglected
=¥ - bsinB , § = (stinB)/(Scoszﬁ)
and .

) = w(l + 2tan®g).
Note that since there are no external couples on the disc about the y3
and z, axes there can be no change of angular momentum about them.
Use the principle of energy conservation to determine w for a given
maximum value of 8.
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z

Z2

NS
INNN
«a

P N e
1 ¢ about z, 2 -p about x, 3 y about z3 4
Fig. 4.82,.

Problem 4.83. If a rigid body, body 2, is not subjected to external
couples, then the equation for its rotational motion can be written

[T2]2 20023172 + twa 1 2[T2]2/2{wz)1 2 = {0}

where
A 0 0
[12]2/2 ={0 B O
0 0 C

Show that, on premultiplying this equation by {w2}§/2, the rotational
kinetic energy of body 2 is constant.

Also show that, on premultiplying the equation by

{wz}g/z[lzjz/z

the angular momentum of body 2 is constant.

Problem 4.84. Figure 4.84 shows a mechanism which is driven through
the position for which 68 = 30° by an external couple applied to body

2 0
{2}y =0
L

z
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Fig. 4.84.
when
0 0
{woly/1 = 0] rad/s and {ég}l/l = 0 rad/s2
y
100 ~-10

Body 3 is a solid of revolution with its axis of generation along AB,
the line joining the frictionless ball joints at its ends. The mass of
body 3 is 0.6 kg and its moment of inertia about an axis through C,
the centre of mass, and perpendicular to AB is 0.005 kg m°. Determine
that part of L, which is due to the mass of body 3. Neglect the effect
of the weight of body 3.

Also determine the forces on bodies 2 and 4 due to the short bearings
5, 6, 7 and 8. Bearings 5 and 7 can sustain only radial forces while
bearings 6 and 8 can sustain both radial and axial forces.

Problem 4.85. Figure 4.85 shows a solid uniform wedge, body 2.Determ-
ine ‘

Aj o 0 A, o] o]
[12]5/3 = |0 By F3| and [I,]y,, = |0 B, Fy
0 Fa Cs O Fy Cy

in terms of the dimensions of the wedge.

Also determine, for the case in which a, b and ¢ are in the ratio
5:3:2,
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A, O 0 As O 0
[12]3/4 =10 By ¢ ' [12]2/5 =10 Bs 0 '
o) ) c, 0 0 Cs

[231y; and [2y15 o

where frames 4 and 5 are sets of principal axes corresponding to the
points A and C respectively.

Fig. 4.85.

Problem 4.86. Body 4 is a composite of the uniform steel bodies 2 and
3 as shown in Fig. 4.86. Determine

[Iu]u/u and [Iu]u/s

where frame 5 is the set of principal axes through C, the centre of
mass O0f body 4. Also find

f 2y 15

Take the density of steel as 7.8 g/cma.

MMAERBM - N
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Dimensions in cm

Z2

30

80

70

50
3
Z3
Zy
B
Y3 22 X3
Xy
20 ¢
2
|
\Cj xz
1
20 dia.’_/ I [
‘ 15
4.86.



Answers to Problems for Solution

Chapter 3
6}
{VBA}z/z]tzo = {v, - (v,b/a)}| 1
6}
1
2,2
{ABA}z/z,t=o = {(ZVAVB/a) - (2a + b)v,/a’} |0
6}
6}
{VBA}2/2\t=O = {vy, = (v,c/a)}|1
O
2 2
(2VAVB/a) - VAc/a
{ABA}2/2|t=O = O2
VB/b
/—\ /_—\
1 6 about z; 2 -¢ about y, 3
‘cose  =-sine O cos¢ O -sing
{221, = siné cosé6 Of{[82%31, = |0 1 (0]
LO 0 1 sin¢ 0 cos¢
[ 0.7926 0.457 0.4036
{221 = |-0.6097 0.594 0.5247
L O 0.662 0.7495
(ctd.)
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-0ycB -sycB sB
= | syca + sacysB coacCcy - saSysf =sacB

| syso - coaCcysB sSoaCy + cosysB cacp
[ c¢  s¢cy  -s¢sy

= | -s¢ cocy -cosy

L 0 sy cy

3.30. Start with

{Ryotsss = 12213021 12{R,,}1 1

3.32.
243.6 0
{Ryabr11 = {1403 | mm (R, }y,0 = |165.46] mn
46.51 -3.44
9.75
{Voli/1 = 1,19} -1 mm/s
-48

Direction cosines of {uw3}; 5

_ 0.346 _ _ —0.0355 _ _

cosa = 73031 = 0.1987 cosf = 73031 0.0204
_ -1.706 _ _

COSY = o3 537 = 0.9798

Equation to central axis, X(x,y,2z)

_ X - 286.9 _ y - 165 z - 46.5

le ~ 0.1987 T -0.0204 ~ -0.9789

|R

z =0, x =287 mm, y = 164.5 mm.

3.36.
{Rygotr1/1 = 122 {R,glay2 + 122 (R, }2 /02
cosg
{Ry,}2/2 = na|sing
b
{Reot1/1 = 122 {R,gtan + 1221003 12{R,, }3 /3
na
{Ryatsyss = |0
b

(ctd.)



3.37.

3.38.

3.39.

{VBO}}/Z

{Rgolti/2

{(Ryo 1,1

{Vpohi /2

{Rpol1/2

{Rgol1/2

{VQO}I/Z

{AQ°}1/2

{Rpol1/2

Il

[

]

Answers 315

[-aa - na(e + 8) sing
na(o + §)coss
L O

r . s 2
-na(a + B) cosg
. . .« 2
-aa? - na(a + B) sing
0

[ 1 {R b1y + 122 1l 2312{R,, }3/3

~aa - x(a + B)sinpg + vcosg
x(a + B)cosg + vsing
(0]

(-2v (o + B)sing - x(a + é)zcosﬂ

2v(e + B)cos = x(& + B)2sing - ao’
1 O

.ol .2
[ 2aybsiny -ca
-a?(a + bcosy) - by cosy

;b?zsiny
a{ (bcosg/r) - 1} a(cosp - 1)
w|bsing {V}O}l/z = w|rsing
absing/r asing

-bsing (1 + a2/r2)
m2 al{ (2bcosg/r) - 1}

azbcose/r2

-rsing (1l + a2/r2)

w? a(2cosp - 1)

azcose/r

(ctd.)
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Position A B E D
of P
g =0 B=’7T/2 B = B:——n-/z
0 -a -2a -a
{V,ol1/2 0 w| r w| © wl-r
0 a O -a
0 r(l+a2/r2) 0 —r(l+a2/r2)
2 2
{Apo}l/z W , w | -a m2 -3a w2 -a
a“/r 0 —a2/r 0
.40.
0
A= wy/wo {w3}2/2 = wy(d - 1)|a/b
0
0 -a/b
. 2
{w3}1/2 = wpla(r - 1) {w3}1/2 = wy{(x - 1)| O
1 ] 0
[-(A - 1)cosg - 1
{VAO}l/Z = awp| bsing/r
|-(2 - 1)sing
. ) )
-{b” + (» - 1) }sing/ab
2
{AA0}1/2 = awy [=2(A - 1)cosB - 1
L a(x - l)zcosB/b
.41,
0
{wyli/3 = v |-(R + acosa) /r
cosa
l/r1
{du}l/g = y?cosa(R + acosa + rsina)| O
I.O A
rl/rw
{ws)y/3 = v2cosa(R - acosa + rsina)|O
Ko

(ctd.)
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1
{VDO}I/a = {VDE}l/g = 2aycosa| O
¢}
3.42. . o
{wg}l/z = 0 {ég}l/z = @B
R
[ ~zBsina
{VAO}I/Z = zacosa + vsina
-zasina + vcosa
[-2& (vsina + zdcosa)
{a otz = 2vacosa - (&z + 8%)zsina
L-2vasino - zo cosa
3.43.
-sing - X, Ay
{VEO}1/3 = aa| cos§ + A1 + xgsing,| + ab -X1
0 o]
éICOSBI
+ ais -8 sinB;
31sing;
A3By = a(sin® + Ap)  A3Bp = a(sine - 1ip)
aotiys = tushyaivigbiys + Siv,,)
go/1/3 311/31Vgol1/3 7 gglVE0l1/3
For 6 = O and o and B; constants, when E is at the point of contact

8
{Vio}1 is a null vector. Hence

o8}

SelVeoli/s |

a,8,B) constant

0 —B%sinel
= aa|X3BicosB;| + arz| O
.2

(@] B1cosB

When E is at the point of contact, 8; = O and

0
{AEA}I/:’) =a<;2(sin9 + >\2) 1
(sine + Xx2) /X3
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3.44.
nw (wcosy - ws)

{éq}]/g = |- mwssiny
- nmzsiny

3.45. To ensure that rubbing does not occ¢ur at F arrange that F is on
OE.

3.46.
{wst1/3 = {wzdi/s + {wsls/3
ty/t3 0
wlo + {2 - (wty/t1)}|O
0 ts/ty
0
{&u}l/a = {0 - (wty/t1) }|tots/taty
0
lugly = (2uts/ts) - a0 Juwls = tslo - (oty/t3) }/t,
3.47 o s/t
{wytr/0 = [~t3(w - Q) /ty {&g}l/g = wlw -~ Q)]0
Q 0

-wr - tgRcosB(w - Q)/ty,
{VAO}I/Q = QRsing

| tiRsing{w - Q)/ty

[ Rsingl{ti(w - 2)2/tl - wa)
{AAO}1/2 = | -w?r + RcosB{tg(w - %2 - tawlw - Q)/ty?

| Rticose(w - )7/t

3.49. rrom the angular velocity vector diagram
lw3|2 = Qa/b = r3Q Iwulg = nr3Q = r,Q

lwsl, = 2r30 = rso

sinB ry{cosp - ry)
. 2 .
{wylty/3 = Q|-1r4 {wyly/3 = @ |-rysing
r, + cosg -r3sing

from which {wy},/, and {ég}l/z can be determined on premultiplying
the above results by

(ctd.)



[ 231 =

{ws}y /2

3.50.

V,ela/n =

{wZ}l/l

{AAC}Z/I =

{Aio}l/l =

2lwy I 1

3.51.
{w4}1/1

{oy}1/3

MMAERBM - N*

Answers
cosB 0 -sing
0 1 0
sing O cosB
[ o ] 1
. 2
= Q -2r3 {wS}l/Z = 2r39 (0]
| 1 O
o ] 0
0 m/s {a, _} =10 m/s?
aci2/1
-1.1] -8.775
-1.768 5.738
on 2
= 1.989 rad/s {uydy = 5.842 rad/s
1.9776 15.584
0 {7.54
2 n 2
0 m/s {aggti/n = |-4.4 m/s
-8.775 |-1.127
o) (2.2
2 2
O m/S {A;C}I/l 4.4 m/S
-12.36 12.458
-22.1
2
{VAC}Z/I = (0] m/s
O
= {wyl1/1 + 12211 {uwgloy o + 122 1112312 wyls/s
¥ 1 o0 ollo
=0+ {0 cy —sy 8
o) O sy cyliO
1 (0] (0] [ol:] (0] s6 |1 O
+ |0 cy -sy 0 1 0 0
O sy cy ||—s6 (0] co $

d
“loyls/3{lwsdi/s + gglewd/s

(ctd.)
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{Veahi/s = lwu11/3[2u13{RCA}u/u

—(¢sing + &)sine

bl (¥sine + ¢)cose

- écos¢ + Ycosfsing
{ch}1/3 = {VCA}1/3'¢=O=={Vu}1/3

{Byt1/5 = twshi/3{Vili/s + gg{vu}1/3



.44,

.45,

.46.

.47.

Answers to

640 W

W =
A+ 3B

y = 0.1722 m

0.998
{vpti/2 = |0
e}
e}
e}
e}

Problems for Solution

Chapter 4

2 2 3 B
(xy +2zx + c)]A .

o)
m/S {F21}2 = I_Z.GSG} N
o)

-9.21
2
N {Aj}i1/2 = |-1.994] m/s

(0]

y = 0.25 m

1.495] o
{VD}I/Z = |0 m/s {F21}2 =11.59| N

0 o)

1.382 -5.72]
{Fa3}, = [-6.276 | N {A_},/, = |-4.46] m/s

(0] 0
y = 0.121 4 m
R} = {r}

sindcos¢ cosfcosd
{R}1/1 = r|sinesing {Re}1/1 = r{ cosésing

coso -sing

321
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1 -sinbsing¢ O
{Re}1/3 =r|o {R¢}1/1 = r| sinecos {R¢}1/3 =|r sine

0 ) 0

sinfcos¢ o]
sinesing {R‘}1/3 =10
cos® 1

= [Ry, ] {F} + [R,,]1-F}
TR P} + [[Ry,] + [Rg,1]{-F}
= [r,1{-F} = (R, ]{F}

{R .} 1

>
>
o]
—_——
=
Ed
——
|

4.49. = R, {F} (R, }' M, } = IR, ||M, |cose
Component parallel to AB
M| = (R P I}/ IRy, |

I 2

i} = ({RBA}T{MA}){RBA}/IRBA

4.50 9 6 7
{F2} = 1o |kn (M)} = |l0fkNm {M} = |10 |kN m
9 6 5
4.51. [ 1.218 -0.956
{Fp;} = |[-3.218] kN {F3,} = | 1.195| kN
[-3.86 0.239
[ 0.669
[Fy1} = 0.023| kN
-1.38
4,52, o - 50 150
{Ly}y = |20 Nm {Fyg} = |-200 | N {Fp5} = Of N
o) 1 090 -1 270
50 50
{Fus} = [0 |8 {Fyg} = | ofN
o) 280

4.53. 10 47
D F} = [— 7} N M} = [ 2] N m

(ctd.)
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1.973 30.60
p
{R,,} = |2.819|m {L"} = |-21.42{ N m .
2.342 0
4.54. A 0 O A = m(a? + b2)/12
(12]2/2 = |o B B = m(b® + c?)/12
0 0 C C = m(a® + c?)/12
2

c”B + CSZB (C - A)sBcB

A
{12]2/3 =10 B 0
(C - A)sgcp O As?g + cc?g

O

If b = c, then A = C and [I,],/3 is invariant.

4,55, T o 0
[Iz]n/n =0 T © J = 3mr?/10, a constant.
0 0 J
n=2 I = 3m(r2 + h2/4)/20
n=3 I = 3m(r? + 4h2)/20
n-=4 I = 3m(r? + 2h®/3)/20

4.56. Let the engine be body 2 and the airscrew body 3.

1 o0 o “ o
[15]s/5 = 3]0 0 0| {ustiyz = |0 {uzdiyp = [w@
0 o0 1 0 0
1 o 0
(13]3 . = 3|0 s?’a  -saca
|O  -—-saca c?a
(22sin2ut) /2
{L3s}s = J] wa(l - cos2ut)
-—wRsin2pt
4.57.
Ccw
{L3z}s = w’E
4.58. 1
{L3s}s = w?(J - I)sinacosa| O
0

(ctd.)
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-cosy
{L3s}1 = w?(J - I)sinacosa|-siny| |Lj,| = 525 N m
(0]
4.59. re .
a a
{wuy}y /3 = |Bcosa = | B Bsina << Q@ and o small
|2 - Bsing Q
[ & + QB
{wy}y /3 = Qo 8 << af and a small
{-Iaé + aB)
[ Jeg + Ia I 0 O
{ﬁh}l/fs‘ = IQ(;L where [Iu]q/u = ]0 I O
[-T(af + aB) 0 0 J
-ka - ca
{L32}s = L,
LZ
. C- k = ‘_j_Q‘
o+ et ge =gk
For a sustained constant rate turn o = (JQé)/k
4,60. 3 o0 o 0
(1u]uw = |0 T © {Hy}1/3 = Jye|l
O O J (0]
F o= mr%zsina F, = —(merZCOSa)/(a + b) F3 = Jyw/{(a + b)
Fy = —(mar%zcosa)/(a + b) Fg = —JQw/(a + b)
Fg = —(Jchosa)/d Fy = (_mcr\'(2 - Jywsinag)/d
Fg = 0 Fg = (Jywcosa)/d
Fig = —mr%z(l + ¢c/d) + (Jywsina)/d
. 2
4.61 . = ma’{l2e + (b2 - 3a®)sina}/(12tanw)
{Fh,}, = (me’ed - ﬁx)/(c + d)
{Fhs}, = (molec + ﬁx)/(c + d)
4.62.

3gatany = 92{3ae + 4(a2 - b2)siny}

(a) y = 37.4°> (b) vy = 43.2° (by trial)
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|

1
o
€

1
e

{w3}1/3 = Qsina {V3}1/3 =

h
{H30}1/3=§mb w = h
0
{As,t1/3 = twshi/a{Hs  hh/s + %t{H30}1/3

h -h o
X y z
h + h o

y x z

e

w = h w
X

y x Y

{L3z}s + [RCO]3/3{W3}3 = {é30}1/3

o + {(3g/4b) .- chosa}sina =0
Small vibrations about o = O

a + {(3g/4b) - 2’}a = 0 o = (3g/4b) - @°
Stable if o° < 3g/4b

Small vibrations about a, . Let e, be the @ which gives the a, equil-
ibrium position

2 - .
cosa_ = 3g/4bq a + 9251n2a a =0
[+] [+] [+] [+]

2
w
n

]

a2 (1 - 9g%/16b%a")

stable if 0 > 3g/4b.

Q = 2 rad/s. o = O. w = 2 rad/s(0.32 Hz)

cosa == 2(>1). No stable vibration in the inclined position.

Q@ = 4 rad/s. a = O. 92 # 8. No stable vibration in the vertical pos-
ition. °

cosa = 0.5. a = 60°. w = Qosinao = 3.464 rad/s(0.55 Hz)

{1%,}; = 8mb’qacosa/3.

4.64. 1 0 o

[13]3/3 = |0 J
0} o} I (ctd.)
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Ia + cé + (J - I)2%sinacosa + ka = O

Ia + ca+0.5(J - I)stin2(ao + a) + ka =0

. . 2
a, =0 Iao + ca + {(J - I)Q + k}la =0
e = 7/6 Ia +cd + {0.5( - Da’ + kla = V3(I - 3)a’/4
a, = 7/4 Ia + ca + ka = (I - J)Q2
o = /2 T4 + ci + {(I - 3’ +kla =0
4.65 _
Fy = 0 F, = {Jabw(w - 9)}/d(b - ¢c) + mg
F, = -mbw’ Fs = -F,
4.66. 2 2 2 2
F;1 =0 F, = mw sina(c + dcosa) + w” (Jcos"a + Isin‘a)/a
+ mgcosa
F3 =0 Fy = -mw?cosa(c + dcosa)
Fs = -mgcosa - w?(Jcos?a + Isin’a)/a
4.67. Fy = Fy, =0 F, = ~me’bsin’a
(a - ¢c)F5 = mg(a - bcosa) - w?tana{ (I + mbz)sinza + Jcosza}
(a - c)F3 = mg(bcosa - c) + wztana{(I + mbz)sinza + Jcos®a}
4.68.
F, =0 F, = -{Ju(a + b) (2 + 0)}/(xrb) + mg
4.69.
i = -h T /m? o+ 4mgacoss(J - I - ma?)}
2cos8(J - I - ma?)
F = mw’sinecoss F, = mg Fy = —mmzsinesins
4.70. [-&sing + w W,
{wst1/3 = B = |,
| acosB w,
[-aBcosB W
{(:)4}1/3 = &mCOSB + B = t;)y
L wh - aBsing éz
r o
{vy}1/3 = | ala + bcoss)
| -b3 (ctd.)
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-a%(a + bcosg) - bg? .
{Aq}l/g} = | -2aB8bsing = y
-&zsins(a + bcosB) - bs .
mgbcosg = (J - I)w w_ + Iw - mba
. Xy y z
4.71. w - 2sing w 0
{oyt1/3 = |8 = | o, {Vit1/3 = | acoss
wCOSB w, —aé
wBcoss éx
{(:“4}1/3 = B + wfcosB = (:)y
wp b
z
-(w?acos?s + ag?) a
{ay}1/3 = |-2waBsing =la
—(wzasinscoss + aB) a,
mga - kg = (J - I)wxwz + Iéy - maa,
4.72. _
I (0] (0]
[Tyly/y = JO I © w=+vy h=Ju
o o J
[ CcoSB -af
{wylr1/3 = |8 {Vy}1/3 = | aacoss
lw + asing 0
(w§ + acosp - aBsing]
{U‘Jq}l/3 = |8 - wacosB
lasing + aBcosg J
-ag?sinscosg - ag
{ay},/3 = |-2a &ésin32+ aacoss
.2 -
L aB + aa 00528 J
-a hg + (I + ma?)a
mgal-8 | = |-ha + (I + ma?)s
0 JaB
4.73. {w} = {w,} + {Wp} + {Ws} m=m +my +my h=Ju


http://Al.1i/3
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&COSY w W
b9 X
{wsli/s = asiny| = fo, loytiys = fo + o
Y wz wz
(:) - wWw
X z
{wyl}/3 = wy {LMS}S = {HM}I/S
é + ww
z X

{Lauwls + {Ls2}s + {L3s)s = {ﬁ3}1/§
{Laa}s + {Lasts = {f3}1/3 + {Hu}1/3
{La1}2 + [Rco]z/z{w}z = m[RCOJZ/Z{ACO}I/Z + {f2}1/2
+ 23], f{ﬁs}l/a + {ﬁu}l/si

~ky = (I + C3)y + ha

2. .
-mga = (I + A + A3 + ma )a - hy
4.74 [Qsiny w I
X X
{wgli/s = fcosy | = | uy lovdiys = Jo
LY wz u]z
by v,
{vyhiys = | O =]0
-2{a + bsiny) v,

{Hyat1/3 = {Huti/s + m{Reala/sivutiys

J(w + w ) - mbv h
X z

Tw =1h

h

X

y
Iw + mbv
z X

y

z

{ﬁuA}l/s = lo3l1/3{Hsa}1/3 + %t{HuA}l/3

hw -hw +h
z y Yy z X
=1hw - hw +h
x z z X y
hw -hwew +h
Yy x X Yy z

{Lasts + [Realsys{wyls = {ﬁuA}l/s

-mgbsiny = In o = {J(w + o ) - mbv }o + Io_ + mbv



Small v h = Jw

Answers

(I + mb2)y + {(I - mb® - gy’ + mgbly = (h + mabg)Q

Y, is given by

(I - mb?

- J)stiny0 = (h + mab@)Q - mgbtany0

(I + mb2)§ + (I - mb? - J)stinchSY = (h + mabgq) Qcosy

Ay + Bsinycosy

A} + {B(cos’y,

- mgbsiny
Ccosy = Dsiny

sinzyo) + Csiny_ + Dcosyo}y

= Cc05y0 - Ds:.ny0 - Bs:.nyocosy0
4.75
{wh}l/a = {‘”2}1/3 + {wytayzs {w3zly/p is null
siny w w_ + w 0
= 2 + = =
B COsy (e} wy {Vu}l/a (e}
6} ¢} -Cw
y
Cw J(w + w) Jw +
X 2 X
{Aavti/s = |-cu_w {Hyg by s = [(T + me Ya | = {T,0,
ca. 0 0
s h = Jw + h
X X X
{Hygtiys = | By h =TIw
h w - huw
Yy x X z

Moments about O

{L7}s + {La}2 + [R, )o/2{Fasts + [R“]z/z{l"ae}z

+ llalz[Rco]a/alhla{Wu}l = llalz{ﬁuo}l/a

Equating applied to effective forces

{Fasla + {Fagla + [21) 20wy}

(a + b)F1

(a + b)Fu

(I,

_(Io

ml 23] 2 {Au}1 /3
- J)#%sinycosy - hfcosy + mbcp’cosy
- mgcosB (ccosy + b)
- J)ézsinchSY + hfcosy + macézcosy

- mgcosg (ccosy - a)

329
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(a + b)F3 = =(J - Io)ésinycosy + mbcécosy -~ mgbsing
(a + b)Fg = (J - Io)ésinycosy + macécosY - mgasing
F2 = 0
L = é(Jsinzy + Iocoszy) + mgccosysing + kg
4.76.
{wzti/2 = {watyy/o + {wslsy/2
o} w w
Y 0 Y
-cy
{vsti/2 = twali/2{Rgtaya = | O
o}
—cy
_ d _ +2
{ashi 2 = tway y2{Vshi o + GiVsti o = |-y
o}

2T3 = {w3}{/211313/2{w3}1/2 + {Vs}ﬁ/z{v3}1/2
= Ju” + (I + mc?)y?
Ve = ky2/2
For a conservative system T3 + Vg = constant
%E(T3 +Vg) =0 (I + mc?)y + ky = O

mf = k/(I + mcz)

k/Io

{Hsot1/2 = {Hsliy2 + mRy]2/21Va}iy2

Jw 3T3/3w
IOQ 3T3/08y
. d
{Hs0t1/2 = twal1/2{H30}1 /2 + gE{H3o}1/2
o}
= Jm%
I,¥

o

(ctd.)
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Moments about O

{Lat2 + {Losls + [RAolz/z{qu}z + [RBojz/z{Fzs}z

+ [Rco]z/z{w3}2 = {ﬁao}l/z

Equating applied to effective forces

{Wal, + {Foul, + {Fos}, = m{Au}l/z

bFs; - aF, = mgc
aF; - bF, = Juy

Iy +ky=L L = (k - I_p’)Asinpt

F; + F, = -mcy
F2 + FS = -HIC‘;2
Fy - mg = O
(a + b)F; = JuwApcospt + mbcApzsinpt
(a + b)F, = -JuApcospt + macApzsinpt
(a + b)F, = -mgc + mabApzcoszpt
(a + b)Fg + mgc - macApzcoszpt
[ ®
. X
= i + = +
{wq}l/g Yslna w wy w
ycosa wz
wa hx-‘
{H‘-}}l/3 J(wy w) + hy
Lquz hz_
(A +h o =-ha |
. ‘x z y y z
{Hy}y/5 = h
Lﬁ +hw -huw
z Yy x x yd

(ctd.)
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(0]
{Lols = | 0 = {fo}1/2 + 1230, {H,}1/3
—koy + 2
4,78.
{wshi = 022 0ulwody o + 123 0ulwglays + fwyls/n + {oshy
([acosB - asinBcosa W
= |g + Qsina = wy
L&sing + B + QcosBcosa + w w, ot
[ ho + Io L,
{Hstiju = -hw  + I&y = {Lsy}y = |0
| Ju, Lo
4.79.
{wq}l/g = {w2}1/3 + {w4}3/3
) ) )
= w|sina | + v ~{(a/r) + sinal}| = w|-a/r
COsa . O cosa
—wa -v ] o}
2
{viliys =jo |=] o0 {a4}1/3 = v /a|-cosa
] 0 ] sina
(a/r) + sina
{&4}1/3 = (vzcos<x)/a2 0

(0]
Moments about A
[Reads/alwuls = m[RCA]a/a{Au}1/3 + {ﬁu}1/3

2 2 2 2 2,
grsine = v _rsins , Vv _rcose , VvV rcosa . V Y sinacosa
a 4a 4a

4a?

External forces equal to mass acceleration
fwyly + {Fui}2 = m{A,}1 /2
4.80. Moments about C
[RgcJr i {Fash + [Rc i {Fan )y = {H2 )

(ctd.)
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{F,3} is perpendicular to the plane containing BC and BD. Hence

{Fashy = FlRy L1 /iRy b /1 /1 [Ry o] h /i Ry p 1 0 |
(B}, = 12211[12]2/2[221{{é2}1/1

since {w;}; is a null vector. Also, since the external forces on body
2 have no moment about the x, axis, {wpl; must be perpendicular to
BC and

{RBC}{/1{&2}1/1 =0

External forces equal mass acceleration

Wby + {For}1 + {Fos}y = mi{az}i/) = m[RyJ1/alehifn

" - - 1 ' ]

. 1 1 1] o]
al ao a3 bl (0]

S L 4 L - L J L O 3

r 41 1 r 7 r -‘ r -
ay as ag b, c

L - - | L - L -
[ ay ag (0] b3 (0]

L - - B L 4 L .

[aj] [22]1[12]2/2[22]{ tazl = [Re,]1p

tas1 = [Recii{Ryg b i /1 [Ry a1 iRy i 1]

-1 0 0
[au]=m[RCA]1/1 [ag]l = (0} -1 0
e 0 -1

lagl = [RBCJI/I{RDB}I/I/q[RBCJI/I{RDB}I/ll

|
@]
@]

T
ta, 1 = {RBD}I/I lagl = Ol

|
—_
]
N
—
—
—

[bi1= {wz}1,1 [by1 =
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4.81. .
w w
X . 'X
{Hz}l/g = {0} {w2}1/2 = wy {w2}1/2 = Wy
© ©
z z
Bo - (A -Blw w =0 1
x y z
Ao =0 2
Yy
Bo + (A-Blww =0 3
z X z
&y = 0 and w, = constant = Q

Differentiate Eq. 3 with respect to time
By + Q(A - B)ao =0 4
z X
Substitute Eq. 4 into Eq. 1

2 2
+ Q_LA_Z_EL_ w =0
2z 2 2z

B

The equation in w, can be similarly obtained.

4.82.
{wytiyz = {wpliy/z + {uwzlayz + {uylsys
0 -8 ) -8
= —$sin8 + o] + & = & - $51n8
$coss (0] (0] $coss

{Hiohi/s = [Tulu stuudiys - m[R g ls/stwsdiys

-58
= ma2/4 2(y - $sing)
5$cosS
O
{Hh0}1/3‘ = ma®/2|w
t=0 0

The component of angular momentum about y; is constant and therefore

w =19 - ¢sing

or

U] w + $sins

{Hiot1/2 = (23 12{Hyo}1/3

The component of angular momentum about z, is constant and therefore
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0 = =2(y - $sing)sing + 5$c0528
giving .
¢ = 2wsing/5cosB
and
¥ = w(l + 2tan®g/5)
T
2Ty, = {wy}1/3{Hyo}1 /3

ma2/4[-é w &coss] -58
2w
5$coss

Conservation of energy

(2T, + 2vy) |,

(2T, + 2Vu)' ..
8=6=¢=o B:o

Hence
2_ 2 .
w®= 1O0gcos“g/asing
For B =30%w = 12//a rad/s.

4.83. .
[T} + [wI]{w} = {O}

fwTTT G + (T Tw NI Hu} = 0
The second term on the left hand side of this equation is zero and the
first term is the rate of change of kinetic energy, which is zero. The
kinetic energy is thus a constant.

(o ITIITOr + {0} I INu} =0

The second term on the left hand side of this equation is zero and
the first term integrates to

{w}T[I11I1{u} = constant.

Since
(H} = [I1{w} and (H}T = (371117 = (w3711

(H}"(H} = constant.

4,84. suffixes 1/1 are omitted throughout.

6.928 - 6.928
{R,o} = |4 em  {R,,} = |-27.644] cm
0 9.373

(ctd.)
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Equations for

[RBA]{Fau}

Matrix Methods in Engineering Mechanics

0 -400
-3.485| cm  {v, } = | 692.82| cm/s
[ -9.373 0
[ 400 o]
-166.586 | cm/s {VBD} = |526.2 |cm/s
| -195.65 195.65
-133.3
{v,} + 2/3{v,,} = | 581.72| cm/s
-130.43
[ 7.744 ~56.14
2.66 rad/s {wy} = 0 rad/s
13.568 0
[ -692.8] 400
2 n | _ 2
-400 m/s {AAO} = 692.8| m/s
L - o 0
[ 17.4 ] [ o
69.42| m/s®  {a) } = |-109.83| m/s?
[-23.54] -295.4
[275.4 ] e
-40.85| m/s”>  {a; } = |-954.4 | m/s’
. 80 | | 354.8
-212.4 | 10182
350.7 | rad/s® {a,} = o | rad/s?®
877.3 | 0

- 97.6
-1074
39.6

= {a,} + 2/3{ay , } + 2/3{a; |

2
m/s

the motion of body 3

=m[r,,]{as} + 143}

{(ctd.)
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{F3,} + {F3,]} = m{as}

{Fsu} {Vyp} =0

74 -132.6
{F3,} = |~ 4l.6 | N [F3,} = |-602.7 | N
-111.8 135.6

The rate at which energy is supplied to body 2 can be equated to the
rate of change of kinetic energy of body 3.

{wz}T{Lz} = I{ws) {a3) + m{V3}T{A3}

L, = -36.45 Nm

Moments about F for body 2

Lo} + [Re ) {Fast + [R ]{Fas} = {0}

-1185 (0]
{Fos) = |- 534 | N (1,} = 0 N m
(o -36.4

Equating external forces on body 2 to zero

{Fos) + {F23] + {Fye} = {0}

~120.7
135.6

Moments about H for body 4
[RB"J{F'+3} + [REH {FL}7} = {O}

0
[Fy,} = | -417.7| x
-155.3

Equating external forces on body 4 to zero

{Fust + {Fys} + {Fyg} = (0O}
74

{Fyg} = | 376 N
43.5
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4.85.

Terms

Terms

Terms

4.86.

Matrix Methods in Eng

ineering Mechanics

Terms in [1213/3
A3 = m(b® + 3a%)/6 = 84m/6 Bz = m(b> + 2¢c?)/6 = 17m/6
Cy; = m(3a® + 2c?)/6 = 83m/6 Fj3 = -mab/4 = -22.5m/6
in [To]y
2 2 2 2
A, =m(b + a )/18 = 34m/18 B, = m(6c + b )/18 = 33m/18
C, = m(6c’+ a?) /18 = 49m/18 F,= -mab/36 = -7.5m/18
— =
[ 2y 13 3 a about x3 4 a = 17°
in [T,]3/y
Ay, = 84m/6 B, = 1lOm/6 C, = 88.9m/6
e
[ 2515 2 o about x, 5 a = 21.58°
in [I],/5
As = 34m/18 Bg = 30m/18 Cs = 52m/18
3.347 11.653
{Ryotass = [12.273 em  {R_,}2/2 = |42.727]| cm
4.463 15.537
2 2
(Tu]u/w = [T2]2y2 - mo[R, J2y2 + [T3]a/3 - m3[RBA13/3
117 -12.56 - 1.04
[1]u s = |- 12.56 52.6 - 16.75| kg m°
- 1.04 -16.75 100
119.4 o) 0
[Tu]u/s = | © 45.17 0 kg m’
o) o) 104.79
0.9679 0.1688 0.1861
{2415 = |-0.2142  0.9417 0.2594
0.1314  0.2909 -0.9477
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