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Preface

The common knowledge of a profession often goes unrecorded in 
technical literature for two reasons: one need not preach commonplaces 
to the initiated, and one should not attempt to inform the uninitiated in 
publications they do not read.

—Stephen Jay Gould

Human beings, who are almost unique in having the ability to learn 
from the experience of others, are also remarkable for their apparent 
disinclination to do so.

—Douglas Adams

Every year Stack Overflow (a programmer Q&A site on the Stack Exchange Network) 
surveys readers about a number of issues. A 2015 survey of more than 26,000 system 
developers found that only 38 percent had a computer science degree and 33 percent had 
never taken even one college computer science course. An amazing 42 percent said that 
they were totally self-taught.1

These miserable statistics are for system developers as a whole. Although there 
are no numbers readily available, those who have spent decades in the database arena 
indicate that database designer training is even worse. Universities and companies 
spend more time and more education dollars on the process side of system development, 
leaving the data side the underserved orphan.

What Happened?
Many database designs are terrible because many database designers are undertrained. 
Don’t blame the designers—they are working in a system in which all the cards are 
stacked against them. The problem is a poor system of educating database staff. 
Anecdotal information indicates that the average database designer or database 
programmer has about 10 percent of the training in information management that the 
average process-oriented system designer or programmer has in process management. 
The majority of database designers learned their trade from database management 
system (DBMS) vendor courses or from reading books and trade publications.

The training goals of the average DBMS vendor, understandably, do not focus on 
providing a balanced data management education but rather on teaching customer staff 
how to use its products. The student might come away schooled in the use of a particular 
DBMS, but any understanding of the fundamentals of what it is to be a database 
management system are serendipitous.
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Most database books are no better. There are many titles on information 
management. Some purport to focus on logical data modeling, others on database 
design, and the majority on both. Some mention a specific data architecture (hierarchical, 
relational, object-oriented, NoSQL, etc.) or product (Oracle, DB2, Cassandra, etc.), while 
the covers of most of these books make no claim to an alignment or preference for a 
specific architecture or product. However, the contents of these books tell a different 
story. Almost all of the “generic” books are saturated with relational terms, relational 
concepts, and relational thinking. Any concession to generic or nonrelational information 
management is marginal. The reader is left with a tunnel-vision view of the field.

Worse, techniques, such as logical data modeling, which should have nothing to do 
with any particular DBMS architecture or any physical design issues, are jam-packed with 
DBMS-specific—usually relational—terminology and thinking. For example, logical data 
modeling relationships are represented using foreign keys, primary keys are arbitrarily 
selected from the pool of candidate keys, and many-to-may relationships are “resolved” 
with junction tables.

There is nothing wrong with the relational model. In fact, no database education 
would be complete without a good understanding of the relational model and relational 
database management systems. However, relational is not the only architecture, not the 
only DBMS, and not the only way to design a database. A myopic education might train 
the reader in how to use a specific DBMS but imparts little of what it is to be a DBMS. 
Learning about the relational model is essential; learning about it exclusively is harmful.

Another common characteristic of most database design books is that they are 
written by academics. Many of these books are excellent, and every database professional 
should have a bookshelf bristling with their titles. But a balanced education needs more 
than just a classroom view of the information management world. Formal instruction is 
good, but it just doesn’t go far enough. Most database designers will not find themselves 
in the rarefied air of the ivory tower but rather deep down in the corporate trenches with, 
as Johnny Cash put it, “the mud and the blood and the beer.” They need the practical as 
well as the academic, the team room as well as the classroom.

This book’s approach to data management is far less theoretical and far less 
dogmatic than the books sitting on that bookshelf. Rather, it focuses on what works, 
what doesn’t work, and what to avoid at all costs. It includes some of the knowledge, 
techniques, and tricks that can turn a disaster into a success. The major influences on this 
book certainly include numerous academic authors but also incorporate the experiences 
of database developers, designers, and users all over the world who did it right or, 
unfortunately, did it wrong.

Finally Resolving the Database Design Missing Link
There are many books on logical data modeling and many books on creating a database 
schema for a particular DBMS. There is also much that can be learned from listening 
to the tales of the experienced. However, this is not enough. There are certain critical 
topics where both books and experience come up short. What is missing in the database 
design process is an effective and efficient way to get from the logical data model to the 
physical database schema. The problem is that the logical data model is a static look at 
the definition of the data documented using techniques specific to data. Logical process 
models are a dynamic look at how data are used in an application or by an end user. 
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Process models have their own techniques geared to documenting business functions. 
What is needed is a way to merge process and data so that the database design represents 
the union of definition and use. This is the database design missing link—the critical 
component that marries these two distinct elements. When this link is missing, the 
database design focuses almost entirely on the definition of data without taking use 
into account. These databases tend to be poor performers and the cause of numerous 
end-user complaints. Alternatively, a database design can be based solely on use. These 
databases become prematurely old, requiring costly and constant maintenance and 
updates.

Usage-Driven Database Design (U3D) gives the database designer the necessary 
tools to resolve the missing link problem. Using U3D, database designs can have the 
resilience of the data model with the functional responsiveness of the process model. 
U3D can eliminate the database design missing link.

The goal of this book, therefore, is not so much education as inheritance—to pass 
on to the database designer, database administrator (DBA), or database programmer 
the technique and tricks uncovered and used by some of the best and some of the worst 
database people in the world.

A Solution
This book is divided into five parts. Part I consists of a single chapter; Chapter 1, 
“Introduction to Usage-Driven Database Design,” introduces the four database design 
principles. Although these principles are geared toward database design, they are, in fact, 
a sound starting point for any system development activity. The chapter ends with the 
introduction of usage-driven database design, an end-to-end framework for developing 
a functioning database, starting with the logical data model and ending with a physical 
database schema.

Part II focuses on logical data modeling. Chapter 2, “The E-R Approach,” introduces 
Peter Chen’s entity-relationship (E-R) approach, while Chapter 3, “More About the E-R 
Approach,” focuses on more advanced logical data modeling topics. Chapter 4, “Building 
the Logical Data Model,” uses the Usage-Driven Database Design: Logical Data Modeling 
phase as a template to tackle the real-world tasks of actually building a logical data model 
for an enterprise.

Chapter 5, “LDM Best Practices,” presents lessons learned from the database 
trenches. Chapter 6, “LDM Pitfalls,” gives advice on what to avoid when data modeling. 
Chapter 7, “LDM Perils to Watch For,” presents some logical data modeling cautionary 
tales.

In Part III, the logical data model becomes a functioning database schema. 
Chapter 8, “Introduction to Physical Database Design,” presents a limited history of data 
management; however, the focus is gaining practical rather than historical insight. The 
concepts presented are used in later chapters for creating great databases.

Chapter 9, “Introduction to Physical Schema Definition,” introduces the four steps in 
the Usage-Driven Database Design: Physical Schema Definition phase that will turn the 
logical data model into a physical database schema.

Chapter 10, “Transformation: Creating the Physical Data Model,” converts the logical 
data model into a physical data model.

http://dx.doi.org/10.1007/978-1-4842-2722-0_1
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http://dx.doi.org/10.1007/978-1-4842-2722-0_4
http://dx.doi.org/10.1007/978-1-4842-2722-0_5
http://dx.doi.org/10.1007/978-1-4842-2722-0_6
http://dx.doi.org/10.1007/978-1-4842-2722-0_7
http://dx.doi.org/10.1007/978-1-4842-2722-0_8
http://dx.doi.org/10.1007/978-1-4842-2722-0_9
http://dx.doi.org/10.1007/978-1-4842-2722-0_10
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Chapter 11, “Utilization: Merging Data and Process,” modifies the physical data 
model to reflect exactly how an application will use the database. This is an important 
chapter because many database design approaches do not adequately take data usage 
into account.

Chapter 12, “Formalization: Creating a Schema,” converts the modified physical data 
model into a functioning physical database schema and subschemas.

Chapter 13, “Customization: Enhancing Performance,” addresses those situations 
where a simple database design cannot handle the load that will be placed on it. This 
step introduces performance-enhancing techniques (software, hardware, NoSQL, etc.) 
that can be applied to almost any situation to accommodate almost any performance 
requirements.

Chapter 14, “The Data Warehouse,” shows how U3D can be used to construct a data 
warehouse to support a decision support system.

Chapter 15, “The Big Data Decision Support System,” shows how U3D can be used 
with nontraditional data management products, such as Hadoop, to accommodate 
unstructured Big Data.

Part IV contains a single chapter, Chapter 16, “A Look Ahead,” which discusses where 
the DBMS community (teachers, vendors, and technical users) are or should be going.

Part V contains five appendixes that include a glossary, data management object 
definitions, formulas, and a list of U3D deliverables.

This book is aggressively practical and generic. For example, it vigorously keeps 
logical data modeling logical, while holding off on physical issues until physical database 
design—not to justify some philosophical or theoretical construct but for the practical 
reason that it greatly increases the chances of developing a successful database design.

It is DBMS generic or agnostic in that it does not tie the hands of the developer who 
is attempting to solve real-world information management problems. The right solution 
might involve a relational DBMS or it might require a NoSQL DBMS. Or, more likely, the 
DBMS choice was made some time ago, and now the database designer needs help in 
making the best of an imperfect DBMS situation.

In summary, this book is for the undervalued data management professional who 
has to transform a combination of glossy DBMS vendor brochures and dry textbook 
commentary into a functioning fundamental part of the enterprise.

George Tillmann
george_tillmann@gmx.com
georgetillmann@optonline.net

Note
	 1.	 The Stack Exchange, http://stackoverflow.com/research/

developer-survey-2015#profile-education
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CHAPTER 1

Introduction to Usage-Driven 
Database Design

As to methods, there may be a million and then some, but principles 
are few. The man who grasps principles can successfully select his own 
methods. The man who tries methods, ignoring principles, is sure to have 
trouble.

—Harrington Emerson  
(American efficiency engineer and business theorist)

Those are my principles. If you don’t like them, I have others.

—Groucho Marx

In 2015, the IT industry cost the world about $3.5 trillion according to Gartner, Inc., a 
research and advisory firm.1 The Standish Group2 reported that, in the United States 
alone, about $250 billion of that was spent on application development. Less than 30 
percent (about $72 billion) was spent on successful undertakings, with almost $50 
billion written off on failed projects. In the United States, another $130 billion was 
spent on projects that were completed but were over budget, late, or lacked promised 
functionality. A pretty dismal picture. Why?

In almost any area of endeavor, there are experts and there are neophytes. You can 
usually recognize the neophyte by his nose in the “how to” book. The expert? He is just 
standing there, comfortable that any needed knowledge is in his head. Let’s call it the 
Confident Expert Syndrome.

However, in at least three professions there is no Confident Expert Syndrome. The 
first is airline pilot. Any senior airline captain will tell you that they meticulously go 
through both the takeoff and landing checklists. They will also tell you that they are wary 
of flying with a copilot who cuts checklist corners. That’s the reason they have lived long 
enough to become a senior captain.

The second profession where the Confident Expert Syndrome does not apply is 
project management. The seasoned project manager is the one poring over the system 
development manuals and plumbing the depths of the project plan. They know that 
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success flows from following the system development life cycle (SDLC) methodology 
and the project plan to the letter. The neophyte project manager is the one who feels that 
steps can be left out or shortened or that time can be made up in future tasks. Successful 
project managers know that if you want to bring the project in on time, on budget, and 
fully functional, then you must complete every step.

The third profession where the Confident Expert Syndrome does not (or should not) 
exist is database designer. Experienced database designers are the ones who perform all 
the necessary design functions, in their proper sequence, leaving out nothing. It is the 
rookie designers who think that the single database design course they took, taught by 
their database management system (DBMS) vendor, is all they need to design quality 
databases.

However, there is one significant difference between poor project management or 
poor analysis or poor programming and poor database design. Poor project management 
results in failed projects, and poor analysis and poor programming result in programs 
that will not compile or run. Poor database design, on the other hand, results (far too 
often) in a database that seems to work just fine.

Database management systems, by their very nature, cover up a multitude of 
design errors. It might run slow—it might run very slow—but it will usually work. An IT 
shop might live with a poor database design for years, blaming the DBMS software, the 
hardware, the system software, or even the application programmers for performance 
that is the result of very poor up-front database design decisions.

How do you design good databases? Do what the pros do—follow the tried and true 
steps for creating a great design. However, while there are a few good database design 
techniques and guidelines, many if not most of them have not been incorporated into a 
full, end-to-end database design method. Application developers have great end-to-end 
methods; in fact, many system development life-cycle products, if followed, can lead 
to great applications. Project managers have a host of available project management 
methods, techniques, and tools to choose from. Database designers? Not so much…at 
least until now…sort of.

Doesn’t such a process already exist? Well, yes and no. Snippets of a method are 
available and in use, but there is no end-to-end solution. However, that is not the only 
problem.

Looking to the best practices of the experienced is not always enough. Even premier 
development approaches, first-class training courses, and books by experts have a 
common failing. They all lack an effective approach to merge the definition of the data 
with the data’s use.

There are, or should be, two major inputs to any database design approach—the 
logical data model and the logical process model (both are discussed in detail in later 
chapters). Logical data modeling uncovers the definition of data, their characteristics, 
and their relationship with other data. Logical data models are a static though longer-
term picture of an organization’s data. Logical process modeling documents how the data 
move through the enterprise. Logical process models paint a shorter-lived albeit dynamic 
picture of the information—the processes and procedures—an enterprise uses to go 
about its business.

Many traditional database design approaches focus exclusively on the logical data 
model, ignoring how the data will be used, resulting in poor performing systems. Other 
database design approaches focus on the use of the data, while giving short shrift to 
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the definition of data, resulting in databases that are expensive to maintain. The absent 
component to effectively merge the dynamic process models with the static data models 
is the database design missing link.

This book solves the missing link problem, providing a technique that effectively and 
efficiently marries data and process. The result is a database design encapsulating the 
stability and longevity of the logical data model with the functionality and applicability of 
the logical process models.

The goal of this book is to provide the designer with the best thinking and best 
practices on database design, gleaned from decades of hands-on experience working 
with database designers in dozens of IT organizations. Where best practices are lacking or 
acceptable methods or approaches do not exist, this book provides them.

The approach presented here is a composite of how to use what has worked and how 
to avoid what hasn’t worked at all costs. But is it a database design methodology?

It is not really a method because a method should bristle with excruciatingly detailed 
steps. This approach is better called a framework for developing databases—more than 
an unrelated string of techniques but less than ten binders of forms to fill out.

The pillars of this approach are four database design principles.

Database Design Principle 1: Separation Principle
The Separation Principle specifies the separation of logical design from physical design. 
This is a simple concept that has been ignored, neglected, and corrupted by some of the 
best minds in the IT industry. The principle is as follows: identify, analyze, and exhaust 
everything knowable about the logical definition of data before considering any physical 
design concepts.

Many years ago, a time-sharing service published a cartoon showing a number of 
programmers at their desks while one individual was walking out of the frame saying, 
“You guys start coding. I’m going up to ask the users what they want.”

How could the programmers code an application without any idea of what the users 
wanted that application to do? Almost every analyst and programmer knows of such 
situations and how they invariably result in disaster.

There are few real laws in IT, but one of them surely is to figure out what the system 
is supposed to do before determining how it is going to do it. System development 
methodologies are all based on that law: figure out the what before the how. It is easy 
to see this in waterfall methodologies, where analysis or requirements definition 
(logical data modeling and logical process modeling) is completed before any 
design or development work (physical data modeling, physical process modeling, or 
schema definition) begins. It is less obvious in the various iterative methodologies 
and techniques, such as rapid application development, prototyping, continuous 
improvement, joint application development, agile development, and so on. However, 
even these methods and techniques involve figuring out what is wanted before 
determining how to do it (Figure 1-1). It might take a half-dozen cycles of sitting down 
with a user to figure out what is wanted and then coding the results before showing them 
to the user for additional information or changes, but the principle is always the same—
put the parachute on before jumping out of the plane.
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There are project management books that describe the disasters that await the 
system developer who ignores this best practice. Unfortunately, database design books 
often ignore this principle with similar disastrous consequences.

The hard reality is that data require the same insight and attention as processes do, 
which is why the first principle of this book is to always, even with iterative development, 
separate the what (logical design) from the how (physical design).

There is a corollary to Principle 1—call it the Real World Corollary. It states the 
purpose of logical design is to document the real world, which, in this context, is the 
business world. There are two parts to Corollary 1.

•	 Corollary 1 (a): A logical design is valid if, and only if, it reflects 
the real (business) world.

•	 Corollary 1 (b): A logical design is invalid if it contains nonreal 
(business) world objects or concepts. Invalid objects and 
concepts include elements belonging in physical design such as 
foreign keys, pointers, and disk drives.

Database Design Principle 2: Distinction Principle
The Distinction Principle distinguishes logical data modeling from logical process 
modeling. All data definitions, characteristics, and relationships need to be analyzed, 
designed, and documented separately from all process definitions, characteristics, and 
uses. There are five reasons to distinguish logical data modeling from logical process 
modeling.

Figure 1-1.  Waterfall and iterative SDLC Approaches
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•	 The nature of the two is different. Logical data modeling is 
concerned with the definition of data, not its use. In fact, 
designers strive to keep the use of data out of its definition.

•	 The longevity of each is different. Data tends to be far more static, 
stable, and unchangeable, while processes tend to be volatile, 
variable, and unstable. You can count on the description of 
processes changing ten times more often than the definition of 
data. The wise database designer keeps the two concepts apart to 
avoid confusion and the need to redo completed work.

•	 The techniques and tools to document data differ from those 
to document processes. There are a number of techniques to 
document processes, such as data flow diagrams, flow charts, and 
structure charts, and a number of software tools supporting these 
techniques. There are also techniques for database design, such 
as the entity-relationship approach and IDEF1X, and software 
tools that implement these and other database design techniques. 
However, the process side and data side are supported by 
different techniques, and even different tools, making a unified 
data-process approach difficult.

•	 Data staff training, skills, and experience are different from process 
staff training, skills, and experience. Attend any application 
project team meeting and ask everyone present to raise their 
hand if they have taken more than one course in process analysis 
or development (process modeling, process documentation, 
programming, etc.) provided by a school, outside vendor, or 
in-house training department. The majority of the people in the 
room will probably have their hand in the air. Then ask the same 
question about data. If your organization is like most, then less 
than 10 percent of the staff will have their hand up. The reason: 
IT has always been process focused. From the earliest days of IT 
history to today, data are considered properties or characteristics 
of a process and not, as it should be, the other way around.

It would be ideal if all the members of the project team’s technical 
staff were equally skilled in process and data, but that simply is 
not the case. Unfortunately, to ensure the proper analysis and 
development of data, a separate, data-trained team on the project 
is needed.

•	 Process definition can overwhelm data definition. The 
substantially greater number of process techniques, tools, and 
staff compared with data techniques, tools, and staff means that 
project data can be overwhelmed, and critical information and 
work lost or never completed, unless the study of project data is 
distinguished from the study of project processes.



Chapter 1 ■ Introduction to Usage-Driven Database Design

8

These two categories of logical design—data and process—can be antithetical 
(Table 1-1). This is one of the reasons, among others, that project management often 
creates two separate teams for data and process.

Table 1-1.  Data-Process Distinction

Logical Design
Data Process

•	 Static

•	 Stable

•	 Long life

•	 Based on definition

•	 Dynamic

•	 Unstable

•	 Short life

•	 Based on use

This is not to say that the two teams do not need to communicate and coordinate 
efforts. The deliverables of the two teams, while they need to reflect the work of the other, 
also need to be independent of each other.

The Difference Between Separation and Distinction
Note that the separation of logical and physical in the first principle is based on the well-
studied and well-tested fundamentals of system development (the what before the how), 
while the distinction between data and process is strictly for practical reasons.

To underscore this difference, note that Principle 1 is about “separation” while Principle 
2 is about “distinction.” The two are very different. Think of the Separation Principle as an 
impenetrable wall between the logical and physical. The Distinction Principle, on the other 
hand, is not nearly as impenetrable because it is based on how we actually work and not 
on how we could, or should, work. While violating a “separation” might be a major error, 
violating a “distinction” can be a major error or just a faux pas, depending on the degree of 
the infraction.

Database Design Principle 3: Convergence 
Principle
The Convergence Principle governs the merging of physical process models with physical 
data models. During physical design, data and process should converge into a single 
usage-driven physical database design.

Visit a bookstore and look at the database design books on the shelves. Read the 
books or chapters that deal with logical data modeling and see how many of them—which 
are supposed to document the business definition of data—are festooned with talk of 
foreign keys and transitive dependencies. Then look at the books or chapters dealing with 
database schema creation and observe how many of them do not take a serious look at 
how the data will be used. Many authors have it backwards.
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The right time to add usage to a database design is after the distinct physical data 
and the distinct physical process models are complete. Then, and only then, the physical 
process model can be merged with the physical data model to develop a hybrid data 
model that represents both definition and use of data. In simplest terms, you describe a 
database based on its definition, then you augment it based on its use.

The Separation, Distinction, and Convergence Principles
The first three principles can be summarized as follows: usage should not exist at all in 
the logical data model, but it should be deeply embedded in the physical database design 
(Table 1-2).

Table 1-2.  The Separation, Distinction, and Convergence Principles

Logical Design Physical Design

Data Stand alone Combined

Process Stand alone

The central themes of this book are as follows: (1) logical and physical design are 
kept separate, and (2) during logical design, data and process are kept distinct, but (3) the 
two converge during physical design.

Database Design Principle 4: Minimal Regression 
Principle
The Minimal Regression Principle states that the database should be designed so that 
business and technology changes require the least amount of database redesign.

Database design consists of a number of steps from the first logical modeling 
activities through schema maintenance. Changes to any database design step should not 
require going back to the beginning and starting the design process over again. Rather, a 
good database design approach minimizes going back and revisiting previous steps.

For example, there is a flaw in the original design approach if migrating to a new 
DBMS version requires going back to the user to understand the implications. Minimal 
regression means that making a change to the deliverable of any database design step 
should not, ideally, require going back to previous steps. If reexamination of previous 
steps is required, then the regression should be minimal in terms of both frequency and 
how far back the designer needs to go.

Usage-Driven Database Design
Usage-Driven Database Design (U3D) is a database design principles–compliant, end-to-
end approach to designing databases that encompasses the entire database development 
life cycle, from logical data modeling through database schema definition.
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U3D is divided into two phases (Figure 1-2).

Figure 1-2.  U3D

The first phase, Usage-Driven Database Design: Logical Data Modeling (U3D:LDM), 
follows the entity-relationship approach, as designed by Peter Chen and expanded over 
the years by many others, to understand and document the data the database will store 
and the applications will use.

The second phase, Usage-Driven Database Design: Physical Schema Definition 
(U3D:PSD), converts the logical data model into a fully functional database schema.

The Process Modeling step is not part of U3D, but it does interact with it. The logical 
data modeler and the logical process modeler should be in constant communication, 
sharing relevant information. The Process Modeling step is also a source of information 
for the Physical Schema Definition phase.

Logical Data Modeling
The Logical Data Modeling (LDM) phase consists of an iterative approach focused on 
identifying entities and then determining the attributes and relationships supporting 
those entities. In concert, the identified attributes drive the expansion or modification of 
entities and relationships. An examination of the relationships between entities involves 
the refinement of both entities and attributes. With LDM, examining any piece of the 
puzzle—entity, attribute, or relationship—improves the designer’s understanding of all 
three. This phase consists of three steps.

•	 In the first step, Gather Information and Review, the data modeler 
assembles all available documentation about the subject area, 
interviews subject-matter experts, and then reviews the results 
with both experts and management.
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•	 In the second step, Analyze Information, the logical data 
modeling principles and techniques are applied to the 
information gathered.

•	 In the third step, Construct Model, the logical data model is 
created using the collected and analyzed information.

This three-step cycle is repeated as many times as necessary until the LDM is 
complete to the satisfaction of all concerned parties.

Physical Schema Definition
The second Usage-Driven Database Design phase, Physical Schema Definition (PSD), 
takes a different approach. PSD is divided into four steps. The first step, Transformation, 
turns the logical data model into a physical data model by converting the logical objects 
(entity, attribute, and relationship) into the physical database objects (record, data field, 
and linkage).

The second step, Utilization, takes the processes defined in Logical Process 
Modeling and Physical Process Modeling and merges them with the physical data model. 
The result is a modified or rationalized physical data model that represents how the 
applications will use the database. This is the step where the database design missing 
link—the inability to adequately and efficiently merge data and process into a single 
effective database design—is eliminated.

The third step, Formalization, identifies the data architecture, database management 
system, and version that will be used and, combining them with the rationalized physical 
data model, creates a working database schema.

The fourth and last step, Customization, analyzes and improves the performance of 
the database schema using a number of hardware and software techniques.

U3D is data architecture independent (hierarchical, network, inverted, relational, 
object-oriented, NoSQL, etc.), system software independent (z/OS, UNIX, Windows, 
Linux, OS X, etc.), and hardware independent (mainframe, server, PC). It works with 
Oracle, SQL Server, Cassandra, IMS, DB2…and even flat files.

The Terminology Trap
There appears to be an unwritten law in IT that for every concept there needs to be at 
least three different words or phrases to describe it. What is the first phase of developing a 
system? Is it requirements definition? Analysis? Logical design? Conceptual design? User 
requirements? Sometimes the names change over time. IT was once IS, which was once 
DP. How many IT staff can differentiate among decision support, business intelligence, 
and predictive analysis? Is there a real difference?

The same problem exists in database design. This book has two terminology goals. 
The first is to communicate database concepts, and the second is to be term agnostic. 
Every attempt is made to inform you of the different labels used to describe a concept 
but to stick with the term or terms that seem to be most popular—unless that popularity 
conflicts with the first goal.
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For example, most process-oriented system development methodologies, regardless 
of their specific terminology, are compatible with a logical/physical distinction, where 
logical steps deal with the understanding of business requirements, devoid of hardware 
or software, while physical steps deal with the computer-based implementation of those 
business requirements. But this is not always the case in database design, where the 
counterpart to logical process design might be something called database conceptual 
design. Logical database design is often a physical design step dealing with hardware and 
software issues. In this book logical is logical, and physical is physical—and the twain 
meet only in Principle 3.

Notes
	 1.	 Gartner, Inc., www.gartner.com/technology/research/ 

it-spending-forecast/

	 2.	 The Standish Group International, Inc., www.standishgroup.
com/Reports2015

http://www.gartner.com/technology/research/it-spending-forecast/
http://www.gartner.com/technology/research/it-spending-forecast/
http://www.standishgroup.com/Reports2015
http://www.standishgroup.com/Reports2015
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CHAPTER 2

The E-R Approach

The sciences do not try to explain, they hardly even try to interpret, they 
mainly make models. By a model is meant a mathematical construct 
which, with the addition of certain verbal interpretations, describes 
observed phenomena.

—John von Neumann

What is the use of a book, thought Alice, without pictures?

—Lewis Carroll

In 1992, Dorothy Keenan, a social worker in Catawba County, North Carolina, had a 
problem. She was interviewing a boy named Douglas about his family history. As Douglas 
talked about his relatives, Dorothy took notes. After the interview, Douglas reviewed her 
notes and agreed with their content.

Here are her notes...

Douglas was born in 1977. His parents were Gregory and 
Cathy. His maternal grandparents were Joseph and Marie, 
who were married in 1945. They had two daughters, Megan 
(born in 1946) and Cathy (born in 1950). Megan married 
Brian and adopted a daughter Jennifer before divorcing in 
1980. Doug’s paternal grandparents were Ryan and Alice, who 
married in 1942. They had two children, Gregory (born in 
1950) and Ellen (born in 1944). Ellen gave birth to a daughter 
Karen in 1996 before she divorced in 1999. Gregory married 
Cathy in 1973. They had two sons, Douglas (born in 1977) 
and Randy (born in 1981). Joseph died in 2001, Marie in 2003, 
Brian in 1979, Ryan in 2001, and Ellen in 2012.

Social workers spend much of their time interviewing people, and often, those 
interviews involve recording family histories. Business and systems analysts also spend 
considerable time interviewing people, but they do it to understand how the business 
works or exactly what a new computer-based application needs to do. If the interview is 
about the database, then the notes center on data, the definition of that data, and how 
they are used in the business. Often the scenario works as follows. The database designer 
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or social worker questions the interviewee and records, as meticulously as possible, the 
interviewee’s comments and answers. Then the interviewer goes back to the office and 
transcribes the interview notes into a more formal format, all the while looking for errors, 
missing information, or new questions that need to be asked and answered. Then back to 
the interviewee to review the transcribed notes, looking for errors and omissions, and to 
ask those new questions uncovered while transcribing the notes. Gaining feedback from 
the interviewee, the database designer returns to the office and adds the new information 
just gathered. Then back to the interviewee to confirm the changes…you get the idea. The 
problem for a social worker, as well as a database designer, is that a complete and accurate 
interview can require multiple iterations of questions, answers, notes, analysis, and then 
back with new questions, which might generate or uncover additional significant errors. 
Interviews are a necessary but error-prone way of gathering information.

Luckily, social worker Dorothy Keenan came across a 1985 book, Genograms in 
Family Assessment by Monica McGoldrick and Randy Gerson, which introduced a 
graphical method of recording family histories.1 McGoldrick and Gerson used simple 
symbols to diagrammatically depict a family. For example, a square represents a male, 
while a circle a female. A horizontal line between them indicates a relationship. A vertical 
line shows progeny. An X through a square or circle indicates that the individual is dead.

Using a genogram, Dorothy Keenan produced a simple diagram of Douglas’ family 
(Figure 2-1). Just creating the chart raised a few obvious questions.

Who did Ellen marry?

When was Brian born?

When was Jennifer born?

Is Alice still alive?

Figure 2-1.  A genogram
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A closer look raised a few not so obvious questions including

Did Ellen really have a child at age 52?

And it introduced a glaring error.

Brian could not have died a year before his divorce.

The diagrammatic approach also saves time because the chart can be hand drawn 
during the interview and “read back” to the interviewee for comments and to fill in 
missing information—all in one meeting.

The amazing thing about genograms is that they are

•	 Accurate: They can increase the correctness of information 
transferred from interviewee to interviewer.

•	 Efficient: They can reduce the time required to complete an 
effective interview.

•	 Teachable: Virtually anyone can learn how to read or how to 
create them with just a few hours of (self) instruction.

•	 Expandable: You can easily add more complex concepts, such 
as family member behavior (abusive, manipulative, estranged, 
etc.), health (heart disease, Alzheimer’s, diabetes, etc.), and 
relationships (divorced, foster child, twins, etc.).

The lesson of including diagrams in data gathering and communicating with 
users and colleagues is not lost on IT. Flowcharts were, in fact, developed long before 
the first working computer, going back to the early twentieth century. They were used 
to document manual workflow but were quickly adapted in the 1950s to represent 
computer-based algorithms. The first use of a diagram to represent data was probably 
by Charles Bachman in the 1960s. In all these cases, using diagrams to supplement data 
gathering increased model accuracy, understanding, and communication.

A Little Data Modeling History
Charles Bachman has an interesting IT history, wearing three separate, thought-related 
hats. He designed one of the first database management systems and the first network 
DBMS, an offshoot of which is still available today (IDMS from CA Technologies). 
Second, he was the driving force behind CODASYL’s database standards work, and the 
standards later published by the Data Base Task Group (DBTG) were greatly influenced 
by Bachman’s network model. DBTG developed a number of database concepts still 
used today, such as schema, subschema, Data Definition Language (DDL), and Data 
Manipulation Language (DML). Bachman’s third contribution is the data structure 
diagram (DSD), also called the Bachman diagram.

In 1969, Bachman published a paper on a technique he and others had used for the 
previous five years to graphically document database concepts such as entities (called entity 
classes) and relationships (called set classes).2 A rectangle represented an entity, while an 
arrow represented a relationship. The “owner” of the relationship was at the nonarrowhead 
end of the relationship line, and the “member” was at the arrowhead end (Figure 2-2).
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The set is not just the basic network model building block—its owner-member 
structure is the fundamental one-to-many relationship used throughout the entire 
database industry.

The Bachman diagram’s graphic nature quickly moved beyond the network model 
to be used by designers of older hierarchical and newer inverted databases as well. It was 
a clear winner for representing database structure. What was less clear was whether the 
Bachman diagram was a logical or physical representation of the data, or both. Because 
the emphasis in the early 1970s was more on the physical side of computing than the 
logical, many Bachman diagrams were described as pictures of the physical database 
schemas. Bachman, however, always maintained that his creation was a conceptual 
picture of the logical structure of data and not its disk and software incarnation.3

The Bachman diagram, and the confusion surrounding its use, continued for a few 
years until, in 1976, Peter Chen published a paper that both expanded the concepts of 
Bachman and explicitly limited the scope to the logical definition of the data. Chen’s 
work, called the entity-relationship model or the entity-relationship approach, was a big 
hit and today is still the gold standard for representing the logical definition of data.4

Subsequent years saw the expansion of the entity-relationship (E-R) approach as 
well as spin-offs such as the Integration Definition for Information Modeling (IDEF1X) 
and the Unified Modeling Language (UML). (UML is a synthesis of logical data and 
logical process modeling.) No offshoot has come close to the E-R approach in popularity, 
versatility, efficiency, or ease of use.

Some Important Definitions
Let’s get a few definitions out of the way.

A model is an abstract representation of a subject that looks and/or behaves the 
same as all or part of the original. Although it is not real, the model can be physical, such 
as a mock-up of the International Space Station, a drawing, or a blueprint, or it can be 
conceptual, such as the mathematical formulas used for weather forecasting.

Figure 2-2.  A DSD, or Bachman diagram
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Modeling is the process of creating the abstract representation of a subject. A subject 
is modeled so that it can be (1) studied more cheaply (a scale model of an airplane in a 
wind tunnel), (2) examined at a particular moment in time (weather forecasting), or (3) 
manipulated, modified, and altered without disrupting the original (economic models).

A data model represents the definition, characterization, and relationships of data in 
a given environment.

A logical data model is a data model of the information used in an organization from 
an end-user perspective, without regard to its functional or physical aspects.

Although the phrase logical data model is more specific than the generic data model, 
the two terms are often used interchangeably.

The entity-relationship approach is the logical data modeling technique created by 
Peter Chen and expanded in subsequent years by a number of authors.

An entity-relationship diagram (ERD) is the logical data modeling diagram created 
using the E-R approach.

Regrettably, some people equate the “data model” with a diagram—the graphic or 
picture of the data. However, as the definition clearly states, a data model includes the 
definition, characterization, and relationship of the data in addition to any pretty pictures. 
The logical data model or E-R model consists of a logical data modeling diagram, or ERD, 
and the definition of any data in the model, also called a data dictionary.

Logical Data Modeling Objects
DNA, it is said, is made up of four basic building blocks—cytosine, guanine, adenine, and 
thymine—which can be arranged into millions of different and unique combinations. The 
basic building blocks of logical data modeling are entities, attributes, and relationships, 
and they too can be arranged into a nearly unlimited number of combinations 
representing the information a business or enterprise needs to function.

Entities
An entity is a person, place, or thing about which an organization wants to save 
information. Examples of entities would be people, employees, cars, invoices, students, 
diseases, and anything else important to an enterprise. Entities are graphically 
represented by a rectangle, one rectangle per entity, with the name of the entity inside. 
Figure 2-3 illustrates two entities: Customer and Car.

Figure 2-3.  A rectangle is used to diagram an entity
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There are a few grammatical rules surrounding entities. First, an entity name 
(almost) always is a noun. Second, as a convention, the first letter of an entity name is 
capitalized, for example, Employee, Boat, State. Third, entity names are often singular 
in number, but this rule is not hard and fast and, as you will be see later, sometimes 
discarded in the interest of communication.

Type-Instance Distinction
Before continuing, you need to take a short philosophical side trip. When talking about 
the entity Customer, one can mean a single customer, such as “Jones,” or the group or set 
of all customers. If you remember your college philosophy class, you probably learned 
about the type-token distinction. A type is the name given to a group of things, such as 
turtles, balloons, and customers, while a token is a particular instance or occurrence 
of a type, such as the Bob the turtle. Database design talks about types and instances or 
occurrences. Customer is an entity type, while “William Canynge,” the person who buys 
your wares, is an entity instance or entity occurrence. The type-instance distinction is used 
throughout database design.

Relationships
A relationship is a connection between two or more entities. Examples of relationships 
are buy, support, is a member of, owns, include, and so on. Chen used a diamond to 
graphically represent a relationship (Figure 2-4) although other authors have used a 
simple line. The diamond is more dramatic, but it also takes more real estate on a small 
piece of paper. A line is less impressive but more concise. Either is acceptable.

Figure 2-4.  The relationship Buy links Customers and Cars

Relationships are usually verbs. As with entities, the first letter of the relationship 
name is capitalized and placed in the diamond, à la Chen, or on the line for the 
diamond-less. The type-instance distinction also applies to relationships. You can have 
a relationship type between entity types and a relationship instance between entity 
occurrences.
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Relationships fit nicely between entities. Take the phrase “Customers Buy Cars.” 
Customer and Car (the two nouns) are entities, and Buy (the verb) is the relationship. 
This is a common structure (entity-relationship-entity) and is called a relationship-entity 
pair. Relationship-entity pairs are bidirectional. To say “Customers Buy Cars” is the same 
as saying “Cars Are Bought by Customers.” Figure 2-4 shows the relationship Buy between 
the entities Car and Customer.

Attributes
An attribute is a property or characteristic of an entity. The simplest way to explain an 
attribute is with an example. COLOR is an attribute type, while “red” is an attribute 
occurrence. Attributes do not stand by themselves. You would never have just COLOR or 
just “red.” There must be something that has the color red for either color or red to exist. 
You can say that the entity type Car has the attribute type COLOR and that an instance of 
the entity type Car, the Sunbeam Tiger in the back lot, has the COLOR instance “red.”

As a convention, attribute types are in all capital letters, and attribute instances are in 
double quotes. Some authors put attributes on the logical data modeling diagram, either 
in the entity rectangle or alongside it. Others use ovals connected to the entity rectangle 
containing the entity’s attributes (Figure 2-5). All of these approaches are acceptable 
although, once again, size matters. Academic papers and textbooks, which usually show 
a data model of no more than a handful of entities and a dozen attributes, can use the 
“attributes on the page” convention. Real-world data models, with dozens of entities and 
100 or more attributes, would require a piece of paper the size of a ping-pong table—
unrealistic in most cases. The more practical solution is to leave the attributes off the 
diagram and in the data dictionary.

Figure 2-5.  Diagramming attributes

A similarity among entity, relationship, and attribute names is that spaces are 
not only allowed but encouraged, and length is not an issue. The goal of logical data 
modeling is to communicate, and Customer Name or Registered Student does a better job 
of communicating than Cust_Nam or Reg-Stud.

The next chapter introduces more advanced topics for logical data modeling using 
the entity-relationship approach.
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Notes
	 1.	 Genograms in Family Assessment is currently published 

as Monica McGoldrick, Randy Gerson, and Sueli Petry, 
Genograms: Assessment and Intervention, Third Edition.  
New York: WW Norton and Company, 2008.

	 2.	 Charles Bachman, “Data Structure Diagrams.” DataBase:  
A Quarterly Newsletter of SIGBDP. Vol. 1, No. 2, Summer 1969, 
pages 4–10.

	 3.	 I was on a conceptual modeling committee with  
Mr. Bachman, when a committee member referred to the 
Bachman diagram as a physical representation of data. 
Bachman responded by saying that Bachman thought the 
Bachman diagram was a logical representation.

	 4.	 Peter Pin-Shan Chen, “The Entity-Relationship Model—
Toward a Unified View of Data.” ACM Transactions on 
Database Systems (TODS). ACM, New York, Vol. 1, No. 1, 
March 1976, pages 9–36.
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CHAPTER 3

More About the E-R 
Approach

The relationship between the data is more important than the data.

—James Burke

Data matures like wine, applications like fish.

—James Governor

Chapter 2 introduced logical data modeling using the entity-relationship approach. 
This chapter expands the logical data model building blocks: relationships, entities, and 
attributes.

More About Relationships
Relationships, so far, seem rather pale and lifeless. However, relationships have three 
characteristics that give them the texture needed to express the richness of the real world, 
namely, membership class, degree, and relationship constraints.

Membership Class
Membership class indicates the number of instances of one entity type that can be related 
to the instances of another entity type. Knowing the exact number is helpful but not 
always possible. For example, in most parts of California, a husband can have only one 
wife, while a wife can have only one husband. A page has two sides, and a cat has only 
nine lives. A school might have a rule that a course must have at least 5 students but no 
more than 25. When the exact number is known, it should be documented at least in the 
data dictionary if not on the E-R diagram. However, usually all you know are three simple 
possibilities: zero, one, and many. A dog has zero wings, a citizen has one birthplace, 
and a politician has many positions. The maximum number of possible cases is called 
cardinality, while the minimum number of cases is called modality.

http://dx.doi.org/10.1007/978-1-4842-2722-0_2
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Cardinality
To understand the concept, start with two relationship-entity pairs. The first pair uses the 
relationship Sire (a male horse fathering a foal), as in “Stallions Sire Foals,” or, from the 
other direction, “Foals Are Sired by a Stallion.” The second pair uses the relationship Pull, 
as in “Stallions Pull Wagons.”

In the first case, “Stallions Sire Foals,” you know that a stallion can sire many foals, 
but a foal can be sired by only one stallion. However, in the second case, a stallion can 
pull many wagons, while a wagon can be pulled by many stallions (think beer wagon).

The first case demonstrates that a single occurrence of entity type A can be related to 
one or many occurrences of entity type B, but entity B can be related to, at most, only one 
occurrence of entity A. This is called a one-to-many relationship, and they are everywhere. 
A customer can have many accounts, but an account can be for only one customer. An 
order can have many line items, but a line item can be for only one order. A mother can 
have many children, but a child can have only one mother.

Not all relationships are one-to-many. As was mentioned earlier, a husband can have 
only one wife, and a wife can have only one husband. Here the relationship is one-to-one.

There is a third case. Take the example “Customers Buy Products.” A customer 
can buy many products, while a product can be bought by many customers. This is an 
example of a many-to-many relationship.

Cardinality is the maximum number of occurrences of an entity type, usually 
expressed as one or many, that can be related to an occurrence of another entity type. 
There are four cardinality states.

•	 One-to-one (1:1): An occurrence of entity A can relate, at most, 
to one occurrence of entity B, and an occurrence of entity B can 
relate, at most, to one occurrence of entity A. For example, a 
husband can have only one wife, and a wife only one husband.

•	 One-to-many (1:N): One occurrence of entity A can relate to 
many occurrences of entity B, but an occurrence of B can relate to 
only one occurrence of A. For example, a mother can have many 
children, but a child can have only one mother.

•	 Many-to-many (M:N): An occurrence of entity A can relate to 
multiple occurrences of entity B, while an occurrence of entity B 
can relate to many occurrences of entity A. For example, an uncle 
can have many nephews while a nephew can have many uncles.

•	 Many-to-one (M:1): Because relationships are bidirectional, 
a many-to-one relationship is the inverse of a one-to-many 
relationship.

Note that the cardinality of a relationship is about the maximum number of 
occurrences allowed in the relationship, not the minimum. Note the word can in the 
definitions. Cardinality says A can relate to multiple Bs, but it does not have to. The 
cardinality of “Customers Own Cars” might be one-to-many, while an instance of a 
customer, say Jones, might own only one or even no cars.
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Diagramming cardinality is easy. Chen placed the number 1 on the relationship line 
next to the diamond to represent one and an N or M to represent many (see Figure 3-1). 
Most modern modelers have dropped the Chen notation in favor of the bar to represent 
the one and the trident, or, more popularly, the “chicken foot” or “crow’s foot,” to 
represent the many.

Figure 3-1.  Cardinality using Chen and “chicken foot” notation

Figure 3-2.  Modality showing both mandatory and optional relationships

Modality
The other side of the membership class coin is modality, the minimum number of 
occurrences that can be in a relationship. Take, for example, the relationship-entity pairs 
Orders Contain Line Items and Artists Paint Pictures (Figure 3-2). We know that the 
cardinality of Orders Contain Line Items is one-to-many—an order can consist of many 
line items, but a line item can be part of only one order. We also know that the cardinality 
of Artists Paint Pictures is also one-to-many (no artist worth his salt ever gave credit to an 
assistant). However, there is a significant difference between the two. You cannot have an 
order without at least one line item, but there are many artists who have never painted a 
picture (just go to any singles bar near a women’s college).

Because you cannot have a line item without an order, then a Line Item occurrence 
must be linked to an Order occurrence; put another way, Line Item’s role in the 
relationship Contain is mandatory. Can you have an order without a line item? If not, 
then Order’s role in Contain is also mandatory. The same is true for Pictures and Artists. A 
Picture occurrence must be linked to an Artist occurrence, so the modality is mandatory. 
However, an Artist occurrence need not be linked to any Picture occurrence, so Artist’s 
involvement in the relationship Paint is optional.

Modality specifies whether an entity’s involvement or role in a relationship is 
mandatory or optional. By convention, a mandatory modality is diagrammatically 
represented by a bar on the relationship line, while an optional modality is depicted by 
an O on the line, as in Figure 3-2. In the notation, the modality symbols are placed on the 
relationship line within the cardinality symbols, as in Figure 3-3.
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When referring to cardinality, modelers often use the shorthand one-to-many or 
many-to-many to identify the cardinality at each end of the relationship between entity 
A and entity B. Similarly, for modality, modelers use the terms mandatory-optional 
relationships and optional-optional relationships. However, it is easy to confuse the order 
of the words. Take the expression “A Department Contains Employees.” A Department 
can have zero to many Employees, while an Employee must be in one and only one 
Department. We say the cardinality is one-to-many because we read the expression left to 
right.

Entity (Department) – Cardinality (one) – Relationship 
(Contain) – Cardinality (many) – Entity (Employee).

Some modelers have a problem with the order of the words. They point out that the 
word one is next to the entity Department and not next to the entity Employee. Doesn’t it 
seem that the word one should be next to Employee and not Department? The answer is 
to remember that cardinality is a property of a relationship and not of an entity. The word 
order one-to-many and not many-to-one is used in this example because you are reading 
the relationship line. In the relationship-entity pair Department Contains Employees, the 
relationship line has a bar on the left and the crow’s foot on the right, so you read the line 
as one-to-many.

The same is true for modality, although for some people, it is even less obvious than 
how you read cardinality. Following the “read the relationship line left to right (or top to 
bottom)” rule, we have four possible modality cases.

•	 Mandatory-mandatory (M:M): Every occurrence of entity A 
must be related to at least one occurrence of entity B, and every 
occurrence of entity B must be related to at least one occurrence 
of entity A. For example, an Order must be related to at least one 
Line Item, and a Line Item must be related to an Order.

•	 Mandatory-optional (M:O): Every occurrence of entity A must be 
related to at least one occurrence of entity B, but an occurrence  
of entity B need not be related to any occurrences of entity A.  
For example, an Account need not be related to any Orders  
(it might have been just set up), but an Order must be related to 
an Account.

Figure 3-3.  Diagraming cardinality and modality
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•	 Optional-optional (O:O): An occurrence of entity A need not be 
related to any occurrences of entity B, and an occurrence of entity 
B need not be related to any occurrences of entity A. For example, 
in Banks Finance Cars, a Bank might, but need not, finance any 
Cars, and a Car might not have been Financed by a Bank.

•	 Optional-mandatory (O:M): Because relationships are 
bidirectional, an optional-mandatory relationship is the inverse 
of a mandatory-optional relationship.

WORD SOUP

Some authors call modality optionality; others call it participation. Optionality 
is an odd word to call modality because you can wind up with a relationship of 
mandatory optionality as in the phrase “its optionality is mandatory.” If that is not a 
contradiction, then it should be. Participation is almost as odd because you can have 
a participation of no-participation. Both optionality and participation would be at 
home in a Lewis Carroll story.

The word modality comes from modal logic, which defines a proposition as either 
necessary or contingent—exactly what we want to express in membership class.

By now you have probably figured out that you do not need both the bar and the 
crow’s foot or both the bar and the O. For cardinality, the absence of the crow’s foot 
could indicate a one, and for modality, the absence of the O could indicate mandatory. 
However, the bar is not redundant—it communicates an important message. Having all 
three symbols (bar, crow’s foot, and O) tells you when the modeler knows the cardinality 
or modality and when they do not. The bar distinguishes unknown from one or unknown 
from mandatory.

Degree
Degree is an indicator of the number of entity types that are allowed in a relationship. 
Relationships can be binary, n-ary, or unary (recursive).

Binary Relationship
The most common relationship, involving only two entity types, is called a binary 
relationship. Binary relationships are so fundamental to data management that most 
database management systems support only them, to the exclusion of other types of 
relationships.
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N-ary Relationships
The phrase “Customers Buy Cars from a Dealer” illustrates an n-ary relationship. The 
relationship Buys binds together three entities (Customer, Car, and Dealer). It is called an 
n-ary relationship, where n can be any number greater than 2 (Figure 3-4a).

Figure 3-4.  N-ary and recursive relationships

N-ary relationships are quite common in the business world; representing them on 
the logical data model is crucial to accurate database design.

Unary or Recursive Relationships
An entity can also be related to itself. Take the example of Employee and the relationship 
Report To. The Employee instance of “Smith” can report (on the organizational chart) 
to his supervisor, the Employee instance of “Jones.” A relationship between two or more 
occurrences of the same entity type is called a unary relationship or recursive relationship 
(Figure 3-4b).

Recursive relationships are important because they help the data modeler (and later 
the database designer) with the bill of materials problem.

Assume that you work for an automotive repair company and you need to create a 
parts database. Mechanics access the database to find the parts they need, which can be 
as large as an entire engine or as small as a single bolt for the starter motor. The problem 
is an engine is made up of hundreds of parts, and most of those parts have subparts. That 
bolt can be a stand-alone part or a part of another part, such as a starter motor, which, in 
turn, is part of an engine. There is a hierarchy of parts, from the top, the car itself, down to 
the bolts and washers at the bottom (Figure 3-5a). In between are ignition systems, starter 
motors, fuel pumps, and radiators.
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The problem for the data modeler is how to represent the hierarchy. How many 
Part entity types, stacked on top of each other, should be included in the data model? 
Four to accommodate the example? Maybe six, to leave some room for expansion? But 
remember, a car is made up of hundreds, if not thousands, of parts. Maybe 100 levels are 
needed?

Luckily, the recursive relationship solves the problem. Having a single entity type, 
Part, with the single unary relationship, Is Made Up Of, the model can handle any number 
of part levels from one to literally thousands (Figure 3-5b).

The data modeler will find the recursive bill of materials structure throughout the 
real world.

Relationship Constraints
A relationship constraint is a restriction on how entities can relate to each other. There are 
three classic relationship constraints: exclusion, inclusion, and conjunction.

Inclusion
Examine the three entity types and two relationship constructs in Figure 3-6. Inclusion 
states that an occurrence of entity type A can be related to an occurrence of entity type 
B or to occurrence entity occurrence C, or to both. This is your garden-variety case of 
occurrence: “Jack” of entity type Student, related to entity Class occurrence “History 101” 
or to entity Sport occurrence “Baseball,” or to both. Inclusion is the most common type of 
relationship constraint. There are no diagramming features required for inclusion.

Figure 3-5.  A bill of materials hierarchy
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Exclusion
Exclusion states that an occurrence of entity type A can be related to an occurrence 
of entity type B or to an occurrence of entity type C, but not both. Taking the student 
example, assume that a student can participate in a sport or in an after-hours club, but 
not both. Therefore, entity occurrence “Jack” could be related to the entity Sport or to the 
entity Club, but not both. Exclusion is represented on a diagram by an arc spanning the 
excluded relationships.

Conjunction
Conjunction states that if entity occurrence A is related to entity occurrence B, then it 
must also be related to entity occurrence C. There are two types of conjunction: simple 
conjunction and conditional conjunction.

Simple Conjunction
Simple conjunction states that given three entities (A, B, and C) and two relationships 
(one between A and B, and one between A and C), every A occurrence must be related 
to an occurrence of B and related to an occurrence of C. An example would be the 
case where every Employee occurrence must be related to a Benefits occurrence and 
to a Security Clearance occurrence. This is easily diagrammable with two mandatory-
mandatory relationships, as in Figure 3-7a. No special graphic symbols are needed.

Figure 3-7.  Simple and conditional conjunction

Figure 3-6.  Relationship constraints
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Conditional Conjunction
Conditional conjunction states that, given three entities (A, B, and C) and two 
relationships (one between A and B, and one between A and C), if an occurrence of A 
is related to an occurrence of B, then that occurrence of A must also be related to an 
occurrence of C. An example would be the case where a student can register only if the 
semester fee is paid, as in Figure 3-7b. Student occurrence Jones has a spring Registration 
occurrence only if he also has a spring Payment occurrence. Note the straight line used to 
show the conjunction.

Conjunction is not limited to three entities. The Student example can be expanded 
to four entities by including an Admission entity, where Registration is conditional on 
Payment and Payment is conditional on Admission.

The bar indicates that there is a conjunctive constraint among the relationships, 
but unfortunately it does not tell you which relationship is conditional on which other 
relationship. You can use arrows to show the condition (Figure 3-8), which works for the 
three-entity example.

Figure 3-8.  Directional conditional conjunction

However, the arrow can become confusing as the number of entities increases. 
The simplest solution is to use the straight line as a flag for the developer to indicate 
conjunction and then document the constraint in the data dictionary.

WORD SOUP

Some authors call membership class and degree by other names or use no names 
at all.

Some authors refer to membership class as structural constraint. A second group 
calls membership class degree, which conflicts with the mathematical definition of 
degree used by most authors.

A third group avoids the membership class naming issue by not having a name for 
membership class at all, instead just referring to its constituents—the cardinality 
and modality (or optionality, or participation) of the relationship. Problem solved 
through obfuscation.
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Membership class and degree are concerned with a single relationship between 
one or more entities. Relationship constraints are unique in that they are concerned with 
multiple relationships between multiple entities. It is the only time in data modeling 
when one relationship can directly affect another relationship.

Recursive Modality Constraints
Recursive relationships can be uniquely complex.

Take the five-level organization consisting of the entities: Headquarters, Division, 
Region, District, and Local offices (Figure 3-9).

Figure 3-9.  A five-level organization and its recursive equivalent

What if all locations do not have all the levels? Assume that the Cleveland Local 
office reports directly to the Midwest region and not to a District office. Suppose in France 
some local offices have six or seven organizations between them and the Division level. 
This example is a classic case for an n-level structure and can be represented by the entity 
Organization and the recursive relationship Report To.

Problems can arise, however, when you try to assign the modality of the relationship. 
There are four options: mandatory-mandatory, optional-optional, mandatory-optional, 
and optional-mandatory. Which is it?

Some could argue that any mandatory relationship is impossible, because it would 
require that every occurrence have at least one level above it and at least one level 
below it. This is an infinite regression, because no level could be the top or the bottom. 
For example, the Headquarters occurrence would have to report to some organization 
occurrence above it, and some organization occurrence would have to report to the 
Cleveland Local office.



Chapter 3 ■ More About the E-R Approach

33

Take another example—the Mayor entity for a city. The mayor can have a successor 
and/or be a successor (have a predecessor). Is the relationship Succeeds mandatory or 
optional? Answer: it must be optional because the first mayor had no predecessor and 
the very last mayor has no successor. (The same is at least temporarily true for the current 
mayor—at least until he has a successor.) To say that every mayor has a predecessor 
means that there must be an infinite number of mayors stretching back in time forever. 
Because this is impossible, the relationship must be optional (Figure 3-10).

Figure 3-10.  An optional-optional relationship

This argument suggests that recursive relationships cannot be mandatory. But wait…
Try a very different type of example. Suppose the police department has a rule 

stating every police officer must have a partner and only one partner. This is a one-to-one 
recursive relationship that is clearly mandatory-mandatory (Figure 3-11).

Figure 3-11.  Two mandatory-mandatory recursive relationships

Here is another example. A dance contest requires that every dancer must have 
one and only one partner. Clearly, the relationship “Dances with” is also mandatory-
mandatory.

You can also construct mandatory recursive many-to-many relationships. Figure 3-12 
describes a relationship in which everybody (parent, sibling, cousin, uncle, etc.) relates to 
at least one other person and probably more (actually, at least two, because everyone has 
two parents). This relationship is clearly mandatory-mandatory.

Figure 3-12.  A mandatory many-to-many recursive relationship
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What does all this mean? Why is it that in some cases it seems that mandatory 
relationships are impossible and in other cases possible? The answer is that there are 
actually two different types of recursive relationships.

Look at the relationships in the two different situations. The cases in which a 
mandatory relationship appears impossible are those with relationships such as Reports 
To or Succeeds. The cases in which a mandatory relationship appears possible are those 
with relationships such as “Is the partner of” or “Dances with.”

The officer hierarchy and mayor examples define relationships that are 
asymmetrical. In other words, A is related in some way to B, but B is not related in the 
same way to A. Examples of asymmetrical relationships are Owns and Hits, because A 
Owns B does not automatically mean that B Owns A. Again, to say A Hit B does not mean 
that B Hit A. An asymmetrical relationship is represented on the logical data model by a 
dashed relationship line (Figure 3-13).

Figure 3-13.  Asymmetrical and symmetrical recursive relationships

The dance partner and police partner relationships are symmetrical. If A “Dances 
with” B, then B “Dances with” A; if A “Is the partner of” B, then B “Is the partner of” A.  
A symmetrical relationship is represented by a double relationship line.

Asymmetrical relationships are unidirectional implying a sequence or hierarchy that 
must have a beginning or end. Symmetrical relationships are bidirectional and have no 
beginning or end. Therefore, asymmetrical relationships cannot be mandatory, while 
symmetrical relationships can be.

This is called a recursive modality constraint. However, to understand this constraint 
you must first grapple with the concept of role. A role is the part an entity plays in a 
relationship. In a symmetrical relationship all entity occurrences play the same role. 
Examples would be Marries and Dances with. In an asymmetrical relationship, the entity 
occurrences play different roles. For example, take the relationship supervises. One role is 
“Supervisor,” and the other role is “Is supervised” or “Supervisee.”

An asymmetrical relationship involves a sequence or hierarchy that must have 
a beginning or end. Symmetrical relationships have no beginning or end. Therefore, 
asymmetrical relationships cannot be mandatory, while symmetrical relationships can be.

But wait…was it not said earlier that all relationships are bidirectional? What 
was said earlier was that there is no need to name each direction of a relationship. 
Relationship bidirectionality says that Customers Buy Cars is the same as Cars Are Bought 
by Customers. Relationship asymmetry says that Customers Buy Cars and Cars Buy 
Customers are not the same.
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Recursive modality constraints can be summarized as follows:

•	 Symmetrical relationships can be mandatory-mandatory or 
optional-optional, but not mandatory-optional or optional-
mandatory. The latter two categories are meaningless.

•	 Symmetrical relationships cannot be one-to-many. One-to-many 
symmetrical relationships are meaningless.

•	 Asymmetrical relationships cannot be mandatory. If they were, 
that would mean they fall into an infinite regression.

Recursive modality constraints are discussed in greater detail in Chapter 7.

More About Entities
So far, only one kind of entity was presented—a proper entity. A proper entity, also called 
a fundamental entity, is a person, place, or thing that is existentially independent of any 
other entity type or occurrence. However, this is not the only kind of entity. This section 
expands the notion of entities to attributive, associative, and S-type entities.

Attributive Entity
Not all entities are equal. Some entities can exist independently of other (proper) entities, 
while some entities can exist only if a companion exists. Take the two entities Customer 
and Customer Address. You can have an occurrence of Customer without a relationship 
to an occurrence of Customer Address, but you cannot have an occurrence of Customer 
Address that is not related to some occurrence of Customer. An entity that is dependent 
on another entity for its existence is called an attributive entity or weak entity.

Attributive entities are usually, although not always, on the many side of a one-to-
many relationship with a proper entity, and that relationship with that proper entity is 
often, but not always, the only relationship the attributive entity has.

Do not confuse attributive entities with mandatory relationships—they are quite 
different. An entity in a mandatory relationship with one entity can be in an optional 
relationship with another. Some modelers have difficulty identifying attributive entities 
because they overthink the problem. You simply need to ask yourself this question: 
“Would this person, place, or thing exist if X did not exist?” If your answer is No, then the 
entity is an attributive entity.

An attributive entity is depicted on an E-R diagram as a double-bordered rectangle, 
as in Figure 3-14.

http://dx.doi.org/10.1007/978-1-4842-2722-0_7
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Associative Entities
Go back to the entity-relationship pair, Customer Buys Car. It should be obvious that 
MAKE and MODEL are attributes of Car and that CUSTOMER NAME and PHONE 
NUMBER are attributes of Customer, but what are DATE OF PURCHASE and SELLING 
PRICE attributes of? Not Customer, not Car, but of the relationship Buys. An associative 
entity is a relationship with its own attributes (Figure 3-15). Why is it called an entity 
and not a relationship? Good question. Because it is a cross between an entity and an 
attribute-less relationship, you would think it could be either one. Nonetheless, it is 
universally called an associative entity.

Figure 3-15.  Attributive and associative entities on the LDM

Figure 3-14.  Attributive and associative entities

Carrying forward its dual nature, the associative entity is diagrammatically 
represented as an amalgam of an entity and a relationship—a diamond in a rectangle.

Supertype and Subtype Entities (Generalization and 
Specialization)
Entities can sometimes play different roles in an organization. A business has customers, 
but not all customers are alike. There can be wholesale customers, retail customers, 
and customers that appear to be both. Whatever their role, both retail and wholesale 
customers have a lot in common. They both have properties such as name, address, 
telephone number, and customer number. However, their roles might also have different 
attributes and be treated differently because of them. A wholesale customer might have 
a credit status, a discount level, and an outstanding balance that the retail customer does 
not. The retail customer might have a frequent customer card tied to a bonus program, 
get coupons from a marketing campaign, and receive birthday cards on their birthday.
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How do you model this? The data modeler has three options. The first is to have a 
single entity Customer containing the attributes for both wholesale and retail customers, 
leaving blank the unused attributes. That’s not a very elegant solution. Empty attributes 
make many modelers fidget uncontrollably.

The second option is to have two different entities, Wholesale Customer and Retail 
Customer, but then the common information for each must be duplicated in the two 
entities. This option would have the dual disadvantages of duplication and spreading of 
customer information all over the data model. You can almost feel the fidgeting.

Luckily, there is a third option. A supertype-subtype (sometimes abbreviated S-type), 
also called generalization and specialization, is a single entity, with its own attributes 
and its own relationships, which also contains multiple entity roles, where each role can 
have its own attributes and relationships. The supertype contains all common data and 
relationships, which are inherited by the subtypes, while the subtypes house their own 
role-specific attributes and relationships. In the example, Customer is the supertype, 
while Retail and Wholesale are the subtypes.

The most descriptive way to represent S-types is with the box-in-a-box—place the 
subtypes in an entity rectangle within the supertype entity rectangle, as in Figure 3-16.

Figure 3-16.  A supertype-subtype entity

An alternative to the box-in-a-box is the “is a” relationship, as in Customer “is a” 
Retail or Customer “is a” Wholesale. The “is a” representation requires three proper 
entities with the two subtypes linked to the supertype with two “is a” relationships 
(Figure 3-16). The two relationships are one-to-one mandatory-optional.

Relationships can be at the supertype or at the subtype level, as in Figure 3-17.

Figure 3-17.  Supertype and subtype relationships
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S-types are not limited to two levels; instead, they can be nested, one inside the 
other, as in Figure 3-18.

Figure 3-18.  Nested supertypes and subtypes

There are three advantages to the box-in-a-box diagramming technique. First, it 
is easy to see which relationships are to the supertype and which are to the subtypes. 
Second, it does not require phantom relationships between the various entity roles. 
Third, S-type nesting does not need to stop at two levels. Some businesses require three, 
four, or more levels of supertypes and subtypes. N-level S-types are more obvious with the 
box-on-a-box construct than the “is a” construct.

Unfortunately, some diagramming tools do not allow the S-type entity or the box-in-
a-box graphic. Modelers using these products are forced to get around this failing with 
the “is a” structure. It’s not pretty, but it works.

More About Attributes
For shorthand, most data modelers refer to an attribute type as an attribute and an 
attribute occurrence as an attribute value or just value. This section takes a closer look at 
attributes and values.

Attribute Domain
An attribute domain is the set of possible values of an attribute type. Examples of 
domains include dates, foreign cars, integers, and gender. Domains can be quite broad, 
as in the domains of text and real numbers, or very specific, as in U.S. states or Fibonacci 
numbers.

Domains have rules, so the domain Dates cannot include the month Betty or the 
day of the month 36. Equally erroneous would be the integer 3.14159 or the domain Vice 
Presidents of the United States containing Sarah Palin. Domains are useful because they 
can flag data entry and calculation errors before they cause problems.

Take the following example of the computer code fragment:

If EMPLOYEE STATUS = “Full Time”

and CURRENT DATE minus DATE OF EMPLOYMENT greater 
than (25x365)

then RETIREMENT ELIGIBILITY = “YES”
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This works only if CURRENT DATE and DATE OF EMPLOYMENT are in the same 
domain Date, the domain for EMPLOYEE STATUS includes the value “Full Time,” and the 
domain for RETIREMENT ELIGIBILITY includes “Yes.”

If the database allowed the value of DATE OF EMPLOYMENT to be “Thomas 
Chatterton,” or the value of RETIREMENT ELIGIBILITY to be “May 3, 2018,” then this 
employee would be in for a rough career.

Domains tend to be of three types.

•	 Data types: Broad categories of data values such as text, integers, 
dates, and so on, commonly found in programming languages

•	 Ranges: Values between two end points such as dates between 
December 7, 1941, and September 2, 1945; integers between 0 
and 255; and last names between A and J

•	 Acceptable values: Specific values such as days of the week, U.S. 
state abbreviations, or the values Male or Female

Domains can be nested, so the subdomain of dates between December 7, 1941, 
and September 2, 1945, is also a member of the domain Dates. Subdomains inherit the 
properties and rules of their parent. Take the example of postal codes. In the United 
States, a ZIP code is either a five-digit integer or a nine-digit integer and can be a 
subdomain of the domain Integers. Canadian postal codes are alphanumeric. In Canada, 
the postal code follows a specific pattern of uppercase letter, integer, uppercase letter, 
space, integer, uppercase letter, integer (such as K1A 0A9). Both American and Canadian 
postal codes also follow an acceptable value list, which disallows certain combinations.

Attribute Source: Primitive and Derived
A primitive attribute is one that cannot be derived from other attributes.

A derived attribute is the result of a calculation or algorithm applied to one or more 
other attributes (primitive or derived). The attribute CURRENT AGE is the result of 
subtracting DATE OF BIRTH from CURRENT DATE. On an invoice, TOTAL AMOUNT is 
the sum of the individual AMOUNT attributes.

Derived data break both the Separation Principle and Distinction Principle of the 
database design principles presented in Chapter 1 and should be left to the process 
modelers to describe and document. Although such derived data are not part of a data 
model, there is nothing wrong with including them in the LDM documentation (data 
dictionary), if those data are part of the business users’ “real world.” But they must be 
identified as derived data. Derived data are never included on the E-R diagram.

Attribute Descriptor and Unique Identifier
A descriptor attribute is a not necessarily unique characteristic or property of an entity or 
relationship (associative entity). Examples are COLOR and NAME.

A unique identifier attribute is an attribute used by the enterprise to point out a 
specific entity occurrence. Examples are SOCIAL SECURITY NUMBER and CUSTOMER 
NUMBER.

http://dx.doi.org/10.1007/978-1-4842-2722-0_1
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WORD SOUP

Identifier or unique identifier? Some modelers use the two terms interchangeably; 
others make a distinction between attributes that uniquely identify an entity and 
attributes that nonuniquely identify an entity (where there can be duplicates). For 
example, EMPLOYEE NUMBER is a unique identifier of Employee, while EMPLOYEE 
NAME can identify an employee if you allow for duplicates.

Identifier or key? There is no hard and fast rule, but many designers make a 
distinction between identifier and key. Identifiers are reserved for logical data 
modeling, while keys are used for physical schema definition.

It’s a useful distinction although not always possible. Even adherents to the rule 
sometimes have to use one word to describe the other, although only as an 
adjective.

Must all entities have a unique identifier? It would be nice, but it’s not necessary. 
The goal of logical data modeling is to document the business (the real world), not the IT 
department’s wish list. If the business uses an identifier, then it should be in the LDM. If 
it does not have an identifier, then the data modeler should not take on deciding how the 
business should be run. Deciding how other people should live their lives is, as always, 
left to systems programmers.

Compound or Concatenated Unique Identifiers
Sometimes an identifier is made up of multiple attributes. LICENSE PLATE NUMBER is 
a unique identifier within a state, but multiple states can issue the same plate number. 
Appending STATE to the attribute LICENSE PLATE NUMBER creates a unique identifier. 
A compound or concatenated identifier is two or more attributes used by the business to 
uniquely identify an entity occurrence.

If the business uses a compound unique identifier, then the modeler should model 
it. If it does not, then it is not the job of the logical data modeler to create one.

Attribute Complexity: Simple and Group
Attribute complexity is a term that refers to the intricacy of an attribute. There are two 
types of attribute complexity, simple and group. A simple attribute, also called an atomic 
attribute, does not contain any other attributes.

A group attribute contains a fixed number of other attributes. An example would 
be the group attribute CUSTOMER ADDRESS, which contains the five simple attributes 
CUSTOMER STREET NUMBER, CUSTOMER STREET NAME, CUSTOMER CITY, 
CUSTOMER STATE/PROVINCE, and CUSTOMER POSTAL CODE.

Some modelers try to ignore group attributes by modeling only the simple attributes 
it contains or modeling the group attribute and ignoring its constituent simple attributes. 
Either approach is a mistake. Groups are not only an integral part of the business but 
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reflect how people talk. An employee might be told to “put the customer address on the 
label.” They would never hear, “Put the customer street number, customer street name, 
customer town, customer state, and customer postal code on the label.”

Attribute complexity has various other names such as group data item, aggregate 
group, compound attribute, aggregate, and, unfortunately, group.

Attribute Valuation: Single Value and Multivalue
Attribute valuation describes how many values the attribute can have at any one time. 
There are two types of valuation, single value and multivalue. A single-value attribute can 
have only one value at a time. An example would be COLOR = “blue.” If COLOR is “blue,” 
then it cannot be “red,” at least not at the same time.

A multivalue attribute can have a number of values at the same time. As an example, 
take the Employee entity and its attribute EMPLOYEE DEGREES. Smith might have only 
one degree, a “BS,” while Jones has three degrees, “BS,” “MA,” and “PhD.”

This type of attribute has various other names such as repeating group and, 
unfortunately, group.

Attribute Complexity and Valuation
Where as a group attribute can contain only a fixed number of attributes of various 
domains, a multivalue attribute can contain a variable number of values, but all of the 
same domain.

Confusion sometimes surrounds group attributes and multivalue attributes 
because both are often called groups. However, they are different logical data modeling 
concepts (Table 3-1). Making data modeling even more interesting, group attributes and 
multivalue attributes can be nested; for example, a group attribute could have multiple 
values. For example, the group attribute EDUCATION could contain the group attributes 
UNDERGRADUATE and GRADUATE, each containing the multivalue attribute DEGREES 
EARNED.

Table 3-1.  Attribute Aggregation and Valuation

Valuation Single-Value Multivalue
Complexity

GROUP DATE consists of  
MONTH, DAY, YEAR

EXAM DATES = “1/15/2018,” “5/15/2018,” 
“8/15/2018”

SIMPLE COLOR = “blue” EMPLOYEE DEGREES = “BS,” “MS,” PhD”
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IS CUSTOMER ADDRESS AN ENTITY OR IS IT A 
PROPERTY/ATTRIBUTE OF CUSTOMER?

There are two near-universal elements in data modeling books. First, virtually every 
definition of entity involves the phrase “person, place, or thing.” The second is that 
customer address (or employee address, student address, etc.) is treated as an 
entity. Why? Why is it not an attribute (group attribute) of Customer?

There are two reasons, neither of which is terribly satisfying. First, look at the almost 
universal definition of entity. Note that word, place. Because address is a place, 
many modelers automatically make every address an entity.

The second reason is even less satisfying. The customer/customer address, 
employee/employee address, and so on, conundrum existed long before data 
modeling, even before the first DBMS. It goes back to the punched-card era when 
any repeating group was placed on a separate punched card, as a child, following 
the parent card. When punched cards became disk files, address just fell into being 
a child record rather than a data item in a parent record. Then when the DBMS 
became available, it was natural to continue this distinction. (As you will see in a 
later chapter, this parent-child relationship is the basis for all data management 
systems.)

The fact is, sometimes customer address is an entity, and sometimes it is a (group) 
attribute. What should the discerning modeler to do? Do the same thing you do 
with the data object shoe size. Look at its definition and determine, on your own, if 
customer address is an entity or an attribute.

To demonstrate the different roles address can play, this book sometimes treats it as 
an entity and other times as a group attribute. It’s not fence sitting—it’s pedagogy.

Figure 3-19 is the family tree of logical data modeling, showing the various data 
modeling objects and their pedigree.
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Figure 3-19.  Logical data modeling objects family tree
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CHAPTER 4

Building the Logical Data 
Model

When we mean to build, We first survey the plot, then draw the model.

—Shakespeare

We used to dream about this stuff. Now we get to build it. It’s pretty great.

—Steve Jobs

Knowing the fundamentals of logical data modeling is important, but that is only half 
the equation. A successful designer also needs the skills to build the model. This chapter 
introduces a few techniques that can help ensure an efficient model.

The major difference between logical data modeling and physical data modeling is 
the same as the major difference between logical process modeling and physical process 
modeling—the skills needed to carry out the tasks. Logical data and logical process 
modeling staff need strong people skills for interviewing business staff, presenting results, 
and gathering feedback. Physical design staff interactions, if the logical design staff have 
done their job, are, for the most part, limited to other technical staff. The subjects in 
this chapter are designed to make the three logical data modeling steps (information 
gathering, analysis, and model construction) easier and more effective.

Perhaps the most important point to remember about building a logical data model 
is that it is an iterative process revolving around interviewing subject experts. As Figure 4-1 
shows, there is no beginning and no end but rather a series of repetitive cycles—each pass 
corrects errors and adds detail to the previous pass.
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The Interview Process
Interviewing might seem like a simple task, but effective interviewing is an important and 
sometimes complicated skill. Unfortunately, like driving a car, it is a skill where 90 percent 
of the people say they are above average. For the 50 percent who are actually in that 
bottom 10 percent, this section explores a few interviewing tips.

Figure 4-2 shows the iterative interview and model building process needed to 
construct an accurate and detailed logical data model.

Figure 4-1.  Usage-Driven Database Design

Figure 4-2.  The interview process
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Gather Information and Review
Just four tasks allow the designer to gather the information to build the LDM.

1. �Identify the Users Who Are Authorities or Experts on the 
Subject

This might seem like an obvious task, but it is also fraught with danger. The problem is 
not the experts but the pseudo-experts. The first activity is to develop a list of subject-
matter experts. To do that, you must interview business and technical staff. If you ask 
enough people, you should get a good feel for who knows the subject and who does 
not. However, in the process of figuring out who to talk to, you might encounter three 
impediments.

The first is the senior guy who really knows nothing about the subject, but you 
have to talk to him, if for no other reason than he demands it. Talk to him, ask a lot of 
questions, take a lot of notes, throw them away after the interview…well, you better keep 
them in case he asks for a follow-up interview sometime.

The second is the expert on how they did it in 1999. This guy is usually now a 
manager who worked in the subject area a decade or two ago. He thinks he knows the 
area cold but is unaware of the changes made since the Reagan administration. You have 
to interview him also, bobbing your head at all the appropriate places.

The third impediment is the manager who cannot let you interview the person 
who really knows what is going on, because she cannot be disturbed. (She might be the 
one doing all the work in the department, and productivity will plummet if she takes an 
interview break.) You might need to call on your boss to do some ice breaking.

Don’t make enemies with the impediments. You need these people more than they 
need you.

2. �Meet and Interview the Experts and Identify the Subject 
(Application) Entities

There are a few important points to follow.

Preparation

The purpose of the interview is to learn about the data used in the interviewee’s area. 
However, considerable work can be completed before the interview. Gather forms used 
in the area, reports, and even computer screenshots. They give an initial picture of the 
subject’s entities and attributes, and maybe even a few relationships, and allow you to 
create a first-draft E-R diagram. Use this information to kick off the first interview. The 
purpose of this preparation is not so much to gain knowledge of that area (although 
anything you learn is useful) but rather to craft the questions you want to ask the subject-
matter experts.
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The First Interview

Explain to the interviewee the purpose of the interview and of the system. They might 
know about it; they might not. They might be glad about the proposed system; they might 
not be—there could be fear of job replacement. Don’t lie, but you are not required to tell 
them more than you have to.

Ask them questions about the existing process. What they do, what others do, what 
they like about it, and what they don’t like about it. Get them talking. If you say more than 
10 percent of the words during the interview, then something is wrong.

After a brief introduction, start by talking about data. What things are they involved 
with? Aim for ten things (entities) at the first meeting, but don’t be surprised if they can’t 
come up with a half-dozen. Talk about relationships between the things.

Show and/or walk the interviewee through the first-draft data model you created 
from the reports, forms, and screenshots. Find out what is right and what is wrong.

3. Identify Relationships Between the Entities
Most interviewees do a good job identifying entities and attributes. Relationships are a bit 
harder and require the interviewer to guide the discussion. While you can explain what 
an entity is to an interviewee and they deal with attributes every day, relationships are 
considerably more abstract. This is when those relationship-entity pairs become useful. 
“Analysts report to marketing managers” is much more meaningful than any technical 
jargon. Forget talking about cardinality and modality; rather, concentrate on how a 
customer relates to an account or an employee to a department. You can gain all the 
membership class information you need without mentioning technical terms at all.

Near the end of the model building phase, you might need only one meeting with 
a subject-matter expert. However, at the beginning of the process multiple meetings 
per interviewee might be required. This is because early interviews are laden with new 
information for the modeler while subsequent interviews tend to confirm what is already 
uncovered.

Follow-up interviews should start by confirming what you heard in the last 
session by showing or talking the interviewee through the emerging data model. Get 
confirmation, corrections, and expansions.

4. �Identify the Properties or Attributes of the Entities and 
Relationships

This is a straightforward activity. However, do not be surprised if half the attributes you 
uncover are at your prodding. The interviewees might think they gave you all the data, but 
targeting questions to the entities often turns up a raft of new information.

Analyze Information
Go back to your office, cubicle, or warren, grab a cup of coffee, and think. Create as 
detailed a picture as possible of the entities, their relationships, and the attributes 
you uncovered. Remember, a logical data model is more than just a diagram. Explicit 
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information is needed about each data modeling object. Rather than doing it all at 
the end, the seasoned data modeler starts building the gathered minutia into a data 
model right away. Appendix B gives a few examples of the information the model’s data 
dictionary might require. Formalize the entity, relationship, and attribute definitions as 
best you can, looking for holes in the detail to become your new to-do list.

Construct Model
Create, expand, or modify the logical data model (diagram and documentation) to 
accommodate new information. The previous two chapters have given you sufficient 
information to build a construct of almost anything a user can throw at you.

Repeat as Necessary
Go back to the experts, walk them through the new and improved model, and get 
their buy-in or feedback. When, and only when, you are satisfied that you have all the 
information you need is the process complete.

FINDING INTERVIEWING SKILLS CHALLENGING?

There are a number of good books on developing effective interviewing skills. 
Raymond Gordon is the dean of the technique although more modern materials are 
available in any library or bookstore.1

Don’t overlook sources inside your organization. If your company is of any size, then 
your training or HR department might offer a course in interviewing, although any 
such course is probably geared toward hiring new employees. But look at the bright 
side; if your logical data modeling skills are weak, then that hiring interview course 
might come in handy in another context.

Remember, this is an iterative process with no formal limits on how many times you 
should repeat the cycle. Keep at it until the model is correct.

The next sections present some aids for building an accurate and effective data 
model.

Making Sense of the Interview
Remember Dorothy Keenan the social worker? Her challenge was to take her interview 
notes and make sense of them, a task virtually identical to that of the logical data modelers, 
except whereas Dorothy was interviewing people with social or emotional problems, the 
data modeler is interviewing senior executives with social…you get the idea.

http://dx.doi.org/10.1007/978-1-4842-2722-0_18
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Simple interview statements can contain a lot of information. Take the following 
example:

“Employees can report to either a supervisor or the Human 
Resources department.”

This sentence can be decomposed into the following:

•	 “Employees” and “supervisor” are common nouns and, therefore, 
entities.

•	 “Human Resources” is a proper noun, not a common noun (such 
as “organization” or “department”). You should create an entity 
called Department with an occurrence containing the attribute 
data value “Human Resources.”

•	 “Report” is a verb and, therefore, a relationship.

•	 Exclusion is implied by the words “either…or.”

•	 “Can” indicates that the relationship is optional, but you already 
know that from the exclusion construct.

•	 The plural form of “employees” and the singular for “supervisor” 
and “department” tell you that the cardinality is one-to-many.

What the statement does not tell you, however, is the complete modality of the 
relationship (i.e., must a supervisor have at least one report?). Nor does it tell you if 
“supervisor” should be an entity or a role (subtype) of Employee (Figure 4-3). These 
issues have to be probed by the interviewer.

Figure 4-3.  “Employees can report to either a supervisor or the Human Resources 
department”

Peter Chen, the man who created the entity-relationship approach, published a few 
papers to help data modelers unpack the interview, turning English into E-R objects.2,3 
Table 4-1 summarizes some of the concepts in two of these papers.
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Many organizations abound with inside jargon that the data modeler can add to 
Table 4-1, making it a more organization-relevant chart.

Modeling Rules
Unpack the following statement:

“Orders are promptly shipped from the warehouse.”

•	 “Orders” and “warehouse” are common nouns and, therefore, 
entities.

Table 4-1.  English to E-R Conversion

English to E-R Conversion

What to Look For E-R Component

Common noun Proper entity type

Proper noun Proper entity instance

Transitive verb Relationship

Intransitive verb Attribute

Gerund Associative entity

Adjective Proper entity attribute

Adverb Associative entity attribute

Words such as:
many
at least
one
only one
at most

Cardinality

Words such as:
must
can
may not

Modality

Words such as:
and
but

Conjunction

Words such as:
or
either…or
nor
neither…nor

Exclusion
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•	 “Shipped” is the verb and, therefore, the relationship.

•	 “Promptly” is an adverb, so it is a relationship attribute. (Actually, 
it represents two attributes, ORDER DATE and SHIPPING DATE, 
which means that “shipped” is really an associative entity.)

See Figure 4-4.

Figure 4-5.  “An employee cannot report to his or her spouse”

Some statements are more difficult to model, and neither the English to E-R 
diagramming technique in particular, nor data modeling in general, can accurately 
represent them. Here’s an example:

“An employee cannot report to his or her spouse.”

“Employee” is an entity, and “report to” is a relationship. What might not be 
so obvious is the second relationship implied by “spouse.” The diagram might look 
something like Figure 4-5.

Figure 4-4.  “Orders are promptly shipped from the warehouse”

What you cannot capture in the diagram is the fact that if the nature of the family 
relationship between two employees is “spouse,” then one cannot report to the other. An 
exclusive relationship does not capture this situation because “spouse” is a data value 
and not an entity.

There is an important lesson in this example. If data modeling models data and 
process modeling models processes, which technique models rules? Actually, and 
unfortunately, the answer is neither and both. Rules such as “Every employee is assigned 
to one, and only one, department” are easily modeled by E-R techniques. However, the 
“rule” that an employee cannot report to his or her spouse cannot be modeled by current 
data modeling techniques alone. You must also use process modeling to represent rules.

The critical component in this example is not the diagram but rather the data 
dictionary—documentation that accompanies every diagram. The rules might be 
presented in English or in math or as computer pseudocode, but they must be recorded.

It would be nice if there was some rule-modeling technique that could be used to 
review all business rules. But for now, at least, to understand the rules of the business, 
you must examine both the data and process models.
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Verifying What You Have Heard
“Do you want fries with that?” Hate that question? Presumably, if you wanted fries, you 
would have asked for them! Fast-food restaurants might be providing a fat-infused, artery-
clogging, slow death, but they know how to market. They ask that annoying question 
because it sells fries. A monetarily significant number of customers say yes when posed 
with that irritating question. Asking seemingly obvious and repetitive questions can result 
in surprising answers containing valuable new information. Although the burger-meister’s 
broken-record approach is annoying, it does point out the need for you to ensure you 
capture what the interviewee really knows. The first answer to an important question 
might not always be the right answer or the best answer or the complete answer.

The data modeler has two methods of model verification: immediate interview 
feedback and formal walk-throughs. Use both.

Immediate Interview Feedback
The best time to correct mistakes and omissions is during the interview process. 
Constantly read back to the interviewees what you were told by them or someone else in 
a previous interview. This not only ensures that you have heard what was said but also 
gives the interviewee an opportunity to correct any errors or omissions.

An important point to remember is that most nontechnical staff understate business 
rules and constraints. Interviewees tend to give the 80 percent answer and only discuss 
the other 20 percent when prodded. You may need to push them to gain the information 
you need to understand the boundaries of entity relationships. For example, if you are 
told that every account is owned by a customer, you should follow up and ask whether or 
not firm, transient, suspense, or general ledger accounts exist. If you are told that there 
is only one customer for an account, you might ask whether multiple family members 
can use the same account. You have to probe to test the limits of what you are being told. 
Remember the fries!

Formal Walk-Throughs
After you have added the input from other interviews and your own analysis to the data 
model, you will want to go back to some, or all, of those interviewed to show them a draft 
of the result, probing for any additional comments, corrections, or additions. In contrast 
to immediate feedback, these formal walk-throughs generally take place sometime after 
the initial interviews and can involve just one user or a dozen users at a time.

Because, to the interviewees, the data model probably looks more confusing and 
less informative than the Tokyo subway map (Figure 4-6), you will have to “walk” or guide 
them through the model (thus the term walk-through). You have three choices.

•	 Escort the interviewee through the data modeling diagram slowly, 
confirming each object.

•	 Convert the model back into English and read the model aloud in 
a narrative style.

•	 Do both.
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Which method you choose depends on the receptivity of the interviewee to data 
modeling esoterica.

With some interviewees, you may be able to draw the model on paper or a white 
board during the initial interview or, alternatively, unveil the printed model during the 
walk-through. If you describe what you are doing line by line, many people can follow the 
analysis sufficiently to point out errors and omissions (remember the genogram). Other 
people are more comfortable being “read” to, in which case you should be prepared to 
interpret the data model to them in English.

Keep the conversation on an end-user level. There is no better way to stop a 
promising interview or walk-through than to get into techno-babble. Talk about end-user 
data, end-user activities, and end-user relationships—not about entities, recursion, or 
cardinality.

Figure 4-6.  Verifying the data model can be overwhelming
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Increasing E-R Diagram Comprehension
For many organizations, the logical data model can become quite large and complex. 
It is not uncommon for a major enterprise system to involve dozens of entities and 
relationships and hundreds of attributes. Dealing with so complex a diagram can be 
confusing and time-consuming. It is often useful to divide or partition the ERD into more 
bite-size chunks (ideally containing ten entities or fewer) that facilitate understanding 
and use while minimizing the risk of hiding critical information. Subject areas, entity 
fragments, and neighborhood diagrams are three techniques for accomplishing this goal.

Subject Areas
For budgeting and statistical purposes, the U.S. government created metropolitan 
statistical areas (MSAs) consisting of large population centers and their surrounding 
support areas and bedroom communities. MSAs are identifiable not only by their high 
central populations densities but also by their lower-population boundaries. For example, 
both New York and Philadelphia are MSAs. Both include their respective cities of New 
York and Philadelphia, but they also incorporate the surrounding suburbs, including 
towns in New Jersey and Connecticut for the New York MSA and New Jersey and 
Delaware for the Philadelphia MSA. Furthermore, the boundary between the two MSAs is 
obvious by the lower population density of south-central New Jersey.

Now look at the ERD and think of it as a city and its surroundings. The town center 
is jammed with buildings and streets. Moving out of the center to the suburbs, the roads 
are fewer and farther apart. Finally, moving out into the country, the buildings and the 
roads are scarce, with the few existing roads often used to connect different cities. Think 
of relationships as roads. At the core of the ERD is a group of entities linked together 
with many relationships clustering around a single theme. Further away the number 
of relationships drops off until there are finally only a few relationships that tend to 
link separate clusters together. These clusters usually share a theme such as customer, 
supplier, or employee.

A subject area is a subset of a data model containing the entities, relationships, and 
attributes that share certain common business characteristics or uses and that facilitates 
the creation and development of, and communication about, the complete logical data 
model (Figure 4-7).
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Subject areas can serve a number of purposes. First, they can be the basis for 
dividing the data modeling workload among staff. If three teams are developing a data 
model, assigning a separate subject area to each team reduces the required interactions 
between teams.

Second, subject areas can be a useful communications tool for discussions with end 
users. Showing marketing staff a logical data model filled with manufacturing entities and 
relationships might not be the best use of their or your time, while presenting a marketing 
(only) subject area could be very productive. And do not forget the focus factor. Few 
things are more disturbing when trying to gain feedback from marketing staff about the 
marketing entities, relationships, and attributes than one guy in the back of the room who 
wants to offer a verbal dissertation on manufacturing relationships.

Entity Fragments
An entity fragment is a view or portion of the data model that deals with a specific process. 
Take the example of the “Update Customer Account” function. This process might need 
Customer, Account, and Credit data but might not be concerned with the Production 
Schedule, Raw Materials, or Distributors entities. Entity fragments are useful for logical 
process modelers who want to understand the data used in a particular function or to 
elicit process information from end users. They can also be useful for physical process 
designers.

Do not confuse entity fragments and subject areas. An entity fragment contains 
the entities, relationships, or attributes associated with a particular process or function 
(Figure 4-8). Subject areas are not concerned with functions, but only with the 
commonality of the data itself. Think of the subject area as an uber-entity.

Figure 4-7.  Customer subject area
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Neighborhood Diagrams
For many projects, the data model can grow to 100 or more entities and the same number 
of relationships. That’s an imposing diagram. The ultimate simplification of a logical data 
model is the neighborhood diagram. A neighborhood diagram highlights a single entity 
with only its relationships and the entities that are directly tied to those relationships 
(Figure 4-9). If there are 100 entities, then there are 100 neighborhood diagrams.

Figure 4-8.  Entity fragment

Figure 4-9.  Neighborhood diagram for entity A
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This would be a monumental task if done by hand, but many data modeling tools 
contain a neighborhood diagramming feature, providing a printed page per entity. With 
neighborhood diagrams only those entities relevant to the interviewee need be examined 
during the interview or walk-through. In this way, many users can review a graphic 
representation of their data without becoming overwhelmed.

Relationship Bridges and Stubs
E-R diagrams in books always look clean and neat because their authors rarely choose 
examples with real-world numbers of entities and relationships. A data model for a 
major business function can involve dozens of entities and dozens of relationships all on 
a single piece of paper. As much as you might try, like your grandfather rotating pieces 
of a jigsaw puzzle in a futile attempt to complete it, you can’t fit all of the entities and 
relationships on the paper without crossing some relationship lines (Figure 4-10a).

Don’t fret. A crossed line or two is not the end of the world, although as the number 
of crossed lines increases, the communications value of the diagram drops precipitously. 
With too many crossed lines, the diagram starts to look like a plate of linguini. The 
solution? There are two. The first solution is a relationship bridge—a graphic “bypass” or 
hill over the offending line (Figure 4-10b).

Sometimes the number of crossed lines is not only considerable but involves entities 
on opposite ends of the chart. For these, the second solution, the relationship stub, is 
the better answer. A relationship stub is a sort of data modeling dongle similar to a flow 
chart off-page connector. It consists of a small graphic, usually a circle with a letter in it 
(Figure 4-10c). Match the letter in one circle with the letter in another circle, and you have 
a complete relationship.

Figure 4-10.  Relationship bridges and stubs

Subject areas, entity fragments, and neighborhood diagrams are technically 
unnecessary for logical data modeling. They are useful because they simplify the 
complex. They are not data model components but rather constructs to accommodate 
the frailties of human understanding. They are mechanisms to break up a logical data 
model into bite-size pieces that make it easier for end users and data modelers to 
understand the data. But they come at a price. They can hide information as well as 
emphasize it. Use them with care.

Bridges and stubs are not only unnecessary, they are undesirable. They can impede 
communication, although they are less of an impediment than too many crossed lines. Use 
them only when their absence would subtract from the diagram communication value.
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Some Model Building Best Practices
Model building is a project, and like all projects, there are some painful lessons learned. 
The good news is that newer data modelers can learn from the unpleasant adventures of 
the experienced. A few are included in the following sections.

Getting Started
Consultants have a conundrum. Do you recommend the best solution to your client’s 
problem, even if you know the client won’t follow it, or do you recommend an acceptable, 
but not the best, solution that you believe the client will follow?

As a data modeler, unless you live in a perfect world, the first thing you must do is to 
decide whether you can live with the world you are given. This issue is determinative in 
three crucial areas: the plan, the team, and the users.

•	 The plan: the data modeler needs to feel comfortable with the 
data modeling plan. Any designer being held to a plan (budget, 
schedule, resources), no matter what the project, needs to feel 
confident that the work is doable. If you know that the budget is 
insufficient or the schedule unrealistic or the needed resources 
not available (staff, users etc.), then you need to decide whether 
you are on board the project or want to take a pass. This is the 
standard conundrum for any project team member, regardless of 
project type, and is an even bigger problem for the data modeler 
if the overall project manager does not sufficiently understand the 
data modeling process and its associated costs.

•	 The team: the data modeler needs to feel comfortable with the data 
modeling team. Experience shows that for any medium-to-large 
project, about half the data modeling team has never created, or 
worked on, a data model of any size. If you don’t see experience, 
then look for enthusiasm with a willingness to learn.

•	 The users: the data modeler needs to feel comfortable that the 
subject-matter experts are available to the team. There is a 
story, which might even be true, of the Soviet-era, Russian 
manufacturing facility that had the new, faster, and cheaper 
machines that would double factory productivity sitting on 
the factory floor for years, uninstalled, because the Soviet 
bureaucracy would not allow the one-month disruption 
in production to install the new equipment. You might not 
believe this tale until you ask permission to interview the user 
department expert on how the current process works. More 
than one potentially spiffy new system has been postponed, 
if not derailed, because access to the people in the know was 
restricted. Getting buy-in from user management on access to 
user resources is critical to a successful project.
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Don’t Lose Control of the Project to Users
Having the “right” relationship with the user staff is of utmost importance. In data 
modeling, the user must be heard. However, one common cause of project failure is the 
loss of control of the assignment to the user, as in the following example:

A securities firm was redesigning its account processing 
system. During the data modeling exercises, the issues of 
portfolios and positions came up. The business user wanted 
them on the data model, while the data modelers insisted that 
both were derived data and should not be part of the model. 
(Portfolios and positions are actually views of selected asset 
occurrences.) The user technical staff did not intervene and 
tactfully supported the business users, forcing the acceptance 
of the derived data on the data model.

Because portfolio and position were on the data model, 
none of the process modeling teams felt it was important 
to develop the processes to create the derived data. The 
unfortunate outcome was disharmony on the development 
team, uncertainty about who was in control, disruption and 
disagreement over what process modeling tasks had to be 
completed, and eventually the collapse of the project.

The moral of this story is to maintain control of the project and do that by

•	 Knowing what you are doing.

•	 Advertising what you are doing and why.

•	 Sticking to the plan.

•	 Making others stick to the plan.

Don’t Lose Control of the Project to Technical Staff
Losing control of data modeling to technical staff can be more disruptive and dangerous 
than losing control to a user. The problem is the “little knowledge” syndrome. Whereas 
end-user staff usually admit that they have no idea what data modeling is, technical staff 
often feel they either know more about it than anybody else or don’t have to know about 
it because it’s not important.

The remedy is up-front training on the advantages of data modeling and, perhaps 
more important, the dangers of not data modeling correctly.
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Don’t Become Dependent on Tools or Techniques
Too many organizations welcome new methodologies, techniques, and tools without fully 
understanding the consequences. Here’s an example:

The development team at Rossetti & Siddall Publishing 
decided that a computer-aided system engineering (CASE) 
tool was needed. After acquiring the tool, the team charged 
into a major application and in no time at all was up a 
creek. The team quickly discovered that having a tool is no 
substitute for knowledge and experience with the underlying 
techniques.

As Chris Gane, the systems development guru and co-author of Structured Systems 
Analysis: Tools and Techniques, once said, “A fool with a tool is just a faster fool.”4

The moral of the story is to understand the technique before picking a tool.
Techniques follow an approach, framework, or method, so the approach the project 

follows should be established before any discussion of techniques (Figure 4-11). For 
example, this book focuses on the entity-relationship approach to data modeling and 
contains a number of techniques for creating a good E-R design.

Figure 4-11.  Confirm the approach, then the technique, then the tool

Likewise, the techniques the project uses should be understood before making any 
tool decisions. Altering the sequence can invite excessive learning-curve pain and poor 
system workmanship.

Don’t Get Bogged Down in Endless Analysis
Modeling is difficult. The logical data modeler must juggle hundreds of data objects. 
Moreover, data modeling is only a small part of the systems development process that 
requires the examination and reexamination of data, and subsequent LDM modification, 
over and over again. However, because incomplete or inaccurate logical data models can 
be linked to disastrous application development efforts, the prudent analyst would be 
wise to ensure that the data model is as correct as possible. While an inaccurate object in 
a process model might cause the incorrect execution of a business function, an incorrect 
data object can cause the failure of many different functions.
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Some project staff, however, go to the other extreme and get bogged down in endless 
analysis. In their quest for perfection, some designers never finish the model, potentially 
causing the ultimate failure of the project.

Data modelers get bogged down for a number of reasons. They:

•	 Don’t recognize modeling diminishing returns.

•	 Fear moving ahead and/or lack confidence in the model.

•	 Have a poor understanding of how the model is used.

Complete analysis is essential, but knowing when enough is enough requires 
judgment. Analysis should be called to a halt when

•	 New information provides little additional value.

•	 Users and analysts are quibbling over unimportant items.

•	 There is sufficient information to move on to the next phase.

Then freeze the data model, with the following rules:

•	 Establish a data model change control process.

•	 Declare the model in maintenance mode.

•	 All change requests must go through the change control process.

Evaluate all change requests to see whether and when they should be applied to the 
model/project. Changes should be divided into three categories.

•	 Immediate change to the data model and all work products.

•	 Attention needed at the end of the current phase.

•	 Attention required at some future release of the application.

When all is said and done, data modeling is a systems development task of a systems 
development project and shares the vast majority of problems as well as best practices 
with other system development tasks.

The Players…and the Rules of Engagement
Putting together a constructive team to collect and properly analyze an organization’s 
data is a difficult task. Surprisingly or not, many system professionals do not look forward 
to the data modeling process. Why?

Data modeling is highly abstract, and not all systems professionals understand the 
problem, much less the solution. Clearly, if individuals cannot sufficiently conceptualize 
the problem and the solution, then all the techniques and tools in the world will not help 
them. Also, data modeling is nondeterministic. There is no single right answer because 
a business can be modeled in a number of different ways. However, there certainly are 
wrong answers. Some system professionals have trouble with the subjective nature of the 
technique in a profession they see as stressing objectivity.
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What can the data modeler do to eliminate this problem? The answers are the same 
as for every other area within IT.

•	 First, data modeling needs a champion. A champion is an individual 
who is (1) an IT professional or non-IT senior executive who either 
is an expert in the subject area (telecommunications, government 
regulation, employment law, data modeling, etc.) or is willing to 
acquire and support the expertise from elsewhere, (2) is willing to 
unequivocally and publicly promote the area (tout its benefits, justify 
its costs, and communicate its need), and (3) has sufficient status in 
the organization that they are listened to at the highest levels.

•	 Second, an agreed-upon set of rules is required. A set of guidelines 
or rules is critical to the success of any data modeling project, and 
the ground rules should be established before the project starts to 
avoid unnecessary battles.

First, the logical data model is a communications tool. Its purpose is to convey to 
system designers, programmers, and database designers the real world of the business—
both what they currently have and what they want. To converse intelligently, they need a 
common language that all parties know and use. The data model is that primary means 
of communication. Rules, both of data modeling syntax and semantics, are essential to 
successfully accomplish this mission.

There is another reason for preapproved rules. Arguments become less intense and 
less detrimental to progress when they are covered by previously approved abstract rules. 
For example, the statement “Do not model derived data” is abstract—without emotional 
ties to a real-life situation. On the other hand, “Portfolio is derived data and, therefore, 
not to be modeled” is grounded in reality, and arguments about whether to observe this 
rule can evoke an emotional response.

The successful data modeler prepares for these eventualities before drawing the first 
rectangle.

Deliverables
Logical data modeling is not finished until all documentation is complete and turned 
over to project management as input to the Physical Schema Definition phase of U3D.

The primary deliverables are

•	 LDM.1 logical data model (E-R diagram): The diagram showing 
all entities and relationships (Figure 4-12).

•	 LDM.2 logical data model object definitions (data dictionary): 
Detailed documentation for each entity, attribute, relationship, 
and domain (Figures 4-13 through 4-16 in the “Example of 
Deliverables” later in this chapter). Any automated CASE or 
system development tools might dictate what can be stored and 
how it should look. However, information that physical designers 
need but is not required by your particular data dictionary can 
always be included as comments or notes. Appendix B gives an 
example of the data that should be in a data dictionary.

http://dx.doi.org/10.1007/978-1-4842-2722-0_18
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•	 LDM.3 logical data modeling notes: Any comments, advice, 
difficulties, questions, suggestions, warnings, or other 
information the logical data modeler wants to communicate to 
physical designers.

Physical data base designers use these three deliverables along with the business 
requirements (process model business requirements, i.e., processes, procedures, and all 
volume information) uncovered by the logical process modelers and physical process 
modelers to create the physical database design.

Examples of Deliverables
The E-R diagram might be quite large. If so, the single-page diagram should be 
supplemented with a number of subordinate, perhaps subject area, diagrams.

Figure 4-12.  Sample logical data modeling deliverable: E-R diagram
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The purpose of the E-R diagram is communication, not being a wall covering. 
The diagram should be understandable by most end users and all physical database 
designers.

Sample Data Dictionary, Data Object Definitions

Logical Data Object Definition
Entity 

Name: Type: 
Description: 

Synonyms:
Relationship
Attributes: 

Explanation

Type—Proper, associative, attributive, or S-
type.

Relationships—All relationships to which the
entity is a party.

Estimated Number of Occurrences —Total
number of record instances. 

Est. No. Occur:              Annual Growth: 
Notes and Comments: 

Update Date:                 By: 

Annual Growth—Percentage annual growth
rate.

Figure 4-13.  Entity type definition

Logical Data Object Definition
Relationship 

Name: 
Description: 

Relationship Type (Unary, binary, N-
ary):
Between entities:
Entities                  Cardinality            Modality

Other Constraints: 
Notes and Comments: 

Update Date:                  By:

Explanation

Notes—The relationship definitions typically
contain the largest notes field as the
modeler tries to describe the complexities of
some relationships.   

Other Constraints—Explain in English, any
constraints that are not diagrammable or the
logical data modeler feels need additional
explanation.   

Figure 4-14.  Relationship definition

Some information, such as annual growth rate, might be a bit sketchy. It doesn’t 
matter. Enter it anyway. You can always qualify with uncertainties in the Notes field.



Chapter 4 ■ Building the Logical Data Model

66

Relationship constraints become the bulk of the information regarding how entities 
relate to each other. Feel free to write as much as necessary.

Logical data model designers are often uncertain about some of the characteristics 
of some attributes, such as derived data. That’s OK. Just make sure that your document 
indicates what you do know, what you don’t know, and what you are not sure of. Anything 
less places the database designer at a considerable disadvantage.

Logical Data Object Definition
Attribute

Name: 
Description:

Synonyms:
In Entity: 
Attribute Type: 
Source: Primitive or     Derived
If Derived what Algorithm?:

Complexity: Simple or Group
If Group Contains?: 
Valuation:      Single or    Multivalue
Size: Data Type: 

Explanation

In Entity—Usually an attribute exists in only
one entity type. If there are (intentional)
duplicates, then list all the entity types and
which contains the original or master copy.    

Attribute Type—Descriptor or unique identifier.
If it is a compound identifier the other attributes 
and their order should be in the Notes field. 

If Derived what Algorithm?—The data items
and formula used to calculate the data value. 

If Group Contains?—The data items that make
up the group.  

Domain(s):
Notes and Comments: 

Update Date:                  By: 

Data Type—Such as integer, text, picture,
movie, etc. 

Domain—If the attribute participates in a
formally defined domain. 

Figure 4-15.  Attribute definition

Logical Data Object Definition
Domain

Name:
Description: 
Type:
Data Type: 
Range: 
Acceptable Values:

Notes and Comments:  

Update Date:                 By:

Explanation

Description—Type of domain (data type, range
of values, acceptable values, etc.). 

Data Type—The broad category of values that
are acceptable such as integer, text, and real
numbers.  

Range—Continuous values with a specific start
and stop. For example, dates between January
1, 1950, and December 31, 1990.  

Acceptable Values—Specific itemized values,
such as male and female. 

Figure 4-16.  Domain definition
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Domains are the most forgotten part of logical data modeling. Worse, they are also 
the most forgotten part of physical database design. Document domains early and often, 
even if all the information about them is uncertain.

Notes
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	 4.	 Chris Gane and Trish Sarson, Structured Systems Analysis: Tools 
and Techniques. Englewood Cliffs, NJ: Prentice Hall, 1985.
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CHAPTER 5

LDM Best Practices

Do not let what you cannot do interfere with what you can do.

—John Wooden

Do well and right, and let the world sink.

—George Herbert (Welsh poet)

Did you ever add a column of figures and the total did not agree with someone else’s 
total? Accountants have a quick test for such an accounting error. Subtract one column 
total from the other column total. If the difference between them is evenly divisible by 
nine, then two digits were probably reversed (129 instead of 192) or a zero is left off the 
end of one of the numbers.

Little tricks like this can easily catch simple mistakes before they can grow into 
humongous disasters. Logical data modeling does not have any divide by 9 equivalents; 
however, there are a number of lessons learned that can help detect small errors and 
anomalies while they are still in the disaster incubation stage.

This chapter presents some things experienced data modelers think all data 
modelers should allow or do. Other chapters look at some don’ts and a few things to 
watch out for.

Chapter Subjects

•	 Abbreviations

•	 Almost unique identifiers

•	 Clarity

•	 �Compound unique 
identifiers

•	 Conceptual integrity

•	 Conjunctive 
relationships

•	 �Duplicate super-subtypes 
“type” data

•	 Exclusive relationships

•	 Group attributes

•	 Level of abstraction

•	 �Many-to-many 
relationships

•	 N-ary relationships

•	 Naming objects

•	 Null attributes

•	 Optional relationships

•	 Subject areas

•	 Supertypes and subtypes

•	 Unique identifiers
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Abbreviations
Abbreviations should be kept to a minimum, and when used, they should be 
meaningful to the end user.

Computer-based abbreviations should not be confused with business abbreviations used 
in data modeling. Computer-based abbreviations were created for use with operating 
systems, computer languages, file managers, and DBMSs, which limit the length of, and 
put restrictions on, field, record, file, and program names. The conventions permit text to 
physically fit into computer-managed directories. It was not uncommon in years past to 
have an operating system or programming language with a five-character limit on data 
field and file names. Spaces were not allowed and many special characters forbidden. 
Luckily, the logical data modeler does not live in this world, but rather in the real world of 
the business. Names in this world should reflect this world.

There is a significant difference between computer-based abbreviations and 
legitimate end-user abbreviations. For example, in retailing, a product sold in a store is 
identified by a number called a stock keeping unit, although everyone in the business 
calls the number a SKU (pronounced as one word rhyming with few). SKU would be 
an acceptable name even though it is an abbreviation. However, if you’ve identified 
CUSTOMER FINAL PRE-PAYMENT DATE as an attribute, it should be written as 
CUSTOMER FINAL PRE-PAYMENT DATE (meaningful to the end user) and not  
CUS_FIN_PREPMT_DTE (required to satisfy a name length restriction).

The developer should be sensitive to the unfortunate fact that CASE and system 
development tools usually have name length limits that can sometimes force the use 
of nonbusiness abbreviations. If you must use abbreviations, keep them in English. 
Avoid schemes such as stripping out vowels to shorten words, which usually results in 
unrecognizable and unpronounceable gobbledygook. For example, a vowel-dropping 
scheme would turn VENDOR ASSIGNED USER CODE into the horribly mashed VNDR 
ASGND USR CD. Stick with simple English abbreviations and standard initials such in 
Table 5-1.

Table 5-1.  Abbreviations

Words Abbreviations/Initials

Customer Cust

Account Acct

Lysergic Acid Diethylamide LSD

Pennsylvania PA

If the offending development tool name length restriction is too short, such that a 
meaningful abbreviation is not possible, then the modeler should use both the preferred 
logical data modeling name and the shorter tool-compliant version. Many tools have an 
alias function that allows different names to be entered for the same object, or the data 
modeler can place the real object name in a comment field. Make sure the tool enhances 
the process, not detracts from it.
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A good set of approved abbreviations for the logical data model makes the transition 
from the logical to physical design easier. Publishing a list of acceptable abbreviations is 
particularly useful. However, recognize that the list will not be exhaustive and will have to 
be constantly updated.

Almost Unique Identifiers
Identify almost unique identifiers when known because they can be useful for 
application development.

Ideally, there are unique and nonunique attributes. However, the world is not as clean 
and simple as that. Sometimes there are attributes that might not be mathematically 
unique but are sufficiently unique to be useful. Examples include people’s names, 
employee or student numbers that are reissued after a period of time, and even Social 
Security numbers (occasionally a Social Security number is mistakenly issued to more 
than one person).

Almost unique attributes have varying levels of uniqueness. Names might be much 
less unique than reissued employee numbers. While a not completely unique employee 
number might be acceptable as a record key in a database, a name probably would not. 
However, a person’s name is sufficiently unique to serve as an adequate secondary index.

Many magazine publishers use a “match code” (Table 5-2) consisting of a string of 
nonunique attributes, which, when put together, form a key that is close to being unique 
for even large populations.

Table 5-2.  Magazine Match Code Example

Characters Description

1–5 First five characters of postal code

6–10 First five characters of last name

11–11 First name initial

12–14 First three digits of street number

15–18 First four characters of street name

19–20 Tie breaker

A second type of almost unique identifier is an attribute that is unique for only part 
of its life. Imagine an organization that reuses document numbers after a maximum 
number is reached, but never before 2 years has passed. For example, assume the 
maximum document number is 99,999, which will take, on average, 4 years to reach. After 
that period, caution is needed.

Almost unique identifier information is useful for physical designers and should be 
communicated to them.
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Clarity
Remove confusing objects from the data model.

Examples of extraneous objects are unnecessary super-subtypes, extraneous 
relationships, and unnecessary entities.

This is a “judgment call” rule. However, if you remember that the dual purpose of a 
data model is to

•	 Provide feedback information to end users.

•	 Communicate end-user information to physical designers.

then you can better judge whether objects added to the model, or left out, contribute to 
communication or subtract from it. Look at the example in Figure 5-1.

Figure 5-1.  Data model containing extraneous objects

The data model contains extraneous data objects.

•	 Because the participating entities and connectivity for the 
relationships Buy and Return are identical, they should be 
represented by the single relationship Buy and Return.

•	 Because the subtypes Retail and Wholesale have identical 
attributes and relationships, they are superfluous and should be 
eliminated.

Clarity is an important underlying principle of logical data modeling right behind 
communication.

Compound Unique Identifiers
Compound unique identifiers are acceptable, and the position of the attributes within 
the unique identifier might, or might not, be important.

Sometimes the business uses more than one attribute to uniquely identify an entity 
occurrence. For example, a course a student took might require the COURSE NUMBER 
(Chemistry 101), the YEAR (2017), and the SEMESTER (Fall) to uniquely identify it. 
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No single attribute, or any two, uniquely identifies the student’s course. These three 
attributes together form a compound unique identifier or simply compound identifier. 
If you talk to the school administrators and teachers, you might discover that the order 
is unimportant to them—they might talk of the fall 2107 chemistry course or the 2017 
chemistry course taught that fall, and so on.

Other compound unique identifiers involve a specific business order. Personnel 
assignments for chain-store employees could involve the compound unique identifier 
STORE NUMBER and DEPARTMENT NUMBER, always in that order. The ERD cannot 
capture this distinction although the accompanying documentation in the data 
dictionary can and should.

The reason? Logical data modeling unique identifiers might very well become 
physical design keys. The sequence of fields in a compound key can be the major 
determinant in index and data storage clustering. The physical designers need to know 
how much latitude they have regarding key field sequence. Is the business dictating the 
acceptable field sequence in the compound key, or do the physical designers have free 
rein to determine the best ordering? The logical data modeler needs to communicate this 
to the physical designers. (See the “Unique Identifiers” entry in this chapter.)

Conceptual Integrity
Maintain the integrity of logical data modeling concepts, even if the tool you are using 
makes it difficult.

Data modeling and system development tools can often confuse or corrupt logical data 
modeling concepts. While it is necessary to observe the data modeling conventions 
followed, or required, by the development tool you are using, do not lose sight of the 
correct logical data modeling concepts and why they are important.

An example can best illustrate this point. Is the entity-relationship pair Customers 
Buy Cars, one relationship or two? The answer, of course, is one. To confirm this, just 
examine how people speak. You hear that a husband and wife share a relationship, not 
that the husband has one relationship and the wife another. People also speak about 
the relationship between the United States and Japan knowing that it encompasses both 
directions.

Unfortunately, that is not the way all CASE tools work. Some tools would treat the 
automobile example as two separate relationships (Customers Buy Cars and Cars Are 
Bought By Customers) and require completion of two dictionary entries (i.e., two names, 
two definitions). See Figure 5-2.

Figure 5-2.  A binary relationship treated as two separate relationships
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This problem is more persistent in tools that consider all relationships binary or 
in tools using a line as the graphic convention for a relationship. The problem is less 
likely to occur in tools that permit n-ary relationships or the use of a diamond as a 
relationship symbol.

As an example, take the n-ary relationship Customers Buy Cars From Dealers 
(Figure 5-3). Is this one relationship, two, three, or six? The correct answer is, of course, 
one; however, various tools require anywhere from one to six separate relationships 
(Figure 5-4).

Figure 5-4.  N-ary relationship treated as six binary relationships

Figure 5-3.  N-ary relationship linking three entities

You might have to bend your principles to use available tools. If you have to 
compromise the implementation of the logical data model, remember to keep the 
conceptual integrity of your model strong and document (even if only in a comments 
field) all tool-induced compromises in the data dictionary.
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Conjunctive Relationships
Allow conjunctive (and) relationships because they are a legitimate end-user 
concept.

Conjunctive relationships stipulate that if entity occurrence “A” is related to entity 
occurrence “B,” then occurrence “A” must also be related to entity occurrence “C.” 
Unfortunately, few data modelers include conjunctions in their model for any of four 
reasons.

•	 Few data modeling tools support them.

•	 Conjunctive relationships are not common in businesses.

•	 Few DBMSs directly allow their implementation.

•	 Most modelers don’t know that the concept of conjunction exists.

The first and second reasons might be true. The fourth reason is all too true. The 
third reason is the misplaced physical design issue again. True as it might be that most 
DBMSs do not allow easy implementation of conjunction, the argument is, nonetheless, 
misplaced in logical design. If conjunction is a real end-user concept, model it. If 
it is important to the business and the DBMS does not support it, it can always be 
implemented through triggers, stored procedures, or application code.

Duplicate Super-Subtypes “Type” Data
A duplicate “type” attribute is appropriate in super-subtype entities.

Common attributes should exist in the supertype. Only subtype-specific attributes should 
be in the subtype—with one exception.

Many modelers use a special attribute to distinguish the different subtypes. Look at 
the following example:

Quik-Drop Parachutes Inc. is developing a data model for its 
new human resource system. The model must reflect the special 
attributes and relationships for the four roles of employee: 
active, retired, terminated, and leave of absence (Figure 5-5).

Figure 5-5.  Duplicate attribute data can exist in the subtype
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To distinguish the roles, Quik-Drop modelers created the EMPLOYEE TYPE attribute 
with the acceptable values of “Active,” “Retired,” “Leave of Absence,” and “Terminated.” 
To work properly, the modelers must duplicate the attribute EMPLOYEE TYPE in all four 
subtypes.

This duplication of EMPLOYEE TYPE in all the subtypes is acceptable.

Exclusive and Nonexclusive Generalization
Many modelers like to use a type or role attribute to differentiate the roles that subtypes 
play in the supertype. For example, Figure 5-6 is the entity Customer, which has two 
subtypes: Retail and Wholesale. To communicate this information, the modeler created 
the attribute CUSTOMER TYPE with the acceptable values of “Retail” and “Wholesale.”

Figure 5-6.  Supertype box and “isa” constructs

The important question is whether the role for a subtype in a generalization is best 
described by an attribute or by a relationship.

Those who use the “is a” construct, in which the subtype is shown in a one-to-one 
relationship with the supertype, tend to prefer describing the role as a relationship. They 
would define the role options of retail or wholesale in the relationship definition.

A more popular and probably better approach is to define the subtype role 
using a type or role attribute such as CUSTOMER TYPE with the acceptable values of 
“Wholesale” and “Retail.” Advocates of this approach prefer it because most subtype roles 
have a domain of acceptable values, and domains are a property of an attribute, not a 
relationship. However, this raises another question. Should the type attribute be in the 
supertype or the subtype? The answer is not always obvious.

Most modelers place the type attribute in the supertype. Their argument is simple: 
if you placed the type attribute in the subtype, then the type attribute would have to 
be duplicated as many times as there are subtypes. Placing the type attribute in the 
supertype avoids this duplication.

Certainly with the Customer example (Figure 5-7) this would seem to be a good 
idea. Unfortunately, this answer assumes that all the roles in which the supertype can 
participate are exclusive. In other words, if a customer is retail, they are not wholesale, 
and vice versa. However, if a supertype occurrence can have more than one role, then the 
type attribute in the supertype runs into trouble.
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Imagine the supertype Soldier with Officer and Enlisted as the two subtypes, 
MILITARY STATUS as the type attribute, and “Officer” and “Enlisted” as the acceptable 
values (Figure 5-8a). Although in most cases a soldier is either an officer or enlisted but 
not both, this is not always the case. There are examples where a soldier is an officer in the 
reserves but an enlisted person on active duty. For this individual, the supertype occurrence 
would have both roles and would have to be linked to both subtypes (Figure 5-8b).

Figure 5-7.  Supertype/subtype attributes

Figure 5-8.  Nonexclusive generalization

If the type attribute MILITARY STATUS is in the supertype, then the acceptable 
values of the attribute would have to be “Officer,” “Enlisted,” and “Both.” On the other 
hand, if MILITARY STATUS were in the subtype, then the acceptable values could be 
limited to just “Officer” and “Enlisted.”

The military example has only two subtypes. Imagine a case where there are four, 
five, and ten subtypes. The combinations or nonexclusive supertype participation would 
be quite large and unwieldy. Certainly in these cases, the type attribute works better in 
the subtype.
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The difference between the two cases is that in the first, the subtypes were 
exclusive—a supertype occurrence could participate in one role, or the other, but not 
both. In the second case, the roles were not exclusive—a supertype occurrence could 
participate in one role, the other, or both.

The moral of the story is that unless you are sure that the generalization is exclusive, 
it is best to put the type attributes in the subtype.

Required and Nonrequired Participation
Some supertype occurrences must participate in a subtype as in the Customer and 
Soldier examples. In other cases, supertype participation in a subtype might be optional. 
Take the case of the supertype Boat with subtypes Sailing and Power Plant used to 
describe the type of sails it has (if it has any) and/or its engine or engines (also if it has 
any). A rowboat has neither sails nor a power plant, so it would not participate in either 
of these subtypes. Boat would be a supertype that is not required to have a subtype. If the 
type attribute BOAT TYPE were in the supertype, it would have a value of null or blank.

Exclusive Relationships
Allow exclusive (either or) relationships because they are a legitimate end-user 
concept.

Exclusive relationships stipulate that if entity occurrence “A” is related to entity 
occurrence “B,” then occurrence “A” cannot also be related to entity occurrence “C.”

Some modelers disallow exclusive relationships for the same reasons they 
disallowed conjunctive relationships, namely:

•	 Most tools and DBMSs simply do not support exclusive or.

•	 Exclusive relationships are not common in businesses.

•	 Exclusion can sometimes allow null values in primary keys.

•	 Most modelers don’t know that the concept of exclusion exists.

It is certainly true that few data modeling tools support exclusive or relationships, 
and even fewer database management systems do so, although some level of support is 
available through the use of processes embedded in the DBMS. Nevertheless:

•	 Physical design issues should be kept out of logical design and 
remain in physical design where they belong (revisit Principle 1 
of the database design principles, Separate Logical Design from 
Physical Design, in Chapter 1).

•	 Data modeling should not be limited to what is supported by a 
particular DBMS or tool. For example, if the need for exclusion 
is sufficient, the physical designers could decide to implement it 
through triggers, stored procedures, or application code.

http://dx.doi.org/10.1007/978-1-4842-2722-0_1
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This last argument raises an important point. If a particular DBMS or file 
management system does not support a certain feature, the developers still have the 
option to include the feature with triggers, stored procedures, or application code. 
However, they can do this only if they know that the feature is desired and the desired 
feature is communicated to them through the logical data and process models.

As for nulls, contrary to what some relational database advocates believe, exclusive 
relationships do not require nulls in primary keys; however, they are possible if the 
primary key is also the foreign key (see entries on “Null Attributes” in this chapter and 
“Primary Keys” and “Foreign Keys” in Chapter 6). Do not concern yourself with this 
argument because it is misplaced. Issues such as null values and keys (primary or foreign) 
are physical design issues (the how from Chapter 1) and not relevant to a discussion of 
logical data modeling (the what) (Principle 1 again).

Group Attributes
Group attributes are allowed, but be careful because they can hide information about 
data objects.

In many IT circles, the term group can be applied to either attribute complexity’s group 
attribute, which is an attribute that contains other attributes (as in DATE containing the 
attributes MONTH, DAY and YEAR), or attribute valuation’s multivalue attribute, which 
can contain multiple values (as in the attribute CHILDREN with the three values “Peter,” 
“Paul,” and “Mary.”) (See Chapter 3.)

Both are an acceptable part of logical data modeling if (1) they are a legitimate part 
of the business and (2) they do not hide from the physical designers their true nature and 
all the attributes or values they contain.

Level of Abstraction
Make the data model as abstract as possible while making sure it still fully and 
adequately describes the business.

The “Data Values” entry in the next chapter illustrates how some modelers model 
the values of data rather than the attribute types. This could result in the data model 
representing only a subset of the total possible occurrences of the attribute type, leaving a 
prematurely aging data model requiring possibly frequent changes and updates.

Models are more accurate and stay current longer when their structure is abstract. 
For example, using the more abstract attribute POSTAL CODE (and its more abstract 
domain) rather than the less abstract attribute ZIP CODE can extend the life of the model 
beyond the first time an international address is stored. Likewise, the more abstract entity 
Employee can accommodate more and varied attributes and relationships than the more 
concrete entity Hourly Worker. Abstraction allows a data model to express more diverse 
data and do so with fewer data objects.

However, taken too far, abstraction could be just as damaging, if not more so, than 
being too concrete. Abstracting the entities Employees, Customers, and Regulators to 
the single entity People is excessive because it hides the basic and different roles of the 
three groups within the organization. Likewise, combining the high-school grade system 

http://dx.doi.org/10.1007/978-1-4842-2722-0_6
http://dx.doi.org/10.1007/978-1-4842-2722-0_1
http://dx.doi.org/10.1007/978-1-4842-2722-0_3
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attributes GRADE, EFFORT, and ABILITY into COMMENTS causes loss of meaning and 
potential utility.

The challenge is to forgo premature aging of a data model by making sure the data 
objects are sufficiently abstract, while ensuring that anyone reading the data model 
knows what the subject is about. When the name and/or description of the object starts 
to become meaningless, then abstraction has gone too far.

Taken to its extreme, excessive abstraction could collapse an entire data model into 
what some call a TUAKASUDM (commonly pronounced “too-ack-a-sue-dum”) or The 
Universal All Knowing All Seeing Ultimate Data Model (Figure 5-9).

A TUAKASUDM (not to be confused with an Egyptian pharaoh) can represent any 
complex and less abstract data model as two generic entities in a recursive relationship. 
In fact, a TUAKASUDM is the logical conclusion of allowing either data value–
differentiated data objects (see “Data Value–Differentiated Entities and Attributes” in 
Chapter 6) or excessive abstraction. It says that anything might be related to anything 
given some relationship. Who can argue with that? The problem is that it’s not very 
expressive or specific, and readers of the data model know nothing more about the 
subject after reviewing the data model than they did before they started.

Sound farfetched? Not at all. Some system directories, data dictionaries, and 
even some interpretative programming environments use this approach for their data 
management. It works—it just doesn’t work fast.

As always, when trying to decide how abstract or concrete to be, apply the logical 
data modeling principles. Increasing the level of abstraction of a model until the next 
level would decrease the ability of the model to communicate relevant information  
to a reader.

Many-to-Many Relationships
Allow many-to-many (M:N) relationships.

Although an M:N relationship is a legitimate end-user concept, some modelers insist 
on “resolving” it during logical data modeling because no major database management 
system currently directly supports the concept.

During database design, the M:N relationships are usually converted to two one-
to-many relationships with the introduction of a junction or intersection record or table 
(Figure 5-10). Because it must be done eventually, the obvious question becomes, why 

Figure 5-9.  Excessive abstraction

http://dx.doi.org/10.1007/978-1-4842-2722-0_6
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not convert M:N relationships during logical data modeling? The answer: because 
a junction record is an artificial construct that hides the fact that many-to-many 
relationships exist in the real world—as any end user will tell you.

Figure 5-11.  An associative entity should not be used to resolve a many-to-many 
relationship

Figure 5-10.  A junction or intersection record resolving a many-to-many relationship

In addition, resolving M:N relationships is a physical design issue that might (or 
might not) have to be addressed during database design. After all, who knows what 
DBMS the database administrators will use or what DBMS will be available ten years 
from now? The logical model should be immune to all physical issues so that the physical 
designers can separate what is end-user-related information from what is relevant to 
physical design.

Some modelers create “phantom” associative entities to resolve many-to-many 
relationships. This is a mistake and a misuse of logical data modeling.

An associative entity is a relationship that has its own attributes. For example, 
an automobile has a list price but often sells for a totally different amount. The exact 
price of a car depends on who is buying the car and when (Figure 5-11). However, an 
attribute-less phantom associative entity should not be created simply to resolve an M:N 
relationship.
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N-ary Relationships
Relationships can legitimately exist between two, three, or more entities.

Many data modeling techniques and the most famous of them all, the entity-relationship 
approach, support n-ary relationships. Regrettably, many CASE tools do not allow greater 
than binary relationships.

In the real world, three-way and more-way relationships exist. For example, take the 
case of a customer buying a car from a dealer (Figure 5-12a). While this is a legitimate 
three-way relationship, most CASE tools require diagramming the relationship in these ways:

•	 With two or three separate binary relationships (Figure 5-12b).

•	 As an empty associative entity (Figure 5-12c).

Neither accurately reflects the business. (See the “Empty Entities” entry in Chapter 7.)
While it is true that most CASE tools simply do not support exotic relationships such 

as exclusion, conjunction, and n-ary relationships, that is no good excuse for ignoring 
robust relationships. These relationships are legitimate and valuable end-user concepts 
that should be documented if they exist. How they are documented could be tool specific. 
In some tools, the exclusive or the n-ary nature of a relationship might have to exist only 
as comments in the data dictionary definition of relationships.

Another excuse frequently cited for excluding n-ary relationships is that none of 
the major DBMSs directly supports them. This ignores the possibility of future systems 
supporting these relationships. If their occurrence is not documented, the information 
will not be accessible when more sophisticated data management products become 
available. Moreover, physical designers could implement n-ary relationships through 
computer code if the need were sufficient.

Figure 5-12.  Diagramming n-ary relationships

http://dx.doi.org/10.1007/978-1-4842-2722-0_7
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N-ary Relationships and Membership Class
Some designers encounter problems with membership class (cardinality and modality) 
when diagramming n-ary relationships. Take the n-ary relationship Customers Buy Cars 
from a Dealer. Looking at the relationship Buy as a series of relationship-entity pairs, you 
get the following:

•	 A Customer can Buy zero to many Cars.

•	 A Dealer can sell (Buy in the other direction) to zero to many 
Customers.

•	 A Car can be bought by zero to many Customers.

•	 A Customer can Buy from zero to many Dealers.

•	 A Dealer can sell (Buy in the other direction) zero to many Cars.

•	 A Car can be bought from zero to many Dealers.

The membership class of the relationship can be easily diagrammed, as in Figure 5-13.

Figure 5-13.  N-ary cardinality and modality

Take a second case, Many Employees from many Departments can be assigned to a 
Project. The relationship-entity pair is as follows:

•	 An Employee can be in one and only one Department.

•	 A Department can have zero to many Employees.

•	 A Project can have zero to many Employees.

•	 An Employee can be assigned to zero to many Projects.

•	 A Department can have zero to many Projects.

•	 A Project can be associated with zero to many Departments.

If you try to diagram the relationship, there is a problem (Figure 5-14). Do you 
place two bars next to Department to reflect “An Employee can be in one and only one 
Department,” or do you use a zero and crow’s foot to reflect “A Project can be associated 
with zero to many Departments”?

What should the designer do?
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The first reaction might be to make the n-ary relationship either three binary 
relationships (Figure 5-15a) or two binary relationships (Figure 5-15b). The problem with 
either of these solutions is that too much information is lost, namely, that there is one 
business relationship dealing with three entities.

There are a couple of things the designer can do to resolve this problem.

	 1.	 Change the diagrammatic conventions. This is a case where the 
diamond, as a diagrammatic convention, is superior to just using 
a line to represent a relationship. A line can cause the designer 
to see the relationship as multiple binary relationships rather 
than as a single n-ary relationship. Focus on the relationship 
diamond rather than the entity rectangles when assigning 
cardinality and modality. The problem should go away.

Figure 5-14.  N-ary cardinality confusion

Figure 5-15.  Incorrect N-ary resolution
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	 2.	 Confirm that the relationship is not an associative entity  
(a relationship with its own attributes). A relationship 
involving three or more entities is not that common, and 
often when it does appear, the relationship is transactional, 
meaning that the relationship describes a specific event that 
is the glue that binds the three, or more, entities together. 
Events often have their own attributes. In the Customer Buys 
Car from a Dealer example, in what entity should you find 
the attributes DATE OF SALE and SALE PRICE? They are 
properties of the relationship Buys not of Car, or Dealer, or 
Customer. Buys is actually an associative entity.

Look at the relationship Assigned in the Employee, Department, Project example. 
Is Assigned a relationship or an associative entity? If it contains attributes such as START 
DATE and END DATE, then it is an associative entity, as in Figure 5-16.

Figure 5-17.  Two separate relationships masquerading as a single N-ary relationship

Figure 5-16.  N-ary event entity

	 3.	 Make sure that the relationship is a single relationship. 
Sometimes a poorly defined relationship hides multiple 
relationships. For example, that an Employee can be in one 
and only one Department sounds more like an organizational 
structure rule rather than a project staffing one. The problem 
might be with the word assignment. There is assignment, call 
it assignment-1, which relates to the structure of a company, 
and assignment-2, which describes the temporary staffing of 
an employee to a project, as in Figure 5-17.
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	 4.	 Rely on the documentation. The previous three approaches 
should solve more than 99 percent of any n-ary membership 
class problems. If not—if the relationship is so (legitimately) 
convoluted—then this is a case where graphic techniques 
need to take a backseat to natural language explanations. The 
data object definition in the data dictionary can be used to 
adequately explain the complexities of the most convoluted 
relationship.

Is this a case of the entity-relationship approach not being able to handle real-world 
relationships? Not at all. The entity-relationship model handles them fine. It’s the artwork 
that needs improvement.

Naming Objects
Data object names should be meaningful yet follow some uniform approach or 
standard when possible. Avoid naming conventions that aim simply at control yet fail 
to communicate.

There are only three legitimate reasons to create and enforce a set of naming conventions.

•	 Help communicate the meaning of a data object.

•	 Locate a specific data object in a data dictionary.

•	 Identify similar or related data objects in an application or 
organization.

Achieving these objectives is often difficult because of these reasons:

•	 Data objects usually need multiple names to reflect various tool 
and/or computer language requirements.

•	 Most naming conventions in use predate, and often are out of 
touch with, current requirements.

•	 Uniqueness requirements vary by data object user.

•	 Naming convention goals vary within an organization.

Each is examined in turn.

Multiple Names
In many cases, an object needs multiple names. Take the logical attribute COMMERCIAL 
CUSTOMER PRE-TAX CREDIT. This name might be acceptable for the data dictionary 
and CASE tool, but it is too long for most COBOL compilers. For COBOL, you might 
have to shorten it to COMM_CUST_PRE_TAX_CREDIT, substituting the underscore 
for the spaces. Even this would not be acceptable for many C compilers, which cannot 
accept more than an eight-character name and do not accept an underscore. For such 
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languages, the name might have to be shortened to TAXCRDT. And even this name may 
be too long for some assemblers, which do not allow names of more than five characters.

The reality is that names are context dependent. What an object is called might 
need to vary based on the context in which it exists, such as in data dictionaries, CASE 
tools, and computer languages. A name acceptable for the data dictionary might be 
unacceptable for an APL program.

Naming Conventions
Naming conventions are not new. Their use goes back almost to the inception of computer 
languages. What is new is the explosion of the number of objects that need to be named 
and the restrictions imposed by the places in which these new objects are stored.

Originally, names were limited to identifying physical objects such as files, records, 
and fields within records. To live within the confines of computer languages, system 
directories, and job cards, a set of rules was established that focused on name restrictions, 
reserved words, character length, and the use of delimiters and abbreviations.

Now these same conventions are used to gauge the appropriateness of names for 
objects, e.g., entities, attributes, relationships, external entities, and much more, which 
may be stored in a data dictionary or CASE tool. Unfortunately, the old ways of naming 
objects do not always work well with modern objects or tools. Conventions designed 
to uniquely define the 20 to 100 data objects in the files of yesteryear are inadequate 
for defining the potentially thousands of data objects in a data dictionary of today. 
Consequently, names, and their conventions, often need replacement or modification to 
make sense in the modern systems organizations.

Name Uniqueness
All data objects need to be unique within a specific context. However, not all tools and 
languages have the same context. Here’s an example:

Maitland Trust Company and Rossetti Marriage Counseling 
are two separate and unrelated companies. Both have the 
logical attribute CUSTOMER NAME, but with two different 
definitions. However, Maitland need not be concerned about 
Rossetti’s CUSTOMER NAME, because the context of the two 
attributes is very different. Both companies can consider their 
definition of the attribute CUSTOMER NAME unique.

In the same vein, one of Maitland’s assembler programs 
might use the variable CUSTN for “customer name,” while 
another Maitland program uses CUSTN for “custody number.” 
Both are acceptable uses of CUSTN because the context (the 
program) of the two objects is different.

While the name must be unique within its context, in this case the computer 
program, the name need not be unique outside its context. In the previous Maitland 
example, there is no confusion even though the programs use the same object names 
because the context in which the names are used is different.
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Contexts can vary by object. Whereas logical entity names might have to be unique 
across the enterprise, relationships need only be unique together with their entities. For 
example, it is acceptable to have the relationship-entity pair Customers Buy Products and 
Divisions Buy Raw Materials because the entities that tie together the relationship Buy are 
unique (Table 5-3).

Naming Convention Goals
Everyone within an organization does not have the same goals for a set of naming 
conventions. Two groups often at loggerheads are data administration and application 
development. Projects sometimes suffer because the data administration group sees 
naming conventions as a means to control and regulate the collective data asset, while 
the application developers are concerned with ease of use, productivity, and building 
applications in the quickest and cheapest way possible (Table 5-4). Conflict is often 
unavoidable.

Table 5-3.  The Context of Uniqueness Can Vary by Object

Object Type Uniqueness Context

Attribute Enterprise

Entity Enterprise

Relationship Between entities

Record File or database

Field Record

File Database or system

Database Enterprise

Table 5-4.  Comparison of Data Administration and Application Development Naming 
Convention Goals

Data Administration Naming  
Convention Goals

Application Development Naming  
Convention Goals

•	 Unique names across enterprise

•	 Central control of names and all changes

•	 Dictionary-oriented names

•	 �Unique names within programs, 
application, database, etc.

•	 �Application development freedom to 
customize and shorten names as 
needed

•	 �Tool-oriented or programming 
language–oriented names
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Table 5-5.  Context-Sensitive Logical Attribute Naming Convention Example

•    �Use full words—no abbreviations unless necessary. Length should be as long as 
necessary—60 characters is not excessive.

•    Do not use abbreviations unless they are

-    Routinely used by a business (see the “Abbreviations” entry in this chapter).

-    Absolutely necessary for the data object name to fit in the data dictionary.

•    �Use a blank as a delimiter, i.e., CUSTOMER NAME, not CUSTOMER_NAME or 
CUSTOMER-NAME.

•    Use names that are unique within context…

•    …and in English.

•    Follow a consistent naming framework or rule set (see the following).

•    �Do not use special characters, codes, prefixes, or suffixes to specify the source, 
location, organization, entities, technology, or use of the object.

•    Follow a naming rule set consistent with tool and data dictionary restrictions.

The clash can often be avoided, or at least minimized, with some preproject 
understanding of the contexts of the different data objects.

Naming conventions should reflect the needs of both groups.

•	 Facilitate the use of the data objects.

•	 Provide a modicum of control.

In some organizations there is little room for negotiation—with the application 
developers having to “knuckle under” to the prevailing standards. On the other hand, if 
these two groups are viewed as two separate contexts, compromise is possible.

While naming conventions vary, a good context-sensitive naming convention for 
attributes might look something like Table 5-5.

When creating object names, a set of rules should be applied. A popular rule set is 
the Prime-Modifier-Class approach (Table 5-6).
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An example of a correctly named attribute, using the previous framework, would be 
CUSTOMER LAST NAME.

Physical objects need a different set of conventions and rule set, as in Table 5-7.

Table 5-6.  Attribute Naming Rule Set Example

•    All attribute names should be constructed of words in a specified order, for example:

Prime Word [+ Modifier] + Class Word

-    �Prime Word is a noun used to identify a basic data object, such as Customer, 
Account, and Employee.

-    �Modifier is an adjective that further describes the prime word, such as Current 
and Last.

-    �Class Word describes the object classification. Examples would be Address, 
Amount, Name.

•    There should be only one Prime Word and only one Class Word per name.

•    A name could have zero to many Modifiers.

Table 5-7.  Context-Sensitive Physical Naming Convention Example

•    �The maximum length of the name is determined by the tool or computer language 
used. For example, the length would vary for C, DB2, and Assembler.

•    Abbreviations are used where needed to conform to length restrictions.

•    Names need not be unique across the entire enterprise, only within context.

•    Delimiter is language/tool dependent.

Names should follow the naming rule set as much as possible given the computer 
language length restrictions. For example, an eight-character Assembler language name 
cannot support the Prime-Modifier-Class construct.

Naming conventions for other data objects, such as entities, relationships, or 
programs, can be similarly constructed. If the result of using a naming convention is a 
series of unintelligible phrases, then there is something wrong with the convention, and 
the phrases should be either changed or replaced.

Rule sets such as the Prime-Modifier-Class set mentioned earlier can be particularly 
problematic. Keep rule sets in perspective. Remember:

•	 Most rule sets produce junk from time to time.

•	 Always let reason prevail over form (form follows reason?). If 
the output of a rule set is unintelligible, change the name to 
something that is reasonable and makes sense—regardless of 
what the rules say.
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Which naming approach you use is less important than achieving some level of 
agreement on its purpose and structure. For example, a satisfactory approach is usually 
found if the data administration and application development team discussions focus 
on why and where naming conventions are needed, rather than on how they are to be 
enforced.

This is actually good news for the data modeler. Many modelers are under pressure 
to use a naming convention that is not ideal for communication. Having different 
conventions means that there can be one for the logical data modeling process that does 
not have length or delimiter restrictions while keeping system programmers happy (or as 
happy as system programmers ever are). (See the “Abbreviations” entry in this chapter.)

Null Attributes
Null attributes are perfectly acceptable, but the more appropriate question is, why 
do you care? Nonetheless, make sure they are not the result of combining multiple 
entities or subtypes into one.

There really should be no reason to talk about null attributes because there is no place 
in logical data modeling for the concept of a null attribute. Null-talk comes from the 
relational model where the null attribute is either a clever innovation or a bugaboo—
relational theorists are not sure which.

Here’s a little background. IT, for the first three decades of its long and glorious 
history, lived in the world of two-value logic. A proposition is either true or false. A thing 
existed or it didn’t. There is no in-between. Ted Codd, as part of his relational model 
work, proposed a three-value logic for true, false, and beats me (although Codd preferred 
“don’t know” or “undetermined”).1 The relational community spent the next three-plus 
decades of IT’s long and glorious history trying to figure out what that meant. (Actually, 
if you discount the option “ignore it,” they are still working on it.) Relational database 
people, as opposed to relational theorists (same religion, different sect), have three basic 
responses to nulls: (1) treat them as blanks, (2) recognize they exist but avoid them at all 
costs, and (3) what nulls?

Nulls are a relational issue and not a logical data modeling one. If a relational DBMS 
is to be used for the modeled application, then physical designers in the Physical Schema 
Definition phase can wrestle with nulls. For now, put that battle aside and focus on 
something more important.

There Be Blanks in Them Thar Nulls
Of more importance to the logical data modeler is the question of too many blanks. If you 
take the advice of some more grounded relational theorists and treat nulls as blanks, then 
you can look at the potential problem a bit more rationally in the “Too Many Blanks or 
Nulls” entry in Chapter 7.

http://dx.doi.org/10.1007/978-1-4842-2722-0_7
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Optional Relationships (Optional-Optional 
Relationships)
Allow optional relationships.

The argument against optional relationships (Figure 5-18) is usually voiced by relational 
database theorists who are upset at the possibility of having a null value as part of a key.

Figure 5-18.  Optional-optional relationship

Contrary to what some relational database advocates believe, optional relationships 
do not require nulls in primary keys; however, nulls are possible if the primary key is also 
a foreign key (see the entries “Null Attributes” in this chapter and “Primary Keys” and 
“Foreign Keys” in Chapter 6). The good news is that because null values and keys are 
physical design questions, they are not relevant to a discussion of logical data modeling.

Subject Areas
Allow subject areas.

Subject areas partition the data model into smaller parts. However, the model should 
be segmented in a way that minimizes cross-subject-area relationships. For example, 
a banking data model might be partitioned into two subject areas for customer-related 
entities and account-related entities. This segmentation recognizes the reduced number 
of relationships required to span the partition.

Subject areas are also a good way to partition a data model for tasking purposes 
(dividing a data modeling exercise into separate smaller pieces so that multiple 
individuals or teams can work simultaneously without stepping on each other’s toes).

They are also used, although with less success, as a means of breaking a big data 
model down into multiple physical databases. The reason subject areas are a poor 
method of database design is that they do not take into account how the data are to 
be used. For example, to say that there should be a customer database and an invoice 
database is acceptable if an application has no need to access both customer and invoice 
information. If, on the other hand, you regularly need customer and invoice information 
together, you might want to store them in the same database. However, you obtain this 
information from the process model, not from the data model. The data model only gives 
information on the relationship between data, not how data should be physically stored. 
To develop a physical database design based solely on logical data is a serious mistake.

There is a second danger to guard against when using subject areas. The subject 
area can become a self-fulfilling prophecy. The subject areas at the beginning of the data 
modeling process might not be the ones you should have at the end. Unless the modeler 

http://dx.doi.org/10.1007/978-1-4842-2722-0_6
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is careful, early subject areas could become permanent unless the modelers constantly 
review and correct the structure.

Another word of caution. Do not confuse subject databases with subject areas 
(Table 5-8). The former is a physical design issue involving physical constraints based on 
how data is accessed, while the latter is a logical data modeling construct based on entity 
relationships and the issues of clarity or tasking. The reason to have multiple databases 
instead of one is usually driven by the physical size of the database, transaction volume, 
and/or location.

Table 5-8.  Subject Areas vs. Subject Databases

Concept Segmentation Criteria

Subject area Relationships between entities

Subject database Data access

Figure 5-19.  A nested supertype

Supertypes and Subtypes
The use of supertypes and subtypes is acceptable.

Super and subtypes (S-types to the in crowd) show how an entity can fulfill multiple roles 
involving different attribute types. They are particularly useful for avoiding blank filled 
attributes without having to duplicate relationships (Figure 5-19).

The point to remember about an S-type is that it does not represent multiple entities 
with multiple relationships, but rather it is a single entity that plays multiple roles. A 
subtype represents each role that has its own attributes. The attributes common across all 
roles are part of the supertype. Subtypes inherit the attributes of the supertype.

Some modelers prefer to have all relationships to the S-types linked through the 
supertype (Figure 5-20); however, this is only appropriate for relationships that are common 
for all roles. As with attributes, subtypes inherit the relationships of the supertype.
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Some relationships apply to only one or a few roles. These relationships should be 
represented through the subtype. Linking these relationships through the supertype 
would hide important information about how the role relates to other entities.

In Figure 5-21, Products and Orders relate to Customers, while Salesman only relates 
to the Commercial role of a Customer. The Federal Systems Division entity is only linked 
to Government Customers.

Figure 5-20.  Subtype relationships through the supertypes

Figure 5-21.  Common and role relationships through supertypes and subtypes

■■ Note S -types sometimes go under the name of generalization or specialization.
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Table 5-9.  Identifying the Identifier

Identifier Description

LINE NUMBER? No, it is not unique.

INVOICE NUMBER and LINE NUMBER? It is unique but requires the duplication 
of INVOICE NUMBER in two entities.

PRODUCT ORDERED, LINE NUMBER, and DATE? Not necessarily unique.

Unique Identifiers
The designation of one or more attributes as an entity unique identifier is encouraged 
and should be specified if the unique identifier is a legitimate end-user concept. 
However, “assigning” a unique identifier or arbitrarily making one unique identifier 
“primary” for systems purposes is wrong for logical data modeling and should be 
discouraged.

A unique identifier is an attribute or group of attributes that uniquely determines a 
single entity occurrence. Some system development techniques and tools require that 
all entities have unique identifiers, and some go further to require that one unique 
identifier be designated “prime.” They use terms such as key and primary key. Keys and 
primary keys are an important part of physical database design and are required by some 
database management systems. However, these physical issues are inappropriate here.

If there is more than one unique identifier in an entity, some authors recommend 
arbitrarily identifying one as the prime unique identifier and the others as alternative 
unique identifiers. However, it is absurd (even for physical design—and by definition 
an arbitrary decision) to pick one unique identifier over another as the prime identifier. 
Modelers should not build arbitrariness into a model (revisit the Real World Corollary to 
Principle 1 in Chapter 1).

More important, unique identifiers are not needed for all entities. Take the example 
of an accounts payable system (Figure 5-22).

Figure 5-22.  Accounts payable data model

What is the unique identifier of Line Item (Table 5-9)?

http://dx.doi.org/10.1007/978-1-4842-2722-0_1
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To create a unique Line Item unique identifier, some analysts designate a system-
generated key, also called a surrogate key, such as a sequential number (a physical 
design issue), or use a unique identifier from another entity and duplicate it in the 
subject entity. For example, INVOICE NUMBER could be the unique identifier of Invoice 
and, concatenated with LINE NUMBER, the unique identifier of Line Item. Neither the 
system-generated key nor the borrowed unique identifier is a good idea because they are 
artificial, fictitious, and certainly not real world. If there is no legitimate unique identifier 
for an entity, leave it “identifier-less.”

Table 5-10 illustrates two examples where nonidentified data might exist.

Table 5-10.  Nonidentified Data

Example 1 Example 2

Good Health Insurance Co. wants to create 
new weight-height tables for its actuarial 
department. To do this, it sends to each 
resident of several randomly selected 
towns an information package and a 
postcard to fill out and return. Anonymity 
is guaranteed. The postcard information 
contains fields for the following:

Height        Sex

Weight        Race

Date of Birth

The cards are entered in Good Health’s 
database with no end-user unique 
identifier.

Fair Play Inc. provides a service that looks 
at other companies’ personnel records and 
reports whether they show any indication 
of racial, gender, or age discrimination. 
The program works as follows:

Clients send to Fair Play their personnel 
records of all employees minus any 
identifying information. For example, data 
would include the following:

Race                    Years with firm

Sex                       Education

Date of Birth    Position in firm

Weight                Years in position

Height                Salary

Information not included:

Name                  Employee number

Address             Phone number

Social Security number

A word of caution: some modelers use the phrase unique identifier and the word 
identifier interchangeably. Other modelers reserve identifier for attributes that can pick 
out an entity though not necessarily uniquely. For example, CUSTOMER NAME could be 
used to find a customer occurrence even though there is no guarantee of uniqueness. In 
physical database design, nonunique identifiers are commonly used as secondary indices.

Unique identifiers that are a legitimate part of the business should be modeled. 
Some system development tools insist that a nonbusiness unique identifier be 
assigned, which requires data and/or processes that are not part of the business. To 
alter the business, or the representation of the business, to satisfy a development tool is 
misleading, unnecessary, and simply wrong.
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Note
	 1.	 E. F. Codd, “A Relational Model of Data for Large Shared Data 

Banks.” Communications of the ACM, Volume 13, Issue 6 (June 
1970), p. 384.
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CHAPTER 6

LDM Pitfalls

I think knowing what you cannot do is more important than knowing 
what you can.

—Lucille Ball

But then it dawned on me that the opinion of someone who is always 
wrong has its own special utility to decision-makers.

—Warren Buffett

Chapter 5, the “do’s,” should help with some thorny logical data modeling situations by 
presenting best practices from some of the best data modelers in the business. There 
is also an almost equal number of best-practice don’ts. Sometimes the don’ts are more 
useful than the do’s.

Chapter Subjects

•• Circular relationships

•• Data values

•• Data value–differentiated 
entities and attributes

•• Derived data

•• Discrete attributes

•• Embedded attributes

•• Entity fragmentation

•• Foreign keys

•• Junction entities

•• Normalization

•• Presentation Data

•• Primary keys

•• Process data

•• Repeating groups

•• Single-attribute entities

•• Substitution data

•• Substitution tables

•• Transient data

Circular Relationships
Do not model circular relationships; they should not exist.

A circular relationship is the data modeling equivalent of a cat chasing its tail and is 
usually identifiable as three or more entities, all one-to-many, with the crow’s feet all 
pointing in the same circular direction (Figure 6-1). If you have a circular relationship, 
then at least one relationship and/or one entity is incorrect. To prove this to yourself, try 
to construct one. You will quickly see that the task leads to a meaningless model.

http://dx.doi.org/10.1007/978-1-4842-2722-0_5
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The circular relationship problem might be that at least one one-to-many 
relationship is actually a one-to-one or many-to-many relationship or that one of the 
entities should be two entities or part of another entity.

Data Values
Do not model the values of data.

Data models model data objects, not the values of data objects. Even experienced 
modelers have trouble with this simple concept. End users often confuse data values with 
entities or attributes and conclude that the data model is in error if data values are not 
included on the E-R diagram. Take the following case, for example.

During the creation of the data model, the end users made a distinction between 
commercial and government clients. If the client is the government, the 30 days net 
payment rule does not apply. However, if a commercial account is not paid within 30 
days, a second notice is sent.

The modelers decided to create two entities: Commercial Client and Government Client.
The error is letting the data value of an attribute, CLIENT TYPE, differentiate 

entity types. In the previous example, the modelers have uncovered no distinct data 
definitions to differentiate the entities Commercial and Government. Rather, all they had 
discovered was that the model needed the attribute CLIENT TYPE to contain the value 
“Commercial” or “Government” so that a process could distinguish the two.

A quick test to determine whether values are being modeled is to examine the entity 
and attribute names. If the entity or attribute name is a proper noun, then it is a good bet 
that what is modeled is the value of an attribute (Table 6-1). To avoid this problem, you 
may have to replace one attribute with two or more.

Figure 6-1.  (Meaningless) circular relationships

Table 6-1.  Examples of Invalid and Valid Attribute Types

Invalid Attribute Type Valid Attribute Type

IBM MODEL VENDOR, COMPUTER MODEL

US TAX COUNTRY, COUNTRY TAX

S&P RATING RATING SERVICE, RATING

ZIP CODE POSTAL CODE
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Take the Yes/No-type attribute US CITIZEN, which limits the acceptable data values 
to “Yes” and “No.” A better approach is to model a CITIZENSHIP attribute for which the 
acceptable values are the names of countries.

Data Value–Differentiated Entities and Attributes
Do not allow data values to differentiate or define entity or other attribute types.

This issue is the reciprocal of modeling data values (see “Data Values” in this chapter). 
Data value–differentiated entities and attributes occur when the value of an attribute is 
used to define an entity type or another attribute type. For example, imagine the following:

The order entry data model for Wittgenstein & Tarski Inc., a 
consumer products firm, includes the entity Product with the 
attributes PRODUCT SOURCE and MANUFACTURER. If the 
value of PRODUCT SOURCE is “Internal,” then the attribute 
MANUFACTURER contains the location (New York, Chicago, 
Ship Bottom, NJ) of the Wittgenstein & Tarski Inc. plant that 
created the product. However, if the value of PRODUCT 
SOURCE is “Purchased,” then the attribute MANUFACTURER 
contains the name of the company that made the item.

In Table 6-2 the definition of MANUFACTURER depends on the value of PRODUCT 
SOURCE.

Table 6-2.  Differentiated Entities

Product Name Product Source Manufacturer

Elbow-Master Internal Ship Bottom, NJ

Veg-atomic Purchased Oncor Manufacturing

Another example of a data value–differentiated entity would be when the entity 
Customer contains the name of a customer when the value of the attribute CUSTOMER 
TYPE is “Commercial” or when it contains the name of the salesperson assigned to the 
account when the value of CUSTOMER TYPE is “Confidential.”

In both cases, the definition of an attribute or entity is determined by the value of an 
attribute. This is an error because it does the following:

•	 Eliminates or hides from the data model the definitions of real 
business entities, attributes, and relationships and replaces them 
with attribute values.

•	 Makes an entity or attribute into a property or characteristic of 
a data value when, by definition, data values are characteristics 
or properties of attributes, and attributes are characteristics or 
properties of entities.



Chapter 6 ■ LDM Pitfalls

102

In one case, this rule appears to be broken, but in fact, it is not. A subtype often 
has a type or role attribute that defines the subtype and thus determines the properties 
of the subtype (see “Duplicate Sub-Supertype ‘Type’ Data” in Chapter 5). But closer 
examination reveals that the “Type” attribute in a subtype is actually a role determinant 
and should, for the purposes of this guideline, be considered a characteristic of an entity.

Some readers might note that this is similar to the restrictions imposed by 
normalization’s second normal form. (See “Level of Abstraction” in Chapter 5.)

Derived Data
Avoid placing derived data on the E-R diagram, although it should be in the data 
dictionary.

Derived data items are data objects that can be calculated from primitive data or from 
other derived data. For example, if an accounts payable system stores data on each 
purchase, then the data item, TOTAL AMOUNT ORDERED, can be derived by adding the 
amount ordered for each of the individual orders. TOTAL AMOUNT ORDERED is the sum 
of the values of all the occurrences of the INVOICE AMOUNT data element.

Three Poor Arguments Against Modeling Derived Data
Some modelers feel that derived data should not be part of the logical data model at all.

They have three traditional arguments against modeling derived data. They believe 
that derived data

•	 Are redundant, which can cause synchronization problems.

•	 Take up database storage space.

•	 Limit the choices of physical designers.

Many modelers would say that TOTAL AMOUNT ORDERED is redundant because it 
can be calculated from the individual orders. This redundancy is undesirable because it 
can lead to inconsistencies if the value of TOTAL AMOUNT ORDERED does not equal the 
sum of the INVOICE AMOUNT values. Put simply, the argument is that if data are stored 
only once, you do not have inconsistencies.

The second argument is that because derived data are redundant, they unnecessarily 
take up storage space (e.g., on disk or tape) and increase storage costs.

The third argument is that deciding whether a data object should be stored or 
calculated is a physical design issue. The relevant questions deal with the cost/benefit 
trade-offs between the storage space to house the redundant data and the input/output 
(I/O) and CPU cycles necessary to calculate them every time they are needed. If the 
derived data are left out of the data model, the physical designer, it is argued, can always 
turn them into stored data if desirable. However, if derived data are part of the data 
model, the physical designer might not know they are derived and, therefore, not know 
that there is a store or calculate option. Thus, placing derived data on the data model 
limits the options open to the designer.

http://dx.doi.org/10.1007/978-1-4842-2722-0_5
http://dx.doi.org/10.1007/978-1-4842-2722-0_5
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These arguments are not very compelling. The redundancy argument ignores the 
fact that redundant data can be inconsistent only when some or all of them are wrong. But 
if they are wrong, they are wrong, whether they are in the model once or multiple times. 
Redundancy, in fact, might point out incorrect data that would otherwise go undetected.

It is true that storing derived data in the database increases storage costs. However, 
the argument is misplaced. Issues such as database storage should not be part of logical 
design but should be left to physical design.

The third argument would be correct if there were no other way to communicate the 
derived nature of the data object to the physical designers. However, there are numerous 
alternative methods of conveying that data are derived without dropping them from the 
data model.

The notion that those who argue against derived data also believe they should 
not exist is a common misconception. Enlightened derived data opponents are merely 
against placing derived data on the E-R diagram. They would say that derived data are 
really the restatement of data that already exist on the model. To include them in the 
diagram would be to corrupt the fundamental nature of the model.

Derived Data as Process
Derived data do not really behave like data. For example, you can completely understand 
primitive data with its definition, but to understand derived data, you need a formula or 
algorithm. Look at the following example:

TOTAL AMOUNT ORDERED for ACCOUNT NUMBER = “1234” 
is the sum of the values of INVOICE AMOUNT for that Account.

To understand TOTAL AMOUNT ORDERED, you need a formula or action diagram. 
However, formulas and action diagrams are properties of process modeling, not data 
modeling. So, the real issue with including derived data on a data model is that they are 
not data at all. They are, instead, a process for applying a set of rules to data values to 
calculate other data values.

In Table 6-3, the value of TOTAL AMOUNT ORDERED depends on applying a 
process to the individual values of INVOICE AMOUNT. If one of the latter changes, then 
TOTAL AMOUNT ORDERED must change.

Table 6-3.  Derived Data as a Process

Primitive Data Can Be Understood by  
Looking at Their Definition

Derived Data Need a Formula or 
Algorithm

Attribute Definition

Attribute name: ACCOUNT NUMBER

Definition: A unique identifier of an approved 
account of any status. The Accounts Payable 
Dept. assigns account numbers.

Action Diagram

Calculate TOTAL AMOUNT ORDERED

For each ACCOUNT NUMBER
Tally INVOICE AMOUNT giving
TOTAL AMOUNT ORDERED
End

End
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Recognizing that derived data look more like a process than data is important to 
systems developers. Just giving a definition when a formula is required will not do. An 
action diagram or some similar process modeling construct is required to properly 
communicate the nature of the derived data object to the physical designers.

Derived Data and Physical Database Design
From a physical database design perspective, whether derived data are stored in the 
database or calculated every time they are needed is a mathematical question. The 
physical database designer can calculate the resource costs to store the derived data, 
compare them with the resource costs to calculate the data every time they are needed, 
and choose the less expensive option. The only real question is how does the physical 
database designer know the data are derived?

If derived data are not in the data model, then how are they communicated to the 
physical database designers? This can be a problem. Many data modelers make the 
mistake of so efficiently excluding derived data from development documentation that 
physical designers do not even know they exist.

The solution to this problem is relatively simple: derived data should exist as a 
process with data flows and data stores and be represented in the data dictionary. The 
dictionary should explicitly state that the attribute is derived and give the name of the 
process (action diagram) that defines that attribute (Figure 6-2).

Figure 6-2.  Location of derived data

If derived data are properly documented, then the physical database designers know 
that derived data exist, where they are used, and how they are defined. They are then in a 
position to intelligently introduce derived data into the physical database design process.

If your only data dictionary is tied to a data modeling tool and because some data 
modeling tools require that all attributes be associated with an entity, the data modeler 
might have to create one or more dummy data objects to house derived data.
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Who should define the derived data’s process or algorithm is more a question of 
complexity than of organizational structure. If the process to calculate the derived data 
is simple, as in the previous examples, then the data modeler can certainly document it. 
If, on the other hand, the process is complex, then the task is better turned over to the 
process modelers who have more appropriate tools and a better understanding of the 
context in which the derived data live.

In summary, derived data should not be included on the E-R diagram, but they 
should exist in the data dictionary along with their describing process.

Discrete Attributes
Do not include an attribute in the model more than once.

Placing an attribute in the model more than once is usually a sign of confusion about the 
name and/or definition of the attribute or a misunderstanding about logical data modeling. 
Nevertheless, despite the rule, modelers must be mindful of some exceptional situations.

•	 If your data modeling tool requires foreign keys, then an attribute 
might appear in your model more than once. Following its first 
occurrence, however, an attribute should appear only as a foreign 
key. (See the “Foreign Keys” entry in this chapter.)

•	 Certain attributes might seem to appear more than once, but this 
is usually because an attribute name is less specific than it should 
be and/or there is an issue of context. For example, generic 
names, such as DATE, AMOUNT, or TOTAL AMOUNT, which may 
appear in several places in the model, are acceptable if everyone 
understands that DATE in the Customer Billing entity is a different 
attribute from DATE in the Product Price Schedule entity. (In this 
example, everyone has agreed—implicitly or explicitly—to call the 
attribute not by its name but by its domain.) To be more accurate, 
the attributes should be named CUSTOMER BILLING DATE and 
PRODUCT PRICE SCHEDULE DATE.

•	 A variation of the previous situation can occur with codes and 
indicators. For example, a number of entities might have the 
attribute STATUS CODE. This is acceptable, although perhaps not 
in the best form, if the domains (all the acceptable values, such as 
“Active,” “Inactive,” and “Closed”) are all identical. If the domains 
are different, then the attributes need different names.

•	 A differentiator attribute might appear in each subtype of a 
supertype-subtype entity defining the separate role each subtype 
plays (see “Super-Subtypes” and “Duplicate Super-Subtype ‘Type’ 
Data” in Chapter 5). This is acceptable because the attribute type 
still appears only in a single entity type.

Be careful. An attribute appearing more than once could signal a number of other 
problems, such as modeling data values, improper use of supertypes and subtypes, or an 
attempt to get around a (misguided) restriction on repeating groups.

http://dx.doi.org/10.1007/978-1-4842-2722-0_5
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Concatenating the entity name to the attribute name (such as using “dot” notation 
in Entity Name.Attribute Name as in CUSTOMER.ADDRESS) is not an acceptable 
method of making an attribute name unique. Attribute names must stand on their own, 
independent of the entity with which they are associated.

Embedded Attributes
Do not allow embedded attributes.

Embedded attributes are attributes with other attributes hidden inside them. This is 
usually done to (1) make the assembled attribute unique or (2) combine two or more 
attributes into an undeclared and covert group attribute.

Uniqueness
The attribute ACCOUNT NUMBER for a bank is sometimes made up of a branch code 
and a sequence number within the branch. The sequence number can be repeated from 
branch to branch, so combining it with branch code uniquely identifies an account 
within the overall bank.

Making identifiers unique is an important physical design task. Identifying unique 
attributes is an important logical data modeling function, but making attributes unique is 
not. Do not hide attributes in other attributes to create uniqueness.

Group Attributes
Some modelers use embedded attributes to hide a group attribute. Using the bank 
account number example, the real-world situation is that there is a group attribute, 
ACCOUNT NUMBER, which consists of two simple attributes, BRANCH CODE and 
SEQUENCE NUMBER. However, many modelers fear group attributes because they are 
not supported by some, mostly relational, database management systems. Put your fear 
aside. This is logical data modeling, not physical database design. Group attributes are 
not only allowed but encouraged because they enhance communication (information is 
not hidden) and reflect the real world.

The Problem with Embedded Attributes
The problem with embedded attributes is that they hide information from other data 
modelers, physical database designers, database administrators (DBAs), and application 
developers.

In the bank example, if a branch code is embedded in an account number, then 
where would the application programmer find the branch code? Will the programmer 
know to look inside the account number? Where will the programmer get that 
information? Should the branch code be duplicated (once in the account number and 
once as a stand-alone attribute)? If so, then how does the designer ensure that when the 
branch code is modified, it is updated in two places?
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Embedded attributes put an unfair burden on the application programmer. If 
both the account number and branch code are needed for the application, then the 
programmer must dissect ACCOUNT NUMBER to extract the branch information. This is 
an inelegant and error-prone process.

The Solution
An acceptable solution is to create a compound unique identifier consisting of the 
attributes BRANCH CODE and SEQUENCE NUMBER. A better solution is to make the 
unique group attribute ACCOUNT NUMBER containing the simple attributes BRANCH 
CODE and SEQUENCE NUMBER.

The Moral of the Story
Logical data modeling should uncover information, not hide it. Avoid embedded attributes.

Entity Fragmentation
Avoid unnecessarily fragmenting entities. 

Some modelers fragment entities into multiple entity types to avoid unnecessary 
duplication of empty (blank, null) attributes. For example, because most employees do 
not have a TERMINATION DATE attribute, the modeler for the diagram in Figure 6-3 
removed TERMINATION DATE from the Employee entity and created a new Termination 
Date entity.

Figure 6-3.  Entity fragmentation

The fragmented data can and should be bundled in the subject entity so that 
TERMINATION DATE along with DATE OF BIRTH and FORMER NAME are all part of 
Employee. Fragmenting entities just to avoid empty attributes should be discouraged.

Multiple entities, however, are often needed to express information about major 
business concepts. For example, a logical data model might have a number of entities 
dealing with a customer or a product. This is one of the reasons for subject areas. 
However, the designer must guard against indiscriminately splitting entities, especially 
for physical reasons, such as to avoid unnecessary empty, blank, or null attributes.
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Do not confuse entity fragmentation with an entity fragment (see “Entity Fragments” 
in Chapter 4). Entity fragments are often used by system designers to build process models.

Foreign Keys
Do not define relationships using foreign keys.

A foreign key is not a legitimate logical data modeling concept. It is a physical design 
issue, tied to the relational model, and even then not required or even supported by every 
relational database management system. Unfortunately, some modelers and tools use 
foreign keys as a way to define relationships between entities.

Relational fans cover your ears. OK? Well, for the rest of you, a foreign key is a type of 
pointer (actually a symbolic key) to another tuple (relational record). By using pointers, 
relational systems perform “joins” and—dare I say it—navigate. This is how these systems 
work. If an Account occurrence is related to one or more Invoice occurrences in a one-to-
many relationship, then a “linking” data element must exist in both records (Figure 6-4). 
The value of the data element ACCOUNT NUMBER in Invoice must be the same as the 
value of ACCOUNT NUMBER in the Account record. Thus, when you want both account 
information and all invoices for account 1234, the system can find the appropriate 
occurrences of Account and Invoice using the specified value “1234” for attribute 
ACCOUNT NUMBER. (The linking data elements need not have the same name.)

Figure 6-4.  Foreign keys

Simple. It just requires a bit of redundant data to “point” to related records.
There is a theoretical difference between the E-R relationship and the relational 

relationship. In the E-R model, a relationship associates two or more entities. In the 
relational model, a relationship associates two or more attribute values.

On the practical side, foreign keys simply have no relevance to logical data 
modeling—except in one awkward situation. Some data modeling tools are designed to 
primarily, or exclusively, work with relational systems. The only way to relate entity “A” 
with entity “B” using these products is to specify a foreign key. If you are using one of 
these tools, hold your nose and make the best of a bad situation.

Interestingly enough, after all this relational talk, many relational systems do not 
require foreign keys declarations. (See “Unique Identifiers” in Chapter 5.)

http://dx.doi.org/10.1007/978-1-4842-2722-0_4
http://dx.doi.org/10.1007/978-1-4842-2722-0_5
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Junction Entities
Do not use junction entities to eliminate many-to-many relationships. The use of 
junction entities should not be confused with the role of legitimate associative entities.

Most physical database management systems do not explicitly support many-to-many 
relationships. For those products, the M:N relationships must be “resolved” into two one-
to-many physical record–type links separated by an additional record type, sometimes 
called a junction or intersection record (Figure 6-5). This is appropriate for physical 
database design but inappropriate for logical data modeling.

Figure 6-5.  Resolving many-to-many relationships

Associative entities should be viewed as attributed relationships. Unfortunately, 
many modelers incorrectly believe that at least one of the roles of an associative entity 
is to “resolve” many-to-many relationships. If the business supports many-to-many 
relationships, then the data model should model them.

Normalization
Do not normalize the logical data model. Normalization is a physical database design 
activity and should be left until then.

Normalization is the application of a set of mathematical rules to a database design to 
eliminate or reduce insertion, update, and deletion (IUD) anomalies. It does this by 
ensuring that all fields are completely dependent on the record key for their existence and 
not on any other field. Properly applied, normalization can go a long way toward solving 
the problem of deleting a record that contains one type of data and, in the process, 
inadvertently deleting other information. (See Chapter 10.)

The problem with normalization is that it requires each relation (entity) to have 
a unique primary key. Normalization is a decomposition process. It breaks down or 
decomposes existing “compound” records (entities) into simpler ones that might, or 
might not, be recognizable by end users.

All database designs should be normalized; all logical data models need to wait until 
physical data modeling to undergo the process.

http://dx.doi.org/10.1007/978-1-4842-2722-0_10
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Presentation Data
Do not place data on the E-R diagram simply because they are in a presentation, on a 
report, on a computer screen, or part of a transaction.

Presentation data are not legitimate attributes but rather the replication of legitimate 
attributes. An example illustrates this point.

The Church, Frege & Quine Inc. database contains the attribute AMOUNT DUE 
in the Order entity. The same attribute is called DUE on the order entry screen and 
ITEM AMOUNT in the daily sales report. On the customer order confirmation form, 
AMOUNT DUE is AMOUNT DUE from the Order entity plus any SHIPPING CHARGE 
from the Shipping entity minus any DISCOUNT from the Product entity. Only SHIPPING 
CHARGE, DISCOUNT, and AMOUNT DUE from Order (probably with a better name) 
should be on the data model.

Presentation data are dangerous because their pedigree can be totally hidden. The 
data might be a simple synonym for a legitimate attribute, a duplicate attribute, a derived 
attribute, or even a totally unrelated attribute.

The exclusion of presentation data from the model seems obvious; however, it can 
be problematic when using one set of data object names for presentation purposes and 
another internally. Some digging by the analysts should uncover the problem.

Some modelers have encountered difficulties with end users who are disappointed 
when they do not see data that appear on the computer screen, or on a printed report, 
reflected in the E-R diagram. The designer should explain the apparent disparity to the 
user and take this as an opportunity to confirm the correct status of both modeled and 
unmodeled data.

Although presentation data should never be on the E-R diagram, placing them in the 
data dictionary as aliases or derived attributes does no harm as long as the data’s pedigree 
is obvious and well understood. It might be useful to physical designers if inclusion of 
such data in the data dictionary clears up uncertainties, and it might ease end-user angst.

Presentation data are really an odd combination of redundant data, derived data, 
nondiscrete attributes, and simple synonyms. Careful attention to the derivation of data 
should uncover their true nature. (See “Transient Data” in this chapter.)

Primary Keys
Do not be concerned with keys, primary or otherwise. The uncovering and 
documentation of one or more unique business identifiers for an entity is a 
fundamental part of logical data modeling. The assignment of one of the unique 
identifiers as the “primary key” is a physical data modeling issue and not a 
component of logical data modeling.

The specification of identifiers for an entity is a good piece of end-user information. 
If an identifier is known, convey it to the physical designers. However, the notion of a 
“primary key,” or arbitrarily picking a unique identifier and specifying it as a primary key, 
is a physical design concern and not relevant to logical data modeling. The insistence on 
identifying primary keys is a sure sign that the modeler has trouble distinguishing logical 
from physical data modeling and calls for a review of Chapter 1.

http://dx.doi.org/10.1007/978-1-4842-2722-0_1
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What is important is the identification of unique identifiers. That an attribute or 
group of attributes can uniquely identify an entity occurrence is important business 
information that should be communicated back to the end user for verification and 
to physical designers for possible use as a key. If an entity type has multiple unique 
identifiers, which one to pick as the primary key is unimportant, arbitrary, and irrelevant 
to logical data modeling. (See “Unique Identifiers” in Chapter 5.)

Process Data
Do not model process data, data flows, triggers, formulas, policy, rules, or the passing 
of control.

Process data are not legitimate end-user data but rather interim or transformation data, 
program codes, internal flags, etc., used by an application to tally interim results, control 
process flow, and the like. They should not be modeled. When process data are modeled, 
they usually reflect one of two problems.

•	 Regardless of training or warnings, some people read a data 
model as a process model, which prompts them to introduce 
some temporal notions (e.g., how data might look at different 
times during their life) into the model. In short order, what 
evolves is a mini data flow diagram masquerading as a logical 
data model.

•	 Some analysts and designers interpret data-driven development 
to mean that things such as business policy or business rules 
should be placed in the logical data model. Or they are simply 
puzzled as to where they should store documented business rules 
and policy and, lacking an alternative, store them in the data 
dictionary.

The data model, however, is only for data objects that fit the definition of logical data. 
Things that should be excluded from the logical data model include the following:

•	 Rules and policies, which do not fit into the data modeling 
definition of an attribute, entity, or relationship, should not be 
included as part of a logical data model.

•	 Although simple single attribute rules such as a credit limit can be 
modeled (e.g., “if…then, else” rules), complex rules belong in the 
logical process model.

•	 Textual material, such as a business policy statements, should 
also be excluded. Clearly, the CEO’s annual report policy 
statement is important, but it does not belong on the data model.

http://dx.doi.org/10.1007/978-1-4842-2722-0_5
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•	 Lastly, just because something belongs in the physical database 
does not mean it should be part of the logical data model. An 
application development organization might decide to build 
table-driven systems (applications that use tables to direct 
computer processing) and to store the tables in the database. This 
is perfectly acceptable; however, these system tables are not part 
of the logical data model. They are processes that developers have 
decided should be performed interpretatively. Simply because 
they are stored in the database does not mean they are not 
intended for processing code.

PUB TRIVIA

Some relevant history might be of interest. Data modeling, or at least modern data 
modeling, was first done by Charles Bachman. Bachman diagrams used boxes for 
records (entities) and arrows for sets (relationships). Two problems quickly became 
apparent. First, how do you tell the difference between a process model and data 
model at first blush? Answer: It is not always easy. Second, the Bachman diagram 
was also used by some to represent a database schema (many network system 
designers still do). This confusion with process models and database schemata 
led some to seek a distinct diagramming technique for logical data modeling. The 
results have been good; however, as this entry implies, confusion sometimes still 
reigns.

(See the “Transient Data” entry in this chapter.)

Repeating Groups
Do not delete an attribute because it is a repeating group. Do not make it a separate entity.

The language surrounding repeating groups can be confusing. For some, a repeating 
group is more correctly called a multivalue attribute, while others are actually referring 
to a group attribute (see Chapter 3 for detailed explanations of both). Both multivalue 
attributes and group attributes are acceptable logical data modeling concepts and should 
be part of the model if they are part of the business.

Multivalue Attribute
Multivalue attributes are attributes that contain more than a single data value. Take the 
entity Project, which has the attribute TEAM containing the values “Bob,” “Carol,” “Ted,” 
and “Alice.” Some modelers want to remove TEAM from Project and make it an entity in 
a one-to-many relationship with Project. The new entity Team would contain four entity 
occurrences, each with the single attribute TEAM MEMBER containing a single value.

http://dx.doi.org/10.1007/978-1-4842-2722-0_3
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Group Attribute
A group attribute contains a fixed number of other attributes. An example would be 
the group attribute CUSTOMER ADDRESS, which contains the five simple attributes 
CUSTOMER STREET NUMBER, CUSTOMER STREET NAME, CUSTOMER CITY, 
CUSTOMER STATE/PROVINCE, and CUSTOMER POSTAL CODE. Some modelers 
believe that no attribute should contain other attributes. They would delete the group 
attribute leaving only the simple attributes or delete the simple attributes leaving a single 
attribute of the entire address.

Some modelers feel the need to “resolve” multivalue and group attributes out of 
existence. There are four reasons their approach is wrong. First, both multivalue attributes 
and group attributes are acceptable logical data modeling concepts. Second, if a multivalue 
or group attribute is part of the business, then it should be part of the model that represents 
that business. Third, if the multivalue or group attribute is an attribute (meaning it meets 
the definition of attribute in Chapter 2), then it should not be arbitrarily transformed into 
an entity or deleted. Fourth, removing multivalue attributes could result in a single attribute 
entity, a sure sign that there is something wrong with the model (see the next entry).

Single-Attribute Entities
Do not allow single-attribute entities. An entity should have more than one attribute 
in it.

Single-attribute entities are usually a sign of one of the following:

•	 The single attribute in the entity is a code.

•	 The single attribute in the entity is there to “resolve” a multivalue 
(or repeating group) attribute.

Imagine a system that allows each customer to have multiple phone numbers 
and assigns to each customer a credit status of “OK” or “No Good.” The overworked or 
undereducated logical data modelers created the E-R diagram in Figure 6-6.

Figure 6-6.  Incorrectly modeling single-attribute entities

The entity Credit Status in Figure 6-6 contains the single attribute CREDIT STATUS, 
and the entity Customer Phone Number contains the single attribute PHONE NUMBER.

http://dx.doi.org/10.1007/978-1-4842-2722-0_2
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Figure 6-7.  Acceptable single-attribute entity

Code
Credit status is an attribute and not an entity because it is a property of Customer. 
Interestingly, you could place a second attribute in Credit Status and call it 
EXPLANATION, which is a text field defining the credit status codes (e.g., “OK = the 
customer has a good credit rating with at least one credit rating agency”). However, the 
two-attribute entity should still not be modeled because Credit Status is now a lookup 
table—a physical design programming technique.

Multivalue Attribute (Repeating Group) 
Because customers can have more than one phone number, the modeler removed it from 
the Customer entity and created the new entity Customer Phone Number. Many database 
management systems do not allow repeating groups. The relational model sees them as 
heresy and calls for the creation of a new table housing the offending attributes. However, 
in Chapter 2, it says that an entity is a person, place, or thing about which an organization 
wants to save information and that an attribute is a characteristic or property of an entity. 
A phone number is not a person, place, or thing, but rather a characteristic or property 
of a person, place, or thing, in this case Customer. Characteristics or properties are 
attributes, not entities.

It might be the case that Customer’s PHONE NUMBER needs to be “resolved”; 
however, that is a job for the physical database designers, not the logical data modelers.

Note that (erroneously modeled) codes are always at the “one” end of a one-to-many 
relationship with the legitimate entity, while (erroneously modeled) multivalue attributes 
are always at the “many” end.

Associative Entities
There is one case when single-attribute entities might be acceptable, and that is when the 
entity is associative. Take the case of a library that wants to know who checked out a book 
and when. Who and the book are in the entities Borrower and Book. When is the only 
attribute in the associative entity Borrows (Figure 6-7).

However, even with associatives, single-attribute entities are rare and should be 
examined closely.

http://dx.doi.org/10.1007/978-1-4842-2722-0_2
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Substitution Data
Do not model substitution data unless they are part of the business or necessary for 
understanding the business.

Substitution data often involve codes, abbreviations, or shortcuts that allow the smaller 
data values to stand in for larger ones. Such data can include items such as common 
knowledge codes (NJ = New Jersey), abbreviations (A = Active, I = Inactive), or transaction 
codes (07 = Add Customer). When to use substitution data is a physical performance 
issue best left to physical database designers.

There is one exception, and that is when the code or abbreviation is a recognized 
business data value. For example, in the securities processing business, DK stands for 
“Don’t Know” and is used when part of a securities transaction is unintelligible. It is a 
business-recognized abbreviation routinely used in writing and conversation instead of 
using the entire phrase. The wise data modeler includes both DK and its definition in the 
data dictionary.

Substitution Tables
Avoid substitution tables if at all possible, and if not, then avoid linking substitution 
tables to other entities.

A substitution table is an abbreviation table listing what is stored in the database along 
with what is displayed when accessed. For example, the database might store in the 
Customer record type the data field POSTAL CODE but not the data fields CITY and 
STATE. Rather, the application goes to a Postal Code-City table to look up the city and 
state name. If POSTAL CODE is “08008,” then that value is used to find the CITY and 
STATE values “Ship Bottom” and “NJ” in the Postal Code-City entity.

Substitution tables are how a database stores substitution data. They are an 
important physical database design tool but not a logical data modeling concern. They 
should not be modeled, with one exception.

Sometimes substitution tables are needed for end users. Insurance company staff 
often use codes for actions the insurer takes (or doesn’t take). For example, staff might 
deny a claim for reason “807,” which, when the claim denial letter is printed, translates 
into “Claim denied for no real reason other than the CEO needs a bigger boat.”

Even if there is a legitimate business reason to model a substitution table, it should not 
be in a relationship with any other entities. Note that this is one of the few instances when 
disassociated entities (islands) are acceptable. (See “Disassociated Entities” in Chapter 7.)

Transient Data
Do not model transient data because they are usually temporary, duplicate, or 
process-related data.

This concept is best introduced through an example. Imagine an application that uses 
a memo post approach to update a database; in other words, changes are taken online 
during the day and written to a transaction file. At night, a batch program reads the 

http://dx.doi.org/10.1007/978-1-4842-2722-0_7
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transaction file and updates the database. The question is, should the transaction file 
be modeled? The answer is, in most cases, “no,” for two reasons. First, the data in the 
transaction file are duplicate data. To model them would mean that attributes, such 
as CUSTOMER NAME, would appear in both the Customer and Transaction entities. 
Second, the transaction file has a limited life and therefore should be looked upon, in 
process modeling terms, as a slow data flow (Figure 6-8b) rather than as a data store 
(Figure 6-8a).

Figure 6-8.  Transaction files

The single possible exception is when the exclusion of transaction data would cause 
considerable business data loss or misinterpretation. For example, if the entities in the 
transaction file have attributes or relationships that are different from those already 
defined, then, in this rare case, transient objects can be included in the model.

Location-Dependent Data
Location-dependent data are an interesting variation of the transient data problem. Years 
ago, when information was stored on ledger cards, data were separated into batches by 
their status. Active accounts might be located in one “tub” (special cabinets to handle 
large numbers of ledger cards) and inactive accounts in another. The status of an account 
was determined by the tub in which the card was located.
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Early electronic systems continued this practice. First, punch cards came in various 
colors corresponding to the tub file in which they were located. Active accounts might 
be in the blue tub (and have blue punch cards), inactive accounts in the green tub, and 
accounts containing some error in the red suspense tub.

Tubs eventually became disk files, and the rest, as they say, is history—unfortunately. 
There are still systems being built that use the location of the record, whether it is in the 
master, suspense, or transaction file (whether the notion of location is physical or logical), 
to determine the status of the record.

For modeling purposes, the location of an entity (physical or logical) is not a 
property of the entity. Status, such as active, inactive, or suspense, is a value of one or 
more attributes, not a location on disks, in tubs, or whatever. In logical data modeling, an 
account is not moved to an inactive file—it is declared “inactive.”

Transient data can also appear as presentation data, transaction data, suspense data, 
location-dependent data, temporary data, in-process data, transformation data, or what 
have you. If the data are transient, do not model them.
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CHAPTER 7

LDM Perils to Watch For

Fools you are...who say you like to learn from your mistakes...I prefer to 
learn from the mistakes of others, and avoid the cost of my own.

—Otto von Bismarck

I learned an awful lot from him by doing the opposite.

—Howard Hawkes (American film director)

The last two chapters dealt with logical data modeling do’s, and don’ts. This chapter 
addresses characteristics that aren’t do’s and aren’t don’ts but rather somewhere in the 
middle. These are not wrong but, nonetheless, things to watch for.

Chapter Subjects

•	 Associatives related to 
other associatives

•	 Diagrammable objects

•	 Disassociated entity 
clusters (“islands”)

•	 Duplicate unique 
identifiers

•	 Multiple relationships

•	 One-of-a-kind (OOAK) 
entities

•	 One-to-one relationships

•	 Rare entity relationships

•	 Recursive modality 
constraints

•	 Spiderwebs

•	 Too many blanks or 
nulls

•	 Too many recursives

Associatives Related to Other Associatives
Be wary of associatives related to other associatives because, in a correct model, they 
are somewhat rare.

An event related to another event is one of the few situations where an associative entity 
is correctly related to another associative entity. Take the following case:

Typically, Chatterton Enterprises’ purchasing department 
employees have a job title that they hold for a number of years. 
At the same time, some of these employees might also have a 
temporary assignment as a purchasing agent for a particular 
vendor.
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On the data model, the associative entity Job stores the 
time-dependent information about the employee’s official 
title, while the associative entity Purchasing Role stores the 
time-dependent information about the purchasing agent 
temporary role (Figure 7-1).

Figure 7-1.  Associative related to another associative

Although this example is legitimate, the use of associatives related to other 
associatives is not that common. Therefore, when you see these relationships on a logical 
data model, review them closely. They might be incorrect.

Diagrammable Objects
Not all data objects should be represented in part, or at all, in the logical data model. 
Carefully review all data objects to determine (1) which should be part of the E-R 
diagram and the data dictionary, (2) which should be only in the data dictionary, and 
(3) which should be excluded from both.

When modelers talk about data objects, they mean three different types of data.

•	 Data objects that are candidates for an E-R diagram

–– Entities
–– Relationships
–– Attributes (for space reasons, attributes are usually not on the diagram but 

are represented by the entity in which they participate)

•	 Valid data objects that might be in the data dictionary but should 
not be on the E-R diagram

–– Global data
–– Derived data
–– Transient data
–– Presentation data (screen or report data)
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•	 Data objects that are not part of logical data modeling

–– Records and fields
–– Keys and indices
–– Storage (disk, tape, etc.)

At the beginning of every project, the entire development team should reach a clear 
understanding about which objects are diagrammed (the easy part), which are only 
documented and exactly how they are documented (the harder part), and which are not 
part of logical data modeling at all (an experience up there with a tax audit). The Data 
Administration group should handle global data, such as CURRENT DATE. Application-
specific attributes, such as NEXT ACCOUNT NUMBER and NEXT BILLING DATE, should 
be documented by the process modeling or application development team, and the data 
should be stored in the data dictionary. However, these attributes are not usually placed 
on the E-R diagram.

Derived data are actually the product of a process and should be documented in the 
process model. (See “Derived Data” in Chapter 6.)

Do not model presentation data. Rather, presentation data should exist in the data 
dictionary if they are different from their source (the diagrammed data they represent). 
(See “Presentation Data” in Chapter 6.)

Transient data are process-specific data and should be documented in the process 
model. (See “Transient Data” in Chapter 6.)

Disassociated Entity Clusters (“Islands”)
Legitimate disassociated entities and entity clusters are rare; their occurrence on the 
model most often reflects incorrectly modeled data.

Data models have entities that are related to other entities. A few data models, however, 
may have entities that are not related to any other entities. These entities generally are 
referred to as disassociated entities and sometimes as islands. A small group of entities can 
also function as an island if they are not related to the main body of entities (Figure 7-2).

The legitimate cases of such islands are more common in strongly diversified 
organizations or found on a data model for an organization whose parts are weakly 
related. For example, the data model for a conglomerate that sells services to the 
government and commercial products to consumers might have a disjointed data model. 
Also, a data model that is limited to raw materials management and stock holder services 
would also be legitimately disjointed (although one wonders about the application that 
this data model is intended to support).

Figure 7-2.  Disassociated entity clusters

http://dx.doi.org/10.1007/978-1-4842-2722-0_6
http://dx.doi.org/10.1007/978-1-4842-2722-0_6
http://dx.doi.org/10.1007/978-1-4842-2722-0_6
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Other than in the previous situations, entity islands are rare. When they do show 
up, they are often incorrectly modeled transient or substitution data. (See “Substitution 
Data,” “Substitution Tables,” and “Transient Data” in Chapter 6.)

Duplicate Unique Identifiers
Although it is not uncommon or wrong for an entity to have two unique identifiers or 
for two entities to share an attribute as their unique identifier, the occurrence should 
be investigated.

One Entity, Two or More Identifiers
Occasionally, modelers have an entity with multiple unique identifiers. However, not all 
identifiers have the same importance. Often one identifier is the official unique identifier 
or is more universally used than the others. If so, this fact (which might be important to 
physical designers) should be documented in the data dictionary.

If there are multiple identifiers for an entity, then the modelers should re-interview 
business users to determine whether all the unique identifiers are of equal importance.

One Identifier, Two or More Entities
Ideally, every entity has its own unique identifier. However, the unique identifier of some 
entities could be (in whole or in part) the unique identifier of another entity. Take the 
Employee example in Figure 7-3, where the unique identifier of Employee is EMPLOYEE 
NUMBER.

Each of the entities in Figure 7-3 could have an identifier that is, in whole or in part, 
the attribute EMPLOYEE NUMBER. However, the better solution is to make the three 
entities attributive entities (to show their dependence on Employee) and eliminate the 
duplicate data. Alternatively, the attributes could become part of a group or multivalue 
attribute.

Figure 7-3.  Duplicate identifiers

http://dx.doi.org/10.1007/978-1-4842-2722-0_6


Chapter 7 ■ LDM Perils to Watch For

123

Multiple Relationships
If two or more relationships exist between two entities—particularly if their 
membership class (cardinality and modality) is the same—examine them closely to 
ensure that the relationships are indeed distinct.

One Relationship, Multiple Views
Sometimes, modelers uncover “different” relationships when interviewing different 
end-user staff. The modeler needs to ensure that these relationships are indeed distinct 
and not just different names for the same relationship. Figure 7-4 shows a relationship 
between Contactor and Product that was mistakenly documented as three different 
relationships.

Multiple Different but Similar Relationships
Sometimes the relationships are different but similar. Different but similar relationships 
are not uncommon because end users and business departments often legitimately see 
relationships from their individual perspectives. Such multiple relationships can raise 
a presentation issue. In some diagrams, displaying excessive relationships between 
the same two entities can be confusing (Figure 7-4). If that is the case, the modeler can 
consider showing only one or some of the relationships on the E-R diagram, although all 
must be documented in the data dictionary.

The two cases of multiple relationships can be summarized as follows:

•	 One relationship, multiple views: Ensure that only one 
relationship is modeled.

•	 Multiple different but similar relationships: Ensure that all the 
relationships are documented in the data dictionary, but be 
conservative in placing them on the E-R diagram.

Examine multiple relationships between the same entities with care.

Figure 7-4.  Simplifying multiple relationships
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One-of-a-Kind (OOAK) Entities
Try to avoid modeling OOAKs.

A “One-of-a-Kind” entity, sometimes called an OOAK (rhymes with “nuke”), is an entity 
with a single occurrence. An example of an OOAK would be an entity occurrence that 
stores the current date, the next account number to assign, or the next billing date. These 
data have various names, such as system data or global variable, but they are all the same 
thing—physical implementation data.

The name OOAK comes from CODASYL database management system (DBMS) 
users who used this construct to support global data before the DBMS took over the 
task. By having a single occurrence record type, the necessary data are stored once and 
available to all application programs. Because this entity specifically relates to a physical 
construct, it should normally be left out of logical data modeling.

Only in the rare case, where single occurrence data is needed to understand the 
business, such as storing the date-of-record when the CEO declares an extraordinary off-
cycle stock dividend, should an OOAK be modeled.

In 99 percent of the cases, modeling an OOAK is a don’t. It is just that 1 percent that 
places it in the “to watch for” category.

One-to-One Relationships
One-to-one relationships, while legitimate, are quite rare.

When a one-to-one relationship occurs, usually one of the entity types is part of the other 
or is a role of the other (super-subtype). If a customer can have only one current address, 
then the current address information should be part of the Customer entity, not a stand-
alone entity (Figure 7-5).

Sometimes modelers create an entity to avoid blanks or null attributes. Take the 
example of a financial institution that has a Customer entity consisting of standard 
attributes such as name and address. However, imagine that 2 percent of its customers 
are foreign nationals living abroad. For those customers, the firm must store information 
about their U.S. tax status, both foreign and U.S. addresses, their nationality, and so 
on. To accomplish this, the modelers created a second entity called Foreign Customer 
Information (Figure 7-6).

Figure 7-5.  One-to-one relationship
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The following are the reasons for creating the second entity:

•	 If foreign customer information is in the Customer entity, then 98 
percent of the Customer occurrences would have blank, empty, or 
null attributes.

•	 Storing foreign customer information in the Customer entity 
would waste a considerable amount of space.

Both reasons are, of course, inappropriate. Blank, empty, or null attributes are not 
improper. If the attributes in question are properties of the Customer entity, then they 
should be in Customer, not somewhere else. Second, computer storage considerations 
are a physical design issue and not part of logical data modeling. (See “Entity 
Fragmentation” in Chapter 6.)

Rare Entity Relationships
Certain entity-relationships simply do not occur that often. When they appear on the 
model, they should be investigated.

Rare relationships are sometimes a sign of poor modeling techniques. Examples are 
mandatory one-to-one relationships and mandatory many-to-many relationships. 
Mandatory one-to-one relationships are usually two fragmented entities (see “Entity 
Fragmentation” in Chapter 6) that should be a single entity.

Mandatory many-to-many relationships are less rare than one-to-one relationships 
but still not that common (Figure 7-7). They can indicate a poor understanding of 
modality and are worth a second look by an observant data modeler.

Figure 7-6.  Creating a second entity to avoid null values

Figure 7-7.  Mandatory many-to-many relationships

http://dx.doi.org/10.1007/978-1-4842-2722-0_6
http://dx.doi.org/10.1007/978-1-4842-2722-0_6
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Recursive Modality Constraints
Double-check all recursive relationships because they, of all the objects modeled, 
are the ones most likely to be modeled incorrectly. Specifically, check for incorrect 
modality and cardinality.

Recursive modality constraints are presented in Chapter 3. This entry focuses on how 
these constraints can be used to double-check the validity of a relationship.

Recursive modality constraints are listed in Table 7-1 and can be summarized as 
follows:

•	 Symmetrical relationships can be mandatory-mandatory or 
optional-optional but not mandatory-optional or optional-
mandatory. The latter two categories are meaningless.

•	 Symmetrical relationships cannot be one-to-many. One-to-many 
symmetrical relationships are meaningless.

•	 Asymmetrical relationships cannot be mandatory. If they were, 
that would mean they fall into an infinite regression. (See 
“Updating the Constraints.”)

You can test this by trying a few cases on your own. Try converting a case that works 
to one that should not work, and look at the results. For example, convert “Is the partner 
of” to include a police officer’s former partners. A police officer must have one and only 
one partner at a time; however, they can change partners as they like. Is this represented 
in Figure 7-8?

Table 7-1.  Evaluating Possible Relationships

Cardinality Modality Asymmetrical 
Relationship

Symmetrical 
Relationship

One-to-one Mandatory-mandatory X ??? OK

Optional-optional OK OK

Mandatory-optional X X

One-to-many Mandatory-mandatory X X

Optional-optional OK X

Mandatory-optional X X

Optional-mandatory X X

Many-to-many Mandatory-mandatory X OK

Optional-optional OK OK

Mandatory-optional X X

Note: X = Impossible, OK = Possible, ? = An exception

http://dx.doi.org/10.1007/978-1-4842-2722-0_3
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The answer is “no.”
Look at a police officer occurrence (call him Officer Molloy). Molloy can have only 

one partner at a time, but over his career he might have many partners. Is this one-to-
many? No, many officers could have had Molloy as a partner. Actually, the relationship is 
many-to-many. In reality, a one-to-many symmetrical relationship does not exist.

Updating the Constraints
Since the author introduced the concept of recursive modality constraints in the early 
1990s, a number of other authors have expanded the definition of an asymmetrical 
relationship.1,2,3,4 One case is presented here.

Imagine a lake where three lifeguards are posted around the entire shoreline. 
Each lifeguard is required to back up the lifeguard to his right. The data model would 
include the entity Lifeguard and the recursive relationship Backs Up. The relationship is 
mandatory-mandatory because each lifeguard must back up the guy to his right. However, 
the relationship is also asymmetrical because while A backs up B, B does not back up A; 
in fact, B would back up C. An asymmetrical mandatory-mandatory relationship breaks 
the rule stated earlier—at least that is the argument of some authors. Their solution is to 
expand the notion of asymmetrical to include a number of special cases.

These critics are partially right; however, their conclusion might be misguided. 
A more accurate conclusion might be that “backs up” is a hybrid, where the recursive 
modality constraint is determined by the number of instances in the relationship.

Take the case of the entity Employee and the relationship Supervises. It is an 
asymmetrical hierarchy where Abbott supervises Burns, who supervises Chatsworth. It is 
asymmetrical because while Abbott supervises Burns, Burns does not supervise Abbott. 
It is also optional-optional because Chatsworth supervises no one, and no one supervises 
Abbott.

Now return to the lifeguard example and make Abbott, Burns, and Chatsworth 
lifeguards where Abbott backs up Burns, who backs up Chatsworth. This is asymmetrical 
and mandatory-mandatory, so the critics are right.

However, go back to the Supervises example and fire Chatsworth. Now Abbott 
supervises Burns, but Burns still does not supervise Abbott. Nothing is changed; the 
relationship Supervises is still asymmetrical optional-optional. Go back to the lifeguard 
example and, once again, fire poor Chatsworth. As before, Abbott backs up Burns, but 
now Burns backs up Abbott. This case is now symmetrical mandatory-mandatory.

What happened? There seems to be a special case where, if the number of 
occurrences is three or greater, then the relationship is asymmetrical; however, if the 
number of occurrences is two, then the relationship is symmetrical.

Figure 7-8.  A one-to-many symmetrical relationship is impossible
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How often does this special case arise? Not often, but it is intriguing and worthy of 
further discussion.

The critics present some additional distinctions that are not at all convincing 
(for example, saying that a manager can manage himself). Most involve convoluted 
relationships that seem implausible. However, further investigation might turn up some 
interesting cases that could affect data model development for the better. Ideally, they will 
continue their work.

What should a data modeler do? First, look carefully at all relationships and ensure 
that they make sense. Apply the smell test to see whether they are credible. Second, take 
what everyone else says, including this author, with a grain of salt. All are trying to give 
you the best information possible, but data modeling, as with everything else in IT, is a 
moving target with new ideas (some better, some worse) coming out all the time. Caveat 
emptor.

Spiderwebs
Spiderwebs are usually the sign of an immature data model or incorrectly defined 
relationships.

Also called porcupines or pincushions, spiderwebs are entities that are directly related to 
most other entities on the diagram (Figure 7-9).

Many models have one or more crucial entities, sometimes called anchor entities, 
that form the center of major portions of the diagram (Figure 7-10). Customer, Account, 
Product, and Project are excellent candidates for anchor entities.

Figure 7-9.  A spiderweb data model
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A data model for a bank could conceivably have a dozen relationships involving 
Account. That is not wrong. What might be wrong is linking all or most entities directly to 
the anchor because anchors are usually linked only indirectly (through other entities) to 
the rest of the model.

Spiderwebs are sometimes the basis for a data warehouse schema, which often 
have more pleasant names such as star schema or snowflakes. (Star schemas and data 
warehouses are examined in Chapter 14.) Look closely. The spiderweb might just be the 
product of a data warehouser jumping the gun and applying a physical database design 
concept to a logical data model.

If you find a spiderweb on a diagram, it might be any of the following:

•	 Incorrectly modeled data.

•	 A simplistic representation of the business.

•	 A physical data design technique applied to a logical data model.

Too Many Blanks or Nulls
Be careful of too many blanks or nulls in an entity. They might indicate incorrectly 
defined entities.

Blanks and nulls are a cause of concern for many users of some (particularly relational) 
database management systems. The reason for the concern is that nulls can play havoc 
with DBMS key requirements. However, in logical data modeling, unique identifiers, 
while encouraged, are not required.

A few blank attributes are OK—there are always fields for which the desired 
information is missing. However, if there are a considerable number of blanks, it might 
signal that the designer is combining multiple different entity types into one.

For example, imagine an Invoice entity that contains the attributes DISCOUNT, 
MINIMUM ORDER, SALESMAN, and CONTRACT NUMBER for commercial accounts 
and the attributes CREDIT CARD NUMBER and ORDER SOURCE (i.e., whether the 
order is from the Web, by phone, or over the counter) for retail customers. For a given 
occurrence, the first four attributes are blank if the customer is retail, while the latter two 
are blank if the customer is commercial.

Figure 7-10.  An anchor entity forms the core of the data model

http://dx.doi.org/10.1007/978-1-4842-2722-0_14
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To avoid the blank attributes, split the Invoice entity into two or three different 
entities (Figure 7-11) or into a supertype-subtype structure. Now there is no need for 
blanks and no logical data modeling rules are broken.

Note that in this example, the relationship between Commercial and Retail and 
Invoice is an exclusive or. In other words, one occurrence of Invoice can associate with 
one occurrence of Commercial or with one occurrence of Retail, but not both.

Remember that you are modeling the business, not creating a database schema. 
The task is to correct an error made when the single entity was created, not concoct new 
entities to solve a minor concern.

Do not create entities if they do not (1) conform to the definition of an entity and (2) 
do not reflect the business.

Too Many Recursives
Be careful of too many recursive relationships, which often reflect the efforts of an 
inexperienced data modeler.

In a complete data model, rarely are more than 2 percent of the relationships recursive. 
If 10 percent or more of the relationships are recursive, there may be a problem. Because 
this problem is not common, there is little information describing how it comes about, 
although the most likely cause is “students’ disease.” Students’ disease is a phenomenon 
predominantly suffered by medical and psychology students. It works this way: after 
hearing about a new disease in class, a number of students are convinced that they suffer 
from the recently discovered malady.

If you find, or have developed, a data model where 10 or more percent of the 
relationships are recursive, you should

•	 Review the definition and uses of recursives.

•	 Revisit the data and discuss them with end users to resolve any 
misconceptions.

When too many recursive relationships occur, odds are high that the data modelers are 
new and trying out all the neat stuff they learned in class or from some recently read book.

*     *     *     *     *

This completes the Logical Data Modeling phase of Usage-Driven Database Design 
(U3D).

Figure 7-11.  Entities can be split to avoid blanks
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Next U3D Phase: Physical Schema Definition
In the next phase of U3D (Figure 7-12), the logical data model is merged with the logical 
process model to create a physical data model, which represents not only the definition of 
the data but how the new application will use the data.

The physical data model, in turn, drives the creation of the Physical Schema 
Definition phase that determines the database structure, how the database is ultimately 
used, and its overall performance.
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Figure 7-12.  U3D framework
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CHAPTER 8

Introduction to Physical 
Database Design

Though this be madness, yet there be method in it.

—Shakespeare

You appeal to a small, select group of very confused people.

—Message in a fortune cookie

In the early 1980s, a Honeywell customer was having problems with DBMS batch jobs.  
A Honeywell field-service engineer was visiting that company for a number of 
management meetings. During her lunch break, she wandered into the DBA’s area where 
she found the customer’s staff stymied by the processing problem. Their most important 
application, the one that processed customer orders each night, was taking longer and 
longer to complete its task. It now took almost 5.5 hours to run, pushing the envelope of 
the nightly batch window. The Honeywell engineer looked at the database design and the 
application and, after less than 20 minutes, recommended changes to about 20 lines of 
code. She then returned to her meeting.

The DBA team made the recommended changes, tested the results in the test 
environment, and had the changes approved and installed by that evening. The 5.5-
hour job ran that night for 1 hour and 10 minutes. No other jobs, batch or online, were 
adversely affected.

This example illustrates a peculiarity with databases. Computer programs either 
compile or don’t. Compilers are very fussy. If you don’t have everything right, the compile 
fails. DBMS compilers (precompilers, translators, interpreters, etc.) are not so picky. They 
allow atrocious database designs to compile and be placed in production. And they work, 
albeit not well. Database management systems have a resilience and ability to tolerate 
some really poor designs. They just run slow. It might be a simple task, but if the database 
design is poor, that simple task might take hours, even days, to run. DBAs might blame 
other jobs or complain that the machine is too small, but it is not uncommon that a few 
small changes in the design can make all the difference in the world. The application 
programmer knows when his code is bad; the compiler tells him. Too often, the DBMS 
compiler is silent, and that can really hurt.
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Often the cause of the poor performance is relying only on the static definition of 
data and not paying sufficient attention to how the data are used. Logical data modeling 
correctly defines the data without reference to their use. The physical database design’s 
purpose is to explain how the users and applications want to use the data.

Before converting entities, attributes, and relationships to records, data items, and 
links, the designer should look at how the current crop of database management systems 
came about.

Now, you say, why should I care about the history of the DBMS? Well, as they say, 
“The more things change, the more they stay the same.” As you traipse through the history 
of data management, you see the same concepts used, forgotten, and then rediscovered. 
Like NoSQL? Then you will probably love the DBMS of the 1970s and 1980s. Want to 
know what your DBMS vendor will come up with next? It just might be in that 30-year old 
manual you use to prop up your wobbling desk. Read and see.

A Short Incondite History of Automated 
Information Management (or, a Sequential Look 
at Random Access)
The mid-twentieth century rise of the computer created a need to manage not only the 
machine hardware and software but also the data that changed its parlor-trick abilities into 
something meaningful. Getting information in and out of a computer is still an expensive 
and slow task; however, it was much more expensive and slower in the beginning.

Information Management Era 1: Sequential Processing
The punched card was invented in the eighteenth century, reinvented in the late 
nineteenth century (for the 1890 census), and saw its first automated use with tabulating 
machines in the early twentieth century, all before meeting up with the computer in the 
1950s. Although it had many shapes and sizes, the 80-column card was certainly the most 
well-known information repository of the era—allowing the storage of 80 characters, or 
960 bits, of information. The cards had three significant features. First, they were easily 
storable, if space was not an issue—stack ’em, rack ’em, or put them in long, low cabinet 
drawers. If treated properly, cards could last centuries and were easily stored remotely 
for security purposes. Second, they came in colors, which functioned as a file attribute 
telling the operator what they were part of—green, new customer; yellow, existing 
customer; red, customer in arrears. Third, a new card could be inserted into a deck, and 
an unwanted card could be removed, quickly and easily. No automation required.

A significant disadvantage of punched cards, other than size and weight, was that 
they had to be read sequentially. Combine this with computer memory being small—the 
amount of data it could hold in its buffer was often little more than a card’s worth—the 
system could read only a card or two and complete its processing task before memory 
had to be flushed and reused. Sequential processing and limited memory meant that all 
the data the computer needed to do its job had to be in its buffers at roughly the same 
time. If an account had multiple orders, the Account and its Order records had to be 
sufficiently close together that the machine could grab them as a single transaction.
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The solution to the problem was to integrate the card files—to physically place all 
the Order cards after their related Account card (Figure 8-1). The machine would read 
the Account card and then read each Order card, one at a time, adding up the amount of 
money the account owed. When the last Order card was read, the totals would be tallied, 
a bill printed, and perhaps a new Account card punched. The machine then went on to 
read the next Account card, and the process repeated.

Figure 8-1.  Punched cards

For a monthly payroll system, the Employee card might be followed by four or five 
weekly Time cards. This parent-child relationship of account-order, employee-time 
card, student-grades, product-parts, and so on, became the basis for most sequential 
processing. The introduction of tape, paper or magnetic, made little difference; although 
faster, the files were still processed sequentially and used this parent-child model.

Tape did provide one advantage, although it was hardly a breakthrough. It allowed 
the segregation of data by type. Accounts could be in one physical file, while Orders were 
in another. Two tape drives could be used, one containing a tape of Accounts, sorted by 
ACCOUNT NUMBER, and a second tape drive containing an Order file also sorted by 
ACCOUNT NUMBER. The application would read one ACCOUNT NUMBER from Drive 
0, and then, using Drive 1, see whether there were any Orders with the same ACCOUNT 
NUMBER; if there were, it would process the lot until it ran out of Orders and then read 
the next Account from Drive 0.

Information Management Era 2: The First Random 
Access DBMS
Disks, with random access memory, changed the game. Now data could be accessed 
nonsequentially. The Account record might still be read sequentially; however, its 
associated Orders could be read from a totally different file stored in ORDER NUMBER or 
some other sequence. You just had to find it among the myriad orders.

Random access was a great advance but a messy one. How do you find one record in 
a pile of a few thousand records? A simple and efficient way to retrieve a record was to use 
the record’s disk address. Every record on disk has an address telling the system where it 
lives. It might be something like disk 5, cylinder 3, platter 4, sector 6. Jump to that location 
and your record should be there. You just had to know 5, 3, 4, 6.
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How do you remember 5, 3, 4, 6? Two record retrieval approaches were, and still are, 
popular. The first approach is to store the disk address of the Order record in the Account 
record, and then every time you read the Account record the disk address of its Order 
record is right there.

What do you do if there is more than one Order record and they are not stored in 
ACCOUNT NUMBER sequence but rather are scattered all over the disk (there are always 
a few unfortunate data points that challenge a good theory)? A good solution is to store 
the disk address of the first Order record in the Account record, store the disk address of 
the second Order record in the first Order record, store the disk address of the third Order 
record in the second Order record, and so on, and so on. This is known as a linked list.

The first popular database management systems stored each record type in its own 
file, and then it allowed the designer to specify parent-child relationships across the files. 
The parent-child relationships were carried out using pointers. It was a good system to 
find Order records, but it had just one problem: how do you find the Account record if it’s 
stored randomly?

The second record retrieval approach used a different tactic. If you had a randomly 
stored Account record (suppose all new Account records were stored at the end of the 
file), then create another smaller file, sorted by ACCOUNT NUMBER, that stores only the 
ACCOUNT NUMBER and the disk location of the Account record and, to top it all off, give 
this new sequential file a spiffy name such as index—because, after all, it does seem to 
mimic a library card catalog index. Voilà.

Two of the remaining champions of era 2 are IBM’s Information Management 
System (IMS) and CA Technologies’ IDMS. (A little trivia: the father of IDMS is Charles 
Bachman, who is also the father of data modeling.)

WORD SOUP

In the word soup that is the database arena, the term data model is applied to two 
very different concepts. Back in the salad days of data processing, data model referred 
to the architectural approach behind the file or database management system. Using 
this definition, the main types of data models were the hierarchical data model, used 
by IBM’s IMS; the network data model, à la CA Technologies’ IDMS; and the relational 
model as with Oracle Corporation’s Oracle. There were, of course, others.

More recently, the term data model is used to describe the abstract representation of 
the definition, characterization, and relationships of data in a given environment.

In this book, data model refers to the abstract representation of data, while the 
broad approach used by a DBMS to go about its business is referred to as its data 
architecture or architectural approach or, more simply, just architecture. Using this 
terminology, IMS uses a hierarchical architectural approach, while SQL Server uses 
a relational architectural approach.

Don’t like either data model or architectural approach? You can still successfully 
straddle the fence by simply using the word model as in network model or 
relational model.
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IMS is a hierarchical DBMS; in other words, data are stored in an inverted tree 
(parent-child). You enter the database at the top, the root, and then progress down. 
Account might be the top (parent), while Order is below it (the child). The tree might 
have many levels, so below Order you might find the Line Item segment (segment is IMS 
for record), a sort of grandchild. Everything was done with embedded pointers—the root 
points to the first Account occurrence, the Account occurrence points to the first Order 
occurrence, and so on.

Databases can grow quite large in terms of both record types and record 
occurrences. As the functionality of a database grows, the number of record types can 
blossom, resulting in multiple trees of multiple levels of quite complex structures. IMS 
had a way of making it easier for the programmer by supporting application-specific 
subsets of the database. Rather than seeing the entire database structure, IMS supported 
a logical database description, which is a view or subschema to provide the application 
with a subset of all the records and data items it required. The database objects not 
needed could be left out of the view.

The hierarchical DBMS had a few advantages. First, it was fast. As long as you could 
start at the root, you could find all associated records under it quite quickly. This made 
it ideal for online transaction processing (OLTP). Second, relying on a single system 
to manage all data (adding new data, retrieving existing data, or deleting unwanted 
data) made database integrity and recovery relatively easy. Third, the logical database 
description allowed applications to deal only with the data they needed and not the 
entire, potentially complex, database.

However, the hierarchal model had two annoying drawbacks. First, you had to enter 
at the top of the tree and then go down. You could never go up. You could enter the data 
at the Order record (if you could find it), but there was no way to go up to its associated 
Account record. The second problem was that it was strictly one-to-many. If your data 
was many-to-many, you were out of luck.

The network architectural approach solved both of these problems with pointers 
that pointed up as well as down. Want to go to the related Account record from an Order 
record? No problem. Want to go from Account to Product and then to any other Accounts 
that ordered the same Product (many-to-many)? No problem. Want to go horizontally 
from Account to Account or Order to Order? No problem, because the network DBMS 
used linked lists.

PUB TRIVIA

The network architecture was codified into a standard by the Conference/Committee 
on Data Systems Languages (CODASYL). CODASYL was a volunteer standards group 
that gave the world, among other things, standardized COBOL. CODASYL’s data 
management group became the Data Base Task Group (DBTG), which spearheaded 
numerous database standards. Some books refer to the network DBMS as the 
CODASYL model, others as the DBTG model; however, they all refer to the same thing.
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DBTG gave us a number of DBMS concepts and terms that still exist today, such as 
schema, the specification of the database structure and how data in it is organized; 
subschema, the subset of the schema that is the programmer’s or end-user’s view 
of the database; Data Manipulation Language (DML), a sublanguage that defines 
how database information is accessed, created, and destroyed by the programmer 
or end user; and the Data Definition Language (DDL), the commands used by 
the database administrator to create, modify, and delete database schemas and 
subschemas.

Although not a direct line, there is a link between DBTG and the American National 
Standards Institute X3/SPARC committees, which carried on its work. ANSI 
introduced a three-level database model replacing schema with internal schema 
and subschema with external schema and added a new layer called the conceptual 
schema, which is the enterprise-wide view of the data.

The key to the network model was the set, a defined owner-member (parent-child) 
relationship. Sets were limited to two levels, but the member (child) in one set could be 
the owner (parent) of another set, providing a tree structure of any number of levels. The 
set had another trick. The member of one set could be a member in a second set, allowing 
the system to support many-to-many relationships (Figure 8-2). Invisible pointers, buried 
in records, allowed the programmer to navigate from set to set, record to record.

Figure 8-2.  Network sets

Navigation required that at any given time the programmer had to be aware of where 
they were in the database. The current position (record, data item, or relationship) was 
known as currency. Knowing the current record allowed the programmer to navigate 
anywhere else in the database. CODASYL systems also supported a robust subschema 
architecture minimizing the need for extensive navigation.



Chapter 8 ■ Introduction to Physical Database Design

141

CURRENCY

If you have ever used a word processor, then you are familiar with currency. If you 
look at a document on a computer screen and start typing, the characters you type 
do not necessarily go where you are looking. Rather, the keystrokes entered go 
where the cursor is located, which might be in a part of the document not even 
displayed on the screen.

Database currency is similar to the word processing cursor. It is the place in the 
database where the next function performed happens.

Network systems had another neat feature. When inserting a new record, you 
could specify that you wanted it stored near another record occurrence. For example, 
when inserting a new Order, you could specify that you wanted it stored on disk near its 
Account occurrence parent, ideally on the same database page. This meant that when 
you accessed an Account occurrence, there was a good chance that its associated Order 
occurrences were on the same physical page.

Era 2—the first true DBMSs (from the late 1960s to today)—had a number of kudos 
to its credit. First, the DBMSs were fast. You can’t beat pointers for speed, which is still 
true today. The emergence of online transaction processing (OLTP) became their strong 
suit. No DBMS approach got data to a computer screen faster. Second, they were reliable. 
They oversaw the entire transaction, no matter how many places on disk it touched. They 
guaranteed that the database always faithfully represented what was entered (which is 
something many of the newest DBMSs today cannot say).

They also had some drawbacks. First, the hierarchal model was inflexible. Its one-
directional nature and its one-to-many requirement made it sometimes difficult to fit 
into the real world. The network architecture solved these problems, but the database 
programmer required an additional ten IQ points to keep track of currency (i.e., where 
they were in the database). Navigating, following pointers up, down, and sideways, was 
confusing to many of our more challenged colleagues.

Modern-day versions of both IMS and IDMS are quite different, although they have 
managed to maintain their best qualities. IMS can now “look up” and handle many-to-
many relationships, although some would say its solution is a bit klugey. Indices allow 
entry into the database at any level in the tree. IDMS had a rebirth with a number of 
relational features that reduced or, in some cases, eliminated navigation.

Hierarchical and network systems became the database workhorses of the 1970s and 
early 1980s and are still used today in transaction-heavy environments such as banking 
and airline reservation systems.
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A Small Digression: A Couple of Words About Database Access
One of the reasons hierarchical and network systems were fast was their methods of 
fetching data. Both used hashing techniques and, later in their life, indices.

As with everything else in life, database access is all about costs. In computer 
terms, there are two information management cost drivers: storage and speed. Storage 
costs dollars for disk space. The more data you store, the more it costs. It’s rather 
straightforward. If you want to cut down of storage costs, get rid of some data.

Speed is more interesting. The faster processing occurs the sooner the machine can 
do something else, so fast batch processing means that more jobs can be run in a unit 
of time. Online processing is a little trickier. If an online application runs from 9 to 5, it 
runs 8 hours whether it’s fast or slow. However, slow online transaction speeds can cost 
a business in reduced sales (because customers get fed up waiting) or require more call 
center staff, pushing up personnel costs.

Information cost structures have changed significantly over the years. When the 
DBMS was a teenager, storage costs were high, and processing costs were relatively low 
(compared to storage costs). For example, the disk to store 1 megabyte of data in 1955 cost 
about $10,000, while that same megabyte costs less than 1/100 of a cent today to store. 
That’s a million times cheaper!

The DBMS of the 1970s worked hard to keep storage costs down; however, with 
storage costs so low today, the cost focus has shifted to processing time. The effort now is 
to process as much as possible as soon as possible, which brings us to disk speed.

What is the simplest accurate way to measure database processing speed? The 
answer: disk I/O. The relative difference in speed of fetching information from main 
memory and fetching it from disk varies based on the speed of the processor and the 
speed of the disk, but as a useful round number, think 1,000 to 1. Fetching something 
from main memory is arguably about 1,000 times faster than getting it from disk. So, the 
important question for this millennium is how many disk I/Os does it take to fetch the 
data you require and how can you reduce that number?

How many disk I/Os are needed to fetch a specific customer record from disk? If 
there are 10,000 customer names on disk (and you assume each read of a customer 
record requires one I/O, an assumption discussed later), then the average number of 
reads to find your customer is 5,000 (number of records/2).

Hashing
Go back to the database file where each record had a physical address on disk (disk 
ID, cylinder number, platter number, sector number). Imagine a file to store customer 
information by CUSTOMER NAME. Also, imagine that you have a file consisting of 26 
database pages. One way to store customer information is by allocating each letter of 
the alphabet its own database page. Names are hashed by their first letter. Those starting 
with an A are stored in page 1, all names starting with a B are stored in page 2, and so on. 
When you want to fetch “Smith,” you know to go directly to database page 19. One I/O 
and you have “Smith.”

Hashing consists of performing a function on the search key that always results in the 
same number in the desired range. The previous example used the first letter of the name, 
which is translated (hashed) into a disk location (A=1, B=2, etc.).
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More complex schemes are both possible and the norm. Imagine a database with 
950 pages storing information on an ACCOUNT NUMBER that can range from 1,000 
to 9,999. A simple hash is to divide the account number by 950 (the number of pages) 
and use the remainder as the location to store the record. In this example, ACCOUNT 
NUMBER is the search key, the hash algorithm divides the search key by the number of 
database pages, and the hash key is the remainder of the division.

To find the storage location for ACCOUNT NUMBER = 4560 (the search key), divide 
4650 by 950 (the hash algorithm), and you get 4 and a remainder of 760. The record 
should then be stored in page 761 (1 is added to the remainder to account for a remainder 
of 0). It’s fast…using only a single I/O. Both IMS and IDMS used hashing techniques to 
store and retrieve data.

PUB TRIVIA

It’s an interesting question whether hashing would have been invented today if it 
had not been discovered in the 1960s. Files today are easily expandable. Create a 
file and the operating system allocates the space as the file requires it. It was not 
always the case. Early mainframes and minicomputer operating systems required 
that the size of the file be declared when it was created. The operating system then 
allocated the entire declared space for the file. Need more space? You were out of 
luck until newer operating system versions allowed dynamic allocation of space. 
This was good for hashing because the number of database pages would be a 
constant, allowing the hash algorithm to always return the same hash key for the 
same search key.

Today, the number of database pages may be increased to accommodate new 
records. However, when the number of pages changes, the hashing algorithm 
no longer returns the same hash key for the same search key. To make hashing 
work, the DBMS must, somehow, maintain the same number of pages (logically or 
physically) regardless of file size.

There are probably as many different hash algorithms as there are databases, all 
with the goal of producing a rather even distribution. Because even the most complex 
hash algorithm rarely requires more than a knowledge of simple arithmetic, even the less 
mathematically eloquent can get into the game.

When hashing works, it is great. When it doesn’t work, then things get complicated 
and efficiency degrades. Take the example of storing the record “Smith” in a 26-page 
database. The DBMS looks at the key “Smith,” says it should be stored on database page 
19, goes to page 19, and discovers that the page is full. What does the DBMS do now? 
Systems that use hashing have sometimes elaborate schemes for expanding pages or 
storing information in overflow areas. Whatever overflow technique is employed, the 
speed expected from hashing is compromised. Every time “Smith” is accessed, the DBMS 
will go to the wrong page and, not finding “Smith,” start searching other locations.
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Reorganizing the database also becomes difficult. Adding pages to the database can 
require removing every record from the database, rehashing using a different algorithm 
variable, and then restoring the records on their new page.

While hashing is great in certain situations, it is no access panacea. Luckily, other 
access approaches are available. Enter the inverted index.

Inverted Indices
An inverted file or an inverted index is a sequential file of keys and file or database 
pointers sorted in a different order than the file they support.

The concept dates to a time before the computer age. Take your average library. The 
books are stored on the shelves using some classification system such as the Library of 
Congress or Dewey Decimal system. Because few people know the classification number 
or code of the book they want, they require a method to find the right shelf containing the 
book. Enter the card catalog, which usually stored three index cards for each book—one 
for the book title, one for the author’s name, and one for the subject. The title index card 
was placed in a file of similar title cards sorted by title name, the author card was placed 
in a file of authors sorted by author name, and the subject card was stored in a subject file 
sorted by subject. If the reader knew only the title, they could find the desired card in the 
title file. The card would then tell the reader where to find the book in the stacks.

The card catalog was three separate lists of all the books in the library, each sorted in 
a different order than the books on the shelves. That is why it is called an inverted file or 
inverted index, because the order of the cards was inverted from the order of the books.

This approach works for computer files as well. Take a customer. The actual 
Customer file might be sorted on CUSTOMER NUMBER, but it could have inverted 
indices on CUSTOMER NAME and CUSTOMER PHONE NUMBER. Look up a name in 
the Customer Name index and find a pointer to the correct record in the Customer file.

One problem with inverted files is that adding new entries or modifying old entries 
requires re-sorting the entire file, which could be a long and nasty process depending on 
the size of the file.

How good is an inverted file? Well, it finds the desired record, but it is not very 
efficient. An inverted file is still a sequential file with its records in sort-key order. Finding 
a record still requires, on average, reading half the file. Using the previous example of the 
Customer file of 10,000 entries, finding the correct index entry, assuming one disk I/O per 
entry (an assumption discussed later), requires, on average, 5,001 I/Os (5,000 I/Os are 
spent in the index alone, with one I/O to fetch the Customer record). Regardless of the 
speed of your computer, this is “go get a cup of coffee, your data will be showing up about 
the time you get back” speed.

One solution is the binary search. The binary search is also a technique used long 
before automation. Go back to the library card catalog. Suppose you want a book written 
by Herman Melville. You go to the author catalog and see 100 drawers containing index 
cards of author names. Where do you start? Drawer 1 with Abbott? No. Because Melville 
is in the middle of the alphabet, it would be smart to start in the middle with drawer 50. 
However, suppose drawer 50 ends with the letter J. Now you know that Melville is not 
in the first 50 drawers. Congratulations, you just eliminated half the author file. Next, go 
to the middle of the Js to the Zs, drawer 75. At drawer 75, you find the first author name 
starts with an S, so you have gone too far. You now know that the Melville card is between 
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drawers 51 and 74. Halving the distance again, you reach for drawer 62, and bingo, you 
find the desired entry. This search is called a binary search because with each probe, you 
eliminate half of the remaining drawers. A sequential search or scan would have required 
50 reads or probes, but using a binary search, you did it in three.

Three probes seem too good? Actually, we were lucky. According to the math…
where:

N = Number of entries to search

C = Average number of compares to find desired entry

W = Worst-case number of compares

	 C N= ( )−log2 1 	 (1)

or in Microsoft Excel format…

	
= ( )( )−LOG N,2 1 	 (2)

…with the worst case being…

	 W N= ( )+log2 1 	 (3)

or in Microsoft Excel format…

	
= ( )( )+FLOOR LOG N,2 1 1, 	 (4)

…a binary search of 100 drawers should take an average of 5.6 compares or probes. 
A binary search of the 10,000 record file should find a hit after 12.3 probes on average, 
which is much better than the scan of 5,000 (N/2) probes.

Database Pages
Luckily, DBMS vendors identified the I/O bottleneck early on. The typical operating 
system (and a few programming languages), as well as disk drive manufacturers, see the 
magnetic disk as a series of rather small sectors. Sector size, often hard-coded into the 
disk by hardware or software, allowed only a limited number of bytes written or retrieved 
per disk I/O, some as small as 128 bytes. DBMS vendors worked around this limitation 
by creating a database page, an allotment of disk real estate consisting of multiple 
contiguous sectors read or written as one block. If you assume a sector of 128 bytes 
and a database page of 32 sectors, then each database page can store 4,096 bytes. If the 
Customer record is 800 bytes, then each database I/O can access five Customer records 
(a blocking factor of 5). Finding a single customer in a 10,000-record file would then not 
require on average 5,000 I/Os, but only 1,000 I/Os. That’s a significant improvement.
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LOGICAL VS. PHYSICAL I/O

There was a time when each I/O meant a trip to the I/O device. The physical record 
was then read into the main memory’s buffer. The size of the allocated space in 
main memory (the data buffer) was the same size as the physical record.

As main memory size increased, buffers expanded. The operating system could now 
read multiple records into the buffer at a time. Buffer content was transparent to 
the application, which still merrily issued an I/O request for each record. However, 
now the operating system just might have the desired record in its buffer, saving 
considerable resources. This led to the distinction between logical I/O (a request for 
a record from secondary storage) and physical I/O (the actual fetching of data from 
the storage device).

The gain for the inverted indices is even greater because each index record is 
smaller, consisting of only CUSTOMER NAME and its database location. If we assume 
CUSTOMER NAME is 12 bytes and the database key is 4 bytes, then 250 index entries can 
be stored on a single database page (a blocking factor of 250), requiring fewer than two 
physical I/Os to find an index entry.

However, there are even better ways to find a record than a binary search. Read on.

B-Trees
In the early 1970s, a few people, working independently, developed the B-tree index. A 
B-tree stores index entries in a tree structure, allowing not only fast retrieval but also fast 
insertion and deletion (Figure 8-3).

Figure 8-3.  A simple B-tree

B-trees consist of nodes. A node is a record containing a specified number of index 
entries (search key and location ID). When the index node becomes full, it is split into 
three or more nodes with a parent node linking to two or more child nodes. As the index 
grows and the number of nodes expands, new levels are added to the height of the tree. 
The top node is called the root node, the bottom-level nodes are the leaf nodes, and the 
levels in between store the branch nodes.
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There are many variations of B-trees. There are binary search trees, B+-trees, 
balanced trees, unbalanced trees, and many more. They differ in how they work. Some 
work better with very large amounts of data, while some work better with smaller 
amounts. Some B-trees specialize in highly volatile data (many inserts, updates, and 
deletes); others specialize in highly skewed data (uneven distribution). Some are 
useful for retrieving a single record, while others are best for fetching whole groups of 
records. Some promise fast sequential searching, while other favor fast random retrieval. 
Regardless, they all follow the same basic root, branch, leaf structure.

How fast are B-trees?
The answer is easily calculated:
where:

N = Number of index entries to search

C = Average number of compares to find desired entry

m = Blocking factor of index

	 C N m= log / log 	 (5)

in Microsoft Excel…

	 = ( ) ( )LOG N LOG m/ 	 (6)

For the 10,000-record customer file and a blocking factor of 250, that’s fewer than 2 
physical I/Os.

A main advantage of the B-tree over the binary search of an inverted file is not in 
fetching data but in index maintenance. For the inverted file, every time a record is 
entered or a search key modified, the entire file must be re-sorted. That’s not the case for 
the B-tree. Usually, the new entry is just entered. If there is no more space in the node, 
then, in most cases, three or fewer I/Os are required to add the new nodes and index 
entry.

where:
Percent Split = Probability that the index node will need to split.

	 Percent Split = −( )1 2 1/ /m 	 (7)

or in Microsoft Excel…

	
= ( )( )−1 1 2 1/( /CEILING m, 	 (8)

Using the previous example, less than 1 percent of the time an insertion requires a 
node split, so B-trees are very efficient.

B-trees were also retrofitted to hierarchical and network database systems, allowing 
them to access even nonroot data easily and quickly.
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Every major DBMS implementation today, regardless of architecture, uses some type 
of B-tree, and other than minor variations, they are almost identical to those available 30 
years ago.

Bitmaps
While bitmaps are usually found in the index section of every database book, their similarity 
to other indices is tenuous. Bitmaps work well when the possible values of an attribute are 
known and limited. Imagine an Employee record with the data item GENDER. Short of 
discovering life on Mars, GENDER can have only two values, “Female” and “Male.”

There are a few assumptions about the following example. First, all Employee 
records are the same fixed length (assume 1 KB). Second, assume the database is a flat 
sequential file so that any record can be found if its position in the file is known. If there 
are 1,000 employees at 1 KB per employee, then the database file is 1 MB long. The first 
Employee record has a displacement (distance from the start of the file) of zero (it’s in the 
first position). The second employee has a displacement of 1 KB and the third of 2 KB. 
The 501th employee would have a displacement of 500 KB, and so on.

For a bitmap, the system creates a file of, not 1 MB, but 1 Mb (not 1 million bytes, but 
1 million bits). If the first employee in the file is a male, then the first bit is set to 1; if the 
first employee is a female, then the bit is set to 0. The same is done for each of the 1,000 
employees.

For the query, “How many ‘females’ work for the company,” the system adds the 
total number of 0 bits in the bitmap file and you have your answer. For the query “Display 
the NAME and SALARY of every ‘Female’,” the system can go to the bitmap and search 
each bit for a 0. When it finds one, it then goes to the Employee file and fetches the record 
with the displacement equal to the displacement of the bit times the length of the record 
minus 1 (because the first position is 0). If bit 125 is a 0, then the system should multiply 
124 times 1,000 and go to the record with a displacement of 124 KB.

Bitmaps are great for systems where the query results (the result set) are usually a 
large number of records.

The example can be expanded to bring it closer to how bitmaps are actually used. 
Assume an Automobile database of 100 10 KB pages with a maximum of 10 Automobile 
records per database page, and assume that the data item COLOR can have the values 
“red” or “blue” or “green” or “black.”

Because the database can store 1,000 Automobile records (100 pages at 10 per page), 
the bitmap needs to be 1,000 bits long. However, because there are four colors, four 
bitmap indices are required, one for each color. (Note: Actually only two bitmaps are 
needed if “No color” is excluded.)

With the four bitmaps, not only can a user find every car that is red, but, using 
Boolean logic, the user can easily find every car that is both red and black by “And-ing” 
the red and black bit maps.

Bitmaps are best where

•	 The database is used primarily for queries.

•	 The query outcome is a rather large result set.

•	 The queries are on attributes with a relatively small number of 
known values.
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Bitmaps are amazingly fast, and the query can often be successfully completed 
without every going into the database file.

Associative Arrays
The associative array has been a data management mainstay almost from the creation 
of the disk drive. In a traditional array or vector (a vector is a one-dimensional array), 
the array contains only values. For example, in most programming languages, an array 
is defined as a collection (series) of elements or values. A particular value is found using 
its displacement (the first array value such as a bit, byte, string, etc., is placed in the 
first vector location, the second value in the second vector location, etc.). Assume the 
vector Employee with four locations or slots are numbered 1 through 4 and contain the 
values “Abrams,” “Bailey,” “Collins,” and “Davis.” Fetching Employee [slot 1] would yield 
“Abrams,” while fetching Employee [slot 4] would return “Davis.”

While the traditional array stores only values, the associative array stores key-
value pairs. For example, the associative array Employee could store the key-value pair 
EMPLOYEE NUMBER:EMPLOYEE NAME (the key is separated from the value with a 
colon). The associative vector would now store (“101:Abrams,” “107:Bailey,” “231:Collins,” 
and “103:Davis”). Fetching Employee[231] returns “Collins.”

In this example, the keys are integers, but they need not be. The array could have 
been reversed with the key “Collins” and the value “231.” Hashed associative arrays are 
often called hash tables.

An associative DBMS is a data management system whose architecture is based on 
the associative array. Many consider the associative database the ultimate in flexibility. It 
might offer variable-length records, consisting of a variable number of fields, each field of 
variable length. For example, imagine a record occurrence consisting of the following:

Key Value

FIRST NAME William

LAST NAME Smith

EMPLOYEE NUMBER 34577

DEPENDENTS Mary, Thomas, Roger

The associative system stores the field name with the value. On disk, the previous 
data might look like the following:

FIRST NAME:William;LAST NAME:Smith;EMPLOYEE NUMB
ER:34577;DEPENDENTS:Mary,Thomas,Roger;;

In this example, a colon separates key from value, a semicolon indicates the end of 
the variable-length field, a comma separates the multiple values in a single field, and the 
double semicolon indicates end of record. If the database contains 1 million employees, 
then the label FIRST NAME is on disk 1 million times. Some space could be saved by 
substituting a shorter label for each field name, such as $1 for FIRST NAME.
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Associative systems are excellent for variable-length data and are popular for query-
based systems.

Few associative database systems are referred to as associative database 
management systems. In practice, they are often referred to as hierarchal (such as DRS) 
or inverted file (Model 204) systems, reflecting the trend to classify database systems by 
how they link records together rather than how they store data fields.

Information Management Era 3: Inverted File Systems
Overlapping with the era 2 DBMSs was another whole DBMS animal—the inverted 
file systems. Products such as Adabas (now owned by Software AG), Model 204 (now 
called M204 and marketed by Rocket Software), and Datacom/DB (now marketed by 
CA Technologies) followed a different approach than their era 2 cousins. These systems 
removed all the pointers from the database and placed them in external indices. One 
entered the system and even “navigated” around it within the indices. Only when all the 
records wanted were identified did the DBMS delve into the database content to retrieve 
the records.

Inverted file database management systems were feasible only because of the 
advances made in indexing technology. B-tree indices, and their myriad spin-offs, 
made it possible to find a record on disk with just a few more I/Os than the pointer 
approach. Although not as good as era 2 hierarchical and network systems for transaction 
processing, inverted file system shined in query applications where the target was not 
just one or a few records but entire groups of records. Today, most query systems, 4GLs, 
document management systems, and many data warehouses use some form of inverted 
DBMS technology.

Information Management Era 4: The Age of Relational
The relational model does not leave IT people bored or apathetic. It is either the most 
loved or most hated DBMS model ever created. It is sanctified or vilified by academics, 
theorists, practitioners, and users, making it the most difficult model to discuss without 
upsetting someone. Talking to IT staff, one comes away with the belief that the relational 
model is a mixture of mathematics, computer science, and religion. Era 2 and era 3 
products—and there were dozens and dozens of them—were designed by software 
engineers to solve software engineering problems. Their solutions, however, even the 
ones that worked well, were not always elegant. That bothered Edgar (Ted) Codd, an 
IBM researcher, who decided to develop an information management system that was 
both mathematically elegant and useful. He used set theory and predicate logic as his 
foundation. Although the relational model is technically as old as or older than many era 
2 and era 3 systems, it took more than a decade for anyone to develop a viable product. 
That, and the radical change inherent in relational technology, gives it its own era.

Codd looked at the database landscape and didn’t like what he saw. He thought the 
then-current database systems were too complex, requiring navigating multiple levels, 
dealing with pointers, handling indices, etc. He also disliked that the programs that 
accessed the database had to change if the underlying structure of the database changed. 
Adding new indices, pointers, or even database pages could require significant changes to 
the applications using the database.
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He had a few major goals for his relational model. First, he wanted to simplify the 
database. He envisioned a system where data were represented in two-dimensional 
tables. Elaborate structures, which looked like a Jackson Pollock painting, were to be 
avoided. Artifacts that made the database lumpy (greater than two-dimensional), such as 
repeating groups and group items, should be eliminated. Keep it simple.

Second, he wanted data independence. The programmer (or end user because the 
new relational model was envisioned to not require programmers) should not have to 
know the innards of the database. Pointers were verboten, and even indices should be 
transparent to the user. In addition, how the data were used, by end user or program, 
should be unaffected by any structural changes to the database. Adding an index, 
modifying a relationship, etc., should all be possible without having to change how the 
data were used. (Changes to the DDL should not affect the DML.)

Third, Codd wanted a solid formal foundation for the model. Then-current DBMSs 
were like contemporary programming languages. They started as a simple concept, 
but then were expanded, modified, and jury-rigged until they are large, complex, and 
unwieldy, sometimes not resembling at all what they looked like in the beginning. His 
solution would have a mathematical background centered on set theory and predicate 
logic that would require little or no expansion.

Fourth, the model was to be declarative. Contemporary DBMSs were procedural in 
nature, requiring the programmer to tell the system, step by step, what to do. Declarative 
models have the user tell the system what is wanted and then leave it to the DBMS to 
decide how to obtain the desired result.

Fifth, the new system should eliminate redundancy and data inconsistency.
The mathematical nature of the new model required new terminology not familiar to 

many in IT. There were no longer files; there were now relations. Records were now tuples 
(rhymes with couples). Data items were columns or attributes. Perhaps most important, at 
least in hindsight, Codd separated theory from implementation. There was the relational 
model, and there were vendor (IBM, Oracle, Microsoft) implementations (DB2, Oracle, 
SQL Server), and as you will see, rarely the twain shall meet.

In the beginning, relational DBMSs (RDBMSs) suffered from poor performance. The 
emphasis on declarative syntax and data independence, and a de-emphasis of storage 
techniques, left the RDBMS relegated to use by small query applications.

However, time, and a mild shift of emphasis from the theoretical to the 
implementable, moved the RDBMS into the mainstream. Today, the RDBMS has had a 
long run, with more products out there than all the products from all the other DBMS 
architectures combined.

You can’t talk about the relational model without talking about SQL. The 
relational fathers did not create a user interface (DML or DDL), but others did. An early 
implementation for a relational front end was SEQUEL, developed at IBM. It was followed 
by SEQUEL2 and then, after discovering SEQUEL was trademarked by someone else, 
SQL. (Old-timers still pronounce SQL as “sequel.”) SQL became the most popular RDBMS 
language despite relational purists hating it. Adding insult to injury, many RDBMS 
products have SQL in their name and omit relational (SQL Server, MySQL, SQLBase, 
NonStop SQL, to name a few).

SQL’s popularity extends beyond relational systems. Many nonrelational DBMSs, 
such as object-oriented DBMSs and NoSQL products (which are really “no relational”), 
use a SQL-like interface.
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The RDBMS, without question, is the most popular DBMS model in the world 
today. It is the standard from which all others deviate. Look up Data Definition Language 
(DDL) or Data Manipulation Language (DML), and the explanation is likely to focus on 
relational DDL and relational DML without even a reference to its network origins.

It is the workhorse for many companies. If they have only one DBMS, it is likely to be 
relational. If they have two or more data management products, one of them is probably 
relational. It is the DBMS of choice for applications with relatively flat files, which use 
simple, well-defined data types, and are query based, such as data warehouses.

Problems with Relational
The RDBMS also has some shortcomings, particularly in moving from formal model to 
DBMS implementation.

First—Performance Issues

For many, the relational database management system is still not the DBMS of choice 
for high-volume, short-response-time transaction processing. Even some early 
relational advocates admitted it might be necessary to sacrifice performance for other 
relational features, and to at least some extent, that remains true today. Those vendors 
that have focused on performance have had to make some interesting theory versus 
implementation trade-offs if not totally abandon the soul of the model.

Second—Not So Simple Simplicity

The simplicity aspects of the relational model have proved surprisingly complex for some.

Data Types
Vendors had to modify the relational model to accommodate nontraditional data types 
(large text, audio, video, etc.) with very mixed results. Vendor-specific workarounds made 
moving between relational products, or even between versions within the same product 
line, problematic. In some cases, relational systems’ unfriendly attitude toward new data 
types sparked whole new nonrelational database models.

Procedural Code
For some, the RDBMS is used for query processing, with SQL as a stand-alone language. 
For others, the RDBMS is used for transaction processing, with a SQL sublanguage 
embedded in a host programming language. In most of these cases, that host language is 
a procedural one using, of all things, a procedural SQL cursor to maintain currency. Many 
of these procedural addenda became industry standards.
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Groups
Relational theory does not allow group attributes or multivalue attributes (repeating 
groups or group data items). Implementers of the relational model are not so fussy.

Unfortunately, as seen in logical data modeling, the real world is full of group and 
multivalue attributes. Price lists, tax tables, and other vectors and arrays abound in the 
real world, yet they are illegal in the relational world. The same is true for group data 
items such as DATE and ADDRESS.

This is at odds with most procedural languages, which provide, as a significant 
feature, the ability to process arrays and group data items. And for good reason. It is naïve 
to say that DATE is not an aggregate of MONTH, DAY, and YEAR. Or that EMPLOYEE 
NAME does not include the data items FIRST NAME, MIDDLE INITIAL, and LAST 
NAME. Programmers know this.

The argument against group attributes or multivalue attributes is that their 
exclusion makes the database easier to use. This might be true, but it also makes it 
less powerful and that much further away from representing the real world. And in 
truth, if programmers can learn to use these features with considerable success in their 
programming work, then they should be able to use them in their database access code.

Rather than benefiting from the “simplicity” of the relational model, database 
programmers are forced to replicate, on their own, features (such as arrays and groups) 
that were once readily available to them. Some IT shops purchase utility packages so 
programmers do not have to re-create missing functionality, while others write their own 
library routines. The relational model has not eliminated these real-world concepts; it 
just turned automated solutions into manual ones. In any case, a database feature that 
was designed to make the programmer’s life simpler actually complicated it.

In fairness, many relational model purists, even the most pure of the pure, 
believe that some group data items are needed, with date being a prime example. 
And most vendors support groups even if they don’t call them that. However, their 
accommodations, as welcome as they are, often involve two unpleasantries. First, the 
implementation is often a kluge, centering on vendor or user-defined domains or data 
types. The second inconvenient awkwardness involves intellectual honesty. If you are not 
allowing group data items, then don’t allow group data items; if you are going to allow 
group data items, then do it straightforwardly, even if with a wink and a nod. The way it 
is now, each database designer and programmer must look closely to discover how their 
RDBMS vendor implements groups, if at all.

In short, the relational model simplifies the DBMS at the expense of the programmer.

Third—Communication and Language

For Codd, a major advantage of the relational model was its formal foundation. However, 
the simplicity of the mathematical foundation of the model was itself problematic. It 
might be clear to mathematicians but is much less so to the average programmer. Look at 
this sentence from his 1970 paper:

The relations R, S, T must possess points of ambiguity with 
respect to joining R with S (say point x), S with T (say y), and 
T with R (say a), and, furthermore, y must be a relative of x 
under S, z a relative of y under T, and x a relative of z under R.1
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This is not the most complex sentence in the paper. It was chosen because it does not 
require special symbols. For most programmers, it is incomprehensible. The relational 
model is considerably more difficult to understand for the average database programmer 
than any other database model. Many database administrators are left to dust off their 
college version of Gödel’s incompleteness theorem or surrender to never understanding 
why the relational model does what it does. Codd seemed to recognize this. Twenty years 
after introducing the model, he wrote the following:

One reason for discussing relations in such detail is that there 
appears to be a serious misunderstanding in the computer 
field concerning relations.2

The ugly truth is that although programmers had difficulty understanding 
the relational model, Codd had just as much difficulty understanding how 
nonmathematicians in general, and programmers in particular, comprehend math.

THEY LOOK BUT THEY CANNOT SEE…WELL, SOME CAN

Peter Chen, the founder of the entity-relationship model, published a paper in 2002 
illuminating the problem. In it Chen states the following:

It is correct to say that in the early 70s, most people in the academic 
world worked on the relational model instead of other models. One 
of the main reasons is that many professors had a difficult time 
understanding the long and dry manuals of commercial database 
management systems, and Codd’s relational model paper1 was 
written in a much more concise and scientific style.3

He goes on to say this:

A lot of academic people worked on normalization of relations 
because only mathematical skills were needed to work on this 
subject.3

So why are there no better translations of Codd? What have the ocean of authors, 
writing hundreds of books and papers on the relational model, done to improve the 
situation? Very little. Read almost any instructions on normalization, and it’s obvious that 
nonmathematical descriptions are rare. The authors seem either afraid to present the 
material in a nonmathematical way or simply do not understand their audience. And that 
is the fundamental issue. The intended audience for the relational model is (or should be) 
not mathematicians, not end users, but IT people. If you want to communicate with IT 
people, then you must speak their language. IMS, IDMS, and Adabas authors understand 
their audiences. Relational authors…not so much.
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WHERE ARE YOU, CARL SAGAN?

It is not impossible to make the incomprehensible somewhat fathomable. It just 
takes understanding a complex subject and how people learn. A number of very 
smart people have done it. Theoretical physicist Stephen Hawking, who held the 
Isaac Newton chair of physics at Cambridge University, was able to write a book 
for the everyday person describing black holes.4 His book was on the best-seller 
list for more than four years. Theoretical physicist George Gamow, the first to give 
us a mechanism for the Big Bang, wrote a number of popular books, two of which 
focused on quantum theory and mathematics.5,6 Gamow, it is said, targeted his 
books at the middle-school reader.

So why is it so difficult to get a simple explanation of the relational model?

Is this Codd’s fault? Not entirely. Chen’s early work on the entity-relationship 
approach is quite mathematical and esoteric. However, Chen and even more so his 
followers wrote material more understandable for people who wouldn’t know a Turing 
from a Tarski. Relational followers have been more reluctant to translate Codd into English. 
It is a shame because their reticence hides some of the beauty of the model from its users.

Fourth—Relational: Theory or DBMS?

Codd felt that the relational model was superior to its competitors, not just because it 
made a good database management system but because it did a better job of describing 
the real world, including doing a better job than the entity-relationship approach. Look at 
this passage from his 1990 book:

With the relational approach, an executive can have a 
terminal on his or her desk from which answers to questions 
can be readily obtained. He or she can readily communicate 
with colleagues about the information stored in the database 
because that information is perceived by users in such a 
simple way. The simplicity of the relational model is intended 
to end the company’s dependency on the small, narrowly 
trained, and highly paid group of employees.7

If programmers have trouble understanding the fundamentals of the relational 
model, then business executives will be totally lost, yet Codd could not see this. In 
fact, Codd saw the entity-relationship approach not as an analysis technique but as a 
relational model competitor.

No data model has yet been published for the entity-
relationship approach. To be comprehensive, it must support 
all of the well-known requirements of database management. 
Until this occurs, companies intending to acquire a DBMS 
product should be concerned about the risk of investing in the 
entity-relationship approach.8
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The logical-physical distinction, as well as all the other database design principles 
discussed in Chapter 1, are totally ignored. It’s as though Codd could not see the 
difference. He saw foreign keys and functional dependencies as a way of describing the 
business world to an executive.

Fifth—Where Are You Relational Model?

Lastly, the relational model Codd envisioned still does not exist. Unhappy with vendor 
implementations that did not meet the standards of his relational model, Codd, in 1985, 
came up with 12 rules that all RDBMS products should follow. By 1990, no vendors had 
implemented all 12 rules; however, that did not stop Codd from introducing 321 more 
rules. To date, almost half a century after its introduction, no RDBMS implementation 
incorporates more than a handful of the final total of 333 rules (see Table 8-1).

Table 8-1.  The Effectiveness of the Relational Model

Relational Goals
Goal Effectiveness

Simplify Questionable. In theory, yes; in practice, the features 
that had to be added to make the DBMS practical, 
such as nonstandard data types (large text, video, etc.), 
cursors, and triggers, added to the complexity and 
difficulty using the model.

Data independence Effective.

Solid formal foundation Mixed. The formal foundation is there but in a language 
understood by few in IT.

Declarative Partially. The requirement to make the model work 
in the real world necessitated adding a number of 
procedural features.

Eliminate redundancy and 
data inconsistency

Mixed. The tool for eliminating redundancy 
(normalization) is a technique that can be applied 
to any DBMS. The need for foreign keys undercuts 
reducing redundancy.

Just Because It Has Failings Doesn’t Mean It’s a Failure
How successful is the relational model? Ask yourself this question: since the relational 
model was introduced, how many other theoretically based database management 
systems are there? Yet, despite all its failings, it is impossible to consider the relational 
model a failure. It fails to live up to its inventor’s expectations, yet it endures as no other 
DBMS has ever endured. Even failure can’t argue with success.

http://dx.doi.org/10.1007/978-1-4842-2722-0_1
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Information Management Era 5: Object Technology
Relational technology was king. Then in the 1990s, there appeared a new pretender to 
the throne—object technology. An object is a structure that includes both data and the 
operations (procedures) to manipulate those data. With the traditional database, an object 
(for example, the record Order) only contains data (the attributes of Order). However, 
the object-technology object Order contains not only the attributes of Order but also the 
operations (computer code) that manipulate Order, such as Create New Order and Fulfill 
Order. All the code associated with Order is in the Order object.

Object technology is, in part, a reaction against the traditional way of developing 
systems—separating into two groups the tasks and even the teams that work on data and 
process. Object technology says you can’t separate the two. Rather, think of a system as a 
network of communicating objects that pass information or instructions to each other.

Object technology has a number of unique and defining features.
Association is the natural relationship between objects. For example, customers 

place orders, so there is a natural association between Customer and Order. Associations 
can have cardinality and modality and can exist between two, three, or n objects.

A child object can inherit properties from its parent object. Imagine objects 
organized into multilevel inverted trees. Objects at the top are the most general, such as 
Customer, while those lower down are more specific, such as Wholesale Customer. The 
lower objects can inherit properties (attributes and operations) from higher-level objects. 
In this example, the object Wholesale Customer inherits from Customer all of Customer’s 
attributes and operations.

Although they routinely communicate with each other, the internal workings of each 
object are independent of any other objects. This is called encapsulation—what goes on 
inside an object stays inside the object. For example, the object Customer could contain 
the operation Add New Customer, and the Customer object knows exactly what to do 
when the operation is invoked, while the object Order knows nothing of, and is oblivious 
to, that operation.

Object-Oriented Programming Led to Object-Oriented Analysis 
and Design, Which Eventually Led to the Object-Oriented 
Database Management Systems (OODBMSs)
The OODBMS is, in many ways, a throwback to the era 2 DBMS. The 1990s were a time 
when computer usage was expanding into areas of nontraditional data types. The 
hierarchical structure of objects is more compatible with era 2 DBMSs than relational 
ones. Objects fit easily into multilevel trees stored in pointer-based systems. The database 
could no longer stay in the flat tables of relational systems but had to adjust to the distinct 
islands of multilevel data and code contained in the object.
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Information management was no longer limited to numbers and small strings of 
text such as names and addresses. Now the DBMS was called upon to store complete 
documents, pictures, movies, music, graphics, X-rays, and any other type of exotic data, 
including computer code. The RDBMS choked on these data types (imagine performing a 
relational join on an artist name and a music video).

The OODBMS had everything in its favor (such as academic blessings and vendor 
investments) except customers. For whatever reasons, although usually attributed to 
massive corporate investments in relational technology, sales were weak. The solution? 
Join the enemy. Underfunded OO vendors died off, and their place was taken by RDBMS 
vendors adding OO features to their RDBMS offerings. The result was some strange 
bedfellows (particularly if you ignore the RDBMS vendors criticizing, a decade earlier, era 
2 and 3 vendors when they added relational features to their hierarchical, network, and 
inverted file DBMS offerings to boost their weakening sales).

The OO-RDBMS, the multipurpose tool of the information management world, 
offered two, sometimes distinct, views of the data, one relational and one object oriented. 
SQL, never liked by the relational purists and becoming increasingly procedural, was 
modified to accommodate object technology. And it worked. The OO components were 
bolted onto the RDBMS without much loss in relational-ness.

How effective is this strategy? Well, the real question is how much real object-
oriented system building is going on out there. Anecdotal information would indicate 
that OO technology use is strong in vendor development shops but has been largely 
abandoned (except in name) in end-user organizations.

A Small Digression (Again): The ACID Test
If you ask the question which DBMS is best, the right answer should be: for what? They 
all have their strengths, and they all have their weaknesses. One fundamental way to 
evaluate a DBMS is with the ACID test.

In 1981, Jim Gray, of Tandem Computers, published a paper in which he applied 
a formalized definition of transaction to DBMS activity.9 In 1983, Gray’s concept was 
expanded and given the acronym ACID by Haerder and Reuter.10 ACID stood for the 
following:

•	 Atomicity: Every part of a transaction must be executed before the 
transaction can be considered complete.

•	 Consistency: Any change to the database must be consistent with 
all validation rules.

•	 Isolation: Every transaction must be completed as though it were 
the only transaction, regardless of how many transactions there 
are and in what sequence they are executed. Isolation deals with 
the notion of currency control.

•	 Durability: Once a transaction is committed, it stays committed. 
Failures from a loss of power to a computer, communications 
disruptions, or crashes of any type do not affect a completed 
transaction.
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ACID is for transactions that insert, update, or delete database records. It guarantees 
the integrity of data. Unfortunately, integrity does not come cheap. To work, ACID 
databases require considerable support in the form of journals that store the image of 
the record occurrence before the change (the before image), another image of the record 
occurrence after the change (after image), and log files documenting each step of the 
transaction. All of this protection is expensive in terms of space and processing time.

The odd thing is that when the ACID paper was published in 1983, virtually every 
major DBMS conformed to the ACID criteria, which relegated the entire concept to an 
interesting academic sideline. As you will see, it was not until the advent of NoSQL, a 
decade later, that ACID compliance became an important DBMS selection criterion 
because many NoSQL systems do not meet ACID standards.

Information Management Era 6: NoSQL
NoSQL is an inaccurate name. It should really be called NoRelational because it is a revolt 
against the constraints of the relational model, not against SQL. It is also a catchall phrase 
that encompasses very different technologies targeted at very different problems.

Although NoSQL databases existed decades before the term was invented, they 
became popular around the millennium when IT organizations were faced with not only 
a growing number of relational-resistant data types but also big data. How big is big data? 
Nobody knows, but nobody admits it. It’s just more and more of what IT has been dealing 
with—lots more. Gilding the lily, big data requires doing sometimes detailed, statistical 
analysis on large data sets.

Key-Value
There is no common NoSQL architecture, although one of the more interesting ones is 
the key-value approach. Imagine a file cabinet full of file folders. Each file folder has a 
tab stating what is in the folder. Although the contents of a single folder have something 
in common, the same cannot be said for any two folders. One folder might be labeled 
“bank statements,” while a second might be labeled “dog vaccination papers,” and a third 
“Doonesbury cartoons.” Although a traditional file’s contents are related to the file label, 
the contents of one folder might be totally different from the contents of any another 
folder. NoSQL key-value systems link, in a tree structure, related contents vertically but 
disparate contents horizontally.

NoSQL key-value database management systems are often an amalgam of hashing 
techniques and associative arrays of key-value pairs, providing a powerful mechanism 
for storage and retrieval. However, key-value databases have expanded the concept of the 
associative array. The key is still the key, but the value might be an entire folder consisting 
of many different data items of many different domains. Some key-value systems contain 
a hierarchy of keys, with the first relating to the highest-level content and subsequent keys 
to lower-level content (similar to the bank statement example).

Redis from Redis Labs and Oracle’s Oracle NoSQL are good examples of key-value 
DBMSs.
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Graph
Graph NoSQL databases are modern versions of the network architecture with two major 
differences. First, they are tuned for high performance using techniques regularly found 
in other NoSQL products. Second, they have a DML that makes it easier to navigate the 
database.

Graph is a mathematical term for a structure consisting of a number of nodes. Nodes 
are connected to each other by edges. Unlike trees, there is no up or down. The nodes 
are, of course, records, and the edges are lines or links. Graph systems are often hybrids 
combining other architectures into a single implementation, with key-value being a 
favorite. Graph systems get their speed from embedded pointers linking the various 
notes.

Neo4j, from Neo Technology, Inc., is an example of an ACID-compliant graph 
database management system.

Document Management
The document management system, usually listed as a separate NoSQL model, is often 
a subset of the key-value approach. The key is the document name or description, and 
the value is the underlying document. Each value occurrence contains not only the 
document but the description (metadata, data type) of the document.

MongoDB from MongoDB Inc. is a good example of a document DBMS.

Multimodal
Multimodal systems are the strangest NoSQL animal. Multimodal systems provide a layer 
on top of other database architectures. The user or program interacts with the top layer. 
If the data to be stored are documents, the MMDBMS stores them using a document 
manager. If the data to be stored are in tabular form, the MMDBMS stores them in a 
relational format. The multimodal system is surely the turducken of the data management 
world. Whatever data you have, the MMDBMS finds an appropriate way to store them.

MarkLogic from the MarkLogic Corporation and OrientDB developed and marketed 
by Orient Technologies Ltd. are multimodal DBMSs.

Is That an ACID or a BASE?
You should know whether your DBMS complies with ACID even if all of its components 
are not important to you. For example, ACID deals with inserting, updating, and deleting 
records in a database. If you have a read-only data warehouse, then you might not care 
about ACID compliance. Table 8-2 shows a simple comparison of DBMS types against the 
ACID model.
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The takeaway from Table 8-2 is that the older database architectures, shown on the 
left, are all ACID compliant. These were, and still are, the basic information manager 
workhorses that keep the enterprise going. As you move to the right, ACID compliance 
drops off. These information managers tend to be special-purpose tools designed to do 
one or two things well at the expense of other features, notably ACID.

A word of warning about Table 8-2. The products represented by some of the 
columns are so different in their implementation that it is hard to categorize all the 
products covered by a column. Look at the key-value column. Some key-value products 
are ACID compliant, such as upscaledb; others are not, such as Redis; while still others 
are partially compliant, such as Cassandra. Worse, because so many NoSQL products are 
relatively new, their ACID compliance could be significantly different by the time you 
read this.

Many NoSQL database management systems have given up the ACID guarantees for 
exceptional performance in one or another area. However, because so many developers 
and DBMS purchasers know about the benefits of ACID, the NoSQL community came 
up with its own acronym: BASE. (Apparently, this community likes chemistry puns.) 
Yes, those super-fast or super-big DBMSs that fall short on the ACID standard can now 
possibly claim that they support the BASE model. What does BASE stand for? Why basic 
availability, soft state, and eventual consistency!

•	 Basic availability: Data requests are not guaranteed for 
completeness or consistency.

•	 Soft state: The state of the system and its data are unknown, 
although it will probably be determinable in some future time.

•	 Eventual consistency: The system is, or will be, consistent but 
cannot be guaranteed to be consistent at any specific time.

Want to ensure that your data are valid? BASE systems will eventually figure it out, if 
you can wait. For all others, stick with ACID.

And the Winner Is…
It is difficult to identify winners and losers in the database management sweepstakes. For 
every serious DBMS, there is some application somewhere for which that DBMS shines 
like no other. And if there is no sufficiently important application to keep some old DBMS 
or DBMS technology alive today, then it just might show up tomorrow. Just look at NoSQL 
as an example. Almost every academic, vendor, and practitioner in the late 1980s thought 
the relational model would reign, unopposed, forever. However, new applications using 
new data types that did not work well with the relational model were mainstreamed, and 
the DBMS landscape changed forever.

So, which of the current crop has the fortitude to last for the next few decades? Well, 
it just might be the one thing that everyone can agree on, the one thing that everybody 
hates: SQL.
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The most hated data management language in the world is the language of choice for 
many different vendors, supporting many different products, using many different data 
architectures. Its resilience eclipses its ugly duckling persona. It reigns over the relational 
world like a diamond in a plastic tiara. In a twist of language worthy of Monty Python, it is 
the only commonality among NoSQL products.

SQL just might outlast them all.

What’s to Come
Processes are notoriously more volatile than data, which is one of the reasons for 
separating any examination of the two. Many organizations update their business 
processes every year or so, but they revise their data definitions far less frequently, 
often going a decade without a major change. Likewise, while application code requires 
frequent changes to accommodate procedural updates, the database structure can more 
likely forgo frequent process-driven revisions. The database design steps introduced in 
this book were created to capitalize on this reality.

The following chapters introduce the second phase of the U3D framework for adding 
how that data will be used by end users and applications (defined during logical process 
modeling) to the definition of the data (defined during logical data modeling). The result 
is a data-definition/usage-driven database design.
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CHAPTER 9

Introduction to Physical 
Schema Definition

There will come a time when you believe everything is finished. That will 
be the beginning.

—Louis L’Amour

In theory there’s no difference between theory and practice. In practice 
there is.

—Jan L. A. van de Snepscheut (among others)

The challenge for physical database designers is to convert the logical specifications 
created during requirements definition into something that is usable by the organization. 
This can be a trying task because, unlike the logical data modeler, the physical database 
designer must adjudicate competing requests for resources. For example, do you tune 
the database to rapidly access online customer information and in the process penalize 
batch order processing, or do you favor order processing and, as a result, decrease the 
performance of customer service? For some, this dilemma is a no-win proposition—no 
matter what you do, you will displease someone. However, if you recognize that, beyond 
applying the fundamentals of physical database design, database designers spend most of 
their time juggling the trade-offs of aiding one user’s data access at the cost of another’s, 
you realize that the methods of measuring resource usage and arriving at the right 
balance for the organization is what physical database design is all about.

There are three main sources of input to the physical database design process: (1) the 
information requirements uncovered during analysis and documented in the logical data 
model, (2) how the applications will use that data, and (3) the rules of the information 
manager that will store the data (Figure 9-1). The job of the database designer is to create 
a database design that adequately reflects these three separate inputs.
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This approach is a departure from traditional database design. Some database 
designers do not rely on logical data models or process models. Although they may 
examine and review these documents before beginning the database design process, these 
documents are rarely an integral part of that process. Rather, too many designers jump right 
into physical database design by focusing on the tables and linkages dictated by a particular 
database management system (DBMS) or requested by those writing design specifications 
or computer code. This process is reactive and disappointingly superficial.

Other database designers simply take the logical data modeling and “physicalize” 
it, making it conform to their DBMS, without regard to how the data will be used by 
application programs or user queries.

In contrast with these two traditional approaches, this chapter lays out a framework 
for database design involving three elements: the logical definition of the data (logical data 
model), the business processing requirements (process model), and finally the features and 
restrictions of the information manager (DBMS, file manager, etc.). See Figure 9-2.

Figure 9-1.  The three inputs to the physical database design

Figure 9-2.  Usage-Driven Database Design
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A fitting name for this Usage-Driven Database Design phase is Physical Schema 
Definition.

Usage-Driven Database Design: Physical Schema 
Definition
Usage-Driven Database Design: Physical Schema Definition (U3D:PSD) involves the 
evolution of the logical models into a working physical database design. U3D:PSD 
consists of four steps (Table 9-1). The first step, Transformation, converts the logical 
data model into a physical data model by substituting physical database objects for 
logical data modeling ones. The second step, Utilization, rationalizes the physical data 
model by addressing how the data will be used (read, insert, delete, update). The third 
step, Formalization, modifies the rationalized physical data model to comply with the 
rules/features of the DBMS (or file manager) being used—creating a functional physical 
database design. The fourth and last step, Customization, focuses on improving the 
performance and enhancing the usability of the database, resulting in an enhanced 
physical database design.

The best way to understand how U3D:PSD works is to show how a designer would 
create a physical database design. The examples in this chapter are based on an order 
management system’s logical data model similar to the one in Figure 9-3.

Table 9-1.  Usage-Driven Database Design

Usage-Driven Database Design: Physical Schema Definition
Step Purpose Primary Deliverabe

Transformation •• Translation

•• Expansion

Physical data model

Utilization •• Usage analysis

•• Path rationalization

Rationalized (application-specific) 
physical data model

Formalization •• Environment designation

•• Constraint compliance

Functional physical database 
design (schema and subschemas)

Customization •• Resource analysis

•• Performance enhancement

Enhanced physical database 
design (schema and subschemas)
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The remainder of this chapter gives a quick synopsis of the overall approach using 
all four steps. The examples focus on a database to support an order management system 
that takes orders, bills clients, reports on sales, and sends stock replenishment notices to 
the manufacturers.

Step 1: Transformation
The first step in physical database design is to transform the logical data model into a 
physical data model.

Transformation (Table 9-2) consists of two tasks. The first is to translate the logical 
data objects into physical data objects; the second adds physical features to those objects. 
The output of the step, the physical data model, is similar to the logical data model except 
that while the logical data model’s components are viewed as conceptual constructs, the 
physical data model’s objects represent information potentially stored in a computer-
based information system. However, it is not a database design yet—the physical data 
model is still an abstract representation of a database.

Figure 9-3.  Order processing system’s logical data model
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The physical data model is not DBMS architecture specific (relational, network, 
hierarchical, object, inverted, etc.), product specific (Oracle, IMS, SQL Server, Model 
204, Cassandra, etc.), or release specific (Oracle 12, SQL Server 2014, DB2 10.5, etc.). In 
truth, a physical data model is a rather skimpy view of stored data. While it does deal with 
records and data fields, there is no capability to express such concepts as access methods 
or physical storage components. These must wait until later in the phase.

Task 1.1: Translation
The first Transformation task, Translation, is relatively easy. It involves a one-for-one 
substitution of a physical database design construct for its corresponding logical data 
modeling one. Start with the entities and turn each into a record type. Next move on to 
the attributes and turn them into data fields. Lastly, relationships become database links. 
A logical data model with 6 entities, 24 attributes, and 3 relationships will, in most cases, 
be translated into a physical data model with 6 record types, 24 fields, and 3 links.

Each object must be uniquely named. A record type must have a unique name, 
such as Employee, to distinguish it from all other record types. Ideally, the names of the 
physical objects are the same as the names of their corresponding logical data modeling 
objects.

Figure 9-4 shows the translation of a simple logical data model into a physical data 
model. The entities Customer and Account become the record types Customer and 
Account (as a convention, record types are represented graphically by a rectangle, and 
record type names start with a capital letter), while the relationship Owns becomes 
the link Owns. As a convention, links are represented by a line. Linkage names start 
with a capital letter. Membership class (cardinality and modality) is similarly handled. 
Physical model modality is still represented by a bar or a zero. A cardinality of “one” is still 
represented by a bar, but the “many” crow’s foot is replaced with an arrowhead.

Table 9-2.  Step 1: Transformation

Step 1: Transformation
Sources Procedures Deliverables

•• E-R diagram

•• Logical data model 
object definitions (data 
dictionary)

•• Business requirements 
(processes, procedures, 
and all volumes)

•• Task 1.1: Translation

•• Activity 1.1.1: Transform 
logical data model objects to 
physical data model objects

•• Activity 1.1.2: Diagram the 
objects

•• Task 1.2: Expansion

•• Activity 1.2.1: Assign keys

•• Activity 1.2.2: Normalize 
model

•• Physical data 
model (diagram)

•• Physical data 
model object 
definitions (data 
dictionary)

•• Transformation 
notes
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TERMINOLOGY

A cornerstone of this book is that to avoid prejudicing future decisions, it is critical 
to discriminate between logical concepts and physical constructs. To emphasize 
this point, a sharp distinction is made between the names used to identify logical 
objects and those used to identify physical objects. Logical objects include entities, 
attributes, and relationships, so different words are needed to express their physical 
model counterparts.

However, the file manager/DBMS is not identified/confirmed until step 3, 
Formalization. Until then, physical object names need to be file manager/DBMS 
independent. Using words such as table, segment, tuple, or set is DBMS prejudicial, 
so such terms are avoided whenever possible.

To remain file manager independent, this book uses the terms data field, record, and 
link to represent the physical equivalent of attribute, entity, and relationship. Other 
terms used later in the book follow suit. Only after the file manager is chosen, and 
in some cases even after the vendor and version of that manager is selected, will 
model-, product-, or version-specific terminology be used.

The attributes CUSTOMER NAME, CUSTOMER NUMBER, and CUSTOMER 
ADDRESS become the data fields CUSTOMER NAME, CUSTOMER NUMBER, and 
CUSTOMER ADDRESS. (Note: As a convention, field names are all uppercase.)

Task 1.2: Expansion
Translation is followed by Expansion, in which the structure of each record type is 
examined in further detail. The first order of business is to assign keys.

Each record type should have a unique identifier, often called a primary key, that 
unambiguously identifies any occurrence of that record type. The key is usually one 
field such as EMPLOYEE NUMBER but can be a concatenated key (multiple data fields) 

Figure 9-4.  Transforming the logical data model into the physical data model
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if necessary, as in SITE ID, BUILDING NUMBER. The logical data modeler might have 
uncovered a unique identifier that is used by the business for a particular entity. If at 
all possible, this business-designated identifier should be used. The convention is to 
underline the unique identifiers in diagrams, as in Figure 9-4.

Databases can experience synchronization anomalies when inserting new data, 
updating existing data, or deleting old data. For example, if, after deleting an employee’s 
time cards, accurate information about the effort applied to a particular project is no 
longer present, then the database suffers from a deletion anomaly. The way to reduce, if 
not eliminate, this problem is through a technique called normalization. Normalization 
is a process of reducing the structure of the model to a state such that data in any 
given record occurrence is totally dependent on the key of that record occurrence. 
Normalization is examined in more detail in Chapter 10.

Step 2: Utilization
The second step, Utilization (Table 9-3), adds information to the physical data model 
about how the database will be used.

Utilization maps the process models for the applications that will use the database to 
the physical data model.

Task 2.1: Usage Analysis
The first Utilization task, Usage Analysis, creates Usage scenarios from the application 
process models. Process models (logical or physical) can be long, involved descriptions 
of many actions and functions that have nothing to do with a database. Imagine a process 

Table 9-3.  Step 2: Utilization

Step 2: Utilization
Sources Procedures Deliverables

•• Physical data model 
(diagram)

•• Physical data model 
object definitions  
(data dictionary)

•• Business requirements 
(processes, procedures, 
and all volumes)

•• Transformation notes

•• Task 2.1: Usage Analysis

•• Activity 2.1.1: Create 
usage scenarios

•• Activity 2.1.2: Map 
scenarios to the 
physical data model

•• Task 2.2: Path 
Rationalization

•• Activity 2.2.1: Reduce 
to simplest paths

•• Activity 2.2.2: Simplify 
(rationalize) model

•• Rationalized physical 
data model (diagram)

•• Updated physical data 
model definitions  
(data dictionary)

•• Usage scenarios

•• Usage maps

•• Combined usage map

•• Utilization notes

http://dx.doi.org/10.1007/978-1-4842-2722-0_10
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model describing the algorithms to calculate taxes or missile trajectories. They could 
go on for pages without a single database activity. About 80 to 90 percent of a process 
model is information extraneous to the database design process. To reduce confusion, 
not to mention paperwork, the designer creates usage scenarios, which are shorter and 
sweeter, textual or graphic, depictions of how an application will use the data. Process 
models come in many forms. They could be process model fragments, such as data flow 
diagrams, logical transactions, use case scenarios, or any other means for documenting 
how the system will work.

A simple usage scenario might look something like the following:
Usage Scenario: Create an Order

	 1.	 Enter the database at the Account record occurrence for 
Account X.

	 2.	 Insert an Order record occurrence for Account X.

	 3.	 Read the Product occurrence for Product Y.

	 4.	 Insert record occurrence Line Item linked to the Product and 
Order occurrences.

A Usage map is a graphic representation of a usage scenario. It is created by drawing, 
or mapping, the scenario onto the physical data model.

Because there are always multiple scenarios for an application, the simplest way 
to create a comprehensive usage map is to first make a number of photocopies of the 
physical data model. Then draw one scenario on one photocopy showing how, if the 
physical data model was the final database design, the application would access the 
database. Use arrows to show database entry and navigation, and use the initials E, R, I, U, 
and D for the database actions of Entry, Read, Insert, Update, and Delete.

HEY! THIS LOOKS LIKE NAVIGATION—WE ARE A 
RELATIONAL SHOP

Calm down. The “navigation” you see is just conceptual—to help you understand 
how the data will be used given the logical data model. It does not contradict the 
relational model, preclude a relational DBMS, or eliminate joins between tables. In 
fact, it shows exactly what joins are needed and how they will work.

When you have completed one map for each scenario, you can then combine 
them into a Combined usage map (Figure 9-5) by taking the individual usage maps and 
combining them onto a single photocopy of the physical data model.
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Figure 9-5 shows a combined usage map for two usage scenarios. The first scenario 
involves searching the database for the appropriate Account and Product occurrences 
and then creating an Order occurrence and a Line Item occurrence. The second scenario 
involves entering the database at Product and then for each Product reading its Line Item 
and then its Order record.

The arrow with a dashed line indicates the route of access, and the number—for 
example, 2.3R—tells us that scenario number 2, step 3, is a Read.

Task 2.2: Path Rationalization
In practice, the finished diagram can look a bit like a bird’s nest of lines and arrows. At first, 
this can seem a daunting task, but with a little effort and some time spent examining it 
(and maybe finding a bigger piece of paper), a few trends should start to emerge, the most 
important of which is that not all the paths on the diagram are needed. Path Rationalization 
is the task of reducing the complexity of the model to only what is needed to perform its 
assigned functions. Take the two usage scenarios in Figure 9-6. The first reads the Customer 

Figure 9-5.  Mapping usage to the physical data model
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record and then moves to the Order record and finally to the Address record. The second 
also starts at Customer and then moves to Address followed by Order. These scenarios are 
redundant because they access the same data, albeit in a different order. The two could be 
combined into one.

Note that if you combine the two scenarios, it becomes obvious that the link between 
Customer and Address and the link between Account and Address are not both needed. 
It would be possible to eliminate the redundant link.

The Step 2 deliverable is a Rationalized physical data model showing the application-
relevant record types and linkages. Deliverables also include the Usage scenario and 
Usage maps. Both of these will be useful when creating database views and subschemas.

Step 3: Formalization
In the third step, Formalization, the rationalized physical data model is made to 
conform—first to the underlying file manager or DBMS architecture that will be used 
to store the data (i.e., hierarchical, network, relational, object, etc.), and second to the 
particular implementation of that model (product/version) such as Oracle 12 or  
SQL Server 2014. (See Table 9-4.)

Figure 9-6.  Redundant paths and links should be eliminated
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This is the first time the file manager or DBMS is introduced into the U3D framework.

Task 3.1: Environment Designation
Before focusing on a particular product, the database designer needs to make the 
Rationalized physical data model reflect the architecture type of the DBMS that will be 
used. DBMSs can be grouped into a few basic architecture categories—the products 
in these categories share a large number of features. For example, relational database 
products use foreign keys to link different tables together, hierarchical systems use 
pointers, and some inverted file products rely on external multikey multirecord type 
indices. Which features to build into the database design (foreign keys, pointers, or 
indices) depends on the type of DBMS being used (relational, hierarchical, inverted, 
object, NoSQL, multidimensional, etc.).

Assume the application will use a relational DBMS. This assumption dictates the 
physical design because there are a number of potential database features the relational 
model does not support. Figure 9-7 shows a Rationalized physical data model and the 
Functional physical database design as it might look if a relational DBMS were used.

Table 9-4.  Step 3: Formalization

Step 3: Formalization
Sources Procedures Deliverables

•• Rationalized physical 
data model (diagram)

•• Updated physical data 
model definitions (data 
dictionary)

•• Usage scenarios

•• Usage maps

•• Combined usage map

•• Transformation notes

•• Utilization notes

•• DBMS features and 
constraints

•• Task 3.1: Environment 
Designation—Identify/
confirm the target informa-
tion manager (architecture, 
product, version)

•• Task 3.2: Constraint 
Compliance

•• Activity 3.2.1: Map 
rationalized physical 
data model to the data 
architecture

•• Activity 3.2.2: Create a 
DBMS product/
version-specific 
functional physical 
database design

•• Functional physical 
database design 
(diagram)

•• Functional Data 
Definition Language 
(schema and 
subschema)

•• Updated physical data 
model definitions 
(data dictionary)

•• Formalization notes



Chapter 9 ■ Introduction to Physical Schema Definition

176

The dotted arrows and numbered circles show how the Rationalized physical data 
model was transformed into a Functional physical database design.

The following are architecture-specific changes to the model in Figure 9-7:

	 1.	 The Rationalized physical data model’s record type Product 
becomes the Functional physical database design’s Product 
table.

	 2.	 Relational systems do not directly support recursive 
relationships. However, a many-to-many recursive 
relationship can be simulated with a bill-of-material structure 
consisting of a new table storing two foreign keys for the 
many-to-many links to the Product table.

	 3.	 Relational systems do not support many-to-many 
relationships. To simulate M:N relationships, a new table, 
often called a junction table, is inserted between the Product 
and Manufacturer tables.

	 4.	 The Manufacturer record type becomes the Manufacturer 
table.

	 5.	 The cardinality and modality of the record types becomes a 
simple relational one-to-many link (the only kind relational 
systems support).

	 6.	 The attributive record type Manufacturer History becomes the 
simple Manufacturer History table. Relational systems do not 
directly support attributive record types.

Figure 9-7.  A DBMS model-specific functional physical database design fragment
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DBMS-specific language can now be used to describe data objects. For a relational 
system, data fields become attributes or columns, record occurrences become rows or 
tuples, and record types become tables.

Task 3.2: Constraint Compliance
Constraint Compliance is the task in which the Functional physical database design 
becomes product and version specific. For the first time, the database designer can apply 
the rules of the particular vendor’s offering. This is also the first time the designer has a 
usable database design.

The SQL Data Definition Language (DDL) is needed to generate a relational database 
schema. However, before coding for SQL Server 16 or Oracle 12, the designer needs to 
remember Principle 4 of the database design principles (presented in Chapter 1), the Minimal 
Regression Principle—design a database so that business and technology changes minimize 
database redesign. To minimize unnecessary future changes, the first draft of the DDL needs 
to be DBMS version agnostic—relational to be sure—but using a generic SQL that does not 
tie the design to a specific vendor or product. Table 9-5 shows a fragment of the SQL code 
for an order management system using a generic form of SQL loosely based on the ISO/IEC 
standard. However, the designer could just as easily have used this step to create a Functional 
physical database design for a hierarchical, network, or object-oriented database system.

Table 9-5.  Functional Design DDL Using Generic SQL

Order Management System
Data Definition Language (DDL) Code Fragment
Using Generic SQL

CREATE TABLE PRODUCT (
       PRODUCT_NAME           CHAR(30) NOT NULL,
       PRODUCT_NUMBER         CHAR(8) NOT NULL PRIMARY KEY UNIQUE,
       --  primary key assumes unique but both make the message plain
       --  even if not a primary key, keep this field unique
       PRODUCT_DESCRIPTION    VARCHAR(512),
       COST_BASIS             DECIMAL(8,2) NOT NULL,
       LIST_PRICE             DECIMAL(8,2) NOT NULL
       CREATE INDEX PROD_NO_IDX ON PRODUCT (PRODUCT_NUMBER)
);

CREATE TABLE MANUFACTURER (
       MFG_NAME               CHAR(30) NOT NULL,
       MFG_ID                 CHAR(6) NOT NULL PRIMARY KEY UNIQUE,
       MFG_CATEGORY           �INTEGER DEFAULT 1 CHECK (MFG_CATEGORY IN  

(1, 2, 3)),
       MFG_NOTES              VARCHAR(512),
       ORDER_INSTRUCTIONS     VARCHAR(512)
       CREATE INDEX MFG_ID_IDX ON MANUFACTURER (MFG_ID)
);

(continued)

http://dx.doi.org/10.1007/978-1-4842-2722-0_1
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Keeping the DDL generic improves the communication value of the code and allows 
the reader to focus on the structure of the database and not release idiosyncrasies. It also 
gives designers and database administrators (DBAs) a source document to use when 
updating the database schema to a new release or entirely new product. For example, 
specifying that PRODUCT_NUMBER is both the primary key and unique is redundant in 
virtually all implementations of a relational DBMS, yet it does have communicative value. 
It tells those involved with the next phase of the design process that if, for some reason, a 
different primary key is chosen, then this field must be keep unique.

THE LANGUAGE OF DATABASE MANAGEMENT SYSTEMS

Occasionally, the database community gets it right. Too often, academics and 
vendors come up with their own proprietary words to describe commonsense 
objects. But not this time. It has become almost universal to describe database 
functionality using two sublanguages. The first is called the Data Definition 
Language (DDL), which includes the syntax and rules used to create database 
schemas and subschemas. The second is the Data Manipulation Language (DML) 
used in applications to process database data, such as reading, adding, or deleting 
data items. These concepts predate relational systems and originate with the 
Conference/Committee on Data Systems Languages (CODASYL) or network model. 
Luckily, DBMS vendors have chosen to use what has worked so well in the past 
rather than continuously inventing new and often confusing terminology.

There are two types of constraint compliance: structural and syntactical. Structural 
compliance oversees the addition, deletion, or modification of the database’s 
architectural components (record type, links, etc.) to create and maintain a valid schema. 
Syntactical compliance oversees the grammar or communication value of the DDL to 
ensure that the system understands what is wanted. For example, if you cannot create 

Table 9-5.  (continued)

Order Management System
Data Definition Language (DDL) Code Fragment
Using Generic SQL

CREATE TABLE PROD_MFG_JCT (
       PRODUCT_NUMBER         CHAR(8),
       MFG_ID                 CHAR(6),
       PRIMARY KEY (PRODUCT_NUMBER, MFG_ID),
       �FOREIGN KEY (PRODUCT_NUMBER) REFERENCES PRODUCT ON UPDATE CASCADE 

ON DELETE CASCADE,
       �FOREIGN KEY (MFG_ID) REFERENCES MANUFACTURER ON UPDATE CASCADE ON 

DELETE CASCADE
);
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a single table for Customer because there are too many fields in it, then the necessary 
change is structural. However, if the problem is that your DDL compiler will not accept 
table names longer than eight characters and yours is 15, that change is syntactical.

The order management system will require syntactical changes to run with the 
selected DBMS—for this example Oracle is assumed. The syntactical changes are needed 
to accommodate Oracle syntax rules and reserved words. For example, Oracle uses the 
NUMBER data type and not the SQL standard DECIMAL type used in the example. In 
addition, the chosen DBMS supports some referential integrity update constraints using 
triggers or application code, not DDL declarations. Table 9-6 illustrates the changes 
needed to make the schema code Oracle compliant.

Modifications are needed to support not only a particular vendor’s product but 
the particular version of that product as well. For example, earlier versions of Oracle 
did not support more than one column per table that was longer than 255 characters 
in length, and it required use of the LONG data type. To support both the PRODUCT_
DESCRIPTION and PRODUCT_HISTORY fields, the designer would need to shorten one 
of them to 255 characters or place it in a separate table.

The result of this step is a working database. How well it performs depends on a 
number of factors, including the data it stores and the design of the database.

Step 4: Customization
The database design created in step 3, Formalization, should be able to support all the 
tasks it is assigned. How efficiently it completes those tasks was not a concern until now. 
During Customization, the performance of the database is examined and any needed 
changes identified.

Table 9-6.  Functional Design DDL Generic SQL Converted to Oracle

Generic SQL Changes Needed for ORACLE

CREATE TABLE PRODUCT (
  PRODUCT_NAME CHAR(30) NOT NULL,
  �PRODUCT_NUMBER CHAR(8) NOT NULL
    PRIMARY KEY UNIQUE,
  --  primary key assumes unique but 
both make the message plain even if 
not a primary key, keep this field 
unique
  PRODUCT_DESCRIPTION VARCHAR(512),
  PRODUCT_HISTORY     VARCHAR(512),
  COST_BASIS DECIMAL(8,2) NOT NULL,
  LIST_PRICE DECIMAL(8,2) NOT NULL,
  �CREATE INDEX PROD_NO_IDX ON
    PRODUCT (PRODUCT_NUMBER)
);

PRODUCT_NUMBER CHAR(8) NOT NULL
    PRIMARY KEY,
/*can't use UNIQUE in PK statement*/
PRODUCT_DESCRIPTION  VARCHAR2(512),
PRODUCT_HISTORY      VARCHAR(512),
/*LONG was the standard but was 
dropped. VARCHAR being dropped in 
favor of VARCHAR2 */
COST_BASIS     NUMBER(8,2) NOT NULL,
/*  substitute NUMBER for DECIMAL*/
LIST_PRICE     NUMBER(8,2) NOT NULL
/*  substitute NUMBER for DECIMAL */
/* Oracle automatically creates 
index on PRIMARY KEY columns */
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This sequence (Formalization then Customization) was created for two reasons. 
First, it is important to confirm the design is right before making it fast. Speeding up a 
database that does the wrong things is useless. Second, performance enhancement is one 
of the most common post-implementation activities. There are always usage surprises 
after the database is in operation as well as vendor enhancements and improvements 
to implement. The majority of these fall into the performance category. The goal is to 
limit functional “oops” when implementing performance improvements. Keeping the 
functionalization of the database (step 3, Formalization) separate from enhancement of 
its efficiency (step 4, Customization) is the best way to do that.

If the database is small, it’s not very complex, usage is low, or performance is not a 
major issue, then pack up your toolkit because your work is done. The design created in 
Formalization should be sufficient. However, if more is needed, then Customization is 
where it happens. In step 4 (Table 9-7), the designer can apply all the tricks of the trade 
from a toolkit (hardware and software) provided by the DBMS vendor, third parties, or the 
in-house database management team.

Task 4.1: Resource Analysis
Before you can fix it, you have to know what is wrong. Resource Analysis examines the 
database to understand the demands placed on it and the impediments to meeting that 
demand.

Table 9-7.  Step 4: Customization

Step 4: Customization
Sources Procedures Deliverables

•• Functional physical 
database design 
(diagram)

•• Functional Data 
Definition Language 
(schema and subschema)

•• Updated physical data 
model definitions (data 
dictionary)

•• Usage scenarios

•• Usage maps

•• Combined usage map

•• Transformation notes

•• Utilization notes

•• Formalization notes

•• DBMS features and 
constraints

•• Task 4.1: Resource 
Analysis

•• Task 4.2: Performance 
Enhancement

•• Activity 4.2.1: 
Customize hardware

•• Activity 4.2.2: 
Customize software

•• Enhanced physical 
database design 
(diagram)

•• Enhanced Data 
Definition Language 
(schema and 
subschema)

•• Updated physical data 
model definitions (data 
dictionary)

•• Customization notes
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The DBMS has an oddity built into it. Language compilers are willing to tell you 
when you made a mistake—they crash. Operating systems are intolerant of programs 
they do not like—they stall. DBMSs, on the other hand, often work even when major 
(particularly performance-related) mistakes have been made. The database dog that 
takes hours and hours to perform a particular update completes its job in minutes after 
an index is added or changed. Conversely, a decently performing database can grind to 
a halt if an ill-conceived index is added. The trick is knowing what and where to make 
improvements.

To illustrate this point, consider a simple database design of three record types 
(Figure 9-8) consisting of 200 Product occurrences and 1,000 Order occurrences, each 
linked to an average of 10 Line Items occurrences per Order. Also, assume that the DBMS 
allows two methods of improving performance: (1) indices placed on certain fields and 
(2) clustering of multiple occurrences of linked, but different, record types on the same 
physical database page. In this case, that would mean a Line Item occurrence could be 
stored either on the same physical page as its related Order occurrence or on the same 
physical page as its related Product occurrence, but not both. The questions to answered 
are: (1) which fields should be indexed and (2) next to which record occurrence, Order or 
Product, should the related Line Items be stored?

Look at Scenario 1. The first task is to find a particular Order occurrence. Because 
there are 1,000 Order occurrences, it will take, on average, 500 logical inputs/outputs  
(I/Os) to find the right record occurrence. If you assume there are 10 Order occurrences 
on a physical database page, then finding the right Order will require, on average,  
50 physical I/Os. However, if you create an index on the ORDER_NUMBER field, the 
average number of physical I/Os can be reduced to about four.

The second method of improving performance is clustering. Without design 
intervention, fetching one Order occurrence and its related 10 Line Items will require 
11 physical I/Os—one for the Order occurrence and 10 for the 10 related Line Item 
occurrences (index I/O is ignored until Chapter 13, which covers step 4, Customization). 
Fetching each Product occurrence and its associated Line Items will require an average 
of 51 physical I/Os. (All calculations assume that the DBMS did not put more than one 
occurrence on an individual page.)

Figure 9-8.  Physical database design trade-offs

http://dx.doi.org/10.1007/978-1-4842-2722-0_13
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However, if each Line Item occurrence is stored on the same page as its related Order 
occurrence, then only one physical I/O is required. Storing Line Item with its associated 
Product reduces the 51 physical I/Os to only one physical I/O (assuming that all the Line 
Items could fit on one database page). Physical I/Os can be reduced more than 90 percent 
for the Access Order Details scenario.

The performance of Usage Scenario 2, Access Product Orders, could be improved by 
more than 90 percent by clustering Line Items around Product (rather than Order). But 
remember, you cannot have both. Which of the two storage options should you choose? 
Adjudicating this trade-off is the crux of Customization.

Of course, this example analyzed only two simple scenarios concerning three record 
types. A more realistic example would involve modeling dozens of scenarios, many 
requiring data from a half-dozen record types or more, against a much larger design. But 
the idea is the same.

Task 4.2: Performance Enhancement
In Task 4.2, the database design code was modified to reflect the performance 
improvements identified in Task 4.1. The simplest way to enhance performance with 
most DBMS products is to add indices to important fields. Which fields you index is 
driven by two criteria, fields you want to search the database for and fields the DBMS uses 
to access other record occurrences.

With relational systems, to add indices, you simply add a statement to the DDL as 
follows:

CREATE UNIQUE INDEX PRODUCT_NUMBER_IDX ON PRODUCT (PRODUCT_NUMBER);
CREATE UNIQUE INDEX ORDER_NUMBER_IDX ON ORDER (ORDER_NUMBER);

Language is also needed to cluster the related Order and Line Item occurrences 
together.

CREATE TABLE ORDER (
     •
     •
   CLUSTER LINE_ITEM_CLUSTER (ORDER_NUMBER);
CREATE TABLE LINE_ITEM (
     •
     •
   CLUSTER LINE_ITEM_CLUSTER (ORDER_NUMBER);
CREATE CLUSTER LINE_ITEM_CLUSTER (ORDER_NUMBER CHAR(8));
     •
     •

The designer can indicate clustering on the database diagram by placing the 
clustering record type name at the bottom of the record type box.
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Figure 9-9 puts the small database fragment together, including the tables to 
accommodate Oracle’s constraints and the clustering information, at the bottom of each 
record type box.

Summary
Many a well-designed system is brought to its knees during maintenance. The reasons 
are many but particularly problematic is poor documentation. Correctly and efficiently 
modifying an application is difficult if the maintenance staff does not have an accurate 
picture of what the application does and how, exactly, it does it.

Equally important is not traveling over ground that had been trod before. It does not 
make sense to redesign a car simply because it needs new tires. Likewise, adding an index 
to a table or moving data from one file to another should not require going back to the 
business users to, once again, understand how those data are used.

When complete, Usage-Driven Database Design: Physical Schema Definition 
transforms a logical data model, based on the definition of the data from the enterprise, into 
a database design tuned to how the organization will use the application (Figure 9-10).

Figure 9-9.  Order management system physical database design
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The information presented in this chapter, as well as the examples, are an 
oversimplification of how U3D works, although they do present a realistic overview of 
the basic components. The following chapters look at each of the four U3D:PSD steps in 
greater detail, expanding on the points presented here.

Figure 9-10.  Logical data model to physical database design
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CHAPTER 10

Transformation: Creating  
the Physical Data Model

The time is a critical one, for it marks the beginning of the second half…
when a transformation occurs.

—C.G. Jung

Methods have to change. Focus has to change. Values have to change. 
The sum total of those changes is transformation.

—Andy Grove (founder and CEO of Intel Corporation)

One of the more emotionally satisfying, although less technically significant, components 
of the database design process is Transformation (see Table 10-1). During Transformation, 
the designer takes the first real, although small, step toward creating a physical database 
design. Its significance as a psychological milestone is that, from here on, the language of 
requirements analysis and logical data modeling is left behind in favor of the terminology 
of physical design, database management, and storage devices.
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Step 1, Transformation, is where the objects identified during logical data modeling 
are transformed into physical database design objects. The result is the physical data 
model.

Task 1.1: Translation
Translation consists of two activities. The first activity, Transform logical data modeling 
objects to physical design modeling objects, involves a one-for-one substitution. For 
example, the entity becomes a record type. The second activity, Diagram the objects, 
creates the physical data model diagram.

Activity 1.1.1: Transform LDM Objects to PDM Objects
The first Transformation activity is a rather simple and mechanical step of substituting 
physical design objects for logical design objects. The logical data modeling entity 
becomes the physical data modeling record, the logical data modeling relationship 
becomes the become physical data modeling linkage or link, and the logical data 
modeling attribute becomes the physical data modeling data item. Simple. However, 
some situations can prove challenging.

Table 10-1.  Step 1: Transformation

Step 1: Transformation

Source Procedures Deliverables

LDM.1: E-R diagram
LDM.2: Logical data model 
object definitions (data 
dictionary)
LDM.3: Logical data 
modeling notes
PM business requirements 
(processes, procedures, and 
all volumes)

•  Task 1.1: Translation
• � Activity 1.1.1: 

Transform LDM objects 
to PDM objects
•  Entity to record type
•  Attribute to data item
• � Relationship to link, 

etc.
• � Activity: 1.1.2 

Diagram the objects
•  Task 1.2: Expansion

• � Activity 1.2.1: Assign 
keys

• � Activity 1.2.2: 
Normalize model

1.1: Physical data model 
(diagram)
1.2: Physical data model 
object definitions (data 
dictionary)
1.3: Transformation notes
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Entities to Record Types
For decades, the basic unit of stored data has been the record. As with logical data 
modeling objects, the type/occurrence distinction is still useful and should be employed 
when discussing physical database design objects. Therefore, record type is the name 
given to the collections of all related record occurrences, such as Employee or Customer. 
A record occurrence or instance is the data that are stored as a discrete contiguous piece 
of information in an information system, such as Smith’s Employee record or Thompson’s 
Customer record.

In logical data modeling, there are four types of entities: proper, associative, 
attributive, and S-type. At its simplest, proper entities become proper record types, 
associative entities become associative record types, attributive entities become 
attributive record types, and S-type entities become S-type record types. The definitions of 
the four record types are almost the same as for their entity cousins (Table 10-2).

Table 10-2.  Record Type Definitions

Object Entity Type Record Type

Proper A simple or fundamental entity type A simple or fundamental record 
type

Associative A relationship that has its own 
relationships or attributes

A link that has its own 
relationships or data items

Attributive An entity whose existence depends 
on another entity

A record type whose existence 
depends on another record type

S-type An entity (the supertype) that 
contains more than one role (the 
subtypes)

A record (the supertype) that 
contains more than one role 
(the subtypes)

Diagramming conventions are the same for record types as for logical entities 
(Figure 10-1). The proper record type is represented by a rectangle. Associative record 
types are represented by a rectangle with a diamond in them. Attributive record types are 
rectangles drawn using double lines, and S-types are drawn either with the is a construct 
or with the box-within-a-box graphic.
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The naming convention for record types is the same as for entity types. A question 
often asked is, “Why are we keeping logical data modeling names when I know that the 
DBMS only allows a maximum of 18 characters, with no blank spaces and all uppercase?”

This is a fair question because DBMS restrictions can severely limit logical data 
modeling conventions. For example, many information systems do not allow unlimited 
name length, others restrict case use to uppercase or lowercase, and most do not allow 
spaces in a name, rather requiring underscores or other special characteristics. The 
answer to the question is that it is important to maintain a generic non-product-specific 
approach as long as possible. This allows the designer to hold off restricting what we 
want by what we can have. It is important to document what you would like to have, even 
if your current DBMS does not support your desires, because your current DBMS might 
not be your future DBMS. Without proper documentation, if you change DBMS products 
or if a new version of your current DBMS includes new functionality, there will be no 
evidentiary basis to support exploiting the new features.

WORD CAVIAR FORMALIZED FUNCTIONAL OSSIFICATION 
AND HOW TO COMBAT IT

Creating first-generation applications (automating manual processes) was easy. The 
designer figured out what the users wanted and coded away. Second-generation 
applications (creating new systems to replace first-generation systems) ran into a 
totally unanticipated problem: formalized functional ossification (a term made up for 
this sidebar).

The technology, as well as system development know-how, was limited when the 
first-generation systems were built. Users wanted a number of features that IT could 
not deliver. The solution was a series of workarounds and alternatives. It was not 
what the user wanted, but nonetheless, it got the job done.

Figure 10-1.  Record types
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The technology was more advanced, and systems staff were better versed in 
application development by the time the organization was ready for a second-
generation application. Many of those workarounds could now be removed, and the 
original user requirements built into the new system. But then a miracle happened. 
The users no longer wanted that new-fangled stuff; they wanted the system to 
do it “the way it always did it” (i.e., how it did it after the first-generation system 
was implemented without their desired features). The old klugey workarounds had 
become fossilized—a formalized functional ossification (FFO?). The challenge for 
the second-gen team was to figure out what the new application should include and 
exclude, all without the constraints of FFO.

Formalized functional ossification (or fossilization if you prefer) can happen in IT as 
well. The then current version of the IT shop’s DBMS, operating system, or project-
management application could not do what was wanted, so workarounds were 
constructed. Now, a few years later, the vendor includes exactly what IT originally 
wanted. Do IT staff jump up and down with joy at the new features? Maybe not. The 
klugey workaround—that software dongle so to speak—is now encapsulated so 
deeply in the organization that no one knows what was originally wanted. Unless…

…unless they have the documentation detailing exactly what was wanted years 
ago and why. U3D is a framework to keep that functional memory alive and ready to 
implement once the moment is right.

This is an important point. Experienced database designers might be perplexed 
about why they should perpetuate something that does not exist in most database 
management systems, such as associative, attributive, and S-type concepts. Although 
popular in logical data modeling, they rarely exist as vendor-specified constructs in most 
DBMS products.

There are two answers to this question. First, it is important to understand what the 
logical data modeler is trying to tell the database designer, such as there is a difference 
between Address as a proper record type and Address as an attributive record type. This 
becomes more obvious in later U3D steps when the physical designer can treat the two 
differently, even if the DBMS doesn’t. For example, an attributive record type might tell 
the database designer to use a cascading delete between the Customer and Account 
record types, a DBMS constraint that might not be employed if Address is seen as a proper 
record type.

Second, the designer should not want to give up information (here the distinction 
between the different kinds of record types) until absolutely necessary, where “absolutely 
necessary” is determined either by the DBMS selected or by the designer finding some 
other way to represent the construct. Therefore, the designer should hold onto this and 
other important information as long as possible.
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Relationships to Linkages
The logical data modeling relationship becomes the physical database design link or 
linkage. A link is a way of associating two or more records together for the purposes of 
retrieval or maintenance. As in logical data modeling, physical database design links have 
membership class, degree, and constraint characteristics. Linkage naming conventions 
should be the same as for logical relationship names although, unfortunately, many 
designers do not name links at all.

Linkage Membership Class

As in logical data modeling, there are two types of membership class: cardinality and 
modality. Cardinality indicates the maximum number of occurrences of one record type 
that can be linked to another record type occurrence. The three types of cardinality are 
one-to-one, one-to-many, and many-to-many. Modality indicates the minimum number 
of record occurrences that must be linked to another record occurrence. Modality is 
either mandatory or optional.

Diagramming conventions are similar but slightly different for relationships and 
linkages (Table 10-3). As with logical data modeling, modality is still represented by a bar 
or a zero; however, the logical data modeling crow’s foot gives way to the physical data 
modeling arrowhead.

Table 10-3.  Membership Class

Logical Data Model Physical Data Model

Cardinality

One-to-One

One-to-Many

Many-to-Many

One-to-One

One-to-Many

Many-to-Many

Modality

Mandatory

Optional

Mandatory

Optional

Cardinality is, so far, the only diagrammatic difference between logical and physical 
data modeling.
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Linkage Degree

Degree relates to the number of different record types allowed to be linked to each other. 
There are three types of degree: unary, binary, and n-ary (Figure 10-2).

Figure 10-2.  Linkage degree

Unary or recursive links are one or more occurrences of a record type related to one 
or more other occurrences of the same record type. An example of a unary linkage type 
is “Reports to,” which links one or more occurrences of Employee to one or more other 
occurrences of Employee.

Binary links are one or more occurrences of record type A linked to one or more 
occurrences of record type B. This is the garden-variety link that associates occurrences 
from two distinct record types. For example, Employee is related to Department.

N-ary links are one or more occurrences of record type A linked to one or more 
occurrences of two or more other record types. An example would be Car, Dealer, and 
Customer sharing a linkage.

Note that, so far, the rules are the same for both logical and physical objects.

Linkage Constraints

There are three types of linkage constraints: inclusion, exclusion, and conjunction. 
Inclusion states that an occurrence of record type A can be linked to one or more 
occurrences of record type B and/or one of more occurrences of record type C. For 
example, an occurrence of record type Student can be linked to an occurrence of record 
type Class and/or an occurrence of record type Major.

Exclusion states that an occurrence of record type A is linked either to one or more 
occurrences of record type B or to one or more occurrences of record type C, but not 
both at the same time. For example, for the link “Owns,” an occurrence of the record 
type Automobile might be linked to an occurrence of the record type Dealer or to an 
occurrence of the record type Customer, but not both.
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Conjunction states that if an occurrence of record type A is linked to one or more 
occurrences of record type B, then it must also be linked to one or more occurrences 
of record type C. For example, a company might have a rule that if a Customer record 
occurrence is related to a Credit Balance record occurrence, then it must also be related 
to a Credit Check occurrence (Figure 10-3).

Figure 10-3.  Linkage constraints

The diagrammatic conventions for linkage constraints are the same as those for 
logical data modeling relationship constraints.

There is a tendency not to carry forward relationship names from the logical data 
model to the physical data model. This is unfortunate, but it’s because few database 
management systems let you name a link much less require it. However, linkage names 
help inform/remind the physical database designer why the link was created in the first 
place. Therefore, the use of linkage names, and associated documentation, is encouraged 
even if your information manager does not support them.

Attributes to Data Items
The physical database design equivalent of the attribute is the data item or data field. 
Just as the logical data modeling attribute is a descriptor or characteristic of an entity, a 
data item is a characteristic or descriptor of a record. If the record type is Employee, then 
typical data items are EMPLOYEE NAME, EMPLOYEE START DATE, and EMPLOYEE 
SALARY. A data item occurrence is called a data value or just value. For example, the data 
item DETECTIVE NAME could have the data item values “Sherlock Holmes,” “Hercule 
Poirot,” and “Ellery Queen.” Developers often abbreviate data item type to data item and 
data item occurrence to data value or just value. Note: Do not call a data item type a data 
type because data type is frequently used to mean data domain.
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Data Item Domain

A data item domain is the set of possible values a data item type can have. Examples of 
domains include dates, text, integers, years between 1900 and 2020, real numbers with 
three decimal places, abbreviations (USA, EU, UK), and so on. Domains are used to test 
for acceptable values for data items. For example, if the domain of INCOME is real values 
with two decimal places, then the value “Donald Trump” is unacceptable. Of course, 
domains cut both ways. Many a U.S. database designer was humbled after defining the 
domain of POSTAL CODE as integer and then encountering the Canadian postal code 
K1A 0A9.

Domains are one of the more important components of database design, yet few 
information managers support or require them. The relational model—the theology 
behind the relational database management system—centers on the concepts of 
domains and sets, yet both are underrepresented in many vendor products. That’s truly 
unfortunate.

Data Item Source: Primitive and Derived

A data item source indicates how original or fundamental a data value is. A primitive 
data item cannot be broken down into other data items or derived from them. A derived 
data item is one whose value can be calculated from other data items. For example, the 
data items UNIT PRICE and QUANTITY can be used to calculate the COST data item 
by multiplying UNIT PRICE by QUANTITY. If you cannot derive a value from other 
data items, then the data item is probably primitive. In this example, UNIT PRICE and 
QUANTITY are probably primitive data items.

Primitive Data Item: Unique Identifiers and Descriptors
Primitive data items can be of two types: unique identifiers or descriptors. A unique 
identifier is a data item that can point to or choose a single record occurrence. Examples 
are EMPLOYEE NUMBER, SOCIAL SECURITY NUMBER, and PART NUMBER. 
Descriptors describe or give the characteristics of the record type. Examples of 
descriptors are COLOR, HEIGHT, LENGTH, WEIGHT, and LOCATION.

Be careful about calling a unique identifier a key. For many if not most DBMS 
products, a key need not be unique. The interest here is uniqueness, not keyness.

Data Item Complexity: Simple and Group

Data item complexity looks at whether a data item contains any other data items. A group 
data item is made up of two or more other distinct data items. For example, the data item 
ADDRESS could be made up of the data items STREET NUMBER, STREET NAME, CITY 
NAME, and POSTAL CODE. Data items that are not made up of other data items are 
called simple or atomic.
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Data Item Valuation: Single Value and Multivalue

Data item valuation indicates how many different values a data item can have at one 
time. A single-value data item contains only one value at any given time. Multivalue data 
items can have more than one value simultaneously. For example, the data item GENDER 
contains only a single value at a time, while MONTHLY REVENUE could have 12 values, 
one for each month of the year (“$1000, $1330, $2056, $1820, $9368, $1343, $1588, $1190, 
$1030, $1110, $2110, $2100”).

Multivalue data items are supported by most programming languages, which call 
them repeating items or repeating groups. Examples would be the OCCURS clause in 
COBOL and the struct function in C (Table 10-4).

Table 10-4.  Examples of Multivalue Data Items

A Multivalue Data Item in:
COBOL C

01  MONTHLY-SALES-NUMB
       OCCURS 12 TIMES.
          05 UNITS-SOLD     PIC 999.
          05 VALUE-OF-SALES PIC S9(5)V99.

struct monthly-sales-numb {
    int   units-sold;
    float value-of-sales;
};

Although data item sources, complexity, and quantity play only small roles in 
Transformation, they can take center stage later in the physical database design process, 
depending on requirements and the technology environment.

Other Data Item Information

The activity Transform LDM objects to PDM objects doesn’t necessarily stop here. Other 
information that needs to be converted includes data item size or length (number of 
characters, bits or bytes), edit rules or masks, and any other information collected during 
the logical data modeling process.

Appendix C contains examples of information that should be gathered for all record 
types, links, and data items.

Activity 1.1.2: Diagram the Objects
As with logical data modeling, physical objects can be diagrammed, in most cases, on a 
single page. Figure 10-4 shows the draft physical data model for an order management 
system.

http://dx.doi.org/10.1007/978-1-4842-2722-0_19
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The diagram is Figure 10-4 is not the task deliverable but simply a work-in-progress, 
actually just the start, toward that deliverable. That is why the word draft is used.

Task 1.2: Expansion
Expansion, the second Transformation task, is concerned with augmenting the most 
important, and most challenging, physical database design component, the record type. 
After creating the draft physical data model, the designer needs to look at the structure of 
each record type. The first order of business is to assign keys.

Activity 1.2.1: Assign Keys
In logical data modeling, unique identifiers were assigned to all entities for which business 
staff indicated they were used. In physical design, unique identifiers become keys. A key is 
one or more data items used to identify or pick out one or more record occurrences.

By its traditional definition, keys are of two types: primary and secondary. Primary 
keys uniquely identify a record occurrence (the logical data model’s unique identifier). 
Some authors and systems restrict a record type to having only one primary key, while, 
less commonly, others allow a record type to have multiple primary keys, if by primary 
key you limit your definition to unique identifier. Secondary keys are rarely ever burdened 
with a uniqueness requirement. They are generally used to find record occurrences when 
duplicates are allowed. A traditional record type might have a primary key of the unique 
data item EMPLOYEE NUMBER but nonunique secondary keys for EMPLOYEE NAME 
and EMPLOYEE TITLE.

Figure 10-4.  Draft physical data model for the order management system



Chapter 10 ■ Transformation: Creating the Physical Data Model 

196

A key can be a single data item or a concatenation of two or more data items. A key 
consisting of a single data item would be something such as EMPLOYEE NUMBER, while 
a concatenated key or compound key would be SITE ID, BUILDING NUMBER where the 
uniqueness of building number is limited to each site.

In many cases, the logical data modeler assigned a unique identifier to an entity. 
Unless there are extenuating circumstances, the logical data modeling unique identifier 
should be used as the primary key. If uniqueness is not achievable using the LDM 
identifier, the database designer can usually employ a concatenated key to satisfy the 
uniqueness requirement.

Secondary keys can be defined now, but in most cases, it is wiser to wait until the 
designer better understands how the database will be used (step 2, Utilization).

A SHORT HISTORY OF KEYS

Keys have a long history in IT although their use and the definition have changed 
over time. Back in the early days of IT, call it the first key era, files were sequential, 
existing on punched cards, magnetic tape, or disk, and the key was the field used 
to sort the file. In those days, computers spent inordinate amounts of time sorting 
files, with the typical job stream a litany of sort, application, sort, application, and so 
on. The customer files might be sorted on account number for one application, then 
re-sorted on customer name for another, and later sorted a third time on billing date. 
Sort keys had no significance beyond their relevance in ordering the file.

The second key era came with the advent of random access technology. Now the 
application could fetch any piece of data in a file if it knew its location within the 
file. The key now took on a new role—that of an access key, search key, search 
argument, or search criterion. This is when the database management system 
really took off. The programmer simply passed the key of the desired record to the 
DBMS, and the system would deliver it to the application. The DBMS associated the 
key with a pointer to the record’s physical location on disk (displacement from the 
beginning of the file, sector location, database page, etc.).

The relational model stood keys on their heads with the introduction of the key as a 
structural database component. This is the third key era. No longer were keys used 
simply for defining how you order a file (a sort key) or how you locate data in the file 
(an access key); the relational model made the key part of the architecture of the 
data. The foreign key linked a relational parent to its relational children. Keys were 
now fundamental to the structure of the database.

As a convention, many modelers underline the primary key in their diagrams. 
Unfortunately, the position of the data items in a compound key (which data item is 
first, which second, etc.) is important. The concatenated key ACCOUNT NUMBER, 
ORDER NUMBER is very different from the key ORDER NUMBER, ACCOUNT NUMBER. 
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Underlining does not always show this distinction unless the designer aligns the data 
items in the correct order, but there is no way to tell whether this has been done. 
Regardless, the data dictionary should contain this important information even if the 
diagram does not.

Activity 1.2.2: Normalize the Model
Normalization is a process of reducing the structure of the model to a state such that data 
in any given record is totally dependent on the primary key of that record. This restriction 
ensures that if, for example, some data items are deleted, then all associated data items 
are also deleted, while all nonassociated data items are not.

Database designers can get themselves in a rather nasty pickle if they are not careful 
about how they assign data items to record types. Improper assignment can cause grave 
errors or anomalies.

ANOMALY…ISN’T THAT A KIND OF FISH?

In the good old days, before data processing became information technology, 
programmers worked very hard never to have more than one input file and one 
output file open for any application. Rarely did a computer have more than one card 
reader, and even tape drives were few and had to be shared. Therefore, if a new 
data item suddenly appeared, the programmer would do almost anything to avoid 
creating another file. The new data item was often shoved somewhere in some 
existing file. After the application was a few years old, its file structure could look 
like the bottom of a dorm room closet.

One of the consequences of this throw-it-and-see-where-it-sticks approach 
is that updating a file often resulted in what early programmers described as 
“unanticipated results.” Deleting one record might remove data that were needed 
elsewhere; modifying a record might mean that needed information was no longer 
findable. It could be a mess, so some great IT minds sat down, put their collective 
brains together, and, although they didn’t solve the problem, came up with a 
new name for the mess that sounded a lot better than “mess.” They called them 
anomalies.

By the way, the “fish” is a sea anemone.

An anomaly results when an action produces an unintended consequence. Imagine 
a database that contains information about employees and the projects they work on 
(Table 10-5), where the record type Employee contains the data items EMPLOYEE NAME 
(the primary key), DEPARTMENT, PROJECT, and HOURS WORKED THIS MONTH.
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By adding up the hours worked this month by project, the user sees that a total of 140 
hours were worked on the RumpMaster 2000 and 135 hours on the Disposable Fry Pan. 
However, this information would be lost or incorrect if employee Davidson were deleted 
from the Employee file or if Davidson moved to other projects.

An anomaly is a data integrity problem that occurs in a database when an object 
that is inserted, updated, or deleted causes an unintended change in another object or 
objects. For example, you cannot add a new project to this database until an employee 
(the source of the primary key) is assigned to the project. This is an insertion anomaly. 
Second, if you discover that Casey spells his name “Casie,” you must change every Casey 
record instance. If you miss one, that is an update anomaly. Lastly, if employee Andrews 
quits the project and you delete her record occurrences, you lose information on how 
many hours were worked on her project. This is a deletion anomaly.

There is a solution. It is called normalization.
Normalization is the application of a set of mathematical rules to a database to 

eliminate or reduce insertion, update, and deletion (IUD) anomalies. It does this by 
ensuring that all data items are completely dependent on the primary key for their 
existence and not on any other data item. The various levels of normalization are called 
normal forms. The higher the level, the more likely any potential IUD anomalies have 
been eliminated. The forms are progressive, meaning the model must be in first normal 
form (1NF) before it can be in second normal form (2NF), which is a prerequisite for the 
third normal form (3NF), and so on.

Normalization is closely tied to the relational model. In fact, they were created 
and first presented together with the existence of one used, at least partially, to justify 
the existence of the other. Although normalization is tied to the relational model, it has 
a much broader use; in fact, with some adjustments, it can be used, and benefit, any 
database design for any available DBMS product, relational or not. Unfortunately, the 
adjustments can sometimes be confusing and painful to make.

Table 10-5.  IUD Anomalies

Employee Name Department Project
Hours Worked  
This Month

Andrews Manufacturing RumpMaster 2000 80

Bradley Customer Service Disposable Fry Pan 75

Casey Product Design RumpMaster 2000 20

Davidson Customer Service RumpMaster 2000 
Disposable Fry Pan

40
60
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Adjustments Needed for Normalization: Keys—Foreign and 
Domestic?
To normalize a model, every record type must have a unique key—no exceptions. U3D 
and virtually every DBMS on the planet do not require every record to have a unique key, 
including almost every relational DBMS. However, keys, specifically relational primary 
keys (the single simple or compound unique identifier selected as the record’s sole 
primary key), are the soul of normalization.

Identifying unique identifiers where they do not exist can be a challenge, but the 
relational model offers a simple solution that should work in 95 percent of the key-less 
cases. The designer can use the relational notion of a foreign key to create unique record 
identifiers; it just takes thinking like a relational DBA. That raises the question, what 
exactly is a foreign key?

One of the benefits of a DBMS is that it provides the programmer with a way 
of linking together data that might physically live in different parts of the database. 
For example, in an order management system, the DBMS can make it easy for the 
programmer to move from any given account occurrence to the details for any product 
associated with that account. How the DBMS does this is the “special sauce” that 
separates one DBMS architecture or product from another. Network systems use pointers 
in records, inverted systems use external indices, and relational systems use embedded 
foreign keys.

That network or inverted file DBMS does not need every record to be unique because 
its pointers are unique. While Order might have a unique key (say, ORDER NUMBER), 
the Line Item record can get by with a LINE ITEM NUMBER that is just unique within 
a given Order. (Remember the discussion of “uniqueness within context” in logical 
data modeling?) If 500 Orders are all linked to two or more Line Item occurrences, then 
500 Line Item occurrences have a LINE ITEM NUMBER = “1,” 500 have a LINE ITEM 
NUMBER = “2,” and so on.

The relational model does not use pointers; rather, it buries in the child record the 
primary key of its parent. Take the previous example of the Order and Line Item record 
types. Every Line Item record occurrence associated with a particular Order occurrence 
would have a special data item, a foreign key, that contained the same data value as the 
Order record’s primary key. No pointers required. In practice, well, it depends on the 
implementation of the RDBMS. The pointers kept hidden in hierarchal, network, and 
inverted models are visible to application programmers and even end-user interfaces 
with the relational model. Doesn’t this primary key-foreign key concept require the 
duplication of data? Is not the elimination of duplicate data one of the hallmarks of the 
relational model? Yes, and yes; however, this is rationalized away by saying that foreign 
keys are not data items at all but, well, foreign keys, which are a totally different beast.

If keys, particularly foreign keys, are not needed for all DBMSs, then why deal 
with them here rather than in step 3, Formalization, where the DBMS that will be used 
is identified? And if keys are just access methods, then why introduce them here and 
not where you deal with how efficiently you want to access the data, which is step 4, 
Customization? Why do this now?
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The answer is that if you want to normalize your database, then you have to pretend 
that your DBMS conforms to the relational model, which means placing keys in all record 
types. Normalization does not say you need foreign keys, just that every record must have 
a primary key. Foreign keys are just a way of creating primary keys where they might not 
normally exist. In the example, the DBA could simply append ORDER NUMBER to LINE 
ITEM NUMBER, giving Line Item a unique compound primary key.

Will foreign keys work for all record types? No, foreign keys work only for record 
types at the many end of a one-to-many link. For other keyless record types, the designer 
should find some other solution. However, in most models, the only record types without 
a unique identifier are those at the many end of a one-to-many link.

The good news is that you can always remove the keys after normalization.
However, because the data architecture of the eventual database is still undecided, 

the designer must do a little prenormalization work to make the physical data model 
normalization friendly. In this book (and more than likely, only in this book), the 
preliminary work goes under the lofty name of zero normal form (0NF). As with other 
normal forms, 0NF must be completed before 1NF can begin.

Zero Normal Form
To be in zero normal form (0NF):

	 1.	 Every record must have a relational model–defined primary 
key.

When 0NF is complete, more traditional normalization can begin.

First Normal Form
To be in first normal form (1NF):

	 1.	 The record must be in zero normal form.

	 2.	 All multivalue data items (Codd calls them repeating groups) 
must be removed from the record.

The remedy for a first normal form violation is to remove the repeating group 
(multivalue data items) and create a new record type to house the offending data items.

For example, given the Customer record containing CUSTOMER NAME and the 
repeating group CUSTOMER PHONE NUMBER, remove CUSTOMER PHONE NUMBER. 
Place it in a new record type, and call it Customer Phone, with a one-to-many link 
between Customer and Customer Phone.

Note that 1NF does nothing toward achieving normalization’s primary goal of 
reducing IUD anomalies. Rather, its purpose is to ensure conformity with the relational 
model’s two-dimensionality requirement. However, because the normal forms are 
progressive (you complete one before completing two, etc.), 1NF technically needs to be 
adhered to in order to progress. (You’ll learn more about this later in the chapter.)
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Before Getting to Second Normal Form, a Slight Digression
The key to normalization is understanding functional dependency, a curious term for a 
confusing concept. Here goes.

Take the Employee record containing two data items, EMPLOYEE NUMBER and 
EMPLOYEE NAME, where EMPLOYEE NUMBER is the unique identifier (primary key). If 
you know EMPLOYEE NUMBER, then you can look up EMPLOYEE NAME, so EMPLOYEE 
NAME is determined by EMPLOYEE NUMBER or, in relational-ese, EMPLOYEE NAME is 
functionally dependent on EMPLOYEE NUMBER.

Assume there are two employees named Smith. One Smith is getting fired, and the 
other one promoted. If you know the EMPLOYEE NUMBER of the person to be fired, 
then you can be assured that you canned the correct Smith. However, if you only know 
that the employee to be fired is Smith, then you cannot guarantee that you will fetch the 
correct Smith from your database. Therefore, EMPLOYEE NUMBER is not functionally 
dependent on EMPLOYEE NAME because knowing EMPLOYEE NAME does not give you 
the record containing the correct EMPLOYEE NUMBER.

Functional dependency also works with compound keys. Take the record Line Item 
with the data items ORDER NUMBER, LINE ITEM NUMBER, ORDER DATE, PRODUCT, 
and PRICE. The primary key is the concatenation of (the foreign key) ORDER NUMBER 
and LINE ITEM NUMBER. PRODUCT is functionally dependent on the concatenated key 
ORDER NUMBER-LINE ITEM NUMBER. ORDER DATE is only functionally dependent on 
the ORDER NUMBER, part of the concatenated key. PRICE is not dependent on either but 
rather on the non-key PRODUCT. PRODUCT is fully functionally dependent on the primary 
key, while ORDER DATE is only partially functionally dependent on the primary key.

One more piece of information is needed before you can continue normalizing. 
Remember your college logic class when you learned about transitivity? An example 
might jar your memory. Transitivity says that if A=B and B=C, then A=C. Transitive 
dependency says that if A is functionally dependent on B and B is functionally dependent 
on C, then A is functionally dependent on C.

In the example, PRICE is functionally dependent on PRODUCT, which is functionally 
dependent on ORDER NUMBER-LINE ITEM NUMBER; therefore, PRICE is transitively 
functionally dependent on ORDER NUMBER-LINE ITEM NUMBER.

If you have grasped this, you can move on to 2NF.

Second Normal Form
To be in second normal form (2NF):

	 1.	 The record must be in first normal form.

	 2.	 Every nonkey data item must be fully functionally dependent 
on the primary key (no partial functional dependencies).

The remedy for a second normal form violation is to remove the data items not fully 
functionally dependent on the primary key and either create a new record type to house 
the offending data items or place them in another existing record type.

Using the Line Item example, to make the model 2NF compliant, remove ORDER 
NUMBER and ORDER DATE from Line Item and place them in the new record type Order.
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Third Normal Form
To be in third normal form (3NF):

	 1.	 The record must be in second normal form.

	 2.	 There can be no transitive functional dependencies.

The remedy for a third normal form violation is to remove the data items transitively 
dependent on the primary key and either create a new record type to house the offending 
data items or place them in another existing record type.

To make Line Item 3NF compliant, create a new record type Product containing the 
data items PRODUCT and PRICE.

Figure 10-5 shows the changes that were made to Line Item as a result of 
normalization.

Figure 10-5.  Normalization (before and after)

How many normal forms are there? Many. At least seven, although every now and 
then someone comes up with a new one. However, most practitioners and researchers 
agree that getting to third normal form is usually good enough. More can be just gilding 
the lily.

WHAT’S THE BIG DEAL? VERY LITTLE CHANGED.

If the E-R model is properly constructed, then normalization should add little. 
Remember, normalization was envisioned without the benefit of the E-R approach. 
This is why some E-R database design authors do not require, or even recommend, 
normalization.

Normalization can be a challenging subject that requires considerable more study 
than presented here. This entire book could easily focus on just normalization; however, 
that is unnecessary because there are many books dedicated to the subject. You are 
encouraged to investigate further.
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Post-Normalization—Retreat of Sally Forth?
Once normalization is completed, the database designer faces a decision—what to 
do with all the relational-based changes made to the physical data model so it could 
be normalized. Does the database designer restore the model to its prenormalization 
pristine state or leave in all of the relational detritus?

To normalize a model, all record types must have a primary key. Some primary keys 
are quite natural, such as CUSTOMER NUMBER, while others require vivid imaginations 
to concoct. Foreign keys are not required for normalization because normalization 
is concerned with only one record at a time and its key and nonkey data items. 
Relationships are irrelevant to the Big N, so foreign keys, technically, play no role.

More troubling is the removal of multivalue data items, which were ejected for 
relational model reasons rather than normalization reasons. They could have been left 
in the record, and normalization would have been just as effective (although there is a 
decent argument that if you are going to normalize the model, then you should follow 
its steps).

Restore or not restore? It’s up to the database designer, who can restore the model 
now or wait until step 3, Formalization, and either restore or not restore then based on 
the DBMS selected.

Issues with Normalization
As good as normalization is, and it is useful, it would be remiss not to mention some of its 
issues, problems, and misuses.

•	 Normalization is a review process, not a design process. It works 
in media res. It assumes that record types already exist, and 
the question to be answered is, “Are the data items living in 
this record type correct for this record type?” The database 
designer must already have a physical data model and then use 
normalization to improve/modify it.

•	 Normalization is a decomposition process. Normalization breaks 
down or decomposes existing “compound” record types into 
simpler ones. However, it does not provide a method for going in 
the reverse direction. For example, if the abstraction of the data is 
too granular, there is no way, using normalization, to build up to 
a more appropriate level. While normalization tells you to remove 
a data item from a record type, it does not tell you where to put 
it. It provides no information on where a data item belongs, only 
where it does not belong.
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•	 Normalization says little about key suitability. Normalization is 
concerned with the primary key and its relationship with the 
record’s nonkey fields. Nothing is said about whether the record 
type has the proper primary key. For example, normalization 
would not flag as an error PART NUMBER being the primary 
key of Employee. In fact, it would reject EMPLOYEE NAME from 
Employee because it is not functionally dependent on PART 
NUMBER. This is consistent with normalization’s relational 
model roots. According to the relational model, if a table contains 
two unique identifiers (candidate keys in relational parlance), 
which one you choose as the primary key is totally arbitrary. 
Interestingly, this underscores the need for normalization 
to follow a logical data modeling process, such as the entity-
relationship approach, to appropriately populate entities with 
relevant attributes, and any potential unique identifiers related to 
that entity, before undertaking normalization.

•	 When do you stop? There is no agreement among the gurus about 
how far you need to go when normalizing a database. Third 
normal form? Boyce-Codd normal form? Fourth? Fifth? Sixth? 
Domain-key normal form? Where does it end?

•	 Normalization does not provide a viable end-game strategy. 
The performance of a normalized database is often very poor 
compared with non-normalized databases, and thus fully 
normalized databases are rarely implemented. A common 
post-normalization exercise for many physical database design 
approaches is to denormalize the model to improve performance. 
Unfortunately, there are no accepted rules for denormalization 
that ensure IUD anomalies are not reintroduced.

•	 Gobbledygook. A major selling point for normalization is its 
formal mathematical roots. It’s right out of formal logic and 
set theory, so it includes a strong mathematical pedigree. The 
problem with a mathematically based database design technique 
is that it is a mathematically based technique. It is a mathematical 
concept steeped in mathematical jargon, which is anathema 
to many IT staff. Unless you are a mathematician, it can be less 
understandable than an EBCDIC version of the Bhagavad Gita. 
If normalization gurus really want to spread the word, then they 
need to take a closer look at their audience and understand 
how those people think, how they talk, and the language that is 
meaningful for them.
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HOW PREVALENT IS NORMALIZATION?

I received a very unscientific and inchoate answer to this question. In dealing with 
dozens of database designers on five continents over the past few decades, I found 
that about 90 percent said that they were familiar with normalization. Fifty percent 
said that they normalized their databases. Fewer than 15 percent actually did it, and 
fewer than 2 percent did it properly.

Normalization is confusing, annoying, and frustrating. It is also very useful. Wise 
database designers will roll up their sleeves, wear their thinking caps, put on the coffee, 
get out the college textbooks, and normalize the hell out of their database design.

Tranformation Notes
There is one very important task remaining. The database designer must document all 
the issues and all the decisions made during step 1, Transformation, in one or more 
documents called Transformation notes. The reason is not to record history—it is difficult 
to imagine a 23rd-century archaeologist rejoicing at finding some DBA’s scribblings—but  
for the future of the database. Sometime in the days or years to come, some other 
database designer or DBA will need to make changes to the database. Ideally, before 
mucking about in the DDL, they will do some research to understand the intentions of 
the original users and database designers and the reasoning behind the decisions they 
made. If all the new designer has to work with is the current DDL or a few diagrams, your 
clever original thinking might be misunderstood or totally ignored.

Transformation notes should include answers to these four questions:

•	 Why? Why was something done? Knowing why a decision was 
needed and how was it made can prove very useful for future 
designers.

•	 Where? Some decisions cover the entire model, while others 
apply to only a portion of it. “Where” tells future database users 
and supporters the context or scope of a decision.

•	 When? Some decisions are time dependent. Identifying the 
temporal scope of a decision makes it easier to link it to other 
designer work products such as diagrams and procedures.

•	 Results? There is a tendency for designers to document only 
successes. Sometimes documenting what didn’t work or what was 
rejected is more important than successes.

This is your chance to ensure that your legacy survives the ravages of some young 
undereducated upstart or just yourself three years from now when you are trying to figure 
out why you did what you did. In either case, write it down. It can only help.
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Deliverables
Step 1, Transformation, produces three major deliverables.

	 1.1.	 Physical Data Model: The physical representation of the 
logical data model (Figure 10-6 in the next section).

	 1.2.	 Physical Data Model Object Definitions (data dictionary): 
Record types, data elements, linkages, keys, formats, and so 
on (Figures 10-7 through 10-10 in the next section). Each 
should include a description and relevant information on all 
data objects. (Appendix C contains a glossary of physical data 
object definitions.)

	 1.3.	 Transformation Notes: The database designer’s notes 
on relevant issues and decisions made during step 1, 
Transformation.

Examples of Deliverables
The first deliverable is a Physical data model diagram giving a graphic representation of 
the physical record types and how they are related to each other (Figure 10-6).

PHYSICAL DATA MODEL CHANGES MADE TO THE MODEL

1.    All entities became record types, all
       relationships became links, and all
       attributes became data fields.  

2. Crow’s feet became arrowheads.

3. No changes to the model were made
as a result of normalization. 

Figure 10-6.  Physical data model

http://dx.doi.org/10.1007/978-1-4842-2722-0_19
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The second set of deliverables is the Physical data model object definitions that 
are part of the data dictionary. Below are a set of sample Physical Data Model Object 
Definition forms.

Figure 10-7.  Record type def inition

Not all physical data object information can be entered at this point. Some 
information will have to wait until further steps. For example, keys will not be finalized 
until Chapter 12, and storage issues, such as clusters and partitions, will be decided in 
Chapter 13. Other information might change as you delve further into database design, 
such as data items in the record type.

http://dx.doi.org/10.1007/978-1-4842-2722-0_12
http://dx.doi.org/10.1007/978-1-4842-2722-0_13
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One of the most important items in the record type definition is the “Notes and 
Comments” section. This is an opportunity for the database designer to convey to 
future designers and DBAs important information they will need but that might not 
be adequately explained elsewhere. A prudent designer will make liberal use of this 
opportunity.

Figure 10-8.  Data item definition

Figure 10-9.  Domain definition
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Most database management systems do not require the use of domains, although 
many do allow them. This is unfortunate because domains are an effective tool for 
maintaining database veracity. If the DBMS does not support them, then DBA or 
applications staff should develop the necessary functions to support them.

Figure 10-10.  Linkage definition

These documents are only a suggestion. How you document the model might be 
quite different. Many CASE and system development tool packages include robust data 
dictionaries that can store this and similar information. They are a good place to keep 
such documentation and should be used when possible.

This concludes the Transformation process. Next, step 2, Utilization, examines 
exactly how the database will be used and the modifications to be made to the physical 
data model to accommodate that use.
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CHAPTER 11

Utilization: Merging Data  
and Process

Our biggest cost is not power, or servers, or people. It’s lack of utilization. 
It dominates all other costs.

—Jeff Bezos

Data is a precious thing and will last longer than the systems themselves.

—Tim Berners-Lee

Both the logical data and physical data models are static, only representing the 
definition of the data they contain. Many database designers stop here, never—or only 
inconsistently—taking into account how the data and the database will be used. See 
Table 11-1.

Table 11-1.  Step 2: Utilization

Step 2: Utilization
Sources Procedures Deliverables

·· 1.1: Physical data model 
(diagram)

·· 1.2: Physical data model 
object definitions (data 
dictionary)

·· PM: Business 
requirements (processes, 
procedures, and all 
volumes)

·· 1.3: Transformation 
notes

·· Task 2.1: Usage Analysis

·· Activity 2.1.1: Create 
usage scenarios

·· Activity 2.1.2: Map 
scenarios to the PDM

·· Task 2.2: Path 
Rationalization

·· Activity 2.2.1: Reduce 
to simplest paths

·· Activity 2.2.2: Simplify 
(rationalize) model

·· 2.1: Rationalized physical 
model (diagram)

·· 2.2: Updated physical 
data model object 
definitions (data 
dictionary)

·· 2.3: Usage scenarios

·· 2.4: Usage maps

·· 2.5: Combined usage map

·· 2.6: Utilization notes
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Step 2, Utilization, adds to the physical data model how the procedures defined in 
the process models will store and access data. Utilization is where the formally separate 
data and process models meet to form the first hybrid definition/use model.

In this step, the database design missing link problem is finally resolved—designers 
can create a database that integrates the static definition of data (the data models, 
both logical and physical) with the more dynamic use of that data (the process models, 
both logical and physical). Utilization is the key, resulting in a structurally resilient, 
functionally rich, effective, and efficient database design.

Task 2.1: Usage Analysis
The first Utilization task is to gain an understanding of the functionality the database 
will support. The database designer must examine all data usage in the process 
documentation created by the application designers. In most cases, to do this effectively 
involves understanding at least some forms of process modeling. Because there are plenty 
of books on documenting processes, there is no need to go into depth here, although a 
cursory look is useful.

Process Modeling
A process model serves a purpose similar to a data model—to document existing or 
planned applications. Whereas data models represent information at rest, process models 
record information as it is created, used, modified, and deleted by an application.

As with data models, there are different types of process modeling techniques, and 
they can vary greatly. Some techniques stress a business-focused process requirements 
analysis, while others take on a more technical bent. Logical process requirements 
documentation can involve a narrative form using natural language, graphical 
techniques, or a combination of both.

As is the case with data, the process side of a system can be divided into logical 
process models and physical process models. Logical process models record the existing 
or planned functional capabilities of an application—the what is wanted. Physical 
process models focus on how the system (its hardware and software) does or should 
function—the how it will work. This processing modeling what versus how contrast is 
the complement to that presented in Chapter 1 for data modeling. The most popular 
documenting techniques for logical process modeling are structured English, data flow 
analysis, and, unfortunately, plain English. Physical process models are usually described 
using flow charts, structure charts, pseudocode, and, interestingly, plain English.

Logical Process Modeling
When most developers think of documentation techniques, they usually think of logical 
process models representing, in narrative or graphical form, the functionality of the 
existing or proposed application.

http://dx.doi.org/10.1007/978-1-4842-2722-0_1
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Natural-Language Logical Process Modeling Techniques
Natural language is the speech used every day. It is also, for better or worse, how most 
applications are described and documented. Natural languages, such as English, 
Russian, and Italian, have the advantage of being understood by large numbers of 
people, particularly the people who will be using the application. Unfortunately, natural 
languages, such as plain English, can be verbose and error prone, leading some designers 
to look for more formal approaches to give the model added structure and less bulk.

Plain English

Spend a fortune on college, go to training classes provided by your employer, read books 
and journals describing the latest analysis techniques, and then receive a requirements 
document written like a Lewis Carroll novel. It’s not fair, but it’s reality. The only thing the 
database designer can do is to try to translate the application prose into something more 
practical, as illustrated in the next section.

Oy Vey, There Has Got to Be a Better English Translation

At the opposite end of the spectrum from plain English is a formal language process 
modeling technique called pseudocode, which is a version of natural language that looks 
somewhat like computer code. Pseudocode rates high on the discipline scale but can 
appear robotic and mechanical to users and, for that reason, is not the approach of choice 
for logical process modeling. Between plain English and pseudocode are a number 
of attempts at giving plain language some discipline while not giving up its ease of 
understanding. The most popular language-based compromise techniques go by names 
such as structured English or tight English (or Portuguese, etc.).

Structured English

Every system ever developed had at least part of its inner workings documented using 
plain language. It might be in French or Japanese, but every application has been 
described somewhere in the plain language of its users. Because this book is written in 
English, plain language here is English.

There is probably not an analyst or designer on Earth who has not been given 
development instructions something like the following:

The teacher accesses the student’s record using his or her student number. 
The student’s grade for the course is entered next to the appropriate 
course and section.

The problem with plain language is that it is easy to overlook important details. For 
example, what should the teacher do if the system responds with a matching student 
number but a different student name from the person attending his class? What if the 
actual section number does not appear?
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An insidious problem with plain language is that requirements that look complete 
can be grossly inadequate.

Structured English is a concept introduced in the late 1970s by the proponents of 
structured analysis and structured design. It consists of English language concepts used 
with a little more exactness, simplicity, and rigor than found in everyday life.

Structured English consists of a set of rules, precisely defined words, and specified 
sentence structures that reduce ambiguity while increasing reader comprehension. 
Think of it as a system described by Mr. Spock contrasted with one dramatized by Richard 
Simmons. While one is emotional and inexact, the other is more detailed and precise. 
Creating structured English is relatively easy; you just have to remember that its purpose 
is to unambiguously document how a system is to work.

Because there is no standard for structured English, implementations vary and are 
often highly personalized. A simple structured English approach is to decompose the 
plain English requirements into separate simple declarative statements. These declarative 
statements are then treated to a few rules, such as statements formatted as sequential 
logic or drop-through statements, decision logic or trees, or decision loops.

Sequential logic is a list of events with one following another. Here’s an example:

Read Customer record where Customer Number = "xxx"
Then Read Product record where Product Code = "yyy"
Then Insert Order record for Customer Number = "xxx" and  
Product code = "yyy"

The logic is simple; start at the first statement and go down the list, one statement at 
a time.

Decision logic involves testing a condition and then taking an action based on that 
decision. The simplest decisions are branches and represented by the ubiquitous IF-
THEN statement.

If Customer Status = "Active" then go to Active Customer

If the condition is true, branch to Active Customer; if not, go on to the next 
statement.

A more complex structure would be If-Then-Else.

If Customer Status = "Active" then go to Active Customer
Else Go to Inactive Active Customer

A variation of decision logic is appropriate when there are three or more options that 
are better represented by a decision table.

        IF                                    THEN
Customer = "Active"                 Go to Active Customer
Customer = "Inactive"               Go to Inactive Customer
Customer = "Credit Hold"            Go to Credit Problem
Customer = "National"               Go to National Accounts
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Decision loops repeat a sequence of steps until a condition is met. For example, an 
order can consist of many products.

Enter Product
Insert Line Item record for Product Code = "yyy"
Repeat Enter Product until Product Code = "000"

A list of agreed-upon keywords, such as If, Then, Until, Repeat, etc., can improve 
comprehension, particularly if there are common (industry, organization, or even just 
team) definitions. Some designers like to require that keywords be in all capital letters.

Graphical Logical Process Modeling Techniques
The problem with all natural-language documentation techniques is that they tend to be 
verbose and sequential and, ironically, can miss both the detail as well as the big picture. 
As with logical data modeling, logical process modeling gains from the use of some 
graphical techniques.

The most popular graphical logical process modeling technique is the data flow 
diagram (DFD). A major advantage of the DFD, and the main reason for its popularity, is 
its simplicity and universality.

DFDs consist of four objects (Figure 11-1). An external entity, represented by a 
square, is an object external to the application, such as a person, department, or another 
application. A process, represented by a rounded rectangle, is a procedure that acts on 
data. A data flow, represented by an arrow, shows the movement of data, such as data 
passed between processes or to or from an external entity. A data store, represented by 
an open rectangle, is data at rest, such as a computer file, a file cabinet, a file folder, a 
Rolodex, or a card catalog.

Figure 11-1.  Data flow diagram symbols
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The highest level of a DFD is called Level 0 (Figure 11-2), and it represents the 
entire system or application. Level 0 can be decomposed into multiple Level 1 diagrams 
(Figure 11-3), one for each Level 0 process, each with its own subprocesses showing 
greater application detail. Level 1 can be decomposed into Level 2, and so forth, until the 
entire system is documented.

DFDs also contain a narrative component. Each object requires a definition, and 
each process, particularly those at the lowest level, requires a narrative describing the 
operations it performs on the data. The difference between these process narratives and 
natural language techniques is scope. A DFD process narrative describes only a small 
single process, not an entire system. DFDs and structured English merge well, with the 
latter being used to describe DFD processes.

Figure 11-2.  Customer Orders Product Level 0 DFD

Figure 11-3.  Order Product Level 1 DFD
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Physical Process Modeling
So far, only logical process modeling techniques have been described; however, the 
modeler must also be familiar with physical process modeling techniques. As with the 
data side, physical process modeling techniques instruct the designers and coders on 
how the internals of the application should work.

Natural-Language Physical Process Modeling Techniques
Some natural-language physical modeling techniques are holdovers from logical 
processing modeling, such as plain English (again), structured English (again), and 
pseudocode.

Plain English

No, this is not a mistake. The plain-language techniques used for logical process 
modeling are often, unfortunately, the same techniques used for physical process 
modeling. However, how they are used does often differ.

While the DFD is the most popular graphical logical process modeling technique 
and the flow chart is the most popular graphical process design technique, they are 
both, regrettably, eclipsed by the all-time winning documentation technique: English. 
Sad to say, simply writing down what the system is to do is, by far, the most common 
(if least practical) way to document both the logical and physical requirements of an 
application.

Why is plain English still around? In most cases, it can be boiled down to one of two 
reasons. First, the analyst/designer does not know any better technique. An amazing 
number of analyst/designers have little more than a passing knowledge of modern 
modeling techniques. Second, the analyst/designer is too lazy to use a more precise 
documentation approach.

Structured English

The structured English of physical process modeling differs little from the structured 
English of logical process modeling. The only difference might be the semantics of the 
narrative. Expect physical process structured English to delve more into process control 
and components internal to the application, such as data flags, branches, and loops.

Pseudocode

The philosophy behind pseudocode is to give the reader all of the specificity of computer 
code without referencing a particular computer language and without unneeded linguistic 
details. As with structured English, there is no pseudocode standard. Each practitioner can 
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create their own, or agree on some local or team-wide standard set of rules. The following 
pseudocode example uses only three rules. The three simple rules are as follows:

	 1.	 State instructions as simple declarative or imperative 
sentences using well understood and documented data object 
names where possible.

	 2.	 Convert conditionals to IF THEN, ELSE, or decision table 
form.

	 3.	 Allow iteration using DO UNTIL or similar constructs.

The result turns convoluted constructs, such as the following:
Customers are of two types. Those with annual sales averaging more than $10,000 

are given a 10 percent discount. Others are given a 10 percent discount only if the order is 
greater than $1,000.

into this more understandable pseudocode:

If LAST YEAR SALES > 10,000,
               or YEAR TO DATE SALES > 10,000,
               or ORDER AMOUNT >1,000,
 then CUSTOMER DISCOUNT = 0.10,
 else CUSTOMER DISCOUNT = 0.0.

Some designers like to customize their pseudocode around a particular 
programming language such as C, COBOL, or Java. Others believe in a more 
programming language–free pseudocode. Which is chosen is less important than 
consistency.

Graphic Physical Process Modeling Techniques
Graphical physical process modeling techniques predate the computer age and are 
considerably more popular than graphical logical processing modeling techniques. This 
section looks at the two most popular graphical process modeling techniques: flow charts 
and structure charts.

Flow Charts

By far the most popular graphical physical process modeling technique is the flow 
chart (Figure 11-4). Both revered and reviled, the flow chart predates the digital 
computer. Invented in the 1920s, the flowchart is a general-purpose tool for graphically 
representing processes as a system rather than a sequence of steps. John Von Neumann 
is thought to have been the first to apply them to computer programs in the 1940s. Their 
popularity exploded in the 1950s and continued right up to the early 1970s when batch 
systems began to be replaced with online applications. Although they still work well for 
documenting logic flow, newer techniques, such as structure charts, do a better job of 
documenting many kinds of processing. However, flow charts persist to this day because 
of their ease of use and their ubiquity in classroom instruction.
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While most everyone agrees that the flow chart has outlived its usefulness, they are 
still pervasive throughout the industry. Although your college professor might threaten 
to revoke your degree if you use the technique, flow charts are artifacts found in virtually 
every IT shop.

Structure Charts

A structure chart is a diagrammatic physical process modeling technique that represents 
the process as an inverted tree. The top of the tree is the root application or program 
level. Subsequent levels are modules representing greater process granularity. The very 
bottom levels usually represent program modules performing a single task. Structure 
charts date back to the structured design and programming era. Each box on the chart, 
called a module, represents a process with a single input and a single output. Modules are 
made up of submodules, which are in turn made up of even “subbier” modules…you get 
the idea. Arrows show the flow of data or control. An arrow with an empty (white) circle 
shows the movement of data (up or down), while an arrow with a filled-in (black) circle 
shows the passing of control such as decisions and flags (Figure 11-5).

Figure 11-4.  Customer credit status flow chart
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Structure charts are a popular technique with web designers because they can easily 
represent the architecture of a web site down to the page level. See Table 11-2.

At the end of this chapter is a list of sources where you can find materials on these 
and other popular processing modeling techniques.

Activity 2.1.1: Create Usage Scenarios
Usage scenarios document how an application uses a database. A usage scenario can be 
as simple as “Fetch Customer record where CUSTOMER NUMBER is 1234” or as complex 
as a subset of an application involving a significant portion of the database.

The purpose of a usage scenario is to make it easier for the database designer to 
understand how the database will be used. It gives the database designer a clear and 

Figure 11-5.  Employee-customer structure chart

Table 11-2.  Logical and Physical Process Modeling Techniques

Summary of Process Modeling Techniques
Logical Process Modeling Physical Process Modeling

·· Structured English: Application of a 
regimen to natural-language English 
to diminish its ambiguities while 
adequately communication with users

·· Data flow diagramming: A simple yet 
robust graphical representation of the 
movement of data in a system

·· Pseudocode: English language structured 
to mimic computer code

·· Flow chart: A diagrammatic technique to 
represent a computer algorithm

·· Structure chart: A tree structure to show 
the hierarchical breakdown of computer 
modules
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simple document, devoid of confusing and extraneous process specifications, stating 
exactly how the application will create, read, modify, or delete the information stored in 
the database.

Logical process modeling can create a mountain of information, much of which is 
unrelated to the database design process. The usage scenario process boils down all of 
the logical process information into what is relevant to database design. To build a usage 
scenario, the database designer reviews the application’s various process components, 
such as requirements definitions, functional specifications, flow charts, and so on, and 
culls from them all the relevant data fetching and storing information. This information 
forms the basis of the usage scenario.

Clearing the Decks for Action
One thing all process modeling techniques have in common (if they have the appropriate 
level of detail) is that they provide far too much information to the database designer. 
Even a moderately sized system can involve hundreds of pages of text and diagrams 
that explain what the system should do. These specifications, created during analysis 
or design, contain considerable information beyond how the application accesses, or 
uses, data. They also include detailed algorithms, user interaction, control, branching 
instructions, report or screen layouts, and so on. The database designer needs only about 
10 percent of this information. A good idea is to strip these components out, leaving just 
the interaction between the process and the database. A usage scenario boils down the 
hundreds of pages of requirements analysis to the few that are relevant to the database 
design process.

The following is an example of a plain English specification.
Activity: Create a New Customer Account
The clerk enters the caller’s phone number into the system. If the caller has an account, 

then the account information is displayed, and the clerk informs the customer that an 
account already exists. If an account does not exist, then the credit status of the caller is 
checked with the outside credit bureau. If the caller’s credit is OK, a new account is created 
and the new customer informed. If the caller’s credit is Not-OK, the new account is denied 
and the caller informed.

This plain English specification can be converted into a more structured format as 
follows:

Activity: Add New Customer Account

	 1.	 The clerk enters the caller’s phone number into the system.

	 2.	 If there is a customer account in the system, the system displays 
all customer and account information.

	 3.	 The clerk informs the customer that he already has an account 
and asks whether he wants a new account. If the customer does 
not want a new account, terminate the call; else go to 5.

	 4.	 If the caller is not in the system, the clerk enters the caller’s 
information.
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	 5.	 The system checks the credit status of the caller with the outside 
credit bureau.

	 6.	 If the credit status is OK, the system creates a customer account 
and informs the clerk.

	 7.	 The clerk informs the customer that a customer account was 
created, gives the customer all the account information, and 
then terminates the call.

	 8.	 If the credit status is Not-OK, the system informs the clerk, who 
informs the caller and terminates the call.

However, this specification contains substantial activity extraneous to any database 
activity, which the designer can ignore with impunity.

Using the data model in Figure 11-6, look at the following:

	 1.	 The clerk enters the caller’s phone number into the system.

There is no database activity here. The process is between 
an agent external to the application, the clerk, and the 
application itself.

	 2.	 If there is a customer account in the system, the system 
displays all customer and account information.

This is the first interaction between the application and the 
database:

(Database Action 1) Fetch Customer and Account occurrences 
where PHONE NUMBER matches the search argument.

	 3.	 The clerk informs the customer that he already has an account 
and asks whether he wants a new account. If the customer 
does not want a new account, terminate the call; else go to 5.

There is no database activity here.

	 4.	 If the caller is not in the system, the clerk enters the caller’s 
information.

There is no database activity here.

	 5.	 The system checks the credit status of the caller with the 
outside credit bureau.

There is no database activity here.

	 6.	 If the credit status is OK, the system creates a customer 
account and informs the clerk.

(Database Action 2) Add/Update Customer and Add Account 
occurrences for new Customer
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	 7.	 The clerk informs the customer that a customer account was 
created, gives the customer all the account information, and 
then terminates the call.

There is no database activity here.

	 8.	 If the credit status is Not-OK, the system informs the clerk 
who informs the caller and terminates the call.

There is no database activity here.

The Add New Customer Account usage scenario contains only two database-related 
activities.

•	 Fetch Customer and Account occurrences where PHONE 
NUMBER matches the search argument.

•	 Add/Update Customer and Add Account occurrences for new 
customer.

To complete this usage scenario, a little more information is required to understand 
the properties of the scenario. First, each scenario should have a unique identifier and a 
unique name. Second, specify the scenario processing type as online or batch, and third 
specify the frequency of use. For an online scenario, the frequency might be 100 times an 
hour or 5,000 times a day. For batch jobs, the frequency might be that the program is run 
weekly, and each run involves an average of 20,000 evocations. Note, not every step is 
executed every time. If the steps have different frequencies, then that information should 
be included in the scenario.

To review, a usage scenario is a small document to tell the database designer 
how the application will use the database. The sources for the usage scenarios are the 
requirements definitions, process analysis, and process design documents, which could 
include interview notes, narratives, process models, and process specifications.

Figure 11-6.  Order management system
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Putting a Usage Scenario Together
There are four steps for creating a usage scenario, although the first may be skipped if 
sufficiently detailed process specifications already exist.

	 1.	 Assemble all physical process documentation. Logical process 
documentation is a good thing to have, but if the analysts have 
done a good job documenting the physical characteristics of 
the system, then it can probably be ignored.

	 2.	 If the application processes are documented using one of the 
graphical or structured language methods for defining an 
application, then this step can probably be skipped, and the 
designer can go straight to step 3. However, if the application 
processes are defined using only plain language, then the 
database designer will have to reinterpret the system using 
a technique such as structured English or pseudocode. The 
database designer will have to use whatever (unstructured) 
information exists. Worst case (other than not having any 
documentation at all) is when all the designer has as a source 
are original end-user interview notes.

	 3.	 Strip out all non-database-related process specifications. 
Place the database requests in sequential order using 
appropriate database terminology (read, add, search 
argument, etc.).

	 4.	 Add the scenario properties of unique identifier, name, 
processing type, and frequency.

An Example
Do not underestimate the advantage of creating a usage scenario. It can be very helpful in 
removing extraneous information. For example, take the following case.

Step 1 is to gather whatever process documentation exists. In the example, the only 
information is the following plain English description of the application:

The system reads all product inventory records. Those falling below the 
reorder threshold are placed on a possible reorder list. For those on the 
possible reorder list if the sales of the product during the last 60 days was 
greater than 10 percent of the fully stocked number, then create a reorder 
record for x items where x is the difference between the items on hand 
and the fully stocked number. If the number of sales during the previous 
60 days was less than 10 percent but greater than 5 percent, then reorder 
x items where x is 50 percent of the difference between the fully stocked 
number and the number on hand. If the number of sales during the past 
60 days was less than 5 percent of the fully stocked number, then do not 
reorder the product.
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This is a plain-language usage narrative, so step 2 is to convert the plain-language 
description into structured English. It might look something like the following:

Read all Product records where INVENTORY COUNT is less that REORDER 
THRESHOLD.

Read all Line Item records for each Product. If CURRENT DATE minus SALES 
DATE <60 then add LINE ITEM QUANTITY to TEMP SALES COUNT.

If TEMP SALES COUNT > (FULLY STOCKED COUNT*0.10) then REORDER COUNT = FULLY 
STOCKED COUNT – INVENTORY COUNT.

Else If TEMP SALES COUNT > (FULLY STOCKED COUNT*0.05) then REORDER COUNT = 
(FULLY STOCKED COUNT – INVENTORY COUNT)/2.

Save the REORDER COUNT and the CURRENT DATE in the Inventory Reorder record.

Step 3 consists of two tasks. First, strip out all non-database-related process 
information. Second, use more database-like terminology and create a database 
sequence.

Here is the usage scenario:

	 (1)	 Enter at all Product occurrences where INVENTORY COUNT 
is less than REORDER THRESHOLD.

	 (2)	 For each Product occurrence, Find all related Line Item 
occurrences.

	 (3)	 Insert Inventory Reorder occurrence for each related Product 
occurrence.

In step 4, add the scenario properties.
Usage Scenario: 1 Name: Calculate Reorders   Processing type: batch Frequency: once 

per night.

	 (1)	 Enter at all Product occurrences where INVENTORY COUNT is 
less than REORDER THRESHOLD (200 occurrences).

	 (2)	 For each Product occurrence, Find all related Line Item 
occurrences (approximately 1,200 occurrences).

	 (3)	 Insert Inventory Reorder occurrence for each related Product 
occurrence (50 occurrences).

The result is a much simpler set of database service requests.
The designer should create one usage scenario for each process. For example, 

the order management system might have different usage scenarios for creating a new 
customer, generating an order, shipping, and processing returns. The collection of 
usage scenarios represents how the entire application adds, reads, updates, and deletes 
information from the database.
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Activity 2.1.2: Map Usage Scenarios to the PDM
The usage scenarios can then be converted to a simple diagram, called a usage map, by 
drawing the actions of the usage scenario on the physical data model. Take the following 
usage scenario:

Usage Scenario: 2 Name: Produce Account Bills
Processing type: batch Frequency: 300 times per night.

	 2.1.	 Enter database and Find Order occurrences where ORDER 
DATE equals CURRENT DATE (200 occurrences).

	 2.2.	 Find Line Item occurrences for associated Order record 
occurrence (average 2 occurrences).

	 2.3.	 Find Account occurrence for associated Order occurrence 
(average 1 occurrence).

	 2.4.	 Find Customer occurrence for associated Account occurrence 
(average 1 occurrence).

	 2.5.	 Update Order occurrence (1 occurrence) Comment: to update 
Order with billing date.

Mark up the physical data model with the usage scenario steps using the following 
convention: x.y.z, where x is the scenario number, y is the step, and z is the database 
action (E for enter, F for fetch, I for insert, U for update, and D for delete).

Using usage scenario 2, you have “2.1E” for step 1, enter the database, written on the 
physical data model with a dashed arrow pointing at the Order record type (Figure 11-7). 
An arrow from Order to Line Item labeled “2.2F” says “Find Line Items records for that 
Order.” Step 3 becomes “2.3F,” step 4 is “2.4F,” and step 5 is “2.5U,” update the Order record 
with the billing information.

A usage map is the result of applying one usage scenario to the physical data model.
The designer should create one usage scenario for each process and one usage map 

for each usage scenario. Start by printing out or photocopying as many copies of the 
physical data model as you have usage scenarios. Then, taking one usage scenario and 
one copy of the physical data model, draw the activities from the usage scenario on the 
physical data model.

Figure 11-7.  Usage map order entry system
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A single-system combined usage map is created when all of the usage scenarios, 
placed on their individual copies of the physical data model, are collected onto a single 
physical data model page. The result might look something like Figure 11-8, which shows 
three usage scenarios (scenarios 4, 5, and 6) placed on a single combined usage map.

The combined usage map is a graphical representation of how the entire application 
uses the database.

Task 2.2: Path Rationalization
Usage analysis can result in a crowded combined usage map. The task of Path 
Rationalization is to simplify the map without losing any important usage information.

Activity 2.2.1: Reduce to Simplest Paths
If you compare a logical data model with its actual database schema, one thing should 
be obvious. While the number of entities is roughly equal to the number of record types 
and the number of attributes is roughly equal to the number of fields, the number of 
relationships on the logical data model can be significantly greater than the number of 
linkages on the database schema. The reason? Not all of them are needed. Linkages on 
a data model are similar to roads on a street map. Some roads are heavily traveled, some 
are used only occasionally, and still others could easily not exist without significant 
hardship.

Roads and linkages have something else in common—they are expensive. 
Linkages take up space and consume processor cycles, so reducing their number can, 
in some cases, improve performance while driving down cost. Of course, as with roads, 
eliminating the wrong ones can create catastrophic problems. The art of the science is 
finding the right ones to eliminate.

Figure 11-8.  Combined usage map order entry system
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If you examine the combined usage map in Figure 11-8, what should jump out at you 
is that many scenarios use the database in the same way. In this example, both scenario 4 
and scenario 5 perform almost the same tasks. This should tell you two things. First, if you 
design the database to accommodate scenario 4, it should also be able to accommodate 
scenario 5. Second, the paths these two scenarios use are probably important because 
they are used as part of two different physical processes.

In the usage map fragment in Figure 11-9, both a customer and an account can have 
many addresses, and an address can be for many accounts. Assume usage scenario 7 
indicates that the setup of an address for a customer is low frequency, while scenarios 8 
and 9 process higher-frequency account activity. The obvious question is, do you really 
need the link between Customer and Address? Can usage scenario 7 do what it has to do 
without that link? If so, then you can probably remove the link entirely in your physical 
data model.

Excluding the Customer/Address link will simplify the physical data model. Even so, 
you should keep all the usage scenarios so you have the information available to undo 
this change if later it proves unwise.

Activity 2.2.2: Simplify Model
The designer can now pull it all together into a single rationalized physical data model 
with the final record types and all relevant keys, including necessary links between the 
record types while excluding unnecessary ones. The data dictionary entries created 
in step 1, Transformation, must be updated with any changes made in task 2.2, Path 
Rationalization.

Figure 11-9.  Combined usage map fragment
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The model no longer represents just the definition of the data but also how those 
data will be used. This is the final step and is the culmination of your physical model 
before making the necessary compromises imposed by the selected DBMS.

Utilization Notes
The only remaining step 2, Utilization, task is to complete the Utilization notes. As with 
Transformation, the database designer should document all the relevant issues and 
decisions made during Utilization.

As is the case with step 1, Transformation, the Utilization notes should illuminate all 
decisions made, not made, and unmade by answering the questions surrounding why, 
where, when, and results.

The other step 2 deliverables are important, but they are not enough. Future users, 
designers, and database administrators need to understand the thinking that went into 
this step. Without it, they are driving blind when it comes to updating the database with 
additional or modified functionality or a new DBMS product or version.

Deliverables
Step 2, Utilization, should produce the following deliverables:

	 2.1.	 Rationalized physical data model: A graphical representation 
of the record types and links required for the application 
(Figure 11-10 in the next section)

	 2.2.	 Updated physical data model object definitions: The same 
physical definitions created in step 1, Transformation, 
updated with any necessary changes made during step 2, 
Utilization

	 2.3.	 Usage scenarios: Functional summaries describing how the 
database will be used by the application

	 2.4.	 Usage maps: A mapping of the individual usage scenarios 
onto the physical data model showing how the application 
must navigate the database (Figure 11-7)

	 2.5.	 Combined usage map: All of the individual usage map 
information on a single diagram (Figures 11-8 and 11-9)

	 2.6.	 Utilization notes: A narrative or journal created by the 
database designer of the activities, issues, and decisions made 
during step 2, Utilization
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Example of Deliverables
Figure 11-10 shows the Rationalized physical data model.

Further Reading
A detailed look at a number of topics in the chapter is outside the scope of this book. 
Some of the following material should help those who want to investigate these subjects 
further.

Structured English
Gane, Chris and Trish Sarson, Structured Systems Analysis: Tools and Techniques. 
Englewood Cliffs, NJ: Prentice-Hall, 1978. This book focuses on data flow diagramming, 
but it has an excellent section on structured English. This book is out of print, but used 
copies are available.

RATIONALIZED PHYSICAL DATA MODEL CHANGES MADE TO THE MODEL 

1. Link between the Product and the
Warehouse record types eliminated as
unnecessary

2. Product Code record type eliminated as
unnecessary 

Figure 11-10.  Rationalized physical data model
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Data Flow Diagramming
DeMarco, Tom, Structured Analysis and Systems Specification. Englewood Cliffs, NJ: 
Prentice-Hall, 1979. Closely linked with Ed Yourdon and Larry Constantine’s structured 
approach, the book is currently out of print, but used copies are available.

Gane, Chris and Trish Sarson, Structured Systems Analysis: Tools and Techniques. 
Englewood Cliffs, NJ: Prentice-Hall, 1978. Also Yourdon alumni, their approach is almost 
identical to DeMarco’s technique, although their diagramming conventions are easier  
to use.

Hathaway, Tom and Angela Hathaway. Data Flow Diagramming by Example: Process 
Modeling Techniques for Requirements Elicitation. Kindle Edition, 2015.

Flow Charts
IBM, Flowcharting Techniques, IBM Corporation, White Plains, NY, 1969. The granddaddy 
of them all, this manual can still be found online. More modern interpretations of flow 
charting appear in almost every system development textbook.

Pseudocode
Bailey, Therold and Kris Lundgaard, Program Design with Pseudocode (Computer 
Program Language) Brooks. Belmont CA: Cole Pub Co, 1989.

Farrell, Joyce, Programming Logic and Design. Boston, MA: Course Technology, 2013.

Structure Charts
Dennis, Alan and Barbara Haley Wixom, Robert M Roth. Systems Analysis and Design 6th 
Edition. New York: John Wiley & Sons Inc., 2014.

Martin, James and Carma McClure, Diagramming Techniques for Analysts and 
Programmers. Englewood Cliffs, NJ: Prentice-Hall Inc., 2000. This book deals with all the 
techniques presented in this chapter, so it is a good starting point for the novice, although 
sometimes at too high a level for the more experienced.
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CHAPTER 12

Formalization: Creating a 
Schema

The schema is…a mere product of the imagination.

—Immanuel Kant

The first draft of anything is s*#t.

—Ernest Hemingway

Step 3, Formalization, is, unfortunately, the point at which database design starts for 
many designers (see Table 12-1). The first thing they do is dig out the vendor’s DBMS 
manual and start coding. For the more enlightened, this is the third physical database 
design step—where the Rationalized physical data model meets the DBMS that will be 
used in its implementation.

Table 12-1.  Step 3: Formalization

Step 3: Formalization
Sources Procedures Deliverables

•• 2.1: Rationalized physical 
data model (diagram)

•• 2.2: Updated physical data 
model definitions  
(data dictionary)

•• 2.3: Usage scenarios

•• 2.4: Usage maps

•• 2.5: Combined usage map

•• 1.3: Transformation notes

•• 2.6: Utilization notes

•• DBMS features and 
constraints

•• Task 3.1: Environment 
Designation: Identify/confirm 
the target information 
manager (architecture, 
product, version)

•• Task 3.2: Constraint 
Compliance

•• Activity 3.2.1: Map 
rationalized physical data 
model to the data 
architecture

•• Activity 3.2.2: Create a 
DBMS product/version-
specific functional 
physical database design

•• 3.1: Functional database 
design (diagram)

•• 3.2: Functional schema 
data definition language

•• 3.3: Functional subschema 
data definition language

•• 3.4: Functional database 
object definitions  
(data dictionary)

•• 3.5: Formalization notes
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Formalization consists of two tasks. The first identifies or confirms the information 
manager (architecture, product, and version) that should/will be used to build the 
database. The second modifies the Rationalized physical data model to conform to the 
selected file manager or DBMS.

Task 3.1: Environment Designation
What database architecture is best for your application? This is the first question that 
needs to be answered, even if the choice of a database architecture is out of the database 
designer’s hands.

Not so long ago, this task would involve DBMS shopping—figuring out the kind 
of DBMS the enterprise should acquire to build the desired applications. Nowadays, 
the enterprise probably already owns a DBMS, or even more than one, so the appetite 
to acquire another is minimal. In this case, the database designer will have to live with 
what the company has. Nonetheless, it makes sense to undertake this task anyway for 
two important reasons. First, after examining how the database is intended to be used 
(Chapter 11), the database designer might conclude that it is a major mistake to use the 
company’s current DBMS. For example, if the organization has a relational DBMS but the 
new database application must store and retrieve video and music files, then the database 
designer might conclude that a DBMS based on a different architectural approach would 
be a wise purchase. The only way to find out is to compare the proposed usage with the 
features of the current DBMS.

The second reason to investigate the ideal architectural approach is to document 
what would work best for the application even if using the ideal database management 
system is not feasible. This will be particularly useful down the road if the current 
application/DBMS mix turns out to be a turkey.

It might be useful for the database designer to map the strengths and weaknesses of 
the various database architectures against the organization’s information management 
needs in a chart similar to Table 12-2. Unlike Table 12-2 (which is a generic chart for 
illustrative purposes only), the left column in the database designer’s chart should list the 
information manager characteristics most important to the application.

http://dx.doi.org/10.1007/978-1-4842-2722-0_11
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As straightforward as this seems, there are some annoying wrinkles. First, two DBMS 
products sharing the same architectural approach do not necessarily have the same 
strengths and weaknesses. For example, because relational systems have been around for 
more than 40 years, their implementations can vary greatly, with some vendors stressing 
one feature, while others stress a totally different one.

Second, many of today’s product offerings do not comply with a single architectural 
approach but rather with multiple approaches. This is particularly true as products age 
and new architectural approaches are developed. IDMS started out as a network DBMS 
but added relational features when the market shifted. The same is true for the inverted 
file products, which adopted many relational features in their later years. Oracle, the once 
quintessential relational system, now includes variations with object-oriented as well as 
NoSQL features.

Third, there are always new and expanded approaches, particularly in the NoSQL 
ranks. It can be difficult to keep up with what is happening in this rapidly changing field.

Do your chart in pencil. There will be many changes and updates as your knowledge 
of the various DBMS offerings increases and the functions the DBMS will need to support 
are better understood. Even with its drawbacks, a comparison chart is a good place to 
start the search for the ideal DBMS product for the current project.

Once the architecture is chosen, or more likely dictated by past purchases, the 
designer must modify the rationalized physical data model to meet the requirements of 
that approach. The good news is that some of this work might have already been done 
when the physical data model was modified for normalization. If not, then it needs to be 
done here.

There are few things you can say about all database management systems, but, 
fortunately, here is what you can say:

•	 Many-to-many relationships: Most DBMS products do not support 
them, and the few that do tend to be niche players and not (yet) 
suitable for prime time. A junction record will be needed to mimic 
an m:n relationship.

•	 Recursive relationships: The designer will be hard-pressed to find 
a DBMS supporting recursion. This is unfortunate because many 
programming languages do. Nonetheless, for at least the time 
being, a bill-of-material structure using a junction record will be 
needed instead.

•	 Associative, attributive, and S-type record types: The major 
DBMSs do not support associative, attributive, and S-type record 
types (although object-oriented systems support some of these 
features); rather, they need to be implemented as simple proper 
record types. Cardinality is supported, while modality is often not 
supported or supported only to a limited extent. Alternatives and 
workarounds, in the form of DDL or DML code, are sometimes 
available (for example, cascading delete).

Some missing features can be provided by triggers, procedural code, or application 
code written either by database staff and stored within the database or by application 
programmers as application code.
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Hierarchical Systems
In this day and age, the term hierarchical DBMS usually refers to IMS or its Fast 
Path variations. IMS and particularly Fast Path have a number of restrictions and 
idiosyncrasies that involve a considerable amount of physical data model morphing to 
accommodate the DBMS architecture. Just getting the database language correct will 
require some work as records become segments and views become logical database 
descriptions.

The Rationalized physical data model must be restructured into hierarchical trees, 
and many-to-many structures must be morphed into the IMS logical database structure. 
The hierarchical characteristics also show up in the NoSQL ranks, particularly with  
XML-based products.

Network Systems
The network model, more than likely IDMS, also requires some language adjustment, but 
not as radical as for IMS. However, the network database structure can be easily derived 
from the physical data model, perhaps more so than any other architecture. Designing an 
IDMS database from a Rationalized physical data model is relatively easy. The additional 
ten IQ points to successfully navigate the network model (mentioned in Chapter 8) are 
needed by the application programmer and not the database designer.

Relational Systems
When it comes to a unique DBMS language, the relational model takes the prize. The 
good news is that most of the arcane words it uses have either already entered the 
database language sphere or have been dropped in favor of more common terminology 
and thus no longer cause the confusion they did a few decades ago.

Keys are a major issue with relational systems, and there are many keys in the 
relational model (primary, candidate, super, foreign, compound, alternate, natural, 
composite, simple, etc.). The key landscape varies by the relational product and 
sometimes, more insidiously, by the product version. Add to that how the keys are used, 
and the complexity explodes. (Not every RDBMS requires foreign keys or even primary 
keys. Some do not even support them.)

Keys aren’t the only issue. Groups have to go (both multivalue and group data items). 
The good news is that most relational products support a few common groups, such as 
DATE. The bad news is that they rarely support them in the same way.

Nonstandard data types are the Achilles’ heel of relational systems. The designer 
must examine the actual RDBMS selected, and its version, to learn how it handles 
documents, pictures, videos, and so on, if it does at all. Even text is not supported in any 
consistent way.

http://dx.doi.org/10.1007/978-1-4842-2722-0_8
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Object-Oriented
The original object-oriented systems were unique and proprietary in design and structure, 
but they have largely been supplanted by relational systems that morphed into object-
relational hybrids. Some OODBMSs have hierarchical characteristics, mixed with inverted 
file characteristics, mixed with relational ones. The database designer needs to be aware 
that for the OODBMS that started out as a RDBMS, most features and constraints will be 
similar to those of its original data architecture rather than its adopted one.

NoSQL
Unfortunately, NoSQL is a grab bag of DBMS implementations. Many, in spite of their 
name, have relational-like syntax and follow relational-like rules, even if their internal 
structure is completely different. Others have an object type feel about them and can 
be mistaken for an OO database. A third group of NoSQL implementations follow a 
particular computer language and are structured as language extensions. Java is a 
common DBMS substrate. Lastly, some DBMSs, such as many key-value approaches, see 
the database as a set of key and nonkey pairs that function as pointers to data residing in 
a different part of the system.

The smartest way to think of NoSQL is to not think of it at all, but rather of its 
underlying structure, such as key-value or document.

DBMS Product and Version Selection
OK, now it has been decided or dictated which database architecture you will be using. 
However, there are still decisions concerning the DBMS product and version to use.

Vendors are clever. In their quest to attract and keep customers, they provide certain 
enticements, freebies, or enhancements with their products. The first “enhancement,” and 
the one you wind up paying for whether you use it or not, is the embedded DBMS. If you buy 
certain applications or systems software, a DBMS comes as part of the system to manage 
the data. If you are an XYZ DBMS customer but purchase an application or some system 
software from ABC corporation, you still might have ABC’s DBMS automatically installed.

Some IT shops have a formal “don’t use the embedded DBMS” policy; others 
don’t. Should you use it? Depends. ABC might offer a few features that are critical to the 
business, while XYZ, the product you are using, doesn’t.

That brings us to the second vendor enticement: extensions. There is an old vendor 
saying, “Standards attract customer; extensions keep them.” Vendors tout their ISO 
compliance to get new customers. No company wants to buy some unfamiliar product that 
the organization will be locked into for the foreseeable future. If you buy a standard version 
of COBOL or a standard version of a DBMS, you buy two benefits. First, to stay compliant, 
the vendor must update its product offering with new standards body approved features. 
Second, it makes it easier to move from one product to another. Don’t like the ABC product? 
It’s easier to move to the XYZ product if both comply with the same standard.

However, once a vendor attracts new customers by offering a standards-compliant 
product, the vendor wants to keep them. That’s where extensions come in. Offer 
customers new goodies that are not in the standard, and if the customers uses them, then 
they are locked into the product—or at least it’s considerably more expensive to leave.



Chapter 12 ■ Formalization: Creating a Schema

239

Relational systems extensions include nonstandard data types, group items, storage 
considerations such as indices and clustering, and even keys.

Extensions can be double-edged swords for vendors as well as their customers. Many 
a vendor has offered an extension containing a new feature only to have a standards body 
subsequently develop that feature as a new standard with characteristics that are at odds 
with the vendor’s implementation. The vendor is then forced to invest in creating a new 
feature that provides no new capability for its product and that makes it easier for its 
customers to leave.

You might have to select a DBMS or a DBMS version based on its nonstandard 
features. If you must, you must. But if you have a choice, be very wary of extensions. They 
sometimes have a heavy price down the road.

Once the database architecture is identified or confirmed, then the task is to select or 
confirm the target product. A good way to start is to go back to the Architectural Approach 
Comparison Chart and make it a Product/Version Comparison Chart by substituting a 
product and version under consideration for each column. Why version? In most cases, 
the current version will be the one used. However, your IT shop might not be working on 
the current version of the product or the vendor might have a beta version with features 
you need. In either case, create a column for each product version under consideration.

With a little bit of work and/or by simply following what is dictated for your 
organization, you now have the target environment consisting of the data architecture, 
product, and product version you will be using.

Task 3.2: Constraint Compliance
In the constraint compliance task, the designer creates the first-cut database schema. 
Some might think it rather strange to use the word constraint in the task title. The choice 
is intentional. Data modeling, both logical and physical, deals with specifying what is 
wanted. Schema design shows you what you can realistically have. The data model you 
built must now comply with the rules of the selected information manager.

Constraint compliance is divided into two activities. The first, Activity 3.2.1: Map 
rationalized physical data model to the data architecture, converts the Rationalized physical 
data model to a data architecture–specific, although otherwise generic, database schema. The 
second, Activity 3.2.2: Create a DBMS product/version-specific functional physical database 
design, transforms the generic schema into a vendor/product/version-specific schema.

Why two activities? Why first convert the rationalized physical data model into a 
generic schema? The same reason you created a logical data model before you created 
the physical data model: you need to ensure that when the vendor’s DBMS product 
changes, and it will, you understand what was wanted in the first place rather than what 
you had to settle for.

Pseudocode…Again
When discussing process modeling, one of the techniques mentioned was pseudocode, 
which uses a mixture of English and phony computer code to describe what the system 
should do. Some designers and programmers find it very useful, others not so much. The 
same can be said for schema definition; a pseudocode or pseudo-DDL or pseudo-DML 
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approach is sometimes useful for describing the database structure without getting into the 
restrictions and idiosyncrasies of a particular DBMS. Pseudocode can be useful when trying 
to make the description of what is wanted independent of product or version limitations.

For example, assume that your current DBMS has a 512-byte limit on the text field 
length and a 16-character limit on field names. This is in contrast to the Rationalized 
physical data model data item PRODUCT DESCRIPTION, which is a text field that can be 
1,000 characters long. It is much more useful to pass the DBA the pseudocode,  
shown here:

PRODUCT DESCRIPTION   CHAR (1000)

than the more accurate but less descriptive example shown here:

PROD_DESCRIPT_1       CHAR (500)
PROD_DESCRIPT_2       CHAR (500)

A second advantage of pseudo-DDL is in version preparation. Imagine that the 
DBMS vendor comes out with a new version of the product that now supports a text field 
length of 1,024 bytes and 24-character field names. Without the pseudocode, how is the 
DBA to know that the original intention was to have a single product description field and 
not two separate fields? A significant advantage for the end user or the programmer could 
be lost because the DBA does not know the database designer’s original intention.

A third benefit of pseudocode, although not ranking with the first two advantages, 
is nonetheless just as real. Some database designers are more experienced than some 
DBAs. It is not uncommon to see junior staff tasked with preparing a new DBMS version 
for installation. Their closeness to the new release gives them a front-row seat for 
understanding updates to the DDL, DML, and even application code supported by the 
new software.

Database designers, on the other hand, are often the more experienced employees 
who cut their teeth on earlier versions of the DBMS. Their DBMS knowledge might be 
deep, even if their familiarity with the syntax of the latest DBMS version is weak. Using 
pseudocode allows these more experienced designers to concentrate on what the systems 
needs to do using a pseudocode that might contain syntax from an earlier DBMS version. 
When the more senior designers have completed their tasks, the more junior staff can 
then focus on aligning their seniors’ pseudocode with the new version’s syntax.

While pseudocode is useful for designing a schema for any DBMS, it is even more 
critical and helpful for relational database management systems. As discussed earlier, 
there are dozens of RDBMSs, almost all of which use SQL and follow ISO standards but 
that are, nonetheless, different—sometimes significantly different. And the differences are 
not just from product to product but also from version to version.

For most new software products, there is a period of version frenzy right after 
product introduction that cools off over time. In the first 24 months after product 
introduction, three or four new versions may be provided to correct errors and to improve 
performance. The next 36 months see a flurry of new features. At about year 5, things start 
to slow down, with a new version coming out every 18 months or longer. The relational 
vendors were not so lucky.
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RDBMS vendors have been under pressure from all sides to make changes to their 
product offerings. There is pressure to make their RDBMS more like the relational model 
(remember the 333 Codd rules); there is pressure to expand beyond the 333 rules, adding 
features to handle things such as group data items; there is pressure to make the DBMS 
more OO-like; and now there is pressure to add some NoSQL features. This version-
driven code instability means that a more stable pseudocode can go a long way to better 
communicating designer intentions.

But what if the DBMS is changed and you created a SQL-like pseudo-schema 
when the company decided to use a non-SQL DBMS? There’s no real problem because 
the pseudocode, even SQL like pseudocode, is sufficiently generic that most database 
designers and DBAs can convert it into any legitimate DBMS DDL. It just might require 
a bit more work on their part. However, the benefits of pseudocode outweigh any such 
possible disadvantage.

Activity 3.2.1: Map Rationalized Physical Data Model to 
the Data Architecture
In this activity, the Rationalized physical data modeling objects become data 
architecture–specific objects. It is the first time that the record type Customer or the 
link Owns is made to conform to a particular DBMS. The approach is to examine the 
rationalized physical data model, object by object, and make it conform to the features 
and constraints of the proposed DBMS.

Record Types
During step 1, Transformation, you created four kinds of record types: proper, associative, 
attributive, and S-type. Now you need to make these record types DBMS compliant.

Proper

Proper record types are supported by every DBMS. In fact, for most every DBMS, the 
definition of record type is a proper record type.

Associative

An associative record type is a link with its own data items. Take the example of two 
record types, Customer and Car, and the link Rents. Information about the rental, such as 
rental date and price, are properties of neither the Customer record nor of the Car record 
but rather of the rental agreement itself. You can test this by asking these questions: Can 
a customer rent more than one car? Can a car be rented by more than one customer? Is 
the rental agreement for a single customer and a single car? Because the answer to the 
three questions is yes, yes, and no, then the rental information is itself a record linked to 
the customer and car records. The database designer should create three record types, 
Customer, Car, and Rental Agreement, with the Rental Agreement at the many end of two 
one-to-many links.
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Look at a second example. Keep the same Customer and Car records, but change 
the Rents link to Purchases. Because a customer can buy many cars and a car can be 
purchased by only one customer (at any one time), then the purchase information is 
linked one-to-many with Customer but in a one-to-one link with Car. The one-to-one 
linkage allows for the storage of the purchase information in the Car record, making the 
Purchases record not needed.

The way to integrate an associative record type into a DBMS that does not directly 
support associativity is to look at the relationships between the proper record types. 
Unless they are linked many-to-many, an associative record type’s data items can 
often be merged with one of the proper records. If they are linked many-to-many, then 
the associative record type becomes a database “proper” record type in a mandatory 
relationship with its two partners.

Attributive

An attributive record’s existence depends on another record. Take the example of two 
records, Customer and Customer Address. A Customer Address occurrence should 
exist only if it is linked to a Customer occurrence. If the Customer is deleted, then all 
associated Customer Address records should be deleted.

A number of DBMS products indirectly support attributive record types, although 
none use the term attributive. Rather than implementing attribution as a characteristic 
of the record type, they implement it as a characteristic of the link between the two 
records. In some relational systems there is the foreign key option ON DELETE CASCADE 
(sometimes called CASCADE ON DELETE), which tells the system that the child record 
cannot exist without its associated parent record.

CREATE TABLE ADDRESS (
     STREET       CHARACTER VARYING(20),
     TOWN         CHARACTER VARYING(20),
     CUST_NO      CHARACTER (10),
          FOREIGN KEY(CUST_NO)
          REFERENCES CUSTOMER (CUST_NUMB) ON DELETE CASCADE
);

Network-based systems have a similar feature implemented as part of the set-
membership definition using the RETENTION (also called DISCONNECTION) option.

SET NAME IS CUST_ADDRESS
OWNER IS CUSTOMER
MEMBER IS CUSTOMER_ADDRSS
RETENTION IS FIXED

IMS has a simple solution to the problem. When a parent record (segment) is 
deleted, all its children records (dependent segments) are automatically deleted. In IMS, 
if you delete the root segment (the very top of the database tree), the system automatically 
deletes every bit of data in your database.
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S-Type

An S-type (supertype/subtype also called generalization and specialization) is where  
a proper record type includes different roles containing different role-specific data  
and/or links. For example, take the record type Customer. A store might have two 
different types of customers, retail and wholesale. Both retail and wholesale customers 
have a number of data items in common (CUSTOMER NAME, CUSTOMER NUMBER, 
PHONE NUMBER, ADDRESS, etc.) and a number of data items unique to their role 
(DISCOUNT AGREEMENT, SHIPPING INSTRUCTIONS, CREDIT STATUS, INDUSTRY 
CODE, LOYALTY PROGRAM MEMBERSHIP NUMBER, etc.). The supertype contains 
the common data and links for both types of customers, while the subtype contains their 
unique role information.

Object-oriented database management systems support S-types. In fact, the 
supertype/subtype distinction is a fundamental feature of object technology—children 
objects inherit properties, including data and processes, from their parent.

Non-object-oriented systems usually do not support S-types, so the database 
designer must decide how to handle them. One solution is to create three proper record 
types with a one-to-many link between the common attributed parent and the two  
(or more) role-specific children.

A second solution is to have a single customer record type containing all the fields 
used by both types of customer. If the customer is a retail customer, then the wholesale 
data items are left blank. The same is true for a wholesale customer—any retail data items 
are blank. This approach assumes the designer does not have a problem with blank, or 
null, fields.

There is a simpler, third solution if the designer is comfortable that customers will 
never change roles, i.e., a wholesale customer will never become a retail customer or 
the reverse. If the type of customer is unchanging, then the designer can simply have 
two record types, one for wholesale customer and one for retail customer with the data 
item names adjusted to avoid confusion (not CUSTOMER NAME but WHOLESALE 
CUSTOMER NAME and RETAIL CUSTOMER NAME, etc.).

Links
Linkages become the stickiest part of Formalization because how they are implemented 
varies far more from DBMS to DBMS than record types or data items.

Membership Class: Cardinality

There are three types of cardinality: one-to-one, one-to many, and many-to-many.

One-to-One
The one-to-one linkage is rarely directly supported, but the workaround is both 
conceptually simple and easy. The first solution is to make the link one-to-many and 
simply ignore that there will never be more than one child per parent. The second 
solution is even simpler and easier and is the one used in 99 percent of the cases. 
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Combine all of the data items of the two record types in a single record type. The 
combined record type is more efficient (indexes, storage location, etc.) and easier for the 
programmer to deal with than the one-to-many approach.

One-to-Many
This is the garden-variety link supported by virtually every database management system. 
It is the direct descendent of the parent-child relationship of the punched card era. It is so 
fundamental that the network model is based on it. Because it is the default condition in 
most every DBMS, the database designer must do little to implement it.

Many-to-Many
Few DBMSs support native many-to-many linkages. The almost universal solution for 
handling this link is with two one-to-many links with two (or more) parents sharing a 
common child. The child record, called a junction record, allows the structure to mimic a 
many-to-many linkage.

For example, the relational model does not support many-to-many (m:n) 
relationships. Embedded foreign keys make many-to-many links impossible, so they 
must be “resolved.”

If two record types are in a many-to-many relationship, you resolve the relationship 
by creating a third record type, traditionally called a junction record, that is at the “many” 
end of two one-to-many relationships between the two original record types. Figure 12-1 
shows how the Employee-Department many-to-many relationship is resolved into the 
Employee-Employee/Department Junction-Department relationships.

Figure 12-1.  “Resolving” a many-to-many link

Membership Class: Modality

Modality indicates whether a record type must participate in a link.
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Mandatory
Mandatory links are enforced in the DBMS using its DDL linkage constraints. Relational 
systems use foreign keys to enforce modality with the NOT NULL clause.

CREATE TABLE ADDRESS (
     STREET      CHARACTER VARYING (20),
     TOWN        CHARACTER VARYING (20),
     CUST_NO     CHARACTER (10),
          FOREIGN KEY NOT NULL (CUST_NO)
          REFERENCES CUSTOMER (CUST_NUMB)
);

This ensures that a child record cannot exist without its parent.
Network systems use their set membership construct, the insertion clause, to enforce 

a mandatory link, as follows:

SET NAME IS CUST_ADDRESS
OWNER IS CUSTOMER
MEMBER IS CUSTOMER_ADDRSS
INSERTION IS AUTOMATIC

Optional
Optional links are the easiest of all. For most database management systems, optional 
is the default. The designer does not have to do anything specific to create a modality of 
optional.

Degree

Degree indicates the number of record types that can participate in a single link.

Unary
A recursive or unary link exists when an occurrence of record type A is linked to other 
occurrences of record type A. Take the example of the record type Employee and the link 
Reports To. You can have Smith reporting to Jones, who reports to Williams, where Smith, 
Jones, and Williams are all Employee occurrences.

The approach taken by virtually every DBMS to support a unary or recursive 
relationship is through the bill-of-materials structure. As with many-to-many links, 
a junction record supplies the magic that makes this linkage work. In the example, in 
addition to the record type Employee, the designer creates the record type Employee 
BOM. Then two one-to-many links are created between Employee and Employee BOM 
(Figure 12-2). One link is Supervises, and the other is Supervised By. This allows the 
database to cruise from one occurrence of Employee to the next, going one level higher or 
one level lower with each new pass.
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The bill-of-materials structure is a common way to handle recursion whether the 
DBMS is hierarchical, relational, object-oriented, network, or NoSQL.

Binary
Binary linkages are the staid and standard linkage between record types. They are 
supported by every DBMS and are often the only link supported by the DBMS.

N-ary
An n-ary link exists when one link connects three or more record types. Most database 
management systems do not handle n-ary linkages very well. The standard DBMS is 
designed to handle linkages that are binary, optional, and one-to-many. Any divergence 
requires a special workaround. For many-to-many links, there is the junction record, 
and for a bill-of-materials link, there is the bill-of-materials junction record. What do you 
think is going to happen with n-ary links?

Look at the n-ary relationship among Employee, Client, and Project, where an 
employee can work on one or more projects for one or more clients. The solution is a 
junction record that is at the many end and links to the three proper record types. In 
relational parlance, it looks like this:

CREATE TABLE EMPLOYEES (
     EMP_ID           CHAR(5),
     NAME             CHAR(20),
          PRIMARY KEY(EMP_ID)
);
CREATE TABLE PROJECTS (
     PROJECT_NAME     CHAR(12),
     BUDGET           DECIMAL(8,2),
          PRIMARY KEY(PROJECT_NAME)
);
CREATE TABLE CLIENT (
     CLIENT      NAME CHAR(20),
     ADDRESS     CHAR(40),
          PRIMARY KEY(CLIENT_NAME)
);
CREATE TABLE ASSIGNED_TO (
     EMP              CHAR(5),

Figure 12-2.  “Resolving” a recursive link
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     PROJ             CHAR(12),
     CLNT             CHAR(20),
          PRIMARY KEY(EMP,PROJ),
          FOREIGN KEY(EMP) REFERENCES EMPLOYEES(EMP_ID),
          FOREIGN KEY(PROJ) REFERENCES PROJECTS(PROJECT_NAME),
          FOREIGN KEY(CLNT) REFERENCES CLIENT (CLIENT _NAME)
);

Many NoSQL systems, particularly the column-based ones, store all information 
in an n-ary fashion as their default. In the example, everything about the employee, 
including the projects he worked on and the clients he worked for, are stored under his 
Employee record occurrence. Likewise, the Project instance includes all the employees 
working on the project as well as the clients for which it was done. NoSQL systems are not 
shy about duplication, and column-based systems not only allow duplication, but they 
count on it.

Constraints

Linkage constraints are the problematic area for DBMS implementation. No DBMS does a 
great job, some do an OK job, and many, unfortunately, fail completely.

Inclusion
The inclusion constraint exists if an occurrence of record type A can be linked to an 
occurrence of record type B, to an occurrence of record type C, or to both record types B 
and C. It is the standard condition between three record types (or more) and two links  
(or more). This is the default case; no special symbols or graphics are needed, and no 
special action is required by the database designer.

Exclusion
Exclusion is a little trickier than inclusion. It says that an occurrence of record type A 
can be linked to an occurrence of record type B or to record type C, but not both at the 
same time. Take the example of Customer, Dealer, and Car and the link Owns. A car can 
be owned by a dealer or it can be owned by a customer but not both—at least not at the 
same time. Owns is either-or, not both.

Conjunction
Conjunction says that if an occurrence of record A is linked to record B, then it must also 
be linked to an occurrence of record type C.

Both exclusion and conjunction are particularly problematic because they deal with 
not one but multiple links.

As mentioned in Chapter 3, there are two types of conjunction. Simple conjunction 
says that given three record types, A, B, and C, and two links, A to B and A to C, every 

http://dx.doi.org/10.1007/978-1-4842-2722-0_3
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occurrence of A must be linked to an occurrence of B and to an occurrence of C. Simple 
conjunction can be handled by making the modality of both links mandatory-mandatory.

Conditional conjunction states that given three record types, A, B, and C, and two 
links, one between A and B and one between A and C, if an occurrence of A is linked 
to an occurrence of B, then it must also be linked to an occurrence of C. Conditional 
conjunction cannot be implemented through membership class like simple conjunction 
can be.

Ideally, the DBMS should accommodate exclusion and conditional conjunction 
through its DDL although only a smattering of help is available here. The problem is 
that the average DDL can deal with only one link at a time. Handling multiple links 
simultaneously, when the status of one can affect the status of another, is beyond their 
scope. Uber-links, such as exclusion and conditional conjunction, defy most DBMS 
architectures and product offerings.

Failing a DDL accommodation, the DBMS should at least allow the designer a 
workaround using its DML, triggers, or stored procedures. Object-oriented DBMSs 
can accommodate exclusion and conjunction, to an extent, though even they fail to 
do a complete job. In too many cases, enforcement of exclusion and conjunction is, 
unfortunately, left to the application programmer if it is enforced at all.

Data Items
On the surface, data items are the easiest to formalize, but there are data architecture and 
DBMS-specific undercurrents that can make the task a challenge.

Domains
While both group and multivalue data items have a long IT history, domains do not. It 
was not until the late 1970s and early 1980s that domains were even included in, much 
less required by, some newer programming languages. DBMS vendors did not start 
incorporating them until a few years later. Even today, many DBMS implementations 
allow domain declarations but do not require them. However, domains are a useful 
way to help keep database data accurate and useful. Their use is encouraged. Database 
designers should include domain information if the DBMS allows.

Source: Primitive and Derived

As you should remember from logical data modeling, there are two types of data source: 
primitive and derived.

Primitive Data Items
As stated in logical data modeling, a primitive data item is a single or lowest-level fact 
about a record. Primitive data are the bread and butter of a database. The database 
designer need only ensure that all primitive data have a home in the database schema.
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Derived Data Items
Derived data are data that can be calculated from one or more primitive or derived data 
items. For example, a database does not have to store the data item EMPLOYEE AGE if 
it can access CURRENT DATE and EMPLOYEE DATE OF BIRTH. Age can be calculated 
from the primitive data in the database.

Derived data should never be placed on an E-R diagram. Whether derived data 
should be in the database is a performance question and should probably be left to 
Chapter 13, which deals with database efficiency. In the meantime, derived data should 
be documented but not be part of the current database design.

Complexity: Simple and Group

Data item complexity is a term that refers to the intricacy of a data item. There are two 
types of data item complexity, simple and group.

A simple data item, also called an atomic data item, does not contain any other data 
items. For the database designer its place in the database design is as straightforward as  
it gets.

A group data item, also called an aggregate data item, contains a fixed number of 
other data items. An example would be the group data item ADDRESS, which contains 
the following simple data items: STREET NUMBER, STREET NAME, TOWN, STATE/
PROVINCE, POSTAL CODE, and COUNTRY.

ONE PERSON’S SIMPLE IS ANOTHER PERSON’S 
GROUP—IT’S ALL IN THE CONTEXT

The complexity of a data item can be context sensitive. For example, for most of 
us, COLOR is a simple or atomic data item because it cannot be broken down into 
constituent parts. However, for printers and graphic artists, COLOR might contain 
the data items MAGENTA, YELLOW, and CYAN, the three primary subtractive colors 
that make up all other colors in printing. As was true in logical data modeling, the 
designer needs to be sensitive to the context in which the data exists.

Most nonrelational DBMSs support some type of aggregation, virtually every 
programming language supports group data items, and most every relational product 
supports aggregation (for example DATE) to a limited extent. Unfortunately, how the 
DBMS supports groups is not always straightforward, requiring the database designer to 
delve into the DBMS product manuals.

http://dx.doi.org/10.1007/978-1-4842-2722-0_13
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Valuation: Single Value and Multivalue

Data item valuation describes how many values the data item can have. There are two 
types of valuation, single value and multivalue. A single-value data item can have only one 
value at a time. An example would be COLOR = “blue.” If COLOR is “blue,” then it cannot 
be “red,” at least not at the same time.

A multivalue data item can contain a fixed or variable number of values. Examples 
include cases where the subject can contain more than one color (COLOR = “blue, red”) 
or DAY OF THE WEEK contains seven values, “Mon, Tue, Wed, Thu, Fri, Sat, Sun.”

This type of attribute has various other names such as repeating group and, 
unfortunately, group.

Most non-RDBMSs support multivalue data items. Even relational users can get 
around this constraint fairly easily. For them, it is more of a question of the IT shop 
standard than of programming difficulty.

Data item complexity and data item valuation are two sides of the same coin. Both 
have a history going back before database management systems existed; both are part of 
many, if not most, programming languages; and both are incredibly useful, which places 
pressure on the database designer to accommodate them. The only real difference is that 
the data item components in multivalue data items share a single data domain while 
those in a data item group need not.

A MILDLY USEFUL OBSERVATION

If your design is a vanilla DBMS default structure, meaning…

1.	 All records are proper record types.

2.	 All cardinality is one-to-many.

3.	 All modality is optional.

4.	 All links are binary.

5.	 All linkage constraints are inclusive.

6.	 All data items are primitive, simple, and single.

then go out and buy a lottery ticket. You are a very lucky designer.

Or you have missed some important features that need to be included in your 
database design. A review might be called for.

Vanilla DBMS default structure databases exist about 2 percent of the time in the 
business world and, unfortunately, about 70 percent of the time in IT shops, leading 
to a severe business/IT disconnect.



Chapter 12 ■ Formalization: Creating a Schema

251

You should now have a preliminary database schema that is data architecture 
compatible, although not yet product or version specific. You have “resolved” the many-
to-many linkages, created the necessary junction records, and have a pseudocode DDL. 
The next step is to make the design conform to the vendor’s offerings.

The work product of Activity 3.2.1, Map rationalized physical data model to the data 
architecture, is a generic (although data architecture–specific) physical database design. 
The next activity will convert this generic design into a fully functional database design.

Activity 3.2.2: Create a DBMS Product/Version-Specific 
Functional Physical Database Design
Even though you have made your database design data architecture compliant, you 
still have only a pseudo-schema. One more activity gives you a workable (compliable) 
database schema and a design that complies with a DBMS product and version.

Regardless of promises of standards compliance, every vendor has proprietary 
features, legacies they need to support, and downright idiosyncrasies that often defy 
explanation. These constraints need to be incorporated into the schema.

Product and version constraints are of two types: structural and syntactical. To 
address structural constraints, the basic database objects (record types, links, data items, 
etc.) need to be modified to work with the DBMS. Ideally, you have already made most 
of these modifications in Activity 3.2.1, Map rationalized physical data model to the data 
architecture. Remaining structural changes usually relate to storage limitations, such as 
file or record type size.

Syntactical changes are more common and usually consist of vendor DDL and DML 
language accommodations. For example, the ISO SQL:2011 standard data type DECIMAL 
is not supported by Oracle, which uses NUMBER instead. Other syntactical changes 
might include name length and what to substitute for spaces.

Whereas structural compliance has to do with making sometimes major changes to 
database components, such as record type, links, etc., syntactical compliance deals more 
with the words used to describe the schema while leaving their meaning unchanged.

Table 12-3 illustrates the changes needed to make a generic SQL schema Oracle 
compliant.
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Table 12-3.  Preliminary Design DDL Generic SQL Converted to Oracle

Generic SQL Changes Needed for ORACLE

CREATE TABLE PRODUCT (
PRODUCT_NAME CHAR(30) NOT NULL,
PRODUCT_NUMBER CHAR(8) NOT NULL 
PRIMARY KEY UNIQUE,
--  primary key assumes unique but 
both make the message  plain
--  even if not a primary key, keep 
this field unique
PRODUCT_DESCRIPTION  VARCHAR(512),
COST_BASIS DECIMAL(8,2) NOT NULL,
LIST_PRICE DECIMAL(8,2) NOT NULL,
CREATE INDEX PROD_NO_IDX ON PRODUCT 
(PRODUCT_NUMBER)
);

PRODUCT_NUMBER CHAR(8) NOT NULL 
PRIMARY KEY,
/*can't use UNIQUE in PK statement */
PRODUCT_DESCRIPTION VARCHAR2(512),
/*LONG was the standard but was 
dropped. VARCHAR being dropped in 
favor of VARCHAR2 */
COST_BASIS     NUMBER(8,2) NOT NULL,
/*  substitute NUMBER for DECIMAL  */
LIST_PRICE     NUMBER(8,2) NOT NULL
/*  substitute NUMBER for DECIMAL  */
/* Oracle automatically creates index 
on PRIMARY KEY columns */

CREATE TABLE MANUFACTURER (
MANUF_NAME CHAR(30) NOT NULL,
MANUF_ID CHAR(6) NOT NULL PRIMARY 
KEY    UNIQUE,
MANUF_CATEGORY INTEGER DEFAULT 1 
CHECK(MANUF_CATEGORY IN (1, 2, 3)),
MANUF_NOTES VARCHAR(512),
ORDER_INSTRUCTIONS VARCHAR(512)
CREATE INDEX MANUF_ID_IDX ON 
MANUFACTURER (MANUF_ID)
);

MANUF_ID CHAR(6) NOT NULL PRIMARY 
KEY,
/*  can't use UNIQUE in PK statement */
MANUF_CATEGORY NUMBER(1,0) NOT NULL 
DEFAULT 1 CHECK (MANUF_CATEGORY IN 
(1, 2, 3)),
/*  Oracle does not support the 
INTEGER data type, NUMBER used 
instead  */
MANUF_NOTES   VARCHAR2(512),
/* VARCHAR2 replaces VARCHAR */
ORDER_INSTRUCTIONS  VARCHAR2(512)
/* Oracle automatically creates index 
on PRIMARY KEY columns */

CREATE TABLE PROD_MANUF_JCT (
PRODUCT_NUMBER CHAR(8),
MANUF_ID CHAR(6),
PRIMARY KEY (PRODUCT_NUMBER,MANUF_
ID),
FOREIGN KEY (PRODUCT_NUMBER) 
REFERENCES PRODUCT ON UPDATE 
CASCADE ON DELETE CASCADE,
FOREIGN KEY (MANUF_ID) REFERENCES 
MANUFACTURER ON UPDATE CASCADE ON 
DELETE CASCADE
);

FOREIGN KEY (PRODUCT_NUMBER) 
REFERENCES PRODUCT (PRODUCT_NUMBER) 
ON DELETE CASCADE,
FOREIGN KEY (MANUF_ID) REFERENCES 
MANUFACTURER (MANUF_ID) ON DELETE 
CASCADE,
/* Oracle does not support ON UPDATE 
CASCADE constraint - constraint with 
triggers  */
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Versions change far more frequently for newer products than for older ones. Even 
so, most database designers/DBAs must deal with three or four new DBMS versions 
during the life of the average database. Keeping the original database design as generic 
as possible will help the designer or DBA incorporate useful new version features. The 
generic database design will tell the DBA the difference between what was wanted 
and what was settled for. For example, earlier versions of Oracle did not support 
more than one column per table that was larger than 255 characters. Without proper 
documentation, the DBA would never know that the original desire was for 512-character 
MANUF_NOTES and MANUF_INSTRUCTIONS fields.

At this point, the database designer has a complete functional database schema. 
However, formalization is not yet complete. The application programmers will need 
subschemas, derived from the database schema, to do their work.

Subschema Creation
You now (ideally) have a working database schema. But more is needed. Remember all 
those usage scenarios? Well, they become the basis for the needed subschemas. In the 
relational model, subschemas are views and, for the most part, straightforward.

Subschemas came into their own with the network or CODASYL database model 
and were part of the original ANSI standard. Subschemas provide the application 
programmer with only the subset of the data (record types, data types, or sets) needed 
to do the job. Extraneous information, such as unneeded record types and links, are 
excluded. Subschemas can impose security by limiting what can be seen and what can be 
updated. Figure 12-3 is a diagram of a simple network schema and two subschemas.

Figure 12-3.  Schema and subschemas

Views are the relational version of a subschema but with considerable differences. 
A relational view is a single virtual table created from one or more base tables. Like the 
network subschema, a view can consist of a subset of the data items in a record type, but 
unlike a subschema, a view cannot contain links to other tables.
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When the view includes more than one table, then the data items of the two tables 
are joined into a single flat virtual file or table. Figure 12-4 shows a relational database 
with two base tables and a view consisting of the data in the two tables.

The virtual table is a flat file with the parent information replicated for each child. If the 
parent record occurrence “Smith” has four children record occurrences, then “Smith” will 
appear in the virtual table four times. Some designers use views to denormalize the database. 
Figure 12-4 gives an example of the un-normalized flat file nature of the relational view.

There is just one problem: not all views are updateable. The rules vary from product 
to product regarding whether a view is updateable. Some RDBMSs do not allow any view 
to be updated, while others allow some views to be modified. No RDBMS vendor has 
figured out how to update all views. A good rule of thumb is that single base table views 
are probably updateable, but multiple base table views are probably not updateable; 
however, you really need to check with your vendor.

NoSQL databases, particularly column and key-value systems, do not have views, 
or, perhaps more correctly, all of their schemas are actually views. These systems bundle 
data from multiple record types into a single object that looks more like a view than a 
relational base table.

Whether it’s a non-relational subschema or a relational view, the usage scenario is 
the best resource for creating them (Table 12-4).

Figure 12-4.  Relational view

Table 12-4.  Relational View from a Usage Scenario

Usage Scenario Relational View

Usage Scenario: 21 Name: Customer 
Orders
(1) Enter Customer.
(2) Find Account occurrence for 
associated Customer occurrence.
(3) Find Order occurrences for 
associated Account occurrence.

CREATE VIEW CUSTOMER_ORDERS
   (CUSTOMER_NAME, ACCOUNT NUMBER,
        ORDER_NUMBER, DATE) AS
SELECT (C.CUSTOMER_NAME, A.ACCOUNT_NO,
        O.ORDER_NO,  O.ORDER_DATE,)
    FROM CUSTOMER C. ACCOUNT A, ORDER O
    WHERE (C.CUSTOMER _NO = A.CUSTOMER_NO)
    AND (A.ACCOUNT_NO  =  O.ACCOUNT_NO)
;
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In most cases, there will not be a one-to-one relationship between usage scenarios 
and subschemas/views. Rather, the database designer will find that a few well-defined 
subschemas will usually handle many usage scenarios.

The subschema sections of the vendor’s manuals are usually chock-full of 
subschema do’s and don’ts.

Formalization Notes
The last Step 3, Formalization, task is to complete the Formalization notes. As with the 
other steps, the database designer needs to record the issues and decisions made during 
Formalization (why, where, when, and results) so that future designers and DBAs can 
perform their jobs properly informed with what was done to the database design and why.

Deliverables
Step 3, Formalization, should produce the following deliverables:

	 3.1	 Functional database design diagram: A database diagram 
showing the record types and links (Figure 12-5 in the  
next section).

	 3.2	 Functional schema DDL: Two versions should be created.

•	 Generic DDL conforming to the database architecture

•	 Vendor product and version specific

	 3.3	 Functional subschemas DDL: Two versions should be created.

•	 Generic DDL conforming to the database architecture

•	 Vendor product and version specific

	 3.4	 Functional database object definitions: The same physical 
definitions created in step 1, Transformation, updated with 
any necessary changes made during step 2, Utilization, now 
need updating with step 3, Formalization, information.

	 3.5	 Formalization notes: A narrative or journal created by the 
database designer of the activities, issues, and decisions made 
during step 3, Formalization.
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Example of Deliverables
Figure 12-5 shows the functional database design.

In Chapter 13, the DDL is modified to improve the performance of the database.

FUNCTIONAL DATABASE DESIGN CHANGES MADE TO THE MODEL

1. Eliminated the supertype Customer and
the two subtypes Retail and Wholesale,
replacing them with the single record
type Customer 

2. Changed associative and attributive
record types to proper record types 

3. Created a Bill-of-Materials junction
record for Product 

Figure 12-5.  Functional database design

http://dx.doi.org/10.1007/978-1-4842-2722-0_13
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CHAPTER 13

Customization: Enhancing 
Performance

It is a bad plan that admits no modifications.

—Publilus Syrus

An expert is a person who has made all the mistakes that can be made in 
a very narrow field.

—Niels Bohr

For a number of crucial reasons, enhancing the performance of the database design is 
done last. First, any performance considerations need to wait until the database design 
is well understood. This ensures that critical functional components are completely 
identified, included, and documented before any changes are made to the database 
design. If you start modifying the design before properly documenting it, you risk losing 
critical functional information. To avoid this confusion, do not mix functional database 
design requirements with database performance considerations—this is the reason U3D 
separates steps 3 and 4.

The second reason to separate functional and performance considerations is that 
vendors change the database design syntax far more frequently for performance reasons 
than for functional ones. Most DBMS software maintenance releases contain at least 
some performance enhancements but might not contain any functional ones at all. 
Keeping the more volatile performance enhancements separate from the more stable 
functional ones improves the chances of providing performance improvements without 
destroying functional necessities. See Table 13-1.
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In step 4, Customization, the designer has the option to use design techniques 
or tools (vendor, third-party, or homegrown) to improve database performance while 
keeping all functional components intact. This step is divided into two tasks. The first task 
applies some analytical rigor to the database usage information, followed in the second 
task by the actual performance-enhancing changes to the database.

Task 4.1: Resource Analysis
Because you now have a working DBMS schema, you could stop here, and if demands 
on your database are minimal (few transactions and a small amount of data), you are 
probably done. However, for many databases, performance is a significant driver of good 
service. Without special performance-enhancing features, most of which are provided 
by DBMS vendors, many transactions or queries could take minutes, or even hours, to 
return results. An enhancement as simple as adding an index, often requiring fewer 
than a dozen lines of code, can improve performance by one, two, or even three orders 
of magnitude. The trick is understanding the trade-offs and knowing where to place the 
performance-enhancing components.

Step 3, Formalization, focused on the language to translate the physical design 
specifications into something the DBMS software can understand. The skills the designer 
needs are concept and software related. For example, the database designer needs to 
know both the functional requirements of the application and the vendor-specific DDL 
and DML for creating and using a database.

Table 13-1.  Step 4: Customization

Sources Procedures Deliverables

•• 3.1: Functional database 
design (diagram)

•• 3.2: Functional schema DDL

•• 3.3: Functional subschemas 
DDL

•• 3.4: Functional database 
object definitions  
(data dictionary)

•• 2.3: Usage scenarios

•• 2.4: Usage maps

•• 2.5: Combined usage map

•• 1.3: Transformation notes

•• 2.6: Utilization notes

•• 3.5: Formalization notes

•• DB: DBMS features and 
constraints

•• Task 4.1: Resource 
analysis

•• Task 4.2: Performance 
enhancement

•• Activity 4.2.1: 
Customize hardware

•• Activity 4.2.2: 
Customize software

•• 4.1: Enhanced 
database design 
(diagram)

•• 4.2: Enhanced 
schema DDL

•• 4.3: Enhanced 
subschema DDL

•• 4.4: Enhanced 
database object 
definitions  
(data dictionary)

•• 4.5: Customization 
notes
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Performance tuning, on the other hand, requires all the database designer 
Formalization skills and, in addition, knowledge of how computer systems work—the 
hardware and system software the database lives under, as well as any DBMS functionality, 
needs to be understood. This is because, by far, the most significant issue associated with 
database tuning is efficiently getting information to and from auxiliary storage devices. 
The reason? Fetching a record from main memory can be 1,000 times faster than fetching 
the same record from disk. If two records are needed and they are stored on two separate 
database pages, then two physical I/Os might be required. However, if they are stored on 
the same page on disk, then the second record can be fetched up to 1,000 times faster than 
the first.

The Trade-Off Triangle
How do you know when you’re done? The only way to really know the answer is to 
examine your database to see whether the off-the-rack implementation will work 
satisfactorily. If, on the other hand, performance enhancements are needed, the designer 
can dip into the DBMS tool kit and improve the database design.

There are no free rides in the DBMS world. For everything you gain, there is 
something you lose. Everything (almost) is possible; however, everything (almost) has a 
cost. It all comes down to trade-offs.

Just listen to medication ads on TV. “Wonder drug Nonosedripz gets rid of your 
runny nose; however, side effects can include brain damage, anal leakage, and growing 
extra toes.” The consumer has to analyze the trade-offs and decide whether nose relief is 
worth the risk.

Trade-offs are everywhere, including database design. A good DBMS schema 
involves trade-offs related to three competing performance dimensions—flexibility, 
throughput, and volume.

•	 Flexibility is the ability of the database system to support a broad 
range of known and unknown services and to easily adapt to 
business and technology changes.

•	 Throughput is how quickly the database system can perform its 
function either in terms of response time for online applications 
or runtime for batch programs.

•	 Volume is the number of objects/actions the database system 
can accommodate, such as the number of record types, or 
occurrences, it can support or the number of concurrent online 
transactions it can handle.

These three dimensions can be easily represented as a triangle (Figure 13-1).
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Trade-off decisions come at a cost. For example, design the database for flexibility 
and you might have to sacrifice some of the database’s ability to handle large volumes or 
perform functions quickly.

In many cases, the hardware, system software, and DBMS can accommodate all 
three dimensions. However, in cases where demands are high, or extreme, the system 
might be able to accommodate only one or two dimensions comfortably (Figure 13-2).

Database designers must choose among
Flexibility, Throughput, and Volume, which
compete for database resources.  

Assess the criticality of each dimension
(Flexibility, Throughput, and Volume):

1. Simple

2. Average

3. Complex

4. Very Complex

Figure 13-1.  Trade-off triangle

Dark area indicates the criticality of each of the
three dimensions…  

…showing flexibility is most important while
volume support is not a major issue. 

Trade-off decisions: Design the database to 
be flexible.

What you gain: A more robust database that
is able to handle not only today's functionality,
but will probably be able to accommodate
future requests.   

What you might lose: The ability for the
database system to handle large volumes
and/or maintain processing speed.  

Figure 13-2.  Trade-off triangle—flexibility most important



Chapter 13 ■ Customization: Enhancing Performance

261

Understanding the trade-offs helps in making decisions about design options and 
tool usage (Figure 13-3). Most of all, the trade-off triangle provides a design-trade-off 
perspective (Table 13-2).

Need is to handle large volumes

Trade-off decisions: Design the database
to accommodate very large record volume. 

What you gain: Ability to process large
amounts of data. 

What you might lose: Speed of processing
and/or database flexibility. 

Figure 13-3.  Trade-off triangle—volume most important

Table 13-2.  Critical Dimensions

Two Most Critical Dimensions Design Options to Consider Tools to Consider

Throughput and volume •• Fewer larger record types, 
read-only

•• Use of specialized storage 
(SSD, cache, main memory, 
large buffers, read-only, 
multiple disks, etc.)

•• Use of partitioning, cluster-
ing, and hashing

•• NoSQL

•• DBMS middleware

•• IMS/Fast Path

Throughput and flexibility •• Distribute across multiple 
disks

•• Use of indexing, clustering, 
and hashing

•• Robust use of links

•• In-memory DBMS 
(no/limited update 
capability)

•• T/P monitors

Flexibility and volume •• Use of many record types 
and relationships

•• Partitioning

•• Strong use of indices

•• Parallel DBMS 
processing

•• Distributed DBMS

•• DBMS middleware
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The trade-off triangle is a simple visual way to demonstrate, and gain buy-in for, 
the database design. It is not a decision tool but rather a communications tool for 
illuminating the decisions that need to be made. The trade-off triangle can, and should, 
be customized to an organization’s situation—reflecting local data and transaction 
volumes as well as functional flexibility and processing speed requirements. Table 13-3 is 
an example of a trade-off triangle serviceability index tool for one IT shop.

Although it is certainly not scientific and could be criticized on multiple fronts, 
nonetheless the trade-off triangle serviceability index gives the database designer a 
framework for structuring potential challenges as well as managing expectations when 
meeting with other technical staff and end users.

Task 4.2: Performance Enhancements
If you created a trade-off triangle for your database and it came out 1, 1, 1 (flexibility = 1, 
throughput = 1, and volume = 1), then you are done. There is little this chapter can add 
to your database design. If your database is 2, 2, 2, you are also probably done, although 
reading the chapter might show you some small performance tweak that should be 
applied to make your system more efficient. However, if you scored a 3 in any category, 
then keep reading—there will be some tidbits here that you can use.

Table 13-3.  Trade-Off Triangle Serviceability Index

Each dimension (flexibility, throughput, and volume) is assigned a value 1 through 4 on 
the following scale:

1.  Simple

2.  Average

3.  Complex

4.  Very complex

The values are then added together to give the serviceability index.

Here’s a sample of the serviceability index:

•• An index less than or equal to 3 can be handled by almost any DBMS.

•• 4 to 6 requires a good general-purpose server-based DBMS.

•• 7 to 8 requires trade-offs in the design and/or implementation of the database.

•• �9 to 10 requires a special-situation DBMS (specialized DBMS (OO, NoSQL, 
IMS Fast Path), and/or special hardware, and/or special database design).

•• No database should have a serviceability index greater than 10.
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Activity 4.2.1: Customize Hardware
A simple, although not inexpensive, way to improve database performance is through 
hardware. Faster processors and/or more memory can improve the performance of most 
databases and overcome a multitude of poor database design sins. But first…

A Few Words About Secondary Storage
Before going further, you need to understand a few things about secondary storage, both 
rotating and stolid-state drive (SSD).

Currency is an interesting word. If you use a search engine to wander through 
the Internet, you discover that nuclear weapons are the currency of power, attention is 
the currency of leadership, secrets are the currency of intimacy, personal information 
is the currency of the 21st century, and so on, and so on. The word currency is used to 
denote how you measure something important. If you have nuclear weapons, then 
you have power; more nuclear weapons = more power.

One can safely say that inputs and outputs (I/Os) are the currency of databases. 
The efficiency of a database application, batch or online, can be improved—sometimes 
by orders of magnitude—simply by changing how it performs its database I/O. No fairy 
tales—systems that were deemed turkeys by users have become champs after changing 
a dozen lines of DDL. It should be no surprise that the number-one place DBAs look to 
improve database performance is I/O.

Take a simple example. Imagine a program that reads a customer file. Assume 
that there are 100,000 customer records on disk, each 1 KB long. Starting with the first 
customer, it takes 100,000 trips to the disk to read the complete file. If the average disk 
can read a record and ship it to the computer in 8 milliseconds, then it will take almost 14 
minutes to read the file. The same file in main memory would take less than 1 second to 
read on a fast computer. That’s an amazing difference.

The reality is that disk is slow while main memory is fast. A second reality is that disk 
is cheap while main memory is expensive (at least in the quantities needed to compete 
with disk). The moral is that if you have a very small database, put it in main memory. 
Your users will love you. If you have a big database, you’re stuck with disk…but there are a 
few things you can do to speed things up.

Look at the typical disk. It consists of a motor rotating a magnetic oxide–covered 
aluminum or some other nonmagnetic substrate. There could be a single platter or multiple 
platters, and there might be one read/write head per platter or two (one above and one 
below). The disk can have a diameter as small as less than 2 inches or as large as 12 inches. 
It also has one or more arms, part of the actuator, which moves the read/write heads across 
the platters. Modern disks spin at from 4,000 RPM to greater than 15,000 RPM.

Each platter is divided into concentric tracks. Each track is divided into multiple 
sectors. If there is more than one platter, then the platters are stacked, one on top of each 
other, sort of like pancakes, except there is space between each platter for an actuator 
arm. All of the vertically aligned tracks are called a cylinder.

Reading the data from disk requires a series of steps. First, the request is sent to a 
controller, which determines the exact location of the desired data. Second, the actuator 
arm is positioned over/under the correct track. The time it takes to position the arm is 
called seek time. Third, the system goes into a wait state until the correct sector rotates 



Chapter 13 ■ Customization: Enhancing Performance

264

under/over the read/write head. This is called rotational latency or rotational delay. 
When the correct sector is in position, the data are read from the disk and transferred to 
the host.

All of these steps take time. Table 13-4 gives the times for a typical database disk.

As Table 13-4 shows, the problem is the seek time and the rotational latency  
(the dreaded disk duo)—both mechanical activities. If you could eliminate both 
mechanical functions, then the speeds would be considerably faster.

An SSD appears to the system as a rotating disk, but the data are stored in nonvolatile 
flash memory. Table 13-5 gives typical speeds for an SSD and main memory.

SSD not fast enough for you? Then keep your data in the computer’s main memory 
where speeds are even faster.

There is just one problem—the faster memory access is, the more expensive it is. 
SSDs are much faster than rotating disks, but the per-megabyte cost is considerably 
higher and even more so for main memory. However, the message is not “don’t use 
nonrotating memory.” Rather, the message is “use your head.” Putting the customer file in 
main memory might not make sense, but putting the price list there just might.

In most cases, until SSD prices come closer to those of rotating disk, rotating disk will 
be where the majority of the database’s data is stored. The goal for the designer must be 
to anticipate, as much as possible, the application’s data needs and fetch a large amount 
of desired data from disk with each read. If 10 customer records can be fetched with 
each trip to the disk, then the amount of time spent doing physical I/O is substantially 
reduced. To the application program, there were 10 (logical) reads, but for the operating 

Table 13-4.  Disk Data Transfer Speeds, in Milliseconds

1 KB Data 2 KB Data 10 KB Data 100 KB Data

Controller 0.01 0.01 0.01 0.01

Seek Time 4.0 4.4* 8.0* 44.0*

Rotational Latency 4.0 4.4** 8.0** 44.0**

Data Transfer 0.01 0.02 0.1 1

Buffer to CPU 0.0003 0.0006 0.003 0.03

Total Time (ms) 8.0 8.8 16.1 89.0

Notes: *Assumes the actuator arm needs repositioning 10 percent of the time.
**Assumes the desired sectors are contiguous 90 percent of the time.

Table 13-5.  Nonrotating Disk Data Transfer Speeds, in Milliseconds

1 KB Data 2 KB Data 10 KB Data 100 KB Data

Solid-State Drive (SSD) 0.030 0.042 0.133 1.150

Main Memory 0.00013 0.00026 0.0013 0.013
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system, only a single (physical) read took place. The objective of the database designer 
is to maximize the amount of required data fetched with each physical I/O. And that is 
the goal for this chapter. Examine the size of the data and the number of times data is 
accessed and then decide where and how the data should be stored and accessed. If the 
database designer understands the real cost (currency) of database performance, then 
they are in a position to make informed hardware choices.

Add Disk

Imagine a rather small online transaction processing database for a multiuser application. 
When the system was new, users complained about slow response time, but as time went 
on the performance improved. The only difference? More data. In a stranger-than-fiction 
situation, as the database got bigger, the online performance improved. Why? As the 
database got larger, it outgrew its single disk. As additional disks were added, along with 
their additional read/write heads, the contention caused by multiple users repositioning 
the disk heads decreased. The bigger database is actually faster than the smaller one.

Multiple users or multiple applications requesting the service of a single disk can 
require the constant repositioning of the read/write head as each user or application gets 
its turn. The disk head can wind up “thrashing” between the requested cylinders. Adding 
physical disks increases the number of read/write heads, which, in turn, reduces the very 
expensive seek time and rotational delay caused by the contention.

Few organizations have only one database supporting one application. Rather than 
putting five databases on five separate disks, mixing them (spreading all five databases 
over the five disks) can (based on time of use, etc.) sometimes reduce disk contention, 
speeding up access for all five.

Faster Disk

There was a time when a disk was a disk—they all ran at approximately the same speed 
(2,400 to 3,600 RPM), and the disk platters were all about the same size (about 12 inches 
in diameter). Not true today. Disk RPM can vary from as low as 4,000 up to 15,000 RPM, 
and smaller disk platter size means that the read/write head travels shorter distances. 
SSDs can be orders of magnitude faster than rotating disks.

Routinely fetched information, such as product or price tables, can be kept on the 
smaller, more expensive, but faster disks, while less routinely accessed information can 
stay on more lumbering media.

Main Memory

Nothing beats main memory for speed, but at a cost. However, if the application is reading 
data in a predictable way (such as sequentially), then large buffers in main memory can be 
a godsend. IBM allows disk sectors as large as 50 KB, and most DBMSs use a database page 
that can be many times the size of the disk sector. Pulling large amounts of information into 
a buffer in main memory can significantly reduce the number of required physical I/Os. If 
there is sufficient memory, tables (such as tax and price tables) can be read once and then 
kept in main memory to be shared by multiple users and applications.
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Of course, big buffers are useful only if you want all the information in the buffer. 
Large buffers and large database pages are not only useless but can be an impediment if 
the application wants only 50 of the 5,000 bytes returned from storage.

The main memory sticking point is that it works best for read-only data. Journaling 
and backup and recovery activities require nonvolatile memory such as disk.

Once again, to make an informed choice, the database designer must know how the 
application will use the data.

Activity 4.2.2: Customize Software
There are a number of ways software can be used to customize a DBMS.

Indices (B-Tree, Hash, Bitmap)
Indices were discussed in Chapter 8, so a repeat is not needed here. Most of the emphasis 
on indices has been on retrieval, which is where they shine. Which fields you index is 
driven by two criteria: (1) which fields you want to search the database for and (2) which 
fields the DBMS uses to access record occurrences.

With relational systems, to add indices you need to simply add a statement to the 
DDL, as follows:

CREATE TABLE PRODUCT (
                PRODUCT_NAME            CHAR(30) NOT NULL,
                PRODUCT_NUMBER          CHAR(8) NOT NULL PRIMARY KEY,
PRODUCT_DESCRIPTION     VARCHAR(512),
                COST_BASIS              DECIMAL(8,2) NOT NULL,
                LIST_PRICE              DECIMAL(8,2) NOT NULL,
CREATE UNIQUE INDEX PRODUCT_NUMBER_IDX ON PRODUCT (PRODUCT_NUMBER)
);

Unfortunately, indices are rather poor performers when it comes to index updates. 
Inserting, modifying, or deleting an index entry can be I/O expensive.

Clustering
Clustering is placing one record occurrence on the same database page as another record 
occurrence so that the physical I/O to access one occurrence will also access the other 
occurrence. A common clustering strategy involves the parent-child binary relationship 
where the child record type occurrences are placed physically near the parent record type 
occurrence. This increases the chance that the physical I/O to access the parent will also 
access its children. (The term clustering is also used for index storage and distributed 
databases. The use here is for the storage of content data within the database.)

For effective clustering, the database designer needs to identify the record types that 
are functionally associated with other record types. On a grand scale, it is as simple as 
saying that Customer is more closely associated with Account than with Manufacturer, 
while Manufacturer is more closely associated with Distributor than with Customer.

http://dx.doi.org/10.1007/978-1-4842-2722-0_8
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Look at this manual example. Assume that manufacturer paperwork is stored in 
the company warehouse and customer paperwork is stored in the sales office. Where 
should distributor and account paperwork be stored? If, when you need distributor 
information, you also usually need manufacturer information but you almost never 
need customer information, then it makes sense to store the distributor information 
in the warehouse and not the sales office. In addition, although you infrequently need 
manufacturer paperwork and account paperwork at the same time, you often need 
customer and account paperwork at the same time. Therefore, it makes sense to store the 
account information with the customer information in the sales office. Using clustering 
terminology, it makes sense to cluster Customer and Account information and to cluster 
Distributer and Manufacturer information.

However, with an automated system and usage maps, you can go further. Which 
do you typically access first, Manufacturer or Distributor? If you typically access 
the Manufacturer occurrence first followed by the Distributor occurrence, then the 
Distributor occurrence should be clustered around the Manufacturer occurrence; but if 
you typically access Distributor data first, then Manufacturer should be clustered around 
Distributor. The combined usage map tells you this. Follow the usage arrows and see 
which is more common—accessing Manufacturer first or Distributor first (Figure 13-4). 
If the arrows show that you typically move from Distributor to Manufacturer, then cluster 
Manufacturer with Distributor. This means all Manufacturer occurrences for a specific 
Distributor occurrence are stored with their Distributor occurrence, ideally on the same 
database page. Typically, the cluster is named after the parent record.

Consolidation can be of two types. The first stores the child records on the same 
physical page as the parent, so by accessing the parent, the child records can be read 
without an additional physical I/O (assuming there is room on the page for all the 
children). The second type of clustering stores the parent and children on different 
database pages, but all the children for a given parent are stored on the same physical 
page. For example, record X might be stored in database file 1, page 10; while all of X’s 
children are stored in file 2, page 86. All of X’s children can be fetched with a single 
physical I/O (assuming there is room on the page), but not the same physical I/O used to 
fetch the parent X.

Consider the order management system in Figure 13-5. If the Line Item record 
occurrences are stored on the same database page as their parent Order record 
occurrence, then when the Order record is read, all (or most all) of the Line Item 
occurrences are fetched with the same physical I/O.

Figure 13-4.  Clustering example
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The downside of clustering is that records can be clustered only one way. Line Item 
could be clustered around Order or Product, but not both. Clustering Line Item around 
Order means that when the Order record is accessed, the Order’s Line Items are probably 
also there. However, accessing Line Item from Product means that every Line Item access 
probably requires a physical I/O. The database designer must understand the trade-offs 
to make the best all-around decision.

Creating a cluster is quite easy with most database systems. The following is a simple 
SQL clustering example:

CREATE TABLE ORDER   (
   ORDER_NO            CHAR (5) NOT NULL,
   ORDER_TYPE          CHARACTER(1),
   ACCNT_NO            CHARACTER(8),
   ONUMB               NUMBER(4) NOT NULL,
   OAMT                NUMBER(6,2),
   CLUSTER             ACCOUNT(ACCT_NO)
);
Note: Some SQL-based systems do not allow a table called Order, a reserved word, while 
others will.

You can graphically indicate clustering on the database diagram by placing the 
clustering record type name at the bottom of the record type box.

Figure 13-5 shows a database design fragment including the clustering information 
at the bottom of each record type box.

Figure 13-5.  Order management system physical database design
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Example Using Indices and Clusters
Usage scenarios can help the database designer make the correct clustering choices. If 
you go back to the trade-off example in Chapter 9, you can now add some additional 
usage scenario–driven vigor to the solution.

Take the simple database design fragment of the three record types (Figure 13-6) 
consisting of 200 Product occurrences and 1,000 Order occurrences, each linked to an 
average of 10 Line Items occurrences per Order occurrence.

Two software options can improve performance: (1) indices placed on certain fields 
and (2) clustering of multiple occurrences of linked but different record types on the same 
physical database page. In the example, Line Item occurrences could be stored either on 
the same physical page as their related Order occurrence or on the same physical page as 
their related Product occurrence, but not both.

Examining scenario 1, the first scenario task is to enter the database at a specified 
Order occurrence. Because there are 1,000 Order occurrences, a sequential search for the 
desired Order takes, on average, 500 logical I/Os to find the right record. Assume that, on 
average, 10 Order occurrences fit on a physical database page, then a sequential search 
for the desired Order instance requires, on average, 50 physical I/Os.

You can reduce the number of physical I/Os by creating an index on 
ORDER_NUMBER. Of course, indices are not free. They also require storage on disk  
and a number of I/Os to fetch their information. Luckily, there are simple formulas  
(see Appendix D) to calculate the number of physical I/Os required to fetch the occurrence 
location from the index. Using formula (5) introduced in Chapter 8, the average number of 
physical I/Os needed to fetch a particular Order record averages 3 (2 for the index and 1 to 
fetch the record instance), as illustrated here:

If:

N = Number of index entries to search

C = Average number of compares to find desired entry

m = Blocking factor of index

Figure 13-6.  Physical database design trade-offs

http://dx.doi.org/10.1007/978-1-4842-2722-0_9
http://dx.doi.org/10.1007/978-1-4842-2722-0_20
http://dx.doi.org/10.1007/978-1-4842-2722-0_8
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Then:

C=Log N/Log m                                                                                                                         (5)

If you assume:

Number of occurrences (N): 1,000

Number of entries per index page (m): 50

Then using formula (5):

Average physical I/Os to find the desired index entry = fewer 
than 2

Average physical I/Os to retrieve record (index I/O plus 
fetching record) = less than 3

Using an index on Order is, on average, more than 16 times faster than reading the 
file sequentially. However, there is a cost. Indices must be maintained. While reading 
indices is relatively cheap, updating them can be considerably more expensive  
(see formula (7) in Chapter 8 or Appendix D). Which do you choose: faster retrieval at the 
cost of updates or more efficient updates at the expense of retrievals? The answer is in the 
physical I/O expended.

The second software method for improving performance is clustering. If you assume 
you have the desired Order occurrence, sequentially fetching its related 10 Line Item 
occurrences requires an additional average 5,000 logical I/Os. Assuming you can place 
50 Line Item occurrences on a physical database page, fetching now requires, on average, 
100 physical I/Os.

Adding an index is better. Using formula (5), you can fetch a Line Item occurrence in 
approximately 4 I/Os—but that is per Order occurrence. The average of 10 occurrences 
per Order would translate into (allowing for some occurrences being on the same 
database page) between 30 and 40 physical I/Os per Order.

You can do better. You can cluster (store) all of Order X’s related Line Item 
occurrences on a single database page or on the same physical database page that Order 
X is on. Then, when you fetch Order X, you also have all of Order X’s Line Items with the 
same physical I/O or all clustered together on their own database page (assuming that 
they could all fit on one database page).

Scenario 2 is similar to scenario 1, except you enter the database at Product and 
then traverse to Line Item. You can place an index on a Product data item to reduce the 
number of physical I/Os to fetch a given Product occurrence from 2 (assuming the same 
blocking factor of 50 Product occurrences per physical database page) to 2 or 3—no 
savings and a potential deficit.

You can also cluster Line Item around Product. If you assume an average of 50 Line 
Item instances per Product instance (10,000 divided by 200), you should be able to fetch 
all of a Product’s Line Item occurrences with the same physical I/O.

However, while both Order and Product can be indexed, Line Item occurrences can 
be stored around only one record. The designer must choose to cluster Line Item around 
Order or around Product—clustering around both is not possible. Which do you choose?

http://dx.doi.org/10.1007/978-1-4842-2722-0_8
http://dx.doi.org/10.1007/978-1-4842-2722-0_20
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These are the five critical questions:

	 1.	 Should Order be indexed?

	 2.	 Should Product be indexed?

	 3.	 Should Line Item be indexed?

	 4.	 Should Line Item be clustered?

	 5.	 If so, clustered around Order or Product?

To answer these questions, you need to collect all the facts and assumptions.

Number of Order occurrences: 1,000

Order occurrence size (bytes): 200

Number of Product occurrences: 200

Product occurrence size (bytes): 400

Number of Line Item occurrences: 10,000

Line Item occurrence size (bytes): 100

Database page size of 5,000 bytes

Number of scenario 1 transactions (executions) per day: 2,000

Number of scenario 2 transactions (executions) per day: 200

Question 1: Should Order Be Indexed?

Twenty-five Order records can fit on a database page (ignoring database page overhead), 
which translates into 40 database pages. (This assumes that the page is dedicated to storing 
Order records and that page free-space and expansion space are ignored.) Therefore, it 
takes, on average, 20 physical I/Os to sequentially fetch the desired Order record.

Formula (5) says that it takes, on average, 2.15 physical I/Os to fetch the desired record 
address from an index (assuming that the index page is the same size as the database page). 
Adding an additional I/O to fetch the actual (content) record totals 3.15 physical I/Os.

Therefore, other things being equal, it is more efficient (3.15 versus 20 physical I/Os) 
to fetch an Order using an index.

Question 2: Should Product Be Indexed?

Twelve Product records can fit on a database page (the caveats are the same as for the 
Order case), meaning that all the Product records can fit on 17 database pages. Fetching a 
Product record sequentially requires, on average, 9 physical I/Os.

Formula (5) says that fetching the Product index entry requires, on average, 2.13 
physical I/Os. Adding one physical I/O to read the content results in an average of 3.13 
physical I/Os per fetch. Three plus physical I/Os is certainly better than 9, but the benefit 
is minimal.
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Question 3: Should Line Item Be Indexed?

Fifty Line Item records fit on a database page, taking up a total of 200 database pages. A 
sequential read of the database to find a specific Line Item record requires, on average, 
100 physical I/Os.

An index on Line Item requires 2.35 index physical I/Os to fetch the record address 
and one additional I/O for content, totaling 3.35 physical I/Os per Line Item record. It 
makes sense to index Line Item.

Question 4: Should Line Item Be Clustered?

This is a nonmathematical question whose answer is dictated by the structure of the 
database and the usage scenarios. Because both scenarios move from fetching a parent to 
the Line Item child, it would seem that there could be significant benefit from clustering.

Question 5: Should Line Item Be Clustered Around Order or 
Product?

To answer this question, you need to examine two alternatives.
For alternative 1, you need to calculate the total daily physical I/Os consumed by 

scenario 1 and scenario 2 if Line Item is clustered around Order.
Alternative 2 calculates the total physical I/Os consumed by each scenario in a day if 

Line Item is clustered around Product.

Alternative 1: Line Item Clustered Around Order

Scenario 1 says fetch 1 Order record and then, on average, 10 Line Item records and do 
this entire process 2,000 times a day.

The physical I/O to fetch the Order record is 3.15 (from question 1).
The physical I/O to fetch the Line Items depends on the DBMS and how you chose to 

store/access them. If you stored Line Items in their own file and on their own pages and 
used an index to access them, then you could fetch all 10 Line Items with an additional 
3.35 physical I/Os. Because all 10 records are on the same page, you need to read the Line 
Item index only once to fetch all 10.

The total scenario 1 daily physical I/O count is 6.5 physical I/Os per transaction times 
2,000 transactions per day, equaling 13,000 physical I/Os.

Scenario 2 says fetch one Product record and then, on average, 50 Line Item records 
and do this entire process 200 times a day.

If Line Item is clustered around Order, then it cannot be clustered around Product. 
Physical I/Os to fetch one Product record are 3.13. Total physical I/Os to fetch 50 Line 
Items (3.35 times 50) are 167.5.

The total scenario 2 daily physical I/O count equals 170.63 times 200, which is 34,126 
physical I/Os.

The total alternative 1 daily physical I/O count is 47,126.
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Alternative Two: Line Item Clustered Around Product

Scenario 1 says fetch 1 Order record and then, on average, 10 Line Item records and do 
this entire process 2,000 times a day.

The physical I/O to fetch the Order record is 3.15 (from question 1).
If Line Item is clustered around Product, then it cannot be clustered around Order. 

From question 3, you know that it takes, on average, 3.35 physical I/Os to fetch 1 Line 
Item record or 33.5 physical I/Os to fetch 10.

The total scenario 1 daily physical I/O count is 36.5 physical I/Os per transaction 
times 2,000 transactions per day, equaling 73,300 physical I/Os.

Scenario 2 says fetch 1 Product record and then, on average, 50 Line Item records, 
and do this entire process 200 times a day.

The physical I/Os to fetch 1 Product record are 3.13.
Each Product record has an average cluster size of 50 Line Item records. The total 

physical I/Os to fetch 1 Line Item is 3.35 for a transaction (execution) total of 6.48 physical 
I/Os.

The total scenario 2 daily physical I/O count at 200 times a day times 6.48 is 1,296 
physical I/Os.

The total alternative 2 daily physical I/O count is 74,596.
Comparing the two alternatives, clustering Line Item around Order saves more than 

27,000 physical I/Os a day—a reduction of almost 40 percent.

IT DOESN’T HAVE TO BE ACCURATE, IT JUST HAS TO BE 
DIRECTIONALLY CORRECT

Any approach to calculating physical I/Os will run into difficulties. Many a DBA has 
been surprised when the DBMS statistics-gathering function reports that a record 
fetch took 5 physical I/Os while the operating systems indicated that there were 25. 
What’s happening?

Any effort to accurately calculate physical I/Os is problematic. The statistics 
gathered by the DBA probably will not agree with those gathered by the operating 
system support staff, which will probably disagree with any given by the secondary 
storage subunit, which will almost certainly be greater than those predicted by the 
database designer. The problem is that the various components needed to perform 
an application-driven I/O need to do their own I/O as well to support the application. 
Many of these additional I/Os are under-reported or not reported at all to the DBMS. 
The CPU, which once managed all disk activity, now hands the task over to a 
secondary storage subsystem that does something the CPU is unaware of but that 
often involves the subsystem’s own I/O. The DBMS gets some information from the 
operating system; however, the operating system always seems to have a few tasks 
of its own that require I/O. And then there are the statistics-gathering systems. The 
operating system has them, the DBMS has them, the secondary storage systems 
have them, the transaction processing monitor has them—all that data gathering 
involves I/Os—lots of them.



Chapter 13 ■ Customization: Enhancing Performance

274

So, where does that leave the database designer and the DBA? Why perform these 
physical I/O-counting exercises when the number could be off by an order of 
magnitude or more? The answer is, although the designer-generated number might 
under-report the actual I/O count, it is almost always directionally correct. Given 
two situations, with two different predictions, the higher count forecast will almost 
always require more I/Os than the lower one. The actual number might be low, but 
the direction the forecast indicates (greater or lesser) will almost always be correct. 
The database designer might get the actual count wrong, but the conclusions drawn 
from the analysis, and the associated decisions made based on that information, are 
almost always correct.

The takeaway from all of this: it doesn’t have to be accurate; it just has to be 
directionally correct!

The previous example examined only a single approach to storing and clustering 
records in a database. Had the DBMS stored different record types on the same page  
(a default with most systems), then the counts would have been different. A single record 
type would have been spread across more database pages than predicted, increasing the 
cost of a sequential read.

On the other hand, multiple record type page storage allows the Line Item records 
to be stored on the same physical page as their parent (Order or Product), reducing I/O, 
but this approach also increases the chance of page overflow resulting in not all clusters 
fitting on a single page.

The calculations are not different, although there might be a few more of them. The 
principle, however, remains unchanged.

Partitioning
Partitioning is deciding where to locate database files on disk to reduce disk contention. 
For example, database inserts, updates, and deletes require writing to the database 
journals and log files. If there are sufficient updates, the journals or log files can become 
bottlenecks. A simple solution is to place the journals and log files on separate disks from 
the database content files. This allows the different disk seek and rotational delay times to 
overlap.

Database content can also be partitioned. By looking at the use of the database, the 
designer can locate different record types in different files or even the same record type 
spread across multiple files partitioned by a data item value.

Partitioning can also be used in conjunction with clustering. The database designer 
can cluster Line Item around Order while storing each in a different partition. Partition 1 
might contain all Orders while Partition 2 all Line Items. The trick is that all the Line Items 
for a particular Order are stored together, ideally on a single database page, in Partition 2.

For most systems, partitions are a DDL matter and not a DML one, making them 
totally transparent to the application program. Partitioning works particularly well 
when customizing hardware. The database designer can create a partition on an SSD 
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for the most frequently accessed record occurrences while less frequently accessed 
occurrences are on slower media. Partitions also are useful when the database is spread 
across multiple servers, allowing each server to support its own backup and recovery. 
Independent backup and recovery is particularly useful when the volume of data is  
quite large.

Both partitioning and clustering information can be displayed on the physical 
database design diagram (Figure 13-7).

Derived and Duplicate Data
In logical data modeling, only primitive data are modeled. Derived data are excluded 
because they are the result of one or more processes acting on primitive data. For 
example, there is no need to model the total number of courses a student has taken if you 
have all the courses the student has taken in the database. The application can simply 
count them.

However, you might want to include a TOTAL COURSES TAKEN data item in the 
Student record if (1) it would require excessive physical I/Os to calculate the number of 
courses or (2) the calculated data are often required. The database designer could decide 
that, for performance reasons, it makes sense to store this derived data.

There might be similar reasons to store duplicate data. Adding a few redundant data 
items into different record types can reduce physical I/Os and speed up processing.

WORD SOUP

Some authors make a distinction between data duplication and data redundancy. 
Duplicate data are always a no-no, while redundant data are permissible duplicate 
data. Other authors think it’s a case of toMAto-TOmato.

The argument against duplicate data is the mess that can occur if not all copies of the 
data are updated simultaneously. However, duplication is perfect for read-only databases. 
Duplicate data are a favorite of many NoSQL systems, which sprinkle popular data items 
around the database to reduce physical I/O.

Figure 13-7.  Clustering and partitioning information on the enhanced database diagram
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Denormalization
Denormalization is another favorite of NoSQL database systems, which like to cram a lot 
of data into a single record occurrence. They also like to add group data and repeating 
groups back into the parent record. If few customers have more than one address, then it 
might make sense to place the primary address in the customer record.

The purpose of normalization is to protect the database from ill-conceived inserts, 
updates, and deletes. However, if the database is read-only, then normalization is not 
needed. Data warehouses, which tend to be large and read-only, are prime candidates for 
denormalization.

Get Rid of ACID
ACID (Chapter 8) is expensive. It requires that all database insert, update, and delete 
transactions follow at least most, if not all, of the following steps:

	 1.	 The data to be changed (and sometimes even the data stored 
around it on the same database page or file) must be locked so 
that others cannot access them while the change is occurring.

	 2.	 An image of the existing data (before image) is written 
(involving one or more disk writes) to a journal file before the 
data are changed, and another image of the data (after image) 
is saved (one or more disk writes) to a journal file after the 
change.

	 3.	 All the transaction steps taken are recorded to a separate log 
file (one or more disk writes).

	 4.	 All the writes are flushed to ensure that all the changes are 
physically on the disk and not stored in some buffer awaiting 
transfer to disk.

Updating a single database record occurrence could involve more than a dozen 
physical disk writes (not logical writes) before the actual record occurrence update is 
completed. In terms of resource utilization, a database update could require 10 or more 
times the resources of a simple database read.

Eliminating or reducing one or more of these steps can significantly speed up a 
database transaction and, if all goes well, nothing is lost. This is how many of the NoSQL 
systems obtain their speed. By not getting into locking, journaling, and logging the 
update, the speed of a transaction can be increased tenfold.

If you can live with the proclivities and vagaries of the non-ACID world, then you 
can, if your DBMS allows, turn off the ACID functions to improve performance at the cost 
of guaranteed data integrity.

Figure 13-8 is a completed Enhanced database design diagram showing clustering 
and partitioning.

http://dx.doi.org/10.1007/978-1-4842-2722-0_8
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Ideally, applying the techniques presented in this chapter should allow your general-
purpose DBMS (SQL Server, IMS, Oracle, MySQL, etc.) to accommodate your productivity 
requirements. Unfortunately, there are times when the standard DBMS, no matter how 
you configure it, cannot handle the required load. For example, Big Data, the reams of 
information generated by automated systems, are often more than the traditional DBMS 
can handle. How big is big? There are no specific or even agreed-upon answers, but a 
useful rule of thumb is that the delineator between traditional data and Big Data is the 
practical storage and processing limits for traditional information managers. For Big Data, 
you might have to use a specialty or niche DBMS, such as one of the NoSQL products.

Big Data, Big Problems, Big Solution
Big Data is one of the latest technologies to unsettle IT. Organization after organization is 
in a quandary, trying to figure out what to do about the large volumes of data streaming 
in from a myriad sources. For example, a supermarket or chain store might record every 
customer transaction, resulting in a database that could grow to petabytes in size.

How big is Big Data? Nobody knows—or everybody knows but nobody agrees. Does 
“big” refer to the number of records in a database or to the number of data items in a 
record or to the number of bytes that need to be stored? Perhaps it refers to the amount of 
data that must be processed in a certain period of time or the number of users that need 
to access it? If you read the literature, you discover that the answer is, yes—which, in a 
entanglement of twisted logic, is also the same as saying no. For convenience, if nothing 
else, Big Data is usually classified by the number of bytes that need to be stored and 
accessed.

Figure 13-8.  Physical database design diagram showing clusters and partition 
information
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How many bytes constitute Big Data? Gigabytes might be Big Data. Petabytes are 
most assuredly Big Data, and exabytes are very big Big Data. However, the label is not only 
inexact, it is unnecessary. Storing such large amounts of data is easy if you can afford the 
hardware—you can place as many records in a flat file as you want although the file might 
consume miles of magnetic tape or span hundreds of disk drives.

Accessing the data to use it is another matter entirely. Most traditional DBMSs should 
handle gigabytes of data, they might struggle to the point of collapse with terabytes of data, 
and they might drop dead on the floor faced with exabytes of data. Processing Big Data 
presents some big problems (Figure 13-9). Luckily, there is a big solution available: NoSQL.

To Plunge or Not to Plunge
Before diving into a Big Data solution, the IT organization needs to be comfortable that 
the plunge is necessary. Big Data can sometimes be handled by traditional data managers 
such as Oracle and DB2. If not, then there are number of nontraditional solutions 
that specifically target Big Data. However, choosing to use these tools is a big decision 
that should not be taken lightly. Table 13-6 presents a good guideline to follow: use a 
nontraditional solution only if you absolutely have to.

Big Data drives the design 

Trade-off decisions: Design the database
to accommodate Big Data.  

What you gain: Ability to process very large
amounts of data.  

What you might lose: Flexibility and the
ability to attain satisfactory throughput.  

Figure 13-9.  Trade-off triangle—accommodating Big Data

Table 13-6.  Technology Escalation Rules

1. � If the application can be adequately managed by a traditional data manager  
(e.g., RDBMS), then use a traditional data manager.

2. � If, and only if, a traditional data manager cannot adequately manage the 
application’s throughput or volume requirements, then look to nontraditional 
solutions (e.g., NoSQL).



Chapter 13 ■ Customization: Enhancing Performance

279

Why choose a traditional system over a nontraditional one? Reasons include

•	 The pool of staff experienced with traditional DBMSs is 
considerably larger than the pool of staff experienced with 
nontraditional DBMSs.

•	 The availability of traditional DBMS training, documentation, 
consulting help, and support tools greatly exceeds that for the 
nontraditional DBMSs.

•	 Most IT organizations that support a nontraditional DBMS also 
support at least one traditional DBMS, often requiring duplicate 
staff expertise, procedures, training, development, test, and 
maintenance environments.

•	 Nontraditional DBMSs—being newer than traditional DBMSs—
will likely undergo a greater rate of change (features, syntax, 
maintenance fixes, etc.) than traditional systems, resulting in 
greater instability and support costs.

However, circumstances often dictate the direction you must take, and a 
nontraditional DBMS, such as NoSQL, might be the only practical solution to an 
application problem.

NoSQL
NoSQL is not so much data architecture as a collection of data architectures tuned to 
solve a single problem, or at most just a few.

NoSQL products are categorized by some authors as schema-less, meaning that 
there is no formal schema like you might find with a traditional DBMS. Although the 
statement is technically not true, it does capture an important characteristic of NoSQL 
systems. You could describe NOSQL as a series of stand-alone subschemas. This 
observation is driven by two common NoSQL features—its usage-driven nature and its 
single record type structure.

First, NoSQL systems place significantly more emphasis on data usage than 
traditional data management systems. In fact, usage is the primary driver of database 
design. Data structures, such as records, attributes, clusters, and partitions, are primarily 
determined by how data is accessed rather than its definition.

Second, a goal of a NoSQL database design is to have each usage scenario supported 
by a single NoSQL record type. Denormalization, specifically cramming all the user-
required data into a single NoSQL record, is what gives NoSQL its speed and traditional 
DBA weltschmerz. A single NoSQL record might contain multiple occurrences of multiple 
entities. The resulting NoSQL fat record can then be accessed with a single I/O.

Cassandra is an open source NoSQL DBMS originally developed by Facebook and  
now maintained by the Apache Software Foundation. Some authors refer to Cassandra as a 
key-value architecture, others as a wide-column architecture, and still others as a partitioned-
row store. Actually it is all of these. As with many NoSQL products, it is an assemblage of 
numerous, sometimes diverse, features. For example, key-value is how Cassandra stores data 
fields, while wide-column architecture describes how records are constructed.
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Cassandra’s essential features include

•	 Clustering: The Cassandra partition is a multiple-record type, 
multiple-record occurrence, basic unit of storage, allowing the 
retrieval of multiple record types and occurrences with the same 
physical I/O (the NoSQL fat record).

•	 Hashing: All Cassandra partitions are automatically stored based 
on a hash of all or part of the partition’s primary key, providing 
fast storage and retrieval, ideally with a single physical I/O.

•	 Aggregation: Both group and multivalue attributes are supported 
and heavily used.

In the previous section it was mentioned that when using a traditional DBMS, the 
designer can improve performance by turning off ACID features. Well, Cassandra does 
that for you. Cassandra adds to its lightning speed by not having to lock records and 
journal activity.

While Cassandra is not ACID compliant (though it does optionally support some 
ACID features), it does, like a number of NoSQL products, go half the distance. Cassandra 
is BASE compliant (Chapter 8), which means it may provide these steps but not in 
real time. They might write to a journal file but not before the transaction is declared 
complete. If the system goes down a minute of two after the transaction is “complete,” 
then you are probably safe. If it goes down a half-second after the transaction is declared 
complete, well, who knows. Cassandra even calls it “eventual consistency,” reflecting its 
policy of “we’ll get there when we get there.”

Modeling Big Data U3D Style
In Cassandra, the basic unit of storage is called a partition, or a column family. 
(Cassandra, it seems, has at least two names for everything.) The partition is stored by 
hashing the partition key, which makes up all or part of the primary key. All access to the 
partition is by the hash value derived from its partition key—no indices needed. Within 
the partition there can be multiple rows that can be stored in a particular order according 
to a clustering column or clustering key (the second part of the primary key).

Take the following usage scenario:

Usage Scenario: 7 Name: Produce Active Employee Roster by 
Department

Processing type: Query Frequency: Upon Request

7.1 Enter Department, for all occurrences (75 occurrences)

7.2 Find Employee occurrences where Employee STATUS = “Active”

(2,000 occurrences)

http://dx.doi.org/10.1007/978-1-4842-2722-0_8
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Cassandra has a stated goal of maintaining only one table per query (usage 
scenario). Figure 13-10 shows how the two traditional record types supporting Usage 
Scenario 7, Produce Active Employee Roster by Department, are stored as a single 
Cassandra partition.

The DDL code in Figure 13-10 sets up a partition called department with the 
partitioning (hashing) key department_name. Within the partition, rows of employee 
information are sorted by the cluster key or cluster column, employee_name, in 
employee_name order (giving Cassandra its wide-column designation). Think of a 
parent-child relationship with the partition as the parent and the rows as its children.

Cassandra also supports aggregation (Table 13-7), which is used to store a limited 
number repeating items.

The only way NoSQL can support each usage scenario with a single partition is with 
large amounts of data duplication and denormalization. (A note on Cassandra replication 
and duplication terminology: Replication is storing a partition in more than one node 
[server]. The database designer has the option to store each partition on one, two, or up 
to all servers in the server cluster. Duplication is storing the same data items multiple 
times within a partition or across multiple partitions.)

By capitalizing on the partition/row architecture, its use of aggregation and hashing, 
fueled by a liberal use of data duplication and denormalization, Cassandra could conceivably 
retrieve an account, all of its orders, and all of their line items (the unceremonious NoSQL fat 
record), with one physical I/O.

Figure 13-10.  Creating a Cassandra petition

Table 13-7.  Cassandra-Supported Aggregation

Group Attribute Multivalue Attribute

CREATE TYPE address (
    // a user defined data type
  street           text,
  town             text,
  state_province   text,
  postal_code      int
);

CREATE TABLE customers (
  customer_id int PRIMARY KEY,
  first_name       text,
  last_name        text,
  phone_number set <text>
   /* repeating group for
   multiple phone numbers */
);
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The features found in Cassandra are not unique to Cassandra. Other NoSQL systems 
support similar concepts providing similar results.

Customization Notes
Customization notes is one of the most important deliverables coming out of step 4, 
Customization. In fact, it’s one of the most important deliverables during all of U3D. 
The reason is that the issues raised and the decisions made during Customization are 
some of the most volatile, debatable, and controversial ones of the entire design process. 
Hardware changes, or a new operating system or DBMS release, can require significant 
database updates on rather short notice.

Customization notes should include answers to these four questions:

•	 Why? If an index was added, or removed, it is important to 
document it. Equally important are the reasons for decisions 
surrounding changes that were discussed but not made and why 
they were not made.

•	 Where? The notes should reflect exactly where in the database 
design any new concepts were introduced or existing ones 
changed.

•	 When? Design changes and test results do not always align. 
Comparing test results with an incorrect state of the design can 
prove disastrous.

•	 Results? Document all results: the good, the bad, and the ugly. 
There are times when the bad and the ugly are more useful to 
future designers and DBAs than the successes. A report of a 
misapplied index or partition can save a successor from making 
the same mistake.

The designer or DBA will be well served with a robust set of customization notes.

Deliverables
Step 4, Customization, should produce the following deliverables:

4.1: Enhanced database design diagram: The final physical 
database design diagram (Figure 13-11 in the next sections 
shows an EPDDD for a traditional data manager)

4.2: Enhanced schema (DDL): Performance enhanced version 
of the schema created in step, 3 Formalization

4.3: Enhanced Subschemas (DDL): Performance-enhanced 
version of the schemas created in step 3, Formalization
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4.4: Enhanced database object definitions: Update of all 
database object definitions to reflect step 4, Customization, 
changes (Figures 13-12, 13-13, and 13-14)

4.5: Customization notes: A narrative or journal created by the 
database designer of the activities, issues, and decisions made 
during step 4, Customization

Examples of Deliverables
Figure 13-11 shows the Enhanced database design diagram.

All clusters need to be documented, including the reasoning for having them. 
Figure 13-12 shows the cluster definition.

TRADITIONAL
DATABASE DESIGN 

CHANGES MADE TO THE MODEL

Clusters are created for Customer, Account,
and Product.  

Partitions are created for Customer and
Product.  

Indices are created for Customer, Corporate,
Account, Order, Product, and Warehouse.  

Figure 13-11.  Enhanced database design diagram
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Partitions are simple for some database management systems, but for others they 
involve considerable interaction with the computer’s operating system. This distinction 
can result in different parties needing to be involved with the activity (DBA or system 
programmer). The information each needs might vary, requiring the capture of different 
documentation for partitioning. Figure 13-13 shows the partition definition.

Most databases contain a considerable number of indices, with the index count 
easily eclipsing the number of record types, even more so for relational databases. 
Having accurate information about each index is critical for good database maintenance. 
Figure 13-14 shows the index definition.

Figure 13-12.  Cluster definition

Figure 13-13.  Partition definition
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Figure 13-14.  Index definition

*     *     *     *     *
“No battle plan survives contact with the enemy,” said Prussian Chief of Staff 

General Helmuth von Moltke. A more modern version of his quote might be that the 
best battle plan is useless once the first shot is fired. A database design is questionable 
as soon as the database is put into production unless it is monitored and tuned 
starting on day 1. Considerable time and expense goes into database design; however, 
the cost of keeping a live, breathing database functioning to specification is often an 
undervalued, underfunded, and underperformed task. However, both the database 
and its documentation need to be monitored and kept up to date if the database is to be 
successful. If the database designer follows the steps laid out in U3D, then the difficult 
task of maintenance should be easier and, more important, the efficacy of the database 
that much greater.
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CHAPTER 14

The Data Warehouse

The fewer data needed, the better the information. And an overload of 
information…leads to information blackout.

—Peter F. Drucker

It is not the facts that we can put our fingers on that concern us but the 
sum of these facts; it is not the data we want but the essence of the data.

—John Cheever

Over its nearly 50-year history, the decision support system (DSS) has assumed various 
names encapsulating sometimes identical, sometimes unique, components and features; 
however, the fundamentals remain essentially the same. The basic DSS includes (1) a 
user interface or front end, often bristling with analytical and mathematical capabilities, 
and (2) a storage system, or back end, to house the data the user interface analyzes 
(Table 14-1).

Table 14-1.  The Basic Decision Support System

Front-End Analytical User Interface Back-End Database

Business intelligence (BI)
Predictive analytics
Business analytics
Dashboard
Online analytical processing (OLAP)
Data mining

Data warehouse
Data mart
Knowledge base
Information base
Multidimensional database
Data cube
Information repository

Regardless of the fancy charts and graphics it produces and the clever gimmicks it 
embraces, a DSS is a system that provides management and certain subject experts with 
the capability to dig deep into the voluminous data created by the operational systems to 
uncover the trends and patterns they, not so obviously, contain. The job of the database 
designer is to create the storage system, most commonly called a data warehouse, to 
support these varied analytical-user interfaces. This chapter focuses on the design and 
construction of the data warehouse.
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The Data Warehouse
Early database designers had a problem. Their major success—transaction processing—
allowed the database to be the record-keeper of business events, documenting each 
and every important business interaction. Reports of those transactions provided line 
supervisors with timely and accurate detailed information about enterprise activity for 
that day, week, month, or year.

Senior management staff now wanted to get in on it, but the information they wanted 
was often not what the transaction systems provided. There were two fundamental 
problems. First, transaction-based applications provide line managers with standard, 
predefined reports at predetermined times. Senior management was looking for…well, 
they didn’t know what they were looking for—that was the problem. Rather, they wanted 
to interrogate the system with questions that might have been formulated just moments 
before and were based on the answers to previous questions.

Second, query-based software made management requests possible but not 
necessarily practical. Remember those old-time movies of the state prison the night of 
an electrocution? Everybody was looking at the clock as it approached midnight when 
suddenly the lights dimmed and all knew that the switch was thrown on the condemned 
inmate. Well, the same thing happened when management started querying the 
production database. The lights might not have dimmed, but transaction processing 
response time tanked.

In spite of what you might have read, the first impetus to create a separate database 
for management information was not some intellectual coup de maître or epochal 
academic paper, but rather the complaints of frontline managers who saw their 
transaction systems grind to a halt. The solution was to dedicate a separate database, 
ideally on a separate machine, to house I/O-hungry DSS queries. The moaning of 
transaction supervisors was fortuitous because it provided the opportunity not only to 
copy the production database but to change its design to better support this new mission.

The modern data warehouse is a repository of information for the purpose of 
answering unstructured and unscheduled queries (Table 14-2). These DSS queries 
can require sifting through hundreds, thousands, or even millions of records, and 
summarizing a result that is, sometimes, a one-line answer. Think of the iPhone’s Siri 
answering the question, “Where is the closest Italian restaurant?” The phone might have 
to sift through dozens and dozens of records to find the answer, which is then delivered in 
ten words or fewer.
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The data warehouse cartel took off like a Texan at a handgun convention. Suddenly 
there were specialized databases, specialized software, specialized consultants, and 
specialized academic departments. All of these resources were dedicated to stuffing all those 
arcane management and statistical formulas, which had been sitting unused on college 
shelves for decades, into a new IT endeavor. Business was good even if success was chimeral.

The threat to the data warehouse’s success was the data—often millions of records 
that DBAs had no idea what to do with. The solution: summarization. Early data 
warehouse designers spent considerable time on summarization and consolidation, 
trying to pare the data mountain down to a manageable molehill. The problem was, 
exactly how do you do that? How do you consolidate a million nit-level transactions into 
the couple thousand proxies your computer, database, and query language could handle 
without misrepresenting the detail?

Consolidation can unintentionally skew the answer to those heady management 
questions. It would help if designers knew the questions that were going to be asked, 
but that was difficult because ad hoc queries have a nasty tendency to be, well, ad hoc. 
Database designers had little to go on in determining how exactly to summarize the data. 
The details of summarizing became a central issue of data warehouse design.

CONSOLIDATION VERSUS MISREPRESENTATION?

Consolidation (summarization) assigns a record to a summary bin where certain 
detail fields are counted or aggregated. The problem is that unless its eventual use 
is known, the designer has no idea how many bins there should be or how detail 
data should be assigned to them. For example, if there are one million Line Items, 
should there be five bins for cost (less than $10, $10 to $39.99, $40 to $99.99, 
$100 or greater) or a thousand bins each representing a $1 increment?

The fewer bins there are, the better the performance but at an increased risk of 
biasing query results. Too many bins and performance suffers. Assign detail to the 
wrong bin and the results are questionable.

Table 14-2.  Difference Between Transaction Processing and Decision Support Systems

Transaction Processing System Decision Support System

Mission Recordkeeping, documenting 
business activity

Support management decision 
making

Type Single event Multiple related events

Purpose Record an event Uncover a trend

User Clerk, line supervisor Senior management, subject 
specialist

Reporting Standardized at fixed moments in time Variable over different time periods

DBMS Process focused Subject focused

DBMS Output 90% detail, 10% summary 10% detail, 90% summary
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Technology came to the rescue just in time for Big Data. New cheap hardware 
made much of the worry about summarization superfluous because why summarize? 
The warehouse could now handle the terabytes or petabytes or, heaven forbid, exabytes 
of data that production systems could spew out. This does not mean that rigorous 
consolidation is not useful and cost effective, just that there is now a hardware backstop 
in case accurate summarization is not possible.

Now that the volume problem could be corralled, if not necessarily tamed, database 
designers could move on to the next problem: how do you design a database for a 
data warehouse? Luckily, there is no shortage of answers; unluckily, most of them are 
questionable. The best way to design a database for a data warehouse is to do the same 
thing you do to design a database for any other application—use U3D.

Start at the beginning. Your garden-variety database is designed to support one or 
more mega-processes. A payroll database supports the mega-process payroll (which 
might include dozens of normal-sized processes), an order entry database supports the 
order entry mega-process, and an inventory database supports the inventory uber-
process. The common word here is process. As was presented in Chapter 11, as much as 
you might like to think that databases are independent of applications, they are, in fact, 
still tied to them.

Data warehouses, on the other hand, are not usually designed to support a process 
but rather a subject. The subject might be products, or it might be customers, or even 
distributors. The typical application supports one mega-process (e.g., payroll), while 
the subject data it uses (employee, project, etc.) might be spread across multiple 
databases (supporting other applications). The data warehouse inverts this structure. The 
warehouse contains all the data on a particular subject (employee) that might be used by 
multiple applications (payroll, project planning, benefits, general ledger).

Data Warehouse Architecture
If you look at successful decision support systems (there are a few), you will notice 
that the data warehouse database design looks nothing like its operational cousin. The 
most common data architecture is the star schema—a single fact record surrounded by 
multiple dimension records forming a star pattern (Figure 14-1). The fact record type sits 
in the middle of the schema at the many end of a number of one-to-many relationships. 
The dimension records are used to query the fact record.

Figure 14-1.  Star schema

http://dx.doi.org/10.1007/978-1-4842-2722-0_11
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For example, using Figure 14-1, if you want to know exam results by teacher, you 
would enter the database at Teacher, find the Teacher occurrence(s) you want, and then 
follow the link to all the Test Results occurrences for that Teacher. It is a two-step process: 
(1) select the dimension record for the search criteria and then (2) follow the links to the 
fact records where the desired data are stored.

If the dimensions are linked to record types other than the fact record, the structure 
is then called a snowflake schema. Although a bit more complicated, it works using the 
same two-step process as with the star schema.

The challenge for the designer is to identify the fact record. A common immediate 
reaction is to think that the fact record is the subject record type (Product, Employee, 
Student, etc.), but, as in the example, that is often not the case. If one were forced to pick 
the most likely candidate for a fact record in an operational database, it would most likely 
be the record type with the most occurrences and/or the record type at the many end of 
the most one-to-many links.

In reality, this is not always true either. The best fact record is often constructed 
from multiple record types, often denormalizing what was normalized when creating the 
operational database.

Using U3D to Develop a Data Warehouse
The steps to create a data warehouse are no different from those to create an operational 
database. U3D works for all database design, regardless of use. The following 
demonstrates how the same four U3D steps can help the database designer create a 
successful data warehouse design.

Step 1: Transformation
As with any database, the first step in creating a data warehouse is converting, or 
transforming, any subject-related logical data models into a physical data model. 
Figure 14-2 consists of two logical data model fragments showing the Product entity and 
its entity neighbors.
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The only aspects of step 1 unique to developing a warehouse are finding all the 
logical data models for all the applications that deal with the data warehouse subject. If 
the designers want to create a product data warehouse, then they should look for all the 
logical data models for any application that involves products. Put them all together, and 
you have a physical data model for the warehouse subject.

Step 2: Utilization
In step 2, Utilization, the major differences between operational and warehouse 
databases first show up. The way the data were used in the order entry system and all 
the other applications will not be the way they will be used in the data warehouse. The 
database designer needs to rethink the usage by developing new data warehouse–specific 
usage scenarios.

Although it is a fundamental part of the data warehouse catechism that users do 
not know how they will use the warehouse, it is, in fact, not entirely true. If business 
executives did not have some idea of what they would do with the data warehouse, they 
would never have come up the money to pay for one. Data warehouses start at $100,000, 
and many add one or two zeroes before they are done. No business will fund a data 
warehouse unless it has a good idea of what it will use it for even if specifics are elusive. 
The designer should talk to the managers who will be using or feel they will be benefitting 
from the warehouse to get some idea of what they have planned. Often a decision support 
or business intelligence vendor is standing somewhere behind the user (contract in hand) 
that can help the designer understand how others have used similar systems. In any 
event, the data warehouse designer should develop several likely scenarios describing 
how the warehouse will be used, at least initially.

Figure 14-2.  Order management system and warehouse system logical data model 
fragments
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ONE QUESTION PER WAREHOUSE?

I once met a successful and well-known DSS designer for a major international 
bank. He believed that every DSS and data warehouse was designed to answer only 
one question. Any other uses were either serendipitous or erroneous.

While it is doubtful he was correct, nonetheless that 25-year-old exchange is 
remembered for a reason. Experience has shown that behind every DSS is one, 
two, or a few important questions its owners want answered. The data warehouse 
designer just has to uncover them.

The product warehouse might include the following scenarios:

Usage Scenario 101: What is the average size of an order?

101.1  Enter Order

101.2  Find Line Item

Usage Scenario 102: Which customers, consumer or wholesale, 
generate most of the business?

102.1  Enter Customer

102.2  Find Account

102.3  Find Order

102.4  Find Line Item

Usage Scenario 103: Which products are the best sellers?

103.1  Enter Product

103.2  Find Line Item

Usage Scenario 104: Who is the most important manufacturer?

104.1  Enter Manufacturer

104.2  Find Line Item

A few things should become obvious. First, each scenario ends with the Line Item 
record. Second, other records are accessed at the beginning of the scenario and are used 
to select a subset of Line Items.

This is the basic structure of a warehouse. The center is a single (often voluminous) 
record type called a fact record, and the other record types, used to group the Line Items 
into desirable cohorts, are called dimensions. A data warehouse consists of a (usually) 
single fact record type surrounded by numerous dimensional record types. In most cases, 
each dimension is attached to a fact record in a one-to-many linkage (one dimension to 
many facts). It is, in most cases, the only link tied to a dimension. The fact record type, on 
the other hand, looks like a pincushion, with links to multiple dimensions.
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The Rationalized physical data model in Figure 14-3 is not a star but a snowflake 
(because the Customer and Account records are linked to the Order dimension), 
although “spiderweb” would be a more accurate though less majestic name.

Figure 14-3.  Rationalized physical data model

The snowflake moniker is used to reflect more complex structures than the simpler 
star. However, many designers work to reduce the snowflake to a star, allowing an easier 
link between fact and dimension. If the warehouse uses a relational DBMS, a star would 
require only a simple join to answer queries.

Key to data warehouse success is figuring out which record type is the fact record and 
which are the dimensions. These are a few simple rules of thumb to help:

•	 The most populace or detailed record type is a good candidate for 
the fact record.

•	 The fact record is often, although not always, an attributive or 
associative record.

•	 The fact record is often the one with the most links to other record 
types, usually one-to-many, with the “many” end attached to the 
fact record.

The Time Dimension
Almost every dimension should come from the physical data model, with a few 
exceptions. Virtually every data warehouse requires a time dimension—a way to provide 
a time slice of the information in the fact record.

The database designer needs to consult with the warehouse users and business 
analysts to determine exactly what time slices are needed and their granularity. For 
example, a retail organization needs to know not only date but the day of the week, 
holidays, and more. If is often more important for a retail organization to compare sales 
figures for the first Monday of June this year with the first Monday of June last year, 
regardless of the date of each Monday. Comparing June 4 this year with June 4 last year is 
useless if this year it’s a Monday but last year it was a Sunday.
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Also important is granularity. The time dimension needs a record occurrence for 
each time slice. If the time granularity (lowest level) of data for a warehouse is monthly, 
then storing 10 years of data requires only 120 time records. Weekly granularity requires 
approximately 520 time records, daily 3,650 time records (ignoring leap years), and hourly 
(assuming a 24-hour window) 87,600 records.

Step 3: Formalization
Formalization is no different for a data warehouse than for any operational database. The 
only variation might be the choice of DBMS. A number of data management products on 
the market specialize in supporting decision support systems. About half of the NoSQL 
vendors say that their products are perfect for a warehouse. However, the majority of data 
warehouses are developed using a standard RDBMS.

Step 4: Customization
The data warehouse designer has a number of options to ensure that warehouse 
performance is acceptable.

Streamlining
If the warehouse is designed correctly and the business uses it appropriately (not as a 
substitute transaction processor), then it is most likely read-only. This means that ACID 
compliance is not needed, freeing the DBMS from record locking, journaling, logging, 
and backup and recovery overhead. If you are using a general-purpose DBMS, you might 
have to do some system software work to stop the DBMS from creating and maintaining 
these support functions and files.

Duplication
Read-only databases are excellent candidates for a liberal use of duplicate data. The 
designer should feel free to use duplicate data when and where they can improve 
performance.

Denormalization
Normalization was created to avoid insertion, update, and deletion anomalies. As with 
duplication, denormalization can be ignored if the database does not do any insertions, 
updates, or deletes—at least not at the transaction level. The most frequent use of 
denormalization is the reintroduction of groups (aggregate and multivalue).
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Indices and Hashing
Indices on the dimensions allow quick access. In some cases, the dimension might 
contain only a primary key. There are times, with some DBMSs, when the dimension 
record type can be eliminated and an index placed on the “phantom” foreign key in the 
fact record. That’s the good news. The bad news is that indices might consume more than 
half of a warehouse’s disk storage. Adding new records and their associated indices to the 
warehouse can be a process that takes many hours. More than one IT shop schedules its 
warehouse updates for over the weekend because of the time required.

Hashing is a useful warehouse tool if (and only if ) the database is sufficiently stable 
not to require expansion beyond its design. If the database must be constantly made 
larger to accommodate new data, then the hashing algorithm might need to be modified 
and all of the hashing keys recalculated…a very long process.

Bitmaps
Bitmaps were described in Chapter 8. These are technically index files in which a bit 
represents a binary data value within a record occurrence. Two outstanding features define 
bitmaps. First, the bitmap file is a sequential string with one bit for every record occurrence. 
The sequence of bits in the string is identical to the sequence of the record occurrences in 
the file. For example, the first bit in the string stands for the first record occurrence in a file, 
the 10th bit in the string stands for the 10th record in the file, and so on.

Second, the value of the bit represents the binary value for one data field in that 
record occurrence. For example, assume the Employee file includes the data item 
GENDER, which can have the value “M” or “F.” If the first record occurrence in the file is 
for Peter Yarrow with GENDER = “M,” the second record occurrence in the file is for Paul 
Stookey with GENDER = “M,” and the third record occurrence is for Mary Travers with 
GENDER = “F,” and if the bitmap stores a 1 for “M” and a 0 for “F,” then the first three bits 
of the Gender bitmap will be “110.”

The beauty of bitmaps is that you can apply logical operations (i.e., and, or, not) to 
them. Imagine the Employee file with the two data items GENDER and VESTED. As in the 
previous example, the only data values for GENDER are either “M” or “F.” A bitmap index 
is created on GENDER (bitmap file 1 in Table 14-3) storing a 1 if GENDER’s data value = 
“M” and a 0 if the value is “F.” The data item VESTED indicates whether the employee is 
vested in the company retirement plan. VESTED also has only two data values, “Yes” and 
“No.” Bitmap file 2, the VESTED bitmap, stores a 1 if the value of VESTED is “Yes” and 0 if 
the value is “No.”

http://dx.doi.org/10.1007/978-1-4842-2722-0_8
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If the company wants to know how many female employees are not vested, they 
could construct a query using bitmap files 1 and 2. If the first bit of the Gender bitmap 
is a 0 and the first bit of the Vested bitmap is a 0, then the system sets the first bit of the 
Result bitmap (bitmap file 3) to a 1, else the first bit of bitmap 3 is a 0. The same operation 
is applied to all of the Gender and Vested bits. The Result bitmap shows that three female 
employees are not vested. The system did not have to touch the content data to report its 
results; it just had to add up the 1 bits in the Result file.

If a query is issued to report the names of all female employees who are not vested, 
the system knows to go to the 3rd, 4th, and 7th records to return the names Dance, Jones, 
and Lovelace.

Well-constructed and intelligently used bitmaps can turn an overnight query into a 
few-second exercise.

Bulk Loading
Online transactional systems add and modify data, often one record at a time, all 
day long. Index maintenance is carried out in real time before the (ACID compliant) 
transaction is declared complete. Data warehouses are updated on a schedule, often only 
once a week or once a month. Updating indexes on each record as it is added would make 
the process slower than a Christmas holiday at your in-laws.

The solution is to bulk load the data, dumping all the data in the database and then 
building an index from scratch. This allows the DBMS to fill one database page at a time, 
significantly reducing physical I/O.

Table 14-3.  Applying Logical Operators to Bitmaps

Record Type Bitmap Bitmap Bitmap
Employee File 1 File 2 File 3
Name Gender Vested Gender Vested And

Rudolf Carnap Male Yes 1 1 0

Alonzo Church Male No 1 0 0

Priscilla Dance Female Yes 0 1 1

Emily Jones Female No 0 0 1

Willard Quine Male No 1 0 0

Christine  
Ladd-Franklin

Female Yes 0 1 0

Ada Lovelace Female No 0 0 1

Alfred Tarski Male Yes 1 1 0

Ludwig Wittgenstein Male Yes 1 1 0
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Clustering
Clustering is useful for the dimensions but less so for the fact record type. If the designer 
knows in advance that one particular dimension will dominate all others, then clustering 
it with the fact record can be helpful.

Partitioning
Partitioning can become the data warehouse designer’s best friend. Partitions can be 
used for initial data loads, placing each month’s data in a separate file with separate 
indices. This not only speeds up data insertion but also leaves other parts of the 
warehouse undisturbed. The value of this advantage becomes obvious if you have to 
rebuild a warehouse-wide index.

Partitions can also be used for the fact record type and for the different dimensions. 
Having each dimension in its own file can speed up not just single dimensional but also 
multidimensional processing.

Distributed Processing
Distributed database managements systems (DDBMSs) were once the future of data 
management. In the 1980s, considerable buzz and gallons of ink were devoted to this 
technology. The hope was to create a network of databases on multiple computers in 
the same room or across the globe that were all part of the same system. Any, and all, 
transactions, wherever they were initiated, would propagate to any relevant machine 
in real time. If any machine failed, anywhere in the world, before the transaction was 
complete, it would be rolled back in every machine everywhere. The magic that would 
keep this system ACID compliant was the two-phased commit, an amalgam of signals 
sent back and forth from machine to machine to ensure that all were synchronized.

Unfortunately, although the two-phased commit reduced the window of 
vulnerability, it did not remove it, so the updateable DDBMS went the way of Ford’s Edsel 
and Sony’s Betamax.1 Then a miracle happened—the data warehouse. It didn’t need the 
disappointing two-phased commit because there was nothing to commit. The read-
only warehouse gave the DDBMS a new lease on life and created the option of a global 
warehouse.

Distributing data can spread the workload across multiple servers, improving 
everyone’s performance. Distributed servers can provide hot backup in the event of 
a server or network disruption. They can also resolve some regulatory concerns. For 
example, some countries restrict where certain data such as employee health records,  
can be stored. Having a distributed system allows sensitive information to remain  
“in country,” while summary-level data can be shared across multiple sovereignties.
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All Together Now…
Note that a few options work best when they work together. Indexing, hashing, bulk 
loading, and distributed processing are at their best in a partitioned database. The 
partition allows new data to be added to the warehouse without disturbing existing data, 
index nodes do not have to be split, hash-keyed data do not have to be unloaded and 
reloaded, bulk loading can be an offline process, and distributed databases can…well…
they can exist.

Figure 14-4 is the product data warehouse database design. Note the following:

•	 The fact record is Line Item even though the system is called a 
product data warehouse.

•	 Given anticipated usage and performance reasons, the Customer 
and Account records became dimension records, turning an 
otherwise snowflake schema into a star schema.

•	 A Time dimension was added.

Figure 14-4.  The product data warehouse

A hopefully obvious question was not—but should have been—asked by the 
database designers. If the usage is as suggested in the usage scenarios, and there is no 
downside to denormalizing, then why have the Customer, Account, Order, Manufacturer, 
and Product records at all? Why not make Customer, Order, etc., just indices on fields in 
the Line Item record? That’s a good question and one that needs serious consideration.

Oops…
If you have done everything recommended here—created a distributed, bulk-
loaded, read-only database that is not ACID compliant, that uses data duplication 
and denormalization, and that makes liberal use of hashing, indices, clustering, and 
partitioning—then congratulations, you have created a NoSQL database.

It might not be in the advertising literature, but the original purpose for many NoSQL 
implementations—their bread and butter as it were—was the data warehouse.
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Customization Notes
The Customization notes, described in Chapter 13, are even more important now since 
future DBAs will need to know exactly why certain decisions were made regarding such 
things as the fact and dimension records, the data warehouse structure, usage scenarios, 
and so on.

Note
	 1.	 George Tillmann. “The Trouble with Two-Phase Commit.” 

Database Programming & Design. Volume 3 Number 9, 
September 1990, pp. 64–70.

http://dx.doi.org/10.1007/978-1-4842-2722-0_13
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CHAPTER 15

The Big Data Decision 
Support System

The purpose of computing is insight, not numbers.

—R. W. Hamming

I have always wished that my computer would be as easy to use as my 
telephone. My wish has come true. I no longer know how to use my telephone.

—Bjarne Stroustrup (originator of C++ programming language)

The traditional decision support system/data warehouse (DSS/DW) approach works well 
with large databases and structured data. However, decision-making often involves more 
than structured data. It also uses very large databases consisting of considerable amounts 
of unstructured data—Big Data.

ANYBODY SEEN MY MACE?

For those who missed the database religious wars of the 1980s, a mini-version is 
going on right now. Is Big Data stored in a data warehouse or something entirely 
different? Some very vocal authors say that the Big Data repository cannot be a 
data warehouse because a data warehouse stores only structured data. They prefer 
to call it a data lake, reflecting Big Data’s unstructured data (apparently they never 
came across a structured lake). Still others simply call the Big Data repository “Big 
Data,” indicating, it would seem, that Big Data doesn’t need a house—it is the 
house.

Others say, just as loudly, some modern version of “poppycock.” If it is a subject-
oriented, time-dependent database for a decision support system, then it is a data 
warehouse.
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It’s a silly argument.

As you will see, using U3D, you look at the problem from the data definition and 
functionality perspectives, decide what the systems should do (the what from 
Chapter 1), and then, and only then, pick the architecture, product, and version that 
best does the job (the how from Chapter 1). Is the answer Oracle? Maybe. Hadoop? 
Maybe. Or just maybe, it’s a flat file on a PC. The answer is in the data, not some IT 
pseudo-religious text.

To placate the annoying, this book could have called an unstructured Big Data 
repository a NoDW, or maybe a Data Swamp; however, the decision is to just call it 
an unstructured Big Data warehouse.

As described in Chapter 13, Big Data refers to the terabytes and petabytes of data 
collected for trend analysis, among other uses. What is not mentioned in Chapter 13 is 
that Big Data is almost always unstructured data. Although Big Data and unstructured 
data are not the same, the two share a considerable overlap in the literature as well as the 
real world.

Structured, Unstructured, and Semistructured 
Data—Another Small Digression
What is structured data? That’s an easy question. Go back to Chapter 8 and the punched-
card era of data processing. A card (record) might reserve the first 10 columns (positions) 
for CUSTOMER FIRST NAME, the next 25 positions for CUSTOMER LAST NAME, and the 
next 8 for ACCOUNT NUMBER. Further, the program or the DBMS might indicate that 
CUSTOMER FIRST NAME and CUSTOMER LAST NAME are text fields, while ACCOUNT 
NUMBER is an integer. The system knows each field’s name, its length, its data type, and, 
if it is in a data dictionary, its definition. This is structured data—the bread and butter of 
computer processing.

If its structure is known, then systems can easily display it, modify it, and use it in 
any way its definition allows. It is ideal for application programs as well as information 
managers. The RDBMS is the poster child for structured data—if it is stored and used in 
an RDBMS, then it is probably structured.

PUB TRIVIA

During a coffee break at an ANSI SPARC (database standards) meeting in the late 
1970s, a committee member shared a problem he was having with an experimental 
relational database management system his team was developing. He asked, “How 
do you do a relational join on a large text field?” And, if the notion of unstructured 
data was not born then, it was at least seen in an entirely new light—the RDBMS 
killer.

http://dx.doi.org/10.1007/978-1-4842-2722-0_1
http://dx.doi.org/10.1007/978-1-4842-2722-0_1
http://dx.doi.org/10.1007/978-1-4842-2722-0_13
http://dx.doi.org/10.1007/978-1-4842-2722-0_13
http://dx.doi.org/10.1007/978-1-4842-2722-0_8
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Unstructured data do not have the well-defined pedigree of structured data. There 
might not be any distinction between record and field, and the length might be unknown 
as well as its data type. In addition, unstructured data are also often sparse data, meaning 
that much of their significance, even their existence, is tenuous. The archetype for 
unstructured data is text; but pictures, videos, and anything not easily classifiable are 
often labeled unstructured. Popular belief is that 80 percent of all data are unstructured.

Text is an interesting example of unstructured data because while the values “Y” 
and “N,” for yes and no, are text, they are easily supported by RDBMS operators. So is 
CUSTOMER LAST NAME, which can be easily used as a secondary key or in a secondary 
index. On the other hand, the Bhagavad Gita is not easily supported by a RDBMS and 
is usually considered unstructured and relegated to BLOB status (a cinematic way, after 
the movie The Blob, of saying it doesn’t really belong in a DBMS but we will put it here 
anyway). Where is the line between structured and unstructured? Nobody knows. Then 
again, maybe it is unimportant, because the previous neat, simple, and clean definition of 
unstructured is totally wrong.

SPARSE DATA

There are two different definitions for sparse data, although, surprisingly, both apply 
to Big Data. The older definition of sparse describes data fields, or even records, 
that are all (or mostly) blank, zero, or null—or whatever concept you use for digital 
nothingness. This definition is important for Big Data because it raises the possibility 
of significant storage reduction through data compression.

More recently, sparse has been used to refer to tidbits of information that, although 
individually insignificant, contain significant meaning when part of a group. For 
example, one warm day is not an indicator of global warming, but hundreds or 
thousands of warm day readings prove very significant. In practice, much of Big 
Data can be described by this second definition. For example, although the list of all 
the products a single supermarket customer buys might be individually insignificant, 
knowing whether many customers buy certain products together might be very 
significant.

The newest member of the structured-unstructured trio is semistructured data. Only 
it isn’t new. Computers entered the newspaper industry in the mid-1960s—more than 
a decade before that ANSI coffee break conundrum mentioned in the previous sidebar. 
Printing instructions (i.e., style, size, bold, etc.) were conveyed to the typesetter using a 
set of markup codes or tags embedded in the text. The tags tell the typesetter where to 
start new paragraphs, break a line, add italics, bold a name, or underline a word. Tags can 
also be used to indicate proper names, numerical values, and dates. Is such a document 
structured or unstructured? The answer is, both.
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These structure distinctions took on additional importance with the advent of 
NoSQL and similar systems. While traditional DBMSs work with structured data, 
some NoSQL systems were specifically designed, according to their vendors, to store 
unstructured data. Other NoSQL products are advertised as working with semistructured 
data. Adding to the confusion, a review of technical magazines, blogs, and advertising 
literature indicate that there is widespread disagreement about whether a particular 
product handles unstructured or semistructured data.

The fly in the whole structured-unstructured ointment is semistructured data. If one 
understands that, then the whole structured-unstructured problem disappears.

Data are semistructured if

•	 They are not structured, meaning that they do not fit the punched 
card/RDBMS mold.

•	 They are not raw data, where raw means there is no way to look 
inside the data and discern some meaningful information.

How much raw data is there? If you think about it, you will probably conclude not 
much. Almost any data item contains some embedded information that can be extracted 
with a little effort.

An example of semistructured data can be found in the data collected by many 
supermarket chains. They want to better understand what their customers buy, when 
and where they buy it, what else they buy, and how often they visit the store. In essence, 
the chain wants to know who, what, where, when, and how much. All but who is captured 
by most electronic cash registers—they just don’t all catch it in the same way. The data 
coming in might be a hodge-podge of who, what, where, when, how much data, varying 
in size, delimiter, and order, and with missing information scattered about. These data 
are semistructured because they are not structured, but they do contain analyzable 
information.

If the pundits are correct and only 20 percent of data are structured and little more 
than 0 percent are raw, then almost 80 percent of the data are semistructured.

How real is this? There are now companies that market products whose sole purpose 
is extracting meaningful (structured) information from “unstructured” data.

What should one conclude from all this? Well, there are four possible conclusions.

	 1.	 Structured data exist. An example is customer name. A good 
name for this is structured data.

	 2.	 There is data that are not structurable. An example consists 
of the babblings of an infant. A good name for this is 
nonstructured data, meaning they cannot be structured. 
Luckily there is not a lot of this kind of data.

	 3.	 There are data that are not yet structured. An example is cash 
register transaction information. A good name for this is 
unstructured data, indicating that the data is not structured 
now but could be sometime in the future after processing.
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	 4.	 Finally, there are data that, by their very nature, seem 
unstructured but, nonetheless, contain structurable 
components. An example is the CEO’s annual report, which 
contains, in the text of the introductory statement, annual 
sales figures, products that will be introduced during the 
coming year, and new retail outlets. A good name for this is 
semistructured data.

Conclusion 1 is something IT has been dealing with for more than 100 years. IT 
understands structured data.

Conclusion 2 is accurate, but given the number of cases of nonstructured data that 
actually exist, it’s rather useless for database design purposes.

Conclusions 3 and 4, while accurate, present a distinction without much difference. 
Unstructured and semistructured data are sufficiently similar, particularly from a 
functional perspective, to be used interchangeably.

Like the words flammable and inflammable, unstructured and semistructured are, 
from a practical perspective, interchangeable, and either can be used.

DSS and Big Data
Table 14-2 in Chapter 14 showcases some of the differences between transaction processing 
systems and DSSs. Those distinctions can now be expanded (Table 15-1) to include Big Data.

Table 15-1.  Difference Between Transaction Processing System (TPS) and Decision 
Support System (DSS)

Transaction Processing System 
(TPS)

Decision Support System 
(DSS)

Structured Data/
Reasonable Volume

Traditional DBMS
-    High level of structure
-    Single processor/cluster
-    Data: Structured
-    Example: RDBMS
-    Common database

Classification: production
or operational

Traditional DBMS
-    High level of structure
-    �Single processor/

cluster
-    Data: Structured
-    Example: RDBMS
-    Common database

Classification: Data 
warehouse

Unstructured Big 
Data

Nontraditional DBMS
-    Distributed processing
-    Data: Semistructured
-    �Example: NoSQL, ex. 

Cassandra
-    Common database

Classification: Production
or operational

?

http://dx.doi.org/10.1007/978-1-4842-2722-0_14#Tab2
http://dx.doi.org/10.1007/978-1-4842-2722-0_14
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The traditional DBMS, be it SQL Server or Oracle, is most commonly used for 
transaction processing systems supporting structured data and reasonable volumes, 
where a reasonable definition of reasonable data is data that can be supported by a 
single machine or simple cluster (as represented in the top-left quadrant [quadrant 1] 
of Table 15-1). The TPS repository is usually referred to as the production or operational 
database.

The traditional DSS database is designed to support user queries and can store and 
process a reasonable amount of data (Table 15-1, quadrant 2, top-right). Decision support 
systems with structured data and reasonable volumes tend to use traditional DBMSs, 
such as DB2 and Sybase (the same as quadrant 1). The most common and appropriate 
name for the DSS repository is data warehouse.

Big Data transaction processing systems often require specialized (nontraditional) 
data managers such as those offered by NoSQL vendors (quadrant 3, bottom-left). These 
systems tend to use distributed processing to support their high transaction volumes 
(data and process). However, even here, the repository is usually regarded as a production 
or operational database.

However, Table 15-1 raises the question about the DSS/Big Data quadrant (quadrant 
4). NoSQL systems, such as Cassandra, are designed for rapid access of fat records 
(consisting of multiple occurrences of multiple entities that can be accessed with a single 
I/O)—a TPS approach—meaning that Cassandra-like systems are not ideal candidates to 
support a Big Data DSS.

It doesn’t take a doctorate from Trump University to conclude that none of the 
solutions for the three quadrants will work for the unstructured Big Data DSS quadrant.

Using U3D to Develop a Big Data Decision 
Support System
If you are building a DSS for an organization that has petabytes of data, then you will 
probably need a rather unique storage solution. Not immune to the influence of trade 
journal articles, you might be thinking of products such as Hadoop as a possibility. Good 
thinking. However, it is still important to go through the four U3D steps for deciding on a 
technology dictated by the definition and use of the data—and nothing else. Remember 
the technology escalation rule presented in Chapter 13: use a nontraditional solution only 
if you absolutely have to.

The steps to create an unstructured Big Data data warehouse are no different than 
those to create an operational database or a structured data warehouse. U3D works for 
all database design, regardless of use. Abiding by the U3D steps helps keep the designer’s 
mind focused on completely understanding the problem before moving on to a solution. 
In addition, a structured design approach provides proper documentation for those who 
will have to support your decision. The following sections demonstrate how the same, 
now familiar, four U3D steps can help the database designer create a database to support 
an unstructured Big Data warehouse.

http://dx.doi.org/10.1007/978-1-4842-2722-0_13
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Step 1: Transformation
As with any database, the first step in creating an unstructured Big Data warehouse is 
converting, or transforming, any subject-related logical data models into a physical data 
model. To build a Big Data employee DSS, the designer needs to scour the data dictionary 
for any data models incorporating employee-related entities. Figure 15-1 consists of two 
logical data model fragments showing the Employee entity and its entity neighbors.

Figure 15-1.  Employee system and project system logical data model fragments

Not all employee information will be part of existing data models. A look at 
application programs might turn up some important unmodeled information. Put all of 
the collected data together and you have a physical data model for the Big Data subject.

Step 2: Utililization
For Big Data, step 2, Utilization, is carried out significantly differently than for an 
operational database—however, it is identical to the way a designer builds a data 
warehouse. As described in Chapter 14, the designer should talk to the managers who will 
be using or feel they will be benefitting from the Big Data DSS to get an idea of what they 
have planned. The designer should then develop several likely usage scenarios describing 
how the Big Data will, at least initially, be used. The result should be a set of usage 
scenarios similar to those created in Chapter 14.

The employee DSS might include the following scenarios:

Usage Scenario 201: What is the average employee salary?

201.1 Enter Employee

201.2 Find Employee History

Usage Scenario 202: What is the average employee tenure?

202.1 Enter Employee

http://dx.doi.org/10.1007/978-1-4842-2722-0_14
http://dx.doi.org/10.1007/978-1-4842-2722-0_14
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202.2 Find Employee History

Usage Scenario 203: How many projects does the average 
employee work in a calendar year?

203.1 Enter Employee

203.2 Find Employee Role

203.3 Find Project

Usage Scenario 204: How many roles are unique to a project?

204.1 Enter Role

204.2 Find Employee Role

What is the fact record? Following the rules presented in Chapter 14, there are two 
candidates, Employee Role and Employee History. However, because both keep track 
of an employee’s history, the two can be combined into one record type, called the 
Employee Detail record type, yielding the rationalized physical data model in Figure 15-2.

Figure 15-2.  Rationalized physical data model

The result is a perfect star, but this is largely because of the simplicity of the example. 
In most real-world cases, the resulting PDM will look more like a snowflake than a star. 
The Employee Detail record (a combination of Employee History and Employee Role) 
is the fact record (or fact table), and the Role, Project, and Employee records are the 
dimensions.

Step 3: Formalization
Formalization is no different for a Big Data DSS than for any operational or traditional 
DSS database. The designer should develop a database design to support the DSS. It 
just might be the case that a traditional DSS/DW approach can support the application. 
However, given Big Data’s volume and structure, most cases will require a quick trip to 
step 4, Customization.

http://dx.doi.org/10.1007/978-1-4842-2722-0_14
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Figure 15-3 is the employee data warehouse database design. Note the following:

	 1.	 The fact record is Employee Detail, which is a denormalized 
combination of the Employee History and Employee Role 
record types.

	 2.	 A Time dimension is added.

Figure 15-3.  The employee Big Data data warehouse

The database design in Figure 15-3 should work with most traditional DBMSs.
One issue might preclude use of some traditional systems. The Employee History 

and Employee Role record types were combined to form the Employee Detail because 
both meet a number of fact record requirements. Both are associative or attribute record 
types, both are at the many end of multiple one-to-many links, and both are the most 
populace record types in their respective systems. Both also store similar (although not 
identical) information. However, combining them will mean that the composite record 
type could have some empty (blank or null) data fields, and in certain situations, one or 
more of these fields could be part of the primary key. The DBMS for this DSS will need to 
support sparse and probably semistructured data.

If it is obvious that a traditional system will not handle the required volumes or types 
of data, then why should the designer go through step 3? Why not skip Formalization and 
go directly from step 2, Utilization, to step 4, Customization?

The answer is simple. The choice of a nonstandard solution needs to be a conclusion 
and not a premise. The whole purpose of U3D is to make all decisions demonstrable and 
justifiably through proper documentation. The designer needs to prove that a standard 
solution will not work.
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An example is useful. Assume that the proposed employee DSS will house multiple 
terabytes of structured (i.e., name, employee number, etc.) and unstructured data (i.e., 
annual performance reviews, examples of reports produced by the employee, articles 
in which the employee is mentioned, photos, etc.). The most economical solution is a 
traditional data warehouse (one or more of which the organization might already have) 
if it will support the proposed system. Purchasing a nontraditional system, even one 
that is open source, can involve hundreds of thousands of dollars in software, hardware, 
additional staff, and training costs. Not acquiring Hadoop when Oracle can support the 
proposed DSS could make the designer a corporate hero. Unfortunately, spending 11 
months trying to make Oracle handle the new DSS and failing is a poor career move. The 
designer needs to know—not guess—which architecture and products are the right ones 
and to be able to defend that decision to colleagues, users, and management. A little U3D 
effort could be a good career strategy.

Step 4: Customization
It might very well be the case that the traditional DSS/DW approach simply will not work 
for the proposed system. High data volumes and/or unstructured data will force the 
designer to look elsewhere for a solution. One possible solution is an architecture similar 
to that of Hadoop.

A Little About Hadoop
Hadoop is not a product but rather a family of products. The core of Hadoop, both 
figuratively and literally, is two products, Hadoop Distributed File System (HDFS) and 
MapReduce. HDFS allows data to be stored in a large number of nodes, collectively called 
a cluster. A single file might be distributed and replicated across multiple nodes within 
the cluster. The distribution—one file broken into multiple parts (called blocks)—allows 
parallel processing of a single file, while replication—storing multiple copies of the same 
data (blocks) in multiple locations—provides high availability and backup. With HDFS 
and a sufficient number of inexpensive servers (could be hundreds or even thousands of 
machines), terabyte files are not only possible but in use today.

MapReduce is the application framework that oversees how files are processed by 
assigning application programs to various nodes. MapReduce copies and sends computer 
code to servers where there are data waiting to be processed.

To really understand Hadoop, it pays to look at how conventional data processing—
particularly distributed data processing—works. Imagine a distributed environment as 
a pyramid. At the top of the pyramid is the application program. As the job executes, the 
data manager finds the data required by the application, copies them to the server where 
the program is running, and returns them (if there were modifications) to their original 
location.
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Hadoop inverts the pyramid or, perhaps more accurately, places the data at the top of 
the pyramid. If you look at the typical Big Data job, the size of the application (in bytes) is 
dwarfed by the size of the data. So why do systems move the data (the larger component) 
to the application (the smaller-sized component)? Would it not be more efficient to 
move the smaller application to the larger data? That is what MapReduce does—it moves 
applications to the nodes where data need to be processed.

Immediately, two advantages are evident. The first, as mentioned earlier, is there is 
less traffic between nodes. Shipping data between nodes is incredibly expensive. HDFS’s 
philosophy is that data are stored once and almost never move. The second advantage is 
that it makes distributed processing more efficient.

For decades, parallel computing has been the great hope and the great 
disappointment of IT. Being able to process the same data sets on multiple machines 
simultaneously is an efficient and inexpensive way to improve computing performance. 
Unfortunately, accomplishing this goal has often required complicated and convoluted 
code. Getting the right data into the right CPU at the right time is difficult, requiring 
coordination between the program components running on different machines (what 
do you do if two machines want to update the same data?). If data are updatable, then 
cross-machine locking and journaling mechanisms are needed. A simpler, though more 
disappointing solution, is to have the different nodes do entirely different though related 
tasks, thus reducing, if not eliminating, the need for process coordination.

The Holy Grail of distributed processing is to have a one-to-one (1:1) relationship 
between hardware and throughput. Ideally, doubling the hardware doubles the 
throughput, tripling hardware triples throughput, and so on. Traditional distributed 
processing is far from attaining the ideal 1:1 relationship. Worse, as hardware is added, 
the ratio degrades, and as more and more hardware is added, the drop can become 
precipitous.

Hadoop’s MapReduce comes closer to the sought-after 1:1 ratio than traditional 
distributed processing, making it a desirable platform for very large data files.

However, there is a case where the MapReduce/HDFS model does not work well—
Small Data. Considerable work and execution time is required to set up a MapReduce/
HDFS cluster-wide process. This effort makes sense if the data file is very large. It makes 
no sense if the data file is small. Have a database with 2,000 records? Excel will fetch the 
desired record faster than Hadoop. Where is the cutoff point—the point where it makes 
sense to consider Hadoop? Opinions differ, but most agree that if your database fits on 
four or fewer servers (CPU and disk), then skip Hadoop.

Many IT professionals compare Hadoop to products such as Cassandra, MongoDB, 
and other NoSQL DBMSs. However, as explained previously, Hadoop is not a DBMS 
but a family of products, best described as data management middleware, which 
includes a DBMS. Hadoop’s DBMS, named HBase, shares many similarities with its 
cousin Cassandra (both are supported by the Apache Software Foundation). If you are a 
Cassandra expert or an HBase expert, then you are likely convinced that Cassandra and 
HBase have little in common. For the rest of us, they are very similar. Both are key-value 
column-family data stores. Both use SQL-like terminology to describe their components 
(table, column, row, etc.). Both use fat records consisting of multiple occurrences of 
multiple entities stored contiguously to achieve single I/O retrieval. And the list goes on.
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HBase is a viable substitute for Cassandra in the Big Data transaction processing 
space. However, along with its strong points, HBase shares many of Cassandra’s 
shortcomings. Neither Cassandra nor HBase is a great candidate for DSSs. Their internals 
are designed for one I/O retrieval of fat records. Supporting a query by reading thousands 
or millions of records will require a database scan that could take eons to complete. Both 
products disdain indices—a DSS mainstay—as expensive substitutes for hashing.

Fortunately, the Hadoop family also includes another product—Hive. Hive is a 
SQL-like product that can front-end both MapReduce and HDFS. Hive can also create its 
own relational-like database stored in its own workspace. The Hive users think they are 
querying a relational database, but the data they are using might be in HDFS, in a native 
Hive file, or in some third-party database.

Of course, there are some prices to pay for this access. First, because Hive data are 
often HDFS data, they do not have a normal schema. In fact, they do not have a schema at 
all until runtime.

Traditional DBMSs bind data to the schema when the data are written to the 
database. This is called schema on write. As the data are read into the database, the 
DBMS reads the schema and confirms that the data are as defined (size, data type, etc.). 
Conforming data are stored in the database while nonconforming data initiate an error 
procedure.

Hive uses a different technology. The bind takes place when the data are accessed. 
This approach is called schema on read. Any and all data are entered into HDFS willy-
nilly. When the data are accessed, the DBMS compares the data in HDFS with the 
schema. If the data are acceptable to the schema, they are passed on to the user. If the 
data are unacceptable, an error routine is initiated.

Schema on read is used for systems in which the DBMS has full control of the data in 
the database. For example, to insert data into an Oracle database, the application must go 
through Oracle software that keeps track of all data-related activity.

Hive, on the other hand, has control over only data stored in its own workspace. Data 
stored in HDFS can be accessed and changed by any application running through HDFS. 
To accurately reflect what is out there, Hive must review all the data in the HDFS file just 
before processing them. This runtime bind guarantees that the most recent data, in their 
most recent state, will be part of the query response. However, binding the data to the 
schema every time it is accessed requires time and resources that the schema-on-write 
DBMS need only expend once.

Table 15-2 completes the database 4x4 diagram.
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Using Hadoop, the DSS user can interact with the database in a SQL-like 
environment that supports terabytes or petabytes of unstructured data.

Putting It All Together
Using products such as Hadoop, the database designer can create an HDFS file storing 
Cassandra-like fat records but using Hive’s SQL-like commands. The combined structures 
allow the application or end user to work with a rather traditional DSS star schema. In 
fact, to the end user or application, the resulting database design can look similar if not 
identical to the one created in step 3, Formalization (Figure 15-3).

Done correctly, the convoluted machinations needed to assemble this complex 
structure can be almost transparent to the end user, who sees a structure and processes 
similar to the more traditional DSS/data warehouse.

Deliverables
The deliverables for a Big Data DSS are the same as those listed in Chapter 14. The only 
difference is that the Customization notes are even more important now because future 
DBAs need to know exactly why certain decisions were made regarding such things as the 
fact and dimension records, the data warehouse structure, usage scenarios, and so on.

Table 15-2.  Difference Between Traditional and Big Data TPS and DSS

Transaction Processing System 
(TPS)

Decision Support System 
(DSS)

Structured Data/
Reasonable Volume

Traditional DBMS
-    High level of structure
-    Single processor/cluster
-    Data: Structured
-    Example: RDBMS
-    Common database

Classification: Production
or operational

Traditional DBMS
-    High level of structure
-    �Single processor/cluster
-    Data: Structured
-    Example: RDBMS
-    Common database

Classification: Data 
warehouse

Unstructured Big 
Data

Nontraditional DBMS
-    Distributed processing
-    Data: Semistructured
-    �Example: NoSQL, ex. 

Cassandra
-    Common database

Classification: Production
or operational

Nontraditional DBMS
-    �Distributed processing
-    Data: Semistructured
-    Example: Hadoop
-    Common Database

Classification: Data 
warehouse

http://dx.doi.org/10.1007/978-1-4842-2722-0_14
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As with all other U3D notes, those for a Big Data DSS should include the answers to 
these four questions:

•	 Why? This would seem obvious. However, why a decision was 
made the way it was is often an area of confusion for future system 
maintainers. If an index was added, or removed, it is important 
to specify why this was done. If Oracle was rejected for the data 
warehouse, the reasons should be clearly stated.

•	 Where? The notes should reflect exactly where in the database 
design new concepts were introduced or existing ones changed.

•	 When? Design changes and test results do not always line up. It 
is important to document exactly when a change was made to a 
system so its impact can be properly assessed.

•	 Results? There is a tendency for designers to document successes 
only. Sometimes documenting “fascinating results” (a Spock-
ism to avoid saying failures) is more important than successes. 
Knowing that an index added little to database performance can 
save valuable time by avoiding reinventing the wheel months or 
years later. Knowing that a test using SQL Server for the DSS failed 
is vital information that needs to be shared.

The answers to these four questions are even more important when dealing with 
performance issues and nontraditional systems. For example, implementing Hadoop 
can be quite complex, requiring a team of experts with skills in using HDFS, Hive, and 
MapReduce. The Customization notes should include input from all of these experts 
(whether in-house or external consultants) and not just the database designer.
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CHAPTER 16

A Look Ahead

I really didn’t foresee the Internet. But then, neither did the computer 
industry. Not that that tells us very much of course—the computer 
industry didn’t even foresee that the century was going to end.

—Douglas Adams

The most likely way for the world to be destroyed, most expert agree, is 
by accident. That’s where we come in; we’re computer professionals. We 
cause accidents.

—Nathaniel Borenstein

IT’s track record for prognostication is miserable.
“There is a world market for maybe five computers,” is a quote attributed to Thomas 

J. Watson Sr., founder and president of IBM. Whether he said it or not (there is some 
controversy about the origin of the quote), it reflects a position held by many in the 
1940s. IBM proved Watson (or whoever) wrong in the 1960s by dominating the lucrative 
mainframe market. By the 1970s, there were dozens of minicomputers companies and, 
although IBM was an early manufacturer of minis, it failed to see the market shifting to 
those machines. It believed all real data processing would take place on mainframes.

The minicomputer market was dominated by Digital Equipment Company (DEC), 
which grew to become the second largest computer company in the world. DEC’s founder 
and CEO, Ken Olsen, when confronted with the personal computer, is reported to have 
said, “There is no reason for any individual to have a computer in his home.”

DEC’s failure to see the rise of the microcomputer would lead to the company’s 
eventual sale to, of all things, Compaq Computer Corporation, a PC manufacturer. 
(Interestingly, Compaq was not able to weather the shift to servers and was sold to HP.)

Poor prognostication seems to extend to the Internet—it was more than 20 years old 
before anyone knew it was there, much less saw it coming. The same is true of the World 
Wide Web, and who predicted that phones would play music and spend a lot of their time 
being a camera?

I wrote an article in the early 1980s predicting that the DBMS would become a data-
architecture-neutral back-end engine, fronted by a network (relational, hierarchal, or 
whatever) user interface.1 Wrong…although, come to think of it, Oracle has its OO and 
NoSQL versions....
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So no predictions. But a wish list? Maybe. A semi-educated wish list, based on a few 
observations from years of slugging it out in the DBMS trenches, might make sense.

The following are four DBMS issues I, and many of the database designers and DBAs 
I interviewed, would like to see addressed.

We Need to Ask the Awkward Questions
Some questions seem too awkward to ask. Maybe they are politically incorrect, or maybe 
they will hurt someone’s feelings. However, maybe they just need to be asked. The data 
management questions that have never been raised, much less answered, are about the 
value of a theoretical foundation.

Database management systems have traditionally been categorized by architecture, 
such as network, relational, and (although it is not properly an architecture but rather a 
grab bag of sundry architectures) NoSQL. There is, however, another way to categorize 
DBMSs—functional versus theoretical. Functional systems, such as IMS, IDMS, and 
NoSQL, grew out of need. Their utility expanded as problems arose and solutions became 
apparent. Consequently, their structure tends to be a bit ad hoc, with new features bolted 
on to existing ones. The result can look like a Picasso portrait where the eyes were put…
er…wherever they fit.

Theoretical systems, such as the relational model, have a mathematical foundation. 
If fact, Codd’s aim was to get the DBMS out of the realm of the functional, which he 
considered “troublesome…confusing…and…mistaken,” and into the realm of the 
“cleaner…sound…and…superior.”,2 3

How successful was the shift from functional to theoretical? Well, the academics 
took to it like politicians to a junket. As Peter Chen, the creator of the entity-relationship 
model, stated, academics were comfortable with the mathematical language of the 
relational model and published, published, and published about it.4 A cursory look at 
Google Scholar turned up more academic references to the relational model than to all 
other architectures combined.

However, since the publication of the first Codd paper on the relational model 
almost 50 years ago, there have been no other theoretically based DBMS architectures, 
models, or products—at least none that have seen the light of day. The relational model 
is the one and only theoretically based system I could find in production today. All DBMS 
implementations since the relational model have been functionally oriented. Even many 
of the relational products have abandoned some of the theoretical roots for functional 
features.

What does this say about the importance of DBMS theoretical foundations? How 
important is a theoretical foundation if no other DBMS creator has followed in Codd’s 
footsteps? Why should data management practitioners care about the theoretical 
foundation of their DBMS? The commercial community seems to be saying that it is not 
important to them and that they are more concerned with performance, ease of use, and 
getting the job done than mathematical purity.

This is not a philosophical question but rather one that asks where the attention of 
some of our best information technology-oriented minds should focus. Do we really need 
another normal form or would the world be better served with a more efficient way of 
updating distributed data? Can academics put aside those delusions of relevance and focus 
on something more useful, such as helping the guy trying to get his database to work?
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There are also publishing implications. Visit any bookstore. While you will find a 
few subject-related books on object-oriented and NoSQL databases from practitioners, 
virtually every college textbook assumes that the database will be relational. They are so 
relationally driven that relational concepts, such as foreign keys and the ban on repeating 
groups, are baked into their interpretation of logical data modeling. If you look up the 
definition of Data Definition Language (DDL) in most textbooks, it will refer only to 
relational objects such as tables and rows.

The relational model is a great achievement and an important part of the 
information management landscape. However, it is only part of that landscape. There 
are other fascinating ideas out there that should be part of every database designer’s and 
DBA’s experience.

We need a Don’t Assume movement that works to ensure that no authors or teachers 
assume that the RDBMS is the one and only tool for managing data.

There is another consideration to take into account: the Multiple Experience 
Concept. You have probably never heard of the Multiple Experience Concept because I 
just made it up. However, it goes like this.

Imagine that you are the programming manager for a company that needs a system 
written in an obscure assembler language (call it OAL). You have no OAL-trained staff and 
cannot find any qualified OLA programmers to hire. You will have to train some existing 
staff in OLA. What criteria do you use to select OLA training candidates?

	 1.	 Someone who does not know any assembler language

	 2.	 Someone who knows one assembler language

	 3.	 Someone who knows two or more assembler languages

The obvious answer is 3. Knowing one assembler language is good and is certainly 
better than not knowing any at all, but certainly not as good as knowing several. Knowing 
one assembler language means knowing the syntax of one assembler language. However, 
knowing two or more languages means that the programmer not only knows the syntax of 
multiple languages but also understands at least some of the essence of what it means to 
be an assembler language. They understand concepts that are not just part of a particular 
language’s structure but also the fundamentals that all assemblers have in common. 
Understanding the foundation behind a language makes it easier to learn and use a new 
language.

The same holds true for high-level languages. Need to teach someone C? Rather than 
picking the COBOL programmer or the FORTRAN programmer, pick the programmer 
who knows both. And there is an interesting side effect. Teach the COBOL programmer 
C, and you wind up with not just a new C programmer but also a better COBOL 
programmer.

The same is true for data management. Knowing one data architecture is good, but 
knowing two or more is better because then the database designer, DBA, or application 
programmer understands more of what is going on underneath the hood, not just what 
appears on the surface.
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Tools Need to Take Usage into Account
The late 1980s and early 1990s were the era of the software development or Computer 
Aided Software Engineering (CASE) tool. You could not swing a dead cat without hitting a 
CASE tool startup. These products came in various flavors. There were the code generator 
holdovers from the 1970s, the process modeling tools that turned flow charts and DFDs 
into programs, the data modeling tools that turned your E-R diagram into a DBMS 
schema, and the tool that did it all, soup to nuts, idea to code.

As with most everything else in IT, these tools were oversold. A productivity 
improvement of 5 percent would have cost justified the tool; however, many vendors 
promised a 50 percent (or greater) improvement that was both unachievable and 
ultimately disappointing. (It’s amazing how IT jumps from panacea to panacea, 
seemingly learning nothing from continuous disappointment while blithely looking for 
the next catholicon.) The hype pushed these tools to near extinction.

The frenzy is now over, and the advantages of these tools are more realistically 
understood. A few CASE products have survived and are benefiting a number of IT shops. 
However, many of these tools exhibit one or more very disappointing characteristics.

First, they rely on a logical model that is impregnated with physical design (almost 
always RDBMS) concepts. They assume that the DBMS is a relational one. Based on this 
assumption, their logical data models establish relationships using foreign keys and do 
not allow group or multivalue data items, among other truly annoying disappointments. 
The value of these tools with nonrelational databases is minimal and, because of their 
rejection of a DBMS-independent logical data model, misleading even for relational 
designers.

Second, they tend to disregard how the data are used. The extent of this flaw ranges 
from not considering some usage aspects, such as volume or path traffic, to the most 
prevalent failure—not taking usage into account at all.

In an odd twist, the tools that erroneously inject physical database considerations 
into logical data modeling totally omit from physical database design how the database 
will be used.

Tool designers need to do a better job of separating the logical from the physical 
(Principles 1 and 2 of the database design principles from Chapter 1) and a better job of 
incorporating usage into their physical database design (Principle 3 from Chapter 1).

The One and Only DBMS
Before the database management system, data in files were considered characteristics or 
properties of a program. The program opened the file, interpreted the data (see the “Data 
or Information?” sidebar), and closed the file when the program was finished, placing 
the data in the cyber-equivalent of a coma, until they were needed again. It was not 
uncommon for multiple files to contain the same data items used by different programs 
for different purposes. Synchronization problems were so common, but solutions so 
elusive, that they were essentially ignored. If the customer name in the customer file 
agreed with the spelling of the customer name in the account, billing, and credit files, 
then it was often luck rather than craft.

http://dx.doi.org/10.1007/978-1-4842-2722-0_1
http://dx.doi.org/10.1007/978-1-4842-2722-0_1


Chapter 16 ■ A Look Ahead

321

DATA OR INFORMATION?

Many information technologists make a distinction between data and information. 
Data are strings of characters, while information is data with interpretation. For 
example, take the following string:

5553426978ROBERTABODE

What information is in this data string? Back in the era of flat files, the interpretation 
of the data was stored in the program. If the program, call it Program A, said that 
the first seven characters were PHONE NUMBER, the next six characters were FIRST 
NAME, and the last five were LAST NAME, then you would know the following:

PHONE NUMBER = "555-342-6978"
FIRST NAME = "ROBERT"
LAST NAME = "ABODE"

However, suppose that Program B said that the first four characters were BRANCH 
NUMBER, the next six were ACCOUNT NUMBER, the next seven were FIRST NAME, 
and the last four were LAST NAME. Then you would have this:

BRANCH NUMBER = "5553"
ACCOUNT NUMBER = "426978"
FIRST NAME = "ROBERTA"
LAST NAME = "BODE"

That’s a very different interpretation.

Associative array systems placed the interpretation in the record. Their key-
value structure preceded every data value with a key containing at least part (the 
attribute’s name) of its interpretation. Consequently, every program would know the 
following:

STREET NUMBER = "55534"
POSTAL CODE = "26978"
FIRST NAME = "ROB"
MIDDLE INITIAL = "E"
LAST NAME = "RTABODE"

Most traditional DBMSs go one step further. They move the interpretation of the data 
from the program (or the record) into the DBMS’s data dictionary.
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The DBMS changed everything. A data item, such as CUSTOMER NAME, would 
be stored only once in the DBMS along with its interpretation. At last, the data existed 
all the time, whether a program had a file open or not. The single occurrence of a data 
item along with its single interpretation meant that synchronization problems were a 
thing of the past. The DBMS became the Swiss Army knife of information management, 
incorporating all the features an enterprise needed (Table 16-1). However, it didn’t last 
forever.

The world changed when big was invented—Big Data, big computers, big 
companies, big ideas, and, unfortunately, big problems.

The DBMS that solved the “files everywhere problem”—guaranteeing that there 
existed one and only one instance of a data item, guaranteeing that synchronization 
problems were a thing of the past, guaranteeing that the single data instance had only 
a single interpretation, guaranteeing that there was one and only one official repository 
of enterprise data—exists no more. The dreaded multiple data files have been replaced 
with multiple DBMSs managing multiple databases. Need to guarantee the integrity of 
the data? Store them in a general-purpose ACID-compliant database. Need varied data 
types? There is a specialty DBMS for that. Need super-fast retrieval? There is a specialty 
DBMS for that. As a result, after some really fine work solving some real-world problems, 
we are, in many ways, back where we stated.

The poster child for the specialty DBMS is NoSQL, although other systems share 
this category. Although NoSQL DBMSs are good products, providing necessary services, 
they represent a disturbing trend. Rather than adding new features to accomplish these 
new tasks, they shed expensive existing ones. For example, the DBMS that was ACID 
compliant is now user beware—the fully interpreted data item is now a bucket or folder 

Table 16-1.  General-Purpose DBMS Features

•• Full lifecycle: Oversees the full lifecycle management of the data (creation, access, 
update, deletion)

•• Multiuser: Provides multiuser support (simultaneous database access for multiple 
end users and programs, whether batch or online)

•• Full interpretation: Ensures a single, complete, and continuous interpretation of all 
database data

•• Data independence: Assures that data exist independent of any users or programs

•• Consistency and integrity: Enforces both system and user-defined consistency, 
integrity, and edit rules

•• Reliability: Guarantees reliability (ACID compliant)

•• Synchronized redundancy: Guards against uncontrolled data duplication  
(allows selective fully synchronized redundant, but not duplicate, data)

•• Security: Protects data from unauthorized access or use

•• Single source: Is capable of safeguarding the official and only reliable instance of 
enterprise data
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to store unformatted data. Rather than storing the interpretation in the DBMS, these 
systems need to be “interpreted by the application.” The basic tenets of what it is to be 
a DBMS—maintaining data integrity or transforming data into information—can be 
lost. The average commercial organization now faces the uncomfortable emergence of 
a two-tiered information structure. One tier is the generic all-purpose DBMS, with all of 
its associated guarantees, and a second tier of specialty or niche data managers, each 
catering to a different need while offering fewer assurances.

Table 16-2 lists the fundamental features that almost every general-purpose DBMS 
supports and grades a representative sample of NoSQL systems on their ability to support 
these features.

Table 16-2.  Comparing General-Purpose and NoSQL DBMSs

DBMS Feature Description NoSQL Grade (A to F)

Full lifecycle Oversees the full lifecycle management 
of the data (creation, access, update, 
deletion)

B

Multiuser Provides multiuser support 
(simultaneous database access for 
multiple end users and programs, 
whether batch or online)

B

Full interpretation Ensures a single, complete, and 
continuous interpretation of all database 
data

B

Data independence Assures that data exist independent of 
any users or programs

D

Consistency and 
integrity

Enforces both system and user-defined 
consistency, integrity, and edit rules

B

Reliability Guarantees reliability (ACID compliant) C

Synchronized 
redundancy

Guards against uncontrolled data 
duplication (allows selective, fully 
synchronized redundant, but not 
duplicate, data)

F

Security Protects data from unauthorized access 
or use

A

Single source Is capable of safeguarding the official and 
only reliable instance of enterprise data

F

The majority of general-purpose DBMSs do a good job supporting all nine features. 
How do NoSQL systems do? Not so well. Arguably the most damaging of the missed 
features is single source. By admitting that it cannot function as the enterprise’s official 
information repository, the NoSQL database relegates itself to a secondary role.
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Almost 100 years ago, the economist Joseph Schumpeter wrote that the market 
leaders (the status quo) who provide the market with an “infrastructure” were disrupted 
by entrepreneurs who often, through innovation and change, put what they replaced 
out of business. He called this “creative destruction” (and became the source of nearly 
a dozen books of the same name, even if not entirely the same subject). However, if the 
cycle Schumpeter described is to continue, and the market to thrive, then these new 
disrupters must provide the new infrastructure.5

Creators of products such as NoSQL have been the entrepreneurs that attacked the 
entrenched status quo infrastructure, and although they have not yet made a significant 
monetary impact on the market, they might just be Schumpeter’s disrupting force. If so, 
then it is time for them to start assuming the role of infrastructure provider, meaning 
that their products must move out of the niche realm and into the data management 
mainstream to become the new Swiss Army knives.

IT needs choices, but they need to be choices that compete for the same place in the 
center of the organization, not ones that reside in its corners. The NoSQL vendors have 
done some amazing stuff; however, their accomplishments center on either jettisoning 
some current features (ACID, interpretation, etc.) or digging up some old ideas 
(hierarchal and network features). Their retrograde change was a needed temporary fix, 
but now it is time for a more permanent prograde solution. It’s time for the new crop of 
DBMS designers to shake up the data management world by coming up with some new 
ideas that build on the past rather than tearing it down.

We need the specialty capabilities NoSQL and similar products provide, but we also 
need the general-purpose DBMS features we had. The breakthrough product—the killer 
app of data management—just might be the general-purpose DBMS with web-browser-
like plug-in features provided by the specialty DBMS vendors. The ability to plug  
key-value, document management, or multidimensional capabilities into the enterprise’s 
official general-purpose DBMS—whether the feature is database-wide or restricted to one 
or more partitions—could be a best-of-all-possible-worlds solution. It will be interesting 
to see who the winners will be.

Better Training
Looking back at Chapter 1, Database Design Principle 1 called for an impenetrable wall 
between logical design and physical design. Principle 2 of the database design principles 
called for distinguishing logical data modeling from logical process modeling. The word 
separate is considerably harsher than the more intellectual distinction. This is intentional. 
The very nature of good design calls for the separation of logical and physical (the what 
from the how), while the distinction between data and process is more of an observation 
and realization of the real world of system development. In short, data and process are 
approached separately because that is how people work.

Object technology started as object-oriented programming, a code development 
approach that dealt with objects. Objects consist of data and processes. Object-oriented 
programming led to object-oriented design, object-oriented databases, object-oriented 
analysis, and object-oriented modeling. The hallmark of object-oriented modeling 
(OOM) is that the model (graphics and documentation) deals with both data and process. 

http://dx.doi.org/10.1007/978-1-4842-2722-0_1
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OOM techniques, such as the Unified Modeling Language (UML), require the modeler to 
document the system’s data and how those data are used, all in one single model, all in 
one single step.

It would seem that ideally, OOM would make Principle 2 unnecessary. 
Unfortunately, the critical word is ideally—in practice, there have been some problems.

OO OR UH, OH

I visited an IT organization of a major financial institution that was “committed to 
object technology.” They had OO analysis tools, OO design tools, OO programming 
tools, and, of course, an OODBMS.

An analyst was demonstrating how a process he was working on was entered into 
a very expensive OOM tool. As he ran through the various operations, I asked him 
about some of the data on the model. His response was that I would have to talk to 
the data team about that. Sooo, so close.

Unfortunately, this was not an isolated incident. In the majority of the few IT shops 
that reported they used OO techniques, either the OO models were just fancy data 
flow diagrams or, if there was a real effort to use OO techniques, the data and 
process tasks were performed by two separate teams or one team composed of two 
separate sets of experts.

Any success in unifying data and process will come from neither the technology nor 
the tools, but from the people. And so far that is missing.

UML is criticized for being bureaucratic, cumbersome, and ineffective. It is certainly 
true that the commercial IT world has not embraced it. However, the problem with UML 
is not the clumsiness of the language, but the psychology of the people in IT.

As was mentioned in Chapter 1, until analysts and designers see the equal 
importance of understanding both data and process, not much will happen. As long 
as IT still has process people and data people, schools and vendors still train the two 
separately, and IT management is concerned with one more than the other, the problems 
will continue—and books like this one will still be necessary. Only when the data teams 
and the process teams are merged into the analysis team, not just organizationally but 
intellectually, can we even consider replacing Principle 2. And the one prediction I am 
willing to make is that this change will take a very long time.

http://dx.doi.org/10.1007/978-1-4842-2722-0_1
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APPENDIX A

Glossary

0NF  See Zero Normal Form (0NF).
1NF  See First Normal Form (1NF).
2NF  See Second Normal Form (2NF).
3NF  See Third Normal Form (3NF).
Abstraction  A representation of a subject that excludes unnecessary detail while 

focusing on important features.
ACID  An acronym for atomicity, consistency, isolation, and durability.
Action Diagram  Generic term for a graphical representation of the movement of 

data in a system.
Actuator  A mechanical arm consisting of a read head and/or a write head that can 

extend over or under a disk platter.
Aggregate Data Item  See Group Data Item.
Alternate Key  In the relational model, a candidate key that was not selected to be 

the primary key.
Analysis  See Logical Design.
Analyze Information  The second step in the Logical Data Modeling phase and the 

activity in which the logical data modeling principles and techniques are applied to the 
information gathered in the Gather Information and Review step.

Anomaly  A data integrity problem that occurs in a database when an object that is 
inserted, updated, or deleted causes an unintended change in another object or objects.

Architectural Approach  The underlying physical structure of a DBMS. Examples 
include hierarchal, network, and relational.

Architecture  See Architectural Approach.
Association  In object technology, the relationships between objects.
Associative Array  A table of pairs of keys and their values. The key is used to find 

its associated value.
Associative Entity  A relationship that has its own relationships or attributes.
Associative Record Type  A link that has its own links or data items.
Asymmetrical Relationship  A recursive modality constraint. A unidirectional 

unary relationship that represents a sequence or hierarchy that must have a beginning 
and end. In an asymmetrical relationship, each entity occurrence plays a different role. 
For example, take the relationship Supervises. One role is “Supervisor,” and the other role 
is “Is supervised.”

Atomic Attribute  See Simple Attribute.
Atomic Data Item  See Simple Data Item.
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Atomicity  An ACID component. Atomicity requires every part of a transaction to 
be executed before the transaction can be considered complete.

Attribute  A property of an entity such as COLOR, NAME, EMPLOYMENT DATE, or 
SOCIAL SECURITY NUMBER.

Attribute Complexity  Refers to the intricacy of an attribute. There are two types of 
attribute complexity: simple and group.

Attribute Domain  The set of possible values of an attribute. There are three types 
of attribute domains. Data types are broad categories of data values, such as text, integers, 
and dates. Ranges are values between end points, such as years between 1900 and 2020. 
Acceptable values are a list of allowed values, as in the abbreviations USA, EU, and UK.

Attribute Occurrence  See Attribute Value.
Attribute Source  The origin of an attribute. There are two sources: primitive and 

derived.
Attribute Valuation  Defines how many values the attribute can have at any one 

time. There are two types of valuation: single value and multivalue.
Attribute Value  The property of an attribute.
Attributive Entity  An entity whose existence depends on another entity.
Attributive Record Type  A record type whose existence depends on another 

record type.
B-tree  An inverted tree index consisting of layers of nodes. Each node contains one 

or more entries consisting of a search key and a database address.
Bachman Diagram  See Data Structure Diagram.
Best Practices  An experienced-based collection of rules, advice, and insight 

regarding the correct, most effective, and/or productive application of one or more 
techniques.

Big Data  A generic name for large but nonspecific amounts of data.
Bill of Materials  1. The problem of representing an n-level hierarchy where n is 

unknown. For example, a parts model where a part can be composed of other parts. 2.  
A solution to the bill of materials problem using recursion to represent the various levels. 
An example is the entity or record PART related or linked recursively to other PART 
occurrences.

Binary Link  A link between two, and only two, records.
Binary Relationship  A relationship between two, and only two, entities.
Binary Search  A search technique that divides a sorted file into two equal parts. If 

the desired record is in one part, then the other part is discarded, and the remaining part 
is divided into two equal parts. The process repeats until the desired record is found.

Bitmap  A subject index in which each bit aligns with the displacement of a record 
in a file or database (i.e., bit 1 represents the first record in the file/database, bit 2 the 
second record, etc.). The subject must be testable as a binary condition—either true or 
false, yes or no, on or off, and so on. If the condition is met (true, yes, etc.), the bit is set 
to 1. If the condition is not met, then the bit is set to 0. For example, if the subject COLOR 
is defined as “blue,” then if the COLOR data item in the first record is blue, the first bit in 
the bitmap is set to 1. If COLOR in the first record is not blue, then the first bit is set to 0. 
Bitmaps are especially efficient for Boolean searches.

Blob  Originally an informal or whimsical term for large records or data fields that 
defied structural classification. It was later formalized to mean Binary Large OBject.
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Blocking Factor  The ratio derived by dividing the database page size by the 
(average) size of the records stored on that page. A blocking factor of five means that (on 
average) five records can be stored on a database page.

Branch Node  In an inverted tree-structured file, the records that are neither root 
nodes nor leaf nodes.

Business Key  See Natural Key.
Candidate Key  In the relational model, a data item that uniquely identifies a 

record occurrence or row. A record can have multiple candidate keys.
Cardinality  1. In the Logical Data Modeling phase, the maximum number of 

occurrences of one entity type that can be related to an occurrence of another entity 
type. There are four cases of cardinality: one-to-one (1:1), one-to-many (1:N), many-to-
many (M:N), and many-to-one (M:1). 2. In the Physical Schema Definition phase, the 
maximum number of occurrences of one record type that can be linked to an occurrence 
of another record type. There are four cases of cardinality: one-to-one (1:1), one-to-many 
(1:N), many-to-many (M:N), and many-to-one (M:1).

CASE  See Computer-Assisted Software Engineering.
Class  See Object Class.
Clustering  Placing one record occurrence on the same database page as another 

record occurrence so that the physical I/O to access one occurrence will also access 
the other occurrence. A common clustering strategy involves the parent-child binary 
relationship; the child record type occurrences are placed physically near the parent 
record type occurrence so that there is a significant chance that the physical I/O to access 
the parent will also access the child.

CODASYL  See Conference/Committee on Data Systems Languages.
Column  In the relational model, a data item.
Combined Usage Map  Deliverable PSD.2.3; multiple individual usage maps are 

combined into a single diagram.
Composite Key  See Compound Key.
Compound Key  A key consisting of more than one data item.
Compound Unique Identifier  Two or more attributes used by the business to 

uniquely identify an entity occurrence.
Computer-Assisted Software Engineering (CASE)  A product consisting of one or 

more tools to automate all or part of the system development process.
Concatenated Unique Identifier  See Compound Unique Identifier.
Conditional Conjunction  1. In the Logical Data Modeling phase, a type of 

conjunction that states that, given three (or more) entities A, B, and C and two (or more) 
relationships, one between A and B and one between A and C, if an occurrence of A is 
related to an occurrence of B, then it must also be related to an occurrence of C. 2. In 
the Physical Schema Definition phase, a type of conjunction that states that, given three 
(or more) records A, B, and C and two (or more) links, one between A and B, and one 
between A and C, if an occurrence of A is linked to an occurrence of B, then it must also 
be linked to an occurrence of C.

Conference/Committee on Data Systems Languages (CODASYL)  A volunteer 
standards group that gave us, among other things, standardized COBOL.

Conjunction  A relationship and linkage constraint. 1. In the Logical Data 
Modeling phase, if an occurrence of entity A is related to an occurrence of entity B, then 
it must also be related to an occurrence of entity C. There are two types of conjunction: 
simple conjunction and conditional conjunction. 2. In the Physical Schema Definition 
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phase, if an occurrence of record A is linked to an occurrence of record B, then it must 
also be linked to an occurrence of record C. There are two types of conjunction: simple 
conjunction and conditional conjunction.

Consistency  An ACID component. Any change to the database must be consistent 
with all validation rules.

Constraint Compliance  A Physical Schema Definition step 3, Formalization, 
task. The rules of the particular vendor’s DBMS product are applied to the rationalized 
physical data model.

Construct Model  The third step in the Logical Data Modeling phase and the 
activity in which the logical data model is created using the information collected in 
Gather Information and Review and analyzed in Analyze Information.

Convergence Principle  The third database design principle, Merge Physical 
Process Modeling with Physical Data Modeling. During physical design, data and process 
should converge into a single usage-driven physical database design.

Currency  1. A cursor’s position within a database. 2. The record, link, or data item 
most recently accessed.

Customization  The fourth step of the Physical Schema Definition phase. It focuses 
on improving the performance and enhancing the usability of the database, resulting in 
an enhanced physical database design.

Customization Notes  Deliverable PSD.4.5; a narrative or journal created by the 
database designer describing the activities, issues, and decisions made during step 4, 
Customization.

Data Aggregate  See Group Attribute.
Data Architecture  See Architectural Approach.
Data Base Task Group (DBTG)  A committee of the voluntary standards 

organization CODASYL that, when working to standardize the network model, introduced 
the first Data Manipulation Language (DML) and Data Definition Language (DDL).

Data Definition Language (DDL)  A language or sublanguage that is used by the 
database administrator to create, modify, and delete database schemas and subschemas.

Data Dictionary  A repository of detailed documentation and other useful 
information about logical and physical data objects. The dictionary can be as simple as a 
loose-leaf binder or as sophisticated as an automated library system.

Data Field  See Data Item.
Data Flow Diagram (DFD)  A graphical representation of the logical or conceptual 

movement of data within an existing or planned system.
Data Independence  The isolation of data from the use of the data such that a 

change to one does not affect the other.
Data Item  A characteristic or descriptor of a record. If the record type is 

Employee, then typical data items are EMPLOYEE NAME, EMPLOYEE START DATE, and 
EMPLOYEE SALARY. Using the type/occurrence distinction, data item is the type, while 
data value or just value is the occurrence.

Data Item Complexity  Refers to the intricacy of a data item. There are two types of 
data item complexity: simple and group.

Data Item Domain  The set of possible values of a data item. There are three types 
of domains. Data types are broad categories of data values, such as text, integers, and 
dates. Ranges are values between end points, such as years between 1900 and 2020. 
Acceptable values are a list of allowed values, as in the abbreviations USA, EU, and UK.

Data Item Occurrence  See Data Value.



Appendix A ■ Glossary

333

Data Item Type  See Data Item.
Data Item Valuation  Describes how many values a data item can have. There are 

two types of valuation: single value and multivalue.
Data Lake  A data repository for unstructured data.
Data Manipulation Language (DML)  A sublanguage that is used to define how 

database information is accessed, created, and destroyed by the programmer or end user.
Data Mart  A subset of a data warehouse.
Data Model  1. A representation, using text and/or graphics, of the definition, 

characterization, and relationships of data in a given environment. 2. No longer used, the 
DBMS architecture (hierarchical, network, relational, etc.).

Data Modeling Objects  The building blocks of a data model. The three basic 
logical objects are entities, attributes, and relationships. The three basic physical objects 
are records, data items, and linkages.

Data Modeling  The process of identifying and representing the definition, usage, 
and/or storage of data.

Data Repository  See Data Dictionary.
Data Structure Diagram (DSD)  Also called a Bachman diagram. This was the first 

graphic data modeling technique, created by Charles Backman in 1969, which depicts 
entities or record types as rectangles and relationships as arrows.

Data Value  The characteristics of a single data item. For example in COLOR 
= “blue,” COLOR is a data item and blue is its data value. Using the type/occurrence 
distinction, data item is the type, while data value or just value is the occurrence.

Data Warehouse  The storage system to support decision support system data.
Database Administrator (DBA)  The IT person responsible for planning, 

designing, operating, and maintaining enterprise databases.
Database Design  See Physical Database Design.
Database Design Missing Link  The missing component that merges the static 

definition of data (the data model) with the more dynamic use of those data (the process 
models), resulting in a structurally resilient, functionally rich, effective, and efficient 
database design.

Database Design Principles  The postulates or axioms guiding the Usage-Driven 
Database Design (U3D) approach. There are four principles: (1) Separation Principle, 
which is to separate logical design from physical design; (2) Distinction Principle, which 
is to distinguish logical data modeling from logical process modeling; (3) Convergence 
Principle, which is to merge physical process modeling with physical data modeling; 
and (4) Minimal Regression Principle, which is to design a database so that business and 
technology changes minimize database redesign.

Database Designer  The IT person responsible for converting the logical data and 
process models into a physical database schema and subschemas.

Database Key  A key that tells the information system where a record occurrence is 
located.

Database Management System (DBMS)  A software system to manage the storage, 
access, and update of information for one or many users.

Database Page  An allotment of secondary storage usually consisting of multiple 
contiguous sectors that are read or written as a block by the DBMS.

DBA  See Database Administrator.
DBMS  See Database Management System.
DBTG  See Data Base Task Group.
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DDBMS  See Distributed Database Management System.
DDL  See Data Definition Language.
Decision Support System (DSS)  A system that provides management and certain 

subject experts with the capability to dig deep into the voluminous data created by the 
operational systems, to uncover the trends and patterns they contain. The basic DSS 
includes (1) a user interface or front end, often containing analytical and mathematical 
capabilities, and (2) a storage system to house the data the user interface analyzes.

Declarative Programming Language  A programming language that the 
programmer or user uses to instruct the system on what has to be done, not how it is 
done. Declarative programming is usually contrasted with procedural programming.

Degree  An indicator of the number of entity types that are allowed in a 
relationship. There are three degree cases: unary or recursive, binary, and n-ary.

Denormalization  Reintroduction into a normalized database design features 
that were removed to meet normalization requirements, such as repeating groups, 
aggregate data items, and data duplication. Denormalization most often occurs for 
performance reasons.

Derived Attribute  An attribute that is the result of a calculation or algorithm 
applied to one or more other attributes (primitive or derived). For example, the derived 
attribute TOTAL AMOUNT is the sum of individual AMOUNT attributes.

Derived Data Item  A data item that is the result of a calculation or algorithm 
applied to one or more other data items (primitive or derived). For example, the derived 
data item TOTAL AMOUNT is the sum of individual AMOUNT data items.

Descriptor Attribute  A not necessarily unique characteristic or property of an 
entity or relationship.

Descriptor Data Item  A data item that describes or gives the characteristics of a 
record.

Design  See Physical Design.
DFD  See Data Flow Diagram.
Dimension  The searchable characteristics of a data warehouse.
Dimension Record  In a data warehouse, the record used to search and select the 

desired fact records. Dimension records are usually in a one-to-many relationship with 
the fact records.

Disk Contention  Competition for disk access. Contention can result in thrashing, 
which is the movement of the actuator arm rapidly back and forth across the disk to 
accommodate competing requests for service.

Distinction Principle  The second database design principle. Distinguish logical 
data modeling from logical process modeling. All data definitions, characteristics, and 
relationships need to be analyzed, designed, and documented separately from all process 
definitions, characteristics, and uses.

Distributed Database Management System (DDBMS)  A DBMS that can fully 
support a database that resides on more than one computer, whether the computers are 
in the same room or across the globe.

DML  See Data Manipulation Language.
Document Management  A DBMS, usually of a key-value structure, that stores, 

accesses, and deletes documents and document components such as graphics, pictures, 
tables, and so on.

DSD  See Data Structure Diagram.
Duplicate Data  Two or more attributes or data items with the same definition.
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Durability  An ACID component. Once a transaction is committed, it stays 
committed. Failures from a loss of power to a computer, communications disruptions, or 
crashes of any type will not affect a completed transaction.

Embedded Attribute  An attribute hidden in another attribute.
Encapsulation  An object technology concept that allows an object to hide internal 

data and procedures from other objects. What goes on in an object stays in an object.
End Users  Those who commission the building of an information system, 

representing those who commission the system or will use the commissioned system. 
They are usually nontechnical staff (unless the system is designed to serve technical staff, 
e.g., an application tracking system).

Enhanced Database Object Definitions  Deliverable PSD.4.4; an update of all 
database object definitions to reflect changes made in step 4, Customization.

Enhanced Physical Database Design Diagram  Deliverable PSD.4.1; the final 
physical database design diagram.

Enhanced Schema DDL  Deliverable PSD.4.2; the performance-enhanced version 
of the schema created in step 3, Formalization.

Enhanced Subschema DDL  Deliverable PSD.4.3; a performance-enhanced 
version of the subschema created in step 3, Formalization.

Entity  A person, place, or thing about which an organization wants to save 
information.

Entity Fragment  A view or portion of the data model that characterizes a specific 
process. Entity fragments are useful for logical process modelers who want to understand 
the data used in a particular function or to elicit process information from end users.

Entity-Relationship Approach  Also called entity-relationship model; an 
approach to logical data modeling, introduced by Peter Chen in 1976, that focuses on the 
nontechnical “business” data objects, entities, attributes, and relationships rather than on 
files, records, and databases.

Entity-Relationship Diagram (ERD)  The logical data modeling diagram created 
using the E-R approach.

Entity-Relationship Model  See Entity-Relationship Approach.
Environment Designation  A task of step 3, Formalization, of the Physical 

Schema Definition phase; analysis and selection of the physical information manager 
(architecture, product, and version).

ERD  See Entity-Relationship Diagram.
Exclusion  A relationship and linkage constraint. 1. In the Logical Data Modeling 

phase, an occurrence of entity type A can be related to an occurrence of entity type B or to 
an occurrence of entity type C, but not both at the same time. 2. In the Physical Schema 
Definition phase, an occurrence of record type A can be linked to an occurrence of record 
type B or to an occurrence of record type C, but not both at the same time.

Expansion  A task of step 1, Transformation, of the Physical Schema Definition 
phase; augmentation of the record type in its transformation from logical to physical 
information management.

Fact Record Type  In a data warehouse, stores facts about the data warehouse 
subject. Fact records are linked to dimension records in a many-to-one relationship.

Fat Record  Informal; the result of contiguously storing multiple occurrences of 
multiple entities as a single database record in order to allow single I/O retrieval.

File  A collection of related records.
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First Normal Form (1NF)  In normalization, a record is in 1NF if (1) the record is 
in zero normal form and (2) all multivalue data items (Codd calls them repeating groups) 
have been removed from the record.

Flexibility  A trade-off triangle component; the ability of the database system to 
support a broad range of known and unknown services and to easily adapt to business 
and technology changes.

Foreign Key  In the relational model, one or more fields in one table that have the 
same definitions and domains as the primary key in another table. Foreign keys are used 
for linking related tables together.

Formalization  The third Physical Schema Definition step; modifies the 
rationalized physical data model to comply with the rules/features of the DBMS (or file 
manager) being used, creating a functional physical database design.

Formalization Notes  Deliverable PSD.3.5; a narrative or journal created by the 
database designer describing the activities, issues, and decisions made during step 3, 
Formalization.

Framework  A structured guide for developing a system encompassing a common 
set of steps, definitions, techniques, and deliverables.

Full Functional Dependence  In normalization, a state in which a data item is 
functionally dependent on a compound key but is not functionally dependent of a subset 
of that compound key.

Functional Dependence  In normalization, a state that exists when one data item 
uniquely determines another data item. For example, given two record occurrences 
with the data items EMPLOYEE NAME and the unique EMPLOYEE NUMBER, if the 
data values of both occurrences of EMPLOYEE NAME are “Smith” and if EMPLOYEE 
NUMBER will always point to the correct “Smith,” then EMPLOYEE NAME is functionally 
dependent on EMPLOYEE NUMBER.

Functional Physical Database Design Diagram  Deliverable PSD.3.1; a database 
diagram showing the record types and links.

Functional Physical Object Definitions  Deliverable PSD.3.4; the same physical 
definitions created in step 1, Transformation, updated with any necessary changes 
made during step 2, Utilization, which now need updating with step 3, Formalization, 
information.

Functional Schema DDL  Deliverable PSD.3.2; two versions should be created: (1) 
generic DDL conforming to the database architecture and (2) vendor product and version 
specific.

Functional Subschema DDL  Deliverable PSD.3.3; two versions should be created: 
(1) generic DDL conforming to the database architecture and (2) vendor product and 
version specific.

Fundamental Entity  See Proper Entity.
Gather Information and Review  The first step of the U3D Logical Data Modeling 

phase; the activity in which the data modeler assembles all available documentation 
about the subject area, interviews subject-matter experts, and then reviews the results 
with both experts and management.

Generalization/Specialization  See Subtypes/Supertype.
Group Attribute  An attribute that contains a fixed number of other attributes. 

An example would be the group attribute CUSTOMER ADDRESS, which contains the 
five simple attributes CUSTOMER STREET NUMBER, CUSTOMER STREET NAME, 
CUSTOMER CITY, CUSTOMER STATE/PROVINCE, and CUSTOMER POSTAL CODE.
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Group Data Item  Also called an aggregate data item; contains a fixed number 
of other data items. An example would be the group data item CUSTOMER ADDRESS, 
which contains the five simple data items CUSTOMER STREET NUMBER, CUSTOMER 
STREET NAME, CUSTOMER CITY, CUSTOMER STATE/PROVINCE, and CUSTOMER 
POSTAL CODE.

Hash Algorithm  A formula applied to a search key to determine its physical 
storage location.

Hash Key  A result of applying a hash algorithm to a search key.
Hashing  The application of an algorithm to a search key to derive a physical 

storage location.
Hierarchical Data Model  See Hierarchical Model.
Hierarchical Model  A DBMS architecture where record types are organized into a 

one-to-many inverted tree structure consisting of one or more parent-child layers.
I/O  See Input/Output (I/O).
Identifier  1. An attribute(s) that can pick out or identify one or more entity 

occurrences. 2. A short, although technically incorrect, name for a unique identifier.
Inclusion  A relationship and linkage constraint. 1. In the Logical Data Modeling 

phase, an occurrence of entity type A can be related to an occurrence of entity type B or 
to an occurrence of entity type C or to both. 2. In the Physical Schema Definition phase, 
an occurrence of record type A can be linked to an occurrence of record type B or to an 
occurrence of record type C or to both.

Index  A file that stores the search key and the location of each record with that key.
Inheritance  1. The transference of the properties of one data object to another 

data object. For example, in logical data modeling, subtypes can inherit attributes and 
relationships from the supertype. 2. In object technology, a concept that allows a child 
object to inherit data and/or procedures from its parent.

Input/Output (I/O)  Accessing data from (input) or writing data to (output) a 
secondary storage device, such as a disk or tape.

Instance  See Occurrence.
Intelligent Key  A data item, fabricated, in whole or in part, from one or more 

business-relevant data items, usually for the purposes of making the data item unique.
Interpretation  The metadata (name, size, data type, etc.) associated with a data 

item.
Inverted File  A sequential file of search keys and file or database pointers or 

locations, sorted by search key. Each search key corresponds to a content data item in a 
database (or file), which, if sorted, is usually sorted on a different key.

Inverted Index  See Inverted File.
Isolation  An ACID component. Every transaction must be completed as though 

it were the only transaction, regardless of how many transactions there are and in what 
sequence they are executed. Isolation deals with the notion of currency control.

IUD Anomaly  See Anomaly.
Junction Entity  In the Logical Data Modeling phase, the inappropriate and 

misapplied “resolving” of a many-to-many relationship by inserting between the two 
original (m:n) entities a third “junction” entity with a many-to-one relationship to each of 
the original entities. Resolving many-to-many relationships is a physical database design 
issue inappropriate in logical data modeling.
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Junction Record  The result of an activity in the Physical Schema Definition phase 
to remove a many-to-many link between record types for database management systems 
that cannot support them. The database designer creates a junction record type between 
the two original record types. The single many-to-many relationship is replaced with two 
one-to-many relationships with the junction record at the “many” end of both.

Key  One or more data items used to identify a record occurrence.
Key-Value  A storage and retrieval technique. Key refers to the access key to fetch 

the pair, and the value is the data item content. For example, the key value pair STUDENT 
NUMBER:STUDENT NAME (a colon separates the key from the value) is stored as a 
single data item. Fetching STUDENT NUMBER returns the value of STUDENT NAME. In 
most cases, there is one occurrence of a key for each occurrence of value.

Latency  The time it takes for the desired disk sector to rotate under/over the read/
write head.

Leaf Node  In an inverted tree-structured file, the records at the lowest level of the 
tree.

Linkage Constraint  A restriction on how records can link to each other. There are 
three linkage constraints: exclusion, inclusion, and conjunction.

Linked List  A sequential storage and retrieval technique in which a record 
occurrence in a list (file) includes the pointer to the next record occurrence in the list 
(file).

Logical Data Model  1. A text and/or graphical representation of the information 
used in an organization from an end-user perspective, without regard to its functional or 
physical aspects. 2. Logical Data Modeling deliverable LDM.1 (E-R diagram), which is the 
diagram showing all entities and relationships.

Logical Data Model Object Definitions  Data dictionary; Logical Data Modeling 
deliverable LDM.2, which consists of the detailed documentation for each entity, 
attribute, relationship, and domain.

Logical Data Modeling  1. A collection, verification, and communication technique 
to fully document data requirements to aid in the development of accurate, efficient, 
and flexible information platforms (database or file) 2. The first Usage-Driven Database 
Design phase (U3D:LDM). An iterative approach focused on identifying business entities 
and then determining the attributes and relationships supporting those entities.

Logical Data Modeling Notes  Deliverable LDM.3; any comments, advice, 
difficulties, questions, suggestions, warnings, or other information the logical data 
modeler wants to communicate to physical designers.

Logical Database Description  An IMS view or subschema.
Logical Design  The phase in the system development lifecycle in which the user’s 

view of the application is documented in terms of what the user wants, not how it will be 
delivered. The logical design becomes the input to the physical design phase.

Logical I/O  A request to access a secondary storage device.
Logical Process Model  A text and/or graphic representation of the existing or 

planned functional capabilities of an application.
Mandatory-Mandatory (M:M)  A modality case. 1. In the Logical Data Modeling 

phase, every occurrence of entity type A must be related to at least one occurrence 
of entity type B, and every occurrence of entity type B must be related to at least one 
occurrence of entity type A. For example, an Order must be related to at least one Line 
Item, and a Line Item must be related to an Order. 2. In the Physical Schema Definition 
phase, every occurrence of record type A must be linked to at least one occurrence 
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of record type B, and every occurrence of record type B must be linked to at least one 
occurrence of record type A. For example, an Order must be linked to at least one Line 
Item, and a Line Item must be linked to an Order.

Mandatory-Optional (M:O)  A modality case. 1. In the Logical Data Modeling 
phase, every occurrence of entity type A must be related to at least one occurrence of 
entity type B, but an occurrence of entity type B need not be related to an occurrence 
of entity type A. For example, an Account need not be related to any Orders (it might 
have been just set up), but an Order must be related to an Account. 2. In the Physical 
Schema Definition phase, every occurrence of record type A must be linked to at least one 
occurrence of record type B, but an occurrence of record type B need not be linked to an 
occurrence of record type A. For example, an Account need not be linked to any Orders  
(it might have been just set up), but an Order must be linked to an Account.

Many-to-Many (M:N)  A cardinality case. 1. In the Logical Data Modeling phase, 
an occurrence of entity type A can relate to many occurrences of entity type B, while an 
occurrence of entity type B can relate to many occurrences of entity type A. For example, 
an uncle can have many nephews while a nephew can have many uncles. 2. In the 
Physical Schema Definition phase, an occurrence of record type A can be linked to many 
occurrences of record type B, while an occurrence of record type B can be linked to many 
occurrences of record type A. For example, an uncle can have many nephews while a 
nephew can have many uncles.

Many-to-One (M:1)  A cardinality case. Because both Logical Data Modeling 
relationships and Physical Schema Definition linkages are bidirectional, a many-to-one 
relationship is the inverse of a one-to-many relationship.

Membership Class  1. In the Logical Data Modeling phase, the number of instances 
of one entity type that can be related to another entity type. There are two types of 
membership class: cardinality and modality. 2. In the Physical Schema Definition phase, 
the number of instances of one record type that can be linked to another record type. 
There are two types of membership class: cardinality and modality.

Method  A detailed approach to applying one or more techniques that usually 
includes the sequence of steps to be performed, deliverables to be produced, discipline to 
be followed, and project management steps to be executed.

Methodology  See Method.
Middleware  Software that is used as an intermediary between other software 

components, often between the operating system and other system software.
Minimal Regression Principle  The fourth database design principle. Design a 

database so that business and technology changes minimize database redesign. Changes 
to any database design step should not require going back to the beginning and starting 
the design process over again.

Modality  1. In the Logical Data Modeling phase, expresses whether an entity’s 
involvement in a relationship is mandatory or optional. There are four cases of modality: 
mandatory-mandatory (M:M), mandatory-optional (M:O), optional-optional (O:O), 
and optional-mandatory (O:M). 2. In the Physical Schema Definition phase, expresses 
whether a record’s involvement in a linkage is mandatory or optional. There are four 
cases of modality: mandatory-mandatory (M:M), mandatory-optional (M:O), optional-
optional (O:O), and optional-mandatory (O:M).

Model  An abstract representation of a subject that looks and/or behaves like all or 
part of the original.
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Modeling  The process of creating the abstract representation of a subject so that 
it can be studied more cheaply (a scale model of an airplane in a wind tunnel), at a 
particular moment in time (weather forecasting), or manipulated, modified, and altered 
without disrupting the original (economic model).

Multivalue Attribute  An attribute that can have any number of values at the same 
time. An example would be the Employee entity and its attribute EMPLOYEE DEGREES. 
Smith might have only one degree, a “BS,” while Jones has three degrees, “BS,” “MA,”  
and “PhD.”

Multivalue Data Item  A data item that can have any number of values at the same 
time. An example, the Employee record and its data items EMPLOYEE DEGREES. Smith 
might have only one degree, a “BS,” while Jones has three degrees, “BS,” “MA,” and “PhD.”

N-ary Link  A single link between three or more record types.
N-ary Relationship  A single relationship between three or more entities.
Natural Key  A logical data modeling business-relevant identifier.
Navigation  A network model term to describe the programmer or end user 

controlled movement about the database.
Neighborhood Diagram  A diagram containing a single entity, its relationships, 

and the entities that are directly tied to those relationships.
Network Data Model  See Network Model.
Network Model  A DBMS architecture where record types are organized in a many-

to-many structure consisting of multiple parent-child sets.
Node  The records in an inverted tree-structured file.
Normalization  A Physical Schema Definition phase physical database design 

technique involving the application of a set of mathematical rules to the physical data 
model to identify, eliminate, or reduce insertion, update, and deletion (IUD) anomalies.

NoSQL  Any of a class of database management systems that reject the limitations 
and drawbacks dictated by, or associated with, the relational model. NoSQL products 
tend to specialize in a single or limited number of areas, such as high-performance 
processing, big data (giga-record systems), diverse data types (video, pictures, 
mathematical models), documents, and so on. Their specialized focus often requires 
deemphasizing other areas such as data consistency and backup and recovery.

Object  In object technology, a data construct (logical or physical) whose properties 
include both data and the operations or procedures that create, access, modify, or delete 
that data.

Object Class  In object technology, the type or set of objects that share a 
distinguishing factor.

Object Technology  A model and development approach in which a system is 
composed of objects that contain both data and procedures (computer code). Two object 
technology trademarks are encapsulation and inheritance.

Object-Oriented Database Management System (OODBMS)  A database 
management systems based on object technology.

Occurrence  A particular member or participant of a type, such as the Bob (the 
occurrence) of (the type) Employee.

OLTP  See Online Transaction Processing.
One-of-a-Kind  Also known as an OOAK (rhymes with “nuke”); an entity type 

containing only a single occurrence.
One-to-Many (1:N)  A cardinality case. 1. In the Logical Data Modeling phase, 

one occurrence of entity type A can relate to many occurrences of entity type B, but 



Appendix A ■ Glossary

341

an occurrence of entity type B can relate to only one occurrence of entity type A. For 
example, a mother can have many children, but a child can have only one mother. 2. In 
the Physical Schema Definition phase, one occurrence of record type A can be linked to 
many occurrences of record type B, but an occurrence of record type B can be linked to 
only once occurrence of record type A. For example, a mother can have many children, 
but a child can have only one mother.

One-to-One (1:1)  A cardinality case. 1. In the Logical Data Modeling phase, an 
occurrence of entity type A can relate to at most one occurrence of entity type B, and 
an occurrence of entity type B can relate to at most one occurrence of entity type A. 
For example, a husband can have only one wife, and a wife only one husband. 2. In the 
Physical Schema Definition phase, an occurrence of record type A can be linked to at 
most one occurrence of record type B, and an occurrence of record type B can linked to 
at most one occurrence of record type A. For example, a husband can have only one wife, 
and a wife only one husband.

Online Transaction Processing (OLTP)  An application-based computer activity 
corresponding to a business activity that wholly or partially occurs in real time.

OOAK record  A concept from the network model, a one-of-a-kind record type 
with a single record occurrence. It is used primarily to store application housekeeping 
information, such as next order number or billing closing dates.

OODBMS  See Object-Oriented Database Management System.
Operation  In object technology, a process or procedure that acts on an object.
Optional-Mandatory (O:M)  A modality case. Because both Logical Data Modeling 

relationships and Physical Schema Definition links are bidirectional, an optional-
mandatory relationship is the inverse of a mandatory-optional relationship.

Optional-Optional (O:O)  A modality case. 1. In the Logical Data Modeling phase, 
an occurrence of entity type A need not be related to any occurrence of entity type B, and 
an occurrence of entity type B need not be related to any occurrence of entity type A. For 
example, in Banks Finance Cars, a Bank might, but need not, Finance any Cars, and a Car 
might, or might not, be Financed by a Bank. 2. In the Physical Schema Definition phase, 
an occurrence of record type A need not be linked to any occurrence of record type B, and 
an occurrence of record type B need not be linked to any occurrence of record type A. For 
example, in Banks Finance Cars, a Bank might, but need not, Finance any Cars, and a Car 
might, or might not, be Financed by a Bank.

Optionality  See Modality.
Parent-Child Link  Two record types organized with a single parent record 

occurrence linked to one or more child record occurrences. An example would be a single 
parent Order record occurrence linked to one or more Line Item record occurrences.

Parent-Child Relationship  Two entity types organized with a single parent entity 
occurrence related to one or more child entity occurrences. An example would be a single 
parent Order entity occurrence related to one or more Line Item entity occurrences.

Partial Dependency  See Partial Functional Dependency.
Partial Functional Dependency  In normalization, a state in which a data item is 

functionally dependent on a subset of a compound primary key.
Participation  See Modality.
Partition  A region, area, or subset of a file.
Partitioned-Row Store  The result of storing multiple (usually related) rows as a 

single partition.
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Path Rationalization  A task of step 2, Utilization, of the Physical Schema 
Definition phase; reduces the complexity of the physical data model to only what is 
needed to perform its assigned functions.

Performance Enhancement  A task of step 4, Customization, of the Physical 
Schema Definition phase; the application of software and/or hardware techniques and 
tools to improve the performance of the database.

Physical Data Model  Deliverable PSD.1.1; the physical representation of the 
logical data model.

Physical Database Design  1. A data model configured to reflect the usage of data 
for a particular physical environment. 2. The DBMS or language-dependent specifications 
of what the information base should look like and how it should function. 3. A process 
for identifying and evaluating trade-offs and calculating the best solution to balance 
performance and cost for the current and near-term needs of the end user.

Physical Design  The phase in the system development lifecycle in which the user’s 
view of the application is converted into technical design specifications—the core theme 
is how to deliver what the user wants.

Physical I/O  The actual (physical) accessing of information from a secondary 
storage device.

Physical Object Definitions  Data dictionary; deliverable PSD.1.2, which is the 
detailed documentation for each record type, data item, link, and domain.

Physical Process Model  A text and/or graphical representation of a system 
(hardware and software), focusing on what the system does or how it should perform the 
functions identified in a logical process model.

Physical Schema Definition  U3D:PSD, the second phase of Usage-Driven 
Database Design, that is divided into four steps: (1) Transformation turns the logical 
data model into a physical data model, (2) Utilization merges the deliverables defined in 
Logical Process Modeling and Physical Process Definition phases into the rationalized 
physical data model, (3) Formalization creates a working DBMS functional physical 
database design, and (4) Customization improves the performance of the database 
schema resulting in an enhanced physical database design.

Pointer  A data field containing either the actual or symbolic address of a database 
record.

Presentation Data  Copies of legitimate modeled attributes (primitive and derived) 
used in reports or on computer screens but not included on the data model.

Primary Key  A Physical Schema Definition data item or group of data items that 
uniquely identify a record occurrence.

Primitive Attribute  An attribute that cannot be derived from other attributes.
Primitive Data Item  A data item that cannot be derived from other data items.
Procedural Programming Language  A programming language with which the 

programmer or user instructs the system exactly what steps to perform and in what 
order to perform them. Procedural programming is usually contrasted with declarative 
programming.

Process Model  A representation, using text and/or graphics, of the definition of 
processes and procedures in a given environment.

Proper Entity  A simple or fundamental entity that can exist independent of other 
entities of relationships.

Proper Record Type  A simple or fundamental record type that can exist 
independent of other records of links.
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Pseudocode  An imaginary computer language, mimicking formal computer 
language structure and detail, to document how a system does, or should, work.

Rationalized Physical Data Model  Deliverable PSD.2.4; a physical data model 
derivative that reflects how the user or application will use database.

RDBMS  See Relational Database Management System.
Real World Corollary  Corollary to Principle 1 of the database design principles. 

The purpose of logical design is to document the real world, which is the business world. 
There are two parts to Corollary 1: (1) a logical design is valid if, and only if, it reflects the 
real (business) world, and (2) a logical design is invalid if it contains nonreal (business) 
world objects or concepts. Invalid objects and concepts include items belonging in 
physical design such as foreign keys, pointers, and disk drives.

Record  The basic unit of stored data.
Recursive Relationship  See Unary Relationship.
Recursive Modality Constraint  Determines how entity occurrences in a recursive 

relationship relate to each other. There are two recursive modality constraint cases: 
symmetrical and asymmetrical.

Redundant Data  A term used by some data modelers to indicate intentional and 
justifiable duplicate data.

Relation  In the relational model, a record type.
Relational Database Management System (RDBMS)  A database management 

system based on the relational model.
Relational Model  A database architecture created by Edgar (Ted) Codd in 1969. 

The model is the first, and likely the only, architecture based on a formal foundation of 
predicate calculus and set theory. Data are represented as tuples (rhymes with couples) 
in relations.

Relational Theory  A popular, but technically incorrect, name for the relational 
model.

Relationship  A natural connection between two or more entities.
Relationship Constraint  A restriction on how entities can relate to each other. 

There are three relationship constraints: exclusion, inclusion, and conjunction.
Relationship-Entity Pair  A sentence construct (entity-relationship-entity) that 

represents a binary relationship.
Repeating Group  See Multivalue Attribute.
Repository  See Data Dictionary.
Resource Analysis  A task in step 4, Customization, of the Physical Schema 

Definition phase; examines the database to understand the demands that are placed on it 
and the impediments to meeting those demands.

Result Set  The record(s) meeting the condition(s) set by a query.
Role  1. The different parts subtypes play in a supertype. 2. In a recursive modality 

constraint, the type of relationship (symmetrical or asymmetrical) that exists between 
the two occurrences of a single entity in a recursive relationship. All occurrences play the 
same role in a symmetrical relationship but different roles in asymmetrical relationships.

Root Node  In an inverted tree-structured file, the records at the highest level of  
the tree.

Rotational Delay  See Latency.
Rotational Latency  See Latency.
S-type  See Supertype/Subtype.
Schema  A physical machine-readable detailed description of a database.
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Schema On Read  A process ensuring that data conform to the schema (size, data 
type, etc.) when they are read from the database. Schema on read is less efficient for 
retrieval than schema on write and is used only when the DBMS does not have exclusive 
database write authority.

Schema On Write  A process ensuring that data conform to the schema (size, 
data type, etc.) when they are to be written to the database. Schema on write, the most 
popular DBMS storage technique, ensures that only schema-correct data are stored in the 
database.

SDLC  See Systems Development Life Cycle.
Search Argument  A character string used to search a file or index to locate one or 

more record occurrences.
Search Key  A data item or group of data items used to search a file or index to 

locate one or more record occurrences in a file or database.
Second Normal Form (2NF)  In normalization, a record is in 2NF if (1) the record 

is in First Normal Form, and (2) every non-key data item is fully functionally dependent 
on the primary key.

Secondary Key  A key that needs not be unique and is most commonly used to 
locate one or more related record occurrences.

Seek  To physically position a disk actuator to read or write a disk sector.
Seek Time  The time it takes to correctly position the disk actuator arm.
Segment  An IMS term for record.
Semantic Key  A key consisting of one or more (usually visible) user-meaningful 

data items.
Semistructured Data  See Unstructured Data.
Separation Principle  Principle 1 of the first database design principle. Separate 

logical design from physical design. The principle is to identify, analyze, and exhaust 
everything knowable about the logical definition of data before considering any physical 
design concepts.

Set  A network model term to describe a parent-child relationship. The parent is 
called the set owner and the child the set member.

Simple Attribute  An attribute that does not contain other attributes. A simple 
attribute is also called an atomic attribute.

Simple Conjunction  A conjunction constraint. 1. In the Logical Data Modeling 
phase, given three (or more) entities A, B, and C and two (or more) relationships, one 
between A and B and one between A and C; every A occurrence must be related to an 
occurrence of B and related to an occurrence of C. 2. In the Physical Schema Definition 
phase, given three (or more) record types A, B, and C and two (or more) links, one 
between A and B and one between A and C, every A occurrence must be related to an 
occurrence of B and related to an occurrence of C.

Simple Data Item  Also called an atomic data item. A data item that does not 
contain any other data items.

Single-Value Attribute  An attribute that can have only one value at a time. An 
example would be COLOR = “blue.” If COLOR is “blue,” then it cannot be “red,” at least 
not at the same time.

Single-Value Data Item  A data item that can have only one value at a time. An 
example would be COLOR = “blue.” If COLOR is “blue,” then it cannot be “red,” at least 
not at the same time.

Smart Key  See Intelligent Key.
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Snowflake Schema  A data warehouse star schema in which a dimensional record 
type is linked to one or more nonfact record types.

Solid-State Drive  A completely electronic (no mechanical or moving parts) 
nonvolatile flash memory that appears to the system as a traditional rotating disk.

Sparse Data  1. A record containing one or more data fields that are blank, zero, or 
null. 2. Data fields that are individually insignificant but can be significant when taken as 
a group.

SQL  Originally a declarative query language created to front-end a relational 
database management system. It includes both an RDBMS DML and DDL. SQL grew to 
include an embedded procedural sublanguage. More recently, versions of SQL have been 
adapted for nonrelational database management systems as well.

Star Schema  A data warehouse design, consisting of a single fact record at the 
“many” end of a one-to-many link with multiple dimension records.

Structure Chart  A diagrammatic physical process modeling technique that 
represents the process as an inverted tree. The top of the tree is the root system or 
program level. Subsequent levels are modules representing greater process granularity. 
The very bottom levels usually represent program modules performing a single task.

Structured Data  A data field of a definable data type, usually of a specified size or 
range, that can be easily processed by a computer.

Structured English  A modified version of the English language used to 
communicate concepts with more exactness, simplicity, and rigor than common in 
everyday use.

Subject Area  A subset of a data model that contains the entities, relationships, 
and attributes that share certain common business characteristics and that facilitates 
the creation and development of, and communication about, the complete logical data 
model.

Subschema  A subset of a schema.
Substitution Data  Data stored in an abbreviation or conversion table that allows 

the storage of smaller codes (such as POSTAL CODE) in large occurrence record types 
(such as Customer). When the record is accessed, a table is read to fetch the name of the 
town relating to the postal code.

Supertype/Subtype  Sometimes abbreviated S-type, also called generalization 
and specialization. 1. In the Logical Data Modeling phase, an entity (the supertype) that 
contains more than one role (the subtypes). For example, the supertype Customer can 
include the subtypes Retail Customer and Wholesale Customer. The subtypes inherit the 
attributes and relationships of the supertype but can also have their own attributes and 
relationships. 2. In the Physical Schema Definition phase, a record (the supertype) that 
contains more than one role (the subtypes). For example, the supertype Customer can 
include the subtypes Retail Customer and Wholesale Customer. The subtypes inherit the 
data items and links of the supertype but can also have their own data items and links.

Surrogate Key  A user transparent key whose value is assigned either randomly or 
by a non-semantic-driven process such as the next integer in a series.

Symbolic Key  1. A user-recognizable character string for searching a file (a search 
argument). 2. Used by some computer languages to link related record types together, 
such as parent-child.

Symmetrical Relationship  A recursive modality constraint. A bidirectional unary 
relationship that represents a sequence or hierarchy that does not have a beginning or 
end. In a symmetrical relationship, all entity occurrences play the same role. For example, 
in the relationship Dances With, if A Dances With B, then B must Dance With A.
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System Development Life Cycle (SDLC)  A formal process for the planning, 
analyzing, designing, developing, testing, and implementing of a computer-based system.

System-Generated Key  See Surrogate Key.
Technical Users  The system designers who use the output of other system 

designers.
Technique  A series of steps applied to a subject to change its representation. Data 

modeling, processing modeling, and prototyping are all techniques.
Third Normal Form (3NF)  In normalization, a record is in 3NF if (1) the record is 

in Second Normal Form and (2) there are no transitive functional dependencies.
Thrashing  The rapid repetitive movement of a disk actuator arm to accommodate 

service requests. Thrashing is often the result of competition for database resources.
Throughput  A trade-off triangle component. How quickly the database system can 

perform its function either in terms of response time for online applications or in terms of 
runtime of batch programs.

Tool  A physical or conceptual product that aids in applying techniques. CASE 
products and flow-charting templates are tools.

Trade-Off Triangle  A simple visual way to demonstrate, and gain buy-in to, 
database design trade-offs.

Trade-Off Triangle Serviceability Index  A tool that gives the database designer 
a framework for structuring potential challenges as well as a managing performance 
expectation when meeting with other technical staff and end users.

Transformation  The first Physical Schema Definition step; turns the logical data 
model into a physical data model by converting the logical objects entity, attribute, and 
relationship into the physical database objects record, data field, and linkage.

Transformation Notes  Deliverable PSD.1.3; a narrative or journal created 
by the database designer of the activities, issues, and decisions made during step 1, 
Transformation.

Transient Data  Temporary, duplicate, or process-related data that is usually not 
kept by the system or included on the logical data model.

Transitive Dependency  See Transitive Functional Dependency.
Transitive Functional Dependency  Functional dependency of a data item on 

another data item that is not part of the primary key.
Translation  A task of step 1, Transformation, of the Physical Schema Definition 

phase. The conversion in name and definition of logical data object into physical data 
objects.

Tuple  In the relational model, a row or record occurrence.
Two-Phase Commit  A protocol for synchronizing the creation, update, or deletion 

of a multirecord transaction where the transaction records reside, or will reside, on 
physically distinct computers. The protocol was an attempt to make distributed database 
management systems ACID compliant.

Type  A class or set of objects that share a distinguishing factor.
Type-Occurrence Distinction  Also type-instance distinction. The difference 

between a class of objects, the type, and a particular occurrence or instance of that type. 
For example, Employee is a type, while the particular employee, Bob, is an occurrence or 
instance of that type.

UML  See Unified Modeling Language.
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Unary Link  A link between two or more occurrences of the same record type.
Unary Relationship  A relationship between two or more occurrences of the same 

entity type.
Unified Modeling Language (UML)  An ISO standard object-oriented modeling 

technique that focuses on both data and process within the same model (graphics and 
documentation).

Unique Identifier  A unique attribute that is used by the enterprise to point out a 
specific entity occurrence. Examples are SOCIAL SECURITY NUMBER = “123-45-6789” 
and CUSTOMER NUMBER = “123456.”

Updated Physical Object Definitions  Deliverable PSD.2.5; the same physical 
definitions created in step 1, Transformation, updated with any necessary changes made 
during step 2, Utilization.

Usage Analysis  A task of step 2, Utilization, of the Physical Schema Definition 
phase; understanding exactly how the database will be used (data creation, access, 
update, and deletion) by users and applications.

Usage-Driven Database Design (U3D)  A database design principles–compliant, 
end-to-end approach for designing databases that encompasses the entire database 
development lifecycle, from logical data modeling through database schema definition.

Usage Map  Deliverable PSD.2.2; the graphical application of the individual usage 
scenarios onto the physical data model showing how the application must navigate the 
database.

Usage Scenario  Deliverable PSD.2.1; functional summaries describing how the 
database will be used by the application.

Unstructured Data  A data field that is not definable by definition, data type, or 
size but either contains structured components or can be at least semistructured through 
processing.

Utilization  The second Physical Schema Definition step; takes the deliverables 
defined in logical process modeling and physical process modeling and merges them 
with the physical data model. The step deliverable is a modified or rationalized physical 
data model that represents how the applications will use the database.

Utilization Notes  Deliverable PSD.2.6; a narrative or journal created by the 
database designer of the activities, issues, and decisions made during step 2, Utilization.

Value  1. In the Logical Data Modeling phase, an attribute instance or occurrence 
of an attribute type. 2. In the Physical Schema Definition phase, a data item instance or 
occurrence of a data item type.

Volume  A trade-off triangle component; the number of objects/actions the 
database system can accommodate, such as the number of record types or occurrences it 
can support or the number of concurrent online transactions it can handle.

Weak Entity  See Attributive Entity.
Weak Record Type  See Attributive Record Type.
Wide Column  A NoSQL variant of a key-value store in which each key can be 

linked to multiple columns, with each column containing multiple rows.
Zero Normal Form (0NF)  A concept created for this book that alters a physical 

data model to allow normalization. It does this by ensuring that every record has a 
primary key.
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APPENDIX B

Logical Data Modeling 
Definitions

Software tools for data modeling, database design, and documentation, as well as 
corporate data dictionaries and the database management system, will all have 
their own documentation standards. This appendix gives examples of the minimum 
information about data that needs to be available for database designers, DBAs, database 
maintenance staff, and application designers and programmers.

Entity
•	 Entity name

•	 Entity description

•	 Entity type (proper, associative, attributive, S-type)

•	 Name of supertype (if any)

•	 Name of subtypes (if any)

•	 Synonyms or aliases (other names for this object)

•	 Attributes in the entity

•	 Unique identifier(s)

•	 Relationships the entity participates in

•	 Number of occurrences

•	 Growth rate (can include multiple answers, for example, 700 
occurrences per day or 100 during peak hours)

•	 Insertion, update, deletion rules

•	 Notes, constraints, other rules, and comments

•	 History of updates, modifications, and changes to the object by date
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•	 Version number

•	 Entity ID number*

Relationship
•	 Relationship name

•	 Relationship description

•	 Relationship type (unary, binary, n-ary)

•	 Synonyms or aliases (other names for this object)

•	 For each entity participant specify the entity name, cardinality, 
modality (for example, Buys in Customer Buys Car from Dealer)

Entity Cardinality Modality

Customer Many Zero

Car Many Zero

Dealer Many Zero

•	 Other constraints

•	 Notes, rules, and comments

•	 History of updates, modifications, and changes to the object  
by date

•	 Version number

•	 Relationship ID number*

Attribute
•	 Attribute name

•	 Attribute description

•	 Attribute uniqueness (descriptor, identifier)

•	 Attribute source (primitive, derived—if derived, what algorithm 
and other attributes)

•	 Attribute complexity (simple, group—if group, list attributes  
in group)
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•	 Attribute valuation (single value, multivalue)

•	 Synonyms or aliases (other names for this object)

•	 Size

•	 Whether attribute is required or optional

•	 In entity (if more than one, name all)

•	 Domain

•	 Edit mask

•	 Notes, constraints, rules, values, and comments

•	 History of updates, modifications, and changes to the object  
by date

•	 Version number

•	 Attribute ID number*

Domain
•	 Domain name

•	 Domain description

•	 Data type

•	 Range

•	 Acceptable values

•	 Part of domain (for example, the domain Dates Between 
December 7, 1941, and September 2, 1945, can be part of the 
domain Dates)

•	 Contains domain(s) (covered earlier)

•	 Synonyms or aliases (other names for this domain)

•	 Notes, constraints, other rules, and comments

•	 History of updates, modifications, and changes to the domain

•	 Version number

•	 Domain ID number*

*Note: Good form is to assign a unique number to each data object. This number will 
be useful if two object have the same name (though different contexts), or similar names, 
or if an object name changes over time.
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APPENDIX C

Physical Schema Definition 
Object Definitions

Software tools for data modeling, database design, and documentation, as well as 
corporate data dictionaries and the database management system, will all have 
their own documentation standards. This appendix gives examples of the minimum 
information about data that needs to be available for database designers, DBAs, database 
maintenance staff, and application designers and programmers.

Record
•	 Record name

•	 Record description

•	 Logical data model name

•	 Type (proper, associative, attributive, S-type)

•	 Name of supertype (if any)

•	 Name of subtype (if any)

•	 Synonyms or aliases (other names for this object)

•	 Data items in the record

•	 Key(s) and type (primary, secondary, etc.)

•	 Links the record participates in

•	 Number of occurrences

•	 Growth rate (can include multiple answers, for example, 700 
occurrences per day or 100 during peak hours )

•	 Cluster

•	 Partition

•	 Location (database or file name)
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•	 Constraints

•	 Insertion, update, deletion rules

•	 Notes, constraints, other rules, and comments

•	 History of updates, modifications, and changes to the object  
by date

•	 Version number

•	 Record ID number*

Linkage
•	 Linkage name

•	 Linkage description

•	 Linkage type (unary, binary, n-ary)

•	 Logical data model name

•	 Synonyms or aliases (other names for this object)

•	 For each record participant specify the record name, cardinality, 
modality (for example, Buys in Customer Buys Car from Dealer)

Record Cardinality Modality

Customer Many Zero

Car Many Zero

Deale Many Zero

•	 Other constraints

•	 Notes, rules, and comments

•	 History of updates, modifications, and changes to the object  
by date

•	 Version number

•	 Link ID number*
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Data Item
•	 Data item name

•	 Data item description

•	 Data item uniqueness (descriptor, identifier)

•	 Key type (if any)

•	 Data item source (primitive, derived—if derived, what algorithm 
and other data items)

•	 Data item complexity (simple, group—if group, list data items  
in group)

•	 Data item valuation (single value, multivalue)

•	 Synonyms or aliases (other names for this object)

•	 Size

•	 Whether attribute if required or optional

•	 Edit mask

•	 In index(s)

•	 In record (if more than one, name all)

•	 Domain

•	 Notes, constraints, rules, values, and comments

•	 History of updates, modifications, and changes to the object  
by date

•	 Version number

•	 Data item ID number*

Domain
•	 Domain name

•	 Domain description

•	 Data type

•	 Range

•	 Acceptable values

•	 Part of domain (for example, the domain Dates Between 
December 7, 1941, and September 2, 1945, can be part of the 
domain Dates)
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•	 Contains domain(s) (covered earlier)

•	 Synonyms or aliases (other names for this domain)

•	 Notes, constraints, other rules, and comments

•	 History of updates, modifications, and changes to the domain  
by date

•	 Version number

•	 Domain ID number*

Cluster
•	 Cluster name

•	 Cluster description

•	 Parent record type

•	 Parent cluster key

•	 Child record type(s)

•	 Child cluster key

•	 Synonyms or aliases (other names for this cluster)

•	 Notes, constraints, other rules, and comments

•	 History of updates, modifications, and changes to the cluster  
by date

•	 Version number

•	 Cluster ID number*

Partition
•	 Partition name

•	 Partition description

•	 Partition location

•	 Record types(s)

•	 Synonyms or aliases (other names for this partition)

•	 Notes, constraints, other rules, and comments

•	 History of updates, modifications, and changes to the partition  
by date
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•	 Version number

•	 Partition ID number*

Index
•	 Index name

•	 Index description

•	 Data items in key (in proper order)

•	 On record type

•	 Index type (ISAM, VSAM, B-tree, Hash, Bitmap, etc.)

•	 Synonyms or aliases (other names for this index)

•	 Notes, constraints, other rules, and comments

•	 History of updates, modifications, and changes to the index  
by date

•	 Version number

•	 Index ID number*

*Note: Good form is to assign a unique number to each data object. This number will 
be useful if two object have the same name (though different contexts), or similar names, 
or if an object name changes over time.
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APPENDIX D

Formulas Used in This Book

Formula Number Formula In Chapter Source

1 C = log2 (N)-1 8 James Martin, Computer 
Data-Base Organization. 
Prentice Hall, 1977, p. 655.

2 =(LOG(N,2))-1 8 Excel formula derived 
from (1).

3 W = ⌊ log 2 (N)⌋ +1 8 James Martin, Computer 
Data-Base Organization. 
Prentice Hall, 1977, p. 654.

4 =FLOOR(LOG(N,2),1)+1 8 Excel formula derived 
from (3).

5 C=Log N/Log m 8
13

Donald E. Knuth, The Art 
of Computer Programming: 
Volume 3 Sorting and 
Searching. Addison-
Wesley, 1998, Sect. 6.3.

6 =LOG(N)/LOG(m) 8
13

Excel formula derived 
from (5).

7 Percent Split = 1/(⌈m/2⌉ -1 8
13

Donald E. Knuth, The Art 
of Computer Programming: 
Volume 3 Sorting and 
Searching. Addison-
Wesley, 1998, Sect. 6.2.4.

8 =1/((CEILING(m,1)/2)-1 8
13

Excel formula derived 
from (7).
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Where:

•	 N = Number of (index) entries to search

•	 C = Average number of compares to find desired entry

•	 W = Worst-case number of compares

•	 m = Blocking factor of index

•	 Percent split = Probability that the index node will have to be split
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APPENDIX E

List of U3D Deliverables

Logical Data Modeling

Deliverable Definition Examples

LDM.1: Logical data model 
(E-R diagram)

The diagram showing all entities and 
relationships

Figure 4-12

LDM.2: Logical data model 
object definitions (data 
dictionary)

Detailed documentation for each 
entity, attribute, relationship, and 
domain

Figures 4-13 through 
4-16
Appendix B

LDM.3: Logical data 
modeling notes

Any comments, advice, difficulties, 
questions, suggestions, warnings, or 
other information the logical data 
modeler wants to communicate to 
physical designers

Physical Schema Definition—Step 1: Transformation

Deliverable Definition Examples

PSD.1.1: Physical data 
model

The physical representation of the 
logical data model

Figure 10-6

PSD.1.2: Physical data 
model object definitions 
(data dictionary)

Record types, data elements, 
linkages, keys, formats, and so on

Figures 10-7 
through 10-10
Appendix C

PSD.1.3: Transformation 
notes

A narrative or journal created by the 
database designer of the activities, 
issues, and decisions made during 
step 1, Transformation

http://dx.doi.org/10.1007/978-1-4842-2722-0_#4Fig12
http://dx.doi.org/10.1007/978-1-4842-2722-0_#4Fig13
http://dx.doi.org/10.1007/978-1-4842-2722-0_#4Fig16
http://dx.doi.org/10.1007/978-1-4842-2722-0_18
http://dx.doi.org/10.1007/978-1-4842-2722-0_#10Fig6
http://dx.doi.org/10.1007/978-1-4842-2722-0_#10Fig7
http://dx.doi.org/10.1007/978-1-4842-2722-0_#10Fig10
http://dx.doi.org/10.1007/978-1-4842-2722-0_19
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Physical Schema Definition—Step 2, Utilization

Deliverable Definition Examples

PSD.2.1: Rationalized 
physical data model

A subset of the physical data model 
that reflects exactly how the user or 
application will use database

Figure 11-10

PSD.2.2: Updated physical 
data model object 
definitions

The same physical definitions created in 
step 1, Transformation, updated with any 
necessary changes made during step 2, 
Utilization

Appendix C

PSD.2.3: Usage scenarios Functional summaries describing how the 
database will be used by the application

PSD.2.4: Usage maps A mapping of the individual usage 
scenarios onto the physical data model 
showing how the application must 
navigate the database

Figure 11-7

PSD.2.5: Combined usage 
map

All the individual usage map information 
on a single diagram

Figure 11-8
Figure 11-9

PSD.2.6: Utilization notes A narrative or journal created by the 
database designer of the activities, 
issues, and decisions made during step 2, 
Utilization

Physical Schema Definition—Step 3, Formalization

Deliverable Definition Examples

PSD.3.1: Functional 
physical database 
design diagram

A database diagram showing the record types 
and links

Figure 12-5

PSD.3.2: Functional 
schema DDL

Two versions should be created: (1) generic 
DDL conforming to the database architecture 
and (2) vendor product and version specific

PSD.3.3: Functional 
subschema DDL

Two versions should be created: (1) generic 
DDL conforming to the database architecture 
and (2) vendor product and version specific

PSD.3.4: Functional 
physical object 
definitions

The same physical definitions created 
in step 1, Transformation, updated with 
any necessary changes made during 
step 2, Utilization, updated with step 3, 
Formalization, information

Appendix C

PSD.3.5: Formalization 
notes

A narrative or journal created by the database 
designer of the activities, issues, and 
decisions made during step 3, Formalization

http://dx.doi.org/10.1007/978-1-4842-2722-0_#11Fig10
http://dx.doi.org/10.1007/978-1-4842-2722-0_19
http://dx.doi.org/10.1007/978-1-4842-2722-0_#11Fig7
http://dx.doi.org/10.1007/978-1-4842-2722-0_#11Fig8
http://dx.doi.org/10.1007/978-1-4842-2722-0_#11Fig9
http://dx.doi.org/10.1007/978-1-4842-2722-0_#12Fig5
http://dx.doi.org/10.1007/978-1-4842-2722-0_19
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Physical Schema Definition—Step 4, Customization

Deliverable Definition Examples

PSD.4.1: Enhanced 
database design 
diagram

The final physical database design 
diagram

Figure 13-11

PSD.4.2: Enhanced 
schema (DDL)

Update of the schema DDL created in 
step 3, Formalization

PSD.4.3: Enhanced 
subschemas (DDL)

Update of all subschema DDL 
created in step 3, Formalization

PSD.4.4: Enhanced 
database object 
definitions

Update of all database object 
definitions to reflect step 4, 
Customization changes

Figures 13-12, 13-13, 
and 13-14
Appendix C

PSD.4.5: Customization 
notes

A narrative or journal created by the 
database designer of the activities, 
issues, and decisions made during 
step 4, Customization

http://dx.doi.org/10.1007/978-1-4842-2722-0_#13Fig11
http://dx.doi.org/10.1007/978-1-4842-2722-0_#13Fig12
http://dx.doi.org/10.1007/978-1-4842-2722-0_#13Fig13
http://dx.doi.org/10.1007/978-1-4842-2722-0_#13Fig14
http://dx.doi.org/10.1007/978-1-4842-2722-0_19
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�       � A
Abstraction, 329
Action diagram, 329
Actuator, 329
ad hoc query, 289
Aggregate data item, 249
Alternate key, 329
Analyze information, 329
Anomaly, 329
Architectural approach, 329
Association, 329
Associative array, 329
Associative entity, 329
Associative record type, 241, 329
Asymmetrical relationship, 329
Atomic data item, 249
Atomicity, 330
Atomicity, consistency, isolation, and 

durability (ACID), 280, 295, 298, 
329

DBMS, 277
eliminate\reduce, 276
physical database design  

diagram, 277
steps, 276
updating, 276

Attribute, 330
complexity, 330
domain, 330
source, 330
valuation, 330
value, 330

Attributive entity, 330
Attributive record type, 242, 330

�       � B
Best practices, 330
Big Data, 330

big, 277
bytes, 278
data warehouse, 301
DSS, 305–306
technology escalation rules, 278
trade-off triangle, 278
unstructured, 302

Bill of materials, 330
Binary linkages, 246, 330
Binary relationship, 27, 330
Binary search, 330
Bitmaps, 266, 296–297, 330
Blob, 330
Blocking factor, 331
Branch node, 331
B-tree, 266, 330

�       � C
Candidate key, 331
Cardinality, 23, 24, 331, 350
Cardinality linkages

many-to-many, 244
one-to-many, 244
one-to-one, 243

Cassandra
ACID, 280
aggregation, 280
clustering, 280
column family, 280
hashing, 280

Index
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partition, 280
petition, 281
replication, 281
supported aggregation, 281

Child record, 244
Circular relationships, 99
Clustering, 269, 331

definition, 284
effective, 266
example, 267
I/O, 266
Line Item, 268
order management system, 267
SQL, 268
type, 267

Clusters, 310, 356
example, 269–271

COBOL programmer, 319
Column, 331
Combined usage map, 331
Compaq Computer Corporation, 317
Compound key, 331
Compound unique identifier, 331
Computer aided/assisted software 

engineering (CASE), 320, 331
Conditional conjunction, 248, 331
Conference/Committee on Data  

Systems Languages (CODASYL), 
139, 253, 331

Confident Expert Syndrome, 3
Conjunction, 331
Conjunction constraints, 247–248
Consistency, 332
Constraint compliance, 332

create DBMS product, 251–253
data architecture, 241–249, 251
map rationalized physical data  

model, 241–249, 251
pseudocode, 239–241
version-specific functional physical 

database design, 251–253
Construct model, 332
Convergence principle, 8332
CPU, 273
Currency, 332
Customers Buy Products, 24
Customization, 332
Customization notes, 332
Cylinder, 263

�       � D
Data architecture, 241–249, 251
Database administrator (DBA), 274, 333
Database architecture, 234
Database designer, 333
Database design missing link, 333
Database design principles, 333
Database key, 333
Database management system  

(DBMS), 4, 166, 318, 333
associative, attributive, and S-type 

record types, 236
comparison of various  

approaches, 235–236
creative destruction, 324
data item, 322
designing considerations, 234
features, 322
hierarchical systems, 237
many-to-many relationships, 236
nontraditional, 279
NoSQL, 238, 322–324
partitions, 284
product and version selection, 238–239
pseudocode, 240
recursive relationships, 236
relational systems, 237
structured data, 304
synchronization problems, 320, 322
theoretical foundations, 318
traditional, 279, 305
vanilla design, 250

Database page, 333
Data Base Task Group (DBTG), 17, 139, 

332
Data Definition Language (DDL), 17, 140, 

263, 319, 332
Data dictionary, 332
Data flow diagram (DFD), 332
Data independence, 332
Data item, 332

complexity, 332
domain, 332
valuation, 333

Data lake, 333
Data Manipulation Language (DML), 17, 

140, 333
Data modeling, 333
Data modeling objects, 333
Data structure diagram (DSD), 17, 333

Cassandra (cont.)
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Data value, 333
Data warehouse (DW), 301, 333

ad hoc query, 289
architecture, 290–291
Big Data, 290
bitmaps, 296–297
bulk loading, 297
cluster, 298
defined, 287
denormalization, 295
distributed process, 298
duplication, 295
indices and hashing, 296
mega-process, 290
partitions, 298
query-based software, 288
streamlining, 295
threat, 289
time dimension, 294

customization, 295
formalization, 295

U3D, 290–291
scenarios, 293
transformation, 291
utilization, 292–294

Decision support system (DSS), 287, 301
basic, 287
Big Data, 305–306
TPS and, 289, 305, 313

Declarative programming language, 334
Degree, 334
Deliverables, formalization, 255–256
Denormalization, 276, 334
Derived attribute, 334
Derived data, 275

arguments, 102
items, 249, 334
and physical database design, 

104–106
process, 103

Descriptor attribute, 334
Descriptor data item, 334
Digital Equipment Company (DEC), 317
Dimensional record types, 293, 334
Dimensions, 293
Disk

add, 265
consists, 263
contention, 334
cylinder, 263
database, 274

data transfer speeds, 264
faster, 265
platters, 263
reality, 263
seek time, 263
track, 263

Distinction principle, 334
Distributed database managements 

systems (DDBMSs), 298, 334
Document management, 334
Duplicate data, 334
Durability, 335

�       � E
Embedded attribute, 106–107, 335
Encapsulation, 335
End users, 335
Enhanced database design diagram, 283
Enhanced database object definitions, 335
Enhanced physical database design 

diagram, 335
Enhanced schema DDL, 335
Enhanced subschema DDL, 335
Entity, 331

classes, 17
fragmentation, 105, 107–108, 335

Entity-relationship diagram (ERD), 335
entity fragment, 56–57
neighborhood diagram, 57
relationship bridges and stubs, 58
subject areas, 55–56

Entity-relationship (E-R) approach, 18, 
318, 335

accurate, 17
associative entities, 36
attribute, 21
attribute complexity and  

valuation, 40, 41
attribute descriptor and unique 

identifier, 39
attribute domain, 38–39
attribute valuation, 41
attributive entity, 35–36
binary relationship, 27
cardinality, 24
compound/concatenated unique 

identifiers, 40
conditional conjunction, 31–32
conjunction, 30
definitions, 18
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degree, 27
DSD/Bachman diagram, 18
efficient, 17
entities, 19
entity classes, 17
exclusion, 30
expandable, 17
genogram, 16
inclusion, 29
interview and read back, 17
logical data modeling objects, 43
membership class, 23
modality, 25–27
n-ary relationships, 28
near-universal elements, 42
primitive and derived, 39
recursive modality constraints, 32–35
relationship constraints, 29
relationships, 20
set classes, 17
simple conjunction, 30
supertype and subtype entities, 36, 38
teachable, 17
type-instance distinction, 20
unaryrecursive relationships, 28–29

Environment designation, 335
Exclusion, 335
Exclusion constraints, 247
Expansion, 335

�       � F
Fact record, 290–291, 293–294, 296, 299, 308
Fact record type, 335
Fat record, 279, 306, 335
File, 335
First normal form (1NF), 200, 336
Flexibility, 336
Foreign keys, 108, 336
Formalization, 233–234, 255, 336
Formalization notes, 336
Formulas, 359–360
FORTRAN programmer, 319
Framework, 336
Full functional dependence, 336
Functional database design, 255–256
Functional dependence, 336
Functional physical database design 

diagram, 336
Functional physical object definitions, 336

Functional schema DDL, 336
Functional subschema DDL, 336

�       � G
Gather Information and Review, 336
Group attributes, 106, 336
Group data item, 249, 337

�       � H
Hadoop, 314

HDFS, 310–313
MapReduce, 310–311

Hadoop Distributed File  
System (HDFS), 310–313

Hash, 266
Hash algorithm, 337
Hashing, 142–144, 280, 337
Hash key, 337
HBase, 312
Hierarchical model, 337
Hierarchical systems, 237
Hive, 312

�       � I
Identifier, 337
Inclusion, 337
Inclusion constraint, 247
Indices (index), 337, 357

criteria, 266
example, 269–271

Information Management System (IMS), 138
Inheritance, 337
Inputs and outputs (I/Os), 263–266, 

269–271, 337
Insertion, update, and deletion (IUD) 

anomaly, 337
Integration Definition for Information 

Modeling (IDEF1X), 18
Intelligent key, 337
Interpretation, 337
Interview process, LDM

employees, 50
E-R Conversion, 51
formal walk-throughs, 53–54
identify relationships, 48
identify the Users, 47
immediate interview feedback, 53
interview statements, 50

Entity-relationship (E-R) approach (cont.)
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iterative interview and model building 
process, 46

modeling rules, 51–52
properties/attributes, 48–49
subject (application) entities, 47–48

Inverted file, 337
Isolation, 337

�       � J
Junction entity, 337
Junction record, 244, 246, 338

�       � K
Key, 338
Key-value, 338

�       � L
Latency, 338
Leaf node, 338
Line Item, clustering

around order, 268, 272, 274
around product, 273–274
Order X, 270
physical I/Os, 272

Linkage
cardinality, 243–244
constraints, 338

conjunction, 247–248
exclusion, 247
inclusion, 247

modality, 244–247
Linked list, 338
Links, 243
Location-dependent data, 116–117
Logical data model/modeling (LDM), 10, 

292, 338
abbreviations, 70
almost unique identifiers, 71
associative entities, 114–116
associative related to another 

associative, 120
attribute, 350–351
CASE and system development tools, 70
circular relationships, 99
clarity, 72
code, 114
compound unique identifiers, 72–73
computer-based abbreviations, 70

conceptual integrity, 73–74
conjunctive relationships, 75
constraints

spiderwebs, 128–129
too many blanks or nulls, 129–130
too many recursives, 130

data modeler, 59
data value–differentiated entities and 

attributes, 99–100
data values, 98
deliverables

attribute definition, 66
domain definition, 66
entity type definition, 65
E-R diagram, 64
Physical Schema Definition, 63
relationship definition, 65

derived data, 102
diagrammable objects, 120–121
disassociated entity clusters, 121
domain, 351
duplicate super-subtypes “Type”  

data, 75–76
duplicate unique identifiers, 122
embedded attributes, 106
endless analysis, 61–62
entity, 349
entity fragmentation, 105
exclusive and nonexclusive 

generalization, 76–77
exclusive relationships, 78–79
foreign keys, 108
group attributes, 79, 106, 112
interviewprocess (see Interview 

process, LDM)
junction entities, 106
level of abstraction, 79–80
location-dependent data, 116–117
many-to-many relationships, 80–81
multiple names, 86
multivalue attribute, 112
name uniqueness, 87
naming conventions, 87–91
n-ary relationships, 82
normalization, 109
notes, 338
object definitions, 338
one entity, two or more identifiers, 122
one identifier, two or more entities, 

122–123
One-of-a-Kind (OOAK) entities, 124



■ INDEX

370

one relationship, multiple views, 123
one-to-one relationships, 124
optional relationships, 92
physical database design, 104–106
physical data modeling, 45
presentation data, 110
primary keys, 110–111
process data, 111
project to technical staff, 60
project to users, 60
rare entity relationships, 125
recursive modality constraints, 

126–127
relationship, 350
repeating groups, 112
solution, 107
subject areas, 92–93
supertypes and subtypes, 93
tools/techniques, 61
U3D framework, 131
usage-driven database design, 46
unique identifiers, 93, 95
uniqueness, 106

Logical design, 338
Logical I/O, 338
Logical operations, 296–297
Logical process model, 338

�       � M
Main memory, 265–266
Mandatory links, 245
Mandatory-mandatory (M:M) 

relationships, 338
Mandatory-optional (M:O) relationships, 

26, 339
Many-to-many (M:N) linkages, 244, 245, 

339
Many-to-many relationships, 236
Many-to-one (M:1) relationships, 339
Map rationalized physical data model, 

241–249, 251
MapReduce, 310–311
Mega-process payroll, 290
Membership class, 339
Method, 339
Metropolitan statistical areas (MSAs), 55
Middleware, 339
Minicomputer market, 317
Minimal regression principle, 9, 339

Modality, 23, 25–27, 339
Modality link

binary, 246
degree, 245
mandatory, 245
n-ary, 246–247
optional, 245
unary, 245–246

Multimodal systems, 160
Multivalue attribute, 112, 114, 340
Multivalue data item, 250, 340

�       � N
N-ary link, 246–247, 340
N-ary relationships and membership 

class, 28, 340
cardinality and modality, 83
incorrect n-ary resolution, 84
naming objects, 86
n-ary cardinality confusion, 84
n-ary event entity, 85
relationship-entity pair, 83
single n-ary relationship, 85

Natural key, 340
Navigation, 340
Neighborhood diagram, 340
Network-based systems, 242
Network model, 340
Network systems, 237
Node, 340
Non-object-oriented systems, 243
Nonstructured data, 304
Normalization, 109, 340
NoSQL, 238, 247, 275, 304, 340

Cassandra, 279
defined, 279
denormalization, 276
fat record, 279
features, 279

�       � O
Object, 340
Object class, 340
Object-oriented database management 

system (OODBMS), 157, 243, 340
Object-oriented modeling (OOM), 324
Object-oriented systems, 238
Object technology, 324, 340
Occurrence, 340

Logical data model/modeling (LDM) (cont.)
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One-of-a-Kind (OOAK) entities, 124, 340
One-to-many (1:N) linkage, 244, 340
One-to-many relationship, 24
One-to-one (1:1) linkage, 243, 341
Online transaction processing (OLTP), 341
Operation, 341
Optional links, 245
Optional-mandatory (O:M)  

relationships, 341
Optional-optional (O:O) relationships, 26, 

341
Oracle, 138, 252, 310
Order management system, 267–268, 292

�       � P
Parent-child relationship, 341
Partial functional dependency, 341
Partition, 356
Partitioned-row store, 341
Path rationalization, 342
Performance enhancement, 342
Physical database design, 342

ACID/BASE, 160, 162
ACID test, 158–159
age of relational, 150–152
associative array, 149
bitmaps, 148
B-trees, 146–148
communication and language, 

153–155
database access, 142
database currency, 141
database pages, 145–146
data types, 152
DBMS compilers, 135
derived data, 104
discrete attributes, 105
document management system, 160
embedded attributes, 106
first random access DBMS, 137–141
graph, 160
groups, 153
hashing, 142–144
inverted file systems, 150
inverted index, 144–145
key-value approach, 159
logical vs. physical I/O, 146
multimodal systems, 160
NoSQL, 159
object technology, 157–158

performance issues, 152
procedural code, 152
relational model, 156
sequential processing, 136–137
theory/DBMS, 155–156
word soup, 138

Physical data model, 342
Physical design, 342
Physical I/O, 272–275, 342
Physical object definitions, 342
Physical process modeling, 342

clearing, decks, 221–223
database sequence, 225
deliverables, 229
flow charts, 218–219
graphical physical process modeling 

techniques, 218
map usage scenarios, PDM, 226–227
natural-language physical modeling 

techniques, 217
path rationalization, 227–228
plain english, 217
plain-language usage narrative, 225
pseudocode, 217–218
simplify model, 228
structure chart, 219–220
structured English, 217
utilization notes, 229

Physical schema definition, 11, 342
inputs, 166
object definitions

cluster, 356
data item, 355
domain, 355–356
index, 357
linkage, 354
partition, 356
record, 353

Usage-Driven Database Design, 166
Pointer, 342
Presentation data, 110, 342
Primary key, 110–111, 342
Primitive attribute, 342
Primitive data, 275
Primitive data items, 248, 342
Procedural programming language, 342
Process data, 111
Process model, 342
Product data warehouse, 299
Proper entity, 342
Proper record type, 241, 342
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Pseudocode, 343
Pseudocode approach, 239

advantage, 240
DBMS, 240–241

Pseudo-DDL approach, 239–240
Pseudo-DML approach, 239

�       � Q
Query-based software, 288
Quik-Drop modelers, 76

�       � R
Rationalized physical data model, 294, 

308, 343
Real data processing, 317
Real world corollary, 343
Record, 343
Recursive link, 245
Recursive modality constraint, 343
Recursive relationship, 28, 236
Redundant data, 343
Relational database, 284
Relational Database Management System 

(RDBMS), 237, 241, 303, 343
Relational model, 319, 343
Relational systems, 237
Relational theory, 343
Relationship, 343
Relationship constraint, 343
Relationship-entity pair, 343
Resource analysis, 343
Result set, 343
Role, 343
Root node, 343
Rotational delay, 264
Rotational latency, 264

�       � S
Schema, 343
Schema on read, 312, 344
Schema on write, 312, 344
Search argument, 344
Search key, 344
Secondary key, 344
Secondary storage

currency, 263
disk, 263
I/Os, 263

Second normal  
form (2NF), 201, 344

Seek, 344
Seek time, 263, 344
Segment, 344
Semantic key, 344
Semistructured data, 302–305
Separation principle, 344
Serviceability index, 262
Set, 344
Set classes, 17
Simple attribute, 344
Simple conjunction, 247, 344
Simple data item, 249, 344
Single-value attribute, 344
Single-value data item, 250, 344
Snowflake schema, 291, 294, 345
Solid-state drive, 345
Sparse data, 303, 345
SQL, 252, 345
Star schema, 290, 299, 345
Stock keeping unit, 70
Stolid-state drive (SSD), 263–264
Structural constraints, 251
Structure chart, 345
Structured data, 302–305, 345
Structured English, 345
S-type, 243
S-type record types, 187
Subject area, 345
Subschema, 345

relational view, 254–255
schema and, 253

Substitution data, 345
Supertype/Subtype, 345
Surrogate key, 96, 345
Symbolic key, 345
Symmetrical relationship, 345
Syntactical constraint, 251
System development life cycle (SDLC) 

methodology, 4, 342

�       � T
Technical users, 346
Technique, 346
Theoretical systems, 318
Third normal form (3NF), 202, 346
Thrashing, 346
Throughput, 346
Tool, 346
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Trade-off triangle, 278, 346
critical dimensions, 261–262
flexibility, 259–260
representation, 260
serviceability index, 262, 346
throughput, 259
volume, 259, 261

Transaction Processing System (TPS), 305
DSS, 313

Transformation, 346
attributes to data items, 192
data item complexity, 193
data item domain, 193
data item source, 193
data item valuation, 194
deliverables, 206
domain definition, 208
entities to record types, 187, 189
expansion

concatenated key/compound  
key, 196

first normal form (1NF), 200
normalization, 198
primary and secondary, 195

linkage constraints, 191–192
linkage definition, 209
linkage degree, 191
linkage membership class, 190
normalization

database designers, 197
DBMS, 199
first normal form (1NF), 200
functional dependency, 201
insertion, update, and deletion 

(IUD), 198
IUD Anomalies, 198
post-normalization, 203
second normal form (2NF), 201
third normal form (3NF), 202
transitive dependency, 201
zero normal form (0NF), 200

notes, 205, 346
physical data model, 206
primitive data items, 193
record type definition, 207
relationships to linkages, 190
transformation notes, 205
translation, 186

Transient data, 346
Transitive functional dependency, 346
Translation, 346

Tuple, 346
Twelve Product records, 271
Twenty-five Order records, 271
Two-phase commit, 346
Type, 346
Type-occurrence distinction, 346

�       � U
Uber-links, 248
Unary link, 245–246, 347
Unary relationship, 28, 347
Unified Modeling Language (UML), 18, 

325, 347
Unique identifier, 347
Unstructured data, 302–305, 310, 347
Updated physical object definitions, 347
Usage analysis, 347
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