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Preface

The finite element method can be applied to problems in various fields of science
and engineering. It is well established and its algorithms are presented in numer-
ous publications. Many books are devoted to different aspects of the finite element
method. Still, algorithms of the finite element method are difficult to understand,
and programming of the finite element techniques is complicated.

Objective

This book focuses on algorithms of the finite element method and their program-
ming. First, general equations of the finite element method for solving solid me-
chanics and thermal conductivity problems are introduced. Then, algorithms of the
finite element method and their programming in JavaTM are considered. In addition
to solution methods, the book presents algorithms and programming approaches for
mesh generation and visualization.

Why Java?

The Java language is selected for its numerous advantages: an object-oriented
paradigm, multiplatform support, ease of development, reliability and stability, the
ability to use legacy C or C++ code, good documentation, development-tool avail-
ability, etc. The Java runtime environment always checks subscript legitimacy to
ensure that each subscript is equal to or greater than zero and less than the num-
ber of elements in the array. Even this simple feature means a lot to developers.
As a result, Java programs are less susceptible to bugs and security flaws. Java also
provides application programming interfaces (APIs) for development of GUI, and
three-dimensional graphics applications.

v
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I started programming finite elements in Fortran. Later I used Pascal, C, and C++,
before settling on Java. Comparing these languages I found that programming finite
elements in Java is not just efficient because the productivity is higher and the code
contains fewer errors, but is also more pleasant.

An opinion exists that Java is not suitable for computational modeling and fi-
nite element programming because of its slow execution speed. It is true that Java
is slower than C in performing “multiply-add” arithmetic inside double and triple
loops. However, tuning of important Java code fragments provides computational
speed comparable to that of C.

The attractive features of Java prevail over some of its drawbacks. In my opinion,
Java is good for both learning finite element programming and for finite element
code development with easy debugging, modification, and support. Further, Java
is easy to understand even for those who do not program in Java. In most cases,
methods performing computations can be easily used with minimum modification
to procedures written in other languages such as C or C++.

For Whom Is This Book Written?

This book is an introductory text about finite element algorithms and especially fi-
nite element programming using an object-oriented approach. All important aspects
of finite element techniques are considered – finite element solution, generation of
finite element meshes, and visualization of finite element models and results.

The book is useful for graduate and undergraduate students for self-study of finite
element algorithms and programming techniques. It can be used as a textbook for
introductory graduate courses or in advanced undergraduate courses. I hope that the
book will be interesting to researchers and engineers who are already familiar with
finite element algorithms and codes, since the programming approaches of this book
differ from other publications.

Organization

The book is organized into four parts. Part I covers general formulation of the fi-
nite element method. Chapter 1 introduces the finite element formulation in the
one-dimensional case. Both the Galerkin method and variational formulations are
considered. Chapter 2 presents finite element equations for heat transfer problems
derived with the use of the Galerkin approach. Chapter 3 contains variational formu-
lation of general finite element equations for solid mechanics problems. An object-
oriented approach to development of the finite element code is discussed in Chapter
4.

Part II is devoted to algorithms and programming of the finite element solution of
solid mechanics problems. Chapter 5 considers the class structure of the finite ele-
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ment processor code. Data structures of the finite element model and corresponding
Java class are presented in Chapter 6. Relations for elastic material and the corre-
sponding class are given in Chapter 7. Chapters 8 and 9 describe an abstract class for
a finite element and a class for numerical integration. Chapters 10–13 present algo-
rithms and programming implementation for two- and three-dimensional isopara-
metric quadratic elements. Assembly and solution of the finite element equation
system are discussed in Chapters 14–16. Chapter 17 is devoted to assembly of the
global load vector. Computing stress increments is presented in Chapter 18. Solu-
tion and programming implementation of elastic–plastic problems is discussed in
Chapter 19.

Part III focuses on mesh generation for solution of two- and three-dimensional
finite element problems. The block decomposition method used for mesh generation
and general organization of the mesh generator is given in Chapter 20. Chapter 21
presents two-dimensional mesh generators. Chapter 22 describes three-dimensional
mesh generation by sweeping a two-dimensional mesh. Chapters 23–25 contain
algorithms and classes for pasting mesh blocks and various operations on mesh
blocks, including their pasting for creation of a complex mesh of simple blocks.

Part IV describes algorithms for visualization of finite element methods and re-
sults. Chapter 26 introduces the Java 3DTM API, which is used for rendering three-
dimensional objects. Visualization algorithms for higher-order finite elements and
visualization code structure are presented in Chapter 27. A scene graph for visu-
alization of meshes and results is discussed in Chapter 28. Chapter 29 describes
algorithms for creation of the model surface. Chapters 30 and 31 are devoted to sub-
division of the model surface into polygons. Chapter 32 presents Java classes for
results field, color-gradation strip, mouse interaction and lights.

Appendices A, B, and C contain brief instructions for preparing data for finite el-
ement programs that perform problem solution, mesh generation, and visualization
of models and results. Appendix D provides examples of finite element analysis:
mesh generation, problem solution, and visualization of results.

How This Book Differs from Others

There are many books about the finite element method. Some of them contain finite
element program segments. Two qualities distinguish this book from other books on
the finite element method.

First, programming in this book is based upon the Java programming language.
In my opinion, Java is well suited for explaining programming of the finite element
method. It allows compact and simple code to be written. This helps greatly because
the reader has a chance to actually read finite element programs and to understand
them.

Secondly, algorithms presented in this book are tightly connected to program-
ming. The book is written around one finite element Java program, which includes
solution of solid mechanics boundary value problems, mesh generation, and visu-
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alization of finite element models and results. Presentation of computational algo-
rithms is followed by a Java class or group of Java methods and then accompanied
by code explanation.

Web Resources

The Java programs and examples presented in this book are available on the Web:
http://www.springer.com/978-1-84882-971-8. Comments, sugges-
tions, and corrections are welcome by e-mail: fem.java@gmail.com.
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Finite Element Formulation



Chapter 1
Introduction

Abstract This introductory chapter presents the main steps of the finite element
analysis. Derivation of the finite element equations is demonstrated on a second-
order differential equation using the Galerkin approach in a one-dimensional case.
The same one-dimensional example is considered using variational formulation. De-
termination of quadratic shape functions for a one-dimensional finite element with
three nodes is explained.

1.1 Basic Ideas of FEM

The finite element method (FEM) is a computational technique for solving problems
that are described by partial differential equations or can be formulated as functional
minimization. A domain of interest is represented as an assembly of finite elements.
Interpolation functions in finite elements are determined in terms of nodal values
of a physical field that is sought. A continuous physical problem is transformed
into a discretized finite element problem with unknown nodal values. For a linear
problem a system of linear algebraic equations should be assembled and solved.
Values within finite elements can be recovered by interpolating nodal values.

Two features of the FEM are worth mentioning:
1. Piece-wise approximation of physical fields on finite elements provides good

precision even with simple approximating (interpolation) functions. By increasing
the number of elements and nodes we can achieve an arbitrary precision of results.

2. Locality of approximation leads to sparse equation systems for a discretized
problem. This helps to solve problems with a very large number of nodal unknowns
using reasonable memory and computing time.

Theory, practice, and programming of the finite element method are described in
many texts, among them are the comprehensive books of Bathe [3], Hughes [16],
and Zienkiewicz [32, 33], the textbook of Fish and Belytschko [10], and the collec-
tion of Fortran programs of Smith and Griffiths [29].

The main steps of the finite element solution procedure are listed below.
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4 1 Introduction

1. Discretize the domain. The first step is to divide a solution region (domain) into
finite elements connected at nodes. Because of the large amount of data, the finite
element mesh is typically generated by a preprocessor program. The description
of a mesh consists of several arrays, the main of which are nodal coordinates and
element connectivities.

2. Determine interpolation functions. Interpolation functions are used to inter-
polate the field variables over the element. Usually, polynomials are selected as
interpolation functions. The degree of the polynomial depends on the number of
nodes belonging to the element. Interpolation functions are commonly called shape
functions since they are also used for definition of the element shape.

3. Compute the element matrices and vectors. The matrix equation for the fi-
nite element is established that relates the nodal values of the unknown function to
known parameters. For this task different approaches can be used; the most conve-
nient are: the variational approach and the Galerkin method.

4. Assemble the element equations. To find the global equation system for the
whole solution region we must assemble all the element equations. In other words
we must properly combine local element equations for all elements used for dis-
cretization. Element connectivities are used for the assembly process. Before solu-
tion, boundary conditions (which are not accounted for in the element equations)
should be imposed.

5. Solve the global equation system. The finite element global equation system is
typically sparse, symmetric and positive-definite. Direct and iterative methods can
be used for solution. The nodal values of the sought function are produced as a result
of the solution.

6. Compute additional results. In many cases we need to calculate additional pa-
rameters. For example, in mechanical problems strains and stresses are of interest
in addition to displacements, which are obtained after solution of the global equa-
tion system. While the primary result function (displacements) is continuous, its
derivatives (strains and stresses) have discontinuities at element boundaries.

1.2 Formulation of Finite Element Equations

Several approaches can be used to transform the physical formulation of the prob-
lem to its finite element discrete analog. If the physical formulation of the problem
is known as a differential equation then the most popular method of its finite ele-
ment formulation is the Galerkin method. If the physical problem can be formulated
as minimization of a functional then variational formulation of the finite element
equations is usually used.
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1 2 3

0 L 2L

x x

x
1

x
2

u
1

u
2

(a) (b)

Fig. 1.1 Two one-dimensional linear elements (a) and function interpolation inside element (b)

1.2.1 Galerkin Method

Let us use a simple one-dimensional example for the explanation of finite element
formulation using the Galerkin method. Suppose that we need to solve numerically
the following differential equation:

a
d2u
dx2 + b = 0, 0 ≤ x ≤ 2L, (1.1)

with boundary conditions

u|x=0 = 0,

a
du
dx

|x=2L = R,
(1.2)

where u = u(x) is an unknown function. We shall solve the problem using two linear
one-dimensional finite elements, as shown in Figure 1.1a.

First, consider a finite element presented in Figure 1.1b. The element has two
nodes and approximation of the function u(x) can be done as follows:

u = N1u1 + N2u2 = [N]{u},
[N] = [N1 N2],

{u} = {u1 u2},
(1.3)

where Ni are the so-called shape functions

N1 = 1− x− x1

x2 − x1
,

N2 =
x− x1

x2 − x1
,

(1.4)
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which are used for interpolation of u(x) using its nodal values. Nodal values u1

and u2 are unknowns that should be determined from the discrete global equation
system.

After substituting u expressed through its nodal values and shape functions, in
the differential equation, it has the following approximate form:

a
d2

dx2 [N]{u}+ b = ψ , (1.5)

where ψ is a non-zero residual due to the approximate representation of a function
inside a finite element. The Galerkin method provides residual minimization by
multiplying the terms of the above equation by shape functions, integrating over
the element, and equating to zero:

∫ x2

x1

[N]Ta
d2

dx2 [N]{u}dx+
∫ x2

x1

[N]Tbdx = 0. (1.6)

Integration by parts leads to the following discrete form of the differential equation
for the finite element:

∫ x2

x1

[
dN
dx

]T

a

[
dN
dx

]
dx{u}−

∫ x2

x1

[N]Tbdx

−
{

0
1

}
a

du
dx

|x=x2 +
{

1
0

}
a

du
dx

|x=x1 = 0.

(1.7)

Usually, such relations for a finite element are presented as:

[k]{u} = { f},

[k] =
∫ x2

x1

[
dN
dx

]T

a

[
dN
dx

]
dx,

{ f} =
∫ x2

x1

[N]Tbdx +
{

0
1

}
a

du
dx

|x=x2 −
{

1
0

}
a

du
dx

|x=x1 .

(1.8)

In solid mechanics [k] is called the stiffness matrix and { f} is called the load vec-
tor. In the considered simple case for two finite elements of length L, the stiffness
matrices and the load vectors can be easily calculated:

[k1] = [k2] =
a
L

[
1 −1

−1 1

]
,

{ f1} =
bL
2

{
1
1

}
, { f2} =

bL
2

{
1
1

}
+
{

0
R

}
.

(1.9)

The above relations provide finite element equations for the two separate finite ele-
ments. A global equation system for the domain with two elements and three nodes
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can be obtained by an assembly of element equations. In our simple case it is clear
that elements interact with each other at the node with global number 2. The assem-
bled global equation system is:

a
L

⎡
⎣ 1 −1 0
−1 2 −1

0 −1 1

⎤
⎦
⎧⎨
⎩

u1

u2

u3

⎫⎬
⎭ =

bL
2

⎧⎨
⎩

1
2
1

⎫⎬
⎭+

⎧⎨
⎩

0
0
R

⎫⎬
⎭ . (1.10)

After application of the boundary condition u(x = 0) = 0, the final appearance of
the global equation system is:

a
L

⎡
⎣1 0 0

0 2 −1
0 −1 1

⎤
⎦
⎧⎨
⎩

u1

u2

u3

⎫⎬
⎭ =

bL
2

⎧⎨
⎩

0
2
1

⎫⎬
⎭+

⎧⎨
⎩

0
0
R

⎫⎬
⎭ . (1.11)

When applying the boundary condition u1 = 0 we put zeros in the first row of the
equation system matrix and in the right-hand side; put zeros in the first column of
the matrix and, finally, place unit value on the main diagonal.

Nodal values ui are obtained as results of solution of the linear algebraic equation
system. The value of u at any point inside a finite element can be calculated using
the shape functions. The finite element solution of the differential equation is shown
in Figure 1.2 for a = 1,b = 1,L = 1, and R = 1.

0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

x

u

FEM

Exact

Fig. 1.2 Comparison of finite element solution and exact solution

The exact solution is a quadratic function. The finite element solution with the
use of the simplest element is piece-wise linear. A more precise finite element so-
lution can be obtained by increasing the number of simple elements or with the
use of elements with more complicated shape functions. It is worth noting that at
nodes the finite element method provides exact values of u (only for this particular
problem). Finite elements with linear shape functions produce exact nodal values if
the sought solution is quadratic. Quadratic elements give exact nodal values for the
cubic solution.
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1 2 3

0 L 2L
x

R
b

(a)

(b)

Fig. 1.3 One-dimensional bar subjected to a distributed load and a concentrated load (a) discretized
with two linear elements (b)

1.2.2 Variational Formulation

The differential equation (1.1) with boundary conditions (1.2) and parameter a =
EA has the following physical meaning in solid mechanics. It describes the tension
of the one-dimensional bar with cross-sectional area A made of material with the
elasticity modulus E and subjected to a distributed load b and a concentrated load R
at one end, as shown in Figure 1.3a.

Such problems can be solved using variational formulation by minimizing the
potential energy functional Π over two elements of Figure 1.3b:

Π =
∫

L

1
2

a

(
du
dx

)2

dx−
∫

L
budx−Ru|x=2L,

u|x=0 = 0.

(1.12)

Using representation of {u} with shape functions (1.3) and (1.4) we can write the
value of potential energy for the second finite element as:

Πe =
∫ x2

x1

1
2

a{u}T
[

dN
dx

]T[dN
dx

]
{u}dx

−
∫ x2

x1

{u}T[N]Tbdx−{u}T
{

0
R

}
.

(1.13)

The condition for the minimum of Π is:

δΠ =
∂Π
∂u1

δu1 + ...+
∂Π
∂un

δun = 0, (1.14)

which is equivalent to
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∂Π
∂ui

= 0 , i = 1...n. (1.15)

It is easy to check that differentiation of Π with respect to ui gives the following
finite element equilibrium equation:

∫ x2

x1

[
dN
dx

]T

EA

[
dN
dx

]
dx{u}−

∫ x2

x1

[N]Tbdx−
{

0
R

}
. (1.16)

This expression coincides with the equation obtained by the Galerkin method. Hav-
ing two approaches to derivation of finite element equations, we can use the Galerkin
method when a differential equation for the problem is known; when the problem is
formulated as functional minimization, then it is possible to employ the variational
approach.

1.3 Example of Shape-function Determination

Obtain shape functions for the one-dimensional quadratic element with three nodes
depicted in Figure 1.4. Use local coordinate system −1 ≤ ξ ≤ 1.

1 2 3

�1 0 1
�

Fig. 1.4 One-dimensional quadratic element with three nodes

Solution

With shape functions, any field inside the element is expressible as:

u(ξ ) =∑Niui , i = 1, 2, 3.

At each node the approximated function should be equal to its nodal value:

u(−1) = u1, u(0) = u2, u(1) = u3.

Since the element has three nodes the shape functions can be quadratic polynomials
(with three coefficients). The shape function N1 can be written as:

N1 = α1 +α2ξ +α3ξ 2.

Unknown coefficients α i are obtained from the following system of equations:
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N1(−1) = α1 −α2 +α3 = 1,

N1(0) = α1 = 0,

N1(1) = α1 +α2 +α3 = 0.

The solution is: α1 = 0, α2 = −1/2, α3 = 1/2. Thus, the shape function N1 is:

N1 = −1
2
ξ (1− ξ ).

Similarly determined shape functions N2 and N3 are equal to:

N2 = 1− ξ 2,

N3 =
1
2
ξ (1 + ξ ).

It is possible to avoid solution of the equation system if we write down the sought
formula for a shape function in the following form:

Ni = a1(a2 + ξ )(a3 + ξ ).

Coefficients a1, a2 and a3 are determined from the condition that the shape function
is equal to one at its own node and it is equal to zero at all other nodes. For example,
it is easy to get a2 and a3 for shape function N1 by equating to zero the expressions
in braces:

at ξ = 0 : a2 + 0 = 0,

at ξ = 1 : a3 + 1 = 0.

We find that a2 = 0, a3 = −1 and function N1 has the appearance

N1 = a1ξ (−1 + ξ ).

Coefficient a1 is determined from the condition:

at ξ = −1 : a1(−1)(−1−1) = 1.

Thus, we get a1 = 1/2 and shape function N1 has been found.

Problems

1.1. The formula for integration by parts for functions u and v is
∫ x2

x1

udv = (uv)|x2
x1
−

∫ x2

x1

vdu.

Using this formula, show how to transform Equation 1.6 into Equation 1.7.
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1.2. Check that the determinant of the matrix in Equation 1.10 is equal to zero and
that the determinant of the matrix in Equation 1.11 is nonzero. Try to explain the
physical reasons for this.

1.3. Derive finite element equations for the following heat-conduction problem.

x

Inner heat
generation Q

L/2

kA kB

Zero heat flow
= 0dT/dx

Prescribed
temperature

0T =

L/2

The body consists of two materials A and B with thermal conductivity coefficients
kA and kB. Material B generates heat with volume rate Q. Constant zero temperature
T = 0 is supported on the left boundary. Zero heat flow dT/dx = 0 is specified on
the right boundary.

Use two linear one-dimensional elements to obtain equations for unknown nodal
temperatures T1, T2 and T3. Base your derivation on minimization of the functional:

Π =
∫

L

1
2

k

(
dT
dx

)2

dx−
∫

L
T Qdx,

where k is the thermal-conductivity coefficient.

1.4. Find shape functions N1 and N2 for the one-dimensional linear element shown
below. Use the local coordinate system −1 ≤ ξ ≤ 1.

1 2

�1 0 1
�

1.5. Determine shape functions N1, N2 and N3 for the one-dimensional quadratic
element shown below with intermediate node 2 placed at ξ = −0.5.

1 2 3

�1 0 1�0.5
�

Analyze the behavior of the shape functions when the location of node 2 approaches
that of node 1.



Chapter 2
Finite Element Equations for Heat Transfer

Abstract Solution of heat transfer problems is considered. Finite element equations
are obtained using the Galerkin method. The conductivity matrix for a triangular
finite element is calculated.

2.1 Problem Statement

Let us consider an isotropic body with temperature-dependent heat transfer. A basic
equation of heat transfer has the following form [15]:

−
(
∂qx

∂x
+
∂qy

∂y
+
∂qz

∂ z

)
+ Q = ρc

∂T
∂ t

. (2.1)

Here, qx, qy and qz are components of heat flow through the unit area; Q =
Q(x,y,z,t) is the inner heat-generation rate per unit volume; ρ is material density;
c is heat capacity; T is temperature and t is time. According to Fourier’s law the
components of heat flow can be expressed as follows:

qx = −k
∂T
∂x

,

qy = −k
∂T
∂y

,

qz = −k
∂T
∂ z

,

(2.2)

where k is the thermal-conductivity coefficient of the media. Substitution of Fourier’s
relations gives the following basic heat transfer equation:

∂
∂x

(
k
∂T
∂x

)
+

∂
∂y

(
k
∂T
∂y

)
+

∂
∂ z

(
k
∂T
∂ z

)
+ Q = ρc

∂T
∂ t

. (2.3)

13
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It is assumed that the boundary conditions can be of the following types:

1. Specified temperature

Ts = T1(x,y,z,t) on S1 .

2. Specified heat flow

qxnx + qyny + qznz = −qs on S2 .

3. Convection boundary conditions

qxnx + qyny + qznz = h(Ts −Te) on S3 ,

4. Radiation

qxnx + qyny + qznz = σεT 4
s −αqr on S4,

where h is the convection coefficient; Ts is an unknown surface temperature; Te is
a convective exchange temperature; σ is the Stefan–Boltzmann constant; ε is the
surface emission coefficient; α is the surface absorption coefficient, and qr is the
incident radiant heat flow per unit surface area. For transient problems it is necessary
to specify an initial temperature field for a body at the time t = 0:

T (x,y,z,0) = T0(x,y,z). (2.4)

2.2 Finite Element Discretization of Heat Transfer Equations

A domain V is divided into finite elements connected at nodes. We shall write all
the relations for a finite element. Global equations for the domain can be assembled
from finite element equations using connectivity information.

Shape functions Ni are used for interpolation of temperature inside a finite ele-
ment:

T = [N]{T},
[N] =

[
N1 N2 ...

]
,

{T} =
{

T1 T2 ...
}

.

(2.5)

Differentiation of the temperature-interpolation equation gives the following inter-
polation relation for temperature gradients:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂T
∂x
∂T
∂y
∂T
∂ z

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

∂N1

∂x
∂N2

∂x
...

∂N1

∂y
∂N2

∂y
...

∂N1

∂ z
∂N2

∂ z
...

⎤
⎥⎥⎥⎥⎥⎦
{T} = [B]{T}. (2.6)



2.2 Finite Element Discretization of Heat Transfer Equations 15

Here, {T} is a vector of temperatures at nodes, [N] is a matrix of shape functions,
and [B] is a matrix for temperature-gradient interpolation.

Using the Galerkin method, we can rewrite the basic heat transfer equation in the
following form:

∫

V

(
∂qx

∂x
+
∂qy

∂y
+
∂qz

∂ z
−Q+ρc

∂T
∂ t

)
NidV = 0. (2.7)

Applying the divergence theorem to the first three terms, we arrive at the relations:

∫

V

ρc
∂T
∂ t

NidV −
∫

V

[
∂Ni

∂x
∂Ni

∂y
∂Ni

∂ z

]
{q}dV

=
∫

V

QNidV −
∫

S

{q}T{n}NidS,

{q}T =
[
qx qy qz

]
,

{n}T =
[
nx ny nz

]
,

(2.8)

where {n} is an outer normal to the surface of the body. After insertion of boundary
conditions into the above equation, the discretized equations are as follows:

∫

V

ρc
∂T
∂ t

NidV −
∫

V

[
∂Ni

∂x
∂Ni

∂y
∂Ni

∂ z

]
{q}dV

=
∫

V

QNidV −
∫

S1

{q}T{n}NidS

+
∫

S2

qsNidS−
∫

S3

h(T −Te)NidS−
∫

S4

(σεT 4 −αqr)NidS.

(2.9)

It is worth noting that
{q} = −k[B]{T}. (2.10)

The discretized finite element equations for heat transfer problems have the follow-
ing form:

[C]{Ṫ}+([Kc]+ [Kh]+ [Kr]){T}
= {RT}+{RQ}+{Rq}+{Rh}+{Rr},

(2.11)
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[C] =
∫

V

ρc[N]T[N]dV ,

[Kc] =
∫

V

k[B]T[B]dV ,

[Kh] =
∫

S3

h[N]T[N]dS,

[Kr]{T} =
∫

S4

σεT 4[N]TdS,

{RT} = −
∫

S1

{q}T{n}[N]TdS,

{RQ} =
∫

V

Q[N]TdV ,

{Rq} =
∫

S2

qs[N]TdS,

{Rh} =
∫

S3

hTe[N]TdS,

{Rr} =
∫

S4

αqr[N]TdS.

(2.12)

Here, {Ṫ} is a nodal vector of temperature derivatives with respect to time.

2.3 Different Type Problems

Equations for different types of problems can be deducted from the above general
equation:

Stationary linear problem

([Kc]+ [Kh]){T} = {RQ}+{Rq}+{Rh}. (2.13)

Stationary nonlinear problem

([Kc]+ [Kh]+ [Kr]){T}
= {RQ(T )}+{Rq(T )}+{Rh(T )}+{Rr(T )}.

(2.14)
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Transient linear problem

[C]{Ṫ (t)}+([Kc]+ [Kh(t)]){T (t)}
= {RQ(t)}+{Rq(t)}+{Rh(t)}.

(2.15)

Transient nonlinear problem

[C(T )]{Ṫ}+([Kc(T )]+ [Kh(T,t)]+ [Kr(T )]){T}
= {RQ(T,t)}+{Rq(T, t)}+{Rh(T,t)}+{Rr(T,t)}.

(2.16)

2.4 Triangular Element

Calculation of element conductivity matrix [kc] and heat flow vector {rq} is illus-
trated for a two-dimensional triangular element with three nodes. A simple triangu-
lar finite element is shown in Figure 2.1. The temperature distribution T (x,y) inside
the triangular element is described by linear interpolation of its nodal values:

T (x,y) = N1(x,y)T1 + N2(x,y)T2 + N3(x,y)T3,

Ni(x,y) = αi +βix + γiy.
(2.17)

Interpolation functions (usually called shape functions) Ni(x,y) should satisfy the
following conditions:

T (xi,yi) = Ti , i = 1, 2, 3. (2.18)

Solution of the above equation system provides expressions for the shape functions:

1

2

3

x

y

Fig. 2.1 Triangular finite element
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1

2

x

y

t

L

Fig. 2.2 Integration along an element side

Ni =
1

2Δ
(ai + bix + ciy),

ai = xi+1yi+2 − xi+2yi+1,

bi = yi+1 − yi+2,

ci = xi+2 − xi+1,

Δ =
1
2
(x2y3 + x3y1 + x1y2 − x2y1 − x3y2 − x1y3),

(2.19)

where Δ is the element area.
The conductivity matrix of the triangular element is determined by integration

over element area A (assuming that the element has unit thickness),

[kc] =
∫

A
k[B]T[B]dxdy. (2.20)

The temperature differentiation matrix [B] has expression

[B] =

⎡
⎢⎢⎢⎣

∂N1

∂x
∂N2

∂x
∂N3

∂x

∂N1

∂y
∂N2

∂y
∂N3

∂y

⎤
⎥⎥⎥⎦ =

1
2Δ

[
b1 b2 b3

c1 c2 c3

]
. (2.21)

Since the temperature differentiation matrix does not depend on coordinates, inte-
gration of the conductivity matrix is simple;

[kc] =
k

4Δ

⎡
⎣ b2

1 + c2
1 b1b2 + c1c2 b1b3 + c1c3

b1b2 + c1c2 b2
2 + c2

2 b2b3 + c2c3

b1b3 + c1c3 b2b3 + c2c3 b2
3 + c2

3

⎤
⎦ . (2.22)

The heat-flow vector {rq} is evaluated by integration over the element side, as
shown in Figure 2.2
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{rq} = −
∫

L
qs[N]TdL = −

∫ 1

0
qs[N1 N2]TLdt. (2.23)

Here, integration over an element side L is replaced by integration using variable
t ranging from 0 to 1. Shape functions N1 and N2 on element side 1–2 can be ex-
pressed through t:

N1 = 1− t, N2 = t. (2.24)

After integration with substituting integration limits, the heat-flow vector equals

{rq} = −qs
L
2

[
1
1

]
. (2.25)

Element matrices and vectors are calculated for all elements in a mesh and assem-
bled into the global equation system. After application of prescribed temperatures,
solution of the global equation system produces temperatures at nodes.

Problems

2.1. Calculate matrix [kh] describing convection boundary conditions

[kh] =
∫

L

h[N]T[N]dL

for a side of a triangular element (see Figure 2.2).

2.2. Obtain shape functions N1, N2, N3 and N4 for the square element shown below.

1 2

3

x

y

4

L

L

Assume that its size is L = 1 and that shape functions can be represented as Ni =
a1(a2 + x)(a3 + y).

2.3. For the square element of the previous problem, estimate the heat-generation
vector

{rQ} =
∫

V

Q[N]TdV .

Use the shape functions obtained in the previous problem.



Chapter 3
FEM for Solid Mechanics Problems

Abstract Finite element equations for elasticity problems are derived from the
variational principle based on minimum potential energy. A stiffness matrix for a
simple triangular element is obtained. It is shown that assembly of a global finite
element matrix and vectors can be performed through matrix multiplications using
element matrices and vectors.

3.1 Problem Statement

Let us start consideration of solid mechanics problems with a three-dimensional
elastic body subjected to surface forces pS, body forces pV , and temperature field
T , as shown in Figure 3.1. In addition, displacements are specified on some surface
area. For a given geometry of the body, applied loads, displacement boundary con-
ditions, temperature field, and material stress–strain law, it is necessary to determine
the displacement field for the body. The corresponding strains and stresses are also
of interest.

x

y

pS

T

pV

uS

Fig. 3.1 Elastic body subjected to surface forces pS , body forces pV and temperature field T with
displacements specified as uS

21
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Displacements along coordinate axes x, y, and z are defined by the displacement
vector {u}:

{u} = {u v w}. (3.1)

Six different strain components can be placed in the strain vector {ε}:

{ε} = {εx εy εz γxy γyz γzx}. (3.2)

For small strains the relationship between strains and displacements is:

{ε} = [D]{u}, (3.3)

where [D] is the matrix differentiation operator:

[D] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂x

0 0

0
∂
∂y

0

0 0
∂
∂ z

∂
∂y

∂
∂x

0

0
∂
∂ z

∂
∂y

∂
∂ z

0
∂
∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.4)

Six different stress components form the stress vector {σ}:

{σ} = {σx σy σz τxy τyz τzx}, (3.5)

which are related to strains for an elastic body by Hooke’s law:

{σ} = [E]{εe} = [E]({ε}−{ε t}),
{εt} = {αT αT αT 0 0 0}.

(3.6)

Here, [E] is the elasticity matrix depending on elastic material properties, {εe} is the
elastic part of strains, {ε t} is the thermal part of strains, α is the thermal expansion
coefficient, and T is temperature.

The purpose of finite element solution of an elastic problem is to find such a dis-
placement field that provides a minimum to the functional of total potential energy
Π :

Π =
∫

V

1
2
{εe}T{σ}dV −

∫
V
{u}T{pV}dV −

∫
S
{u}T{pS}dS. (3.7)

Here, {pV} = {pV
x pV

y pV
z } is the vector of body force and {pS} = {pS

x pS
y pS

z} is
the vector of surface forces. Prescribed displacements are specified on the part of
the body surface where surface forces are absent.
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Fig. 3.2 Discretized representation of the problem is achieved through subdivision of the solution
domain into finite elements. All quantities in the discretized problem should be related to nodal
points

Displacement boundary conditions are not present in the functional of Π . There-
fore, displacement boundary conditions should be implemented after assembly of
finite element equations.

3.2 Finite Element Equations

In the finite element method the solution domain is divided into a set of subdomains
of a simple shape that are called finite elements. Subdivision of a two-dimensional
domain into simple quadrilateral elements is shown in Figure 3.2. Subdivision leads
to a discretized representation of the problem. Instead of an infinite number of points
in a continuum problem we now have the discretized problem with a finite number
of nodal points. All quantities in the discretized problem should be related to nodal
points.

In order to establish finite element equations for the considered problem, we first
derive element equations and then show how to assemble them into global equations.

Let us consider some general three-dimensional finite element having the vector
of nodal displacements {q}:

{q} = {u1 v1 w1 u2 v2 w2 ...}. (3.8)

Displacements at some point inside a finite element {u} can be determined with the
use of nodal displacements {q} and shape functions Ni:

u =∑Niui,

v =∑Nivi,

w =∑Niwi.

(3.9)
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These relations can be rewritten in a matrix form as follows:

{u} = [N]{q},

[N] =

⎡
⎣N1 0 0 N2 ...

0 N1 0 0 ...
0 0 N1 0 ...

⎤
⎦.

(3.10)

Strains can also be determined through displacements at nodal points:

{ε} = [B]{q},
[B] = [D][N] = [B1 B2 B3 ...].

(3.11)

Matrix [B] is called the displacement differentiation matrix. It can be obtained by
differentiation of displacements expressed through shape functions and nodal dis-
placements:

[Bi] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Ni

∂x
0 0

0
∂Ni

∂y
0

0 0
∂Ni

∂ z
∂Ni

∂y
∂Ni

∂x
0

0
∂Ni

∂ z
∂Ni

∂y
∂Ni

∂ z
0

∂Ni

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.12)

Now, using the relations for stresses and strains we are able to express the total
potential energy through nodal displacements:

Π =
∫

V

1
2
([B]{q}−{ε t})T[E]([B]{q}−{ε t})dV

−
∫

V
([N]{q})T{pV}dV −

∫
S
([N]{q})T{pS}dS.

(3.13)

After performing multiplications the expression for the potential energy becomes

Π =
∫

V

1
2
{q}T[B]T[E][B]{q}dV −

∫
V
{q}T[B]T[E]{ε t}dV

+
∫

V

1
2
{ε t}T[E]{ε t}dV

−
∫

V
{q}T[N]T{pV}dV −

∫
S
{q}T[N]T{pS}dS.

(3.14)
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Nodal displacements {q} that correspond to the minimum of the functional Π
are determined by the conditions:

{
∂Π
∂q

}
= 0. (3.15)

Differentiation ofΠ with respect to nodal displacements {q} produces the following
equilibrium equations for a finite element:

∫
V

[B]T[E][B]dV{q}−
∫

V
[B]T[E]{ε t}dV

−
∫

V
[N]T{pV}dV −

∫
S
[N]T{pS}dS = 0,

(3.16)

which is usually presented in the following form:

[k]{q} = { f}, (3.17)

{ f} = {p}+{h}, (3.18)

[k] =
∫

V
[B]T[E][B]dV , (3.19)

{p} =
∫

V
[N]T{pV}dV +

∫
S
[N]T{pS}dS, (3.20)

{h} =
∫

V
[B]T[E]{ε t}dV . (3.21)

Here, [k] is the element stiffness matrix, { f} is the load vector, {p} is the vector of
actual forces, and {h} is the thermal vector, which represents fictitious forces for
modeling thermal expansion.

Equation 3.17 represents element equilibrium expressed through nodal displace-
ments. Applying Hooke’s law (3.6) in Equation (3.16), the element equilibrium
equation can be expressed through stresses:

∫
V

[B]T{σ}dV −{p}= 0. (3.22)

The above stress equilibrium equation is valid for both linear elastic and nonlinear
nonelastic problems. In nonlinear problems the residual vector of the stress equi-
librium equation is used for organization of the iteration procedure for finding the
problem solution.
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Fig. 3.3 A triangular finite element is the simplest two-dimensional element

3.3 Stiffness Matrix of a Triangular Element

To illustrate implementation of the finite element equations for particular elements,
let us consider an algorithm of stiffness matrix calculation for a simple triangular
element.

The triangular finite element was the first finite element proposed for continuous
problems. Because of simplicity it can be used as an introduction to other elements.
A triangular finite element in the coordinate system xy is shown in Figure 3.3. Since
the element has three nodes, linear approximation of displacements u and v is se-
lected:

u(x,y) = N1u1 + N2u2 + N3u3,

v(x,y) = N1v1 + N2v2 + N3v3,

Ni = αi +βix + γiy.

(3.23)

Shape functions Ni(x,y) can be determined from the following equation system:

u(xi,yi) = ui , i = 1, 2, 3. (3.24)

Shape functions for the triangular element can be presented as:

Ni =
1

2Δ
(ai + bix + ciy),

ai = xi+1yi+2 − xi+2yi+1,

bi = yi+1 − yi+2,

ci = xi+2 − xi+1,

Δ =
1
2
(x2y3 + x3y1 + x1y2 − x2y1 − x3y2 − x1y3).

(3.25)
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Here, Δ is the element area. The matrix [B] for interpolating strains using nodal
displacements is

[B] =
1

2Δ

⎡
⎣b1 0 b2 0 b3 0

0 c1 0 c2 0 c3

c1 b1 c2 b2 c3 b3

⎤
⎦. (3.26)

The elasticity matrix [E] has the following appearance for the plane stress problem:

[E] =
E

1−ν2

⎡
⎢⎣

1 ν 0
ν 1 0

0 0
1−ν

2

⎤
⎥⎦, (3.27)

where E is the elasticity modulus and ν is Poisson’s ratio. For the plane strain prob-
lem the elasticity matrix is

[E] =
E

(1 +ν)(1−2ν)

⎡
⎢⎣

1−ν ν 0
ν 1−ν 0

0 0
1−ν

2

⎤
⎥⎦. (3.28)

The stiffness matrix for the three-node triangular element can be calculated as

[k] =
∫

V
[B]T[E][B]dV = [B]T[E][B]Δ . (3.29)

Here, it was taken into account that both matrices [B] and [E] do not depend on
coordinates. It was assumed that the element has unit thickness. Since the matrix [B]
is constant inside the element, the strains and stresses are also constant inside the
triangular element.

3.4 Assembly of the Global Equation System

The aim of assembly is to form the global equation system

[K]{Q} = {F} (3.30)

using element equations
[ki]{qi} = { fi}. (3.31)

Here, [ki], qi and fi are the stiffness matrix, the displacement vector and the load
vector of the ith finite element; [K], {Q} and {F} are the global stiffness matrix,
displacement vector, and load vector, respectively.

In order to derive an assembly algorithm let us present the total potential energy
for the body as a sum of element potential energies πi:
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Π =∑πi =∑ 1
2
{qi}T[ki]{qi}−∑{qi}T{ fi}+∑E0

i , (3.32)

where E0
i is the fraction of potential energy related to free thermal expansion:

E0
i =

∫
Vi

1
2
{ε t}T[E]{ε t}dV. (3.33)

Let us introduce the following vectors and a matrix where element vectors and ma-
trices are simply placed:

{Qd} = {{q1} {q2},
{Fd} = {{ f1} { f2} ...},

(3.34)

[Kd] =

⎡
⎣[k1] 0 0

0 [k2] 0
0 0 ...

⎤
⎦. (3.35)

It is evident that it is easy to find matrix [A] such that

{Qd} = [A]{Q},
{Fd} = [A]{F}.

(3.36)

The total potential energy for the body can be rewritten in the following form:

Π =
1
2
{Qd}T[Kd]{Qd}−{Qd}T{Fd}+∑E0

i

=
1
2
{Q}T[A]T[Kd][A]{Q}−{Q}T[A]T{Fd}+∑E0

i .

(3.37)

Using the condition of minimum total potential energy
{
∂Π
∂Q

}
= 0 (3.38)

we arrive at the following global equation system:

[A]T[Kd][A]{Q}− [A]T{Fd} = 0. (3.39)

The last equation shows that algorithms of the assembly of the global stiffness ma-
trix and global load vector are:

[K] = [A]T[Kd][A],

{F} = [A]T{Fd}.
(3.40)
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Here, [A] is the sparse matrix providing transformation from global to local enumer-
ation. The fraction of nonzero (unit) entries in the matrix [A] is very small. Because
of this, the matrix [A] is never used explicitly in actual computer programs.

3.5 Example of the Global Matrix Assembly

Express a matrix [A] that relates local (element) and global (domain) node numbers
for the finite element mesh shown in Figure 3.4b.

1

4 5 6

2 3

1 2

7 8

3

1 2

34

Node order
for an element

(a) (b)

Fig. 3.4 Finite element mesh with global node numbers (a) and typical element with local node
numbers (b)

Solution

To make the matrix representation compact let us assume that each node has one
degree of freedom (note that in two-dimensional solid mechanics problems there are
two degrees of freedom at each node). The displacement vector {q}1 for element 1
using local numbering is simply

{q}1 = {q1 q2 q3 q4}.

The same displacement vector for element 1 using global node numbers is

{q}1 = {Q1 Q2 Q5 Q4}.

Matrix [A] relates element and global nodal values in the following way:

{Qd} = [A]{Q},

where {Q} is a global vector of nodal values and {Qd} is a vector containing all the
element vectors. The explicit rewriting of the above relation yields:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨
⎪⎪⎩

Q1

Q2

Q5

Q4

⎫⎪⎪⎬
⎪⎪⎭⎧⎪⎪⎨

⎪⎪⎩

Q2

Q3

Q6

Q5

⎫⎪⎪⎬
⎪⎪⎭⎧⎪⎪⎨

⎪⎪⎩

Q5

Q6

Q8

Q7

⎫⎪⎪⎬
⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Problems

3.1. In transforming Equation 3.13 into Equation 3.14 we used the fact that the trans-
pose of the product of two matrices is equivalent to the product of their transposes
in reversed order ([A][B])T = [B]T[A]T. Show that this matrix identity is true.

3.2. In equilibrium equation (3.16) the nodal displacement vector {q} is moved out-
side the integral. Explain why this is possible.

3.3. Show that the sum of element shape functions is unity at any point of the ele-
ment:

∑
i

Ni = 1.

3.4. Show that the element stiffness matrix [k] obtained from the principle of mini-
mum potential energy is a positive-definite matrix, satisfying the inequality

{v}T[k]{v} > 0

for any nonzero vector v.
Hint: express the elastic energy of the finite element through its stiffness matrix and
displacement vector.

3.5. Prove that the element stiffness matrix [k] is symmetric:

ki j = k ji.

Hint: use the reciprocity theorem.

3.6. Explain why the row sums of the element stiffness matrix coefficients are equal
to zero:

∑
j

ki j = 0 for any row j.

Hint: consider translation of the element as a rigid body.
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3.7. In the previous three problems you proved that the element stiffness matrix has
the following properties:

• it is positive-definite;
• it is symmetric; and
• the sum of coefficients in any row is zero.

A global stiffness matrix is assembled from element stiffness matrices. Does the
global stiffness matrix possess the same properties if displacement boundary condi-
tions are not applied?

3.8. Why is the element stiffness matrix singular in our finite element formulation?
Singularity of the element stiffness matrix means that its determinant is equal to
zero:

det[k] = |k| = 0.

Hint: consider element rigid displacement (translation or rotation) without applica-
tion of displacement boundary conditions.



Chapter 4
Finite Element Program

Abstract The object-oriented approach to finite element programming is briefly
reviewed. Requirements for the finite element program under development are pre-
sented. The general structure of the finite element code is discussed. The packages
and classes of the JavaTM finite element system Jfea considered in this book are
listed.

4.1 Object-oriented Approach to Finite Element Programming

We now apply the equations and principles of the previous chapter to development
of a finite element program for solid mechanics problems. We start with the general
plan of the finite element code.

Finite element programs were traditionally developed in the Fortran and C lan-
guages, which support procedural programming. During the last fifteen years, finite
element development has gradually shifted towards an object-oriented approach.
Forde et al. [11], in one of the first publications on the object-oriented approach to
the finite element development, presented the essential finite element classes such as
elements, nodes, displacement, and force boundary conditions, vectors and matri-
ces. Several authors described a detailed finite element architecture using an object-
oriented approach. Zimmermann et al. [34] and Commend et al. [6] proposed the
basics of object-oriented class structures for elastic and elastic–plastic structural
problems. A flexible object-oriented approach that isolates numerical modules from
a structural model is presented by Archer et al. [2]. Macki devoted numerous papers
and a book [18] to various aspects of finite element object-oriented programming
including creation of interactive codes with a graphical user interface (GUI). Exten-
sive bibliographical information on the object-oriented approach in FEM and BEM
is collected by Mackerle [19].

Mostly, object-oriented finite element algorithms have been implemented in C++
programming language. It was shown that an object-oriented approach with the C++
programming language could be used without sacrificing computational efficiency

33
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[8, 34] compared to Fortran. A paper by Akin et al. [1] advocates employing For-
tran 90 for object-oriented development of finite element codes since the authors
consider Fortran execution faster than C++.

The Java language, introduced by Sun Microsystems, possesses features that
make it attractive for use in computational modeling. Java is a simple language
(simpler than C++). It has a rich collection of libraries implementing various APIs .
With Java it is easy to create GUIs and to communicate with other computers over
a network. Java has built-in garbage collection, preventing memory leaks. Another
advantage of Java is its portability. Java virtual machines (JVM) are developed for
all major computer systems. JVM is embedded in most popular Web browsers. Java
applets can be downloaded through the Internet and executed within a Web browser.
Useful for object-oriented design Java features are packages for organizing classes
and prohibition of class multiple inheritance. This allows cleaner object-oriented
design in comparison to C++. Despite its attractive features, Java is rarely used in
finite element analysis. Few publications can be found on object-oriented Java fi-
nite element programs [9]. Previously, Java had a reputation as a relatively slow
language because Java bytecode is interpreted by the JVM during execution, but
modern just-in-time compilers used in the JVM make the efficiency of Java code
comparable to that of C or C++ [20].

4.2 Requirements for the Finite Element Application

A software development process starts with creation of a list of requirements. While
we are not going to demonstrate here the entire documentation resource that should
accompany software development, brief requirements can help us to understand the
computer program we are going to develop.

4.2.1 Overall Description

The program system Jfea is designed as educational software helping to under-
stand algorithms and programming techniques of the finite element method. The
program should solve two- and three-dimensional solid mechanics problems, in-
cluding elastic problems and elastic–plastic problems. It should provide all solution
stages: finite element mesh generation, boundary value problem solution, and vi-
sualization of finite element models and results. The program should be compact
and understandable by the reader. At the same time it should implement real finite
element analysis and allow its further extension. The Java programming language is
selected for development of the Jfea finite element system.
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4.2.2 User Description

Typical users of this program are students and researchers learning the finite element
method programming or deepening their knowledge of the subject. The users know
a programming language, which is used for code development, and the basics of the
finite element method. They should be able to solve solid mechanics problems using
the Jfea program. They should also be able to read, understand, and modify the
code.

4.2.3 User Interface

Most computer applications have GUIs. However, programming GUIs leads to a
large amount of code. Since our purpose is explanation of finite element program-
ming and we want our code to be compact, its user interface will be based on text
data files. A simple GUI will be used during visualization of finite element models
and results.

4.2.4 Functions

The main functions of our finite element system Jfea [21] are to perform three
tasks of the finite element analysis:

• preprocessing (finite element model generation);
• processing (problem solution); and
• postprocessing (results calculation and visualization).

The mesh-generation programJmgen creates two- and three-dimensional meshes.
A solution domain is divided into blocks of simple shape. A finite element mesh is
generated inside blocks. Pasting of blocks allows creation of finite element models
of complicated shape.

Finite element solution of elastic and elastic–plastic boundary value problems is
performed by the program Jfem. Two main element types are used for problem
discretization – the two-dimensional quadrilateral elements with eight nodes and
three-dimensional hexahedral elements with twenty nodes. It should be possible to
add new finite element types by adding new Java classes. The program includes two
equation solvers implementing direct and iterative methods. It should be possible to
add other equation solvers.

The postprocessing program Jvis creates continuous fields of results and per-
forms visualization of finite element models and result fields as contours on a model
surface. Visualization algorithms should take into account the fact that element
edges and surfaces can be curved. The Java 3D API is used for real-time render-
ing of three-dimensional graphics.
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Fig. 4.1 Packages of the finite element Java code. Eight class packages are used for three tasks of
finite element analysis – mesh generation, problem solution and visualization

4.2.5 Other Requirements

Since our finite element program is presented in this book we relax some normal
requirements related to documentation and error diagnostics. To keep the source
code brief we do not include special Java comments that can be used for automatic
generation of program documentation. We shall check data for possible errors, but
our error control is limited and the usual reaction to error discovery is program
termination with display of an error message.

4.3 General Structure of the Finite Element Code

During program development, three tasks of the finite element analysis – prepro-
cessing, processing, and postprocessing – are often implemented as three separate
computer programs. Since the tasks have many common data structures and meth-
ods, the three modules contain duplicated or similar code fragments complicating
support and modification.

In the Java language it is possible to have several main methods. The code
(classes) can be organized into packages. A package is a named collection of classes
providing encapsulation and modularity, which can eliminate code duplication and
provide a means for easy code reuse.

Our Jfea finite element system is organized into eight class packages, as shown
in Figure 4.1. The packages include the following classes.
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Package fea – main classes:

Class FE – symbolic constants;
Class Jfem – main class for solution of elastic and elastic–plastic problems
(finite element processor);
Class Jmgen – main class for mesh generation (preprocessor);
Class Jvis – main class for visualization of models and results (postproces-
sor).

Package model – finite element model and loading:

Class Dof – degree of freedom;
Class ElemFaceLoad – element face loading;
Class FeLoad – load increment for the finite element model;
Class FeLoadData – load data for the finite element model;
Class FeModel – description of the finite element model;
Class FeModelData – data for the finite element model;
Class FeStress – computing stress increment.

Package util – utility classes:

Class FePrintWriter – helper class for organizing printing to a file;
Class FeScanner – scanning finite element data;
Class GaussRule – several Gauss integration rules;
Class UTIL – printing error messages, dates, etc.

Package elem – finite elements:

Abstract class Element – finite element;
Class ElementQuad2D – two-dimensional quadratic isoparametric element;
Class ElementQuad3D – three-dimensional quadratic isoparametric ele-
ment;
Class ShapeQuad2D – two-dimensional quadratic shape functions and their
derivatives;
Class ShapeQuad3D – three-dimensional quadratic shape functions and
their derivatives;
Class StressContainer – stresses and equivalent strains at integration
point.

Package material – constitutive relations for materials:

Class Material – material constitutive relations;
Class ElasticMaterial – constitutive relations for an elastic material;
Class ElasticPlasticMaterial – constitutive relations for an elastic–
plastic material.

Package solver – assembly and solution of global finite element equation sys-
tems:

Abstract class Solver – solution of the global equation system;
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Class SolverLDU – profile LDU (lower, diagonal and upper matrix decom-
position) symmetric solver;
Class SolverPCG – preconditioned conjugate gradient solver with sparse-
row format storage.

Package gener – mesh generators:

Class connect – paste two mesh blocks;
Class copy – copy mesh block;
Class genquad8 – generate a mesh inside a macroelement with eight nodes;
Class readmesh – read mesh data from a text file;
Class rectangle – generate mesh inside a rectangle;
Class sweep – generate a three-dimensional mesh by sweeping a two-
dimensional mesh;
Class transform – mesh transformations (translate, scale, rotate);
Class writemesh – write a mesh to a text file.

Package visual – visualization of models and results:

Class ColorScale – two-dimensional texture for drawing contours;
Class FaceSubdivision – subdivision of an element face into triangles;
Class J3dScene – Java3D scene graph for visualization;
Class Lights – lights and background;
Class MouseInteraction – mouse behaviors for interaction;
Class ResultAtNodes – computing result values at nodes of the finite ele-
ment model;
Class SurfaceGeometry – surface geometry for visualization: faces, edges
and nodes;
Class SurfaceSubGeometry – element subfaces, subedges and nodes;
Class VisData – visualization parameters.

Classes from four packages fea, model, util and elem are employed for
all three tasks of finite element analysis – mesh generation, problem solution and
visualization. Other packages contain specific classes for tasks. Package gener
is used for mesh generation. Packages material and solver are specific for
problem solution. Package visual is designed for the visualization stage of the
finite element analysis.

We begin with the development of the classes related to the solution of solid
mechanics problems since this is the main part of the finite element analysis. Later,
preprocessing and postprocessing parts are considered.

Problems

4.1. Explain the notion of “class” in object-oriented programming languages. Give
examples of classes related to computational methods.
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4.2. Explain what a Java package is, and how to place several classes in one package.

4.3. Name primitive data types in Java. Which floating-point data type is most useful
in numerical computations? Provide reasons for your choice.

4.4. Analyze packages of the finite element system given in this chapter. Propose
another package structure for a finite element program.



Part II
Finite Element Solution



Chapter 5
Finite Element Processor

Abstract Creation of the finite element processor, a JavaTM program that solves
two- and three-dimensional solid mechanics problems, is discussed. A general fi-
nite element solution procedure and class structure of Java program Jfem are intro-
duced. Use of free data format for data input is adopted. Input data for finite element
analysis, which includes model data and load data, is described. A data scanner class
is presented.

5.1 Class Structure

The finite element processor obtains the solution of the boundary value problem. It
is the main part of the finite element analysis.

Typical finite element solution flow is composed of data input, assembly of the
global equation system, solution of the equation system, computing stresses and
results output. A pseudocode expression of the finite element processor is given
below.

Read data and create finite element model
Assemble global stiffness matrix
do while Load data is available

Read load data
Assemble load vector
do

Solve global equation system
Compute stress increment

while not in equilibrium
Accumulate and write results

end do

The finite element processor uses classes from the following packages: fea,
model, util, element, material and solver. Major classes of the finite

43
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Fig. 5.1 Class diagram of the finite element processor

element processor are shown in Figure 5.1. The diagram shows that the main class
Jfem refers directly to four classes – FeModel (finite element model), Solver
(assembly and solution of the finite element equations), FeLoad (load case), and
FeStress (computing stresses in finite elements). The FeModel object contains
many elements (Element objects) and one or several materials (Material ob-
jects). Class Element is abstract and is implemented by classes for different types
of finite elements. Class Material has subclasses for elastic and elastic–plastic
materials. Abstract class Solver allows implementing different methods for so-
lution of finite element equation system. Object FeLoad comprises element loads
ElemLoad. Data from the finite element model is used at all solution stages. So,
classes Solver, FeLoad, and FeStress are linked to class FeModel.

The main class Jfem contains the main method of the finite element processor.
The main class can be coded in Java as follows.

1 package fea;
2

3 import elem.*;
4 import model.*;
5 import solver.*;
6 import util.*;
7 import java.io.*;
8

9 // Main class of the finite element processor
10 public class Jfem {
11

12 private static FeScanner RD;
13 private static PrintWriter PR;
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14 public static String fileOut;
15

16 public static void main(String[] args) {
17

18 if (args.length == 0) {
19 System.out.println(
20 "Usage: java fea.JFEM FileIn [FileOut]\n");
21 return;
22 }
23 FE.main = FE.JFEM;
24

25 RD = new FeScanner(args[0]);
26

27 fileOut = (args.length==1) ? args[0]+".lst" : args[1];
28 PR = new FePrintWriter().getPrinter(fileOut);
29

30 PR.println("fea.JFEM: FE code. Data file: " + args[0]);
31 System.out.println("fea.JFEM: FE code. Data file: "
32 + args[0]);
33

34 new Jfem();
35 PR.close();
36 }
37

38 public Jfem () {
39

40 UTIL.printDate(PR);
41

42 FeModel fem = new FeModel(RD, PR);
43 Element.fem = fem;
44

45 fem.readData();
46

47 PR.printf("\nNumber of elements nEl = %d\n"+
48 "Number of nodes nNod = %d\n"+
49 "Number of dimensions nDim = %d\n",
50 fem.nEl, fem.nNod, fem.nDim);
51

52 long t0 = System.currentTimeMillis();
53

54 Solver solver = Solver.newSolver(fem);
55 solver.assembleGSM();
56

57 PR.printf("Memory for global matrix: %7.2f MB\n",
58 Solver.lengthOfGSM*8.0e-6);
59

60 FeLoad load = new FeLoad(fem);
61 Element.load = load;
62

63 FeStress stress = new FeStress(fem);
64

65 // Load step loop
66 while (load.readData( )) {
67 load.assembleRHS();
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68 int iter = 0;
69 // Equilibrium iterations
70 do {
71 iter++;
72 int its = solver.solve(FeLoad.RHS);
73 if (its > 0) PR.printf(
74 "Solver: %d iterations\n", its);
75 stress.computeIncrement();
76 } while (!stress.equilibrium(iter));
77

78 stress.accumulate();
79 stress.writeResults();
80 PR.printf("Loadstep %s", FeLoad.loadStepName);
81 if (iter>1) PR.printf(" %5d iterations, " +
82 "Relative residual norm = %10.5f",
83 iter, FeStress.relResidNorm);
84 PR.printf("\n");
85 }
86

87 PR.printf("\nSolution time = %10.2f s\n",
88 (System.currentTimeMillis()-t0)*0.001);
89 }
90

91 }

In the main method, we first check the case when no parameters are specified by the
user. If so, a message is printed that the code Jfem should be run with one or two
parameters (lines 18–22). Line 23 sets parameter main in class FE to JFEM, thus
making available the name of the main class of a running application to its methods.
Then, a scanner RD for reading input data from a specified ASCII file is constructed
in line 25 and a printer PR for saving information into an ASCII file is created in
lines 27 and 28. Finally, the main object Jfem is created to solve the finite element
problem. Statement 35 closes the printer file.

In the constructorJfem, static method printDate records the current date and
time using print writer PR. Line 42 creates object FeModel that contains data and
methods related to a finite element model of the problem excluding the load model.
Method readData in line 45 reads data for the finite element model.

Depending on the specified data the finite element solver Solver is constructed
in line 54. Two types of solvers are available. A direct equation solver SolverLDU
performs solution of the finite element equation system using symmetric LDU de-
composition of the matrix. An iterative solver SolverPCG is based on the precon-
ditioned conjugate gradient method.

In line 55, the method assembleGSM assembles the global stiffness matrix for
the finite element model. Different storage formats of the global stiffness matrix are
used depending on the solver. Lines 60 and 63 construct objects FeLoad for a load
case and FeStress for computing stress increment.

The load step loop (lines 66–85) contains input of load data, performed by
method readData of class FeLoad. The method assembleRHS (line 67) as-
sembles all load contributions into the right-hand side (RHS) of the global equation
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system. The equilibrium iteration loop (lines 70–76) includes solution of the global
equation system (method solve in line 62) and computation of a stress increment
(method computeIncrement in line 75). The loop is finished when stresses are
in equilibrium with the applied load (method equilibrium in line 76). Just one
iteration is done for linear (elastic) problems, which we consider now. In nonlinear
problems, such as elastic–plastic problems that are considered later, some number
of iterations is necessary to achieve stress equilibrium. The method accumulate
(line 78) adds increments of loads and stresses to their total values. The method
writeResults (lines 79) records results into an output file.

Some symbolic constants are placed in class FE given below.

1 package fea;
2

3 // Symbolic constants
4 public class FE {
5

6 // Main method of application: JFEM/JMGEN/JVIS
7 public static int main;
8 public static final int JFEM = 0, JMGEN = 1, JVIS = 2;
9

10 public static final int maxNodesPerElem = 20;
11

12 // Big value for displacements boundary conditions
13 public static double bigValue = 1.0e64;
14 // Solution tuning
15 public static boolean tunedSolver = true;
16

17 // Error tolerance for PCG solution of FE equation system
18 public static final double epsPCG = 1.e-10;
19 // Constants for PCG solution method
20 public static int maxRow2D = 21,
21 maxRow3D = 117,
22 maxIterPcg = 10000;
23

24 // Integration scheme for elastic-plastic problems
25 public static boolean epIntegrationTANGENT = false;
26 }

All class fields (variables and constants) are declared as static and can be used with-
out object creation. We will refer to this class fields in other parts of this book.

Class FePrintWriter is a helper class for organizing printing to a text file
with a specified name. Object PR returned by method getPrinter can be used
for printing.

1 package util;
2

3 import java.io.*;
4

5 // Finite element printer to file
6 public class FePrintWriter {
7 PrintWriter PR;
8 public PrintWriter getPrinter(String fileOut) {
9 try {



48 5 Finite Element Processor

10 PR = new PrintWriter(
11 new BufferedWriter(
12 new FileWriter(fileOut)));
13 } catch (Exception e) {
14 UTIL.errorMsg("Cannot open output file: " + fileOut);
15 }
16 return PR;
17 }
18

19 }

Another class with methods used at many places of the Jfea system is class
UTIL.

1 package util;
2

3 import java.util.Calendar;
4 import java.util.GregorianCalendar;
5 import java.io.PrintWriter;
6

7 // Miscellaneous static methods
8 public class UTIL {
9

10 // Print date and time.
11 // PR - PrintWriter for listing file
12 public static void printDate(PrintWriter PR) {
13

14 Calendar c = new GregorianCalendar();
15

16 PR.printf("Date: %d-%02d-%02d Time: %02d:%02d:%02d\n",
17 c.get(Calendar.YEAR), c.get(Calendar.MONTH)+1,
18 c.get(Calendar.DATE), c.get(Calendar.HOUR_OF_DAY),
19 c.get(Calendar.MINUTE),c.get(Calendar.SECOND));
20 }
21

22 // Print error message and exit.
23 // message - error message that is printed.
24 public static void errorMsg(String message) {
25 System.out.println("=== ERROR: " + message);
26 System.exit(1);
27 }
28

29 // Transform text direction into integer.
30 // s - direction x/y/z/n.
31 // returns integer direction 1/2/3/0, error: -1.
32 public static int direction(String s) {
33 if (s.equals("x")) return 1;
34 else if (s.equals("y")) return 2;
35 else if (s.equals("z")) return 3;
36 else if (s.equals("n")) return 0;
37 else return -1;
38 }
39

40 }
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The class contains three static methods. The method printDate outputs current
date and time into a listing file. The method errorMsg displays an error message
and stops program execution. The method direction transforms coordinate axes
x, y, and z into their numerical values 1, 2, and 3; text n (normal direction) is
interpreted as zero.

5.2 Problem Data

From the data point of view the finite element solution is transformation of input
data into output data. We assume that input data is specified as an ASCII file. Such
an input data file can be prepared manually. However, since data describing a finite
element mesh is too large, it is usually generated by a preprocessor.

Let us restrict ourselves to elastic and elastic–plastic problems with displacement
and force boundary conditions and a specified temperature field. The data can be
divided into that related to the finite element model and that describing loading con-
ditions. The finite element model data is not changed during problem solution since
we suppose that the model shape, material properties, and displacement boundary
conditions are constant. The loading conditions change with time. This means that
it is possible to specify several loadings and treat them as load increments.

Description of the finite element model contains:

• scalar parameters (number of nodes, number of elements, etc.);
• material properties;
• nodal data (coordinates of nodal points);
• element data (element types, element materials, and connectivities);
• description of displacement boundary conditions.

Load data includes descriptions of:

• surface and concentrated loads;
• temperature field.

5.2.1 Data Statements

The data specification statement consists of the data item name, an equals sign, and
the data value itself. Data items are specified in free format and in free order. Of
course, if some data item is logically required before other data items, then data
records should follow this logical order.
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Data statement

A data statement has the following form:

<name> = <data>

Here, <name> is a data name and <data> is the data content. Data names are not
case sensitive. Capital and small characters can be used for marking parts of the
name. Blank and the equals sign are interpreted by the data parser as white space,
so these elements are not allowed inside data names. Data on the right of an equals
sign can contain one or more tokens. Tokens can be numbers or text literals. The
number of tokens is predetermined by the data name.

A comment statement has the form:

# comment text

Several statements can be placed on one line. However, all text is considered as a
comment after a comment sign # followed by a blank. A comment statement should
be alone or it should be last on a line.

Including file

An input data file typically has a large size due to the large amount of information
required for finite element mesh description. It is convenient to place large uniform
data in separate files. This can be imported with the use of statement:

includeFile <fileName>

which includes all data contained in a file with name <fileName>.

End statement

Statement

end

is used as the last statement in the model data and in the load data. When we include
a data part using directive includeFile it is possible to mark the end of this file
by the directive end. If the word end is found then a read data method returns.
Return also occurs when the end of a file is reached. However, placement of the
end directive is necessary at the end of the finite element model data and at the end
of load data.
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5.2.2 Model Data

Parameters

The main problem parameters include:

nNod = <number> – number of nodes;

nEl = <number> – number of elements in the finite element model;

stressState = THREED/PLSTRAIN/PLSTRESS/AXISYM– type of prob-
lem: THREED – three-dimensional problem, PLSTRAIN – plane strain two-
dimensional problem,PLSTRESS – plane stress two-dimensional problem,AXISYM
– axisymmetrical problem;

physLaw = ELASTIC/ELPLASTIC – physical law for material behavior:
elastic or elastic–plastic;

solver = LDU/PCG – equation solver: LDU – direct solver based on LDU
decomposition, PCG – preconditioned conjugate gradient iterative solver;

thermalLoading = N/Y – existence of thermal loading: N – no, Y – yes.

Default parameter values are emboldened.

Material properties

For each elastic material, the following data should be specified:

material = matName E nu alpha

Here, matName is any name selected for referring to this material, E is the elasticity
modulus, nu is Poisson’s ratio, and alpha is a thermal-expansion coefficient.

For elastic–plastic material, the data statement contains three additional parame-
ters related to elastic–plastic material behavior:

material = matName E nu alpha sY hardCoef hardPower

Additional parameters have the following interpretation: sY is a material yield
stress, hardCoef is a hardening coefficient, and hardPower is a hardening
power.

Finite element mesh

The finite element mesh is described by two arrays: nodal coordinates and element
connectivities (including element type and element material). Nodal coordinates are
specified by the statement:

nodCoord = <array>
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For three-dimensional problems, nodal coordinates are specified as x1 y1 z1 x2 y2 z2,
etc. A two-dimensional coordinate array has the appearance x1 y1 x2 y2 ...

Element data include element types, element materials, and element connectivi-
ties:

elCon = <array>

For each element the following data should be provided:

ElType = QUAD8/HEX20 – element type (QUAD8 – two-dimensional ele-
ment with eight nodes, HEX20 – twenty-node three-dimensional element),

ElMat – material name corresponding to that in data describing the material,

ElemNodeNumbers – node numbers belonging to the element.

Displacement boundary conditions

Displacement boundary conditions can be specified in two ways: direct specification
of node numbers with constrained displacements or specification of a box for node
definition.

The first style of displacement boundary condition specification has the following
form:

constrDispl = Direct Value nNumbers NodNumbers[]

where Direct = x/y/z – direction of displacement constraint, Value – con-
strained displacemet value, nNumbers – number of items in the list of node num-
bers, NodNumbers[] – list of nodes where displacement boundary conditions are
specified. The list can include positive integers as node numbers. If a range n1 −n2

is present in the list, then it is interpreted as a set of nodes from n1 to n2 (condition
n1 < n2 should be fulfilled).

In many cases of flat or straight boundary segments, it is possible to define a
box inside of which the nodes will be constrained. Such a form of displacement
boundary conditions has the format:

boxConstrDispl = Direct Value BoxDiadonal[]

where Direct = x/y/z – direction of displacement constraint, Value – con-
strained displacemet value, and BoxDiadonal[] – coordinates of two points at
the ends of a box diagonal. In the three-dimensional case the diagonal is specified as
xmin ymin zmin xmax ymax zmax. In the two-dimensional case z-coordinates are absent.

5.2.3 Load Specification

Load can consist of one or several load steps. Load steps are considered as incre-
ments to the previous state. Each load step is defined by the following data.
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Load step name

loadStep = LoadStepName

This statement should be the first statement of a load step. The specified load step
name is used for identifying this load step. Result files have load label as their ex-
tensions.

Parameters

scaleLoad = Scale – load scaling parameter. The load vector of the current
load step is obtained by multiplying the load vector from the previous step with
the specified parameter Scale.

residTolerance = Tolerance – tolerance for ratio of a residual norm to
the norm of force load. If the relative residual norm becomes less than the spec-
ified Tolerance, then equilibrium iterations are finished. The default value is
Tolerance = 0.01.

maxiternumber = Number – maximum allowed number of equilibrium it-
erations (the default value is 100).

Parameters scaleLoad, residTolerance, and maxiternumber are useful
for elastic–plastic problems. They are not used in elastic problems. It should be
noted that parameters residTolerance and maxiternumber are valid for
the next load step if they are not changed. All other loading parameters including
scaleLoad do not exist in the beginning of each new load step and should be
specified if necessary.

Nodal forces

nodForce = Direct Value nNumbers NodNumbers[]

This statement is used for specification of nodal forces. Here, Direct = x/y/z
– direction of nodal forces, Value – force value, and NodNumbers[] – list of
nodes where nodal forces are applied. The list can include positive integers as node
numbers and range n1 −n2 for specifying nodes from–to.

Surface forces

surForce = Direct ElNumber nFaceNodes
faceNodes[] forceAtFaceNodes[]
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Fig. 5.2 Discrete model composed of two eight-node finite elements

Specification of distributed surface load consists of the following items:

Direct = x/y/z/n – direction of surface load (n means loading in the di-
rection of the external normal to the surface),
ElNumber – element number,
nFaceNodes – number of nodes on the element face,
faceNodes[] – node numbers defining the element face, and
forceAtFaceNodes[] – intensities of distributed load at nodes.

Surface forces inside a box

boxSurForce = Direct Value BoxDiagonal[]

This statement allows one to apply a distributed surface load for all element faces,
which are inside a box. Data include: Direct = x/y/z/n – direction of surface
load (n – external normal direction), Value – intensity of distributed load common
to all faces, and BoxDiadonal[] – coordinates of two points at ends of a box
diagonal (xmin ymin zmin xmax ymax zmax).

nodTemp = NodeTemperatures[]

This statement is used for specifying temperatures at nodes.

5.2.4 Data Example

Let us consider numerical information for a simple tension problem. A finite ele-
ment mesh consisting of two eight-node elements is depicted in Figure 5.2. Nodes
1, 2 and 3 are constrained in the x-direction. Nodes 1, 4, 6, 9 and 11 can not move
in the y-direction. A distributed load of unit intensity is applied to side 11–12–13 of
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element 2. Temperature T = 20 is applied to the specimen. The finite element model
can be described as follows:

# Number of nodes and number of elements
nNod = 13 nEl = 2

# Plane stress state, 2D problem
stressState = PLSTRESS

# Enable thermal loading option
thermalLoading = Y

# Material properties:
# material name, elasticity modulus, Poisson’s ratio and
# coefficient of thermal expansion
material = 1 1 0.3 0.1

# Nodal coordinates
nodCoord = 0 0 0 0.5 0 1 0.5 0 0.5 1

1 0 1 0.5 1 1 1.5 0 1.5 1
2 0 2 0.5 2 1

# Element data: element type, material, connectivities
elCon = QUAD8 1 1 4 6 7 8 5 3 2

QUAD8 1 6 9 11 12 13 10 8 7

# Constraints: direction, value, number of constraints,
# node numbers
constrDispl = x 0.0 2 1 -3
constrDispl = y 0.0 5 1 4 6 9 11

end

# Load
loadStep = 1

# Surface load: direction, element number, number of face
# nodes, face node numbers, intensities
surForce = x 2 3 11 12 13 1 1 1

# Nodal temperatures
nodTemp = 10 10 10 10 10 10 10 10 10 10 10 10 10

end

While the problem is simple the above data file illustrates the main principles of
data preparation for the finite element program Jfem.

Data for finite element analysis can be specified in many ways that will lead to
the same results. Let us illustrate this by several examples.

First, upper case and lower case characters in data name are not distinguished.
Because of this, names nNod, nnod, NNOD and other combinations of upper and
lower case characters are treated in the same way. Both blank and equal sign are
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delimiters during data reading. So, the following three statements produce the same
effect

nNod = 13
nNod=13
nNod 13

The order of data specification is to a certain extent arbitrary. The order is not
rigid but the data sequence should correspond to the logical links between data
items. For example, the number of nodes nNod should be specified anywhere be-
fore specification of the nodal coordinates array nodCoord since the length of this
array is determined by nNod.

Specification of boundary conditions can be done in different ways. Displace-
ment boundary conditions can be specified by explicit node numbers or by box
specification. In addition, if node numbers are a sequence of numbers with step 1
then they can be defined using structure “from–to”. In our simple problem of Fig-
ure 5.2 displacement constraints along x can be specified in the following three ways

constrDispl = x 0.0 2 1 -3
constrDispl = x 0.0 3 1 2 3
boxConstrDispl = x 0.0 -0.01 -0.01 0.01 1.01

When using a box for displacement constraint we define a rectangle that includes
nodes 1, 2 and 3. The box boundary condition specification is especially efficient if
a large number of nodes on a flat surface are to be constrained.

The data file shown above can be divided into several files. One main data file
can have references to several other data files. Instead of the previous one data file
we can prepare the following three data files.

File f.fem (main data file)

stressState = PLSTRESS # Plane stress state
thermalLoading = Y # Enable thermal loading

# Finite element mesh
includeFile f.mesh

# Material properties:
material = 1 1 0.3 0.1

# Constraints
constrDispl = x 0.0 2 1 -3
constrDispl = y 0.0 5 1 4 6 9 11

end

# Load case
includeFile f.load

end
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File f.mesh (finite element mesh)

nNod = 13 nEl = 2 # Number of nodes and elements

# Nodal coordinates
nodCoord = 0 0 0 0.5 0 1 0.5 0 0.5 1

1 0 1 0.5 1 1 1.5 0 1.5 1
2 0 2 0.5 2 1

# Element data: element type, material, connectivities
elCon = QUAD8 1 1 4 6 7 8 5 3 2

QUAD8 1 6 9 11 12 13 10 8 7
end

File f.load (data for load step)

loadStep = 1

# Surface load: direction, element number, number of face
# nodes, face node numbers, intensities
surForce = x 2 3 11 12 13 1 1 1

# Nodal temperatures
nodTemp = 10 10 10 10 10 10 10 10 10 10 10 10 10

end

File f.fem includes two other files f.mesh and f.load containing data for a
finite element mesh and a load step. The name of the main data file f.fem is passed
to the Java program when we solve the boundary value problem.

5.3 Data Scanner

Java 5 introduced a simple text scanner that can parse primitive data types and
strings using regular expressions. The scanner separates its input into tokens accord-
ing to specified delimiters. The resulting tokens may be read into values of different
types. Class FeScanner, which implements simple input operations for our finite
element program, is shown below.

1 package util;
2

3 import model.Dof;
4 import java.util.Scanner;
5 import java.util.ListIterator;
6 import java.io.File;
7

8 // FEM data scanner. Delimiters: blank, =.
9 public class FeScanner {

10

11 private Scanner es;
12
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13 // Constructs FE data scanner.
14 // fileIn - name of the file containing data.
15 public FeScanner(String fileIn) {
16

17 try {
18 es = new Scanner(new File(fileIn));
19 } catch (Exception e) {
20 UTIL.errorMsg("Input file not found: " + fileIn);
21 }
22 es.useDelimiter("\\s*=\\s*|\\s+");
23

24 }
25

26 // Returns true if another token is available.
27 public boolean hasNext() { return es.hasNext(); }
28

29 // Returns true if double is next in input.
30 public boolean hasNextDouble() {return es.hasNextDouble();}
31

32 // Gives the next token from this scanner.
33 public String next() { return es.next(); }
34

35 // Gives the next double from this scanner.
36 public double nextDouble() { return es.nextDouble(); }
37

38 // Reads the next integer.
39 // Generates an error if next token is not integer.
40 public int readInt() {
41 if (!es.hasNextInt()) UTIL.errorMsg(
42 "Expected integer. Instead: "+es.next());
43 return es.nextInt();
44 }
45

46 // Reads the next double.
47 // Generates an error if next token is not double.
48 public double readDouble() {
49 if (!es.hasNextDouble()) UTIL.errorMsg(
50 "Expected double. Instead: "+es.next());
51 return es.nextDouble();
52 }
53

54 // Advances the scanner past the current line.
55 public void nextLine() { es.nextLine(); }
56

57 // Moves to line which follows a line with the word.
58 public void moveAfterLineWithWord(String word) {
59

60 while (es.hasNext()) {
61 String varname = es.next().toLowerCase();
62 if (varname.equals("#")) { es.nextLine();
63 continue; }
64 if (varname.equals(word)) {
65 es.nextLine();
66 return;
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67 }
68 }
69 UTIL.errorMsg("moveAfterLineWithWord cannot find: "
70 + word);
71 }
72

73 // Method reads < nNumbers numbers > and places resulting
74 // degrees of freedom in a List data structure.
75 // Here numbers is a sequence of the type n1 n2 -n3 ...
76 // where n2 -n3 means from n2 to n3 inclusive.
77 // it - list iterator.
78 // dir - direction (1,2,3).
79 // nDim - problem dimension (2/3).
80 // sValue - specified value.
81 // returns - modified list iterator it.
82 public ListIterator readNumberList(ListIterator it,
83 int dir, int ndim, double sValue) {
84 // number of items in the list
85 int ndata = readInt();
86 int i1, i2;
87 i1 = i2 = readInt();
88 for (int i=1; i<ndata; i++) {
89 i2 = readInt();
90 if (i2 > 0 && i1 >= 0) {
91 if (i1 > 0) {
92 it.add(new Dof(ndim*(i1-1)+dir, sValue));
93 }
94 i1 = i2;
95 }
96 else if (i2 < 0) {
97 for (int j=i1; j<=(-i2); j++) {
98 it.add(new Dof(ndim*(j-1)+dir, sValue));
99 }
100 i1 = 0;
101 i2 = 0;
102 }
103 }
104 if (i2 > 0) {
105 it.add(new Dof(ndim*(i2-1)+dir, sValue));
106 }
107 return it;
108 }
109

110 // Closes this scanner.
111 public void close() { es.close(); }
112

113 }

Here, constructor FeScanner creates a scanner for data in our finite element
program. ASCII data is read from a file with the name fileIn. The statement in
line 22 sets a blank and an equals sign as delimiters between data tokens.

Methods hasNext and hasNextDouble check if another token or another
double-precision number are available for input. They return true if another appro-
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priate token is available. Method next returns the next token as a string if it is
available.

Methods next and nextDouble return the next string and the next double
values. To avoid exception it is necessary to check the availability of tokens of ap-
propriate type.

Integer and double data items can be read with the help of methods readInt
and readDouble. These methods first check the availability of correspondent
data, then read data tokens and return numerical values. If an appropriate token
is not available to the scanner, then an error message is written to the console and
the program is stopped (method errorMsg in package UTIL).

Method nextLine advances the scanner past the current line and method
moveAfterLineWithWordmoves it to the line that follows a line with the word
specified as a parameter.

In some cases of boundary conditions specifications it is convenient to use an
expression “from–to”. Method readNumberList (lines 82–108) is able to read
and interpret a list

nNumbers n1 n2 −n3 n4 ...
Here, nNumbers is the number of items in the list excluding nNumbers itself, and ni

specify node numbers. Single positive numbers mean just node numbers, but a neg-
ative number −ni creates a pair with the previous positive number ni−1 and together
they are interpreted as all integers from ni−1 to ni. The method produces degree of
freedom numbers using node numbers and direction dir (values 1, 2 and 3 corre-
spond to axes x, y and z) and puts them in the Dof object. Dof is just a container
for a degree of freedom. It contains a degree of freedom number and an associated
double value, which can be displacement or force. The parameters of the method
have the following meanings:

it – list iterator. Created degrees of freedom are added to a list with the list
iterator it.

dir – direction. Direction values 1, 2, 3 correspond to coordinate directions x,
y, and z.

ndim – problem dimension. Should be equal to 2 (two-dimensional problem) or
3 (three-dimensional problem).

sValue – the value that will be associated with all degrees of freedom read
during this call of the method.

The method returns modified list iterator it.

Finally, method close() closes the scanner. The listing of class Dof is given
below.

1 package model;
2

3 // Degree of freedom.
4 public class Dof {
5

6 public int dofNum;
7 public double value;
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8

9 public Dof(int dofNum, double value) {
10 this.dofNum = dofNum;
11 this.value = value;
12 }
13

14 }

Problems

5.1. Prepare a data file for a three-dimensional mesh consisting of two twenty-node
hexahedral elements.

y

x

z

x = 21

2

3
4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

30

31

32

25

26

27

21

22

23

24

28

29

The length of all element edges is unity. A distributed load with intensity p = 1 nor-
mal to the surface is applied to element face x = 2. Specify the necessary displace-
ment boundary conditions that prevent body movement and lead to stress σx = 1 (all
other stresses are zero). An order of node numbering for the hexahedral element is
given in Figure 12.1b.

5.2. For the mesh of the previous problem write down the data describing displace-
ment constraint u = 0 for nodes located at plane x = 0. Use three ways for specifi-
cation of this boundary condition: full list of constrained nodes, structure “from–to”
and using a box.

5.3. Modify data of Problem 5.1 in such a way that it would describe a problem with
two elements consisting of different materials.



Chapter 6
Finite Element Model

Abstract This chapter describes the finite element model. The finite element model
contains nodal coordinates, element connectivities, material properties, and dis-
placement boundary conditions. Class FeModelData is a container for the finite
element model data. Class FeModel performs input of model data.

6.1 Data for the Finite Element Model

The finite element model contains all the data for a computational domain, which
includes a finite element mesh, information regarding materials, and a description
of displacement boundary conditions.

The data on the finite element model is contained in JavaTM class FeModelData
belonging to package model.

1 package model;
2

3 import elem.*;
4 import util.*;
5

6 import java.io.PrintWriter;
7 import java.util.HashMap;
8 import java.util.LinkedList;
9

10 // Finite element model data
11 public class FeModelData {
12

13 static FeScanner RD;
14 static PrintWriter PR;
15

16 // Problem dimension =2/3
17 public int nDim = 3;
18 // Number of degrees of freedom per node =2/3
19 public int nDf = 3;
20 // Number of nodes

63
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21 public int nNod;
22 // Number of elements
23 public int nEl;
24 // Number of degrees of freedom in the FE model
25 public int nEq;
26 // Elements
27 public Element elems[];
28 // Materials
29 public HashMap materials = new HashMap();
30 // Coordinates of nodes
31 private double xyz[];
32 // Constrained degrees of freedom
33 public LinkedList defDs = new LinkedList();
34 public boolean thermalLoading;
35 static String varName;
36

37 public static enum StrStates {
38 plstrain, plstress, axisym, threed
39 }
40 public static StrStates stressState = StrStates.threed;
41

42 public static enum PhysLaws {
43 elastic, elplastic
44 }
45 public PhysLaws physLaw = PhysLaws.elastic;
46

47 // Input data names
48 enum vars {
49 nel, nnod, ndim, stressstate, physlaw, solver,
50 elcon, nodcoord, material,
51 constrdispl, boxconstrdispl, thermalloading,
52 includefile, user, end
53 }
54

55 // Allocation of nodal coordinate array
56 public void newCoordArray() {
57 xyz = new double[nNod*nDim];
58 }
59

60 // Set coordinates of node
61 public void setNodeCoords(int node, double[] xyzn) {
62 for (int i=0; i<nDim; i++) xyz[node*nDim+i] = xyzn[i];
63 }
64

65 // Set ith coordinates of node
66 public void setNodeCoord(int node, int i, double v) {
67 xyz[node*nDim+i] = v;
68 }
69

70 // Get coordinates of node
71 public double[] getNodeCoords(int node) {
72 double nodeCoord[] = new double[nDim];
73 for (int i=0; i<nDim; i++)
74 nodeCoord[i] = xyz[node*nDim+i];
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75 return nodeCoord;
76 }
77

78 // Get ith coordinate of node
79 public double getNodeCoord(int node, int i) {
80 return xyz[node*nDim+i];
81 }
82

83 }

Class FeModelData contains scalars, arrays, and objects used for description
of the finite element model. Data of the finite element model is declared in lines
16–34:

nDim – number of dimensions (2 or 3);
nDf – number of degrees of freedom per node (2 or 3);
nNod – number of nodes in the finite element model;
nEl – number of elements;
nEq – total number of degrees of freedom (ndf*nnod);
elems – array of element objects;
materials – hash table of material objects;
xyz – array of nodal coordinates;
defDs – linked list containing constrained degrees of freedom;
thermalLoading = true when thermal loading exists.

Since the number of elements is known in advance (specified with the finite el-
ement mesh), a normal array is used for storing Element objects (line 27). Nodal
coordinates are placed in a one-dimensional array xyz. We elected not to use spe-
cial objects for nodes in order to conserve memory and to some extent computing
time. The information describing node locations is very simple – just two or three
double-precision numbers. We use Element objects for element description since
element information is rather complicated. An element structure contains several
arrays and objects.

Objects describing material properties are stored in a hash table because the num-
ber of materials is relatively small and material objects are accessed in an arbitrary
order. Java class HashMap is used to store Material objects (line 29).

Java class LinkedList is employed for storing constrained degrees of freedom
defDs (line 33). The linked list data structure is suitable for this purpose since the
number of constrained displacements is not known in advance. It is determined by
methods of constrained displacements specification in the data input file.

For data that can have several predetermined values, we use Java enum type.
The enum is a flexible object-oriented enumerated-type facility, which allows one to
create enumerated types with arbitrary methods and fields. The lookup among enum
values is performed by the valueOf method. The toStringmethod can be used
to get String containing the text representation of a particular enum value.

The following data has enum type:

strState – problem stress state describing predetermined conditions for stresses
and strains. It can have values:
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plstrain – plane strain;
plstress – plane stress;
axisym – axisymmetrical problem;
threed – three-dimensional problem (default value).

physLaw – material physical law with permissible values: elastic for elastic
material behavior (default) and elplastic for elastic–plastic material behav-
ior.

vars – names of data items for processing input data file.

Nodal coordinates are stored in a one-dimensional array xyz, which is declared
as private. Because of this, class FeModelData provides methods for working with
nodal coordinates.

newCoordArray – this method allocates memory for nodal coordinate array
xyz. The number of nodes nNod and problem dimension nDim should have
values at the time of xyz allocation.

setNodeCoords – sets the nodal coordinates for node node as in array xyzn.

setNodeCoord – sets the ith coordinate for node node. Values i = 0, 1,
2 correspond to axes x, y, z.

getNodeCoords – returns an array of coordinates for node node.

getNodeCoord – returns the ith coordinate for node node.

6.2 Class for the Finite Element Model

Class FeModel inherits data from class FeModelData. It implements methods
for input and handling of data describing the finite element model. A listing of class
FeModel is given below.

1 package model;
2

3 import elem.*;
4 import material.*;
5 import util.*;
6 import solver.*;
7

8 import java.io.PrintWriter;
9 import java.util.ListIterator;

10

11 // Description of the finite element model
12 public class FeModel extends FeModelData {
13

14 static private int elCon[] = new int[20];
15 static private double box[][] = new double[2][3];
16 ListIterator it;
17
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18 // Construct finite element model.
19 // RD - data scanner, PR - print writer.
20 public FeModel(FeScanner RD, PrintWriter PR) {
21 FeModelData.RD = RD;S
22 FeModelData.PR = PR;
23 }
24

25 // Read data for a finite element model
26 public void readData() {
27 readDataFile(RD);
28 }
29

30 private void readDataFile(FeScanner es) {
31

32 vars name = null;
33 String s;
34 Material mat;
35 it = defDs.listIterator(0);
36

37 while (es.hasNext()) {
38 varName = es.next();
39 String varname = varName.toLowerCase();
40 if (varName.equals("#")) {es.nextLine(); continue;}
41 try {
42 name = vars.valueOf(varname);
43 } catch (Exception e) {
44 UTIL.errorMsg(
45 "Variable name is not found: "+varName);
46 }
47

48 switch (name) {
49

50 case nel: nEl = es.readInt();
51 break;
52

53 case nnod: nNod = es.readInt();
54 break;
55

56 case ndim: nDim = es.readInt();
57 nDf = nDim;
58 break;
59

60 case stressstate:
61 s = es.next().toLowerCase();
62 try {
63 stressState = StrStates.valueOf(s);
64 } catch (Exception e) {
65 UTIL.errorMsg(
66 "stressState has forbidden value: "+s);
67 }
68 if (stressState != StrStates.threed)
69 nDim = nDf = 2;
70 else nDim = nDf = 3;
71 break;
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72

73 case physlaw:
74 s = es.next().toLowerCase();
75 try {
76 physLaw = PhysLaws.valueOf(s);
77 } catch (Exception e) {
78 UTIL.errorMsg(
79 "physLaw has forbidden value: "+s);
80 }
81 break;
82

83 case solver:
84 s = es.next().toLowerCase();
85 try {
86 Solver.solver = Solver.Solvers.valueOf(s);
87 } catch (Exception e) {
88 UTIL.errorMsg(
89 "solver has forbidden value: "+s);
90 }
91 break;
92

93 case elcon:
94 readElemData(es);
95 break;
96

97 case nodcoord:
98 if (nNod == 0 || nDim == 0)
99 UTIL.errorMsg("nNod and nDim should be"
100 +" specified before nodCoord");
101 nEq = nNod * nDim;
102 // Nodal coordinates
103 newCoordArray();
104 for (int i = 0; i < nNod; i++)
105 for (int j = 0; j < nDim; j++)
106 setNodeCoord(i, j, es.readDouble());
107 break;
108

109 case material:
110 String matname = es.next();
111 mat = Material.newMaterial(physLaw.toString(),
112 stressState.toString());
113 double e = es.readDouble();
114 double nu = es.readDouble();
115 double alpha = es.readDouble();
116 mat.setElasticProp(e, nu, alpha);
117 if (physLaw == PhysLaws.elplastic) {
118 double sY = es.readDouble();
119 double km = es.readDouble();
120 double mm = es.readDouble();
121 mat.setPlasticProp(sY, km, mm);
122 }
123 materials.put(matname, mat);
124 break;
125
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126 case constrdispl:
127 readConstrDisplacements(es);
128 break;
129

130 case boxconstrdispl:
131 createBoxConstrDisplacements(es);
132 break;
133

134 case thermalloading:
135 s = es.next();
136 if (s.toLowerCase().equals("y"))
137 thermalLoading = true;
138 else if (s.toLowerCase().equals("n"))
139 thermalLoading = false;
140 else
141 UTIL.errorMsg("thermalLoading should be"
142 + " y/n. Specified: " + s);
143 break;
144

145 case includefile:
146 s = es.next().toLowerCase();
147 FeScanner R = new FeScanner(s);
148 readDataFile(R);
149 break;
150

151 case end: return;
152 }
153 }
154 }

Import statements in lines 3–6 make available classes from packages elem,
material, util and Solver. Constructor FeModel sets references to data
scanner RD and print writer PR.

Method readDataFile reads data describing the finite element model from
an ASCII file that is related to the finite element scanner es (class FeScanner).

Data is read inside the main while loop in lines 37–153. This loop contin-
ues while there are input items in the scanner es. A text data item read in string
varName (line 38) is changed to lower case varname. In the next line we check
if this item is symbol #, which is used as a comment sign. In the case of a comment
we proceed to the next line of the scanner and try to read the next data item. If this
data item is not the comment sign then we try to find the name that corresponds to
the string varname among enumerated vars. If varname does not correspond
to any predetermined value in vars, then an error is generated using static method
errorMsg of class UTIL.

If varname is found among predetermined values in vars then a switch
statement is executed in line 48 and a particular case statement reads the second
part of an input statement that may contain one or more (sometimes many) input
items.

In lines 50, 53, and 56 problem parameters nEl (number of elements), nNod
(number of nodes), and nDim (problem dimension) are read as integers. It is pos-
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sible not to specify explicitly the problem dimension nDim since it will be set au-
tomatically depending on the stress state parameter stressState (lines 61–70).
The parameters physLaw (material physical law) and solver (equation solver)
are treated in lines 74–80 and 84–90.

Data input for all elements in the finite element model (line 94) is performed by
method readElemConnectivities, shown in lines 158–178.

Statements in lines 98–106 set nodal coordinates of the finite element model.
After checking that variables nNod and nDim have nonzero values, an array of
nodal coordinates xyz is created and the nodal coordinates are read in this array.

Input of mechanical properties of materials is performed in lines 110–123. Each
material is identified by its name. Three parameters should be specified for an elastic
material – elasticity modulus e, Poisson’s ratio nu, and thermal-expansion coeffi-
cient alpha. For the elastic–plastic material, it is necessary to provide three addi-
tional parameters – yield stress sY, hardening coefficient km, and hardening power
mm. Material objects are stored as hash table materials.

Displacement boundary conditions in the form of constrained displacements are
treated in lines 127 and 131 using methods readConstrDisplacements and
createBoxConstrDisplacements.

The thermal loading indicator thermalLoading, which can have values Y
(yes) and N (no), is treated in lines 135–142.

An important possibility of inserting other files containing data is implemented in
lines 146–148 (data statement includeFile fileName). A specified file name
is used to create new data scanner R. Reading data from file fileName is achieved
by a recursive call of method readDataFile.

Data statement end (line 151) leads to termination of data input for the finite
element model.

Input of element connectivities and other element data is performed by method
readElemData, which is presented next.

156 // Read element type, material and connectivities
157 // for all elements
158 private void readElemData(FeScanner es) {
159

160 if (nEl == 0) UTIL.errorMsg (
161 "nEl should be defined before elCon");
162 elems = new Element[nEl];
163

164 for (int iel = 0; iel < nEl; iel++) {
165 // Element type
166 String s = es.next().toLowerCase();
167 elems[iel] = Element.newElement(s);
168 // Element material
169 String elMat = es.next();
170 elems[iel].setElemMaterial(elMat);
171 // Element connectivities
172 int nind = elems[iel].ind.length;
173 for (int i = 0; i < nind; i++) {
174 elCon[i] = es.readInt();
175 }
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176 elems[iel].setElemConnectivities(elCon,nind);
177 }
178 }

This method first confirms that the number of elements nEl already has a nonzero
value. Line 162 allocates an array of Element objects. The loop of lines 164–177
reads element data. The element type is read in line 166 as a String. Line 167
constructs element objects using an element name by method byName of the class
NewElement (package elem). The element material name and element connec-
tivity numbers are read and assigned to element objects with the help of methods
setElemMaterial (line 170) and setElemConnectivities (line 176).

Data for displacement boundary conditions is determined by the following two
methods.

180 // Read data for specified constrained displacements
181 private void readConstrDisplacements(FeScanner es) {
182 String s = es.next().toLowerCase();
183 int idf = UTIL.direction(s);
184 if (idf == -1) UTIL.errorMsg("constrDispl direction"+
185 " should be x/y/z. Specified:"+s);
186 if (!es.hasNextDouble())
187 UTIL.errorMsg("constrDispl value is not a double: "
188 +es.next());
189 double vd = es.nextDouble();
190 it = es.readNumberList(it, idf, nDim, vd);
191 }
192

193 // Create data for constrained displacements
194 // specified inside a box
195 private void createBoxConstrDisplacements(FeScanner es) {
196 String s = es.next().toLowerCase();
197 int idf = UTIL.direction(s);
198 if (idf == -1)
199 UTIL.errorMsg("boxConstrDispl direction should be"
200 +" x/y/z. Specified:"+s);
201 if (!es.hasNextDouble())
202 UTIL.errorMsg("boxConstrDispl value is not"
203 + " a double: " + es.next());
204 double vd = es.nextDouble();
205 for (int i = 0; i < 2; i++)
206 for (int j=0; j<nDim; j++)
207 box[i][j] = es.readDouble();
208 node: for (int i = 0; i < nNod; i++) {
209 for (int j = 0; j < nDim; j++) {
210 double x = getNodeCoord(i,j);
211 if (x<box[0][j] || x>box[1][j]) continue node;
212 }
213 it.add(new Dof(nDim *i + idf, vd));
214 }
215 }
216

217 }
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Method readConstrDisplacements just reads a list of node numbers with
specified constrained displacements along with a coordinate direction and a dis-
placement value. Line 190 adds constrained degrees of freedom to linked list defDs
with modification of list iterator it.

Method createBoxConstrDisplacements uses the coordinates of a box
specified by its two diagonally opposite vertices. Lines 205–207 input box coordi-
nates. Constraints are generated for all nodes located inside the box in lines 208–
214. Constraints are added to linked list defDs using list iterator it. Specification
of displacement boundary conditions inside the box is convenient for flat surfaces
of the finite element model.

6.3 Adding New Data Item

During further development of the presented finite element program we may need
to add new data items to the finite element model. Suppose we want to include a
new data item dataItem of the type double. It can be done using the following
steps.

1. Place variable declaration in class FeModelData
public double dataItem;

We declare the variable with public attribute. Usually, in object-oriented
programming it is recommended to hide data and to program methods for
getting and setting its value. We do not follow this approach because it con-
siderably inflates the source code.

2. Add member dataitem in enumerated enum vars (lines 48–53 of class
FeModelData). In principle, it is possible to use another name in the vars
list. However, it is more natural to use the same name in lower case.

3. Place the following statements
case dataitem: dataItem = es.readDouble();
break;

inside case structure switch (name) that starts at line 48 of class FeModel.

After data item input, the value of variable dataItem can be accessed as a public
field of the FeModel object.

Problems

6.1. Explain how a linked list data structure is organized. What elements can be
placed in a Java LinkedList object? Why do we use a LinkedList object for
storing constrained displacements data?
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6.2. Explain what a hash table data structure is and why it is used for storing material
properties. Propose another approach to storing material data and to accessing such
data.

6.3. We need to input integer array M[nM] together with its length nM. Modify
classes FeModelData and FeModel to perform such data input.

6.4. Suppose it is required to input an array of type double with unknown length.
Make the necessary modifications to classes FeModelData and FeModel.



Chapter 7
Elastic Material

Abstract Hooke’s law for elastic material in two- and three-dimensional cases is
introduced. Class Material, which is a parent class for material models, is in-
troduced. Constitutive equations for an elastic material in three-dimensional, plane
strain, and plane stress cases are implemented in class ElasticMaterial.

7.1 Hooke’s Law

In the finite element method, the main variables (and main unknowns) are displace-
ments at nodal points. Using displacement differentiation with the help of shape
functions, it is possible to obtain strains εi j at any point of a finite element. The
application of Hooke’s law yields stresses σi j. For a linear elastic material, a conve-
nient form of Hooke’s law has the following appearance:

σi j = λθδi j + 2μεe
i j,

θ = εe
ii,

εe
i j = εi j − ε t

i j.

(7.1)

Here, εe
i j are elastic fractions of strains, ε t

i j are thermal fractions of strains, θ is the
elastic volume change, and λ and μ are elastic Lame constants. Thermal expansion
affects only elongations:

ε t
i j = αTδi j, (7.2)

where α is the thermal expansion coefficient and T is temperature. Lame constants
are expressed through the elasticity modulus E and Poisson’s ratio ν:

λ =

⎧⎪⎨
⎪⎩

νE
(1 +ν)(1−2ν)

for three-dimensional and plane strain cases,

νE
1−ν2 for plane stress,

(7.3)

75
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μ =
E

2(1 +ν)
. (7.4)

In some cases it is more convenient to use a matrix form of Hooke’s law (as intro-
duced in (3.6)),

{σ} = [E]{εe} = [E]({ε}−{ε t}). (7.5)

For three-dimensional problems, stress, strain, and thermal strain vectors contain
six components:

{σ} = {σx σy σz τxy τyz τzx},
{ε} = {εx εy εz γxy γyz γzx},
{εt} = {αT αT αT 0 0 0},

(7.6)

and the elasticity matrix [E] has the appearance:

[E] =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ + 2μ λ λ 0 0 0
λ λ + 2μ λ 0 0 0
λ λ λ + 2μ 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

⎤
⎥⎥⎥⎥⎥⎥⎦
. (7.7)

In two-dimensional problems it is sufficient to have four components in stress
and strain vectors and to use a four by four elasticity matrix:

{σ} = {σx σy τxy σz},
{ε} = {εx εy γxy εz},
{εt} = {αT αT 0 αT},

(7.8)

[E] =

⎡
⎢⎢⎣
λ + 2μ λ 0 λ

λ λ + 2μ 0 λ
0 0 μ 0
λ λ 0 λ + 2μ

⎤
⎥⎥⎦. (7.9)

Under plane stress conditions, stress σz is equal to zero. For plane strain, strain εz

has zero value.

7.2 Class for a Material

We expect that both elastic and elastic–plastic materials will be present in our finite
element program. To treat both material models as objects of the same type, let us
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introduce a parent JavaTM class with the name Material. A listing of this class is
shown below.

1 package material;
2

3 import elem.Element;
4

5 // Material constitutive relations
6 public class Material {
7

8 // StressContainer state (plstrain/plstress/axisym/threed)
9 String stressState;

10 // Elasticity modulus
11 double e;
12 // Poisson’s ratio
13 double nu;
14 // Thermal expansion
15 double alpha;
16 // Yield stress
17 double sY;
18 // Hardening coefficient
19 double km;
20 // Hardening power
21 double mm;
22

23 public static Material newMaterial (String matPhysLaw,
24 String stressState) {
25 if (matPhysLaw.equals("elastic"))
26 return new ElasticMaterial(stressState);
27 else return new ElasticPlasticMaterial(stressState);
28 }
29

30 // Given strain increment at integration point ip
31 // element elm, compute stress dsig increment
32 public void strainToStress(Element elm, int ip) { }
33

34 // Set elastic properties
35 public void setElasticProp(double e, double nu,
36 double alpha){
37 this.e = e;
38 this.nu = nu;
39 this.alpha = alpha;
40 }
41

42 // Set plastic properties
43 public void setPlasticProp(double sY, double km,
44 double mm) {
45 this.sY = sY;
46 this.km = km;
47 this.mm = mm;
48 }
49

50 // Returns Lame constant lambda
51 public double getLambda() {
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52 return (stressState.equals("plstress")) ?
53 e*nu/((1+nu)*(1-nu)) : e*nu/((1+nu)*(1-2*nu));
54 }
55

56 // Returns shear modulus
57 public double getMu() { return 0.5*e/(1 + nu); }
58

59 // Returns Poisson’s ratio
60 public double getNu() { return nu; }
61

62 // Returns thermal expansion coefficient
63 public double getAlpha() { return alpha; }
64

65 // Compute elasticity matrix emat
66 public void elasticityMatrix(double[][] emat) { }
67

68 }

Class Material belongs to package material and imports class Element
from package elem.

In lines 10–21 all the material properties are declared:

e – elasticity modulus;

nu – Poisson’s ratio;

alpha – thermal expansion coefficient;

sY – yield stress;

km – hardening coefficient;

mm – hardening power.

The first three parameters are related to elastic problems and are set by method
setElasticProp; the final three parameters characterize a deformation curve in
an elastic–plastic region, and are set by method setPlasticProp.

The class constructor presented in lines 23–28 returns an ElasticMaterial
or ElasticPlasticMaterial object depending on parameter matPhysLaw,
specified in input data.

The principal purpose of material constitutive relations is to compute the stress
increment as a function of strain increment. This function is performed by method
strainToStress, declared in line 32 and is implemented in subclasses of
Material class. Stress increment computing is done for an integration point ip
of a finite element elm that are specified as method parameters.

Methods getLambda and getMu provide values of the Lame parameters for a
current material; methods getNu and getAlpha return values of Poisson’s ratio
and the thermal-expansion coefficient. Method elasticityMatrix computes
the elasticity matrix emat. It is implemented in class ElasticMaterial.
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7.3 Class for Elastic Material

Class ElasticMaterial inherits from class Material and implements con-
stitutive relations for linear elastic material in three- and two-dimensional cases.
Two-dimensional problems include plane strain and plane stress conditions and ax-
isymmetric deformation.

1 package material;
2

3 import elem.Element;
4

5 // Constitutive relations for elastic material
6 public class ElasticMaterial extends Material {
7

8 static double[] deps = new double[6];
9 static double[] dsig = new double[6];

10 // Length of strain and stress vectors
11 static int lv;
12

13 public ElasticMaterial(String stressState) {
14

15 this.stressState = stressState;
16 lv = (stressState.equals("threed"))? 6:4;
17 }
18

19 // Hooke’s law: increment of stress due to
20 // increment of strain
21 public void strainToStress(Element elm, int ip) {
22

23 deps = elm.getStrainsAtIntPoint(ip);
24 double temp = elm.getTemperatureAtIntPoint(ip);
25

26 double mu = 0.5*e/(1 + nu);
27 double lambda = (stressState.equals("plstress")) ?
28 e*nu/(1-nu*nu) : e*nu/((1+nu)*(1-2*nu));
29 double beta = lambda + 2.0*mu;
30 double at = alpha*temp;
31

32 if (stressState.equals("threed")) {
33 deps[0] -= at;
34 deps[1] -= at;
35 deps[2] -= at;
36 dsig[0] = beta*deps[0] + lambda*(deps[1]+deps[2]);
37 dsig[1] = beta*deps[1] + lambda*(deps[0]+deps[2]);
38 dsig[2] = beta*deps[2] + lambda*(deps[0]+deps[1]);
39 dsig[3] = mu*deps[3];
40 dsig[4] = mu*deps[4];
41 dsig[5] = mu*deps[5];
42 } else {
43 deps[0] -= at;
44 deps[1] -= at;
45 if (!stressState.equals("plstress")) deps[3] -= at;
46 dsig[0] = beta*deps[0] + lambda*(deps[1]+deps[3]);
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47 dsig[1] = beta*deps[1] + lambda*(deps[0]+deps[3]);
48 dsig[2] = mu*deps[2];
49 dsig[3] = 0.0;
50 if (stressState.equals("plstrain"))
51 dsig[3] = nu*(dsig[0]+dsig[1]) - e*at;
52 if (stressState.equals("axisym"))
53 dsig[3] = beta*deps[3]+lambda*(deps[0]+deps[1]);
54 }
55 for (int i=0; i<lv; i++)
56 elm.str[ip].dStress[i] = dsig[i];
57 }
58

59 // Compute elasticity matrix emat
60 public void elasticityMatrix(double[][] emat) {
61 if (stressState.equals("threed"))
62 elasticityMatrix3D(emat);
63 else
64 elasticityMatrix2D(emat);
65 }
66

67 // Elasticity 3D matrix emat [6][6]
68 public void elasticityMatrix3D(double[][] emat) {
69

70 double mu = getMu();
71 double lambda = getLambda();
72 double beta = lambda + 2*mu;
73

74 for (int i=0; i<6; i++)
75 for (int j=0; j<6; j++)
76 emat[i][j]=0;
77

78 emat[0][0] = emat[1][1] = emat[2][2] = beta;
79 emat[0][1] = emat[1][0] = emat[0][2] = emat[2][0] =
80 emat[1][2] = emat[2][1] = lambda;
81 emat[3][3] = emat[4][4] = emat[5][5] = mu;
82 }
83

84 // Elasticity 2D matrix emat [4][4]
85 public void elasticityMatrix2D(double[][] emat) {
86

87 double mu = getMu();
88 double lambda = getLambda();
89 double beta = lambda + 2*mu;
90

91 emat[0][0] = emat[3][3] = emat[1][1] = beta;
92 emat[0][1] = emat[1][0] = emat[0][3] = emat[3][0] =
93 emat[1][3] = emat[3][1] = lambda;
94 emat[2][2] = mu;
95 emat[0][2] = emat[2][0] = emat[1][2] = emat[2][1] =
96 emat[2][3] = emat[3][2] = 0.;
97 }
98

99 }
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For simplicity, working arrays for strain deps and stress dsig increments are
allocated with length 6 and a parameter lv that keeps the length of the strain–stress
vector it introduces. In line 16 lv is assigned a value of 6 for three-dimensional
problems, otherwise it is set to 4. The stress increment due to the strain increment at
integration point ip of element elm is computed by method strainToStress.

Increments of strain deps and temperature temp are obtained using methods
getStrainsAtIntPoint and getTemperatureAtIntPoint of a class
corresponding to a particular element. Computing of stress increment dsig ac-
cording to Hooke’s law (7.1) is done in lines 33–41 for the three-dimensional case
and in lines 43–53 for the two-dimensional cases of plane stress, plane strain, and
axisymmetric deformation. At the end of the method calculated stress increment
dsig is placed in element object str, which is used for storing stresses and strains
at integration points.

Method elasticityMatrix generates an elasticity matrix emat for the
three-dimensional case according to Equation 7.7 and for the two-dimensional case
according to Equation 7.9. These cases are implemented in lines 68–82 by method
elasticityMatrix3D and by method elasticityMatrix2D (lines 85–
97).

Problems

7.1. Express elasticity matrix [E] for a plane stress case using elasticity modulus E
and Poisson’s ratio ν .

7.2. Show the equivalence of Hooke’s law in tensor form (7.1) and in matrix form
(7.5) for the three-dimensional case of stress calculation.

7.3. Develop a Java method that computes the stress vector as a function of the
elastic strain vector with the following interface.

// Compute stress vector due to elastic strain vector.
// elStrain [] vector of elastic strains,
// returns stress vector.
public double[] strainToStress(double[] elStrain) {

return stress;
}

The method should work for the three-dimensional case and for two-dimensional
cases of plane strain and plane stress. It is supposed that the method belongs to class
ElasticMaterial, and that all fields and methods of this class are available to
the developed method.

7.4. Create a main method for class ElasticMaterial that performs any usage
of some methods of the class. For example, it could be a simple test of method
elasticityMatrix.



Chapter 8
Elements

Abstract Finite elements are considered as main objects in both mathematical and
programmatical senses. In order to implement the main methods for a finite element,
abstract class Element is designed. The class holds element data, methods com-
mon to all element types, and empty methods specific to particular element types.
Overriding of the parent methods allows one to create new element types using
standard procedures.

8.1 Element Methods

Finite elements are the main objects (in both mathematical and programmatical
senses) of the finite element method. Commercial and scientific finite element pro-
grams include large libraries of finite elements. They are able to solve various prob-
lems due to using various types of finite elements, so it is important to construct
finite element routines in such a way that it is straightforward to add new types of
finite elements with minimal changes to already existing code.

Let us restrict ourselves to the problems under consideration involving surface
loading and temperature influence, and introduce principal functions, which should
be performed by classes implementing finite elements.

According to element equations introduced in Section 3.2, the principal methods
of a finite element class include:

Element stiffness matrix [k] evaluation

[k] =
∫

V
[B]T[E][B]dV . (8.1)

Estimation of nodal equivalent {p} of a distributed surface load

{p} =
∫

S
[N]T{pS}dS. (8.2)
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Element thermal vector {h} evaluation

{h} =
∫

V
[B]T[E]{ε t}dV . (8.3)

Vector of nodal forces equivalent to stress distribution {peq}

{peq} =
∫

V
[B]T{σ}dV . (8.4)

When we implement a particular element type, the element class should contain
methods that realize the above functions and other element functions like calculation
of strains, extrapolation of stresses to nodes, etc.

8.2 Abstract Class Element

Our finite element code should be able to include any number of different element
types with the same functions. Because of this it is natural to introduce an abstract
class Element that contains data and methods common to all elements, and de-
clares abstract methods that are implemented in classes for particular elements.

8.2.1 Element Data

In the beginning of JavaTM class Element, static data common to all element ob-
jects and data specific to each Element object are placed.

1 package elem;
2

3 import model.*;
4 import material.*;
5 import fea.FE;
6 import util.UTIL;
7

8 // Finite element
9 public abstract class Element {

10

11 // Finite element model
12 public static FeModel fem;
13 // Finite element load
14 public static FeLoad load;
15 // Material of current element
16 static Material mat;
17 // Element stiffness matrix
18 public static double kmat[][] = new double[60][60];
19 // Element vector
20 public static double evec[] = new double[60];
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21 // Element nodal coordinates
22 static double xy[][] = new double[20][3];
23 // Element nodal temperatures
24 static double dtn[] = new double[20];
25 // Strain vector
26 static double dstrain[] = new double[6];
27

28 // Element name
29 public String name;
30 // Element material name
31 public String matName;
32 // Element connectivities
33 public int ind[];
34 // Stress-strain storage
35 public StressContainer[] str;

Static data includes references to the finite element model fem, to the load load,
and to the material for current element mat.

The following arrays are also declared as static:

kmat[60][60] – element stiffness matrix;

evec[60] – element working vector;

xy[20][3] – element nodal coordinates;

dtn[20] – element nodal temperatures;

dstrain[6] – strain vector.

We elected to declare arrays of constant size. It is assumed that the maximum num-
ber of nodes in an element is twenty, corresponding to a three-dimensional hexago-
nal quadratic element. Each coefficient of the element stiffness matrix is identified
by four indexes – two nodal indexes and two indexes corresponding to degrees of
freedom. Formally, the stiffness matrix is a four-dimensional array. However, in the
finite element method it is usually considered as a matrix, so we declare the element
stiffness matrix as a two-dimensional array. In order to have similar assembly algo-
rithms for the stiffness matrix and for element vectors, vector evec is declared as a
one-dimensional array. The array of nodal coordinates xy is two-dimensional since
it is not involved in assembly operations.

8.2.2 Element Constructor

The next part of Element class includes a description of element types and element
constructor.

37 // Implemented element types
38 static enum elements {
39 quad8 {Element create() {return new ElementQuad2D();}},
40 hex20 {Element create() {return new ElementQuad3D();}};
41

42 abstract Element create();
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43 }
44

45 // Construct new element
46 // name - element name
47 public static Element newElement(String name) {
48 elements el = null;
49 try {
50 el = elements.valueOf(name);
51 } catch (Exception e) {
52 UTIL.errorMsg("Incorrect element type: " + name);
53 }
54 return el.create();
55 }
56

57 // Constructor for an element.
58 // name - element name;
59 // nind - number of nodes;
60 // nstress - number of stress points
61 public Element(String name, int nind, int nstress) {
62 this.name = name;
63 ind = new int[nind];
64 if (FE.main != FE.JMGEN) {
65 str = new StressContainer[nstress];
66 for (int ip=0; ip<nstress; ip++)
67 str[ip] = new StressContainer(fem.nDim);
68 }
69 }

We use the Java enum type to store element types and element constructors (lines
38–43). Here, we placed two element types that we implement:

quad8 – two-dimensional quadrilateral quadratic element with eight nodes; its
constructor is ElementQuad2D;

hex20 – three-dimensional hexahedral quadratic element with twenty nodes
(constructor ElementQuad3D).

Each element record, besides element type, implements method create that calls
the corresponding element constructor. If we want to add new element in the finite
element processor then it is necessary to create a class for a new element and to add
its record in enum elements.

Method newElements (lines 47–55) serves as a constructor when we create
new element objects. It takes string name as a parameter, looks for a particular ele-
ment in enum elements, and calls the appropriate method create. The method
returns Element object.

In lines 61–69, a constructor of Element object is presented. The constructor
sets element name and allocates memory for element connectivities ind and for
stresses str. Memory for stresses is not allocated if Element object is used for
mesh generation. Line 64 checks if the main method is JMGEN and if so memory–
allocation statements are avoided. Stresses and equivalent plastic strains are placed
in objects of class StressContainer. The length of array str is equal to the
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number of reduced integration points where stresses have the highest accuracy. Con-
structor Element should be called by constructors of particular elements using the
super statement.

8.2.3 Methods of Particular Elements

If an element class of a specific type is created then the following element methods
should be implemented:

stiffnessMatrix – compute the element stiffness matrix and put it into
array kmat (Equation 8.1);

thermalVector – compute the element thermal vector due to nodal tempera-
tures dtn and put it into array evec (Equation 8.3);

equivFaceLoad – compute the element nodal equivalent of the distributed
face load and put it into array evec (Equation 8.2);

equivVector – compute the element nodal equivalent of element stress field
evec (Equation 8.4);

getElemFaces – return the two-dimensional integer array of local node num-
bers for element faces;

getStrainsAtIntPoint – return the double array of strains at requested
integration point;

extrapolateToNodes – return the two-dimensional double array of extrap-
olated values at nodes using values at reduced integration points.

The declaration of these methods is illustrated below.

71 // Compute element stiffness matrix kmat[][]
72 public void stiffnessMatrix() { }
73

74 // Compute element thermal vector (evec[])
75 public void thermalVector() { }
76

77 // Element nodal equivalent of distributed face load
78 // (evec[])
79 public int equivFaceLoad(ElemFaceLoad surLd) {
80 return -1;
81 }
82

83 // Nodal vector equivalent to stresses (evec[])
84 public void equivStressVector() { }
85

86 // Get local node numbers for element faces
87 // returns elementFaces[nFaces][nNodesOnFace]
88 public int[][] getElemFaces() {
89 return new int[][] {{0},{0}};
90 }
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91

92 // Get strains at integration point (stress)
93 // intPoint - integration point number (stress);
94 // returns strain vector [2*ndim]
95 public double[] getStrainsAtIntPoint(int intPoint) {
96 return new double[] {0,0};
97 }
98

99 // Get temperature at integration point (stress)
100 // intPoint - integration point number (stress);
101 // returns temperature
102 public double getTemperatureAtIntPoint(int intPoint) {
103 return 0.0;
104 }
105

106 // Extrapolate quantity from integration points to nodes
107 // fip [nInt][2*nDim] - values at integration points;
108 // fn [nind][2*nDim] - values at nodes (out)
109 public void extrapolateToNodes(double[][] fip,
110 double[][] fn) {
111 }

8.2.4 Methods Common to All Elements

Finally, class Element provides convenience methods common to all element
types, as shown below.

113 // Set element connectivities
114 // indel - connectivity numbers
115 // nind - number of element nodes
116 public void setElemConnectivities(int[] indel, int nind) {
117 System.arraycopy(indel, 0, ind, 0, nind);
118 }
119

120 // Set element connectivities
121 // indel - connectivity numbers
122 public void setElemConnectivities(int[] indel) {
123 System.arraycopy(indel, 0, ind, 0, indel.length);
124 }
125

126 // Set element material name
127 // mat - material name
128 public void setElemMaterial(String mat) {
129 matName = mat;
130 }
131

132 // Set element nodal coordinates xy[nind][nDim]
133 public void setElemXy() {
134 for (int i = 0; i < ind.length; i++) {
135 int indw = ind[i] - 1;
136 if (indw >= 0) {
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137 xy[i] = fem.getNodeCoords(indw);
138 }
139 }
140 }
141

142 // Set nodal coordinates xy[nind][nDim] and
143 // temperatures dtn[nind]
144 public void setElemXyT() {
145 for (int i = 0; i < ind.length; i++) {
146 int indw = ind[i] - 1;
147 if (indw >= 0) {
148 if (fem.thermalLoading)
149 dtn[i] = FeLoad.dtemp[indw];
150 xy[i] = fem.getNodeCoords(indw);
151 }
152 }
153 }
154

155 // Assemble element vector.
156 // elVector - element vector;
157 // glVector - global vector (in/out)
158 public void assembleElemVector(double[] elVector,
159 double[] glVector) {
160 for (int i = 0; i < ind.length; i++) {
161 int indw = ind[i] - 1;
162 if (indw >= 0) {
163 int adr = indw*fem.nDim;
164 for (int j = 0; j < fem.nDim; j++)
165 glVector[adr+j] += elVector[i*fem.nDim +j];
166 }
167 }
168 }
169

170 // Disassemble element vector (result in evec[]).
171 // glVector - global vector
172 public void disAssembleElemVector(double[] glVector) {
173 for (int i = 0; i < ind.length; i++) {
174 int indw = ind[i] - 1;
175 if (indw >= 0) {
176 int adr = indw*fem.nDim;
177 for (int j = 0; j < fem.nDim; j++)
178 evec[i*fem.nDim +j] = glVector[adr+j];
179 }
180 }
181 }
182

183 // Returns element connectivities
184 public int[] getElemConnectivities() {
185 int indE[] = new int[ind.length];
186 System.arraycopy(ind, 0, indE, 0, ind.length);
187 return indE;
188 }
189

190 // Accumulate stresses and equivalent plastic strain



90 8 Elements

191 public void accumulateStress() {
192 for (int ip=0; ip<str.length; ip++)
193 for (int i = 0; i < 2*fem.nDim; i++)
194 str[ip].sStress[i] += str[ip].dStress[i];
195 for (int ip=0; ip<str.length; ip++)
196 str[ip].sEpi += str[ip].dEpi;
197 }
198

199 }

Two methods, setElemConnectivities in lines 116–118 and 122–124,
help to set element connectivities. Method setElemMaterial sets the material
name for an element. Methods setElemXy (lines 133–140) and setElemXyT
(lines 144–153) provide means to set element nodal coordinates in the first method
and both coordinates and nodal temperatures in the second method. Note that if the
node index (connectivity number) is zero then coordinates and temperatures are not
set for this node. This opens up the possibility to create elements with a variable
number of nodes (midside nodes of higher-order elements can be present or not).

Method assembleElemVector (lines 158–168) assembles element vector
elVector into global vector glVector. Locations of element entries in global
vector are determined by element connectivities.

MethoddisAssembleElemVector shown in lines 172–181 disassembles el-
ement entries from the global vector into the element vector according to element
connectivities.

Method getElemConnectivities returns the connectivity numbers for this
finite element.

Accumulation of stresses and equivalent plastic strains are performed by the
method accumulateStress shown in lines 191–197. This method adds an in-
crement of stress vector to the accumulated stress vector and an increment of equiv-
alent plastic strain to its accumulated value.

8.2.5 Container for Stresses

In elastic–plastic problems, it is necessary to trace the history of stresses and equiv-
alent plastic strains. Both stresses and strains are expressed through derivatives of
displacements. Displacement derivatives have the highest accuracy at reduced inte-
gration points inside finite elements. Because of this it is natural to store stresses
and strains inside element objects. To simplify storage and retrieval procedures let
us introduce the special class StressContainer, shown below.

1 package elem;
2

3 // Stresses and equivalent strains at integration point
4 public class StressContainer {
5

6 // Accumulated stress
7 public double sStress[];
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8 // Stress increment
9 public double dStress[];

10 // Accumulated equivalent plastic strain
11 public double sEpi;
12 // Equivalent plastic strain increment
13 public double dEpi;
14

15 StressContainer(int nDim) {
16 sStress = new double[2*nDim];
17 dStress = new double[2*nDim];
18 }
19

20 }

The following data is contained in StressContainer:

sStress – vector of accumulated stress;

dStress – vector of stress increment;

sEpi – accumulated equivalent plastic strain;

dEpi – accumulated plastic strain increment.

Constructor of StressContainer allocates arrays for two stress vectors with
length 4 for two-dimensional problems and with length 6 for three-dimensional
problems.

8.3 Adding New Element Type

Adding new element types is one of the main ways to extend the finite element
program. To implement a new element type with name elname, number of nodes
nElNodes, and number of stress points nElStress, the following steps should
be performed.

1. In class Element, modify the enumerated description elements (lines 38–
43). Insert the following statement:

elname {Element create()
{return new ElClassName();}

}

Here, ElClassName is a class name for this element type.

2. Create new class ElClassName with the constructor

public ElClassName() {
super ("elname", nElNodes, nElStress);
// ...

}
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The first statement of the constructor should be a call to the superclass con-
structor with specification of element name, number of element nodes, and
number of points for storing of element stresses. In quadrilateral isoparamet-
ric elements, stresses are usually stored at reduced integration points since
they have the highest precision there.

3. Implement element methods described in Section 8.2.3:

stiffnessMatrix – element stiffness matrix;

thermalVector – element thermal vector;

equivFaceLoad – element nodal equivalent of distributed face load;

equivVector – element nodal equivalent of element stress field;

getElemFaces – local node numbers for element faces;

getStrainsAtIntPoint – strains at requested integration point;

extrapolateToNodes – extrapolated values at nodes using values at
reduced integration points.

A particular element can be implemented in several classes. A major element class
can construct other objects and use methods from other classes related to that ele-
ment.

Problems

8.1. Explain why class Element is declared abstract? What is the difference be-
tween an abstract class and an interface in Java language?

8.2. Suppose that a three-dimensional element has element connectivities

int[] ind = {21, 23, 17, 15};

Create an array containing all degrees of freedom for this element.

8.3. Analyze the algorithm of method disAssembleElemVector, which disas-
sembles a global vector into element vectors by selection within the global vector
according to element connectivities. For the following data

double[] glVector = {1, 2, 3, ... 100};
int[] ind = {21, 23, 17, 15};

and fem.nDim = 2, find contents of array evec as a result of calling the method.
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Numerical Integration

Abstract Different types of finite elements usually use numerical integration for
estimating element matrices and vectors. Gauss integration rules of different or-
der are considered for one-, two-, and three-dimensional integration domains. A
special 14-point integration rule is used for twenty-node hexagonal finite elements.
JavaTM class GaussRule implements different integration rules for two- and three-
dimensional elements.

9.1 Gauss Integration Rule

Integration of expressions for element stiffness matrices and load vectors can not
be performed analytically for the general case of finite elements. Instead, stiffness
matrices and load vectors are evaluated numerically using some integration rule.

In the finite element method, the Gauss integration rule is usually used because
of its high accuracy. It can be applied in cases when an integrated function can be
evaluated at arbitrary points inside the integration interval. Since there is no diffi-
culty in fulfilling such a requirement in the finite element algorithms, then the Gauss
rule is a suitable integration tool for element matrices and vectors.

Let us derive the Gauss rule for a simple case when two integration points are
used. A two-term formula will contain four parameters (the two abscissas and the
two weights) and should integrate precisely a polynomial of third degree. To de-
termine the four unknown parameters let us consider the integral on the standard
integration interval [−1,1]

I =
∫ 1

−1
f (ξ )dξ (9.1)

and write an integration formula using two points as

I = f (ξ1)w1 + f (ξ2)w2, (9.2)

where wk are weights and ξk are undetermined points.
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Our formula should be valid for any polynomial of degree 3. Hence, it will work
if f (ξ ) = 1, f (ξ ) = ξ , f (ξ ) = ξ 2 and f (ξ ) = ξ 3:

∫ 1

−1
dξ = 2 = w1 + w2,

∫ 1

−1
ξdξ = 0 = ξ1w1 + ξ2w2,

∫ 1

−1
ξ 2dξ =

2
3

= ξ 2
1 w1 + ξ 2

2 w2,

∫ 1

−1
ξ 3dξ = 0 = ξ 3

1 w1 + ξ 3
2 w2.

(9.3)

The limits of integration are symmetric about ξ = 0, so we require that points be
located symmetrically and set ξ2 = −ξ1. From the first and second equations above,
we get

w1 = w2 = 1. (9.4)

With these values, the fourth equation is automatically satisfied. The third equation
becomes

1
3

= ξ 2
1 ,

which yields

ξ1 =
1√
3

= 0.577350269. (9.5)

The integration formula derived above is the simplest member of the Gauss quadra-
ture rules.

In the general one-dimensional case, the Gauss quadrature rule is expressed as

I =
∫ 1

−1
f (ξ )dξ =

n

∑
i=1

f (ξi)wi, (9.6)

where n is the number of integration points, ξi are abscissas, and wi are the weights
of integration. Abscissas and weights of Gauss quadrature for n = 1,2,3 are given
in Table 9.1. Since the Gauss integration rule uses 2n constants (n abscissas and n
weights) it integrates exactly polynomials of order 2n−1.

The Gauss quadrature formula for the integral in the two-dimensional case is of
the form

I =
∫ 1

−1

∫ 1

−1
f (ξ ,η)dξdη =

n

∑
i=1

n

∑
j=1

f (ξi,η j)wiwj, (9.7)

where ξi, η j are abscissas and wi are the weighting coefficients of the Gauss inte-
gration rule.

Gauss integration in the three-dimensional case can be performed by applying
the one-dimensional formula thrice:
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Table 9.1 Abscissas and weights of Gauss quadrature

n ξi wi

1 0 2

2 −1/
√

3 1
1/
√

3 1

3 −√
3/5 5/9

0 8/9√
3/5 5/9

I =
∫ 1

−1

∫ 1

−1

∫ 1

−1
f (ξ ,η ,ζ )dξdηdζ

=
n

∑
i=1

n

∑
j=1

n

∑
k=1

f (ξi,η j,ζk)wiwjwk.

(9.8)

Here, ξi, η j, ζk are abscissas and wi are weights.
Instead of applying one-dimensional formulas twice or thrice for integration

over two- or three-dimensional domains, it is possible to derive special integration
rules of the Gauss type. One such rule, particularly useful for a three-dimensional
twenty-node hexagonal element, is the 14-point integration rule [14, 17] for three-
dimensional domains. Since points of this integration rule are not located on a rect-
angular grid then integration is performed inside a single loop:

I =
∫ 1

−1

∫ 1

−1

∫ 1

−1
f (ξ ,η ,ζ )dξdηdζ =

14

∑
i=1

f (ξi,ηi,ζi)wi, (9.9)

Abscissas and weights of 14-point integration rule are listed in Table 9.2, where
numerical constants have the following values:

a = 0.7587869106393281, b = 0.7958224257542215;
Wa = 0.3351800554016621, Wb = 0.8864265927977839.

9.2 Implementation of Numerical Integration

In our finite element program, which is designed to solve two- and three-dimensional
problems, we need to perform integration over one-, two- and three-dimensional do-
mains. Instead of integrating inside single, double, and triple loops, let us implement
any integration as a single-loop process similar to (9.9):



96 9 Numerical Integration

Table 9.2 Abscissas and weights of 14-point integration rule

i ξi ηi ζi Wi

1 −a −a −a Wa

2 a −a −a Wa

3 −a a −a Wa

4 −a −a a Wa

5 a a −a Wa

6 −a a a Wa

7 a −a a Wa

8 a a a Wa

9 −b 0 0 Wb
10 b 0 0 Wb
11 0 −b 0 Wb
12 0 b 0 Wb
13 0 0 −b Wb
14 0 0 b Wb

I =
N

∑
i=1

f (Pi)Wi. (9.10)

Here, I is an integral value over one-, two-, or three-dimensional domains, Pi are
integration points having a corresponding number of coordinates, and Wi are inte-
gration weights. Integration points for one-, two-, and three-dimensional cases are
represented as vectors of corresponding length:

P1D
i = ξi,

P2D
i = {ξi ηi},

P3D
i = {ξi ηi ζi}.

(9.11)

Abscissas and weights for numerical integration using (9.10) are created in
class GaussRule, which is a member of the package util. A listing of class
GaussRule is shown below.

1 package util;
2

3 // Gauss integration rule
4 public class GaussRule {
5

6 // Abscissas of the Gauss rule
7 public double[] xii, eti, zei;
8 // Integration weights
9 public double[] wi;

10 // Total namber of integration poins
11 public int nIntPoints;
12

13 // Abscissas and weights for 1, 2 and 3-point rules
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14 private static final double[][] X = {{0.0},
15 {-1.0/Math.sqrt(3.0), 1.0/Math.sqrt(3.0)},
16 {-Math.sqrt(0.6), 0.0, Math.sqrt(0.6)}};
17 private static final double[][] W = {{2.0},
18 {1.0, 1.0},
19 {5.0/9.0, 8.0/9.0, 5.0/9.0}};
20 // Abscissas and weights for 14-point rule (3D)
21 private static final double a = 0.7587869106393281,
22 b = 0.7958224257542215;
23 private static final double[] X14 =
24 {-a, a, -a, -a, a, -a, a, a, -b, b, 0, 0, 0, 0};
25 private static final double[] Y14 =
26 {-a, -a, a, -a, a, a, -a, a, 0, 0, -b, b, 0, 0};
27 private static final double[] Z14 =
28 {-a, -a, -a, a, -a, a, a, a, 0, 0, 0, 0, -b, b};
29 private static final double Wa = 0.3351800554016621,
30 Wb = 0.8864265927977839;
31

32 // Construct Gauss integration rule.
33 // nGauss - number of Gauss points in each direction
34 // (excluding 14-point rule),
35 // nDim - number of dimensions
36 public GaussRule(int nGauss, int nDim) {
37

38 if (!((nGauss>=1 && nGauss<=3) || nGauss==14))
39 UTIL.errorMsg("nGauss has forbidden value: "
40 + nGauss);
41 if (!(nDim>=1 && nDim<=3)) UTIL.errorMsg(
42 "GaussRule: nDim has forbidden value: "
43 + nDim);
44

45 if (nGauss == 14) nIntPoints = 14;
46 else {
47 nIntPoints = 1;
48 for (int i = 0; i < nDim; i++)
49 nIntPoints *= nGauss;
50 }
51

52 xii = new double[nIntPoints];
53 wi = new double[nIntPoints];
54 if (nDim > 1) eti = new double[nIntPoints];
55 if (nDim > 2) zei = new double[nIntPoints];
56

57 if (nGauss == 14) {
58 for (int i = 0; i < nGauss; i++) {
59 xii[i] = X14[i];
60 eti[i] = Y14[i];
61 zei[i] = Z14[i];
62 wi[i] = (i < 8) ? Wa : Wb;
63 }
64 }
65 else {
66 int ip = 0;
67 int n = nGauss - 1;
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68 switch (nDim) {
69 case 1:
70 for (int i = 0; i < nGauss; i++) {
71 xii[ip] = X[n][i];
72 wi[ip++] = W[n][i];
73 }
74 break;
75

76 case 2:
77 for (int i = 0; i < nGauss; i++) {
78 for (int j = 0; j < nGauss; j++) {
79 xii[ip] = X[n][i];
80 eti[ip] = X[n][j];
81 wi[ip++] = W[n][i]*W[n][j];
82 }
83 }
84 break;
85

86 case 3:
87 for (int i = 0; i < nGauss; i++) {
88 for (int j = 0; j < nGauss; j++) {
89 for (int k = 0; k < nGauss; k++) {
90 xii[ip] = X[n][i];
91 eti[ip] = X[n][j];
92 zei[ip] = X[n][k];
93 wi[ip++] =
94 W[n][i]*W[n][j]*W[n][k];
95 }
96 }
97 }
98 break;
99 }
100 }
101 }
102

103 }

Public members of the class declared in lines 7, 9, and 11 are set by a class
constructor and later are used for numerical integration. Arrays xii, eti, and zei
are integration abscissas ξi, ηi, and ζi and array wi contains integration weights Wi.
Scalar nIntPoints specifies the total number of integration points.

Lines 38–40 check that the number of Gauss points in each coordinate direction
is from 1 to 3 or it is the special 14-point rule for integration in the three-dimensional
case. Lines 41–43 confirm that the number of dimensions is one, two or three.

The total number of integration points is determined in lines 45–50. Abscissas
and weights for the requested Gauss integration rule are set in lines 57–100.

In order to perform numerical integration it is necessary to construct an integra-
tion rule object GaussRulewith specification of nGauss – number of integration
points in each dimension of the coordinate system (except the 14-point rule), and
nDim – number of dimensions. The 14-point integration rule is used only for the
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three-dimensional case nDim = 3. Integration is performed using the created ab-
scissas xii, eti and zei and weights wi inside the single integration loop.

The following snippet shows how to integrate function f (ξ ,η) over the two-
dimensional domain −1 ≤ ξ ,η ≤ 1 using a 3 by 3 integration rule.

GaussRule g = new GaussRule(3, 2);
double I = 0;
for (int ip = 0; ip < g.nIntPoints; ip++) {

I += f(g.xii[ip],g.eti[ip])*g.wi[ip];
}

It can be seen that using class GaussRulemakes numerical integration a relatively
simple task.

Problems

9.1. Consider analytical and numerical calculation of the following integral:

I =
∫ 1

−1
(x3 −2x2 + 3x−1)dx.

Calculate the integral value using Gauss rules with one, two, and three integration
points. Compare the integral values with each other and with the analytical value.

9.2. Compute the following integral

I =
∫ 1

0
sin(πξ )dξ

using the three-point Gauss rule. Compare the numerical result with the analytical
value.

9.3. Write a Java code fragment that performs numerical integration of the function

f (ξ ,η ,ζ ) = ξ 2 +η2 + ζ 2

over the three-dimensional domain −1 ≤ ξ ,η ,ζ ≤ 1 using the 2×2×2 Gauss rule.



Chapter 10
Two-dimensional Isoparametric Elements

Abstract The mathematical foundations of two-dimensional isoparametric finite el-
ements are considered. The concept of shape functions for interpolation of unknown
fields and for description of element shape is introduced. Use of a Jacobi matrix for
creation of a displacement differentiation matrix is explained. It is shown how to
compute element matrices and vectors using numerical integration. Extrapolation
of stress values from reduced integration points to element nodes is demonstrated.

10.1 Shape Functions

Isoparametric finite elements are based on the parametric definition of both coordi-
nate and displacement functions. The same shape functions are used for specifica-
tion of the element shape and for interpolation of the displacement field.

Linear and quadratic quadrilateral two-dimensional isoparametric finite elements
are presented in Figure 10.1. Shape functions Ni are defined in local coordinates
ξ , η (−1 ≤ ξ , η ≤ 1). Interpolations of displacements and coordinates are per-
formed in the following way:

1

3
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2

1 2 3

4

5
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7

8
1

1

-1

-1

(a) (b) (c)

� �
�

�
�

�

Fig. 10.1 Linear (a) and quadratic (b) quadrilateral finite elements. Both elements are mapped to
a square −1 ≤ ξ , η ≤ 1 in the local coordinate system (c)

101
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u =∑Niui, v =∑Nivi, (10.1)

x =∑Nixi, y =∑Niyi, (10.2)

where u, v are displacement components at the point with local coordinates (ξ ,η);
ui, vi are displacement values at the nodes of the finite element; x, y are point coor-
dinates and xi, yi are coordinates of element nodes. The matrix form of the relations
for displacement interpolations is as follows:

{u} = [N]{q},
{u} = {u v},
{q} = {u1 v1 u2 v2 ...},

(10.3)

where {u} is a displacement vector at a point inside an element, {q} is an element
displacement vector including displacements at all element nodes and the interpola-
tion matrix (matrix of shape functions) is:

[N] =
[

N1 0 N2 0 ...
0 N1 0 N2 ...

]
. (10.4)

Interpolation of coordinates {x} from their nodal values {xe} is performed in a
similar way:

{x} = [N]{xe},
{x} = {x y},
{xe} = {x1 y1 x2 y2 ...}.

(10.5)

It appears that the element shape is determined with the help of interpolation func-
tions Ni. This explains why interpolation functions are called shape functions in the
finite element method.

Shape functions for the linear two-dimensional isoparametric elements with four
nodes are given by

Ni =
1
4
(1 + ξ0)(1 +η0). (10.6)

In the above relations the following notation is used: ξ0 = ξξi , η0 = ηηi, where ξi,
ηi are the values of local coordinates ξ , η at nodes. The shape function for node 1
is shown in Figure 10.2 as a three-dimensional surface over the element plane.

Shape functions for the quadratic isoparametric element with eight nodes have
the following appearance:
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1

N1

Fig. 10.2 Shape function for a linear finite element

1 1

N1 N2

(a) (b)

Fig. 10.3 Shape functions of a corner node N1 (a) and of a midside node N2 (b) for a quadratic
finite element

Ni =
1
4
(1 + ξ0)(1 +η0)− 1

4
(1− ξ 2)(1 +η0)

− 1
4
(1 + ξ0)(1−η2), i = 1, 3, 5, 7,

Ni =
1
2
(1− ξ 2)(1 +η0) , i = 2, 6,

Ni =
1
2
(1 + ξ0)(1−η2) , i = 4, 8.

(10.7)

As previously, we denote ξ0 = ξξi, η0 = ηηi and ξi, ηi are nodal values of local co-
ordinates ξ , η . Examples of shape functions for a corner node N1 and for a midside
node N2 are depicted in Figure 10.3.

It can be seen that shape functions for corner nodes of the quadratic element
are combinations of shape functions for the linear element and shape functions for
midside nodes of the quadratic element. This allows construction of isoparametric
elements with a variable number of nodes changing from four to eight.

Shape functions of such elements are computed as follows. Shape functions for
midside nodes are equal to:

Ni =
1
2

(
1− ξ 2)(1 +η0)ki , ξi = 0,

Ni =
1
2

(1 + ξ0)
(
1−η2)ki , ηi = 0,

(10.8)

where ki = 1 if the ith midside node is present, otherwise ki = 0. Shape functions
for corner nodes are expressed by the relations:
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1

N1

Fig. 10.4 Corner shape function for an element with a missing midside node

Ni =
1
4

(1 + ξ0)(1 +η0)− 1
2

(Ni−1 + Ni+1) . (10.9)

Here, Ni−1 and Ni+1 are the shape functions of neighboring midside nodes. An ex-
ample of a corner shape function for an element with a missing midside node is
shown in Figure 10.4

A useful possibility for creation of finite element meshes is element degenera-
tion. Placement of nodes belonging to one element side to the same position and
assignment to them of the same connectivity number transforms a quadrilateral ele-
ment into a triangular one. A linear quadrilateral element degenerated into a triangle
(Figure 10.5a) has the same shape functions as a normal element.

However, degeneration of the quadratic quadrilateral element shown in Fig-
ure 10.5b requires modifying three shape functions for nodes located at a side op-
posite to the degenerated side. In the case of degeneration with coincident nodes 1,
2 and 3 the shape functions N5, N6 and N7 should be modified in the following way
[32]:

N
′
5 = N5 +Δ ,

N
′
6 = N6 −2Δ ,

N
′
7 = N7 +Δ ,

Δ =
1
8

(
1− ξ 2)(1−η2) .

(10.10)

10.2 Strain–Displacement Matrix

The displacement differentiation matrix [B(ξ ,η)] () is used to compute strains {ε}
at any point inside the element using a vector of nodal displacements {q}:

{ε} = [B]{q}. (10.11)

Matrix [B] can be presented in a block form
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Fig. 10.5 Degenerated linear (a) and quadratic (b) elements. Nodes 1 and 2 in a linear element and
nodes 1, 2 and 3 in a quadratic element have the same position and connectivity number
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Fig. 10.6 Cartesian (a) and axisymmetric (b) coordinate systems

[B] = [B1 B2 ...]. (10.12)

Each block corresponds to displacements of one node. For plane problems in x, y, z
coordinates shown in Figure 10.6a the strain vector contains three components:

{ε} = {εx εy γxy} =
{
∂u
∂x

∂v
∂y

∂v
∂x

+
∂u
∂y

}
. (10.13)

A block of the strain–displacement matrix that corresponds to the ith node has the
appearance:

[Bi] =

⎡
⎢⎢⎢⎢⎢⎣

∂Ni

∂x
0

0
∂Ni

∂y
∂Ni

∂y
∂Ni

∂x

⎤
⎥⎥⎥⎥⎥⎦
. (10.14)

It is possible also to include in our considerations axisymmetric problems since
such problems can be treated as two-dimensional. Using coordinates r (radial), z
(along the axis of symmetry) and θ (angular) depicted in Figure 10.6b the strain
vector can be presented as:
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{ε} = {εr εz γrz εθ} =
{
∂u
∂ r

∂w
∂ z

∂w
∂ r

+
∂u
∂ z

u
r

}
. (10.15)

The strain–displacement matrix block for axisymmetric problems is as follows:

[Bi] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Ni

∂ r
0

0
∂Ni

∂ z
∂Ni

∂ z
∂Ni

∂ r

0
Ni

r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10.16)

In order to unify notation for JavaTM code development it is possible to use coordi-
nate axes x, y and z instead of r, z and θ , as shown in Figure 10.6b.

While shape functions are expressed through local coordinates ξ , η , the strain–
displacement matrix contains derivatives with respect to the global coordinates x
and y. Derivatives can be transformed from one coordinate system to the other by
means of the chain rule of partial differentiation:

⎧⎪⎨
⎪⎩

∂Ni

∂ξ
∂Ni

∂η

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

∂Ni

∂x
∂Ni

∂y

⎫⎪⎬
⎪⎭ = [J]

⎧⎪⎨
⎪⎩

∂Ni

∂x
∂Ni

∂y

⎫⎪⎬
⎪⎭, (10.17)

where [J] is the Jacobian matrix. The derivatives with respect to the global coordi-
nates are computed with the use of the inverse of the Jacobian matrix:

⎧⎪⎨
⎪⎩

∂Ni

∂x
∂Ni

∂y

⎫⎪⎬
⎪⎭ = [J]−1

⎧⎪⎨
⎪⎩

∂Ni

∂ξ
∂Ni

∂η

⎫⎪⎬
⎪⎭. (10.18)

The components of the Jacobian matrix are calculated using derivatives of shape
functions Ni with respect to the local coordinates ξ , η and global coordinates of
element nodes xi, yi:

∂x
∂ξ

=∑∂Ni

∂ξ
xi ,

∂x
∂η

=∑ ∂Ni

∂η
xi,

∂y
∂ξ

=∑∂Ni

∂ξ
yi ,

∂y
∂η

=∑ ∂Ni

∂η
yi.

(10.19)

The determinant of the Jacobian matrix |J| is used for the transformation of integrals
from the global coordinate system to the local coordinate system. Assuming unit
thickness in plane problems, it is possible to represent an elementary volume as:
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dV = dxdy = |J|dξdη . (10.20)

For axisymmetric problems an elementary volume includes the length of a circle
with a current radius:

dV = 2πrdrdz = 2πr|J|dξdη . (10.21)

10.3 Element Properties

Element matrices and vectors are calculated as follows:

stiffness matrix

[k] =
∫ 1

−1

∫ 1

−1
[B]T[E][B]t |J|dξdη, (10.22)

thermal vector (fictitious forces to simulate thermal expansion)

{h} =
∫ 1

−1

∫ 1

−1
[B]T[E]{ε t}t |J|dξdη (10.23)

force vector (surface load)

{p} =
∫ 1

−1
[N]T{pS}t

ds
dξ

dξ , (10.24)

equivalent stress vector (with negative sign)

{pσ} = −
∫ 1

−1

∫ 1

−1
[B]T{σ}t |J|dξdη . (10.25)

The elasticity matrix [E] is given by (7.9). A “thickness” t for the current position is
introduced in all integrals:

t =

{
1 for plane problems,

2πr for axisymmetric problems.
(10.26)

Integration of expressions for stiffness matrices and load vectors can not be per-
formed analytically for the general case of isoparametric elements. Instead, stiffness
matrices and load vectors are evaluated numerically using Gauss quadrature over
quadrilateral regions. The Gauss quadrature formula for the volume integral in the
two-dimensional case is of the form:

I =
∫ 1

−1

∫ 1

−1
f (ξ ,η)dξdη =

n
∑

i=1

n
∑
j=1

f (ξi,η j)wiwj

=
N
∑

k=1
f (ξk,ηk)Wk,

(10.27)
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Fig. 10.7 Distributed normal load on a side of a quadratic element

where ξi, η j are abscissas, wi are weighting coefficients of the one-dimensional
Gauss integration rule, N = n× n and Wk are products of pairs of one-dimensional
integration weights.

10.4 Nodal Equivalent of the Surface Load

To compute the nodal equivalent of the surface load, the surface integral is replaced
by the line integration along an element side. The fraction of the surface load is
evaluated as:

{p} =
∫ 1

−1
[N]T

{
ps

x
ps

y

}
t

ds
dξ

dξ , (10.28)

ds
dξ

=

√(
dx
dξ

)2

+
(

dy
dξ

)2

. (10.29)

Here, s is a global coordinate along the element side and ξ is a local coordinate
along the element side.

If the distributed load with intensity p is applied along the normal to the element
side as shown in Figure 10.7 then its components along global coordinate axes are;

ps
x = p

dy
ds

, ps
y = −p

dx
ds

(10.30)

and the nodal equivalent of such a load is:

{p} =
∫

S

[N]T p

⎧⎪⎨
⎪⎩

dy
ds

−dx
ds

⎫⎪⎬
⎪⎭t

ds
dξ

dξ =
1∫

−1

[N]T p

⎧⎪⎨
⎪⎩

dy
dξ

− dx
dξ

⎫⎪⎬
⎪⎭tdξ . (10.31)
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10.5 Example: Computing Nodal Equivalents of a Distributed
Load

Calculate the nodal equivalents of a distributed load with constant intensity applied
to the edge of a two-dimensional quadratic element depicted in Figure 10.8.

1 2 3

�1 0 1

p = 1

xl=1

�

Fig. 10.8 Distributed load on an edge of a quadratic element

Solution

The nodal equivalent of the distributed load is calculated as:

{p} =
∫ 1

−1
[N]T p

dx
dξ

dξ

or

{p} =

⎧⎨
⎩

p1

p2

p3

⎫⎬
⎭ =

∫ 1

−1

⎧⎨
⎩

N1

N2

N3

⎫⎬
⎭p

dx
dξ

dξ ,
dx
dξ

=
1
2
.

The shape functions for the edge of a quadratic element are:

N1 = −1
2
ξ (1− ξ ), N2 = 1− ξ 2, N3 =

1
2
ξ (1 + ξ ).

The values of nodal forces at nodes 1, 2 and 3 are defined by integration:

p1 = −
∫ 1

−1

1
2
ξ (1− ξ )

1
2

dξ =
1
6
,

p2 =
∫ 1

−1
(1− ξ 2)

1
2

dξ =
2
3
,

p3 =
∫ 1

−1

1
2
ξ (1 + ξ )

1
2

dξ =
1
6
.

The example shows that a physical approach with proportional load distribution
cannot be used for the estimation of nodal equivalents of a surface load. It works for
linear elements. However, it does not work for higher-order elements because they
have nonlinear shape functions.
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10.6 Calculation of Strains and Stresses

Strains at any point of an element are determined using the Cauchy relations (10.13)
with the use of the displacement differentiation matrix (10.14) for plane problems
or (10.16) for axisymmetric problems. Stresses are calculated with Hooke’s law.

The precision of strains and stresses is significantly dependent on the point loca-
tion where they are computed. The highest precision for displacement gradients is
at the geometric center for the linear element and at reduced integration points 2×2
for the quadratic quadrilateral element.

For quadratic elements with eight nodes, strains and stresses have the best pre-
cision at 2×2 integration points with local coordinates ξ , η = ±1/

√
3. A possible

way to create a continuous stress field with reasonable accuracy consists of: 1) ex-
trapolation of stresses from reduced integration points to nodes; 2) averaging contri-
butions from finite elements at all nodes of the finite element model. Later, stresses
can be interpolated from nodes using quadratic shape functions.

1 2

34

( )3(1)

( )2 ( )4
�

�

Fig. 10.9 Numbering of integration points and vertices for the eight-node isoparametric element

Let us consider a quadratic element in the local coordinate system ξ , η as shown
in Figure 10.9 where integration points are numbered as (1)–(4). The order of inte-
gration points is determined by class GaussRule presented in Chapter 9. Corner
nodes are numbered 1–4 in anticlockwise order.

Let us first interpolate values at corner nodes 1–4 to the reduced integration
points (1)–(4) using linear shape functions NL

i (ξ ,η):

{ f(m)} =
[
NL

i(m)

]
{ fi}, (10.32)

where { f(m)} is the vector of values at integration points,
[
NL

i(m)

]
is the matrix of

values of shape functions at integration points, and { fi} is the vector of nodal values.
After finding the inverse of the interpolation matrix

[
Li(m)

]
=

[
NL

i(m)

]−1
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the extrapolation relation can be presented as follows:

{ fi} =
[
Li(m)

]{ f(m)}, (10.33)

[
Li(m)

]
=

⎡
⎢⎢⎣

A B B C
B C A B
C B B A
B A C B

⎤
⎥⎥⎦,

A = 1 +
√

3
2

,

B = −1
2
,

C = 1−
√

3
2

.

(10.34)

The above relation extrapolates known values at integration points f(m) to element
corners giving values fi at nodes 1–4.

Problems

10.1. Using Equation 10.6 write down explicit expressions for the shape functions
of the linear quadrilateral element.

10.2. Write expressions for shape functions N2 and N3 of the quadratic element. Use
the general relations (10.7).

10.3. Evaluate the Jacobian matrix [J] and its determinant |J| for the four-node ele-
ment shown below.

1

2

10 2

y

x

�
�

Use relations (10.19) for computing elements of the Jacobian matrix. Estimate
the same partial derivatives by the ratios of coordinate increments (for example,
∂x/∂ξ = Δx/Δξ ) and compare the results.

10.4. Estimate the nodal equivalents of a distributed load with linearly varying in-
tensity applied to the edge of the two-dimensional quadratic element below.
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10.5. The result values at four reduced integration points of the quadratic element
shown in Figure 10.9 are

{ f(m)} = {0.0 1.0 2.0 3.0}.

Find the result values at the corner nodes of the element using extrapolation (10.33).

10.6. Determine the Jacobian matrix [J] for the following four-node finite element.
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y
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The element has a square shape with unit edge length and is inclined at 45◦ angle.



Chapter 11
Implementation of Two-dimensional Quadratic
Element

Abstract Two-dimensional isoparametric quadratic elements have quadrilateral
shape and eight nodes. Implementation of this element type is done through de-
velopment of two classes. Class ShapeQuad2D provides means for calculating the
shape functions and derivatives of shape functions for elements with the number
of nodes from 4 to 8. Class ElementQuad2D contains methods for calculating
the element stiffness matrix, displacement differentiation matrix, thermal vector,
distributed load vector, and equivalent stress vector. Extrapolation of stresses from
reduced integration points to element nodes is also performed.

11.1 Class for Shape Functions and Their Derivatives

JavaTM class ShapeQuad2D is included in package elem. It provides the means
for calculating shape functions for two-dimensional quadratic isoparametric ele-
ments with four to eight nodes. Element nodes are numbered in an anticlockwise
direction starting from any corner node. The local numbers of nodes are shown in
Figure 11.1.
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7

�

�

Fig. 11.1 Local numbering of nodes for the quadratic isoparametric element

113
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Corner nodes should always be present in an element. Intermediate midside
nodes can be absent in any order. Absence of a midside node is coded by a zero
connectivity number.

11.1.1 Element Degeneration

A quadrilateral element can have a triangular shape. Such an element is created by
degeneration of a side into a point. If a linear element with four nodes becomes
degenerate then two neighboring corner nodes have the same connectivity numbers
and the shape functions need no change. For a degenerate quadratic element three
connectivity numbers belonging to one side should have the same connectivity num-
bers. Shape functions of the degenerate element have to be modified.

Below is the first fragment of the class ShapeQuad2D containing the method
responsible for discovering degenerate quadratic elements.

1 package elem;
2

3 import util.UTIL;
4

5 // Quadratic 2D shape functions and their derivatives
6 public class ShapeQuad2D {
7

8 // Degeneration check.
9 // If element is triangular then the method returns

10 // a local number (starting from 0) of the midside node
11 // opposite to degenerated side.
12 // ind - connectivity numbers
13 static int degeneration(int[] ind) {
14 int deg = 0;
15 for (int i = 0; i < 7; i += 2) {
16 if (ind[i] == ind[i + 1]) {
17 deg = (i + 5) % 8;
18 break;
19 }
20 }
21 return deg;
22 }

Method degeneration checks if a corner connectivity number is equal to the
next midside node. If so, then the method returns the local number of a midside
node opposite to the degenerated side.
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11.1.2 Shape Functions

Method shape computes element shape functions an for specified local coordi-
nates xi (ξ ) and et (η). Connectivity numbers ind are used as information on the
existence of midside nodes.

24 // Shape functions.
25 // xi, et - local coordinates;
26 // ind[8] - element connectivities;
27 // an[8] - shape functions (out)
28 static void shape(double xi, double et, int[] ind,
29 double[] an) {
30

31 // Shape functions of midside nodes
32 an[1] = an[3] = an[5] = an[7] = 0;
33 if (ind[1] > 0) an[1] = 0.5*(1 - xi*xi)*(1 - et);
34 if (ind[3] > 0) an[3] = 0.5*(1 - et*et)*(1 + xi);
35 if (ind[5] > 0) an[5] = 0.5*(1 - xi*xi)*(1 + et);
36 if (ind[7] > 0) an[7] = 0.5*(1 - et*et)*(1 - xi);
37

38 // Shape functions of corner nodes
39 an[0] = 0.25*(1 - xi)*(1 - et) - 0.5*(an[7] + an[1]);
40 an[2] = 0.25*(1 + xi)*(1 - et) - 0.5*(an[1] + an[3]);
41 an[4] = 0.25*(1 + xi)*(1 + et) - 0.5*(an[3] + an[5]);
42 an[6] = 0.25*(1 - xi)*(1 + et) - 0.5*(an[5] + an[7]);
43

44 // Modification of functions due to degeneration
45 int deg = degeneration(ind);
46 if (deg > 0 && ind[1] > 0 && ind[3] > 0 &&
47 ind[5] > 0 && ind[7] > 0) {
48 double delta = 0.125*(1 - xi*xi)*(1 - et*et);
49 an[deg - 1] += delta;
50 an[deg] -= 2.*delta;
51 an[(deg + 1)%8] += delta;
52 }
53 }

Shape functions of midside nodes are calculated in lines 32–36. If the corre-
sponding connectivity number is nonzero (positive) then shape function an[i],
i = 1, 3, 5, 7 is set according to its expression for the quadratic element,
otherwise it remains zero. Shape functions of corner nodes are computed in lines
39–42 as combinations of linear shape functions and quadratic shape functions of
the neighboring midside nodes. Modifications of three shape functions for a trian-
gular degenerate element are done in lines 45–52.
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11.1.3 Derivatives of Shape Functions

Derivatives of shape functions with respect to global coordinates dnxy are given by
method deriv. The method parameters are: xi, et – local coordinates ξ and η ,
ind – element connectivities, xy – array of nodal coordinates.

55 // Derivatives of shape functions
56 // with respect to global coordinates x and y.
57 // xi, et - local coordinates;
58 // ind[8] - element connectivities;
59 // xy[8][2] - nodal coordinates;
60 // dnxy[8][2] - derivatives of shape functions (out);
61 // returns determinant of the Jacobian matrrix
62 static double deriv(double xi, double et, int[] ind,
63 double[][] xy, double[][] dnxy) {
64 // Derivatives in local coords dN/dXi, dN/dEta
65 // Midside nodes
66 double[][] dnxe = new double[8][2];
67 dnxe[1][0] = dnxe[1][1] = dnxe[3][0] = dnxe[3][1] =
68 dnxe[5][0] = dnxe[5][1] = dnxe[7][0] = dnxe[7][1] = 0;
69 if (ind[1] > 0) {
70 dnxe[1][0] = -xi*(1-et);
71 dnxe[1][1] = -0.5*(1-xi*xi);
72 }
73 if (ind[3] > 0) {
74 dnxe[3][0] = 0.5*(1-et*et);
75 dnxe[3][1] = -et*(1+xi);
76 }
77 if (ind[5] > 0) {
78 dnxe[5][0] = -xi*(1+et);
79 dnxe[5][1] = 0.5*(1-xi*xi);
80 }
81 if (ind[7] > 0) {
82 dnxe[7][0] = -0.5*(1-et*et);
83 dnxe[7][1] = -et*(1-xi);
84 }
85 // Corner nodes
86 dnxe[0][0] = -0.25*(1-et)-0.5*(dnxe[7][0]+dnxe[1][0]);
87 dnxe[0][1] = -0.25*(1-xi)-0.5*(dnxe[7][1]+dnxe[1][1]);
88 dnxe[2][0] = 0.25*(1-et)-0.5*(dnxe[1][0]+dnxe[3][0]);
89 dnxe[2][1] = -0.25*(1+xi)-0.5*(dnxe[1][1]+dnxe[3][1]);
90 dnxe[4][0] = 0.25*(1+et)-0.5*(dnxe[3][0]+dnxe[5][0]);
91 dnxe[4][1] = 0.25*(1+xi)-0.5*(dnxe[3][1]+dnxe[5][1]);
92 dnxe[6][0] = -0.25*(1+et)-0.5*(dnxe[5][0]+dnxe[7][0]);
93 dnxe[6][1] = 0.25*(1-xi)-0.5*(dnxe[5][1]+dnxe[7][1]);
94

95 // Modification of derivatives due to degeneration
96 int deg = degeneration(ind);
97 if (deg > 0 && ind[1] > 0 && ind[3] > 0 &&
98 ind[5] > 0 && ind[7] > 0) {
99 double z = -0.25*xi*(1-et*et);
100 double t = -0.25*(1-xi*xi)*et;
101 int j = (deg + 1)%8;
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102 dnxe[deg - 1][0] = dnxe[deg - 1][0] + z;
103 dnxe[deg - 1][1] = dnxe[deg - 1][1] + t;
104 dnxe[deg][0] = dnxe[deg][0] - 2*z;
105 dnxe[deg][1] = dnxe[deg][1] - 2*t;
106 dnxe[j][0] = dnxe[j][0] + z;
107 dnxe[j][1] = dnxe[j][1] + t;
108 }
109

110 // Jacobian matrix
111 double[][] aj = new double[2][2];
112 for (int j = 0; j < 2; j++) {
113 for (int i = 0; i < 2; i++) {
114 aj[i][j] = 0.0;
115 for (int k = 0; k < 8; k++)
116 aj[i][j] += dnxe[k][j]*xy[k][i];
117 }
118 }
119 double det = aj[0][0]*aj[1][1] - aj[0][1]*aj[1][0];
120 // Zero or negative determinant
121 if (det<=0) UTIL.errorMsg("Negative/zero Jacobian "+
122 "determinant for 8N element "+(float)det);
123 // Jacobian inverse
124 double aj00 = aj[1][1]/det;
125 aj[1][1] = aj[0][0]/det;
126 aj[0][0] = aj00;
127 aj[1][0] = -aj[1][0]/det;
128 aj[0][1] = -aj[0][1]/det;
129

130 // Derivatives in global coordinates dN/dx, dN/dy
131 for (int k = 0; k < 8; k++)
132 for (int i = 0; i < 2; i++)
133 dnxy[k][i] = aj[0][i]*dnxe[k][0]
134 + aj[1][i]*dnxe[k][1];
135 return det;
136 }

The statements in lines 66–93 evaluate derivatives of shape functions with re-
spect to the local coordinates. Analogously to evaluation of shape functions, we
start with computation of derivatives for midside nodes. A shape function derivative
is nonzero if a midside node exists. Then the derivatives for corner nodes are calcu-
lated using the derivatives of neighboring midside nodes. For a degenerate element,
the derivatives of three nodes are modified.

Calculation of the Jacobian matrix aj according to Equation 10.19 is done in
lines 111–118. If the Jacobian determinant is not positive, which means an error
in the element data, the error message is generated in lines 121–122. The Jacobian
matrix inverse is performed in lines 124–128. Derivatives of shape functions with
respect to global coordinates x, y are obtained by multiplication of the Jacobian
matrix and derivatives with respect to local coordinates ξ , η (lines 131–134). The
method returns a determinant of the Jacobian matrix. This is done in line 135 for the
normal method completion.
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11.1.4 One-dimensional Shape Functions and Their Derivatives

One-dimensional shape functions and derivatives of shape functions with respect to
local coordinates are necessary for estimation of the nodal equivalent of a surface
load on the element edge (face) of the quadratic element according to Equation
10.28. Method shapeDerivFace calculates three shape functions an and their
derivatives dndxi with respect to the local coordinate ξ . Other method parameters
are: xi – local coordinate ξ along the side and parameter kmid – connectivity
number of a midside node at this edge (zero connectivity number means absence of
the midside node).

138 // One-dimensional quadratic shape functions and
139 // their derivatives in local coordinates
140 // xi - local coordinate;
141 // kmid - index of midside node (=0 no midside node);
142 // an[3] - shape functions (out);
143 // dndxi[3] - derivatives of shape functions (out)
144 public static void shapeDerivFace(double xi, int kmid,
145 double[] an, double[] dndxi) {
146 double x1 = 1 - xi;
147 double x2 = 1 + xi;
148 if (kmid > 0) {
149 an[1] = x1*x2;
150 dndxi[1] = -2*xi;
151 }
152 an[0] = 0.5*x1 - 0.5*an[1];
153 an[2] = 0.5*x2 - 0.5*an[1];
154 dndxi[0] = -0.5 - 0.5*dndxi[1];
155 dndxi[2] = 0.5 - 0.5*dndxi[1];
156 }
157

158 }

11.2 Class for Eight-node Element

Class ElementQuad2D extends class Element and implements methods for
computing element matrices and vectors. Below are given the class fields and the
class constructor.

1 package elem;
2

3 import model.*;
4 import material.*;
5 import util.*;
6

7 // 2D quadratic isoparametric element (4-8 nodes)
8 class ElementQuad2D extends Element {
9 // Element edges (local numbers)

10 private static int[][] faceInd =
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11 {{0,1,2},{2,3,4},{4,5,6},{6,7,0}};
12 // Shape functions
13 private static double[] an = new double[8];
14 // Derivatives of shape functions
15 private static double[][] dnxy = new double[8][2];
16 // Displacements differentiation matrix
17 private static double[][] bmat = new double[4][16];
18 // Elasticity matrix
19 private static double[][] emat = new double[4][4];
20 // Thermal strains
21 private static double[] ept = new double[4];
22 // Radius in the axisymmetric problem
23 private static double r;
24 // Gauss rules for stiffness matrix, thermal vector,
25 // surface load and stress integration
26 private static GaussRule gk = new GaussRule(3,2);
27 private static GaussRule gh = new GaussRule(3,2);
28 private static GaussRule gf = new GaussRule(3,1);
29 private static GaussRule gs = new GaussRule(2,2);
30

31 // Constructor for 2D quadratic element
32 public ElementQuad2D() {
33 super ("quad8", 8, 4);
34 }

Lines 10–11 contain specification of element sides (faces). Local node number-
ing from 0 to 7 is used. In lines 13, 15, 17, 19 and 21 the following arrays are
declared:

an – shape functions;

dnxy – derivatives of shape functions with respect to global coordinates x, y
(first index is related to node number, second index to x and y);

bmat – displacement differentiation matrix, emat – elasticity matrix,

ept – vector of thermal strains.

Lines 26–29 create GaussRule objects for integration of the element stiffness
matrix, thermal vector, surface load, and equivalent stress vector.

Constructor ElementQuad2D calls the constructor of parent class Element
and passes to it the element name quad8, the number of element nodes (8) and the
number of points for storing stresses and strains.

11.2.1 Stiffness Matrix

Computation of the element stiffness matrix according to Equation 10.22 is per-
formed by method stiffnessMatrix. The pseudocode given below illustrates
integration of the element stiffness matrix with the use of the Gauss rule.

Clean stiffness matrix [k] = 0
Check if element is degenerate
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Set elasticity matrix [E]
do loop over integration points i

Set displacement differentiation matrix [B] at ξi, ηi

Numerical integration [k] = [k]+ [B]T [E][B]dV ·Wi

end do

Here, Wi is the combined integration weight for current integration point. Imple-
mentation of the stiffness matrix computation is as follows.

36 // Compute stiffness matrix
37 public void stiffnessMatrix() {
38

39 // Zeros to stiffness matrix kmat
40 for (int i = 0; i < 16; i++)
41 for (int j = 0; j < 16; j++)
42 kmat[i][j] = 0;
43

44 // ld = length of strain/stress vector (3 or 4)
45 int ld = (FeModel.stressState
46 == FeModel.StrStates.axisym ) ? 4 : 3;
47 // Material mat
48 mat = (Material)fem.materials.get(matName);
49 if (mat == null) UTIL.errorMsg(
50 "Element material name: " + matName);
51 mat.elasticityMatrix(emat);
52

53 // Gauss integration loop
54 for (int ip = 0; ip < gk.nIntPoints; ip++) {
55 // Set displacement differentiation matrix bmat
56 double det = setBmatrix(gk.xii[ip], gk.eti[ip]);
57 double dv = det*gk.wi[ip];
58 if (FeModel.stressState==FeModel.StrStates.axisym)
59 dv *= 2*Math.PI*r;
60 // Upper symmetrical part of the stiffness matrix
61 for (int i = 0; i < 16; i++) {
62 for (int j = i; j < 16; j++) {
63 double s = 0;
64 for (int k = 0; k < ld; k++) {
65 for (int l = 0; l < ld; l++) {
66 s +=
67 bmat[l][i]*emat[l][k]*bmat[k][j];
68 }
69 }
70 kmat[i][j] += s*dv;
71 }
72 }
73 }
74 }

The stiffness matrix kmat is set to zero in lines 40–42. Integer variable ld (line
45) represents a length of the strain or stress vector. For plane problems ld is equal
to 3. In axisymmetric problems strain and stress vectors have size 4.
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In line 48 Material object mat is extracted from the hash table materials
using the material name. The elasticity matrix emat is set in line 49.

Numerical integration of the element stiffness matrix is performed in a loop with
a parameter ip denoting integration point number (lines 54–73). Integration is per-
formed inside a single loop since the constructor of class GaussRule always pro-
duces abscissas and weights, which are placed in one-dimensional arrays. In the case
of the stiffness matrix we use the integration rule object gk that contains abscissas
xii and eti, weights wi and the number of integration points nIntPoints. In
line 56 method setBmatrix sets the displacement differentiation matrix bmat
and returns a determinant of the Jacobian matrix det. Variable dv includes an in-
tegration weight and a circle length in the case of the axisymmetric problem.

Note that the loop parameter j (line 62) starts from i, which is a parameter of the
outer loop. In doing this we compute just the upper symmetric part of the stiffness
matrix thus economizing computations. An incomplete stiffness matrix structure
should be taken into account during assembly of the global stiffness matrix from
element contributions. Integration of stiffness matrix coefficients is performed by
summation of a triple product in line 70.

11.2.2 Displacement Differentiation Matrix

Method setBmatrix performs computation of a displacement differentiation ma-
trix bmat for specified local coordinates xi and et and returns the determinant of
the Jacobian matrix.

76 // Set displacement differentiation matrix bmat.
77 // xi, et - local coordinates,
78 // returns determinant of Jacobian matrix
79 private double setBmatrix(double xi, double et) {
80

81 // Derivatives of shape functions
82 double det = ShapeQuad2D.deriv(xi, et, ind, xy, dnxy);
83 if (det <= 0) UTIL.errorMsg(
84 "Negative/zero 8N element area");
85 if (FeModel.stressState == FeModel.StrStates.axisym) {
86 ShapeQuad2D.shape(xi, et, ind, an);
87 r = 0;
88 for (int i = 0; i < 8; i++) r += an[i] * xy[i][0];
89 }
90 // Eight blocks of the displacement differentiation
91 // matrix
92 for (int ib = 0; ib < 8; ib++) {
93 bmat[0][2*ib] = dnxy[ib][0];
94 bmat[0][2*ib+1] = 0.;
95 bmat[1][2*ib] = 0.;
96 bmat[1][2*ib+1] = dnxy[ib][1];
97 bmat[2][2*ib] = dnxy[ib][1];
98 bmat[2][2*ib+1] = dnxy[ib][0];
99 if(FeModel.stressState==FeModel.StrStates.axisym) {
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100 bmat[3][2*ib] = an[ib] / r;
101 bmat[3][2*ib+1] = 0.;
102 }
103 }
104 return det;
105 }

Derivatives of shape functions dnxy with respect to global coordinates x, y are
computed in line 82 using method deriv. A value of the determinant of the Jacobi
matrix det is checked in line 83. A negative determinant means an error in the
element shape, thus leading to an error message. A possible reason for such an
error can be related to incorrect order in numbering element nodes (incorrect order
in element connectivities). In the case of the axisymmetric problem element shape
functions an are used for evaluation of the current radius r (lines 85–89).

Eight blocks of the displacement differentiation matrix bmat are created in a
loop that starts in line 92. The first three rows of each block are common for all two-
dimensional problems, the fourth row (lines 100–101) is set only for axisymmetric
problems. The method returns the value of the Jacobian matrix determinant.

11.2.3 Thermal Vector

Method thermalVector sets an element thermal vector to array evec according
to Equation 10.23. An algorithm for computation of a thermal vector is similar to
the algorithm for the element stiffness matrix.

107 // Compute thermal vector
108 public void thermalVector() {
109

110 // Zeros to thermal vector evec
111 for (int i = 0; i < 16; i++) evec[i] = 0.;
112 int ld = (FeModel.stressState
113 == FeModel.StrStates.axisym) ? 4 : 3;
114 // Material mat
115 mat = (Material)fem.materials.get(matName);
116 mat.elasticityMatrix(emat);
117 double alpha = mat.getAlpha();
118 double nu = mat.getNu();
119

120 // Gauss integration loop
121 for (int ip = 0; ip < gh.nIntPoints; ip++) {
122 // Set displacement differentiation matrix bmat
123 double det = setBmatrix(gh.xii[ip], gh.eti[ip]);
124 // Shape functions an
125 ShapeQuad2D.shape(gh.xii[ip], gh.eti[ip], ind, an);
126 double t = 0;
127 for (int i = 0; i < 8; i++) t += an[i]*dtn[i];
128 double dv = det*gh.wi[ip];
129 if (FeModel.stressState==FeModel.StrStates.axisym)
130 dv *= 2*Math.PI*r;
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131 ept[0] = alpha*t;
132 if(FeModel.stressState==FeModel.StrStates.plstrain)
133 ept[0] *= (1 + nu);
134 ept[1] = ept[0];
135 ept[2] = 0.;
136 ept[3] = ept[0];
137

138 for (int i = 0; i < 16; i++) {
139 double s = 0;
140 for (int j = 0; j < ld; j++) {
141 for (int k = 0; k < ld; k++) {
142 s += bmat[k][i]*emat[j][k]*ept[j];
143 }
144 }
145 evec[i] += s*dv;
146 }
147 }
148 }

First, array evec is set to zero. Method elasticityMatrix sets the elastic-
ity matrix emat. Thermal vector integration is performed in a loop with parameter
ip – integration point number. Displacements differentiation matrix bmat is set in
line 123. Computation of shape functions an (line 125) is necessary for estimation
of the temperature t at the integration point. A vector of thermal strains is formed
in lines 132–136. Integration of thermal vector coefficients is done in line 145.

11.2.4 Nodal Equivalent of a Distributed Load

A load distributed along an element side is transformed into a nodal vector according
to the algorithm described in Section 10.4. Method equivFaceLoad computing
a nodal equivalent of surface load is presented below.

150 // Set nodal equivalent of distributed face load to evec.
151 // surLd - object describing element face load;
152 // returns loaded element face
153 // or -1 (loaded nodes do not match elem face)
154 public int equivFaceLoad(ElemFaceLoad surLd) {
155 // Shape functons
156 double an[] = new double[3];
157 // Derivatives of shape functions
158 double xin[] = new double[3];
159

160 for (int i=0; i<16; i++) evec[i] = 0.;
161 int loadedFace = surLd.rearrange(faceInd, ind);
162 if (loadedFace == -1) return -1;
163

164 // Gauss integration loop
165 for (int ip=0; ip<gf.nIntPoints; ip++){
166 ShapeQuad2D.shapeDerivFace(gf.xii[ip],
167 surLd.faceNodes[1], an, xin);
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168 double p = r = 0;
169 double xs = 0;
170 double ys = 0;
171 for (int i=0; i<3; i++){
172 p += an[i]*surLd.forceAtNodes[i];
173 int j = faceInd[loadedFace][i];
174 r += an[i]*xy[j][0];
175 xs += xin[i]*xy[j][0];
176 ys += xin[i]*xy[j][1];
177 }
178 double dl = Math.sqrt(xs*xs+ys*ys);
179 double ds = dl;
180 if (FeModel.stressState==FeModel.StrStates.axisym)
181 ds *= 2*Math.PI*r;
182 double p1, p2;
183 // direction=0 - normal load, =1,2 - along axes x,y
184 if (surLd.direction == 0 && ds > 0.0) {
185 p1 = p*ys/dl;
186 p2 = -p*xs/dl;
187 }
188 else if (surLd.direction == 1) { p1 = p; p2 = 0; }
189 else { p1 = 0; p2 = p; }
190

191 for (int i=0; i<3; i++){
192 int j = faceInd[loadedFace][i];
193 evec[2*j ] += an[i]*p1*ds*gf.wi[ip];
194 evec[2*j + 1] += an[i]*p2*ds*gf.wi[ip];
195 }
196 }
197 return loadedFace;
198 }

Description of a distributed load applied to an element side is contained in
surLd, an instance of class ElemFaceLoad (this class will be presented later in
relation to finite element load).

Array evec is first set to zero in line 160. Method rearrange is used to put
load information in order, corresponding to local element numbering (line 161).
Two arrays are employed for this purpose: faceInd containing local numbers for
element faces and ind – element connectivities.

The nodal equivalent of surface load is found by numerical integration using
one-dimensional integration rule gf with three Gauss points. The integration loop
is started in line 165. Method shapeDerivFace provides one-dimensional shape
functionsan and derivatives of shape functionsxinwith respect to local coordinate
ξ changing along the considered element side. Shape functions are used to find
load intensity p and radial coordinate r at integration point ip (lines 171–174).
Derivatives dx/dξ (xs) and dy/dξ (ys) are found with the use of shape function
derivatives in lines 175–176. Variable ds in line 179 is a derivative of arc length
with respect to local coordinate ds/dξ .

Object surLd contains the direction of surface load coded as an integer param-
eter. In two-dimensional problems the direction parameter can take the values: 0 –
load normal to the element side, 1– load along x, 2 – load along y. Load compo-



11.2 Class for Eight-node Element 125

nents p1 along x and p2 along y are calculated in lines 188–189. Computation of
the nodal equivalent of the distributed load and its placement in array evec is done
in lines 191–195. In the case of normal completion the method returns a loaded face
number, otherwise −1.

11.2.5 Equivalent Stress Vector

Method equivStressVector is designed for computation of a nodal force vec-
tor, which is equivalent to element stress field according to Equation 10.25. A neg-
ative sign is assigned to the resulting vector in order to estimate the difference be-
tween the global force vector and the global equivalent stress vector using an ordi-
nary assembly algorithm.

200 // Compute equivalent stress vector (with negative sign)
201 public void equivStressVector() {
202

203 for (int i = 0; i < 16; i++) evec[i] = 0.;
204 int ld = (FeModel.stressState
205 == FeModel.StrStates.axisym) ? 4 : 3;
206

207 for (int ip = 0; ip < gs.nIntPoints; ip++) {
208 // Accumulated stress
209 double[] s = new double[4];
210 for (int i=0; i<4; i++)
211 s[i] = str[ip].sStress[i] + str[ip].dStress[i];
212 // Set displacement differentiation matrix bmat
213 double det = setBmatrix(gs.xii[ip], gs.eti[ip]);
214 double dv = det*gs.wi[ip];
215 if (FeModel.stressState==FeModel.StrStates.axisym)
216 dv *= 2*Math.PI*r;
217

218 for (int i=0; i<16; i++) {
219 double a = 0;
220 for (int j=0; j<ld; j++) a += bmat[j][i]*s[j];
221 evec[i] -= a*dv;
222 }
223 }
224 }

The resulting equivalent stress vector is placed in vector evec, which is first
set to zero in line 203. Integration of a product of the displacement differentiation
matrix and the stress vector is performed with the use of the Gauss rule gs (2 by
2 integration points). In lines 210–211 the current level of stress s is calculated as
a sum of the accumulated stress (before the beginning of this step) and the stress
increment. Line 213 sets the displacement differentiation matrix at the current inte-
gration point with local coordinates gs.xii[ip] and gs.eti[ip]. A loop in
lines 218–222 contains multiplication of the displacements differentiation matrix by
the stress vector and its numerical integration with assignment of a negative sign.
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11.2.6 Extrapolation from Integration Points to Nodes

Extrapolation of stresses from reduced integration points to element nodes is nec-
essary for creation of a continuous stress field for the finite element model and its
subsequent visualization. Stress extrapolation from integration points to nodes is
done by method extrapolateToNodes according to Equation 10.33. The pa-
rameters of the method are stresses at integration pointsfip[4][4] (the first index
is the integration point number) and stresses at nodes fn[8][4] (the first index is
the local node number). The second indices of both parameters correspond to stress
components. The results of extrapolation are placed in array fn.

226 // Extrapolate values from integration points to nodes.
227 // fip [4][4] - values at integration points;
228 // fn [8][4] - values at nodes (out)
229 public void extrapolateToNodes(double[][] fip,
230 double[][] fn) {
231 final double A = 1 + 0.5*Math.sqrt(3.),
232 B = -0.5,
233 C = 1 - 0.5*Math.sqrt(3.);
234 // Extrapolation matrix
235 final double lim[][] = {{A, B, B, C},
236 {B, C, A, B},
237 {C, B, B, A},
238 {B, A, C, B}};
239

240 for (int i = 1; i < 8; i+=2)
241 for (int j = 0; j < 4; j++) fn[i][j] = 0;
242

243 for (int corner = 0; corner < 4; corner++) {
244 int n = (corner==0) ? 7 : 2*corner-1;
245 for (int k = 0; k < 4; k++) {
246 double c = 0.0;
247 for (int ip = 0 ; ip < 4; ip++)
248 c += lim[corner][ip]*fip[ip][k];
249 fn[2*corner][k] = c; // corner node
250 fn[n][k] += 0.5*c;
251 fn[2*corner+1][k] += 0.5*c;
252 }
253 }
254 }

The extrapolation matrix given by (10.34) is specified in lines 233–236 as a two-
dimensional array lim. Lines 240–241 assign zeros to the resulting values at mid-
side nodes. The loop in lines 243–253 contains multiplication of the extrapolation
matrix lim by stress values at integration points fip according to Equation 10.33.
Stresses at midside nodes are computed as averages of two neighboring corner node
values (lines 250–251).
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11.2.7 Other Methods

Below are source codes of the following element methods: getElemFaces,
getStrainsAtIntPoint and getTemperatureAtIntPoint.

256 // Get local node numbers for element faces.
257 // returns elementFaces[nFaces][nNodesOnFace]
258 public int[][] getElemFaces() {
259 return faceInd;
260 }
261

262 // Get strains at integration point.
263 // ip - integration point number (stress);
264 // returns strain vector (ex, ey, gxy, ez)
265 public double[] getStrainsAtIntPoint(int ip) {
266

267 // Set displacement differentiation matrix bmat
268 setBmatrix(gs.xii[ip], gs.eti[ip]);
269 double strain[] = new double[4];
270 for (int i=0; i<4; i++) {
271 strain[i] = 0;
272 for (int j=0; j<16; j++)
273 strain[i] += bmat[i][j]*evec[j];
274 }
275 return strain;
276 }
277

278 // Get temperature at integration point (stress)
279 public double getTemperatureAtIntPoint(int ip) {
280 ShapeQuad2D.shape(gs.xii[ip], gs.eti[ip], ind, an);
281 double t = 0;
282 for (int i=0; i<8; i++) t += an[i]*dtn[i];
283 return t;
284 }
285

286 }

Method getElemFaces simply returns local numbers for four element sides
specified in array faceInd (lines 10 and 11).

Method getStrainsAtIntPoint returns strains at the requested integration
point ip. Strains are calculated for subsequent estimation of stresses, thus the dis-
placement differentiation matrix is set at reduced integration points specified by the
Gauss rule used for stresses (line 268). The resulting strains are obtained with the
use of vector evec. Before using this method, element displacements should be
placed in array evec.

Method getTemperatureAtIntPoint returns temperature at the reduced
integration point ip, which is interpolated from nodal points using shape functions.
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Problems

11.1. Study methoddegeneration in Section 11.1.1. What value will the method
return if the following connectivity array is passed to it

ind = {34, 35, 36, 46, 56, 56, 56, 45 }
as an input parameter? To what global node number does the returned value corre-
spond?

11.2. Propose how to check the correctness of shape functions determined in method
shape of class ShapeQuad2D. Use the properties of the shape functions. Write
a Java code fragment for checking the shape functions that can be placed at the end
of method shape.

11.3. Write the main method in class ShapeQuad2D that evaluates an area of the
quadratic finite element shown below.

x

y

2 4 6 80

2

4

Use method ShapeQuad2D.deriv for calculation of the determinants of the Ja-
cobian matrix. For area evaluation, perform 3 by 3 numerical integration using the
class GaussRule described in Chapter 9.

11.4. Read and understand the source code of method stiffnessMatrix that
computes the stiffness matrix for the two-dimensional isoparametric quadratic ele-
ment. The double loop of lines 61–62 is such that the method computes the upper
symmetrical part of the stiffness matrix. Modify the code in such a way that: 1)
the full stiffness matrix is computed; 2) the lower symmetrical part of the stiffness
matrix is computed.

11.5. Develop a main method for class ElementQuad2D that extrapolates values
from reduced integration points to nodes.

0.5 1.5

2.5 3.5

1 2 3

4

567

8

Use method extrapolateToNodes. Values at reduced integration points ξ ,η =
±1/

√
3 are shown as numbers near the black dots. Results should be obtained at

nodes 1–8.



Chapter 12
Three-dimensional Isoparametric Elements

Abstract Three-dimensional isoparametric elements are considered. Shape func-
tions for hexahedral elements with eight nodes and twenty nodes are given. A
method for computing derivatives of shape functions in the global coordinate system
is presented. Numerical integration is used for estimation of element matrices and
vectors. It is explained how to organize efficient computation of an element stiffness
matrix. Algorithms for calculating nodal equivalents of surface loads and stresses at
integration points and nodes are demonstrated.

12.1 Shape Functions

Hexahedral (or brick-type) linear eight-node and quadratic twenty-node three-
dimensional isoparametric elements are depicted in Figure 12.1. The term “isopara-
metric” means that the geometry and displacement fields are specified in parametric
form and are interpolated with the same functions. The shape functions used for in-
terpolation are polynomials of the local coordinates ξ , η and ζ (−1 ≤ ξ ,η ,ζ ≤ 1).
Displacements are interpolated according to the following relations:

{u} = [N]{q},
{u} = {u v w},
{q} = {u1 v1 w1 u2 v2 w2 ...},

(12.1)

where {u} is a displacement vector at a point with local coordinates ξ , η and ζ ;
u,v,w are displacement components along global coordinate axes x, y and z; {q} is
a nodal displacement vector with entries ui,vi,wi (displacement values at nodes);
[N] is a matrix of shape functions.

Element shape is determined by coordinate interpolation using the matrix of
shape functions [N]:

129
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Fig. 12.1 Linear (a) and quadratic (b) three-dimensional finite elements and their representation in
the local coordinate system (c)

{x} = [N]{xe},
{x} = {x y z},
{xe} = {x1 y1 z1 x2 y2 z2 ...}.

(12.2)

Here, x,y,z are point coordinates and xi,yi,zi are coordinates of nodes. The matrix
of shape functions is defined as:

[N] =

⎡
⎣N1 0 0 N2 0 0 ...

0 N1 0 0 N2 0 ...
0 0 N1 0 0 N2 ...

⎤
⎦. (12.3)

The shape functions of the three-dimensional linear element are:

Ni =
1
8
(1 + ξ0)(1 +η0)(1 + ζ0),

ξ0 = ξξi,

η0 = ηηi,

ζ0 = ζζi.

(12.4)

A linear hexahedral element can be degenerated into a triangular prism (Fig-
ure 12.2a) by shrinking an element face into a straight line. Linear shape functions
are not affected by this degeneration.

For the quadratic element with twenty nodes, the shape functions can be written
in the following form:
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Fig. 12.2 Linear (a) and quadratic (b) elements degenerated into triangular prisms

Ni =
1
8
(1 + ξ0)(1 +η0)(1 + ζ0)(ξ0 +η0 + ζ0 −2) at vertices,

Ni =
1
4
(1− ξ 2)(1 +η0)(1 + ζ0) , i = 2, 6, 14, 18,

Ni =
1
4
(1−η2)(1 + ξ0)(1 + ζ0) , i = 4, 8, 16, 20,

Ni =
1
4
(1− ζ 2)(1 + ξ0)(1 +η0) , i = 9, 10, 11, 12.

(12.5)

In the above relations, ξi, ηi, ζi are values of local coordinates ξ , η , ζ at nodes.
For the degenerated quadratic hexahedral element shown in Figure 12.2b six

shape functions for nodes located at a face opposite to the degenerated face should
be modified. In the case of the degeneration depicted in Figure 12.2b the shape
functions are modified in the following way [32]:

N
′
i = Ni +Δ , i = 3,5,15,17,

N
′
i = Ni −2Δ , i = 4,16,

Δ =
1

16

(
1− ξ 2)(1−η2) (1 + ζζi) .

(12.6)

12.2 Strain–Displacement Matrix

The strain vector {ε} contains six different components of the strain tensor:

{ε} = {εx εy εz γxy γyz γzx}. (12.7)

The strain–displacement matrix for three-dimensional elements is:

[B] = [D][N] = [B1 B2 B3 ...], (12.8)



132 12 Three-dimensional Isoparametric Elements

[Bi] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Ni

∂x
0 0

0
∂Ni

∂y
0

0 0
∂Ni

∂ z
∂Ni

∂y
∂Ni

∂x
0

0
∂Ni

∂ z
∂Ni

∂y
∂Ni

∂ z
0

∂Ni

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12.9)

The derivatives of three-dimensional shape functions with respect to global coordi-
nates are obtained as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂Ni

∂x
∂Ni

∂y
∂Ni

∂ z

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= [J]−1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂Ni

∂ξ
∂Ni

∂η
∂Ni

∂ζ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (12.10)

where the Jacobian matrix has the appearance

[J] =

⎡
⎢⎢⎢⎢⎢⎣

∂x
∂ξ

∂y
∂ξ

∂ z
∂ξ

∂x
∂η

∂y
∂η

∂ z
∂η

∂x
∂ζ

∂y
∂ζ

∂ z
∂ζ

⎤
⎥⎥⎥⎥⎥⎦

. (12.11)

The partial derivatives of x, y, z with respect to ξ , η ,ζ are found by differentiation
of displacements expressed through shape functions and nodal displacement values:

∂x
∂ξ

=∑∂Ni

∂ξ
xi ,

∂x
∂η

=∑ ∂Ni

∂η
xi ,

∂x
∂ζ

=∑∂Ni

∂ζ
xi,

∂y
∂ξ

=∑∂Ni

∂ξ
yi ,

∂y
∂η

=∑ ∂Ni

∂η
yi ,

∂y
∂ζ

=∑∂Ni

∂ζ
yi,

∂ z
∂ξ

=∑∂Ni

∂ξ
zi ,

∂ z
∂η

=∑∂Ni

∂η
zi ,

∂ z
∂ζ

=∑∂Ni

∂ζ
zi.

(12.12)

The transformation of integrals from the global coordinate system to the local coor-
dinate system is performed with the use of the determinant of the Jacobian matrix:

dV = dxdydz = |J|dξdηdζ . (12.13)
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12.3 Element Properties

Element matrices and vectors for the three-dimensional hexagonal element are given
by the following expressions:

stiffness matrix

[k] =
∫ 1

−1

∫ 1

−1

∫ 1

−1
[B]T[E][B]|J|dξdηdζ , (12.14)

thermal vector (fictitious forces to simulate thermal expansion)

{h} =
∫ 1

−1

∫ 1

−1

∫ 1

−1
[B]T[E]{ε t}|J|dξdηdζ , (12.15)

force vector due to distributed face load

{p} =
∫ 1

−1

∫ 1

−1
[N]T{pS} ds

dξ
dξdη , (12.16)

equivalent stress vector (with negative sign)

{pσ} = −
∫ 1

−1

∫ 1

−1

∫ 1

−1
[B]T{σ}|J|dξdηdζ . (12.17)

In the above relations [E] is the elasticity matrix of the material, {ε t} is the vector
of thermal strains and {σ} is the current stress vector. Three-time application of the
one-dimensional Gauss quadrature rule leads to the following numerical integration
procedure:

I =
∫ 1

−1

∫ 1

−1

∫ 1

−1
f (ξ ,η ,ζ )dξdηdζ

=
n

∑
i=1

n

∑
j=1

n

∑
k=1

f (ξi,η j,ζk)wiwjwk

=
N

∑
m=1

f (ξm,ηm,ζm)Wm.

(12.18)

Here, ξi, η j, ζk are the abscissas of numerical integrations; wi, wj , wk are the corre-
sponding weights. The third line of the above equation is a practical implementation
of three-dimensional integration rules as a single loop. In this case, N = n× n× n,
and Wm are triple products of the Gauss weights.

Usually, 2× 2× 2 integration is used for three-dimensional linear elements and
3×3×3 integration is applied to evaluation of the stiffness matrix for quadratic el-
ements. For more efficient integration, a special 14-point Gauss-type rule [14, 17] is
employed, which provides sufficient precision of integration for three-dimensional
quadratic elements.
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12.4 Efficient Evaluation of Element Matrices and Vectors

Calculation of the element stiffness matrix by multiplication of three matrices in-
volves many arithmetic operations with zeros. In addition, the three-dimensional
case does not contain any additional variants of the elasticity matrix and displace-
ment differentiation matrix as in the two-dimensional case. Because of this, a simple
and efficient three-dimensional algorithm for the stiffness matrix can be formulated
by performing matrix multiplications in closed form. Then, the coefficients of the
element stiffness matrix [k] are expressed as follows:

kmn
ii =

∫

V

[
β
∂Nm

∂xi

∂Nn

∂xi
+ μ

(
∂Nm

∂xi+1

∂Nm

∂xi+1
+

∂Nm

∂xi+2

∂Nm

∂xi+2

)]
dV,

kmn
i j =

∫

V

(
λ
∂Nm

∂xi

∂Nn

∂x j
+ μ

∂Nm

∂x j

∂Nn

∂xi

)
dV,

β = λ + 2μ .

(12.19)

Here, λ and μ are elastic Lame constants; m, n are local node numbers; i, j are
indices related to coordinate axes (x1, x2, x3). The cyclic rule is employed in the
above equation if the coordinate indices exceed 3.

The analogous expression for the element thermal vector is

hm
i =

∫

V

(3λ + 2μ)αT
∂Nm

∂xi
dV, (12.20)

where m is node number, i is coordinate index, α is the thermal-expansion coeffi-
cient, and T is temperature.

A convenient expression for estimation of the nodal vector equivalent to the stress
distribution is

(pσ )m
i = −

∫

V

∂Nm

∂x j
σi jdV. (12.21)

Here, we suppose summation over repeated index j. The nodal vector is calculated
with a negative sign for convenience of assembly.

12.5 Calculation of Nodal Equivalents for External Loads

The nodal equivalent of the external surface load is estimated according to Equation
3.20

{p} =
∫

S
[N]T{pS}dS. (12.22)
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Fig. 12.3 Determination of a normal vector ḡ on the curved face of the finite element

Integration of the nodal equivalent of the surface load (12.16) requires explanation
related to expressing an area element dS through local coordinates ξ , η .

For integration of the surface load over the finite element face, it is necessary
to determine the outward normal vector at any point of the face. Vectors eξ and
eη tangent to the local coordinates ξ and η have the following components in the
global coordinate system (Figure 12.3):

eξ =
{
∂x
∂ξ

∂y
∂ξ

∂ z
∂ξ

}
,

eη =
{
∂x
∂η

∂y
∂η

∂ z
∂η

}
.

(12.23)

Derivatives of the global coordinates with respect to local coordinates can be esti-
mated using two-dimensional shape functions:

∂x
∂ξ

=∑∂Nm

∂ξ
xm , ...

∂x
∂η

=∑ ∂Nm

∂η
xm , ... .

(12.24)

The normal vector g is equal to the vector product of the tangential vectors eξ and
eη :

g = eξ × eη . (12.25)

The components of the outward normal vector g can be conveniently computed
through the following expressions:
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gx =
∂y
∂ξ

∂ z
∂η

− ∂ z
∂ξ

∂y
∂η

,

gy =
∂ z
∂ξ

∂x
∂η

− ∂x
∂ξ

∂ z
∂η

,

gz =
∂x
∂ξ

∂y
∂η

− ∂y
∂ξ

∂x
∂η

.

(12.26)

Since integration of the surface load is performed in the local coordinate system ξ ,
η , the Jacobian of transformation between the physical surface coordinates and the
local coordinates should be determined:

|J(ξ ,η)| = |g| =
√

g2
x + g2

y + g2
z . (12.27)

The element of area dS is expressed through local coordinates ξ , η as

dS = |J(ξ ,η)|dξdη , (12.28)

and the nodal equivalent for the surface load applied to a finite element face is
calculated in the form

[p] =
∫ 1

−1

∫ 1

−1
[N(ξ ,η)]T{pS(ξ ,η)} |J(ξ ,η)|dξdη. (12.29)

If the surface load is directed along the surface normal, the components of the unit
normal vector (normalized vector g) are used to produce components of the surface
load at integration points.

12.6 Example: Nodal Equivalents of a Distributed Load

Estimate the nodal equivalents of a distributed load with constant intensity ps = 1
applied to the flat square face with size L = 1 of the three-dimensional quadratic
element shown in Figure 12.4.

Solution

The nodal equivalent of the distributed load can be calculated according to Equa-
tion 12.29. The calculation procedure is simplified if we take into account that the
element face is a flat square with sides of length L = 1 parallel to coordinate axes x
and y. In this particular case
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Fig. 12.4 Distributed load on a face of a three-dimensional quadratic element

dx
dξ

=
1
2
,

dy
dη

=
1
2

and integration in (12.29) can be performed in a simpler way:

[p] =
∫ 1

−1

∫ 1

−1
[N]T{pS} 1

4
dξdη.

From symmetry properties, the equivalent nodal forces have identical values at all
corner nodes and at all midside nodes. It is sufficient to determine the nodal equiv-
alents at nodes 1 and 2.

Using two-dimensional shape functions [N1] and [N2] (10.7) nodal equivalents
for corner node 1 and midside node 2 are determined as:

p1 = −
∫ 1

−1

∫ 1

−1

1
4
(1− ξ )(1−η)(1 + ξ+η)

1
4

dξdη = − 1
12

,

p2 =
∫ 1

−1

∫ 1

−1

1
2
(1− ξ 2)(1−η)

1
4

dξdη =
1
3
.

Nodal equivalents of the distributed load with constant intensity for the face of the
three-dimensional quadratic element are shown in Figure 12.5.

At first glance it seems unusual to observe nodal equivalents at corner nodes
directed in the opposite direction of the applied load. After counting the total force
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1

Fig. 12.5 Distributed load on a face of a three-dimensional quadratic element
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across the face, we find that it is equal to unity confirming our calculations. Negative
directions of corner nodal forces are related to nonlinearity of shape functions.

12.7 Calculation of Strains and Stresses

After computing element matrices and vectors, the assembly process is used to com-
pose the global equation system. Solution of the global equation system provides
displacements at nodes of the finite element model. Using disassembly, nodal dis-
placement for each element can be obtained.

Strains inside an element are determined with the use of the displacement differ-
entiation matrix:

{ε} = [B]{q}. (12.30)

Stresses are calculated with Hooke’s law:

{σ} = [E]{εe} = [E]({ε}−{ε t}), (12.31)

where {ε t} is the vector of free thermal expansion:

{ε t} = {αT αT αT 0 0 0}. (12.32)

It should be noted that displacement gradients (and hence strains and stresses) have
quite difference precision at different points inside finite elements. The highest pre-
cisions for displacement gradients are at the geometric center for the linear element
and at reduced integration points 2×2×2 for the quadratic hexagonal element.

12.8 Extrapolation of Strains and Stresses

For quadratic elements, displacement derivatives have the best precision at 2×2×2
integration points with local coordinates ξ , η , ζ = ±1/

√
3. In order to build a

continuous field of strains or stresses, it is necessary to extrapolate result values from
2×2×2 integration points to the vertices of a twenty-node element (numbering of
integration points and vertices is shown in Figure 12.6).

Results are calculated at 8 integration points, and a trilinear extrapolation in the
local coordinate system ξ , η , ζ is used:

fi = Li(m) f(m), (12.33)

where f(m) are known function values at reduced integration points, fi are function
values at vertex nodes, and Li(m) is the extrapolation matrix:
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Fig. 12.6 Numbering of integration points and vertices for the twenty-node isoparametric element

Li(m) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A B B C B C C D
B C C D A B B C
C D B C B C A B
B C A B C D B C
B A C B C B D C
C B D C B A C B
D C C B C B B A
C B B A D C C B

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A =
5 +

√
3

4
, B = −

√
3+ 1
4

,

C =
√

3−1
4

, D =
5−√

3
4

.

(12.34)

Stresses are extrapolated from integration points to all nodes of elements. Values for
midside nodes can be calculated as an average between values for two vertex nodal
values. Then averaging of contributions from the neighboring finite elements is per-
formed for all nodes of the finite element model. Averaging produces a continuous
field of secondary results specified at nodes of the model with quadratic variation
inside finite elements. Later, the results can be interpolated to any point inside an
element or on its surface using quadratic shape functions.

Problems

12.1. Derive explicit expressions for shape functions N6 and N15 for the three-
dimensional quadratic element. Use the general relations (12.5).

12.2. Show that three-dimensional linear shape functions (12.4) satisfy the equality
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8

∑
i=1

Ni = 1

at any point ξ , η , ζ .

12.3. Obtain the derivatives of corner node shape functions with respect to local
coordinates ξ , η , and ζ for the three-dimensional quadratic element. Relations for
the shape functions are given by (12.5).

12.4. Estimate the Jacobian matrix [J] and its determinant |J| for the following eight-
node element.

1
3

4

2

5

6

7
8

x

y

z

1

4 2

The element has dimensions 2, 4, and 1 along coordinate axes x, y, and z, respec-
tively.

12.5. Show that the index form equation for evaluation of thermal vector compo-
nents hm

i (12.20) in the three-dimensional case follows from matrix Equation 12.15.



Chapter 13
Implementation of Three-dimensional
Quadratic Element

Abstract JavaTM classes implementing a three-dimensional hexagonal element
with twenty nodes are presented. Class ShapeQuad3D computes shape functions
and their derivatives. Class ElementQuad3D provides methods for computation
of element matrices and vectors including element stiffness matrix, thermal vector,
nodal equivalent of distributed load, and equivalent stress vector.

13.1 Class for Shape Functions and Their Derivatives

Class ShapeQuad3D includes methods for calculating shape functions and their
derivatives for three-dimensional isoparametric elements of hexahedral shapes. The
maximum number of nodes in this element is twenty. Any node located at a center
of an element edge can be absent. Thus, it is possible to construct elements with
number of nodes from ten to twenty. When the element has twenty nodes, inter-
polation of displacements and coordinates is quadratic. For eight-node elements,
interpolation is linear. Local node numbers for a twenty-node element are shown in
Figure 13.1. If a midside node is absent, the corresponding connectivity number is
set to zero.

13.1.1 Element Degeneration

A hexahedral element can have many types of degeneration. In order to keep the
length and complexity of the code reasonable, we consider just one degeneration,
presented in Figure 13.2. Such degeneration is achieved when the following three
groups of nodes

0, 7, 6,
8, 11, and
12, 19, 18

141
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Fig. 13.1 Local numbering of nodes for the hexahedral quadratic isoparametric element
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Fig. 13.2 Triangular prism obtained by degeneration of hexahedral element

have the same connectivity numbers, and each group its own connectivity number.
Method degeneration below, just checks the coincidence of connectivity

numbers (array ind) for three groups of nodes. It is supposed that an element has all
midside nodes and connectivity numbers do not create other degenerations except
the above listed. The method returns 1 if the allowed degeneration is discovered,
otherwise it returns 0.

1 package elem;
2

3 import util.UTIL;
4

5 // Quadratic 3D shape functions and their derivatives
6 public class ShapeQuad3D {
7

8 // Degeneration check.
9 // The only degeneration is: 0=7=6,8=11,12=19=18

10 static int degeneration(int[] ind) {
11 // Element should be quadratic
12 if ((ind[0] == ind[7] && ind[7] == ind[6]) &&
13 (ind[8] == ind[11]) &&
14 (ind[12] == ind[19] && ind[19] == ind[18]))
15 return 1;
16 else return 0;
17 }
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13.1.2 Shape Functions

Shape functions are computed by method shape. The method obtains values of
local coordinates xi (ξ ), et (η) and ze (ζ ) and element connectivities ind. Con-
nectivities allow detection of the absence of midside nodes and determination of
degenerate collapse of the element into a triangular prism. Array an passed as a
parameter contains results for shape functions after a call to method shape.

19 // Shape functions.
20 // xi, et, ze - local coordinates;
21 // ind - element connectivities;
22 // n - shape functions (out)
23 static void shape(double xi, double et, double ze,
24 int[] ind, double[] n) {
25 double s0 = 1 + xi;
26 double t0 = 1 + et;
27 double d0 = 1 + ze;
28 double s1 = 1 - xi;
29 double t1 = 1 - et;
30 double d1 = 1 - ze;
31 double s2 = 1 - xi*xi;
32 double t2 = 1 - et*et;
33 double d2 = 1 - ze*ze;
34 // Midside nodes
35 n[1] = n[3] = n[5] = n[7] = n[8] = n[9] = n[10] =
36 n[11] = n[13] = n[15] = n[17] = n[19] = 0;
37 if (ind[ 1] > 0) n[1] = 0.25*s2*t1*d1;
38 if (ind[ 5] > 0) n[5] = 0.25*s2*t0*d1;
39 if (ind[17] > 0) n[17] = 0.25*s2*t0*d0;
40 if (ind[13] > 0) n[13] = 0.25*s2*t1*d0;
41 if (ind[ 7] > 0) n[7] = 0.25*t2*s1*d1;
42 if (ind[ 3] > 0) n[3] = 0.25*t2*s0*d1;
43 if (ind[15] > 0) n[15] = 0.25*t2*s0*d0;
44 if (ind[19] > 0) n[19] = 0.25*t2*s1*d0;
45 if (ind[ 8] > 0) n[8] = 0.25*d2*s1*t1;
46 if (ind[ 9] > 0) n[9] = 0.25*d2*s0*t1;
47 if (ind[10] > 0) n[10] = 0.25*d2*s0*t0;
48 if (ind[11] > 0) n[11] = 0.25*d2*s1*t0;
49 // Vertex nodes
50 n[ 0] = 0.125*s1*t1*d1 - 0.5*(n[ 1]+n[ 7]+n[ 8]);
51 n[ 2] = 0.125*s0*t1*d1 - 0.5*(n[ 1]+n[ 3]+n[ 9]);
52 n[ 4] = 0.125*s0*t0*d1 - 0.5*(n[ 3]+n[ 5]+n[10]);
53 n[ 6] = 0.125*s1*t0*d1 - 0.5*(n[ 5]+n[ 7]+n[11]);
54 n[12] = 0.125*s1*t1*d0 - 0.5*(n[ 8]+n[13]+n[19]);
55 n[14] = 0.125*s0*t1*d0 - 0.5*(n[ 9]+n[13]+n[15]);
56 n[16] = 0.125*s0*t0*d0 - 0.5*(n[10]+n[15]+n[17]);
57 n[18] = 0.125*s1*t0*d0 - 0.5*(n[11]+n[17]+n[19]);
58 // Modification of functions due to degeneration
59 if (degeneration(ind) == 1) {
60 double dn1 = 0.0625*s2*t2*d1;
61 double dn2 = 0.0625*s2*t2*d0;
62 n[2] += dn1;
63 n[3] -= 2*dn1;
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64 n[4] += dn1;
65 n[14] += dn2;
66 n[15] -= 2*dn2;
67 n[16] += dn2;
68 }
69 }

Shape functions for midside nodes are first initialized to zero. A shape function
for a midside node is evaluated if the connectivity number for this node is nonzero
(lines 37–48). Shape functions for vertex nodes are computed in lines 50–57 as com-
binations of linear shape functions and quadratic shape functions of three neighbor-
ing midside nodes. Possible degeneration of the element is taken into account in
lines 59–68.

13.1.3 Derivatives of Shape Functions

Method deriv computes the derivatives of shape functions with respect to global
coordinatesdnxy at a point with local coordinatesxi, et, and ze (ξ , η and ζ ). The
method also obtains ind – element connectivities, xy – array of nodal coordinates.

71 // Derivatives of shape functions
72 // with respect to global coordinates xy.
73 // xi, et, ze - local coordinates;
74 // ind - element connectivities;
75 // xy - nodal coordinates;
76 // dnxy - derivatives of shape functions (out);
77 // returns determinant of the Jacobian matrrix
78 static double deriv(double xi, double et, double ze,
79 int[] ind, double[][] xy, double[][] dnxy) {
80 // Derivatives with respect to local coordinates d
81 double[][] d = new double[20][3];
82 double s0 = 1 + xi;
83 double t0 = 1 + et;
84 double d0 = 1 + ze;
85 double s1 = 1 - xi;
86 double t1 = 1 - et;
87 double d1 = 1 - ze;
88 double s2 = 1 - xi*xi;
89 double t2 = 1 - et*et;
90 double d2 = 1 - ze*ze;
91 // Midside nodes
92 if (ind[1] > 0) { d[1][0] = -0.5*xi*t1*d1;
93 d[1][1] = -0.25*s2*d1;
94 d[1][2] = -0.25*s2*t1;
95 } else { d[0][1] = d[1][1] = d[2][1] = 0; }
96

97 if (ind[5] > 0) { d[5][0] = -0.5*xi*t0*d1;
98 d[5][1] = 0.25*s2*d1;
99 d[5][2] = -0.25*s2*t0;
100 } else { d[5][0] = d[5][1] = d[5][2] = 0; }
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101

102 if (ind[17] > 0) { d[17][0] = -0.5*xi*t0*d0;
103 d[17][1] = 0.25*s2*d0;
104 d[17][2] = 0.25*s2*t0;
105 } else { d[17][0] = d[17][1] = d[17][2] = 0; }
106

107 if (ind[13] > 0) { d[13][0] = -0.5*xi*t1*d0;
108 d[13][1] = -0.25*s2*d0;
109 d[13][2] = 0.25*s2*t1;
110 } else { d[13][0] = d[13][1] = d[13][2] = 0; }
111

112 if (ind[7] > 0) { d[7][0] = -0.25*t2*d1;
113 d[7][1] = -0.5*et*s1*d1;
114 d[7][2] = -0.25*t2*s1;
115 } else { d[7][0] = d[7][1] = d[7][2] = 0; }
116

117 if (ind[3] > 0) { d[3][0] = 0.25*t2*d1;
118 d[3][1] = -0.5*et*s0*d1;
119 d[3][2] = -0.25*t2*s0;
120 } else { d[3][0] = d[3][1] = d[3][2] = 0; }
121

122 if (ind[15] > 0) { d[15][0] = 0.25*t2*d0;
123 d[15][1] = -0.5*et*s0*d0;
124 d[15][2] = 0.25*t2*s0;
125 } else { d[15][0] = d[15][1] = d[15][2] = 0; }
126

127 if (ind[19] > 0) { d[19][0] = -0.25*t2*d0;
128 d[19][1] = -0.5*et*s1*d0;
129 d[19][2] = 0.25*t2*s1;
130 } else { d[19][0] = d[19][1] = d[19][2] = 0; }
131

132 if (ind[8] > 0) { d[8][0] = -0.25*d2*t1;
133 d[8][1] = -0.25*d2*s1;
134 d[8][2] = -0.5*ze*s1*t1;
135 } else { d[8][0] = d[8][1] = d[8][2] = 0; }
136

137 if (ind[9] > 0) { d[9][0] = 0.25*d2*t1;
138 d[9][1] = -0.25*d2*s0;
139 d[9][2] = -0.5*ze*s0*t1;
140 } else { d[9][0] = d[9][1] = d[9][2] = 0; }
141

142 if (ind[10] > 0) { d[10][0] = 0.25*d2*t0;
143 d[10][1] = 0.25*d2*s0;
144 d[10][2] = -0.5*ze*s0*t0;
145 } else { d[10][0] = d[10][1] = d[10][2] = 0; }
146

147 if (ind[11] > 0) { d[11][0] = -0.25*d2*t0;
148 d[11][1] = 0.25*d2*s1;
149 d[11][2] = -0.5*ze*s1*t0;
150 } else { d[11][0] = d[11][1] = d[11][2] = 0; }
151 // Vertex nodes
152 d[0] [0]=-0.125*t1*d1-0.5*(d[1] [0]+d[7] [0]+d[8] [0]);
153 d[0] [1]=-0.125*s1*d1-0.5*(d[1] [1]+d[7] [1]+d[8] [1]);
154 d[0] [2]=-0.125*s1*t1-0.5*(d[1] [2]+d[7] [2]+d[8] [2]);
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155

156 d[2] [0]= 0.125*t1*d1-0.5*(d[1] [0]+d[3] [0]+d[9] [0]);
157 d[2] [1]=-0.125*s0*d1-0.5*(d[1] [1]+d[3] [1]+d[9] [1]);
158 d[2] [2]=-0.125*s0*t1-0.5*(d[1] [2]+d[3] [2]+d[9] [2]);
159

160 d[4] [0]= 0.125*t0*d1-0.5*(d[3] [0]+d[5] [0]+d[10][0]);
161 d[4] [1]= 0.125*s0*d1-0.5*(d[3] [1]+d[5] [1]+d[10][1]);
162 d[4] [2]=-0.125*s0*t0-0.5*(d[3] [2]+d[5] [2]+d[10][2]);
163

164 d[6] [0]=-0.125*t0*d1-0.5*(d[5] [0]+d[7] [0]+d[11][0]);
165 d[6] [1]= 0.125*s1*d1-0.5*(d[5] [1]+d[7] [1]+d[11][1]);
166 d[6] [2]=-0.125*s1*t0-0.5*(d[5] [2]+d[7] [2]+d[11][2]);
167

168 d[12][0]=-0.125*t1*d0-0.5*(d[8] [0]+d[13][0]+d[19][0]);
169 d[12][1]=-0.125*s1*d0-0.5*(d[8] [1]+d[13][1]+d[19][1]);
170 d[12][2]= 0.125*s1*t1-0.5*(d[8] [2]+d[13][2]+d[19][2]);
171

172 d[14][0]= 0.125*t1*d0-0.5*(d[9] [0]+d[13][0]+d[15][0]);
173 d[14][1]=-0.125*s0*d0-0.5*(d[9] [1]+d[13][1]+d[15][1]);
174 d[14][2]= 0.125*s0*t1-0.5*(d[9] [2]+d[13][2]+d[15][2]);
175

176 d[16][0]= 0.125*t0*d0-0.5*(d[10][0]+d[15][0]+d[17][0]);
177 d[16][1]= 0.125*s0*d0-0.5*(d[10][1]+d[15][1]+d[17][1]);
178 d[16][2]= 0.125*s0*t0-0.5*(d[10][2]+d[15][2]+d[17][2]);
179

180 d[18][0]=-0.125*t0*d0-0.5*(d[11][0]+d[17][0]+d[19][0]);
181 d[18][1]= 0.125*s1*d0-0.5*(d[11][1]+d[17][1]+d[19][1]);
182 d[18][2]= 0.125*s1*t0-0.5*(d[11][2]+d[17][2]+d[19][2]);
183 // Modification of derivatives due to degeneration
184 if (degeneration(ind) == 1) {
185 double dn1[] = new double[3];
186 double dn2[] = new double[3];
187 dn1[0] = -0.125*xi*t2*d1;
188 dn1[1] = -0.125*et*s2*d1;
189 dn1[2] = -0.0625*s2*t2;
190 dn2[0] = -0.125*xi*t2*d0;
191 dn2[1] = -0.125*et*s2*d0;
192 dn2[2] = -dn1[2];
193 for (int i = 0; i < 3; i++) {
194 d[2] [i] += dn1[i];
195 d[3] [i] -= 2*dn1[i];
196 d[4] [i] += dn1[i];
197 d[14][i] += dn2[i];
198 d[15][i] -= 2*dn2[i];
199 d[16][i] += dn2[i];
200 }
201 }
202 // Jacobian matrix ja
203 double[][] ja = new double[3][3];
204 for (int i = 0; i < 3; i++)
205 for (int j = 0; j < 3; j++) {
206 ja[j][i] = 0.;
207 for (int k = 0; k < 20; k++)
208 ja[j][i] += d[k][i]*xy[k][j];
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209 }
210 // Determinant of Jacobian matrix det
211 double det =
212 ja[0][0]*(ja[1][1]*ja[2][2] - ja[2][1]*ja[1][2])
213 - ja[1][0]*(ja[0][1]*ja[2][2] - ja[0][2]*ja[2][1])
214 + ja[2][0]*(ja[0][1]*ja[1][2] - ja[0][2]*ja[1][1]);
215 if (det<=0) UTIL.errorMsg("Negative/zero Jacobian "+
216 "determinant for 20N element "+(float)det);
217 // Jacobian inverse ja1
218 double[][] ja1 = new double[3][3];
219 double v = 1.0/det;
220 ja1[0][0] = (ja[1][1]*ja[2][2]-ja[2][1]*ja[1][2])*v;
221 ja1[1][0] = (ja[0][2]*ja[2][1]-ja[0][1]*ja[2][2])*v;
222 ja1[2][0] = (ja[0][1]*ja[1][2]-ja[0][2]*ja[1][1])*v;
223 ja1[0][1] = (ja[1][2]*ja[2][0]-ja[1][0]*ja[2][2])*v;
224 ja1[1][1] = (ja[0][0]*ja[2][2]-ja[2][0]*ja[0][2])*v;
225 ja1[2][1] = (ja[0][2]*ja[1][0]-ja[0][0]*ja[1][2])*v;
226 ja1[0][2] = (ja[2][1]*ja[1][0]-ja[2][0]*ja[1][1])*v;
227 ja1[1][2] = (ja[0][1]*ja[2][0]-ja[0][0]*ja[2][1])*v;
228 ja1[2][2] = (ja[0][0]*ja[1][1]-ja[1][0]*ja[0][1])*v;
229

230 for (int k = 0; k < 20; k++)
231 for (int i = 0; i < 3; i++) {
232 dnxy[k][i] = 0.;
233 for (int j = 0; j < 3; j++)
234 dnxy[k][i] += ja1[i][j]*d[k][j];
235 }
236 return det;
237 }

Array d declared in line 81 contains the derivatives of shape functions with re-
spect to local coordinates ξ , η , ζ . After evaluation and modification (due to possible
element degeneration) of derivatives d, Jacobian matrix ja is determined in lines
203–209. A determinant of the Jacobian matrix det is evaluated in lines 211–214.
The error message method UTIL.errorMsg is called if the determinant is not
positive, indicating that the element data has errors. The inverse of the Jacobian ma-
trix is found in lines 218–228. The array of shape function derivatives with respect
to global coordinates dnxy is determined in lines 230–235. The method returns
det, the determinant of the Jacobian matrix.

13.1.4 Shape Functions and Their Derivatives for an Element Face

Two-dimensional shape functions and their derivatives are necessary for treating dis-
tributed loads applied to faces of three-dimensional isoparametric elements. While
methods performing similar computations exist in the class for two-dimensional
quadratic element, it is better to implement a similar method here since element
classes should be independent of each other.
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Computations of two-dimensional quadratic shape functions and their derivatives
are performed by method shapeDerivFace presented below. It evaluates shape
functionsan and their derivativesdnwith respect to local coordinates for a specified
local coordinated ξ , η . As usual, face connectivity numbers are used for detecting
midside nodes and for checking face degeneration into a triangle.

239 // Two-dimensional shape functions and derivatives
240 // for a face of 3d 8-20n element.
241 // xi, et - local coordinates;
242 // ind - element connectivities;
243 // an - shape functions (out);
244 // dn derivatives of shape functions
245 // with respect to xi and et (out)
246 public static void shapeDerivFace(double xi, double et,
247 int[] ind, double[] an, double[][] dn) {
248 double x1 = 1 - xi;
249 double x2 = 1 + xi;
250 double e1 = 1 - et;
251 double e2 = 1 + et;
252 // Shape funcrions for midside nodes
253 an[1] = an[3] = an[5] = an[7] = 0;
254 if (ind[1]>0) an[1] = x1*x2*e1*0.5;
255 if (ind[3]>0) an[3] = e1*e2*x2*0.5;
256 if (ind[5]>0) an[5] = x1*x2*e2*0.5;
257 if (ind[7]>0) an[7] = e1*e2*x1*0.5;
258 // Shape functions for corner nodes
259 an[0] = x1*e1*0.25 - 0.5*(an[7]+an[1]);
260 an[2] = x2*e1*0.25 - 0.5*(an[1]+an[3]);
261 an[4] = x2*e2*0.25 - 0.5*(an[3]+an[5]);
262 an[6] = x1*e2*0.25 - 0.5*(an[5]+an[7]);
263

264 dn[1][0] = dn[1][1] = dn[3][0] = dn[3][1] =
265 dn[5][0] = dn[5][1] = dn[7][0] = dn[7][1] = 0;
266 // Derivatives for midside nodes
267 if (ind[1]>0) {
268 dn[1][0] = -xi*e1; dn[1][1] = -0.5*x1*x2;}
269 if (ind[3]>0) {
270 dn[3][0] = 0.5*e1*e2; dn[3][1] = -et*x2;}
271 if (ind[5]>0) {
272 dn[5][0] = -xi*e2; dn[5][1] = 0.5*x1*x2;}
273 if (ind[7]>0) {
274 dn[7][0] = -0.5*e1*e2; dn[7][1] = -et*x1;}
275 // Derivatives for corner nodes
276 dn[0][0] = -0.25*e1 - 0.5*(dn[7][0]+dn[1][0]);
277 dn[0][1] = -0.25*x1 - 0.5*(dn[7][1]+dn[1][1]);
278 dn[2][0] = 0.25*e1 - 0.5*(dn[1][0]+dn[3][0]);
279 dn[2][1] = -0.25*x2 - 0.5*(dn[1][1]+dn[3][1]);
280 dn[4][0] = 0.25*e2 - 0.5*(dn[3][0]+dn[5][0]);
281 dn[4][1] = 0.25*x2 - 0.5*(dn[3][1]+dn[5][1]);
282 dn[6][0] = -0.25*e2 - 0.5*(dn[5][0]+dn[7][0]);
283 dn[6][1] = 0.25*x1 - 0.5*(dn[5][1]+dn[7][1]);
284

285 // Degeneration check
286 int ig = 0;
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287 for (int i = 0; i < 7; i += 2) {
288 if (ind[i] == ind[i + 1]) {
289 ig = (i + 5) % 8;
290 break;
291 }
292 }
293 if (ig>0&&ind[1]>0&&ind[3]>0&&ind[5]>0&&ind[7]>0){
294 double delta = 0.125*x1*x2*e1*e2;
295 double z = -0.25*xi*e1*e2;
296 double t = -0.25*x1*x2*et;
297 int j = (ig + 1)%8;
298 an[ig-1] += delta;
299 an[ig] -= 2.*delta;
300 an[j] += delta;
301 dn[ig-1][0] += z;
302 dn[ig-1][1] += t;
303 dn[ig][0] -= 2*z;
304 dn[ig][1] -= 2*t;
305 dn[j][0] += z;
306 dn[j][1] += t;
307 }
308 }
309

310 }

If a midside node is absent, zeros are assigned to the corresponding shape func-
tion and its derivatives. Shape functions and derivatives of corner nodes combine
linear corner functions and quadratic contributions from neighboring midside nodes.

Element degeneration is checked in lines 286–292. If a connectivity number
ind[i] for a corner node is equal to a connectivity number ind[i + 1] for
an intermediate node we consider the side as having collapsed into a point and the
element face as having collapsed into a triangle. Modification of shape functions
and derivatives due to degeneration is done only for a fully quadratic element face
with eight nodes. This condition is checked in line 293.

13.2 Class for Twenty-node Element

Class ElementQuad3D contains methods that are necessary for implementing
three-dimensional quadratic hexahedral (“brick-type”) elements with the number
of nodes from eight to twenty.

1 package elem;
2

3 import model.*;
4 import material.*;
5 import util.*;
6

7 // 3D 8-20 node isoparametric brick-type element.
8 public class ElementQuad3D extends Element {
9
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10 private static int[][] faceInd = {
11 { 0, 8,12,19,18,11, 6, 7},
12 { 2, 3, 4,10,16,15,14, 9},
13 { 0, 1, 2, 9,14,13,12, 8},
14 { 4, 5, 6,11,18,17,16,10},
15 { 0, 7, 6, 5, 4, 3, 2, 1},
16 {12,13,14,15,16,17,18,19} };
17 private static double[] an = new double[20];
18 private static double[][] dnxy = new double[20][3];
19 // Gauss rules for stiffness matrix, thermal vector,
20 // surface load and stress integration
21 private static GaussRule gk = new GaussRule(14,3);
22 private static GaussRule gh = new GaussRule(3,3);
23 private static GaussRule gf = new GaussRule(3,2);
24 private static GaussRule gs = new GaussRule(2,3);
25

26 // Constructor for 3D 20 node element.
27 public ElementQuad3D() {
28 super ("hex20", 20, 8);
29 }

Information on element faces is specified in array faceInd (lines 10–16). Each
face is defined by eight local node numbers (see Figure 13.1). The order of nodes
is such that nodes are listed in an anticlockwise direction looking from the outer
normal to the face. The starting node is located at any corner of the face. Arrays an
and dnxy (lines 17–18) allocate memory for storing element shape functions and
derivatives of shape functions with respect to global coordinates.

Lines 21–24 construct the Gauss rules for integration of the stiffness matrix (gk,
14-point rule), thermal vector (gh, 3 × 3 × 3 rule), face load (gf, 3 × 3), and for
integration stresses (gs, 2 × 2 × 2).

Constructor ElementQuad3D contains a call to the constructor of the parent
class Element with three parameters: element name “hex20”, the number of ele-
ment nodes (20) and the number of points for storing element stresses (8).

13.2.1 Stiffness Matrix

Method stiffnessMatrix computes a stiffness matrix for a three-dimensional
hexaxedral element. Instead of matrix multiplications done in the two-dimensional
case, here we perform direct computation of stiffness matrix coefficients according
to Equation 12.19, as shown below.

31 // Compute stiffness matrix
32 public void stiffnessMatrix() {
33

34 for (int i = 0; i < 60; i++)
35 for (int j = i; j < 60; j++) kmat[i][j] = 0.;
36 // Material mat
37 mat = (Material)fem.materials.get(matName);
38 if (mat == null) UTIL.errorMsg(
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39 "Element material name: " + matName);
40 double lambda = mat.getLambda();
41 double mu = mat.getMu();
42 double beta = lambda + 2*mu;
43

44 for (int ip = 0; ip < gk.nIntPoints; ip++) {
45 double det = ShapeQuad3D.deriv(gk.xii[ip],
46 gk.eti[ip], gk.zei[ip], ind, xy, dnxy);
47 double dv = det*gk.wi[ip];
48 // Upper symmetrical part of the matrix by rows
49 for (int i = 0; i < 20; i++) { // i = row
50 // dNi/dx, dNi/dy, dNi/dz
51 double dix = dnxy[i][0];
52 double diy = dnxy[i][1];
53 double diz = dnxy[i][2];
54 for (int j = i; j <20; j++) { // j = column
55 // dNj/dx, dNj/dy, dNj/dz
56 double djx = dnxy[j][0];
57 double djy = dnxy[j][1];
58 double djz = dnxy[j][2];
59

60 kmat[i*3 ][j*3 ] += (beta*dix*djx
61 + mu*(diy*djy + diz*djz))*dv;
62 kmat[i*3 ][j*3+1] += (lambda*dix*djy
63 + mu*diy*djx)*dv;
64 kmat[i*3 ][j*3+2] += (lambda*dix*djz
65 + mu*diz*djx)*dv;
66

67 if (j > i) kmat[i*3+1][j*3 ]
68 += (lambda*diy*djx + mu*dix*djy)*dv;
69 kmat[i*3+1][j*3+1] += (beta*diy*djy
70 + mu*(diz*djz + dix*djx))*dv;
71 kmat[i*3+1][j*3+2] += (lambda*diy*djz
72 + mu*diz*djy)*dv;
73

74 if (j > i) {
75 kmat[i*3+2][j*3 ]
76 += (lambda*diz*djx + mu*dix*djz)*dv;
77 kmat[i*3+2][j*3+1]
78 += (lambda*diz*djy + mu*diy*djz)*dv;
79 }
80 kmat[i*3+2][j*3+2] += (beta*diz*djz
81 + mu*(dix*djx + diy*djy))*dv;
82 }
83 }
84 }
85 }

First, we set the upper symmetric part of the stiffness matrix kmat to zero in
lines 34–35. The elastic material properties λ and μ (Lame constants) are obtained
from material object mat in lines 40–42.

The special Gauss rule gk with 14 integration points is used for numerical in-
tegration of coefficients of the stiffness matrix. The integration loop starts at line
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44. The derivatives of shape functions at integration point ip are calculated in lines
45–46. Two loops with parameters i in line 49 and j in line 54 are employed for
treating all node combinations for element nodes. Parameter j starts from value i,
thus computing just the upper symmetric part of the stiffness matrix. The deriva-
tives of shape functions ∂Ni/∂x, ∂Ni/∂y and ∂Ni/∂ z are denoted as dix, diy diz
(lines 51–53). Identifiers djx, djy djz are used for derivatives ∂Nj/∂x, ∂Nj/∂y
and ∂Nj/∂ z in lines 55–57.

Block 3 by 3 of the stiffness matrix is calculated in lines 60–81. For numerical
integration, each computed coefficient is multiplied by dv that is composed of the
determinant of the Jacobian matrix and the integration weight.

13.2.2 Thermal Vector

Method thermalVector computes an element thermal vector according to Equa-
tion 12.20. The algorithm is similar to that for stiffness matrix estimation.

87 // Compute thermal vector
88 public void thermalVector() {
89

90 for (int i = 0; i < 60; i++) evec[i] = 0.;
91

92 mat = (Material)fem.materials.get(matName);
93 double alpha = mat.getAlpha();
94 double lambda = mat.getLambda();
95 double mu = mat.getMu();
96 double g = 3*lambda + 2*mu;
97

98 for (int ip = 0; ip < gh.nIntPoints; ip++) {
99 ShapeQuad3D.shape(gh.xii[ip], gh.eti[ip],
100 gh.zei[ip], ind, an);
101 // Temperature at integration point
102 double t = 0;
103 for (int i = 0; i < 20; i++) t += an[i]*dtn[i];
104 double det = ShapeQuad3D.deriv(gh.xii[ip],
105 gh.eti[ip], gh.zei[ip], ind, xy, dnxy);
106 double dv = g*alpha*t*det*gh.wi[ip];
107 for (int i=0; i<20; i++) {
108 for (int j=0; j<3; j++) {
109 evec[i*3+j] += dnxy[i][j]*dv;
110 }
111 }
112 }
113 }

Elastic material properties are set in lines 92–96. Integration is performed with
the use of the Gauss rule gh inside a loop, which starts in line 98. Shape functions
an estimated in lines 99–100 are used for temperature interpolation in lines 102–
103. Partial derivatives of shape functions are calculated in lines 104–105 and then
used for accumulation of contributions to the thermal vector evec (line 109).
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13.2.3 Nodal Equivalent of a Distributed Load

Method equivFaceLoad performs evaluation of the nodal equivalent of a face
distributed load according to the algorithm presented in Section 12.5. The method
gets objectElemFaceLoad surld, describing application of the distributed load
to element face.

115 // Set nodal equivalent of distributed face load to evec.
116 // surLd - object describing element face load;
117 // returns loaded element face
118 // or -1 (loaded nodes does not match element face)
119 public int equivFaceLoad(ElemFaceLoad surLd) {
120 // Shape functons
121 double an[] = new double[8];
122 // Derivatives of shape functions
123 double xin[][] = new double[8][2];
124 // Tangent vectors along xi and eta
125 double e[][] = new double[2][3];
126 // Normal vector
127 double g[] = new double[3];
128 double ps[] = new double[3];
129

130 for (int i=0; i<60; i++) evec[i] = 0.;
131

132 int loadedFace = surLd.rearrange(faceInd, ind);
133 if (loadedFace == -1) return -1;
134

135 for (int ip=0; ip<gf.nIntPoints; ip++){
136 ShapeQuad3D.shapeDerivFace(gf.xii[ip], gf.eti[ip],
137 ind, an, xin);
138 double p = 0.;
139 for (int i=0; i<8; i++)
140 p += an[i]*surLd.forceAtNodes[i];
141 // Tangent vectors
142 for (int i=0; i<2; i++) {
143 for (int j=0; j<3; j++) {
144 double s = 0;
145 for (int k=0; k<8; k++)
146 s += xin[k][i]
147 *xy[faceInd[loadedFace][k]][j];
148 e[i][j] = s;
149 }
150 }
151 // Normal vector g
152 g[0] = (e[0][1]*e[1][2]-e[1][1]*e[0][2]);
153 g[1] = (e[0][2]*e[1][0]-e[1][2]*e[0][0]);
154 g[2] = (e[0][0]*e[1][1]-e[1][0]*e[0][1]);
155

156 // Element of surface ds
157 double ds = Math.sqrt(g[0]*g[0]
158 + g[1]*g[1] + g[2]*g[2]);
159 if (ds<=0) UTIL.errorMsg(
160 "Negative/zero element face");
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161 // Surface load components ps:
162 // direction=0 - normal, x=1, y=2, z=3
163 if (surLd.direction == 0) {
164 for (int i=0; i<3; i++) ps[i] = p*g[i]/ds;
165 }
166 else {
167 for (int i=0; i<3; i++) ps[i] = 0;
168 ps[surLd.direction-1] = p;
169 }
170 for (int i=0; i<8; i++) {
171 int k = faceInd[loadedFace][i];
172 for (int j=0; j<3; j++) {
173 evec[3*k + j] += an[i]*ps[j]*ds*gf.wi[ip];
174 }
175 }
176 }
177 return loadedFace;
178 }

In the beginning of the method, several working arrays are allocated: an – shape
functions; xin – derivatives of shape functions with respect to local face coordi-
nates ξ , η ; e – a two-dimensional array containing tangent vectors along coordi-
nates ξ and η ; g – a vector normal to the element face.

The surface load surLd is rearranged according to the order of face connectivity
numbers in line 131. If rearrangement is impossible (which implies errors in input
data) then the method returns −1.

The integration rule with 9 points (3 by 3) is used for estimating the nodal equiv-
alent of the surface load (line 135). Two-dimensional shape functions and their
derivatives with respect to local coordinates are calculated in lines 136–137 by
method shapeDerivFace. Shape functions are employed to interpolate nodal
values of distributed load to an integration point. Lines 142–150 determine tangent
vectors along local coordinate axes. The normal vector g is calculated through vec-
tor product of the two tangent vectors in lines 152–154. The direction of the surface
load can be normal to the surface (surLd.direction = 0) or it can be along
a coordinate axis (surLd.direction = 1, 2, 3 corresponds to x, y, and z).
Integration of the surface load is carried out in line 173. The nodal equivalent of the
surface load is accumulated in element vector evec.

13.2.4 Equivalent Stress Vector

A nodal force vector, which is equivalent to the element stress field, is used to esti-
mate equilibrium of the finite element model. This vector is determined according
to Equation 12.21 by method equivStressVector.

180 // Compute equivalent stress vector (with negative sign)
181 public void equivStressVector() {
182

183 for (int i = 0; i < 60; i++) evec[i] = 0.;
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184

185 for (int ip = 0; ip < gs.nIntPoints; ip++) {
186 // Accumulated stress s
187 double[] s = new double[6];
188 for (int i=0; i<6; i++)
189 s[i] = str[ip].sStress[i] + str[ip].dStress[i];
190 double det = ShapeQuad3D.deriv(gs.xii[ip],
191 gs.eti[ip], gs.zei[ip], ind, xy, dnxy);
192 double dv = det * gs.wi[ip];
193

194 for (int i = 0; i < 20; i++) {
195 double a0 = dnxy[i][0];
196 double a1 = dnxy[i][1];
197 double a2 = dnxy[i][2];
198 evec[i*3 ] -= (a0*s[0]+a1*s[3]+a2*s[5])*dv;
199 evec[i*3+1] -= (a1*s[1]+a0*s[3]+a2*s[4])*dv;
200 evec[i*3+2] -= (a2*s[2]+a1*s[4]+a0*s[5])*dv;
201 }
202 }
203 }

The equivalent stress vector is estimated using integration rule gs with 2×2×2
Gauss points. Stress values are computed and stored at reduced integration points
2×2×2 since stresses have the highest precision at these points. This dictates the
usage of the particular integration rule.

Current stresses s are evaluated as a sum of accumulated stress from the previous
load step sStress and stress increment at current load step dStress in lines
188 and 189. Derivatives of shape functions are calculated in lines 190 and 191.
Integration of stresses multiplied by derivatives of shape functions is performed in a
loop from line 194 to line 201. The resulting equivalent vector is set in array evec.

13.2.5 Extrapolation from Integration Points to Nodes

Method extrapolateToNodes takes nodes at reduced integration points and
using trilinear extrapolation computes nodal values of stresses. The parameters of
the method are: fip are stresses at eight integration points, fn are the resulting
stresses at nodes.

205 // Extrapolate stresses from integration points to nodes.
206 // fip [8][6] - stresses at integration points;
207 // fn [20][6] - stresses at nodes (out)
208 public void extrapolateToNodes(double[][] fip,
209 double[][] fn) {
210 // Vertices
211 final int vn[] = {0, 2, 4, 6, 12, 14, 16, 18};
212 // Midside nodes
213 final int mn[] = {8, 9, 10, 11, 8, 9, 10, 11};
214 // Extrapolation matrix
215 final double A = 0.25*(5 + 3*Math.sqrt(3.)),
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216 B = -0.25*(Math.sqrt(3.) + 1),
217 C = 0.25*(Math.sqrt(3.) - 1),
218 D = 0.25*(5 - 3*Math.sqrt(3.));
219 final double lim[][] = {{A, B, B, C, B, C, C, D},
220 {B, C, C, D, A, B, B, C},
221 {C, D, B, C, B, C, A, B},
222 {B, C, A, B, C, D, B, C},
223 {B, A, C, B, C, B, D, C},
224 {C, B, D, C, B, A, C, B},
225 {D, C, C, B, C, B, B, A},
226 {C, B, B, A, D, C, C, B}};
227

228 for (int i = 0; i < 20; i++)
229 for (int j = 0; j < 6; j++) fn[i][j] = 0;
230

231 for (int vertex = 0; vertex < 8; vertex++) {
232 int i = vn[vertex]; // node at vertex
233 int im = i - 1;
234 if (i == 0) im = 7;
235 if (i == 12) im = 19;
236 for (int k = 0; k < 6; k++) {
237 double c = 0.0;
238 for (int j = 0 ; j < 8; j++)
239 c += fip[j][k]*lim[vertex][j];
240 fn[i][k] = c;
241 fn[im][k] += 0.5*c;
242 fn[i+1][k] += 0.5*c;
243 fn[mn[vertex]][k] += 0.5*c;
244 }
245 }
246 }

Arrays vn (line 210) and mn (line 213) contain local numbers of vertex nodes
and some of the midside nodes, correspondingly. Lines 215–226 specialize matrix
lim for trilinear extrapolation from reduced integration points 2×2 to vertex nodes.

A loop over vertex nodes starts in line 231. The integer variable i in line 232
contains local node number for the vertex number. The previous midside node im is
set in lines 233–235. The extrapolated value of a stress component is accumulated
in variable c (line 239). Then, this value is assigned to vertex i in line 240. Half of
the vertex value is added to neighboring midside nodes in the next three lines.

13.2.6 Other Methods

Methods getElemFaces (element face numbers), getStrainsAtIntPoint
(strains at reduced integration points) andgetTemperatureAtIntPoint (tem-
perature at reduced integration point), also necessary for particular element imple-
mentation, are given below.

248 // Get local node numbers for element faces.
249 // returns elementFaces[nFaces][nNodesOnFace]
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250 public int[][] getElemFaces() {
251 return faceInd;
252 }
253

254 // Get strains at integration point.
255 // ip - integration point number (stress);
256 // returns strain vector (ex, ey, ez, gxy, gyz, gzx)
257 public double[] getStrainsAtIntPoint(int ip) {
258

259 // Derivatives of shape functions
260 ShapeQuad3D.deriv(gs.xii[ip], gs.eti[ip], gs.zei[ip],
261 ind, xy, dnxy);
262

263 // Derivatives of displacements
264 double dux,duy,duz,dvx,dvy,dvz,dwx,dwy,dwz;
265 dux=duy=duz=dvx=dvy=dvz=dwx=dwy=dwz = 0;
266 for (int i = 0; i < 20; i++) {
267 double dnx = dnxy[i][0];
268 double dny = dnxy[i][1];
269 double dnz = dnxy[i][2];
270 double u = evec[3*i ];
271 double v = evec[3*i+1];
272 double w = evec[3*i+2];
273 dux += dnx*u; duy += dny*u; duz += dnz*u;
274 dvx += dnx*v; dvy += dny*v; dvz += dnz*v;
275 dwx += dnx*w; dwy += dny*w; dwz += dnz*w;
276 }
277 // Strains
278 double strain[] = new double[6];
279 strain[0] = dux; strain[1] = dvy; strain[2] = dwz;
280 strain[3] = duy + dvx;
281 strain[4] = dvz + dwy;
282 strain[5] = duz + dwx;
283 return strain;
284 }
285

286 // Returns temperature at integration point (stress)
287 public double getTemperatureAtIntPoint(int ip) {
288

289 ShapeQuad3D.shape(gs.xii[ip], gs.eti[ip], gs.zei[ip],
290 ind, an);
291 double t = 0;
292 for (int i=0; i<20; i++) t += an[i]*dtn[i];
293 return t;
294 }
295

296 }

Method getElemFaces returns local numbers for six element faces, which are
assigned to members of array faceInd (lines 10–16).

The strain vector is calculated by method getStrainsAtIntPoint. The
method returns an array of six strain components for the requested integration point
ip, which belongs to the set of reduced integration points 2× 2× 2 (Gauss rule
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gs). Derivatives of shape functions are determined in lines 260–261. Derivatives of
displacements with respect to coordinates x, y, and z are calculated in the loop from
line 266 to line 276. Displacements u, v, and w are taken from array evec, which
should be set previously. Strains in lines 279–282 are determined as combinations
of displacement derivatives.

Method getTemperatureAtIntPoint returns the temperature at the re-
duced integration point ip using shape functions for interpolation of nodal temper-
ature values.

Problems

13.1. Study method degeneration in Section 13.1.1. Suppose that the following
local nodes have the same connectivities numbers:

0 = 1 = 2,
3 = 7,
4 = 5 = 6.

Modify method degeneration to discover this element degeneration. What
modifications should be done in method shape (Section 13.1.2) to correct element
shape functions when this kind of element degeneration occurs?

13.2. Write a Java method that calculates and prints shape function values of the
twenty-node hexahedral element at point ξ = 0.2, η = 0.2, ζ = −0.5. Use method
shape for shape-function calculation.

13.3. Write a method in class ShapeQuad3D that evaluates a value of the Jacobian
determinant at the center ξ = η = ζ = 0 of the hexahedral element shown below.
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The element is a cube with all edges of unit length and the following connectivities:
ind = {1, 2, 3, 4, 5, 6, 7, 8,

9, 10, 11, 12,.
13, 14, 15, 16, 17, 18, 19, 20}.

Use method ShapeQuad3D.deriv. Explain the negative value of the determi-
nant.
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13.4. Read and understand the source code of method stiffnessMatrix that
computes the upper symmetrical part of the stiffness matrix for the three-dimensional
isoparametric quadratic element. Note that the method directly computes 3 × 3
blocks of the stiffness matrix, which correspond to a pair of element nodes. Modify
the code in such a way that: 1) the full stiffness matrix is computed; 2) the lower
symmetrical part of the stiffness matrix is computed.



Chapter 14
Assembly and Solution

Abstract The chapter presents general approaches to assembly of global vectors
and matrices and to solution of finite element equation systems. First, algorithms of
vector disassembly and vector assembly are explained. Then, assembly of a global
matrix from element matrices is considered for full storage of the global matrix.
Two methods of application of displacement boundary conditions are described.
Abstract class Solver is presented. New finite element solvers can be included by
extending this basic class.

14.1 Disassembly and Assembly

The finite element model is composed of finite elements. Mathematically, both the
finite element model and each finite element are described by vectors and matrices.
Disassembly and assembly operations allow transformation from global vectors and
matrices to local (element) vectors and matrices and vice versa. Element connectiv-
ity information is used to perform disassembly and assembly operations.

14.1.1 Disassembly of Vectors

Disassembly is a selection of element vectors from a given global vector. The disas-
sembly operation is described by the matrix relation (3.36).

Disassembly operation (3.36) includes matrix multiplication with the use of a
large matrix [A], which provides correspondence between local and global node
enumerations. Matrix [A] is almost completely composed of zeros. It has only one
nonzero (unit) entry in each row. Instead of matrix multiplication it is possible just
to take vector elements from their global positions and to assign them to appropriate
positions in the element vector. Element connectivities determine which entries of
the global vector should be assigned to element vectors.

161
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Fig. 14.1 (a) Simple finite element mesh with global node numbering and (b) a typical element
with local node numbers

Let us consider an example of a disassembly operation for a mesh shown in
Figure 14.1a. The mesh consists of three elements and eight nodes. Local node
numbering is shown in Figure 14.1b. For simplicity we assume that each node has
one degree of freedom. Then, a global vector, for example, displacement vector
Q, contains eight entries Q1, Q2, ... Q8. The element vector includes four entries.
Illustration of the disassembly procedure is presented in Figure 14.2. Arrows show
copying of entries from the global array to the local array for the second element.
Element connectivity numbers determine indices of global array entries that should
be placed into an element local array. The algorithm of vector disassembly is given
below.

Disassembly of the global vector into element vectors

n = number of degrees of freedom per element
N = total number of degrees of freedom
E = number of elements
C[E,n] = connectivity array
q[n] = element displacement vector
Q[N] = global displacement vector

do e = 1,E
do i = 1,n

f [i] = F[C[e, i]]
end do
Use element vector f

end do

In the above algorithm we assume that connectivity information is related to degrees
of freedom. If the connectivity array contains global node numbers and each node
has more than one degree of freedom then instead of one number the block related to
the node should be selected. For example, in a three-dimensional elasticity problem
each node is associated with three displacements (three degrees of freedom).
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Fig. 14.2 Illustration of disassembly procedure. Assignment of global entries to element vectors
is done according to connectivities

14.1.2 Assembly of Vectors

Vector assembly is the operation of joining element vectors in a global vector. In-
stead of matrix [A], assembly procedures are usually based on direct summation
with the use of the element connectivity array.

Suppose that we need to assemble global load vector F using element load vec-
tors f and connectivity array C. The assembly procedure for the mesh of Figure 14.1
is graphically illustrated in Figure 14.3. Element entries go to global addresses that
correspond to connectivity element numbers.
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Fig. 14.3 Illustration of assembly procedure for vectors

During assembly more than one element vector can contribute to the same entry
of the global vector. In Figure 14.3, we can see that the fifth entry of the global vector
combines coefficients from three elements of the mesh. Because of such possibilities
the assembly algorithm starts by assigning zeros to all entries of the global vector.
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Elementary assembly operation is an addition of a local entry to a corresponding
global entry. A pseudocode description of the assembly algorithm is as follows:

Assembly of the global vector

n = number of degrees of freedom per element
N = total number of degrees of freedom
E = number of elements
C[E,n] = connectivity array
f [n] = element load vector
F[N] = global load vector

do i = 1,N
F [i] = 0

end do
do e = 1,E

Generate f
do i = 1,n

F[C[e, i]] = F [C[e, i]]+ f [i]
end do

end do

Element load vectors are generated when they are necessary for assembly. It can
be seen that the connectivity entry C[e, i] simply provides the address in the global
vector where the ith entry of the load vector for element e goes. We assume that
the connectivity array is written in terms of degrees of freedom. In actual routines
the connectivity array contains node numbers that are transformed to degrees of
freedom for the currently assembled element.

14.1.3 Assembly Algorithm for Matrices

Assembly of element stiffness matrices is necessary for establishing the global stiff-
ness matrix, which, together with the global load vector, sets up the finite element
equation system. An example of the assembly of element stiffness matrix (element
1 of the mesh shown in Figure 14.1a) into the global stiffness matrix is depicted
in Figure 14.4. In the figure, element connectivity numbers are placed near the top
row and near the left column of the element stiffness matrix. A pair of connectivity
numbers determines a place (row and column) in the global matrix where a coeffi-
cient of the element matrix should be added. For example, coefficient k34 is added
to the intersection of the fifth row and the fourth column in the global stiffness ma-
trix. Several entries from different element matrices can be accumulated at the same
address in the global matrix.
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Fig. 14.4 Assembly of element stiffness matrix into the global stiffness matrix

An algorithm of assembly of the global stiffness matrix K from contributions of
element stiffness matrices k can be expressed by the following pseudocode:

Assembly of the global matrix

n = number of degrees of freedom per element
N = total number of degrees of freedom in the domain
E = number of elements
C[E,n] = connectivity array
k[n,n] = element stiffness matrix
K[N,N] = global stiffness matrix

do i = 1,N
do j = 1,N

K[i, j] = 0
end do

end do
do e = 1,E

generate k
do i = 1,n

do j = 1,n
K[C[e, i],C[e, j]] = K[C[e, i],C[e, j]]+ k[i, j]

end do
end do

end do
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Here, for simplicity, element matrices are assembled in the full square global matrix.
Since element stiffness matrices are symmetric and each finite element is connected
to just a few neighbors, the global stiffness matrix is symmetric and sparse. These
properties can be used to economize space and time in finite element solvers.

14.2 Displacement Boundary Conditions

Displacement boundary conditions were not accounted for in the functional of the
total potential energy. They can be applied to the global equation system after its
assembly.

Let us consider application of the displacement boundary condition

Qm = d (14.1)

to the global equation system. Two methods can be used for the specification of the
displacement boundary condition.

14.2.1 Explicit Specification of Displacement Boundary Conditions

In the explicit method, we substitute the known value of the displacement Qm = d
in the mth column and move this column to the right-hand side. Then, we put zeros
into the mth column and mth row of the matrix except for the main diagonal element,
which is replaced by units.

Explicit method:

Fi = Fi −Kimd, i = 1...N, i �= m,

Fm = d,

Km j = 0, j = 1...N,

Kim = 0, i = 1...N,

Kmm = 1.

(14.2)

The explicit method is easy to implement for the global stiffness matrix stored as
a full two-dimensional array. However, in a real finite element program the global
stiffness matrix is stored in some compact format. It is not always easy to access
matrix rows and columns when a matrix is in compact format. Therefore, it is desir-
able to have a method that requires fewer modifications of the stiffness matrix for
boundary-condition specifications.
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14.2.2 Method of Large Number

The method of large number uses the fact that computer computations have limited
precision. The results of double-precision computations contain about 15–16 digits.
So, addition 1.0 + 1e−17 produces 1.0 as the result.

Method of large number (M >> Ki j):

Kmm = M,

Fm = Md.
(14.3)

After placing large numbers on the main diagonal and at the right-hand side, all
other coefficients of the current equation are too small to affect computations. The
method of large number is simpler than the explicit method of displacement bound-
ary condition specification. The solution of the finite element problem is the same
for both methods.

14.3 Solution of Finite Element Equations

Practical applications of the finite element method lead to large systems of simulta-
neous linear algebraic equations.

Fortunately, finite element equation systems possess some properties that allow
reduction of storage and computing time. The finite element equation systems are
symmetric, positive-definite, and sparse. Symmetry allows storing of only half of
the matrix, including diagonal entries. Positive-definite matrices are characterized
by large positive entries on the main diagonal. Solution can be carried out without
pivoting. A sparse matrix contains more zero entries than nonzero entries. Sparsity
can be used to economize storage and computations.

Solution methods for linear equation systems can be divided into two large cat-
egories: direct methods and iterative methods. Direct solution methods are usually
used for problems of moderate size. For large problems, iterative methods require
less computing time and hence they are preferable.

Matrix storage formats are closely related to solution methods. So, our plan
of programming implementation of solvers consists in programming abstract class
Solver, which knows nothing about system storage or solution method, and par-
ticular solver classes, which hide storage formats and solution procedures from out-
side.

Abstract class Solver is presented here. In the next chapters, we consider im-
plementation of two solution methods that are widely used in finite element com-
puter codes. The first method is the direct LDU solution with the profile global
stiffness matrix. The second one is the preconditioned conjugate gradient method
with sparse row-wise format of matrix storage.
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14.4 Abstract Solver Class

Abstract class Solver is a parent JavaTM class for particular solvers that realize
different methods for solution of finite element equation systems. A particular solver
should extend class Solver and implement some methods necessary for assembly
and solution of the finite element equation system.

1 package solver;
2

3 import elem.*;
4 import model.*;
5 import fea.FE;
6

7 // Solution of the global equation system
8 public abstract class Solver {
9

10 static FeModel fem;
11 // number of equations
12 static int neq;
13 // length of global stiffness matrix
14 public static int lengthOfGSM;
15 // elem connectivities - degrees of freedom
16 int[] indf;
17 // number of degrees of freedom for element
18 int nindf;
19 // Indicator of new global matrix
20 boolean newMatrix;
21

22 public static enum Solvers {
23 ldu {Solver create()
24 {return new SolverLDU();} },
25 pcg {Solver create()
26 {return new SolverPCG();} };
27 abstract Solver create();
28 }
29

30 public static Solvers solver = Solvers.ldu;
31

32 public static Solver newSolver(FeModel fem) {
33 Solver.fem = fem;
34 neq = fem.nEq;
35 return solver.create();
36 }
37

38 // Assemble global stiffnes matrix
39 public void assembleGSM() {
40 Element elm;
41 indf = new int[FE.maxNodesPerElem*fem.nDf];
42

43 for (int iel=0; iel<fem.nEl; iel++) {
44 for (int i=0; i<fem.elems[iel].ind.length; i++) {
45 for (int k=0; k<fem.nDf; k++)
46 indf[fem.nDf*i+k] =
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47 (fem.elems[iel].ind[i]-1)*fem.nDf+k+1;
48 }
49 nindf = fem.elems[iel].ind.length*fem.nDf;
50 elm = fem.elems[iel];
51 elm.setElemXy();
52 elm.stiffnessMatrix();
53 assembleESM();
54 }
55 // Indicate that new global matrix appeared
56 newMatrix = true;
57 }
58

59 // Add element stiffness matrix to GSM
60 void assembleESM() {}
61

62 // Solve global equation system
63 // x - right-hand side/solution (in/out)
64 public int solve(double x[]) {
65 return 0;
66 }
67

68 }

In the beginning of class Solver there are declarations of the following items:

fem – FeModel object describing the finite element model;

neq – number of equations in the finite element equation system;

lengthOfGSM – length of the global stiffness matrix in words set by a particu-
lar solver;

indf – array of element connectivities expressed as degrees of freedom;

nindf – number of degrees of freedom for current element;

newMatrix – boolean variable, an indicator of the matrix state; for a newly
created matrix it has true value.

It is supposed that other solver classes will be placed in package solver and all
the above data will be available for them.

Java enum Solvers is used for storing symbolic names of solvers and for
calling solver constructors (lines 22–28). It contains two solvers, which we are going
to implement further:

ldu – direct equation solver based on LDU matrix decomposition;

pcg – preconditioned conjugate gradient solver.

Each solver record implements method create that returns a corresponding solver
object. If we want to add another solver then it is necessary to create a class for this
solver and to include its reference in enum Solvers.

Line 30 specifies that the default solver is the LDU direct solver. Static method
newSolver (lines 32–36) returns a Solver object depending on the value of
solver, which can be specified during input of data for the finite element model.
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Method assembleGSM performs assembly of the global stiffness matrix. The
loop over all finite elements starts in line 43. Lines 44–48 create element connectiv-
ities indf in terms of degrees of freedom. Both node numbers in element connec-
tivities ind and degrees of freedom in array indf start from 1. For example, node
3 corresponds to three degrees of freedom 7, 8, 9.

Element object elm is set in line 48. Element methods setElemXy and
stiffnessMatrix (lines 51–52) set element nodal coordinates and compute el-
ement stiffness matrix. Method assembleESM assembles element stiffness matrix
into the global stiffness matrix. Line 56 sets variable newMatrix to a true value
that indicates that a new global matrix has been asembled.

Lines 59–66 contain two empty methods, which should be implemented in a
particular solver class. Method assembleESM() assembles an element stiffness
matrix into a global stiffness matrix. It uses connectivities indf[nindf] for as-
sembly. Method solve solves the global equation system using x as the input for
the right-hand side and as the output for the solution vector. The method returns one
integer parameter that can be used for returning the error state or other information.

14.5 Adding New Equation Solver

The design of abstract class Solver makes it relatively easy to implement an ad-
ditional equation solver in our finite element system. In order to add a new equation
solver it is necessary:

1. To include solver factory method in enum Solvers, similar to lines 19–20,

solverName {Solver create()
{return new SolverClass();} },

where solverName is a solver name in a data input file and SolverClass
is a solver class name. Specification of data item

solver = solverName

will result in using this solver for this problem.

2. To develop class SolverClass that implements methods assembleESM
and solve, shown in lines 59–66.

assembleESM – assembles the stiffness matrix for current finite element.
Element connectivities as degrees of freedom are available from array
indf in class Solver. The i− j entry of the element stiffness matrix
is accessed as Element.kmat[i][j];

int solve(double x[]) – solves the global equation system. Pa-
rameter x represents the right-hand side of the equation system. It should
contain the solution vector after return from method solve. The method
returns the number of iterations if it implements an iterative method, and
zero otherwise.
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Since both element stiffness matrix assembly and solution of the global equation
system are performed by a particular solver, other classes have no knowledge about
the storage format of the global stiffness matrix and solution algorithm.

Problems

14.1. Perform disassembly of the global displacement vector {Q}= {Q1 Q2 . . . Q6}
into three element displacement vectors {qe1}, {qe2}, and {qe3} for the mesh shown
below.

1

2

3

4

5

6

e1

e2

e3

Assume one degree of freedom per node. When creating element connectivities,
start from the lowest node in an element and list nodes in an anticlockwise direction.

14.2. For the mesh given in the previous problem, assemble the element force vec-
tors { f e} into a global force vector {F}. All entries of the element force vectors
{ f e1}, { f e2}, and { f e3} have values 1, 2, and 3, respectively.

14.3. For the mesh of Problem 14.1, assemble element stiffness matrices [ke] into a
global stiffness matrix [K]. The coefficients of element stiffness matrices [ke1], [ke2],
and [ke3] have values 10, 20, and 30, respectively.

14.4. For the global stiffness matrix assembled in Problem 14.3 and for the global
force vector obtained in Problem 14.2, apply displacement boundary conditions

Q1 = 0, Q2 = 0.01, Q6 = 0.02
using a) the explicit method, and b) the method of large number. Assume that com-
putations are performed using Java double type.

14.5. The finite element model has 100 nodes. Each node has two degrees of free-
dom. The global vector consists of the following values: {Q} = {1, 2, 3, ..., 200}.
Using disassembly, select element vector {q} from {Q} for the element with nodal
connectivities {25, 16, 17, 33}.



Chapter 15
Direct Equation Solver

Abstract A direct equation solver based on LDU decomposition is developed. Ac-
cording to the LDU method, a matrix of the equation system is decomposed into
lower triangular, diagonal, and upper triangular matrices. In our implementation of
the LDU solver, the equation system matrix is stored in a symmetric profile for-
mat. Algorithms of matrix assembly, decomposition, forward reduction, and back-
substitution are presented. JavaTM class SolverLDU implements algorithms of the
LDU solver. Tuning of the solver using a blocking technique increases solution
speed by several times.

15.1 LDU Solution Method

Direct equation solvers are computationally efficient for finite element systems of
moderate size. Direct solution methods are preferable for engineering purposes
since they are reliable and the solution time can be easily predicted.

Let us consider the LDU algorithm for the solution of an equation system,

[A]{x} = {b}, (15.1)

where [A] is the equation matrix with coefficients Ai j, {b} is the right-hand side, and
{x} is the unknown vector.

According to the LDU method, solution of the symmetric linear algebraic system
consists of three stages [13]:

Factorization : [A] = [U ]T[D][U ],

Forward solution : {y} = [U ]−T{b},
Back− substitution : {x} = [U ]−1[D]−1{y}.

(15.2)

173
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First, matrix [A] is decomposed into lower triangular [U ]T, diagonal [D], and upper
triangular [U ] matrices. The decomposition phase takes most computing time and
does not require the right-hand side. Forward solution treats the right-side vector.
Back-substitution produces the solution vector.

A matrix of the finite element equation system has good features, which ease
its solution. It is symmetric, sparse, and usually positive-definite. The symmetric
matrix structure allows storage of the symmetric half of the matrix and to oper-
ate on coefficients of this part. Positive-definiteness means that larger coefficients
are grouped near the main diagonal. This helps to simplify the solution procedure
because pivoting is not necessary.

Sparseness of the matrix tremendously decreases storage requirements and op-
eration count in comparison to a fully populated matrix. If the nodes of the finite
element model are numbered in a proper way then nonzero coefficients are located
near the main diagonal of the matrix. The simplest format to store a matrix with
coefficients near the main diagonal is symmetric band storage. However, the only
coefficient located far from the main diagonal makes the bandwidth unacceptable.
A possible and relatively simple way to improve the storage scheme is to use a
profile-storage format.

15.2 Assembly of Matrix in Symmetric Profile Format

Using a symmetric profile format, the global stiffness matrix [A] = Ai j of order N is
stored by columns. Each column starts from the first top nonzero element and ends
at the diagonal element.

The matrix is represented by two arrays:
pcol[N+1] – integer pointer array for columns;
A[pcol[N]] – array of doubles containing matrix coefficients.

The ith element of pcol contains the address of the first column element. The
length of the ith column is given by pcol[i+1]-pcol[i]. The length of the
array A is equal to pcol[N]. We assume that the indices of array A begin from 1.

Filling the global stiffness matrix for the mesh of Figure 14.1 is depicted in Fig-
ure 15.1a. Storage of this matrix in the symmetric profile format is shown in Fig-
ure 15.1b. Array pcol has the following contents:

pcol = {0, 1, 3, 5, 9, 14, 19, 22, 26} .

The first entry of array pcol is always zero and the last entry contains the num-
ber of coefficients in array A (or pointer to a nonexistent column after the matrix
end).

It should be noted that proper node ordering can decrease the matrix profile sig-
nificantly. Usually, node-ordering algorithms are based on some heuristic methods
because the full ordering problem seeking the global minimum is too time consum-
ing.
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Fig. 15.1 Fill of the global stiffness matrix (a) and its symmetric profile storage by columns (b)

An algorithm for the creation of pointer array pcol using connectivities of finite
elements can be explained with the following pseudocode.

Profile of symmetric part of the matrix
n = number of degrees of freedom per element
N = total number of degrees of freedom in the domain
E = number of elements
C[E,n] = connectivity array
p[N + 1] = pointers to column tops
do i = 1,N + 1

p[i] = 0
end do
Compute column heights
do e = 1,E

do j = 1,n
do k = 1,n

p[C[e, j]+ 1] = max(p[C[e, j]+ 1],C[e, j]−C[e,k])
end do

end do
end do
Transform column height to pointers
do i = 2,N + 1

p[i] = p[i−1]+ p[i]
end do

As usual, we present an algorithm using indexes counted from one as in Fig-
ure 15.1a. However, pointer array p starts from zero as in Figure 15.1b. First, we put
zeros at all entries of pointer array p. Then, in a loop over all elements, heights of
columns from the main diagonal of the matrix are computed as the maximum differ-
ences between connectivity numbers. Column heights are stored in array p with a
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shift (+1), i.e., the height for column i is placed in p[i+1]. Finally, column heights
are transformed to column pointers by simple accumulation of previous column
heights.

In the algorithm, it is assumed that we use connectivities for degrees of freedom.
In the program implementation it is more efficient and not complicated to employ
nodal connectivities for column-height calculation and to make conversion from
nodes to degrees of freedom during transformation to column pointers.

We shall present solution algorithms in full matrix notation Ai j. Thus, it is nec-
essary to have relations between two-index notation for the global stiffness matrix
Ai j and one-dimensional array A used in a Java program. The location of the first
nonzero element in the ith column of the matrix [A] is given by the function

FN(i) = i− (pcol[i+ 1]− pcol[i])+1). (15.3)

The following correspondence relations can be easily obtained for a transition from
two-index notation Ai j to Java notation for a one-dimensional array A:

Ai j → A[i− j + pcol[ j + 1]−1]. (15.4)

Here, i, j are row and column numbers, respectively.
Below, we present the beginning of class SolverLDU, which contains class

constructor and methods for creation of the matrix profile and assembly of the global
stiffness matrix. The class belongs to package solver and extends abstract class
Solver.

1 package solver;
2

3 import fea.*;
4 import model.*;
5 import elem.*;
6

7 import java.util.ListIterator;
8

9 // Profile LDU symmetric solver.
10 // Upper symmetric part of the global stiffness matrix is
11 // stored by columns of variable height (profile storage).
12 public class SolverLDU extends Solver {
13

14 // Pointers to matrix columns
15 private int[] pcol;
16 // Global stiffness matrix
17 private double[] A;
18

19 // Constructor for LDU symmetric solver.
20 public SolverLDU() {
21 // Create profile of the global stiffness matrix
22 setProfile();
23 A = new double[pcol[neq]];
24 }
25

26 // Calculate profile of GSM: set column pointers pcol[]
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27 private void setProfile() {
28 pcol = new int[neq + 1];
29 for (int i = 0; i < neq+1; i++) pcol[i] = 0;
30

31 for (int iel = 0; iel < fem.nEl; iel++) {
32 for (int jind : fem.elems[iel].ind) {
33 // Calculate profile: nodal hypercolumn length
34 // is in the first entry for a hypercolumn
35 if (jind > 0) {
36 int ncol = (jind - 1) * fem.nDf + 1;
37 int icolh = pcol[ncol];
38 for (int kind : fem.elems[iel].ind) {
39 if (kind > 0) icolh =
40 Math.max(icolh, jind - kind);
41 }
42 pcol[ncol] = icolh;
43 }
44 }
45 }
46 // Transform hypercolumn lengths to column addresses
47 int ic = 0;
48 for (int i = 0; i < fem.nNod; i++) {
49 int icolh = pcol[i*fem.nDf + 1]*fem.nDf;
50 for (int j = 0; j < fem.nDf; j++) {
51 ic++;
52 icolh++;
53 pcol[ic] = pcol[ic - 1] + icolh;
54 }
55 }
56 lengthOfGSM = pcol[neq];
57 }
58

59 // Assemble element matrix to the global stiffness matrix
60 public void assembleESM() {
61 // Assemble all contributions to the upper part of GSM
62 for (int j = 0; j < nindf; j++) {
63 int jj = indf[j] - 1;
64 if (jj >= 0) {
65 for (int i = 0; i < nindf; i++) {
66 int ii = indf[i] - 1;
67 if (ii >= 0) {
68 // Profile format (columns top->bottom)
69 if (ii <= jj) {
70 int iad = pcol[jj+1] - jj + ii - 1;
71 if (i <= j)
72 A[iad] += Element.kmat[i][j];
73 else
74 A[iad] += Element.kmat[j][i];
75 }
76 }
77 }
78 }
79 }
80 }
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The array of pointers to matrix columns pcol and the symmetric part of the
global stiffness matrix A are declared in lines 15 and 17. Constructor SolverLDU
creates a profile of the equation system matrix (method setProfile) and allo-
cates memory for the global stiffness matrix A.

Method setProfile calculates pointers to columns of matrix A in order to
store the matrix in the symmetric profile format. Line 29 sets entries of column
pointer array pcol to zero.

A loop over elements of the finite element model in lines 31–45 calculates col-
umn heights using nodal connectivities. Each node of the finite element model cor-
responds to a hypercolumn in matrix A (two columns in the two-dimensional case
or three columns in the three-dimensional case). Nodal heights of hypercolumns
are placed as the first entry of the next hypercolumn. Lines 47–55 transform nodal
heights to actual column heights for all columns of the symmetric part of matrix
A. Statement 56 sets the length of the global stiffness matrix that is later used for
output.

Method assembleESM assembles the stiffness matrix of the current element
into the global stiffness matrix. This method is necessary in any solver. The method
uses element connectivitiesindf, which correspond to degrees of freedom. Assem-
bly operation is performed for nonzero connectivity numbers (reminder: zero con-
nectivity numbers can be used for absent midside nodes). An address in the global
stiffness matrix (line 70) is determined according to Equation 15.4. All entries of
the element stiffness matrix are considered in the assembly process. It is noted that
element classes provide just the upper symmetric part of element stiffness matrices.
If an entry from the lower part of the element stiffness matrix is necessary for com-
putations then the symmetric entry is employed (compare statements in lines 72 and
74).

15.3 LDU Solution Algorithm

Development of the solver requires implementation of method solve, which per-
forms solution of the finite element equation system.

82 // Solve equation system by direct LDU method.
83 // x - right-hand side/solution (in/out)
84 public int solve(double x[]) {
85

86 if (newMatrix) {
87 displacementBC();
88 if (FE.tunedSolver) lduDecompositionTuned();
89 else lduDecomposition();
90 newMatrix = false;
91 }
92 lduFrwdBksb(x);
93 return 0;
94 }
95
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96 // Apply displacement boundary conditions
97 private void displacementBC() {
98

99 ListIterator it = fem.defDs.listIterator(0);
100 Dof d;
101 while (it.hasNext()) {
102 d = (Dof) it.next();
103 A[pcol[d.dofNum] - 1] = FE.bigValue;
104 }
105 }

Method solve (lines 84–94) obtains the right-hand side vector through its head,
and the resulting solution is placed in the same array. If the matrix is newly assem-
bled (newMatrix = true) then application of displacement boundary condi-
tions (line 87) and LDU decomposition is performed. We will program two variants
of a decomposition method – one normal and the other tuned. After matrix decom-
position, variable newMatrix is set to false. The solution vector x is provided by
method lduFrwdBksb that performs forward reduction and back-substitution for
the right-hand side.

MethoddisplacementBC shown in lines 97–105 applies displacement bound-
ary conditions with the use of the large number algorithm (14.3). ListIterator
object defDs is used to obtain data on degrees of freedom and values of specified
displacements.

Considering computer implementation of the LDU solution algorithm, we first
present an algorithm using two-index notation Ai j for the system matrix [A] stored
in the symmetric profile format. The LDU algorithm of factorization of the system
matrix [A] is as follows:

LDU factorization

do j = 2,N
Cdivt( j)
do i = j,N

CCmod( j, i)
end do

end do
do j = 2,N

Cdiv( j)
end do

Cdivt( j) =
do i = FN( j)), j−1

ti = Ai j/Aii

end do

CCmod( j, i) =
do k = max(FN(i),FN( j)), j−1

A ji = A ji − tkAki
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end do

Cdiv( j) =
do i = FN( j)), j−1

Ai j/ = Aii

end do

Here, N is the number of equations, Cdivt, CCmod, and Cdiv are procedures
performing operations on columns of the matrix, FN(i) is the function (15.3) that
determines a row in the full matrix containing the first nonzero entry in column i.
Most computing time during solution is spent for multiply-add operation in proce-
dure CCmod, since this multiply-add operation appears inside a triple do loop.

Programming implementation of the LDU factorization is shown below.

107 // LDU decomposition for symmetric matrix
108 private int lduDecomposition() {
109 // Working array
110 double[] w = new double[neq];
111

112 // UtDU decomposition
113 for (int j = 1; j < neq; j++) {
114 int jfirst = j - (pcol[j+1] - pcol[j]) + 1;
115 int jj = pcol[j+1] - j - 1;
116 for (int i = jfirst; i < j; i++)
117 w[i] = A[i+jj]/A[pcol[i+1] - 1];
118 for (int i = j; i < neq; i++) {
119 int ifirst = i - (pcol[i+1] - pcol[i]) + 1;
120 int ii = pcol[i+1] - i - 1;
121 double s = 0.0;
122 for (int m = Math.max(jfirst, ifirst);
123 m < j; m++) s += A[m+ii]*w[m];
124 A[j+ii] -= s;
125 }
126 }
127 for (int j = 0; j < neq; j++) {
128 int jfirst = j - (pcol[j+1] - pcol[j]) + 1;
129 int jj = pcol[j+1] - j - 1;
130 for (int i = jfirst; i < j; i++)
131 A[i+jj] /= A[pcol[i+1] - 1];
132 }
133 return 0;
134 }

Implementation of procedures Cdivt, CCmod, and Cdiv is contained in lines
116–117, 119–124 and 128–131, respectively. Values of integer variables ifirst,
jfirst correspond to values produced by FN(i) and FN( j). Equation 15.4 is em-
ployed for transforming two-index array entries Ai j into members of A[].
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Forward reduction and back-substitution for right-hand vector b are given by the
pseudocode:

Forward reduction

do j = 2,N
do i = FN( j), j−1

b j = b j −Ai j ∗ bi

end do
end do

Back substitution
do j = 1,N

b j = b j/A j j

end do
do j = N,1,−1

do i = FN( j), j−1
bi = bi −Ai j ∗ b j

end do
end do

The resulting solution is obtained in vector b replacing the specified right-hand
side. The listing of method lduFrwdBksb, which implements the forward reduc-
tion and back-substitution algorithm, is shown below.

136 // Forward reduction and backsubstitution
137 private void lduFrwdBksb(double[] x) {
138

139 // b =(U)-T*b
140 for (int j = 1; j < neq; j++) {
141 int jfirst = j - (pcol[j+1] - pcol[j]) + 1;
142 int jj = pcol[j+1] - j - 1;
143 for (int i = jfirst; i < j; i++)
144 x[j] -= A[i+jj]*x[i];
145 }
146 // b = (U)-1*(D)-1*b
147 for (int i = neq - 1; i >= 0; i--) {
148 x[i] /= A[pcol[i+1] - 1];
149 for (int j = i + 1; j < neq; j++) {
150 int jfirst = j - (pcol[j+1] - pcol[j]) + 1;
151 if (i >= jfirst) {
152 int jj = pcol[j+1] - j - 1;
153 x[i] -= A[i+jj]*x[j];
154 }
155 }
156 }
157 }

Forward reduction of the right-hand side x is performed in lines 140–145. Back-
substitution loop in lines 147–156 gives the solution in array x.



182 15 Direct Equation Solver

(a) (b)

j

tk Aki tkj Aki
tkj+1 Aki+1
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ii

Fig. 15.2 In normal LDU decomposition two operands are involved in one floating-point operation
inside the inner loop (a). Tuning with block size 2: four operands and four operations (b)

15.4 Tuning of the LDU Factorization

The triple do loop that takes most time of LDU decomposition is contained in the
procedure CCmod presented in Section 15.3. One column of the matrix is used to
modify another column inside the inner do loop as shown in Figure 15.2a. Operands
tk and Aki are used in the algorithm CCmod of a column modification. Array t con-
tains the modified matrix column j. Two operands should be loaded from memory
in order to perform one floating-point multiply-add operation. Modern processors
overlap data loads from memory and data stores to memory with arithmetic oper-
ations. Usually, load (store) time is equal to time of multiply-add operation. If the
number of data loads and stores is larger than the number of arithmetic operations
the processor idles for some time waiting for data transfer.

Data loads can be economized by tuning LDU factorization CCmod with the use
of a blocking technique. With a blocking technique [23] one column block modifies
the other column block. An algorithm of tuned LDU decomposition with block size
d = 2 is given below.

Tuned LDU factorization
do j = 1,N,d

Bdivt( j,d)
do i = j + d,N,d

BBmod( j, i)
end do

end do
do j = 2,N

Cdiv( j)
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end do

Bdivt(k,d) =
do j = k,k + d−1

do i = FN(k)), j−1
ti j = Ai j/Aii

end do
do i = j,k + d−1

do l = max(FN( j),FN(i)), j−1
A ji = A ji − tl jAli

end do
end do

end do

BBmod( j, i,d = 2) =
do k = max(FN( j),FN(i)), j−1

A ji = A ji − tk jAki

A j+1i = A j+1i − tk j+1Aki

A ji+1 = A ji+1 − tk jAki+1
A j+1i+1 = A j+1i+1 − tk j+1Aki+1

end do
if j >= FN( j)then

A j+1i = A j+1i − t j j+1A ji

A j+1i+1 = A j+1i+1 − t j j+1A ji+1

end if

Procedure BBmod( j, i,d) performs modification of a column block, which starts
from column i, by a column block, which starts from column j and contains d
columns. Operands of the inner triple loop tk j, tk j+1, Aki and Aki+1 are shown in
Figure 15.2b. The pseudocode given above reveals that for block size d = 2 the four
operands are used in four multiply-add operations. This provides a better balance
between data loading and processing. Such a block size is suitable for solution of
two-dimensional problems since the block size is equal to the number of degrees of
freedom per node. In three-dimensional problems, where each node contains three
degrees of freedom, block size d = 3 is used. In this case, nine arithmetic operations
are done on six data items. The tuned algorithm assumes that columns in the block
start at the same row of the full matrix A. This is fulfilled automatically if the column
block contains columns, which are related to one node of the finite element model.
Implementation of the tuned LDU decomposition for two- and three-dimensional
finite element problems is as follows.

159 // Tuned LDU decomposition for symmetric matrix
160 // (block-block tuning, block size = 2 - 2D; 3 - 3D)
161 private int lduDecompositionTuned() {
162 double s0, s1, s2, t0, t1, t2, u0, u1, u2;
163 int ndf = fem.nDf;
164 double w[] = new double[ndf*neq];



184 15 Direct Equation Solver

165 double z[] = new double[neq];
166

167 int maxcol = 0;
168 for (int i = 0; i < neq; i++)
169 maxcol = Math.max(maxcol, pcol[i+1] - pcol[i]);
170

171 // UtDU decomposition
172 for (int i = 0; i < neq; i++)
173 z[i] = 1.0/A[pcol[i+1]-1];
174

175 for (int jc = 1; jc <= neq; jc += ndf) {
176 int jfirst = jc - (pcol[jc+1-1] - pcol[jc-1]) + 1;
177 int n1 = pcol[jc+ndf-1] - pcol[jc+ndf-2];
178 int jw = n1 - (jc + ndf - 1);
179 for (int j = jc; j < jc + ndf; j++) {
180 int jj = pcol[j] - j;
181 for (int i = jfirst; i < j; i++)
182 w[i+jw+n1*(j-jc)-1] = A[i+jj-1]*z[i-1];
183 for (int i = j; i < jc + ndf; i++) {
184 int ifirst = i - (pcol[i] - pcol[i-1]) + 1;
185 int ii = pcol[i] - i;
186 s0 = 0.0;
187 for (int m = Math.max(jfirst, ifirst);
188 m < j; m++)
189 s0 += A[m+ii-1]*w[m+jw+n1*(j-jc)-1];
190 A[j+ii-1] -= s0;
191 }
192 z[j-1] = 1.0/A[pcol[j]-1];
193 w[(j-jc+1)*n1-1] = z[j-1];
194 }
195 if (ndf == 2) {
196 for (int i = jc+ndf;
197 i<Math.min(neq, jc+ndf+maxcol); i+=ndf) {
198 int ifirst = i - (pcol[i] - pcol[i-1]) + 1;
199 int ii = pcol[i]-i;
200 int ii1 = pcol[i+1]-(i+1);
201 s0 = s1 = t0 = t1 = 0;
202 for (int m = Math.max(jfirst, ifirst)-1;
203 m < jc-1; m++) {
204 s0 += A[m+ii]*w[m+jw];
205 s1 += A[m+ii]*w[m+jw+n1];
206 t0 += A[m+ii1]*w[m+jw];
207 t1 += A[m+ii1]*w[m+jw+n1];
208 }
209 if (jc >= ifirst) {
210 A[jc+ii-1] -= s0;
211 A[jc+ii1-1] -= t0;
212 s1 += A[jc+ii-1]*w[jc+jw+n1-1];
213 A[jc+1+ii-1] -= s1;
214 t1 += A[jc+ii1-1]*w[jc+jw+n1-1];
215 A[jc+1+ii1-1] -= t1;
216 }
217 }
218 }
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219 else { // tuned for nDf = 3
220 for (int i = jc+ndf;
221 i<Math.min(neq, jc+ndf+maxcol); i+=ndf) {
222 int ifirst = i - (pcol[i] - pcol[i-1]) + 1;
223 int ii = pcol[i]-i;
224 int ii1 = pcol[i+1]-(i+1);
225 s0 = s1 = t0 = t1 = 0;
226 int ii2 = pcol[i+2]-(i+2);
227 s2 = t2 = u0 = u1 = u2 = 0;
228 for (int m = Math.max(jfirst, ifirst)-1;
229 m < jc-1; m++) {
230 s0 += A[m+ii]*w[m+jw];
231 s1 += A[m+ii]*w[m+jw+n1];
232 s2 += A[m+ii]*w[m+jw+2*n1];
233 t0 += A[m+ii1]*w[m+jw];
234 t1 += A[m+ii1]*w[m+jw+n1];
235 t2 += A[m+ii1]*w[m+jw+2*n1];
236 u0 += A[m+ii2]*w[m+jw];
237 u1 += A[m+ii2]*w[m+jw+n1];
238 u2 += A[m+ii2]*w[m+jw+2*n1];
239 }
240 if (jc >= ifirst) {
241 A[jc+ii-1] -= s0;
242 A[jc+ii1-1] -= t0;
243 s1 += A[jc+ii-1]*w[jc+jw+n1-1];
244 A[jc+1+ii-1] -= s1;
245 t1 += A[jc+ii1-1]*w[jc+jw+n1-1];
246 A[jc+1+ii1-1] -= t1;
247 A[jc+ii2-1] -= u0;
248 u1 += A[jc+ii2-1]*w[jc+jw+n1-1];
249 A[jc+1+ii2-1] -= u1;
250 s2 += A[jc+ii-1]*w[jc+jw+2*n1-1]
251 +A[jc+1+ii-1]*w[jc+jw+1+2*n1-1];
252 A[jc+2+ii-1] -= s2;
253 t2 += A[jc+ii1-1]*w[jc+jw+2*n1-1]
254 +A[jc+1+ii1-1]*w[jc+jw+1+2*n1-1];
255 A[jc+2+ii1-1] -= t2;
256 u2 += A[jc+ii2-1]*w[jc+jw+2*n1-1]
257 +A[jc+1+ii2-1]*w[jc+jw+1+2*n1-1];
258 A[jc+2+ii2-1] -= u2;
259 }
260 }
261 }
262 }
263 for (int j = 1; j <= neq; j++) {
264 int jfirst = j - (pcol[j+1-1] - pcol[j-1]) + 1;
265 int jj = pcol[j+1-1] - j;
266 for (int i = jfirst; i < j; i++)
267 A[i+jj-1] *= z[i-1];
268 }
269 return 0;
270 }
271

272 }
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Line 164 declares working arrayw, which containsndf vectors with length equal
to the number of equations. Parameter ndf is the number of degrees of freedom per
node. The method employs array w to store a column block for improving decom-
position efficiency. Array z allocated in line 165 is used for storing an inverse of the
diagonal matrix entries in order to avoid repeated divisions (division takes a much
longer time compared to multiplication).

Statements in lines 167–169 calculate maximum column height maxcol among
all columns of the matrix profile. The maxcol is used to restrict a limit of do loop
for the block-block modification.

Block procedure Bdivt is implemented in lines 179–194. Procedure BBmod
performing block-block column modification in the two-dimensional case corre-
sponds to lines 195–218. Lines 219–262 contain statements of BBmod for the three-
dimensional case.

Block-block tuning of the LDU decomposition significantly affects the solution
speed. For C codes the solution time can be decreased by about a factor of two. For
Java code, a tuned solution can take as little as a quarter of the time of an untuned
algorithm.

Problems

15.1. Global stiffness matrix [K] has the following nonzero coefficients:

[K] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 3 −2 1

4 1 −1
−2 4 1

1 3
1 −1 2 −2 −1

1 −2 4 1
−1 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Write down this matrix in the symmetric profile format using pointer array pcol
and matrix coefficient array A. Start the pointer array with zero.

15.2. Calculate the location of the first nonzero coefficient in the last column of the
global stiffness matrix given in Problem 15.1. Use Equation 15.3 and the pointer
array pcol from the solution of the previous problem.

15.3. Using Equation 15.4 calculate the index of matrix entry A45 in the one-
dimensional array A where the matrix is stored in the symmetric profile format.
Employ the data of Problem 15.1.

15.4. Create a main method in class SolverLDU that tests methods for LDU de-
composition lduDecomposition and forward reduction and back-substitution
lduFrwdBksb on some simple equation system.



Chapter 16
Iterative Equation Solver

Abstract This chapter describes solution of finite element equation systems using
an iterative preconditioned gradient method. Since an equation system matrix is not
changed during solution it is useful to store it in in sparse-row format. Algorithms
of matrix assembly and iterative solution using sparse-row format are presented. A
preconditioned gradient solver is implemented as JavaTM class SolverPCG.

16.1 Preconditioned Conjugate Gradient Method

A simple and efficient iterative method widely used for the solution of sparse equa-
tion systems is the conjugate gradient (CG) method. In many cases the convergence
of the CG method can be too slow for practical purposes. The convergence rate can
be improved by preconditioning the equation system,

[M]−1[A]x = [M]−1{b}, (16.1)

where [M]−1 is the inverse of the preconditioning matrix, which in some sense
approximates [A]−1. The simplest preconditioning is diagonal preconditioning, in
which [M] contains only the diagonal entries of the matrix [A]. An algorithm of the
preconditioned conjugate gradient (PCG) method can be presented as the following
sequence of computations [13]:

PCG algorithm

Compute [M]
{x0} = 0
{r0} = {b}
do i = 0,1...

{wi} = [M]−1{ri}
γi = {ri}T{wi}
if i = 0 {pi} = {wi}

187



188 16 Iterative Equation Solver

else {pi} = {wi}+(γi/γi−1){pi−1}
{wi} = [A]{pi}
βi = {pi}T{wi}
{xi} = {xi−1}+(γi/βi){pi}
{ri} = {ri−1}− (γi/βi){pi}
if γi/γ0 < ε exit

end do

Compared to the direct LDU solution method, the PCG algorithm requires less
memory for storage of the equation system. Also, the computational efficiency of
the PCG method is lower than that of the LDU method. Thus, the PCG method is
better suited for the solution of large finite element equation systems.

16.2 Assembly of Matrix in Sparse-row Format

In the above PCG algorithm, matrix [A] is not changed during computations. This
means that no additional fill arises in the solution process. Theoretically, it is possi-
ble to store just the symmetric part of the global stiffness matrix in a compact form.
However, the storage scheme should allow fast matrix-vector multiplication, since
this is the most expensive operation inside the iteration loop of the PCG method.
Recovering some coefficients of a row using symmetry may take considerable time.

Because of this, the sparse-row format for the entire matrix is an efficient storage
scheme for the PCG iterative method. In this scheme, the values of nonzero entries
of matrix [A] are stored by rows along with their corresponding column indexes. An
additional array points to the beginning of each row.

Thus, the matrix in the sparse-row format is determined by the following three
arrays:

prow[N + 1] = pointers to the beginning of each row;
coln[prow[N]] = column numbers for nonzero matrix entries;
A[prow[N]] = array containing nonzero entries of the matrix.

The ith element of prow is the address of the first entry of a row. The number of
entries in the ith row is given by prow[i+1]-prow[i]. The length of arrays
coln and A is equal to prow[N].

Fill of the global stiffness matrix for the mesh of Figure 14.1 is depicted in Fig-
ure 16.1a. Storage of this matrix in sparse-row format is shown in Figure 16.1b.
Arrays pcol and col have the following contents:

prow = {0, 4, 10, 14, 18, 26, 32, 36, 40},
coln = {0, 1, 3, 4; 0, 1, 2, 3, 4, 5;

1, 2, 4, 5; 0, 1, 3, 4;
0, 1, 2, 3, 4, 5, 6, 7; 1, 2, 4, 5, 6, 7;
4, 5, 6, 7; 4, 5, 6, 7 } .
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Fig. 16.1 Fill of the global stiffness matrix (a) and its storage in the sparse-row format (b)

The first entry of array prow is always zero and the last entry contains the number
of coefficients in array A.

An algorithm for creation of pointer array prow and column array coln using
connectivities of finite elements can be presented with the following pseudocode.

Data for the sparse-row format
n = number of degrees of freedom per element
N = total number of degrees of freedom in the domain
E = number of elements
C[E,n] = connectivity array
p[N + 1] = pointers to rows
c[N][..] = lists of column numbers for matrix rows
Determine lists of column numbers
do e = 1,E

do i = 1,n
do j = 1,n

if (C[e, j]−1) is not in c[C[e, i]][..]
store (C[e, j]−1) in c[C[e, i]][..]

end if
end do

end do
end do
Compute pointers
p[0] = 0
do i = 2,N + 1

p[i] = p[i−1] + length of c[i−1]
end do

In the algorithm, loop indexes are counted from one, as in Figure 16.1a. Pointers
p and columns c start from zero as in Figure 16.1b. The resulting column numbers
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are placed in c[N][..], an array of row lists. Using a list for each row is convenient
since the number of nonzero entries in a row is not known in advance.

A triple loop as in assembly is used to form the column numbers. A combination
of element connectivity numbers indicates the row and column numbers. If the col-
umn number is not present in the column list for this row then the column number is
added to the list. The pointer array is created by accumulating lengths of row arrays
for column numbers.

The partial source code of class SolverPCG containing the constructor and the
method for creating the sparse-row structure of the global stiffness matrix is given
below.

1 package solver;
2

3 import fea.*;
4 import model.*;
5 import elem.*;
6 import util.UTIL;
7

8 import java.util.ListIterator;
9

10 // Preconditioned conjugate gradient (PCG) solver.
11 // Matrix storage: sparse-row format
12 public class SolverPCG extends Solver {
13

14 // Pointers to matrix rows
15 private int[] prow;
16 // Column numbers for non-zero values in A
17 private int[] coln;
18 // Nonzero values of the global stiffness matrix by rows
19 private double[] A;
20 // Working arrays
21 private double b[], r[], w[], p[], md[];
22

23 // Constructor for PCG solver.
24 public SolverPCG() {
25

26 // Set structure of matrix A
27 setSparseRowStructure();
28

29 A = new double[prow[neq]];
30 b = new double[neq];
31 r = new double[neq];
32 w = new double[neq];
33 p = new double[neq];
34 md = new double[neq];
35 }
36

37 // Set sparse row structure for storage of nonzero
38 // coefficients of the global stiffness matrix.
39 private void setSparseRowStructure() {
40 prow = new int[neq+1];
41 int lrow = fem.nDf *((fem.nDf == 2) ?
42 FE.maxRow2D : FE.maxRow3D);
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43 coln = new int[neq*lrow];
44 for (int i = 0; i <= fem.nNod; i++)
45 prow[i] = i*lrow*fem.nDf;
46

47 // Create nodal sparse-row matrix structure
48 for (int i = 0; i < prow[fem.nNod]; i++) coln[i] = -1;
49 // Diagonal entry - first in row
50 for (int i = 0; i < fem.nNod; i++) coln[prow[i]] = i;
51 for (int iel = 0; iel < fem.nEl; iel++) {
52 for (int anInd : fem.elems[iel].ind) {
53 if (anInd == 0) continue;
54 int ii = anInd - 1; // Hyperrow
55 for (int anInd1 : fem.elems[iel].ind) {
56 if (anInd1 == 0) continue;
57 int jj = anInd1 - 1; // Hypercolumn
58 int k;
59 for (k=prow[ii]; k<prow[ii+1]; k++) {
60 // If column already exists
61 if (coln[k] == jj) break;
62 if (coln[k] == -1) {
63 coln[k] = jj;
64 break;
65 }
66 }
67 if (k==prow[ii+1]) UTIL.errorMsg(
68 "PCG sparse-row structure: "+
69 "not enough space for node "+ii);
70 }
71 }
72 }
73

74 // Compress
75 int p = 0;
76 for (int i = 0; i < fem.nNod; i++) {
77 int k = prow[i];
78 prow[i] = p;
79 for (int j = k; j < prow[i + 1]; j++) {
80 if (coln[j] == -1) break;
81 coln[p++] = coln[j];
82 }
83 }
84 prow[fem.nNod] = p;
85

86 // Transform to degrees of freedom
87 int pdof = p*fem.nDf *fem.nDf;
88 for (int i = fem.nNod - 1; i >= 0; i--) {
89 int deln = (prow[i+1] - prow[i]);
90 p -= deln;
91 for (int k = fem.nDf; k > 0; k--) {
92 prow[i*fem.nDf+k] = pdof;
93 pdof -= deln*fem.nDf;
94 for (int j = prow[i+1]-prow[i]-1; j>=0; j--) {
95 for (int m = fem.nDf-1; m >= 0; m--) {
96 coln[pdof+j*fem.nDf+m] =
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97 coln[p+j]*fem.nDf + m;
98 }
99 }
100 }
101 }
102 lengthOfGSM = (int) (prow[neq]*1.5);
103 }

In the beginning of class SolverPCG arrays prow, coln, and A describing
the global stiffness matrix in sparse-row format are declared. The constructor calls
the method creating arrays prow and coln (line 27), and allocates all other arrays
necessary for assembly and solution.

Method setSparseRowStructure creates the sparse-row structure for the
global stiffness matrix according to the algorithm given above. In the algorithm we
used the array of lists for storing column numbers for nonzero matrix entries. This
makes the algorithm simpler but implies creation of a large number of objects. To
avoid this we implement the code in a more efficient way using just one-dimensional
arrays. Line 40 allocates array prow, the length of which is known.

The length of column array coln is not known in advance. Because of this
we allocate the same memory for all rows of the matrix using the specified max-
imum average number of nodes per row, FE.maxRow2D and FE.maxRow3D for
two- and three-dimensional problems, respectively. In our implementation the value
of FE.maxRow2D is defined as 21. For a regular mesh of eight-node elements, a
row corresponding to an inner corner node contains entries from twenty one nodes
and a row for a midside node contains entries from thirteen nodes. In the three-
dimensional case, the corresponding numbers of nodes per row are 117 for an inner
vertex node and 57 for a midside node. The value FE.maxRow3D is set to 117. Se-
lection of corner and vertex values as the average number of nodes per row creates
extra space in array coln allowing some irregular nodes surrounded by a larger
number of elements.

Column array coln is allocated in line 43. The average length for each row is
calculated as the number of nodes per row multiplied by the number of degrees of
freedom per node nDf.

Memory for the first nNod rows is used to create column information coln in
terms of nodes. Variable nNod contains the number of nodes for the finite element
model. In line 48, nNod rows of coln are filled with −1.

The loop in lines 51–72 forms lists of nodes connected with the current node
through the surrounding elements. Lines 75–84 compress nodal pointer array prow
and nodal column array coln. Transformation of nodal arrays to degrees of free-
dom is done in lines 87–101. Filling arrays corresponding to degrees of freedom
in reverse order helps preserve nodal arrays located in the beginning of the same
arrays.

Statement 102 sets the value of variable lengthOfGSM that is the length of
the global stiffness matrix in double words. Coefficient 1.5 is used to account for
column pointer pcol consisting of integers.

Method assembleESM performs assembly of an element stiffness matrix to the
global stiffness matrix stored in the sparse-matrix format:
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105 // Assemble element matrix to the global stiffness matrix
106 public void assembleESM() {
107 for (int j = 0; j < nindf; j++) {
108 int jj = indf[j] - 1;
109 if (jj >= 0) {
110 for (int i = 0; i < nindf; i++) {
111 int ii = indf[i] - 1;
112 if (ii >= 0) {
113 // Sparse row format (full matrix)
114 int k;
115 for (k=prow[jj]; k<prow[jj+1]; k++)
116 if (coln[k] == ii) break;
117 if (i <= j) A[k] += Element.kmat[i][j];
118 else A[k] += Element.kmat[j][i];
119 }
120 }
121 }
122 }
123 }

Connectivities in terms of degrees of freedom indf are employed for assembly.
A pair of connectivity numbers defines a row and a column in the global stiffness
matrix. Row number (jj) is used to organize looping over row entries. Column
number ii is sought in array entries coln for the current row. When found, the
coefficient of element stiffness matrix kmat is added to global stiffness matrix A
(lines 117–118). Two statements are necessary since the element methods provide
only the upper symmetric part of the element stiffness matrix.

16.3 PCG Solution

Solution of the equation system by the preconditioned gradient method is performed
by method solve, which should be implemented in each solver class. Listing of
this method and a method applying displacement boundary conditions is given be-
low.

125 // Solve equation system by PCG method.
126 // x - right-hand side/solution (in/out)
127 public int solve(double x[]) {
128

129 if (newMatrix) {
130 displacementBC();
131 newMatrix = false;
132 }
133 return pcg(x);
134 }
135

136 // Apply displacement boundary conditions:
137 private void displacementBC() {
138

139 ListIterator it = fem.defDs.listIterator(0);
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140 Dof d;
141 while (it.hasNext()) {
142 d = (Dof) it.next();
143 int j = d.dofNum-1;
144 for (int k = prow[j]; k < prow[j+1]; k++)
145 if (coln[k] == j) A[k] = FE.bigValue;
146 else A[k] = 0.0;
147 }
148 }

Method solve obtains a right-hand side x as a parameter and replaces it by a
solution vector. If the global stiffness matrix is newly formed then displacement
boundary conditions are applied in line 130. Solution itself is done by method pcg,
which is called in line 132.

Method displacementBC presented in lines 137–148 performs application of
displacement boundary conditions using the method of a large value. According to
this method a number that is much larger than the matrix coefficients is placed on
the matrix main diagonal for a degree of freedom with a prescribed displacements.

The PCG method is implemented in method pcg. This method and two other
methods (computing diagonal preconditioner and matrix-vector product) are pre-
sented below.

150 // PCG solution method.
151 // x - right-hand side/solution (in/out)
152 public int pcg(double x[]) {
153

154 diagonalPreconditioner();
155

156 // Save x[] in b[] and calculate initial x
157 for (int i = 0; i < neq; i++) {
158 b[i] = x[i];
159 x[i] = x[i]*md[i];
160 }
161

162 // r = b - A*x and initinal error
163 matrixVectorProduct(x, r);
164 for (int i = 0; i < neq; i++) r[i] = b[i] - r[i];
165 double gamma0 = 1;
166 double gammai = 1;
167 int iter;
168 for (iter = 0; iter < FE.maxIterPcg; iter++) {
169 // w = (M-1)*r
170 for (int i = 0; i < neq; i++)
171 w[i] = md[i]*r[i];
172 // gam = (r,w)
173 double gammai1 = gammai;
174 gammai = 0;
175 for (int i = 0; i < neq; i++)
176 gammai += r[i]*w[i];
177 if (iter == 0) {
178 gamma0 = gammai;
179 System.arraycopy(w, 0, p, 0, neq);
180 }
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181 else {
182 double rg = gammai /gammai1;
183 for (int i = 0; i < neq; i++)
184 p[i] = w[i] + rg*p[i];
185 }
186 // w = A*p
187 matrixVectorProduct(p, w);
188 double beta = 0;
189 for (int i = 0; i < neq; i++) beta += p[i]*w[i];
190 double alpha = gammai/beta;
191 // Update x and r, calculate error
192 for (int i = 0; i < neq; i++) {
193 x[i] += alpha*p[i];
194 r[i] -= alpha*w[i];
195 }
196 double err = Math.sqrt(gammai /gamma0);
197 if (err < FE.epsPCG) return (iter + 1);
198 }
199 return (iter);
200 }
201

202 // Diagonal preconditioner md = (Diag(A))-1.
203 private void diagonalPreconditioner() {
204 for (int j = 0; j < neq; j++) {
205 int i;
206 for (i = prow[j]; i < prow[j+1]; i++)
207 if (coln[i] == j) break;
208 md[j] = 1.0/A[i];
209 }
210 }
211

212 // Sparse matrix-vector product y = A*x.
213 private void matrixVectorProduct(double x[], double y[]) {
214 if (FE.tunedSolver) {
215 if (fem.nDf == 2) { // tuned for nDf = 2
216 for (int j = 0; j < neq; j++) {
217 double s = 0;
218 for (int i = prow[j]; i < prow[j+1]; i+=2)
219 s += A[i ]*x[coln[i ]]
220 + A[i+1]*x[coln[i+1]];
221 y[j] = s;
222 }
223 }
224 else { // tuned for nDf = 3
225 for (int j = 0; j < neq; j++) {
226 double s = 0;
227 for (int i = prow[j]; i < prow[j+1]; i+=3)
228 s += A[i ]*x[coln[i ]]
229 + A[i+1]*x[coln[i+1]]
230 + A[i+2]*x[coln[i+2]];
231 y[j] = s;
232 }
233 }
234 }
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235 else { // not tuned
236 for (int j = 0; j < neq; j++) {
237 double s = 0;
238 for (int i = prow[j]; i < prow[j+1]; i++)
239 s += A[i]*x[coln[i]];
240 y[j] = s;
241 }
242 }
243 }
244

245 }

Computing a diagonal preconditioner is done in line 154. Lines 203–210 con-
tain method diagonalPreconditioner, which composes the preconditioner
vector of the inverse diagonal entries of the global stiffness matrix.

Solution of the equation system is sought inside the iteration loop (lines 168–
198) according to the PCG algorithm described in Section 16.1. During the iteration
process, the most expensive operation is the matrix-vector multiplication at line 187.

Multiplication of sparse matrix A stored in the sparse-row format by vector x is
performed by method matrixVectorProduct. The result is placed in vector
y. Lines 236–241 implement a conventional algorithm for the sparse matrix-vector
product. Matrix entries A[i] are used sequentially, and entries of vector x are used
more or less randomly.

It appears that the Java compiler is far from producing efficient code. A sparse
matrix-vector product can be tuned in a very simple manner. Tuning is achieved by
unrolling the inner loop and by explicit summation of two (two-dimensional case,
lines 216–222) or three (three-dimensional case, lines 225–232) terms related to one
node. Such tuning increases the speed of the PCG solver by about 1.5 times [24].
It is interesting to note that unrolling two loops (multiplication for a square block
related to a node) decreases the tuning efficiency.

Problems

16.1. A global stiffness matrix [K] has the following appearance:

[K] =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 3 −2 1

4 1 −1
−2 4

1 3
1 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Represent this matrix in sparse-row format by creating row pointers prow, column
numbers coln, and matrix coefficient array A. Index the row pointer array from
zero.
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16.2. The matrix of Problem 16.1 is stored in the sparse-row format. Find the index
of matrix entry A35 in one-dimensional array A using row pointersprow and column
numbers coln.

16.3. Consider a regular mesh of two-dimensional quadrilateral elements. Deter-
mine the maximum number of nonzero coefficients in a row of the global stiffness
matrix provided that the mesh consists of a) linear four-node elements, b) quadratic
eight-node elements.

16.4. A regular three-dimensional mesh is composed of twenty-node brick-type el-
ements. Find the maximum number of nonzero coefficients in a row of the global
stiffness matrix if this row is related to a) a vertex node, b) a midside node.



Chapter 17
Load Data and Load Vector Assembly

Abstract Data for loading cases in solid mechanics problems is described. The
following external loading factors can be specified: concentrated nodal forces, dis-
tributed surface forces, and thermal loading. JavaTM class FeLoadData declares
load data items. Class FeLoad contains methods for input and handling load data.
It includes a method for global load vector assembly.

17.1 Data Describing the Load

External loading factors cause deformation of the finite element model. A global
load vector is the right-hand side of the global finite element equation system. It
is assembled from element and nodal contributions due to various external loading
factors. In this program we consider the following external loading factors:

• concentrated forces applied at nodes;
• distributed forces applied at element faces;
• thermal loading specified as the nodal temperature field.

The data on the load is contained in class FeLoadData belonging to package
model. The class listing is given below.

1 package model;
2

3 import util.FeScanner;
4 import java.util.LinkedList;
5

6 // Load data
7 public class FeLoadData {
8

9 FeScanner RD;
10 public static String loadStepName;
11 // Load scale multiplier
12 double scaleLoad;
13 // Relative residual norm tolerance

199



200 17 Load Data and Load Vector Assembly

14 static double residTolerance = 0.01;
15 // Maximum number of iterations (elastic-plastic problem)
16 static int maxIterNumber = 100;
17 // Degrees of freedom with node forces
18 LinkedList nodForces;
19 // Element face surface loads
20 LinkedList surForces;
21 // Temperature increment
22 public static double[] dtemp;
23

24 // Increment of force load
25 static double[] dpLoad;
26 // Total force load
27 static double[] spLoad;
28 // Increment of fictitious thermal loading
29 static double[] dhLoad;
30 // Displacement increment
31 static double[] dDispl;
32 // Total displacements
33 static double[] sDispl;
34 // Right-hand side of global equation system
35 public static double[] RHS;
36

37 // Working arrays
38 static int[] iw = new int[8];
39 static double[] dw = new double[8];
40 static double[][] box = new double[2][3];
41

42 enum vars {
43 loadstep, scaleload,
44 residtolerance, maxiternumber,
45 nodforce, surforce, boxsurforce, nodtemp,
46 includefile, end
47 }
48

49 }

Data describing the load is declared in lines 10–22:

loadStepName – name for current load step;
scaleLoad – load scale multiplier used for scaling previous load;
residTolerance – relative residual norm tolerance used to stop elastic–
plastic iterations;
maxIterNumber – maximum number of iterations in elastic–plastic problems;
nodForces – linked list for storing nodal forces;
surForces – linked list for storing element face forces;
dtemp – increment of nodal temperature field.

Parameter loadStepName is used for load-step identification. Output files
have names, which include load step names as extensions. In linear elastic problems,
there is not much sense in using scaling of the previous load for obtaining the current
load since the results can also be obtained by scaling. However, in elastic–plastic
problems, using parameter scaleLoad is often useful because it is desirable to
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divide the total load into several increments even for proportional loading. Parame-
ters residTolerance and maxIterNumber are also related to elastic–plastic
problems. The relative residual norm is determined as the norm of the residual vector
divided by the norm of the force load increment. Elastic–plastic iterations stop when
the relative residual norm becomes smaller than the value of residTolerance.
The number of iterations can also be restricted by maxIterNumber.

Objects of concentrated nodal forces nodForces and distributed element face
forces surForces are stored as linked lists since their numbers are not known in
advance. Thermal loading is specified by defining temperature increment values at
the nodes.

Lines 42–47 declare load data names of enum type:

loadstep – load step name;
scaleload – scaling factor for previous load;
residtolerance – relative residual norm tolerance;
maxiternumber – maximum allowable number of iterations;
nodforce – concentrated nodal forces;
surforce – distributed forces applied to element faces;
boxsurforce – distributed surface forces applied inside specified box;
nodtemp – temperature field specified at nodes;
includefile – include file containing load data;
end – end of data for current load step.

17.2 Load Data Input

Class FeLoad extends class FeLoadData and contains methods for input and
handling data describing the load. The constructor of class Feload is presented
below.

1 package model;
2

3 import fea.*;
4 import elem.*;
5 import util.*;
6

7 import java.util.ListIterator;
8 import java.util.LinkedList;
9

10 // Load increment for the finite element model
11 public class FeLoad extends FeLoadData {
12

13 // Finite element model
14 private static FeModel fem;
15 ListIterator itnf, itsf;
16

17 // Construct finite element load.
18 // fem - finite element model
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19 public FeLoad(FeModel fem) {
20 FeLoad.fem = fem;
21 RD = FeModel.RD;
22

23 spLoad = new double[fem.nEq];
24 dpLoad = new double[fem.nEq];
25 dhLoad = new double[fem.nEq];
26 sDispl = new double[fem.nEq];
27 dDispl = new double[fem.nEq];
28 RHS = new double[fem.nEq];
29

30 if (fem.thermalLoading) {
31 dtemp = new double[fem.nNod];
32 }
33 }

The constructor stores instances of the finite element model fem and the finite
element data scanner RD (lines 20–21). Lines 23–28 allocate six arrays with dimen-
sion equal to the number of equations in the global equation system. Array spLoad
contains entries of the accumulated force load, i.e., the total load minus the fictitious
thermal load. Arrays dpLoad and dhLoad are increments of the global force load
and the fictitious thermal load. Arrays sDispl and dDispl are the total displace-
ment vector and its increment at the current load step. Array RHS is used as a work-
ing array for the right-hand side of the finite element equation system. An array of
nodal temperatures dtemp is allocated if thermal loading is requested when data
for the finite element model is specified.

Load data input is performed by calling method readData. The source code of
this method and related methods follow.

35 // Read data describing load increment.
36 // returns true if load data has been read
37 public boolean readData( ) {
38

39 return readDataFile(RD, true);
40 }
41

42 // Read data fragment for load increment.
43 // newLoad = true - beginning of new load,
44 // = false - continuation of load.
45 // returns true if load data has been read
46 private boolean readDataFile(FeScanner es,
47 boolean newLoad) {
48 if (newLoad) {
49 scaleLoad = 0;
50 nodForces = new LinkedList();
51 itnf = nodForces.listIterator(0);
52 surForces = new LinkedList();
53 itsf = surForces.listIterator(0);
54 if (fem.thermalLoading) {
55 for (int i = 0; i < dtemp.length; i++)
56 dtemp[i] = 0.0;
57 }
58 for (int i=0; i<dDispl.length; i++) dDispl[i] = 0;
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59 }
60

61 if (!es.hasNext()) return false; // No load data
62

63 vars name = null;
64 String s;
65

66 while (es.hasNext()) {
67 String varName = es.next();
68 String varNameLower = varName.toLowerCase();
69 if (varName.equals("#")) {
70 es.nextLine(); continue; }
71 try {
72 name = vars.valueOf(varNameLower);
73 } catch (Exception e) {
74 UTIL.errorMsg(
75 "Variable name is not found: " + varName);
76 }
77

78 switch (name) {
79

80 case loadstep:
81 loadStepName = es.next();
82 break;
83

84 case scaleload:
85 scaleLoad = es.readDouble();
86 break;
87

88 case residtolerance:
89 residTolerance = es.readDouble();
90 break;
91

92 case maxiternumber:
93 maxIterNumber = es.readInt();
94 break;
95

96 case nodforce:
97 readNodalForces(es);
98 break;
99

100 case surforce:
101 readSurForces(es);
102 break;
103

104 case boxsurforce:
105 createBoxSurForces(es);
106 break;
107

108 case nodtemp:
109 dtemp = new double[fem.nNod];
110 for (int i = 0; i < fem.nNod; i++)
111 dtemp[i] = es.readDouble();
112 break;
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113

114 case includefile:
115 s = es.next().toLowerCase();
116 FeScanner R = new FeScanner(s);
117 readDataFile(R, false);
118 break;
119

120 case end:
121 return true;
122 }
123 }
124 return true;
125 }
126

127

128 // Read data for specified nodal forces
129 private void readNodalForces(FeScanner es) {
130

131 String s = es.next().toLowerCase();
132 int idf = UTIL.direction(s);
133 if (idf == -1) UTIL.errorMsg("nodForce" +
134 " direction should be x/y/z. Specified:"+s);
135

136 if (!es.hasNextDouble()) UTIL.errorMsg(
137 "nodForce value is not a double: " + es.next());
138 double vd = es.nextDouble();
139

140 itnf = es.readNumberList(itnf, idf, fem.nDim, vd);
141 }
142

143 // Read data for surface forces (element face loading):
144 // direction, iel, nFaceNodes, faceNodes, forcesAtNodes.
145 private void readSurForces(FeScanner es) {
146

147 String s = es.next().toLowerCase();
148 int dir = UTIL.direction(s);
149 if (dir == -1) UTIL.errorMsg("surForce" +
150 " direction should be x/y/z/n. Specified:"+s);
151 int iel = es.readInt();
152 int nFaceNodes = es.readInt();
153 for (int i=0; i<nFaceNodes; i++)
154 iw[i] = es.readInt();
155 for (int i=0; i<nFaceNodes; i++)
156 dw[i] = es.readDouble();
157 itsf.add(new ElemFaceLoad(iel-1,nFaceNodes,dir,iw,dw));
158 }
159

160 // Create data for distributed surface load
161 // specified inside a box
162 private void createBoxSurForces(FeScanner es) {
163 int[][] faces;
164 String s = es.next().toLowerCase();
165 int dir = UTIL.direction(s);
166 if (dir == -1) UTIL.errorMsg("boxSurForce" +



17.2 Load Data Input 205

167 " direction should be x/y/z/n. Specified:" + s);
168

169 if (!es.hasNextDouble()) UTIL.errorMsg(
170 "boxSurForce value is not a double: " + es.next());
171 double force = es.nextDouble();
172

173 for (int i = 0; i < 2; i++)
174 for (int j = 0; j < fem.nDim; j++)
175 box[i][j] = es.readDouble();
176

177 for (int iel=0; iel<fem.nEl; iel++) {
178 Element el = fem.elems[iel];
179 faces = el.getElemFaces();
180 FACE:
181 for (int[] face : faces) {
182 int nNodes = face.length;
183 for (int inod = 0; inod < nNodes; inod++)
184 iw[inod] = 0;
185 for (int inod = 0; inod < nNodes; inod++) {
186 int iGl = el.ind[face[inod]];
187 if (iGl > 0) {
188 for (int j = 0; j < fem.nDim; j++) {
189 double x =
190 fem.getNodeCoord(iGl-1,j);
191 if (x < box[0][j] || x > box[1][j])
192 continue FACE;
193 }
194 iw[inod] = iGl;
195 }
196 }
197 itsf.add(
198 new ElemFaceLoad(iel,nNodes,dir,iw,force));
199 }
200 }
201 }

Method readData just calls method readDataFile, passing to it data scan-
ner RD and indicating that input of new load data is requested. Actual load data
input is performed in method readDataFile. The first parameter of the method
is data scanner es. If the second parameter newLoad is asserted then statements
in lines 49–58 are executed, thus initializing parameters for the new load increment.
The method returns false if no data is available. If some data is read the true
value is returned.

The data input loop includes lines 66–123. This loop continues while input items
are available for scanner es. The text data item is read to string varName (line 67).
Then it is transformed to lower case varNameLower. The next line checks if the
item is the comment symbol #. In the case of a comment we proceed to the next line
of the scanner and try to read the next data item. If the data item is not the comment
symbol then we try to find the name that corresponds to the string varNameLower
among the enumerated vars. If no correspondence is found then an error message
is communicated using static method errorMsg of class UTIL.
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If varNameLower is discovered among predetermined values in vars then a
switch statement is executed in line 78 and a particular case statement performs
input of the second part of an input statement, which may contain one or more
(sometimes many) input items.

The statements in lines 81, 85, 89, and 93 simply input scalar data:loadStepName
(name for the current load step), scaleLoad (parameter for scaling the pre-
vious load), residTolerance (tolerance for the relative residual norm), and
maxIterNumber (maximum number of iterations).

Data on nodal forces (line 97) is processed by method readNodalForces
(lines 129–141). A direction coded as x/y/z and a double value common for
subsequent node numbers are read in lines 132 and 138. In line 140 method
readNumberList reads the list of node numbers, generates Dof objects, and
adds them to the linked list nodForces. Each degree of freedom object Dof con-
tains a degree of freedom number and a nodal force value.

The statement in line 101 reads surface forces for element faces with the help of
method readSurForces. This method shown in lines 145–158 reads the direc-
tion of the surface load (line 148), the element number (line 151), the number of
nodes on this face (line 152), and the face node numbers and corresponding load
values (lines 153–156). The force direction can have values x/y/z or n. The latter
means that a positive force acts along the external normal to the element face. The
statement in line 157 creates ElemFaceLoad object and adds it to the linked list
surForces. Class ElemFaceLoad designed for storing element face loads will
be presented later in this chapter.

Another possibility for input of the distributed face load is implemented in line
105 that calls method createBoxSurForces. In this case the user specifies a
diagonal of a box. Element faces fully located inside this box are considered loaded
by the distributed force with given direction and value. The source code of method
createBoxSurForces is presented in lines 162–201. The method reads a direc-
tion and a value of the distributed load in lines 165 and 171. Four or six coordinate
values for the box diagonal is input in lines 173–175. Loop iel iterates over all
elements in the model and test all element faces against the box. If all nodes of a
face are inside the box then they are stored in array iw. This array is used to cre-
ate element face load object ElemFaceLoad, which is added to the linked list
surForces.

The temperature field is set by reading the array on nodal temperatures dtemp
in lines 109–111.

Inserting a file containing partial of full load data is implemented in lines 115–
117 (data statement includeFile fileName). A recursive call of method
readDataFile with new data scanner R helps to process load data from the sep-
arate file.

Data statement end (line 120) causes termination of data input for the current
load step.
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17.3 Load Vector Assembly

The global load vector, the right-hand side of the global equation system, is assem-
bled by method assembleRHS that is presented next.

203 // Assemble right-hand side of the global equation system
204 public void assembleRHS() {
205

206 if (scaleLoad != 0.0) {
207 for (int i = 0; i < fem.nEq; i++) {
208 dpLoad[i] *= scaleLoad;
209 dhLoad[i] *= scaleLoad;
210 RHS [i] = dpLoad[i] + dhLoad[i];
211 }
212 return;
213 }
214 for (int i = 0; i < fem.nEq; i++) {
215 dpLoad[i] = 0.0;
216 dhLoad[i] = 0.0;
217 }
218

219 // Nodal forces specified directly
220 itnf = nodForces.listIterator(0);
221 Dof d;
222 while (itnf.hasNext()) {
223 d = (Dof) itnf.next();
224 dpLoad[d.dofNum-1] = d.value;
225 }
226

227 // Surface load at element faces
228 itsf = surForces.listIterator(0);
229 ElemFaceLoad efl;
230 Element elm;
231 while (itsf.hasNext()) {
232 efl =(ElemFaceLoad) itsf.next();
233 elm = fem.elems[efl.iel];
234 elm.setElemXy();
235 if (elm.equivFaceLoad(efl)==-1)
236 UTIL.errorMsg("surForce" +
237 " does not match any face of element: "
238 + efl.iel);
239 elm.assembleElemVector(Element.evec,dpLoad);
240 }
241

242 // Temperature field
243 if (fem.thermalLoading) {
244 for (int iel = 0; iel < fem.nEl; iel++) {
245 elm = fem.elems[iel];
246 elm.setElemXyT();
247 elm.thermalVector();
248 elm.assembleElemVector(Element.evec,dhLoad);
249 }
250 }
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251

252 // Right-hand side = actual load + fictitious load
253 for (int i = 0; i < fem.nEq; i++)
254 RHS[i] = dpLoad[i] + dhLoad[i];
255

256 // Displacement boundary conditions for right-hand side
257 ListIterator itdbc = fem.defDs.listIterator(0);
258 while (itnf.hasNext()) {
259 d = (Dof) itdbc.next();
260 RHS[d.dofNum-1] = FE.bigValue * d.value;
261 }
262 }
263

264 }

A load vector for the current load step can be obtained by scaling the previ-
ous load vector or by assembling a new load vector. If parameter scaleLoad is
nonzero then previous vectors of force load dpLoad and thermal load dhLoad
are scaled and the right-hand side of the equation system RHS is obtained as their
sum in lines 207–211. Otherwise, we start with resetting to zero both dpLoad and
dhLoad vectors.

Assembly of concentrated nodal forces is done in lines 220–225. The list iterator
itnf is used to access all nodal forces stored in degrees of freedom objects Dof.
Values of nodal forces are directly added to the force load vector dpLoad according
to the degrees of freedom associated with them.

Lines 228–240 perform assembly of the surface load specified at element faces.
In this case we look through linked list surForces and rely on element methods
for main operations with surface forces. For each ElemFaceLoad object, nodal
coordinates for the specified element are set (method setElemXy) and method
equivFaceLoad is called to compute the nodal equivalent of the surface load.
Method assembleElemVector in line 239 assembles element vector evec to
global vector dpLoad.

Deformation of the finite element model due to the temperature field is mod-
eled by computing the fictitious element nodal equivalents of temperature ex-
pansion and assembling them to the global thermal vector in lines 243–250. For
each finite element, nodal coordinates and nodal temperatures are set by method
setElemXyT. Method thermalVector computes the element thermal vector
and method assembleElemVector assembles it to the global thermal vector
dhLoad (lines 247–248).

The sum of global force dpLoad and thermal dhLoad vectors gives the right-
hand side vector of the global equation system RHS.

Finally, the right-hand side vector is modified in lines 257–261 to take into
account displacement boundary conditions. Values of specified displacements are
taken from linked list defDs, and, after multiplication by the large number, are
used for replacement of coefficients in the right-hand side.
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17.4 Element Face Load

Class ElemFaceLoad is designed for storing data on a distributed load at an ele-
ment face. The following variables and arrays describe the element face load:

iel – element number;
direction – force direction, x, y, z – along coordinate axes, n – along the
external normal to an element face;
faceNodes – global numbers of face nodes in arbitrary order;
forceAtNodes – values of distributed force intensity in the same order as the
face nodes.

1 package model;
2

3 // Element face load
4 public class ElemFaceLoad {
5 // Element number (start with 0)
6 public int iel;
7 // Direction: 1-x, 2-y, 3-z, 0-normal
8 public int direction;
9 public int[] faceNodes;

10 public double[] forceAtNodes;
11

12 ElemFaceLoad(int iel, int nFaceNodes, int direction,
13 int[] faceNodes, double[] forceAtNodes) {
14 this.iel = iel;
15 this.direction = direction;
16 this.faceNodes = new int[nFaceNodes];
17 this.forceAtNodes = new double[nFaceNodes];
18

19 for (int i=0; i<nFaceNodes; i++) {
20 this.faceNodes[i] = faceNodes[i];
21 this.forceAtNodes[i] = forceAtNodes[i];
22 }
23 }
24

25 ElemFaceLoad(int iel, int nFaceNodes, int direction,
26 int[] faceNodes, double force) {
27 this.iel = iel;
28 this.direction = direction;
29 this.faceNodes = new int[nFaceNodes];
30 this.forceAtNodes = new double[nFaceNodes];
31

32 for (int i=0; i<nFaceNodes; i++) {
33 this.faceNodes[i] = faceNodes[i];
34 this.forceAtNodes[i] = force;
35 }
36 }
37

38 // Rearrange surface load (faceNodes[] and ForcesAtNodes[])
39 // according to order in element faces.
40 // faces - local numbers (from zero) of element faces,
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41 // ind - element connectivities.
42 // returns loaded face number or -1 if no match
43 // between ind[] and load data.
44 public int rearrange(int[][] faces, int[] ind) {
45

46 int perm[] = new int[8];
47 double fw[] = new double[8];
48 int loadedFace = -1;
49

50 FACE: for (int iface=0; iface<faces.length; iface++) {
51 int nNodes = faces[iface].length;
52 for (int inod = 0; inod < nNodes; inod++)
53 perm[inod] = -1;
54 for (int inod = 0; inod < nNodes; inod++) {
55 int iGlob = ind[faces[iface][inod]];
56 if (iGlob > 0) {
57 boolean EQ = false;
58 int i;
59 for (i = 0; i < nNodes; i++)
60 if (faceNodes[i] == iGlob) {
61 EQ = true;
62 break;
63 }
64 if (!EQ) continue FACE;
65 perm[inod] = i;
66 }
67 }
68 loadedFace = iface;
69 for (int inod = 0; inod < nNodes; inod++) {
70 faceNodes[inod] = ind[faces[iface][inod]];
71 fw[inod] = forceAtNodes[inod];
72 }
73 for (int inod = 0; inod < nNodes; inod++)
74 forceAtNodes[inod] =
75 (perm[inod] == -1) ? 0.0 : fw[perm[inod]];
76 }
77 return loadedFace;
78 }
79

80 }

Two constructors of the class simply store element face data. In the first construc-
tor, forces at nodes can have different values. The second constructor gets a constant
force intensity and stores it for each face node.

The class includes method rearrange, which rearranges face nodes and force
values according to the order used in element classes. This method is called by
element methods responsible for computing nodal equivalents of distributed load.
The method gets local node numbers for all element faces faces and element
connectivities ind. This data allows global node numbers to be obtained for faces
of this element. Variable iGlob in line 55 represents the global node number for
local node number inod at face iface. Comparing iGlob with node numbers in
array faceNodes helps to create the permutation array perm. Changing the order
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of force values at face nodes forceAtNodes is performed in lines 73–75 using
the permutation array.

Problems

17.1. Class FeLoad implements three load types: concentrated nodal forces, dis-
tributed forces applied to element faces, and thermal loading. Propose other load
types that can be useful in finite element programs.

17.2. Suppose a new scalar parameter s0 is needed in class FeLoad. The param-
eter should be read from the input file. Suggest code modifications necessary for
introduction of new data item.

17.3. Write down load data for a three-dimensional mesh consisting of two twenty-
node hexahedral elements.
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Element 1 Element 2

ps = 3

p1 = 1

p = 22

A distributed load with intensity ps = 3 normal to the surface is applied to the upper
face of element 1. Concentrated nodal force p1 = 1 acts in plane xy at angle 45◦ to
the x-axis, and concentrated nodal force p2 = 2 is directed along z.

17.4. Prepare load data for the distributed load ps = 3 of the previous problem as
equivalent nodal forces.



Chapter 18
Stress Increment, Residual Vector and Results

Abstract This chapter presents classes for computing stress increment, residual
vector and results. When a stress increment is estimated, the physical law used de-
pends on the material model and can represent elastic or elastic–plastic material.
Element methods for equivalent stress vector are employed during computation of
the residual vector. These classes complete an elastic portion of the finite element
processor. A simple elastic problem solution is demonstrated.

18.1 Computing Stress Increment

JavaTM class FeStress contains methods for computing the stress increment, for
estimating equilibrium of the finite element model, and for writing results files.

Below is a source code fragment containing method computeIncrement,
which performs computation of the stress increment due to the displacement in-
crement.

1 package model;
2

3 import elem.*;
4 import material.*;
5 import util.*;
6

7 import java.io.*;
8 import java.util.ListIterator;
9

10 // Stress increment due to displacement increment
11 public class FeStress {
12

13 public static double relResidNorm;
14 private FeModel fem;
15

16 // Constructor for stress increment.
17 // fem - finite element model
18 public FeStress(FeModel fem) {

213
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19 this.fem = fem;
20 }
21

22 // Compute stress increment for the finite element model
23 public void computeIncrement() {
24

25 // Accumulate solution vector in displacement increment
26 for (int i=0; i<fem.nEq; i++)
27 FeLoad.dDispl[i] += FeLoad.RHS[i];
28

29 // Compute stresses at reduced integration points
30 for (int iel = 0; iel < fem.nEl; iel++) {
31 Element elm = fem.elems[iel];
32 elm.setElemXyT();
33 elm.disAssembleElemVector(FeLoad.dDispl);
34

35 for (int ip = 0; ip < elm.str.length; ip++) {
36 Material mat =
37 (Material) fem.materials.get(elm.matName);
38 mat.strainToStress(elm, ip);
39 }
40 }
41 }

Constructor FeStress just stores a reference to the finite element model fem.
Method computeIncrement first accumulates the solution vector in the dis-
placement increment vector dDispl. In elastic problems, this operation means
just copying the solution vector since the number of iterations is equal to one. The
elastic–plastic iteration procedure involves multiple iterations. In this case, the loop
of lines 26–27 allows the displacement increment from the beginning of the current
load step to be accumulated. Computing the stress increment for the displacement
increment since the last equilibrium state is important because estimation of the
stress increment for each iteration with accumulation of the stress increment can
lead to false unloading and consequently to incorrect results.

Stress increments at element reduced-integration points are calculated inside
the loop over finite elements in lines 30–40. Methods of classes Element and
Material are used to perform operations. Different problems are treated in this
way depending on the particular element and material methods. Line 32 sets ele-
ment nodal coordinates and temperatures. The next statement selects the displace-
ment increment for the current element from the global displacement increment
vector. The loop, which starts in line 35, iterates over reduced integration points
of the current element. Material method strainToStress computes the stress
increment according to the constitutive equations of the material model. A variant
of the method for the elastic material gets the strain increment by calling element
method getStrainsAtIntPoint. The stress increment is evaluated according
to Hooke’s law using the elastic fraction of strains. The stress increment vector is
stored at an element integration point ip.
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18.2 Residual Vector

The residual vector {ψ} characterizes the imbalance of the equilibrium equation
expressed through stresses (3.22):

{ψ} = {p}−
∫

V
[B]T{σ}dV . (18.1)

Here, {p} is the current level of the force load, {σ} is the stress vector, [B] is the
displacement differentiation matrix. The volume integral is estimated for each finite
element and assembled into a global vector. In nonlinear problems a relative residual
norm is used for checking equilibrium:

‖ψ‖
‖Δ p‖ ≤ ε. (18.2)

Iterations are terminated when the residual norm ‖ψ‖ becomes small in comparison
to the norm of the force vector increment ‖Δ p‖ at this load step.

Method equilibrium below computes the residual vector and checks equilib-
rium for the finite element model.

43 // Check equilibrium and assemble residual vector.
44 // iter - number of iterations performed
45 public boolean equilibrium(int iter) {
46

47 if (fem.physLaw == FeModel.PhysLaws.elastic ||
48 iter == FeLoad.maxIterNumber) return true;
49 // Assemble residual vector to right-hand side
50 for (int i=0; i<fem.nEq; i++)
51 FeLoad.RHS[i] = FeLoad.spLoad[i]+FeLoad.dpLoad[i];
52 Element elm;
53 for (int iel = 0; iel < fem.nEl; iel++) {
54 elm = fem.elems[iel];
55 elm.setElemXy();
56 elm.equivStressVector();
57 elm.assembleElemVector(Element.evec,FeLoad.RHS);
58 }
59 // Displacement boundary conditions
60 ListIterator it = fem.defDs.listIterator(0);
61 while (it.hasNext()) {
62 Dof d = (Dof) it.next();
63 FeLoad.RHS[d.dofNum-1] = 0;
64 }
65 // Relative residual norm
66 double dpLoadNorm = vectorNorm(FeLoad.dpLoad);
67 if (dpLoadNorm < 1e-30)
68 dpLoadNorm = vectorNorm(FeLoad.dhLoad);
69 relResidNorm = vectorNorm(FeLoad.RHS)/dpLoadNorm;
70 return relResidNorm < FeLoad.residTolerance;
71 }
72

73 // Returns norm of a vector v
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74 double vectorNorm(double[] v) {
75

76 double norm = 0;
77 for (double aV : v) norm += aV * aV;
78 return Math.sqrt(norm);
79 }
80

81 // Accumulate loads, temperature and stresses
82 public void accumulate() {
83

84 for (int i=0; i<fem.nEq; i++) {
85 FeLoad.spLoad[i] += FeLoad.dpLoad[i];
86 FeLoad.sDispl[i] += FeLoad.dDispl[i];
87 }
88 for (int iel = 0; iel < fem.nEl; iel++)
89 fem.elems[iel].accumulateStress();
90 }

If the problem is elastic then we assume that stress equilibrium is fulfilled au-
tomatically. In the elastic case and in the case when the number of iterations has
reached the specified maximum, the method returns true, which means that the
current load step is finished (lines 47–48).

For the elastic–plastic case with an allowed iteration number, we put the full
force load (spLoad[i]+dpLoad) into the right-hand side RHS in lines 50–51
and start estimating a relative residual norm. The loop over elements in lines 53–58
contains computation of the element equivalent stress vector (with negative sign)
and its assembly to the right-hand side vector. Since we previously put the full force
vector in the right-hand side, then now we have there the global residual vector,
which is the difference between the force vector and the equivalent stress vector.
Displacement boundary conditions (constraints) are applied to the residual vector in
lines 60–64.

Lines 66–68 estimate the norm that is used as a divider for determining the rela-
tive residual norm. First, we try to use the norm of the force vector increment (line
66). If a problem has pure thermal loading than this norm is zero. In this case, the
norm of the global thermal vector is computed in line 68. The relative residual norm
is determined in line 69. The method returns true if this norm is sufficiently small
(less than the user-specified tolerance residTolerance).

Method vectorNorm (lines 74–79) returns the norm of the vector, which is a
square root of a scalar product of the vector by itself.

Method accumulate adds increments of the force load vector and of the dis-
placement vector to their accumulated vectors. The element loop in lines 88–89
accumulates stress increments and possibly (in elastic–plastic problems) the equiv-
alent plastic strain increments. The method is called at the end of the load step.
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18.3 Results

The output of results is performed by method writeResults and the input of
results is done by method readResults.

92 // Write results to a file.
93 public void writeResults() {
94

95 String fileResult = fea.Jfem.fileOut + "."
96 + FeLoad.loadStepName;
97 PrintWriter PR =
98 new FePrintWriter().getPrinter(fileResult);
99

100 PR.printf("Displacements\n\n");
101 if (fem.nDim == 2)
102 PR.printf(" Node ux uy");
103 else
104 PR.printf(" Node ux uy"
105 + " uz");
106 for (int i = 0; i < fem.nNod; i++) {
107 PR.printf("\n%5d", i + 1);
108 for (int j = 0; j < fem.nDim; j++)
109 PR.printf("%15.6e", FeLoad.sDispl[fem.nDim*i+j]);
110 }
111

112 PR.printf("\n\nStresses\n");
113 for (int iel = 0; iel < fem.nEl; iel++) {
114 if (fem.nDim == 2)
115 PR.printf("\nEl %4d sxx syy"
116 +" sxy szz"
117 +" epi", iel+1);
118 else
119 PR.printf("\nEl %4d sxx syy"
120 +" szz sxy"
121 +" syz szx"
122 +" epi", iel+1);
123 for (StressContainer aStr : fem.elems[iel].str) {
124 PR.printf("\n");
125 for (int i = 0; i < 2 * fem.nDim; i++)
126 PR.printf("%15.8f", aStr.sStress[i]);
127 PR.printf("%15.8f", aStr.sEpi);
128 }
129 }
130 PR.close();
131 }
132

133 // Read results from a file.
134 // displ - displacements for the finite element model (out)
135 public void readResults(String resultFile,double[] displ) {
136

137 if (resultFile==null) return;
138

139 FeScanner RD = new FeScanner(resultFile);
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140 // Read displacements
141 RD.moveAfterLineWithWord("node");
142 for (int i = 0; i < fem.nNod; i++) {
143 RD.readInt();
144 for (int j = 0; j < fem.nDim; j++)
145 displ[fem.nDim*i + j] = RD.readDouble();
146 }
147 // Read stresses
148 for (int iel = 0; iel < fem.nEl; iel++) {
149 RD.moveAfterLineWithWord("el");
150 for (StressContainer aStr : fem.elems[iel].str) {
151 for (int i = 0; i < 2 * fem.nDim; i++)
152 aStr.sStress[i] = RD.readDouble();
153 aStr.sEpi = RD.readDouble();
154 }
155 }
156 RD.close();
157 }
158

159 }

Method writeResultswrites the results of the finite element solution for the
current load step into a text file. Lines 95–96 create a results file name using an
output file name for the problem and a name for the current load step. Print writer
PR is constructed in lines 97–98.

Lines 100–110 print the total nodal displacements. Each line contains a node
number and two or three displacement components along the coordinate axes.
Stresses are printed in lines 112–129 inside a loop over the elements. Each line
contains an element number, normal and shear stress components, and equivalent
plastic strain (always zero in elastic problems) at one reduced integration point.
Thus, four lines of stress results are printed for each two-dimensional quadratic ele-
ment and eight lines for each three-dimensional quadratic element. Line 130 closes
the print writer.

It is quite clear that too few possibilities are provided for results output. How-
ever, our finite element program serves for educational purposes and it is difficult to
create here a fully functional rich user interface because we want to keep the amount
of source code reasonable for reading and understanding. The lack of output possi-
bilities is partly ameliorated by visualization code Jvis, which is considered later.

MethodreadResults is employed by Jvis code to read results for their visu-
alization. The results file name resultFile is passed as a method parameter. For
data input, our finite element scanner FeScanner is used. To read displacements
the word node is found in the results file (line 141). Then, all nodal displacements
are read in a loop over the nodes.

When reading stresses, the word el is sought for each element, then stresses
for element integration points are copied to their containers in finite elements (lines
148–155). Line 156 calls method close for the finite element data scanner.
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18.4 Solution of a Simple Test Problem

We already considered classes that allow production of working finite element code
for solution of elastic problems. Let us create a directory Jfea with two subdirec-
tories – src for Java source files and classes for compiled Java code. Directory
src in turn contains directories named as packages of our finite element code. If
we put Java files in directories with names corresponding to package names, then it
is possible to compile Java code Jfem using the following command

javac -sourcepath src -d classes src/fea/Jfem.java

Here, javac is a call to the Java compiler, option -sourcepath specifies that
source files are in directory src, option -d sets directory classes as output for
the compiled code, and finally src/fea/Jfem.java specifies the main class of
the finite element processor. It is possible to request messages about the compilation
process with an option -verbose. As a result of compilation, class files appear in
directory classes. These class files are placed in subdirectories with names of
respective packages.

Let us test our finite element code on a simple example, shown in Figure 5.2. A
two-dimensional rectangular bar with width 2 and height 1 is subject to a distributed
load with intensity 1 along the x-axis and to a temperature field of magnitude 10.
We do not specify any units for data. The finite element code does not use any units.
The user is responsible for using consistent units for data.

Data describing this problem is given in Section 5.2.4. Let us take this data and
put it in file f.fem. In order to solve the problem it is possible to place file f.fem
in directory fea and to execute the finite element code as

java -cp classes fea.Jfem f.fem f.lst

Finite element processor fea.Jfem receives parameter f.fem (input data) and
parameter f.lst (output file).

The results of the solution are in files f.lst and f.lst.1. The first file con-
tains just brief information about the solution. Actual results output is done for each
load step. The names of results files are created by adding loadstep names to the
name of the output file specified as the second parameter for the code. In our case,
displacements and stresses for the finite element model are in file f.lst.1 since
the loadstep name is “1”. The contents of the file are shown below.

Displacements

Node ux uy
1 1.666667e-65 8.433758e-80
2 6.666667e-65 3.500000e-01
3 1.666667e-65 7.000000e-01
4 1.000000e+00 -7.168695e-80
5 1.000000e+00 7.000000e-01
6 2.000000e+00 -6.747007e-80
7 2.000000e+00 3.500000e-01
8 2.000000e+00 7.000000e-01
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9 3.000000e+00 7.801226e-80
10 3.000000e+00 7.000000e-01
11 4.000000e+00 -9.962377e-80
12 4.000000e+00 3.500000e-01
13 4.000000e+00 7.000000e-01

Stresses

El 1 sxx syy sxy szz
1.00000000 0.00000000 0.00000000 0.00000000
1.00000000 0.00000000 0.00000000 0.00000000
1.00000000 -0.00000000 -0.00000000 0.00000000
1.00000000 -0.00000000 0.00000000 0.00000000

El 2 sxx syy sxy szz
1.00000000 -0.00000000 -0.00000000 0.00000000
1.00000000 -0.00000000 -0.00000000 0.00000000
1.00000000 0.00000000 0.00000000 0.00000000
1.00000000 0.00000000 -0.00000000 0.00000000

It is easy to check that the results are correct. Normal stress σx = 1, all other
stresses are zero. Nodal displacements are due to deformation because of the applied
distributed force and uniform temperature expansion. Some nodal displacements
should be zero because of boundary conditions (nodes 1–3 along x, nodes 1, 4, 6,
9, and 11 along y). In the output file we can see small numbers instead of pure
zeros. Such “approximate” zeros are caused by the method of large numbers used
for implementation of displacement boundary conditions in our finite element code
(see Section 14.2.2). Such small numbers instead of absolute zeros do not affect
computation of results such as strains and stresses since the difference of orders is
larger than the number of significant digits in the computer representation of double-
precision numbers.

Problems

18.1. Assume a two-dimensional finite element is a square of unit size. After ap-
plication of external loading, the element deforms with an increase of size in the
x-direction by 0.13 and a decrease of size in the y-direction by the same amount.
The deformed element shape is indicated by a dashed line in the following figure.
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Find the stresses in the finite element for plane stress conditions. The material prop-
erties are: elasticity modulus E = 0.1 and Poisson’s ratio ν = 0.3.

18.2. Read and understand method computeIncrement of class FeStress.
Pay attention to use of method setElemXyT in line 32. Explain why nodal tem-
peratures are necessary in addition to nodal coordinates for evaluation of stress in-
crements.

18.3. Review method equilibrium. Displacement boundary conditions are ap-
plied to the right-hand side (lines 60–64) before computing the residual norm. Why
is application of displacement boundary conditions necessary?



Chapter 19
Elastic–Plastic Problems

Abstract Solution of elastic–plastic problems is considered. Constitutive rela-
tions for a von Mises elastic–plastic material (flow theory) are presented. Algo-
rithms of computing finite stress increments based on subincrementation and on
midpoint integration are explained. The algorithms are implemented in JavaTM class
ElasticPlasticMaterial. Nonlinear solution procedures using the Newton–
Raphson method and initial stress method are reviewed.

19.1 Constitutive Relations for Elastic–Plastic Material

Consider an elastic–plastic material with behavior described by the flow theory with
isotropic hardening and von Mises yield surface [33]. For an elastic–plastic body it
is postulated that:
the strain increment can be decomposed into elastic {εe}, plastic {εp}, and thermal
{ε t} fractions:

{dε} = {dεe}+{dεp}+{dε t}, (19.1)

the stress increment {dσ} can be calculated through the elastic strain increment
{dεe} and the elasticity matrix [E] according to Hooke’s law:

{dσ} = [E]{dεe} = [E]({dε}−{dεp}−{dε t}), (19.2)

the thermal strain increment is specified through the thermal-expansion coefficient
α and the temperature increment dT :

{dε t} = αdT{1 1 1 0 0 0}, (19.3)

and the plastic deformation does not change the body volume:

∑εp
ii = 0. (19.4)

223
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Let us assume that the elastic–plastic material behavior is governed by the von
Mises yield function (von Mises yield surface):

f = σi −Y (κ) = 0. (19.5)

Here, σi is the equivalent stress,

σi =

√
3
2

si jsi j

=
1√
2

√
(σx −σy)2 +(σx −σy)2 +(σx −σy)2 + 6(τ2

xy + τ2
yz + τ2

zx),

(19.6)

and Y is the instantaneous yield stress depending on the hardening parameter κ ,

κ =
∫

dεp
i . (19.7)

In the above equations si j are the deviatoric stress components,

si j = σi j − 1
3
σii, (19.8)

and dεp
i is the increment of the equivalent plastic strain,

dεp
i =

√
2
3

dεp
i jdε

p
i j

=
√

2
3

√
(dεp

x −dεp
y )2 +(...)2 +(...)2 +

3
2
[(dγp

xy)2 +(...)2 +(...)2].

(19.9)

Let us introduce the vector of yield function derivatives {a} as

{a} =
{
∂ f
∂σ

}
=

3
2σi

{sx sy sz 2τxy 2τyz 2τzx}. (19.10)

During plastic flow the stresses must remain on the yield surface. With the above-
introduced vector {a} the condition for the stress–strain state on the yield surface
can be written as

d f =
∂ f
∂σi j

dσi j − ∂Y
∂κ

dκ = {a}T{dσ}−Hdεp
i = 0, (19.11)

where H = ∂Y/∂κ is the slope of the material yield curve with respect to the hard-
ening parameter κ . According to the Prandtl–Reuss flow rule (normality of plastic
deformation to the flow surface), the increment of plastic strains is proportional to
the derivatives of the yield function,
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dεp
i j = λ

∂ f
∂σi j

= λ{a}, (19.12)

where λ is the plastic strain-rate multiplier. Substitution of the above equation into
(19.9) gives the following simple expression for the plastic multiplier,

dεp
i = λ . (19.13)

Now Equation 19.11 becomes

d f = {a}T{dσ}−Hλ = 0. (19.14)

Substitution of Equation 19.2 into Equation 19.14 provides the relation

λ =
{a}T[E]{dεep}
{a}T[E]{a}+ H

, (19.15)

where {dεep} = {dεe}+ {dε p}. Using this expression for the plastic multiplier λ
and Equation 19.12, Hooke’s law (19.2) can be transformed to the following consti-
tutive equation relating the stress increment and increment of elastic–plastic strains:

{dσ} =
(

[E]− [E]{a}{a}T[E]
{a}T[E]{a}+ H

)
{dεep}. (19.16)

It is possible to take into account that for the von Mises yield function the fol-
lowing equality is preserved

{a}T[E]{a} = 3G, (19.17)

where G is the shear modulus. Finally, the constitutive relation for increments of
stresses and elastic–plastic strains is

{dσ} = [Eep]{dεep},

[Eep] = [E]− [E]{a}{a}T[E]
3G+ H

.
(19.18)

19.2 Computing Finite Stress Increments

The stress–strain state of the finite element model is controlled at reduced integra-
tion points inside finite elements since displacement derivatives have better preci-
sion there. For example, stresses and accumulated plastic strains are kept at 2×2×2
Gauss integration points in the twenty-node hexahedral element.

Equation 19.18 is precise for infinitesimally small strain increments. In prac-
tice, displacement increments during iterative solution of nonlinear problems can
be quite large. Using (19.18) for finite strain increments can lead to large solu-
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tion errors. To overcome this difficulty, two approaches can be employed. One is
subincrementation, based on dividing the strain increments into sufficiently small
subincrements. The other approach is the integration of constitutive relations with
the help of a midpoint integration algorithm.

Another problem in computing finite stress increments is related to increments,
which are started in an elastic state and are finished in an elastic–plastic state. Elas-
tic Hooke’s law should be used for the elastic fraction of such increments and the
elastic–plastic constitutive law should be used after entering the plastic state.

19.2.1 Determining Elastic Fraction of Stress Increment

Let {σ0} be the stress vector at the beginning of the increment and let {Δσ e} be
the elastic stress increment due to the strain increment {Δε}. We consider the case
when for the original stress vector the state is elastic,

f0 = f ({σ0}) < 0, (19.19)

and for the final stress vector

fe = f ({σ0}+{Δσ e}) > 0. (19.20)

We need to determine the scalar parameter r that yields

fe = f ({σ0}+ r{Δσ e}) = 0. (19.21)

It is possible to use the linear initial estimate for the parameter r

r0 = − f0

fe − f0
, (19.22)

and then to improve its value in an iterative manner using a truncated Taylor series:

Δri = − f (ri−1)
{a(ri−1)}{Δσ e} ,

ri = ri−1 +Δri.

(19.23)

19.2.2 Subincrementation for Computing Stress Increment

The subincrementation technique for computing the finite stress increment is based
on dividing a finite strain increment {Δε} into m subincrements {dε}

{dε} =
{Δε}

m
. (19.24)
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The number of subincrements m can be estimated as

m =
f ({σ0}+{Δσ e})

βσY
+ 1, (19.25)

where {σ0} is the stress vector at the beginning of the stress increment (on the yield
surface), {Δσ e} is the elastic stress increment, σY is the material yield stress, and
β is a tolerance (a typical value of β might be 0.05).

The algorithm of subincrementation for computing the finite elastic–plastic stress
increment is given by the following pseudocode:

{dεep} = {Δεep}/m

do i = 1,m

{dσi} = [Eep({σi−1})]{dεep}
{σi} = {σi−1}+{dσi}

end do

(19.26)

Subincrements are smaller than increments. However, strain subincrements are
still finite. Because of this the stress at the end of each subincrement departs slightly
from the yield surface. Using the truncated Taylor series it is possible to improve
the stress at the end of a subincrement in the following way:

{σ1
i } = {σi}− f ({σi}){a}

{a}T{a} . (19.27)

Here, {σ1
i } is the corrected stress at the increment end.

19.3 Material Deformation Curve

The material deformation curve for an elastic–plastic material consists of two parts –
elastic and elastic–plastic. The material properties in the elastic range are described
by elasticity modulus E and Poisson’s ratio ν .

Simple description of the material curve in the elastic–plastic range adopted here
follows a power function

σ = σY + k(εp)m, (19.28)

where σ is the uniaxial stress, σY is the yield stress where plastic strains appear, εp

is the magnitude of plastic strain, k is the material hardening coefficient, and m is
the material hardening power.

It is assumed that the material deformation curve determined from a uniaxial
specimen test can be used in constitutive plasticity relations after replacement of σ
and εp with equivalent stress σi and accumulated equivalent plastic strain εp

i . The
yield function according to the von Mises yield criterion is
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Fig. 19.1 Determining elastic–plastic parameters k and m: deformation curve ε − σ (a), curve
εp − (σ −σY) (b), and approximation of logεp − log(σ −σY) by a straight line (c)

f = σi −Y (εp
i ),

Y (εp
i ) = σY + k(εp

i )m.
(19.29)

The yield function f is negative in the elastic range. During elastic–plastic mate-
rial deformation, it is always zero: f = 0. The slope of the material yield curve is
determined by

H =
∂ f
∂εp

= km(εp)m−1. (19.30)

Let us show how to determine parameters k and m using the material deformation
strain–stress curve shown in Figure 19.1a. Moving σY to the left side of (19.28) and
taking logs of both sides obtains

log(σ −σY) = log(k)+ m log(εp). (19.31)

To find the deformation curve parameters, the curve ε − σ is transformed into a
curve εp − (σ−σY) by subtraction of the plastic strain, as depicted in Figure 19.1b.
Then, the latter curve is presented in a log− log plot and is approximated by a
straight line. Figure 19.1c illustrates the determination of the hardening coefficient
logarithm log(k) as the intersection of the straight line with vertical axis and the
hardening power m as the slope of the straight line.

19.4 Implementation of Elastic–Plastic Material Relations

Constitutive relations for an elastic–plastic material described by the flow theory are
implemented in class ElasticPlasticMaterial, which inherits from class
ElasticMaterial. The source code presented below implements calculation
of the elastic–plastic stress increment for a finite strain increment using a tangent
material matrix and subincrementation.
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1 package material;
2

3 import elem.Element;
4 import fea.FE;
5 import util.UTIL;
6

7 // Constitutive relations for elastic-plastic material
8 public class ElasticPlasticMaterial extends ElasticMaterial {
9

10 // Stress at the beginning of increment
11 private static double[] sig0 = new double[6];
12 // Stress at the end of increment
13 private static double[] sig = new double[6];
14 // Derivatives of yield function
15 private static double[] a = new double[6];
16 // Elasticity matrix
17 private static double[][] Emat = new double[6][6];
18 // Ea = Emat*a
19 private static double[] Ea = new double[6];
20 // Plastic strain increment
21 private static double[] depsp = new double[6];
22 // Equivalent plastic strain
23 private static double epi;
24 // Shear modulus
25 private static double G;
26 private static final double beta = 0.1;
27 private Midpoint midpoint;
28

29 public ElasticPlasticMaterial(String stressState) {
30

31 super(stressState);
32 if (stressState.equals("plstress"))
33 UTIL.errorMsg("Elastic-plastic material is not "
34 + "implemented for plane stress");
35 if (!FE.epIntegrationTANGENT)
36 midpoint = new Midpoint();
37 }
38

39 // Elastic-plastic stress increment.
40 // elm - element,
41 // ip - integration point within element
42 public void strainToStress(Element elm, int ip) {
43

44 elasticityMatrix(Emat);
45 G = getMu();
46

47 // Elastic stress increment dsig due to deps
48 super.strainToStress(elm, ip);
49

50 for (int i = 0; i < lv; i++) {
51 sig0[i] = elm.str[ip].sStress[i];
52 sig[i] = sig0[i] + dsig[i];
53 }
54 // Equivalent plastic strain
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55 epi = elm.str[ip].sEpi;
56 double epi0 = epi;
57 double f1 = yieldFunction(sig, epi);
58

59 // Elastic point
60 if (f1 < 0.0) return;
61

62 // Elastic-plastic point
63 double f0 = yieldFunction(sig0, epi);
64 double r;
65 if (f0 < 0.0) {
66 r = -f0/(f1 - f0);
67 for (int i = 0; i < lv; i++)
68 sig[i] = sig0[i] + dsig[i]*r;
69 double f = yieldFunction(sig, epi);
70 derivYieldFunc(sig, a);
71 double c1 = 0.0;
72 for (int i = 0; i < lv; i++) c1 += a[i]*dsig[i];
73 r = r - f/c1;
74 }
75 else r = 0.0;
76

77 // Number of subincrements ( = 1 for midpoint method)
78 int nsub = (FE.epIntegrationTANGENT) ?
79 (int) (f1/(beta*sY))+1 : 1;
80

81 for (int i = 0; i < lv; i++) {
82 sig[i] = sig0[i] + dsig[i]*r;
83 dsig[i] = (1.0 - r)*dsig[i]/nsub;
84 deps[i] = (1.0 - r)*deps[i]/nsub;
85 }
86 // Subincrement loop: tangent or midpoint method
87 for (int isub = 0; isub < nsub; isub++) {
88 if (FE.epIntegrationTANGENT)
89 tangentStressIncrement();
90 else midpoint.stressIncrement();
91 }
92 for (int i = 0; i < lv; i++)
93 elm.str[ip].dStress[i] = sig[i] - sig0[i];
94 elm.str[ip].dEpi = epi - epi0;
95 }

At the beginning of the class, static arrays and scalars are declared, which are nec-
essary during stress-increment computing. The class constructor calls the construc-
tor of superclass ElasticMaterial. Because of certain complications we do
not consider implementation of the elastic–plastic material under plane stress con-
ditions. An error message is generated when the user attempts to solve an elastic–
plastic problem under plane stress conditions. If integration of elastic–plastic con-
stitutive equations is performed with a midpoint method (see next section) then the
constructor of inner class Midpoint is called.

The main logic of the final stress increment computation is contained in method
strainToStress. The method obtains Element object elm and integration
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point number ip. The method should estimate the increments of stress and equiva-
lent plastic strain at this integration point using a strain increment.

Lines 44–45 set the elasticity matrix emat and shear modulus G. The elastic
stress increment is computed using a call to method strainToStress of parent
class ElasticMaterial (line 48). After this call, the increment of strain deps
and elastic increment of stress dsig are available. In lines 50–53 the stress level at
the increment beginning is stored in array sig0 and elastic stress prediction at the
increment end is placed in array sig. The accumulated equivalent plastic strain is
contained in variables epi0 and epi (line 56).

If the yield function value f1 computed in line 57 for stress at the increment end
is negative then the state of the integration point is elastic and the method returns
with the stress increment already computed by superclass ElasticMaterial.

Otherwise, the state of the integration point is elastic–plastic. In general, at the
increment beginning, the integration point is in the elastic state and we need to deter-
mine the scalar parameter r of Equation 19.21, which indicates the elastic fraction
of the increment. Determination of parameter r is done in lines 63–75 according to
Equations 19.22 and 19.23. Improvement of the r value is restricted to one iteration.
The array a contains derivatives of the yield function defined in (19.10).

Lines 78–79 determine the number of subincrements nsub according to (19.25).
Note that the number of subincrements is equal to one for the midpoint integration of
constitutive equations since this method does not require subincrementation. Stress
update to the beginning of plastic flow and determination of elastic stress subincre-
ment dsig and strain subincrement deps is performed in lines 81–85.

The subincrement loop in lines 87–91 contains conditional calls to the method
that uses the tangent elastic–plastic matrix (line 89) or to the method that employs a
midpoint integration procedure (line 90). The resulting stress increment and equiv-
alent plastic strain increment is placed in element dStress (line 93) and dEpi
(line 94), respectively.

The elastic–plastic stress increment with the use of the tangent material matrix
(19.18) is computed in method tangentStressIncrement presented below.

97 // Compute elastic-plastic increment by tangent method.
98 // Update stresses sig and equivalent plastic strain epi
99 private void tangentStressIncrement() {
100

101 double H = slopeH(epi);
102 derivYieldFunc(sig, a);
103 double dlambda = 0.0;
104 for (int i = 0; i < lv; i++) {
105 double s = 0.0;
106 for (int j = 0; j < lv; j++) s += Emat[i][j]*a[j];
107 Ea[i] = s;
108 dlambda += a[i]*dsig[i];
109 }
110 dlambda /= (H + 3*G);
111 if (dlambda < 0.0) dlambda = 0.0;
112 for (int i = 0; i < lv; i++) {
113 sig[i] += dsig[i] - dlambda*Ea[i];
114 depsp[i] = dlambda*a[i];
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115 }
116 epi += eqPlastStrain(depsp);
117

118 // Stress correction
119 double f = yieldFunction(sig, epi);
120 double c1 = 0.0;
121 for (int i = 0; i < lv; i++) c1 += a[i]*a[i];
122 for (int i = 0; i < lv; i++) sig[i] -= a[i]*f/c1;
123 }

Lines 101–102 determine the slope H of the material deformation curve and
derivatives of the yield function a. Plastic multiplier λ , denoted in the code as
dlambda, is estimated in lines 103–111 according to Equation 19.15. Using the
value of dlambda, stress sig is updated and the plastic strain increment depsp
is calculated. These calculations are based on Equations 19.18 and 19.12. Equiva-
lent plastic strain epi is incremented in line 116. Stress correction is done in lines
119–122 using (19.27).

The next code fragment contains methods that compute quantities and vectors
used for performing an elastic–plastic increment.

125 // Yield function.
126 // s - stresses,
127 // epi - equivalent plastic strain,
128 // returns yield function value
129 private double yieldFunction(double[] s, double epi) {
130 double sm, seq;
131 if (stressState.equals("threed")) {
132 sm = (s[0] + s[1] + s[2])/3;
133 seq = Math.sqrt(3.0*(0.5*((s[0] - sm)*(s[0] - sm)
134 + (s[1] - sm)*(s[1] - sm)
135 + (s[2] - sm)*(s[2] - sm))
136 + s[3]*s[3] + s[4]*s[4] + s[5]*s[5]));
137 }
138 else {
139 sm = (s[0] + s[1] + s[3])/3;
140 seq = Math.sqrt(3.0*(0.5*((s[0] - sm)*(s[0] - sm)
141 + (s[1] - sm)*(s[1] - sm)
142 + (s[3] - sm)*(s[3] - sm)) + s[2]*s[2]));
143 }
144 return seq - yieldRadius(epi);
145 }
146

147 // Radius of yield surface Y = sY + k*epˆm
148 private double yieldRadius(double ep) {
149 if (ep <= 0.0) return sY;
150 else return (km*Math.pow(ep, mm) + sY);
151 }
152

153 // Derivatives of yield function.
154 // s - stresses (in),
155 // a - derivatives of yield function (out)
156 private void derivYieldFunc(double[] s, double[] a) {
157 double sm, seq;
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158

159 if (stressState.equals("threed")) {
160 sm = (s[0] + s[1] + s[2])/3;
161 a[0] = s[0] - sm;
162 a[1] = s[1] - sm;
163 a[2] = s[2] - sm;
164 a[3] = 2*s[3];
165 a[4] = 2*s[4];
166 a[5] = 2*s[5];
167 seq = Math.sqrt(
168 0.5*(a[0]*a[0] + a[1]*a[1] + a[2]*a[2])
169 + s[3]*s[3] + s[4]*s[4] + s[5]*s[5]);
170 }
171 else {
172 sm = (s[0] + s[1] + s[3])/3;
173 a[0] = s[0] - sm;
174 a[1] = s[1] - sm;
175 a[2] = 2*s[2];
176 a[3] = s[3] - sm;
177 seq = Math.sqrt(0.5*(a[0]*a[0] + a[1]*a[1]
178 + a[3]*a[3]) + s[2]*s[2]);
179 }
180

181 for (int i = 0; i < lv; i++)
182 a[i] = 0.5*Math.sqrt(3.0)/seq*a[i];
183 }
184

185 // Returns slope of deformation curve
186 // epi - equivalent plastic strain
187 private double slopeH(double epi) {
188 if (km == 0.0) return 0.0;
189 else if (mm == 1.0) return km;
190 else return (epi == 0.0) ?
191 0.0 : km*mm*Math.pow(epi, mm - 1.0);
192 }
193

194 // Returns equivalent plastic strain
195 // dp - pastic strains (in)
196 private double eqPlastStrain(double[] dp) {
197 if (stressState.equals("threed"))
198 return Math.sqrt(
199 (2*(dp[0]*dp[0] + dp[1]*dp[1] + dp[2]*dp[2])
200 + dp[3]*dp[3] + dp[4]*dp[4] + dp[5]*dp[5])/3.0);
201 else {
202 if (stressState.equals("plstress"))
203 dp[3] = -(dp[0] + dp[1]);
204 return Math.sqrt((2*(dp[0]*dp[0] + dp[1]*dp[1]
205 + dp[3]*dp[3]) + dp[2]*dp[2])/3.0);
206 }
207 }

The yield function is estimated by method yieldFunction in lines 129–145
according to (19.5). The method obtains stresses s and equivalent plastic strain epi
and uses the material-deformation curve in order to return the Mises yield func-
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tion value (Equation 19.5). The radius of the yield surface is evaluated by method
yieldRadius in lines 148–151. Method derivYieldFunc computes the ar-
ray a containing derivatives of yield function (19.10). Method slopeH returns the
slope of the material deformation curve for the specified value of equivalent plas-
tic strain epi. Equation 19.9 for the increment of the equivalent plastic strain is
realized in method eqPlastStrain.

19.5 Midpoint Integration of Constitutive Relations

The generalized midpoint integration rule is based on computing the increment of
plastic strains {Δεp} using the vectors of the yield function derivatives {a} at the
beginning and end of the increment and on enforcing the zero-value constraint of the
yield function f at the end of the increment. The generalized midpoint integration
rule can be presented in the following form:

{σ1} = [E]({ε1}−{εp
1}−{ε t

1}),
{Δεp} = λ ((1−α){a0}+α{a1}),

Δεp
i =

√
2
3
Δεp

i jΔε
p
i j,

f ({σ1},εp
i 0 +Δεp

i ) = 0.

(19.32)

Here, the subscript zero denotes values at the beginning of the increment and the
subscript one denotes values at the end of the increment. The integration parameter
α may vary from 0 to 1. For α > 0, the integration rule is implicit. The value α = 1
leads to the so-called radial return algorithm with first-order accuracy. For α = 1/2,
the algorithm has second-order accuracy.

The integration algorithm in the form of (19.32) is a system of nonlinear algebraic
equations, since derivatives of yield function {a1} and the plastic multiplier λ are
unknown. It is shown in [22] that the above system of nonlinear equations can be
solved after its reduction to a scalar nonlinear equation with respect to the parameter
λ :

ϕ(λ ) =

√
3
2
‖sα‖−3Gαλ −Y (εp

i0 +Δεp
i ) = 0,

Δεp
i = λ

√
2
3

∥∥∥(1−α){a0}+α
√

3/2{sα}/‖sα‖
∥∥∥ ,

(19.33)

where the deviatoric stresses {sα} are equal to

{sα} = {s0}+ 2G({Δe}−λ (i−1)(1−α){a0}) (19.34)
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and their norm is computed as

‖s‖ =
[
s2

11 + s2
22 + s2

33 + 2(s2
12 + s2

23 + s2
31)

]1/2
. (19.35)

Solution of the nonlinear equation (19.33) is obtained numerically using the Newton–
Raphson iterative procedure. Using the initial value λ (0) the successive approxima-
tion for parameter λ is

λ (i) = λ (i−1)− ϕ(λ (i−1))
ϕ ′(λ (i−1))

. (19.36)

Iterations are stopped when an equation residual becomes small compared to the
yield stress σY.

The generalized midpoint algorithm for integration of constitutive relations for
the von Mises hardening material starts with known stresses {σ0}, equivalent plastic
strain εp

i , and strain increment {Δε}. It can be expressed by the following pseudo-
code [22].

{Δe} = {Δε}−{Δεm}
{s0} = {σ0}−{σm0}
{a0} = 3{s0}/(2σi0)

λ (0) =
√

2/3‖Δe‖
do

{sα} = {s0}+ 2G({Δe}−λ (i−1)(1−α){a0})
{s̄α} = {sα}/‖sα‖
{b} = (1−α){a0}+α

√
3/2{s̄α}

Δεp
i = λ (i−1)

√
2/3‖b‖
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√
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i )

ϕ
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√
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−3Gα−
√

2/3(dY/dεp
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λ (i) = λ (i−1)−ϕ(λ (i−1))/ϕ
′
(λ (i−1))

until
∣∣∣ϕ(λ (i))

∣∣∣ < εσY

εp
i1 = εp

i0 +Δεp
i

σi1 = Y (εp
i1)

{s1} = {sα}/(1 + 3Gαλ/σi1)
Δσm = E/(1−2ν)Δεm

{σ1} = {s1}+{σm0}+{Δσm}

(19.37)

Here, {εm}, {σm} are the mean strain and mean stress, respectively, and an opera-
tion of the dyadic product is defined as

{a} : {s} = a11s11 + a22s22 + a33s33 + 2(a12s12 + a23s23 + a31s31). (19.38)
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Implementation of the generalized midpoint algorithm for computing the stress
increment is done in inner class Midpoint. The head of the class and its method
for evaluating a stress increment follow.

209 // Midpoint method for integration of constitutive
210 // relations for the von Mises hardening material
211 class Midpoint {
212 // Strain deviator
213 double[] ed = new double[6];
214 // Stress deviator
215 double[] sd = new double[6];
216 // Trial stress deviator
217 double[] sdtr = new double[6];
218 // Yield function derivatives
219 double[] a0 = new double[6];
220

221 double[] sal = new double[6];
222 double[] salbar = new double[6];
223 double[] b = new double[6];
224 double alpha = 0.5;
225

226 // Elastic-plastic stress increment by midpoint method.
227 // Update stresses sig and
228 // equivalent plastic strain epi
229 void stressIncrement() {
230 double SQ32 = Math.sqrt(1.5);
231 double SQ23 = Math.sqrt(2./3.);
232 double tolerance = 1.e-5;
233 // Transform strains to tensor components
234 if (lv == 4) deps[2] *= 0.5;
235 else for (int i = 3; i < 6; i++) deps[i] *= 0.5;
236 double depsm = deviator(deps, ed);
237 double sigm = deviator(sig, sd);
238 double sigeq0 = SQ32*norm(sd);
239 for (int i = 0; i < lv; i++) {
240 sdtr[i] = sd[i] + 2*G*ed[i];
241 a0[i] = 1.5*sd[i]/sigeq0;
242 }
243 double lambda = SQ23*norm(ed);
244 // Find lambda by Newton-Raphson iteration
245 double epi1, sigeq;
246 for (; ;) {
247 for (int i = 0; i < lv; i++)
248 sal[i] = sdtr[i] -
249 2*G*lambda*(1 - alpha)*a0[i];
250 double salmod = norm(sal);
251 for (int i = 0; i < lv; i++) {
252 salbar[i] = sal[i]/salmod;
253 b[i] = (1 - alpha)*a0[i] +
254 alpha*SQ32*salbar[i];
255 }
256 double bmod = norm(b);
257 epi1 = epi + lambda*SQ23*bmod;
258 sigeq = yieldRadius(epi1);
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259 double phi = SQ32*salmod -
260 3*G*alpha*lambda - sigeq;
261 if (Math.abs(phi) < tolerance*sY) break;
262 double phiPrime = -2.*SQ32*G
263 *(1 - alpha)*dyadicProduct(a0, salbar)
264 - 3.*G*alpha - slopeH(epi1)*SQ23*bmod;
265 double lambda1 = lambda - phi/phiPrime;
266 lambda = (lambda1 <= 0.) ? 0.5*lambda:lambda1;
267 }
268 epi = epi1;
269 for (int i = 0; i < lv; i++)
270 sd[i] = sal[i]/(1 + 3*G*alpha*lambda/sigeq);
271 double dsigm = depsm*e/(1. - 2.*nu);
272 stressFromDeviator(sd, sigm + dsigm, sig);
273 }

Method stressIncrement computes the increments of stresses and the equiv-
alent plastic strain using the midpoint algorithm. The source code of the method
closely follows the algorithm (19.37). In lines 234–235, the shear strain compo-
nents are halved, thus transforming them into tensor components. This is because
using the strain tensor entries is more convenient in the midpoint algorithm.

Strain and stress deviators and the equivalent stress are evaluated in lines 236–
238. The value of the plastic parameter λ is sought in the loop of lines 246–267 us-
ing the Newton–Raphson iterative procedure. Line 268 stores an incremented value
of the equivalent plastic strain epi. Incremented stresses sig are determined from
the stress deviator and the mean stress at the increment end.

Several additional methods are designed for the midpoint algorithm.

275 // Compute deviator.
276 // s - stress,
277 // d - deviator (out),
278 // returns mean value
279 double deviator(double[] s, double[] d) {
280 double sm;
281 if (lv == 4) {
282 sm = (s[0] + s[1] + s[3])/3;
283 d[0] = s[0] - sm;
284 d[1] = s[1] - sm;
285 d[3] = s[3] - sm;
286 d[2] = s[2];
287 }
288 else {
289 sm = (s[0] + s[1] + s[2])/3;
290 d[0] = s[0] - sm;
291 d[1] = s[1] - sm;
292 d[2] = s[2] - sm;
293 d[3] = s[3];
294 d[4] = s[4];
295 d[5] = s[5];
296 }
297 return (sm);
298 }
299
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300 // Compute stress s = d + sm.
301 // d - deviator,
302 // sm - mean stress,
303 // s - stress (out)
304 void stressFromDeviator(double[] d, double sm,
305 double[] s) {
306 if (lv == 4) {
307 s[0] = d[0] + sm;
308 s[1] = d[1] + sm;
309 s[3] = d[3] + sm;
310 s[2] = d[2];
311 }
312 else {
313 s[0] = d[0] + sm;
314 s[1] = d[1] + sm;
315 s[2] = d[2] + sm;
316 s[3] = d[3];
317 s[4] = d[4];
318 s[5] = d[5];
319 }
320 }
321

322 // Returns norm = sqrt(Sij*Sij)
323 double norm(double[] s) {
324 if (lv == 4)
325 return (Math.sqrt(s[0]*s[0] + s[1]*s[1] +
326 s[3]*s[3] + 2*s[2]*s[2]));
327 else
328 return (Math.sqrt(s[0]*s[0] + s[1]*s[1] +
329 s[2]*s[2] + 2*(s[3]*s[3] + s[4]*s[4] +
330 s[5]*s[5])));
331 }
332

333 // Returns dyadic product = aij*bij
334 double dyadicProduct(double[] a, double[] b) {
335 if (lv == 4)
336 return (a[0]*b[0] + a[1]*b[1] + a[3]*b[3] +
337 2*a[2]*b[2]);
338 else
339 return (a[0]*b[0] + a[1]*b[1] + a[2]*b[2] +
340 2*(a[3]*b[3] + a[4]*b[4] + a[5]*b[5]));
341 }
342

343 }
344

345 }

The method deviator presented in lines 279–298 computes a deviator from
given tensor components and returns a mean value of diagonal entries of the ten-
sor. Method stressFromDeviator (lines 304–320) restores the stress com-
ponents from given devatoric components and mean stress. Methods norm and
dyadicProduct return the norm of a tensor and the dyadic product of the com-
ponents of two tensors.



19.6 Nonlinear Solution Procedure 239

19.6 Nonlinear Solution Procedure

Constitutive relation (19.18) contains the elastic–plastic constitutive matrix [Eep],
which depends on the current stress-strain state at a given material point. Using
this constitutive matrix it is possible to compute an elastic–plastic element stiffness
matrix [kep]:

[kep] =
∫

V

[B]T[Eep][B]dV , (19.39)

and an increment of the thermal vector {dhep}:

{dhep} =
∫

V

[B]T[Eep]{dε t}dV . (19.40)

Then, the incremental finite element equation expressed through displacement in-
crement {dq} has the following appearance:

[kep]{dq}= {d f},
{d f} = {d p}+{dhep}.

(19.41)

where {d p} is an increment of the actual force load, which we consider independent
of the strain–stress level.

The incremental finite element equation is valid for infinitesimally small incre-
ments of force or displacements. Usually, in elastic–plastic problems the applied
load is divided into a number of increments. In some cases this division is necessary
in order to reproduce load history. However, we cannot afford very small load incre-
ments because the solution of the global equation system is an expensive operation.
Hence, we need a nonlinear solution procedure that works for finite load increments.

In general, nonlinear problems are formulated in terms of some unknown param-
eters. The finite element elastic–plastic problem can be stated as follows. Starting
from an equilibrium state, for a given load increment it is necessary to find the dis-
placement field that satisfies the stress equilibrium equation

{p}−
∫

V

[B]T{σ}dV = 0. (19.42)

This can be done using iterative techniques, which decrease a residual vector
{ψ} due to the imbalance of external and internal forces:

{ψ} = {p}−
∫

V

[B]T{σ}dV . (19.43)

Several iterative techniques are used for the solution of finite element nonlinear
problems [7]. Among them the most famous techniques are the Newton–Raphson
method and the initial stress method.
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Fig. 19.2 Illustration of the Newton–Raphson method

19.6.1 Newton–Raphson Method

The Newton–Raphson method is considered the most rapidly convergent process
for solution of nonlinear problems. The iterative procedure of the Newton–Raphson
method for one load step is given by the following pseudocode:

Set {q0}, {σ0} from the previous load step

{ψ0} = {Δ p}+{Δhep}
do

[kep
i−1] = [kep({σi−1})]

{Δqi} = [kep
i−1]

−1{ψi−1}
{qi} = {qi−1}+{Δqi}
{Δσi} = {Δσ ep({Δqi})}
{σi} = {σi−1}+{Δσi}
{ψi} = {p}−

∫

V

[B]T{σi}dV

until convergence

(19.44)

The Newton–Raphson method for the one-dimensional case of a nonlinear prob-
lem is illustrated in Figure 19.2, where u0, p0 are displacement and load, which
represent an equilibrium state from the previous load step. The purpose of the so-
lution is to determine displacement u1 corresponding to the load value p1. Itera-
tions of the Newton–Raphson method start from the equilibrium stress–strain state,
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which is known at the end of the previous load step. A high convergence rate is
provided by computing new tangent stiffness matrix [kep

i−1], which corresponds to
the strain–stress state of the previous iteration. A displacement increment is used
for determining the stress increment according to the constitutive relation (19.18)
with subincrementation or another method that provides sufficient accuracy. Resid-
ual {ψ} due to the imbalance of external and internal forces is calculated using the
accumulated stress. If the residual is small enough then convergence is reached and
the iteration cycle is finished; otherwise the residual {ψi} is employed as a load for
the next iteration.

The modified Newton–Raphson method uses the same algorithm as the Newton–
Raphson iterative procedure, but tries to economize computations by computing
[kep

i−1] only at the first iteration and by keeping it constant during the following iter-
ations.

19.6.2 Initial Stress Method

The initial stress method uses an iterative procedure similar to that of the Newton–
Raphson method. The main difference is that the initial stress method employs the
elastic stiffness matrix for computing the displacement increment. The following
pseudocode presents the iterative procedure of the initial stress method:

Set {q0}, {σ0} from the previous load step

{ψ0} = {Δ p}+{Δhe}
do

{Δqi} = [ke]−1{ψi−1}
{qi} = {qi−1}+{Δqi}
{Δσi} = {Δσ ep({Δqi})}
{σi} = {σi−1}+{Δσi}
{ψi} = {p}−

∫

V

[B]T{σi}dV

until convergence

(19.45)

Illustration of the initial stress method in a one-dimensional nonlinear problem is
presented in Figure 19.3. It is evident that the number of iterations in the initial
stress method can be considerable. It is worth noting that the iteration cost in the
initial stress method is low because only a resolution procedure for the equation
system is performed. Nevertheless, for the developed plasticity the convergence of
the initial stress method can be too slow. While the method is very simple, it is
recommended to use it with certain care. Probably, the initial stress method can be
used for nonlinear problems with stress concentrators and moderate development of
the plastic zone.
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p

uu0 u1
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Fig. 19.3 Illustration of the initial stress method

19.6.3 Convergence Criteria

A natural convergence criterion for the iterative procedure of a nonlinear solution is
to compute the norm of the residual vector {ψ} and to compare it to the norm of the
applied load {p}:

‖ψ‖
‖p‖ < εψ , (19.46)

where εψ is the error tolerance and the vector norm is determined as

‖ψ‖ =
√
{ψ}T{ψ}. (19.47)

The other possibility is to control the displacement increment during the current it-
eration. The convergence criterion based on the norm of the displacement increment
is: ‖Δq‖

‖q‖ < εq. (19.48)

Here, {Δq} is the displacement increment at the current iteration, and {q} is the
displacement vector accumulated during this load step.

Values of error tolerance for convergence can be selected as follows: εψ ≈ 10−2

and εq ≈ 10−2 −10−3.
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Fig. 19.4 Elastic–plastic problem of simple tension test: schematic of a problem (a) and strain–
stress curve (b)

19.7 Example: Solution of an Elastic–Plastic Problem

Methods of elastic–plastic analysis are demonstrated on the solution of a simple
problem – uniform tension of a rectangular prism with a square-cross section shown
in Figure 19.4a. Let us select the following elastic–plastic material with linear hard-
ening:

Elasticity modulus E = 1.0;
Poisson’s ratio ν = 0.3;
Yield stress σY = 1.0;
Hardening coefficient k = 0.5;
Hardening power m = 1.0.

In the considered problem, the strain–stress state at any point of the specimen fol-
lows the material-deformation curve presented in Figure 19.4b.

First, a mesh of two twenty-node finite elements is prepared and placed in file
f.mesh. For cube elements with edge size 1, the file contains

nNod = 32
nEl = 2
nDim = 3

nodCoord
0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 1.0 0.5 0.0 0.0
0.5 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.5 1.0 0.0 1.0
0.0 0.5 0.0 0.0 0.5 1.0 1.0 0.5 0.0 1.0 0.5 1.0
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0.0 1.0 0.0 0.0 1.0 0.5 0.0 1.0 1.0 0.5 1.0 0.0
0.5 1.0 1.0 1.0 1.0 0.0 1.0 1.0 0.5 1.0 1.0 1.0
0.0 1.5 0.0 0.0 1.5 1.0 1.0 1.5 0.0 1.0 1.5 1.0
0.0 2.0 0.0 0.0 2.0 0.5 0.0 2.0 1.0 0.5 2.0 0.0
0.5 2.0 1.0 1.0 2.0 0.0 1.0 2.0 0.5 1.0 2.0 1.0

elCon
hex20 mat
1 4 6 11 18 16 13 9 2 7 19 14 3 5 8 12 20 17 15 10
hex20 mat
13 16 18 23 30 28 25 21 14 19 31 26 15 17 20 24 32 29 27 22

end

The first three scalars are: nNod – number of nodes, nEl – number of elements
and nDim – number of space dimensions (three-dimensional problem). Array
nodCoord includes coordinates of thirty two nodes. Element connectivities that
follow name elCon contain element type hex20, material name mat, and ele-
ment connectivity numbers. The word end signals the end of the file.

A second file with name f.fem contains other information on the problem.

# Elastic-plastic problem, simple tension, 3D
physLaw = elPlastic
includeFile f.mesh

# Mat name E nu alpha SY k m
material = mat 1 0.3 0.0 1.0 0.5 1.0

# Displacement boundary conditions
boxConstrDispl = x 0.0 -0.1 -0.1 -0.1 0.1 2.1 1.1
boxConstrDispl = y 0.0 -0.1 -0.1 -0.1 1.1 0.1 1.1
boxConstrDispl = z 0.0 -0.1 -0.1 -0.1 1.1 2.1 0.1
end

loadStep = A
boxSurForce = y 1.0 -0.1 1.9 -0.1 1.1 2.1 1.1
end

loadStep = B
scaleLoad = 0.5
residTolerance = 0.001
end

In the beginning, the elastic–plastic physical law is specified and the content of file
s.mesh is included in data. Statement material defines the elastic and elastic–
plastic properties of material mat. Displacement boundary conditions ux = 0, uy = 0
and uz = 0 are applied to planes x = 0, y = 0 and z = 0, respectively, using instruc-
tions boxConstrDispl.

First, load step A defines the surface load p = 1 with direction along the z-axis.
As can be seen from Figure 19.4b this load corresponds to the yield stress on the
material-deformation curve (point A). Second load step B is in the elastic–plastic
range. The load increment is created by scaling the previous load with factor 0.5.
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The total load at point B has a magnitude of 1.5. The residual norm tolerance is set
to 0.001.

Execution of the Jfem code is performed with the command

java -cp classes fea.Jfem f.fem f.lst

It is supposed that the current directory is Jfea and the data file f.fem is
located in this directory. After program run three results files appear: f.lst – brief
information about solution and f.lst.A and f.lst.B – results for load steps A
and B.

Displacements u, v, and w for nodes 32 with coordinates x = 1, y = 2, z = 1,
normal stresses σx, σy, and σz and the equivalent plastic strain εp

i are presented in
Table 19.1. For each load step, finite element results (FEM) are compared to the
exact solution.

Table 19.1 Results of elastic–plastic solution

Load u32 v32 w32 σx σy σz εp
i

A-FEM −0.30000 2.00000 −0.30000 0.00000 1.00000 0.00000 0.00000
A-exact −0.3 2.0 −0.3 0.0 1.0 0.0 0.0
B-FEM −0.94946 4.99786 −0.94946 0.00012 1.49975 0.00012 0.99925
B-exact −0.95 5.0 −0.95 0.0 1.5 0.0 1.0

The load step A is elastic. The finite element method produced an exact solution.
For elastic–plastic step B finite element results have small differences from the exact
solution. The program performed 20 iterations to achieve a relative residual norm
0.001. The small differences between finite element and exact results are due to the
limited number of iterations.

Problems

19.1. The material-deformation curve in the elastic–plastic region is represented by
the relation

σ = 2 +
5

11
ε,

where σ is the stress and ε is the total strain. Find parameters k and m in the descrip-
tion of deformation curve (19.28), provided that the yield stress and the elasticity
modulus are σY = 2 and E = 5.

19.2. Solve the elastic–plastic problem presented in Section 19.7 in three-dimensional
“plane strain” conditions when the deformation in the z-direction is constrained by
specifying uz = 0 at plane z = 1. Compare the results obtained with and without
such a constraint. Explain the differences.
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19.3. Create a finite element mesh and perform elastic–plastic analysis of Problem
19.2 using a two-dimensional approach under plane strain conditions. Confirm that
the three- and two-dimensional results are identical.

19.4. Using Hooke’s law for the elastic strain fraction and the condition of zero
volume change for plastic deformation, determine strains εx and εz at the end of
load step B in the elastic–plastic problem of Section 19.7.
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Mesh Generation



Chapter 20
Mesh Generator

Abstract This chapter opens the book part about generation of finite element
meshes. The general approach to mesh generation is based on the block decom-
position method. The user divides a solution domain into multiple blocks, each of
which is suitable for the local meshing process. The main class of the mesh genera-
tor, Jmgen, calls modules that perform tasks of mesh generation. New modules can
be added without changing the existing JavaTM code.

20.1 Block Decomposition Method

Preparation of a finite element model is an important step in finite element analysis.
Since the number of elements and nodes in finite element meshes used for solution
of practical problems is usually large it is impossible to prepare the finite element
mesh manually. In general, mesh generation is a complicated problem. Commercial
mesh-generation programs usually include geometric modeling and numerous tech-
niques for mesh generation including meshing for arbitrary domains. It is difficult
to use such approaches here since the code will be very large. So, we selected the
block decomposition method [12, 27] as a basis for mesh generation in our program
Jfea.

In the block decomposition method, the user divides a solution domain into mul-
tiple blocks such that each block is suitable for the local meshing process. Mesh
generation within blocks is performed by various mesh-generation modules.

Some blocks can be meshed using both two- and three-dimensional approaches.
First, a two-dimensional mesh is created. Then, this mesh is swept in space to pro-
duce a three-dimensional mesh block. Besides mesh generation, program modules
can perform other operations on mesh blocks such as transformations, copying, etc.

The generated mesh blocks are pasted together in order to create a total mesh.
Instead of pasting all mesh blocks at once, it is easier to connect each time two
blocks. A newly created block can be used as a normal mesh block in a block pair
for pasting.

249
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Mesh generation using the block decomposition method can be performed as the
following steps:

1. Decompose the computational domain into simple blocks.

2. Define block interfaces (common edges or faces) and their subdivisions to
ensure continuity of mesh across these shared boundaries.

3. Generate a mesh inside each block separately.

4. Create the final mesh by pasting (connecting) the mesh blocks.

(a) (b)

Fig. 20.1 Two-dimensional computational domain (a) and its subdivision into multiple blocks (b)

An example of a two-dimensional computational domain is depicted in Fig-
ure 20.1a. The domain can be subdivided into quadrilateral blocks for separate
meshing as shown in Figure 20.1b. If quadrilateral blocks can have curved edges
with quadratic interpolation, representation of circular boundaries can be quite sat-
isfactory.

20.2 Class Structure

A class diagram of the finite element preprocessor is shown in Figure 20.2. Class
Jmgen contains the main method and activates all other classes necessary for mesh
creation. Each class performs some action on one or more finite element models.
FeModel objects are stored in hash table blocks. For example, any mesh gen-
erator can create a mesh block as FeModel and can put it in blocks hash table
under a name specified by the user. Since all modules are independent, the main
class invokes them by the name of its class.

The source code of class Jmgen is given below.

1 package fea;
2

3 import util.*;
4

5 import java.io.*;
6 import java.util.HashMap;
7
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FeData

FeModel

Node Element

Jmgen (main)

Paste

3D mesh

generators

2D mesh

generators

Mesh

transform

Hashtable

Fig. 20.2 Class diagram of the finite element preprocessor

8 // Main class of the mesh generator
9 public class Jmgen {

10

11 public static FeScanner RD;
12 public static PrintWriter PR;
13 public static HashMap blocks;
14

15 public static void main(String[] args) {
16

17 if (args.length == 0) {
18 System.out.println(
19 "Usage: java fea.Jmgen FileIn [FileOut]\n");
20 return;
21 }
22 FE.main = FE.JMGEN;
23

24 RD = new FeScanner(args[0]);
25

26 String fileOut = (args.length == 1) ?
27 args[0]+".lst" : args[1];
28 PR = new FePrintWriter().getPrinter(fileOut);
29

30 PR.println("fea.Jmgen: Mesh generator. Data file: "
31 + args[0]);
32 System.out.println("fea.Jmgen: Mesh generator. "
33 + "Data file: " + args[0]);
34

35 new Jmgen();
36 }
37

38 Jmgen() {
39

40 UTIL.printDate(PR);
41

42 // Hash table for storing mesh blocks
43 blocks = new HashMap();
44



252 20 Mesh Generator

45 while (RD.hasNext()) {
46

47 String name = RD.next().toLowerCase();
48 if (name.equals("#")) { RD.nextLine(); continue; }
49 PR.println("------------------------------------");
50

51 try {
52 Class.forName("gener." + name).newInstance();
53 } catch (Exception e) {
54 UTIL.errorMsg("Class name not found: "+name);
55 }
56 }
57 PR.close();
58 }
59

60 }

If no parameters are specified by the user, a message is printed that the code
Jmgem should be run with one or two parameters (lines 17–21). Line 22 specifies
that the mesh generator is currently running. This information is used by the con-
structor of the finite element model (arrays related to stresses and strains are not
employed during mesh generation). A scanner RD for reading input data from an
ASCII file is constructed in line 24, and a printer PR for printing information into
the ASCII file is created in lines 26–27. The main object Jmgem that performs calls
to block mesh generators is created in line 35.

In the constructor Jmgem static method printDate prints the current date and
time using print writer PR. Line 42 creates hash table blocks, which is used for
storage of finite element model for mesh blocks.

The loop in lines 45–56 reads data from an input file. A read token name is trans-
formed to lower case. If the token is symbol # then this line is considered a comment
and a token from the next line is input. If string name is not the comment charac-
ter it is supposed to be a class name. A new object name from package gener is
created using methods forName and newInstance.

20.3 Mesh-generation Modules

Mesh-generation modules may be divided into several groups according to their
functions. Mesh generators create meshes inside two- or three-dimensional blocks.
Read/write modules read meshes from file, write meshes to a file, or print meshes.
Transformation modules perform geometric transformations on meshes like trans-
late, scale, or rotate. A module pasting two meshes into one plays an important role
in the mesh-generation process since it allows production of complicated meshes
composed of relatively simple fragments.

The following mesh-generation modules are present in mesh generator Jmgen:

rectangle – generate rectangular mesh inside rectangular region;
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genquad8 – generate topologically regular mesh inside curvilinear quadrilat-
eral region;

sweep – generate three-dimensional mesh by sweeping two-dimensional mesh
in space;

readmesh – read mesh from file;

writemesh – write mesh to file;

copy – copy mesh block;

transform – make transformations (translate, scale, rotate) for the mesh block;

connect – produce new mesh block by connecting two mesh blocks.

Each module is identified by its class name in a data file. The name of the mod-
ule is read by the main method Jmgen. The module inputs all necessary data and
performs operations of mesh generation, transformations, and others.

The data file for the mesh generation has in general the following appearance:

classA
data for classA

classB
data for classB

classC
data for classC

...

20.4 Adding New Module

Since mesh-generation modules are called by their names it is possible to add new
modules without changing the existing code. The module developer should follow
the following rules.

Finite element scannerJmgen.RD is used for data input. Data printerJmgen.PR
is employed for printing data into output file. Finite element models are stored in
the Jmgen.blocks hash table.

The finite element model with name modelName can be extracted from the hash
table by executing the statement

FeModel m = (FeModel) Jmgen.blocks.get(modelName);

To put the finite element model m into the hash table under name modelName,
one can use the statement

Jmgen.blocks.put(modelName,m);.
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A simple mesh-generation module generates a mesh for a finite element model and
puts the resulting model into hash table Jmgen.blocks. Later, other modules can
use this model in their operations.

A program structure of a typical mesh-generation module is shown below.

public class meshGenModule {

private FeModel m;

public meshGenModule() {

String modelName = Jmgen.RD.next();
readData();
printData();
m = new FeModel(Jmgen.RD, Jmgen.PR);
generateMesh();
Jmgen.blocks.put(modelName, m);

}

private void readData() {
...

}

private void printData() {
...

}

private void generateMesh() {
...

}
}

Module constructor reads modelName that is used for identification of this mesh
block. Method readData inputs all the rest of the data used for description of
the mesh block. The input data is printed by method printData. A generated
mesh is placed in an FeModel object, so we construct such an object m. The mesh
is generated in m by method generateMesh and placed in hash table blocks
under name modelName.

Problems

20.1. Subdivide the two-dimensional square domain into quadrilateral blocks in
such a way that it has two blocks on the left boundary and four blocks on the right
boundary.
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2 blocks 4 blocks

20.2. Represent a two-dimensional domains shaped as a regular triangle (a), a pen-
tagon (b), and a hexagon (c) with convex quadrilateral blocks.

(a) (b) (c)

20.3. Propose a procedure for mesh generation inside a quadrilateral block with
curved edges.



Chapter 21
Two-dimensional Mesh Generators

Abstract Two-dimensional mesh generators are described. A simple mesh genera-
tor rectangle creates a rectangular mesh of quadratic eight-node elements inside
a rectangular block. JavaTM class genquad8 is designed for mesh generation inside
a quadrilateral area with curved boundaries. The area has the shape of the quadratic
finite element with eight nodes. Element boundary placement and mesh refinement
are achieved by double-quadratic transformation.

21.1 Rectangular Block

A simple mesh generator rectangle creates a rectangular mesh of quadratic
eight-node elements inside a rectangular block. The locations of element bound-
aries are oriented vertically and horizontally, as shown in Figure 21.1a.

Input data consists of the following:

rectangle blockName – first data statement: mesh-generator name and
mesh block name;

nx, ny – number of elements along x and y;

xs[nx+1], ys[ny+1] – locations of element boundaries on x and y;

mat – material name (default mat=1).

Geometrical data is necessary since this data has no default values. The contents of
arrays xs and ys are shown as x0...x3 and y0...y2 in Figure 21.1a. Material name
mat has default value 1. If not defined in the input stream, generated elements will
have a default material name.

A constructor of class rectangle and methods for data input and data print
are given below.

1 package gener;
2

3 import model.*;
4 import fea.*;

257
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Fig. 21.1 Generation of a mesh inside a rectangular block: specification of mesh lines (a), gener-
ated mesh with node and element numbering (b)

5 import util.*;
6 import elem.*;
7

8 // Generate mesh of quadratic elements inside a rectangle.
9 // Input: nx, ny - number of elements along x and y;

10 // xs, ys - locations of element boundaries on x and y;
11 // [mat] - material name.
12 public class rectangle {
13

14 private FeModel m;
15 enum vars {
16 nx, ny, xs, ys, mat, end
17 }
18

19 private vars name;
20

21 private int nx, ny;
22 String mat="1";
23 private double xs[], ys[];
24

25 public rectangle() {
26 String modelName = Jmgen.RD.next();
27 Jmgen.PR.printf("Rectangle: %s\n", modelName);
28 readData();
29 printData();
30 m = new FeModel(Jmgen.RD, Jmgen.PR);
31 generateMesh();
32 Jmgen.blocks.put(modelName,m);
33 Jmgen.PR.printf("Mesh " + modelName +
34 ": nEl = %d nNod = %d\n", m.nEl, m.nNod);
35 }
36

37 private void readData() {
38 String varName, varname;
39

40 while (Jmgen.RD.hasNext()) {
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41

42 varName = Jmgen.RD.next();
43 varname = varName.toLowerCase();
44 if (varName.equals("#")) {
45 Jmgen.RD.nextLine(); continue;
46 }
47 try {
48 name = vars.valueOf(varname);
49 } catch (Exception e) {
50 UTIL.errorMsg("Variable name is not found: "
51 + varName);
52 }
53 switch (name) {
54 case nx: nx = Jmgen.RD.readInt();
55 break;
56 case ny: ny = Jmgen.RD.readInt();
57 break;
58 case xs:
59 xs = new double[nx+1];
60 for (int i = 0; i <= nx; i++)
61 xs[i] = Jmgen.RD.readDouble();
62 break;
63 case ys:
64 ys = new double[ny+1];
65 for (int i = 0; i <= ny; i++)
66 ys[i] = Jmgen.RD.readDouble();
67 break;
68 case mat: mat = Jmgen.RD.next();
69 break;
70 case end:
71 return;
72 }
73 }
74 }
75

76 private void printData() {
77 Jmgen.PR.printf(" nx =%5d\n", nx);
78 Jmgen.PR.printf(" ny =%5d\n", ny);
79 Jmgen.PR.printf(" xs: ");
80 for (int i = 0; i <= nx; i++)
81 Jmgen.PR.printf("%7.3f", xs[i]);
82 Jmgen.PR.printf("\n ys: ");
83 for (int i = 0; i <= ny; i++)
84 Jmgen.PR.printf("%7.3f", ys[i]);
85 Jmgen.PR.printf("\n");
86 }

Input data names are placed in enumerated vars (lines 15–17). Item end is
also included. It is necessary to mark the end of input data for the module. Line
26 reads the model name modelName. Line 30 creates a new finite element
model m. Method generateMesh generates the mesh and puts the mesh data
into model m. In line 32, the generated finite element model is placed in hash ta-
ble Jmgen.blocks. Methods readData and printData input and print data.
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Method generateMesh creates element connectivities and nodal coordinates.

88 private void generateMesh() {
89 int ind[] = new int[8];
90 m.nDim = 2;
91

92 // Connectivity array
93 m.nEl = nx*ny;
94 m.elems = new Element[m.nEl];
95

96 int el = 0;
97 for (int iy=0; iy<ny; iy++) {
98 for (int ix=0; ix<nx; ix++) {
99 m.elems[el] = Element.newElement("quad8");
100 int in0 = iy*(3*nx+2) + 2*ix;
101 ind[0] = in0 + 1;
102 ind[1] = in0 + 2;
103 ind[2] = in0 + 3;
104 int in1 = iy*(3*nx+2) + 2*nx + 1 + ix + 1;
105 ind[3] = in1 + 1;
106 ind[7] = in1;
107 int in2 = (iy+1)*(3*nx+2) + 2*ix;
108 ind[4] = in2 + 3;
109 ind[5] = in2 + 2;
110 ind[6] = in2 + 1;
111 m.elems[el].setElemConnectivities(ind);
112 m.elems[el].setElemMaterial(mat);
113 el++;
114 }
115 }
116

117 // Node coordinate array
118 m.nNod = (3*nx+2)*ny + 2*nx + 1;
119 m.newCoordArray();
120 int n = 0;
121 for (int iy=0; iy<2*ny+1; iy++) {
122 int py = (iy+1)/2;
123 for (int ix=0; ix<2*nx+1; ix++) {
124 int px = (ix+1)/2;
125 if (ix%2==0 && iy%2==0) {
126 m.setNodeCoord(n, 0, xs[px]);
127 m.setNodeCoord(n, 1, ys[py]);
128 n++;
129 }
130 else if (ix%2==1 && iy%2==0) {
131 m.setNodeCoord(n,0,0.5*(xs[px-1]+xs[px]));
132 m.setNodeCoord(n, 1, ys[py]);
133 n++;
134 }
135 else if (ix%2==0 && iy%2==1) {
136 m.setNodeCoord(n, 0, xs[px]);
137 m.setNodeCoord(n,1,0.5*(ys[py-1]+ys[py]));
138 n++;
139 }
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140 }
141 }
142 }
143

144 }

Nodes and elements are numbered in a mesh by rows along the x-direction, as
shown in Figure 21.1b. An array of elements is allocated in line 94. Element con-
nectivities are generated inside the double loop in lines 97–115. The outer loop
iterates on element rows; the element number in a row is changed in the inner loop.
A current element of type quad8 with eight nodes is constructed in line 99. The
connectivity number of the left lower node is calculated in lines 100–101. In the
statement of line 98, (3*nx+2) is the number of nodes in a row on nx eight-node
elements without upper nodes. Lines 111–112 set the element connectivities and
element material. The element number is incremented in line 113.

Line 118 sets the number of nodes in the mesh. Line 119 allocates a nodal coordi-
nates array according to problem dimension nDim and the number of nodes nNod.
Nodal coordinates are set in lines 121–141. Double loop iy – ix is organized along
rows and columns of nodes, including rows and columns where midside nodes are
located. Lines 125–129 set coordinates of element corner nodes. Lines 130–134 es-
timate coordinates of midside nodes on horizontal element sides and lines 135–139
on vertical element sides. Thus, combinations of indices iy and ix correspond-
ing to element centers are not used, and coordinates are generated just for actually
existing nodes.

In conclusion, let us show input data, which is necessary to generate the mesh
shown in Figure 21.1b.

rectangle block1
nx = 3 ny = 2
xs = 0 1 2.5 4.5
ys = 0 1 2.5
mat = STEEL

end

The first line specifies that the mesh will be created by the rectangle mesh gen-
erator and will have the name block1. Line 2 sets the numbers of elements in the
x- and y-directions. The locations of element boundaries are defined in lines 3 and
4. Line 5 assigns STEEL as the material name for all elements. The final statement
end marks the end of data.

21.2 Mesh Inside Eight-node Macroelement

21.2.1 Algorithm of Double-quadratic Transformation

A block mesh generator for a quadrilateral area with curved boundaries can be cre-
ated on the basis of the quadratic finite element with eight nodes. Interpolation in
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Fig. 21.2 Generation of a mesh inside a quadrilateral block with curved sides: regular subdivision
of the parent square element (a), mesh after transformation to the global coordinates x, y (b)

this element is performed using quadratic shape functions (10.7). Such interpolation
z(ξ ,η) = Q(ξ ,η) can be written in the following form:

z(ξ ,η) = − 0.25(1− ξ )(1−η)(1 + ξ+η)z1

− 0.25(1 + ξ )(1−η)(1− ξ+η)z3

− 0.25(1 + ξ )(1 +η)(1− ξ−η)z5

− 0.25(1− ξ )(1 +η)(1 + ξ−η)z7

+ 0.5(1− ξ )(1 + ξ )(1−η)z2

+ 0.5(1−η)(1 +η)(1 + ξ )z4

+ 0.5(1− ξ )(1 + ξ )(1 +η)z6

+ 0.5(1−η)(1 +η)(1− ξ )z8,

(21.1)

where coordinates ξ , η have the range [−1,1]; z1...z8 are nodal values of an inter-
polated quantity, and z(ξ ,η) is the value at point ξ ,η obtained by the quadratic
interpolation. Nodes are numbered in the anticlockwise order starting with any cor-
ner node, as shown in Figure 21.2. Mesh refinement can be achieved by shifting
macroelement midside nodes from their central positions. However, specification of
midside node locations is difficult since we do not know what element sizes will
be produced after quadratic transformation. It is better to specify the size of the
smallest element at an element edge and then to find locations of midside nodes.

In order to develop an algorithm for computing midside node location on the ba-
sis of the smallest element size, let us consider a one-dimensional quadratic trans-
formation for arbitrary location of the midside node, as shown in Figure 21.3. An
edge of the quadratic macroelement has three nodes with local coordinates ξ1 =−1,
ξ2 = 0 and ξ3 = 1. Subdivision of the side into n elements uses global coordinate
x. Nodes 1 and 3 have global coordinates x1 = 0 and x3 = l. It is necessary to de-
termine position c of the midside node, which yields the smallest element with size
emin. Interpolation of x is done using the one-dimensional shape functions Ni(ξ ):

x =
3

∑
i=1

Ni(ξ )xi = (1− ξ 2)c +
1
2
ξ (1 + ξ )l. (21.2)
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Fig. 21.4 Double-quadratic transformation. The first transformation is performed from the element
with shifted midside nodes to the element with regular locations of midside nodes. The second
transformation to global coordinates produces a mesh of elements within a curved quadrilateral

The value of c can be determined from the condition that x should be equal to the
smallest element size at point ξ = −1 + 2/n:

x|ξ=−1+2/n = emin.

Solving the above equation gives the location of the midside node c:

c
l

=
(emin/l)n2 + n−2

4(n−1)
, (21.3)

where n is the number of elements on the side. This relation shows that as the num-
ber of element subdivisions tends to infinity, the maximum midside node shift (cor-
responding to zero size of the smallest element) is a quarter of the side length.

The shift of a midside node along a curved macroelement side is a complicated
procedure, which in general can not be performed exactly. To overcome this diffi-
culty, let us perform a double-quadratic transformation shown in Figure 21.4.

The first quadratic transformation is performed from element −1≤ ξ ,η ≤ 1 with
shifted midside nodes to element −1 ≤ s,t ≤ 1 with regular locations of midside
nodes. This transformation provides mesh refinement corresponding to specified
sizes of the smallest elements. Equation 21.1 is used to perform quadratic transfor-
mation. Midside nodes are shifted according to Equation 21.3.
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The second quadratic transformation from element −1 ≤ s,t ≤ 1 to a curved
element in global coordinates x,y produces a mesh of elements inside the specified
region with specified refinements.

21.2.2 Implementation of Mesh Generation

Class genquad8 implements double-quadratic transformation for generating a
mesh of quadratic elements inside a macroelement with eight nodes.

The following input data should be specified for mesh generation:

genquad8 blockName – first data statement: mesh-generator name and mesh
block name;

nh, nv – number of elements along “horizontal” and “vertical” directions. The
“horizontal” direction is along macroelement side 1–2–3;

x1,y1,x2,y2 ...x8,y8 – locations of eight nodes for macroelement defi-
nition in anticlockwise order starting from any corner node. If both coordinates
of a midside node are specified as zeros, then they are interpolated linearly from
neighboring corner nodes;

res[4] – relative sizes of smallest elements on macroelement sides. If the
smallest element is located at the side end (anticlockwise order) then it is speci-
fied as (1-size). Default values for relative element sizes res = 0, 0, 0, 0
- no refinement;

mat – material name (default mat=1).

Array res and material name mat may be omitted from the input data since they
have default values.

A constructor of class genquad8 and methods for data input and data print are
as follows.

1 package gener;
2

3 import fea.*;
4 import util.*;
5 import model.*;
6 import elem.*;
7

8 // Generate mesh of quadratic elements inside
9 // a macroelement with 8 nodes.

10 // Input: modelName - name of the finite element model;
11 // nh, nv - number of elements in local coordinate directions;
12 // xyp - coordinates of 8 macroelement nodes (x1,y1,x2,y2 ..);
13 // [res] - relative sizes of smallest elements on
14 // macroelemet edges;
15 // [mat] - material name.
16 public class genquad8 {
17

18 private FeModel m;
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19 enum vars {
20 nh, nv, res, xyp, mat, end
21 }
22

23 private vars name;
24 private int nh, nv;
25 String mat = "1";
26 private double res[] = new double[4],
27 xp[] = new double[8], yp[] = new double[8];
28 // Nodes of parent element (coordinates xi, eta)
29 double xip[] = {-1, 0, 1, 1, 1, 0,-1,-1},
30 etp[] = {-1,-1,-1, 0, 1, 1, 1, 0};
31

32 public genquad8() {
33

34 String modelName = Jmgen.RD.next();
35 Jmgen.PR.printf("GenQuad8: %s\n", modelName);
36 readData();
37 printData();
38 m = new FeModel(Jmgen.RD, Jmgen.PR);
39 generateMesh();
40 Jmgen.blocks.put(modelName,m);
41 Jmgen.PR.printf("Mesh " + modelName +
42 ": nEl = %d nNod = %d\n", m.nEl, m.nNod);
43 }
44

45 private void readData() {
46 String varName, varname;
47

48 while (Jmgen.RD.hasNext()) {
49 varName = Jmgen.RD.next();
50 varname = varName.toLowerCase();
51 if (varName.equals("#")) {
52 Jmgen.RD.nextLine(); continue;
53 }
54 try {
55 name = vars.valueOf(varname);
56 } catch (Exception e) {
57 UTIL.errorMsg("Variable name is not found: "
58 + varName);
59 }
60 switch (name) {
61 case nh: nh = Jmgen.RD.readInt();
62 break;
63 case nv: nv = Jmgen.RD.readInt();
64 break;
65 case res:
66 for (int i = 0; i < 4; i++)
67 res[i] = Jmgen.RD.readDouble();
68 break;
69 case xyp:
70 for (int i = 0; i < 8; i++) {
71 xp[i] = Jmgen.RD.readDouble();
72 yp[i] = Jmgen.RD.readDouble();
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73 }
74 // Interpolation of macroelement midside
75 // nodes if both coordinates are zeroes
76 for (int i = 1; i < 8; i += 2)
77 if (xp[i] == 0.0 && yp[i] == 0.0) {
78 xp[i] = 0.5*(xp[i-1]+xp[(i+1)%8]);
79 yp[i] = 0.5*(yp[i-1]+yp[(i+1)%8]);
80 }
81 break;
82 case mat: mat = Jmgen.RD.next();
83 break;
84 case end:
85 return;
86 }
87 }
88 }
89

90 private void printData() {
91 Jmgen.PR.printf(" nh =%5d\n", nh);
92 Jmgen.PR.printf(" nv =%5d\n", nv);
93 Jmgen.PR.printf(" res: ");
94 for (int i = 0; i < 4; i++)
95 Jmgen.PR.printf("%7.3f", res[i]);
96 Jmgen.PR.printf("\n xyp: ");
97 for (int i = 0; i < 8; i++) {
98 Jmgen.PR.printf("%7.3f%7.3f", xp[i],yp[i]);
99 if (i == 3) Jmgen.PR.printf("\n ");
100 }
101 Jmgen.PR.printf("\n");
102 }

The class constructor reads a name of the mesh block that is being generated (line
34). Then it reads and prints data (lines 36 and 37), generates a mesh block by
calling method generateMesh (in line 39), and puts the mesh block in the hash
table blocks (line 40). Input data parameters are read in method readData (lines
45–88). Input of macroelement nodal coordinates in lines 70–73 is accompanied by
interpolation of midside nodes, which are specified by double zeros (lines 76–80).

Two methods – midsideNodeShift and quadraticTransform – imple-
ment shift of midside nodes for mesh refinement and quadratic coordinate transfor-
mation.

104 // Shift of midside nodes to have specified element size
105 private void midsideNodeShift() {
106 for (int edge = 0; edge < 4; edge++) {
107 // minElem = relative size of the smallest element
108 double minElem = res[edge];
109 int sign = 1;
110 if (minElem > 0.5) {
111 minElem = 1.0 - minElem;
112 sign = -1;
113 }
114 if (edge > 1) sign = -sign;
115 if (minElem > 0.0) {
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116 // ne = number of elements on the elem edge
117 double ne = (edge%2 == 0) ?
118 (double) nh : (double) nv;
119 double ratio = 0.25*(minElem*ne*ne + (ne-2))
120 /(ne-1);
121 double c = (-1.0 + ratio*2)*sign;
122 if (edge%2 == 0) xip[2*edge + 1] = c;
123 else etp[2*edge + 1] = c;
124 }
125 }
126 }
127

128 // Quadratic 2D mapping.
129 // z [8] - values at nodes,
130 // returns interpolated z at point xi, et.
131 private double quadraticTransform(double[] z,
132 double xi, double et) {
133 double x1 = 1 - xi; double x2 = 1 + xi;
134 double e1 = 1 - et; double e2 = 1 + et;
135

136 return -0.25*(x1*e1*(x2 + et)*z[0]
137 + x2*e1*(x1 + et)*z[2]
138 + x2*e2*(x1 - et)*z[4]
139 + x1*e2*(x2 - et)*z[6])
140 + 0.5*(x1*x2*e1*z[1]
141 + e1*e2*x2*z[3]
142 + x1*x2*e2*z[5]
143 + e1*e2*x1*z[7]);
144 }

Method midsideNodeShift takes array res containing the smallest elements
on macroelement sides and changes the locations of the midside nodes in arrays
xip and etp (the ξ and η coordinates of the element, shown on the left of Fig-
ure 21.4). For each macroelement side, ratio c/l is calculated according to Equation
21.3 in lines 119–120. Coordinates ξ and η of the midside nodes are estimated in
lines 121–123. Method quadraticTransform implements quadratic transfor-
mation (21.1). The method returns the interpolated value of scalar z specified at
eight macroelement nodes. The interpolated value corresponds to local coordinates
xi (ξ ) and et (η).

The listing below presents method generateMesh, which creates a mesh of
quadratic elements inside a macroelement.

146 private void generateMesh() {
147 int ind[] = new int[8];
148 m.nDim = 2;
149

150 // Element connectivities
151 m.nEl = nh*nv;
152 m.elems = new Element[m.nEl];
153 int n = 0;
154

155 for (int iv = 0; iv < nv; iv++) {
156 for (int ih = 0; ih < nh; ih++) {
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157 m.elems[n] = Element.newElement("quad8");
158 int in0 = iv*(3*nh+2) + 2*ih;
159 ind[0] = in0 + 1;
160 ind[1] = in0 + 2;
161 ind[2] = in0 + 3;
162 int in1 = iv*(3*nh+2) + 2*nh + ih + 2;
163 ind[3] = in1 + 1;
164 ind[7] = in1;
165 int in2 = (iv+1)*(3*nh+2) + 2*ih;
166 ind[4] = in2 + 3;
167 ind[5] = in2 + 2;
168 ind[6] = in2 + 1;
169 m.elems[n].setElemConnectivities(ind);
170 m.elems[n].setElemMaterial(mat);
171 n++;
172 }
173 }
174

175 // Shift of midside nodes for element in xi, eta
176 midsideNodeShift();
177

178 // Node coordinate array
179 m.nNod = (3*nh+2)*nv+2*nh+1;
180 m.newCoordArray();
181 n = 0;
182 double dxi = 1.0/nh;
183 double det = 1.0/nv;
184 for (int iv = 0; iv < 2*nv+1; iv++) {
185 for (int ih = 0; ih < 2*nh+1; ih++) {
186 if (iv%2 == 1 && ih%2 == 1) continue;
187 double xi = -1.0 + dxi*ih;
188 double et = -1.0 + det*iv;
189 // First quadratic transform: xi,et -> s,t
190 double s,t;
191 if (ih%2 == 0)
192 s = quadraticTransform(xip, xi, et);
193 else
194 s = 0.5*(quadraticTransform(xip,xi-dxi,et)
195 + quadraticTransform(xip,xi+dxi,et));
196 if (iv%2 == 0)
197 t = quadraticTransform(etp, xi, et);
198 else
199 t = 0.5*(quadraticTransform(etp,xi,et-det)
200 + quadraticTransform(etp,xi,et+det));
201

202 // Second quadratic transform: s,t -> x,y
203 m.setNodeCoord(n,0,quadraticTransform(xp,s,t));
204 m.setNodeCoord(n,1,quadraticTransform(yp,s,t));
205 n++;
206 }
207 }
208 }
209

210 }
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Method generateMesh produces element connectivities and nodal coordinates
for a mesh of eight-node quadratic elements.

An array of elements is allocated in line 152. Element connectivities are cre-
ated inside a double loop in lines 155–173. An element of the type quad8 with
eight nodes is constructed in line 157. The connectivity numbers are calculated in
lines 158–168. The statements in lines 169–170 set element connectivities and the
element material.

Line 179 sets the number of nodes in the mesh. The node coordinate array is
allocated in line 180 according to the problem dimension nDim and number of
nodes nNod. Nodal coordinates are set in a double loop along “horizontal” rows
in lines 184–207. The double loop iv – ih counts rows and columns for all nodes
including rows and columns for midside nodes. The statement in line 186 omits
nodes at element centers since they are absent in eight-node elements. The first
quadratic transformation from ξ ,η to s,t is performed in lines 191–200. For midside
nodes (else conditions), coordinates s and t are interpolated between neighboring
corner nodes in order to place midside nodes at side centers. The second quadratic
transformation from s,t to x,y and setting of x and y coordinates are done in lines
203–204.

21.3 Example of Mesh Generation

Using mesh generator genquad8, a mesh of quadratic elements can be created
inside a quarter ring with inner radius r = 1 and outer radius r = 2, as shown in Fig-
ure 21.5a. The mesh should have refinement near the lower left corner with relative
sizes 0.1 in the radial direction and 0.07 in the angular direction. The mesh should
have 4 elements in the radial direction and 5 elements in the angular direction. Node
numbering should be in the radial direction.
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Fig. 21.5 Mesh generation for a quarter of a ring using genquad8: specification of nodes for a
macroelement (a) and created mesh of quadratic elements (b)
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Solution

The quarter ring is approximated by a macroelement with eight nodes. Macroele-
ment node locations and numbers are presented in Figure 21.5a. We start macroele-
ment nodes with the lower left corner of the domain since node numbering is per-
formed in the direction of macroelement nodes 1–2–3. The following data creates
the desired mesh.

genquad8 b1
nh = 4 nv = 5
xyp = 1 0 0 0 2 0 1.414 1.414

0 2 0 0 0 1 0.7071 0.7071
res = .1 0.07 0.9 0.93
end

The first line specifies the name of a mesh-generator module (genquad8) and the
name of the mesh block (b1). Line 2 sets the numbers of elements in the “horizon-
tal” (radial) and “vertical” (angular) directions. Locations of macroelement corner
and midside nodes in anticlockwise order are defined in lines 3 and 4. The coordi-
nates of points 2 and 6 are set to double zeros since they are situated on straight
sides and can be determined by linear interpolation. Line 5 assigns relative element
sizes for mesh refinement. In order to achieve relative element size 0.1 near the in-
ner radius line, the value of res is specified as 0.1 for side 1–2–3 and as 0.9 for
side 5–6–7. A quadratic transformation with shifted midside node produces element
sizes related by arithmetic progression. For, example, four elements in the radial
direction have sizes 0.1, 0.2, 0.3, and 0.4. Similarly, res values on sides 3–4–5
and 7–8–1 are 0.07 and 0.93. The final statement end indicates the data end for the
mesh generator.

The resulting mesh is depicted in Figure 21.5b. Some node numbers are shown
indicating the order of node numbering. Nodes are numbered by rows in the direc-
tion of side 1–2–3. Element numbering follows the same manner.

Problems

21.1. Derive a relation that provides a lower left node number of an element with
number e for node and element numbering shown in Figure 21.1b. Use nx – number
of elements in the x-direction.

21.2. Analyze Equation 21.2, which performs one-dimensional interpolation of x
depending on local coordinate ξ . Show that the relation can produce negative x
values when the midside node is located too close to the corner node: c ≤ 0.25l (see
Figure 21.3).

21.3. Modify the data of example in Section 21.3 in such a way that node numbering
is in the angular direction.



Chapter 22
Generation of Three-dimensional Meshes by
Sweeping

Abstract This chapter presents generation of three-dimensional meshes of hexag-
onal elements by sweeping a two-dimensional mesh in space. The source two-
dimensional mesh consists of eight-node quadrilateral elements. The sweeping path
can be straight or circular. The resulting three-dimensional mesh is composed of
twenty-node hexagonal elements.

22.1 Sweeping Technique

Because of the difficulty in generating hexahedral meshes for three-dimensional ge-
ometry in the general case, methods for special geometry cases are widely used.
One of the most common methods is sweeping [12]. In the sweeping method, two-
dimensional surface source and target meshes with identical topological properties
are created. Interpolation between source and target meshes along a sweeping vol-
ume produces inner mesh layers. Three-dimensional hexahedral elements are gen-
erated between two neighboring mesh layers.

Here, a simplified variant of the sweeping method is selected for implementa-
tion. In our implementation, the source mesh and target mesh are the same. The
source mesh is located on the xy-plane at z = 0. Two possible sweeping paths are
shown in Figure 22.1. The first (Figure 22.1a) is moving the two-dimensional source
mesh along the positive direction of the z-axis and copying it at specified positions.
The second possibility, shown in Figure 22.1b, implies rotation of the source mesh
around the y-axis. The source mesh is copied at predetermined positions creating
faces for three-dimensional elements.

The two-dimensional mesh consists of eight-node quadrilateral elements. The re-
sulting three-dimensional mesh is composed of twenty-node hexahedral elements.
Since both element types contain midside nodes, the mesh-generation process is not
straightforward. To help with mesh generation, it is reasonable to create two aux-
iliary arrays for the two-dimensional mesh. The first array, nodeType2, classifies
nodes of the two-dimensional mesh into corner nodes and midside nodes. Such an

271
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Fig. 22.1 Generation of a three-dimensional mesh by sweeping along the z-axis (a) and around the
y-axis (b)

array can be formed using element connectivities. Corner nodes occupy even po-
sitions in element connectivities (count starts with zero) and midside nodes are at
odd positions. The second array, nodeNum2, contains numbers of nodes on the
first layer of the three-dimensional mesh. This array is formed with the use of array
nodeType2 and the number of element layers. It is adopted that nodes are num-
bered starting from the first layer in the direction of mesh sweeping. Both auxiliary
arrays are employed for generating element connectivities and nodal coordinates of
the resulting three-dimensional mesh.

22.2 Implementation

22.2.1 Input Data

The following input data should be specified for generating a three-dimensional
mesh by sweeping. The first three items should be specified first in data in the given
order.

sweep – mesh-generator name;

modelName2 – name of two-dimensional finite element model consisting of
8-node quadrilateral elements;

modelName3 – name of resulting three-dimensional model composed of 20-
node hexahedral elements;

nlayers – number of element layers in the three-dimensional mesh;

zlayers[nlayers+1] – z-distances or angles (in degrees) in increasing or-
der for copying the two-dimensional mesh;
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rotate = Y – rotate the two-dimensional mesh around y-axis, = N – translate
the two-dimensional mesh along z (default rotate = N).

A constructor of JavaTM class sweep and methods for data input and print follow.

1 package gener;
2

3 import model.*;
4 import fea.*;
5 import util.*;
6 import elem.*;
7

8 // Generate 3D mesh of hexahedral 20-node elements by sweeping
9 // 2D mesh of quadrilateral 8-node elements.

10 // Input: modelName2 - name of 2D model;
11 // modelName3 - name of the resulting 3D model;
12 // nlayers - number of element layers in 3D mesh;
13 // zlayers - z-distances or angles (deg) for copying 2D mesh;
14 // [rotate=Y/N] - rotate mesh around y-axis,
15 // otherwize translate along z.
16 public class sweep {
17

18 // 2D source model
19 private FeModel m2;
20 // 3D resulting model
21 private FeModel m3;
22

23 enum vars {
24 nlayers, zlayers, rotate, end
25 }
26

27 private vars name;
28 private int nlayers;
29 boolean rotate = false;
30 private double zlayers[];
31 // Node types for 2D mesh,
32 int[] nodeType2;
33 // nodeNum2[i] is a number of i-th 2D node in 3D mesh
34 int[] nodeNum2;
35

36 public sweep() {
37

38 String modelName2 = Jmgen.RD.next();
39 String modelName3 = Jmgen.RD.next();
40 Jmgen.PR.printf(
41 "Sweep: %s %s\n", modelName2, modelName3);
42 readData();
43 printData();
44

45 if (Jmgen.blocks.containsKey(modelName2))
46 m2 = (FeModel) Jmgen.blocks.get(modelName2);
47 else
48 UTIL.errorMsg("No such mesh block: " + modelName2);
49

50 m3 = new FeModel(Jmgen.RD, Jmgen.PR);
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51 m3.nDim = 3;
52 m3.nEl = m2.nEl*nlayers;
53 m3.nNod = nodeTypesNumbers2D();
54 elementConnectivities3D();
55 nodeCoordinates3D();
56 Jmgen.blocks.put(modelName3, m3);
57 Jmgen.PR.printf("Mesh " + modelName3 +
58 ": nEl = %d nNod = %d\n", m3.nEl, m3.nNod);
59 }
60

61 private void readData() {
62 String varName, varname;
63

64 while (Jmgen.RD.hasNext()) {
65

66 varName = Jmgen.RD.next();
67 varname = varName.toLowerCase();
68 if (varName.equals("#")) {
69 Jmgen.RD.nextLine();
70 continue;
71 }
72 try {
73 name = vars.valueOf(varname);
74 } catch (Exception e) {
75 UTIL.errorMsg("Variable name is not found: "
76 + varName);
77 }
78 switch (name) {
79 case nlayers:
80 nlayers = Jmgen.RD.readInt();
81 break;
82 case rotate:
83 rotate =
84 (Jmgen.RD.next().equalsIgnoreCase("Y"));
85 break;
86 case zlayers:
87 zlayers = new double[2*nlayers + 1];
88 for (int i = 0; i < 2*nlayers + 1; i += 2)
89 zlayers[i] = Jmgen.RD.readDouble();
90 // Interpolation for 3D midside nodes
91 for (int i = 1; i < 2*nlayers; i += 2)
92 zlayers[i] =
93 0.5*(zlayers[i-1] + zlayers[i+1]);
94 break;
95 case end:
96 return;
97 }
98 }
99 }
100

101 private void printData() {
102 Jmgen.PR.printf(" nlayers =%5d\n", nlayers);
103 Jmgen.PR.printf(
104 " rotate = %s\n", (rotate ? "Y" : "N"));
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Fig. 22.2 Numbering of nodes in a source two-dimensional mesh (a) and in a resulting three-
dimensional mesh (b)

105 Jmgen.PR.printf(" zlay: ");
106 for (int i = 0; i <= 2*nlayers + 1; i += 2)
107 Jmgen.PR.printf("%7.3f", zlayers[i]);
108 Jmgen.PR.printf("\n");
109 }

Lines 38–43 read and print input data. The two-dimensional finite element model
m2 is obtained from hash table blocks in line 44. If the model with the specified
name modelName2 is absent then the code prints an error message and stops (line
46).

Line 50 constructs the finite element modelm3 for generating a three-dimensional
mesh. Mesh generation consists of creating auxiliary arrays for the two-dimensional
mesh and in generating connectivities and nodal coordinates in lines 54–55. The re-
sulting three-dimensional mesh is placed in the hash table blocks under the name
modelName3 (line 56). Methods readData (lines 61–99) and printData read
and print input data.

22.2.2 Node Numbering

Node numbering in a two-dimensional source mesh and in a three-dimensional re-
sulting mesh is shown in Figure 22.2. Node numbering in the three-dimensional
mesh is done along a sweeping direction starting from the first (source) layer. Since
the number of nodes along the sweeping path is different for corner and midside
nodes in the source mesh, it is useful to form two auxiliary arrays for node number-
ing.

Method nodeTypesNumbers2D listed below creates two nodal arrays for the
two-dimensional mesh. Array nodeType2 describes types of nodes (corner or
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midside) and array nodeNum2 contains numbers of three-dimensional nodes in
the first layer.

111 // Create arrays nodeType2 and nodeNum2
112 // return number of nodes in 3D mesh
113 private int nodeTypesNumbers2D() {
114

115 // nodeType2 - node types for 2D mesh,
116 // =0 - midside, =1 - corner/degenerate
117 nodeType2 = new int[m2.nNod];
118 for (int iel = 0; iel < m2.nEl; iel++) {
119 for (int i=0; i<m2.elems[iel].ind.length; i++) {
120 int in = m2.elems[iel].ind[i] - 1;
121 if (in != -1) {
122 nodeType2[in] = (i + 1)%2;
123 }
124 }
125 }
126

127 // nodeNum2[i] is a number of i-th 2D node in 3D mesh
128 nodeNum2 = new int[m2.nNod];
129 int node = 1;
130 for (int i = 0; i < m2.nNod; i++) {
131 nodeNum2[i] = node;
132 int dn = (nodeType2[i] == 0) ?
133 nlayers + 1 : 2*nlayers + 1;
134 // If node is located on rotation axis Y
135 if (rotate && m2.getNodeCoord(i, 0) == 0.0) dn = 1;
136 node = node + dn;
137 }
138 return node - 1;
139 }

An array of node types nodeType2 is created in a double loop of lines 117–
125. Corner nodes in the two-dimensional mesh are marked by ones and midside
nodes by zeros. The fact that corner nodes are located at even places in element
connectivities is used.

The ith entry of array nodeNum2 is a node number of the ith two-dimensional
node at the first layer of three-dimensional mesh. The array is formed in lines 130–
137. Next, a three-dimensional node at the source layer is computed by incrementing
previous node number by (nlayers+1) for midside two-dimensional nodes and
by (2*nlayers+1) for corner nodes, where nlayers is the number of layers
in the three-dimensional mesh.

The method returns the number of nodes in the three-dimensional mesh.

22.2.3 Element Connectivities and Nodal Coordinates

Element connectivities for the resulting three-dimensional mesh are generated by
method elementConnectivities3D, shown below.
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141 private void elementConnectivities3D() {
142

143 m3.elems = new Element[m3.nEl];
144

145 int[] ind2 = new int[8], t3 = new int[8],
146 n3 = new int[8], ind3 = new int[20];
147 int iel3d = 0;
148

149 for (int iel2d = 0; iel2d < m2.nEl; iel2d++) {
150 int nind2 = m2.elems[iel2d].ind.length;
151 String mat = m2.elems[iel2d].matName;
152 for (int i = 0; i < nind2; i++) {
153 int i2 = m2.elems[iel2d].ind[i] - 1;
154 t3[i] = nodeType2[i2];
155 n3[i] = nodeNum2[i2];
156 ind2[i] = i2;
157 }
158

159 for (int i3 = 0; i3 < nlayers; i3++) {
160 for (int i = 0; i < nind2; i++) {
161 int dn = (t3[i] == 0) ? 1 : 2;
162 int node = n3[i] + i3*dn;
163 int dn2 = dn;
164 int dn1 = 1;
165 // Node at rotation axis
166 if (rotate &&
167 m2.getNodeCoord(ind2[i], 0) == 0) {
168 node = n3[i];
169 dn2 = 0;
170 dn1 = 0;
171 }
172 ind3[i] = node;
173 ind3[i + 12] = node + dn2;
174 if ((i + 1)%2 == 1)
175 ind3[(i+2)/2-1+nind2] = node + dn1;
176 }
177 m3.elems[iel3d] = Element.newElement("hex20");
178 m3.elems[iel3d].setElemConnectivities(ind3);
179 m3.elems[iel3d].setElemMaterial(mat);
180 iel3d++;
181 }
182 }
183 }

Line 143 allocates an array of Element objects. Finite elements of the three-
dimensional mesh are created as prisms of three-dimensional elements (possibly
curved) having two-dimensional elements as their base. This is done inside a double
loop: an outer loop is over two-dimensional elements and an inner loop is over lay-
ers of three-dimensional elements. The loop over two-dimensional elements starts
at line 149. Lines 150–151 set nind2 – number of nodes in the current two-
dimensional element and mat – material name. Arrays t3, n3, and ind2 (lines
154–156) contain node types of two-dimensional elements, three-dimensional node
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numbers at the first three-dimensional element layer and two-dimensional element
connectivities.

Element connectivities of a three-dimensional mesh are formed in a loop of lines
159–181. The increments in node numbers between faces of the three-dimensional
element are characterized by dn2. Increment dn1 is used for midside nodes. When
a two-dimensional node is located on the rotation axis y a three-dimensional degen-
erate element is made by setting both increments dn1 and dn2 to zero. The entries
of element connectivity array ind3 are set in lines 172–175.

Line 177 creates a new Element object of the type hex20 (20-node hexagonal
element). Connectivities of the current three-dimensional element are set in line 178.
The name of an element material is specified in line 179.

The nodal coordinates of the three-dimensional mesh are generated and set in
method nodeCoordinates3D.

185 private void nodeCoordinates3D() {
186

187 m3.newCoordArray();
188

189 for (int i2 = 0; i2 < m2.nNod; i2++) {
190 int step = (nodeType2[i2] == 0) ? 2 : 1;
191 int n = 2*nlayers + 1;
192 // Node at rotation axis
193 if (rotate && m2.getNodeCoord(i2, 0) == 0.0) n = 1;
194 int nodeNum = nodeNum2[i2] - 1;
195 for (int i = 0; i < n; i += step) {
196 double z = zlayers[i];
197 double r = m2.getNodeCoord(i2, 0);
198 double y = m2.getNodeCoord(i2, 1);
199 if (rotate) {
200 // Sweeping by rotation around Y
201 double fi = Math.toRadians(zlayers[i]);
202 double[] w =
203 {r*Math.cos(fi), y, r*Math.sin(fi)};
204 m3.setNodeCoords(nodeNum, w);
205 }
206 else {
207 // Sweeping by translation along Z
208 double[] w = {r, y, z};
209 m3.setNodeCoords(nodeNum, w);
210 }
211 nodeNum++;
212 }
213 }
214 }
215

216 }

The node coordinate array of three-dimensional mesh m3 is initialized in line
187. The node numbering order is shown in Figure 22.2. A row of three-dimensional
nodes is generated for each two-dimensional node i2. The number of three-
dimensional nodes in a row is (2*nlayers+1) for a corner two-dimensional
node. A row that starts at a midside two-dimensional node consists of (nlayers+1)
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nodes, where nlayers is the number of element layers in the three-dimensional
mesh. Line 193 sets n = 1, so just one node is created in a row if a two-dimensional
node lies on the rotational y-axis (rotate=true). Node coordinate setting is per-
formed in lines 201–204 for the case of sweeping around the y-axis and in lines
208–209 for the case of sweeping by translation along the z-axis.

22.3 Example of Mesh Generation

Using mesh generator sweep create a mesh of brick-type twenty-node elements for
a quarter cylinder with inner radius r = 1, outer radius r = 2 and height h = 3, as
shown in Figure 22.3a.
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Sweeping

Fig. 22.3 Mesh generation for a quarter of a cylinder (a) by sweeping a two-dimensional mesh
along the z-axis (b) and around the y-axis (c)

Solution

Using the sweeping method it is possible to create a three-dimensional mesh for
a quarter cylinder using two generation schemes: sweeping a quarter ring along
the z-axis as shown in Figure 22.3b and sweeping a rectangle around the y-axis
(Figure 22.3c).

For creating the three-dimensional mesh by sweeping along the z-axis, it is pos-
sible to prepare and execute the following input data.

# 2D mesh for a quarter ring
genquad8 mesh2D
nh = 2 nv = 3
xyp = 1 0 0 0

2 0 1.414 1.414
0 2 0 0
0 1 0.7071 0.7071

end
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Fig. 22.4 Perspective view of the three-dimensional mesh generated by sweeping

# 3D mesh by sweeping along z axis
sweep mesh2D mesh3D
nlayers = 3
zlayers = 0 1 2 3

end

First, a two-dimensional mesh for a quarter ring is created inside an eight-node
macroelement using mesh generator genquad8, and placed in a hash table under
name mesh2D. The mesh has two elements in the radial direction and three ele-
ments in the angular direction. Then, this two-dimensional mesh is used for produc-
ing three element layers of a three-dimensional mesh by sweeping along the z-axis
(statement sweep mesh2D mesh3D). The boundaries of layers are defined by
zlayers. A perspective view of the generated mesh is shown in Figure 22.4.

Another way of creating almost the same three-dimensional mesh is by sweep-
ing a two-dimensional rectangular mesh in the angular direction around the y-axis.
Possible input data follows.

# 2D mesh for a rectangle
rectangle mesh2D
nx = 2 ny = 3
xs = 1 1.5 2
ys = 0 1 2 3

end

# 3D mesh by sweeping around y axis
sweep mesh2D mesh3D
nlayers = 3
rotate = Y
zlayers = 0 30 60 90

end
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A two-dimensional mesh is generated using the rectangle module. It ranges
from 1 to 2 in the x-direction and from 0 to 3 in the y-direction. The generated mesh
block is stored under the name mesh2D. It is used by the sweep mesh generator
to produce mesh block mesh3D by rotating the two-dimensional mesh around the
y-axis. The two-dimensional mesh is copied at angles 0, 30, 60, and 90 degrees from
plane xy.

The generated mesh looks the same as those created by sweeping along the
z-direction (Figure 22.4). However, there are some differences between the two gen-
erated meshes. The meshes have slightly different nodal coordinates along the cir-
cular arcs. The first style of mesh creation approximates these arcs by parabolas,
while the second mesh has exact node locations. Another difference is related to the
different mesh orientations with respect to the global coordinate axes, as can be seen
in Figs. 22.3b and c.

Problems

22.1. Propose possible enhancements for the sweeping technique that can help to
handle more complicated cases of three-dimensional mesh generation.

22.2. Suppose that a three-dimensional mesh is generated by sweeping a two-
dimensional mesh of n by n eight-node quadrilateral elements. Obtain the number of
nodes in a three-dimensional mesh consisting of m layers of twenty-node hexahedral
elements.

22.3. Modify the data of example in Section 22.3 to have mesh refinement near the
point x = 0, y = 1, z = 0 in Figure 22.3b. An element with a vertex at this point
should have edges with size about 0.2.



Chapter 23
Pasting Mesh Blocks

Abstract Pasting mesh blocks allows creation of complicated meshes using rela-
tively simple mesh blocks. JavaTM class connect implements connection (pasting)
two mesh fragments by joining arrays of element connectivities and nodal coordi-
nates.

23.1 Pasting Technique

Pasting mesh blocks is an important step in our procedure of mesh generation. Con-
nection of relatively simple mesh fragments allows creation of a mesh of any com-
plexity. In order to keep the pasting algorithm simple, we require that element faces
at a connection surface are compatible. This means that it is possible to find pairs
of coincident nodes and connected element faces that have the same interpolation
properties. Formally, we can connect a face of the linear element to a face of the
quadratic element. However, this leads to discontinuity in displacements and does
not guarantee solution convergence. An example of connection of two mesh blocks
is shown in Figure 23.1. We paste mesh blocks A and B in order to produce a re-
sulting mesh block C. Let us assume that nodes and elements of the mesh block A
will be first in the resulting mesh, i.e., the resulting coordinate array includes nodal
coordinates of mesh A, then nodal coordinates of mesh B, and the resulting connec-
tivity array first contains connectivities of mesh A, then connectivities of mesh B.
An algorithm for pasting two mesh blocks is as follows:

Pasting: mesh A + mesh B → mesh C

Find coincident node pairs in meshes A and B
Copy nodes of mesh A into mesh C
Add nodes of mesh B to mesh C using coincidence information
Copy elements of mesh A into mesh C
Add elements of mesh B to mesh C using coincidence information

283
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Fig. 23.1 Connection of two separate mesh blocks A and B (a) produces a resulting mesh C (b)

When searching for coincident node pairs we compare coordinates of each node
of mesh A with all nodes of mesh B. If the difference in node locations is less than
a specified tolerance then two nodes are considered coincident and a node number
in mesh B is set equal to a node number in mesh A. Nodal coordinates and element
connectivities of mesh A are copied to model C without change. During addition of
nodes of mesh B to model C, coincident nodes from mesh block B overwrite nodes
in mesh block A. Element connectivities of mesh B are transformed to node numbers
in model C during adding process.

23.2 Implementation

23.2.1 Data Input

A call to the connection of two mesh blocks is done with the following statement:

connect A B C

where A and B are names of two mesh blocks that should be connected, and c is the
name of a resulting mesh block.

Input data for the connecting module consists of just a single parameter eps –
coordinate tolerance for joining nodes belonging to different mesh blocks. If the
default value of the parameter eps = 0.0001 is suitable then it is possible to omit
its specification. For compatible block boundaries the default coordinate tolerance
is appropriate. When we change this parameter it is necessary to keep it less then
a minimum distance between nodes at connecting boundaries. The statement end
should be always used in order to mark the end of data for the module.

Constructor connect performing pasting of two mesh blocks and a method for
data input are presented below.
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1 package gener;
2

3 import fea.*;
4 import model.*;
5 import elem.*;
6 import util.*;
7

8 // Paste two meshes.
9 // Input: modelNameA - name of first mesh to be pasted;

10 // modelNameB - name of second mesh to be pasted;
11 // modelNameC - name of resulting mesh;
12 // [eps] - coordinate tolerance for joining nodes.
13 public class connect {
14

15 private FeModel mA, mB;
16 private double eps = 0.0001;
17 private int nConnected;
18 private int newNodesB[];
19

20 public connect() {
21

22 String modelNameA = Jmgen.RD.next();
23 String modelNameB = Jmgen.RD.next();
24 String modelNameC = Jmgen.RD.next();
25

26 Jmgen.PR.printf("Connect: %s + %s -> %s\n",
27 modelNameA, modelNameB, modelNameC);
28

29 readData();
30

31 if (Jmgen.blocks.containsKey(modelNameA))
32 mA = (FeModel) Jmgen.blocks.get(modelNameA);
33 else UTIL.errorMsg(
34 "No such mesh block: " + modelNameA);
35 if (Jmgen.blocks.containsKey(modelNameB))
36 mB = (FeModel) Jmgen.blocks.get(modelNameB);
37 else UTIL.errorMsg(
38 "No such mesh block: " + modelNameB);
39 if (mA.nDim != mB.nDim) UTIL.errorMsg(
40 "Models with different nDim");
41

42 findCoincidentNodes();
43 FeModel mC = pasteModels();
44

45 Jmgen.blocks.put(modelNameC, mC);
46 Jmgen.PR.printf(" %d node pairs connected\n",
47 nConnected);
48 Jmgen.PR.printf("Mesh " + modelNameC +
49 ": nEl = %d nNod = %d\n", mC.nEl, mC.nNod);
50 }
51

52 private void readData() {
53 while (Jmgen.RD.hasNext()) {
54 String name = Jmgen.RD.next().toLowerCase();
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55 if (name.equals("#")) {
56 Jmgen.RD.nextLine();
57 continue;
58 }
59 if (name.equals("eps"))
60 eps = Jmgen.RD.readDouble();
61 else if (name.equals("end")) break;
62 else UTIL.errorMsg("Unexpected data: " + name);
63 }
64 Jmgen.PR.printf(
65 "Coordinate error tolerance eps = %10.3e\n", eps);
66 }

The constructor first inputs and prints names of two connecting mesh blocks,
modelNameA and modelNameB, and the name of the resulting mesh block
modelNameC (lines 22–27). The coordinate error tolerance parameter eps and
end statement are read by method readData (line 29). Lines 31–40 check the ex-
istence of input mesh blocks modelNameA and modelNameB and the condition
that they have same dimension nDim. Method findCoincidentNodes (line
42) finds nodes occupying the same positions in models mA and mB. Pasting of two
mesh blocks is performed by method pasteModels in line 43. The resulting mesh
block is placed in hash table blocks under name modelNameC (line 45).

23.2.2 Finding Coincident Nodes

Method findCoincidentNodes given below finds coincident nodes in two
connecting nodes and creates array newNodesB containing new numbers for nodes
of model mB.

68 // Find coincident nodes in models mA and mB,
69 // generate new node numbers for model mB
70 private void findCoincidentNodes() {
71

72 newNodesB = new int[mB.nNod];
73 int ndim = mA.nDim;
74 for (int i = 0; i < mB.nNod; i++) newNodesB[i] = -1;
75

76 // Register coincident nodes of mesh B
77 // in array newNodesB
78 for (int ia = 0; ia < mA.nNod; ia++) {
79 double xyA[] = mA.getNodeCoords(ia);
80 B:
81 for (int ib = 0; ib < mB.nNod; ib++) {
82 for (int j = 0; j < ndim; j++) {
83 if (Math.abs(xyA[j]-mB.getNodeCoord(ib,j))
84 > eps) continue B;
85 }
86 newNodesB[ib] = ia;
87 }
88 }
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89 nConnected = 0;
90 int n = mA.nNod;
91

92 // New node numbers for nodes of model mB
93 for (int i = 0; i < mB.nNod; i++) {
94 if (newNodesB[i] == -1) newNodesB[i] = n++;
95 else nConnected++;
96 }
97 }

Array newNodesB is initialized with the value -1 in line 71. The double loop
in lines 77–87 compares each node of model mA with all nodes of model mB. If
a difference in nodal coordinates for two nodes is less than the specified tolerance
eps then the node number from model mA is placed in array newNodesB at the
position defined by node from modelmB. This means that coincident nodes from
model mB will have numbers of its pair from model mB. Other nodes from model
mB are assigned node numbers next to node numbers of model mA (lines 92–95).
Parameter nConnected contains number of connected node pairs.

23.2.3 Pasting

Pasting of two mesh blocks is performed by method pasteModels.

99 // Paste two meshes.
100 // Nodes and elements of the first mesh
101 // are first in the resulting mesh.
102 // returns resulting mesh after pasting.
103 private FeModel pasteModels() {
104

105 FeModel mC = new FeModel(Jmgen.RD, Jmgen.PR);
106 mC.nDim = mA.nDim;
107

108 // Nodal coordinates of model mC
109 mC.nNod = mA.nNod + mB.nNod - nConnected;
110 mC.newCoordArray();
111 // Copy nodes of model mA
112 for (int i = 0; i < mA.nNod; i++)
113 mC.setNodeCoords(i, mA.getNodeCoords(i));
114 // Add nodes of model mB
115 for (int i = 0; i < mB.nNod; i++)
116 mC.setNodeCoords(
117 newNodesB[i], mB.getNodeCoords(i));
118

119 // Element connectivities of model mC
120 mC.nEl = mA.nEl + mB.nEl;
121 mC.elems = new Element[mC.nEl];
122 // Copy elements of model mA
123 for (int el = 0; el < mA.nEl; el++) {
124 mC.elems[el] =
125 Element.newElement(mA.elems[el].name);
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126 mC.elems[el].setElemConnectivities(
127 mA.elems[el].ind);
128 mC.elems[el].matName = mA.elems[el].matName;
129 }
130 // Add elements of mB with renumbered connectivities
131 for (int el = 0; el < mB.nEl; el++) {
132 mC.elems[mA.nEl + el] =
133 Element.newElement(mB.elems[el].name);
134 int indel[] = new int[mB.elems[el].ind.length];
135 for (int i = 0; i < mB.elems[el].ind.length; i++)
136 indel[i] = newNodesB[mB.elems[el].ind[i]-1]+1;
137 mC.elems[mA.nEl+el].setElemConnectivities(indel);
138 mC.elems[mA.nEl+el].matName = mB.elems[el].matName;
139 }
140 return mC;
141 }
142

143 }

A new finite element model mC is constructed in line 104. The number of nodes
in model mC is determined as the sum of nodes in models mA and mB minus the
number of coincident node pairs (line 108). Nodes of model mA are copied into
model mC without change in lines 111–112. Nodes from model mB are placed next
according to node numbers contained in array newNodesB (lines 114–116).

A similar procedure is used for creating a connectivity array for model mC. The
number of elements in the resulting mesh block is equal to the sum of numbers of
elements in the connecting mesh blocks (line 119). The elements of model mA are
copied to model mC in lines 122–128. Connectivities of elements from model mB
are renumbered using array newNodesB and placed in the resulting model mC in
lines 130–138.

The method returns model mC, which is created by pasting models mA and mB.

Problems

23.1. Figure 23.1 depicts the resulting mesh block C after pasting mesh blocks A and
B along a common boundary: A+B→C. Determine the element and node numbers
in mesh block D after pasting B + A → D.

23.2. Determine the element and node numbers in the resulting meshes C and D after
pasting of meshes A and B shown below: A + B →C and B + A → D.
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Chapter 24
Mesh Transformations

Abstract JavaTM class transform implements several coordinate transforma-
tions for a mesh block. Transformations include translation, scaling, rotation, and
mirroring.

24.1 Transformation Relations

Standard coordinate transformations – translation, scaling and rotation – can help in
creating finite element meshes. In addition to these transformations, we implement
a mirror transformation that reflects a mesh with respect to a plane. All transforma-
tions are shown in Figure 24.1.
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Fig. 24.1 Mesh transformations: translation (a), scaling (b), rotation (c), and mirror transformation
(d)

A translation transformation (Figure 24.1a) changes the coordinates of all nodes
by the same value:

xn
i = xn

i +Δxi, (24.1)

where xn
i is the ith coordinate component of the nth node and Δxi is a displacement

value.

289
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A scaling transformation (Figure 24.1b) multiplies a specified coordinate com-
ponent of all nodes by the same value:

xn
i = xn

i ṡi, (24.2)

where si is a scaling coefficient.
Rotation of the finite element mesh around a coordinate axis (Figure 24.1c) is

performed as the following matrix-vector multiplication:

xn
i = αi jx

n
j . (24.3)

Here αi j is the matrix of direction cosines. The matrix of direction cosines has the
following appearance for rotations around three coordinate axes:
around x

[α] =

⎡
⎣1 0 0

0 cosα −sinα
0 sinα cosα

⎤
⎦ , (24.4)

around y

[α] =

⎡
⎣ cosα 0 sinα

0 1 0
−sinα 0 cosα

⎤
⎦ , (24.5)

around z

[α] =

⎡
⎣ cosα −sinα 0

sinα cosα 0
0 0 1

⎤
⎦ , (24.6)

where α is a rotation angle. Positive angles correspond to rotation in an anticlock-
wise direction as seen from the top of the axis.

A mirror transformation, shown in Figure 24.1d, reflects a mesh block with re-
spect to a plane normal to a coordinate axis:

xn
i = −xn

i + 2xi0, (24.7)

where xi is an axis normal to the reflecting plane and xi0 is a location of the re-
flecting plane. In addition to transformation for nodal coordinates it is necessary to
modify the order of connectivity numbers. Suppose that nodes 1, 2, 3, 4 are element
connectivities listed in anticlockwise order before the mirror transformation. From
Figure 24.1d it is evident that after the transformation, element node numbers are in
clockwise order. If the connectivities are changed to 1, 4, 3, 2 then the correct order
of nodes is restored.
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24.2 Implementation

24.2.1 Input Data

The four transformations (translation, scaling, rotation, and mirroring) are imple-
mented in the class transform. A call to the transformation module is done with
the following statement:

transform modelName

where modelName is the name of the mesh block that should be transformed.
The rest of the input data consists of any number of the following statements in

any order:

translate axis distance
scale axis factor
rotate axis angle
mirror axis plane

Here, translate is a translation operation, axis = x/y/z is a coordinate for
translation, distance is the distance of translation. Scaling operation scale is
performed for coordinate axis by multiplying nodal coordinates with factor.
Rotation rotate is done around axis axis on an angle angle specified in de-
grees. Positive angle is counted in a counterclockwise direction looking from the
top of the rotation axis. Operation mirror reflects a mesh with respect to a plane
normal to axis. The plane is located at the coordinate plane.

The end of data for the transform module is marked by statement end. The
order of transformation operations is determined by the order of data.

Input of data and call to methods performing transformations is contained in the
constructor presented next.

1 package gener;
2

3 import model.*;
4 import util.*;
5 import fea.*;
6

7 // Make transformations for a specified model.
8 // Input: modelName - name of the finite element model;
9 // [translate axis value] - translate axis coordinates;

10 // [scale axis value] - scale axis coordinates;
11 // [rotate axis value] - rotate around axis by angle (degrees);
12 // [mirror axis value] - mirror along axis around axis value
13 public class transform {
14

15 private FeModel m;
16 enum vars {
17 translate, scale, rotate, mirror, end
18 }
19
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20 enum elementMirror {
21 quad8 {int permutation(int i) {
22 int[] p = {1,8,7,6,5,4,3,2};
23 return p[i]-1;}
24 },
25 hex20 {int permutation(int i) {
26 int[] p = {1,8,7,6,5,4,3,2, 9,12,11,10,
27 13,20,19,18,17,16,15,14};
28 return p[i]-1;}
29 };
30 abstract int permutation(int i);
31 }
32

33 private vars opName;
34 private char axis;
35 private double value;
36

37 public transform() {
38

39 String modelName = Jmgen.RD.next();
40 Jmgen.PR.printf("Transform: %s\n", modelName);
41

42 if (Jmgen.blocks.containsKey(modelName))
43 m = (FeModel) Jmgen.blocks.get(modelName);
44 else UTIL.errorMsg("No such mesh block: " + modelName);
45

46 while (Jmgen.RD.hasNext()) {
47 String name = Jmgen.RD.next().toLowerCase();
48 if (name.equals("#")) {
49 Jmgen.RD.nextLine(); continue;
50 }
51 if (name.equals("end")) break;
52

53 try {
54 opName = vars.valueOf(name);
55 } catch (Exception e) {
56 UTIL.errorMsg("Operation name is not found: "
57 + name);
58 }
59

60 String Axis = Jmgen.RD.next().toLowerCase();
61 axis = Axis.charAt(0);
62 if (axis!=’x’ && axis!=’y’ && axis!=’z’)
63 UTIL.errorMsg("Incorrect axis: " + axis);
64 value = Jmgen.RD.readDouble();
65 Jmgen.PR.printf("%10s %s %10.4f\n",
66 opName, Axis, value);
67

68 switch (opName) {
69 case translate: doTranslate();
70 break;
71 case scale: doScale();
72 break;
73 case rotate: doRotate();
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74 break;
75 case mirror: doMirror();
76 break;
77 }
78 }
79 Jmgen.PR.printf("Mesh " + modelName +
80 ": nEl = %d nNod = %d\n", m.nEl, m.nNod);
81 }

Lines 39–44 read the name of the model, which should undergo transformations
and check that this name exists in hash table blocks. Input of data and performing
transformation operations are placed inside the while loop in lines 46–78. An
operation name is read in line 47. If, instead of the operation name, the word end
is in the input stream then the transform module finishes its work. Otherwise,
parametersaxis and value are read and translation, scaling, rotation, or mirroring
is performed for the mesh block, depending on the operation name.

24.2.2 Performing Transformations

Methods doTranslate, doScale and doRotate perform translation, scaling
and rotation transformations, respectively.

83 private static int getIntAxis(char axis) {
84 int iAxis = 0;
85 if (axis==’y’) iAxis = 1;
86 else if (axis==’z’) iAxis = 2;
87 return iAxis;
88 }
89

90 private void doTranslate() {
91

92 if (m.nDim == 2 && axis == ’z’) return;
93 int iax = getIntAxis(axis);
94

95 for (int i=0; i<m.nNod; i++)
96 m.setNodeCoord(i, iax,
97 m.getNodeCoord(i, iax) + value);
98 }
99

100 private void doScale() {
101

102 if (m.nDim == 2 && axis == ’z’) return;
103 int iax = getIntAxis(axis);
104

105 for (int i=0; i<m.nNod; i++)
106 m.setNodeCoord(i, iax,
107 m.getNodeCoord(i,iax)* value);
108 }
109

110 private void doRotate() {
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111

112 if (m.nDim == 2 && (axis==’x’ || axis==’y’)) return;
113

114 double sina = Math.sin(Math.toRadians(value));
115 double cosa = Math.cos(Math.toRadians(value));
116 double a[][] = new double[3][3];
117 double x[] = new double[3];
118

119 if (axis==’x’) {
120 a[0][0]= 1; a[0][1]= 0; a[0][2]=0;
121 a[1][0]= 0; a[1][1]= cosa; a[1][2]=-sina;
122 a[2][0]= 0; a[2][1]= sina; a[2][2]= cosa;
123 }
124 else if (axis==’y’) {
125 a[0][0]= cosa; a[0][1]= 0; a[0][2]= sina;
126 a[1][0]= 0; a[1][1]= 1; a[1][2]= 0;
127 a[2][0]=-sina; a[2][1]= 0; a[2][2]= cosa;
128 }
129 else { // around z
130 a[0][0]= cosa; a[0][1]=-sina; a[0][2]= 0;
131 a[1][0]= sina; a[1][1]= cosa; a[1][2]= 0;
132 a[2][0]= 0; a[2][1]= 0; a[2][2]= 1;
133 }
134

135 for (int inod=0; inod<m.nNod; inod++) {
136 for (int j=0; j<m.nDim; j++)
137 x[j] = m.getNodeCoord(inod,j);
138 for (int i=0; i<m.nDim; i++) {
139 double s = 0;
140 for (int j=0; j<m.nDim; j++) s += a[i][j]*x[j];
141 m.setNodeCoord(inod, i, s);
142 }
143 }
144 }

Method getIntAxis translates axis symbols x, y and z into numerical values 0,
1 and 2. Implementation of translation (lines 90–98) and scaling (lines 100–108) is
straightforward. Methods getNodeCoord and setNodeCoord are used to get
the necessary components of nodal coordinates and to set them. Rotation transfor-
mation is done by matrix-vector product in lines 135–143.

Method doMirror performs a mirror transformation.

146 private void doMirror() {
147

148 if (m.nDim == 2 && axis == ’z’) return;
149 int iax = getIntAxis(axis);
150

151 // Mirror nodal coordinates
152 for (int i=0; i<m.nNod; i++)
153 m.setNodeCoord(
154 i, iax, -m.getNodeCoord(i,iax)+2*value);
155

156 // Change order of element connectivities
157 for (int e=0; e<m.nEl; e++) {
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158 elementMirror em = null;
159 try {
160 em = elementMirror.valueOf(m.elems[e].name);
161 } catch (Exception el) {
162 UTIL.errorMsg("Mirror: element not supported "
163 + m.elems[e].name);
164 }
165

166 int nind = m.elems[e].ind.length;
167 int[] ind = new int[nind];
168 for (int i=0; i<nind; i++)
169 ind[em.permutation(i)] = m.elems[e].ind[i];
170 m.elems[e].setElemConnectivities(ind);
171 }
172 }
173

174 }

Transformation of nodal coordinates is done in lines 152–154. The element loop in
lines 157–171 changes the order of entries in element connectivities. Enumerated
elementMirror (lines 20–31) is used for connectivity permutations. It provides
function permutation that returns new positions for element connectivity num-
bers depending on element types (quad8 or hex20).

24.3 Example of Using Transformations

A square mesh block A of size 2 is centered at the coordinate origin, as shown in
Figure 24.2. Transform mesh block A into mesh block A1, which is a square of size
4 rotated by 30 degrees in the anticlockwise direction and centered at point x = 6,
y = 2.
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Fig. 24.2 Mesh block A can be transformed into block A1 using scaling, rotation and translation
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Solution

Such a transformation can be performed using module transform with the fol-
lowing data.

transform A
scale x 2
scale y 2
rotate z 30
translate x 6
translate y 2

end

Mesh block A is first scaled in two directions, then rotated around the z-axis by 30
degrees, and finally translated along the x- and y-axes. It should be noted that the
operation order is important. While the order of translations along x and y is not
significant, changing the order of rotation and translation leads to a quite different
result.

Problems

24.1. Prepare input data for module transform that performs transformation of
mesh block A into block A1. The location and sizes of the mesh blocks are shown
below.
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24.2. Initially, mesh block A is a square with edge size 1 centered at point x = 1,
y = 1. Determine the locations of block vertices after transformations caused by the
following data.

transform A
scale x 2
scale y 2
translate x 1
rotate z 45
mirror y 2

end

24.3. Propose other useful transformations or modifications for mesh blocks. Pro-
vide examples of mesh creations that support the usefulness of the proposed trans-
formations.



Chapter 25
Copying, Writing and Reading Mesh Blocks

Abstract This chapter presents classes that perform useful simple operations on
mesh blocks. Module copy allows creation of a copy of a mesh block under a
new name. Writing and reading of mesh blocks to/from text files are performed by
modules writemesh and readmesh.

25.1 Copying

Module copy allows creation of a copy of a mesh block in the hash table. To
perform copying it is necessary to place the following statement in the input data
stream:

copy modelNameA modelNameB

Mesh block modelNameA is copied into new mesh block modelNameB. The
source code of JavaTM class copy is given below.

1 package gener;
2

3 import model.*;
4 import elem.*;
5 import fea.*;
6 import util.*;
7

8 // Copy model.
9 // Input: modelNameA - name of the model to be copied;

10 // modelNameB - name of the resulting model.
11 public class copy {
12

13 private FeModel mA;
14

15 public copy() {
16

17 String modelNameA = Jmgen.RD.next();
18 String modelNameB = Jmgen.RD.next();

297
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19 Jmgen.PR.printf("Copy: %s -> %s\n",
20 modelNameA, modelNameB);
21 if (modelNameA.equals(modelNameB)) return;
22 if (Jmgen.blocks.containsKey(modelNameA))
23 mA = (FeModel) Jmgen.blocks.get(modelNameA);
24 else
25 UTIL.errorMsg("No such mesh block: " + modelNameA);
26 FeModel mB = copyMesh();
27 Jmgen.blocks.put(modelNameB, mB);
28 Jmgen.PR.printf(
29 "nEl = %d nNod = %d\n", mB.nEl, mB.nNod);
30 }
31

32 private FeModel copyMesh() {
33

34 FeModel mB = new FeModel(Jmgen.RD, Jmgen.PR);
35 mB.nDim = mA.nDim;
36

37 mB.nNod = mA.nNod;
38 mB.newCoordArray();
39 for (int i = 0; i < mB.nNod; i++) {
40 for (int j = 0; j < mB.nDim; j++)
41 mB.setNodeCoords(i, mA.getNodeCoords(i));
42 }
43

44 mB.nEl = mA.nEl;
45 mB.elems = new Element[mB.nEl];
46 for (int el = 0; el < mB.nEl; el++) {
47 mB.elems[el] = Element.newElement(
48 mA.elems[el].name);
49 mB.elems[el].setElemConnectivities(
50 mA.elems[el].ind);
51 mB.elems[el].matName = mA.elems[el].matName;
52 }
53

54 return mB;
55 }
56

57 }

Mesh block names for input and output are read in lines 17–18. A copy of finite
element model mA is created in line 26 by calling method copyMesh. Line 27 puts
output model mB into hashtable blocks under the name modelNameB.

The finite element model during mesh generation contains the following data

nNod – number of nodes;

nEl – number of elements;

nDim – number of dimensions (2 or 3);

xyz[] – array of nodal coordinates;

elems[] – array of Element objects.
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Method copyMesh explicitly copies the scalar mesh parameters, nodal coordi-
nates (lines 39–42) and element connectivities (lines 46–52) into a new finite ele-
ment model mB. After copying, both mesh blocks can be used independently. For
example, one of two mesh blocks can be transformed and pasted with the other mesh
block.

25.2 Writing Mesh to File

The prepared finite element mesh is written in a text file. The file is used as a part
of the input data for problem solution (main method Jfem) and for visualization
(main method Jvis).

Writing the resulting mesh block in a file is a result of interpreting the data state-
ment

writemesh modelName fileName

Here, modelName is the name of the resulting finite element mesh block and
fileName is the file name where text information about the mesh block should
be written. The source code of module writemesh follows.

1 package gener;
2

3 import model.*;
4 import fea.*;
5 import util.*;
6

7 import java.io.PrintWriter;
8

9 // Write mesh to file.
10 // Input: modelName - name of the finite element model;
11 // fileName - name of the file.
12 public class writemesh {
13

14 FeModel m;
15

16 public writemesh() {
17

18 String modelName = Jmgen.RD.next();
19 String fileName = Jmgen.RD.next();
20 Jmgen.PR.printf("WriteMesh: %s %s\n",
21 modelName, fileName);
22

23 PrintWriter WR =
24 new FePrintWriter().getPrinter(fileName);
25

26 if (Jmgen.blocks.containsKey(modelName))
27 m = (FeModel) Jmgen.blocks.get(modelName);
28 else UTIL.errorMsg("No such mesh block: " + modelName);
29

30 WR.printf("# Model name: %s\n", modelName);
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31 WR.printf("nNod = %5d\n", m.nNod);
32 WR.printf("nEl = %5d\n", m.nEl);
33 WR.printf("nDim = %5d\n", m.nDim);
34

35 WR.printf("nodCoord\n");
36 for (int i = 0; i < m.nNod; i++) {
37 for (int j = 0; j < m.nDim; j++)
38 WR.printf("%20.9f", m.getNodeCoord(i, j));
39 WR.printf("\n");
40 }
41

42 WR.printf("\nelCon");
43 for (int iel = 0; iel < m.nEl; iel++) {
44 WR.printf("\n%s %6s", m.elems[iel].name,
45 m.elems[iel].matName);
46 int nind = m.elems[iel].ind.length;
47 for (int i = 0; i < nind; i++)
48 WR.printf("%6d", m.elems[iel].ind[i]);
49 }
50 WR.printf("\n\nend\n");
51 WR.close();
52 Jmgen.PR.printf("Mesh " + modelName +
53 ": nEl = %d nNod = %d\n", m.nEl, m.nNod);
54 }
55

56 }

The PrintWriter object for writing a mesh block in text format is created
in lines 23–24. Lines 26–28 check the existence of the requested mesh block with
the name modelName. The first line of the file contains a comment with the mesh
block name (line 30). The following lines of the file hold the number of nodes,
number of elements, and problem dimension. Then, nodal coordinates are written
under the title nodCoord and element connectivities under the title nelCon. The
last line of the file is the end statement.

The written mesh file can be later read by any of three finite element programs –
Jmgen, Jfem, and Jvis.

25.3 Reading Mesh from File

Reading a mesh block in program Jmgem is performed by the module readmesh
when the following statement appears in the input data stream:

readmesh modelName fileName

where modelName is the name of the finite element mesh block, and fileName
is the file name in which text information about the mesh block resides.

Implementation of the module readmesh is rather straightforward. The source
code is presented below.
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1 package gener;
2

3 import model.*;
4 import fea.Jmgen;
5 import util.FeScanner;
6

7 // Read mesh data from text file.
8 // Input: modelName - name of the finite element model;
9 // fileName - name of the file.

10 public class readmesh {
11

12 public readmesh() {
13

14 String modelName = Jmgen.RD.next();
15 String fileName = Jmgen.RD.next();
16 Jmgen.PR.printf("ReadMesh: %s %s\n\n",
17 modelName, fileName);
18 FeScanner RD = new FeScanner(fileName);
19 FeModel model = new FeModel(RD, Jmgen.PR);
20 model.readData();
21 Jmgen.blocks.put(modelName, model);
22 Jmgen.PR.printf("nEl = %d nNod = %d\n",
23 model.nEl, model.nNod);
24 }
25

26 }

Usually, the mesh block (which is read by this module) was previously written by
the module writemesh. It is possible to prepare a text file for a mesh block using
any text editor. The file should contain the following information

nNod = <number of nodes>
nEl = <number of elements>
nDim = <number of dimensions, =2/3>

nodCoord
<coordinates of nodes>

elCon
<element data>

end

For each node i, coordinates are specified as two xi, yi or three xi, yi, zi numbers. For
each element, the data contains element type (quad8/hex20), material name and
element connectivities.
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Problems

25.1. Prepare a text file containing data for the mesh block shown below.
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Using program Jmgen, read the mesh block from a file. Then write the mesh block
into another text file. Compare the text files (containing information about the same
mesh block).

25.2. Create a data file for the program Jmgen that can be used for generating a
mesh for the following two-dimensional computational domain.
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Decompose the domain into blocks. Generate a mesh for a typical block. Use copy-
ing, transformations, and pasting to create a mesh for the whole domain.
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Visualization of Meshes and Results



Chapter 26
Introduction to Java 3DTM

Abstract This chapter opens the concluding part of the book devoted to visualiza-
tion of finite element models and results. The Java 3DTM API is used for producing
three-dimensional real-time graphics. Java 3D is introduced with a brief explanation
of a scene graph and specification of the geometry of visualized objects.

26.1 Rendering Three-dimensional Objects

Visualization of three-dimensional finite element models requires rendering three-
dimensional objects of an arbitrary shape. Showing the results of finite element
solutions as contours implies complex coloring of an object’s surface.

Rendering of 3D scenes is an extremely complicated task that is impractical
to implement by ourselves. Usually, graphics libraries with an API are used for
this purpose. The most famous API for real-time three-dimensional rendering is
OpenGL R© in the C programming language and its JavaTM wrapper JOGL [5]. How-
ever, OpenGL and hence JOGL are based on a procedural approach.

Since our finite element code is based on an object-oriented approach it is desir-
able to follow this approach for development of the visualization part of the code.
Such a graphics library exists and has the name Java 3D [30].

Java 3D is an object-oriented API developed by Sun Microsystems for rendering
three-dimensional interactive real-time graphics. It is a set of several Java packages
designed for easier development of applications and applets with three-dimensional
graphics capabilities. A graphical program contains Java 3D objects, which com-
pose a scene graph. Java 3D provides a high-level programming interface by hiding
implementation details. The developer specifies the geometry of visual objects, their
appearance and behavior, and light sources as Java 3D objects. After compiling, the
scene is rendered automatically with “quasi”-photographic quality. The latter means
that the effects of light-source shading are shown, but visual object shading and re-
flections are ignored. Introduction to programming graphics with Java 3D API is
given in [28, 31].
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SimpleUniverse
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TGLight

Bounds Shape3D

Geometry Appearance

Material

Fig. 26.1 Example of a simple scene graph

26.2 Scene Graph

In Java 3D a scene graph is used to organize all the objects of the scene. The scene
graph is a tree-like data structure. The graph contains nodes connected by links. The
nodes of a scene graph can be of two kinds: group nodes and leafs. Group nodes have
children and can be used for branching, switching, transformations, etc. Leaf nodes
usually represent geometric objects, lights, behaviors, etc. They have no children.
However, leaf nodes often have references to node components. Node components
compose a bundle of attributes for a node. Node components include the geometry
of a shape, appearance, material, texture, and various attributes.

An example of a simple scene graph is shown in Figure 26.1. In many cases
the SimpleUniverse object can be used as the root of the scene graph. Utility
class SimpleUniverse is a Java 3D convenience class for simplification of scene
graphs. It contains all the objects necessary for a standard view of visual objects.

The Java 3D coordinate system assumes that the x-axis has horizontal orientation,
the y-axis has vertical (gravitational) orientation, and the z-axis is directed to the
viewer. Usually, visual objects are located near the coordinate origin. The default
view plane also passes through the origin. In order to be able to see visual objects it
is necessary to move the viewer position along the positive direction of the z-axis.

Group node BG (BranchGroup object) is used for attachment of two children.
One child is a light (class Light and its subclasses) with Bounds object. The other
is used for defining a region where the light acts.

The second child of the branch group BG is a transform group TG, which per-
forms an affine transform for its children. Typically, it can be a translation, rotation,
or scaling of the visual object. Next in the hierarchy of this branch is a Shape3D
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SceneGraphObject

NodeComponent
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Attributes

Group
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Shape3D

Behavior

BranchGroup

TransformGroup

Fig. 26.2 Some Java 3D classes

object that represents the visual object and provides references to its geometry and
appearance. The appearance has a reference to a Material object.

The hierarchy of some useful Java 3D classes is shown in Figure 26.2. It is worth
noting that this class hierarchy is not full. Only classes that will be used further are
included. Let us briefly consider these classes in order to ease the understanding of
a visualization fragment that will be described later.

26.3 Scene Graph Nodes

Node objects are used for creating the scene graph. There are two kinds of scene
graph nodes: Group nodes and Leaf nodes. The group nodes serve for branching
and operations on child nodes. The leaf nodes represent certain graphics entities.

26.3.1 Group Nodes

Both classes BrachGroup and TransformGroup extend class Group. Ob-
ject BranchGroup serves as a pointer to the root of a scene graph branch. The
TransformGroup node specifies a three-dimensional transformation using a
Transform3D object that can translate, rotate, and scale all its children. The spec-
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ified transformation must be affine. The effect of transformations in the scene graph
is cumulative. The concatenation of the transformations in a direct path produces a
composite model transformation that transforms points from a leaf’s local coordi-
nates into world coordinates.

To add a child node to a Group node it is possible to employ the following
method:

void addChild(Node child)

where child is the child to add to this node’s list of children.

26.3.2 Leaf Nodes

Class Leaf is an abstract subclass of Node. Leaf nodes represent geometric ob-
jects, lights, and behavior. They cannot have children. Usually, leaf nodes contain
references to node component objects.

The Shape3D leaf node specifies geometric objects. It can contain one or more
Geometry component object and a single Appearance component object. The
geometry objects define the shape node’s geometric data. The appearance object
specifies the object’s appearance attributes, including color, material, texture, etc.
Typical statement for constructing shape object is:

new Shape3D(geometry, appearance);

The Background leaf defines a background color or a background image that
is used for filling the window at the beginning of each new frame. If there is no
Background node, then the window is filled by black color.

The Light leaf node is an abstract class that has subclasses for different types
of light. The light in a scene may come from several light sources. There are four
types of lights in Java 3D: ambient, directional, point, and spot.

An ambient light comes from no particular direction or source. It imitates back-
ground light resulting from multiple reflections in the real world. A directional light
has a specific direction. Its rays are parallel, so it is possible to think of the direc-
tional light as being located at infinity. A point light comes from a specific position.
A spot light is similar to a point light, but it acts inside a specified cone. Java 3D
supports an arbitrary number of lights.

Light color is defined in terms of the red, green, and blue components. The three
color components represent the amount of light emitted by the source. Each of the
three colors is represented by a floating-point value with a range from 0.0 to 1.0.
Black color is defined as (0.0, 0.0, 0.0). A combination (1.0, 1.0, 1.0) creates a
white light with maximum brightness. In a scene with multiple lights, the effect of
the light on the object is the sum of the lights. If the sum of any of the color values
is greater than 1.0, the color value is clipped to 1.0.

Absorption and reflection of light from an object’s surface are determined by
the object’s color and material properties. The Java 3D lighting model specifies the



26.4 Node Components 309

material properties for four color types: emitted color, ambient color, diffuse color,
and specular color. The material properties are specified in the Material class.

To economize the amount of computations for rendering a scene, it is reason-
able to limit the influence of lighting to a region that is determined by the influ-
encing bounds of a Bounds object. Lighting should be explicitly enabled with the
setEnable method.

The Behavior leaf node provides a framework for adding user-defined interac-
tions with objects in the scene graph. It is possible to create custom interaction be-
havior using the basic Behavior class. However, it is usually easier to employ pre-
defined Java 3D utility classes, especially, MouseBehavior classes. These classes
operate on an associated TransformGroup node.

MouseRotate is a Java 3D behavior object that allows the user to control
the rotation of an object by dragging the mouse with the left button down. Ob-
ject MouseTranslate lets the user perform the translation along x and y of an
object using the mouse drag motion with the right button pressed. MouseZoom is
a behavior object that controls the z-axis translation of an object via the mouse drag
motion with the middle mouse button or with the left mouse button chorded with
the Alt key.

26.4 Node Components

NodeComponent is a common superclass for all scene graph node component
objects such as: Geometry, Appearance, Material, Texture, etc.

26.4.1 Geometry

Three-dimensional objects are typically modeled as a combination of surface patches,
line segments, and points. Java 3D provides direct support for arrays of points, lines,
triangles, and quadrilaterals. Curved surface patches should be represented as a set
of simple polygons.

An abstract class Geometry specifies the geometry component information re-
quired by a Shape3D node. Geometry objects describe both the geometry and
topology of the Shape3D nodes.

The Geometry class has a subclass GeometryArray, which in turn has sub-
classes:

PointArray defines a set of points;

LineArray defines a set of straight-line segments;

TriangleArray defines a set of triangle patches; and

QuadArray defines a set of quadrilateral patches.
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The GeometryArray object contains separate arrays of vertex coordinates, col-
ors, normals, and texture coordinates that describe point, line, or polygon geometry.
Vertex data may be supplied to this geometry array in one of two ways: by copying
the data into the array, or by passing a reference to the data.

The default mode is “By Copying” when specified data is stored inside Java 3D.
In the “By Reference” mode, references are set to user supplied arrays, and the data
is not copied inside Java 3D.

A constructor for a geometry object has the following appearance:

GeometryArray(int vertexCount, int vertexFormat)

where parameters are:

vertexCount – the number of vertex elements in this GeometryArray;

vertexFormat – a mask indicating which components are present in each
vertex.

The second parameter contains one or more flags that can be combined together
using a bitwise OR operator. The flags signal the presence of a particular type of
vertex data:

COORDINATES – vertex positions (always present);

NORMALS – vertex normals;

COLOR 3 or COLOR 4 – vertex colors (without or with alpha channel);

TEXTURE COORDINATE 2 – vertex two-dimensional texture coordinates;

BY REFERENCE – data is passed by reference.

Below is an example of the construction of a triangle array with specification of
vertex coordinates:

ta = new TriangleArray(nVertices, TriangleArray.COORDINATES);
ta.setCoordinates(0, coordinates);

The first statement constructs a triangle arrayta, which should have nVertices
vertices. Each vertex contains just coordinates. The second statement specifies the
coordinates of all vertices. Data from double or float array coordinates by
default is copied inside Java 3D.

The following example illustrates initialization of a triangle array with specifica-
tion of vertex coordinates, normals and two-dimensional texture coordinates:

ta = new TriangleArray(nVertices,
TriangleArray.COORDINATES | TriangleArray.NORMALS |
TriangleArray.TEXTURE_COORDINATE_2 |
TriangleArray.BY_REFERENCE);

ta.setCoordRefFloat(coordinates);
ta.setNormalRefFloat(normals);
ta.setTexCoordRefFloat(0,texCoords);
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Here, arrays coordinates, normals and texCoords have float precision. All
arrays are passed by reference. Passing arrays by reference economizes on memory
since an array copy is not created.

Creation of geometry arrays for points and lines is done with constructors
PointArray and LineArray. Methods for specification of vertex data are the
same as for the triangle array.

26.4.2 Appearance and Attributes

The Appearance object defines a rendering state that can be referenced by a
Shape node. The appearance can include the following objects:

ColoringAttributes – attributes for color selection and shading. The de-
fined color is used when lighting is not enabled and vertex colors are not defined.
A shading model can be flat (constant polygon color) or shading can follow the
Gouraud method (smooth color change for more realistic appearance).
LineAttributes – attributes for line definition, including the pattern, width,
and antialiasing.
PointAttributes – attributes used to define points, including the size and
antialiasing.
PolygonAttributes – attributes for defining polygons, including culling,
rasterization mode (filled, lines, or points), constant offset, offset factor, and flip-
ping of back-face normals.
Material – defines the appearance of an object under illumination, such as the
ambient color, diffuse color, specular color, emissive color, and shininess.
Texture – defines the texture image and filtering parameters when texture map-
ping is enabled.
TextureAttributes – defines the attributes for texture mapping, such as the
texture mode, texture transform, blend color, and perspective correction mode.

Specification of the correct appearance helps to create naturally looking visual ob-
jects in the three-dimensional space.

Problems

26.1. Explain the usefulness of the Java 3D scene graph for visualization of three-
dimensional objects.

26.2. What is the difference between nodes and leafs in a Java 3D scene graph?

26.3. Suppose that we are going to visualize a mesh of three-dimensional finite el-
ements showing element faces, edges and nodes. What Java 3D geometry objects
should be used for such visualization?



Chapter 27
Visualizer

Abstract The visualization algorithm and visualizer class structure are discussed in
this chapter. The main class Jvis and class VisData for storage of visualization
parameters are presented.

27.1 Visualization Algorithm

Input data for the visualization consists of a set of nodes defined by spatial co-
ordinates, a set of elements specified by nodal connectivities, and a set of result
values. Primary results (displacements) are obtained at nodes after solution of the
global equation system. Secondary results (stresses), expressed through derivatives
of the primary results, have the best precision at reduced integration points inside
elements.

As seen in the previous chapter, Java 3DTM can render three-dimensional objects
composed of simple polygons (triangle and quadrilaterals), straight-line segments,
and points. An appearance can be specified for polygons including material and tex-
tures. To include three-dimensional shading effects it is necessary to specify normals
at polygon vertices.

We can understand that a difficulty in visualization is caused by differences in ge-
ometric properties of element faces of a finite element model and polygons, which
are used for rendering. While element faces are curved biquadratic surfaces with
curved quadratic edges, polygons are flat triangles. Results are also interpolated
quadratically over element faces. In order to have a good appearance of a finite
element model in its visualization, it is necessary to subdivide element faces into
triangles. The density of triangular subdivision should depend upon surface curva-
ture and on the results gradient.

Taking into account the visualization aspects of Java 3D it is possible to propose
the following visualization algorithm.

313
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Fig. 27.1 Generating contours using interpolation of a one-dimensional texture

1. Obtain a continuous field of results by extrapolation from integration points
inside elements to element nodes with subsequent averaging (omit this step
for primary results defined at nodal points).

2. Select surface faces, surface element edges, and surface nodes of the finite
element model (omit this step for two-dimensional problems).

3. Subdivide curved faces into flat triangles on the basis of face curvature and
gradient of results. Generate normals to finite element faces at triangular ver-
tices.

4. Create contour pictures inside triangles by specifying texture coordinates at
vertices.

5. Represent element edges as a set of straight-line segments.
6. Submit arrays of triangles, lines, and points to Java 3D for rendering.

The contour-creation step of the visualization algorithm is performed with the use
of texture interpolation available in Java 3D API. Instead of explicit contour drawing
we prepare one-dimensional color texture and specify texture coordinates at triangle
vertices. Color contours inside triangular polygons are generated using interpolation
of one-dimensional texture (gradation strip) as illustrated in Figure 27.1.

27.2 Surface of the Finite Element Model

To visualize a finite element model or results at the surface of the model, it is nec-
essary to select finite element faces that belong to the surface of the finite element
model (or part of the finite element model). A topology of a finite element model
is described by element connectivities. Connectivities for each finite element are
global (model) node numbers listed in order of local (element) node numbers. The
twenty-node brick-type element has six element faces. Connectivity numbers for
each face can be easily extracted from an element connectivity array.
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The surface of the finite element model is created from external element faces.
External faces are mentioned in the model connectivity array only once, while inner
faces are mentioned exactly twice. Checking that faces from different finite elements
are the same can be done by comparison of the face connectivity numbers.

27.3 Subdivision of Quadratic Surfaces

Subdivision of quadratic element faces is necessary for producing smooth repre-
sentation of faces and edges during three-dimensional rendering. The subdivision
depends on two factors: curvature of the surface and range of result function over
the surface. We want to create a compatible mesh of triangles, and it is desirable to
generate mesh locally, i.e., considering one element face at a time. The latter con-
straint means that the number of subdivisions along a face edge should be the same
in element faces sharing the edge. Thus, the number of edge subdivisions should be
based only on nodal values of coordinates and results for this edge.

Curvature-based edge subdivision depends upon the edge curvature radius. On
the basis of locations of three nodes defining an edge, it is possible to determine the
edge curvature. Multiplication of the curvature by the empirical curvature coefficient
provides the number of subdivisions due to curvature.

Results-based edge subdivision is used in addition to the curvature-based subdi-
vision when contour drawing is performed. Such subdivision should limit the num-
ber of color intervals inside one triangle. Thus, the number of subdivisions at the
face edge should be proportional to the ranges of function between two neighboring
nodes.

When both curvature-based and results-based subdivision are used the final num-
ber of subdivisions at the edge is selected as the maximum of two numbers.

After determining the number of subdivisions for all edges, subdivision of ele-
ment faces is performed in two steps. First, vertex locations for subdivision triangles
are generated. Next, a triangular mesh is created using Delaunay triangulation.

27.4 Class Structure of the Visualizer

Class structure of the visualizer is presented in Figure 27.2. Class Jvis contains
the main method, which creates object J3dScene. Class J3dScene describes a
scene graph for visualization of the finite element model with the possibility of re-
sults contours at its surface. Class MouseAndLight includes methods for setting
background and lights, and organizing mouse behavior for interactive transforma-
tions of the visualized finite element model. Simple standard cases of mouse behav-
ior are used – rotation, translation and zooming of the finite element model. Class
ContourTexture generates texture with a color strip used in drawing results
contours.
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Fig. 27.2 Class structure of the visualizer

Class J3dScene uses subdivided faces and edges (SurfaceSubGeometry)
in geometry attributes of the scene graph. Class SurfaceSubGeometry ex-
tends class SurfaceGeometry, which creates a list of element faces and edges
for the surface of the finite element model. Classes EdgeSubdivision and
FaceSubdivision perform subdivision of element edges into line segments
and subdivision of element faces into triangles. Classes VisData, FeModel and
FeStress are responsible for the input of visualization data, finite element model
data and results data. Class ResultsAtNodes extrapolates stress values from re-
duced integration points to nodes.

Finite element visualizer Jvis generates only a three-dimensional picture of the
finite element model with results contours. Interaction is restricted to rotation, trans-
lation and zooming of the model using a mouse. We intentionally do not implement
the usual elements of the GUI like menus and toolbars. Implementation of such in-
terface elements is not the subject of this book. In addition, their implementation
requires a large amount of the JavaTM code that does not fit the book space.

27.5 Visualizer Class

The main class of the visualizer is presented below.

1 package fea;
2

3 import visual.*;
4 import util.*;
5

6 import java.applet.Applet;
7 import com.sun.j3d.utils.applet.MainFrame;
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8

9 // Main class of the visualizer
10 public class Jvis extends Applet {
11

12 public static FeScanner RD = null;
13

14 public static void main(String[] args) {
15

16 if (args.length == 0) {
17 System.out.println(
18 "Usage: java fea.Jvis FileIn \n");
19 return;
20 }
21 FE.main = FE.JVIS;
22

23 RD = new FeScanner(args[0]);
24 System.out.println("fea.Jvis: Visualization." +
25 " Data file: " + args[0]);
26

27 new MainFrame(new Jvis(), 800, 600);
28 }
29

30 public Jvis() {
31

32 VisData.readData(RD);
33

34 new J3dScene(this);
35

36 }
37

38 }

Class Jvis belongs to package fea where all the main classes of the finite
element program are located. The class extends Applet and uses utility class
MainFrame for simpler programming of a window displaying graphics.

Lines 16–20 check the existence of the program argument, which should be the
name of the data file. If the argument is absent a diagnostic message is printed and
the program returns. Line 21 sets the static variable main in class FE to value
VIS, thus signaling that the finite element model will be used in the visualizer. The
scanner for reading finite element data RD is created in line 23. A window of size
800 by 600 pixels with graphical content is initialized in line 27 by passing object
Jvis to utility class MainFrame.

The constructor of class Jvis contains data input by method readData and
construction of object J3dScene, which creates the Java 3D scene graph for visu-
alization of a finite element model and results.
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27.6 Input Data

27.6.1 Input Data File

In order to run the visualizer it is necessary to prepare an ASCII file with input data.
Input data for visualization includes:

meshFile = <text> – name of the file containing a finite element mesh;

resultFile = <text> – name of the results file (if not specified then re-
sults visualization is not done);

parm = <text> – results parameter that should be visualized;

showEdges = Y/N – draw element edges: Y – yes, N – no;

showNodes = N/Y – draw nodes: N – no, Y – yes;

nDivMin = <number> – minimum number of element edge subdivisions
(default value is 1);

nDivMax = <number> – maximum number of element edge subdivisions
(default value is 16);

fMin = <number> – minimum value of results parameter (if not specified
then computed);

fMax = <number> – maximum value of results parameter (if not specified
then computed);

nContours = <number> – number of contours used for results visualization
(2..256, default value is 256);

deformScale = <number> – if not zero, show deformed shape of the finite
element model. Nodal displacements are scaled such that the ratio of a maximum
scaled displacement to the largest model size is equal to deformScale (default
value is 0);

end – signal of end of data.

The following results parameters can be visualized:

Ux, Uy, Uz – one of components of a displacement vector along coordinate
axes x, y or z;

Sx, Sy, Sz – normal stresses;

Sxy, Syz, Szx – shear stresses;

S1, S2, S3 – principal stresses;

Si – equivalent stress;

S13 – difference between first and third principal stresses;

none – do not visualize results as contours (default value).

The minimum information in the data input file for visualizer is the name of the file
with a finite element mesh. In this case the finite element mesh will be visualized
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with edges but without nodes. If the name of a results file is specified in addition to
the mesh file then the visualizer will show the finite element model with color results
contours depending on the requested results parameter. The finite element model can
be drawn with exaggerated deformation by applying scaled displacements.

27.6.2 Class for Data Input

Visualization data is stored in class VisData.

1 package visual;
2

3 import model.*;
4 import util.*;
5 import elem.Element;
6

7 import javax.vecmath.*;
8

9 public class VisData {
10

11 static FeModel fem;
12 // Global vectot of nodal displacements
13 static double displ[];
14

15 // Input data names
16 enum vars {
17 meshfile, resultfile, parm, showedges, shownodes,
18 ndivmin, ndivmax, fmin, fmax, ncontours, deformscale,
19 end
20 }
21

22 // Parameters that can be visualized: displacements,
23 // stresses, principal stresses and equivalent stress
24 enum parms {
25 ux, uy, uz, sx, sy, sz, sxy, syz, szx,
26 s1, s2, s3, si, s13, none
27 }
28

29 static String meshFile = null, resultFile = null;
30 static parms parm = parms.none;
31 static boolean showEdges = true, showNodes = false,
32 showDeformShape = false, drawContours = false;
33 static double deformScale = 0.0;
34 static int nDivMin = 2, nDivMax = 16;
35 static double fMin = 0, fMax = 0;
36 static int nContours = 256;
37

38 static float offset = 500.0f;
39 static float offsetFactor = 1.0f;
40

41 static Color3f bgColor = new Color3f(1.0f, 1.0f, 1.0f);
42 static Color3f modelColor = new Color3f(0.5f, 0.5f, 0.9f);



320 27 Visualizer

43 static Color3f surTexColor = new Color3f(0.8f, 0.8f, 0.8f);
44 static Color3f edgeColor = new Color3f(0.2f, 0.2f, 0.2f);
45 static Color3f nodeColor = new Color3f(0.2f, 0.2f, 0.2f);
46

47 // Size of the color gradation strip
48 static int textureSize = 256;
49 // Coefficient for curvature: n = 1 + C*ro
50 static double Csub = 15;
51 // Coefficient for contours: n = 1 + F*abs(df)/deltaf
52 static double Fsub = 20;
53

54 public static void readData(FeScanner RD) {
55

56 readDataFile(RD);
57

58 FeScanner fes = new FeScanner(meshFile);
59 fem = new FeModel(fes, null);
60 Element.fem = fem;
61 fem.readData();
62

63 if (resultFile != null) {
64 displ = new double[fem.nNod*fem.nDf];
65 FeStress stress = new FeStress(fem);
66 stress.readResults(resultFile, displ);
67 if (deformScale > 0) showDeformShape = true;
68 drawContours = VisData.parm != VisData.parms.none;
69

70 }
71 }

The names of data items, which are described in the previous subsection are places
in enum object vars (lines 16–19). Object parms contains the names of results
parameters for visualization.

Variables for storing data values are declared in lines 29–36. Most variables have
default values. Lines 38–39 specify the offset bias and offset factor, which are used
for shifting pixels during rendering polygons. This helps proper drawing of lines
and points on the polygon surface.

Statements 41–45 define the following colors:

bgColor – background color of the drawing canvas;

modelColor – element faces color when the finite element model is visualized;

surTexColor – color of element faces, which is modulated by texture used
for results contours;

edgeColor – color for drawing element edges;

nodeColor – color for drawing node points.

The size of the texture containing the gradation strip for contouring results is
specified in line 48. Lines 50 and 52 define empirical coefficients used for calculat-
ing the number of subdivisions for element edges due to their curvature and range
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of results. Method readData reads the visualization data file (line 56), a file con-
taining a finite element mesh (lines 59–61) and the results file with displacements at
nodes and stresses at reduced integration points (line 66).

Method readDataFile inputs the visualization data placed in the visualiza-
tion file.

73 static void readDataFile(FeScanner RD) {
74

75 vars name = null;
76

77 while (RD.hasNext()) {
78

79 String varName = RD.next();
80 String varNameLower = varName.toLowerCase();
81 if (varName.equals("#")) {
82 RD.nextLine(); continue;
83 }
84 try {
85 name = vars.valueOf(varNameLower);
86 } catch (Exception e) {
87 UTIL.errorMsg(
88 "Variable name is not found: " + varName);
89 }
90

91 switch (name) {
92

93 case meshfile:
94 meshFile = RD.next();
95 break;
96 case resultfile:
97 resultFile = RD.next();
98 break;
99 case parm:
100 try {
101 varName = RD.next();
102 parm = parms.valueOf(varName.toLowerCase());
103 } catch (Exception e) { UTIL.errorMsg(
104 "No such result parameter: " + varName); }
105 break;
106 case showedges:
107 showEdges = RD.next().equalsIgnoreCase("y");
108 break;
109 case shownodes:
110 showNodes = RD.next().equalsIgnoreCase("y");
111 break;
112 case ndivmin:
113 nDivMin = RD.readInt();
114 break;
115 case ndivmax:
116 nDivMax = RD.readInt();
117 break;
118 case fmin:
119 fMin = RD.readDouble();
120 break;
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121 case fmax:
122 fMax = RD.readDouble();
123 break;
124 case ncontours:
125 nContours = RD.readInt();
126 break;
127 case deformscale:
128 deformScale = RD.readDouble();
129 break;
130 case end:
131 return;
132 }
133 }
134 }
135

136 }

Visualization data is read inside the while loop in lines 77–133. This loop con-
tinues until there are input items in the scanner RD or until data item end is met.
The text data item is read to string and transformed to lower case (lines 79–80). If
the data item is not the comment sign then we try to find name corresponding to
the string varname among enumerated vars (line 85). An error is generated if
varname does not correspond to any predetermined value in vars. The switch
construction in lines 91–132 contains case statements for reading the second part of
an input statement. Lines 101–102 input the result parameter that should be visual-
ized. The parameter name is sought among the enumerated parms. Case end just
returns to the calling method.

Problems

27.1. A triangular polygon with vertices 1–3 is used for visualization of results
available at vertices.
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For the result values shown in the figure, determine isolines (contours) where the
result values are equal to 1 and 3.
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27.2. Develop an algorithm for finding the element faces located on the surface
of a finite element model composed of three-dimensional elements. Express the
algorithm in the form of pseudocode.

27.3. The curvature radius of an element edge is defined by the coordinates of its
three nodes. Propose an algorithm for determining the edge curvature radius or any
other approximate curvature parameter using the locations of three nodes.
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Visualization Scene Graph

Abstract Creation of a scene graph determining the hierarchy of visualized objects
is discussed. Visual objects of the scene graph are finite element faces, edges and
nodes. A Java 3DTM scene graph for visualization of a finite element model and
results is generated by class J3dScene.

28.1 Schematic of the Scene Graph

Visualization of the finite element model requires rendering its visual components
– finite element faces, edges and nodes. A scene graph is used for organizing visual
components (objects). The scene graph determining the hierarchy of the objects of
the visualizer Jvis is shown in Figure 28.1. Visual objects of the scene graph are
finite element faces, edges and nodes. They are represented by Shape3D objects.
The geometry of the faces is described by array of triangles. Appearance references
polygon attributes, material and texture. Texture is used for drawing results in the
form of contours. Edges are represented as line segments defined in a line array.
Appearance includes line attributes and color. Nodes are described by a point array
with references to point attributes and color.

All Shape3D objects (faces, edges and nodes) are attached to a transform group
TG, which defines the initial transformation for the finite element model. In our
case, we need scaling of the finite element model that is necessary to place the
model inside a window used for visualization.

The next (upper) transform group is used for providing interaction with the user.
Mouse behavior, which includes rotation, translation and zooming is connected to
this transform group. Lights, background and transform group are attached to branch
group BG, which is connected to utility class SimpleUniverse. Lights, back-
ground and mouse behavior have references to bounds that define the influence of
the corresponding scene graph nodes.
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Fig. 28.1 Scene graph for visualization of finite element model and results

28.2 Implementation of the Scene Graph

A Java 3D scene graph for visualization of the finite element model and results is
created by class J3dScene. The source code of the class constructor and a method
for adding the shape of a visual object is given below.

1 package visual;
2

3 import javax.media.j3d.*;
4 import javax.vecmath.*;
5 import java.awt.*;
6 import java.applet.Applet;
7 import com.sun.j3d.utils.universe.SimpleUniverse;
8

9 // Scene graph for visualization.
10 public class J3dScene {
11

12 private SurfaceSubGeometry subGeometry;
13

14 // Construct Java3D scene for visualization.
15 public J3dScene(Applet c) {
16

17 GraphicsConfiguration config =
18 SimpleUniverse.getPreferredConfiguration();
19
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20 Canvas3D canvas = new Canvas3D(config);
21 c.setLayout(new BorderLayout());
22 c.add("Center", canvas);
23

24 // Element subfaces, subedges and nodes
25 subGeometry = new SurfaceSubGeometry();
26

27 BranchGroup root = new BranchGroup();
28 Lights.setLights(root);
29 TransformGroup tg =
30 MouseInteraction.setMouseBehavior();
31

32 // Add finite element model shape
33 tg = addModelShape(tg);
34

35 root.addChild(tg);
36 root.compile();
37

38 System.out.println(" Number of polygons = " +
39 subGeometry.nVertices/3);
40 if (VisData.showDeformShape) System.out.printf(
41 " Deformed shape: max displacement ="+
42 " %4.2f max size\n", VisData.deformScale);
43 if (VisData.drawContours) {
44 System.out.printf(" Contours: %d colors" +
45 " (Magenta-Blue-Cyan-Green-Yellow-Red)\n",
46 VisData.nContours);
47 System.out.printf(" %s: Fmin = %10.4e, " +
48 "Fmax = %10.4e\n", VisData.parm,
49 subGeometry.fmin, subGeometry.fmax);
50 }
51

52 SimpleUniverse u = new SimpleUniverse(canvas);
53 u.getViewingPlatform().setNominalViewingTransform();
54 u.addBranchGraph(root);
55 }
56

57 // Add model shape to the Java 3D scene graph.
58 // tg - transform group of the scene graph.
59 // returns transform group of the scene graph
60 TransformGroup addModelShape(TransformGroup tg) {
61

62 Transform3D t3d = new Transform3D();
63 t3d.setScale(subGeometry.getScale());
64 tg.setTransform(t3d);
65

66 // Element faces composed of triangular subfaces
67 tg.addChild(facesShape());
68

69 // Edges composed of line segments
70 if (VisData.showEdges) tg.addChild(edgesShape());
71

72 // Nodes located at the model surface
73 if (VisData.showNodes) tg.addChild(nodesShape());
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74

75 return tg;
76 }

Statements 3–7 import Java 3D packages, an abstract windowing toolkit pack-
age, an applet package and the package for simple universe object. Constructor
J3dScene obtains Applet object c as an argument. Class Applet was used
in the main class of the visualizer for creating the main frame of the application.
Applet extends class Panel, which is the simplest container class. We use con-
tainer c for placement of a drawing canvas.

The graphics configuration is set as the preferred configuration of a simple uni-
verse object (lines 17–18). Lines 20–22 create Canvas3D object where visualiza-
tion will be performed, and place the canvas at the center of panel c.

An object of the type ModelSubGeometry is constructed in line 25. During
construction, the surface geomentry of the finite element model is created and sub-
division of element surfaces into triangles and element edges into line segments is
performed.

Object root of class BranchGroup is initialized by statement 27. Lights are
set by static method setLights in line 28. Lines 29–30 set mouse behaviors that
allow interactive transformations of a visualized finite element model. Shape ob-
jects of the finite element model are added to transform group tg in line 33. This
transform group is added to the root transform group (line 35). Lines 38–50 print
information about visualization: the number of polygons (triangles) used for ren-
dering; the number of colors for drawing contours and the results parameter and its
minimal and maximal values used for visualization. Class SimpleUniverse is
used for setting an appropriate viewpoint and as a parent of the root branch group
(lines 52–54).

Method addModelShape shown in lines 60–76 adds element faces, element
edges and nodal points to the scene graph. Lines 56–58 set a scaling transform in
such a way that the image of the finite element model has a reasonable size inside
the drawing canvas.

Lines 67, 70, and 73 add subdivided element faces, element edges and nodal
points to the transform group. The method returns the transform group tg in line
75.

28.3 Shape Objects

Methods facesShape, edgesShape and nodesShape, which produce shape
objects for element faces, element edges and nodes are considered below. All these
methods call methods of subGeometry to get geometry and then set appearance
for visual objects.

Method facesShape returns a Shape3D object containing the geometry and
appearance for element faces.
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78 // Shape object for element faces
79 private Shape3D facesShape() {
80

81 TriangleArray faces = subGeometry.getModelTriangles();
82

83 Appearance facesApp = new Appearance();
84

85 // Polygon Attributes
86 PolygonAttributes pa = new PolygonAttributes();
87 pa.setCullFace(PolygonAttributes.CULL_BACK);
88 pa.setPolygonOffset(VisData.offset);
89 pa.setPolygonOffsetFactor(VisData.offsetFactor);
90 facesApp.setPolygonAttributes(pa);
91

92 // Material
93 Color3f darkColor = new Color3f(0.0f, 0.0f, 0.0f);
94 Color3f brightColor = new Color3f(0.9f, 0.9f, 0.9f);
95 Color3f surfaceColor = VisData.modelColor;
96 if (VisData.drawContours)
97 surfaceColor = VisData.surTexColor;
98 Material facesMat = new Material(surfaceColor,
99 darkColor, surfaceColor, brightColor, 16.0f);
100 facesMat.setLightingEnable(true);
101 facesApp.setMaterial(facesMat);
102

103 if (VisData.drawContours) {
104 // Texture for creating contours
105 ColorScale scale = new ColorScale();
106 Texture2D texture = scale.getTexture();
107 facesApp.setTexture(texture);
108 TextureAttributes ta = new TextureAttributes();
109 ta.setTextureMode(TextureAttributes.MODULATE);
110 facesApp.setTextureAttributes(ta);
111 }
112

113 // Create Shape using Geometry and Appearance
114 return new Shape3D(faces, facesApp);
115 }

Method getModelTriangles provides element faces subdivided into trian-
gles, which are placed in object faces (line 81). Polygon attributes for drawing
triangles are set in lines 86–90. By default, polygons are rendered by filling the in-
terior between the vertices. Statement 87 specifies that back faces of polygons are
not drawn.

Lines 88–89 set an offset, which changes the depth values of all pixels generated
by polygon rasterization. We need offset for proper visualization of element edges
and nodes. If a polygon surface and a line segment have exactly the same Z device
coordinates then the line visibility is not guaranteed. The following two values are
used to specify the offset. Offset bias is the constant polygon shift that is added to
the final device coordinate Z value. The offset factor is the factor to be multiplied by
the slope of the polygon and then added to the final, the device coordinate Z value
of the polygon primitives.
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Material defined in lines 93–101 is used for specifying the reflecting properties of
the surface. Different materials are specified for mesh visualization and for results
visualization. The following constructor for the material is employed:

Material(Color3f ambientColor, Color3f emissiveColor,
Color3f diffuseColor, Color3f specularColor,
float shininess)

Here, ambientColor is the ambient color reflected off the surface of the material;
emissiveColor is the color of the light the material emits (like a light source);
diffuseColor is the color of the material when illuminated (the light bounces
off objects in random directions); specularColor is the specular color of the
material (highlights); shininess is the material’s shininess.

We use black color as the emissive color. The model color specified in class
Data is used for both ambient and diffuse colors. If results are drawn by applying
texture then an almost white color is used as the surface color (line 94). Specular
effects are modeled by a color that is close to white. In order to have light effects
line 100 enables lighting for the material. Line 101 sets material properties for the
appearance of the faces.

If the results file name is specified in the input data and, consequently, we are
going to draw results contours then a texture and its appearance are set in lines 105–
110. A one-dimensional color gradation strip is created by method getTexture
of the class ColorScale (line 105). It is set as a texture for the faces appearance
in line 106. A texture mode in the texture attributes is set to MODULATE. Choosing
this parameter means that polygon material colors will be modulated by the speci-
fied texture. Lights effects including shading and bright spots are produced for the
polygon material and are visible through the texture since it is applied as modulation
of material colors.

Line 114 creates a Shape3D object using faces geometry and appearance and
returns it to the calling method.

A shape object for the edges of the finite element model surface is created by
method edgesShape.

117 // Shape object for element edges
118 private Shape3D edgesShape() {
119

120 LineArray edges = subGeometry.getModelLines();
121

122 Appearance edgesApp = new Appearance();
123

124 LineAttributes la = new LineAttributes();
125 la.setLineAntialiasingEnable(true);
126 edgesApp.setLineAttributes(la);
127

128 ColoringAttributes ca = new ColoringAttributes();
129 ca.setColor(VisData.edgeColor);
130 edgesApp.setColoringAttributes(ca);
131

132 return new Shape3D(edges, edgesApp);
133 }
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Geometry array edges is provided by method getModelLines as straight-
line segments sufficient for visually smooth representation of curved element edges.
Line attributes are determined in lines 124–126. Setting antialiasing to true value
(line 125) produces a smooth appearance of lines on the screen. An edge line color
is set in line 129 using the color defined in class VisData.

Finally, a shape object for surface nodes of the finite element model is made by
method nodesShape given below.

135 // Shape object for nodes
136 private Shape3D nodesShape() {
137

138 PointArray nodes = subGeometry.getModelPoints();
139

140 Appearance nodesApp = new Appearance();
141

142 PointAttributes pa = new PointAttributes();
143 pa.setPointAntialiasingEnable(true);
144 pa.setPointSize(3.0f);
145 nodesApp.setPointAttributes(pa);
146

147 ColoringAttributes ca = new ColoringAttributes();
148 ca.setColor(VisData.nodeColor);
149 nodesApp.setColoringAttributes(ca);
150

151 return new Shape3D(nodes, nodesApp);
152 }
153

154 }

Line 138 creates a geometry object as a point array nodes. Point attributes con-
tain antialiasing for drawing points (line 143) and point size in pixels (line 146).
Line 148 sets the line color to that specified in class VisData. Object Shape3D
for the nodes of the finite element model is returned in line 151.

Problems

28.1. Analyze the scene graph shown in Figure 28.1. Currently, lights are attached
to branch group BG. What changes occur in visualization of the finite element model
if lights are attached to the upper transform group TG through an additional branch
group?

28.2. The scene graph of Figure 28.1 contains shape objects for element edges and
nodes. Is it possible to refer to the same appearance for both edges and nodes? Are
references to the same color attributes possible for edges and nodes (through their
appearances)?

28.3. An antialiasing technique is used for smoothing lines and points in meth-
ods edgesShape and nodesShape. Explain how antialiasing is performed on
a computer screen consisting of pixels.



Chapter 29
Surface Geometry

Abstract Since only the surface of a three-dimensional finite element model is
visible it is useful to create geometry items describing a surface. An algorithm for
determining surface faces is based on the fact that faces located on the surface are
mentioned in the model connectivity array only once, while internal faces are ref-
erenced twice. Lists of element surface edges and surface nodes are formed using
a list of element surface faces. Surface geometry is produced by methods of class
SurfaceGeometry.

29.1 Creating Geometry of the Model Surface

When visualizing a three-dimensional finite element model it is useful to take into
account that only the surface of the model is visible. While, in principle, it is pos-
sible to render all element faces, edges and nodes, such visualization requires too
many resources. So, we are going to create the geometry of the model surface that
should lead to efficient real-time visualization. As we already saw, a Java 3DTM

scene graph includes three shape object – faces, edges and nodes. Figgure 29.1 il-
lustrates creation of element faces, element edges and nodes located on the surface
of a finite element mesh. Element faces lying on a model surface are mentioned in
element connectivities just once. This allows one to select surface faces. Surface
edges and nodes are found using the surface faces.

Creation of the surface geometry is performed by class SurfaceGeometry.
The source code of the class constructor is given below.

1 package visual;
2

3 import model.*;
4

5 import java.util.*;
6

7 // Geometry: surface faces, edges and nodes
8 class SurfaceGeometry {

333
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Model

Faces Edges Nodes

Fig. 29.1 Creation of element faces, element edges and nodes from a finite element mesh

9

10 FeModel fem;
11

12 // Numbers of surface element faces, edges and nodes
13 int nFaces, nEdges, nsNodes;
14 // Surface element faces and edges, surface nodes
15 LinkedList listFaces;
16 LinkedList listEdges;
17 int sNodes[];
18

19 double fun[], fmin, fmax, deltaf;
20 private static double xyzmin[] = new double[3];
21 private static double xyzmax[] = new double[3];
22 static double sizeMax;
23

24 SurfaceGeometry() {
25

26 fem = VisData.fem;
27 listFaces = new LinkedList();
28 listEdges = new LinkedList();
29 sNodes = new int[fem.nNod];
30

31 // Create element faces located at the surface
32 createFaces();
33 nFaces = listFaces.size();
34

35 // Create element edges located at the surface
36 createEdges();
37 nEdges = listEdges.size();
38

39 // Create nodes located at the surface
40 createNodes();
41
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42 if (VisData.drawContours) {
43 fun = new double[fem.nNod];
44 ResultAtNodes ran = new ResultAtNodes(this, fem);
45 ran.setParmAtNodes(VisData.parm, VisData.displ);
46 }
47

48 modifyNodeCoordinates();
49 }

Line 10 declares finite element model object fem, which contains data on the
finite element mesh and will be used to produce the surface geometry. The numbers
of surface faces and surface edges is not known in advance. Because of this we em-
ployed linked lists listFaces and listEdges (lines 15–16) for element faces
and element edges. Array sNodes is used to register surface nodes (line 17). Vari-
ables nFaces, nEdges and nsNodes will contain numbers of surface element
faces, edges and nodes.

Constructor SurfaceGeometry initializes objects for storing information
on the surface geometry. Calls to methods createFaces, createEdges and
createNodes in lines 32, 36 and 40 create surface faces, edges and nodes corre-
spondingly. When contour drawing is requested then line 43 allocates memory for
array fun where the requested result parameter will be stored. Values of this pa-
rameter are set in array fun by method setParmAtNodes in line 45. Statement
48 modifies the nodal coordinates of the finite element model by taking into account
exaggerated nodal displacements (if a deformed shape is requested) and centering
the model.

29.2 Surface Faces

An algorithm for determining surface faces is based on the following observation:
surface faces are mentioned in the model connectivity array only once, while inter-
nal faces are mentioned exactly twice. The algorithm of creating surface faces can
be described by the following pseudocode.

Surface faces
Initialize list of faces
for each element in model

for each element face in element
for each face in list

if element face equal face in list
then remove face from list

end for
if equal face not found
then add element face to list

end for
end for
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The above algorithm of creating surface element faces is implemented in methods
createFaces and equalFaces.

51 // Create linked list listFaces containing element faces
52 // located on the model surface. 2D case: element = face
53 void createFaces() {
54

55 if (fem.nDim == 3) { // 3D mesh
56 for (int iel = 0; iel < fem.nEl; iel++) {
57 int elemFaces[][]
58 = fem.elems[iel].getElemFaces();
59 for (int[] elemFace : elemFaces) {
60 int nNodes = elemFace.length;
61 int[] faceNodes = new int[nNodes];
62 for (int i = 0; i < nNodes; i++) {
63 faceNodes[i]
64 = fem.elems[iel].ind[elemFace[i]];
65 }
66 // Zero area degenerated 8-node face
67 if (nNodes == 8 &&
68 (faceNodes[3] == faceNodes[7] ||
69 faceNodes[1] == faceNodes[5]))
70 continue;
71 ListIterator f = listFaces.listIterator(0);
72 boolean faceFound = false;
73 while (f.hasNext()) {
74 int[] faceNodesA = (int[]) f.next();
75 if (equalFaces(faceNodes,faceNodesA)) {
76 f.remove();
77 faceFound = true;
78 break;
79 }
80 }
81 if (!faceFound) f.add(faceNodes);
82 }
83 }
84 }
85 else { // 2D - faces = elements
86 ListIterator f = listFaces.listIterator(0);
87 for (int iel = 0; iel < fem.nEl; iel++) {
88 f.add(fem.elems[iel].ind);
89 }
90 }
91 }
92

93 // Compare two element faces.
94 // Surface has 8 or 4 nodes, corners are compared.
95 // f1 - first face connectivities.
96 // f2 - second face connectivities.
97 // returns true if faces are same.
98 boolean equalFaces(int[] f1, int[] f2) {
99

100 // Quadratic elements or linear elements
101 int step = (f1.length > 4) ? 2 : 1;
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102

103 for (int j = 0; j < f1.length; j += step) {
104 int n1 = f1[j];
105 boolean nodeFound = false;
106 for (int i = 0; i < f2.length; i += step) {
107 if (f2[i] == n1) {
108 nodeFound = true;
109 break;
110 }
111 }
112 if (!nodeFound) return false;
113 }
114 return true;
115 }

Method createFaces contains two cases of face creation. The first one con-
siders three-dimensional models and the second two-dimensional models. Line 55
checks the number of dimensions variable nDim. If it is equal to 3 then lines 56–83
perform surface face creation for three-dimensional problems. Array elemFaces
containing information on local numbers of element faces is provided by the ele-
ment method getElemFaces in lines 57–58. In a loop over element faces (line
59), we consider each element face and compare it with faces in list listFaces.

The indices of face nodes are extracted from element connectivities in a loop of
lines 62–65. Lines 67–69 check the element face indices for the case of a quadratic
face with eight nodes. If opposite midside nodes have the same node numbers the
face is degenerated into a line with zero area and is omitted from further considera-
tion.

List iterator f is initialized in line 71. It is used to perform operations with entries
of list listFaces. In a while loop started in line 73, an array of face nodes
faceNodesA is obtained from the list (line 74) and compared with nodes of the
current element face faceNodes in line 75. If method equalFaces returns a
true value, which means equal node numbers for two element faces then the face
is removed from the list in line 76 as the internal face of the finite element model.
However, if no face equal to the current element face is found then the element face
is placed in the list as a candidate for a surface face (line 81).

In two-dimensional problems, element faces are elements; all of them lie on the
model surface. Because of this, a list of surface faces for two-dimensional models
is created by simple copying of element connectivities to list listFaces.

MethodequalFaces compares the connectivities of two quadrilateral faces f1
and f2 in a double loop of lines 103–113. If the current node of the first face does
not match any node of the second face then the faces are different and the method
returns false. If the double loop finishes then the faces are considered coincident and
the method returns a true value.
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29.3 Surface Edges and Nodes

An algorithm for determining surface edges is similar to the algorithm for surface
faces. We take the list of surface faces, extract edges (which automatically lie on the
surface) and place them in a list of edges avoiding repeatedly mentioned edges. The
following pseudocode illustrates the algorithm for creating surface edges.

Surface edges
Initialize list of edges
for each face in list of faces

for each face edge in face
for each edge in list of edges

if face edge equal edge in list of edges
then break loop

end for
if equal edge not found
then add face edge to list of edges

end for
end for

The list of surface edges is created by method createEdges.

117 // Create linked list listEdges containing element edges
118 // located on the model surface
119 void createEdges() {
120

121 for (int iFace = 0; iFace < nFaces; iFace++) {
122

123 int faceNodes[] = (int[]) listFaces.get(iFace);
124 int nFaceNodes = faceNodes.length;
125 int step = (nFaceNodes > 4) ? 2 : 1;
126

127 for (int inod=0; inod < nFaceNodes; inod += step) {
128 int[] edgeNodes = new int[step + 1];
129 for (int i = inod, k = 0; i <= inod+step;
130 i++, k++)
131 edgeNodes[k] = faceNodes[i%nFaceNodes];
132

133 ListIterator ea = listEdges.listIterator(0);
134 boolean edgeFound = false;
135 while (ea.hasNext()) {
136 int[] edgeNodesA = (int[]) ea.next();
137 if (equalEdges(edgeNodes, edgeNodesA)) {
138 edgeFound = true;
139 break;
140 }
141 }
142 if (!edgeFound) ea.add(edgeNodes);
143 }
144 }
145 }
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146

147 // Compare two element edges.
148 // e1 - first edge connectivities.
149 // e2 - second edge connectivities.
150 // returns true if edges have same node numbers at ends
151 boolean equalEdges(int[] e1, int[] e2) {
152

153 int len = e1.length - 1;
154 return (e1[0] == e2[0] && e1[len] == e2[len]) ||
155 (e1[0] == e2[len] && e1[len] == e2[0]);
156 }
157

158 // Fill out array of surface nodes sNodes (0/1).
159 void createNodes() {
160

161 for (int i = 0; i < sNodes.length; i++) sNodes[i] = 0;
162

163 ListIterator e = listEdges.listIterator();
164

165 for (int iEdge = 0; iEdge < nEdges; iEdge++) {
166 int edgeNodes[] = (int[]) e.next();
167 int nEdgeNodes = edgeNodes.length;
168 for (int i = 0; i < nEdgeNodes; i++)
169 sNodes[edgeNodes[i] - 1] = 1;
170 }
171 nsNodes = 0;
172 for (int sNode : sNodes)
173 if (sNode > 0) nsNodes++;
174 }

The loop over surface element faces starts in line 121. Face node numbers and
the number of face nodes are obtained from list listFaces in lines 123–124. We
are going to compare edges using numbers of their end nodes. Since we take into
account linear and quadratic elements, an edge can contain two or three nodes. Vari-
able step (line 125) equals 2 for edges with three nodes, otherwise 1. The loop over
element edges starts with statement 127. Node numbers for current element edge
edgeNodes are selected in lines 129–131. Comparison of the current edge with
edges stored in list listEdges is performed in the loop of lines 135–141. If an
equal edge is found in the list (method equalEdges) then variable edgeFound
becomes true and the loop is broken. After the loop end, we check if an equal edge
was found. If not, the current face edge is added to the list listEdges. Method
equalEdges compares two edges e1 and e2. If the end node numbers of edges
are equal to each other then the edges are considered equal and the method returns
a true value.

Method createNodes registers surface nodes in array sNodes, which has a
length equal to the total number of nodes in the finite element model. The presence
of a surface node with number i is marked by placement of one at position i−1 in
the array. All other entries of arraysNodes are zeros. Statement 161 initializes the
array sNodes with zeros. The loop over surface element edges in list listEdges
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starts in line 163. All edge nodes are registered in array sNodes by ones. Lines
171–173 determine the number of surface nodes nsNodes.

29.4 Modification of Nodal Coordinates

Method modifyNodeCoordinates alters an array of nodal coordinates of a
finite element model. If drawing of the deformed finite element model is speci-
fied, then scaled nodal displacements are added to the nodal coordinates. Another
modification centers the finite element model at the coordinate origin. Method
setBoundingBox determines the maximum and minimum values of nodal coor-
dinates. Method getScale estimates a scale that allows a reasonable screen size
of the model image.

176 // Add scaled displacements to nodal coordinates and
177 // center finite element mesh
178 void modifyNodeCoordinates() {
179

180 // Deformed shape: add scaled displacements
181 // to nodal coordinates
182 if (VisData.showDeformShape) {
183 setBoundingBox();
184 double displMax = 0;
185 for (int i = 0; i < fem.nNod; i++) {
186 double d = 0;
187 for (int j = 0; j < fem.nDim; j++) {
188 double s = VisData.displ[i*fem.nDim+j];
189 d += s*s;
190 }
191 displMax = Math.max(d, displMax);
192 }
193 displMax = Math.sqrt(displMax);
194 // Scale for visualization of deformed shape
195 double scaleD =
196 sizeMax*VisData.deformScale/displMax;
197 for (int i = 0; i < fem.nNod; i++) {
198 for (int j = 0; j < fem.nDim; j++)
199 fem.setNodeCoord(i, j,
200 fem.getNodeCoord(i, j) +
201 scaleD*VisData.displ[i*fem.nDim+j]);
202 }
203 }
204

205 setBoundingBox();
206 // Translate JFEM model to have the bounding
207 // box center at (0,0,0).
208 double xyzC[] = new double[3];
209 for (int j = 0; j < 3; j++)
210 xyzC[j] = 0.5*(xyzmin[j] + xyzmax[j]);
211 for (int i = 0; i < fem.nNod; i++)
212 for (int j = 0; j < fem.nDim; j++)
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213 fem.setNodeCoord(i, j,
214 fem.getNodeCoord(i, j) - xyzC[j]);
215 }
216

217 // Set min-max values of xyz coordinates of JFEM model
218 // xyzmin[] and xyzmax[].
219 void setBoundingBox() {
220

221 for (int j = 0; j < fem.nDim; j++) {
222 xyzmin[j] = fem.getNodeCoord(0, j);
223 xyzmax[j] = fem.getNodeCoord(0, j);
224 }
225 for (int i = 1; i < fem.nNod; i++) {
226 if (sNodes[i] >= 0) {
227 for (int j = 0; j < fem.nDim; j++) {
228 double c = fem.getNodeCoord(i, j);
229 xyzmin[j] = Math.min(xyzmin[j], c);
230 xyzmax[j] = Math.max(xyzmax[j], c);
231 }
232 }
233 }
234 if (fem.nDim == 2) {
235 xyzmin[2] = -0.01;
236 xyzmax[2] = 0.01;
237 }
238 sizeMax = 0;
239 for (int i = 0; i < 3; i++) {
240 double s = xyzmax[i] - xyzmin[i];
241 sizeMax = Math.max(s, sizeMax);
242 }
243 }
244

245 // Compute scale for the finite element model.
246 // returns scale value.
247 double getScale() {
248

249 if (sizeMax > 0) return 0.8/sizeMax;
250 else return 1.0;
251 }
252

253 }

Method modifyNodeCoordinates begins with alteration of the nodal co-
ordinates in order to show the deformed finite element model (lines 183–202). The
loop over nodes in lines 185–192 and statement 193 determines the maximum to-
tal displacement. Displacement scale scaleD is computed in lines 195–196 such
that the maximum displacement is depicted on the screen as the deformScale
fraction of the maximum model size. For example, if deformScale is specified
as 0.2 then the maximum displacement will be shown as 20% of the model size. In
lines 208–214, the center of the model bounding box is translated to the coordinate
origin.
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In method setBoundingBox, the maxima and minima for surface nodal coor-
dinates x, y, and z are determined in a loop of lines 225–233 and placed into arrays
xyzmin and xyzmax. For two-dimensional models, small artificial thickness is
created in the z-direction (lines 235–236). The maximum model size sizeMax is
calculated in lines 238–242.

The standard size of the Java 3D drawing canvas is comparable to unit length.
Method getScale provides a scale value to be used in scaling transformation of
the finite element model. A scale factor is determined such that the maximum screen
size of the model is equal to 0.8 (line 249).

Problems

29.1. A linked list data structure is used for storage of surface element faces and
edges. Describe how data is stored in the linked list. What are the advantages of a
linked list for storage of surface faces in comparison to an array?

29.2. Develop an algorithm for determining surface element edges when element
connectivities for the whole finite element model are used as input data. Express the
algorithm in the form of pseudocode. Explain the difficulties with such an algorithm.

29.3. A finite element model consists of eight-node hexahedral elements with the
local node numbering shown below.

1 2
34

5 6
78

Find the inner element faces for the model of four elements with the following
element connectivities:

1) 1 3 9 7 2 4 10 8
2) 3 5 11 9 4 6 12 10
3) 7 9 15 13 8 10 16 14
4) 9 11 17 15 10 12 18 16



Chapter 30
Edge and Face Subdivision

Abstract Algorithms for edge and face subdivision are considered. An element
edge is divided into line segments. The number of edge subdivisions depends upon
its curvature and upon the results range. Element face subdivision into triangles
is determined by subdivisions of its edges. The positions of triangle vertices are
generated and face triangulation is performed using the Delaunay method. Class
FaceSubdivision implements edge and face subdivision.

30.1 Subdivision for Quality Visualization

The surface of the finite element model consists of element faces, edges, and nodes.
In general, element faces are not planar and element edges are not straight. Visual-
ization in Java 3DTM is based on rendering flat polygons and straight-line segments.

To obtain visualization of good quality, element surface faces and edges should
be subdivided into a sufficient number of polygons and line segments. First, edge
subdivisions are performed that depend on curvature of the edge and on the range
of a result parameter along the edge. Then, using subdivisions for four edges, points
are generated inside a quadrilateral face, and the face is subdivided into triangles.
Class FaceSubdivision deals with subdivision of an element face.

Methods of class SurfaceGeometry help to produce geometric objects of
the model surface: faces, edges, and nodes. For visualization purposes, it is neces-
sary to subdivide the faces and edges into triangles and straight-line segments. Class
FaceSubdivision presented here deals with one element face. It provides meth-
ods for calculating a number of subdivisions for an edge and for subdivision of an
element face into triangles. The number of triangles at each element edge is deter-
mined by the number of subdivisions for the edge.

We consider edges of quadratic elements. The edge is defined by location of three
nodes. When results visualization is performed, result values are related to nodes.
The number of edge subdivisions depends on curvature of the edge and on the range

343
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Fig. 30.1 Curvature radius of an element side defined by three nodes

of result parameters for the edge. Subdivision numbers for four edges determine
face subdivision into triangles.

30.2 Edge Subdivision

Curvature-based edge subdivision depends on the edge curvature radius. Let us
consider three nodes that determine an element edge (see Figure 30.1). Connecting
three nodes 1, 2 and 3 on the curved side by straight lines produces a triangle with
sides a1, a2 and a3. In the ordinary finite and boundary elements midside node 2
has equal distances to corner nodes 1 and 3. Dimensionless curvature of the element
edge can be characterized by the value of sinα .

Sine of the angle α can be found using dual representation of the area of triangle
123:

s =
√

p(p−a1)(p−a2)(p−a3) , p =
1
2
(a1 + a2 + a3), (30.1)

s =
1
2

a1a3 sinα. (30.2)

Area s is calculated using Equation 30.1. The value of sinα is then estimated as

sinα =
2s

a1a3
. (30.3)

It is possible to adopt that the number of geometry side subdivisions ng is propor-
tional to the curvature parameter ρ :

ng = kgρ , ρ = sinα =
s

a1

(
1
a2

+
1
a3

)
, (30.4)

where kg is the empirical coefficient. In the above relation the average value of the
curvature parameter estimated with distances a2 and a3 is employed.
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Fig. 30.2 Quadratic results function defined by its values at three nodes

Results-based edge subdivision depends on the range of results along this edge.
We are going to use pattern interpolation for creating contours of scalar results on
element faces. An element face is subdivided into triangles and pattern interpolation
inside triangles is performed linearly as depicted in Figure 27.1. In order to obtain
good quality of color contours the size parameter controlling triangulation should
be selected such that each triangle contains a limited number of color intervals.

Figure 30.2 shows the quadratic results function defined by its values at three
nodes of the element edge. It is reasonable to have the number of subdivisions along
the finite element edge proportional to ranges of the function between two neigh-
boring nodes. If result values at the nodes of the element edge are denoted as f1, f2

and f3 then the number of side subdivisions nc due to color change is determined by
relations:

nc = kc
max{abs( f2 − f1), abs( f3 − f2)}

d f
,

d f =
fmax − fmin

c
,

(30.5)

where c is the number of color intervals with linear change of color function (=5), kc

is the empirical coefficient. The final number of subdivisions on the particular face
edge is selected as the maximum of the number of edge subdivision due to geometry
curvature ng and due to results range nc.

Edge subdivision is done by method numberOfEdgefDivisions of JavaTM

class FaceSubdivision. The first part of the class is presented below.

1 package visual;
2

3 // Subdivision of an edge and a face
4 public class FaceSubdivision {
5

6 // Number of points used for subdivision
7 public int nFacePoints;
8 // Local coordinates of points
9 public double[] xi, et;

10 // Number of triangles and their indexes
11 public int nTrigs, trigs[][];
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12

13 private double[] ze;
14

15 public FaceSubdivision() {
16

17 int npMax = (VisData.nDivMax +1)*(VisData.nDivMax +1);
18 xi = new double[npMax];
19 et = new double[npMax];
20 ze = new double[npMax];
21

22 trigs = new int[2*VisData.nDivMax*VisData.nDivMax][3];
23 }
24

25 // Compute number of edge subdivisions.
26 // xyz - array [][3] of face nodal coordinates.
27 // fun - function values at nodes.
28 // deltaf - function range for the whole model.
29 // funDiv - if true perform results-based subdivision.
30 // i1, i2, i3 - indexes of three nodes on the edge.
31 // returns number of edge subdivisions.
32 static int numberOfEdgefDivisions(double[][] xyz,
33 double[] fun, double deltaf, boolean funDiv,
34 int i1, int i2, int i3) {
35

36 int nDiv = VisData.nDivMin;
37

38 // Curvature-based subdivision
39 double a1 = distance(xyz, i1, i3);
40 double a2 = distance(xyz, i1, i2);
41 double a3 = distance(xyz, i2, i3);
42

43 double p = 0.5*(a1 + a2 + a3);
44 double s = Math.sqrt(p*(p-a1)*(p-a2)*(p-a3));
45 // Curvature parameter
46 double ro = 2*s/a1*Math.abs(1/a2 + 1/a3);
47 nDiv = Math.max (nDiv, (int)(1.5 + VisData.Csub*ro));
48

49 if (!funDiv) return Math.min(nDiv, VisData.nDivMax);
50

51 // Results-based subdivision
52 int n = (int) (1.5 + VisData.Fsub*Math.max(
53 Math.abs(fun[i1]-fun[i2]),
54 Math.abs(fun[i2]-fun[i3]))/deltaf);
55

56 return Math.min(VisData.nDivMax, Math.max(nDiv, n));
57 }
58

59 // Distance between two points.
60 // xyz - array [][3] containing point locations.
61 // p1, p2 - point indexes.
62 // returns distance
63 static double distance(double[][] xyz, int p1, int p2) {
64 return Math.sqrt(
65 (xyz[p1][0]-xyz[p2][0])*(xyz[p1][0]-xyz[p2][0])
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66 + (xyz[p1][1]-xyz[p2][1])*(xyz[p1][1]-xyz[p2][1])
67 + (xyz[p1][2]-xyz[p2][2])*(xyz[p1][2]-xyz[p2][2]));
68 }

The heading of class FaceSubdivision contains declarations of data de-
scribing face subdivision:

nFacePoints – number of points used for face subdivision;
xi, et – local coordinates of points for face subdivision;
nTrigs – number of triangles;
trigs – indexes of triangles.

The class constructor initializes arrays of point coordinates xi and et, working
array ze used for triangulation and an array of triangle indices trigs. Array sizes
are specified on the basis of the maximum number of edge subdivisions nDivMax
defined in visualization data.

Method numberOfEdgefDivisions estimates the number of edge subdivi-
sions using formulas for curvature-based subdivision and for results-based subdivi-
sion. The parameters of the method are:

xyz – coordinates of eight nodes, which define an element face;
fun – result values at face nodes;
deltaf – range of result parameter for the whole finite element model;
funDiv – if this parameter is true then the number of subdivisions is determined
using both edge curvature and the results range, otherwise just edge curvature is
used;
i1, i2 and i3 are indices of this edge for face coordinates and result arrays.

The method returns the number of subdivisions for this edge.
First, the number of edge subdivisions nDiv is set to the minimum number of

subdivisions nDivMin specified in the data. The curvature parameter ρ is deter-
mined according to (30.1)–(30.4) in lines 39–46. Line 47 estimates the number of
subdivisions using the curvature empirical factor Csub.

The number of subdivisions with the use of the result range empirical factor
Fsub is calculated in lines 52–54 according to (30.5). Statement 56 returns the
maximum of numbers of subdivisions determined by the curvature and result range
but is not larger than the specified in data maximum value nDivMax.

30.3 Face Subdivision

Face subdivision should provide polygons (triangles) for three-dimensional render-
ing of good quality. The subdivision is determined by the edge subdivision, which
is based on the edge curvature and results range. Different methods of generating
a triangular mesh inside a quadrilateral with specified boundary subdivision can be
used. We propose here to generate face points and then create triangles using the
Delaunay approach.
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Fig. 30.3 Generating points for face subdivision

An algorithm for generating face points is as follows. A quadrilateral element is
subdivided in the local coordinate system −1 ≤ ξ ,η ≤ 1. The square is partitioned
into four triangular areas (sectors) by two diagonals and face points are generated
consequently in these areas. Point locations are arranged in rows parallel to the
edge as shown in Figure 30.3. During point generation, a new point is added if its
distance from any existing point is larger then a predetermined minimum distance.
The minimum distance is computed on the basis of minimum triangle size at the
quadrilateral boundary. One point is added at the square center. Also, one point is
added at the sector center for sectors with the number of edge subdivisions less than
three.

Face subdivision is implemented by method subdivideFace. The method
gets the numbers of subdivisions for edges of a square face. The results of subdi-
vision are arrays of face points xi and et (in local coordinates) and array trigs
containing the indices of triangular polygons.

70 // Subdivide 2 x 2 square into triangles.
71 // ndiv - number of subdivisions on edges.
72 public void subdivideFace(int[] ndiv) {
73

74 // Small number to generate slightly imparallel lines
75 final double EPS = 1.e-6;
76 double xiQ, etQ;
77 nFacePoints = 0;
78

79 // Squared min distance for node placement
80 int ndivMax = 1;
81 for (int side = 0; side < 4; side++)
82 ndivMax = Math.max(ndivMax, ndiv[side]);
83 double dMin = 2.0/ndivMax;
84 double minNodeDist2 = Math.min(1.0,0.8*dMin*dMin);
85 // Add point at the face center
86 addPoint(0, EPS, EPS, 0.0);
87

88 // Generate points for triangular sectors
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89 for (int sector = 0; sector < 4; sector++) {
90 int n = ndiv[sector];
91 double d = 2.0/n;
92 // Points inside quarter of the element
93 for (int row = 0; row <= n/2; row++) {
94 for (int i = row; i <= n-row; i++) {
95 xiQ = -1.0 + d*i;
96 etQ = -1.0 + d*row;
97 if (row > 0) {
98 xiQ += EPS;
99 etQ += EPS*xiQ;
100 }
101 addPoint(sector, xiQ, etQ, minNodeDist2);
102 }
103 }
104 if (n<3) addPoint(sector, EPS, -0.5, minNodeDist2);
105 }
106

107 // Delaunay triangulation
108 nTrigs = triangulateDelaunay();
109 }
110

111 // Add point to seeded points for Delaunay triangulation.
112 // sector - sector number 0..3.
113 // xiQ - xi-sector-coordinate of the point.
114 // etQ - eta-sector-coordinate of the point.
115 // minDistance2 - squared min distance between points.
116 private void addPoint(int sector, double xiQ, double etQ,
117 double minDistance2) {
118

119 double sin[] = {0, 1, 0, -1};
120 double cos[] = {1, 0, -1, 0};
121

122 double x = xiQ*cos[sector] - etQ*sin[sector];
123 double y = xiQ*sin[sector] + etQ*cos[sector];
124

125 int i;
126 for (i = 0; i < nFacePoints; i++) {
127 double dx = x - xi[i];
128 double dy = y - et[i];
129 if (dx*dx + dy*dy < minDistance2) break;
130 }
131

132 if (i == nFacePoints) {
133 xi[nFacePoints] = x;
134 et[nFacePoints] = y;
135 nFacePoints++;
136 }
137 }

Lines 80–84 of method subdivideFace calculate the squared minimum dis-
tance for adding a new point. A new point is added at its position if its distance
from any existing point is larger than the minimum distance. The minimum distance
between points is of the order of the smallest triangle at the element edge.
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Statement 86 adds a point at the face center. Small shift EPS is used in order
to avoid perfectly regular arrangement of points, which may lead to the creation of
overlapped triangles during the Delaunay triangulation process.

Generation of points inside four triangular sectors is performed in the loop of
lines 89–105. A step d for point generation is estimated in line 91 using the number
of subdivisions for the current edge. The double loop of lines 93–103 fills a trian-
gular quarter of the face with points arranged in rows with shrinking horizontal size
as shown in Figure 30.3. Small irregularities in point locations are introduced with
EPS. Points are added in line 101 using method addPoint.

Method addPoint (lines 116–137) gets the following parameters: sector –
sector number from 0 to 3; xiQ, etQ – local coordinates of a point candidate for
placement; minDistance2 – squared minimum distance between points.

Point coordinates xiQ, etQ are specified in local coordinates of sector 0. State-
ments in lines 122–123 perform coordinate transformation according to the sector
number. Points in sectors 1, 2 and 3 are rotated around the face center by 90, 180
and 270 degrees around the face center.

The loop of lines 125–130 computes distances from this point xiQ, etQ to al-
ready existing points stored in arrays xi and et. If this point is far enough from
any existing point then the point is stored in arrays xi and et and the point counter
nFacePoints is incremented by one. Otherwise, the method returns without
adding the current point.

Method triangulateDelaunay performs face triangulation using a De-
launay approach. Delaunay triangulation is selected because it produces the most
equiangular triangles of all triangulations, i.e., it limits the number of slender tri-
angles. It has the property that a triangle circumcircle does not include any other
vertices. Here, we use an O(n4) algorithm since we have a relatively small number
of points n and the algorithm allows very compact programming. To improve the
performance of the Delaunay triangulation it is possible to employ a more efficient
approach, such as, for example, the incremental algorithm given in [26].

139 // Create triangular mesh using Delaunay approach.
140 // returns number of triangles
141 private int triangulateDelaunay() {
142

143 double EPS = 1.e-6;
144 int n = nFacePoints;
145 int nt = 0;
146

147 for (int i = 0; i < n; i++)
148 ze[i] = xi[i]*xi[i] + et[i]*et[i];
149

150 for (int i = 0; i < n; i++) {
151 double pix = xi[i];
152 double pie = et[i];
153 double piz = ze[i];
154

155 for (int j = i + 1; j < n; j++) {
156 double pjx = xi[j];
157 double pje = et[j];
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158 double pjz = ze[j];
159

160 for (int k = i + 1; k < n; k++) {
161 double pkx = xi[k];
162 double pke = et[k];
163 double pkz = ze[k];
164 double zn = (pjx - pix)*(pke - pie)
165 - (pkx - pix)*(pje - pie);
166

167 if (j == k || zn > 0) continue;
168

169 double xn = (pje - pie)*(pkz - piz)
170 - (pke - pie)*(pjz - piz);
171 double en = (pkx - pix)*(pjz - piz)
172 - (pjx - pix)*(pkz - piz);
173

174 int m;
175 for (m = 0; m < n; m++) {
176 double pmx = xi[m];
177 double pmy = et[m];
178 double pmz = ze[m];
179 if (m != i && m != j && m != k
180 && (pmx-pix)*xn + (pmy-pie)*en
181 + (pmz-piz)*zn > 0)
182 break;
183 }
184

185 if (m == n) {
186 double area = pix*(pke-pje)
187 + pkx*(pje-pie) + pjx*(pie-pke);
188 if (Math.abs(area) > EPS) {
189 // Add triangle polygon
190 // (unticlockwise node order)
191 trigs[nt][0] = i;
192 trigs[nt][1] = k;
193 trigs[nt][2] = j;
194 nt++;
195 }
196 }
197 }
198 }
199 }
200 return nt;
201 }
202

203 }

The method performs Delaunay triangulation in four enclosed loops that start in
lines 150, 155, 160 and 175. Triangles with anticlockwise order of three vertices are
added into array trigs. The method returns the number of generated triangles.

An example of face subdivision for a twenty-node element with one curved edge
is shown in Figure 30.4.
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Fig. 30.4 Example of face subdivision for a twenty-node element with a curved edge

Problems

30.1. The curvature parameter ρ for an edge of the quadratic element is determined
according to Equation 30.3 and Figure 30.1. Propose another way for estimating the
edge curvature parameter.

30.2. Function f is specified at three nodes of the edge of a quadratic element shown
below: f1 = 0, f2 = 1 and f3 = 4. The coordinates of the nodal points are: x1 = 0,
x2 = 0.5, x3 = 1.
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Determine the function gradient d f/dx at node 3 where x = 1.

30.3. Study the algorithm of generating face points for subsequent Delaunay trian-
gulation described in Section 30.3 and its implementation in Java subdivideFace.
Propose another algorithm for generating face points when the numbers of points on
the edges are specified.



Chapter 31
Surface Subdivision

Abstract In order to have good-quality three-dimensional visualization the faces
should be represented with a sufficient number of triangular polygons and edges
with a sufficient number of straight-line segments. This chapter describes algorithms
and program implementation (class SurfaceSubGeometry) for subdividing the
surface of a finite element model into graphical components suitable for rendering
with Java 3DTM.

31.1 Subdivision of the Model Surface

Subdivision of a surface of a finite element model is required for rendering three-
dimensional visual objects with sufficient quality. The surface of a finite element
model is represented as sets of element faces, element edges, and nodes. In the
process of subdivision, element faces are subdivided into triangles, element edges
are separated into line segments, and element nodes are copied without change into
a point array, as shown in Figure 31.1, which shows an example of face subdivision
into a regular mesh of triangles. In the Jvis program, the number of subdivisions
at different edges can be different and the triangular mesh can be irregular.

The most complicated subdivision task is subdivision of element faces into trian-
gular polygons. In addition to the necessity of irregular meshes, the normal at each
triangle vertex must be determined and put into a Java 3D triangle array. In order
to have a smooth image, surface vertex normals should be normals to the model
surface, not to the triangle itself. In the case of drawing results as contours of equal
values, it is also necessary to determine the texture coordinates of a color scale.

Surface subdivision is implemented in class SurfaceSubGeometry pre-
sented in this chapter. For extraction of a surface of the finite element model, the
constructor of class SurfaceGeometry described in Chapter 29 is used. Subdi-
vision of a particular element face or edge is performed by calling methods of class
FaceSubdivision presented in Chapter 30.

The constructor of JavaTM class SurfaceSubGeometry is presented below.

353



354 31 Surface Subdivision

Faces Edges Nodes

Triangles Lines Points

Fig. 31.1 Surface subdivision: element faces are subdivided into triangles, element edges into line
segments. Nodes are copied into a point array

1 package visual;
2

3 import elem.*;
4

5 import javax.media.j3d.*;
6 import java.util.ListIterator;
7

8 // Element subfaces, subedges and nodes.
9 class SurfaceSubGeometry extends SurfaceGeometry {

10

11 int nVertices;
12 private FaceSubdivision fs;
13 // Edge subdivisions for faces
14 private int edgeDiv[][];
15 // Coordinates, normals and texture coords for
16 // triangle array of the whole model surface
17 private float xyzSurface[], norSurface[], texSurface[];
18

19 // Arrays for one element face
20 private double xyzFace[][] = new double[8][3];
21 private double funFace[] = new double[8];
22 private double an[] = new double[8];
23 private double deriv[][] = new double[8][2];
24 // Arrays for subdivided surface
25 private double[] xyzFacePoints;
26 private double[] norFacePoints;
27 private double[] texFacePoints;
28

29 // Constructor for subdivision of faces, edges and nodes.
30 SurfaceSubGeometry() {
31

32 // Call to constructor of SurfaceGeometry
33 super();
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34

35 // Constructor edge/face subdivider
36 fs = new FaceSubdivision();
37

38 edgeDiv = new int[nFaces][4];
39

40 int np = (VisData.nDivMax +1)*(VisData.nDivMax +1);
41 xyzFacePoints = new double[3*np];
42 norFacePoints = new double[3*np];
43 texFacePoints = new double[np];
44

45 // Determine edge subdivisions for element faces
46 int nTrigs = setEdgeDivisions();
47

48 xyzSurface = new float[9*nTrigs];
49 norSurface = new float[9*nTrigs];
50 texSurface = new float[6*nTrigs];
51

52 // Perform subdivision (triangulation) for faces
53 setFaceTriangles();
54 }

Line 33 calls a constructor of superclass SurfaceGeometry that creates a
surface of the finite element model. Then, line 38 creates the FaceSubdivision
object fs used for subdivision of a single element face. Lines 41–43 allocate mem-
ory for arrays of coordinates, normals, and texture coordinates related to an element
face. The maximum allowable number of edge subdivisionsnDivMax is used to de-
termine the upper limit of array length. Line 46 calls methodsetEdgeDivisions
that computes the number of subdivisions for edges of all surface element faces and
estimates the number of triangles nTrigs after face subdivision. The latter is used
for allocating arrays of coordinates, normals, and texture coordinates for the entire
surface of the finite element model.

Method setEdgeDivisions follows.

56 // Determine numbers of edge subdivisions for all
57 // element faces edgeDiv[nFaces][4].
58 // returns upper estimate of number of triangles
59 // for the surface of the finite element model.
60 int setEdgeDivisions() {
61

62 int nTriangles = 0;
63 ListIterator f = listFaces.listIterator(0);
64

65 for (int face=0; face<nFaces; face++) {
66 setFaceCoordFun((int[])f.next());
67 for (int i = 0; i < 4; i++) {
68 int nd = fs.numberOfEdgeDivisions(xyzFace,
69 funFace, deltaf, VisData.drawContours,
70 2*i,2*i+1,(2*i+2)%8);
71 edgeDiv[face][i] = nd;
72 nTriangles += (int) (0.6*nd*nd + 2);
73 }
74 }
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75 return nTriangles;
76 }
77

78 // Set coordinates and function values for face nodes
79 void setFaceCoordFun(int[] faceNodes) {
80

81 for (int i = 0; i < faceNodes.length; i++) {
82 int ind = faceNodes[i] - 1;
83 for (int j = 0; j < 3; j++) {
84 if (fem.nDim ==2 && j==2) xyzFace[i][j] = 0;
85 else xyzFace[i][j] = fem.getNodeCoord(ind,j);
86 }
87 if (VisData.drawContours) funFace[i] = fun[ind];
88 }
89 }

The method populates array edgeDiv with the number of subdivisions for all sur-
face element faces. It is supposed that element faces are quadrilateral; therefore the
second dimension of array edgeDiv is 4. Line 63 initializes list iterator f for linked
list listFaceswhere connectivities of the surface faces are stored. In a loop over
element faces, method setFaceCoordFun sets the nodal coordinates and nodal
values of the result function for an element face from the linked list listFaces.
The statement in lines 68–70 determines the number of subdivisions for a current
face edge based on edge curvature and function range. The number of triangles for
all surface edges is accumulated in variable nTriangles (line 72), which is re-
turned in line 75.

Method setFaceCoordFun (lines 79–89) puts nodal coordinates into array
xyzFace and function values into array funFace, according to the connectivities
faceNodes of the current face.

31.2 Subdivision of Faces into Triangles

Method setModelTriangles generates a triangulation for all element faces
comprising the finite element model surface and populates an array of triangle co-
ordinates, normals, and texture coordinates.

91 // Perform triangulation for all faces.
92 void setModelTriangles() {
93

94 int[] faceNodes;
95 nVertices = 0;
96 ListIterator f = listFaces.listIterator(0);
97

98 for (int face = 0; face < nFaces; face++) {
99

100 faceNodes = (int[])f.next();
101 setFaceCoordFun(faceNodes);
102

103 // Subdivide element face into triangles
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104 // using local coordinates
105 fs.subdivideFace(edgeDiv[face]);
106

107 setFaceVertices(faceNodes);
108

109 // Add triangle coordinates, normals and texture
110 // coordinates to surface arrays
111 for (int t=0; t<fs.nTrigs; t++) {
112 for (int k =0; k <3; k++) {
113 int ind = fs.trigs[t][k];
114 for (int i=0; i<3; i++) {
115 xyzSurface[3*nVertices+i] =
116 (float) xyzFacePoints[3*ind+i];
117 norSurface[3*nVertices+i] =
118 (float) norFacePoints[3*ind+i];
119 }
120 texSurface[2*nVertices] =
121 (float) texFacePoints[ind];
122 nVertices++;
123 }
124 }
125 }
126 }

A loop over surface element faces starts in line 98. The node numbers defining
the current element face are taken from linked list listFaces (line 100). Line
101 sets nodal coordinates and nodal function values for the face. In line 105 the
face is subdivided into triangles with the help of method subdivideFace (class
FaceSubdivision). During this subdivision, the face is considered as a square
with edge length 2 and subdivision is done in the local coordinate system.

Method setFaceVertices transforms local coordinates of triangle vertices
into the global coordinate system and additionally determines normals and func-
tion values for triangle vertices. The loop in lines 111–124 adds face arrays to
global surface arrays of coordinates, normals, and texture coordinates for triangles.
Triangle data is created using triangle indexes fs.trigs, which refers to face
point numbers. Each triangle is placed in these arrays separately because we do not
use indexing. Type float is used to economize on memory. At the end, variable
nVertices contains the number of triangle vertices, which is thrice the number
of triangles used to represent the whole model surface.

The listing of method setFaceVertices is shown below.

128 // Compute global coordinates, normals and texture
129 // coordinates for face triangle vertices.
130 private void setFaceVertices(int[] faceNodes) {
131

132 double e[][] = new double[2][3], en[] = new double[3];
133

134 for (int iv = 0; iv < fs.nFacePoints; iv++) {
135 // Shape functions and their derivatives for
136 // a face of 3D hexahedral quadratic element
137 ShapeQuad3D.shapeDerivFace(fs.xi[iv], fs.et[iv],
138 faceNodes, an, deriv);
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139 for (int j = 0; j < 3; j++) {
140 double s = 0;
141 for (int i = 0; i < 8; i++)
142 s += an[i]*xyzFace[i][j];
143 xyzFacePoints[3*iv + j] = (float) s;
144 }
145 // Tangents e to the local coordinates
146 for (int i = 0; i < 2; i++) {
147 for (int j = 0; j < 3; j++) {
148 double s = 0;
149 for (int k = 0; k < 8; k++)
150 s += deriv[k][i]*xyzFace[k][j];
151 e[i][j] = s;
152 }
153 }
154 // Normal vector en
155 en[0] = (e[0][1]*e[1][2] - e[1][1]*e[0][2]);
156 en[1] = (e[0][2]*e[1][0] - e[1][2]*e[0][0]);
157 en[2] = (e[0][0]*e[1][1] - e[1][0]*e[0][1]);
158 double s = 1.0/Math.sqrt(en[0]*en[0] +
159 en[1]*en[1] + en[2]*en[2]);
160 for (int i = 0; i < 3; i++)
161 norFacePoints[3*iv + i] = (float) (en[i]*s);
162

163 if (VisData.drawContours) {
164 double f = 0;
165 for (int i = 0; i < 8; i++)
166 f += an[i]*funFace[i];
167 double t = (f - fmin)/(fmax - fmin);
168 if (t < 0.003) t = 0.003;
169 if (t > 0.997) t = 0.997;
170 texFacePoints[iv] = (float) t;
171 }
172 }
173 }

The method uses results of face subdivision by method subdivideFace located
in object fs: nFacePoints – the number of points created during face subdivi-
sion, xi, et – the local coordinates of the face points. All computations are per-
formed in a loop over face points. Lines 137–138 determine shape functions an
and their derivatives deriv for a face of the three-dimensional quadratic element.
Global coordinates of the current point are computed in lines 139–144 using shape
functions.

Normals to a finite element face are determined according to the algorithm pre-
sented in Section 12.5. Two vectors tangent to local coordinates ξ and η are cal-
culated in lines 146–153, using derivatives of the shape functions. A normal to the
element face is computed as a vector product of tangent vectors in lines 155–157.
The normal vector after its normalization is added to the array of surface normals in
line 161.

If drawing of contours is requested, a function value at a current point is deter-
mined by interpolation of the nodal values using the shape functions in lines 164–



31.3 Arrays for Java 3D 359

166. Texture coordinatet is estimated as a function value relative to the range of the
function (line 167). Statements 168–169 ensure that the texture coordinate is inside
range 0 . . .1.

31.3 Arrays for Java 3D

Java 3D shape objects require description of the geometry for three-dimensional
visualization. The finite element model is described with three geometry arrays – a
triangle array for the surface, a line array for element edges, and a point array for
nodes.

The Java 3D triangle array is created by the method getModelTriangles
presented below.

175 // Create TriangleArray containing vertex coordinates,
176 // normals and possibly texture coordinates for contours.
177 // returns TriangleArray
178 TriangleArray getModelTriangles() {
179

180 int vFormat = TriangleArray.COORDINATES |
181 TriangleArray.NORMALS |
182 TriangleArray.BY_REFERENCE;
183 if (VisData.drawContours) vFormat = vFormat |
184 TriangleArray.TEXTURE_COORDINATE_2;
185

186 TriangleArray triangleArray =
187 new TriangleArray(nVertices, vFormat);
188

189 triangleArray.setCoordRefFloat(xyzSurface);
190 triangleArray.setNormalRefFloat(norSurface);
191 if (VisData.drawContours)
192 triangleArray.setTexCoordRefFloat(0, texSurface);
193

194 return triangleArray;
195 }

The vertex format of the triangle array is specified as an integer that is a combination
of predefined static integers combined with bitwise ORs. In lines 180–182 the spec-
ified format requires supplying coordinates and normals at triangle vertices. The last
integer parameter in the format specifies that arrays will be used by reference, with-
out copying inside Java 3D. Such a vertex format is suitable for visualization of the
finite element model. When results visualization is required, texture coordinates for
drawing contours are added to the vertex format in lines 183–184.

The constructor of Java 3D class TriangleArray (lines 186–187) obtains
the number of triangle vertices nVertices and the vertex format as parameters.
References to arrays of triangle coordinates, normals, and texture coordinates are
set in lines 189–192. The method returns the created geometry object in line 194.

The method getModelLines prepares a line array for visualization of element
edges.
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197 // Create array of lines for drawing element edges.
198 // returns line array for element edges at the surface
199 LineArray getModelLines() {
200

201 float x[] = new float[3];
202 double xys[][] = new double[3][3];
203 double an[] = new double[3];
204 int[] divs = new int[nEdges];
205 int nDivTotal = 0;
206

207 int ii = 0;
208 ListIterator e = listEdges.listIterator(0);
209

210 for (int edge=0; edge<nEdges; edge++) {
211 int edgeNodes[] = (int[])e.next();
212 for (int k = 0; k < 3; k++) {
213 for (int n = 0; n < fem.nDim; n++)
214 xys[k][n] = fem.getNodeCoord(
215 edgeNodes[k]-1,n);
216 }
217 int n = fs.numberOfEdgeDivisions(xys, null,
218 deltaf, false, 0, 1, 2);
219 divs[edge] = n;
220 nDivTotal += n;
221 }
222 LineArray lineArray =
223 new LineArray(nDivTotal*2, LineArray.COORDINATES);
224

225 e = listEdges.listIterator(0);
226

227 for (int edge=0; edge<nEdges; edge++) {
228 int edgeNodes[] = (int[])e.next();
229 for (int k = 0; k < 3; k++)
230 for (int n = 0; n < fem.nDim; n++) xys[k][n] =
231 fem.getNodeCoord(edgeNodes[k]-1,n);
232

233 int ndiv = divs[edge];
234 double dxi = 2.0/ndiv;
235 for (int i=0; i<3; i++) x[i] = (float) xys[0][i];
236

237 for (int k = 1; k <= ndiv; k++) {
238 lineArray.setCoordinate(ii++, x);
239 double xi = -1 + k*dxi;
240 // Quadratic shape functions
241 an[0] = -0.5*xi*(1 - xi);
242 an[1] = 1 - xi*xi;
243 an[2] = 0.5*xi*(1 + xi);
244

245 for (int i = 0; i < 3; i++) {
246 double s = 0;
247 for (int j = 0; j < 3; j++)
248 s += xys[j][i]*an[j];
249 x[i] = (float) s;
250 }
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251 lineArray.setCoordinate(ii++, x);
252 }
253 }
254 return lineArray;
255 }

Element edges are defined by three nodal points and therefore are generally curved.
For smooth visualization, edges are divided into straight-line segments based on
edge curvature.

Element edges are stored in linked list listEdges. List iterator e is initialized
in line 208. The numbers of subdivisions are estimated in a loop over all element
edges (lines 210–221). Nodes for the current edge are obtained from the linked
list in line 211. The number of edge subdivisions is estimated in lines 217–218
using method numberOfEdgeDivisions. The total number of line segments is
accumulated in variable nDivTotal (line 220).

A Java 3D line array is initialized in lines 222–223. An inner loop over all edges
starts in line 227. Coordinates of three nodes located on the current edge are placed
in array xys (line 230–231). An element edge is subdivided into line segments in
the loop of lines 237–253 using one-dimensional quadratic shape functions. The left
and right ends of a line segment are added to the line array in lines 238 and 251.
The geometry array containing line segments is returned in line 254.

An array of points for visualization of nodes belonging to the surface of the finite
element model is built by method getModelPoints.

257 // Create array of nodal points.
258 // returns point array containing nodes at the surface
259 PointArray getModelPoints() {
260

261 float x[] = new float[3];
262 PointArray pointArray =
263 new PointArray(nsNodes*3, PointArray.COORDINATES);
264 int ii = 0;
265 for (int node = 0; node < sNodes.length; node++) {
266 if (sNodes[node] > 0) {
267 for (int i = 0; i < fem.nDim; i++)
268 x[i] = (float) fem.getNodeCoord(node, i);
269 pointArray.setCoordinate(ii++, x);
270 }
271 }
272 return pointArray;
273 }
274

275 }

Information on surface nodes is contained in arraysNodes. Surface nodes are given
by the positions of nonzero entries in this array. A point array is filled with the
coordinates of surface nodes in a loop for across entries of array sNodes. This
array is returned to the caller in line 272.
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Problems

31.1. In the algorithm for face subdivision presented in this chapter, element faces
sharing an edge have the same number of subdivisions on that edge. Explain why
this consistency is necessary for finite element model visualization.

31.2. Two unit vectors have the following components:

e1 = {1 1 1},
e2 = {1 1 0}.

Determine vector en normal to vectors e1 and e2. You may use the algorithm em-
ployed for normal calculation in method setFaceVertices.

31.3. A Java 3D triangle array TriangleArray is used for rendering element
faces. In this array, each set of three vertices with specified coordinates forms a
triangle. Study Java 3D documentation related to geometry arrays and propose use
of a different geometry array that employs less memory.



Chapter 32
Results Field, Color Scale, Interaction and
Lights

Abstract The visualization technique for results represented as contours is based
upon interpolation of color texture. The results field at nodes is set by methods
of class ResultAtNodes. Physical quantities are converted to color gradation by
computing the texture coordinates. Class ColorScale forms a texture with appro-
priate color gradation. Class MouseInteraction contains methods for simple
mouse behaviors and for setting light in the scene.

32.1 Results Field

For visualization of results fields as contours on the surface of the finite element
model, a requested drawing parameter should be set at nodes. Results of the finite
element analysis consist of displacements and stresses. Displacements are related
to nodes. Stresses are obtained at reduced integration points inside finite elements.
First, they are extrapolated to nodes. Then, the stress contributions from neighboring
elements are averaged at nodes.

Setting the requested results parameter at nodes of the finite element model is
realized in class ResultAtNodes.

1 package visual;
2

3 import elem.*;
4 import model.FeModel;
5

6 // Result values at nodes of the finite element model.
7 public class ResultAtNodes {
8

9 private SurfaceGeometry sg;
10 private FeModel fem;
11 private int[] multNod;
12 private double[][] stressNod;
13

14 private double sm, psi, si, f;

363
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15 final double THIRD = 1.0/3.0, SQ3 = Math.sqrt(3.0);
16

17 // Constructor for results at nodes.
18 // sg - geometry of model surface.
19 ResultAtNodes(SurfaceGeometry sg, FeModel fem) {
20

21 this.sg = sg;
22 this.fem = fem;
23 multNod = new int[fem.nNod];
24 stressNod = new double[fem.nNod][2*fem.nDim];
25

26 feStressAtNodes();
27 }
28

29 // FE stresses at nodes: global array stressNod.
30 private void feStressAtNodes() {
31

32 double[][] elStressInt = new double[8][6];
33 double[][] elStressNod = new double[20][6];
34

35 for (int i = 0; i < fem.nNod; i++) {
36 multNod[i] = 0;
37 for (int j = 0; j < 2*fem.nDim; j++)
38 stressNod[i][j] = 0;
39 }
40

41 for (int iel = 0; iel < fem.nEl; iel++) {
42 Element el = fem.elems[iel];
43 for (int ip = 0; ip < el.str.length; ip++)
44 for (int j = 0; j < 2*fem.nDim; j++)
45 elStressInt[ip][j] = el.str[ip].sStress[j];
46

47 el.extrapolateToNodes(elStressInt, elStressNod);
48

49 // Assemble stresses
50 for (int i=0; i<fem.elems[iel].ind.length; i++) {
51 int jind = fem.elems[iel].ind[i] - 1;
52 if (jind >= 0) {
53 for (int k = 0; k < 2*fem.nDim; k++)
54 stressNod[jind][k] += elStressNod[i][k];
55 multNod[jind] += 1;
56 }
57 }
58 }
59 // Divide by node multiplicity factor
60 for (int i = 0; i < fem.nNod; i++) {
61 for (int j = 0; j < 2*fem.nDim; j++)
62 stressNod[i][j] /= multNod[i];
63 }
64 }

The class constructor obtains the surface geometry object sg and finite element
model object fem as parameters. It calls method feStressAtNodes in line 26.
This method sets stresses at nodes of the finite element model. Stress extrapolation
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to nodes is performed in a loop of lines 41–58 over all finite elements. Stresses at
reduced integration points are assigned to entries of array elStressInt. Element
method extrapolateToNodes extrapolates stresses from integration points to
nodes in line 47. Element stresses at nodes elStressNod are assembled in global
nodal arraystressNod in line 54. When stresses from an element are accumulated
at nodes, multiplicity array entries multNod are incremented. Stress averaging at
nodes is done in lines 60–63 using division by the respective multiplicity factor.

A results parameter requested for visualization is set at all nodes of the finite
element model by method setParmAtNodes. Possible parameters are:

ux, uy, uz – displacements along global coordinates axes x, y, and z;
sx, sy, sz – normal stresses σx, σy, and σz;
sxy, syz, szx – shear stresses τxy, τyz, and τzx;
s1, s2, s3 – principal stresses σ1, σ2, and σ3;
si – equivalent stress σi;
s13 – maximum shear stress τmax.

To get principal stresses we calculate deviatoric stresses sx, sy, and sz –

sx = σx −σm,

sy = σy −σm,

sz = σz −σm,

σm =
1
3
(σx +σy +σz),

(32.1)

and their second J2 and third J3 invariants –

J2 =
1
2
(s2

x + s2
y + s2

z )+ τ2
xy + τ2

yz + τ2
zx,

J3 = sxsysz + 2τxyτyzτzx − sxτ2
yz − syτ2

zx − szτ2
xy.

(32.2)

Equivalent stress is expressed through the second deviatoric invariant,

σi =
√

3J2. (32.3)

Principal stresses are determined by relations [4]

σ1 = σm +
2
3
σi cosψ ,

σ2,3 = σm − 2
3
σi cos

(π
3
±ψ

)
,

cos3ψ =
J3

2

(
3
J2

)3/2

.

(32.4)

The maximum shear stress is calculated using two principal stresses

τmax =
σ1 −σ3

2
. (32.5)
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Implementation of setting a results parameter in methods setParmAtNodes and
setEquivalentStress is presented below.

66 // Set array sg.fun[] containing requested value at nodes.
67 // parm - requested result value.
68 // displ - displacement vector.
69 void setParmAtNodes(VisData.parms parm, double[] displ) {
70

71 sg.fmin = 1.e77;
72 sg.fmax = -1.e77;
73

74 for (int node = 0; node < fem.nNod; node++) {
75 if (sg.sNodes[node] >= 0) {
76 if (parm == VisData.parms.s1 ||
77 parm == VisData.parms.s2 ||
78 parm == VisData.parms.s3 ||
79 parm == VisData.parms.si ||
80 parm == VisData.parms.s13)
81 setEquivalentStress(node);
82 switch (parm) {
83 case ux:
84 f = displ[node*fem.nDim]; break;
85 case uy:
86 f = displ[node*fem.nDim + 1]; break;
87 case uz:
88 if (fem.nDim == 3)
89 f = displ[node*fem.nDim + 2];
90 else f = 0;
91 break;
92 case sx:
93 f = stressNod[node][0]; break;
94 case sy:
95 f = stressNod[node][1]; break;
96 case sz:
97 f = stressNod[node][2]; break;
98 case sxy:
99 f = stressNod[node][3]; break;
100 case syz:
101 f = stressNod[node][4]; break;
102 case szx:
103 f = stressNod[node][5]; break;
104 case s1:
105 f = sm + 2*THIRD*si*Math.cos(psi); break;
106 case s2:
107 f = sm - 2*THIRD*si*
108 Math.cos(THIRD*Math.PI+psi); break;
109 case s3:
110 f = sm - 2*THIRD*si*
111 Math.cos(THIRD*Math.PI-psi); break;
112 case si:
113 f = si; break;
114 case s13:
115 f = THIRD*si*(Math.cos(psi) +
116 Math.cos(THIRD*Math.PI-psi));
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117 }
118 sg.fun[node] = f;
119 sg.fmin = Math.min(sg.fmin, f);
120 sg.fmax = Math.max(sg.fmax, f);
121 }
122 }
123 if (!(VisData.fMin == 0.0 && VisData.fMax == 0.0)) {
124 sg.fmax = VisData.fMax;
125 sg.fmin = VisData.fMin;
126 }
127 if (sg.fmax - sg.fmin < 1.e-6) sg.fmax += 1.e-6;
128 sg.deltaf = sg.fmax - sg.fmin;
129 }
130

131 // Compute stress invariants and equivalent stress.
132 private void setEquivalentStress(int node) {
133 // Stresses
134 double sx = stressNod[node][0];
135 double sy = stressNod[node][1];
136 double sz = stressNod[node][2];
137 double sxy = stressNod[node][3];
138 double syz, szx;
139 if (fem.nDim == 3) {
140 syz = stressNod[node][4];
141 szx = stressNod[node][5];
142 }
143 else { syz = 0; szx = 0; }
144 // Mean stress
145 sm = THIRD*(sx + sy + sz);
146 // Deiatoric stresses
147 double dx = sx - sm;
148 double dy = sy - sm;
149 double dz = sz - sm;
150 // Second and third deviatoric invariants
151 double J2 = 0.5*(dx*dx + dy*dy + dz*dz)
152 + sxy*sxy + syz*syz + szx*szx;
153 double J3 = dx*dy*dz + 2*sxy*syz*szx
154 - dx*syz*syz - dy*szx*szx - dz*sxy*sxy;
155 // Angle
156 psi = THIRD*Math.acos(1.5*SQ3*J3/Math.sqrt(J2*J2*J2));
157 // Equivalent stress
158 si = Math.sqrt(3*J2);
159 }
160

161 }

Method setParmAtNodes obtains the requested results parameter parm and
nodal displacement array displ. The results field at nodes sg.fun contain-
ing values of the requested results parameter is formed in a loop over nodes
of the finite element model that starts in line 74. If the requested parameter is
one of principal stresses, equivalent stress or maximum shear stress, then method
setEquivalentStress is called. This method sets the magnitude of the equiv-
alent stress and other parameters necessary for calculations.
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(a) (b)

Fig. 32.1 Functions for red, green and blue channels used for color-scale creation (a) and resulting
color scales with different number of solid colors (b)

The case statement in lines 82–117 sets the value of parameter f requested for
drawing. This value is assigned to an entry of array sg.fun in line 118. It is also
used for determining the minimum and maximum values of the parameter (lines
119–120). The parameter range is calculated in line 128.

Method setEquivalentStress in lines 132–159 calculates the mean stress,
deviatoric stress invariants, angle for determining principal stresses, and equivalent
stress according to Equations 32.1–32.4.

32.2 Color Scale

Our technique to visualize results as contours is based on interpolation of a one-
dimensional color texture. The physical quantity of stresses or displacements is
converted to color gradation by computing a texture coordinate in the range 0 to 1.

One-dimensional color texture is created in class ColorScale on the basis
of functions for red (R), green (G), and blue (B) channels shown in Figure 32.1a.
We selected six primary colors for the color scale: magenta (RGB = 101), blue
(001), cyan (011), green (010), yellow (110) and red (100). Inside each interval
between these basic colors, two color functions remain constant and one function
varies linearly. The minimum of the results parameter corresponds to magenta. The
maximum value is depicted by red.

The resulting texture depicting the color scale can contain different numbers of
solid colors as shown in Figure 32.1b. Specification of the number of solid colors
equal to the texture size in pixels leads to a color scale with smooth color change.

Class ColorScale producing a one-dimensional texture containing a gradation
strip with a specified number of solid colors is given below.
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1 package visual;
2

3 import javax.media.j3d.*;
4 import java.awt.*;
5 import java.awt.image.MemoryImageSource;
6 import com.sun.j3d.utils.image.TextureLoader;
7

8 // Create 2D texture VisData.textureSize by 1 pixels.
9 // Texture contains VisData.nContours color intervals.

10 class ColorScale extends Component {
11

12 // Returns textture with color gradation
13 Texture2D getTexture() {
14

15 int pix[] = new int[VisData.textureSize];
16 int n2 = 0;
17 double delta =
18 (double) VisData.textureSize/VisData.nContours;
19 for (int i = 0; i < VisData.nContours; i++) {
20 int n1 = n2;
21 n2 = (int) ((i + 1)*delta + 0.5);
22 int color =
23 getScaleColor(1.0/VisData.nContours*(i+0.5));
24 for (int j = n1; j < n2; j++) pix[j] = color;
25 }
26

27 Image img = createImage(
28 new MemoryImageSource(VisData.textureSize, 1,
29 pix, 0, VisData.textureSize));
30 TextureLoader loader = new TextureLoader(img, null);
31 Texture2D texture = new Texture2D(Texture.BASE_LEVEL,
32 Texture.RGBA, VisData.textureSize, 1);
33 texture = (Texture2D) loader.getTexture();
34

35 return texture;
36 }

Method getTexture forms a texture with color gradation. Line 15 allocates
an array of pixels for one-dimensional texture size textureSize specified in data
(class VisData). The loop in lines 19–25 iterates over a number of result contours
nContours, which is equal to the number of solid colors in the color scale. Solid
color is provided by the method getScaleColor in lines 22–23. Line 24 places
solid color in pixel array pix. This array is used for creating image img in lines 27–
29. In turn, image img is used for creating texture in lines 30–33. Line 35 returns
the resulting color scale texture.

The method getScaleColor presented below computes RGBA color accord-
ing to texture coordinate v.

38 // Compute color for color scale texture.
39 // Texture (v=RGB): 0.0=101; 0.2=001; 0.4=011;
40 // 0.6=010; 0.8=110; 1.0=100.
41 // v - texture coordinate (0..1).
42 // returns color in RGBA int format.
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43 private static int getScaleColor(double v) {
44

45 double R, G, B;
46 if (v < 0.2) { // magenta - blue
47 R = 1 - 5*v;
48 G = 0;
49 B = 1;
50 }
51 else if (v < 0.4) { // blue - cyan
52 R = 0;
53 G = 5*(v - 0.2);
54 B = 1;
55 }
56 else if (v < 0.6) { // cyan - green
57 R = 0;
58 G = 1;
59 B = 1 - 5*(v - 0.4);
60 }
61 else if (v < 0.8) { // green - yellow
62 R = 5*(v - 0.6);
63 G = 1;
64 B = 0;
65 }
66 else { // yellow - red
67 R = 1;
68 G = 1 - 5*(v - 0.8);
69 B = 0;
70 }
71 int iR = (int) (R*255 + 0.5);
72 int iG = (int) (G*255 + 0.5);
73 int iB = (int) (B*255 + 0.5);
74 return (255 << 24) | (iR << 16) | (iG << 8) | iB;
75 }
76

77 }

The range 0–1 of texture coordinate v is divided into five intervals. Double val-
ues R, G and B (0..1) for red, green and blue colors are evaluated in lines 46–70.
Statements 71–73 transform double color values into integer values ranged from 0
to 255. Line 74 returns the integer color value composed of R, G, B colors and alpha
transparency channel A (equal to 255 that means opaque).

32.3 Mouse Interaction

Visualization programs are usually characterized by rich interaction possibilities for
the user including menus, toolbars, keyboard and mouse interactions. Programming
such interactions leads to large code, which cannot be published in this book. This
is why we restrict ourselves by a simple mouse interaction allowing to rotate, zoom
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and translate the visual object and requiring very little code for implementation. Our
mouse interaction is realized by JavaTM class MouseInteraction shown below.

1 package visual;
2

3 import javax.media.j3d.*;
4 import javax.vecmath.Point3d;
5 import com.sun.j3d.utils.behaviors.mouse.*;
6

7 public class MouseInteraction {
8

9 // Set mouth behavior (rotate, zoom, translate).
10 // returns transform group.
11 public static TransformGroup setMouseBehavior() {
12

13 BoundingSphere bounds = new BoundingSphere(
14 new Point3d(0.,0.,0.), 16*SurfaceGeometry.sizeMax);
15

16 TransformGroup tg = new TransformGroup();
17 tg.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
18 tg.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
19

20 // Create the rotate behavior node
21 MouseRotate behavior1 = new MouseRotate();
22 behavior1.setSchedulingBounds(bounds);
23 behavior1.setTransformGroup(tg);
24 tg.addChild(behavior1);
25

26 // Create the zoom behavior node
27 MouseZoom behavior2 = new MouseZoom();
28 behavior2.setSchedulingBounds(bounds);
29 behavior2.setTransformGroup(tg);
30 tg.addChild(behavior2);
31

32 // Create the translate behavior node
33 MouseTranslate behavior3 = new MouseTranslate();
34 behavior3.setSchedulingBounds(bounds);
35 behavior3.setTransformGroup(tg);
36 tg.addChild(behavior3);
37

38 return tg;
39 }
40

41 }

The class contains just one static method setMouseBehavior. First, bound-
ing sphere bounds with radius proportional to the maximum model size is defined
in lines 13–14. Transform group tg is constructed in line 16. Statements 17 and 18
allow changing the transform because of user interaction by setting write and read
capabilities. The groups of lines 21–24, 27–30 and 33–36 create mouse behaviors
for rotation, zooming and translation. In all three cases there are predetermined stan-
dard behaviors in Java 3DTM. In each case, the scheduling bounds are set, then the
current transform group is set for the behavior and finally the behavior is added to
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the transform group. Statement 38 returns the transform group with mouse behav-
iors. This transform group will affect all nodes that are located lower in the scene
graph.

32.4 Lights and Background

Class Lights provides background and lights for the scene. The code presented
below sets a simple color background and three lights.

1 package visual;
2

3 import javax.media.j3d.*;
4 import javax.vecmath.*;
5

6 public class Lights {
7

8 // Set lights and background.
9 // root - branch group.

10 public static void setLights(BranchGroup root) {
11

12 BoundingSphere bounds = new BoundingSphere(
13 new Point3d(0.,0.,0.), 16*SurfaceGeometry.sizeMax);
14

15 // Set up the background
16 Background bgNode = new Background(VisData.bgColor);
17 bgNode.setApplicationBounds(bounds);
18 root.addChild(bgNode);
19

20 // Set up the ambient light
21 Color3f ambientColor = new Color3f(1.f, 1.f, 1.f);
22 AmbientLight light0 = new AmbientLight(ambientColor);
23 light0.setInfluencingBounds(bounds);
24 root.addChild(light0);
25

26 // Set up the directional lights
27 Color3f color1 = new Color3f(0.6f, 0.6f, 0.6f);
28 Vector3f direction1 = new Vector3f(4.f, -7.f, -12.f);
29 DirectionalLight light1
30 = new DirectionalLight(color1, direction1);
31 light1.setInfluencingBounds(bounds);
32 root.addChild(light1);
33

34 Color3f color2 = new Color3f(0.4f, 0.4f, 0.4f);
35 Vector3f direction2 = new Vector3f(-5.f, -3.f, -1.f);
36 DirectionalLight light2
37 = new DirectionalLight(color2, direction2);
38 light2.setInfluencingBounds(bounds);
39 root.addChild(light2);
40 }
41

42 }
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Fig. 32.2 Function x2 + y2 + z2 specified at 20 nodal points of hexahedral element

Class Lights contains just one static method setLights, which gets a refer-
ence to root, an instance of class BranchGroup. Lines 12–13 create bounds as
a sphere of radius proportional to the maximum model size centered at the coordi-
nate origin. A scene background is set in lines 16–18. Color bgColor specified in
class VisData is used for the background. The background, as well as all lights, is
attached to root.

An ambient light of white color is added to the scene graph in lines 21–24. The
ambient light is a background light going in all directions. Two directional lights
are created in lines 27–32 and 34–39. The directional lights go from two different
directions in order to have nonflat light effects.

32.5 Visualization Example

Let us demonstrate the developed visualization techniques on a visualization of
function

f = x2 + y2 + z2 (32.6)

specified at nodes of a single quadratic hexahedral element.
First, we prepare a finite element mesh consisting of one element, shown in Fig-

ure 32.2, and place mesh data in file f.mesh. The file contains:

# File f.mesh
nNod = 20 nEl = 1 nDim = 3

nodCoord
-1 -1 1 0 -1 1 1 -1 1 1 -1 0
1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 0
-1 0 1 1 0 1 1 0 -1 -1 0 -1
-1 1 1 0 1 1 1 1 1 1 1 0
1 1 -1 0 1 -1 -1 1 -1 -1 1 0
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elCon
hex20 1 1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20
end

Here, nNod – number of nodes, nEl – number of elements, nDim – number of
dimensions, nodCoord – nodal coordinates, and elCon – element connectivities.
The element is a cube centered at the coordinate origin, and its edges have length 2.
Therefore, the coordinates of its eight vertices are (±1, ±1, ±1).

Results are specified at nodes. Computing function f (32.6) at the nodes it ap-
pears that it has a value 3 at vertex nodes and a value 2 at midside nodes, as shown
in Figure 32.2. We create file f.res that contains displacements and stresses in a
format compatible with a results file of the finite element processor.

# File f.res
Displacements
Node ux uy uz

1 3 0 0 2 2 0 0 3 3 0 0 4 2 0 0
5 3 0 0 6 2 0 0 7 3 0 0 8 2 0 0
9 2 0 0 10 2 0 0 11 2 0 0 12 2 0 0
13 3 0 0 14 2 0 0 15 3 0 0 16 2 0 0
17 3 0 0 18 2 0 0 19 3 0 0 20 2 0 0

Stresses
El 1 sxx syy szz sxy syz szx epi

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Nodal data shown in Figure 32.2 is set as displacements ux. Next, we create file
f.vis with the following content:

# File f.vis
meshFile = f.mesh
resultFile = f.res
parm = ux

showEdges = Y
showNodes = Y
nContours = 8

fmin = 0.85
fmax = 3.0

end

We visualize the parameter ux using mesh and results from files s.mesh and
s.res. The color scale consists of eight colors. The range of results fmin-fmax
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Fig. 32.3 Function x2 + y2 + z2 visualized as eight contours on a single hexahedral quadratic ele-
ment

is specified explicitly in order to have contours located near face centers. Since for
each particular value of f Equation 32.6 describes a sphere, visualization of param-
eter ux as contours should look like concentric circular rings of different width.

The visualizer Jvis is executed by the command

java -cp classes fea.Jvis f.vis

After the program starts, an image of the finite element mesh with eight color con-
tours appears on the screen (see Figure 32.3). The Java 3D triangle array used for vi-
sualization contains 1200 polygons. It can be seen that the generated contour picture
corresponds to the expected result. Some visualized contours are located entirely
inside element faces and do not have intersections with face edges. The developed
visualization algorithm successfully treats such cases, which would be problematic
for algorithms based on fixed face subdivisions or on explicit generation of contour
lines.

Problems

32.1. Determine the principal stresses for the following stress vector

{σ} = {0 0 0 1 0 0},

where only shear stress τxy is nonzero. Use Equations 32.1–32.4.

32.2. Find the value of equivalent stress σi for the case of uniaxial tension along the
x-axis when the stress vector is

{σ} = {10 0 0 0 0 0}.
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32.3. Suppose that for contour drawing we want a gradation strip consisting of just
the hue blue with changing intensity. Modify the method getScaleColor to pro-
duce such a gradation strip.

32.4. Modify the data of the visualization example in Section 32.5 to visualize the
function f = x2 + y2. Use component uy for storing nodal function data.



Appendix A
Data for Finite Element Solver

A.1 Data Statements

A.1.1 Data Statement

<name> = <data>

Item <name> is a data name and <data> is data content. Data names are not
case sensitive. White spaces are a blank and the equals sign. White spaces are not
allowed inside data names. Data on the right of an equals sign can contain one
or more tokens. Tokens can be numbers or text literals. The number of tokens is
predetermined by the data name. Several statements can be placed on one line.

A.1.2 Comment Statement

# comment text

Everything is ignored at the current line after a comment sign # followed by a blank.
If a comment sign plus a blank are at the line beginning then the entire line is a
comment.

A.1.3 Including File

includeFile <fileName>

The statement includes all data contained in the file with name <fileName>. Data
in the file should be terminated with an end statement.

377
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A.1.4 End Statement

end

Used as the last statement in the model data and in the load data.

A.2 Model Data

A.2.1 Parameters

Scalar parameters for the problem are specified by the following statements:

nNod = <number> – number of nodes;

nEl = <number> – number of elements in the finite element model;

stressState = THREED/PLSTRAIN/PLSTRESS/AXISYM– type of prob-
lem: THREED – three-dimensional problem, PLSTRAIN – plane strain two-
dimensional problem,PLSTRESS – plane stress two-dimensional problem,AXISYM
– axisymmetrical problem;

physLaw = ELASTIC/ELPLASTIC – physical law for material behavior:
elastic or elastic–plastic;

solver = LDU/PCG – equation solver: LDU – direct solver based on LDU
decomposition, PCG – preconditioned conjugate gradient iterative solver;

thermalLoading = N/Y – existence of thermal loading: N – no, Y – yes.

Default parameter values are emboldened. If the default parameter value is suitable
for the current problem then it is possible to omit its specification. The order of data
specification is arbitrary unless it follows logical relation of data.

A.2.2 Material Properties

For each elastic material the following data should be specified:

material = matName E nu alpha

Here, matName is any name selected for refering to this material, E is the elasticity
modulus, nu is Poisson’s ratio, and alpha is a thermal-expansion coefficient.

For elastic–plastic material, the data statement contains three additional parame-
ters related to elastic–plastic material behavior:

material = matName E nu alpha sY hardCoef hardPower
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Additional parameters have the following meanings: sY is material yield stress,
hardCoef is a hardening coefficient, and hardPower is a hardening power.

A.2.3 Finite Element Mesh

Two arrays describe the mesh: nodal coordinates and element connectivities (includ-
ing element type and element material).

Nodal coordinates

nodCoord = <array>

For three-dimensional problems nodal coordinates are specified as x1 y1 z1 x2 y2 z2

etc. A two-dimensional coordinate array has the form x1 y1 x2 y2 ... .

Element data

elCon = <array>

For each element the following data should be provided:

ElType = QUAD8/HEX20 – element type (QUAD8 – two-dimensional ele-
ment with eight nodes, HEX20 – twenty-node three-dimensional element),

ElMat – material name corresponding to that in material properties,

ElemNodeNumbers – node numbers belonging to the element.

A.2.4 Displacement Boundary Conditions

Displacement boundary conditions can be specified in two ways: direct specification
of node numbers with constrained displacements, or specification of a box for node
definition.

Direct specification of displacement boundary conditions

constrDispl = Direct Value nNumbers NodNumbers[]

where Direct = x/y/z – direction of displacement constraint, Value – con-
strained displacement value, nNumbers – number of items in the list of node num-
bers, NodNumbers[] – list of nodes where displacement boundary conditions are
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specified. The list can include positive integers as node numbers. If an integer pair
n1 − n2 is present in the list, then it is interpreted as a set of nodes from n1 to n2

(condition n1 < n2 should be fulfilled).

Box for specification of displacement boundary conditions

boxConstrDispl = Direct Value BoxDiadonal[]

where Direct = x/y/z – direction of displacement constraint, Value – con-
strained displacemet value, BoxDiadonal[] – coordinates of two points at ends
of a box diagonal. In the three-dimensional case the diagonal is specified as xmin

ymin zmin xmax ymax zmax. In the two-dimensional case z-coordinates are absent.

A.3 Load Specification

A load can consist of one or several load steps. Load steps are considered as incre-
ments to the previous state.

A.3.1 Load Step Name

loadStep = LoadStepName

This statement should be the first statement of a load step. The specified load step
name is used for identifying this load step. Result files have the load label as their
extensions.

A.3.2 Parameters

scaleLoad = Scale – load scaling parameter. Load vector of the current
load step is obtained by multiplying the load vector from the previous step with
the specified parameter Scale.

residTolerance = Tolerance – tolerance for ratio of a residual norm
to the norm of force load. If the relative residual norm becomes less than the
specified Tolerance then equilibrium iterations are finished. Default value
Tolerance = 0.01.

maxiternumber = Number – maximum allowed number of equilibrium it-
erations (default value is 100).
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Parameters scaleLoad, residTolerance, and maxiternumber are useful
for elastic–plastic problems. They are not used in purely elastic problems. Parame-
ters residTolerance and maxiternumber are valid for the next load step if
they are not changed. All other loading parameters, including scaleLoad, do not
exist at the beginning of each new load step and should be specified if necessary.

A.3.3 Nodal Forces

nodForce = Direct Value nNumbers NodNumbers[]

This statement is used for specification of nodal forces. Here, Direct = x/y/z
– direction of nodal forces, Value – force value, NodNumbers[] – list of nodes
where nodal forces are applied. The list can include positive integers as node num-
bers and pairs n1 −n2 for specifying nodes ranges.

A.3.4 Surface Forces

surForce = Direct ElNumber nFaceNodes
faceNodes[] forceAtFaceNodes[]

Specification of a distributed surface load consists of the following items: Direct
= x/y/z/n – direction of surface load (x, y, z – along coordinate axes x, y or z,
n – loading in the direction of the external normal to the surface), ElNumber – ele-
ment number,nFaceNodes – number of nodes on the element face, faceNodes[]
– node numbers defining the element face, forceAtFaceNodes[] – intensities
of distributed load at nodes.

A.3.5 Surface Forces Inside a Box

boxSurForce = Direct Value BoxDiagonal[]

This statement allows application of a distributed surface load for all element faces
that are inside a box. Data include: Direct = x/y/z/n – direction of surface
load (x, y, z – along coordinate axes x, y or z, n – external normal direction),
Value – intensity of distributed load common to all faces, BoxDiadonal[] –
coordinates of two points at ends of a box diagonal (xmin ymin zmin xmax ymax zmax).
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A.3.6 Nodal Temperatures

nodTemp = NodeTemperatures[]

This statement is used for specifying temperature values at nodes of the finite ele-
ment model.



Appendix B
Data for Mesh Generation

B.1 Mesh-generation Modules

Mesh generation is performed by main class Jmgen. The following modules may
be called:

rectangle – generate rectangular mesh inside rectangular region;

genquad8 – generate topologically regular mesh inside curvilinear quadrilat-
eral region;

sweep – generate three-dimensional mesh by sweeping two-dimensional mesh
in space;

readmesh – read mesh from file;

writemesh – write mesh to file;

copy – copy mesh block;

transform – make transformations (translate, scale, rotate) for the mesh block;

connect – produce new mesh block by connecting two mesh blocks.

The module is identified by its class name in a data file. The module inputs its data
and does operations of mesh generation, transformations, pasting, etc.

The data file for the mesh generation has the following appearance:

Head statement A
data A

Head statement B
data B

Head statement C
data C

...
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B.2 Rectangular Mesh Block

Function: Generation of a mesh of quadrilateral quadratic elements inside a rectan-
gular area (Figure 21.1).
Head statement: rectangle modelName
modelName – name of the model where the generated mesh is placed.
Input data:

nx, ny – number of elements along x and y;

xs[nx+1], ys[ny+1] – locations of element boundaries on x and y;

mat – material name (default mat=1);

end – end of input data.

B.3 Mesh Inside Eight-node Macroelement

Function: Generation of mesh of quadrilateral quadratic elements inside a quadri-
lateral area with curved edges (Figure 21.2).
Head statement: genquad8 modelName
modelName – name of the model where the generated mesh is placed.
Input data:

nh, nv – number of elements along “horizontal” and “vertical” directions. “Hor-
izontal” direction is along macroelement side 1–2–3;

x1,y1,x2,y2 ...x8,y8 – locations of eight nodes for macroelement defi-
nition in anticlockwise order starting from any corner node. If both coordinates
of a midside node are zeros then they are interpolated linearly from neighboring
corner nodes;

res[4] – relative sizes of the smallest elements on macroelement sides. If the
smallest element is located at the side end (anticlockwise order) then it is speci-
fied as one minus size (default res = 0, 0, 0, 0 – equal element sizes);

mat – material name (default mat=1);

end – end of input data.

B.4 Three-dimensional Mesh by Sweeping

Function: Generation of three-dimensional mesh of twenty-node brick-type ele-
ments by sweeping of a two-dimensional mesh along the z-axis or around the y-axis
(Figure 22.1).
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Head statement: sweep modelName2 modelName3
modelName2 – name of two-dimensional finite element model;
modelName3 – name of resulting three-dimensional model.
Input data:

nlayers – number of element layers in the three-dimensional mesh;

zlayers – z-distances or angles (in degrees) for copying the two-dimensional
mesh;

rotate = Y – rotate the two-dimensional mesh around the y-axis, = N - trans-
late the two-dimensional mesh along z (default rotate = N);

end – end of input data.

B.5 Reading Mesh from File

Function: Read mesh from a file with specified name.
Head statement: readmesh modelName filelName
modelName – name of the model where the mesh will be placed;
filelName – file name containing text information about the mesh.

B.6 Writing Mesh to File

Function: Write mesh to a file with specified name.
Head statement: writemesh modelName filelName
modelName – name of the model where the mesh is;
filelName – file name where the mesh will be written.

B.7 Copying Mesh

Function: Copy mesh from model A to model B.
Head statement: copy modelNameA modelNameB
modelNameA – name of the model where the mesh is;
modelNameB – name of the model where the mesh will be copied.

B.8 Mesh Transformations

Function: Perform translation, scaling, rotation and mirroring of a finite element
mesh (Figure 24.1).
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Head statement: transform modelName
modelName – name of the model with the mesh to be transformed.
Input data consists of any number of the following statements in any order:

translate axis value

scale axis value

rotate axis value

mirror axis plane

Here, translate, scale, rotate and mirror are operations of translation,
scaling, rotation and mirroring; axis is an axis name, which can have values x, y,
z; value is the translation value, scaling coefficient or rotation angle in degrees.
For two-dimensional meshes, axis can be x or y for translation and scaling op-
eration and only z for rotation operation. Operation mirror reflects a mesh with
respect to a plane normal to axis. The plane is located at coordinate plane. End
of data for the transform module is marked by the statement end.

B.9 Connecting Two Mesh Blocks

Function: Connect mesh blocks A and B and place resulting mesh in model C.
Head statement: connect modelNameA modelNameB modelNameC
modelNameA, modelNameB – names of models that will be connected;
modelNameB – name of the model where the resulting mesh after connection will
be placed.
Input data:

eps – coordinate tolerance for joining nodes belonging to different mesh blocks
(default value eps = 0.0001);
end – end of input data.



Appendix C
Data for Visualizer

C.1 Visualization Data

The input data for the visualization consists of a finite element mesh, a set of finite
element results and a set of visualization parameters. When the finite element results
are absent just visualization of a finite element mesh is performed.

C.2 Input Data

The input data for visualization includes:

meshFile = <text> – name of the file containing a finite element mesh
(required);

resultFile = <text> – name of the results file (if not specified then re-
sults visualization is not done);

parm = <text> – results parameter that should be visualized;

showEdges = Y/N – draw element edges: Y – yes, N – no;

showNodes = N/Y – draw nodes: N – no, Y – yes;

nDivMin = <number> – minimum number of element edge subdivisions
(default value is 1);

nDivMax = <number> – maximum number of element edge subdivisions
(default value is 16);

fMin = <number> – minimum value of results parameter (if not specified
then computed);

fMax = <number> – maximum value of results parameter (if not specified
then computed);
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nContours = <number> – number of contours used for results visualization
(2..256, default value is 256);

deformScale = <number> – if not zero, show deformed shape of the finite
element model. Nodal displacements are scaled such that the ratio of a maximum
scaled displacement to the largest model size is equal to deformScale (default
value is 0);

end – signal of end of data.

The following results parameters can be visualized:

Ux, Uy, Uz – one of the components of a displacement vector along coordi-
nate axes x, y or z;

Sx, Sy, Sz – normal stresses;

Sxy, Syz, Szx – shear stresses;

S1, S2, S3 – principal stresses;

Si – equivalent stress;

S13 – difference between first and third principal stresses;

none – do not visualize results as contours (default value).

Minimum information in the data input file for visualizer is the name of the file with
a finite element mesh.



Appendix D
Example of Problem Solution

D.1 Problem Statement

A rectangular plate with a central circular hole is subjected to tensile loading as
shown in Figure D.1a. The plate has the following dimensions: width W = 4, height
H = 8, thickness t = 2. The central hole has the radius R = 1. The plate is loaded by
distributed surface forces p = 1 applied at the upper and lower plate edges.

It is necessary to determine the elastic stress state of the plate with a hole by the
JavaTM finite element system Jfea.

p=1

H=8

W=4

t=2 b1

b2

b3
sweep

x

y

z

R=1

(b)(a)

Fig. D.1 Example problem: tensile plate with a hole (a), mesh generation using block decomposi-
tion and sweeping (b)
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D.2 Mesh Generation

The mesh is generated for one eighth of the specimen (see Figure D.1a). A schematic
of the mesh generation is depicted in Figure D.1b. A two-dimensional area is de-
composed into blocks b1, b2 and b3 of simple shapes. Two-dimensional meshes
inside blocks are created by local mesh generators. Blocks are pasted together in one
mesh. Subsequent sweeping produces a three-dimensional mesh. Two-dimensional
meshes are composed of eight-node quadrilateral elements. The twenty-node hex-
ahedral element is used in the three-dimensional mesh. Input data for preprocessor
Jmgen is created with any text editor and placed in file hole3d.gen.

# 3D rectangular plate with a central hole
# Mesh generation

GenQuad8 b1
nh = 4 nv = 4
xyp = 1 0 0 0 2 0 0 0

2 2 0 0 0.7071 0.7071 0.9239 0.3827
res = 0.15 0.15 0.85 0

end

GenQuad8 b2
nh = 4 nv = 3
xyp = 0.7071 0.7071 0 0 2 2 0 0

0 2 0 0 0 1 0.3827 0.9239
res = 0.15 0 0.85 0

end

Connect b1 b2 b12
eps = 0.01

end

Rectangle b3
nx = 3 ny = 3
xs = 0 0.6667 1.3333 2
ys = 2 2.6667 3.3333 4

end

Connect b12 b3 b123
eps = 0.1

end

Sweep b123 b3
nlayers = 4
zlayers = 0 0.25 0.5 0.75 1

end

WriteMesh b3 hole3d.mesh

Mesh blocks b1 and b2 are produced by GenQuad8 generator. The key points
shown in Figure D.1b by circles are specified in array xyp to define curved quadri-
laterals. The relative sizes of the smallest elements on edges are determined by val-
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ues in array res. A zero value in array res means that equal-size elements will
be generated along that edge. In the absence of array res default zero values are
adopted.

Mesh blocks b1 and b2 are connected together by the Connect module. The
resulting mesh is stored under the name b12. Parameter eps determines the coor-
dinate tolerance for joining nodes from two mesh blocks.

Upper block b3 is meshed by module Rectangle, which creates a mesh inside
a rectangular block using specified locations of corner nodes at block edges. Another
pasting of mesh blocks b12 and b3 produces a final two-dimensional mesh b123.

A three-dimensional mesh b3 is created by sweeping the two-dimensional mesh
b123 along the z-axis. Module WriteMeshwrites the resulting three-dimensional
mesh to file hole3d.mesh.

To create a mesh, program Jmgen is executed with the following command:

java -cp classes fea.Jmgen hole3d.gen

Here, classes is a path to a directory where Java classes of the finite element
system Jfea are. After program execution, listing of mesh generation is in file
hole3d.gen.lst. The created mesh (file hole3d.mesh) consists of 148 hex-
ahedral twenty-node elements and 908 nodes. It is used by the finite element proces-
sor Jfem during problem solution. The mesh can be visualized by the visualization
program Jvis.

D.3 Problem Solution

Input data for the finite element processor Jfem is prepared in file hole3d.fem.

# 3D rectangular plate with a central hole
# Finite element analysis

StressState = threeD

IncludeFile hole3d.mesh

Solver = LDU

Material = 1 1000 0.3 1.0

BoxConstrDispl = x 0.0 -0.01 0.99 -0.01 0.01 4.01 1.01
BoxConstrDispl = y 0.0 0.99 -0.01 -0.01 2.01 0.01 1.01
BoxConstrDispl = z 0.0 -0.01 -0.01 -0.01 2.01 4.01 0.01

end

LoadStep = 1
BoxSurForce = n 1.0 -0.01 3.99 -0.01 2.01 4.01 2.01

end
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A small amount of data is sufficient since the mesh prepared by the preprocessor
is included using instruction includeFile. The principle of adopting default val-
ues for many parameters also contributes to the reduction of input data. For example,
the instruction

solver = LDU
specifies that the LDU method is employed for the solution of the finite element
equation system. This instruction can be omitted since the LDU solver is the default
one.

Next, the material properties are specified. For a material with name 1 we deter-
mine just the mechanical constants – elasticity modulus, Poisson’s ratio and thermal-
expansion coefficient that are necessary for the selected type of analysis.

Different options exist for the specification of boundary conditions. In the ex-
ample, both displacement boundary conditions and force boundary conditions are
generated on surfaces, which are identified by a bounding box with given diagonal
ends. Instruction BoxConstrDispl implies that the following data is given: con-
straint direction, constraint value, three coordinates of the first diagonal end, and
three coordinates of the second diagonal end. First, BoxConstrDispl statement
constrains displacement ux at plane x = 0, second – uy at plane y = 0, and third – uz

at plane z = 0. Specification of a normal distributed force on a surface is performed
in an analogous way.

Program Jfem is executed with the following command:

java -Xmx1000m -cp classes fea.Jfem hole3d.fem hole3d.lst

Here, option -Xmx sets the maximum heap size that can be allocated by a Java
virtual machine. By default, the JVM uses up to 16 MB of RAM. Specification
1000m requests 1000 MB of the memory. While the current problem requires a
small memory amount, our larger problems will not be able to run with the default
memory size. Parameter hole3d.fem specifies the input data file and parameter
hole3d.lst a listing file where brief information about the solution is presented.
Results consisting of nodal displacements and stresses at reduced integration points
are placed in file hole3d.lst.1 (listing file plus a load step name). The mesh
and results files are used for visualization.

To check the accuracy of the finite element model, the same three-dimensional
problem under plane strain conditions (additional displacement constraint uz = 0 at
plane z = 1) has been solved. The stress concentration factor Ktn is determined as
the maximum σy stress at line x = 0, y = 0 divided by average net stress at cross-
section y = 0. Our result KFEM

tn = 2.187 differs by just 1.25% from the reference
value Ktn = 2.16 [25].

In order to demonstrate the amount of computing time required for finite element
analysis let us solve the same problem for a tensile plate with a central circular hole
using larger finite element meshes. When creating a finite element mesh for the sec-
ond problem let us double the number of elements in each direction of the coordinate
system. To do this it is possible to double the number of subdivisions nx and ny, as
well as the number of layers nlayers during sweeping in file hole3d.gen. A
mesh generated by the program Jmgen contains 1184 elements and 5925 nodes.
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A mesh for the third problem is created by doubling the number of subdivi-
sions nx and ny in the second mesh while maintaining the same number of layers
nlayers. The resulting mesh contains 4736 elements and 22193 nodes.

Problem solution (program Jfem) was performed on a desktop computer with
Intel R© Quad-Core Xeon R© 3.0 GHz processor using Sun JavaTM virtual machine
JVM 1.6. The computing time and memory consumption for the three problems are
presented in Table D.1.

Table D.1 Solution time and memory for problems of different sizes

LDU solver PCG solver

Problem Elems Nodes DOFs Mem, MB Time, s Mem, MB Time, s Iters

1 148 908 2724 6.1 0.4 4.2 0.7 346
2 (client) 1184 5925 17755 130.4 12.2 31.8 8.7 690
2 (server) 15.9 7.2
3 (client) 4736 22193 66579 912.0 153.0 125.0 52.1 1152
3 (server) 205.5 42.3

The table shows the number of elements, number of nodes, number of degrees
of freedom, memory for storing the global stiffness matrix, computing time and
number of iterations (for PCG solver). For the smaller problem 1, the direct LDU
solver is faster than the iterative PCG solver. However, for the larger problems, the
PCG solver takes less time than the LDU solver.

The juxtaposition compares the efficiency of using client and server variants of
the JVM in the larger problems. The server JVM is activated with option -server.
It appears that the direct LDU solver is faster with the client JVM. The iterative PCG
solver shows better speed when the server JVM is used. Such differences in client
and server JVM efficiency are related to the fact that direct and iterative solvers have
quite different computation characteristics in their critical program sections.

D.4 Visualization

The created finite element model and the results of the problem solution are visual-
ized using postprocessor Jvis. Program Jvis is executed with the command:

java -cp classes fea.Jvis hole3d.vis

Here, hole3d.vis is a text file with data describing the visualization task. For
mesh viewing it is necessary to specify just the mesh file name:

# Mesh visualization
meshFile = hole3d.mesh

end
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An image on the computer screen is shown in Figure D.2a. Using the mouse the
user can rotate, zoom and pan the finite element model.

Visualization of a deformed shape of the finite element model presented in Fig-
ure D.2b is done with the following data:

# Deformed shape without element edges
meshFile = hole3d.mesh
resultFile = hole3d.lst.1
deformScale = 0.2
showedges = N

end

The results file name hole3d.lst.1 contains nodal displacements and stresses
at reduced integration points for load step 1. The value 0.2 of the deformScale
parameter leads to drawing the deformed shape of the finite element model. Dis-
placements are scaled to have the maximum displacement equal to 20% of the model
maximum size.

The Jvis data file demonstrated below creates an image of the deformed finite
element model with ten contours of stress σy.

# Contours of stress Sy
meshFile = hole3d.mesh
resultFile = hole3d.lst.1

deformScale = 0.2
parm = Sy
nContours = 10
fmin = 0
fmax = 3.0

end

Statement parm = Sy requests visualization of stress σy using ten color con-
tours (nContours). The parameters fmin and fmax define the range of the result
parameter that corresponds to the entire color gradation strip. Values of σy below 0
are depicted by magenta and values above 3.0 by red. If we omit explicit specifi-
cation of the parameter range then it will be determined automatically. An image
with ten contours of σy shown in Figure D.3a required 2750 triangular polygons for
rendering by the Java 3DTM.

In order to smooth the color picture for σy it is necessary to set the number
of contours to the size of the one-dimensional texture used as a gradation strip.
Changing the statement defining the number of contours to nContours = 256
produces the image in Figure D.3b.

Visualization of stress field σy for the refined finite element model with 1184
hexahedral twenty-node elements using 10 and 256 contours is shown in Figure D.4.
Comparing contours of σy in Figs D.3 and D.4 it is possible to conclude that finite
element models consisting of 148 elements and 1184 elements provide practically
identical stress fields.
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(a) (b)

Fig. D.2 (a) Finite element mesh; (b) Deformed finite element model

(a) (b)

Fig. D.3 Contours of stress σy: (a) 10 colors; (b) 256 colors

(a) (b)

Fig. D.4 Contours of stress σy for the refined finite element model: (a) 10 colors; (b) 256 colors
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vector, 163

block decomposition method, 249
body force, 22
boundary conditions, 7

displacement, 52, 70, 71, 166
explicit method, 166
method of large number, 167
thermal, 14

class
ColorScale, 368
connect, 284
copy, 297
Dof, 60
ElasticMaterial, 79
ElasticPlasticMaterial, 228
Element, 84
ElementQuad2D, 118
ElementQuad3D, 149
ElemFaceLoad, 209
FaceSubdivision, 343
FE, 47
FeLoad, 201
FeLoadData, 199
FeModel, 66
FeModelData, 63

FePrintWriter, 47
FeScanner, 57
FeStress, 213
GaussRule, 96
genquad8, 264
J3dScene, 326
Jfem, 44
Jmgen, 250
Jvis, 316
Lights, 372
Material, 77
MouseInteraction, 371
readmesh, 300
rectangle, 257
ResultAtNodes, 363
ShapeQuad2D, 114
ShapeQuad3D, 141
Solver, 168
SolverLDU, 176
SolverPCG, 190
StressContainer, 90
SurfaceGeometry, 333
SurfaceSubGeometry, 353
sweep, 273
transform, 291
UTIL, 48
VisData, 319
writemesh, 299

color texture, 368
conductivity matrix, 18
contours, 314
convection coefficient, 14
convergence criterion, 242
copy mesh, 297

data item, 49
adding, 72
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data scanner, 57
data statement, 50
Delaunay triangulation, 350
disassembly, 90, 161

vector, 162
displacement differentiation matrix, 24, 104,

131, 215
axisymmetric, 106
two-dimensional element, 121

displacement vector, 22, 23
double-quadratic transformation, 263

elastic material, 75
elasticity matrix, 22, 76, 81, 223

plane strain, 27
plane stress, 27

elasticity modulus, 27, 51, 70, 75, 78
elasticity problem, 21
element, 71

connectivities, 4, 51, 70, 71, 162, 276
degeneration, 104, 114, 131, 141
equivalent stress vector, 107, 133
force vector, 107, 133
hexahedral quadratic, 86
methods, 87
one-dimensional quadratic, 9
quadrilateral quadratic, 86
stiffness matrix, 107, 133

elastic–plastic, 239
thermal vector, 107, 133
three-dimensional, 23
three-dimensional isoparametric, 129, 141
triangular, 17, 26
two-dimensional, 113
two-dimensional isoparametric, 101

element equations, 83
element type

adding, 91
equation solver

adding, 170
equation system

finite element, 167
global, 4, 6, 47

equilibrium equation, 25, 215
element, 25
stress, 239

equivalent stress vector, 84, 125, 154
error tolerance, 242
extrapolation

stress, 110, 126, 138, 155

finite element, 3, 23, 83
finite element equations, 14, 23

heat transfer, 15

finite element mesh, 51
finite element method, 3
finite element model, 49, 63

edges, 338
faces, 335
surface, 315, 333

finite element processor, 43
finite element solution, 35
Fourier’s law, 13

Galerkin method, 5, 6, 15
Gauss integration, 93

14-point, 95
abscissas and weights, 94
three-dimensional, 94
two-dimensional, 94

global stiffness matrix, 174, 188

hardening coefficient, 51, 70, 78, 227
hardening power, 51, 70, 78, 227
hash table, 65
heat capacity, 13
heat flow, 13
heat transfer, 13
heat transfer equation, 13
heat-flow vector, 18
Hooke’s law, 22, 75, 223

including file, 50
initial stress method, 241
interpolation

coordinates, 101
displacements, 101

interpolation function, 4

Jacobian matrix, 106, 117, 132
determinant, 106, 132

Java 3DTM, 305
appearance, 311
geometry, 309
material, 330
object, 305
scene graph, 306, 325, 326

background, 308
behavior, 309
branch group, 306
light, 308
shape object, 333
transform group, 306

shape object, 328, 359
JavaTM virtual machine, 34

Lame constants, 75
LDU, 173
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back-substitution, 181
factorization, 179

tuning, 182
forward reduction, 181

linked list, 65, 72, 201, 206, 208, 335, 357, 361
load

element face, 209
scale, 201
step, 200

load step, 52
load vector, 25
loading

concentrated forces, 199
distributed forces, 199
thermal, 199

material, 77
elastic, 51, 75
elastic–plastic, 51, 223, 227

material deformation curve, 227
material properties, 51, 65
matrix

positive-definite, 174
sparse, 174
symmetric, 174

matrix differentiation operator, 22
matrix profile, 176
matrix storage format, 167

sparse-row, 188
symmetric profile, 174

matrix-vector product
sparse, 196

mesh generation, 35, 249
adding module, 253
module, 249, 252

mesh refinement, 262
mesh transformation, 289

mirror, 290
rotation, 290
scaling, 290
translation, 289

midpoint integration, 234
model data, 51
mouse interaction, 370

Newton–Raphson method, 240
nodal coordinates, 51, 65
nodal forces, 53

object-oriented approach, 33

package, 34
elem, 37
fea, 37

gener, 38
material, 37
model, 37
solver, 37
util, 37
visual, 38

pasting mesh blocks, 283
PCG, 187

algorithm, 187
plastic strain

equivalent, 224, 227
Poisson’s ratio, 27, 51, 70, 75, 78
postprocessor, 35
preconditioning, 187
preprocessor, 250
prescribed displacements, 22

quadrilateral block, 262

reading mesh, 300
rectangular mesh, 257
reduced integration points, 110, 225
requirements, 34
residual

norm, 215
vector, 215, 239

residual vector, 215
right-hand side, 216

shape function derivative
three-dimensional, 132, 144
two-dimensional, 116

shape functions, 4, 9, 14, 17, 23, 26
one-dimensional, 118
three-dimensional, 143
three-dimensional linear, 130
three-dimensional quadratic, 130
two-dimensional, 115, 148
two-dimensional linear, 102
two-dimensional quadratic, 102, 262

solid mechanics problem, 21
solution method

direct, 167
iterative, 167

solver, 46
direct, 173
iterative, 187
LDU, 176
PCG, 190

Stefan–Boltzmann constant, 14
stiffness matrix

element, 25, 83, 134
three-dimensional element, 150
triangular element, 27
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two-dimensional element, 119
strain, 22

plastic, 223, 227
stress, 22

deviatoric, 224, 365
equivalent, 224, 227, 365
principal, 365

stress increment, 47, 213
subdivision

edge, 343
element edge, 315
element face, 315
face, 343, 347

subincrementation, 226
algorithm, 227

surface forces, 22, 53
surface load, 83

nodal equivalent, 108, 123, 134, 136, 153
sweeping method, 271

temperature differentiation matrix, 18
thermal expansion coefficient, 22, 70, 75, 78

thermal vector, 25, 84
element, 134
three-dimensional element, 152
two-dimensional element, 122

thermal-conductivity coefficient, 13
total potential energy, 22, 24, 27

variational formulation, 8
vector

strain, 22, 76
stress, 22, 76

visualization, 35, 313
results, 363

writing mesh, 299

yield function, 227, 231
derivatives, 224
von Mises, 224

yield stress, 51, 70, 78, 227
yield surface, 224




