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Preface

Heat transfer is a required course for mechanical, aerospace,
nuclear, and chemical engineering undergraduates. Advanced courses in
heat transfer are also required for most graduate students in the same four
fields. Generally, these advanced courses are named “Conduction,”
“Convection,” or “Radiation”. In many universities, however, there is an
Intermediate Heat Transfer course for seniors and first year graduate
engineering students. This is their textbook. For this second course in
heat transfer; this volume evolved from a series of lecture notes
developed by the author in almost twenty-five years of teaching a
graduate-level course of this type at the Mechanical Engineering
Department, University of Miami, Coral Gables, Florida, U.S.A.

There are several distinguishing features that set Intermediate
Heat Transfer apart from existing texts on the subject. A discussion of
these features follows.

A major difficulty of engineering graduates in studying heat
transfer at the advanced level is the big jump of knowledge required. It
is difficult for them to comprehend the advanced material because the
introductory course did not adequately prepare them. This book bridges
this gap in knowledge about heat transfer.

Intermediate Heat Transfer provides the necessary background
for seniors and first-year graduate students so that they can
independently read and understand research papers in heat transfer. The
one standard course in heat transfer, usually at the junior undergraduate
level, does not cover enough material for the student to be cognizant of
most of the archival material on heat transfer. This book fills the
knowledge gap of heat transfer for most of our engineering graduates
who have taken only one course in heat transfer.

The special features of the book are as follows:

. Confusing and unnecessary details have been eliminated.

Only essential facts and methods have been provided to
make the work of the student easier.

. Wherever a two-dimensional treatment is effective in
imparting the knowledge, it is used instead of a three-
dimensional treatment, to ensure that the material is more
understandable.
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o Examples and problems are used to drive the concepts
home. Many advanced books on heat transfer are devoid
of examples and problems. Many introductory books on
heat transfer have too many problems that are not
classified or grouped together, so such books do not build
on the information embodied in each of their problems.
Students see such problems as many dissociated
problems; even though they illustrate certain points, they
do not systematically increase the students’ own bodies of
knowledge.

. A chapter on numerical analysis in conduction and one on
numerical analysis in convection are considered important
features of the book. In this modern age of computers,
the typical student uses software to help in solving heat
transfer problems. For many, the software is a “black
box”, a clever one, but nonetheless a black box. These
chapters are written to enlighten the students about the
methods and techniques used and programmed into the
black boxes.

These special features of the book are geared towards making
heat transfer a less difficult field for graduate engineers who are
returning to undertake graduate studies, when their own undergraduate

experience only included one course in heat transfer.

Kau-Fui Vincent Wong
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1

Fundamentals of Heat Transfer

Heat transfer takes place only when there is a temperature
difference. Heat energy moves from a higher potential (measured by
temperature) to a lower potential.

Usually experimental methods are used to measure heat transfer.
Basic transfer mechanisms commonly recognized are conduction and
radiation. Convection is often used as a third classification. The
convection classification is also used in the current work.

1.1 Conduction

Conduction is the heat transfer mechanism that takes place when
the media is stationary. It can take place in solids, gases and liquids. It
may be thought of as the transfer of energy from the more energetic
particles of a medium to nearby particles that are less energetic owing to
particle interactions. Conduction heat transfer is described
macroscopically by Fourier’s law, which is

Q = -kAVT (1.1)

where k is a property of the medium (substance) called the thermal
conductivity, and A is the area through which the heat is flowing. In
conduction, Fourier’s law states that the driving potential is the
temperature gradient. The energy flows in the direction of decreasing
temperature; hence, the negative sign. Gold and iron are two substances
with large values of thermal conductivity, and they are called good
thermal conductors. Others with small conductivities like air and wood
are good thermal insulators.
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Boundary of the
Control Volume

Section of a
Plane Wall

R L I E E )

Figure 1.1 Conduction in a plane wall.

In one dimension, Fourier’s law becomes
le = -kA— . (1.2)

Fourier’s law is applied to conduction in a plane wall, as shown in Fig.
1.1.  The heat flow Q|x is the heat energy transfer in the x direction.

The area is the cross-area of the control volume normal to the heat flow,
i.e. the x direction. In this case where the temperature gradient is
constant, the equation becomes

- xall (1.3)

< AX|,
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Boundary of the
Control Volume

Figure 1.2 Application of Fourier’s law to a plane wall with three layers.

A control volume drawn around a plane wall with three layers is
shown in Fig. 1.2. Three different materials, M, N and P, of different
thicknesses, Axy, Axy and Axp, make up the three layers. The thermal
conductivities of the three substances are ky;, ky and kp respectively. By
the conservation of energy, the heat conducted through each of the three
layers have to be equal. Fourier’s law for this control volume gives

ATy _ 4 44T _ o 48T

Ax,, Ax Ax,

0 =k, A (1.4)

In Fig. 1.2, for the particular illustration shown, the temperature gradient
in N is observed to be larger than that in M, which is in turn larger than
that in P. It can be deduced from Eq. (1.4) that ky < km < kp. In other
words, material P is the best conductor and material N is the worst
conductor of the three.
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Example 1.1

Problem: The thickness of a silver plate is 6 cm. One face is at 300°C
and the other is at 0°C. The thermal conductivity for silver is 369
W/(m.°C) at 150°C. Find the heat conducted through the plate.

Solution
From Fourier’s law,
T
g =% AT
x A Ax

_ -(369)(0-300) W "c—l-
6x1072 m’C  m

= 1.845 MW/m>.

1.2 Convection

When heat transfer occurs in a moving medium, it is usually
called convection. As an example, heat energy can be transferred from a
solid plane surface at one temperature to an adjacent moving fluid at
another temperature. Consider the case shown in_Fié. 1.3.| Heat energy
is conducted from the solid to the moving fluid, where energy is carried
away by the combined effects of conduction within the fluid and the bulk
motion of the fluid. The heat transfer from the solid system to the fluid
can be expressed by the empirical equation

Q = hconle*( Ts - Tf) (15)

known as Newton’s law of cooling. In this equation, A is the surface
area, Ty is the fluid temperature away from the surface (bulk or mean
temperature of the fluid), and T; is the temperature of the surface. For T
< T,, heat energy flows from the solid to the fluid. The proportionality
factor h,, is referred to as the heat transfer coefficient. This coefficient
is not a thermodynamic property. It is an empirical parameter that may
be found experimentally. This coefficient incorporates into the heat
transfer relationship the geometry of the system, the fluid flow pattern
near the surface and the fluid properties. If fans, pumps or turbines make
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the fluid flow, the value of the heat transfer coefficient is normally
greater than when relatively slow bouyancy-driven motion takes place.
These two classifications are called forced and free (or natural)
convection, respectively. In Fig. 1.3, it is observed that the heat transfer
between the solid plane and the fluid may be described by Fourier’s
conduction law according to

k

a7 =~CAT,-T)). (1.6)

Q|y ='kaE}‘]'

E—ka—A—T—
Ay

wall wall

Flowing liquid or gas at Ty < Tj

T¢
Velocity
profile
dT
Surface area A dy
wall
Q
A
\ 4 = . -
! T,
System
boundary -
Solid Plane

Figure 1.3 Relationship between Fourier’s law and Newton’s law of
cooling.

Examining Egs. (1.5) and (1.6), it can be deduced that the heat transfer
coefficient heony is an approximation of the quantity kf/Ay. The thermal
conductivity of the fluid k; is a thermodynamic property, however Ay is a
function of the fluid flow pattern near the surface, the geometry of the
system and the fluid properties. As stated previously, the heat transfer
coefficient is not a thermodynamic property, but an empirical parameter.
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1t is also clear that Newton’s law of cooling is a special case of Fourier’s
law.  The foregoing provides the reason for only two commonly
recognized basic heat transfer mechanisms. But owing to the complexity
of fluid motion, convection is often treated as a separate heat transfer
mode.

Example 1.2

Problem: Air at 18°C blows over a hot plate at 210°C. The convection
heat transfer coefficient is 32 W/(m>.°C). The dimensions of the plate
are 10 by 40 cm. Determine the heat transfer.

Solution
From Newton’s law of cooling,
Q = hconvA(Ts'Tf)

Q=32(0.04)(210-18)
1.3 Radiation

w

20
m-"

.m:C=246W.
C

Thermal radiation can take place without a medium. Thermal
radiation may be understood as being emitted by matter that is a
consequence of the changes in the electronic configurations of its atoms
or molecules. Solid surfaces, gases, and liquids all emit, absorb, and
transmit thermal radiation to different extents. The radiation heat
transfer phenomenon is described macroscopically by a modified form of
the Stefan-Boltzmann law, which is

Q=¢cAT/ (1.7)

where o is the Stefan-Boltzmann constant and € is a property of the
surface that characterizes how effectively the surface radiates (0 <g < 1).
This property is called the emissivity of the surface. The Stefan-
Boltzmann constant & is 5.669 x 10® W/(m>K" or 0.1714 x 10®
Btu/(f*.°R*.h). Thermal radiation takes place according to the fourth
power of the absolute temperature of the surface, T;. The net thermal
radiation heat transfer between two surfaces, in general, involves
complex relationships among the properties of the surfaces, their
orientations with respect to each other, and the extent to which the
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medium in between scatters, emits, and absorbs thermal radiation, and
other factors.

Consider a simple two-body radiation problem with a non-
participating intervening medium. The radiation equation is

Q=¢,0A (T -T;) (1.8)

where Q is the net radiation heat transfer from body 1 with the higher
temperature T; to body 2 of the lower temperature T,. The parameters g,
and A, are the emissivity of body | and the effective area of radiation for
body 1, respectively. Likewise, the net radiation can be expressed as

Q=¢,0A,(T, -T). (1.9)

In this equation, €; and A, are the emissivity of body 2 and the effective
area of radiation for body 2, respectively. Since radiation heat transfer
has to obey the principle of the conservation of energy, the magnitude of
the net heat radiated in Eq. (1.8) has to equal the magnitude of the heat
radiated in Eq. (1.9).

Consider the situation where there are more than two bodies. The
radiation equation may be modified further as

Q2= &,6F LA (T} -T;) (1.10)

where F.; is the view factor of body 2 from body 1. This view factor
F,., is the percentage of the thermal radiation from body 1 that arrives at
body 2. In addition, if body 1 also sees body 3, then F;; is the
percentage of the thermal radiation from body 1 that arrives at body 3.
Consequently the net radiation from body 1 to body 3 is given by

Qis=g,06F A (T} - Ty). (1.11)

1t follows that the sum of the view factors from body 1 is equal to unity,
i.c., F]-z + F|.3 =1.

Describing the net radiation from body 2 to the other bodies, the
following equations apply:



Q.= &,0F,_A,(T) - T) (1.12)

and Q3= ¢,0F A (T, -T;) (1.13)
For body 3,

Qs = €,0F_A,(Tf - T)) (1.14)
and  Qiy=g,0F ,A(T) -T}). (1.15)

From the definition of view factors, it is clear that the sum of the view
factors from body 2 is equal to unity, i.e., Fy,; + F,,3 =1, and also that the
sum of the view factors from body 3 is equal to unity, i.e., F3; + F3, = 1.
In the three-body radiation problem discussed, it has been assumed that
none of the bodies can radiate to itself. Expressed technically, the view
factor of body 1 to itself is zero, and this is the case for bodies 2 and 3
also, that iS, F1_| = F2_2 = F3_3 = 0.

Example 1.3

Problem: Two extremely large parallel plates at 800°C and 500°C
exchange heat via radiation. Determine the heat transfer per unit area.
Assume that € = 1 for the plates.

Solution

Assumptions:
(1) The medium in between does not participate in the heat transfer.

Analysis:
From the Stefan-Boltzmann law,

= 0'5(7',4 - T;‘)

N o e

= (5.669x10—3)(1073.154 -773.154)——2W -k
m°K
9/A =54.93 kW/m®,

Example 1.4

Problem: The view factor of body 1 to 2 is 0.5 and that from body 1 to
itself is 0.1. If the temperatures of bodies 1,2 and 3 are 450, 325 and
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225°C respectively, calculate the heat radiated from body 1 to body 3. It
is known that all the emissivities are 0.75. The surface area of body 1 is
1.5m?

Solution

Assumptions:
(1) The medium in between does not participate in the heat transfer.

Analysis:
From the Stefan-Boltzmann’s law,
Q3= S10-F1-3A1(T14 - T34)
FutFa+Fs=1

Thus, Fi3=1-0.1-0.5=0.4

—2W—4-.m2.1<4 =5405W.

Qii= 0.75(5.669>< 108 )(0.4)(1.5)(723.15“ —498.154) -
m

1.4 Combined Convection and Radiation

Heat transfer by convection may be added to the heat transfer by
radiation. So the total heat transfer from a body 1 to the surrounding
fluid f is the sum of the convective heat transfer and the radiative heat

transfer between body 1 and body 2, say. The convective heat transfer
from body 1 to the fluid f is

Qcanv = hconvAconv (711 - Tf ) . (1 1 6)

Similarly, the radiative heat transfer from body 1 to body 2 is
Oraa = €0F, 4,y (T = T3). (1.17)
The total heat transfer from body 1 by convection and radiation is thus

leal = hcnnvA (Tl - T,/ ) + 80_171—2 Arad (]]4 - 7’24 ) . (1 18)

cony

Please observe that the area available for convective heat transfer is not
necessarily the same as that available for radiative heat transfer between
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bodies 1 and 2. Additionally, the temperature of the surrounding fluid Ty
is in general not the same as the fluid of the body 2, T,.

Consider the situation where T is near T,, Eq. (1.16) may be
simplified according to

Qras = E0F1 3 g (T + T )T ~T3)
= £0F 3 Ay (T + T3 YT —To Ty +Ty)
~ 60F| 5 Ay 4T (1) = T)
=h Ay (T, = Ty)

(1.19)

The radiative heat transfer has been approximated and expressed to be
similar to Newton’s law of cooling, with a heat transfer coefficient due to
radiation. The radiative heat transfer coefficient, like the convective heat
transfer coefficient, is not a property of either bodies. The total heat
transfer from body 1 is then expressed as

Ql()lal = hcrmv Acunv (T'l - T[ ) + hrutlA (T'l - T2 ) . (1 20)

rad
Example 1.5

Problem: For a body that is being considered, the convection heat
transfer coefficient to the adjacent air is 33 W/(m>.°C), and the radiative
heat transfer coefficient from this body to another body is approximately
36 W/Am>.°C). If the temperature of the first body is 188° C , that of the
adjacent air is 22°C, determine the temperature of the second body so
that the heat transferred by convection is equal in magnitude to the heat
transferred by radiation. The area ratio AggnyiApg is 1:1.2.

Solution
Assume T is the temperature of the second body. It is given that
Qconv = Qra(l

h, A, (T, -T)=h

conv conv

(Tl"Tz)_h A

conv conv

(Tl - Tf) - hradArad

Arad (Tl - Tz )

rad

h Ao
T2 - T] _ (T] _ Tf) conv® *co
hradAmd
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33(1)

36(1.2)
The temperature of the second body is 61.2°C.

T, = 188°C - 166°C =61.2°C.

PROBLEMS

Conduction

1.1. The thickness of a copper plate is 8 cm. One surface is at 450°C
and the other is at 150°C. The thermal conductivity for copper is
369 W/(m.°C) at 300°C. Find the heat conducted through the
plate in MW/m®.

1.2.  The thickness of a silver plate is 7 cm. The higher temperature
surface is at 440°C. The thermal conductivity for silver can be
taken to be 362 W/(m.°C). The heat conducted through the plate
is 2 MW/m’, determine the temperature of the other surface.

1.3.  The wall is a third as thick as the building insulation. The
thermal conductivities of the wall and the building insulation are
in the ratio 3:1. If the temperature drop across the wall is 3°C,
find the temperature drop across the insulation.

Convection

1.4.  Air at 25°C flows over a plate at 350°C. The convection heat
transfer coefficient is 30 W/(m>.°C). The plate is 50 by 90 cm.
Determine the heat transfer in kW.

1.5.  Air at 24°C moves over a plate at 100°C. The dimensions of the
plate are 25 cm by 50 ecm. If the heat transfer is 300 W, compute
the convection heat transfer coefficient between the air and the
plate.

1.6.  Carbon dioxide at 15°C moves over a hot plate at 250°C, such
that the convection heat transfer coefficient is 30 W/(m>.°C). If
the heat transfer is 3 kW, calculate the area of the plate.

Radiation

1.7.  Two extremely big parallel plates at 900°C and 300°C exchange
heat by radiation. Calculate the heat transfer per unit area.
Assume that € = 1 for the plates.

1.8. Two extremely big parallel plates exchange heat via radiation at
the rate of 148 kW/m”. The hotter plate is at 1000°C. Determine
the temperature of the cooler plate. Assume that € = 1 for the
plates.
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1.9. Body 1 sees bodies 2 and 3, besides itself. The view factor of
body 1 to 2 is 0.2, and that to itself is 0.45. The temperature of
body 1 is 550°C, and the heat radiated from body 1 to body 3 is
1000 W. Compute the temperature of body 3. All the
emissivities are 0.6. The surface area of body 1 is 0.5 m?,

1.10.  The view factor of body | to 2 is 0.4. When the temperatures of
bodies I, 2 and 3 are 700, 400 and 250°C respectively, the heat
radiated from body | to body 3 is 5000 W. All the emissivities
are 0.5. Body 1 has a surface area of 0.6 m”. Calculate the view
factor of body 1 to itself.

Combined Convection and Radiation

1.11. Consider an oven in which the convection heat transfer
coefficient to the adjacent air is 32 W/(m>.°C), and the radiative
heat transfer coefficient from this oven to another oven is 40
W/(m>.°C). If the temperature of the oven under discussion is
220°C, and that of the second oven is 80°C, find the adjacent air
temperature when the heat transfer by convection is equal in
magnitude to the heat transfer by radiation. Assume that the area
ratio Agopy:Angis 1:1.1.

1.12.  In this chapter, only heat radiation with a nonparticipating
medium has been discussed. Write an essay or have a discussion
session regarding the phenomena when the medium in between
participates in the heat transfer.

Heat Transfer Fundamentals

It is energy transfer by conduction
It is energy transfer by convection
It is energy transfer by radiation
It includes conduction, convection with radiation.

Conduction heat transfer follows Fourier’s law
Convection heat transfer follows Newton’s law
Radiation follows Stefan-Boltzmann’s law
[t is a fact that heat transfer follows laws.

K.V. Wong
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The General Heat Conduction Equation

2.1 Introduction

For isotropic and homogeneous media, the conductive heat flux
is given by Fourier’s heat conduction law as

g=—kVT 2.1)

where k is the thermal conductivity of the medium and T is the
temperature.

2.2 Governing Differential Equation of Heat Conduction

y Qy(y+Ay)
A ’ Q2)

Qu(x) ' P Quxt+Ax)

/
’
/!

/
/
s
/
£
/s
/
/

o

QAz+Az) Q)

Figure 2.1 Conduction through an elemental volume.
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The conservation of energy for conduction through an elemental
volume is (I) Net rate of heat entering by conduction + (II) Rate of
energy generated internally = (III) Rate of increase of internal energy.

Consider conduction in the x direction:
Qu(x) = gxAyAz

and Q.(x +Ax) = (q,+ ﬂ;: Ax+...)AyAz.

Hence, net rate of heat entering in the x direction is — i}q: AxAyAz.
» | &,
Similarly, the net rate of heat entering the y direction is -EAxAyAz ,

and that entering the z direction is —%Z—AxAyAz. The net rate of heat

entering by conduction is thus

@ = ~[§q" +&“ +an ]AxAyAz.

& & &

If g(x,y,zt) is the rate of energy generation (within the elemental
volume) per unit time and volume, then

(IT) = g(x,y,2,) AxAyAz is the rate of energy generation.
Assuming a constant specific heat, the rate of increase of internal energy
is given by

am = pcpg AXAyAZ.

- > or
Therefore, -V.qg+g=pCp—. 2.2)

a

In three-dimensional Cartesian coordinates,

o(,ar\ o, or) o(,ary . or
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The full conduction equation is Eq. (2.2), that is, conduction with
heat generation. The general heat conduction equations with variable
thermal conductivity, in the three principal coordinate systems are listed
in When the thermal conductivity is constant, the first term of
Eq. (2.3) becomes the Laplacian of the temperature, T. The Laplacians

of the temperature in the three principal coordinate systems are listed in
Table 2.2.| There are three other special forms of the conduction
equation with constant thermal conductivity, as listed below.

2.3 Laplace Equation

This is for constant k, steady state heat transfer so that the term

in Y is zero, and no heat generation or g= 0.

VT =0 (2.4)
where V2T is the Laplacian of the temperature.

2.4 Poisson’s Equation

This is for constant k and steady state heat transfer so that the

term in — is zero.
a

V2T+%= 0. (2.5)

2.5 Fourier’s Equation

This is for constant k and no heat generation or g is zero.

14

ViT=—"2 2.6
o (2.6)

The parameter o is the thermal diffusivity, o =k/pC,.
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Table 2.1 Heat conduction equation with variable thermal conductivity

in the three principal coordinate systems.

Coordinate ar
system V(VT)+g=pC >y
Rectangular ﬁ[k g) 0,, kﬁ i(kﬂ pc
ax) s 2l &)t
Cylin-drical
L2 ) L2 )2 T, T
ra\ o) 2o @) al a a
Spherical ]

1

a

174 . or
r2sing 50 29 ) r*sin‘ @ I

(k%}rg

Table 2.2 The Laplacian of temperature in the three principal coordinate

systems.

Coordinate V1T
System

Rectangular | 52 T AT P°T
&2 @}2 + &2

Cylindrical 0’)2T 16T 1 0"; T é’ZT
+——+— +
at ra rrapt &

V7.4 r?sind 69

Spherical 1 &8 ﬂ 1 o 95]’1
—2—;:; rP— |+ sin +

1
r’sin’ @ g’

o’T

2.6 Initial and Boundary Conditions

To find the solutions to various conduction problems, we need
boundary conditions in space and time since both the temperature T and
the heat generation term g are functions of x, y, z and time t. In general,
there are seven constants of integration. There is the first-order
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derivative with respect to the time variable and second-order derivatives
with respect to each space variable. The number of conditions for each
independent variable is equal to the order of the highest derivative of that
variable in the equation. Hence, one initial condition is required for all
time dependent problems; two boundary conditions are needed for each
coordinate.

The spatial boundary conditions may be classified into three
principal classes: the first kind or Dirichlet boundary conditions, the
second kind or Neumann boundary conditions, and the third kind or
Robin boundary conditions.

2.7 First Kind (Dirichlet) Boundary Conditions

Here, the temperatures are known at the boundaries.

T[;’,t)

An example of the first kind of boundary conditions for one-dimensional
heat conduction is

=T, @.7)

surface

T(x,t)x=0 =T, and T(x,t)x=L =T;.

An example of the first kind of boundary conditions for two-dimensional
heat conduction is

T(x,y,t]x=o=To(y) and T(x,y,t)x=L=TL(y) where T, and T, are

prescribed functions of y. If these functions are zero, these boundary
conditions are called first kind homogeneous boundary conditions.

2.8 Second Kind (Neumann) Boundary Conditions

Here, the heat fluxes are known at the boundaries.

g, = —kzli is known. (2.8)
x surface

An example of the second kind of boundary conditions for one-
dimensional heat conduction is
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al _zaW)
Hlo K
If this function is zero, the boundary condition is called the second kind
homogeneous boundary condition.

= f,(y) where f; is a prescribed function of y.

2.9 Third Kind (Robin or Mixed) Boundary Conditions

Here, the convection heat transfer coefficients are known at the
boundaries.

q=hAT = —k% is known. (2.9)

An example of the third kind of boundary conditions for one-dimensional
heat conduction is

or
h] (Too - TX=0)= ‘kg

+thx=0}=thoo =f]

or {— kﬂ
x=0 2 x=0

where f; is a prescribed function of y.
Other boundary conditions include nonlinear type boundary

conditions. When there is radiation, phase change or a transient heat
transfer at the boundary, the boundary conditions are nonlinear in nature.

y
A

convection

convection insulated

O constant q a

Figure 2.2 Sketch for Example 2.1.
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Example 2.1

Problem: For a steady-state heat conduction problem with heat
generation in a rectangular medium, write the governing equation and
the mathematical representation of the boundary conditions. For x =0,
there is convection with heat transfer coefficient h;. For x = a, the
boundary is insulated. For y =0, there is constant heat flux q. Fory=b,
there is convection with heat transfer coefficient h,.

Solution
The governing energy conservation equation is

2 2
OT 0T,8_ 0 for 0<x<a,0<y<h.
ox® oyt ok

The boundary conditions are

—k—‘a—z+h1T=h1Tw atx=0 )
Ox

Q=O at x=a (i1)

Ox

—ka—T=q aty=0 (iii)

_k_a_zl.;.hﬂ‘:hz'fw aty=b. (iv)
Ox

2.10 Temperature-Dependent Thermal Conductivity

When the thermal conductivity is dependent on temperature, the
general heat conduction equation is

V.{k(T)VT} +g(x.t) = pC, ‘Z—f. 2.10)
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Equation (2.10) is a nonlinear equation and difficult to solve. Equation
(2.10) may be reduced to a linear differential equation by introducing a
new temperature function 6 by means of the Kirchhoff transformation as

L e
9=;r—£k(T)dT @.11)

where T, is a convenient reference temperature and k, = k(T,). It follows
from Eq. (2.11) that

V6’=?VT (2.12)
and ﬁz—k@g (2.13)
a k, a

Thus, Eq. (2.10) can be written as

g(;’t) 160
VO+ ——2L=—", (2.14)
k a d

r

If the thermal diffusivity is constant, Eq. (2.14) is linear. If the thermal
diffusivity is not constant, then Eq. (2.14) is not nonlinear. The
dependence of the thermal diffusivity on temperature can generally be
neglected compared to that of the thermal conductivity, for many solids.
If the thermal diffusivity is assumed to be independent of temperature,
and thus a constant, Eq. (2.14) is not dissimilar to the heat conduction
equation with constant k. The transformed equation may be solved with
the usual techniques, as long as the boundary conditions can also be
transformed. Boundary conditions of the first and second kind can be
transformed; boundary conditions of the third kind usually cannot be
transformed. Equations with boundary conditions of the third kind are
generally solved using numerical methods.
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For steady-state problems, Eq. (2.14) is a linear differential
equation regardless of the behavior of the thermal diffusivity. Hence, the
equation may be solved with the methods for linear equations.

2.11 Dimensionless Heat Conduction Numbers

By transforming the heat conduction equations to nondimensional
form, the number of variables may be reduced. Consider a slab in the
region 0 < x <L with constant thermal properties, which is initially at a
uniform temperature T;. For times t greater than zero, the boundary at x
= () is kept at a uniform temperature T; and the boundary at x = L loses
heat by convection to a fluid at temperature T, with a heat transfer
coefficient h. Heat is generated within the slab at a rate of g W/m®. The
governing equation of this problem is

1 or
+2-22 fort>o, in region 0 <x <L. (2.15)
k ad

8T
@CZ

The initial condition is
Txt=0)=T; in region 0 <x <L. (2.16)
The boundary conditions are

Tx=0,t)=T, fort>0 2.17)
ar —
k- +hT =T, atx =L, fort>0. (2.18)

The following dimensionless variables are defined, using given
quantities as reference values:

X = x/L = dimensionless space coordinate (2.19)
T - T2 —_ . -
0= T dimensionless temperature (2.20)
i — 12

These dimensionless variables are introduced into Eqgs. (2.15)-(2.18).
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%0 gl? 6 . .
+ = fort>0, inregion0 <X <1 2.21
ax? (-1 o) 8 (2.21)

(X, t=0)=1 inregion0<X <1 (2.22)
(X =0,1)=6, fort>0 (2.23)
P g0 atX=1,fort>0 (2.24)
ax k

Introducing dimensionless parameters,

hL
Bi= 7 = Biot number (2.25)
at .
T= 7T = Fourier number = Fo (2.26)
gl’?
G= —="—— =dimensionless heat generation 2.27
kKT, -T3)

Egs. (2.21)-(2.24) become more compact, and are written as

o%0 0

—+G=— fort>0, inregion0 <X =<1 (2.28)
ax’ or

(X, t=0)=1 inregion 0 <X <1 (2.29)
(X =0,7)=6, fort>0 (2.30)
2 . Bio=0 at X =1, fort>0 231)
17,4

The Fourier number and the Biot number are commonly used heat
transfer numbers. The Biot number is the ratio of the heat transfer
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coefficient to the unit conductance of a solid over the characteristic

length.

Bi=

hL

"k k/L internal conductance of solid across lengthL ~

A heat transfer coefficient at the surface of solid

(2.32)

The Fourier number is the ratio of heat conduction across a distance in a
given volume to the rate of heat storage in that volume. It can be written

as

e o k(l/L)L2 _ rate of heat conduction across L in volume L’
2 pC » Lt rate of heat storage in volume L

(2.33)

PROBLEMS

2.1.

2.2.

2.3.

" Copyright n 2003 by Marcel.Dekker, Inc. AU Rights Reserved. .

Consider the one-dimensional, steady-state heat conduction in a
hollow cylinder with constant thermal conductivity in the region
¢ <r <d. Heat generation is a rate of g W/m’. Heat is
convected away by fluids flowing on the inside and the outside
of the hollow cylinder. Assume that the heat transfer
coefficients are h, and hy on the inside and outside, and the fluid
temperatures on the inside and the outside are T, and Tg,
respectively. Formulate the mathematical expression of this
problem.

Consider the one-dimensional, steady-state heat conduction in a
hollow sphere with constant thermal conductivity in the region ¢
<r <d. Heat generation is a rate of g, W/m®. Heat is supplied to
the inside of the hollow sphere at a rate of q; W/m?. Heat is
convected at the surface at r = d into a medium at temperature T,
with a heat transfer coefficient of h,,. Formulate the
mathematical expression of this problem.

In the absence of internal heat sources or sinks, under steady-
state conditions, the two surfaces of a slab are kept at constant
uniform temperatures T, and Ty, respectively. Show that the rate
of heat conduction through the slab is constant.




2.4.

2.5.

2.6.

2.17.

2.8.

29.

If the thickness of the slab is t and its thermal conductivity is k,
derive an expression for the temperature distribution in the slab
in Prob. 2.3.

In rectangular coordinates, the heat conduction equation with
constant thermal conductivity is
o'rT 0T J°T g 1dr
T e
178 A 124 k ad
Derive the corresponding heat conduction equation in (i)

cylindrical coordinates and (ii) spherical coordinates, using
coordinate transformations.

The steady-state temperature distribution (in °C) in a slab at
steady-state is provided by T = 222 —250 x?, where x is the
distance in meters along the width of the slab and measured from
the surface maintained at 222°C. The thermal conductivity of
the slab is 35 W/(m.K), and the thickness of the slab is 0.18 m.
Calculate the heat fluxes at the two surfaces of the plate.

If T, and T, are constants, show that the one-dimensional Fourier
conduction equation with the following initial and boundary
conditions has a unique solution:

T(x,0)=Ti(x) TO,)=T, T(L,t) =Ty.

Transform the one-dimensional, nonlinear Poisson’s equation ,
with the boundary conditions given, into a linear problem in
terms of a new temperature function defined as

1 x
0(x)=— J:( ()T where k,=k(T)).
Given boundary conditions are
TO)=T, and TE .,
dx

Consider a slab of thickness L with uniform thermal conductivity
and a uniform heat generation of g W/m’. The boundary atx =0
is kept at a constant temperature T, and the boundary at x = L
loses heat by convection to a fluid at a constant temperature T,
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with a heat transfer coefficient h. Find the expression for the
steady-state temperature distribution in the slab and the heat flux.

Dimensionless Conduction Numbers

Dimensionless numbers help in conduction heat transfer engineering
Used to compare relative values in the practice of engineering
In conduction, there are the Biot number and the Fourier number,
There is also the dimensionless heat generation number.

The Biot number compares the heat transfer coefficient
To unit conductance of a solid with a characteristic length
Fourier compares heat conduction across a distance in given volume
To the rate of heat being stored in that given volume.

K.V. Wong
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3

One-Dimensional Steady-State Heat
Conduction

This chapter discusses one-dimensional steady-state heat
conduction in three different coordinate systems. There is a discussion
on temperature-dependent thermal conductivity. Extended surfaces or
fins are treated exhaustively.

3.1 The Slab (One-Dimensional Cartesian Coordinates)

—~_1 .

T(x)
S N

Figure 3.1 The slab.

Consider a slab, infinite in the direction of the y-coordinate, with
L the thickness in direction of the x-coordinate. For the steady-state
situation, the governing energy equation is '

T , g
dx* k

=0 in0<x<L 3.1)

If g(x) is defined and boundary conditions are defined as first, second or
third kind at x = 0, x = L, the equation can be integrated to solve for T(x).
Note that the assumption of steady-state temperatures with Eq.(1), are
not consistent for homogenous second kind boundary conditions at both
x = 0 and x = L. Once T(x) is known, then the heat flux can be
calculated by
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dT (x)
dx

q(x) =—k (3.2)

3.2 The Cylinder (One-Dimensional Cylindrical Coordinates)

(a) Solid Cylinder

o WZ”

Figure 3.2 Solid cylinder.

Consider a solid cylinder, infinite in the direction of the z-
coordinate, with radius b in the direction of the r-coordinate. For the
steady-state situation, the governing energy equation is

14 ,d_T)+g_(”l:o in 0<r<b (33)
rdr\ dar k

In r = 0 is the line of symmetry. It follows that one boundary
condition is

9,—7: =0 or T‘ is finite. 34
dr o r=0

If g(x) is defined and the boundary condition is defined as first, second or
third kind at r = b, the equation can be integrated to solve for T(r). The

dTr
heat flux can be calculated as q(r)=-k:1——. When g(r)>0, the heat is
r

moving in the positive r-direction. As before, note that the assumption of
steady-state temperatures with Eq. (3.3), are not consistent for a
homogenous second kind boundary condition atr = b.
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(b) Hollow Cylinder

\\\v‘i\‘n

Figure 3.3 Hollow cylinder.

The governing equation is Eq. (3.3), and it is valid fora <r <b.
Boundary conditions are required at r = a and r =b. As previously
noted, the assumption of steady-state temperatures with Eq. (3.3), are not
consistent for homogenous second kind boundary conditions at r = a and
r=b.

3.3 The Sphere (One-Dimensional Spherical Coordinates)
Consider one-dimensional steady-state heat conduction in

sphere; that is, there is the temperature has only r dependence. The
governing energy equation for a sphere with radius b, is

%i{ﬁﬂ}@:o in 0<r<b. (3.5)
re dr dr k
(a) Solid Sphere
L _o or 7| isfinite (36)
dr|,., =

A first, second or third kind boundary condition has to be
specified at r = b. The assumption of steady state temperatures with Eq.
(3.5), are not consistent for a homogenous second kind boundary
condition atr =b.
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L)) Hollow Sphere

The governing equation is Eq. (3.5), and it is valid fora r b.
Boundary conditions are required at r = a and r =b. As previously
noted, the assumption of steady-state temperatures with Eq. (3.5) is not

consistent for homogenous second kind boundary conditions at r = a and
r=b.

3.4 Thermal Resistance
For a solid, the thermal resistance is defined as

RoAT _AT 37
Q T gd

(a) Slab

For one-dimensional steady-state heat conduction with no heat
generation, if the first kind boundary conditions are T -0 =T, and

T =1,,then g = &‘%—]—1‘) The thermal resistance R is thus

(3.8)

(b) Hollow Cylinder
For one-dimensional steady-state heat conduction with no heat

generation, in a cylinder of length H, if the first kind boundary conditions
are T|r=a =T, and T}r=b =T,, then

(Z,-T,)
ln(gj

The thermal resistance R is thus

Q= (2rnH)(k)—"—=* (3.9)
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. 3.10
2mkH G.10)

The thermal resistance may be arranged to be in a form similar to
that for the slab.

oy -5

9 O mkH (b —a)27kH

(3.11)

Note that L, = (b-a) = thickness of the cylinder, A (r)=2arH, so

ol

T -AN
L, - A4 -4
Hence, R, = ' where A, = —+—=2_ s the log mean area.
Y|
Acyl k In| 4 )

(3.12)

(¢) Hollow Sphere

For one-dimensional steady-state heat conduction with no heat
generation, in a hollow sphere of inner and outer radii a and b

respectively, if the first kind boundary conditions are T|r=a =T, and
T|,_, =T, then

Q=47zk(bab )(To -T). (3.13)

The thermal resistance R is thus

_bma 1
P ab Ank

(3.14)

Trren Copyright n 2003 by Marcel Dekker, Inc. Al Rights Reserved.




This can be rearranged in a similar form to the resistance of the one-
dimensional slab.

R _ b—a _ Lsph
" k\/ (47[512 X47rb 2 ) k \/ A, 4,
R, = 27"' (3.15)

where A,, A, are the inner and outer sphere areas respectively
Lsph = (b'a)
A, = geometric mean area.

3.5 Conduction Through a Slab from One Fluid to Another Fluid
Tﬂ———\W
\ Fluid 2
Fudl Q —» Q—p —» Q
<« L —>\» T,
h, \A———} X

S

Figure 3.4 Heat transfer through a slab from one fluid to another fluid.

¢— h,

A slab separates two fluids of different temperatures as shown in
Fig. 4. There are no heat sources or sinks in the slab. Heat will be
transferred from the fluid of higher temperature to the slab, then
conducted through the slab, and then transferred from the wall to the
fluid of lower temperature. Under steady state conditions, the heat
transfer will be the same on both surfaces and through the slab. If the
heat transfer coefficients h, and h, at each side of the slab are constant,
the following equations apply:
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Q=4nT,-T)) for convection at surfacex =0 (3.16)
k .
Q=4 1 T -1,) for conduction through the wall (3.17)

Q=4h,(T, -T,) for convection at surface x =L (3.18)

From the above equations, any unknowns may be found by calculation.
The heat flux Q through the slab may be written as

(Ta - Th)

Q= A+ LikA+1/hA

(3.19)

It may be recognized that the thermal resistances for fluid 1, the slab and
fluid 2 are, respectively,
Rp = 1/hA, R=L/KA, and Rp=t/hA (3.20)
3.6 Composite Medium

Consider the one-dimensional, steady-state heat transfer for
composite structure consisting of parallel plates, coaxial cylinders, etc.,

in perfect thermal contact with each other.

(a) Parallel Slabs

Rq
R, | R, | Ry ]
4VaVaY

To ASN—ANNANANY T

T T T T T

1 2 3 4

7\

Ly | Lo [ Ly | Ly

Figure 3.5 Parallel slabs.
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Consider a four layer slab. The heat flux through the slab Q may
be written as

Q= 4h(T,-T,) for convection heat transfer at
the leftmost surface

Ak
= —L——I—(TO - T1) for conduction through the first
1
layer
Ak
= 7 2 (TI -7, ) for conduction through the

2
second layer

Ak,

= 3 : (T = ﬂ) for conduction through the third
3
layer
Ak, .
= i T, -1,) for conduction through the
4

fourth layer

I

Ah (T, —T,) for convection at the rightmost surface.
(3.21)

The thermal resistances may be written as follows:

L

R, = 1 R, =2
Ah, Ak,

R =L P
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1
R R, = - 6®

The heat flux Q through the slab is then

— Ta _Th

R TOTAL

o (3.23)

where Rrotar, = Ry + Ri+ Ry+ R; + Ry + Ry, The units for the thermal
resistances are either (hr.°F)/Btu or °C/Watt.

The overall heat transfer coefficient or conductance, U, may be
defined as

1
or U= —

UA= & (3.24)
R AR

The total heat transfer rate through an area A of a composite structure, Q,
may be defined as

Q=UAT,-T,) (3.25)

where U, the conductance, is in Btu/(hr.ft’°F) or W/(m>°C). The
associated area need not be defined.

3.7 Thermal Contact Resistance

Gap filled with fluid

Figure 3.6 Thermal contact resistance between two solid surfaces,
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In real contacts between two solid surfaces, direct contact occurs
between the two solids at a limited number of spots with voids between
these spots filled with some fluid, such as the surrounding medium (air).
Heat transfer across the interface occurs by conduction through the solid
spots of solid-to-solid direct contact and through the fluid filled gap.

If the thermal conductivity of the fluid is less than that of the two
solids, then the interface between the two solids acts as a resistance to
heat flow. This resistance is referred to the “thermal contact resistance”.
It can be rather significant if the contact between the two solid surfaces is
poor, and/or the fluid conductivity is much less than the conductivities of
the solids.

3.8 Standard Method of Determining the Thermal Conductivity in a
Solid

yd
Q —p A B
A
T1 N T
la
Temp
Ty
| T2
0 »
Distance,x

Figure 3.7 Standard method of determining thermal conductivity in a
solid.

berren Copyrightn 2003 by Marcel Dekker, Inc. All Rights Reserved.



The standard method of determining the thermal conductivity in
a solid is as described in the following. Two bars of the same cross-
sectional area and similar lengths are used: one bar made from a metal of
known thermal conductivity, and the other made from the material whose
thermal conductivity is to be found. In the figure, A is a standard bar of
known dimensions and thermal conductivity ks. B is the bar of known
dimensions, the thermal conductivity, kg, of which is to be measured.

Heat is supplied to one end of A, and the whole system is
insulated from heat loss. At steady state, the temperature profiles within
A and within B are plotted. The result will be a plot similar to that
shown in the figure. Since the heat transfer, Q, in rod A is equal to the
heat transfer in rod B, Fourier’s law gives

Ak
0-4 ( T.)==2(, -T;) (3.26)
LB
Hence, k, T L 3.27)
Tm"Tz

Note that the temperature drop ( Ty, — Ty ) is caused by the thermal
contact resistance between the surfaces of rod A and rod B.

3.9 Temperature-Dependent Thermal Conductivity
(a) One-Dimensional with No Heat Generation
In general, the thermal conductivity of a substance is a function

of temperature. For steady-state one-dimensional heat conduction in a
solid with variable conductivity, eg., in a slab,

i(k(T)£j=0 in 0sx<L (3.28)
dx dx
where T| T, and TL:I =

Integrating yields
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k(T)%xZ =c¢,aconstant, or k(7)dT = cdx . 3.29)

The heat-flow rate Q through an area A is given by

QPO=gA= —A.k(T)Eidl =-Ac (3.30)
X
Integrating to find c,
i I &

[kTar=cL or c= - [ k(yar (3.31)

Hence,
A

0=7 f KT | (3.32)

Example 3.1

Problem: The thermal conductivity of a plane wall varies with
temperature according to the relation

K(T)=k,(1+ pT*)
The surfaces at x = 0 and x = L are maintained at uniform temperatures
T, and T,, respectively. Find the relation for the heat flow through the
slab per unit area.

Solution

From Eq. (3.28),

i(k(T)d—TJ=o in 0<x<L
dx dx

7|, ,=Ty and T| _, =T,

k(T)y=k,(1+ BT?)

k(T)dT = c,dx
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-2, ~Tl){1+§ﬂ(T; +IT, +T3)]

dT
q=—kD) =,

Hence, g =T‘—_l—‘TZ—.k0|:1+%ﬂ(T22 +T.T, + T} )]

(b) Poisson’s Equation, with Heat Generation

When the thermal conductivity is dependent on temperature, the
Poisson equation is

V.(kVT)+g =0. (3.33)

Equation (3.33) is a nonlinear equation and difficult to solve. Equation
(3.33) may be reduced to a linear differential equation by introducing a
new temperature function 8 by means of the Kirchhoff transformation as

L e
0= k_, [k(T)dT (3.34)

where T; is a convenient reference temperature and k, = k(T,). It follows
from Eq. (3.34) that

Vo= {—VT. (3.35)

r
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Thus, Eq. (3.33) can be written as

v29+k§:o (3.36)

I

which is not dissimilar to the heat conduction equation with constant k.
The transformed equation may be solved with the usual techniques, as
long as the boundary conditions can also be transformed. Boundary
conditions of the first and second kind can be transformed; boundary
conditions of the third kind usually cannot be transformed. Boundary
conditions of the third kind are generally solved using numerical
methods.

Consider a long rod of radius r;, and the surface is kept at a
uniform temperature T,,. The internal heat generation is at a uniform rate
of g per unit volume. The governing equation is

1d dr
——|rk(T)— |+g=0 3.37
rdr [r @ dr} & G37)
with (ﬂ) =0 and T(r)=T,. (3.38)
dr r=0

Employing the Kirchhoff transformation as
1 . A A
0= - f KT T (3.34)

where k,, = k(Ty), Eq. (3.37) and the boundary conditions, Eq. (3.38) are
transformed to

ldf d6). 8 _¢ (3.39)
rdr\ dr) k,
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with (91—0—) =0 and 8(r)=0. (3.40)
T/ re0

The solution of Eq. (3.39) with boundary conditions Eq. (3.40) is

2
gr’ r
=&h 12 _
o(r) a7 (r]J (341

w

From Eq. (3.40) and Eq. (3.34), we get
" r’ ’
[ k(@)ar = ng - (i) (3.42)

"

If the relation k = k(T) is known, then the relation can be written entirely
in terms of T. Atr =0, the equation gives

2
f K(rydr = £1 (3.43)

where T, is the centerline temperature. For the situation where k is a
constant, Eq. (3.42) reduces to

2
87’12 4
1 —Tw=2"+|1-| — .
r-Tw k{ (J (3.44)

h

It should be observed that the following relation exists between
the heat generation rate and the surface heat flux:

qA=gV (3.45)
where qs = surface heat flux

A = total surface area
V = volume
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Thus,
gV
§ = — 3.46
1 A (3.46)

It can be seen that the surface heat flux is proportional to the ratio of
volume to surface area, and to the strength of the internal heat
generation.

Example 3.2
Problem: Calculate the rate of heat generation per unit volume in a rod

that will produce a centerline temperature of 1000°C for the following
values of the parameters:

T,, = 300°C, r=2cm, k= 1000
273+T

where k is in W/(m.K) and T is in °C. In addition, find the surface heat
flux.

Solution

From Eq. (3.43),

_ 4 am 1000
R Y

_ Ax1000 1273 _ 5 980010 / m?

© (0.02) 573

From Eq. (3.46), the surface heat flux is given by

2 6
_gmiL _gn _T982x10°x0.02 oo oa o

7 2zl 2 2
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3.10 Ciritical Radius of Insulation

insulation

H

Figure 3.8 Insulation around a cylindrical system.

Consider the insulation around a cylindrical system, as shown in
Fig. 3.8. The boundary conditions are the first kind at r = r; and the third
kind at r = r,,.
Atr= I, T= T,‘

Atr=r,, kg +hT=hT,
V78
The heat flux, Q, is given by

T, -T
=i T=® 3.47
Q Rin + Ra ( )
) ) . 1 r,
where R;, = insulation resistance = -
27Hk, r,
. . 1 1
and R, = outside surface resistance = —.
2zHh, r,
Note that Qpay is at I, = Togisicar, Which is determined by putting
do
—— = 0. It can be shown that
ar

[
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dQ _ 27H(T,-T,) [1 k J (3.48)

dr, { . T r
In*++—
ri hur()

v, hr’
Hence, the critical radius of insulation is 7 Any insulation

0 a0
ocritical
(4

which results in a radius less than or greater than this value, will cause
the heat flux to be less than this maximum. For a practical example,
consider insulation being added to a wire whose surface is kept at a
uniform temperature. The heat loss from the wire will increase as the
insulation is added until the outside radius of the insulation equals to the
critical radius reqica- As the insulation thickness is increased past this
value, the heat loss from the wire will begin to decrease.

Example 3.3

Problem: Insulating material with k = 0.2 W/(m”.K), is added to a 0.02
m outer diameter pipe. The heat transfer coefficient on the outer surface
is h = 6.6 W/(m*K). Will the heat loss increase or decrease?

Solution

The critical radius is rogitica = k/h = 0.030 m.
The outer radius of the pipe is 0.02 m < 0.03 m; hence, heat loss from the
pipe will decrease until the outer radius is 0.03 m, after which it will
increase.

3.11 Effects of Radiation

The preceding discussion in this subsection does not include the
effects of thermal radiation. If the radiation effects can be linearized
(that is, assuming small temperature differences), the heat transfer
coefficient at the outer surface, h,, takes the form

ho = he + h, (3.49)
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where h, is the convective component and h; is the radiative component
and approximately equal to 46FT°. The expression for the critical radius
then becomes

k k
Vocriticat = 377+ (350
“'h h +h, )
The effect of including the thermal radiation effects is to reduce the value
of the critical radius.

3.12 One-Dimensional Extended Surfaces
3.12.1 Introduction

Heat transfer in regular heat exchangers from one fluid to
another through a conducting wall takes place at a rate that is directly
proportional to the surface area of the wall and the temperature
difference between the fluids. One way to increase the rate of heat
transfer is to increase the effective area for heat transfer. This may be
done by adding fins or spines to the surface of the conducting wall.
These are thin conducting strips that can be a variety of shapes and sizes.
The average surface temperature of the fins will not be the same as the
original surface temperature, but will be nearer to that of the surrounding
fluid. Because of this fact, the rate of heat transfer will not be
proportionately increased even though the surface area has been
increased by the fins.

In the discussions in this section, the following assumptions are

used:
() Heat flow in the extended surface is steady.
(i1) There are no heat sources or sinks within the extended surface.

(iii)  The thermal conductivity of the solid is constant.

(iv) The fluid is at a uniform and constant temperature.

W) The heat transfer coefficient between the extended surface and
the fluid is constant.

(vi) Temperature in the extended surface is one-dimensional. This
can be achieved if the cross-section of the fin is small compared
to its length.

(vii)  The temperature of the base of the fins is constant.
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Asssumption (v) may be challenged, but an average value in analytical
studies gives heat transfer results with reasonable agreement to
experimental measurements. For most engineering applications,
assumption (vii) provides a true picture.

3.12.2 One-Dimensional Fin Equations

To augment the effective heat transfer, fins (extended surfaces)
are often used in practical applications. To understand the heat flow
through a fin requires a knowledge of the temperature distribution in the
fin. Consider the variable cross section fin shown in Fig. 3.9.

ﬁ h,T.,

qux qA]x+Ax
wall O} —p

v

Figure 3.9 Variable cross-section fin.

We assume that the temperature of the fin, T, is only a function
of the coordinate x. In other words, the temperature is uniform at any
cross section. The one-dimensional steady-state fin energy conservation
equation gives

[ Net rate of heat gain  + [ Net rate of heat gain
by conduction in x by convection through
direction into volume] lateral surfaces into volume] =0 (3.51)
Conduction + Convection =0

Here, Conduction = — —d—(qA)Ax
dx

and  Convection= h[Tw - T(x)]Aa
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where h and T,, are assumed to be constant. Letting Ax — dx,

—%(CIA)‘”’(TQ0 “T)%=O where q=—-k%:— (3.52)

—‘I—(Ad—T)+ﬁ(Tw —T)flﬂ =0
de\" dx) k dx

Let 0(x)=T-Ts

Hence, —| A— |-——60 =0 (3.53)
dx\ dx) kdx

d ( d@) h da
Equation (3.53) is the one-dimensional fin equation for fins with variable
cross section. This special case occurs when A is constant. Let this
constant be equal to a = Px, where P is the perimeter. In this case, da/dx
= P. The one-dimensional fin equation then becomes

d’é Ph d’e
—-——@=0 or >
dx? Ak dx

-m?0=0 where m? i (3.54)
Ak

Boundary conditions are needed to solve the equation.

3.12.3 Temperature Distribution and Heat Flow in Fins of Uniform
Cross Section

The governing equation for heat flow in fins of uniform cross
section is Eq. (4.4). Different boundary conditions will result in different
temperature distributions in the fin. The temperature distributions are
thus classified under the different boundary conditions.

(a) Long Fin

For the long fin, the boundary conditions are
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0x)=T,-T.=96, at x=10 (3.55a)
0(x) =0 (ie. T—T,)as x — o, (3.55b)
The general solution for this case is 8(x) =c,e™ +c,e™ (3.56)

where c;, ¢, are constants of integration to be determined by the
boundary conditions.

As X — o, 0 — 0=1lim(cie™ +c,e™)
X~»0
Hence, c; = 0 to satisfy the boundary condition. Atx =0,
0(0) = 60 = 7:) - Tw = cle—-m.0

Thus, ¢; =T, - T.. So,

T-T.
9. Z=e¢™ or §=6,e". (3.57)
g, T,-T,

The heat flux, Q, can be found from

O= [ ho(x)Pdx  (Btwhr or Wihn). (3.58)
2
Since €= —1—2— d ? from the governing equation,
hP c=d’0
=l ®
2
gy [ e -G |
b T - dxl,

- 0.

0

Asx— o, 0~ 0and —
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Recall that since 8 =8 e ™,

—gg =-mf,e™ and a9 -mf,e™ =-mé

0"
x=0

So, Q=-Ak(-m8,) =0, Phdk since m® = i—z (3.59)

Example 3.4

Problem: A long fin of 0.02 m diameter is one of the fins conducting
heat away from a heat exchanger. The steady-state temperature at two
different locations along the fin 0.09 m apart are 130°C and 100°C,
respectively. The environment is at 20°C. If the thermal conductivity of
the fin is 100 W/(m.K), calculate the heat transfer coefficient between
the fin and the environmental fluid.

Solution
Since the fin is long, the temperature distribution is given by Eq.
(3.57),
0 _ T- Too — X
80 7‘:} - Too
T ~T,
HCl’lCC, (xl) © _ em(x,—xl)

130-20 _ s

Substituting values, e —
100-20

which gives m=3.5384 m"

. hP 4haD 4h
Since m=‘ﬂ—= =‘,——
kA k;z'D2 kD

h = km’D/4
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W 1 1
B =100—— (3.5384)2 ——(0.02)m~
i ) 7 (0:02)my

h = 6.26 W/(m*.K).
(b) Fin with Negligible Heat Flow at the Tip

For a fin with negligible heat flow at the tip, the boundary
conditions are

(x)=T,-T, =0, at x=0 (3.60a)
de
— =0 at x=L. (3.60b)
dx
The general solution for this case is
8(x) = ¢; coshm(L —x)+c, sinh m(L —x) (3.61)
Since sinh u = 0.5(e" ~e™), cosh u=0.5(e"+e™),
sinh0=0, cosh0=1, andc,=0.
9)
From Eq. (3.60a), 6 =8, =c,coshmL and ¢, =———.
coshml
T(x)-T -
Thus, f(x) _ (x)-T, _ coshm(L —x) (3.62)
0, T -7, coshmlL

Now, Q= [ h@Pdx

_ L hP d%0
b @’
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=_Ak[ﬁ j
dx 0

_ _Ak(—me,, sinh mL

=6, AkmtanhmL
coshmlL

Q =6, PhAk tanhmL where m=1’%. (3.63)

To check the correctness of Eq. (3.63), we can take the limit of

mL — . When we take the limit, tanh mL — 1, and Q — 6, « Phdk ,

which is the same result as that for the long fin. This gives us confidence
in Eq.(3.63) since the answer in the limit is an answer we expect. In
research, this particular feature is important. Since the scholar is typically
in an unknown realm in research, the scholar needs to know that the
results obtained make sense in the limit where the answer corresponds to
known solutions. This test is often used for the validity of new relations
and equations.

Equation (3.62) may be used for a thermocouple in a fluid stream
that is at a different temperature from that of the plate supporting the
thermocouple. This is a useful correction for temperature measurement
devices employed by experimental engineers.

Example 3.5

Problem: A thermocouple well mounted through the wall of a gas pipe
may be considered as a metal rod of 0.01 m outer diameter and 0.06 m
length, with a thermal conductivity of 22 W/(m.K). The thermocouple
reads 160°C and the temperature of the pipe is 70°C. If the gas heat
transfer coefficient to the well is 115 W/(m”K), find the average gas
temperature.

Solution

The thermocouple well may be modeled as a long fin with
negligible heat flow at the tip. Hence, Eq.(3.62) applies to the
temperature distribution.
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4 \NknD?
Hence, m = 4xi15 f W mKl =45.73m™
22x0.01\m*k W m

6(x) _ T(x)-T, coshm(L-x)
T -T, coshmlL

From Eq. (3.62),

[

Substituting 70°C for the temperature at the base of the fin and writing
the expression for the temperature at x = L,

160-7,  coshm(L-L)
70-7_,  cosh(45.73x0.06)

T =173.2°C
Here, it has been assumed that the thermocouple reading is the same as
the temperature at the tip of the well. The average temperature of the gas
is 173.2°C.
(¢) Fin with Convection at the Tip

For a fin with convection at the tip, the boundary conditions are

0(x) =T, -T» = 6, at x=0 (3.64a)
k%x?-+hce(x) =0 at x=L. (3.64b)

The general solution for this case is

6(x) = ¢, coshm(L —x)+c, sinh m(L —x) (3.65)
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0 =1 =] 0
Atx=1L,
k[-c,m &/'uf’n.O —c,mcosh m.O] +h, [c, cosh o + ¢fsinh O] =0

0=-kc,m+h,c, or c =c, %m_

e

Atx=0,
. 0
6, = Cahm cosh(mL) +c, sinhmL, so ¢, = ° :
h, sinhmL + k’% cosh(ml)
km 0
Therefore, c,=—

h, | sinhmL + k% coshmlL '

o) T(x)-T, coshm(L —x)+ % sinh m(L - x)

Hence,
ence 5, T T 7
G
h :
coshm(L —x) + / sinhm(L — x)
Thus, 200 ; ko (3.66)
o, coshmlL + %m sinh mL

With negligible heat flow at the tip, this would be the same as if
2] —

(%) _ coshm(L x)_ This
; coshmlL

temperature distribution is the same as that given by Eq. (3.62). Hence,
the solution checks out at this limit. This particular case embodies the
two previous cases. The solution for this case gives the other two
previous cases when the appropriate limits are taken. In research, the
aspiration is to obtain a general relation or solution, which encompasses
many cases. This situation clearly illustrates the accomplishment of this
feature.

h, = 0. If he = 0, Eq. (3.66) gives

berren Copyrightn 2003 by Marcel Dekker,Inc. All Rights Reserved.



The rate of heat transfer from the extended surface to the
surrounding fluid is

sinhmL + h% sinh mL
m

0 = Phake,

A . 3.67)
coshml + % sinh mL
m

In addition, Eq. (3.67) reduces to Eq. (3.63) when h, = 0.
Example 3.6

Problem: A nickel fin, k =20 W/(m.K), 0.04 m in diameter and 0.2 m in
length, juts out from a plane wall which is at 300°C. The rod is cooled
by a fluid at 10°C with an average heat transfer coefficient of 12
W/(m>K). Find the rate of heat loss from the fin.

Solution

Evaluating the parameter, m = Jh—P = Jﬁ =7.746m™"'
kA kD

Hence, mL =7.746 x 0.2 = 1.55
h./(km) = 0.07746

Perimeter P=nD =0.04nrm =0.1257 m

Cross-area A = tD%4 = 0.001257 m?

v PhAk = (0.1257x12x 0.001257 x 20)°* = 0.1947 W/K

Rate of heat loss from the fin, Q = 0.1947( 300 - 10 ) x
22476 +0.07746x2.46 59 3

2.46+0.07746x2.2476

3.12.4 Fin Efficiency

Extended surfaces are used to augment heat transfer from the
base area. To compare and evaluate these extended surfaces, two
performance factors are used: fin efficiency and fin effectiveness. In the
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practice of engineering, the fin efficiency is more widely used. The fin
effectiveness is defined as the ratio of the rate of heat transfer from an
extended surface to the rate of heat transfer that would take place from
the same base area without the extended surface.

The fin efficiency, 1, is defined as

actual heat transfer in fin

n=: ——— . (3.67)
ideal heat transfer in fin if entire fin were at T,
In other words, 77 = &
ideal

Qitea = ah0, = a,h(T,-T,) (3.68)

O =NMQisea =1a, 16, (3.69)
Example 3.7
Problem: For a fin with a uniform cross section with x = L, find the fin
efficiency.
Solution

ar = PL

Qideal = P Lh 90

Q4 = 60,N PhkA tanh mL

Hence,
N PhkA tanhmL
n= 0, o Phkd tanh mL = Ltanh mL.
PLh6, PhL mL
In practice,
Qtotal = Qfm + Qunfmned (370)

Qoo =M h8, +(a—a,)h0, where a=totalarea=a, +a,
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Qmml = (7718 + 1 - ﬂ)haaa = 77' ah 60

a,

where n'=nf+1-pfand f=—.
a
Pk
Vs
h

words, Pk/A > h or the internal conductance should be larger than the
convective film coefficient to justify the use of fins.

In practice, should be > 1 to justify the use of fins. In other

Consider a fin of given shape and material. Its efficiency
decreases as h decreases. In other words, a fin that is very efficient when
used with a gas like air is not as efficient when used in a liquid like
alcohol because the h in alcohol generally has a much higher value.

3.12.5 Heat Transfer from a Finned Surface

The rate of heat transfer from the fins on an extended surface
would be

Qr=mnha(T,-T.) 3.71)

where ar is the total heat transfer surface area of the fins. The rate of heat
removed from the surface between the fins is given by

Qs =ha(T, - T.) (3.72)

where a, is the total surface area between the fins. Hence, the total rate
of heat transfer is

Qi = Qr + Qs = h(ast nagl(Tp — To) = haem(To — Tao) (3.73)
The effective heat transfer area of the surface, a. is equal to (ag+ nag). If

h is constant, the rate of heat transfer is increased by a factor of (ast+
nag)/(as +ap,), where ay, is the base area of the fins.
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PROBLEMS

3.1.

3.2.

3.3.

34.

3.5.

3.6.

A furnace is made of walls comprising 0.1 m thick fire brick on
the inside and 0.3 m thick regular brick on the outside. Under
steady-state conditions, the high surface temperature of the wall
is 720°C and the low surface temperature is 100°C. A 0.05 m
layer of insulation, k = 0.1 W/(m.K), is added onto the outside of
the regular brick to reduce the heat loss. With the added layer of
insulation, the steady-state temperatures are as follows: 740°C at
the flame side of the fire brick, 680°C at the junction between the
fire brick and the regular brick, 520°C at the junction between
the regular brick and the insulation, and 80°C on the outer
surface of the insulation. Find the rate of heat loss from the
furnace, expressed as a fraction of the original rate of heat loss.

Determine an expression for the steady-state temperature
distribution T(x) in a plane wall, 0 <x <L, having uniform heat
generation of strength g W/m®. The thermal conductivity of the
wall, k, is a constant. At x = 0, the wall surface is at a constant
temperature of T; while at x =1L, it is at T,.

A plane wall, 0.15 m thick, internally generates heat at a rate of 6
x 10* W/m’. One side of the wall is insulated and the other side
is exposed to an environment at 25°C. The heat transfer
coefficient between the wall and the environment is 750
W/(m*>K). The thermal conductivity of the wall is 20 W/(m.K).
Calculate the maximum temperature in the wall.

Insulating material with k = 0.1 W/(m’ K), is added to a 0.02 m
outer radius pipe. The heat transfer coefficient on the outer
surface is h = 6.6 W/(m2.K). Will the heat loss increase or
decrease?

Insulating material with k = 0.15 W/(m®.K), is added to a 0.03 m
outer radius pipe. The heat transfer coefficient on the outer
surface is h = 4.6 W/(m>K). Will the heat loss increase or
decrease?

Derive the expression for the critical radius of insulation for a
sphere.
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3.7.

3.8.

3.9.

3.10.

3.11.

3.12.

Insulation with k = 0.1 W/(m.K) is added to a steam pipe of
outer radius 0.01 m. The heat transfer coefficient with and
without insulation may be assumed to be the same at h = 7
W/(m’K). What is the thickness of the insulation when the heat
loss is the same as that without insulation?

A long fin 0.03 m in diameter is one of the fins conducting heat
away from a heat exchanger. The steady-state temperatures at
two different locations along the fin 0.1 m apart, are 110°C and
80°C, respectively. The environment is at 25°C. If the thermal
conductivity of the fin is 80 W/(m.K), calculate the heat transfer
coefficient between the fin and the environmental fluid.

A long fin 0.01 m in diameter is part of an array of fins for a
radiator. The steady-state temperatures at two different positions
along the fin 0.15 m apart are 150°C and 75°C, respectively. The
environment is at 30°C. If the heat transfer coefficient between
the fin and the environmental air is 9 W/(mZ.K), find the thermal
conductivity of the fin.

A thermocouple well mounted through the wall of a boiler may
be considered as a metal rod of 0.02 m outer diameter and 4 m
length, with a thermal conductivity of 30 W/(m.K). The
thermocouple reads 600°C, and the temperature of the boiler wall
where the well is located is 200°C. If the gas heat transfer
coefficient to the well is 200 W/(m”>.K), find the average gas
temperature.

A thermocouple well mounted through the wall of a vapor pipe
may be considered as a metal rod of 0.015 m outer diameter and
0.05 m length, with a thermal conductivity of 18 W/(m.K). The
thermocouple reads 225°C, and the temperature of the pipe is
100°C. If the vapor heat transfer coefficient to the well is 90
W/(m*K), find the average vapor temperature.

A fin, k =30 W/(m.K), 0.03 m in diameter and 0.18 m in length,
protrudes from a plane wall which is at 450°C. The rod is cooled
by a fluid at 100°C with an average heat transfer coefficient of
20 W/(m”K). Find the rate of heat loss from the fin.
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3.13. A fin, k = 100 W/(m.K), 0.05 m in diameter and 0.28 m in
length, protrudes from a plane wall which is at 150°C. The rod is
cooled by a fluid at Ty with an average heat transfer coefficient
of 10 W/m”K). The rate of heat loss from the fin is 50 W. Find
Tt.

Fins

Thermal conductivity of the solid is constant
Fluid is at temperature that is uniform and constant
Heat transfer coefficient between fin and fluid is constant
The temperature of the base of the fin is constant.

There are not any heat sources or sinks within the fin
The heat energy flow is steady throughout the fin
Temperature distribution is only in one dimension

Cross-section of fin is small compared to length dimension.

K.V. Wong
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4

Two-Dimensional Steady and One-
Dimensional Unsteady Heat Conduction

In this chapter, two-dimensional steady and one-dimensional
unsteady heat conduction is discussed. The main method introduced to
solve this group of problems is the method of separation of variables.

4.1 Method of Separation of Variables

The basis behind separation of variables is the orthogonal
expansion technique. The method of separation of variables produces a
set of auxiliary differential equations. One of these auxiliary problems is
called the eigenvalue problem with its eigenfunction solutions.

Consider the second-order ordinary differential equation in the
domain 0 <x <L:

d*y(x
;x"g ) Ry(x)=0 . 4.1
The boundary conditions are:
dy
—k—+hy=0 at x=0 4.2a
o Y (4.22)
dy
—+hy atx (4.2b)

where A, h and k are constants. This is called an eigenvalue problem.
This problem has solutions for certain values of the parameter A = A,
where n = 1,2,3,...where A,’s are called the eigenvalues. The nontrivial
solutions y(A,, X) are called the eigenfunctions.

Let y(An, x) and y(A,, x) denote two different eigenfunctions

corresponding to eigenvalues A, and A, The orthogonality principal
means that
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Table 4.1 Eigenfunctions and Eigenvalues.

Boundary Condition at Eigen- Eigenvalues
functions
x=0 x=1L u/(}.,x) A >s are roots %:——-—l-—
J:wz(z,x)dx
. . 2
1. w=0 w=0 sin Ax sinAL =0 7
2. py=0 v _y sindx  cosAL =0 2
dx L
dy 242+ HY
3. =0 by =0 sinx  AcotAL =-H L
dx L2 +HY+H
4. W _y w=0 cosAx  cosAL=0 2
dx L
2
— forA =0
5.9 g W _yg cosAx  sinAL=0 L
dx dx 1
— fori=0
L
dy dy 2%+ HY)
6. —=0 k——+hy =0 cosAx  AtanAl=H ———
dx dx LA +H)Y+H
dy 22+ HY
7. -kt hy =0 y=0 sinA(L —x) AcotAL =-H —_—
dx LR +HYY+H
dy dy 2042 + HY)
8. —k——+hy=0 =0 cosA{L-x) Atanil=H e ——
dx dx LA +uh+ H
9. kM ihy -0 kM inp =0 Acosde+ L= 22”12 . 22
dx dx HsinAx A -H L(A*+H*)+2H

MARCEL
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[ (ox(d, x)c=0 for 4, %4,
=N for 4, =4,

(4.3)

where N, the normalization integral, is

N= [y (2, xhx. (4.4)

The reader can consult any standard text on mathematics for the
proof of the above orthogonality principal. The general case shown
above is the eigenvalue problem with homogeneous boundary conditions
of the third kind. There are nine different combinations of such
boundary conditions (first, second and third kinds) for a finite region 0 <
x < L, and any of these nine combinations may be derived from the

boundary conditions Egs. (4.2a,b). The eigenfunctions, eigenvalues and
the normalization integrals for all nine cases are listed in|Table 4.1.

Example 4.1
2

d .
Problem: Solve —Z/ + 2y =0in 0<x<L subject to the
dx

boundary conditions y(0) = 0 and y(L) = 0.
Solution
The solution is y(x) = ¢, sin Ax + ¢, cos Ax.
Atx=0,c=0 = y(x)=c, sinAx.
Atx=L, sinAx=0since ¢, #0. Hence, LA, =nn wheren=1,23....

Therefore, w(4,, x)=sin A,x where 4, = %

2
Thus, N = rsinzﬂnxdx= f(sin%x} dx=§.
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4.2 Steady-State Heat Conduction in a Rectangular Region

y
A
T=(x)

T= T(x,y) T=0

=0 a

Figure 4.1 A rectangular region for heat conduction.

Consider a rectangular region for heat conduction as shown in
Fig. 4.1. The assumptions about the problem are usually as follows:
Steady state heat conduction takes place.
Thermal conductivity k is constant.
There is no heat generation.
There is only one nonhomogeneous boundary condition.

With the assumptions above, the governing heat conduction
equation is the Laplace equation.

2 2
0 T+Q—T=O n0<x<a,0<y<h 4.5)
ox’ oy’

The boundary conditions shown in the figure are expressed
mathematically as follows:

Atx =0, T(x,y)=0.

Atx=a, T(x,y)=0.

Aty=0, T(x,y)=0.

Aty=Db, T(x,y) = f(x).
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This problem may be solved by the method called separation of
variables. The first step in this method is to assume that the temperature
distribution function T(x,y) is a product of X(x) and Y(y) where X(x) is
only a function of x, and Y(y) is only a function of y.

Txy)=X(x)Y(y) (4.6)

2 2
Thus, id X=—ld Y. @.7
X & Yadi

Since the left-hand side of Eq. (4.7) is a function of x only, and the right-
hand side of Eq. (4.7) is a function of y only, then both sides should
equal a constant. A constant, -22, is selected as in Eq.(4.8) such that the
equation in x (with both boundary conditions homogeneous) will give an
eigenvalue equation.

2 2
1d )2( =-1 =—lfl—f (4.8)
X dx Y dy

The eigenvalue equation in x is

d*x

—+A’X =0 in 0<x<a (4.9)

Atx=0,X=0. Atx=a, X=0.

The differential equation for Y separation is

dy

=

AY=0 in 0<y<b (4.10)

Aty =0, T(x,0) =0 and X(0) = 0. Thus Y(0)=0.
Aty =b, T(x,b) = f(x) and X(0) = X(a) = 0.

The solution to Eq.(4.9) is the eigenfunction X(x) = sin A, x,

where A, = ﬂ, n =1,2,3.... The normalized integral N = a/2.
a
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The solution for the Y-separation equation may be assumed to
take the form

Y(y)=c,sinhA,y+c,coshd,y. (4.11)
The boundary condition at y = 0 makes ¢, = 0. So,

Y(y)=c;sinh A y. (4.12)
Since T(x,y) = X(xX)Y(¥y),

T(x,y) =c, sin(4,x)sinh(4,y). (4.13)

Since there are multiple values of A,, the complete solution for

the temperature should be taken as a linear combination of all these
possible solutions. Therefore,

T(x,y)= Zc,, sinh A ysin A x (4.14)
n=1

where c,’s are unknown expansion coefficients. They will be determined
by the constraint at y = b, T(x,b) = f(x).

So,  f(x)=)_c,sinh(4,b)sinA,x (4.15)
n=|
Since sin A.x has an orthogonality property, we multiply Eq.(4.15) by sin
AnXx and integrate from x =0 to x = a.
[ f(e'ysina,xdx'=7 ¢, sinh 4,b [ sin 4,x'sin 4, xdx'  (4.16)
n=l1 ’

where x' is the dummy variable of integration.

Derrer Copyright n 2003 by Marcel Dekker, Inc. All Rights Reserved.



MARCEL
DEK

iz n, Copyright n 2003 by Marcel Dekker Inc. AllRights Reserved,

[ f()sin A, x'dx'=c,, sinh(4,b).N where N =§ “.17)

Hence, c, = W j" F(x)sin(A, x')dx (4.18)
Therefore,
_2& sinh(4,y)
T(x,y)== Z{ SO b)sm(ﬂ,,x) [ FG)sin(2,x )
(4.19)
where 1, = z
a

4.3 Heat Flow

Since the heat flow or heat flux at the boundaries is often of
interest, we can calculate it as shown below.

Btu (W
W(?j . (4.20)

Using the temperature distribution, Eq. (4.19), as an example, at x =0 the
heat flux

=R EIED oty B st

(4.21)

Aty =D, q(x)|y=h= function of x. Thus Q is obtained by integrating
over the length for a unit depth.



sssssss

Example 4.2

Problem: From Eq. (4.18), obtain the steady-state temperature
distribution T(x,y) in a rectangular cross section with the following
boundary conditions:

Atx =0, T(x,y)=0.

Atx=a, T(x,y)=0.

Aty=0, T(x,y) = f(x).

Aty=b, T(x,y)=0.

Solution

Use the transformation y = b —y. Hence the boundary conditions
in y become

Aty=b, T(xy) = f(x).

Aty=0, T(xy)=0.
From Eq. (4.18), the temperature distribution is thus

T(x, y)——Z{Smhgt”Z);sm X x)ff(x )sm 7\. x)dx

which can be written as

sinh(x {b-
nh(1,b)

T(x,y):%i{ })sm(?»x ff(x)sm%x)dx

Example 4.3

Problem: Obtain the steady-state temperature distribution T(x,y) in a
rectangular cross-section with k constant and the following boundary
conditions:

Atx=0, T(xy)=0.

Atx=a, TX,y) =T, sin(my/b).

Aty=0, T(x,y)=0.

Aty=Db, T(x,y)=0.

™ Copyright n 2003 by Marcel Dekker, Inc. All Rights Reserved.



Solution
Assuming that T(x,y) = X(x)Y(y), the governing equation is
separated as

1d’x 14d?
}‘iixz =_—I; = Z’ =+/12, where +A? has been chosen so that the
Ly

eigenfunction equation is in y. The solution for Y(y) is obtained from

Table 4.1} case 1, as Y(A,y) = sin Ay where A, = L%z—,n =1,2,3,... and

1/N=2/b.

The solution for X(A,x) function satisfying the boundary condition at x =
0is X(A,x) =sinh Ax.

The formal solution for T(x,y) is expressed as

T(x,y) = Z ¢,sinh A,xsinA,y.

n=1

Using the boundary condition at x = a,

T,sindy= Ecn sinh A,asinA,y, since A4, = % .

n=1

Operating both sides by J:sin A,ydy,

T, f sin A, y.sin A, ydy = Z ¢,sinh A,a6,,.N
n=1

1 m=n
where &, = .
0 m=#n

MARCEL
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T,
Hence, ¢, = ———.05,,
Nsinh/,a

1 n=1
where 9§, = .
0 n=l
The complete solution for the temperature becomes
2 sinh A, x
T'(x,y)=) 6,1, |——|sin4,
(x,y) ; ! l(sinhl”aJ y
sinh A, x | . Vi3
T(x,y)=T,; ——" |sinA where A, =—.
(x,») ](sinh/?,laJ Y 1=

It is noted that the expression of the temperature distribution
contains one term, rather than a summation of an infinite number of
terms. This may be expected from the following practical consideration.
The medium is passive, without heat generation; it is at steady state.
Only one boundary has a sinusoidal temperature distribution imposed on
it, the other three being homogeneous. A modified sinusoidal
temperature distribution within the medium is not surprising. Hence, the
single term in the expression is adequate to describe this modified
sinusoidal temperature distribution.

Contrast this case with one where the nonhomogeneous
boundary condition is a constant temperature. One should expect a
summation of an infinite number of terms in the final expression for
temperature because it takes a large number of sinusoidal terms to
describe the approximately constant temperature along lines parallel to
this boundary.

4.4 Separation into Simpler Problems

When the problem has more than one nonhomogeneous
boundary condition, the principle of superposition can be used. For

instance, the Laplacian equation in the region 0<x<g and0<y<b
is subjected to the following boundary conditions:
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T| _, =0 T| ,=0

y=0

T|x=a = -/i(y) T|y=b = f2(x)

There are two nonhomogeneous boundary conditions. We can use the
superposition theorem, and write the solution of T(x,y) in terms of
Ty(x,y) and T,(x,y). Hence,

T(x,y) = Ti(x,y) + Ta(x,y) (4.22)

where Ty(x,y) is the solution to the Laplacian equation subjected to the
boundary conditions

7|, =0 7| , =0

y=0

x=

T

=£H0) T| . =0  (423)

y=b

x=a

and Ty(x,y) is the solution to the Laplacian equation subjected to the

boundary conditions
T| _,=0 T|y= =0
1., =0 T|,, = f®). (4.24)

4.5 Summary of Steps Used in the Method of Separation of Variables

The following are the steps used in the method of separation of
variables in solving the Laplacian equation.

)] Assume the temperature function, T, is a product of X and
Y, where X is a function of x only, and Y is a function of y
only.

2) Substitute XY into the Laplacian equation and select a
constant such that the equation with the coordinate that has
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homogeneous boundary conditions is the eigenfunction

equation.

3) Say Y is the non-eigenfunction equation, use the
homogeneous boundary condition to obtain the constant of
integration.

4) The eigenfunction X and Y gives the formal solution for the
temperature T.

(%) Use the nonhomogeneous boundary condition and the
orthogonality principle to obtain the expansion coefficient.

4.6 Steady-State Heat Conduction in a Two-Dimensional Fin

y
A hT,,

g(y) and
g(y)=g(-y\)\‘ Constant k

(e}
Y

4— o —Pd— o —P
v

h, T,

Figure 4.2 Infinitely long two-dimensional fin with convective
boundary conditions.

Consider the infinitely long two-dimensional fin with convective
boundary conditions, as shown in Fig. 4.2. The temperature of the
surrounding fluid is T., and the heat transfer coefficient is h. The x-axis
is taken to be the axis of symmetry. The governing equations of the
problem may be stated as below.

8T 2°T

a0 (4.25)
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T(0,y)=g(y) and T(x—ow,y)=T, (4.26a,b)

or g),o) -0 and - kéf% =h{T(x,c)-T,}  (4.26c,d)

The problem as mathematically expressed above does not satisfy the
condition that three of the four boundary conditions be homogeneous.
Thus, the method of separation of variables is not applicable with this
expression of the problem. However, with the introduction of

v(x,y) =T(xy) - Te (4.27)

the expression of the problem becomes

2 2
0;; * i; =0 (4.28)
v(0,y) = g(y) - T = G(y) and  y(x—ow0,y)=0 (4.29a,b)
é’_y/(x_,()) =0 and -k %C_) = hW(xa C) (429C,d)

which satisfies all the requirements of the method of separation of
variables. First, assume a product solution of the form

w(x,y)=XX)Y(y). (4.30)

Introduce this expression into Eq. (4.28) and divide each term of the
resulting expression by XY,

1d’x  1dY

Ay e = A2 4.31)
2

or fl f + Y =0 (4.32)
ly

MARCEL
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d*Xx

2

and -2X=0 (4.33)

The solution of Eq. (4.27) is given by
w(x,y)=(Ce™ +C,e*™)(D, cos Ay + D, sin Ay) (4.34)
The sign of the separation constant A’ is selected such that the

homogeneous y direction results in an eigenvalue problem. In other
words,

day

" + 1Y =0 (4.35)

aro _, (4.36a)
dy

Y9 v =0 (4.36b)

This is a Sturm-Liouville (eigenfunction) problem with the following
characteristic eigenfunctions:

@,(x)=cosA,y. 4.37)
The eigenvalues are the positive roots of the transcendental equation:
h
A, tan(4,c) = z where n=123,... (4.38)

that is obtained from the use of the boundary condition (4.36b).

The use of the boundary conditions (4.29b-d) gives the following
result:
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w(x,y)=Y c,e”" cos,y. (4.39)
n=1
The nonhomogeneous boundary condition (4.29a) provides that
G(y)=g(y)-T.= Y c,cosk,y (4.40)
n=|

where the expansion coefficients c, are given by

o 24,
"7 A,c+sin(4,c)cos(4,

3 [{e)-Tdeos(,y)dy. @41

Therefore, the temperature distribution is

(//(x,y)=T(x,y)—Tw

S Ae " cosd,y :
= 2 n n | _T coSs ﬂ, ' d |-
HZ; A,c +sin(A,c)cos(4,c) [{g(y ) w} (4,)dy

(4.42)

For the special case of g(y) = T, = constant, the temperature distribution
may be expressed as follows:

T(x’ y) - Too — 2 C Sin(lnc) e—l,,x COS(A y)
T -T, ot A, +sin(A,c)cos(4,c) g

(4.43)

The characteristic values A, in Eqgs. (4.42) and (4.43) can be
obtained from the transcendental Eq. (4.38), which may be written as

tan(A,c) = Bi or cot(d,c) = /1"_0 (4.44)

Ac Bi

n

where Bi = hb/k. The roots of either form of Eq. (4.44) are infinite in
number. They should be determined numerically or graphically.
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4.7 Transient Heat Conduction in a Slab

For one-dimensional, time dependent heat conduction with
constant properties, we can select a slab for convenience of illustration.
The typical problem is governed by the energy equation:

A*T(x,t) _1dr(x,0)
&? a

in0<x<r for £>0. (4.45)

Boundary conditions, for example, can be

Il (x,t) -0

Atx=0,t>0, (4.46)
&
Atx=1L,t>0, k@%ﬂhhT(x,t):O. 4.47)
The initial condition is
Att=0, Tx,t)=F(x) in 0<x<t. (4.48)
It is assumed that T(x,t) = X()I'().
2
Hence, L d°X = Lg[’_ =17 (4.49)

X der ol df

Here, “-A™ is selected to allow for the temperature decay with time.
This later behavior is expected from physics.

The eigenvalue problem becomes

d*Xx

de

+A2X =0 in 0<x<L. (4.50)

The boundary conditions are as follows:
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Atx=0, =0 (4.51)

dx
Atx =L, kiX—

The ordinary differential equation in time t is

dt

+hX =0. (4.52)

a +Aol’=0 fort>0 (4.53)

The solution for Eq.(4.53) is T'(f) = exp(—aA’t) and so on to complete

the solution for the temperature.

Example 4.4

Problem: Solve the one-dimensional, transient heat conduction problem

with the following boundary conditions:

ol (x,t) _

Atx=0,t>0, 0 )
17:4
t
Atx=L,t>0, kﬂ—gz—’—)+hT(x,t)=0. (ii)
The initial condition is
Att=0, Txt)=T, in 0<x<t (iii)

Solution

The solution for I'(t) separation is I'(f) = exp(-ai’t). The
solution for X(x) separation is X(X,,x) = cos A,x where A, are the roots

of Atan (AL)=h/k=H and the normalization integral N is given by:

2(22 + H?)
LA +H )+ H

1
N

The solution for T(x,t) is written in the form

0 COPYightn 2003 by Marcel Deder nc Al ights Reserved.
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T(x,t)= che“"’ﬁ’ cosd x. v)

n=1
The initial conditions give T = ZC” cosd,x (vi)
n=l
: : T:) T:) . s
where ¢, is determined as ¢, = —= | cos A, xdx = ——sin 4, L .(vii)
b N.

n

Then, the complete solution becomes

2sind, L _,p
T(x,)=T, Zgﬁl—e’“’“ cos A, x (viii)
n=l H
where
2 +H)+ H
2022 +H?)

and A, aretherootsof AtanAL = % =H.

PROBLEMS

4.1.  Solve for the eigenfunctions and eigenvalues in

42.  Derive an expression for the steady-state temperature
distribution T(x,y) by solving the differential equation
o'T &°'T
0}:2 + @)2 =0

in a rectangular region 0 < x <a, 0 <y <b, subject to the
boundary conditions T(0,y) = 0, T(a,y) = 0, T(x,0) = 0, T(x,b) =
Ax + f(x).

4.3, Consider two-dimensional, steady-state heat transfer without
heat generation in a rectangular region. Solve using an exact
analytical method for the problem where the boundaries are of
the first-kind homogeneous everywhere except at x = 0, where T
= Ticos(ny/b) and at y=0, T=T,cos(nx/a). The region has
dimensions a x b.
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44. A long iron bar has a rectangular cross-section with the
following temperature boundary conditions: T(0,y) = Tie(y),
T(a,y) = T.f(y), T(x,0) = 0, T(x,b) = 0 where T; and T, are
constants and e(y) and f(y) are functions of y. Find the steady-
state temperature distribution.

4.5.  Solve the problem of the Laplacian equation of two-dimensional,
steady-state heat conduction, with the following boundary
conditions: T(0,y) = T;, T(a,y) = T,, T(x,0) = T, T(x,b) = T.

4.6. Derive an expression for the steady-state temperature
distribution T(x,y) by solving the differential equation
o'T  o°T
&2 + @)2 = O

in a rectangular region 0 < x <a, 0 <y <b, subject to the
boundary conditions T(0,y) = 0, T(a,y) = By*+g(y), T(x,0) = 0,
T(x,b) = 0.

477. A straight rectangular fin has a thickness ¢ in the direction and is
extremely long in the y direction. If the thermal conductivity is
constant, determine the steady-state temperature distribution in
this fin for the following boundary conditions:

T(0,y) = 0, % =0 and  T(x,0)=e(x).

4.8.  Obtain the steady-state temperature distribution T(x,y) in a
rectangular cross section with constant k and the following
boundary conditions:

Atx =0, T(x,y) = T,cos(my/b).
Atx=a, T(x,y)=0.
Aty=0, T(x,y)=0.
Aty=b, T(x,y)=0.

4.9.  Obtain the steady-state temperature distribution T(x,y) in a
rectangular cross section with constant k and the following
boundary conditions:

Atx =0, T(x,y)=0.
At x =a, T(x,y) =T cos(my/2b).
Aty=0, dT/dy=0.



Aty=>b, T(x,y)=0.

4.10.  Consider steady-state heat transfer in a rectangular cross section,
with constant thermal conductivity. Design the four
nonhomogeneous boundary conditions such that the final
expression of the temperature distribution consists only of four
terms and not an infinite series of terms. Write down this
expression. (Hint: Look at the solutions of Ex. 4.3 and Prob.
4.9.)

4.11.  The initial temperature of a wall is T, and it extends from x =0
to x = L. For times t > 0, the surface at x = 0 is kept insulated
and at x= L is kept at a constant T,. Derive

(i) the unsteady temperature distribution in the wall for t >
0,

(i) the mean temperature across the wall as a function of
time,

(ii1)  the instantaneous rate of heat transfer from the slab.

4.12. A wall, 0 £x <L, is initially at a temperature K(x), for times t >
0 the boundaries at x = 0 and x = L are kept insulated. In other
words, 0T/0x = 0 at x = 0 and x=L. Find the temperature
distribution T(x,t) in the wall.

4.13. A piece of beef steak is cooked either in a microwave oven or a
radiant heating oven. Sketch temperature distributions at
specific times during the heating and the cooling processes in
each oven.
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Separation of Variables

To solve Laplacian by separation of variables
Assume that x and y are the two variables
X is a function of x variable only,

Y is a function of y variable only.

Put XY into the Laplacian equation
So that the following is the resulting condition
The variable with homogeneous boundary condition
Produces the equation with the eigenfunctions.

Say capital Y is the non-eigenfunction equation
Use associated homogeneous boundary condition
To find expression for the constant of integration

XY is for temperature T, formal solution.

Use the nonhomogeneous boundary condition

And orthogonality principle of eigenfunctions

To obtain coefficient accompanying expansion
Hence temperature T has a final expression.

K.V. Wong
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5

Numerical Analysis in Conduction

5.1 Introduction

With the development of high-speed personal computers, it is
very convenient to use numerical techniques to solve heat transfer
problems. The finite-difference method and the finite-element method
are two popular and useful methods. The finite-element method is not as
direct, conceptually, as the finite-difference method. It has some
advantages over the finite-difference method in solving heat transfer
problems, especially for problems with complex geometries.

We will discuss the solution of steady-state and unsteady-state
heat conduction problems in this chapter, using the finite-difference
method. The finite-difference method comprises the replacement of the
governing equations and corresponding boundary conditions by a set of
algebraic equations. The discussion here is not meant to be exhaustive in
its mathematical rigor. The basics are presented, and the solution of the
finite-difference equations by numerical methods are discussed. The
solution of convection problems using the finite-difference method is
discussed in a later chapter.

52 Finite Difference of Derivatives

The finite difference of derivatives involves the approximation
of a differential equation or a boundary condition by algebraic equations.
Consider the function T(x) shown in The definition of the
derivative of T(x) at x; is given by

ar| _ . T +A0)-T(x)
dx Ax—0 Ax

(5.1)

i

In taking the limit, we obtain

83
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dar| T(x,+A)-T(x) T, -T, 52)
dx Ax Ax '

X

This approximate relation is an algebraic expression for the derivative at
x;. It is called the forward difference form of the first derivative since it
involves the value of x at the point I and the point forward of i, that is, at

i+1.
Another approximate relation for the gradient of T at x; may be
written as
dr T -T.
el PO St ol (5.3)
dx Ax

X

This approximate relation is called the backward-difference form of the
first derivative at x;. It involves the value of x at the point / and the point
backward of i, that is, at /-1.

T(x)
A
Tin
o P dT
dx X,
AX |Ax
X
>
Xj-1 Xj Xi+1

Figure 5.1 Finite-difference approximation of a derivative.

MARCEL
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As illustrated in an approximation that is more accurate
than either the forward-difference form or the backward-difference form
may be written as

ET_ ~ T — T,

dx 2Ax

X;

54

This approximate relation is called the central-difference form of the first
derivative.

The central-difference form has a truncation error (or
discretization error) of the order of the magnitude of (Ax)?, whereas the
truncation error of both the forward-difference and backward-difference
forms have a truncation error of the order of the magnitude of Ax.

The second derivative of T(x) can be written in central-
difference approximation as
_ élj
dx

d’T| (%]

dx2 Li ~ i+Ar/2Ax i—ax/2 . (55)

Substitute the central-difference forms of (dT/dx]x and

i +Ax/2

(dT/d"Xx,-Ax/z into Eq. (5.5) and get
d*T| T +T., - 2T, .
&l T (A (>6)

X

The relation Eq. (5.6) has a truncation error of order (Ax).
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5.3  Finite Difference Equations for 2-D Rectangular Steady-State
Conduction

i,j+\l
Ay
/
N .4 W
L 1] - Ay
-1, i-1. \/
itj-1
y — \-\_‘ =

AX | Ax

Figure 5.2 Grid points for a rectangular grid system.

In a 2-D rectangular region undergoing heat transfer, the first
step is to divide the region into a rectangular grid system. For a solid
undergoing steady-state heat conduction, with constant thermal
conductivity, Laplace’s equation applies.

A
ch + @/2 =

0 (5.7

This equation is pointwise continuous; that is, it is applicable throughout
the region. In setting up the rectangular grid system, we are deriving
finite difference equations that are only valid at the grid points. The
resulting solutions obtained for the finite difference equations are
therefore valid at these points only.
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The grid points are identified by two subscripts, say i and j; i is
the number of Ax increments and j the number of Ay increments. At grid
point (i,j), apply Eq. (5.6) and the corresponding equation in y to each
second-order derivative, giving the expression

T...+T

i+, j i-1,j

2T,

2T, T,,,,+T, oo 5.8)

ij i, j+ ij-1"

(Ax)y (ayy

If the grid is square rather than rectangular, Ax = Ay, this expression
reduces to

Tiv1j+ Tigj + Tijoy + Tigy — 4Ty = 0. (5.9)
In other words,
TiJ = 025( Ti+1,j + Ti—lj + TiJ+1 + TiJ'l)' (510)

Equation (5.10) expresses the temperature of grid point (i,j) in terms of
the temperatures of four neighbouring grid points (i+1,j), (i-1,j), (i,j+1)
and (i,j-1).

The finite difference equation (5.9) is valid for all interior points.
If the temperature is known throughout the boundaries (i.e., first kind
boundary conditions), then the application of Eq. (5.9) to all the interior
points is adequate to allow the temperatures at these points to be solved.
If there are n interior points, the procedure will give n simultaneous
algebraic equations, which can then be solved.

The number of grid points determine the detail to which the
temperature distribution is calculated. A smaller grid gives a more
detailed solution, but results in more algebraic equations to solve. If
done manually, it involves more time. But with fast personal computers
nowadays, a 2-D problem seldom presents a problem. A coarser grid
will provide a less detailed solution of the temperature distribution.
However, sometimes that is all that is necessary to get an idea of the
temperatures in the solid.
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5.4 Finite Difference Representation of Boundary Conditions

The expression of the heat conduction problem in finite
difference form is completed by also expressing the boundary conditions
in finite differences. If the first kind of boundary condition exists in the
whole boundary, then the known boundary temperatures enter into the
finite difference equations. Each equation for the grid points next to the
boundary will have a prescribed term in it. If any part or the whole
boundary is not at the first kind of boundary condition, then the boundary
conditions have to be finite differenced. The following subsections
consider the finite differencing of these different boundary conditions.

Boundary with Convective Heat Transfer

Consider a grid point (i,j) on a boundary subjected to convective
heat exchange with an environment at temperature T, and with a heat
transfer coefficient h. The finite difference formulation of the boundary
condition can either be obtained by converting the corresponding
differential boundary condition, or by writing an energy balance on the
shaded volume element shown in the figure. The conservation of energy
for the element gives

Rate of heat entering volume
element through boundaries ={ (5.11)

T

i+

i-1,]

/
A4 ..
vk

i1,

—p< P

AX Ax v\
\/ Convection boundary

kéf—+hT=hTw
171

Figure 5.3 Grid point (i,j) at the convection boundary.
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Consider a volume with unit depth into the plane of The
energy balance gives

T.,-T, T, -T,, T, 0-T,,
ey N M Y Bl T O el T R VI P Y O DAy =0
Ax Ay 2 Ay 2 ’

(5.12)

If the grid is square, that is, Ax = Ay, then Eq. (5.12) reduces to

)+h_;‘ir -(zi’i"]r. -0 613

0.5(27,, , +T,,., +T,, 3 I

i,j-1

Hence, Eq. (5.13) is used for the grid points on the boundary, and Eq.
(5.9) is used for the interior points. Equation (5.13) is, however, not
applicable for a grid point in the corner,[Fig. 5.4] Consider the corner
section in the figure. The conservation of energy gives

)+ h%xTw —(1+h%x]T,,_, =0. (5.14)

0.5(T.,, +T,,

i,j-1

Equation (5.14) should be used for corner grid points undergoing
convective heat transfer, when the convective heat transfer coefficient is
prescribed.
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ij

\ P
Ax
AN h
Figure 5.4  Grid point (i,j) on a corner with convective boundary
conditions.

Insulated Boundary

d . .
... 1Ay I S o W
i-1,) { 1,j i
':
"1,-j:T"
Ay
insulated

—P
K"“\_)

Figure 5.5 Grid point on an insulated boundary.
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When the boundary is insulated, as in the finite
difference equations for the grid points on the insulated boundary may be
obtained as previously. The conservation of energy gives

T +T, ., +2T,

i hi= i-l.j

~4T,, =0. (5.15)

or
Since > = 0 on the boundary, the temperatures at the boundary

may be set equal to the temperatures of the grid points on the penultimate
column. In other words, Ti.;; = Ty, where k designates the x-value of
the column of grid points on the boundary. A similar action may be
taken for the insulated boundary which is parallel to the x-axis. In that

ar
case, — =0 on the boundary, and the temperatures at the boundary

may be set equal to the temperatures of the grid points on the penultimate
row. In other words, T;;n, = Tin, where m designates the y-value of the
row of grid points on the boundary.

Irregular Boundaries

1
|
]
1
|
—— - - - { I,
|
|
|
|
|
]
|
[ 4 :
0, EDE IRIEX ;
[ B H
i gl it
dAyI Ry
—— = [}
Ay i1 |
E
1
........... L
<> |
cAx '
I II
Ax

Figure 5.6 Grid point next to an irregular boundary.
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For simple geometries, grid points may be made to lie on the
boundaries exactly. For irregular boundaries, the boundary does not fall
on regular grid points. Numerical methods are an excellent way to treat
such physical boundaries. Consider the irregular boundary shown in[Fig.]
m and assume that the temperatures are known at the boundaries.
Equation (5.9) cannot be used for the grid point (ij) next to the
boundary. Using the conservation of energy to the system (shaded
rectangle) shown in the figure,

(+d)ay T, =T, tk (+d)ay T.., - T;,
2 Ax 2 cAx

k

(1 +c)Ax Ti,j—l _Ti,j k (1 +C)Ax Ti,_/+1 _Ti,j
2 dAy 2 Ay

+k

=0.  (5.16)

If there is an additional condition that Ax =Ay, then Eq. (5.16) simplifies
to

L 1 1 I 11
c(l+c)T”1"’ +1+cT"“~’ * 1+dT'¥_i+1 +_d—T-,- —(—+—)T,,. =0

(5.17)

where ¢ and d are shown in The grid point (i,j) is not at the
geometric center of the system defined around (1,j). If ¢ =d = Ax =Ay,

then Eq. (5.17) simplifies to Eq. (5.9).
5.5 Solution of Finite Difference Equations

The finite difference formulation of the differential equation and
boundary conditions of a steady-state heat conduction problem gives a
system of algebraic equations. These equations are linear except when
the thermal conductivity is a function of temperature. The system of
algebraic equations can be solved to give the temperature values at the
various grid points. For a small number of grid points, the finite
difference equations may be solved using a calculator, but a larger
number require the use of a computer.
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Gaussian Elimination Method

This method can be used to solve a coupled system of linear
algebraic equations. The finite differencing of a two-dimensional,
steady-state heat conduction equation gives a set of algebraic equations
which form a banded matrix, as shown in Eq. (5.18). The nonzero
elements of the matrix are in a band on either side of the diagonal. In
general, a banded matrix is solved efficiently on a computer using the
gaussian elimination method. As an illustration, consider the banded
matrix shown in Eq. (5.18). The matrix is transformed into an upper
diagonal form in the following manner. The first equation in the system
of Eq. (5.18) is used to eliminate the nonzero elements ay, and a3 in the
first column. In other words, the first equation is multiplied by ay/a;;,
and the resulting equation is subtracted from the second equation in order
to eliminate a;,. Similarly, a3, is eliminated from the third equation. The
second equation is then used to eliminate a3, and as,. The third equation
is used to eliminate a,3, and so on. When this procedure is carried out to
the last equation, the result is an upper diagonal matrix as shown in Eq.
(5.19). The last equation in Eq. (5.19) directly gives T,. With T, known,
the temperature T, is determined from the (n-1)th equation, and the
computations are carried out until T, is found from the first equation.
Computer programs are easily available to solve a system of
simultaneous algebraic equations using the Gaussian elimination method.
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fa,, a, a, O 0 0 -_T 116G
1
dyp Gy dy3 Ay 0 T, G
31 Gy Gy 4y 0 T, g3
ay, 0|7, 4
(5.18)
O 0 0 an n-2 an n-1 am n “Tn - C
L d LN L~ n |
al*] al*z a; 0 0 _Tl 1T Cl* )
0 ay ay ay 0 T, Cz‘
* * 0 .
0 0 dss a? 713 C3
0 0 0 Ay 0 T4 C:
............................................ =l (5.19)
A a;-l,n—l a;—l,n n-1 C"_]
00 ..000a, LL1LG]
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Example 5.1

500 500

200 300

200 D C 300

100 100

Figure 5.7 Figure for Example 5.1.

Problem: Find the steady-state temperatures at the grid points A, B, C
and D of the two-dimensional solid with the boundary conditions shown
in degrees centigrade.

Solution
Using Eq. (5.9), the banded matrix equations we obtain are given
by Eqgs. (i-iv).

ATA + Tg +Tp =-700 6}

+TA - 4TB + TC =-800 (ll)
+Tp — 4T +Tp = -400 (iii)

+Ta  + Tc—4Tp=-300 (iv)

Divide Eq. (i) by 4 and add that to Eq. (ii):
-3.75Tg +Tc + 0.25Tp =-975. W)
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Divide Eq. (i) by 4 and add that to Eq. (iv):
0.25Tg + T¢ —3.75Tp = -475. (vi)
Multiply Eq. (v) by 0.2667 and add Eq. (iii):
-3.7333T¢ + 1.067Tp = -660. (vii)
Multiply Eq. (vi) by 15 and add Eq.(v):
16Tc - 56 Tp =- 8100. (viii)

Multiply Eq. (viii) by 0.233 and add Eq. (vii):

-11.999Tp = - 2547.3. (ix)
The upper tridiagonal matrix equations we obtain are given by Egs. (v),
(vii) and (ix),
-3.75Tg +Tc + 0.25Tp = -975 v)
-3.7333T¢ + 1.067Tp = -660 (vii)
- 11.999Tp =-2547.3 (ix)

Hence, from Eq. (ix), Tp=212.3.

Substituting this value of Tp in Eq.(vii), T¢ =237.5.

Substituting these values of Tp and T¢ in Eq. (v), T =337.5.
Lastly, by substituting these calculated values of Ty and Tp in Eq. (i),

Ta=312.5.

Matrix Inversion

As we discussed in the previous section, the two-dimensional,
steady-state heat conduction problem gives a set of algebraic equations
implicitly involving the unknown temperatures, which form a banded
matrix, as shown in Egs. (5.18). The matrix equations may be written as

AeT=C (5.20)
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where A is the coefficient matrix, C is the column vector of known
constants, and T is the vector of unknown temperatures. The
temperature vector is thus given by

T=A"eC. (5.21)
The inversion of the coefficient matrix is not complicated because it is a
banded matrix; furthermore, computer programs for carrying out this
procedure are commonplace.

Example 5.2

Problem: Re-solve the problem in Example 5.1 using the matrix
inversion method.

Solution
The finite difference equations, shown in Eqs.(i-iv) in Example
5.1, can be written as

AeT=C. 0
where
-4 1 0
I P
“lo 1 -4 1 (i

T, —-1700

T, - 800
and C= . (iii)

T, -400

7, ~300
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Inversion of matrix A gives

40| 12 24 12 24 (iv)

P -0.29167 -0.08333 -0.04167 ~-0.08333
Ty | |-0.08333 -0.29167 -0.08333 -0.04167

T, —-0.04167 -0.08333 -0.29167 -0.08333
T, —-0.08333 —-0.04167 -0.08333 -0.29167

which gives

Ta = 0.29167(700) + 0.08333(800) + 0.04167(400) + 0.08333(300) =
312.5

Ts = 0.08333(700) + 0.29167(800) + 0.08333(400) + 0.04167(300) =
337.5

Tc = 0.04167(700) + 0.08333(800) + 0.29167(400) + 0.08333(300) =
237.5

Tp = 0.08333(700) + 0.04167(800) + 0.08333(400) + 0.29167(300) =
212.5.

These are essentially the same answers as obtained by the Gaussian
elimination method in Example 5.1.
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Relaxation Method

If there are only several grid points and thus several equations,
the system of finite-difference equations can be solved by hand using a
simple calculator by the relaxation method. When there is a large
number of grid points, then a computer program may be written to solve
the equations using a personal computer.

The following steps outline the relaxation method:

Set the right-hand side of Eq. (5.9) to a residual R;; as
Ti+1J + Ti-l,j + TiJ+1 + Ti,j-l - 4Ti,j = Ri,j. (522)

In the heat conduction problem with only first kind boundary
conditions, only the temperatures at the interior grid points
are unknown. Guess temperatures for these unknowns.
Compute the residual R;j at each unknown grid point using
the guessed values. When the guessed values of the
temperatures are the true values at each grid point, the
residuals will be zero. You would not expect the first
calculation of the residuals to be all zero.

Select the largest residual, and try to reduce it to zero by
changing the guessed temperature of the corresponding grid
point while keeping the temperatures of the other grid points
constant.

Calculate the new residuals. This calculation may be done
by using the computational module shown in [Fig. 5.8]
Repeat Step 4 above.

Continue the relaxation procedure until all the residuals are
as close to zero as required.

This relaxation method is demonstrated by Example 5.3, where the
problem in Examples 5.1 and 5.2 is solved using the relaxation method.
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1
O Ri‘j-l

Figure 5.8 Two-dimensional computational
module for relaxation method.

Example 5.3

Problem: Re-solve the problem in Example 5.1 using the relaxation
method. In addition, calculate the rate of heat loss from the 100°C
surface.

Solution

The relaxation calculations for this problem are shown in
The computation is stopped while some of the residuals still have
nonzero values. The precision is acceptable because all the temperatures
are within 1°C of their true values.
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Table 5.1 Relaxation Table for Example 5.3

Point A Point B Point C Point D
R Ta R Ts R Tc R Tp

-200 400  -100 400 -100 300 -200 300
0 350 -150 400 -100 300  -250 300
-62.5 350 -150 400 -1625 300 O 237.5
-62.5 350 -190.6 400 O 2594 -40.6 2375
-110.5 350 O 352 -48.1 2594 52 237.5
1.5 322 -26.6 352  -48.1 2594 24 237.5
1.5 322 -39 352 1.5 247  -81 237.5

-19 322 -39 352 -19 247 1 217
-29 322 1 342 -29 247 1 217
-1 315 -14 342 3 239 -14 217
-9 315 2 338 -5 239 2 213
-1 313 -1.5 338 1 2375 -1.5 213

Note that we have overrelaxed the residuals to speed the calculations.
The heat loss rate from the 100°C surface is calculated as

q=kd{ 0.5(200 ~100) + (213 — 100) + (237.5 — 100) + 0.5(300 — 100) }
= 400.5 kd

where k is the thermal conductivity and d is the thickness of the solid.
The rate of heat transfer at the other surfaces may be calculated in the
same way.

5.6 Finite Difference Equations for 1-D Unsteady-State Conduction in
Rectangular Coordinates

For a system with constant thermal properties, the one-
dimensional, unsteady-state conduction problem is governed by the
equation

=2 (5.23)
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This equation is pointwise continuous, that is, it is applicable throughout
the region and space considered. Let us develop a network of grid points
by dividing x and t domains into small intervals of Ax and At, such that

7" represents the temperature at location x = iAx att = nAt. Attimet (=

nAt), the left-hand side of Eq. (5.23) can be written in finite-difference
form as

O°T| _ T +T} =21
= () ) (5.24)

The time derivative in Eq. (5.23) may be approximated in terms of
forward, backward, or central differences as

0»71 7;11+l _ Ywiu
T»" _ T»"—l
T«"H _ T."_l
% = T (5.27)

These three finite difference approximations have different error levels
and different stability properties.  From the forward-difference
approximation of time derivative, we obtain finite-difference equations
that are uncoupled and thus easy to solve, but their solutions are not
stable for all situations. The backward-difference approximation gives
equations that are coupled and thus difficult to solve, but their solutions
are stable for all situations. We now discuss the solution of the finite
difference equations by different methods.

Explicit Method

If the forward-difference approximation is used in Eq. (5.23), the
finite-difference equation is represented by
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i+l

+T‘,fl _2]’;" __1—71"7144 _J'Vin

&) @ a G2
which may be arranged as
n+ 2 At n aAt n n
T {1- (Aax)z }T,. g (7, +17,) (5.29)

This is an explicit development since the temperature T,"*' (at location i,

at time t +At) is expressed explicitly in terms of the temperatures at time
t and at locations i-1, i and i+1. When the temperatures of the grid points
are known at any particular time t, the temperatures after a time
increment At can be computed by writing an equation similar to Eq.

(5.28) for each grid point and calculating the values of T,."”. The
computation continues from one time increment to the next until the
temperature distribution is found at the required time.

For discussion and better understanding of the method, let us

consider the space increment Ax and time increment At are chosen such
that aAt/(Ax)” =0.5. Equation (5.29) then becomes

™ =0.5(1" + 1) (5.30)

In this simple case, the temperature at grid point i after one time
increment is given by the arithmetic average of the temperatures of the
adjacent points at the start of the time increment.

The coefficient of 7"may be positive, zero, or negative
depending on the values of Ax and At. For a better physical feel for

stability, let the temperatures 7, and 7", be zero, and the temperature
T be positive. In addition, if the coefficient of 7" is negative, the

temperature 7" at location i becomes negative. This is not allowed

since it would violate the second law of thermodynamics, as heat will
only flow in the direction of a negative temperature gradient. Hence, for
stable solutions the following condition has to be satisfied:
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Once Ax has been selected, this restriction limits the choice of At.

Control mass .
T, ~~aAl é Ax
X < i
al
k k-1 -2

Figure 5.9 Control mass system defined next to the boundary at x = d.

When the boundary temperatures are known, the finite difference
equation (5.29) is employed to calculate the temperatures of the internal
grid points as a function of time. If a convection boundary condition
exists, then the boundary has to be considered separately. For the one-
dimensional system shown in Fig. 5.9, the boundary condition at x =d is

Ryl WI(d)-T,} (5.32)
Ox

x=d

The finite difference form of the boundary condition (5.32) may
be expressed as

k Tkt:l _ Tkn+1 _ h{

T -1, (533)
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or ™ = 1 {T,{'_j‘ +h%xT} (5.34)

Substituting 7;"! from Eq. (5.29) into Eq. (5.34),

SRR

1l (ax) (ax) k
k

(5.35)

The effect of the heat capacity of the system next to the
boundary is not included in Eq. (5.35). If the Ax used is small, then this
approximation is pretty good since the heat capacity of the system
becomes insignificant. An improvement is to take into consideration the
heat capacity of the system shown. The conservation of energy principle
gives

Tn _Tn AxTn+l_Tn
kL WT, -T) )= pc——L—"%. 5.36
KT, T )= e S (5.36)

This equation may be written as

2
T = aAtz (&x) -2 hix =2|T +21,, +2h—Ax—T0 . (5.37)
(Ax) alt k k

The stability of the temperatures of the grid points on the surface
must also be guaranteed by the proper selection of the parameter
(Ax)*oAt. This parameter can be selected so that the coefficients of

T" for both interior and boundary grid points are either positive or zero:

(Ax)z > 2( hix + 1]

alt k

(5.38)
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Example 5.4

Problem: In Figure 5.10 is shown the initial temperature distribution
inside a uniform flat plate of thickness 40 cm. The plate experiences
convection of both sides from a coolant at 200°C, with a heat transfer
coefficient h of 18.89 W/(m>K). The properties of the solid medium are
p = 1700 kg/m’, ¢ = 0.8 kJ/(kg.K) and k = 3.778 W/(m.K). Determine
the temperatures at the grid points as a function of time.

500°C | 600 700 600 500°C

h ~\| ‘/h

T,=200 T,=200

Figure 5.10 Figure for Example 5.4.

Solution
The temperatures of the interior grid points may be calculated
using Eq. (5.29),

2aA A
Tin+1 — I:l . (;)5 :|T,‘” + (Zx)tz ( i::l + T,'_'l) (5.29)

The boundary temperatures may be found with Eq. (5.37).

Since a convection boundary condition exists on both
boundaries, for a stable solution

2
(Ax) > 2(hAx +1)
alAt k
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Also, hAx/k = 0.5, so

2
&) 5
oAt

If we choose (Ax)’ /At = 3, the computational equations become
1 .
]-;m»l — 5(]’;" + ]’;:1 + T:fl ) i=2,3,4,

T = %(21;" +T,),

0

and T/ = %(2T4" +T,).

In addition,

A= ) (0.1 x1700x0.8

3 337785107 =1200sec s = 20 min.
a x3.778 x

The temperatures at the grid points can be computed using the above

relationships as a function of time with 20-min time intervals, as shown
in Table 5.2.

Table 5.2 Results for Example 5.4

n t(mm) T1 T2 T3 T4 T5

0 0 500 600 700 600 500

1 20 466.7 600 633.3 600 466.7
2 40 466.7 566.7 611.1 566.7 466.7
3 60 4445 5482 581.5 548.2 4445
4 80 4321 5247 5593 5247 4321
5 100 416.5 5054 5362 5054 4165
6 120 403.6 486.0 515.7 486.0 403.6
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Implicit Method

In the explicit method, the requirement that aAt/(Ax)* < 0.5 for
interior grid points place a severe restriction on the time increment At.
For problems involving large values of time, this may result in excessive
computation. The implicit method overcomes this shortcoming by using

a slightly more complex calculation. In this implicit method, 8°T / &*
is converted to the finite difference form evaluated at t + At, and 0T/t is
replaced by the backward finite difference form. The governing finite
difference equation is thus

Tn+1 +T;:+] _2Tin+1 1 Tin+l __Tin

i+

= 5.39
(Ax) ‘N :39)
This equation may be rewritten as
n 2 At n+ At H+ n+

Notice that the above formulation does not allow the explicit evaluation
of T in terms of 7,". At any time level, writing Eq. (5.40) for all the
grid points produces a family of algebraic equations that must be solved
simultaneously to find the temperatures 7"*'. These finite difference

equations can be solved by the methods discussed previously, that is, by
using Gaussian elimination, matrix inversion or relaxation methods. The
advantage of this method is that there is no restriction on the step size Ax
or the time increment At for stable solutions. It is obviously more
complex than the explicit method of solution.

The Crank-Nicolson Method

In this method, the arithmetic average of Eqs. (5.28) and (5.39)
is taken, giving

n no_ n n+l n+l _ n+l ‘n+l _ ‘n
l 7—;+1 +7’;—1 > 271! _+_ Z-H +Y‘i—l 5 27‘! — lj-‘l 7-'1 . (5.41)
2| () (&) « A
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This equation may be re-written as

2[”(3 }T Ay 2[ o ]T" o 75211

(5.42)

Equation (5.42) is similar to the implicit method Eq. (5.40) since the
Crank-Nicolson method is a variation of the implicit method. It can be
shown that for all values of aAt/(Ax)*, the Crank-Nicolson method is
stable and converges. In addition, its truncation error is of the order of
{(Ax)* + (At)’ }. Both the explicit and implicit methods discussed
previously have truncation errors of the order of magnitude of {At +
(Ax)’}. So, the Crank-Nicolson method shows significant improvement
over both those two other methods. However, the finite difference
equations obtained by applying Eq. (5.42) are a little more complex than
the equations of even the fully implicit method.

Another method can be designed by using a weighted average of
Eq. (5.28) and Eq. (5.39). In the literature, there are many other methods
of finite differencing derived in a similar manner.

5.7 Finite Difference of 2-D Unsteady-State Problems in Rectangular
Coordinates

With constant thermal properties, the governing equation for a 2-
D solid under heat conduction is

ST P*T 16T
+ =——
&* 8 ad

(5.43)

At time t = 0, the initial temperatures at all interior grid points and points
on the boundaries are known. After time t = 0, the boundaries are at the
first, second or third kind of boundary conditions. The solid domain is
divided into a rectangular grid, as was done before, in



i Y
/ \
( >
¥ ¥ A/
o
B SR SN ¥
i,j-1
Y
\
Ax | Ax
X

Figure 5.11 Grid points for a rectangular grid system.

As shown in the one-dimensional, unsteady-state case, the finite
difference form of Eq. (5.43) can be written in a number of different
ways. The explicit finite difference of Eq. (5.43) is

T"

i+l

t, 220 T+ 15, —2T 1 LT . (5.44)
(Ax)’ (Avy a M

The temperature at any specific time is represented in terms of known
values of the previous time step. If the increments in x and y are selected
to be the same, then Eq. (5.44) can be written as

At 1 n n 14 n
= {1:1[ Ti—l T}+l+Tlll} li ( )Z}T

(axy

n+l
Ly =
(5.45)
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As in the case of a one-dimensional, unsteady-state problem, the explicit
method is only stable for limited values of Ax and ¥¢. In the case of the
first kind boundary condition, fort 0, the limit of stability is given by

alt < l
(Ax) 4

Equation (5.45) can be used to find the temperatures of the
interior grid points. If the boundary conditions are other than the first
kind, then finite difference relations have to be developed for the points
on the boundary. This procedure has been illustrated for the 1-D case.
For example, if there is a convection boundary condition, the finite
difference equation for a point on the boundary is

(5.46)

2
i~ [2%‘"@, FOTY 4T + T +{(§"A), —2”—,@‘-"——4}%:;]

(5.47)

where T, is the temperature of the surrounding fluid. For the current
problem, the condition for stability is

2
(&) > 2(%5 + 2). (5.48)

An implicit formulation of Eq. (5.43) is given by

n+l n+l n+l n+l n+l n+l n+l n
Ti+1,j +Ti—l,j _2T;,j + Ti,j+1 +Ti,j—1 _2Ti,j ___‘I_Ti,j _Ti,j . (5.49)
(ax)’ (ay)y a M

If we put Ax = Ay, then Eq. (5.49) gives

n 4aAt n+ aAt n+ n n+ n+
Ti,j = {1 + (Aax)z }Ti,j - (AX)2 {Ti+ljj + Ti-l,lj + Ti,j+ll + Ti,j—ll} (550)

b r e n . Copyright n 2003 by Marcel Dekker, Inc. All Rights Reserved.



Although this implicit formulation is stable for all values of Ax and At, it
is a little more difficult to solve than the explicit formulation. At each
time step, a number of simultaneous algebraic equations have to be
solved, depending on the number of grid points.

Example 5.5

Problem: The 2-D body shown in Fig.5.12 is initially at a uniform
temperature of 100°C. For times 0, the boundary temperatures are
kept at the levels shown in Fig. 5.12. Compute the temperatures at
points A, B, C and D as a function of time.

Solution

aAt 1 : . .
=— Using the explicit formulation, the

ut  — .
(ax) 4
temperatures Ty, Tp, Tc and Tp are given by the equations written below.

P

500 500

200 300

200 D C 300

100 100

Figure 5.12 Figure for Example 5.5.
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T = %(700 +T) +T}) Ty = %(800 +T) +T7)
T = %(400 +T) +T;) o = -‘1;(300 +T +T7)

Table 5.3 Results for Example 5.5

n t TA TB TC TD

0 0 100 100 100 100

1 At=(Ax)/4a 225 250 150 125

2 2At 268.8 293.8 193.8  168.8
3 3At 290.7 315.7 2157 190.7
4 4At 301.6 326.6 2266 2016
5 5At 307 332 232 207
6 6At 310 335 235 210
7 7At 311 336 236 211
© o 312 337 237 212

5.8 Finite Difference Method Applied in Cylindrical Coordinates

The finite difference methods that have been applied to
rectangular coordinates may be similarly applied to cylindrical
coordinates and spherical coordinates. The discussion for the problem in
cylindrical coordinates is done in this section. Without energy sources or
sinks, the governing steady-state equation for a medium with constant
thermal conductivity in cylindrical coordinates is

G 14r 1 0°T J*
+——t— +
at ra rrevr &

=0. (5.51)

When the temperature has no dependence on the z-coordinate, the
equation becomes

AT 1T 1 67T
e
a4t ra& oo

=0. (5.52)
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Ar Ar

Figure 5.13 Finite difference grid for cylindrical coordinates.

Equation (5.52) may be represented in finite difference form at the point
(i,j) shown in Fig. 5.13 by

T;'+1,j

-T

i-l.j

T.

i,j+1

+7 2T

ij-1  “lig

+7,,,;, - 2T, +_1_T

ij i+l,j + _1—

&y o w7 (@)

(5.53)

where r; = iAr. Atr = 0, Eq. (5.53) becomes T¢c = T, where T¢ =
temperature at r = 0, and T,, = mean temperature of the grid points that
surround r = 0.

When Eq. (5.53) is applied to all the grid points, with the
appropriate boundary conditions, the result is a system of simultaneous
linear algebraic equations not dissimilar to those obtained in rectangular
coordinates.
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For problems with no 6 dependence, that is, T is only a function
of r and z, then the governing equation is

2 2
T LT P, 559

The finite difference form of Eq.(5.54) may be written as

T, .+T, 2T, 17T, T T .., +T7T ., 2T,

i+1,j i-1j — “tij il tiny ij+ ij-1~ “tij -0

@y o (o)

(5.55)

where j is the number of increments in the z direction, and i the number
of increments in the r direction. At r = 0, the Laplacian in Eq. (5.54)
reduces to

2 2
IT T _y (5.56)

20’%2 &*

which be represented in finite difference form quite readily.

The unsteady-state problems in cylindrical coordinates can be
handled in ways that are similar to the ones discussed here.

5.9 Truncation Errors and Round-Off Errors in the Finite Difference
Method

Consider a function T(x) and its derivatives to be single-valued,
finite, and continuous with respect to x. The Taylor series expansion of
T(x + Ax) about T(x) may be written as

dT 1 d°T ., 1d°T 3
Tx+A)=T(x)+—{ Ax+— Ax) +— Ax
(et Ax) =T()+ 2!dxzx() 3!dx3x()

... Higher order terms (H.O.T.)
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dar 1d*T , 1d°T 3
T(x=Ax)=T(x)- " Ax+— Ax) —— Ax
(=) =7 = e 2 S5 (0 =55 (00

+...H.O.T.
(5.58)
Adding Eqs. (5.57) and (5.58),
d’T

(Ax) + 0{(Ax)“ (5.59)

X

T(x + Ax) + T (x — Ax) = 2T(x) +

dx2

where the last term in Eq. (5.59) represents terms in the fourth and higher
powers of Ax. Equation (5.59) may be written as

4’| _ T(x+Ax)+T(x—Ax)—2T(x)+0[(A)21

o ™ (5.60)

X

Comparing Eq. (5.60) to Eq. (5.6), the finite difference approximation of

d’T
( 5 J has a truncation error of the order of magnitude of (Ax)’.

If we subtract Eq. (5.58) from Eq. (5.57), and rearrange, we
obtain

d_T
dx

_ T(x+Ax)~T(x - Ax) )
= — + 0{(Ax) (5.61)

X

Comparing Eq. (5.61) to Eq. (5.4), we can see that the finite difference
approximation of dT/dx has a truncation error of the order of magnitude
of (Ax)%.

From Eq.(5.57), the first derivative of T with respect to x may
be written as
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dr
d

_T(x+ ixi —T() | ofx} (5.62)

X

Similarly, from Eq. (5.58),

ar
d

_ T(x)—T(x—Ax)_l_O{Ax}.

5.63
o (3-63)

x

The other two approximations for the first derivative of T with respect to
x have truncation errors of the order of magnitude of Ax. Thus, the
central difference formulation is more precise than the other two.

The truncation errors are inherent in the finite difference method
and cannot be eliminated. The errors may be reduced by selecting a finer
grid. In other words, smaller increments for space and time will reduce
the truncation errors.

Numerical solutions are carried out to a finite number of
significant figures; the numbers are rounded-off and thus, round-off
errors are introduced. Round-off errors compound, and this may result in
a large cumulative error. It is difficult to estimate the order of magnitude
of the cumulative round-off errors. The use of smaller increments in
space and time increases the accumulation of round-off errors, even
though they lead to less truncation errors.

5.10 Stability and Convergence

The precision of a finite difference numerical method depends
on its “stability” and “convergence”. The precision is dependent on the
step sizes employed, and an increase in precision is attained with
increased labor.

A numerical method is convergent if the solution obtained
approaches the exact solution as the increments in time and space
approach zero. The numerical solution has to converge to the exact
solution in the limit; otherwise, it is not convergent.
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As discussed in the previous section, there are truncation errors
and round-off errors associated with finite difference methods. If these
errors increase as the solution method proceeds and this increase is
unbounded, the solution is said to be unstable. A numerical method that
does not allow the increase in errors is said to be stable. Stability is thus
necessary for convergence. It is easy to see that if the errors increase at a
faster rate than that at which convergence is approached, than instability
also exists. The next few paragraphs outline the method to determine the
stability of finite difference methods, first presented by O’Brien, Hyman
and Kaplan in the Journal of Mathematical Physics, 1951.

Consider the explicit finite difference form of the one-
dimensional, unsteady-state heat conduction equation, Eq. (5.29),

+ 2aA n A n n
7 {1‘(;)5}” +(Zx)’2(,.+1+7;_1) (5.29)

The solution of the governing equation, Eq. (5.23), can be expanded at
any specified time t into a Fourier series in x. Neglecting the coefficient,

a typical term in this expansion will be of the form w(f)e”™.
Substituting this term into Eq. (5.29), the form of ¥(t) may be found,
and a criterion determined as to whether it remains bounded in the limit
as t becomes very large. Carrying out the substitution,

; 2aAt ; oAl T o
t+ANe” =|1- (e +—— o T pir(x-0x) o).
(5.64)
This may be written as
w(t+ At) —1- daAt in? ZA_’E (5.65)

s .
At (Ax) 2
For stability, ¥(t) must be bounded as At and Ax approach zero. This
requirement becomes
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4aAt 2 yAx

1——@—)751 —

max| <1 for all values of y.. (5.66)

In the actual case, components of all frequencies of y can be present.
Even if they are not present in the initial conditions and are not
introduced by the boundary conditions, they may be introduced by the
round-off errors. For condition Eq. (5.66) to be satisfied,

alt <l
(axy ~ 2

(5.67)

Hence, Eq. (5.67) is the necessary (and sufficient) stability criterion for
the explicit finite difference equation, Eq. (5.29).

PROBLEMS

5.1. Find the steady-state temperatures at the grid points A, B, C and D
of the two-dimensional solid with boundary conditions shown in
degrees centigrade. The grid shown is square. Use the Gaussian
elimination method.

100 100

50 50

50

20 20

Figure for Problem 5.1.
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5.2. The diagram below represents a 2-D conduction system with
steady state boundary conditions in °C as shown. Calculate the
temperatures at the internal node points, A, B, C and D. The grid
shown is a square grid. State assumptions.

60 60

30 0

30

Figure for Problem 5.2.

5.3. For some situations in heat conduction it is more convenient to use
the grid shown rather than the conventional square or rectangular
grid. All the triangles are equilateral with sides of length /.

Figure for Problem 5.3.
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Establish a generalized notation for the nodes of the grid, and
write the Laplace equation in finite difference form using the

notation you have established.

A turbine blade profile (in dashed lines) may be approximated by
the square grid mesh as shown in the figure. With the boundary
conditions as shown in °F, find by the relaxation method the

internal temperatures at points 1, 2,3,4,5,6, 7 and 8.

5.4.

f
]
)
!
|
I
t
1
\

Figure for Problem 5.4.

5.5. The cross-area of a metallic bar is shown in the figure. The
boundaries are insulated except for the two faces shown, which are
maintained at 150°C and 25°C respectively. The grid shown is
square, i.e., Ax = Ay. Estimate the steady-state nodal temperatures

of the metal.
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Figure for Prob.5.5.

5.6. The temperature of the 2-D solid in Prob. 5.1 is initially at 20°C.
The boundary conditions are suddenly changed at t = 0 to the
values indicated in Prob. 5.1 and maintained at these values for
times t > 0. Estimate the temperatures at points A, B,Cand D asa
function of time. Take the thermal diffusivity & = 0.01 m?%/s, Ax =
Ay = 0316 m, and At = | sec. By using the steady-state
temperature distribution of Prob. 5.1, deduce the approximate time
to reach steady state.

5.7. The temperature of the 2-D solid in Prob. 5.2 is initially at 0°C.
The boundary conditions are suddenly changed at t = 0 to the
values indicated in Prob. 5.2 and maintained at these values for
times t > 0. Estimate the temperatures at points A, B,Cand D as a
function of time. Take the thermal diffusivity & = 0.2 m%s, Ax =
Ay =1 m, and At = | sec. By using the steady-state temperature
distribution of Prob. 5.2, deduce the approximate time to reach
steady-state.

5.8. Solve Prob. 5.6 using an implicit method.

5.9. Solve Prob. 5.7 using an implicit method.
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5.10. Solve numerically the two-dimensional transient heat conduction
problem of a square plate. First write down the Fourier equation
in finite difference form with second-order accuracy in space and
first-order accuracy in time. Divide the square plate into 3 x 3
squares, i.e., with 4 internal points. Consider the plate to be at
20°C initially. At time t = 0 sec, the top boundary is kept at
100°C, and the left boundary is kept at 100°C. The other two
boundaries are maintained at 20°C. Take the thermal diffusivity
a=0.1 m%s, Ax = Ay =1 m, and At = 1 sec. Solve for the first
five temperature profiles within the square plate,i.e., from zero
up to and including five seconds.

5.11. Find the steady-state temperatures at the grid points of the two-
dimensional solid with boundary conditions shown in degrees
centigrade. The long sides of the solid are insulated. The grid
shown is square. The solid is a long rod made up of two
materials, A and B, such that ku is 0.01 the value of kg. The
contact interface is 45° to the horizontal.

AP AP A AP AL AL AD A4
T=0C—p, 4— T=100°C
//f////////f/// S

(1,5) Ka k(g5

0
(7,4) 100

0
(6,3) 100

0
(5,2) 100

0
100

@1

Figure for Problem 5.11.
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The contact interface is the straight line going through the points (4,1),
(5,2), (6,3), (7,4) and (8,5).

Gaussian Elimination Method

Finite difference of the two-dimensional, Laplacian equation
Produces a banded coefficient matrix for the conduction equation
The first step is to transform the matrix into an upper diagonal form
The first aperation is to multiply the first equation by a21/all.

The resulting equation subtracted from the second to eliminate a21.
Similarly, the third equation is rid of the term in a31
The second equation is then used to eliminate a32 and a42
The third equation is used to eliminate a43, and so on.

The upper diagonal form of the coefficient matrix is thus obtained
The last equation directly gives the temperature Tn
With Tn known, Tn-1 is found from the (n-1)th equation
Computations are carried out until T1 is found from first equation.

K.V. Wong

MARCEL
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6

Equations for Convection

The equations for convection are the continuity or conservation
of mass equation, the momentum equations and the energy equation.
From the dimensionless equation of energy, useful dimensionless
numbers are obtained.

6.1 Continuity

The continuity equation is the conservation of mass equation. It
is derived by a mass balance of the fluid entering and exiting a volume
element taken in the flow field. In Fig. 6.1, consider a differential
volume element AxAyAz. For ease of understanding, we shall consider
steady, two-dimensional flow with velocity components u(x,y) and
v(x,y) in the x and y directions, respectively.

A

M,
y-axis M, + gy Ay
4
M,=puAyAz —p Ay —> I, +5g Ay
Ax
b2 H
; A
| M,=pvAxAz
' >
0 X x-axis

Figure 6.1 Control volume for continuity equation.
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The conservation of mass may be stated as

[ Net rate of mass flow entering ] [Net rate of mass flow enteringj

volumeelementin x direction volumeelementin y direction

6.1)

If the mass flow rate into the volume element in the x direction through
the surface x is M,= puAyAz, then

Net rate of mass flow enterin
Howentering) M, 1 -0 iy
volume element in x direction x ox

(6.2)

If the mass flow rate into the volume element in the y direction through
the surface y is M, = pvAxAz, then

Net rate of mass flow enteri oM
[ et rate of 1 w nerng:_ yAy:—ﬁgu)MAyM

volumeelement in y direction &
6.3)
Substituting Eqgs. (6.2) and (6.3) in Eq. (6.1) and simplifying,
2 ¥
If the density is constant, Eq. (6.4) simplifies to
ﬁl— + _ﬁi_ =0. (6.5)
A& oy

Equation (7.5) is the continuity equation for a two-dimensional, steady,
incompressible flow in rectangular coordinates.

6.2 Momentum Equations

The momentum equations are derived using Newton’s second
law of motion. This law states that the external forces acting on a body
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in a given direction is equal to the mass times the acceleration in the
same direction. The external forces may be classified as body forces and
surface forces. The surface forces are from the stresses acting on the
surface of the volume element. The body forces include gravitational,
magnetic and electric fields acting on the body of fluid. Newton’s
second law may be stated as

{acceleration in ] [Body forces acting) (Surface forces acting]
(Mass = + .

direction j in direction j in direction j

(6.6)

For three-dimensional flow, for instance, in rectangular coordinates,
Eq.(6.6) gives three independent momentum equations. For ease of
understanding, we consider steady, two-dimensional, incompressible
flow with constant properties having velocity components u(x,y) and
v(x,y) in the x and y directions, respectively.

The mass of a differential volume element is given by
M = pAxAyAz 6.7)

For a three-dimensional, unsteady flow field, with velocity components
u,v and w in x, y and z directions, respectively, the rate of change of a
property 6 in the flow field is provided by the substantial or total
derivative DO/Dt defined as

Do 68 8 o9
— =t U—+tV—+W—. 6.8)
Dt & & 174

We consider steady, two-dimensional flow with velocity components u
and v. The corresponding acceleration in the x direction is

D ou u
g U—+v— (steady, two-dimensional flow) (6.9)
Dt 17, &

and the corresponding acceleration in the y direction is
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07
—=U—+V-— (steady, two-dimensional flow). (6.10)

Without specifying the nature of the body forces, if B, and B, are
the components of the body forces acting per unit volume of the fluid in
the x and y directions, respectively, then

Body forces acting on
TR | = B AxAYAz 6.11)
AxAyAz in x direction
and
Body forces acting on
R T = B AxAyAz (6.12)
AxAyAz in y direction

In are shown the surface stresses on a differential

volume element. The normal stresses in the x and y directions are shown
by o, and o,, respectively. The shear stresses are shown by 1,y and 1y,
where the first subscript denotes the axis to which the surface is
perpendicular and the second subscript denotes the direction of the shear
stress. Hence, 1., is the shear stress acting on the surface AyAz (the
surface at right angles to the x axis) at x in the direction y. The net
normal surface force acting on the element in the positive x direction is
(0/0y)(oxAyAz)Ax, and the net shear force acting on the element in the
positive x direction is (6/0y)(t,xAxAz)Ay. Thus, the net surface forces
acting on the element in the positive x direction is

(Net surface forces ]

or
tsurfaceforces ) [ 00, 7w |neyaz. (6.13)
acting in x direction &

o

The net surface force acting in the y direction can be similarly found
to be

acting in y direction

Net surface forces do, Jr,
= +—2 |AxApAz (6.14)
& &
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y-axis

(o, +——4y)
Ty
A M + az_ .
(T, +——4A)
_— &
txy
o
Ox <—l Ay T_—’ (o, + d: Ax)
Ax
-------------------------- or,,
y S E— (r, +— A&x)
: T &
] yx
i l Oy
>
o X X-axis

Figure 6.2 Surface stresses on the volume element.

Equations (6.7), (6.9), (6.11) and (6.13) are substituted into Eq. (6.6), and
the x-momentum equation is

or
p(uéu—+v@)=3x +£+—"x.
& o &

Equations (6.7), (6.10), (6.12) and (6.14) are substituted into Eq. (6.6),
and the y-momentum equation is

(6.15)

do, Or
p(u%+v%)=3y+ éy‘v + a;y. (6.16)
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The various stresses have to be related to the velocity components; a
discussion of this matter is provided by Schlichting, 1979 [1]. For the
two-dimensional, incompressible, constant property Newtonian fluid
flow under consideration, the stresses in Egs. (6.15) and (6.16) are
related to the velocity components by

T, =T, =U M P (6.17)
34 J ay &x

du
. =—-p+2U4— 6.18
x p ﬂ&x (6.18)
o
=—p+2u— 6.19
o, P+“ay (6.19)

where p is the pressure and p is the dynamic viscosity of the fluid.

When the stresses in Eqgs. (6.17) to (6.19) are substituted into

Egs. (6.15) and (6.16), the x- and y-momentum equations are obtained as
p(u%+v8—u) =B —a—P+u(82u + AL

ox dy ook K oy’

) (6.20)

d oP v d%
. —). 6.21
x5 "o u P + &yz) (6.21)

Equations (6.20) and (6.21) are the x- and y-momentum equations for the
steady, two-dimensional flow of an incompressible fluid with constant
properties.

In Egs. (6.20) and (6.21), the terms on the left-hand side are the
inertia forces, the first term on the right-hand side is the body force, the
second term is the pressure force, and the last term within brackets is the
viscous forces acting on the fluid element. With known body forces By
and B,, the continuity equation (6.5) and the two momentum equations
(6.20) and (6.21) are three independent equations for the solution of the
three unknown quantities u, v and p for the steady, two-dimensional flow
of an incompressible fluid. The solution of these equations are not
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simple except for a few special cases. The various terms are relevant in
convective heat transfer. In the following chapters on convective heat
transfer, the governing equations for velocity distribution will be
obtained from these equations with the appropriate simplification in each

situation.
y-axis
A a0
, +#Ay>
00,
Qeaiyrz  —| Ay —> Q75 "0
Ax
y | : T
|
i
! Qy=q,AxAz
!
' >
o) X X-axis

Figure 6.3 Heat addition by conduction.
6.3 Energy Equation
The energy equation may be derived using the first law of
thermodynamics for a differential volume element in a flow field. In the
absence of radiation and heat sources or sinks in the fluid, the energy

balance on a differential volume element AxAyAz about a point (X,y,z)
may be expressed as

MARCEL
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(Rate of heat addition

into element by conduction

H

and body forces

[rate of increase of energyJ

stored in element

J

Rate of energy input into element
] +1 due to work done by surfaces stresses

(6.22)

The following is the derivation of Eq. (6.22) in mathematical terms, for a

steady, two-dimensional,
temperature variation and velocity components are in the x and y

constant property flow

in which the

y-axis
A é(vo,)
(vo, + ———A4y)
g a(
ur
(U, + @yx Ay)
_uc" Jvr,,)
xy
(v, + = Ax)
d(uo,)
y _VTW (o, +——Ax
_______________________ _:___.._ﬂ_‘
I
]
P omUTyy l
|
E -vo,
' —>
O X-axis

Figure 6.4 Frictional work done by the surface forces.
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directions only. In other words, it is assumed that there is no flow or
temperature variation in the z direction.

Referring to| Fig. 6.3) if q« and q, are the heat fluxes in the x and y
directions, the net rate of heat addition into the volume element is

H= - (@ Ax + f% AyJ = —(% + ﬁX—)AxAyAz (6.23)
iz & &

where the heat fluxes are provided by the Fourier law. Assuming
constant thermal conductivity,

2 2
H= k[i'xT + 2 TJAxAyAz. (6.24)

2 @)2

If By and By are the body forces acting per unit volume of the
fluid in the x and y directions, respectively, while u and v are the
corresponding velocity components, respectively, the increase of the
potential energy is

(uB, + VB, )AxAyAz. (6.25)
The rate of energy input into the volume element AxAyAz due to work
done by the normal stress o is given by

|:— uo, +{uoc, + 2 (uo, )Ax}}AyAz = AxAyAzi (uo,) (6.26)
& 171
and that done by the normal stress o, is
7 17
-vo, +{vo, + 5 (uo,)Ay} |AxAz = AxAyAz E (vo,). (627)

In addition, the rate of work done by the shear stress 1, and 14, are
respectively given by
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—ut, +{ut, +%(u‘t‘yx)Ay}AxAz = AxAyAz >

wr,)  (6.28)

-vT,, +{vt,, + gx— (v7,, )Ax}AyAz = AxAyAz % vT,,)- (6.29)

Hence, the rate of energy input owing to the frictional work done by the
stresses on the volume element (sum Egs. (6.26) to (6.29)), is given by

d d d d
{g (uO'X )+ g (VO"\, )+ a(u’r” )+ 5 (VTyx )}AxAyAz (6.30)

The total rate of energy input into the volume element owir.g to the work
done by the body forces and the surface stresses is

I=
d d d d
{uBX +vB, + Sx—(ucx )+ b;(va), )+ g(vl'xy) + —é;(u”ryx) AxAyAz.
(6.31)
The energy of the fluid volume element comprises the specific
internal energy e per unit mass and the kinetic energy per unit mass

which is 0.5(u’+v?). The internal energy of the volume element AxAyAz
is

ple+0.5(® +v? JAxAyAz. (6.32)

The rate of increase of the energy contained in the volume element is
given by the total derivative of the quantity in Eq. (6.32),

J= p{—+l%(u2 +v? JAxAyAz (6.33)

where the total derivative D/Dt for two-dimensional, steady flow is
defined as
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Equations (6.24), (6.31) and (6.33) are substituted into Eq. (6.22), and
the resulting expression is simplified.

p%+§§(y2 +v2)=

k(o;;z +%J+[qu +VB, +%(uax)+%(vay)‘*'%(vrxy)"'%(ury")]

(6.34)

Add Eq. (6.15) multiplied by u to Eq. (6.16) multiplied by v:

oo or or
Eg—(u2+v2)=qu+vB su ey P T, T
2 Dt g 75 174 177 %%
(635)

Subtract Eq. (6.35) from Eq. (6.34),

2 2
p 2 T O g, Pyr P R (636)
Dt &* & &

since g(uax )— u




When the stresses in Eqs. (6.17) to (6.19) are substituted in Eq. (6.36),
pe_for on) [ %2{6_”)2_ LW 2 B -0
o A T )T P Tt ) TP T e 3 ox

SO i e A Y PV N Lo 6.37
k[é{z+@2] ”[2(@:)”(0}) (5%)] (6.37)

Thus, the energy equation for the two-dimensional, steady,
incompressible, constant property flow is

De AT 5T
— =k + + 6.38
P (@Cz @ZJ 7 (6.38)

where the viscous-energy dissipation term  is defined as

_faY (@Y, (&, &
¢=2{(ch +[0})} [@C+0}] (6.39)

1f the density is constant, the term De/Dt may be approximated as

De e, Bl (6.40)
Dt Dt

The energy equation for constant density flow becomes

2 2
pC,,(u%CT—+véT—}=k(a T+a TJ+,u¢ (6.41)

&y & g

where ¢ is given by Eq. (6.39).
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The left-hand side of the equation represents the convective heat
transfer, the first bracketed term on the right-hand side represents the
conductive heat transfer, and the second term represents the viscous
energy dissipation owing to friction in the fluid.

For many practical engineering cases, the flow velocities are
moderate and the viscous energy dissipation term may be neglected. The
Eq. (6.41) simplifies to

Jor or O*'T 6T
pCP(u?a—c‘-i-Va/—]:k(@cz + @;ZJ (6.42)

When there is no flow, Eq. (6.42) reduces to the conduction equation
with no heat generation, which is expected.

6.4 Summary of Governing Equations

Table 6.1 The continuity equation in different coordinate systems.

Vectorial Compressible -
(%p +V.(poV)=0

-

Incompressible | v 7 = 0

Rectangular (x,y) | Compressible 070 + é (pu) + — ( ) =0

a o 1%
Incompressible | ¥ n _@ -0
& &
Cylindrical (r,z) | Compressible | 5p 1 &
p+——<prv>+—(pw) 0
a ra
Incompressible & v &

L+L4+—==0
ad r &
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Table 6.2

The momentum equations for a steady-flow, two-
dimensional, incompressible, Newtonian fluid with constant properties in
different coordinate systems.

Rectangular

X- 2 2
momentum | p| y—+v— :Bx__@+ J 512"+0”72"
&y & & G
& v %y
y- pu—+v———j=Bv—§e+,u( > >
momentum & & & & oy
Cylindrical
2 2
L o P
momentum ac rea
&, H, @ (I, 1w, v,
p[v’7+v: & szr?i;“l[ & ra  ar ]
y A
momentum

Table 6.3 The energy equations for a two-dimensional, incompressible,
Newtonian fluid with constant properties in different coordinate systems.

Rectangular

Vectorial

2.
dimensional

, DT _
pC) D

pC,,(u%+vézJ =k(

o=(%)

kV2T + ug

o'T
@62

&y

+
@}2

(5){&3]
+| = | }+]| —+—
&y & &

o*T

J+ u¢p where
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Cylindrical

DT
Vectorial PCp Dr =kV?T + ug
!
2- a ar\_ ,(éT 1ér T
dimensional pCP(V,;+V, E] _k[ b +;§+ &t J+#¢
where

2 2 2 2
f]
o r 74 ad &

The equations of continuity, momentum and energy are
summarized in[Tables 6.1] 6.2 and 6.3, respectively. The vectorial forms
in Tables 6.1 and 6.3 are provided for scholars of heat transfer that would
like to go to three dimensional applications. The equations in cylindrical
coordinates may be obtained from the rectangular coordinate equations
by the use of the appropriate transformations.

Example 6.1

Problem: Derive the continuity equation in rectangular coordinates for a
three-dimensional flow having velocity components u, v and w in the
primary directions.

Solution
Consider a differential volume element AxAyAz. The
conservation of mass may be stated as

Net rate of mass flow entering Net rate of mass flow entering
+
volume element in x direction volume element in y direction

N Net rate of mass flow entering Net rate of increase of mass
volume element in z direction [

within the volume element

(1)

The net rate of mass flow entering the volume element in the x direction
is
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92 piapaz
Py .

Similarly, the net rate of mass flow entering the volume element in the y
direction is

- MAxAyAz.
%y

Similarly, the net rate of mass flow entering the volume element in the z
direction is

2% papaz
174
The net rate of increase of mass within the volume element is

P» AxAyAz .
a
Substituting in Eq. (i),

o(pu) o)  pw) __p
& & & a

Written vectorially, the continuity equation is %D +V.(pV)=0.

6.5 Dimensionless Numbers

The momentum and energy equations are very difficult to solve
except for simple cases. For many cases of practical interest, the
convective heat transfer is studied experimentally and the results are
presented in the form of empirical equations that relate dimensionless
numbers.

The following discussion is restricted to two-dimensional,
steady, incompressible, constant-property flow. For simplicity, the body
forces are neglected. The effects of body forces are considered in the
chapter on natural convection. To nondimensionalize the appropriately
reduced form of the governing equations from Tables 6.1-6.3, we select a
characteristic length L, a reference velocity U., a reference temperature
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T., a reference temperature difference AT, and define the following
dimensionless variables:

x=%, yv=X p-_L2 (6.43)
L L pUZ

vt oy g=-IL (6.44)
U U AT

-} w©

The quantity with value twice the dynamic head has been used to make
the pressure dimensionless. The dimensioniess continuity, x-momentum,
y-momentum and energy equations are as follows:

i 645
X
2 2

TSN N 646

aX oY aX ReldX 174

2 2

Uﬂ+Vﬂ:—é€+—l— 0”1;4_0”12/ (6.47)

oY %) 4 Y Rel gy %) 4

2 2

Uég+ V~0”_0_ _ 1 o6 + o6

17,4 Y RePrlax? or?

2 2 2
A AN}
Re aX o ax o
(6.48)
where the dimensionless numbers are defined as
UZ
E = —=— =Eckert number (6.49)
C,AT
Copt v
Pr= 0 = — = Prandt] number (6.50)
a
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Re = UL = Reynolds number (6.51)
v

L
—EC—Pkg”— = PrRe =Peclet number (6.52)

Pe =

The Eckert number may be considered as the comparison of the
temperature rise caused by the dynamic pressure U2/ C,, with the

reference temperature difference T. The Prandtl number is the ratio of
molecular diffusivity of momentum, v, to the molecular diffusivity of
heat, a. The Reynolds number is the comparison of the inertial force

(UZ/L) to the viscous force (0WU2/L?). The Peclet number is the
comparison of energy transferred by convection ( pC,U_4AT) to that

transferred by conduction (KAAT/L). It is used to compare the relative
size of the term in conduction to that in convection in the governing
equations with the objective of simplifying the governing equations. The
heat transfer in forced convection depends on the three dimensionless
groups, E, Pr and Re. For gases, Pr is of the order of unity. For liquids,
Pr ranges from about 10 to 1000. For liquid metals, Pr ranges from about
0.003 to about 0.03.

The heat transfer between the fluid and the wall surface of a
solid is given by Newton’s law of cooling as

qAT (6.53)

where h is the heat transfer coefficient and AT is the difference between
the wall surface and the mean fluid temperatures. For flow over solid
bodies, the main stream temperature T is taken as the mean fluid
temperature. For flow inside pipes, a bulk fluid temperature as defined
in a later chapter is taken as the mean fluid temperature. If the main flow
is in the x direction, the heat flux q is related to the temperature gradient
by

q=—ka—T

6.54
Y (6.54)

wall
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From Egs. (6.59) and (6.60),

haT= kL (6.55)

y=0

In dimensionless form,

hl o6
Nu = “k— = —?iY— ¥=0 (656)
. . R T-T
where the dimensionless quantities are Y = y/L and 6= ATw . The

dimensionless number Nu is called the Nusselt number and compares the
convective heat transfer coefficient to the conductive coefficient. It is
clear that the Nusselt number depends on the same groups as the
temperature distribution. Hence, the Nusselt number is a function of the
Eckert, Prandtl and Reynolds numbers, and the following functional
relationship may be written:

Nu =Nu(Re,Pr,E). (6.57)

The Eckert number only enters the problem when the viscous dissipation
term in the energy equation is significant. For moderate velocities, the
viscous dissipation term may be neglected. Under such conditions, the
forced convection is characterized by

Nu = Nu(Re,Pr). (6.58)

Hence, in experimental heat transfer, the number of variables to be
studied is significantly reduced. The Nusselt number or heat transfer
coefficient is correlated to only two dimensionless numbers.

6.6 The Boundary Layer Equations

Typically, the effects of the viscous forces originate at the solid
boundary of the body of fluid. The fluid contained in the region of
substantial velocity change is called the hydrodynamic boundary layer,
Prandtl, 1904 [2]. Similarly, if the fluid and the solid are at different
temperatures, the region of substantial temperature change in the fluid is
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called the thermal boundary layer. The hydrodynamic boundary layer is
caused by viscosity of the fluid, and it shows the resistance to flow by
the fluid. The thermal boundary layer is caused by the thermal
conductivity of the fluid, and it shows the resistance to heat transfer by
the fluid.

The boundary layer equations may be obtained from the
equations provided in 6.3, with simplification and by an
order-of-magnitude study of each term in the equations. It is assumed
that the main flow is in the x direction. The terms that are too small are
neglected. Consider the momentum and energy equations for the two-
dimensional, steady flow of an incompressible fluid with constant
properties. The dimensionless equations are given by Eqgs. (6.46) to
(6.48). The principal assumption made in the boundary layer is that the
hydrodynamic boundary layer thickness &6 and the thermal boundary
layer thickness &; are small compared to a characteristic dimension L of
the body. In mathematical terms,

i

= é <<1 and A 15—’ <<, (6.59)
L L

1

The Reynolds number is assumed very large, and of the order of 1/A” and
the Peclet number is of the order of 1/A . All other quantities in the
equations can be measured in units of 1, A, A,. The variables U, X and 6
are assumed to be order unity, and Y is of order A or A,.

Consider the continuity equation Eq. (6.45). In this equation, the
two terms must be of the same order of magnitude. Since U and X are of
the order unity, the derivative dU/0X is of the order unity, and OV/0Y
must be of the same order. Since Y is assumed to be or order A, V must
be of the order A also. The dimensionless continuity, x-momentum, y-
momentum and energy equations are now written, and the order of
magnitude of each term is written beneath in units of 1, A and A,.

au ov
-+

Y _o 6.60
o (6.60)
A
A

— ] %I
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2 2
Gy mnEa) e
(9
11 Al Az(l _17)
1 A A A
2 2
LA s A (6.62)
X & & Relgx? or?

A A
A -
1 A

6 o0 1(529+520)

U—+V —=
17,4 &Y RePrlax? or?

1
1- Al A 1 _12_
1 A 1 A

A A5
Re "\ X 17/ 4 a&xX Y

el S (2L

A? 17 A
(6.63)

The order of magnitude exercise leads to the deductions detailed
below. The continuity equation is unchanged. In Eq. (6.61), the term
A*U/EX* can be neglected in comparison with the term 52U /4¥2. In
Eq. (6.62), the pressure-gradient term has to be of the order A since all
the other terms are of that order. This means that JP/JY is very small
and the pressure P across the boundary layer is approximately constant.
Hence, the y-momentum equation is not necessary in the analysis. In Eq.

(6.63), the term 226/ ax? is very small in comparison with the term

e x .« Copyright n 2003 by Marcel Dekker,Inc. Al Rights Reserved,



2%0/5yY*. In the viscous dissipation term, all other terms within the
parentheses are to be neglected in comparison with 8U /&Y . The term
(E/Re)(8U 1 &Y ) is of order of unity if the Eckert number is selected to
be of the order of unity. The dimensionless boundary-layer equations for
two-dimensional, steady flow of an incompressible, constant-property
flow are the continuity, x-momentum and the energy equations, which

are
éU—- + & =0 (6.64)
X oY
2
U_@+V@=_.@.+L5(j (6.65)
17,4 oY dX Re oy
0 1 2’ :
v % _ f+£(£@] , (6.66)
X dY ReProd¥® Reldy
PROBLEMS
6.1. Write the boundary layer equations in dimensional form.
6.2. Consider a cylindrical elemental control volume of dimensions

Ar, rA8, and Az in the r, 6 and z directions, respectively. Derive
the continuity equation in cylindrical coordinates.

6.3. Consider a spherical elemental control volume of dimensions Ar,
rsingA@, and rA6 in the r, @ and 6 directions, respectively.
Derive the continuity equation in spherical coordinates.

6.4. Take into consideration two-dimensional, rectilinear, steady,
incompressible, constant-property, laminar boundary layer flow
in the x direction along a flat plate. Assume that viscous energy
dissipation may be neglected. Write the continuity, momentum
and energy equations.

MARCE
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6.5. In Prob. 6.4, consider the laminar flow to be along a curved body
with the x direction measured along the curved surface and the y
direction perpendicular to the surface.

6.6. In the derivation of the boundary layer equations, two of the
assumptions made are as follows:

—1— ~A and I

Re RePr
Use these assumptions to find a relation between the
hydrodynamic boundary layer thickness & and the thermal
boundary layer thickness &,. For gases, Pr is of the order of
unity. For liquids, Pr ranges from about 10 to 1000. For liquid
metals, Pr ranges from about 0.003 to about 0.03. Deduce the
relative thicknesses of & and & for gases, liquids and liquid
metals.

2
~ A2

6.7. From the momentum equations for steady, two-dimensional,
incompressible, Newtonian fluid with constant properties in
rectangular coordinates, obtain the x-momentum equation for the
parallel flow (i.e., v = 0). Obtain the corresponding energy
equation.

6.8. From the momentum equations for steady, two-dimensional,
incompressible, Newtonian fluid with constant properties in
cylindrical coordinates, obtain the z-momentum equation for the
parallel flow (i.e., v, = 0). Obtain the corresponding energy

equation.
REFERENCES
1. H Schlichting. Boundary Layer Theory. 7th ed. New York:

McGraw-Hill, 1979.

2. L Prandtl. Uber Flussigkeitsbewegung bei sehr kleiner
Reibung. Proc 3rd Int Math Congr, Heidelberg, 484-491,
Teuber, Leipzig, 1904, also in English as: Motion of Fluids
with Very Little Viscosity. NACA TM 452, 1928.
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MARCEL

Dimensionless Convection Numbers

Dimensionless numbers help in convection heat transfer engineering
Used to compare relative values in the practice of engineering
In convection, there is the Eckert number and the Prandtl number,
There is also the Reynolds number, Peclet number and Nusselt number.

Eckert compares dynamic-pressure-caused temperature difference
To the selected reference temperature difference
Prandtl compares the momentum molecular diffusivity
To the value of the thermal molecular diffusivity.

Reynolds compares the inertia forces to the viscous forces,
Peclet compares convection energy to conduction energy,
Nusselt number compares the convection heat transfer coefficient
To the magnitude of the conductive heat coefficient.

K.V. Wong
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7

External Forced Convection

The boundary layer problem is difficult to solve exactly. There

are several approximate methods to solve the problem. This chapter
looks at external forced convection, that is, flow outside and around a
solid body like a plate. The next chapter discusses flows inside a solid
structure such as a pipe, or between two plates.

7.1 Momentum Integral Method of Analysis

Several approximate methods exist for solving the boundary

layer equations. The momentum-integral method of analysis is an
important method. The principal steps of the method are listed below.

1)

)

(€))

Q)

Integrate x-momentum equation with respect to y over the
boundary layer thickness &(x). Eliminate velocity
component v(x,y) in the equation by means of the continuity
equation, resulting in the momentum integral equation.

A polynomial profile is chosen for the velocity component
u(x,y) over the boundary layer 0 < y < 3. Use the boundary
conditions to express

Ux,y)=f[y,d(x)] in 0< y<8.

Substitute u(x,y) into the momentum integral equation
derived in Step 1, and integrate with respect to y. The
ordinary differential equation for §(x) is obtained; solve for
8(x).

Obtain u(x,y) from Step (2), knowing 8(x).

The continuity equation for the boundary layer in two-

dimensional rectilinear coordinates is

LN (7.1)
&

The x-momentum equation for the boundary layer in two-

dimensional rectilinear coordinates is

149

brreen COpyightn2003 byMarcel Dekker nc. All Rights Reserved. =



uEva—:v PE . (72)
Step 1
[y f»véu_dyzv(@ & Jéz
o ¥ o) Pl
(7.3)

since = — =0 by the boundary layer concept. The velocity

y=0

component v is eliminated from Eq. (7.3) by using Eq. (7.1),

d[p ol .
——[fu(uw—u)dyjl:u——— in 0<y<0
dx W, 7.4
where u = u(x, y)and § = 5(x).
Equation (7.4) is called the momentum integral equation.
Step 2:
In the present analysis, we choose a cubic polynomial for the
velocity.
u(x,y)=a,+ay+a,y’ +a,y’ (7.5)
The boundary conditions are as follows:
ulyzo =0 “|y=5 =u,
U o°
et S and 2o=0. (7.6
@/ y=0 @) y=0

The first two relations are the boundary conditions of the problem, the
third one results from the boundary layer concept. The last one is the
derived condition which is obtained by evaluating the x-momentum
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equation, Eq. (7.2), at y = 0, where u = v = 0. The solution to Eq. (7.5)

gives
3
u(x,y) _3(y _l(}i) 1.7
u, 2 \6) 2\o
Step 3:

The velocity profile, Eq. (7.7), is substituted into the momentum
integral equation, Eq. (7.4),

d 3y 1(yY 1, 3> 1(1)3 e 3
””dx{f{za 2(5) }[l 25 25 P vegs O

I E

dx| 280 2u o(x)
140 v . ...
odo = G a dx  with boundary condition §(x)=0at x = 0.
uoo
(7.9)
280 wx
Integrating, — &°(x)=———— 7.10
ntegrating (x) 53U (7.10)
ux
6(x)=4.64 |—
(x) ‘}Uw
&Z:i% where Re, =M. (7.11)
X Re, v
Step 4:
3 4.64 1| 4.64 }
u . .
= == - . 7.12
u, Z[ReS'SJ 2{1«:?} (7.12)



7.1.1 Drag Coefficient

The local drag force 7 per unit area exerted by the fluid flowing

over a flat plate is related to a local-drag coefficient c, as

2
— o Pl lb, N
Tx - cx 2g ( ﬁZ or AZZ )'

7. is the local shear stress.

X

r oMM
g @} y=0
_wa
x ui »
) 3u,
Since — =
¥, 26

CX
u, V280 vx

3y (13w, (117 v 0.648
280 u,x Re>’

The mean value of the drag coefficient ¢, over the length x =
defined as
1 &
cm L == .[, cxdx'
2 L ¢=0)

It can be shown that ¢, = 2¢,L-1

Example 7.1

(7.13)

(7.14)

(7.15)

(7.16)

OtoLis

(7.17)

(7.18)

Problem: For flow along a flat plate subjected to the three conditions
stated below, find the second-degree-polynomial representation of the

velocity profile.
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u,,=0 u _,=u, and al .
¥,

Solution

u(x, ) 2

Y _gap| L e L

u, o o
Applyu=0aty=0: a=0
Applyu=u,aty =3d: I=b+c
Apply%anty=5: 0=b+2c

Simultaneously solving for the unknowns: b=2, ¢ =-1.

2
Therefore, }_l(x,_y) = 2(1) - (—Z) .
u o o

Example 7.2

Problem: Find the fourth-degree-polynomial representation of the
velocity profile for flow along a flat plate.

Solution
u(x, ) 2 3 4
UED) o, va(L)raf2) va2] va2]
u, o o o o
Applyu=0at y=0: a,=0
A*u
Apply52—=0aty=0: =0
Applyu=u,aty=2: l=a;+a;+a,
Apply%=0aty=5: 0=a, +3a;+4a,

2

Apply Z}?=0aty=5: 0 =6a; + 12a,

Simultaneously solving for the unknowns: a;=2,a;=-2,a,=1.
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Hence, M = 2(1j - 2(1) + (X) .
u o o o

Example 7.3

Problem: Find the third-degree polynomial representation of the
velocity profile for flow along a flat plate.

Solution
u(x, ) 2 3
24 —ao+a,(—y‘j+a2(1) +a, 2
u, o) 1] o
Applyu=0at y=0: a,=0
A’u
Apply & =0aty=0: =0
Applyu=u,aty=25: 1 =a, +a;
ou
Apply5=0aty=5: 0=a; +3a;

Simultaneously solving for the unknowns: a, = 1.5, a; =-0.5.

3
Hence’ M - E(Z_] — l(l) .
u 206) 2\

K

7.2 Integral Method of Analysis for Energy Equation

The integral method of analysis for the energy equation is an
important method. The principal steps of the method are listed below.

¢9) Integrate energy equation with respect to y over a distance
that exceeds both the momentum boundary layer thickness
d(x) and the thermal boundary layer thickness d(x).
Eliminate velocity component v(x,y) in the equation by
means of the continuity equation, resulting in the energy
integral equation.
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3 Polynomial approximations are selected to represent both the
temperature distribution 6(x,y) and the velocity component
u(x,y).

3) Substitute the velocity and temperature profiles determined
in Step 2 into the energy integral equation derived in Step 1,
and integrate with respectto y.

@) Knowing 3, the temperature distribution in the boundary
layer is determined from Step 2.

Ux

Tw

dg, = ~kds 2T

dy|,

Figure 7.1 Control volume for the integral energy analysis of laminar
boundary layer.

Consider the control volume bounded by the planes 1, 2, A-A,
and the wall as shown in the figure. Assume that the thermal boundary
layer is thinner than the hydrodynamic boundary layer, as shown. Let

T,, = wall temperature

T., = free-stream temperature
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dq, = heat given up to the fluid over the length dx
Energy conservation for the control volume gives

energy convected in +  viscous work within + Heat transfera
element wall

= energy convected out

Energy convected in through plane 1 is pC, fuT dy .

Energy convected out through plane 2 is
pC, Fquy + i(pC, f quy)dx .
dx

. d
Mass-flow through plane A-A is E( f pudy)dx ,

and this carries with it an energy equal to C,.T di( f pudy)dx.
x

, s : (duY
Net viscous work done within the element is f - dy |dx .
ly

. ar
Heat transfer at the wall is dg,, = —kdx—
Combining these quantities and collecting terms,

2
d 1( d. or

——{f(Tw —T)uary}r i f(—f‘-) dy |=aZ- (7.19)
dx pCP dy @/ w

This is the integral energy equation of the boundary layer for constant
properties.
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7.3  Hydrodynamic and Thermal Boundary Layers on a Flat Plate,
Where Heating Starts at x = x,.

Ua, T

y &

l
o —

Figure 7.2 Figure illustrating hydrodynamic and thermal boundary
layers on a flat plate where heating starts at x = X,.

From Example 7.3, we found that the cubic representation of the velocity
profile for flow along a flat plate is

Mzz(_y_)_z(zj
u 208/ 2\68)

o

A cubic representation of the temperature profile for the same flow is

2 3
9 a2 2] a2
w 5! 5’ 5!

0
7
Apply — =1 at y=0: a, =1
g,
5’0
Apply;‘y—2=0aty=0: =0
7
Apply—9—~=0 aty =& 0=1+a;+a

w



o0
Apply — =0aty =08:0=a; + 3a3
&
Simultaneously solving for the unknowns: a,=1, a; =-1.5,a;=0.5.
9 . 3 1 yY
Hence, Zoa- Lo 2
0, 2\ 6, 21 9,

Inserting the cubic representations of the temperature profile and the
velocity profile in Eq. (7.19), and neglecting viscous dissipation,

2[5 hal- [ omo

3 3

d 3y 1{y) |3y l(y)

o, -2 2| L 222 2 4
gl 25, 2(5] 25 2ls) Y

3af,
26

y=0 !

a4

For the case above, the thermal boundary layer is thinner than the
hydrodynamic boundary layer.

3ad,,
26,

' 3 9 2 3 4 l 3 3 4 1 6
—0,u, 2 f AP S N B N I -
e {25 Yo tas? Tt Twe? we)

s,
3 3 s 1 4 3 5 1 7

Y ey =y -+ ¥y - y

46 45,87 2085] 85> 205,5° 28575 |

300, d[3 ) 3
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3af d o
2 g u Lol -2ero 2 here & = 2.,
25, == dx{ ( & 280‘f ﬂ where ¢

(=%

Since &, < &,& <1, and term in &' is small,

3 d 3 ab
—9 S )= 2= 7.21
www(§)2§5 (7.21)

Performing the differentiation gives

~ @&ﬁéé‘ﬂj-ﬁ

10 o0&
1 d§ ds
262 S
Ly ( g9 g dxj
But  6ds =20V
13 u,
52 = 2800x
13u
,dS 13g

Hence, & +4x¢& (7.22)

dx 14v

o LdE 1dy,
Since & E—3dx(§)

4 d 1Ba
& )+§ E(é) 4o

It is a first-order linear differential equation in &, with the solution




The boundary conditions are as follows:

o=0atx=x,

E=0atx =x,.

3

Hence, C = —ng{j‘
14 v

3
, 3
Thus, == p3| (%) | wherePr=2.
5 1.026 o

(7.23)
When the plate is heated over the entire length, X, = 0. Under this
condition,

‘L =¢= Pr 3
o d 1.026
”k(gyg] 3k _3k
The heat transfer coefficient, h= Y= ——,
T, -T, 26, 2&
... 0 v 2 :
Substituting — = 4.64) —— | and using Eq. (7.23), we get
x u,x

N
h, = 0332k Pr’(uijz 1-(-"1)4
UxX X

Multiplying both sides by x/k,
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3
h 1 n
Nu, = *X = 0.332Pr? Re? 1—[ﬁ] . (1.24)
k X
For a plate heated over its entire length, x, = 0 and

1 1

Nu, = 0.332Pr? ReZ.

: =2h_,, Nu, =—=2Nu,_,.The film
[ ¢

T,+T

oD

When x, =0, Z=

temperature is 7, = Evaluate the properties at this mean

temperature.
Example 7.4

Problem: Using linear profiles for the velocity and the temperature
within the boundary layer, obtain an expression for the velocity boundary
layer thickness in terms of the local Reynolds number. Hence, derive an
expression for the local Nusselt number.

Solution

Assume that the linear velocity profile isu = u_, % (i)
Assume that the linear velocity profile is@ = _5)_/_ (ii)
The Nusselt number is Nu, = ’
%:%.k%’- w/(T” -1,)= )% w -5 (i)

From Eq. (7.4) and Eq. (i) above,



LHS of Eq. (7.4)

A P —ava =Ll Pl g | 2L, 2 96
—dx[f(uw u)de_~dx{fuw(l » ju dy}—6uwdx.

RHS of Eq. (7.4) % —u 1(1) —ta

L Tay\s 5

Hence, 5ds =2 gy
pu,,

Integrating, S5 = l—z—lix and J= 3.464x. (iv)
U, Re

x

From the energy integral equation, Eq. (7.19) and Eq. (ii) above,

d| g y a
4a RA RPN F
dx[f“w( 5,]@ 5,

2
Hence, yi—c—i— —5—'— =ﬁ. )
6 dx\ o 9,
o
Let =L
e & 5
ﬁw—[zgﬁmgzd—&]:i vi)
6 dx dx o0&
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dé .
Hence, AxE* 2248 =2,
ence x& o é ; (vii)
Let £ =7. %x%+n =%. (viii)

. ooy s 7 a7
The solution to Eq. (viii) is nx* =—x* +c.
1%

Ifx=x, £=0 (thatis, the heating starts at x, from the leading edge),
3

a 3
then c =——x}.

[

o
H N _ —’ p— e . . i
ence & 5 ﬁ - (ix)

1
=Pr 3 isaconstant.

S,

[

If X, =0, then £ =

>|

From Egs. (iii), (iv) and (ix), we get



Nu, =—
o,
_]. 3 3 ] 1 1 z _3
120 ) : ! Lot
=x.[—l—)-xJ 1—[""] Pr3 =0.28867Re?2 Pr’3 1—[—"1)4
u, X X
(x)

Lot

Ifx,=0,then Nu, =02887Re?Pr?.

Example 7.5

Problem: (a) Derive the boundary layer thickness and local drag
coefficient, assuming the velocity profile is a quartic polynomial. (b)
Derive the convective heat transfer Nusselt number, assuming the
temperature profile is a quartic polynomial.

Solution
(a) Assume that the dimensionless velocity profile is a quartic
polynomial.

' 2 3 4
u y y .
u=z=a(,+a1(§-j+a2(§J +a3[3) +ay EJ (1)
2 3
Qﬁ:a,[lj+2az[%)+3a3 13— +4ay, y—4
o s 5 5 )

2 2
%—2‘1 = 2a2(51—2) + 6a3(5—y3) + 12514[2—4

2
Boundary conditions: Aty =0, u=0, é—;i =0
&
2
Aty =9, u=1, ék—lzo, 5;—;‘=0,
¥ &

From B.C. aty =0, u=0: — a, = 0.
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@)2
Aty =3,

2
%:o; 6a; + 122, = 0
cu
=Z=0,: a; +3a; +4a,=0
¥y
u=1: ay+a;+tas=1.

Hence, a, =2, a;=-2, a, = 1. The dimensionless velocity profile is

3 4
w=2 L2 2| + 2 (ii)
s ) s
From the momentum integral equation,

LHS = 5;[ [ _u)dy}u; %{ [ f—(l—;u—]ay}

0

g5 A5 () -5 ) A )



,d 21 48 268 9858 45 45 45 18
sup— (== -5 - L . }
Cdx 52 623 64 s's 56 57 58 849

37 » d5
U, (iii)
315 &

RHS of the momentum integral equation is

U 2 2y’ 3
=U0—| = ———y—3 -1—2)7 u, =uvu, —2— (iv)
& =0 o 36° 46 o o
Putting Eq. (iii) equal to Eq. (iv),
37 E dé 2
w = Woo T
315 7 dx o
sds =200 g
37 u,
630 o
Integrating, ~—5 =——1X.
ntegrating (x) 37 »
Hence, @ = —5—§§9 v)
x Re,
2u4Re
shear stress at the wall, 7=pu—| = ,u.guw = ——él———iuao (vi)
Vo ) 5.836x
T 4 o 0685
the drag coefficient, C, = = = .
& 0.50u> 5836 fux 4Re,
(vii)
(a) Assume that the dimensionless temperature profile is a quartic

polynomial.

wx e r Copyright n 2003 by Marcel Dekker, Inc. All Rights Reserved.



T_T 2 3 4

g=—>2 =a,+a Llral L] +a] L] +a| 2
T,-T ' 5,) "o s 6,

o_ (1 y ¥ Y

E—a][é‘—’J+2a2(;ﬁ— +3a3[§ +4a4(§

2 2 3

ay 5’ 5’2 6,3

o))

. o0
Boundary conditions: Aty=0, 8§ =0, @)2 =0
2
wyen 0w Do PO,
&y &

From B.C.aty =0, 0=0:— a, =0,

o6
@/2 =0:—> a,=0,
Aty =20,
a0 .
?=0. 6a; + 12a, =0
o0
5202 a1+3a3+4a4=0
0=1: agtaztas=1

Hence, a; =2, a3 =-2, a; = 1. The dimensionless temperature profile is
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3 4
= 2(51) - 2(51) 4 (alj . (viii)

Substituting the velocity and temperature profiles into the energy integral
equation,

LHS = %“’ u(l—@)dy]zuw %[f’i(l—e)dy}

d r 2 2 5 1 2 2 3 4 4
= = Syt h— - = yp+—ypd-—
uwdx{»[dy 577 5“y)[ 5,0 5 T @

(—z—y—iy L2, e 2 s 4,
d|l gl o &° Tt 88, 535, 548, 567
=Uu R —
Td| b 4 5 2 45 2 s 2 4 1
- v+ y - Yo+ y - YY)
58} 548} 58 538} sis}

d. s} & 35 45} 48' &

R R Py TR
Tde 5 257 56 30 567 36

46} s 5 s} 8 &8
— + __..]

+ +
56 718° 48% 385 46 96
2 4 5
:uwi{i[?r_] o) ;[5_,) } -
de 11506 140\ & 180\ &

Let &= ééf— and &, <& . Hence, the fourth and fifth power terms in Eqn.

(ix) are smaller than the second power term. Neglecting these higher
power terms, and substituting the LHS into the energy integral equation,

0, L s 2—2—]=2—“ (x)
dx 15] 6,
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fhel- 52

6L fsgr]- 22

535‘—’-‘5+252§2§=1—5‘i
dx dx u,
3
252 j‘_’§__+§35_‘?ﬁ=§£_ (xi)
3 dx dc u

o0

Previously in part (a) above it had been derived that

51 x)=12800 or 599 _600v (xii)
37 u dx 37 u,

o0

Substituting Eq. (xii) into Eq. (xi),

21260 vx d&* 1630 ox _15a
3 37 u, dx 37 u, u

o0

d& 3., 3a
=2 4+ = e
T2 T3 (xiid)

The general solution to Eq. (xiii) is

3
£ =cx +i—;% (xiv)

37a 3
When x =x,, £=0, hence c¢=— 4—2-— 4
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3

So, £ 37 1- (ij‘t (xv)

T 42Pr

x
2
When x,=0, &(x)= 9,(x) =0.959Pr 3 (xvi)
4(x)
ol
0,(x)=£&(x)0(x)=5.597xRe,? Pr ? (xvii)
The heat transfer coefficient  A(x) = k—é)—di = (%k .
y=0 !
11
The Nusselt number is Nu(x) = fl(—;?{ = %5% =0.357Re? Pr3

(xviii)
Example 7.6

Problem:  (a) Derive the boundary layer thickness and local drag
coefficient, assuming the velocity profile is a polynomial of the fifth
degree. (b) Derive the convective heat transfer Nusselt number,
assuming the temperature profile is a polynomial of the fifth degree.

Solution
(a) Assume that the velocity profile is a polynomial of the fifth
degree.
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3%u [ y y2 y3
?é)—z = 2a2(?j+6a3(5—3]+ 12614 [3—4— +20a5 5_5

Boundary conditions: Aty=0,u=0, —=0

Aty =39, u=1,

FromB.C.aty=0, u=0:. — a,=0.

2
—i})—g=0 = a=0
Aty =39,
54
Yo0:  24a,+120a5=0 Qe a =-5a
@)4
A . _ . _
y =0: 6a; + 12a, +20as=0 ie. a;=20/3 as
ou .
5}— =0,: a; +3a; +4a, +5a;=0 1i.e. a;=-Sa;s
u=1: ajtaztas+tas=1 ie. as=-3/7

Hence, a, = 15/7, a; = -20/7, as = 15/7, as = -3/7. The dimensionless
velocity profile is
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] 3 4 5
yod _15(r) 20 1) +1_5(1J _3(1], i)
u, 7\06 7\6 70 7\ 0
From the momentum integral equation,

LHS = %[fu(uw —u)dyJ ~u? j—ifi(l—%}dy}
| [ 26T 56T 36T -5 636 506
e S{512() ) 4 - )
RO O
[l a6 6 -5 S
S B - ) 55

|\< Qo|‘<

ol
“°°[

v

=0.113526u’ 4 (iii)
dx
RHS of the momentum integral equation is
2.14286 .
= — = Ual = Uuao (IV)
¥, 5

Putting Eq. (iii) equal to Eq. (iv),
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0.113526u? 4o vu 214286

& e s

546 =18.875475 -2 dx.
U

[c]

Integrating, %52 (x)=18.875475 ui x.

o

5(x) _ 6.144

Hence, . )
X Re,
,/R
Shear stress at the wall, z = ,u@ =p 2.14286 u, = HyRe, ",
»=0 6 2.8672
(vi)
The drag coefficient, C, = ‘ 2 b _ 0.6975 (vii)

T 05pul 28672 Jux  \Re,

(b) Assume that the dimensionless temperature profile is a polynomial
of the fifth degree:

_— 2 3 4 5
0= T 7‘:’ =a, +al[5LJ+a2[gy-] +a3(5l) +a4(é‘l) +a5[3‘y—J
w tw t / / I/ !

2 3 4
Qg:al L + 2a, lz +3a, y_3 +4a, —J%— + 5a, y_s
6-)} 5’ 5/ 5! 5’ 6/
2 2 3
gf =2a, (Z;—J + 6a{%} +12a, (;7] +20a, (—y—s-J

%)
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o6 1 2
~ = 6a3[“3j +24a, (14] +60a; (y _
& 1) 9, )
2'6 y
- =24a,| — |+120a; =
¥ ‘ 6,
.. ' o0
Boundary conditions: Aty =0, 8 =—=1, =0 (ix)
' @}2
o0 ‘0 4
Aty =5, 0=0, 5:0, i}z =0, %?:0
(x)
From B.C. aty =0, a,=0, a,=1
o'e
Aty =6, Py =0: a4 = -5as
7’6
;zO: 6a; —40as; =0 or a; = 20/3 as
iy_gzo a, +20a; — 20 as + Sas = 0 or a, = -5a
0=1: 7/3 as=-1or as =-3/7.

Hence, a; =-15/7, a; = 20/7, a, = -15/7, as = 3/7. The dimensionless

temperature profile is

g Y| 20y
7.6,] 7\6

2 3 5
OO
7\s8, ) 75,

Substituting the velocity and temperature profiles into the energy integral

equation,
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s= 4 [ u-oky]=u —[f—(l H)dy]

3 5,20 5 15 _3_5]4

) ir(i 20 5,15 y4____y5]1__y 20
767 983 Tt TS 78, 18] 75, 75,5y

~ , 15 3
= —[f(—y—— 754y 7577
25 o, 300 . 25 5 45
Y t——y
"2905 0 T 295%,” " 496°5° " 4953,
L300 400 o 300, 60
295570 495°5°° 49557 °  495°50°
s 30, w5 . 45
2965% 7 T 495°57 7 " 195%5° ) T a96%5"

45 6 60 8 45 9 9 10
+ -~ + _ d
1ss;° " we's;” T 455 T 4955 e

. d [1552 205" 1555 38 758 . 605"
" dc 145 255° 350" 425° 495 & 495°
_755; N 455, 605] 4005, N 755, 205}
986* 3435° 495 3435 985 1476°
7587 756 256 95° 458} 205 980 95
- + 3 i 5 - 7t 4 5]
985 985> 495* 985° 3435 1475° 985* 5396

o
Let &= 3’ and &, <& . Neglecting terms in & £ and higher,

LHS =, —
14 49 49 98 343

2
d 1575, 60 75 Y5\ 45, d (.0
dx s 343 T dx

The right-hand side of the energy integral equation is

T Copyﬁ'ght-nyzb(»)‘é @Marcé\'bekl{ev,\nc:AHR\ghts Reserved,



MARCEL

15

76

y=0 t

or
RHS = a—

Equating the LHS to the RHS of the energy integral equation,

uw[252§2%+§36%j=i39—a. (xii)

It has been previously shown that

546 =18.875475 -2 dx and 62 =37.7509492
u u

o0 o0

Hence, u, [2[37.750949ﬂ§2 -gé +&£3(18.875475) —“—ﬂ =16.33a
u X ]

o) «©

dé a
P d4xft 2 =0.8653=
¢ ¢ . U
3
£ ax % 086532, (xiii)
dx v

The general solution to Eq. (xiii) is

3

£ =cx *+0.86532 (xiv)
L

3
When x =X,, £=0, hence ¢=-0.8653 gx(j‘ )
L

3

So, £ =0.8653Pr" 1—(51]4 (xv)
X
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W | -

3

1 x )+
=0.9529Pr 3|1- (—”) (xvi)
X

J,(x)

s(x) =~ )

® |
N——
W

5, (x) = E(x)8(x) =5.8546xRe 2 Pr 3|1- (

(xvii)
The heat transfer coefficient  A(x) = kﬁ = L] 5£ .
y=0 d
The Nusselt number is
1
5 L 3
r 1 a
Nu(x) = 2% _ 0 366Pr3 Re? 1-("—0] (xviii)
x
Example 7.7

Problem: Derive the boundary layer thickness, the local drag coefficient
and the average drag coefficient over a distance L, by assuming a
sinusoidal profile for the dimensionless velocity,

L. sin[z.lj .
u, 26

Solution
The dimensionless velocity is

X _sin| 22 :
- sm(2.5} (i)

a0

From the momentum integral equation, the left-hand side is

LHS =42 %{ f(- sin’ {52’%} + sin{%%}) dy]
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]y, 7))

| 27 22 A

2 1[5(—7[+4]
“dc| 2 |

o

From the momentum integral equation, the right-hand side is

RHS = v—

cu r (ﬂy) vu T
=vu, | —cos| = -
&, 26 \25)] ., 26

Putting both sides of the momentum integral equation together,

v’

odé = ————
u,(4-rm)

dx .

,  2um’x

Hence, =—
u,(4— 1)

¢

Butwhenx=0,8=0,s0¢,=0.

{ 2
Therefore, o= 207" % = 4'7951 where Re = uwx'
u,(4-7) (Re, )2 v

The dimensionless velocity profile is

1
g sin{O.328(Rex)E y}. (iif)
ud)

The local drag coefficient is given by
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2
c,=2Z iz (o 328)1/ = 0.656 / 0 656
Uy @’ (Re
(iv)
The average drag coefficient over a distance L is given by
1.312
= Xix=1 = | (V)
(Re B )E

7.4 Similarity Solution

7.4.1 Laminar Flow Along a Flat Plate

. . . 0 oP
Consider two-dimensional flow, P _ 0,—=0;
ot oy
0’ o’
Assume that the properties are constant, and ——I: << gz:-

The continuity equation for two-dimensional, incompressible flow is

ou ov
—+—=0, 7.25
x oy (7.25)

The significant boundary layer momentum equation is

U—+v—=0——— (7.26)

= () for flat plate.

The boundary conditions for the momentum equation are as follows:
At y=0, u=v=20
At y— o, u —> Uy
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For moderate velocities (assuming no viscous dissipation), the energy
equation is

or oT o'T

+tv—=«a

Uu— .
x v

(7.27)

In other words, Eq. (7.27) is valid when the Eckert number is small.

The boundary conditions for the energy equation are as follows:
At y=0, T=T,
At y— 9, T->T..

Recall that for incompressible flow, the streamfunction y(x,y) is
defined by

u=2Y and v=- , which automatically satisfies the
oy ox
continuity equation.

With the substitution of the streamfunction, the momentum equation
becomes

VW, V.Y, oy, (7.28)
The boundary conditions become as follows:
At y=0, Y=Yy =0
Asy —> o0, Wy = Ug,.

We now examine the solution procedure for this third-order
partial differential equation in one dependent variable, y. We started
with two partial differential equations, coupled together, where there
were two dependent variables, u and v. This was achieved by a
transformation of v and v to vy; this procedure is called group
transformation of the dependent variables. Now, we will group the
independent variables x and y; this is called a similarity variable
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technique. The similarity variables can be obtained from group theory
(not in the scope of the present book). So we shall examine the
predetermined similarity variables, that is,

u, v
_ / d = 7.29
n=r an J(@) PN (7.29)

We will now proceed to write the streamfunction equation in terms of f
and 7).

Pev, = o(mn

=Jxou_ ]2 =u_f (7.30)
UX
%Yy, =2
a-yz »y ay «©
0 on _u,f"n
NN ELE (731)
on ) oy y
oy

0
L=y, =)
_ oy 2Lom o
( xuu“’)f+6776x xou,

- l vu, _ Yy U, ’
Z(V x ) f2xVux ¥
B l Dl \ o Y
= 2("—x )f f_2x U, (7.32)
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o'y o,
axay - !//xy - _é;(uwf)
=uwa_f_§ﬁ=_y_°_°ﬂf" (7.33)
on oOx 2x
o’y 0 U,
oy° =V = 5(7]{)
o _ 4 0 on
= w [y =2
dy on y
= w5 ey (S
y y
u
= wzﬂ [nf'n] (734)
y
Substituting equations (7.30)-(7.34) in equation (7.28),
uw " 1 Uuw ' uw uoo " uﬂ) 2 e
uwf'(———gf j—[—,/ L LA L MY
2x 2V x 2x y y
(7.35)
Thus, 27 + 1 =0. (7.36)

Since =0 wheny=0,

u=y, = uf’ =0, thatis, £ =0.
1 f
Sinceat =0, v=-y,= —( —Uui)f~f'*y—-uw=0.
2 x 2x
then =0

As y—>o, N—>o,  u=u.=u, hence f =1.
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The solution by Howarth, 1938 [1], is presented in Table 7.1 and
represented in Fig. 7.3.

Figure 7.3 Howarth solution for laminar flow along a flat plate.

1.0

0 u_ 5
n=y—=>
vX

Table 7.1 The functions f(n), df/dy and d*f/dn’ for laminar flow along a

flat plate.

\/Z (Y| df
n=y . dn u, | dn?
0 0 0o . 0.33206
0.2 0.00664 | 0.06641 0.33199
0.4 0.02656 | 0.13277 0.33147
0.6 0.05974 | 0.19894 0.33008
0.8 0.10611 | 0.26471 0.32739
1.0 0.16557 | 0.32979 0.32301
1.2 0.23795 | 0.39378 0.31659
1.4 0.32298 | 0.45627 0.130787

DEKKER

" Copyrigh(n?bﬂi by M‘a‘r‘(;\rbekker,‘lknc.AHR\g’hl‘srReserved. T T T e



1.6 0.42032 | 0.51676 0.29667
1.8 0.52952 | 0.57477 0.28293
2.0 0.65003 | 0.62977 0.26675
22 0.78120 | 0.68132 0.24835
2.6 1.07252 | 0.77246 0.20646
3.0 1.39682 | 0.84605 0.16136
3.4 1.74696 | 0.90177 0.11788
3.8 2.11605 | 0.94112 0.08013
4.2 2.49806 | 0.96696 0.05052
4.6 2.88826 | 0.98269 0.02948
5.0 3.28329 | 0.99155 0.01591
54 3.68094 | 0.99616 0.00793
5.8 4.07990 | 0.99838 0.00365
6.2 4.47948 | 0.99937 0.00155
6.6 4.87931 | 0.99977 0.00061
7.0 5.27926 | 0.99992 0.00022
7.4 5.67924 | 0.99998 0.00007
7.8 6.07923 | 1.00000 0.00002
82 6.47923 | 1.00000 0.00001

7.4.2 Energy Equation

T-T
Let the dimensionless temperature € = T ; . Equation (7.27)
becomes
2
”’qg”%:“a—g (7.37)
oy oy
06

Note that —a—g—ggﬁz__l

Ox _877 Ox on 2x

00 _300n _20n

& ondy ony
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(o)

(o3
N

Q)

96 _o0n

&> on’ y*

Substituting in Eq. (7.37),

. 00 u, ., 1 |ou, an® 8%6
—u f oL (e s [Py ST 2T
2x On 2x 2V x y- on
s ren v
Simplifying, 6"+—— f@'=
2a
20"+Pr f0'=0 (7.38)
with boundary conditions 6=1 at n=0

6

0 at n—o oo

The solution was first given by E. Pohlhausen:

[ ol
Lol de

6(n,Pr) = (7.39)

When Pr = 1, ey =1-f'(m=1- Ly The temperature

distribution is identical to the velocity distribution.
The temperature gradient at the wall, [f’(0) = 0.332],

_Fq=%MF—Q§E¥u
an), [l ds

The constant a, depends solely on the Prandtl Number, a,(Pr). This
dimensionless coefficient of heat transfer, al, and the dimensionless
adiabatic wall temperature for a flat plate at zero incidence is presented

in(Table 7.2 and represented in[Fig. 7.4."]



nm-T,
T, T

w o)

Pr=0.5

3 S~

300 7 )
50

0 2 u, 4
N=Yi—
w

Figure 7.4. Temperature distribution on a heated flat plate at zero
incidence with small velocity plotted for different Prandt]l Numbers, Pr.

Table 7.2 Dimensionless coefficient of heat transfer, a;, and
dimensionless adiabatic wall temperature, b, for a flat plate at zero
incidence, Schlichting[2].

Pr| 06 0.7 0.8 0.9 1.0 1.1 7.0 10.0 | 15.0

a; | 0.276 | 0.293 | 0.307 | 0.320 | 0.332 | 0.344 | 0.645 | 0.730 | 0.835

b |0.770 | 0.835 | 0.895 | 0.950 | 1.000 | 1.050 | 2.515 | 2.965 | 3.525

PROBLEMS

7.1. Find the expression for the momentum boundary layer thickness
as a function of x, by using the linear velocity profile
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7.2.

7.3.

7.4.

7.5.

7.6.

brrren Copyrightn 2003 by Marcer Dekker Tric: All Righits Reserved; =~

u _Jy

U, &
Using the linear velocity distribution in Prob. 7.1, obtain an
expression for the local-drag coefficient c,, and the average-drag

coefficient ¢, over the length 0 <x <L.

Use the momentum integral method and the energy integral
method to arrive at expressions for the momentum boundary
layer thickness and the thermal boundary layer thickness, for
flow over a flat plate. Assume second-degree polynomials for
the velocity profile and the temperature profile.

Use the following velocity and temperature profiles for flow
over a flat plate:

u _Jy

u, o

o0

g T=T. 3 1(yY
T,-T, 25, 2\6 )

=] w {

Obtain the Nu, vs Re, and Pr relationship.

A flat plate is maintained at a constant temperature of T,.
Liquid metal flows with a velocity of U, and a temperature T,
along it. Derive the expressions for the thermal boundary layer
thickness 8,(x), and the local Nusselt number Nu, = hx/k. Use a
linear temperature profile, T(x,y) such that

T(x,y)-T, __y
Too _Tw 5! (x) '

With the velocity distribution




7.7.

7.8.

7.9.

and the boundary layer thickness expressed as

4.64
B Re%

CHRSY

find the expression for the y component of velocity, v, as a
function of x and y. Hence, deduce the expression for v when y
=3.

Fluid with Pr ~ 1, flows with a velocity U., and temperature T.,
along a flat plate maintained at a constant temperature T,,. Use a
linear velocity profile and a second-degree polynomial for the
temperature distribution. Find the expressions for the thermal
boundary layer thickness and the local Nusselt number.

Retaining the viscous-energy dissipation term in the boundary
layer equation, derive the energy integral equation,

Derive the boundary layer thickness, the local drag coefficient
and the average drag coefficient over a distance L by assuming a
cosine profile for the dimensionless velocity,

REFERENCES

L Howarth. On the Solution of the Laminar Boundary Layer
Equations. Proc R Soc (London), A164:546, 1938.

2. H Schlichting. Boundary Layer Theory. 7" ed. New York:

McGraw-Hill, 1979.
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Integral Method of Analysis

Choose a polynomial profile for the velocity component, u
Use boundary conditions to express the velocity component, u
Substitute velocity u into momentum integral equation
O.D.E. for boundary layer thickness, solve for delta from equation.

Choose a polynomial profile for the temperature distribution, T
Use boundary conditions to express the temperature distribution, T
Substitute u and T into the energy integral equation
O.D.E. for thermal boundary layer thickness, solve delta T from
equation.

K.V. Wong
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8

Internal Forced Convection

There are many types of internal forced convection. This
chapter examines selected examples. Flows with heat transfer between
parallel plates and flows in pipes, tubes and ducts are considered.

8.1 Couette Flow

Upper plate moving
)\

0 ™

u=u,, T=T;
L

u(y)
i Z u=0, T=To
Lower plate stationary

Figure 8.1 Couette Flow

Couette flow is the model for flow between parallel plates. The plates
are separated by a distance L, and filled with a fluid with density p,
viscosity p and thermal conductivity k, Fig. 8.1. The upper plate moves
at a constant velocity u; and causes the fluid particles to move in the
direction parallel to the plates. The upper and lower plates are kept at
uniform temperatures T, and T, respectively.

A journal and its bearing is one engineering problem that is
modeled by the Couette flow. One of the surfaces is stationary while the
other is rotating, and the gap between them is filled with a lubricant oil
of high viscosity. Since the gap is small compared to the radius of the
bearing, the geometry may be treated as two parallel plates. Since the
oil is very viscous, the heat generated by viscous energy dissipation may
be significant even at moderate flow velocities. The temperature rise in
the fluid and the heat transferred through the walls are of interest. In
addition, there are many membranes in human and animal bodies. The
fluid flow in between these membranes may sometimes be modeled
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using Couette flow. In case of an inflammation, the velocity profile
would change since the gap will change, and hence the stresses will
increase. The velocity distribution in the flow is first solved, and then
the temperature distribution is derived.

Velocity Distribution

For incompressible flow of a fluid with constant properties, the
particles are all moving in the direction parallel to the plates so that the
velocity component v normal to the plates must be zero. By putting v =
0 in the continuity equation,

du
—=0. (8.1)
dx

Hence u = u(y). The y-momentum equation yields no useful

information since v = (. The x-momentum equation is

2 2
—pufyﬂ)@ :Fx—ﬁ+yé’?+a?. 8.2)
& & %4 17, S7,Y

Setting v = 0, and F,=0 for no body forces, we obtain

dP d*u

ax g

=0. (8.3)

Simple shear flow is the characteristic of Couette flow, and no pressure
gradient exists in the direction of motion. Since the pressure gradient
term is also zero, the governing equation reduces to

2
%gzo in0<y<L. (8.4)
y

The boundary conditions are the no slip boundary conditions at y = 0,
and y =L, that is,

u=0aty=20

u=uaty=L (8.5)
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The solution of Eq. (8.4) with boundary conditions (8.5) gives the
velocity distribution as

u00=%m (8.6)

Temperature Distribution

We expect the temperature to vary only in the y direction, so T =
T(y). The energy conservation equation is in the form

pC,,[u%+vzr—}=k(a r.2 TJ+ £ s 8.7)

%4 & ) gJ

c

where ¢52[(@—j +(@) }+(—EA—)+@—) (8.8)
24 Py & &

Since u is only a function of y and v= 0, the only term left to describe the
viscous dissipation energy is

2
du

= 8.9

’ [dy) &
In Eq. (8.7), v=0and T is only a function of y, so

d*T(y) du)’

S SN ey Y (8.10)
dy gJ\dy

Substituting for u = (y/L)u;, we obtain

TG _
dy* g JkI?

in0<y<L. (8.11)

-
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The boundary conditions for Eq. (8.11) are taken as temperature
equals the upper-plate temperature T; at y = L, and the lower-plate
temperature T, at y = 0, that is,

T(y)= Tiaty=L
T(y)=To,at y=0 (8.12)

The solution of Eq. (8.11) is

1 Ll

2y Cy+C,. 8.13
2 gchLz Y Wy 2 (8.13)

I(y)=

Using the boundary conditions, we obtain

C,=T, (8.14)
1 1 g}
C =—(T -T )+ 8.15
‘ L(' ")+2gCJkL (8.15)
7 y
T(y)-T. = T, -T 1-Z 8.16
»-T, {(( )+2 Jk( L]} (8.16)

8.1.1 Case T, = T,

The temperature distribution may be arranged in the form below.

_ 2
T(y)-T, Z{1+1 i ( y)} -
-7, L 2g, Jk(T T,)
riy)-7T
In dimensionless form, with 77 = ¥ and o(m = -1, ,
L T, -7,

007 = n{l + —;—Pr E(-m) (8.18)
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C
where Pr = Prandtl Number = hdlad
Uy

and E = Eckert Number = ]
CI’ (T'I - T 0 )g cJ

When there is no flow, u; =0 and PrE =0, so that 68(n) =m. This is
the case of pure conduction, and the temperature profile is a straight line.

By definition, the heat flux at the wall is determined from

dar
qwall =- (y) (819)
dy wall
In terms of the dimensionless temperature, this expression is
k(T -T,)) do
Qe =K (7, -7,) d6() (8.20)

L dy

wall

The derivative of the temperature is obtained from Eq. (8.18) as

do(n) _ 1
" 1+Pr E(z 77)- @821

The heat flux at the upper wall, for instance, is obtained from Eqs.(8.20)
and (8.21) by setting n = 1. Hence,

_ _M(1 _%pr E) (8.22)

qupper wall L

We will now study the heat flow at the upper wall for the case T; > T, for
different values of the parameter PrE, by examining Eq. (8.22). The
following cases highlight the main features:
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1
1. PrE = 2. The term 1——2—PrE is zero and there is no heat

transfer at the upper wall. The derivative of the temperature
with respect to i at the upper wall is zero because there is no
heat flow.

2. PrE = 0. This corresponds to the pure conduction case, and
the temperature profiles is a straight line as stated above.
1 e
3. PrE < 2. Both I—EPrE and 7, -7, are positive in Eq.

(8.22), 50 qpperwan < 0 and the heat flows from the upper
wall into the fluid, or in the negative y direction.

1
4. PrE > 2. The term l—EPrE is negative, and 7, -T is

positive, so Eq. (8.22) states that ¢, ;> 0 or the heat
flows from the fluid to the upper wall, or in the positive y

direction. The energy generated by viscous dissipation is so
large that the lower plate cannot remove it all.
8.1.2 CaseT, =Ty

When the lower plate is at the same temperature as the upper
plate, Eq. (8.16) simplifies to

2
HYy Y Y
(-7, = 1-=1 8.23
-1, 2g.Jk L( LJ (8:23)

From symmetry, the maximum temperature in the fluid occurs at the
midpoint between the plates. Putting y = L/2 in Eq. (8.23),

2
Tpp =T, = (8.24)
8g Jk

From Eqgs. (8.23) and (8.24), the temperature in the fluid is described by
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T(m-T,
T -T

max 0

=4n(l-n) where 7= —)Li (8.25)

The heat flux at the walls is given by Fourier’s law, as shown in Eq.
(8.19).

8.2 Heat Transfer and Velocity Distribution in Hydrodynamically and
Thermally Developed Laminar Flow in Conduits

u(r)

Figure 8.2 Figure for fully developed laminar flow in conduits.

Let us look at an incompressible, constant-property fluid flowing
laminarly inside a circular tube in regions away from the inlet where the
velocity profile is fully developed. The continuity equation gives

%g—(rv,)+ 0;;‘ =0. (8.26)
Since v, = 0, the first term on the left in Eq. (8.26) is also zero. Since
0;;’ =0, v, is a function only of r, and for convenience, we replace v,
by u.

The r-momentum equation is not needed since v, = 0. The z-
momentum equation is as follows:

M P ’'u léau JAu
p(v,3+u;’;):Fz—gz—+y{0}2 +7—5:‘+&2 } (827)
2
Since v, = 0, F, = 0 for no body force, % =Oand—0;;‘z—2u =0,
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1dpP _ d’u +IaVu
,udz S dr’ rdr

in0<r<R. (8.28)

1d[_@j_1g]j
rdr\ dr

;dz

The boundary conditions are that there is no slip at the wall, that is,u=0
at r = R, and the velocity is finite within the tube. Since there is
symmetry about the tube axis, the boundary condition du/dr =0 atr= 0
is allowable, and it leads to the same result.

dpP
Let us consider the case where ;1—— =constant. To
4
nondimensionalize the equation, we can define
r u
n=—, u=— (8.29)
R u

where u, is an arbitrary mean velocity. It is acceptable to
nondimensionalize with respect to an unknown mean velocity, as long as
it is of the correct order of magnitude. Its value may be calculated at a
later time. Substituting in Eq. (8.28), we obtain

12 a nu,,,f"i = k. (8.30)
nR” dn dn

The boundary conditions become

u =0at n=I1 (8.31a)
DG at =0, (8.31b)
dn

Integrating Eq. (8.30), we obtain

J'#[ )dn [enR?dn (8.32)
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m,, % = ganz +C,. (8.33)

Using the boundary condition Eq. (8.31b), we find that C;= 0. Thus,

au_ —k—nR2 (8.34)

Integrating Eq. (8.34), we obtain

u'=—k——772R2 +C, (8.35)
4u”'
. . k.,
Using the boundary condition Eq. (8.31a), we find that C2 = — 2 R
u'll
Therefore, the dimensionless velocity distribution may be expressed as
P
w=—tf LR p2) (8.36)
u, \ 4y dz
The mean flow velocity is given by
1 R® dP
U, =— f 2mru(rydr = ———. (8.37)
7R 8u dz
u(r) r\’
Hence, —= = 2{1 - (—J :I (8.38)
ulll R

At the tube axis, r = 0, and we expect the maximum velocity to occur
because of symmetry.

u, = _ 1 AP g (8.39)
4u dz

The velocity distribution may be expressed in terms of this axial velocity
maximum as
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u(r) r
—=1-—=. }
u (R) (8.40)

0

It should be noted that the maximum velocity value is twice the value of
the mean velocity, that is, u, =2 u,. The friction factor f is defined as

dP
f:—-_l—-ﬁZ___ (8.41)
= 2
(2 pll")j
D

The pressure along the tube may be calculated from

2
E — PY, [
J;. dp = f———zD f dz. (8.42)
1 pu,
Hence, P, ~ P, = fB-—?(z2 -z,) (8.43)

8.2.1 Temperature Distribution

For moderate velocities, the viscous dissipation term may be
neglected. Under such conditions, the energy conservation equation
may be written as

2 2
iu(r)éz: d Z"+12T_+ﬁ Z (8.44)
a & a ra

We define a dimensionless temperature 6 ( r ) such that

T(r,z)-T
T, (2)-T,(z)
where T(r,z) = local temperature in the fluid
Tw(z) = the tube wall temperature

(8.45)
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Tw(z) = mean temperature of the fluid over the cross-sectional
area of the tube

- f 2mru(r)T (r,z)dr
[ 2mu(r)ar '

(8.46)

A fully developed temperature profile is one where 0 is not a function of
the axial distance z, that is, 6 = 0( r ). Note that the dimensional

o . . or .
temperature T is still a function of z; that is why ?i; is not equal to zero.

Differentiating Eq. (8.45) with respect to z,

dor) _ 8 [T(r,z) -T, (z)} o 347)

dZ & 7—'m(z)_-jww(z)

0 2
é_[w,z)—n(z)} @,-1)Z-1)-C-1) 2@, 1)

2| T,(2)-T,(2) T _T.) =0
(8.48)
When T, # T,
’l Tr-T, ¢
E(T_T‘”)_T;,,—Tww E(T,,,—Tw)=0. (8.49)
For constant heat flux q,, at the wall,
q, = h( Y Tm) = constant (8.50)

For constant heat transfer coefficient h, between the fluid and the wall
surface, T,, —T,, = constant. Thus,
d
—(r,-T
dz

m

)=0 (8.51)
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dr, _dl, tant (8.52)
= —— = constant. .
dz dz

Substituting Eq. (8.52) into Eq. (8.50),

9r-1)=0 o L (8.53)
124 oL dz

From Egs. (8.52) and (8.53),
or _dr,
— = —— = constant. (8.54)
174 dz

This means that the average fluid temperature T, (z) in the thermally
developed region increases linearly with z. Substituting in Eq. (8.44) and
2

) or .
noting that =0 because ;’"z— = (), we obtain

2

1 dTm(Z):lf_( 07) in 0ST<R. (8.55)

—u(r) — r—
a daz ra\ o

Substituting for u (r) from Eq. (8.38), we have

2
2 rﬁj=/1r1— i) in 0<ST<R  (8.56)
a\ & R
where 4= %M = constant.
o dz

or
The boundary conditions are that at r =0, Y = 0 because of symmetry,

and that the fluid temperature at the wall is the same as the wall
temperature in the thermally fully developed region, that is, T = T,(z) at
r=R. Integrating Eq. (8.56) and using the boundary condition at r =0,
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3
Eg - A(% y— 4’R . ) (8.57)

Integrating Eq. (8.57) and using the boundary condition at r = R, the
temperature distribution is found as

T(r,z)-T,(2) =—,<1Rz{i+—1—(i)4 —l(ijz. (8.58)
’ v 16 16\ R 4

The mean fluid temperature (or bulk fluid temperature) across the tube,
Tm(z), is given by Ty(z)-Tu(z)

[emulr e, -T, @)
f 2mru(r)dr

j“ 2mu(rI(r,2) - T, (2)ldr

TR

Y3 1 1t
—aal i) 22 2T
f( R )(16 16 &° 4R2}dr

2
__1L4R where 4= 2_u_ a, (Z) (8.59)

48 2 a dz

The wall heat flux is given by

tul

=q,. 8.60
ar, 9w (8.60)
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From Eq. (8.57), dar = lAR. (8.61)
ar|,_, 4
4q
H , A=—% 3.62
ence e (8.62)

The heat transfer coefficient h between the fluid flow and the
wall is given by

dr
HT,(2)-T,(2))=—k— (8.63)
r=R
-k
Hence, h =—————~£ . (8.64)
71111 (Z) - Tw (Z) dr r=R
Substituting Eqs. (8.59) and (8.61) into Eq. (8.64),
4
= _S_k_ where D =2R. (8.65)
11D
The Nusselt number is then calculated from
Nu = ﬁD— = j4—8 =4.364. (8.66)
k11
D, .
In general, the Nusselt number Nu = kL , where the equivalent
diameter D, is given by
= 4 x (Flow flrea) . (8.67)
Wetted Perimeter
4 2
For example, in a full square duct, D, = xa__ a.

4a
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(a) Constant heat rate

=3 D
=4 /

» Increasing temperature

(b) Constant surface temperature

—»
—>

Twa]l < Tcntering fluid

Figure 8.3 Fully developed temperature profiles for constant heat rate
and constant surface temperature.

8.3 The Circular Tube Thermal-Entry-Length, with Hydrodynamically
Fully Developed Laminar Flow

J T, T, = constant surface temp.

T= uniform entering fluid
T u temp.

Figure 8.4 Sketch for the thermal-entry length problem.

For a hydrodynamically fully developed laminar flow, the
parabolic velocity profile is applicable. Hence,
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u ) r
U=—=21-r' where r'= —. 8.68
U, ( ) ’ R ( )

The governing energy equation may be written as

ar  4r AT 1dr é°T\ u
—+v,— =k +—— +—— 8.69
pCP(v, v, ] ( . 2] gJ¢ (8.69)

2 2 2 2
&N, &
where ¢ =2 a +v—;+ 5\72) +( £ +———’] . For moderate
a r 174 a &
velocities, ® = 0. For a hydrodynamically developed flow, v, = 0.
Putting v, = u, Eq. (8.69) becomes

2 2
vor_2g ZT:a 2T+l£. (8.70)
a & & V7 4 r o
Define @=Lo L ol oo a2 (8.71)
0 —"Te R u”l r

wuy ~(I,-T) 0 -(1,-T,) 6 _~(,-T,)3*0 -(I,-T) 130
. R &' R2 - &12 R2 0»}'2 R2 'rv &

[ 2

_0"92 +lﬁ=(Repr)lﬁ_0"f

o 28 &
D

where D = 2R, Re = 2n~ pr=2 (8.72)
v (24

2 ' 2
o0 +—1—ﬁ=Peu—é9——ﬁ o where Pe = RePr.

0').12 A 2 & &12
(8.73)
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For better estimation of the axial conduction term, we define z* =

Pe
Hence,
2 ' 2
é—?+lﬁ=-”—§9— 12a6:. (8.74)
o' Y 2 & (Pe) &t

For Peclet numbers Pe > 100, the last term in Eq. (8.74) may be
neglected. Substituting u’ from Eq. (8.68) for the cases Pe > 100,

Z:f +%—3€'=(l—r‘2)§. (8.75)
8.3.1 Constant Surface Temperature

For a constant surface temperature boundary condition,

6(0,r)=1 and 6(z"1)=0 (8.76)
Using the method of separation of variables, we assume that

0= A(r)z(z") (8.77)
The resulting equations obtained are

Z4AZ =0 (8.78)
and A"+-:7A'+/12A(1 -r?)=0 (8.79)

The solution to Eq. (8.78) is Z = Cexp(-A*z") . Equation (8.79) is
of the Sturm-Liouville type, and solutions may be written as J(r’),
cylindrical eigenfunctions or Bessel functions. Therefore, the solution to
Eq. (8.79) may be written as

9(2*,r')= ic,,J” (r')exp(— ﬂiz*) (8.80)

n=0
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where Ai,’s are the eigenvalues and J;’s are the corresponding
eigenfunctions. The heat flux at the wall can be calculated from the

following formula.

T -T
q,(z")= —k[gJ =k-*+—= (ﬁ) (8.81)
0’}‘ r=R R dﬂ' =1
qo (Z+ )= % Gn exp(— /131;2+ XT:) - Te) Where Gn = _[%)J;x (1)
n=0

(8.82)

Table 8.1 Infinite-series solution functions for the circular tube;
constant surface temperature; thermal-entry length.

n| 22 G,
073121 0.749
1]44.62 | 0.544
21 113.8|0.463
31215210414
41348.5]0.382

8 1

Forn>2, A, =4n+_, G, = 1.012764,°.

8.3.2 Uniform Heat Flux

For a uniform heat flux boundary condition, we define r’, u’ and
z" as before, and the dimensionless temperature as

1,-T
0= —T————~— where T, = some reference temperature, say
e " dry
Tmean- (8.83)-

The boundary conditions can then be expressed as

6(0,r")=0 and %(f ,1) = constant. (8.84)
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A T - k
T
T(r,z)
Te
> >
z Temp. profile at z, N
N T, To "
e ‘,,/ ,'/ Boundary layer
T, e
——————————————— 1\ T I“
T \ /[\

Fully developed profile

Figure 8.5 Development of the temperature profile in the thermal-entry
region of a pipe.
Equation (8.79) is of the Sturm-Liouville type, and with boundary

conditions Eq. (8.84), solutions may be written as R,(r’), cylindrical
eigenfunctions or Bessel functions. Therefore, the solution to Eq. (8.75)

may be written as

o(z*.r)=3 c,R, (" )expl- A2z*) (8.85)

n=0
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where A,’s are the eigenvalues and R,’s are the corresponding

eigenfunctions. The heat flux at the wall can be calculated from the
following formula.

T,-T,
q,(z") = —k[g) =k —L~—ﬂ—(é—€) = constant (8.86)
F ) oep R Zayn

n=0

qo (z+ )= —ZRﬁiGn exp(* Azt XT” - TL) where G, = —( C;" )J;, .
(8.87)

The local Nusselt number is given by

2_+\7!
Nux:[_l___lzsd—_&z_)} where Nu. =38
Nu

Table 8.2 Values of Nu, for different values of z".

VA Nu,
0 0
0.002 | 12.00
0.004 | 9.93
0.010 { 7.49
0.020 | 6.14
0.100 | 4.51
oo 4.36

Table 8.3 Infinite-series-solution functions for the circular tube;
constant heat rate; thermal-entry length.

nl i A,

112568 7.630 x10° For larger n,

21 83.86 [ 2.058x 10" 4
31742 | 0901 x 107 A, =4n+=; A_=0.
412965 0487x10° 3
514509 (0297 x 107
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Wall temp. increases at a
A steady rate after some time.

0 z'

Figure 8.6 Temperature variations in the thermal-entry region of a
tube with constant heat rate per unit of tube length.

8.4 The Rectangular Duct Thermal-Entry Length, with
Hydrodynamically Fully Developed Laminar Flow

The thermal entrance region in a hydrodynamically fully
developed flow in a rectangular duct may be studied by the use of the
integral method. In this section, the uniform wall temperature and the
uniform wall heat flux cases are discussed. The physical model is based
on the following assumptions:

1. All fluid properties are constant.
2. The flow is laminar.
3. The viscous dissipation and the work of compression are

both negligible.
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4, Both walls of the duct either have the same uniform
temperature T,,, or the same uniform heat flux q,,.

S. The thermal boundary layer thickness is zero at the entrance
where x = 0.
6. The effects of heat transfer are found only within the thermal

boundary layer. The fluid outside the thermal boundary
layer will be unaffected by the heat transfer, and have a
uniform temperature T, at the entrance where x = 0.

The velocity profile is assumed fully developed at x = 0. The
heating (or cooling) section starts at x = 0; the thermal boundary layer
grows in thickness as x increases until it reaches the center line where it
meets the boundary layer from the other wall of the duct.

/_ u(y)

Figure 8.7 Development of the thermal boundary layer along the walls
of a rectangular duct.

8.4.1 Constant Wall Heat Flux

If we neglect the viscous dissipation term, the energy integral
equation, Eq. (8.19) becomes

d  or
g, = ] PCuT =T, (8.88)

The fully developed velocity profile for flow between two flat
plates can be used,
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2
o 2(1) _ (ZJ ) (8.89)
U d d

4

For the temperature distribution within the boundary layer, the following
polynomial is selected:

3
4,97 y | :
T-T7T, = 2-3—- 0<y<o 8.90
in 3k { 5T (5T]} n y T ( )

Substituting Eqs. (8.89) and (8.90) into the energy integral equation

(8.88),
d  pCyU.q 242 3
=—{——**4 2né& — 2-3n+n’)d 8.91
q, = AT [Qng - @-3n+ 'y @9
where n=-2 and &=L (8.92a,b)
o, d ’
Integrating Eq. (8.91),
3
ds = 1 k TX+C). (8.93)
dx 2 pC,U.d
The constant of integration ¢, = 0 because £ =0 at x =0. So,
I
80 3
Y,
E=|—— (8.94)
Pe

U,d 2
where dy=4d, Pe= —2"* and U, = EUC.
a
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From Eq. (8.90), T, -T, = 23qu 5,.

Since &, =&d, Eq. (8.95) may also be expressed as

_29,4d 80/1

w in 3 k e

(8.95)

(8.96)

The local heat transfer coefficient based on T,, — T;, is expressed as

Substituting Eq. (8.96) into Eq. (8.97),

64 Pe

y —80/

The Nusselt number based on T,, — T, is expressed as

hd
Nu, =—%2=6 Pe
k 80x
dy
The bulk (mean) temperature is defined as

_ LTudA
"~

Hence,

MARCEL
DEKK

w  Copyright n 2003 by Marcel Dekker,Inc. All Rights Reserved.

(8.97)

(8.98)

(8.99)

(8.100)



4 ©r u 4q,,
Tm—Tm=d—f—(}—(T—Tin)dy= o5, [@ng-n*g*)n-3n+7)dn
H m

3kd,,
(8.101)
Therefore,
2
T -1, =29dn & & (8.102)
PRI
Combining Egs. (8.96) and (8.102),
T -1, =249 S &8 (8.103)
K |3 10 48

Thus, the local heat transfer coefficient based on T, — T can be
expressed as

A _k 2 (8.104)
T, - Tm d .f § é‘
3 10 48
The Nusselt number based on T, — T}, is then
N =t _ 2 (8.105)

Tk g g g
3 10 48

8.4.2 Constant Wall Temperature

Consider laminar fluid flow between parallel plates with a
uniform wall temperature. A fully developed parabolic velocity profile,
Eq. (8.89), is assumed as in the previous case. For the temperature
profile, the following polynomial is assumed:
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(8.106)

Substituting the velocity and temperature distributions into the
energy integral equation (8.19), and integrating, a differential equation in

& =0, /d is obtained. The solution of this differential equation is

1
g {%J{ (8.107)
€

The heat transfer coefficient based on Ty, — Ti; IS

3
h =6 _Pe |’ (8.108)
120x/d,,

The Nusselt number based on T, — T, is

hd
N, = kH B 62 3\
3
é ] == i + 5_
205 24
PROBLEMS
8.1. Consider the fully developed laminar flow between two parallel

plates at a distance 2a apart. Find the expression for the velocity
profile and the friction factor.

8.2.  Obtain the steady-state, fully developed velocity distribution for
laminar flow between two parallel plates, in the absence of body
forces.

8.3. Obtain the steady-state, fully developed velocity distribution for
laminar flow between two parallel plates, in the presence of a
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8.4.

8.5.

8.6.

8.7.

8.8.

b £ % vr-COpyright 2003 by Marcel Dekker, Inc. Al Rights Reserved. e e [ e o+ e et e et

body force due to gravity, such that the body force is equal to
Py
— J g, where g is the gravitational acceleration.

Systematically find the expression for the temperature
distribution and the Nusselt number for laminar flow between
two large parallel plates in the region of fully developed velocity
and temperature profiles for a uniformly applied wall heat flux.

Consider a fully developed steady-state laminar flow of a
constant-property fluid through a circular duct with a constant
heat flux condition imposed at the duct wall. Neglect axial
conduction and assume that the velocity profile may be
approximated by a uniform velocity across the entire flow area
(i.e., slug flow). Obtain an expression for the Nusselt number.

Consider a fully-developed steady-state laminar flow of a
constant-property fluid through a circular pipe with a constant
heat flux condition imposed at the duct wall. Neglect axial
conduction, but include the effect of viscous dissipation. Obtain
an expression for the Nusselt number.

Consider the fully-developed flow of a viscous fluid in a circular
duct of radius a,. Without neglecting viscous dissipation, derive
an expression for the Nusselt number if the boundary condition
at r=a,, is T=T, <T,, where Ty, is the mean temperature of
the fluid.

Flow—’ — | —»

S

Heat transfer porous matrix

Arrangement (a)



Flow—p /

/

Heaf transfer porous matrix

Arrangement (b)
Arrangements (a) and (b) are two possibilities such that heat is
exchanged between the solid porous matrix and the fluid. Which
is a more efficient heat transfer arrangement? Discuss.

8.9. In Ulrichson and Schmit’s work on laminar flow heat transfer in
the entrance region of circular tubes the following results were
obtained.

16

Nuva

0.001
0.1
(x/d)/Pe

Figure for Prob. 8.9.
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8.10.

8.11.

Q)
(i1)

(iif)
(iv)

8.12.

Nu, 1 = local Nusselt number

x/d ) ) ] .
—P—— = dimensionless axial coordinate
e

v = radial velocity component
The two different curves represent the following:
(i) v =0, radial velocity component neglected
(ii) v # 0, radial velocity component not neglected.
In both cases the axial velocity component, u, has been
considered. Give a physical explanation for the finding that
curve (i) is consistently higher than curve (ii).

A constant property fluid flows between two horizontal, semi-
infinite, parallel plates, kept at a distance 2m apart. The upper
plate is at a constant temperature T; and the lower plate is at a
constant temperature T,. Consider the fully developed velocity
and temperature profiles region for laminar flow. Include
viscous dissipation. Find the heat flux to each of the plates.

Consider fully developed flow in a pipe. A thermal boundary
condition is applied, starting at a distance x = x,. For the four
different cases listed below, sketch the temperature profiles in
the pipe as the thermal boundary layer develops, and the
temperature profiles after the thermal boundary layer has fully
developed:

Constant heat flux input at the walls; at the entrance, Ty >

Thuia;

Constant heat flux outflow at the walls; at the entrance, T,y

< Thuigs

Constant wall temperature; at the entrance T,y > Thuig;

Constant wall temperature; at the entrance Tyay < Thuig.

A constant-property fluid flows in a laminar manner in the x
direction between two large parallel plates. The same constant
heat flux g, is maintained from the plates to the fluid for all
x2 0. The fluid temperature is Tj, at x = 0. Find an expression
of the local Nusselt number by the integral method. What is this
expression if Pr=1?
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Internal Flows

Flow between parallel plates is modeled by Couette flow
Flow in tubes, pipes and blood vessels is modeled by Poiseuille flow
The moving plate is the driving factor in Couette flow
The pressure gradient is the driving factor in Poiseuille flow.

We consider viscous dissipation in Couette flow
We consider the pressure gradient in Poiseuille flow
Viscous dissipation acts as heat source in Couette flow
For moderate flow, no heat source within Poiseuille flow.

K.V. Wong
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9

Natural Convection

Free or natural convection occurs when fluid motion is generated
predominantly by body forces caused by density variations, under the
earth’s gravitational field. In the absence of the gravitational field, body
forces may be caused by surface tension. The subject material here is
focussed on heat transfer with motion produced by buoyancy forces.

Boundary Layer Concept for Free Convection

9.1.
&
N / » y /'1‘
\ [ ,/
N / A \ X
\ / / N
! & |
) / i ; ;\
>:’ i rl
\ ! [ eI
V N/ e |
\ ; ,.-"':: ! N
\ ’ ) N\
ﬁ ,'..-'-{'"" ," N\
y

(a) Vertical plate is hot compared (b) Vertical plate is cold compared
to the environmental temperature. to the environmental temperature.

Figure 9.1 Boundary layer concept for free convection.

In Fig. 9.1, the vertical plate is at a much different temperature

from that of the environment. In Fig. 9.1(a), the plate is hotter than the
environment, hence the air in contact with the plate gets hotter, less
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dense and rises. In[Fig. 9.1(b)] the plate is colder than the environment,

hence the air in contact with it gets colder, more denser and falls.
The momentum boundary layer thickness is represented by 9, and the
thermal boundary layer thickness is represented by §&,.

Consider laminar, steady, two-dimensional free convection with
no viscous dissipation of energy of an incompressible fluid. The concept
used here is that the fluid has constant properties, but the body force is
produced by a difference in density caused by the temperature
distribution. For the continuity equation, we have

M Ay ©.1)
& &
for the momentum equation,
2
pué{+v@— =—pg—@+,ué)§l .2)
& g & g

and for the energy equation,

2
pCp u£+vg— :ké’?. 9.3)
& &y
If we examine the boundary layer edge where u= 0 aty — oo,
Pp
—=—p, 9.4)
ey Px&

where p_ is the fluid density outside the boundary layer. The pressure

field is given by hydrostatics. Since 24 ~ 0, then

D, 9.5
PE—— (p, —p)g. (9.5)
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To express the change in fluid density as a result of the fluid
temperature, we can define the volumetric coefficient of thermal

expansion, P, as

1 g
p=-—2Z

p ﬂ" pressure
or Ap =—-LpAT

or p,—p=-ppT, -T)

Hence, — pg — % =—PBp(T, -T)g.

The boundary layer momentum equation becomes

2
u@+v@=gﬂ(T—Tw)+ua—2’i.
& & 2%

We define the following dimensionless quantities:

x=2 y=2
L L
U=2% =2
u() u()
5 I-T.
T,-T,

The dimensionless governing equations are then as follows:

U
Z+Z =0
&
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&y G, 10U o1
& & Re* Redy?

2

Uég Vég L 70 (9.16)
7). ¢ &Y RePr or?

_ 3
where Gr = Grashof number = gp(T, —T.)L . 9.17)

v2

Gr _ bouyancy forces
Re’ inertial forces
buoyancy forces are the forces causing action. In practical engineering,
the Nusselt number may be correlated to the Grashof number and the
Prandtl number. Often, for simplicity, the product of Grashof and

Prandtl number is used, that is, the Raleigh number, Ra,

, since in free convection, the

The ratio

Ra=GrPr= gBL (T, - T.,)/(av). (9.18)

In the foregoing discussion, Eqs. (9.14)-(9.16) are for free
convection from a hot vertical plate with x,y coordinates selected as
depicted in[Fig. 9.1(a).] The same equations are suitable for a cold
vertical plate (i.e., T, > T,,) if the coordinates are selected as shown in
Fig. 9.1(b). In Fig. 9.1(a), g acts in the negative x direction, so the
product gB(T-T,) is a negative quantity since T > T, for a hot plate. In
Fig. 9.1(b), gP(T-T.,) is also a negative quantity since T < T, for a cold
plate.
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9.2 Similarity Solution: Boundary Layer with Uniform Temperature
The equations (9.14)-(9.16) have been solved using a similarity

solution by Ostrach (1953). The solution method hinges on the
introduction of a similarity parameter of the form

%(Gf)". (9.19)

The velocity components are represented in terms of a stream function
defined as

n

w6 ) = 1) 4v(Gf ]4 . (9.20)

With the definition of the stream function in Eq. (9.20), the x-velocity
component may be represented by

)fu[@j @GH@
9.21)

U= = =

&y oy

Sy _ By On (

The three original partial differential equations may then be reduced to
two ordincary differential equations of the form

£ 43 - 2(F)* +0=0 (9.22)
67 + 3Prfe’ =0 (9.23)

where f and 0 are functions of only 1 and the double and triple primes,
respectively, indicate the second and third derivatives with respect to 0.
The function f takes on the role of the dependent variable for the velocity
boundary layer. The continuity equation is automatically satisfied by
introducing the stream function.
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The transformed boundary conditions required to solve the
momentum and energy equations, are as follows:

n=0, f=£=0, 6=1 (9.24)
n—w, f—0, 80— 0. (9.25)
0.3
() e Pr=0.01
o u T,
2,\\4/gx T,-T, 6 ”
0.6
/L
Z Pr=0.01
{ f\ Pr=0.72
<
=l e 14
0 7:/ \3&
0 100 / G 6
Y Phh
1000 =)
Figure 9.2 Dimensionless velocity distribution for laminar free

convection on a vertical flat plate. Ostrach, 1953 [3].
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0(n) = (T-TH(Tw-T.) [ Fr=001
6 22
1
\\_\ Pr =0.01
\
N |
\ 0.72 T
1
N
0 \ \k\
0 \ 00 0 6
1000 y Gr, y
=< Xy/4
n==(—")
X 4

Figure 9.3  Dimensionless temperature distribution for laminar free
convection on a vertical flat plate. (Ostrach, 1953 [3].)

Pohlhausen, 1911 [1] solved these equations first, whereas
Schmidt and Beckmann, 1930 [2] solved them for Pr = 0.733 in 1930.
Ostrach, 1953 [3], solved the same equations for the range 0.01 to 1000.
For free convection laminar boundary layer on a heated vertical plate in
that range of Pr, the velocity and the temperature distributions are shown

in and respectively.
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The values of 6°(0) and f’(0) are obtained from the solutions,
and these are provided in Table 9.1. The velocity and temperature
profiles, compared with the experiments of Schmidt and Beckmann,
show good agreement at Pr = 0.733. For the dimensionless velocity, the
maximum values of the distributions increase with decrease in Pr. For
the dimensionless temperature, at any 1 the value of 8 increases with a
decrease in Pr.

Table 9.1 Calculated values of £°(0) and 6°(0) at different values of Pr

Pr £7(0) | ®(0)

0.01 | 0.9862 | 0.080592

0.733 | 0.6741 | 0.50789

1.0 0.6421 | 0.56714

2.0 0.5713 | 0.716483

10.0 | 0.4192 | 1.168

100 | 0.2517 | 2.1914

1000 | 0.1450 | 3.97

The local heat flux from the surface to the fluid at any x value
may be computed by Fourier’s heat conduction law,

=~k(” j - k(T ~T.)Cx 4("9] 9.26)
0 an),.

The derivative ( J , also written as 0°(0), is obtained from the
n=0
solutions of Egs. (9.22) and (9.23) for different values of Pr.

For heat transfer considerations, the local heat transfer
coefficient and the local Nusselt number are written in the usual way as

X

h, = L , Nu, =
T,-T

w o0

(9.27)

From Eq. (9.26), we obtain
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_0'(0)Gr}!
o2
where Gry is the local Grashof number. This equation is suitable for both

Tw> Te and T, < T, . For an ideal gas, the local Grashof number may
be written as

Nu (9.28)

3
Gr, = %. (9.29)

By convention, only positive dimensionless numbers are used. This
means that in Eq. (9.29), it is the modulus of (T,, —T.) that is used. A
large value for Gr implies that the effects in the momentum equation are
not very large.

For a vertical surface, Ostrach’s computations are approximated

by
1
Nu, 0.676 Pr>
= - (9.30)
(@)4 (0.861+ Pr)*
4

As h ~ x*% | the average heat transfer coefficient from 0 to L is given by
h =4h;/3. The average Nusselt number is then

7 2
Nu _ 0.902 Pr . 931

1 1
(9@}4 (0.861+Pr)?

4

A Nusselt number relation that is used in practice is that given in
McAdams, 1954 [4]. It is a semiempirical equation relating the average
(over the length L) Nusselt number to Pr and Gr,
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Nu =0.548(Gr, Pr)*, 10 < Gr, <10°. (9.32)

For air, the above equation can be used. For oils, the constant should be
replaced by 0.555 [3]; for mercury, the constant should be about 0.33 [5].
The resuits of Eq. (9.31) and those of Eq. (9.32) agree only for a limited
range of Pr.

The asymptotic forms of Egs. (10.22) and (10.23) were solved
for very small and infinite values of Pr by Le Fevre, 1956 [6]. He
developed the following correlation for the mean Nu which agrees well
with the exact results of [3]:

1

2 i

Nu = Gr, Pros . (9.33)
2.43478 + 4.884 Pr' + 4.95283 Pr

The above discussion is for laminar flows. In practice, the
transition from laminar to turbulent flow in free convection typically
occurs when the Rayleigh number Ra = GrPr = 10°.

9.3 Similarity Solution: Boundary Layer with Uniform Heat Flux
Sparrow and Gregg, 1958 [7], obtained a similarity solution for a
vertical plate with uniform heat flux boundary condition. The range of

Pr investigated was from 0.1 to 100.

Equations (9.10) and (9.3) can be transformed to ordinary
differential equations by the following similarity parameter:

1

1
- 5
n=Dyx* where D = (gﬁqwj , Qw = heat flux at the wall.

5kv°
(9.34)

The velocity components are represented in terms of a stream function
defined as
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4 a 31\3
z 5 5
w(x,y)=D,x° f(57) where D, = (_g,i_qg)_] : (9.35)
The temperature is represented by
D(T,-T
B(n) = ](l—‘”l (9.36)
x3q,lk
The velocity components can be derived from
&y X
and Eq. (9.35) to give
: D
u=DD,x’f'(m), v=—2[nf"(n)-4f(). (9.38)

5x3

The three original partial differential equations may then be reduced to
two ordinary differential equations of the form

£73(0)Y + 47 -0=0 9.39)
6” + Pr( 416’ — 6f") = 0. (9.40)

The transformed boundary conditions required to sove the
momentum and energy equations, are as follows :

n=0, f=£=0, 0= (9.41)
n—w, >0 06-0. (9.42)

Numerical solutions to the above problem have been obtained.

Evaluating Eqgs. (9.34)-(9.36) at the surface, i.e., 1 = 0, the
surface temperature is represented by
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1 1
l 4N\ % 4 5
T,-T, =—559(0)51-;§’5(ﬂ BTuT J5=—9(0)( kb ] CYE)

Written in terms of the modified Grashof number Gr, Eq. (9.43)
becomes

1

T,-T, .= *
‘”q x°° Gr.® =-5°6(0) or Nu"l =—— ! (9.44)
]‘; Gr.>  556(0)
where
4
Gr: =Py, P X (9.45)
v’k kK kT,-T,)

The solution of Eqs. (9.39) and (9.40) subjected to the boundary
conditions, Egs. (9.41) and (9.42) give rise to values of 6(0) and £°(0),
which are listed in Table 9.2.

Table 9.2 Values of f °0) and 6(0), Sparrow and Gregg [7].

Pr [T0) | ©0)

0.1 | 1.6434 | -2.7507

1 0.72196 | -1.3574

10 1030639 | -0.76746

100 | 0.12620 | -0.46566

There is no obvious characteristic temperature difference in the
problem. In the literature, the average Nusselt numbers are often defined
using the average plate temperature minus the environmental
temperature, that is,

— 1 A
T,-T.= (@, -1 (9.46)

w
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The left-hand side of Eq. (9.46) may be obtained from the expression in

Eq. (9.43). Hence, the average Nu based on this temperature difference
is

N}
Nu =%‘=“‘§£_GQ5- (9.47)
536(0)
Since
. L4 _ 3
Gr, =(gii‘2 ]={gB(T” L }%L (0.48)
v
then
5
n
Nu 6
=4 — . (9.49)

Gr? 550 (0)

The values of Nu/Gr,"* for a flat plate with uniform surface
temperature have been computed from the results of Ostrach [3] and are
tabled with the values from Eq. (9.49) in Table 9.3. The average Nu

have been defined using the temperature difference midway along the
plate.

Table 9.3 Average Nu for uniform wall heat flux and constant wall
temperature, Ostrach [3].

Prol aw GrL% [3] | Nw GrL% (Eq.9.49)
01 | 0219 0.237

1.0 | 0.535 0.573

10 | 1.10 1.17

100 | 2.07 2.18
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9.4 Integral Method of Solution
The momentum integral equation for natural convection is

%( f puzdy) =—7, + fpgﬂ(T ~T,)dy. (950

Rate of change Shear  Bouyancy force
of momentum  stress  per unit element

Replacing the shear stress at the wall by the velocity gradient,

+ [ pep(T - T, )dby. ©51)

( f puzdy) —ﬂgy‘

y=0

The thermal boundary conditions are

T=T,aty=0 (9.52a)

T=Te,aty=38 (9.52b)
E =0 aty=3 (9.52¢)
&y

It is assumed that the temperature, T, takes the form of a second-degree
polynomial. In other words,

T=a+by+cy’. (9.53)

Then, the dimensionless temperature, 6, is given by

2
gt 1o —(1—1). (9.54)
T, -T, o

The velocity boundary conditions are

u=0aty=0 (9.55a)
u=0aty=2 (9.55b)
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2] =0 aty=34. (9.55¢)
@y

From the momentum equation,

J*u T,-T,
W = —gﬁ y at y= 0. (9.56)

If u, is an undefined fictitious velocity, we can express the dimensionless
velocity as

U=Z=a +by+ey’ +dy. 9.57)
ux
u 2
Then, —=X( —X—) where u,~ 2. (9.58)
u, o o
1 dy, 1 u
Hence, ——\u.0}=—gp(T,-T,)0 —v—=. 9.59
ence, 105 s (420 = 3800, ~T)6 ~v 059

The energy integral equation is

d dT

— T-T)dyl=—-a— 9.60
A fur-T)d1=—a" (9.60)
from which, we obtain

1 d (T, -T,)
—(T,-T.)—(u,o0)=2a—2—==, 9.61
15 (v~ L) (.0 =2a ©.61)

From Eq. (9.59),

d 1
— (88~ ~eB(T. ~T.)S -v.J. 9.62
dx( ) 3gﬂ( w—T,)o0-v (9.62)
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Since the right-hand side of Eq. (9.62) is independent of x, the left-hand
side has to be independent of x. For this to happen,

' ~x or &~x"P (9.63)

1 !
It is then assumed that ¥ = C,x?,6 = C,x*. (9.64)

The constants C; and C, can be found from Egs. (9.59) and (9.61).

Solving,
S Jl 1
—=3.93Pr 2(0.952+Pr)* Gr ¢ (9.65)
X
_ 3
where Gry, = M

v

In considering the energy heat transfer, the heat transfer
coefficient may be evaluated from

7. =_kA£21 = hA(T, ~T,) (9.66)

w

It can be shown that h = 2k/§, or that Nu, = hx/k = 2x/8. Hence, the
Nusselt number can be expressed as
1 1 1

Nu, =0.508Pr2(0.952+Pr) *Gr} (9.67)

For the vertical plate, the average heat transfer coefficient can be found
from the relation

A 2 4
Lf T3 69

x=1°

Equation (9.67) agrees well with Eq. (9.30). Equation (9.67) can also be
expressed as
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= Pr ¢
Nu_ =0.508Ra*| ——— (9.69)
0.952+Pr

where Ra, is the local Rayleigh number,

_8fT -T)x’
ov '

Ra

X

(9.70)

Hence, the average Nusselt number for x = 0 to x = L along the flat plate
1

1 !
is Nu, =0.68Ra}| —1 | ©.71)
0.952 + Pr

Comparison of the results of the integral method with
experimental results and exact solutions show that the prediction of the
heat transfer coefficient with the integral method is satisfactory.

If Pr is approximately equal to one, Eq. (9.71) gives
1
Nu, =057Ra;}.

1
If Pr — o, Eq. (9.71) gives Nu, =068Ra;. If Pr — 0,
1 1

Nu, ~0.688Ra} Pr* .

It can be seen that the expression for the average Nusselt number for Pr ~
1 is closer in form to the case where Pr — oo, than the case where Pr
— 0 . The reason for this is that in natural convection, the driving force
is caused by the temperature gradients, and thus defined by the thermal
boundary layer. When Pr ~ 1 and when Pr — oo, the thermal boundary
layer is thicker than the velocity boundary layer. Hence, the behavior of
the Nusselt number would be similar in form for both cases. When Pr
— 0, the behavior of the kinematic viscosity relative to the thermal
diffusivity is going to be different from that of the other two cases. In
addition, the right-hand side of the expression for Pr — 0 is independent
of v, as one would expect for this case where the effects of the kinematic
viscosity are very small or negligible.
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Example 9.1

Problem: . Derive an expression for the maximum velocity in the free
convection boundary layer on a vertical flat plate. At what position in
the boundary layer does this maximum velocity occur?

Solution
The velocity profile given by Eq. (9.58) is assumed. The profile
satisfies the velocity boundary conditions. Hence,

2
o z(l _ 1)

u, o 1)

Taking the derivative with respect to y,

du Y 2y Yy L Yy
dy u [ -+ 5 1=

_25-2y, L
S -2 Y=o,

552

2

Hence,

From which we get y= & or g

Since u =0 at y = 8, the maximum velocity occurs at y = &/3. This
maximum velocity is

4 4 .
= ——u_, which may be expressed as —C;x" .
7 27

umax
PROBLEMS
9.1.  Most of the correlations for the average Nusselt number used in

free convection are expressed in the form

Nu = D(Gr.Pr)".
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9.2.

9.3.

9.4.

9.5.

9.6.

9.7.

9.8.

9.9.

By choosing the appropriate average property values in these
correlations, demonstrate that the average heat transfer
coefficient may be expressed as

h= D'[%) , where Dand D' are constants.

Consider Eq. (9.31), which is an expression for the average
Nusselt number in terms of Gr and Pr. Obtain expressions for
this average Nu for (a) Pr >>1 and (b) Pr <<1.

Consider Eq. (9.71), which is an expression for the average
Nusselt number in terms of Ra and Pr. Obtain expressions for
this average Nu for (a) Pr — « and (b) Pr—0.

If a flat plate is inclined with an angle § from the body force
direction, show that the Nusselt number for free convection on
this inclined plate is a function of Pr and Grcosp.

Consider Eq. (9.31), which is an expression for the average
Nusselt number in terms of Gr and Pr. Obtain an expression for
this average Nu for Pr ~ 1.

Consider Eq. (9.71), which is an expression for the average
Nusselt number in terms of Ra and Pr. Obtain an expression for
this average Nu for Pr~ 1.

Show that the solution to Prob. 9.5 is approximately the same as
that to Prob. 9.6.

Consider Eq. (9.31), which is an expression for the average
Nusselt number in terms of Gr and Pr. When Pr ~ 1, is the
expression more similar to the case where Pr >>1 or to that for
the case where Pr << 1? Explain.

An empirical equation proposed by Heilman for the coefficient
of heat transfer in free convection from a long horizontal cylinder
to air is
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o LOI6(T, - T, )oe
0.20.181
DTy

The corresponding equation in dimensionless form is

hD
—_—= cGr,'." Pr;’ .
k

/

Determine the values of the indices m and » in the dimensionless
form which corresponds to Heilman’s equation.
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Natural Convection

When a fluid moves under natural convection
Because of body forces caused by density variations
This phenomenon results from the earth’s field of gravitation
Body forces may also be caused by surface tension.

Velocity and temperature found by similarity method
Also solved by use of the integral method
Then heat transfer coefficient found in Nusselt number
Correlation between Nusselt number and Grashof number.

K.V. Wong
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10

Numerical Analysis in Convection

10.1 Introduction

In problems of heat convection, the most complex equations to
solve are the fluid flow equations. Often times, the governing equations
for the fluid flow are the Navier-Stokes equations. It is useful, therefore,
to study a model equation that has similar characteristics to the Navier-
Stokes equations. This model equation has to be time-dependent and
include both convection and diffusion terms. The viscous Burgers
equation is an appropriate model equation. In the first few sections of
this chapter, several important numerical schemes for the Burgers
equation will be discussed. A simple physical heat convection problem
is solved as a demonstration.

After the Burgers equation, the numerical analysis of the
incompressible boundary layer equations for convection heat transfer are
discussed. A few important numerical schemes are discussed. The
classic solution for flow in a laminar boundary layer is then presented in
the example.

In the next section, incompressible flow with constant properties
and no body forces is discussed. Under such conditions, the governing
momentum equations are decoupled from the governing energy equation.
Once the flow field is known, different temperature distributions may be
computed with different types of thermal boundary conditions.

In the last section, convection in a two-dimensional porous
medium is presented as a physical problem. Porous media is important
in environmental heat transfer studies, transpiration cooling, and fuel
cells, as some examples. Using the slug flow assumption, the energy
equation is solved using an alternating implicit method to show its
effectiveness.

There is no attempt to be exhaustive in the discussion of
numerical analysis for convective heat transfer in this chapter. The aim
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is to help the reader appreciate the significance of this method of analysis
for the study of heat convection in this modern age of computers.

10.2 Burgers Equation

In the general form, the viscous Burgers equation may be written
as

ou Olu
g+(a+ﬂu)—0;k—=v?&7 (10.1)

where o and [ are prescribed parameters; o and v are assumed constant.
When a = ¢ = speed of sound and B = 0, the linear Burgers equation is
obtained:

—+Cc—=0— (10.2)

—tU— =D (10.3)

. 1,
Putting E = —2—u R

2
@—ﬁ-zE—=Uﬁ7;. (10.4)
a ok X
If F= %vz ,G= %wz, a multidimensional form of this equation may be
expressed as
o OE OF &G u J'u S'u
—t—t——Ft—=0 -+ttt | (10.5)
a & & & 07,1 & ok
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10.3 Convection Equations
The convection equations include conservation of mass,

momentum and energy. The dimensionless form of the equations are
listed below.

Continuity

op

> +—(pu)+——(pv)+—-(pw) 0 (10.6)

X-Momentum Equation

d o, , ) B
— +— +p)+— +— =
at(p”) = (P1* +p) ay(puv) — (puw)

0 0 0
-—(Tn)"*‘g;(fxy)*'*—

- —(..) (10.7)

Y-Momentum Equation

d 3 o, d ~
= (pv)+ 5 (P + (v 4 )+ - (pvw) =

0 0
— +
—(5y)

ay(ryy)\u @) (10.8)

Z-Momentum Equation

) o d G )
— +— +— +— +p)=
5 (pw) = (Puw) ay(pvw) —(pw’ + p)

e ylayla

10.9
ax a }aZ( ZZ) ( )
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Energy Equation

Ot

X

0z

0
_(uzx +Wzy +WTzz _qz)

These convection equations may be written in vector form as

20 OE 8F 3G _E,

ot ox Oy

where

—pj

pu
O=|pv
pw
e,

pu
pu’ +p
E =| puv
pul

OF, aG,
+ +

| (pe, + p)u |
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0z

uTxx+V‘ny+W‘txz—q

X

0 0 0 0
—(pe,)+——(pue, + pu)+—(pve, + pv)+—(pwe, + pw) =
ox Oy 0z
0
—6——(u1:xx VT, FWT, ~qx)+—6;(uryx +VT, +WT —qy)+

(10.10)

(10.11)




n - o .
pvu T
F=|pv+p F =7,
ovw T,

| (pe, + p)v | Ut +vT, +wr, —q, |

_pw - o -
pwu T
G =| pwy G, =\,
pw’ +p T,

| (pe, + p)w| UT, +VT, +WT, —(,

The convection equations represented by Eq. (10.11) are well
modeled by Eq. (10.5). If the right-hand side of Eq. (10.11) is set to
zero, the Euler equation is obtained,

Q+—é’£+5i£+§g=0 (10.12)
a & o &

This vector equation is a hyperbolic-type equation. In general, the
Navier-Stokes equations are a mixed hyperbolic (in inviscid region),
parabolic (in viscous region) equation. Equations (10.11) and (10.12) are
solved by marching in time. By assuming no time dependence, the
Navier-Stokes equations are a mixed hyperbolic (in inviscid region),
elliptic (in viscous region) equation. In the time-independent equations,
solving involves integration with respect to space coordinates.

10.4 Numerical Algorithms

In this section, a few selected numerical schemes for the solution
of the model scalar equation (10.2) is investigated.

e v e . Copyright n 2003 by Marcel Dekker, Inc. Al Rights Reserved.



10.4.1 Forward Time Central Space (FTCS) Explicit Scheme

In this explicit scheme, the first-order forward difference
approximation is used for the time derivative. The second-order central
difference approximation is used for the spatial derivatives. Hence, the
finite difference equation (FDE) of the partial differential equation
(PDE) Eq. (10.2) is

n+l " ] n n n n
U, —u; U, —u; u,, —2u; +u;
i i +c i+l i-1 =D i+l I2 i-1 . (10.13)
At 2Ax (Ax)

This FDE has a truncation error of the order of [(At),(Ax)?].

10.4.2  Forward Time Backward Central Space (FTBCS) Explicit
Scheme

In this explicit scheme, the first-order forward difference
approximation is used for the time derivative. The second-order central
difference approximation is used for the spatial derivatives. When a
first-order backward difference approximation (¢ > 0) for the convective
term is used, then the FDE of the PDE Eq. (10.2) is

n+l n " n n n n
u, —u ‘e up —Uiy _ Ui~ 2u; +u,
At Ax (Ax)2

(10.14)

This first-order approximation of the convective term may introduce too
much dissipation error so that it is of the same order of magnitude as the
viscosity. Then an accurate solution is not obtained. An alternative is to
use a third-order scheme resulting in the following FDE for Eq. (10.2):

n+l H H h H h h n n n n
u; " —u; +c(u uiy Uy —3up +3u) —u,._2] b Y —2u; +u,

i i i+ i+]
At 2Ax 6Ax (ax)
(10.15)

10.4.3 DuFort-Frankel Explicit

All derivatives are represented by second-order central
difference approximations. The FDE is
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+1 n-1 - !
e e T A a7l LA
20 28x (Ax)

2
This FDE has a truncation error of the order of [(At)z,(Ax)z,(—i—xf—) ].

The equation may be rearranged as

ur = (1_ 2d)u,f"‘ + (a " 2d) (f—ﬁg)ug,. (10.17)
1+2d 1+2d 1+2d

The stability criterion of the scheme is thata < 1.

10.4.4 MacCormack Explicit

This predictor-corrector scheme or double-step scheme is done
in two steps:

u =u —c%(uf' u")

i i+l

( )2(,+1~2u"+u,1) (10.18)
3 08 vl i)
(10.19)

Equations (10.18) and (10.19) may be written in incremental form as
follows:

ot = o St —ut Jrop S it -2 )

(ax

u, =u +Au (10.20)
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u™! =%(u}' +u,'.+Au,'.) (10.21)

i

The MacCormack explicit scheme is second-order accurate with the
stability criterion of

At < !
c v

...__+.__.___.
Ax - (Ax)
10.4.5 MacCormack Implicit

As in the explicit method, the formulation of this implicit
method is in two steps, as follows:

(1+/1£)5u; = Au, +,1ﬂ5u;+,
Ax Ax

u; =u +8u, (10.22)

where Az is computed from Eq. (10.20)

1+A—Ai)5u,"+‘ = Au; + Af&lﬁu{’_’;‘ (10.23)
Ax Ax

I

' = %(u,.” )+ u) (10.24)

Equation (10.21) provides Au,. In Egs. (10.23) and (10.24), the
parameter X is chosen such that

rrrrn Copyright n 2003 by Marcel Dekker, Inc. All Rights Reserved.



A= max[l[|c| 22 éx—,0.0ﬂ.
2 Ax At

Bidiagonal systems result from Eqs. (10.22) and (10.23). These can be
solved efficiently using various routines. The algorithm is
unconditionally stable and second-order accurate if the diffusion number

At .
U-—— is bounded for the limiting process as Ax, At goes to zero.

(Ax)’
10.4.6 Backward Time Central Space (BTCS) Implicit Scheme

“This implicit method uses a first-order backward difference
approximation for the time denvative and asecond-order central
difference approximation for the spatial denvatves. The FDE 1s

e it MR it
+c =0
At 2Ax (Ax)’
The above can be written as
—(05a+du" +(1+2d)u" +(0.5a—dul =u! (10.242)

Tridiagonal systems result from Eq. (10.24a). These can be solved
efficiently using the Thomas algorithm, as discussed in the last section of
this chapter.

Consider the linear Burgers equation:

or  Or &*T
—tu—=«a
a & V.

(10.25)

The equation is linear if u is a known function. This may be considered
to describe a time-dependent one-dimensional heat convection equation
for a problem with a known flow field. For a fluid with constant
properties in the temperature range considered, the momentum equation
is decoupled from the energy equation. In the following example, the
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linear Burgers equation will be applied to a simple physical problem
where the approximate solution is rather intuitive. The example serves to
illustrate one of the numerical schemes presented above.

Example 10.1

Problem: Use the linear Burgers equation for heat convection in a
channel where the water is flowing with uniform velocity of 0.1 m/s
across the cross-section of the channel (boundary layers are neglected).
The water is initially at 25°C throughout. At time t = 0 sec, waste heat is
continuously rejected at x = 0 m, and the channel is long such that dT/dx
=0 for x > 1 m. The amount of heat rejected is 6.23 W/m” for t > 0.
Using the FTCS explicit scheme, calculate the first 9 time steps, to show
the transient temperature distributions.

Solution
. ....a J _ JT .
The linear Burgers equation is — +u—=a—-. (i)
a 7.3 x
Using the FTCS explicit scheme, the FDE of (i) is
T‘n‘f‘] - 'Il T.II — T,” T” _ 2T»H + T"I
i TI _*_(j473 i+l i-1 = i+l i : i-1 (11)
At 2Ax (Ax)’
U, At At N N
Hence, 7" =T," — 22=0(T, =T/, )+ s (12 - 2T + T, )
24x (Ax)
(iii)

For water (at 25°C), a=~ 1.5 x 10-4 m/s*, k= 0.623 W/m.°C
Choose At = 0.1 sec, Ax =0.01 m.

U At aAt
2 — =0.05,
(Ax)?

Eq. (ii) becomes 7' =7/ —O.S(Ti',j] =T )+ O.OOOOIS(T,-:l =21 +T,-'_'1)
(iv)

=(.000015

Hence,
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At x = 0, the boundary condition is such that &

Hence, 7" =7) +0.1°C

We assume that 7,"*' =7} +0.1°C.

L' -1

w
= 6.23—2.

m

Using an Excel spreadsheet, with a hundred and one points in a row, the

following results were obtained for the first nine time-steps.

X=0.0 0.01 0.02 0.03 0.04 0.0 0.06 0.07
t=0 25 25 25 25 25 25 25 25
0.01 25.1 25 25 25 25 25 25 25
0.02 2515 25.05 25 25 25 25 25 25
0.03 25.225 25.125 25.025 25 25 25 25 25
0.04 25.325 25.225 25.0875  25.0125 25 25 25 25
0.05 25.44375 2534375 25.19376 25.05625 25.00625 25 25 25
006 25.56875 2546875 2533751 25.15001 25.03438 25.00313 25 25
0.07 25.68437 25.58437 2549688 2530157 25.10782 25.02032 25.00156 25
0.08 25.77812 25.67812 25.63827 25.4961 2524845 25.07345 25.01172  25.00078
0.09 25.84804 25.74804 25.72928 25.69101 2545978 25.19181 25.04805 25.00664

10.5 Boundary Layer Equations

ou

—+—=0

ox

The boundary layer equations were derived in a previous
chapter, or may be deduced from the general convection equations in the
early part of this chapter. For two-dimensional, steady flow over a flat
plate of an incompressible, constant-property fluid, the continuity, x-
momentum and the energy equations are as follows:

ov
Oy

ou u
plu—+v—|=-

Ox
or oT
C 4 y— | =k
p P(“ o Va J

gg_'_ d%u
de = oy’
82T (auy
2 T
oy oy

(10.26)

(10.27)

(10.28)

The pressure gradient term in the x-momentum equation has to be known
for the solution of the equation. This may be obtained from Bernoulli’s

MARCE
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. ou
equation, and seen to be equal to —u_ E‘”,where u,, is the velocity far
away from the plate, and it may be a function of x. Equation (10.27)

becomes

éu du,, A’u
2, u—éx—+v— =-u, + u PE (10.29)

dx

The time-independent equations above are elliptic in nature. Ina
rectangular grid system, the finite difference forms of Egs. (10.29) and
(10.26) can be written as follows:

(o —) - )
i+1, I} i f+1 i, -1
/ /+V / /

Uu. - U,
U, ( o ”w)'*' Y 3 (ui jal T 2“:‘/ tu; /—1)
, Ax (A ) . ! 5
(10.30)
V.y: — V.., U, +u,., . —=U, U, .
i+, i+1,j-1 + i+l i+1, -1 i i, j=1 =O. (1031)
Ay 2Ax

The truncation error for Eq. (10.30) is of the order (Ax) plus order (Ay)’.
It is the same for Eq. (10.31). The explicit method shown by these
equations are no longer used extensively because of the restrictive
stability constraint. It is shown here for simplicity, and for discussion
purposes.

Consider flow over a flat plate. The computation is started by
assuming that u; = u,, at the leading edge and v;; = 0. The value of vj is
needed in the explicit algorithm to move on to the i+ level. It is not
required to specify the initial values of v; in the formal mathematical
formulation of the partial differential equation. A suitable initial
distribution for v;; can be obtained by using the continuity equation to
eliminate Ou/0x from the x-momentum equation. For a laminar,
incompressible flow, this means that
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v s VoS (1032)
So, —u%w%:—uz%(ﬁ). (10.33)
U

2
Hence %(1) - ——12—(1100 d;: + v%} (10.34)
U u
Using the boundary condition thatv=0aty =0,
d 2
v(y)=—ufui2[uw ;‘: +V%de (10.35)

For the flat plate problem, we can assume that at x = 0, Uj = Uincoming
except at the plate, where it is equal to zero. We can also use a
numerical calculation of Eq. (10.35) to obtain an estimate of a
compatible initial distribution of vy In practice, letting v;; be zero
everywhere initially also works.

With the initial values for u;, Eq. (10.30) may be solved for u;.y;
explicitly, usually by starting from the flat plate and working outward
until ujj11/Uis10 = 1- € = 0.995 or some other predetermined value of e.
Because of the asymptotic nature of the boundary layer condition, the
location of the outer boundary is found as the solution proceeds. The
values of vi,;j can be computed from Eq. (10.31), starting at the point
next to the lower boundary and computing upwards in the positive y
direction. The stability criteria for this method are

<2. (10.36)

The second term in the momentum equation, Eq. (10.30), is principally
responsible for the difference between the stability constraints of Eq.
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(10.30) and the energy equation. The discussion following also gives an
alternative treatment for this term.

Alternative Explicit Method
To have a better control on the stability of the explicit method by

monitoring a single criterion, the second term in the x-momentum
boundary layer equation can be depicted as

Uy —U;
v, when v > 0
Ay
ui,j+l - if
and i ‘—A——“‘ When V,-j <0. (1037)
Y

The stability criterion is then

Ax < L . (10.38)

2v . 'Vy"
u;,(Ay)?  ugAy

The truncation error becomes of order [(Ax),(Ay)].
Example 10.2

Problem: Consider laminar flow of a fluid over a flat plate. Use the
explicit method of finite differencing to compute the x-component
velocity profile within the boundary layer.

Solution

Equations (10.30) and (10.31) are used for the finite difference
scheme. A rectangular grid is suggested, with Ax =0.01 and Ay = 0.001.
The solution for the boundary layer velocity distribution is given by
Howarth, 1938 [1].
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U, u U, u

n=y ox U, n=y o U,

0 0

0.2 0.06641 | 4.2 0.96696
0.4 0.13277 1 44 0.97587
0.6 0.19894 | 4.6 0.98269
0.8 0.26471 | 4.8 0.98779
1.0 0.32979 | 5.0 0.99155
1.2 0.39378 | 5.2 0.99425
1.4 0.45627 | 5.4 0.99616
1.6 0.51676 | 5.6 0.99748
1.8 0.57477 | 5.8 0.99838
2.0 0.62977 | 6.0 0.99893
2.2 0.68132 | 6.2 0.99937
2.4 0.72899 | 6.4 0.99961
2.6 0.77246 | 6.6 0.99977
2.8 0.81152 | 6.8 0.99987
3.0 0.84605 | 7.0 0.99992
32 0.87609 | 7.2 0.99996
34 090177 | 7.4 0.99998
36 0.92333 | 7.6 0.99999
38 094112 | 7.8 1.00000
4.0 0.95552 | 8.0 1.00000

In the appendix, is listed a program in FORTRAN that is a
starting point in obtaining the solution shown in Example 10.2 above.
The program computes both the x- and y-components of velocity.

10.5.1 Fully Implicit and Crank-Nicholson Methods

For a mesh with a constant rectangular grid, the incompressible
laminar boundary layer equations include the momentum equation as
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PBujy j+ = B uipy j —ujj) R A1 ja — i1 j-1) + pA = By 41 —uj j-1)
Ax 2Ay

_ {P,Bum,oo +p(1- ﬂ)"f,m }(ui+l,oo - ur’,w)
Ax

3 [,B,U{(um i+l T Ui )— (”m,_; - ui+l,_[—l)}
@ y)

+ (1 - ﬂ)/u{(ui,jﬂ - u,‘,’) - (Ll!-,- Ui )}] (10.39)

In Eq. (10.39),Bisa welghtmg factor. When =0, the method is
explicit. The truncation error is of the order (Ax) plus order (Ay)’. The
von Neumann stability constraint, Eq. (10.36), limits severely the step
size.

When B = 0.5, the method is the Crank-Nicholson implicit
method. The expansion point should be taken at (i+1/2,j). The
truncation error is of the order (Ax)* plus order (Ay)’. No stability
criterion comes out of the von Neumann analysis, but difficulties can
come about if diagonal dominance is not kept for the tridiagonal
algorithm.

When B = 1, the method is the fully implicit method. The
expansion point should be taken at (i+1,j). The truncation error is of the
order (Ax) plus order (Ay)*. No stability criterion comes out of the von
Neumann analysis, but difficulties can come about if diagonal dominance
is not kept for the tridiagonal algorithm.

It is observed that the above finite difference scheme is implicit
if p= Y. The finite difference equation (10.41) may be used as the
continuity equation for both the fully implicit and the explicit methods.

Finite differencing of the energy equation uses the same general
procedure employed for the momentum equation. The energy equation
with a non-negligible viscous dissipation term, may be written as
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1,j _Y;'j
pCP{ﬂul+1[+(1 ﬂ)u”}—lt?x—

pCP:Ble/ i1, 41 1+l/ 1)+ pCl’(l ﬂ)vu( lj+l l,j—])
2Ay

( :+l T :+l/ l) ( i+lj l+l,j—1)}

+ k(l - ﬂ){( i+l T i+l,j) - (T:, - Ti,j—l )}]

2
Ui jet ~ Uisn i+l T U o
+uﬂ[ e J +p(l- ﬂ)( T ] (10.40)

The truncation error for Eq. (10.40) is the same as those stated
for the momentum equation for p = 0, 2, 1. The fully implicit scheme
can be increased to a formal second-order accuracy by representing the
streamwise derivatives with three-level (i-1,i,i+1) second-order
differences. For any implicit method, the finite difference momentum
and energy equations are algebraically nonlinear in the unknowns
because of the quantities unknown at the i+1 level in the coefficients.

Linearizing procedures can and have been used, but are beyond the scope
of this book.

10.6 Convection with Incompressible Flow

In incompressible flow with constant properties and no body
forces, the dynamics are independent of the thermodynamics. Once the
kinematic flow field is described by the stream function y, any number
of temperature distributions may be solved with different thermal
boundary conditions.

BN
Consider the situation where the velocity field V is known. For
a fluid with constant properties, the energy equation is given by
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- AT -AT - 37 7 I R
oC, uaz_w+vé?+wﬁ?+é’7_w =kV T+pu¢g (1041
Jx oy dz Ot

where all the variables are dimensional. In another mathematical form,
Eq. (10.41) may be written as

_ o )
pC,,Q—T—=kV T+ug. (10.42)
Dt

We define dimensionless quantities as

x:..)f.’ y:x’ Z:_Z—’ u:i’ v:_V_’Wzl (1043)
L L L u, U, u,

r=tle ,__t (10.44)
T, -T, Llu,

Hence, the dimensionless form of Eq. (10.42) is

DTk gopy M 4 (10.45)
Dr pCan L pC LT, ~T,)
From continuity, V.v =0. (10.46)
V.(;T) — Y NT+TV.v = v VT (10.47)

Hence,
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or - 1 _, E - - 1, E -
— ==y (V) +—VT+—¢=-V.(vT)+—VT+—¢.
V(D) Pe Re¢ D Pe Re¢

a
(10.48)
Neglecting viscous dissipation for moderate velocities,
- 1

a =-V.(vT)+—VT. (10.49)

a Pe

10.7 Two-Dimensional Convection with Incompressible Flow

In two dimensions, Eq. (10.45) reduces to
1 2°T 1 9°T
a __ o o 1 J (10.50)

+ =+ ——.
a & & Pe & Pedy

The alternating direction implicit methods, or ADI methods, is a
method of variable direction. This method employs a splitting of the
time step to obtain a multi-dimensional implicit method which requires
only the inversion of a tridiagonal matrix.

The advancement over the time step At is accomplished in 2

steps.
n+l n¥— n+l
T 2-T" ST 2 6T 18T * 18T
Step(l) = - -y + — > +— >
At x & Pe & Pe &y
2
(10.51)
Step (2)
n+l )H-l n+~]—
Tn+l_T 2 __u5T 2 —vév[vnﬂ +~1__§2T 2 +L52Tn+l
At & &  Pe &? Pe &*
2

(10.52)
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Other x-y permutations different from the above have also been used
successfully.

The main advantage of the ADI method is that the stability of
this two-dimensional method is unconditional, as is the fully implicit
method. In addition, each of Egs. (10.51) and (10.52) are only

1

n+—

tridiagonal. Equation (10.51) contains implicit unknowns T‘,.;HE,T,ﬂj.

Equation (10.52) contains implicit unknowns T(.;”l ,T”";,] . This requires

a solution of tridiagonal system, which occurs only for usual implicit
methods in one dimension, not usually in two dimensions. The linear
forms of the equations (10.51) and (10.52) have a truncation error of the
order of [(At)%,(AX)%(Ay)?).

10.8 Convection in a Two-Dimensional Porous Medium

T=0.5

y Flow

T=0
X

Figure 10.1 Flow through a rectangular porous medium.

Consider a rectangular porous medium shown in Fig. 10.1. The
temperatures are prescribed in all four boundaries as shown. The porous
medium is a solid through which fluid can flow. The principal flow is
from left to right, parallel to the longer side of the rectangle.
Dimensionless velocity components can be defined such that u = u’/u,
and v = v’/u,, where u, is the average velocity in the principal flow
direction.  If the dimensional temperature is denoted by T°, a
dimensionless temperature T can be defined such that
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T=—t (10.53)

where T; is the initial temperature of the porous medium, and T, is the
temperature of the face at x = 0 for all time t° > 0. Defining
dimensionless space coordinates as x = x’/L and y = y’/L, where x’ and
y’ are the dimensional coordinates and L is a reference length, and the
dimensionless time t = t’/t, ;s Where t.f is a reference time quantity, the
governing energy equation for convection in the two-dimensional porous
medium shown in the figure is

or or or. 1 0°T 1 8
— ==+t ——+t——
a & o Ped® Pedy

(10.54)

Equation (10.54) is a parabolic-type equation. The Peclet number is
defined as

CulL
Pe =&k°‘L (10.55)

e
where p. is the effective density of the porous medium, C, is effective
specific heat at constant pressure of the fluid and k. is the effective
thermal conductivity of the fluid.

If a rectangular grid is chosen with Ax and Ay as the dimensions
of the individual rectangles, then the finite difference of Eq. (10.54) over
the time step At, using the ADI method, is given in 2 steps by

| ) T'H% T’H% T" T"
s 2 s Livy T i i+t~ Lij-1
[]wii 2 _Ti;lj 2 J J _vn J J

_—= —u,,_ ii
At g 2Ax v 2Ay
1
+ L Ti+lj - 2Tg’i P+ Ti—lj n L T;':l,j - 2Ti; + T:nm
Pe Ax? Pe AY?

(10.56)
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1 1 H% +; n+l n+l
i _T'”E 2 _u"+5 Ti+l,j —Ti—l,j _pml T,Jn T:; 1
i i i i
2Ax Y 2Ay

'”% "+% n+% n+l n+l n+l
1 Ti+],j "2Tij +Ti—1,j b 17 _2Ty T:J 1

i,j+l

Pe Ax? Pe Ay?
(10.57)

If a square grid is chosen, Ax = Ay = /, then Eqs.(10.56) and
(10.57) become

m( M il A m A mol At ms At
T, 211+ +Tl u. 2 — +T 2 ——u, 2 —
Y [ Pelzj i\ g T o pe | T | T T Y pep?

At At At At At
=T 1——|+T" vidg—— |+ T" | - —V] +——
J[ Pelzj h= I(41 Vi 2Pe12] ”-’*‘( 41 2Pe12)

(10.58)

At At At At At
T(Hl 1+ + T-"?:l [——v.'f” _ ______)+ T”-ﬂ ___v_r{+l _ ]
v ( Pelzj MRLArT aperr) M MY opel?

1 1 1 1
n+— At n+— At nmi- At n+— At nm- At
=T 21— +7T R + 7,2 ——u, 2+
" ( Pel? ) [41 i 2Pel? J i [ 47" 2Pel? ]

(10.59)

If in addition, it is assumed that slug flow exists, that is, the x-
velocity component u’ = a constant, u., and the y-velocity component v
= (. Then, Eq. (10.54) is simplified to

a _a lﬁT 10”T (10.60)

+
A & Peal Ped

Let us assume that the initial temperature condition in the porous
medium is T(x,y, t = 0) = 0. The boundary conditions shown are as

follows:
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Tx=0,y,t)=1
Tx=1,y,t)=0
Tx,y=0,t)=0
T(x,y=0.5,t)=0.5. (10.61)

If a rectangular grid is chosen with Ax and Ay as the dimensions

of the individual rectangles, then the finite difference form of Eq. (10.60)
over the time step At, using the ADI method, is given in 2 steps by
1 1

) n+% n+% ns n+% s
[ s ,,J 2 T,;-T.; N 1 T, -2I; *+T,,;

7. 2 =T, =
y vy 2Ax Pe Ax?
+ L Titl,j - 2Tijn + Ti,nj+1
Pe Ay?

(10.62)

\ n+% n+% n+% n+% n+%
n+l a2 Ti+1,j —Ti—l,j 1 Ti+1,j _2Tij +Ti—1,j
W M TTT e AX?
t e

Tn+1 —‘ZT;-;HI +Tn+1

+ 1 i+1,j i,j+l

Pe Ay?

(10.63)

If a square grid is chosen, Ax = Ay = [/, then Egs. (10.62) and
(10.63) become

1 1 1
T; 2(“’ Atz)"'Tmz('A—t— Atz)"’Ti—lz("‘ﬂ" Atz)
d Pel Y\ 4]  2Pel Y\ 4l 2Pel

At At At
=7 1- +T" | —— |+ 71", | ——
y ( Pel? ) "H(ZPelz ] "-’*‘(mvezr2 J

(10.64)
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Ar At At
T.)"1+1 1+ + T-"»H (_ + T-".H (_
! ( Pel’ ) WU 2per* ) T 2Pel?

1 1
=T,,2(1— At2)+TI“[At+ At2)+Tm?(-£+ Atzj
- Pel 4]  2Pel Y\ 41 2Pel

(10.65)
For current consideration, take At2 = 0.1 -=2.5, and
2Pel 2(2)(0.1)
At 0.1
4 4o 7

so that Egs. (10.64) and (10.65) become

l I
T, 2(6)+ T, (225)+T 22T =T} (=) + T/ (2.5) + T}, (2.5)

(10.66)

i+1, 7

T,M(6) + T (-2.25) + T (=2.75) = 2 (—4)+T,,2 (2 5)+T,,> (2 5)

11+

(10.67)
The tridiagonal matrix obtained is shown below:
6 -2.25 0 o . . . . . 0 —Tzzq "5 75
-2.25 6 -2.25 o . .. . . .0 T’ 0
0 225 6 -225. . . . .0 2
T4,2 0
0 -2.25 6 .. .. .
T5,2 1 0
e e e .. 6 <225 T;—‘ g
00 . .00 . . . . .-2256 [-"4 L7
(10.68)
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10.8.1 Thomas Algorithm for Tridiagonal Systems

For tridiagonal matrices, the decomposition of the matrix into a
product of a lower and an upper diagonal matrix leads to an efficient
algorithm known as the Thomas algorithm. For a system of the form
X1 + bkxk FCiXp+1 = fk k= I, ........... ,N (1069)
with a;=cy=0 (10.70)

the algorithm below is obtained :

Forward step
Cr
B, =5 B, =b,—q, k=2,...... ,N
B
=l yk=(“—“'1ﬂifL) k=2 N
B By
(10.71)
Backward step
Xy =Vn
Cy
Xy =¥k~ Xp k=N-1,...... 1. (10.72)
By

This calculation involves 5N operations.

The Thomas algorithm will always converge if the tridiagonal
matrix is diagonally dominant. In other words, the matrix is such that

B} =|a| +le.] K=2, . ,N-1

B> |c)| and |by|>|ayl. (10.73)
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A subroutine in FORTRAN code is written below for the Thomas
algorithm.

Subroutine THOMAS

Subroutine THOMAS ( PP,QQ,RR,SS,N1,N )

Solution of a tridiagonal system of equations
PP(K)*X(K-1) + QQ(K)*X(K) + RR(K)*X(K+1) = SS(K)

range of K from N1to N
Solution X(K) is stored in SS(K)

O 0000060600

DIMENSION PP(1),QQ(1),RR(1),85(1)

QQNT)=1./QQ(N1)

PP(ND=SS(N1*QQ(N1)

N2=NI1+1

IN=NI+N

DO 15 K=N2,N

K1=K-1

RR(K1)=RR(K1)*QQ(K1)

QQK)=QQ(K)-PP(K)*RR(K1)

QQ(K)=1./QQ(K)

PP(K)=(SS(K)-PP(K)*PP(K1))*QQ(K)
15 CONTINUE

Back Substitution

[¢]

SS(N)=PP(N)

DO 33 K1=N2,N

K=IN-K1

SS(K)=PP(K)-RR(K)*SS(K+1)
33 CONTINUE

RETURN

END
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Instead of a computer program, an Excel spreadsheet may be

used to solve the Egs. (10.66) and (10.67) since there are only a small
number of grid points in the rectangular region considered.

PROBLEMS

10.1.

10.2.

10.3.

10.4.

10.5.

Use the linear Burgers equation for heat convection in a channel
where the water is flowing with uniform velocity of 0.1 m/s
across the cross section of the channel (boundary layers are
neglected). The water is initially at 25°C throughout. At time t
= 0 sec, waste heat is continuously rejected at x = 0 m, and the
channel is long such that dT/dx = 0 for x > 1 m. The amount of
heat rejected is 6.23 W/m® for t > 0. Using the MacCormack
explicit scheme, calculate the first 9 time steps to show the
transient temperature distributions.

Solve Prob. 10.1 using an implicit scheme. Compare the results
with that obtained in Prob. 10.1.

Air for ventilation purposes flows through a 10 m insulated duct
at 0.75 m/s. Initially, the air is at 25°C. A cooling coil at the
entrance cools the air to 15°C. At time = 0, the cooling coil is
turned on and the temperature there is maintained constant at
15°C. At the duct exit, the temperature gradient of the air may be
assumed unchanging. Use the Burgers equation to model this
physical problem, and solve it with an appropriate finite
difference scheme.

Gases flow between two insulated parallel plates, 1.5 m long,
and the flow may be considered uniform and one-dimensional.
Initially, the gases are at 5°C. At the entrance, the gases are
maintained at 25°C by using a radiation source. At the exit, the
temperature cannot be less than 20°C. Model this practical
problem using Burgers equation, and solve it with an efficient
finite difference scheme.

Hot water is flowing through an insulated 3 m pipe. The pipe
contains a cooling coil at the entrance. Initially, the water in the
pipe is at 90°C, and the flowrate throughout the time period of
interest is 0.5 m/s. At time = 0, the cooling coil is turned on and
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10.6

10.7

10.8

10.9

10.10

heat is removed at the entrance of the pipe. At the exit of the
pipe, the water comes in contact with a large reservoir of water
at 30°C. Use the Burgers equation to model this physical
problem, and solve it with an appropriate finite difference
scheme.

The water in a 1.2 m insulated pipe is initially at room
temperature, 20°C. At time = 0, cooling water at 0°C enters the
pipe at I m/s. The entrance of the pipe is maintained at 5°C, and
the exit cannot be more than 8°C. Model this practical problem
using the Burgers equation, and solve it with an efficient finite
difference scheme.

Using Taylor series expansion, find the forward second-order
accurate finite difference expansion for the first derivative of the

: or .
temperature T with respect to x. In other words, find — in
i

terms of T;, Ti;; and Ti..

Consider laminar flow of a fluid over a flat plate. Use the fully
implicit method of finite differencing to compute the two
dimensionless velocity-component distributions within the
boundary layer.

Consider laminar flow of a fluid over a flat plate. Use the Crank-
Nicholson method of finite differencing to compute the two
dimensionless velocity-component distributions within the
boundary layer.

Consider convection with incompressible, laminar flow of a
constant-temperature fluid over a flat plate maintained at a
constant temperature. With the velocity distributions found in
either Prob. 10.1 or Prob. 10.2, compute the dimensionless
temperature distribution within the thermal boundary layer for
the Peclet number equal to 0.1,1.0,10.0,100.0. Use the ADI
method.

10.11 [Figure 10.1|shows slug flow of a fluid through a rectangular

porous medium. Compute the temperature distribution with the

T Copyright n 2003 by Marcel Dekker, Inc. All Rights Reserved.



same boundary conditions except at y = 0, where the condition is

or

now 6— =0. For a 101 x 51 square mesh, program an
Y10

Excel spreadsheet to solve the problem.

10.12 shows slug flow of a fluid through a rectangular

porous medium. Compute the temperature distribution with the
same boundary conditions except at y = 0, where the condition is

or

now —

={0. Use the ADI method.

y=0

REFERENCES

1. L Howarth. On the Solution of the Laminar boundary Layer
Equations. Proc R Soc (London), A164:546, 1938.

APPENDIX A

implicit double precision (a-h,0-z)
implicit integer (i-m)
REAL*8 U(102,202),V(102,202),XX
c character string*13
write(*,*)
write(*,*)
write(*,*)
write(*,*) " Program to Solve for the
write(*,*)
write(*,*) " Laminar Boundary Layer Equations
write(*,*)
write(*,*)

c read(*,*) string

write(*,*)
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write(*,*)

write(*,*)

write(*,*)

write(*,*) ' 1. Input Value of Kinematic Viscosity'
read(*,*) XX

WRITE(*,*) XX
write(*,*)
c Let delta x = 0.01, delta y = 0.001
Stability criterion satisfied for explicit method.
c pause
do 100 I=1,101
do 100 J=2,201
U(1,1)=1.0D0
V(1,J)=0.0D0
100 continue

(¢}

do 101 I=1,101

U(1,1)=0.0D0

U(I,201)=1.0D0
101 continue

do 102 J=1,201
V(1,1)=0.0D0
102 continue

do 201 K=1,3000,1
do 200 1=2,100,1
dO 200 J=2,200,1
U1+ 1L)=U(LDH-5.0D0*V(LIYUILH* (U I+1)-UI,IJ-1))-
2.0D3*XX+
C  (1.0D3*XX)/U(I,h*U(,J+1)+U(,J-1))
V(I+1,D=V({I+1,J-D-5.0D-2*(Ud+1,H+UIA+1,]-1)-UILI)-U(1,J-
C1)
200 continue
201 continue
write(*, *) ==ssmmmmmm ===
do 301 J=2,200
write(*,*) (U{,N),1=2,100)
write(*,*)
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301 continue
do 302 J=2,200
write(*,*) (V({I1,D,1=2,100)
write(*,*)

302 continue

cCceeeeeececcececeeecceccee
ccceeeeceeeeccecceecceccee

stop

END

Alternating Direction Implicit Method

The alternating direction implicit method of finite differencing
Is a method of variable direction in finite differencing
Employs splitting of one time step into two to obtain implicit method
Requires only inversion of tridiagonal matrix in this method.

Stability of this two-dimensional method is unconditional
Stability of fully implicit method is also unconditional
Only tridiagonal matrices to be solved for problems with two dimensions
Usually true only in problems with one dimension, not two dimensions.

K.V. Wong
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11

Basic Relations of Radiation
11.1 Thermal Radiation

Thermal radiation is the energy emitted by bodies because of
their temperature level. Other types of radiation include gamma rays, x-
rays, for instance. Radiation is often treated as electromagnetic waves
that propagate according to Maxwell’s classic electromagnetic theory.
Radiation may also be treated as photons as prescribed in Max Planck’s
concept of the quantum of energy. The electromagnetic theory has been
used to predict the radiant properties of materials, while the quantum
theory has been used to predict the amount of radiant energy emitted by a
body because of its level of temperature.

Visible ~0.4 - 0.7 pm
%I

c Lo 102 10" 1M 0% 10% 100 10" ,
Frequency, s

] l 1l 1 ] 1 I ]

Infrared ~0.7 ~ 1000 um

Ultraviolet~0.4 — 10"2um

T i —

10* 100 102 w10 10" 107 10° 10*  Wavelength, pm

L ﬁ Solar radiation ~ 0.1 — 3 pm

Thermal rad. ~ 0.1 — 100 pm

Figure 11.1 Electromagnetic wave spectrum.
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I is shown a large range of the electromagnetic-wave
spectrum. In theory, electromagnetic waves of zero to infinity
wavelengths have thermal radiant energy. In practice, a big portion of
the thermal radiation lies in the range from about 0.1 to 100 pm. This
portion is labeled as such in the figure. The visible range is from 0.4 to
0.7 wm; it is important to the extent that it tells the scholars of heat
transfer to use their eyes to obtain insight into the thermal radiation
phenomenon. When radiation is considered an electromagnetic wave, its
transport in a medium takes place with the speed of light, c. The

wavelength A and the frequency f are related to the speed of light by ¢

= f . When thermal radiation travels in a vacuum, for instance, for
most of the distance between the sun and the earth, the speed of light is
29979 x 10° m/s. This speed is attenuated by the atmosphere
surrounding the earth.

11.2 Radiation Intensity and Blackbody

n
A

Figure 11.2 Notation for radiation intensity.
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Radiation may be conceived as being propagated as a beam (like
visible light), as ianig.11.2.| A basic quantity that is used to quantify

radiative energy in a given direction {2, at a wavelength A, at a position r

is the spectral radiation intensity /,(r,€2). This represents the quantity
of energy streaming through a unit area perpendicular to the direction

€, per unit time, per unit solid angle about the direction €2 and per unit

wavelength about the wavelength A. The radiation intensity I(r,Q)
represents the amount of energy emitted over the entire wavelength
spectrum from A = 0 to o in a beam and is defined from the spectral

radiation intensity 7, (r,Q),

I(r,f))= Jioll(r,fl)d/l (11.1)

The radiation intensity I is the amount of radiant energy passing through
a unit area normal to the direction of propagation €2, per unit time, per
unit solid angle about the direction €2 and per unit time, per unit solid

angle about the direction Q.

Consider the radiation intensity /(r,€2) within a solid angle dQ

A

to (or from) a surface element dA, propagating in the direction €2 at an

angle 8 with the normal » to the surface element, as shown in
The quantity

dq= I(r,Q)cos0dQ (11.2)

is the amount of radiant energy per unit time, to (or from) per unit area of
the surface owing to radiation contained within a solid angle dQ. The
radiative energy flux q to (or from) a surface owing to radiation
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contained in a solid angle over an entire hemisphere is obtained by the
integration of Eq. (11.2) as

q= L]costQ (11.3)

where the symbol indicates the integration with respect to a solid
angle over an entire hemisphere. As shown in Fig. 11.2, 0 is the polar
angle and ¢ is the azimuthal angle. Since dQ = sin6d6do, Eq. (11.3) may
be written as

q= f:o L/:](r,@,go)cosé’sin o (11.4)

The dimensions of q are energy per unit time, per unit area of the surface
(e.g., kJ/h.m?)

There is a maximum amount of radiant energy emitted by a body
at a given absolute temperature T at a wavelength A. This maximum
amount of radiant emission is the spectral blackbody radiation intensity
Lis(T); the emitter of such radiation is named a blackbody. This spectral
blackbody radiation intensity is independent of direction. For a
blackbody at an absolute temperature T and emitting radiative energy
into a vacuum, Ly(T) is calculated from the relation given by Planck,
1959 [1], in the form

2he?
1,(T)= 11.5
u () Alexplhe! AKT) 1] (11-5)

where h ( = 6.6256 x 10 J.s) and k ( = 1.38054 x 10 J.K) are the
Planck and Boltzmann constants, respectively, T is the absolute
temperature and ¢ is the speed of light in a vacuum.

For engineering practice, the spectral blackbody emissive flux
Qw(T) at a surface is defined as

2 (T) = [1,,(T)cos6dQ. (11.6)

[a)
As Lp(T) is independent of direction,
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r pnl2 .
Q5 (T)=1,(T) j M _[H cos@sin g =, (T). (11.7)

The quantity in Eq. (11.7) is the amount of radiative energy emitted by a
blackbody at temperature T per unit of its surface, per unit time, per unit
wavelength in all directions in the hemispherical space. Substituting Eq.
(11.5) into Eq. (11.7),

!
2exp(c, / AT) 1]

q,T)= (11.8)

where ¢,,(T) is the spectral blackbody emissive flux as the surface
(W/m?.pm),

¢, = 2rhc? = 3.743 x 10 W.pm*/m?

¢, =he/k = 1.4387 x 10* pm K.

| Figure 11.3is a plot of the spectral blackbody emissive flux as a
function of wavelength at various temperatures. From this figure, it is
clear that at any given wavelength, the radiative energy emitted by a
blackbody increases as the absolute temperature of the body increases.
Each curve displays a peak, and the peaks shift toward smaller
wavelengths as the temperature rises. The locus of the peaks calculated
analytically by Wien’s displacement rule is

(AT),., =0.28976cm.K = 28997.6 um.K (11.9)

The blackbody radiation intensity I(T) is found by the integration of
1,,(T) over the wavelengths ranging from 0 to co.

1,(T)= | L Ju(D)da (11.10)
Put Eq.(11.5) into Eq.(11.10) and integrate,

oT*
I,(T)=

where the Stefan-Boltzmann constant o = 5.6697 x 10® W/(m* K*).

(11.11)
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Figure 11.3 Spectral blackbody emissive power.

The blackbody emissive flux qu(T) at an absolute temperature T is gained
by integrating q,,(T) over all wavelengths,

q,(T) = fzoqﬂ, (TYdA = nJ;OJM(T)d/l =nl,(T)=0T*. (11.12)

This emissive flux has the dimensions of energy per unit time, per unit
area. From Eqgs. (11.11) and (11.12), it can be seen that

MARCEL
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1,,(T)=@ (11.13)

The generalized idea of a blackbody is one that possesses the
characteristic of allowing all incident radiation to enter the medium
without surface reflection and without allowing it to leave the medium
again. A blackbody absorbs all incident radiation from all directions at
all frequencies without reflecting, transmitting, or scattering it outwards.
The blackbody emits as much radiative energy as it absorbs, if it is at
thermal equilibrium with the enclosure walls. For practical purposes, a
cavity such as a hollow sphere whose interior surfaces are kept at a
uniform temperature T can be used to approximate a blackbody. If a
very tiny hole (compared to the cavity) is made, any radiation entering
the cavity through the hole is almost entirely absorbed since it has very
little possibility to escape through the hole. Such a cavity is considered
an approximate blackbody. By a similar argument, radiation leaving the
cavity through the hole is considered almost a blackbody radiation at
temperature T.

11.3 Reflectivity, Absorptivity, Emissivity and Transmissivity
Real Surfaces

Consider a beam of radiant energy incident on a real surface.
Part of this radiation is reflected, part of it is absorbed and the rest is

transmitted. Let I, be the spectral radiation intensity incident on the

surface. The spectral radiant heat flux incident on the surface can be
expressed as

‘1;1 = LI,1 cos8'dQ)' energy/( time x area x wavelength ) (11.14)

where 0’ is the polar angle between the direction of the incident radiation
and the normal to the surface. The spectral hemispherical reflectivity p,
is defined as
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_ radiant energy reflected/( time x area x wavelength )

B .
q;
(11.15)
The spectral hemispherical absorptivity a, is defined as
o - radiant energy absorbed/( time x area x wavelength )
l _ -«
q;
(11.16)

For an opaque surface, the relationship between the spectral
hemispherical reflectivity and the spectral hemispherical absorptivity is

ppto=1. (11.17)

For much of engineering practice, the reflectivity and the absorptivity,
averaged over the entire wavelengths, is of relevance. When this is done,
the resulting hemispherical reflectivity p and the hemispherical
absorptivity a are defined as follows:-

fpaq'id’i
p=—g (11.18)
fqldxl
falq;d/t
a=——"-" (11.19)
[ g0z
For an opaque surface,
pra=1. (11.20)

The radiant energy emitted by a real surface at an absolute
temperature T is always less than that emitted by a blackbody surface at
the same temperature. Let q,(T) be the spectral emissive flux from a real
surface at an absolute temperature T and g,,(T) be the spectral blackbody
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emissive heat flux for a blackbody surface at the same temperature. The
hemispherical emissivity €, of the surface is defined as

_ q,(T)

) .

95 (T)
The hemispherical emissivity € over the entire range of wavelengths is
found by

(11.21)

£ = Lioglqu (T)dﬂ. _ Q(T)
[0 qu@dr 9D

(11.22)

where q(T) and qy(T) are the emissive fluxes from the real surface at
temperature T, and the blackbody at temperature T, respectively.

Incident
radiation Reflected

Absorbed

Transmitted

Figure 11.4. Incident radiation on a translucent body.

When radiation is incident on a translucent body, part of the
incident radiation is reflected, part is absorbed, and the remainder is
transmitted through the translucent body (Fig. 11.4). An example of a
translucent body is a pane of glass. The relationship between the spectral
reflectivity py, the spectral absorptivity a, and the spectral transmissivity
T, of the translucent body is

mtomtn=1. (11.23)
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When these radiative properties are averaged over all wavelengths, we
get
ptatT=1 (11.24)

The reflectivity, absorptivity and transmissivity of a translucent
body depend in large part on the surface conditions, the wavelength of
the radiation, the composition of the material and the thickness of the
body. Since the attenuation of radiation within a body should be
analyzed as a bulk process, the evaluation of the reflectivity and
transmissivity of a translucent object is more involved.

Graybody

For simplicity, the graybody assumption is used in many
applications. The radiative properties p,, o , &, and T, are assumed to be
uniform over the entire wavelength spectrum. In other words,
graybodies have radiative properties p, a , € and 7 that are independent of
wavelength.

11.4 Kirchhoff’s Law of Radiation

The absorptivity and the emissivity of a body can be related by
Kirchhoff’s law of radiation, Planck, 1959 [1]. Consider a body inside a
black, closed container whose walls are kept at a uniform absolute
temperature T and has reached thermal equilibrium with the walls of the
container. If flux q,(T) is the spectral radiative heat flux from the walls
at temperature T incident on the body and o (T) is the spectral
absorptivity of the body, then the spectral radiative heat flux qu(T)
absorbed by the body at the wavelength X is

9,(T) =a, (g, (D). (11.25)

Since the body is in radiative equilibrium, q;(T) also expresses the
spectral radiative flux emitted by the body at the wavelength A. The
incident radiation q’,(T) comes from the black walls of the enclosure at
temperature T, and the emission by the walls is not influenced by the
body regardless if it is a blackbody or not. Let qu(T) be the spectral
blackbody emissive flux at temperature T. Then,
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4T =q,(T). (11.26)

From Eqgs. (11.25) and (11.26),

q,(T)
==, (T). 11.27
g4 (1) ( )

The spectral emissivity &,(T) of the body for radiation at temperature T is
defined as the ratio of the spectral emissive flux q,(T) of the body to the
spectral blackbody emissive flux qu,(T) at the same temperature.
Expressed mathematically,

q,(T)
=¢,(T). 11.28
q,(T) 210 ( )

From Eqgs. (11.27) and (11.28), it can be deduced that

&(T) = ou(T). (11.29)

Equation (11.29) is Kirchhoff’s law of radiation. The law states that the
spectral emissivity for the emission of radiation at temperature T is equal
to the spectral absorptivity for radiation from a blackbody at the same
temperature T. The relation

&(T) = (T) (11.30)

holds only if the incident and emitted radiation have the same spectral
distribution or when the body is gray. This later characteristic is one
where the radiative properties are independent of wavelength.

PROBLEMS

11.1.  The average internal temperature of an oven is 1500°C, and the
emissivity of the internal surface is € = 0.9 at this temperature.
Calculate the radiant energy coming from the oven through an
opening 10 cm by 10 cm.
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11.2.

11.3.

11.4.

A blackbody enclosure at 1000°C has a small aperture into the
environment. Determine (i) the blackbody radiation intensity
emerging from the aperture, and (ii) the blackbody radiation heat
flux from the blackbody.

The surface of an outer space station receives solar radiation at a
rate of 1.2 kW/m®. The surface has an absorptivity of a = 0.75
for solar radiation and an emissivity of € = 0.86. There are no
heat losses into the space station. However, heat is dissipated by
thermal radiation into the space at absolute zero. Determine the
equilibrium temperature of the surface.

A solar collector surface receives solar radiation at 1 kW/m?, and
its other side is insulated. The absorptivity of the surface to solar
radiation is a = 0.8 while its emissivity is € =0.6. Assuming the
surface loses heat by radiation into a clear sky at an effective
temperature of 10°C, calculate the temperature of the surface.

REFERENCES

. M Planck. The Theory of Heat Radiation. New York: Dover

Publications, 1959.

Blackbody and Graybody

A blackbody absorbs all incident radiation
At all frequencies and from all different directions
No phenomena of reflecting, transmitting or scattering
It is emitting as much as it is absorbing.

At any conditions, graybody has uniform properties
They are not dependent on other properties
Radiative properties are uniform over all wavelengths
Graybody has properties independent of wavelength.

K.V. Wong
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Radiative Exchange in a Non-Participating
Medium

When the medium participates in radiation, the analysis becomes
more complicated. The discussion in this chapter concentrates on
situations where the participation of the medium may be neglected.

12.1 Radiative Exchange Between Two Differential Area Elements

- Normal to dA;

T

dA] at Tl

dAz at Tz

Figure 12.1 Radiative exchange between two differential area elements.
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We first look at the radiative exchange between differential
elements. Then the relations will be developed for exchange between
areas of finite size. Two differential black elements are shown in
The elements dA, and dA, are at temperatures T, and T,
respectively; their normals are at angles f; and B, to the line of length R
joining them.

The total energy per unit time leaving dA; and incident upon dA,
is

sz;ll—JZ = il;,ldAl cos Bdw,, (12.1)

and do; is the solid angle subtended by dA; when seen from dA,.
Equation (12.1) comes directly from the definition of i,;_,, the total

blackbody intensity of surface 1, as the total energy emitted by surface 1
per unit time, per unit of area dA, projected normal to R, and per unit of
solid angle. The prime shows a quantity applied in a single direction.
The second differential shows that the quantity depends upon two
differential values, dA, and dw,.

The solid angle dw, is linked to the distance between the
differential elements R, and the projected area dA; by

do, = d—‘%—lc—{%ﬁ?-. (12.2)

Substituting Eq.(12.2) into Eq. (12.1), the total energy per unit time
leaving dA, that is incident upon dA; is

i, ,dA, cos B,dA, cos 3,

sz;n—dz = R?

(12.3)

A similar derivation for the radiation leaving dA, that arrives at dA,
gives

2 dy,dA, cos BdA cos B,
A Qo = R .

(12.4)
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Equations (12.3) and (12.4) provide the expressions for the
energy emitted by one element that is incident upon the second element.
If the elements are black, all incident energy is absorbed. For this special
case, Eqgs. (12.3) and (12.4) provide the expressions for the energy from
one element that is absorbed by the second.

The net energy per unit time d°Q,,.,,, exchanged from black
element dA; to dA, along path R is then the difference of d 2Q;,1_d2 and
d*Q,, ,. FromEgs. (12.3) and (12.4),

: : : . . cosf cosf
d2le<—>d2 = szdl—d2 - dZQd2—d1 = (i, — ’b,z)#dAldAz-
(12.5)

From the previous chapter, the blackbody total intensity is related to the
blackbody total hemispherical emissive power by

4
i, = LA of . (12.6)
T T
Equation (12.5) may be written as
. COS cos
d*Q iy =0T _T24)%dAldA2' (12.7)

Example 12.1

Problem: A black element 0.5 cm by 0.5 cm, is at a temperature of
800°C and is near a tube of 2 cm diameter. The opening of the tube may
be approximated as a black surface, and is at 400°C. Calculate the net
radiation exchange along the connecting path R between the square
element and the tube opening.




2 cm
diameter

. T=400C
B = 30°
Scm
dA;
7cm T,= 800°C
Figure 12.2 Sketch for Example 12.1
Solution

From Eq. (12.7),
' coSs COS
&*Qppiy =0T} - T;)[:;—Rzﬂz—dA]dAz.

5 5
From the figure, cos B, = =
. P V5T 477 N4
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w
m*K*
5 cos 30" 1

—0.52m)(m1*m*)x10® =0.01W
J74 T(74%x107*) m? ( X )

d’*Q,,.,, =5.669x107* (1073.15* = 673.15%)K * x

12.2 Concept of View Factor

dA,

Al!T]

dA,

Figure 12.3 Coordinates for the definition of diffuse view factor.

The physical significance of view factor is the fraction of the
radiative energy leaving one surface element that strikes the other surface
directly.

(a) Diffuse view factor between two elemental surfaces.

Using the notation in Fig. (12.3), the diffuse view factor
between two elemental surfaces is given by

Sercrn Copyrightn 2003 by Marcel Dekker Inc. All Rights Reserved.




d 8, cos6,dA
dF,, , ==t = S0 S (12.8)

0 0,dA
dF, 4y = — 1;:f 2 (12.9)

Reciprocity theorem gives dAdrF,, ,, =dA,dF,, ,  (12.10)

(b) Diffuse view factor between surfaces dA; and A,.
cos6, cosf,
Fuu_a, JdE,AI o, = [22dA, (12.11)
A r
2
dA, (cosB, cos@
Fyg =] 2dA, (12.12)
2 1 A2 . n.r

Reciprocity theorem gives dAF, 4 =AF, 4 - (12.13)
(c) Diffuse view factor between two finite surfaces A; and A,.

[Radi ative energy leaving surface A, that strikes A, directly]

F _ =
A=t [Radiative energy leaving surface A in all directions in the hemispherical space]

F, . N :_J‘J‘COSG cos@, A, dA, (12.14)

1,4‘

Fy W =_Hﬂ9_293_9_dA dA (12.15)

"AA
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Reciprocity theorem gives A\F, , = AF, ,. (12.16)

12.3 Properties of Diffuse View Factors

Reciprocity theorem: AF,_ A = AF A
or AF_,=AF,, (12.17)
N
Summation: ZE._k =1 (12.18)

k=l

F, =0 for plane or convex surfaces.

F, #0 for concave surfaces.

There is a reciprocity relationship that can be derived from the
symmetry of a geometry. Consider the areas in . It is clear
from symmetry that A; = Ay and F,; = Fy,. Hence, A;F,3; = AJF,,.
From reciprocity, A4F, = A\F1.4. Therefore, the following relationship
holds:

Ak =AF 4

The arrows in the figure show the diagonal directions.

Analogously, the symmetry of|Fig.12.4(ii) gives

AoFag = AjFas.
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(1)

Figure 12.4 Reciprocity between diagonally opposing rectangles. (i)
Two pairs of opposing rectangles. (i1} Four pairs of opposing rectangles.
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12.4 Determination of Diffuse View Factor by Contour Integration

ds

Figure 12.5 Convention for the direction of circulation in Stokes
Theorem.

-—
Stokes theorem states that the circulation of a vector v around

the boundary s of a closed surface A is equal to the flux of the curl of the

N
vector v over the surface A; it is given as:

J‘sur]‘awA ne (V Xy }JA it}jzt.mfrigf A (1219)

where v—zvx+]v_‘,+kvZ
- A A A
and =il+jm+kn

ov
.” [ - ‘J+(av*—avz) +[ y—av‘)]dA
surfoee A , \dz ox ) & o) (12.20)

(v, dx+v dy+v, dz).

it}nmur of A




(a) Diffuse View Factor between Surfaces dA, and A,.

dA,

dA,;

X

Figure 12.6 Application of Stokes Theorem to determine diffuse view
factor F A —dAy

The diffuse view factor from dA, to A, is defined as

cosG cosG
Fips, —J ) (12.21)
® e
where cosf, = n‘ r,2 and r=|n, (12.22a)
r
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A -
n,er.
and cosf, =224

r
Substituting Eqgs. (12.21a and b) in Eq.(12.21),

A N A -
1 ner, | n,ern A
dA-A, T A 2 2 2
mial oy r
A - -
A
ner ri2
1® 12
d-a =T, Ta® 7 | =7 HA,
T A r r
hd " - - ~
r,| ner 1 r,Xn
But -2 —’—2'2 =-Vx ﬁz—'— , hence
r r 2 r
_% N
1 " roXn
dA-A =—J. n,e| Vx| 25— | dA,
t 2ma r
Using Stokes Theorem,
—> A
_ ] hoXn, 2
dA-A, T 2 ®as
27'[: contour ofA , r
In the x, y, z rectangular coordinate system,
- A A A
h, = (xz X )H' ()’2 | )]+ (Zz =z )k

n =l i+m jtnk

ds =dx,i+dy, j+dz, k

“erxer Copyright n 2003 by Marcel Dekker,Inc.All Rights Reserved. .

(12.22b)

(12.23)

(12.24)

(12.25)



L (Zz_zn)d)’z”()’Z—)’I )dzz
S

dAj -4, 271- contour of A, r
-’_]/n1 § (Xz"x‘)de_(Zz_zlﬂxl

271- contour of A, I"2
LM § (Yz_%)dxz_(xZ_xl)dyz

2]1- contour of A, }"2

(12.26)
where 7’ =(x, —x)* +(y, - ) +(z,—z,)" and I, m;,n, are the

A

direction cosines. If the unit normal vector n, to dA, lies along one of

A

the coordinate axes, the direction cosines of n; with respect to the other
two axes become zero; two integrals of Eq. (12.26) vanish. If any one of

the boundaries of A, is parallel to a coordinate axis, the integration is
simplified.
(b) Diffuse View Factor Between A, and A;

The diffuse view factor F A=A, from surface A, to surface A; is

A, FA,—A2 = LI FdAl—Az dA, (12.27)

Substituting #,, _, from Eq. (12.26) into Eq. (12.27) and rearranging,

AF, . =_1_ [J’AI ()’2 ~ N )"1;2(22 4 )’"1 dA, :|dx2

27T Jeontour of A,

L [ J ek lan, ]dy2

2T Jeontour of Ay
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2T Jeontour of A,

L [ Ll (x, —x, )mlr: (v, =y, i ]dzz

(12.28)

The surface integrals in Eq. (12.28) will be changed into contour
integrals. The first surface integral on the right-hand side can be written
as

(Y, —y)n, —(z,—z,)m " N
Ll 2~ Y 1r2 2 1 1dA1=LIn1.(VXV1)dAl

A A N A

where n, =l i+m j+nk

v, =ilnr
(¥ =yom —(z, —z,)m _ o —
JAI r2 dAl - i‘(mmur of Ay vl * dsl h i{mt(mr of A Inr dxl
(12.29)
since ds=dx,i+dy, j+dz, k
Similarly,
(z, =z — (%, —x))m _ ) e ds. =
,[4] r? dAl - irmwur of A, V2® dsl - £0ntﬂur of A Inr dyl
(12.30)
. _ _ I - -
j‘ (x, —x)n = (¥, = ) LJA = v,eds, = Inrdz,
A I"2 contour of A, contour of A,
(12.31)

where v, = jlnr and v, =kInr

Substituting Egs. (12.29)-(12.31) in Eq. (21),
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AF =— ff Inrdx, |dx
15 A=Ay 271' contour of Ay | Jeontour of Ay ! 2

1
+— § 1
27T Jeontour of A, 1i contour of A, nr dyl }dy2
: ¢ Inrd
nr
contour of A Z] Zz

+ —_—
27T Yeontourof A,

(Inrdx,dx, + Inrdy,dy, +Inrdz,dz,)
(12.32)

A FAI—AZ =5

27T Yeontour of A §untuur of A,

2

where r:\[(xz—xl)z'l'()’z_y|)2+(zz‘zx) .

Example 12.2

pra

b —————/P/
I
a - I
- v Ay(X2,¥2,C)

v

I ¢ n, -
n,
‘ .l d
—p
O

y

dA,

Figure 12.7 Evaluation of F 44,4, DY contour integration.

e Copyrightn 2003 by Marcel Dekker,Inc. All Rights Reserved



Problem: Consider an elemental surface dA; and a finite rectangular
surface A, which are parallel to each other and positioned as shown in
the figure above. Surface dA, is parallel to the xy plane and positioned
on the oy axis at a distance d from the origin. Surface A, has one corner
at the oz axis, and its sides a and b are parallel to the ox and oy axes,

respectively. Find the diffuse view factor F, _, .

Solution
The coordinates of dA, are x, = 0, y; = d, z; = 0. The direction

A

cosines of n, to surface dA, are 1, =0, m; =0, n; = 1. Substituting into
Eq. (12.26),

1 § (Yz _d)dxz - x,dy, (12.33)

-4 — A% 7
I 27T Jcontour of A, x22 +(y2 _d) +cZ

where x,, Y,, ¢ are the coordinates of any point on surface A,. We can
divide contour A, into 4 segments, I, II, ITI, and IV as shown in|Fig. 12.7.

Segment I: X, = 0, dxz = 0; then integral vanishes.
Segment II: y2 = b, dy; = 0; x, varies from O to a.
SegmentIII:  x, =a, dx, = 0; y, varies from b to 0.
SegmentIV:  y, =0, dy, =0; x; varies from a to 0.

Therefore,
Fup -,

1 4 b-d a d
o] o P I
277-{ xZ=0x%+(b—d)2+c2 yz=ha2+(y2—d)2+02 2 xz=ax%+dz+c2 2

(12.34)
The integrals may be obtained using standard integral tables.
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Example 12.3

a - II
v Ax(X2,¥2,€)
v,
b I /
(43 ’
a - * l y
v Ay(x1,y1,0)

II

11

>

Figure 12.8 Evaluation of F, , by contour integration.

Problem: Determine the diffuse view factor F, , between the two

parallel rectangular finite surfaces A; and A,, separated by a distance c as

illustrated above.

Solution

z; =0, z = ¢ for surfaces A, and A,, respectively. Also, dz; =dz,

= 0. Equation (12.32) becomes

zml FA'_AZ - it)nmurof A i‘unmurof A (ln rdxzdxl +in rdyzdyl ). (1235)

Following the path around A,, dx, = 0 for segments I and III, and dy, = 0

for segments II and IV.
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h
ZMbFAI—AZ = umtourof A {J‘)z xl + (y2 yl) te ]_dyz }dyl

wnmurof A {-[rz—o (b g )2 e }dx }

Yo=h

* iwmumml ,‘-0 ln[(a —X )2 +(y, =¥ )2 + Cdeyz }dy,

+ i{mwumf A {f B ln[(x2 - X, )2 + y12 +c? ]lE dx, }dx
(12.36)

Similarly, we follow the path of integration around A,,

2mabF, _, = r,, Ji:oln[(yz -y ) +c’ F dy,dy,

+J-.:=b-‘:)2=oln[a2 +(y=n) +02de2dy1

+ Integrals for segments II, Il and IV.

The resulting integrals can be found from standard integral tables.

b b 24 (y, -y ) +c?
27meAl_A2 z'[\‘|=0j.),2=olnt:a (}’2 3;1) 2c j|dy2dy1

(0, =y ) +c

+b% +
+ JXI—O J‘x2_0 [(xz XI ) < }&del (12.37)

xz—x,)2+c
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1
2 2 ' 2 3
Ahy = {In (1+A2)(+lj + Av1+ B? tan™
" nmAB 1+A“+B

A
e

+B1+ A? tan"[—\/_BTF}—Atan’1 A-Btan™ B}
I+A

(12.38)
where A = a/c, B = b/c.

12.5 Relations Between View Factors

Aj

A Ay

N/

Al,2

Figure 12.9 Relations between view factors.

The view factor from surface Aj to surfaces A; and A; together
may be written as Fa ;. This may be expressed in terms of the view
factor from surface A; to surface A, and the view factor from surface A;
to surface A,. The total view factor is the sum of its parts.

Fii2=Fi; +Fs3, (12.39)
A3 F3,1,2 = A3z F3, + Aj F3_2. (1240)

Making use of the reciprocity relations
AsFii2 = A2 Fiaas (12.41)

AlSO, A3 F3.| = A| F|.3 (1242)
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A3 F3.2 = A2 F2_3. (12.43)
The expression then becomes
A Fias = A Fis+ Ay Fos. (12.44)

This states that the total radiative energy reaching surface A; is the sum
of the radiative energies from surfaces A, and A,.

A]‘—_‘

I Az/&/

Figure 12.10 View factor of perpendicular rectangles with a common
edge.

For perpendicular rectangles as shown in Fig. 12.10, one method
of finding the view factors is as described below. These view factors
have to be expressed in terms of perpendicular rectangles with a common
edge, because charts exist only for such cases (Incropera and DeWitt,
2002 [1], Kreith and Bohn, 2001 [2], Ozisik, 1985 [3]). The reason is
that an infinite number of charts cannot be prepared for an infinite
number of combinations of shapes and configurations. The exercise is to
express view factors between perpendicular rectangles in terms of view

factors between perpendicular rectangles with a common edge. In Fig.
12.10,

Fios=Fla+F; (12.45)
Fi,3 and F,, may be determined from the charts. Hence, F;; can be

determined.
Fi3=Fiy;-Fi (12.46)
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Example 12.4

Az

A;

Aq

Figure 12.11 Sketch for Example 12.4.
Problem: Determine the view factor F,4 for the geometry shown in Fig.
12.11. The expression has to be in terms of view factors for

perpendicular rectangles with a common edge.

Solution
In accordance with Eq. (12.40),

AnFio34 = AiFiaat Ay Fosy (12.47)
Fi 34 and F,3 4 can be obtained from the charts.

A Fis4 = AiFi3t A Fiy (12.48)
AaFias = AiFia+ Ay B, (12.49)

Eq. (1248)-Eq (1249), A] F]-3,4 = A[)z F1,2_3 + A] F1-4 - A2 F2_3 (1250)
Substituting Eq.(12.50) in Eq.(12.47),

A Fiasa = A Fros— A+ A Fiat Ay Fass (12.51)
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All view factors in Eq.(12.51) except F,4 may be determined from a
chart, {1]-[3]. Hence,

Fla= (Ai2Fi23-AFs+ A Fia+ Ay Fasg YA, (12.52)
Since the surfaces were flat, F,; = F,, =F3; =0.

12.6 Diffuse View Factor Between an Elemental Surface and an
Infinitely Long Strip

Stl'lp Az

Elemental
strip dA,

Figure 12.15 An elemental surface and an infinitely long strip.

Consider an elemental surface dA, lying on the xy plane at the
origin and an infintely long strip A, whose generating lines are parallel to
the x-axis as shown in the figure. Let ab be the contor of intersection of
strip A, with the yz plane. Let ¢,, ¢, be the angles between the oz axis
and the lines oa and ob. The elemental view factor between the
elemental area dA, and the elemental strip dA; is given as
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1 .
d dA =xtrip dAy = 5 cos (Pd(P = Ed(Sln (P)
Integrating,

(12.53)
2 | 1,. .
Fup ipa, = _[Z Ecos odo = 5(sm @, —sine@, )

(12.54)
This relationship is applicable also when dA, is an elemental strip on the
xy plane parallel to the ox axis.

relationship was done by Jacob in 1957 [4].

The original derivation of this
12.7 Diffuse View Factor Algebra

(a) Diffuse view factor between surfaces dA, and A,.

dA,

w0

dA,
Figure 12.16 View factor between surfaces dA; and A,.
Since A2 = A3 - A4 - A5 + Aé,

FdA,—AZ = FdAl—Az - FdAl—A4

da,—As + FdA]_A(a :

(12.55)
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The relationship is true because dA, is an elemental surface and the
cross-effects are eliminated.

To use diffuse view factor algebra effectively in a complex
problem, one has to recognize the corresponding simple case as a first
step in solving the problem. In the next subsection, the view factor
between two arbitrary rectangles are expressed in terms of view factors
of perpendicular rectangles that share a common edge (the view factors
of which are easily available in formulae or charts [1-3] ). Then,
Example 14.5 is presented as a more complex case from that discussed in
subsection (b). One uses the results of the simple case and applies them
to the more complex case.

(b) Diffuse view factor between surfaces A, and A,’.

We define G, 5 =A,F, ;. The reciprocity principle gives us
G, p =Gpy-

In general, if the surfaces A; and A, are subdivided according to the
following:

A] =Ai + Aj
Az = Ak + A|

The diffuse view factor between the surfaces of this composite system
obeys the following laws of arithmetic:

G, = Gij—-kl = Gij—k + G:;,‘—z
= Gi—kl +G -kl
=G_+G_+G,_, +G,,

where G, = (Af +A4, )F (a+4; HA-4)

G _y= AiFA,»—(Ak -4 StC.
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A

Ay
X,X’

<

Figure 12.17 Arrangement of surfaces for diffuse view factor F, p
-

2
Expand the view factor G, .4, according to the above laws of
arithmetic,
Giprave TGy Gy = (G + G, + 6y +6,,) + Gy 54
In Eq. (12.56), G, is the diffuse

(12.56)

view factor required.

Gy 1yva» Gy ve can be evaluated from a chart for view factors between

perpendicular rectangles with a common edge [1-3]. View factors

G,,.G,,,G,, are obtained from a chart.
relationships:

Use the following
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G, =G s —G 4 (12.57a)

G,y =Gy yy—G, s (12.57b)

The right hand side of Eqs. (12.57a-b) can be obtained from the chart. It
can be shown that

G, =G, (12.58)
The relationship, Eq. (12.58), has been shown by Frank Kreith in 1962
[5]. Substituting Eqs. (12.57a,b) and (12.58) into Eq. (12.56), we obtain
2G|—2' = G12—1'2'3'4' + G1—4’ + Gz-s' - G1—1'4' - G2-2'3’ - G12-3'4' (12.59)
All terms on the right side of Eq. (12.59) are obtainable from a
chart [1]-[3].
Example 12.5 A

Z,Z

<7
Figure 12.18 Sketch for Example 12.5.
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Problem: Find G,_,.

Solution

From Eq. (12.59) and|Fig. 12.18, we can deduce that
G12-3’ = 0-5[G123—l‘2’3’4’5’6’7’8’9’ + G12-5’6’7’8’ +G3-4'9' - GlZ-l’2’5'6’7’8’ - G3-3’4’9’
- G 123-4°5’6"7'8'9° (1260)

But G, =G_, +G,

and
1
Gz-z' = '2_[G23~2'3'4'5'8'9' + G2—5'8' + G3—4'9' - Gz-rs's' - G3-3'4'9' - G23—4'5'8'9‘ ]

Gi3 =63 —Gpy
1
=3 [Gio3-r23a56789 + Gia_sers + Gaay —Graresers — Gizao — Graaasersy
—Grp3asgy —Gosg —Giogo +Gopsg +Gagug +Gya_gsgg ]
Gy = Gy —Gya
1
= "2‘[G123-|'2'3'4'5'6'7‘8'9' +Glysere — Goresers — Ois-asersy

=Gpavassy —Gosg + Gopsy + Gozgsgo .
(12.61)

PROBLEMS

12.1.  Determine the view factor Fy,., from an element dA, to a right
triangle BCD as shown in the figure. The sides of the triangle
are BC=a, CD=band DB =c.
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Figure for Prob. 12.1.

Normal to A,,
n;

12.2. The view factor is known between two parallel disks of any
finite size whose centers lie on the same axis. From this, find the
view factor between the two rings A, and A; of the figure.
Supply the result in terms of disk-to-disk factors from disk areas
on the lower level to disk areas on the upper level.
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A A,(ring)

Figure for Prob. 12.2.

12.3. The curved internal surface of a hollow circular cylinder of
radius « is radiating to a disk A, of radius B. Find the view
factor from the curved side A, to the disk in terms of disk-to-disk
factors for the case of B less than a.
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Figure for Prob. 12.3.

12.4. The figure shows four areas on two perpendicular rectangles
having a common edge. Show the validity of the relation A;F;.,
= A3F3.4.

<« -C-pa Y

i A
\Z ?
S (x2,22)

Figure for Prob. 12.4.
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12.5.

Y.y

Find the expression for the view factor product G,.;-.

12.6.

*
7,z
2’
y
y
/
.
.
.
.
v ,/' 3
r”
A - A
I 2
.
.
,
-
s L
.
I’ e
”’ ,’
4’ -
.
/” ”
ra f’
. .
. .
4 - 1 .~
r’ f’
” I’
. .
. .
’ ra
’ -
4 ”
’ ’
” 4’
r” r”
p .
.
/’ 'd
i
> X,X

Figure for Prob. 12.5.

If the view factor is known for two perpendicular rectangles with
a common edge, derive the view factor F,¢ for the figure shown.

Ay Ag

A5 AG

Figure for Prob. 12.6.
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12.7.  If the view factor is known for two perpendicular rectangles with
a common edge, derive the view factor F,¢ for the figure shown.
Use the results from Prob. 12.6.
A Ay
A; Ay
As Ag
Figure for Prob. 12.7.
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View Factor

Thermal radiation includes the visible spectrum
Use your eye to help with concept of view factor
If an object cannot be seen by a heat source,
The object cannot receive radiation from that source.

There is the reciprocity theorem for the view factor
For any object, sum to unity for all view factors
View factor to itself is zero for plane surfaces
View factor to itself is zero for convex surfaces.

K.V. Wong
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13

Radiation Exchange in Long Enclosures

In long enclosures, the radiation problem essentially reduces to a
two-dimensional problem. Under these conditions, a particular useful
theorem, Hottel’s theorem, applies. This chapter presents many practical
examples.

13.1 Diffuse View Factor in Long Enclosures

A2,L2

A3vL3
Al ,Ll

A

Figure 13.1  Diffuse view factor between the surfaces of a long
enclosure.

Consider an enclosure shown above, consisting of three surfaces
which are very long in the direction perpendicular to the plane of the
figure. The summation rule for view factors gives

3

Y F_;=1, i=123 (13.1a)

j=1
with F;=0. (13.1b)

There is the assumption that the surfaces are flat or convex. The
reciprocity rule gives

AF_ =AF,_, ij=123 (13.2)

Jjo =i
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The objective is to find F|.,. Solving Egs. (13.5) and (13.6), we obtain

AF , = —‘——~2l—_—‘ (13.3a)
L+L, -
which can be written as L, F,_, = 1—22ﬁ (13.3b)

Figure 13.2  Diffuse view factor between the surfaces of a long
enclosure.

Consider an enclosure consisting of 4 surfaces, very long in the
direction perpendicular to the plane of the figure, Fig. 13.2. The surfaces
of the enclosure can be flat, convex or concave (restriction of Fj; = 0 is
removed). Assume that imaginary strings (shown by dotted lines) are
tightly stretched among the corners A, B, C and D.

Let L, i = 1,2,3,4,5,6 denote the lengths of strings joing the
corners A-B, B-C, C-D, D-A, D-B, and A-C, respectively. The objective
is to find Fap.cp from the surface AB to the surface CD.

Consider the imaginary enclosures ABC and ABD formed by
imaginary strings. By application of Eq. (13.3b), we can determine L,F;.
2 and LF, 4 for the imaginary enclosures ABC and ABD, respectively.

The summation rule gives
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Fo+Fa+Fu=1 Fia=0) (13.4)

Substitution of F;, and F,4 evaluated from Eq. (13.3b) into the
summation rule gives

L1F1-3 — (Ls +L6); (Lz +L4). (13.5)

Also, L4F 4 ,=%[(Ls+L¢)—(L; +Ls)]. It can be shown that L,F,; =
AB Fap.cp where AB and CD characterize the curved surfaces. This is
the Hottel’s crossed-string theorem. Note that (Ls + L¢) in Eq.(13.5) is
the sum of the crossed strings, and ( L, + L,) is the sum of the uncrossed
strings. In other words, the right-hand side of the equation is equal to
one-half of the total quantity formed by the sum of the lengths of crossed
strings connecting the outer edges of areas A; and A, minus the sum of

the lengths of the uncrossed strings.

The rest of this chapter discusses practical examples where
Hottel’s crossed-stringed theorem may be used effectively.

Example 13.1 o 6 R
/
K
! ‘\e
' d
Al “\ ./ -
\\ I’
\‘ 'l
¥ A
\‘ II"N
c \'I 6
A
l’ ‘\ D
”I \\\
II \\
l, .\
"l \\
"l \“
b ~
a A f

Figure 13.3 Sketch for Ex.13.1.

MARCEL
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Problem: Two infinitely long semicylindrical surfaces of radius R are
separated by a minimum distance D as shown in the figure. Derive the
view factor F,_; for this case.

Solution

Let the length of the crossed string abcde = Ly, and the length of
the uncrossed string ef = L, = D + 2R. From symmeiry,

_2L,-2L, L-L,
24, R

Fo,

The segment of L; from c to d is found from right-angled triangle Ocd,

D ’ ) 12_ D %
Ll,c—d —Ii(?'fR\J —R —|:D(Z+R]:|
L,.=RO.

From triangle Ocd, 0 =sin™

Letting X = 1+D/(2R),

F_,= 3[(;8 - 1)% + sin"(%]— X}

T

20(, v T 41
F o =— -1l +—=cos | —|-X |
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Example 13.2
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Figure 13.4 Partially blocked view between parallel strips.

Problem: The view between two infinitely long parallel strips of width

! is partially blocked by opaque strips of width b as shown in the figure
above. Find Fy..

Solution
Length of each crossed string = V% +¢”

2
Length of each uncrossed string = 21 ’bz + (%)

From Hottel’s crossed-string method,

- Jr+e —2;/1;2 +(er2) \/H[ﬂz —\/(%2]2 +[§)2

It is a good practice to check the solution in the limits if the answer is
known at the limits. In this case, as b tends to 0.5], F;., tends to zero.
This limit makes sense because the view factor becomes zero as the
partial blockage becomes full blockage.
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Example 13.3
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d d

Figure 13.5 Figure for Example 13.3.

Problem: As shown in the figure above, two long cylinder pipes, with
different temperatures, run horizontally parallel to each other. Both have
radius r and the distance is 2d between them. A long opaque plate is
placed at the middle and it is parallel to the pipes. Study the relationship

between the value of the view factor F_, and the height of the plate.

Solution

In this case, both pipes and plate are long, therefore it is a two-
dimensional long enclosure problem. Hottel’s cross-string method can be
used.

Study the geometry in the figure above. It is symmetric in both
vertical and horizontal direction. The view factor can be computed by
calculating the upper and lower paths respectively and adding them.
Because of the symmetry, only the upper path need to be considered.

The sum of the length of crossed strings:
LA—B—D—G—I + LH—C-DfE—F

The sum of the length of uncrossed strings:
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LA—F + LH—C—D—G—I

Therefore, the view factor F|_, is calculated as following,

L F — 2 LA—B—D—G—I + LH—C—D—E—F - LA—F B LH—C—D—G—I
A-B-C-H*'1-2 —
¢ 2

The factor ‘2’ in the numerator comes from 2 similar paths. After
rearrangement,

F — LA—B—D—G—I +LH—C—D—E—F —LA—F —LH—C—-D~G—1
1-2 =

LA—B—C—H
Here,
Lypcu=mr
Therefore, after simplification,

F .= LA-—B + LB—D + LD-E + LE—F - LA-—F
-2 =
nr

Because of the symmetry about the vertical axis,

F .= 2(LA—B +Lp )_ L, r - Z(LA—B +Lgp )‘ 2(r + d) @)
-2 Tr nr

Study each segment in the equation above,

(1) LB—D
L, , =JOD?>-0B?
where,

OD* =(r+d) +h*

Therefore,
Ly =(r+d) +h> —r =Jd® +2dr + K (i)
(i) L,

L, ,=ro (iii)
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Study the geometry relationship in the figure above,

o+ B =24BDO =tan™ (@—]: tan™ 4 (iv)
BD Vd? +2dr+h*
B =2JDO =tan™ JO N an[ L (v)
JD r+d
Therefore,

a=(+p)-B=tan" ! —tan™ h (vi)
Vd® +2dr+h? r+d

Substitute Eq. (vi) into Eq. (iii),

(vii)

L, ,=r|tan” d —tan"[ h ]
Jd? +2dr+ h? r+d

Substitute the expressions Eqs. (vii) and (i1) into Eq. (i),

r{tan“(‘l—*—)-tan“( h ﬂ+m—(r+d)
F 2

Vd? +2dr + h? r+d

nr
(viii)

When h decreases to zero, the value of F,_, becomes maximum.

r|:tan—l[“~£*~\/_r—_~‘—]]+‘\/d2 +2dr—(r+d)
d” +2dr
F 2

-2 = (ix)
nr

F,_, decreases as & increases. It reaches its minimum value 0 at h =

DrrrrR Copyright n 2003 by Marcel Dekker, Inc. All Rights Reserved.
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Figure 13.6 Damaged sign. Dimensions are in inches.

Problem: The sign above is drawn to scale in inches. The “M’ letter in
the sign (shown in the figure) is defective because one of the “slanted”
parts has fallen off. Find the view factor between surfaces 1 and 2 before
and after the defect takes place, and hence the change in the value of the
view factor because of the defect. Assume that the letters are opaque to
radiation.
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Solution

The paths of radiation from surface 1 to 2 may be identified as
the left-most path, the middle path and the right-most path. Consider the
left-most path.

Sum of crossed strings = 7.6875” + 8.125” = 15.8125”
Sum of uncrossed strings = 4” + 11.4375” = 15.4375”
By Hottel’s crossed-string method, denoting the view factors by a .
AF,7°=0.5(15.8125" - 15.4375") = 0.1875
Fi2’ =0.03125
Owing to symmetry, the right-most path is the same as the left-most path.
Denoting the view factors by a *”’,
Fi”7 =F2’ =0.03125
Consider the middle path.
Sum of crossed strings = 7.236” + 7.303” = 14.539”
Sum of uncrossed strings = 6.064” + 6.895” = 12.959”
By Hottel’s crossed-string method, denoting the view factors by a *’.
AF27=0.5(14.539" - 12.959”) = 0.79
Fi..,"=0.132
Hence, the view-factor before the defect is
F].z = F].z’ + FI_Q” + F],z’,’ =0.198.
After the defect, there are 4 paths. For the path due to the defect, we
denote the view factors by a *.
Sum of crossed strings = 7.625” + 7.375” = 15”
Sum of uncrossed strings = 9.8125” + 57 = 14.8125”

By Hottel’s crossed-string method,

AF 5% =0.5(15" - 14.8125”) = 0.09375

Fi2* = 0.0156, which is the change of view factor due to the
defect.

(F1-2)aﬁer defect = (Fl-2)before defect + Fl~2* =0.214.

The discussion is how would one modify Hottel’s crossed-string
method when the obstructing objects are not completely opaque, i.e.t #
0. The procedure is a two-step one. First, the view-factor between
surface 1 and surface 2 that is attributable to the obstructing objects (i.e.,
when 1= 0 ) have to be found. The second step is to multiply this view
factor by the non zero 1. Example 13.5 below shows the procedure.
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Example 13.5

Problem: For the figure shown, the objects A and B have a nonzero
transmissivity of 7. Find the view factor between surface 1 and surface 2.

Solution

The paths of radiation from surface 1 to 2 may be identified as
the left-most path, the middle path and the right-most path. Consider the
left-most path.
Sum of crossed strings =

2 2 2 2
\/a2+9a +\/25a2+—’£— +Ja2+25a +\/25a2+9_
4 4 4 4

2 2
Sum of uncrossed strings = 3a + [a + \/25612 + 14— + \l25a2 + 93 :l

[ e - e "

m—"
|/

__><_
o
o

=]
~

__>‘__

4]

[~ i

d— »

6
Figure 13.7 Sketch for Example 13.5
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By Hottel’s crossed-string method, denoting the view factors by a ’.

94° 254>
AF = 0.5Naz+—§—+\/a2+ 54“ —4a:! = 0.298a

F].z’ = 00413

Owing to symmetry, the right-most path is the same as the left-most path.
Denoting the view factors by a *”’,
F]_z, — F],z’ = 004]3

Consider the middle path.

2 2
Sum of crossed strings = 2\/4a2 + %— + 2\/1 6a* + 254a

2 2
Sum of uncrossed strings = 2a + 2\/4412 + _c_::_ + 2\/4412 + ?Til—

By Hottel’s crossed-string method, denoting the view factors by a *’,
25a° 9a’
A= 0.5{2\/16412 + 4“ —2\[4a2 +% —2a|=1217a

Fi;’ =0.203

Hence, if the objects A and B were opaque, the view-factor is
Fi,= Fi2’  +F2” +Fp =0.2856.

If the objects were not present,

Sum of the crossed strings = 2v9a” +36a® = 2a+/45

Sum of uncrossed strings = 3a + 3a = 6a
By Hottel’s crossed-string method, denoting the view factors by a *.

AFir*= 0.5]2a+/45 — 6a| = 3.708a
Fio* = 0.618

Hence, the view factor attributable to the objects is 0.618 — 0.2856 =
0.3324. If the transmissivity through the objects is T, then the view factor
with the translucent objects is

=0.2856 + 0.3324r.

brrern Copyrightn 2003 by Marcel Dekker Inc.All Rights Reserved.



Example 13.6

Problem: Most of the Earth’s thermal energy is received from the short
wave radiation of the sun. Although it receives radiation from other
bodies in space, it is negligible compared to with the solar energy.
Incoming solar energy is at approximately at the same intensity as when
it left the surface of the sun, before it enters the earth’s atmosphere.
However once it enters the atmosphere approximately 6% is reflected by
particles in the atmosphere, 16% is absorbed by the atmosphere, 20-30%
is reflected by the clouds, and 3% is absorbed by the clouds. On any
given day all of these factors can limit the amount of net solar radiation
received by a solar panel.

The objective of this problem is to calculate the view factor of a
solar field, taking into account all of the above-mentioned facts.

Solution
First assume that the clouds and the atmosphere act as

translucent bodies absorbing or blocking the radiation coming from the
sun and calculate their transmissivity (t) accordingly. For example, let us
calculate the transmissivity of the atmosphere on a clear day with no
clouds. Since there are no clouds the radiation reaching the earth’s
surface is: 100%(from sun) — 16% (absorbed by atmosphere) — 6%
(reflected by atmosphere).

Tym =1 - (0.16 + 0.06) = 0.78
For upper level clouds assume they are less dense lower level clouds and
only reflect 15% and absorb 2% of the radiation. Therefore

Tup-clowd = 1 - (0.15 + 0.06) = 0.83
For lower level clouds assume 30% reflected and 3% absorbed.

Tiow-ctoud = 1 - (0.3 + 0.03) = 0.67
Here is the problem layout assuming the surface of the sun is flat because
its radius is so large compared with the earth’s.

Calculate the view factor using Hottel string theorem assuming
the clouds to be opaque. (The view factor should be calculated assuming
no radiation passes through clouds; then calculate the view factor
assuming open air gaps are opaque and clouds are translucent, and add
them. The atmosphere is also translucent.)
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The gap spacing and cloud lengths are as follows:

L
V Figure 13.10 Third figure for
Example 13.6

The view factor from Hottel’s theorem of the first gap shown in
Figure 139 is

o 2T () A5 (] )
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Figure 13.11 Fourth figure for Example 13.6

For the second gap the schematic is shown in Fig. 13.11. From
Hottel’s theorem for gap 2,

O s OEOE OROR RO

The view factors for each gap must be multiplied by the
transmissivity of the atmosphere to get the actual view factors from the
sun to the solar panel assuming the clouds are completely opaque.

Fsun-panel-opaque = Tamm ( Fgap-l + Fgap-Z ) = 078 ( Fgap-l + Fgap-Z )
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Now the view factors for the two translucent clouds must be
added to the view factor between the sun and the panel assuming the

clouds where opaque.

/i
7 ,/
.". ’ .‘!(“ L
Finding ,
View Factor s
Of the . <
Clouds -

Figure 13.12 Fifth figure for Example 13.6

The view factor for the cloud can be found by making the
previous gaps 1 and 2 closed off and finding view factors for gaps 3 and
4 and then multiplying by their respective transmissivity.

The view factors for gaps 3 and 4 are as follows:
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However, since the clouds are translucent, gaps 3 and 4 must be
multiplied by their transmissivities to obtain the correct view factors
through the clouds.

Fup—clnud = Tup—cluud Fgap -3 = 83 (Fgap -3 )
and
Fluw—cluud = Tlnw—c[uud Fgap—4 = ‘67(Fgap—4)

Therefore, the total view factor between the sun and the solar panels is

Fsun-pane] = Fsun-panel-opnque +F up-cloud + Flow-cloud

= 0.78( Fgap-1 + Foap-2 ) + 0.83Fgap.3 + 0.67Fgsp.4.
Example 13.7

Problem: Below is a cross-sectional view of a heat exchanger consisting
of a multi-pass configuration with baffles and five pipes running down
the middle. The pipe diameter is small compared to the combined width
of the baffles ( of dimension | each) and the distance between them. The
baffles are spaced at a distance 4d apart with the five pipes positioned as
shown in the diagram. The central cooling pipe is at distance 0.51 from
the heat exchanger wall. The other four pipes are positioned at a distance

of 1/3 from the nearest heat exchanger wall. The temperature at area A,
(of width 1) is significantly larger than that of A, ( of width ) such that

finding the view factor F,_, would be beneficial.
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Figure 13.13 Sketch for Example 13.7

Solution

The pipe diameters are small with respect to d and 1, but not

small enough for the obstruction to radiation to be neglected.

There are 18 different radiation pathways that can be identified.
Nine of them are shown in and the other nine are mirror-
images of those shown, using the right vertical border as the position of
the mirror. For each of the radiation pathways, Hottel cross-string
theorem is applied. The final view factor F, is the sum of the eighteen
view factors corresponding to the eighteen radiation paths.

The view factor for path 1, Fll.z ,1s given by

1 77 3d
F) =—1/9d2+l -=.
= 9 1
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Figure 13.14 The nine radiation pathways.
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=——J9d2+4l +———J9d2 ——,’4d2+1 (ii)
1 2 1 1 27 1 2
F =—,f4d2+1/+—w/16d2+12——\/ d? +4 -—\/ 241
277 CIY 219+421d+46
1 2, 2
—E 4d” + A

2,12 \/ 2,]%
+\/d + A6+ 4d° + A
) 212_J2412_J212
2‘/4d+42d+/92d+46

F',=0 (iv)

=—‘/4d2+1 +—w/16d2+12 ,f 2,02 ——sz /
36
- 2,41
211’911 + A
(v)

6 _1J2 2 1\/ 2,2 .
17,_2_7 d +A6_'2_1 4d +A (vi)
7_i_‘_f2412 L Joq2 412 1}212 .
F,_2—1+21 9d” + A—E 9d +A—EI- 4d +A (vii)

N R P
R, = 4d+ T d+A6 (viii)

(iii)
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9 _L\/ 2, 2 i\/z 12 _L\/ 2 lV_L/z 12
171_2—214d+4+21d+46 2l4d+921d+4
(ix)

Adding the nine different components, and multiplying by two,

F. 2—~——+—J16d2 \/4d2 1/——\/d2+l/6 Jd2+ ;

Hence, the view factor

AN A

Depending on the relative sizes of d and 1, the expression for F,_,, may be
slightly different from that given by equation (x) above.

In one limit when | << d, equation (x) gives F,, =

4d 6d d d
~—+—————2=0. For two parallel plates of width 1 and at a

[ [

distance 4d apart without any obstructions in between, the view factor is

4d
16d 2 +1 2.2 . In the same limit when | << d, this view factor

7
= 0 also.

PROBLEMS

13.1. Find an expression for the view factor between two parallel
plates, Fi,, of width L. and a distance d apart. Intuitively,
explain what would happen to F;; when the plates become very
wide, that is, L — co, and (ii) when the plates are very far apart,
that is, d — . Show that the expression obtained provides the
mathematical basis for your intuition.
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13.2.

4”

1”

- '

Figure for Prob.13.2.

For the system shown, the view between surface 1 and surface 2
is partially blocked by an intervening circle. Determine the
view-factor F_,.

13.3. For the 2-D geometry shown, the view between A, and A, is
partially blocked by an intervening structure of negligible
thickness. Determine the view factor F.,.
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Figure for Prob.13.3.

13.4. A tube bundle is as configured in the figure. The center long
tube is surrounded by 6 other identical equally spaced tubes.
What is the view factor from the central tube to each of the
surrounding tubes?

O
O 30°

O
O

Figure for Prob. 13.4.
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13.5.

13.6.

Figure for Prob. 13.5.

Consider an enclosure consisting of 4 surfaces, AD, BC, AB,
CD, very long in the direction perpendicular to the plane of the
figure. Two infinitely long semi-cylindrical surfaces of radius R
are put both sides, AB and CD, and one infinitely long
cylindrical surface of radius R in the central of the enclosure.
The lengths of AB, BC are 4r, 6r, respectively. The objective is

to find F,;_., from the surface AB to the surface CD.

Find an expression for the view factor between two parallel
plates, F).,, of width L and a distance d apart, with an intervening
plate placed at a distance d/2 from each of them as shown. There
are 2-D openings spaced uniformly in the intervening plate that
allows radiation from the one plate to the other, such that the
openings and obstructions are of width L/9 each. Intuitively,
explain what would happen to F,, when the holes become very
small, and show that the expression obtained provides the
mathematical basis for your intuition.
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Figure for Prob. 13.6.

13.7.  Consider radiation between two parallel surfaces, with two
translucent obstructions A and B of transmissivity T as shown.
Indicate the method of finding the view factor between the two
parallel surfaces.

Figure for Prob.13.7.

MARCEL
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13.8. Find the view factor between the two parallel surfaces.

—_ >

0.
0.5 ! P e ‘ , l 5

0.5

—

5t x .- Copyright n.2003 by Marcel Dekker,Inc.All Rights Reserved. .. ... —.

Figure for Prob. 13.8. Dimensions are in inches.

13.9.  Find the view factor between the two parallel surfaces, with the 4
opaque objects in between.
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Figure for Prob. 13.9. Dimensions are in inches.

13.10. Find the view factor between the parallel surfaces, if A and B are
opaque. The parallel surfaces are 6 inches in width each, and 3 inches
apart. A and B are squares with 1-inch diagonals, and set back an inch
each from the edges. The straight line connecting the centers of A and B
is 1 inch from the upper plate. What is the view factor if A and B are
translucent with transmissivity t?

Figure for Prob.13.10.

6”
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13.11. In an annealing process, a steel sheet is passed under an electric
heater in order to raise its temperature and increase its hardness.
The sheet is passed through a large oven on rollers. The floor of
the oven is a slab of concrete thick enough to absorb the
radiation from the extremely hot sheet. Engineers must know the
view factor from the sheet to the floor in order to calculate the
thickness. The length of the oven is L, the diameter of the rollers
is d, the height from floor to sheet is A, and the pitch of the
rollers is p. Calculate the view factor from the sheet to the floor.
Assume that d is small compared to s and p.

Heater

X
N\
L

VoS UesY
P

Concrete pad

Figure for Prob. 13.11.
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Figure for Prob.13.12. Solar Water Desalinization System.

13.12. Solar energy is transmitted through the glass plates which
transmit up to 2.5 pm and are opaque at longer wavelengths. The
sea water flows through the bottom section, which is well
insulated. As a result of the “trapped” radiation, the water
evaporates and condenses when it comes into contact with the
slanted glass surfaces exposed to the surrounding air. It then runs
down the surfaces and is collected in the troughs on the sides.

The various lengths A, H(t), D, L, H_w(t) are defined as shown
in the figure above. In addition, B(t) is the distance from
intersection of glass surfaces (apex) to the water surface. Even
though H(t) and B(t) are functions of time, a quasi-static case
may be investigated using Hottel’s crossed string method. In
order to estimate the solar radiation received by the water, the
view factor is to be calculated from one of the two slant glass
surfaces to the water surface.

13.13. The Hottel crossed-string method allows us to calculate the view
factor of a surface that is very long in the direction perpendicular
to the cross section of the objects. This problem stretches this
assumption to use the method for a space heater in a room that
has a shape of a cylinder and a person at some distance away.
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Figure 1 for Prob. 13.13 shows a side view of the heater and the
person. This figure is only used to understand the problem.
Since the heater and the person’s height are about the same and
they are relatively tall compared with their cross sections, we
will be able to use Hottel’s crossed-string method.

Figure 1 for Prob. 13.13. Side view of the heater and the person.

The assumptions made are that the person’s cross sections are
considered an ellipse and that the heights relative to the cross
sections are very large. Due to the complexity of ellipses, actual
angles and numbers are to be used.
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Two cases are described by the two figures below. The first one
is with the ellipse’s longer side facing the heater. The second is
with the shorter side facing the heater. Figure 2 for Prob. 13.13
gives the dimensions (in feet) required to find the view factor for
orientation 1.

2.00 —1

67035 T, ) , N \La
\ 7.0000

Figure 2 for Prob.13.13. Dimensions of configuration 1 with the long
side of the ellipse facing the heater.
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Figure 3 for Prob. 13.13. Dimensions of configuration with the short
side of the ellipse facing the heater.

13.14. (a) A patient is receiving radiation therapy to diminish a certain
group of cells which lies one inch beneath the surface of his skin.
The source of radiation is positioned one inch above and parallel
to the top of the skin surface. Using ultrasonic technology, a thin
growth of tissue 1” wide is noticed in the path of radiation. The
tissue has a transmissivity of 0.5. You are called to inspect the
situation to determine the view factor for the cells. Assume that
the tissue is negligibly thin and that it is at the surface of the
skin. The location of the tissue can be seen in the accompanying
figure.
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(b) The above found view factor was acceptable and therapy
was done upon the patient. After a certain period of time, the
ultrasonic technology noticed that the tissue has grown to 1.75”
and thickened to an amount of 0.25”, thus it cannot be neglected.
The tissue now has a transmissivity of 0.3. You are again called
to inspect the situation to determine the new view factor.
Assume that the tissue’s thickness starts at the surface of the
skin. The location of the tissue can be seen in the accompanying
figure.

After you solve the problem, biomedical engineers will
determine if the radiation experienced by the cells will be
sufficient at the same dosage of radiation therapy.

Part (a)
T ale )

A Source

ﬁ Skin

Growth

Cells
- -
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Part (b)

e s

A Source

i— Skin

0.25” thick

Growth Cells

- ’I

Figure for Prob.13.14.

13.15. The inlet manifold depicted is used to supply air to a large
displacement rotary engine (10 liters). The layout of the intake
trumpet is long and ovular in shape, making it well suitable for
analysis by Hottel’s theorem. Find the radiation view factor
from interior wall CD to AB in the given intake manifold
geometry. Assume negligible radiation from the side walls AC
and BD. Assume also that all parts of wall CD radiate equally
and evenly. The intake trumpet of the port is the only
obstruction between the two walls. Assume that the trumpet
itself does not radiate heat nor does it “see” itself in any manner.
Assume the temperature of walls CD and AB are 400 and 40
degrees F respectively. Assume also that the ends of the trumpet
and manifold have no significant contribution to the amount of
heat radiated. In the figure, the dimensions are in inches.
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Figure for Prob. 13.15.

Below is a cross-sectional view of a heat exchanger consisting of
a multi-pass configuration with baffles and five square pipes
running down the middle. Each side of the square pipe is 2r, and
the combined width of the baffles is 1 each. The baffles are
spaced at a distance 4d apart with the five pipes positioned as
shown in the diagram. The central cooling pipe is at distance 0.51
from the heat exchanger wall. The centers of the other four
pipes are positioned at a distance of 1/3 from the nearest heat

exchanger wall. The temperature at area A, (of width I ) is
significantly larger than that of A, (of width I). Find the view
factor F,_,. Determine the view factor as r becomes small
compared to d and 1.
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Figure for Problem 13.16.

Hottel’s Theorem

In an enclosure, Hottel's theorem is very useful
It is only for two dimensions, not all that wonderful
However, convenient to evaluate the view factor
Between two surfaces that make up an enclosure.

Study the value obtained by taking the sum of the crossed strings
And subtracting away the sum of the uncrossed strings

Half of this calculated value is the required product
Of the length of one area and its view factor to the other.

K.V. Wong

Drrrrn Copyright n 2003 by Marcel Dekker, Inc. All Rights Reserved. —




MARCEL

0 e 555 Copyrightn 2003 by Marcel Dekker, Inc,All Rights Reserved.

14

Radiation with Other Modes of Heat Transfer
14.1 Introduction

Physical situations that involve radiation with other modes of
heat transfer are fairly common. If conduction enters the problem, the
Fourier conduction law states that the heat flow depends upon the
temperature gradient, thus introducing derivatives of the first power of
the temperature. If convection matters, the heat flow depends roughly on
the first power of the temperatures, the exact power depends on the type
of flow. For instance, natural convection depends on a temperature
difference between the 1.25 and 1.4 power. Physical properties that are
temperature dependent introduce more temperature dependencies. This
all means that the governing equations are highly nonlinear.

Since the radiative terms are usually in the form of integrals and
the conductive terms involve derivatives, the energy balance equations
are in the form of nonlinear integrodifferential equations. These
equations are not solved readily with currently available mathematical
techniques. Numerical techniques have to be used to solve such
equations. The scholar is referred to the extensive mathematical
literature on numerical methods for these techniques, as they are not
discussed here. This chapter focuses on the setting up of the energy
balance equations and obtaining physical insight into practical problems.
In addition, the assumption in this chapter is that the medium is not
participating in the radiative heat transfer.

14.2 Radiation with Conduction

Physical situations that involve radiation with conduction are
fairly common indeed. Examples include heat transfer through
“superinsulation” made up of separated layers of very reflective material,
heat transfer and temperature distributions in satellite and spacecraft
structures, and heat transfer through the walls of a vacuum flask.




14.2.1

Radiating Longitudinal Plate Fins

Figure 14.1 A radiator for a space vehicle.

The following assumptions are made.

()

(6)

(7

MARCEL

Dimension of the plate normal to the plane of the figure is
sufficiently long so that there is no temperature variation in
that direction.
L>>t, so that the temperature in the plate is a function of the
axial coordinate only, i.e., T|(x;) and Tx(x3).
The radiative energy incident on the fin surface from the
external environment is negligible.
The temperature at the fin base is uniform throughout, i.e.,
T*(O) = Tj(O) = Tb-
The heat loss from the fin tips is negligible, ie.,
dT (L) ~ 0and dT,(L) —0.

dx, dx,
The surfaces are opaque. gray, diffuse emitters and have
uniform emissivity, . The thermal conductivity k is uniform
through the plates.
Kirchhoff's law is applicable, i.e., &(T) = a(T) or &(T) =
a(Trp(T) = 1- g(T).
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(8) The surfaces are diffuse reflectors.

¢

Figure 14.2 Longitudinal plate fin.

0 \ i
/I g4 NN >
< N
X’ dx,’ 2t

Xy
dx,

The steady-state balance equation for a differential volume element

of the fin is

(Net conductive heat gains) + (net radiative heat gains) =0

or  dQ°+dQ =0

Let w = width of plates normal to the plane of the figure.

conductive net gain in plate 1 for volume element twdx is:

Drrrer Copyright 2003 byMarcetDekker, Inc:All Rights Reserved:
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a’T,

dQ° = ktwdx, ——; (14.2a)

1

The radiative heat gain is:
dQ =—dx,wq/(x;) since w>>t (14.2b)

The minus sign represents the net radiative heat flux leaving the fin
surface into space. Substituting Eq. (14.2) into Eq. (14.1),

dT(x) 1,

——=—q/(x)) (14.3)
dx} kt 9 &
The net radiative heat flux is:
4l () = Rx) = [ Ry ()P, (14.4)
Heat flux leaving Radiosity Amount leaving 1
fin | into space that is captured by 2.

Substituting Eq. (14.4) into Eq. (14.3) yields an integrodifferential
equation for T(x;).

d*T,(x 1 . .
_%l = E[Rl (x,) - fo R, (x,)dF . ] in0<x, <L (14.5)
1

The boundary conditions obtained from assumptions (14.4) and (14.5)
above are as follows:

Atx; =0, T(x)=T, (14.6a)
Atx;=L, anx) (14.6b)
dxl

The equation for the radiosity is given below, where p is replaced by (1-
g) according to assumption (7).
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R,(x,) = £oT}' (x,) + (1- &) [ Ry(x,)dFy s (14.7)

v v

Emitted Amount of energy from 2 reflected by 1.

A set of relations similar to Egs. (14.5)-(14.7) can be written for
temperature distribution Tx(x,) and the radiosity Ry(x;) at plate 2.
However, this is not necessary since symmetry exists. Because of this
symmetry between the fins, Ri(x;) = Ra(xz) and Ti(x;) = Ta(x,) for x; =
X;. Removing subscripts 1 and 2 from Eqgs. (14.5)-(14.7), and writing in
dimensionless form,

TR - pr- [ peor s ] mostist

(14.8)
Atg =0,  8(E)=1 (14.9)
AtE =1, di—g’z‘lﬂ (14.10)

and  f(E)=200"E)+ (-8 [ BEIFy . (41D

The dimensionless quantities have been defined as

T R kt conduction x X
GE?"B: 4’Nc= 7 3 > 154’525"‘2‘-

b oT, L°oT;,  radiation L L
(14.12)

When N, is large, conduction >> radiation.
When N is small, conduction << radiation.

d’é
When N, — o, Eq. (14.8) becomes —?d(ﬁ=0,and the situation
1
reduces to the pure conduction case.
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Recall that the elemental diffuse view factor between strips d&;
and d&; is as follow3'

AFys e, = d(sm ®) (14.13)

where ¢ is the angle between the normal to the strip d&; and the straight
line joining strips d&; and d&,.

sing = X, — X, COSy
[(x, = x, cos7)? + (x, siny )
sing = Bz R A (14.14)
(xf —2x,X, COSy + X3 )5
1 x,x, sin’ y
Then dF, , =— 172 dx (14.15a)
dx,—dx, 2 3 2
(xl2 ~2x,x,COSy + X3 )2
1 sin’
or  dFy = G607V e (14.15b)

(€2 —288, cosy +£2)

Once Eqs.(14.8)-(14.11) have been solved, B(&;) can be determined. The
distribution of net radiative heat flux on the surface of the fin is

iﬁi—ﬁ@»—]ﬁ@»ﬂ%JQ (14.16)

&,=0

The net rate of heat dissipation by radiation Q', from one fin surface per
unit width normal to the plane, is

0 = [ a4 (e
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fT =1 £,=0[/3(51)‘ [ BENF s, ]a'g] (1417

Consider black surfaces, that is, ¢ = 1. There is uniform
temperature T, everywhere. The net rate of heat dissipation by radiation
of an ideal fin is given below.

Ot =crn“[Lsin§]. (14.18)
The radiative effectiveness is defined as:
Qo 1

1= = [ BE- [ P e 1419
ideal sin(g J : :

Discussion of Results

Equations (14.8) and (14.11) are two coupled integrodifferential
equations which must be solved simultaneously for unknowns, 6(&;) and
B(&1). Analytical solutions are unlikely, but we can solve numerically for
prescribed values of g, v and N..

The results calculated by Sparrow, Eckert, and Irvine, 1967 [1],
are presented in[Fig. 14.3.|The plots are made as a function of the
conduction to radiation parameter N, for two values of emissivity, and
for several values of the opening angle. The curves for emissivity are
equal to one, and converge at the highest heat loss value as N, — oo.
When emissivity is 0.5, this ideal case is not reached as the surfaces are
nonblack. From the figure, it is clear that as Nc is decreased, the fin
effectiveness is decreased. In addition, as would be expected intuitively,
the smaller opening angles result in greater fin effectiveness.
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Figure 14.3 Radiation and Conduction in Non-participating Media
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Example 14.1

Problem: Two black infinite paraliel plates separated by a transparent
medium of thickness b and thermal conductivity k. Plate 2 is at
temperature T, and a known amount of energy Q,/A is added per unit
area to plate 1 and removed at plate 2. What is the temperature T, of
plate 17

Solution

The energy transfer per unit time and area by radiation between
two infinite parallel black plates is

% = o1} —T;)

and by conduction is

.k

=@

O _ O O k
Hence, ol -6 -T)

oT! +£TI = oT, +5T2 4
b b A

Solve iteratively.

Example 14.2

‘ Disk Geometry

Y/

Figure 14.4a Sketch for Example 14.2.
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Radiation out

Conduction out

-

Conduction in

dr

Portion of Ring Element on Annular Disk

Figure 14.4b Sketch for Example 14.2.

Problem: A thin annular fin in a vacuum is enclosed in insulation so
that there is no heat transfer on one face and around its outside edge.
The disk is of thickness b, has an inner radius r;, an outer radius r,, and a
thermal conductivity k. Energy is supplied to the inner edge, say from a
solid rod of radius r; that fits the central hole, and this keeps the inner
edge at a temperature T;.

The exposed annular surface, with emissivity €, radiates to the
environment at temperature T, = 0. Find the temperature distribution of
the fin as a function of radial position.

Solution:
Assumption: Disk is thin, so that the local temperature is constant across
the thickness b.

For any ring element of width dr,
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Conduction in = Conduction out + Radiation out

~k2mrb a _ eoT * 2nrdr — k2mrb ar + i(— k27mrb —dl)dr.

dr dr dr dr
(i)
If b and k are constants,
1d( dr
kb——(r— —eoT* =0. (ii)
rdr\ adr
The boundary conditions are as given below.
Atr=r, T=T;
dar .
Atr=r,, 71'_ =0 (insulated at the outer edge)
r
Using 6 = 2, R= (r —n)
7:‘ (ro - ri)
d? 1 =r,) eaT}?
dR R r,  dR kb
+ -
(rn - ri)
r (r, =) eoT}
U s 5 = 0 s — [ ] 7
sing ”,- 4 b
2
Z€+ 11 Z—‘g—e“:. (iv)
R R+ R
(6-1)
The boundary conditions become: atR=0, 6=1

atR=1, f12:0.
dR




The solution may be obtained by numerical methods.

The fin efficiency is defined as
Energy actually radiated by fin

B Energy radiated if entire fin at temp T, '

2mec [ T dr
Hence, n=- (",,2 = )SO'T,- 7 (va)
2[[R(5 +1)+1}p*dR
7= 0+1 ve)

14.3 Radiation with Convection

Physical situations that involve radiation with convection are
fairly common. Examples include solar radiation interacting with the
earth’s environment to produce complex natural convection, water
environmental studies for predicting natural convection patterns in lakes,
seas and oceans, and heat transfer along copper tubes in the furnace of a
boiler.

14.3.1 Laminar Boundary Layer Flow Along a Flat Plate with
Radiation Boundary Condition

g

2y

’I/V\ /]\9“ |

XA AT A

ﬁbn;yA plate

Figure 14.5 Flow along a flat plate with radiation boundary condition.

MARCEL
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Consider a steady, laminar boundary layer flow of
incompressible, transparent fluid along a flat plate, with a constant
applied heat flux q,, Btu/(hr ft*) at the wall surface. The properties of
the fluid are assumed constant. The main considerations are conduction
to the fluid, and radiation from the plate to the environment at T..
Surface of the plate is opaque and gray, and the uniform emissivity is €.
The fluid which is at a temperature of T, flows at a uniform velocity of
U,. Flow velocities are sufficiently small so that viscous dissipation may
be neglected.

Continuity

For the incompressible fluid, continuity equation is

M Xy (14.20)
& &
Velocity Distribution

Since the y-component of the velocity, v, is small compared to u,
the y-momentum equation yields no useful information. The x-
momentum equation is

u— v =p— (14.21)

The boundary conditions are the no slip boundary conditions at y = 0,
and the free-stream velocity, that is,

u=v=0aty=0 (14.22a)
u=u,aty —> o (14.22b)

Temperature Distribution

The energy conservation equation is in the form




(ar 07’) o°T
U—+V— = . (14.23)

The boundary conditions are as follows:

g, = —k%{—&'O’(TA' -7} aty=0  (14.24a)
or 5_T=_h+¢_0(T4 1) aty=0.  (14.24b)
v k&

Since the momentum equation is not coupled to the energy equation,
they may be solved independently of each other.

We define the stream function such that

4D H(x.y)

and v=-— (14.25)
o
Introduce similarity variables f(n) and n,
um
n=y.—= (14.26a)
X
f(n) = vix.)) (14.26b)
xou,,
Momentum equation becomes
207 + =0 (14.26a)
with boundary conditions
f=10, f=0atn=0 (14.27b)

f =1at n-> oo, (14.27¢)
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The solution of Eq. (14.27a) was given by Blasius,

u=u,f (14.28a)

(14.28b)

To solve the energy equation, we define the similarity variable,
€, such that

3
¢= 8?” uﬁ (14.29)

K

When the transformation Eqs. (14.29) and (14.26a), the velocity
components Eqs. (14.28a) and (14.28b), are introduced into the energy
equation (14.23), the later becomes

2
g T+—1—Prf£——l—Pri a_

o' 2 T on 2 dnT

0. (14.30)

Equation (14.30) is solved using a power series technique.

T n)-T, =T, a,6,mE" (14.31)

n=1

with the requirement that

6:1(0)=6,0)=630)=............. =1 (14.32)
where the coefficients a, and functions 0,(n)) are unknowns.

Substituting Eq. (14.31) into Eq. (14.30), and equating

coefficients of £" to zero (for a, # 0), it is found that the functions 6,(n)
constitute the solution of the following ordinary differential equation.
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0, +—;-Prf ,,'—gPrf'O,, =0 (14.33)

where the prime denotes differentiation with respect to 1. The boundary
conditions are

O,=1latn=0 (14.34a)
0,=0at n— oo. (14.34b)

Equation (14.33) with boundary conditions (14.34a) and (14.34b) can be
solved numerically because functions f and f° have been found.

When functions 6,(n) are known, the problem of determining
the temperature distribution T(§,n) in the boundary layer reduces to
evaluating unknown expansion coefficients an in Eq. (14.31). The
boundary condition Eq. (14.34a) is now utilized to determine these
coefficients. From Eq. (14.31),

T(£,0) = Tw(l +ia"§"). (14.35)

n=l

or
The gradient — at the wall can be evaluated as

ay)  _a| o
@/ y=0 é’f] n=0 @}
11,3 a,0,08" | 2=
L ” n=lI _ vx
[ . 11 goT?
= Tco aﬂgn (O)g" - =
2 I
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Y a,8,(0)". (14.36)

goT! &
k n=l

Substituting Eq. (14.35) and Eq.(14.36) into the boundary condition Eq.

(14.34a) and equating like powers of &, the desired relation for the

determination of coefficients an is obtained. Equating the constant terms

(i.e., the coefficients of £° for instance),

4
- T
g =—1 Ay Ze | o1 (14.372)
6,(0)| eoT, T

Equating coefficients of &’,

a, 4

a  6,(0)

(14.37b)

Other coefficients are determined in a similar manner.

Knowing the functions 6,(n) and the coefficients a,, the

distribution of temperature in the boundary layer can be evaluated from
Eq. (14.31).

The local Nusselt number is defined as

Ny oo % OT)
T,-T, o

(14.38)

y=0

Substituting Egs. (14.35) and (14.36) into Eq. (14.38) and in the resulting

T4
5% by é‘"u—“’ according to Eq. (14.29a),
k vx

expression replacing

MARCEL

be e --Copyright n-2003-by-Mareel Dekker, Inc. All Rights Reserved. s



S 4,0, (0)&"

N
R = (14.39a)
) a,"
a=}
where
Re= Y=X (14.39b)
v
Dividing one series into the other,
Nu . a, [ ‘ . ]{
R ~0,(0) - @ 4,(0)-6,(0) (14.40)
Substituting a,/a, from Eq. (14.37b) into Eq. (14.40),
Nu : 8,(0)
—— =—0,(0) -4 1 -——=|&. 14.41
ReO.5 ]( ) { 02 (0)]§ ( )

The reference for the above solution is P.L. Donoughe and N.B.
Livingood, 1958 [2]. Donoughe and Livingood found that

0,°(0) = -0.4059, 0,"(0)=-0.4803. (14.42)
The local Nusselt number becomes

Nu

05

= 0.4059 - 0.620¢. (14.43)
Re

The first term on the right in Eq. (14.43) is the conductive or convective
term, and the second term is the first-order effect of radiation. Cess,
1962 [3], showed that higher-order terms are small.
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Example 14.3

Figure 14.6 Fin of constant cross-sectional area transferring energy by
radiation and convection.

Problem: A gas at T is flowing over the fin and removing heat by
convection. The environment is at T.. The cross-area of the fin is A, its
perimeter is P, and its radiative properties are a,e. Find x in terms of the
heat transfer properties and geometry of the fin.

Solution
An energy balance in an element of length dx yields

2
kA ‘;xf dx = oleT* - aT! )Pdx + hPx(T - T,) o)

\v Conductivek Radiative \\ Convective

We neglect radiative exchange between the fin and its base.

dzzﬂ _ &goP (T“ Qs )
dx* dx kA

ar hP(T T)
dx kA

Integrating once,

5 2
l g) gO'P T_—gTT: +_}L}i L——TTe +C. (ii)
Wde) A5 ¢ K4\ 2
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Now, we use the simplification of letting T, = 0 and the fin be very long.
As x — o (large), T(x) — 0 and dT/dx — 0. Therefore, C = 0.

1
dr _ (2 Peo s P, i
& \5 K

The minus sign is taken because T decreases as x increases. We separate
the variables in Eq. (iii) and using T(x) =T, at x =0,

fdx:_f L T

T g _PiCZ]T3+ﬁ£ 2
5\ kA kA

Integration yields

! 1

1 1
A 3 S _ Af2 3 > _ Af2
x=§M i T +M)1 M _lar +M)l M
G+ My +Mm>  (GT +MP +M?
(iv)
where G—E!ET— M—flfi
5 kA kA

The reference for the above discussion is Shouman, 1967 [4].
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14.4  Radiation with Conduction and Convection

Physical situations that involve radiation with conduction and
convection are fairly common. Examples include automobile radiators
and heat transfer in the furnace of boilers and incinerators. The energy
equations become more complex as they comprise both temperature
differences coming from convection and temperature derivatives coming
from conduction. Hence, there are no classical methods of solution, but
numerical methods and specific methods for particular problems.

This section provides the solution of several examples where

radiation is combined with the other modes of heat transfer.

Example 14.4

- .

T,
k,e,h
W4
L — >
AC v
DI

AlIR, T,
E

SPOOL

Figure 14.7 Extrusion of a thin wire.

Problem: A thin wire is extruded at a fixed velocity, v, through a die at
a temperature of T,. The wire then passes through air at T, until its
temperature is reduced to T;. The heat transfer coefficient to the air is h,
and the wire emissivity is €. Find T as a function of wire velocity v and
distance L. Derive the differential equation for the wire temperature as a
function of the distance from the die.



Solution

Consider the heat balance for flow in and out of a control volume
fixed in space, as shown below.

hC(T-T,)
Cdxes (T - T,Y)

de dx dx

-kA% -kAg + —d—(— kAiT—)dx

S

AvpC,T Ny

dx

AvpC,T + gx—(AvpCPT)dx

Figure 14.8 Sketch for Example 14.4.

For steady-state conditions, energy in = energy out. Hence,

dT dT d(_kAiT_

—kA—+ A4 A =—kA—+ — dx + A T
z FAPC dx  d dx) VP
+ % (4vpC,T)dx + hCdx(T —T,) + Cdveo(T* - T/') o)

For constant k, the equation reduces to

2
—kAd Zﬂ+AvpC,,£II—T—+hC(T—-Ta)+C80'(T4 —T:)=O
dx dx

or
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i _TZ;_E(T_ “%kA—(T“ 4)=0
(ii)

The boundary conditions are as follows:
Atx=0, T=T,

Atx =L, we assume that there is no heat lost after the wire is

ar
d,tht',—~ =,
wound, that is dx‘

Example 14.5

Tu(b) / | /

Figure 14.9  Sketch for Example 14.5.
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Problem: Opaque liquid at temperature T(0) and mean velocity u
enters a long vacuum jacket and a concentric electric heater that is kept
at a uniform temperature T, along its length. The heater can be
considered black, and the tube exterior is diffuse-gray with an emissivity
€. The convective heat transfer coefficient between the liquid and the
tube wall is h, and the tube wall conductivity is k. Derive the relations
to determine the mean liquid temperature as a function of distance x
along the tube (assume that the liquid properties are constant).

Solution
Heat balance on the liquid where the liquid temperature is T(x),
gives

2 (T, ~T)=mr’upC, %T.

w,i

Hence, —+

T(x) = ———T. (x). (ia)

m2upC,T

r}? ;pCPT +
h(Tw,i - T)Zﬁr,dx %(ﬂl‘iz ;pCPT)dX

Figure 14.10 Energy balance for Example 14.5.
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Figure 14.11  Sketch showing temperature boundary conditions for
Example 14.5.

The boundary condition given is T = T(0) at x =0. Locally, through the
tube wall, neglecting the axial heat conduction,

) (ib)
ln(i’]
ri

The radiation from element dx = 277, dxeoT,

w,0

2mW(T,, -T)=(T,,~T

w,0 w,i

The surroundings are black, so no reflected radiation returns to
dx. Neglecting radiation from the end planes at x = 0 and x = |, radiation
absorbed by the element dx is equal to

2mr,loT}dF, ,c .

For a gray tube a = ¢, and by reciprocity,

27, dx

Gain= 2 IoT'F, , e=0T}F, 2nrdxe

e
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(TW,o - Tw,i )anw

ln(f"—]
v

Fa.e can be found from tables, eg., Siegel and Howell, 1992 [S].
Equations (ia), (ib) and (ic) are three simultaneous equations for T(x),
Twi(x) and T, o(x).

Then, = 2nr,0e(T*F, , - T*,) (ic)

Example 14.6

N\
&

Thermocouple
0.1 cm diam.

350K

)
S
S
~

As

\\\\\\\\\1\\\\\\

Figure 14.12 Sketch for Example 14.6.

Problem: A copper-constantan thermocouple is in an inert-gas stream at
350 K adjacent to a blackbody surface at 900 K. The heat transfer
coefficient from the gas to the thermocouple is 25 W/(m’K). Estimate
the temperature of the bare thermocouple. (¢ = 0.15 for copper-
constantan.)

Solution
For A, near A,, (A, <<A;),

F1-2 = 0.5
F1.3 =0.5
A A
ThUS, F2_1 = l—; and F3_1 = "1“—'1" .
24, 2 4,

Convective heat loss from the thermocouple = hA; (T; — Ty).

Srrrer Copyrightn 2003 by Marcel Dekker, Inc.All Rights Reserved.



Radiative loss from thermocouple = £oT;* 4,.

For the thermocouple assumed gray, the radiative gain

= a[ApT{‘F 2t A30T34F3-1]
= e[4,0T} F,, + 4,0T}F, |

= E%AIO'(T; + T;‘)

The energy balance gives
1
T, - T, )+ £oT}! = Esa(Tz" +T,)

4 4
25(T, —350) = 0.15x 5.729 10'8[%“2“—‘3’5—0——714]

Try T; =450 K,2500 = 2531

I

Try T, =452 K,2550 = 2505

The bare thermocouple is at T; =451 K.
PROBLEMS

14.1.  Very long, thin fins of thickness b, width W are attached to a
black base that is maintained at a constant temperature Ty, as shown in
the figure. There is a larger number of fins. The fin surface is diffuse-
gray, and they are in a vacuum at temperature, T. = 0 K. Write the
equation that describes the local fin temperature.

Drrrer. Copyrightn 2003 by Marcel Dekkernc. Al Rights Reserved.



Qe.o(x)

A
—yj b/2 ’4/7 qro(X)dx

Q.i(x) qr,i(x)dx

Figure for Prob. 14.1.

N\
Star with each straight
section = a

Figure for Prob. 14.2.
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14.2.

14.3.

A gas at T, is flowing over the fin and removing heat by
convection. The environment is at T.. The cross-area of the fin
is a star with each straight section = a. Its radiative properties are
a,e. Find x in terms of the heat transfer properties and geometry
of the fin.

Consider a thin two-dimensional fin in vacuum radiating to outer
space at temperature T, = 0. Heat loss from the end of the fin
can be neglected, and the base of the fin is at T,. Any radiant
exchange with the base surface is negligible also. The fin surface
can be considered gray with emissivity €. Derive the governing
equation in dimensionless form for the temperature distribution
along the fin. Indicate the boundary conditions used. State the
integration to be done to arrive at the temperature distribution
T(x).

Figure for Prob.14.3.
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14.4.

14.5.

A transparent gas flows into and out of a black circular tube of
length L and diameter D. The gas has a mean velocity up,
specific heat at constant pressure ¢, and density p. The wall of
the tube is thin, and the outer surface is insulated. The tube wall
is heated electrically and a uniform input of heat is provided per
unit area, per unit time. Determine the local wall temperature
distribution along the tube length. Assume that the convective
heat transfer coefficient h between the gas and the inside of the
tube is constant.

A product is heated in an oven to an equilibrium temperature T,
which is less than T,, the temperature of the interior oven walls.
The product has the shape of a cylinder with length greater than
the diameter, D = 4 cm. The emissivity of the product is € =
0.75 and T, = 700 K. Nitrogen at atmospheric pressure flows
over the product with a velocity V = 2 m/s, and at a temperature
Tg = 300K. Calculate the equilbrium temperature T, of the

product. Use the correlation h= —2—0.26 Re)® Pr® for the

forced convection of the nitrogen over the product; v =20.78x10
% m%s, k = 0.0293 W/mXK and Pr = 0.711 for nitrogen at the
temperature and pressure considered.
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Multimode Heat Transfer

Situations where radiation and conduction occurred,
Integrals and derivatives of temperature are involved
Heat transfer in satellite and spacecraft structures
Heat transfer through walls of a vacuum flask structure.

Situations where radiation and convection occurred,
Integrals and differences of temperature are involved
Heat transfer along the copper tubes in a boiler,
Heat transfer in lakes, seas and environmental waters.

Situations where radiation, conduction and convection occurred,
Integrals, derivatives and differences of temperature
Heat transfer in the extrusion of commercial wires,
Heat transfer of moving fluid with concentric electric heater.

K.V. Wong
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Appendix A

Bessel Functions

New functions are sometimes defined as a solution to differential
equation, and simply named after the differential equation itself. It is the
purview of the mathematician to understand the properties of these
functions so that they can be used confidently in numerous other
applications. The Bessel function is of this kind, the solution of a
differential equation that occurs in many applications of engineering and
physics, including heat transfer.

Bessel functions are defined as functions that produce solutions
to the class of nonlinear differential equations represented by:

Xy” +xy’ + (X’ ~n) y=0

Generally, solutions to differential equations only arise after
lengthy calculations using infinite series to find recursions and patterns
in the solution. The clever mathematician therefore avoids the lengthy
calculation by depending on methods that not only give the solution to
the differential equation, but also aid in the understanding of its
properties. This way the differential equation can provide essential
information about the system in question without actually being solved.
One procedure to accomplish this is to find an integral that gives the
function; Bessel used this procedure for his functions. A second
procedure is to use recurrence formulas that relate functions belonging to
different parameters.

The functions D,(x), which are written as D, for simplicity, may
be defined for any real n by these recurrence relations:

2
Dy; + Dyt = = D,
X
D e
Dn—l - Dn+l =2 .'_"—:'.
vdx =

From these relations, D, satisfies the differential equation

389




x°D," + xD,' + (x2 - n2)D,, =0,

which is Bessel's equation. Relton, 1946 [1], called the D, Cylinder
functions, but they are also Bessel functions because they satisfy
Bessel’s equation (Calvert, 2001[2]). Relton, 1946 [1], pointed out that
the coefficient of D," shows that the function can touch (i.e., be
tangential to) the x-axis only at x = 0, because this is the only zero of the
coefficient of the second derivative,

The difterential equation is the same for -n as for n, so D, is also
a solution, and is generally different from D,. Thus, a general solution of
Bessel’s equation with two arbitrary constants is

y=A Dy(x) + B D_(x).

However, when n is integral, from the recurrence relations: D., = (-1)"D,.
This implies that D, is linearly dependent of D, , and a second linearly
independent solution to Bessel’s equation must still be found.

A second-order differential equation may be changed to normal
form by the substitution y = qw, selecting q(x) so that the y' term
disappears. Starting from

y" ta(x)y' + h(x)y =0,
one obtains
w" + Hx)w =0,

where q = exp{-(1/2)I[a(x)]} (I is the indefinite integral), and

2
a

1 da
H(x) = h(x) - EE; - (EJ .

Using this in Bessel's equation,

2
W {1 o1 44:’ ] w =0, where, Dy(x) = w(x)/x'2.
X

w(x) is a function similar to a sine or cosine, with a period that slowly
shortens, eventually becoming 2r. Except for regions close to the origin,

Srrrer Copyrightn 2003 by Marcel Dekker, Inc.All Rights Reserved.
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this oscillatory characteristic provides a description of the general
behavior of Bessel functions. When n = 1/2, the familiar linear second
order differential equation satisfied by the sine and cosine is obtained.

The series solution of Bessel’s differential equation will provide
facts about the Bessel function’s behavior near the origin. The series
solution is also used to generate the standard function, and tabulated
values of Bessel functions. The resulting series solution is

( xn J{ x2 x4 }
J, = = I- + —ef
2T(n+1) )| 8Q2n+2) 1282n+2)2n+4)

This function is called the Bessel function of the first kind of order n.
I'(n +1) is the gamma function of n +1. From this, it can be seen that
when n is a positive integer, J,(x) starts off as x". When n = 0, Jo(0) = 1.
When n is an integer, J,(0) = 0. In all other cases, J, is infinite at the
origin. In many physical problems the solution to Bessel’s equation must
be defined (finite) and well-behaved at the origin, which eliminates all
solutions except for those with integer values of n. It can also be shown
that J, satisfies the same recurrence relations as D,, verifying that the
functions are the same.

1.0
Jo(x)
Ni(x)
05 [
J(%)
] | ] ] yd >
0.0 2 4 6, 8 10
X

-0.05

Figure A.1 Bessel functions of the first kind.



When n = 1/2, the result is Ji(x) = (2/nx)"sin x. From the
recurrence relations, it can be found that J,, = (2/nx)"*cos x. The
recurrence relation J,.; = (2n/x)J, - Ji.; can the be employed to discover
all the other functions of half-integral index. Numerical calculations
using recurrence equations are easily impaired by roundoff error, since
the error can propagate through successive recurrences.

Some Bessel functions of the first kind are shown in Fig. A.1 to
illustrate their behavior. The first five zeros of J, are 2.4048, 5.5201,
8.6537, 11.7915, and 14.9309. The interval between the last two is
3.1394, a value near m. Note that as x increases, the absolute value of
the maxima and minima decrease. The larger roots are approximately (m
- 1/4)r, where m is the number of the root. For n > 1/2, the roots
approach © from above instead of from below. The first positive zero of
J, is greater than n, and increase steadily with n. The first zeros are
2.405, 3.832, 5.136, 6.380, 7.588, and 8.771, for n = 0 to 5. The zeros
must be found by calculation.

? Y()(X)
05 Yi(x)
(x)
0.0 L ' ' < >
2 10
4\.}<>4/ x\-’
-0.5
-1.0

Figure A.2 Bessel functions of the second kind.
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When a and b are two separate roots of J, ,the functions J(ax)
and J,(bx) are orthogonal to each other over the interval x = 0,1 with
weight function x. The implication is that when their product is
multiplied by x and integrated from 0 to 1, the result is zero. If b = a, the
result is not zero, but J,,'Z(a)/2 = Jori? (a)/2. For instance, when n = 1/2,
the orthogonality of the functions sin (n7x) in the interval (0,1) is proved.
A function can be expanded in a series of J (ax) corresponding to the
zeros of J, in the same way as a Fourier series is created, using
orthogonality to find the coefficients one at a time.

In the box, two additional methods to obtain Bessel functions are
summarized. The generating function relates Bessel functions to the
exponential, Spiegel, 1971[3]. This relation is useful for obtaining
properties of the Bessel function for integral n. Recursions of the Bessel
functions are generally derived this way. Bessel's integral relates Bessel
and trigonometric function.

Generating Function

exp[%(t - %)] = it"]n (%)

Bessel’s Integral

J, (x)= % f cos(nf — xsin 8)d6

When n is an integer, a second solution linearly independent of
J, has to be found. For n = 0, such a function is Neumann's,

Yo(x) = Jo(x) log x + {(x/2)* - G/2)x/2)/(2!)* + ..}.

This function is tabulated, just like Jo(x), and has zeros that interlace with
those of Jy(x). At x = 0, it goes to negative infinity. The general solution
of order zero is then

y=A Ji(x) + B Y (%).

b e x rr--Copyright n2003 by Marcel Dekker Inc. All Rights Reserved. e . . e e
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In practice, the important fact is that there are two independent solutions,
J and Y, and Y is infinite at the origin. These Y’s are called Bessel
functions of the second kind. Some of these functions are shown in
Figure A.2.

An imaginary argument is also possible for Bessel functions.
When this occurs, they become the modified Bessel functions I and K.
This substitution changes them from oscillatory to monotonic, as in the
analogous case of the trigonometric functions. The modified Bessel
function of the first is defined as

I(x) = ()"Ja(ix) = €1, (ix).

With proper adjustments due to the factor i, these functions follow
recurrence relations similar to those for J, Iy(0) = 1, I, (0) = 0, and for
n >0 the modified Bessel function is monotonically increasing. The
second solution, K, does not follow the same recurrence relations as 1.
Macdonald's definition of the modified Bessel function of the second

kind is
k=" Lazda |
2| sin(nam)

K(x) is infinite at x = 0, and decreases similar to a rectangular hyperbola,
approaching the x-axis as an asymptote. In fact,

Kin(x) = Kin(x) =(n/2x)e™.

The corresponding relations for I, give sinh for n = 0.5, and cosh forn =
-0.5. The I, are the coefficients in the Fourier expansion of e 8 which
is X I(kr) cos n@, where the summation sign on n goes from minus
infinity to plus infinity.

The function y = x"J,(Bx") is a solution of the equation
'+ {(1- 202}y + {ByxX) + (@ - ny)x}y = 0.

If the first term in the face brackets is negative, the solution has I, instead
of J, . This will aid in recognizing equations whose solution can be
expressed in terms of Bessel functions that is found in applications.
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In this appendix, the essential properties of Bessel functions that
are required in physical applications have been discussed. There are
many books and articles on Bessel functions, and tables and graphs of
their values and properties. There are also several good books giving the
essentials of Bessel functions for scientists and engineers. Every
textbook on hydrodynamics, elasticity, electromagnetism and vibrations
will have examples of the use of these functions. Bowman, 1958 [4], is
recommended.

The next table lists the asymptotic formulas for Bessel functions
for large values of x. These are useful for problems involving cylindrical
geometry in heat transfer.

List A.1 Asymptotic formulas for Bessel functions.

When the values of x are large, the following asymptotic formulas for the
Bessel functions apply:

J, ()~ —%cos(x—%—%j
bod

2 . T VI
Y(x) =, |—sin{x———-—
L (x) — ( 2 2)

e

i

2mx
7[ —-X
—e
2x

I,(x)=~

K,(x)~
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Appendix B

Physical Constants and Thermophysical
Properties

Universal Gas Constant:

R =8.314 x 107 m’.bar/(kmol.K)

= 8.315 kJ/(kmol.K)

Stefan-Boltzmann Constant:

6=5.670x 10° W/m>’K*
Standard Atmospheric Pressure:

P =101,325 N/m* = 0.1013 MPa
Speed of Light in Vacuum:

co =2.998 x 10’ kn/s
Gravitational Acceleration at Sea Level:

g = 9.807 mv/s*

MARCEL
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Table B.1 Thermophysical properties of metals.

Metal Temp. Density | Thermal Sp Heat, Emissivity
range inK | kg/m* | cond. ki/(kgK)
W/(m.K)
Aluminum 100-600 2702 240 0.903 0.04-0.06(polished)

0.07-0.09 (foit)
0.76-0.82 (anoxidized)

Brass (70% 373-573 8530 110 0.38 0.03-0.07(polished)
Cu, 30% Zn) 0.2-0.25 (foil)
0.45-0.55(oxidized)
Copper 300 8933 401 0.38 0.03-0.04(polished)
0.5-0.8(oxidized)
Gold 100-1000 19300 317 0.129 0.01-0.06(polished)
0.06-0.07(foil)
273-1273 7260 35-52 0.42 0.2-0.25(polished)
Iron (4% C, 0.55-0.65(oxidized)
cast)
Lead 273-573 11370 30-35 0.13 0.05-0.08(polished)
0.3-0.6(oxidized)
Mercury 273-573 13400 8-10 0.125 0.1-0.12
Nickel 600-1200 | 8900 59-93 0.45 0.09-0.17(polished)
0.4-0.57(oxidized)
Platinum 273-1273 | 21450 72 0.133 0.03-0.05(polished)
0.07-0.11(oxidized)
Silver 273-673 10520 360410 0.23 0.01-0.03(polished)
0.02-0.04(oxidized)
Steel (1% Cr) | 273-1273 7860 33-62 0.46 0.17-0.3(polished)
Steel (1% C) | 273-1273 7800 2843 0.47 0.17-0.3(polished)
Tin 273-473 7300 57-65 0.23 0.04-0.07(polished)
Tungsten 273-1273 19350 76-166 0.13 0.04-0.08(polished)
0.2-0.4(filament)
Zinc 273-673 7140 116 0.39 0.04-0.05(polished)

0.2-0.3 (galvanized)

MARCEL
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Table B.2 Thermophysical properties of common materials.

Material Temp. Density Thermal Specific Emissivity
range in K | kg/m® conductivity | Heat,kJ/(k

W/(m.K) gK)
Asbestos 373-1273 | 470-570 | 0.15-0.22 0.816 0.93-0.97
Asphalt 273-300 2115 0.062 0.92 0.85-0.93
Brick,common | 373-1273 | 1920 0.72 0.84 0.90-0.95
Clay 273-473 1.46 1.3 0.88 0.91
Concrete 273-473 0.6-1.1 0.94
Cotton 273-300 80 0.06 1.30
Fiberglass 273-300 32 0.038 0.7
Glass (pane) 273-873 2200 1.4 0.75 0.90-0.94
Granite 273-300 2630 2.79 0.78 0.80-0.95
Ice 273 920 1.88 2.04 0.95-0.98
Paper 273-300 930 0.18 1.34 0.92-0.97
Wood (pine) 273-300 440 0.11 2.8 0.90
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