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SERIES EDITOR'S PREFACE 

lEt moi •...• si j'avait so comment en revenir, 
je n'y serais point alle:' 

Ju1e. Veme 

Tbe series is divergent; therefore we may be 
able to do something with it. 

O. Heaviside 

One service mathematics has rendered the 
human race. It has put common sense back 
where it belongs, 01\ the topmost shelf next 
to the dUlty canister labelled 'discarded non-
sense'. 

Erie T. Bell 

Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non
linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for 
other sciences. 

Applying a simple reweiting rule to the quote on the right above one finds such statements as: 
'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com
puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And 
all statements obtainable this way form part of the raison d'tftre of this series. 

This series, Mathematics and fts Applications, started in 1977. Now that over one hundred 
volumes have appeared it seems opportune to reexamine its scope. At the time 1 weote 

''Growing specialization and diversification have brought a host of monographs and 
textbooks on increasingly specialized topics. However, the 'tree' of knowledge of 
mathematics and related fields does not grow only by pUUing forth new branches. It 
also happens, quite often in fact, that branches which were thought to be completely 
disparate are suddenly seen to be related. Further, the kind and level of sophistication 
of mathematics applied in various sciences has changed drastically in recent years: 
measure theory is used (non-trivially) in regional and theoretical economics; algebraic 
geometry interacts with physics; the Minkowsky lemma, coding theory and the structure 
of water meet one another in packing and covering theory; quantum fields, crystal 
defects and mathematical programming profit from homotopy theory; Lie algebras are 
relevant to filtering; and prediction and electrical engineering can use Stein spaces. And 
in addition to this there are such new emerging subdisciplines as 'experimental 
mathematics', 'CFD', 'completely integrable systems', 'chaos, synergetics and large-scale 
order', which are almost impossible to fit into the existing classification schemes. They 
draw upon widely different sections of mathematics." 

By and large, all this still applies today. It is still true that at first sight mathematics seems rather 
fragmented and that to find, see, and exploit the deeper underlying interrelations more effort is 
needed and so are books that can help mathematicians and scientists do so. Accordingly MIA will 
continue to try to make such books available. 

If anything, the description 1 gave in 1977 is now an understatement. To the examples of 
interaction areas one should add string theory where Riemann surfaces, algebraic geometry, modu
lar functions, knots, quantum field theory, Kac-Moody algebras, monstrous moonshine (and more) 
all come together. And to the examples of things which can be usefully applied let me add the topic 
'finite geometry'; a combination of words which soundslike it might not even exist, let alone be 
applicable. And yet it is being applicd: to statistics via designs, to radar! sonar detection arrays (via 
finite projective planes), and to bus connections of VLSI chips (via difference sets). There seems to 
be no part of (so-called pure) mathematics that is not in immediate danger of being applied. And, 
accordingly, the applied mathematician needs to be aware of much more. Besides analysis and 
numerics, the traditional workhorses, he may need all kinds of combinatorics, algebra, probability, 
and so on. 

In addition, the applied scientist needs to cope increasingly with the non linear world and the 

v 



vi SERIES EDITOR'S PREFACE 

extra mathematical sophistication that this requires. For that is where the rewards are. Linear 
models are honest and a bit sad and depressing: proportional efforts and results. It is in the non
linear world that infinitesimal inputs may result in macroscopic outputs (or vice versa). To appreci
ate what I am hinting at: if electronics were linear we would have no fun with transistors and com
puters; we would have no TV; in fact you would not be reading these lines. 

There is also no safety in ignoring such outlandish things as nonstandard analysis, superspace 
and anticommuting integration, p-adic and ultrametric space. All three have applications in both 
electrical engineering and physics. Once, complex numbers were equally outlandish, but they fre
quently proved the sllortest path between 'real' results. Similarly, the first two topics named have 
already provided a number of 'wormhole' paths. There is no telling where all this is leading -
fortunately. 

Thus the original scope of the series, which for various (sound) reasons now comprises five sub
series: white (Japan), yellow (China), red (USSR), blue (Eastern Europe), and green (everything 
else), still applies. It has been enlarged a bit to include books treating of the tools from one subdis
cipline which are used in others. Thus the series still aims at boots dealing with: 

- a central concept which plays an important role in several different mathematical and/or 
scientific specialization areas; 

- new applications of the results and ideas from one area of scientific endeavour into another; 
- inftuences wh ich the results, problems and concepts of one field of enquiry have, and have had, 

on the development of another. 

The roots of much that is now possible using mathematics, the stock it grows on, much of that goes 
back to A.N. Kolmogorov, quite possibly the finest mathematician of this century. He solved out
standing problems in established fields, and created wh oie new ones; the word 'specialism' did not 
exist for hirn. 

A main driving idea behind this series is the deep interconnectedness of all things mathematical 
(of which much remains to be discovered). Such interconnectedness can be found in specially writ
ten monographs, and in selected proceedings. It can also be found in the work of a single scientist, 
especially one like A.N. Kolmogorov in whose mind the dividing lines between specialisms did not 
even exist. 

The present volume is thesecondof a three volume collection of selectedscientific papers of A.N. 
Kolmogorov with added commentary by the author himself, and additional surveys by others on the 
many developments started by Kolmogorov. His papers are scattered far and wide over many dif
ferent journals and they are in severallanguages; many have not been available in English before. If 
you can, as Abel recommended, read and study the masters themselves; this collection makes that 
possible in the case of one of the masters, A.N. Kolmogorov. 

Tbe shortest path between two truths in the 

real domain passes througlt the complex 

domain. 

J. Hadamard 

La physique ne nous donne pas seulement 

l'occasion de resoudre des problemes ... elle 

nous fait pressentir 1a solution. 

H. Poincare 

Bussum, December 1991 

N ever lend books. for no one ever returns 

them; the only books I have in my library 

are books that other folk have lent me. 

Anatole France 

The function or an expert is not to be more 

right than other people, but to be wrong for 

more sophisticated reasons. 

David Butler 

Michiel Hazewinkel 
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From the Publishers of the Russian Edition 

In accordance with the decision of the Praesidium of the USSR Academy of 

Sciences, the first book of the selected works of Academician A.N. Kolmogorov 

"Mathematics and Mechanics" ("Nauka", Moscow) came out in 1985. As for 

the second book of Kolmogorov's works planned for publication, the editorial 

board decided to divide it into two parts: the first contains the papers on 

prob ability theory and mathematical statistics, and the second those on infor

mation theory and the theory of algorithms. So the articles marked with two 

asterisks in the list of references of the first book should be naturally divided 

into those given in the present second book and those prepared for publication 

in the third book. 

The second and third books of the selected works of Kolmogorov were 

prepared for publication by Yu.V. Prokhorov and A.N. Shiryaev. 



A few words about A.N. Kolmogorov* 

The remarkably broad creative interests of A.N. Kolmogorov, the wide range 

and variety offields ofmathematics he worked in through different periods ofhis 

life - all this makes Andrei Nikolaevich distinguished among mathematicians 

in our country and all over the world. This diversity of interests makes hirn 

unique among the mathematicians of our time. In many fields of mathematics 

he obtained truly fundamental and principally important results. The problems 

were often most difficult to solve and required great creative endeavour. This 

is true for the results obtained by Andrei Nikolaevich in his young years on the 

theory of sets and functions, both the descriptive and the metrical theories; for 

example, the theory of operations on sets developed by hirn and his celebrated 

example of a divergent Fourier series. 

This was followed by papers on general measure theory, both the abstract, 

that is, "the general theory proper", and the geometrie theory. After that 

Kolmogorov started his fundamental work in various branches of probability 

theory, work that made hirn, beyond any doubt, the most outstanding among 

the researchers in this field all over the world. 

Along with this, Kolmogorov wrote his first papers on mathematicallogic 

and the foundations ofmathematics. Later, these were supplemented by studies 

in information theory. 

Andrei Nikolaevich made a very important contribution in topology. It 

suffices to say that simultaneously with the outstanding American topologist 

J .W. Alexander and quite independently of him, Kolmogorov came to the no

tion of cohomology and laid the foundation of the theory of cohomology oper

ations, obtaining the results that transformed topology as a whole. The deep 

* Uspekhi Mat. Nauk 38:4 (1983), 7-8. 
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connections between topology and the theory of ordinary differential equa

tions, celestial mechanics and, later, the general theory of dynamical systems 

are weIl known. These connections were established back in the first papers 

by H. Poincare. The ideas of Kolmogorov in this whole vast area of mathe

matics, furt her developed by his numerous students, have largely determined 

the present state of this field. Finally, the studies by Kolmogorov in mechanics 

proper are worth mentioning, in particular, his famous work on the theory of 

turbulence, which reached out directly to the realm of experimental natural 

sciences. All this, which is by no means everything that could be said about 

Kolmogorov as a scientist, shows that he is one of the most outstanding repre

sentatives of modern mathematics in the broadest sense of the word, including 

applied mathematics. Andrei Nikolaevich is undoubtedly recognized as such 

by the international scientific community. In particular, this is reflected in the 

fact that he has been elected a member of many Academies and scientific soci

eties, and many universities have made hirn an honorary member - no other 

Soviet scientist has ever received such recognition. Among these are the Paris 

Academy of Sciences, the London Royal Scientific Society, the Academy of N at

ural Sciences "Leopoldina" , the Polish Academy of Sciences, the East German 

Academy, the Polish Mathematical Society, the London Mathematical Society, 

the USA National Academy of Sciences, the American Philosophical Society 

founded by B. Franklin, and the Universities of Paris, Berlin, and \Varsaw. 

A.N. Kolmogorov was born on 25th April, 1903 in Tambov, where his 

mother Mariya Yakovlevna Kolmogorova was staying on her way from the 

Crimea. Mariya Yakovlevna died giving birth to her son, and he was raised 

by her sister Vera Yakovlevna Kolmogorova, who really replaced his mother 

in his life. A.N. Kolmogorov loved her as his mother all her life, up to her 

death in 1950 in Komarovka at the age of 87. On his mother's side, A.N. Kol

mogorov comes from nobility: his matern al grandfather, Yakov Stepanovich 

Kolmogorov, was marshaI of the nobility in the province of U glich. Andrei Niko

laevich's father was a son of a priest and worked as an agronomist with a higher 

special education, or, as they said in those years, as a "learned agronomist" . 

My friendship with A.N. Kolmogorov played a very special role in my life: 

in 1979 it was fifty years since we had become friends, and through more than 

half a century, this friendship has never been in question. We have never had 

a single misunderstanding of any kind on any matter of importance for our life 
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and outlook. Even when our opinions on some question differed, we always 

respected each other's viewpoint and never lost our deep sympathy for each 

other. 

As already mentioned, Kolmogorov has a lot of students in various fields of 

mathematics, and some of them have hecome famous in their areas. The older 

students of Kolmogorov are Sergei Mikhailovich Nikolskii (h. 1905) and the late 

Anatoli Ivanovich Mal'tsev (h. 1910), hoth Academicians. Next in age are Boris 

Vladimirovich Gnedenko (h. 1912), Academician of the Ukrainian Academy 

of Sciences and expert in prohahility theory of world-wide recognition, Acad. 

Mikhail Dmitrievich Millionshchikov (1913-1973) and Acad. Izrael' Moiseevich 

Gel'fand (h. 1913), elected as a foreign memher of the USA National Academy 

of Sciences and Paris Academy of Sciences. M uch younger, though also helong

ing to the older generation of Kolmogorov's students, are Acad. Aleksander 

Mikhailovich Ohukhov (h. 1918) and Corresponding Memher Andrei Sergeevich 

Monin (h. 1921). 

They are followed hy Vladimir Andreevich Uspenskii, Vladimir Mikhail

ovich Tikhomirov, Vladimir Mikhailovich Alekseev, Yakov Grigor'evich Sinai 

and Vladimir Igorevich Arnol'd, Corresponding Memher since 1984. 

The largest group of Kolmogorov's students works in prohahility theory 

and mathematical statistics. It includes Acad. Yurü Vasil'evich Prokhorov, 

Corresponding Memher Login Nikolaevich Bol'shev, Acad. ofthe Uzhek Acad

emy of Sciences Sagdi Khasanovich Sirazhdinov, Acad. of the Ukrainian Acad

emy of Sciencesand Corresponding Memher of the USSR Academy of Sciences 

Boris Aleksandrovich Sevast'yanov, Juri Anatol'evich Rozanov, Al'hert Niko

laevich Shiryaev and Igor' Georgievich Zhurhenko. Of course, this list is hy no 

means completej from the very title of my note it is clear that this is neither a 

juhilee review of the life and activities of A.N. Kolmogorov, nor a traditional 

''juhilee article" j so it does not claim to he complete in any respect. 

P.S. Aleksandrov 



1. ON CONVERGENCE OF SERIES WHOSE TERMS 

ARE DETERMINED BY RANDOM EVENTS * 
Jointly with A.Ya. Khinchin 

Consider aseries 

(1) 

whose terms are random variables; denote the values taken by Yn (their number 
. fi ·t ·bl t bl ) b (1) (2) (i) d th d· IS me or, POSSI y, coun a e y Yn , Yn , ... , Yn , ... , an e correspon mg 

b b·l·t· b (1) (2) (i) ·th" (i) 1 Fu th d b pro a 11 les y pn , Pn , ... , pn , ... , WI L....i Pn =. r er, enote y 

an = Ly~i)p~) 
i 

the expectation of Yn, and by 

bn = L {y~i) - an }2 . p~) 
i 

the expectation of the square of the deviation Yn - an. 

We first prove that, assuming the convergence of the series Ln an and 

Ln bn, the probability P of the convergence of the series (1) is 1. A partic

ular case of this statement (namely when Yn takes only two values, +cn and 

-Cn , with the same probability ~) was established by Rademacher in function

theoretic terms. 1 In §1 we prove a general theorem using a generalization of 

the method suggested by Rademacher. In §2 we prove it again by other meth

ods that bring ab out the result more quickly. In §3 we establish that, for one 

important and broad dass of cases, convergence of the series L an, L bn is not 

only a sufficient, but also a necessary condition for P = 1 to hold; this is the 

case when the values taken by Yn are uniformly bounded. Finally, in §4 we 

indicate a necessary and sufficient criterion for P = 1 to hold in general. 

§1 is due to A.Ya. Khinchin, §§2, 3 and 4 to A.N. Kolmogorov. 

§1 

Let us reduce the problem to the function-theoretic form more suitable for uso 

For this, we construct a system of functions 

<P 1 (z ) , <P2 ( Z ), ••. , <Pn ( z ), ... 

* Über Konvergenz von Reihen, deren Glieder durch den Zufall bestimmt werden', 
Mat. Sb. 32 (1925), 668-677. 

1 Math. Ann. 87 (1922), 135. 

1 



2 ON CONVERGENCE OF SERIES WITH RANDOM TERMS 

by means of the following recurrence: assume, without lass 0/ generality, that 

for all n and i; divide the interval ° ~ x ~ 1 from left to right into parts of 

lengths 
(1) (2) (i) 

P1 ,PI , ... , P1 , ... 

and assume that on each of these subintervals 4>1 (x) equals a constant, namely 

4>1(X) = z~i) = y~;) - a1 

on the ith interval. Then we have 

11 
4>1(x)dx = 0, 11 

{4>1(x)}2dx = b1. 

If the function 4>n-1 (x) is already determined, then the function 4>n (x) is 

determined as follows: each interval on which 4>n-l (x) is constant is divided 

into intervals whose lengths (from left to right) are proportional to the values 

(1) (2) (i) Pn 'Pn , ... , Pn , ... 

and on the ith subinterval we set 

Then 11 
4>n(x)dx = 0, 11 

{4>n(x)}2dx = bn. 

The values of the functions 4>n (x) at the ends of the subintervals are unimpor

tant and can be taken arbitrarily. 

Assuming that I:an converges, the probability that (1) converges is equal 

to that of the convergence of 

(2) 

which in our case is given by the (Lebesgue) measure of the set on which this 

series converges. Hence, our main result can be interpreted as folIows: 2 con

vergence of L bn is a sufficient condition for the almost everywhere convergence 

of (2). 

2 Clearly, this statement is the same as that stated in the introduction. Gen
eral considerations of this kind of relation can be found in Steinhaus's work 
(Fund. Math. 4 (1923), 286-310). 



ON CONVERGENCE OF SERIES WITH RANDOM TERMS 3 

The proof given below generalizes Rademacher's proof for a special case. 3 

Set 
n 

'll"n(x) = TI {1 + tPk(X)}, 
k=l 

We have 

Let eS (a, b) be an inter val of constancy of the function tPn (t), taken to be 

a ~ x < b. Clearly 

and, consequently, 

since 'll"n(t) is constant on (a, x). From the conditions 

we obtain 

"" (i) (i) - 0 ( - 1 2 ) L..... zn Pn - n - , , ... 
i 

Iz~)p~)1 = IE z~i)p~)1 (n,j = 1,2, ... ) 
iti 

and the Schwarz inequality implies 

Iz~j)p~)1 ~ E{z~i)Fp~)Ep~) ~ v;;;.J1-p~), 
itj i~i 

J Ci) (') Il 1- Pn 
Izn' I ~ Vbn Ci) 

pn 
(n,j = 1,2, ... ). 

Hence, if on (a, b) 

then 

3 See footnote 1. 

(4) 



4 ON CONVERGENCE OF SERIES WITH RANDOM TERMS 

On the other hand we have 

and 

where Iz~1d is the maximal value of l<Pn+l(t)1 for a < t ~ x. If 

then by our hypotheses the inequality p~+t) ~ P~11 holdsj therefore a fortiori 

we have r n V1 - pUn+t} 
IJa <Pn+l(t)dt l < rr p~k\/bn+l Un;~l 

a k=l Pn+l 
(6) 

From (5) and (6) it follows that 

11x 
<Pn+l(t)dt l ~ 2v'bn+1plh)p~2) ... pWn)Vl- p~+t), (7) 

since this follows from (6) for pUn+l) > 1 and from (5) for pUn+l) < 1 n+l - 2 n+l 2· 

Now, (3), (4) and (7) imply 

ILln(x)1 = Ifn+l(X) - fn(x)1 ~ 

~ 2v'bn+1Vl- p~+t) ft {p~k) + .jb;Vl- p~k)} 
k=l 

or substituting 1 - p(h) - w 2 
, k - k' 



ON CONVERGENCE OF SERIES WITH RANDOM TERMS 5 

If we set 
00 

II(1+h)=B, 
k=l 

then 
n 

l6.n (x)1 < Bbn +1 + 2Bvn +1 II (1 - Vk). (8) 
k=l 

Since for every positive integer N, putting Vo = 0, we have 

N n N+l 

1- I>n+l II (1- Vk) = II (1- Vk) > 0, 
n=O k=l k=l 

the right-hand side of (8) contains the general term of a convergent series. 

Hence, the limit 

lim fn(x) = f(x) 
n_oo 

exists. 

In the special case considered by Rademacher, f(x) turned out to be a 

monotone function, which is not necessarily so for the general case considered 

here. 

However, monotonicity was used only to prove differentiability of f(x), so 

it suffices to demonstrate that f( x) is a function of bounded variation. This is 

easily proved as folIows. In any case the total variation of f(x) is not greater 

than the upper bound ofthe total variations of all the fn(x) and, consequently, 

it is not greater than 

But 

n n 

:sII II (1 + bk ) < vB, 
k=l k=l 

where the admissibility of changing the order of taking the product and inte

grating follows directly from the particular structure of the functions <p k (x). 

This gives the desired statement. Thus, the derivative f'(x) exists almost 

everywhere. Let x be an arbitrary point of (0,1), other than a sub division 
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point, at which f'(x) exists, and let (an, bn) denote the interval containing x 

on which <Pn(x) is constantj since f(an) = fn(an), f(bn) = fn(bn), we obtain 

since 4 

fn(bn) - fn(an) = 1I"n(x) 
bn - an 

because 1I"n(x) is constant on (an,bn). 

Hence, lim 1I"n(x) exists almost everywhere. On the other hand, the series 
n-+oo 

converges almost everywhere, since otherwise the series 

would diverge, which contradicts the assumption. 

But the convergence almost everywhere of the sequence 1I"n(x) and the se

ries L:{<p(x)F implies that L:<Pn(x) converges almost everywhere, as required. 

§2 

We now prove this assertion in a different, much simpler way. We set 

n 

E <Pk(X) = sn(X). 
k=l 

If the series (2) diverges at every point of some set of positive measure, 

then there exists a set E of positive measure mE and a positive constant A 

such that 

4 If lim (bn - an) > 0, then we have for sufliciently sm all f > 0 
n-+oo 

I 1 
f (x) = 2f[f(x + f) - f(x - f)] = 

lim ~[fn(x + f) - fn(x - f)] = lim lrn(X). 
n-+oo 2f n-+oo 
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for each positive integer and each x E E, for a suitable p = p(x, n) > n. 

Since sp(x )-sn(x) is constant on every interval on which f/;p(x) is constant, 

by construction of our functions, we can find a finite number of non-overlapping 

intervals Ö such that: 

1) E ö (the sum of the lengths of all Ö 's) is greater than ! mE; 

2) Each Ö is an interval on which f/;p(x) (p> n) is constant and 

If now k is the largest of these numbers p (there is a finite number of 

them) and ö is an interval on which sp(x) (p ~ k) is constant, then, by the 

construction of our functions, 

consequently, 

k 1 

L bp = 1 {Sk(X) - Sn (x)}2dx ~ A2 Lö > !A2mE. 
p=n+l 0 

This implies the divergence of E bn , contrary to the assumption. 

§3 

Thus, convergence of E bn is a sufficient condition for convergence of E f/;n (x) 

almost everywhere. In general this condition is not necessary, as can easily be 

demonstrated by an example. 

Namely, if f/;n(x) is equal to 0, +Cn, -Cn on sets ofmeasure l-Tn, !Tn , !Tn 

respectively and E Tn converges, then f/;n(x) does not vanish almost everywhere 

only for a finite number of subscripts n, and therefore Ef/;n(x) converges al

most everywhere, whatever Cn. Since bn = C~Tn, by suitably choosing the Cn, 

E bn can be made to diverge. 

For the corresponding series (1) we obviously have P = 1, so the con

vergence of E bn is not necessary for P = 1. It is also easy to show that 

the convergence of E an is not necessary for P = 1. To show this, put 

y~l) = Cn , y~2) = 0, p~l) = Tn , pe,;) = 1 - Tn, with ETn convergent and 

E Cn Tn divergent. 
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However, there is an important special case, when our condition is also 

necessary. In fact, if the absolute values of our functions tPn(x) are uniformly 

bounded, then convergence almost everywhere of E tPn (x) implies the conver

gence of E bn . The situation with (1) is similar. If P = 1 and if the random 

variables Yn (n = 1, 2, ... ) are uniformly bounded, then both E an and E bn 

must converge. 

In order to prove this general result we first establish the following: if the 

tPn(x) are uniformly bounded and ifthere exist a set E ofpositive measure and 

a constant K such that 

(9) 

for any k and all pairs of points (Xl, X2) belonging to E, then E bn converges. 

Denote by EIt; the union of those intervals of constancy of tPlt;(x) (hence of 

sIt;(x» that contain the points of E. Obviously, EIt; contains E and Elt;+l. It is 

also dear that (9) holds for any pair of points of EIt;. Set 

then 

f f {SIt;+1(X1) - SIt;+1(X2)}2dx1dx2 = f f {Slt;+l(Xt}-
lE/C+l lE/c+l lE/c lE/c 

-SIt;+1(X2)}2dx1dx2 - 2 f f {SIt;+1(X1) - SIt;+1(X2)}2dx1dx2-
lE/c+l lF/c 

- f f {SIt;+1(X1) - SIt;+1(X2)}2dx1dx2' 
JF/clF/c 

But tPlt;+l(X) is orthogonal to both sIt;(x) and 1 on EIt;, hence 

f f {SIt;+1(X1)-SIt;+1(X2)}2dx1dx2 = f f {SIt;(xt}-SIt;(X2)}2dx1dx2+ 
lE/c+l lE/c+l lE/c lE/c 

+ f f {tPlt;+l(Xt} - tPIt;+1(X2)}2dx1dx2-
lE/clE/c 

-2 f f {SIt;(X1) - SIt;(X2) + tPIt;+1(X1) - tPIt;+1(X2)}2dx1dx2-
lE/c+l lF/c 

- f f {SIt;(x!) - SIt;(X2) + tPIt;+1(X1) - tP1c+1(X2)}2dx1dx2 ~ 
lF/cJF/c 

~ f f {SIt;(xt} - SIt;(X2)}2dx1dx2 + 2bIt;+1(mEIt;)2-
lE/clE/c 

-(K + 2M)2{2mEIt;+1 . mFIt; + (mFIt;?l, 
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where M is the upper bound of l~n(z)1 and mE denotes the measure of E. In 

the inequality obtained, we set k = 0, 1, ... ,n - 1, add up and note that 

n-l 

I: {2mEk+l . mFk + (mFk )2} $ l. 
k=O 

As a result we have 

n-l 

[ [ {Sn(Zt} - Sn(Z2)}2dz1dz2 ~ I: 2bk+l(mEk)2 - (f( + 2M)2, 
JEn JEn k=O 

n-l 

I: 2bk+l(mEk)2 < 2(f( + 2M)2 
k=O 

and a fortiori, 
n-l 

(mE)2 I: bk+l < (f( + 2M)2, 
k=O 

which clearly proves the convergence of E bn . 

We now suppose that the random variables Yn are uniformly bounded and 

that P = 1, which implies convergence almost everywhere of E(an + ~n(z)). 
Since an is independent of z, for E ~n (z) the assumptions of the auxiliary 

statement just proved hold. 5 Consequently E bn converges and by § 1 or §2, 

E ~n(z) converges almost everywhere. But this entails the convergence of 

E an, which proves all we need. 

§4 

Consider, together with (1), another similar series 

Ul + U2 + ... + Un + ... , (10) 

denote by Q the prob ability of its convergence, and by Tn the probability of 

the event 

5 The uniform boundedness of the Yn clearly implies that of the an and conse
quently that ofthe tPn(X). 
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When E Tn converges we call the series (1) and (10) equivalent. 6 Clearly, in 

this case Q = P. 

Now we claim that a necessary and sufficient condition for Q = 1 to hold 

for (10) is the existence of an equivalent series (1) for which E an and E bn 

converge. Clearly, only the necessity of the condition needs to be proved. 

Thus we suppose that Q = 1 and define the series (1) as follows. Let Yn = 
Un if IUn I < 1 and Yn = 0 otherwise. Hence, Tn coincides with the prob ability 

of lun(x)1 ~ 1. Since Q = 1, this immediately implies the convergence ofETn, 
so that (1) and (10) are in fact equivalent. Thus, the constructed series. (1) is 

already uniformly bounded, therefore according to §3 the corresponding series 

E an, E bn converge, and the required result is proved. 

Note also that our proof not only justifies the existence of (1) but also 

gives an extremely simple rule for constructing this series. 

Moscow, 3 December 1925 

6 This means that there is a certain relation between Un and 'Yn. 



2. ON THE LAW OF LARGE NUMBERS * 

Let E l , E 2 , ••• , En , ... be a sequence of independent trials. The reasoning given 

below is true only for a finite number of distinct possible outcomes Eil), Ei2) , ••• 

of the trial Ek. However, the theorem to be proved holds also in the general 

case. 

Let Fn be a variable wh ich depends on the first n trials. If for any positive 

f the prob ability of 

where D n is the expectation of Fn , tends to 1 as n tends to infinity, then Fn is 

said to satisfy the law of large numbers, or that Fn is stable. 

The simplest sets of conditions sufficient for the stability of Fn are ex

pressed in terms of restrictions imposed on the variance of Fn . 

It is natural to consider the upper bound of the difference 

-F. (ECid EU"-l) E Ch ) ECi"+l) ECi n ») n 1 , ... , k-l , k , k+l , ... , n , 

when i 1 , i2 , ... ,in and ik run independently through all possible values, as the 

variance of Fn with respect to Ek. Denote this variance by Onk. With this 

definition we can formulate the following theorem. 

Theorem. If the sum 

tends to zero as n increases, then Fn satisjies the law of large numbers. 

Corollary. The condition 

Onk = o(l/Fn). (1) 

is also sufficient for Fn to be stable. 

Proof of the theorem. Denote by B n the expectation of the square of the 

deviation Fn - D n . A well-known condition for the stability of Fn is 

(2) 

* 'Sur la loi des grands nombres', C. R. Acad. Sei. Paris 185 (1927), 917-919. 
Presented by E. Borel. 

11 
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To use this eondition, a more effeetive expression for Bn is needed. For 

this, we denote by Dnk the expectation of Fn assuming that the results of the 

first k trials are known. Let Znk = Dnk - Dnk-l. Thus, Znk is the inerement 

of the expectation of Fn when the result of the trial Ek is known. Clearly we 

have 

Fn - D n = Znl + Zn2 + ... + Znn. (3) 

It ean be proved that the expectation ZniZnk (i 'I k) is zero. 

Let k > i. Assume that the result of E l , E2 , ••• , E k - l is known. Under 

this assumption Dnk = D nk- l ; therefore, Znk = 0 and sinee Zn; is a eonstant, 

ZniZnk is also zero. This is true for any results of the trials E l , E2 , .•. ,Ek - l . 

Consequently, the expeetation Zni Znk itself is also zero. 

Thus, denoting by ßnk the expeetation Z~k' we obtain 

B n = ßnl + ßn2 + ... + ßnn. (4) 

It ean be proved that 

(5) 

Inequality (5) permits us to derive our theorem beeause of (2). 

Remark. In the classical Chebyshev ease the trial Ek eonsists in determining 

X k , and Fk is equal to the arithmetie mean of Xl, X 2 , ... ,Xn . Denoting by dk 

the expectation of X k and by bk the expectation of (Xn - dn )2, we obtain 

Condition (1) turns into the well-known eondition 

maxlXnl = o(.;ri). 

The above is a generalization of Chebyshev's ease, where Fn is the sum of 

independent random variables, sinee it eoneerns sums of dependent variables. 

Very often the summands here are functions of eertain other independent vari~ 

ables. We think that in this ease the above method for arbitrary functions in 

independent variables would be very natural. 

31 Oetober 1927 



3. ON ALIMIT FORMULA OF A. KHINCHIN * 

Let 

(1) 

be a sequence of independent randorn variables. Without loss of generality 

assurne that the expectation of Zn is zero. Denote by bn the expectation of the 

square of Zn and by Sn and Bn the sums 

n n 

Sn = LZk, Bn = Lbk. 
k=l k=l 

A.Ya. Khinchin [1] suggested that under broad assurnptions the probabil

ity that 

I· Sn 1 Imsup = 
V2Bn log log Bn 

(2) 

is 1. Khinchin himself proved this formula for some important special cases [2]. 

Our aim is to formulate sufficiently general conditions for this formula to hold. 

These conditions are as folIows: 

(I) Bn -+ 00, 

(II) mn-boundedness from above, IZnl:S; mn = o( Bn ) 
log log Bn . 

Clearly the first condition is necessary, except for the case Zn = O. 1f the 

Zn are uniformly bounded, then the second condition follows fram the first; in 

this case this condition is necessary and sufficient. 

If we want to use only probabilistic relations that can be effectively ob

served, the meaning of formula (2) can be explained as folIows: 

10 • Whatever the positive numbers 11 and [j, there is an integer n such 

that the prob ability that all the inequalities 

hold is not less than 1 - 11, whatever pis. 

* 'Sur une formule limite de M.A. Khintchine', C. R. Aead. Sei. Paris 186 (1928), 
824-825. Presented by J. Hadamard. 

13 
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2°. For any 'TJ, 6 and m, there exists an integer P such that the probability 

that all the inequalities 

Sk< J2Bk loglogBk(1-6) (k=m,m+1, ... ,m+p) 

hold simultaneously does not exceed 'TJ. 

A complete proof of statements 1° and 2° using only the conditions (I) 

and (11) will be published elsewhere. 1 

Applied to the problem of recurrent trials, our theorem yields: let Pn be 

the probability of an event f at the nth trial and J.l( n) the number of events f 

during the first n trials. Then the prob ability that 

(3) 

is 1, provided the series EPn(1- Pn) diverges. 

References 

1. A.Ya. Khinchin, Basic laws 0/ probability theory, Moscow, 1927 (in Rus

sian). 

2. A.Ya. Khinchin, Math. Ann. 99 (1928), 152. 

1 See article No. 5 of this publication. 



4. ON SUMS OF INDEPENDENT RANDOM VARIABLES * 
§1. Notation 

P(A) denotes the probability of an event A; 

PB(A) or P(AIB) denotes the conditional prob ability of event A with 

respect to an event B; 

E~ denotes the expectation of a randorn variable ~; 

EB~ or E(~IB) denotes the conditional expectation of ~ with respect to 

an event B; 

E(~ : B) = P(B) . EWB) or, wh at is the same, is equal to the Lebesgue 

integral 

over B; 

D~ = E(~ - E~)2 denotes the variance of a randorn variable ~. 

If 6 , ... , ~n are randorn variables, we set 

k 

Sk = L~;' S = Sn; 
;=1 

k 

(k=~k-E~k; Tk=L(;' T=Tn; 
;=1 

(We assurne that E~k and E~; exist; 1 ::; k ::; n.) Clearly E(k = 0, Tk 

Sk - ESk. If 6, ... , ~k are independent, then 

k 

DSk = LD~i. 
;=1 

§2 Some theorems on finite sums 

Assurne that 6, ... , ~n are rnutually independent. 

Theorem 1. Let R > O. Then 

* 'Über die Summen durch den Zufall bestimmter unabhängiger Grössen', Math. 
Ann. 99 (1928), 309-319; Bemerkungen ... - Math. Ann. 102 (1929), 484-488. 

15 
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Theorem 2. Let f > 0, m a non-negative integer, and 

R=fD+M. 

Then 

Theorem 3. Let R > O. Then 

Theorem 4. 

Theorem 5. 

Theorem 6. 

Proo/ 0/ Theorem 1. Let 

P{T > O} > ~ D - M. 
- 16 D+ M 

P{T> -3M} 2: 418. 

n 

P{m:xITkl2: R} = P(A) = LP(Ak). 
k=l 

Since the variables (i with i >" k do not occur in the definition of Ak, the 

hypothesis that 6, ... ,en are independent implies 

n 

E(T2 ;Ak) = E(T;;Ak) + L E((l;Ak) 2: E(T;;Ak) 2: R2p(Ak), 
i=k-1 

hence ET2 2: R2 P(A), which proves the desired inequality. 
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Remark. This inequality is an identity, for example, in the following case: n = 1 

and 

Proo/ 0/ Theorem 2. We set 

A;k = {11J I< iR, j< k; ITkl ~ iR} 

and 

On the set Aik we have 

Clearly 

n 

Ai = LAik. 
k=l 

P 

P(Ai+1IAik ) = P{u ~ (i+ 1)R}:S P{dPfX<J L (jl ~ €D}. 
_P- j=k+l 

As in the proof of Theorem 1, we note that the variables (j for j > k do not 

occur in the definition of Aik. Therefore, 

and consequently 

P(Ai+lIAi):S 1/€2, P{u ~ mR} = P(Am ) = 

= P(Am-lIAm)P(Am-dAm-2) ... P(AI) :S 1/€2m, 

which proves Theorem 2. 

Pro%/ Theorem 3. Let 

Clearly 

Bk = {ISil:SR, i:Sk}, 

B = Bu = {v:S R}, 

Ck = Bk-l \Bk. 

n 

P(B) + L P(Ck) = 1. 
k=l 

(1) 
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Put 

On the set B" we have 

IT" - a,,1 = IS" - E(S"IB,,)I ~ 2R, 

la" - a"-ll = IE«("IB,,)I ~ M. 

Now consider the expression 

E[(T" - a,,?; B,,-tl = 
= E[(T" - a,,)2; B,,] + E[(T"_l - a"_l - (a" - a,,-d+ 

+(,,)2; c,,] ~ E[(n - a,,)2; B,,] + P(C,,) . 4(R + M)2. (2) 

On the other hand 

E[(n - a,,)2; B"-l] = 
= E[«T"_l - a"-l) - (a" - a,,-d + (,,)2; B,,-d = 
= E[(T"_l - a"_1)2 + (a" - a,,_d2 +(;; B,,-tl ~ 

~ E[(T"_l - a,,_d2; B,,-d + P(B)E(;. 

Comparing (2) and (3) we obtain 

E[(T"_l - a"_1)2; B"-l] + P(B)E(i ~ 

~ E[(T" - a,,)2; B,,] + P(C,,) . 4(R + M)2. 

(3) 

Setting k = 0,1, ... ,n in this inequality, summing the corresponding inequali

ties and taking into ac count (1), we obtain 

n 

P(B)D2 ~ E[(Tn - an )2; Bn ] + LP(C,,), 4(R+ M)2 ~ 
"=1 

n 

~ P(B)· 4R2 + LP(C,,), 4(R+ M)2 ~ 4(R+ M)2, 
"=1 

which proves Theorem 3. 

Remark. If we take z" instead of (", the statement of the theorem will be valid 

with v replaced by u. 
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Proo/ 0/ Theorem 4. We set 

Gm = {mR < T ~ (m + 1)R}, 

where R = 8D + M and set 

00 

Clearly 

Bo = {T > O}. 

By Theorem 2, 

00 00 

E(T; Bo) = L E(T; Gm) ~ L(m+ 1)RP(Gm) = 
m=O m=O 

00 00 1 
= R L P(Bm) ~ R[P(Bo) + L 82m] ~ 

m=O m=l 

~ R[P(Bo) + 312]' 

On the other hand, it is easy to prove that 

E(T; B o) ~ ~D. 

Thus 

~D ~ R [P(Bo) + 312] = (8D + M) [P(Bo) + 312]; 

D 1 1 D-M 
P(Bo) ~ 2{8D+M) - 32 ~ 16 D+M' 

as required. 

Pro%/ Theorem 5. Let 

D~~M. 

Then by Theorem 4 

T 1 D-M 1 
P{ > O} ~ 16 D + M ~ 48' 
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If 

then by Theorem 1, 

D>~M 
- 2 

P{ITI :5 3M} :5 D2/9M2 < 1/4. 

In both cases these estimates prove the desired statement. 

Proolol Theorem 6. We set 

n 

W= m:x IS - L(il. 
i=k 

Then from Theorem 3, 

P{W> R+ 3M} ~ 1- 4(4M + R)2/D2 

and applying Theorem 5 to E?=k (i we find that 

P{s> RIW > R+3M} ~ 1/48. 

This immediately implies the desired statement. 

§3. Convergence of series 

Below necessary and sufficient conditions are considered for the convergence of 

series in independent random variables, previously established by other meth

ods in our joint paper with A.Ya. Khinchin (see paper 1 of this volume). 

Consider two sequences of random variables 

TI = (Tll, TJ2, ••• ,TIn, ... ), ii = (fit, ii2, . .. , iin, ... ). 

The sequences TI and ii are called equivalent if 1 

00 

L P{Tli #; iid < 00. (4) 
i=l 

In what follows we assume that each of the sequences TI and ii consists of 

independent random variables. 

1 This definition is due to A.Ya. Khinchin. 
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Theorem 7. 1) The probability P of convergence of 

00 

L:'7i (5) 
i=l 

is 1 if there is a sequence ij = (ijn) equivalent to '7 = (77n) such that the series 

00 

L:Eiji (6) 
i=l 

and 

(7) 

(where (i = iji - Eiji) converge. 

2) P is zero if there is no equivalent sequence for which the senes (6) and 

(7) converge simultaneously. 

Proof. 1) According to Theorem 1; for every positive y, 

Since the series (7) converges, for every { > 0 we can find some (possibly large) 

m such that for n ~ m the right-hand side of (8) is smaller than f. 

By definition, 

p 

P = lim lim lim p{ max IL: 'lA,1 < y}. 
,,-+On-+ooN-+oo n'5.p'5.N k=n 

Therefore (8) implies that the prob ability of convergence of 

00 

(9) 

is 1. Since the series (6) converges, the same is true for the series 

00 

L: ijn. (10) 
n=l 

Since in the final analysis the probabilities of convergence of equivalent series 

coincide, P = 1. 
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2) We set 
_ { 1/n, 
1/n = 

0, 
(11) 

First we assume that 1/ = (1/n) and Ti = (Tin) are equivalent , that is, 

00 

L P{I1/nl > 1} < 00. (12) 
n=l 

In this case one of the series (6) or (7) should diverge. If the series (7) diverges, 

then by Theorem 3 we see that for any Y and each n, 

as N -+ 00. This means that the probability of convergence of (10) is O. By 

the equivalence of 1/ = (1/n) and Ti = (Tin) this implies that P = O. 

If (7) converges, then the prob ability of convergence of (9) is 1, according 

to the first part of the theorem. Therefore, if (6) diverges, then P = O. 

Now consider the case when 2:::'=1 P{I1/nl > 1} = 00. In this case we 

immediately have 

N 

p{ max IYkl< 1} = II[l- P{I1/kl > 1}] -+ 0 
n<k<N -

- - k=n 

for every n as N -+ 00, hence P = O. 

Thus, our theorem is proved for all possible cases. 

Remark. If it is known that there exists a certain sequence Ti = (Tin) satisfy

ing the conditions of the theorem, then the sequence determined by (11) also 

satisfies the conditions of this theorem. 

§4. A generalized law of large numbers 

Consider the system of random variables 

1/11,1/12, ... ,1/1ml' 

1/21, 1/22, ... , 1/2m2' 

1/n1, 1/n2, ... ,1/nmn' 
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denoted by lI1Jnkll for short. Suppose that in every row the variables are inde

pendent of one another, whereas in different rows they may be dependent. 

We say that the means 

are stable if there exists a sequence of numbers d1 , d2 , ••. , such that for any 

(: > 0, 

We will give a necessary and sufficient condition for the stability of the means. 

We say that two systems l11Jnk 11 and 117Jnk 11 are equivalent if 

and 

Clearly for equivalent systems the means are simultaneously either stable or 

unstable. 

Theorem 8. A necessary and sufficient condition lorthe stability 01 the means 

Un, n ~ 1, is the existence 01 some system 117Jnkll equivalent to II1JnkIL lor which 

(13) 

Prool 01 the sufficiency. Theorem 1 implies that for any (: > 0, 

Therefore, (13) implies that 

and, from the equivalence of II1Jnk 11 and 117Jnk 11 we obtain 

(14) 
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which proves the sufficiency. 

Proo/ 0/ the necessity. Suppose that the me ans Un , n ~ 1 are stable. For any 

random variable TJnk there exists a constant fnk such that 

It is easy to prove that for any positive f > 0, 

as n -+ 00. 

Now set 

mn 

I:P{ITJnk - fnkl ~ Tnnf} -+ 0, 
k=l 

Tink = {TJnk' 
fnk, if ITJnk - fnkl > mn; 

_ () _ { TJnk, 
TJnk f - ~ 

Jnk, if ITJnk - fnkl > mnf. 

(15) 

(16) 

(17) 

By (16) the systems IITJnkll, IlTinkll and IlTink(f)1I are equivalent, and the means 

iin and iin(f) are stable. Note that 

Therefore by Theorem 6, 

mn 

P{liin(f) - dnl > f} = p{IE 71nk(f) - mndnl > fmn} ~ 
k=l 

1 [ 324m2 f 2 ] 

~ 48 1- L~l E«(~k(f» . 

For any f > ° the left-hand side of this inequaIity converges to zero. Hence, 

(18) 

For f ~ 1, 

and, by (16), 
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Therefore (13) follows from (18). 

Remark. If there exists a system lliink 11 satisfying the condition of the theorem, 

then the system determined by (17) and (15) is such a system. 

We say that the means O'n, n ~ 1, have the property of normal stability if 

for any f > 0, 

Theorem 9. A necessary and sufficient condition for normal stability of the 

means O'n, n ~ 1, is the existence of an equivalent system lliinkll for which (13) 

holds and 

The proof of the theorem follows directly from (14) which was established 

for any stable system. 

Re mark. For the case ofnormal stability, instead of lliinkll determined by (17), 

(15), one can take a system 

_ {'TJnk' 'TJnk = 
E'TJnk, 

if I(nkl :::; m n , 

if I(nkl > m n · 

§5. The law of large numbers 

The condition of stability of the means 

O'n = ('TJl + ... + 'TJn)/n, 

where 'TJl, 'TJ2, ... , are independent random variables, is a special case of Theo

rems 8 and 9 if we set m n = n, 'TJnk = 'TJk. 

Normal stability of such means is usually called the law of large numbers. 

In this case we have 

Theorem 10. In order that for any f > 0, 

(19) 

it is necessary and sufficient that there exist a system lliink 11 such that 
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n 

1. LP{i1nk:P 'l]nk} --+ O. 

2. 

3. 

k=l 

1 n 

- L[Ei1nk - E'I]nk] --+ O. 
n 

k=l 

Remark. If there is a system IIi1nk 11 satisfying the above conditions, then as 

such a system we can take the system 

_ { 'l]k, 
'l]nk = E 

'l]k, 

Theorem 11. In order that 

it is necessary and sufficient that 
n 

1. LP{I(kl > n} --+ O. 
k=l 

1 n - L E((k; I(kl ~ n) --+ O. 
n k=l 

2. 

3. 

if I(kl ~ n, 

if I(kl > n. 

Moscow, 24 December 1927 

REMARKS 

The purpose of these remarks is, on the one hand, to refine and improve certain 

results (§§1, 2) and on the other hand, to study an important special case of 

the law of large numbers (§3). 

§1 

V.V. Nemytskii pointed out to me that the inequality 

E(T;Bo) ;::: ~D, 
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used in the proof of Theorem 4 is false. Indeed, it is easy to show that 

that is, the reverse inequality holds. 

In this connection Theorems 4, 5 and 6 of this paper must be replaced by 

the following. 

Theorem 4*. Let M ~ D. Then 

Theorem 5*. 

Theorems 7-11 remain unchanged. 

Theorem 6 used only for proving Theorem 8 should be replaced by Theo

rem 6* (below). 

Pro%/ Theorem 4*. Let 

E = {ISI ~ D/2} 

and let E be the complementary event. If IMSI ~ 2D, then 

as required. 

If IMSI < 2D, then we introduce the event 

Ern = {3mD ~ ITI < 3(m + l)D, ISI ~ D/2}. 

By Theorem 2 we have 

On the set 
5 

E' = LErn 
rn=O 
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we have 

Hence 

Since 

it follows that 

whence 
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ITI ~ 18D, ISI ~ 20D. 

E(S2. E) < 1D2 
, - 4 , 

00 

n2 ~ ES2 ~ E(S2 j E+ E' + 2: Em ) ~ 
m=6 

< 1n2 + 400n2 P(E) + ~ (m + 1)2 25n2 < 
-4 ~ ~m -

m=6 

~ ~n2 + 400D2 P(E), 

1 
P(E) ~ 1600' 

which proves Theorem 4" . 

Pro%/ Theorem 5". If M > D or R > tD, then the required inequality holds, 

since then its right-hand side is negative. 

If, however, M ~ D and R ~ ! D, then the required inequality follows 

from Theorem 4" . 

§2 

In proving Theorem 8 I used the formula 

mn 

2:P{I'7nk - /nkl ~ mn· n} -+ O. (16) 
k=6 

For a rigorous proof of this formula we need the following 

Theorem 6". Let E 1 , ... ,En be a sequence 0/ independent events and let U 

be an event such that 

Then 
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Proof If there exists k such that 

then 

as required. 

Now for all k let 

Let us show that in this case there exists a k such that 

For this we put 

and let Fi be the complementary event. Since Fi and Ei are independent, for 

i ~ k we have 

P(FiIEi) = P(Fi ) ~ P(F,.) ~ ~u, 

P(U FilEi ) ~ lu, 

k k 

P(U) ~ Ep(UFiEi) ~ lu Ep(Ei) ~ luP(Fk) ~ ~u2, 
i=l i=l 

as required. 

Prool 01 Formula (16). We set 

Fk = {I (E 7Jni + Ink) / m n - dn I ~ ~}. 
i# 

Clearly 
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For sufficiently large n, in view of the stability of the means we have 

P(U) ~ t, 

hence 

If the event E k takes place and Fk does not, then U takes place. Therefore 

But the events Ek and Fk are independent, so for sufficiently large n, 

By Theorem 6* 

P(Fk!Ek) = P(Fk) ~ ~, 

P(U!Ek) ~!. 

1 2 
P(U) ~ 36P (E1 + ... + Emn ) 

and, since P(U) ---+ ° as n ---+ 00, 

as desired. 

§3 

Here we study a special case of the law of large numbers, namely the case 

when the independent random variables 171,172, ... have the same distribution 

P{171 < x} = F(x). Then we have 

Theorem 12. The means (Fn = (171 + ... + 17n)/n, n ~ 1, are stable if and 

only if 

Proo! Set 

nP{!171! > n} ---+ 0, n ---+ 00. 

_ { 17n, 
17nk = 0, 

if !17n! ~ K, 

if !17n! > K. 
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It is easy to see that if nP{ 11]11 > n} - ° as n - 00, then the systems 

(r,nk) and (1]n) are equivalent and 

1 ~ -2 1 ~ -2 
n2 L.J E(nk ~ n2 L.J E1]nk - 0, n - 00. 

k=l k=l 

Hence by Theorem 8, the means O'n, n ~ 1, are stable. Conversely, if the 

means O'n, n ~ 1, are stable, then as has been shown, formula (16) holds. In 

the present case this formula takes the form 

mP{I1]l - I1 ~ w} - 0, 

where 1 is a constant. This formula immediately implies the required condition. 

If the random variables 1]n have finite expectation, 

I: IxldF(x) < 00, 

then the condition of Theorem 12 holds, since then 

It can be shown that in this case we have normal stability. Thus the 

following theorem holds: 

Theorem 13. The stability ofthe means O'n = (1]1 + ... + 1]n)/n, n ~ 1, of a 

sequenee of independent identieally distributed random variables with singular 

distribution is normal if 2 and only if 

EI1]l 1 < 00. 

The latter statement was earlier proved by A.Ya. Khinchin (G.R. Aead. 

Sei. Paris 188 (1929), 477). 

8 February 1929 

2 The 'only if' part is trivial and follows from the fact that the definition of normal 
stability makes sense only if the expectation exists. 



5. ON THE LAW OF THE ITERATED LOGARlTHM * 
We consider a sequence of independent random variables 

Zl, Z2, .•• , Zn, .•• , (1) 

with zero expectations Ezn . Further let 

Following A.Ya. Khinchin we say 1 that the sequence (1) obeys the law of 

iterated logarithm if the prob ability that 

1· Sn 1 lmsup = 
.j2Bn In In Bn 

(2) 

is 1. In one important special case this law was established by Khinchin him

self; 2 we will prove that it is applicable under the following conditions: 

I. Bn --> 00, 

II. IZnl ~ mn = o( Vln!nBJ. 
If the case Zn == 0 is excluded, the necessity of the first condition can be 

easily derived. 1f the absolute values of all the Zn are uniformly bounded, then 

the second condition follows from the first; in this case the first condition is 

necessary and sufficient. 

Without using the probabilities of relations that cannot be observed di

rectly, for example, the event (2), the law of the iterated logarithm can be 

formulated as follows: 

10 • For arbitrary positive numbers "I and 6 there exists a positive integer 

n such that the probability of at least one of the inequalities 

for any p remains smaller than "I. 

* 'Über das Gesetz des iterierten Logarithmus', Math. Ann. 101 (1929), 126-135. 
1 See his book Basic laws 01 probability theory, Moscow, 1927 (in Russian). 
2 Math. Ann. 99 (1928), 152. 

32 
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2° . For arbitrary 7],6 and m there exists a non-negative integer p such 

that the probability that all the inequalities 

hold simultaneously is smaller than 7]. 

§1. Lemmas 

Let 

In the following lemmas x denotes a positive number. Since in this section 

n is taken to be fixed, we shall omit it in our notation. 

Lemma I. 11 xM $ B, then 

Lemma 11. 11 xM ~ B, then 3 

Prool 01 Lemmas land 11. Let a > 0, aM $ 1. Then 

$ 1 + a;Tc (1 + a~) < exp [a;Tc (1 + a~)], 

EeGs = TI EeGZk < exp [a~B (1 + a~)], 
Tc=1 

(3) 

(4) 

3 See: S. Bernshtein, 'On a variation of Chebyshev's inequality and the error of 
Laplace's formula', Uchen. Zap. Nauch.-Issl. Kafedr. Ukrain. Otd. Mat. 1 (1924), 
38-48 (in Russian). (See also: Collected worb, Vol. 4, pp. 71-79.) 
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(5) 

Formulas (4) and (5) imply that 

[ a2B( aM)] W(z) < exp -az + -2- 1 + 2 . 

For zM ~ B we set a = z/ B in the following formula and obtain Lemma I; for 

zM > B we set a = 1/M and obtain 

In both cases the condition aM ~ 1 is satisfied. 

Lemma I immediately implies 

Lemma IH. If zM ~ B, then 

Lemma IV. If 

then 

zM/B = w < 1/256, 

z2/B = A > 512, 

W(z) > e-(X2/2B)(1+ f ), 

where f denotes the mazimum of32..j(lnA)/A and 64y'w. 

Proof. Let 6 = ~f, then 

62 = max(64w, 161~A), 

and also, because of (6) and (7), 

62 < 1 4' 

6 <~, 

6> 262 • 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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We further set 

Clearly, 

a = z/(B(1 - 6)). 

z = aB(1- 6), 

z/B < a < 2z/B, 

aM < 2w < 1/128, 

a2B>A>512. 

Since for every positive u we have 

1 + u > eu(1-u), 

it follows from (3) that 

35 

(12) 

(13) 

(14) 

(15) 

(16) 

The condition aM ~ 1 assumed here is satisfied in our case in view of (4). 

Further, by (4) we have 

(17) 

Because of (14) and (8), 

aM < 62/4, 

so that we finally obtain 

a2 B ( 62 )] Eeos > exp[-2- 1 - 4" . (18) 

On the other hand we have 

Eeos = -1: eOlldW(y) = a 1: eOIlW(y)dy = 

= a ({O + l OB(1-6) + l OB(1+6) + 180B + (>0) = (19) 
1-00 0 oB(1-6) oB(1+6) 180B 
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Since W(y) ~ 1, it follows that 

aJI ~ a 10 eaYdy ~ l. 
-00 

By Lemma II and (14), for all y ~ B/M we have 

W(y) < e-y / 4M < e-2ay . 

By Lemma III we also have for 8aB ~ y ~ B / M 

Therefore we obtain 
aJs < a foo e-aYdy< l. 

lsaB 

Since by (18), (9) and (15), 

EeaS > 8, 

equations (20) and (21) imply 

(20) 

(21) 

(22) 

To estimate aJ2 and aJ4 we apply Lemma I. Because of (6) and (8), for y ~ 8aB 

we have the inequalities 

Therefore we obtain 

1 
0< w < 862, 

W (y) < exp [ - :; (1 - ~62) ] . 

l aB(1-6) jSaB y2 1 
a(J2+J4)<a( + )exp[aY-2B(1-862)]dy. 

o aB(l+6) 

In both integration intervals the quantity 

y2 ( 1) u(y) = ay - - 1 - _62 
2B 8 

does not exceed 
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Hence we have 

Since by (7), (8) and (15), 

we finally obtain 

In(32A) < 21nA ~ ~A62, 

In(32a2 B) < (a2 B /8)62 , 

From (19), (22) and (24) it follows that 

1 aS 1 [a 2B( )] ah > "2Ee >"2 exp -2- 1 - 6 . 

On the other hand, since W(y) is monotone decreasing, (12) implies 

From (25) and (26) we conclude that 

1 [a 2 B ] W(x) > 4a2 B exp --2-(1 + 36) . 

Since, along with (23) and for similar reasons, the formula 

holds, finally we have 

W(x) > exp[- a:B (1 + 46)] > exp [ 2B(;~ 6)2 (1 + 46)] > 

> exp [- ;; (1 + 86)] = exp [- ;; (1 + f)] . 

Lemma V. 

W(x) ~ 2W(x - ,fiB). 

37 

(23) 

(24) 

(25) 

(26) 
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Proof Let E denote the event 

and E" the event 

Clearly,4 

Si< U, i< k 

S" = U ~ z. 

E=El+E2+ ... +En, W(z)=P{E}. 

Since the Zi with i > k do not occur in the definition of the event E", we 

have 

PE" {lu,,1 ~ V2B} $ ~. 
Since S = U + 0'", the following inequalities also hold: 

PE,,{S~U-V2B}~ !' 
W(z - V2B) = P{S ~ z - V2B} ~ 

~ W(Z)PE{S ~ U - V2B} ~ !W(z). 

This proves our assertion. 

§2. Proof of the first part (1°) of the main theorem 

It suflices to eonsider the ease 

6 <~. 

Clearly, by Conditions land 11 there exists an no such that 

Bno > e, 

JInlnBno > 4/6 

and for any n ~ no 

M~/Bn < 6/16, 

(27) 

(28) 

(29) 

(30) 

4 The + sign is used instead of U in order to stress the fact that the events in 
question are pairwise incompatible. 
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M JlnlnBn ~ 
n Bn < 4' (31) 

After no, nl, ... , nk-l have been defined, we choose nk so that 

(32) 

(33) 

By (30) and (32) we have 

and hence, by (28), 

(34) 

Suppose further that 

x(t) = v'2tlnlnt. 

By (32) we have 

(35) 

The truth of at least one of the inequalities 

implies 

(36) 

Denote by Vk the probability of (36). Then clearly the convergence of the 

serles 

(37) 

suffices for Statement 10 to hold. 

By (35) we have 

(38) 

while according to Lemma V, the latter prob ability does not exceed 
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Note that (29) implies 

so that we have 

and by Lemma I, 

where, by (31), 

()= MnkJlnlnBnk <~. 
2 Bnk 8 

This implies that 

Vk < 2exp[-lnlnBnk (1+ ~)] < 2(lnBnk )-(1+6/4) < 

< 2[kln(1 + ~)r(1+6/4) < Ck-(1+6/4 ), 

which proves the convergence of the series (37). 

§3. Proof of the second part 2° of the main theorem 

As before, suppose that (27) holds. Conditions I and 11 and the first part of 

the main theorem just proved imply that there exists an no such that, first (28) 

holds, secondly, for every n ~ no, 

(39) 

and thirdly, the probability that all inequalities 

IBnl < 2x(Bn ), (n = no, no + 1, ... , no + p) (40) 

simultaneously hold is greater than 1 - 1]/2 for any p. 

Choose nk so that 

(41) 

Then because of (27) and (39), we have 

(42) 
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Set 

Then (41) implies that 

ßk > Bnk (l - 6/4), X(ßk) > X(Bnk )(l- 6/4), 

X(ßk)(l- 6/4) > X(Bnk )(l- 6/2). 

On the other hand, (41) also implies 

41 

(43) 

(44) 

(45) 

Since Snk = (Tk + Snk_l' it follows that if (40) holds, then the inequality 

(46) 

together with (44) and (45), implies 

(47) 

N ow we prove that for sufficiently large p the probability that at least one 

of the inequalities (46) holds for k = 1,2, ... ,p is greater than 1 - 1//2. This 

clearly implies that the corresponding prob ability for the inequalities (47) is 

greater than 1 - 1/, which proves the second part of the main theorem. 

Since the (Tk are mutually independent, for our purpose it suffices to prove 

the divergence of the series 
00 

LVk (48) 
k=l 

of probabilities of the inequalities (46). 

To estimate the probabilities Vk we make use of Lemma IV, setting 

x = X(ßk)(l- 6/4). 

For sufficiently large k, conditions (6) and (7) hold, since 
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as a consequence of (43); therefore 

lim X2 (ßk) > lim(llnlnB ) - 00 ßk - 2 nk - . 

From the latter formulas we can see that f tends to zero as k ---+ 00. Thus 

for sufficiently large k we have 

(1 + f)(l + 8/4) < 1 

and, because of (42), 

vk>exp[-X:~k)(l-~)] =exp[-lnlnßk(l-~)] = 

= (In ßk)-(1-6/4) > (ln Bnk )-(1-6/4) > Ck-(1-6/4), 

which proves the divergence of (48). 

Moscow, 24 November 1927 



6. ON THE LAW OF LARGE NUMBERS * 
By the law of large numbers in mathematical prob ability theory we usually 

mean either Poisson's theorem or Chebyshev's theorem, with their generaliza

tions to the case of dependent trials. However, this law can be given a broader 

interpretation, more in agreement with its natural philosophical treatment, if it 

is used whenever it can be asserted with prob ability elose to one that a certain 

variable differs only very slightly from a certain apriori given constant. 1 In a 

previous paper 2 I gave a theorem which, as I think, corresponds most elosely to 

this intuitive concept. In this paper I would like to come back to this subject, 

formulate a somewhat more general statement, and also elarify some questions 

arising in this connection. 

§1. For an accurate formulation of the problem, consider the sequence of real 

numbers 3 

where X n depends on the result of successive trials 4 

Let us agree to say that X n is stable 5 or that X n obeys the law o/large numbers, 

if there is a sequence of constants 

such that for every positive 7], 

(1) 

* 'Sur la loi des grands nombres', Atti. Accad. Naz. Lincei. Rend. 9 (1929), 470-
474. Presented by G. Castelnuovo on 3rd March 1929. 

1 See: S.N. Bernshtein, Probability theory, p.142, where a more general definition 
is given. 

2 C. R. Acad. Sei. Paris 185 (1927), 917. 
3 Similar results can be obtained by considering vectors. V. Glivenko has informed 

me that similar arguments hold even for vectors in Hilbert space of functions. 
4 We assume throughout that these trials are independent. 
5 Concerning the definition of stability, see my paper: 'Über die Summen durch 

den Zufall bestimmter unabhängiger Grössen', Math. Ann. 99 (1928), 309 (Paper 
4 in this volume.) 

43 
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In most of the important cases dn can be taken to be the expectation E(Xn ). 

If it turns out that 

(2) 

for every positive 71, then we say that X n has normal stability. It can be proved 

that if X n - E(Xn ) is uniformly bounded, then (2) follows from (1), that is, in 

this case the stability can only be normal. 

According to Chebyshev we have 

(3) 

where 

Thus the condition 

Bn --+ 0 (Markov's condition) (4) 

is a sufficient condition for normal stability of X n . If the absolute values of 

X n - E(Xn ) are uniformly bounded by a constant M, then, as can easily be 

shown, 

(5) 

Hence, in this case Markov's condition is not only sufficient, but also necessary 

for the stability of X n which, as has already been mentioned, can only be 

normal in the situation considered. 

§2. In formulating Markov's condition we touched upon normal stability only. 

However, this condition is interesting since in most cases it is easier to calculate 

Bn than Pn(71). 

In the general case, we denote by Ek(Xn ) the expectation of X n and 

assume that the results ofthe first k trials E~ n ) , E~ n) , ... ,E~ n) are known. Then 

we have the following fundamental formula 

n 

B~ = L:E[Ek(Xn ) - E k - 1(Xn )]. (6) 
k=l 

Indeed, it is dear that 
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therefore, setting 

we have 

X n - E(Xn ) = Znl + Zn2 + ... + Znn. 

More generally, denoting by Ek(Y) the expectation of Y and assuming that 

the results of the trials E~n), E~n), . .. ,Ein) are known, we have 

Since Zni is constant for i < k, if the results of the first k - 1 trials are fixed, 

we also have 

and finally, 

This latter equality immediately implies 6 

B 2 - ß2 ß2 ß2 n- nl+ n2+"'+ nn' (7) 

which differs from (6) only in notation. 

Notice the meaning of ßnk: it is the mean squared deviation of the ex

pectation of X n when the result of the trial Ein) is known. Therefore, ßnk is 

a natural measure of the dependence of X n on the result of the trial 7 Ein). 

This agrees with the concept of the law of large numbers formulated in the 

beginning of the paper. However, now we measure the dependence of X n on 

each trial Ein) using the moments ßnk. We have proved that the law of large 

numbers can be efficiently applied to X n if the sum of the squares of ßnk IS 

infinitesimally smalI. This is so if, in particular 

ßnk = o(l/Fn). (8) 

§3. Now we consider the case when the trials Ein) determining the value of X n 

are independent. Denote by E k (Y) the expectation of Y when the results of 

6 In my article (see footnote 5) this formula is proved only for the case of inde
pendent trials. 

7 It is assumed that the trials Ein) are sequentially carried out in accordance with 
the order of their indices k. 
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all trials &ln) except &kn) are known. In the case under consideration, that is, 

when the trials are independent, we have 

Thus, for normal stability of X n the condition 8 

is sufficient. 

Formula (9) can be proved as folIows: 

EdEk(Xn)] = Ek-l(Xn), 

(9) 

(10) 

(11) 

Ek[Xn - Ek(Xn)]2 ~ {Ek(Xn) - Ek[Ek(Xn)]}2 = [Ek(Xn) - Ek- 1(XnW, 

a~k = E[Xn - Ek(XnW ~ E[Ek(Xn) - Ek-l(XnW = ß~k· 

In the general case of dependent trials the first of these formulas does not 

hold. 

Let M(k)(Xn) be the least upper bound of all possible values of X n when 

the results of all trials &;(n) except &kn) are known, and let m(k)(Xn) denote 

the corresponding greatest lower bound. We set 

Thus, Ünk is the maximal deviation of X n if only the result of the trial &kn) is 

unknown. We see that 

(12) 

(13) 

This implies the condition for stability of X n in the case of independent 

trials, given in a previous paper of mine: 

(14) 

8 This condition is especially interesting, since the definition of the moments O'nk 
does not involve the order of the trials [kn ). 
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Finally we remark that in the case considered by Chebyshev, 

where Xk depends on the trial c~,.) and these trials are independent, we have 

which leads to the classical condition for stability of X,.: 



7. GENERAL MEASURE THEORY AND PROBABILITY CALCULUS * 

Probability theory has become a topic of interest in modern mathematics not 

only because of its growing significance in natural sciences, but also because of 

the gradually emerging deep connections of this theory with many problems in 

various fields of pure mathematics. It seems that the formulas of prob ability 

calculus express one of the fundamental groups of general mathematical laws. 

However, it would have been imprudent to assert that these facts indi

cate the dependence of notions used in pure mathematics on the not ion of 

randomness dealt with in probability theory. For example, the fact that the 

distribution of the digits of decimal expansions of irrationals can be studied 

using formulas of probability calculus should not be interpreted as indicating 

dependence of these expansions on chance. 

On the contrary, I believe that these facts indicate the possibility of con

structing a very general and purely mathematieal theory whose formulas can 

be applied both to probability calculus and to many other fields of pure and 

applied mathematics. To outline the contents of this theory, it suffices to single 

out from prob ability theory those elements that bring out its intrinsic logical 

structure, but have nothing to do with the specific meaning of the theory. 

This way we come, first of all, to general measure theory. The general 

not ion of measure of a set includes the notion of probability as a special case. A 

set of arbitrary elements considered from the viewpoint of the measure defined 

on its subsets will be called purely metne spaee, though perhaps it is an abuse 

of the term "space". In particular, in prob ability calculus we speak of the space 

of elementary events of a given problem and of the probabilities of various sets 

of these events. 

Function theory in purely metne spaees is a further development of general 

measure theory. This theory studies the properties of functions that only de

pend on the measures of the sets on which the functions take a certain range of 

values. For instance, such are the properties of orthogonality of two functions 

or completeness of a system of orthogonal functions. If we consider variables 

depending on events (random variables) as functions defined on the space of el

ementary events, then all the relevant statements of probability theory appear 

to be particular cases of statements of such a general theory. 

* Trudy Kommunist. Akad. Razd. Mat. 1 (1929), 8-21 (in Russian). 
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The strength of methods in probability theory as applied to problems 

in pure mathematics is largely based on the notion of independence of random 

variables. This notion has not yet achieved a purely mathematical formulation, 

though it is not so difficult to give one. We then define "independence" of 

a system of functions. This independence turns out to be a purely metric 

property. 

Properties of sets that at first glance are quite different when considered 

merely from the viewpoint of the definition of measure established for their 

subsets, often turn out to be identical. 

For example, it can be proved by elementary means that there exists a 

one-to-one map of a cube of arbitrary dimension onto an interval so that all 

the (L)-measurable sets ofthe cube are mapped into sets whose linear measures 

equal the measure of the initial sets. We say therefore that the cube of arbitrary 

dimension is metrically equivalent to an interval. Apart from the notion of 

metric equivalence, we define the more general notion of isometry of two spaces. 

It is difficult to foresee whether we will need an early substantial develop

ment of the outlines of the theory or whether it will suffice merely to indicate 

that such is possible in principle. The latter is necessary anyway in order to 

give a correct outlook on the connections between various fields of mathemat

ics. Besides, this gives us a method for transferring reasonings from one field 

to another field in which the statements of the general theory could be used. 

I. ABSTRACT DEFINITION OF MEASURE 

Consider a set A with elements a. We say that A is endowed with a measure 

M if a certain measure M(E) is assigned to some of its subsets E. The set 

A together with the measure M is ametrie space. We now give the axioms 

satisfied by all the measures we shall be considering. 

First, we assurne that the measure of a set is areal number, positive or 

zero. 

Axiom I. 

M(E) ~ o. 

Secondly, we assurne that iftwo sets do not intersect, then the measure oftheir 

sum is equal to the sum of their measures. 
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Axiom 11. If 

then 

Here we assurne that the existence of measures for two of the sets involved 

implies the existence of a measure for the third set. 

Based on this axiom the general formula 

(1) 

can be proved. One should not assurne, however, that the existence ofmeasures 

of two intersecting sets implies the existence of a measure for their sum or 

difference: there are certain important measures without this property. 

Since the product of two sets can be defined as 

(2) 

(1) can be used for deriving all the various relations among sums, differences 

and products of a finite number of sets. 

For convenience we include the empty set in the domain of sets to be 

considered, and denote it by o. If for a certain measure at least one set has a 

measure, then Axiom 11 implies that 

M(O) = O. (3) 

Finally, the third axiom intro duces a quite arbitrary restrietion on the measures 

considered: the measure of the whole space is 1. 

Axiom 111. 

M(A) = 1. 

This greatly simplifies the discussion and the general case can be easily 

derived from this particular case. In many applications, in particular, in prob

ability calculus, this restrietion is due to the essential nature of the subject. 

Let us now consider some examples of measures satisfying these axioms. 

1) The Lebesgue measure of point sets in an n-dimensional cube with 

side equal to 1. 
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2) The density of linear sets at 0 can be considered as their measure. 

3) If a set A consists of positive integers, then the set density can be 

considered as its measure, that is, the limit of the ratio of the number of 

elements not greater than n, to n, as n --+ 00. 

4) If A is a set of elementary events of a problem in prob ability calculus, 

then the measure of a set of elementary events is the prob ability that at least 

one of them occurs. 

H. CLOSEDNESS OF A MEASURE 

§ 1. A given measure M determines the system (E) of sets E having a measure. 

Suppose we know about this system that it includes the empty set 0 and the 

whole space A, and also that if 

and two of these sets belong to (E), then so does the third one. Clearly, the 

complement of a set belonging to (E) also belongs to (E) since 

E + E = A, E . E = O. 

§2. A measure is said to be complete, if it consists of (that is, is defined on) 

all the subsets of the space A. 

A complete measure in which all one-element sets have zero measure is not 

known. To prove the existence of such a measure without using the axiom of 

choice seems to be a problem of great difficulty. 

§3. We say that a measure M contains a measure M' given on the same set A 

if (E) contains (E') and both measures coincide on the sets belonging to (E'). 

One should not assurne that any measure is contained in some complete 

one; counterexamples are elementary. Still, for none of the measures usually 

employed in mathematics has it been proved that it is impossible to consider 

it as contained in a complete measure. On the contrary, using the axiom of 

choice, S. Banach proved that linear Lebesgue measure is contained in a certain 

complete measure. 1 In view of the metric equivalence of spaces of arbitrary 

dimension the same is true for n-dimensional Lebesgue measure. But already 

1 Fund. Math. 4. 
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in the three-dimensional case, for a complete measure containing the Lebesgue 

measure the principle of equality of the measure of congruent sets cannot hold: 

this is proved by Hausdorff's example on the decomposition of a sphere into 

three sets, each of these sets being congruent to the sum of the two others to 

within a countable set. 

Even if the main set A is countable, the construction of complete measures 

is quite difficult. For example, the generalized density problem for sequences 

of real numbers, that is, to find a complete measure containing the measure 3) 

of Part I, has difficulties similar to those encountered in constructing 2 a point 

set that is not (L)-measurable. 

§4. Accordingly, when posing problems in probability calculus, it should be 

required to indicate for which events the probabilities are assumed to exist. It 

is clear, for example, that for geometrical probabilities it is not wise to assurne 

the existence of the hitting probability of a point for each point set in space. 

§5. In most cases, however, the system (E) can be assumed to possess certain 

closedness properties. We say that a system (E) is finitely c10sed if it contains 

an sums of pairs of sets belonging to this system. Clearly, since 

(4) 

a closed system contains an the differences, and because of (2), it also contains 

the products of sets belonging to this system. 

§6. For each system (E) there is a certain minimal system F(E) that is closed 

and contains (E). If one can assign to an sets of the system F(E) a measure 

coinciding with the measure given for the sets of (E) and satisfying our three 

axioms, then we say that the initial measure is c1osable. 

It is not known whether every measure is closable. If closure is possible, 

then it is not necessarily closable in only one way; examples of the latter are 

elementary. 

It would seem that it is very difficult to find a measure that closes the 

measure given above under 3). 

It is also doubtful if a measure connected with some problem in probability 

calculus need be closed. 

2 My results in C. R. Aead. Sei. Paris (1925) point out the similarity of these two 
problems. 
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§7. A system (E) is called countably closed if it contains aJI possible countable 

sums of its elements. A countably closed system contains countable products 

of its elements, since 

II En = L:En (n = 1,2, ... ). (5) 

The study of countable closedness is closely connected with normality of mea

sures, and in fact makes sense only for normal measures. 

IH. NORMALITY OF A MEASURE 

§8. A measure is normal if for sets having a measure the condition 

implies 

M(E) = L: M(En) (n = 1,2, ... ). 

Of the measures mentioned above, those in 2) and 3) are not normal. 

Measures corresponding to problems in prob ability calculus also need not be 

normal. 

§9. For a finitely closed normal measure it is easy to prove the formulas 

n-1 

M(~En) = ~M(En- ~Ek)' 
k=1 

n 

M(II En) = limM(II Ek)' n = 1,2, ... , 
k=1 

(6) 

(7) 

which are true under the single condition that the sets En and either their sum 

or product have a measure. 

§10. Moreover, for finitely closed normal measures the following Proposition 

on countable coverings holds: if 

E C ~En (n = 1,2, ... ), 

then 

M(E):5 ~M(En) (n = 1,2, ... ). 
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Indeed, set 
n-l 

E~ = E(En - 2:Ek) (n = 1,2, ... ). 
k=l 

Then clearly 

E~ . E:.r, = 0, n # m; 

2: M(En) ~ 2: M(E~) = M(E) (n = 1,2, ... ). 

§11. A set E is called measurable with respect to a measure M if for any f 

there exist two sequences of sets from (E), 

such that 

E C 2:En, E C 2:E~, 

2: M(En) + M(E~) ~ 1 + f (n = 1,2, ... ). 

By the generalized measure of a measurable set E we mean the infimum of the 

sums 

2: M(En) (n = 1,2, ... ) 

over the coverings of E consisting of sets from (E). 

§12. Thus we obtain a certain new measure L(M) which measures any set 

that is measurable with respect to M. If M is finitely closed and normal, then 

L(M) satisfies Axioms 1-111, is normal and countably closed. The methods for 

proving this are the same as those used for studying Lebesgue measure. Thus, 

for any normal finitely closed measure there exists a countably closed measure 

containing it. 

§13. The measure L(M) is not the minimal countably closed measure con

taining M. It is not too difficult to determine the minimal such measure B (M) 

contained in L(M). 
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However, the measure L(M) has another remarkable property: a set that is 

measurable with respeet to M has the same measure with respeet to any normal 

measure eontaining M as with respeet to L(M). 

§14. In particular, in prob ability calculus, if a system of events with certain 

probabilities is finitely closed and normal, then without contradictjon we can 

uniquely define the prob ability of the countable product or the countable sum 

of events with probabilities. It would seem that only after this has been done 

can an argument involving probabilities of events such as convergence of series 

of random variables, etc., be considered justified. 

IV. METRIC EQUIVALENCE AND ISOMETRY OF SPACES 

§15. Two metric spaces are called metrieally equivalent if they can be put 

into a one-to-one correspondence so that sets with a measure correspond to 

sets with a measure, and measures of corresponding sets are equal. 

§16. The cube of arbitrary dimension with side equal to 1 and with Lebesgue 

measure on its subsets is metrically equivalent to an interval of length 1, also 

with Lebesgue measure. The proof of this is elementary. 

§17. Two sets EI and E2 in a metric space have the same metrie type if 

In many cases when we can neglect sets of measure zero only the metric 

types, not sets themselves, need be involved in the argument. 3 

If a measure is finitely closed, then the type of the sum, product or differ

ence of two sets with a measure depends only on their types and consequently 

we can speak of the sums, products and differences of the types themselves. 

If a measure is countably closed and normal, then so are the countable 

sums and products. 

§18. Two finitely closed spaces are called isometrie if a one-to-one corre

spondence can be established between the metric types of their subsets with 

measures in such a way that the· sum of two types corresponds to the sum of 

the corresponding types, and the measures of corresponding types are equal. 

3 Of course, everything that follows can be presented without introducing the 
notion of metric type as based on the "subdivision" axiom. Instead the notion 
of metric "equality" of sets can be used. 
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Obviously, the products and differences of two types also correspond to 

the products and differences of the corresponding types. If both measures 

are normal and countably closed, the same is also true for countable sums 

and products. Note, however, that a countably closed normal measure can be 

isometrie to a non-normal measure. 

§19. A measure has a eountable basis ifthe system (E) has a countable sub

system (I) (a basis) such that any set of (E) is measurable for the basis (1), 

that is, this set and its complement each have a covering by sets of (1) in which 

the sum of the measures of the covering sets is greater than their measure by 

an arbitrary small value. Of course, this definition is interesting only when the 

space is normal. 

The Lebesgue measure on an interval has a countable basis consisting 

of segments with rational ends points. Normal spaces with the cardinality 

of the continuum and with a countable basis are not known (except those 

determined using the axiom of choice). Such aspace of cardinality 2C can be 

easily constructed. 

§20. A measure M that is normal, finitely closed and with a eountable basis 

is isometrie to the measure M l , wh ich is the Lebesgue measure 01 the interval 

(0,1). 

§21. In conclusion, since many properties ofpurely metric spaces depend only 

on relations between the metric types of their subsets, which can be identical 

for spaces that are most different, even for spaces of different cardinalities, it 

would be worth trying to set forth the theory of such spaces considered as 

systems of metric types that can be added, multiplied, etc., without assuming 

the existence "elements" of the space. 

v. PURELY METRIC FUNCTION THEORY 

§22. We will consider only functions that take real values at all points of a 

purely metric space. Such a function is called measurable if the set of points at 

which it takes values belonging to an interval is always measurable. 

§23. Clearly, the set on which a function takes a certain value a is also mea

surable, since 

E[b < 1 < a] + E[I = a] + E[a < I< c] = E[b < I< cl· 
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If the measure in the space considered is countably closed, then the set 

on which a measurable function takes a (B)-measurable set of values has a 

measure, since it can be obtained by countable additions and multiplications 

of sets that obviously have a measure. But one cannot claim that the same 

is true for an (L)-measurable set of values of a function, even if the measure 

considered is of the type L(M). 

§24. A family of functions [f] is called equimeasurable if, for an arbitrary 

choice of intervals corresponding to the functions, the set on which every func

tion takes values in its corresponding interval is measurable. 

For a finitely closed measure a finite family of measurable functions is 

measurable. For a countably closed measure the same is true for a countable 

family of functions. 

For a countably closed measure the set on which the values of a sequence 

of functions determine the points of a (B)-measurable set in a countable di

mensional space has a measure. This applies, for instance, to the set of points 

of convergence of aseries of functions. 

All this can be directly applied to random variables in probability theory. 

§25. The integral of a function f over a set E can be defined in a purely 

metric theory only with respect to the Lebesgue measure as 

. Loo 
rn [(rn rn + 1) ] hm -M -<f:5-- E, 

n_oo n n n 
m=-oo 

provided that the series converges absolutely and the limit exists. When con

sidering problems connected with the notion of integral we assurne the space 

to be normal. 

§26. It can be proved in the usual way that for a bounded measurable function 

the integral exists. 

§27. For an integral defined in such a way the following relations hold: 
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4. lim L In = L', if 11 < 12 < ... < In ... -+ f. 

§28. The notation of expectation whieh is dose to that of the Lebesgue inte

gral, has long been used in probability theory. If prob ability is eonsidered as 

a measure on the set of elementary events, then the expeetation of a random 

variable Z is 

D(Z) = i z, 

and its expectation under a hypothesis E is 

DE(Z) = M~E) L Z. 

By analogy with the notion of relative probability we introduee the nota-

tion 

then 

m=-QO 

§29. Based on this definition of integral the theory of orthogonal lunctions in 

purely metrie spaees ean be developed. For example, for a system of bounded 

orthogonal functions to have at most eountable eardinality it is suffieient that 

the measure eonsidered have a eountable basis. 

It would be interesting to see to what extent purely metrie function theory 

ean be presented in terms invariant for isometrie spaees. In this ease the very 

definition of a function should be different. 

VI.INDEPENDENCE 

§30. Two partitions of a spaee A into non-interseeting parts 

A= LF', A = LF" 
are independent if for any measurable sets E' and Eil eomposed from the ele

ments of eertain sets F' and F" respeetively, 

M(E' . Eil) = M(E') . M(E"). 



GENERAL MEASURE THEORY AND PROBABILITY CALCULUS 59 

§31. The (finite or infinite) product of partitions [F] is the partition of the 

space into the products of elements of the given partitions, with one element 

taken out of every partition. 

A finite or infinite number of partitions [F] are mutually independent if 

any two products of these partitions without common elements are indepen

dent. Mutual independence of partitions does not imply independence of these 

partitions. 

§32. These general definitions allow a number of simplifications in particular 

cases. For instance, if a measure is finitely closed and the partitions (F') and 

(F") consist of a finite number of elements with a measure, then they are 

independent if 

M(F' . F") = M(F') . M(F") 

for each pair F' and F". 

If the measure is normal, the same is true for partitions into a countable 

set of parts. 

§33. Every function defines a partition of the space into the sets at which 

it takes a certain value. Functions are called mutually independent if their 

corresponding partitions are independent. 

§34. Independence of partitions of a set (E) and independence of functions 

on a set are defined in exactly the same way. 

For functions ft, f2, ... , In, independent on a set E, the following relation 

holds: 

DE(ftf2 ... In) = DE(ft)DE(f2) ... DEUn). 



8. ON THE STRONG LAW OF LARGE NUMBERS * 

Let 

Xl, X2, ••• , X n , ... (1) 

be a sequence of independent random variables with zero expectations E(xn ). 

Following Cantelli and Khinchin we say that (1) satisfies the strong law 0/ large 

numbers (SLLN) if the probability of convergence to zero of the means 

_ Sn _ Xl + X2 + ... + X n 
O"n - - - -------

n n 

is equal to 1. 

We will now prove that the SLLN holds ifthe second moments E(x~) = bn 

exist and the senes 

(2) 

converges. This condition cannot be replaced by any weaker one: if for some 

sequence of constants bn (2) diverges, then we can construct a sequence (1) 

of independent random variables satisfying E(xn ) = 0, E(x~) = bn but not 

satisfying the SLLN. 

To prove this, we can use the lemma expressed by the formula 

(3) 

which was proved elsewhere (for R ~ 0).1 

* 'Sur la loi forte des grands nombres', C. R. Acad. Sei. Paris 191 (1930), 910-912. 
1 'Über die Summen durch den Zufall bestimmer unabhängiger Grössen', Math. 

Arm. 99 (1928), 310, Satz 1 (Paper 4 in this volume). 
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Clearly, according to (3), 

n=l 

00 1 00 1 2 

= P{limsup Iunl > f} ~ L: Pm ~ f2 L: (2m) 
m=O m=O (4) 

00 00 n<241 

~ f12 ?= L:. (2~ f L:. bn ~ 
,=0 m=' n=2' 

<2 i +1 
1 00 1 2n Soobn 

~ f2 L:(2i-1) L: bn ~ f2 L: n2 ' 
i=O n=2i n=l 

But P does not change if a finite number of first terms in (1) are replaced 

by 0. If (2) converges, then the last term in (4) can be made arbitrarily smalI. 

Hence P = 0. Since this is true for any f > 0, in the case under consideration, 

the SLLN holds. 

To prove the second part of our statement, assume that (2) diverges. 

For bn /n2 ~ 1 let Zn = n, Zn = -n, Zn = ° with probabilities bn /2n2 , 

bn /2n2 , 1 - bn /n 2 respectively, while for bn /n 2 ;::: 1 we set Zn = A and 

Zn = -A with probabilities ! and !. It can easily be seen that E(zn) = 0, 

E(z~) = bn and the SLLN does not hold. 



9. ON ANALYTICAL METHODS IN PROBABILITY THEORY* 

The object of investigation 

A physical process (a change of a certain physical system) is called stochastically 

determined if, knowing astate X o of the system at a certain moment of time 

to we also know the prob ability distribution for all the states X of this system 

at the moments t > to. 

I systematically consider the simplest cases of stochastically determined 

processes, and primarily, processes continuous in time (this is what makes the 

method essentially new: so far, a stochastic process has usually been considered 

to be a discrete sequence of separate "events"). 

If the set ~ of different possible states of the system is finite, then a 

stochastic process can be characterized using ordinary linear differential equa

tions (Chapter 11). If astate of the system depends on one or several continu

ous parameters, then the corresponding analytic apparatus reduces to partial 

differential equations of parabolic type (Chapter IV) and we obtain various 

distribution functions, the normal Laplace distribution being the simplest. 

INTRODUCTION 

1. In order to subject social or natural phenomena to mathematical treat

ment, these phenomena should first be schematized. The fact is that mathe

matical analysis can only be applied to studying changes of a certain system if 

every possible state of this system can be completely determined using known 

mathematical techniques, for example, by the values of a certain number of 

parameters. This mathematically defined system is not a reality itself, but a 

scheme that can be used to describe reality. 

Classical mechanics makes use only of the schemes for which the state y of 

a system at time t is uniquely determined by its state x at any preceding time 

to. Mathematically this can be expressed by the formula 

y = I(x, to, t). 

If such a unique function 1 exists, as is always assumed in classical me

chanics, then we say that our scheme is a scheme 01 a purely deterministic 

* Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung, Math. Ann. 
104 (1931), 415-458. 

62 



ON ANALYTICAL METHODS IN PROBABILITY THEORY 63 

process. These purely deterministic processes also include processes when the 

state y is not completely determined by giving astate z at a single moment of 

time t, but also essentially depends on the pattern of variation of this state z 

prior to t. However, usually it is preferred to avoid such a dependence on the 

preceding behaviour of the system, and to do this the notion of the state of the 

system at time t is generalized by introducing new parameters. 1 

Outside the re alm of classical mechanics, along with the schemes of purely 

deterministic processes, one often considers schemes in which the state z of the 

system at a certain time t o only determines a certain probability of a possible 

event y to occur at a certain subsequent moment t > to. If for any given 

to, t > to, and z there exists a certain probability distribution for the states y, 

we say that our scheme is a scheme 0/ a stochastically determined process. In 

the general case this distribution function can be represented in the form 

P(to, z, t, (1;) 

where (1; denotes a certain set of states y, and P is the prob ability of the fact 

that at time tone of the states y belonging to this set will be realized. Here 

we face a complication: in general, this probability cannot be determined for 

all sets (1;. A rigorous definition of a stochastically determined process which 

enables one to avoid this complication is given in § l. 

As in the case of a purely deterministic process, we could also have consid

ered here schemes in which the probability P essentially depends not only on 

the state z but also on the past behaviour of the system. Still, this influence 

of the past behaviour of the process can be bypassed using the same method 

as in the scheme of a purely deterministic process. 

Note also that the possibility of applying a scheme of either a purely de

terministic or a stochastically determined· process to the study of some real 

processes is in no way linked with the quest ion whether this process is deter

ministic or random. 

2. In probability theory one usually considers only schemes according to which 

any changes of the states of a system are only possible at certain moments 

1 A well-known example of this method is to introduce, in addition to positions 
of points, the components of their velocities when describing astate of a certain 
mechanical system. 
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t 1 ,t2 , •.. ,tn , ... which form a discrete series. As far as I know, Bachelier 2 

was the first to make a systematic study of schemes in which the probability 

P(to, x, t, Q:) varies continuously with time t. We will return to the cases studied 

by Bachelier in §16 and in the Conclusion. Here we note only that Bachelier's 

constructions are by no means mathematically rigorous. 

Starting from Chapter 11 of this paper we mainly consider above-mentioned 

schemes that are continuous with respect to time. From the mathematical 

point of view these schemes have an important advantage: they allow one to 

introduce differential equations for P with respect to time and lead to simple 

analytic expressions which in the usual theory can be derived only as asymptotic 

formulas. As for the applications, first the new schemes can be directly applied 

to real processes, and secondly, from the solutions of differential equations 

for processes continuous with respect to time new asymptotic formulas for 

continuous schemes can be derived, as will be shown later in §12. 

3. We do not start with the complete system ofaxioms of probability theory. 

Let us indicate, however, all the prerequisites we will use in our further dis

cussion. We do not make any special assumptions about the set 21 of possible 

states x. Mathematically, 21 can be considered as an arbitrary set consisting of 

arbitrary elements. All assumptions concerning the system ~ of sets and the 

function P(to,x,t, Q:) are given in §1. In what follows the theory is developed 

as a purely mathematical one. 

CONTENTS 

Chapter I. Generalities: 

§1. General scheme of a stochastically determined process. 

§2. The operator F1(x, Q:) * F2(x, Q:). 

§3. Classification of particular cases. 

§4. The ergodic principle. 

Chapter 11. Finite state systems: 

§5. Preliminary remarks. 

§6. Differential equations of a continuous stochastic process. 

2 I. 'Theorie de la speculation', Ann. Ecole Norm. Super. 17 (1900), 21; 11. 'Les 
probabilites a plusieurs variables', Ann. Ecole Norm. Super. 27 (1910), 339; IH. 
Calcul des probabilites, Paris, 1912. 
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§7. Examples. 

Chapter IH. Countable state systems: 

§8. Preliminary remarks. Discontinuous schemes. 

§9. Differential equations of a process continuous in time. 
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CHAPTER I. GENERALITIES 

§l. General scheme of a stochastically determined process 

Let (5 be a system that can be in states z, y, z, ... , and ~ a system of sets ~ 

formed from the elements z, y, z, . ... A process of variation of the system (5 

is stochastically determined with respect to ~ if for any choice of state z, set ~ 

and moments t l and t2 (tl< t2) the prob ability P(tl,z,t2,~) ofthe fact that, 

if z takes place at tl, then one of the states of ~ takes place at t2 exists. If 

P(tl,z,t2,~) is defined only for t2 > tl ~ to, then we say that the process of 

variation is stochasticany determined for t ~ to. 

Regarding the system ~, we assume that it is first additive (that is, it 

contains all the differences, as weIl as finite or countable sums ofits elements), 

and secondly contains the empty set, the set ~ of an possible states z, y, z, ... 

and an the one-element sets. If the set 2( is finite or countable, then clearly 

~ consists of an the subsets of~. In the most important case when ~ is 
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uncountable, the assumption that ~ contains all the subsets of ~ does not hold 

for any of the schemes known at present. 

Of course we assume that 

(1) 

and for the empty set sn, 

We further assume that P(t1 ,:1:, t2, IE) is additive as a function of IE, that is, 

for any decomposition of IE into a finite or countable number ofnon-intersecting 

summands IEn the following identity holds 

(2) 
n 

To formulate further assumptions on P(tl,:1:, t2, IE) we need the notion of 

measurability of a function 1(:1:) with respect to the system ~ and the definition 

of abstract Stieltjes integral. We given them here in a form suitable for our 

needs. 3 

A function 1(:1:) is called measurable with respect to the system ~ iffor any 

choice ofreal numbers a and b the set 1E~(a < 1(:1:) < b) of all:1: for which 1(:1:) 
satisfies the inequality in parentheses, belongs to~. It can easily be shown 

that if the system ~ is additive and 1(:1:) is measurable with respect to ~, then 

the set IE of all :1: for which 1(:1:) belongs to a given Borel-measurable set is 

contained in ~. 

Now let 1(:1:) be measurable with respect to ~ and bounded, and let </J(IE) 
denote a non-negative additive function defined on ~; then, as is known, the 

sum 

I:m</J(m ~1(:1:)< m+l) 
n n n 

m 

tends to a weH defined limit as n --+ 00. This limit will be caHed the integral 

[ 1(:1:)</J(d~). 
lr~3: 

3 Concerning these notions, as weH as additive sets of systems, etc., see, for ex
ample, M. Frechet, 'Sur l'integrale d'une fonctionneHe etendu a. un ensemble 
abstrait', Bull. Soc. Math. France 43 (1915),248. 
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This notation differs from the usual one only in the specification of the 

variable of integration and the place of the differential inside the parentheses. 

In what follows we assume that P(t l , X, t2, ~), as a function of the state x, 

is measurable with respect to the system~. Finally, P(it, x, t2, ~) must satisfy 

the fundamental equation 

(3) 

for arbitrary t l , t2, t3, (tl< t2 < t3). If ~ is a finite or countable set of elements 

Xl,X2,"" xn , ... , then 

and on the right-hand side we have the expression for the total prob ability 

P(t l , x, t3, ~); therefore (3) is satisfied in this case. In case ~ is uncountable 

we take (3) as a new axiom. 

The above requirements completely define a stochastically determined pro

cess: the elements x, y, z, ... of an arbitrary set ~ can be considered as charac

teristics of astate of a certain system, and an arbitrary function P(tl, x, t2, ~) 

satisfying the above requirements as the corresponding probability distribution. 

A non-negative function F(~) defined on ~, additive and such that 

F(~) = 1, (4) 

will be called a normal distribution function. All the requirements imposed 

on P(tl,X,t2,~) can now be formulated in the following way: P(t l ,x,t2, ~), 

as a function of ~, is a normal distribution function; as a function of x it is 

measurable with respect to the system ~ and satisfies the integral equation (3). 

Suppose now that at t = to we have a normal distribution function Q(to, ~) 

which gives the probability of the fact that the system <5 at to is in one of the 

states belonging to ~. The distribution function Q(t, ~) for t > to is determined 

by means of the second fundamental equation 

Q(t,~) = f P(to, x, t, ~)Q(to, d~). Jv.x 

(5) 

We clearly have 

Q(t,~) = l Q(to, d~) = Q(to,~) = 1, (6) 



68 ON ANALYTICAL METHODS IN PROBABILITY THEORY 

= [ [ P(tl, x, t2, ~)P(to, y, tl, d!!))Q(to, d!!') = Jg;; Jg", 

= [ P(to, y, t2, ~)Q(to, d!!') = Q(t2, ~). (7) Jg;; 

Formula (5) is considered as the definition of Q(t, ~), not as a new re

quirement imposed on 6. Note, however, that (5) implies (3) as a particular 

case. 

Let F1 (x, ~) and F2 ( x, ~) be two normal distribution functions which, consid

ered as functions of x, are measurable with respect to j. Set 

It is easy to see that F(x,~) satisfies the same conditions of measurability and 

additivityas Fl(X,~) and F2(X,~) and (4) also holds: 

consequently, F(x, ~) is also a normal distribution function. 

Further , the operator F1 * F2 is associative, 

which can easily be seen by the following simple calculation: 

F1 * (F2 * F3)(X,~) = [ [ F3(z, ~)F2(Y, d!!')F1(x, d!!) = Jgy Jg~ 
= [ F3(Z,~) [ F2(Y, d!!')F1(x, d!!) = (F1 * F2) * F3(x, ~). 

Jg~ Jgy 

By contrast, F1 * F2 is not, in general, commutative. 

(9) 
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Now we define the unit function I'(x, ~), which for any normal distribution 

function F( x, ~) satisfies 

p. * F(x, ~) = F * p.(x, ~) = F(x, ~). (10) 

To this end it sufIices to set p.(x, ~) = 1 when x belongs to ~ and p.(x, ~) = 0 

otherwise. We then have 

p. * F(x, ~) = f F(y, ~)p.(x, fAl) = F(x, ~), JglI 
F * p.(x, ~) = f I'(y, ~)F(x, d9.) = f F(x, d~) = F(x, ~). JglI J~ 

The prob ability P(tl, x, t2,~) has been defined so far only for t2 > tl; now 

set for any t 

P(t,x,t,~) = I'(x, ~). (11) 

In view of (10), this new definition does not contradict the fundamental equa

tion (3), since (3) can be written as 

(12) 

§3. Classmcation of particular cases 

If the changes in the state of the system 6 take place only at certain moments 

which form a discrete series 

to < tl < t2 < ... < tn < ... --+ 00, 

then obviously 

for all moments t' and t" such that 

Introducing the notation 

P(tm, x, tn,~) = Pmn(x, ~), 

Pn-l,n(X,~) = Pn(x, ~), 

(13) 

(14) 

(15) 
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we have 

(16) 

Hence in this case the process of change of (5 is totally deterrnined by the 

elementary distribution functions Pn(x, IE). 

Now let P1(x, IE), P2 (x, IE), ... , Pn(x, IE) be arbitrary normal distribution 

functions which are assumed to be measurable as functions of x; further, let 

to < tl < ... < tn < ... be a certain sequence of moments of time. Defining 

Pmn(x, IE) and P(t', x, t", IE) by (16), (14) and (13), we also obtain normal 

distribution functions which satisfy the equations 

Pmn(x, IE) * Pnp(x, IE) = Pmp(x, IE) (m< n < p), (17) 

and hence the equation 

P(t',x,t", IE) * P(t",x,t lll , IE) = P(t',x,t lll , IE) (t' < t" < t lll ). 

But this latter equation is none other than the fundamental equation (12) or 

(13). Thus we see that every sequence of arbitrary normal distribution func

tions Pn(x, IE), measurable as functions of x, characterizes a certain stochasti

cally deterrnined process. 

The schemes with discrete time defined above are those usually considered 

in prob ability theory. If all the distribution functions Pn(x, IE) coincide, 

Pn(x, IE) = P(x, IE), (18) 

we have a homogeneous scheme with discrete time; in this case (16) yields 

Pn n+p(x, IE) = P(x, IE) * P(x, IE) * ... * P(x, IE) = [P(x, IE)]~ = PP(x, IE). 
I , .,.. .J 

p times 

(19) 

As far back as 1900 Bachelier considered stochastic processes continuous 

in time. 4 There are good grounds for giving schemes with continuous time 

a central place in probability theory. It seems that most important here are 

schemes homogeneous in time, in which P(t,x,t + T, IE) depends only on the 

difference t2 - tl: 

P(t, x, t + T, IE) * P( T2, x, IE) = P( T, X, IE). (20) 

4 See the first of the papers cited in footnote 2. 
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The fundamental equation in this case takes the form 

(21) 

Another series of particular cases is obtained under special requirements on 

the set ~ of elementary states z. Here one should distinguish the cases of finite 

or countable sets ~; in the continuous case the classification is performed with 

respect to the number of parameters determining the state of the system. The 

subsequent sub division of the material in this paper is based on distinguishing 

such particular cases. 

§4. The ergodie principle 

Without special assumptions on the set 2( of all possible states z, we can only 

prove several general theorems, namely those dealing with the ergodic principle. 

We say that a stochastic process obeys the ergodie principle if for any t(O), z, y 

and ~ 
lim [P(t(O) , z, t,~) - P(t(O), y, t, ~)] = o. 
t_oo 

(22a) 

For a scheme with discrete time (22a) is clearly equivalent to the following: 

(22b) 

and in the latter case the following theorem holds: 

Theorem 1. If for any z, y, and ~ 

(23) 

and the series 
00 

(24) 
n=l 

diverges, then the ergodie principle (22b) holds and the limit in (22b) is uniform 

with respect to z, y and ~. 

Proof Let 

SUpPkn(Z,~) = Mkn(~), 
z: 

For i < k we clearly have 
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and, similarly, 

By (23), for any x and Y we have 

Pk(X, e:) - >'kPk(Y, e:) ~ 0, 

Pk-1,n(X, e:) = [ Pkn(z, "e:)Pk(x, dl2l) = 
JfJ.z 

= [ Pkn(Z, e:)[Pk(x,dl2l) - >'kPk(y,dl2l)]+ 
JfJ.z 

+>'k [ Pkn(Z, e:)Pk(y,dl2l) ~ 
JfJ.z 

~ mkn(e:) [ [Pk(x,dl2l) - >'kPk(y,dl2l)] + >'kPk-l,n(Y, e:) = 
JfJ.z 
= mkn(e:)(1- >'k) + >'kPk-l,n(Y, e:), 

Pk-l,n(Y, e:) - Pk-l,n(X, e:) ~ (1- >'k)[Pk-l,n(Y, e:) - mkn(e:)]; 

hence by (25), 

Since (27) holds for any x and y, we also have 

(26) 

Setting k = m+ 1, m+ 2, ... , n successively in (28) and multiplying all the 

resulting equalities we find 

n 

Mmn(e:) - mmn(e:) ~ II (1- >'k). (29) 
k=m+l 

The right-hand side of (29) tends to zero as n ~ 00; this proves the 

theorem. 

For a homogeneous scheme with discontinuous time the following holds: 

Theorem 2. If for any x, Y and e: 

P(X, e:) ~ >.P(y, e:) (>' > 0), (30) 

then pn(x, e:) converges uniformly to a certain distribution function Q(e:). 



ON ANALYTICAL METHODS IN PROBABILITY THEORY 73 

Proof. We have 

and, by (29), 

Mn.n+p(~) = supPP(z,~) = Mp(~), 
mn.n+p(~) = inf PP(z,~) = mp(~), 

An = A, 

Mp(~) - mp(~) $ (1- A)P. 

But (25) and (26) imply that for q > p, 

therefore, 

pq(z,~) = POq(z,~) $ Mq_p.q(~) = Mp(~), 
pq(z,~) ~ mp(~); 

Our theorem now follows immediately from (31) and (34). 

(31) 

(32) 

(33) 

(34) 

Important particular cases of Theorem 2 were proved by Gostinskii and 

Hadamard. 5 As has been shown by Hadamard, in these particular cases Q(~) 

satisfies the integral equation 

Q(~) = r P(z, ~)Q(d~). 
J!lz 

(35) 

. For the most general stochastically determined scheme one has: 

Theorem 3. If for some sequence 

to < ti < ... < t n < ... -+ 00 

and any z, y and ~, 

and if the series E::i An diverges, then the ergodie principle (22a) holds and 

the convergence in (22a) is uniform with respect to z, y, ~. 

Proof. For a given t(O) let 

sup P(t(O), z, t, ~) = M(t, ~), 
:z: 

inf P(t(O), z, t, ~) = met, ~). 
:z: 

5 C. R. Acad. Sei. Paris 186 (1928), 59; 189; 275. 
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If 

then, in the same way as in the proof of Theorem 1, we obtain the analogous 

formula to (29), 
n 

M(t, ~) - m(t, ~) ~ rr (1 - Ak)' 
k=m+l 

Since n -+ 00 together with t, it follows that M(t, ~) - m(t, ~) -+ 0 as t -+ 00, 

which proves the theorem. 

Finally in case of a scheme homogeneous in time one has the following 

theorem, analogous to Theorem 2: 

Theorem 4. If there exists u such that for any x, y, ~, 

P(u, x,~) ~ AP(U, y,~) (A > 0), (37) 

then P( T, x,~) converges uniformly to a certain distribution function Q(~) as 

T -+ 00. 

CHAPTER 11. FINITE STATE SYSTEMS 

§5. Preliminary remarks 

Let us now assurne that 2l is formed from a finite number of elements 

In this case set 

(38) 

Since for any set ~ we obviously have 

P(tl,Xi,h,~) = L Pik(it,t2), (39) 
XkC~ 

we can confine ourselves to the probabilities Pij(tl, t2)' The fundamental equa

tion (3) now takes the form 

L Pij(tl,t2)Pjk(t2,t3) = Pik(tl,t3), 
j 

(40) 
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whereas (1) can be written as 

LPij (t b t 2) = l. 
j 

75 

(41) 

Any non-negative functions Pij(tl,t2) satisfying the conditions (40) and (41) 

determine some stochastically determined process of variation of the systems 

6. 
In this case the operator is defined as folIows: 

Fil, = Fg) * Fi~) = L FS) FR), 
j 

hence the fundamental equation (40) reduces to 

For a scheme with discontinuous time we set 

p. ( . .) - p(pq) 
pq ZI, zJ - ij , 

Then the probabilities Pi~) satisfy 

(42) 

(43) 

(44) 

and, conversely, arbitrary non-negative values p;~) satisfying (44) can be con

sidered as the corresponding values of the probabilities of a certain stochasti

cally determined process. 

The probabilities P;~q) can be calculated by the formula 

(45) 

For a homogeneous scheme with discontinuous time we have 

p~!,q) = [P.J·]q-p = p.q.-p 
IJ • • IJ· 

If all the Pij are positive, then obviously the conditions of Theorem 2 (§4) 

hold, hence Pi~ tend to a certain limit Qj as q --+ 00. The integral equation 

(35) transforms in our case into the system of equations 

Qi=LQjPji (i=l, ... ,n). 
j 

(46) 
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These results were obtained by Gostinskii and Hadamard. 6 

§6. Differential equations of a continuous stochastic process 

By (11) we have 

~i(t, t) = 1, Pij (t, t) = 0, i -I j. (47) 

If the variations of our system <5 are possible at any time t, then it is natural 

to suppose that 

lim Pii(t,t+ß)=l, limPij(t,t+ß)=O, i-lj, (47a) 
~_oo ~_o 

that is, for small time intervals the probability of a change in the state of 

the system is small. This assumption is contained in the hypothesis of the 

continuity of the functions Pij(t1 , t2) with respect to t1 and t2. 
Now assume that the functions Pij (8,t) are continuous and differentiable 

with respect to t and 8 for t -I 8. We do not require differentiability of these 

functions at t = 8. It would be imprudent to assume apriori the existence of 

a derivative at these special points. 7 

For t > 8 we have 

If the deterrninant 

s = IPij (8, t)1 

is non-zero, then the equations 

'"' D ( ) Pilc(t, t + ß) n ( ) Pu(t, t + ß) - 1 
L...J r ij8,t ß +rik 8,t ß =O:il: 

j# 

(i=l, ... ,n) 

can be solved: 

Pkk(t,t + ß) -1 _ Au 
ß S' 

(49) 

6 See Footnote 5. 
7 Compare with the functions F(s,x,t,y) considered in Chapter 4, which neces

sarily have points of discontinuity at t = s. 
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Since by (48) (Xik tend to the limit values OPik(S,t)/ot as ß --+ 0, the values 

(49) tend to weIl defined limits 8 

r Pkk(t, t + ß) - 1 - A () 
1m ß -Ht, (50a) 

I· Pjk(t,t+ß) A () 
1m ß = jk t , j i' k. (50b) 

In fact it is evident from the relation 

lim3 = 1, 
, ..... t 

(51) 

which holds by (47) and the continuity of 3, that 3 may be non-zero under a 

proper choice of S < t. 
From (48) and (50) we immediately obtain the first system 0/ differential 

equations for the function Pik(S, t): 

OPik(S,t) "" () () () () o =L..,..AjktPijS,t =Piks,t *Aik t . 
t . 

J 

In this case, by (47) and (50), 

Ajk(t) = [OPjk(t, u)] , 
ou u=t 

Ajk ~ 0, j i' k, AH ~ 0, 

and, by (41) and (50), 

(52) 

(53) 

(54) 

LAjk = O. (55) 
k 

The equations (52) were established only for S < t; however, (47) and (53) 

show that these equations are valid also for t = s. 

For S < t we have 
OPik(S, t) = lim Fh(s + ß, t) - Pik(S, t) = 

os .1 ..... 0 ß 

= li~o![Pik(s+ß,t)- L~j(s,S+ß)Pjk(S+ß,t)] = 
j 

1· [~i(s,S+ß)-lp' ( A) = - 1m A ik S +~, t + 
.1 ..... 0 ~ 

+ L Pij(S,~ + ß) Pjk(s + ß, t)] (56) 
#i 

8 We could equally weIl have taken the opposite approach: to assurne apriori that 
the conditions (47a) and (50) hold and to derive from this the continuity and 
differentiability of the function Pij (s, t) with respect to t. 
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and, by (50), we obtain the second system 0/ differential equations 

8Pil.(S, t) "'" ) () ( ) () 8 = - L.JAij(S Pj" s,t = -Ai" S * Pi" s,t . 
S . 

(57) 
J 

If the functions Aij(s) are eontinuous, then clearly the equations (57) are also 

true for s = t. 
Now assurne that at to we know the distribution function 

Q(to, z,,) = Q,,(to), L Q,,(to) = 1, 

" 
of the probabilities that the system (5 at t o is in the state z". Then equation 

(5) takes the form 

Q,,(t) = L Qi(tO)Pi,,(to, t). 

By (52) the functions Q,,(t) satisfy 

dQ,,(t) = LAj,,(t)Qj(t) (k = 1, ... , n). 
dt . 

(58) 
J 

If the functions Ai,,(t) are eontinuous, then the functions Pi"(S, t) form 

the unique system of solutions of (52) satisfying the initial eonditions (47); 

eonsequently, the eonsidered stoehastie proeess is totally determined by all the 

Ai,,(t). The real meaning of the functions Ai,,(t) ean be illustrated in the 

following way: for i # k Ai,,(t)dt is the probability of passing from the state Zi 

to the state z" during the time from t to t + dt, whereas 

Au(t) = - LA"j(t). 
j# 

It ean also be shown that if we have any eontinuous functions Ai" (t) satisfying 

the eonditions (54) and (55), then the solutions Pi"( s, t) of the differential 

equations (52) under the initial eonditions (47) are non-negative and satisfy the 

eonditions (40) and (41); in other words, they determine a stoehastie proeess. 

Indeed, by (52) and (55) we have 

:t ~Pi"(S,t) = L[~Aj,,(t)]Pij(S,t) = 0, (59) 

and, by (47), 
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Thus (59) implies (41). 

For tl < t2 we now assume that 

PIk (tl ,t) = Fh(tl, t), if tl ~ t ~ t2, 

PIk(tl,t) = LPii(tl,t2)Pjk(t2,t), ift2 < t. 
i 

(60) 

(61) 

The functions PIk (t l, t) are continuous and satisfy the differential equations 

(52); consequently, (60) holds for any t and not merely for t ~ t2; but then 

(61) with t = t3 coincides with (40), 

It remains to show that the solutions Pik (tl ,t) are non-negative. For this 

we assume that for fixed s, 

.,p(t) = min PikeS, t). 

Choosing appropriate i and k we clearly have 

D+.I,(t) = 8Pik (S, t), P. ( ) ol,() 
0/ 8t ik S, t = 0/ t , 

and if .,p(t) ~ 0, then by (54), 

~ LAjk(t).,p(t) = R(t).,p(t). 
j# 

Since .,p(s) = 0, .,p(t) is clearly greater than any negative solution of the 

equation 

dy/dt = R(t)y, 

and therefore it cannot be negative itself. 

§7. Examples 

In scheInes homogeneous in time the coefficients Aik(t) appear to be indepen

dent of the time t; in this case the process is completely determined by the n2 

constants Aik. Equations (52) now take the form 

dPäk(t) = " A- P. .. (t). dt L...J.k '3 , 
j 

(62) 
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and solving these equations is not difficult. If all the Aik are non-zero, then 

the conditions ofTheorem 4 (§4) hold and consequently, Pik(t) tends to a limit 

Qk as t -+ 00. The quantities QlI: satisfy the equations 

L: QlI: = 1, L: Ajll:Qj = 0 (k = 1, ... , n). 
lI: j 

For example, let 

n = 2, A12 = Au = A, Au = A22 = -A, 

that is, the probabilities of transition from the state Xl to the state X2 and the 

reverse transition from X2 to Xl are the same. The differential equations (62) 

in our case give 

P12 (t) = P21 (t) = ~(1- e-2At ), 

Pu(t) = P22(t) = ~(1 + e-2At ). 

We see that Pill:(t) tends to the limit QlI: = ~ as t -+ 00. 

The following example shows that approaching the limit can be accom

panied by oscillations damping with time: 

n = 3, A12 = A23 = A3l = A, 

A21 = A32 = A 13 = 0, Au = A22 = A33 = -Aj 

2 1 
Pu(t) = P22 (t) = P33(t) = 3e-3/2At cos at + 3' 

Pl2 (t) = P23(t) = P31 (t) = e-3/2At ()asinat - ~cosat) +~, 

P21 (t) = P32(t) = P13(t) = -e-3/2At (Jasinat + ~cosat) +~, 

y'3 
a=TA. 

Similar damping oscillations for schemes with discontinuous time were 

found by Romanovskii. 

Chapter IH. COUNTABLE STATE SYSTEMS 

§8. Preliminary remarks. Discontinuous schemes 

If 2l consists of a countable set of elements 
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all the notations and results of §5 of Chapter 11 remain valid. The convergence 

of the series 

L: Pik(tl, t2) = 1, 
k 

is assumed, and from this we derive convergence of the series (40), (42), (46); 

by contrast, we do not require that the series 

should converge. 

We now make a few remarks on schemes with discontinuous time, in par

ticular homogeneous ones. The conditions of our theorems concerning ergodic 

principles for schemes with a countable set of states fail in most cases, but 

nevertheless the principle itself often appears to be satisfied. 

Consider, for example, agame studied recently by S.N. Bernshtein: in any 

separate trial agambier wins only one rouble with probability A and loses it 

with probability B (B > A, A + B :::; 1), the latter, however, provided only 

that his cash is non-zero; otherwise he does not lose anything. 

If we denote by X n the state in wh ich the cash of our gambIer is n - 1 

roubles, then the conditions of the game can be written as follows: 

Pn,n+l = A, Pn+1,n = B (n = 1,2,3, ... ), 

P11 =l-A, Pnn =l-A-B (n=2,3,4, ... ), 

Pij = 0 otherwise. 

It can easily be proved that 

which implies the ergodic principle in this case. 

Note that the fact that the limits 

lim p? = Aj 
p_oo ') 

exist, implies the ergodic principle only if 
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It can be shown that always A ~ 1 and that for A < 1 the ergodic principle 

fails. 

If all the Aj exist and are zero, then there arises the question of the asymp

totic expression for PZ as p -+ 00. If such an expression exists independently 

of i: 

PZ = A} + O(A}), 

then we say that the loeal ergodie prineiple holds. This principle seems to be 

of great significance in the case of a countable set of possible states. 

Now let all possible states x be enumerated by the integers (-00 < n < 
+00). All the notation and formulas of §5 are then true, but now the sums run 

over all the integers. We consider the case 

P.'.J. = pT? . 
J-' 

in more detail. Clearly in this case we have 

PZ = PI-i' prH = LPf pr-i, Pm+n _ '"' pmpn 
k - L..; k-;· 

i i 

If the series 

a = LkPk, b2 = Lk2Pk 
k k 

are absolutely convergent, then there arises the quest ion on the conditions of 

applicability of the generalized Laplace formula 

p _ 1 [(k - pa)2] (1) 
Pk - bJ27rp exp - 2pb2 + 0 JP . (63) 

All we know is that it holds in the Bernoulli case, when 

Po = 1 - A, P1 = A, (64) 

and the other Pk vanish. Lyapunov's theorem is of no help for our problem, as 

is clear from the following example: 

P -p _1 
+1 - -1 - 2' Pk = 0, k f ±1, 

where (63) is inapplicable. In order for (63) to hold, it is necessary 9 that for 

any integer m there exists k such that 

k"l- 0 (mod m), Pk f O. 

9 More details on this question can be found in R. von Mises Wahrscheinlichkeits
rechnung, Berlin, 1931, especially the chapter on "local" limit theorems. (Re
mark by Russian editor.) 
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Note also that only for a = 0 does formula (63) actually give an asymptotie 

expression for pe for a given k. In this ease it follows from (63) that for a given 

(65) 

and given i and j, 
p_ 1 (1) 

Pij - by'21rp + 0 ..;p . (66) 

By (66) we obtain the ergodie principle in the ease eonsidered. 

We obtain special approximation formulas for pr; when the probabilities 

Pu, that is, the probabilities of the facts that the state of the system does not 

vary at any partieular moment, are very close to one. For example, in the 

Bernoulli ease, for small A the approximate Poisson formula ean be used: 

pP '" Akpk e-Ap 
k k! (67) 

A general method for deriving such formulas ean be obtained by using 

differential equations for processes eontinuous in time, as is shown in §10 for 

formula (67). 

§9. Differential equations of a process continuous in time 

As in §6, we assurne that the funetions Pij(S, t) are eontinuous and have deriva

tives with respect to t and S for t f; s. In the ease of a eountable set ofpossible 

states formulas (48) and (56) still remain valid; but to prove the possibility of 

changing the order of the sum and the limit in these formulas and thus arrive at 

the differential equations (52) and (57), we have to introduee new restrictions, 

namely: 

A) the existenee of limit values in (50); 

B) uniform eonvergenee in (50b) with respeet to j for a given k; 

C) uniform eonvergenee of the series 

"" Pjk(t, t + ~) _ 1 - Pjj (t, t + ~) 
~ ~ - ~ 

(68) 

with respect to ~ (the fact that this series eonverges follows immediately from 

(41». 
In §6, for a finite number of states we dedueed eondition A) from the 

differentiability of Pij(S, t) for t f; S; by eontrast, in the ease of a eountable set 
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of states this condition does not seem to follow from this property of Pij . With 

regard to condition B), note that uniform convergence in (50b) with respect to 

k for a given j follows from the obvious inequality 

Note, further , that we do not require uniform convergence in (50b) for any j 

and k, nor do we require uniform convergence in (50a) with respect to k; these 

requirements would have been inconvenient for applications. 

Since the factors Pij(s, t) in (48) form an absolutely convergent series, we 

can, in view of conditions A) and B), change the order of the signs lim and 

E in this formula and obtain (52). Then the variables Ajk(t) clearly satisfy 

the formulas of the last condition; moreover, since the factors Pjk(S +..6., t) are 

uniformly bounded, we can change the order of the sum and limit signs in (56), 

which suffices for deducing (57). 

§10. Uniqueness of solutions and their calculation for 

a process homogeneous in time 

In the present case, (52) takes the form 

with constants Ajk. We will prove that if the series 

L IAjkl = Brl ), 

j 

LBY)IAjkl = B~2), 
j 

~ B(n)IA· I - B(n+l) L...J j Jk - k , 
j 

B(n) L _k_, xn , k = 1,2, ... , lxi ~ () (> 0), 
n. 

n 

converge and the initial conditions 

(69) 

(70) 

(71) 

(72) 
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hold, then the equations (69) have the unique system of solutions PiA:(t) satis

fying the conditions of our problem. 

Indeed, since always Pij(t) :5 1, (69) and (70) imply 

therefore (69) can be differentiated term by term 

cF Puc(t) _ ~ A- dPij(t) - !!P .. () A-
dt2 - L..J JA: dt - dt .A: t * .A:. 

In a similar way the general relations are obtained: 

(73) 

(74) 

From (73) and the assumption of convergence of the series (71) it follows 

that the functions PiA: are analytic. Further, by (69) and (74) we find that 

(75) 

in particular, for t = 0 we have, by (72), 

(76) 

which implies that the analytic functions ~A:(t) are uniquely determined by the 

constants AiA:. Formulas (76) and (75) serve also for calculating the solutions 

of the system (69) using Taylor series. 

For example, if 

then we easily obtain 

Ai ,i+l = A, Aii = -A, 

Aij = 0 otherwise, 

(At)n-m 
Pmn(t) = (n _ m)!e-At , n ~ m, 

Pmn(t) = 0, m > n, 

that is, the formula of the Poisson distribution: for k = n - m, p = t the 

resulting formula coincides with (67). 
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If the ergodie principle holds and Pik(t) -+ Qk as t -+ 00, then obviously 

the constants Qk satisfy the equations 

If, for example 

LQk = 1, LAikQi = 0 (k = 1,2, ... ). 
k 

Ai,i+l = A, Ai+l,i = B, B > A, 

Au = -A, Au = -(A + B), i> 1, 

Aij = 0 otherwise, 

then we easily obtain from (77) 

Qn = (1 - AI B)(AI Bt-1. 

As a second example, we set 

Ai,i+l = A, Ai+l,i = iB, 

Au = -A - (i - l)B, 

Aij = 0 otherwise, 

so that from (77) we have 

1 (A)n -AlB 
Qn+l = n! Be, 

which again is Poisson's formula. 

CHAPTER IV. CONTINUOUS STATE SYSTEMS, 

THE CASE OF ONE PARAMETER 

§11. Preliminary remarks 

(77) 

Suppose now that the state of the system considered is determined by the 

values of a certain real parameter x; in this case we denote by x both the state 

of the system and the value of the parameter corresponding to this state. If cEy 

is the set of all states x for which x ::; y, then we set 
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As a function of y, F(t1' x, t2, y) is monotone and right continuous and satisfies 

the boundary conditions 

(78) 

For the function F(t1, x, t2, y) the fundamental equation (3) transforms into: 

(79) 

Thus we have to use integral distribution functions of random variables and 

ordinary Stieltjes integrals. 

Integral (79) exists according to Lebesgue 10 if F(t2, y, t3, z) is Borel-meas

urable with respect to y. In what follows we assurne that the system J (see §1) 

coincides with the system of all Borel sets, which implies Borel-measurability 

of F(t1, x, t2, y) as a function of x. In this case, as is known, the additive 

set function P(t1, x, t2, ~), for all Borel sets ~, is uniquely determined by the 

corresponding function F(t1' x, t2, y). 

A function F(y), monotone and right continuous, such that 

F( -00) = 0, F( +00) = 1 

is called a normal distribution function. If F1(x, y) and F2 (x, y), as functions 

of x, are Borel measurable and, as functions of y, are normal distribution 

functions, then the same is true for the function 

This operator EB, like *, obeys the associative law; using this law, the funda

mental equation (79) can be expressed as 

(81) 

with F1 (x, y) = V1(y-x), F2(x, y) = V2 (y-x). Then, as can easily be shown, 

10 H. Lebesgue, Ler;ons sur I'integration et la recherche des fonctions primitives, 
Gauthier-Villars, Paris, 1928. 
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where 

(83) 

The associative law also holds for the operator 0 while for normal distribution 

functions the commutative law holds as weIlj if Vl(x) and V2(x) are considered 

as distribution functions of two independent random variables Xl and X 2 , 

then Vl(X) 0 V2(X), as is known, is the distribution function of the sum 11 

X = Xl +X2 • 

If F(tl, X, t2, y) is absolutely continuous as a function of y, then we have 

(84) 

In this case the non-negative function f(tl,x,t2,y) is Borel measurable with 

respect to x and y and satisfies 

i: f(tl,x,t2,y) = 1, (85) 

f(tl,X,t3,Z) = i: f(tl,x,t2,y)f(t2,y,t3,Z)dy. (86) 

Conversely, if (85), (86) hold for f(tl, x, t2, y), then the function F(tl, x, t2, y) 

defined by (84) satisfies (78) and (79): hence, such a function determines the 

scheme of a stochastic process. This function f(tl,x,t2,y) will be called the 

differential distribution function for the random variable y. 

Note also that the following mixed formulas hold: 

F(tl,x,t3,Z) = i: F(t2,y,t3,Z)f(tl,x,t2,y)dy, (87) 

f(tl.X,t3,Z) = i: f(t2,y,t3,Z)dF(tl,X,t2,Y). (88) 

When the scheme is discontinuous in time, the functions 

are consideredj they satisfy the equations 

Fm.n+1(x,y) = Fmn(x, y) EI:) Fn+l(x,y), (89) 

Fkn(x, y) = Fkm(x, y) EI:) Fmn(x, y) (k< m < n). (90) 

11 See P. Levy, Calcul des probabilites, Paris, 1927, p.187. 
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If 

then, in addition, we have 

fm,n+1(X,Z) = i: fmn(x,y)fn+1(y,z)dy, (91) 

fkn(X,Z) = i: fkm(X, Y)fmn(Y, z)dy (k< m< n). (92) 

§12. Lindeberg's method. 

Passage from discontinuous to continuous schemes 

As we nüted in §3, probability theory usually deals only with schemes that are 

discontinuous in time. Für these schemes, the main problem is to find approx

imate expressions for the distributions F mn (x, y) für large n - m, or what is 

essentially the same, to construct asymptotic formulas for Fmn(x, y) as n -+ 00. 

The Laplace-Lyapunov theorem is the most important result achieved in this 

direction. Now we will consider in more detail the proof of this theorem given 

by Lindeberg 12 with the purpose üf outlining his main idea in as general a form 

as püssible and thus obtaining a general method for constructing asymptotic 

expressions for F mn (x, y). 

Let 

Fn(x,y) = Vn(y - x), 

an(x) = i: (y - x)dFn(x, y) = i: ydVn(y) = 0, 

b~(x) = i: (y - x)2dFn(x,y) = i: y2dVn(y) = b~, 

B2 - b2 b2 b2 mn - m+1 + m+2+ ... + n· 

The Laplace-Lyapunüv theorem states that under certain additional assump

tions, for constant m and as n -+ 00 we have 

( y - X) Fmn(x,y) = <I> Bmn + 0(1) 

12 Math. Z. 15 (1922), 211. 
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uniformly with respect to x and y, where 

~(Z) = -- e-Z /2dz. 1 jZ 2 

V2i -00 

Along with the stochastic process with discontinuous time determined by 

the functions Fn(x, y), we will consider another one, with continuous time; we 

suppose that it is characterized by the function 

-(' ") (Y-X) Ft,x,t,y =~ .~ . 
v t" - t' 

Further , let 

to = 0, tn = Bgn, 

Fmn(x,y) = F(tm,x,tn,y), Fn(x,y) = Fn-1,n(x,y). 

Clearly we have 

- (y- X) Fn(x,y) = ~ b;:- , 

än(x) = i: (y - x)dF n(x, y) = 0, 

b~(x) = i: (y - x?dF n(x, y) = b~. 

The first and second moments än(x) and b~(x) of the distribution F n(x, y) 

coincide with the corresponding moments an(x) and b~(x) of the distribution 

Fn(x, y). From this Lindeberg deduced that 

Fmn(x, y) - F mn(x, y) -+ 0 as n -+ 00, 

after which the Laplace-Lyapunov theorem follows directly from the obvious 

identity 
- (y- X) Fmn(x,y) = ~ -B . 

mn 

In the general case of arbitrary functions Fn(x, y) we can only apply Linde

berg's method ifwe know a function F(t',x,t",y) characterizing a continuous 

stochastic process, and which, for a certain sequence of instants of time 

to < tl < t2 < ... < tn < ... 
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gives the moments än(x), b~(x) which coincide with an(x), b~(x), or are dose 

to them. A general method for constructing such functions F is obtained by 

using differential equations of continuous processes, considered in the sections 

below. To pass from F to F we can use the following: 

Transition Theorem. Let thefunctions Fn(x,y) and Fn(x,y) determine two 

stochastic processes with discontinuous time. If i: (y - x)dFn(x,y) = an(x) i: (y - x)dFn(x,y) = än(x), (93) 

i: (y - x)2dFn(x, y) = b~(x), i: (y - x)2dF n(x, y) = b~(x), (94) 

i: Iy - xI3dFn(x,y) = cn(x), i: Iy- xI3dFn(x,y) = cn(x), (95) 

lan(x)-än(x)1 ~ Pn, Ibn(x)-b~(x)1 ~ qn, cn(x) ~ rn, cn(x) ~ f n, (96) 

and ifthere exists a function R(x) such that 

R(x)=O, forx~O, 

o ~ R( x) ~ 1, for 0 < x < I, 

R(x) = 1, for I ~ x, 

and for 

the inequalities 

I {)3 ( I (3) ()x3Ukn x,z) ~ Kn , (k=O,1, ... ,n), 

hold, then the relation 

holds, where 

(97) 

i 
(98) " 

(99) 
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In applying this theorem to the case when the moments a(x), b(x), c(x) are 

unbounded as x increases, it is often possible to eliminate this unboundedness 

by introducing a new properly chosen variable x' = <jJ(x). 

Proo/ 0/ the Transition Theorem. By (98) we have 

Uk-l,n(X, y) = Fk-l,n(X, y) EB R(y - x) = 

= Fk(X, y) EB Fk+l(X, y) EB ••• EB F n(x, y) EB R(y - x) = 

= Fk(x,y) EB Ukn(X,y) 

and by (93)-(95), (99), 

= 1: [Ukn(X,y) + :xUkn(X,y)z~x+ 

ö2 (z-x)2 ö3 (z-x)3]_ 
+ öx2Ukn(x,y) 2 + öx3Ukn(e,y) 6 dFk(X,Z) = 

Ö _ 
= Ukn(X, y) + öx Ukn(X, y)ak(x)+ 

2 -2 -
~U ( )bk(x) ÖK(3)Ck(X) 

+ öx2 kn X, Y 2 + n 6' 

Setting 

we obtain a formula similar to (102), 

Ö 
Vk-l,n(X, y) = Ukn(X, y) + öx Ukn(X, y)ak(x)+ 

~U ( )b~(x) OJ{(3)Ck(X) 
+ öx2 kn x, Y 2 + n 6' 10 I ::; 1. 

From (102) and (104) and using (96) and (99) it follows that 

(101) 

(102) 

(103) 

(104) 
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Now let 

Wkn(X, y) = FOk(X, y) EB Ukn(X, y) = 
= F1(x, y) EB Fz(x, y) EB ••• EB Fk(X, y) EB Ukn(X, y) = 

= FO,k-l(X, y) EB Vk-l,n(X, y). 

Then by (105) we have 

= IFo,k-l(X,y) EB Vk-l,n(X, y) - FO,k-l(X, y) EB Uk-l,n(X,y)1 ~ 

~ [: IVk-l,n(Z,y) - Uk_l,n(Z,y)ldFo,k_l(X,Z) ~ 

(106) 

~ sup IVk-l,n(Z,y)-Uk-l,n(Z,y)1 ~ K~1)Pk+~K~Z)qk+~K~3)(rk+fk)' (107) 

But 

Wnn(x, y) = Fon(x, y) EB R(y - x) = [: R(y - z)dFon(x, z) 

and 

WOn(X, y) = Fon(x, y) EB R(y - x) = [: R(y - z)dFon(x, z). 

Taking into account (97) we obtain 

Wnn(X, y) ~ [Y
oo 

dFon(x, z) = Fon (x, y), 

Wnn(x, y + 1) ~ [Y
oo 

dFon(x, z) = Fon(x, y), 

Won(X, y) ~ [Y~' dFon(x, z) = Fon(x, y -1), 

j Y+l 

WOn(x, y + 1) ~ -00 dFon(x, z) = Fon(x, y + 1), 

(108) 

Formula (100) now follows immediately from (107) and (108). The details of 

the proof can be found in Lindeberg's paper referred to above. 
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§13. The first differential equation for processes 

continuous in time 

If the state of our system 6 can be changed at any moment t, then it is 

natural to assume that significant changes of the parameter x during small 

time intervals will occur very seldom, or, more exactly, that for any positive f, 

P(t,x,t+ß, Iy-xl>f)-O asß-O. (109) 

In most cases we may assume that the stricter condition 

holds, at least for the first three moments m(l), m(2) and m(3). A general study 

of the possibilities that arise under these assumptions is of great interest; some 

remarks to this end will be given below in §19. 

In the following sections we also assume that the following important con

dition holds: 

(111) 

This condition will certainly hold if in the definition of m(3)(t, x, ß) via (110) 

only infinitesimally small differences y - x playa significant role for infinitesi

maHy small ß or, more precisely, if 

(112) 

Strictly speaking, only in this case is our process continuous in time. For-

mula (111) also implies that 

m(2)(t x ß) 
--;~.....:'---,-' -,-7- - 0 as ß - O. 
m(1)(t,x,ß) 

Finally, we will also assume that for s i= t all the partial derivatives of the 

function F( s, x, t, y) up to the fourth order exist, and that these derivatives for 

constant t, y are uniformly bounded with respect to sand x for t - s > k > O. 

From (78) and (110) we conclude that for s = t the function F(s,x,t,y) is, by 

contrast, discontinuous. The function 

() 
f(s,x,t,y) = ()yF(s,x,t,y), (113) 
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clearly satisfies (84)-(86) and, at given t, y, has for t - s > k > 0 deriva

tives up to the third order that are uniformly bounded with respect to s and 

t. All further calculations are made for this differential distribution function 

f(s, z, t, y). 

Set 

a(t, z, d) = I: (y - z)f(t, z, t + d, y)dy, (114) 

b2(t, z, d) = I: (y - z)2 f(t, Z, t + d, y)dy = m(2)(t, z, d), (115) 

c(t, z, d) = I: Iy - zl3 f(t, Z, t + d, y)dy = m(3)(t, z, d). (116) 

By (85) and (86) we have 

f(s, z, t, y) = I: f(s, z, s + d, z)f(s, d, z, t, y)dz = 

= I: f(S,Z,S+d,Z)[f(s+d,z,t,y)+ 

8 
+ 8z f (S + d,z, t,y)(z - z)+ 

82 (z - z)2 
+8z2f(s+d,z,t,y) 2 + 

83 (z - z)3] 
+ 8e3f(s + d,e, t, y) 6 dz = 

8 
= f(s+d,z,t,y)+ 8z f (s+d,z,t,y)a(s,z,d)+ 

82 f( d )b2(s, Z, d) 8c(s, z, d) 
+ 8z2 S + ,z, t, y 2 + 6 ' 181< c, (117) 

where for s + d < T < t, C can be chosen independently of d. From (117) we 

immediately obtain 

f(s+d,z,t,y)-f(s,z,t,y) _ 
d 

- -!...f( d t )a(s,z,d) 
- 8z s + ,z" y d 

82 f( A ) b2 (s, Z, d) lI c(s, Z, d) 
- 8z2 S + u, z, t, y 2d - 17 6d . (118) 
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First we prove that if for given x and s the determinant 

::c /(s, x, t', y') 
D(s x t' y' t" y") = , , , " IlJ 

{ii'J" /(s, x, t', y') 

~/(s X t" y") {):c " , 

()~ /(s X t" y") 
(ii'J" " , 

does not vanish identicaHy for any t', y' , t" , y", then the ratios 

a(s,x,t::..)jt::.. and b2 (s,x,t::..)j2t::.. 

tend to weH defined limits A(s,x) and B2(s,x) as t::.. -+ O. 

(119) 

Thus, let t', y', t", y" be chosen so that (119) is non-zero; in this case, for 

any sufficiently smaH t::.. we also have 

D(s + t::.., x, t', y', t", y") i= 0, 

so that the equations 

>.(t::..) :x /(s + t::.., x, t', y') + JJ(t::..) :x /(s + t::.., x, t", y") = 0, 

>.(t::..) ::2/(S + t::.., x, t', y') + JJ(t::..) ::2/(S + t::.., x, t", y") = 1 

(120) 

have a unique solution. In this case >'(t::..) and JJ(t::..) tend to >'(0) and JJ(O) as 

t::.. -+ O. Further, by (118) we obtain 

>.(t::../(s + t::.., x, t', yl- /(s, x, t', y') + 

+JJ(t::../(s + t::.., x, t", y") - /(s, x, t", y") = 
t::.. 

b2(s,x,t::..) _ (0' Ol/)C(s,x, t::..) 
2t::.. + 6t::..· 

The left-hand side of formula (121) tends to 

n = >'(0) :s/(s, x, t', y') + JJ(O) :s /(s, x, t", y") 

(121) 

as t::.. -+ 0, whereas on the right-hand side the second term is infinitesimally 

smaH as compared with the first one, by (111); therefore this term tends to the 

limit 
B 2( ) _ 1· b2(s, x, t::..) __ t"\ 

S,X - 1m - u. 
"'-_0 2t::.. 

(122) 
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It follows immediately from (122) and (111) that 

c(s, x, t:..)j t:.. -+ 0 as t:.. -+ O. (123) 

By (122) and (123), formula (118) for t:.. = 0 becomes: 

1· [8 f( )a(s,x,t:..)] 8 f( ) A1.To 8x s,x,t,y t:.. = - 8s s,x,t,y-

82 
- 8x2f(s,x,t,y)B2(s,x). 

Since 8f(s, x, t, y)j8x does not vanish identically for any t and y, the following 

limit also exists: 

A(s, x) = lim a(s,x,t:..) = 
A_O t:.. 

_ -8f(s, x, t, y)j8s - B2(s, x)82 f(s, x, t, y)j8x2 

8f(s, x, t, y)j8x 
(124) 

Passing to the limit in (118), (122), (123) and (124) we obtain the first 

fundamental differential equation 

8 8 82 

8s f (s, x, t, y) = -A(s, x) 8x f(s, x, t, y) - B2(s, x) 8x2 f(s, x, t, y). (125) 

When the determinant D(s x t' y' t" y") vanishes for any t' y' t" y" , , , , , , , , , 
then the limits A( s, x) and B 2 ( s, x) do not in general exist, as is dear from the 

following example: 

f( s x t y) = 3y 2 e-(y3-11:3)2/4(t-.). 
, , , 2 .. /rr(t - s) 

(126) 

Here, for x = 0 we have 

It can be shown, however, that these singular points (s, x) form a nowhere 

dense set in the (s, x)-plane. 

The practical significance of these very important quantities A(s, x) and 

B(s, x) is as folIows: A(s, x) is the mean rate of variation of the parameter x 

over an infinitesimally small time interval and B(s, x) is the differential variance 

of the process. The variance of the difference y ~ x for the time interval t:.. is 

b(s,x,t:..) = B(s,x)~ + o(VX) = O(VX); (127) 
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and the expectation of this difference is 

a(s,x,~) = A(s,x)~ + o(~) = O(~). (128) 

It is worth mentioning that the expectation m(1)(t,x,~) of Iy - xl, like the 

variance b( s, x, ~), is a quantity of order -...IX. 
As will be shown in the following sections, the functions A(s, x) and B(s, x) 

in some cases uniquely determine our stochastic scheme. 

§14. The second differential equation 

In this section we retain all the requirements imposed on f(s,x,t,y) in §13 

and, in addition, assurne that f(s, x, t, y) has continuous derivatives up to the 

fourth order. Then, from (120) it clearly follows that if the determinant (119) 

is non-zero, then A(O) and 1'(0) have continuous derivatives with respect to s 

and x up to the second order; by (122) and (124) the same is also true for 

B2(s, x) and A(s, x). 

Now, assurne that for a certain t we are given an interval a ~ y ~ b such 

that at each point of this interval the determinant D(t, y, u', z', u", Zll) does 

not vanish identically for any u', z' , u", Zll. N ext, let R(y) be a function that 

is non-zero only on the interval a < y < b, is non-negative and has bounded 

derivatives up to the third order. In this case we have 

l b 
() () l b 

a {)/(s,x,t,y)R(y)dy= ()t a f(s,x,t,y)R(y)dy= 

1 JOO = lim A [f(s,x,t+~,y)-f(s,x,t,y)]R(y)dy= 
.1-0.u. -00 

1 JOO JOO = lim A{ R(y) f(s,x,t,z)f(t,z,t+~,y)dzdy-
.1_0 .u. -00 -00 

JOO 1 
- f(s, x, t, Y)R(Y)dY} = lim A X 

-00 .1-0.u. 

X {I: f(s, x, t, z) i: f(t, z, t +~, y) [R(z) + R'(z)(y - z)+ 

+R"(z) (y ~ z)2 + R11I(e) (y ~ Z)3] dydz-

J OO 1jOO 
- f(s,x,t,z)R(z)dz} = lim A f(s"x,t,z)x 

-00 .1-0.u. -00 
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[R'( ) ( A) nI,( )b2(t,z,.6.) BC(t,z,.6.)]d_ 
X zat,z,.u+.n z 2 + 6 z-

= i: f(8, x, t, z)[R'(z)A(t, z) + R"(z)B2(t, z)]dz = 

= l b f(8, X, t, y)[R'(y)A(t, y) + R"(y)B2(t, y)]dy, 

IBI ~ sup IRIII (e) I· 

(129) 

The passage to the limit with respect to .6. in deriving these formulas is justified 

by the fact that a(t,z,.6.)/.6., b2(t,z,.6.)/2.6. and c(t,z,.6.)/.6. tend uniformly 

to A(t,z), B2(t,z) and 0 respectively, and the integral ofthe factor f(8,X,t,Z) 

with respect to z is finite. 

Integrating by parts we obtain 

lb lb () f(8, X, t, y)R'(y)A(t, y)dy = - 8[f(8, X, t, y)A(t, y)]R(y)dy. 
a a Y 

(130) 

In exactly the same way, integrating by parts twice, we obtain 

I b f(8, X, t, y)R"(y)B2(t, y)dy = I b :22 [/(8, x, t, y)B2(t, y)]R(y)dy, (131) 
a a Y 

since R(a) = R(b) = R'(a) = R'(b) = O. Formulas (129)-(131) immediately 

imply that 

l b 
;/(8,x,t,y)R(y)dY= l b

{-:y[A(t,y)f(8,x,t,y)]+ 

{)2 } + {)y2 [B2(t,y)f(8,X,t, y)] R(y)dy. (132) 

However, since the function R(y) can be chosen arbitrarily only if the above 

conditions are fulfilled, we easily see that for points (t, y) at which the deter

minant D(t, y, u', z', u", Zll) does not vanish identically the 8econd fundamental 

differential equation also holds: 

() () {)2 2 
()tf(8,x,t,y)=-{)y[A(t,y)f(8,X,t,y)]+ {)y2[B (t,y)f(8,X,t,y)]. (133) 

This second equation could also have been obtained without using the 

first one, using the methods described in §13 directly; then, however, new and 
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more stringent restrietions (that we omit here) would have to be imposed on 

f(s,:c, t, y). In that case we start from the formula, similar to (118), 

1 
Ll [f(s,:c, t, y) - f(s,:c, t - Ll, y)] = 

1 100 = f(s,:c,t - Ll,y) Ll [ -00 f(t - Ll,z,t,y)dz -1]+ 

o 1100 
+-;;-f(s,:c,t - Ll,y) Ll f(t - Ll,z,t,y)(z - y)dz+ 

vy -00 

02 1 100 
2 o 2f (s,:c,t-Ll,y)2Ll f(t-Ll,z,t,y)(z-y) dz+ 

y -00 

1 100 
3 +6Ll _oof(t-Ll,z,t,y)lz-YI dz. (134) 

Then we prove that 

lim A f(t - Ll,z,t,y)lz - yl3dz = 0 1100 

.:l.-Ou. -00 

and that the limits 

. 1 100 2 -2 hm ~ f(t - Ll,z,t,y)lz - yl dz = B (t,y), 
.:l.-o2u. -00 

(135) 

1100 
-lim A f(t - Ll, z, t, y)(z - y)dz = A(t, y), 

.:l.-ou. -00 
(136) 

1 100 
-li~oLl ( -00 f(t - Ll,z,t,y)dz -1) = N(t,y), (137) 

exist. Thus we would have obtained our second equation in the followingform 

o -
o/(s,:c,t,y) = N(t,y)f(s,:c,t,y)+ 

- 0 -2 02 ( ) +A(t, y) Oyf(s,:c, t, y) + B (t, y) oy2 f(s,:c, t, y). 138 

To show the identity of this equation with the one derived before, we would 

have to prove that 

1J2(t, y) = B 2(t, y), 
- 0 2 A(t, y) = -A(t, y) + oy B (t, y), 

- 0 02 2 
N(t, y) = oy A(t, y) + oy2 B (t, y). 

(139) 

(140) 

(141) 
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§15. Statement of the uniqueness and existence problem of 

solutions of the second differential equation 

In order to define the function f(8, z, t, y) uniquely by the differential equations 

(125) and (133) we have to set up some initial conditions. For the second 

equation (133) the following approach can be adopted: according to (85), the 

function f(8, z, t, y) satisfies the condition 

1: f(8,z,t,y)dy = 1 (142) 

for every t > 8 and, in view of (110), we also have 

1: (y - z?f(8,z,t,y)dy -+ 0, as t -+ 8. (143) 

The main question regarding the uniqueness of solutions is as follows: under 

what conditions can we assert that for given 8 and z there exists a unique 

non-negative function f(8, z, t, y) ofthe variables t, y defined for all y and t > 8 

and satisfying (133) and the conditions (142), (143) ? In certain important 

particular cases such conditions may be described: these are, for example, all 

the cases considered in the following two sections. 

Now given the functions A(t, y) and B2(t, y), the question is whether there 

exists a non-negative function f(8, z, t, y) such that, on the one hand, it sat

isfies (85) and (86) (as was indicated in §11, these requirements are needed 

for f(8, z, t, y) to determine a stochastic system), and on the other hand, after 

passing to the limit via formulas (122) and (124), it gives these functions A(t, y) 

and B 2(t, y). 

To solve this problem, we can, for example, first determine some non

negative solution of our second differential equation (133) satisfying the condi

tions (142), (143) and then check if it is indeed a solution to our problem. In 

doing this, the following two general questions arise: 

1) Under what conditions does there exist such a solution of equation 

(133)? 

2) Under what conditions does this solution really satisfy (85) and (86)? 

There are good grounds for assuming that these conditions are of a sufli

ciently general character. 
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§16. Bachelier's case 

We now assume that I(s, x, t, y) is a function ofthe difference y-x, depending 

arbitrarilyon s and t, that is, that our process is homogeneous with respect to 

the parameter 

I(s,x,t,y) = v(s,t,y - x). (144) 

In this case, clearly A(s, t) and B(s, t) depend only on s, so that the differential 

equations (125) and (133) are now expressed as 

{}I {}I 2 {}2 I 
{}s = -A(s) {}x - B (s) {}x2 ' 

{}I = -A(t) {}I + B 2 (t) {}2 I. 
ät {}y {}y2 

For the function v(s, t, z), we obtain from (145) and (146): 

{}v _ A( ) {}v _ B 2 ( ) {}2 v 
{}s - s {}z S {}z2' 

{}v {}v 2 {}2 V 

{}t = -A(t) {}z + B (t) {}z2' 

(145) 

(146) 

(147) 

(148) 

Equation (148) was found by Bachelier, 13 but strictly speaking, was not 

proved. 

If we have A(t) = 0 and B(t) = 1 identicaHy, then (133) (respectively 

(146» turns into the heat equation 

(149) 

for which the only non-negative solution satisfying (142), (143) is given, as is 

weH known, by Laplace's formula 

In general we assume that 

x' = x -16 
A(u)du, y' = y -lt 

A(u)du, 

s' = 16 
B 2(u)du, t' = l' B 2(u)du. 

13 See papers Nos. 1 and 3 in footnote 2. 

(150) 
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Then (146) turns into 

and the conditions (142), (143) retain the same form in the new variables 

s', x',t', y' as in the variables s,x,t,y. Bence in the general case, the function 

is the only solution of equation (146) satisfying our conditions. 

Let 

§17. A method of transforming distribution functions 

s' = ljJ(s), t' = ljJ(t), x' = 1jJ(s,x), y' = 1jJ(t,y) 

I(s, x, t, y) = (I}1/J(t, y)joy)!'(s', x', t', y'), 

(151) 

(152) 

and assurne that ljJ(t) is a continuous, nowhere decreasing function, whereas 

1jJ(t, y) is arbitrary with respect to t and has a continuous positive derivative 

with respect to y. If I(s,x,t,y) satisfies (85) and (86), then the same is also 

true, as can easily be demonstrated, for the function f' with respect to the new 

variables s', x', t', y'; in other words, our transformation gives a new function 

f'(s',x',t',y') which, like I(s,x,t,y), determines a stochastic scheme. 

If ljJ(t) and 1jJ(t, y) have appropriate derivatives, then under transition to 

the neW variables (125) and (133) turn into 

of' A'(' ,)of' '2(' ,)02 f' 
os' = - s ,x ox' - B s, x ox'2' (153) 

of' = -~[A'I'] + ~[B'2/'] 
ot' oy' oy'2 ' 

(154) 

where we have set 

A'(' ') _ (021jJ(t, y)joy2)B2(t, y) + (o1jJ(t, y)joy)A(t, y) + o1jJ(t, y)jot 
t ,y - oljJ(t)jot ' 

B,2(t' ') = (o1jJ(t,y)joy)2B2(t,y) 
,y oljJ(t)jot' (155) 
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With the help of the above transformation the solutions of (133) can be 

obtained for many new types of coefficients A(t, y) and B2(t, y). For example, 

let 

A(t, y) = a(t)y + b(t), B 2(t, y) = c(t); (156) 

we set 

</J(t) = J c(t)e-2Ja(t)dt dt, 

'IjJ(t,y) = ye-Ja(t)dt - J b(t)e-Ja(t)dt dt 
(157) 

and obtain in the new variables s', x', t', y', I' the simplest heat equation: 

(158) 

In this case the initial conditions (142) and (143) remain valid for /'( s', x', t', y') 

as weIl; therefore the formula 

I' = 1 e-(yl-:z;1)2/4(t' _'/) 

J1r(t' - s') 
(159) 

together with (157) and (152) gives the unique solution I(s, x, t, y) of (133) 

with coefficients of the form (156) satisfying our conditions. It is easy to see 

that in this case the function I(s, x, t, y) is of the form 

_1_ -(y-a)2/4ß .,;:;rpe , (160) 

where a and ß depend only on s, x and t, but not on y. 

It is an important problem to find all possible types of coefficients A(t, y) 
and B 2 (t, y) such that for any s, t, x we always obtain a function of the form 

(160), that is, the Laplace distribution function. 

As a second example consider the case 

A(t, y) = a(t)(y - c), B2(t, y) = b(t)(y - c)2. (161) 

This time, setting 

</J(t) = J b(t)dt, 'IjJ(t) = ln(y - c) + J [b(t) - a(t)]dt (162) 

we again obtain for I'(s', x',t', y') equation (158) for which the solution (159) 

is already known. Note that here it suffices to consider only the values x > c, 
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y > c, since as x or y varies from c to +00 the variable x' (hence y') runs through 

all the values from -00 to +00. Certain complications arising in connection 

with this when transferring the conditions (142) and (143) to f' can easily be 

eliminated. 

In particular, for 

A(t, y) = 0, B2(t, y) = y2 (163) 

we have the formula 

1 { (In y +t-Inx-s)2} 
f(s,x,t,y) = exp - 4() . YV7r(t-s) t-s 

(164) 

For applications the most important is the case when A(t, y) and B 2(t, y) 
depend only on y, but do not depend on the time t. The next step in this 

direction would be to solve our problem for coefficients of the form 

A(y) = ay + b, B2(y) = cy2 + dy + e. (165) 

§18. Stationary distribution functions 

If at time ta the differential function of a probability distribution g(ta, y) is 

known, then, as for the general formula (5), the distribution function g(t, y) is 

determined for any t > ta by the formula 

g(t, y) = I: g(ta, x)f(ta, x, t, y)dx. (166) 

Clearly, g(t, y) satisfies the equation 

og 0 02 2 
öt = - öy [A(t, y)g] + oy2 [B (t, y)g]. (167) 

We now assume that the coefficients A(t, y) and B2(t, y) depend onlyon y 

(the process is homogeneous in time) and study the functions g(t,y) which in 

this case do not change with time. It is dear that for such functions we have 

(168) 

If we assume that 9 and g' tend to 0 so rapidly as y -. ±oo that the entire 

left-hand side of (168) tends to 0, then dearly C = 0 and we have 

(169) 
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Moreover the function g(y) must also satisfy the condition 

(170) 

In most cases it appears possible to prove that, if there exists a station

ary solution g(x), then f(s,x,t,y) tends to g(y) as t --+ 00 and for arbitrary 

constants sand Xj thus, g(y) appears to be not only a stationary, but also the 

limiting solution. 

If the coefficients A and B 2 are of the form (165) , then (169) turns into 

the Pearson equation 

with 
d-b 

p=---, 
a- 2c 

g' y - p 

g - qo + qlY + q2y2 ' 

e 
qo=--, 

a - 2c 

d 
ql = ---, 

a - 2c 

e 
q2 = ---. 

a - 2c 

(171) 

(172) 

Hence we can construct stochastic schemes for which any of the functions of 

the Pearson distribution is a stationary solution. 

§19. Other possibilities 

The theory presented in §§13-18 is essentiaHy determined by the assumption 

(111). If we get rid of this assumption, then even when the condition (110) 

is retained, a number of new possibilities appear. For example, consider the 

scheme determined by the distribution function 

F(s,x,t,y) = e-a(t-·)u(y - x) + (1- e-a(t-.» iYoo u(z)dz, (173) 

where u(z) = 0 for z < 0 and u(z) = 1 for z ~ 0, and u(z) is a continuous 

non-negative function for which 

i: u(z)dz = 1 

and the moments i: u(z)lzlidz (i = 1,2,3) 

are finite. It can easily be shown that the function F(s,x,t,y) satisfies (78) 

and (79), as weH as (110). 

This scheme can be interpreted as follows: du ring an infinitely small time 

inter val (t, t + dt) the parameter y either remains constant with prob ability 
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1- adt, or takes a value y', z < y' < z + dz with prob ability au(z)dt dz. Thus 

a jump is possible in any time interval, and the distribution nmction of the 

values of the parameter after the jump does not depend on the values of this 

parameter prior to the jump. 

This scheme could also be generalized in the following way: imagine that, 

during an infinitely small time interval (t, t + dt) the parameter y retains its 

former value with probability 1- a(t,y)dt and turns into y', z < y' < z + dz 

with probabiIity u(t, y, z)dt dz. Clearly we assume that I: u(t, y, z)dz = a(t, y). (174) 

In this case for g(t, y) the integro-differential equation 

8 100 -8 g(t, y) = -a(t, y)g(t, y) + g(t, z)u(t, z, y)dz 
t -00 

(175) 

should hold. 

If we wish to consider not only jumps but also continuous changes in y, 

then it is natural to expect that g(t, y) satisfies 

8 100 -8 g(t, y) = -a(t, y)g(t, y) + g(t, z)u(t, z, y)dz-
t -00 

8 82 
- 8y [A(t, y)g(t, y)] + 8y2 [B 2(t, y)g(t, y)], (176) 

provided (174) holds and the coefficients A(t, y) and B2(t, y) are as indicated 

in §13. 

CONCLUSION 

If the state of the system under consideration is determined by n real param

eters Z1. Z2, ... , Zn, then under certain conditions similar to those of §13 we 

have the following differential equations for the differential distribution function 

I(s, Z1. ... , Zn, t, Y1,··· ,Yn): 

81 n 81 n n 82 I a = - L:: Ai(S, Z1. ... , Zn)a-:- - L:: L:: Bij(S, Zl, ... , zn) 8 .8 .' (177) 
S i=l Z, i=l j=l Z, Z, 
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For the case when A;(t, Yl," . ,Yn) and B;j(t, Yl,' .. ,Yn) depend only on 

t, these equations were discovered and solved by Bachelier. 14 In this case the 

solutions satisfying the conditions of our problem have the form 

f = Pexp{ - ~ ~P;j(Yi - Xi - qi)(Yj - Xj - qj)}, (179) 

with P,Q,Pij and qi depending only on sand t. 
It is also possible to consider mixed schemes, where the state of the system 

is determined by parameters some of which are discrete and others continuous. 

Moscow, 26 July 1930 

14 See item 11 in footnote 2. 



10. THE WAITING PROBLEM * 

§ 1. The purpose of this paper is to show several applications of the general 

equati<?ns which I studied in my memoir submitted to "Mathematische An

nalen" 1 (see No. 9 of the present publication). For this I give a new solution 

to the "Waiting problem" dealt with in an extensive memoir by Polyachek. 2 

The essence of the problem is as folIows. (Naturally, the same mathe

matical problem can arise when studying other real phenomena, therefore such 

expressions as "telephone lines" or "conversation" are used here only for the 

sake of illustration.) 

Assume that, in a telephone station, there are n lines over which telephone 

conversations can take place. At any moment there are m clients that either 

have a conversation or await their turn; the latter takes place only for m > n, 

and the length of the waiting line is m - n. Theoretically, m can take all 

non-negative integer values: 

m = 0, 1,2, .... 

We denote by 

the probabilities of these values at time t. Clearly, 

00 

L: Qm(t) = l. (1) 
m:O 

If we know m at time to, then 

(2) 

The first problem to be solved is to calculate the probabilities Qm(t) for 

t > to if we know their initial values Qm(tO), which, in particular, can take 

the form (2). The second problem is to determine the expectation and the 

distribution law for the waiting time for a client arriving at time t. 

* Sur le probleme d'attente', Mat. Sb. 38:1/2 (1931), 101-106. 
1 This article, however, does not suggest that the reader has read this memoir, 

apart from the proof of several auxiliary statements. 
2 Math. Z. 32 (1930), 64-100. 

109 
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§2. We proceed from the following two assumptions on the character of the 

random events studied. 

I. At any infinitely small time interval (t, t + dt) a new dient arrives at the 

station with probability o:(t)dt. More precisely, at any interval (t, t + A) the 

probability of a new dient arriving at the station is 

o:(t)A + o(A), 

whereas the probability for more than one dient to arrive is 

o(A); 

here, as usual, o(A) is an infinitesimal with respect to A; we assume that the 

function o:(t) is continuous. The probabilities relating to the interval (t, t + A) 

do not depend on the number of dients arriving earlier or on the times of their 

arrival. 

11. The prob ability of finishing a conversation maintained by a dient at a mo

ment t during the time interval (t, t + dt) equals ßdt; it does not depend on the 

length ofthe conversation prior to the moment t. This gives us the exponential 

distribution for the length of a conversation: the probability that this length is 

between t and t + dt is 

p(t)dt = ße-fjtdt. (3) 

In this case the expected length of a conversation is 

D = ßte-tfjdt = -. 100 1 

o ß 
(4) 

Instead of distribution (3) Polyachek assumes that the length of a conver

sation is always equal to some constant D; this assumption is as arbitrary as 

ours. 

§3. Denote by Qmp(t, t+A) the conditional prob ability that at time t+A there 

are p clients at the station if at time t there were m dients. The probability 

that within the inter val (t, t + A) more that one dient will arrive, or more than 

one on-going conversation will be finished, is o(A). Therefore 

Qmp(t, t + A) ~ w(A) = o(A), Ip - ml > 1, (5) 
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where w(Ll) does not depend on m and p. For Ip - ml ~ 1 we have 

Qm,m+l(t, t + Ll) = a(t)Ll + o(Ll), 

Qm,m-l(t, t + Ll) = mßLl + o(Ll), if m ~ n, 

Qm,m-l(t, t + Ll) = nßLl + o(Ll), if m ~ n, 

therefore 

111 

(6) 

(7) 

(8) 

Qmm(t, t + Ll) = 1- (a(t) + mß)Ll + o(Ll), if m ~ n, (9) 

Qmm (t, t + Ll) = 1 - (a(t) + nß)Ll + o(Ll), if m ~ n. (10) 

By the formula for the total probability we have 

00 

Qp(t + Ll) = L Qm (t)Qmp (t + Ll). (11) 
m=O 

Substituting the value of Qmp(t, t + Ll) from (5)-(10) into (11) we prove that 

the limit 
Q' (t) = lim Qp(t + Ll) - Qp(t) 

p .a._o Ll (12) 

always exists and the following equations hold: 

Q~(t) = ßQ1(t) - a(t)Qo(t), (13) 

Q~(t) = (i + I)ßQi+l(t) - (a(t) + iß)Qi(t) + a(t)Qi-l(t), 1 ~ i < n, (14) 

QHt) = nßQi+l(t) - (a(t) + nß)Qi(t) + a(t)Qi_l(t), n ~ i. (15) 

Thus we obtain for the functions Qi(t) a countable infinite system of dif

ferential equations. It suffices to find a solution Q~m)(t) with initial conditions 

of type (2). A general solution can be found with the help of the formulas for 

the total probability, 

00 

Qi(t) = L Qm(to)Q~m)(t). (16) 
m=O 

§4. Consider the simplest and most important case when the function a(t) is 

constant: 

a(t) = a. (17) 
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In this case the equations (13)-(15) have constant coefficients. In the paper 

mentioned above I proved the existence and uniqueness of the solution far these 

systems (under the assumption that the Qm(t) are non-negative and satisfy 

(1), which holds in our problem). Therefore the functions Qm(t) are uniquely 

determined by the equations (13)-(15) and their initial values Qm(tO). It is 

not difficult to find approximate solutions for these equations; one method for 

obtaining such a solution is given in my paper mentioned above. But from the 

practical viewpoint it is preferable to go directly to the limit solution. 

This solution only exists if 

nß> 0'. (18) 

If the reverse inequality 

nß<O' (19) 

holds, then the waiting line in the station grows indefinitely. The case 

nß=O' (20) 

is only of theoretical value, so we confine ourselves to the study of the case 

(18). 
First we find the constants Qm(t) = Qm satisfying the equations (13)-(15) 

and (1). In this case 

ßQl - O'Qo = 0, 

(i + 1)ßQi+l - (0' + ßi)Qi + O'Qi-l = 0, 1 $ i < n, 

nßQi+1 - (0' + nß)Qi + O'Qi-l = 0, n $ i, 

00 

From (21)-(23) it is easy to obtain 

Qi = WiQO, 

Wi = ~ ( -ßO') i, 0 $ i $ n, 
a. 

1 (O')i 
Wi = n!ni-n ß ' n $ i, 

(21) 

(22) 

(23) 

(1) 

(24) 

(25) 
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from which, by (1) we have 

00 

ü= LWi, 
i=O 
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(26) 

(27) 

Formulas (24)-(27) give the unique stationary solution of our problem. 

It can be proved that for any other solution the functions Qm(t) tend to 

Qm as t -+ 00, that is, the stationary solution is also the limit solution. 

The following remark concerns formula (24)-(27). We say that the prob

ability distribution {Q~)(t)} exceeds the distribution {Q~)(t)} iffor any m, 

(28) 

where 

(29) 

If the initial conditions {Q~)(to)} exceed {Q~)(to)}, this relation persists at 

any moment t > to. Let Qm(t) be the solution of our problem with initial 

conditions 

Qo(to) = 1, Qm(tO) = 0, m> O. (30) 

These initial conditions exceed all other possible conditions. Therefore at any 

moment the solution Qm(t) exceeds any other solution, and in particular, the 

stationary solution. 

Thus we see that if the coefficients a and ß remain constant for a suf

ficiently long time, then the desired probabilities are given by the formulas 

(24)-(27). For example, if n = 3, a/ß = 2, then we have the table: 

m o 
1/9 

1/9 

1 

2/9 

1/3 

2 

2/9 

5/9 

3 

4/27 

19/27 

4 

8/81 

65/81 

5 

16/243 

211/243 

6 

32/729 

665/729 

In this case we see that if on the average two out of three lines are busy, 

then there is a free line with probability R2 = 5/9, whereas the prob ability 
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that m > 6, that is, the probability that more than three dients are awaiting 

their turn is equal to 1 - R6 = 64/729 '" 1/11. 

§5. If the limit solution is taken as the exact solution, then it is simple to 

calculate the expectation E of the waiting time. For this, the average length 

waiting time 

1 1 (a)n+1 ( 1 a)-2 u= :L:(m-n)Qm=-- - 1---
On!n ß nß 

m>n 

(31) 

should be divided by nß: 

E = u/nß. (32) 

Thus, in our example, for n = 3, a/ß = 2 we find 

8 8 8 8 
u= 9' E= 9.3ß = 27ß = 27 D. 

This means that the average waiting time is 8/27 of the average length of a 

conversation. 

§6. To be able to calculate the distribution law for the waiting time we have 

only to solve the following problem: under the assumption that at time to there 

are m dients at the station and a new dient A appears, we have to calculate 

the distribution law of the waiting time for this dient. We are interested only 

in the case m ;::: n, since otherwise there are free lines available. Set m = n + p 

and denote by Pq(t), q = 0,1, ... ,p, the probability that in the interval (to, t) 

precisely q conversations finish; denote by P(t) the prob ability that this number 

exceeds p. Clearly, at time to, 

Po(to) = 1, Pq(to) = 0, q > 0, P(to) = O. 

The functions Po, PI, ... , Pp, P satisfy the equations 

P~(t) = -nßPo(t), 

P;(t) = nß(Pq-l{t) - Pq{t)), q = 1,2, ... ,p, 

P'{t) = nßPq(t). 

(33) 

(34) 

Thus we have found a finite system of linear equations, which can be easily 

solved. Hence we obtain the probability P{t) that the waiting time for dient 

A is at most t - to. 

Paris, 24 November 1930 



11. THE METHOD OF THE MEDIAN IN THE THEORY OF ERRORS* 

Under the assumption that the error distribution is a normallaw the method 

of the arithmetic mean, as is weH known, is the best method for calculating 

the true value of an observable. The method of the median in this case is less 

effective, though not much less, as Haag has shown. However, if the hypothesis 

of normal distribution does not hold, then the problem arises of finding the 

best method for the given distribution law. In particular, in many cases when 

it is considered necessary to rule out "abnormal observations" it would be 

methodologically better to study a general distribution law and to find a more 

appropriate method for calculating the true value. 

In this paper I show how, knowing the law of error distribution, one can 

determine the degree of accuracy of the method of the median and compare 

it with the accuracy of the method of the arithmetic mean. Which of the two 

methods is preferable depends on the nature of the distribution law adoptedj 

however, by Theorem 2, when the distribution law is unknown and can deviate 

markedl-y /rom the normallaw, it is sa/er to use the method 0/ the median. 

The method of study, in its essential features, is due to Haag [1] (who 

applied it, however, only to the normal distribution law). 

Let the probability that the error of a single observation lies in (z, z + dz) 

be /(z)dz. We shaH assume that /(z) is continuous and !(m) :f:. 0 for the 

median m: 1m 1 
-00 !(z)dz = 2· 

Furthermore, let 

a = 1:00 
z/(z)dz 

be the expectation of the error. Denote by Z1, Z2, ... ,Zn the results of n suc

cessive observations, let an be their arithmetic mean and mn their median. We 

restrict ourselves to the case of n = 2k + 1, when mn = Zk+1. assuming that 

the Zi are numbered in increasing order. The differences (an -a) and (mn -m) 

are (as we shall see) of order O(I/fo), so that it is natural to set 

an = (an - a).,fii, I'n = (mn - m).,fii 

and study the distribution laws for an and I'n. As is known, for an we have 

a continuous distribution law: the prob ability that an lies in (a, a + da) is 

* Mat. Sb. 38:3/4 (1931), 47-50. 
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equal to tPn(a)da, where tPn(a) can be calculated by well-known formulas. If 

the variance 

U2 = [:00 (x _ a)2 f(x)dx 

exists, then tPn(a) converges to the normal distribution law 

with variance u. 

The probability that rnn lies in (t, t + dt) is 

( ) = (2k + I)! (1- 02(t))k f ( )d 
U n t (k!)2 4 t t, 

where 1 

O(t) = 2 J: f(s)ds. 

The probability that J-ln lies in (J-l, J-l + dJ-l) is 

J-l = (t - rn)V2k + 1, t = rn+ V2k+ l' 

Theorem 1. As n increases, 'ljJn(J-l) tends to the normal distribution law 

with variance 

Um = ~f(rn). 

Indeed, 

./. ( ) = ..;2iC+1(2k)! {I _ 02( )}kf( ) 
'f'n J-l (k!)24k t t . 

By Stirling's formula 

Further , it is clear that 

f(t) ~ f(rn). 

1 See the derivation of the similar formula (4) in [1]. 
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It only remains to consider the factor {I - (J2(t)}". First, we have 

I' I'f(m) 
(J(t) = m + y'2kTI = y'2kTI(1 + f), 

2k + 1 2k + 1 

where f -+ 0 as n -+ 00. Hence 

(J2(t) = 1'2 ;im) (1 + f'), 

{l- (J2(t»" = e-p2J2(m)/2(1 + f'/), 

where f' and f" also tend to O. Comparing the above expressions we obtain 

tPn(l') -+ Jgf(m)e- p2J2(m)/2, 

which proves our theorem. 

Thus we see that the variances of mn - m and an - aare infinitesimally 

small as n -+ 00. Hence, m is the systematic error in the method of the 

median, while a is the systematic error in the method of the arithmetic mean. 

The accuracies of both methods are estimated by the relation 

>. = um/u = !f(m)u. 

For a normal distribution fex) the ratio>. was calculated by Haag; it is 

>'g = .;:;J2 ,... 5/4. 

It is easy to construct examples of distribution laws for which >. takes any 

values between 0 and 00. However, we have: 

Theorem 2. For distribution laws with one maximum the ratio>. can take any 

values in the interval 

0< >. < -13, 
but it can not exceed 0. 

The maximum value 0 is attained if 

fex) = a, x ~ 1/2a, fex) = 0, x> 1/2a, 

but this distribution law does not satisfy the continuity condition: >. = 0 if 

u = +00. 
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12. A GENERALIZATION OF THE LAPLACE-LYAPUNOV THEOREM * 
Let Xl, X2, ••• be independent random variables with expectations 

and suppose that the ratios dn/bn are smaller than a certain fixed constant 

(1) 

Set 

An important problem in probability theory is to study the dependence of 

the sums Sn as n -+ 00, on the properties of tn as Jl. -+ O. On the basis of the 

now classical law of Lyapunov 1 we have 

181 ::; 1, (2) 

and R( t n , Jl.) -+ 0 uniformly with respect to Jl. if t n is greater than some constant 

T. 

Thus, for fixed n we have a formula for the asymptotic behaviour of Sn. 

Consider the following problem. Let a(t) and b(t) be functions ofthe parameter 

t. What is the probability that all the inequalities 

(3) 

hold? Assurne that a(t) and b(t) are continuously differentiable and that 

a(t) < b(t), a(O) < 0 < b(O). 

Then we can obtain an asymptotic solution of our problem similar to (2). 

All the sums Sb S2, ... , Sn (up to Sn) can be divided into the following 

three classes K, K 1 and K 2: 

K contains those sums for which all the inequalities (3) hold; 

* 'Eine Verallgemeinerung des Laplace-Liapounoffschen Satzes', Izv. Akad. Nauk 
SSSR, OMEN (1931), 959-962. Presented by S.N. Bernshtein. 

1 A.M. Liapounoff, Bull. Acad. Sei. St. Petersburg 13 (1900), 359. 
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K 1 contains those sums for which there exists a k such that all inequalities 

a(ti) < Si < b(ti), i = 1,2, ... , k - l. 

Sk ~ a(tk) 

hold; 

K 2 contains those sums for which there exists k such that the inequalities 

hold. Denote the probabilities corresponding to these sets by Pn, PAl ), PA2). 

Finally, denote by Pn(x, y) the probability of the event 

X< Sn < y. 

Clearly 

The inequalities 

t > 0, a(t) < s < b(t) 

single out a region G in the (s, t)-plane. Denote by g(so, to; s, t) the Green's 

function for the heat equation 

in G and set 

g(s,t) = g(O,O; s,t), og(s,t)fos = u(s,t), 

Vl(t) = -u[a(t), t], V2(t) = u[b(t), t]. 

Theorem. The following asymptotic formulas hold 

Pn(x, y) = 11/ g(s, tn)ds + (JR(tn,jt), 

t n 
PA2) = Jo v2(t)dt + (J2R2(jt), 

I(JI ~ 1, l(Jll ~ 1, 1(J21 ~ 1, 

(4) 

(5) 

(6) 

(7) 
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where R, R 1 , R2 tend to zero uniformly with respect to Pi furthermore, for 

R(t, p) this convergence is uniform with respect to t ift is greater than a certain 

constant. 

If, instead of (3) we have one-sided inequalities, for example, 

a(tk) < Sk, k = 1,2, ... ,n, (8) 

then a similar result holds, whieh ean be easily obtained from the above by 

passing to the limit. 

Göttingen, 20 January 1931 



13. ON THE GENERAL FORM OF A HOMOGENEOUS 

STOCHASTIC PROCESS * 
(The problem of Bruno de Finetti) 

Let X(A) be a real variable which varies randomly as a function of time A, or 

more exactly, in such a way that the probability distribution 

depends only on d = A2 - Al and does not depend either on Al or on X(At} 

or on the behaviour of X(A) for A < Al. As usual P denotes the prob ability of 

the relation inside the braces. Then, as is weH known, the distribution function 

cI> a (x) satisfies the functional equation I 

(1) 

In the present paper, generalizing certain results of Bruno de Finetti,2 we 

give a solution to equation (1) under the sole assumption that the first and 

second moments 

are finite. 

For non-specialists, we note that cI> a (x) is non-decreasing and left contin

uous and that cI>a(-oo) = 0, cI>a(oo) = l. 
Let 

* This article was presented on 6 March 1932 by the member of the Italian 
Academy of Sciences, G. Castelnuovo in the journal Atti R. Accad. Naz. Lincei. 
Sero Sesta. Rend. and in the same year published in two parts in Italian. The first 
part was called 'Sulla forma generale di un processo stocastico omogeneo' 15:10, 
805-808). The translation of this part is the title of the present article. The 
second part was called 'Ancora sulla forma generale di un processo omogeneo' 
(15:12, 866-869). 

I See, for example, my paper: 'Über die analytischen Methoden in der Wahrschein
lichkeitsrechnung', Math. Ann. 104 (1931), 415-458. (Paper 9 in this volume.) 

2 See: B. de Finetti, 'Le funzioni caratteristiche de legge istantanea', Atti Accad. 
Naz. Lincei. Rend. 12 (1930), 278-282. 

121 



122 ON THE GENERAL FORM OF A HOMOGENEOUS STOCHASTIC PROCESS 

be the characteristic function of 4> ~ (X). From the weH known properties of 

characteristic functions we have 

Since tP~(t) is continuous with respect to Ll, 3 we have 

(2) 

Since the distribution 4>~(x) is uniquely determined by tP~(t), in order to 

describe it, it suffices to find the general form of tPl (t). 
According to de Finetti, we have 4 

Moreover, 

1 1 100 -[tP~(t) - 1] = Ll [ eitxd4>~(x) - 1] = 
Ll -00 

1 100 100 
. = - [it xd4>~(x) + (e,tx - 1- itx)d4>~(x)] = 

Ll -00 -00 

Now let 

= ! [itm~ + 1: (eitx -1- itx)d4>~(x)] = 

= itml + ! 1: (eitx - 1 - itx)d4>~(x). 

(3) 

The function F~(x) is non-decreasing with respect to x; moreover, F~( -00) = 
o and 

1 100 
2 () 1 (2 2 ) 2 2 F~(oo) = Ll -00 x d4>~ x = Ll m~ + (T~ = Llm l + (Tl· 

3 If D. :5 l/n, then u~ = U~/n - U~/n_~ :5 U~/n = (l/n)u? Therefore u~ -+ 

o as D. -+ 0 and "p~(t) -+ 1 accordingly. Taking into account the equality 
"p~1+~2(t) = "p~1(t)"p~2(t) we conclude that "p~(t) is continuous with respect 
to D.. 

4 ["p~(t) _ l]/D. is bounded for each fixed t, hence the equality "pl(t) = 0 is 
impossible, so that log"pl (t) is defined for any t. 
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For any inter val (a, b) not containing 0, a i= 0, b i= 0, we have 

where 
p(x,t) = (eitz -1- itx)/x2 for x i= 0, 

p(x, t) = -t2 /2 for x = o. 
(4) 

Since for any given t the function p(x, t) is finite and continuous (including at 

x = 0), we have 

We now choose a sequence of positive numbers Al, A2, ... , An, ... tending 

to zero. As is weIl known, given a sequence of functions 

we can select a subsequence 

that converges to some function F( x) at all points of continuity of the latter. 

Of course, F(x) is non-decreasing and its extremal values are 

F(-oo) ~ limFd(-oo) = 0, 

F(oo) ~ limFd(oo) = (T~ (as A ~ 0). 
(5) 

Taking into account the fact that p(x, t) ~ 0 for fixed t as x ~ ±oo, we finally 

obtain 

I: p(x, t)dFdn" (x) ~ I: p(x, t)dF(x), 

log tPl(t) = lim ! [tPd(t) - 1] = 

= lim[itml + I: (eitz -1- itx)dcJd(x)] = 

= lim[itml + I: p(x, t)dFd(x)] (as A ~ 0); 

log tPl(t) = itml + I: p(x, t)dF(x). (6) 
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Since the second moment u? is finite, we have 

Moreover, (6) gives 

implying that 

F(oo) - F(-oo) = u?; 

therefore, taking (5) into account, 

F(-oo) =0, F(oo)=u? 

Let us assume that F( x) is left continuous (though the values of F( x) at 

points of discontinuity are of no importance). We have already mentioned that 

F(x) is non-decreasing. 

Formulas (6), (4) and (2) together with the well-known formula 

1 100 1 - e-itx 
clia(x) - clia(O) = - . tPa(t)dt 

211" -00 zt 
(7) 

give the gen~ral solution of our problem. 

The function F(x) is completely determined by the distribution function 

clia(x). Indeed, the integral 

I: p(x,t)dF(x) = 10gtPl(t) = itml 

can be differentiated twice with respect to t and taking into account the equality 

we have 

82 
-p(x t) - _eitx 8t2 ,- , 

100 fj2 
eitxdF(x) = -!i2logtPl(t) = x(t), 

-00 vt 

1 100 1 - e-it:r: 
F(x) - F(O) = - . X(t)dt. 

211" -00 zt 
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Fr~m the latter equality we can determine F(x) to within an additive constant 

which, in turn, is determined by the condition F( -00) = o. 
As already mentioned, from any sequence F~n(x) with ß n ---+ 0 we can 

always select a subsequence F~nk (x) converging to F(x). Hence, F~(x) ---+ 

F(x) as ß ---+ 0 and 

(8) 

However, (8) is only true at those points where F(x) is continuous. 

For x < 0, (3) implies that 

Further (8) implies that at each point of continuity x < 0 of F(x) we have 

(9) 

Similarly, for x > 0 we have 

(10) 

The meaning of Pl(X) and P2(x) can be explained as follows. In general 

X(A) does not have to change continuously with time A; this change can also 

have jumps and P2(x)dA is the probability that during the time interval dA 

the function made a positive jump greater than x. Similarly, P1(x)dA is the 

prob ability of a negative jump with absolute value greater than lxi. 
It foHows from (9) and (10) that 

F(x) = [~y2dPl(Y), x< 0, (U) 

ul- F(x) = F(oo) - F(x) = 100 y2dP2(y), x> O. (12) 

Clearly, these formulas, as weH as aH the others in which P1(x) and P2(x) 
occur hold only when F(x) is continuous. 
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Thus, the behaviour of F(z) outside z = ° depends only on the probability 

distribution ofthejumps of X(A). At the same time, the discontinuity of F(z) 
at the origin is associated with the continuous variation of X(A). To make this 

clear we set 
O(z) = F(z), z ~ 0, 

O(z) = F(z) - u~, z > 0, 

where u~ denotes the jump of F(z) at z = 0. Clearly, dF(z) = dO(z) outside 

a neighbourhood of the origin. We can write (11) and (12) as follows 

O(z) = 11C
00 y2dP1(y) , z < 0, 

u~ - O(z) = 100 y2dP2(y), z > 0, 

(13) 

(14) 

where u~ = u~ - u~. Since O( z) must be continuous at the origin, u~ = 0(00) 

and hence O(z) is completely determined by P1(z) and P2(z). We have 

1: p(z,t)dF(Z) = u~p(O,t) + 1: p(z,t)dO(z). 

Since p(O, t) = -t2/2, we obtain the foHowing final 

Main formula 

17
2 100 

log'l/Jt(t) = imlt - ;t2 + -00 p(z,t)dO(z). (15) 

If O(z) = 0, that is, if X(A) can vary only continuously as a function of 

time, then u~ = u~. We have 

We show in conclusion that for any function F(z) (non-decreasing, left 

continuous and with values F( -00) = 0, F(oo) = u~ < 00) (7), (6) and (2) 

give a solution to our problem. 

In other words, we are going to prove that under the above conditions 

4.>.1(z) given by (7) really is a distribution function for aH A > 0. 
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First we consider a step function T(x) with jumps 

only at a finite number ofpoints Xl, X2, ... , Xn. Denote by CT~ = Wl +W2+ ... +Wn 
the sum of these jumps (it is constant on every interval that does not contain 

any of the Xk). Suppose also that X = 0 is not one of the points Xk. Then 5 

100 p(x,t)dT(x) = LPk(eit1:k - 1- itxk), 
-00 k 

log~l(t) = itP+ LPk[n(t) -1], 
k 

n(t) = exp(itxk) i 

Clearly n(t) = exp(itxk) and exp(itP..6.) are characteristic functions, which 

means that by (7) they generate distribution functions. The results of de Finetti 

imply that in this case exp{..6.pk[Xk(t) - In and ~/l.(t), which is a product of 

characteristic functions, are characteristic functions. 

Under an appropriate choice ofta and for f > 0 one can always approximate 

any function F(x) by a step function T(x) so that the inequality 

11: p(x, t)dF(x) - 1: p(x, t)dT(x) 1 < f (16) 

holds for all Itl < ta. We now form a sequence Tn(x) offunctions of the form 

T(x) such that the difference in (16) tends to 0 for all t, uniformlyon every 

bounded interval. Then the corresponding functions ~~)(t) converge to tP/l.(t), 

which implies that tP/l.(t), being a limit of characteristic functions, is itself a 

characteristic function. 

5 When we replace F(x) by T(x) we write ~/l. instead of tP/l.. 



14. ON COMPUTING THE MEAN BROWNIAN AREA * 
Jointly with M.A. Leontovich 

In this paper we solve the following problem posed by S.1. Vavilov. Determine 

the expectation of the area covered during a given time by the projection onto a 

plane of a moving Brownian particle of finite size. The parts of the area covered 

by this projection several times must be counted only once. This problem will 

be reduced to the following more general problem: determine the probability 

that an infinitesimal Brownian particle moving in a region G and situated at 

t = 0 at a given point (x, y) hits the boundary R of this region at least once 

during the time t. In §1 we explain a method for solving this problem, and in 

§§2, 3 this method is applied to computing the mean Brownian area. §§1, 2 of 

this paper are written by A.N. Kolmogorov, §3 by M.A. Leontovich. 

§ 1. First we consider the motion of an infinitesimal particle on aplane with 

Cartesian coordinates x and y. (The analogous three-dimensional problem can 

be studied in the same way.) P(x, y; t) is the prob ability that the particle 

situated at time t = 0 at a point (x, y) of G hits the boundary R of this region 

at least once during time t. Further, let PL(X,y;t) be the probability that the 

particle situated at time t = 0 at the point (x, y) hits the boundary R at least 

on ce during time t in such a way that it first hits apart L of R. Then, clearly, 

PL(x,y;t) ~ P(x,y;t). 

Now let p(x,y;e,'fJ;t)ded'fJ be the prob ability that the particle which was 

at the point (x, y) at the moment t = 0 is in the region (e, e + dei 'fJ, 'fJ + d'fJ) at 

time t and does not hit the boundary during time t. Then, clearly, 

Lp(x,y;e''fJ;t)d1,d'fJ+ P(x,y;t) = 1. (1) 

Moreover, it can easily be seen that 

P(x, y; t + r) = P(x, y; r) + L p(x, y;e, 'fJ; r)p(e, 'fJ; t)ded'fJ, (2) 

PL(X, y;t + r) = PL(X, y; r) + L p(x, y;e, 'fJ; r)PL(e, 'fJ;t)ded'fJ, (3) 

* 'Zur Berechnung der mittleren Brounschen Fläche', Phys. Z. Sow. 4 (1933),1-13. 
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We now make the following assumptions: 

I. The functions P(Z,y;t) and PL(Z,y;t) can be expanded into Taylor 

series in a neighbourhood of every interior point of G, so that 

p(e, 77;t) = P(z, y;t) + 8P(;~y;t) (e - z) + 8P(;~Yit) (77 - y)+ 

1{82P(Z'Yi t )(t_)2 282P(z,Yi t )(t_)( -) + 2 8z2 .. Z + 8z8y .. z 77 Y + 

+ 82 P~:; y; t) (77 _ y)2} + 8{(e _ z)2 + (77 _ y)2}3/2, (4) 

PL(e, 77;t) = PL(Z,Yi t ) + 8PL~~Yit)(e - z) + 8PL~~Yit)(77 - y)+ 

1{82PL(Z'Yi t )(t_ )2 282PL(Z,Yit)(t_ )( _ ) + 2 8z2 .. Z + 8z8y .. z 77 Y + 

+ 82 PL8~; Yi t) (f/ _ y)2} + 8{(e - z)2 + (77 _ y)2}3/2, (5) 

where 181 $ M, 10'1 $ M', M and M' being independent of e and 77 (but may 

depend on z, y and t)i 

11. At every interior point of G, 

lim P(z, Yi T) = o. 
.,. ..... 0 T 

Since PL $ P, this also implies that 

lim PL(Z, Y; T) = o. 
.,. ..... 0 T 

IH. The function p(Z,Yie, 77i t ) satisfies the following conditions: 

lim{.!. { p(Z,Yie, f/iT)(e - z)ded77} = A1(z,y), 
.,. ..... 0 T Ja 

lim{.!. { p(Z,Yie,f/iT)(f/-y)ded77} =A2(z,y), 
.,. ..... 0 T Ja 

(6) 

(7) 

(8) 

(9) 

(10) 
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lim{21 f p(X,y;e,TJ;r)(TJ-y)2cJedTJ}=B22(X,y), (11) ,.-0 r JG 

lim{ 21 f p(x, y;e, TJ; r)(e - x)(TJ - Y)cJedTJ} = BI2 (X, y), (12) ,._0 r JG 

lim{! f p(x, y;e, TJ; r)[(e - x)2 + (TJ - y?]3/2dedTJ} = 0, (13) ,._0 r JG 
where Al, A2, Bu , B12 , B22 are functions defined by these relations. 

Under the assumptions 1-111 the functions P(x,y;t) and PL(X,y;t) are 

solutions to the following differential equation: 

8P 82p 82p 82p 8P 8P 
7ft = Bu 8x2 + 2Bl2 8x8y + B22 8y2 + Al 8x + A2 8y . (14) 

We prove this for P(x, y; t), since for PL(X, y; t) the proof is quite similar. By 

(2) and (4) we have 

P(x,y;t+r) P(x,y;t) 
r r 

_P(x,y;r) !1 ( .c ·)P(C ·t)d'Cd_P(x,y;t)_ - + p x,y, .. ,TJ,r .. ,TJ, .. TJ -
r r G r 

_P(x,y;r) l{f( . . )'/cd }( .) - r +:;: JG P x,y,e,TJ,r ..... TJ-l P x,y,t + 

11 8P(x,y;t) +- p(x,y;e,TJ;r)(e-x)dedTJ 8 + 
r G x 

1 f ( )( 2 82p(x,y;t) 
+2rJG Px ,y;e,TJ;r e-x) dedTJ 8x2 + 

1 f 82 P(x, y;t) 
+2rJG P(x,y;e,TJ;r)(e- x)(TJ-y)cJedTJ 8x8y + 

1 f 2 82p(x,y;t) 
+2r JGP(x,y;e,TJ;r)(TJ- y) dedTJ 8y2 + 

+ 9" f p(x, y;e, TJ; r){(e - x)2 + (TJ - y)2}3/2dedTJ, 
r JG 

(15) 

where 19"1 $ M". By (6) and (13) the first and the last terms on the right-hand 

side of (15) tend to 0 as r -+ O. But, since by (1) 

1-L p(x, y;e, TJ;t)dedTJ = P(x, y;t), 
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the second term on the right-hand side of (15) also tends to 0 as T --+ O. The 

coefficients of the derivatives of P with respect to :c and y have the limits 

Al, A2, B 11 , 2B12 , B22 ; therefore the right-hand side of (15) tends to the right

hand side of (14) as T --+ O. The left-hand side of (15) also has the limit oplot. 

This proves (14). 

Equation (14) satisfied by P is adjoint to the Fokker equation. This equa

tion can also be derived under much weaker assumptions (cf. [1]-[4]). 

We now assume that, in addition to I-lU the following two conditions hold: 

IV. For fixed t (where t > 0) the probability P(:c, y; t) tends to 1 as (:c, y) 

approaches the boundary of G, and P(:c, y; t) == 0 at t = 0 for any interior point 

(:c, y) of G; 

V. For fixed t (where t > 0) the prob ability PL(:C, y;t) tends to 1 as (:c, y) 

tends to an interior point of the part L of the boundary and tends to 0 as (:c, y) 

tends to a point of the boundary outside L, and PL(:c, y; t) == 0 at t = 0 for 

every interior point (:c, y) of G. 

Taking into ac count that both P and PL are bounded (namely, they are 

non-negative and not greater than 1), it can easily be shown that both P and 

PL are uniquely defined by (14) and the conditions IV and V. 

§2. Computation of the area covered by a Brownian particle of finite 

size. Assume that the projection of a Brownian particle can be represented by a 

disk ofradius 1 (under an appropriate scaling). In what follows we only consider 

such projections, so for simplicity we call them particles. Note, however, that an 

entirely similar treatment can be given in the corresponding three-dimensional 

problem of computing the volume filled in by a Brownian particle. 

The centre of the particle obeys the laws stated in §l. Symmetry consider

ations make it natural to assume that Al = A2 = B 12 = 0 and B 11 = B22 = D. 
Then (14) takes the form 

oP =D(02P +02P). 
ot o:c2 oy2 

By (10) the diffusion coefficient D is defined by the relation 



132 ON COMPUTING THE MEAN BROWNIAN AREA 

where E denotes the expectation. It ean easily be seen that D eoineides with 

the analogous eonstant for a three-dimensional Brownian particle. 

Our problem is to determine the expectation 0/ the area covered by succes

sive positions of a particle at times from t = 0 to a given t. As the origin we 

take the point that coincides with the particle's eentre at t = O. Denote by 

W(x, Yj t) the probability that during time ta given point (x, y) is at least onee 

eovered by this particle. When the distanee from (x, y) to the origin is at most 

1, then clearly, W(x,Yjt) = 1. 1fthis distanee exeeeds 1, then (x,y) is eovered 

by the particle at least onee if and only if the route of the particle's eentre falls 

at least onee inside the disk with radius 1 and eentre at (x, y). By symmetry 

eonsiderations the probability of such an event is also equal to the probability 

that the eentre of the Brownian particle situated at (x, y) for t = 0 will during 

time t touch the boundary of the disk S of radius 1 with eentre at the origin at 

least onee. This probability ean be eomputed using the eonsiderations of § 1. 

Thus, inside S we have 

W(x,Yjt) = 1, (16) 

while outside this disk W(x, Yj t) must satisfy the differential equation 

8W = D(82 W 82W) 
8t 8x2 + 8y2 • 

(17) 

Moreover, on the boundary of S the boundary eondition 

W(x, Yjt) = 1 (18) 

must hold, as weH as the initial eondition 

W(x, Yj 0) = O. (19) 

To determine the expeetation of the Brownian area, we must reason as 

foHows. Let ~ be the region eovered by the particle during time t and F the 

area of this region. Assume that c5(x, Yj~) = 1 for (x, y) in the interior of ~, 

and c5( x, Yj ~) = 0 otherwise. Clearly, 

E{c5(x,Yj~)} = W(x,Yjt), 

and the Brownian area F ean be defined by the relation 

F = J J c5(x, Yj ~)dxdy. 
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This implies that 

E(F) = 11 E{c5(x,y;~)}dxdy= 11 W(x,y;t)dxdy. (20) 

§3. To solve the desired problem with boundary conditions we pass to polar 

coordinates (r,<p). Clearly, W depends only on the position vector r, and not 

on the angle <p. We now choose the time unit in such a way that D takes the 

value 1. In this case our problem with boundary conditions for W(r, t) takes 

the form 

8W 82W 18W ----+--
8t - 8r2 r 8r ' 

W(I, t) = 1; W( 00, t) = 0; 

W(r,O) = 0, r> 1. 

(21) 

(22) 

(23) 

To solve this problem we use the Laplace transformation. Multiply (21) 

by e-vt and integrate over t from 0 to 00. Integrating by parts and using the 

initial condition (23) for 

U(r, v) = 100 W(r, t)e-vtdt 

we obtain the following differential equation: 

d2U 1 dU 
-+---vU=O. 
dr2 r dr 

The boundary conditions (22) for W yield the following conditions for U: 

U(I,v) = I/v; U(oo,v) = O. 

A solution of (25) under the conditions (25') is of the form 

where 

1 K(ry'v) 
U(r,v) = ~ K(y'v) , 

K( ) - i1r H (l)(. ) 
x - 2 0 'x, 

and H~l) is the first Hankel function of order zero (see [5], §17.71). 

(24) 

(25) 

(25') 
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By (24), in order to find W(r, t) we have to solve the linear integral equa

tion of the first kind 

(JO ( -vt 1 K(rVv) Jo W r,t)e dt = -;;- K(Vv) . (26) 

The right-hand side of this equation for Re v > 0 is an entire function of v. 

Indeed, by a known theorem (see, for example, [6], §15.7), K(x) does not vanish 

for I arg x I ::; 7r /2. A solution of our integral equation when the right-hand side 

satisfies this condition is well-known (see, for example, [7], §6.7), and is of the 

following form: 
_ 1 l(X+ioo evt K(rVv) 

W(r,t) - -2 . - K(Vv) dv, 
7rt a-ioo V V 

(27) 

where the integration is taken over a straight line parallel to the imaginary axis 

and a > O. This gives the solution of our problem with boundary conditions. 

Equation (27) holds for r > 1, whereas if r ::; 1, then by (16) we have 

W(r,t) = 1. (27') 

For the expectation we have from (20)-(23) and (27'), 

E(F) = 27r 100 
W(r, t)r dr = 7r + 27r 100 

W(r, t)r dr = 

= 7r _ 27r r oW(l, t) dt, 
Jo or 

(28) 

and from (27) 
'l(X+ioo evt K'(Vv) 

E(F) = t . 3/2 K(Vv) dv + 10 , 
(X-aoo v v 

(28') 

where 
'la+ioo 1 K'(Vv) 

10 = 7r - t . 3/2 K(v'V) dv. 
(X-aoo v v 

Now we derive an asymptotic formula for E(F) for large t. It is known 

(see [5], §17.71) that 

K(x) = -Jo(ix) In "'I; + x2 P(x), 

K'(x) = - Jo(ix) _ iln "'Ix JMix) + x[2P(x) + xP'(x)], 
x 2 
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where, = eC , Cis Euler's constant (that is, , = 1.7810 ... ) and P(x) is an 

entire function. 

Hence, 

K'(x) 
K(x) 

1 
x In(,x/2) + xR(x)j 

R(x) = iln(,x/2)J~(ix)/2 - 2P(x) - P'(x)x + P(x)/ln(,x/2). 
Jo(ix) In(,x/2) - x2 P(x) 

Since K'(x)/K(x) does not have singularities for largxl < 7r/2 (except x = 0) 

and tends to 0 as lxi -+ 00 (which follows from the weIl known asymptotic 

formulas K(x) "" (7r/2)1/2 e-X /x 1/2 and K'(x) "" _(7r/2)1/2e-X /x 1/2), R(x) 

does not have other singularities in the same region, except at x = 2/,. As 

x-+O 
R( x) -+ _1. + A + --o-_B--:--:-

2 ln(,x /2) ln(,x /2) , 

hence IR(x)1 is bounded. 

By (28') we may set 

E(F)=lo+lt+h, 

where 

l
",+ioo evt 

12 = i -R( -.[ü)dv. 
",-ioo v 

(29) 

To avoid the singularity of R( v'V) at v = 4;'2 we choose as the path of inte

gration a straight line that intersects the real axis between 0 and 4;'2 j in other 

words, we assurne that a < 4/,2. It is then easy to estimate 12. Setting vt = e 
we obtain 

l
",+ioo evt l"'t+ioo e€ If 

12 =i . -R(-.[ü)dv=i . c R ( -)cJe= 
"'-'00 v ",t-.oo.. t 

where ß can be considered as being independent of t. The expression 
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is bounded for any t. This can easily be seen by applying the Second Mean 

Value theorem to its real and imaginary parts. 

Thus we see that 

(30) 

The interval 10 does not depend on t, so that 

10 = 0(1). (31) 

It merely remains to estimate the integral 

where z = v-y2/4, T = 4th2, a1 = -y2a /4. Transforming the integrand of h 
using the identity 

__ = e - + _ = -2 e-2alnzda+_, 1 -21nz 1 1 11 1 
z2 In z In z In zaIn z 

we obtain 

---.,--) 
Fig. 1 

In the term proportional to f e~: ~z the integration can be carried out along 

the imagiriary axis. It is then easy to show (for example, by applying the Second 

Mean Value theorem to the real and imaginary parts ofthe integral), that this 

term is of order 0(1). In the expression f e-2alnz+zT dz the integration path 

can be deformed so that it coincides with the loop (5 encircling the negative 

part of the real axis (see Fig. 1). This expression can then be transformed in 

the following way: 
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We use the relation (see [5], §12.22) 

[ (-2a 'd( = 21ri Je e r(2a) , 

from which we obtain 

21r1'2 [1 e2a In T 
lt = -r- Jo r(2a) da + 0(1). 

The integral on the right-hand side of the latter relation is given by 

1
1 e2alnT _ r212 e-ylnTdy _ r 2{11 e-ylnTdy 
--da-- -- + 

o r(2a) 2 0 r(2 - y) 2 0 r(2 - y) 

+.! [1 (1- y)e-YlnTdy}. 
r Jo r(2 - y) 

Hence, by (29), (30) and (31) it follows that 

[1 e-ylnT dy 
E(F) = 41rt Jo r(2 _ y) + 0(1). 

For large In r the following asymptotic relation holds: 

[1 e- Y lnT dy 1 1 
Jo r(2-y) "'Inr = In(4th 2 ) , 

and therefore 

(32) 

For 0 < Y < 1 we have 
1 1 

1 < r(2 _ y) < 0.88' 

and therefore, 
1 l1e-YlnTdY 1 

- < < -=-::-::-:--
Inr 0 r(2-y) 0.88Inr· 

In order to obtain an asymptotic expansion for E( F) we can, by successive 

integration by parts, represent the latter integral as 

[1 e-yln T dy _ 1 { 1 \)(2) 1 \)2(2) - \)'(2)r(2) } 
Jo r(2 - y) - In r . r(2) 1 + In r r(2) + In2 r r(2) + . .. , 

where \)(x) = r'(x - l)jr(x - 1). Substituting here the numerical values of r 

and \) we obtain 

41rt { 0.423 0.467 } 
E(F) = I 126t 1 + I 1 26 - 2 + ... + 0(1). n . n . t In 1.26t 
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If times and lengths are measured in arbitrary units, then t must be replaced 

by Dt/(1'2, and F by F/(1'2, where (1' is the particle's radius. Thus, finally we 

obtain 

411"Dt { 0.423 0.467 } 
E(F) = In(1.26Dt/(1'2) 1 + In(1.26Dt/(1'2) - ln2(1.26Dt/(1'2) +... + 0(1), 

which is the asymptotic solution of our problem. 
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15. ON THE EMPIRICAL DETERMINATION 

OF A DISTRIBUTION LAW * 

We consider the possibility of determining a distribution law based on a finite 

number of tests. 

§1. Let XI, X 2 , ••• ,Xn be the results of n mutually independent observations, 

ordered increasingly, that is, Xl ~ X 2 ~ ••• ~ X n and let 

F(x) = P{X ~ x} 

be the distribution law corresponding to this sequence. The empirical distri

bution law is the function Fn(x) defined by the relations 

Fn(x) = 0, x< Xl; 

Fn(x) = kin, Xk ~ x < Xk+l, k = 1,2, ... ,n-I; 

Fn(x) = 1, X n ~ X. 

Hence, nFn(x) is the number of the X k not exceeding x. A natural quest ion 

is: does Fn (x) approach F( x) for large n ? A theorem related to this question 

was formulated by von Mises [1] and is called the w2-method. However, the 

fundamental statement that the prob ability of the inequality 

D = sup IFn(x) - F(x)1 < f 

tends to 1 as n -* 00 for any f has not, in my view, been explicitly formulated 

until now, though it could have been proved in various simple ways. 

I shall obtain this statement as a direct consequence of the theorem proved 

below. I should add that the setting of the problem considered below is moti

vated by re cent studies of Glivenko [2]. 

Theorem 1. For any continuous distribution /unction F(x), the probability 

<I>n(A) 0/ the inequality 

D = sup IFn(x) - F(x)1 < Alyn 

* 'Sulla determinazione empirica di una legge di distribuzione', Giorn. Ist. Ital. 
Attuar. 4:1 (1933), 83-91. 
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tends to 

(1) 
-00 

uniformly in ~ as n -+ 00. 

Below the table of some values of ~(~) is givenj these were calculated by 

N. Kozhevnikov. 

~ ~(~) ~ ~(~) ~ ~(~) 

0.0 0.0000 1.0 0.7300 2.0 0.99932 

0.2 0.0000 1.2 0.8877 2.2 0.99986 

0.4 0.0028 1.4 0.9603 2.4 0.999973 

0.6 0.1357 1.6 0.9888 2.6 0.9999964 

0.8 0.4558 1.8 0.9969 2.8 0.99999966 

As is dear from the table, D ~ 2.4/,fii can be considered to be practically 

certain. Moreover, it turns out that 

~(0.83) '" 0.5. 

If ~ is small, then (1) converges very slowlYj in this case the following 

asymptotic formula may be used 

At ~ = 0.6 this formula yields 

~(0.6) '" 0.1327, 

instead of the value 

~(0.6) '" 0.1357 

computed using the exact formula (1). 

§2. Lemma. The probability function ~n(~) does not depend on the distribu

tion function F( z) if the latter is assumed to be continuous. 
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Proo/. Let X be a random variable with continuous distribution law F(x); 

clearly, corresponding to the random variable Y = F(X) there is the distribu

tion law F(O)(x) for which 

F(O)(x) = 0, x ~ 0; 

F(O)(x) = x, 0 ~ x ~ 1; 

F(O)(x) = 1, x ~ 1. 

If Fn(x) and F~O)(x) are the empirical distribution laws for X and Y for n 

observations, then 

Fn(x) - F(x) = FAO)[F(x)] - F(O)[F(x)] = FAO)(y) - F(O)(y), 

sup IFn(x) - F(x)1 = sup IFAO)(y) - F(O)(y)l. 

This implies that the function <I>n(.~) corresponding to an arbitrary continuous 

distribution function F( x) is identical to the function corresponding to F(O) (x). 

Therefore, in proving our theorem, we can confine ourselves to the case F(x) = 
F(O)(x). 

In what follows we will write Fn(x) instead of F~O)(x) and confine ourselves 

to x for which 0 ~ x ~ 1 and F(O)(x) = x. Our problem then reduces to finding 

the probability <I>n (A) of the inequality 

sup IFn(x) - xl< A/..fii, 0 ~ x ~ 1. (2) 

Let A be of the form 

where J-l is an integer. Substituting it into (2) we obtain 

(3) 

The values Fn(x) are multiples of l/n; for example, let Fn(x) = i/n and 

x = j/n + f (0 ~ f < l/n). Taking into account the fact that Fn(x), being a 

distribution function, is monotone, we immediately obtain 

i-j 
Fn(x) - x = -- - f, 

n 

( j) j i-j Fn - - - ~ Fn(x) - (x - f) = --, 
n n n 

( j+1) j+1 (1) i-j-1 
Fn -n- --n-~Fn(x)- X+-;;-f = n . 
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Therefore the inequality 

i-i I' IFn(z)-zl= I--Cl ~-n n 

holds if and only if at least one of the following inequalities holds: 

(i) i i-i I' Fn - - - ~ -- ~ --, 
n n n n 

This implies that (3) may be replaced by the following: 

Now let Pilc be the probability of simultaneous fulfillment of the relations 

Note that 

IFnU In) - jfnl < I'/n, i = 0,1, ... ,kj 

IFn(k/n) - k/nl = i/no 

For k = 0 we clearly have 

Poo = 1, PiO = 0 (i # 0) 

More generally, 

Pilc = 0 

(5) 

(6) 

(7) 

(8) 

for lil ~ 1', since in this case the inequalities (5) are contradictory. Furthermore, 

Pik+l = L PjkQ~~), lil < 1', 
j 

(9) 

where Q~~) denotes the probability of Eik+l under the condition that Ejk holds, 

that is, the prob ability of 

(10) 
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subject to the condition 

Fn(kln) = (k + j)ln. (11) 

Relation (11) means that, of the results of the n observations Xl, X 2, ... , Xn 

exactly n - k - j belong to the interval kin< z :5 1; (10) can therefore be true 

only when i - j + 1 of the results of these n - k - j observations belong to the 

interval kin< z :5 (k + l)ln. 
Provided that Xm is uniformly distributed, we obtain the following ex

pression for our desired probability: 

(k) _ (n - k - j) ( 1 )n-k-i-l ( 1 )i-i+1 
Q .. - 1-- -

JI i - j + 1 n - k n - k . 
(12) 

Formulas (7)-(9), (12) and (6) enable us to find the prob ability cf>n(A) for the 

case A = 1'1.,fii. 
These formulas can be replaced by other, more convenient ones. For this 

we set 
(n-k-i)!nn -k 

Rik = ( k) L· I ePik. n - n-",-In. 

Conditions (7) and (8) turn into the following: 

Roo = 1, Rio = 0, i i= 0; 

Rik = 0, lil ~ 1'. 

Simplifications reduce (9) to 

Finally, from (6) and (13) we obtain 

Formulas (14)-(17) also enable us to find cf>n(A) for the case A = 1'1.,fii. 

(13) 

(14) 

(15) 

(16) 

(17) 

§3. Now let Yl, Y2 , ••• , Yn be a sequence ofindependent random variables with 

distribution law given by the formula 

{ i-I} 1 . P Yk = -- = "1e-l, i= 1,2, .... 
I' z. 

(18) 
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Setting 

we easily see that the probability Rö" that the relations 

(19) 

hold simultaneously satisfies the same conditions (14)-(16) that Rö" does, in 

other words, Rö" = Rö". This allows us to give an asymptotic expression for 

Rö" as n -+ 00. For this we state the following general theorem. 

Theorem 2. Let Yl. Y2 , ... , Yn be a sequence 0/ independent random variables 

whose values can only be multiples 0/ a constant f. 

Let 

E(Y,,) = 0, E(Yl) = 2b", E(IY,,31) = d", 

S" = Y1 + Y2 + ... + Y", 

t" = b1 + b2 + ... + b" 

and let a(t), b(t) be continuously differentiable /unctions satis/ying 

a(t) < b(t), a(O) < 0 < b(O). 

Denoting by Rön the probability that the relations 

Sn = if 

hold simultaneously and by u(u, T, S, t) the Green's /unction o/the heat equation 

in the domain G dejined by the inequalities 

a(t) < s < b(t), 

we have 

Rön = f· {u(O, 0, if, tn) + Ll}, 
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where ,6. tends uniformly to 0 as l -+ 0 if the following conditions hold: 

a) a(t) and b(t) remain constant and the t n are bounded: 

b) there exists a constant C > 0 such that 

c) there exists a constant K > 0 such that for any k there exists an ile 

for which 

d) there exists a constant A such that 

Apart from these restrictions, the YIe, as weil as their number n and the 

integer i, can depend on l in arbitrary fashion. 

This theorem falls into the same scope of ideas as the one given in [3]. 

However, the assertion of the above theorem is stronger: the theorem in 

[3] allows us only to assert that 

i=q l qE L: Rän = 11.(0,0, z, tn)dz + ,6.', 
i=p pE 

where ,6.' tends to 0 as l -+ 0 under the conditions a) and b). The condition 

c), which is essential in our new theorem, had already been used by von Mises 

in similar considerations. 

In our case 

l = 1/,.,., 

E(YIe) = 0, E(Yl) = 2ble = 1/,.,.2, E(Yt) = die = C/,.,.3, 

dle/ble = C/,.,. = Cl, t n = n/2,.,.2 = 1/> . .2, a(t) = -1, b(t) = +1, 

~n = l{ 11. ( 0,0,0, ;2) + ,6. }, 
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1 +00 k (s-2k)2 
U(O, 0, s, t) = 2..jirt ~) -1) exp [- 4t ], 

-00 

+00 

= ~)_1)ke-2k2>.2 + R = 4>(A) + R. 
-00 

In this formula the remainder R tends uniformly to 0 as n ~ 00 if A is 

greater than some AQ > O. For in this case f = 1/J.l = l/(A.,jn) tends to 0 as 

n~oo. 

Thus, Theorem 1 is proved for values A of the form J.l/ yn, provided that 

A > AQ. Since the limit function 4>(A) is continuous and its limit value is 

4>(0) = 0, it is easy to see that these restrictions are essential. We prove 

Theorem 2 elsewhere. 
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16. ON THE LIMIT THEOREMS OF PROBABILITY THEORY * 
As is well known, the fundamental ideas of P. Laplace [1] and P.L. Chebyshev 

[2] were subsequently developed in papers by A.A. Markov [3] and A.M. Lya

punov [4], culminating in a very general statement (the so-called Lyapunov 

theorem) on the limit of probability distributions for sums of a large number 

of small independent random variables. Further studies by Markov [5] and 

S.N. Bernshtein [6] have demonstrated that in many cases a similar statement 

also holds for sums of independent variables. These generalizations are of spe

cial importance for applied purposes, but in principle they do not go much 

further; in all cases studied by these authors only summands that are near 

to each other are strongly dependent, whereas if the sum is decomposed into 

sufficiently long partial sums, the later ones will be almost independent. Of 

much greater consequence is the two- (and multi- )dimensional generalization 

of Lyapunov's theorem to the case of sums of ralildom vectors, which was first 

rigorously proved by Bernshtein [6]. 

What still remains after all these studies is to determine the limits of 

various kinds of probabilities related to the whole set of partial sums of a given 

sequence of random variables: these limits are unknown even in the simplest 

case of independent summands. In any case, the early results of Laplace and 

Poisson [7] on the prob ability of a gambler's ruination belong to this field; they 

were further elaborated by P. Levy [8]. Recently I published a general statement 

of this kind [9]. In the meantime some partial two-dimensional problems of 

similar type were studied by R. Lüneburg [10]. Both these papers clarify the 

connection between these problems and differential heat equations [11]. 

Several months ago I.G. Petrovskii in Moscow found a general method of 

reducing problems in prob ability theory on sums of small random variables to 

corresponding differential equations in a very general situation. In what follows 

this method is applied to proving Lyapunov's theorem (§1) and my theorem 

mentioned above (§§2, 3). The applications to random walk problems can be 

found in a yet unpublished work by Petrovskii, where the setting given by 

Lüneburg is considerably generalized. 

Apparently this method also can be used when the distribution law for each 

term Xk+l depends on the sums of all previous terms Bk = Xl +X2+' . . +Xk. This 

* 'Über die Grenzwertsätze der Wahrscheinlichkeitsrechnung', Izv. Akad. Nauk 
SSSR, OMEN, 1933, 366-372. Presented by S.N. Bernshtein. 
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case is crucial for a rigorous mathematical justification of diffusion theory, in 

which the external forces as weIl as the diffusion coefficients are point functions. 

For this justification it was necessary to prove that the distribution laws of sums 

can be approximately represented by the corresponding solutions of Fokker

Planck differential equations [12], [13]. 

§1. Let 

be independent random variables with expectations 

and suppose that the quotients d" : b" are uniformly bounded by a fixed con

stant 

By the weIl known inequality for moments, b~ :5 dZ, (1) implies that 

b,,:5J.'2. 

We now set 
Z1 + Z2 + ... + Z" = S", Sn = 5, 

b1 + b2 + ... + b" = t", tn = T. 

Let T be fixed (and n variable); then Lyapunov's theorem asserts that 

P{a < 5 < b} = .~ 16 
e-·2

/ 4T ds + (JR(J.'), 1(J1:5 1, 
2v1fT a 

(1) 

(2) 

(3) 

where P denotes the prob ability ofthe inequality in parentheses and R(J.') tends 

to 0 together with 1'. 

To prove this, consider the probability 

P,,(s) = P{a < 5 - s" + s < b} 

so that a < 5 < b under the assumption s" = s. Clearly, the desired probability 

P{a < 5< b} coincides with Po(O); P,,(s) satisfies the equation 1 

P,,(s) = J PH1(S+z)dTH1(Z), k=O,1,2, ... ,n-1, (4) 

1 Formula (4) is proved in the same way as that for the distribution function of 
the sum of two independent variables; see, for example, P. Levy, Calcul des 
probabilites, Paris, 1927, p.187. 
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where TH1 is the distribution function of Xk+l, and the integral is taken from 

-00 to +00. Moreover, 

Pn(s) = 1, if a < s < b, 

Pn(s) = 0 if s ~ a or s ~ b. 
(5) 

The initial conditions (5) and equations (4) uniquely define Pk(S) for all k 

(0 ~ k ~ n). 

We call Pk (s) an upper function if the inequalities 

Pk(s) ~ j Pk+l(s + X)dn+l(X), 

P~(s) ~ Pn(s) 

hold. It is not difficult to see that 

(6) 

(7) 

(8) 

holds also for k < n. Lower functions are defined similarly. We now wish 

to construct a function u*(s, t) which for any sufficiently small J-! leads to the 

upper function 

(9) 

For this we first determine a four times continuously differentiable function 

v(s) satisfying the following inequalities: 

Now let 

v(s) =0, s~a-f, O~v(s)~l, b~s~b+f, 

o ~ v(s) ~ 1, a - f ~ S ~ a, v(s) = 0, b + f ~ s, 

v(s)=l, a<s<b. (10) 

ü(s,t) = 1 jv(s+x)e-x2/4(T-t)dX, 
2J1f(T - t) 

(11) 

u*(s, t) = ü(s, t) + f(T - t), (12) 

where f > 0 in both (10) and (12). The function u(s, t) satisfies (for t ~ T) the 

differential equation 

(13) 
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and its derivatives up to the fourth order with respect to s and the second 

order with respect to t are bounded. Let M be the least upper bound of these 

derivatives. If P:(s) is defined by (9), then we obtain 

P:(s) = u·(s, T) = ü(s, T) = v(s) ~ Pn(s). 

Thus, (7) is fulfilled. Therefore it suffices to prove (6) for small p. For this we 

consider the difference 

~ = Pk(s) - j P:+1(s + z)dT1:+1(Z) = {(T - tk) + ü(s, tk)

-{(T - t1:+t) - j ü(s + z, t1:+1)dTk+l(Z) = {(tk+1 - tk)+ 

j{ 8 ~ ~ 
+ü(s, tk) - ü(s, tk+1) + 8s ü(s, t1:+dz + 8s2 ü(s, t1:+1)2+ 

+OMlz31}dT1:+1(z) = (b1:+1 + Ü(S,tk) - ü(s,t1:+d-

-::2 ü(s, t1:+ l)b1:+ 1 + 0' M d1:+1, 101 ~ 1, 10'1 ~ 1. 

But since 

8 
ü(s, tk) - ü(s, t1:+d = - 8t ü(s, t1:+d(t1:+1 - tk) + 0" M(t 1:+ 1 - tk? = 

= - ! ü(s, t1:+1)b1:+1 + 0'" Mb1:+1p2, 10"1 ~ 1, 10"'1 ~ 1, 

and in view of (1) and (13), (14) implies that 

~ = {b1:+1 + {- :t ü(s, t1:+1) = ::2 ü(s, t1:+d }b1:+1 + Oiv Mbk+11'+ 

(14) 

+0'" Mbk +11'2 = b1:+1 ({ + Oiv M p + 0'" M 1'2), 10iv I ~ 1. (15) 

Formula (15) immediately implies that if I' is sufficiently small, then 

~~o, 

which proves (6). Therefore P: (s) is an upper function for a sufficiently small 

I' and 

P{a < Sn< b} = Po(o) ~ P;(o) = u*(O,O) = 

={T+_1_jv(z)e-:c2/4Tdz=_1_1b e-:c2/4Tdz+R, (16) 
2M 2M Q 
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with R arbitrarily small for an appropriate choice of f. Consideration of lower 

functions gives the reverse inequality. Thus our main formula (3) is completely 

proved. 

§2. Now let a(t) and b(t) be four times continuously differentiable functions 

of t satisfying the conditions 

a(t) < b(t), a(O) < 0 < b(O). (17) 

What is the probability P that 

a(tk) < 8k < b(tk), k = 1,2,3, ... ,n (18) 

holds ? The inequalities 

o ~ t < T, a(t) < 8 < b(t) (19) 

determine a certain region G in the (8, tl-plane. Let U(8, t) be a bounded 

solution of the equation 

in G with boundary conditions 

u(8,T) = 1, 

u[a(t), t] = 0, 

u[b(t) , t] = 0, 

Our purpose is to show that 

a(T) < 8< b(T), 

o ~ t < T, 

o ~ t < T. 

P = u(O, 0) + (}R(p), I(}I ~ 1, 

where R(p) tends to zero together with p. 

For this consider the more general case in which the inequalities 

hold for all i, k ~ i ~ n. The desired probability is Po(O). If 

(13) 

(20) 

(21) 

(22) 

(23) 
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then Pk(S) satisfies the same equation 

(4) 

as in §l. Conditions (5) are now replaced by the following: 

Pn(s) = 1 if a(T) < s < b(T), 

Pn(s) = 0 if s ~ a(Tk) or s 2: b(Tk). 
(24) 

Equations (4) and (24) uniquely determine Pk(s) for all k (0 ~ k ~ n). 

We now call P:(s) an upper function if (23) implies 

(25) 

and 
P~(s) 2: 1 for a(T) < s < b(T), 

P~(s) 2: 0 for s ~ a(Tk) and, correspondingly, s 2: b(Tk). 
(26) 

As in §1, we prove that for k < n the inequality 

holds. 

To construct an upper function we need a function u(s,t) which is defined 

in G as a solution of the differential equation (13) with the following boundary 

conditions: 
ü(s, T) = 1, a(T) < s < b(T), 

ü{a(t), t} = v(t), 0 ~ t ~ T, 

ü{b(t), t} = v(t), 0 ~ t ~ T, 

where v(t) is a four times continuously differentiable function such that 

v(t) = 0, 0 ~ t ~ T - f, 

o ~ v(t) ~ 1, T - f ~ t ~ T, 

v(t) = 1, v'(T) = v"(T) = O. 

(27) 

(28) 

Since ü(s, t) has continuous derivatives up to the fourth order (including on the 

boundary of G), this function can be extended beyond G so that the derivatives 

with respect to s up to the fourth order are bounded on the whole (s, t)-plane 

and the inequality 

ü(s,t) > -f (29) 
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holds everywhere. We now set 

u*(S, t) = u(s,t) + f + f(T - t), 

P;(s) = u*(s, tk). 

(30) 

(9) 

Apart from obvious changes, the proof of the fact that P;(s) is an upper 

function for any sufficiently small fJ is the same as in § 1. Thus for the indicated 

fJ we obtain 

P = Po(O) ~ P;(O) = u*(O, 0) 

and u* (0,0) -+ u(O, 0) as f -+ O. To complete the proof of (21) we merely have 

to make similar estimates of the probability P from below, which is done using 

the same method with lower functions. 

§3. Now let p(1) (respectively, p(2») denote the prob ability of the existence 

of k such that 

and 

a(ti) < Si < b(tä), i = 1,2, ... , k - 1, 

Sk ~ a(tk), 

a(ti) < Si < b(ti), i = 1,2, ... , k - 1, 

b(tk) ~ Sk, 

(31) 

(32) 

respectively. Finally, let P(x, y) be the probability that all the inequalities 

a(tk) < Sk < b(tk), k = 1,2,3, ... , n - 1, 

x< sn< y, 

hold with a(T) ~ X < Y ~ b(T). 

Then the following limit relations hold: 

p(1) = u(I)(O,O) + 0(1) R(I)(fJ), 10(1)1 ~ 1, 

p(2) = u(2)(0, 0) + 0(2) R(2)(JI), 10(2)1 ~ 1, 

P(x, y) = Uz,y(O, 0) + OR(fJ), 101 ~ 1, 

(33) 

(34) 

(35) 

(36) 
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where R(1)(Jl), R(2)(Jl) and R(Jl) tend to 0 together with Jl, and where 

U(l)(S t) U(2)(S t) and U (S t) " , X,1I , 

are bounded solutions of (13) determined from the following boundary condi

tions: 

u(l)(s,T) = 0, a < s< b, 

u(1){a(t),t} = 1, 0 ~ t < T, 

u(1){b(t),t} = 0, 0 ~ t < T, 

u(2)(s,T) = 0, a < s < b, 

u(2){a,(t),t} = 0, 0 ~ t < T, 

u(2){b(t), t} = 1, 0 ~ t < T, 

Ux,y(s,T) = 0, a< s < x, ux,y{a(t),t} = 0, 0 ~ t < T, 

(37) 

(38) 

Ux,y(s, T) = 1, x< s < y, ux,y{b(t), t} = 0, 0 ~ t < T. (39) 

Ux,y(s,T)=O, y<s<b, 

The proof is the same as in §2. In [9] other expressions 2 are derived for the 

same values u(l)(O, 0), u(2)(0,0) and UX,y(O, 0). 
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17. ON THE THEORY OF CONTINUOUS RANDOM PROCESSES* 

Let <5 be a physical system with n degrees of freedom; this means that the 

admissible states :c of <5 form a Riemannian manifold m of dimension n. The 

process of variation of <5 is said to be stochastically determined if under an 

arbitrary choice of :c, the region ~ (in m) and times t' and t" (t' < t"), the 

prob ability P(t',:c, t", ~) that the system in state :c at time t' will be in one of 

the states of ~ at time t" is defined. It is further assumed that the prob ability 

P(t',:c,t",~) can be given by the formula 

P(t',:c, t", ~) = l J(t',:c, t", y)dVII , (1) 

where dVy denotes the volume element. Here J(t',:c,t",y) has to satisfy the 

following fundamental equations: 

L J(t',:c,t",y)dVy = 1, (2) 

J(tl,:c,t3,y) = L !(tlJ:c,t2,Z)!(t2,z,t3,y)dVz, tl < t2 < t3. (3) 

The integral equation (3) was studied by Smolukhovskii and then by other 

authors. 1 In the paper 'Über die analytischen Methoden in der Wahrschein

lichkeitsrechnung' 2 I have proved that, under certain additional conditions, 

!(t',:c, t", y) satisfies certain differential equations of parabolic type. 3 But in 

A.M. there was no answer to the question 4 as to what extent !(t',:c,t",y) is 
uniquely determined by the coefficients A(t,:c) and B(t,:c). In this paper the 

theory is developed in the general case of a Riemannian manifold m and the 

question of uniqueness is answered affirmatively for a closed manifold m. 

§1. The first differential equation 

Let m be a Riemannian manifold of dimension n. Because of the assumptions 

made, !(t',:c, t", y) is defined for t' < t" and any pair of points :c, y. Moreover, 

* 'Zur Theorie der stetigen zufälligen Prozesse', Math. Ann. 108 (1933), 149-160. 
1 See bibliography in: B. Hostinsky, 'Methodes generales ducalcul des proba

bilites', Mem. Sei. Math. 52 (1931). 
2 Math. Ann. 104 (1931), 415-458. Referred to in the present paper as A.M. (see 

No. 9 of this book). 
3 These differential equations were introduced by Fokker and Planck independently 

of Smolukhovskii's integral equation. See: A. Fokker, Ann. Phys. 43 (1914), 812; 
M. Planck, Sitzungsber. Preuss. Acad. Wiss. (1917) 10 May. 

4 See A.M. §15. 
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we assume that f(t',:c, t", y) has continuous derivatives up to the third order 

with respect to all the arguments (t', t" and the coordinates :Cl, :C2, ... , :Cn, 
Yl, Y2, ... ,Yn of the points :c and y) and satisfies the continuity condition 

Im f(t,:c, t + Ll, z)p3(:c, z)dVz 
=>f;:.:..-,,..;-----:-~---=-2 ';---':--:::-:- -+ 0 as Ll -+ 0, 
Jm f(t,:c, t + Ll, z)p (:c, z)dVz 

where p(:c, z) denotes the geodesic distance 5 between :c and z. 

(4) 

We choose a coordinate system z = (Zl, ... , Zn) in a neighbourhood ~ of 

:c. Then we set 

l f(s,:c,s + Ll, Z)(Zi - :Ci)dV" = ai(s,:c,Ll), (5) 

l f(s,:c, s + Ll, Z)(Zi - :Ci)(Zj -:Cj )dV" = bij(S,:c, Ll), (6) 

1 f(s,:c, s + Ll, z)p2(:c, z)dVz = ß(s,:c, Ll), (7) 

1 f(s,:c, s + Ll, z)p3(:c, z)dVz = v(s,:c, Ll). (8) 

Our purpose is to prove that the ratios 

tend to limits Ai(S,:c) and Bij(S,:c) as Ll -+ 0, independently of~. Below this 

is proved under the assumption that all N = n + n(n + 1)/2 functions 

8 
-8 f(s,:c,t,y), 

:Ci 

of y and t (for fixed sand:c) are linearly independent, that is, that t l , Yl, t2, Y2, . .. 

. . . ,tl:, YI:, ... ,tN, YN can be chosen so that the determinant 

(9) 

is non-zero. 6 

5 See A.M., §13, formula (112). 
6 See A.M., §13, determinant (119). 
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In 2l we have 

while outside 2l we clearly have 

2( ) 0' 3( ) 10'1 ~ C', PX,z=-px,Z, 

where C' and C are constants independent of z. Hence 

ß(s,X,a) = Lf(s,x,s+a,z)p2(x,Z)dVz = 

= L:9;j l fes, x, s + a, z)(Z; - x;)(Zj - Xj )dVz + 

+ lf(s,x,s+a,z)0p3(x,z)dVz + 

+ [ f(s,x,s+a,z)0'l(x,z)dVz = 
Jm-~ 

L: 9;jb;j(s, x, a) + 0"v(s, x, a), 10"1 ~ C". 

But since, by the continuity condition (4), 

ß(s,X,a) 
---'----'- - +00 as a - 0, v(s, x, a) 

formula (10) implies that 

(10) 

(11) 

(12) 

Now, for fixed x, y, S, T, t, s < T < t, we consider only a so small that 

s + a < T. Then f( s + a, z, t, y) and its derivatives with respect to Z up to 

the fourth order are uniformly bounded and continuous in 2l (we assurne that 

2l is compact). Hence, for every point Z in 2l we have 

{) 
fes + a, z, t, y) - fes + a, x, t, y) = L:(z; - Xi) {)x/(s + a, X, t, y)+ 

+~ L:(Zi - x;)(Zj - Xj) {)X~;Xj fes + a, X, t, y) + 0 p3(x, z), 101 ~ C, (13) 
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where C does not depend on ß or z. On the other hand, the fundamental 

equation (3) implies that 

f(s,x,t,y) = Lf(s,x,S+ß,Z)f(s+ß,z,t,y)dVz = 

= L f(s, x, s + ß, z)f(s + ß, x, t, y)dVz+ 

+ l f(s, x, s + ß, z){f(s + ß, z, t, y) - f(s + ß, x, t, y)}dVz+ 

+ f f(s,x,s+ß,z){f(s+ß,z,t,y)-f(s+ß,x,t,y)}dVz = 
JfJt-1l 

By (2), 

h = Lf(s,x,s+ß,z)f(S+ß,x,t,y)dVz = 

(14) 

= f(s + ß, x, t, y) L f(s, x, s + ß, z)dVz = f(s + ß, x, t, y). (15) 

Then (13), (5) and (6) imply that 

12 = l f(s, x, s + ß, z){f(s + ß, z, t, y) - f(s + ß, x, t, y)}dVz = 

= l f(s, x, s + ß, Z){~(Zi - Xi) 8~i f(s + ß, x, t, y)+ 

82 
+~ ""(Zi - xi)(zi - xi) 8 8 f(s + ß, x, t, y)+ 

L...J Xi xi 

+0p3(x, z) }dVz = ~ ai(s, x, ß) 8~/(s + ß, x, t, y)+ 

82 
+~ ""bii (S,X,ß)8 8 f(s+ß,x,t,y)+ 

L...J Xi xi 

+ l f(s, x, s + ß, Z)0p3(X, z)dVz. 

Finally, since throughout 9t - ~ we have 

l(x,z) > K > 0, 

where K does not depend on z, in 9t - ~ we can set 

f(s + ß, z, t, y) - f(s + ß, x, t, y) = 0'l(x, z). 

(16) 
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Then 

I 3 = [ f(s,x,s+Ll,zHf(s+Ll,z,t,y)-f(s+Ll,x,t,y)}dVz= 
1m- fA 

= [ f(s,x,s+Ll,z)e'l(x,z)dVz , le'I:::;C'=K1 . (17) 
1m-fA 

Substituting (15)-(17) into (14) we finally obtain 

Ö 
f(s, x, t, y) = f(s + Ll, x, t, y) + L ai(s, x, Ll) ÖXi f(s + Ll, x, t, y)+ 

ö2 

+! L bij(s, X, Ll) ÖXiÖXj f(s + Ll, x, t, y)+ 

+ lf(s,x,s+Ll,z)ellp3 (x,z)dVz , le"l:::;c". (18) 

If we also take into account the obvious equality 

1 f(s, x, s + Ll, z)e"l(x, z)dVz = e/ll 1m f(s, x, s + Ll, z)p3(x, z)dVz = 

= elllv(s, x, Ll), lellll:::; CIII , 

then (18) can be rewritten as folIows: 

f(s + Ll, x, t, y) - f(s, x, t, y) _ '"' ai(s, x, Ll) Ö f( A ) 

Ll - - L.J Ll ÖXi s + u.,x,t,y -

_ L bij ( s, x, Ll) ö2 _ f( A ) _ 0111 v( S , x, Ll) 
A !I !I s+u.,x,t,y \7 A • 

2u. UXiUXj u. 
(19) 

The left-hand side in (19) tends to :.f(s,x,t,y) as Ll-+ O. 

Suppose that the deterrninant DN(s,x) is non-zero for tl,yl,t2,Y2, ... 
... ,tN,YN. Then DN(s + Ll,x) =F 0 for sufliciently srnall Ll. Hence, there 

(20) 

If we rnultiply (19) by Ak(Ll) with t = tk and y = Yk and surn all the N 

equalities thus obtained, then we have 

LAk(Ll)f(s + Ll,x,tk,Yk) - f(S,x,tk,Yk) = 
k Ll 

__ '"' . ai(s, x, Ll) _ '"' .. bij(S, x, Ll) _ '"' \ (A)O/ll v(s, x, Ll) 
- L.J a, Ll L.J a'J 2Ll L.J Ak u. \7 k Ll . 

i i,j k 

(21) 
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If ~ tends to zero, then the Ak(~), as solutions of (20), tend to the solution 

Ak(O) of the equations 

Hence, the left-hand side of (21) has a finite limit 

f) 
Ao = L Ak(O)Jl /(s, z, tk, Yk) 

k vS 

as ~ -0. 

In particular, if we set eri = 0, erij - gij, then 

Egijbij(S,Z,~) '" A (~)elllv(s,z,~) _ A as ~ _ O. 
2~ + ~ k k ~ 0 

(22) 

(23) 

(24) 

By (12), the second term in (24) is infinitesimally small as compared with the 

first one (since the Ak(~) are hounded). Hence we have 

(25) 

But (25) and (12) imply 

v(S,z,~)/~ - 0 as ~ - O. (26) 

If we now equate all hut one of the coefficients eri and erij in (21) to zero, 

then a similar passage to the limit using (26) shows that all the limits 

A ( ) 1· ai(s,z,~) A 0 (27) 
i s, z = 1m ~ as ~ - , 

B .. ( ) -li bij(S, z, ~) A 0 (28) 
I) s, z - m 2~ as ~ - , 

exist and do not depend on the choice 7 of~. Then (27), (28), (26) and (19) 

immediately imply the first differential equation 

7 See A.M., §13, formulas (122)-(124). 
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Certainly the condition that DN(8, X) does not vanish identically can be 

replaced by the direct requirement that the limits (27) and (28) exist, since 

(28) implies the existence of a finite limit (25) and therefore of (26). 

At certain exceptional points the limits (27) and (28) need not exist. This 

was illustrated in A.M. 8 by the following example: !R is the ordinary number 

axis and 
3y2 [ (y3 _ x3)2] 

/(8, X, t, y) = 2J7r(t _ 8) exp - 4(t _ 8) ; (30) 

for X = 0 we easily obtain 

b(8,X,/l.)j2/l. -+ +00 as /l. -+ O. 

Hence there is no finite limit B(8, x). 

§2. The second differential equation 

Assume now that in a neighbourhood ~ of the point Yo for a given t the limits 

A;(t, y) and B;j(t, y) exist uniformly and that v(t, y, /l.)j /l. tends uniformly to 

o in ~. Suppose further that R(y) is a non-negative function vanishing outside 

~ with bounded derivatives up to the third order. Then for y E ~, Z E ~ we 

have 

82 
+~ ""(Yi - Zi)(Yj - Zj )-8 8 R(z)+ L...J Zi Zj 

+e' l(y, z), le'l ~ C', (31) 

whereas for y E !R - ~ and Z E ~, 

R(y) = R(z) + eil l(y, Z), le"l ~ C". (32) 

Finally, for y E !R -~, Z E !R - ~ 

R(y) = O. (33) 

8 See A.M., §13, formula (126). 
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If in the corresponding regions R(y) is replaced by (31)-(33), we obtain 

l R(y):/(s,x,t,y)dVy = 

= :t l R(y)/(s,x,t,y)dVy = ! 1m R(y)/(s,x,t,y)dVy = 

= lim ! 1m R(y)[/(s, x, t + ß, y) - /(s, x, t, y)]dVy = 

= lim ! {1m R(y) 1m /(s, x, t, z)/(t, z, t + ß, y)dVzdVy-

- 1m R(y)/(s, x,t, Y)dVy} = 

= lim! {1m /(s,x,t,z) 1m R(y)/(t,z,t + ß,y)dVydVz

- 1m R(z)/(s, x, t, z)dVz } = 

= lim ! {l /(s, x, t, z) 1m R(z)/(t, z, t + ß, y)dVydVz + 

+ l /(s, x, t, z) l ["I)Yi - Zi) O~i R(z)+ 

02 
] +~ L(Yi - z;)(Yj - Zj) OZ;OZj R(z) /(t, z, t + ß, y)dVydVz + 

+ l/(s,x,t,z) 1m 8'''p3(y,z)f(t,z,t+ß,y)dVydVz

-l R(z)/(s,x,t,z)dVz } = lim! {l /(s,x,t,z)R(z)dVz + 

+ l/(S,x,t,z)[Lai(t,z,ß)o~;R(Z)+ 

02 
] +~ L b;j(t, z, ß) OZ;OZj R(z) dVz + 

+8 l /(s, x, t, z)v(t, z, ß)dVz -l /(s, x, t, z)R(z)dVz } = 
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Replacing z by Y in the right-hand side of the equation we obtain 

Now assume that Ai(t, z) and Bij(t, z) are twice continuously differentiable 

in ~. Then we set 

Q(t, y) = Igij (t, y)1 

and after integration by parts, we obtain 

f f(s, z, t, y)Ai(t, y) (){) R(y)dv;, = 1m Yi 

= f f(s,z,t, y)Ai(t, y)Q(t, y){){) R(y)dy1dY2 .. . dYn = 
~ ~ 

= - f (){). [I(s, z, t, y)Ai(t, y)Q(t, y)]R(y)dy1dY2 . .. dYn. (35) 
~ ~ . 

Double integration by parts (since all the derivatives vanish on the boundary 

of~) yields 

l ()2 
f(s,z,t,y)Bij(t,y)-{) () R(y)dV" = 

m Yi Yj 

l ()2 
= -() () [I(s, z, t, y)Bij(t, y)Q(t, y)]R(y)dy1dY2 ... dYn. 

m Yi Yj 

Formulas (34)-(36) immediately imply that 

k R(y)Q(t,y)!f(s,z,t,y)dY1dY2 ... dYn = 

= k R(Y){ - L ()~i [Ai(t, y)Q(t, y)f(s, z, t, y)]+ 

{)2 } 
+ L ()Yi{)Yj [Bij(t, y)Q(t, y)f(s, z, t, y)] dy1dY2 ... dYn. 

(36) 
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Since R(y) is arbitrary, apart from the above conditions, it is easy to conclude 

that at interior points of ~ the second differential equation 

8 8 
Q(t, y) 8t fes, x, t, y) = - L: 8Yi [Ai(t, y)Q(t, y)f(s, x, t, y)]+ 

also holds. 

82 
+ "" ~[Bij(t, y)Q(t, y)f(s, x, t, y)] 

L..J uy;uYj 
(37) 

If at time to the differential function of the probability distribution is given, 

that is, a non-negative function g(to, y) of y satisfying the condition 

1m g(to, y)dVy = 1, (38) 

then for arbitrary t > t o the distribution function g(t, y) is given by the formula 

g(t,y) = 1m g(to,x)f(to,x,t,y)dV.,. (39) 

The function g(t, y) satisfies the equation 9 

(40) 

§3. Uniqueness 

U nder a change of the coordinate system the coefficients Ai (s, x) and Bij (s, x) 
are transformed in the following way: 

(41) 

(42) 

Here we always have 

1· bii( s, x, .6.) 1· 1 f f( A)( )2d Bu= Im 2.6. = Im 2.6.}f1. s,x,s+u.,z Zi-Xi Vz2:0. (43) 

Hence the quadratic form 

(44) 

9 See A.M., §18, formulas (169) and (170). 
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is non-negative. This is crucial in the proof of the following theorem. 10 

Uniqueness Theorem 1. If~ is closed, then (40) has at most one solution 

g(t, y) with given continuous initial condition g(to, y) = g(y). 

Proof. Clearly it suffices to consider the initial condition g(to, y) = 0 and prove 

that g(t, y) = 0 also for t > to. We can transform (40) into the form 

(45) 

Now set 

v(t, y) = g(t, y)e-et. 

The function v(t, y) satisfies the equation 

{)v 2: {)2 v 2: ()v -() = Bij -() () + Si -() + Tv - cv. 
t Yi Yj Yi 

(46) 

For fixed to and t1 the constant c can be chosen so large that 

T(t,y) - c < 0 

for all y and t, to ::; t ::; t1. Under these conditions v(t, y) cannot have a 

positive maximum at any point (t,y), to < t < t 1, since at such a maximum 

~-o 
{)Yi - , 

(T - c)v < 0, 

which contradicts (46). Neither can there be a negative minimum of v(t, y) 

within these limits. Since v(to, y) = 0 at t = to, we obtain for to < t < t1, 

v(t,y) < maxv(t1,y) = e-et, maxg(t1,y) 

g(t,y) < e-e(t,-t)maxg(t1,y). 

Since c was arbitrarily large, it follows that 

g(t, y) = o. 

10 See: E. Rothe, 'Über die Wärmeleitungsgleichung', Math. Ann. 104 (1931), 
353-354 (uniqueness proof). 
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Uniqueness Theorem 2. Let 9t be closed. Then there is at most one non

negative continuous solution /(s, x, t, y) /or (2) and (3) that satisjies (29) with 

given twice continuously differentiable coefficients Ai(t, y) and Bij(t, y), and 

the continuity condition (4). 

The continuity condition (4) can be replaced by the /ollowing, weaker one: 

L /(s, x, t, y)p2(x, y)dVy -+ 0 aB t -+ s. (47) 

Proo/. Assume that two different functions 11 (s, x, t, y) and h(s, x, t, y) satisfy 

all our conditions. Then we can choose s and a continuous function g( x) such 

that 

gl(t, y) = L g(x)l1(s, x, t, y)dV:e, 

g2(t,y) = L9(X)h(s,x,t,y)dV:e 

are also different. By (2) and (47), gl(t, y) and g2(t, y) tend to g(y) aB t -+ s. 

Since the functions gl(t, y) and g2(t, y) satisfy (40), this contradicts Uniqueness 

Theorem 1. 

§4. An example 

The following example, which is interesting also for applications, demonstrates 

that the quadratic form (44) need not be positive definite: let 9t be the usual 

Euclidean plane and let 

A simple computation shows that 

§5. The limit solution 

Let 9t be closed and /(s, x, t, y) everywhere positive and dependent only on 

the difference t - s: 

/(s, x, t, y) = t/J(t - s, x, V). (49) 



168 ON THE THEORY OF CONTINUOUS RANDOM PROCESSES 

Then general ergodie theorems 11 imply the existence of the limit probability 

distribution. In other words, for any distribution ge', y) determined by (38) 

and (39) and any region ~ the relation 

l ge', y)dV!I -+ P(~) as t -+ +00, (50) 

holds, where P(~) does not depend on g(to,y). It can easily be proved that 

ge', y) is uniformly continuous for large t. From this we deduce that 12 

P(~) = -l g(y)dV!I' 

ge', y) -+ g(y) as t -+ +00. 

Clearly, g(y) and P(~) do not depend on g(to,Y). 

Now, let g(y) be the solution of the equations 

(51) 

(52) 

8 82 
- '" ~[Ai(y)Q(y)g(y)] + '" ~[Bij(y)Q(y)g(y)] = 0, (53) 

L..J UYi L..J UYiUYj 

1m g(y)dVy = 1. (53a) 

Setting g(to, y) = g(y) it can easily be seen that ge', y) = g(y) also for t > to 
(see (40) and Uniqueness Theorem 1). From this we deduce that the solution 

01 (53) and (53a) (il it exists) is uniquely determined and coincides with the 

limit function g(y). 

As a particular case, (52) implies 

I(s, %, t, y) -+ g(y) as t -+ +00. (54) 

11 See A.M., §4, Theorem IV. 
12 See footnote 1. 

Klyazma, near Moscow, 12 April 1932 



18. ON THE PROBLEM OF THE SUITABILITY OF FORECASTING 

FORMULAS FOUND BY STATISTICAL METHODS * 
§1. A number of authors (Exner, Baur, Vize) have made attempts, by means 

of statistical analysis of the data gathered during the last 30-50 years, to ob

tain formulas relating the deviation il.y of some meteorologieal factor y, to be 

forecast, from its mean jj (averaged over many years) , with similar deviations 

il.Zl, il.z2 , ••• , il.ZA: of various faetors that ean be determined beforehand. So 

far only linear formulas have been used for this purpose: 

(1) 

By ehoosing appropriate faetors Zl, Z2, ••• ,ZA:, whose number is somewhere 

between three and seven, and eoeffieients a1, a2, ... ,aA: it ean be shown that in 

many eases the eorrelation eoeffieient between the actuaUy observed il.y and 

its value eomputed by formula (1), ealculated from the data during the same 

30-50 years that served for deriving the formula, reaches 0.60-0.75. However, 

when verifieation of the formula was based on the observations over years other 

than the years used in deriving the formula (Vize), the eorrelation eoeffieient 

between the eomputed and the observed il.y turned out to be 0.30-0.40. This 

correlation eoefficient has no practical value, espeeially since forecasts of the 

degree of reliability ean be obtained in a much simpler way. 

The theory for obtaining regression equations of type (1) is based on the 

foUowing assumptions. It is assumed that y, Zl, Z2, ••• , ZA: are random variables 

with a eertain distribution law w(y, Zl, Z2, ••• , ZA:) whieh does not change over 

the years. It is assumed further, that the probabilities that y, Zl, Z2, ••• , ZA: take 

certain values in a given year do not depend on the values taken by these vari

ables in previous years. Without the first condition (of stability) the problem of 

formulating a regression equation has no meaning at aU. If the first eondition is 

fulfiUed, then there exist determinate eoefficients a1, a2, ... ,aA: that minimize 

the expectation 

The relation 
6 = E(il.y2) - E(u2) 

E(il. y2) 

* Zh. GeoJiz. 3 (1933), 78-82. 

169 
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is called the trae correlation coefficient. The second condition (of indepen

dence) is essential for proving that the coefficients a1, a2, ••• ,aA: of the empirical 

regression equation (1) computed from the observations during a sufficiently 

large number of years n are dose to the theoretical coefficients ab a2, ••• ,aA:, 

and also for proving that the empirical correlation coefficient R is dose to the 

theoretical one, 6, also for sufficiently large n. 

There can certainly be some doubts as to whether these two conditions 

can be applied to meteorological phenomena. Moreover, if we consider the 

existence of secular or periodic multi-year dimate ßuctuations an established 

fact, the first condition is dearly wrong. This fact is often used for explaining 

the discrepancy mentioned above: it is supposed that the regression equa

tion (1) does indeed reßect the regularities that took place during the period 

under study with great accuracy, but these regularities themselves are subject 

to change as a result of long-term climatic ßuctuations. I am going to prove 

that these excessively high empirical correlation coefficients are quite explica

ble also under the assumption of complete stability and independence of the 

studied factors from year to year, in other words, that the methods used by 

the above researchers inevitably lead to a certain "blow-up" of correlation co

efficients. This is discussed in §2. In §3 we consider whether stability and 

independence in meteorological series are sufficient to make statistical deter

mination of regression equations possible and useful; in §4 we give some ideas 

on the techniques for finding regression equations. 

§2. The mathematical apparatus needed for solving our problem was devel

oped quite recently by Fisher [1] in his study on the distribution law for the 

correlation coefficient under multiple correlation (see also the review by Rider 

[2]). It is assumed that the distribution law w(y, Xl, X2, • •• , XA:) is normal. 

Suppose that we are given a regression equation for a certa,in variable y. 

Assurne that y is related to Xl> X2, ••• , XA: in such a way that the true correlation 

coefficient is 6. Fisher's analysis makes it possible to compute the distribution 

law for the empirical correlation coefficient R from 6 and the number of ob

servations n (number of years during which observation took place). However, 

this distribution law by itself still gives no answer to our question. Indeed, 

Xl, X2, ••• ,XA: can be chosen so that the correlation coefficient 6 is as large as 

possible; then although at most 5-7 values are introduced into the regression 

equation, the stock of values from which these 5-7 values can be chosen is very 
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large. 

We assume therefore that there are i groups of values 

(1) (1) (1) 
Xl ,x2 , ••• ,xk , 

(2) (2) (2) 
Xl 'X2 , ... ,xk , 

(i) (i) (i) 
Xl 'X2 '''''Xk , 

of k values each. Assume for simplicity that y is related to each of these groups 

with true correlation coefficient b. For any A Fisher's formulas allow us to 

compute the prob ability that in each individual case the empirical correlation 

coefficient R exceeds A. Let this prob ability be p. It is natural to assume that 

with probability 

P=l_(l_p)i (2) 

the inequality R > A holds for at least one of the groups: this is so under the 

assumption of independence of the deviations of R from b corresponding to 

different groups. 1 If, for example, i = 14 and p = 1/20, then 

P = 1 - (1 - 1/20)14 ~ 1/2. 

The values of A corresponding to p = 1/20 for given b, k and R can be computed 

using Fisher's tables. For this we set 

m=n-k-1, ß=v'ffitanh-1 b, 

then find B from ß and m via Fisher's tables 2 and, finally, find A by the formula 

B = v'ffitanh- 1 A. 

For example, set n = 42 and k = 5. Then, after appropriate calculations, 

we find: 

b 0.20 0.30 0040 0.50 

A 0.56 0.61 0.66 0.72 

1 This assumption is quite arbitrary, but in reality the number of groups from 
which to choose might be even greater than i = 14 taken for the calculation in 
the example; this, I hope, justifies the arbitrariness of our assumption. 

2 Tables on p.665 in [1]. 
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The immediate significance of these results is as folIows: by computing the 

five-term regression formula from 42 observations for 0 = 0.20; 0.30; 0.40; 0.50 

in one twentieth of the cases we find that R exceeds the corresponding .\. 

If, however, from the 14 regression formulas we choose the one with the 

largest R, then R exceeds the computed values of .\ with prob ability greater 

than !. 
In conclusion we discuss Fisher's general formulas. The probability that 

R 2 lies between v and v + dv is, according to Fisher , 

xv(l:-2)/2(1_ v)(m-2)/2 dt/J sm Z dv = 1"" 100 . l:-2 t/Jd 

o -00 (coshz-oRcost/J)m+A: 

= 1 [!(m+kl -2)]! (1_o2)(m+A:)/2 x 
[2(m - 2)]![2(k - 2)]! 

xF [!(m + k), ~(m + k), !k, 02v] v(l:-2)/2(1 - v)(m-2)/2dv, 

where F(p, q, r, z) denotes the hypergeometric function. These relations can be 

simplified in special cases and replaced by relations asymptotic in m, but even 

after simplification they are still too complicated to be used directly. 

§3. The established fact of "blowing up" of the correlation coefficient does 

not necessarily mean that these statistical regression formulas cannot be used. 

We must make the number k of values involved in the regression equation and 

the stock of values from which they are chosen as low as possible; in this case 

the risk of obtaining an artificially "blown-up" correlation coefficient can be 

significantly diminished. 

More essential for evaluating future prospects for the statistical estab

lishment of forecasting equations is to find out to what extent meteorologi

cal series satisfy the stability and independence conditions. The very exis

tence of secular changes or periodic fluctuations does not in itself preclude 

the use of studies stemming from assumptions on stability and independence, 

if the role of these secular or periodic fluctuations in forming the deviations 

ßy, ßZl, ßZ2,"" ßZl: is insignificant. 

The simplest method for checking the stability of the series and the inde

pendence of its terms is the following: let ßy( i) be the value of the deviation ßy 
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for the ith year. We need to compute, over a long period of n years, the correla

tion coeflicients between Ay(i) and Ay(i+1), between Ay(i) and Ay(i+2), etc. If 

these correlation coeflicients deviate from zero within the bounds correspond

ing to theoretical computations made under the assumption of independence 

and stability, this confirms our hypothesis. Indeed, secular change, or peri

odic fluctuation with period of four years or more, inevitably lead to positive 

correlation between Ay(i) and Ay(i+4), whereas short fluctuations during two 

or three years lead to positive correlation between A.y(i) and A.y(i+2) or Ay(i) 

and Ay(i+3). In the case of stability and independence the expectation of the 

square of each of the above correlation coeflicients is approximately 1/(n - 3), 

for n not too smalI. 

Such computations were made for the average monthly temperatures in 

Leningrad. For each month the correlation coeflicients between Ay(i) and 

Ay(i+ 1), Ay(i+2) and Ay(i+3) were computed from the data over a hundred 

years. The mean square of these three correlation coeflicients over twelve 

months turned out to be 0.065, 0.064 and 0.110, which is in good agreement 

with the theoretical values: 

1/..,fn - 3 = 11m = 0.102. 

Now consider two series y(i) and x(i). If y is related to x with positive corre

lation, then .6.yAx has positive expectation. To study the stability of corre

lation between y(i) and x(i) we must form the correlation coeflicients between 

Ay(i) - .6.x(i) and .6.x(i+l) - Ay(i+l), .6.x(i+2) - Ay(i+2), etc. If the double 

series is stable and the pairs y(i), x(i) relating to different years are indepen

dent, then the square of this correlation coeflicient has expectation 1/(n - 3), 

as in the first case. In this way the stability of the correlation between av

erage temperatures of two successive months in Leningrad was studied (it is 

known to be a significant positive correlation): the mean square of the cor

relation coeflicient between Ay(i) - Ax(i) and Ay(i+l) - Ax(i+ 1) over twelve 

pairs of adjacent months was 0.071, which is also in good agreement with the 

theoretical value 0.102. Similar treatment can be given to the stability of the 

variability of y by forming the correlation coeflicients between (Ay(i»2 and 

(Ay(i+1»2, (Ay(i+2»2, etc. 

Only such systematic studies of the stability of meteorological series can 

solve the problem, whereas separate remarks to the effect that a certain corre

lation coeflicient appeared to be unstable can only distort our ideas on the real 
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situation. If some separately chosen correlation coefficient between two meteo

rological factors has very different values for two adjacent periods oftwenty-five 

years, this by no means proves that the general regularities of the climate that 

occurred during the first twenty-five years changed over the second twenty

five year period. Rather , this discrepancy can be considered to be of a purely 

random nature. 

Clearly, a few figures are far from sufficient for the solution of our problem, 

but it is quite possible that further studies will reveal fairly good agreement 

with the stability and independence hypotheses. The point is that in order 

to prove secular climate changes or multi-year periodic fiuctuations, highly 

averaged values are usually studied, based on observations made by individual 

stations, for which the absolute values of the deviations ll.y are comparatively 

small and therefore the role of long-term fiuctuations is more significant. 

§4. We now assurne that the requirements of stability and independence for 

our series are fulfilled. If the number of observation years is large enough, 

then under our assumption, even quite complex regression equations selected 

on the basis of these observations, would refiect with sufficient accuracy the 

regularities that are true for the entire series. However, for n = 30 or even 50 or 

even 100 the situation changes considerably: if too many values are introduced, 

from which we make our choice for entering in our equation, then the danger is 

that there randomly appear nice combinations whose use for forecasting wöuld 

be quite unjustified. 

On the contrary, if serious theoretical observations show that the value y 

to be forecast can to a considerable degree be determined, for example, by three 

values x!, X2, X3, then the computation of the regression formula (1) which re

lates ll.y to ll.Xl, ll.x2 and ll.x3, based on 50 years' observations, should be con

sidered reliable. Here we mean theoretical considerations dynamically justified 

and not ''theories'' of purely statistical origin. However, even purely statistical 

techniques might give a hint of where to look for non-random correlation rela

tions. Such an attempt on a broad scale was made by Baur [3]. He computed 

correlation coefficients between average monthly temperatures in Iceland and 

atmospheric pressure in previous months at various points of the Earth. It ap

peared that for the stations on the Southern hemisphere the absolute values of 

the correlation coefficients do not exceed on the average (over different stations 

and twelve months) the values predicted theoretically under the assumption of 
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independence of both events (temperature in Iceland and pressure at a given 

station in the Southern hemisphere). This makes these rarely occurring corre

lation coefficients considerably exceeding the general norm quite doubtful. In 

contrast to this, the pressure at the stations of the Northern hemisphere show 

correlation with sub se quent temperatures in Iceland, which is systematically 

much greater than it would have been at random. Baur remarks, however, 

that perhaps the influence of pressure anomalies at distant points of the Earth 

tells something about temperatures in Iceland only over times longer than one 

month. Baur does not give sufficient proof of this hypothesis. The quest ion 

can be solved only by systematically continuing Baur's studies on the average 

value of correlation coefficients, not by looking for new special cases of high 

correlation. 

These studies should be guided by Fisher's result by virtue of which, for 

independent x and y the empirical correlation coefficient r has a distribution 

law which, after the transformation 

z = tan- 1 r, 

turns into the normal law for z with centre at the origin and variance 

(1 = 1/..;n:::3, 

where n is the number of observations. 
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19. RANDOM MOTIONS * 
On the theory of Brownian motion 

In my two earlier papers [1], [2], I developed a general theory of continuous 

random processes. Under very general conditions, it was proved that ifthe state 

of a physical system at every given moment is fuHy determined by n parameters 

Xl, X2, ••• , X n , and if these n parameters continuously 1 change with time t, then 

the corresponding distribution functions satisfy the Fokker-Planck differential 

equation. In the general case of such random processes the increments .6.x; of 

the parameter Xi are of the same order as (.6.t) 1/2 . This implies that in the 

general case .6.xi : .6.t -+ 00 as.6.t -+ 0, so that we cannot speak about adefinite 

rate of variation of X;. We will now show how to apply this general theory to 

random motions, for which we assurne that not only the system's coordinates, 

but also their derivatives with respect to time vary continuously. 

Let ql, q2, ... , qn be the coordinates of a system with n degrees of freedom. 

Assurne that if we know q and 4 and the time t, then we can determine the 

probability density 

of q' and 4' for any t' > t. We assurne, moreover, that G does not depend on 

the behaviour of the system before time t. 

It is natural to assurne that 2 

EI.6.qi - 4i.6.tl = o(.6.t), 

E(.6.q;)2 = o(.6.t), 

(1) 

(2) 

where .6.t = t' - t and Eis the expectation symbol. Relations (1) and (2) imply 

E(.6.qi) = 4i.6.t + o(.6.t), (3) 

E(.6.q;.6.qj) ~ VE(.6.qt}2E(.6.%)2 = o(.6.t) (4) 

* 'Zufällige Bewegungen (Zur Theorie der Brownschen Bewegung)', Arm. 0/ Math. 
35 (1934), 116-117. 

1 On the precise meaning of the condition of continuity of random processes, see 
[1], §13. 

2 Since t:..qi should be of the same order as t:..t. 
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In [2], under very general assumptions it was proved that in addition to 

(2)-(4) the following relations hold: 

E(~qi) = fi(t, q, q)~t + o(~t), 

E(~qi)2 = kii(t, q, q)~t + o(~t), 

E(~qi~qj) = kij(t, q, q)~t + o(~t), 

(5) 

(6) 

(7) 

where fand k are continuous functions. In many problems of physics the 

assumptions (5)-(7) also allow direct verification. In particular, (2) and (6) 

imply that 

(8) 

Under the assumptions (2)-(8), which are quite natural from the point of 

view of physics, it is dear that G is a fundamental solution of the following 

differential equation of Fokker-Planck type 3 

{)g '" ., {) '" {) {f, (' , .') } 
{)t' = - L.J qi {)q~ g - L.J {)q~ i t , q , q g + 

Thus, for n = 1 we obtain 

{)g ., {) {) {f(' , .')} {)2 {k(' , .') } {)t' = -q {)q' g - {)q' t , q , q g + {)q'2 t , q , q g . 

(9) 

(10) 

If fand kare constants, then the fundamental solution of (10) can be repre

sented by 

2V3 {[4' - q - f(t' - t)F 
g = 7rk2(t' - t)2 exp - 4k(t' - t) 

3k-q- ti'ti(t'-t)f 
- k(t' _ t)3 }. (11) 

3 The proof can be found in [2]. 
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Clearly ä4 is of the order (ät)1/2, that is, it behaves like äz in the case 

of a general continuous process. However, for äq we obtain 4 

(12) 

It can be proved that the latter relation also holds in the case of the general 

equation (9). 
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20. DEVIATIONS FROM HARDY'S FORMULAS 

UNDER PARTIAL ISOLATION * 
The profound mathematical studies by R. Fisher [1] and S. Wright [2] deal. 

with the evolution of gene concentration in a population in which free cross

ing dominates. The purpose of this paper is to give a method for obtaining 

similar results for a population consisting of a large number of partial popu

lations weakly connected with each other. Mathematical analysis was applied 

to the following scheme: a population with a constant number of individuals 

N consisting of s partial populations of n individuals each (N = sn) with free 

crossing in each partial population and in which in every generation on the av

erage k "wandering" individuals are isolated from every population; regardless 

of their origin, wandering individuals randomly join any of the partial popula

tions, where they take part in creating the next generation. This scheme was 

indicated as a possible one by N.P. Dubinin and D.D. Romashov. A number of 

other, not less interesting, schemes of restricted crossing do not yet succumb 

to mathematical treatment. 

§1. The case of no selection. Denote by p the concentration of a certain 

gene in the large population and by p the concentration of the same gene in a 

partial population. 

In this section we assurne that the studied gene is not subject to selection. 

The formulas below are asymptotic, which are true as np, njk2 and s tend to 

infinity. In practice, they are applicable if np, njk2 and s are sufficiently large. 

Denote by tl.p the increment of the concentration p in a certain partial 

population over one generation. After Fisher and Wright, we assurne that the 

expectations of tl.p and (tl.p2) satisfy the formulas 

k 
A = E(tl.p) = -(p - p), 

n 
B = E(tl.p)2 = pq, 

2n 

where q = 1 - p. Since s is large, the variation of the total concentration 

p will proceed much more slowly than those of the partial concentrations p. 

Therefore, p can temporarily be taken constant. The concentrations p in par

tial populations deviate from p in either direction. After sufficiently long time 

the fluctuations of p around p ·result in a certain stationary prob ability distri

bution for the concentrations p. This stationary distribution u(p) satisfies the 

* Dokl. Akad. Nauk SSSR 3 (1935), 129-132. Presented by S.N. Bernshtein. 
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differential equation 
1 02 0 
"2 ap2 (Bu) - ap (Au) = O. 

Solving this equation we obtain 

p4kp-1q4kq-1 

u(p) = B(4kp,4kq) . (1) 

Wright obtained (1) using a different method. It can be proved that (1) 

not only gives the prob ability distribution for the concentration p but, for a 

sufficiently large number s of partial populations, the actually observed distri

bution of partial populations over concentrations p will also be given by (1). 

Under these assumptions Hardy's formula holds for every partial popula-

tion, that is, the concentrations of individuals of the types AA, Aa and aa are 

equal to q2, 2pq and p2. The concentrations of individuals of the type AA, Aa 

and aa in a large population can be computed by the formulas: 

The computations give 

AA = 101 
q2u(p)dp, 

Aa = 2 101 
pqu(p)dp, 

aa = 101 
p2u(p)dp. 

- 4k -2 1_ 
AA = 4k + 1 q + 4k + 1 q, 

- 4k 
Aa = 2 4k + 1 pq, 

_ 4k -2 1_ 
aa = 4k + 1 p + 4k + 1 p. 

(2) 

Formulas (2) give the solution to the problem raised in the title of the 

paper. 

Due to the absence of selection, the expectation E(Äp) of the increment of 

the total gene concentration (in the large population) over one generation is 0, 

while the intensity of random concentration fluctuations in the large population 

is E(Äp)2. This latter value is computed by the formula 

111 1 11 E(Äp)2 = - E(Äp)2u(p)dp = -2 pqu(p)dp. 
s 0 sn 0 
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Computations give 
4k --

E(ilp? = 4k+ 1 ;;. (3) 

In the case of free crossing we have, according to Fisher and Wright, 

E(ilp)2 = pij/2N. 

§2. The effect of selection. Formula (1), Hardy's formula for partial popu

lations and its substitute (2) for a large population remain valid in the presence 

of selection when the selection coefficient a is much less than l/n. We consider 

only this case: accordingly, the formulas below are merely asymptotic formu

las, true as na ---+ O. Of special interest is the case of a recessive gene. In this 

case the mean increment of gene concentration due to selection is ap2q for any 

partial population. Therefore, for the total concentration we have 

or 
4k 

E(ilp) = a (4k + 2)(4k + l)pij(4kp + 1). (4) 

Formula (4) can be used to confirm, for the above scheme, the general 

statement on the existence of an optimum of partial isolation for the selec-

tion of recessive genes, which was suggested and quantitatively justified by 

A.A. Malinovskii. It is easy to compute the k corresponding to the highest 

rate of selection. For small p this optimal k is 

ko = tV2 = 0.35. 

Mathematical Institute of Moscow State University 

18 June 1935 

References 

1. R.A. Fisher, The genetic theory 0/ natural se1ection, Oxford, 1930. 

2. S. Wright, Genetics, London, 1931, pp. 97-157. 



21. ON THE THEORY OF MARKOV CHAINS * 

The eonsiderations given below, though simple, are, I believe, new and interest

ing for eertain physieal applieations, espeeially in the analysis of reversibility of 

statisticallaws of nature made by Sehrödinger 1 for one partieular ease. In what 

foHows it is a matter of indifferenee whieh of the two following assumptions is 

made: either the time variable t runs through aH real values, or only through 

the integers. The classical understanding of Markov ehains eorresponds to the 

seeond possibility. 

1. The notion of a Markov ehain 

Consider a physieal system whieh at any given time t ean be in one of the 

states of a finite set Ei, E2 , ... , E N. Assume that for any pair of states Ei 

and Ej and every pair of moments t and s, t ~ s, the eonditional probability 

Pij(t, s) that the state Ej takes plaee at time s under the assumption that at t 

the system was in state Ei, is defined. A signifieant, but not always explieitly 

stated assumption is that the eonditional prob ability Pij (t, s) is independent of 

the prehistory of the system before t. This assumption holds in dedueing the 

fundamental equation of the theory of Markov ehains, 

Pik(S,t) = L~j(S,U)Pjk(U,t), s ~ U ~ t, 
j 

with the eonditions 

L Pij(t, s) = 1, 
j 

where Dij = 0 is the Kroneeker symbol. 

2. Absolute probabilities 

(1) 

(2) 

(3) 

(4) 

So far we have only eonsidered eondition transition probabilities Pij (t, s). There 

arises the question whether it is possible, knowing the transition probabilities 

* 'Zur Theorie der Markoffschen Ketten', Math. Ann. 112 (1936), 155-160. 
1 Berliner Berichte (1931), 144. 
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Pij(t, S), to give the probabilities of various states at each instant t? If we 

assurne that the process of change for our system starts at a certain moment to, 

then the various states El , E2 , •.• ,EN are associated at time to with arbitrary 

probabilities Ql(tO), Q2(tO), ... , QN(tO), Qk(tO) ~ 0, Ek Qk(tO) = 1. For each 

moment t > to we obtain the following expressions for the probabilities Qk(t) 

of the states Ek (k = 1,2, ... ,N): 

Qk(t) = L Qi(tO)Pik(to, t). 
i 

Then for to ~ t ~ s we automatically also obtain the formula 

(5) 

The introduction of absolute probabilities is not so trivial if we do not assurne 

a certain beginning of the process, but instead try to find the absolute prob

abilities Qk(t) at all times t, -00 < t < +00. But even here the following 

assertion also holds: 

For arbitmry tmnsition probabilities Pik(t, s) given for all t and s (t ~ s), 

it is possible to determine in at least one way for all t, -00 < t < +00, 
the absolute probabilities Qk(t) corresponding to these transition probabilities 

Pik(t, s). 

Purely analytically, the theorem means the following. For each choice of 

Pik(t, s) corresponding to (1)-(4), the infinite system of equations (5) has at 

least one solution satisfying the additional conditions 

Qk(t) ~ 0, L Qk(t) = 1. (6) 
k 

To prove this theorem we first note that for each to, as we have already 

seen, there exists at least one system Q~to)(t) determined for all t ~ to and 

satisfying (5) and (6) for s ~ t ~ to. Using a diagonal process, we can extract 

from the sequence 

to = -1,-2,-3, ... 

a subsequence 

such that An -+ -00, so that for each k and each integer t the quantities 

Q~~n)(t) defined at each fixed t for all sufficiently large n te nd to a certain 
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limit Qk(t) as n -+ 00. From (6) it is easy to deduce that for all real non

integer t there exist limit values Qi;(t). These limit values, as can be proved 

by passing to the limit, satisfy (5) and (6). This proves our theorem. 

Of special interest is the case when the absolute probabilities are uniquely 

defined by the transition probabilities Pik(t, s). A necessary and sufficient 

condition for such uniqueness is the following: 

For arbitrary fixed k and s, ~k(t,S) tends to a certain limit Qi;(s), in

dependent 01 i, as t -+ -00. 11 this condition holds, then it is precisely these 

limits Qi;( s) that lorm the desired unique system 01 absolute probabilities. 

Let us first prove sufficiency. Let Qk(t) be certain absolute probabilities 

compatible with the transition probabilities Pik(t,S). Then 

(5) 

but since Pik(t, s) -+ Qi;(s) as t -+ -00, the right-hand side of (5) tends to 

I: Qi(s)Q;(t) = Qk(s) 
i 

as t -+ -00, which implies that 

Now suppose that our condition fails. Then we can choose i 1 and i 2 and 

two sequences, 

t~ > t~ > ... >t~ > ... -+ -00, 

t~ > t~ > ... >t~ > ... -+ -00, 

such that Pilk(t~, s) and Pi2k(t~, s) tend to limits Ql,(s) and QT:(s) respectively, 

as n -+ +00, for arbitrary k and s; furthermore, Ql,(s) and QT:(s) are not 

identically equal for all s. Then it is easy to prove that both Ql,(s) and Qr:(s) 

can be taken as absolute probabilities, implying the necessity of the condition. 

3. Inverse probabilities 

We now assume that there is a certain fixed system of absolute probabili

ties Qk(S) with all the Qk(S) positive. In this case, along with the transition 

probabilities Pik (t, s) we can also define the inverse conditional probabilities. 
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Namely, we denote by IIik(t, s) the conditional prob ability of the state Ei at 

time tunder the assumption that at a certain later time s, s ~ t, the state Ek 

is observed. Clearly, 
Qi(t) 

IIik(t,s) = Qk(t) Pik(t,S). (7) 

It is easy to derive the following formulas analogous to (1)-(5). 

IIik(s,t) = EIIij(s,u)IIjk(u,t), s ~ u ~ t, (1*) 
j 

IIik(s, t) ~ 0, (2*) 

EIIik(s,t) = 1, (3*) 
k 

IIik(t,t) = 6ik, (4*) 

Qi(S) = E Qk(t)IIik(s, t), s ~ t. (5*) 
k 

Note that if we want to bypass a certain new principle of "independence of the 

future", then (1*) should be derived from the above formulas, not directly, as 

for (1). This latter principle can then be deduced from (1*). 

4. Inversion of the laws of nature 

We now assurne that the transition probabilities Pik(S,t) depend only on the 

difference t - s: 

Pik(S,t) = P;k(t - s). 

As is known, in this case there exists at least one system of absolute probabil

ities independent of time t: 

For a fixed system of such probabilities Qk the inverse probabilities IIik(s,t) 

depend also only on t - s: 

The question is: under what conditions do we have the equality 

(8) 
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Since 

it follows that (8) holds if and only if 

(9) 

It should be noted, however, that necessary and sufficient conditions for 

(8) to hold can be expressed even without using Q", in terms of the transition 

probabilities Pi,,(r) only. Indeed, von Mises 2 proved that all states can be 

divided into dasses so that the following conditions hold: 1) Pi,,(r) can be non

zero only when Ei and E" belong to the same dass; 2) for any pair Ei and E" 

from the same dass, the ratio Qi : Q" is uniquely determined by the transition 

probabilities Pi,,(r). This implies that if Ei and E" belong to the same dass, 

then (9) is true regardless of the absolute probabilities Qj; if, however, Ei and 

E" are taken from different dasses, then (9) trivially follows from the equations 

Pi,,(r) = P"i(r) = O. We also see that (9) does not depend on the system Q". 
A necessary and sufficient condition, independent of Q", for (8) to hold 

may be formulated as folIows: 

Relation (8) holds if and only if for arbitrary r, q, k1, k2 , ••• , kq , 

In the discrete case (when t runs only through the integers) it suffices to require 

(10) only for r = 1. The proof is elementary, and we leave it to the reader. 

In particular, if the transition probabilities are symmetrie: 

(11) 

then (10) holds. Hence, the symmetry condition (11) is sufficient for (8). 

5. Conclusion 

These almost trivial facts find many physical applications. Here we confine 

ourselves to an example which is different from Schrödinger's original exam

pIe. Suppose that a cirde is divided into a very large number M of identical 

intervals. A large number L of mobile particles move along this cirde so that 

2 R. von Mises, Wahrscheinlichkeitsrechnung, Berlin, 1931, §16. 
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eaeh partide, independently of others, passes at every step into the neighbour

ing interval, either to the right or the left, eaeh possibility with prob ability !. 
There are M L = N various possible patterns of L particles on M intervals. 

The absolute probabilities Qk eorresponding to these N possibilities are all 

equal to each other and to 1/ N. The transition probabilities Pik (r) are clearly 

symmetrie, and therefore, the invertibility equation (8) holds. If we eonsider 

the "maeroseopie" distribution of the particles along the eircle, then with prob

ability very close to one, it will be uniform. If it is known (though a prior; 

this is highly unlikely) that at a eertain time to a eonsiderable deviation from 

this uniform distribution takes plaee, then with prob ability very dose to 1 we 

ean assert that this non-uniformity for t > to will die out approximately in ac

eordanee with the diffusion differential equation. Formula (8) now implies the 

same probability of uniformity for t < to with the same differential equation, 

but with the opposite sign of the time variable. 

Mathematieal Institute of Moseow State University 

20 May 1935 



22. ON THE STATISTICAL THEORY OF METAL CRYSTALLIZATION * 
This paper gives a rigorous solution to the problem of the rate of a erystalliza

tion proeess under eertain sehematie, but still suffieiently general assumptions. 

The study of the proeess of erystal growth after random formation of erys

tallization eentres is of signifieant irnportanee for metallurgy. In this eonnection 

it is fairly diffieult to take aeeount of eollisions between the erystal grains ap

pearing around separate erystallization eentres. These eollisions disturb the 

grain form by preventing the growth of erystals in eertain direetions. In papers 

by F. Göler and G. Saehs [1], G. Tammann [2], B.V. Stark, I.L. Mirkin and 

A.N. Romanovskii [3], and others only rough approximation formulas for the 

growth of erystal matter are given. In this paper I give, under rather wide 

assumptions, an exact formula for the prob ability pet) that a randomly taken 

point P of the volume filled with a erystallized substanee is inside the erystal 

body within the erystallization period. With a suffieient approximation rate it 

ean be eonsidered that the amount of substanee erystallized over time t is also 

pet). In eonclusion I determine the number of erystallization eentres formed 

throughout the entire erystallization proeess. 

I extend my gratitude to I.L. Mirkin who interested me in this problem 

and kindly provided me with all the neeessary material. 

§1. Mathematical setting of the problem 

Let V be a eertain volume. Initially (t = 0) it is oeeupied by "the mother 

phase". After time t a eertain part Vi(t) of the volume V is oeeupied by 

erystallized substanee. The volume Vi(t) grows with time t as follows. 

1. In the free part V - Vi new erystallization eentres appear. For any 

volume V' < V - Vi the probability of forming one erystallization eentre during 

the time between t and t + tJ..t is 

a(t)V' tJ..t + o(tJ..t), 

and that of more than one eentre is o(tJ..t) , where o(tJ..t) is an infinitesimal 

with respeet to tJ..t. These probabilities do not depend on the distribution 

of the erystallization eentres formed prior to time t provided that it ean be 

guaranteed (see later) that at the time t there is no erystal bulk in V'. 

* Izv. Akad. Nauk SSSR Sero Mat.3 (1937), 355-360. Presented by S.N. Bernshtein. 
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2. This crystal bulk grows around newly-formed crystallization centres 

and the whole crystal at a linear rate 

c(t, n) = k(t)c(n), 

depending on time t and direction n. We assume that the ends of the vectors of 

length c( n) measured in the direction n from the origin form a convex surface. 

Under these conditions an essential restrietion is that although c(t, n) may 

depend on n, this dependence should be the same at all points. In other 

words, the formulas given below hold either under the simplifying assumption 

of uniform growth in all directions, or for crystals of arbitrary shape similarly 

oriented in space. 

§2. Determination of the probability pet) 

The quantity c is defined by the equality 

c3 = ~ ( c3 (n)du, 
47r Js 

where we integrate over the surface of the unit sphere S with centre at the 

origin. Clearly, at t > to the volume of the crystal growing freely round a 

centre formed at the moment t o is given by 

~ c3 (1: k(r)drf· 

Now consider an arbitrary point P of V, lying at a distance greater than 

maxc(n) lt 
k(r)dr 

from the boundary of V. 

In order for P to get into the crystallized bulk by the time t it is necessary 

and sufficient that a crystallization centre is formed at a certain time t' < t at 

some point P' whose distance from P is less than 

c(n)lt 
k(r)dr, 

t' 

where n is the direction P' P. For a fixed t' the volume occupied by the points 

P' satisfying our conditions is 

V'(t') = ~c3(l,t k(r)drf. 



190 ON THE STATISTICAL THEORY OF METAL CRYSTALLIZATION 

The probability offorming a crystallization cent re during time tJ..t' in V'(t') 

IS 

a(t')V'(t')tJ..t' + o(tJ..t'), 

and the probability that this does not happen is 

• 
q(t) = II {1 - a(ti)V'(ti)tJ..t'} + 0(1). 

i=l 

Therefore the probability that the point P does not belong to the crystallized 

bulk at the moment t is 

• 
q(t) = II {1 - a(ti)V'(ti)tJ..t'} + 0(1), 

i=l 

where t = stJ..t', ti = itJ..t', and 0(1) is infinitesimal if tJ..t' is infinitesimal. 

Taking the logarithm of (1) we obtain 

• ft 
logq(t) = L a(ti)V'(ti)tJ..t' + 0(1) = - 10 a(t')V'(t')dt' = 

i=l 0 

4 t 1t 
3 = - ; c3 10 a(t')( t' k(r)dr) dt'. 

For the desired probability 

p(t) = 1 - q(t) 

for P to belong to the crystallized bulk we finally obtain 

411" 
p(t) = 1- eXP{-Tc3n}, 

where 

t 1t 
3 n = 10 a(t')( t' k(r)dr) dt'. 

§3. Conclusions 

(1) 

(2) 

(3) 

(4) 

When V is large enough as compared with the sizes of the individual grains, 

we may set Vl(t) = Vp(t) or, in view of (3), 

V1(t) = V( 1- exp { _ 4; c3n}) , (5) 
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where n is defined by (4). The formula (5) for the volumeV1(t) ofthe substance 

crystallized over the time t gives a solution of the first problem posed in the 

introduction. If O'(t) and c(t, n) do not depend on time, then we can set 

O'(t) = 0', k(t) = 1. 

In this case 

(4a) 

and (5) gives 

(5a) 

For a sufficiently large volume V the following formula holds for the number 

N(t) of crystallization centres formed over the period t: 

N(t) = V 11 O'(r)q(r)dr. (6) 

For a constant O'(t) = 0' and k = 1 we obtain from (6) 

(7) 

or 

(6a) 

where 

For t = +00 (6) and (6a) give the total number of crystallization cent res 

throughout the whole process. In particular, for constant O'(t) = 0' and k = 1 

we obtain 

(7a) 

Note also the special case when all the crystallization centres are formed 

at the very beginning, with an average of ß centres per unit volume. The 

corresponding formulas are derived from the general formulas by passage to 

the limit. Instead of (4) we obtain 

t 3 
n = ß(}o k(r)dr) , (4b) 
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formula (5) still holds and (6) is replaced for any t > 0 by the trivial identity 

N = Vß. If we assume, moreover, that k = 1 (that is, c(t, n) is independent of 

t), then we obtain 

n = ßt3 , (4c) 

Vl(t) = V( 1- exp{ _ 4; c3ßt3 }). (5c) 

Mathematical Institute of Moscow State University 

20 April 1937 
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23. MARKOV CHAINS WITH A COUNTABLE NUMBER 

OF POSSIBLE STATES * 

In [1] I made some general assertions eoneerning the asymptotie behaviour 

of transition from one state to another in an unbounded number of steps for 

Markov ehains with a eountable set of possible states. 

This paper gives a broader exposition of the same questions, eomplete 

with proofs of the main theorems announeed earlier without detailed proofs, 

and some new facts. The way of dealing with these questions used in this 

paper may be of some interest also for Markov ehains with a finite number of 

possible states. This is indieated in the note by W. Doeblin [2] whieh has sinee 

appeared. As I know from his letter, W. Doeblin independently proved some 

of the theorems on Markov ehains with a eountable number of states that I 

published. 

§1. Notation 

Denote by Ei the various possible states of the system under study, where i 

runs through all positive integers. We note that the following aeeount is also 

applieable for the ease when i takes a finite number of values; in this ease a 

number of the statements ean be simplified. The probabilities Pij of transition 

from Ei to Ej in one step are, as usual, assumed to be subjeet to the eonditions 

P .. > 0 I) _ (1) 

(2) 

The probabilities Pi)n) of transition from Ei to Ej in n steps are determined 

inductively from the equalities 

where 

Pi)n+!) = 'L Pi<;')P1:j, 
1: 

for i = j 
for i f. j 

* Eul. MGU Mat. Mekh. 1:3 (1937), 1-16 (in Russian). 
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(3) 

(4) 
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Further, let KI;) be the probability of passing, in n steps, from Ei to Ej 

without visiting Ej in a fewer number of steps. Clearly, 

In particular, K~n) is the probability of returning to Ei for the first time in n 

steps. We now set 
00 

I: K&n) = Lij. (6) 
n=l 

Clearly, Lij ~ 1. If Lij = 1 then, starting from Ei the system will inevitably, 

sooner or later, visit the state Ej • The expectation of the number of steps 

needed in this case for the transition from Ei to Ej is 

00 

Mij = I: nK&n). (7) 
n=l 

In particular, M ii is the expectation of the number of steps prior to the first 

return to Ei, provided we started from Ei. The expectation Mij can be both 

finite and infinite. 

§2. Inessential states, classes and subclasses of essential states 

Astate Ei is called in essential if there exist a j and an n such that Pi~n) > 0 

and ~(;") = 0 for all m, that is, there is a transition from Ei to Ej without 

return to Ei. All other states are called essential. Clearly, if two states Ei and 

Ej are essential and if there exists an n with Pi~n) > 0 then there also exists an 

m with PjSm ) > O. Ifthere are such n and m, then the essential states Ei and Ej 

are called communicating. If Ei communicates with Ej and Ej communicates 

with Ek, then Ei also communicates with Ek. Therefore all essential states 

fall into c1asses S(O:), such that states belonging to one dass communicate and 

those belonging to different dasses do not communicate. It is also dear that 

for an essential state Ei and an inessential state Ej, Pi~n) is always O. Thus, 

on ce having fallen into astate of S(O:), our system can never leave this dass of 

states. 

Consider now an essential state Ei. Let IDti be the set of indices n for 

which p;~n) > O. Since Ei is essential, the set IDt; is non-empty. If n and m 

occur in IDt;, then so does n + m. Let di be the greatest common divisor of all 

numbers in IDti . The set IDti consists only of multiples of di. It can easily be 
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shown that all sufliciently large multiples of di occur in roti . The number c4 is 

called the period of the state Ei. 

It can easily be shown that all states be/onging to the same dass s(a) have 

the same period which we denote by d(c:r) and call the period 0/ s(a). Indeed, 

for two states Ei and Ej of the same dass s(a) let there exist n and m such 

that Pi)n) > 0 and Pj~m) > 0 (such n and m do exist, as indicated above). Then 

p};dj ) > 0 for sufliciently large k. Hence, for sufliciently large k, 

that is, all sufliciently large numbers of the form kdj + n + m occur in roti , 

which is only possible if dj is divisible by di. Conversely, di is also divisible by 

dj and therefore di = dj • 

For two states Ei and Ej belonging to the same dass s(a), we simulta

neously have Pi)n) > 0 and Pi)m) > 0 only if n == m(modd(c:r». Therefore, 

having chosen a certain state Eio of dass s(a), we obtain for any state Ei of 

the same dass a well-defined number ß(Ei) = 1,2, ... , d(c:r) such that Pi~~) > 0 

is possible only for n == ß(Ei)(mod d(c:r». All the states Ej with given ß(Ej) 

belong to the subdass S~a). Thus, s(a) is divided into d(c:r) subdasses ~a). 
With every step our system inevitably goes from the states of S~a) into one of 

the states of S~~l and in the case ß = d(c:r), into one ofthe states of S~a). Thus 

if Ei and Ej belong respectively to subdasses S~a) and S~a), then Pi)n) =1= Oonly 

if n == 'Y - ß (mod d(c:r». On the other hand, for sufliciently large n satisfying 

the latter congruence we actually have Pi)n) > O. 

§3. Recurrent and non-recurrent classes 

Apart from the prob ability Lij that, having started from the state Ei, we 

visit at least once, sooner or later, the state Ej, we introduce the prob ability 

(lij that, starting from the state Ei we visit the state Ej an infinite number of 

times. Clearly, 

(8) 

On the other hand, we now prove the following lemma: 

Lemma 1. Lii = 1 implies (lii = 1. 



196 MARKOV CHAINS WITH A COUNTABLE NUMBER OF POSSIBLE STATES 

Proof. Denote by TC.I:) the prob ability that, starting from astate Ei, we return 

to it no fewer than k times. Clearly, always 

For L;; = 1 these formulas imply that n ii = 1. 

In this and the following sections we shall be concerned only with rela

tions that hold within each dass of essential elements; in other words, it will 

be assumed that an indices referring to states run only through the values cor

responding to the states of one dass. In the statements of the theorems this 

will be indicated by the words "within one dass" . 

Theorem 1a. Within one dass either nij < 1 or nij = 1. 

Proof. Clearly it suffices to establish that for any i,j, k, 

1) nij = 1 implies ni.l: = 1; 

2) nji = 1 implies n.l:i = 1. 

If these two points have been established, then for any i, j, i', j', nij = 1 

implies nij' = 1 and ni/jl = 1. 

Now let us prove 1). Assurne that nij = 1, that is, starting form Ei 

we return to Ej an infinite number of times with prob ability 1. Consider the 

interval between the sth and the (s + l)th revisits. Since all states under 

consideration belong to one dass, the probability of the event !V, that in the 

interval between the sth and the (s + l)th visit to Ej the system will get to a 

fixed state E.I: is positive. It can easily be seen that this prob ability does not 

depend on s, and that the events !V, for different s are independent. However, 

given an infinite sequence of possible independent events !V. with the same 

positive probability, an infinite number of these events will indeed take place 

with probability 1, that is, ni.l: = 1 as required. 

It now remains to prove 2). For this we use the formula 

n .. - '" pCn)n.l:· 
J' -~ j.l: " (9) 

.I: 

which holds for any i, j, k, n. Since L.I: PjC;) = 1, we have: nji = 1 implies 

n.l: i = 1 for all k for which PjC;) > O. But for any j and k (within one dass) 

such an n does indeed exist. This proves 2) and Theorem 1a. 

If an the nij = 1, then by (8) an the Lij = 1. If, however, an the nij < 1, 

then by Lemma 1, an the Lii < 1. This implies: 
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Theorem lbo Within one dass either all the Lii < 1 or all the Lij = 1. 

It should be noted that when all the Lii < 1, there might still be some 

Lij = 1 (i i= j). 
If all the Lij = 1 and all the (lij = 1, then the dass is called recurrent. 

If, conversely, all the Lii < 1 and all the (lij < 1, then the dass is called non

recurrent. It is easy to see that if astate Ej is of non-recurrent dass and Ei is 

arbitrary, then 

lim p~!,,) = o. 
n-++oo 'J 

§40 Positive and zero classes 

The considerations of this section refer to phenomena observed within each of 

the recurrent dasses. As a result of these considerations the recurrent dasses 

will be divided into positive and zero dasses. Note, however, that in the fol

lowing sections all non-recurrent dasses will also be referred to as zero classes. 

The expectations Mij (see (7)) are of primary importance in the study of 

recurrent dasses. In this connection we will consider the me ans 

(10) 

Lemma 2ao For any Ei /rom a recurrent dass with finite Mii 

while if Mii = +00, then 

lim 1r~?) = o. 
n-+oo U 

Proof Starting from Ei we return to this state an infinite number of times with 

probability 1. Let the first return to Ei take place at the nl th step, the second 

return at the n2th step and the kth return at the nkth step. The differences 

form a sequence of random variables independent of each other with the same 

distribution law: Zk = s with prob ability KI:). Clearly, Mii is none other than 

the expectation of each of the Zk. 
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Assume first that the expectation Mi; of the random variables XTe is finite. 

Then, according to Khinchin's theorem [3], the sequence {XTe} satisfies the law 

of large numbers, that is, for any f > 0 there exists a ko such that for k ~ ko 

the prob ability of the inequality 

Te 

I.! "x· -M··I = In Te - M··I >: kL..JJ " k "-2 
j=l 

is less than f. Let f< ! and n ~ no = 2koMii. Set 

k' = ~(1- f), 
Mii 

k" = ~(1 + f). 
Mii 

It can easily be seen that k' ~ ko, k" ~ ko. Therefore, with probability greater 

than 1 - f we can assert that 

which implies (since Mii ~ 1) 

InTel - n(l - f)1 < k'f ::; nf, 

hence, 

Similarly, with probability greater than 1 - f we have 

Thus if n ~ no, then with prob ability greater than 1- 2f we have the inequality 

that is, the number tPn of returns to the state Ei within the first n steps is 

between k' and k". It can easily be seen that the expectation of the frequency 

tPn In of returns to Ei within the first n steps is 11'}~). Since for n ~ no we have 

k' In < tPnln < k" In with prob ability greater than 1 - 2f: 

k' 1 tPn 1 k" - = -(1 - f) < - < -(1 + f) = -, 
n Mi; n Mi; n 
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and since always 0 ~ tPnln ~ 1 and Mii ~ 1, we finally obtain for n ~ no, 

1 1I"~~) __ 1_ 1< EltPn __ 1_1< _f_ + 2f 
SI Mii - n Mii - Mii ' 

which implies that 

Now consider the case Mu = +00. Then, whatever M < +00 and f> 0, 

there exists a ko such that for k ~ ko the prob ability that the inequality 

A: 

.!. " z, = nA: < M kL..J) k-
j=l 

holds is less than f. To prove this it suffices to introduce a new sequence of 

random variables z~, independent of each other, smaller than the corresponding 

variables ZA: (z~ ~ ZA: for every k) with equal expectations, for example, 2M, 

and apply the law oflarge numbers in the above statement to this new sequence. 

Setting k = [nIM] + 1> nlM we see that k ~ ko for n ~ koM and hence, 

with probability greater than 1 - f, 

nA: k > M, nA: > kM ~ n, 

Hence, for n ~ koM 

(n) (tPn) 1 1 
11" .. = E - < - + - + f, 

SI M - M n 

which brings us to the condusion that in this case 

lim 11"~~) = O. 
n-++oo 11 

tPn 1 1 -<-+-. 
n - M n 

Theorem 2. Within one class either all the Mii are infinite or all finite. 

Proof. For any two states Ei and Ej of the same class there exist k and m such 

that Pi)A:) > 0, Pj~m) > O. Furthermore it is dear that for any n, 

p~?+A:+m) > p~~) p~~) p~~) 
)) -)1 U I)' 

This inequality directly implies that 

I· (n) p(m)p(A:) I' (n) 
1m 1I"jj ~ ji ij 1m 1I"u . 

n-+oo Q-+OO 

Hence, the limits of 11"~;) for all i (corresponding to a given dass) are either 

zero or positive. Therefore, according to Lemma 2a, the Mii are also either all 

infinite or all finite. 
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It only remains to prove that the finiteness of all the M" implies the 

finiteness of all the Mij. We denote by R~;) the probability that, starting from 

Ei we visit Ej (j f i) in n steps without visiting Ei meanwhile. Then 1 

n 

M ii = L mK~;n) + LRr;)(Mji + n). 
m=l j~i 

But within one dass for any i and j we can find an n for which R~;) > O. 

Hence Mji = +00 would imply Mii = +00, which proves our theorem. 

The dasses with all the Mi; finite are called positive, and with all the 

M ii = +00 are called zero. Note that in zero dasses some of the Mij (i f j) 

may be finite. 

Theorem 3. In a zero dass Pi)n) --4 0, as n --4 +00, tor any Ei, Ej in the 

given dass. 

To prove Theorem 3 we need the following: 

Lemma 2b. In a zero dass, tor any Ej the quantity 

~~,m) = ~(P~?+1) + p~?+2) + + p~?+m» 
7rJJ JJ JJ . . . J1 m 

(11) 

tends to 0 unitormly with respect to n as m --4 +00. 

Proot. Denote by H(') the probability that, with initial state Ej, starting from 

the (n + 1 )th step, the state Ej appears first at the (n + s )th step regardless 

1 Proof. For r > n, 

Therefore 

00 n 

Mi; = " mK~~) = " mK~~) + "r " R~?) K(~-n) = L..J SI L..J SI L..J L..J 'J J' 
m=l m=l r>n j~i 

n 00 n 

= L mKim) + L R~;) ~)n + s)Kj:) = L mKim) + L R~;)(Mji + n). 
m=l j~i .=1 m=l j~i 
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of whether or not there was areturn to E; within the first n steps. Then 

(12) 

Choose an ro such that for r ~ ro we always have 1/"~i) < f. (This is possible 

by Lemma 2a.) Choose mo > ralf. Also let m ~ mo. Then for m - s :$ ra we 

have (m - s)/m < f, while for m - s ~ ro we have 1/"~j-.) < f. 

Since always (m - s)/m :$ 1, 1/"~j-.) :$ 1, it foIlows that for all m ~ mo, 

we have 
m - S (m-.) 
--1/" .. <f. m JJ 

Since 

we see from (12) that 1/"~j,m) < f + 11m as soon as m ~ mo. Since f > 0 is 

arbitrary and does not depend on n, our lemma is proved. 

Proo/ 0/ Theorem 3. First note that to prove this theorem it suflices to prove 

it for i = j, that is, to prove that the probabilities p;~) tend to 0 as n -+ +00. 
To see this, we choose an m such that p;~m) > O. Then, clearly, 

p~?+m) > p~~) p~!,,) 
J1 - JI IJ' 

Let n tend to +00 for m constantj since p;~+m) -+ 0 , it follows that 

pä)n) -+ 0 as weIl. 

N ow assurne that 

limsup p;~) = ~ > O. 
n_+oo 

If this assumption leads to a contradiction, Theorem 3 has been proved. 

Choose an integer a such that 
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For any f> 0 there exists no such that n ~ no implies Pj~) ~ A + f. For some 

6 > 0 choose mo ~ a such that 

L KJj) < 6. 
m>mo 

Then the assumptions 

n ~ no + mo, 

imply that 

In fact, 

atm<mo 

P (n) , 
.. >"-TJ JJ - (TJ > 0) 

But for n ~ no + mo + sa the inequality 

implies that 

where 

Pj~-a) ~ A - (TJ + f + 6)/A = A - TJ1, 

Pj~-2a) ~ A - (TJ1 + f + 6)/A = A - TJ2, 

TJ < TJ1 < TJ2 < ... < TJ.· 

Now, for any s we can choose TJ > 0, f> 0, 6 > 0 so that TJ. < A/2. By 

choosing no and mo suitably we obtain for all n ~ no + mo + sa such that 

Pj~n) > A - TJ the inequalities 

P~?) > '/2, p(n-a) '/2 p(n-.a) '/2 
11 " jj >", ... , jj >", 

lI'Jr· a,.a) > (I/sa) . S· A/2 = >'/2a. 
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Since >'/2a is constant, s is arbitrarily large and n can be assumed arbitrarily 

large for fixed s, we arrive at a contradiction to Lemma 2b. 

§5. Asymptotic relations within a positive dass 

Theorem 3 completes in a first approximation the study of zero classes. As for 

positive classes, we have the following general theorem. 

Theorem 4a. In a positive dass S(O:), for any Ei from a subdass S~o:) and 

Ei from a subdass S~o:), the probability Pi)n) tends to a limit 

Pj = d(o:)/Mjj, 

which is independent of i, when n -+ 00 runs through the values n - r
ß (mod d(o:)). 

Remark. If n ~ r - ß(mod d(o:)), then, as has already been noted, Pi)n) = O. 

To prove Theorem 4 we need several lemmas. 

Lemma 3. In a positive dass for any i,j and f > 0 there exists m such that for 

any n the probability that, starting /rom Ei, we visit Ei at least once between 

the nth and the (n + m)th step is greater than 1 - f. 

Proof. The probability that, starting from Ei, we do not visit Ei within the 

time interval indicated is given by 

00 n+m-1 n-1 00 n-1 

"" K~~) + "" KY?) "" p~~) + "" K~~) "" p~~) < L...J '3 L...J 13 L...J '3 L...J 13 L...J '3 -
p=n+m p=m+1 1:=n+m-p p=n+m 1:=1 

00 00 

< "" K~~) + "" pKY?) = U(m). - L...J ~ L...J 33 
p=m p=m+1 

But if 
00 

Mn = LpKjr) 
p=1 

is finite, then u(m) -+ 0 as m -+ +00. Since u(m) does not depend on n, our 

Lemma is proved. 
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Lemma 4a. In a positive class consisting 0/ one subclass, 

I· . fP(n) 0 
ImIn iJ' > . n_+oo 

Proo! Ifthe dass consists of one subdass, then there exists ko such that always 

pN) > 0 for k ~ ko. In accordance with Lemma 3, we choose m such that for 

given i and j the number f from Lemma 3 can be taken equal to !. We set 

, =' f{P~~o) p~~o+l) p~~o+m)} 
" In 1) 'JJ ' ... , 11 . 

Clearly, A > O. Now let n' > m + ko. Set n' = n + m + ko. The probability 

that, starting from Ei, we visit Ei between the nth and the (n + m )th step is 

greater than !. 
Suppose that the first arrival into Ei between the nth and the (n + m)th 

step takes place after the (n+s)th step (s < m). Then the conditional probabil

ity of revisting Ei in n' = n + m + ko steps is Pgo+m - 8 ) ~ A. This inequality 

holds for any s (1 $ s $ m). Therefore, the total probability p;)n l
) that, 

starting from Ei, we visit Ei in n' = n + m + ko steps, satisfies the inequality 

p~~') > lA 
'J 2' 

which, since n is arbitrary, proves our Lemma. 

Lemma 4b. In a positive class consisting 0/ one subclass 

lim p~~) = 11M;;. 
n--+oo U 

Proo/. First we prove the existence of the limit of Pi)n) as n -+ +00. Let 

lim inf p(n) = a 
n-+oo U 

r p(n) b lmsup ii = . 
n-+oo 

By Lemma 4a we have b ~ a > O. Let f > O. Choose m satisfying the conditions 

of Lemma 3 for j = i. Then choose ko such that for k ~ ko the inequalities 

(k) 
a-f<P;; <b+f 

hold. Let n > m + ko be such that p;)n) < a + f, and n' > n + ko such that 

Pi)n l
) > b - f (such n and n' always exist). Put n' - n = k. Then 

p~~') = p(k) p~~) + A(l) p~~-l) + A(2) p~~-2) + + A(n) p~.o) 
11 n 11 11 n' . . 11 , 
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where A(6) is the probability that, starting from Ei, we visit after the kth step 

Ei for the first time only in (k + s) steps. Clearly, 

n 

pHt) + I:A(') :$ 1. 
.=1 

Moreover, by Lemma 3, 

m 

pHt) + I:A(') > 1- f. 

6=1 

These two inequalities imply that 

Note also that for s :$ m we have n - s > k, and hence Pt~n-.) < b + f. 
Therefore, 

m n 

p(n') = p~.k) p(n) + "" A(') p~~-') + "" A(') p~~-a) < 
n un L...J u L...J u-

.=1 .=m+1 

:$ Pi~k)(a + f) + (1 - Pi~k»(b + f) + f = b + 2f - Pi~k)(b - a). 

Bearing in mind that Pt~k) > a - f, Pt~n') > b - fand b - a:$ 1 we obtain 

b - f :$ b + 2f - (a - f)(b - a) :$ b + 3f - a(b - a), 

a(b - a) :$ 4f, b - a :$ 4f/a. 

Since a > 0 and f > 0 is arbitrary, it follows that b - a = O. This proves the 

existence of the limit of ~~n) equal to b = a. Lemma 2a directly implies that 

this limit is I/Mii' 

Proo/ 0/ Theorem 4a. Consider, together with the given Markov chain, a new 

chain determined by the elementary transition probabilities 

P- .. _ p(d) 
IJ - ij , 

where d is the period of the dass considered. Clearly, for all states of our dass 

P?) = p~~d). 
IJ IJ 
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With respect to the new Markov chain our dass of states forms one single 

subclass. Therefore, according to Lemma 4b, 

lim p.<.nd) = lim "P?) = _1_ = ~ 
n-++oo" n-++oo SI Mii Mii· 

Thus Theorem 4a is proved for i = j. To prove it for the general case, let q 

be the minimal number of steps in which we can pass from Ei to Ej (dearly 

q == / - ß (mod d)). Then, 

In this case, 

n 

p.(~d+q) = """ K~':'1d+q) p~'.'d-md). 
'J L...J 'J JJ 

m::O 

m::1 

and Pj~d-md) tends to d/Mjj for constant m and n -+ +00. This implies that 

An important supplement to Theorem 4a is the following. 

Theorem 4b. In a positive dass the sum of the limits Pj over all states in a 

subdass is 1 for every subdass. 

Theorem 4b follows directly from the next lemma: 

Lemma 5. In a positive dass there exists for any f > 0 a finite system of 

states Eh, Eh, ... ,Eile such that for any Ei from the same dass and for all 

sufficiently large n, 
k 

I: Pi):) > 1 - f. 

6::1 

Proof. Choose io arbitrarily. According to Lemma 3 there exists an m such 

that for any n the prob ability that, starting from Eio , we visit Eio at least once 

between the nth and the (n + m)th step is greater than 1 - f/3. 

Clearly, we can always choose a system of states Eh, Eh , ... ,Eile such 

that for any r ~ m, 
k 

I: (r) f p . . > 1--. 
'oJ. 3 

6::1 
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We will prove that this system of states satisfies the conditions of the Lemma. 

For this we take some fixed i and choose q such that 

q 

" K~~) > 1- ~. L.J 110 3 
t=l 

Now let n > m + q. Set n = q' + m, q' > q. With prob ability greater than 

1 - f./3, starting from Ei we visit Eio in the first q' steps. No matter at what 

step ~ q' we first visit Eio' with prob ability greater than 1 - f./3 we return 

to Eio between the q'th and the (q' + m)th step. If this happens at some 

(q' + m - r)th step, then with probability greater than 1 - f./3 we are in one 

of the chosen states Ei. after q' + m steps. Thus with probability greater than 

(1- f./3)3 > 1- f., having started from Ei we arrive at one of our chosen states 

Ei. in n = q' + m steps. This proves the Lemma and with it Theorem 4b. 

Remark. Theorem 4a implies that not only does 7r~;) tend to I/Mi; (Lemma 

2a), hut also that for any Ei from the same dass as Ei, the 7r]7) tend to the 

same limit. By Theorem 4h, the sum E(1/Mii) taken over the states of one 

sub dass is equal to l/d (where d is the period of the dass), and the same sum 

taken over all the states of one dass is equal to 1. 

§6. Asymptotic behaviour of probabilities in other cases 

We disregard combinations of states Ei and Ei for which Pi)n) = 0 for all 

n, due to the considerations of §2, and note that if Ei is inessential, then 

always Pi)n) -+ 0 as n -+ +00. We consider he re the most difficult case: Ei 

is inessential, while Ei is essential and belongs to a certain dass S(Ot). For an 

inessential state Ei let NI Ot) he the prob ability that, having started from Ei, 

we visit sooner or later one of the states of S( Ot). Clearly, 

since, having once arrived in one of the states of the dass S(Ot) it is impossible 

to leave this dass. In the case when we enter the dass S(Ot) at the initial state 

Ei, we denote by no the number of steps before the first visit to one of the 

states Ei of the dass S(Ot) and by ßo the number of the sub dass S~:) to which 

this first state Ei belongs. Now let Ni~~) be the probability that, given the 
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initial state Ei, we visit the dass s(a) so that no == ßo +'Y (mod d(a». Clearly, 

d(a) 

'" N~a) = N~a). L....J ',1' , 
-y=1 

The following result can be proved. 

Theorem 5. In the ease 0/ an in essential Ei and an essential Ej /rom a 

subclass S~a), the probability Pi~n) tends to Nt;L-yPj as n -+ +00 and runs 

through the values n == ß(mod d(a». 

Thus, we see that for fixed i and j the dependence of the probability 

Pi~n) on niß all cases (essential or inessential) is asymptotically periodic. The 

averages 1r}j) however, always have certain limits 1rij as n -+ +00. 

Komarovka, 22 December 1936 
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24. ON THE REVERSIBILITY OF THE 

STATISTICAL LAWS OF NATURE * 
1. Statement of the problem 

Consider an n-dimensional manifold R. Let let, x, y)dy1dY2 ... dYn be the prob

ability of transition in time t > 0 from a point x to a point 1J with coordinates 

1Ji, i = 1,2, ... , n, such that Yi < 1Ji < Yi + dYi. Assume that let, x, y) is 

differentiable up to a certain sufliciently high order and satisfies the following 

conditions: 

!(t,x,y)?O, (1) 

11··· 1 let, x,y)dy1dY2 .. . dYn = 1, (2) 
R 

!(s+t,x,y) = 11··· 1 !(s,x,z)!(t,z,y)dz1dz2 ... dzn, (3) 
R 

where x is an interior point of a domain G (cf. [1], [2]). Given let, x, Y), p(x) 
determines a stationary probability distribution compatible with let, x, y) if and 

only if 

p(x) ? ° 
11···1 p(X)dX l dx2 ... dxn = 1, 

R 

p(y) = 11··· 1 p(x)!(t, x, y)dX l dx2 ... dxn. 
R 

(5) 

(6) 

(7) 

A stationary distribution is called ergodie if let, x, y) -+ p(y) aB t -+ 00 

for any x and y. Formula (7) implies that an ergodic stationary distribution is 

always the only stationary distribution, that is, if there exists an ergodic sta

tionary distribution Po(x), then no other ergodic stationary distribution p(x) 

other than Po(x) can exist. Note that if R is closed, then the existence of 

* 'Zur Umkehrbarkeit der statistischen Naturgesetze', Math. Ann. 113 (1937), 
766-772. 

209 



210 ON THE REVERSIBILITY OF THE STATISTICAL LAWS OF NATURE 

an ergodie (and, consequently, the only possible) stationary distribution di

rectly follows from the single condition that f(t, x, y) > 0 for any x and y and 

sufficiently large t (cf. [2],§5). 

We suppose that f(t, x, y), as weH as a certain stationary distribution 

p(x), are given beforehand. Assurne, moreover, that p(x) > 0 for any x. In 

this case, knowing the position of y at the end of the time interval of duration 

t, we can also determine the conditional distribution of the probabilities of the 

initial position of x (for given y). Denoting by h(t, x, y) the density of this 

conditional probability distribution, we have 

h(t, x, y)p(y) = p(x)f(t, x, y). (8) 

Clearly, (8) uniquely defines h(t, x, y). 

The question on the reversibility ofthe laws ofnature mentioned in the title 

of this paper 1 can be formulated in the following way: under what conditions 

does the following relation hold: 

h(t,x,y) = f(t,y,x)? (9) 

This paper deals with the special case in which the function f(t, x, y) satisfies 

the following Fokker-Planck equations: 

{) f _ ""; {) f "" "";j {)2 f 
{)t - L.,..A (x){)x; + L.,..L.,..B (x) {)x;{)xi I 

; ; j 

(10) 

{) f "" {). "" "" {)2 .. 8t = - L.,.. '8i{A'(y)f} + L.,.. L.,.. {) ;{) j {B'J (y)f} 
; y ; j y y 

(11) 

(see [2]). 

For simplicity we will furt her confine ourselves to the case of a closed 

manifold R. In this case, (11) implies that every stationary distribution p(y) 

satisfies the equation 

"" {). "" "" {)2 .. - L.,.. '8i{A'(Y)p} + L.,.. L.,.. ~{B'J(y)p} = O. 
; y ; j y yJ 

(12) 

1 In [3] this problem is discussed for the case of Markov chains with a finite number 
of statesj cf. also [4]. 
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In addition to the propositions given above we further assume that the 

quadratic form Bii is everywhere strictly positive definite. The case of a de

generate form Bii is very interesting for many physical questions (see, for 

example, [5]), but we shall not consider it here. The assumption of positive 

definiteness of Bii impIies that I(x, y, t) > 0 for any x, y and t > 0, and hence, 

the existence of a unique stationary distribution p(x), where p(x) > 0 for any 

x. This unique stationary distribution p(x) is the unique solution of (12) such 

that 

J J ... J P(X)dXl dx2 ... dXn = 1. 
R 

(13) 

Under these assumptions, necessary and sufficient conditions for (9) to 

hold can be directly expressed in terms of properties of the coefficients Ai and 

Bii of the equations (10) and (11). Namely, under the above assumptions, 

(9) holds il and only il the vector a(y) defined below, whose components are 

expressed in terms 01 Ai(y) and Bii (y) is the gradient 01 a scalar potential. If 

Bii (y) = hii , this condition becomes especially simple, since then a(y) is none 

other than the vector with components Ai(y). 

Let us once again state our assumptions: 

1) the function I(t, x, y) is differentiable a sufficient number of times and 

satisfies (1)-(4), (10), (11); 

2) the manifold R is closed; 

3) the form Bii (y) is positive definite. 2 

2. Invariant form of the Fokker-Planck equations 

Now we consider a more general case than that discussed in §l. Namely, we 

now assume that the transitions from x to y in the time between the moments 

sand t > s have prob ability distribution described by the prob ability density 

I(s,t,x,y). In this case I(s,t,x,y) must satisfy the following conditions (cf. 
[1], [2]): 

I(s,t,x,y) ~ 0, 

J J ... J I(s, t, x, y)dy1dY2 ... dYn = 1, 
R 

2 As already mentioned, this implies that p(x) > 0 for any x. 

(14) 

(15) 
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!(s,t,x,y) = 11 ···1 !(s,u,x,z)!(u,t,z,y)dz1dz2 ... dzn, (16) 
R 

s< u < t, 

11··· 1 !(s,t,x,y)dy1dY2 ... dYn- 1 ast-s, 
G 

with x belonging to the interior of G. 

In this case the Fokker-Planck equations take the form: 

8!(s,t,x,y) _ -LAi( )~!( t )_ 
j::I - s,x j::I. s, ,x,y 
vS vx l 

i 

"" "".. 82 
- L..J L..J BI, (s, x) 8xi 8xj !(s, t, x, y), 

i j 

8!(s,t,x,y) "" 8 {Ai( ) ( )} 8t =-~8yi t,y!s,t,x,y + 
I 

"""" 82 
.. + ~ ~ 8yi8yj {B"(t, y)!(s,t, x,y)}. 

I , 

(17) 

(18) 

(19) 

The coefficients Bij(s,x) form a contravariant tensor ofrank two, whereas the 

coefficients Ai(s,x) transform according to the following more complex law: 

_.. 82xi 
A'=x'Ak + B km • 

k 8xk 8xm 

(From now on the summation sign is omitted.) 

Let us assume that the quadratic form Bij (s, x) is positive definite every

where and for all s, and choose it to be the principal metric form on R (note 

that our metric depends on s). We then set 

(20) 

where r~k is the Christoffel symbol corresponding to Bij (s, x). The contravari

ant vector a i coincides with Ai in every geodesic coordinate system (at x). In 

a geodesic coordinate system chosen at the point x, (18) may be written in the 

following way: 

(21) 

where (x) indicates the argument over which the derivative is taken, ßi is the 

covariant derivative, and ß is the Laplace operator, that is, ß = ßißi. 
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The latter equation, by virtue of its invariance, must hold also in any 

other coordinate system. When the coordinates z change, f( s, t, z, y) does not 

vary; if, however, the coordinates y change, this function transforms as a scalar 

density. 

Now set 

fes, t, z, y) = VIBi;(t, y)It/J(s, t, z, y). (22) 

Clearly, t/J(s, t, z, y) is now invariantwith respect to changes in both z and y; 
it also satisfies (21): 

(23) 

As for (19), it takes the following form: 

0;: = _d~lI) {li(t, y)t/J} + d (1I)t/J + l 0 log I~ (t, y)1 t/J. (24) 

3. Solution of the problem 

Now let us return to the case when the conditions indicated at the end of §1 

hold. Then the quadratic form Bi; (z) is time-independent and depends only 

on the coordinates of z on R. We set 

li(z) = Ai(z) - ril:(z), 

f(t, z, y) = Vi Bi; (y)It/J(t, z, y), 

p(z) = VIBi;(z)I1r(z), 

h(t, z, y) = VIBi;(z)I.,p(t, z, y). 

(25) 

(26) 

(27) 

(28) 

Then to find the conditions when (9) holds, we merely have to the find condi

tions under which the equivalent relation 

.,p(t, z, y) = t/J(t, y, z) (29) 

holds. In view of the results of §2, t/J(t, z, y) and 1r(z) satisfy the equations 

ot/J/ot = Qi(Z)d~:C)t/J + d(:C)t/J, 

ot/J/ot = _d~II){Qi(y)t/J} + d(II)t/J, 

_d~:C){Qi(z)1r} + d(:C)1r = O. 

(30) 

(31) 

(32) 
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Sinee, moreover, 

.p(t,:c, y) = 4J(t,:c, Y)-1r(:C )/1r(Y), 

(29) ean be rewritten as 

4J(t,:c,Y)1r(:C) = 4J(t,y,:C)1r(Y). (33) 

Assurne that (29) (and henee (33» holds. Interchanging :c and y and using 

(31), we obtain the following equation for 4J(t,y,:c): 

(34) 

(Hereafter all the derivatives are taken either with respeet to t or :c, but never 

with respect to y, and o:i depends only on :c.) The same equation must be 

satisfied by .p(t,:c, y) and therefore by .p(t,:c, Y)1r(Y) = 4J(t,:c, Y)1r(:C): 

(35) 

or 

1r ~~ = -1ro:i l:1i4J - 4Jl:1i (o:i1r) + 1r1:14J + 2(l:1i1r)(l:1i4J) + 4J1:11r. (36) 

Multiplying (32) by -4J and (30) by -1r and adding the resulting inequalities 

to (36), we have 

or 

(37) 

It ean easily be seen that l:1i4J does not vanish identieally (that is, for any 

t > 0) in any domain of R. Therefore, on an everywhere dense set of points :c 

and henee, by eontinuity, everywhere, 

that is, 

(39) 

Putting log 1r = P we see that P is a potential of 0:. This proves the 

neeessity of the eondition stated in §l. 

Assurne now that, on the eontrary, there exists P such that 
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we must prove that in this case (29) holds. 

It can easily be seen that eP satisfies (32). Since, however, 11" is the only 

solution of (32) such that 

we clearly have 

where 

J = 11···1 eP VIBij(x)ldxldx2 ... dxn . ' 

R 

(40) 

Now (40) successively implies (39), (38), (37), (36) and (35), while (35) implies 

that .,p(t, x, y) satisfies 

(41) 

that is, the equation that was earlier denoted by (34) holds for tfJ(t, y, x) as weH. 

The initial values for tfJ(t,y,x) and .,p(t,x,y) clearly coincide at t = o. Hence, 

tfJ(t,y,x) = .,p(t,x,y), which proves our theorem. 3 

Moscow, 1 July 1936 
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25. SOLUTION OF A BIOLOGICAL PROBLEM * 
R.A. Fisher [1] gave an interesting application of iteration theory to the laws of 

breeding a new gene in an unbounded population. Recently J.F. Steffenson [2] 

gave a detailed exposition of the probability that all offspring from an individual 

die out. Both these questions are, however, mathematically identical. After 

giving a brief statement of the problem and recapitulating the known results, I 

we will give several additions to the results by Fisher and Steffenson in certain 

directions. 

1. Mathematical statement of the problem 

The following assumptions are essential for our mathematical discussion. Let 

Fo, FI , ... , Fn , be a sequence of generations and let Fo have Ko individuals with 

a feature M (M-individuals); we assurne that crossing between M-individuals 

is impossible; each M-individual from Fn +1 is assumed to be an offspring from 

a certain M-individual in Fn . We are given the probabilities Pk that an M

individual from generation Fn has exactly k M-offspring in Fn+l , and these 

probabilities are independent of the fate of other branches of M-offspring. 

Our goal is to determine the probabilities Pkn ) (n ~ 1) that the number 

K n of M-individuals in the nth generation is equal to k. Here pJn) is the 

probability that all the M-offspring die out. Clearly, pJn) can only increase 

with n. The main result of this paper is an asymptotic formula for pJn) for 

large n. 

We assurne that the three first factorial moments 

a = PI + 2P2 + ... + kPk + ... 
b = 2P2 + 6P3 + ... + k( k - 1 )Pk + ... 
c = 6P3 + 24p4 + ... + k(k - 1)(k - 2)pl: + ... 

are finite. 

2. Biological explanations 

K n denotes the number of M-individuals in the nth generation that have 

reached a certain age. Consequently, the probabilities Pk, which are assumed 

* Izv. NIl Mat. Mekh. Tomsk. Univ. 2:1 (1938), 7-12 (in Russian). 
I References to previous works can be found in Stefl"enson's paper. 
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to be prescribed, take into account the effect of selection. If, for instance, a 

grown-up M-individual always has a very large number m of M-offspring in 

the next generation which, however, have a very insignificant probability alm 
of reaching the age set for determining K n , then we obtain 

or, approximately, by Poisson's formula 

(1) 

In this case it is easy to compute that 

Most important for the fate of an M-generation is the first moment a, 

that is, the average number of M-offspring of an M-individual in the next 

generation. If K n is very large, then we have approximately 

We should distinguish three cases which are essentially different from each 

other: a greater than, smaller than, or equal to L 

If a < 1, then it is dear that the M-offspring will finally disappear. In what 

follows we will show that this also holds when a = 1, b> O. If a > 1, then the 

probability Po ofthe M-offspring dying out is #:-1 (Po = limPJn) as n -+ (0). 

The probability that the offspring do not die but propagate unrestrictedly is 

I-Po. 

The exception a = 1, b = 0 is only possible when PI = 1, PA: = 0 (k #:- 1). 

In this case, dearly Kn always equals Ko and consequently, pJn) is always O. 

A specific problem that led to Fisher's studies is the following: in a very 

large stationary population consisting only of individuals of BB type there 

appears a small number Ko of individuals of Bb type (generation Fa). If in 

the further generations FI, F2, . .. Bb-offspring remain comparatively small in 

number, then Bb x Bb crossing is virtually excluded. Under this assumption 

our scheme can be applied to Bb-offspring. 

If a = 1, then Bb-individuals are as viable as BB-individuals. However, 

due to random fluctuations of Kn they should surely die out (here the case a = 
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1, b = 0 is impossible). Bb-individuals certainly disappear if a < 1. If a > 1, 

tben tbere is a positive probability 1 - Po tbat Bb-individuals will propagate 

unrestrictedly (a > 1 corresponds to tbe assumption tbat Bb-individuals are 

more viable tban BB-individuals). In tbe real case, bowever, even for a = 1 

random fluctuations of K n could be so substantial tbat tbe crossing Bb x 

Bb attains a non-zero prob ability. Tben one must also take into ac count tbe 

viability of bb-individuals. 

3. The general theory 

Tbe main result of Fisber and Steffenson consists in reducing tbe computation 

of tbe probabilities pin) to determining tbe coefficients of known power series. 

For tbis purpose tbey assurne tbat 

q(x) = Po + PlX + P2x2 + ... + PleX Ie + ... , 

Q(n)(x) = p~n) + pfn)x + p~n)x2 + ... + pin)xle + ... 

(2) 

(3) 

Since Pie ~ 1, pin) ~ 1, it follows tbat q(x) and Q(n)(x) are analytic functions 

for Ix I < 1. Let qn (x) be tbe ntb iterate of q( x): 

Tbe basic formula of tbe tbe wbole tbeory is: 2 

In particular, 

and consequently, 

p~n) = [qn(o)]Ko, 

Po = lim p~n) = lim[q(n)(O)]KO = AKo , n -+ 00. 

Tbe limit 

A = lim qn(o), n -+ 00, 

2 See [2]. The reader can easily reproduce the proof. 

(4) 

(5) 

(6) 
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can be determined using general iteration theory. It can be proved that A 

equals the minimal non-negative root of the equation 3 

q(A)-A=O. (7) 

This root does exist, since 

q(1) = Po + Pl + ... + PI: + ... = 1, q(1) - 1 = O. 

It can further be proved that for a > 1 the required smallest root A is 

smaller than 1. Therefore in this case we have a positive prob ability 

that the M -offspring propagate unrestrictedly. If, on the other hand, a :::; 1, 

(and if a = 1, then b is also greater than zero), then A = 1 and consequently, 

Po = 1. In this case M -offspring must necessarily die out. Therefore it is 

desirable to study the asymptotic behaviour of the prob ability 

that the offspring will survive up to the nth generation. Neither Fisher nor 

Steffenson did this under general assumptions. 

4. Asymptotic behaviour of R(n) for a:::; 1 

Let 

In our case r n converges to zero as n --+ 00. Hence, as n --+ 00 we have 

asymptotically 

(8) 

It remains to study the asymptotic behaviour of rn . First note that 

q'(1) = a, 

3 See [2]. 
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while for 0 ~ x ~ 1, 

o ~ q"(x) ~ q"(1) = b, 0 ~ qlll(X) ~ qlll(1) = c. 

Now let a< 1. Expanding q(1- y) in a Taylor series we obtain 

q(1 - y) = q(1) - q'(1)y + O(y2) = 1 - ay + O(y2). 

Set y = rn-l = 1 - qn-l(o). Then 

(9) 

As can easily be seen, (9) implies that asymptotically 

(10) 

where C is a suitable eonstant. Finally, by (8), 

(11) 

Thus we see that for a < 1 the prob ability Rf..n) deereases asymptotieally as a 

geometrie progression with eommon ratio a. 

Let a = q'(1) = 1. Then 

(12) 

It follows from (12) that asymptotieally (for b > 0) 

r n '" 2/nb. (13) 

Finally, by (8), 

R(n) '" 2Ko/nb. (14) 

Thus we see that for a = 1, R(n) tends to zero eonsiderably more slowly. 

Formula (14) shows that for a = 1 and large n the probability R(n) of survival 

until the nth generation is inversely proportional to the seeond moment b. In 
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particular, if the probabilities Pie satisfy the Poisson formula (1), then b = a2 = 
1 and consequently, 

R(n) _ 2Ko/n. 

This formula has been given by Fisher . As a second example we consider 

the case when every Bb-individual gives exactly two off spring after the crossing 

Bb x BB. Then Po = t, Pt = ~, P2 = t, Pie = 0 (k > 2), which implies that 

b = ~ and R<n) = 4Ko/n. 

5. An approximate formula 

N ow let us return to the case a > 1. Assume that 

w =a-l 

is small in absolute value compared to b > O. Then 

is also small, and we can approximately set 

Equation (7) gives 

q(A) - A - 1- aJ.' + ~bJ.'2 - 1 + J.' = ":'wJ.' + ~bJ.'2 = 0, 

J.' - 2w/b, 

A-I-2w/b. 

If w is small compared to Ko, then (15) and (16) imply approximately 

1- Po - 2Kow/b, 

(15) 

(16) 

that is, the prob ability 1 - Po of unrestricted propagation of M -off spring is 

directly proportional to the selection coefficient and inversely proportional to 

the second moment b. 
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26. ON A NEW CONFIRMATION OF MENDEL'S LAWS * 

In the discussion on genetics that took place in the autumn of 1939 much at

tention was paid to checking whether or not Mendel's laws were really true. In 

the basic discussion on the validity of the entire concept of Mendel, it was quite 

reasonable and natural to concentrate on the simplest case, which, according 

to Mendel, results in splitting in the ratio 3:1. For this simplest case of crossing 

Aa x Aa, with the feature A domin.ating over the feature a, it is weIl known 

that Mendel's concept leads to the condusion that in a sufficiently numerous 

progeny (no matter whether it consists of one family or involves many separate 

families resulting from various pairs of heterozygous parents of type Aa)<the 

ratio between the number of individuals with the feature A (that is, the indi

viduals of the type AA or Aa) to the number of individuals with the feature a 

(aa type) should be dose to the ratio 3:1. T.K. Enin [1], [2], N.I. Ermolaeva [3] 

and E. Kol'man [4] have concentrated on checking this simplest consequence of 

Mendel's concept. However, Mendel's concept not only results in this simplest 

conclusion on the approximate ratio 3:1 but also makes it possible to predict 

the average deviations from this ratio. Owing to this it is the statistical analysis 

of deviations from the ratio 3:1 that gives a new, more subtle and exhaustive 

way of proving Mendel's ideas on feature splitting. In this paper we will try to 

indicate what we think to be the most rational methods of such checking and 

to illustrate these methods on the material ofthe paper by N.I. Ermolaeva [3]. 

In contrast to the opinion of Ermolaeva herself, this material proved to be a 

brilliant new confirmation of Mendel's laws. 1 

§1. General considerations on the role of a random event in 

hereditary phenomena 

Let us first assume a viewpoint independent of Mendelism. Suppose that the 

crossing of two individuals a and ß give a progeny of n individuals. In this 

case, usually each of the individuals a and ß produces a number of gametes 

which is much greater than the number of off spring n. Let a produce gametes 

* Dokl. Akad. Nauk SSSR 27 (1940), 38-42 (in Russian). 
1 My attention was drawn to the work of N.1. Ermolaeva by A.S. Serebrovskii. 
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and ß gametes 

ßl, ß2, ... , ßk l • 

It depends on many factors which exactly of the large number k1 , k2 of possible 

gamete pairs will be actually used for producing the progeny. We divide these 

factors into intern al ones, determined by biological properties of the individ

uals (t and ß and gametes (ti and ßi, and externaiones independent of these 

biological properties. Take, for example, pollination of plants. Which pollen 

grains will get onto the stigma and which will be lost? What will be the dis

tribution of the pollen grains on the stigma ? All this depends on innumerable 

factors that are extraneous with respect to the biologicallaws of behaviour. In 

studying the biologicallaws of behaviour, these fertilization factors should be 

considered as random and treated using the techniques of probability theory. 

We can choose n pairs 

in 8 = I(k !l)~(k _ )1 different ways. In accordance with the above our further n. 1 n. 2 n. 

study sterns from the assumption that for each of these possible choices there is 

only a certain probability ofits actual fulfillment as determined by the biological 

factors. 

The derivation of Mendel's laws is based on the simplest assumption that 

the probabilities corresponding to any of these 8 possible choices are equal 

(and, consequently, all equal to 1/8) (see §2). From the biological viewpoint 

this assumption implies the same viability of gametes, the absence of selective 

fertilization, and equal viability (at least up to the moment of counting the 

offspring) of the individuals resulting from any pair combination of gametes 

(ti , ßi. For simplicity, we call this the independence hypothesis (the probability 

of obtaining some set of gametes used for producing the progeny is assumed to 

be independent of the biological features of these gametes). 

Like any other hypothesis on the independence of some phenomenon of 

certain other ones, our hypothesis taken as an absolute dogma not allowing any 

corrections is wrong: there are a number of well-known examples of deviations 

from this hypothesisj sorne are quantitatively insignificant, while others are 

quite considerable. 

It is quite clear that a viewpoint that totally rejects the role of biologi

cal external random events in the selection of the gamet es that take part in 
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fertilization would be equally without foundation. 

It can be seriously disputed, however, which of the following two viewpoints 

is correct. 

1. In most cases the independence hypothesis can weIl serve as a first 

approximation to the real state of affairs (the proponents of Mendel's and 

Morgan's genetics). 

2. Selective fertilization and unequal viability always play so decisive a 

role that the considerations based on the independence hypothesis are fruitless 

for biology (Acad. T.D. Lysenko's school). 

§2. Splitting in the ratio 3:1. 

Let us now return to the more special Mendelian assumption for the case of 

crossing Aa x Aa and domination of the feature A. In this case we assume 

that each of the parents forms as many type Agametes as those of type a, 

gamete pairs of AA and Aa types give offspring with feature A and gamete 

pairs of aa type, offspring with feature a. These assumptions, together with 

the assumption that k1 and k2 are much greater than n, and the independence 

hypothesis, imply the following: 

1. The probability that there are exactly m individuals with feature A in 

a group of n offspring (all the rest of them having feature a) is 

n! (3)m (l)n-m 
Pn(m) = m!(n - m)! 4" 4" . (1) 

Now assume that a large number r of Aa x Aa crossings is made, and each 

crossing resulted in a family consisting of 

individuals, of which 

respectively have the feature A. The question is how one can best check whether 

or not this result is in agreement with Mendel's assumption. 

Ifthe number ofindividuals in every family is very small (for example, less 

than 10), then it is reasonable to check (1) directly using Pearson's x2-criterion. 

If each of the families is sufficiently numerous, then it is better to apply 

another method. In this case (1) implies the following: 
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11. The normalized deviations 

~ = (m/n - 3/4) : U n , 

where 

approximately obey the Gaussian law with variance 1, that is, the prob ability 

of 

is approximately equal to 

P(z) = _1_ft! e-e/2cJe. 
.../2i -00 

(2) 

Here U n = (Vä/4)Vii is the mean square deviation of the frequency m/n from 

3/4. We see that this mean square deviation is proportional to I/Vii. Hence 

it is only for very large families that Mendel's theory predicts that m/n is very 

dose to 3/4. For example, we can affirm that 

Im/n - 3/41 < 0.01, 

with prob ability 0.99 only when n > 12,000. 

On the other hand, by examining a large number of families of medium 

size we can achieve a much finer verification of Mendel's assumptions by con

sidering the_ distribution of the devia~i()ns~. In particular, (2) implies that 

the prob ability of I~I $ 1 is approximately 0.68. Hence, according to Mendel's 

theory, among a sufficiently large number offamilies there should be about 68% 

with ~ $ 1 and about 32% with I~I > 1. In Ermolaeva's work only aseries of 

98 families with splitting in the colouring of a flower and leafaxil (Table 4 from 

[3]) and the series of 123 families with splitting in the colouring of cotyledons 

(Table 6 from [3]) can be used to verify this consequence of Mendel's theory. 

The rest of the series contain too few families (or groups of families ) to provide 

a reliable verification. The results are given in the following table. 2 

2 The summary Table 1 in Ermolaeva's paper [3] presents some figures other than 
those given here, since she takes into account certain families (2 from the first 
series and 4 from the second serles) that, for reasons we do not know, were not 
included in her Tables 4 and 6. Our summary Table includes only the families 
represented in Tables 4 and 6. However, the conclusions given below remain the 
same if drawn from the data given in the summary Table 1 of Ermolaeva. 
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Splitting 
(in colour) Splitting 

No. of families of the flower (in colour) Theoretical, % 
and leaf axil of cotyledons 

total 98 100% 123 100% 100 

withlLlI ~ 1 66 67% 85 69% 68 

withlLlI> 1 32 33% 38 31% 32 

For this number of families in the series the correspondence with the theory 

should be considered quite good. Due to some strange misunderstanding, Er

molaeva herself claims in her work that the presence of a noticeable percentage 

of families with ILlI > 1 disproves Mendel's theory. 

In a similar way we could verify the coincidence of the percentage of fam

ilies for which ILlI ~ a for a "# 1. For example, the theory predicts that 

approximately 50% of the families should have ILlI ~ 0.674. However, it is best 

just to check whether the actually observed distribution of the deviations Ll is 

elose to the theoretical Gaussian distribution. To do this, we draw on the same 

plot the theoretical curve y = P( x) in accordance with (2) and the empirical 

step curve 

y = q(x)/r, 

where r denotes the total number of families in a given series and q(x) is the 

number of families in the series for which Ll ~ x. The results of this verification 

for the two series from Ermolaeva's paper are shown in Figs. 1 and 2. It is elear 

that in both cases the coincidence between the theoretical and empirical curves 

is sufficiently good. To evaluate whether the observed discrepancy between 

these two curves is admissible for the given size of the series we should use the 

formulas derived earlier (see [5]). Using these formulas for the cases given in 

Figs. 1 and 2, we find that 

Al = 0.82, A2 = 0.75, 
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-J -,2 ..;./ .z J -J -,2 J 

Fig.1 Fig.2 

which is quite satisfactory. 

So we see that according to Mendel's theory, for the given family sizes we 

could not have expected the frequencies m/n for the individual families to be 

doser to their mean value 3/4 than those obtained by Ermolaeva. 

If, for some sufficiently large series of families the deviations of m/n from 

3/4 had been systematically smaller than required by the theory, then this 

would have disproved the applicability of the above assumptions to this series 

to the same extent as systematic overestimation of theoretically predicted devi

ations would do. Hints to the fact that the frequencies m/n are systematically 

too dose to 3/4 can be found in T.K. Enin's work [1]. However, the material 

of this work is not broad enough (25 families as compared with two se ries of 98 

and 123 families in Ermolaeva's work), and give reason for other doubts (the 

author himself thinks that they are not sufficiently homogeneous). Therefore 

we will not discuss them here. 

Kol'man's paper referred to in the beginning of this note does not con

tain any new facts; it only analyses Enin's data and is based on a complete 

misunderstanding of the circumstances set forth in this paper. 

20 February 1940 
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27. STATIONARY SEQUENCES IN HILBERT SPACE* 

Introduction 

Definition 1. A sequence {x(t)} of elements in a complex Hilbert space H, 

where t runs through all integers from -00 to +00, is called stationary if the 

scalar products 

B:r;:r;(k) = (x(t + k), x(t» (0.1) 

do not depend on t. 

Definition 2. Two stationary sequences {x(t)} and {y(t)} are called jointly 

stationary if the scalar products 

By:r;(k) = (y(t + k),x(t» 

do not depend on t. 

The definitions of By:r;(k) and B:r;:r;(k) immediately imply that 

B:r;y(k) = By:r;(-k), 

B:r;:r;(k) = B:r;:r;(-k). 

(0.2) 

(0.3) 

(0.4) 

This kind of stationary and jointly stationary sequence is of great impor

tance in prob ability theory and mathematical statistics. In terms of probability 

theory they are studied in detail in H. Wold's book [1] and H. Cramer's paper 

[2]. 
In §3 and §7 the main results of Wold and Cramer are given in terms of 

the geometry of Hilbert space. 

All the new problems that are studied and solved in this paper have also 

arisen from prob ability theory and mathematical statistics. The application of 

our results to problems of extrapolation and interpolation of stationary series 

of random variables is illustrated in detail in my paper [7]. 

The following theorem shows a very simple connection between stationary 

and jointly stationary sequences and unitary operators. 

Theorem 1. Let the sequences 

* Byull. Moskov. Gos. Univ. Mat. 2:6 (1941), 1-40 (in Russian). 
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be stationary and pairwise jointly stationary, and let HII:11I:2 ••. lI:n be the smallest 

c10sed linear subspace 0/ H containing all the elements 0/ these sequences. Then 

the equations 

UXj'(t) = xj'(t + 1), I-' = 1,2, ... , n, -00 < t < +00, 

uniquely define a unitary opemtor 

mapping HII:11I:2 ..• lI:n onto itself. 

This theorem allows us to obtain a number of basic properties of stationary 

and jointly station\ry sequences as direct consequences of the spectral theory 

of unitary operators. The same is true for all the theorems of §§3-6. 

The results of §§8-10 are more original and basically new; §§1-2 are of an 

auxiliary nature. 

Theorem 1 follows directly from Definitions 1 and 2 and Lemma 1 proved 

in §1. 

§1. Two lemmas 

Let T be an operator defined on a certain subset M of Hand taking values in 

H. The operator T is called an isometry if for any x, y E M, 

(x, y) = (Tx, Ty). (1.1) 

Let H M be the smallest closed linear subspace of H containing M. Then 

Lemma 1. The opemtor T can be extended as an isometry onto the whole 0/ 

H M. This extension is unique. 

For the proof we choose an everywhere dense sequence of elements of M, 

Zl,Z2,···'Zn'···· (1.2) 

We eliminate from this sequence all the elements Zn that depend linearlyon 

the preceding Zk. Then we have a sequence 

Znl' Zn2' .. ·' Zn",··· , (1.3) 
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for whieh the set R of all elements z of the form 

(1.4) 

eontains all elements of the sequenee (1.2) and is dense everywhere in HM. 

Sinee the elements of R ean be uniquely represented in the form (1.4) (by the 

linear independenee of the elements in (1.3», the formula 

(1.5) 

uniquely defines an operator T* on R sueh that 

(z', z") = (T* z', T* z") 

for any z, and z" in R, that is, T* is an isometry on R. It ean be extended by 

eontinuity to an isometry onto the whole of HM. 

Sinee all the elements of (1.2) are eontained in R, (1.5) implies that for all 

elements of (1.2), 

by eontinuity this also holds for the whole set M. 

Thus, the existenee of the required extension is proved. 

By (1.5) any other isometrie extension of T eoineides with T* on R. By 

eontinuity this eoineidenee also holds on the whole of HM. Consequently, the 

isometrie extension of T onto the whole spaee HM is unique, whieh proves the 

Lemma. 

Lemma 2. A sequence 

satisfying the conditions 

(Um, un ) = cmn ; m, n, = 1,2, ... , (1.6) 

exists on the space H if and only if for any k, ml, m2, ... , mk the matrix 

IIcm,mj 11 is hermitian and non-negative, that is, if 1 

k 

S = 2: Cm,m/.i(i ~ 0 (1.7) 
i.i=l 

1 Here and in what follows, a ~ 0 means that aisreal and non-negative. 
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for any complex numbers el,6,··· ,ek. 
To prove the necessity of (1.7) consider an element 

of H. It is easy to compute that 

lIull2 = (u, u) = S. (1.8) 

Since always lIull2 ~ 0, (1.8) implies (1.7). 

We now prove the sufficiency of (1.7). In accordance with (1.7), assume 

that for any n, 
n 

Sn = L: Cijei(j ~ o. 
i,j=1 

We find a transformation 

n 

71i = L: a~j)ej 
j=1 

that reduces Sn to the form 

m 

Sn = L: l'1d2 • 

i=1 

Choose in H an orthonormal system of vectors 

and set 

(n) (n) (n) 
ZI ,z2 , ... 'Zm 

m 

u~n) = L:a~7)zj, i = 1,2, ... , n. 
j=1 

Then it can easily be computed that 

(u~n) u<n» - c .. 
1 'J - IJ· 

Having done this for all positive integers n, we construct a sequence 

using the following inductive process: 
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1) We set 

2) assuming Ul, U2, ••. , UN to be already known and to satisfy the require

ment (1.6) for all m, n ::; N, we set 

n = 1,2, ... ,N. 

The operator TN is an isometry on the set MN = {u~N+l), ... , uW+l)}. 

By Lemma 1 it can be extended to an isometry on HMN' Since HMN and 

TMNHMN are finite dimensional, TN can be extended to an isometry on the 

whole of H (see, for example, Theorem 2.49 from M. Stone's book [3]). Having 

chosen such an extension, we set 

Clearly, the elements Ul. U2, ... , UNH satisfy (1.6) for all m, n ::; N + 1. 

§2. Operator calculus in H 

In accordance with Theorem 1 we denote by Hz; the minimal closed linear 

subspace of H containing all the elements of a stationary sequence {x(t)} and 

consider the unitary operator Uz; defined by the formula 

Uz;x(t) = x(t + 1). (2.1) 

Let 

(2.2) 

be the spectral representation 2 of Uz;. For -1r ::; A ::; +1r we set 

(2.3) 

2 See M. Stone's book [3] on spectral representations of linear operators. In wh at 
follows we will only use spectral families E(A) corresponding to unitary oper
ators for which E(-r) = 0 and E(+r) = 1. All the theorems from Stone's 
book used below (formulated there for the more general case of spectral families 
corresponding to spectral representations of self-adjoint operators of the form 
A = f~oo AdE(A)) are applicable to them. 
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After Stone ([3], Chapter 6, §1), we denote by L; the dass of all complex 

functions </J, measurable with respect to Fxx(A), defined on the segment -'Ir ~ 

A ~ 'Ir, and for which 

(2.4) 

is finite. Two functions </JI and </J2 from L; are considered to be identical if 

almost everywhere with respect to Fxx(A). 

To every function </J from L; there corresponds (see [3] Theorem 6.1) the 

operator 

(2.5) 

whose domain 6(</J) consists of all the elements Z of Hx for which the integral 

(2.6) 

is finite. The finiteness of (2.4) implies that x(O) belongs to 6(</J) for any </J from 

L;. Therefore to each </J in L; there corresponds a certain element 

ZtP = T(</J)x(O) = i: </J(A)dEx(A)X(O) (2.7) 

of the space H x . 

These definitions allow us to state the following two Lemmas, which are 

almost immediate corrolaries of Theorems 6.1 and 6.2 of Stone [3]. 

Lemma 3. The map </J -jo T(</J) is a one-to-one correspondence between L; 
and the dass Tx 01 all operators T representable in the lorm (2.5), where </J 

belongs to L;. 
Under this map 

a</J -jo aT( </J), 

</JI + </J2 -jo T( </JI) + T( </J2); 

(3a) 

(3b) 

(3c) 

(3d) 
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if n(l') = 1 for I' ~ A and n(l') = 0 for I' > A, then 

(3e) 

Lemma 4. The map 

,p - z~ 

maps the class L~ in one-to-one fashion onto the whole space H:c. Under this 

map 

a,p - az,p, 

if ,pl,p2 belongs to L~, then 

,pl,p2 - T(,pdz~2 = T(,p2)Z~1I 
eit>.,p _ U;z,p, 

n(,p) - E:c(A)Z~, 

(Z~l' Z,p2) = I: ,pl(A),p2(A)dF:c:c(A), 

(E:c(A)Z~l' Z~2) = I: ,pl(A),p2(A)dF:c:c(A). 

(4a) 

(4b) 

(4e) 

(4d) 

(4e) 

(4f) 

(4g) 

The properties (3a), (3b) and (3e) of the map ,p - T,p follow from Theo

rem 6.2 of Stone [3]. The properties (3d) and (3e) ean be derived by eomparing 

(2.5) with the formulas 

U; = I: eit"dE:c(A), (2.8) 

E:c(A) = I: dE:c(I') = I: n(l')dE:c(I'). (2.9) 

The fact that the map ,p - T(,p) is one-to-one follows from the fact that for 

,pl "I ,p2 (in the sense of equality in L~) the differenee 

has norm 
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and consequently 

To prove Lemma 4 we note the following: the set !m of all elements of 

Hz: representable in the form (2.7), where I/J belongs to L;, is, according to 

Theorem 6.2. of Stone [3], a closed linear subspace of Hz:; since 

(2.10) 

and eit>· belongs to L;, the set !m contains all the x(t), which implies that 

In view of this remark, the fact that I/J - z~ is a one-to-one correspondence 

and its properties (4a), (4b) and (4f) follow directly from Theorem 6.2 ofStone 

[3]. 
The properties (4c), (4d) and (4e) of the correspondence I/J - z~ follow 

from the corresponding properties (3c), (3d) and (3e) of the map I/J - T(I/J). 
Finally, (4e) and (4f) imply (4g): 

(Ez:(A)Z~ll Z~2) = i 7r
7r f.x>.(J1.)1/J1(J1.)]~2(J1.)dFz:z:(J1.) = 

= i: I/Jl(A)~2(A)dFz:z:(A). 
This proves Lemmas 3 and 4. 

§3. Basic spectral properties 

Theorem 2. For any stationary sequence {x(t)} the values Bz:z:(k) can be 

represented as 

(3.1) 

where Fz:z: is areal continuous function, non-decreasing from the right, defined 

on the interval -1f ~ A ~ 1f, and such that 

(3.2) 

The function Fz:z:(A) satisfying these conditions is defined uniquely by Bz:z:. 
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Here we note also that F:I::I:(A), which in what follows will be called the 

spectral function of the sequence {x(t)}, coincides with the function defined by 

(2.3), as will be dear from the text below. 

Theorem 3. Iftwo stationary sequences {x(t)} and {y(t)} are jointly station-

ary, then 

(3.3) 

where F:l:y(A) is an (in general complex) function continuous from the right, of 

bounded variation, defined on the interval -11" :::; A :::; 11", for which 

(3.4) 

The function F:l:y(A) satisfying these conditions is uniquely defined by B:l:Y. 

Since any stationary sequence is jointly stationary with respect to itself, 

Theorem 2 can be considered as a particular case of Theorem 3, except for the 

statement that F:I::I:(A) is real and non-decreasing. 

To prove Theorem 3, we consider the spectral representation 

U:l:Y = 1: ei>'dE:l:y(A) (3.5) 

of the operator U:l:Y whose existence follows from Theorem 1 for 

n=2, Xl=X, X2=Y. 

For -11" :::; A :::; 11", we set 

(E:l:y(A)X(O), y(O» = F:l:y(A) (3.6) 

It is known (see Stone [3], p.177) that F:l:y(A) is a function, continuous 

from the right and of bounded variation. The equality 

(3.7) 

implies that 

Finally, 

B:l:y(k) = (x(k), y(O» = (Ukx(O), y(O» = (1: eik>.dE(A)X(O) , Y(O») = 

= 1: eik>.d(E(A)X(O),y(O» = 1: eik>'dF:l:y(A). 
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Thus, F:r:y(~) defined by (3.6) satisfies all the conditions of the theorem. 

For the particular case of one sequence {z(tn = {y(tn the function 

(3.8) 

is real and non-decreasing (see Stone [3], p.189). This justifies the correspond

ing statement of Theorem 2. 

Elementary properties of Fourier series for functions of bounded variation 

(see, for example, A. Zygmund [4], p.13) imply that 

(3.9) 

where 
w (~) = B (O)~ _ '" B:r:y(k) e-iA:>. :r:y :r:y L-, ik ' 

k;tO 
(3.10) 

and the constant C can be found from the condition 

(3.11) 

Formulas (3.9) and (3.10) show that F:r:y(~) is uniquely defined by B:r:y. Thus, 

Theorems 2 and 3 are completely proved. 

Note also that (3.8) directly implies that 

(3.12) 

Theorem 4 (H. Cramer). 11 the sequences 

are stationary and jointly stationary, then lor any -'11' ~ a ~ ß ~ '11' the 

increments 

(3.13) 

lorm a non-negative hermitian matrix, that is, 

n 

E äF:r:,.:r:II{./Jell ;::: 0, (3.14) 
/J,II=l 
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Conversely, if the functions 

F/JI/()..), p., v = 1,2, ... ,n, 

which are continuous /rom the right and are defined on -1r ~ ).. ~ 1r, satisfy 

the conditions 

n 

L: ~F/JI/f./J(1/ ~ 0, (3.15) 
1',1/=1 

(3.16) 

then there exists in H a system of stationary and jointly stationary sequences 

for which 

(3.17) 

To prove this first part of the theorem we consider the spectral represen-

tation 

of the operator 

of Theorem 1 and setting 
n 

Z = L:f./JX/J(O), 
1'=1 

we consider on the inter val -1r ~ ).. ~ 1r the function 

n n 

~()..) = IE()..)zI2 = (E()")z, z) = (E()") L: f./Jx/J(O), L:f.//XI/(O») = 
1'=1 1/=1 

n n 

= L: (f./JE()..)x/J(O),f.l/xl/(O» = L: f./J(I/(E()..)x/J(O), XI/(O» = 
1',1/=1 1',1/=1 

n 

= L: Fx,.x,,()..)f./Jf.//. 
1',,,=1 
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Since </J().) is real and monotone non-decreasing (see Stone [3], p.189), it 

follows that for a < ß 

n 

</J(ß) - </J(a) = ~</J = L: ~FII:,.II:"'("f,,, ~ 0, 
,.,,,=1 

as required. 

Passing to the second part of the theorem, we set 

According to Lemma 2, in order that there exist elements Z,.(t) in H corre

sponding to any integer t and any J.1. = 1,2, ... ,n such that 

(Z,.(t'), z,,(t")) = B,.,,(t' - t"), 

it suffices to show that 

r 

B = L: B,.p,.q(tp - tq)f,p(q ~ 0 
p,q=l 

for any r, J.1.p, tp, f,p. This is always the case since, setting 

where the sum E(") is taken over all p for which J.1.p = J.1., we have, by (3.15), 

For the elements Z,.(t) of H, whose existence is thus established, we have 

Therefore the sequences 
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are stationary and jointly stationary. It is easy to see that in this case 

Theorem 4 is completely proved. 

For n = 1 the second part of Theorem 4 implies 

Theorem 5. For any real non-decreasing function F(A), continuous from 

the right, defined on -'Ir ~ A ~ 'Ir and such that F( -'Ir) = 0, there exists a 

stationary sequence {x(t)} with 

For n = 2 (3.15) is equivalent to the set of conditions 

(see Cramer, [2], p. 227). In this case Theorem 4 gives 

Theorem 6. If the sequences {z(t)} and {y(tn are stationary and jointly 

stationary, then for any -'Ir ~ a < ß ~ 'Ir, 

(3.18) 

Conversely, if the functions Fll (A), F22(A) and F12(A) defined on -'Ir ~ 

A ~ 'Ir are continuous from the right and satisfy the conditions 

(3.19) 

then there erist stationary and jointly stationary sequences {z(tn and {y(tn 

for which Fu(A) = Fl1(A), F!I!I(A) = F22(A), FZ!I(A) = F12(A). 

In what follows we require the following strengthened version ofTheorem 6: 

Theorem 7. If Fl1 (A), F22(A) and F12(A) satisfy all the conditions of the 

second part of Theorem 6, the stationary sequence {z(tn is such that 



STATIONARY SEQUENCES IN HILBERT SPACE 241 

and the orthogonal complement HeHr; of Hr; in Hisinfinite dimensional, 

then there exists a sequence {y(t)} in H, stationary and jointly stationary with 

{x(t)}, fOT which 

To prove Theorem 7, we note that, by Theorem 6, the conditions assumed 

with respect to F11 (A), F22(A) and F12(A) imply the existence of stationary 

and jointly stationary sequences {x·(t)} and {y·(t)} for wh ich 

For all integers t we set 

Tx·(t) = x(t). 

It can easily be verified that T is an isometry on the set {x*(t)}. By Lemma 1, 

Textends as an isometry onto the whole space Hr;o. Then clearly, 

Since the orthogonal compiement HeHr; is infinite dimensional, T can 

be extended as an isometry from Hr; onto the whole space Hr;I/ (see Stone [3], 

Theorem 2.49). Having chosen such an extension, we set 

Ty*(t) = y(t). 

It is easy to see that the sequence {y(t)} has all the properties required 

by Theorem 7. 

§4. Sub ordinate sequences 

Definition 3. A stationary sequence {y(t)} is said to be subordinate to a sta

tionary sequence {x(t)} if {x(t)} and {y(t)} are jointly stationary and all the 

elements of {y(t)} belong to Hr;. 

Clearly, if {y(t)} is sub ordinate to {x(t)}, then 

Hr;I/ = Hr;, 

Ur;I/ = Ur;. 

(4.1) 

(4.2) 
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Using the notions introduced in §2 we will prove the following theorem. 

Theorem 8. To every sequence {y(t)} subordinate to {x(t)} there corresponds 

a unique function 4>~x)(A) of dass L; for which 

The map 

Fyy(A) = 1: 14>~X)(A)12dFxx(A), 
Fyx(A) = 1: 4>~X)(A)dFxx(A). 

(4.3) 

(4.4) 

is a one-to-one correspondence from the dass Yx of all sequences {y(t)} subor

dinate to {x(t)} onto the dass of L; functions 4>(A). For two sequences {Yl(t)} 

and {Y2(t)} /rom Yx we have 

(4.5) 

The assertion of Theorem 8 that the function 4>~x) (A) is unique is to be 

understood in the sense of identity offunctions 4>( A) from the dass L;, given in 

§2. The one-to-one correspondence follows from (4.4) by virtue of the equality 

(4.6) 

We will prove the existence of functions 4>~x)(A) for 'any sequence {y(t)} from 

the dass Yx using Lemma 4 in §2. If {y(t)} belongs to Yx, then y(O) belongs 

to Hx, and according to Lemma 4, there exists a function 4>~x)(A) of dass L; 

such that 

y(O) = z tP~X). 

By (3.6) and (4g) of Lemma 4 we have 

Fy1y2 (A) = (Ey1y2 (A)Yl(O),Y2(O)) = (Ex(A)Yl(O),Y2(O)) = 

= 1: 4>~~)4>~:)(A)dFxx(A) 

(4.7) 

for any sequences {Yl(t)} and Y2(t)} in Yx , which proves (4.5). In the particular 

case Yl = y, Y2 = X we obtain (4.4), while for Yl = Y2 = X we obtain (4.3). 



STATIONARY SEQUENCES IN HILBERT SPACE 243 

The one-to-one correspondence between {y(t)} and q,~X)(A) also follows 

from Lemma 4. 

An important addition to Theorem 8 is 

Theorem 9. If two sequences {z(t)} and {y(t)} are stationary and jointly 

stationary, then {y(t)} is subordinate to {z(t)} if and only if there exists a 

function q,(A) in L~ for which 

Fyy(A) = i: 1q,(AWdFxx(A), 

Fyx(A) = i: q,(A)dFxx(A). 

(4.8) 

(4.9) 

The necessity of the condition follows from Theorem 8. Let us prove 

its sufficiency. If there exists q,(A) in L~ satisfying (4.8) and (4.9), then by 

Theorem 8 there exists a sequence {y*(t)} subordinate to {z(t)} for which 

Therefore 

By Lemma 1 we can determine an isometry Ton Hxyo such that for any 

integer t, 
Tz(t) = z(t), Ty*(t) = y(t). 

Clearly 

(4.10) 

Since {y*(t)} is sub ordinate to {z(t)}, 

(4.11) 

Equalities (4.10) and (4.11) imply that 

which means that {y(t)} is subordinate 3 to {z(t)}. 

3 This condusion makes it dear that {y(t)} coincides with {x(t)}. 
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Definition 4. Stationary sequences {z(t)} and {y(t)} are called equivalent if 

each of them is subordinate to the other, that is, if they are jointly stationary 

and if 

H:t:=H". 

Theorem 10. A sequence {y(t)} subordinate to {z(t)} is equivalent to {z(t)} if 

and only if tP~:t:)(A) is non-vanishing almost everywhere with respect to F:t::t:(A). 

If this is the case, then 

(4.12) 

almost everywhere with respect to F:t::t:(A) and F",,(A). 

1 o. We prove the necessity of the condition. Assume that {y(t)} is sub

ordinate to {z(t)}, and {z(t)} is subordinate to {y(t)}. Then it follows from 

(4.3) and the formula 

(4.13) 

obtained by interchanging the indices, that F:t::t:(A) and F",,(A) are absolutely 

continuous with respect to each other. Therefore the notions "almost every

where with respect to F:t::t:" and "almost everywhere with respect to F",," co

incide. By (4.3) and (4.13), 

and hence, almost everywhere with respect to F:t::t:, 

(4.14) 

Formula (4.14) shows that tP~:t:)(A) ::f:. 0 alrnost everywhere with respect to 

F:t::t:, as required. 

20 • We now prove the sufficiency ofthe condition. Assume that {y(t)} is 

subordinate to {z(t)} and tP~:t:)(A) ::f:. 0 alrnost everywhere with respect to F:t::t:. 

Since, according to (4.3), F",,(A) is absolutely continuous with respect to 

F:t::t:(A), the function tP~:t:)(A) is also absolutely continuous almost everywhere 
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with respect to Fyy('x). Therefore we can write 

JA dFyy('x) = JA 1</J~:>:)(,X)I2dF:>::>:('x) = JA dF:>::>:('x) = F:>::>:('x) (4.15) 
-,.. 1</J~:>:)('x)12 -,.. 1</J~:>:)('x)12 -,.. , 

JA dFyy('x) -JA 1</J~:>:)('x)I2dF:>::>:('x) -JA .I.(:>:)dF (')_ 
( ) - ( ) - 'l'y :>::>: " --,.. </Jy:>: (,X) -,.. </Jy:>: (,X) -,.. 

= 1: </J~:>:)('x)dF:>::>:('x) = Fy:>:('x) = F:>:y('x). 

Formulas (4.15) and (4.16) show that the function 

satisfies the conditions 

F:>::>:('x) = 1: 1</J(,X1 2dFyy ('x), 

F:>:y('x) = 1: </J('x)dFyy('x). 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

By Theorem 9 this implies that {x(t)} is subordinate to {y(t)} , as required. 

30. By Theorem 8, (4.15) and (4.16) imply that 

§5. Decomposition of stationary sequences into 

orthogonal summands 

Definition 5. Two sequences {Yl (t)} and {Y2(t)} are called mutually orthogonal 

if 

(5.1) 

for all integers k and t. 
Clearly, two stationary and jointly stationary sequences {Yl (t)} and {Y2 (t)} 

are mutually orthogonal if and only if 

(5.2) 
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or, equivalently, if 

(5.3) 

Theorem 11. Iftwo sequences {Yl(t)} and {Y2(t)} are stationary and mutually 

orthogonal, then 

a) the sequence {z(t)} = {Yl(t) + Y2(t)} is stationary; 

b) {Yl(t)} and {Y2(t)} are jointly stationary both with respect to each other 

and with respect to {z(t)}: 
(cd Bxx(k) = B'/1!Il (k) + By2y2 (k), 

(C2) BY1X (k) = B y1y1 (k), 

(C3) BY2X (k) = B y2y2 (k), 

(dd Fxx(A) = Fy1y1 (A) + Fy2y2 (A), 

(d2) FY1X (A) = Fy1y1 (A), 

(d3 ) FY2X (A) = Fy2y2 (A). 

Theorem 11 is proved by simple computations based on (0.2), (3.9)-(3.11). 

In the conditions of Theorem 11, by (d1) and the non-negativeness of the 

increments t1Fxx , t1FY1YlI t1FY2Y2 (for non-negative t1A) we have: 

(5.4) 

Therefore the functions 

(5.5) 

are bounded and uniquely defined (in the sense adopted in [3]) by the formulas 

Fy1y1 (A) = i: ,p~~)(A)dFxx(A), 
Fy2y2 (A) = i: ,p~~)(A)dFxx(A). (5.6) 

Theorem 12. Under the conditions of Theorem 11, either both sequences 

{Yl (t)} and {Y2(t)} are subordinate to {x(t)} or neither iso The first of these 

two cases takes place if and only if 

(5.7) 
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almost everywhere with respect to FII:II:. 

Proof. 1°. If {Yl(t)} is subordinate to {z(t)}, then by virtue of the relation 

Y2(t) = z(t) - Yl(t), 

{Y2(t)} is also subordinate to z(t). Similarly, if {Y2(t)} is sub ordinate to {z(t)}, 
then {Yl(t)} is also subordinate to {z(t)}. 

2°. Ifboth sequences {Yl(t)} and {Y2(t)} are subordinate to {z(t)}, then, 

comparing (5.6) and (4.3), we see that almost everywhere with respect to FII:II:' 

(5.8) 

but if we take into account (d2) and (da), then comparing (5.6) with (4.4), we 

see that almost everywhere with respect to Fil:II: , 

.1.(11:) = ..J.(II:) .1.(11:) = ..J.(II:) (5.9) 
'l'Yl 'l'Yl' 'l'y~ 'l'Y2 . 

Comparing (5.8) and (5.9), we conclude that t/J~~) and t/J~~) are equal to 0 or 

1 almost everywhere with respect to FII:II:. Since, moreover, almost everywhere 

with respect to Fil:II: 

.1.(11:) .1.(11:) _ dFY1Y1 dFY~Y2 _ dF1I:1I: _ 1 
'l'Yl + 'l'y~ - dF1I:1I: + dF1I:1I: - dF1I:1I: - , (5.10) 

it follows that (5.7) holds. 

3°. Suppose that (5.7) holds. Then, by (5.10), t/J~~) and t/J~~) are equal 

to 0 or 1 almost everywhere with respect to Fn . 

Hence, almost everywhere with respect to Fil:II: we have 

Formulas (5.11), (5.6), (d2 ) and (da) imply that 

FY1Y1 (A) = I: 1t/J~~)(A)12dFII:II:(A), 
FY11I:(A) = I: t/J~~)(A)dFII:II:(A), 

Fy2y2 (A) = I: 1t/J~~)(AWdFII:II:(A), 
FY~II:(A) = I: t/J~~)(A)dFII:II:(A). 

(5.11) 

(5.12) 
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By Theorem 9, the existence of tP~~) and tP~~) satisfying (5.12) implies that 

the sequences {Yl(t)} and {Y2(t)} are subordinate to {x(t)}. 

Theorem 13. Suppose that for a stationary sequence {x(t)}, the orthogo

nal complement He Hx of the space H x in H is infinite dimensional. Then 

corresponding to any representation of Fxx(A) as a sum 

(5.13) 

of two real non-decreasing functions F1(A) and F2(A) continuous from the right 

and for which F1(-1r) = F2(-1r) = 0, there is at least one representation of 

{x(t)} as 

x(t) = Yl(t) + Y2(t), (5.14) 

where {Yl(t)} and {Y2(t)} are mutually orthogonal and have spectral functions 

(5.15) 

To prove this we set 

The functions FU(A), F22 (A) and F12(A) satisfy the conditions ofthe sec

ond part of Theorem 6. Therefore, by Theorem 7 there exists in H a sequence 

{Yl(t)} that is stationary and jointly stationary with respect to {x(t)} and is 

such that 

Setting 

Y2(t) = x(t) - Yl(t), 

and using simple computations we see that {Yl(t)} and {Y2(t)} are mutually 

orthogonal and satisfy (5.15). 

Theorem 12 gives conditions that shouldbe imposed on F1(A) and F2(A) 

in the representation (5.13) in order to make {Yl(t)} and {Y2(t)} sub ordinate to 

{x(t)}, that is, to ensure that they lie in Hx • Under these additional conditions 

the requirement that the dimension of the complement He H x be infinite is 



STATIONARY SEQUENCES IN HILBERT SPACE 249 

superfluous,4 and it is possible to strengthen the conclusion of Theorem 13 so 

that the representation (5.14) is uniquely 5 determined by (5.13). 

We obtain the following theorem: 

Theorem 14. For any stationary sequence {x(tn and for each representation 

of the spectral function Fxx(.~) in the form 

where F1(A) and F2(A) are real non-decreasing functions of A, continuous from 

the right with F1(-1r) = F2(-1r) = 0, and almost everywhere with respect to 

Fxx , 
dFl + dF2 = 0, 
dFxx dFxx 

(5.16) 

there corresponds one representation {x(tn in the form 

x(t) = Yl(t) + Y2(t), 

for which {Yl (tn and {Y2(tn are mutua//y orthogonal and 

The sequences {Yl (tn and {Y2(tn are subordinate to {x(tn. 

§6. Sliding summation 

Definition 6. We say that a sequence {x(tn is obtained from a stationary 

sequence {u(tn by sliding summation if we can choose coefficients an such 

that 
+00 

x(t) = L anu(t - n), (6.1) 
-00 

where the series on the right-hand side converges in norm. 

4 Indeed, consider an extension H* of the space H for which H* e H is infinite 
dimensional. By Theorem 13 the desired sequences {Yl(t)} and {Y2(t)} exist in 
H* while under the additional condition of Theorem 12 they belong to Hx . 

5 This follows from the fact that according to Theorem 8, the functions <p~~) = 

dFt/dFxx and <p~~) = dF2/dFxx uniquely define sequences {Yl(t)} and {Y2(t)} 
sub ordinate to x(t). 
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Clearly, a sequence {x(t)} obtained by sliding summation from a stationary 

sequence {u(t)} is always stationary and subordinate to {u(t)}. In this section 

we consider a particular case for which the converse statement is also true. 

Definition 7~ A sequence {u(t)} of elements of H is called fundamental if it is 

stationary and satisfies the conditions 

Buu(O) = 1, Buu(k) = 0 for k :F O. (6.2) 

By (3.9) and (3.10) it is easy to compute that for every fundamental se

quence {u(t)} , 

FUU(A) = (A + 7r)/27r. (6.3) 

Conversely, every stationary sequence {u(t)} with a spectral function of the 

form (6.3) is fundamental. 

The elements of a fundamental sequence {u(t)} form a complete orthonor

mal system in Hu . Therefore, each element z of Hu can be uniquely represented 

as 
+00 

Z = L Ctu(t), (6.4) 
t=-oo 

where 
+00 

L c~ = IIzII2 < +00. (6.5) 
t=-oo 

The coefficients Ct in (6.4) are determined by the equalities 

Ct = (z, u(t)). (6.6) 

Theorem 15. A stationary sequence {x(t)} is obtained /rom a fundamental 

sequence {u(t)} by slidiag summation if and only if {x(t)} is subordinate to 

{u(t)}. If this condition holds, then the unique representation of {x(t)} in the 

form (6.1) is given by the formula 

00 

x(t) = L Bxu(n)u(t - n). (6.7) 
n=-oo 

The necessity of the condition of the theorem has already been proved. If 

this condition holds, then every element x(t) of the sequence {x(t)} belongs to 

H u and, by (6.4) and (6.6), is representable in the form 
00 00 

x(t) = L (x(t), u(s))u(s) = L Bxu(t - s)u(s) 
3=-00 
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or, setting t - s = n, in the form (6.7). 

Taking into account the uniqueness of the representation of any element 

in the form (6.4), we see that each representation of {x(t)} in the form (6.1) is 

the same as (6.7). 

Note also that a comparison of (6.7) with (6.4) and (6.5) yields 

00 

L IBxu (n)12 = IIx(t)112 = Bxx(O). (6.8) 
n=-oo 

Formulas (4.3), (4.4) and (6.3) imply that 

Fxx(A) = 2~ 1~ 14>1x)(AWdA, (6.9) 

Fxu(A) = 2~ 1~ 4>1u)(A)dA, (6.10). 

Formula (6.9) shows that 4>1u )(A) is a square integrable function. It follows 

from (3.3) and (6.10) that 

Bxu(n) = -21 1lr 
einA 4>1u )(A)dA. (6.11) 

7r -lr 

Thus the Bxu(n) are the Fourier coefficients of 4>1u )(A), that is, 

00 

4>1u )(A) '" L Bxu(n)e-inA. (6.12) 
n=-oo 

With regard to the above formulas we note that, by (6.3), the words "al

most everywhere with respect to Fuu" mean "exduding a set of Lebesgue mea

sure zero" and the dass L~ coincides with the dass L 2 of square integrable 

functions in the usual sense of Lebesgue. 

Theorem 16. In order that a stationary sequence {x(t)} can be obtained by 

sliding summation from some fundamental sequence it is necessary that the 

spectral function Fxx(A) be absolutely continuous. 

If He Hx is infinite dimensional, then this condition is also sufficient. 

The necessity of the condition follows from (6.9). To prove its sufficiency 

we consider an arbitrary function ,(A) in L2 for which, almost everywhere on 

-7r ~ A ~ 7r, 

(6.13) 
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and define Fll (A), F22 (A) and F12(A) by the formulas 

Fll (A) = F.,.,(A), 

It is easy to see that these functions satisfy the conditions of the second 

part of Theorem 6. By Theorem 7, if H e H., is infinite dimensional, then 

there exists a sequence {u(t)}, stationary and jointly stationary with {x(t)} , 

for which 

(6.14) 

(6.15) 

Formula (6.14) shows that {u(t)} is a fundamental sequence. The absolute 

continuity of F.,.,(A) and formula (6.13) imply that 

(6.16) 

By Theorem 9, we conclude from (6.15) and (6.16) that {x(t)} is subordi

nate to {u(t)}. By Theorem 15 this implies that {x(t)} can be obtained from 

{'!l(t)} by sliding summation. 

Theorem 17. A stationary sequence {x(t)} can be obtained by sliding summa

tion from a fundamental sequence subordinate to {x(t)} if and only if F.,.,(A) 

.is absolute1y continuous and the function 

f.,.,(A) = dF.,.,(A)/dA (6.17) 

is almost everywhere positive on -'Tr :::; A :::; 'Tr. 

If these conditions are satisfied, then: 

A. Every fundamental sequence from wh ich {x(t)} can be obtained by slid

ing summation is subordinate to {x(t)}. 

B. The sequence {x(t)} can be obtained by sliding summation from any 

fundamental sequence subordinate to it. 

C. A sequence {'!let)} subordinate to {x(t)} is fundamental if and only if 

(6.18) 
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almost everywhere on -1r ~ A ~ 1r. 

Regarding (6.18), note that if Fzz(A) is absolutely continuous and Izz(A) is 

positive almost everywhere, then the dass of sets of measure zero with respect 

to Fzz coincides with the dass of sets of Lebesgue measure zero. Therefore, 

functions of dass L;, in particular f/J~z), are defined to within a set of measure 

zero in the sense of Lebesgue. 

Proolol Theorem 17. 

10 • The necessity of the absolute continuity has already been established 

in Theorem 16. Let us prove that Izz must be positive almost everywhere. If 

a fundamental sequence {u(t)} is subordinate to {x(t)}, then by Theorem 9, 

A+1r jA I (z) )12 () -- = Fuu(A) = f/Ju (A dFzz A , 
21r _ ... 

(6.19) 

which implies after differentiation with respect to A, that almost everywhere 

(6.20) 

It is dear from (6.20) that Izz is positive almost everywhere. 

20 • Now assurne that Fzz is absolutely continuous and Izz is positive 

almost everywhere. By Theorem 16, the absolute continuity of Fzz on its own 

implies that {x(t)} can be obtained by sliding summation from a fundamental 

sequence {u(t)} belonging to an extension H' of Hz. By (6.9), we have almost 

everywhere 

Hence by Theorem 10, {u(t)} is sub ordinate to {x(t)} (that is, actually 

belongs to Hz itself). Thus, we have proved the sufficiency of the conditions of 

the Theorem and with it, the additional assertion A. 

A sequence {u(t)} subordinate to {x(t)} is fundamental if and only if 

that is, if almost everywhere 

(6.21) 

This proves C. 
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By (6.21) 1<I>~~)(.\)12 :F 0 almost everywhere for any fundamentalsequence 

{u(tn sub ordinate to {z(tn. By Theorem 10 this implies that {z(tn is sub

ordinate to {u(tn, and hence, by Theorem 15, {z(tn is obtained from {u(tn 

by sliding summation. This proves B. 

§7. Wold decomposition 

For a stationary sequence {z(tn we denote by Hz(t) the smallest cl08ed linear 

subspace of Hz containing all the z(s) for s $ t, and let S~ be the intersection 

of all the Hz(t). Clearly, 

u; Hz(t) = Hz(t + k), 

U;Sz =S~. 

Definition 8. A stationary sequence {z(tn is called singular if 

Clearly, for a singular sequence {z(tn, 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

for any t. Conversely, if (7.4) is true for some t, then {z(tn is singular. Indeed, 

if (7.4) holds for one t, then by (7.1), it also holds for all other t, whence it 

follows that S~ = Hz. 

Let sz(t) be the projection of z(t) onto S~. It is easy to see that {sz(tn 

is a singular stationary sequence subordinate to {z(tn for which 

(7.5) 

The sequence {s~(tn is called the singular component of {z(tn. 

Now ass urne that {z(tn is non-singular. Then z(t) can be uniquely rep

resented as 

z(t) = ~(t) + ~(t), (7.6) 

where ~(t) belongs to H~(t - 1) and ~(t) :F 0 is orthogonal to H~(t - 1). Set 

u~(t) = ~(t)/II~(t)lI. (7.7) 
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Clearly the elements 

Uz(t), uz(t - 1), ... , uz(t - n) ... 

form a complete orthonormal system in the space 

Since z(t) belongs to Hz(t), it follows that z(t) can be uniquely represented in 

the form 
00 

z(t) = sz(t) + E c~z)uz(t - n). (7.8) 
n=O 

Since {uz(t)} is stationary and subordinate to {z(t)}, the coefficients 

(7.9) 

in (7.8) do not depend on t. It follows from (7.6) and (7.7) that 

Co = 1I~(t)1I > o. (7.10) 

The representation of a non-singular sequence in the form (7.8) is called 

the W old decomposition. The above arguments make it dear that 

s(t) = Sz(t), u(t) = uz(t), C - c(z) 
n - n 

have the following properties: 

Wl) the sequence {s(t)} is singular and subordinate to {z(t)}j 

W2) {u(t)} is a fundamental sequence subordinate to {z(t)}j 

W3) u(t) belongs to Hz(t)j 

W 4) the sequences s(t) and u(t) are mutually orthogonalj 

Ws) co> o. 
The following theorem shows that the decomposition (7.8) is uniquely de

termined by these five properties. 

Theorem 18. If a stationary sequence {z(t)} is represented as 

00 

z(t) = s(t) + Ecnu(t - n), (7.11) 
n=O 
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and i!{s(t)} and {u(t)} and the coefficients Cn satisfy the conditions W1)-W5), 

then {x(t)} is non-singular and 

s(t) = sx(t), u(t) = ux(t), Cn = c~x). 

Proof. Since x(t') and an the u(t' - n) belong to Hx{t') for n = 0,1,2, ... (by 

W3 ), then so does 
00 

s(t') = x(t') - L: Cn u(t' - n). 
n=O 

Since Hx(t') is contained in Hx(t) for t' ~ t, all the s(t') belong to Hx(t) for 

t' ~ t. Hence H,(t) is contained in Hx{t). Since S, = H,(t) (by W1 )), S, is 

contained in all Hx(t) and hence in Sx. This implies that all the s(t') belong 

to Sx and hence to an Hx(t). 

We rewrite (7.11) as 

x(t) = (t) + cou(t), (7.12) 

where 
00 

(t) = s(t) + L: Cn u(t - n). 
n=l 

Since all the s(t) and an the u(t - n) for n = 1,2,3, ... belong to Hx{t - 1), 

it fonows that (t) belongs to Hx(t - n). Since for t' < t an the x(t') can be 

written as linear combinations of elements s(t") and u(t") with t" < t and u(t) 

is orthogonal to an s(t") and u(t") for t" < t, we find that u(t) is orthogonal 

to an x(t') for t' < t, and hence to the space Hx(t - 1). 

Since (t) belongs to Hx(t - 1) and u(t) is orthogonal to Hx(t - 1), com

paring (7.12) with (7.6) we see that 

(t) = e(t), cou(t) = ~(t). (7.13) 

Comparing (7.13) with (7.7) and taking W5) into account we obtain 

u(t) = ux(t). (7.14) 

By W2) and W4 ), (7.11) implies that 

cn = [x(t), u(t - n)]. (7.15) 
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From (7.14) , (7.15) and (7.9) we obtain 

Cn = c~z). (7.16) 

Comparing (7.8) with (7.11) and taking into account (7.15) and (7.16) we finally 

obtain 

S(t) = sz(t). 

§8. Regular sequences 

Theorem 19. A stationary sequence {z(t)} can be represented in the form 

00 

z(t) = ~ cnu(t - n), (8.1) 
n=O 

where {u(t)} is a fundamental sequence, if and only if 

Sz(t) = O. (8.2) 

If z(t) = 0, then the condition sz(t) = 0 is fulfilled and the representation 

(8.1) is possible (with all Cn = 0). Now we have only to consider the case 

z(t) I O. The sufliciency of the condition sz(t) = 0 in this case is also dear: if 

sz(t) = 0 and z(t) = 0, then the sequence z(t) is non-singular and, according 

to (7.8) of the previous section, can be represented in the form 

00 

z(t) = ~ c~z)uz(t - n). (8.3) 
n=O 

Let us prove the necessity of (8.2). For this purpose note that if there 

exists a representation (8.1), then the space Hz(t) is contained in the space 

Hu(t) and Sz in Su. Therefore, if the equality 

Su = 0 (8.4) 

is true for every fundamental sequence, then Sz = 0 and hence sz(t) = o. 

Definition 9. A stationary sequence {z(t)} is said to be regular if 

z(t) I 0, sz(t) = O. 
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If {U{t)} is a fundamental sequence, then (8.1) is a particular case of the 

representations studied in detail in §6. Therefore, in accordance with (6.7), 

(6.8) and (6.12), 

Bxu(n) = Cn for n ~ 0, Bxu(n) = 0 for n < 0, (8.5) 

00 

L: ICn 12 = Iz(tW = Bxx(O), (8.6) 
n=O 

00 

~~u)(A) = L: cne-in>.. (8.7) 
n=O 

By (8.6), the series 
00 

r;«() = L cn(n (8.8) 
n=O 

represents an analytic function in the disk 1(1 < 1. By (8.7), its boundary 

values on I( I = 1 are given by the formula 

(8.9) 

The condition z(t) :j; 0 implies that r:«() cannot vanish identically. There

fore,6 almost everywhere on 1(1 = 1, 

(8.10) 

Since by (6.9) 

(8.11) 

almost everywhere, (8.10) implies that almost everywhere 

fxx(A) > O. (8.12) 

By Theorem 17 we conclude that {u(t)} is subordinate to {z(t)}. 

Theorem 20. 1f a regular sequence {z(t)} can be represented in the form (8.1) 

with a fundamental sequence {u(t)}, then {u(t)} is subordinate to {z(t)}. 

6 See, for example, 1.1. Privalov's monograph [5], p.39. 



STATIONARY SEQUENCES IN HILBERT SPACE 259 

A stationary sequence {x(t)} subordinate to a fundamental sequence {u(t)} 

can be represented in terms of {u(t)} in the form (8.1) if and only if the function 

'Y1u )«(), dejined for 1(1 = 1 by 

(8.13) 

coincides almost everywhere on the circle 1(1 = 1 with the boundary values of 

the analytic function dU )«(), dejined for 1(1 < 1 by 

(8.14) 

1fthis condition holds, then the coefficients Cn of(8.1) can be determined from 

(8.8). 

The first part of the theorem, the necessity of the conditions in the second 

part of the theorem, and the assertion on the form of dependence between the 

coefficients Cn and the function r~u)«() have been proved above. 

It remains to prove the sufficiency of the conditions of the second part of 

the theorem. 

If these conditions hold, then for the boundary values of d u )«() we have 

the Fourier series expansion 

00 

'Y~u)(e-i>') = ~1u)(A) '" L cne-in>.. (8.15) 
n=O 

Comparing (8.15) with (6.12) and (6.7) we conclude that x(t) can be rep

resented in the form (8.1) with coefficients Cn determined from (8.15) or, what 

is the same, from (8.8). This completes the proof of Theorem 20. 

Theorem 21. For any regular sequence x(t), the function 

00 

r x«() = r~U.,)«() = L c~x)(n (8.16) 
n=O 

does not vanish inside the disk 1(1 < 1. 

Assurne that, on the contrary, r x «() vanishes at a (0 with 1(1 < 1. We 

construct a sequence {u(t)} subordinate to {ux(t)} such that 

~(uz)(A) = e- i >' - (? . 
u 1 - (oe-I>' 

(8.17) 
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This sequence exists by Theorem 8 since the function 

is bounded and is therefore of elass L!,s = L2. 

It is easily checked that for any A 

(8.18) 

Now 
d dA+'Ir 1 

fu,suzCA) = dA FU,su,s(A) = dA ~ = 2'1r' 

Therefore according to assertion C of Theorem 17, (8.18) implies that {u(t)} 
is a fundamental sequence. 

By (4.5), 

Fss(A) = J~ q,~uz)(A)4>~uz)(A)dFuzuz(A) = 2~ i: q,~uz)(A)4>~uz)(A)dA. 
(8.19) 

It follows from (4.6) that almost everywhere 

By (8.18), 

.I.(U)(A) = dFsu(A) = 2 dFsu(t) = .I.(uz)(A)J;(uz)(A) 
'l's dFuu(A) 'Ir dA 'l's 'l'u . 

Therefore (8.20) can be written as 

Now, (8.9) and (8.16) imply that 

q,~uz)(A) = f~uz)(e-i>') = fs(e-i>'). 

From (8.21) , (8.22) and (8.17) we conelude that 

It is easy to see that 

(8.20) 

(8.21) 

(8.22) 

(8.23) 
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coincides almost everywhere with the boundary values of the function 

(8.24) 

for '(I = 1. 
Since (0 is a zero of r :r:«), it follows that r~u)«) is analytic for '(I < 1. 

By Theorem 20 this implies that 7 

+00 

z(t) = L: cnu(t - n), (8.25) 
n=O 

where the coefficients Cn are determined from (8.8). The function 

coincides almost everywhere on the cirele 1(' = 1 with the boundary values of 

the function 
r(US)(I") = (- (0 

U .. 1- (0(' 
(8.26) 

which is analytic in the disk '(I < 1. Therefore, according to Theorem 20 

00 

u(t) = L: dnu:r:(t - n), (8.27) 
n=O 

where the dn are the coefficients of the Taylor series of the function rLus)«). 
Formula (8.27) shows that u(t) belongs to Huz<t). Since by property W3 ) of 

the sequence {u:r:(t)} (see §7), H(us)(t) lies in H:r:(t), we see that u(t) also lies 

in H:r:(t). 
This implies that for n > 0 all the u(t - n) belong to H:r:(t - n). Therefore, 

comparing (8.25) and (7.6) we obtain 

Cou(t) = ~(t), 

and, by (7.7) and (7.10), 

7 For Theorem 20 to be applicable it is essential that r~u)(c) can be represented as 

a Cauchy integral in terms ofthe boundary values 'Y~u)(e-i~). This holds, as we 
can see, for example, from Remark C on p. 94 of Riesz's paper [6], since, clearly 

r~u)(c), as weIl as r:r:(C), belong to the class H1 in the sense ofthat paper. 
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It can easily be verified that the sequence {u(t)} defined by the formula 

must correspond to the function 

(8.28) 

The contradiction between (8.28) and (8.17) proves Theorem 21. 

Theorem 22. A stationary sequence {z(t)} is regular if and only if the fol

lowing conditions hold on -7r $ A $ 7r: 

1) Fxx(.~) is absolutely continuous; 

2) fxx(A) is positive almost everywhere; 

3) log fxx(A) is summable. 

If all these conditions hold, then 

(8.29) 

(x) 00 

Qx«() = a~ + ~)ar) + ib~x»(k, 
k=l 

(8.30) 

where the coefficients ak and bk are determined from the expansion 

(x) 00 

!logfxx(A) '" a~ + ~)a~x)coskA+b~x)sinkA). 
k=l 

(8.31) 

Since every regular sequence {z(t)} can be obtained by sliding summa

tion from a subordinate fundamental sequence {ux(t)} of it, the necessity of 

conditions 1 and 2 follows from Theorem 17. Let us prove the necessity of con

dition 3. If {x(t)} is regular, then by Theorem 21, r x«() is analytic and does 

not vanish in the disk 1(1 < 1. Denote by Qx«() the branch oflog(rx«()/v'21r) 
obtained by analytic continuation from the real value 

r x(O) c~x) 
log . Jn= = log. Jn=. 

V 27r v27r 

Since r x«() has no zeros, the function Qx«() is uniquely defined at all 

points of the disk 1(1 < 1. For the real part of Qx«() we have, by (8.29), 

(8.32) 
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Let Re+ Qx(() be the function equal to ReQx(() for ReQx(() > 0 and 

equal to 0 otherwise. Since (8.32) implies 

it follows that for any p < 1 

Since 

we find that 

1: I Re Qx(pe-iA)ld,X = 1)2Re+ Qx(pe- iA ) - Re Qx(pe-iA)]d'x ~ 

~ 2K - 211'ReQx(O). 

The latter inequality implies that the boundary values 

of Re Qx( e- iA ) are integrable with respect to'x. This proves the necessity of 

the integrability of log fxx('x), that is, condition 3 of our theorem. 

Before passing to the proof of the sufficiency of the conditions of the the

orem, let us show that for any regular sequence {x( t)} the function r x (() is 

determined by (8.29)-(8.31). Since, according to what was proved above, the 

function ~logfxx('x) is integrable for a regular sequence {x(t)}, it can be ex

panded in a Fourier series (8.31). Formulas (8.33) and (8.31) imply that 

(x) 00 

ReQx(eiA).-v a~ + ~)a~x)cosk'x-br)sink'x). (8.34) 
1:=1 

Since 

(8.35) 
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is real, the imaginary part ImQ1:(ei>·) is given by 

00 

ImQ1:(ei>.) -l:(a~1:) sin kA + b~1:) eos kA). (8.36) 
"=1 

Formulas (8.34) and (8.36) imply (8.30). Finally, (8.29) follows from the 

definition of Q1:«(). 
Now let us prove the suffieieney of the eonditions of the theorem. For this 

we assurne that these eonditions hold, and we set 

(1:) 00 

Q«() = a~ + l:(a~1:) + ib~1:»)(", 
"=1 

(8.37) 

r«() = .,fiieQ ({), (8.38) 

where the eoeffieients a~1:) and b~1:) are determined from the expansion (8.31). 

Then 8 

(8.39) 

where 
P (0) _ 2. 1 - p2 

P - 211" 1 + p2 - 2p eos 0 . (8.40) 

The inequality between the geometrie mean and the arithmetie mean 9 implies 

that 

(8.41) 

Sinee 11:1:(>') is integrable and J~7r Pp(J-l- >')dJ-l = 1, by (8.41) we have 

8 See [5], p.15. 
9 We apply this inequality in the following form: if 

m = 16 
P(x)f(x)dx, logs = 16 

P(x) log f(x)dx, 16 
P(x)dx = 1, 

P(x) ~ 0, f(x) ~ 0, 

then s ::; m. 
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The boundedness of the integral on the left-hand side of (8.42) thus estab

lished guarantees 10 that r(e) can be represented as the Cauchy integral of its 

boundary values 

r(e- i >.) = cf>(A). 

Formulas (8.38) and (8.31) imply that 

1cf>(A)12 = lf(e-i>.)12 = 211"exp(2ReQ(e- i >'» = 211"/:c:c(A). (8.43) 

Therefore, 

1
11" 1 

-11" 1cf>(A)12dF:c:c(A) = 1 

and consequently l/cf>(A) belongs to the dass L~. Let us find a sequence {u(t)} 

subordinate to {z(t)} for which 

Equation (8.43) and Theorem 17C imply that {u(t)} is a fundamental sequence 

equivalent to {z(t)}. By Theorem 10, 

Thus, {u(t)} satisfies all the conditions of the second part of Theorem 20. 

Hence {z(t)} can be represented in terms of {u(t)} in the form (8.1), which 

proves the sufficiency of the conditions of Theorem 22. It is easy to see that 

the sequence {u(t)} so constructed in fact coincides with {u:c(t)}. 
In condusion we note the formula 11 

a<:c) 1 111" c~:c) = "f2;eQz<O) = "f2;exp + = "f2;exp (411" -11" 10g/:c:c(A)dA) , 

which follows from (8.30) and (8.35). 

9. Spectral characterization of singular sequences 

and singular components 

(8.44) 

By the results in §7, every non-singular stationary sequence {z(t)} can be 

represented as 

(9.1) 

10 See Remark C on p.94 of [6]. 
11 This formula holds not only for regular, but also for all non-singular sequences, 

as will be dear from Theorem 23 of the following section. 
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where 
00 

r.,(t) = L: C~")U.,(t - n). (9.2) 
n=O 

Let us call {r.,(t)} the regular component 12 of {x(t)}. Clearly, it is always 

subordinate to {x(t)} and is regular. 

For any stationary sequence we set 

A.,.,(") = i),7f I.,.,(")d", (9.3) 

D.,.,(") = F.,.,(") - A.,.,("). (9.4) 

We will distinguish the following three cases: 

1) 1.,.,(") = 0 on a set of positive measure; 

2) 1.,.,(") = 0 only on a set of measure zero but log 1.,.,(") IS non

integrable; 

3) 1.,.,(") = 0 only on a set of measure zero and log 1.,.,(") is integrable. 

Theorem 23. In cases 1) and 2) the sequence {x(t)} is singular. In case 3) 

{x(t)} is non-singular, 

F,x''''('') = D.,.,("), Frxrx (") = A.,.,(") (9.5) 

and the coefficients c~.,) in (9.2) are determined lrom (8.16), where r .,«) is 

defined by (8.29)-(8.31). 

Proof. Assume that {x(t)} is non-singular. Then by the regularity of {r.,(t)} 

and Theorem 22, Irxrx (") is positive almost everywhere and log Irxrx (") is 

integrable. Since {s.,(r)} and {T.,(t)} are orthogonal to each other (see §7), 

Theorem 11 implies that 

(9.6) 

and consequently, almost everywhere 

1.,.,(") = 1,,,,,,,,(") + Ir",r",("). (9.7) 

12 Since the sequence identically equal to zero is singular, but not regular, the 
singular component of a regular sequence equals 0 and a singular sequence has 
no regular component. 
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It follows from (9.7) that almost everywhere 

(9.8) 

Therefore, every set of positive Lebesgue measure has positive measure also 

with respect to F.,.,(A). 

Since {S.,(t)} and {r.,(t)} are subordinate to {z(t)}, Theorem 12 implies 

that 
dF6Z6z (A) dFrzrz(A) = 0 
dF.,., (A) dF.,., (A) 

almost everywhere with respect to F.,.,(A), and hence, in the sense ofLebesgue. 

Since by (9.8) almost everywhere 

it follows that almost everywhere 

that is, 

(9.9) 

(9.10) 

Formula (9.10) and the facts that frzrz(A) is positive almost everywhere 

and log frzrz (A) is integrable imply that for a non-singular sequence case 3) 

always holds. 

Let us show that, conversely, in case 3) {z(t)} is non-singular. According 

to Theorem 14 in case 3) {z(t)} can be uniquely represented as a sum 

z(t) = s(t) + r(t) 

of orthogonal sequences subordinate to {z(t)} for which 

By Theorem 22, {r(t)} is regular. Therefore, 

00 

z(t) = s(t) + l: C~)Ur(t - n). (9.11) 
n=O 
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Formula (9.11) shows that in this ease HIIJ(t) is eontained in the spaee 13 

S. $ Hr(t). Representing z(t + 1) as 

z(t + 1) = Ot + ß, 

where 
00 

Ot = c~r)Ur(t + 1), ß = set + 1) + E C~)Ur(t - n + 1), 
n=1 

it is easy to see that ß belongs to SIIJ $ Hur(t) and Ot ::fi 0 is orthogonal to this 

spaee. Therefore z(t + 1) does not He in SIIJ $ Hur(t) and henee does not He in 

HIIJ(t). This implies that {z(t)} is non-singular. 

We have proved (9.10) for any non-singular {z(t)}. Therefore r llJ «() deter

mined in aeeordanee with (8.29)-(8.31) eoincides with rr,.«(). To prove that 

the eoefficients c~lIJ) ean be obtained from the expansion (8.16) of r IIJ«()' it only 

remains to establish that 

(9.12) 

For this it suffiees to show that (9.2) satisfies Wt}-W5) (with zero singular 

eomponent). Clearly Wl), W2), W4) and W5) hold. Let us prove that W3) 

holds for (9.2). For this we note that by (9.8) and Theorem 17A, {UIIJ(t)} is 

subordinate to {rllJ(t)}. From (9.1) and (9.2) it is dear that HIIJ(t) is eontained 

in SIIJ $ Hr,.(t). Sinee UIIJ(t) belongs to HIIJ(t) and is orthogonal to SIIJ (see §7), 

ulIJ(t) belongs to Hr,.(t), whieh means that (9.2) satisfies W3). 

For a non-singular sequenee, (9.5) follows immediately from (9.1), (9.10) 

and the absolute eontinuity of Fr,.r,. (the latter is ensured by the regularity of 

{rllJ(t)}, see Theorem 16). 

§10. Minimal sequences 

For any stationary sequenee {z(t)} denote by HIIJ(t) the smallest dosed linear 

subspaee of HIIJ eontaining aH the z(s) for s::fi t. Sinee 

(10.1) 

only one of two eases is possible: either aH the HIIJ(t) eoincide with HIIJ or all 

the HIIJ(t) are different from HIIJ. 

13 61 Efl ~ denotes the minimal linear closed subspace of H containing both 61 
and ~. 
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Definition 10. A stationary sequence is called minimal Ü 

(10.2) 

Each element z(t) of the sequence {z(tn can be uniquely represented as 

asum 

z(t) = v(t) + 6(t), (10.3) 

where v(t) belongs to H:t:(t) and 6(t) is orthogonal to H:t:(t). Set 

dz = 16(t)l. (10.4) 

Clearly, the condition 

dz> 0 (10.5) 

is necessary and sufficient for {z(tn to be minimal. 

Theorem 24. A stationary sequence {z(tn is minimal il and only ill:t::t:(A) 
is positive almost everywhere and the integral 

111' d>' 

-11' I:t::t:(>') 
(10.6) 

is finite. 

11 these conditions hold, then 

2 ( )2 111' d>' 
d:t: = 211" : -11' I:t::t:(>')' (10.7) 

First we prove the sufficiency of the conditions of the theorem. Let 

(111' d>' )1/2 
<p(>') = 1 : I:t::t:(>') -11" 1:t::t:(A) , 

if I:t::t:(>') is defined and finite, and 

<p(>') = 0, 

if I:t::t:(>') is not defined (and is infinite). Then 
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Hence 4>(.\) belongs to the dass L~ and the equality 

defines a certain sequence {y(t)} subordinate to {x(t)} for which, according to 

(4.4), 

By (3.3), for 8 =I t, 

(y(t), X(8)) = Byz;{t - 8) = 1: ei(t-8)"'dFyz;(.\) = o. 

Hence the element y(t) is orthogonal to the space Hz;(t). Since 

the space Hz;, which contains y(t), cannot coincide with Hz;(t). This proves the 

minimality of {x(t)}. 

To prove the necessity ofthe conditions of the theorem, assurne that {x(t)} 

is minimal. It is easy to see that {6(t)} is stationary and subordinate to {x(t)}. 

Then 

B6z;(k) = (6(t + k), x(t)) = 0 for k =I 0, 

B6z;(0) = (6(t),x(t)) = 16(tW = d~. 

By (3.9)-(3.11) this implies that 

At the same time, by (4.4), 

Formulas (10.10) and (10.11) imply that 

(10.8) 

(10.9) 

(10.10) 

(10.11) 

(10.12) 
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and consequently, the derivative 

(10.13) 

is finite almost everywhere with respect to Fxx(.~). Since by (10.12) A is ab

solutely continuous with respect to F.,.,(A), the derivative dAjdF.,.,(A) is finite 

almost everywhere with respect to A, that is, in the sense of Lebesgue. There

fore the derivative 

is non-vanishing almost everywhere. Taking this into account, it follows from 

(10.13) that almost everywhere 

According to Theorem 8, the integral 

1: 14>~")(AWdF.,.,(A) = 1:127rf~:(A) 12 
dFxx(A) = (:;)21: f.,~~A) 

(10.14) 

is finite. This proves the necessity of the conditions of the theorem. Noting 

that 

(10.15) 

we obtain (10.7) from (10.14) and (10.15). 
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28. INTERPOLATION AND EXTRAPOLATION OF STATIONARY 

RANDOM SEQUENCES * 
Spectral conditions are established for the possibility of extrapolating and in

terpolating stationary random sequences by a sufficiently large number of terms 

with any prescribed accuracy. 

Introduction 

For each integer t (-00 < t < +00) let x(t) be areal random variable whose 

square has finite expectation. The sequence of random variables x(t) will be 

called stationary if the expectations 1 

m = Ex(t) 

and 

B(k) = E[(x(t + k) - m)(x(t) - m)] 

do not depend on t. Without loss of generality we may set 

m = Ex(t) = o. (1) 

Then 

B(k) = E[x(t + k)x(t)]. (2) 

Since 

B(-k) = B(k), (3) 

it suffices to consider the second moments B(k) only for k ~ o. 
The problem of linear extrapolation of a stationary sequence satisfying (1) 

is to select for given n > 0 and m ~ 0 real coefficients a, for which the linear 

combination 

of random variables 

x(t -1), x(t - 2), ... ,x(t - n) 

* Izv. Akad. Nauk SSSR Sero Mat. 5 (1941), 3-14. 
1 The expectation of a random variable y will be denoted by Ey. 
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gives the closest possible approximation to the random variable z( t + m). It is 

natural to take the expectation 
n n n 

(T2 = E(z(t + m) - L)2 = B(O) - 2 I:B(m + s)a. + I: I: B(p - q)apaq 
p=lq=l 

as the measure of accuracy of such an approximation. 

If the second moments B(k) are known, then it is easy to find the coeffi

dents a. for which (T2 takes the smallest value. This smallest value of (T2 will 

be denoted by (T~ (n, m). 

Clearly, (T~ (n, m) cannot increase with n. Therefore the limit 

lim (T~(n, m) = (T~(m) 
n-oo 

(4) 

exists. To find this limit is the first problem we solve in this paper. 

As for the interpolation problem, we will consider only the case of esti

mating z(t) from 
z(t + 1), z(t + 2), ... , z(t + n), 

z(t - 1), z(t - 2), ... , z(t - n). 

For this case, let (TJ(n) be the minimal expectation 

where Q is a linear form 

Q = alz(t + 1) + a2z(t + 2) + ... + anz(t + n)+ 

+ a_lz(t - 1) + a_2z(t - 2) + ... + a_nz(t - n) 

with constant real coeffidents a •. 

Since (TJ(n) does not increase with n, the limit 

exists. 

(5) 

Our second goal is to determine (TJ. The solution to both these problems 

was announced in my paper [1].2 It uses notions relating to the spectral theory 

of stationary random processes. 

2 There is amisprint in formula (1) of [1]. Th, correct form of (1) is: 

lim tTJ(n) = r : 1'" d(~). 
n_oo 0 8 A 
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The spectral theory of stationary processes was constructed by A.Ya. Khin

chin [2] for the case of continuous variation of the time argument t. The theory 

for the case we are interested in now, that is, of a discrete stationary sequence, 

is given in detail in Wold's book [3]. Of principal importance here is the 

following 3 

Theorem 1. For any stationary sequence {x(t)} the second moments B(k) 

can be represented in the form 

11"" B(k) = - COSUdW(A), 
'Ir 0 

where W(A) is the non-decreasing real function defined by the formula 

W(A) = B(O)A + 2 f: B~k) sin kA. 
k=l 

The derivative 

W(A) = dW(A)jdA 

(6) 

(7) 

of the non-decreasing function W(A) exists almost everywhere, is non-negative 

and summable. Since 

logw(A) ~ W(A), 

it follows from the summability of W(A) that the integral 

11"" p = - log w(A)dA 
'Ir 0 

(8) 

is either finite or equal to _00. 4 Further, we prove the following: 

Theorem 2. If P = -00, then u1{m) = 0 for all m ~ O. If the integral P is 

finite, then 

u1{m) = eP (1 + r; + r~ + ... + r~), 
where the ri are determined from the formulas 

ea1 (+a 2(2+ ... = 1 + r1( + r2(2 + ... , 

11"" ak = - cosUlogw(A)dA. 
'Ir 0 

Since W(A) ~ 0, the integral 

1 r dA 
R =;: Jo W(A) 

is either finite or equal to +00. 5 Then we prove the following: 

3 See [3], §17. 
4 Ir w(>.) = 0 on a set of positive measure, we set P = -00. 

5 Ir w(>.) = 0 on a set of positive measure, we set R = +00. 

(9) 

(10) 

(11) 

(12) 
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Theorem 3. If R = +00, then uj = O. If the integral is finite, then 

uj = I/R. (13) 

In my paper [4] I constructed a theory of stationary sequences of elements 

of a complex Hilbert space. In § 1 of the present paper it is shown that stationary 

random sequences in the sense defined above can be considered as a special case 

ofthe stationary sequences considered in [4]. This allows us to obtain the above 

Theorems 1, 2 and 3 as simple corollaries of the results of [4]. 

In what follows, references to formulas indexed by two numbers (for ex

ample, (8.44)) apply to formulas from [4]. 

§1. Stationary random sequences and Hilbert space geometry 

Our discussion will be based on the axioms and the construction of the basic 

not ions suggested in my book [5], with one difference: our random variables 

can take not only real, but also complex values. 6 

Consider the set Jj of all random variables of a certain Borel probability 

field (F, P) with finite expectation of the squared absolute value, regarding 

equivalent random variables (that is, random variables that differ from each 

other with prob ability zero) as identical. We introduce in Jj the scalar product 

(x,y) = E(xy). (14) 

The norm in Jj is given by 

(15) 

Summation of elements in Jj and their multiplication by a complex number is 

understood as usual. 

It is easy to verify that under these definitions the set Jj satisfies the axioms 

A, Band E from M. Stone's book [6], that is, all the axioms of an abstract 

unitary space. 

Now let {x(t)} be a stationary sequence of real random variables x(t) of 

the probability field (F, P) in the sense adopted in the Introduction, satisfying 

6 A complex function x(e) defined on the set E of elementary events e is called 
a random variable if for any choice of real numbers a and b the set of all e for 
which the real and imaginary parts of x(t) satisfy Re x(e) < a and Im x(e) < b 
respectively, belongs to the system F. 
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the additional eondition (1). Then, by (2) and the fact that z(t) is real, we 

have 

B(k) = E[z(t + k)z(t)] = (z(t + k), z(t». 

Since, by definition, B(k) does not depend on t, {z(t)} is a stationary sequenee 

of elements of" in the sense of [4]. 
In [4] I eonsider stationary sequenees in a Hilbert space, that is, in the 

spaee satisfying not only the Axioms A, B and E, but also C and D from [6]. 

However, this restriction is inessential. Indeed, denoting by Hz the smallest 

closed linear subspaee of" eontaining all elements of {z(t)}, it is easy to show 

that Hz is separable, that is, satisfies Axiom D. A separable unitary space is 

either a Hilbert spaee itself (that is, satisfies not only Axioms A, Band E, but 

also Axiom C), or is finite dimensional, and in this latter ease ean be extended 

to a Hilbert spaee H. 

Thus, all the results obtained in [4] may be applied to {z(t)}, setting 

B(k) = Bzz(k) = (z(t + k),z(t». (16) 

§2. Proof of Theorem 1 

For the ease of real random variable z(t), by (3) and (16) we have 

(17) 

Therefore from (3.10) we obtain 

Wzz('\) = Bz:z:(O)'\ - L Bz;1k) e-iA:>. = 
kjlfO 

( ) ~ Bzz(k) . 
= Bzz 0 ,\ + 2 L..J k sm kA. 

k=1 

(18) 

It follows from (18) that 

(19) 

Finally, from (3.1), (3.9) and (19) we obtain 

B(k) = Bzz(k) = l:7r eiA:>.dFzz(,\) = 

1 j+7r 117r = - eiA:>.dWzz('\) = - eoskAdWzz('\). 
2~ -7r ~ 0 

(20) 
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It is dear from (18) and (3.9) and Theorem 2 of [4] that Wxx(A) is a 

non-decreasing real function. Together with (18) and (20) this shows that the 

function 

W(A) = Wxx(A) 

satisfies the requirements of Theorem 1. 

§3. tT~(m) in the general case 

After [4], we denote by Hx(t - 1) the smaHest dosed linear subspace of Hx 
containing the elements 

z(t - 1), z(t - 2), ... ,z(t - n), .... 

For any m ~ 0 the element z(t + m) can be uniquely represented as 

z(t + m) = e(t - 1, m) + ~(t - 1, m) (21) 

where e(t-1, m) belongs to Hx(t-1) and ~(t-1, m) is orthogonal to Hx(t-1). 

It is easy to show that in the case of a stationary sequence of real random 

variables 7 

(22) 

In the general case of stationary sequences in the sense of [4] we take (22) as 

the definition of uj;(m). 

If {z(t)} is singular, then Hx(t - 1) = Hx and hence 

(23) 

7 As is known, 116(t -1, m)1I equals "the distance" of the point x(t + m) from the 
space Hx(t -1), that is, the greatest lower bound of the distances IIx(t+m) -yll 
for all y in Hx(t - 1). Since the elements of the form 

L = alx(t - 1) + a2x(t - 2) + ... + anX(t - n) 

are everywhere dense in Hx(t -1), 116(t - 1, m)1I also equals the greatest lower 
bound of the distances 

IIx(t + m) - LII = vElx(t + m) - L12. 

If all the x( s) are real random variables, then the greatest lower bound of (*) 
does not change when we consider only real coefficients ak, in which case it 
clearly coincides with u E ( m ) 
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If {Z(t)} is non-singular, then, by (7.8), 

00 

z(t + m) = s~(t + m) + 2: c~~)u~(t + m - n). (24) 
n=O 

Since s~(t+m) and u~(t+m-n) belongto H~(t-l) for n > m and u~(t+m-n) 

are orthogonal to H~(t - 1) for n:::; m, comparing (21) and (24) we obtain 

~(t - 1, m) = c~~)u~(t + m) + c~~)u~(t + m - 1) + ... + c~)u~(t). (25) 

Since the elements u~(t+i) are pairwise orthogonal and normalized, (25) implies 

that 

/T~(m) = 1I~(t _1)112 = (c~~»2 + (c~~»2 + ... + (c~». (26) 

§4. u!(m) in the real ease 

It is easy to derive Theorem 2 !rom (26) for stationary sequences of real random 

variables. This is carried out in this section. 

By (3.9) we have 

(27) 

Formula (19) implies that 

w(-~) = w(~). (28) 

Using (27) and (28) we obtain 

1+11' r 
-11' logf~~(~)d~=2 Jo logw(~)d~-27rlog27r. (29) 

Together with Theorem 23 from [4], (29) shows that the equality 

1111' P = - logw(~)d~ = -00 
7r 0 

is necessary and sufficient for the singularity of the sequence {z(t)}. We have 

already seen in §3 that in this and only in this case 

/TMm) = O. (30) 
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If {x(t)} is non-singular, then (8.44) and (29) imply that 

1 1+11" 1 r (c~X))2 = 211" exp (211" _11" logfxx(,x)d,x) = exp (; Jo logw,xd,x) = eP • (31) 

Under the same assumption, namely if {x(t)} is non-singular, 8 (8.31), (27) 

and (28) imply that 

1 1+11" 1111" a~X) = -2 coskxlogfxx(,x)d,x = - coskAlogw(,x)d,x 
11" _11" 11" 0 

1 1+11" 1 1+11" b~X) = -2 sinkxlogfxx(,x)d,x = -2 sinkAlogw(,x)d,x = O. 11" _11" 11" _11" 

(32) 

Formulas (8.16), (8.29), (8.30) and (32) imply that 

~c~x)(n = r x«) = rx(o)~:i~~ = rx(O)eQ$«)-Q$(O) = 

00 

= c~x) exp (2: a~X)(k). (33) 
k=l 

Setting 
00 

exp (2: a~X)(k) = 1 + rl( + r2(2 + ... , (34) 
k=l 

and comparing (33) and (34), we have 

c(x)/c(x) - r 
n 0 - n· (35) 

Formulas (35) and (26) imply that 

O"k(m) = (c~x))2(1 + r~ + r~ + ... + r!). (36) 

Formulas (30), (31) and (36) now complete the proof of Theorem 2. 

§5. Definition of a} 

After [4], we denote by Hx(t) the smallest closed linear subspace of Hx con

taining the elements 

x(t + l),x(t + 2), ... ,x(t + n), ... , 

x(t - 1), x(t - 2), ... ,x(t - n), . .. . 

8 As indicated in Theorem 23 from [4], (8.16), (8.29)-(8.31) are applicable to any 
non-singular sequence. 
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The element z(t) can be uniquely represented in the form (10.3), 

z(t) = lI(t) + 6(t), 

where lI(t) belongs to H:t:(t) and 6(t) is orthogonal to H:t:(t). It is easy to show 

that for a stationary sequence of real random variables 

(37) 

By Theorem 24 from [4], 

(38) 

where ~ = 0 if the integral in the denominator on the right-hand side of (38) 

is infinite. Formulas (37), (38), (27) and (28) imply that 

111' d>' 1 
CT~ = d! = 'Ir: 0 w(>.) = R' 

which proves Theorem 3. 

Steklov Mathematical Institute, 26 November 1940 
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29. ON THE LOGARITHMIC NORMAL DISTRIBUTION OF 

PARTICLE SIZES UNDER GRINDING * 
In arecent paper [1] N.K. Razumovskii indicates many cases when the loga

rithms of particle sizes (gold grits in gold placers, rock particles under grinding, 

etc.) obey approximately the Gauss distribution law. The aim of this paper 

is to give a fairly general scheme of the random process of particle grinding, 

for which in the limit (when grinding does not stop) the Gauss law for the 

logarithms of particle sizes can be established theoretically. Perhaps similar 

considerations will help to explain also why the Gauss distribution is applica

ble to the logarithms of mineral contents in separate sampIes (Razumovskii's 

paper is mainly devoted to this question). 

Let us study the general number of particles N(t) and their distribution 

in size at successive times t = 0, 1, 2, .... 

Let N(r, t) denote the number of particles with sizes p ~ rat time t (in 

what follows it is immaterial whether p denotes diameter, weight or any other 

characteristic of a particle's size, provided the size of each particle obtained 

after grinding a particle of size r does not exceed r). 

We denote by Q( k) the expectation of the number of particles of size p ~ kr 

formed during the period from t to t + 1 from one particle which at time t had 

size r. We set 

A = Q~I) 1110gkdQ(k), (1) 

B 2 = Q~I) 11 
(logk - A)2dQ(k). (2) 

Under certain assumptions given below it can be proved that for sufficiently 

large t the ratio 

N(e#:,t)/N(t) (3) 

is arbitrarily close to 

1 j#: {(e - At?}de 
';2rlB -00 exp 2B2t 

(4) 

with prob ability arbitrarily close to 1. 

* Dokl. Akad. Nauk SSSR 31 (1941),99-101. 
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The most essential assumption used to derive this relation is that the 

probability that a particle is ground into a certain number of parts of certain 

relative sizes per unit time does not depend on the size of the initial particle. 

To formulate rigorously the required assumptions we introduce our nota

tion. Let Pn be the probability of obtaining exactly n particles from one particle 

during the period between t and t + 1 and let 

be the conditional distribution law for the ratios ki = ri/r of the sizes of 

the resulting n particles to the size of the original particle. The n particles 

resulting from grinding are supposed to be enumerated in increasing order of 

size: rl ::; r2 ::; r3 :::; ... :::; rn . 

In accordance with this, Fn (al, a2, ... , an) is defined only for 0 :::; al < 
a2 :::; ... :::; an :::; l. 

Clearly, 

00 

Q(k) = LPn{Fn(k, 1, 1, ... ,1,1) + Fn(k, k, 1, ... ,1,1) + ... 
n=l 

... + Fn(k, k, k, ... , k, 1) + Fn(k, k, k, ... , k, k)}. 

We assurne that 

a) the probabilities Pn and the distributions Fn do not depend on the 

absolute size of a particle, on its prehistory (that is, what kind of previous 

grinding it resulted from), and on the fate of other particlesj 

b) the expectation Q(1) of the total number of particles obtained between 

t and t + 1 from one particle, is finite and greater than 1j 

c) the integral 

(5) 

is finitej 

d) at initial time t = 0 there is a certain number of particles N(O) with 

arbitrary size distribution N(r,O). 

Under these assumptions: 

1) The expectation of the total number of particles N(t) at the moment t 

lS 

N(t) = N(0)Qt(1)j (6) 
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2) for sufficiently large t, (3) is arbitrarily dose to the ratio 

N(eIC,t) N(eIC,t) 
N(t) = N(O)Q'(l) = T(z, t) (7) 

of the corresponding expectations 1 with probability arbitrarily close to 1. 

In view of all these comments our problem reduces to estimating T(z, t). 
Assumptions a) and b) imply that 

(8) 

Setting 

Q(k) = Q(1)8(logk), (9) 

from (7) and (8) we obtain 

T(z, t + 1) = 1~ T(z - e, t)d8(e). (10) 

It is easy to deduce from (7) and (9) that 8(z) and T(z, 0) = N(eIC , O)jN(O) 
satisfy all the requirements for distribution functions. 2 In view of the recur

rence relation (10), the same is true for the functions 3 T(z,t) for any integer 

t > O. Condition (c) implies that 

(11) 

is finite. By (10) and (11) and Lyapunov's theorem we have as t -+ 00, 

1 jIC (e - At)2} 
T(z, t) -+ .;2irt exp{ 2B2 de 

2mB -00 t 
(12) 

1 This point should not be dismissed as being trivial. For N(t) and N(r, t) taken 
separately, the corresponding statement, that is, that the ratios N(t)/ N(t) and 
N(r, t)/ N(r, t) are dose to 1, would be wrong. 

2 In this case we set for z > 0, 

S(z) = S(O) = 1. 

Therefore in all integrals involving dS the upper limit 0 can be replaced by +00 
without chan ging the value of the integral. 

3 In our problem S(z) and T(z, t) are not probability distributions, but rather 
express certain expectations. This does not prevent us from invoking Lyapunov's 
theorem, considered as a theorem in pure analysis. 
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uniformly with respect to x, where 

are clearly the same as the A and B defined by (1) and (2). 

It would be interesting to study mathematical schemes in which the rate 

of grinding decreases (or increases) with the decrease of particle size. Then it 

would be natural to consider first the cases when the grinding rate is propor

tional to a certain power of particle size. If this power is non-zero, then the 

logarithmic normal law is no longer applicable. 

Steklov Mathematical Institute, 17 December 1940 
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30. JUSTIFICATION OF THE METHOD OF LEAST SQUARES * 
From the purely practical viewpoint, the standard literature on the method 

of least squares has one essential drawback: it does not give any indications 

on the use of the Student distribution and X2 laws for evaluating the reliabil

ity of results obtained (for computing the probability that the errors exceed 

certain limits). On the other hand, the use of the Gauss law for a small num

ber of observations results in a very high, and in practice, quite noticeable, 

overestimation of this reliability (see below §§9, 10). 

In addition, the standard handbooks do not explain adequately the tech

niques involved in the method ofleast squares; this is in evidence in the teaching 

courses in universities and pedagogical institutes where the students are sup

posed to have a good knowledge of linear algebra. The point is that usually all 

the basic results of the method of least squares are obtained in a very clumsy 

purely computational way, whereas the use of proper general methods of modern 

linear algebra (for example, the notion of orthogonality) gives the same results 

much more transparently. The presentation is most lucid when it is performed 

with the help of notions of n-dimensional vector geometry. 

The aim of this paper is to indicate by means of an example of a very 

simple problem on the method of least squares, under the assumption that all 

observations are equally valid, how one may obviate both these drawbacks. The 

reader is supposed to have a knowledge of linear algebra in geometrie vector 

presentation and the fundamentals of probability theory. Greek characters, 

excluding 7r and r, denote random variables. 

I. LIST OF MAIN RESULTS REQUIRING JUSTIFICATION 

§1. Statement of the problem 

We assurne that the variables 

are related by a homogeneous linear dependence 

n 

y = Eajxj. 
j=l 

* Uspekhi Mat. Nauk 1:1 (1946), 57-70 (in Russian). 
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The coefficients aj are unknown. To determine them, we find by experiment 

the values 
n 

Yr = LajZjr, r= 1,2, ... ,N. (11) 
j=l 

We ass urne that the aj are uniquely determined by the values of Zjr and Yr, 

that is, the rank of the matrix rank IIZjrll is greater than or equal to n. This 

implies that N ~ n. In the experimental determination of the Yr certain errors 

are inevitable. Instead of the true values of Yr we experimentally obtain the 

values 

7]r = Yr + 6.r . (111) 

Given Zir and 7]r, we have to determine the best rational approximate values 

G:i of the coefficients ai. 

Let 

§2. Dogmatic presentation of Gauss's results 

n 

7]; = LG:jZjr, 
j=l 

!r = 7]r - 7];. 

According to Gauss, the G:j are determined from the condition 

Here, and in what follows, we use Gauss's notation 

N 

[ab] = Larbr. 
r=l 

Requirement (VI) is equivalent to the system of equations 

n 

L[ZiZj]G:j = [Zi7]], i = 1,2, ... , n. 
j=l 

From these "normal equations" G:i is found. 

(IV) 

(V) 

(VI) 

(VII) 

The resulting approximate values of G:i do not contain any "systematic 

error" , that is, 

(VIII) 



JUSTIFICATION OF THE METHOD OF LEAST SQUARES 287 

The accuracy of these approximations is determined by the formula for the 

mean square error, the variance D(aj): 

(IX) 

where s is the mean square error of the experimental values of Yr (it is assumed 

to be independent of the number r) and qir is determined from the equations 

Here 

n 

L: [Xi Xj ]qjA: = eiki i, k = 1,2, ... , n. 
j=1 

for i'" k, 
for i = k 

Formula (IX) is a particular case (for i = j) of the formula 

Practical applications ofthis formula are discussed in §11. 

(X) 

(XI) 

If s is not known apriori, it is usually taken to be approxim~tely equal to 

(J' = J[a]/(N - n). 

This stratagem is based on the fact that 

(XII) 

(XIII) 

(XIV) 

The latter formula shows that for large N - n the ratio (J' : s is indeed elose to 1 

with prob ability elose to 1. Together with formula (IX) this makes it possible 

to consider q;j(J'2 as an approximate value of Daj: 

Remark. If N = n, then the system of equations 

n 

"Ir = L:ajXjri r = 1,2, ... ,N = n 
j=1 

(XV) 
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is solvable and (VI) implies that 

[u] = O. 

In this case the denominator on the right-hand side of (XII) vanishes and (1 is 

undefined. 

§3. Continuation of the dogmatic presentation of Gauss's results 

Formulas (VIII), (IX), (XIII) and (XIV) give but a rough indication ofthe size 

of the error resulting from the replacement of aj by O:j and s by (1. The final 

solution of this problem should have consisted in producing distribution laws 

for the deviations O:j - aj and (1 - s. Gauss did this (under the assumption 

that the errors ~r are independent and obey the Gauss distribution law with 

mean equal to zero) for O:j - aj. N amely, he found that 

has the normal distribution 

(XVI) 

§4. More recent results 

The deviations of aj from O:j can be evaluated more accurately with the help 

of the distribution law 

(XVII) 

where 
2) _ 1 fh m-l _h 2 /2 

Hm(h - 2(m-2)/2f(m/2) Jo h e dh. (XVIII) 

Tables ofthe function Hm and its inverse are widely used. In §1O we point 

out a possible modification in these tables which seems to be desirable from 

the viewpoint of practical application of the method of least squares. 

The error resulting from replacing aj by O:j for an unknown s is estimated 

using the theorem stating that 
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obeys the Student distribution law 

where 1 

p{ aj - aj < t} = SN-n(t), 
..;q;;u 

r((m+1)/2)jt ( t 2)-<m+1)/2 
Sm(t) = y'miil'( /2) 1 + - dt. m1r m -00 m 

11. THE PROOFS 

§5. Formula VII 

289 

(XIX) 

(XX) 

The fact that requirement (VI) is equivalent to the system of normal equations 

(VII) is quite elementary and can be established in many different ways. We 

will obtain it by vector methods for the sake of uniformity of style. 

For this purpose we note that from the viewpoint of modern linear algebra 

the Gaussian brackets [be] are just the sealar produet of two n-dimensional 

vectors 

Regarding 

as the components of the N -dimensional vectors 

y, Xi, 1/, A, 1/*, {, 

we express (II)-(V) in the form 

n 

Y = Lajxj, 

j=l 

1/ = y+A, 

n 

1/* = LajXj, 

j=l 

n 

1/ = 1/* + {= L ajxj + {. 
j=l 

(1) 

(2) 

(3) 

(4) 

1 At the end of this paper I give the table of the function inverse to Sm(t) which 
is a reduced version of the table published by E.N. Pomerantseva. I believe it 
satisfies the basic needs for a practical use of the method of least squares (see 
§9). 
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Since the choice of the Cl:i is at our disposal, (3) merely asserts that 

TJ" E L, (5) 

where 

L=L(Zl,Z2, ... ,Zn) 

is the linear subspace generated in the N -dimensional vector space V N by the 

In the language of vectors, requirement (VI), 

[u] = min (6) 

together with (5) means the following: 

In (4) TJ" is the orthogonal projection of TJ onto Land f is the complemen

tary vector orthogonal to L. 

This implies that 

[fZi] = 0, i = 1,2, ... , n. 

By (7), taking the vector product of (4) and Zi we obtain 

L:[ZiZj ]Cl:j = [ZiTJ], i = 1,2, ... ,n. 
j 

(7) 

(8) 

These are the normal equations (VII) for determining Cl:j. The corresponding 

determinant 

(9) 

is the Gram determinant of the vectors Zt, Z2, •.. , Zn. Since, by the assumption 

of §1, IIZjrll has rank n, the vectors Zi are linearly independent and G :I O. 

Therefore (8) uniquely determine the Cl:j. 

§6. Formulas (VIII)-(XII) 

We need certain prerequisites from prob ability theory in order to justify for

mulas (VIII)-(XII). These are as follows: 

A) 

B) 

C) 

D) 

The true errors Ar are random variables; 

EAr = 0, 

EA~ = s2, where 82 is finite and does not depend on r; 

E{ArAr.} = 0 for r:l r'. 
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We define a system of vectors 

in L that are 6n -orthogonal to the system Xl, X2, ... , Xn ; this means that 

[XiUj] = eij, 

Uj E L. 

(10) 

(11) 

Since each of the systems {Xl, X2, ... , Xn } and {U1' U2, ... , Un } is a basis 

in L, it follows that 

n 

Ui = Lqikxk, 

k=l 

n 

Xi = LCikUk. 

k=l 

Taking the scalar product of the first of these equalities and Uj, and the scalar 

product of the second and Xj, and using (10) we obtain 

that is, 

n 

Ui = L qijXj = L[UiUj]Xj, 
j=l 

n 

Xi = L[XiXj]Uj. 

j=l 

(12) 

(13) 

(14) 

By (13)-(14), IIqijll is the inverse to II[XiXj] 11 , that is, the qij are indeed 

determined from (X). 

Taking the scalar product of (1) and Ui we obtain 

ai = [yu.]. (15) 

Similarly, (3) implies that 

(16) 

But since I': is orthogonal to L, we have 
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and (16), together with (4), implies that 

(17) 

Together with (2), formulas (15) and (17) give 

(18) 

whence from B), C) and D) we obtain 

(19) 

N N n 

= L: L: E{A6A&'}Ui6 Uj&' = s2L: Ui,Uj' = [Ui Uj]s2, 
,=16'=1 .=1 

that is, in view of (12), 

(20) 

Formulas (19) and (20) are none other than formulas (VIII) and (XI). As has 

already been mentioned, (XI) gives (IX) for i = j. 
Weset 

A*=1]*-Y· (21) 

Formulas (2), (4) and (21) imply that 

A=A*+f. (22) 

Since A* belongs to L together with 1]* and y, and f is orthogonal to L, it 

follows that (22) is the decomposition of A into its orthogonal projection onto 

Land the orthogonal complement to this projection. 

In our N -dimensional vector space we choose an orthogonal basis 

br = (br!, br2 , ... , brN), r = 1,2, ... , N, 

[brbr,] = err" 

such that the first n vectors belong to L and the remaining N -n are orthogonal 

to L. 
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Setting 

we obtain 

Clearly, by C) and D) 

r=l 
n 

A* = L:Lirbr, 
r=l 

N 

l = L: Lirbr. 
r=n+l 

Formula (26) and B) imply that 

El= 0 

and (26) and (27) imply that 

E[u] = (N - n)s2. 

(23) 

(24) 

(25) 

(26) 

for r = r', 
(27) 

for r i= r'. 

(28) 

(29) 

Formula (29) and (XII) (this formula merely serves as adefinition of u) imme

diately imply (XIII). 

§7. The hypothesis of the Gaussian distribution and 

the independence of the true errors 

For our further derivations, the assumptions B), C) and D) given at the begin

ning of §6 should be replaced by the following stronger ones: 

G) The errors Ar obey the Gauss distribution 
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where 82 doe8 not depend on r; 

U) The errors dl, d2, ... , dN are N mutually independent random vari

ables. 

It is weIl known that G) implies B) and Cl, and B) together with U) 

implies 0). 

Assumptions G) and U) imply that the system dl, d2,' .. ,dN of random 

variables obeys the N -dimensional distribution law with prob ability density 

or, in vector notation, 

Formula (31) gives the prob ability density of a random vector d with 

as the volume element. 

In the coordinate system 

Ir = [tbr), 

Lir = [dbr ), 

where the basis vectors br satisfy the usual orthogonality condition 

the volume element (32) retains the form 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(32') 

Therefore in this new coordinate system !(t) can also be considered as the 

probability density of d. In other words, the prob ability density of the random 

variables Li l , Li2 , ••• , LiN is of the form 

(30') 
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Formula (30') shows that the random variables Ar are independent and 

obey the same distribution law 

- 1 1t 2/2 2 P{6.r < t} = -- e-t • dt, 
-/2is -00 

(36) 

as do the 6.r . 

It is important to be aware of the fact that the independence of Ar is 

derived from both G) and U). This conclusion is no longer the case when the 

Gaussian distribution for the errors of the first kind is replaced by some other 

one. 

§8. Proof of formulas (XIV)-(XX) 

By (18) ai is a linear function (with non-random coefficients) of the random 

variables 6.r . Therefore G) and U) imply that ai obeys a Gaussian probability 

distribution. Normalizing this distribution in accordance with (VIII) and (IX) 

we obtain (XVI). 

Now we derive the distribution law for 

(37) 

For this we note that, by (26), 

N 

[u]= L (38) 

(39) 

The independence of the random variables Ar implies that of the random vari

ables Ar/s. By (36) each ofthese latter variables obeys the normal distribution 

law with prob ability density Ja;e- t2 / 2 • Therefore their (N - n )-dimensional 

distribution law is characterized by the prob ability density 

N 

(21r)-(N-n)/2 exp{ -~ L t~}. 
r=n+l 

The prob ability of the inequality 

X<h 
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is given by integrating this density over the (N - n )-dimensional volume for 

which 
N 

R2 = L: t~ < h2 • 

r=n+l 

Thus we obtain 2 

_ 1 fh hN- n - 1 -h2/2dh 
- 2(N-n-2)/2r«N _ n)/2) Jo e . 

This is formula (XVIII). 

From (40) it follows that 

EX2 = N - n, 

DX2 = E{x2 - (N - n)}2 = 2(N - n). 

By (37), formulas (41) and (42) are equivalent to (XIII) and (XIV). 

It only remains to consider the distribution law for 

Tj = (aj - aj)/..;qjju. 

For this it is helpful to write Tj in the form 

Tj = 'r;/x, 

where 

"/j =.JN - n(aj - aj)/..;qjjs. 

We now note that by (15), (16), (21) and (25), 

n 

aj - aj = [~·Uj] = L: UjrAr , 
r=l 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

2 For the derivation of (40) it should be noted that the area of the surface of a 
sphere of radius R in m-dimensional space is 
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where 

(47) 

Comparing (46) with (37)-(38) we see that the ~r entering in the expres

sion for lkj - aj are only those ~r that do not occur in the expression for X2• 

Therefore, the independence of the ~r implies that lkj - aj is independent of 

X. By (45), 'Yj and X are also independent. In accordance with (XVI), the 

probability density of 'Yj is 

1 -c2/2(N-n) 
V 21r(N _ n) e . 

Together with (40) this implies that the 2-dimensional prob ability density of 

'Yj and X is 

1 hN - n - 1 { c2 h2 } 
V1r(N - n) ·2(N n 1)/2r«N _ n)/2) exp - 2(N - n) - 2 . 

Integrating this prob ability density over the region where c/h < t, we 

obtain 

P{ Tj < t} = p{ ~ < t} = 

1 
= X 

V1r(N - n)2(N-n-l)/2r«N - n)/2) 

X 11 hN - n - 1 exp{ - 2(Nc~ n) - ~2 }dcdh. 

We now change the variables c and h to 8 and u via the formulas 

c c2 h2 

8 = h' u = 2(N _ n) + 2· 

Since 
8(8, u) = 1 +~, h2 _ 2u 
8(c,h) N-n -1+82/(N-n)' 

(48) implies that 

P{tj < t} = 

(48) 

N-n-l 8 2 1 100 1t 2 - N-n±l = u-2-e-n du 1 + -- d8 = 
V1r(N - n)r«N - n)/2) 0 0 ( N - n) 

r«N - n + 1)/2) 1t ( t 2 ) -(N-n+1)/2 = 1+-- dt. 
V1r(N - n)r«N - n)/2) 0 N - n 

(49) 
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Formulas (XIX) and (XX) are nothing but another way of expressing (49). 

In. REMARKS ON THE PRACTICAL SIGNIFICANCE OF 

IMPROVING THE STANDARD ACCOUNT OF 

THE METHOD OF LEAST SQUARES 

§9. On the use of the Student distribution law 

In accordance with the general principles of modern mathematical statistics 3 

the two values a] and a'j such that for any acceptable hypothesis concerning 

the unknown values aj we have 

P{a'. < a· < a'l} > w J- J- J - (50) 

will be called the "confidence limits" for aj corresponding to the "confidence 

coefficient" w. 

If s is known and only the al, a2, ... ,an are unknown, then by (XVI), the 

formulas 

a] = aj - tViijs, a'j = aj + tViijs, (51) 

satisfy this requirement, where t is defined by the equation 

G(t) = (1 + w)/2. (52) 

The values of t corresponding to various w are given in the second last line 

(m = 00) of Table 1. 

If s is known, then in accordance with (XV), it is customary to consider 

(T as an approximate value of s. However, for the confidence limits 

(53) 

to satisfy (50), t should be defined not by (52) but, in accordance with (XIX), 

(XX), by 

SN-n(t) = (1 + w)/2. (54) 

The values oft corresponding to various w according to (54) for different values 

of N - n = mare given in the same Table 1. 

3 See [1] or [2]. 
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As m --+ 00, t determined from (54) converges to t determined from (52) 

with s replaced by u, but this convergence is quite slow, especially for w dose 

to 1. For example, by (52), t = 3.090 for w = 0.998, which approximately 

corresponds to the dassical "three sigma" mle, while (54), for example, yields 

t = 5.959 for m = 6. 

§10. Estimation of s from tT. 

The equality 

(55) 

is satisfied most simply by choosing k1 and k2 so that 

In accordance with (XVII), (XVIII) this is achieved if k1 and k 2 are determined 

from 
H (N-n) _ l+w 

N-n k1 - 2 ' (57) 

From the viewpoint of the method of least squares, it would appear desir

able to have a table which would give k1 and k 2 directly from m = N - n and 

w. This is done in our Table 2 for w = 0.98. 

The sharp asymmetry between the upper and lower bounds of the estimate 

is worth noting. For example, for w = 0.98 and m = 3, 

k1 = 0.514, k 2 = 5.111, 

that is, u twice as large as s are found only with prob ability 0.01 but with 

probability 0.01 s is 5 times larger than u. Therefore for small m it would be 

unreasonable to use confidence limits for s of the form (1 ± k')u, because then 

one would often have to take the lower bound negative! Only for very large m 

can we assurne that 

(58) 

where t is determined from (52) by the Gaussian law. 
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Tahle 2. Values of k satisfying the equation H m (m / k) = P (ku::; s} = P. 

P P P 
m m m 

0.01 0.99 0.01 0.99 0.01 0.99 

1 0.388 79.750 8 0.631 2.204 40 0.792 1.343 

2 0.466 9.975 9 0.644 2.076 50 0.810 1.297 

3 0.514 5.111 10 0.657 1.977 60 0.824 1.265 

4 0.549 3.669 15 0.708 1.694 70 0.835 1.241 

5 0.576 3.003 20 0.730 1.556 80 0.844 1.222 

6 0.597 2.623 25 1.751 1.473 90 0.852 1.207 

7 0.615 2.377 30 0.768 1.416 100 0.858 1.195 

§11. Remarks on the value of the matrix IIq;jll 

The value of the covariance matrix 

(59) 

gives much more exhaustive information on the nature of the errors 

than the values of its diagonal elements 

(60) 

alone. For example, to determine the mean square error made when replacing 

ai hy ai in the expression 

where the coefficients Ci are given, knowledge of the variances D( as) is not 

enough, hut it is quite sufficient to know the covariance matrix 8ij. Setting 
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we have 

JUSTIFICATION OF THE METHOD OF LEAST SQUARES 

E{ß - b}2 = LLSijCiCj. 
i j 

Usually the diagonal elements of the matrix IIqij 11 are introduced as the recip

rocals of the "weights" 

This points to the essential role of the entire matrix IIqij 11. 
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31. A FORMULA OF GAUSS IN THE METHOD OF LEAST SQUARES * 
Jointly with A.A. Petrov and Yu.M. Smirnov 

This paper refines certain estimates from Gauss's theory of the method of least 

squares. 

In §39 of "Theoria combinationis observationum erroribus minimis obnox

iae" , Gauss computes the mean square error made in replacing 1'1' by 

M ,U + .U' + >,">." + ... 
= 7r-P 7r-P 

Gauss shows that this mean square error equals 

0-~ 0-~ 2 
- ( )2 [p - ~(all' + bß + e)' + ... ) ]. 

7r-P 7r-P L...J 
(1) 

In §40, Gauss derives from (1) simple estimates ofthe mean square error. 

He derives these estimates from the inequalities 

(2) 

Gauss overlooked the fact that the upper estimate in (2) can be essentially 

sharpened, and (2) may be replaced by 

PP/7r::; ~(all' + bß + C')' + ... )2::; p. (3) 

Therefore the conclusions of §40 are unexpectedly weak: the lower estimate 

suggested by Gauss for the least square error is sometimes even negative. 

Our aim is to prove the inequalities (3) and to sb.ow that they cannot be 

improved. 

§1. Statement of the problem 

Let us first recapitulate the problem in modern notation dose to that in Kol

mogorov's paper [1]. 

Let Yr, ai and Xir where r = 1,2, ... , N; i = 1,2, ... , n; n < N, satisfy 

the N equations 
n 

Yr = ~aiXir. 
i=l 

* Izv. Akad. Nauk SSSR Sero Mat. 11:6 (1947), 561-566. 
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(4) 



304 A FORMULA OF GAUSS IN THE METHOn OF LEAST SQUARES 

The xir are assumed to be exact and instead of Yr we are given 

TJr = Yr + ß r , (5) 

where the ß r are independent random variables such that 

(6) 

(E denotes the expectation). Let the rank of the matrix IIXiril be n. 

Under the above assumptions the method of least squares reeommends 

that one takes the ai determined from the eondition 

N n 

I)TJr - L: a i Xir)2 = min 
r=l i=l 

as approximate values of the unknown ai. 

As is known, this problem has the unique solution 

N 

ai = L: UirTJr· 
r=l 

(7) 

(8) 

The eoeffieients Uir in (8) have the following geometrie meaning: in N-dimen

sional space the veetors 

Ui=(UibUi2, ... ,UiN), i=1,2, ... ,n, 

form abiorthogonal system with the vectors 

Xi = (XibXi2,'" ,XiN), i = 1,2, ... ,n, 

whieh means that the vectors U1, U2, ... , Un are uniquely determined by the fol

lowing eonditions: they belong to the linear n-dimensional subspace L spanned 

by Xl, X2, ... ,Xn and satisfy the biorthogonality eonditions 

Setting 

for i = j, 
for i i= j. 

1 N 
(T2 = ---" f~, N-nL.....! 

r=l 

(9) 

(10) 
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where 

we have 

n 

lr = 'Ir - L (kiZir, 

i=1 

Gauss's problem mentioned in the beginning of our paper is to determine 

In our notation Gauss's formula (1) is expressed in the form 

where 
N n 2 

0= L(LZirUir) . 
r=1 i=1 

§2. Estimation of 0 

(11) 

(12) 

(13) 

(14) 

(15) 

Expression (15) has a simple geometrie meaning. Namely, if we denote by 

e; = (e;1' e;2' ... ,e; N) the projeetion of the unit eoordinate vector er onto L, 

then 
N N N 2 

0= L le;14 = L [L(e;k?] . (16) 
r=1 r=1 k=1 

Indeed, the projeetion z" of any veetor z onto L ean be written in the form 

n 

Z" = LCiZi. 

i=1 

Computing the sealar produet (ZUi) we obtain, by (9): 

If Z = er, then the latter formula gives Ci = Uir. Therefore 

n 

e; = LUirZi, 
;=1 

(17) 
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or, in coordinate form, 

Similarly we obtain 

n 

e;k = L UirXik· 
i=1 

r 

e; = LXirUi, 
i=1 

e;k = LXirUik. 

Formulas (18) and (20) imply that 

N N n n n 

(18) 

(19) 

(20) 

le;12 = L(e;k)2 = L L L(UirXikXjrUjk) = L UirXir· (21) 
k=1 k=1 i=1 j=1 i=1 

Formulas (21) together with (15) immediately give (16). 

Now let us introduce in N -dimensional space a new orthogonal coordinate 

system, placing the first n axes in the space L, and choosing the other N - n 

axes to be orthogonal to this space. 

In this new coordinate system let the vectors er be given by 

Clearly, in this new coordinate system 

e; = (Or1,Or2, ... ,Orn,0,0, ... ,0). 

Therefore, 

(22) 

The matrix \lOrk 11 is orthogonal. It is easy to see that the statement of 

our problem does not impose any other restrietions on the form of this matrix: 

under an appropriate choice of the matrix \lXir \I of rank n we can make \lOrk 11 
an arbitrary orthogonal matrix. 

Thus, the problem of estimating the possible values of 0 can be put as 

folIows: which values can (22) take for n < N, for an orthogonal N x N matrix? 

Since 
n, N 

LO;k ~ LO;k = 1, 
k=l k=l 
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it follows that always 

Therefore (22) implies 
N n 

o ~ I:I:0~k = n. 
r=lk=l 

The inequality 

(23) 

thus established turns into an equality if IIOrkll is the identity matrix 

On the other hand, since always 

(22) implies that 

In the resulting inequality 

(24) 

an equality can be attained for any N and n < N, as has been established by 

A.1. Mal'tsev [2] at my request. 

§3. Conclusions 

In §2 it was established that 

(25) 

and both bounds in (25) can be attained. To estimate Du2 we obtain by (14) 

r - 84 n (/4 - 384) 2 r - 84 
.:...".".---- <Du <.:...".".--
N-n N N-n - - N-n' 

/4 _ 84 /4 _ 84 n (384 _ /4) 
.:...".".-- < Du2 < + - , 
N-n - - N-n N N-n 

(26) 
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and the bounds in (26) can be attained for any N and n < N in certain 

particular cases. 

If r - 384 = 0, then from (26) we obtain the formula 

(27) 

which is weH known for the case of the normal Gaussian distribution of the 

errors ~r. 

If n/N ~ 0 and r - 84 > 0, then asymptoticaHy 

(28) 

In fact, in Gauss's memoir only the asymptotic estimates 

are given for Du2 as n/N ~ o. 
Note also that in the degenerate case 14 = 8 4 (as is weH known, the case 

r < 84 is impossible) one obtains from (26) the formula 

(29) 

5 May 1947 
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32. BRANCHING RANDOM PROCESSES * 
Jointly with N.A. Dmitriev 

§1. Statement of the problem 

Consider a set of objects (for example, molecules) of n types Tl. T2,.'" Tn and 

aSsume that with prob ability P:(t1 ,t2) = P(T" -+ Saltltt2)' during the time 

interval (tl, t2) one object of type T" turns into the set 

consisting of (ll objects of the first type, (l2 objects of the second type, (li ob

jects of type i, etc. A random process consisting of this kind of transformation 

is called a branching process if the probabilities P:(tl,t2) are uniquely deter

mined by the times tl < t2, the number k of the original type, k = 1,2, ... , n, 

and the n-dimensional vector (l = «(ll, (l2, ... , (ln) with integer coeflicients, 

(li = 0,1,2, .... 

It is essential here that we assume the probabilities to be independent 0/: 

1) how the original object of type T" appearedj it is only assumed that it 

exists at time tl j 

2) the fate of other objects of types Tl. T2, ... ,Tn different from T" at time 

tl and the objects originating from them at times t > tl. 
This probability-theoretic scheme finds numerous applications in biology, 

chemistry and elementary particle physics. In particular, in chemistry it can 

can be used to describe the initial stages of the most varied chemical re ac

tions. At the initial stage of a chemical reaction the concentration of certain 

types T{, T~, ... ,T:n of molecules may be considered high but approximately 

constant, whereas the concentrations of other types T{', T~', ... ,T:: are variable 

but very low. Under these assumptions meeting between two types T" is vir

tually impossible, while the results of meeting between one molecule of type 

T" with one or several molecules of the types T' approximately obey the above 

requirements as regards the number of resulting molecules of types T". 

In chemical and physical quest ions it is natural to use a "continuous time" 

version of this scheme, assuming that the probabilities P:(tl, t2) are differ

entiable with respect to t l and t 2 • The differential equations derived under 

* Dokl. Akad. Nauk SSSR 56:1 (1947),7-10. 
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this assumption in §3 of this paper for the special case of "monomolecular" 

reactions (Pf(tl,t2) > 0) only for al + a2 + ... + an = 1) have been given 

before by M.A. Leontovich [1]. In biological questions another, "discrete time" 

approach is more natural, where the "time" t takes only integer values and 

indicates the number of the generation. In this version the results given below 

were obtained for the case n = 1 by R.A. Fisher [2]. Fisher's studies were 

continued by J.F. Steffenson [3] and one of the authors of this paper [4]. 

§2. The basic functional equation 

By the general principles of probability theory, the Pf(tl, t2) satisfy the con

ditions 

I: Pk(t1, t 2) = l. 
0< 

(I) 

(II) 

Taking these probabilities to be defined for any tl ~ t2, it is natural to 

assume that for tl = t2, 

Pk(t, t) = Ef = { ~ if ak = 1, ai = 0, i t k, 

otherwise. 

Finally, in view of the above assumption, for any 

the Pf(tl, t2) satisfy the equation 

pt(t1,t3) = I:Pf(tbt2)pt(t2,t3)' 
0< 

where 

is the probability that the set 

is transferred into the set 

(III) 

(IV) 
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during the time interval (tl, t2). 

The probabilities Pg (t1, t2) can be expressed in terms of the probabilities 

Pf(t1, t2) as 
n O'i 

P~(t1,t2) = I: II II Pf(i,8)(t1,t2)' (IVa) 
;=18=1 

where the sum is taken over all sets of vectors 

ß(i,s) = (ß1(i,s),ß2(i, s), ... ,ßn(i,s)) 

with non-negative integer coefficients ß,.(i, s) such that 1 

n O'i 

I:I:ß(i,s) = ß· (IVb) 
;=1 8=1 

Formulas (I)-(IV) are a complete translation of the not ion of "branching 

random processes" defined in §1 in terms of probability theory, into purely 

analytical terms. 

Formulas (IV) and (IVa) imply that the Pg(tl, t2) satisfy the main equa

tion of Markov processes, 

PJ (t1, t3) = I: Pg (tl, t2)P; (t2, t3). 
ß 

(1) 

Equation (1) follows immediately from the probabilistic assumptions of §l. 

In essence, (IV) is but a particular case of (1). This shows that "branching 

random processes" are, in essence, merely a particular case of Markov processes 

with a countable set of states. However, for this particular case we have a 

more effective analytical apparatus than the one that can be developed for the 

general case of Markov processes with a countable number of states. For this 

we introduce the generating functions 

F,.(tl, t2; Xl, X2, ... , Xn ) = I: Pf(it, t2)xrlx~2 ... x~n. (2) 
a 

It is convenient to express the n functions F,. as a single vector-valued 

function 

1 For (Xi = 0 the corresponding product in (IVa) and (IVb) is set to be 1, and the 
corresponding surn o. 



312 BRANCHING RANDOM PROCESSES 

of the vector argument x = (Xl, x2, ... , xn). The reason for introducing the 

function F(tl, t2; x) is that by means of this function (IV) can be expressed in 

the following way: 

(A) 

Apart from the basic functional equation (A) for F(t1, t2; x) (111) also gives the 

boundary value 

F(t,t;x) = x (B) 

Naturally F(t1,t2;X) is considered to be defined only for t1 ::::; t2. The 

argument x has a purely formal meaning, although in any case, (I) and (11) 

imply that Fk(t l , t2; x) is defined and analytic with respect to the arguments 

Xl,X2, ... ,Xn for lXii< 1, s= 1,2, ... ,n. 
Especially interesting is the case of processes homogeneous in time, that 

is, processes satisfying the condition 

In this case for 

Fk(t; x) = L: Pk'(t)xf' X~2 ... x~n 
a 

we obtain, instead of (A) and (B): 

F(t + T; x) = F(t; F(T; x», 

F(O;x)=x. 

§3. Differential equations for the case of continuous tUne 

We now assurne that 

Pk'(t,t +~) = Ef + ~pf(t) + o(~), 

(3) 

(4) 

(V) 

where o(~) is an infinitesimal with respect to~. In this case it is natural to 

introduce the generating functions 

(5) 
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Then for lXii< r < 1, i = 1,2, ... , n, we obtain 

F(t, t + ß; x) = x + ßf(t; x) + o(ß). (6) 

Setting tl = t', t2 = t' + ß, t3 = t" in (A) and passing to the limit as ß ---+ 0, 

we obtain for t' < t" the following differential equation for F(t', t"; x): 

ßF/ßt' = -f(t';F). (C) 

This differential equation together with the boundary value (B) can serve as 

a basis for computing this type of processes. Indeed, PI:(t) can usually be 

determined directly from the conditions of the problem, while the purpose 

of the mathematical theory is to determine the probabilities pr (tl, t2), and 

sometimes, their asymptotic behaviour as t 2 ---+ +00. Since fk can easily be 

found from the given pI: and the desired pr are obtained from the power series 

expansions of the Fk in the Xi, to determine the probabilities pr and study 

their asymptotic behaviour we only have to solve (C) with the boundary value 

(B) and investigate the asymptotic behaviour of the solutions. 

For a process homogeneous in time the prob ability densities PI: are con

stants and the Fk(t; Xl, X2,' .. , Xn) are related to the functions 

fk(Xl,X2, ... ,xn) = LPl:xrlx~2 ... X~n (7) 
a 

by the equations 

dFl _ dF2 _ ... _ dFn = dt, 
h(Fl ,F2, ... ,Fn) J2(Fl ,F2, ... ,Fn) fn(Fl ,F2, ... ,Fn) 

(C) 

which has to be solved for t > 0, regarding Xi as constants, and with the initial 

value 

(B') 

This method is often much more efficient than directly dealing with the 

infinite systems of differential equations of Markov processes with a countable 

set of states derived from (1) under assumptions similar to (V). Here we will 

confine ourselves to one simple example of using this method (the same problem 

has been solved by N. Arley [5] using infinite systems): 
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n = 1: 

p~ = a, pt = -(a + b), p~ = b, p~ = 0 for r > 2, 

/(x) = a - (a + b)x + bx2 = (1- x)(a - bx). 

dF -:-----:-:-----,- = dt, 
(1 - F)(a - bF) 

a+c 
F(O;x) = -b- = x, 

+c 

a + ce(a-b)t 
F - --..,..--:-:

- b + ce(a-b)t ' 

bx - a 
C=--, 

1-x 

a(1-x)+(bx-a)e(a-b)t 0 I 2 2 
F(t; X) = b(1- X) + (bx _ a)e(a-b)t = PI (t) + PI (t)x + PI (t)x + ... 

o a 1 - e(a-b)t 

Pdt ) = b 1 _ (a/b)e(a-b)t' 

( 
a) 2 (1 _ e(a-b)t)k-I 

pk(t) - 1 _ _ (a-b)t 
I - b [1- (a/b)e(a-b)t]k+ 1 e , 

where k = 1,2, .... 

20 February 1947 
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33. COMPUTATION OF FINAL PROBABILITIES 

FOR BRANCHING RANDOM PROCESSES * 
Jointly with B.A. Sevastyanov 

The terminology and notation in this paper are elose to those in [1]. In what fol

lows, we consider discrete schemes homogeneous in time t: t runs only through 

1,2,3, ... and can be interpreted as the "generation number" of the partiele in 

question. Accordingly, 

(1) 

is the probability that one partiele of type Tk gives al, a2, ... , an partieles of 

the types Tl, T2 , ••• , Tn , respectively in t generations. All further computations 

are based on the generating functions 

(2) 

of the probabilities 

pI: = Pk(l) (3) 

of the various transitions during one generation. Using these probabilities, we 

define by induction the gene rating functions 

Fk(t;X) = LPk(t)xrlx~· ... x~n (4) 

'" 
for all positive integers t: 

(5) 

In accordance with the general theory given in [1], 

(0,0, ... ,0) _ F (0 0 0) 
Pk - Jk , , ... , (6) 

denotes the probability of one particle of type Tk dying in one generation 

without producing any new partieles of the considered types Tl, T2 , ••. , Tn . 

In what follows it is useful to eliminate this possibility and to consider only 

schemes in which 

fk(O,O, ... ,O) = O. (7) 

* Dokl. Akad. Nauk SSSR 56:8 (1947), 783-786. 
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If (7) does not hold in a eertain scheme, it is always possible to introduee 

an additional ghost type Tn+1 and eonsider that the death of a particle of any 

other type means its transition into a particle of type Tn+1 , while the particles 

of type Tn+1 remain unehanged. Analytieally this is equivalent to transition 

from the initial system of generating functions 11, 12, ... ,f n to the new system 

1,,(zl, ... , Zn, Zn+!) = 1,,(zl, ... , zn)+ 

+(Zn+1 - 1)/,,(0,0, ... ,0), k = 1,2, ... , n, 

ln+1(Zl, ... ,Zn,Zn+1) = Zn+!. (8) 

In what follows we assurne that (7) is already satisfied for the initial system 

of types Tb T2, .. . , Tn and functions 11,12,·· ., In. 

A group of types T"l , T"3' ... , T"m is ealled closed if a particle of any other 

type produees only particles belonging to the types of the group. The system 

of all types Tl, T2, ... , Tn is deeomposable if it ean be divided into two closed 

groups. It is natural to eonfine ourselves (and we shall do so) to indeeomposable 

systems. 

A group of types is ealled final if a) it is closedj b) eaeh particle of any type 

in the group always produees exaetly one particlej and e) it does not eontain 

any smaller group with the properties a) and b). 

It is easy to see that two final groups do not have eommon elements. 

Therefore, in general, the entire system Tb T2, ... , Tn eonsists of a eertain 

number offinal groups llir = {Trb Tr2, ... , Trnr }, r = 1,2, ... , s, and a eertain 

number of types TOl , T02 , ... , Tono which do not belong to final groups. Clearly, 

no + n1 + ... + n, = n. 

The proeess is eonsidered to be eompleted if there only remain particles of 

the types from final groups. This way of understanding is quite natural, sinee 

the progeny of a particle of a type belonging to a final group eonsists, in any 

future generation, of one particle of a type belonging to the same final group, 

and transitions from one type to another within a final group are governed by 

the weIl known law of Markov ehains in their simplest form, eorresponding to 

the assumption that all "states" are "essential" and form one "class" (see, for 

example, [2]). 

Denote by 

(9) 
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the probability that the evolution of the progeny from one particle of type TA: 

eventually terminates in the final state, where ßr particles belonging to the 

types of each of the final groups W r remainj 

(10) 

is the total probability that the evolution of the progeny from one particle 

eventually terminates (in the above sense). 

We introduce the generating functions 

(11) 

In accordance with the double index of particle types we sometimes denote 

by </Jrm the functions among the </JA: corresponding to the type TA: = Trm . Since 

q~ ~ 0, by (10), the functions (11) are in every case defined and analytic with 

respect to all variables for 

o ~ Ur < 1, r = 1,2, ... , s. (12) 

When some of the variables attain the value 1, analyticity may be lost, but 

continuity remains. In particular, 

(13) 

It is easy to derive from prob ability considerations the following relation, 

which is of basic importance to us: 

(14) 

Moreover, it can be derived from the definition of a final group that 

</Jrm=Ur, m=1,2, ... ,nr , r=1,2, ... ,s. (15) 

Equations of the system (14) for which the number k corresponds to the 

type of a certain final group are corollaries of (15). Therefore, finally to deter

mine </JA: we have the system of equations 

</Jrm=Ur , m=1,2, ... ,nr , r=1,2, ... ,s. 
(16) 
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The junior author of this paper has proved the following theorem on 

uniqueness of the solution of (16). 

Theorem. System (16) together with the restrictions 0 ~ tPA: < 1, k = 1, 

2, ... ,n, uniquely determines the values of tPl. tP2, . .. ,tPn for any given 0 ~ 

Ur< 1, r= 1,2, ... ,s. 

Remark 1. The proof will be published elsewhere. It is based on properties 

of the /J: which follow from the assumption that the systems of types are 

indecomposable, and from the definition of final groups, assumption (7) and 

the relations 

(17) 
a 

These relations, however, are not fully used: analyticity of fA: is inessential 

in the proof. 

Remark 2. All these considerations are applicable also to computing final prob

abilities qf for branching processes with continuous time. It suffices to count 

not over time literally, but over "generations" of particles, introducing for the 

types that do not undergo any further transformation additional ghost trans

formations of their particles into themselves (with prob ability 1). This remark 

will be clarified with an example (see below). 

Remark 3. In most applications to chemical chain reactions each final group 

consists of one type (final re action products). In this case the theory simplifies. 

Example. Let two positive transition probability densities be given in a scheme 

with continuous time and two types Tl and T2 (see [1],§3); we set 

p~2,0) = p(T1 -+ 2T1), p~O,l) = p(T1 -+ T2 ), 

and let all other transitions be forbidden (in particular, particles of type T2 do 

not turn into their own type). Counting over generations, we set 

_ (2,0) 
(2,0) P{T 2T } P 1 

P1 = 1 -+ 1 = -_7:(2:-:,0~)..!.+-_7:(0:-:,1") = p, 
P1 P1 

_ (0,1) 
(0,1) _ P{T 2'Tl} - P1 - 1 

P1 - 1 -+ .L2 - -(2,0) + -(0,1) - - p, 
P1 P1 
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and additionally 

(here the p~ have the meaning of probabilities introduced in this paper). In 

our example there is one final group of one type '11 1 = {T2}' For 4>l(Ut), 4>2(U1) 

we obtain 

Solving these equations, we formally obtain 

(18) 

When 0 ~ U1 < 1, 0 ~ 4>1 < 1 there remains only one branch of the curve 

(18) (with minus sign). 

Let us complete the computations for p = ~. In this case we obtain for 

the coefficients of the expansion 4>1 (ud = q~O) + qP)U1 + qF)u~ + ... 

q(O) - 0 
1 - , 

(1) _ 1 
q1 - 2' 

that is, asymptotically 

Note that although 

(2) _ 1 (m) _ 1·3·5 ... (2m - 3) 
q1 - '8' ... , q1 - 2m . m! ' m~2, 

(19) 

m 

that is, the process will inevitably terminate, the expectation E1 = Lm mq~m) 
of the number of particles of type T2 obtained from one particle of type Tl is 

infinite. This causes a peculiar phenomenon of non-stability of the number of 

particles of type T2 generated by a given, though perhaps very large, number of 

particles of type Tl. To make this clear, we denote by J.ln the number of particles 

of type T2 generated by n particles of type Tl. Clearly, J.ln = K1 + K2 + ... + K n 

where K; denotes the number of particles of type T2 generated by the ith particle 

of type Tl. The variables Ki are independent and have prob ability distribution 

P{K; = k} = q~k). 
This together with (19) implies that (see [3]) the distribution law for 

(20) 
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is Sn (x) = P {en < x}, which tends to a certain limit distribution law for the 

quantity 

S(x) = 111: s(x)dx. (21) 

The limit distribution law (21) can be found from the logarithm of its 

characteristic function, 

logX(t) = log s(x)eitll:dx = -- (eiut - 1)--. 100 1 100 du 
o 2...(i 0 u3/ 2 

(22) 

Thus for large n, J.ln is of order n2 , but the ratio J.ln/n2 varies from case 

to case. 

Moscow, 12 April 1947 
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34. STATISTICAL THEORY OF OSCILLATIONS WITH 

CONTINUOUS SPECTRUM * 
1. The subject discussed in this sketch can be characterized in very general 

terms not connected with any special field of mechanics or physics. For sim

plicity, we confine ourselves to considering only changes in time of a certain 

finite number of variables 

6(t),6(t), ... ,e,(t). 

Naturally the argument t (time) is assumed to be real, while er(t), in general, 

will be complex. If the er(t) are changing periodically with period w, then the 

process of their variation is usually studied by means of Fourier series 

er(t) "" L: a~n)ei2,..ntlw. (1) 
n 

Owing to this, an oscillatory variation of er(t) with period w can be expanded 

in harmonie oscillations of period 

w,w/2,w/3,w/4, .... 

A natural generalization of periodic oscillations are almost periodic oscillations, 

ofthe form 

er(t) "" L:a~n)ei>.nt. (2) 
n 

Here the periods 

are, in general, incommensurable. Naturally, a further generalization of (2) is 

to pass from sums with respect to a sequence of particular discrete frequencies 

An to integration with respect to a continuous frequency A , 

(3) 

or, in a completely general form combining the discrete (2)and continuous (3) 

cases, to represent oscillatory processes by Stieltjes integrals 

(4) 

* In: Collected papers on the 30th anniversary 0/ the Great October Sodalist Rev
olution, Vol. 1, Akad. Nauk SSSR, Moscow-Leningrad, 1947, pp. 242-252. 
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However, if we restrict ourselves to the methods of classical analysis, then 

the above approach meets with an essential difficulty. The classical Fourier 

integrals (3) can only represent functions that tend, in the mean, to constants as 

t -+ 00. Integrals (4) can also represent only functions that can be decomposed 

into two components, 

e(t) = 7J(t) + ((t), 

where 7J(t) is almost periodic (that is, has discrete spectrum), and ((t) tends, in 

the mean, to a constant as t -+ 00. Thus, the classical tool of Fourier integrals 

for the case of a continuous spectrum leads only to damped O8cillations. This is 

what is said in textbooks on physics that want to retain mathematical rigour. 1 

Nevertheless, the idea that even in the non-damped case, oscillations with 

continuous spectrum are possible and can be expressed by integrals of the 

form (3) is maintained by many, sometimes quite outstanding, researchers in 

mechanics and physics. Studies of this kind, despite the lack of mathematical 

rigour, in many cases bring about correct and useful results. 

In essence, the prerequisites for a rigorous mathematical justification of 

the theory of non-damped O8cillations with continuous spectrum are contained 

in the spectral theory of operators. 2 A mathematically rigorous spectral the

ory for functions e(t) of a real argument t which was directly oriented to the 

mathematical justification of physical notions on non-damped oscillations with 

continuous spectrum was first created by Norbert Wiener 3 in 1925. Wiener's 

concept, however, does not bring us to either of the representations (3) or 

(4). Only the spectral theory of stationary random processes suggested by 

A.Ya. Khinchin in 1934 [1] completely clarified the above questions. In partic

ular, it leads to a mathematically rigorous and, at the same time, physically 

reasonable justification of representing non-damped statistically stationary 08-

cillations in the form (4). Apparently, this justification is general enough for 

practical applications. Still, even in Khinchin's concept, the representation of 

non-damped oscillations in the form (3) has no rigorous mathematical justifica

tion. I believe that such astate of affairs should be considered final: there seems 

1 See, for example, [15], §54. 
2 See the presentation ofthis theory in the papers by A.1. Plesner and V.A. Rokhlin 

[16], [17]. 
3 A systematical presentation of Wiener's theory can be found in Chapter 4 of his 

book [18]; see also [19]. 
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to be no reasonable way to ascribe definite derivatives <Pr(A) to the functions 

~r(A) in the case of continuous spectrum. 

The purpose of this paper is to review certain Soviet and foreign studies 

developing the concept of Khinchin. 

2. All the very simple and complete results stated below are obtained by a 

radieal cha.nge in viewpoint: the er(t) are considered as random variables in 

the sense of prob ability theory. Thus, the main object of study is not a certain 

individual oscillatory process, but the law of the prob ability distribution in the 

function space of various possible versions of such a process. 

Formally, the theory may be presented starting from the following defini

tions. 4 

An s-dimensional random process is a collection of complex random vari

ables er (t) given for aH real t and r = 1,2, ... ,s. 
It is assumed that the expectations 

are finite and that the process is stochastically continuous, which means that 

as ~ -+ o. 
A random process {el(t),6(t), ... ,e.(t)} is called stationary if for any 

t, t1, t 2 , ••• ,tn , the sn-dimensional distribution law of sn random variables 

el(t + t 1), 6(t + t2), ... , el(t + tn), 

6(t + tl), e2(t + t2), .. . , 6(t + tn), 

does not depend on the shifts in t. 

Stationarity implies, in particular, that the expectations 5 

(5) 

4 The notions of probability theory used in what follows are rigorously introduced, 
for example, in my book [20]. 

5 In (5), e denotes the complex conjugate of e. 
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do not depend on t. The independence itself of the expectations (5) on t is 

called stationarity in the wider sense. The account given here and in the next 

sections is based solelyon the hypothesis of stationarity in the wider sense. 

The main result of A.Ya. Khinchin, in the form given by Harald Cramer 

[2], is as folIows: 

The functions Bqr(r) can be represented as 

(6) 

where for any Al < A2 the matrix IIFqr(ß>.)1I of the increments 

is hermitian and non-negative. 

To understand the meaning of Khinchin's spectral functions we must con

sider the discrete case, when (6) turns into the sums 

Bqr(r) = La~~)ei>'nT. (7) 
n 

This case was studied by E.E. Slutskii [3]. He showed that under the assumption 

(7) there exists an expansion 

er(t) ...... L o:~n)ei>'nT (8) 
n 

where the o:~n) are certain random variables uniquely 6 determined by the given 

er(t). In this case, 

In particular, 

It is natural to assume that in the general case we also have 

Fqr(ß>.) = E{4>q(ß>.)4>r(ß>.)}, 

Frr(ß>.) = EI4>r(ßrW, 

(9) 

(9') 

(10) 

(10') 

6 Uniqueness is to within equivalent variables, that is, variables that are equal 
with probability 1. 
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where the <Pr(Ll),) are the increments of the spectral function occurring in the 

representation of er(t) in the form (4). 

This assumption appears to be correct. The further development of Khin

chin's theory of stationary random processes follows almost automatically from 

the reduction of it to the spectral theory of one-parameter groups of unitary 

operators, as is indicated in [4]-[7] and presented in the following section. 

3. The random variables er(t) may be considered as elements of a Hilbert 

space, in which the scalar product is given by the formula 

(11) 

It can easily be shown that any stationary process {6(t),6(t), ... ,e8(t)} in 

the corresponding Hilbert space generates a one-parameter group of unitary 

operators {ur} satisfying the relation 

(12) 

for all real t and T and all r = 1,2, ... , s. As is weIl known, the operators ur 

can be represented as 

ur = I: ei)'r dE()'), 

where E().) is the resolution 0/ the identity. Setting 

(13) 

(14) 

we obtain (provided the integration sign is properly understood) the basic 

formula (4). A probabilistic interpretation of (4) has been given in subsequent 

papers by H. Cramer [8], M. Loeve [9], A. Blanc-Lapierre and R. Fortet [10], 

[11] in a manner more general than in [6] and [7]. To understand the real 

meaning of the basic spectral functions <pr ().) it is natural to consider their 

increments 

andjumps 

at distinct points ).. Naturally, <Pr(Ll),) and ar().) are random variables, as is 

er(t), but, unlike er(t), they do not depend on the time t. If for some ). the 

jump ar().) is non-zero, then er(t) contains a strictly periodic component 

(15) 
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In particular, O'r(O) is the average (over time) of 

. 1 jT 
O'r(O) = hm 2T er(t)dt. 

T ..... oo -T 
(16) 

The real meaning of the increments C)r(A.\) for sufficiently short intervals A.\ 

is similar. N amely, the component 

(17) 

corresponding to the interval A.\ of the spectrum can be arbitrary closely ap

proximated by 

(17') 

where A is an arbitrary point of A.\, on any finite interval -T ~ t ~ +T ofthe 

time axis, provided that A.\ is sufficiently short. It is natural, however, that in 

the case of a continuous spectrum the components 

are not strictly periodic for any finite fixed interval A.\ (unless they are identi

cally zero). Their time behaviour on short intervals A.\ is similar to the oscil

lations of a pendulum with weak damping generated by chaotically distributed 

small random pushes. 

The components er(t, A.\) for non-intersecting intervals A~ and A~ are 

not correlated to each other, that is, 

(18) 

if A~ and A~ do not intersect. For one interval A.\, 

(19) 

In particular, 

(19') 

that is, Frr(A.\) is just the average value (with respect to probability) of the 

square of the spectral component er(t, A.\) of er(t). 

4. The use of the abstract tool of operators in Hilbert space could have pro

duced the impression on the reader that the spectral components er(t, A.\) 
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are some mathematical fiction far from possible direct experiment. This is 

not true: with any desired degree of approximation they can be isolated from 

any statistically stationary oscillatory process by me ans of appropriate filters. 

Namely, with any desired accuracy a device can, in principle, be constructed 

which associates with any given random stationary function el(t) the random 

stationary function 

e2(t) = 100 
6(t - T)S(T)dT, 

where s( T) is subject to the sole requirement that 

If we set 

then for sufficiently large positive T 

is arbitrarily elose to 

with probability elose to 1. 

Note that (20) can be approximately realized in the form 

where 
d ~ d!' 

L = Co + Cl dt + C2 dt2 + ... + Cn dtn 

(20) 

(21) 

(22) 

(23) 

and all the eigenvalues of L have negative real part. Under these assumptions, 

if el(t) is statistically stationary, then 6(t) tends to a statistically stationary 

function as t - +00. This statistically stationary limit behaviour of 6(t) is 
determined by the formula 

K (z) = Co + Cl Z + ... + Cn zn • (24) 
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Formula (24) is of interest in its own right and not merely for the experi

mental determination of the spectral components er(t, dA). It implies that 

(25) 

(26) 

Formulas (24), (25) and (26) generalize the usual resonance theory to the case 

of an arbitrary statistically stationary external force. Usually, a non-statistical 

presentation of this theory can be applied only to the case when the external 

force has a discrete spectrum, that is, when 6(t) is ofthe form (2). In physical 

literature, however, for the case of continuous spectrum this kind of reasoning 

is widely used, though, of course, without rigorous mathematical justification. 

5. In applications, for the case of a continuous spectrum, we usually have 

(27) 

that is, (6) may be replaced by 

(28) 

This passage to spectral densities Iqr(>') enables us to do without Stieltjes 

integrals in the part of the theory that does not involve ~r(>'). 

The simplest and most important in applications is the case when the dis

tribution laws of any finite number of variables er(t) are Gaussian. In this case 

so are the ~r(dA). Under the simplest and most typical case of a continuous 

spectrum (the applicability of (27) and (28) and Gaussian distributions) the 

random functions ~r(>') are not differentiable and the passage from (4) to the 

formulas of type (3) seems impossible. On the intervals of the >.-axis where 

the spectral density Irr (>') is continuous and non-zero, the nature of variation 

of ~r(>') is the same as the time dependence of the coordinates of a Brownian 

particle, when neglecting inertial forces, that is, if for small d = >'2 - >'1 the 

increments of ~r(>') are of order.Ji5.. Here is a new case where continuous 

nowhere differentiable functions of Weierstrass type intrude into mathematical 

physics. For Brownian motion, more refined arguments taking into ac count the 
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inertial forces bring us back to differentiable functionsj here non-differentiability 

is inherent in the idea of a continuous spectrum. 

Beyond the mechanics and physics of oscillations, the ideas of spectral 

analysis of statistically stationary process are applied mainly in the slightly 

different form of the spectral theory of stationary sequences (for example, in 

meteorology). Apart from the papers [4], [5] mentioned above, the book ofthe 

Swedish mathematician Herman Wold [12] is devoted to this theory. Important 

additions to Wold's theory were made by V.N. Zasukhin [13]. The clear under

standing of the fact that the existence of a spectrum follows automatically from 

statistical stationarity and does not necessarily indicate that the process be

ing studied results from superposition of strictly periodic components was very 

important for a critical reconsideration of the so-called periodographics, which 

claim to playamajor role in meteorology and even in economy. E.E. Slutsky's 

papers in this field (especially [14]) have become classical in statistics. 
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35. ON SUMS OF A RANDOM NUMBER OF RANDOM TERMS * 
J ointly with Yu.V. Prokhorov 

Wald and a number of other American authors have given interesting theorems 

concerning the sums 

of the first v random variables from an infinite sequence 

where the number v of terms is a random variable (see [1]-[3], where references 

to earlier literat ure can be found). In their method of proof these theorems 

go back to the work of one of the authors of the present paper [4], where for 

estimating the prob ability 

P{ max I(n - Anl > h} 
l:5 n :5N -

he considered sums (v with index v equal to the first number n for which 

The inequality proved in [4] (see also [5], p.154) can easily be derived from 

Theorem 5 of the present paper. 

Further we give very simple proofs for theorems of Wald type relating to 

the first and second moments. Our conditions for the applicability of basic 

identities are somewhat broader than those of Wald and Wolfowitz. Our gen

eralization of the conditions for the applicability of these identities is important 

for certain applications. 

In what folIows, v denotes a random variable that can take only non

negative integer values, and 

n=O,1,2,3, .... 

The event that v = n will be denoted by 

Sn = {v = n}, 

* Uspekhi Mat. Nauk 4:4 (1949),168-172. 
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and the probability of this event by 

Pn = P(Sn). 

Moreover, we set 
00 

Pn =P{lI=n}= 2: Pm· 
m=n 

Expectations of random variables, 

will be understood in the sense of the abstract Lebesgue integral over the set 

of elementary events U. Accordingly, the expectations, when they exist, are 

always finite, and the existence of E(7J) implies the existence of E(I7JI). The con

ditional probability distributions and conditional expectations are understood 

in the sense explained in [6]. 

Of basic importance for all theorems of Wald type is the assumption 

(w) For n > m the random variable en and the event Sm are independent. 

According to [6], (w) means that for n > m the conditional distribution of 

en under the condition Sm coincides with the unconditional distribution 

Theorem 1. I/ condition (w) holds and the expectations 

E(lI) and E(e) = a, E(lenl) = c, 

exist, where a and c do not depend on n, then the expectation 0/ (v exists and 

equals 

E«v) = aE(lI). (1) 

Since 
00 00 

E(lI) = 2:Pn n = 2: Pn , 

n=l n=l 

Theorem 1 is an obvious consequence of the following more general statement: 

Theorem 2. I/ condition (w) holds, the expectations 
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exist and the series 

(I) 

converges, then the expectation 0/ (11 exists and equals 

00 

E«(II) = L:PnAn, An = E«(n) = al + a2 + ... + an. (11) 
n=l 

Pro%/ Theorem 2. In view of (I), the series on the right-hand side of (11) 

converges absolutely. Applying the Abel transformation to it, we obtain 

00 00 

L:PnAn= L: Pnan. (2) 
n=l n=l 

We recall that 

Pn = P{/I ~ n}. 

The event {/I ~ n} is complementary to the event {/I < n} which, by condition 

(w), is independent of en . But the independence of an event implies the 

independence of its complementary event. Therefore, denoting by E(7JIA) the 

conditional expectation of 7J under condition A, we obtain 

00 00 00 

L:PnAn = L: P{/I ~ n}an = L: P{/I ~ n}E(enl/ln ~ n) = 
n=l n=l n=l 

(3) 

Since the fact that en is independent of the event {/I ~ n} implies that len I is 
also independent of this event, it follows from (I) that 

00 

= L: P{/I ~ n}E(lenlll/l ~ n) = 
n=l 

00 00 

= L: P{/I ~ n}E(lenD = L: Pncn < 00. (4) 
n=l n=l 
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Since (4) is finite, we can change the order of summation: 

Since (m = (v holds on Sm, 

(6) 

As for the latter equality, we note that the "necessary event" U is the union of 

the events Sm, including So. However, the omission ofthe term with m = 0 on 

the left-hand side of (6) is inessential, since, in accordance with the accepted 

rule, we consider the sum (0 of an empty set of terms to be identically equal 

to zero. 

Comparing (3), (5) and (6), we obtain (11) as required. 

When considering the second moments we will assume that 

is a vector with two components e~ and e~. Condition (w) is now understood 

in the sense that for n > m the two-dimensional conditional distribution of 

en under the condition Sm coincides with the unconditional distribution of the 

same vector. In addition to (w) we also assume the condition 

(z) The vectors 6,6,6, ... are independent. 

By contrast, the dependence among the components of the same vector 

can be arbitrary. We now consider the particular case when e~ == e~: 

Theorem 3. If(w) and (z) hold and the expectations 

exist, where a i and bij do not depend on n, then 

(III) 

exists. 

Naturally, in (III) (~ denotes 
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Theorem 3 can easily be derived from the more general Theorem 4 if we 

note that the finiteness of 

00 00 

E(v3/2) = LPnn3 / 2 = L Pn(n3 / 2 - (n - 1?/2) 
n=l 1'1=1 

is equivalent to the convergence of 2:::=1 Pn yn. 
In the statement of Theorem 4 we use the notation 

B ij - bij + bij + + bij n - 1 2 ... n' 

Theorem 4. If (w) and (z) hold, the expectations 

exist and the series 
00 

L Pn ( J bh1 B~2 + Jb~2 BA1 ) (7) 
n=l 

converges, then 
00 

E{(~ - A~)(; - A~)} = LPnB~2. (IV) 
n=l 

exists. 

Proof of Theorem 4. By passing from the variables e~ to *e~ = e~ - a~, we can 

reduce the general case to the case 

(8) 

We consider this case in what folIows. Setting 

(9) 

we have identically 

(10) 

From (8) (9) and the independence of en of (n-1 (which follows from (z)) 

we obtain 

(11) 
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Under condition (8) the equality (IV) to be proved turns into 

00 

E(Xv) = L:PnB~2. (12) 
n=l 

Comparing (10), (11) and (12) with the statement of Theorem 2, we see that 

(12) is simply (11) applied to the sums 

Xv = <PI + <P2 + ... + <Pv. 

It remains to prove that the conditions of Theorem 2 hold. Special computa

tions are required to verify (I) which, applied to the sums Xv, is written in the 

form 
00 

L: PnE(I<Pnl) < 00. (13) 
n=l 

Using the Cauchy-Bunyakovskii-Schwarz inequality we obtain from (9) the es

timate 

~ v'b~lb~2 + v'b~l B~2 + v'b~2 BAI ~ 2 ( v'b~l B~2 + v'b~2 BAI) (14) 

for E(I<Pn 1). Comparing (7) and (14) we see that (13) holds, which completes 

the proof of Theorem 4. 

In the particular case e~ == e; we can abandon the vector notation and 

write 

Cl _ c2 - C A + + + <"n-<"n-<"n, n=al a2 ... an, 

Then from Theorem 4 we obtain 

Theorem 5. If (w) and (z) hold for a sequence of random variables en, the 

expectations E(en) = an, E(en -an)2 = bn exist and the series E::'=l Pnv'bnBn 

converges, then 
00 

E«v - Av)2 = L:PnBn (V) 
n=l 

exists. 
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36. A LOCAL LIMIT THEOREM FOR CLASSICAL MARKOV CHAINS * 

This paper studies the limiting distributions of the number of visits to various 

states for a Markov chain with a constant transition prob ability matrix. 

§1. Statement of the problem and review of results 

Consider a classical Markov chain, that is, a random Markov process with 

discrete time, a finite number of states (s > 1) 

and constant probabilities 

(1.1) 

of transition from astate €(t) = ea at time t to astate €(t + 1) = eß at time 

t + 1. Naturally, we assume that the usual conditions hold: 

If the states ea are the unit vectors 

el = (1,0'00.,0), 

e2=(0,1, ... ,0), 

e, = (0,0, 00.,1) 

in s-dimensional coordinate vector space, then the components 

of the vector 

/let) = €(1) + €(2) + ... + €(t) 

are equal to the number of visits to the states 

* Izv. Akad. Nauk SSSR Sero Mat. 13 (1949), 281-300. 
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(1.2) 

(1.3) 

(1.4) 
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at times t' = 1, 2, ... , t respectively. We will adhere to these vector represen

tations throughout. We suppose that at time t = 0 p(t) is equal to the zero 

vector 

p(O) == 0 = (0,0, ... ,0). (1.5) 

The only possible values for p(t) are the vectors m = (m1 ,m2 , ••• ,m') 

with integer components such that 

m= Lmß =t. 
ß 

For any integer vector m with m ~ 0 we set 

(1.6) 

(1.7) 

Thus the function Wa(m) ofthe vector argument m comprises the conditional 

distributions for E(O) = ea of all vectors p(t) for t = 1,2,3, .... This is possible 

because, since by virtue of the relation. 

Ji(t) = Lpß(t) = t, 
ß 

(1.8) 

these distributions are at most (s - l)-dimensional. Naturally, the sum of the 

probabilities Wa(m) pertaining to one variable p(t) is 1: 

(1.9) 

Our entire analysis is devoted to the darification of the limiting behaviour 

of the probabilities Wa(m) as m -+ 00. The study of all limit distributions of 

sums of random variables "linked into a chain" (according to Markov's termi

nology) can easily be reduced to this problem. 

The most noteworthy is the case when, in terms of [1], all states ea form 

one dass, that is, when the following condition holds 

(A) For any two states ea and eß there exists a sequence 0/ states (e a , e.n , 

e""2' ... , e""k' eß) along which all the transition probabilities pi}, p~:, ... 
. .. , P~:-l' P~k are positive. 

The most general case can be reduced to the case (A). This is done in §7. 

The following Lemmas 1-3 hold only under condition (A). In the state

ment of these lemmas we denote by Ea the conditional expectations under the 



340 A LOCAL LIMIT THEOREM FOR CLASSICAL MARKOV CHAINS 

hypothesis f(O) = eQ • Although these lemmas are proved in [1]-[3], Lemmas 2 

and 3 are again proved in §2 of the present paper. 

Lemma 1. The system of equations 

(1.10) 
Q Q 

has a unique solution. 

Lemma 2. 

A~(t) == E'YpQ(t) = tqQ + 0(1) (1.11) 

as t -+ 00. 

Lemma 3. The second moments 

(1.12) 

are of the form 

(1.13) 

as t -+ 00, where the constants bQß are determined solely from the matrix of 

initial probabilities ~. 

It follows from the general properties of seeond moments of any system 

of random variables that IIbQß 11 is symmetrie and the eorresponding quadratie 

form 

b(x) = L: bQßxQxß (1.14) 
Q,ß 

is non-negative. Then it ean easily be derived from (1.8) that 

L: bQ'Y = L: b'Yß = o. (1.15) 
'Y 'Y 

Formula (1.15) implies that 

b(x) = b(x - x). (1.16) 

Therefore it suffiees to eonsider the form b(x) in the (8 - l)-dimensional spaee 

N of veetors x with 

x = o. (1.17) 
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It is natural to consider the case when 

(B) the form b(x) is positive in the space N of vectors x for which x = 0 

as the general "non-degenerate" case of our problem. 

By (1.15) the determinant of the form b(x) is always 0; 

W~ßI = 0, (1.18) 

and all the principal minors of the matrix IIbaßII are equal to one another: 

(1.19) 

The fact that b( x) is non-negative implies, of course, that always 

(1.20) 

condition (B) is equivalent to the requirement that 

Ll> o. (1.21) 

Under condition (B) the form b(x) has an inverse form c(x) in the space 

N which can, for example, be expressed as 

bll b12 bl ,3-l xl 

b2l b22 b2,3-l x2 

1 
(1.22) c(x) =-- ..... 

Ll b3- l ,1 b3- l ,2 b3- l ,3-l x3- l 

Xl x 2 x3- l 0 

or in a similar alternative way by choosing some other index 'Y instead of s - 1. 

Setting 

1 p(x) = e- l / 2c(x), 
v's(27r)3-lLl 

(1.23) 

~(t) = (J.l(t) - tq)/..fi, (1.24) 

we can state a "non-degenerate" integral limit theorem. 

Theorem 1. Under conditions (A) and (B), for any 'Y and any rectifiable 

domain G ofthe space N, 

p{~(t) E G I (0) = e1'} --+ !aP(X)dX (1.25) 
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as t -+ 00, where 

(1.26) 

denotes the volume element in N. 

This theorem is proved in §4. 

However, to formulate the simplest local limit theorem, we must make a 

certain additional analysis of possible directions of transition from one state to 

another. 

A chain is a sequence of states 

(1.27) 

for which all transition probabilities 

are positive. Achain (1.27) is called a cycle if 

(1.28) 

We then say that an s-dimensional vector z is cyclic if there exists a cycle (1.27) 

such that 

(1.29) 

Finally, the fundamentallattice is the set of all vectors m representable as 

(1.30) 

where Zl, Z2, ••• ,Zn are cyclic vectors and al, a2, ••• ,an are arbitrary integers 

(the number of terms n is also arbitrary). We denote the fundamentallattice 

by Z. Clearly Z consists exclusively of vectors with integer components and 

forms a group with respect to addition. We now state our additional condition. 

(C) the fundamentallattice Z coincides with the set Q of all integer vectors 

of s-dimensional coordinate space. 

The results of §§6, 7 imply that both conditions (A) and (C) are necessary 

for the limiting behaviour of the probabilities W-y (m) to be independent of the 

indices 'Y. Thus, the case when both conditions hold is the only case when we 

can count on obtaining a locallimit theorem in an ideally simple formulation. 

This makes us regard the results of §3 and §5 as definitive in a certain sense: 
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Corollary 3 of Lemma 10 (§3). Conditions (A) and (C) imply (B). 

Theorem 3 (§5). Ifl (A) and (C) hold, then whatever the choice of indices " 

(1.31) 

as m --+ 00, where 

x = (m - mg)/vm. (1.32) 

A very interesting quest ion is the following: are (B) and (C) equivalent 

if (A) holds? If the answer is yes, then the conditions of applicability of the 

Local Theorem 3 and the Integral Theorem given above would coincide. 2 

In §6 we give a fuH analysis ofthe complications wh ich arise when (C) does 

not hold while (A) still holds. As mentioned earlier, in §7 we consider the case 

when (A) does not hold. The results of this section are stated in a somewhat 

more complicated way, though the question on the limiting behaviour of the 

probabilities W-y( m) is essentiaHy solved for the most general case as fuHy as 

for the case when (A) and (C) hold. 

§2. Doeblin's method 

Local theorems, which are the main subject of this paper, will be derived in §5 

and §6 using a certain strengthening of the method developed by Doeblin for 

1 Unlike (1.23), in (1.31) there is no factor 8 under the root sign, sinee in the 
(8 - 1)-dimensional space of veetors m with given m (for example, in the space 
N) integer points are distributed with density I/Vi. Note also that in the text 
of §5 the statement of Theorem 3 differs from that given here in that the way 
in whieh the probabilities tend to their asymptotie expression is indieated more 
precisely. 

2 Let L be the linear dosure of the fundamental lattiee Z, that is, the set of 
all veetors representable in terms of eydic ones by (1.30) with arbitrary real 
eoefficients ak. In §3 (see Corollary 2 of Lemma 10) it is proved that under 
eondition (A), requirement (B) is equivalent to (B'): 
(B') The space L eoincides with the entire 8-dimensional veetor space R. 
The question whether (B) and (C) are equivalent would be solved if we eould 
show that 
(*) under eondition (A) the fundamentallattiee Z always eoincides with the set 
of all integer points from L. 
Assumption (*) is very likely to be true. If it were proved, this would lead to a 
eertain improvement in the results of §6. 
(Assumption (*) was later proved by Rosenknop in Moseow and Chulanovskii in 
Leningrad. ) 
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proving the integral limit theorem for the case of an infinite number of states 

[4]. To make dear how this method was developed, in this section we briefly 

present Doeblin's method in its original form, which is only suitable for proving 

integral theorems. 

The presentation of this paragraph will be brief, since the results given 

here are essentially known. Here, as in §§3-6, (A) will be assumed to hold 

without any special indication. Moreover, throughout this section 'Y will be 

assumed to be fixed and 

f(O) = e-y. (2.1) 

Under this hypothesis the conditional probabilities and expectations will be 

denoted by 

Let 

0= r(O) < r(l) < r(2) < ... < r(n) < '" 

be the sequence of all times t when the state e-y is observed. For n ~ 1 we set 

6(n) = p(r(n)) - p(r(n - 1)), 

A(n) = 6(1) + 6(2) + ... + 6(n) = p(r(n)). 

For n = 0 set 

A(O) = O. 

(2.2) 

(2.3) 

(2.4) 

The components 60t (n) of 6( n) denote the number of visits to the state eOt at 

times t satisfying the inequalities 

r(n - 1) < t ~ r(n), 

that is, between the (n - 1 )th and the nth returns to the original state e-y 

(induding the very moment of the nth return). Clearly, we always have 

P(n) = 1, (2.5) 

while for the sums A( n) we have 

(2.6) 
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Doeblin's method is based on a simple observation: the random vectors 

o( n) are independent and identically distributed. Because of this, the limit 

theorems established for sums of independent summands may be applied to 

the sums A(n). Relation (2.3) allows transition from the sums A(n) to the 

sums p(t). Further we give two versions of this transition: one is based on 

Lemma 6 and gives most accurate results for estimating the second moments 

B;;ß(t), while the other is based on Lemma 7 and is convenient for deriving 

integral limit theorems. In [1] I proved 

Lemma 4. The variables o<>(n) have the finite expectations 

(2.7) 

Since the terms o( n) are independent 

(2.8) 

and since 

7'(n) = X(n), (2.9) 

(2.7) and (2.8) imply that 

(2.10) 

By the methods of [1] it is easy to prove 

Lemma 5. There exist constants C and D > 0 such that for any k and for 

c5( n) = 7'( n) - 7'( n - 1) the following inequality holds: 

(2.11) 

Lemma 5 implies 

Corollary. The second moments 

(2.12) 

are finite. 
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By analogy with (2.8), for the second moments .\Q(n) we obtain 

(2.13) 

Let Tt denote the smallest of the numbers T(n) that are ~ t and let lI(t) 
be the corresponding number n. 

Setting 

we obtain 

"t 

.\(t) = .\(lIt) = !-'(Tt) = L:c5(n), 

.\l = IIt, 

Xt = Tt· 

n=l 

In the same way as for Lemma 5 we prove 

Lemma 6. There exist constants C and D > 0 such that for any k, 

Since always 

(2.17) implies that 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

The weIl known Wald identities (see [5] concerning the conditions of their 

applicability) are applicable to the following sums with random upper limit IIt: 

"t 

.\t = L:c5(n). 
n=l 

From these identities we obtain 

E-y.\f = a;E-r(lIt), 

E-y{(.\f - IIta;)(.\f - IIta~)} = b;ßE-y(lIt). 

(2.20) 

(2.21) 
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From (2.16) and (2.20) we obtain 

By Lemma 6, 

E-yTt = t + 0(1) 

as t -+ 00. Therefore, from (2.22) and (2.20) we obtain as t -+ 00 

E-yVt = q-yt + 0(1), 

E-yAf = qf + 0(1). 

Using (2.19) we infer from (2.25) that 

Thus we obtain a new proof of Lemma 2 stated in § 1. 

N oting that identically 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

Af - Ttqa = (Af - Vta~) - qa ~)At - Vta~), (2.27) 
.p 

and using (2.21), we then obtain 

E-y{(Af - Ttqa)(A~ - Ttqß)} = 

= E-y(Vt)[b~ß - L:(qßb~.p + qab~ß) + L: qaqßb~"']. (2.28) 
.p .p.", 

Using Lemma 6 we can change the left-hand side of (2.28) to 

with accuracy to within 0(1) as t -+ 00. Together with (2.24) this leads to the 

formulas 

(1.13) 

where 

baß = qV[b~ß - L:(qßb~.p + qab~ß) + L: qaqßb~"']. (2.29) 
.p .p.", 
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Thus we have proved Lemma 3 from § 1, at the same time showing the 

connection between the coefficients baß and the moments b~ß (the assertion of 

independence of baß of the index 'Y should be proved separately, but because 

of (A), this is quite simple). 

Note here the conversion 3 of (2.29) (although we shall not need it in what 

follows): 

We introduce the vectors 

(riY - 1~ 
7J(n) = V ~[A(n) - A(n)q] = Vii L..J il(k), 

k=1 

where 

il(n) = JqY[6(n) - 6(n)q]. 

Using (2.7), (2.12) and (2.29) we obtain 

E-yila(n) = E-y7Ja(n) = 0, 

E-yila(n)ilß(n) = E-y7Ja(n)7Jß(n) = baß. 

(2.30) 

(2.31) . 

(2.32) 

(2.33) 

(2.34) 

Since the il(n) are independent and identically distributed, by (2.33) and 

(2.34) the vectors 7J(n) have a Gaussian distribution as n -+ 00 with matrix of 

second moments IlbaßII. Applying to the sums 

n" 

L il(k) 
k=n' 

a well known strengthening of Chebyshev's inequality (see [2], p.154), it is easy 

to prove the following 

Lemma. If a random variable Vn taking only positive integer values satisfies 

the condition 

3 Formula (2.30) can be proved directly in a way similar to that given for (2.29) 
starting not from (2.27) but from the identity 

which is trivial in view of (2.15). 
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as n -+ 00, where C is a constant, then for any h > 0 

(2.35) 

as n -+ 00. 

In order to pass from the vectors '1( n) to the vectors 

e(t) = (Jt(t) - tq)/Vt (1.24) 

introduced in § 1 we can use 

Lemma 7. If nt is the integer part oftq'Y, then for any H > 0, 

(2.36) 

as t -+ 00. 

In the proof of Lemma 7 we can pass from e(t) to '1(t) via the vectors e( Tt) 
and 

(2.37) 

To estimate Vt we must use the relation 

(2.38) 

obtained from (2.24) and (2.28) by setting 0' = ß = 'Y in (2.28). 

By Lemma 6, (2.28) implies that for sufficiently large C and t the probab-

ility 

P'Y{IVt - ntl > C..;nt} 

can be made arbitrarily small. This enables us to use (2.35), setting h = H/3 

and to write 

P'Y{I'1(vt} - '1(nt)1 > ~H} -+ 0 as t -+ 00. (2.39) 

Lemma 6, (2.38), the definition of nt and (2.37) imply that 

(2.40) 

Finally, by Lemma 6, 

(2.41) 
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Combining (2.39)-(2.41) we obtain (2.36). 

An application of Lemma 7 to the derivation of integral theorems will be 

given in §4. 

§3. Cyclic vectors and the fundamental lattice 

Apart from the probabilities W-y(m) we shall also need the probabilities 

(3.1) 

W~(m) is the conditional prob ability under the hypothesis (0) = e-y of the 

combination of the two events: 

1) visiting the states eßl (ß = 1,2, ... , s) m ß times at the times t = 
1,2, ... , m respectivelYj and 

2) visiting the state ea at the final moment t = m. 

For m = 0 we set 

a _ {1 W-y (0) - 0 
for 'Y = a, 

for 'Y # a. 
(3.2) 

Clearly, the probabilities W-y(m) can be expressed in terms ofthe probabilities 

W~ (m) by the formula 

(3.3) 
a 

The probabilities W~ (m) are of special interest when the upper and lower 

indices are equal. They can be used to express the probability distributions for 

the vectors A( n) considered in the previous section, 

(3.4) 

Since always 

(3.5) 

the distribution of A(n) under the hypothesis (0) = e-y is completely deter

mined by the values W.J(m) with m-Y = n and for any n ~ 0 

E W.J(m) = 1. (3.6) 
m"Y=n 

Clearly, for any cyclic vector z for which z-Y > 0, we have 

W.J(z) > O. (3.7) 
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Clearly, the converse is also true: if for some "y (3.7) holds, then,z is cyclic. 4 

Especially important for us are the cyclic vectors with z'Y = 1. They are 

the only values of vectors c5(n) which (naturally, provided f(O) = ea ) have 

positive probability. They are considered in 

Lemma 8. The minimal additive vector group containing all cyclic vectors 

with z'Y = 1 coincides with the fundamental lattice Z. 

To prove this lemma it suffices to establish that any cyclic vector z can be 

represented as a linear combination with integer coefficients of cyclic vectors z 

with z'Y = 1. To this end we consider three cases: 

1) if z'Y = 1, then our assertion is already provedj 

2) if z'Y > 1, then the cycle generating z can be divided into z'Y cycles, 

from the visit to e'Y up to the next (along the cycle) subsequent visit to e'Y' and 

then z can be represented as 

z = zl + z2 + ... + Zz"l, 

where the z" correspond to the partial cyclesj 

3) if Z'Y = 0, that is, the z-generating cycle 

does not cointain e'Y at all, then by (A), we can find chains 

so that they can contain e'Y as indicated: the first chain as first element, and 

the second chain as last element. Then the chains 

(e'YO,e'Yl'···' e'YO,eßl'···' eßj' e'Y,ea1 ,··· ,eai , e'Yo), 

(e'Yo' eßl , ... , eßj' e'Y' ea1 , ••• , eai , e'Yo) 

are cycles, and for the corresponding cyclic vectors Zl and Z2 we obtain 

Zl - Z2 = z, zl = 1, z~ = 1. 

4 Note here also the interesting identity (a.lthough we sha.ll not need it in what 
folIows): 
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This completes the proof of our lemma. 

Denote by .c the smallest linear subspace of s-dimensional vector space 

containing all cyclic vectors (and consequently, the fundamentallattice Z). The 

dimension r of this space is called the rank of the Markov chain considered. 

Denote by .co the intersection of .c with the (s - 1 )-dimensional space N of 

vectors x with ii = O. Since .c is not contained in N (there exist cyclic vectors 

z with z> 0), it follows that dim.c = r - 1. 

Lemma 9. The space .c is equal to the linear span of the values of the vectors 

6( n) which have (under the hypothesis e(O) = e-y) positive probability, while the 

space .co is equal to the linear span of the possible values of the vectors 

A(n) = v'ifY[6(n) - 6(n)q). (2.32) 

The first part of Lemma 9 follows directly from Lemma 8. The second 

part can be proved in the following way: 

1. Lemma 4 and the first part of Lemma 9 imply that q belongs to .c. 

2) It can easily be shown that ~(n) = O. Therefore the possible values of 

A( n) belong to .c. 

3) Since the possible values of 

1 -
6(n) = . r,;::yA(n) + 6(n)q 

vq-Y 

generate the whole space .c obtained by attaching to .co a vector q that does 

not belong to .co, the possible values of A(n) generate the entire space .co. 

Since 

E-yA(n) = 0, 

E-yACl(n)Aß(n) = bClß , 

it follows almost immediately from Lemma 9 that 

Lemma 10. 
for x E .co, 

for x orthogonal to .co. 

(2.33) 

(2.34) 

(3.8) 

Lemma 10 brings us the following conclusions (some of them were already 

mentioned in § 1): 
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Corollary 1. The rank of IIbaßII is r - 1. 

Corollary 2. Condition (B) is equivalent to the condition 

(Bd r = s. 

Corollary 3. Condition (C) implies (B). 

To eondude this seetion we will show that the determination of the fun

damental lattiee Z and the verifieation of (C) are purely arithmetie problems 

whieh allow simple algorithmie solutions. It ean easily be seen that when de

termining the eydes it suffiees to eonsider, instead of II~II, the matrix IIO~II 

where 

The sequenee 

is a eyde if and only if 

for ~ > 0, 

for ~ = O. 

ll'Yl - ll'Y2 - - ll'Yo - 1 
u'Yo - U'Yl - •.. - u'Yk_l - . 

(3.9) 

(3.10) 

A eyde will be ealled simple if it eontains eaeh state at most onee. Simple 

eydie vectors corresponding to simple eydes are eharacterized by the fact that 

all their eomponents are at most 1: 

(3.11) 

Sinee there are a finite number of simple eydes and all of them ean easily 

be found, the following lemma gives a very effective way for determining the 

fundamentallattiee. 

Lemma 11. All the vectors in Z are representable in the form (1.30) with 

simple cyclic vectors Zi. 

For the proof it suffiees to note that any eyde in whieh a eertain state is 

found more than on ce ean be divided into two eydes. Repeating such division, 

any eyde ean be divided into simple eydes. 

Let 
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be the system of all simple cyclic vectors. Then the above considerations im

mediately give the following result: 

Lemma 12. The lattice Z is the minimal additive group generated by the 

vectors h, 12, ... ,Ihl while the space .c is the linear span 01 this system 01 

vectors. The rank r 01 the M arkov process equals the rank 01 the matrix 

and (C) is equivalent to the condition 

(Cd The rank 0111/;11 equals s, and the greatest common divisor olthe sth 

order determinants that can be lormed lrom its rows (1;, 1;, ... , I;) is equal to 

1. 

Example. Let s = 5 and 

0 1 0 1 1 

0 0 1 0 0 

1I0~11 = 1 0 0 1 0 

0 1 0 0 1 

0 1* 1 0 0 

It can easily be verified that in this case the simple cycles consist only of 

three or four states. Here is the complete table of them 

(el,e2,e3,el) h = (11100) 

(el,e5,e3,ed 12 = (10101) 

(e2,e3,e4,e2) h = (01110) 

(e3,e4,e5,e3) 14 = (00111) 

(el,e4,e2,e3,el) 15 = (11110) 

(el,e4,e5,e3,el) 16 = (10111) 

(el,e5,e2,e3,el)* h = (11101)* 

(e2,e3,e4,e5,e2)* fs = (01111)* 

The vectors I g corresponding to the cycles are given in the right column. Since 

h 1 1 1 0 0 

12 1 0 1 0 1 

h 0 1 1 1 0 = -1, 

14 0 0 1 1 1 

15 0 1 1 1 1 
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r = 5 and (e) holds. 

If in the matrix Beeil of this example e~ = 1 is replaced by e~ = 0, then 

only the first six of the simple cycles /g will remain and it can be verified that 

the rank is lowered to r = 4. 

§4. Integral limit theorems 

By Lemma 10 the distribution ofthe vectors ~(n) and '7(n) is totally concen

trated on the space .c. Since the form b(z) on this space is positive, it follows 

that as n -+ 00, '7( n) obeys a Gaussian distribution which is non-degenerate 

on .co and corresponds to b(z). We denote by p(z) the probability density of 

this Gaussian distribution. Then by Lemma 7 we have the following result. 

Theorem 2. Under condition (A), tor any 'Y and any domain G the intersec

tion 0/ whose boundary with .co has measure 0 in .co we have 

p-y{e(t) E G} -+ f p(z)dz, 
JGnt.o 

as t -+ 00, where dz is the volume element in .co. 

(4.1) 

In the particular case when (B) holds, .co coincides with N and Theorem 

2 gives Theorem 1 stated in §1. 

§5. The basic identity and local limit theorem in 

the non-degenerate case 

The version of Doeblin's method which allows us to reduce locallimit theorems 

for Markov chains to local limit theorems for independent terms is based on 

the following identity: 

W-y(m) = L W;(m -/)W-y(1). (5.1) 
/'"'1=0 

The sum on the right-hand side extends over all integer vectors I with non

negative components satisfying the conditions 

l"Y=0. 

Identity (5.1) is self-evident from the probabilistic viewpoint. 

(5.2) 

(5.3) 
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It is easily checked that the sum of the probabilities W-y(l) over all vectors 

I satisfying (5.3) is given by 

1 L W-y(l) = Eyc5(n) = -. 
/"'=0 q-Y 

(5.4) 

Under the additional restrietion (5.2) this sum may become somewhat smaller, 

but because ofthe absolute convergence of (5.4) this reduced sum tends to l/q-Y 

as the mQ tend to infinity. 

If (A) and (C) hold, then by Lemma 8, the minimal additive group gen

erated by the values of the vectors c5(n) with positive prob ability (under the 

hypothesis (0) = e.,) consists of all integer vectors, for any 'Y. For the differ

ences of the values of the vectors c5( n) having positive prob ability, m-y is always 

zero (since for the possible values of c5(n) themselves m-y is always 1), that is, 

they belong to the group Q-y of all integer vectors m with m-y = O. It is easy 

to see that in fact they generate the entire group: if the vectors 

ml - mo, m2 - mo, ... , mk - mo, ... , 

where mo, ml, ... , mk, ... are all the possible values of c5(n), did not generate 

the whole group Q-y, but only a proper subgroup of it, then after adding one 

vector mo they could not generate the whole group Q, whereas the group 

generated by the vectors 

clearly coincides with the group generated by the vectors 

that is, in view of (C), with the whole group Q of integer vectors. As a result, 

we have the following: 

Lemma 13. Under conditions (A) and (C) the minimal group generated by 

the differences 0/ the values 0/ the vectors c5(n) coincides with the group Q-y 0/ 
all integer vectors m with m-Y = O. 

From Lemma 4, the corollary of Lemma 5 and Lemma 13, and using the 

limit theorem [6] applied to the sums 

..\(n) = 15(1) + 6(2) + ... + c5(n) , 
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we obtain 

Lemma 14. 11 (A) and (e) hold, then 

(m'Y)(6-1)/2W;(m) = P'Y(y) + 0(1), 

as m'Y -+ 00, where 

(5.5) 

(5.6) 

P'Y(y) is the Gaussian probability density in the space Q'Y corresponding to zero 

mean values and covariance matrix IIb~.8I1, and the estimate of the remainder 

term is uniform lor 

(5.7) 

with any fixed C. 

Noting that under condition (5.7) and as m'Y -+ 00, 

we can express (5.5) in the form 

(5.8) 

This estimate must now be applied to W,J(m - I) in (5.1). Because of the 

convergence of (5.4), on the right-hand side of (5.1), as m -+ 00 we can confine 

ourselves to the terms for which the ratios 

are arbitrarily dose to 1. Then from (5.1), (5.4) and (5.8) we obtain 

(5.9) 

as m -+ 00, where (5.7) can be replaced by 

(5.10) 

Since under condition (5.10) and as m -+ 00, 

m-mq 1 _ 
x = rm '" .;q'f(y - yq), (5.11) 

y ~ .;q'f(x - x'Yq/q'Y), (5.12) 
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(5.9) can be rewritten in the form 

(5.13) 

Formula (5.13) acts uniformly provided that (5.10) holds. Taking this into 

ac count and keeping in mind the integral Theorem 1, we obtain 5 

(5.14) 

Finally, the results of this section can be stated as follows: 

Theorem 3. If conditions (A) and (C) hold, then as m -+ 00 and for any 'Y 

(5.15) 

uniformly under condition (5.10). 

§6. The case when condition (C) does not hold 

In this section we retain condition (A), but discard (C). Since now the funda

mentallattice Z does not coincide with the lattice Q of all integer vectors, it 

is natural to consider residues of Q modulo Z. In more detail, this means the 

following. Two vectors ml and m2 will be considered congruent modulo Z if 

(6.1) 

All vectors with integer components are divided into classes of congruent vec

tors modulo Z. These classes are residue classes modulo Z. 

Lemma 15. Vectors m such that for fixed a and ß 

W!(m) > 0 (6.2) 

are congruent modulo Z. 

5 Of course, (5.13) can be proved directly from the relations between the moments 

b~ß and baß. Then the proof of the local Theorem 3 stated below would become 
independent of integral theorems. Such a presentation, more consistent from the 
algebraic viewpoint, would however be somewhat cumbersome. The factor .JS 
in (5.14), as mentioned in §1, is connected with the fact that the integer points 
in N are distributed with density 1/.JS. 
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Lemma 15 can also be stated in the following way: 

Lemma 15'. All vectors m satisfying (6.2) belong to the same residue class 

modulo Z. This residue class will be denoted by D~. 

To prove Lemma 15, we assume that Wg(mt} > 0 and Wg(m2) > O. Then 

there exist chains 

for which 

By condition (A) there exists achain eß, eX1 ' ex~' ... ' eXk = ea . Clearly, 

(ea , e«>l' e«>2'· .. , e«>i = eß, eX1 ' eX2 ' ... , eXk = ea ), 

(ea,e~1,e~2,···,e~j = eß,eXl,eX2, ... ,eXk = ea ) 

are cycles. We denote by Zl and Z2 the corresponding cyclic vectors. Since 

ml - m2 = Zl - Z2 E Z, our lemma is proved. 

Clearly, always 6 

D~=Z 

D~+DJ = D~. 

(6.3) 

(6.4) 

In complete analogy with Lemma 14, the general local limit theorem [6] 

gives 

Lemma 16. 1f (A) holds and r > 1, then 

m - m'Yq/q'Y 
y = ...;r;:rr , 

for m rt. Z, 

for mEZ, 

as m'Y -+ 00, the estimate of the remainder is uniform for 

6 Residue classes are added in accordance with the usual algebraic ruIes. 

(6.5) 

(5.6) 

(5.7) 
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P'Y(Y) is the Gaussian density corresponding to mean value 0 and matrix 0/ 
second moments IIb~ßII in the space .cl' 0/ vectors l' E .c with y'Y = 0, and w'Y 

is the density 0/ the points 0/ Z in .cl" 
In the same way that we replaced (5.5) by (5.8), we can rewrite (6.5) in 

the form 

(6.6) 

For each residue dass D in the quotient group Q modulo Z we denote by 

/'Y(D) the sum of all the W'Y(l) with /'Y = 0 and I E D: 

According to (5.4), 

Since 

/'Y(D) = L W'Y(l). 
/'Y=O 

1 
" /'Y(D) = -. L.J q'Y 

D 

(6.7) 

(6.8) 

(3.3) 

it follows by Lemma 15 that /'Y(D) is positive only for D that coincide with 

some D~, that is, only for a finite number of residue classes D. 

Treating (6.6), (5.1) and (6.7) in the same way as (5.9), we see that, as 

m'Y -+ 00 when (5.7) holds and m lies in D, 

(m)(r-l)/2W'Y(m) = (q'Y)-(r-l)/2w'Yf'Y(D)p'Y(Y.) + 0(1), (6.9) 

where 

m. - mJqjq'Y 
y. = y:;n:r , (6.10) 

m. = m- UD (6.11) 

and UD is a fixed vector in D. 

It is easy to show that y. E .cl" It is necessary to replace y by Y., since y 

may not belong to .cl" in which case the density p(y) is not defined for it. 

In exactly the same way that we derived Theorem 3 in §5, we obtain from 

(6.9): 
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Theorem 4. If(A) holds and r > 1, then as m -+ 00 and for m in the residue 

class D we have 

(m)(r-l)/2W-y(m) = w/-y(D)p(:c.) + 0(1), (6.12) 

where 7 

(6.13) 

W is the density o/the points 0/ Z in the space .co, p(:c) is the Gaussian density 

in .co corresponding to mean value 0 and matri:c 0/ second moments 116'1<,811 and 

the estimate 0(1) is uniform under the condition 

(5.10) 

§7. The ease when eondition (A) does not hold 

In the most general case the set of states el, e2, ... ,e. splits into a certain num

ber of "dasses" Kl, K 2 , ••• , K n of "essential" states and a set R of "inessential" 

states (see [1]). Condition (A) holds within each dass Kj: transitions from a 

state ea E Kj to astate e,8 E Kj for i =I j are impossible as are transitions 

from astate belonging to one of the Kj to astate in Rj on the other hand, 

there is always the possibility of passing in a certain number of steps from a 

state ea E R to astate in at least one of the Kj. Clearly transitions of the 

latter kind are irreversible: having reached astate of dass K j , our system is 

not able to come out of the states of this dass. 

Let K be the union of all dasses K j • For ea E K we denote by Oa the set 

of integer vectors m with non-negative components satisfying the conditions 

ma = 1, m,8 = 0 for ß =I er, ß E K. (7.1) 

Since from any state e-y E R transition to some state e,8 E K eventually occurs, 

the following lemma holds: 

Lemma 17. If e-y ER, then 

I: I: W;(m) = 1. (7.2) 
aEKmEOa 

7 The definition of x. depends on the choice of the vectors UD in (5.7), hut since 
f-y(D) > 0 only for a finite numher of residue classes D, this arhitranness is 
immaterial in the limit theorems. 
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Consider the following sets of vectors m with non-negative integer compo

nents: 

M': the components m Ct of the vector m vanish for all 0: such that eCt E K; 

M": there are components m Ct > 0 of m with eCt belonging to more than 

one dass Ki; 

Mi: there are components m Ct > 0 of m with eCt E K i , but there are no 

components m Ct > 0 with eCt E Kj, j i= i. 

In the same way as Lemmas 5 and 6, we can prove 

Lemma 18. There exist constants C and D > 0 such that for any 'Y and any 

mEM' , 

(7.3) 

We can now easily complete the study of the limit behaviour of W-y(m) as 

m -4 00: 

(I) If m E M' we can apply Lemma 18; 

(11) If m E M", then for any 'Y 

(111) If m E M(i), then m can be uniquely represented in the form 

where ml E M' and m2 has components m2 > 0 only for eCt E K;. Then 

(7.4) 

(7.5) 

(7.6) 

It is easy to study the limit behaviour ofthe probabilities WCt (m2 - eCt ) using 

Theorem 4, since within the dass K condition (A) holds. 

15 March 1949 
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37. SOLUTION OF A PROBABILISTIC PROBLEM RELATING TO 

THE MECHANISM OF BED FORMATION * 
A.B. Vistelius and O.V. Sarmanov drew my attention to a mathematical prob

lem that they were confronted with in the statistical study of bed thickness in 

geological sediments. The scheme of bed formation considered by them can be 

understood from the example given in Fig. 1. The horizontal axis represents 

time, and the vertical axis, the thickness of sediments and washouts. The nth 

bed is deposited over the time interval (tn-l; sn) and its thickness (before sub

sequent washouts) is en = 9n - hn- 1 • During time intervals (sn;tn) washouts 

reach the depth "In = 9n - hn· 

----------------------------

~ -----------------
ffr 
gz 

Fig.l 

~ ....... ~~~~-. "0_1 

"'---l---i----!-- hn 

As a result of these alternating sedimentations and washouts certain beds 

can be washed out several times (bed 1 is washed out twice during the first and 

the second washouts), and certain beds can even entirely disappear (bed 2 is 

washed out completely after the second washout). Ifwe ass urne that the mean 

thickness of sediments is greater than the depth of washouts, then each bed 

would undergo a significant risk of washing out only during a small number 

of alternating sedimentations and washouts. Therefore we may speak of the 

probability of the "final" existence of a bed and of the conditional distribution 

of the probabilities of the "final" thickness of the remaining beds. It is these 

conditional distributions that we should compare with actually observed statis

tical distributions of bed thickness in a certain profile. According to the data 

* Dokl. Akad. Nauk SSSR 65:6 (1949), 793-796 (in Russian) 
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of A.B. Vistelius, these distributions are often highly asymmetrie, as if "cut 

off" to the left of the zeroth abscissa. 

Let 6n = en-7]n = hn-hn- 1 be the difference between the initial thickness 

of the nth bed and the depth of the washout that occurs immediately after this 

bed has been formed. In our further mathematical constructions we will assurne 

that an infinite sequence of random variables 61 ,62 , ... ,6n , ••• is given and we 

make the following assumptions: 1) the random variables 6n are independent 

and have the same distribution law P{6n < x} = G(x); 

2) the expectation M = E6n = J~oo xdG(x) is positive; 

3) the distribution of the 6n is continuous, that is, it can be expressed in 

terms of a corresponding probability density g( x) by the formula 

G(x) = i~ g(x)dx. 

The third assumption could have been omitted, thereby complicating fur

ther the analytical tools. But in view of the applied significance of the prob

lem, we decided to make the presentation less cumbersome by avoiding the 

use of Stieltjes integrals. The second assumption guarantees 1 that the sums 

dr) = 6n + 6n+1 + ... + 6n+r tend to +00 as the second index tends to +00, 
therefore the greatest lower bounds tPn = inf«(~O), (~1), ... ,(~r), ... ) are finite 

and will be attained at a certain (random) finite number r. 

It can easily be seen that if tPn ~ 0 the nth bed is washed out completely, 

while if tPn > 0, it retains some final thickness tPn. Therefore the problem is 

reduced to determining the prob ability p = P{ tPn > O} and the conditional 

distribution of tPn under the hypothesis tPn > O. It is clear from assumption 1) 

that both p and this distribution do not depend on n. 

Assumption 3) implies that the distribution of the random variables tPn 

is continuous, that is, it can be characterized by a certain probability density 

f(x). Clearly, p = Jooo f(x)dx and the conditional distribution of tPn under the 

1 By a well-known theorem of A.Ya. Khinchin, 1) and 2) imply that our sums obey 
the strong law of large numbers, that is, 

{ ,(r) } 
P lim _n_=M =1. 

r-+oo r + 1 
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hypothesis <Pn > 0 is given by the prob ability density 

/*(z) = /(z)/p for z > 0, /*(z) = 0 for z < o. (1) 

To find /*(z) and p it suffices to know the function s(z) = /(z)/p. Then 

/* is determined by (1) and p is computed by the formula 

p = 1 : 1: s(z)dz. (2) 

Theorem. Under the assumptions 1), 2), 3) the Junctional s(h) = /(z)/p 

(-00 < z < +00) is the unique solution oJ the integral equation 

s(z) = g(z) + 1°00 g(z - y)s(y)dy. (3) 

Clearly (3) is equivalent to 

/(z) = pg(z) + 1~ g(z - y)/(y)dy. (4) 

The proof of (4) is as folIows. From the definition of <Pn it can easily be 

derived that 

By assumption 1), the quantities 6n and <Pn+l are independent. Therefore, 

representing J(z) as 

/(z) = ph(z) + (1 - p)h(z), (6) 

where h(z) and h(z) are the conditional densities for <Pn under the hypotheses 

<Pn+l > 0 and <Pn+l < 0 respectively and noting that the conditional density 

for <Pn+l under the hypothesis <Pn+1 < 0 is 2 

/**(z) = J(z)/(1 - p) for z < 0; /**(z) = 0 for z > 0 (7) 

2 Here we set p < 1. When p = 1, g(x) = 0 for x < 0, f(x) = g(x) and (4) holds 
trivially. 
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we obtain 

I1(Z) = g(z), 

100 1 10 
Ja(z) = . -00 g(z - y)/",*(y)dy = 1- P -00 g(z - y)f(y)dy. 

Formula (4) now follows immediately from (6), (8) and (9). 

(8) 

(9) 

To complete the proof of the theorem we now only need to establish the 

uniqueness of the solution to (3). Consider the iterated kerneis 

K1(z, y) = g(z - y) for y< 0; K1(z, y) = 0 for y > 0; 

Kr(z,y) = I: K1(z,z)Kr_1(z,y)dz. 

All these kernels, as weIl as the functions 

So(z) = g(z), 

sr(z) = I: Kr(z, y)g(y)dy = 

= Jr f. .. [ g(Ul)" .g(ur)g(z - Ul - ••• - Ur)dUl" . dUr J. jU1+U2+ ... +u/c<0 
k=1,2, ... ,r 

are non-negative. A formal solution to (3) is of the form 

00 

s(z) = LSr(Z). (10) 
r=O 

To see that it really is a solution, and the unique one, it s1,lffices to prove 

the convergence of the series E~o Ir, where 

The convergence of (11) can be derived from the probabilistic meaning of 

its terms. Denote by A~) the event {<Pn = d;)}, which can alternatively be 

written in the form 

A~) = { bnH + bn+k+l + ... + bn+r ~ 0, 
<Pn+r+1 ;::: o. 

k = 1,2, ... ,r. 
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Clearly, 

P{A~)} = 

= P{ 4>n+r+l ~ O}P{ 6n+k + 6n+k+l + ... + 6n+r :::; 0; k = 1, ... ,r} = 
=plr . 

Since the events A~), r = 1,2, ... , form (to within probability 0) a com

plete system of pairwise incompatible events, it follows that 

(12) 

This essentially solves the problem posed at the beginning of the article: 

formula (10) gives the function s(x). Using this function we can compute I*(x): 

1* (x) = s(x) for x > 0; I*(x) = 0 for x < 0, (13) 

while the probability pis given by (12). We can estimate the remainder terms 

of the series (10) and (12). The use of these series for computing numerical 

resuIts is somewhat cumbersome but entirely possible. 

Fig.2 

Figure 2 plots /(x) and I*(x) for the case 

g(x) = 4>(x - a), .1.( ) __ 1 __ .,2/2 
'I' x - . rn=e 

v27r 

for a = 1 (this corresponds to p = 0.82). The fact that I*(x) is obtained by 

"cutting off" s(x) via formula (13) explains the qualitative features observed 

in reality. 

2 March 1949 



38. UNBIASED ESTIMATORS* 

The article considers a number of problems on finding unbiased estimators 

cP(Zl, Z2, ... , Zn) for various functionals f(P), which depend on the distribution 

law P of observables Zl, Z2, ... , Zn. Some of these problems are connected with 

questions of statistical control and inspection of industrial mass production. 

§1. General definitions and theorems 

Suppose that we are given a system ~ of "admissible" prob ability distributions 

P(A) = P{z E A} 

for a random point Z in a certain space X, and a functional f(P) defined on 

~. 

Definition 1. A function cP( z) defined on X is called an unbiased estimator 

for f(P) if for any distribution P in ~ 1 

EP cP = f(P). (1) 

For example, if X is the n-dimensional space of points 

and ~ consists of distributions P given by the prob ability densities 

n 

p(zla) = (211')-n/2 exp{ -l ~)Zk - a)2}, 
k=l 

then a well-known unbiased estimator for 

f(P) = a 

* Izv. Akad. Nauk SSSR Sero Mat. 14:4 (1950), 303-326. 
1 In (1) and in what follows EP denotes the expectation corresponding to the 

distribution P: 

EP =[ q,(x)P(dx). 
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is the arithmetie mean 

while 

<p = i 2 - 1/n 

ean serve as an unbiased estimator for 

f(P) = a2 , 

ete. 

We shall see that in many important eases there are no unbiased estima

tors. In these eases the following definition is helpful. 

Definition 2. Functions <p+(x) and <p-(x) are ealled the upper and lower 

estimators for f(P) respeetively if for any distribution P from ~ 

EP <p+ ~ f(P), 

EP <p- ::; f(P). 

(2) 

(3) 

On the other hand, in most problems where unbiased estimators do exist, 

there are many of them. Thus in the example eonsidered above, any linear 

form 

with eoeffieients satisfying the eondition 

Cl + C2 + ... + Cn = 1 

ean serve as unbiased estimator for a. 

The exeessive diversity of unbiased estimators ean be signifieantly de

ereased if we confine ourselves to unbiased estimators that are expressed in 

terms of properly chosen suffieient statisties of the problem. To formulate the 

appropriate general theorems, I shall have to give a somewhat generalized def

inition of a sufficient statistie. Sinee in this definition a sufficient statistie ean 

be not only scalar, but also veetor-valued, we do not need to introduee the 
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not ion of "a system of sufficient statistics": in our general definition such a 

system of statistics (Xl, X2, ... , XI) can be considered as a single statistic 

The following, somewhat abstract formulations will be made more concrete in 

§2 and §3 which the reader should refer to should he find this formulation too 

complicated. 

Let X( x) be a function given on X and with values in some other space 

H. Consider the conditional probability distributions 

P(Alh) = P{x E Alx(x) = h} (4) 

and the conditional expectations 2 

Er 4J = L 4J(x)P(dxlh) (5) 

for a fixed value 

X(x) = h. 

Definition 3. A function X(x) is called a sufficient statistic for the system 

of distributions ~ if the conditional prob ability distributions P(Alh) do not 

depend on the choice of P from ~. 

Since, in accordance with [1], the conditional probabilities P(Alh) are 

only defined to within a set of values h taken by X(x) of prob ability 0 (for the 

distribution P for x), the exact meaning of Definition 3 is as folIows: X(x) is 

called a sufficient statistic for ~ if there exists a function Q(Alh) of A S;; X 

and hE H that for any P from ~ can be taken for P(Alh). 

Theorem 1. If X(x) is a sufficient statistic for~, then for any 4J(x) whose 

expectation EP is finite for all P E ~,the conditional expectations Er 4J do not 

depend on P E ~. 

As with Definition 3, the exact meaning ofTheorem 1 needs to be clarified. 

It is as folIows: for any function 4J(x) whose expectation EP 4J is finite for all P 

in ~, there exists an M(h) that for any P E ~ can be taken for Er 4J. 

2 The integrals in (5) should be understood in the sense of (10) and (11) of §4, 
Chapter 5 of my book [1]. 
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To prove Theorem 1 it suffices to set 

M(h) = L </>(x)Q(dxlh), (6) 

where Q(Alh) is taken from the explanation to Definition 3 and the integral is 

understood in the sense of the footnote to (5). 

The following two theorems give a generalization of Blackwell's results [3]. 

Theorem 2. If </>(x) is an unbiased estimatoT fOT f(P) and x(x) a sufficient 

statistic fOT 'iJ, then 3 

</>*(x) = Ex(x)</>(x) = M[x(x)] (7) 

is also an unbiased estimatoT for f(P). 

Theorem 3. FOT any P E 'iJ for which the variance oP </> exists, under the 

conditions of Theorem 2 we have the inequality 

To prove Theorems 2 and 3 it suffices to use the identities 

E(Ex</» = E</>, 

O</> = O(Ex</» + E(</> - EX</»2, 

(8) 

(9) 

(10) 

which hold for any functions </>(x) and X(x) provided that E</> and O</> exist. 

Theorems 2 and 3 can be considered as a substantiation of the natural ten

dency to use only unbiased estimators that are expressed via sufficient statis

tics of the problem: Theorem 2 shows that in doing this we do not restrict the 

number of problems for which there exist unbiased estimators, and Theorem 3 

demonstrates that when we pass from an unbiased extimator </> to the averaged 

estimator </>* expressed in terms ofthe statistic X, we can decrease the variance. 

It can be shown that the estimator </>* is always "no worse" than the estimator 

</> generating it, even when using other methods for comparing the "quality" of 

estimators. 

3 The superscript P to Ein (7) is omitted, since by Theorem 1 q,* can be chosen 
independent of P. 
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Moreover, as we shall see, Theorem 2 gives an effective tool for finding 

unbiased estimators with low variancesj often, by averaging "bad" but easily 

found estimators tP one can get "good" estimators tP... In a rather wide dass 

of cases unbiased estimators expressed in terms of properly chosen sufficient 

statistics appear to be uniquely determined by the functional f(P) to be esti

mated. This is discussed in an interesting work by Halmos [4] which represents 

one of a few attempts to approach unbiased estimators from the general view

point of sufficient statistics. Some results of Halmos will be given in §10 of this 

paper. 

§2 Main formulas for the discrete case 

If the set X of possible values of z is finite., 

and the distributions pI of the system ~ are uniquely determined by one or 

several parameters 0, 4 then it is natural to introduce the probabilities 

represent the functional f(P) by the function f(O) and set 

for the possible values of the estimator tP. The condition that tP is an unbiased 

estimator of f(O) is then expressed as 

n 

L tPkPk = f(O). (1) 
k=l 

Formula (1) shows that in the case when 0 runs through an infinite number 

of values, only few functions f(O), namely those expressed by linear forms (1), 

allow unbiased estimators tP. If the Pk(O) are linearly independent, then for 

each function f(O) which allows unbiased estimators there exists only one such 

estimator. 

4 In the case of several parameters 81. 82, ... , 8n , we shall denote by 8 the vector 
(81, 82, ... ,8n). 
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If the possible values of z are enumerated by pairs of indices, 

X = {ahk}, 1 $ h $ m, 1 $ k $ nh, 

then it is natural to give a similar enumeration to the probabilities Phk(O) and 

the values t/Jhk of the estimator t/J. Then the first index h will be a sufficient 

statistic of the problem if and only if Phk (0) can be written in the form 

(2) 

where the qhk do not depend on 0, 
nh 

qhk ~ 0, Lqhk = 1, 
k=l 
m 

Ph(O) ~ 0, LPh(O) = 1. 
h=l 

In case (2), in accordance with Theorems 2 and 3 we obtain from the unbiased 

estimator 

for /(0), the unbiased estimator 
nh 

t/J"(ahk) = t/J'h = L qhkt/Jhk (3) 
k=l 

with variance 

for any 0. 

The proof of Theorems 2 and 3 which, in the general case, though ex

tremely brief and simple, was based on a somewhat difficult general theory of 

conditional probabilities and expectations, now becomes, for the special case 

under consideration, purely arithmetic, since the expectations and variances 

under consideration can be expressed by the known formulas: 

m nh m 

E8t/J = LLPhk(O)t/Jhk, E8t/J" = LPh(O)t/J'h, 
h=lk=l h=l 

m nh 

08t/J = L LPhk(O)(t/Jhk - E8t/J)2, 
h=lk=l 

m 

E8t/J" = LPh(O)(t/J'h - E8t/J")2. 
h=l 
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§3. Main formulas for the eontinuous ease 

Let the distributions pB from ~ be given by prob ability densities 

p(xIO). 

In this case the condition for ljJ(x) to be an unbiased estimator for 1(0) is 

written in the form L ljJ(x)p(xIO)dx = 1(0), (1) 

that is, the determination of an unbiased estimator ljJ(x) for a given function 

I( 0) reduces to the solution of an integral equation. 

Suppose further that a function X(x) is given with values in aspace H. 

This function divides X into subsets Vh on which X takes constant values, 

x(x) = h. 

We assurne that the volume element dx can be expressed in the form 

where dh is the volume element in Hand dXl is a suitably defined volume 

element in Vh. Then X is a sufficient statistic of the problem if and only if the 

probability densities p(xIO) can be expressed in the form 

p(xIO) = p(h(x)IO)q(x), 

where q( x) does not depend on 0 and 

q(x) ~ 0, f q(X)dXl = 1, 
JVh 

p(h) ~ 0, [P(hIO)dh = 1. 

(2) 

In case (2), in view of Theorems 2 and 3, we can obtain from an unbiased 

estimator 

1jJ= ljJ(x) 

for 1(0), the unbiased estimator 

1jJ* = 1jJ*(x) = 1 ljJ(x)q(X)dX l 
V X(.?:) 

(3) 
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with variance 

(4) 

for any 0, this variance depending only on x( z): 

<p* = s[x(z)]. 

§4. Unbiased estimators of random variables 

In this section we further generalize the problem of §lj this generalization will 

be used in §5. Given a system i;J.l of admissible probability distributions 

P(A) = P{(z, y) E A} 

for the pairs consisting of an "observable" point zEH and a random variable Y 

that cannot be observed directly, a function <p( z) is called an unbiased estimator 

of Y for all P in i;J.l if 

(1) 

The question of finding such unbiased estimators for random variables does not 

involve new difliculties, since it is equivalent to finding unbiased estimators for 

f(P) = EPYj 

only now, to characterize the accuracy of the estimator <p for Y it is natural to 

consider the expression 

instead of the variance oP <p. 
In the case when z and Y are independent for any P in i;J.l we have 

(2) 

and since oP y does not depend on the choice of <p, the problem of finding an 

unbiased estimator <p for y with least value of EP(<p-y)2 is equivalent to finding 

an unbiased estimator for EP y with minimal variance oP <p. 

§5. Inspection by qualitative features based on a single sampie: 

the case of destroying the product item while testing 

In order to show, by means of a sufliciently specific example, the value of the 

theory of unbiased estimators in inspecting mass production based on selected 
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data, we consider two problems from this field in this section and in §7. In this 

paper we shall not go into details on the practical application of the suggested 

method. In this section we assurne that we destroy the industrial product item 

by testing and therefore, in principle, this testing can only be of a sampIe 

character. The inspection system under consideration is as folIows. 

Random sampling of n items is made from a batch containing N items. 

These n selected items are tested and the number x of "defective" items in the 

sampIe is found. If x :::; c, then the N - n items not included in the sampIe are 

accepted. If x ~ d = c + 1, then the whole batch is rejected. 

If there are y defective items in the batch before testing, then the number 

of accepted defective items will be 

We set 

y* = {
y-X 

o 
for x :::; c, 

for x ~ d. 

q=y/N, q*=y*/N. 

The aim of inspection is to guarantee that the q* are small enough, without 

causing unnecessary, that is, for small q, too frequent rejection of the entire 

batch, and without excessively increasing the sampIe size n. 

To satisfy all these requirements, appropriate values of n and c must be 

chosen. The main characteristic of the inspection system with given n and c is 

the conditional prob ability 

L(q) = P{x :::; clq} 

of obtaining x :::; c for a given q, that is, of accepting the batch. To compute 

L(q) we use the conditional probabilities 

n! (N - n)!Nn ( 1 ) 
Pm(q)=P{x=mlq}= m!(n-m)! N! q q- N x 

x(q- ~) ... (q- m;l)(1_q)(l_q_ ~) ... 

( n-m-1) ... 1-q- N (1) 

of obtaining x = m for a given q. It can easily be seen that 

L(q) = L Pm(q). (2) 
m~c 
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If ,it is necessary to reject batches with q < qo and to accept those with 

q > qo, ~hen the ideal operative characteristic for L(q) would be the function 

L(q) = {~ for q < qo 

for q > qo, 

given in Figure 1. This form of L(q) can be achieved only for n = N, which in 

case the tests are of a destructive character, would make the entire operation 

meaningless. However, we come dose to the ideal characteristic in Figure 1 if 

we choose a sufliciently large c and take 

n "" c/qo. 

If N is very large, this does not lead to an excessive increase in the ratio n/ N 

which, of course, should remain sufficiently small. Figure 2 gives operative 

characteristics for the case 5 

N = 10,000, n = 1,000, c = 20, qo "" c/n = 0.02. 

Unfortunately, quite satisfactory operative characteristics even for N of 

the order 1,000-10,000 can often be obtained only at the expense of increasing 

the ratio n/N. Therefore, we often use inspection systems with operative 

characteristics that do not faU steeply enough as q grows. 

tJ f/J 

Fig.1 

lJIJ 
/ 

!l Il, tJ! 

Fig.2. 

In these cases it becomes especially important to estimate the proportion of 

actually accepted defective items based on the test results. When production 

5 Sampling inspection. Statistical Research Group, Columbia Univ., 1948. 
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runs smoothly enough this proportion is often much smaller than the proportion 

of defedive items qo which has been used for computing the inspedion system. 

Subsequent estimations of the proportion of defective items in the products 

to be checked based on test results and the proportion of defective items that 

were accepted using this inspedion system, is certainly very important also in 

the case of quite satisfactory operative characteristics. This is the problem we 

will solve now. 

Assume that the inspection system with given n and c is applied to a large 

number S of batches. The ratios q and q* introduced above will be denoted by 

qr and q; for the rth bateh. Moreover, Sm will be the number of batches with 

X = m (where m is the number of defedive items found in a bateh). Clearly, 

S = So + SI + ... + Sn, 

while 

S' = So + SI + ... + Sc 

denotes the number of accepted batches. The total number of items in S batches 

lS 

R=sN, 

while the number of accepted items is 

R' = s'(N - n). 

The total number of defective items is 

y = LYr = NLqr, 
r=l r=1 

while the number of accepted defective items is 

3' 3 

y' = LY~ = NLq;· 
r=1 r=1 

The success of the entire inspection procedure is measured by how much the 

ratio 

q:nean = y' / R'. 

is less than the ratio 
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Since 

where 
y' 1 3 

* ~ * qmean = R = -; L...Jqr, 
r=l 

while the ratio R/ R' becomes known after acceptance and is dose to 1 for any 

normal production run, we can take it that our problem is to estimate qmean 

and q~ean. 

If the number S of batches is large enough, and if tfo(x) and tfo*(x) are 

unbiased estimators of q and q* respectively with respect to x, then by the 

law of large numbers, qmean and q~ean can be estimated using the approximate 

formulas 

(3) 

(4) 

The accuracy of these formulas is determined by the standard methods, since 

the terms on the right-hand si des of the equalities 

1 3 

qmean - tfomean = - L[qr - tfo( x r )], 
S r=l 

q~ean - tfo~ean = ~ t[q; - tfo*(xr)] 
r=l 

are independent. This is discussed at the end of the next section. 

An unbiased estimator for q is weIl known: 

It leads to the estimate 

for qmean. 

tfo(x) = x/no 

1 n 

qmean ....., tfomean = - L mSm 
ns m=l 

(5) 

(6) 



UNBIASED ESTIMATORS 381 

Since always 6 

(7) 

it follows that qmean can also serve as an upper estimator (see Definition 2 

of §1) for q~ean' However, this well-known estimator does not indicate the 

decrease in the number of defective items as a result of inspection. To obtain an 

idea about more efficient estimators of q~ean we consider the general question: 

which functions /(x) have unbiased estimators with respect to the number of 

defective items x in a sampIe of n items. This quest ion is solved very simply 

in accordance with §2. For any function ifJ(x), 

n 

/(q) = EqifJ(x) = L ifJ(m)Pm(q) (8) 
m=O 

is a polynomial in q of degree at most n. Since in this case the n+ 1 polynomials 

Pm(q) are linearly independent, any polynomial /(q) of degree at most n can be 

uniquely expressed in the form (8). In other words, polynomials /(q) 0/ degree 

at most n, and only these polynomials, have unbiased estimators with respect 

to x, and such an estimator is unique1y determined by the polynomial /(q). 

It can easily be verified that 

Q(q) = Eqq* = L (q - ~)Pm(q) 
m:5c 

(9) 

is a polynomial of degree n + 1. Therefore an accurate unbiased estimator ifJ* (x) 

for q* with respect to x does not exist. However, in the following section we shall 

see that the problem of finding such an estimator allows, under rat her general 

assumptions, a very simple approximate solution. Moreover, the follo~ing two 

remarks are of interest. 

1. For any n' < n there exists an unbiased estimator for the number of 

defective items x in a sampIe of n items for q* that would be obtained from 

inspection over sampIes of n' items (with any c). 

2. By approximating Q(q) by polynomials Q+(q) and Q_(q) of degree at 

most n such that 

we can obtain upper and lower estimators ifJ+ (x) and ifJ*- (x) respectively for q* . 

6 M . I * < 1 ~8 ore preClse y, qmean _ qmean - 6N L.....r=l Xr· 
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This method promises acceptable practical results for many cases in which 

the approximate formulas of the next section are inapplicable. 

§6. The case c «: n «: N 

If n is small compared to N, then we may set 

.. {q q = o 
for x ~ c, 

for x ~ d, 

in a sufficiently good approximation, and replace (1), (2), (9) of §5 by 

I 
Pm(q) = I( n~ )l qm(1- qt-m , m.n m. 

L(q) = L Pm(q), 

Eqq" - Q(q) = qL(q). 

Assuming that we can use (1) for the variance 

(1) 

(2) 

(3) 

of the estimator (5) of the previous section, we obtain the unbiased estimator 

1jJ2 = x( n - x) , 
n2 (n - 1) 

(4) 

found by Girshick, Mosteller and Savage [5]. From this we obtain the unbiased 

estimator 
1 n-l 

ß2 = 2 2( 1) L m(n - m)sm sn n- m:1 
(5) 

for the variance of <Pmean. 

For m small compared with n the probabilities Pm(q) are non-zero only 

for small q, and (1) can be replaced by the simple approximate formula 

Since by (6), 
m+1 

qPm(q) = --Pm+1(q), 
n 

under the assumption that c is small compared with n, (2) and (3) give 

1 
Q(q) = - L mPm(q). 

n 
m~d 

(6) 

(7) 
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Thus when we can use (3), (6) and (7), the function Q(q) is a linear 

combination of the Pm(q) and, in accordance with §2, we are able to construct 

an unbiased estimator for Q(q) (and consequently, for q*) with respect to x. 

This estimator has the form 

4J*(x) = {~/n for x ~ d = c + 1, 

for x ~ d+ 1. 

This gives the following unbiased estimator for q~ean: 

(8) 

(9) 

It is instructive to compare (9) with formula (6) in §5. Comparing these 

formulas we see that for large s the difference 

* 1 '"' 4Jmean - 4Jmean = - w mSm ns 
(10) 

m>d 

is approximately equal to qmean - q~ean or (when R/ R' is elose to 1) to qmean -

q:nean' that is, the decrease of the proportion of defective items in the process 

of inspection. 

We can quite effectively estimate the accuracy of the approximate estima

tor (9). The independence of the sampies from different batches (this indepen

dence is implicit in the notion of a "random sampie") implies that 

Since 

{ 
(q - x/n)2 

(q~ean - 4J~ean)2 = ~x/n)2 

it follows that 

or, after appropriate transformations, 

for x ~ c, 

for x = d = c+ 1 

for x ~ d+ 1, 

(11) 

(12) 

d 

Eq(q~ean - 4J~ean)2 = :2 [L: mpm(q) + d(d + l)Pd+1(q)]. (13) 
m=l 
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Therefore an unbiased estimator of Eq(q* - </J*)2 is 

{ 
x/n2 

"pZ(x) = ~(d + 1)/n2 

for x ~ d, 

for x = d + 1, 

for x ~ d+ 2, 

while 

1 • 1 d 

Ä~ = s2 ~ "p2(X r ) = (ns)2 [f mSm + d(d + l)sd+1] = 

</J:nean d( d + 1) 
= -- + ( )2 Sd+l ns ns 

can serve as an unbiased estimator of E(q:nean - </J:nean)2. For large s 

and according to Lyapunov's theorem, 

P{lq:nean - </J:neanl ~ tÄ} '" ~ 1t 
e- t2 / 2dt. 

v211' 0 

(14) 

(15) 

(16) 

In conclusion, we consider a numerical example in which (6) of §5 and (4), 

(9), (15) and (16) of this section are applied. Let 

N = 1000, n = 50, 

s = 200, c = 1,d = 2. 

m o 1 2 3 4 5 6 7 8 

143 27 12 9 3 1 2 1 1 

</Jmean = 0.0133, Ä* '" 0.0010, 

Ä '" 0.0011, qmean '" 0.0133 ± 0.0011, 

</J':nean = 0.0051, q':nean '" 0.0051 ± 0.0010, 

or, under the 3u-rule, 

9 

Iqmean - </Jmeanl < 3Ä, Iq:nean - </J:neanl < 3Ä, 

0.0100 < qmean < 0.00166, 0.0021 < q':nean < 0.0081. 

10 11 

1 

I believe that for the chosen s, N, n and c the use of the formulas introduced 

under the assumptions c <t:: n <t:: N and large s is already correct. This 

question, however, deserves a detailed study. 
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§7. Inspection by qualitative features based on a single sampie: 

the case when the tests do not affect the product items 

If a test does not affect the items, we may accept an inspection system different 

from that considered in §5. 

A random sampie of n items is made from a batch consisting of N items. 

The n items chosen are tested, and the number z of "defective" items in the 

sampie is found. If z :5 c, then the z detected defective items are replaced by 

good ("non-defective") ones, and the whole batch is accepted. If z ~ d = c+ 1, 

then the whole batch is checked, all defective items thus detected are replaced 

by good ones, and only after that is the entire batch accepted. 

As in §5, 
* {q - ziN q = o 

for z :5 c, 

for z ~ d, 

but now q* has a simpler meaning: it is the proportion of defective items 

remaining in the batch after the above-described procedure. Formulas (1)-(9) 

of §5 hold. Here Q(q) has the new meaning of expectation of the proportion 

of defective items in an accepted product * under the assumption that prior 

to inspection the proportion of defective items in each batch was equal to 

q. Therefore we can now make an a priori es~imate of the worst possible 

average quality of a product accepted under this inspection system: whatever 

the distribution of defective items over the batches prior to inspection, in the 

product accepted after inspection the proportion of defective items is, on the 

average, at most 

QL = max Q(q). 
°S9S 1 

(1) 

In the setting of §5 this apriori estimate is impossible. In Figure 3 the function 

Q(q) is plot ted 7 for 
N = 1000, c = 1 

n = 100, d = 2. 

The maximum QL = 0.0035 is attained here for q = 0.009. 

In addition to the number of defective items z, in this new setting of simple 

inspection we can also observe the number 

{o 
z-

qN-z 
for z :5 c, 

for z ~ d, 

* Here a product can also be a set of batches (Translator's note). 
7 Grant, Statist'cal quality control, 1946, p.353. 
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L(;) 

4D~~ 
Il, /Ja 

-
Fig.3 

of defective items found during overall checking of N - n items not included 

in the sampie, should such checking take place. This gives new possibilities for 

obtaining unbiased estimators of q and q* . 

It can easily be seen that the sum 

u = x+z = {;N 
is a sufficient statistic for the problem. 

for x ~ e, 

x~d 

Now we shall see that for any 0 < e ~ n and for any funciion f(q) there 

exists a unique unbiased estimator 4;( u). 

Indeed, the requirement 

EQ4;(u) = L 4;(m)Pm(q) + 4;(qN)[1- L(q)] = f(q) (2) 
m~c 

comprises N + 1 equations corresponding to the possible values of q: 

q = 0,1/N,2/N, ... ,1. 

Since for q = 0, 1/N, ... , e/N the factor 1- L(q) in (2) vanishes, for u ~ e 

the function 4;( u) is uniquely determined by the system of d equations 

L4;(u)pu(:) =f(~), m=0,1, ... ,e. 
u~c 

(3) 

For u ~ d, setting q = u/N, we obtain from (2) 

4;(u) = [f(u/N) - L 4;(m)Pm(u/N)] / [1- L(u/N)]. (4) 
m~c 

In particular, for f(q) = Q(q) formulas (3), (4) give an unbiased estimator for 

Q(q), that is, for q*. 
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§8. Estimators of f(a) for a normal distribution with given tT 

Let Xl, X2, ••• ,Xn be independent and obey the normal distribution with prob

ability density 

(1) 

We assume that u is known. Then 

(2) 

is a sufficient statistic for the problem. The prob ability density for x can be 

expressed in the form 

p(xla, u) = G(x - a, T), (3) 

where 

G(z t) = _1_e- z 2/4t 
, 2Viii ' (4) 

T = u 2 j2n. (5) 

In our case (for unbiased estimators of the form </J(x) for the function f(a)) the 

main equation (1) of §3 can be expressed in the form 

i: </J(x)G(x - a,T)dx = f(a). (6) 

For t > - T we set 

</J(z, t) = i: </J«()G«( - z, T - t)d(. (7) 

Clearly, 

</J(z, 0) = f(z). (8) 

Without neglecting solutions of the problem that can be of practical in

terest, we may confine ourselves to functions </J(z) such that 

1) </J(z, t) is analytic for all real z, t > -T with respect to the variables z 

and tj 

2) </J(z,t) has the limits 

</J(z, -T) = </J(z) (9) 
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for almost all z. 

As is known, for t > - T the function <p( z, t) satisfies the heat equation 

(10) 

and, under the above assumption, is uniquely defined for t > -T by its values 

fez) at t = o. By (9) this implies that <p(z) is uniquely determined by fez). 8 

Thus, if the problem of finding unbiased estimators for f(a) is solvable, 

then, under restrietions 1) and 2) its solution is unique. 

By (8)-(10) the problem offinding unbiased estimators for f(a) is reduced 

to "the inverse heat conductivity problem", which is considered, for example, 

in [6]-[8]. In what follows we will note only the following concerning this. If at 

a certain time To > T, fez) is already representable as 

fez) = I: G«( - z,To)dF«(), 

then the unbiased estimator <p(x) is given by the formula 

<p(z) = I: G«( - z,To - T)dF«(). 

In particular, for the prob ability density itself, 

p(xla, u) = G(x - a, u2/2) 

(11) 

(12) 

(13) 

at some fixed point x we obtain an unbiased estimator for n > 1 in the form 

<p:c(x) = ~ e-(x-:c)2/2q~, u~ = (1- ~)u2. (14) 
v2~uo n 

Integrating (14) for any fixed set A on the x-axis, we obtain for 

P(A) = P{x E Ala,u} = i e-(:c-a)'/2q2 dx 

the unbiased estimator 9 

<PA(X) = __ 1_ [ e-(:c-x?/2q~dx. 
y'2iuo JA 

(15) 

(16) 

8 Since by (3) x hits a set of measure zero with prob ability zero, the possible 
ambiguity of tjJ(z) on a set of measure zero does not bother uso In all similar 
cases it is legitimate to understand the uniqueness of a solution as uniqueness 
to within cases having probability zero for all admissible distributions P. 

9 It was Yu.V. Linnik who drew my attention to (14) and the possibility of obtain
ing (16) from it by integration. Before this remark by Yu.V. Linnik I derived 
estimators of type (16) for special kinds of sets A directly from (6). 
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Formula (16) is applicable for n > 1. When n = 1, we can use instead the 

unbiased estimator for P(A) with respect to i = Zl of the form 

for Zl E A, 

for Zl 'EA. 

Similarly, for n > 1 we can also give for P(A) an unbiased estimator: 

(17) 

(18) 

equal to l/nth of the number of points Zm belonging to the set A. This 

estimator has the advantage of being an unbiased estimator of P(A) also in the 

case when the dass ~ of admissible distributions 

P(A) = P{z E A} 

is enlarged so as to indude the dass of all one-dimensional distributions P(A). 

However, in the case of normal distributions with unknown a and given (1', the 

estimator tP~ is far less efficient than t/J A. 

§9. Estimators of f(a,tT) for a normal distribution with 

unknown a and tT 

We shall proceed from (1) of §8 and retain the assumption of independence 

of Zl, Z2, ... ,zn, but ass urne that both parameters are unknown. From the 

formula 

1 [n { _ 2 2}] p(Zl. Z2,···, znla , (1') =."fiFi exp --2 2 (Z - a) + s 
( 21r(1')n (1' 

(1) 

for the n-dimensional prob ability density it is dear that there are two sufficient 

statistics for the problem, namely i and 

(2) 

The two-dimensional prob ability density for i and s is expressed by 

(3) 
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1rn(n-l)/2 

K n - 2 = r«n - 1)/2) (4) 

is the (n - 2)-dimensional volume of a sphere of radius 1 in (n - 1 )-dimensional 

space. The main equation (1) of §3 now takes the form 

i: i: <fo(i,s)p(i, sla, u)dsdi = f(a,u)·v (5) 

We will confine ourselves to finding, with the help of Theorem 2 of §1, the 

solution of (5) for the case 

f(a,u) = P(A) = L p(xla,u)dx. 

As already mentioned in §8, for P(A) there exists an unbiased estimator 

for Xl E A, 

for X2 'EA. 

(6) 

To obtain an unbiased estimator for P(A) of the form <fo(i, s) it remains 

to compute the integral 

(7) 

where VX ,$ is the set of points (Xl, X2, ••• , xn ) in n-dimensional space satisfying 

the equations 

Xl + X2 + ... + X n -=----=-----"- = i, 
n 

which is an (n - 2)-dimensional sphere of radius 

p= vns; 
dv denotes the volume element in VX ,$' and q is the constant 

1 

For n > 2, 

(8) 

(9) 

(10) 
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where <Px is an unbiased estimator with respect to i and s for the prob ability 

density p(xla, 0") at x. To determine <Px we consider the volume of the annular 

zone 

cut out from the sphere VX ,<1 by the hyperplanes 

Xl = X, Xl = X + dx. 

When 

this annulus disappears and 

whereas for 

its radius is 

its width is 

<Px = 0; 

f6 p 
{j = ---dx 

n -1 p' 

and its volume is 

<Px dx _ K (')n-3~ - K J n (,)n-4d - n-3 P u - n-3 1P P x. 
q n-

Using (9)-(11) we finally obtain 

K n _ 3 1 1 1 1 x-x -~-
{ 

2 n-~ 

<Px = ;n-2 -/n-l .. { - n=I (-8-)} , 

By introducing the function 

where 

if I (x:x) I < Vn=1, 
if I (x:x) I > Vn=1. 

for Itl ~ .;n=l, 

for It I ~ .;n=l, 

c _ K n -3 Vn _ r«n - 1)/2) 
n - K n - 2 n - 1 - y'27rr«n - 2)/2).;n=l' 

(11) 

(12) 

(13) 

(14) 
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we can write 1>x as 

1>x = ~fn (X ~ X). 
As n ~ 00, the functions fn(t) converge to 

foo(t) = ~e-t2/2. 
v 27r 

§10. Unbiased esthnators of characteristics of an arbitrary 

distribution based on independent observations 

(15) 

(16) 

The examples that we have been considering have given the reader some idea 

of the variety of specific problems on finding unbiased estimators. It seems to 

me that this field of mathematical statistics deserves m~re attention than it 

has received so far. Concluding this article, which does not claim more than 

to demonstrate by way of examples the fact that this field is underdeveloped, I 

would like to point out a connection between the general approach to unbiased 

estimators and sufficient statistics given in §1, and the results of Halmos' work 

[4] quoted above. 

Suppose that we are given a system of distributions !,po in a certain space 

X o. As admissible distributions in the space X of ordered systems 

where X m E X o (m = 1,2, ... ,n), we will consider only those distributions 

that are obtained in the usual way from the assumption that all the x m are 

independent and obey the same distribution 0 E !,po. 

The question: which functionals f(O) defined on !,po allow an unbiased 

estimator of the form 

1>(XI,X2, ... ,Xn), 

is equivalent to the question: which functionals f( 0) defined on !,po can be 

represented in the form 

f(O)= r r ... r 1>(XI,X2, ... ,xn)O(dxI)O(dx2) ... O(dxn). (1) 
Jxo Jxo Jxo 

It is natural to call functionals of the form (1) functionals of degree ~ n. In 

many ways they are similar 10 to polynomials of degree ~ n. For example, it 

can easily be seen that they have the following property: 

10 It can easily be seen that any functional /(8) that is representable in the form 
(1) for n = nl is also representable in the form (1) for n = n2 > nl. It is natural 
to call the functionals /(8) representable in the form (1) for n = no but not 
representable in the form (1) for any smaller n /unctionals 0/ degree no. 
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(*) For any fh and (J2 the expression 

may be expressed as a polynomial of degree ~ n in A for all A such that 

(J = A(J1 + (1 - A)(J2. 

Under eertain restrietions on ~o the eonverse is true: (*) implies representabil

ity in the form (1), that is, (*) may be taken as adefinition of funetionals of 

degree ~ n (cf. the definition of polynomial operations given in [9]). 

This evident eriterion for the existenee of unbiased estimators for f( (J) has 

led Hairnos to some interesting eonclusions. For example, if ~o eonsists of all 

distributions (J on the number ws for whieh the absolute moment 

(3, «(J) = 1: IW d(J 

where s is a positive integer, is finite, then the eentral moment 

p,«(J) = I: [t - m«(J)]'d(J, m«(J) = I: td(J, 

has an unbiased estimator of the form 

if and only if 

s ~ n. 

(Unbiased estimators for s ~ n are well-known, see [2],§27.6.) 

It is then easy to see that, in aceordanee with the general definition of 

§1 for our problem of estimating f«(J) in terms of Xl, X2, •• . , Xn, there exists a 

suffieient statistic X in the form of a system of values (x 1 , X2, ... , X n) eonsidered 

independently of the order of the points X m (but eounting multiplieities, if 

eertain X m eoineide). The functions rjJ( Xl, X2, ..• , Xn) expressed in terms of this 

suffieient statistie X are, in fact, symmetrie functions in Xl, X2, ... , Xn. This 

evident remark brings us, by Theorems 2 and 3 of § 1, to one of Halmos' results: 

ifthere exists an unbiased estimator ofthe form rjJ(X1' X2, ... , xn) for f«(J), then 

for f«(J) there also exists asymmetrie unbiased estimator rjJ*(X1, X2, ... , xn) 

with varianee not exeeeding the varianee of rjJ(X1' X2, •.. , xn). 
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However, Halmos went even furt her than these evident results and proved 

that under certain not too restrictive limitations imposed on the system '+lo, 
the symmetrie unbiased estimator is unique (see [4]). 

30 March 1950 
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39. ON DIFFERENTIABILITY OF TRANSITION PROBABILITIES OF 

TIME-HOMOGENEOUS MARKOV PROCESSES WITH 

A COUNTABLE NUMBER OF STATES * 
The transition probabilities ~(t) we are interested in are defined for all real 

t ~ 0 and satisfy the relations 

~(t) ~ 0, 

L~(t) = 1, 
fJ 

for 0: f:. ß, 
for 0: = ß, 

L~(t)p~(t') = pl(t +t'). 
fJ 

(I) 

(H) 

(IH) 

(IV) 

In addition to these relations of an algebraic character we will assume that the 

continuity condition holds: 

~(t) -+ ~(o) = e~ as t -+ O. (V) 

Although (V) requires continuity of the functions ~(t) only at t = 0, it 

can easily be seen that the conditions (I)-(V) imply that these functions are 

continuous for all t ~ O. 

In the case of a finite number of states, that is, when 0:, ß and 'Y in (1)
(V) run only through 1,2, ... , n, (I)-(V) imply (see [2]) that the ~(t) are 

differentiable for all t ~ 0 (naturally, only on the right for t = 0), that is, in 

particular, that the limits 

[ d ] . 1 - pa(t) 
aa = - -p~(t) = hm a, 

dt t=O t .... o t 
(1) 

afJ -a- [~~(t)] = lim ~(t) for ß f:. 0:, 
dt t=O t .... o t 

(2) 

exist. These limits satisfy the relations 

(3) 

* Uch. Zap. MoskOfJ. Gos. UnifJ. Mat. 148:4 (1951), 53-59. 

395 
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and have the weIl-known probabilistic meaning of prob ability densities of leav

ing the ath state (for the aa) and prob ability densities of transition from the 

ath state to the ßth state (for the a~). The transition probabilities J{(t) them

selves are uniquely determined by the transition densities a~ (in terms of which 

the aa are defined by (3)) as solutions of any of the two systems of differential 

equations 

~P!(t) = -aap~(t) + L a~~(t), (4) 
"Ita 

(5) 

with initial values (111). 

After my work [1] the systems (4) and (5) became the main apparatus 

for studying transition probabilities ~(t) for a countable set of states as weIl, 

that is, when the indices a, ß, 'Y in (I)-(V) run through the positive integers 

1,2,3, . ... However, in the general case even the preliminary questions of the 

existence of the limits (1) and (2), the differentiability of the transition proba

bilities J{(t) for t > 0 and the applicability of formula (3) and the differential 

equations (4) and (5) remained open for a long time. Apparently, if we confine 

ourselves to the assumptions (I)-(V) and introduce no additional restrictions, 

then the case with a countable number of states is as follows: 

(A) the limits aa always exist, but there are some examples when they 

are equal to 00; 

(B) the a~ always exist for ß i' a and are finite; 

(C) always 

L a~ ~ aa, 
ßta 

but even for finite aa there are examples when 

(D) the J{(t) always have finite derivatives for t ~ 0; 

(E) if all the aa are finite, then (4) holds if the equations (3) hold; 

(6) 

(7) 

(F) there are examples when the system (5) is not satisfied, even if all 

the aa are finite and all the equations (3) hold; 
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(G) there are examples of two different systems of functions ~(t) satis

fying (I)-(V) with identical and finite aa and a~ satisfying (3). 

Of the above statements, only (D) remains conjectural. The others were 

partially proved by Doob (see [3], [4]), and are established completely in the 

present paper. 

Proo/ 0/ (A). The existence of finite or infinite limits was proved by Doob. We 

shall give another, quite elementary, proof (Doob 's proof makes use of measures 

in function spaces). 

Set 
- 1" f 1 - p~(t) (8) aa = ImID . 

t-O t 

Clearly, äa ~ O. If äa = 00, then 

- l' 1- p~(t) aa= Im-....;;...=~ 

t-O t 

and aa = iia is the desired limit. 

If iia < 00, then for any t > 0, 

(1 - p~(t))/t $ äa . 

Indeed, take arbitrary t > 0 and t: > 0 and choose h such that 

(1 - p~(h))/h $ iia + t:/2, 

p~(s) > 1- (t:/2)t 

for s < h. We write t in the form 

t = nh+s, 

where n ~ 0 is an integer and s < h. Then 

p~(t) ~ {p~(h)}np~(s) ~ {1- (iia + i)h r (1- i t ) ~ 

~ { 1 - n ( iia + i) h} (1 - i t ) ~ { 1 - (äa + i) t } x 

x ( 1 - it) ~ 1 - (iia + t:)t, 

(1 - p~(t))/t $ iia + t:. 

(9) 

(10) 

(11) 

(12) 

(13) 
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Since f > 0 is arbitrary, (13) implies (10). Formulas (10) and (8) imply 

(9). Thus the existence of the limit a~ = -aO' = -aO' is also proved for finite 

aO'. 

Whether the case aO' = 00 is possible remains an open question in Doob's 

work. The affirmative answer is given by the following: 

Lemma. Suppose that for a 2: 2 the aO' > 0 are finite and are such that 

00 1 
L:- < 00. 
0'=2 aO' 

(14) 

Then there exists a Markov process satisfying (I)-(V), with given aO' for a 2: 2, 

ß a~ = aO'} 
al = 00, a l = 1 for ß 2: 2, a~ = 0 for a 2: 2, a f. ß 2: 2. 

The ~(t) satisfying these requirements may be constructed in the follow

ing way. Setting 

pt(t) = 4>(t), 

we assume that for ß 2: 2, 

d ß ß dt Pl (t) = 4>(t) - aßPl (t), 

which, together with 

pf(o) = 0, 

gives 

The requirement 

L:pf(t) = pt(t) + L:pf(t) = 1 
ß ß~2 

leads to the equation 

Condition (14) implies that the kernel 

00 

k(r) = L: e-aßT 

ß=2 

(15) 

(16) 

(17) 
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has finite integral 

100 00 1 
k( r)dr = L: -. 

o (:J=2 a{:J 

Therefore, 1 (17) has a continuous solution </J(t) for t ~ 0, which can be obtained 

in the usual way via the Fourier transformation. It can easily be shown that 

this solution is continuous and satisfies the conditions 

</J(O) = 1, </J'(O) = -00. 

To complete our construction, it suffices to attach to (15) and (16) the ~(t), 

for 0' ~ 2 satisfying the equations 2 

~p~(t) = aapr{t) - aap~(t), 

~p~(t) = p~(t) - aap~(t), 

~~(t) = p~(t) - a{:J~(t), 

which can easily be integrated one by one (with initial values (111». The prob

abilities ~(t) so constructed satisfy all the requirements (I)-(V). 

Proof of (B). 

Lemma. Suppose that for t ~ H, 

1 - p~(t) ~ f, 1 - ~(t) ~ f. (18) 

Then for 

nh ~t ~ H, 

where n > 0 is an integer, 

p!(t) ~ np!(h)(1 - 3f). (19) 

1 See E.C. Titchmarsh, Introduction to the theory 0/ Fourier integrals, Oxford 
Univ. Press, Oxford, 1948, §11.5. 

2 Here the second and third equations are taken from (5), and the first one from 
(4). 
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Proof. Let 3 

ri~ß 
i=1.2 •...• k-l 

Qk = L: p~l(h)p~~(h) ... p~:+l(h) ... P;k-l (h). 
ri~ß 

199-1 

It can easily be seen that 

n 

1 - p~(t) ~ ~(t) ~ L: PkPg(t - kh) ~ (1 - t)P. (20) 
k=l 

Formulas (18) and (20) imply that 

P ~ t/(l- t). (21) 

On the other hand, 

k-l 
Qk ~ p~(kh) - L: Pi ~ p~(kh) - P, (22) 

i=l 

which, together with (18) and (21) gives 

(23) 

Finally, 
n 

~(t) ~ L: Qk_l~(h)~(t - kh), (24) 
k=l 

which, together with (18) and (23), gives 

~(t) ~ n~(h)(l- t - 1 ~ J(1- t) ~ n~(h)(l- 3t), 

as required. 

3 To understand the meaning of inequalities (20), (22) and (24) the reader should 
remember the probabilistic meaning of Pk and Qk' These inequalities, however, 
can easily be proved also in a purely algebraic way, based on (I)-(IV). 
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Now assume that the conditions of the lemma are satisfied for a given H 

and consider an h ~ H. Let n be the integer part of H/h and let t = nh. Then 

n ~ H/2h 

and, by (19), 

1 ~ p!(t) ~ np!(h)(1 - 3e), 

that is, 

~(h) < 1 < 2 
h - nh(1 - 3e) - H(1 - 3e) . 

Hence 

ä~ = limsup ~(t) < 00. 
t ..... o t 

For any t ~ H choose h such that 

P!(h)/h ~ ä~(1 - e), 

hit ~ e, 

and denote by n the integer part oft/ho Then 

nh ~ t(l- e) 

and, by (19), for e< 1, 

~(t) > nh ~(h) (1 _ 3e) > ~(h) (1 _ 3e)(1 _ e) > 
t -t h - h -

~ ä~(1 - 4e)(1 - e). 

(25) 

(26) 

(27) 

(28) 

For any e such that 1 > e > 0 (28) is proved for t ~ H, where H is sufficiently 

small. This, together with (25), implies that 

I· ~(t) _ -p _ p 
Im-- - aa - aa· 

t-O t 

Proof of(C). Inequality (6) is elementary and can be found in the work ofDoob 

[3], [4]. 
Here is an example where (7) holds for a = 1, though all the aa are finite. 
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1) For 0 ~ 3 the probabilities p~(t), ~(t) for 3 ~ ß < 0 and p~(t) are 

determined from the differential equations 

!p~(t) = -aap~(t), 
d 
dt~(t) = aß+l~+l(t) - aß~(t), ß = 0 - 1,0 - 2, ... ,3, 

!p~(t) = a3P~(t) 

(with the usual initial values (111)), where the aa > 0 are chosen so that 

00 1 L-<oo. 
a=3 aa 

2) For 0 ~ 2 and ß = 1 or ß > 0, ~(t) == O. 

3) p~(t) == 1. 

4) pHi) = e-t . 

5) For ß > 1, 

where 

~(t) = lim ~(t). 
a-oo 

Since for these ~(t) 

al = - [dd p~(t)] = 1, 
t t=G 

it follows that 

[dd pf(t)] = 0 for all ß > 1, 
t t=o 

Laf < al· 
ß# 

It can be verified that (I)-(V) hold in this example. 

(29) 

Statement (E) was proved by Doob (see [4], VIII). For the above example 

equation (4) fails. Indeed, in this example al = 1 and af = 0 for ß :F 1. 

Therefore for 0 = 1, (4) are of the form 

dpf (t)/ dt = -pf (t) 
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and, together with pf(O) = 0 yields 

pf(t) = 0 

for all ß i 1, which is absurd. 

Proof of(F) and (G). This can be found in Doob's work (see [4], Theorem 2.2). 
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40. A GENERALIZATION OF POISSON'S FORMULA 

FOR A SAMPLE FROM A FINITE SET * 
A box contains N balls, M of which are white and N - M black. If n balls 

are taken out of the box at random, then the prob ability of obtaining m white 

balls is given by 

(1) 

Although (1) is elementary, computations based on it are difficult, and it 

is replaced by the approximate relations 

Pn(m/N,M) '" P~(m/N,M), (2) 

where P" is some expression that is easier to compute or use than the precise 

formula for P. In what follows we indicate conditions when (2) becomes precise 

in the limit, meaning that 

n 

I:lp-rl-+O. 
m=O 

Most often the Laplace-type approximation is used: 

where 

P*(m/N M) = _1_e-(m-a)2/2q 2 
n 'v'2iu ' 

a = np, 

u 2 = np(1 - p)(N - n)/(N - 1), 

p=M/N. 

(3) 

(4) 

(5) 

(6) 

(7) 

The most widely known conditions for the applicability of approximation 

(4) are as folIows: 1 

..\ = n/N < ..\0 < 1, a = np -+ 00, n(1- p) -+ 00, (8) 

where ..\0 is assumed to be constant. 

* Uspekhi Mat. Nauk 6:3 (1951), 133-134. 
1 For Bernoulli's scherne, cf. P.A. Kozulyaev, Uch. Zap. Moskov. Gos. Univ. Mat. 

15 (1939), 179-182. 
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The condition A ::; AO < 1 is not restrictive since for A ~ ~ we can consider 

the "complementary" sampie from the remaining 

n' = N - n 

balls, for which A' ::; ~. 
Therefore in all cases when n - 00 it only remains to consider the cases 

of bounded a = np and bounded n(l- p). The second of these cases is reduced 

to the first one by calling white balls black and black balls white. The aim of 

the present note is to show that if 

n - 00, a = np ::; c (9) 

the following generalized Poisson approximation is correct: 

P*( /N M) = a(a - A)(a - 2A) ... (a - (m - l)A) -wa 
n m , m!(l _ A)m e, (10) 

where 

w = -Oog(l - A)]/A. (11) 

Approximation (10) is also correct under more general conditions. Namely, 

for its applicability in the sense of (3) it suffices that 

p-O. (12) 

Using the easily verified identity 

a(a - A)(a - 2A) ... (a - (m - 1)A) e-wa = ~Am(l- At-m (13) 
m!(l- A)m M 

and the well-known duality 

Pn(m/N,M) = PM(m/N,n) (14) 

the problem is reduced to proving that the binomial approximation 

(15) 

is applicable in the sense of (3) under the condition 

A-O. (16) 



41. SOME RECENT WORK ON LIMIT THEOREMS 

IN PROBABILITY THEORY* 

Introduction 

In the middle of the 1940's it seemed that the topic of limit theorems of clas

sical type (that is, problems of the limiting behaviour of distributions of sums 

of a large number of terms that are either independent or connected in Markov 

chains) was basically exhausted. The monograph written by me together with 

B.V. Gnedenko [1] was intended to summarize the results ofthe previous years. 

In reality, however, starting from the late 1940's more papers in these classi

cal fields appeared. This can be explained by several circumstances. First, it 

became clear that from a practical viewpoint the accuracy of remainder terms 

obtained so far was far from sufficient. Secondly, certain problems that were 

solved earlier only under complicated and very restrictive conditions unexpect

edly obtained very simple complete solutions (in the sense of necessary and 

sufficient conditions). These include, for example, the problem of "localiza

tion" of limit theorems, which turn out to have an exhaustive solution both 

for the case of identically distributed independent summands and for the case 

of the distribution of the number of separate states visited in a homogeneous 

Markov chain. 

Naturally, these results have been a stimulus for seeking similar complete 

results for a number of other cases. Finally, the very statements of the problems 

have become more refined and transparent, owing to the introduction of suitable 

distances between distributions and the ideas of computing least upper bounds 

of residue terms borrowed from the theory of best approximation. 

This paper briefly presents the results of some recent papers that illustrate 

these new tendencies. The results given in the monograph [1] are supposed to 

be known to the reader, though sometimes they are mentioned in order to make 

the presentation more coherent. 

§1. Estimates of the proximity of distributions and various kinds of 

convergence of distributions 

If eisa random variable of a certain set X, then the function 

P(A) = p{e E A}, 

* Vestn. Moskov. Gos. Univ. 10 (1953), 29-38. 
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defined for an appropriate system of subsets A of X and giving the probabil

ity that e belongs to A, is called the prob ability distribution of the random 

variable e. When X is ametrie space (for example, the number axis R l , or 

n-dimensional coordinate space Rn), we assurne that P( A) is only defined on 

the B-sets. As is known (in the one-dimensional case), P(A) is uniquely deter

mined by the corresponding distribution function 

F(x) = p{e < x}. 

It is most natural to consider two distributions Pl and P2 to be elose if the prob

abilities Pl(A) and P2(A) are elose for all admissible A. This understanding of 

being elose corresponds to the distance between distributions 

Pl(Pl , P2) = sup IPl(A) - P2(A)I, 
A 

where the supremum is taken over all A for which the probabilities are defined. 

In the one-dimensional case, Pl (Pl , P2 ) is equal to half the total variation of 

the difference F l - F2 : 

Convergence of distributions Pn to the distribution P determined by the re

quirement 

will be called convergence in variation. This convergence is the strongest of 

all convergences with a direct probabilistic meaning: if two distributions are 

elose enough in terms of Pl, then for all real problems dealing with a limited 

(though quite large) number of tests, the distributions Pl and P2 are virtually 

equivalent. 1 

In the one-dimensional case we are sometimes concerned only with the 

probabilities P(Ll) for intervals. A new distance p'(Pl , P2) might be defined 

by the formula 

p'(Pl , P2) = sup IPl(Ll) - P2(Ll)I, 
~ 

1 Let p n be the distribution of a system (6,6, ... , en) of independent random 
variables ek each of which obeys the distribution P. Then it is easy to prove that 
Pl(Pf,pr) :5 npl(Pl,P2), which shows that when npl(Pl,P2) is sufficiently 
small, the prob ability of any given outcome of n independent tests under the 
distribution Pl differs only slightly from the probability of the same outcome 
under the distribution P2. 
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where the supremum is taken over all intervals ~. However, it is easy to prove 

that 

Therefore the use of pi is basically equivalent to the use of 

Clearly, 

Convergence in the sense that 

will be called strong convergence of distributions. Strong convergence is weaker 

than the convergence in variation. 

In practice, random variables are usually measurable and are needed only 

to within a certain accuracy. From this point of view the distances PI and 

P2 introduced above sometimes overestimate the practical significance of the 

difference between two distributions. For example, for the degenerate distribu-

tions 

Ex(A) = 

for a i= b we always have 

{
I, 

0, 

if xE A, 

if x ~ A, 

whereas for small b - a it is natural to consider the distributions Ea and Eb as 

being elose to each other. 

This remark can be made more precise as folIows. Let p(t7) be the distri

bution of the variable 

TJ = e + 6, 

where e obeys the distribution P and 6 (the measurement error) is independent 

of e and obeys the normal distribution with mean 0 and variance 0'2. We 

introduce two new types of convergence by the requirements 

a) Pn --+ P, if for any 0' > 0 
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b) Pn -+ P, iffor any (T > 0 

These two, formally different, types of convergence appear in fact to be equiv

alent to the weIl known weak convergence 2 of distributions. 

We confine ourselves to distributions on the straight line and somewhat 

arbitrarily introduce errors that obey normal prob ability distributions. One 

might think, however, that in a more general setting weak convergence is in 

good agreement with the idea of eloseness of distributions which takes into 

ac count practical equivalence (or identity) of elose points of the set X. 

Weak convergence is weaker than convergence in variation (in any met

ric space X) and also weaker than strong convergence with respect to the 

distance P2 (on the number axis). Weak convergence of distributions in any 

metric space can be defined by a properly introduced distance. Levy's distance 

L(Pn , P) (see [1], §9) can serve for this purpose on the number axis. However, 

all such distances are artificial and non-invariant with respect to the simplest 

transformations of X (for instance, shifts (translations) on the number axis). 

This distinguishes weak convergence from convergence in variation and strong 

convergence, defined above (for the number axis) , which are connected with 

quite natural definitions of distance between distributions. 3 

§2. A catalogue of possible limiting distributions. 

Distribution families sufficient for uniform approximation 

For a long time general limit theorems were being found ''hy feeI" . Only after 

the limiting distribution for a particular case was computed was the problem 

raised of finding general conditions for convergence to this distribution. The 

first example of a different approach I am aware of is Levy's theorem on limiting 

distributions of the successive sums 

2 We say that in an arbitrary metric space X distributions Pn weakly converge 
to a distribution P if Ix fdPn - Ix fdP for any bounded continuous function 
f(x). 

3 Clearly, the distance Pi is invariant with respect to all one-to-one transformations 
of the set X onto itself. The distance P2 is invariant with respect to one-to-one 
transformations of the straight line onto itself. 



410 SOME RECENT WORK ON LIMIT THEOREMS IN PROBABILITY THEORY 

of the terms of a sequence 

of independent identically distributed terms (see [1], §33). The theorem states 

that the distributions of the variables 

can only converge weakly to a stable distribution, and to any such distribution 

(under an appropriate choice of the distribution of the terms en). It was only 

much later that W. Doeblin and B.V. Gnedenko fully studied conditions under 

which this convergence holds at all or there is convergence to a certain definite 

stable law (see [1], §35). 

Even more important is A.Ya. Khinchin's theorem, which characterizes a 

dass of possible limit laws for the distributions of sums 

of independent "infinitesimally smalI" terms (see [1], §24). By virtue of Khin

chin's theorem, this dass coincides with the dass of infinitely divisible distri

butions. 4 The theorems of Levy and Khinchin deal with weak convergence. 

It is dear that passing to a stronger convergence can only narrow the dass of 

possible limit laws. In reality, when we pass to strong convergence in the sense 

of the distance P2 or even to convergence in variation, this dass of laws remains 

the same. 

There is the perfectly justifiable view that for sums of independent terms 

Khinchin's theorem indicates the most general dass of limiting distributions 

that are of interest. Soon after this theorem was established, B.V. Gnedenko 

completed the study of conditions for convergence to any infinitely divisible 

distribution (see [1], §25-27), which essentially exhausted the quest ion of the 

limiting behaviour of the sums of an increasing number of independent terms 

each of which is "negligible in the limit" . 

For schemes with independent tests similar questions are not yet suffi

ciently studied. Arecent paper by R.L. Dobrushin [2] can serve as an example 

4 The fact that we do not include in the expression for Cn the non-random term 
An (cf. (1) on p.119 in [1]) does not make any difference: Khinchin's theorem 
holds in this form as weIl. 
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of a completely definitive study for a somewhat particularized scheme. He 

studied the case of sums 

where each enk takes only two values, 0 and 1, and are connected within each 

sequence in a simple homogeneous Markov chain with matrix of transition 

probabilities 

I Pn 1- Pn I 
qn 1- qn, 

depending only on the number n of the sequence, but not on the number k of 

the test in the sequence. If the enk are independent (that is, when Pn = qn) 

then only the degenerate distribution f n , the normal distribution, the Poisson 

distribution and distributions obtainable from these three by linear transfor

mations 5 can serve as limit distributions for 

For arbitrary Pn and qn the problem becomes much more difficult and in order 

to enumerate all possible limit distributions of 7Jn a number of new ingenious 

considerations are required. 

The study of similar questions for the case of Markov chains with any finite 

number of states (not necessarily homogeneous) was started by Koopman (see, 

for instance [14]). It would be very interesting to obtain as complete results as 

those of R.L. Dobrushin for s = 2, at least for the homogeneous case with an 

arbitrary number of states s. 

In estimating the proximity of distributions with the help of some distance 

p(P1 , P2 ) between distributions we can raise the question of convergence not to 

an individual distribution, but to a whole elass of distributions. For instance, 

we can ask if the distribution of the sum 

of independent identically distributed summands ek should necessarily be elose 

to an infinitely divisible distribution in the sense of some distance p as n -+ 00. 

5 This result by P.A. Kozulya.ev is contained in general theorems of §26 and §27 
in [1]. 



412 SOME RECENT WORK ON LIMIT THEOREMS IN PROBABILITY THEORY 

More exactly, the quest ion is whether for any f > 0 there exists an N such that 

for any n ~ N there exists an infinitely divisible distribution S such that for 

the distribution P of the sum ( we have 

p(P, S) < f. 

So far there are few papers in which problems of this sort are solved in 

a setting essentially non-reducible to limit theorems of the usual type. Note 

that in Dobrushin's work mentioned above, the question of approximating the 

distributions of the sums (n is solved (for the case he considered) also in the 

sense of this kind of uniform approximation (as n -+ 00) with respect to the 

distance Pl. 

Dobrushin's result is quite complicated because of case-by-case checking 

of many particular distributions. The principle underlying his result can be 

elarified by the example of a particular case of independent variables enk con

sidered earlier by Yu. V. Prokhorov [3]. In this case we speak about uniform 

approximation in the sense of the distance Pl of the binomial distribution B np , 

given by the formula 

Denote by Lnp the approximation to B np used in the local Laplace theo

rem, P np the approximation to B np in Poisson's sense (used for p elose to zero), 

and Pnp the approximation obtained by Poisson's approximation of n-( (wh ich 

is natural for p elose to 1). It is reasonable to use each ofthese approximations 

when the corresponding distance 

is smaller. Prokhorov's theorem states that 

f np = min{Pl (Bnp , L np ), Pl(Bnp , Pnp)'Pl(Bnp , Pnp )} 

tends to zero uniformly with respect to p as n -+ 00. Thus, the family of 

distributions L np , Pnp and Pnp is sufficient for uniform approximation of B np 

as n -+ 00. 

In a simpler setting, when the approximating distributions are linear trans

forms of the normal distribution given by the distribution function 

<l>(x) = -- e-:& /2dx, 1 1:& ~ 
.,f2i -00 
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and P2 is taken for the distance, these theorems on uniform approximation are 

not essentially new (see §4). However, a deliberate search for families sufficient 

for uniform approximation in more complicated cases has been started quite 

recently, and there still remains much to be done in this direction. 

§3. Local theorems and convergence in variation 

Any distribution P(A) on the straight line can be expressed as 

P(A) = i p(x)dx + tJl(A), 

where p( x) is the corresponding prob ability density and tJl( A) is the singular 

part of the distribution. If tJl == 0, then P is continuous. If at least one of the 

distributions P1 and P2 is continuous, then 

Therefore for a continuous limit distribution P, convergence in variation 

is equivalent to convergence in mean of the densities 

i: IPn - pldx -+ O. 

A number of researchers have considered local theorems of convergence 

of probability densities to the probability density of the limit distribution. 6 

They have usually been concerned with conditions of uniform convergence of 

distributions. As was mentioned above, this is excessive from the probabilistic 

viewpoint. In Yu.V. Prokhorov's work [4] it is shown that passing to the con

vergence in variation (that is, in the case of a continuous limit distribution, to 

the convergence of densities in the mean) we arrive at very simple necessary 

and sufficient conditions of convergence for the case of identically distributed 

independent summands. Prokhorov demonstrated that under the conditions 

of Levy's theorem given above for the convergence of the distributions of the 

6 See [1], §46 and §47 and the Hungarian translation of this book, in which the 
formulations of local theorems are improved. 
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variables «(n - An) / Bn to a stable distribution, two requirements are necessary 

and sufficient: 1) weak convergence to S; and 2) for some n the distribution of 

(n must have a non-zero continuous component. 

Together with local theorems for densities, local theorems of discrete arith

metic type for ''lattice'' distributions (see [1], §§48-50) are usually considered. 

Local theorems of this type are in connection with transferring from a contin

uous distribution with density p(x) to the "lattice" 

Xk = kh+ a. 

This operation can be performed, for example, by ascribing the prob ability 

to each point Xk of this lattice. 

If in the setting of Levy's theorem the en are lattice-like with step h, then 

are lattice-like with step 

hn = h/Bn . 

B.V. Gnedenko [5] has shown that when the step h for en is maximal and 

the distributions of 1]n converge weakly to a stable distribution S, then the 

variation al distance between the distribution Fn of 1]n and the distribution Sn 

obtained by transferring S to the lattice of possible values of 1Jn tends to zero 

as n -> 00: 

The theorems of Prokhorov and Gnedenko are limited to the case of iden

tically distributed summands. But in any case they show that more general 

and complete results on "the localization of limit theorems" are possible than 

it seemed before. To conclude this section, note also the papers on arithmetic 

local theorems [6]-[10]. The first three of them, [6]-[8], deal with multidimen

sional generalizations of Gnedenko's result mentioned above. The fourth, [9], 

gives an exhaustive answer to the question of approximating in variation the 

distribution of the number of distinct states visited in a homogeneous Markov 
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chain with a finite number of states. The fifth, [10], contains quite deep, though 

less complete, results for inhomogeneous Markov chains. 

§4. Precise estimates of remainder terms 

and improvement öf approximations 

In [3] Prokhorov considers not only 

but also 

f np = min{Pl(Bnp , Lnp ),Pl(Bnp , Pnp ),Pl(Bnp , Pnp )}, 

f n = sup f np 
O<p<1 

and shows that 

where 

A = (~) 1/3 ~(1 + 4e-3/ 2)2/3e-l/6 = 0.42 .... 

Thus, in terms of the variational distance he found an asymptotically precise 

estimate of the largest deviation (for given n and variable p) of the binomial 

distribution from the most suitable of the approximations Lnp , Pnp and Pnp . 

This somewhat narrow result can serve as an example of the technique for 

estimating remainder terms that have taken shape in the papers of the last 

decade. There are no complete results of the same kind for sums of arbitrarily 

distributed independent summands. Below we consider problems of this kind 

connected with the so-called Lyapunov's ratio. 

For simplicity we assurne that the sum 

'=6 +6+ ···+en 

of independent summands ek is normalized, that is, it has expectation 0 and 

variance 1. Then "Lyapunov's ratio" takes the form 

n 

L = EElek - Eek13 . 

k=1 

It is weH known that as L --+ 0 the following limit relation for the distribution 

function F( z) of the sum , holds: 

F(z) --+ ~(z) = -- e- z /2dz. 1 jZ 2 

V2i -00 
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We introduce the new variables 

p(/, z) - sup IF(z) - ~(z)l, 
L=/ 

p(/) = supp(/,z) = sUPP2(F,~). 
z L=/ 

Cramer showed that 

where Cl and C2 are positive constants. Therefore it is natural to consider 

p(/)/I, its least upper bound 

and its limsup, 

The estimates 

C = sup p(1) 
1 

c* = limsup p(/). 
/ ..... 0 1 

are best possible as regards the order of L. 

Clearly 

c* ~ c. 

After Berry's work [15], where a more particular problem was considered, 

Esseen [16] proved that 

1/...;2; ~ c ~ 15/2. 

Of great interest is the quest ion whether more precise estimates or computa

tions of c and c* are possible, especially for the functions 

( ) _ p(1, z) _ IF(z) - ~(z)1 
c z - s~p -1- - sup L ' 

c*(z) = limsup p(1, z) = limsup IF(z) - ~(z)l. 
/ ..... 0 1 L ..... O L 

If we impose certain restrietions on the character of the terms ek, then 

the values of c and c*, c(z) and c*(z) may decrease. Assuming symmetry of 

the distribution of the terms and imposing certain other restrictions, whose 

necessity is not dear, Yu.V. Linnik [11] proved that 

* 1 
c = ...;2;' 
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Perhaps these formulas hold under the single restriction of symmetry of the 

distributions of the e. The first of these formulas might also be true in the 

general case. Even the conjecture 

1 
c = ...j2-i 

has not been disproved. 

It is also very important to study from the same viewpoint (of obtaining 

uniformly precise or asymptotically precise estimates of remainder terms) ap

proximations for the distributions of sums of a large number of independent 

summands, which make use of the corrections to normal distribution that de

pend on the highest moments and are expressed via Chebyshev-Hermite poly

nomials. Nothing has been done in this direction so far. On the other hand, 

a remarkable paper by S.H. Sirazhdinov [13], in which local theorems with 

specifications depending on the higher moments and giving remainder terms of 

order I/nOt with arbitrary large exponents aare extended to the distribution of 

the number of distinct states visited during n steps in a homogeneous Markov 

chain with a finite number of states. 

3 September 1953 
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42. ON A.V. SKOROKHOD'S CONVERGENCE * 
When describing the course of areal process in time with the help of a function 

I(t) of time t that takes values in an appropriate "phase space" X, it is often 

natural and correct to assurne that I has only discontinuities of the first kind 

(jumps). To study such processes in detail it is useful to introduce in a set D 

of functions with discontinuities of the first kind (for the sake of being specific 

we will consider such functions on the unit interval 0 ~ t ~ 1) an appropriate 

topology. 

The topology of uniform convergence, natural when studying continuous 

processes, appears to be too strong when studying processes with discontinu

ities of the first kind. For example, it is natural to require that the sequence 

of functions 
for t < tn , 

for t > t n , 

where tn -+ ta as n -+ 00, converge to the function 

for t < ta, 

for t > ta, 

since In differs from I for large n only by a small shift in the jump from the 

state Xl to the state X2' As is known, this convergence does not hold in the 

space of uniform convergence for Xl I X2' 

On the other hand, the topology in D should not be too weak, since we 

wish to retain the most essential properties of I E D when passing to the limit. 

For example, we wish that under the assumption that In converges to I, the 

conditions 

imply that 

I(t + 0) - I(t - 0) = c. 

Even for these two assumptions we need a new topology in D, adapted 

especially to the needs of studying processes with discontinuities of the first 

kind. This kind of topology is suggested in the papers [1], [2] by A.V. Skoro

khod. In these papers Skorokhod defines a certain convergence in D (we will 

call it S-convergence) for the case of real functions I(t) (that is, when X is the 

* Teor. Veroyatnost. i Primenen. (Probability Theory and its Applications) 1:2 
(1956), 239-247 (in Russian). 
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real line) and notes that this convergence turns the set D into a topological 

Hausdorff space. Further, in §2, a new definition of S-topology is given which 

can be used under the assumption that X is an arbitrary metric space and it is 

shown that the topological space SD arising in this way is a metric space. The 

distance s(l,g) introduced in §2 for this purpose and the corresponding uni

form topology seem to be quite natural and convenient in applications, despite 

the fact that even for a complete space X the metric space sD is not complete. 

At the end of §2 a simple necessary and sufficient condition for S-compactness 

is given. 

The results of §3 (as weIl as Theorem IV of §2) are essentially based on the 

assumption that the phase space X is complete (for simplicity we will assurne 

this from the very beginning). 

In §3 the completion of the metric space sD is given a specific interpreta

tion using D-curves in the space R = T x T. This interpretation is used for 

proving the possibility of introducing into D another distance s· (I, g) inducing 

the same Skorokhod convergence and topology, but turning D into a complete 

metric space s· D. When presenting the results of this paper at the seminar on 

prob ability theory at Moscow University, I raised the problem of the simplest 

possible explicit construction of the distance s· (I, g). This problem was solved 

by Yu.V. Prokhorov [3]. 
§1 contains some prerequisites necessary for the considerations of §3. The 

contents of §2 could be as weIl presented without introducing the set e, using 

instead a useful technique for representing a process with discontinuities of the 

first kind, for example, using functions of a real variable t that are continuous 

from the right: 

f+(t) = f(t + 0). 

§1. The class of functions D = D x 

In the description ofreal processes using functions f(t) with discontinuities 

of the first kind we can usually assurne that the real phenomena taking place at 

the time t of the jump are fully described by the limit values from the left and 

from the right: f(t - 0) and f(t + 0). It is only by mathematical convention 

that the value f(t) is defined either by f(t) = f(t - 0) or f(t) = f(t + 0), or 

for real functions, by 

f(t) = ![!(t - 0) + f(t + 0)]. 
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Actually, it is more logical to consider functions f(O) of the symbols 0 of the 

type t - 0 or t + 0, and only in the case f(t - 0) = f(t + 0) denote their 

common value as f(t), thus considering f(t) undefined if f(t - 0) # f(t + 0). 

In the presentation of the theory of D-curves in §3 this approach has also 

formal advantages: certain additional efforts made in § 1 are rewarded by a 

more concise and graphie presentation in §3. 

Let e be the set of symbols 0 of one of the two types: 

0= t - 0, 0 < t ~ 1, 

o = t + 0, 0 ~ t < 1. 

An order relation on e is defined by 

1) t ± 0 < t' ± 0, if t < t', 
2) t - 0< t + O. 

We say that 

On ~ t - 0, 

iffor any f: > 0 there exists n(f:) such that for n ~ n(f:), 

t - f: + 0 ~ On ~ t - 0, 

and that 

iffor any f: > 0 there exists an n(f:) such that for n ~ n(f:), 

This convergence turns the set e into a compact topological space (see [5]). 

The fact that this space is not metrizable is no hindrance to its use in further 

constructions. 

By definition, the dass Dx consists of functions f(O) defined on e, with 

values in ametrie space X and continuous in the sense that 

implies 
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It can easily be proved that for any f E D = Dx the function 

f+(t) = f(t + 0) 

is defined for all t in the half-interval 0 ~ t < 1, is right continuous and has a 

left limit, 

f+(t - 0) = f(t - 0), 

at every point t ofthe half-interval 0 < t ~ 1. It is dear that the correspondence 

between the functions fE D and f+ with these properties is one-to-one. 

For any set M ~ e we define the "oscillation" of f E D on M by setting 

wf(M) = sup p(x,x'). 
x,x'EM 

The "intervals" of the space e, that is, the sets 

[0' ,0"] = {O; 0' ~ 0 ~ O"} 

are of special interest in what folIows. In particular, the interval [t - 0, t + 0] 

consists of two points: its end points t - 0 and t + O. For this interval 

wf[t - O,t + 0] = If(t + 0) - f(t - 0)1. 

It is easy to prove 

Theorem 1. A function f(O) defined on e and with values in X belongs to 

the class D if and only if for any € > 0 there exists a sequence 

o = to < t 1 < ... < t n = 1, 

such that for all k = 1,2, ... , n, 

Wj(tk-1 + 0, tk - 0] < L 

§2. S-convergence and the distance s(f, g) 

Definition 1. Two functions fE D and g E D are called €-equivalent if there 

exist rand sequences 

0= to < t1 < ... < tr = 1, 0 = t~ < t~ < ... < t~ = 1 



ON A.V. SKOROKHOD'S CONVERGENCE 423 

such that for k = 1,2, ... , r, the following inequalities hold: 

sup{p(f(O),g(O')) $ f: 0 E [tl:-1 + 0, tl: - 0], 0' E [t~_1 + O,t~ - on. 
In what follows f-equivalence is denoted by 

I.!.. g. 

Definition 2. A sequence of functions In E D is called S-convergent to I E D 

iffor any f > 0 there exists n(f) such that for n ~ n(f), 

In.!.. I· 

In what follows S-convergence is denoted by 

s In ~ f. 

This is the convergence Skorokhod introduced for the case when X is the real 

line. 

We now set 

s(f, g) = inf f. 
':'9 

Theorem 2. The set D with the distance s(f, g) is ametrie space. 

In fact, it can easily be seen that s(f, g) is real and non-negative for any 

I E D and 9 E D. Theorem 1 implies that 

s(f,t) = o. 

It is fairly easy to show that 

s(f,g) = 0 

only if I = g. The symmetry of s(f, g) is dear from the definition. The 

inequality 

s(f,h) $ s(f,g) + s(g,h) 

holds because of the following lemma, which is easily proved: 
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Lemma. 11 
I~g, t' 

9 '" h, 

then 

The following theorem is ohvious. 

Theorem 3. For the convergence 

s 
In --+ I 

it is necessary and sufficient that 

s(fn, f) --+ O. 

If X contains two different points Xl -::F X2, then the metric space sD is 

not complete, since for 

tn < ta < 1, tn --+ ta 

the sequence of functions 

for 0 + 0 ~ () ~ t n - 0, 

for t n + 0 ~ () ~ ta - 0, 

for ta + 0 ~ () ~ 1 - 0 

satisfies the Cauchy criterion hut does not converge. In this connection the 

following theorem is interesting. 

Theorem 4. A sequence In E D satisfying the Cauchy criterion 

converges to I E D il and only il the lollowing condition holds: 

(*) lor any e > 0 there exists 6 > 0 such that lor any n and t E (0; 1) 

wln[O + 0,6 - 0] < e, wln[l- 6 + 0, 1- 0] < e, 

w* In[t + 0, t + 6 - 0] < f, 

where 

w* f[(),()'] = infmax{wl[(),t - O],wl(t + 0, ()')}. 
t 
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It should be noted that the operations w" I are similar to the '"'( J that were 

already used by E.B. Dynkin in [4] for studying the functions of the dass D. 

Theorem 4 is dosely connected with 

Theorem 5. A set M ~ D is compact in the space SD 01 Skorokhod conver

gence if and only if the following two conditions hold: 

1) there exists a compact set K ~ D such that all values f(O) of the 

function I E M at the points 0 E e belong to K i 

2) for any f > 0 there exists 0 > 0 such that for f E M we have 

WJ[O+O,O-O]<f, wJ[1-o+0,1-0]<f, 

W" J[t + 0, t + 0 - 0] < f. 

§3. Graphs of functions of dass D and D-curves 

in the space R = T X T 

Let T be the unit interval 

T={t;0~t~1} 

of the real line and denote by R the direct product 

R = T X T = {(t, x); tE T, x EX}. 

We will consider this direct product as ametrie space with distance 

p«t,x),(t',x'» = max{\t' -t\,p(x,x')}. 

The set r J of points from R of any of the two types 

(t,/(t - 0» or (t, f(t + 0» 
will be called the graph of the function I E D. It can easily be seen that the 

function 

l/JJ(t - 0) = (t, f(t - 0», l/JJ(t + 0) = (t, I(t + 0» 

defined on e and with values in R is continuous in the sense of § 1. It maps 

e onto r J, and the order on e (the relations 0 < 0' defined in § 1) induces a 

certain direction of travel along r J . 
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Quite apart from the graphs of functions I E D = Dx , we now consider 

mappings of e into the space R that are are continuous in the sense of § 1, that 

is, functions <fo(O) of dass DR. Two functions <fo E DR and 1/J E DR are called 

equivalent if there exist monotone mappings Xl and X2 (that is, mappings X 

satisfying the condition X(O') ~ X(O) when 0' > 0) of e onto itself such that 

With respect to this equivalence relation DR is divided into dasses ~, 

which we call D-curves in R. It is natural to intro du ce the distance between 

D-curves by the formula 

p(~, (f) = in( sup p(<fo(O), 1/J(O)). 
"'E'" 9C0 
t/JE,'fi 

The theory of D-curves is quite similar to the theory of continuous curves. 

The distance p(~, (f) turns the set ~ of all D-curves in R into a complete metric 

space. 

Theorem 6. A lunction I E D is uniquely determined by the corresponding 

curve 

and 

s(l,g) = p(j,g). 

Theorem 6 gives a new interpretation ofthe distance s(l, g) and S-converg

ence: S-convergence of a sequence of functions In to I is equivalent to con

vergence in the sense of the distance p(~, (f) of the curves in to the curve 

1. 
In what folIows, it is useful to introduce the notations T",(O), e",(O) for the 

components of the function 

<fo(O) = (T",(O),e",(O)). 

Denote by A the set of D-curves i corresponding to the functions I E D, and 

by Ä the closure of A in ~. It can easily be proved that 
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if and only if 

(Al) r",(fJ) maps () onto the whole set T; 

(A2) () < ()' implies that r",((}) ~ r",((}'). 

427 

By (Ad, (A2) for a function t/J E ~ E A the sets r;l(t) of those () for which 

r",((})=t 

are intervals of the space e, that is, 

When the parameter () runs over r;l(t), the value r",(t) remains constant, while 

~"'((}) runs over some sequence of points of the phase space X. Therefore the 

curves ~ E Ä may be considered as the graphs of special generalized processes 

with discontinuities of the first kind whose behaviour at time t can, in gen

eral, be more complex than simple transition from the state I(t - 0) to the 

state I(t + 0). Such generalized processes can naturally appear as limiting re

strictions similar to condition (*) of Theorem 4 that prevent the accumulation 

of several vanishingly small jumps at one point t. Possibly, introducing this 

kind of generalized process will appear useful in certain special studies on limit 

properties of random processes. Without developing this idea any furt her I use 

the analysis of the construction of Ä only as auxiliary means for proving the 

possibility of introducing, in the space SD, a distance s*(I,g) different from 

s(l, g) and turning SD into a complete metric space. For this purpose I will 

prove the following lemma: 

Lemma. The set A is a set 01 type G6 in the space (j. 

Proof It can easily be shown that for given t E T and ~ E Ä the value of 

is the same for all t/J E ~, that is, it characterizes the properties of the curve 

~, not of its parametric representation t/J; we denote this value by w;(t). The 

condition 

(I') w;(t) = 0 for all tE T 
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is neeessary and suffieient for ~ E Ä to belong to A. Therefore 

n 

where An is the set of ~ E Ä for whieh 

1 
supw1(t) ~-. 
tET 'I' n 

(1) 

The set Ä is closed in i by definition. It ean be proved that the sets An are 

also closed in i. Our lemma now follows immediately from the closedness of 

the sets Ä and An and (1). 

By a well-known theorem of P.S. Aleksandrov this lemma implies that we 

ean introduee a new distanee p. (i, g) in A that is topologieally equivalent to 

the distanee p(j, g) but turns it into a eomplete metrie space. 

Setting 

s·(/,g) = p.(j,g) 

and keeping Theorem 6 in mind, we ean see that the following is true: 

Theorem 7. In the set D a distance s·(/,g) can be introduced that is topolog

ically equivalent to s(/,g) but turns D into a complete metric space. 

Moseow, 25 July 1956 
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43. TWO UNIFORM LIMIT THEOREMS FOR SUMS OF 

INDEPENDENT TERMS * 

In what follows 

where 

e =6 +6 + ···+en 

and the random variables ek are independent. Let ~ be the family of degenerate 

distributions of the form 

E(x) = {~ for x ::; a, 

for x > a, 

and let e be the family of infinitely divisible distributions. The purpose of the 

present paper is to prove the following two theorems: 

Theorem 1. There exists a constant C such that if the inequalities 

hold for all f. > 0, L > 21 > 0, where Ek E ~, k = 1,2, ... ,n, then there exists 

q; E e for which 

q;(x - L) - 6::; cI>(x) ::; q;(x + L) + 6, 

where 

Theorem 2. There exists a constant C such that for identically distributed 

summands ek with arbitrary distribution functions Fk(X) = F(x) there exists 

q; E e such that for any x, 

* Teor. Veroyatnost. i Primenen. (Probability theory and its applications) 1:4 
(1956), 426-436 (in Russian). 
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The proof of each theorem makes use of a number of ideas borrowed from 

papers of P. Levy (see [1], §48), W. Doeblin [2] and Yu.V. Prokhorov [3], and 

is based on the following lemmas, in which 

G (x) = _I_lx e-(x-a)2/2u2 dx G G 
a,u . '2= ' u = o,U' 

V ~7rU -00 

QF(l) = sup[F(x+I+O)-F(x)] is the "concentration function" for the distribu-
x 

tion F(x) introduced by P. Levy and Cl, C2 , C3 , C4 , C5 , C6 , C7 , c' are absolute 

constants. 

Lemma 1. If 

where 1 

s = ~)1- QF,,(r)], 
k 

then 

Lemma 2. 

Lemma 3. 

Lemma 4. If 

then 

F * Go,u(x -I) - TJ ~ F(x) ~ F * Go,u(x + I) + TJ· 

Lemma 5. Let 

-rr (k) Pml ... mn - Pm",· 
k 

1 Throughout, the index k in the sums L:k and products TIk or TI; runs through 
all integers 1 :5 k :5 n. 
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where 

{ 
1-Pk 

p~) = ~k 

IfO ~ Pk ~ 1 then 2 

form = 0 

fi 1 (k) - ~ -Pk 0 1 or m = , qm - m! e , m = , , ... 
for m > 1. 

L IPml ... mn - qml ... mnl ~ es LP~' 
ml· .. mn k 

Lemma 6. If 0 ~ P ~ 1, then 

Lemma 7. Let 

(1'2 = L (1'~, (1'~ = (1'2 + (1'5. 

k 

Then the inequalities 

lek I ~ I, k = 1, 2, ... , n, 

imply that for al/ x 

The proof of Lemma 1 will be published elsewhere. 3 Lemmas 2-5 are 

quite elementary and can easily be proved by the reader. Lemma 6 is due to 

Yu.V. Prokhorov (see [3]). Lemma 7 easily follows from the known estimate 

2 Here and in what folIows, l:ml ... mn denotes summation over all sets of positive 

integers ml, ... , mn. 
3 See: A. Kolmogorov, 'Sur les proprietes des fonctions de concentrations de 

M.P. Levy', Ann. Inst. H. Poincare 16:1 (1958), 27-34. No. 45 in this book. 
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if the additional normal summand with variance O'~ is represented as a sum of 

several normal summands, each of them with sufficiently small variance. 

1. Pro%/ Theorem 1, general part. It suffices to prove the theorem for the 

case of continuous and strictly increasing functions Fk(x). Indeed, assume that 

F/c, t, land L are fixed so that the conditions of the theorem hold. Choose I' 

and L' so that 

L > L' > 2/' > 21 

and set t' = 2t. Using only the qualitative part of Lemma 4, it is easy to 

establish that for a sufficiently small s the distributions 

satisfy the conditions of the theorem with t, I, L replaced by t', I', L'. It is easy 

to prove that the Fk(x) are continuous strictly increasing functions. If for the 

corresponding function ~' = ~ * G IVn we prove the inequality 

w(x - L') - 6' ~ ~'(x) ~ w(x + L') + 6', 

where I'g' 6' = C' max (- log - e'l/5) L' I' , , 

then, using Lemma 4 with 0'2 = ns2 and I = L - L', we easily find that 

for sufficiently small sand C = 2C' the original function ~(x) satisfies the 

inequality stated in the theorem. 

In accordance with this, we take y = F/c(x) continuous and strictly in

creasing, which allows us to consider the inverse functions x = Fk-1(y), which 

are uniquely defined for all y in the interval 0 < Y < 1, continuous, strictly 

increasing, and running through all real values of x. 

We set 

~/c(P) = F/c-l(l- P) - F/c-l(p). 

Under these assumptions the ~/c(P) are continuous and strictly decreasing. 

They run through all positive values ~, 0 < ~ < 00, when P runs through 

o < P < ~. The inverse functions 
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are also continuous and strictly decreasing: when A runs through 0 < A < 00, 

they run through all values of P in the interval ! > P > O. Therefore, provided 

that 

L fk(2/) > 2f-4/ 5 

k 

(here 1 and f are the quantities occurring in the conditions of the theorem and 

we assume without loss of generality that f ~ 1), the equation 

L fk(AO) = 2f-4/ 5 

k 

has the unique solution 

then 

then 

AO > 2/. 

Now define A and ero in the following way: 

A) 11 

B) 11 

L fk(2/) > 2f-4/ 5 , 

k 

L fk(2/) ~ 2f-4/ 5 , 

k 

1 ( L) -1/2 
A = 21, ero = ..,fiL logT . 

To determine the required infinitely divisible distribution q;, we set 

and introduce the random variables 

We then set 

}Jk = {0
1 

if F;;1(fk) < ek < F;;1(1- fk), 
otherwise. 

er2 = L(1- 2fk)eri, 
k 

F~O)(x) = Piek < XI}Jk = O}, 

F~1)(x) = Piek < XI}Jk = 1}. 

(A.1) 

(A.2) 

(B.1) 

(B.2) 
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It can easily be seen that 

cI> = II *[2lkFi 1) + (1 - 2lk)FiO)] = EIl * [pkFi1) + (l-llk)FiO)] = 
k k 

'" II * [F(l)]m" * II *[F(O)]l-m" L...J Pml ... mn k k' 
ml ... mn k k 

where the probabilities 

are expressed via the formulas from Lemma 5 by setting 

N ow, expressing the qml ... mn in terms of Pk = 2lk according to the formulas of 

the same Lemma 5, we set 

w = [exp L2lk(Fi1) - Eo] * G{J,I7. = L qml ... mn II * [Fi1)]m" * G{J,I7.' 
k ml ... mn k 

where 

In the formulas for cI> and W, Eo denotes the unit distribution 

Eo(z) = {~ for z ~ 0, 

for z > 0, 

and the powers are understood in the sense of convolution 

FO = Eo, F 1 = F, F 2 = F*F etc. 

Clearly, by passing from ek to 

the ak are replaced by ak = ° and cI> and W by cI>'(z) = cI>(z + a) and W'(z) = 
w(z + a). Therefore it is dear that we may restrict ourselves to the case 

ak = 0, k = 1, ... ,nj a = 0. 
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We shall also need the random variable 

and its eonditional varianees 

for fixed 1'1, ... ,I'n. Clearly, 

We now set 4 

Noting that 

O'~l ... mn = ~)1 - mk)O'~. 
k 

~ = L: Pml ... mn ~~~ ... mn * ~~~ ... mn' 
ml· .. mn 

w = L: qml ... m,. ~~~ ... mn * Gt7 ., 

ml· .. mn 

we introduee the distributions 

~1 = ~ * Gt70 = L: Pml ... mn ~~L.mn * ~~L .. mn * Gt70 ' 

mt···mn 

~2 = L: Pml ... mn~~~ ... mn * Gt7ml ... mn * Gt70 ' 

mt .. ·mn 

~3 = L: Pml ... mn ~~~ ... mn * Gt7 •• 

mt···mn 

It ean easily be seen from the eondition of the theorem that 

and, sinee A ~ 2/, 

(3) 

4 The definition of i)~~ ... mn presupposes that mk = 0 or 1. The definition of 

i)~~ ... mn applies to any non-negative mk. 
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In both cases A) and B), 

"" f < 2C4/ 5 L..J k -
k 

Formulas (3) and (4) imply that 

Using (5) and Lemma 5 we obtain 

(4) 

(5) 

Iw - <)31 ~ L IPml ... mn - qml ... mn 1 ~ C5 L p~ = 4C5 L f~ ~ 8C5f 1/ 5 . 

ml .. ·mn k k 

(6) 
By Lemma 3 and assuming that 

(7) 

we have 

(8) 

Therefore 

(9) 

where E' is the sum of those Pml ... mn for which (7) does not hold. Clearly, 

where 

It can easily be seen that 

p2 = L(1 -l'k)O'I. 
k 

Ep2 = L(1- 2fk)O'I = 0'2, 

k 

Dp2 = L2fk(l- 2fk)O'f, 
k 

and since O'l ~ A2, fk ~ f, 

(10) 

(11) 

Dp2 ~ 2f L(1- 2fk)O'f ~ 2fA2 L(I- 2fk)O'~ = 2fA2O'2 • (12) 
k k 
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Using Chebyshev's inequality, from (10)-(12) we obtain 

(13) 

Since always 0"0 ~ A, (3/5 ::; (1/5, (9) and (13) imply 

(14) 

By Lemma 7 and the fact that lek I ::; A for J.lk = 1, we have 

(15) 

which implies that 

1<1>1 - <1>21::; C7 A/0"0. (16) 

From (6), (14) and (16) we obtain 

(17) 

where 

C. = 8C5 + C3 + 4. 

2. Case A). The end of the proof of Theorem 1 differs according to cases A) 

and B). Let us first consider case A). In this case, by (A.2), (17) turns into 

We now recall that 

A = AO > 2/, 

'L>k = :~:::>k(AO) = 2(-4/5. 
k k 

It can easily be seen that 

and, consequently, the quantity 

n 

S = ~)1- QF,,(A)] 
k=1 

(18) 

(19) 

(20) 

(21) 
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is bounded by 

(22) 

Lemma 1 and formulas (22) and (A.2) imply that 5 

( C1/TO 1/5 
Q~ TO) ~ A.,fi ~ 2C1f . (23) 

According to Lemma 2, (23) implies that 

Finally, from (18) and (24) we obtain 

(25) 

Formula (25) now immediately implies (for case A)) the conclusion of the the

orem, and the shifts by L are not needed; they are needed only for case B). 

3. Case B). In this case, by (B.2) inequality (17) takes the form 

I I 1/5 3/2 1 f:L w - 4>1 ~ C.f + 2 C7LY log T' 

According to Lemma 4, by (B.2) for 

we have 

Now set 

C = C. + 23/ 2C7 + 2C1 C2 + C4 / log 2. 

Since L > 2/, log(L/I) > log 2, it follows from (26) and (28) that 

w(x - L) - 8 ~ 4>(x) ~ w(x + L) + 8, 

where 

_ (I f:L 1/5) 8 - Cmax Lylog I,f . 

(26) 

(27) 

(28) 

(29) 

5 It is easy to verify that by (A.2), (22) and under the assumption that f ~ 1, the 
additional condition R2 2: r 2 log s holds for R = 0'0 and r = A. 
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As we see from (25), inequality (29) proved here for case B), holds also for 

case A). This completes the proof of Theorem 1. 

4. Proo/ 0/ Theorem 2. The proof of Theorem 2 is essentially the same as 

that for Theorem 1, case A), where 

f = ein. 

Naturally, fk and Pk = 2fk do not now depend on k. Since 

the Pk must be equal to 

The construction involving transition from <I> to 

is now superfluous and would even have somewhat complicated the achievement 

of the final result. Instead of referring to Lemma 5 it is better to refer to the 

simpler Lemma 6. Since these simplifications are possible, we now give a proof 

of Theorem 2 that is independent of Nos. 1, 2. We denote by F( x) = P {ek < x} 

the general distribution function of the terms ek. The conditions 

uniquely define the generalized inverse function F-1 to within a countable set 

of values y corresponding to the intervals where F is constant. Without loss of 

generality we mayassume that 

where the random variables 'f/k are independent and uniformly distributed on 

the interval ° < Y < 1. 

We set P = ~n-1/5, 

{ O, 
J.tk = 1 

if pI2 < 'f/k < 1 - p12, 

otherwise, 
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Clearly, 

a = (1 - p)E{6IJtk = O}, u2 = (1 - p)D{ek IJtk = O}, 

Fo(x) = Piek < XIJtk = O}, F1(x) = Piek < XIJtk = I}. 

~ = EIl *(jJkFl + (1 - Jtk)Fo] = L: C!pk(l - pt-k Ft * F~-k. 
k k 

We give the desired infinitely divisible distribution q; in the form 

.T, '"' (np)k -nPFk G 
'!l' = L...J kle 1 * na,u. 

where u; = nu2 + u3, u3 = 2n1/ 5A, A = F-1(1- p/2) - F- 1(p/2). 
As in No. 1, it suffices to consider the case a = O. Set 

~l = ~ * Guo = L: C!pk(l - pt-k Ft * F~-k * Guo , 

k 

~2 = L: C!pk(l- pt-k Ft * GUk * Guo , 

k 

~3 = L: C!pk(l- p)n-k Ft * Gu •. 

k 

By Lemma 6 

Lemma 3, under the assumption that 

In - k I 4/5 ---n <n 
1-p -

implies that 

therefore 

n-k ,..2 ___ ,..2 
vk - v , 

1-p 

(30) 

(31) 

(32) 

(33) 

where 'L' is the sum of those C!pk(l - p)n-k for which (31) fails. Clearly 

L:' = P{lx - ~(1 - p)1 > n4/ 5 }, 

where X = 'Lk Jtk· Therefore, using Chebyshev's inequality, 

,",' < DX = np(l- p) < n-4/5 < n-1/ 5 . 
L...J - n8/5 n8/5 - - (34) 
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From (33) and (34) we obtain 

(35) 

Since for Pk = 1 and a = 0 we have lek I ~ A, by Lemma 7 we have 

which implies that 

(36) 

Clearly, 

QF(A/2) ~ 1 - p/2. 

By Lemma 1 this implies that 

(37) 

By Lemma 2, i~ follows from formula (37) that 

(38) 

From (30), (35), (36), (38) we obtain 

which completes the proof of Theorem 2. 

Moscow, 12 November 1956 
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44. RANDOM FUNCTIONS AND LIMIT THEOREMS * 1 

Jointly with YU.V. Prokhorov 

Without claiming to present an exhaustive review of the literat ure on the ques

tion, we intend to give an outline of the first steps of the theory of random 

functions, possible basic methods for a systematic construction of this the

ory and basic problems concerning functional methods in limit theorems; in 

addition, we report certain comparatively new results. 

§1. Preliminary remarks on random elements of arbitrary nature 

We will proceed from the axiomatics of prob ability theory given in [1]. A family 

of {n, 4>, P} consisting of 

1) 

2) 

3) 

a set n whose elements ware called "elementary events"; 

alT-algebra 4> of subsets of n; 
a measure P(A) defined on 4> and satisfying the additional requirement 

P(A) = 1, 

will be called a prob ability field (the terminology corresponds to [2]). Some

times it is also useful to assume that 

(w') The measure P(A) is complete, that is P(A) = 0, B ~ A implies that 

BE 4>. 

In studying random variables, random vectors and other "random ele

ments" of an arbitrary nature it is sometimes useful to leave the nature of the 

basic set of elementary events w undetermined and to consider specific random 

* 'Zufällige Funktionen und Grenzverteilungssätze', In: Bericht über die Tagung 
Wahrscheinlichkeitsrechnung und mathematische Statistik, Berlin, 1956, pp.113-
126. 

1 The papers presented by Kolmogorov and Prokhorov at the conference are dose 
to those of M. Frechet and R. Fortet. In his talk given on the last day of the 
conference Kolmogorov presented new results obtained by Prokhorov in between 
his talk and that of A.N. Kolmogorov. Therefore the authors deemed it appro
priate to publish the joint text of their two papers. §4 (without Theorems IV 
and V) and §6 represent Prokhorov's contribution, while §§1-3, 5 and Theorems 
IV and V from §4 constituted Kolmogorov's paper. Theorems IV and V from §4 
were proved by Prokhorov between his talk and that of Kolmogorov. 
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elements e as functions of w. For instance, it is customary to call any real 

function ew such that the set 

{w : ew < a} 

belongs to <I1 for any real a, a (real) random variable (see [1]). 

An arbitrary function ew with values in a set X determines a probability 

field {X, <I1e, Pd where <I1e consists of all A ~ X for which 

Since in any problem in prob ability theory the basic set n is considered to 

be quite definite while its elements ware implicit in the formulations of more 

specific problems, the index w at ew is usually omitted, and we speak about a 

"random element e of the set X". Note that under the assumption (w') the 

condition 

(6) if Pe{A) = 0, B ~ A, then B E <I1e 
holds automatically. 

If X is a topological space, then it is natural to require for a random 

element e E X that certain topologically very simple sets A ~ X are contained 

in <I1e. If Xis a metric space (this space is the main one in what folIows), then 

these requirements are undoubtedly quite sensible. N amely, it is reasonable to 

confine ourselves to random variables satisfying the condition 

(e2) any open set G ~ X belongs to <I1e. 

As is weIl known, (e2) implies that any Borel set A ~ X belongs to <I1e. 

If X is the real axis, then (6) is equivalent to the usual requirement in the 

definition of random variables. We can further simplify the problem if, m 

addition, 

(6) For any A E <I1e, Pe(A) = infG2A Pe(G), 

where the infimum is taken over all open sets G containing A. 

For (6) to hold for any random element e in a separable complete metric 

space X satisfying (6), it is necessary and sufficient that 

(w") the measure P on n is perfect (see [3]). 

The quest ion whether it is worth giving a systematic construction of prob

ability theory using perfect measures remains debatable until such a systematic 
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construction is actually carried out. We note, however, that this limitation by 

no means restricts the scope of real applications of probability theory, since 

we have the following theorem: any complete normed Boolean algebra can be 

realized as the algebra of metric types of perfect measures (cf. [4]). 

Requirements (6) and (6) can be generalized in different directions for 

topological spaces of a more general nature (cf. [2], §§52-54). 

§2. Random functions 

For the sake of definiteness we will consider complex functions x(t) of an argu

ment t E T, where T is, in general, an arbitrary set. (Mostly studied here are 

"random processes" where T is the real axis.) Two approaches to introducing 

the notion of a "random function" of this kind are possible. 

(I) A random function e(t) defined on T is a system of complex random 

variables e(t) defined at every t E T. If in this case the basic prob ability 

field {n,~, P} satisfies (w'), then the distributions Pe(t), as weIl as the n

dimensional distributions Pe(tl),W~), ... ,e(tn) satisfy (6) and (6). 

(11) We choose in advance a certain function space ~ consisting of func

tions x(t) defined on T and a metric is introduced (the distance satisfying the 

usual axioms of a metric space). A random element of the metric space ~ 

satisfying (6) and (6) is called a random function e(t) of type ~. 

A systematic study ofrandom functions in a very important particular case 

was started by N. Wiener in 1923 (see [5]). The first ofthe concepts given above 

was most extensively developed by E.E. Slutskii, starting from 1928 (see [6]). 

The second concept for arbitrary Banach space was developed by V.1. Glivenko 

from 1928 on (see [7]-[9]). The subsequent abundant literature can be found 

in modern presentations of the question in [10], [11]. 
If ~ is such that for any to E T and any open set C in the complex plane 

the set 

{x(t) : x(to) E C} (1) 

of functions x(t) for which x(to) belongs to C is a Borel subset of ~, then 

every random function in the sense of (11) clearly has a corresponding random 

function in the sense of (I). 

For a random function in the sense of (I) the inverse problem can be posed: 

Is it possible to consider this kind ofrandom function e(t) as actually belonging 
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to a certain function space (for example, in the case T = [a, b]) as belonging to 

the space qa,b] of continuous complex functions with the metric 

p(x(t), y(t)) = max Ix(t) - y(t) I) ? 
a9~b 

This problem can be stated precisely using equivalence of random functions in 

the sense of (I). Two random functions el(t) and 6(t) (in the sense of (I)) are 

called equivalent if for any t E T, 

P{6(t) t 6(t)} = O. (2) 

The quest ion posed above can now be interpreted in the following way: Given 

a random function 6 (t) in the sense of (I) and aspace of Borel measurable sets 

(I), does there exist a random function 6(t) of type ~ for which (2) holds for 

any t E T? From the point of view of applications, this approach developed 

by E.E. Slutskii (see [12], [13]) is apparently quite sufficient and allows us to 

avoid a number of complications of set theory which will be discussed below 

in §3. From the practical viewpoint the most interesting are the questions: 

Is it possible to consider a random function as a) continuous, b) having only 

discontinuities of the first kind? In the first direction the following result 

by A.N. Kolmogorov (see [12]) has long been known: in order that a random 

function e(t) in the sense of (I) given on T = [a, b] be equivalent to a random 

function C(t) of type qa,b], it suffices that 

(3) 

for some a > 0, 0: > 1 and K. In this case C(t) satisfies with probability 1 a 

Lipschitz condition 

IC(t + r) - C(t)1 ::; K*lrl<>;;l-.5, (4) 

for any ° > 0, where K* is a random variable. (Note also that for any f > 0 

there exists K~, depending only on f,o,o:,a,K, such that P{K* > K~} < f. 
This will be used in §6.) 

The conditions for the representability of e(t) as a function with discon

tinuities of the first kind only are especially essential when e(t) represents a 
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Markov process. Among the recent papers on this question we point out those 

by E.B. Dynkin [14] and Kinney [15].2 

As is weIl known, elements of a number of important function spaces are 

not individual functions, but metric types z(t) of these functions with respect 

to the measure I' introduced in T (a metric type is a dass of all functions 

that differ from a certain fixed function z(t) only on a set of I'-measure 0). 

We introduce the notion of asymptotic continuity of z(t) at to so that for the 

metric type z(t) the "true values" of z(t) are uniquely determined at almost all 

points to E T by asymptotic continuity, and the space ~ is such that the true 

values of a random function of type ~ at the points where it is defined are with 

probability 1 random variables. In this setting the same problem on the relation

between the two not ions of a random function, (I) and (11), may be raised and 

solved, perhaps in a different form. Now, using the approach (I) we naturally 

require that random variables e(t) be defined only almost everywhere on T 

and regard two random functions (in the sense (I)) 6(t) and 6(t) as being 

equivalent if (2) holds for almost all t. Then corresponding to each random 

function C(t) in the sense of (11) there is a random function e(t) in the sense 

of (I) which is defined to within equivalence and is equal to the true value of 

f"(t) at t for almost all t with probability 1. The complete solution of the 

inverse problem under conditions when a random function in the sense of (I) is 

equivalent to a measurable function was given in the paper by Ambrose [16] for 

the case when T is the real axis and I' is Lebesgue measure. A necessary and 

sufficient condition is for e(t) to be asymptotically stochastically continuous 

almost everywhere (with respect to 1'). If this condition is satisfied, we can 

further consider our problem in the space ~ of measurable functions (more 

exactly, in the space of metric types) and without any difficulties in principle 

compute the probability of the summability of e(t), its square summability, 

"essential boundedness" , etc. 

§3. Finite-dimensional distributions of values of a 

random function 

Let us return to random functions e(t) in the sense of (I) defined for all t E T. 

2 See also a later work by N.N. Chentsov, Teor. Veroyatnost. i Primenen. (Trans
lated as Theory Probab. Appl.) 1:1 (1956), 155-161 (in Russian). (Note of Rus
sian editor.) 
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Each such function e automatically defines a probability field {nT, lPe, Pd 
where nT is the set of all complex functions defined on T. 

The formula 

(tk = X(tk), k = 1,2, ... ,n, 

defines a mapping 1I"t l.t2 ....• tn(x) from nT into the n-dimensional complex vector 

space of vectors 

For fixed tt, t2, ... , tn this mapping assigns to each random function e(t) a 

random vector 

Usually, in specific problems involving random functions the corresponding 

distributions 

play an important role. 

Since Pl1h ..... tn IS defined on the Borel sets B, Pe is defined on their 

pre-images in nT: 

B' - 11"-1 (B) - tl,t2, ... ,tn . 

These are the so-called cylindrical Borel sets in nT. 

Let IPT be the Borel closure of a system of such sets (the smallest O"-algebra 

containing these sets). Clearly, for any random function e(t) we have 

The values Pe(B) for B E IPT are uniquely defined by the finite-dimen

sional distributions. In [1] it was proved that, conversely, arbitrary "compat

ible" finite-dimensional distributions Ptlh ..... tn given for all finite systems of 

elements tl, t2, ... ,tn in T and defined on the Borel sets in an n-dimensional 

complex vector space give rise to a probability field {nT, IPT, P*}. The follow

ing formulation is a slight variation of this result: If the distributions Pt1 .t2 ..... t n 

are defined on all systems of finite elements of T, are compatible and satisfy 

(e2) and (e3), then there exist random functions e(t) in the sense of (I) with 
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It is essential, however, that the function p{ which, generally speaking, 

is uniquely defined by the finite-dimensional distributions P;lh, ... ,tn , is not 

defined beyond 4>T. At the same time, the class 4>T is too narrow for applica

tions: for uncountable T it does not include the set of functions x(t) such that 

Ix(t)1 ::; K for all t E T, or, if T = [a, b], the set C of continuous functions, etc. 

Passing to the concept (II), in aH cases of practical importance studied so 

far we were able to recover p{ uniquely from the finite-dimensional distributions 

ptt" ... ,tn (the meaning ofthis statement for spaces ~ consisting ofmetric types 

x(t), rat her than of individual functions, needs some clarification which we will 

not go into now) and at the same time, when the space ~ is properly chosen, 

all the sets needed for specific problems appear to belong to 4>{. 

§4. Weak convergence of distributions 

In this section we will confine ourselves to the consideration of random elements 

etaking values in a complete separable metric space X and satisfying the 

conditions (6) and (6). In the study of these sequences 

of random elements from X, there arises the quest ion of the convergence of the 

corresponding distributions p{n to a distribution P on X. Here convergence 

naturally means "weak convergence" of distributions in the usual functional 

analytic sense. Recall that a sequence Pn of distributions on X weakly con

verges to a distribution P, if for any function f(x), x E X that is continuous 

and bounded on X, 

[f(X)dPn ~ [f(X)dP. 

If X is the real line, then weak convergence appears to be equivalent to 

the well-known convergence "in general" of the corresponding distribution func

tions. Denote by Pn ~ P the weak convergence of distributions. The meaning 

of weak convergence is adequately clarified by the foHowing two theorems, of 

which the first is weH known and the second can easily be proved. 

I) Pn ~ P if and only if 
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for any set A whose boundary has P-measure 0 (that is, for any continuity set 

of the distribution P); 

II) Pn => P if and only iffor any functional I( x) continuous almost every

where with respect to P, the sequence of distribution functions 

converges to the distribution function 

FJ(O:) = P{x : I(x) < o:} 

at every continuity point of the latter. 

Now let 

be a sequence of random elements of X for which 

(5) 

Further , let 

TI; Tl1, Tl2,···, Tin,··· 

be a sequence of random elements of a complete metric space Y with TI = f(e) 

and Tin = In(en), where I and In are continuous mappings of X into Y. Then, 

under rather general assumptions (for example, that In -+ I uniformlyon any 

compact set K C X), (5) implies that 

P"n => P". 

This simple remark is useful when proving a number of limit theorems. 

Finally, the following theorem may be of use for studying limit theorems 

for a sequence of random variables (see [17]): 

111) For a family !m of distributions in X to be compact it is sufficient 3 

that for any f > 0 there exists a compact set K, such that P(K,) > 1 - f for 

all P E!m. 

We consider an example illustrating Theorem III. It is known that a set 

K C C, where C is the space of functions x(t), continuous on the interval 

3 Yu.V. Prokhorov proved also the necessity of this condition. 
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[0, 1], x (0) = 0, is compact if and only if there exists a function 4>( r), tending 

to zero as r ---+ 0, for which 

sup Ix(t + r) - x(t)1 ::::; 4>(r). 
t,xEK 

Now using the continuity condition with probability 1 of a random process 

(see (3) and (4) in §2) we obtain the following sufliciency condition for the 

compactness of a family rot of distributions in C: 

There exist constants a > 0, a> 1, K > 0 such that for all PE rot 

where Epe denotes 

Sometimes it is relatively simple to establish convergence 

Pn(A) ---+ P(A), A E S, (6) 

for some system S of subsets of X. Weak convergence Pn => P can be derived 

from (6) using, for example, the following theorem: 

IV) A system S of subsets X is called a "uniqueness system" if any distri

bution P defined on S is uniquely defined on X. 

In order that Pn => P it is necessary and suflicient that the following two 

conditions hold: 

a) Pn(A) ---+ P(A) on a "uniqueness system" S; 

b) the family {Pn } is compact. 

This theorem implies, for example, that if a sequence of processes {en(t)} 

defined on [a, b] is such that 

a) the finite-dimensional distributions of the processes en(t) converge to 

the finite-dimensional distributions of some process e(t), 

b) there exist constants a, a, K(a > 0, a> 1, K > 0) independent of n 

such that 

then for the corresponding distributions in qa,bj we have 
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V) Let S be a system of open sets A ~ X such that: 

a) S is a basis in X; 

b) Al ES and A2 ES imply Al n A2 ES. Then the convergence 

Pn(A) - P(A), A E S, 

implies that 

Pn~P. 

Examples illustrating the use of these general results can be found in the 

last section of the present paper. 

§5. Characteristic functionals 

If e is a random element from a Banach space X, 4 then for the corresponding 

distribution p( we can define an analogue of the usual characteristic function. 

For any element f of the space X* dual to X we define the value of the char

acteristic functional H by the formula 

This definition, as wen as the basic properties of characteristic functionals, was 

given in the note by A.N. Kolmogorov [18]. Recently interest in distributions 

in function spaces has grown considerably, and it seems that the apparatus of 

characteristic functionals will find broader applications in probability theory 

and in certain fields of mathematical physics (see, for example, Hopf [19]). In 

view of this we consider it useful to take note of the results of [18] and point 

out certain unsolved problems in this connection. For example, in [18] it has 

been established that 

1. p( is uniquely determined by H(f, p(). 

2. When summing independent random variables with values in X, the 

corresponding characteristic functionals are multiplied. 

3. If 

then 

4 In what follows we shall consider separable spaces only. 
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where 

E(/I, 12,···, In) = Ix /I12 ... IndPe 

are multilinear functionals which are natural generalizations of the moments. 

Clearly, the functions 

are uniquely determined by H(f, Pe). 

For the purposes of probability theory it is essential to have necessary 

and sufficient conditions for weak convergence of distributions in terms of the 

corresponding characteristic functionals. However, these conditions are not 

yet known. Certain applications of characteristic functionals for deriving some 

limit theorems are studied in work by R. Fortet and E. Mourier (see [20]-[23] 
and Fortet's talk at the present conference). Here we note only one result 

following from Theorems III and IV of §4. 

Let X be a separable Banach space and let {Pn } be a sequence of dis

tributions on X. Convergence Pn ::} P holds if and only if the following two 

conditions hold simultaneously: 

a) H(f, Pn ) - H(f, P) for every I E X*j 

b) for any f. > 0 there exists a compact set K, such that Pn(K,) > 1 - f 

for all n. 

The quest ion of sufficient conditions for a functional H(f) to be character

istic acquires new aspects in the infinite-dimensional case. Here, we only make 

the following remark. In accordance with [18] it is natural to call a distribution 

P in X normal if its characteristic functional has the form 

where ml is a linear and Q(f) a quadratic functional of I. 
For a Hilbert space this brings us to the formula 

H(f) = ei(m,J)-~(J,sJ), 

where m is an element of X and S is asymmetrie bounded linear operator 

replacing the matrix of second moments. 

However, the condition that 

(f,Sj)"? 0 
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be non-negative, which is suflicient for obtaining the characteristic function in 

the finite-dimensional case is not suflicient here. 5 In particular, the functional 

H(J) = e-tu,J) which is obtained for m = 0, Sj == j, is not characteristic. 

Note also that the necessary and suflicient conditions for a functional to be 

characteristic given in [23] can hardly be considered final, since they are of an 

extremely complex character. 6 

§6. Applications to limit theorems 

6.1. Passage from sums of random variables to processes. The notion 

that limit distributions for sums of random variables are exact for properly 

chosen random processes took shape long ago (see, for example, [25]-[29] and 

especially A.Ya. Khinchin's monograph [30]). Here we will give the results 

of more recent works touching on this group of questions. Note that posing 

and solving the problems on passing from sums of random variables to pro

cesses seems impossible without the methods which essentially have to do with 

functional analysis in their most general form. 

Let 

be random variables with zero expectations Een,k and finite variances Oen,k 

such that 

We denote by 

Sn,k = en,l +en,2 + ... +en,k, k = 1,2, ... , n, (7) 

the "accumulated sums" of the random variables en,k, and by tn,k the quantities 

k 

OSn,k = L:: Oen,j' 
j=l 

5 It is sufficient if the trace of S is finite (which is also necessary). 
6 The modern situation is reviewed in: N.N. Vakhaniya, V.1. Tarieladze and 

S.A. Chobanyan, Probability distributions in Banach spaces, Nauka, Moscow, 
1985 (in Russian) (Note of Russian editor). 
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We assign to the sequence of sums { Sn,k}, k = 1,2, ... , n, a random ele

ment ~n of the space C of functions x(t) continuous on the segment [0,1] and 

vanishing at t = 0, by setting 

for tn,k :::; t < tn,H1' 
It can be shown (see [17]) that if the sums Snn satisfy Lindeberg's condition 

used in the ordinary central limit theorem, then 

(8) 

as n --- 00, where e(t) is a Wiener random process, that is, a process continuous 

with probability 1 and satisfying the conditions: 

1) ~(O) = 0 with probability 1; 

2) the increments of {(t) are independent on non-intersecting intervals; 

3) {(t + Ll) - {(t) has normal distribution with mean 0 and variance Ll. 

Formula (8) and Theorem 11 of §4 imply a number of limit relations. Thus, 

for instance, by considering the functional 

we obtain for a ~ 0, 

fex) = max x(t), x(t) E C, 
0$t~1 

P{ max en(t) > a} = P{ max Sn k > a} --- P{ max ~(t) > a} = 
0$t$1 l~k~n ' 0~t~1 

Given continuous functions a(t) and b(t) on [0,1] such that a(O) < 0 < b(O) 

and a(t) :::; b(t), consider the functional fex) equal to 1 if a(t) < x(t) < b(t) for 

an t and 0 otherwise. We find that 

P{for an t, a(t) < ~n(t) < b(t)} --- P{for all t, a(t) < ~(t) < b(t)} 

and hence 

P{for an k, a(tn,k) :::; Sn,k :::; b(tn,k)} --- P{for all t, a(t) < ~(t) < b(t)}. 
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The latter result was obtained by A.N. Kolmogorov in 1931 under somewhat 

different assumptions (see [28], [29]). This remark allows us to obtain similar 

limiting relations for the joint distribution of any finite number of functionals, 

for example 

P{ min Sn k <:c, max Sn k < y} -+ P{ min e(t) <:c, max e(t) < y}. 
lSkSn' lSkSn' 0St9 099 

Statement (8) contains theorems of Erdös, Kac and Donsker (see [31]-[33]) 

as particular cases. According to these theorems, the distributions of functions 

of "accumulated sums" converge to the distributions of the corresponding func

tionals of Wiener's process. The method by Erdös and Kac in its final form 

given by Donsker [33] is first to establish the convergence of 

(9) 

for "strips", that is, for the sets A whose elements satisfy a(t) < :c(t) < b(t) for 

all t, where a(t) and b(t) are step functions (see Figure). 

/1 

'!/tJ 

11' b 
1 

alt) 1 
1 

Then by approximating functionals f that are continuous almost everywhere 

with respect to p~ by characteristic functionals (in the set-theoretic sense) 

of "strips", Donsker established the convergence of the distribution functions 

Fjn)(a) = p{f(en) < a} which, by Theorem II of §4, is equivalent to weak 

convergence (8). To pass from (8) to (9) we can also use Theorem V of §4, since 

the system S of all "strips" satisfies the conditions of this theorem. Another 

method for proving (8) based on Theorem III of §4 is given in [17]. 

Remark. It is known that by using the method of upper and lower functions 

(see [30]) for the case when the process en(t) is constructed by the accumulated 

sums of terms that are independent or connected in a Markov chain, and if the 

process e(t) is a properly chosen Markov process satisfying the Fokker-Planck 
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differential equations, we can obtain a statement of the following type: for any 

piecewise smooth functions a(t) and b(t) 

P{for all t, a(t) < ~n(t) < b(t)} - P{for all t, a(t) < ~(t) < b(t)}. (10) 

Clearly, using Theorem III of §4, we can infer from the convergence (10) 

that Pen => Pe. Nowadays the method of upper and lower functions is suc

cessfully used by 1.1. Gikhman [34]-[39], who has applied it to a number of 

problems concerning sums of random variables and certain problems in math

ematical statistics (see below). 

6.2. Approximation of the empirical distribution to the theoretical 

one. Let ~ be a random variable with uniform prob ability distribution on [0,1], 

let Fn(t) be the empirical distribution function constructed by n independent 

observations of ~ and let 

Denote by ~(t) the Gaussian process (that is, the process all finite-dimen

sional distributions of which are Gaussian), continuous with probability 1 and 

with correlation function 

E{~(t),~(s)} = t(l- s), ° ~ t ~ s ~ 1. 

Using the higher-dimensional Laplace theorem it is easy to show that 

the finite-dimensional distributions of the process ~n(t) converge to the finite

dimensional distributions of the process ~(t) as n - 00. 

This makes it possible to derive convergence of distributions to the dis

tribution f(~) for a broad dass offunctionals f(~n). This can be done by all 

the methods described in §6.1. (See, for example, the papers by Donsker [45], 

Gikhman [38], Fortet and Mourier [23]. The latter makes use of the method of 

characteristic functionals when ~n and ~ are considered as random elements in 

the space L2[0, 1]. The paper by Donsker [45] is dose to [33].) 
Based on this result we can obtain a number of new non-parametric tests 

(see, for example, [46]), generalizing the known tests of Kolmogorov [42] and 

Smirnov [43], [44]. 
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In what follows 

45. ON THE PROPERTIES OF P. LEVY'S 

CONCENTRATION FUNCTIONS * 1 

denotes the sum of independent random variables 6:, 

Q(/) = sup P{z ~ e ~ z + I} 
x 

the concentration function of the sum e and Q" the concentration function of 

the e". Theorem 48.2 from the well-known monograph by P. Levy , Theorie de 

l'addition des variables aIeatoires', can be formulated in the following way: 

For any (, 1 ~ ( > 0, and ß > 0 there exist two constants 6 > 0 and N > 0 

such that tor n ~ N the inequality 

implies 

(1) 

In my recent work I happened to need a generalization of (1). The following 

theorem [1] suited my requirements: 

Theorem. There exists a constant C such that 2 

where 
n 

s = ~)1 - Q,,(1)), 
"=1 

imply that 

Q(L) ~ CL/l..jS. (2) 

* 'Sur les proprietes des fonctions de concentrations de M.P. Levy', Ann. Inst. 
H. Poincare 16:1 (1958), 27-34. 

1 In two issues of the Proc. Inst. Statistics Paris Univ. articles in honour of Paul 
Levy have been published. This paper was submitted too late to be included in 
these issues. 

2 Here and in what follows logarithms to the base 2 are considered. 

459 



460 ON THE PROPERTIES OF P. LEVY'S CONCENTRATION FUNCTIONS 

In this paper I give a proof of this theorem. Another refinement of (1) 

was given with a detailed proof by W. Doeblin in [2]. His result is not clearly 

formulated in [2], and there is a misprint. 3 It seems evident, however, that in 

terms of concentration functions the result by W. Doeblin may be formulated 

in the following way: 

For any f > 0 and ß > 0, there exist constants 6 > 0 and N > 0 such that 

for 

the inequality 

implies 

Q(6L) ~ ß. (3) 

It would be interesting to find inequalities that include (2) and (3) as par

ticular cases. In general, I would like to point out that the further development 

of elementary methods for direct probabilistic computations, so brilliantly de

veloped in France by P. Levy and W. Doeblin, seems to remain as urgent as the 

development of classical or functional analytic methods. In any case, I could 

not prove the results of [1] without these elementary direct methods. It is quite 

possible that mathematicians that have a better command of the subtle prop

erties of characteristic functions will sooner or later be able to prove and even 

generalize theorems from [1] using purely analytical methods, as already has 

happened with results initially proved by direct methods of probability theory. 

It seems, however, that today we are still in aperiod when the competition 

between these two trends is bringing about the best results. While P. Levy 

who masters these two techniques equally weIl, makes use of these two kinds 

of method in his own work, it is very desirable that, after the premature death 

of Doeblin, the younger generation of probabilists should not forget the direct 

methods despite their admiration (admittedly, quite justified) for the power of 

the methods which make use of distributions in function spaces. 

We will use the following notation: 

F(x) = p{e < x}, a = Ee, (72 = Oe. 

3 It says L~ I instead of Li ll. 
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The following lemma is weIl known. 

Lemma 1. There exists a constant Cl such that 

where ak = Eek (k = 1,2, ... , n), implies the inequality 

Ga,q being the normal distribution function with pammeters a, u. 

The following lemma is a generalization of Lemma 48.2 from 'Theorie de 

l'addition des variables aIeatoires'. 

Lemma 2. There exists a constant C2 such that 

p{ek = xA:} = p{ek = -xA:} =~, Xk ~ I (k = 1,2, ... , n), 

L ~ Iv'logn(n ~ 2) 

imply that 

To prove this lemma, it is necessary to distinguish between the following 

three different cases: 

1°. L > Iyn. 

2°. L ~ Iyn and moreover, there exists an r ~ 1 such that the number nr 

of numbers Xk such that 

(4) 

satisfies the inequalities 

3°. L ~ Iyn and there is no r satisfying the properties indicated in 2°. 

In the first case 

Q(L) ~ 1< Lj/...fii,. 

In the second case it is natural to consider the sum e. of those ek satisfying 

(4). Since all the terms of this sum satisfy the inequalities 

lekl < I. = 4r l, U. = v'Oe. ~ 4r - l /...jn,: ~ ~..;n, 
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according to Lemma 1 for the corresponding function F. (z) we have 

Since the concentration function Q/J,u(L) of the normal distribution func

tion G/J,u satisfies the inequality 

we have in the second case 

(6) 

where Q.(L) denotes the concentration function of e •. 
In the third case, for each r ~ 1 one of the following two inequalities is 

satisfied: 

either nr < n/4r , 

or nr < n/4Iogn. 

The sum of the n' numbers n r satisfying (7) is not greater than 

00 1 n 
nE 4r = a· 

r=1 

(7) 

(8) 

Since the sum of all the nr equals n, the sum of the n" numbers nr satis

fying (8) is not smaller than !n. Clearly, among all these nr there are at least 

2 log n non-zero numbers. Since the number of r satisfying 

is smaller than logn, there exists some number, not less than logn, ofnumbers 

r for which 

Taking from these reither only even, or only odd numbers in increasing 

order we obtain the sequence 
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for which 

and study their sum f,'. Since 

a more or less elementaryargument, which is left to the reader, shows that the 

sum f,' can belong to an inter val of length L only for one single quite specific 

combination (if n > 1) of the signs of the terms f,k ö' In other words, with 

probability at most 2-8 ~ n-'. 
Hence, in the third case, because of the condition L ~ 1 we have 

Q(L) ~ Q'(L) ~ l/vn ~ L/lvn. (9) 

Comparing (5), (6) and (9) in these three cases we see that Lemma 2 is 

proved. 

Now let us prove the theorem. The relations 

(10) 

determine Uk(Y), 0 < Y < 1. (Since Fk(Z) is the distribution function of a 

random variable f,k, it uniquely determines the values of Uk(Y) for all y, 0 < 
y< 1 except perhaps on a countable set of points y.) 4 It can be considered as 

the inverse function 

whose definition must be made suitably precise for all Y corresponding to dis

continuity points of Fk(Z), If we assurne that the random variables 7]k are 

uniformly distributed on (0,1) and are independent, then f,k = Uk(7]k) are also 

independent and have distributions Fk(Z), Clearly, it may be assumed without 

4 There is no uniqueness for the points y corresponding to the intervals of con
stancy of Fk(x), hut clearly Uk(Y) can he well-defined on the whole interval (0,1) 
so that (10) holds. 



464 ON THE PROPERTIES OF P. LEVY'S CONCENTRATION FUNCTIONS 

loss of generality that the initially given random variables ek are expressed in 

this way. 

It may be assumed that all the Qk(/) are smaller than 1, since by excluding 

from our discussion those terms for which Qk(1) = 1 and obtaining (2) for the 

sum of all other terms we can include the excluded terms again, and this will 

not enlarge Q( L). We set 

4fk = 1 - Qk(1), 

x~ = 'Uk(fk), x~ = 'Uk(1- fk)' 

Clearly, 

X~ - x~ > I. 

Denote by k1, k2 , ••• ,km the indices k for which either 1/k < fk or 1/k > 
1- fk. 

We fix the quantities 

if 1/kr < fkr , 

if 1/kr > 1 - fkr . 

It is easy to see that the joint conditional distribution of the random variables 

eki is such that they remain independent and each of them has the distribution 

where 
Xr = ~[Ukr(1- Zr) - Ukr(Zr)], 

a r = ~[ukr(1- Zr) + Ukr(Zr)]. 

Applying (for fixed kr and Zr) Lemma 2 to the e~ = ekr - ar for which le~1 ~ 

I' = ~/, we obtain for L ~ I' y10g m the inequality 

(11) 

Inequality (11) is proved for the conditional function Q(L) (when m, kr , ar , Zr 

are fixed and L ~ I' y10g m.) This immediately implies the inequality 

for the absolute function Q(L), where 

p=1-PHs~m~s}. 
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We now merely have to estimate this latter probability. Since 

Em = L:2fk = !s, 
k 

Dm = L: 2fk(1 - fk) ~ !s, 
k 

it follows from Chebyshev's inequality for k = tS that 

{} Dm 8 
1- P is ~ m ~ s ~ P{lm - Eml ~ k} ~ k2 ~ -;. 

Thus we finally obtain 

or, since Q(L) ~ 1, and by our assumptions L ~ I, 

Q(L) ~ CL/hIS, 

where C = 8 + 4C2 • 
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46. TRANSITION OF BRANCHING PROCESSES TO 

DIFFUSION PROCESSES AND RELATED GENETIC PROBLEMS * 
Survey Report 

The abstract theory of "branching processes" with the "number of particles" 

taking arbitrary non-negative real values (see [1]) was obviously developed to 

inelude the limiting laws of behaviour of ordinary branching processes for a 

large number of partieles. Apparently, the most important particular case of 

these processes is a diffusion process. In the simplest one-dimensional case the 

corresponding Fokker-Planck equation is of the form 

U T = ~b(xu).,., - a(xu).,. (1) 

A more complex related problem was considered by R.A. Fisher in his 

remarkable book [2]. In a population of N individuals a gene A can be present 

in v copies, 0 ~ v ~ 2N. For e = v/2N, 0 ~ e ~ 1, Fisher obtains the 

Fokker-Planck equation 

uT = ~b[x(l- x)u].,., (2) 

which, even for large N, is only reasonable for x not too elose to 0 or 1. On 

the other hand, near x = 0, v obeys the laws of a branching process, and 

near x = 1 so does 2N - v. Similar problems may appear also in physics and 

chemistry. 

FeIler's paper [3] may serve as an introduction to the whole range of prob

lems. Apart from [2], the corresponding genetic problems are discussed in [4], 

[5] (without mathematical rigour). Basic information on branching processes 

is given in Sevastyanov's review [6]. 

It is interesting that, from the viewpoint of the theory of diffusion processes 

here we have adegenerate case: the diffusion coefficient bx/2, or bx(l - x)/2, 

vanishes on natural boundaries. In [3] FeIler stresses the difficulties that appear 

because of this. However, I do not agree with hirn when (on p.238) he says 

that certain results obtained by biologists are meaningless: these results are 

true under proper interpretation. I think that in this field there are many 

subjects that deserve further development. In what foIlows I only treat certain 

very simple results obtained by other methods and give a correct interpretation 

* Teor. Veroyatnost. i Primenen. 4:2 (1959), 233-236 (in Russian). (Translated 
as Theory Probab. Appl.) 

466 



BRANCHING PROCESSES, DIFFUSION PROCESSES & GENETIC PROBLEMS 467 

of certain results of Fisher which were tackled by FeIler, from the diffusion 

viewpoint. 

Suppose that during one step of a process one partiele turns into k particles 

with prob ability Pk(N), 

L: kpk(N) = 1 + o:(N), 
k 

L:k(k - 1)(k - 2)Pk(N) = c(N). 
k 

We let N tend to infinity and suppose that 

where a, band c are finite. 

Pk(N) -+ Pk, 

No:(N) -+ a, 

b(N) -+ b, 

c(N) -+ c, 

L: k(k - 1)Pk(N) = b(N), 
k 

(3) 

(4) 

(5) 

(6) 

The meaning of assumption (4) is that for the number of particles of order 

N and 0: of order 1/ N, the role of the number of particles in the process of 

systematic increase (or decrease) and the role of random scattering are of the 

same order. If the order of 0: is greater, then for a Iarge number of particles 

the process becomes almost deterministic, whereas if 0: is of a smaller order, 

it can be neglected. "Borderline" phenomena for 0: elose to zero are studied 

in Sevastyanov's work [7]. It is here that the idealized diffusion model can be 

expected to bring about some results. 

If we now set v = Ne, then a natural time variable for studying the 

behaviour of e is given by T which is related to the number of steps t of the 

process by the relation t = NT. Under these assumptions the process e(T) gives 

a diffusion process with Fokker-Planck equation (1) in the limit as N -+ 00. 

At a = 0 equation (1) has the solution 

(7) 

with singularity at T = 0, X = O. In a certain sense it describes the behaviour 

of one partiele that appeared at time T = 0, meaning that if for TO > 0 we 

choose c so that 100 
U(To,x)dx = 1, 
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then, provided that e(rO) > 0, the conditional distribution of e(r) for r > ro 

converges to the distribution 

p{e(r) <x}=O, x~O, 

p{e(r) < x} = P(r) + 1:Z: u(r, x)dx, x> 0, 

P(r) = p{e(r) = O} = 1-100 u(r,x)dx 

as N -+ 00. 

The general solution of the stationary equation at a = 0, that is, of the 

equation 

(xu):z::z: = 0 

has the form 

This is not a probability distribution. However, the solution 

u(x) = ct/x 

has the following statistical meaning: if at each step a new particle appears 

independently of time with prob ability p, and p( Xl, X2) is the number of those 

initial particles whose progeny at a certain fixed time t satisfies 

then the expectation EJl(Xl' X2) tends to the limit 

as N -+ 00. 

The solution 

ct/x + c2/(1- x) 

of the stationary equation 

(x(1 - x)u):z::z: = 0 

in Fisher's theory can be interpreted in a similar way. This interpretation was 

even verified in an experiment and appeared to be true. 

18 November 1958 
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47. ON THE CLASSES ~(n) OF FORTET AND 

BLANC-LAPIERRE * 
If for areal process e(t) there exist continuous absolute moments of order 

n such that 

(1) 

then for k ~ n the moments 

may be represented as 

where the J.l~k) are generalized functions. 

A process belongs to the dass ~(n) (see [1]), if aH the J.l~k) are of ''finite 

measure type", that is, if 

(k)( ) - J J i(t,A)M(k)(d') me tl, ... ,tk - . . . e e 1\, 

where M?)(A) is a finite complex measure in k-dimensional space. 

It is weH known that when n = 2, for a strictly stationary process e(t) the 

existence of the moments Elel and Elel2 implies that it is of the dass ~(2). 

It can be shown by an example that similar statements fail for n > 2. 
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48. ON CONDITIONS OF STRONG MIXING OF A GAUSSIAN 

STATIONARY PROCESS* 

Jointly with Yu.A. Rozanov 

As is weH known, two u-algebras of events mt' and mt" are said to be indepen

dent iffor any A' E mt', A" E mt", P(A',A") = P(A')P(A"). 
M. Rosenblatt [1] has suggested a natural measure of dependence between 

two u-algebras of events: 

a(mt', mt") = sup IP(A' n A") - P(A')P(A")I. 
A'E!JJl',AIE!JJl" 

For a stationary random process e(t) the measure a(mt~, mti+T) (where 

mt! denotes the u-algebra of events generated by e( u), s ~ u ~ t) depends 

only on rand will be denoted by a(r). If a(r) - 0 as r - 00, then it is said 

that the process e(t) has the strong mixing property. In this paper we indicate 

which properties of the spectral function F( A) of the process guarantee the 

strong mixing condition for Gaussian processes. 

1. For any two systems {O = ~, and {17} = ~" with finite second moments 

we introduce the index 

If~' and ~" are, respectively, the families of aH variables with finite second 

moments measurable with respect to the u-algebras mt' and mt", then, by def

inition (see [2]), p(mt', mt") = p(~', ~") is the maximal correlation coefficient 

between mt' and mt". 
Clearly, 

(1) 

N ow let {O and {17} be two sets of random variables which have (for 

any finite set el, ... ,em,171, ... ,17m) Gaussianjoint distributions, and let mte 
and mt'1 be the u-algebras generated by the events (e Er') and (17 Er") 

respectively, where r' and r" are arbitrary Borel sets on the line, and let He 

and H'1 be the closed (with respect to the mean square) linear spans of {O and 

{ 17}· 

* Teor. Veroyatnost. i Primenen. (Probability theory and its applications) 5:2 
(1960), 222-227 (in Russian). 
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Theorem 1. 1 

(2) 

Theorem 2. The maximal correlation coefficient satisfies the lollowing in

equalities: 

(3) 

Proolol Theorem 1. Clearly, we may restrict ourselves to the case when {e} 
and {'11} consist of a finite number of variables. 

Further, in He and H" we can choose el, ... ,ern and '11, ... , 'In SO that only 

those ek and 'I1k with the same indices are dependent, and each e E {e}, '11 E {'I} 

is a function of 6, ... , ern and '11, ... , 'In respectively. We may also assurne that 

Eek = 0, E'I1j = 0, Dek = D'I1j = 1, k = 1, m, j = 1, n. 

Then the quantities I = 1(6, ... ,ern) and 9 = g('11, ... ,'In) may be rep-

resented as 
rn 

1= L: Ik(el, ... ,ek), 
1 

where 

n 

g= L:9j('I11"",'1j), 
1 

Ik = E(flel, ... ,ek) - E(f16,··· ,ek-d, 

gj = E(gl'l11,'''' 'I1j) - E(gl'l11,"" 'I1j-d· 

Note that for k ~ j, 

and similarly for j ~ k 

which implies that E/kgj = 0 for k =1= j and, taking m ~ n for the sake of 

definiteness, 

rn rn 

Elg = L:E/k9k = L:E[E(fk9kI6, ... ,ek-l,'11"",'I1k-l)]. 
1 1 

1 Theorem 1 is a multidimensional generalization of the result by Sarmanov [2], 
according to which (2) holds for any two variables e and " with Gaussian joint 
distribution. 
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The variables 6: and TJk with Gaussian distribution do not depend on 6, ... ,ek-1 , 

TJ1, ... , TJk-1, and Sarmanov's result [2] implies that 

where 

Hence, 
m 

IE/gl ~ p L: Eakbk ~ p, 
1 

which proves our theorem. 

Pro%/ Theorem 2. 2 Take an arbitrary f > 0 and ee EHe, TJe E HrJ with 

Eee = ETJe = 0, oee = ßTJe = 1 such that r = EeeTJe > p - f. Consider the 

events 

Ac = {ee > O} E 9Re and Be = {TJe > O} E 9RrJ' 

We have ([9], p.321) 

and, clearly , 

2~ sin- 1 r = P(AeBe) - P(Ae)P(Be) ~ 0'. 

Further, if 0' > ~, then the inequality p ~ 211'0' is trivial. If, on the other hand, 

0' ~ i, then 

p - f ~ r ~ sin 211'0', p ~ 211'0' + f, P ~ 211'0', 

which, together with (1) and (2) proves our theorem. 

Theorems 1 and 2 imply, in particular, that a Gaussian stationary process 

e(t) satisfies the strong mixing condition if and only if the maximal correla

tion coefficient p(9R:'oo , 9Rif.r) -+ 0 as T -+ 00 (by Theorem 1 it coincides 

with p(T) = p(H:oo,Hnr), where H: oo and Hnr are the linear closures with 

2 This simple proof was suggested to the authors by Yu.V. Prokhorov. 



474 CONDITIONS OF STRONG MIXING OF A GAUSSIAN STATIONARY PROCESS 

respect to the mean square of the quantities ~(u), u ~ t and ~(v), v ~ t 

respectively). Moreover, (cf. [4], Introduction), 

a(r) ~ p(r) ~ 211"a(r). (3') 

2. Let ~(t) be a process that is stationary in the wide sense and let 

(stationarity implies that p(r) does not depend on t). 

If the spectral function F(~) of our process is not absolutely continuous, 

then p(r) = 1 for all r (see [5], [6]). 

Let F(~) be absolutely continuous and f(~) the spectral density of the 

process ~(t), f(~) = F'(~). 

Theorem 3. For integer time 

(4) 

where inf", is taken over a/l functions <fJ( z) that can be analytica/ly continued 

inside the unit disc; for continuous time 

(4') 

where inf", is taken over a/l functions <fJ(z) that can be analytically continued 

into the lower half-plane. 

The proof of this theorem is based on a general lemma taken from func

tional analysis. 

Lemma. Let L be a Banach space and L* its dual. 

Let H be a subspace of Land HO the set of linear functionals that vanish 

on H. Then 

(5) 

for any h* E L*. 

Proof Since (h* - hO)(h) = h*(h), it follows that h*(h) ~ IIh* - hOIl for h E 

H, IIhll = 1, therefore sup h*(h) ~ inf IIh* - hOIl. Further, according 
hEH,lIhll=! hOEHO 
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to the Hahn-Banach extension theorem there exists a functional hi, coinciding 

with h" on H, with norm IIhili not exceeding sup h"(h). Then h" -hi = 
hEH,lIhll=l 

h~ E HO and 

IIh" - h~1I = IIh~1I = sup h"(h), 
hEH,lI hll=l 

which proves (5). 

Let us come back to our theorem. Clearly 

where 

Pj(A) = L c{e-iAt{, J IpjI2f(A)dA ~ 1 

tÜO 
and the integration is carried out from -11" to 11" for integer time, and from 

-00 to 00 for continuous time. Using certain properties of boundary values of 

analytic functions it can be shown that in fact 

where 

p(A) = L Cke-iAtk, J Ip(A)lf(A)dA ~ l. 
tk~O 

(6) 

Let us take for the space L the space offunctions h(A) that are integrable 

with weight f(A), that is, IIhll = f Ih(A)lf(A)dA < 00, and as subspace H the 

linear closure of the functions p( A) of the form 

p(A) = L Cke-iAtk. 
tk~O 

Every linear functional h" on L has the form 

h*(h) = J h*(A)h(A)f(A)dA, 

where IIh*1I = esssup Ih"(A)I. 
A 

The subspace HO is clearly the subspace of linear functionals hO corre-

sponding to functions hO(A) such that f e-itAhO(A)f(A)dA = 0 for all t ~ o. 
Hence the function 4>(e-iA) = hO(A)f(A) has an analytic continuation to the 
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unit disc for integer time, and for continuous time 4»(A) = h(A)/(A) may be 

analytically continued into the lower half-plane. 

Taking as h* the linear functional corresponding to the function h*(A) = 
e-i>.T, we obtain (4) and (4') from (5). 

Theorem 4. I/there exists 4»o(z) that has an analytic continuation inside the 

unit disc /or integer time (to the lower hai/-plane /or the case 0/ continuous 

time) with boundary value 4»p(e-i>.) (respective1y, 4»p(A)) , such that the ratio 

/ No is a uni/ormly continuous function 0/ A with 1/ Nol ~ ( > 0 for almost 

all A, then 

per) -+ 0 (7) 

as r -+ 00. If there exists an analytic function 4»o(z) such that 1/ Nol ~ ( > 0 

and the derivative (f No)<k) is uni/ormly bounded, then 

p(r)::; cr- k • 

Proof Let 4»(z) be a polynomial of degree at most [r/2] for integer time (or 

an analytic function of exponential type with type at most r /2 for continuous 

time). We have 

i~fess:uP[I/-e-i>'T4»I/(\)] ::;qll~~",ess:up[l:o -ei>'T,p117 1]::; 

::; ~infesssuplL - ei>.T,pI-+ 0 
('" >. 4»0 

(8) 

as r -+ 00 (since //4»0 can be uniformly approximated by functions ,p( z) of the 

above type (see [7], p.207; [8]). 
For example, (7) always holds ifthe spectral density /(A) is continuous and 

does not vanish at any A, -7r ::; A ::; r (integer time) or if /(A) is uniformly 

continuous over the whole line, does not vanish and for sufficiently large A 

satisfies the inequality 

m/Ak ::; /(A) ::; M/Ak - 1 (9) 

for some positive m, M and integer k > 0 (for the case of continuous time). 

It then follows from [5], [6] that if p( r) -+ 0 as r -+ 00, then the spec

tral density cannot vanish "too strongly": namely, it must be positive almost 

everywhere and satisfy the inequality 

j log/(A)d\ _ 
1 + A2 ,,> 00. (10) 
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As follows from Theorem 4, weaker vanishing of the spectral density f(>") 

compatible with (10) does not by itself contradict the strong mixing condition 

(equivalent to (7)). If f(>") is rational with respect to ei>· (for integer t) or 

with respect to >.. (for continuous t), then p(r) decreases exponentially fast; 

for example, if f(>") = cj(a2 + >..2) (e(t) is a Markov Gaussian process), then 

p(r) = e-aT • 

Apparently, the strong mixing condition might fail if the spectral den

sity f(>") has a discontinuity (even if it is everywhere greater than a positive 

constant for integer t). 

The authors thank Yu.V. Prokhorov for the remarks on the manuscript, 

which undoubtedly has improved it. 
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49. RANDOM FUNCTIONS OF SEVERAL VARIABLES ALMOST ALL 

REALIZATIONS OF WHICH ARE PERIODIC * 
A set 

of n linearly independent veetors is ealled a frame in Eudidean spaee En. A 

function k(t) of an n-dimensional veetor is ealled R-periodie if there exists a 

frame 

R* = (Ir, ... ,1~) 
eongruent to R sueh that 

and if f is periodie in each variable zk with period 211'. 

We give neeessary and suffieient eonditions for R-periodieity for almost all 

realizations of a random function e(t) in terms of "speetral moments". 

In partieular, this implies that a stationary isotropie non-eonstant random 

function eannot be Gaussian for n = 1. This may be of interest when studying 

potentials and solutions of Sehrödinger's equation in erystals and media with 

"dose order" . 

* Teor. Veroyatnost. i Primenen. (Probability theory and its applications) 5:3 
(1960), 374 (in Russian). 
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50. AN ESTIMATE OF THE PARAMETERS OF A COMPLEX 

STATIONARY GAUSSIAN MARKOV PROCESS * 
Jointly with M. Arato and Ya.G. Sinai 

§ 1. Here we consider a two-dimensional stationary random process whose com

ponents e(t) and TJ(t) satisfy the stochastic differential equations 

de = -~edt - WTJdt + d</J, 

dTJ = wedt - ~TJdt + d.,p, 

where </J(t) and .,p(t) are two independent Wiener processes with 

Ed</J = Ed.,p = 0, E(d</J)2 = E(d.,p)2 = adt. 

(1) 

Setting ( = e + iTJ, X = </J + i.,p, , = ~ - iw, we can write the system 

(1) as one equation 

d( = -,(dt + dX. (la) 

The complex correlation function of our process is of the form 

C(r) = A(r) + iB(r) = E[(t)(t + r)] = (J'2 exp( -~Irl- iwr), (2) 

where (J'2 = a/~. 
If a process is observed on the interval [0,1'], then we can determine the 

empirical correlation function 

1 l T
-

T 

c(r) = a(r) + ib(r) = -r (t)(t + r)dt. 
-r 0 

(3) 

With probability 1 the right-hand derivative of the empirical correlation 

function at 0 is 
'( ) 1 2 1 2 • 

C 0 = -a - TS ! + rS2 - zr, 

where the parameter a introduced above characterizes the intensity of the 

"white noises" </J'(t) and .,p'(t), and 

* Dokl. Akad. Nauk SSSR 146:4 (1962), 747-750 (in Russian). 
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In the expression for r the integration is over the angle defined from 

«t) = 1«t)lei8('). 

The figure shows the empirical correlation function for Chandler variations 

of the coordinates of the earth's pole. 1 

§2. The parameter a is determined precisely from the realization. Now it 

remains only to consider the problem of estimating the parameters A and w. 

We denote by P the probability measure in the space of realizations of our 

process on [0, Tl. In the same space we introduce the standard measure 

V=LxW 

where L is ordinary Lebesgue measure on the «O)-plane and W is two-dimen

sional Wiener measure in the space of increments «t) - «0) with the same 

characteristics as those taken for the random process X(t). It can be shown 

that (cf. [2], [3]) 

dP [ A2 + w2 A W ] 
dV = CAexp - 2a Ts~ - ;s~ + AT+ ;Tr , (4) 

where C is a constant. Formula (4) shows that the system of three statistics 

s~, s~, r is a sufficient system of statistics of the problem. Differentiating 

dP A2 +w2 A W 
L=logdV =c'+logA- 2a TS~-;S~+AT+;Tr 

1 The instantaneous axis of the earth's rotation moves with respect to the small 
axis of the earth's ellipsoid (so called free nutation). These movements have a 
periodic component with aperiod of one year. After eliminating this component 
there remain Chandler's movements with tendency to fluctuate with period of 
about 14 months, but which are not strictly periodic and have large and mainly 
smooth variations of the amplitudes (waves of about 10-20 years). The figure 
shows that the Chandler component of pole movement is in good agreement with 
the hypothesis at the beginning of this paper. 

The figure was obtained by processing the data of Table 6 from the book by 
A.Ya. Orlov [1]. The component with one year period is singled out from the 
coordinates x(t), y(t) of Table 6, and the remainder is taken to be e(t) and '1(t). 
The nodes on the figure indicate the points corresponding to the increments of T 

in 0.1 year. The figure shows straight away that the period 21r/w approximately 
equals 14 months. The regular pattern of the spiral obtained might suggest that 
the parameter A can also be estimated very precisely. This, however, is not true, 
as will be explained at the end of our paper. 
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with respect to wand A we obtain the equations 

öL w 2 T 
- = --TS2 + -r = 0, 
öw a a 

(5) 

öL 1 A 2 s~ - = - - -Ts2 - - + T = ° 
ÖA A a a 

(6) 

for determining the maximum likelihood estimates wand i From (5) we obtain 

It can be shown that 

(w - w)/u(w), u2 (w) = a/Ts~ 

has a (0,1)-normal distribution (this result is precise, not asymptotic). Equa

tion (6) always has a unique positive solution. 

T = 0, 1, ... , n; n = 0, 1, ... , 156 

Setting AT = "-, AT = k, we obtain for k the equation 

where h1 = si/aT, h2 = sVaT. 
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The distributions of the statistics h 1 and h2 and consequently k, depend 

only on the parameter K. Since the distribution of K. is continuous, for any 

0', 0 < 0' < 1, and K, 0 < K< 00, we can find k such that 

P{k> klK} = 0'. (7) 

Taking the inverse of the dependence k = ka(K) we obtain K = Ka(k) 

(it has been established that ka(K) is monotone increasing from 0 to 00 as 

K increases from 0 to 00, so that taking the inverse is possible and unique). 

Clearly, 

(8) 

We have initiated computations of Ka(il:) for 0' = 0.1; 0.05; 0.025; 0.01; 

0.005; 0.001; 0.9; 0.95; 0.975; 0.99; 0.995; 0.999. The results thus obtained 

will be published when the computations are completed. 

For small k, (8) is equivalent to the relation 

P{k< UK} = exp( -1/u), (9) 

that is, k/ K has a X2 distribution with two degrees of freedom. For large k, (8) 

is equivalent to 

(10) 

that is, the estimate k is asymptotically normal with variance 

(11) 

§3. For the case mentioned in the beginning of the paper, that is, the movement 

of the earth's pole, we have 2 

w = 5.274, k = 3.6, 211": W = 1.191, u(211": w) = 0.006 

2 The introduction of Wiener processes 4> and ,p, that is, perturbations of "white 
noise" type in (1) is, of course, a gross generalization in the case of the movement 
of the earth's poles. It would be more correct to write 

e' = -~{ - Wfl + J, fl' = w{ - ~11 + g. 

However, data from [1] show that the values J(t) and g(t) at times t separated by 
several years are actually independent, so the replacement of J and 9 by "equiv
alent white noise" is possible. Apparently, the error in determining the intensity 
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based on observations over T = 60 years. 

The asymptotic formula (11) gives 

0-2 (,,) = 3.6. 

Since K is clearly positive and (10) gives a negative estimate for ka when 

er < 0.03, it is evident that the asymptotic formula (10) is still unsuitable. 

Our computation gives the estimates 

KO.90 = 5.5; KO.95 = 6.2; KO.975 = 7.8; 

KO.I0 = 1.27; KO.05 = 0.82; KO.025 = 0.46, 

which, as regards A, correspond to the estimates 

KO.90 = 0.09; KO.95 = 0.10; KO.975 = 0.13; 

KO.I0 = 0.021; KO.05 = 0.014; KO.025 = 0.008, 

Moscow State University, 20 February 1962 
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a of this equivalent white noise is sma.ll enough not to affect the estimates of 
A substantia.lly. The value of w is computed via the discrete analogue of for
mula (*) obtained using the maximum likelihood method for the "discrete-time 
scheme". 

Concerning the estimation of the parameters A and w for the earth 's movement, 
see also [6]. The results of [6] are dose to ours: A = 1/15; 211': W = 1.193. Close 
values were given by Jeffreys [7], but [5], [8] give sharply different values: A = 0.3 
and A = 0.01. 



51. ON THE APPROXIMATION OF DISTRIBUTIONS OF SUMS OF 

INDEPENDENT TERMS BY INFINITELY DIVISIBLE DISTRIBUTIONS * 

Introduction 

In what follows e = 6 + ... + en is the sum of n independent real terms 

Fk(x) = p{ek < x}, H(x) = p{e < x}, 

G () - 1 1'" _",2/2q 2 d 172 x - ~ e x, u> 0, 
y211'u -00 

E(x) = Go(x) = {~ for x ~ 0, 

for x > 0, 

l) = {D} is the set of infinitely divisible distribution functions D(x), and 

Cl, C2 , ••• are positive constants. 

We will prove the following two theorems, which are strengthened versions 

of those given in my paper [1]. 

Theorem 1. There exists Cl such that tor identically distributed ek, there 

exists tor any F(x) = Fk(x), k = 1,2, ... , n, a distribution D E l) such that 

(0.1) 

tor all x. 

Theorem 2. There exists C2 such that tor any (; > 0, L > 21 > 0, the 

inequalities 

(0.2) 

tor all x and k = 1, ... ,n imply the existence ot D E 1) tor which 

D(x - L) - 6 ~ H(x) ~ D(x + L) + 6 (0.3) 

tor all x, where 

6 = C2 max(± (log~) 1/2, (;1/3). (0.4) 

The history of the problem is as follows. 

* Trudy MoskolJ. Mat. Obshch. (Proe. Moscow Math. Soc.) 12 (1963),437-451 (in 
Russian). 
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1. It follows from the dosedness (with respect to weak convergence) of the dass 

of infinitely divisible distributions introduced by Bruno de Finetti [2] that if 

the distributions of sums 

(0.5) 

whose terms are independent and identically distributed within each series, 

converge weakly, then the limit distribution is infinitely divisible. 

It is tempting to interpret this result as folIows: the distribution 0/ the sum 

0/ a large number 0/ identically distributed independent terms is dose to an in

finitely divisible distribution. However, prior to my work [1] this interpretation 

was not quite convincing. 

Even for a sequence 

of independent identically distributed terms the "totally divergent" case is pos

sible (according to Doeblin [3]) when for no normalization 

and for no sequence 

nl < n2 < ... < nk < ... 

can the distributions of the sums e(n,,) converge to anything other than de

generate distributions E(z - a). This, of course, can be achieved by choosing 

sufficiently small factors An. 

Only in 1955 Yu.V. Prokhorov [4] proved that for the case of a sequence of 

identically distributed independent variables en there always exists a sequence 

of infinitely divisible distribution functions 

which approximate the distributions Hn(z) of the sums 

e(n) = 6 + 6 + ... + en 

in the sense that 

sup IHn(z) - Dn(z)l- 0 (0.6) 
z: 
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as n ---+ 00. Still, the work left open the question of whether the convergence in 

(0.6) is uniform with respect to the distribution function F(x) of the variables 

en. 
In terms of the supremum metric 

p(F', F") = sup IF'(x) - F"(x) I 
x 

the question is whether or not the function 1 

1jJ(n) = supp(Hn ,!» 
F 

tends to 0 as n ---+ 00. The answer to this question was given in my work [1]: 

it was proved that 

(0.7) 

In 1960 Prokhorov [5] strengthened this result by showing that 

(0.8) 

Our Theorem 1 states that 2 

(0.9) 

It was natural to try to estimate 1jJ(n) from below. These estimates were 

made by the student of Prokhorov, I.P. Tsaregradskii, Prokhorov himself and 

L.D. Meshalkin. The latest result of Meshalkin [6] is 

(0.10) 

2. For sums 

1 The supremum is taken over all distribution functions F. 
2 After this paper was finished I found out that in 1961 F.M. Kagan had obtained 

a result that is somewhere between (0.8) and (0.9): 

t/J(n) = O(n- 1/ 3 1ogn). 

Later this result was reported by F.M. Kagan at the Meeting on Probability 
Theory and Mathematical Statistics in Fergana (September 1962). 
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all terms of which are independent within each series but have different dis

tributions, A.Ya. Khinchin in 1937 [7] established a sufficient condition for 

the limit distribution of e(k) to be infinitely divisible. This is the condition of 

infinitesimal terms: there exist 

for which the distributions Fki of the eki satisfy the condition 

Our Theorem 2 is an attempt to give a uniform character to this result 

of Khinchin. The essen ce of Theorem 2 may be clarified by using the "Levy 

distance" 

PL(F', F") = inf f, 

where the infimum is taken over all f satisfying the condition 

F'(x - f) - f ~ F"(x) ~ F'(x + f) + f. 

It is easy to see that Theorem 2 implies 

Corollary. 1f 

then 

sUPPL(Fi,E) ~ 1/, 
i 

3. As is weH known, the most powerful means of proving limit theorems on the 

distribution of sums of a large number of independent terms is the apparatus 

of characteristic functions. Now "direct" probabilistic methods in this area 

can very sei dom compete with the possibilities of the analytic apparatus of 

characteristic functions. 

Our Theorems 1 and 2 give an interesting example of another state of 

affairs. An essential element for proving these theorems is Lemma 1, which 

refers to the "concentration functions" introduced by P. Levy. I strengthened 

theorems of Levy and Doeblin on the properties of concentration functions 

([8]) specificaHy to prove the new versions of Theorems 1 and 2 given in [1]. 
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Further progress in deriving estimates for concentration functions is due to 

B.A. Rogozin (see [9], [10]). He also makes use of elementary direct probabilistic 

and set-theoretic methods (Erdös' theorem on the subsets of a finite set). 3 

Mathematicians whose attention I drew to this problem have so far failed 

to prove theorems of types 1 and 2 without turning to these particular methods. 

Throughout this paper, as in [1], I make use of the methods of reasoning 

proposed by Doeblin (see, for example, [3]). As can be seen from the above, the 

passage from 1/5 to 1/3 in Theorem 1 was carried out by Prokhorov. In order 

to eliminate the factor log2 n from Prokhorov's estimate (0.8) it was required 

a) to use the more accurate estimates of concentration functions obtained by 

Rogozinj b) to make some changes in Prokhorov's proof, namely to introduce 

Lemmas 5 and 6. 4 

The passage from 1/5 given in [1] to 1/3 in the proof of Theorem 2 was 

made by similar techniques borrowed from Prokhorov's work [5], which also 

makes use of Lemmas 5 and 6. 

4. Apart from the distance 

p(F', F") = sup IF'(z) - F"(z)l, 
It: 

it is natural to consider the "variation al distance" 

Pv(F',F") = !Var[F'(z) - F"(z)] = sup[F'(A) - F"(A)], 
A 

where A is an arbitrary Borel-measurable set on the straight line. 

As is weIl known, 

p(F', F") $ Pv(F', F"). 

Therefore, for the function 

we have 

(0.11) 

3 This result of Rogozin (now know as the Kolmogorov-Rogozin inequality) was 
proved by Esseen in 1966 by the method of characteristic functions (Editor's 
note). 

4 The first of these steps was taken by F.M. Kagan somewhat before this paper 
was written (see footnote 2). 
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We do not know whether tPv(n) -+ 0 as n -+ 00. 

§1. Eight Lemmas 

After P. Levy, we introduce for any distribution function F(x) its "concentra

tion function" 

QF(l) = sup[F(x + I + 0) - F(x)]. 
x 

Lemma 1. If xr - x'k > land 

for k = 1,2, ... , n, L ~ I > 0 then 

Lemma 2. If U > 0, I > 0, 

then for any distribution function F(x) 

Lemma 3. If U > 0, Ul > 0, then 

Lemma 4. If 

J xF(dx) =0, J x2F(dx)=u2 , h~u>O, 

then 
00 

L sup IF(x) - E(x)1 ~ es. 
r:-oo rh:5x:5(r+l)h 



490 APPROXIMATION BY INFINITELY DIVISIBLE DISTRIBUTIONS 

Lemma 5. If E{k = 0, lekl ~ I, Oe = (7'2, h ~ (7' > 0, then 

Lemma 7. For any positive integer n and 0 ~ p ~ 1, 

Lemma 8. Let 5 0 ~ Pk ~ 1, 

Then 

{ 
I-Pk 

Pk(m) = ~k 

for m = 0, 

for m = 1, qk(m) = ~e-Pk, 
for m > 1, 

L Ip(m) - q(m)1 ~ C12 LP~' 
m k 

Lemmas 2 and 3 are proved by direct eomputation. Lemma 1 is a di

reet eorollary of Theorem 1 from Rogozin's paper [9]. Lemma 7 is proved in 

Prokhorov's work [11], Lemma 4 follows from the estimate (F is the distribution 

of e): 

(Chebyshev's inequality). 

Lemmas 5 and 6 are elose to the known estimate 

(1.1) 

5 Here and in what folIows, m = (mb"" mn) is an n-dimensional veetor, Lm 
denotes summation over the veetors m with non-negative integer components. 
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which follows from Lyapunov's theorem in Esseen's formulation ([12], p.216): 

(1.2) 

Lemma 6 may be derived from (1.2) if the additional normal term with 

variance 0"5 is represented as a sum of a large number of terms with sufficiently 

small variances. 

The proof6 of Lemma 5 is somewhat more difficult. 

§2. Proof of Theorem 1. 

1. In what follows we consider n > 1. It can easily be seen that this requirement 

is inessential. 

2. We suppose further that the ek = Fk- 1 (1Jk) are non-decreasing functions of 

the independent variables 1Jk with uniform distribution on [0,1]: 

p {1Jk ::; Y} = Y for 0 ::; y ::; 1. 

It can easily be shown that in an appropriate extension of the basic prob

ability field (O,!.m, P) such 1Jk do exist. 7 

3. We set 
p = n- 1/ 3 , 

~k = {~ for p/2 < 1Jk < 1 - p/2, 

otherwise. 

a = E{ekl~k = O}, 0"2 = D{ekl~k = O}, 

A(x) = p{ek < Xl~k = O}, B(x) = p{ek < Xl~k = 1}. 

All these constructions hold when passing from 6 to 

e~ = 6 - a, 

6 Lemma 5 can easily be derived from the following estimate due to A. Bikyalis: 

where Cis an absolute constant (see Litov. Mat. Sb. 6:3 (1966), 323-346) (Edi
tor's note). 

7 The functions Fk- 1 must be suitably defined. This is left to the reader. 
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onlya' = 0 appears instead of a, and the functions A(x) and B(x) are replaced 

by 

A'(x) = A(x + a), B'(x) = B(x + a). 

Therefore we need only consider the case a = 0, to which we shall restrict 

ourselves in what folIows. 

4. In the decomposition 

F(x) = pB(x) + (1 - p)A(x) 

the support of the distribution A lies in the interval [x-, x+], 

of length 

while the support of the distribution B lies outside this interval, with each 

of the rays (-00, x-] and [x+, 00) having probability ~ in the distribution B. 

Lemma 1 may be applied to the distributions B rn (throughout, the powers 

of a distribution are understood in the sense of convolution), which gives the 

estimate 

(2.1) 

5. We approximate the distribution 

H = [pB + (1 - p)Ar = L C:prn(l - pt-rn Brn * An-rn 
rn 

by an infinitely divisible distribution D differently according to the two cases: 

A) A ~ Vnu. B) A< Vnu. 

ease A. We set 

D = enp(B-E) = L (np~rn e-np Brn , 
m. 

tIM 

H1 = L C:prn(l - p)n-rn Brn . 
rn 
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According to Lemma 7, 

(2.2) 

By Lemma 4 and estimate (2.1), for h = -' we have S 

IBm * An - m - Bml ~ J IAn-m(z - z) - E(z - z)IBmdz ~ 

~ QBm(-') E sup IAn-m(y) - E(y)1 ~ C5CSm-1/ 2 • (2.3) 
r r>'~!I~(r+l)>' 

Therefore 

IH - H11 ~ EC:'pm(l- pt-mlBm * An - m - Bml ~ CsCsn-1/ 3 + 2E', 
m 

where 

Noting that 

EI' = np = n2/ 3 , 

DJ.' = np(l - p) ~ n2/ 3 , 

we obtain by Chebyshev's inequality 

E' ~ P{IJ.' - n2/ 3 1 > ~n2/3} ~ 4n-2/3, 

which, together with (2.4), gives 

IH - H11 ~ (2CsCs + 8)n-1/ 3 • 

From (2.6) and (2.2) we obtain (0.1) 

Case B. We set 

D - np(B-E) G - ""' (npr -nPBm G - e * n(1-p)q2 - L..J --,-e * n(1-p)q2, m. 
m 

m 

H2 = E C:'pm(l- pt-m B m * Gn (1_p)q2. 

m 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

S The variance of the distribution An - m is (n - m)/T2, so that the conditions of 
Lemma 4 are satisfied for h = " 2: Vn/T. 
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According to Lemma 7 we have 

(2.8) 

The difference H - H 1 is estimated using Lemma 5, where we now assurne 

that h = ,fiiu: 

,fiiu -1/2 A -1/2 ~ C5 --m Cg-- = C5C9 m . 
A ,fiiu 

This estimate is quite similar to estimate (2.3) for case A. As in case A we 

obtain 

(2.9) 

The difference H 1 - H 2 is estimated using Lemma 3: 

where 

I n-m -ll>fu n(l-p) C 7 

Using Chebyshev's inequality we obtain from (2.5) and (2.6) for n > 1 and an 

appropriate choice of C16 the estimate 

which leads to 

11 

" < C n- 1/ 3 L...J - 17 , 

(2.10) 

From the inequalities (2.8)-(2.10) we obtain (0.1), wh ich completes the 

proof of Theorem 1. 
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§3. Proof of Theorem 2 

1. We suppose without lass of generality that f < 1. 

2. We show that it suffices to consider the case of continuous and strictly 

increasing functions Fk (x). 

Assurne that Theorem 2 is proved for continuous and strictly increasing 

functions with constant C~ and consider the sum 

with arbitrary Fk(x) satisfying (0.2). Let L > 2/. Choase I' and L' such that_ 

L> L' > 2/' > 2/, I'/L' ~ ~I/L. (3.1) 

By Lemma 2 we can choose 0"0 to be so small that for any distribution function 

F(x) we have 

F * GI1~(x -)..) - f ~F(x) ~ F * GI1~(x +)..) + f, (3.2) 

F * Gnl1~(x - A) - {/ ~F(x) ~ F * Gnl1~(x + A) + 6', (3.3) 

where 

)"=1'-1, A=L-L', 

I' L' 1/2 
6' = C~ max[L' (log l') ,(2f)1/3]. 

Set 

According to (0.2) and (3.2) we obtain 

E(x -I') - 2f ~ FHx) ~ E(x + I') + 2c 

Since the functions F~ are continuous and strictly increasing, there exists an 

infinitely divisible distribution D' for which 

D'(x - L') - 6' ~ H(x) ~ D(x + L') + 6'. (3.4) 

Noting that 
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(3.3), applied to F(x) = H(x), and (3.4) imply that 

D'(x - L) - 26' $ H(x) $ D'(x + L) + 26'. (3.4') 

Since under a suitable choice of C2 we have, by virtue of (3.1), 

26' $ 2C~max[~, (log ~:r/2,(2()1/3] $ c2max[~(log*r/2,(1/3], 
formula (0.3) follows from (3.4'). 

3. In accordance with No. 2 we take Fk(X) to be continuous and strictly 

increasing. Then 

is defined for an p, 0 < P < 1, continuous and strictly decreasing. It takes an 

positive values. Therefore, the inverse function Pk(A) is defined for 0 < A < 00, 

is continuous, strictly decreasing and takes an values in the interval 1 > P > o. 
The function 

S(A) = LPk(A) 
k 

is also continuous and strictly decreasing. It takes all values in the interval 

n > S > O. Therefore for 0 < ( < 1 there exists a unique solution AO of the 

e quat ion 

4. We set 

A= { AO, 

I, 

S(A) = (-2/3. 

if AO ~ I, 

if AO < I, 

S = s(A) = LPk' 
k 

for x;; < (k < xt, 
otherwise, 

ak = E{ekll'k = O}, 

(j~ = D{ekll'k = O}, 

(j2 = L(I- Pk)(j~. 
k 
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Setting 

we represent Fk (z) as 

where the support ofthe distribution Ak lies in the interval [z;, ztl, while that 

of the distribution Bk lies outside this intervalj here the prob ability of the rays 

(-00, z;l and [zt, 00) is !. 
Using the notation of Lemma 8 and setting 9 

B( ) rr *Bmr. A(m) -_ rr:A~-mr., m = k k , ,. ,. 

we obtain 

m 

The construction of the approximating infinitely divisible distribution differs 

according to the three cases A, B and C: 

A B C 

).0 ~ 1 ).0 ~ 1 ).0< 1 

).0 ~ (T ).0 < (T 

). = ).0 ). = ).0 ). = 1 

s = C 2/ 3 S = e-2/ 3 

5. Since always A ~ 1, it follows that 

(3.5) 

9 The B(m) are defined for any negative mk, while the A(m) are defined only 
when the mk take the values 0 and 1. 
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This is the only instance in our proof when we use condition (0.2) of the theo

rem. Since the definition of Pk(A) and all the other variables essential for our 

constructions is invariant with respect to the shifts 

we need only consider the case 

6. We now make certain calculations that we shall need in the sequel: 

r is equal to the number of variables 6 such that x'k < ek < xt. It is easily 

checked that 

Er = s, Dr = L:Pk(l- Pk) < s. 
k 

Therefore, according to Chebyshev's inequality, 

P{lr - si ~ C} = L: p(m) < ;2' 
It(ID)-'I~C 

7. Suppose further that 

(3.6) 

This is the sum of those ek for wh ich x'k < ek < xt. In view of the assumption 

that the ak = 0, for any m 

E( = 0, E«IJ.t = m) = O. 

In what follows we shall be interested in the conditional variance 

For the random variable p2 = u 2 (J.t) it is easy to calculate 

Dp2 = L:Pk(l- Pk)U:. 
k 
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Since 

~)1- Pl:)o-~ = 0-2 , 

I: 

we have the inequality 

Therefore 
0-2 A2 f L: p(m) ~ 4C2 • 

10"2(m)-0"21~c 

(3.7) 

8. Finally, we note that by Lemma 1, 

QB(m)(L) ~ C5(L/Ao)t(m). (3.8) 

We now proceed to the proof of Theorem 2 for the cases A, Band C. 

Case A. In this case 

m 

is approximated by 

D = exp L: PI: (BI: - E) = L: q(m)B(m). 
I: m 

To proceed from H to D we also consider 

m 

According to Lemma 8 and (3.5), 

ID - H11 ~ L: Ip(m) - q(m)1 ~ C12 L:p~ ~ C12f L:Pk ~ C12 f 1/3 • (3.9) 
m k k 

On the other hand, according to Lemma 4 with h = A = AO ~ 0- and (3.8), 

IB(m) * A(m) - B(m)1 ~ J IA(m)(x - z) - E(x - z)IB(m)(dz) ~ 

~ QB(m)(AO) L: sup IA(m)(y) - E(y)1 ~ C5Cs[t(m)r1/2. (3.10) 
r r>'o~y~(r+l)>'o 
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Therefore 

m 

where 

~' = ~ p(m). 
t(m)<t c2 / 3 

By (3.6) and noting that in our case s = (.2/3, we have 

that is, (3.11) implies that 

(3.12) 

Prom (3.9) and (3.12) we obtain 

(3.13) 

ease B. In this case we set 

D = exp ~Pk(Bk - E) * Gu 2 = ~q(m)B(m) * GU 2, 

k m 

m m 

The inequality 

(3.14) 

is derived in the same way as (3.9) in case A. 

By Lemma 5 for h = U > A = Ao and (3.8) we obtain 

IB(m) * A(m) - B(m) * G u 2(m)1 ~ 

~ J IA(m)(x - z) - Gu2(m)(X - z)IB(m)(dz) ~ 

~ QB(m)(U) ~ sup IA(m) - Gu2(m) I ~ 
r ru:$y:$(r+1)u 

(3.15) 
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Exactly as we obtained (3.12) from (3.10) in case A we now obtain from (3.15) 

(3.16) 

It now remains to estimate the difference H 1 - H2 • By Lemma 3, 

if 

Using (3.7) and taking into account the fact that now A < (1', we obtain the 

estimate 

L:" = L: p(m) $ G20e1/ 3 • (3.17) 

1";2L11~%: 

Therefore in the same way that we derived (2.10) in the proof of Theorem 1 

we obtain 

IH1 - H 2 1 $ (G19 + G20 )e1/ 3 • 

It follows from (3.14), (3.16) and (3.17) that 

(3.18) 

Inequalities (3.12) and (3.18) show that in cases A and B the estimate 

(0.3), which is the essence of Theorem 2, may be replaced by the following 

stronger one: 

(3.19) 

Case C. In this case we have not managed to obtain an estimate of the type 

(3.19). We set 
1 ( L)-1/2 

(1'0 = ..,ß.L log T 

and introduce the auxiliary distribution 

H' = H*G .. o' 

By Lemma 2, for 

(3.20) 

(3.21) 
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we have 

H'(z - L) - TJ:S H(z) :S H'(z + L) + TJ. (3.22) 

We now show that the infinitely divisible distribution 

D = L q(m)B(m) * Gq~, u? = u2 + u~, 
m 

satisfies the inequality 

ID - H'I :S C23 [f1/3 + ~ (log~) 1/2]. (3.23) 

Using (3.23) together with (3.21) and (3.22) we obtain (0.3). 

It now only remains to prove (3.23). For this we introduce the distributions 

H ' - ",",p(m)B(m) * G _21(m) -__ 2(m) + -02, 1 - LJ q~(m), v v v 

m 

H~ = Lp(m)B(m) * Gq~. 
m 

The inequality 

(3.24) 

is proved in the same way as (3.9) and (3.14) in cases A and B, only now 

which leads to the estimate 

LP~ :S f LPk < f1/3. 

k k 

By Lemma 3, 

(3.25) 

where E III runs over those p(m) for which 

(3.26) 

For suitable C24 , inequality (3.25) implies that 
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Therefore (3.7) and the inequalities 10 U2 < UI, A = I $ Uo imply that 

Thus from (3.25) we obtain 

(3.27) 

Finally, according to Lemma 6 we obtain from (3.20) 

whence we have I ( L) 1/2 IH' - H~I = v'2C102 log T . (3.28) 

Formulas (3.24), (3.27) and (3.28) immediately imply (3.23). This completes 

the proof of Theorem 2. 
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52. ESTIMATORS OF SPECTRAL FUNCTIONS 

OF RANDOM PROCESSES * 
Jointly with I.G. Zhurbenko 

The paper deals with the asymptotic behaviour of efficient statistics of a spec

tral density as the sampie size increases. A certain new statistic introduced 

by A.N. Kolmogorov is compared with other well-known statistics of a general 

density, as weIl as with asymptotically optimal statistics with respect to the 

mean square deviation. The influence on various statistics of high peaks of 

the spectral density at neighbouring frequencies is discussed. A new dass of 

statistics is obtained by applying the shift operator to a periodogram calculated 

from smoothed data. 

Let X(t), t = 0, ±1, ... , be a stationary random process with expecta

tion EX(t) = 0, covariance function C(t) and spectral density f(>'), where 

f(>'), -00 < >. < 00, is a function with period 211". For dimensional reasons it 

is natural to consider all quadratic forms 

N 
1 '" (N) 211"N W b8 ,t X(s)X(t) 

l,t=1 

(1) 

with arbitrary coefficients b~~) as the admissible dass of statistics. As was 

shown by Grenander and Rosenblatt [1], the asymptotic behaviour as N -+ 00 

of the first two moments will not be worse if instead of the dass of statistics 

(1) we consider the narrower dass of statistics of the form 

(2) 

which can be represented as 

(3) 

where 
1 N-Itl 

BN(t) = N L: X(s)X(s + Itl). 
8=1 

* Proc. 2nd European Conference on Statistics, Oslo, August 14-18, 1978. First 
pu blica tion. 
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The statistics iN(>') can also be written in the from 

(4) 

where 

As N ~ 00, the asymptotic minimum of the shift l:l.iN(>') = EiN(>') - 1(>') 
and the variance and consequently also the mean square deviation "V iN(>') = 
E(jN(>') - 1(>.))2 of the statistics of the dasses (2) and (3) are, according to 

[1], not greater than those of the statistics of dass (1). The function <I>N(X) 

is called the "spectral window" of the statistic iN(>') and will be discussed in 

detail below. 

The asymptotic properties of the estimators iN(>') depend on the smooth

ness of the spectral density 1(>'). 
We say that 

X(t) E /C(>" 0', C, Cd = /C, 

if for any JJ and certain given >., 0 < 0' ~ 2, C 2: 0, Cl > 0, one of the 

inequalities 

1/(>' + JJ) - 1(>')1 ~ CIJJI'\ 0< 0' ~ 1, 

holds, or if I' (>') exists and 

1/'(>' + JJ) - 1'(>')1 ~ CIJJlcr-l, 1 < 0' ~ 2, 

and the 4th order spectral density 14(Xl, X2, X3, X4) of the process X(t) IS 

bounded: 

We say that a sequence offunctions <I>N(X) is of dass T, <I>N(X) E T, iffor 

any integer N > 0 <I>N(X) is a continuous even periodic function with period 

211" such that <I>N(X) ~ 0 uniformly in the region f ~ lxi< 11" for f> 0 and if 

the following relations hold: 
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Moreover, the following smoothness conditions hold uniformly in :F: 

1. For an integrable I(x) such that I/(x)1 ~ Ixla , 0< a ~ 2, a relation of 

the form 

holds, where Feller's kernel 4>'jy(z) is defined as follows: 

(4a) 

2. There exists a sequence of numbers A = A(N) > 0, A(N) -+ 00 as 

N -+ 00, such that 

i: c)N(X)c)N(X + Y + z)dx = 

= i: c)N(X)c)N(X + y)dx + o(i: c)'jy(x)dx) 

uniformly with respect to y for all Izl < A/N. 

We define the dass :F(G) C:F ofsequences offunctions c)N(X) ofthe form 

(5) 

for some AN > 1 such that AN -+ 00 and AN / N -+ 0 as N -+ 00. Let 

G(x), -00 < x < 00 be even, piecewise differentiable and satisy the conditions 

(6) 

for some a > O. 

The problem of finding the optimal statistics in the sense of the mean 

square deviation is solved under the above natural restrictions on the smooth

ness of c)N(X). In this case we find not only the type of asymptotics of the 

mean square deviation, as it was done by E. Parsen [2], but also the values 

of the coefficients in these asymptotics, which allow us to make a numerical 

comparison of the most often used statistics of the spectral density proposed 

by various authors. A considerable weakening of the conditions used in this 
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case is the requirement of smoothness of the spectral density 1(>') at one single 

point as compared to the uniform smoothness 

00 

E Itla B(t) < 00, 

t=-oo 

where B(t) is the correlation function of the process X(t). 

Note that the smallest possible order of the mean square deviation of the 

estimator iN(>') is N- 20:o/(1+2ao), where ao is the maximal a for which the 

latter condition is fulfilled. Unfortunately, however, ao is the characteristic of 

smoothness of 1(>') simultaneously with respect to all frequencies [3], [4], [7]. 

Theorem 1. 11 X(t) E K(>', a, C, Cl)' <IlN(x) E :F, then lor the statistic iN(>') 
we have, as N -+ 00 

where 

{
I, >. == 0 (mod 71"), 

7](>') = 
0, >. t 0 (mod 71"). 

The minimum in (7) is attained at 

where 

and 

lxi ~ 1, 

lxi> 1, 

( aNC2 ) 1/(1+20:) 

AN = 7I"J2(>')(1 + a)(1 + 2a) . 

(7) 

(8) 

(9) 

(10) 

Proof. Isolating the main term of the mean square deviation \7 iN( >.) we obtain, 

in accordance with Lemmas 1 and 2 in [3], the variational problem of finding 

the minimum of the functional 
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over aH positive 4>N(X) E :F. 

In solving the problem of finding the conditional extremum we see that 

the solution 4>N(X) must satisfy the equation 

which implies that one should look for a solution of the form (9). Taking into 

ac count the initial conditions we obtain (10) and with it (7) and (8). 

Theorem 1 gives an explicit form of the optimal window in the sense of 

the mean square deviation of the estimator iN(A) for a given smoothness of 

the spectral density f(A) under study at the point A. 

In order to compare asymptotic properties of various periodogram estima

tors of the form (2) and (4) we use the following 

Theorem 2. Let 4>N(X) E:F be dejined by (5) and suppose that G(x) satisjies 

(6) for some a such that 0 < a:::; 2. Then for X(t) E K, we have 

. ~ ( C 2 ) 1l2a 2a 
mf sup VfN(A)""f2(A) f2(') N-l+2ag(a) 
AN X(t)EI< A 

(11) 

as N -+ 00, where 

g(a) = C ;:a)(2aVdd2a(211'V2)1:l!~a, 
V1 = i: IxlaG(x)dx, V2 = i: G2(x)dx, 

(12) 

with asymptotic maximum attained at 

(12a) 

The proof of this theorem foHows from Lemmas 1 and 2 of [3]. 

The function g(a) can be calculated by (12) for various estimators of the 

spectral density, namely, those of Tukey, Parsen, Bartlett et al. (see, for exam

pIe, [3]), as weH as for the optimal statistics given by (10). The results of the 

calculations are given in [3], [7]. A common drawback of periodogram estima

tors of the spectral density iN (A) is the weak decrease (of order O( N-l)) of 

the dependency on high frequencies and non-stationary phenomena. Earlier, 
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one of the authors (A.N. Kolmogorov) suggested that these drawbacks could 

be eliminated by using a "time window" followed by averaging periodograms 

over various time intervals. 

Let aM(t), t = 0, ±1, ... , be a non-negative function vanishing outside 

[0, M]. From a sampie {X (Q), ... ,X (Q + M)} we construct the function 

00 

W~(.\) = L aM(t - Q)X(t)eiAt . 

t=-oo 

We determine the statistic fN(.\) of the spectral density f(.\) of the random 

process X(t) in the following way: 

T-1 

fN(.\) = ~ L IW~k(.\W· 
k=O 

It makes use of N = T(L - 1) + M + 1 sampie values of the process X(t). 

Let us estimate the spectral density. We determine the "data window" as 

folIows: 

( K(P2 - 1)) 1/4 K 
aM(t) = aK p(t) = J.l(K, P) 2 P- CK p(t), , 1 ~ , (13) 

where M = K(P-1) and the coefficients CK,P are determined from the relation 

Since 
00 

cPM,P(X) = cPM(X) = L aM(t)eitx , 

t=-oo 

it follows from (13) that the "spectral window" of the estimator in quest ion is 

given by 

IA. ()12 = 2(K p)(K(P2 -1))1/2(Sin2(PX/2))K 
'f'K,P x J.l, 12~ p2 sin2(x/2) , (13a) 

where J.l(K, P) ~ 1 as K ~ 00, P ~ 00 (see [3]). From the definition of 

spectral densities of the 2nd and 4th order we obtain the following equalities 
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for the estimator IN(>"): 

(14) 

f( >")1.1, ( )1 2 1.1, ()12sin2(TL(x + y)/2) d d 
X Y + 'l'M X 'l'M Y sin2(L(x + y)/2) X y+ 

+ ;2k2 f(x)f(y)cpM(X + >,,)cpM(-X + >")cpM(Y - >,,)cpM(-Y - >..)x 

sin2(TL(x + y)/2) d d 
X sin2(L(x + y)/2) X y, 

(15) 

where TI = [-11",11"], 
00 

c5*(x) = L c5(x + 2k1l"), (15a) 
k=-oo 

c5(x) being the Dirac delta-function. 

Theorem 3. 1f X(t) E K, then for the statistic IN(>") for>.. i= 0 (mod 11") with 

coefficients defined by (13) we have 

as the sampie size N = (L(T - 1) + K(P - 1) + 1) --+ 00, where 

K(a) = 1 + 2a E(av'24r2 (a + 1) 1211') 1/{1+2a), 
2a VB..[;3 2 

the asymptotic equality (14) being attained when 

L 
N1/(1+ 2a ) --+ 0(1), 

N(1-2a)/(1+2a) 
P --+ 0(1), 

P 
N1/(1+2a) --+ 0(1), 

K p 2 ( N av'24 r2 (a + 1) 12aC2) -2/(1+211') = 0(1). (17) 
..[;3J2(>") 2 
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Proof A direct application of Laplace's method for estimating the integral on 

the right-hand side of (14) with kernel tPK,P(Z) calculated via (13a) gives 

sup tl,2iN(). = 1'4(K,P) ( K(PI
2
2-1») -a c2r2C:W +2 1) 1 + O(K-1). 

x(t)e" 7/" 

The main term of OiN().) gives an expression which, using the method of 

steepest descent, can be reduced to the following form: 

1=1'4(K P)f2().)V7/"2K (P2- 1) (1+0( L )+O(~)). (18) 
, TLV6 VK(P2 -1) K 

The difference between (18) and the second term of (15) is estimated by 

p..(K ( ({ K(P2-1)}) (1)) 11 - 121 $ C\T L )Ha 1 + 0 exp - L2 + 0 K ' Q < l. 

If Q > 1, then 11 - 121 is of order P..(K(TL)-2. In a similar way we can show 

that the third term in (15) has smaller order. The first term in (15) under the 

conditions of the theorem is estimated in the following way: 

Setting K(P2 -1) = lIN" and finding the minimum of V iN().), we obtain the 

asymptotic equality (16). This proves our theorem. 

As has been shown by calculations, (see [3], [7]), the mean square devia

tion appears to be closest to the optimal statistic in the case of Kolmogorov's 

statistic iN().) as compared to the estimators of Tukey, Parsen, Bartlett, Abel 

and others. As follows from Theorem 3, the statistic iN().) by comparison 

with other statistics, is insensitive to changes in the parameters, which can be 

chosen in broad ranges. The degree of dependence on high frequencies of this 

statistic is of order N-2K(1+2a), where K can be arbitrarily large as N -+ 00. 

This enables us to carry out a spectral analysis in the required frequency strip 

in the presence of strong noises and non-stationary processes concentrated at 

other frequencies, for example, in the presence of a trend. At the same time it 

is easy to check stationarity in the frequency strip under study. 

We now consider the effect of strong peaks in the spectral density fez) at 

a frequency ). + tl, close to ).. Assume that 

fez) = fa(z) + /6(z), 
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where fOl(x) is the spectral density ofthe process XOI(t) EI\, and /6(x) is defined 

by an equation of the form 

f6(x) = 6· 6*(x -..\ -.6.) + 66*(x +..\ + .6.), .6."t 0 (mod 211'), (19) 

where 6 > 0 is areal number and the function 6*(x) is given by (15a). We say 

that X(t) E I\, (..\,.6.,6) if the spectral density of X(t) is determined by (19), 

the semi-invariant spectral density of the 4th order is bounded and EX(t) = O. 

The asymptotics of the mean square deviation of the statistic with optimal 

choice ofparameters in the presence of a chosen 6 at frequency ..\+.6. is described 

by the following theorem (see [5]-[7]): 

Theorem 4. Let X(t) E I\, (..\,.6.,6), let the kerneis cJ.>N(X) E :F be determined 

by (5), let G(x) satisfy (6) for a ~ 2 and let the parameter AN of the statistic 

iN(..\) be chosen in accordance with (12a). Then as N -+ 00 

A ( C2 ) 1/(1+201) 
sup "VfN(..\) = f2(..\) -2- N- 201/(1+201)x 

X(t))EI«>.,A,5) f (..\) 

x(l + 7](..\))201/(1+201)g(a)(1 + 0(1))+ 

+262 (1: cJ.>N(X)tfoÄr(x + .6.)dx + 1'1f'lf cJ.>N(X)tfoÄr(x + 2..\ + .6.)dx f + 

where 

+O(N 1: cJ.>N(x)tfoÄr(x + .6.)dx, 

{ I, ..\ == 0 (mod 11'), 
7](..\) = 

0, ..\"t 0 (mod 11') 

(20) 

(21) 

and the functions tfoÄr(x) and g(a) are defined by (4a) and (12a) respectively. 

Theorem 5. Let X(t) E I\, (..\,.6.,6) and let the statistic IN(..\) be determined 

by the coefficients aM(t) found via (13) under the conditions (16) as N = 

L(T-1)+M(P-1)+1-+00. Then 

- ( C ) 1/(1+201) 
sup "VfN(..\) = K(a)f2(..\) f2(..\) x 

X(t)EI«>.,A,5) 

XN- 201 /(1+ 201 )(1 + 7](..\))201/(1+ 201 )(1 + 0(1)) + 262(ltfoM(.6.W+ 

+ltfoM(.6. + 2..\W)2 + O(N- 0I/(1+201)ltfoM(.6.W), (22) 
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where l<Pn(x)12 , K(a) andTJ()..) are defined by(13a), (16a) and(21) respectively. 

The proofs of Theorems 4 and 5 are given in [5]-[7]. 

Note that the order of the remainder terms in (20) for the statistic iN()..) 
is not less than 

(23) 

if .6. ~ N- c/(1+2a)(l+c). For iN()..) the order of the remainder terms in (22) is 

not less than 

which can be taken arbitrarily small with respect to (23) for comparatively 

small k as N --+ 00. Under these conditions 

According to (23) the statistics iN()..) have fixed order of dependence on the 

choice of 6, which cannot be diminished by choosing a suitable spectral window 

<I>N(X). 
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53. ON THE LOGICAL FOUNDATIONS OF PROBABILITY THEORY * 

When we talk about random events in the everyday sense of the word, we 

mean phenomena in which we do not find any regularities that would allow us 

to predict their behaviour. Generally speaking, there are no reasons to suggest 

that events random in this sense obey any prob ability laws. Consequently we 

should distinguish between randomness in the wider sense (the absence of any 

regularity) and stochastic random events (which are the subject of probability 

theory). 

The problem is to describe the reasons why mathematical probability the

ory can be applied at all to phenomena of the real world. My first attempt 

to ans wer questions of this kind was made in [1] (published in an edition of 

methodological character). 

Since a random event is defined as the absence of regularity, we should 

first define the notion of regularity. The natural means for this is given by the 

theory of algorithms and recursive functions. The first attempt to apply it to 

probability theory was made by Church [2]. 

The purpose of my report is to familiarize the readers with this field, at 

least in a first approximation. 

Paying tribute to tradition, I begin with the classical definition of proba

bility as the ratio 

P=m/n 

of the number of favourable out comes m to the total number of out comes n. 

This definition reduces the problem of calculating the prob ability to combina

torial problems. 

However, this definition cannot be applied in many practical situations. 

This brought to life the so-called statistical definition of probability: 

p ~ I'/N, (1) 

where N is the total number of trials, which is assumed to be sufficiently 

large, and I' is the number of successes. Strictly speaking, this definition is not 

mathematical in its initial form. This is why we write the sign of approximate 

equality in (1). 

* In: Lee tu re Notes in Mathematies, 1021 (1983), pp.I-5. 
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The first attempt to make definition (1) more exact was made by R. von 

Mises. But before we describe his approach, let us discuss (from the viewpoint 

of the dassical definition of prob ability ) why stability of frequencies is so often 

observed in natural phenomena. 

Consider all 0-1 sequences of length n containing exactIy m ones and as

sume that all such sequences are equally probable. Suppose that some method 

of dividing any sequence of length n into two subsequences has been chosen. 

Then for each sequence it is important to compare the frequencies of ones in 

both subsequences by calculating the difference 

where n1 and n2 are the lengths of the subsequences and 1'1 and 1'2 the number 

of ones in them, so that n1 + n2 = n, 1'1 + 1'2 = m. We would like to think 

that this difference would "almost always be small" in the sense that for any 

t>O 
Pclass{ll'l - 1'2 1 < t} -+ 1 as n1, n2 -+ 00. 

n1 n2 
Certainly, to make this assertion a theorem, we should narrow the dass 

of possible rules for choosing subsequences (for example, forbid the rule ac

cording to which all zeros are placed into one subsequence and all ones into 

the other). All necessary darifications of the not ion of an admissible rule of 

choosing subsequences based on von Mises' ideas are given in [3]. The not ion of 

an acceptable selection rule is crucial in von Mises' frequency approach to the 

notion of prob ability. According to von Mises, an infinite sequence Xl, X 2 , ••• 

of zeros and ones is called a Bernoulli sequence if: 

1) the limit 

exists; 

2) this limit is preserved under transition to a subsequence chosen with 

the help of an admissible rule: 

lim .! '" Xn · = P. 
m-oo m L..J J 

iSm 

Von Mises gave only general characteristics and several examples of ad

missible rules. His instructions basically mean that the choke of every next 
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term of the subsequence should not depend on the value of the term but only 

on the values of the previous terms. Of course, this definition is not exact, but 

no rigorous definition should be expected since the very notion of ''rule'' did 

not have a mathematical definition at that time. The situation changed essen

tially when the not ions of algorithm and recursive function appeared, used by 

Church [2] to darify von Mises' definition. In [3] I proposed a broader dass 

of admissible selection rules than that given by Church. According to [3], a 

selection rule is given by an algorithm (or, if you like, a Turing machine). The 

next term of the sequence is chosen as folIows: the input information consists 

of a finite sequence of numbers n1, n2, ... ,nj: and values Xn1 , X n2 , ••• ,Xnk of 

the corresponding terms of the original sequence. The output consists, first, 

of the number nH1 of the next considered element of the sequence (it should 

not coincide with any of the n1, n2, ... , nj:, on whose order no restrictions are 

imposed), and secondly, indications as to whether the element X nk+1 should 

be chosen only for inspection or is to be induded in the chosen subsequence. 

At the next step the input of the algorithm consists of the longer sequence 

n1, n2, ... , nH 1; naturally, the algorithm starts working from the empty input. 

In comparison with [2] the dass of admissible selection rules is wider, since 

the order of terms in the subsequence need not coincide with their order in 

the initial sequence. Another, even more important, difference is in the strictly 

finitary character of the entire concept mentioned above and in the quantitative 

estimate of stability of the frequencies. 

Passing to finite sequences inevitably leads to restrictions on the complex

ity of the selection algorithm. An exact definition of the complexity of a finite 

object and examples of its use in probability theory were proposed in [3], [6]. 

The results of frequency and complexity approaches are compared in [4]. 

Now let us return to the original idea according to which "randomness" 

consists in the absence of "regularity" and see how the notion of complexity of 

a finite object enables us to make this idea precise. The notion of complexity 

is dealt with in a number of papers that may be divided into two groups: on 

the complexity of calculations and on the complexity of definitions. We will 

deal with the second group. 

We take the definition of complexity from [6]. We define the conditional 

complexity of a constructible object with respect to a certain algorithm A under 

the condition that the constructible algorithm Y is known. More precisely, 
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define the eonditional eomplexity KA(XIY) of the objeet X for a known Y as 

the length of the shortest programme by me ans of which an algorithm A ean 

derive X from Y: 

KA(XIY) = min{l(p)IA(p, Y) = X}. 

Here l(p) is the length of the sequenee of zeros and ones eneoding the pro

gramme. There exists an "optimal" algorithm A, that is, one such that for any 

algorithm Al there exists a eonstant C such that for all X and Y 

If Al and A2 are optimal algorithms, then the eorresponding eomplexity fune

tions differ at most by an additive eonstant (independent of X and Y). 
We ean now define a random, or more precisely, a .6.-random objeet in a 

given finite set M (here .6. is a number). Namely, we say that X E M is a 

.6.-random element of M if 

where IMI is the number of elements of M. The objeets from M that are 

.6.-random for relatively small .6.'s will be ealled random in M. We obtain a 

definition of a random finite objeet whieh ean be regarded as definitive. 

Taking as M the set Dn of aH 0-1 sequenees of length n we eome to the 

eondition 

It ean be proved that the sequenee satisfying this eondition for suflieiently 

small .6. possesses the property of stability of frequeneies when passing to sub

sequenees. Henee, von Mises' requirements on random sequenees ean be eon

sidered as a partieular ease of our requirements. 

Further results in this direetion may be found in [5], [7]-[12]. 
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Comments 

ON THE PAPERS ON PROBABILITY THEORY AND 

MATHEMATICAL STATISTICS 

A.N. Kolmogorov 

Here is a classification of my works on probability theory in terms of their 

contents and the time when they were written. 

I. Limit theorems for independent and weakly dependent random vari

ables derived by the methods of metric function theory. Papers Nos. 1-6, 8. 

In terms of the methods used, these works, dealing with various forms of 

the law of large numbers and the law of the iterated logarithm, are adjacent 

to the work by me and D.E. Men'shov on metrical function theory. They were 

done in close contact with A.Ya. Khinchin. Of the relevant results obtained 

by other researchers the first to be mentioned are the necessary and sufficient 

conditions of applicability of the strong law of large numbers for sums of inde

pendent random variables obtained by Yu.V. Prokhorov. 

11. Axiomatics and logical foundations of prob ability theory. Paper No. 7. 

Paper No. 7, published in 1929, was the first result of my reflections on 

the logical structure of probability theory. Here probability theory is presented 

as one of the fields of application of general measure theory. But the concept 

developed had not yet revealed the set-theoretic implications of conditional 

prob ability, a notion that is fundamental in probability theory. Only after this 

difficulty was overcome and the theory of distributions in infinite products was 

constructed did it become possible to speak of a set-theoretic justification of 

probability theory as a whole which was given in my monograph "Fundamen

tal notions of probability theory" that came out in 1933 in German and in 

1936 in Russian. A modernized presentation of these concepts, developed by 

A.N. Shiryaev and myself, is given in the second edition of this monograph 

(Nauka, Moscow, 1974). 
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III. Markov ehains (Markov proeesses with diserete time). Papers 

Nos. 21, 23, 36. 

The fundamental signifieanee of Markov proeesses was understood in 1906-

1907 by A.A. Markov. From a strictly finite viewpoint the essenee ofthe matter 

is eompletely eharacterized already by the example of finite diserete Markov 

ehains. For homogeneous ehains with a finite number of states, Markov estab

lished a fundamental theorem on the existenee of the limit of transition proba

bilities. A whole range of problems on this was taken up by V.1. Romanovskii 

(Tashkent) and later by many researehers of the Moseow probability sehool. 

For a homogeneous ehain with a finite number of states the most exhaustive 

results were obtained by S. Kh. Sirazhdinov, a student of Romanovskii and Kol

mogorov, who determined the asymptoties of multidimensional distributions of 

the number of distinet states visited in a Markov ehain. 

IV. Markov proeesses. Papers Nos. 9, 10, 13, 14, 17, 19,24,39. 

In 1929 I foeused attention on the theory of Markov proeesses with eon

tinuous time. In No. 9 (one-dimensional ease) and in No. 17 (multidimensional 

ease) this theory was developed in classieal terms without explieitly using tra

jectory spaces. The first versions of the modern eoneept of a Markov proeess 

with eontinuous time were developed by J. Doob and E.B. Dynkin (see the 

eomments by A.D. Ventsel). Papers Nos. 14, 19, 24 (see the eomments by 

A.M. Yaglom) deal with various applieations of the diffusion-type theory of 

Markov proeesses. Paper No. 39 (see the comments by A.A. Yushkevieh) dis

eusses the ease of a diserete set of states. 

V. Limit theorems on the eonvergenee of Markov ehains to Markov pro

eesses with eontinuous time. Papers Nos. 9, 12, 16, 41. 
, 

The first eoneeption of this sort of theorem was presented in 1931 in §12 

of article No. 9. Two examples of these theorems are given in papers Nos. 12, 

16. Further work in this direetion was done by other researehers (invarianee 

prineiple), see the review article No. 41. 

VI. Stationary proeesses. Papers Nos. 27, 28, 47, 48, 50, 52. 

I beeame interested in the speetral theory of stationary random proeesses 

after the appearanee of the work of A.Ya. Khinehin and E.E. Slutskii. A first 

idea on the range of problems involved ean be obtained from Paper No. 34. The 

hypothesis on representing oseillatory proeesses by Stieltjes integrals (see (4) in 
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No. 34) was completely confirmed during the following 40 years. Apparently, 

even in teaching (in particular, to engineers) it should be more explicitly stated 

that the spectral decomposition of a process does not allow, in general, a more 

concrete explanation. 

VII. Branching processes. Papers Nos. 25, 32, 33, 46. 

A number of researchers have studied particular cases of ''branching pro

cesses" . A review of the early literature can be found in the paper by J. Steffen

son referred to in my paper No. 25. In his well-known monograph, R.A. Fisher 

makes extensive use of the fact that the evolution of the number of genes in a 

population obeys the scheme of abranching process when the gene concentra

tion is low. Fisher proposed to treat this problem using generating functions. 

On further development of the theory of branching processes see B.A. Sev

astyanov's monograph "Branching processes" (Nauka, Moscow, 1971). 

VIII. Various applications. Papers Nos. 14, 18, 22, 26, 29, 37. 

Paper No. 14 solves a problem posed by S.1. Vavilov. In this paper §§1 

and 2 are written by me, and §3 by M.A. Leontovich. As for paper No. 18, 

the considered "blow-up" of the empirical correlation coeflicients under a small 

number of observations is quite typical in many applied works (see also the 

comments by A.M. Yaglom). 

IX. Mathematical statistics. Papers Nos. 11, 15, 30, 31, 38, 50. 

See the comments by E.V. Khmaladze, E.V. Malyutov and A.N. Shiryaev. 

ANALYTICAL METHODS IN PROBABILITY THEORY (No. 9) 

(A.D. Ventsel) 

The title to this article, which in modern language would rather read "Analyt

ical methods in the theory of Markov processes" may serve as the title for an 

entire branch of this theory. The essence of this branch is that Markov pro

cesses come into consideration only for the purposes of translating the problem 

in question into the language of transition probabilities P( s, Z, t, E) of a Markov 

process or other related analytical objects; after that the problem is solved as 

a purely analytical one. In paper No. 9 of this volume, random processes as 

ensembles of realizations (trajectories) or as objects described by a system of 

finite-dimensional distributions are not considered explicitly but only as mo

tivations of certain definitions and assumptions. Thus, having introduced the 



ANALYTICAL METHODS IN PROB ABILITY THEORY 523 

decompositions (111), (112), Kolmogorov writes: "Strictly speaking, only in 

this case is the process continuous in time". In terms of the modern theory of 

Markov processes this could be reformulated as follows: (111) (112) are elose to 

the conditions imposed on the transition function necessary for the continuity 

of the trajectories of the corresponding Markov process (or, more exactly, for 

the existence of modifications of it with continuous trajectories). 

The main themes of the paper are: the general not ion of a stochastically 

determined (Markov) process, differential characteristics of Markov processes, 

and differential equations related to these processes, that is, ergodic properties. 

As for the notion of a Markov process, we can say that as there appeared 

more and more methods for solving specific problems dealing with the be

haviour of Markov processes over a time interval, trajectories became more 

and more explicitly involved in the schemes under consideration. Thus, in 

1933 there appeared papers by Kolmogorov and Leontovich [1] and Andronov, 

Vitt and Pontryagin [2], which derived differential equations for the functions 

connected with a diffusion process, under the condition that the process will 

not leave a certain domain during a given time. General theorems ineluding 

not only only transition functions, but also trajectories as explicit objects for 

consideration were presented in the books by Doob [3] and Dynkin [4]. Both 

theories were based on the notion of conditional probability and conditional 

expectation with respect to au-algebra; but in Doob's theory the main object 

is a random process on a certain prob ability space satisfying the independence 

condition of the past and the future for a fixed present, whereas in Dynkin's 

case, it is a whole family of such processes that start at an arbitrary time 

in an arbitrary point of space (which is expressed by considering a family of 

probability measures p.,:c and prob ability spaces (O,M.,P.,:c)). 

At first the analytic trend in the theory of Markov processes was the only 

dominating one; then, in the 1950's, direct probabilistic methods started to 

be used that dealt with constructing realizations of random processes from 

realizations of other simpler processes, as weH as with stochastic equations 

and random changes of time. Analytic and direct methods complemented each 

other. There appeared the opposite trend, in which the theory of Markov 

processes is applied with the purpose of obtaining purely analytical results. 

Starting from the 1970's we cannot speak about a pure analytical trend in the 

theory of Markov processes, but only of strong prevalence of analytical methods 
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in certain works. 

The central problem in the analytical trend in the theory of Markov pro

cesses with continuous time is to obtain differential characteristics of processes 

and the mechanisms, realizing the connection between them and the processes 

themselves. Let us review the development of methods of answering this ques

tion and some achievements in the analytical trend of the theory of Markov 

processes. 

In No. 9 differential characteristics are introduced by formulas (50) for 

processes with a discrete state space and by formulas (114), (124), (115), (122) 

for continuous (diffusion) processes on the realline. The existence ofthe limits 

(50), (122), (124) (which are in fact differential characteristics for s = t) is 

established under the assumption of differentiability of the transition proba

bilities Pij(S,t), (or the transition prob ability densities f(s,x,t,y» at s < t 
(additionaIly, provided that the determinant (119) does not vanish). In both 

cases differential equations are derived: inverse ones by differentiating with 

respect to the first time argument s (formulas (57), (125» and direct ones: 

by differentiating with respect to the second argument t (formulas (52), (133». 

The existence and uniqueness problem is raised for a solution satisfying natural 

conditions at s = t and the conditions (1), (3) (particular cases are (40), (41) 

and (85), (86» required for the existence of the corresponding process. In the 

continuous case it is solved only when the equation reduces to the classical heat 

equation. In §19 differential characteristics for purejump Markov processes are 

given and a direct differential equation is suggested (175) (as weIl as (176) for 

a process with diffusion between the jumps). 

The problem of finding transition probability densities for a diffusion pro

cess in its analytical formulation is the problem of finding the fundamental 

solution of a parabolic differential equation. Existence and uniqueness theo

rems were obtained under general conditions already in the 1930's (FeIler [5]); 

they were also obtained for pure jump processes and processes with diffusion 

between jumps. 

The differential characteristics of Markov processes in No. 9 are introduced 

separately for different particular classes of processes; these characteristics are 

functions of the corresponding arguments. The next step was to consider a 

linear (sometimes unbounded) operator, instead of a set of functions, as a 

differential characteristic of a Markov process. This step was taken when the 
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theory of sernigroups of linear operators was applied to Markov processes. The 

infinitesimal operator of the sernigroup of operators related to the process was 

introduced as a characteristic of a Markov process (more precisely and more 

narrowly, of its transition function). The theory of semigroups enabled us to 

establish, under very weak restrictions, the uniqueness ofthe transition function 

corresponding to a given infinitesimal operator and allowed us to find necessary 

and sufficient conditions for the existence of such an operator. The existence 

problem for differential characteristics was solved: according to the general 

theory an infinitesimal operator has a dense domain. 

The theory of semigroups is applied directly only to Markov processes 

homogeneous in time, that is, processes with transition function that depends 

only on the difference between times: 

P(s, x, t, E) = Po(t - s, x, E). 

In order to be able to apply this theory to non-homogeneous processes, these 

processes have to be reduced to homogeneous ones by introducing a wider state 

space. 

The first applications of semigroup theory related to semigroups of op

erators connected with transition functions. These operators mapped initial 

distributions into distributions at subsequent times (see No. 9 (5)), which is con

nected with an analogue of the direct Kolmogorov equations (see (52), (133)). 

It turned out to be more fruitful, however, to use sernigroups of operators that 

act on the functions 

Tt/(x) = h Po(t,x,dY)f(Y), 

rather than on the initial distributions. This is connected with an analogue of 

the inverse equations (57), (125). 

The possibility of considering the values of a process at random times, 

such as the moment of the first exit from a set, appeared to be essential for 

the connection between Markov processes and their infinitesimal operators, in 

particular for deriving the equations for the expectations related to the process. 

This was provided by introducing the strong Markov property. Using the strong 

Markov property, Dynkin introduced a new type of differential characteristic 

for a Markov process, a characteristic operator (see [4]), that is, not a new type 

of characteristic (because under natural broad assumptions the characteristic 
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operator coincides with the infinitesimal one), but rather a new aspect of the 

connection between this operator and a Markov process. 

New methods made it possible to solve the problem of giving a full de

scription of all one-dimensional diffusion processes homogeneous in time (that 

is, strong Markov processes with continuous trajectories). At the same time 

a fruitful setting of new problems was found, in particular, on the behaviour 

of a Markov process given inside a domain, after going out onto its boundary 

(analytically it reduces to finding boundary values that restriet the given linear 

operator to an infinitesimal operator of the semigroup of contracting operators 

preserving positivity). 

A further development of analytical methods, following the work of Hunt 

[7], was based on considering, on the one hand, general non-negative additive 

functionals of Markov processes, and on the other hand, from the analytical 

viewpoint, excessive functions (non-negative functions superharmonie with re

spect to a given semigroup of operators). By considering the extremal points of 

the set of these functions, ways were found of constructing an ideal boundary of 

the domain corresponding to a given Markov process (the Martin boundary). 

A new approach to the question of obtaining differential characteristics of 

a Markov process was started by Fukusima (see [8]). Instead of an infinites

imal operator, he considers the corresponding bilinear Dirichlet form as such 

a characteristic. However, a complete and closed theory is only obtained for 

the case when the semigroup consists of operators symmetrie with respect to 

a certain measure (in terms of probability theory, for Markov processes invert

ible in time). Important results were obtained dealing with possible extensions 

concerning the exit of a Markov process given inside a domain (in particular, 

Brownian motion with "reflection in the normal" at an arbitrary, non-smooth, 

boundary has been considered). 

In the 1960-1970's, especially after the works by Stroock and Varadhan [9], 

the approach to the connection between linear operators and Markov processes 

based on the not ion of martingale and the "martingale problem" became quite 

popular. Instead of the strong Markov property, it uses the preservation of the 

martingale property for Markov random moments (the strong Markov property 

appears to be an automatie consequence of the uniqueness of the solution to the 

martingale problem). In papers by Krylov [10] and Stroock and Varadhan [9] 

the existence and uniqueness problem for a diffusion process corresponding to 
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given diffusion and transition coefficients posed in No. 9 was solved practically 

without any limitations. 

Perhaps the analytical trend in the theory of Markov processes will now be 

developed on a new, higher level based on considering, as main analytical ob

jects, distributions in function spaces, rat her than transition probabilities and 

related operators. This was started in papers by Stroock and Varadhan, and 

others. Analytical methods give especially wide possibilities for establishing 

various limit theorems for random processes. 
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MARKOV PROCESSES WITH A COUNTABLE NUMBER OF STATES 

(No. 10) 

(B.A. Sevastyanov) 

An example is given of the application of the equations for Markov processes 

with a countable number of states to one of the original problems in queuing 

theory. N amely, the problem of a queue in a service system with n lines under 

Poisson flow of demands with exponential service time is studied. This result 

has later become classical and is included in textbooks. (See, for example, 

W. FeIler, An introduction to probability theory and its applications, Vois. I, 11, 

Wiley, 1950.) 

HOMOGENEOUS RANDOM PROCESSES (No. 13) 

(V.M. Zolotarev) 

The paper is divided into two parts (the first ends at formula (7» because of a 

formal restriction on the length of a paper in a volume of the journal Atti della 

Reale Accademia .... 

Abrief history preceding this paper is as folIows. In 1929-1930 several 

papers of the well-known Italian mathematician B. de Finetti came out, in 

which he initiated the study ofproperties ofrandom processes X(A) that were 

later called homogeneous processes with independent increments. It turns out 

that 

1/;(t, A) = Eexp{itX(A)} = [1/;(t, 1)]". 

for any A > O. 

In this connection, in his last paper (referred to in the paper by A.N. Kol

mogorov) de Finetti poses the problem of describing all distributions whose 

characteristic functions 1/;(t) are such that for any A > 0, [1/;(t)]" is the charac

teristic function of a distribution. The class 1!5 of these distributions is called 

the class of infinitely divisible laws. In the same paper it is shown that, if prop

erly understood, 1!5 includes all distributions whose characteristic functions are 

of the form 

where "'I, (1', c are real constants and F(x) is a distribution function. 

528 
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A.N. Kolmogorov, who was aware of de Finetti's work and maintained a 

correspondence with him, became interested in the problem of describing the 

dass 18. In No. 13 he described only the part of 18 corresponding to laws with 

finite variance. De Finetti's problem was solved completely in 1934 by the 

French mathematician P. Levy [1]. 
Despite its seemingly intermediate character, the result of Kolmogorov 

played a fundamental role in the search for a complete description of the dass 

18. 
First of all the representation (15) obtained by Kolmogorov convinced de 

Finetti that 18 could be described in terms of characteristic functions. Equally 

important was the fact that the method of proving (15) used by Kolmogorov 

appeared to be very promising. In 1937 the Soviet mathematician Khinchin 

used this method in a somewhat elaborated form to reproduce the results by 

Levy [2]. The advantages of the Kolmogorov-Khinchin method were so obvious 

that in modern probability theory courses the canonical Levy-Khinchin repre

sentation (together with its modification, the Levy representation) is proved 

by this very method [3]. It is also effective when describing the analogues of 

infinitely divisible distributions in Banach spaces and locally compact groups 

[4]. 
It should also be mentioned that A.N. Kolmogorov was aware ofboth forms 

of the canonical representation of characteristic functions of infinitely divisible 

laws that are currently in use. Indeed, the form of the representation (15) 

corresponds exactly to the Levy-Khinchin canonical representation and Levy's 

canonical representation can be derived from it if we use (13), (14) for O(x) 
involving Pi(x) and P2(x). The latter two are, in fact, the spectral functions 

in the Levy representation. 

The paper by Kolmogorov contains another important result that the au

thor did not care to emphasize. This is a probabilistic interpretation of the 

spectral functions Pi and P2 • Here we should clarify the meaning of the state

ment that "P2(x)dA is the prob ability that over time dA a positivejump greater 

than x took place". It is understood that dA is small and that P2 ( x )dA repre

sents this probability with accuracy o(dA). 
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HOMOGENEOUS MARKOV PROCESSES (No. 39) 

(A.A. Yushkevich) 

This paper by A.N. Kolmogorov, together with those by Doob and Levy quoted 

below, laid the foundations of the theory of Markov processes dealing with 

homogeneous processes with a countable number of states. The peculiar effects 

taking place in these processes made them aseparate branch of the general 

theory. At the same time, studies of the countable case helped to work out 

important concepts having a wider scope of application, such as the strong 

Markov property and boundary conditions for Markov processes. 

The densities a~ of transition from a to ß and the densities aa = -a~ 
of leaving a, as weH as the direct and inverse systems of differential equations 

PI(t) = P(t)A and PI(t) = AP(t), rar the transition probabilities ~(t) of a 

homogeneous Markov process with a finite or countable set of states E were 

introduced by Kolmogorov in his fundamental work [1] (No. 9 of the present 

volume), in which he assumed differentiability of the ~(t) and, when E is 

infinite, certain conditions of uniform convergence (A and pet) denote the 

matrices with entries a~ and ~(t), t ~ 0). If Eisfinite, it is easy to show that 

aa = Eß# a~, and for the initial value P(O) = I (I is the identity matrix) 

each of the systems of Kolmogorov differential equations has the unique solution 

pet) = eAt • After Doeblin [2] established that for finite E differentiability of 

the transition probabilities foHows from stochastic continuity of the process, 

that is, from the condition P( +0) = I, the case of a finite set of states was 

essentially exhausted. 

Processes with a countable state space proved to be more difficult. The 

analysis of their infinitesimal characteristics, smoothness of transition func

tions, behaviour of trajectories, possible "pathologies", etc., accounted for a 

whole trend notable in its time. 
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In the papers [3], [4], which came out earlier and were related to his notion 

of separable process, Doob studied the transition matrix P(t) based on an 

examination of the jumps in the trajectories. Assuming that P(+O) = I (this 

condition is considered to hold throughout) Doob took the following steps: 1) 

he proved the existence of finite or infinite derivatives a~ of the functions ~(t) 

at the origin; 2) he showed that the inverse system holds when there exists a 

first jump after 0, that is, when aa = Eß~a a~ < 00 (we then say that the 

matrix A is conservative) and found a similar connection between the direct 

system and the last jump before t; and 3) by continuing the process in different 

ways after accumulating the jumps, he obtained examples of non-uniqueness of 

a process with a given matrix A. 

In No. 39 of [5], by making use ofremarkably simple and concise purely al

gebraic or analytical techniques (in terms of wh ich probabilistic considerations 

can be reflected), Kolmogorov 1) proved the existence of finite densities a~ for 

ß =t=. Cl'; 2) proved the existence of the densities aa ::; 00; 3) constructed an ex

ample of a process where al = 00; and 4) constructed an example of a process 

where Eß~a a~ < aa < 00 (we will denote these examples by Kl and K2). 

Further, Kolmogorov conjectured [5] that the ~(t) are always differentiable at 

t > O. 

In a paper that came out at the same time, Levy [6], who was interested 

primarily in the asymptotics of ~(t) as t -+ 00, classified the processes con

sidered from the viewpoint of the behaviour of trajectories, treating them on 

a less formal level than Doob. In particular, Levy established the effects ob

served in the examples Kl and K2. Levy suggested calling the states Cl' with 

aa < 00 stable, and those with Cl'a = 00 instantaneous ones. The theorem [6] 

stating that not all states are instantaneous turned out to be erroneous. Levy 

continued his analysis in [7], [8]. 

Further studies of countable homogeneous Markov processes were consid

erably influenced by Kolmogorov's works and ideas. At Moscow University this 

subject was discussed at the seminars of Dynkin and Kolmogorov. Kolmogorov 

suggested the study of the differentiability of ~(t) as the subject for diploma 

work to Yushkevich, who managed with the help of trajectory analysis to prove 

the continuous differentiability of ~(t) under the assumption that at least one 

of the states Cl' or ß is stable, and to construct an example of a process with 

infinite second derivative of ~(t) at certain t > 0 (the idea of the example was 
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suggested by A.N. Kolmogorov). This paper was published six years after [9]. 

Yushkevich also noticed the gap in the proof of the above-mentioned theorem 

of Levy on instantaneous states, which was connected with the absence of a 

definite value of the trajectory at the moment of a discontinuity of the second 

kind (see [28]). 

These questions were discussed at the Mathematical Congress in Ams

terdam, where Kendall and Reuter [10] gave a detailed analysis of examples 

K1 and K2 from the viewpoint of semigroups. Kolmogorov was present at the 

congress. From conversations, some participants got the wrong impression that 

in [9] an example is constructed that refuted the hypothesis of differentiability 

of ~(t) [12]. Soon Austin [11], [12], published a purely analytical proof of 

the continuous differentiability of ~(t) for t > 0 in the case of a stable state 

fr. Then Chung [13] proved the same for t ~ 0 using a probabilistic method 

elose to [9]. Later Austin generalized his proof to the case of a stable state ß 
[14]. Improvements of this proof were proposed by Reuter [15], who further 

developed the semigroup approach, as weIl as by Jurkat [16] and Chung [17], 

[18]. Finally a complete purely analytical proof of Kolmogorov's conjecture was 

found by Ornstein [19]. Smith [20] gave a negative ans wer to Chung's quest ion 

on whether or not the derivative of p~(t) tends as t ~ 0 to its value -00 at 

t = 0 for an instantaneous state fr. On the other hand, Orey [21] showed that 

the total prob ability pa(t) of the state fr at time t need not be differentiable for 

a suitable initial distribution and time t > O. Subtle questions on the structure 

of the functions ~(t) as t ~ 0 were also dealt with by Kendall [22], Blackwell 

and Freedman [23] and Reuter [24]. Studies on the dass of possible functions 

f(t) = p~(t) were one of the factors that stimulated Kingman to develop the 

theory of regenerative events [25] .. 

Soon after No. 39 came out, Kendall partially expanded Kolmogorov's 

results on the existence of densities aa and a~ to Markov jump processes with 

arbitrary set of states [26] and, by combining the ideas of examples Kl and K2, 

constructed an example of a process with al = 00 and af = 0 for ß =1= 1 [27]. A 

positive answer to the intriguing question whether there exists a process whose 

states are all instantaneous, was given independently by Dobrushin [28] and 

FeIler and McKean [29]; other examples were soon suggested by Kendall [30] 

and Blackwell [31]. Later Reuter returned to the studies of K1 and showed that 

in this example the infinitesimal matrix A uniquely determines the transition 
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matrix P(t). All matrices A corresponding to processes with only instantaneous 

states were described in subsequent works by Williams [32], [33]. 

The results on differentiability of transition probabilities and trajectory 

structures of homogeneous Markov processes with a countable number of states 

are given in detail in the book by Chung [17] and Freedman [34], in which also a 

detailed description of examples of various "pathologies" can be found. Another 

book by Freedman [35] is devoted exclusively to the construction of examples 

with instantaneous states by passing to the limit from processes with a finite 

number of states. 

The range of problems originating in paper No. 39 promoted the develop

ment of the notions of Markov moment and the strong Markov property. This 

property was formulated and proved by Doob [4], Yushkevich [9] and Chung 

[36], [13] for various classes of Markov moments that are encountered in ho

mogeneous Markov processes with a countable number of states. On the other 

hand, in the study of Markov processes in an arbitrary metric space by means 

of characteristic operators, the strong Markov property was first required by 

Dynkin [37], [38] and was introduced by him as a quite plausible assump

tion [37]. In private conversations with Yushkevich, Kolmogorov accepted the 

possibility of Markov processes that are not strongly Markov, and Yushkevich 

constructed appropriate examples mentioned in [37] and included in [39]. Then 

Dynkin, comparing his results with those of FeIler, which were obtained in a 

purely analytical way, conjectured that any FeIler process without discontinu

ities of the second kind is a strong Markov process [37]. Yushkevich proved 

this by replacing the second condition by the assumption of right continuity of 

the trajectory [39]. In parallel, the strong Markov property for particular cases 

was established by Hunt [40] and Ray [41] and was introduced in its general 

form by Blumenthai [42]. In order that a homogeneous Markov process with a 

countable set ofstates E have the strong Markov property, the space E must, in 

general, be compactified in an appropriate way by introducing fictitious states. 

This was done much later by Doob [43]. 

Kolmogorov's paper No. 39 also became one of the starting points In 

the study of boundaries and boundary conditions for Markov processes. If 

a matrix A is conservative, then the inverse system of differential equations 

P'(t) = AP(t) holds but, in general, its solution is not unique for the ini

tial value P(O) = I. General results by FeIler imply that the probabilities 
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of transition during a finite number of jumps form the minimal solution for 

this system. The problem arises of constructing possible continuations of the 

minimal process beyond an accumulation point of the jumps, preserving the 

Markov property and the infinitesimal matrix A, so that the process does not 

terminate. After FeUer [44], the preliminary question as to when accumulation 

of jumps (in other words, going away to infinity) can take place over finite 

time, was studied by Dobrushin for the countable case [45]. The furt her con

struction requires constructing exit boundaries, entrance boundaries (if any) 

and "glue together" the exits to the entrances, or to the initial states by means 

of boundary conditions. Without mentioning the vast range of corresponding 

research for diffusion-type processes and their generalizations, we merely note 

that for a countable state space such a programme was sketched by Dynkin 

in his talk at the AU-Union Meeting on Probability Theory in Leningrad in 

1955. Apparently, it could only be realized for the case with a finite number of 

exits. Without attempting to give a complete review, we mention the relevant 

papers by Dobrushin [46], FeIler [47], Reuter [15], [48], Neveu [49], Chung [50], 

Williams [51], [52] and Dynkin [53]. 

References 

1. A.N. Kolmogoroff, 'Über die analytischen Methoden in der Wahrschein

lichkeitsrechnung', Math. Ann. 104 (1931), 415-457. 

2. W. Doeblin, 'Sur l'equation matricieIle A(t+6) = A(t)A(6) et ses applica

tions aux probabilites en chaine', Bull. Sei. Math. 62 (1938), 21-32; 64 

(1940),35-37. 

3. J .L. Doob, 'Topics in the theory of Markoff chains', Trans. A mer. M ath. 

Soc. 52 (1942), 37-64. 

4. J .L. Doob, 'Markoff chains - denumerable case', Trans. Amer. Math. Soc. 

58 (1945), 455-473. 

5. A.N. Kolmogorov, 'On differentiability of transition probabilities in time

homogeneous Markov processes with a countable number of states', Uch. 

Zap. Moskov. Gos. Univ. Mat. 148:4 (1951), 53-59 (in Russian). 

6. P. Levy, 'Systemes markoviens et stationnaires. Cas denombrable', Ann. 

Sei. Ecole Norm. Super. 68 (1951),327-381. 

7. P. Levy, 'Processus markoviens et stationnaires du cinquieme type (infinite 

denombrable des etats possibles, parametre continu), C. R. Acad Sei. Paris 

236 (1953), 1630-1632. 



HOMOGENEOUS MARKOV PROCESSES 535 

8. P. Levy, 'Remarques sur les etats instantanes des processus markoviens et 

stationnaires, a une infinite denombrable d'etats possibles', G. R. Aead. 

Sei. Paris 264 (1967), 844-848. 

9. A.A. Yushkevich, 'On differentiability of transition probabilities of homo

geneous Markov processes with a countable number of states', Diploma 

work, Moskov. Gos. Univ., Ueh. Zap. Moskov. Gos. Univ. Mat.,186:9 

(1959), 141-159 (in Russian). 

10. D.G. Kendall and G.E.H. Reuter, 'Some pathological Markov processes 

with a denumerable infinity of states and the associated semigroups of 

operators on 1', In: Proe. Intern. Gongr. Math. Amsterdam 3 (1954), 377-

415. 

11. D.G. Austin, 'On the existence ofthe derivative ofMarkofftransition prob

ability functions', Proe. Nat. Aead. Sei. USA 41 (1955), 224-226. 

12. D.G. Austin, 'Some differentiation properties of Markoff transition proba

bility functions', Proe. Amer. Math. Soe. 1 (1956), 756-761. 

13. K.L. Chung, 'Some new developments in the theory of Markov chains', 

Trans. Amer. Math. Soe. 81 (1956), 195-210. 

14. D.G. Austin, 'Note on differentiating Markoff transition functions with 

stable terminal states', Duke Math. J. 25 (1958), 625-629. 

15. G.E.H. Reuter, 'Denumerable Markov processes and the associated con

traction semigroups on I', Acta Math. 91 (1957),1-46. 

16. W.B. Jurkat, 'On semigroups of positive matrics. I, 11', Seripta Math. 24 

(1959), 123-131; 207-218. 

17. K.L. Chung, M arkov ehains with stationary tmnsition probabilities, Springer

Verlag, Berlin, 1960. 

18. K.L. Chung, 'Probabilistic methods in Markov chains', In: Proe. Fourth 

Berke/ey Sympos. Math. Statist. Probab. Univ. Calif. Press, Vol. 2, 1961, 

pp.35-56. 

19. D. Ornstein, 'The differentiability of transition functions', Bull. Amer. 

Math. Soe. 66 (1960), 36-39. 

20. G. Smith, 'Instantaneous states of Markov processes', Trans. Amer. Math. 

Soe. 110 (1964), 185-195. 

21. S. Orey, 'Non-differentiability of absolute probabilities of Markov chains', 

Quart. J. Math. 13 (1962), 252-254. 

22. D.G. Kendall, 'On the behaviour of a standard Markov transition function 



536 COMMENTS 

near t = 0', Z. Wahrscheinlichkeitstheorie 3 (1965), 276-278. 

23. D. Blackwell and D. Freedman, 'On the local behaviour of Markov transi

tion probabilities', Ann. Math. Statist. 39 (1968), 2123-2127. 

24. G.E.H. Reuter, 'Remarks on a Markov chain example of Kolmogorov', Z. 

Wahrscheinlichkeitstheorie 13 (1969), 315-320. 

25. J .F.C. Kingman, 'The stochastic theory of regenerative events', Z. Wahr

scheinlichkeitstheorie 2 (1964), 180-224. 

26. D.G. Kendall, 'Some analytical properties of continuous stationary Markov 

transition functions', Trans. Amer. Math. Soc. 78 (1955), 529-540. 

27. D.G. Kendall, 'Some furt her pathological examples in the theory of denu

merable Markov processes', Quart. J. Math. 7 (1956), 39-56. 

28. R.L. Dobrushin, 'An example of a countable homogeneous Markov process 

in which all states are instantaneous', Teor. Veroyatnost. i Primenen. 1 

(1956),481-485 (in Russian). (Translated as Theory Probab. Appl.) 

29. W. FeUer, and H.P. McKean, Jr., 'A diffusion equivalent to a countable 

Markov chain', Proc. Nat. Acad. Sei. USA 42 (1956), 351-354. 

30. D.G. Kendall, 'A totally unstable denumerable Markov process', Quart. J. 

Math. 9 (1958), 149-160. 

31. D. Blackwell, 'Another countable Markov process with only instantaneous 

states', Ann. Math. Statist. 29 (1958), 313-316. 

32. D. Williams, 'The Q-matrix problem for Markov chains', Bull. Amer. 

Math. Soc. 81 (1975), 1115-1118. 

33. D. Williams, 'The Q-matrix problem. 2: Kolmogorov backward equations', 

Lecture Notes in Math. 511 (1976),216-234; 505-520. 

34. D. Freedman, Markov chains, Holden-Day, San Francisco, 1971. 

35. D. Freedman, Approximating countable Markov chains, San Francisco, 

1972. 

36. K.L. Chung, 'Foundations of the theory of continuous parameter Markov 

chains', In: Proc. Third Berkel~y Sympos. Math. Statist. Probab. Univ. 

Calif. Press, Vol 2, 1956, pp. 29-40. 

37. E.B. Dynkin, 'Infinitesimal operators of Markov random processes, Dokl. 

Akad. Nauk SSSR 105 (1955), 206-209 (in Russian). 

38. E.B. Dynkin, 'Infinitesimal operators of Markov processes', Teor. Veroy

atnost. i Primenen. 1 (1956), 38-60 (in Russian). (Translated as Theory 

Probab. Appl.) 



HOMOGENEOUS MARKOV PROCESSES 537 

39. E.B. Dynkin and A.A. Yushkevich, 'Strict Markov processes', Teor. Veroy

atnost. i Primenen. 1 (1956), 149-155 (in Russian). (Translated as Theory 

Probab. Appl.) 

40. G.A. Hunt, 'Some theorems concerning Brownian motion', 1Tans. Amer. 

Math. Soc. 81 (1956), 294-319. 

41. D .. Ray, 'Stationary Markov processes with continuous paths', 1Tans. 

Amer. Math. Soc. 82 (1956), 452-493. 

42. R.M. Blumenthal, 'An extended Markov property', 1Tans. Amer. Math. 

Soc. 85 (1957), 52-72. 

43. J .L. Doob, 'Compactification of the discrete state space of a Markov pro

cess', Z. Wahrscheinlichkeitstheorie 10 (1968), 236-251. 

44. W. FeIler, 'On the integro-differential equations of purely discontinuous 

Markoff processes', 1Tans. Amer. Math. Soc. 48 (1940), 488-515; Errata 

- Ibid. 58 (1945), 474. 

45. R.L. Dobrushin, 'On the regularity conditions for time-homogeneous 

Markov processes with a countable number of possible states', Uspekhi 

Mat. Nauk 7:6 (1952), 185-191 (in Russian). 

46. R.L. Dobrushin, 'Some classes of homogeneous countable Markov pro

cesses', Teor. Veroyatnost. i Primenen. 2 (1957), 377-380 (in Russian). 

(Translated as Theory Probab. Appl.) 

47. W. FeIler, 'On boundaries and lateral conditions for the Kolmogoroff dif

ferential equations', Ann. 0/ Math. 65 (1957), 527-570. 

48. G.E.H. Reuter, 'Denumerable Markov processes. 11, 111', J. London Math. 

Soc. 34 (1959), 81-91. 

49. J. N eveu, 'Sur les etats d 'entree et les etats fictifs d 'un processus de 

Markoff', Ann. [nst. H. Poincare 17 (1962), 324-337. 

50. K.L. Chung, 'On the boundary theory for Markov chains', Acta Math. 110 

(1963), 19-77; 115 (1966), 111-163. 

51. D. Williams, 'The process extended to the boundary', Z. Wahrschein

lichkeitstheorie 2 (1962), 332-339. 

52. D. Williams, 'On the construction problem for Markov chains', Z. Wahr

scheinlichkeitstheorie 3 (1964), 227-246. 

53. E.B. Dynkin, 'General boundary conditions for Markov processes with a 

countable set of states' , Teor. Veroyatnost. i Primenen. 12 (1967), 222-257 

(in Russian). (Translated as Theory Probab. Appl.) 



BRANCHING PROCESSES (Nos. 25, 32, 33, 46) 

(B.A. Sevast'yanov) 

The general notion of and the term "branching random process" itself that 

immediately became commonly accepted, were first explicitly coined by A.N. 

Kolmogorov at his seminar at Moscow University in 1946-1947. Various prob

lems relating to simple models of branching processes had been considered pre

viously. In particular, one ofthese problems was solved by A.N. Kolmogorov in 

his earlier work, No. 25. Rowever, it was the publication of papers Nos. 31, 32, 

that triggered an intensive development of the theory of branching processes. 

By now there are several monographs that deal with branching processes (books 

by Rarris [1], Sevast'yanov [2], Athreya and Ney [3], and others). The model 

of branching processes described in papers Nos. 31, 32 are Markov branching 

processes with several types of particle and with continuous and discrete time. 

This model appeared to be very efficient, both in terms of the number of re

sults obtained and in its possible applications to biology, chemistry, physics and 

technology. A special case of this model is a branching process with immigra

tion, when, in addition to multiplying particles, there also appear immigrating 

particles (see, for example, [2]). 

Later on, more complex models of branching processes were developed 

which took into account the following parameters: dependence ofmultiplication 

on the age of particles (the BeIlman-Rarris process), a particle's position in a 

certain space, a particle's dependence on energy, random environment, etc. 

The asymptotic formulas of the probability of continuing the process ob

tained in No. 25, as weIl as related limit theorems proved by Yaglom [4], were 

later generalized by other authors for other models, including non-Markov ones. 

Papers [5]-[7] deal with the convergence of branching processes to diffusion pro

cesses, which is discussed in the review paper No. 46. 
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STATIONARY SEQUENCES (No. 27) 

(Yu.A. Rozanov) 

Paper No. 27 has by now become classical and opened the main road in the 

theory of stationary (and related) random processes, giving a proper setting 1 

for prediction problems and solving them for stationary processes with dis

crete time (stationary sequences). This work is remarkable because of its deep 

connection with various questions of approximation theory, spectral theory of 

operators in Hilbert space and the theory of analytic functions. The two central 

notions in this theory are the regularity of a random process and subordination 

of one process to another. 

A stationary sequence can be regarded as asequence 

z(t) = ei>.f, t = 0,±1, ... , 

in the Hilbert space L2 with measure F(d>') on -11" ~ >. ~ 11". Let H:t:(n) be the 

closed linear span of all z(s), s ~ n, and let in(t) be the best approximation 

for z(t) by functions from H:t:(n)j regularity me ans that in(t) -+ 0 as n -+ -00. 

A well-known result of No. 27 consists in establishing the following regularity 

criterion: F(d>') is absolutely continuous and the density f(>') = F(d>')/d>' 
satisfies the condition i: logf(>')d>' > -00. 

1 Prediction problems themselves are considered in another work by A.N. Kol
mogorov: 'Interpolation and extrapolation of stationary random sequences', 
Izv. Akad. Nauk SSSR Se,.. Mat. :; (1941), 3-14 (see No. 28 of this volume). 
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The general model of a stationary sequence is: 

x(t) = Utx(O), t = 0, ±1, ... , 

where Ut = f~7r eiAt E( d>') is a group of unitary operators in Hilbert space. The 

fact that y(t), t = 0, ±1, ... is sub ordinate to this x(t) means that y is obtained 

from x by a linear transformation 

y(t) = Ax(t) 

with the operator 

A = J tjJ(>')E(d>') 

in H", = H",(oo). What is surprising here is that this linear dependence of 

y and x may be expressed in terms of their correlation dependence (the only 

previously known fact of this sort was the trivial fact of linear dependence 

of random variables x and y with correlation coefficient 1). A description of 

the spectral structure of subordinate sequences gives, in particular, a spectral 

description of cydic subspaces for the unitary group Ut in the space H",. 

Of particular importance here are subordinate sequences y with the non

anticipating condition 

for which conditions under which 

have been established. For example, for 

in L2 with F(d>') = d>' the answer is the following: Hy(O) = H",(O) holds if 

and only if 

where tjJ(>') is a so-called outer function of the well-known analytic dass H 2 = 
H",(O). (In No. 27 

o 
tjJ(>.) = I: c/ceiAk = r(e- iA ) 

-00 
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is determined by the condition r(z) -I 0, Izl < 1.) It should be mentioned 

that many questions for the dass H 2 are easily solved within the scheme of 

subordinate sequences (and processes ) proposed in No. 27. This is the case 

with the well-known question of invariant subspaces in H 2 , namely: Every 

subspace invariant with respect to multiplication by e-iA , 

IS given by H = Hy(O) for an appropriate regular subordinate sequence 

y(t) = eiAt <p(>..), <p E H 2 and 

where the so-called inner function 1/J E H 2 gives a fundamental sequence for y, 

with spectral density 

1/27r = 11/J(>")1 2 . 

The studies related to No. 27 are reviewed in detail, for example, in the 

monographs [1]-[5]. We will mention some of them. 

For some time paper No. 27 remained unknown to many researchers who 

in the 1940's dealt with dosely related questions, among them Wiener (see his 

paper on filtering stationary processes). Here we should also mention Beurling's 

problem concerning "translations" in the analytic dass H 2 , etc. 

A direct generalization of regularity condition (*) for stationary processes 

with continuous time was made in 1949 by Krein in the form 

100 logf(>")d' _ 
1 >..2 1\ > 00. 

-00 + 

Later Krein found the connection between the prediction problem and the 

inverse spectral problem for the string equation. A direct generalization of the 

regularity criterion for the non-degenerate multidimensional case was given in 

1941 by Zasukhin in the form: 

i: logdetf(>")d>" > -00. 
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The problems of predicting processes with rational spectrum, important in 

applications, were considered by Yaglom. In the general case, the regularity 

condition is equivalent to factorizability of 1(>'): 

I( >.) = (1/2'1I}/>( >. )4>( >.), 

where 4>(>') is an operator-valued function from the corresponding analytic dass 

H2. The factorization problem of matrix-valued (operator-valued) functions 

1(>') was solved by Roz anov , Wiener and Mazani, Matveyev and others. In 

particular, Lax showed that in the infinite-dimensional case even a very strong 

generalized version of ( *) in the form 

I: log/(>')d>' > -cl 

(where c> 0 is a constant and I the identity operator) does not guarantee the 

required regularity of 1(>'). A general criterion for regularity was proposed by 

Rozanov. 
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STATIONARY PROCESSES (No. 48) 

(V.A. Statulyavichus) 

The authors solve the problem for a Gaussian stationary process X(t) under 

the strong mixing (SM) condition introduced by Rosenblatt [1]. It is proved 

that in this case the SM function 0:( r) is equivalent to the maximal correlation 

coefficient p(r) (o:(r) ~ p(r) ~ 21r0:(r)) and the representation (4) for p(r) is 
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found in terms of the speetral density of the proeess !(>'), whieh exists in view 

of the SM eondition. Thus, the problem is solved eompletely. For example, in 

the ease of integer time the proeess X t possesses the SM property if and only 

if 

where the supremum is taken over all one-sided trigonometrie polynomials 

p(ei~) = E~o eteit~ (m 2: 0) and 11·1100 is the essential supremum norm. This 

implies that if !(>') is eontinuous, !(-'lr) = !('Ir) , and bounded everywhere, 

exeept perhaps at zero, then Xt has the SM property. Ibragimov [2] obtained 

further results on the form of !(>') when X t possesses the SM property. Helson 

and Sarason [3] reeonsidered this problem as a quest ion in harmonie analysis. 

Generalizations were also obtained for nmctions X t with values in a spaee of 

matriees [6]. In the ease of a random walk on a eompact abelian group Rosen

blatt [4] showed that a stationary proeess has the SM property if and only 

if 

where T is the transition operator of the random walk. A.N. Kolmogorov also 

posed the problem of finding an effeetive eriterion for eomplete regularity of 

a Gaussian stationary proeeSSj it was solved by Volkonskü and Rozanov [7]. 
A student of A.N. Kolmogorov, Leonov [8], studied various SM eonditions of 

random proeesses using higher semi-invariants. 
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STATISTICS OF PROCESSES (No. 50) 

(A.N. Shiryaev) 

In this work the estimators jT and WT for the parameter A (damping coef

ficient) and w (frequency) in a complex stationary Gaussian Markov process 

are constructed using the maximum likelihood method. It turned out that the 

normalized ratio 
WT-W 

J J: (ei + 71;)ds 

does not depend on wand A and is exactly normally distributed with parameters 

o and 1 (when a = 1). For a proof of this interesting fact (not mentioned in 

the paper) see [1] and the monograph [2], Chap. 17, §4. 

The paper under review is also interesting because it shows how Kol

mogorov interprets a physically posed problem (in this case the problem of 

studying the movements of the earth's rotation axis) in strict terms of statistics 

of random processes and, based on results for the densities of certain measures 

with respect to others, finds estimators of the parameters considered. 

Nowadays the statistics of diffusion type processes is a big chapter in the 

statistics of random processes. A significant part of the monograph [2] deals 

with the statistics of these processes. In particular, it considers the problem of 

the paper No. 50, as weIl as a number of related problems. 
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SPECTRAL THEORY OF STATIONARY PROCESSES (No. 34) 

(A.M. Yaglom) 

Paper No. 34 by A.N. Kolmogorov published in 1947 is the first popular review 

of the spectral theory of stationary random processes, one of the most impor

tant sections of the mathematical theory of random functions which had been 

developed shortly before (with an active contribution by Kolmogorov himself), 

but at that time hardly known to anyone outside the narrow cirele of experts. 

The first similar review of this theory outside the Soviet Union appeared two 

years later (see [1]). The editions in Russian dealing with this theory include 

a scientific monograph [2], the rather elementary book [3] and large sections in 

many textbooks (see, for example, [4]-[7]). 

Kolmogorov starts his review by giving elassical results by Khinchin [1] 1 

who was the first to define a stationary random process e(t) and proved that 

its correlation function B(T) = E{e(t + T)e(tn can always be represented as 

a Fourier-Stieltjes integral (see formula (6) which relates to the somewhat 

more general case of a multidimensional process e(t) = {el(t), 6(t), . .. ,e.(tn). 
However he paid main attention to the question of substantiating the possibility 

of representing the stationary process e(t) as a Fourier-Stieltjes integral of the 

form (,.0 and on the physical meaning of such a representation. He remarks 

that the spectral representation (4) can be easily derived from the well-known 

theorem in functional analysis on the spectral decomposition of one-parameter 

groups of unitary operators in Hilbert space, and the first deduction of this 

type was given in [6]-[7] in 1940. However, for simplicity he does not stress 

the point that these works solved a more general (and more complex) problem 

on the spectral representation not only for stationary processes, but for the 

wider class of processes with stationary increments. 

A random process e(t) is called a process with stationary increments (in 

the wide sense) if for any t, T, 8, Tl, T2 the expectations 

E{{(t + T) - {(tn = a(T), 

E{[e(t + 8 + Td - {(t + 8)][{(t + T2) - {(tm = 0(8; Tb T2) 
(1) 

exist and do not depend on t. (It is clear that any process stationary in the 

wide sense is always a process with stationary increments, but a process with 

1 Italicized figures in square bra.ckets indicate the reference in Kolmogorov's paper. 
Italicized numbers in parentheses refer to the corresponding formula of No. 34. 

545 
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stationary increments need not be stationary.) The results of the paper [6] 2 

imply that any process with stationary increments ~(t) allows a spectral rep

resentation of the form 

~(t) = 1: (ei>.t - l)d~(A) + ~o + 6t, (2) 

where ~o,6 are random variables and the random function ~(A) is such that 

its increments ~(~~) = ~(A;) - ~(AD and ~(~~) = ~(A~) - ~(An on non

intersecting intervals ~>. = [A;, A~] and ~~ = [A~, At] are uncorrelated to each 

other (that is, E{~(~~)~(~~)} = 0), while the real monotone non-decreasing 

function F(A) of the argument A given by E{I~(~>.W} = F(~>.) satisfies, for 

any ( > 0, the condition 

(3) 

In the particular case of a stationary process ~(t) (considered for discrete time, 

in particular, by Kolmogorov's [4], [5]), 6 = 0 and, furthermore, not only 

must (3) hold, but also the more restrictive condition 

1: dF(A) < 00. (4) 

In this case, dearly f~oo d~(A) = ~~ is a random variable of finite variance; 

therefore (2) may be rewritten as 

~(t) = 1: ei>'td~l(A) 
(where ~l(A) = ~(A) + (~o -~~)K(A) and K(A) is a "jump function" equal to 

o for A < 0 and to 1 for A ~ 0). Applied to stationary processes this brings us 

back to (4) and to the results (applied to the multidimensional process ~(t» 

of the paper No. 34 by Kolmogorov. 

The spectral theory of random processes with stationary increments de

veloped in [6]-[ 7] can be applied to the more general dass of random processes 

~(t) with stationary increments of order n > 1 (see [9], [10], where one can also 

2 The results of [6] dealing with geometry of Hilbert space were obtained a little 
later also by von Neumann and Schoenberg [8], who noted, however, that the 
same results can at the same time be interpreted as certain facts concerning 
random processes e(t) with stationary increments. 
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find precise definitions of this dass of random processes). For these processes 

the spectral representation is 

where eO,el,." ,en are random variables, and the increments of the random 

function cI(>') on non-intersecting intervals ~~ and ~~ are again uncorrelated 

to each other, whereas the function F(>') determined by E{lcI(~A)12} = F(~A)' 
satisfies, for any f > 0, the condition 

(6) 

Formulas describing spectral representations of processes with stationary 

increments of a certain order can be derived, for example, from results re

lated to another generalization of the not ion of a stationary random process, 

namely from the spectral theory of generalized stationary random processes. 

By analogy with the notion of a distribution or generalized function which 

has become widely used in modern analysis, a generalized random process is 

a random linear functional e(q;) (that is, a linear functional whose values are 

random variables) given on a certain linear space D of "good" (that is, sufli

ciently smooth) functions q; = q;(t), for example, on the space Doo of infinitely 

differentiable functions (introduced by L. Schwartz), each of which vanishes 

identically outside some finite interval (only such aspace D = Doo will be con

sidered in what folIows). Clearly, an ordinary random process e(t) can always 

be associated with a generalized process 

e(q;) = i: e(t)q;(t)dt. (7) 

From this viewpoint ordinary random processes may be considered as a partic

ular case of generalized processes. In principle, however, there can also exist a 

generalized process e(q;) for which the "values at the point" e(t) do not exist 

(that is, such that e(q;) cannot be described by (7)). A typical example ofsuch 

a process e(q;) is the "white noise" process, very often encountered in various 

applications. 

Generalized random processes were introduced in [11], [12] (see also [13], 

Chapter 111). In [11]-[13] the notion of a stationary (in the wide sense) general

ized random process e (q;) is defined also and a spectral theory for these e (q;) is 
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developed. To define generalized stationary processes one only has to consider 

the operation TT in D given by TTt/J(t) = t/J(t + T) and then require e(t/J) to 

satisfy 

E{e(TTt/J)} = E{e(t/J)}, 

E{e(TTt/Jl)e(TTt/J2)} = E{e(t/Jde(t/J2)} 
(8) 

for any T. For simplicity we suppose that E{e(t/J)} = m(t/J) = 0 for all t/J. In this 

case a generalized stationary random process e(t/J) has a spectral representation 

ofthe form 

(9) 

where ~(>.) = f~oo ei>.tt/J(t)dt is the Fourier transform of t/J(t), and the random 

function <1>(>') has the same properties as <1>( >.) featuring in the spectral decom

position (.4) of an ordinary random process e(t), with the only difference that 

now F(>.) is such that E{I<I>(LlA)I2} = F(LlA ) satisfies the condition 

100 dF(>') 
-00 (1 + >,2)m < 00 

(10) 

for some integer m ~ 0 (for ordinary stationary processes e(t) we always have 

f~oo dF(>') < 00, that is, m = 0). It can easily be seen that in the general case 

when the process e(t/J) is ordinary, (that is, it is given by (7)), (9) immediately 

implies also the more usual spectral representation of the process e(t) of the 

form (4). 

Generalized random processes are in certain aspects simpler than ordinary 

processes; in particular, whereas an ordinary random process e(t) has deriva

tive df.(t)fdt = e'(t) only under certain special conditions, a generalized process 

e(t/J) is always differentiable, its derivative e'(t/J) being e'(t/J) = -e(t/J') (if a pro

cess.e(t/J) is given by (7) and e'(t) exists, then clearly e'(t/J) = f~ooe'(t)t/J(t)dt). 
Since generalized processes are differentiable, a generalized random process 

with stationary increments of given order n can be defined simply as a process 

e(t/J) (non-stationary in general) whose nth derivative en(t/J) is a generalized 

stationary process. Using this definition, it is easy to derive from (9) and (10) 

the general spectral representation of a generalized random process with sta

tionary increments of order n, which includes (5) and (6) as particular cases 

(relating to processes e(t/J) of the form (7)). 
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Another generalization of the spectral representation of a stationary ran

dom process e(t) as a Fourier-Stieltjes integral (4) concerns homogeneous ran

dom fields in higher-dimensional spaces R!', that is, random functions e(x), x = 
(Zl, ... ,zn) E Rn, of many variables related to stationary processes. A random 

field e(x), x E Rn, is called homogeneous (in the wide sense) iffor any r ERn, 

(so that Ee(x) = const, Ee(xd(X2) = B(X1 - X2». Such a field allows a 

spectral representation of the form 

(12) 

where <fI(~k) is a random function of an n-dimensional interval ~k in the 

space of vectors k, whose values on non-intersecting intervals ~k1 and ~k2 

are uncorrelated, and F(~k) = E{I<fI(~kW} is integrable over the whole space 

(that is, JRn F(dk) < 00). We note that as far back as 1941 Obukhov [14], 

[15] used the spectral decomposition (12) of a homogeneous random field e(x) 

in his important work on statistical turbulence theory, referring to the paper 

[6] by Kolmogorov. A rigorous proof of this formula and some of its gener

alizations (concerning, in particular, fields with homogeneous increments and 

generalized homogeneous fields) can now be found, for example, in [16] (see 

also [13], §III.5). A number offurther examples of "generalized spectral repre

sentations" of various classes of random functions related to the representation 

of stationary random processes e(t) as Fourier-Stieltjes integrals (4) is given in 

particular in [17], [18]. 

Apreeise formulation of Zasukhin 's results [13] mentioned by Kolmogorov 

and a rigorous proof of these results can be found in Rozanov's book [2], Chap

ter 11. For a modern presentation and furt her development of Slutskii's results 

[14] see the papers by Moran [19], [20] and Kendall and Stuart [21], §47.15. 
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SPECTRAL REPRESENTATION OF RANDOM PROCESSES (Nos. 47, 49) 

(Yu.G. Balasanov and LG. Zhurbenko) 

Let T(1e) be the dass of random processes {(t) such that 

and S(k) the dass of processes {(t) E T<k) such that for all 1 $ I $ 11:, -00 < 
T< 00, 

Then the example constructed in the commented papers shows that although 

S(2) C c)(2), for 11: > 2 there exist processes of dass S(k) that are not of dass 
c)(k) • 

A suitable definition of the dasses of random processes that have spectral 

representation of higher orders was discussed in a number of subsequent works 

ofvarious authors. We first mention [1], where, at Kolmogorov's suggestion, the 

dasses ,6.(k) are introduced and studied. They are defined as certain subdasses 

of the dasses S(k) n c)(k). For these dasses it is more natural to consider the 

semi-invariant spectral measure F?)(.~l'.'" Ak) defined by the relation (see 

[1], [2], [9]) 

where 
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instead of the moment spectral measure MP'\)\l"'" Ak) (defined by the rela

tion (see [1], [2], [9]) 

In particular, the classes il(k) are charac1erized by the fact that for e(t) E il(k) 

the se mi-invariant measures FP), 1 ~ I ~ k, are absolutely continuous with 

respect to Lebesgue measure on the sets Al + .. . +A/ = 0 (mod 211'). The study 

of the classes il(k) was then continued in [2]. A generalization of il(k) for vector 

random processes is obtained in [3]. Similar questions for random fields were 

considered in [4]. 

The work initiated by A.N. Kolmogorov in which the classes il(k) were 

defined and studied, initiated aseries of studies in a new branch, called the 

theory of higher spectra of stationary random processes and their statistical 

analysis. The results of this branch are now of fundamental character and are 

used extensively for solving various applied problems in astronomy, geophysics, 

studies of liquid and gas turbulence, etc. (see, for example, [5]-[8]). 

A fundamental contribution to the further development of higher-order 

spectral analysis was made in [9] where the mathematical apparatus of higher 

moments and semi-invariants, necessary for further research, was developed 

(see [10], [11], etc.). Higher-order spectral theory for homogeneous random 

fields was considered by Yaglom [12]-[14]. Upper estimates for higher spectral 

densities and their derivatives under different mixing conditions can be found 

in [11] and are essential in statistical analysis. 

Numerous works dealt with constructing and studying higher spectral den

sities (for example, [15]-[17], etc.). However, until recently, all the statistics 

had the same essential drawback: they did not allow one to construct an esti

mator of the higher semi-invariant spectral density for all arguments. Though 

the semi-invariant density of nth order is defined at all points Al + ... + An = 
o (mod 211'), the statistics proposed gave no ans wer for the subsets Akl + ... 
... + Akp = 0 (mod211'), 1 ~ ki ~ n, i = 1, ... ,p, for p < n. Naturally 

statistical estimators were ullstable in a neighbourhood of these sets. This 

drawback has recently been eliminated by using statistics constructed by the 

time translation method [18]. 
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BROWNIAN MOTION (Nos. 14, 19, 24) 

(A.M. Yaglom) 

Papers Nos. 14, 19, 24 are closely related to the important papers Nos. 9 

and 17 dealing mainly with the general theory of continuous Markov ("Stochas

tically determined" in Kolmogorov's terms) random processes. Starting from 

the well-known works by Einstein and Smoluchowski [1], [2], processes of this 

kind have been widely used in physics to describe Brownian motion of both 

individual particles and systems with many degrees of freedom; we recall in 

this connection that, as it turned out, the physicists Fokker and Planck, who 

studied Brownian motion, came to some of the conclusions given in No. 9 even 

earlier. It was therefore natural to expect that the results of No. 17 can also be 

directly applied to many problems concerning Brownian motion. Some concrete 

examples of these applications are given in Nos. 14, 19, 24. 

Paper No. 14, written together with M.A. Leontovich and published in a , 
physics magazine, is more related to physics than the other two. It solves the 

following problem in the theory of Brownian motion posed by S.1. Vavilov: to 

find the mean E(F) ofthe area F on the plane (x,y) covered by the projection 

of a spherical particle of fixed radius u in the process of Brownian motion over 

time t. Based on partial differential equations for the transition probability 

densities of a multidimensional continuous Markov process found in No. 17, the 

authors obtain for E( F) a very precise asymptotic formula (applicable when 

Dtfu2 ~ 1, where D is the corresponding diffusion coefficient, which, due to 

Einstein's results [1], [2] for a spherical particle ofradius u immersed in a liquid 
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or gaseous medium of viscosity J.I. is given for the absolute temperature T by 

the relation D = koT/61fuJ.I., where ko is the Boltzmann constant). 

Note that the solution given in the paper is based on the following impor

tant result established in the same paper. Let PL(:C, Yj t) denote the prob ability 

of a particle located at (:c, y) at time t = 0 and performing Brownian motion 

in the two-dimensional plane (the case of Brownian motion in n-dimensional 

space can be solved similarly for any n) crossing the boundary r of a given 

domain G (containing the point (:c, y» at least once within a given time t, so 

that the first crossing will be within a given part L of r (where L can coincide 

with r). In this case PL(:c, Yjt) satisfies a certain partial differential equa

tion (the ''first Kolmogorov equation", see (14», and the following conditions: 

PL(:c,YjO) = 0 for any interior point (:c,y) ofG and PL(:c,Yjt) -+ 1 for any 

t > 0, when (:c,y) tends to a point of L, L C r, and PL(:C,yjt) -+ 0 for t > 0 

and (:c, y) tending to a point of r\L. These equations and conditions uniquely 

determine PL(:C, Yj t). Clearly, this general conclusion is of considerable interest 

even beyond the specific problem of Brownian motion solved in No. 14. It was 

obtained independently at the same time by Pontryagin, Andronov and Vitt 

[3]. This and some related results are now widely used in many applications 

and are included in a number of textbooks (see, for example, [4] §30, [5] §1.4, 

[6] §§26, 27). 

A much more general question in the theory of Brownian motion is dis

cussed by Kolmogorov in the short article No. 19. As is weIl known, in the 

classical theory of Brownian motion developed by Einstein and Smoluchowski 

[1], [2] the inertia of Brownian motion is neglected, that is, actually a particle is 

assumed to have zero mass. Therefore, in Einstein and Smoluchowski's theory 

a Brownian particle does not have finite velocitYj thus, for example, for the 

particular case of Brownian motion of a free particle, Wiener had rigorously 

proved (see [7], Chapter IX) that with probability 1 the Brownian trajectory 

is a continuous but nowhere differentiable curve. We note also that in the 

Einstein-Smoluchowski approximation, Brownian motion of a physical system 

is modelled by a continuous Markov process in its coordinate space (for the 

motion of a free particle it is a random Wiener process). 

It is clear that the non-differentiability of Brownian trajectories in the 

Einstein-Smoluchowski theory is closely related to the idealization introduced 

(neglecting inertia), which makes the theory inapplicable for an analysis of the 
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motion over very small time intervals A.t. For the simplest case of Brownian 

motion of a free particle a refined theory taking into account the particle's 

inertia was developed in 1930 by Uhlenbeck and Ornstein [8] (see also Doob 

[9] and Chandrasekhar [10], Chapter II)j in this refined theory trajectories of 

particles are differentiable (but do not have second derivative, so that a par

ticle's acceleration is infinite). In fact, the same generalization of the classical 

theory of Brownian motion is discussed in No. 19 which, however, considers 

the general case of Brownian motion with n degrees of freedom, instead of the 

particular case of motion of a free particle. According to Kolmogorov, inertia is 

taken into account by considering the state of the system as given by the values 

of n positions Q1, ••• , qn and their derivatives with respect to time (velocities) 

41, ... , 4n. Brownian motion is modelIed here by a continuous Markov process 

in the 2n-dimensional phase space of positions and velocities. The main equa

tion for the transition probability density of this Markov process (equation (9) 

of No. 19) turns out in this case to be adegenerate parabolic-type equation 

(since its right-hand side contains only second derivatives with respect to ve

locities, but not with respect to two position coordinates or a position and a 

velocity coordinate). Soon after No. 19 was published, Kolmogorov's student, 

Piskunov, began a study of the mathematical theory of such equations (11). 

The Uhlenbeck-Ornstein theory of one-dimensional Brownian motion of a free 

particle is derived from Kolmogorov's general theory for the particular case 

n = 1 (so that the basic equation of the theory acquires the form (10), see 

No. 19), where f = -o:q (and 0: = ß/m, where m is the particle's mass, and ß 
the viscous friction coefficient equal to 67rui' for a spherical particle of radius 

u), and k = const = koT/mß. 

Finally, paper No. 24 discusses the interesting question of the meaning 

and conditions of statistical reversibility of Brownian motion. It is weIl known 

that in the thermodynamical sense processes of Brownian motion (or diffusion) 

are irreversible: in the presence of a large number of diffusing particles these 

processes always result in a levelling out of the distribution of the particles 

available as t increases, whereas the distribution becomes more and more in

homogeneous as t decreases. Apparently Schrödinger [12] was the first to draw 

attention to the fact that an essential role is played he re by the presence of 

a well-defined initial condition at t = 0 and the assumption (always made) 

that the distribution of particles tends to a homogeneous one (in general, to a 
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certain stationary ergodic distribution) as t - 00, whereas no constraints are 

usually imposed on the behaviour ofthe process as t - -00. In this connection 

he considered a diffusion process during the time interval to < t < t1 under the 

condition that both the initial distribution at t = to and the final distribution at 

t = t1 are fixed and pointed out that in this setting, diffusion is to some extent 

reversible. In particular, assuming that diffusion takes place in a finite space 

interval (or in a finite volume), and the prob ability distribution tends to the 

same homogeneous (that is, stationary and ergodic) distribution both as t - 00 

and t - -00, then the changes in the probability distribution for to :5 t < 00 

and -00 < t :5 to corresponding to a given value of the distribution at the 

time to are described by absolutely identical relations, that is, the diffusion is 

completely reversible in time. 

In his paper Schrödinger considered only the simplest one-dimensional dif

fusion described by the diffusion equation with constant coefficient D, whereas 

in No. 24 Kolmogorov studies the general case of an arbitrary n-dimensional 

Brownian motion described by a continuous Markov random process on a cer

tain n-dimensional manifold R of positions (Xl, ... , X n ) = X of a physical sys

tem. If for this Markov process the "absolute (unconditional) prob ability den

sity" p(x) is given for all t, which is the strictly positive density of a stationary 

prob ability distribution, (when there exists an ergodic distribution, it is natural 

to take it as p(x», then along with the usual prob ability density of the transi

tion from a given state at t = to to a certain state at t = t1 > to we can also 

determine the "inverse transition probability density", that is, the conditional 

prob ability density for the state at t = to, given the state at a later moment 

t = t1 > to. After this it is natural to raise the problem of necessary and 

sufficient conditions for these two transition probability densities to be equal 

to each other. These necessary and sufficient conditions are found in No. 24. 

They are derived with the help of an invariant tensor form (derived in the same 

paper) of the general equations for the transition prob ability density of the n

dimensional Markov process given in No. 19. This prob ability density might 

be helpful for problems other than that on statistical reversibility considered 

here, and the desired conditions themselves appeared to be quite general and 

satisfied in the particular case considered by Schrödinger. 

We note, however, that in No. 24 the problem of statistical reversibility of 

Brownian motion is still not treated in its most general form, since it is assumed 
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there that the matrix IIBij (z) 11 ofthe coefficients ofthe second derivatives in the 

equations for the transition probability density is strictly positive definite for all 

z. At the end of §1 the author points out that the case of degenerate IIBij (z)1I is 
in fact of considerable physical importance, since it appears, in particular, when 

considering Brownian motion in the phase space of positions and velocities of 

a physical system (see No. 19). But he immediately adds that the degenerate 

case is not considered in this paper. Later Kolmogorov asked a postgraduate 

of his, the author of the present comments, the quest ion on the conditions of 

statistical reversibility of Brownian motion in the phase space of positions and 

velocities. In this case the very definition of statistical reversibility differs from 

that given in No. 24, since reversing the motion of a physical system entails 

changing the sign of all the velocities (see [13]). However, this difference is 

very simple and has little effect. To obtain necessary and sufficient conditions 

of statistical reversibility, we must now rewrite the main equations for the 

transition probability (equation (9) of No. 19 and the adjoint equation) in 

invariant tensor form. (This acquires an especially dear physical meaning when 

the coefficients of the metric quadratic form in the position space are taken 

to be the coefficients of the quadratic form of the velocities that gives the 

system's kinetic energy.) If we now confine ourselves to the most interesting 

case, when the coefficients of second derivatives with respect to the velocities 

in the equation for the transition probability densities depends only on the 

positions and the forces affecting the system in question depend linearly on 

the velocities, we can show (see [13]) that for a Brownian motion in the phase 

space to be statistically reversible it is only necessary that the corresponding 

stationary prob ability distribution have the same form as the canonical Gibbs 

distribution. Thus, in this case the statistical reversibility condition has dear 

physical meaning. If we then pass to the limit corresponding to letting the 

system's inertia te nd to zero (that is, let all coefficients of the quadratic form 

of velocities tend to zero, which gives the kinetic energy), then we again come 

to the Einstein-Smoluchowski model of Brownian motion as a Markov process 

in the space of positions onlYi then the conditions for statistical reversibility of 

the Brownian motion in the phase space found in [13] by passing to the limit 

again revert to the conditions for statistical reversibility found in No. 24 by 

Kolmogorov. The latter circumstance sheds additional light on the physical 

meaning of the latter conditions. 
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MARKOV CHAINS WITH A COUNTABLE NUMBER OF STATES (No. 23) 

(A.A. Yushkevieh) 

A.N. Kolmogorov's note [1] and its enlarged version [2] (No. 23 of the present 

edition) eontain the foundations of the theory of eountable homogeneous Markov 

ehains; these works marked the beginning of the systematie study of Markov 

ehains with a eountable and, in general, an infinite set of states. To obtain a 
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dassification of the states and asymptotics of the transition probabilities Pi)n) 

as n -+ 00 is an indispensable part of any detailed presentation of countable 

Markov chains [5], [8], [12], [31], [39], [40]. In an adapted form these results are 

induded in textbooks for non-mathematicians. 

In the papers cited A.N. Kolmogorov proved that 1) a countable space of 

states E is subdivided into a set of inessential states and dasses of essential 

states (interacting with each other), while the dasses, in their turn, are subdi

vided into periodic subdasses; 2) within one dass the probability of an infinite 

number ofreturns is the same for all states and equals either 1 (recurrent dass), 

or 0 (non-recurrent dass); 3) within one dass the mean recurrence time Mjj 

is either finite for all the states j (positive dass) or infinite for aU the states 

(zero dass); 4) in a non-periodic dass the limit 

lim p~~) = M-:-. 1 
n-oo I) 11 

(1) 

exists and the sum of the limits in a positive dass equals 1; 5) therefore, in 

general, the dependence of Pi)n) on n is asymptotically periodic. 

For a finite E aU dasses are recursive and positive: the division of E into 

inessential states, dasses and subdasses and the asymptotic periodicity of the 

Pi)n) for this case were independently obtained by Doeblin [3] (it was Markov 

who established the existence of the limits (1) independent of i for a finite chain 

with strictly positive P;j and consisting, evidently, of one non-periodic dass). 

Kolmogorov's work was continued by many researchers. Erdös, FeUer and 

PoUard [4], striving to "make Kolmogorov's results more accessible", proved 

(1) as a renewal theorem that later acquired a number of generalizations (see 

[5], Chap. XIII). FeIler [5] was the first to present the foundations ofthe theory 

of countable homogeneous Markov chains for beginners; he pointed out that 

in a positive dass the limits (1) form the only stationary distribution. 1 In 

[6] he found a number of refinements of (1), for example, an expression for 

E: (Pj~) - M j} 1) for a finite second moment MH) of the time of return to j, 

and later in [7] he gave a new proof to the renewal theorem. 

Sarymsakov [8] reproduced Kolmogorov's dassification and proposed a ma

trix method for calculating the limits (1); he also considered the centrallimit 

theorem for chains with a countable space E and with E = [a, b]. 

1 FeUer first divided the states into recurrent and non-recurrent ones, and in his 
remarks on terminology, erroneously ascribes the same meaning to Kolmogorov's 
terms "essential and inessential states". 



MARKOV CHAINS WITH A COUNTABLE NUMBER OF STATES 561 

For the zero dass, when the limits in (1) are 0, it is interesting to compare 

the orders of convergence to zero of the transition probabilities for different 

states, and also to compare future distributions for various initial states. Doe

blin [9] established that within one dass the finite non-zero limit 

En p~~) 
lim 1 I) 

n-oo ~n p(m) 
L..,l k 

(2) 

always exists (Doeblin's result is actually important for the zero recurrent dass, 

since for a positive dass it follows from (1), while for a non-recurrent dass it 

follows from the convergence of the series obtained by replacing n by 00 in (2)). 

Chung [10] found that for a non-recurrent dass the limit (2) is JLjJL/ l where 

JLi is the average number of visits to i during one excursion from a fixed state 

h to h, and Derman [11] showed that under the same conditions JL = {JLd is a 

u-finite invariant measure which is unique to within a constant factor. These 

and related results are discussed in detail in the monograph by Chung [12]. 

Orey [13] showed that in a recurrent dass under different initial states 

future distributions converge to each other in variation: 

(3) 

Another proof was given by Blackwell and Freedman [14] (in a positive dass 

(3) it follows directly from Kolmogorov's result (4)). 

Kingman and Orey [15] considerably strengthened Doeblin's result on the 

limit (2) by proving an "individual" limit theorem for ratios: if in a non-periodic 

recurrent dass 

for some N and ( > 0, then 

N 

"p~~) > ( Vi L.Ju 
1 

p~~+m) 
lim ') = JLj 

n-oo p(n) JLI 
kl 

(4) 

(5) 

As was pointed out by Molchanov [16], condition (4) is equivalent to the simpler 

condition Pi\M) > 8 for any i. Molchanov generalized (5) to a-recurrent chains, 

that is, chains such that for some a ~ 1, 

00 

" ",np.(~) = 00 w; J. L.J.... I) v., , 
n=1 
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but for each positive ß < a the corresponding series converges; if in this chain 

Pi\N) > €Pi\M) for some N > M, € > 0 and all i, then the limit in (5) exists 

and equals a-ml';t/JiJi,1 t/J; 1 , where I' = al'P is (to within a constant factor) 

a unique a-harmonic measure, and t/J = aPt/J a unique positive function. The 

proof of Molchanov's theorem, which makes use of the Martin boundary, can 

be found in [17]. 

The asymptotics of the transition probabilities Pi; (t) of a homogeneous 

Markov process with a countable state space and continuous time was studied 

by Levy [18]. 

For an uncountable phase space E Kolmogorov's sub division of E into the 

set of inessential states, classes and subclasses was made by Doeblin [19] and 

improved by Doob [20], Chung [21] and Orey [22]. The well-known condition 

of Doeblin assumed in these works guarantees the presence of a stationary 

distribution and the analogy with the case of positive classes. Adefinition of 

probability for a general space E was proposed by Harris [23]. In chains that 

are recurrent in Harris's sense there exists a unique CF-finite measure, which 

is invariant to within a constant factor. For these chains an analogue of the 

result on the existence (at i = k) of the limit (2), equal to 1';1',1, holds (the 

Chacon-Ornstein theorem [24], later improved by a number of authors). These 

problems are discussed in detail in the monograph by Revuz [25]. 

Kolmogorov's papers [1], [2] have stimulated not only further studies on 

the classification of states and the asymptotics of transition probabilities, but 

to a significant extent, also the development of the whole theory of Markov 

chains with a countable or arbitrary phase space. 

The first of these deals with the recurrent, primarily positive case and con

sists in extending the known results on sums of independent random variables 

or finite chains to additive functionals of the Markov chains considered. This 

includes the law of large numbers and related ergodic theorems, the central 

limit theorem and its refinements and corresponding asymptotic expansions, 

the multidimensional limit theorem for the number of visits to a given set of 

states, the law of the iterated logarithm, convergence of normalized increasing 

sums to a Wiener process (also called the invariance principle), convergence to 

non-Gaussian limit laws, etc. The ergodic theorem for the ratio of two func

tionals is proved for recurrent chains, while the other results require stronger 

assumptions of an ergodic character such as finiteness of the second moments 
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M j7) or the above-mentioned condition of Doeblin. The first significant re

sults in this field were obtained by Doeblin [19]. Far-reaching refinements of 

these results were obtained by Nagaev [26], [27]. Leading roles were played 

by Dobrushin [28] and Statulyavichus [29] in applying these results to inho

mogeneous chains. More detailed references and information can be found in 

the book by Chung [12] (a lot of references to papers by Soviet authors were 

added in translation), and arecent monograph by Sirazhdinov and Formanov 

[30] that contains some old and many new results. The law of the iterated 

logarithm, the invariance principle and ergodie theorems for ratios are given in 

the book by Freedman [31], specifically for countable Markov chains. 

Another trend that originated in the study of non-recurrent Markov chains 

(and processes) is Martin's theory ofpotentials and boundaries. The connection 

between Dirichlet 's problem for the Laplace equation in a bounded domain G 

and Wiener's process in G considered before the time of reaching the boundary 

BG of the domain G has been known for a long time. This relationship allows us 

to introduce basic notions of classical potential theory in terms of Wiener's pro

cess or its transition functions. By analogy, the not ions of harmonie function, 

potential Green's function and excessive (positive superharmonie) functions are 

transferred to other non-recurrent Markov processes. Basic works in developing 

the potential theory for Markov processes were done by Hunt [32] and Dynkin 

[33]. Potential theory for countable Markov chains is presented in the book by 

Henneken and Tortra [34]. 

The exit boundary of a non-recurrent Markov chain is constructed for de

scribing the possible behaviour of trajectories as n -+ 00 (with prob ability 1 a 

trajectory is attracted to one of the boundary points). The entrance boundary 

plays a dual role. FeIler was the first to construct a boundary for a count

able Markov chain [35]. However, it was another, more meagre boundary that 

gained recognition. It was proposed independently by Doob [36] and Watanabe 

[37]. It is based on potential theory and is called Martin's boundary (in the 

case of Wiener's process in a plane domain G, Doob's construction coincides 

with that of Martin [38], which allows us to represent all functions harmonie in 

G by a formula similar to Poisson's integral for the disc). The probabilistic con

struction of the Martin boundary for a non-recurrent countable Markov chain 

was made by Hunt [39] and improved by Dynkin [40]. Potential theory and 

Martin's boundary for Markov chains with a common phase space is presented 
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in the book by Revuz [25]. 

A new method for studying reeurrent and non-reeurrent eountable Markov 

ehains, based on the notion of the fundamental matrix, was proposed by Ke

meny and Snell. These authors (and, independently, Orey) transferred the 

theory of potentials and boundaries to recurrent Markov chains. These results, 

as weIl as ergodie theorems and Martin boundaries are presented in detail in 

the monograph [41] which contains a comprehensive historical review and bib

liography. 
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WALD IDENTITIES (No. 35) 

(A.A. Novikov) 

The paper commented on here anticipates in many aspects numerous studies of 

generalized Wald identities performed later with the help of martingale theory. 

In [1],[2] Wald obtained, among other things, the following relation for 

the first exit time 1/ of sums of independent identically distributed random 

variables elc from a finite interval (a,b). Let en = E~=l elc and 

1/ = inf{n ~ 1; en ~ (a, b)}. 

Then EI/ < 00 and if Elelc I < 00, then 

(1) 

M oreover, if Ee~ < 00, then 

(2) 

These relations enabled hirn to obtain approximate formulas for the aver

age observation time in the problem of sequential testing of two simple alter

native hypotheses. 

In paper No. 35 the author tried to get rid of the condition of identical 

distribution of the random variables elc, which was quite important in Wald's 

method [1], [2]. But much more important was the generalization of (1) and 

(2) for arbitrary stopping times 1/. Later, results of this type (with arbitrary 

stopping times) acquired a fundamental role in various problems of statistical 

sequential analysis [3], the theory of controlled random processes [4], boundary 

conditions for random processes [5], [6], etc. 

Interestingly, the paper [35] did not use the not ion of stopping times (or 

Markov times, see [3]) for a sequence of random variables, and Theorems 1 

and 2 hold for some non-Markov times. However, in the proof of Theorems 3, 

4 and 5 a condition dose to the Markov property of the time 1/ was assumed 

implicitly. This was pointed out by Seits and Winkelbauer in [7] (in which also 

a refined formulation of Theorems 3, 4 and 5 is given). 

When 1/ is a Markov stopping time with respect to the family of u-algebras 

Fn = u(6, ... ,en), Fa = {0, n} (that is, the event {I/ = n} E Fn for any n = 
1,2, ... ), the results of Kolmogorov's paper have the following generalizations. 

567 
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Let ek be a sequence of random variables with finite expectation ev = L:~=1 ek 
and suppose that 

(3) 

for some a E [1,2]. Then 

v 

E(ev - L E(ekIFk-d) = O. (4) 
k=l 

v 2 v 

E[ev - LE(ekIFk-d] = E[LE(eiIFk-d]. (5) 
k=l k=l 

Identity (4) was proved by Burkholder and Gundy [8] under condition (3) 
with a = 2; its generalizations for the case 1 :::; a :::; 2 are given in the book 

by Chow and Teicher [9]. Similar results for the case of continuous time were 

obtained by Novikov [10], [11]. Identities with moments of en of all orders are 

considered in the work by Hall [12] and in [10], [11]. 

Wald identities (1) and (2) for the case ofidentically distributed summands 

are trivial consequences of (4) and (5). However, as follows from (3), the first 

of these relations holds only if 
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S-CONVERGENCE (No. 42) 

(A.V. Skorokhod) 

In paper No. 42 [1] the following, more convenient metric, equivalent to the 

metric S introduced in §2, was proposed: 

rD(J, g) = inf sup [P(J(t) , g(t)) + '\(t) - t], 
~EA 0:5t:51 

where J, 9 E Dx j p is ametrie in X j A is the set of all continuous invertible 

mappings'\ of [0,1] onto itselfsuch that '\(0) = 0, '\(1) = 1. In this metric Dx 

is separable if X is separable, but is not complete. 

Billingsley [2] proposed a new kind of metric that, while inducing the same 

convergence, turns Dx into a complete space (naturally, if X is complete). It 

is defined in the following way: 

do(f, g) = inf sup [P(J(t),g(t)) + Iin ,\(t) - ,\(s) I] 
~EA 0<t<1 t - S 

05-51 

(we give a simpler equivalent definition). 
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This convergence on the space of functions defined on [0,00] without dis

continuities of the second kind, similar to uniform convergence of continuous 

functions on all finite intervals, is generalized in [3]. 
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UNIFORM LIMIT THEOREMS (Nos. 43, 51) 

(T.V. Arak) 

The main theorems of paper No. 51 are now known as the Kolmogorov uniform 

limit theorems. As is mentioned in the introduction, Theorem 1 (or, equiva

lently, relation (0.9)) is the third refinement of the corresponding theorem from 

No. 43. Later, in 1965 Le Cam [1] showed that in Theorem 1 under suitable 

centralization we can take D = exp(n(F - E)), Cl = 132. In 1973 Ibragimov 

and Presman [2] gave a new proof with Cl = 8. In parallel with estimates 

uniform over the set of all distributions, estimates for various narrower classes 

of distributions of summands were studied. In particular, Meshalkin proved 

that 

sup p(Bn , lJ) = O(n- 2/ 3 ), 
O~p~l p 

where B; is the binomial distribution with parameters n and p. 

The final solution was obtained by Arak [3], [4]: There exist positive (ab

solute) constants C and C such that 

(cf. (0.9) and (0.10)). 

Using new methods for estimating uniform distances, Zaitsev and Arak [5] 

also found a definitive quantitative refinement of Theorem 2. 

Higher-dimensional versions of Kolmogorov's uniform limit theorems were 

studied by Sazonov, Presman and Zaitsev. 
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CONCENTRATION FUNCTIONS (No. 45) 

(V.M. Kruglov) 

This remarkable work by A.N. Kolmogorov initiated numerous deep studies on 

concentration functions. There is now available a monograph [1] devoted specif

ically to concentration functions. The chapters on inequalities of Kolmogorov 

type constitute the core of this book. It also gives numerous generalizations 

and applications of the Levy concentration function and a fairly detailed bib

liography. In what follows we discuss in detail some results connected with 

Kolmogorov's inequality. 

The not ion of concentration function was introduced by P. Levy in his 

celebrated monograph, published in 1937, "Theorie de l'addition des variables 

aIeatoires", referred to in Kolmogorov's work. In the same work Levy gave 

a number of very important properties of these functions. It took some time 

before the notion of concentration function becarne recognized and sufficiently 

known. Apparently, this is the reason why five years later it was introduced 

once more as a characteristic of prob ability distributions by Littlewood and 
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Offord. 1 Studies on refining and generalizing Kolmogorov's inequality were 

done in several directions. Two of them were pointed out by Kolmogorov him

self: one is to obtain an inequality unifying Levy's inequality with a refinement 

of it given by Kolmogorovj the other is to analyze concentration functions. 

As Kolmogorov says in his paper, his interest in concentration functions and 

their properties was aroused by the problem of approximating convolutions of 

distributions by infinitely divisible distributions. 

The second line of approach relates to a result of Kolmogorov that he did 

not draw special attention to and is stilllittle known. In any case, we will state 

it. 

Let Q be a concentration function. We set 

. { Q(x) x } 
K Q = mf K: K Q(y) ~ y' y ~ x > 0 . 

If KQ= 1, then Q = pE+(l-p)R, where 0 ~ p ~ 1, Eis the unit distribution 

with 0 as support and R is an absolutely continuous distribution. 

The first generalizations of Kolmogorov's inequality were obtained by 

Rogozin in 1961. In particular, in one of his papers he showed that the con

dition L 2 ~ Flog s in Kolmogorov's theorem can be omitted. Further gen

eralizations and refinements of Kolmogorov's inequality were made by Siegel, 

Kesten, Le Cam, Miroshnikov, Petrov, Postnikova, Rogozin, Rosen, Sazonov, 

Sevast'yanov, Teodorescu, Hengartner, Enger, Esseen and others. The first 

generalization of Kolmogorov's inequality was obtained along the lines indi

cated by Kolmogorov by invoking combinatorial methods. It was followed by a 

tendency to use predominantly analytical methods. In the paper by Postnikova 

and Yudin published in 1978 one inequality of Kolmogorov type was proved by 

analytical methods making use of certain results of additive number theorYj 

their inequality can be derived from Kesten's inequalities proved by hirn in 

1969 using mainly combinatorial methods. 

The latest result of this kind is the inequality by Miroshnikov and Rogozin 

[2], [3]. Denote by Q the concentration function of the sum e = 6 + ... + en of 

independent random variables, let Qj be the concentration function of ej and 

let e?) be the symmetrization of the random variable ej. 
1 Here we do not give a reference to their paper and to a number of other pa

pers mentioned in wh at follows. The interested reader can find them in the 
monograph [1]. 
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There exists an absolute constant C such that 

n 1 

Q(L) ~ CL (2: E(min{lej3)I, hj })2Qj 2(1j))-2 
j=l 

for any positive 11 , ... ,In, L, 2L ;::: max Ij. 

This inequality was proved by analytical methods. Moreover in the gen

erality in which it is proved, and without comparing absolute constants, the 

Miroshnikov-Rogozin inequality is the strongest one obtained so far. 

Of the numerous generalizations of Levy's concentration function we will 

give only the one indicated by Enger. Let E be a convex set in Eudidean space 

Rd. Denote by PE (x) the Minkowski functional determined by E. We call 

the integral concentration function of the random vector e, where P is the 

distribution of the symmetrization e(3). 

Recently Miroshnikov [4] proved an inequality for complete concentration 

functions similar to the one given above. 

There exists an absolute constant C such that 

n 1 

U(e, LE) ~ CL (2: E(min{pE(ej')), Ij })2U-2(ej, LE))-2 
j=l 

for any positive 11 , ••. , In, L, 2L ;::: max Ij . Here e and ej denote random vectors 

with values in Rd ; the convex set E belongs to a special dass of sets which, in 

particular, indudes the sets satisfying the condition 

m 

PE(X) = 2: IA;xl, xE Rd, 
;=1 

where Al,'" ,Am are linear operators in Rd • 

Note that the definition of an integral concentration function is of the same 

nature as that ofthe average concentration function ofKawata [5]. As a suitable 

generalization from the one-dimensional [1], p.155, to the multidimensional 

case, it shows a similarity in nature with the integral concentration function, 

regarded as integral transforms with certain kerneis. 
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EMPIRICAL DISTRIBUTIONS (No. 15) 

(E.V. Khmaladze) 

1. This paper is the one in which Kolmogorov's classical statistic 

Dn = ynsup IFn(t) - F(t)1 
t 

is introduced and in which its limit distribution, the Kolmogorov distribution, 

is established. 

By 1933, the empirical distribution function Fn was an attractive object 

which had received little mathematical attention. There were no precise state

ments on the convergence of Fn to the distribution function F (see No. 3), 

and there were no correct results concerning the behaviour of the deviations 

of Fn from F (see No. 2), except for Pearson's theorem of 1900 on the limit 

distribution of X2 statistics (see [1]). 

2. Let us briefly describe two well-known works by Cramer and von Mises 

illustrating the degree of formalization of the statements concerning deviations 

of Fn from F obtained by 1933. 

In his book [2], published in 1931, von Mises ([10], pp. 316-327) introduced 

a statistic that he called the "w2-statistic": 

w~ = j[Fn(t) - F(tWdt. 
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Discussing the "possible deviations" of w~ for large n, von Mises writes (see, for 

example, p.320 in [2]), that the theoretical interval ofvalues for w~ (theoretische 

Wert) is the interval 

Cn = (Ew~ - 0.674JOw~, Ew~ + 0.674JOw~), 

where 0.674 is the third quartile of the standard normal distribution 4>, that 

is, 4>(0.674) - 4>(-0.674) = 0.5. Apparently, this statement must be based 

on the idea of asymptotic normal distribution of the random variable (w~ -

Ew;)/JOw; which is clearly wrong. 

It is interesting to note, however, that for the uniform distribution function 

on [0, 1], 

lim P{w~ E Cn} = 0.60, 
n ...... oo 

which is not all that far from 0.5. 

In Cramer's paper [3] of 1928, where he also proposed considering the 

statistic w; for checking the hypothesis concerning F, there is no question 

raised on the limit distribution of the statistic w;. Instead, the following plan 

is carried out: assume that F is dose to the normal distribution function 4>1',<1 
with mean J.l and variance (1'2, that is, F can be represented by a small but 

unknown number of terms of the Charlier series: 

How many terms of this sum are essential ? To answer this question, Cramer 

suggested that one should consider the integrals 

.6.~n = J [Fn(t) - 4>1',<1(t)]2dt, 

.6.~n = J [Fn(t) - 4>1',<1(t) - Pl(t)~I',<1(tWdt 

etc. (up to the fourth order in Cramer's paper). If .6.in decreases "strongly" as 

compared to .6.Ll,n, then the ith term in the decomposition of Fis "essential". 

This technique is applied in the paper to many specific data, with parameters 

J.l and (1'2 being estimated by the same data. 

3. It follows from Theorem 1 of No. 15 that sup IFn(t) - F(t)/ --+ 0 in 
t 

probability as n --+ 00. A stronger statement on the convergence of sup IFn(t)
t 
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F(t)1 to zero with probability 1 as n -+ 00 (Glivenko's theorem) was published 

by Glivenko simultaneously with Kolmogorov's paper in the same issue of the 

journal (see [4]). 

As regards the connection between Kolmogorov's theorem and Glivenko's 

theorem, it is interesting to note that 11 years later, in 1944, Smirnov proved 

in the fundamental work [6] that Kolmogorov's statistic satisfies the inequality 

for large deviations 

which implies Glivenko's theorem. 

4. Apparently, the first table of values of the Kolmogorov distribution 

function was published by Kolmogorov himself. 

In 1939 Smirnov published six-digit tables of the Kolmogorov distribution 

function as an appendix to his paper [7] (see also [5], p. 117). Later these 

tables were published separately in 1948 in [8] and then reproduced in [9]. 

Very detailed seven-digit tables of the Kolmogorov distribution function were 

computed in 1965 and published on pages 267-277 in [5]. The step in these 

tables is fixed and equals 0.001 and the greatest argument value is 3.000. For 

this argument the Kolmogorov distribution function equals 0.9999999695. 

5. A remarkable lemma given in the paper, stating that the distribution 

of the statistic Dn does not depend on Fn , directed the further development 

of the theory of non-parametric goodness-of-fit tests in accordance with the 

following principle: only functionals of Fn and F whose distribution does not 

depend on F should be chosen as statistics of goodness-of-fit tests. 

Here it is worth recalling the following: in 1900 in constructing the X2 

statistic, 

Pearson [1] had chosen the coefficients 1/ ilF(ti) so that the limit distribution 

ofthis quadratic form does not depend on the probabilities ilF(ti) = F(ti+1)

F(ti) and consequently, on the division points ti and the distribution function 

F. Subsequently many papers appeared that established that these statistics 

were asymptotically normal. Clearly it suffices to normalize these statistics to 
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obtain random variables with the standard limit distribution. In 1931, perhaps 

under the influence of this trend, von Mises [2] considered the statistics 

and discussed only two weight functions A : A1(t) = n/f(t) where f is the 

density of a distribution function F and A2(t) = l/E[J[Fn (t) - F(t)]2dt]. The 

choice of Al was regarded as being analogous to the X2 statistic but unsuitable, 

since the integral in W~(A1) "usually" diverges, whereas A2 was considered suit

able, since it standardized the means of the w2 statistics. The limit distribution 

of the W~(A2), however, clearly depends on F. 
Then, in 1933, the above-mentioned lemma was formulated, and in 1937 

Smirnov in [10], with reference to Glivenko, finally introduced the statistics 

W~(A), where A(t) = ~[F(t)]f(t), with distribution independent of F. Since 

then, or perhaps since 1952, after the papers by Anderson and Darling [11], 

this principle became standard in constructing non-parametric tests. 

When a statistical hypothesis fixes a certain family F of distribution func

tions instead of a specific distribution function F, the realization of this prin

ciple becomes somewhat diflicult. Abrief description of papers dealing with 

this problem and a very incomplete bibliography, to which Gikhman's paper 

[12] should be added, can be found, for example, in [13], §2.1. In the same §2 it 

is described how to construct functionals of Fn and F whose limit distribution 

does not depend on F. 

When F is a continuous distribution in the multi dimensional space Rm , 

m> 1, the lemma does not hold: it is false that the random variable F(X1 , ••. 

. . . , Xm ) has the same distribution for all F if the random vector (Xl, ... , X m ) 

has continuous distribution function F. Therefore there seems to be no stan

dard way for constructing non-parametric goodness-of-fit tests for distributions 

in multidimensional space, unlike the one-dimensional case. Still, we point out 

two modern [14], [15] and one old [16] paper on this subject. 

6. The convolution (16) and the recurrence formula (9) of paper No. 15 

were later extensively used for calculations for finite n. In particular, in 1950 

Massey [17] was the first to use (16) to calculate small tables for the distribution 

function of the Kolmogorov statistic for 5 < n < 80. Quite recently (see [18]) 

a recurrence formula similar to (9) was used for calculating the probability of 

Fn remaining within domains with various curvilinear boundaries. 
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Speaking of tabulating cI>n, we note that modern tables usually contain 

the table of values of distribution functions cI>n and the percentage points for 

n ~ 100. The known asymptotic formulas, however, fit even for n 2: 30. This 

side of the matter is discussed in the explanation part of [9], where appropriate 

references are also given. 

7. We introduce the so-called homogeneous empirical process Vn, vn(t) = 
yn[Fn(t)-t] and Brownian bridge v, v(t) = w(t)-tw(1), where w is a Wiener 

process, t E [0,1], and we consider the following functional of the empirical 

process: 

Let 

Pn(A, h) = p{ Vt E [0,1] : IFn(t) - tl ~ )nh(t)}, 

cI>n,K(A, K) = P{K(vn) ~ A}. 

Clearly, Pn(A, h) = cI>n,K(A, K), that is, the calculation of the probability that 

the empirical process remains within a certain boundary is equivalent to cal

culating the distribution functions for the functionals K(vn ). These problems 

were solved in different ways, however. 

The first problem, namely, that of studying the prob ability of remaining 

within a certain domain, is reviewed in the well-known papers by Gikhman and 

Gnedenko [19] and Borovkov and Korolyuk [20]. In particular, they describe 

Gikhman's work on limit theorems for the probability of remaining within the 

boundary for processes converging to diffusion processes (these works are very 

elose in their ideas to Kolmogorov's paper) and the papers by Gnedenko and 

Korolyuk that make use of random walk methods. 

We recall the development of the second problem. In No. 15 the limit for 

the distribution function of the Kolmogorov statistic was established: cI>nK ~ cI> 

for h = 1. However, the probabilistic "construction" of Kolmogorov distribu

tion function cI>, namely the equality 

cI>(A) = P{K(v) < A}, (1) 

remained unelear for a long time. In any case, it remained unelear of what use 

such a "construction" could be. 

With time other statistics were discovered which, as was noticed later, 

can be conveniently represented as functionals of an empirical process. In 
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particular, in 1939, Wald and Wolfowitz [22] considered the so-called weighted 

Kolmogorov statistic, that is, the functional K(vn ) with weight function h '# 1, 

while in 1937 Smirnov [10] considered the ",2 statistic, that is, the functional 

",2(vn ) = 11 [vn (t)]2dt. (2) 

It was natural to single out what the convergence of the distributions of various 

functionals of Vn had in common, namely, convergence of Vn to v in distribution. 

The discovery of the fact that it is natural to represent various statistics 

as functionals of an empirical process was only one important feature of the 

matter. Another was to foresee that general efficient methods could be worked 

out for proving convergence in distribution of processes Vn to a process v and, 

in general, for proving weak convergence in function spaces. 

Both methods were ripe in the late 1940's: on 30 November 1948 (as re

ported in 'Uspekhi Matematicheskikh Nauk" (Russian Mathematical Surveys), 

4:2 (1949), p. 173), A.N. Kolmogorov gave a lecture for the Moscow Mathe

matical Society caHed "Measures and distributions in function spaces", which 

discussed, among other matters, the problems of determining weak convergence 

of measures in function spaces. On 29 January 1949, Smirnov gave a talk on 

the "Cramer-von Mises test" [23] (see also [5], p.200), where again, after an 

interval of 12 years, he obtained the limit distribution of ",2 statistics, this time 

using the representation (2) and the corresponding Parseval identity. Finally, 

in September 1949, Doob's well-known paper [24] appeared. Together with the 

description of the general viewpoint, to the effect that the convergence ~n => ~ 
is a consequence of the convergence of Vn to v in distribution, he also proved 

(1). 

This started the useful development of the theory of weak convergence in 

function spaces that presently constitutes the basis for the limit theorems in 

non-parametric statistics. 

I recommend the small monograph by Durbin [25] and the review article 

by Gaensaler and Stute [26] for an acquaintance with the state of affairs in this 

field. 

8. Let us make several general conduding remarks. 

A. Kolmogorov's statistic, as weH as the statistic K(vn ) (see No. 7), 

stands apart from the other statistics of non-parametric goodness-of-fit tests in 

that it leads to confidence sets that are easy to visualize. Thus, for example, 
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the confidence set {F' : n J[Fn(t) - F'(t)j2dF'(t) < A} constructed by means 

of the statistic w2 is not graphie and therefore inconvenient. By contrast, the 

confidence set 

{F' : Vnsup IFn(t) - F'(t)1 < A} = 

= {F': Fn(t) - Jn < F'(t) < Fn(t) + Jn} 
constructed with the help of Kolmogorov's statistic is easy to perceive and is 

widely used. This property of Kolmogorov's statistic was observed very early: 

back in 1939 Wald and Wolfowitz [22] introduced the confidence sets 

relating to weighted Kolmogorov statistics. 

B. In the same year 1939, two papers by Smirnov [27], [7] appeared. They 

gave distributions for the statistics D;t = Vnsup[Fn(t) - F(t)] and Dn1n2 = 

y'nsup IF1n1 (t) - F2n2 (t)l, n = nln2j(nl + n2), namely, 

P{D;t < A} ---+ 1 - e-2A2 , P{Dn1n2 < A} ---+ C)(A). (3) 

Here Fln1 and F2n2 are the empirical distribution functions constructed from 

two independent sequences of independent identically distributed random vari

ables. 

It is interesting that both statements (3), wh ich are the best known state

ments in non-parametric statistics, were given as simple consequences of general 

theorems on the number of intersections of the curves Fn and F + Ajy'n and 

the curves F1n1 and F2n2 ± Ajy'n respectively. 

In 1944 Smirnov [6] gave the distribution of the statistic D;t for finite n. 

In 1955 Korolyuk [28] obtained the distribution of the statistic Dn1n2 for finite 

nl and n2 and in 1962 Borovkov [29] established the asymptotic expansions for 

the distributions and, in particular, for the probabilities of large deviations of 

Dn1n2 . The specific use of certain results from [29] and [21] was demonstrated 

in [9], p. 84. 

Apparently, Massey [30] was the first to give a table for the distribution 

of the two-sample Smirnov statistie for finite nl and n2. Tables of percentage 

points of Dn1n2 for nl < n2 :::; 50 are published by Borovkov, Markov and Sy

chev [31]. A remarkable example of the application of the Kolmogorov statistic 
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to the verification of the hypothesis on the distribution function F was given 

in 1940 by Kolmogorov himself [32]. 
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THE METHOD OF LEAST SQUARES (Nos. 30, 31) 

(M.B. Malyutov) 

The method of least squares is one of the most popular statistical methods 

for parameter estimation in applications. Suffice it to say that specialists in 

geodesy, navigation, artillery, etc., even nowadays write their own textbooks 

on this method (which do not always meet the standards of modern statistics). 

At the same time, before No. 30 was published, the mathematical presen

tations of this method were not based on modern geometrical ideas of higher

dimensional geometry and were essentially no different from the initial method 

of Gauss. It is in No. 30 that the connection of the method with orthogonal pro

jection onto a subspace in RN was explicitly used and it was discovered which 

properties of the method depend on the assumption of normality of the distri

bution of measurements and which are true for orthogonal observations. For 

applications it is important to present in detail the confidence intervals for the 

parameters and for the unknown variance of measurements and to supplement 

them with the tables of Student and x2-distributions. . 

Paper No. 30 played an important role in developing the mathematical 

theory of the method of least squares in the USSR and putting into some 

order the applications of this method. In particular, its influence can be seen 

in the books by Linnik [1] and Romanovskii [2]. The latter, for instance, 
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reproduces with a detailed proof Kolmogorov's report "The real meaning of 

results of the analysis of variance" (Proceedings of the 2nd All-Union Meeting 

in Mathematical Statistics), which generalized the results of No. 30 to the 

theory of the analysis of variance and criticized certain not sufficiently rigorous 

formulations by Fisher . 

Paper No. 30 remained unnoticed abroad and the modern presentation of 

the method of least squares was published only in 1959 by Scheffe [3]. 

Paper No. 31 clarifies a formula of Gauss for the method of least squares. 

Gauss found a formula for the variance Ds2 of the standard estimator s2 of the 

variance tr2 for independent measurements Yi in the linear regression model. 

This formula includes the fourth moment Itr4 , and therefore Gauss obtained 

upper and lower bounds for Ds2 that hold for any I. However, the lower bound 

was rough (sometimes even negative). In No. 31 a best possible lower bound 

for Ds2 is found. 

The presentation is essentially based on the geometric theory of the method 

ofleast squares, developed by A.N. Kolmogorov previously in No. 30 (for exam

pIe, an important role is played by the orthogonality of certain matrices). With 

small modifications this work is reproduced in the book by Linnik mentioned 

above. In the subsequent literature main emphasis is laid on constructing 

asymptotic confidence intervals for tr2 , where instead of 1 an estimator of it 

with respect to the same sampIe is used [4]. 
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UNBIASED ESTIMATORS (No. 38) 

(Yu.K. Belyaev and Ya.P. Lumel'skii) 

The notion of unbiased estimator is fundamental in mathematical statistics. 

Although this not ion was known earlier, No. 38 gives the first systematic treat

ment of the properties of unbiased estimators and various methods for con

structing them in terms of sufficient statistics. 

Kolmogorov's paper and also [1] graphically demonstrate the applied value 

of unbiased 'estimators in problems of statistical control. Kolmogorov was the 

first to apply unbiased estimators to the determination of the effectiveness of 

practically used schemes of sampie control with respect to an alternative fea

ture. The construction of unbiased estimators for detecting any missed defec

tive products, as weIl as for the apriori distribution of the number of defective 

items in the batches subject to control, is considered in [2]-[4]. Unbiased es

timators were obtained for control with respect to a qualitative feature witb 

known classification errors [5]. The construction ofunbiased estimators for con

trol with respect to alternative qualitative features, that is, for classifying into 

k quality groups, was considered in detail in [3], [4], where a vast bibliography 

is given. The unbiased estimators of the main control indices are included in 

GOST 24660-81 (State Standards). 

The unbiased estimator of the normal distribution density obtained by 

A.N. Kolmogorov is widely used in the problem of control based -on a quanti

tative feature [6]. Subsequently this result was generalized to the multidimen

sional normal distribution [7]-[9] and to problems of statistical classification 

[10]. 
A.N. Kolmogorov drew attention to the paper [11] in which unbiased esti

mators were constructed for binomial random walks. Later, problems of obtain

ing unbiased estimators and the completeness of the families of distributions 

generated by the first entrance schemes for various schemes of random walks 

were considered in [12]-[14], [5]. 
The upper and lower bounds introduced by Kolmogorov can be effectively 

used also in the cases when unbiased estimators do not exist. This is the 

case with estimating the number of missed defective items for the binomial 

distribution and a one-step control scheme. Upper and lower bounds for various 

functions of an unknown parameter, as weIl as estimators with minimal bias, 

were obtained in [15]-[18]. 

585 
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STATISTICAL PREDICTION (No. 18) 

(A.M. Yaglom) 

The first attempts at the statistical prediction of future values of certain me

teorological parameters using linear regression equations to give a future value 

of the quantity !1y of interest in the form of a simple linear combination of 

the !1xl, ... !1xk known from observations made in the past or present were 

started in the 1920's. (In addition to Bauer's paper of 1925 referred to by 

A.N. Kolmogorov, we can also refer to later works [1]-[6] containing a num

ber of additional references.) At first sight this prediction method seems to 

be quite simple: it requires only preliminary estimates of a certain number of 

correlation coefficients which determine the unknown coefficients al, ... , ak in 

the regression equations and does not require cumbersome calculations such 

as those involved in "dynamic weather forecasting" based on numerical solu

tion of partial differential equations approximately describing the dynamics 

of the atmosphere. Here, the only problem is to choose appropriate predic

tors !1xl, ... , !1xk, that is, atmospheric characteristics in the past and present 

whose values are used for predicting !1y. It turns out, however, that to choose 

appropriate predictors is not that simple. 

Indeed, it might seem that it is better to take as many predictors as possi

ble, since in that case the forecast uses very broad initial information and will 
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be accurate with high prob ability. U nfortunately, the empirical correlation co

efficients ri and rij between il.y and il.zi, i = 1, ... , k, and between the pairs 

il.zi and il.Zj, j = 1, ... , k, used for calculations are not exact and depend 

on the volume (and quality) of the available empirical data. Therefore, the 

coefficients al, ... , al: for which the linear combination a1il.z1 + ... + al:il.zk 

corresponding to these data gives the best approximation of il.y are not ex

act, that is, they are not the best for the whole sampIe of random variables 

(il.Zl, ... , il.Zl:, il.y) and applied to the subsequent independent sampIe, these 

values may be appreciably less appropriate. To avoid this, the choice of predic

tors should satisfy a number of special conditions. Here we will only consider 

the two most important of them. 

First, in order that the accuracy of the determination of the coefficients 

al, ... ,ak should not be too low, the total number k of predictors should be 

rather small as compared to the volume of the sampIe used for determining 

the coefficients ri, rij and ai. Thus, for example, if the order of the sample's 

volume is one or two hundred, then k should not exceed several units. This 

condition was intuitively clear even for the first researchers of statistical weather 

forecasting (see, for example, Kolmogorov's remark to the effect that when 

using a sampIe with 30-50 average annual values, k is usually chosen to vary 

from 3 to 7); later, the well-known American meteorologist Lorenz called it "the 

taboo of statistical forecasting" . However, apart from this, there is another 

essential requirement, which is clarified in No. 18 and which is by no means 

always taken into account, even now. This second requirement is to forbid 

searching among a large number of systems of predictors (even if each of these 

systems contains only a small number of values) in order to choose the best of 

these systems. The point is that if we try a large number of various systems 

of predictors, then with high prob ability at least in one of them the empirical 

value of the cumulative correlation coefficient between these predictors and il.y 

is much larger than its true value. In this case it is quite possible that this 

system of predictors will be chosen for forecasting. However, as applied to a 

subsequent independent sampIe the empirical correlation coefficient of il.y and 

il.u = a1il.zl + ... + akil.zk will most probabably be essentially smaller than 

that of the initial sampIe. Kolmogorov had good reason to assert that this 

"blow-up of the maximal empirical correlation coefficient" will very often take 

place when searching for a large number of systems of predictors, which readily 
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explains the failures of numerous attempts to use linear regression equations 

for long-term weather forecasting. As a "model example" that allows exact 

calculations, he analyzed the case when all the values under consideration have 

a multidimensional normal probability distribution, the initial sampie has fixed 

size N and we check i independent systems of k predictors, for each of which 

the joint correlation coefficient with ay takes the same value p. Here A is such 

that the maximal value of the empirical composite correlation coefficient for 

our i groups of predictors to exceed A with a certain given probability (say, ~), 

increases rapidly as i increases, and at moderately high values of i exceeds p 

(see, for example, the table for the case N = 42, k = 5 and i = 14). We note 

also that the accurate derivation of Fisher's results used by Kolmogorov in his 

calculations can be found, for example, in the weIl-known monograph [7]. 

The considerations given in Kolmogorov's paper question the advantage 

of certain new methods of statistical weather forecasts proposed long after the 

paper was published. A typical example here is the "screening procedure" that 

was advocated, for example, by Miller [4], [8]. The essence of the method is 

to consider first a very large aggregate of predictors which is "screened" in the 

following way. First we take out the predictor (denote it by aXl) that corre

sponds to the largest empirical correlation coefficient with ay to be forecastj 

then we take the one of those remaining (say aX2) that makes the largest con

tribution to the joint correlation coefficient of the pair (aXl' aX2) with aYj 

then we take the one of those remaining (say, aX3) that corresponds to the 

largest joint correlation coefficient of the three values (aXl, aX2, aX3) with 

ay, and so on. Usually, after several steps the addition to the joint correlation 

coefficient obtained at the next step appeared to be insignificant, so the pro

cedure could weIl be terminated. Usually, the number of selected predictors is 

small enough not to contradict "the taboo" but, in view of the considerations 

published by Kolmogorov in 1933, in the case of a large initial set of possi

ble predictors it is quite possible that for the selected k of them the empirical 

value of the joint correlation coefficient will only occasionally be large, so that 

on passing to independent sampies, we obtain disappointing results. 

The same is true for another widely used method of selecting only a small 

number of the most significant predictors, the method of empirical orthogonal 

functions, proposed in [9], [10] (see also [6], [11], [12]), which actually coincides 

with the method of principal components of multidimensional statistical anal-
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ysis (cf. [7], Chap. 11). In this method, first a linear combination Ul = dXl 

of predictors with the largest variability (that is, variance) is chosen from the 

initial set of all possible "virtual predictors", then only linear combinations of 

predictors uncorrelated with Ul are considered, and the combination U2 = dX2 

with greatest variance is chosen, etc. Usually after selecting a small number k 

of linear combinations Ul. U2, •.• , Uk the variance of all the others is so small 

that they might as weIl not be considered. In cases when the original number 

of admissible predictors is comparatively small (as, for example, in Obukhov's 

work [10] where the number is 5), this method results in a notable simplification 

of the calculations (for example, allowing one to confine oneself to considering 

only the two most significant linear combinations ofthe five variables). If, how

ever, we first consider a large number of predictors (for example, all the values 

of all or several meteorological fields for a large network of stations or at the 

no des of a regular network), then we can again apply Kolmogorov's considera

tions, which suggest that the combinations are optimal only for the sampie for 

which they were calculated, and on passing to an independent sampie the re

sults become much worse. It is quite possible that this accounts for some of the 

disappointing conclusions on statistical forecasting using empirical orthogonal 

functions contained in [4]. 
In conclusion, we should emphasize that Kolmogorov's work clearly demon

strates the need for a thorough study of the selective properties of systems of 

predictors used for developing methods of statistical weather forecasting. This 

study was started by A.N. Kolmogorov in 1933; unfortunately, many problems 

remain open even now. 
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ON INTER-BED WASHOUT (No. 37) 

(A.B. Vistelius) 

The problem 80lved by A.N. Kolmogorov in this paper was posed while studying 

productive rock-masses (strata) of the Apsheronskii peninsula and red-rock 

oil-bearing sediments on Cheleken. These strata are comp08ed exclusively of 

terrogeneous formations. They include, on the Apsheronskii peninsula, sparse 

conglomerate beds, while at Cheleken the strata consist completely of sands, 

aleurites and clays. The depressions in lower beds are filled by the shelves of the 

higher ones. Moreover, the bases of thick sand beds often contain fragments 

composed of clays that are identical in their appearance to the clays of the 

clay bed underlying the sand beds. These fragments are rounded, and they are 

considered by all researchers as the traces of washout of the lower bed when 

the upper one was formed. This pattern is especially typical of Cheleken. 

These features of the strata leave no doubt that when they were formed, the 

lower beds were washed out during the formation of the upper ones ("Inter-
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bed washout"). So there were sound reasons for posing the problem solved 

by Kolmogorov and it has retained its importance to this day. At the same 

time one should bear in mind that when Kolmogorov's paper was published, a 

number of geologists believed that the thicknesses of beds in a profile do not 

depend on the material of the beds. In general, this opinion turned out to be 

false. Moreover, when the paper was published, geologists did not operate with 

random variables, probability distribution functions and sequences of values of 

a random variable. It was the period in which the foundation of a number of 

geological disciplines had just been laid, based on the notion of the stochastic 

character of the values studied. This fundamental restructuring later gave rise 

to mathematical geology and was largely as a result of Kolmogorov's paper, as 

weIl as to personal advice and re marks by him during 1945-1950. 

For the application of No. 37 to the solution of the problem relating to the 

mechanism of bed formation, three requirements must be met: 

a) numerical solutions of Kolmogorov's equation must be found; 

b) the applicability ofKolmogorov's axioms (which, from the modern view

point, does not have a universal character at aIl) to specific profiles should be 

confirmed; 

c) a model of bed-formation that gives G( x) should be available. To obtain 

reasonable results, this model should be derived from bed-formation conditions 

and should allow testing based on data of observations. 

Condition a) is in no way restrictive. Kolmogorov's equation coincides 

with the Wiener-Hopf equation, and there is extensive literature on numerical 

methods for solving this latter one. In any case, even in the late 1940's there 

were quite a number of methods for solving this problem. An appropriate 

algorithm was chosen immediately after Kolmogorov's paper was published, 

and it was used to compute a number of examples. These data were not 

published, since no function could be taken for G(x). 

The axioms adopted by Kolmogorov (condition b» are as follows: 

1) the random variables On and ~n+l are independent, and all the On have 

the same distribution law P{on < x} = G(x); 

2) the expectations EOn = J~oo xdG(x) are positive; 

3) the distribution of On is continuous, that is, it can be expressed in terms 

of a corresponding probability density g(x) by the formula G(x) = J~oo g(x)dx. 

Recall that On is the difference between the thickness of the sediment 
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and the subsequent depth of the washout of this sediment directly after its 

accumulation is finished. The sequence of beds in the profile may have certain 

beds with thickness contained in the sequence bn . It is not dear how to identify 

the layers with thicknesses from the sequence bn during field work. 

Items 2) and 3) of these axioms do not give rise to any doubts from a 

geological viewpoint. However, in analyzing item 1), the following facts discov

ered after publishing No. 37 have to be taken into account. Apparently, it is 

reasonable to assume that: 1) in specific profiles the beds that had undergone 

a washout and belong to the sequence bn can dominate; 2) when the layers of 

sand beds are deposited, the values T/n playa decisive role in the final deter

mination of the thickness of a bed. For a sequence of day beds, in many cases 

T/n = O. 
If this is true, then by studying the strata profiles during field work we can 

estimate to what extent item 1) of these axioms is true. The following relevant 

data were obtained by studying the profiles of red-rock and productive strata 

and the flysch of north-western Caucasus, Kakhetia and Southern Urals. 

For beds of different compositions the average bed thicknesses are usu

ally different. Thus for red-rock strata in Cheleken it was found out that the 

sand layers have average thickness of 84.11 cm. with standard error 188.34 

and asymmetry +5.0 (for number of beds n = 318); for aleurites 15.22 with 

16.93 and +2.7 (n = 471), and for days 27.66 with 53.23 and +8.0 (n = 792) 

respectively. 

Sampie correlation functions for sequences of bed thicknesses are divided 

into two types, Band F (Vistelius [2]). For type B all autocorrelation coefli

cients are positive and monotone decreasing as the distance s between the beds 

increases (in the number of beds). For type F, the odd autocorrelation coefli

cients are negative and the even ones are positive. Both sequences of even and 

odd autocorrelation coeflicients rapidly and monotonely decrease in absolute 

value as s increases. Hence, if the beds with thicknesses from the sequence bn 

really dominate in the profile, then the assumption of the independence of the 

bn can be questioned. 

It is interesting to note the following. Let 

E(x" X,+r la,=i, a,+r=j) - E(x, la,=j, a,+r=j )E(x,+rla,=j, a,+r=j) = 0, 

where adenotes bed composition, i,j denote elements ofthe set ofbed compo

sitions, x denotes the bed's thickness, s denotes the number of the bed starting 
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from the foot of the profile, and r denotes the distance between beds. In this 

case, for simple Markov chains consisting of two states (for example, sand and 

day), each of which corresponds to a random value (bed thickness) with dis

tinct expectations for each state (that is, the average thickness of sand beds 

differs from that of day beds), only three types of correlograms are possible: 

belonging either to type B, to type F, or identically zero (Vistelius [4]). 

The latter statement shows that in the sequences of beds that were washed 

out only once after sedimentation, and without total destruction, the sequence 

of bed composition is a simple Markov chain, and the correlogram is of type 

F. Hence for these sequences, bed sections could be found in which successive 

beds have the same g(z) and the 6n are independent. Something similar was 

observed in flysch profile in the Southern Urals. Here a sequence of 1530 

layers (described by Bezhaev) is dose to a homogeneous Markov chain, and its 

correlogram is of type F with the following sampIe autocorrelation coefficients: 

-0.23 0.17 - 0.19 0.07 - 0.09 0.05 0.02 

(Vistelius [3]). The table below gives estimates of the correlation coefficients 

between bed thicknesses next to each other (8 + 1) and every second one (8 + 2) 

for fixed bed compositions. 

Sampie autocorrelation coefficient8 between the thickne88e8 

0/ beds 0/ fixed composition 

Composition Composition 
Composition oft he (s + 1 )th bed of the (8 + 2)th bed 

of the 8th bed 
'Ir er 'Y 'Ir er 'Y 

0.22 0.24 -0.04 0.09 0.28 
'Ir - -- -- -- -- --

43 153 46 94 57 

0.17 0.07 0.18 0.27 
er - - -- -- -- --

543 125 357 61 

0.3 -0.11 0.35 0.06 -0.01 0.19 
'Y - -- -- -- -- --

195 502 87 21 94 667 
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where 11" are sand, er aleurite, and 'Y clay beds, whose comp08itions are given 

by the table's entries. The numerators of the entries give autocorrelation coef

ficients between the beds of the corresponding compositions and denominators 

the number of the bed pairs observed. Dashes mean that the number of the 

beds compared was less than 5. 

It can be seen from the table that in a first approximation the beds com

p08ed of sands and aleurites make it possible to take a sampie in such a way 

that the 6n are independent, provided they dominate in the profile. 

Summing up it can be said that, when embarking on the analysis of bed 

sequence we should very thoroughly check condition 1) of Kolmogorov's axioms. 

Here we may encounter both cases satisfying the axioms (especially if we use 

a special testing procedure and study not all the beds, but only some special 

types of them, for example, sands), and those contradicting it. One should 

also study the robustness of the model, that is, how violations of the axioms 

propagate on the final geological conclusions. 

While the problem of verifying the axioms finally reduces to that of the 

robustness of the model and the necessity of developing special procedures for 

selecting beds that satisfy Kolmogorov's conditions, the question of choosing 

g(z) in specific studies is much more difficult. Since there are non-observable 

values among the 6n , g( z) can only be found from a model of layer formation 

based on appropriate lithological (sedimentological) assumptions. Attempts to 

construct such a model have not resulted in anything really worth while so far. 

Kolmogorov's paper was ahead of its time and only in 1962, when geol

ogists became aware of the importance of mathematics for their science and 

mathematical geology took its proper place, did this work draw the attention 

of researchers. This paper was referred to in the first book on the application 

of mathematical methods in geology (Miller and Kahn [7]), and was mentioned 

later in all serious publications on this subject (Agterberg [1]). Unfortunately, 

these textbooks gave only general references to this paper, without analyzing it. 

In 1975 the monograph by Schwarzacher [8] was published. It was the first to 

analyze Kolmogorov's work. Schwarzacher considered the corresponding model 

for a discrete case using the method ofrandom walks. He also imposed stronger 

independence conditions. 

The literat ure on specific studies based on Kolmogorov's paper can be 

subdivided into two types. In one of them no analysis of the correspondence 
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between Kolmogorov's axiomatics and specific conditions of profile formation is 

given. They make no attempt to justify the introduction of a density g(x). In 

other words, they do not use the statement of the problem, but the algorithm 

that comes out of Kolmogorov's paper. In doing this, they forget that this 

algorithm should be used only after a thorough study of the conditions of 

profile formation. Among these works there is a publication that recommends 

a special "Kolmogorov index" for estimating washout (Mizutani and Hattori 

[6]). 

In 1979 the first paper appeared that discussed Kolmogorov's axiomatics 

and gave data on the type of G( x) found under special conditions (Dacey 

[5]). Dacey assumed that the en and 1/n are independent identically distributed 

random non-negative variables which are also mutuaHy independent. Under 

these conditions it appears that if en and 1/n have exponential distributions 

in the continuous case (or geometrie distribution in the discrete case) , then 

the residues of beds after washout also obey this distribution. Dacey does 

not give any geological data to confirm the importance of his case for geology. 

Still, his paper must be singled out since it contains a competent analysis of 

Kolmogorov's work. 

As we have already mentioned, Kolmogorov's paper was very much ahead 

of its time, and still some time was to pass before geologists were to realize the 

importance of this outstanding result and the approach as a whole. There are 

a number of branches of sedimentology (lithology) that cannot be developed 

without working out the whole range of problems posed by this work. Hope

fuHy this will be understood, which will greatly contribute to progress in some 

important branches of geology. 
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