_é_g
firstPress:

LINQ for

Visual C# 2005

INTRODUCTION« o oo oot e e e e e e e e e e i
ciarter1 LINQ to Objects. 1
ciarter2 LINQ to ADO.NET. 63
cuapters LINQto XML 129

Fabio Claudio Ferracchiati

APIESS
RE EXPERT'S VOICE™

LINQ for Visual C# 2005

FABIO CLAUDIO FERRACCHIATI

%

—
firstPress-

LINQ for Visual C# 2005
Copyright © 2006 by Fabio Claudio Ferracchiati

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59509-826-9
ISBN-10: 1-59059-826-1
Printed and bound in the United States of America (POD)

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trade-
marked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

Lead Editor: James Huddleston
Technical Reviewer: Vidya Vrat Agarwal

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick, Jonathan Hassell,
James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser, Keir Thomas, Matt Wade
Project Manager: Kylie Johnston

Copy Edit Manager: Nicole Flores

Copy Editor: Candace English

Assistant Production Director: Kari Brooks-Copony
Compositor: Richard Ables

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York,
NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or visit
http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA 94710.
Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has
been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information
contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code/
Download section.

To Simona: “Tu ed io per sempre”—05/08/2005

Contents

About the Author .
Acknowledgments
Introduction.

CHAPTER 1

... ix
... Xi
.. xiii
LINQtoObjects.................. 1
Introduction i . 1
A Simple C# 3.0 LINQ to Objects Program 1
ExtensionMethods. i 3
Lambda EXpressionst 4
EXPression Treest 5
Object Initialization Expressions, 6
ANONYMOUS TYPES « oo vttt e et 7
Implicitly Typed Local Variables 8
Query EvaluationTime e 9
Standard Query Operatorscco i, 13
Restriction Operator.t 19
Where 19
Projection Operatorso, 21
SeleCt 21
SelectMany 22
JoinOperatorsovt 24
JOIN. 24
Groupdoino 25
Grouping Operator i 27
GrOUPBY ..ot 27
Ordering Operatorsccoiuiii i, 31
OrderBy and OrderByDescending. 31
ThenBy and ThenByDescending. 32
Reverse. ... 35
Aggregate Operatorso 35
CountandLongCount iiiiiiinn..s. 35
SUM L 36
MinandMax............ ... i 38

AVErag. .. 40

vi

CONTENTS

CHAPTER 2

Agaregate 41
Partitioning Operators i, 42
Take ... 42
SKID. . 43
TakeWhile 43
SKipWhile 44
Concatenation Operator. ..., 45
Concat. ... e 45
ElementOperators.cco i 46
First, Last, FirstOrDefault, and LastOrDefault 46
Single and SingleOrDefault 48
ElementAt and ElementAtOrDefault 49
DefaultifEmpty. 50
Generation Operators.t 51
Empty .. 51
Range ... o 51
Repeat. 51
Quantifier Operators.t 52
Al 53
ANy . e 53
Contains 54
Equality Operator. i 54
EqualAll. 54
SetOperators. . ..o 55
Distinct 56
Intersect 56
UNnion. ... 56
EXCept. ... 57
Conversion Operators.t e 58
OfTYPe. .o 58
Cast. .. 58
TOSEQUENCE. . .ot e 59
TOArmay ... 59
ToList ..o 60
ToDictionaryt e 60
ToLoOKUp. .. oo 61
SUMMAIY. . .o e e e 63
LINQto ADO.NET 65

INtroduction oo 65

CHAPTER 3

Database Interaction i 66
Mapping a Class to a Database Table. 67
Mapping Fields and Properties to Table Columns 67
CreatingaDataContext.............. 72
Querying a Database with LINQtoSQL 73
Adding, Modifying, and Deleting Rows 77

DataContext: Advanced Features 79
Defining Relationships Between Entities 79
Using Two Related Entity Classes. 87

Other LINQto SQL Features, 91
SALMetal. 91
The INotifyPropertyChanging Interface. 93
Optimistic Concurrency and Database Transactions........... 95
Stored Procedures. 100
User-Defined Functions 108
Database Creation...............ot 110

LINQ to SQL in Visual Studio 2005t 111

ADLing DesignerExample. i 112
Debugging LINQ Applications. 122

LINQtoDataSet............ ... 127

SUMMaANY. . .o 131

LINQto XML. 133

Introduction 133

Querying XMLo 133

Searching for Attribute Values L. 137

The Descendants and Ancestors Methods 137

Querying XML for ContentType, 139

Querying an XML Document That Uses Schemas 140

The ElementsBeforeThis and ElementsAfterThis Methods. 142

Miscellaneous Functionalities. 143
Parent 143
HasElements and HasAttributes. 144
ISEMpty 145
Declaration 146

Creating and Modifying XML Documents 146

Creating an XML Document from Scratch. 147
Using the XDeclarationClass 148

Using the XNamespace Class to Create an XML Document 149
Transforming XML 150

CONTENTS

vii

viii

CONTENTS

Loadingand Saving XML i 152
Modifying XML. o 154
Inserting Elements in an XML Document 154
Updating Elements in an XML Document 156
Deleting Elements from an XML Document 158
LINQtoXMLand LINQto SQL. 160

SUMMANY. . .o e 163

About the Author

FABIO CLAUDIO FERRACCHIATI is a senior consultant and a senior analyst/developer using Microsoft
technologies. He works for Brain Force (www.brainforce.com) in its Italian branch (www.brainforce.it).
He is a Microsoft Certified Solution Developer for .NET, a Microsoft Certified Application Developer for
.NET, and a Microsoft Certified Professional, and a prolific author and technical reviewer. Over the past
ten years he's written articles for Italian and international magazines and coauthored more than ten
books on a variety of computer topics.

Acknowledgments

There are many people I'd like to thank! Every person working for Apress deserves special thanks for
their kindness. In particular, my historical “virtual” friend, Ewan Buckingham, who suggested I write
this book, and Jim Huddleston, who gave me support, tips, and technical suggestions. Thanks to Kylie
Johnston for her great work behind the scenes. Thanks to Vidya Vrat Agarwal, the technical reviewer,
who helped me refine my book. Finally, I'd like to thank my friend Walter Folli, a very smart
analyst/developer, who helped me better understand my ORM issues.

Xi

Introduction

Over the past 20 years object-oriented programming languages have evolved to become the premier
tools for enterprise application development. They've been augmented by frameworks, APIs, and rapid
application-development tools. Yet what's been missing is a way to intimately tie object-oriented pro-
grams to relational databases (and other data that doesn't exist as objects). The object paradigm is
conceptually different from the relational one and this creates significant impedance between the
objects programs use and the tables where data resides. ADO.NET provides a convenient interface to
relational data, but not an object-oriented one. For example, this pseudocode would be really cool:

// A class representing a table of employees
Employees e = new Employees();

// Set the row identifier to one
e.ID = 1;

// Retrieve the row where ID=1
e.Retrieve();

// Change the Name column value to Alan
e.Name = “Alan”;

// Modify the database data
e.Upate();

The pseudocode shows an object-oriented approach to data management; no query or SQL state-
ment is visible to developers. You need to think about only what you have to do, not how to do it. This
approach to combining object-oriented and relational technologies has been called the Object-Rela-
tional Mapping (ORM) model.

Although Microsoft has embedded ORM capabilities in its Dynamics CRM 3.0 application server
and should soon do the same in ADO.NET 3.0, it doesn't yet provide this programming model to .NET
developers. To run a simple SQL query, ADO.NET programmers have to store the SQL in a Command
object, associate the Command with a Connection object and execute it on that Connection object,
then use a DataReader or other object to retrieve the result set. For example, the following code is nec-
essary to retrieve the single row accessed in the pseudocode presented earlier.

xiii

Xiv

INTRODUCTION

// Specify the connection to the DB
SqlConnection c = new SqlConnection(..);

// Open the connection
c.Open();

// Specify the SQL Command
SqlCommand cmd = new SglCommand(@"

SELECT
*

FROM
Employees e
WHERE
e.ID = @po
")

// Add a value to the parameter
cmd. Parameters.AddWithvalue("@p0", 1);

// Excute the command
DataReader dr = c.Execute(cmd);

// Retrieve the Name column value
while (dr.Read()) {
string name = dr.GetString(0);

}

// Update record using another Command object

// Close the connection
c.Close();

Not only is this a lot more code than the ORM code, but there's also no way for the C# compiler to
check our query against our use of the data it returns. When we retrieve the employee's name we have
to know the column's position in the database table to find it in the result. It's a common mistake to
retrieve the wrong column and get a type exception or bad data at run time.

ADO.NET moved toward ORM with strongly typed DataSets. But we still have to write the same
kind of code, using a DataAdapter instead of a Command object. The DataAdapter contains four Com-
mand objects, one for each database operation—SELECT, DELETE, INSERT, and UPDATE—and we have fill
the correct one with the appropriate SQL code.

.NET can also handle XML and nonrelational data sources, but then we have to know other ways to
query information, such as XPath or XQuery. SQL and XML can be made to work together but only by

shifting mental gears at the right time.

INTRODUCTION

What Is LINQ?

At the Microsoft Professional Developers Conference (PDC) 2005, Anders Hejlsberg and his team pre-
sented a new approach, Language-Integrated Query (LINQ), that unifies the way data can be retrieved
in .NET. LINQ provides a uniform way to retrieve data from any object that implements the IEnumer-
able<T> interface. With LINQ, arrays, collections, relational data, and XML are all potential data
sources.

Why LINQ?
With LINQ, you can use the same syntax to retrieve data from any data source:

var query = from e in employees
where e.id ==
select e.name

This is not pseudocode; this is LINQ syntax, and it's very similar to SQL. The LINQ team's goal was
not to add yet another way to access data, but to provide a native, integrated set of instructions to
query any kind of data source. Using C# keywords, we can write data access code as part of C#, and the
C# compiler will be able to enforce type safety and even logical consistency. LINQ provides a rich set of
instructions to implement complex queries that support data aggregation, joins, sorting, and much
more.

Figure 1 presents an overview of LINQ functionality. The top level shows the languages that pro-
vide native support for LINQ. Currently, only C# 3.0 and Visual Basic 9.0 offer complete support for
LINQ.

The middle level represents the three main parts of the LINQ project:

LINQ to Objects is an API that provides methods that represent a set of standard query operators
(SQOs) to retrieve data from any object whose class implements the IEnumerable<T> interface.
These queries are performed against in-memory data.

LINQ to ADO.NET augments SQOs to work against relational data. It is composed of three parts
(which appear at the bottom level of Figure 1): LINQ to SQL (formerly DLinq) is use to query rela-
tional databases such as Microsoft SQL Server. LINQ to DataSet supports queries by using
ADO.NET data sets and data tables. LINQ to Entities is a Microsoft ORM solution, allowing devel-
opers to use Entities (an ADO.NET 3.0 feature) to declaratively specify the structure of business
objects and use LINQ to query them.

LINQ to XML (formerly XLinq) not only augments SQOs but also includes a host of XML-specific
features for XML document creation and queries.

Xv

Xvi INTRODUCTION

The LINQ Project

(= (=]

.NET Language-Integrated Query

Standard

Query LINQ to ADO.NET (Ié"ii;? >)(<|\h:1“|__)
Operators 4 .
Yy <booke
<title/>
<author/>
<year>
LINQ LINQ
LINQ to to to XML
Objects saL Entities

Figure 1. Data domains in which LINQ adds functionality

Note 1 don't cover LINQ to Entities because the ADO.NET Entity Framework is an ADO.NET 3.0 feature, and is not yet
as mature as other technologies that can be used with LINQ.

Now let's see what you need to work with LINQ.

What You Need to Use LINQ

LINQ is a combination of extensions to .NET languages and class libraries that support them. To use it,
you'll need the following:

e LINQ, which is available from the LINQ Project website at
http://msdn.microsoft.com/data/ref/1ling.I've used the May 2006 CTP for this book.

e NET 2.0 running on Windows 2000 (Service Pack 4), Windows Server 2003, Windows XP Pro (Ser-
vice Pack 2), or Windows Vista.

» To write C# programs using LINQ, you need either Visual Studio 2005 or Visual C# 2005 Express
Edition.

¢ To use LINQ to ADO.NET, you need SQL Server 2005, SQL Server 2005 Express Edition, or SQL
Server 2000.

e If you want to use LINQ with .NET 3.0 (originally WinFX), you need the WinFX Runtime Beta 2.

INTRODUCTION

Resources

There's a lot of good material available about LINQ:
e The LINQ May 2006 CTP includes a complete set of documentation.

e The main LINQ Project site (http://msdn.microsoft.com/data/ref/ling) includes a Forums sec-
tion where thousands of developers discuss LINQ, ask for support, and report bugs.

e Athttp://shop.ecompanystore.com/mseventdvd/MSD_Shop.asp you can order the DVD that con-
tains full sessions from PDC 2005, where LINQ was unveiled.

e On the Channel 9 site (http://channel9.msdn.com), Anders Hejlsberg and his team are often
interviewed about LINQ issues and development.

What's Next?

This book contains three chapters, each dedicated to one of the main aspects of LINQ. The content
assumes you're comfortable with C# generics, delegates, and anonymous methods. You can learn and
use LINQ without a deep understanding of these topics, but the more you know about them the faster
you'll grasp LINQ's concepts and implementation.

Chapter 1 discusses LINQ to Objects, with a sample program that illustrates its major functionality.

Chapter 2 provides a complete description of LINQ to SQL (LINQ's components for accessing rela-
tional data) and its great functionalities. A rich sample program demonstrates its features.

Chapter 3 covers LINQ to XML (LINQ's components for accessing XML data). You'll see how to
generate XML from queries and interrogate XML documents to retrieve data by using LINQ syntax.

xvii

CHAPTER 1

LINQ to Objects

In this chapter we’ll study LINQ fundamentals by exploring its features for
querying in-memory objects. We’ll start with some simple examples to get an
idea of what programming with LINQ to Objects involves, then we’ll look at
examples for all of LINQ’s standard query operators.

Introduction

Data domains are different from object domains. When we deal with objects
like arrays and collections, we use iteration to retrieve their elements. If we’re
looking for a particular element based on its content rather than its index, we
have to use a loop and process each element individually. For example, for an
array of strings there is no built-in method to retrieve all elements whose
length is equal to a particular value.

LINQ addresses this challenge by providing a uniform way to access data
from any data source using familiar syntax. It lets us focus on working with
data rather than on accessing it.

LINQ to Objects can be used with any class that implements the
IEnumerable<T> interface. Let’s look at how it works.

A Simple C# 3.0 LINQ to Objects Program

Listing 1-1 is a console program snippet that uses LINQ to Objects to display
a specific element in an array.

Listing 1-1. Using LINQ to Objects with List<T>

List<Person> people = new List<Person> {
{ID =1, IDRole = 1, LastName = "Anderson", FirstName =
"Brad"},
{ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"}

I3

var query = from p in people
where p.ID ==
select new { p.FirstName, p.LastName };

ObjectDumper.Write(query);

In Listing 1-1 you define a collection of Person objects and insert a
couple of elements. List<T> is a generic class that implements
IEnumerable<T>, so it’s suitable for LINQ querying.

Next you declare a variable, query, to hold the result of a LINQ query.
Don’t worry about the var keyword right now; it will be discussed later in this
chapter, in “Implicitly Typed Local Variables.”

You initialize query to a LINQ’s query expression. The from clause
specifies a data source. The variable p represents an object in the people
collection. The where clause specifies a condition for selecting from the data
source. You want to retrieve just the person whose ID equals 1, so you
specify a Boolean expression, p.ID == 1. Finally, the select clause specifies
what Person data you’re interested in retrieving.

The ObjectDumper class is a convenient utility for producing formatted
output. It has only one method, Write(), which has three overloads. (Both the
ObjectDumper.cs source code and the ObjectDumper.dll assembly come with
the LINQ download.)

When you run the program you’ll see the result in Figure 1-1.

et C:\WINDOWS\system32\cmd.exe [!j@

irstName=Brad LastName=Anderson
ress any key to continue . . . _ J
v

Figure 1-1. Using LINQ to query a list

This very simple example uses new features from C# 3.0. The first is a
query expression that is similar to the one used in SQL and allows developers
to use query language syntax that they are already accustomed to. When the
compiler finds a query expression in the code, it transforms that expression
into C# method calls. Listing 1-2 shows how the query expression in Listing
1-1 would be transformed.

Listing 1-2. Transformed LINQ to Object Code

var query = people
Where(p => p.ID == 1)

.Select(p => new { p.FirstName, p.LastName });

The from keyword has been removed, leaving just the collection, people,
against which to perform the query. The where and select clauses are
transformed into two method calls: Where<T>() and Select<T>(),
respectively. They have been concatenated so that the Where method’s result
is filtered by the Select method.

You may wonder how this is possible. C# 2.0 doesn’t provide these
methods for the List<T> class. Moreover, LINQ runs on .NET 2.0 and
installing LINQ doesn’t replace any .NET 2.0 assemblies. The answer is
extension methods.

Extension Methods

As the name implies, extension methods extend existing .NET types with new
methods. For example, by using extension methods with a string, it’s possible
to add a new method that converts every space in a string to an underscore.
Listing 1-3 provides an example of an extension method.

Listing 1-3. An Extension Method

public static string SpaceToUnderscore(this string source)

{

char[] cArray = source.ToCharArray();
string result = null;

foreach (char ¢ in cArray)

{
if (Char.IsWhiteSpace(c))
result +="_";
else
result += c;
}

return result;

}

Here you define an extension method, SpaceToUnderscore(). To specify
an extension method you insert the keyword this before the first method
parameter, which indicates to the compiler the type you want to extend. Note
that the method and its class must be static. You can use
SpaceToUnderscore() just like any other string method.

4 firstPress: LINQ to Objects

Figure 1-2 shows the result of executing this method.

his_is_a_test
ress any key to continue . . . _
v

Figure 1-2. Calling an extension method

The Where<T> and Select<T> methods, that the where and select clauses
are transformed into are extension methods defined for the IEnumerable<T>
interface. They are in the System.Query namespace.

Note = The May 2006 CTP LINQ installation includes the Sequence.cs file (in the Docs
directory). This file contains the source code for all the extension methods in the
System.Query namespace.

Simply by adding the new System.Query namespace, you can use LINQ
with any type that implements IEnumerable<T>. You don’t have to install a
new version of .NET or replace any existing assemblies. You do have to
consider a couple of things when implementing and using extension methods,
however:

* If you have an extension method and an instance method with the same
signature, priority is given to the instance method.

* Properties, events, and operators are not extendable.

Lambda Expressions

Another new C# 3.0 feature is lambda expressions. This feature simplifies
coding delegates and anonymous methods.

The argument to the Where<T> method we saw above is an example of a
lambda expression:

Where(p => p.ID == 1)

Lambda expressions allow us to write functions that can be passed as
arguments to methods, for example, to supply predicates for subsequent
evaluation.

Ferracchiati

You could use code like that in Listing 1-4 to obtain the same result, but
the lambda expression syntax is simpler.

Listing 1-4. Alternative to Lambda Expression Syntax

Func<Person, bool> filter = delegate(Person p) { return p.ID == 1; };
var query = people

Where(filter)

.Select(p => new { p.FirstName, p.LastName });

ObjectDumper.Write(query);

Another advantage of lambda expressions is that they give you the ability to
perform expression analysis using expression trees.

Expression Trees

LINQ can treat lambda expressions as data at run time. The type
Expression<T> represents an expression tree that can be evaluated and
changed at run time. It is an in-memory hierarchical data representation
where each tree node is part of the entire query expression. There will be
nodes representing the conditions, the left and right part of the expression,
and so on.

Expression trees make it possible to customize the way LINQ works
when it builds queries. For example, a database provider not supported
natively by LINQ could provide libraries to translate LINQ expression trees
into database queries.

Listing 1-5 shows how to represent a lambda expression with an
expression tree.

Listing 1-5. Using an Expression Tree

Expression<Func<Person, bool>> e = p => p.ID == 1;

BinaryExpression body = (BinaryExpression)e.Body;
MemberExpression left = (MemberExpression)body.Left;
ConstantExpression right = (ConstantExpression)body.Right;

Console.WriteLine(left. ToString());
Console.WriteLine(body.NodeType.ToString());
Console.WriteLine(right.Value.ToString());

First you define an Expression<T> variable, e, and assign it the lambda
expression you want to evaluate. Then you obtain the “body” of the
expression from the Body property of the Expression<T> object. Its Left and
Right properties contain the left and right operands of the expression.
Depending on the expression, those properties will assume the related type
expressed in the formula. In a more complex case you don’t know the type to
convert to, so you have to use a switch expression to implement any possible
case. In our example, to the left there is a member of the List<Person> type
while to the right there is a constant. You cast those properties to the
appropriate types.

Figure 1-3 shows the result of running the snippet in Listing 1-5.

et C:\WINDOWS\system32\cmd.exe l!ju

-1D a
Q

ress any key to continue . . . _I
N

Figure 1-3. Displaying a node of an expression tree

The result is clear; the Left property provides the left part of the
expression, p.ID. The Right property provides the right part of the expression,
1. Finally, the Body property provides a symbol describing the condition of
the expression. In this case EQ stands for equals.

Object Initialization Expressions

The code in Listing 1-1 used another C# 3.0 feature called object
initialization expressions:

List<Person> persons = new List<Person> {
{ID =1, IDRole = 1, LastName = "Anderson", FirstName =
"Brad"},
{ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"}

I3

Just like an array initializer, an object initialization expression allows us
to initialize a new object without calling its constructor and without setting its
properties. Let’s look at an example in Listing 1-6.

Listing 1-6. Using an Object Initialization Expression

/I The standard object creation and initialization
Person p1 = new Person();

p1. FirstName = "Brad";

p1.LastName = "Anderson";
ObjectDumper.Write(p1);

/I The object initialization expression
Person p2 = new Person { FirstName="Tom", LastName = "Gray" };
ObjectDumper.Write(p2);

With object initialization expressions you can create an object directly
and set its properties using just one statement. However, you can also write
code like in Listing 1-4 without specifying the class you are instantiating.

.Select(p => new { p.FirstName, p.LastName }

It’s not an error; it’s another new feature called anonymous types, and I’'ll
cover it next.

Anonymous Types

In Listing 1-1, note that no type was specified after the new keyword in the
object initialization expression. The compiler created a locally scoped
anonymous type for us.

Anonymous types let us work with query results on the fly without having
to explicitly define classes to represent them. When the compiler encountered

select new { p.FirstName, p.LastName };

in Listing 1-1 it transparently created a new class with two properties, one for
each parameter (see Listing 1-7).

Listing 1-7. A Class for an Anonymous Type

internal class ???

{
private string _firstName;
private string _lastName;

public string FirstName {
get { return _firstName; }
set { firstName = value; }
}
public string LastName {
get { return _lastName; }
set { lastName = value; }
}
}

As you can see in Listing 1-7, the property names are taken directly from
the fields specified in the Person class. However, you can indicate the
properties for the anonymous type explicitly using the following syntax:

new { firstName = p.FirstName, lastName = p.LastName };

Now to use the anonymous type in the code you have to respect the new
names and the case-sensitive syntax. For example, to print the full name you
would use the following:

Console.WriteLine(“Full Name = {0} {1}", query.firstName, query.lastName);

Keep in mind that the anonymous type itself cannot be referenced from
the code. How is it possible to access the results of a query if you don’t know
the name of the new type? The compiler handles this for you by inferring the
type. We’ll look at this next.

Implicitly Typed Local Variables

A new keyword, var, has been added to C#. When the compiler sees it, it
implicitly defines the type of the variable based on the type of expression that
initializes the variable. While its use is mandatory with anonymous types, it
can be applied even in other cases, such as the following:

evari = 5; is equivalent to int i = 5;
*vars = "this is a string"; is equivalent to string s = "this is a string";
An implicitly typed local variable must have an initializer. For example,
the following declaration is invalid:
var s; // wrong definition, no initializer

As you can imagine, implicit typing is really useful for complex query
results because it eliminates the need to define a custom type for each result.

Note = Implicitly typed local variables cannot be used as method parameters.

Query Evaluation Time

It is important to understand when the query is evaluated at run time. In
Listing 1-1 nothing happens in query execution until the ObjectDumper’s
Write method is called. Listing 1-8 looks at the code behind this method:

Listing 1-8. The Core Method of the ObjectDumper Helper Class

private void WriteObject(string prefix, object o) {
if (0 ==null || o is ValueType || o is string) {
Writelndent();
Write(prefix);
WriteValue(o);
WriteLine();
}
else if (0 is IEnumerable) {
foreach (object element in (IEnumerable)o) {
if (element is IEnumerable && !(element is string)) {
WriteIndent();
Write(prefix);
Write("...");
WriteLine();
if (level < depth) {
level++;

WriteObject(prefix, element);
level--;
}
}

else {
WriteObject(prefix, element);
}
}
}

else {
Memberlnfo[] members = 0.GetType().GetMembers(
BindingFlags.Public | BindingFlags.Instance);
WriteIndent();
Write(prefix);
bool propWritten = false;
foreach (Memberinfo m in members) {
FieldInfo f = m as FieldInfo;
Propertylnfo p = m as PropertyInfo;
if (f!=null [| p!= null){
if (propWritten) {
Write Tab();
}

else {
propWritten = true;
}

Write(m.Name);
Write("=");
Type t = f 1= null ? f.FieldType : p.PropertyType;
if (t.IsValueType || t == typeof(string)) {
WriteValue(
f 1= null ? f.GetValue(o) : p.GetValue(o, null));
}
else {
if (typeof(IEnumerable).IsAssignableFrom(t)) {
Write("...");
}
else {
Write("{ }");
}
}
}

}
if (propWritten) WriteLine();

if (level < depth) {
foreach (Memberinfo m in members) {
FieldInfo f = m as FieldInfo;
Propertylnfo p = m as PropertyInfo;
if (f!=null [| p!= null){
Type t=f!=null ? f.FieldType : p.PropertyType;
if (I(t.IsValueType || t == typeof(string))) {
object value =
f 1= null ? f.GetValue(o) : p.GetValue(o, null);
if (value != null) {
level++;
WriteObject(m.Name + ": ", value);
level--;

The Write method makes an internal call to the WriteObject private
method that is the real core of all the ObjectDumper class. In the first section
of the code it checks if the object is null, a string, or an object representing a
value type. In the case of a value type, an output is provided without other
checks. Instead, when the parameter object o implements the
IEnumerable<T> interface the method code goes through each element of the
parameter in order to check if other elements implement IEnumerable<T>. If
not, the object will be passed again to the same method, which will use .NET
Reflection to get its value.

The query expression is evaluated in the foreach statement. This behavior
is guaranteed by the yield keyword used in the methods (called standard
query operators in LINQ; see the next section) defined in the System.Query
namespace. For an example, let’s look at the Where<T> method body in
Listing 1-9:

Listing 1-9. The Body of the Where<T> Method Contained in the Sequence.cs
Class File

public static IEnumerable<T> Where<T>(
this IEnumerable<T> source, Func<T, bool> predicate)

{

if (source == null) throw Error.ArgumentNull("source");
if (predicate == null) throw Error. ArgumentNull("predicate");
return Wherelterator<T>(source, predicate);

}

static IEnumerable<T> Wherelterator<T>(
I[Enumerable<T> source, Func<T, bool> predicate)

{

foreach (T element in source) {
if (predicate(element)) yield return element;

}
}

The Where<T> method calls the private Wherelterator<T> method after
having checked that both arguments are not null. (Wherelterator<T> is not
called if only one argument is null.) In the Wherelterator<T> method, the
yield keyword is used to collect the items that satisfy the condition expressed
with the predicate delegate function.

It’s possible to cache the result of a query using the ToList and ToArray
methods. Let’s look at the example in Listing 1-10:

Listing 1-10. The ToArray() Method in Action

List<Person> people = new List<Person> {
{ID =1, IDRole = 1, LastName = "Anderson", FirstName =
"Brad"},
{ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"}

}a
var query = people
Where (p => p.ID == 1)

.Select(p => new { p.FirstName, p.LastName })
.ToArray();

ObjectDumper.Write(query);
people[0].FirstName = "Fabio";

ObjectDumper.Write(query);

In Listing 1-10 the code caches the result of a query using the ToArray
method. As the output in Figure 1-4 shows, even if the code changes an

firstPress: LINQ to Objects 13

element of the List<T> collection, the query returns the same result since it
has been cached.

e C:\WINDOWS\system32\cmd.exe !E E

irstName=Brad LastName=Anderson
irstName=Brad LastName=Anderson
ress any key to continue . . .

Figure 1-4. The output of the ToArray() example in Listing 1-10

Standard Query Operators

LINQ provides an API known as standard query operators (SQOs) to support
the kinds of operations we’re accustomed to in SQL. You’ve already used
Ci#’s select and where keywords, which map to LINQ’s Select and Where
SQOs—which, like all SQOs, are actually methods of the
System.Query.Sequence static class. Table 1-1 is a complete listing of
SQOs.

Table 1-1. LINQ Standard Query Operators Grouped by Operation

Operation Operator Description
Aggregate Aggregate Applies a function over a sequence
Average Calculates the average over a
sequence
Count/LongCount Counts the element of a sequence
Max Returns the maximum value from a

sequence of numeric values

Min Returns the minimum value from a
sequence of numeric values

Sum Returns the sum of all numeric
values from a sequence
Concatenation Concat Merges elements from two
sequences
(Continued)

Ferracchiati

14 firstPress: LINQ to Objects
Operation Operator Description
Conversion Cast Casts an element of the sequence
into a specified type
OfType Filters elements of a sequence,
returning only those of the specified
type
ToArray Converts the sequence into an array

ToDictionary

Creates a Dictionary<K,E> from a
sequence

ToList Creates a List<T> from a sequence

ToLookup Creates a Lookup<K,T> from a
sequence

ToSequence Returns its argument typed as

IEnumerable<T>

Element

DefaultlifEmpty

Provides a default element for an
empty sequence

ElementAt

Returns the element at the specified
index from a sequence

ElementAtOrDefault

Similar to ElementAt but also
returns a default element when the
specified index is out of range

First

Returns the first element in a
sequence

FirstOrDefault

Similar to First but also returns a
default element when the first
element in the sequence is not
available

Last

Returns the last element in a
sequence

Ferracchiati

Operation Operator Description
LastOrDefault Similar to Last but also returns a
default element when the last
element in the sequence is not
available
Single Returns a sequences single element
that satisfies a condition specified as
an argument
SingleOrDefault Similar to Single but also returns a
default value when the single
element is not found in the sequence
Equality EqualAll Checks whether two sequences are
equal
Generation Empty Returns an empty sequence for the
specified data type
Range Generates a numeric sequence from
a range of two numbers
Repeat Generates a sequence by repeating
the provided element a specified
number of times
Grouping GroupBy Groups the elements of a sequence
Join GroupJoin Performs a grouped join of two
sequences based on matching keys
Join Performs an inner join of two
sequences based on matching keys
Ordering OrderBy Orders the elements of the sequence

according to one or more keys

OrderByDescending

Similar to OrderBy but sorts the
sequence inversely

Reverse

Reverses the elements of the
sequence

(Continued)

Operation

Operator

Description

ThenBy

Useful for specifying additional
ordering keys after the first one
specified by either the OrderBy or
OrderByDescending operator

ThenByDescending

Similar to ThenBy but sorts the
sequence inversely

Partitioning

Skip

Skips a given number of elements
from a sequence and then yields the
remainder of the sequence

SkipWhile

Similar to Skip but the numbers of
elements to skip are defined by a
Boolean condition

Take

Takes a given number of elements
from a sequence and skips the
remainder of the sequence

TakeWhile

Similar to Take but the numbers of
elements to take are defined by a
Boolean condition

Projection

Select

Defines the elements to pick in a
sequence

SelectMany

Performs a one-to-many-elements
projection over a sequence

Quantifier

All

Checks all the elements of a
sequence against the provided
condition

Any

Checks whether any element of the
sequence satisfies the provided
condition

Contains

Checks for an element presence into
a sequence

Restriction

Where

Filters a sequence based on the
provided condition

Operation Operator Description
Set Distinct Returns distinct elements from a
sequence
Except Produces a sequence that is the
difference between elements of two
sequences
Intersect Produces a sequence resulting from
the common elements of two
sequences
Union Produces a sequence that is the
union of two sequences

In the rest of this chapter we’ll examine each operator carefully, and

consider examples that illustrate the elements’ functionality. The examples
will be based on numeric sequences for operators that use numbers, and on
classes such as Person, Role, and Salary for operators that use more-complex

sequences. Listing 1-11 shows these classes.

Listing 1-11. The Person, Role, and Salary classes

class Person

{

int _id;

int _idRole;
string _lastName;
string _firstName;

public int ID

{
get {return _id; }
set { _id = value;}

}

public int IDRole

{
get { return _idRole; }

set { _idRole = value;}

}

public string LastName

{

get { return _lastName; }
set { _lastName = value;}

}

public string FirstName

{
get { return _firstName; }
set { _firstName = value; }

}

}
class Role
{

int _id;

}

string _roleDescription;

public int ID

{
get { return _id; }
set{ _id = value;}

}

public string RoleDescription

{
get { return _roleDescription; }
set { _roleDescription = value; }

}

class Salary

{

int _idPerson;
int _year;
double _salary;

public int IDPerson

{

get { return _idPerson; }
set{ _idPerson = value; }

}

public int Year

{
get { return _year;}
set { _year = value; }

}

public double SalaryYear

{

get { return _salary; }
set { _salary = value; }

}
}

The Person class provides four properties, one of which is the matching
key with the second class, Role. The Role class provides two public
properties to store the role identifier and its description. The Salary class
provides the IDPerson foreign key to join to the Person class.

Let’s now look at all the operators, starting with the most used ones.

Restriction Operator

There is one restriction operator: Where.

Where

One of the most used LINQ operators is Where. It restricts the sequence
returned by a query based on a predicate provided as an argument.

public static IEnumerable<T> Where<T>(
this IEnumerable<T> source, Func<T, bool> predicate);

public static IEnumerable<T> Where<T>(
this IEnumerable<T> source, Func<T, int, bool> predicate);

The two forms differ in the second parameter, the predicate. It indicates
the condition that has to be checked for each element of a sequence. The
second form also accepts an int representing the zero-based index of the
element of the source sequence.

Both operators extend the IEnumerable<T> type. Let’s look at a couple of
examples.

20 firstPress: LINQ to Objects

The code snippet in Listing 1-12 uses Where (through the C# where
keyword) to retrieve every element in a sequence that has FirstName equal to
Brad. Figure 1-5 shows the output.

Listing 1-12. The Where Operator in Action

List<Person> people = new List<Person> {
{ID =1, IDRole = 1, LastName = "Anderson", FirstName =

"Brad"},
{ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"}
|3
var query = from p in people
where p.FirstName == "Brad"
select p;

ObjectDumper.Write(query);

et C:\WINDOWS\system32\cmd.exe

ID=1 IDRole=1 LastName =Anderson FirstName=Brad
ress any key to continue . . . _

KN

Figure 1-5. The output of Listing 1-12
Listing 1-13 uses the second Where form.

Listing 1-13. Using Where with an Index

List<Person> people = new List<Person> {
{ID =1, IDRole = 1, LastName = "Anderson", FirstName =
"Brad"},
{ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"},
{ID = 3, IDRole = 2, LastName = "Grant", FirstName = "Mary"}

I3

var query = people
Where((p, index) => p.IDRole == index);

ObjectDumper.Write(query);

In this case, the condition yields each sequence element whose index
equals IDRole. The people data source shows that this is true only for the last
element, as you can see in Figure 1-6.

Ferracchiati

firstPress: LINQ to Objects 21

e C:\WINDOWS\system32\cmd.exe

IDRole=2 LastName=Grant FirstName=Mary -
I1D=4 IDRole=3 LastName=Cops FirstName=Gary
ress any key to continue . . . _

Figure 1-6. The output for the Where example in Listing 1-13

Projection Operators

There are two projection one operators: Select and SelectMany.

Select

Just like SELECT in SQL, the Select operator specifies which elements are to
be retrieved.

public static IEnumerable<S> Select<T, S>(
this IEnumerable<T> source, Func<T, S> selector);

public static IEnumerable<S> Select<T, S>(
this IEnumerable<T> source, Func<T, int, S> selector);

Both operators extend the IEnumerable<T> type. They differ in the
second parameter. The first form accepts a selector function, where we can
define the element to pick; the second also accepts a zero-based index
indicating the position of the element in the sequence. Let’s look at a couple
of examples. The code snippet in Listing 1-14 returns all the elements from
the sequence, just like SELECT * in SQL. Figure 1-7 shows the output.

Listing 1-14. Using the First Form of Select

List<Person> people = new List<Person> {
{ID =1, IDRole = 1, LastName = "Anderson", FirstName =
"Brad"},
{ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"},
{ID = 3, IDRole = 2, LastName = "Grant", FirstName = "Mary"}
¥

var query = from p in people
select p;

ObjectDumper.Write(query);

Ferracchiati

22 firstPress: LINQ to Objects

e+ C:\WINDOWS\system32\cmd.exe !E H

=1 IDRole=1 LastName=Anderson FirstName=Brad

=2 IDRole=2 LastName=Gray FirstName=Tom

=3 IDRole=2 LastName=Grant FirstName=Mary

=4 IDRole=3 LastName =Cops FirstName=Gary

ess any key to continue . . . _J
v

Figure 1-7. The output of Listing 1-14

Listing 1-15 uses an index to specify the element position in the
sequence.
Listing 1-15. Using an Index with Select

List<Person> people = new List<Person> {
{ID =1, IDRole = 1, LastName = "Anderson", FirstName =

"Brad"},
{ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"},
{ID = 3, IDRole = 2, LastName = "Grant", FirstName = "Mary"}
¥
var query = people

.Select(
(p,index) => new { Position=index, p.FirstName, p.LastName }

ObjectDumper.Write(query);

This code snippet creates an anonymous type, formed by the full name of
the person anticipated by the element position in the sequence. See Figure 1-8
for the output.

e+ C:\WINDOWS\system32\cmd.exe !E H

osition=0 FirstName=Brad LastName=Anderson
osition=1 FirstName=Tom LastName=Gray
osition=2 FirstName=Mary LastName=Grant
osition=3 FirstName=Gary LastName=Cops
ress any key to continue . . . _ _J
v

Figure 1-8. The output of Listing 1-15
SelectMany

This operator is similar to Select because it allows us to define the elements
to pick from a sequence. The difference is in the return type.

Ferracchiati

public static IEnumerable<S> SelectMany<T, S>(
this IEnumerable<T> source, Func<T, IEnumerable<S>>
selector);

public static IEnumerable<S> SelectMany<T, S>(
this IEnumerable<T> source, Func<T, int, IEnumerable<S>>
selector);

With the IEnumerable<S> type returned by the selector parameter of
SelectMany, it’s possible to concatenate many projection operations together,
either on different sequences or starting from the result of a previous query.

The SelectMany operator extends the IEnumerable<T> type. The selector
parameter has two formats: the first returns the IEnumerable<S> type and the
second also requires a zero-based index that specifies the position of the
element in the sequence. Listings 1-16 and 1-17 clarify the differences
between Select and SelectMany.

Listing 1-16. The SelectMany Method in Action

List<Person> people = new List<Person> {
{ID =1, IDRole = 1, LastName = "Anderson", FirstName =
"Brad"},
{ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"},
{ID = 3, IDRole = 2, LastName = "Grant", FirstName = "Mary"}

I3

List<Role> roles = new List<Role> {
{ID = 1, RoleDescription = "Manager" },
{ID = 2, RoleDescription = "Developer" }

I3

var query = from p in people
where p.ID ==
from rin roles
where r.ID == p.IDRole
select new { p.FirstName, p.LastName, r.RoleDescription };

ObjectDumper.Write(query);

This code snippet obtains a result similar to a database join, where the
result of the first query is used in the other sequence to obtain the element
corresponding to the match condition. It’s interesting to analyze how the
compiler transforms the query expression pattern used in Listing 1-16 to

24 firstPress: LINQ to Objects

generate the operator method call (see Listing 1-17). Figure 1-9 shows the
output.

Listing 1-17. Listing 1-16 After Transformation

var query = people
Where(p => p.ID == 1)
.SelectMany(p => roles
Where(r =>r.ID == p.ID)
.Select(r => new {
p.FirstName, p.LastName, r.RoleDescription}));

& C:\WINDOWS\system32\cmd.exe - [of |

irstName=Brad LastName=Anderson RoleDescription=Manager
ress any key to continue . .

KN

Figure 1-9. The output of Listings 1-16 and 1-17

SelectMany allows us to manage another sequence since it returns an
IEnumerable<S>, where S is the sequence. If we use the Select operator
instead of SelectMany, we will get an IEnumerable<List<T>>. This object is
not composed of the sequence but of List<T> elements.

Join Operators

There are two join operators: Join and GroupJoin.

Join

Like INNER JOIN in SQL, the Join operator combines two sequences based
on matching keys supplied as arguments. The Join operator is not overloaded.

public static IEnumerable<V> Join<T, U, K, V>(
this IEnumerable<T> outer,
IEnumerable<U> inner,
Func<T, K> outerKeySelector,
Func<U, K> innerKeySelector,
Func<T, U, V> resultSelector);

The Join operator extends the IEnumerable<T> type. The first parameter
is one of the two sequences to join. It will be evaluated against the function
specified as the outerKeySelector parameter. The second parameter contains

Ferracchiati

[\
)]

firstPress: LINQ to Objects

the inner sequence used during the evaluation of the inner elements against
the function specified as the innerKeySelector parameter. For each matching
inner element the resultSelector function, specified as the last parameter, is
evaluated for the outer and inner element pair, and the resulting object is
returned. Listing 1-18 provides an example. Figure 1-10 shows the output.

Listing 1-18. The Join Operator in Action

List<Person> people = new List<Person> {
{ID =1, IDRole = 1, LastName = "Anderson", FirstName =
"Brad"},
{ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"},
{ID = 3, IDRole = 2, LastName = "Grant", FirstName = "Mary"}

I3

List<Role> roles = new List<Role> {
{ID = 1, RoleDescription = "Manager" },
{ID = 2, RoleDescription = "Developer" }

}!
var query = from p in people

join r in roles on p.IDRole equals r.ID

select new { p.FirstName, p.LastName, r.RoleDescription };

ObjectDumper.Write(query);

s C:\WINDOWS\system32\cmd. exe - [of x|

irstName=Brad LastName=Anderson RoleDescription=Manager

irstName=Tom LastName=Gray RoleDescription=Developer

irstName=Mary LastName=Grant RoleDescription=Developer

ress any key to continue . . . _J
N

Figure 1-10. The output of Listing 1-18

GroupJoin

This operator is similar to Join but it returns the result in an IEnumerable<S>
where S is a new sequence.

public static IEnumerable<V> GroupJoin<T, U, K, V>(
this IEnumerable<T> outer,
IEnumerable<U> inner,
Func<T, K> outerKeySelector,

Ferracchiati

Func<U, K> innerKeySelector,
Func<T, IEnumerable<U>, V> resultSelector);

This operator is really useful when we have to implement particular joins,
such as SQL’s LEFT OUTER join. Listing 1-19 provides and example:

Listing 1-19. GroupJoin in Action

List<Person> people = new List<Person> {
{ID =1, IDRole = 1, LastName = "Anderson", FirstName =

"Brad"},
{ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"},
{ID = 3, IDRole = 2, LastName = "Grant", FirsiName = "Mary"},
{ID =4, IDRole = 3, LastName = "Cops", FirstName = "Gary"}
|3

List<Role> roles = new List<Role> {
{ID = 1, RoleDescription = "Manager" },
{ID = 2, RoleDescription = "Developer" }

I3

var query = from p in people

join r in roles on p.IDRole equals r.ID into pr
from r in pr.DefaultifEmpty()
select new {

p.FirstName,

p.LastName,

RoleDescription = r == null ?

"No Role" : r.RoleDescription

%
ObjectDumper.Write(query);

In the code snippet in Listing 1-19 the join ... into query expression is
used to group the join into a new sequence called pr. Since the new element
we introduced in the people sequence has a role identifier that doesn’t
correspond to any of Role elements in the roles sequence, an empty element
is returned. Using the DefaultifEmpty method, we can replace each empty
element with the given ones. In this case no parameter has been provided, so
the empty element will be replaced with a null value. By checking this value
in the select command we can provide a custom description (“No Role” in our
case) when the code encounters null elements. See the output in Figure 1-11.

firstPress: LINQ to Objects 27

o+ C:\WINDOWS\system32\cmd.exe !EH

irstName=Brad LastName=Anderson RoleDescription=Manager

irstName=Tom LastName =Gray RoleDescription=Developer

irstName=Mary LastName=Grant RoleDescription=Developer

irstName=Gary LastName=Cops RoleDescription=No Role

ress any key to continue . . . _ _]
v

Figure 1-11. The output of Listing 1-19

Grouping Operator

There is one grouping operator: GroupBy.

GroupBy

Just like the GROUP BY clause of SQL, the GroupBy operator groups
elements of a sequence based on a given selector function.

public static IEnumerable<IGrouping<K, T>> GroupBy<T, K>(
this IEnumerable<T> source,
Func<T, K> keySelector);

public static IEnumerable<IGrouping<K, T>> GroupBy<T, K>(
this IEnumerable<T> source,
Func<T, K> keySelector,
I[EqualityComparer<K> comparer);

public static IEnumerable<IGrouping<K, E>> GroupBy<T, K, E>(
this IEnumerable<T> source,
Func<T, K> keySelector,
Func<T, E> elementSelector);

public static IEnumerable<IGrouping<K, E>> GroupBy<T, K, E>(
this IEnumerable<T> source,
Func<T, K> keySelector,
Func<T, E> elementSelector,
I[EqualityComparer<K> comparer);

Each GroupBy operator returns an IEnumerable<IGrouping<K, E>>. Let’s
look at how IGrouping<K, T> is declared:

public interface IGrouping<K, T> : I[Enumerable<T>

{

Ferracchiati

K Key { get; }

This interface implements IEnumerable<T> and adds a read-only
property called Key. When the code process launches the query (that is when
we are going to iterate through elements using a foreach statement) the
source parameter is enumerated and evaluated against the keySelector and
elementSelector functions (if specified). When every element has been
evaluated and each element that satisfies the selector functions has been
collected, new instances of the IGrouping<K, E> type are yielded. Finally, the
IEqualityComparer interface, when specified, allows us to define a new way
to compare elements of a sequence. Let’s look at the example in Listing 1-20.

Listing 1-20. An Example of GroupBy Using .NET Reflection

var query = from m in typeof(int).GetMethods()
select m.Name;

ObjectDumper.Write(query);

Console .WriteLine("-=-=-=-=-=-=-=-=-= ");
Console.WriteLine("After the GroupBy");
Console .WriteLine("-=-=-=-=-=-=-=-=-= ");

var q = from m in typeof(int).GetMethods()
group m by m.Name into gb
select new {Name = gb.Keys};

ObjectDumper.Write(q);

The first query expression calls the GetMethods method provided by
.NET Reflection to retrieve the list of available methods for the int type.
Since GetMethods() returns a MethodInfo[] array LINQ query expressions
could use it easily too. The first part of the output shows the methods for the
int type without the grouping (see Figure 1-12). The second part of the code
snippet in Listing 1-20 uses the group by clause to group the elements by
method name. The result of the group by clause is inserted into the new
IGrouping<K, E> type that provides the Key property representing the by
argument of the group by operator. Since the method’s name has been
promoted to a grouping key, the Key property will be equal to the method’s
name.

firstPress: LINQ to Objects 29

e C:\WINDOWS\system32\cmd.exe

Name =CompareTo

Name =Equals

Name =GetHashCode

Name=ToString

Name =GetTypeCode

Name =Parse

Name =TryParse

Name =GetT ype

Press any key to continue . . .

Figure 1-12. The output of Listing 1-20

In Listing 1-21 I added the Count operator to compute the number of
method overloads.

Listing 1-21. Another Example of group by Clause

var q = from m in typeof(int).GetMethods()
group m by m.Name into gb
select new {Name = gb.Key, Overloads = gb.Count()};

ObjectDumper.Write(q);

The gb variable represents the result of the group by operation; it’s
possible to operate against this variable to filter its element, specify a where
clause, and so on. In this case the code snippet shows the result of counting
the number of elements for each key in the group. In this case it represents the
method’s overloads. See Figure 1-13 for the output.

Ferracchiati

30 firstPress: LINQ to Objects

ot C:\WINDOWS\system32\cmd.exe !EE

ame =CompareTo Overloads=2
ame =Equals Overloads=2
ame =GetHashCode Overloads=1
ame=ToString Overloads=4
ame =GetTypeCode Ouerloads=1
ame =Parse Overloads=4
ame =TryParse Querloads=2
ame =GetT ype OQuerloads=1
ress any key to continue . . .

Figure 1-13. The output of Listing 1-21

The last example for the grouping operator uses the comparer parameter,
which allows us to customize the behavior of the GroupBy method during its
work. See Listing 1-22.

Listing 1-22. The GroupBy Operator with a Custom Comparison Method

public class MyComparer : IEqualityComparer<string>
{
public bool Equals(string x, string y) {
return (x.Substring(0,2)) == (y.Substring(0,2));

}

public int GetHashCode(string obj) {
return (obj.Substring(0,2)).GetHashCode();
}
}

string[] dictionary = new string[] {"F:Apple", "F:Banana",
"T:House", "T:Phone",
"F:Cherry", "T:Computer"};

var query = dictionary.GroupBy(d => d, new MyComparer());

ObjectDumper.Write(query, 1);

The dictionary array contains two kinds of objects. The F: prefix stands
for fruit and the T: prefix stands for thing. We have defined a way to group
fruit with fruit and thing with thing. To create a custom comparer we have to
define a new class that implements the IEqualityComparer<T> interface. The
contract subordinated by this interface forces us to implement two methods:
Equals and GetHashCode. For Equals we have to insert the custom logic for
our comparer. GetHashCode has to return the hash code for the same string
checked in the Equals method. In Listing 1-22 we have a simple way to check

Ferracchiati

firstPress: LINQ to Objects 31

the category of the strings. By analyzing their first two characters we know
that F: stands for fruit and T: stands for thing. We simply have to check that
both strings provided to the Equals method contain the same substring. Figure
1-14 shows the output for Listing 1-22.

et C:\WINDOWS\system32\cmd.exe !jg

tApple
:Banana
:Cherry

:House

:Phone

:Computer

ress any key to continue . . . _J
N

F
F
F
T
T
T
e

Figure 1-14. We have grouped fruits and things.

Ordering Operators

There are five ordering operators: OrderBy, OrderByDescending, ThenBy,
ThenByDescending, and Reverse.

OrderBy and OrderByDescending

Like ORDER BY and ORDER BY DESC in SQL, the OrderBy and
OrderByDescending operators order elements of a sequence according to a
given key. The OrderByDescending operator inverts the ordering.

public static OrderedSequence<T> OrderBy<T, K>(
this IEnumerable<T> source,
Func<T, K> keySelector);

public static OrderedSequence<T> OrderBy<T, K>(
this IEnumerable<T> source,
Func<T, K> keySelector,
IComparer<K> comparer);

public static OrderedSequence<T> OrderByDescending<T, K>(
this IEnumerable<T> source,
Func<T, K> keySelector);

public static OrderedSequence<T> OrderByDescending<T, K>(

this IEnumerable<T> source,
Func<T, K> keySelector,

Ferracchiati

|98
[\

firstPress: LINQ to Objects

IComparer<K> comparer);

The keySelector parameter is used to extract the elements from the
sequence. When specified the comparer parameter compares the elements.
When the code processes the query, the method collects all the elements and
evaluates each of them against the keySelector. Finally, an
OrderedSequence<T> type is produced. This is similar to IEnumerable<T>
except that it doesn’t provide public methods. Listing 1-23 provides an
example.

Listing 1-23. This Code Snippet Adds the orderby Operator to the .NET
Reflection Example

var g = from m in typeof(int).GetMethods()
orderby m.Name
group m by m.Name into gb
select new {Name = gb.Keys};

ObjectDumper.Write(q);

The code snippet in Listing 1-23 retrieves the int type’s methods ordered
by their names. See Figure 1-15 for the output.

et C:\WINDOWS\system32\cmd.exe !EH

ame =CompareTo
ame =Equals

ame =GetHashCode
ame =GetT ype
ame =GetTypeCode
ame =Parse
ame=ToString
ame =TryParse
ress any key to continue . . . _ _]
N

Figure 1-15. The output for Listing 1-23

To obtain descending order, you simply add the descending keyword.

orderby m.Name descending

ThenBy and ThenByDescending

As you saw in the previous section, orderby allows us to specify only one
ordering key. We have to use either ThenBy or ThenByDescending to
concatenate ordering-key values.

Ferracchiati

public static OrderedSequence<T> ThenBy<T, K>(
this OrderedSequence<T> source,
Func<T, K> keySelector);

public static OrderedSequence<T> ThenBy<T, K>(
this OrderedSequence<T> source,
Func<T, K> keySelector,
IComparer<K> comparer);

public static OrderedSequence<T> ThenByDescending<T, K>(
this OrderedSequence<T> source,
Func<T, K> keySelector);

public static OrderedSequence<T> ThenByDescending<T, K>(
this OrderedSequence<T> source,
Func<T, K> keySelector,
IComparer<K> comparer);

Just like in the OrderBy operators, the first argument is the source
sequence whose elements are evaluated against the keySelector parameter.
Listing 1-24 shows a more complete OrderBy/ThenBy example.

Listing 1-24. The OrderBy and ThenBy Operators

List<Person> people = new List<Person> {
{ID =1, IDRole = 1, LastName = "Anderson", FirstName =

"Brad"},
{ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"},
{ID = 3, IDRole = 2, LastName = "Grant", FirsitName = "Mary"},
{ID =4, IDRole = 3, LastName = "Cops", FirstName = "Gary"}
|3

var query = from p in people
orderby p.FirstName, p.LastName
select p;

ObjectDumper.Write(query);

When the compiler encounters the query pattern in Listing 1-24 it
transforms the first argument of the orderby operator to a call to the OrderBy()
method, and transforms every other parameter after the comma to a related
ThenBy() method call.

var query = people.

34 firstPress: LINQ to Objects

OrderBy(p => p.FirstName).
ThenBy(p => p.LastName);

Figure 1-16 shows the output of this code snippet.

et C:\WINDOWS\system32\cmd.exe

IDRole=1 LastName=Anderson FirstName=Brad
IDRole=3 LastName=Cops FirstName=Gary
IDRole=2 LastName=Grant FirstName=Mary
IDRole=2 LastName=Gray FirstName=Tom
s any key to continue . . . _]
v

Figure 1-16. The output of the ordered sequence shown in Listing 1-24

The last example on the ordering operators uses the comparer function
(see Listing 1-25).

Listing 1-25. Using the comparer Function to Customize the Ordering Behavior

public class MyOrderingComparer : IComparer<string>

{

public int Compare(string x, string y)

{

x = x.Replace(
y = y.Replace(

,string.Empty);
,string.Empty);

return string.Compare(x, y);

}
}

string[] dictionary = new string[] {"Apple", "_Banana", "Cherry"};
var query = dictionary.OrderBy(w => w, new
MyOrderingComparer());

ObjectDumper.Write(query);

To use the comparer parameter function we have to create a new class
that implements the IComparer<T> interface. Its contract forces us to define
the Compare() method, then add the comparing logic. In the code snippet in
Listing 1-25 we want to treat the underscored string as a normal string when
the ordering is implemented. So just before the Compare() method is called in
the comparer function, we will remove each underscore from the source
strings. See the output in Figure 1-17.

Ferracchiati

firstPress: LINQ to Objects 35

e+ C:\WINDOWS\system32\cmd.exe !EE

Figure 1-17. A custom comparer function allows us to change the ordering of the
strings.

Note = The May 2006 CTP release doesn’t provide support for ordering operators with
Visual Studio 2005 IntelliSense.

Reverse

This method simply returns a new sequence with elements in reverse ordering
of the source sequence.

public static IEnumerable<T> Reverse<T>(
this IEnumerable<T> source);

When the code processes the query expression, the method enumerates
the elements of the source sequence, collecting them in an IEnumerable<T>
type. Before the method returns the result it inverts the ordering of the
elements in the sequence.

Aggregate Operators

There are seven aggregate operators: Count, LongCount, Sum, Min, Max,
Average and Aggregate.

Count and LongCount

Those methods return the number of elements within a sequence. The
difference between them is in the return type. The Count() method returns an
integer and the LongCount() method returns a long type. Let’s see the
methods’ prototypes:

public static int Count<T>(
this IEnumerable<T> source);

Ferracchiati

public static int Count<T>(
this IEnumerable<T> source,
Func<T, bool> predicate);

public static long LongCount<T>(
this IEnumerable<T> source);

public static long LongCount<T>(
this IEnumerable<T> source,
Func<T, bool> predicate);

Both methods have two different prototypes. The former, without the
predicate parameter, checks the type of the source parameter. If it implements
the ICollection<T> type then its Count method is used. If it doesn’t, the
source sequence is enumerated, incrementing a number that represents the
final count value. The latter uses the predicate function parameter returning
the count of elements against which the specified condition is true.

We have already used the Count operator in the “Grouping Operators”
section; see Listing 1-21 for an example of the Count operator.

Sum
The Sum method computes the sum of numeric values within a sequence.

public static Numeric Sum(
this IEnumerable<Numeric> source);

public static Numeric Sum<T>(
this IEnumerable<T> source,
Func<T, Numeric> selector);

The Numeric type returned from the Sum() method must be one of the
following: int, int?, long, long?, double, double?, decimal, or decimal?.

Note = The ? suffix to the primitive type name specifies that a variable of that type can
contain null values. This feature was added to .NET 2.0 to provide greater compatibility with
NULLABLE columns in database tables.

The first prototype without the selector parameter computes the sum of
the elements in the sequence. When the selector parameter is used it picks the
specified element of the sequence on which computing the sum will start. The
Sum operator does not include null values in the result, which means a zero
will be returned for an empty sequence (see Listing 1-26).

Listing 1-26. A Code Snippet for the Sum Operator

int[] numbers={1,2,3,4,5,6,7,8,9};
var query = numbers.Sum();
ObjectDumper.Write(query);

The output for the code snippet in Listing 1-26 will be the sum of all the
elements in the sequence: 45.

Another great use for the Sum operator is to have it work with the
GroupBy operator to obtain total salary amounts, like the one shown in
Listing 1-27.

Listing 1-27. Using Sum and GroupBy Operators to Obtain Salary Results

List<Person> people = new List<Person> {
{ID =1, IDRole = 1, LastName = "Anderson", FirstName =

"Brad"},
{ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"},
{ID = 3, IDRole = 2, LastName = "Grant", FirstName = "Mary"},
{ID =4, IDRole = 3, LastName = "Cops", FirstName = "Gary"}
|3

List<Salary> salaries = new List<Salary> {
{ IDPerson = 1, Year = 2004, SalaryYear = 10000.00 },
{ IDPerson = 1, Year = 2005, SalaryYear = 15000.00 },
|3

var query = from p in people
join s in salaries on p.ID equals s.IDPerson
select new { p.FirstName, p.LastName, s.SalaryYear };

var querySum = from q in query
group q by g.LastName into gp
select new {LastName = gp.Key, TotalSalary = gp.Sum(q
=> q.SalaryYear) };

ObjectDumper.Write(querySum,1);

38 firstPress: LINQ to Objects

The salaries collection contains the total salary per year. The record is
related to the people collection through the IDPerson attribute.

The first query joins the two sequences, returning a new anonymous type
composed of a person’s name and salary. The result is processed again by
another query expression, which groups by the LastName attribute and

returns a new anonymous type with the total salary for that person. See Figure

1-18 for the output.

DO : d.exe

_ol x|

astName=Anderson TotalSalary=25000
ress any key to continue . .

Figure 1-18. The output for Listing 1-27

Min and Max

The Min() and Max() methods return the minimum and the maximum element
within a sequence, respectively.

public static Numeric Min(
this IEnumerable<Numeric> source);

public static T Min<T>(
this IEnumerable<T> source);
public static Numeric Min<T>(
this IEnumerable<T> source,
Func<T, Numeric> selector);

public static S Min<T, S>(
this IEnumerable<T> source,
Func<T, S> selector);

public static Numeric Max(
this IEnumerable<Numeric> source);

public static T Max<T>(
this IEnumerable<T> source);

public static Numeric Max<T>(
this IEnumerable<T> source,
Func<T, Numeric> selector);

public static S Max<T, S>(

Ferracchiati

this IEnumerable<T> source,
Func<T, S> selector);

When the code processes the query expression, the Min and Max
operators enumerate the source sequence and call the selector for each
element, finding the minimum and maximum. When no selector function is
specified, the minimum and the maximum are calculated by elements
themselves.

Listing 1-28 shows retrieval of the minimum and the maximum salary for
the Brad Anders person element.

Listing 1-28. Using the Min and Max Operators to Retrieve the Minimum and
Maximum Salary

List<Person> people = new List<Person> {
{ID =1, IDRole = 1, LastName = "Anderson", FirstName =

"Brad"},
{ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"},
{ID = 3, IDRole = 2, LastName = "Grant", FirsiName = "Mary"},
{ID =4, IDRole = 3, LastName = "Cops", FirstName = "Gary"}
|3

List<Salary> salaries = new List<Salary> {
{ IDPerson = 1, Year = 2004, SalaryYear = 10000.00 },
{ IDPerson = 1, Year = 2005, SalaryYear = 15000.00 },
|3

var query = from p in people
join s in salaries on p.ID equals s.IDPerson
where p.ID ==
select s.SalaryYear;

Console.WriteLine("Minimum Salary:");
ObjectDumper.Write(query.Min());

Console.WriteLine("Maximum Salary:");
ObjectDumper.Write(query.Max());

From the query expression we retrieve the salaries for the person that has
the identifier equal to 1 and then we apply the Min and Max operators to the
result. See Figure 1-19 for the output.

40 firstPress: LINQ to Objects

e C:\WINDOWS\system32\cmd.exe

Figure 1-19. The Min and Max operators prompting the minimum and maximum
salary

Average
This operator computes the average of the elements within a sequence.

public static Result Average(
this IEnumerable<Numeric> source);

public static Result Average<T>(
this IEnumerable<T> source,
Func<T, Numeric> selector);

The Result type returned from the preceding prototypes will be either a
double or double? type when the Numeric type is int and long or int? and
long?, respectively. When the Numeric type assumes other types, those will
be returned as is.

When the average is computed, if the sum of the elements is too large to
be contained in the Numeric type an overflow exception will be thrown.
Listing 1-29 shows the operator in action.

Listing 1-29. Using the Average Operator to Compute the Average of the Salary

List<Person> people = new List<Person> {
{ID =1, IDRole = 1, LastName = "Anderson", FirstName =

"Brad"},
{ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"},
{ID = 3, IDRole = 2, LastName = "Grant", FirstName = "Mary"},
{ID = 4, IDRole = 3, LastName = "Cops", FirsiName = "Gary"}
¥

List<Salary> salaries = new List<Salary> {
{ IDPerson = 1, Year = 2004, SalaryYear = 10000.00 },
{ IDPerson = 1, Year = 2005, SalaryYear = 15000.00 },
|3

Ferracchiati

firstPress: LINQ to Objects 41

var query = from p in people
join s in salaries on p.ID equals s.IDPerson
where p.ID ==
select s.SalaryYear;

Console.WriteLine("Average Salary:");
ObjectDumper.Write(query.Average());

From the query expression we retrieve the salaries for the person that has
the identifier equal to 1 and then we apply the Average method to the result.
See Figure 1-20 for the output.

e C:\WINDOWS\system32\cmd.exe

verage Salary:
2500

ress any key to continue . . . _ _I
o

Figure 1-20. The output for Listing 1-29

Aggregate

This operator allows us to define a function used during the aggregation of
the elements of a sequence.

public static T Aggregate<T>(
this IEnumerable<T> source,
Func<T, T, T> func);

public static U Aggregate<T, U>(
this IEnumerable<T> source,
U seed,
Func<U, T, U> func);

The difference between those two prototypes stands in the seed
parameter. When it is not specified the method uses the specified function to
aggregate the elements of the sequence, assuming the first element as seed.
When seed is specified the operator uses the seed value as a starting point for
applying the aggregate function. Let’s look at an example in Listing 1-30:

Listing 1-30. The Aggregate Method in Action

int[] numbers={1,2,3,4,5,6,7,8,9};
var query = numbers.Aggregate((a,b) => a * b);
ObjectDumper.Write(query);

Ferracchiati

This code snippet uses the method without the seed parameter, so it takes
the first element, 1, as seed, multiplying it for each other element in the
sequence. The final result will be 362880.

In Listing 1-31 we will use the seed parameter.

Listing 1-31. The Aggregate Method Used with the seed Parameter

int[] numbers={9, 3,5,4,2,6,7,1,8};
var query = numbers.Aggregate(5, (a,b) => ((a<b) ? (a * b) : a));
ObjectDumper.Write(query);

The method starts evaluating 5 with the first element in the sequence, 9.
Since we have defined a rule where the element in the sequence is multiplied
by the seed only if it is greater than the aggregated value, the method
multiplies those two values, producing 45. This new value will be greater
than any of the other elements in the sequence, so the final result will be 45.

Partitioning Operators

There are four partitioning operators: Take, Skip, TakeWhile, and SkipWhile.

Take

The Take method returns a given number of elements within a sequence and
ignores the rest.

public static [IEnumerable<T> Take<T>(
this IEnumerable<T> source,
int count);

When the code processes the query expression, the source sequence is
enumerated. This yields elements until the count parameter value is reached.

The Take and Skip methods are really useful when you need to implement
a pagination-record mechanism. Listing 1-32 shows an easy approach to the
pagination of elements within a sequence.

Listing 1-32. Take and Skip Methods to Reproduce a Pagination Mechanism

int[] numbers ={1, 2, 3,4,5,6,7, 8, 9};

var query = numbers.Take(5);

ObjectDumper.Write(query);

Console.Write("Press Enter key to see the other elements...");

firstPress: LINQ to Objects 43

Console.ReadLineg();
var query2 = numbers.Skip(5);
ObjectDumper.Write(query2);

The first query yields just the first five elements of the sequence. After
the Enter key is pressed another query is called, in which the Skip method
ignores the first five elements, prompting the rest (see Figure 1-21).

e C:\WINDOWS\system32\cmd.exe

ress Enter key to see the other elements...

ress any key to continue . . .

Figure 1-21. The output for Listing 1-32

Skip
This method skips a given number of elements within a sequence, yielding

the rest.

public static IEnumerable<T> Skip<T>(
this IEnumerable<T> source,
int count);

When the code processes the query expression the source sequence is
enumerated, skipping elements until the count parameter value is reached.
See Listing 1-32 and Figure 1-21 for a Skip-method example.

TakeWhile

This method returns the elements from a sequence while the predicate
function specified is true.

public static IEnumerable<T> TakeWhile<T>(
this IEnumerable<T> source,
Func<T, bool> predicate);

public static IEnumerable<T> TakeWhile<T>(
this IEnumerable<T> source,

Ferracchiati

44 firstPress: LINQ to Objects

Func<T, int, bool> predicate);

When the code processes the query expression the source sequence is
enumerated, testing each element against the predicate function. Each element
that satisfies the condition is yielded. The second prototype provides a zero-
based index related to the elements of the sequence.

Listing 1-33 provides an example of the TakeWhile and SkipWhile
methods.

Listing 1-33. The TakeWhile and SkipWhile Methods in Action

int[] numbers={9, 3,5,4,2,6,7,1,8};

var query = numbers.TakeWhile((n, index) => n >= index);
ObjectDumper.Write(query);

Console.Write("Press Enter key to see the other elements...");
Console.ReadLineg();

var query2 = numbers.SkipWhile((n, index) => n >= index);
ObjectDumper.Write(query?2);

This code snippet uses the TakeWhile second prototype, where the index
of the elements of the sequence acts as a condition of the predicate function.
Until the element’s index is less than or equal to its own value, it is yielded.
The rest of the elements will be skipped. After the Enter key is pressed the
SkipWhile method is used with the same predicate condition to yield the other
elements. See Figure 1-22 for the resulting output.

e C:\WINDOWS\system32\cmd.exe !ju

ress Enter key to see the other elements...

ress any key to continue . . . _I
N

Figure 1-22. The output for Listing 1-33

SkipWhile

The SkipWhile operator skips elements from a sequence while the predicate
function returns true, then it yields the rest.

public static IEnumerable<T> SkipWhile<T>(

Ferracchiati

this IEnumerable<T> source,
Func<T, bool> predicate);

public static IEnumerable<T> SkipWhile<T>(
this IEnumerable<T> source,
Func<T, int, bool> predicate);

Each source element is tested against the predicate function parameter.
The element will be skipped if the predicate function returns true. The second
prototype provides a zero-based index related to the elements of the sequence.

For an example of the SkipWhile method see Listing 1-33.

Concatenation Operator

There is one concatenation operator: Concat.

Concat
ThiS oper ator concatenates two sequences.

public static IEnumerable<T> Concat<T>(
this IEnumerable<T> first,
I[Enumerable<T> second);

The resulting IEnumerable<T> type is the concatenation of the first and
second sequences specified as a parameter.
In Listing 1-34 two numeric sequences are concatenated.

Listing 1-34. The Concat Method Used to Concatenate Two Numeric Sequences

int[] numbers ={1, 2, 3,4,5,6,7, 8, 9};

int[] moreNumbers = {10, 11, 12, 13};

var query = numbers.Concat(moreNumbers);
ObjectDumper.Write(query);

Starting from the numbers sequence the Concat method appends the
moreNumbers sequence (see Figure 1-23).

46 firstPress: LINQ to Objects

et C:\WINDOWS\system32\cmd.exe

ess any key to continue . . . _ _I
N

Figure 1-23. The output of Listing 1-34

Element Operators

There are nine element operators: First, FirstOrDefault, Last, LastOrDefault,
Single, SingleOrDefault, ElementAt, ElementAtOrDefault, and
DefaultifEmpty.

First, Last, FirstOrDefault, and LastOrDefault
These operators return the first/last element from a sequence.

public static T First<T>(
this IEnumerable<T> source);

public static T First<T>(
this IEnumerable<T> source,
Func<T, bool> predicate);

public static T FirstOrDefault<T>(
this IEnumerable<T> source);

public static T FirstOrDefault<T>(
this IEnumerable<T> source,
Func<T, bool> predicate);

public static T Last<T>(
this IEnumerable<T> source);

public static T Last<T>(
this IEnumerable<T> source,

Ferracchiati

firstPress: LINQ to Objects 47

Func<T, bool> predicate);

public static T LastOrDefault<T>(
this IEnumerable<T> source);

public static T LastOrDefault<T>(
this IEnumerable<T> source,
Func<T, bool> predicate);

When the predicate function parameter is specified, the method returns
the first/last element against which the predicate function is satisfied, and
therefore returns true. Otherwise the method returns simply the first/last
element in the sequence. Listing 1-35 provides some examples.

Listing 1-35. Examples of the First and Last Methods

int[] numbers ={1, 2, 3,4,5,6,7, 8, 9};

var query = numbers.First();

Console.WriteLine("The first element in the sequence");
ObjectDumper.Write(query);

query = numbers.Last();

Console.WriteLine("The last element in the sequence");
ObjectDumper.Write(query);

Console.WriteLine("The first even element in the sequence");
query = numbers.First(n => n % 2 == 0);
ObjectDumper.Write(query);

Console.WriteLine("The last even element in the sequence");
query = numbers.Last(n => n % 2 == 0);
ObjectDumper.Write(query);

In Listing 1-35 the First and Last methods are used to retrieve the first and
last element of the numeric sequence, respectively. Moreover, when the
predicate function is specified the First and Last methods return the first and
last even element, respectively (see Figure 1-24).

e C:\WINDOWS\system32\cmd.exe !ju

first element in the sequence
last element in the sequence

first even element in the sequence

last even element in the sequence
ress any key to continue . . .

- [

Ferracchiati

48 firstPress: LINQ to Objects

Figure 1-24. Sample output of the First and Last methods

Using the FirstOrDefault/LastOrDefault methods we would have obtained
the same results. However, when we use those methods and a predicate does
not find an element satisfying the specified condition, a default value is
returned (thereby avoiding retrieval of an exception). See the example in
Listing 1-36.

Listing 1-36. A FirstOrDefault/LastOrDefault Example

int[] numbers ={1, 3, 5, 7, 9};

var query = numbers.FirstOrDefault(n => n % 2 == 0);
Console.WriteLine("The first even element in the sequence");
ObjectDumper.Write(query);

Console.WriteLine("The last odd element in the sequence");
query = numbers.LastOrDefault(n =>n % 2 == 1);
ObjectDumper.Write(query);

Since no even numbers are in the sequence, FirstOrDefault returns the zero
default value. On the other hand, the LastOrDefault operator looks for the last
odd number in the sequence and finds the number 9. Figure 1-25 shows the
output.

o+ C:\WINDOWS\system32\cmd.exe !Eﬂ

he first even element in the sequence

he last odd element in the sequence

ress any key to continue . . . __I
v

Figure 1-25. The output for Listing 1-36

Single and SingleOrDefault
These methods return a single element picked from a sequence.

public static T Single<T>(
this IEnumerable<T> source);

public static T Single<T>(
this IEnumerable<T> source,
Func<T, bool> predicate);

public static T SingleOrDefault<T>(

Ferracchiati

this IEnumerable<T> source);

public static T SingleOrDefault<T>(
this IEnumerable<T> source,
Func<T, bool> predicate);

When the predicate function is specified it will be used against each
element until the function returns true. The element that satisfies the predicate
will be returned. If more than one element satisfies the predicate function, an
exception will be thrown. In Listing 1-37 just one element (9) satisfies the
predic