

LINQ for Visual C# 2005

FABIO CLAUDIO FERRACCHIATI

LINQ for Visual C# 2005

Copyright © 2006 by Fabio Claudio Ferracchiati

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59509-826-9

ISBN-10: 1-59059-826-1

Printed and bound in the United States of America (POD)

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trade-
marked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

Lead Editor: James Huddleston

Technical Reviewer: Vidya Vrat Agarwal

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick, Jonathan Hassell,
James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser, Keir Thomas, Matt Wade

Project Manager: Kylie Johnston

Copy Edit Manager: Nicole Flores

Copy Editor: Candace English

Assistant Production Director: Kari Brooks-Copony

Compositor: Richard Ables

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York,
NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or visit
http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA 94710.
Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has
been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information
contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section.

To Simona: “Tu ed io per sempre”––05/08/2005

About the Author . ix

Acknowledgments. xi

Introduction. xiii

■CHAPTER 1 LINQ to Objects . 1

Introduction . 1
A Simple C# 3.0 LINQ to Objects Program . 1
Extension Methods. 3
Lambda Expressions . 4
Expression Trees . 5
Object Initialization Expressions . 6
Anonymous Types . 7
Implicitly Typed Local Variables . 8
Query Evaluation Time . 9
Standard Query Operators . 13
Restriction Operator . 19

Where . 19
Projection Operators . 21

Select . 21
SelectMany . 22

Join Operators . 24
Join . 24
GroupJoin . 25

Grouping Operator . 27
GroupBy . 27

Ordering Operators . 31
OrderBy and OrderByDescending. 31
ThenBy and ThenByDescending. 32
Reverse . 35

Aggregate Operators . 35
Count and LongCount . 35
Sum . 36
Min and Max . 38
Average. 40

Contents

v

Aggregate . 41
Partitioning Operators . 42

Take . 42
Skip. 43
TakeWhile . 43
SkipWhile . 44

Concatenation Operator . 45
Concat. 45

Element Operators . 46
First, Last, FirstOrDefault, and LastOrDefault 46
Single and SingleOrDefault . 48
ElementAt and ElementAtOrDefault . 49
DefaultIfEmpty . 50

Generation Operators . 51
Empty . 51
Range . 51
Repeat. 51

Quantifier Operators. 52
All . 53
Any . 53
Contains . 54

Equality Operator . 54
EqualAll . 54

Set Operators. 55
Distinct . 56
Intersect . 56
Union. 56
Except . 57

Conversion Operators. 58
OfType. 58
Cast. 58
ToSequence. 59
ToArray . 59
ToList . 60
ToDictionary . 60
ToLookup. 61

Summary. 63

■CHAPTER 2 LINQ to ADO.NET . 65

Introduction . 65

■CONTENTSvi

Database Interaction . 66
Mapping a Class to a Database Table. 67
Mapping Fields and Properties to Table Columns 67
Creating a Data Context . 72
Querying a Database with LINQ to SQL . 73
Adding, Modifying, and Deleting Rows . 77

DataContext: Advanced Features . 79
Defining Relationships Between Entities 79
Using Two Related Entity Classes. 87

Other LINQ to SQL Features . 91
SQLMetal. 91
The INotifyPropertyChanging Interface . 93
Optimistic Concurrency and Database Transactions 95
Stored Procedures . 100
User-Defined Functions . 108
Database Creation . 110

LINQ to SQL in Visual Studio 2005 . 111
A DLinq Designer Example . 112

Debugging LINQ Applications . 122
LINQ to DataSet . 127
Summary. 131

■CHAPTER 3 LINQ to XML. 133

Introduction . 133
Querying XML . 133
Searching for Attribute Values . 137
The Descendants and Ancestors Methods . 137
Querying XML for Content Type . 139
Querying an XML Document That Uses Schemas 140
The ElementsBeforeThis and ElementsAfterThis Methods. 142
Miscellaneous Functionalities. 143

Parent . 143
HasElements and HasAttributes . 144
IsEmpty . 145
Declaration . 146

Creating and Modifying XML Documents . 146
Creating an XML Document from Scratch. 147

Using the XDeclaration Class . 148
Using the XNamespace Class to Create an XML Document 149
Transforming XML . 150

■CONTENTS vii

Loading and Saving XML . 152
Modifying XML. 154

Inserting Elements in an XML Document 154
Updating Elements in an XML Document 156
Deleting Elements from an XML Document 158

LINQ to XML and LINQ to SQL. 160
Summary. 163

■CONTENTSviii

■FABIO CLAUDIO FERRACCHIATI is a senior consultant and a senior analyst/developer using Microsoft
technologies. He works for Brain Force (www.brainforce.com) in its Italian branch (www.brainforce.it).
He is a Microsoft Certified Solution Developer for .NET, a Microsoft Certified Application Developer for
.NET, and a Microsoft Certified Professional, and a prolific author and technical reviewer. Over the past
ten years he's written articles for Italian and international magazines and coauthored more than ten
books on a variety of computer topics.

About the Author

ix

There are many people I'd like to thank! Every person working for Apress deserves special thanks for
their kindness. In particular, my historical “virtual” friend, Ewan Buckingham, who suggested I write
this book, and Jim Huddleston, who gave me support, tips, and technical suggestions. Thanks to Kylie
Johnston for her great work behind the scenes. Thanks to Vidya Vrat Agarwal, the technical reviewer,
who helped me refine my book. Finally, I'd like to thank my friend Walter Folli, a very smart
analyst/developer, who helped me better understand my ORM issues.

Acknowledgments

xi

Introduction

xiii

Over the past 20 years object-oriented programming languages have evolved to become the premier
tools for enterprise application development. They've been augmented by frameworks, APIs, and rapid
application-development tools. Yet what's been missing is a way to intimately tie object-oriented pro-
grams to relational databases (and other data that doesn't exist as objects). The object paradigm is
conceptually different from the relational one and this creates significant impedance between the
objects programs use and the tables where data resides. ADO.NET provides a convenient interface to
relational data, but not an object-oriented one. For example, this pseudocode would be really cool:

// A class representing a table of employees
Employees e = new Employees();

// Set the row identifier to one
e.ID = 1;

// Retrieve the row where ID=1
e.Retrieve();

// Change the Name column value to Alan
e.Name = “Alan”;

// Modify the database data
e.Upate();

The pseudocode shows an object-oriented approach to data management; no query or SQL state-
ment is visible to developers. You need to think about only what you have to do, not how to do it. This
approach to combining object-oriented and relational technologies has been called the Object-Rela-
tional Mapping (ORM) model.

Although Microsoft has embedded ORM capabilities in its Dynamics CRM 3.0 application server
and should soon do the same in ADO.NET 3.0, it doesn't yet provide this programming model to .NET
developers. To run a simple SQL query, ADO.NET programmers have to store the SQL in a Command
object, associate the Command with a Connection object and execute it on that Connection object,
then use a DataReader or other object to retrieve the result set. For example, the following code is nec-
essary to retrieve the single row accessed in the pseudocode presented earlier.

// Specify the connection to the DB
SqlConnection c = new SqlConnection(…);

// Open the connection
c.Open();

// Specify the SQL Command
SqlCommand cmd = new SqlCommand(@"

SELECT
*

FROM
Employees e

WHERE
e.ID = @p0

");

// Add a value to the parameter
cmd.Parameters.AddWithValue("@p0", 1);

// Excute the command
DataReader dr = c.Execute(cmd);

// Retrieve the Name column value
while (dr.Read()) {

string name = dr.GetString(0);
}

// Update record using another Command object
…

// Close the connection
c.Close();

Not only is this a lot more code than the ORM code, but there's also no way for the C# compiler to
check our query against our use of the data it returns. When we retrieve the employee's name we have
to know the column's position in the database table to find it in the result. It's a common mistake to
retrieve the wrong column and get a type exception or bad data at run time.

ADO.NET moved toward ORM with strongly typed DataSets. But we still have to write the same
kind of code, using a DataAdapter instead of a Command object. The DataAdapter contains four Com-
mand objects, one for each database operation––SELECT, DELETE, INSERT, and UPDATE––and we have fill
the correct one with the appropriate SQL code.

.NET can also handle XML and nonrelational data sources, but then we have to know other ways to
query information, such as XPath or XQuery. SQL and XML can be made to work together but only by
shifting mental gears at the right time.

■INTRODUCTIONxiv

What Is LINQ?
At the Microsoft Professional Developers Conference (PDC) 2005, Anders Hejlsberg and his team pre-
sented a new approach, Language-Integrated Query (LINQ), that unifies the way data can be retrieved
in .NET. LINQ provides a uniform way to retrieve data from any object that implements the IEnumer-
able<T> interface. With LINQ, arrays, collections, relational data, and XML are all potential data
sources.

Why LINQ?
With LINQ, you can use the same syntax to retrieve data from any data source:

var query = from e in employees
where e.id == 1
select e.name

This is not pseudocode; this is LINQ syntax, and it's very similar to SQL. The LINQ team's goal was
not to add yet another way to access data, but to provide a native, integrated set of instructions to
query any kind of data source. Using C# keywords, we can write data access code as part of C#, and the
C# compiler will be able to enforce type safety and even logical consistency. LINQ provides a rich set of
instructions to implement complex queries that support data aggregation, joins, sorting, and much
more.

Figure 1 presents an overview of LINQ functionality. The top level shows the languages that pro-
vide native support for LINQ. Currently, only C# 3.0 and Visual Basic 9.0 offer complete support for
LINQ.

The middle level represents the three main parts of the LINQ project:

LINQ to Objects is an API that provides methods that represent a set of standard query operators
(SQOs) to retrieve data from any object whose class implements the IEnumerable<T> interface.
These queries are performed against in-memory data.

LINQ to ADO.NET augments SQOs to work against relational data. It is composed of three parts
(which appear at the bottom level of Figure 1): LINQ to SQL (formerly DLinq) is use to query rela-
tional databases such as Microsoft SQL Server. LINQ to DataSet supports queries by using
ADO.NET data sets and data tables. LINQ to Entities is a Microsoft ORM solution, allowing devel-
opers to use Entities (an ADO.NET 3.0 feature) to declaratively specify the structure of business
objects and use LINQ to query them.

LINQ to XML (formerly XLinq) not only augments SQOs but also includes a host of XML-specific
features for XML document creation and queries.

■INTRODUCTION xv

Figure 1. Data domains in which LINQ adds functionality

■Note I don't cover LINQ to Entities because the ADO.NET Entity Framework is an ADO.NET 3.0 feature, and is not yet
as mature as other technologies that can be used with LINQ.

Now let's see what you need to work with LINQ.

What You Need to Use LINQ
LINQ is a combination of extensions to .NET languages and class libraries that support them. To use it,
you'll need the following:

• LINQ, which is available from the LINQ Project website at
http://msdn.microsoft.com/data/ref/linq. I've used the May 2006 CTP for this book.

• NET 2.0 running on Windows 2000 (Service Pack 4), Windows Server 2003, Windows XP Pro (Ser-
vice Pack 2), or Windows Vista.

• To write C# programs using LINQ, you need either Visual Studio 2005 or Visual C# 2005 Express
Edition.

• To use LINQ to ADO.NET, you need SQL Server 2005, SQL Server 2005 Express Edition, or SQL
Server 2000.

• If you want to use LINQ with .NET 3.0 (originally WinFX), you need the WinFX Runtime Beta 2.

■INTRODUCTIONxvi

Resources
There's a lot of good material available about LINQ:

• The LINQ May 2006 CTP includes a complete set of documentation.

• The main LINQ Project site (http://msdn.microsoft.com/data/ref/linq) includes a Forums sec-
tion where thousands of developers discuss LINQ, ask for support, and report bugs.

• At http://shop.ecompanystore.com/mseventdvd/MSD_Shop.asp you can order the DVD that con-
tains full sessions from PDC 2005, where LINQ was unveiled.

• On the Channel 9 site (http://channel9.msdn.com), Anders Hejlsberg and his team are often
interviewed about LINQ issues and development.

What's Next?
This book contains three chapters, each dedicated to one of the main aspects of LINQ. The content
assumes you're comfortable with C# generics, delegates, and anonymous methods. You can learn and
use LINQ without a deep understanding of these topics, but the more you know about them the faster
you'll grasp LINQ's concepts and implementation.

Chapter 1 discusses LINQ to Objects, with a sample program that illustrates its major functionality.
Chapter 2 provides a complete description of LINQ to SQL (LINQ's components for accessing rela-

tional data) and its great functionalities. A rich sample program demonstrates its features.
Chapter 3 covers LINQ to XML (LINQ's components for accessing XML data). You'll see how to

generate XML from queries and interrogate XML documents to retrieve data by using LINQ syntax.

■INTRODUCTION xvii

CHAPTER 1

LINQ to Objects
In this chapter we’ll study LINQ fundamentals by exploring its features for
querying in-memory objects. We’ll start with some simple examples to get an
idea of what programming with LINQ to Objects involves, then we’ll look at
examples for all of LINQ’s standard query operators.

Introduction
Data domains are different from object domains. When we deal with objects
like arrays and collections, we use iteration to retrieve their elements. If we’re
looking for a particular element based on its content rather than its index, we
have to use a loop and process each element individually. For example, for an
array of strings there is no built-in method to retrieve all elements whose
length is equal to a particular value.

LINQ addresses this challenge by providing a uniform way to access data
from any data source using familiar syntax. It lets us focus on working with
data rather than on accessing it.

LINQ to Objects can be used with any class that implements the
IEnumerable<T> interface. Let’s look at how it works.

A Simple C# 3.0 LINQ to Objects Program

Listing 1-1 is a console program snippet that uses LINQ to Objects to display
a specific element in an array.

Listing 1-1. Using LINQ to Objects with List<T>

 List<Person> people = new List<Person> {

 { ID = 1, IDRole = 1, LastName = "Anderson", FirstName =

"Brad"},

 { ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"}

 };

2 firstPress: LINQ to Objects

Ferracchiati

 var query = from p in people

 where p.ID == 1

 select new { p.FirstName, p.LastName };

 ObjectDumper.Write(query);

In Listing 1-1 you define a collection of Person objects and insert a
couple of elements. List<T> is a generic class that implements
IEnumerable<T>, so it’s suitable for LINQ querying.

Next you declare a variable, query, to hold the result of a LINQ query.
Don’t worry about the var keyword right now; it will be discussed later in this
chapter, in “Implicitly Typed Local Variables.”

You initialize query to a LINQ’s query expression. The from clause
specifies a data source. The variable p represents an object in the people
collection. The where clause specifies a condition for selecting from the data
source. You want to retrieve just the person whose ID equals 1, so you
specify a Boolean expression, p.ID == 1. Finally, the select clause specifies
what Person data you’re interested in retrieving.

The ObjectDumper class is a convenient utility for producing formatted
output. It has only one method, Write(), which has three overloads. (Both the
ObjectDumper.cs source code and the ObjectDumper.dll assembly come with
the LINQ download.)

When you run the program you’ll see the result in Figure 1-1.

Figure 1-1. Using LINQ to query a list

This very simple example uses new features from C# 3.0. The first is a
query expression that is similar to the one used in SQL and allows developers
to use query language syntax that they are already accustomed to. When the
compiler finds a query expression in the code, it transforms that expression
into C# method calls. Listing 1-2 shows how the query expression in Listing
1-1 would be transformed.

Listing 1-2. Transformed LINQ to Object Code

 var query = people

 .Where(p => p.ID == 1)

firstPress: LINQ to Objects 3

Ferracchiati

 .Select(p => new { p.FirstName, p.LastName });

The from keyword has been removed, leaving just the collection, people,
against which to perform the query. The where and select clauses are
transformed into two method calls: Where<T>() and Select<T>(),
respectively. They have been concatenated so that the Where method’s result
is filtered by the Select method.

You may wonder how this is possible. C# 2.0 doesn’t provide these
methods for the List<T> class. Moreover, LINQ runs on .NET 2.0 and
installing LINQ doesn’t replace any .NET 2.0 assemblies. The answer is
extension methods.

Extension Methods

As the name implies, extension methods extend existing .NET types with new
methods. For example, by using extension methods with a string, it’s possible
to add a new method that converts every space in a string to an underscore.
Listing 1-3 provides an example of an extension method.

Listing 1-3. An Extension Method

 public static string SpaceToUnderscore(this string source)

 {

 char[] cArray = source.ToCharArray();

 string result = null;

 foreach (char c in cArray)

 {

 if (Char.IsWhiteSpace(c))

 result += "_";

 else

 result += c;

 }

 return result;

 }

Here you define an extension method, SpaceToUnderscore(). To specify
an extension method you insert the keyword this before the first method
parameter, which indicates to the compiler the type you want to extend. Note
that the method and its class must be static. You can use
SpaceToUnderscore() just like any other string method.

4 firstPress: LINQ to Objects

Ferracchiati

Figure 1-2 shows the result of executing this method.

Figure 1-2. Calling an extension method

The Where<T> and Select<T> methods, that the where and select clauses
are transformed into are extension methods defined for the IEnumerable<T>
interface. They are in the System.Query namespace.

Note The May 2006 CTP LINQ installation includes the Sequence.cs file (in the Docs
directory). This file contains the source code for all the extension methods in the
System.Query namespace.

Simply by adding the new System.Query namespace, you can use LINQ
with any type that implements IEnumerable<T>. You don’t have to install a
new version of .NET or replace any existing assemblies. You do have to
consider a couple of things when implementing and using extension methods,
however:

• If you have an extension method and an instance method with the same
signature, priority is given to the instance method.

• Properties, events, and operators are not extendable.

Lambda Expressions

Another new C# 3.0 feature is lambda expressions. This feature simplifies
coding delegates and anonymous methods.

The argument to the Where<T> method we saw above is an example of a
lambda expression:

 Where(p => p.ID == 1)

Lambda expressions allow us to write functions that can be passed as
arguments to methods, for example, to supply predicates for subsequent
evaluation.

firstPress: LINQ to Objects 5

Ferracchiati

You could use code like that in Listing 1-4 to obtain the same result, but
the lambda expression syntax is simpler.

Listing 1-4. Alternative to Lambda Expression Syntax

 Func<Person, bool> filter = delegate(Person p) { return p.ID == 1; };

 var query = people

 .Where(filter)

 .Select(p => new { p.FirstName, p.LastName });

 ObjectDumper.Write(query);

Another advantage of lambda expressions is that they give you the ability to
perform expression analysis using expression trees.

Expression Trees

LINQ can treat lambda expressions as data at run time. The type
Expression<T> represents an expression tree that can be evaluated and
changed at run time. It is an in-memory hierarchical data representation
where each tree node is part of the entire query expression. There will be
nodes representing the conditions, the left and right part of the expression,
and so on.

Expression trees make it possible to customize the way LINQ works
when it builds queries. For example, a database provider not supported
natively by LINQ could provide libraries to translate LINQ expression trees
into database queries.

Listing 1-5 shows how to represent a lambda expression with an
expression tree.

Listing 1-5. Using an Expression Tree

 Expression<Func<Person, bool>> e = p => p.ID == 1;

 BinaryExpression body = (BinaryExpression)e.Body;

 MemberExpression left = (MemberExpression)body.Left;

 ConstantExpression right = (ConstantExpression)body.Right;

 Console.WriteLine(left.ToString());

 Console.WriteLine(body.NodeType.ToString());

 Console.WriteLine(right.Value.ToString());

6 firstPress: LINQ to Objects

Ferracchiati

First you define an Expression<T> variable, e, and assign it the lambda
expression you want to evaluate. Then you obtain the “body” of the
expression from the Body property of the Expression<T> object. Its Left and
Right properties contain the left and right operands of the expression.
Depending on the expression, those properties will assume the related type
expressed in the formula. In a more complex case you don’t know the type to
convert to, so you have to use a switch expression to implement any possible
case. In our example, to the left there is a member of the List<Person> type
while to the right there is a constant. You cast those properties to the
appropriate types.

Figure 1-3 shows the result of running the snippet in Listing 1-5.

Figure 1-3. Displaying a node of an expression tree

The result is clear; the Left property provides the left part of the
expression, p.ID. The Right property provides the right part of the expression,
1. Finally, the Body property provides a symbol describing the condition of
the expression. In this case EQ stands for equals.

Object Initialization Expressions

The code in Listing 1-1 used another C# 3.0 feature called object
initialization expressions:

 List<Person> persons = new List<Person> {

 { ID = 1, IDRole = 1, LastName = "Anderson", FirstName =

"Brad"},

 { ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"}

 };

Just like an array initializer, an object initialization expression allows us
to initialize a new object without calling its constructor and without setting its
properties. Let’s look at an example in Listing 1-6.

Listing 1-6. Using an Object Initialization Expression

firstPress: LINQ to Objects 7

Ferracchiati

 // The standard object creation and initialization

 Person p1 = new Person();

 p1. FirstName = "Brad";

 p1.LastName = "Anderson";

 ObjectDumper.Write(p1);

 // The object initialization expression

 Person p2 = new Person { FirstName="Tom", LastName = "Gray" };

 ObjectDumper.Write(p2);

With object initialization expressions you can create an object directly
and set its properties using just one statement. However, you can also write
code like in Listing 1-4 without specifying the class you are instantiating.

 .Select(p => new { p.FirstName, p.LastName }

It’s not an error; it’s another new feature called anonymous types, and I’ll
cover it next.

Anonymous Types

In Listing 1-1, note that no type was specified after the new keyword in the
object initialization expression. The compiler created a locally scoped
anonymous type for us.

Anonymous types let us work with query results on the fly without having
to explicitly define classes to represent them. When the compiler encountered

 select new { p.FirstName, p.LastName };

in Listing 1-1 it transparently created a new class with two properties, one for
each parameter (see Listing 1-7).

8 firstPress: LINQ to Objects

Ferracchiati

Listing 1-7. A Class for an Anonymous Type

internal class ???

{

 private string _firstName;

 private string _lastName;

 public string FirstName {

 get { return _firstName; }

 set { firstName = value; }

 }

 public string LastName {

 get { return _lastName; }

 set { lastName = value; }

 }

}

As you can see in Listing 1-7, the property names are taken directly from
the fields specified in the Person class. However, you can indicate the
properties for the anonymous type explicitly using the following syntax:

new { firstName = p.FirstName, lastName = p.LastName };

Now to use the anonymous type in the code you have to respect the new
names and the case-sensitive syntax. For example, to print the full name you
would use the following:

Console.WriteLine(“Full Name = {0} {1}”, query.firstName, query.lastName);

Keep in mind that the anonymous type itself cannot be referenced from
the code. How is it possible to access the results of a query if you don’t know
the name of the new type? The compiler handles this for you by inferring the
type. We’ll look at this next.

Implicitly Typed Local Variables

A new keyword, var, has been added to C#. When the compiler sees it, it
implicitly defines the type of the variable based on the type of expression that
initializes the variable. While its use is mandatory with anonymous types, it
can be applied even in other cases, such as the following:

firstPress: LINQ to Objects 9

Ferracchiati

• var i = 5; is equivalent to int i = 5;

• var s = "this is a string"; is equivalent to string s = "this is a string";

An implicitly typed local variable must have an initializer. For example,
the following declaration is invalid:

var s; // wrong definition, no initializer

As you can imagine, implicit typing is really useful for complex query
results because it eliminates the need to define a custom type for each result.

Note Implicitly typed local variables cannot be used as method parameters.

Query Evaluation Time

It is important to understand when the query is evaluated at run time. In
Listing 1-1 nothing happens in query execution until the ObjectDumper’s
Write method is called. Listing 1-8 looks at the code behind this method:

Listing 1-8. The Core Method of the ObjectDumper Helper Class

 private void WriteObject(string prefix, object o) {

 if (o == null || o is ValueType || o is string) {

 WriteIndent();

 Write(prefix);

 WriteValue(o);

 WriteLine();

 }

 else if (o is IEnumerable) {

 foreach (object element in (IEnumerable)o) {

 if (element is IEnumerable && !(element is string)) {

 WriteIndent();

 Write(prefix);

 Write("...");

 WriteLine();

 if (level < depth) {

 level++;

10 firstPress: LINQ to Objects

Ferracchiati

 WriteObject(prefix, element);

 level--;

 }

 }

 else {

 WriteObject(prefix, element);

 }

 }

 }

 else {

 MemberInfo[] members = o.GetType().GetMembers(

 BindingFlags.Public | BindingFlags.Instance);

 WriteIndent();

 Write(prefix);

 bool propWritten = false;

 foreach (MemberInfo m in members) {

 FieldInfo f = m as FieldInfo;

 PropertyInfo p = m as PropertyInfo;

 if (f != null || p != null) {

 if (propWritten) {

 WriteTab();

 }

 else {

 propWritten = true;

 }

 Write(m.Name);

 Write("=");

 Type t = f != null ? f.FieldType : p.PropertyType;

 if (t.IsValueType || t == typeof(string)) {

 WriteValue(

 f != null ? f.GetValue(o) : p.GetValue(o, null));

 }

 else {

 if (typeof(IEnumerable).IsAssignableFrom(t)) {

 Write("...");

 }

 else {

 Write("{ }");

 }

 }

 }

 }

 if (propWritten) WriteLine();

firstPress: LINQ to Objects 11

Ferracchiati

 if (level < depth) {

 foreach (MemberInfo m in members) {

 FieldInfo f = m as FieldInfo;

 PropertyInfo p = m as PropertyInfo;

 if (f != null || p != null) {

 Type t = f != null ? f.FieldType : p.PropertyType;

 if (!(t.IsValueType || t == typeof(string))) {

 object value =

 f != null ? f.GetValue(o) : p.GetValue(o, null);

 if (value != null) {

 level++;

 WriteObject(m.Name + ": ", value);

 level--;

 }

 }

 }

 }

 }

 }

 }

The Write method makes an internal call to the WriteObject private
method that is the real core of all the ObjectDumper class. In the first section
of the code it checks if the object is null, a string, or an object representing a
value type. In the case of a value type, an output is provided without other
checks. Instead, when the parameter object o implements the
IEnumerable<T> interface the method code goes through each element of the
parameter in order to check if other elements implement IEnumerable<T>. If
not, the object will be passed again to the same method, which will use .NET
Reflection to get its value.

The query expression is evaluated in the foreach statement. This behavior
is guaranteed by the yield keyword used in the methods (called standard
query operators in LINQ; see the next section) defined in the System.Query
namespace. For an example, let’s look at the Where<T> method body in
Listing 1-9:

Listing 1-9. The Body of the Where<T> Method Contained in the Sequence.cs
Class File

 public static IEnumerable<T> Where<T>(

 this IEnumerable<T> source, Func<T, bool> predicate)

 {

12 firstPress: LINQ to Objects

Ferracchiati

 if (source == null) throw Error.ArgumentNull("source");

 if (predicate == null) throw Error.ArgumentNull("predicate");

 return WhereIterator<T>(source, predicate);

 }

 static IEnumerable<T> WhereIterator<T>(

 IEnumerable<T> source, Func<T, bool> predicate)

 {

 foreach (T element in source) {

 if (predicate(element)) yield return element;

 }

 }

The Where<T> method calls the private WhereIterator<T> method after
having checked that both arguments are not null. (WhereIterator<T> is not
called if only one argument is null.) In the WhereIterator<T> method, the
yield keyword is used to collect the items that satisfy the condition expressed
with the predicate delegate function.

It’s possible to cache the result of a query using the ToList and ToArray
methods. Let’s look at the example in Listing 1-10:

Listing 1-10. The ToArray() Method in Action

 List<Person> people = new List<Person> {

 { ID = 1, IDRole = 1, LastName = "Anderson", FirstName =

"Brad"},

 { ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"}

 };

 var query = people

 .Where (p => p.ID == 1)

 .Select(p => new { p.FirstName, p.LastName })

 .ToArray();

 ObjectDumper.Write(query);

 people[0].FirstName = "Fabio";

 ObjectDumper.Write(query);

In Listing 1-10 the code caches the result of a query using the ToArray
method. As the output in Figure 1-4 shows, even if the code changes an

firstPress: LINQ to Objects 13

Ferracchiati

element of the List<T> collection, the query returns the same result since it
has been cached.

Figure 1-4. The output of the ToArray() example in Listing 1-10

Standard Query Operators

LINQ provides an API known as standard query operators (SQOs) to support
the kinds of operations we’re accustomed to in SQL. You’ve already used
C#’s select and where keywords, which map to LINQ’s Select and Where
SQOs—which, like all SQOs, are actually methods of the
System.Query.Sequence static class. Table 1-1 is a complete listing of
SQOs.

Table 1-1. LINQ Standard Query Operators Grouped by Operation

Operation Operator Description

Aggregate Aggregate Applies a function over a sequence

 Average Calculates the average over a

sequence

 Count/LongCount Counts the element of a sequence

 Max Returns the maximum value from a

sequence of numeric values

 Min Returns the minimum value from a

sequence of numeric values

 Sum Returns the sum of all numeric

values from a sequence

Concatenation Concat Merges elements from two

sequences

(Continued)

14 firstPress: LINQ to Objects

Ferracchiati

Operation Operator Description

Conversion Cast Casts an element of the sequence

into a specified type

 OfType Filters elements of a sequence,

returning only those of the specified

type

 ToArray Converts the sequence into an array

 ToDictionary Creates a Dictionary<K,E> from a

sequence

 ToList Creates a List<T> from a sequence

 ToLookup Creates a Lookup<K,T> from a

sequence

 ToSequence Returns its argument typed as
IEnumerable<T>

Element DefaultIfEmpty Provides a default element for an

empty sequence

 ElementAt Returns the element at the specified

index from a sequence

 ElementAtOrDefault Similar to ElementAt but also

returns a default element when the

specified index is out of range

 First Returns the first element in a

sequence

 FirstOrDefault Similar to First but also returns a

default element when the first

element in the sequence is not

available

 Last Returns the last element in a

sequence

firstPress: LINQ to Objects 15

Ferracchiati

Operation Operator Description

 LastOrDefault Similar to Last but also returns a

default element when the last

element in the sequence is not

available

 Single Returns a sequences single element

that satisfies a condition specified as

an argument

 SingleOrDefault Similar to Single but also returns a

default value when the single

element is not found in the sequence

Equality EqualAll Checks whether two sequences are

equal

Generation Empty Returns an empty sequence for the

specified data type

 Range Generates a numeric sequence from

a range of two numbers

 Repeat Generates a sequence by repeating

the provided element a specified

number of times

Grouping GroupBy Groups the elements of a sequence

Join GroupJoin Performs a grouped join of two

sequences based on matching keys

 Join Performs an inner join of two

sequences based on matching keys

Ordering OrderBy Orders the elements of the sequence

according to one or more keys

 OrderByDescending Similar to OrderBy but sorts the

sequence inversely

 Reverse Reverses the elements of the

sequence

(Continued)

16 firstPress: LINQ to Objects

Ferracchiati

Operation Operator Description

 ThenBy Useful for specifying additional

ordering keys after the first one

specified by either the OrderBy or

OrderByDescending operator

 ThenByDescending Similar to ThenBy but sorts the

sequence inversely

Partitioning Skip Skips a given number of elements

from a sequence and then yields the

remainder of the sequence

 SkipWhile Similar to Skip but the numbers of

elements to skip are defined by a

Boolean condition

 Take Takes a given number of elements

from a sequence and skips the

remainder of the sequence

 TakeWhile Similar to Take but the numbers of

elements to take are defined by a

Boolean condition

Projection Select Defines the elements to pick in a

sequence

 SelectMany Performs a one-to-many-elements

projection over a sequence

Quantifier All Checks all the elements of a

sequence against the provided

condition

 Any Checks whether any element of the

sequence satisfies the provided

condition

 Contains Checks for an element presence into

a sequence

Restriction Where Filters a sequence based on the

provided condition

firstPress: LINQ to Objects 17

Ferracchiati

Operation Operator Description

Set Distinct Returns distinct elements from a

sequence

 Except Produces a sequence that is the

difference between elements of two

sequences

 Intersect Produces a sequence resulting from

the common elements of two

sequences

 Union Produces a sequence that is the

union of two sequences

In the rest of this chapter we’ll examine each operator carefully, and

consider examples that illustrate the elements’ functionality. The examples
will be based on numeric sequences for operators that use numbers, and on
classes such as Person, Role, and Salary for operators that use more-complex
sequences. Listing 1-11 shows these classes.

Listing 1-11. The Person, Role, and Salary classes

 class Person

 {

 int _id;

 int _idRole;

 string _lastName;

 string _firstName;

 public int ID

 {

 get { return _id; }

 set { _id = value; }

 }

 public int IDRole

 {

 get { return _idRole; }

 set { _idRole = value; }

 }

18 firstPress: LINQ to Objects

Ferracchiati

 public string LastName

 {

 get { return _lastName; }

 set { _lastName = value; }

 }

 public string FirstName

 {

 get { return _firstName; }

 set { _firstName = value; }

 }

 }

 class Role

 {

 int _id;

 string _roleDescription;

 public int ID

 {

 get { return _id; }

 set { _id = value; }

 }

 public string RoleDescription

 {

 get { return _roleDescription; }

 set { _roleDescription = value; }

 }

 }

 class Salary

 {

 int _idPerson;

 int _year;

 double _salary;

 public int IDPerson

 {

 get { return _idPerson; }

 set { _idPerson = value; }

 }

firstPress: LINQ to Objects 19

Ferracchiati

 public int Year

 {

 get { return _year; }

 set { _year = value; }

 }

 public double SalaryYear

 {

 get { return _salary; }

 set { _salary = value; }

 }

 }

The Person class provides four properties, one of which is the matching
key with the second class, Role. The Role class provides two public
properties to store the role identifier and its description. The Salary class
provides the IDPerson foreign key to join to the Person class.

Let’s now look at all the operators, starting with the most used ones.

Restriction Operator

There is one restriction operator: Where.

Where

One of the most used LINQ operators is Where. It restricts the sequence
returned by a query based on a predicate provided as an argument.

public static IEnumerable<T> Where<T>(

 this IEnumerable<T> source, Func<T, bool> predicate);

public static IEnumerable<T> Where<T>(

 this IEnumerable<T> source, Func<T, int, bool> predicate);

The two forms differ in the second parameter, the predicate. It indicates
the condition that has to be checked for each element of a sequence. The
second form also accepts an int representing the zero-based index of the
element of the source sequence.

Both operators extend the IEnumerable<T> type. Let’s look at a couple of
examples.

20 firstPress: LINQ to Objects

Ferracchiati

The code snippet in Listing 1-12 uses Where (through the C# where
keyword) to retrieve every element in a sequence that has FirstName equal to
Brad. Figure 1-5 shows the output.

Listing 1-12. The Where Operator in Action

 List<Person> people = new List<Person> {

 { ID = 1, IDRole = 1, LastName = "Anderson", FirstName =

"Brad"},

 { ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"}

 };

 var query = from p in people

 where p.FirstName == "Brad"

 select p;

 ObjectDumper.Write(query);

Figure 1-5. The output of Listing 1-12

Listing 1-13 uses the second Where form.

Listing 1-13. Using Where with an Index

 List<Person> people = new List<Person> {

 { ID = 1, IDRole = 1, LastName = "Anderson", FirstName =

"Brad"},

 { ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"},

 { ID = 3, IDRole = 2, LastName = "Grant", FirstName = "Mary"}

 };

 var query = people

 .Where((p, index) => p.IDRole == index);

 ObjectDumper.Write(query);

In this case, the condition yields each sequence element whose index
equals IDRole. The people data source shows that this is true only for the last
element, as you can see in Figure 1-6.

firstPress: LINQ to Objects 21

Ferracchiati

Figure 1-6. The output for the Where example in Listing 1-13

Projection Operators

There are two projection one operators: Select and SelectMany.

Select

Just like SELECT in SQL, the Select operator specifies which elements are to
be retrieved.

public static IEnumerable<S> Select<T, S>(

 this IEnumerable<T> source, Func<T, S> selector);

public static IEnumerable<S> Select<T, S>(

 this IEnumerable<T> source, Func<T, int, S> selector);

Both operators extend the IEnumerable<T> type. They differ in the
second parameter. The first form accepts a selector function, where we can
define the element to pick; the second also accepts a zero-based index
indicating the position of the element in the sequence. Let’s look at a couple
of examples. The code snippet in Listing 1-14 returns all the elements from
the sequence, just like SELECT * in SQL. Figure 1-7 shows the output.

Listing 1-14. Using the First Form of Select

 List<Person> people = new List<Person> {

 { ID = 1, IDRole = 1, LastName = "Anderson", FirstName =

"Brad"},

 { ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"},

 { ID = 3, IDRole = 2, LastName = "Grant", FirstName = "Mary"}

 };

 var query = from p in people

 select p;

 ObjectDumper.Write(query);

22 firstPress: LINQ to Objects

Ferracchiati

Figure 1-7. The output of Listing 1-14

Listing 1-15 uses an index to specify the element position in the
sequence.

Listing 1-15. Using an Index with Select

 List<Person> people = new List<Person> {

 { ID = 1, IDRole = 1, LastName = "Anderson", FirstName =

"Brad"},

 { ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"},

 { ID = 3, IDRole = 2, LastName = "Grant", FirstName = "Mary"}

 };

 var query = people

 .Select(

 (p,index) => new { Position=index, p.FirstName, p.LastName }

);

 ObjectDumper.Write(query);

This code snippet creates an anonymous type, formed by the full name of
the person anticipated by the element position in the sequence. See Figure 1-8
for the output.

Figure 1-8. The output of Listing 1-15

SelectMany

This operator is similar to Select because it allows us to define the elements
to pick from a sequence. The difference is in the return type.

firstPress: LINQ to Objects 23

Ferracchiati

public static IEnumerable<S> SelectMany<T, S>(

 this IEnumerable<T> source, Func<T, IEnumerable<S>>

selector);

public static IEnumerable<S> SelectMany<T, S>(

 this IEnumerable<T> source, Func<T, int, IEnumerable<S>>

selector);

With the IEnumerable<S> type returned by the selector parameter of
SelectMany, it’s possible to concatenate many projection operations together,
either on different sequences or starting from the result of a previous query.

The SelectMany operator extends the IEnumerable<T> type. The selector
parameter has two formats: the first returns the IEnumerable<S> type and the
second also requires a zero-based index that specifies the position of the
element in the sequence. Listings 1-16 and 1-17 clarify the differences
between Select and SelectMany.

Listing 1-16. The SelectMany Method in Action

 List<Person> people = new List<Person> {

 { ID = 1, IDRole = 1, LastName = "Anderson", FirstName =

"Brad"},

 { ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"},

 { ID = 3, IDRole = 2, LastName = "Grant", FirstName = "Mary"}

 };

 List<Role> roles = new List<Role> {

 { ID = 1, RoleDescription = "Manager" },

 { ID = 2, RoleDescription = "Developer" }

 };

 var query = from p in people

 where p.ID == 1

 from r in roles

 where r.ID == p.IDRole

 select new { p.FirstName, p.LastName, r.RoleDescription };

 ObjectDumper.Write(query);

This code snippet obtains a result similar to a database join, where the
result of the first query is used in the other sequence to obtain the element
corresponding to the match condition. It’s interesting to analyze how the
compiler transforms the query expression pattern used in Listing 1-16 to

24 firstPress: LINQ to Objects

Ferracchiati

generate the operator method call (see Listing 1-17). Figure 1-9 shows the
output.

Listing 1-17. Listing 1-16 After Transformation

 var query = people

 .Where(p => p.ID == 1)

 .SelectMany(p => roles

 .Where(r => r.ID == p.ID)

 .Select(r => new {

 p.FirstName, p.LastName, r.RoleDescription}));

Figure 1-9. The output of Listings 1-16 and 1-17

SelectMany allows us to manage another sequence since it returns an
IEnumerable<S>, where S is the sequence. If we use the Select operator
instead of SelectMany, we will get an IEnumerable<List<T>>. This object is
not composed of the sequence but of List<T> elements.

Join Operators

There are two join operators: Join and GroupJoin.

Join

Like INNER JOIN in SQL, the Join operator combines two sequences based
on matching keys supplied as arguments. The Join operator is not overloaded.

public static IEnumerable<V> Join<T, U, K, V>(

 this IEnumerable<T> outer,

 IEnumerable<U> inner,

 Func<T, K> outerKeySelector,

 Func<U, K> innerKeySelector,

 Func<T, U, V> resultSelector);

The Join operator extends the IEnumerable<T> type. The first parameter
is one of the two sequences to join. It will be evaluated against the function
specified as the outerKeySelector parameter. The second parameter contains

firstPress: LINQ to Objects 25

Ferracchiati

the inner sequence used during the evaluation of the inner elements against
the function specified as the innerKeySelector parameter. For each matching
inner element the resultSelector function, specified as the last parameter, is
evaluated for the outer and inner element pair, and the resulting object is
returned. Listing 1-18 provides an example. Figure 1-10 shows the output.

Listing 1-18. The Join Operator in Action

 List<Person> people = new List<Person> {

 { ID = 1, IDRole = 1, LastName = "Anderson", FirstName =

"Brad"},

 { ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"},

 { ID = 3, IDRole = 2, LastName = "Grant", FirstName = "Mary"}

 };

 List<Role> roles = new List<Role> {

 { ID = 1, RoleDescription = "Manager" },

 { ID = 2, RoleDescription = "Developer" }

 };

 var query = from p in people

 join r in roles on p.IDRole equals r.ID

 select new { p.FirstName, p.LastName, r.RoleDescription };

 ObjectDumper.Write(query);

Figure 1-10. The output of Listing 1-18

GroupJoin

This operator is similar to Join but it returns the result in an IEnumerable<S>
where S is a new sequence.

public static IEnumerable<V> GroupJoin<T, U, K, V>(

 this IEnumerable<T> outer,

 IEnumerable<U> inner,

 Func<T, K> outerKeySelector,

26 firstPress: LINQ to Objects

Ferracchiati

 Func<U, K> innerKeySelector,

 Func<T, IEnumerable<U>, V> resultSelector);

This operator is really useful when we have to implement particular joins,
such as SQL’s LEFT OUTER join. Listing 1-19 provides and example:

Listing 1-19. GroupJoin in Action

 List<Person> people = new List<Person> {

 { ID = 1, IDRole = 1, LastName = "Anderson", FirstName =

"Brad"},

 { ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"},

 { ID = 3, IDRole = 2, LastName = "Grant", FirstName = "Mary"},

 { ID = 4, IDRole = 3, LastName = "Cops", FirstName = "Gary"}

 };

 List<Role> roles = new List<Role> {

 { ID = 1, RoleDescription = "Manager" },

 { ID = 2, RoleDescription = "Developer" }

 };

 var query = from p in people

 join r in roles on p.IDRole equals r.ID into pr

 from r in pr.DefaultIfEmpty()

 select new {

 p.FirstName,

 p.LastName,

 RoleDescription = r == null ?

 "No Role" : r.RoleDescription

 };

 ObjectDumper.Write(query);

In the code snippet in Listing 1-19 the join … into query expression is
used to group the join into a new sequence called pr. Since the new element
we introduced in the people sequence has a role identifier that doesn’t
correspond to any of Role elements in the roles sequence, an empty element
is returned. Using the DefaultIfEmpty method, we can replace each empty
element with the given ones. In this case no parameter has been provided, so
the empty element will be replaced with a null value. By checking this value
in the select command we can provide a custom description (“No Role” in our
case) when the code encounters null elements. See the output in Figure 1-11.

firstPress: LINQ to Objects 27

Ferracchiati

Figure 1-11. The output of Listing 1-19

Grouping Operator

There is one grouping operator: GroupBy.

GroupBy

Just like the GROUP BY clause of SQL, the GroupBy operator groups
elements of a sequence based on a given selector function.

public static IEnumerable<IGrouping<K, T>> GroupBy<T, K>(

 this IEnumerable<T> source,

 Func<T, K> keySelector);

public static IEnumerable<IGrouping<K, T>> GroupBy<T, K>(

 this IEnumerable<T> source,

 Func<T, K> keySelector,

 IEqualityComparer<K> comparer);

public static IEnumerable<IGrouping<K, E>> GroupBy<T, K, E>(

 this IEnumerable<T> source,

 Func<T, K> keySelector,

 Func<T, E> elementSelector);

public static IEnumerable<IGrouping<K, E>> GroupBy<T, K, E>(

 this IEnumerable<T> source,

 Func<T, K> keySelector,

 Func<T, E> elementSelector,

 IEqualityComparer<K> comparer);

Each GroupBy operator returns an IEnumerable<IGrouping<K, E>>. Let’s
look at how IGrouping<K, T> is declared:

public interface IGrouping<K, T> : IEnumerable<T>

{

28 firstPress: LINQ to Objects

Ferracchiati

 K Key { get; }

}

This interface implements IEnumerable<T> and adds a read-only
property called Key. When the code process launches the query (that is when
we are going to iterate through elements using a foreach statement) the
source parameter is enumerated and evaluated against the keySelector and
elementSelector functions (if specified). When every element has been
evaluated and each element that satisfies the selector functions has been
collected, new instances of the IGrouping<K, E> type are yielded. Finally, the
IEqualityComparer interface, when specified, allows us to define a new way
to compare elements of a sequence. Let’s look at the example in Listing 1-20.

Listing 1-20. An Example of GroupBy Using .NET Reflection

 var query = from m in typeof(int).GetMethods()

 select m.Name;

 ObjectDumper.Write(query);

 Console.WriteLine("-=-=-=-=-=-=-=-=-=");

 Console.WriteLine("After the GroupBy");

 Console.WriteLine("-=-=-=-=-=-=-=-=-=");

 var q = from m in typeof(int).GetMethods()

 group m by m.Name into gb

 select new {Name = gb.Key};

 ObjectDumper.Write(q);

The first query expression calls the GetMethods method provided by
.NET Reflection to retrieve the list of available methods for the int type.
Since GetMethods() returns a MethodInfo[] array LINQ query expressions
could use it easily too. The first part of the output shows the methods for the
int type without the grouping (see Figure 1-12). The second part of the code
snippet in Listing 1-20 uses the group by clause to group the elements by
method name. The result of the group by clause is inserted into the new
IGrouping<K, E> type that provides the Key property representing the by
argument of the group by operator. Since the method’s name has been
promoted to a grouping key, the Key property will be equal to the method’s
name.

firstPress: LINQ to Objects 29

Ferracchiati

Figure 1-12. The output of Listing 1-20

In Listing 1-21 I added the Count operator to compute the number of
method overloads.

Listing 1-21. Another Example of group by Clause

 var q = from m in typeof(int).GetMethods()

 group m by m.Name into gb

 select new {Name = gb.Key, Overloads = gb.Count()};

 ObjectDumper.Write(q);

The gb variable represents the result of the group by operation; it’s
possible to operate against this variable to filter its element, specify a where
clause, and so on. In this case the code snippet shows the result of counting
the number of elements for each key in the group. In this case it represents the
method’s overloads. See Figure 1-13 for the output.

30 firstPress: LINQ to Objects

Ferracchiati

Figure 1-13. The output of Listing 1-21

The last example for the grouping operator uses the comparer parameter,
which allows us to customize the behavior of the GroupBy method during its
work. See Listing 1-22.

Listing 1-22. The GroupBy Operator with a Custom Comparison Method

 public c lass MyComparer : IEqualityComparer<string>

 {

 public bool Equals(string x, string y) {

 return (x.Substring(0,2)) == (y.Substring(0,2));

 }

 public int GetHashCode(string obj) {

 return (obj.Substring(0,2)).GetHashCode();

 }

 }

 string[] dictionary = new string[] {"F:Apple", "F:Banana",

 "T:House", "T:Phone",

 "F:Cherry", "T:Computer"};

 var query = dictionary.GroupBy(d => d, new MyComparer());

 ObjectDumper.Write(query, 1);

The dictionary array contains two kinds of objects. The F: prefix stands
for fruit and the T: prefix stands for thing. We have defined a way to group
fruit with fruit and thing with thing. To create a custom comparer we have to
define a new class that implements the IEqualityComparer<T> interface. The
contract subordinated by this interface forces us to implement two methods:
Equals and GetHashCode. For Equals we have to insert the custom logic for
our comparer. GetHashCode has to return the hash code for the same string
checked in the Equals method. In Listing 1-22 we have a simple way to check

firstPress: LINQ to Objects 31

Ferracchiati

the category of the strings. By analyzing their first two characters we know
that F: stands for fruit and T: stands for thing. We simply have to check that
both strings provided to the Equals method contain the same substring. Figure
1-14 shows the output for Listing 1-22.

Figure 1-14. We have grouped fruits and things.

Ordering Operators

There are five ordering operators: OrderBy, OrderByDescending, ThenBy,
ThenByDescending, and Reverse.

OrderBy and OrderByDescending

Like ORDER BY and ORDER BY DESC in SQL, the OrderBy and
OrderByDescending operators order elements of a sequence according to a
given key. The OrderByDescending operator inverts the ordering.

public static OrderedSequence<T> OrderBy<T, K>(

 this IEnumerable<T> source,

 Func<T, K> keySelector);

public static OrderedSequence<T> OrderBy<T, K>(

 this IEnumerable<T> source,

 Func<T, K> keySelector,

 IComparer<K> comparer);

public static OrderedSequence<T> OrderByDescending<T, K>(

 this IEnumerable<T> source,

 Func<T, K> keySelector);

public static OrderedSequence<T> OrderByDescending<T, K>(

 this IEnumerable<T> source,

 Func<T, K> keySelector,

32 firstPress: LINQ to Objects

Ferracchiati

 IComparer<K> comparer);

The keySelector parameter is used to extract the elements from the
sequence. When specified the comparer parameter compares the elements.
When the code processes the query, the method collects all the elements and
evaluates each of them against the keySelector. Finally, an
OrderedSequence<T> type is produced. This is similar to IEnumerable<T>
except that it doesn’t provide public methods. Listing 1-23 provides an
example.

Listing 1-23. This Code Snippet Adds the orderby Operator to the .NET
Reflection Example

 var q = from m in typeof(int).GetMethods()

 orderby m.Name

 group m by m.Name into gb

 select new {Name = gb.Key};

 ObjectDumper.Write(q);

The code snippet in Listing 1-23 retrieves the int type’s methods ordered
by their names. See Figure 1-15 for the output.

Figure 1-15. The output for Listing 1-23

To obtain descending order, you simply add the descending keyword.

 orderby m.Name descending

ThenBy and ThenByDescending

As you saw in the previous section, orderby allows us to specify only one
ordering key. We have to use either ThenBy or ThenByDescending to
concatenate ordering-key values.

firstPress: LINQ to Objects 33

Ferracchiati

public static OrderedSequence<T> ThenBy<T, K>(

 this OrderedSequence<T> source,

 Func<T, K> keySelector);

public static OrderedSequence<T> ThenBy<T, K>(

 this OrderedSequence<T> source,

 Func<T, K> keySelector,

 IComparer<K> comparer);

public static OrderedSequence<T> ThenByDescending<T, K>(

 this OrderedSequence<T> source,

 Func<T, K> keySelector);

public static OrderedSequence<T> ThenByDescending<T, K>(

 this OrderedSequence<T> source,

 Func<T, K> keySelector,

 IComparer<K> comparer);

Just like in the OrderBy operators, the first argument is the source
sequence whose elements are evaluated against the keySelector parameter.
Listing 1-24 shows a more complete OrderBy/ThenBy example.

Listing 1-24. The OrderBy and ThenBy Operators

 List<Person> people = new List<Person> {

 { ID = 1, IDRole = 1, LastName = "Anderson", FirstName =

"Brad"},

 { ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"},

 { ID = 3, IDRole = 2, LastName = "Grant", FirstName = "Mary"},

 { ID = 4, IDRole = 3, LastName = "Cops", FirstName = "Gary"}

 };

 var query = from p in people

 orderby p.FirstName, p.LastName

 select p;

 ObjectDumper.Write(query);

When the compiler encounters the query pattern in Listing 1-24 it
transforms the first argument of the orderby operator to a call to the OrderBy()
method, and transforms every other parameter after the comma to a related
ThenBy() method call.

 var query = people.

34 firstPress: LINQ to Objects

Ferracchiati

 OrderBy(p => p.FirstName).

 ThenBy(p => p.LastName);

Figure 1-16 shows the output of this code snippet.

Figure 1-16. The output of the ordered sequence shown in Listing 1-24

The last example on the ordering operators uses the comparer function
(see Listing 1-25).

Listing 1-25. Using the comparer Function to Customize the Ordering Behavior

 public c lass MyOrderingComparer : IComparer<string>

 {

 public int Compare(string x, string y)

 {

 x = x.Replace("_",string.Empty);

 y = y.Replace("_",string.Empty);

 return string.Compare(x, y);

 }

 }

 string[] dictionary = new string[] {"Apple", "_Banana", "Cherry"};

 var query = dictionary.OrderBy(w => w, new

MyOrderingComparer());

 ObjectDumper.Write(query);

To use the comparer parameter function we have to create a new class
that implements the IComparer<T> interface. Its contract forces us to define
the Compare() method, then add the comparing logic. In the code snippet in
Listing 1-25 we want to treat the underscored string as a normal string when
the ordering is implemented. So just before the Compare() method is called in
the comparer function, we will remove each underscore from the source
strings. See the output in Figure 1-17.

firstPress: LINQ to Objects 35

Ferracchiati

Figure 1-17. A custom comparer function allows us to change the ordering of the
strings.

Note The May 2006 CTP release doesn’t provide support for ordering operators with
Visual Studio 2005 IntelliSense.

Reverse

This method simply returns a new sequence with elements in reverse ordering
of the source sequence.

public static IEnumerable<T> Reverse<T>(

 this IEnumerable<T> source);

When the code processes the query expression, the method enumerates
the elements of the source sequence, collecting them in an IEnumerable<T>
type. Before the method returns the result it inverts the ordering of the
elements in the sequence.

Aggregate Operators

There are seven aggregate operators: Count, LongCount, Sum, Min, Max,
Average and Aggregate.

Count and LongCount

Those methods return the number of elements within a sequence. The
difference between them is in the return type. The Count() method returns an
integer and the LongCount() method returns a long type. Let’s see the
methods’ prototypes:

public static int Count<T>(

 this IEnumerable<T> source);

36 firstPress: LINQ to Objects

Ferracchiati

public static int Count<T>(

 this IEnumerable<T> source,

 Func<T, bool> predicate);

public static long LongCount<T>(

 this IEnumerable<T> source);

public static long LongCount<T>(

 this IEnumerable<T> source,

 Func<T, bool> predicate);

Both methods have two different prototypes. The former, without the
predicate parameter, checks the type of the source parameter. If it implements
the ICollection<T> type then its Count method is used. If it doesn’t, the
source sequence is enumerated, incrementing a number that represents the
final count value. The latter uses the predicate function parameter returning
the count of elements against which the specified condition is true.

We have already used the Count operator in the “Grouping Operators”
section; see Listing 1-21 for an example of the Count operator.

Sum

The Sum method computes the sum of numeric values within a sequence.

public static Numeric Sum(

 this IEnumerable<Numeric> source);

public static Numeric Sum<T>(

 this IEnumerable<T> source,

 Func<T, Numeric> selector);

The Numeric type returned from the Sum() method must be one of the
following: int, int?, long, long?, double, double?, decimal, or decimal?.

Note The ? suffix to the primitive type name specifies that a variable of that type can
contain null values. This feature was added to .NET 2.0 to provide greater compatibility with
NULLABLE columns in database tables.

firstPress: LINQ to Objects 37

Ferracchiati

The first prototype without the selector parameter computes the sum of
the elements in the sequence. When the selector parameter is used it picks the
specified element of the sequence on which computing the sum will start. The
Sum operator does not include null values in the result, which means a zero
will be returned for an empty sequence (see Listing 1-26).

Listing 1-26. A Code Snippet for the Sum Operator

 int[] numbers = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };

 var query = numbers.Sum();

 ObjectDumper.Write(query);

The output for the code snippet in Listing 1-26 will be the sum of all the
elements in the sequence: 45.

Another great use for the Sum operator is to have it work with the
GroupBy operator to obtain total salary amounts, like the one shown in
Listing 1-27.

Listing 1-27. Using Sum and GroupBy Operators to Obtain Salary Results

 List<Person> people = new List<Person> {

 { ID = 1, IDRole = 1, LastName = "Anderson", FirstName =

"Brad"},

 { ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"},

 { ID = 3, IDRole = 2, LastName = "Grant", FirstName = "Mary"},

 { ID = 4, IDRole = 3, LastName = "Cops", FirstName = "Gary"}

 };

 List<Salary> salaries = new List<Salary> {

 { IDPerson = 1, Year = 2004, SalaryYear = 10000.00 },

 { IDPerson = 1, Year = 2005, SalaryYear = 15000.00 },

 };

 var query = from p in people

 join s in salaries on p.ID equals s.IDPerson

 select new { p.FirstName, p.LastName, s.SalaryYear };

 var querySum = from q in query

 group q by q.LastName into gp

 select new {LastName = gp.Key, TotalSalary = gp.Sum(q

=> q.SalaryYear) };

 ObjectDumper.Write(querySum,1);

38 firstPress: LINQ to Objects

Ferracchiati

The salaries collection contains the total salary per year. The record is
related to the people collection through the IDPerson attribute.

The first query joins the two sequences, returning a new anonymous type
composed of a person’s name and salary. The result is processed again by
another query expression, which groups by the LastName attribute and
returns a new anonymous type with the total salary for that person. See Figure
1-18 for the output.

Figure 1-18. The output for Listing 1-27

Min and Max

The Min() and Max() methods return the minimum and the maximum element
within a sequence, respectively.

public static Numeric Min(

 this IEnumerable<Numeric> source);

public static T Min<T>(

 this IEnumerable<T> source);

public static Numeric Min<T>(

 this IEnumerable<T> source,

 Func<T, Numeric> selector);

public static S Min<T, S>(

 this IEnumerable<T> source,

 Func<T, S> selector);

public static Numeric Max(

 this IEnumerable<Numeric> source);

public static T Max<T>(

 this IEnumerable<T> source);

public static Numeric Max<T>(

 this IEnumerable<T> source,

 Func<T, Numeric> selector);

public static S Max<T, S>(

firstPress: LINQ to Objects 39

Ferracchiati

 this IEnumerable<T> source,

 Func<T, S> selector);

When the code processes the query expression, the Min and Max
operators enumerate the source sequence and call the selector for each
element, finding the minimum and maximum. When no selector function is
specified, the minimum and the maximum are calculated by elements
themselves.

Listing 1-28 shows retrieval of the minimum and the maximum salary for
the Brad Anders person element.

Listing 1-28. Using the Min and Max Operators to Retrieve the Minimum and
Maximum Salary

 List<Person> people = new List<Person> {

 { ID = 1, IDRole = 1, LastName = "Anderson", FirstName =

"Brad"},

 { ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"},

 { ID = 3, IDRole = 2, LastName = "Grant", FirstName = "Mary"},

 { ID = 4, IDRole = 3, LastName = "Cops", FirstName = "Gary"}

 };

 List<Salary> salaries = new List<Salary> {

 { IDPerson = 1, Year = 2004, SalaryYear = 10000.00 },

 { IDPerson = 1, Year = 2005, SalaryYear = 15000.00 },

 };

 var query = from p in people

 join s in salaries on p.ID equals s.IDPerson

 where p.ID == 1

 select s.SalaryYear;

 Console.WriteLine("Minimum Salary:");

 ObjectDumper.Write(query.Min());

 Console.WriteLine("Maximum Salary:");

 ObjectDumper.Write(query.Max());

From the query expression we retrieve the salaries for the person that has
the identifier equal to 1 and then we apply the Min and Max operators to the
result. See Figure 1-19 for the output.

40 firstPress: LINQ to Objects

Ferracchiati

Figure 1-19. The Min and Max operators prompting the minimum and maximum
salary

Average

This operator computes the average of the elements within a sequence.

public static Result Average(

 this IEnumerable<Numeric> source);

public static Result Average<T>(

 this IEnumerable<T> source,

 Func<T, Numeric> selector);

The Result type returned from the preceding prototypes will be either a
double or double? type when the Numeric type is int and long or int? and
long?, respectively. When the Numeric type assumes other types, those will
be returned as is.

When the average is computed, if the sum of the elements is too large to
be contained in the Numeric type an overflow exception will be thrown.
Listing 1-29 shows the operator in action.

Listing 1-29. Using the Average Operator to Compute the Average of the Salary

 List<Person> people = new List<Person> {

 { ID = 1, IDRole = 1, LastName = "Anderson", FirstName =

"Brad"},

 { ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"},

 { ID = 3, IDRole = 2, LastName = "Grant", FirstName = "Mary"},

 { ID = 4, IDRole = 3, LastName = "Cops", FirstName = "Gary"}

 };

 List<Salary> salaries = new List<Salary> {

 { IDPerson = 1, Year = 2004, SalaryYear = 10000.00 },

 { IDPerson = 1, Year = 2005, SalaryYear = 15000.00 },

 };

firstPress: LINQ to Objects 41

Ferracchiati

 var query = from p in people

 join s in salaries on p.ID equals s.IDPerson

 where p.ID == 1

 select s.SalaryYear;

 Console.WriteLine("Average Salary:");

 ObjectDumper.Write(query.Average());

From the query expression we retrieve the salaries for the person that has
the identifier equal to 1 and then we apply the Average method to the result.
See Figure 1-20 for the output.

Figure 1-20. The output for Listing 1-29

Aggregate

This operator allows us to define a function used during the aggregation of
the elements of a sequence.

public static T Aggregate<T>(

 this IEnumerable<T> source,

 Func<T, T, T> func);

public static U Aggregate<T, U>(

 this IEnumerable<T> source,

 U seed,

 Func<U, T, U> func);

The difference between those two prototypes stands in the seed
parameter. When it is not specified the method uses the specified function to
aggregate the elements of the sequence, assuming the first element as seed.
When seed is specified the operator uses the seed value as a starting point for
applying the aggregate function. Let’s look at an example in Listing 1-30:

Listing 1-30. The Aggregate Method in Action

 int[] numbers = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };

 var query = numbers.Aggregate((a,b) => a * b);

 ObjectDumper.Write(query);

42 firstPress: LINQ to Objects

Ferracchiati

This code snippet uses the method without the seed parameter, so it takes
the first element, 1, as seed, multiplying it for each other element in the
sequence. The final result will be 362880.

In Listing 1-31 we will use the seed parameter.

Listing 1-31. The Aggregate Method Used with the seed Parameter

 int[] numbers = { 9, 3, 5, 4, 2, 6, 7, 1, 8 };

 var query = numbers.Aggregate(5, (a,b) => ((a < b) ? (a * b) : a));

 ObjectDumper.Write(query);

The method starts evaluating 5 with the first element in the sequence, 9.
Since we have defined a rule where the element in the sequence is multiplied
by the seed only if it is greater than the aggregated value, the method
multiplies those two values, producing 45. This new value will be greater
than any of the other elements in the sequence, so the final result will be 45.

Partitioning Operators

There are four partitioning operators: Take, Skip, TakeWhile, and SkipWhile.

Take

The Take method returns a given number of elements within a sequence and
ignores the rest.

public static IEnumerable<T> Take<T>(

 this IEnumerable<T> source,

 int count);

When the code processes the query expression, the source sequence is
enumerated. This yields elements until the count parameter value is reached.

The Take and Skip methods are really useful when you need to implement
a pagination-record mechanism. Listing 1-32 shows an easy approach to the
pagination of elements within a sequence.

Listing 1-32. Take and Skip Methods to Reproduce a Pagination Mechanism

 int[] numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9};

 var query = numbers.Take(5);

 ObjectDumper.Write(query);

 Console.Write("Press Enter key to see the other elements...");

firstPress: LINQ to Objects 43

Ferracchiati

 Console.ReadLine();

 var query2 = numbers.Skip(5);

 ObjectDumper.Write(query2);

The first query yields just the first five elements of the sequence. After
the Enter key is pressed another query is called, in which the Skip method
ignores the first five elements, prompting the rest (see Figure 1-21).

Figure 1-21. The output for Listing 1-32

Skip

This method skips a given number of elements within a sequence, yielding
the rest.

public static IEnumerable<T> Skip<T>(

 this IEnumerable<T> source,

 int count);

When the code processes the query expression the source sequence is
enumerated, skipping elements until the count parameter value is reached.

See Listing 1-32 and Figure 1-21 for a Skip-method example.

TakeWhile

This method returns the elements from a sequence while the predicate
function specified is true.

public static IEnumerable<T> TakeWhile<T>(

 this IEnumerable<T> source,

 Func<T, bool> predicate);

public static IEnumerable<T> TakeWhile<T>(

 this IEnumerable<T> source,

44 firstPress: LINQ to Objects

Ferracchiati

 Func<T, int, bool> predicate);

When the code processes the query expression the source sequence is
enumerated, testing each element against the predicate function. Each element
that satisfies the condition is yielded. The second prototype provides a zero-
based index related to the elements of the sequence.

Listing 1-33 provides an example of the TakeWhile and SkipWhile
methods.

Listing 1-33. The TakeWhile and SkipWhile Methods in Action

 int[] numbers = { 9, 3, 5, 4, 2, 6, 7, 1, 8 };

 var query = numbers.TakeWhile((n, index) => n >= index);

 ObjectDumper.Write(query);

 Console.Write("Press Enter key to see the other elements...");

 Console.ReadLine();

 var query2 = numbers.SkipWhile((n, index) => n >= index);

 ObjectDumper.Write(query2);

This code snippet uses the TakeWhile second prototype, where the index
of the elements of the sequence acts as a condition of the predicate function.
Until the element’s index is less than or equal to its own value, it is yielded.
The rest of the elements will be skipped. After the Enter key is pressed the
SkipWhile method is used with the same predicate condition to yield the other
elements. See Figure 1-22 for the resulting output.

Figure 1-22. The output for Listing 1-33

SkipWhile

The SkipWhile operator skips elements from a sequence while the predicate
function returns true, then it yields the rest.

public static IEnumerable<T> SkipWhile<T>(

firstPress: LINQ to Objects 45

Ferracchiati

 this IEnumerable<T> source,

 Func<T, bool> predicate);

public static IEnumerable<T> SkipWhile<T>(

 this IEnumerable<T> source,

 Func<T, int, bool> predicate);

Each source element is tested against the predicate function parameter.
The element will be skipped if the predicate function returns true. The second
prototype provides a zero-based index related to the elements of the sequence.

For an example of the SkipWhile method see Listing 1-33.

Concatenation Operator

There is one concatenation operator: Concat.

Concat

This operator concatenates two sequences.

public static IEnumerable<T> Concat<T>(

 this IEnumerable<T> first,

 IEnumerable<T> second);

The resulting IEnumerable<T> type is the concatenation of the first and
second sequences specified as a parameter.

In Listing 1-34 two numeric sequences are concatenated.

Listing 1-34. The Concat Method Used to Concatenate Two Numeric Sequences

 int[] numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9};

 int[] moreNumbers = {10, 11, 12, 13};

 var query = numbers.Concat(moreNumbers);

 ObjectDumper.Write(query);

Starting from the numbers sequence the Concat method appends the
moreNumbers sequence (see Figure 1-23).

46 firstPress: LINQ to Objects

Ferracchiati

Figure 1-23. The output of Listing 1-34

Element Operators

There are nine element operators: First, FirstOrDefault, Last, LastOrDefault,
Single, SingleOrDefault, ElementAt, ElementAtOrDefault, and
DefaultIfEmpty.

First, Last, FirstOrDefault, and LastOrDefault

These operators return the first/last element from a sequence.

public static T First<T>(

 this IEnumerable<T> source);

public static T First<T>(

 this IEnumerable<T> source,

 Func<T, bool> predicate);

public static T FirstOrDefault<T>(

 this IEnumerable<T> source);

public static T FirstOrDefault<T>(

 this IEnumerable<T> source,

 Func<T, bool> predicate);

public static T Last<T>(

 this IEnumerable<T> source);

public static T Last<T>(

 this IEnumerable<T> source,

firstPress: LINQ to Objects 47

Ferracchiati

 Func<T, bool> predicate);

public static T LastOrDefault<T>(

 this IEnumerable<T> source);

public static T LastOrDefault<T>(

 this IEnumerable<T> source,

 Func<T, bool> predicate);

When the predicate function parameter is specified, the method returns
the first/last element against which the predicate function is satisfied, and
therefore returns true. Otherwise the method returns simply the first/last
element in the sequence. Listing 1-35 provides some examples.

Listing 1-35. Examples of the First and Last Methods

 int[] numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9};

 var query = numbers.First();

 Console.WriteLine("The first element in the sequence");

 ObjectDumper.Write(query);

 query = numbers.Last();

 Console.WriteLine("The last element in the sequence");

 ObjectDumper.Write(query);

 Console.WriteLine("The first even element in the sequence");

 query = numbers.First(n => n % 2 == 0);

 ObjectDumper.Write(query);

 Console.WriteLine("The last even element in the sequence");

 query = numbers.Last(n => n % 2 == 0);

 ObjectDumper.Write(query);

In Listing 1-35 the First and Last methods are used to retrieve the first and
last element of the numeric sequence, respectively. Moreover, when the
predicate function is specified the First and Last methods return the first and
last even element, respectively (see Figure 1-24).

48 firstPress: LINQ to Objects

Ferracchiati

Figure 1-24. Sample output of the First and Last methods

Using the FirstOrDefault/LastOrDefault methods we would have obtained
the same results. However, when we use those methods and a predicate does
not find an element satisfying the specified condition, a default value is
returned (thereby avoiding retrieval of an exception). See the example in
Listing 1-36.

Listing 1-36. A FirstOrDefault/LastOrDefault Example

 int[] numbers = {1, 3, 5, 7, 9};

 var query = numbers.FirstOrDefault(n => n % 2 == 0);

 Console.WriteLine("The first even element in the sequence");

 ObjectDumper.Write(query);

 Console.WriteLine("The last odd element in the sequence");

 query = numbers.LastOrDefault(n => n % 2 == 1);

 ObjectDumper.Write(query);

Since no even numbers are in the sequence, FirstOrDefault returns the zero
default value. On the other hand, the LastOrDefault operator looks for the last
odd number in the sequence and finds the number 9. Figure 1-25 shows the
output.

Figure 1-25. The output for Listing 1-36

Single and SingleOrDefault

These methods return a single element picked from a sequence.

public static T Single<T>(

 this IEnumerable<T> source);

public static T Single<T>(

 this IEnumerable<T> source,

 Func<T, bool> predicate);

public static T SingleOrDefault<T>(

firstPress: LINQ to Objects 49

Ferracchiati

 this IEnumerable<T> source);

public static T SingleOrDefault<T>(

 this IEnumerable<T> source,

 Func<T, bool> predicate);

When the predicate function is specified it will be used against each
element until the function returns true. The element that satisfies the predicate
will be returned. If more than one element satisfies the predicate function, an
exception will be thrown. In Listing 1-37 just one element (9) satisfies the
predicate condition that the elements must be greater than 8.

Listing 1-37. An Example of Single with a Predicate Condition

 int[] numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9};

 var query = numbers.Single(n => n > 8);

 ObjectDumper.Write(query);

Using the Single method, if no element satisfies the predicate condition,
an exception is thrown. Using the SingleOrDefault method (see Listing 1-38)
either a null or zero value is returned when no element satisfies the predicate
function. The difference between the null and zero value depends on the
source type: null for reference types (i.e., strings) and zero for value types
(i.e., integers).

Listing 1-38. The SingleOrDefault Method in Action

 int[] numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9};

 var query = numbers.SingleOrDefault(n => n > 9);

 ObjectDumper.Write(query);

Since no numeric element is greater than nine, a zero value will be
returned.

ElementAt and ElementAtOrDefault

These methods return an element from the sequence at the specified zero-
based index.

public static T ElementAt<T>(

 this IEnumerable<T> source,

 int index);

50 firstPress: LINQ to Objects

Ferracchiati

public static T ElementAtOrDefault<T>(

 this IEnumerable<T> source,

 int index);

When the code processes the query expression the method checks if the
sequence implements the IList<T> type. If so the method uses the IList<T>
implementation to obtain the element; otherwise the sequence will be
enumerated until the index is reached.

Listing 1-39 uses ElementAt to retrieve the number 5 from the sequence.

Listing 1-39. Using ElementAt to Retrieve the Fifth Element

 int[] numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9};

 var query = numbers.ElementAt(4);

 ObjectDumper.Write(query);

When an invalid index is specified (i.e., an index less than zero) an
exception of type ArgumentNullException is thrown. On the other hand,
when using the ElementAtOrDefault method either a null or zero value will
be returned (see Listing 1-40).

Listing 1-40. ElementAtOrDefault in Action

 int[] numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9};

 var query = numbers.ElementAtOrDefault(9);

 ObjectDumper.Write(query);

Since the tenth element is out of range the zero default value is returned.

DefaultIfEmpty

This operator replaces an empty element with a default element in a sequence,
as in the following examples.

public static IEnumerable<T> DefaultIfEmpty<T>(

 this IEnumerable<T> source);

public static IEnumerable<T> DefaultIfEmpty<T>(

 this IEnumerable<T> source,

 T defaultValue);

If no default value parameter is specified, a null element will be yielded.
This method is useful to produce left outer joins. See Listing 1-19 for a code-
snippet sample.

firstPress: LINQ to Objects 51

Ferracchiati

Generation Operators

There are three generation operators: Range, Repeat, and Empty.

Empty

This operator returns an empty sequence of the specified type.

public static IEnumerable<T> Empty<T>();

When the IEnumerable<T> returned by the Empty<T> method is
enumerated it yields nothing. Listing 1-41 shows how to produce an empty
Person sequence:

Listing 1-41. An Empty Person Sequence Produced by the Empty<T> Method

 IEnumerable<Person> p = Sequence.Empty<Person>();

 ObjectDumper.Write(p);

The p variable contains no values, so the Write() method will not prompt
any information.

Range

This operator produces a range of numeric values.

public static IEnumerable<int> Range(

 int start,

 int count);

When the IEnumerable<int> type is enumerated it produces a sequence of
count elements starting from the start parameter value. In Listing 1-42 a
sequence of ten numbers will be generated.

Listing 1-42. A Numeric Sequence from 1 to 10 Is Generated

 ObjectDumper.Write(Sequence.Range(1, 10));

Repeat

This operator produces a sequence by repeating a value a given number of
times.

public static IEnumerable<T> Repeat<T>(

52 firstPress: LINQ to Objects

Ferracchiati

 T element,

 int count);

The T element parameter will be generated the number of times indicated
by the count parameter. In Listing 1-43 the first element of the Person
sequence (people) is repeated ten times.

Listing 1-43. The Repeat Method in Action

 List<Person> people = new List<Person> {

 { ID = 1, IDRole = 1, LastName = "Anderson", FirstName =

"Brad"},

 { ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"},

 { ID = 3, IDRole = 2, LastName = "Grant", FirstName = "Mary"},

 { ID = 4, IDRole = 3, LastName = "Cops", FirstName = "Gary"}

 };

 IEnumerable<Person> p = Sequence.Repeat(people[0], 10);

 ObjectDumper.Write(p);

Figure 1-26 shows the output for the Listing 1-43.

Figure 1-26. The output of Listing 1-43

Quantifier Operators

There are three quantifiers: All, Any, and Contains.

firstPress: LINQ to Objects 53

Ferracchiati

All

This operator uses the predicate function against the elements of a sequence
and returns true if all of them satisfy the predicate condition. Let’s see the
method’s prototype:

public static bool All<T>(

 this IEnumerable<T> source,

 Func<T, bool> predicate);

The source sequence is enumerated and each element is used against the
predicated function condition. If all of them satisfy the predicate condition
then a true value is returned. Listing 1-44 uses the predicate to understand if
all of sequence’s elements are even. The output is Yes, they are.

Listing 1-44. Using the All method to Find Out If All of a Sequence’s Elements
Are Even

 int[] numbers = { 2, 6, 24, 56, 102 };

 Console.WriteLine("Are those all even numbers?");

 ObjectDumper.Write(numbers.All(e => e % 2 == 0) ? "Yes, they

are" : "No, they aren't");

Any

This operator searches a sequence for elements that satisfy the specified
condition.

public static bool Any<T>(

 this IEnumerable<T> source);

public static bool Any<T>(

 this IEnumerable<T> source,

 Func<T, bool> predicate);

The predicate function is checked against each element of the source
sequence, and stops as soon as the condition is satisfied. When the predicate
parameter is not specified, the method returns a true value if the sequence is
not empty. Listing 1-45 uses the predicate to understand if at least one
element of the numeric sequence is odd. The output is No, there isn’t.

Listing 1-45. Using the Any Method to Search for an Odd Numeric Value

 int[] numbers = { 2, 6, 24, 56, 102 };

54 firstPress: LINQ to Objects

Ferracchiati

 Console.WriteLine("Is there at least oneodd number?");

 ObjectDumper.Write(numbers.Any(e => e % 2 == 1) ? "Yes, there

is" : "No, there isn't");

Contains

This operator looks for a specified type within the sequence and returns true
when the element is found.

public static bool Contains<T>(

 this IEnumerable<T> source,

 T value);

If the source sequence implements the ICollection<T> type then its
Contains method will be used to search for the specified value. Otherwise the
source sequence will be enumerated and each element will be compared to
the value parameter until the element is found or the enumeration is over. A
true value is returned when the element is found. If no element is found, a
false value is returned. Listing 1-46 searches for and finds the number 102
within the sequence, so the output is Yes, there is.

Listing 1-46. The Contains Method Searches for the Specified Value in the
Sequence.

 int[] numbers = { 2, 6, 24, 56, 102 };

 Console.WriteLine("Is there the number 102?");

 ObjectDumper.Write(numbers.Contains(102) ? "Yes, there is" : "No,

there isn't");

Equality Operator

There is one equality operator: EqualAll.

EqualAll

This operator compares two sequences and returns true when their elements
are equal.

public static bool EqualAll<T>(

 this IEnumerable<T> first,

 IEnumerable<T> second);

firstPress: LINQ to Objects 55

Ferracchiati

Under the hood the code uses the Equals method provided by the object
type to compare each element of the two sequences side by side. The method
will return a true Boolean value if both sequences contain the same elements
(see Listing 1-47.)

Listing 1-47. Using the EqualAll Method with Equal and Unequal Sequences

 int[] sequence1 = {1, 2, 3, 4, 5};

 int[] sequence2 = {1, 2, 3, 4, 5};

 Console.WriteLine("Are those sequence equal?");

 ObjectDumper.Write(sequence1.EqualAll(sequence2) ? "Yes, they

are" : "No, they aren't");

 int[] sequence3 = {1, 2, 3, 4, 5};

 int[] sequence4 = {5, 4, 3, 2, 1};

 Console.WriteLine("Are those sequence equal?");

 ObjectDumper.Write(sequence3.EqualAll(sequence4) ? "Yes, they

are" : "No, they aren't");

Listing 1-47 starts comparing two sequences, sequence1 and sequence2.
It compares the first element (1) of the first sequence with the first element
(1) of the second sequence. Since they are equal, the method moves on to the
other elements. The two sequences are equal, so the final output will be Yes,

they are.
The next two sequences are different because the first element of the

fourth sequence (1) is not equal to the first element of the fifth sequence (5).
A false value is returned immediately and the output of the code is No, they

aren’t.

Set Operators

There are four set operators: Distinct, Intersect, Union, and Except.

Note The May 2006 CTP version of the LINQ Project doesn’t provide support for null
elements in the Set operators. This will be implemented in the final version.

56 firstPress: LINQ to Objects

Ferracchiati

Distinct

This operator is similar to the DISTINCT keyword used in SQL; it eliminates
duplicates from a sequence.

public static IEnumerable<T> Distinct<T>(

 this IEnumerable<T> source);

When the code processes the query it enumerates the element of the
sequence, storing into an IEnumerable<T> type each element that has not
been stored previously. In Listing 1-48 the Distinct operator selects unique
values from the sequence. The output will be 1, 2, 3.

Listing 1-48. The Distinct Operator in Action

 int[] numbers = {1, 1, 2, 3, 3};

 ObjectDumper.Write(numbers.Distinct());

Intersect

This operator returns a sequence made by common elements of two different
sequences.

public static IEnumerable<T> Intersect<T>(

 this IEnumerable<T> first,

 IEnumerable<T> second);

The first sequence is enumerated and compared to the second one. Only
the common element will be collected and inserted into the IEnumerable<T>
return type. In Listing 1-49 the Intersect method compares two numeric
sequences and returns the common elements: 1 and 3.

Listing 1-49. The Intersect Method Used to Retrieve Common Elements in Two
Sequences

 int[] numbers = {1, 1, 2, 3, 3};

 int[] numbers2 = {1, 3, 3, 4};

 ObjectDumper.Write(numbers.Intersect(numbers2));

Union

This operator returns a new sequence formed by uniting the two different
sequences.

firstPress: LINQ to Objects 57

Ferracchiati

public static IEnumerable<T> Union<T>(

 this IEnumerable<T> first,

 IEnumerable<T> second);

The first sequence is enumerated and distinct elements are stored into an
IEnumerable<T> type. The second sequence is enumerated as well and the
elements not stored previously are added to the IEnumerable<T> return type.
In Listing 1-50 the Union operator returns an IEnumerable<int> type
composed of distinct elements from the two numeric sequences: 1, 3, 2, and
4.

Listing 1-50. The Union Operator in Action

 int[] numbers = {1, 1, 3, 3};

 int[] numbers2 = {1, 2, 3, 4};

 ObjectDumper.Write(numbers.Union(numbers2));

Note The Union operator doesn’t sort the numbers when it produces the
IEnumerable<T> return type.

Except

This operator produces a new sequence composed of the elements of the first
sequence not present in the second sequence.

public static IEnumerable<T> Except<T>(

 this IEnumerable<T> first,

 IEnumerable<T> second);

When the code processes the query expression it starts to enumerate the
first sequence, storing its distinct elements in an IEnumerable<T> type. Then
it enumerates the second sequence and removes the common elements into
the IEnumerable<T> type stored previously. Finally, it returns the processed
IEnumerable<T> type to the caller. The output for the example shown in
Listing 1-51 is 2, 4.

Listing 1-51. The Except Method in Action

 int[] numbers = {1, 2, 3, 4};

 int[] numbers2 = {1, 1, 3, 3};

58 firstPress: LINQ to Objects

Ferracchiati

 ObjectDumper.Write(numbers.Except(numbers2));

Conversion Operators

There are seven conversion operators: OfType, Cast, ToSequence, ToArray,
ToList, ToDictionary, and ToLookup.

OfType

This operator produces a new IEnumerable<T> type composed of only the
element of the specified type.

public static IEnumerable<T> OfType<T>(

 this IEnumerable source);

The operator enumerates the elements of the source sequence, searching
for those whose type is equal to T. Only those elements will be inserted in the
final IEnumerable<T> sequence that the OfType method returns. Listing 1-52
searches for the elements of double type in the sequence. The result is 2.0.

Listing 1-52. The OfType Searches for the Specified Type T in the Sequence.

 object[] sequence = {1, "Hello", 2.0};

 ObjectDumper.Write(sequence.OfType<double>());

Cast

This operator casts the elements of the sequence to a given type.

public static IEnumerable<T> Cast<T>(

 this IEnumerable source);

The operator enumerates the elements of the source sequence and casts its
elements to the T type. Those new elements are collected into a new
IEnumerable<T> type that will be returned. Listing 1-53 casts object type to
double type. The output will be 1.0, 2.0, 3.0.

Listing 1-53. The Cast Operator in Action

 object[] doubles = {1.0, 2.0, 3.0};

 IEnumerable<double> d = doubles.Cast<double>();

 ObjectDumper.Write(d);

firstPress: LINQ to Objects 59

Ferracchiati

ToSequence

This operator simply returns the typed sequence to a given IEnumerable<T>
type.

public static IEnumerable<T> ToSequence<T>(

 this IEnumerable<T> source);

This operator has no effect on the source sequence other than changing
the type to IEnumerable<T>. This could be useful to call a standard query
expression when a type implements its own query-expression methods.

ToArray

This operator returns an array composed of the elements of the source
sequence.

public static T[] ToArray<T>(

 this IEnumerable<T> source);

In Listing 1-54 the elements of the people sequence that have the
LastName length equal to 4 are retrieved and inserted into a string array.

Listing 1-54 does not use the ObjectDumper’s Write method; eliminating
it allowed me to demonstrate more clearly that the result of the query has
been converted into an array. The output is Gray, Cops.

Listing 1-54. The Query Result Is Inserted into an Array Using the ToArray
Operator.

 List<Person> people = new List<Person> {

 { ID = 1, IDRole = 1, LastName = "Anderson", FirstName =

"Brad"},

 { ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"},

 { ID = 3, IDRole = 2, LastName = "Grant", FirstName = "Mary"},

 { ID = 4, IDRole = 3, LastName = "Cops", FirstName = "Gary"}

 };

 var query = from p in people

 where p.LastName.Length == 4

 select p.LastName;

 string[] names = query.ToArray();

 for(int i=0; i<names.Length; i++)

60 firstPress: LINQ to Objects

Ferracchiati

 Console.WriteLine(names[i]);

ToList

This operator returns a List<T> type composed of the elements of the source
sequence.

public static List<T> ToList<T>(

 this IEnumerable<T> source);

In Listing 1-55 the result of the query is converted into a List<string> type.
The output of this code snippet is Gray, Cops.

Listing 1-55. The ToList Method in Action

 var query = from p in people

 where p.LastName.Length == 4

 select p.LastName;

 List<string> names = query.ToList<string>();

 ObjectDumper.Write(names);

ToDictionary

This operator returns a Dictionary<K, E> type composed of the elements of a
sequence.

public static Dictionary<K, T> ToDictionary<T, K>(

 this IEnumerable<T> source,

 Func<T, K> keySelector);

public static Dictionary<K, T> ToDictionary<T, K>(

 this IEnumerable<T> source,

 Func<T, K> keySelector,

 IEqualityComparer<K> comparer);

public static Dictionary<K, E> ToDictionary<T, K, E>(

 this IEnumerable<T> source,

 Func<T, K> keySelector,

 Func<T, E> elementSelector);

public static Dictionary<K, E> ToDictionary<T, K, E>(

 this IEnumerable<T> source,

firstPress: LINQ to Objects 61

Ferracchiati

 Func<T, K> keySelector,

 Func<T, E> elementSelector,

 IEqualityComparer<K> comparer);

The prototype with both keySelector and elementSelector parameters is
used to specify the elements of the sequence promoted to be the dictionary’s
key and value, respectively. When the elementSelector parameter is omitted
the value will be the element itself. Finally, the prototype with the comparer
parameter allows us to define a custom comparer function used during the
Dictionary<K, E> type construction.

In Listing 1-56 .NET Reflection and LINQ are used to retrieve the int
type’s methods, which will be inserted into a Dictionary<string, int> type.

Listing 1-56. Using ToDictionary() to Retrieve a Dictionary<string, int> Type

 var q = from m in typeof(int).GetMethods()

 group m by m.Name into gb

 select gb;

 Dictionary<string, int> d = q.ToDictionary(k => k.Key, k =>

k.Count());

The query groups the methods of the int type. The ToDictionary() method
is used to retrieve a dictionary with keys equal to the methods’ name, and
values equal to the methods’ overloads number.

ToLookup

This operator returns a Lookup<K, T> type composed of elements from the
source sequence.

public static Lookup<K, T> ToLookup<T, K>(

 this IEnumerable<T> source,

 Func<T, K> keySelector);

public static Lookup<K, T> ToLookup<T, K>(

 this IEnumerable<T> source,

 Func<T, K> keySelector,

 IEqualityComparer<K> comparer);

public static Lookup<K, E> ToLookup<T, K, E>(

 this IEnumerable<T> source,

 Func<T, K> keySelector,

62 firstPress: LINQ to Objects

Ferracchiati

 Func<T, E> elementSelector);

public static Lookup<K, E> ToLookup<T, K, E>(

 this IEnumerable<T> source,

 Func<T, K> keySelector,

 Func<T, E> elementSelector,

 IEqualityComparer<K> comparer);

public c lass Lookup<K, T> : IEnumerable<IGrouping<K, T>>

{

 public int Count { get; }

 public IEnumerable<T> this[K key] { get; }

 public bool Contains(K key);

 public IEnumerator<IGrouping<K, T>> GetEnumerator();

}

This new Lookup<K, T> type differs from Dictionary<K, E> type in the
implementation of the type itself. The former allows us to associate a key
with a sequence of values. The latter allows us to associate a key with a single
value.

The prototype with both keySelector and elementSelector parameters is
used to specify the elements of the sequence promoted to be the lookup’s key
and value, respectively. When the elementSelector parameter is omitted the
value will be the element itself. Finally, the prototype with the comparer
parameter allows us to define a custom comparer function used during the
Lookup<K, T> type construction.

Listing 1-57 creates a Lookup<string, Salary> type whose key is equal to
the Year element of the salaries sequence; the related value is the salary
element itself.

Listing 1-57. The ToLookup Method Converts the Query Expression Result into a
Lookup<string, Salary> Type.

 List<Person> people = new List<Person> {

 { ID = 1, IDRole = 1, LastName = "Anderson", FirstName =

"Brad"},

 { ID = 2, IDRole = 2, LastName = "Gray", FirstName = "Tom"},

 { ID = 3, IDRole = 2, LastName = "Grant", FirstName = "Mary"},

 { ID = 4, IDRole = 3, LastName = "Cops", FirstName = "Gary"}

 };

 List<Salary> salaries = new List<Salary> {

firstPress: LINQ to Objects 63

Ferracchiati

 { IDPerson = 1, Year = 2004, SalaryYear = 10000.00 },

 { IDPerson = 1, Year = 2005, SalaryYear = 15000.00 },

 };

 IEnumerable<Salary> q = from p in people

 where p.ID == 1

 from s in salaries

 where s.IDPerson == p.ID

 select s;

 Lookup<string, Salary> d = q.ToLookup(k => k.Year.ToString(), k =>

k);

Summary
This long chapter covered the two main parts of LINQ to Objects.

First you examined the new C# 3.0 features to support LINQ. You saw
how extension methods extend existing .NET types with new methods. You
saw how lambda expressions improve code readability and help us write
anonymous methods. You also saw other new features, such as anonymous
types and expression trees.

Then you examined all the standard query operators and saw them in code
examples to understand their functionality.

The next chapter covers LINQ to SQL, which is dedicated to querying
information from relational databases such as Microsoft SQL Server. The
query expression syntax you learned in this chapter is also used to query
databases.

CHAPTER 2

LINQ to ADO.NET
This chapter covers the following:

Mapping LINQ to databases. Classes, properties, and attributes tell
LINQ about database tables.

The DataContext class. This class supports LINQ’s ORM functionality.

Advanced features. LINQ to SQL supports advanced database features
such as transactions, optimist concurrency, stored procedure calls, and
more.

LINQ to SQL in Visual Studio. Support for LINQ to SQL, including
IntelliSense and debugging, are added to Visual Studio when LINQ is
installed.

LINQ to DataSet. LINQ to SQL is integrated into ADO.NET,
specifically with DataSet objects.

Introduction
In Chapter 1 we focused on the standard query operators, looking closely at
each method for querying and modifying objects. You now know everything
needed to query any data source. Whether data sources are in-memory
objects, relational databases, or XML, we use the same uniform syntax to
query them. An object is queryable as long as it implements the
IQueryable<T> or IEnumerable<T> interface.

LINQ to SQL implements the IQueryable<T> interface to convert query
expressions into Expression trees, which it transforms into SQL statements.

66 firstPress: LINQ to ADO.NET

Ferracchiati

Results are stored using a basic ORM model, so rows are placed in
objects created in our code. The LINQ to SQL run-time infrastructure can
track each change to our objects. To persist changes, we call a method, and
every tracked change will be propagated to the database.

LINQ to SQL is compatible with ADO.NET 2.0 classes such as
Connection and DataSet. You can easily integrate LINQ to SQL with
existing ADO.NET programs; hence this chapter’s title.

Database Interaction
LINQ to SQL introduces LINQ functionality for Microsoft SQL Server 2000
and 2005. Thanks to the IQueryable<T> interface, it’s theoretically possible
to create providers for other databases; at this stage it’s not easy, but in the
final release a more complete provider framework is expected.

LINQ to SQL defines new C# attributes, properties, and classes to let us
interact with SQL Server databases by mapping database objects to objects in
our programs. Three basic steps are required:

 1. Create classes for the tables in the database that you want to use,
decorating them with appropriate LINQ attributes.

 2. Decorate the fields and properties in these classes so LINQ can use
them and knows how to use them.

 3. Create a DataContext object to mediate between the database tables and
the classes that map to them..

The next three sections provide examples of each step.

firstPress: LINQ to ADO.NET 67

Ferracchiati

Mapping a Class to a Database Table

Mapping a class to a database table allows us to use LINQ against the table.
The Table attribute, defined in the System.Data.DLinq namespace, informs
LINQ about how to map a class to a database table.

Note In this chapter we use a database called People, which has the same structure as
the data source in Chapter 1 This allows you to focus on LINQ features and not on database
complexities. Instructions for creating the database are included in the downloadable source
code from the Source Code/Download area of www.apress.com. To run the code
examples, you must create the People database first.

The following code simply declares a new public class named Person and
associates it with the Person database table.

 [Table(Name="Person")]

 public c lass Person

The Table attribute’s Name property is optional. LINQ uses the class
name as the default table name.

Mapping Fields and Properties to Table Columns

Mapping fields and properties to table columns makes the columns available
to LINQ. Figure 2-1 shows the Person table’s structure. We want to make all
the columns available to LINQ as properties of the Person class. Note that the
first column is the primary key. It’s also an IDENTITY column, so SQL
Server automatically sets its value.

68 firstPress: LINQ to ADO.NET

Ferracchiati

Figure 2-1. The Person table’s structure

For each column we want to use with LINQ, we need to declare a
property and decorate it with the Column attribute. Since we’re using
properties, we also declare private fields for the underlying data. For the first
column, ID, we declare a field, _ID, and a property, ID.

 [Table(Name="Person")]

 public c lass Person

 {

firstPress: LINQ to ADO.NET 69

Ferracchiati

 private int _ID;

 [Column(Name="ID", Storage="_ID", DBType="int NOT NULL

IDENTITY",

 Id=true, AutoGen=true)]

 public int ID

 {

 get { return _ID; }

 set { _ID = value; }

 }

 }

The Column attribute has eight properties (see Table 2-1), all of which are
optional. We’ve used five of them. Name specifies the column name. DBType
specifies not only the column’s data type (int) but also that it’s not nullable
and is an IDENTITY column. The Id property indicates that the column is
part of the table’s primary key. AutoGen indicates that the column’s value is
generated by the database (which is true for all IDENTITY columns).

By default, LINQ uses a property’s set and get accessors, but we can
override this with the Storage property. For example, if we add the Storage
property to the Column attribute for ID as follows, LINQ will use the
underlying private field, _ID, instead of the accessors.

 [Column(Name="ID", Storage="_ID", DBType="int NOT NULL

IDENTITY",

 Id=true, AutoGen=true)]

 public int ID

 {

 get { return _ID; }

 set { _ID = value; }

 }

 }

Note LINQ can persist only class members marked with Column attributes.

Now declare the private fields and public properties for the rest of the
columns. The full class code is in Listing 2-1.

70 firstPress: LINQ to ADO.NET

Ferracchiati

Listing 2-1. The Person Class Smapped to the Person Table in the People

Database

 [Table(Name="Person")]

 public c lass Person

 {

 private int _ID;

 private int _IDRole;

 private string _lastName;

 private string _firstName;

 [Column(Name="ID", Storage="_ID", DBType="int NOT NULL

IDENTITY",

 Id=true, AutoGen=true)]

 public int ID

 {

 get { return _ID; }

 set { _ID = value; }

 }

 }

 [Column(Name="IDRole", Storage="_IDRole", DBType="int NOT

NULL")]

 public int IDRole

 {

 get { return _IDRole; }

 set { _IDRole = value; }

 }

 [Column(Name="LastName", Storage="_lastName",

DBType="nvarchar NOT NULL")]

 public string LastName

 {

 get { return _lastName; }

 set { _lastName = value; }

 }

 [Column(Name="FirstName", Storage="_firstName",

DBType="nvarchar NOT NULL")]

 public string FirstName

 {

 get { return _firstName; }

 set { _firstName = value; }

firstPress: LINQ to ADO.NET 71

Ferracchiati

 }

 }

Table 2-1. Column-Attribute Properties

Property Description

AutoGen Identifies a column whose value is
generated by the database. Usually we
will use this property in conjunction with
primary key columns defined with the
IDENTITY property.

DBType Specifies the column’s data type in the
database. If you omit this property,
LINQ will infer the type from the class
member. This property is mandatory
only if you want to use the
CreateDatabase method to create a
new database instance.

Id Specifies that a column is part of a
table’s primary (or unique) key. LINQ
currently works only with tables that
have primary (or unique) keys.

IsDiscriminator Indicates that the member holds the
discriminator value for an inheritance
hierarchy.

IsVersion Indicates the member is a database
timestamp or version number.

Name Specifies the column’s name in the
database. Defaults to the member name.

Storage Specifies the name of the private field
underlying a property. LINQ will bypass
the property’s get and set accessors and
use the field instead.

(Continued)

72 firstPress: LINQ to ADO.NET

Ferracchiati

Property Description

UpdateCheck Specifies how LINQ detects optimistic
concurrency conflicts. The possible
values are Always, Never, and
WhenChanged. If no member is
marked with IsVersion=true, all
members participate in detection unless
explicitly specified otherwise.

Creating a Data Context

A data context is an object of type System.Data.Dlinq.DataContext. It
supports database retrieval and update for objects known to LINQ. It handles
the database connection and implements the SQO for database access. To use
tables in LINQ, they must not only be mapped but must also be available in a
data context. You can make them available in two ways.

One way is to create a data context and then use it to create an object that
LINQ can use as a table. For example, the two lines

 DataContext PeopleDataContext = new DataContext(connString);

 Table<Person> People = PeopleDataContext.GetTable<Person>();

create a data context, PeopleDataContext, and a Table collection, People
(for the Person database table), available in that context.

A new generic collection class, Table<T>, in the System.Data.DLinq
namespace, is used to represent database tables. We used the data context’s
GetTable<T> method to create a People object of type Table<Person> in the
PeopleDataContext context. The argument to the DataContext constructor is
the same thing you provide an ADO.NET connection. Here is an example:

 String connString = @"

 Data Source=.;

 Initial Catalog=People;

 Integrated Security=True

 ";

The result is that our database is known to LINQ as PeopleDataContext
and the Person table is known as People.

firstPress: LINQ to ADO.NET 73

Ferracchiati

Note The Table<T> generic collection type implements IEnumerable<T> and
IQueryable<T> as well as ITable, which implements both IEnumerable and
IQueryable.

The other—and recommended—way is to use a strongly-typed data
context, like the following:

 public partial class PeopleDataContext : DataContext

 {

 public Table<Person> People;

 public PeopleDataContext(String connString) : base(connString) {}

 }

In this example we declare a class, PeopleDataContext, to represent the data
context. The class has a field, People, for the database table Person. The
constructor calls the DataContext base constructor with the connection string.

To use the strongly typed context, we’d instantiate it before performing
our first query, like this:

 PeopleDataContext people = new PeopleDataContext(connString);

In this case our database is known to LINQ as people and the Person table is
known as People.

We’ve now written all we need for LINQ to manage the Person database
table as the People collection. Querying it will be similar to what we did in
Chapter 1 to query in-memory objects.

Querying a Database with LINQ to SQL

The only difference in querying a database with respect to an in-memory
object is that we need to instantiate our data context before our first query. In
Listing 2-2, the first line of code in Main() does this.

Listing 2-2. The Main Class Containing the Code to Query the Database

 class Program

 {

 static void Main(string[] args)

 {

74 firstPress: LINQ to ADO.NET

Ferracchiati

 PeopleDataContext people = new PeopleDataContext();

 var query =

 from p in people.People

 from s in people.Salaries

 where p.ID == s.ID

 select new { p.LastName, p.FirstName, s.Year, s.SalaryYear };

 foreach(var row in query)

 {

 Console.WriteLine(

 "Name: {0}, {1} - Year: {2}",

 row.LastName,row.FirstName,row.Year);

 Console.WriteLine("Salary: {0}", row.SalaryYear);

 }

 }

 }

The DataContext is the two-way channel by which LINQ queries the
database and the results are turned into objects. Figure 2-2 shows the output
of the code in Listing 2-2.

Figure 2-2. The output is similar to examples from Chapter1 but this time data is

retrieved from a SQL Server database.

The DataContext class transforms the LINQ query into a SQL query. The
Log property of the DataContext class is an easy way to determine the SQL
query sent to the database. See the code snippet in Listing 2-3:

Listing 2-3. Displaying the SQL Query Sent by the Data Context

 PeopleDataContext people = new PeopleDataContext();

 people.Log = Console.Out;

 var query =

 from p in people.People

firstPress: LINQ to ADO.NET 75

Ferracchiati

 from s in people.Salaries

 where p.ID == s.ID

 select new { p.LastName, p.FirstName, s.Year, s.SalaryYear };

 foreach(var row in query)

 {

 Console.WriteLine(

 "Name: {0}, {1} - Year: {2}",

 row.LastName, row.FirstName, row.Year);

 Console.WriteLine("Salary: {0}", row.SalaryYear);

 }

The second line redirects the log to the console, as shown in Figure 2-3.

Figure 2-3. A SQL query sent by a data context

There are two other ways to see the SQL sent by LINQ. Use the
GetQueryText method of DataContext to see SELECT statements. The
method requires the LINQ query as an argument. The GetChangeText
method is used for INSERT, UPDATE, and DELETE statements and the SQL
is generated only after an object associated with a database table is modified.
Listing 2-4 shows these two methods in action.

Listing 2-4. Using GetQueryText and GetChangeText Methods to View SQL

Statements

 PeopleDataContext people = new PeopleDataContext();

 var query =

 from p in people.People

 from s in people.Salaries

 where p.ID == s.ID

 select new { p.LastName, p.FirstName, s.Year, s.SalaryYear };

 Console.WriteLine(people.GetQueryText(query));

76 firstPress: LINQ to ADO.NET

Ferracchiati

 Console.WriteLine();

 foreach(var row in query)

 {

 Console.WriteLine(

 "Name: {0}, {1} - Year: {2}",

 row.LastName, row.FirstName, row.Year);

 Console.WriteLine("Salary: {0}", row.SalaryYear);

 }

 Person person = new Person();

 person.IDRole = 1;

 person.FirstName = "From";

 person.LastName = "Code";

 people.People.Add(person);

 Console.WriteLine();

 Console.WriteLine(people.GetChangeText());

As you can see from the output shown in Figure 2-4, the INSERT
statement is followed by a SELECT instruction useful for retrieving the new
row identifier contained in the @@IDENTITY T-SQL variable.

Figure 2-4. Two other ways to retrieve the SQL statements built by LINQ

The INSERT statement is built by LINQ because the code adds a new row
into the People entity class contained in the PeopleDataContext class.

firstPress: LINQ to ADO.NET 77

Ferracchiati

Adding, Modifying, and Deleting Rows

As you can see in Listing 2-4, adding a new row consists of creating an object
of a class that maps to a table, setting its values, and calling the Add method
on the appropriate Table<T> instance.

This is a classic object-oriented approach—adding an object to a
collection—but this time you’re adding a row to a database table! You don’t
write any SQL; everything is handled transparently by the data context.
However, nothing happens in the database until you call the SubmitChanges
method shown in Listing 2-5.

Listing 2-5. The SubmitChanges Method Propagates Changes to the Database.

 PeopleDataContext people = new PeopleDataContext();

 Person person = new Person();

 person.IDRole = 1;

 person.FirstName = "From";

 person.LastName = "Code";

 people.People.Add(person);

 people.SubmitChanges();

 var query =

 from p in people.People

 select p;

 foreach(var row in query)

 {

 Console.WriteLine(

 "Name: {0}, {1}", row.LastName, row.FirstName);

 }

After the Add method has modified the Person table with a new row, the
SubmitChanges() method will contact the database and will execute the
related SQL statement. Also, the method will be able to substitute the generic
@p0, @p1, and @p2 placeholders with the related value contained in the
object. The output in Figure 2-5 shows that a new row has been added into
the database.

78 firstPress: LINQ to ADO.NET

Ferracchiati

Figure 2-5. A new row has been added from the code.

Let’s you’ll learn to modify and delete rows. To modify a row, we first
have to retrieve the row and change the values, as in Listing 2-6.

Listing 2-6. Modifing a Row with LINQ to SQL

 PeopleDataContext people = new PeopleDataContext();

 var person = people.People.Single(p => p.ID == 5);

 person.FirstName = "Name";

 person.LastName = "Modified";

 Console.WriteLine(people.GetChangeText());

 people.SubmitChanges();

In the code snippet, using the Single method we retrieve the unique row
whose ID is equal to 5. Then we change some attributes and call
SubmitChanges() to update the database table. Figure 2-6 shows the SQL
generated by LINQ.

Figure 2-6. The UPDATE statement built by the LINQ to SQL

As you can see, LINQ produces an UPDATE statement containing only
the columns changed in the code. The last SELECT is useful for retrieving the
number of rows affected by the updating process.

firstPress: LINQ to ADO.NET 79

Ferracchiati

Deleting a row is an easier process that doesn’t involve a round trip to the
database to first retrieve the row. We can use the Remove method of the
DataContext class, and specify the object previously set with the identifier
value that we want to remove from the table. Listing 2-7 shows the code.

Listing 2-7. Using the Remove() Method to Delete a Row from the Database

 PeopleDataContext people = new PeopleDataContext();

 Person person = new Person();

 person.ID = 5;

 people.People.Remove(person);

 Console.WriteLine(people.GetChangeText());

 people.SubmitChanges();

The code creates a new Person object and sets its primary key to the value
of the row we are going to remove. Finally, the object is passed to the
Remove method and the changes are submitted with the SubmitChanges()
method call.

DataContext: Advanced Features
We’ve focused our attention on the basic features provided by LINQ to SQL
(in the System.Data.DLinq.dll assembly). Data contexts have even more
features. In the next sections you’ll see how to define relationships between
entities, and the benefits of doing that.

Defining Relationships Between Entities

The first feature we’ll look at regards relationships between tables. A
relational database such as Microsoft SQL Server provides the capability to
define a relationship between two tables using primary and foreign keys. For
example, a table containing a list of orders could have a foreign key pointing
to a customers table. Using this relationship we can easily retrieve all the
records for a specific customer. Moreover, we can define the rules to apply to
the rows of related tables when some action occurs. For example, we can

80 firstPress: LINQ to ADO.NET

Ferracchiati

inform the database to remove every order row for a customer when the
related customer is removed.

The relationships between objects are defined in a different way. Usually
a class contains a collection of related objects from another class.

LINQ to SQL provides a relational-like way to define a relationship
between two entity classes. Thanks to new generic types such as
EntitySet<T> and EntityRef<T>, it’s possible to define the class members that
are involved in relationships.

The steps to implement relationships between entity classes are as
follows:

 1. Add an EntitySet<T> private field in the parent entity class to collect
the objects belonging to the child entity class.

 2. Add the property that encapsulates the access to this private field.
Additionally, we have to add the Association decoration to specify
some properties, such as the relation name and the keys involved in the
relation.

 3. Add the initialization of this private field using its two-parameter
constructor.

 4. Add an EntityRef<T> private field in the child entity class to retrieve
the instance of the parent entity object.

 5. Add the property that encapsulates the access to this private field.
Again, we have to add the Association attribute to the property.

 6. Add the initialization of this private field using the default constructor.

In the People database, the Person table has a foreign key, IDRole,
pointing to the primary key of the Role table. Using the LINQ to SQL
Association attribute (in the System.Data.DLinq namespace) with the Role
and Person class definitions, we can specify this kind of relationship between
these tables in our code. Let’s apply these steps to the Role and Person
classes. Listing 2-8 gives the code for the parent entity class, Role.

firstPress: LINQ to ADO.NET 81

Ferracchiati

Listing 2-8. The Role Entity Class

 [Table(Name="Role")]

 public c lass Role

 {

 private int _ID;

 private string _Description;

 private EntitySet<Person> _People;

 public Role() {

 _People = new EntitySet<Person>(

 new Notification<Person>(Attach_Person),

 new Notification<Person>(Detach_Person));

 }

 [Association(Name="FK_Person_Role",

 Storage="_People",

 OtherKey="IDRole")]

 public EntitySet<Person> People

 {

 get { return _People; }

 set { _People.Assign(value); }

 }

 private void Attach_Person(Person entity) {

 entity.Role = this;

 }

 private void Detach_Person(Person entity) {

 entity.Role = null;

 }

 [Column(Name="ID",

 Storage="_ID",

 DBType="int NOT NULL IDENTITY",

 Id=true,

 AutoGen=true)]

 public int ID

 {

 get { return _ID; }

 set { _ID = value; }

 }

82 firstPress: LINQ to ADO.NET

Ferracchiati

 [Column(Name="RoleDescription",

 Storage="_Description",

 DBType="nvarchar NOT NULL")]

 public string RoleDescription

 {

 get { return _Description; }

 set { _Description = value; }

 }

 }

The Role entity class represents the parent table. That’s why it has

 private EntitySet<Person> _People;

which contains the People objects that belong to a role.
The Role class has to define a public property that encapsulates the access

code to the EntitySet<Person> private field. Here is the code snippet for it:

 [Association(Name="FK_Person_Role",

 Storage="_People",

 OtherKey="IDRole")]

 public EntitySet<Person> People

 public EntitySet<Person> People

 {

 get { return _People; }

 set { _People.Assign(value); }

 }

The Assign method of EntitySet<T> sets the new value in the collection
so that the new object is monitored by LINQ to SQL and by its change-
tracking service.

The Association attribute informs LINQ to SQL about the relationship
name, the private field used to store the Person objects collection, and the
foreign key in the related table. The Association attribute provides the
ThisKey property too (see Table 2-2 for the full list of properties). It
represents the parent-table key related to the OtherKey. In our example,
ThisKey has been omitted because it coincides with the primary key and the
LINQ to SQL is able to infer its name automatically.

firstPress: LINQ to ADO.NET 83

Ferracchiati

Table 2-2: The Full List of the Association Attribute’s Properties

Property Description

Name Identifies the name of the relation.
Usually its value is the same as the name
of the foreign key constraint relation
name defined in the database. You have
to specify it if you plan to use the
CreateDatabase() method from the
DataContext class to create a new
database with this relation. You have to
use the same name in the entity class that
composes the relation with this one.

IsParent When set to true this property indicates
that the related entity class is the parent
class.

OtherKey Identifies a list of parent entity class keys
separated by commas. If the keys are not
specified, LINQ to SQL infers them, and
assumes they are equal to the primary
keys defined in the parent entity class.

Storage Storage contains the name of the private
field defined in the class. When
specifying this property, LINQ to SQL
will use the class’s field to access data
instead of using the related get and set
accessors.

ThisKey Identifies a list of keys of this entity class,
separated by commas. If the keys are not
specified, LINQ to SQL assumes they are
equal to the primary keys defined in this
class.

Unique When set to true this property indicates
that there will be a 1:1 relationship
between entities.

The next step is to initialize the private field using the Role class
constructor:

84 firstPress: LINQ to ADO.NET

Ferracchiati

 public Role() {

 _People = new EntitySet<Person>(

 new Notification<Person>(Attach_Person),

 new Notification<Person>(Detach_Person));

 }

We pass two delegate methods to the EntitySet<T> constructor. The
Attach_Person method will set the related Role object to the new Person
object. The Detach_Person method will set to null the related Role object in
the Person object:

 private void Attach_Person(Person entity) {

 entity.Role = this;

 }

 private void Detach_Person(Person entity) {

 entity.Role = null;

 }

In the child entity class related to the Person database table, we add a
private EntityRef<Role> field so we’ll be able to retrieve its role simply:

Console.WriteLine(person.Role.RoleDescription);

Next we have to add a public property containing the accessors to get and
set the private field value. In accordance with the steps listed earlier, we have
to use the Association attribute even with this public property. Here we
should define the same name used in the earlier example because LINQ to
SQL has to know that we are going to define the other side of the relation.
Moreover, using the ThisKey property we can specify the column name of the
child entity class related to the foreign key column of the database table.
Finally, the IsParent property set to true indicates that the related entity class
is the parent class.

Listing 2-9 shows how to modify the Person class to define the
relationship with the Role class:

Listing 2-9. The Person Class Modified to Include the Relationship with the Role

Class

 [Table(Name="Person")]

 public c lass Person

 {

 private int _ID;

 private int _IDRole;

firstPress: LINQ to ADO.NET 85

Ferracchiati

 private string _lastName;

 private string _firstName;

 public Person() {

 _Role = default(EntityRef<Role>);

 }

 [Column(Name="FirstName",

 Storage="_firstName",

 DBType="nvarchar NOT NULL")]

 public string FirstName

 {

 get { return _firstName; }

 set { _firstName = value; }

 }

 [Column(Name="LastName",

 Storage="_lastName",

 DBType="nvarchar NOT NULL")]

 public string LastName

 {

 get { return _lastName; }

 set { _lastName = value; }

 }

 [Column(Name="IDRole",

 Storage="_IDRole",

 DBType="int NOT NULL")]

 public int IDRole

 {

 get { return _IDRole; }

 set { _IDRole = value; }

 }

 [Column(Name="ID",

 Storage="_ID",

 DBType="int NOT NULL IDENTITY",

 Id=true,

 AutoGen=true)]

 public int ID

 {

 get { return _ID; }

 set { _ID = value; }

86 firstPress: LINQ to ADO.NET

Ferracchiati

 }

 private EntityRef<Role> _Role;

 [Association(Name="FK_Person_Role",

 Storage="_Role",

 ThisKey="IDRole",

 IsParent=true)]

 public Role Role

 {

 get { return _Role.Entity; }

 set {

 Role v = this._Role.Entity;

 if (v != value) {

 if (v != null) {

 this._Role.Entity = null;

 v.People.Remove(this);

 }

 this._Role.Entity = value;

 if ((value != null)) {

 value.People.Add(this);

 }

 }

 }

 }

 }

The following class constructor uses the default keyword applied to a
generic type to initialize its value:

 public Person() {

 _Role = default(EntityRef<Role>);

 }

The default keyword applied to a struct data type such as the
EntityRef<T> initializes every single field within the struct, setting the
reference data types to null and the numeric-value data types to zero.

In the set accessor we check if the value specified is different from the
one within the Entity property of the _Role field. If so, we have to remove the
old one before adding the new value. Finally, the Person object pointed by the
this keyword is added to the People collection to maintain referential
integrity:

firstPress: LINQ to ADO.NET 87

Ferracchiati

public Role Role

 {

 get { return _Role.Entity; }

 set {

 Role v = this._Role.Entity;

 if (v != value) {

 if (v != null) {

 this._Role.Entity = null;

 v.People.Remove(this);

 }

 this._Role.Entity = value;

 if ((value != null)) {

 value.People.Add(this);

 }

 }

 }

 }

Using Two Related Entity Classes

Now that we’ve defined the relationship between two entity classes we can
use it to query and modify data.

The code in Listing 2-10 retrieves a single Person object and then uses its
role.

Listing 2-10. Retrieving a Person and Using Its Role Property

 PeopleDataContext people = new PeopleDataContext();

 people.Log = Console.Out;

 var query =

 from p in people.People

 where p.ID == 1

 select p;

 foreach(var row in query)

 {

 Console.WriteLine(

88 firstPress: LINQ to ADO.NET

Ferracchiati

 "Full Name: {0} {1} Role: {2}",

 row.FirstName,

 row.LastName,

 row.Role.RoleDescription);

 }

We don’t need to the join the two tables to access the role. LINQ to SQL
generates two SQL queries to retrieve both the Person and related Role data.
See the two SQL statements in Figure 2-7.

Figure 2-7. The output of Listing 2-10

Note in Figure 2-7 that the @p0 parameter is used in both the queries.
They are two different queries, so the @p0 parameter has different values.
The @p0 parameter used in the first query is the value specified in the LINQ
query. The @p0 parameter used in the second query is the value specified
with the ThisKey property of the Association attribute used in the Role
property decoration.

In Listing 2-11 we’ll retrieve a role and then use its People property to
add a new person.

Listing 2-11. Adding a New Person to the Database Starting from a Role

 PeopleDataContext people = new PeopleDataContext();

 people.Log = Console.Out;

 Role role = people.Roles.Single(r => r.ID == 1);

 Person person = new Person();

 person.FirstName = "From";

 person.LastName = "Relationship";

 role.People.Add(person);

firstPress: LINQ to ADO.NET 89

Ferracchiati

 people.SubmitChanges();

Since there’s a relationship between the two entity classes, we don’t have
to specify the IDRole for the Person object. It will be assigned by the
Attach_Person delegate function when a new Person object is added to the
people collection of the Role entity class. Figure 2-8 shows the INSERT
statement generated by LINQ to SQL. Note that a local transaction is
automatically created for the INSERT.

Figure 2-8. The INSERT statement generated by LINQ to SQL

Deleting a row and every row related to it is really simple when a
relationship is defined between two entity classes. Listing 2-12 deletes a role
and all its related Person records..

Listing 2-12. Deleting a Role and All of Its Related Person Records

 PeopleDataContext people = new PeopleDataContext();

 people.Log = Console.Out;

 Role role = new Role();

 role.RoleDescription = "Administrator";

 Person person = new Person();

 person.FirstName = "From";

 person.LastName = "Code";

 role.People.Add(person);

 people.Roles.Add(role);

 people.SubmitChanges();

90 firstPress: LINQ to ADO.NET

Ferracchiati

 Role admin = people.Roles.Single(r => r.ID == role.ID);

 people.Roles.Remove(admin);

 people.SubmitChanges();

It creates a new role as follows

 Role role = new Role();

 role.RoleDescription = "Administrator";

then adds a new person to it:

 Person person = new Person();

 person.FirstName = "From";

 person.LastName = "Code";

 role.People.Add(person);

 people.Roles.Add(role);

The code uses the new role’s identifier to retrieve the new row added to
the database:

 Role admin = people.Roles.Single(r => r.ID == role.ID);

 people.Roles.Remove(admin);

 people.SubmitChanges();

This behavior is not obtained by the Association attribute and its
properties. No reflection technique is used to infer the rows related to the
Role entity object. Moreover, there is no check on foreign key constraint
rules, such as deleting each related row in a cascade. The secret is in the
EntitySet<T> constructor. We have provided two delegate functions
responding to the Add and the Remove events of the Person entity class. In
the body of the Detach_Person delegate function we have set the Role value
to null, raising a call to the set accessor of the Role property. It’s in the body
of Detach_Person that you will find the Remove() method of the Person row
related to the role. The Remove() method applied by the parent class will call
the Detach delegate function for each child row related to it. This process will
be performed once for each Person object related to the Role object.

firstPress: LINQ to ADO.NET 91

Ferracchiati

Other LINQ to SQL Features
In this section we’ll cover the following:

• Using SQLMetal to produce entity classes and associations
automatically

• Using the INotifyPropertyChanging interface to communicate with
LINQ about changes

• Using the optimistic concurrency and database transactions

• Using stored procedures

• Creating a database from a program

SQLMetal

LINQ to SQL has a command-line tool called SQLMetal that generates entity
classes, properties, and associations automatically. Table 2-3 lists the
SQLMetal options.

Table 2-3. SQLMetal Generation Tool Options

Option Description

/server:<name> Represents the Microsoft SQL Server
server name to which it connects.

/database:<name> Represents the Microsoft SQL Server
database name to use to produce entity
classes.

/user:<name> Represents the user’s name to use to
connect to the database server.

/password:<name> Represents the user’s password to use to
connect to the database server.

/views Obtains the database views extraction.

(Continued)

92 firstPress: LINQ to ADO.NET

Ferracchiati

Option Description

/functions Obtains the database user functions
extraction.

/sprocs Obtains the database stored procedures
extraction.

/code:<filename> Lets you specify the name of the file
that will contain the entity classes and
data context.

/language:<name> There are two options: C# (the default)
and VB. Use one of these options to
produce a file in the specified language.

/xml:<filename> Lets you specify an XML filename that
will contain the database metadata and
some information about classes and
properties.

/map:<filename> Obtains an external XML file with
mapping attributes. The entities
produced in the code will not contain
class and property attributes’
decorations because they have been
included in the XML mapping file.

/pluralize Obtains entity class and property names
with English plural.

/namespace Lets you specify the namespace that will
contain the generated entity classes.

/dataAttributes Lets you add attributes to entity class
properties, such as the Precision
attribute for numeric values and
DataObjectField to provide
information about the schema of the
underlying data.

/timeout:<value> Lets you specify the timeout (in
seconds) to use for each database
command.

firstPress: LINQ to ADO.NET 93

Ferracchiati

The following command uses SQLMetal to generate the entity classes to
access to the People database within a Microsoft SQL Server 2005 database
using Windows Integrated Security:

sqlmetal /server:pc-ferracchiati /database:People /pluralize

/code:People.cs

If you want to use SQL Server security you have to add two more options
to the command, specifying username and password:

sqlmetal /server:pc-ferracchiati /database:People /user:sa /password:sapass

/pluralize /code:People.cs

You can also generate entity classes simply by specifying a database’s
data (.MDF) file:

sqlmetal /pluralize /code:People.cs c:\data\people.mdf

Note If you use spaces after the colon that separates options from values, you will receive
an unhandled exception.

The INotifyPropertyChanging Interface

By opening up the code produced by the SQLMetal tool, we can see some
minor differences between it and the code we wrote. There are four types of
constructor accepting different connection attributes, such as a connection
string and an IDBConnection object, but the big difference is the use of the
INotifyPropertyChanging and INotifyPropertyChanged:

[Table(Name="Person")]

public partial class Person : INotifyPropertyChanging,

INotifyPropertyChanged

{

 private int _ID;

The INotifyPropertyChanging interface is in the System.Data.DLinq
namespace. The INotifyPropertyChanged interface is in the
System.ComponentModel namespace. Both interfaces require two events:

 public event PropertyChangedEventHandler PropertyChanging;

 public event PropertyChangedEventHandler PropertyChanged;

94 firstPress: LINQ to ADO.NET

Ferracchiati

They also require virtual methods to handle the interfaces:

 protected virtual void OnPropertyChanging(string PropertyName) {

 if ((this.PropertyChanging != null)) {

 this.PropertyChanging(this, new

PropertyChangedEventArgs(PropertyName));

 }

 }

 protected virtual void OnPropertyChanged(string PropertyName) {

 if ((this.PropertyChanged != null)) {

 this.PropertyChanged(this, new

PropertyChangedEventArgs(PropertyName));

 }

 }

In the generated code, each set accessor of a column calls two methods.
The OnPropertyChanging method is called just before the variable is set to
the provided value. The OnPropertyChanged method is called just after the
variable is set.

 [Column(Storage="_ID", DBType="Int NOT NULL IDENTITY", Id=true,

AutoGen=true)]

 public int ID {

 get {

 return this._ID;

 }

 set {

 if ((this._ID != value)) {

 this.OnPropertyChanging("ID");

 this._ID = value;

 this.OnPropertyChanged("ID");

 }

 }

 }

The use of INotifyPropertyChanging and INotifyPropertyChanged is not
mandatory. In fact, the code we wrote works very well. But these interfaces
help LINQ change tracking. The OnPropertyChanging and
OnPropertyChanged methods significantly improve change tracking because
LINQ doesn’t have to check changes manually. If you don’t use these two
interfaces and you don’t inform LINQ about row changes, it will use two
copies of the same object to understand if something is changed. There will

firstPress: LINQ to ADO.NET 95

Ferracchiati

be two objects representing each table, wasting memory and cycles when you
call SubmitChanges().

Optimistic Concurrency and Database Transactions

What we have done to this point works well only if we are the only ones
working on a set of data. If an application uses a LINQ query to retrieve data
from a table already accessed by another user and then it tries to modify some
rows, it could get an exception. This is because LINQ to SQL uses optimistic
concurrency.

LINQ to SQL tracks changes to our objects after they are retrieved by a
query and filled by a foreach statement or a call to a caching method such as
ToList(). If another user has retrieved a row from the database and already
changed its contents, when we try to submit our changes we’ll get an
exception. In fact, LINQ’s change-tracking service discovers that the row has
been changed from its original state (as of when we retrieved it) and raises the
exception. To test the optimistic concurrency feature, write and execute the
code in Listing 2-13.

Listing 2-13. Testing the Optimistic Concurrency Feature

 PeopleDataContext people = new PeopleDataContext();

 Person p = people.People.Single(person => person.ID == 1);

 p.LastName = "Optimistic";

 p.FirstName = "Concurrency";

 Console.ReadLine();

 people.SubmitChanges();

The code simply retrieves the Person row whose identifier is equal to 1,
changes some attributes, and submits the changes after a key is pressed. This
allows us to execute another instance of the same application that retrieves
the same row before we press a key in the other instance of the application.
Pressing a key in the first application will modify the row, whereas pressing a
key in the second application will cause the exception shown in Figure 2-9.

96 firstPress: LINQ to ADO.NET

Ferracchiati

Figure 2-9. The exception thrown by LINQ when the optimistic concurrency is

violated

Concurrency is managed by the DataContext class. When we call
SubmitChanges(), the data context creates a local transaction using the
ReadCommit isolation level; that is, using optimistic concurrency.

This is the default. When we decorate the properties of the entity classes
we can indicate which of them participate in optimistic concurrency. Using
the UpdateCheck property of the Column attribute we can specify Never and
LINQ will ignore the column during concurrency checking.

 [Column(Name="FirstName",

 Storage="_firstName",

 DBType="nvarchar NOT NULL",

 UpdateCheck=UpdateCheck.Never)]

 public string FirstName

 {

 get { return _firstName; }

 set { _firstName = value; }

 }

 [Column(Name="LastName",

 Storage="_lastName",

 DBType="nvarchar NOT NULL",

 UpdateCheck=UpdateCheck.Never)]

 public string LastName

 {

 get { return _lastName; }

 set { _lastName = value; }

 }

After we modify the Person entity class as shown, the code in Listing 2-
13 will work without exceptions because the two columns don’t participate in
optimistic concurrency checking.

firstPress: LINQ to ADO.NET 97

Ferracchiati

LINQ to SQL provides an advanced technique to manage update
conflicts. When we call SubmitChanges(), we can specify a ConflictMode
enum value to change the way optimistic concurrency is managed by LINQ.

Using ConflictMode.ContinueOnConflict the
OptimisticConcurrencyException is filled with some attributes that we can
use to personalize the way optimistic concurrency is managed. Using a try
statement we can catch the OptimisticConcurrencyException then use its
Resolve() method to specify one of three values that in turn specify three
different way to resolve update conflicts:

KeepChanges: The old values contained in the object are refreshed with
the new values changed by the other client. A new SubmitChanges() call
is executed automatically and the current values within the object are used
to update the row.

KeepCurrentValues: This rolls back each change made by the other client
to the original database state. A new SubmitChanges() call is executed
automatically and the current values within the object are used to update
the row.

OverwriteCurrentValues: The object replaces its data with the new state of
the row in the database.

The code in Listing 2-14 calls the Resolve method with KeepChanges
after an optimistic concurrency exception has been detected.

Listing 2-14. A try Statement to Manage Optimistic Concurrency Conflict

 PeopleDataContext people = new PeopleDataContext();

 Person p = people.People.Single(person => person.ID == 1);

 p.LastName = "Optimistic";

 p.FirstName = "Concurrency";

 try

 {

 people.SubmitChanges(ConflictMode.ContinueOnConflict);

 }

 catch(OptimisticConcurrencyException oce)

 {

 oce.Resolve(RefreshMode.KeepChanges);

 }

98 firstPress: LINQ to ADO.NET

Ferracchiati

Sometimes we need to lock a row until we’ve finished managing it. This
can be done by using a transaction and the pessimistic concurrency feature.

.NET 2.0 provides the TransactionScope class in the
System.Transactions namespace. A simple way to implement pessimistic
concurrency is with a using statement. Within a using block we can
instantiate a TransactionScope and, as the last operation, call its Complete()
method (see Listing 2-15)

Listing 2-15. Implementing Pessimistic Concurrency with TransactionScope

 PeopleDataContext people = new PeopleDataContext();

 using (TransactionScope t = new TransactionScope())

 {

 Person p = people.People.Single(person => person.ID == 1);

 p.LastName = "Pessimistic";

 p.FirstName = "Concurrency";

 Console.ReadLine();

 people.SubmitChanges();

 t.Complete();

 }

We can test the pessimistic concurrency by executing two separate
application instances (like in Listing 2-13). Both transactions attempt to lock
the same row, and SQL Server decides which one (the “deadlock victim”) to
terminate (see Figure 2-10).

Figure 2-10. Pessimistic concurrency deadlock resolution

LINQ to SQL is able to integrate itself even with the old ADO.NET
application code. We can use the DataContext class with SqlTransaction

firstPress: LINQ to ADO.NET 99

Ferracchiati

classes, but we’ll have to do much more work to implement the local
transaction. In the code snippet in Listing 2-16 a new Role is added to the
related table using an ADO.NET local transaction.

Listing 2-16. Using an ADO.NET Local Transaction with LINQ to SQL

 PeopleDataContext people = new PeopleDataContext();

 people.Log = Console.Out;

 Role r = new Role();

 r.RoleDescription = "Integration with old ADO.NET apps";

 people.Roles.Add(r);

 people.Connection.Open();

 people.LocalTransaction =

people.Connection.BeginTransaction();

 try

 {

 people.SubmitChanges();

 people.LocalTransaction.Commit();

 people.AcceptChanges();

 }

 catch(Exception ex)

 {

 people.LocalTransaction.Rollback();

 people.RejectChanges();

 throw ex;

 }

 finally

 {

 if (people.Connection.State ==

System.Data.ConnectionState.Open)

 people.Connection.Close();

 people.LocalTransaction = null;

 }

As you can see in Listing 2-16, we have to pay attention to some things,
such as manually opening and closing the connection and calling Commit() or
Rollback() (when everything is fine or something goes wrong, respectively).
Moreover, we have to inform the DataContext class to accept or to reject
changes appropriately.

100 firstPress: LINQ to ADO.NET

Ferracchiati

Stored Procedures

LINQ to SQL automatically produces SQL statements to select rows, insert
rows, and so on. We often prefer to use existing stored procedures or create
new ones to access data and improve application performance. Stored
procedures are SQL statement procedures that are precompiled and stored
within the SQL Server database. When you call a stored procedure, the
database server simply executes it without doing other operations such as
checking SQL syntax within it. In many cases calling a stored procedure to
retrieve rows works better than using dynamic SQL.

LINQ to SQL provides the ExecuteCommand method of the DataContext
class to call stored procedures. This method has two parameters: the SQL
command to execute and the collection of parameters that can be used in the
SQL command.

Within the class inheriting from the DataContext we can add a method to
call the ExecuteCommand() method that provides the stored procedure name
and its parameters:

public void InsertRole(Role r)

{

this.ExecuteCommand("exec uspInsertRole @description={0}",

r.RoleDescription);

}

The uspInsertRole stored procedure simply adds a new role, accepting its
description as a parameter (Role’s identifier is auto-incremented by the server
since it is of the identity type). The ExecuteCommand() method will
substitute each placeholder specified in the command with the related
parameter contained in the collection.

This is not still sufficient, however; we have to tell LINQ to SQL to use
this new method when a new role has to be added to the database. We can
accomplish this by specifying the InsertMethod attribute before the method
declaration:

[InsertMethod]
public void InsertRole(Role r)

{

 this.ExecuteCommand("exec uspInsertRole @description={0}",

r.RoleDescription);

}

firstPress: LINQ to ADO.NET 101

Ferracchiati

Up to this point we have written all the necessary code to execute our
stored procedure instead of executing the code generated by LINQ to SQL. In
Listing 2-17 a new role is added to the related table and the Log property is
used to show the code called by LINQ.

Listing 2-17. A New Role Is Added and the Stored Procedure Is Called

Automatically.

 PeopleDataContext people = new PeopleDataContext();

 people.Log = Console.Out;

 Role r = new Role();

 r.RoleDescription = "By SP";

 people.Roles.Add(r);

 people.SubmitChanges();

When you executing the code you will obtain the result shown in Figure
2-11, which displays how LINQ calls the stored procedure automatically.

Figure 2-11. The framework uses our stored procedure instead of generating the

code to insert a new role.

To update rows using a stored procedure we can specify an update
method in the class that inherits from the DataContext class, and decorate it
with the UpdateMethod attribute. The prototype of the update method is a bit
different from the rest because it has to accept two parameters: the former is
the object to update in its original state, and the latter is the object to update in
its current state. We have to check each condition manually before calling the
ExecuteCommand() method. For example, in the following code snippet,
before the stored procedure is executed the role description is compared to the
original one to discover if it is really changed:

 [UpdateMethod]

 public void UpdateRole(Role oldRole, Role newRole)

 {

 if (oldRole.RoleDescription != newRole.RoleDescription)

102 firstPress: LINQ to ADO.NET

Ferracchiati

 {

 int iRowsAffected = this.ExecuteCommand("exec

uspUpdateRole @id={0},

@description={1}",

 newRole.ID,

 newRole.RoleDescription);

 if (iRowsAffected < 1)

 throw new OptimisticConcurrencyException();

 }

 }

Moreover, we have to check the return value of ExecuteCommand()
because if it is less than 1 an optimistic concurrency error has occurred. In
that case we must throw a new OptimisticConcurrencyException exception.

Note If you declare an update method with just one parameter and you decorate it with
UpdateMethod you will not receive a compiler error, but the method will not be called.

You may be wondering why a role identifier changing check is missing;
it’s because this kind of check is automatically done by the change-tracking
service. So if in the code snippet in Listing 2-18, after having retrieved the
role row you try to modify the primary key identifier value you will obtain an
exception when SubmitChanges()is called.

Listing 2-18. Updating a Role Calling a Stored Procedure Instead of Using the

LINQ to SQL Update-Generated Statement

 PeopleDataContext people = new PeopleDataContext();

 people.Log = Console.Out;

 Role r = people.Roles.Single(role => role.ID == 1);

 r.RoleDescription = "By Update stored procedure";

 people.SubmitChanges();

To delete a row by using a stored procedure we have to add a new method
in the class that inherits from the DataContext class and decorate it with the
DeleteMethod attribute:

firstPress: LINQ to ADO.NET 103

Ferracchiati

 [DeleteMethod]

 public void DeleteRole(Role r)

 {

 this.ExecuteCommand("exec uspDeleteRole @id={0}", r.ID);

 }

In this way the code in Listing 2-19 will call a stored procedure to remove
each role from the database.

Listing 2-19. Using a Stored Procedure Instead of an Autogenerated Delete

Statement to Delete All the Roles That Have a Particular Description

 PeopleDataContext people = new PeopleDataContext();

 people.Log = Console.Out;

 var query = people.Roles.Where(role => role.RoleDescription ==

"By SP")

 .Select(role => role);

 foreach (Role r in query)

 people.Roles.Remove(r);

 people.SubmitChanges();

LINQ to SQL doesn’t provide an attribute to decorate stored procedures
that return rows. However, by using SQLMetal with the /sprocs option we can
generate entity classes containing methods that have the same name as a
stored procedure. Based on the syntax of the stored procedure, the generated
code could return a single value or a collection of objects.

The simplest case is a stored procedure that computes scalar operations
using the COUNT operator:

create procedure uspCountPerson

as

 declare @count int

 set @count = (select count(ID) from person)

 return @count

Executing the SQLMetal application with the /sprocs option, the
generated code will contain the following method:

 [StoredProcedure(Name="uspCountPerson")]

 public int UspCountPerson()

 {

104 firstPress: LINQ to ADO.NET

Ferracchiati

 StoredProcedureResult result =

 this.ExecuteStoredProcedure(((MethodInfo)(MethodInfo.GetCurrent

Method())));

 return result.ReturnValue.Value;

 }

The method will be decorated with the StoredProcedure attribute where
the stored procedure name will be specified. The method name will be similar
or equal to the stored procedure name. SQLMetal will infer the method return
type by analyzing the SQL statement that the stored procedure uses. For this
reason there are some situations SQLMetal tool can’t handle. If the stored
procedure uses temporary tables or dynamic SQL (by calling the
sp_executesql system-stored procedure), the tool will not be able to infer the
result’s type. Therefore, it will not able to define a related method with a
valid return type. These kinds of stored procedures cannot be used with LINQ
to SQL. Finally, the body of the generated method contains a call to the
ExecuteStoredProcedure method provided by the DataContext class. This
method has two parameters indicating the MethodInfo object for the current
method (useful for discovering the stored procedure name by reflection) and a
collection of parameters that have to be passed to the stored procedure.
Listing 2-20 uses this method to call the related stored procedure.

Listing 2-20. Using the Method Associated with a Stored Procedure to Retrieve

the Number of Person Rows in the Database

 PeopleDataContext people = new PeopleDataContext();

 Console.WriteLine("Person count = {0}", people.UspCountPerson());

If we have a stored procedure selecting a set of rows, we can use the same
technique to produce a method, calling that stored procedure and returning a
collection of objects:

create procedure uspGetRoleDescription

 @description varchar(50)

as

 SELECT ID, RoleDescription

 FROM Role

 WHERE RoleDescription LIKE @description

The stored procedure in the example returns a set of role rows in which
the role description is like a provided parameter. Since the selected columns

firstPress: LINQ to ADO.NET 105

Ferracchiati

have been specified in the Role class we can define a method that calls this
stored procedure and returns a collection of Role objects.

 [StoredProcedure(Name="uspGetRoleDescription")]

 public StoredProcedureResult<Role> UspGetRoleDescription

 ([Parameter(DBType="VarChar(50)")] string description)

 {

 return this.ExecuteStoredProcedure<Role>(

 ((MethodInfo)(MethodInfo.GetCurrentMethod())), description);

 }

When the stored procedure accepts parameters, we have to decorate each
related method parameter with the Parameter attribute where we specify the
database data type. The ExecuteStoredProcedure<T> method uses the
properties contained in the class specified as parameter T to fill the object
with the column value returned by the stored procedure. If the stored
procedure returns data that is not mapped to any class within your code, the
SQLMetal tool will create a new class to contain the result of the stored
procedure call.

Note SQLMetal is not able to understand if the stored procedure returns values that fit an
existing class. It will always generate a new class to contain them.

Listing 2-21 shows the code that calls this method.

Listing 2-21. Using the UspGetRoleDescription Method to Retrieve Roles Rows

 PeopleDataContext people = new PeopleDataContext();

 foreach(Role r in people.UspGetRoleDescription("M%"))

 {

 Console.WriteLine("Role: {0} {1}", r.ID.ToString(),

 r.RoleDescription);

 }

When the stored procedure contains more than one SELECT statement,
the method generated by the SQLMetal will return multiple result sets. In the
following example a stored procedure contains two SELECT statements to
retrieve person and role rows.

106 firstPress: LINQ to ADO.NET

Ferracchiati

create procedure uspGetRolesAndPeople

as

 SELECT * FROM Person

 SELECT * FROM Role

By executing the SQLMetal tool to generate code for the new stored
procedure, we will obtain the following method:

 [StoredProcedure(Name="uspGetRolesAndPeople")]

 public StoredProcedureMultipleResult UspGetRolesAndPeople()

 {

 return

((StoredProcedureMultipleResult)(this.ExecuteStoredProcedure(

 ((MethodInfo)(MethodInfo.GetCurrentMethod())))));

 }

The StoredProcedureMultipleResult return type contains the
GetResults<T> method to differentiate the two result sets by simply providing
the class type we want to retrieve. Listing 2-22 shows the method’s usage.

Listing 2-22. Using the Stored Procedure Method to Return Multiple Results

 PeopleDataContext people = new PeopleDataContext();

 StoredProcedureMultipleResult results =

people.UspGetRolesAndPeople();

 var query = from p in results.GetResults<Person>()

 from r in results.GetResults<Role>()

 where ((p.IDRole == r.ID) && p.ID == 1)

 select new {p.FirstName, p.LastName, r.RoleDescription};

 foreach (var row in query)

 {

 Console.WriteLine("Person: {0} {1} - Role: {2}", row.FirstName,

 row.LastName,

 row.RoleDescription);

 }

First we have to call the method to retrieve the multiple results and store
them into the StoredProcedureMultipleResult object. Then we can use it as
usual to query rows based on conditions. The GetResults<T> class is used to
retrieve person or role rows by specifying the related class type as a T
parameter.

firstPress: LINQ to ADO.NET 107

Ferracchiati

The last case supported by LINQ to SQL is for stored procedures using
OUTPUT parameters:

create procedure uspGetTotalSalaryAmountPerYear

 @year int,

 @amount money output

as

 set @amount = (select sum(SalaryYear)

 from Salary

 where year=@year)

 select @amount

The stored procedure above computes the total money amount for the
salary in a specified year. When the SQLMetal tool encounters this stored
procedure it will produce the following method:

 [StoredProcedure(Name="uspGetTotalSalaryAmountPerYear")]

 public int UspGetTotalSalaryAmountPerYear(

 [Parameter(DBType="Int")] System.Nullable<int> year,

 [Parameter(DBType="Money")] ref System.Nullable<decimal>

amount)

 {

 MethodInfo info = (MethodInfo)(MethodInfo.GetCurrentMethod());

 StoredProcedureResult result = this.ExecuteStoredProcedure(info,

year,

 amount);

 amount =

((System.Nullable<decimal>)(result.GetParameterValue(1)));

 return result.ReturnValue.Value;

 }

First the OUTPUT parameter is transformed into a ref method parameter.
Then the StoredProcedureResult is used with GetParameterValue() to set the
value of the ref variable.

108 firstPress: LINQ to ADO.NET

Ferracchiati

Note The code generated by the SQLMetal tool is still not perfect because the application
is not able to infer all method code for all SQL statements. For the stored procedure
analyzed in the preceding code sample it adds useless code such as System.Nullable
parameters even when the column doesn’t accept null values, or a new class to contain a
return value even if the SQL statement doesn’t select any rows.

Listing 2-23 shows the code necessary to execute this method and retrieve
the total money amount for the year 2004.

Listing 2-23. Using the Method Related to the Stored Procedure to Retrieve the

Total Money Amount for the Year 2004

 PeopleDataContext people = new PeopleDataContext();

 decimal? total = 0;

 int year = 2004;

 people.UspGetTotalSalaryAmountPerYear(year, ref total);

 Console.WriteLine(total.ToString());

User-Defined Functions

LINQ to SQL also supports user-defined functions (UDFs), which return both
scalar values and result sets.

Using the SQLMetal tool’s /functions option, we can obtain a new
method in the class that inherits from the DataContext class; the new method
is decorated with attributes for building a SQL statement that calls a UDF.

The following UDF returns the initials of the person whose identifier is
specified as an argument:

create function udfGetInitials(@id int)

returns varchar(2)

as

begin

 declare @initials varchar(2)

 set @initials = (SELECT LEFT(FirstName,1) + LEFT(LastName,1)

firstPress: LINQ to ADO.NET 109

Ferracchiati

 FROM Person

 WHERE ID = @id)

 return @initials

end

Executing the SQLMetal tool to generate entity classes and user-defined
function code, we obtain the following method code:

 [Function(Name="[dbo].[udfGetInitials]")]

 public string UdfGetInitials(System.Nullable<int> id)

 {

MethodInfo info = (MethodInfo)(MethodInfo.GetCurrentMethod());

MethodCallExpression mc = Expression.Call(info,

Expression.Constant(this),

new Expression[] {Expression.Constant(id, typeof(System.Nullable<int>))});

return Sequence.Single(this.CreateQuery<string>(mc));

 }

First the Function attribute is used to decorate the method and inform
LINQ that it is associated with the UDF specified with the Name parameter.

Then in the body of the method a MethodCallExpression is built, but the
execution of the UDF is left to the DataContext class with the CreateQuery()
method. The UdfGetInitials method leaves the execution of the UDF to the
DataContext class. CreateQuery() takes the MethodCallExpression object and
creates the query. This feature can handle both standard and inline UDF calls.

Listing 2-24 shows a code snippet in which the UDF is called within a
LINQ query to obtain the initials of each person present in the Person table.

Listing 2-24. The UDF Is Transformed into a Method That Can be Called as

Usual from Our Code.

 PeopleDataContext people = new PeopleDataContext();

 people.Log = Console.Out;

 var query = from p in people.People

 select new {p.ID, Initials = people.UdfGetInitials(p.ID)};

 foreach(var row in query)

 Console.WriteLine("PersonID: {0} - Initials: {1}", row.ID,

row.Initials);

Figure 2-12 shows the output from Listing 2-24.

110 firstPress: LINQ to ADO.NET

Ferracchiati

Figure 2-12. The output shows how the UDF calculates the person’s initials.

As Figure 2-12 shows, the SELECT statement built by LINQ contains an
inline call to the UDF. That’s because we have used the related method
within our LINQ query. If we use the method outside a query we will obtain a
simple statement like this one:

SELECT dbo.udfGetInitials(@p0)

Database Creation

Since Microsoft has released a free version of Microsoft SQL Server 2005
called Express Edition, we can easily create an application that stores data
using a database instead of XML files or some other data storage. In fact,
SQL Server Express Edition can be distributed without limits, allowing us to
install and use it even with desktop client applications. Focusing on that
feature, a way to create a database on the fly could be really useful.

LINQ to SQL provides a method of the DataContext class called
CreateDatabase. Using the attributes specified in the entity classes, where
each column is decorated with options such as column name, column
database data type, and so on, LINQ is able to create a new database.

Note When you need to create a database from scratch using the CreateDatabase
method you must use the DBType option for each column. LINQ uses this information to
create the column data type.

Listing in 2-25 shows how you can use CreateDatabase()to create a new
database.

Listing 2-25. Creating a New Database with the CreateDatabase() Method

firstPress: LINQ to ADO.NET 111

Ferracchiati

 PeopleDataContext people = new PeopleDataContext(

 @"Data Source=.;Initial Catalog=PeopleFromCode;Integrated

 Security=True");

 if (people.DatabaseExists())

 people.DeleteDatabase();

 people.CreateDatabase();

Note the connection string that points to a nonexistent database. The
DataContext class uses the connection string to discover whether the database
already exists. Otherwise it uses the catalog option specified in the connection
string as database name and creates it. Using the DatabaseExists and
DeleteDatabase methods we can check if the database already exists and if
so, drop it.

There are some limitations when using the CreateDatabase method to
create a database:

• Because stored procedures, UDFs, and triggers are not defined in the
entity classes as structure, they are not reproduced.

• Despite the fact that associations could be declared into entity classes,
the method is not able to create foreign keys and constraints.

• The application must impersonate a user who has rights to create the
database.

LINQ to SQL in Visual Studio 2005
In conjunction with the LINQ May 2006 CTP release, Visual Studio 2005
provides functionality to support LINQ application development. Some
templates are added to the New Project and the New Web Site windows (see
Figure 2-13). The compiler is upgraded to support LINQ query syntax, and
IntelliSense will support almost every LINQ component. Further, a really
great tool has been added to Visual Studio: the DLinq Designer. It is similar
to SQLMetal in that it produces the code to manage entity classes related to
database tables, but it has these advantages:

• It produces entity classes just for specified tables, not for the full
database.

• It produces entity class associations using a visual tool.

112 firstPress: LINQ to ADO.NET

Ferracchiati

• It supports entity class hierarchies.

• It is completely a visual tool and the final result offers a visual
representation of classes, associations, and so on within a colored
diagram.

A DLinq Designer Example

Using DLinq Designer is very easy. Starting from a LINQ Preview project
such as a LINQ Windows application, you have to add a new DLinqObjects
item to the solution. Visual Studio then shows you the DLinq Designer
together with a new toolbox.

Follow these steps to add database support using DLinq Designer:

 1. Launch Visual Studio 2005 and create a new project with
File~TRANew Project… .

 2. Choose the LINQ Windows Application template, as shown in Figure
2-13.

firstPress: LINQ to ADO.NET 113

Ferracchiati

Figure 2-13. Creating a new LINQ Windows application from Visual Studio

 3. From the Solution Explorer, right-click on the solution name and
choose Add~TRANew Item from the context menu as shown in Figure
2-14.

Figure 2-14. Adding a new item to the solution

 4. From the Add New Item dialog box, select the DLinqObjects template
and give it a significant name, as shown in Figure 2-15.

114 firstPress: LINQ to ADO.NET

Ferracchiati

Figure 2-15. Adding a new DLinqObjects template to the solution

 5. At this point Visual Studio will present the DLinq Designer and
provide a new toolbox section (see Figure 2-16). You can use the new
toolbox to graphically specify the structure of your table.

Figure 2-16. The new DLinq Objects toolbox provided by the DLinq Designer

Double-click on the DLinq Class item; a new empty entity class is added
to the designer, allowing us to start manipulating it. By right-clicking on the
entity class we can add new properties or delete them, as shown in Figure 2-
17.

firstPress: LINQ to ADO.NET 115

Ferracchiati

Figure 2-17. After adding a new DLinq class we can add new properties or

delete the class itself

 6. Specify properties in the Properties window (see Figure 2-18). You
should be accustomed to the property names because they are the same
as column attributes.

116 firstPress: LINQ to ADO.NET

Ferracchiati

Figure 2-18. The Properties window shows the DLinqProperty item properties.

 7. Because DLinq Designer supports drag-and-drop from Server Explorer,
we are not going to manually create each class from the database. If
you can’t see Server Explorer, select View~TRAServer Explorer. From
Server Explorer select the Connect to Database button, as shown in
Figure 2-19.

firstPress: LINQ to ADO.NET 117

Ferracchiati

Figure 2-19. Connecting to a database from Server Explorer

 8. From the Add Connection dialog box (shown in Figure 2-20) you
specify every parameter—server name, database, and so on—to
connect to a database. Select the database server where the People
database has been stored.

118 firstPress: LINQ to ADO.NET

Ferracchiati

Figure 2-20. Add a connection to a database to manage it from the Visual Studio.

 9. Choose a table from Server Explorer and drag it into the DLinq
Designer tool. For example, using the People database, drag the Role
table and drop it into the designer. Visual Studio will present the
diagram in Figure 2-21.

firstPress: LINQ to ADO.NET 119

Ferracchiati

Figure 2-21. The Role table is transformed into the Region entity class after

dragging and dropping the table from Server Explorer.

 10. This simple operation has generated a diagram with the dragged table
and some code (which you can view by selecting the related ,cs file in
Solution Explorer). Now you can drag the Person table from Server
Explorer and drop it into the DLinq Designer. The final result is shown
in Figure 2-22. Because the Role and Person tables have defined a
foreign key relation, the DLinq Designer creates an association
between the two entity classes automatically.

120 firstPress: LINQ to ADO.NET

Ferracchiati

Figure 2-22. The association between the Role and Person tables.

Caution A bug has been found in the code generated by the DLinq Designer tool. The
association between entity classes is correct, but when the code specifies the delegates to
call when a related object is attached or detached, it provides the same delegate. The
EntitySet class constructor uses two Notification objects that pass the same Attach
argument. You have to change it manually to pass the Detach delegate name as the
second argument..

firstPress: LINQ to ADO.NET 121

Ferracchiati

 11. We want to show two views containing roles and person rows. When
we select a row from the Role view the Person view is refreshed to
show related person rows. To accomplish this we can add two
DataGridView controls to the main form—one called dgRole that will
contain role rows, and the other called dgPerson to contain related
person rows.

 12. In the Form1 constructor we have to create an object from the
PeopleDataContext class generated by the tool to query the database
within the source code.

 private PeopleDataContext db;

 public Form1()

 {

 InitializeComponent();

 db = new PeopleDataContext();

 }

 13. Now we have to add the Load event handler in the code, and specify
the following code:

 private void Form1_Load(object sender, EventArgs e)

 {

 var query = from r in db.Roles

 select r;

 dgRole.DataSource = query.ToBindingList();

 dgPerson.DataSource = dgRole.DataSource;

 dgPerson.DataMember = "Persons";

 }

The query retrieves all the roles from the database and uses the
ToBindingList method to fill the dgRole data grid. This method is similar to
ToList() but with the advantage that it leaves the rows free to be updated. The
rest of the code is really interesting because it uses the association between
the two entity classes to show only the person-related rows in the data grid. It
uses just two simple lines of code!

 14. Press CTRL + F5 to build and execute the code. Selecting the role rows
shows that the dgPerson grid displays related rows (see Figure 2-23).

122 firstPress: LINQ to ADO.NET

Ferracchiati

Figure 2-23. The Windows form application in execution

Debugging LINQ Applications

A new tool has been added to the Visual Studio debugger: the SQL Server
Query Visualizer. This tool is really useful because it allows us to check the
query syntax built by LINQ before it’s sent to the database. Moreover, it
allows us to execute the query from the debugger to discover if the result is
what we expect. We can also modify the query.

To use the visualizer we have to put a breakpoint just before the LINQ
query definition and press the little magnifying-glass icon that appears when
we mouse over the query variable (see Figure 2-24).

firstPress: LINQ to ADO.NET 123

Ferracchiati

Figure 2-24. Pressing the magnifying-glass icon to use the SQL Server Query

Visualizer

After pressing the magnifying-glass icon the Query Visualizer tool will
appear within the debugger (see Figure 2-25).

Figure 2-25. The SQL Server Query Visualizer in action

124 firstPress: LINQ to ADO.NET

Ferracchiati

The window is divided in two sections; the upper section is a read-only
text area where the LINQ query is displayed aftff er the compiler has
transfoff rmed it using lambda expressions and methods. The lower section is a
writable text area containing the SQL to be executed against the database.
The SQL can be executed by clicking the Execute button (see Figure 2-26).

Figure 2-26. Pressing the ExecuEE te button provided by the SQL Server Queryr

ViVV sualizer executes the query,r showing the result in the QueryResult window

while the apa ppp lication is waiting on a breakpoint.

Placing the breakpoint just aftff er the query variable defiff nition illustrates
that LINQ to SQL uses defeff rred query execution. Remember that query
execution starts only aftff er the query is iterated through a foreach statement or
when a caching method such as ToList() is used. The debugger allows us to
discover an additional aspect during query execution. Consider the code
snippet in Listing 2-26.

Listing 2-26. Iterating Through Role and Person Rows

PeopleDataContext people = new PeopleDataContext();

people.Log = Console.Out;

var query = from r in people.Roles

select r;

foreach (var role in query)

{

foreach(var persrr on in role.People)

{

Console.WriteLine("Persrr on: {0} {1}", person.FirstName,

persrr on.LastName);

}

}

firstPress: LINQ to ADO.NET 125

Ferracchiati

The code uses the association declared in Role and Persrr on entity classes
to iterate through role rows and, with an inner foreach statement, to print the
persons that have each role.

If you put a breakpoint on the query variable within the foreach statement
and press F5 to start the debugger, you’ll see that no query has been sent to
the database. Press F10 to go a step fuff rther; the fiff rst query will be printed in
the console application (see Figure 2-27).

Figure 2-27. The fiff rst query r is sent to the database just afa tff er the queryr variable is

iterated.

Continue pressing F10 to see that a SELECT statement is sent to the
database to select person rows each time a new role is processed (see Figure
2-28).

126 firstPress: LINQ to ADO.NET

Ferracchiati

Figure 2-28. EaEE ch time a new role row is processed a new SELEE ECT statement is

sent to the database to retrieve related person rows.

As you can imagine, when you process many rows the database is queried
too many times and perfoff rmance is faff r frff om optimal. In such cases, to avoid
the defeff rred loading of rows you can use the Including method, as shown in
Listing 2-27.

Listing 2-27. UsUU ing Including() to Preload the person Rows, Thereby Avoiding

the Deferff red Loading ofo Rows

PeopleDataContext people = new PeopleDataContext();

people.Log = Console.Out;

var query = (from r in people.Roles

select r).Including(r => r.People);

foreach (var role in query)

{

foreach(var persrr on in role.People)

firstPress: LINQ to ADO.NET 127

Ferracchiati

{

Console.WriteLine("Persrr on: {0} {1}", person.FirstName,

persrr on.LastName);

}

}

If you execute the debugger aftff er setting a breakpoint on the query
variable you’ll see that just two queries are sent to the database: one to
retrieve all the roles and one to retrieve all the people (see Figure 2-29).

Figure 2-29. WhWW en using Including() just two SELEE ECT statements are sent to the

database.

LINQ to DataSet
In the previous section, you saw how LINQ to SQL supports ADO.NET
transactions. This is not the only integration between the “old” ADO.NET
library and the “new” LINQ to SQL. In faff ct, LINQ to SQL can use
ADO.NET DataSets with LINQ to DataSet.

With some limitations, LINQ to DataSet allows developers to use
DataSets as normal data sources using the usual LINQ query syntax.

128 firstPress: LINQ to ADO.NET

Ferracchiati

Listing 2-28 shows a simple example that uses a LINQ query to fill a
typed dataset.

Listing 2-28. Filling a Typed Dataset with the LoadSequence Method

 dsPeople ds = new dsPeople();

 PeopleDataContext people = new PeopleDataContext();

 var q = from role in people.Roles

 select role;

 ds.Role.LoadSequence(q);

dsPeople is a typed DataSet added to the Visual Studio project. When
you use Visual Studio to create your DataSet objects you can use the DataSet
Designer tool, which makes it possible to drag and drop tables from Server
Explorer (the same way as when using DLinq Designer). In the dsPeople data
set I added the Role table. This operation has automatically created a typed
DataSet that contains the Role table together with some other methods and
objects.

By using the LoadSequence method provided by the DataTable class we
can iterate through LINQ query results and populate the DataTable object.
This method is useful to fill an existing DataTable object with rows retrieved
by a LINQ query.

But, wait a minute! The LoadSequence method is not a DataTable
method in ADO.NET 1.x and 2.0. How is it possible to use it? The answer is
the System.Data.Extensions.dll assembly.

Using the method extensions seen in Chapter 1 it’s possible to extend a
class by providing new methods without releasing a new version of the
assembly. The new System.Data.Extensions.dll contains the extension
methods necessary to integrate LINQ with ADO.NET.

Note In existing ADO.NET applications DataSet objects are filled with DataAdapter
objects or with other techniques. LINQ to DataSet is completely indifferent about how you fill
a DataSet.

firstPress: LINQ to ADO.NET 129

Ferracchiati

In Listing 2-29 we use the filled dsPeople DataSet just like any data
source, and a LINQ query to retrieve a role.

Listing 2-29. A Typed DataSet Is Queryable Just Like Any Other Data Source.

 var query = from r in ds.Role

 where r.ID == 1

 select r;

 foreach(var row in query)

 {

 Console.WriteLine("Role: {0} {1}", row.ID, row.RoleDescription);

 }

The Role property contained in the ds DataSet is iterated by using the
Rows collection to look for the row whose identifier is equal to 1.

Tip For our LINQ to DataSet examples you have to leave uncommented the #region
regions, both for the code filling the DataSet and for the code querying it.

LINQ to DataSet adds support for untyped DataSets as well. In this case
the code is a bit more complex to write because LINQ has to acquire more
information from the query. Listing 2-30 shows how an untyped data set can
be filled using a LINQ query.

Listing 2-30. Filling an Untyped Data Set Using a LINQ Query and the

ToDataTable Method

 PeopleDataContext people = new PeopleDataContext();

 var q = from p in people.People

 select p;

 DataSet ds = new DataSet("People");

 ds.Tables.Add(q.ToDataTable());

The code selects each row contained in the Person table and adds a new
DataTable into the data set object. The ToDataTable extended method
iterates through the results of the query, creating a new DataTable object
filled with DataColumn objects and values.

130 firstPress: LINQ to ADO.NET

Ferracchiati

Querying an untyped data set is a bit more complex because we have to
use the Field<T> class to specify the column’s data type; see Listing 2-31.

Listing 2-31. The Code Using an Untyped Data Set Is More Complex and Less

Readable.

 DataTable dtPerson = ds.Tables[0];

 var person = dtPerson.ToQueryable();

 var query = from p in person

 where p.Field<string>("LastName") == "Ferracchiati"

 select p;

 foreach(var row in query)

 {

 Console.WriteLine("Person: {0} {1}",

 row.Field<string>("FirstName"),

 row.Field<string>("LastName"));

 }

First of all, the DataTable class doesn’t provide an implementation of the
IEnumerable and IQueryable interfaces, so the dtPerson object cannot be
used in the LINQ query directly. We have to use the ToQueryable extended
method, which generates a Sequence composed of DataTable rows.

Note When using the LoadSequence method we don’t need to call the
ToQueryable method for the DataTable object—it is called internally.

Second, we need to use the Field<T> generic method to specify the data
type of the DataTable column we are going to manage. This is necessary
because when using the classic syntax to access a DataTable row (e.g.
p["LastName"]) we should cast the return type and also use the IsNull method
of the DataRow class to check if the data is null. The Field<T> generic
method does all this automatically, plus checks null values when the column
accepts nulls (e.g., using Field<string?>).

As stated previously, LINQ to DataSet has some limitations that should
be removed eventually. For example, the ToDataTable method doesn’t
understand relationships and cannot produce multiple data tables. Moreover,

firstPress: LINQ to ADO.NET 131

Ferracchiati

there is no way to use LINQ to DataSet to update database rows after they are
retrieved by a LINQ query into a data set object.

Summary
In this chapter you saw how to create entity classes and how, thanks to new
attributes and their properties, you can easily map those classes to database
tables. Then you analyzed DataContext functionality for interfacing with
databases. You also saw how defining associations between entity classes
simulates relationships between tables.

You then looked at advanced features, such as optimistic concurrency,
stored procedures, and user-defined functions.

Finally, you used the Visual Studio DLinq Designer tool to create entity
classes, and you used its improved debugger. The chapter concluded by
analyzing LINQ integration with ADO.NET, specifically with DataSets.

In the next chapter we’ll use LINQ to manage XML data.

CHAPTER 3

LINQ to XML
In this chapter we’ll analyze LINQ to XML in detail. We’ll start by viewing
XML documents as data sources and then we’ll use LINQ queries to retrieve
XML data. Then we’ll look at how to use LINQ to XML to produce XML
documents.

Introduction
Language-Integrated Query lets you focus on what you have to do and not on
how to do it. With this in mind, XML becomes just another data source for
LINQ.

From a developer perspective, XML is not an easy thing to manage
because the World Wide Web Consortium’s document object model (DOM)
is not a simple library to use. The DOM framework often requires you to
write a lot of code to produce even a little XML output. Moreover, if you
need to search for a particular item within an XML document you have to use
DOM features, such as XPath, based on query syntax that is not intuitive.
XPath uses a searching model that is not similar to other query languages,
such as SQL, and you have to spend time to learn it.

Eliminating such complexity is the main motive behind LINQ to
XML..NET offers its own library to manage XML, but LINQ to XML goes a
big step further; it integrates the LINQ standard query operators with XML
documents. In addition, LINQ to XML offers classes for easily creating
XML.

Querying XML
Since LINQ to XML supports the LINQ standard query operators, an XML
document can be loaded in memory and then queried with the usual LINQ
query syntax.

Let’s start by analyzing a simple query using a couple of important LINQ
to XML classes. Listing 3-1 is the XML representation of our People
database.

134 firstPress: LINQ to XML

Ferracchiati

Listing 3-1. The XML Representation of the People Database

<?xml version="1.0" encoding="utf-8" ?>

<people>

<!--Person section-->

<person>

<id>1</id>

<firstname>Carl</firstname>

<lastname>Lewis</lastname>

<idrole>1</idrole>

</person>

<person>

<id>2</id>

<firstname>Tom</firstname>

<lastname>Gray</lastname>

<idrole>2</idrole>

</person>

<person>

<id>3</id>

<firstname>Mary</firstname>

<lastname>Grant</lastname>

<idrole>2</idrole>

</person>

<person>

<id>4</id>

<firstname>Fabio Claudio</firstname>

<lastname>Ferracchiati</lastname>

<idrole>1</idrole>

</person>

<!--Role section-->

<role>

<id>1</id>

<roledescription>Manager</roledescription>

</role>

<role>

<id>2</id>

<roledescription>Developer</roledescription>

</role>

<!--Salary section-->

<salary>

<idperson id="1" year="2004" salaryyear="10000,0000" />

<idperson id="1" year="2005" salaryyear="15000,0000" />

</salary>

</people>

firstPress: LINQ to XML 135

Ferracchiati

In Listing 3-1 the XDocument class provides the Elements method that
returns items from the XElement class. The XElement class represents the
core of the entire LINQ to XML library. An XElement object is the
representation of an element within an XML document. Each node, as well as
each leaf, in the XML document is an element. As you can see from the code
in Listing 3-2, to obtain an element’s value you have to use the Elements

method repeatedly. When observing the XML structure you can see that the
people element is the root and the person element appears four times to
represent four rows in the people data source. Using the Elements method
provided by the XElement class you can retrieve a collection of elements and
iterate through them. So, by appending the Elements("person") method call to
the Elements("people") method call you can retrieve all four person elements
in the XML document.

The where condition filters the person elements to retrieve the one whose
identifier is equal to one.

Listing 3-2. Retrieving a Person’s Record from an XML Document

XDocument xml = XDocument.Load(@"..\..\People.xml");

var query = from p in xml.Elements("people").Elements("person")

where (int)p.Element("id") == 1

select p;

foreach(var record in query)

{

Console.WriteLine("Person: {0} {1}",

record.Element("firstname").Value,

record.Element("lastname").Value);

}

Note The value of an XElement object is always represented by a string type. If you
want to change the string type, you have to cast the value to the desired type. The code in
Listing 3-2 casts to int to check the record identifier in the where condition.

Finally, the foreach statement iterates through the elements and prints the
name of each person. You use the Value property to retrieve an element’s
value.

136 firstPress: LINQ to XML

Ferracchiati

The XDocument class is very similar to the XElement class (it contains
the same methods, properties, etc.) but it represents the root element of an
XML document. In our example, the XDocument object represents the
people element. Its Load method will load the XML document into memory,
allowing us to use the XDocument object for queries.

If you don’t care about the root element and just want to go straight to a
particular element, you can use the Load method of the XElement class. In
Listing 3-3 you can see the same query applied to our XML data source but
using less code.

Listing 3-3. Retrieving Person Data by Using Less Code

XElement xml = XElement.Load(@"..\..\People.xml");

var query = from p in xml.Elements("person")

where (int)p.Element("id") == 1

select p;

foreach(var record in query)

{

Console.WriteLine("Person: {0} {1}",

record.Element("firstname"),

record.Element("lastname"));

}

You can search directly for person records without calling the Elements

method for the root element. Moreover, if you omit the Value property (used
in Listing 3-2), you can call the ToString method, which returns the full
element with its start and end tags (see Figure 3-1).

Figure 3-1. Omitting the Value property, the output will be the full element.

Note Casting an Element to a string is equivalent to using its Value property.

firstPress: LINQ to XML 137

Ferracchiati

Searching for Attribute Values

The following code shows salary information stored in idperson attributes:

<salary>

<idperson year="2004"

salaryyear="10000,0000">1</idperson>

<idperson year="2005"

salaryyear="15000,0000">1</idperson>

</salary>

Obviously, LINQ to XML provides a way to query elements by their
attributes. (See Listing 3-4.)

Listing 3-4. Querying by Attribute Values

XElement xml = XElement.Load(@"..\..\People.xml");

var query = from s in xml.Elements("salary").Elements("idperson")

where (int)s.Attribute("year") == 2004

select s;

foreach(var record in query)

{

Console.WriteLine("Amount: {0}", (string)

record.Attribute("salaryyear"));

}

The XAttribute class represents the attributes of an element within an
XML document. The Attribute method returns the value of the attribute whose
name is specified as its argument.

The Descendants and Ancestors Methods

When elements are deeply nested, you can use the Descendants method
to quickly navigate to the desired element. Listing 3-5 shows how to navigate
down into nested elements using this quicker way.

Listing 3-5. Using the Descendants Method to Navigate Down an XML Tree

XElement xml = XElement.Load(@"..\..\People.xml");

138 firstPress: LINQ to XML

Ferracchiati

var query = from p in xml.Descendants("person")

join s in xml.Descendants("idperson")

on (int)p.Element("id") equals (int)s.Attribute("id")

select new {FirstName=p.Element("firstname").Value,

LastName=p.Element("lastname").Value,

Amount=s.Attribute("salaryyear").Value};

foreach(var record in query)

{

Console.WriteLine("Person: {0} {1}, Salary {2}",record.FirstName,

record.LastName,

record.Amount);

}

The code in Listing 3-5 joins two sections within the XML data source:
person and salary. As you can see, the query syntax is the same as that used
for in-memory objects and database tables and views.

Conversely, the Ancestors method goes up through an XML tree until it
reaches the root element. In Listing 3-6, both methods are used to navigate
the XML document.

Listing 3-6. Using the Ancestors and Descendents Method to Navigate in the

XML Document Tree

XElement xml = XElement.Load(@"..\..\People.xml");

var record = xml.Descendants("firstname").First();

foreach(var tag in record.Ancestors())

Console.WriteLine(tag.Name);

First the Descendants method returns a collection of firstname elements;
however, if we use the First standard operator, just the first element will be
retrieved. The cursor in the XML tree now points to the first firstname

element, containing the Carl value, so if we use the Ancestors method to rise
to the top of the document, the collection of XElement’s items will contain
two tags: person and people.

firstPress: LINQ to XML 139

Ferracchiati

Note The Descendants and Ancestors methods do not include the current node. For
example, if you start from the root node you’ll retrieve all the elements except the root. You
can use the SelfAndDescendants and SelfAndAncestors methods to include the
current node.

Querying XML for Content Type

We can use LINQ to XML to query not only for values, but also for types.
For instance, our sample XML data source contains three comments. We can
search for all the comments as in Listing 3-7.

Listing 3-7. Retrieving All the Comments in an XML Document

XElement xml = XElement.Load(@"..\..\People.xml");

IEnumerable<XComment> record =

xml.Nodes().OfType<XComment>();

foreach(XComment comment in record)

Console.WriteLine(comment);

The XComment class represents XML comments. Note that we used the
Nodes method instead of the Elements method. Examine Figure 3-2 carefully
to better understand the hierarchy between LINQ to XML classes.

Figure 3-2. The LINQ to XML class hierarchy

140 firstPress: LINQ to XML

Ferracchiati

The XElement class is not directly linked to the XComment class, so if
we want to retrieve comments we have to use the XNode class. For this
reason,, by using the Nodes method of XElement we can obtain a collection
of Node objects. Using the OfType standard operator we can filter the objects
for the specified type—in Listing 3-7, XComment.

Querying an XML Document That Uses Schemas

XML elements are often associated with specific namespaces, and their
names are prefixed with a namespace identifier For example, Microsoft
Office 2003 adds XML support for applications such as Microsoft Word,
Microsoft Excel, and so on. If you save a simple Word file in XML format,
you get an XML document similar to the snippet in Listing 3-8.

Listing 3-8. A Microsoft Word Document Saved Using the XML Format

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml"

xmlns:v="urn:schemas-microsoft-com:vml"

xmlns:w10="urn:schemas-microsoft-com:office:word"

xmlns:sl="http://schemas.microsoft.com/schemaLibrary/2003/core"

xmlns:aml="http://schemas.microsoft.com/aml/2001/core"

xmlns:wx="http://schemas.microsoft.com/office/word/2003/auxHint"

xmlns:o="urn:schemas-microsoft-com:office:office"

xmlns:dt="uuid:C2F41010-65B3-11d1-A29F-

00AA00C14882"

xmlns:wsp="http://schemas.microsoft.com/office/word/2003/wordml

/sp2"

w:macrosPresent="no"

w:embeddedObjPresent="no"

w:ocxPresent="no"

xml:space="preserve">

<w:ignoreElements

w:val="http://schemas.microsoft.com/office/word/2003/wordml/sp2"/>

<o:DocumentProperties>

<o:Title>Hello LINQ to XML</o:Title>

<o:Author>Fabio Claudio Ferracchiati</o:Author>

firstPress: LINQ to XML 141

Ferracchiati

<o:LastAuthor>Fabio Claudio Ferracchiati</o:LastAuthor>

<o:Revision>1</o:Revision>

<o:TotalTime>1</o:TotalTime>

<o:Created>2006-08-20T07:54:00Z</o:Created>

<o:LastSaved>2006-08-20T07:55:00Z</o:LastSaved>

<o:Pages>1</o:Pages>

<o:Words>1</o:Words>

<o:Characters>12</o:Characters>

<o:Company>APress</o:Company>

<o:Lines>1</o:Lines>

<o:Paragraphs>1</o:Paragraphs>

<o:CharactersWithSpaces>12</o:CharactersWithSpaces>

<o:Version>11.8026</o:Version>

</o:DocumentProperties>

<w:fonts>

<w:defaultFonts

w:ascii="Times New Roman"

w:fareast="Times New Roman"

w:h-ansi="Times New Roman"

w:cs="Times New Roman"/>

</w:fonts>

…

…

</w:wordDocument>

To query for the Word file’s author, we have to search for the <o:Author>

tag. The o: prefix identifies the XML namespace defined as

xmlns:o="urn:schemas-microsoft-com:office:office"

We have to add this information to our LINQ to XML code as shown in
Listing 3-9.

Listing 3-9. Querying an XML Document That Uses Namespaces

XElement xml = XElement.Load(@"..\..\Hello_LINQ to XML.xml");

XNamespace o = "urn:schemas-microsoft-com:office:office";

var query = from w in xml.Descendants(o + "Author")

select w;

foreach (var record in query)

Console.WriteLine("Author: {0}", (string)record);

142 firstPress: LINQ to XML

Ferracchiati

The XNamespace class represents and XML namespace. If we
concatenate the o object with “Author”, the Descendants method will go
through the XML document until it reaches the Author tag for the namespace
represented by the o object.

You can search for a particular attribute in a similar way. In Listing 3-10
the code searches for the default font style used in the Word document.

Listing 3-10. Retrieving the Attribute’s Value Prefixed with the Namespace

Shortcut

XElement xml = XElement.Load(@"..\..\Hello_LINQ to XML.xml");

XNamespace w =

"http://schemas.microsoft.com/office/word/2003/wordml";

XElement defaultFonts = xml.Descendants(w +

"defaultFonts").First();

Console.WriteLine("Default Fonts: {0}",

(string)defaultFonts.Attribute(w + "ascii"));

After the Descendants method reached the first w:DefaultFonts element,
we used the XElement object’s Attribute method to retrieve the w:ascii

attribute. Note that the namespace must be concatenated to the attribute name
in the same way as for the parent element.

The ElementsBeforeThis and ElementsAfterThis Methods

It’s often necessary to retrieve child elements starting from the current node.
This is easy to do by using the ElementsBeforeThis and ElementsAfterThis

methods, which retrieve a collection of sibling XElement items that occur
before the current element and after the current element, respectively. Listing
3-11 shows both methods in action.

Listing 3-11. Using the ElementsBeforeThis and ElementsAfterThis Methods

XElement xml = XElement.Load(@"..\..\People.xml");

XElement firstName = xml.Descendants("firstname").First();

Console.WriteLine("Before <firstname>");

foreach(var tag in firstName.ElementsBeforeThis())

Console.WriteLine(tag.Name);

firstPress: LINQ to XML 143

Ferracchiati

Console.WriteLine("");

Console.WriteLine("After <firstname>");

foreach(var tag in firstName.ElementsAfterThis())

Console.WriteLine(tag.Name);

After we’ve positioned the cursor over the first firstname element, calling
the two methods will produce the output shown in Figure 3-3.

Figure 3-3. The output shows the XML tags before and after the current XML

tag.

Note If you want to retrieve other XML information, such as comments, you have to use
the Node versions of ElementsBeforeThis and ElementsAfterThis,
NodesBeforeThis and NodesAfterThis.

Miscellaneous Functionalities

The XElement class provides other useful properties to easily obtain access to
XML-document information. In this section we will look at them
individually.

Parent

This property allows us to retrieve the parent element of the current node, as
Listing 3-12 shows.

Listing 3-12. Using the Parent Property to Retrieve the Parent Node of the

firstname Element

XElement xml = XElement.Load(@"..\..\People.xml");

XElement firstName = xml.Descendants("firstname").First();

Console.WriteLine(firstName.Parent);

144 firstPress: LINQ to XML

Ferracchiati

The parent node of firstname is person, so the output of this code snippet
will be the full person element (see Figure 3-4).

Figure 3-4. The output of the code snippet in Listing 3-12

HasElements and HasAttributes

These properties check if the current element has child elements or attributes.
(See Listing 3-13.)

Listing 3-13. Using HasElements and HasAttributes to Check if the Current Node

Has Child Elements and Attributes, Respectively

XElement xml = XElement.Load(@"..\..\People.xml");

XElement firstName = xml.Descendants("firstname").First();

Console.WriteLine("FirstName tag has attributes: {0}",

firstName.HasAttributes);

Console.WriteLine("FirstName tag has child elements: {0}",

firstName.HasElements);

Console.WriteLine("FirstName tag's parent has attributes: {0}",

firstName.Parent.HasAttributes);

Console.WriteLine("FirstName tag's parent has child elements: {0}",

firstName.Parent.HasElements);

After the cursor reaches the first firstname element by using the
Descendants method, the HasAttributes and HasElements properties check if
both the firstname element and its parent have attributes and child elements.
Figure 3-5 shows the output of this code snippet.

firstPress: LINQ to XML 145

Ferracchiati

Figure 3-5. The HasElements and HasAttributes properties in action

IsEmpty

This property checks if the current element contains a value or whether it is
empty. (See Listing 3-14.)

Listing 3-14. Using the IsEmpty Property to Check if Some Elements Are Empty

XElement xml = XElement.Load(@"..\..\People.xml");

XElement firstName = xml.Descendants("firstname").First();

Console.WriteLine("Is FirstName tag empty? {0}", firstName.IsEmpty

?

"Yes" : "No");

XElement idPerson = xml.Descendants("idperson").First();

Console.WriteLine("Is idperson tag empty? {0}", idPerson.IsEmpty ?

"Yes"

: "No");

Figure 3-6 shows the output of this code snippet. If you look at the XML
data source (Listing 3-1) you’ll see that the firstname element is not empty
because it contains the Carl value. You’ll also see that the idperson tag is
empty (and has only attributes).

Figure 3-6. The output of the code snippet using IsEmpty

146 firstPress: LINQ to XML

Ferracchiati

Declaration

Using this property we can retrieve information about the XML document
declaration. In Listing 3-15 we load the XML document using the
XDocument class because it fills the LINQ to XML classes with all the
possible information, such as the XML declaration, namespaces, and so on.

In Listing 3-15 we use the Declaration property to retrieve Encoding,
Version, and Standalone information from the XML document declaration.

Listing 3-15. Using the Declaration Property

XDocument xml = XDocument.Load(@"..\..\Hello_LINQ to

XML.xml");

Console.WriteLine("Encoding: {0}", xml.Declaration.Encoding);

Console.WriteLine("Version: {0}", xml.Declaration.Version);

Console.WriteLine("Standalone: {0}", xml.Declaration.Standalone);

Figure 3-7 shows the output of Listing 3-15.

Figure 3-7. The output of the code snippet using the Declaration property

Creating and Modifying XML Documents
LINQ to XML doesn’t only provide for queries; it also provides for creating
and modifying XML documents. Thanks to a feature called functional
construction, you can create XML documents in an easier way than with the
W3C DOM library.

We’ll use functional construction to create an XML document from
scratch, and then use other LINQ to XML features to manage it.

Finally, we’ll look at a couple of examples that integrate LINQ to XML
with LINQ to SQL to generate XML output from a database query.

firstPress: LINQ to XML 147

Ferracchiati

Creating an XML Document from Scratch

If you are accustomed to using the W3C DOM library or the .NET
Framework implementation of it, you’ll find LINQ to XML very easy and
more intuitive to use. The very simple code snippet that follows creates a new
person element, followed by its elements:

XElement xml = new XElement("people",

new XElement("person",

new XElement("id", 1),

new XElement("firstname", "Carl"),

new XElement("lastname", "Lewis"),

new XElement("idrole", 2)));

The functional construction model allows us to use the LINQ to XML
classes in a “linked” way. You can create objects with a hierarchical structure
that it is similar to the one used in an XML document. Moreover, it is a top-
down approach to XML document creation that is more intuitive than the
bottom-up approach of the W3C libraries. So the first element to create is the
root, people:

XElement xml = new XElement("people",

To its constructor we can pass another XElement object (person) that will
become the child element of people:

XElement xml = new XElement("people",

new XElement("person",

We pass other XElement objects to the person constructor to define its
children:

new XElement("person",

new XElement("id", 1),

new XElement("firstname", "Carl"),

new XElement("lastname", "Lewis"),

new XElement("idrole", 2)));

The XML document will look like this:

<people>

<person>

<id>1</id>

<firstname>Carl</firstname>

<lastname>Lewis</lastname>

148 firstPress: LINQ to XML

Ferracchiati

<idrole>2</idrole>

</person>

</people>

Functional construction is based on the XElement class’s constructor,
which accepts an array of param objects:

public XElement(XName name, params object[] contents)

Because this constructor accepts an array of generic object types, we can
pass it any kind of information, such as the following:

• An XElement object that will be added as child element

• An XAttribute object that will be used as an attribute for the current
element

• A string value that will be used as a value for the current element

• A null value that will be ignored

• An IEnumerable object that will be enumerated and its elements added
recursively into the XML document

• A value (variable, constant, property, or method call) to be used as
value for the current element

• An XComment object that will be added as child element

• An XProcessingInstruction object that will generate a processing
instruction as a child element

Using the XDeclaration Class

You can use an XDocument object to specify the XML declaration, as in
Listing 3-16.

Listing 3-16. Using the XDocument Class Constructor to Specify XML

Declaration Attributes

XDocument xml = new XDocument(new XDeclaration("1.0",

"UTF-8", "yes"),

new XElement("people",

new XElement("idperson",

new XAttribute("id", 1),

new XAttribute("year", 2004),

firstPress: LINQ to XML 149

Ferracchiati

new XAttribute("salaryyear", "10000,0000"))));

System.IO.StringWriter sw = new System.IO.StringWriter();

xml.Save(sw);

Console.WriteLine(sw);

Caution There is a bug in the XDeclaration constructor. Even if you set the encoding
value to a value other than UTF-16, UTF-16 will be used.

Listing 3-16 also shows using XAttribute to add attribute values to the
current element. Moreover, the Save method, provided by both the
XDocument and XElement classes, saves the complete XML document into a
StringWriter object (see “Loading and Saving XML” later in this chapter).
Figure 3-8 shows the output of Listing 3-16.

Figure 3-8. Functional constuction allows us to easily create part of the People

XML document.

Using the XNamespace Class to Create an XML Document

If you need to use XML namespace declarations, use the XNamespace class.
Using it to create an XML document is similar to using it to query elements
and attributes. We have to use the namespace variable in the XElement class
constructor (or in the XAttribute class if we are going to specify an attribute),
and add the string that represents the name of the element or the attribute.

Listing 3-17 shows how to produce the first three rows of the Hello_LINQ

to XML.xml Microsoft Word XML file used during previous examples.

Listing 3-17. Reproducing an XML Document Snippet That Has Microsoft Word

Format

XNamespace w

="http://schemas.microsoft.com/office/word/2003/wordml";

150 firstPress: LINQ to XML

Ferracchiati

XDocument word = new XDocument(new XDeclaration("1.0", "utf-

8", "yes"),

new XProcessingInstruction("mso-application",

"progid=\"Word.Document\""),

new XElement(w + "wordDocument",

new XAttribute(XNamespace.Xmlns + "w",
w.Uri)));

System.IO.StringWriter sw = new System.IO.StringWriter();

word.Save(sw);

Console.WriteLine(sw);

The bold code shows how to add a namespace and how to add an element
and attribute associated with that namespace. The output of this code is as
follows:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<?mso-application progid="Word.Document"?>

<w:wordDocument

xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml" />

Transforming XML

A really cool feature of the XElement class constructor is that it can take an
IEnumerable<XElement> collection as an argument. The constructor will
iterate automatically through the collection and create child elements of the
current element.

This kind of collection is usually produced by a LINQ query, so we could
query an XML document and produce a new XML document with different
characteristics. This process is called XML transformation, and it’s usually
done with the W3C’s XSL Transformations (XSLT) language.

However, by using functional construction and providing an IEnumerable

collection to XElement’s constructor we can easily transform an XML
document using LINQ to XML.

In Listing 3-18 some information within the People XML document is
transformed into an HTML table.

Listing 3-18. Transforming an XML Document into HTML Code

firstPress: LINQ to XML 151

Ferracchiati

XElement xml = XElement.Load(@"..\..\People.xml");

XElement html = new XElement("HTML",

new XElement("BODY",

new XElement("TABLE",

new XElement("TH", "ID"),

new XElement("TH", "Full Name"),

new XElement("TH", "Role"),

from p in
xml.Descendants("person")

join r in
xml.Descendants("role") on (int) p.Element("idrole")
equals (int) r.Element("id")

select new XElement("TR",
new

XElement("TD", p.Element("id").Value),
new

XElement("TD", p.Element("firstname").Value
+ " " +
p.Element("lastname").Value),

new
XElement("TD",
r.Element("roledescription").Value)))));

html.Save(@"C:\People.html");

The bold code in Listing 3-18 is the LINQ to XML query used to create
the HTML table content. It joins person information in the XML document
with role information. Then it selects the values that correspond to the HTML
columns declared in the HTML header. The output is then saved into an
HTML page using the Save method (see Figure 3-9).

152 firstPress: LINQ to XML

Ferracchiati

Figure 3-9. The People XML document transformed into HTML

Loading and Saving XML

LINQ to XML provides easy methods to load and saveXML documents.
We’ve already used Load and Save in some of the examples in this chapter.
The Load method you’ve used accepts a string argument that specifies the
path where the XML file is located. Similarly, the Save method accepts a
string argument in which you specify the path to store the XML document.
However, these methods have other interesting overloads that we we’ll look
at soon.

Also, some other methods deserve mention. For example, the Parse

method provided by the XElement class allows developers to build an XML
document starting from a string (see Listing 3-19).

Listing 3-19. Building an XML Document from a String

string doc = @"<people>

<!-- Person section -->

<person>

<id>1</id>

<firstname>Carl</firstname>

<lastname>Lewis</lastname>

<idrole>1</idrole>

</person>

firstPress: LINQ to XML 153

Ferracchiati

</people>";

XElement xml = XElement.Parse(doc);

Console.WriteLine(xml);

If you uses the .NET XmlReader and XmlWriter classes to read and write
XML documents, you can pass these objects to the Load and Save methods.
Listing 3-20 shows how to use XmlReader and XmlWriter with Load() and
Save().

Listing 3-20. Reading an XML Document with XmlReader and Saving It with

XmlWriter

XmlReader reader = XmlReader.Create(@"..\..\People.xml");

XDocument xml = XDocument.Load(reader);

Console.WriteLine(xml);

XElement idperson = xml.Descendants("idperson").Last();

idperson.Add(new XElement("idperson",

new XAttribute("id", 1),

new XAttribute("year", 2006),

new XAttribute("salaryyear", "160000,0000")));

StringWriter sw = new StringWriter();

XmlWriter w = XmlWriter.Create(sw);

xml.Save(w);

w.Close();

Console.WriteLine(sw.ToString());

The static Create method creates an XmlReader object and reads the
XML document from the path specified as the argument:

XmlReader reader = XmlReader.Create(@"..\..\People.xml");

Then the XDocument‘s Load method loads the XmlReader object,
building the LINQ to XML document structure:

XDocument xml = XDocument.Load(reader);

Similarly, the static Create method creates an XmlWriter object based on a
StringWriter object:

StringWriter sw = new StringWriter();

XmlWriter w = XmlWriter.Create(sw);

154 firstPress: LINQ to XML

Ferracchiati

This is necessary when you want to write the XML output to a string. The
Save method provided by the XDocument class (the same as for the
XElement class) accepts the XmlWriter object and stores the changes to the
XML document in the StringWriter object..

Figure 3-10 shows that a new idperson element has been added to the
source XML document.

Figure 3-10. The salary element has a new idperson child

Listing 3-20 previewed the code to modify an XML document. In the next
section you’ll see how to modify XML documents with XElement methods.

Modifying XML

LINQ to XML provides all the methods needed to insert, modify, and delete
elements in an existing XML document.

Inserting Elements in an XML Document

In the following code snippet (a duplicate of Listing 3-20) the code that adds
a new element to the XML document appears in boldface:

XmlReader reader = XmlReader.Create(@"..\..\People.xml");

XDocument xml = XDocument.Load(reader);

Console.WriteLine(xml);

XElement idperson = xml.Descendants("idperson").Last();
idperson.Add(new XElement("idperson",

new XAttribute("id", 1),
new XAttribute("year", 2006),
new XAttribute("salaryyear",

"160000,0000")));

firstPress: LINQ to XML 155

Ferracchiati

StringWriter sw = new StringWriter();

XmlWriter w = XmlWriter.Create(sw);

xml.Save(w);

w.Close();

Console.WriteLine(sw.ToString());

To add an element to a specific position in an XML document, we have to
navigate to the desired node using the Element or Descendants methods.
Then, using the Add method of XElement, we can add the element in the right
place.

Note If you use the Add method without establishing a specific XML document position,
the new element will be added at the end of the document.

We can use the AddFirst method to insert a new element at the beginning
of an XML document, just after the root element, as in Listing 3-21.

Listing 3-21. Using AddFirst to Insert a New Element at the Beginning of an

XML Document

XElement xml = XElement.Load(@"..\..\People.xml");

xml.AddFirst(new XElement("person",

new XElement("id",5),

new XElement("firstname","Tom"),

new XElement("lastname","Cruise"),

new XElement("idrole",1)));

Console.WriteLine(xml);

Figure 3-11 shows the output for Listing 3-21.

156 firstPress: LINQ to XML

Ferracchiati

Figure 3-11. Adding a new person element at the beginning of the XML

document

Using the AddAfterThis and AddBeforeThis methods after positioning the
cursor at the desired node, we can add a new element after or before the
current node, respectively.

Updating Elements in an XML Document

Using the SetElement method of XElement, we can update an element with a
new value. In Listing 3-22 we change the description of the first role
contained in the People XML document.

Listing 3-22. Using the SetElement Method to Modify an Element’s Value

XElement xml = XElement.Load(@"..\..\People.xml");

XElement role = xml.Descendants("role").First();

Console.WriteLine("-=-=ORIGINAL-=-=");

Console.WriteLine(role);

role.SetElement("roledescription", "Actor");

Console.WriteLine(string.Empty);

Console.WriteLine("-=-=UPDATED-=-=");

Console.WriteLine(role);

After having reached the first role node, we can use the SetElement

method to change the role description to the Actor. (Figure 3-12 shows the
output.)

firstPress: LINQ to XML 157

Ferracchiati

Figure 3-12. The SetElement method changes the value of an XML element.

Similarly, using the SetAttribute method of the XElement class we can
change the value of the specified attribute. (See Listing 3-23.)

Listing 3-23. Changing the Value of an Attribute by Using the SetAttribute

Method

XElement xml = XElement.Load(@"..\..\People.xml");

XElement role = xml.Descendants("idperson").First();

Console.WriteLine("-=-=ORIGINAL-=-=");

Console.WriteLine(role);

role.SetAttribute("year", "2006");

Console.WriteLine(string.Empty);

Console.WriteLine("-=-=UPDATED-=-=");

Console.WriteLine(role);

As you can see from the output in Figure 3-13, the year of the first
idperson element is changed from 2004 to 2006.

Figure 3-13. Just like the SetElement method changes an element’s value by

using the SetAttribute method, it can change an attribute’s value

158 firstPress: LINQ to XML

Ferracchiati

Note Using the SetElement and SetAttribute methods with elements and attributes
not already present in an XML document is equivalent to adding them to the current
element. On the other hand, specifying a null value with an existing element removes that
element from the XML document.

Finally, to replace an entire section of the XML document with new
values, use the ReplaceContent method of XElement, as in Listing 3-24.

Listing 3-24. Replacing a Whole XML Document Section by Using the

ReplaceContent Method

XElement xml = XElement.Load(@"..\..\People.xml");

xml.Element("person").ReplaceContent(new XElement("id", 5),

new XElement("firstname","Tom"),

new XElement("lastname","Cruise"),

new XElement("idrole",1));

Console.WriteLine(xml);

The first person element is substituted with a new person, as shown in
Figure 3-14.

Figure 3-14. The output for Listing 3-24

Deleting Elements from an XML Document

The XElement class provides two methods to remove an element from an
XML document: Remove and Remove Content.

firstPress: LINQ to XML 159

Ferracchiati

The Remove method applied to the current node removes that element
from the XML document. Using the Remove method with an
IEnumerable<XElement> collection iterates through all the elements and
removes them (see Listing 3-25).

Listing 3-25. Removing an idperson Element and the role Section

XElement xml = XElement.Load(@"..\..\People.xml");

xml.Descendants("idperson").First().Remove();

xml.Elements("role").Remove();

Console.WriteLine(xml);

Figure 3-15 shows the output of this code snippet.

Figure 3-15. The output shows that the role section and an idperson element

have been deleted.

The second removal method that XElement provides is RemoveContent,
which lets you remove an entire section of an XML document. In Listing 3-
26 all the content of the first role element is removed.

Listing 3-26. Removing the Content of the First role Element

XElement xml = XElement.Load(@"..\..\People.xml");

xml.Element("role").RemoveContent();

Console.WriteLine(xml);

As you can see from the output in Figure 3-16, the first role element loses
its content and is replaced by an empty tag (<role />).

160 firstPress: LINQ to XML

Ferracchiati

Figure 3-16. The RemoveContent method applied to the first role element

RemoveAttribute() called on the current element removes all its attributes.
To remove just a single attribute, you have to set that attribute’s value to null
using the SetAttribute method, as mentioned in the note after Listing 3-23.

LINQ to XML and LINQ to SQL

The final section of this chapter covers the integration aspects between two
LINQ technologies: LINQ to XML and LINQ to SQL.

In Listing 3-27 we use a LINQ to SQL query to retrieve all the person

rows from the database, which produces an XML file similar to the
People.xml file.

Listing 3-27. Querying the SQL Server People Database to Produce an XML

Document from a LINQ to SQL Query

PeopleDataContext people = new PeopleDataContext();

XElement xml = new XElement("people",

from p in people.People

select new XElement("person",

new XElement("id", p.ID),

new XElement("firstname", p.FirstName),

new XElement("lastname", p.LastName),

new XElement("idrole", p.IDRole)));

Console.WriteLine(xml);

Using a LINQ to SQL query as an argument to the XElement constructor,
we can produce an XML document in which content comes directly from

firstPress: LINQ to XML 161

Ferracchiati

database data. Figure 3-17 shows the output of the code snippet in Listing 3-
27.

Figure 3-17. The XML document produced by querying the People database

Now consider taking an XML document as the data source and querying
the database to search for new rows. If the XML document contains new rows
not present in the database, the code in Listing 3-28 uses LINQ to SQL to add
them to the database.

Note To execute the code shown in Listing 3-28 you have to leave the code of Listing 3-
27 uncommented. That’s because the code in Listing 3-28 simply adds a new record into
the xml object retrieved by the code in Listing 3-27.

Listing 3-28. Searching for New Records in an XML Document and Eventually

Adding Them to the Database

xml.Add(new XElement("person",

new XElement("id", 5),

new XElement("firstname", "Tom"),

new XElement("lastname", "Cruise"),

162 firstPress: LINQ to XML

Ferracchiati

new XElement("idrole", 1)));

Console.WriteLine(xml);

AddPerson(xml, people);

Using the XML document created in Listing 3-27, the code adds a new
person element and passes the final XElement object to the AddPerson

method that checks the XML document for new records, eventually adding
them to the database. Listing 3-29 shows the code of the AddPerson method.

Listing 3-29. Adding a New Person Record, Read from the XML Document, That

Is Not Already Present in the Database

private static void AddPerson(XElement xml, PeopleDataContext

peopledb)

{

var people = xml.Descendants("person");

foreach(var person in people)

{

var query = from p in peopledb.People

where p.ID == (int)person.Element("id")

select p;

if (query.ToList().Count == 0)

{

Person per = new Person();

per.FirstName = person.Element("firstname").Value;

per.LastName = person.Element("lastname").Value;

per.IDRole = (int)person.Element("idrole");

peopledb.People.Add(per);

}

}

peopledb.SubmitChanges();

}

The body of the AddPerson method retrieves the collection of person
elements in the XML document:

var people = xml.Descendants("person");

Then it iterates through the collection and queries the People table by
primary key for each person:

firstPress: LINQ to XML 163

Ferracchiati

var query = from p in peopledb.People

where p.ID == (int)person.Element("id")

select p;

If the collection produced by the ToList method doesn’t contain items,
then the person is not in the table; in that case, a new Person object is created,
filled with values read from the XML document, and added to People.

Once all the XML elements have been processed, the insertions are
propagated to the database with SubmitChanges().

Summary
You’ve seen that querying an XML document with LINQ to XML is easy and
requires little more than knowledge of LINQ query syntax. You no longer
have to be an expert in XML to handle XML data easily. You can focus on
what you want to do rather than on how to do it!

Moreover, you’ve seen how LINQ to XML allows you to easily create
XML documents and modify their contents.

We’ve reached the end of the chapter, as well as the end of the book.
You’ve seen all the major features of a great new technology, LINQ, that is
still in beta but it is already mature enough to be used in applications. LINQ
is the future of .NET data access—and the future is now.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

