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Two volumes of the International Mathematical Series present various top-
ics on control theory, free boundary problems, the Navier—Stokes equations,
attractors, first order linear and nonlinear equations, partial differential
equations of fluid mechanics, etc. with the focus on the key question in the
study of mathematical models simulating physical processes:

Is a model stable (or unstable) in a certain sense?

An answer provides us with understanding the following issue, extremely
important for applications:

Does the model adequately describe the physical process?

Recent advantages in this area, new results, and current approaches to the
notion of stability are presented by world-recognized experts.
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Preface

1. Overview

These two volumes are devoted to mathematical analysis of equations of
continuous media (mostly fluids) describing phenomena for which the basic
underlying physics, i.e., their relation with First Principles, is well under-
stood and broadly accepted. One of the most important mathematical issues
is how these equations can be used for an accurate description of “matter.”
At present, this question is especially urgent in virtue of at least three in-
terconnected factors: new engineering problems, advantages of functional
analysis, and the emergence of digital computing.

e Modern engineering problems involve physics at different levels of ac-
curacy, corresponding to different equations. The properties of these
equations and the relations between them turn out to be important
for applications.

For instance, the Navier—Stokes equations and the Maxwell equa-
tions are the most commonly used to compute quantities related to
fluids and electromagnetic waves respectively. However, if a medium
is rarefied, other (more refined) equations should be used. This is typ-
ically the case for the re-entry in the atmosphere of a space vehicle
transiting very rapidly from a region where the gas is rarefied to a re-
gion of gas with normal density. Then the Boltzmann equation should
be used.

In the same way, the use of the transport kinetic equation is im-
perative for devices so small that the flux of electrons cannot reach
thermal equilibrium. At the other end of the scale spectrum, one con-
fronts issues like climate evolution, and therefore it is necessary to
use equations describing the interaction between the ocean and the
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atmosphere or the stability of very large structures in fluids such as
anticyclones and the Jupiter red spot.

e During the evolution of mathematics from the 19th to the 20th century,
the emphasis in studying these equations shifted from trying to find
an explicit form of solutions to investigating equations by functional
analysis methods due to Hilbert, Banach, and others.

e In fact, the systematic use of functional analysis is naturally com-
bined with access to digital computing, also not relying on explicit
solutions. Functional analysis is of paramount importance not only
for computing error estimates between a real solution and its discrete
approximation, but also, most significantly, for constructing a discrete
version of the problem that retains the basic properties of the original
problem (a necessary condition for convergence). For instance, in fluid
mechanics, any discrete approximation should preserve mass, momen-
tum, and energy. As predicted by von Neumann in 1946, digital com-
putation provides information not available through other methods.
It is important to note that, combined with mathematical analysis,
these computations have led to mathematical discoveries. The most
classical examples involve dynamical systems.

i) The observation of the singular behavior of a discrete version
of the Kortweg-de Vries equation made in 1955 by Fermi, Pasta, and
Ulam [4], which led Lax, in 1968, to the study of the integrability of
the Kortweg-de Vries equation by using the so-called Lax pair [8].

ii) The discovery of strange attractors by Lorentz [10] and Hénon
[6] on the basis of numerical experiments, which motivated a sys-
tematic research on properties of attractors; for fluids, in particular,
starting with the contribution of Ladyzhenskaya [7] in 1972.

While the range of applications of partial differential equations is ex-
tremely large, from quantum theory to biology, the equations of fluid me-
chanics have a particular status. It turns out that success in the inves-
tigation of these equations leads to new results in many other nonlinear
problems. Therefore, the equations of fluid mechanics often serve as models
in the study of other nonlinear problems arising in applications and as a
constant stimulus for new mathematical discoveries.

A striking example is the notion of a weak solution, implicitly pre-
sented in the analysis of shocks in conservation laws obeying the Rankine—
Hugoniot condition. This notion was formalized for the construction of
turbulent solutions to the Navier-Stokes equations by Leray [9] in 1933
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and was ultimately completed with the creation of distribution theory by
Sobolev [16, 17] in 1935/36 and by Schwartz [15] in 1945.

A description of a physical process by PDEs can be adequate only if
a certain stability property interpreted depending on the physical problem
takes place.

For linear partial differential equations the first formal definition of
stability (well-posedness) was given by Hadamard [5] in 1904. In 1937,
based on the notion of stability in the sense of Hadamard, Petrowsky [13]
proposed a systematic classification of general systems of PDEs.

The nonlinear structure of equations describing fluid flows dictates
different approaches to the introduction of the notion of stability. In addi-
tion to the classical stability (well-posedness in the Hadamard sense), there
are various definitions of stability reflecting specific mathematical aspects
of physical problems. In particular, the following variants will be discussed
in these volumes:

— the large time behavior of solutions, which is related to the Lyapunov
stability of stationary solutions and attractors

— stability relative to initial data (for example, wave packets)

— stability of averaged models obtained by introducing an infinite-dimen-
sional measure driven by a stochastic process

— stability of free-boundary problems

— stability problems in control theory

2. Classification of Contributions
and Comments

The idea was to gather a collection of contributions from experts to cover
current approaches to the study of stability of mathematical models sim-
ulating processes in fluid flows. We present several directions in this area
that are different by methods and problem statements, but all of them are
joined by the final goal of research: to clarify whether the mathematical
model under consideration possesses the property of stability (instability)
in a certain interpretation of this notion.

Below we classify the papers in both volumes according to the selected
directions and give our comments on presented results.
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2.1. Navier-Stokes equations. General results
(existence and smoothness of solutions).

This direction is presented by three papers, where nontrivial situations are
considered; in particular, the problem can be stated in an unbounded do-
main or the solution can be of infinite energy.

[DS] Efim Dinaburg and Yakov Sinai, Existence theorems for the 3D
Navier—Stokes system having as initial conditions sums of plane waves,
In: Instability in Models Connected with Fluid Flows. I / Intern.
Math. Ser. Vol. 6, Springer, 2008, pp. 289-300.

In this paper, the existence theorem for the Cauchy problem for the
3D Navier-Stokes equations is proved in the case, where the initial condition
is a finite sum of plane waves. The time interval, where the solution exists,
depends on the initial condition. We emphasize that the initial condition
is not assumed to be of finite energy. The proof is based on the method
of power series which is of independent interest. There is also an example,
where a solution exists on a time interval independent of the initial condi-
tion. We should note that the existence of solutions on an arbitrary time
interval was earlier obtained by another method in [18] for almost all coef-
ficients of the initial quasiperiodic polynomial with respect to the Lebesgue
measure.

[A] Maxim Arnold, Analyticity of periodic solutions of the 2D Boussi-
nesq system, In: Instability in Models Connected with Fluid Flows. I /
Intern. Math. Ser. Vol. 6, Springer, 2008, pp. 37-52.

The paper by Sinai’s former student M. D. Arnold is devoted to the
proof of the analyticity of periodic solutions to the 2D Boussinesq system,
an extension of the Navier-Stokes equations, and uses the method of [11].

[Ze] Sergey Zelik, Weak spatially nondecaying solutions of 3D Navier—
Stokes equations in cylindrical domains, In: Instability in Models Con-
nected with Fluid Flows. II / Intern. Math. Ser. Vol. 7, Springer,
2008, pp. 329-376.

Zelik develops an infinite energy theory for the Navier—Stokes equa-
tions in unbounded 3D cylindrical domains. Based on this theory, he es-
tablishes the existence of a weak solution in a uniformly local phase space
(without any spatial decay assumptions), the dissipativity of the solution,
and the existence of the so-called trajectory attractor. In particular, this
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phase space contains the 3D Poiseuille flows. Estimates on the size of the
attractor in terms of the kinematic viscosity are also obtained.

2.2. First order linear and nonlinear equations.

The difference in statements and approaches presented in the papers of
this direction reflects the rich variety of subjects and methods in current
investigations of different aspects of stability (instability) in this area.

[BF] Anatoli Babin and Alexander Figotin, Nonlinear dynamics of
a system of particle-like wavepackets, In: Instability in Models Con-
nected with Fluid Flows. I / Intern. Math. Ser. Vol. 6, Springer,
2008, pp. 53-134.

The authors highlight the propagation properties of quasilinear hyper-
bolic equations by introducing a special class of the so-called particle-like
wave packets. This notion has a dual nature. On one hand, a particle-
like wave packet is a wave with a well-defined principal wave vector. On
the other hand, it is a particle in the sense that it can be assigned to a
well-defined position in space. As was established in this paper, under this
nonlinear evolution, a generic multi-particle wave packet remains a multi-
particle wave packet with high accuracy and the constituent single particle-
like wave packet not only preserves the principal wave number, but also has
a well-defined space position evolving with constant velocity (their group
velocity). To prove these results, the authors use properties of the linear
(hyperbolic) part of the system under consideration and the particle-like
wave packet structure of the initial data. The methods used in [BF] are
close to those of [Ch] and [GMN].

[P] Evgenii Panov, Generalized solutions of the Cauchy problem for a
transport equation with discontinuous coefficients, In: Instability in
Models Connected with Fluid Flows. IT / Intern. Math. Ser. Vol. 7,
Springer, 2008, pp. 23-84.

Transport equations with discontinuous coefficients arise in the analy-
sis of various nonlinear systems of conservation and balance laws with lin-
ear degeneracy of some components. For example, the system of Keyfitz—
Kranzer type, known in magnetohydrodynamics, reduces to a system of such
a kind. Furthermore, as is known [12], transport equations with discontinu-
ous coefficients appear as the adjoint equations corresponding to hyperbolic
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systems of conservation laws. Panov presents the well-posedness theory for
general nonhomogeneous transport equations which can be applied for es-
tablishing the existence and uniqueness of strong entropy solutions to the
Cauchy problem for Keyfitz—Kranzer type systems.

[R] Evgenii Radkevich, Irreducible Chapman—Enskog Projections and
Navier—Stokes approzimations, In: Instability in Models Connected
with Fluid Flows. II / Intern. Math. Ser. Vol. 7, Springer, 2008,
pp. 85-154.

In order to derive the viscosity and heat diffusion coefficients from
the Boltzmann equation, Chapman and Enskog proposed an approximation
of solutions to the Boltzmann equation in terms of macroscopic quantities
or moments of the solution. This approach works very well for the first-
order approximation with respect to the Knudsen number . This leads to
the compressible Navier—Stokes equation and provides a way to derive the
viscosity and heat diffusion coefficients from First Principles. For the next
order in €, the Burnett equation appears, an ill-posed equation in the sense
of Hadamard. As was noted in [2], a very good model for relaxation to
the equilibrium property of the Boltzmann equation is the nonlinear Euler
equation with relaxation term of order e~'. Based on spectral analysis,
Radkewich proposed some other derivation. In particular, he proved that,
in the case of an odd number of equations, a well-posed approximation of
dependent variables of any order can be expressed as an equation of one
variable. If the number of equations is even, the approximation can be
expressed via two macroscopic variables.

2.3. Finite time instabilities of 3d incompressible
Euler equations.

The question whether solutions to the 3d incompressible Euler equations
with finite energy and smooth initial data may blow up in finite time is still
open. However, it is known that a family of smooth initial data may generate
growth in the vorticity that, even if not infinite, may be arbitrarily large.
Furthermore, even in the 2d case, a family of initial data with nonuniformly
bounded vorticity may generate pathological behavior. In [Ch] and [GMN],
the reasons leading to such patologies are investigated.
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[Ch] Christophe Cheverry, Recent results in large amplitude monophase
nonlinear geometric optics, In: Instability in Models Connected with
Fluid Flows. I / Intern. Math. Ser. Vol. 6, Springer, 2008, pp. 267—
288.

Using methods of nonlinear geometric optics applied to a family of
oscillating initial data, Cheverry shows that the weak limit of the corre-
sponding solutions does not satisfy the Euler equation any more.

[GMN] Francois Golse, Alex Mahalov, and Basil Nicolaenko, Burst-
ing dynamics of the 3D FEuler equations in cylindrical domains, In:
Instability in Models Connected with Fluid Flows. I / Intern. Math.
Ser. Vol. 6, Springer, 2008, pp. 301-338.

To exhibit the stabilizing effect of a fast rotation, the authors consider
solutions to the Euler equations in a finite cylinder with initial data that is
a bounded perturbation of a large uniform rotation €2 along the axis of the
cylinder. Conjugating the solution with the Poincaré—Steklov operator (the
rotation in the space of divergence-free functions), they construct a resonant
limit system. Special solutions (in particular, periodic and integrable ones)
are studied by methods of the classical Hamiltonian mechanics for rigid
bodies. Using a shadowing lemma, the authors find that the solutions to
the original Euler equation have similar behavior. From the Editors’ point
of view, the major and remarkable result is the construction of time periodic
solutions with large variation of the ratio of the H*(t) norms between two
different times ¢; and ty (for any s). Such a bursting dynamics, without
singularities, corresponds to the so-called depletion in the study of the Euler
equations.

2.4. Large time asymptotics of solutions.

The analysis of the large time behavior of solutions to the fluid equations
covers many applications and is connected with basic physical issues, for
instance, the route to turbulence. At the same time, it can be approached
through very different aspects. In addition to the contribution presented in
this subsection, the papers by Zelik (see Subsection 2.1) and by Zlotnik (see
Subsection 2.6 below) are directly related to this topic.
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[ChV] Vladimir Chepyzhov and Mark Vishik, Attractors for nonau-
tonomus Navier—Stokes system and other partial differential equations,
In: Instability in Models Connected with Fluid Flows. I / Intern.
Math. Ser. Vol. 6, Springer, 2008, pp. 135-266.

As was already mentioned, a description of attractors was a strong
stimulus for mathematical research. Beginning with the 80’s, the theory of
global attractors was actively developed by many authors towards different
directions, including the estimation of the Hausdorff dimension of attractors
by basic scaling numbers (Reynolds, Grasshoff, etc.) of a flow. Attractors
for nonautonomous equations were first studied by Chepyzhov and Vishik
[3] who have made the main contribution to the field.

In the present paper, the authors treat the case of nonautonomous
systems. The Hausdoff dimension of the global attractor can be infinite in
the nonautonomous case, and, by this reason, the authors use the notion of
an e-entropy introduced by Kolmogorov for estimating the attractor size.
Nonautonomous partial differential equations with oscillating external forces
are analyzed. In particular, the authors consider the situation, where the
amplitude of the oscillation grows infinitely, whereas the attractor remains
bounded.

2.5. Statistical approach.

To derive an equation describing an instable movement, it is reasonable to
replace unspecified forces by random forces with time-independent incre-
ments, instead of omitting unspecified forces altogether. Then one obtains
a stochastic equation, i.e., a partial differential equation with white noise
on the right-hand side. The presented results of Shirikyan lead to a very
interesting setting of the problem that is adequate to described instable
physical processes.

[Sh] Armen Shirikyan, Ezponential mizing for randomly forced partial
differential equations. Method of coupling, In: Instability in Models
Connected with Fluid Flows. IT / Intern. Math. Ser. Vol. 7, Springer,
2008, pp. 155-188.

During many years, physicists were firmly convinced that the white
noise possesses a smoothing effect on solutions to a partial differential equa-
tion. In the case of the complex Ginzburg—Landau equation, this conjecture



Preface xix

finds its rigorous justification in the paper by Shirikyan presented in this
collection. In fact, Shirikyan proves the ergodicity of stochastic partial
differential equations, i.e., the uniqueness of the steady-state statistical so-
lution even in the case, where the same partial differential equation, without
white noise on the right-hand side, possesses many individual steady-state
solutions belonging to an attractor of complicated structure. The smooth-
ing action of the white noise is precisely to transform the set of individual
steady-state solutions into a unique statistical steady-state solution. Us-
ing the coupling method, Shirikyan establishes a general criterion for the
uniqueness of stationary measures and an exponential mixing property. The
latter is understood as a certain kind of the Lyapunov exponential stability
of the steady-state statistical solution. The method is then illustrated by
the stochastic complex Ginzburg-Landau equation. Note that the results
presented in [Sh] are based on an approach developed in a series of papers
by Kuksin and Shirikyan (see references in [Sh]).

2.6. Water waves and free boundary problems.

The papers presented in this subsection are devoted to the study of delicate
physical situations, where the surface separating a liquid and an external
medium is not fixed. There are many different problems of such a kind.
Some of them are discussed in our volumes.

[L] David Lannes, Justifying asymptotics for 3D water-waves, In: Insta-
bility in Models Connected with Fluid Flows. IT / Intern. Math. Ser.
Vol. 7, Springer, 2008, pp. 1-22.

A motion of a perfect incompressible irrotational fluid under the in-
fluence of gravity is described by the free surface Euler (or water-wave)
equations. These equations have rich structure, and many well-known equa-
tions in mathematical physics can be obtained as their asymptotic limits,
for example, the Korteweg-de Vries equations, the Kadomtsev—Petviashvilii
equations, the Boussinesq systems, the shallow water equations, the deep
water models, etc. Lannes studies the validation of such asymptotics. Since
the fluid is irrotational, it derives from a potential and therefore leads to the
Dirichlet—-Neumann operator on the free boundary. An asymptotic analysis
of the Dirichlet—Neumann operator yields a linearized version of the prob-
lem. To reach the full nonlinear case, the perturbation method employing
the Nash—Moser theorem is used.
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[S] Vsevolod Solonnikov, On problem of stability of equilibrium figures
of uniformly rotating viscous incompressible liquid, In: Instability in
Models Connected with Fluid Flows. IT / Intern. Math. Ser. Vol. 7,
Springer, 2008, pp. 189-254.

The free boundary problem governing the evolution of an isolated mass
of a viscous incompressible fluid, subject to capillary and self-gravitation
forces, is considered. The solvability of this problem in a finite time in-
terval was established by the author in his previous publications. In the
present paper, Solonnikov studies the stability of the solution correspond-
ing to the rigid rotation of a liquid about the vertical axis with constant
angular velocity. The main goal of this investigation is to show that the
stability /instability is driven by the second variation of the energy func-
tional, which has been done via analysis of the spectrum of the linearized
operator in a neighborhood of the stationary regime. Then the perturba-
tions are estimated in terms of the Holder norms.

[Z]] Alexander Zlotnik, On global in time properties of the symmetric
compressible barotropic Navier—Stokes—Poisson flows in a vacuum, In:
Instability in Models Connected with Fluid Flows. II / Intern. Math.
Ser. Vol. 7, Springer, 2008, pp. 329-376.

Unlike the papers [L] and [S] dealing with incompressible fluids (for
instance, water) and several spatial dimensions, Zlotnik considers symmetric
self-gravitating flows of a viscous compressible barotropic gas/fluid around a
hard core with a free outer boundary in a vacuum. The density degenerates
at the free boundary. Under spherical symmetry, the problem becomes
one-dimensional relative to the spatial variables. Such problems arise in
astrophysics. For large discontinuous initial data and general state functions
(including increasing and not strictly increasing ones) the global-in-time
bounds for solutions are established, which allows one to study of their
large-time behavior. Results on the existence, nonexistence, and uniqueness
of the corresponding static solutions are also presented.

2.7. Control theory.

Control theory gives the most natural point of view for engineering sciences.
Indeed, instead of determining a solution in terms of data, one seeks to find
the most suitable data to produce the desired output. This approach was
first developed for time-dependent ordinary differential equations (see, for
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example, [14]). Due to the use of computers, advantages of functional analy-
sis, and modern technology, this approach is now extended to distributed
system. Note that control is closely related to the notion of observability,
where frequencies of the solution play a crucial role. This fundamental fact
was widely used by J.-L. Lions, one of the creators of control theory for
PDEs. The main feature of this area is that many control problems arising
in applications are ill posed in the sense of Hadamard.

[Sh] Victor Isakov, Increased stability in the Cauchy problem for some
elliptic equations, In: Instability in Models Connected with Fluid
Flows. I / Intern. Math. Ser. Vol. 6, Springer, 2008, pp. 339-362.

Variations of the boundary data for elliptic equations generate fluctu-
ations that show up everywhere in the domain. However, according to the
regularizing properties of these problems, these fluctuations may be very
small and the identification of their source is an ill-posed problem in the
sense of Hadamard. It turns out that, in this setting, the most convenient
tools for obtaining the best possible estimates are “Carleman estimates.”
Using these tools, Isakov derives some bounds which can be thought of as
the increasing stability of the Cauchy problem for the Helmholtz equation
with lower order terms when frequency is growing. These bounds hold un-
der certain pseudoconvexity conditions on the surface for the Cauchy data
and on the coefficient of the zero order term in the Helmholtz equation.

[AS] Andrey Agrachev and Andrey Sarychev, Solid controllability
in fluid dynamics, In: Instability in Models Connected with Fluid
Flows. I / Intern. Math. Ser. Vol. 6, Springer, 2008, pp. 1-36.

The authors consider the controllability and accessibility properties of
the Navier—Stokes and Euler systems controlled by a low-dimensional force
on the right hand side. After a survey of recent results, the authors establish
new results for these systems on the two-dimensional sphere and generic
two-dimensional Riemannian surfaces. They focus on geometric and Lie
algebraic ideas, adopting the approach due to Arnold and Khesin [1] and
making a connection with geometric methods in classical control theory.
This paper should be especially interesting for those specialists, familiar
with analytical methods, who wish to be introduced to the geometrical
approach and to make a step towards more applied points of view.
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3. Methods and Tools

To o

btain the results presented in the volumes, the authors used well-known

methods and their modifications or developed new approaches. Keeping in
mind that mathematical methods are often as important as results they
produce, we list the main methods and tools used by the contributors and
indicate the corresponding references.

1.

Infinite dimensional geometric approach to fluid dynamics [AS]
Nash—Moser theorem [L]
Pseudodifferential calculus and harmonic analysis [L]

Expansion of nonlinear part in terms of
perturbation series [DS], [A]

Nonlinear optic high frequency approximations [BF], [Ch]
Poincaré-Sobolev operator [GMN]

Resonant frequencies [GMN], [BF]

White noise, stochastic methods, coupling method in particular [Sh]
Hausdorff dimension, Kolmogorov entropy, attractors [ChV], [Ze].
Carleman estimates [I]
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We survey results of recent activity towards studying the controllability and ac-
cessibility issues for equations of dynamics of incompressible fluids controlled by
low-dimensional (degenerate) forcing. New results concerning the controllability
of Navier—Stokes / Euler equations on a two-dimensional sphere and on a generic
Riemannian surface are presented. Bibliography: 28 titles.

1. Introduction

We survey results of recent activity aimed at studying the controllability and
accessibility properties of the Navier—Stokes (NS) equations controlled by

Instability in Models Connected with Fluid Flows. I. Edited by Claude Bardos and Andrei
Fursikov / International Mathematical Series, Vol. 6, Springer, 2008 1



2 Andrey Agrachev and Andrey Sarychev

low-dimensional (degenerate) forcing. This choice of control is the character-
istic feature of our statement of the problem. The corresponding equations
are as follows:

Ou/ot + Vyu+ gradp = vAu+ F(t, x), (1.1)
divu = 0. (1.2)

The words “degenerate forcing” mean that F(t,z) can be represented as

F(t,z) = Z vp(t)F*(z), K is finite.
ket
The word “controlled” means that the functions wvg(t), ¢t € [0,7], enter-
ing the forcing can be chosen freely among measurable essentially bounded
functions. In fact, any function space, dense in L1[0,T], would fit.

The domains considered here include two-dimensional (compact) Rie-
mannian manifolds: a sphere, a torus, a rectangle, a generic Riemannian
surface diffeomorphic to a disc. We impose the so-called Lions boundary
condition whenever the boundary is nonempty.

Our approach stems from geometric control theory which is based on
differential geometry and Lie theory; the geometric control approach proved
its effectiveness in studying controlled dynamics in finite dimensions. We
report on some ideas of how such methods can be extended to the area of
infinite-dimensional dynamics and controlled partial differential equations.
Extensions of geometric control theory to the infinite-dimensional case are
almost unknown. The classical Lie techniques are not well adapted for the
infinite-dimensional case, and several analytic problems are encountered.

In this contribution, we concentrate almost exclusively on geometric
and Lie algebraic ideas of the accomplished work. For details on analytic
part we refer the interested reader to [7, 6, 23, 21, 22, 26, 27].

Applications of geometric theory to the study of the controllabil-
ity of finite-dimensional systems is a well established subject, although
many problems still remain unsolved. Starting point of the activity aimed
at controlling the Navier—Stokes equations by degenerate forcing was the
study [13, 4, 6, 25] of the accessibility and controllability of their finite-
dimensional Galerkin approximations on T? and T? (periodic boundary
conditions). One should note that the controllability of finite-dimensional
Galerkin approximations of the Navier—Stokes equations on many other do-
mains remains an open question. Answers for generic Riemannian surfaces
follow from the results of Section 9.
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The study in the infinite-dimensional case started in [5, 6, 7], where
we dealt with the 2D Navier—Stokes / Euler equations on a 2D torus T2. In
these publications, the notion of the solid controllability in projections and
that of the approximate controllability are introduced and sufficient criteria
for them are established.

To obtain such criteria, the technique of the so-called Lie extensions
in infinite dimensions was suggested. In the context of our problem, this
technique can be loosely interpreted as designing the propagation to higher
modes of the energy pumped by controlled forcing into the lower modes.

The control functions involved are fast-oscillating, and the analytic
part of the study consists of establishing the continuity properties of solu-
tions of the Navier—Stokes equations with respect to the so-called relaxation
metric of forcing. Being weaker than the classical metrics, it is adapted for
dealing with fast oscillating functions.

An extension of the above-mentioned techniques to the Navier—Stokes
equations with the Lions boundary conditions on a rectangle has been ac-
complished by Rodrigues [21]. In the course of this study, both geometric
and analytic parts needed to be adjusted: the Lie extensions turn more
intricate and the continuity properties need to be reproved. These results
are surveyed in Section 8.

A new approach is suggested for establishing the controllability on a
Riemannian surface diffeomorphic to a disc (Section 9).

Finally, the study of the Lie algebraic properties of spherical harmonics
results in a controllability criterion for the Navier—Stokes / Euler equations
on a 2D sphere (Section 10).

The results appearing in Sections 9 and 10 have not been previously
published.

An interesting extension of the above described methods to the case of
the Navier—Stokes equations on a 3D torus was accomplished by Shirikyan
[26, 27]. The geometric part of his study essentially coincides with that
in [6] and [25], but many additional analytic difficulties in the 3D case
arise. We do not survey these results here, but refer the interested reader
to [26, 27].

The controllability of the Navier—Stokes and Euler equations was ex-
tensively studied, in particular, by means of boundary control. There are
various results on the exact local controllability of the 2D and 3D Navier—
Stokes equations obtained by Fursikov and Imanuilov, the global exact con-
trollability for the 2D Euler equation obtained by Coron, and the global
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exact controllability for the 2D Navier—Stokes equations obtained by Coron
and Fursikov. We refer the reader to the book [14] and surveys [15, 11] for
the further references.

2. 2D Navier—Stokes / Euler Equations
Controlled by Degenerate Forcing.
Definitions and Problem Setting

2.1. Navier—Stokes / Euler equations on
2D Riemannian manifold.

The representation of the Navier—Stokes / Euler equations in the form (1.1),
(1.2) requires an interpretation whenever one considers the system on a
2D domain M with arbitrary Riemannian metric. There is a general way
of representing the Navier—Stokes / Euler equations on any n-dimensional
Riemannian manifold (see, for example, [10]), but we prefer to remain in
two dimensions and advance with some elementary vector analysis in the
2D Riemannian case.

We consider a smooth (or analytic) two-dimensional Riemannian man-
ifold M (with or without boundary) endowed with the Riemannian metric
(+,-) and area 2-form o. All functions, vector fields, and forms will be as-
sumed to be smooth.

Any vector field y on M can be paired with two differential 1-forms

y=y (Y6 = (1,6, vyt (W) =0(y,6) (2.1)
for each vector field £. Tt is obvious that (y*,y) = o(y,y) = 0.
Note that for any 1-form A

Ay =\ y)o. (2.2)

To prove (2.2), it suffices to compare the values of 2-forms AAy* and (\,y)o
on any pair of linearly independent vectors. It is obvious that (2.2) is valid
if y (and y*) vanishes. If y # 0, we take a pair y, z which is linearly
independent. Then

#
anshia = | G0 B = oot

Now, we define the vorticity curl and divergence div of a vector field
via the differentials dy” and dyf which are 2-forms. We put dy® = (curly)o
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and dy* = (divy)o or, by abuse of the notation,
(curly) = dy’ /o, (divy) = dy/o. (2.3)

The gradient grad ¢ of a function ¢ is the vector field paired with dg
metrically: (grady)” = de.

As in the Euclidean case, the vorticity of the gradient vector field of
a function vanishes: curl(grad ) = d(grad ¢)’ /o = d(dy)/o = 0.

In the 3D case, curl transforms vector fields into vector fields while,
in the 2D case it transforms vector fields into scalar functions (actually, the
component of a vector field directed along the additional third dimension).
We define the vorticity operator curl on functions. The result of the action
of curl on a function ¢ is a vector field curl ¢ such that

(A, curl pyo = (dp A A)

for each 1-form A. By (2.2) and the nondegeneracy of paring y — ¥, we
conclude:
(curl p)* = —dep. (2.4)

As in the Euclidean case, the divergence of the vorticity of a function
vanishes:
div(curl p) = d(curl p)* /o = —d(dy)/o = 0. (2.5)

Coming back to Equation (1.2), we note that the condition divu = 0
can be written as
duf = 0. (2.6)
If M is simply connected, we conclude that u* must be a differential: uf =
—di, where 1) is the so-called stream function. By (2.4), curlv = u.

For non-simply connected domains we impose a condition which guar-
antees the exactness; in the next subsection we comment on it.

For the symplectic structure on M defined by o and (-,-) we see that
u is the Hamiltonian vector field corresponding to the Hamiltonian —1):
—
u=—1.
The nonlinear term V,u on the right-hand side of (1.1) corresponds to

the covariant derivative of the Riemannian (metric torsion-free) connection
on M.

Finally, we define the Laplace-Beltrami operator A as A = curl®. In
the Hodge theory (see [10]), this operator transforms p-forms into p-forms;
in our notation A transforms vector fields into vector fields and functions
into functions.
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2.2. Helmholtz form of 2D Navier—Stokes equations.

To obtain the Helmholtz form of the Navier-Stokes equations (1.1), (1.2), we
apply the operator curl to both sides of (1.1). As a result, for the vorticity
curlu = w we get the equation
ow/ot + curl(Vyu) = vAw + f(t,x), (2.7)
where f(t,z) = curl F(t, z).
Note that the vorticity of gradp vanishes and the operator curl com-
mutes with A = curl®.

To calculate curl(V,u) according to formula (2.3), we first compute
the 1-form (V,u)? adapting the argument of [10, § TV.1.D].

Let y be a vector field that commutes with u: the Lie-Poisson bracket
vanishes, [u,y] = 0. Then

(Vuw),y) = (Vat,y) = Lu(u,y) = (u, Vuy). (2.8)
Hereinafter, L, denotes the Lie derivative. Note that for the covariant
derivative of metric connection we have L,(u,y) = (Vuu,y) + (u, Vyy).

Since the connection is torsion-free and [u,y] = 0, we have V,y — V,u =0
and the right-hand side of (2.8) can be represented as

1
L, (W’ y) — (u, Vyu) = Ly, (0’ y) — §<d(u, u),y).
Moreover, L, (u’,y) = (L,u’,y) if L,y = [u,y] = 0 and we conclude:

(V) ) = (Lt ) — 5 (dlu, ), ).

As far as we can find a vector field y that commutes with u and has any
prescribed value at a given point, we conclude:

1
(Vuu)b = Ly’ — §d(u, u).

Using the definition of curl (2.3), we get
curl(Vyu) = d((Vyu)’) /o = dLyu’ /o = Lydu’ /o = Ly (wo) /o = Lyw.
Hence curl(V,u) = L,w.
If w is a Hamiltonian vector field with Hamiltonian —, then V,w =
—{v,w}, where {-,-} is the Poisson bracket of functions.
The Helmholtz form of the Navier—Stokes equations (cf. [10]) reads

%_1: —{Y,w} —vAw = f(t, ).
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Note that w = curlu = curl® ¢ = A,

The Lions condition written in terms of the vorticity w and the stream
function v reads
Y] opr = w0 =0 (2.9)
If the boundary M of M is smooth, then the Hamiltonian vector field
u = —J is tangent to OM.

For the vorticity w and boundary conditions (2.9) one can recover in
a unique way the velocity field u corresponding to the ezact 1-form uf. The
corresponding formula is u = curlvy, where 1 is a unique solution of the
Dirichlet problem At = w with the boundary condition (2.9). Indeed, such
u is divergence-free and the vorticity of u is equal to w by the definition
of A.

The Navier—Stokes equations can be written as

ow

Y
This equation looks universal. In fact, its dependence on the domain is
encoded in properties of the Laplacian A on this domain. It is well explained
in [8, 10] that the Euler equation for a fluid motion is an infinite-dimensional
analog of the Euler equation for rotation of a (multi-dimensional) rigid body,
and the Laplacian in (2.10) plays role of the inertia tensor for the rotating
rigid body.

(A w, w} —vAw = f(t, ). (2.10)

2.2.1. Stream function on flat torus. Consider a flat torus T2 endowed
with the standard Riemannian metric and area form o, both inherited from
the covering of T? by the Euclidean plane. Let ¢1, s be the “Euclidean”
coordinates on T2. We proceed in the space of velocities u with vanishing

space average: / udo =0 (by flatness, we may think that all velocities
T2
belong to the same linear space).

To establish the exactness of the closed 1-form u# (involved in (2.6)),
it suffices to prove that its integral along the generator of a torus vanishes.
By the Stokes theorem, the integrals of the closed form uf along any two
homologous paths have the same value.

Taking u = (u1,uz), we get uf = —usdp; + uidps. Integrating uf
along the loop I' : o1 = «, we obtain the value of the integral

2

/uﬁ = /u1d<p2 = c¢(a),

N 0
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which, by the aforesaid, is constant: ¢(a) = c¢. Integrating it with respect
to ¢1, we conclude that

2
2re = /u1d<p2d<p1 = /uldo* =0.
0 T2
Hence
/uti =c=0.
r

The same holds for the loops IV : 5 = const.

2.3. Controllability. Definitions.

In what follows, we reason in terms of the so-called modes which are eigen-
functions ¢”(z) of the Laplace Beltrami operator A defined in the space of
vorticities w: Ag*(x) = Ak ().
Representing w and f in (2.10) as series w(t,z) = > qx(t)¢*(z) and
k

f(t,2) = > v (t)p"(z) with respect to the basis of eigenfunctions, we can
e

write the Navier—Stokes equations as an infinite system of ordinary differ-
ential equations on the coefficients gx(¢). Assume that

{¢'(2), ¢ (2)} = CY " (a).
k
Then the system (2.10) can be written in the coordinate form as

ik — Y CPN qiq; — vAkg = k(1) (2.11)
i
Typically, we will consider a controlled forcing which is applied to
few modes ¥ (x), k € K, where K! is finite. Then, in the system (2.11),
the controls enter only the equations indexed by k € !, while vy = 0 for
k¢ Kt
Introduce another finite set ¢ of observed modes. We always assume
that K° D K. We identify the space of observed modes with RV and denote
by II° the operator of projection of solutions onto the space of observed
modes span{yy, | k € K°}. The coordinates corresponding to the observed
modes are reunited in the observed component ¢°.

A Galerkin K°-approximation of the 2D Navier—Stokes / Euler equa-
tions is the ordinary differential equation for ¢°(t) obtained by projecting the
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2D Navier—Stokes equations onto the space of observed modes and equating
all the components g (t), k € K°, to zero. The resulting equation is
0q°
ot
If K° D K, i.e., the controlled forcing f only affects a part of observed
modes, then TI°f (¢, x) = f(t, ).
In the coordinate form, the passage to Galerkin approximations means
omitting the equations in (2.11) for the variables ¢ with & ¢ K° and equat-
ing these qx to zero in the remaining equations.

We say that a control f(t,z) steers the system (2.10) (or (2.12)) from
@ to ¢ in time T if for the system (2.10) forced by f the solution with the
initial condition ¢ at ¢t = 0 takes the “value” ¢ at t =1T.

—TI°{A™ ¢, ¢°} —vAQ° = f(t,z). (2.12)

The first notion of controllability considered is the controllability of
Galerkin approximations.

Definition 2.1 (controllability of Galerkin approximations). A Galer-
kin K°-approximation of the 2D Navier—Stokes / Euler equations is time-T
globally controllable if for any two points ¢ and ¢ in RN there exists a control
that steers in time 7" this Galerkin approximation from ¢ to .

This is a purely finite-dimensional notion. The following notion re-
gards a finite-dimensional component of solutions, but takes into account
the complete infinite-dimensional dynamics.

Definition 2.2 (attainable sets of Navier—Stokes equations). An at-
tainable set Az of the Navier-Stokes / Euler equations (2.10) is the set of
points in H?(M) attained from ¢ by means of essentially bounded measur-
able controls in any positive time. For each T' > 0 time-T a (time-< T))
attainable set Ag (A;T) of the Navier—Stokes / Euler equations is the set of
points attained from ¢ by means of essentially bounded measurable controls
in time 7' (in time < 7). Then the attainable set Ag = [JAL.

T

Definition 2.3. The Navier-Stokes / Euler equations are time-T" glob-
ally controllable in projection onto L if for each @ the image I1¢ (Ag) coin-
cides with L.

Definition 2.4. The Navier-Stokes / Euler equations are time-T' Lo-
approximately controllable if Ag is Lo-dense in H?2.

Definition 2.5 (accessibility in finite-dimensional projection). Let £
be a finite-dimensional subspace of Ho(M), and let IT* be the Lo-orthogonal
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projection of Ho(M) onto £. The Navier—Stokes / Euler equations are time-
T accessible in projection on L if for any ¢ € Hy(M) the image IT¢ (Ag)
contains interior points in L.

Definition 2.6. Fix an initial condition ¢ € Ho (M) for trajectories of
the controlled 2D Navier—Stokes / Euler equations. Let v(+) € L ([0,T];R")
be a controlled forcing, and let w; be the corresponding trajectory of the
Navier—Stokes equations.

If the Navier-Stokes / Euler equations are considered on an interval
[0,T] (T < +00), then Ep : v(-) — wr is called an end-point mapping,
II° o F/T 1 is called an end-point component mapping, and I o F/T s
called an L-projected end-point mapping.

Definition 2.7. Let ® : M! — M? be a continuous mapping between
two metric spaces, and let S C M? be any subset. We say that ® covers S
solidly if S C ®(M?') and this inclusion is stable with respect to C?-small
perturbations of @, i.e., for some C°-neighborhood € of ® and each mapping
U € Q we have S C W(M?).

Definition 2.8 (solid controllability in finite-dimensional projection).
The 2D Navier-Stokes / Euler equations are time-T solidly globally con-
trollable in projection on a finite-dimensional subspace £ C H?*(M) if
for any bounded set S in L there exists a set of controls Bg such that
(IT€ o F/T ;)(Bs) covers S solidly.

2.4. Statement of the problem.

In this paper, we discuss the following questions.

e Under what conditions the 2D Navier—Stokes / Euler equations are
globally controllable in the observed component?

e Under what conditions the 2D Navier-Stokes / Euler equations are
solidly controllable in a finite-dimensional projection?

e Under what conditions the 2D Navier-Stokes / Euler equations are
accessible in a finite-dimensional projection?

e Under what conditions the 2D Navier—Stokes / Euler equations are
Lo-approximately controllable?

As we explained above, the geometry of controllability is encoded in
the spectral properties of the Laplacian A and therefore depends on the
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geometry of the domain on which the controlled Navier—Stokes equations
evolves. Below we provide answers for particular types of domains.

3. Geometric Control. Accessibility and
Controllability via Lie Brackets

In this section, we collect some results of geometric control theory regard-
ing the accessibility and controllability of finite-dimensional real-analytic
control-affine systems of the form

&= f0%x)+ > flwt), 2(0) =2 w(t)eRi=1,...,r.  (3.1)
i=1

The geometric approach is coordinate-free, so that it is adapted for dealing
with dynamics on manifolds. However, we assume that the system (3.1)
is defined on a finite-dimensional linear space RY in order to maintain the
parallel with the Navier—Stokes equations which evolve in Hilbert spaces.

We use the standard notation P, = e/ for the flow corresponding to
a vector field f.

3.1. Orbits, Lie rank, and accessibility.

Let v(+) € Lo ([0, T]; R") be admissible controls, and let z(t) be the corre-
sponding trajectories of the system @ = fO(x) + Y. f%(z)v;(t) with initial
i=1

point 2(0) = 2°. We again introduce an end-point mapping Er : v(-)
2y (T); here z,(+) is the trajectory of (3.1) corresponding to the control v(-).

For each T" > 0 the time-T" attainable set Ago from 2% of the system
(3.1) is the image of the set Lo ([0, T]; R") under the mapping Er or, equiv-
alently, the set of points z(7") attained in time T from 2° by means of admis-

sible controls. The time-< T attainable set from 2 is AfOT = U A;o.
t€[0,T]
The attainable set from z° of the system (3.1) is Ao = (J AL,
T>0

An important notion in geometric control theory is an orbit of a control
system.

Definition 3.1 (orbits and zero-time orbits of control systems). The
orbit of the control system (3.1) passing through 20 is the set of points
obtained from z° under the action of (the group of) diffeomorphisms of
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Wl uN .
the form e’t/" o...0enf" | where t; € R, j = 1,...,N, and f* =
T . .
O+ > fi(x)ul is the right-hand side of (3.1) corresponding to the constant
i=1

control u/ = (u},...,ul) € R". The zero-time orbit is the subset of the orbit

resulting from the action of these diffeomorphisms subject to the condition

> t; =0.
J
If we consider the “symmetrization” of the system (3.1),
&= fOx)vo + Y fi(@)vi(t),2(0) = 2% v €R, vi(t) ERi=1,...,m,
i=1

then the orbit of (3.1) can be interpreted as the attainable set from z° of this
symmetrization corresponding to application of piecewise-constant controls.

The famous Nagano theorem relates properties of orbits and Lie alge-
braic properties of the system. It claims that the orbit and the zero-time
orbit of the analytic system (3.1) are immersed manifolds of RY and the
tangent spaces to these orbits can be calculated via the Lie brackets of
vector fields {f°,..., f™}.

Definition 3.2 (Lie rank and zero-time Lie rank). Take the Lie al-
gebra Lie{f°,..., f™} generated by {f°, ..., f™} and evaluate vector fields
from Lie{fY ..., f™} at a point x. The dimension of the resulting linear
space Lie,{f", ..., f™} is the Lie rank of the system {f° ... f™} at x.

Take the Lie ideal generated by span{f!,..., f™} in Lie{f°,..., f™}
and evaluate vector fields from it at z. The dimension of the resulting linear
space Lie? { O, ..., f™} is the zero-time Lie rank of the system {f°,..., f™}
at x.

These Lie ranks either are equal or differ by 1.

The Nagano theorem claims that, in the analytic case, Lie,{f°, ..., f™}
and Lie?{f°,..., f™} are the tangent spaces at each point z of the orbit
and zero-time orbit respectively.

The accessibility properties of the analytic control system (3.1) are
determined by the Lie ranks of this system. Recall that a system is accessible
if the attainable set A 0 has nonempty interior and is strongly accessible if
for all T > 0 the attainable sets A%, have nonempty interior.

Theorem 3.3 (Jurdjevic-Sussmann (C* case) and Krener (C* case)).
If the Lie rank of a system of vector fields {f°,..., f"} at 2° is equal to n,
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then for oll T > 0 the interior of the attainable set AfOT s nonvoid. More-
over, AfOT possesses the interior which is dense in it. If the zero-time Lie
rank at 2° is equal to n, then for all T > 0 the interior of the attainable set
Afa is nonvoid and is dense in Afo.

See [18, 2] for the proof.

Let £ be a linear subspace of RV, and let IT* be a projection of RV
onto £. The control system (3.1) is (strongly) accessible from x in projection
on L if the image II* A0 (II¥AZ,) contains interior points in £ (for each
T>0).

From Theorem 3.3 we easily obtain the following criterion for accessi-
bility in projection.

Theorem 3.4. If TI* maps Lie, {f°, ..., f™} ( Lie2{f% ..., f™})
onto L, then the control system (3.1) is accessible (strongly accessible) at
x in projection on L.

PROOF. Since the proofs of both assertions are similar, we sketch the
proof of the first one. Consider the orbit of the system (3.1) passing through
zg. The tangent space to the orbit at each of its points = coincides with
Lie {f% ..., f™}.

By Theorem 3.3, the attainable set of the system possesses relative
interior with respect to the orbit. Moreover, there are interior points ;,: €
Ago arbitrarily close to 2° so that I1¥ maps Lie,,  {f°, ..., f™} onto L.
Then sufficiently small neighborhoods of x;,; in the orbit are contained in
Ao and are mapped by II# onto a subset of £ with nonempty interior. [J

3.2. Lie extensions and controllability.

Controllability is stronger and much more delicate property than accessibil-
ity. For the verification of controllability it does not suffice, in general, to
compute the Lie rank which accounts for all the Lie brackets. Instead, one
should select “good Lie brackets” avoiding “bad Lie brackets” or “obstruc-
tions.”

To have a general idea of what good and bad Lie brackets can be like,
we consider the following elementary example.

EXAMPLE. i1 = v,@9 = 27. This is the two-dimensional control-affine
system (3.1) with f = 220/0x5 and f! = 8/0z;. The Lie rank of this sys-
tem is equal to 2 at each point. The system is accessible, but uncontrollable
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from each point & = (&1, Z2) given the fact that we cannot achieve points
with xo < Zo. One can prove that the attainable set A; coincides with the
half-plane x5 > o with added point Z. One can see that it is possible to
move freely (bidirectionally) along the good vector field f!, while, along the
bad Lie bracket [f1[f!, f°]] = 20/0x2, we can move only in one direction.

The good Lie brackets form the Lie extension of our control system.

Definition 3.5. A family F’ of real analytic vector fields is

(i) an extension of F if F' O F and the closures of the attainable sets
Ar(Z) and Ax/(Z) coincide,

(ii) a time-T extension of F if F' D F and the closures of the time-7'
attainable sets AL (Z) and AL, (Z) coincide,

(iii) a fized-time extension if it is a time-T" extension for all T' > 0.

The vector fields from F'\ F are called (i) compatible, (ii) compatible
in time T, (iil) compatible in a fized time with F in cases (i), (ii), and (iii)
respectively.

The inclusions Ax(Z) C Az (Z) and AL(Z) C AL,(Z) are obvious.
Less obvious is the following proposition (see [2]).

Proposition 3.6. If an extension F' of an analytic system F is glob-
ally controllable, then F is also globally controllable.

Remark 3.1. Talking about time-T" extensions, one can consider also
extensions by time-variant vector fields Xy, ¢ € [0,7]. We say that a vector
field Xy is time-T compatible with F if it drives the system in time 7" from
 to the closure of AL(Z).

Our idea is to proceed with a series of extensions of a control system
in order to end up with an extended system for which controllability can be
verified and then to apply Proposition 3.6.

Obviously, Definition 3.5 is nonconstructive. In what follows, we will
use three particular types of extensions.
The first natural type is based on the possibility of taking the topolog-

ical closure of a set of vector fields, maintaining the closures of attainable
sets.

Proposition 3.7. (see [18, Ch. 3, §2, Theorem 5]) The topological
(with respect to the C* convergence on compact sets) closure cl(F) of F is
a Lie extension.
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The second type is based on the theory of relaxed (or sliding mode)
controls. This theory [17, 16] is a far-going development of the pioneering
contributions by Young [28] and McShane [20] in the context of optimal
control theory. To introduce the extension, we consider a family of the
so-called relaxation seminorms || - ||s, x of time-variant vector fields X, ¢t €

[0,T):
t
/ X, o sedr
0

where K is a compact set in RY, s > 0 is an integer, and || X, ||s x is the
C*-norm on K. The family of relaxation seminorms defines the relaxation
topology (metric) in the set of time-variant vector fields.

; (3.2)

X. X —
1 X 5% max,

Proposition 3.8 (see [17, 2]). Let a sequence of time-variant vector
elds X} converge to a vector field X; in the relaxation metric, and let these
i

vector fields have compact support. Then the flows of Xi converge to the
flow of X;.

Based on this result, one can prove the following assertion.

Proposition 3.9. For the systems F and

coF = {Zﬁqufz Efv 51 EC‘U(RN)vﬁl >07251 = ]-7 1= la"'7m}

i=1 =1
the closures of their time-T attainable sets coincide. Hence coF is an ex-
tension of F.

The proof of Proposition 3.9 and its modifications can be found in [2,
Ch. 8], [18, Ch. 3],[17, Chs. II, III].

The third type of extensions, we will use, relies upon Lie brackets. It
appeared in our earlier work on the controllability of the Euler equation for
a rigid body in [3] and was called there the reduction of a control-affine
system. We present a particular version adapted to our problem. The
repeated application of this extension settles the controllability issue for
finite-dimensional Galerkin approximations of the Navier—Stokes equations.

Proposition 3.10. Consider the control-affine analytic system
&= fz) + f(2)01 + f3(2)b2. (3.3)
Let
L =00 LU =0 (3.4)
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Then the system
&= fO(a) + fH(@)0n + fA2)0 + [ 12 o,

is a fized-time Lie extension of (3.3).

SKETCH OF THE PROOF. Take Lipschitz functions vy (t), v2(t), v1(0) =
v2(0) = 0, and replace 91 and 9y in (3.3) with e =201 (¢) + @1 and i2(t) + To
respectively. We obtain the equation

&= fOz) + fH(2)01 + f(2)02 + (7 flon(t) + e f20a(t) - (3.5)

Applying the “reduction formula” from [3] or, alternatively, the “vari-
ation of constants” formula of chronological calculus [1], one can represent
the flow of (3.5) as the composition of the flow P, of the equation

. ad f! “Ly ad f2ev ~ ~
g = e P n@rd Fee @ 0y) + [ (@)t + ()72 (36)
and the flow
P = efle o)+ Peva(t) (3.7)
For the validity of this decomposition the equality [f!, f?] = 0 is important.

In (3.6), e24s is the exponential of the operator ad;:

oo

e = 3 (ads) /.

j=0
The operator ad; is determined by the vector field f and acts on vector
fields as adf g = [f, g], where [f, g] is the Lie bracket of f and g.

By the first relation in (3.4), the operators ads1 and ady2 commute
and, by the second one, any iterated Lie bracket of the form (ad, ) oo
(ad fim ) f9, i; = 1,2, vanishes whenever it contains ads at least twice.

Taking the expansion of the operator exponential in (3.6) and using
these facts, we get

= f(y) + fl (@)1 + fA2)02 + e [ fO @) ()
+ L L2 FN(@)or(Bea(t) + Oe). (3-8)
To obtain the flow of (3.5), we need to compose the flow of (3.8) with

the flow (3.7). For any fixed T one can get Pr = Id in (3.7) by choosing
v1(+),v2(+) such that vy (T) = vo(T) = 0.

I The time-variant vector field abbreviated by O(e) in (3.8) is equal to
£B(e adyy (1) 2) aduy 1y g2 £ + €% ad], () g2 ple adyy (1 p2) [ S0),
where @(z) = 27 1(e* — 1), @(2) = z72(e* — 1 — 2).
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From now on, we deal with a fixed T and the flow of Equation (3.8).

In (3.8), we replace v;(t) with v;(t) = 2'/2sin(t/2)v;(t), where v;(t),
7 = 1,2, are functions of bounded variation. The relaxation seminorms of
the time-variant vector field e~ '[f!, f°)(x)2'/2 sin(t/e?)v;1(t) on the right-
hand side of (3.8) are O(g) as ¢ — +0. On the right-hand side of (3.8), we
have

(P4 172 ) ()2 sin? (¢ /)or (1) 02 (t)

= [0 O @)on (02 (t) = [ [, ) (x) cos(2t/e%)o1 (1) s (1)
The relaxation seminorms of the addend [f, [f2, f°]](z) cos(2t/e?)vy (t)va(t)
are O(g?) as € — +0.

Hence the right-hand sides of (3.8) with controls

vi(t) = 2Y2sin(t/e?)v;(t), j=1,2,
converge in the relaxation metric to the vector field
FOly) + fH@)on + f2(2)02 + [F1 [f2 Ol (2)on () a(2)

as ¢ — 0. We can consider the product v1(¢)v2(t) as a new control v and
invoke Proposition 3.8. (]

4. Computation of Brackets in Finite and Infinite
Dimensions. Controlling along “Principal Axes”

In this section, we adjust the statement of Proposition 3.8 for studying the
controllability of the systems (2.10) and (2.12).

From the viewpoint of geometric control, the Galerkin approximation
(2.12) of the Navier—Stokes / Euler equations is a special case of the control-
affine system (3.1). Its state space is finite-dimensional and is generated by
a finite number of eigenfunctions of the Laplace—Beltrami operator A or
modes. The dynamics of this control system is determined by the quadratic
drift vector field

[ =T1A""¢°, ¢°} + vAg°
T . .
and by controlled forcing > f*(z)u;, where f* are constant (¢°-independent)
i=1
controlled vector fields.

We start by computing the particular Lie brackets involved in the

formulation of Proposition 3.8. For two constant vector fields f! and f2 we
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have
1 o) =T f AT o} + {w, AT +vA S i= 1,2,
LI PN =T AT Y+ L AT,
[ 1Y fol) = 2o {f 1 AT,
This computation is finite-dimensional, but the same holds if one con-

siders constant vector fields acting in an infinite-dimensional Hilbert space.
Taking the “drift” vector field of (2.10) in infinite dimension,

fO={A"q,q} +vAq,
we obtain the following assertion.
Lemma 4.1. For two constant vector fields f' and f?
L0 = A7 wh + {w, AT I+ vASY, i=1,2,
[P L £ =2(f1 a7, (4.1)
B 2 =512 = {2 A7 + { a7l 2
Let us clarify what is needed for the assumptions of Proposition 3.10

to hold. As long as f! and f? are constant and hence commuting, all what
we need is the following:

LIS =20 a7 Yy =0 (4.2)
Regarding the Euler equation for an ideal fluid
aw —{A 'w,w} =0,

formula (4.2) means that f* corresponds to its steady motion. In particular,
the eigenfunctions of the Laplace—Beltrami operator A correspond to steady
motions and satisfy (4.2). These eigenfunctions will be used as controlled
directions.

The eigenfunctions of the Laplacian are analogous to the principal
axes of a (multi-dimensional) rigid body.

By Proposition 3.10, for two constant controlled vector fields f*', f2,
one of which corresponds to a steady motion, we can extend our control sys-
tem by the new controlled vector field [f!,[f?, f°]] which is again constant.

Our method counsists of iterating this procedure. The algebraic/geo-
metric difficulties arising in this way consist of scrutinizing newly obtained
controlled directions in order to pick among them the ones which satisfy
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(4.2). This will be illustrated in the following sections dealing with partic-
ular 2D domains.

Another (analytic) difficulty arises when we pass from the finite-di-
mensional approximations to the controlled partial differential equation. For
the latter the above sketch of the proof of Proposition 3.10 is not valid (for
example, one cannot speak about flows). We have to reprove the statement
of the proposition in each particular situation. The main idea will be still
based on using fast oscillating control and relaxation metric. The analytic
difficulties are in proving the continuity of forcing/trajectory mapping with
respect to such a metric. We will provide a brief comment later on; the
details can be found in [6, 7, 21, 22].

5. Controllability and Accessibility of Galerkin
Approximations of Navier—Stokes / Euler
Equations on T?

We survey results on the accessibility and controllability of Galerkin ap-
proximations of the 2D Navier—Stokes / Euler equations on T2.

5.1. Accessibility of Galerkin approximations.

The result of the computation (4.1) in the periodic case is easy to visualize
when the constant controlled vector fields corresponding to the eigenfunc-
tions of Laplacian A on T? are written as complex exponentials.

For two different complex eigenfunctions f' = e**'* and f? = e*'® of
the Laplacian A on T?, x € R2, k,¢ € Z?, the Poisson bracket in (4.1) is
equal to

B (eik-z7eif-1) _ (/ﬂ A E)(|k|—2 _ |€|—2)ez'(k-‘,-é)-:v7 (51)
i.e., it again corresponds to an eigenfunction of A provided that |k| # |¢],
kAl # 0. The conclusion is that for two given pairs of complex exponentials
eF* % and e*** taken as controlled vector fields one can add to them the

controlled vector fields ei(EF£0)-z,

Iterating the computation of the Lie-Poisson brackets (4.1) and ob-
taining new directions, we obtain a (finite or infinite) set of functions which
contains e 7 and is invariant under the bilinear operation B(-, -).

Therefore, in the case of T2, starting with the controlled vector fields
corresponding to the eigenfunctions e?** k € K' C Z?, of the Laplacian,
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the whole computation of Lie extensions “can be modeled” on the integer
lattice Z? of “mode indices” k.

Actually, one has to operate with real-valued eigenfunctions of the
Laplacian on T2, i.e., functions of the form cos(k - ),sin(k - ). Also, in
this case, a computation of the iterated Lie—Poisson brackets (4.1) can be
modelled on Z? and the addition formulas are similar to those of the complex
case.

Proposition 5.1 (bracket generating property). If
k| # [el, |k A€l =1, (5.2)

then the following assertions hold:
(i) an invariant with respect to B set of functions, containing e *

and e contains all the eigenfunctions ™™, m € 72>\ 0,

(ii) an invariant with respect to B set of real functions, containing
cos(k - x), sin(k - x), cos(f - x), sin(¢ - x), contains all the eigenfunctions
cos(m - z), sin(m - x), m € Z*\ 0.

The bracket generating property for a Galerkin approximation of the
2D Navier—Stokes equations with periodic boundary conditions was estab-
lished by E and Mathingly [13]. The following result from [13] is an imme-
diate consequence of Proposition 5.1 and Theorem 3.3.

Corollary 5.2 (accessibility by means of four controls). For any set
M C Z? there exists a larger set M’ D M such that the Galerkin M’-
approzimation controlled by the forcing

cos(k - x)vg (t) + sin(k - x)wg (t) + cos(l - x)ve(t) + sin(f - z)we(t), (5.3)
with k and ¢ satisfying (5.2) is strongly accessible.

Here, four controls vy (t), wg(t), ve(t), we(t) are used for providing
strong accessibility, but actually it can be achieved by a smaller number of
controls.

EXAMPLE (accessibility by means of two controls). Consider the forc-
ing
gu(t) + go(t), g = cos(k - x) + cos(£ - ), g=sin(k-x) —sin(¢-x). (5.4)

The controlled forcing (5.3) involves four independent controls, each one of
which appears in just one of Equations (2.11). The controlled forcing (5.4)
involves two controls v and v, each of which appears in a pair of equations
in (2.11).
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Assume that |k| # €],k A £ # 0. We compute the bilinear form (4.1):
B(g.9) = (=172 + |k|7*){cos(k - z), cos(¢ - x)}
Up to a scalar multiplier, B(g, g) is equal to
(=612 + |k|~2) sin(k - 2) sin(£ - )
= (k AO)(= 1072 + k™) (cos((k — £) - ) — cos((k +0) - @)).
Similarly, up to a scalar multiplier, B(g, g) is equal to
(B AO)(—10)72 + [k|7%)(cos((k — £) - z) + cos((k + £) - x)).

The span of B(g, g) and B(g, §) coincides with the span of g°* = cos((k—¢)-x)
and g?! = cos((k + ¢) - ). The direction g"* = sin((k — ¢) - =) is obtained
from the computation of B(g,g). Choosing k = (1,1) and ¢ = (1,0), we get
m=k+{=(2,1)andn=%~k—¢=(0,1).

Computing new directions B(g°!, g) and B(g%!, g), we note that, by the
equality |n| = ||, they coincide with B(g%!,sin(k - x)) and B(g°!, cos(k - x))
respectively, and their span coincides with the span of g'? = sin((k+n)-x))
and g'° = sin((k — n) - )) = sin(¢ - z)). Similarly, the span of B(g%!, g)
and B(g", g) coincides with the span of g'? = cos((k +n) - z)) and ¢'° =
cos((k—mn)-x) = cos({-x). Then g — ¢g' = cos(k-x) and g — g*° = sin(k - z).
These two functions, together with ¢°! and g"!, form a quadruple satisfying
the assumptions of Corollary 5.2. Hence our system is accessible by means
of 2 controls.

Remark 5.1. It is plausible that the strong accessibility of Galerkin
approximations can be achieved by a single control.

5.2. Controllability of Galerkin approximations.

In general, the bracket generating property is not sufficient for controllabil-
itly. One has to select Lie brackets, which form a Lie extension; meanwhile,
in the previous example, {g, A~1g} and {g, A~'g} a priori do not corre-
spond to a Lie extension.

Even in the finite-dimensional case, a stronger result of Proposition 3.10
is required for proving the controllability property for Galerkin approxima-
tions. This was done in [4, 25] in the 2D and 3D cases.

Theorem 5.3. Let k,{ satisfy (5.2). For any subset M C Z? there
exists a larger set M’ such that the Galerkin M'-approxzimation controlled
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by the forcing
cos(k - z)vk () 4 sin(k - x)wy (t) + cos(L - x)ve(t) + sin(f - z)we(t),
is globally controllable.

The proof of this controllability result consists of the iterated applica-
tion of the Lie extension described in Proposition 3.10. At each step, we ex-
tend the system by new controlled vector fields corresponding, in accordance
with (4.1) and (5.1), to f™** = cos((m +¢)-2) and f™* = sin((m+¢) - x).
At the end of the iterated procedure, we arrive at a system with an extended
set of controls, one for each observed mode. It is evident that this system
must be controllable.

An important case, where the controllability of Galerkin approxima-
tions is implied by the bracket generating property, regards the 2D Euler
equations for an incompressible ideal fluid (¥ = 0). Indeed, in this case, the
drift (zero control) dynamics is Hamiltonian and it evolves on a compact
energy level. By the Liouville and Poincaré theorems, the Poisson—stable
points of this dynamics are dense and one can apply the Lobry—Bonnard
theorem [2, 18] to establish the following assertion.

Theorem 5.4. For v = 0 the Galerkin approximation of the 2D Euler
equations controlled is globally controllable by means of the forcing (5.4).

In the case of an ideal fluid, the controllability of Galerkin approxi-
mations of the 2D Euler system can be achieved by scalar control.

6. Steady State Controlled Directions.
Abstract Controllability Result for
Navier—Stokes Equations

We cannot apply Proposition 3.10 to the infinite-dimensional case directly.
However, the main idea of adding new controlled directions is still valid
for the Navier—Stokes equations. Now we want to formulate an abstract
controllability criterion based on the Lie extensions and computation of
Lemma 4.1. This criterion will be employed in the following sections for
establishing the controllability of the Navier—Stokes equations on various
2D domains.

Theorem 6.1 (controllability of Navier—Stokes equations via satura-
tion of controls). Let span{f',..., f"} = & = D! be a finite-dimensional
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space of controlled directions. Assume that f1,... f" are steady motions of
the Euler equation (4.2). For each pair of linear subspaces L' and L£L* we
consider the span of the image B(L', L?) of the bilinear mapping (4.1). De-
fine successively DTt = DI + span B(S7, D7), j = 1,2,..., where S C DI
is the linear subspace spanned by steady motions. If |JD? is dense in the

J
Sobolev space H*(M), then the Navier—Stokes equations are controllable in

finite-dimensional projections and are Lo-approzimately controllable.

If D! consists of steady motions, then DTt O DJ + span B(D!, D?).
Introduce another sequence of spaces

DI = DJ 4 span B(D', DI). (6.1)
It is evident that D] C D7 and the density of |JD] in H?(M) guarantees
J

controllability.

Let Dy, = {A7Y £} +{A7Yf, } for fs € DY, Dy, = B(fs,). The
iterated computations (6.1) correspond to iterated applications of the oper-
ators Dy, to f1,... f7 and taking the linear span.

Corollary 6.2. Let F be the minimal common invariant linear sub-
space of the operators Dy, , ..., Dy, which contains fi,..., fi. If F is every-
where dense in Lo(M), then the system is Lo-approzimately controllable and
is solidly controllable in finite-dimensional projections.

7. Navier—Stokes and Euler Equations on T?

In this section, we formulate results regarding the controllability in finite-
dimensional projections and the Lg-approximate controllability on TZ2.
Namely, we describe sets of controlled directions which satisfy a criterion
provided by Theorem 6.1.

We take the basis of complex eigenfunctions (eik""”) of the Lapla-
cian on T? and introduce the Fourier expansion of the vorticity w(t,z) =

> qr(t)et** and the control v(t,x) = . v (t)e**. Here, k € Z2. If w
k keK!
and f are real-valued, we have ¢, = ¢_, and v, = v_,,. We assume that

vg = 0 and ¢go = 0.
Using (5.1), we write the infinite system of ordinary differential equa-
tions (2.11) as follows:
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gk = S (man)(Iml 7% = 0l gman — kP + ok(t).  (7.1)

m4n=~k,m|<|n|

The controls 9y are nonvanishing only in the equations for the variables
qx indexed by the symmetric set K C Z? \ {0}. For k ¢ K* the dynamics
is as follows:

= o man)(m|7? = |nl ) gman — K k€K (7.2)

m4n=~k,|m|<|n|

There is a symmetric set of those observed modes K° O K!, which
we want to steer to some preassigned values. In the only interesting case,
where K1 is a proper subset of K°, the equations indexed by k € K°\ K! are
of the form (7.2). They do not contain controls and have to be controlled
via state variables.

We give a hint of how this can be done; it is an infinite-dimensional
version of Proposition 3.10 for the Navier-Stokes equations on T2.

Let r,s € K, r As#0,|r| < |s|, k=7r+s &K' The equations for g,
and ¢s contain controls 0, and 04, while the equation for g does not.

Take Lipschitz functions v,.(t), vs(t), v,.(0) = vs(0) = 0), and sub-
stitute e 719, (t) + 0, and e95(t) + 5 for 9y, 95 into the right-hand sides of
Equations (7.1) for the variables ¢, gs. We obtain

Gr = Z (mAn)(Im|™2 = 0| ) gman — 7> ¢ + 100 (t) + O,

m-4n=r,|m|<|n|

Gs = Do man)(Iml 7 = [l gman — [s]Pas + 05(t) + 8.
mtn=s,|m|<|n]
Introduce ¢ = ¢, — e 1v,(t) and ¢* = qs — evs(t). Assuming v,.(T) =
0,(T) = 0, we conclude g, (T) = g:(T), 4,(T) = g:(T).
We write the infinite system of ordinary differential equations (7.1),

(7.2) via ¢} and ¢¥ in place of ¢, and gs. The right-hand side of the equation
for qr = q,4s contains the addend

(r As) (P72 = 1s]72) (g7 + e o () (a5 + evs(t))
and we see that the controls v, and vs enter this equation via the product
vp(t)vs(t). The same v,., vs enter this and all other equations linearly.
Substitute v;(t), 7 = 7,8, by v;(t) = 2V/2sin(t/e?)v;(t) with v;(t)
having bounded variations. Then the right-hand side of the equation for g
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will gain the product 2sin®(t/2)v, (t)0s(t) = (1 — 2 cos(2t/e2))v,(t)0s(t). If
¢ — 40, this product tends to ,(t)vs(t) in the relaxation metric. In all
other equations, v, (t) and v,(t) enter linearly and are multiplied by the fast
oscillating functions 2/2sin(¢/?). Hence the corresponding terms tend to
0 in relaxation metric.

Therefore, one can pass (as € — 0) to a limit system which now
contains the “new” control v,s = v,(t)vs(t) in the equation for gx = gy+s.
(This control corresponds to the control vi2 from Proposition 3.10.)

A difficult analytic part is a justification of this passage to the limit.
It is accomplished in [6, 7] for T? and in [21, 22] for a rectangular and
other kinds of regular 2D domains. We refer the interested reader to these
publications.

Note that the new controlled direction corresponds to the complex
exponential which is an eigenfunction of the Laplacian on T2. Hence we
can model the Lie extensions and formulate the controllability results in
terms of indices k € Z? of controlled modes.

Define iteratively a sequence of sets K7 C Z?* as follows:
j=2,...
K=K Hm+nfm,n e K71 N llmll # |[n]l \m An # 0}
Definition 7.1. A finite set X! C Z?\ {0} of forcing modes is satu-

rating if |J K7 = Z*\ {0}, where K7 are defined by (7.3).
j=1

(7.3)

Theorem 7.2 (controllability in finite-dimensional projection). Let
KC' be a saturating set of controlled forcing modes, and let £ be any finite-
dimensional subspace of H*(T?). Then for any T > 0 the Navier—Stokes /
Euler equations on T? is time-T solidly controllable in finite-dimensional
projections and is time-T Lo-approzimately controllable.

As we see, the saturating property is crucial for controllability. In [7],
the following characterization of this property was established.

Theorem 7.3. For a symmetric finite set K* = {m?!,... m®} C Z?
the following properties are equivalent:

(i) K is saturating,

(ii) the greatest common divisor of the numbers d;; = m* Am? i, j €

{1,...,s} is equal to 1, and there exist m®,mP € KC' that are not collinear
and have different lengths.



26 Andrey Agrachev and Andrey Sarychev

Corollary 7.4. The set K' = {(1,0),(—1,0),(1,1),(=1,-1)} C Z?
is saturating. The solid controllability in any finite-dimensional projection
and Lo-approximately controllability can be achieved by forcing four modes.

8. Controllability of 2D Navier—Stokes
Equations on Rectangular Domain

The study of the controllability in finite-dimensional projections and the Lo-
approximate controllability on a rectangular domain has been accomplished
by Rodrigues [21, 22]. The main idea is similar to that in the periodic case,
but computations are more intricate. The reason is twofold: (i) the algebraic
properties of the bilinear operation calculated for the eigenfunctions of the
Laplacian are more complex and (ii) one needs to care about boundary
conditions.

For a velocity field v on a rectangular R with sides of length a, b,
a # b, we assume that the Lions boundary conditions hold. In terms of the
vorticity w, they can be written as (2.9).

The (vorticity) eigenfunctions ¥ of the Laplacian are
gok = sin (zklacl) sin (%kzacz) , (k= (ki,ka) € Z2. (8.1)
a

To find an extending controlled direction, one needs to pick two eigen-
functions f! = @, f2 = ¢’ k,£ € Z?, and to proceed with the computation
(4.1). The result is a linear combination of at most four eigenfunctions ©®.

Then again one can follow Lie extensions on the two-dimensional lat-
tice Z? of Fourier exponents k = (ki, ko). If the controlled modes are
indexed by k € K = {(k1,k2)|1 < k1,ko < 3,k # (3,3)}, then one can
verify that after m Lie extensions the set of extended controlled directions
will contain all the modes (k1,k2), k1,ks < m + 3, with the exception of
(m+3,m+3).

This leads to the following controllability result.

Theorem 8.1 (controllability on rectangular domain). Let 8 con-
trolled directions correspond to the functions (8.1) with k € {(k1,k2)|1 <
k1,ka < 3,k # (3,3)}. Then the Navier-Stokes equations defined on the
rectangular domain with the Lions boundary condition are controllable in
finite-dimensional projections and are Lo-approzimately controllable.
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9. Controllability on Generic Riemannian
Surface Diffeomorphic to Disc

In this section, we consider the Navier—Stokes equations under the boundary
conditions (2.9) on a Riemannian surface M. We manage to prove that for
a generic surface (the exact meaning of genericity will be specified below)
diffeomorphic to a disc one can choose 3 controlled directions corresponding
to the eigenfunctions (modes) of the Laplacian on M, which provides the
controllability in finite-dimensional projections.

In what follows, we assume that M has C'°*°-smooth boundary and is
endowed with a Riemannian metric.

The diffeomorphism ® : M — D induces the C'*°-smooth metric on
the disc D and we speak about various Riemannian metrics on the fixed
disc D instead of Riemannian surfaces. A generic Riemannian surface cor-
responds to a generic smooth Riemannian metric on D, meaning a metric in
a residual subset of the topological space of C'°° metrics. A subset is resid-
ual if it contains the intersection of countably many open dense subsets of
the topological space.

For controlled “directions” we take the modes or eigenfunctions fs of
the Laplace-Beltrami operator A corresponding to each metric: A7 f, =
A;1fs, s =1,...,1. To apply the abstract controllability criterion (see Corol-
lary 6.2), it suffices to verify that functions of the form Dy, o---0 Dy f;,
m > 0; j € {1,...,1}, where Dy, = {A7 fo} + {A71fs, -}, span a dense
subset of H2(M).

Theorem 9.1. For a generic Riemannian surface M diffeomorphic
to a disc there erxist 3 eigenfunctions (modes) f1, fa2, fs of the Laplace—
Beltrami operator A on M such that the Navier-Stokes / Euler equation on
M is controllable in finite-dimensional projections by means of a controlled
forcing applied to these modes.

SKETCH OF THE PROOF. As was shown [7], it suffices to establish the
controllability in projection on any finite-dimensional coordinate subspace
L spanned by a finite number of eigenfunctions of the Laplace-Beltrami
operator. By Corollary 6.2, we need to verify that some determininat Det .
calculated via the (iterated) Poisson bracket of fi, f2, and f3 does not
vanish.

Assume for a moment that for some smooth metric po on D the deter-
minant Det, does not vanish. Consider an analytic metric approximating
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1o (note that analytic metrics are dense in the space of smooth metrics) for
which Det, is nonvanishing and denote it by po again.

Then taking any analytic Riemannian metric g1 on D, we construct
a linear homotopy p; between po and py:

pielg(§,€) = (1 = t)polq (&, ) + tualg(§,€), 0<t <1

Recall that the “values” of the Riemannian metrics at each point ¢ € M
are positive definite quadratic forms which form a convex cone.

The t-dependence of the Laplacians A(t) corresponding to the metrics
1 is analytic.

We want to trace the evolution of a finite number of the eigenvalues
AL, j € J (J is a finite set), and the corresponding eigenfunctions of A(t)
with ¢ varying in [0, 1]. This allows us to study the restriction of A(t) onto
a finite-dimensional space (see [19, Ch. 7]).

By the classical result of perturbation theory (see [19, Chs. 2, 7]), the
eigenvalues )\3 of an analytic family ¢ — A; of linear operators are analytic
with respect to ¢ beyond a finite number of exceptional points in [0, 1].
Any moment ¢ at which the eigenvalues /\37 j € J, are pairwise distinct
is nonexceptional. Singularities of the function t — )\E may occur when )\E
become multiple. The eigenvectors and corresponding eigenprojections may
have poles at exceptional points.

The picture is much more regular for normal operators, in particular,
for the Laplacians which are selfadjoint. In this case, the eigenvalues and
eigenfunctions are analytic functions of ¢ everywhere on [0, 1] ([19, Ch.2,
Theorem 1.10]). The dependence of the derivatives of eigenfunctions on
t € [0,1] is also analytic. Hence the determinant Det is an analytic function
of t. If it does not vanish at the point ¢ = 0, it may vanish only at finitely
many points ¢ € [0, 1].

Take 11 corresponding to all nonexceptional ¢ € [0, 1] for which Det is
nonvanishing. Among nonexceptional ¢ there exist ¢; which are arbitrarily
close to 1. The metrics u;_ are arbitrarily close to p; in the C*°-metrics; for
the corresponding A(ts) the eigenvalues of interest are distinct and Det is
nonvanishing. The dependence of the eigenfunctions and their derivatives
on the metric p is continuous in the C*°-metric in a neighborhood of ;..
Hence Det is nonzero for all y from small C'*°-neighborhoods of these pi, .
Taking the union of these neighborhoods, we get an open set whose closure
contains p. Repeating the homotopy argument for each analytic metric
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p1 on D, we get an open dense in C*° set of metrics for which Det, is
nonvanishing.

One unsettled problem still remains: To find a metric gy on D for
which the determinant Det, is nonvanishing.

This problem is by no means minor. To construct such a metric,
we use the result mentioned in Remark 10.1 and obtained by Rodrigues
[24] who established the controllability of Navier-Stokes / Euler equations
on the half-sphere Si with the Navier boundary conditions (in particular,
the Lions boundary conditions). The metric on S? is inherited from the
embracing Euclidean space R3.

The degenerate control is applied to three modes, spherical harmonics
which are eigenfunctions of the Laplacian on Sﬁ_. It is proved that this
system is controllable in any finite-dimensional projection.

Mapping Sﬁ_ onto D analytically, we obtain the corresponding metric
o and Laplacian on D for which the determinant Det, is nonvanishing.

Remark 9.1. The construction of the residual set of Riemannian
metrics can be transferred (almost) without alterations to the torus T2 for
which we studied the controllability of the Navier—Stokes / Euler equations
in Section 7. The conclusion claims that there exists a residual set of smooth
Riemannian metrics on T? such that the assumptions of Corollary 6.2 are
verified and therefore the Navier—Stokes equations is controllable in finite-
dimensional projections by forcing four modes on T? endowed with any of
these metrics.

A pertinent question would be whether the result of Theorem 9.1 holds
for a generic subdomain Q with smooth boundary in R? diffeomorphic to
a disc and endowed with the FEuclidean metric. The corresponding diffeo-
morphism Q +— D sends the Euclidean metric on Q to the metric (9.1) on
D which possesses the zero curvature. An approximating analytic metric p
admits the conformal form [12, Vol.1, § 11-13])

po= ¥ 1) (dx? 4 dz?). (9.1
Note that the curvature of (9.1) is equal to
0%a  0%a
K = (1/2)e7m0m) (25 4 25,
(1/2)e ox? o 03
Therefore, the plane metrics are distinguished by the condition
0? 0?

—) (9.2)

2 2 =
Ox{  Ox3
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On the contrary, if D possesses a Riemannian metric p of the form
(9.1) satisfying (9.2), then D can be isometrically and analytically mapped
onto a 2D domain Q with Euclidean metric.

We can define the corresponding homotopy between
po = €@ (dx? 4 dad),  py = e @) (da? 4 dad)

as follows:
[ = e(lft)ao(wl7:v2)+ta1(w17:v2)(dxi +d1’§)7

and then advance as in the previous proof.

The only problem would be to construct a plane domain Q with an-
alytic boundary and an Euclidean metric for which the controllability in
finite-dimensional projection holds.

A good candidate could be an analytically perturbed (smoothened)
rectangular R., € > 0. The controllability on the rectangular R was estab-
lished in Section 8. We are confident that controllability also holds for R.
with small € > 0, but there are still some technical problems to be settled
in the proof.

10. Navier—Stokes / Euler Equations on Sphere S?

The controlled vector fields we employ in the case of S? correspond to eigen-
functions of the corresponding spherical Laplacian or the so-called spherical
harmonics. We start with a brief description of them.

10.1. Spherical harmonics.

In this subsection, we introduce some notions and results regarding spherical
harmonics; our source was mainly the book [9, Chs.10, 11] by Arnold.

Consider the sphere S? equipped with the Riemannian metric inherited
from R? and area 2-form o. The latter defines the symplectic structure
on SZ.

The eigenfunctions of the spherical Laplacian are described by the
following classical result. Recall that a function g is homogeneous of degree
s on R™\ 0 if g(sx) = »x°g(x) for each 3 > 0. A function g is harmonic
in R"\ 0 if Ag = 0, where A is the Euclidean Laplacian. As is known, a
harmonic homogeneous function of degree s > 0 is extendable by continuity
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(g(0) = 0) to a harmonic function on R™. This harmonic function is smooth
and therefore must be a homogeneous polynomial of integer degree s > 0.

Theorem 10.1 ([9]). Constants are eigenfunctions of the spherical
Laplacian (of degree 0). If a (smooth) harmonic function defined on R™\ 0
is homogeneous of degree s > 0, then its restriction onto the sphere is the
eigenfunction of the spherical Laplacian A corresponding to the eigenvalue
—s(s+mn—2). Vice versa, every eigenfunction of A is a restriction onto S™
of a homogeneous harmonic polynomial.

Another famous result is the Maxwell theorem [9] which holds in R3.
It states that if p(z) = (27 4+ 22 + 22)~ /2 is the fundamental solution of
the Laplace equation in R?, then any spherical harmonic a on S? can be
represented as the iterated directional derivative of p: a = I3 o --- 0 l,p,
where l1,...,l, € R® and {l1,...,l,} is uniquely determined by a.

Our controlled directions will correspond to spherical harmonics on
52, which are the restrictions to S? of homogeneous functions on R3. In
particular, we invoke the so-called zonal spherical harmonics which are the
iterated directional derivatives of p with respect to a fixed direction .

Let a,b be smooth (not necessarily homogeneous) functions on R3.
The Poisson bracket of their restrictions to S? can be computed as follows:

{a]s2,b|s2}(x) = (x,Vza, Vb)), (10.1)

where (2,1,() stands for the “mixed product” in R®, calculated as the
determinant of the 3 x 3-matrix with columns z, , and ¢. From now on,
we omit the symbol of restriction |gz in the notation of the Poisson bracket.

The linear functions (I,x) are, of course, spherical harmonics. We
denote by [ the Hamiltonian field on S? associated with Hamiltonian (I, z),
x € S?2. Obviously, r generates a rotation of the sphere around the [-axis.
According to the aforesaid, la = (z,1,Va) is the Poisson bracket of the
functions ([, z) and a restricted to S?.

The group of rotations acts (by the change of variables) on the space
of homogeneous harmonic polynomials of fixed degree n. As is known, this
action is irreducible for any n (see [9] for a sketch of the proof). In other
words, the following result holds.

Proposition 10.2. For a given homogeneous harmonic polynomial b
of a nonzero degree n the space span{ly o ---olib : k > 0} coincides with
the space of all homogeneous harmonic polynomials of degree n.
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10.2. Poisson bracket of spherical harmonics
and controllability.

Calculating the Lie extensions according to formula (4.1), we obtain the
iterated Poisson bracket of spherical harmonic polynomials, which, in gen-
eral, need not to be harmonic. The following lemma shows that there is a
way of finding some harmonic polynomials among the Poisson brackets.

Lemma 10.3. For each n > 2 there exists a harmonic homogeneous
polynomial q of degree 2 and a harmonic homogeneous polynomial p of degree
n > 2 such that their Poisson bracket is again harmonic (and homogeneous
of degree n + 1) polynomial.

PRrOOF. Consider the so-called quadratic zonal harmonic function ¢ =
2

a—g. Being restricted to the sphere S?, this function coincides with the
T3

Legendre polynomial ¢(x3) = 323 — 1.

We consider homogeneous harmonic polynomials in variables x1, zs.
In the polar coordinates, they are represented as "™ cos mp or, alternatively,
Re(xq+ixa)™,m = 1,2, .... We pick the nth degree polynomial p(x1, z2) =
Re(xy + ixa)™.

According to (10.1), the Poisson bracket of ¢, p is equal to

rp 0 pl, r 0 pl,
{g.p} = (=, V¢, Vp)=| 22 0 pl, |=6z3| 22 0 pl,
I3 6$3 0 I3 1 0

By (10.1), the determinant, which multiplies 6z3 on the right-hand
side of the formula, coincides with {z3, p(z1,22)} = é5p(x1,22), where e3 =
(0,0,1) is the standard basis vector of R3. Hence, by Proposition 10.2,
the value of this determinant is a harmonic polynomial of degree n. It is

equal to p(x1,x2) = —x1p), + x2p),, and therefore does not depend on 3.
Then {q,p} = —6x3p(x1,22). Since both —6x3 and p are harmonic, we get
A{q,p} =2V (—6x3) - Vp = —120p/0x3 = 0. O

Theorem 10.4. Consider the Navier—Stokes / Euler equations on the
sphere S%. Let (constant) controlled vector fields correspond to independent
linear spherical harmonics I, 12, I3, one quadratic harmonic q, and one
cubic harmonic c. Then this set of controlled vector fields is saturating and
the Navier—Stokes / Euler equations are controllable in finite-dimensional
projections.
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Proor. It suffices to verify the assumption of Corollary 6.2. Without
lack of generality, we may think that ¢ = ¢ is the second degree zonal
harmonic from Lemma 10.3. Indeed, otherwise we may transform ¢ into ¢
by taking the iterated Poisson bracket with the linear harmonics I*, 12, 3.

In fact, taking the iterated Poisson bracket of ¢ and ¢ respectively with
I', 12, 13, we obtain all quadratic and cubic harmonics. Thus, we manage
to obtain all the harmonics of degrees < 3.

We proceed by induction on the degree of harmonics. Assume that all
harmonics of degree < n are already obtained by taking the iterated Poisson
brackets of {I1,12,1%,¢,s}. Pick the harmonic polynomial p constructed in
Lemma 10.3. The Poisson bracket of p with ¢ is a homogeneous harmonic
polynomial p of degree n+ 1. Taking the iterated Poisson brackets of p with
I', 12, I3, we obtain all polynomials of degree n + 1. 0

Remark 10.1. Following the lines of the previous proof, Rodrigues
[24] established the controllability of the Navier—Stokes / Euler equations
on the half-sphere Sﬁ_. One can force three modes, spherical harmonics
on S in order to guarantee the controllability in any finite-dimensional
projection. The details will appear elsewhere.

Remark 10.2. Arguing in a similar way as in the previous section,
one can conclude that there exists a residual set of Riemannian metrics
on S? such that the assumptions of Corollary 6.2 are verified and, conse-
quently, the Navier—Stokes equations are controllable in finite-dimensional
projections by forcing five modes on S? endowed with any of these metrics.
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Analyticity of Periodic Solutions
of the 2D Boussinesq System

Maxim Arnold

Institute of the Earthquake Prediction Theory RAS
Moscow, Russia

The Cauchy problem for the 2D Boussinesq system with periodic boundary con-
ditions is studied. The global existence and uniqueness of a solution with initial

data (u(gy,0(0)) € P(e) is established, where ®(a) is the space of functions the
1

kth Fourier coefficients of which decay at infinity as W, « > 2. It is proved that

the solution becomes analytic at any positive time. Bibliography: 10 titles.

1. Introduction. The viscous 2D Boussinesq system describing dynamics
of a homogeneous fluid with temperature transfer has the form

%u(x, 1) = vAu(z,t) — Vp(a, t) + 60(x, 1), (BS1)
%H(x,t) N IE) (BS2)
divu(z,t) =0, (BS3)

where = (z1,29) € R?, t € Ry is time, & = (0,1), u(z,t) = (u1,uz) :
R? x Ry + R? is a 2-dimensional velocity vector, §(x,t) : R? x Ry
R is temperature, positive integers v and p are viscosity and diffusivity

Instability in Models Connected with Fluid Flows. I. Edited by Claude Bardos and Andrei
Fursikov / International Mathematical Series, Vol. 6, Springer, 2008 37
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coefficients respectively, and the scalar function p(z,t) denotes pressure.
On the left-hand side of (BS1), (BS2), we use the notation

d
D 0 0
E = a +;Uj(fv7t)a—xj.

By a solution of the Cauchy problem for (BS1)—(BS3) with initial conditions

U(I,O) = U(O)(I)v H(I,O) = 0(0) (I)v

div U(o) (ﬁ) =0 (1)

we mean functions u(z,t), 6(x,t), p(x,t) satisfying (BS1)-(BS3) and (1).
Recent results about the existence and uniqueness of solutions of
(BS1)—(BS3) were obtained in [7, 2] and were based on the methods devel-
oped in [3, 4, 5].
The system (BS1)—(BS3) is similar to the 2D Navier—Stokes system,
and many methods developed for the Navier—Stokes equations can be ap-
plied to the Boussinesq system.

In this paper, we prove the analyticity of solutions to (BS1)—(BS3).
We use the methods of [8], where the global existence and uniqueness of a
solution were established for the 2D Navier—Stokes system. Note that the
arguments in [8] are similar to those in [6], but are more geometrical.

In [9, 10}, and [1], there was introduced the space ®(«) of functions
f(x) the Fourier transform of which can be written in the form

FH() = T

The norm in ®(«) is defined by the formula || f|lo = h = sup |[k|*|F f (k).
k

In [8], the global existence and uniqueness theorems were proved for
the Cauchy problem for the 2D Navier—Stokes system with periodic bound-
ary conditions and initial conditions in the space ®(«). The analyticity of
the solution was also established. These results were extended to the con-
tinuous case in [1]. In [9, 10], similar local in time results were obtained in
3D statement.

2. Formulation of the results. Consider the system (BS1)-(BS3) for
O(z,t) and w(z,t) = curl u(x,t). Since u(z,t) € R? w(x,t) has only one

nonzero component w = 7 % The system (BS1)-(BS3) takes the
81‘1 6562
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form

i@(m, t),

0
aw(m,t) + (u, Vyw(z,t) = vAw(z,t) + P

0,1 + {u, V)0 1) = (1), @
div u(z,t) =0, w(x,t) =V X u(z,t).
We expand w(z,t) and 6(z, ) into the Fourier series:

w(z,t) = Z wi(t)e!F - g(x ) = Z thetay(t)e' %)

kez? kez?
Since w(x,t) and O(x,t) are real-valued functions and wy = i(klug) —

kgu,(gl)) and klu,(cl) + kgu,(f) =0, for wg(t) and Ox(t) we get

i
%wk(t) = —I/|k|2wk(t) + Z %wl(t)wk_l(t) + iklek(t),
l€z?

wi ()01 (1), (3)

€
o0 =i + Y- o

lez?

w,k(t) = Ek(t), Q,k(t) = Gk(t)7
where I+ = (lo, —11) and wy, Ok, up = (u,(cl),u,(f)) denote the kth Fourier
coefficient of w, 0, and u respectively. Assume that 6y(t) = wo(t) = 0. We
consider the system (3) instead of (2).

It is natural to regard the 2D Boussinesq system as the 2D Navier—
Stokes system with 6(z,t) as an external forcing. The only difference is the
dependence of 6(x,t) on w(x,t).

From the results of Mattingly and Sinai [8] it follows that for initial
data from ®(«), o > 1, and analytic external force the solution of 2D
Navier—Stokes system becomes analytic at any positive moment of time.
Thus, it suffices to show that 0(z,t) becomes analytic, i.e., its Fourier co-
efficients decay exponentially with |k|. Then the results of Mattingly and
Sinai can be used.

Introduce the notation

Ot) = 10C. )72 = Y 10, W(t) = llw(- )72 = Y lw(®).

keZ? kc72
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Lemma 1 (termo—convection bound). O(¢) is nonincreasing.

Lemma 1 implies the following assertion.

Lemma 2 (enstrophy estimate). For any ©¢ = /0|7 and Wy =

lwo) 72

SN

W(t) < max (Wo, ﬁ)

Hereinafter, we assume that a > 2. Consider the initial conditions
w(o), b0) € D(), Nwylla =C,  0(0)lla = B- (4)
Since a > 2, we have ||lwy)|[z> < oo and [|0(g)||r> < co. Using Lemmas

1 and 2, we derive a priori estimates for the solution of (3) with initial
conditions (4).

Theorem 1. For any initial data (4) there exists a constant B’ that
depends only on B, a, ©¢ and Wy and is independent of t such that for all
t > 0 the solution 0(t) of (3) satisfies the estimate ||0(t)]o < B'.

Note that B’ is independent of C. Theorem 1 and [8, Theorem 1] imply
the following assertion.

Theorem 2. Under the assumptions of Theorem 1, there exists a
constant C' depending only on the initial conditions such that ||w(t)]|e < C’
for allt > 0.

Two theorems below provide the analyticity of the solution.

Theorem 3. If the initial conditions (4) satisfy the estimates

B C
10x(0)] < e F g (0)] < e AIK
|K| ||
for all k € Z2, where By, C1, and 3 are constants, then there exist constants
B} and C} such that for allt >0

Bi ikl SR 2
0k ()| < —-e v k@) < ooe vV keZ.
|| ||
Theorem 4. If the initial data satisfy the assumptions of Theorem

1, then for any to > 0 there exist constants B, C, §1 > 0, and §3 > 0
independent of k and such that for all t >0 and k € 72

B C
CAGIES Wefé(t)lklj wy(£)] < Wefa(t)m?

where §(t) = 01 fort < to and 6(t) = da fort = to.
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Theorems 3 and 4 assert that if there exists a solution of (3) with initial
conditions (4), then it becomes analytic at any positive moment of time.
Namely, Theorem 4 implies that the solution becomes analytic and then
it remains analytic since Theorem 3 holds. Below we give an independent
proof of the local in time existence of a solution to the system (3).

Theorem 5 (local existence). Suppose that wqy and 0y belong to
®(a), a>2, [|wella, and ||0(0)l|a <N. Then there exist constants N and
T > 0 such that, on [0,T], there exists a solution (wy(t), Ox(t)) of (3) such
that |w(t)||oa <N and |0(t)]|oa <N.

3. Proof of the main results. Our arguments are based on the following
technical estimate. Let h and g be scalar functions of 2-dimensional variable.

Proposition 1. Suppose that h € ®(a), |hlla = H, and g € L?,
llgllLz= = G. Then there exists a constant H = H(a) such that for any
keZ?

Z‘ TE ‘|gl \hie—i1] < HHG|k|Z .

lez?

Note that || f|| L2 < oo for any function f € ®(«).

ProOOF OF LEMMA 1. Note that O(t) is a positive real-valued function.

d
Thus, it suffices to show that E@(t) is nonpositive. By the Plancherel

theorem and (3), we can write for E@(t):

Lol = > (S0 008(0) + S 060:))

= —2u > kPO +2 ) Z | |2 ()01 (1)05(t)-

keZ? kE€Z? 1€Z2

Note that §_(t) = 0x(t) and w_j(t) = Wk(t). Then for every term of the
last sum there exists a term

KoL _
< |l|2 >wl(t)9k'*l(t)9k' (t)v K =1- k,

for which the kernel gives

(k' 1+) (k,1+)

EETIE
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The factor w;(t)0p 1 (t)0x (t) takes the form w;(t)0_(t)0x_;(t). Hence

kit _ k, 1+ _
e w1080 + 00 -
Thus, the last sum vanishes and we have
d
—O(t) =—2u > IRPIOB) < —2u0(t).
kez?
The proof is complete. O

d
PROOF OF LEMMA 2. By the Plancherel theorem, for al/\/(t) we have

d B dwi(t) _ dwy, (t)
L) = 3 mor = > () + ().

€7? keZ?

Using (3), we find

— 2 —
EW )=—2v > [kPlu®)?+2 ) Z |l|2 W (t)wp_ (t)
keZ? keZ? lez?
+ 21 Z klek@k(t).
keZ?

The second term on the right-hand side vanishes by the same arguments
as in the previous proof. To estimate the third term, we use the Cauchy—
Schwarz inequality

S komn < [ 0P |3 kP 0

kez? kez? keZ?

By Lemma 1, the first term on the right-hand side is not greater than 1/0Oy.

Hence
Iy <2 [ 32 kPl R (VO v, [ k2fws())
kez2 keZ?
<2 [ |k|2|wk(t)|2(\/@o—u\/W(t)). (5)
kez?

d
By (5), W(t) > % implies EW(t) < 0, which completes the proof. O
2
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PROOF OF PROPOSITION 1. We divide the summation domain into three
parts and derive estimates for each part separately.

1 1 o
LI < §|k| In this case, |k — 1| > §|/€| Hence |f1_i| < |k|70:( Then
k7ll k kall —a g1
<& ortt

By the Cauchy—Schwarz inequality,

1
W é gBl\/ ln|k|,

k
<3t

where B can be found from the inequality

1
> T < B?In k).

<5

1
Collecting the above estimates, we conclude that for |I| < §|k|

L Il fica] < HIK2G B, RTF

k
1< L&l

(K,
U

1
2. §|k| < || € 2|k|]. We can estimate ‘ ‘ by 2 and use again the

Cauchy—Schwarz inequality:

> ]W lgllfial <2 | S gl | Y Ul

L Jr<2)k| el L Jr<2)k|
1 1
<20H | Y m@gHng @,
[k—1| <3|k

where Bs is the constant in the estimate

1 2(1.|2— 2
Z l|2a<B2|k| :

|1]<3]k|
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3. |l] = 2[k|. In this region, [k — 1| > |I| — |k| = |I| — 1|I] = 1]I|. Hence

[1]>2]| [1]=2]k| [7]=2]k|

22aH2
|l|2+2a

1
|i[2+2a

< HG|k[2~ < 2YHGBs k| T,

2

|11>2]k]

where Bsj is the constant in the estimate

1 .
> e S Bkl
> 2l

Collecting the estimates, we find

Z‘ T ‘Igzllfzc || < GlkI™ “( 1\/1n|k|+2HBz+2aHBg>

lez?
In |k
Hg|k|-—a( r|11l| |4 oB, +2°‘B)
= B “ : . .
Thus, for H = =R + 2| Ba| 4+ 2%|Bs| the last inequality proves the required
assertion. O

PROOF OF THEOREM 1. Denote by Q((XA) the set of functions whose
®(«v)-norms are bounded by a constant A: oV = {f: |ful < AJ|K|*}. By
assumption, 6(0) € Q((IB). We fix a constant K4 depending only on the
initial conditions which will be defined later.

By Lemma 1, for |k| < Kt we have
sup |64 (1) < v/,
k| < Keri

which implies

sup |01C ||k|a \% Kcrlt

Ikngcrit

We show that for any k& € Z2, |k| > Keit, the vector field on the
boundary 90 is directed inward. Then for B = max(B, vVOoK,,) the
required assertion holds for any ¢ > 0.

Suppose that for some t > 0 0(t) leaves QP Let to = inf{t: 0(t) ¢
QEF)}. Then for ¢t = to and all k € Z? we have the inequality |0 (to)| <
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B/|k|* which becomes equality for some k. Denote by k. a point in Z? such
that the equality takes place at this point and |k,| < |k| at any other point
k € Z2, where equality holds. Then for 6y, (to) from (3) it follows that

dy, (t)

dt 9k —1(to)wi(to).  (6)

= — il k0. (t0) +Z

t=to lez2 |

An obvious calculations shows that

2|9k(t)|d|9§t(t)| = dw};gt)lQ = 0x(t) g ! +§k(t)d9§t(t)

J_
= —2ulk[*0x ()0k (t) + Z |l|2 >(wz( )0k —1(£)0x () + 01 (£)0k—1 ()0 (1))

leZ?

~2ulkPlone)? + 200 Y | 010

leZ?

Thus, for |0, (to)| we can write

ool < a5+ Y | E o el @

€72

By Proposition 1, the last term on the right-hand side of (7) is less than
or equal to | k| %*a\/WOBAl, where A is a constant that is independent of
k. and to and can depend only on a. Thus,

d 1
7710k (to)] < [ 2=V WoBAL =l 2B = Bl |5~ (v Wo A1 — il .| ?)

WoA?

Setting Koy = 5—, from the inequality |kx| > Ko we immediately
i

conclude that %|0k* (to)] is negative and, consequently, |0, (to)| decreases.
Recall the estimate |0 (¢)||k]* < vVOo(Kerit)® for |k| < Kepig. Setting
VOWE A3®

lu2o¢ )’

we complete the proof. O

B’ = max(B,

PRrROOF OF THEOREM 2. We argue in a similar way as in the previous
proof. We fix a constant K, whiqp depends only on « and will be defined
later. By Lemma 2, for any |k| < Kt we can write

wr(OIIF|® < Kgielwr ()] < K& v/W(D) < KA, (8)
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O
where A = max (Wo, —g) and thus is a constant which depends only on
v

the initial data.
Now, we show that for some constant Kot the inequality |k| > Keit

implies |wy(t)[|k]* < C. By the assumption of the theorem, wg € .
Suppose that for some ¢ > 0 w(t) leaves the Q((XC). Denote by ty the

infimum of such ¢. Then for ¢ =ty we have the inequality

C

[k[

which becomes equality for some k. Let k. be a point where equality takes

place. Assume that k. has the minimal norm among points of such a type.
By (3), for |wg(t)| we have

|wi (to)| <

w, w 2 w w
2l () AL _ ArOF_ g5 ) 2 D) ) T
2 2 <kall> _
= =20k |wr()]> + e (w1 (t)wi (t)Tk (1))
l€Z?

+ Wi ()W () wy (1)) + k1 (0 (t)w (L) + gk (t)wg(1)).
Thus,
djwg ()] (k, 1)

S < @]+ 3 St e @l )] + IO (9)
lez?

By Proposition 1, the second term on the right-hand side of (9) is not
greater than |I€|%*QC\/WOA;;7 where Ag is a constant depending only on «.
The third term is bounded by |k|'~®B’ because of Theorem 1. Thus, for
|wg, (to)| we have

d t :
7|“"Zt< O <k, 22C + k| F2Cy W dg + | 2B
_ W()Ag B’
= |k.]?7C — 10
ko 2oC (X TG v) (10)
_ A2 / _
If we define K.jt = VZOV23 ~ o then for |k.| > Kt the right-hand

side of the inequality (10) is negative and, consequently, |wg, (to)| decreases.
The theorem is proved for C’ = max(C, Ay(Kerit)®). O

PRrROOF OF THEOREM 3. The required assertion is obtained by apply-
ing Theorems 1 and 2 to the functions 0, (t) = eP¥10,(t) and Wy (t) =
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ePFlwy(t). From (3) we derive for ék(t), Wy (1)

d ~
T 06(6) = —pulk[*6i (1) (e

1622
iwk(t) = —v|k[*wx(t) + Z (k, ll w )y (£)ePURI=IU=IR=ID ik 0,(2).
a T

lez?
Since |k — 1| 4+ |I| > |k| and, consequently, e PUHFE=I=Ik) < 1 we can

replace the corresponding terms with 1 and obtain the estimates

d -~
—10k(0)] < —plkf21i (¢ |+Z] W, \|l ) 1Bs_a(1),

lez?
d, .
Do) < ki) + 3 [E i @Ol (o] + k1.0
lez?
Then we repeat the proof of Theorems 1 and 2 without any change. O

PROOF OF THEOREM 4. Let ty > 0. Consider f(z,t) and w(z,t) with
the Fourier coefficients 0y () = e?t*19,(¢) and g (t) = e9*Flwy(t) respec-
tively. The constant 4; > 0 will be defined later.

We have [|[@(0)||a = C and ||6(0)||« = B. It suffices to show that
6(t) and () remain bounded in ®(«) with some constants B and C for all
te [O, to].

Since the inequalities

c
ze

B

) <
|0k (to)] < G

[ (to)| <

imply

¢ ; B
|wk(t0)| < Wei‘k‘élt% |0k(t0)| < _e*|k|51to’

we can use Theorem 3 with the initial data w(tp) and 6(tg). Thus, if at ¢,
we have

[i(to)lla <C,  [I0(t0)]la < B,

then for all ¢ > tg the decay rate of the Fourier coefficients of the solution
remains exponential with k.
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By (3), we have

degt(t) = 51|k|9k(t) L0
’f l Vo1 (£)e® IRl =1k,
lez?
dw;t(t) = 51|k|wk(t> — |k [ (t)

k_l(t)eéﬁ(\k\*\llflk*l\) + ik1ék(t)

+ 3

lez? |l|2

From the inequality |k| < |I|+|k—1] it follows that e?t(FI=IH=Ik=1) < 1,
A calculation, similar to that in the proof of Theorems 1 and 2, shows that

O < 52101011 - kP10 Hl%‘ ”'2 )10 (1)
A0el)] |k|<|uvk<t>|51 16O — vkl (1) a1)
+Z‘ |l|2 ()| r—i ()]
lez?

We fix a constant K which will be defined later. By Theorems 1 and 2, for
!/ /

and |0(t)| < i@ Thus, for

any t > 0 and k € Z? we have |wy(t)| < 7

<
||
any t € [0,%] and |k|] < K
5 By . Ci
0k ()] < o750 low(8)] < o3 (12)
|| ||
where By = B'eXoto ¢ = (/eloto,
As above, §(0) € P and w(0) € Q. Assume that at some positive
7 € [0, to] the pair (A(r), (7)) reaches the boundary of QP x Q). Then
we can estimate the sums on the right-hand side of (11) using Proposition 1:

d|0y,(t)]
dt

d|w (t)]
dt

< R0 B + k| F o/ WoBAs — pl [0k ()],
t=1 (13)

< k|2~ WeCAs + |k|' (B + 6,C) — v|k|?|w (7)),

t=r1

where A4 and Aj are constants depending on the initial conditions.
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By (13), we can force the right-hand side of (11) to be negative on the
boundary of QP % 0 for |k| > K by choosing K large enough, and thus
for such |k| the vector field on the boundary is directed inward.

Since for all other |k| we have (12), there exist constants B = max(B, By )
and C = max(C, C1) such that for any ¢ € [0, %] the pair (0(t), (t)) belongs

to the region Q(B) X Q(C) O

ProoF OF THEOREM 5. Consider the classical iteration scheme. We
write Equations (3) in the integral form and consider the sequences

0 (1) = 0,(0), w”(t) = wy(0); (14)

t

N e k(s kLYY n
oy (@) = e f9£°>+/e e 3 |l|2>w§ ()6, (s)ds,

0 leZ?

w](cn+l)(t) _ ef|k|2tw,(co)

t

+/efwcﬁ(tfs)( 3 <k|’l|l:>w§“>(s)w,§’”l(s) +ik6)"(s))ds.  (15)

0 lez?

It is easy to check that 0,(6")(15) = 9(_72 (t) and w,gn)(t) = E(nk)( t). Hence
Lemmas 1 and 2 can be applied to all the functions #(™ (t) and w™ (t). We
proceed by induction. We show that for initial data from ®(«) all {w,(cn)(t)}
and {0 n) (t)} are bounded in ®(«) uniformly with respect to n. Then we
show that {w, ™) ()} and {0,8”(26)} are fundamental in the norm || - ||, and,

consequently, converge in ®(«). By (15), the corresponding limits provide
a solution of (3).

Uniform bound. Assume that for some n € N we have [|[0(")(1)||, <
2N and [|w™ (t)|lo < 4N, where N is taken from the formulation of the
theorem. By Proposition 1,

’mz [ (51167 (5)] < 2 Ag /Pl 3,

leZ?

| i 2wl (9l (6)] < ANV Ar TR IRE .

lez?
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Thus, for 91(€n+1)( t) and wy, (n+1 )( t) from (15), integrating with respect to s,
we find

10D (£)] < 2N Ag/Wo k|~ + Nk| 2, (16)
™D ()] < AN AryWolk| =02 + 00T NIk (17)

By (16), for |k| > 4A2W, we have

6V (0] < 20K
By (17), for |k| > 16 A2, we have

" (1)) < 4NTR .

Denote K = 4Wy max(AZ, 4A2). Then for k > K the inductive assumption
is satisfied.

For |k| < K Lemmas 1 and 2 imply

B OI< V6o, ™ ()] < VW
Setting N = max(4N, VO K, VWoK®), for all k we get
100 Ol <N < [l (@)l]o <N
uniformly with respect to n.

Conwvergence. Consider the functions g("H)( t) = 9,(6"“)(15) — 9,(6")(15)
and g(n+1)( t) = w,(cnﬂ)( t) — ,(Cn)( t). From (15) it follows that

g](€n+1)(t):/ —|k|?(t— S)Z

0 lez3

|1|2 O (™ ()9 (5) + 5" ()67 (9)) s,

t

€L
a0 = [t 5 a0

0 €73

g (w T (s)) + ikagl™ (s )}ds. (18)

Since, according to the first step of the proof, all #(™)(t) and w(™ (t)
belong to ®(a), we see that (™) (t) and §(™(t) also belong to ®(«a). Using
Proposition 1 and integrating over s, we find
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o™ ®lle < (Asllg™ llav/Wo + A5 (8)la/B0 ) [k =3 (1=~ H2),

(19)
157 B lla < (Arollg™ ORI F + 1117 g @)lla ) (1= 7H2),
(20)

where Ag, Ag, and Aig are constants independent of k, ¢, and n. For
sufficiently large |k|t we can replace (1 — e*|k|2t) with 1 in the estimates
(19) and (20).

Since the power of |k| on the right-hand side of these inequalities
remains negative, for each given £ € (0,1) there exists K. such that for
|k| > K. we get

" (0] < [k~ e max([lg™ (1) s 13" ()] a),

¢V O < k|~ max((lg™ @) las 15T @) a)-

€
For |k| < K. there exists T. = Tcons) 2 with some positive (const) such
€
that for any |k| < K. and ¢ € [0, T.] we can estimate (1—e IkPt) 1 .
(const)

Then (19) and (20) imply that for sufficiently large (const) and ¢t € [0, 7]
we have

lg" DOl < elkl™* max(|lg™ @)lla, 13" 1))

(21)
13"V O)la < elkl™ max(|lg™ @)lla, 137 1))

Note that T. depends only on the constants in the inequalities (19), (20)
and, consequently, depends only on the initial conditions. By (21),

lg™ (®)llo < " max((lg® ®)lla 13 )]).
15 Olla < " max([lg@ @)lla 13 )a)-

Thus, {#(™(t)} and {w(™ (t)} are Cauchy sequences in (). O
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Nonlinear Dynamics of a System
of Particle-Like Wavepackets
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This work continues our studies of nonlinear evolution of a system of wavepackets.
We study a wave propagation governed by a nonlinear system of hyperbolic PDE’s
with constant coefficients with the initial data being a multi-wavepacket. By def-
inition, a general wavepacket has a well-defined principal wave vector, and, as we
proved in previous works, the nonlinear dynamics preserves systems of wavepack-
ets and their principal wave vectors. Here we study the nonlinear evolution of
a special class of wavepackets, namely particle-like wavepackets. A particle-like
wavepacket is of a dual nature: on one hand, it is a wave with a well-defined
principal wave vector, on the other hand, it is a particle in the sense that it
can be assigned a well-defined position in the space. We prove that under the
nonlinear evolution a generic multi-particle wavepacket remains to be a multi-
particle wavepacket with high accuracy, and every constituting single particle-
like wavepacket not only preserves its principal wave number but also it has a
well-defined space position evolving with a constant velocity which is its group
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velocity. Remarkably the described properties hold though the involved single
particle-like wavepackets undergo nonlinear interactions and multiple collisions in
the space. We also prove that if principal wavevectors of multi-particle wavepacket
are generic, the result of nonlinear interactions between different wavepackets is
small and the approximate linear superposition principle holds uniformly with
respect to the initial spatial positions of wavepackets. Bibliography: 41 titles.

1. Introduction

The principal object of our studies here is a general nonlinear evolutionary
system which describes wave propagation in homogeneous media governed
by hyperbolic PDE’s in R, d = 1,2,3,..., is the space dimension, of the
form

0,U = —iEL(—iV)U +F(U), U(r,7)|,_, = h(r), r e R%, (1.1)

where (i) U = U(r,7), r € RY U € C?¥ is a 2J-dimensional vector;
(ii) L(—iV) is a linear selfadjoint differential (pseudodifferential) operator
with constant coefficients with the symbol L(k), which is a Hermitian 2J x
2J matrix; (iii) F is a general polynomial nonlinearity; (iv) o > 0 is a
small parameter. The properties of the linear part are described in terms of
dispersion relations w,, (k) (eigenvalues of the matrix L(k)). The form of the
equation suggests that the processes described by it involve two time scales.
Since the nonlinearity F(U) is of order one, nonlinear effects occur at times
7 of order one, whereas the natural time scale of linear effects, governed
by the operator L with the coefficient 1/p, is of order p. Consequently,
the small parameter p measures the ratio of the slow (nonlinear effects)
time scale and the fast (linear effects) time scale. A typical example of an
equation of the form (1.1) is the nonlinear Schréodinger equation (NLS) or a
system of NLS’s. Many more examples including a general nonlinear wave
equation and the Maxwell equations in periodic media truncated to a finite
number of bands are considered in [7, 8].

As in our previous works [7, 8], we consider here the nonlinear evolu-
tionary system (1.1) with the initial data h(r) being the sum of wavepackets.
The special focus of this paper is particle-like localized wavepackets which can
be viewed as quasiparticles. Recall that a general wavepacket is defined as
such a function h(r) that its Fourier transform h(k) is localized in a §-
neighborhood of a single wavevector k., called principal wavevector, where
(3 is a small parameter. The simplest example of a wavepacket is a function
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of the form
k — k.
B

where g, (k,) is an eigenvector of the matrix L(k,) and h(k) is a scalar
Schwarz function (i.e., it is an infinitely smooth and rapidly decaying one).
Note that for h (3, k) of the form (1.2) we have its inverse Fourier transform

h(3;r) = h(B(r —r,))e g (k,), r e R (1.3)

B(G:k) = g~ e 1 h (S gy (k) k € RY, (1.2)

Evidently, h(3,r) described by the above formula is a plane wave
e*-rg (k,) modulated by a slowly varying amplitude h(3(r —r.)) obtained
from h(z) by a spatial shift along the vector r, with a subsequent dilation
with a large factor 1/3. Clearly, the resulting amplitude has a typical spatial
extension proportional to ! and the spatial shift produces a noticeable
effect if |r.| > B~!. The spatial form of the wavepacket (1.3) naturally
allows us to interpret r, € R? as its position and, consequently, to consider
the wavepacket as a particle-like one with the position r, € R?. But how
one can define a position for a general wavepacket? Note that not every
wavepacket is a particle-like one. For example, let, as before, the function
h(r) be a scalar Schwarz function, and let us consider a slightly more general
than (1.3) function

h(Bir) = [h(B(r — 1)) + h(B(r — ra2))le™ g, (k.), r € RY, (L)

where r,; and r,o are two arbitrary, independent vector variables. The wave
h(8,r) defined by (1.4) is a wavepacket with the wave number k, for any
choice of vectors r,; and r.o, but it is not a particle-like wavepacket since it
does not have a single position r,, but rather it is a sum of two particle-like
wavepackets with two positions r,; and r,o.

Our way to introduce a general particle-like wavepacket h(j, k.,
r.o;Tr) with a position r,o is by treating it as a single element of a family
of wavepackets h(3, k,,r,;r) with r, € R? being another independent pa-
rameter. In fact, we define the entire family of wavepackets h(53, ks, r.; 1),
r. € R% subject to certain conditions allowing us to interpret any fixed
r. € R? as the position of h(3, k., r.;r). Since we would like of course
a wavepacket to maintain under the nonlinear evolution its particle-like
property, it is clear that its definition must be sufficiently flexible to ac-
commodate the wavepacket evolutionary variations. In light of the above
discussion, the definition of the particle-like wavepacket with a transparent
interpretation of its particle properties turns into the key element of the
entire construction. It turns out that there is a precise description of a
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particle-like wavepacket, which is rather simple and physically transparent
and such a description is provided in Definition 2.2 below, see also Remarks
2.4, 2.5. The concept of the position is applicable to very general functions,
it does not require a parametrization of the whole family of solutions, which
was used, for example, in [25, 20, 21].

As in our previous works, we are interested in nonlinear evolution not
only a single particle-like wavepacket h(3, ky, r.;r), but a system {h(S, k.,
r.; )} of particle-like wavepackets which we call multi-particle wavepacket.
Under certain natural conditions of genericity on k,;, we prove here that un-
der the nonlinear evolution: (i) the multi-particle wavepacket remains to be
a multi-particle wavepacket; (ii) the principal wavevectors k,; remain con-
stant; (ii) the spatial position r,; of the corresponding wavepacket evolves
with the constant velocity which is exactly its group velocity %an(k*l).
The evolution of positions of wavepackets becomes the most simple in the
case, where at 7 = 0 we have ry; = %rg, i.e., the case, where spatial posi-
tions are bounded in the same spatial scale in which their group velocities
are bounded. In this case, the evolution of the positions is described by the
formula

1
r(1) = E[rg + 7Vwy, (kia)], 7= 0. (1.5)

The rectilinear motion of positions of particle-like wavepackets is a direct
consequence of the spatial homogeneity of the master system (1.1). If
the system were not spatially homogeneous, the motion of the positions
of particle-like wavepackets would not be uniform, but we do not study that
problem in this paper. In the rescaled coordinates y = or, the trajectory
of every particle is a fixed, uniquely defined straight line defined uniquely
if o/ — 0 as 9,8 — 0. Notice that under the above-mentioned generic-
ity condition, the uniform and independent motion (1.5) of the positions of
all involved particle-like wavepackets {h(/3, k., r.; 1)} persists though they
can collide in the space. In the latter case, they simply pass through each
other without significant nonlinear interactions, and the nonlinear evolu-
tion with high accuracy is reduced just to a nonlinear evolution of shapes
of the particle-like wavepackets. In the case, where the set of the principal
wavevectors {k.; } satisfy certain resonance conditions, some components of
the original multi-particle wavepacket can evolve into a more complex struc-
ture which can be only partly localized in the space and, for instance, can
be needle- or pancake-like. We do not study in detail those more complex
structures here.
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Now let us discuss in more detail the superposition principle intro-
duced and studied for general multi-wavepackets in [8] in the particular
case, where initially all r,; = 0. Here we consider multi-particle wavepack-
ets with arbitrary r,; and develop a new argument based on the analysis
of an averaged wavepacket interaction system introduced in [7]. Assume
that the initial data h for the evolution equation (1.1) is the sum of a finite
number of wavepackets (particle-like wavepackets) hy, 1 =1,... N, i.e.,

h=h; +...+hy, (1.6)

where the monochromaticity of every wavepacket h; is characterized by
another small parameter 3. The well-known superposition principle is a
fundamental property of every linear evolutionary system, stating that the
solution U corresponding to the initial data h as in (1.6) equals

U=U;+...+Uyxforh=hy+...+ hy, (1.7)

where Uj is the solution to the same linear problem with the initial data h;.

Evidently, the standard superposition principle cannot hold exactly as
a general principle for a nonlinear system, and, at the first glance, there is
no expectation for it to hold even approximately. We show though that, in
fact, the superposition principle does hold with high accuracy for general
dispersion nonlinear wave systems such as (1.1) provided that the initial
data are a sum of generic particle-like wavepackets, and this constitutes
one of the subjects of this paper. Namely, the superposition principle for
nonlinear wave systems states that the solution U corresponding to the
multi-particle wavepacket initial data h as in (1.6) satisfies

U=U;+...4+4 Uy +Dforh=h;+...+ hy, where D is small.

A more detailed statement of the superposition principle for nonlinear evolu-
tion of wavepackets is as follows. We study the nonlinear evolution equation
(1.1) on a finite time interval

0 <7 < 7%, where 7, > 0 is a fixed number (1.8)

which may depend on the L>° norm of the initial data h but, importantly,
T does not depend on o. We consider classes of initial data such that wave
evolution governed by (1.1) is significantly nonlinear on time interval [0, 7]
and the effect of the nonlinearity F(U) does not vanish as o — 0. We
assume that 0, o satisfy

0<B<1,0<0<1, 3?/o<C; with some C; > 0. (1.9)
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The above condition of boundedness on the dispersion parameter 32/0 en-
sures that the dispersion effects are not dominant and they do not suppress
nonlinear effects, see [7, 8] for a discussion.

Let us introduce the solution operator S(h)(7) : h — U(r) relating
the initial data h of the nonlinear evolution equation (1.1) to its solution
U(t). Suppose that the initial state is a system of particle-like wavepack-
ets or multi-particle wavepacket, namely h = > h; with h;, Il =1,... N,
being “generic” wavepackets. Then for all times 0 < 7 < 7, the following
superposition principle holds:

N N
S(Dom)(r) =3 Stu)(r) + D), (1.10)
=1 =1

4

ID(7T)l[z = sup [[D(7)]|z= < Cam

ITXRT*
Obviously, the right-hand side of (1.11) may be small only if o < C10.
There are examples (see [7]) in which D(7) is not small for o = C16. In
what follows, we refer to a linear combination of particle-like wavepackets
as a multi-particle wavepacket, and to single particle-like wavepackets which
constitutes the multi-particle wavepacket as component particle wavepack-
ets.

for any small § > 0.  (1.11)

Very often in theoretical studies of equations of the form (1.1) or ones
reducible to it, a functional dependence between ¢ and ( is imposed, re-
sulting in a single small parameter. The most common scaling is 0 = 32.
The nonlinear evolution of wavepackets for a variety of equations which can
be reduced to the form (1.1) was studied in numerous physical and mathe-
matical papers, mostly by asymptotic expansions of solutions with respect
to a single small parameter similar to (3, see [10, 12, 16, 18, 22, 24, 26,
32, 34, 36, 37] and references therein. Often the asymptotic expansions
are based on a specific ansatz prescribing a certain form to the solution.
In our studies here we do not use asymptotic expansions with respect to a
small parameter and do not prescribe a specific form to the solution, but
we impose conditions on the initial data requiring it to be a wavepacket or
a linear combination of wavepackets. Since we want to establish a general
property of a wide class of systems, we apply a general enough dynami-
cal approach. There is a number of general approaches developed for the
studies of high-dimensional and infinite-dimensional nonlinear evolutionary
systems of hyperbolic type, see [9, 11, 17, 19, 23, 29, 33, 36, 38, 40, 41]
and references therein. The approach we develop here is based on the intro-
duction of a wavepacket interaction system. We show in [8] and here that
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solutions to this system are in a close relation to solutions of the original
system.

The superposition principle implies, in particular, that in the process
of nonlinear evolution every single wavepacket propagates almost indepen-
dently of other wavepackets (even though they may “collide” in physical
space for a certain period of time) and the exact solution equals the sum
of particular single wavepacket solutions with high precision. In particular,
the dynamics of a solution with multi-wavepacket initial data is reduced
to dynamics of separate solutions with single wavepacket data. Note that
the nonlinear evolution of a single wavepacket solution for many problems
is studied in detail, namely it is well approximated by its own nonlinear
Schrodinger equation (NLS), see [16, 22, 26, 27, 36, 37, 38, 7] and ref-
erences therein.

Let us give now an elementary physical argument justifying the super-
position principle which goes as follows. If there would be no nonlinearity,
the system would be linear and, consequently, the superposition principle
would hold exactly. Hence any deviation from it is due to the nonlinear
interactions between wavepackets, and one has to estimate their impact.
Suppose that initially at time 7 = 0 the spatial extension s of every involved
wavepacket is characterized by the parameter 37! as in (1.3). Assume also
(and it is quite an assumption) that the involved wavepackets evolving non-
linearly maintain somehow their wavepacket identities, including the group
velocities and the spatial extensions. Then, consequently, the spatial ex-
tension of every involved wavepacket is proportional to $~! and its group
velocity v; is proportional to p~!'. The difference Av between any two dif-
ferent group velocities is also proportional to ¢~'. Then the time when
two different wavepackets overlap in the space is proportional to s/|Av| and
hence to ¢/8. Since the nonlinear term is of order one, the magnitude of
the impact of the nonlinearity during this time interval should be roughly
proportional to o/3, which results in the same order of the magnitude of
D in (1.10)—(1.11). Observe that this estimate is in agreement with our
rigorous estimate of the magnitude of D in (1.11) if we set there § = 0.

The rigorous proof of the superposition principle presented here is not
directly based on the above argument since it already implicitly relies on the
principle. Though some components of the physical argument can be found
in our rigorous proof. For example, we prove that the involved wavepackets
maintain under the nonlinear evolution constant values of their wavevectors
with well defined group velocities (the wavepacket preservation). Theorem
6.12 allows us to estimate spatial extensions of particle-like wavepackets
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under the nonlinear evolution. The proof of the superposition principle for
general wavepackets provided in [8] is based on general algebraic-functional
considerations and on the theory of analytic operator expansions in Banach
spaces. Here we develop an alternative approach with a proof based on
properties of the wavepacket interaction systems introduced in [7].

To provide a flexibility in formulating more specific statements re-
lated to the spatial localization of wavepackets, we introduce a few types of
wavepackets:

e asingle particle-like wavepacket w which is characterized by the follow-
ing properties: (a) its modal decomposition involves only wavevectors
from (-vicinity of a single wavevector k., where 3 > 0 is a small para-
meter; (b) it is spatially localized in all directions and can be assigned
its position ry;

e a multi-particle wavepacket which is a system {w;} of particle-like
wavepackets with the corresponding sets of wavevectors {k,;} and po-
sitions {r.};

e a spatially localized multi-wavepacket which is a system {w;} with w,
being either a particle-like wavepacket or a general wavepacket.

We would like to note that a more detailed analysis, which is left for
another paper, indicates that, under certain resonance conditions, nonlin-
ear interactions of particle-like wavepackets may produce a spatially localized
wavepacket w characterized by the following properties: (i) its modal decom-
position involves only wavevectors from a [-vicinity of a single wavevector
k., where § > 0 is a small parameter; (ii) it is only partly spatially localized
in some, not necessarily all directions, and, for instance, it can be needle-
or pancake-like.

We also would like to point out that the particular form (1.1) of the
dependence on the small parameter ¢ is chosen so that appreciable nonlinear
effects occur at times of order one. In fact, many important classes of prob-
lems involving small parameters can be readily reduced to the framework
of (1.1) by a simple rescaling. It can be seen from the following examples.
The first example is a system with a small nonlinearity

Ov=—iLv+of(v), v,_o=h, 0<a<1, (1.12)

where the initial data is bounded uniformly in . Such problems are reduced
to (1.1) by the time rescaling 7 = ta. Note that here o = a and the finite
time interval 0 < 7 < 7 corresponds to the long time interval 0 < t < 7/ .
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The second example is a system with small initial data considered on
long time intervals. The system itself has no small parameters, but the
initial data are small, namely

Ov = —iLv +f4(v), v|,_, = aoh, 0 < ap < 1, where (1.13)
fo(v) = 5™ (v) + 85" P (v)

where «q is a small parameter and f (m)(v) is a homogeneous polynomial
of degree m > 2. After rescaling v = ayV we obtain the following equation
with a small nonlinearity:

OV = —iLV + o ™ (V) + aof® (V) 4. ..], V|,_, =h, (1.14)

which is of the form (1.12) with a = aj'~'. Introducing the slow time

variable 7 = tozg“l, we get from the above an equation of the form (1.1),
namely
0.V = ———LV + ™ (V) + apf ™ (V) +...], V|,_y =h, (1.15)
0

where the nonlinearity does not vanish as ay — 0. In this case, o = agL—l

and the finite time interval 0 < 7 < 7, corresponds to the long time interval
0<t< T*/ag“l with small ag < 1.

The third example is related to a high-frequency carrier wave in the
initial data. To be concrete, we consider the nonlinear Schrodinger equation

0.U —i02U +ia|U|?U,
Ul,_o = hi(MBzx)eME® 4 hy(MBx)eME2* 4 cc.,

where c.c. stands for the complex conjugate of the prior term and M > 1
is a large parameter. Equation (1.16) can be readily recast into the form
(1.1) by the change of variables y = Mr yielding

(1.16)

1
0,U = —iEGfU +ia|U*U,
Ul,_y = hi(Br)e™" + ha(Br)e*=" + c.c., (1.17)
1
where 0= W < 1.

Summarizing the above analysis, we list below important ingredients
of our approach.

e The wave nonlinear evolution is analyzed based on the modal decom-
position with respect to the linear part of the system. The significance
of the modal decomposition to the nonlinear analysis is based on the
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following properties: (i) the wave modal amplitudes do not evolve un-
der the linear evolution; (ii) the same amplitudes evolve slowly under
the nonlinear evolution; (iii) modal decomposition is instrumental to
the wavepacket definition including its spatial extension and the group
velocity.

Components of multi-particle wavepacket are characterized by their
wavevectors k,;, band numbers n;, and spatial positions r,;. The
nonlinear evolution preserves k,; and n;, whereas the spatial positions
evolve uniformly with the velocities %Vwm (ksi).

The problem involves two small parameters § and g respectively in
the initial data and coefficients of the master equation (1.1). These
parameters scale respectively (i) the range of wavevectors involved in
its modal composition, with 37! scaling its spatial extension, and (ii)
o scaling the ratio of the slow and the fast time scales. We make no
assumption on the functional dependence between (§ and g, which are
essentially independent and are subject only to inequalities.

The nonlinear evolution is studied for a finite time T, which may de-
pend on, say, the amplitude of the initial excitation, and, importantly,
T, is long enough to observe appreciable nonlinear phenomena which
are not vanishingly small. The superposition principle can be extended
to longer time intervals up to blow-up time or even infinity if relevant
uniform in 8 and p estimates of solutions in appropriate norms are
available.

In the chosen slow time scale there are two fast wave processes with
typical time scale of order o which can be attributed to the linear oper-
ator L: (i) fast time oscillations resulting in time averaging and conse-
quent suppression of many nonlinear interactions; (ii) fast wavepacket
propagation with large group velocities resulting in effective weaken-
ing of nonlinear interactions which are not time-averaged because of
resonances. It is these two processes provide mechanisms leading to
the superposition principle.

The rest of the paper is organized as follows. In the following Subsec-

tion 2.1, we introduce definitions of wavepackets, multi-wavepackets, and
particle wavepackets. In Subsection 2.1, we also formulate and briefly dis-
cuss some important results of [7] which are used in this paper, and, in Sub-
section 2.2, we formulate new results. In Section 3, we formulate conditions
imposed on the linear and the nonlinear parts of the evolution equation (1.1)
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and also introduce relevant concepts describing resonance interactions inside
wavepackets. In Section 4, we introduce an integral form of the basic evolu-
tion equation and study basic properties of involved operators. In Section
5, we introduce a wavepacket interaction system describing the dynamics of
wavepackets. In Section 6, we first define an averaged wavepacket interac-
tion system which plays a fundamental role in the analysis of the dynamics
of multi-wavepackets and then prove that solutions to this system approxi-
mate solutions to the original equation with high accuracy. We also discuss
there properties of averaged nonlinearities, in particular, for universally and
conditionally universal invariant wavepackets, and prove the fundamental
theorems on preservation of multi-particle wavepackets, namely Theorems
6.13 and 2.10. In Section 7, we prove the superposition principle using an
approximate decoupling of the averaged wavepacket interaction system. In
the last subsection of Section 7, we prove some generalizations to the cases
involving nongeneric resonance interactions such as the second harmonic
and third harmonic generations.

2. Statement of Results

This section consists of two subsections. In the first one, we introduce basic
concepts and terminology and formulate relevant results from [7] which are
used latter on, and in the second one, we formulate new results of this paper.

2.1. Wavepackets and their basic properties.

Since both linear operator L(—iV) and nonlinearity F(U) are translation
invariant, it is natural and convenient to recast the evolution equation (1.1)
by applying to it the Fourier transform with respect to the space variables
r, namely

0,0 (k) = _%L(k)ﬁ(k) FEO)0), Ol _ k9. (21)

where U(k) is the Fourier transform of U(r), i.e.,
U(k) = / U(r)e "k dr, U(r)
R4

= (27r)_d/ﬁ(k)eir'k dr, where r,k € R?, (2.2)

Rd
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and F is the Fourier form of the nonlinear operator F(U) involving con-
volutions, see (3.9) for details. Equation (2.1) is written in terms of the
Fourier modes, and we call it the modal form of the original equation (1.1).
The most of our studies are conducted first for the modal form (2.1) of the
evolution equation and carried over then to the original equation (1.1).

The nonlinear evolution equations (1.1), (2.1) are commonly inter-
preted as describing wave propagation in a nonlinear medium. We assume
that the linear part L(k) is a 2J x 2J Hermitian matrix with eigenvalues
wn,c(k) and eigenvectors g, ¢ (k) satisfying

L(k)gn¢(k) = wn.c(K)gnc(k), ¢ =+,

2.3
wn7+(k)>0a wn,f(k)<0a n:]-v'”a’]a ( )

where wy, ¢(k) are real-valued, continuous for all nonsingular k functions
and vectors g;, (k) € C2/ have unit length in the standard Euclidean norm.
The functions wy, ¢(k), n =1,...,J, are called dispersion relations between
the frequency w and the wavevector k with n being the band number. We
assume that the eigenvalues are naturally ordered by

witk)Z ... 2w k) 202w (k) >... > ws_(k) (2.4)

and for almost every k (with respect to the standard Lebesgue measure)
the eigenvalues are distinct and, consequently, the above inequalities be-
come strict. Importantly, we also assume the following diagonal symmetry
condition:

wn,—¢c(=k) = —wn k), (=%, n=1,...,J, (2.5)
which is naturally presented in many physical problems (see also Remark

3.3 below) and is a fundamental condition imposed on the matrix L(k).
Very often we use the abbreviation

wn.+ (k) = wy (k). (2.6)
In particular, we obtain from (2.5)
wn,— (k) = —wn(=k), wyc(k) = Cwn(Ck), ¢ ==+ (2.7)

In addition to that, in many examples we also have
gn.c(k) =g, _(—k), where 2" is complex conjugate to z. (2.8)

We also use rather often the orthogonal projection II,, ¢ (k) in C?7 onto the
complex line defined by the eigenvector g, ¢(k), namely

I, ¢ (k)a(k) = @y c(k)gnc(k) =0, k), n=1,...,J, (==£. (2.9)
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As it is indicated by the title of this paper, we study the nonlinear
problem (1.1) for initial data h in the form of a properly defined particle-
like wavepackets or, more generally, a sum of such wavepackets to which we
refer as multi-particle wavepacket. The simplest example of a wavepacket w
is provided by the following formula:

w(it) = &1 (B(r —r.))e™ g, L (k,), T e RY, (2.10)

where k, € R? is a wavepacket principal wavevector, n is a band number,
and 3 > 0 is a small parameter. We refer to the pair (n,k,) in (2.10) as a
wavepacket nk-pair and r, as a wavepacket position. Observe that the space
extension of the wavepacket w(3;r) is proportional to 37! and it is large
for small 3. Notice also that, as § — 0, the wavepacket w(3;r) as in (2.10)
tends, up to a constant factor, to the elementary eigenmode eik*"”gmg(k*) of
the operator L(—iV) with the corresponding eigenvalue wy, ¢ (ks). We refer
to wavepackets of the simple form (2.10) as simple wavepackets to underline
the very special way the parameter (3 enters its representation. The function
O (r), which we call wavepacket envelope, describes its shape, and it can be
any scalar complex-valued regular enough function, for example, a function
from Schwarz space. Importantly, as  — 0, the L*> norm of a wavepacket
(2.10) remains constant. Hence nonlinear effects in (1.1) remain strong.

Evolution of wavepackets in problems which can be reduced to the
form (1.1) was studied for a variety of equations in numerous physical and
mathematical papers, mostly by asymptotic expansions with respect to a
single small parameter similar to 3, see [10, 12, 16, 18, 22, 24, 26, 32,
34, 36, 37| and references therein. We are interested in general properties
of evolutionary systems of the form (1.1) with wavepacket initial data which
hold for a wide class of nonlinearities and all values of the space dimensions
d and the number 2.J of the system components. Our approach is not
based on asymptotic expansions, but involves two small parameters 3 and
o with mild constraints (1.9) on their relative smallness. The constraints
can be expressed in the form of either certain inequalities or equalities, and
a possible simple form of such a constraint can be the power law

6= Co”, where C > 0 and s > 0 are arbitrary constants. (2.11)

Of course, general features of wavepacket evolution are independent of par-
ticular values of the constant C. In addition to that, some fundamental
properties such as wavepacket preservation are also totally independent of
the particular choice of the values of s in (2.11), whereas other properties
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are independent of ¢ as it varies in certain intervals. For instance, disper-
sion effects are dominant for » < 1/2, whereas the wavepacket superposition
principle of [7] holds for » < 1.

To eliminate unbounded (as ¢ — 0) linear term in (2.1) by replacing
it with a highly oscillatory factor, we introduce the slow variable t(k, ) by
the formula

Uk, 7) = e ¢ ®qa(k, ) (2.12)

and get the following equation for ﬁ(k T):
0-0= e‘TLF(e e la), b, = =h, (2.13)

which, in turn, can be transformed by time integration into the integral

form
-

i = F(@) +h, ]-"(ﬁ):/ Lie L a())dr’ (2.14)
0

with an explicitly defined nonlinear polynomial integral operator F = F(p).
This operator is bounded uniformly with respect to ¢ in the Banach space
E = C([0,7.], L'). This space has functions ¥(k, 7), 0 < 7 < 7, as elements
and has the norm

¥k, 7)lle = IV, T)llcqo,r),0t) = bup /|v (k, )| dk, (2.15)

\T\T*

where L' is the Lebesgue space of functions ¥(k) with the standard norm

9Oz = / (k)| dk. (2.16)
Rd

Sometimes, we use more general weighted spaces L® with the norm

([¥]|p1a = /(1 + k)¢ [¥ (k)| dk, a > 0. (2.17)
Rd
The space C([0, 7], L1®) with the norm
[¥(k, 7)., = sup /(1 + [k))* [V (k, 7)[dk (2.18)
Ogrgr*Rd
is denoted by E,, and, obviously, Fy = E.

A rather elementary existence and uniqueness theorem (Theorem 4.8)
implies that if h € L', then for a small and, importantly, independent of
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o constant 7, > 0 this equation has a unique solution
a(r) = G(F(o),h)(7), 7 €[0,7], & e C([0,7.], L"), (2.19)

where G denotes the solution operator for Equation (2.14). If i(k,7) is a
solution to Equation (2.14), we call the function U(r, 7) defined by (2.12),
(2.2) an F-solution to Equation (1.1). We denote by L! the space of func-
tions V(r) such that their Fourier transform V (k) belongs to L' and define
IVIlz2 = [Vllg. Since
[V||z~ < (2m)"4 V]| and L' ¢ L™, (2.20)
F-solutions to (1.1) belong to C*([0,7.], L') € C'([0, 7], L™).
We would like to define wavepackets in a form which explicitly allows

them to be real valued. This is accomplished based on the symmetry (2.5) of
the dispersion relations, which allows us to introduce a doublet wavepacket

w(Bir) = @y (B(r —r.))e g, | (K,)
+ @ (B(r —r,))e delrrIg (k). (2.21)

Such a wavepacket is real if ®_(r), g, —(—k.) are complex conjugate re-
spectively to @ (r), g, +(ks), ie., if

O_(x) = (1), gos (k) = go (ko). (2.22)

Usually, considering wavepackets with nk-pair (n,k,), we mean doublet
ones as in (2.21), but sometimes we use the term wavepacket also for an
elementary one as defined by (2.10). Note that the latter use is consistent
with the former one since it is possible to take one of two terms in (2.21) to
be zero.

Below we give a precise definition of a wavepacket. To identify char-
acteristic properties of a wavepacket suitable for our needs, let us look at

the Fourier transform w(3; k) of an elementary wavepacket w((3;r) defined
by (2.10), i.e.,

W(Bik) = 5% R (B (k — ki) gn.¢ (i) (2.23)

We call such w(3;k) a wavepacket too, and assume that it possesses the
following properties: (i) its L! norm is bounded (in fact, constant) uniformly
in 8 — 0; (ii) for every € > 0 the value W(8;k) — 0 for every k outside a
B'~¢-neighborhood of k,, and the convergence is faster than any power of
[ if ® is a Schwarz function. To explicitly interpret the last property, we
introduce a cutoff function ¥(n) which is infinitely smooth and such that

W(n) 20, ¥(n) =1 for | <1/2, ¥(n) =0 for |n| =1, (2.24)
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and its shifted/rescaled modification
(B ki k) = U (37 (k —k.)). (2.25)

If an elementary wavepacket w((;r) is defined by (2.23) with ®(r) being a
Schwarz function, then

(1= W(B' % ku; ))W(B; )| < CesfB®, 0< <1, (2.26)

and the inequality holds for arbitrarily small € > 0 and arbitrarily large
s > 0. Based on the above discussion, we give the following definition of a
wavepacket which is a minor variation of [8, Definiton §].

Definition 2.1 (single-band wavepacket). Let € be a fixed number,

0 < e < 1. For a given band number n € {1,...,J} and a principal

wavevector k, € R? a function h(3;k) is called a wavepacket with nk-

pair (n,k,) and the degree of regularity s > 0 if for small 8 < [y with

some [y > 0 it satisfies the following conditions: (i) h(3;k) is L'-bounded
uniformly in 3, i.e.,

Ih(B;)||Lr < C, 0< B < S for some C > 0; (2.27)

(ii) ﬁ(ﬂ; k) is composed essentially of two functions flg (B;k), ¢ = %, which

take values in the nth band eigenspace of L(k) and are localized near (k.
namely

h(B;k) = h_(3;k) + hy(8;k) + D, 0< B < Bo, (2.28)
where the components hy (8; k) satisty the condition
he (B k) = (57 /2, (ks WML (K)he (85 k), ¢ = =, (2.29)

where U (-, Ck., 817°) is defined by (2.25) and D, is small, namely it satisfies
the inequality

|Dpll: < C'B%, 0 < B < By, for some C’" > 0. (2.30)

The inverse Fourier transform h(j3;r) of a wavepacket h(3; k) is also called
a wavepacket.

Evidently, if a wavepacket has the degree of regularity s, it also has
a smaller degree of regularity s’ < s with the same €. Observe that the
degree of regularity s is related to the smoothness of ®¢(r) as in (2.10) so
that the higher is the smoothness, the higher s/e can be taken. Namely, if
<i>< € L% then one can take in (2.30) any s < ae according to the following
inequality:

/ (1 = ()b (n)ldn < B|Dc 1.0 < CB°. (2.31)
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For example, if we define ﬁg similarly to (2.29) and (2.23) by the
formula

he(Bik) = w(5~ 07 (k —k))B @ (57! (k — k) (W), (232)
where <i><(k) is a scalar Schwarz function and g is a vector, then, according
to (2.31), the estimate (2.30) holds and h¢(3;k) is a wavepacket with
arbitrarily large degree of regularity s for any given € such that 0 < e < 1.

Now let us define a particle-like wavepacket following to the ideas
indicated in the Introduction.

Now let us define a particle-like wavepacket following to the ideas
indicated in the Introduction.

Definition 2.2 (single-band particle-like wavepacket). We call a func-
tion fl(ﬁ;k) = fl(ﬁ, r.;: k), r. € R a particle-like wavepacket with the posi-
tion r., nk-pair (n,k,) and the degree of regularity s > 0 if (i) for every r.
it is a wavepacket with the degree of regularity s in the sense of the above
Definition 2.1 with constants C, C’" independent of r, € R?; (ii) flC in (2.28)
satisfy the inequalities

/|Vk(e"*kf1<(ﬁ7r*; k))|dk < C16717¢, ( =+, r. €RY, (2.33)
Rd
where C'; > 0 is an independent of § and r, constant, £ is the same as
in Definition 2.1. The inverse Fourier transform h(3;r) of a wavepacket
ﬁ(ﬂ; k) is also called a particle-like wavepacket with the position r,.. We
also introduce the quantity

a(r,, Be(r.)) = [ Vi(e™*he (8, 1.:K)) || 0 (2.34)
\yhich we refer to as the position detection function for the wavepacket
h(3,r.; k).
Note that the left-hand side of (2.33) coincides with a(r., fl((r*))

Remark 2.3. If h(8; k) =h(8, r.; k) is a particle-like wavepacket with
a position r,, then, applying the inverse Fourier transform to h¢(8,r.;k)
and kalC (0, r.; k) asin (2.2), we obtain a function h(3, r,; r) which satisfies

v — v [|he (8, ri1)| < (2m)%a(r., Be) (2.35)

implying that |he(3;r)| < a(r.,he)lr — r.|~'. This inequality is useful
for large |r — r.|, whereas for bounded |r — r,| (2.27) implies the simpler
inequality A

Ihe(8,1231)| < (2m) ] < C. (2.36)
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The inequalities (2.35) and (2.33) suggest that the quantity a(r*,ﬁc(r*))
can be interpreted as a size of the particle-like wavepacket flC (B,r.; k).

Evidently a particle-like wavepacket is a wave and not a point. Hence
the above definition of its position has a degree of uncertainty, allowing, for
example, to replace r, by r, + a with a fized vector a (but not allowing
unbounded values of a). The above definition of a particle-like wavepacket
position was crafted to meet the following requirements: (i) a system of
particle-like wavepackets remains to be such a system under the nonlin-
ear evolution; (ii) it is possible (in an appropriate scale) to describe the
trajectories traced out by the positions of a system of particle-wavepackets.

Remark 2.4. Typical dependence of the inverse Fourier transform
h(G,r.;r) of a wavepacket h(3,r.;k) on r, is provided by spatial shifts by
r, as in (2.21), namely

h(f,r.;1) = ®(B(r —r.))e g
with a constant g. For such a function h and for any r’, € R?
a(r,, B(r.)) = | Vi(8~ %™ (3, r.;k))| 12
= [ Vi(B~ ™ e R B(k)) | 11 | gl

gl / 1] = £ )BC) + Vo).
Hence, taking for simplicity ||g|| = 1, we obtain
=19l + 5V, > ol )
> | I8l - 51Vl (237)

For small |r}, —r.| < % we see that the position detection function a(r’,, h) is
of order O(B~1), which is in the agreement with (2.33). For large |r/ —r.| >
% the a(r’, fl) is approximately proportional to |r), — r.|. Therefore, if we
know a(r),h(r,)) as a function of r’, we can recover the value of r, with
the accuracy of order O(3717¢) with arbitrary small . Namely, let us take
arbitrary small € > 0 and some C' > 0 and consider the set

B(f) = {r. : a(rl,h(r,)) < CH 1} Cc RY, (2.38)
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which should provide an approximate location of r.. According to (2.37),
r, lies in this set for small 3. If r/, lies in this set, then

e - . 1.
CB™7° > a(rl, h(ry)) > Irl — v @z, — BIIV‘PIILll

and |r} —r.| < C18717°° + 02871, Hence the diameter of the B(f) is
of order O(B3717%). Observe, taking into account Remark 2.3, that the
accuracy of the wavepacket location obviously cannot be better than its
size a(r*,ﬁg(r*)) ~ 71, The above analysis suggests that the function
h(G8,r.;r) can be viewed as pseudoshifts of the function h(3,0;r) by vec-
tors r, € R? in the sense that the regular spatial shift by r, is combined
with a variation of the shape of h(3,0;r) which is limited by the funda-
mental condition (2.33). In other words, according Definition 2.2, as a
wavepacket moves from 0 to r, by the corresponding spatial shift, it is
allowed to change its shape subject to the fundamental condition (2.33).
The later is instrumental for capturing nonlinear evolution of particle-like
wavepackets governed by an equation of the form (1.1).

Remark 2.5. The set B(f) defined by (2.38) gives an approximate
location of the support of the function ﬁ(ﬁ,r*;k) not only in the spe-
cial case considered in Remark 2.4, but also when h(8,r.;r) is a general
particle-like wavepacket. One can apply with obvious modifications the
above argument for ¢**+h(, r,; k) in place of ®(k) using (2.33). Here we
give an alternative argument based on (2.35). Notice that the condition
a(r.0,h(r,)) < CB~17¢ can be obviously satisfied not only by r.g = r,.
But one can show that the diameter of the set of such r,q is estimated by
O(B717¢). Indeed, assume that a given function h(3,r) does not vanish at
a given point rog, i.e., |h(8,ro)| = ¢o > 0 for all 8 < By. The fulfillment
of (2.33) for the function h(f,r) with two different values of r,, namely
r. =r, and r, = r” implies that

a(r’,h) < C 8778, a(¥” h) < Cof™ 8,
and, according to (2.35), for all r
v —rl|lh(3,r)] < (2m)7C187F, | —r{||h(B,r)| < (2m)"IC2B7 .
Hence
L (2m)d0yp1E

9 de —1l—¢
(W)—1ﬁ7 |ro—r*|<—7

ro — 1| <
Co Co

*

and
/ " —1—¢
r,—r. | <Csp .
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Note that if we rescale variables r and r, as in Example 2.13, namely
or =y and gr, = y. with o = (32, the diameter of the set B(3) in the
y-coordinates is of order 4'~¢ < 1, and hence this set gives a good ap-
proximation for the location of the particle-like wavepacket as 8 — 0. It is
important to notice that our method to locate the support of wavepackets is
applicable to very general wavepackets and does not use their specific form.
This flexibility allows us to prove that particle-like wavepackets and their
positions are well defined during nonlinear dynamics of generic equations
with rather general initial data which form infinite-dimensional function
spaces. Another approaches to describe dynamics of waves are applied to
situations, where solutions under considerations can be parametrized by a
finite number of parameters and the dynamics of parameters describes the
dynamics of the solutions. See for example [25], [20], [21], where dynamics
of centers of solutions is described.

Remark 2.6. Note that for a single wavepacket initial data h(5,r —
r’,) one can make a change of variables to a moving frame (x,7), namely
(r,7) = (x+v7,7), where v = %Vw(k*) is the group velocity; this change
of variables makes the group velocity zero. Often it is possible to prove that
dynamics preserves functions which decay at infinity, namely if the initial
data h(3,x) decays at the spatial infinity, then the solution U(f3, %, 7) also
decays at infinity (though the corresponding proofs can be rather technical).
This property can be reformulated in rescaled y variables as follows: if ini-
tial data are localized about zero, then the solution is localized about zero
as well. Then, using the fact that the equation has constant coeflicients,
we observe that the solution U(3,y — y., ) corresponding to h(3,y — y?.)
is localized about y, provided that h(3,y) was localized about the ori-
gin. Note that, in this paper, we consider the much more complicated case
of multiple wavepackets. Even in the simplest case of the initial multi-
wavepacket which involves only two components, namely the wavepacket
h(g,r) = hi(8,r —r}) + ho(8,r — r’) with two principal wave vectors
k1. # ko,, it is evident that one cannot use the above considerations based
on the change of variables and the translational invariance. Using other
arguments developed in this paper, we prove that systems of particle-like
wavepackets remain localized in the process of the nonlinear evolution.

Note that similarly to (1.2) and (1.4) a function of the form

k —k.
s

§d(okres _|_e—ikr*2)|:il( )}gn(k*),
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defined for any pair of r,; and r,o, where h is a Schwarz function and all
constants in Definition 2.1 are independent of ryi,r.o € Rd, is not a single
particle-like wavepacket since it does not have a single wavepacket position
r,, but rather it is a sum of two particle-like wavepackets with two positions
ry1 and ryo.

We want to emphasize once more that a particle-like wavepacket is de-
fined as the family fl(ﬁ7 r.; k) with r, being an independent variable running
the entire space R?, see, for example, (1.2), (1.3), and (2.21). In particular,
we can choose a dependence of r, on § and p. An interesting type of such
a dependence is r. = r0/p, where o satisfies (2.11) as we discuss below in
Example 2.13.

Our special interest is in the waves that are finite sums of wavepackets
which we refer to as multi-wavepackets.

Definition 2.7 (multi-wavepacket). Let S be a set of nk-pairs:

S={(n,ka), l=1,..., N} Cc X ={1,...,J} x RY

2.39
(ni,kar) # (v, k) for L # 1, (259

and let N = |S| be their number. Let Kg be a set consisting of all dif-
ferent wavevectors k,; involved in S with |Kg| < N being the number of
its elements. Kg is called a wavepacket k-spectrum and, without loss of
generality, we assume the indexing of elements (n;,k.;) in S to be such
that

Ks={ku,i=1,...,|Ks|}, ie., 1 =ifor 1 <i<|Ks|. (2.40)

A function h(8) = h(8;k) is called a multi-wavepacket with nk-spectrum S
if it is a finite sum of wavepackets, namely

hy(8;k), 0 < B3 < fB for some [y > 0, (2.41)

WE

h(3;k) =

—

1

where hy, [ = 1,...,N, is a wavepacket with nk-pair (k.,n;) € S as in
Definition 2.1. If all the wavepackets hy(3; k) = hy(3, r,;; k) are particle-like
ones with respective positions r,;, then the multi-wavepacket is called multi-
particle wavepacket and we refer to (r.1,...,r.yv) as its position vector.
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Note that if fl(ﬂ; k) is a wavepacket, then ﬁ(ﬁ;k) + O(B%) is also a
wavepacket with the same nk-spectrum, and the same is true for multi-
wavepackets. Hence we can introduce multi-wavepackets equivalence rela-
tion “~” of the degree s by

hi(8;k) ~ ha(B3: k) if ||hy (8;k) — ha(B; k)| 12 < CB°

(2.42)
for some constant C > 0.

Note that the condition (2.33) does not impose restrictions on the term Dy,
in (2.28). Therefore, this equivalence can be applied to particle wavepackets.

Let us turn now to the abstract nonlinear problem (2.14), where (i)
F = F(o) depends on p and (ii) the initial data h = h(8) is a multi-
wavepacket depending on . We would like to state our first theorem on
multi-wavepacket preservation under the evolution (2.14) as 3, 0 — 0, which
holds provided its nk-spectrum S satisfies a natural condition called reso-
nance invariance. This condition is intimately related to the so-called phase
and frequency matching conditions for stronger nonlinear interactions, and
its concise formulation is as follows. We define for given dispersion rela-
tions {wn(k)} and any finite set S C {1,...,J} x R? another finite set
R(S) C {1,...,J} x R% where R is a certain algebraic operation described
in Definition 3.8 below. It turns out that for any S always S C R(S), but
if R(S) =S we call S resonance invariant. The condition of resonance
invariance is instrumental for the multi-wavepacket preservation, and there
are examples showing that if it fails, i.e., R(S) # S, the wavepacket preser-
vation does not hold. Importantly, the resonance invariance R(S) = S
allows resonances inside the multi-wavepacket, that includes, in particular,
resonances associated with the second and third harmonic generations, res-
onant four-wave interaction, etc. In this paper, we use basic results on
wavepacket preservation obtained in [7], and we formulate theorems from
[7] we need here. Since we use constructions from [7], for completeness we
provide also their proofs in the following subsections. The following two
theorems are proved in [7].

Theorem 2.8 (multi-wavepacket preservation). Suppose that the non-
linear evolution is governed by (2.14) and the initial data h = h(3;K) is a
multi-wavepacket with nk-spectrum S and the regularity degree s. Assume
that S tis resonance invariant in the sense of Definition 3.8 below. Let p([3)
be any function satisfying

0 < p(B) < CB° for some constant C' > 0, (2.43)
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and let us set 0 = p(B). Then the solution U(t,B) = G(F(p(5)),h(B))(T)
to (2.14) for any T € [0, 7] is a multi-wavepacket with nk-spectrum S and
the regularity degree s, i.e.,

Tﬁ? ZulTﬁv ) (244)

where 4y is a wavepacket wzth nk-pair (n;, ki) € S.

The time interval length 7. > 0 depends only on the L'-norms of Iy (6;k)
and N. The presentation (2.44) is unique up to the equivalence (2.42) of
degree s.

The above statement can be interpreted as follows. Modes in nk-
spectrum S are always resonance coupled with modes in R(S) through the
nonlinear interactions, but if R(S) = S, then (i) all resonance interactions
occur inside S and (ii) only small vicinity of S is involved in nonlinear
interactions leading to the multi-wavepacket preservation.

The statement of Theorems 2.8 directly follows from the following
general theorem proved in [7].

Theorem 2.9 (multi-wavepacket approximation). Let the initial data
h in the integral equation (2.14) be a multi-wavepacket h(B;k) with nk-
spectrum S as in (2.39), regularity degree s, and parameter € > 0 as in
Definition 2.1.  Assume that S is resonance invariant in the sense of Defi-
nition 3.8 below. Let the cutoff function W(3'~%,k,; k) and the eigenvector
projectors I, 1 (k) be defined by (2.25) and (2.9) respectively. For a solution
U of (2.14) we set

(k) = [ 3 (O, G )Ly (k)| (5 7. ),
(=% (2.45)

I=1,...,N.

Then every such 0 (5;7,k) is a wavepacket and

sup
07T

‘5’”‘ EN: 5»TkH1 Cro+Caf°, (2.46)

where the constants C, Cy do not depend on €, s, p, and 3 and the constant
Cs does not depend on p and 3.

We would like to point out also that Theorem 2.8 allows us to take val-
ues U(7y) as new wavepacket initial data for (1.1) and extend the wavepacket
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invariance of a solution to the next time interval 7, < 7 < 7,1. This ob-
servation allows us to extend the wavepacket invariance to larger values
of 7 (up to blow-up time or infinity) if some additional information about
solutions with wavepacket initial data is available, see [7].

Note that the wavepacket form of solutions can be used to obtain
long-time estimates of solutions. Namely, very often the behavior of every
single wavepacket is well approximated by its own nonlinear Schréodinger
equation (NLS), see [15, 30, 16, 22, 26, 27, 34, 36, 37, 38] and references
therein, see also Section 6. Many features of the dynamics governed by
NLS-type equations are well understood, see [13, 14, 31, 35, 39, 40] and
references therein. These results can be used to obtain long-time estimates
for every single wavepacket (as, for example, in [27]) and, with the help of
the superposition principle, for the multi-wavepacket solution.

2.2. Formulation of new results on particle wavepackets.

In this paper, we prove the following refinement of Theorem 2.8 for the case
of multi-particle wavepackets.

Theorem 2.10 (multi-particle wavepacket preservation). Assume that
the conditions of Theorem 2.9 hold and, in addition to that, the initial
data h = h(p;k) is a multi-particle wavepacket of degree s with positions

Ty1,...,Cxn and the multi-particle wavepacket is universally resonance in-
variant in the sense of Definition 3.8. Assume also that
p(B) < CB*°, 50 > 0. (2.47)

~

Then the solution 4(8;7) = G(F(p(B)), h(B))(1) to (2.14) for any T € [0, 7]
is a multi-particle wavepacket with the same nk-spectrum S and the same
POSItions ry1, ..., run. Namely, (2.46) holds, where 1 is a wavepacket with
nk-pair (n;,k.) € S defined by (2.45), the constants C,Cy,Cy do not
depend on vy, and every 1 is equivalent in the sense of the equivalence
(2.42) of degree s1 = min(s, sg) to a particle wavepacket with the position
Ty.

Remark 2.11. Note that in the statement of the above theorem the
positions ryq, ..., r.y of wavepackets which compose the solution a(3; 7, k)
of (2.13) and (2.14) do not depend on 7 and, hence, do not move. Note
also that the solution U(3;7,k) of the original equation (2.1), related to
a(0; 7, k) by the change of variables (2.12), is composed of wavepackets
U,(f;1,r) corresponding to w;(5;7,r), have their positions moving with
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respective constant velocities Viw(ky) (see for details Remark 4.1, see also
the following corollary).

Using Proposition 4.2, we obtain from Theorem 2.10 the following
corollary.

. Corollary 2.12. Let the conditions of Theorem 2.10 hold, and let
U(8;1,k) be defined by (2.12) in terms of 4(f;1,k). Let
62

1
zgc, with someC’,0<6<§,0<Q< . (2.48)

N =

Then ﬂ(ﬁ;ﬂ k) is for every 7 € [0,7] a particle multi-wavepacket in the
sense of Definition 2.2 with the same nk-spectrum S, regularity degree si,
and T-dependent positions T + gvkwn(k*l).

In the following example, we consider the case, where spatial positions
of wavepackets have a specific dependence on parameter g, namely r, =

/0.

Example 2.13 (wavepacket trajectories and collisions). Let us rescale
the coordinates in the physical space as follows:

or=y (2.49)

with the consequent rescaling of the wavevector variable (dual with re-
spect to Fourier transform) k = gn. It follows then that under the evo-
lution (1.1) the group velocity of a wavepacket with a wavevector k, in
the new coordinates y becomes Vjiw(k,) and, evidently, is of order one. If
we set the positions ry = r?/p with fixed 1Y), then, according to (2.35),
the wavepackets |h(3;r)| in y-variables have characteristic spatial scale
y — 19 ~ pa(r.;, h) ~ g3~ which is small if g/f is small. The positions of
particle-like wavepackets (quasiparticles) ﬂ(y/ 0,7) are initially located at
y: = 1Y, and propagate with the group velocities Vjw(k,;). Their trajecto-
ries are straight lines in the space R% described by

y = 7Viw(ka) + 1Y, 0< 7 < 7y

(compare with (1.5)). The trajectories may intersect, indicating “collisions”
of quasiparticles. Our results (Theorem 2.10) show that if a multi-particle
wavepacket initially was universally resonance invariant, then the involved
particle-like wavepackets preserve their identity in spite of collisions and the
fact that the nonlinear interactions with other wavepackets (quasiparticles)
are not small; in fact, they are of order one. Note that r?, can be chosen
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arbitrarily implying that up to N(N — 1) collisions can occur on the time
interval [0, 7] on which we study the system evolution.

To formulate the approximate superposition principle for multi-particle
wavepackets, we introduce now the solution operator G mapping the initial
data h into the solution U = G(h) of the modal evolution equation (2.14).
This operator is defined for ||h| < R according to the existence and unique-
ness Theorem 4.7. The main result of this paper is the following statement.

Theorem 2.14 (superposition principle). Suppose that the initial data
h of (2.14) is a multi-particle wavepacket of the form

N
h= ;hl, N max [y < R, (2.50)
satisfying Definition 2.7 and its nk-spectrum is universally resonance in-
variant in the sense of Definition 3.8. Suppose also that the group velocities
of wavepackets are different, namely

kanll (kur,) # kamz (kuty) if 11 # 1o (2.51)

and that (2.48) holds. Then the solution & = G(h) to the evolution equation
(2.14) satisfies the following approximate superposition principle:

Np,

Np,

g(Zhl) =Y G(h) +D, (2.52)
=1 =1
with a small remainder D(1) such that

= 0
su D(7)||pr < Cc——|In g, 2.53
oSup D)l < 551+a| B (2.53)
where (1) € is the same as in Definition 2.1 and can be arbitrary small; (ii)
T« does not depend on 3, o, vy, and ¢; (iii) C. does not depend on (3, o,
and positions r;.

A particular case of the above theorem in which there was no depen-
dence on r,; was proved in [8] by a different method based on the theory of
analytic operators in Banach spaces. The condition (2.51) can be relaxed
if the initial positions of involved particle-like wavepackets are far apart,
and the corresponding results are formulated in the theorem below and in
Example 2.13.

Theorem 2.15 (superposition principle). Suppose that the initial
data h of (2.14) is a multi-particle wavepacket of the form (2.50) with a
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universally resonance invariant nk-spectrum in the sense of Definition 3.8
and (2.48) holds. Suppose also that either the group velocities of wavepackets
are different, namely (2.51) holds, or the positions vy satisfy the inequality
e

20, 281¢ (2.54)
if vkwml (k*ll) = vkwan (k*l2); i # 1o,

where the constant C, o is the same as in (3.2). Then the solution G =

~

T*|r*l1 - r*lz|71 <

G(h) to the evolution equation (2.14) satisfies the approximate superposition
principle (2.52), (2.53).

We prove in this paper further generalizations of the particle-like
wavepacket preservation and the superposition principle to the cases, where
the nk-spectrum of a multi-wavepacket is not universal resonance invari-
ant such as the cases of multi-wavepackets involving the second and third
harmonic generation. In particular, we prove Theorem 7.5 showing that
many (but, may be, not all) components of involved wavepackets remain
spatially localized. Another Theorem 7.7 extends the superposition prin-
ciple to the case, where resonance interactions between components of a
multi-wavepackets can occur.

3. Conditions and Definitions

In this section, we formulate and discuss all definitions and conditions under
which we study the nonlinear evolutionary system (1.1) through its modal,
Fourier form (2.1). Most of the conditions and definitions are naturally
formulated for the modal form (2.1), and this is one of the reasons we use
it as the basic one.

3.1. Linear part.

The basic properties of the linear part L(k) of the system (2.1), which is
a 2J x 2J Hermitian matrix with eigenvalues wy ¢(k), has been already
discussed in the Introduction. To account for all needed properties of L(k),
we define the singular set of points k.

Definition 3.1 (band-crossing points). We call kg a band-crossing
point for L(k) if wy,41,¢(ko) = wn ¢ (ko) for some n, ¢ or L(k) is not contin-
uous at ko or if wy +(kg) = 0. The set of such points is denoted by opc.
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In the next condition, we collect all constraints imposed on the linear
operator L(k).

Condition 3.2 (linear part). The linear part L(k) of the system (2.1)
is a 2J x 2J Hermitian matriz with eigenvalues wy, ¢ (k) and corresponding
eigenvectors gn ¢ (k) satisfying for k ¢ onc the basic relations (2.3)-(2.5). In
addition to that, we assume:

(i) the set of band-crossing points oy is a closed, nowhere dense set in
R? and has zero Lebesque measure;

(ii) the entries of the Hermitian matriz L(k) are infinitely differentiable
in k for all k ¢ ope that readily implies via the spectral theory, [28],
infinite differentiability of all eigenvalues wy, (k) in k for all k ¢ oy;

(iii) L(k) satisfies the polynomial bound

ILK)|| < C(1+ |kP), k € R for some C >0 and p > 0. (3.1)

Note that since wy, ¢(k) are smooth if k ¢ oy, the following relations
hold for any (n, k)-spectrum S:

max |Viwn, ¢| < Cua,
|ktk,;|<mo, [=1,...,N,

5 (3.2)
max Viewn,¢| < Cua,
|ktk,;|<mo, I=1,...,N,
where C,, 1 and C,, 2 are positive constants and
1
m =3, rlninN min(dist{£Kku, obc}, 1). (3.3)

Remark 3.3 (dispersion relations symmetry). The symmetry con-
dition (2.5) on the dispersion relations naturally arise in many physical
problems, for example, the Maxwell equations in periodic media, see [1]-
[3], [5], or when L(k) originates from a Hamiltonian. We would like to
stress that this symmetry conditions are not imposed to simplify studies,
but rather to take into account fundamental symmetries of physical media.
The symmetry causes resonant nonlinear interactions, which create non-
trivial effects. Interestingly, many problems without symmetries can be put
into the framework with the symmetry by a certain extension, [7].

Remark 3.4 (band-crossing points). Band-crossing points are dis-
cussed in more detail in [1, Section 5.4], [2, Sections 4.1, 4.2]. In particular,
generically the set op. of band-crossing point is a manifold of dimension
d — 2. Notice also that there is a natural ambiguity in the definition of
a normalized eigenvector g, ¢(k) of L(k) which is defined up to a complex
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number ¢ with |€| = 1. This ambiguity may not allow an eigenvector g, ¢ (k)
which can be a locally smooth function in k to be a uniquely defined con-
tinuous function in k globally for all k ¢ o}, because of a possibility of
branching. But, importantly, the orthogonal projector II,, ¢ (k) on g ¢(k)
as defined by (2.9) is uniquely defined and, consequently, infinitely differen-
tiable in k via the spectral theory, [28], for all k ¢ o},.. Since we consider
fJ(k) as an element of the space L' and oy, is of zero Lebesgue measure,
considering k ¢ oy, is sufficient for us.

We introduce for vectors @t € C27 their expansion with respect to the
orthonormal basis{g, ¢(k)}:

J

k)= > dncgnck)

n=1¢(=+

J
=D D (k) (k) =g (k)a(k) (3-4)

n=1(=+

and we refer to it as the modal decomposition of (k) and to @, ¢ (k) as the
modal coefficients of t(k). Evidently,

Z Z HnyC(k) = Iz, (35)

n=1¢(=+
where I is the 2J x 2.J identity matrix.

Notice that we can define the action of the operator L(—iV,) on any Schwarz
function Y (r) by the formula

—

L(—iV,)Y (k) = L(k)Y (k), (3.6)

where, in view of the polynomial bound (3.1), the order of L does not exceed
p. In a special case, where all the entries of L(k) are polynomials, (3.6) turns
into the action of the differential operator with constant coefficients.

3.2. Nonlinear part.

The nonlinear term F in (2.1) is assumed to be a general functional poly-
nomial of the form
FO)= Y Fm@@m),
meMp (37)

where F(™) is an m-homogeneous polylinear operator,
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Mp = {m,...,mp} C {2,3,...} is a finite set,

3.8
and mp = max{m : m € Mp}. (8:8)

The integer mp in (3.8) is called the degree of the functional polynomial F.
For instance, if Mz = {2} or My = {3}, the polynomial F' is respectively
homogeneous quadratic or cubic. Every m-linear operator F(m) in (3.7) is
assumed to be of the form of a convolution

FM (O, U0 (K, 7)
_ / ) (1, B () 6, (k0 (K, §)) A DA, (3.9)
Dy,

- - dk'...dk(mD
where D,,, = R(m=Dd_ qim-1dp — d d

(2m)(m—Dd
KMk k) =k—K —...—k™ VD k=, . . . k™). (3.10)
indicating that the nonlinear operator F(™ (U, ... U,,) is translation in-

variant (it may be local or nonlocal). The quantities x (™ in (3.9) are called
susceptibilities. For numerous examples of nonlinearities of the form sim-
ilar to (3.7), (3.9) see [1]-[7] and references therein. In what follows, the
nonlinear term F in (2.1) will satisfy the following conditions.

Condition 3.5 (nonlinearity). The nonlinearity F(U) is assumed to
be of the form (3.7)~(3.9). The susceptibility x™ (k, k', ..., k™)) is infin-
itely differentiable for all k and kY9) which are not band-crossing points, and
is bounded, namely for some constant C'

x| = (2m)~ (™= sup ™ (kK. k™))
kk,....k(m) €Rd\ oy
< Cy, m e My, (3.11)

where the norm |x(™ (k, k)| of the m-linear tensor x(™ : (C27)ym — (C2/)m
for fized k, k is defined by

Xk, F) = sup [ (k, F) (e %),
Ix; <1 (3.12)
where |x| is the Euclidean norm.



Particle-Like Wavepackets 83

Since Xéng)(k, K',...,k(™) are smooth if k ¢ o,, the following rela-
tion holds:

IV (kK kM) < O (3.13)

max
[tk |<mo, I=1,....N SIS

if kyj & obe, mo is defined by (3.3), gradient is with respect to k. The case,
where X(m)(k, k) depend on small g or, more generally, on g9, ¢ > 0, can
be treated similarly, see [7].

3.3. Resonance invariant nk-spectrum.

In this section, being given the dispersion relations wy, (k) > 0,n € {1,...,J},
we consider resonance properties of nk-spectra S and the corresponding k-
spectra Kg as defined in Definition 2.7, i.e.,

S={(n,ka), l=1,..., N} Cc X ={1,...,J} xR

(3.14)
Ks ={k., [=1,...,|Ks|}.

We precede the formal description of the resonance invariance (see Defin-
ition 3.8) with the following guiding physical picture. Initially, at 7 = 0,
the wave is a multi-wavepacket composed of modes from a small vicinity of
the nk-spectrum S. As the wave evolves according to (2.1) the polynomial
nonlinearity inevitably involves a larger set of modes [S]ous 2 S, but not
all modes in [S]out are “equal” in developing significant amplitudes. The
qualitative picture is that whenever certain interaction phase function (see
(4.23) below) is not zero, the fast time oscillations weaken effective nonlin-
ear mode interaction, and the energy transfer from the original modes in S
to relevant modes from [S]out, keeping their magnitudes vanishingly small
as (3,0 — 0. There is a smaller set of modes [S]:%% which can interact with
modes from S rather effectively and develop significant amplitudes. Now,

if [S]i €S, then S is called resonance invariant. (3.15)

In simpler situations, the resonance invariance conditions turns into the
well-known in nonlinear optics phase and frequency matching conditions.
For instance, if S contains (ng, ks,) and the dispersion relations allow for
the second harmonic generation in another band n; so that 2wy, (ks,) =
Wn, (2kyy, ), then for S to be resonance invariant it must contain (ni, 2k, )
too.

Let us turn now to the rigorous constructions. First we introduce
the necessary notation. Let m > 2 be an integer, | = (I1,...,ln), |; €
{1,..., N} be an integer vector from {1,..., N}™ and ¢ = (¢, ..., ¢(™),



84 Anatoli Babin and Alexander Figotin

¢Y) € {41, -1} be a binary vector from {+1,—1}". Note that a pair
(¢, 1) naturally labels a sample string of the length m composed of elements
(¢Y),ny,, k) from the set {+1,—1} x S. Let us introduce the sets

A={(¢D):lefl,...,N}, Ce{+1,~1}}, (3.16)
A" ={X=(1,.. A m), Ny €A, j=1,...,m}.

There is a natural one-to-one correspondence between A™ and {—1,1}™ x
{1,..., N}, and we write, exploiting this correspondence,

X: ((C/all)7' RE) (C(m)vlm)) = (5557 JE {_1’ 1}m7

. . (3.17)
le{l,....N}™ for e A™.
Let us introduce the linear combination
s (X) = 2 (G 1) = Y (Wkyy, with ¢V € {+1,-1}, (3.18)
j=1

and let [S]k out be the set of all its values as k., € Kg, = A™  namely

[S]Kput = U U {%m(x)} (319)

meMp XcAm
We call [S]k out output k-spectrum of Kg and assume that
[Slk.out [ )obe = 2. (3.20)
We also define the output nk-spectrum of S by
[Slout = {(n, k) € {1,...,J} xR :ne{1,...,J}, k€ [S]kou} (3.21)

We introduce the following functions:

QN = S D, (k).
1 ]; . (3.22)

E* = (k*h. .. 7k*|Ks\)7 where k*lj € Kg,

Q1 X) (Ko, F) = —Cun(ker) + Q1 (N (), (3.23)

where ( = +£1, m € Mp as in (3.7). We introduce these functions to apply
later to phase functions (4.23).

Now we introduce the resonance equation

QC,n, ) (Coam(N), k) =0, Te{1,...,N}Y", Ce{-1,1}",  (3.24)
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denoting by P(S) the set of its solutions (m,(,n, X). Such a solution is
called S-internal if

(n, Coem(N)) € Syie, m=mny,, Coam(N) =kuys lo€{1,...,N}, (3.25)

and we denote the corresponding lo = I(X). We also denote by P (S) C
P(S) the set of all S-internal solutions to (3.24).

Now we consider the simplest solutions to (3.24) which play an impor-
tant role. Keeping in mind that the string [ can contain several copies of a
single value [, we can recast the sum in (3.22) as follows:

QX)) = (1) = Zélwl 1)

SO i ) £ e,
where §; = { jei~1(1) (3.26)

0 it I7Y() =2,
PO ={e{l,...omy: =L}, I=(1,...,Ln), 1<I<N.

Definition 3.6 (universal solutions). We call a solution (m, ¢, n, X) €
P(S) of (3.24) universal if it has the following properties: (i) only a single
coefficient out of all §; in (3.26) is nonzero, namely for some Iy we have
01, = £1 and 6; = 0 for [ # Ip; (ii) n = ng, and ( = Jy,.

We denote the set of universal solutions to (3.24) by Puniv(S). 4
justification for calling such a solution universal comes from the fact that if
a solution is a universal solution for one k. it is a solution for any other
k.. Note that a universal solution is an S-internal solution with I(X) = I,
implying
Pt (5). (3.27)

umv(

) €
Indeed, observe that for §; as in (3.26)

m N
s (N) = 26m (G 1) =Y Wk, =) bk (3.28)
j=1 =1
implying 5, (X) = 0z, k., and  (an(X) = 67 kugy = kog,. Then Equation
(3.24) is obviously satisfied and (n, (s (X)) = (n1,, Kez,) € S.
Example 3.7 (universal solutions). Suppose there is just a single

band, i.e., J = 1, a symmetric dispersion relation wi(—=k) = wi(k), a
cubic nonlinearity F with 9MMp = {3}. We take the nk-spectrum S =
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{(1,ks), (1,=-ks)}, i.e., N = 2 and k. = ki, ko = —k,. This example
is typical for two counterpropagating waves. Then

913X k) ZC wi, ( = (01 + 02)w1(ky)

and

X) = Zc(j)k*l] = 51k*1 + 52k*2 = (51 - 52)1{*7
Jj=1

where we use the notation (3.26). The universal solution set has the form
Poiv(S) = {3, 1L,X) = X € A¢,( = £}, where Ay consists of vectors
(A1, A2, Ag) of the form (-, 1), (— 1), (+,1)), (+: 1), (=, 1), (+,2)), ((+2),
(—,2),(+ 1)), (+,2),(—,2), (+,2)), and vectors obtalned from the listed
ones by permutations of coordinates A1, A2, \3. The solutions from P, (5)
have to satisfy |61 —d2] = 1 and |1 + d2| = 1, which is possible only if
8185 = 0. Since ¢ = 6,402, we have (36, (N) = (62—62)k, and (o6 (N) = kuy
if |01] = 1 or (3m(X) = ko if |2] = 1. Hence Ppi(S) = Puniv(S) in this
case. Note that if we set S1 = {(1,ks)}, S2 = {(1, —k,)}, then S = S, USs,
but P (S) is larger than P, (S1) U Pint(S2). This can be interpreted as
follows. When only modes from S; are excited, the modes from S5 remain
nonexcited. But when both S; and Sy are excited, there is a resonance
effect of 1 onto Sy, represented, for example, by X = ((+, 1), (—, 1), (+,2)),
which involves the mode (36, (X) = Kyo.

Now we are ready to define resonance invariant spectra. First, we
introduce a subset [S]55 of [S]out by the formula

out

[S]res _ {(n7k**) c [S]out t ki = C(O)%m(X)7 m e WFa

out T
where (m,(,n, X) is a solution of (3.24)} , (3.29)
calling it resonant output spectrum of S, and then we define
the resonance selection operation R(S) = S U [S].7 . (3.30)

Definition 3.8 (resonance invariant nk-spectrum). The nk-spectrum
S is called resonance invariant if R(S) = S or, equivalently, [S] ., C S. The
nk-spectrum S is called universally resonance invariant if R(S) = S and

Puniv(S) = Pmt(S)

Obviously, an nk-spectrum S is resonance invariant if and only if all
solutions of (3.24) are internal, i.e., Pt (S) = P(95).
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It is worth noticing that even when an nk-spectrum is not resonance
invariant, often it can be easily extended to a resonance invariant one.
Namely, if R7(S) N op. = @ for all j, then the set

R>®(S) = GRJ’(S)cZ:{L...,J}de

is resonance invariant. In addition to that, R*°(S) is always at most count-
able. Usually it is finite, i.e., R*°(S) = RP(S) for a finite p, see examples
below; also R>*(S) =S for generic Kg.

Example 3.9 (resonance invariant nk-spectra for quadratic non-
linearity). Suppose there is a single band, i.e., J = 1, with a symmet-
ric dispersion relation, and a quadratic nonlinearity F, i.e., Mp = {2}.
Let us assume that k. # 0, ks, 2k,,0 are not band-crossing points and
look at two examples. First, suppose that 2wy (k.) # w1(2ks) (no sec-
ond harmonic generation) and wq(0) # 0. Let the nk-spectrum be the
set S1 = {(1,k.)}. Then S; is resonance invariant. Indeed, Kg, = {k.},
[S1] K ous = 10, 2ks, =2k}, [S1],,, = {(1,0), (1, 2k.), (1, —2k,)} and an el-
ementary examination shows that [Si])o = @ C Sy implying R(S;) = Si.
For the second example let us assume w(0) # 0 and 2w;(k.) = wi(2k.),
ie., the second harmonic generation is present. Here [S1] = {(1,2k.)}
and R(S1) = {(1,ks), (1,2k,)} implying R(S1) # S1 and hence S; is not
resonance invariant. Suppose now that 4k, 3k, ¢ ope. and wi(0) # 0,
w1(4ky) # 2w1(2k.), w1(3ks) # wi(ks) + wi(2ks), and let us set Sy =
{(1,k.),(1,2k,)}. An elementary examination shows that S is resonance
invariant. Note that So can be obtained by iterating the resonance selec-
tion operator, namely Sy = R(R(S51)). Note also that Pupniv(S2) # Pint(52).
Notice that wy(0) = 0 is a special case since k = 0 is a band-crossing point,
and it requires a special treatment.

out

Example 3.10 (resonance invariant nk-spectra for cubic nonlinear-
ity). Let us consider the one-band case with a symmetric dispersion relation
and a cubic nonlinearity that is Mp = {3}. First we take S1 = {(1,k.)}
and assume that k., 3k. are not band-crossing points, implying [S1] Kout =

— — 3 .
{k., k., 3k, —3k.}. We have Q; 3(\)(ks) = 3. (Wwy (k) = G (ks)

Jj=1

—

and 5, (\) = d1k., where we use the notation (3.26), d; takes the val-
ues 1,—1,3,-3. If 3wi(k.) # wi(3k,), then (3.24) has a solution only if
|01] = 1 and §; = (. Hence (3, (\) = k. and every solution is internal.

Hence [S] = @ and R(S;) = Si. Now consider the case associated with
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the third harmonic generation, namely 3w (k.) = w1(3k,) and assume that
w1 (3k*) + 2w1(k*) 7é w1 (51(*)7 3(4)1 (Sk*) 7é w1 (91(*)7 2&)1 (Sk*) + wq (k*) 75
w1(7ky), 2w (3ks) — w1 (ks) # wi(bks). An elementary examination shows
that the set Sy = {(1,3ks), (1, k), (1, —k.)(1, —3k,)} satisfies R(S4) = S4.
Consequently, a multi-wavepacket having Sy as its resonance invariant nk-
spectrum involves the third harmonic generation and, according to Theorem
2.8, it is preserved under nonlinear evolution.

The above examples indicate that, in simple cases, the conditions on
k., which can make S noninvariant with respect to R have a form of several
algebraic equations, Hence for almost all k, such spectra S are resonance
invariant. The examples also show that if we fix S and dispersion relations,
then we can include S in a larger spectrum S’ = RP(S) using repeated
application of the operation R to S, and often the resulting extended nk-
spectrum S’ is resonance invariant. We show in the following section that
an nk-spectrum S with generic Kg is universally resonance invariant.

Note that the concept of a resonance invariant nk-spectrum gives a
mathematical description of such fundamental concepts of nonlinear optics
as phase matching, frequency matching, four wave interaction in cubic me-
dia, and three wave interaction in quadratic media. If a multi-wavepacket
has a resonance invariant spectrum, all these phenomena may take place in
the internal dynamics of the multi-wavepacket, but do not lead to resonant
interactions with continuum of all remaining modes.

3.4. Genericity of the nk-spectrum invariance condition.

In simpler situations, where the number of bands J and wavepackets N are
not too large, the resonance invariance of an nk- spectrum can be easily
verified as above in Examples 3.9, 3.10, but what one can say if J or N
are large, or if the dispersion relations are not explicitly given? We show
below that, in properly defined nondegenerate cases, a small variation of
Kg makes S universally resonance invariant, i.e., the resonance invariance
is a generic phenomenon.

Assume that the dispersion relations wy (k) > 0, n € {1,...,J} are
given. Observe then that Q,,,(¢, 1, A) = Qn (¢, 1, ) (Kat, - - -, Ky kg|) defined
by (3.23) is a continuous function of k.; ¢ o, for every m, ¢, n, X.

Definition 3.11 (w-degenerate dispersion relations). We call disper-
sion relations wy,(k), n = 1,...,J, w-degenerate if there exists such a point
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k. € R4\ oy, that for all k in a neighborhood of k, at least one of the follow-
ing four conditions holds: (i) the relations are linearly dependent, namely

J
> Cphwn(k) = cg, where all C, are integers, one of which is nonzero, and
n=0

the co is a constant; (ii) at least one of wy(k) is a linear function; (iii)
at least one of wy, (k) satisfies the equation Cw,, (k) = w,(Ck) with some
n and integer C' # =£1; (iv) at least one of w, (k) satisfies the equation
wn (k) = wpr(—k), where n’ # n.

Note that the fulfillment of any of four conditions in Definition 3.11
makes impossible turning some non resonance invariant sets into resonance
invariant ones by a variation of k,;. For instance, if M p = {2} as in Example
3.9 and 2w (k) = wy(2k) for all k in an open set G, then the set {(1,k.)}
with k, € G cannot be made resonance invariant by a small variation of k..
Below we formulate two theorems which show that if dispersion relations
are not w-degenerate, then a small variation of k,; turns non resonance

invariant sets into resonance invariant; the proofs of the theorems are given
in [7]

Theorem 3.12. If Q,,,(C, 10, N)(K.,,. .. K jxs)) =0 on a cylinder G
in (R ope) Kl which is a product of small balls G; € (R?\ op.) then either

(m, ¢, n0, N) € Punin(S) or dispersion relations wy (k) are w-degenerate as
in Definition 3.11.

Theorem 3.13 (genericity of resonance invariance). Assume that dis-
persion relations wy, (k) are continuous and not w-degenerate as in Defini-
tion 3.11. Let Kyiny be a set of points (K1, ..., Ky kg|) such that there exists
a universally resonance invariant nk-spectrum S for which its k-spectrum
Kg = {k*l7 .. .,k*|KS‘}. Then Ky is open and everywhere dense set in
R4\ ope) K5,

4. Integrated Evolution Equation

Using the variation of constants formula, we recast the modal evolution
equation (2.1) into the following equivalent integral form:

Uk, 7) = / o e LI PO (k, 7)dr e e YORK), >0, (4.1)
0
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Then we factor U(k, 7) into the slow variable i(k, 7) and the fast oscillatory
term as in (2.12), namely

Uk, 7) =e s *®ak, 1), ook, 7) =t c(k,r)e 20 (42)

where 1, ¢(k,7) are the modal components of G(k,7) as in (3.4). Notice
that @, ¢(k,7) in (4.2) may depend on p and (4.2) is just a change of
variables and not an assumption.

Remark 4.1. Note that if @, ¢(k,7) is a wavepacket, it is localized
near its principal wavevector k.. The expansion of (w, (k) near the prin-
cipal wavevector Ck, (we take ¢ = 1 for brevity) takes the form

wn(k) = wky) + Viwn (k) (k — ki) + %viw(k*)(k —k)2 ...

To discuss the impact of the change of variables (4.2), we make the change
of variables k — k, = ¢ . The change of variables (4.2)

U,y (k,7) = g, (k, m)e” 50
= 1, (k, T)e—‘?"wn(k*)e—%vkwn(k*)(k—k*)e—%(%Viwn(k*)(k_k*)2+,..)

=1, 4 (ki + &, T)ef%C“’"(k*)ef%v’““"(k*)&ef%R(O, (4.3)

R(&)=wn(k) — wn(ks) — Viwn (ki) (k — ki) = %V%wn(k*)(é)Q—&— .o (44)
has the first factor e e “n(k+) responsible for fast time oscillations of
U,.c(k,7) and U, ¢(r,7). The second factor e~ o Vron (RIS ig responsible
for the spatial shifts of the inverse Fourier transform by ZViwn (k.). Since
the shifts are time dependent, they cause the rectilinear movement of the
wavepacket U,, ¢(r, 7) with the group velocity %kan (ky), the third factor
is responsible for dispersion effects. Hence the change of variables (4.2) ef-
fectively introduces the moving coordinate frame for fjm((k, 7) for every k
and in this coordinate frame i, ¢(k, ) has zero group velocity and does
not have high-frequency time oscillations. The following proposition shows
that if @, ¢(k,7) is a wavepacket with a constant position, U,, 4 (k,7) is
a particle wavepacket in the sense of Definition with position which moves
with a constant velocity.

Proposition 4.2. Let t;(k,7) be for every 7 € [0,7.] a particle
wavepacket in the sense of Definition 2.2 with nk-pair (n,k.), regularity
s, and position r. € R which does not depend on 7. Assume also that the
constants C1 in (2.33) and C,C" in (2.27) and (2.30) do not depend on .
Let Uy(k,7) be defined in terms of @(k,7) by (4.2). Assume that (2.48)
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holds. Then le(k, T) for every T € [0,7.] is a particle wavepacket in the
sense of Definition 2.2 with nk-pair (n,k), reqularity s, and 7-dependent
position r, + gvkwn(k*) e R4,

PRrROOF. The wavepacket @;(k,7) involves two components i, ¢ (k, 7),
¢ = +1 for which (2.29) holds

T ¢ (k, 7) = W(B'7%/2, (ks )M ¢ (K) T ¢ (K, 7)), (4.5)

By (4.2),
Ijm((k, T) =, ¢ (k, T)ef%g“’"(k).

According to Definition 2.1, the multiplication by a scalar bounded continu-
ous function e~ ¢<r () may only change the constant C’ in (2.39). There-
fore, it transforms wavepackets into wavepackets. To check that U;(k, ) is
a particle-like wavepacket, we consider (2.33) with flc (8, r; k) replaced by
U, c(k,m)e — 5 and r, replaced by 1, 4 ZVyiwn(ks). We consider for
brevity @, (k,7) = Q¢ (k, 7) with ¢ = 1, the case ( = —1 is similar,

/|v it g Vientelkg (1, 7)o~ 790 ()| dk

= / |Vi(el =t 7 Vewn kg, (1, 7)o ¢ wn (e dwn e gk
Rd
_ /|Vk(e"*kﬁn(k, P FROKIY gk < I, 4 I,
Rd
where R(€) is defined by (4.4),

L o= /|e FRICK) Y, (R, (k, 7)|dK,
I = / | (™ d, (k, 7)) Vice ™ ¢ R0 | ke,
Rd

The integral I; is bounded uniformly in r, by C{8717¢ since 1, ¢(k,7)
satisfies (2.33). Note that

1—2 /| zr*kA k T))Vke QR(k—k*) dk

< / [ay, (k, T)|E|ka(k —k,)|dk.

Rd
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Note that, according to (4.5) and (2.25), @, ¢(k,7) # 0 only if |k — k.| <
2%, and for such k — k. we have the Taylor remainder estimate
|[VikR(k — k)| < CB* =,
Therefore, I, < C'3'7¢ /0 and
L+, <C'B"/o.

Using (2.48), we conclude that this inequality implies (2.33) for U;(k, 7).
Therefore, it is a particle-like wavepacket. O

From (4.1) and (4.2) we obtain the following integrated evolution equa-
tion for @ = t(k,7), 7 > 0:

a(k,7) = F(a)(k,7) + h(k), F(a)= > F™@m"(k),  (46)
meMp

Fm (@) (k, 7) = / e TLIE, ((e7r YO (k, 1) d7, (4.7)
0

where Fy, are defined by (3.7) and (3.9) in terms of the susceptibilities ("™,
and F(") are bounded as in the following lemma.

Recall that the spaces L1 are defined by formula (2.17). Below we
formulate basic properties of these spaces. Recall the Young inequality

[ ¥l < [lafl g2 (1922 (4.8)

This inequality implies the boundedness of convolution in L'®, namely the
following lemma holds.

Lemma 4.3. Let Hy, Hy € LY be two scalar functions, a > 0. Let
Hs(k) = / Hi(k — X')Hy (K )dK'.
Ra

Then
[ Hz(k) || Lra < [[Hi(K)|[L1a|[Hi(k)| L1 (4.9)

PROOF. We have

R (1—|—|kl—|—k”|)a
1+ kD) Hz(k)| < s
( | |) | 3( )l 13171151 (1 + |kl|)a(1 + |k//|)a

x / (1 -+ [k — K H (k — K)[(1+ [K])? | (') dK'

Rd
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Obviously,
LA+ K7 (4 K]+ [K"])
A+ DA+~ @+ DA+ [k
Applying the Young inequality (4.8), we obtain

/(1 + [K|) (k)‘ dk
]Rd
< /(1+|k’|)‘H1(k’) dk’/(1+|k”|)’f12(k”) K",
Rd R4
Using (2.18), we obtain (4.9). O

Using Lemma 4.3, we derive the boundedness of integral operators
Fm,

Lemma 4.4 (boundedness of multilinear operators). Operator F (m)
defined by (3.9), (4.7) is bounded from E, = C([0,7.],L%*) into
CH([0,7.],LY%), a >0, and

IFO (@), < 7l ] T 10512 (4.10)
Jj=

8- F™ (@ )|, < XN T T 105116, (4.11)
i

Proor. Notice that since L(k) i

. T1
—1L(k)E}H =1.
Using the inequality (4.9) together with (3.9), (4.7), we obtain

[F) (@) (-, 7) || e

<sup|x(m kk| ///|1+|k/ iy (K] ..

Rd 0 D,

‘( + K], (k) (K, k))‘dk’...dk(m_l)dﬁdk

< ™) / Jaa(r) e - () | 1oy

<™ le, - 8l e,

proving (4.10). A similar estimate produces (4.11). O
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Equation (4.6) can be recast as the following abstract equation in a
Banach space:
= F(a)+h, a,hekE,, (4.12)
and it readily follows from Lemma 4.4 that F (1) has the following proper-
ties.

Lemma 4.5. The operator F() defined by (4.6), (4.7) satisfies the
Lipschitz condition
[F(01) = F(az)l| g, < 7Crpllty — 02|z, (4.13)

where Cr < C,C(R), C(R) depends only on mp and R, if || 01| g, , ||G2]| 5, <
2R, with Cy as in (3.11).

We also use the following form of the contraction principle.

Lemma 4.6 (contraction principle). Consider the equation
x=F(x)+h, x,h e B, (4.14)
where B is a Banach space, F is an operator in B. Suppose that for some
constants Ry >0 and 0 < g < 1
]| < Ro, IF()]l < Ro if IIx]| < 2R, (4.15)
1 (x1) — Flxca)|| < allxs — sl i [0l %2 < 2Ro. (4.16)

Then there exists a unique solution x to Equation (4.14) such that ||x|| <
2Ry. Let |hy]], |ha]| < Ro. Then two corresponding solutions X1, Xg satisfy

][, lIx2ll < 2Ro, flx1 = x| < (1 - ¢)~"[hi — hy. (4.17)

Let x1,%5 be two solutions of correspondingly two equations of the form
(4.14) with F1, hy and F, hy. Assume that Fi(u) satisfies (4.15), (4.16)
with a Lipschitz constant ¢ < 1 and that | F1(x)—Fa(x)|| < J for ||x|| < 2Ro.
Then

1 — x| < (1 —q)7H(0 + [[h1 — ha]). (4.18)

Lemma 4.5 and the contraction principle as in Lemma 4.6 imply the
following existence and uniqueness theorem.

Theorem 4.7. Let |h||p, < R, and let 7. < 1/Cp, where Cp is a
constant from Lemma 4.5. Then Equation (4.6) has a solution & € E,
C([0, 7], LY®) which satisfies ||u||E < 2R, and such a solution is umque
Hence the solution operator & = G(h) is defined on the ball |h| g, <

The following existence and uniqueness theorem is a consequence of
Theorem 4.7.
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Theorem 4.8. Let a > 0, (2.1) satisfy (3.11) and h € L“*(R%),
||f1||L1,a < R. Then there exists a unique solution 0 to the modal evolution
equation (2.1) in the function space C([0,7.], LY?), |||z, + [|07d] g, <
R (R). The number 1. depends on R and C,.

Using (2.20) and applying the inverse Fourier transform, we readily
obtain the existence of an F—solution of (1.1) in C*([0, 7], L>°(R%)) from
the existence of the solution of Equation (2.1) in C1([0,7.], L'). The ex-
istence of F-solutions with [a] bounded spatial derivatives ([a] being an
integer part of a) follows from the solvability in C1([0, 7..], L19).

Let us recast now the system (4.6), (4.7) into modal components us-
ing the projections II, ¢(k) as in (2.9). The first step to introduce modal
susceptibilities x( )ﬂ having one-dimensional range in C2’ and vanishing if

one of its arguments 1, belongs to a (2J — 1)-dimensional linear subspace
in C%’ (the jth null-space of X:r?g ) as follows.

Definition 4.9 (elementary susceptibilities). Let

=@ e{l,... . J}" x {~1,1}" = 2™, (n,() € &, (4.19)

and let x(™ (k, k) [@1(K'), ..., @n(k"™)] be m-linear symmetric tensor
(susceptibility) as in (3.9).

We introduce elementary susceptibilities X(m) ( ,E) s (c2ym — ¢/

as m-linear tensors defined for almost all k and k = (K,..., k™) by the
following formula:

A" e ) (1), (k)
;Wz)n C(k /2) [ty (K), .. ,ﬁm(k(m))] _ HmC(k)X(m) (k, E)
X [Ty ¢ (&)L (), T, o (6 (0, B)) g (KO))]. (4.20)

Then using (3.5) and the elementary susceptibilities (4.20), we get
X (e, B[ (K, (k)
= szn“ B)[ag(K), ..., (k™). (4.21)

Consequently, the modal components F (m C)q of the operators F(™) in (4.7)

are m-linear oscillatory integral operators defined in terms of the elementary
susceptibilities (4.21) as follows.
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Definition 4.10 (interaction phase). Using the notation from (3.9),
we introduce for £ = (77, () € =™ the operator

(m)
fnqg( )(k,T) //exp 1cpC£kk) }

X 1R [ (K ), (KO (), )| A0 D (422
with the interaction phase function ¢ defined by
ek F) =6, (K F)
= Gwn(Ck) = ('wn, (('K) = ... = ¢y, (MK, (4.23)
k(™ = k(™ (k, k),
where k(™) (k, k) is defined by (3.10).

Using ]-"(”Z)g in (4.22), we recast F(™ (u™) in the system (4.6)-(4.7)

n7 )

as follows:
F) [ay .. ] (k1) = ffj’;)g [y ... G] (K, 7) (4.24)
neE

yielding the following system for the modal components @, ¢(k,7) as in
(2.9):

k)= Y > fn":_)g (K, 7) + By e (K), (n,0) €. (4.25)

mEMp & fezm

5. Wavepacket Interaction System

The wavepacket preservation property of the nonlinear evolutionary sys-
tem in any of its forms (1.1), (2.1), (4.6), (4.12), (4.25) is not easy to
see directly. It turns out though that dynamics of wavepackets is well de-
scribed by a system in a larger space E?V based on the original equation
(4.6) in the space E. We call it wavepacket interaction system, which is
useful in three ways: (i) the wavepacket preservation is quite easy to see
and verify; (ii) it can be used to prove the wavepacket preservation for
the original nonlinear problem; (iii) it can be used to study more sub-
tle properties of the original problem, such as the NLS approximation.
We start with the system (4.6), where h(k) is a multi-wavepacket with
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a given nk-spectrum S = {(k.,n), I=1,...,N} as in (2.39) and a k-
spectrum Kg = {k.;, i=1,...,|Kg|} as in (2.40). Obviously, for any I
(kiiyny) = (Kuiy, ) with i < |Kg| and indexing ¢ = | for | < |Kg|
according to (2.40).

When constructing the wavepacket interaction system it is convenient
to have relevant functions to be explicitly localized about the k-spectrum
K of the initial data. We implement that by making up the following cutoff

functions based on (2.24), (2.25):
oo = Wl i, 77) = V(D — b)),
k., € Kg,i=1,...,|Kg|, 0=, ’

with € as in Definition 2.1 and 8 > 0 small enough to satisfy

1
6% < mo, where mp = mo(.5) 5 k*rflel?(s dist {Kui, Obe } - (5.2)

In what follows, we use the notation from (3.16) and
U= (l1,....ln) €{l,...,N}Y",
. (i )e{ . }# : (5.3)
I= ..., 0™) e {-1,1}" X=(I,d) € A",
i=(ni,....,nm) €{1,...,J}", Ce{-1,1}", (5.4)
=@ ek =(K,....k™) eR™ where Z" as in (4.19).

Based on the above, we introduce now the wavepacket interaction system

VAVl)ﬁ(-) (191(*” ng, 0 f( Z Wl/ﬁl)

(RBIN
(-, 9Ky ), (), (1,9) € A, (5.5)
W=Wi, Wi _,..., Wy, Wy _) € EN W9€B,

with U(-, k), 11, » being as in (5.1), (2.9), F defined by (4.6), and the
norm in E2N defined based on (2.15) by the formula

IWlg2x =) IWiolle, E=C(0,7],L"). (5.6)
1,0
We also use the following concise form of the wave interaction system (5.5):
W=F, (W) +h,, where (5.7)
= (\I/'Ll +Hn1 +h \1111 — nl —h 'LN +HnN +h \IJ'LN —HnN —h) € E*N.

The following lemma is analogous to Lemmas 4.4 and 4.5.

h

A4
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Lemma 5.1. The polynomial operator Fy(W) is bounded in E*V,
Fw(0) =0, and satisfies Lipschitz condition

| Fo(W1) — Fo(W2)|| pev < OTal|[Wy — Wal| gan, (5.8)

where C' depends only on Cy as in (3.11), on the degree of F, and on
(W1 gen + || W2 g2n, and it does not depend on 3 and .

PRrROOF. We consider any operator Fim <£( w) defined by (4.22) and
prove its boundedness and the Lipschitz property as in Lemma 4.4 using
the inequality ’exp {upn ¢ E?IH < 1 and inequalities (2.24), (3.11). Note

that the integration in 7y yields the factor 7, and consequent summation
with respect to n, (, ¢ yields (5.8). O

Lemma 5.1, the contraction principle as in Lemma 4.6, and the esti-

mate (4.11) for the time derivative yield the following statement.

Theorem 5.2. Let ||h,|gev < R. Then there exists 7. > 0 and
Ri(R) such that Equation (5.5) has a solution W € E*V which satisfies

Wl g2x + |07 W[ p2v < Ri(R), (5.9)
and such a solution is unique.

Lemma 5.3. Every function Wi ¢(k,T) corresponding to the solution
of (5.7) from E?N is a wavepacket with nk-pair (k.«,n;) with the degree
of reqularity which can be any s > 0.

ProOF. Note that, according to (5.1) and (5.7), the function
Wik, 7) = Uk, Okyi,, B ), 0 F(k,7), | F(T)|lpr <O, 0< 7 < 7

involves the factor ¥; y(k) = U(3~179)(k — ¥k,;)), where ¢ is as in Defini-
tion 2.1. Hence

Hnﬂg/ﬁ/l,g(k, 7') =0ifn 7é n; or 19/ 7é 19, (510)
Wik, 7) = Uk, Ok, 81w,
Lok, ) = ¥( . Be) ( ), (5.11)
Wl)ﬁ(k, 7)=0if |k —dky| =0
Since
U (k, 9Kk.i,, 81U (k, Ok, , 175 /2) = U(k, Ok,g,, B4F), (5.12)

Definition 2.1 for Wy g is satisfied with Dj, = 0 for any s > 0 and C' =0 in
(2.30). O
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Now we would like to show that if h is a multi-wavepacket, then the
function

Wk)= Y Wik =) Wik (5.13)

(L9)EA AeA

constructed from a solution of (5.7) is an approximate solution of Equation
(4.12) (see the notation (3.16)). We follow here the lines of [7]. We introduce

|Ks|

W=1-Y Y ukik)=1-Y Y m(%) (5.14)

9=+ i=1 Y=t k.;eKg
Expanding the m-linear operator F (m) ((Zv‘vlﬂo ) and using the nota-
1,0
tion (3.16), (3.17), we get

ﬂm)((%vvw)m) = Y F(wy), where (5.15)

XEA"L
Wi =Wa W, A= (A, M) €A™, (5.16)

The next statement shows that (5.13) defines an approximate solution to
the integrated evolution equation (4.6).

Theorem 5.4. Let h be a multi-wavepacket with resonance invariant

nk-spectrum S and regularity degree s, let W be a solution of (5.7), and let
w(k, 7) be defined by (5.13). Let

~

D(w)=w — F(w) — h. (5.17)
Then there exists By > 0 such that
[ID(W)lle <Co+CB°, if0<o<1, B<fo (5.18)

PROOF. Let

FoW) = (1= Wi Tl o) F(W),
b (5.19)

fli = fl — Z \I/ihﬂl_.[nl)ﬁfl.
)

Summation of (5.5) with respect to 1,9 yields
= Wi, oy, 9 F(W) + > U, 9Ty, ph.
1,0 1,0

Hence from (5.5) and (5.17) we obtain

D(W)=h" — F~(w). (5.20)
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Using (2.28) and (2.30), we consequently obtain
T, ohil| 0 < CB° if ny # s

193, 0|1 < OB if ki, # ks, (5.21)
Ih™ ||z < C13°
To show (5.18), it suffices to prove that
|7~ (W)lle < Cao. (5.22)
Obviously,
Fo(w) = (1 -3 \Ifil,ﬂﬂm,ﬂ) > Fm(w™). (5.23)
1,9 m
Note that

Z\Iz“,mmﬂ_z > (-, ik.) (5.24)

=+ (n,k.)ES
Using (3.5) and ( 5.14), we consequently obtain

ST U k) + Vo =1, (5.25)

V== (n,k.)ES
(1= Wiolluo) =+ > > W0k, (5.26)
10 d== (n,k.)ES\S

with the set ¥ defined in (3.14). Let us expand now F ™ (%™) using (5.15).
According to (5.23) and (5.26), to prove (5.22) it suffices to prove that for
every string A € A™ the following inequalities hold:

||V IT,, ﬂf(m)(wA)H Csp for (n,9) € A, (5.27)
(-, 9k )IL, 9 F ™) (W) | < Cso if (n,k.) € 2\ S. (5.28)

We use (5.10) and (5.11) to obtain the above estimates. According to
(4.24),

Fm (%] ZZ n“ (Wi, ... W] (k7). (5.29)
Note that, according to (5.1 ), 1f Ai = (1,%), then
Wy, =1L, yWy, if n =n; and ¥ = 9. (5.30)
Let us introduce the notation
i) = (nuy,...,n), EX) = @), ) for X = (I,J) € A™. (5.31)
Since

Hn/ﬂgnnﬂg/ =0ifn 7é n' or 19/ 7é 19, (532)
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(5.30) implies
_7-'(m)q[vAv>\1 LW, ] =0if €= (77, () # €(X), and hence

n)C)£ m
e e e (5.33)
F w3k, 7) = ;Fn)c)u) (W, - W, (K, 7),
where we used the notation (3.17), (5.31). Note also that
I, 9 F <>£ 0ifn’ #£nor 9 #(, (5.34)
and hence we have nonzero I, yF (m C) 5( 5) only if
E=EN), n' =n, 0= (5.35)
By (4.22),
m) s _ : . T (m)
P ) = [ [ e {ie, ¢ am B0 g5 0B
0 Dy
X (W, (K1), W, (KT (K &), m)]d D Ed . (5.36)

Now we use (5.11) and notice that, according to the convolution identity in
(3.9),

W (K, 7)o W, (K (K, B), 1) | = 0
if [ k= " ok | > mpt (5.37)
Hence the integral (5.36) is nonzero only if (k, k) belongs to the set
B = {(k, B) kD -9k, | <A i=1,..m,
‘ k- k| < mﬂH}. (5.38)

We prove now that if (n,k,;) ¢ S, then for small 3 the following alternative
holds:

cither W(-, 0k, )T,y o F" 4)5( 5) =0 (5.39)

or (5.35) holds and |¢p,, . #(k, k)| > ¢ > 0 for (k, k) € Bg. (5.40)

Since ¢, . #(k, k) is smooth, in the notation (3.18) we get

- (5.41)

|son<§<k E) = @ ¢ eKuws )| < CBF for (k, k) € By,
= (W1, 0m), Kew = C Y Vikuy, = Coem (9, 1),
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Hence (5.40) holds if
Pn.c, g(k**a k. ) #0, (5.42)

and, consequently, it suffices to prove that either (5.39) or (5.42) holds.
Combining (5.38) with W¥(k,¥k,;) = 0 for |k — vk.;| > 817, we find that
W; 9 F (m) [V?IX] can be nonzero for small 8 only in a small neighborhood of
a point g‘%m(ﬁ,lj € [S]k out, and that is possible only if

Kew = (ot (0,1) = 9kei, kui € K. (5.43)
Let us show that the equality

P c ke K) =0 (5.44)

is impossible for k.. as in (5.43) and n’ = n as in (5.34), keeping in mind
that (n,k.) ¢ S. From (3.23) and (4.23) it follows that Equation (5.44)
has the form of the resonance equation (3.24). Since the nk-spectrum S is
resonance invariant, in view of Definition 3.8 the resonance equation (5.44)
may have a solution only if k.. = k., ¢ = 4;, n = ny, with (n;, k) € S.
Since (n, ky;) ¢ S, that implies (5.44) does not have a solution. Hence (5.42)
holds when (n,k,;) ¢ S. Notice that (5.9) yields the following bounds

B < Ry,

£ <C. (5.45

)
These bounds combined with Lemma 5.5, proved below, imply that if (5.42)
holds, then (5.28) holds. Now let us turn to (5.27). According to ( 5.14)
and (5.37), the term W oIL, yF (™) (Wy) can be nonzero only if (54, (A \) =
k.. ¢ Kg. Since the nk-spectrum S is resonance invariant we conclude as
above that the inequality (5.42) holds in this case as well. The fact that the
set of all 5, () is finite, combined with the inequality (5.42), imply (5.40)
for sufficiently small 8. Using Lemma 5.5, as above we derive (5.27). Hence
all terms in the expansion (5.23) are either zero or satisfy (5.27) or (5.28)
implying consequently (5.22) and (5.18). O

Here is the lemma used in the above proof.
Lemma 5.5. Let assume that
(Wi T X" e, B)[Wr, (I, 71), - W, (KO (e, ), 7)) = 0

Jor (k,k) € Bs and (5.46)
0, ¢ ek, k)| = w, > 0 for (k, k) ¢ Bg, where Bg as in (5.38).
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Then

19, ) T F 7 5) ||x<m [ H 1%, |1

2 7'* m
2 ¢ >||Z||a Wi,

e (5.47)
J#i

ProOOF. Notice that the oscillatory factor in (4.22) is equal to

exp {i(p(k, E)T—Ql} __ ¢ E) Or, €Xp {i(p(k, E)T—;}

™ = X&m) and integrating (4.22) by parts

Denoting ¢, - &= ¢, Wi g1l 7<X( GE T Xi

with respect to 71, we obtain

W (I, 9k Ly ¢ FL (5 (I, 7)

ip(k,k)Z .
- / Wk, k) 0 (1, )
ip(k, k)

B
X Wi, (K, 7). W, (K (k, k), 7) dm D

— [ Ok —2— M (k E
/ o) o W)
B
X ‘ANAI (k/7 0) e ‘ANAnl (k(m) (kﬂ E)7 0) a(’rI’L7l)d]Z

e P BT
- Uk, 0ke) I, K
/B/ ipk, k) " (ke &)

X On [W, (K) ... W, (K™ (k, k)] d™ DiEdr,  (5.48)

where B is the set of k® for which (5.38) holds. The relations (3.11) and

(2.24) imply |X£7m)(k, k)| < |[x‘™||. Using then (5.46), the Leibnitz formula,
(5.9) and (4.8), we obtain (5.47). O

The main result of this subsection is the next theorem which, com-
bined with Lemma 5.3, implies the wavepacket preservation, namely that
the solution @, y(k, 7) of (4.25) is a multi-wavepacket for all 7 € [0, 74].

Theorem 5.6. Assume that the conditions of Theorem 5.4 are ful-
filled. Let Gy, 9(k,7) for n = mny, let Wi 9(k,7) be solutions to the respective
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systems (4.25) and (5.5), and let W be defined by (5.13). Then for suffi-
ciently small By > 0

10,9 — Wy, oWl|g < Co+C'B°, 0<B< By, L=1,...,N. (5.49)

ProoOF. Note that G, 9 = II, y0, where G is a solution of (4.6) and,
according to Theorem 4.7, ||i||z < 2R. Comparing Equations (4.6) and
(5.17), which are @t = F (@) + h and W = F(W) + h + D(W), we find that
Lemma 4.6 can be applied. Then we notice that, by Lemma 4.5, F has the
Lipschitz constant Cp7, for such &i. Taking Cp7, < 1 as in Theorem 4.7,
we obtain (5.49) from (4.17). O

Notice that Theorem 2.9 is a direct corollary of Theorem 5.6 and
Lemma 5.3.

An analogous assertion is proved in [7] for parameter-dependent equa-
tions of the form (2.1) with F(U) = F(U, p).

The following theorem shows that any multi-wavepacket solution to
(4.6) yields a solution to the wavepacket interaction system (5.5).

Theorem 5.7. Let ti(k, 7) be a solution of (4.6). Assume that t(k, 7)
and h(k) are multi-wavepackets with nk-spectrum S = {(n;, k), 1=1,...,
N} and regularity degree s. Let also U;, 9 = U;, » be defined by (5.1). Then
Wik, 7) = ¥, 91l wia(k, 7) is a solution to the system (5.5) with h(k)
replaced by W' (k,T) satisfying

[h(k) — B'(k, 7)1 < CB*, 0< 7 < 7, (5.50)
and, if W9 are solutions of (5.5) with original h(k), then

[Wi,9(k, 7) =Wl <CB°, 0< 7 < T (5.51)

PrOOF. Multiplying (4.6) by ¥;, 9IL,, ¢, we get

VAVZ,ﬁ = \I/(, ﬁk*iz)nﬂzﬂ}—(ﬁ)(kv T) + qj('vﬁk*il)nmﬂﬁ(k)v (5 52)
Wgﬂ = \I}('vﬁk*il)nm,ﬁﬁ- .

Since t(k, 7) is a multi-wavepacket with regularity s, we have

la(-,7) —va’(- )| < C.p%,
where W'( Z\Il UKy, (e, 7). (5.53)
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Let us recast (5.52) in the form
VAV2719 = \I/('v 19k*il)Hnl7'l9F(W/)(k7 T)
+ U (-, Uk, )T, 9[0(K) + 07 (k, 7)], (5.54)
h'(k,7) = [F(a) — F(&)](k, 7).

Denoting h(k) + h”(k,7) = h/(k, 7), we observe that (5.54) has the form
of (5.5) with h(k) replaced by h'(k, 7). The inequality (5.50) follows then
from (5.53) and (4.13). Using Lemma 4.6, we obtain (5.51). O

6. Reduction of Wavepacket Interaction System
to an Averaged Interaction System

Our goal in this section is to substitute the wavepacket interaction system
(5.5) with a simpler averaged interaction system which describes the evolu-
tion of wavepackets with the same accuracy, but has a simpler nonlinearity,
and we follow here the approach developed in [7]. The reduction is a
generalization of the classical averaging principle to the case of continuous
spectrum, see [7] for a discussion and further simplification of the averaged
interaction system. In the present paper, we do not need the further sim-
plification to a minimal interaction system leading to a system of NLS-type
equations which is done in [7].

6.1. Time averaged wavepacket interaction system.

Here we modify the wavepacket interaction system (5.5), substituting its
nonlinearity with another one obtained by the time averaging, and prove
that this substitution produces a small error of order p. As the first step, we
recast (5.5) in a slightly different form by using the expansions (5.15), (5.29)
together with (5.33) and (5.34) and writing the nonlinearity in Equation
(5.5) in the form

@('77-91{*1’1)1_-[7”,19?("7-)
= YD U ka)E oo (W), X= (10, (6.1)

meEMp XcAm

(m) ~ _(m) “
fmﬁf(i)(wx)(k’ T) = Fn,C,ﬁ,f[w)‘l oW ) (K T)|ﬂ:ﬁ(lﬂ)7 ()= (0, 8)? (6.2)
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with ]-"( )ﬁ ¢ as in (4. 22) and 7i(1) as in (5.31), and we call }"( ;E(A)( 5)a

decorated monomial F™ 19 ) evaluated at wy. Consequently, the wavepacket
ng,

interaction system (5.5) can be written in the equivalent form

W9 = Z Z (-, 9k.s,) f(m) g(X)(GVX) + W(-, 0k, ), oh,
mEMr Xenm (6.3)
l=1,...N, ¥ = +.

The construction of the above-mentioned time averaged equation reduces
to discarding certain terms in the original system (6.3). First we introduce
the following sets of indices related to the resonance equation (3.24) and
Q,, defined by (3.23):

Ay = {X= (@0 € A7+ 00, m, %) = 0}, (6.4)
and then the time—cwemged nonlinearity Fav by
(m) =
Fovaa(W)= D Fll Fily= 30 F) e (), (6.5)
meMp )\EAZLl 9

(m)
where ]—'nm? £ are defined in (6.2).

Remark 6.1. Note that the nonlinearity ]—"é:,n T)”)ﬁ(vﬁ) can be obtained

from ]:y(:% by an averaging formula using an averaging operator Ar acting
on polynomial functions F : (C2)Y — (C2)V as follows:

T
1 —i .
(ArF)jc = T/e Ceit
0

ip1t —iprt ipnt —ipnt
X Fj (e uy ey o eV e T PNy ) dE. (6.6)

Using this averaging, we define for any polynomial nonlinearity G : (C2)
(C%)N the averaged polynomial

Gav,jc(@) = lim (A7G);¢(a). (6.7)

If the frequencies ¢; in (6.6) are generic, Gay (@) is always a univer-
sal nonlinearity. Note that Fay n, 9(W) defined by (6.5) can be obtained
by formula (6.7), where Ar is defined by formula (6.6) with frequencies
©;j = wn, (ki;) (it may be conditionally universal if the frequencies ¢; are
subjected to a condition of the form (6.22), see the following subsection for
details, in particular for definitions of universal and conditionally universal
nonlinearities).
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Finally, we introduce the wave interaction system with time-averaged
nonlinearity as follows:
V1,0 = U(-, 9Kai,) Faviny,0 () + U (-, 0K, )L, oh, 1=1,...N,9 = £. (6.8)
Similarly to (5.7) we recast this system concisely as
V= Favu(¥) + 1, (6.9)
The following lemma is analogous to Lemmas 5.1, 4.5.
Lemma 6.2. The operator Fay v (V) is bounded for bounded v € E*VN

Fav,w(0) = 0. The polynomial operator Fay w(V) satisfies the Lipschitz
condition

| Fav,w(¥1) — Fav,w (Vo) || g2y < CTi||V1 — Vo pon (6.10)

where C' depends only on Cy in (3.11), on the power of F and on ||V1|| gz~ +
(|[V2|| g2~ , and, in particular, it does not depend on (3, o.

From Lemma 6.2 and the contraction principle we obtain the following
theorem similar to Theorem 5.2.

Theorem 6.3. Let |hy| gov < R. Then there exists Ry > 0 and 7, >
0 such that Equation (6.9) has a solution v € E*V satisfying ||V|| p2n < R,
and such a solution is unique.

The following theorem shows that the averaged interaction system
introduced above provides a good approximation for the wave interaction
system.

Theorem 6.4. Let ¥;9(k,7) be the solution of (6.8), and let
wi9(k,T) be the solution of (5.5). Then for sufficiently small 3 ¥ 9(k, T)
is a wavepacket satisfying (5.10), (5.11) with W replaced by V. In addition
to that, there exists By > 0 such that

||{71719 —VAVlﬂgHE < OQ, | = 1,...,N, Y= :|:7

6.11
Jor0< o<1, 0< < fo. (6.11)

ProoF. Formulas (5.10) and (5.11) for ¥; y(k,7) follow from (6.8). We
note that W is an approximate solution of (6.8), namely we have an estimate
for Dy, (W) = W — Fav,w — hy which is similar to (5.17), (5.18):

[ Dy (W)|| = [|[W — Fayw — h|gen <Cp if0<0<1,8< 8. (6.12)

The proof of (6.12) is similar to the proof of (5.22) with minor simplifications
thanks to the absence of terms with ¥,,. Using (6.12), we apply Lemma
4.6 and obtain (6.11). O
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6.1.1. Properties of averaged nonlinearities. In this section, we dis-
cuss elementary properties of nonlinearities obtained by formula (6.5). A
key property of such nonlinearities F} ¢ is the following homogeneity-like
property:

ijc(ei(Pltul,-iﬂ eii(Pltul,—7 EERR ei(PNtuN,+7 eii(PNtuN,—)

icost (6.13)
=e>"7 Fj7<(u1+,u17,...,UN+,UN7).

The values of ¢;, i« = 1,... N, for which this formula holds depend on the

resonance properties of the set S which enters (6.5) through the index set

Affﬁ. First, let us consider the simplest case, where ; are arbitrary. An

l
example of such a nonlinearity is the function

Foc(ui y,ur,— ug y,uz, ) = uy pup, Uz .

We call a nonlinearity which is obtained by formula (6.5) with a universal
resonance invariant set S a universal nonlinearity.

Proposition 6.5. If F ¢ is a universal nonlinearity, then (6.13) holds
for arbitrary set of values ¢;, i =1,...,N.

PRrOOF. Note that the definition (6.5) of the averaged nonlinearity es-
sentially is based on the selection of vectors X\ = ((¢',1'),...,(C"™) 1,,)) €
A" 5 as in (6.4), which is equivalent to the resonance equation (3.24) with

l
n = ny, ( = 9. This equation has the form

N
—Cwn(Kaw) + Y Grwi(Kur) =0 (6.14)
=1
with
N
ke = —( ) Gk, (6.15)
=1

where 6, are the same as in (3.26). If X € AT and

L
GVX = (W)\l .. -‘X’Am) = (WC/,ll .. .‘x’q(nz)Jm)
it o iy
= (6 i© WllVC/Jl ...€ i« ¢lmV<(m)7lm)’
then, using (6.2) and the multi-linearity of (™) we get

(m) ) — o i (D p(m) <.
F ooy (Ws) = 1 0.8 (V5)
and
m N

> Do, = dir, (6.16)
=1

Jj=1
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where §; are the same as in (3.26). If we have a universal solution of (6.14),
all coefficients at every w;(ky;) cancel out (w,, (k) also equals one of w;(ky;),
namely wp(Kix) = wn, (Kir,)). Using the notation (3.26), we see that
a universal solution is determined by the system of equations on binary
indices

=3 W=01#15, 6,= > ¢W=¢ (6.17)
JET() JE-1(Io)

Obviously, the above condition does not involve values of w; and hence if
d1, ¢ correspond to a universal solution of (6.14), then we have the identity

N
—Cpr, + ZMPZ =0, (6.18)
=1
which holds for any (p1,...,¢n) € CV. O

Consider now the case, where the nk-spectrum S is resonance invari-
ant, but may be not universal resonance invariant. Definition 3.8 of a reso-
nance invariant nk-spectrum implies that the set P(.S) of all the solutions of
(3.24) coincides with the set Pyt (S) of internal solutions. Hence all solutions
of (6.14), (6.15)) are internal, in particular k.. = Kuz,, wn (Kux) = wny (Kazy)
with some Ij.

If we have a nonuniversal internal solution of (6.14), w;(k,;) satisfy
the following linear equation:

N

N
Cwngy (Kery) + > S1wi(ka) =0, CKugy + Y 61Kur =0 (6.19)
=1 =1

where at least one of b; is nonzero. Note that if (6.19) is satisfied, we have
additional (nonuniversal) solutions of (3.24) defined by

S W=s, 140, Y W=¢+a,. (6.20)

Jei=1() JEI=1(Io)

Now let us briefly discuss properties of Equations (6.20). The right-hand
sides of the above system form a vector b= (by,...,by) with by = &, 1 # I,
and by, = ¢ + dz,. Note that [ = (l1,...,ly) is uniquely defined by its level
sets [1(1). For every [ the number d,; of positive () and the number J_,
of negative () with j € lil(l) in (6.20) satisfy the equations

Sy —06_1="0, 6406 =|"11), (6.21)
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where |I=1(1)| = ¢; is the cardinality (number of elements) of [=1(1). Hence
841,0_; are uniquely defined by &;, |l (1)|. Hence the set of binary solutions
¢ of (6.20) with a given b and a given [ = (I1,...,1,,) is determined by sub-
sets of lil(l) with the cardinality 64; elements. Hence every solution with
a given b and a given [ can be obtained from one solution by permutations
of indices j inside every level set lil(l). If b is given and the cardinali-

ties [I1(1)| = ¢; are given, we can obtain different [ which satisfy (6.20)
by choosing different decomposition of {1,...,m} into subsets with given
cardinalities ¢;. For given b and ¢ = (c¢1, ..., ¢, ) we obtain this way the set

(may be empty for some b, &) of all solutions of (6.20). Solutions with the
same b and ¢ we call equivalent.

When for a given wavepacket there are several nonequivalent nonuni-
versal solutions, the number of which is denoted by N., we obtain from
(6.19) a system of equations with integer coefficients

N
S bwi(ka) =0, i=1,..., N, (6.22)
=1

and solutions to (3.24) can be found from
Z ¢ = by, for some i, 0 <i < N, (6.23)
JEF1 (1)
where to include universal solutions, we set b; o = 0.

Hence when a wavepacket is universally resonance invariant, we con-
clude that all terms in (6.5) satisfy (6.17). Since (6.18) holds, we get (6.13)
for arbitrary (p1,...,¢n) € CV. If the wavepacket is conditionally univer-
sal with conditions (6.23), then,using (6.16) and (6.23), we conclude that
(6.18) and (6.13) hold if (¢1,...,¢n) satisfy the system of equations

N
sz,wz =0,i=1,...,N,. (6.24)
=1

Now we wold like to describe a special class of solutions of averaged
equations. The evolution equation with an averaged nonlinearity has the
form

a-,—Uj7+ = ?ﬁj(—IV)UjﬂL + Fj,+(U17+7 UL,7 ey UN)Jr7 U]\]ﬁ)7

i . 2
aTUjv_ - Eﬁj(lv)UJ7+ + F‘7_(U17+7 Ul,—a s UN,+7 UN,—)a (6 5)

j=1,...,N,
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where £(—iV) is a linear scalar differential operator with constant coeffi-
cients. The characteristic property (6.13) implies that such a system admits
special solutions of the form

Ujc(r,m) = e 97/eV; o (x), (6.26)
where Vi ¢(r) solve the time-independent nonlinear eigenvalue problem
—ip; V4 = —1L;(—=iV)V; 4 +oF; s (Vi 4. Vi, .., Vs, Vo),
ip; Vi - =1L,;(iV)V 1 + oF; - Vi, Vi—,....Vn 4, VN,—), (6.27)
j=1,....N.

6.1.2. Examples of universal and conditionally universal nonlin-
earities. Here we give a few examples of equations with averaged nonlin-
earities. When the multi-wavepacket is universal resonance invariant, the
averaged wave interaction system involves NLS-type equations.

Example 6.6. The simplest example of (6.25) for one wavepacket
(N =1) and one spatial dimension (d = 1) is the nonlinear Schrodinger
equation

i i .
8TU1,+ = ——a28£U17+ — —a0U17+ + alawUl,Jr — 1qU1,,U127+7
¢ ° (6.28)

i

i .
a-,—ULf = QagaﬁUj7, + anUl,f + alazUl,, + 1qU1,+U127_.

Note that, by setting y = « + a17/0, we can make a; = 0. Obviously, the
nonlinearity

Fe(U) = ~iCqU, Ut ¢
satisfies (6.13):
iCqe P Uy _ (€91 U, ¢)? = eP1iCqUy,—¢(Urc)?.

The eigenvalue problem in this case takes the form

ip1 Vi 4 = —1a202Vy 4 —iaoViy +a10,V1 4 — quV17J/12,+, (6.29)

—ip Vi = iagaﬁVj,, +iagVi— +a10, V1, + ing17+V127_. '
If a; = 0 and we consider real-valued V; + = Vi _, we obtain the equation

(o1 +a0)Viy = —a202Vi 1 — 0qV7

or, equivalently,

+ a a
MWJHLQ_Z%VLJHL%%:Q_
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If
=-b* <0, (6.30)
the last equation takes the form

V14 + BV + VP =0

with the family of classical soliton solutions

b
Vig =22 .
b cosh(b(z — z)/c)

Note that the norm of the Fourier transform ||[V; y||,1 = Cb, where C' is an

absolute constant. Hence to have V; ; bounded in L! uniformly in small g
according to (6.30), we should take p; = —ag — b?pq with bounded b.

If the universal resonance invariant multi-wavepacket involves two
wavepackets (N = 2) and the nonlinearity F is cubic, i.e., Mp = {3},
the semilinear system PDE with averaged nonlinearity has the form

OUz + = —iLa(iV)Us 4 + Uz 1 (Q2,1,4+ U1+ U1, — + Q22,4 U2 + Uz ),

QUs,— =iLy(—iV)Uz, - + Uz, (Q2,1,-U1,4 U1, + Q2,2,-Us, 1 Us ),

OUL+ = =il (iV)Ui 4 + Ur, +(Q1,1,4+U1,+ U1 - + Q1,1,4U2,+ Uz ),

UL, =il (—iV)Ur,— + Uy —(Q1,1, Ui 4 U1 + Q1,1,-Us 4 Us ).
Obviously, (6.13) holds with arbitrary o1, ¢a.

Now let us consider quadratic nonlinearities. In particular, let us
concider the one-band symmetric case w, (k) = w1 (k) = wi(=k), i.e., J =1,
Mp = {2}, and m = 2. Suppose that there is a multi-wavepacket involving
two wavepackets with wavevectors ki1, k., i.e., N = 2. The resonance
equation (3.24) takes now the form

—Cw1(¢kut, + katy) + Cwi(kag,) 4 ¢ wi (k) = 0, (6.31)

where l1,1lo € {1,2}, (,{’,¢" € {—1,1}. All possible cases, and there are
exactly four of them, correspond to the four well-known effects in the
nonlinear optics: (i) I = la, ¢/ = ¢” and ¢’ = —¢” correspond respectively
to second harmonic generation and nonlinear optical rectification; (ii) iy #
la, ¢ = ¢("and ' = —(" correspond respectively to sum-frequency and
difference-frequency interactions.

Let us suppose now that k., k.o # 0 and wq(ks1) # 0, wi(ksa) # 0,
where the last conditions exclude the optical rectification, and that k,; # 0
and Kk, 2Kk, 0, k1 + ko are not band-crossing points. Consider first the
case, where the wavepacket is universally resonance invariant.
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Example 6.7. Suppose there is a single band, i.e., J = 1, with a
symmetric dispersion relation, and a quadratic nonlinearity F', i.e., Mp =
{2}. Let us pick two points ks and k.o # £k, and assume that k,; # 0
and k,;, 2k,;, 0, £k, + k.o are not band-crossing points. Assume also
that (1) 2wi(kei) # w1(2ks), 4,4,0 = 1,2, so there is no second harmonic
generation; (i) wi(ks) + wi(kse) # wl( «1 £ ki2), (no sum/difference-
frequency interactions); (iii) w1(0) # 0, w;(ks1) £ wi(ks2) # 0. Let set
the nk-spectrum be the set S1 = {(1,k.1), (1,ks2)}. Then S; is resonance
invariant.

In this case, (6.31) does not have solutions. Hence A} ; = @ and the
averaged nonlinearity equals zero.

Now let us consider the case, where the wavepacket is not universal
resonance invariant, but conditionally universal resonance invariant. In the
following example, the conditionally resonance invariant spectrum allows
for the second harmonic generation in the averaged system.

Example 6.8. Suppose there is a single band, ie., J = 1, with a
symmetric dispersion relation, and a quadratic nonlinearity F', i.e., Mp =
{2}. Let us pick two points k,; and k,s such that k.o = 2k,; and assume
that k,; # 0 and k., 2k,;, 0, £k, + ks are not band-crossing points.
Assume also that (i) 2wq(ks1) = wi(2ks1) (second harmonic generation);
(ii) wi(ki1) £ wj(kso) # wilksr £ kio), 4,5,1 = 1,2 (no sum-/difference-
frequencies interaction); (iil) wi(0) # 0, w;(ks1) £ wi(ks) # 0. Let set
the nk-spectrum be the set S = {(1,ks1), (1,k.2)}. Then S is resonance
invariant. The condition (6.19) is takes here the form

2w (ki1) —wi(ki2) = 0, 2ki1 —kio =0,
and the condition (6.24) turns into
2w1 (ky1) — wi(kso) = 0.
The wavepacket interaction system for such a multi-wavepacket has the form

0Us y = —iLs(iV)Us 4+ + Q22+ U1 LUy 4,
OUs,— = iLo(—iV)Us - + Q22 Ur _Un —,
B+ = —iLy(iV)U1s + QuosUs s Uy,
Uy — =il (—iV)Ui - + Q12U Uy 4.
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6.2. Invariance of multi-particle wavepackets.

The following lemma shows that particle wavepackets are preserved under
action of certain types of nonlinearities with elementary susceptibilities as
n (4.20). In the following section, we show, in particular, that universal
nonlinearities are composed of such terms.

Lemma 6.9. Let the components Wi, c = Wy, of Wy =Wy, ... Wy,
be particle-like wavepackets in the sense of Definition 2.2, and let

(m) ~ .
Fnl,ﬁ,E(X)(WA) be as in (6.5). Assume that
Wik, ) =0if [k—Ckas| >8'7°, (==+,i=1,...,m.  (6.32)

Assume that the vector index X € Am 9 is such a vector which has at least
one component \; = ((;,1;) such that

Vwn, (ka) = Vwn,, (Kat;)- (6.33)
Then for any r, € RY

—ir.k 1—¢ (M)
9" (K, 890 F) o )l

i k@)
<Oty ||vke ir.k Jle ”EH ||leij ||E'
i#]
B\
+Cry <5—1+s + —) H||le7<j I, (6.34)
o /3
where C' does not depend on r,. and small 3, 0.

Proor. Note that
r.k=r, (kK +...+kM).
We have by (4.22)

—ir.k (m)
Ve fnzﬂf(i)( Vk/ / exp 1g0 0.0k, k)= ) }

0 [—7 7r]2d
X \I/eiir*kx(ni)(k, k')wll,{’ (k ) .. 'Wlm,C(m)( m) (k7 E)) a(mil)dEdTl. (635)
Without loss of generality, we assume that in (6.33) I; = [,,, (the general

case is reduced to this one by a re-enumeration of variables of integration).
By the Leibnitz formula,

—ir.k (m) = _
Vie TEET s (Wl T) = L+ I+ I, (6.36)
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where
I = Vi exp {1@ -»(k ];)T_l _ lr*k}\I/X(m_,)(k ]g)efir*k/
97< ’ Q o)c ’
0 [,Trm](m—nd
—ir, k(™

xwi (k). e wy,, com (K (k, £) A D dr,

I =/ / U exp {i%f(k, E)E—ir*k}
0 [—7,7](m—1)d ¢
— m 7 —ir.k’ —ir, k(™)
X (Vi (e, 8790 (I, B))J e M wi, o (K) ek
x wycom (K™ (k, k))d™ Dy,

I3 —/ / exp 1<p9 k, k) —ir, }\I!Xéi?(k, k)e ik
[_ﬂ- ﬂ. (nz 1)d
x Wi, (K)o Vie TR 0B w ) (k0 (i, B)))A Dy,

7n)

Since w; ¢ are bounded, we have
—ir, s [€))] : . .
le™ ™ wy o (K91 < [wy, con (K9 < C1y j=1,...,m. (6.37)
Using (4.8) and (6.37), we get

m —ir, k(™)
I < [Ix"™)| Il ||Wz],<<1>||E/||Vke 1 k)wl coml|lpdr. (6.38)
Jj=1

From (6.37), (2.25), (3.13) and the smoothness of ¥(k, k., 317°) we get
I < Copp™ e [ w5l - (6.39)
j=1
Now let us estimate I;. Using (4.23), we obtain

T

o]

0 [_ﬂ-yﬂ-](nl—l)d

x T—Ql [ = 0Viwn, (k) + (™ Viwn,, (k™ (k, k)]

€xXp {1909,5(1(7 ]Z) % }]

X xé’f? (k, k)ywi, oo (K) ... Wy com (K™ (K, k))d™ Ddr. (6.40)
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The difficulty in the estimation of the integral I; comes from the factor 71 /o
since ¢ is small. Since (6.32) holds, it is sufficient to estimate I; if

k) — ¢Wk,, | <57 for all j. (6.41)
According to (3.18), since X € A 5. we have
k™ (ki ki) = Ky, -
Hence, using (6.33) and (4.23), we obtain

—

Vitg e (Kany» F) = [0V, (Kan,) + ¢ Vi, (KT (Ko, K2 )] =0.
(6.42)
Using (3.2), we conclude that, in a vicinity of k. defined by (6.41), we have
t][~0Viw(k) + ™ View(k™ (k, k))]| < 2(m + 1)Cy 265
This yields the estimate
|| < C38' ¢ /o. (6.43)
Combining (6.43), (6.39) and (6.38), we obtain (6.48). O

We introduce a (-dependent Banach space E' of differentiable func-
tions of variable k by the formula

Wl 51y = B4 Viele ™ W) | g + || W] - (6.44)

We use for 2N-component vectors with elements w;(k) € E? the following
notation:

w(k) = (wi(k),...,wy(k)),
r, = (I'*l, S ,I‘*N)7 Wl(k) = (Wi7+(k)7 Wiy_(k))7 (645)
e kG (k) = (e kwy (k). .., e TV Rw v (K)),
Similarly to (5.6) we introduce the space (E1)?V(¥,) with the norm
Wl enen ) = > I1Wioller ) (6.46)
1,9

The following proposition is obtained by comparing (6.44) and (2.33).

Proposition 6.10. A multi-wavepacket W is a multi-particle one with
POSItIONS Ty1,. .., TN if and only if

Wll(g1yen ) < C,

where the constant C' does not depend on 3,0 < 5 < 1/2, and T..
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In view of the above, we call E'(r,) and (E')?V(%,) particle spaces.
We also use the notation

@2“’5: = (\Ij(v k*l1aﬁ178/2)w>\1 PR \I}(v k*lmvﬁlie/Q)w)\m)’

‘F,,,(L:r)L,l)g)X7\I,2(€Vm) - ( *l;ﬁl E) -’(X)(\I}2V‘(7X)

Lemma 6.11. Let w,v € (EY)*N(F,) and ,7-'( ;EX)( 5) be as in
(6.5). Assume that the vector index Xe AT g is such a vector which has at
least one component A\; = (¢;,1l;) with l; = 1. Assume that (1.9) holds
and V(- Ky, 51 7°) is defined in (2.25). Let |W|| g2~ g,y < 2R. Then

[Fag

) o ey < OTall ] E)2N||w||<E1>w< ) (6.47)

where C' does not depend on 3, 0 < § < 1/2, and on Ty, ry and T. is
defined by (6.45). If |[V|l(g1)2~,) < 2R the following Lipschitz inequality
holds:

[F) g, (8 = F o Dmir < CTll& = ¥ meve,).  (648)

where C' does not depend on 3, 0 < < 1/2, and on ¥y, ry.
Proor. Note that Wowy and WaVs are wavepackets in the sense of

Definition 2.2. To obtain (6.47), we apply the inequality (6.34) and use
(1.9); for the part of the E*-norm without k-derivatives we use (4.10). Using

multilinearity of ]:T(L 1)9 Swy Ve observe that
Ly 2
(m) =\ _ r(m) =
’I’LL,’l9 X ,Wo (w) fnl7197xx\D2 (V)
— Z ’ﬂl,’l9 5 U, W>\17° .. ,W)\j - V)\j7V)\j+1, ce ,V)\m). (6.49)

We can apply to every term the inequality (6.34). Multiplying (6.34) by
BFe and using (1.9), we deduce (6.48). O
Now we consider a system similar to (6.8),
V1.0 = Favwann,0(¥) + U, 0k )Ly, oh, 1=1,...N,9 =+,  (6.50)
where Fuy w.n,,9 is defined by a formula similar to(6.5):

Fovamo(@) = > FU Fily= >0 FM @) (651)

meMp XeAm 9
nys
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The system (6.50) can be written in the form similar to (6.9)
V = Fav,u,(¥) + hy. (6.52)

Theorem 6.12 (solvability in particle spaces). Let the initial data
h in the averaged wavepacket interaction system (6.52) be a multi-particle
wavepacket ﬁ(ﬂ, k) with the nk-spectrum S as in (2.39), reqularity degree s,
and positions vy, | =1,...,N. Let ||B||(E1)2N(i*) < R. Assume that S is
universally resonance invariant in the sense of Definition 3.8. Then there
exists Ty > 0 which does not depend on Ty, 3, and o such that if T < Tes,
Equation (6.52) has a unique solution v in (EY)?N(¥,) such that

VIl (g1)2v &,y < 2R, (6.53)

where R does not depend on o, 3, and ¥.. This solution is a multi-particle
wavepacket with positions ry;.

PROOF. Since S is universally resonance invariant, every vector index
X € A7 o has at least one component \; = ((j,1;) with [; = [. Hence
Lemma 6.11 is applicable and, according to (6.48), the operator Fuy v,
defined by (6.51) is Lipschitz in the ball |[V|| g1y~ s,y < 2R with a Lip-
schitz constant C’7,, where C’ does not depend on g, 3,, and T,.. We choose
Tex S0 that C'7y < 1/2 and use Lemma 4.6. According to this lemma,
Equation (6.52) has a solution v which satisfies (6.53). This solution is a
multi-particle wavepacket according to Proposition 6.10. (]

Theorem 6.13 (particle wavepacket approximation). Let the initial
data b in the integral equation (2.14) with solution 0 (r, 5;K) be an multi-
particle wavepacket fl(ﬁ, k) with the nk-spectrum S as in (2.39), regularity
degree s, and positions vy [ =1,..., N, and let the components of fl(ﬁ,k)
satisfy the inequality ||f1||(E1)2N(;*) < R. Let 7w < Tuw. Assume that S is
universally resonance invariant in the sense of Definition 3.8. We define
Y (7, B;k) by the formula

N
V(r,8:k) =YY Vwo(r.Bik), I=1,....N, (6.54)
=1 ¢=+
where ¥y 9(7, B;K) is a solution of (6.8). Then every such vi(k;7,03) is a
particle-like wavepacket with position r. and
[ Sup [a(r, B;k) —¥(7, B: k)|l < Cro+ C2f°, (6.55)

where the constant Cy does not depend on o, s, and 3 and the constant Cy
does not depend on o, 3.
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PROOF. Let v € (E')2N(%,) be the solution of Equation (6.52) which
exists by Theorem 6.12. It is a particle-like wavepacket. Note that

\Ij('a k*ll761_5/2)\11('7k*113ﬂ1_6) = \I/('7k*llaﬂ1_s)
and a solution of (6.52) has the form ¥, 4(7,3;k) = V(- ky, 379)[.. .

. ~ o~ . . (m) ~
Consequently, for such solutions Wov; = vy the nonlinearity Fm, 950, (V)

coincides with the equation ¥(-, k;, ﬁlfe)f(m; 168 (v5) and Equation (6.50)
ny,v,
coincides with (6.8). Hence ¥ is a solution of (6.8). The estimate (6.55)

follows from the estimates (6.11) and (5.49). O

Now, we are able to prove Theorem 2.10.

Corollary 6.14 (proof of Theorem 2.10). If the conditions of Theorem
2.10 are satisfied, the statement of Theorem 2.10 holds.

Proor. Note that the functions v‘vgﬂ(k, T) = U, 91, vl(k,7), 6 = %,
in Theorem 5.7 are two components of (7, 8;k) in (2.45). Hence (5.51)
implies that

[y — Wi — Wy || < C'B°, 0< B < B, (6.56)

where W, » are solutions to (5.5). According to (6.11), if ¥; 9(k, 7) is the
solution of (6.8), we have

V19 —Wiolle <Co, I=1,...,N; 0 ==+ (6.57)
Hence
G — V14 — ¥, |lg < Co+C'B°, 0 <3< Po. (6.58)

This inequality implies (2.46). We have proved that ;4 is a particle-
like wavepacket as in Theorem 6.13. The estimate (6.58) implies that @
is equivalent to ¥; = ¥; 4 + ¥;_ in the sense of (2.42) of degree s; =
min(s, sg). O

7. Superposition Principle and Decoupling
of the Wavepacket Interaction System

In this section, we give the proof of the superposition principle of [8] which
is based on the study of the wavepacket interaction system (6.8). We
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show that when we omit cross-terms in the averaged wavepacket interac-
tion system, the resulting error is estimated by ﬁl—ig [In G|, i.e., compo-
nent wavepackets evolve essentially independently and the time averaged
wavepacket interaction system almost decouples.

Let  Fayn,0 be defined by (6.5), and let a decoupled nonlinearity
Fav,ni,0,diag be defined by

Favn0.diag(W) = > Fm, 77(:,739@@(‘7")

meMp
_ (m) =
Xear dine
I

where the set of indices AZ’?ag is defined by the formula

AT = IX=(LQ) €Ayl =1, j=1,....m}. (7.2)
Note that Fﬁ:’%diag in (7.1) depends only on w;  and w; _:
FU) tiag (%) = Fyl (W), wi = (wi g, wi ). (7.3)

The coupling between different variables v; in (6.8) is caused by nondi-
agonal terms

Fav,n,9,coup(W) = Fav,ng,0 (W) — Fav,ng,0,diag(W)- (7.4)
Obviously, Equation (6.9) can be written in the form
V = Favw.ding(V) + Fav.w.coup(¥) + by . (7.5)
The system of decoupled equations has the form
Vdiag = Fav, v, diag(Vdiag) + h, (7.6)
or, when written in components,

Vdiag,l = in\??\)lhdiagl(vdiagvl) + h\p,zal =1,...,N. (7.7)

We prove that the contribution of Fuy w coup int (7.5) is small. The proof is
based on the following lemma.
Lemma 7.1 (small coupling terms). Let }"(m; ) (Wy) be as in (6.5),
ny,v,
let all the components wy, of Wy satisfy (6.32) and be wavepackets in the
sense of Definition 2.1, and let (1.9) hold. Assume also that: (i) the vector
index X has at least two components N; = (Ci,l;) and Ajo= (¢, 1) with
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li # lj; (i) both wy, and wy,; are particle wavepackets in the sense of
Definition 2.2; (iii) either (2.51) or (2.54) holds. Then for small 8 and o

m ~ 0
IFT™ - (T3l < O [ 3. (7.8)
n;,9,&(N) 5

PROOF. Since k,; are not band-crossing points, according to Definition
3.1 and Condition 3.2 the inequalities (3.2) and (3.13) hold. According to
the assumption of the theorem, at least two W, are different for different
j. Let us assume that I, = li, l;, = L, l1 # I, (the general case can be
easily reduced to this one by relabeling variables). Since w;,and w; , are
particle wavepackets, they satisfy (2.33) with r replaced by r;, and r;,,
respectively. Let us rewrite the integral with respect to 71 in (4.22) as

(m) W — s e VL A(m) e T G(m—1)d T
Fopo.én (W3 ) //eXp{“poc(k’ )% pACZ e Ry kdr,
0D
(7.9)
where
A (i ) = X (e Fywr, () v, (070), (7.10)
and then rewrite (7.9) in the form

(m) = _ (m)
fm,ﬁ,f(i) (w)\)(kv T) = JTQQT (VV[1 e Wlm)(k7 T)

://expw(k, k1, 0,t0,,1, ) Ak, K1y, )d D d (7.11)
0 Dy,

where

engo(k7 Ea 1, 0, rl17rlm) = €xXp {upC 5(k7 E)E - irllk/ - irlmk(m)}a
’ 0

Ak, .1y, 10,) = ei‘"llk/ei”mk(m)Aé"? (k, k). (7.12)
According to (3.10), k0™ (k, k) = k — k' — ... — k(™= Hence, picking a
vector p with a unit length, we obtain the formula

- - Vi ex k,E,T, T, Ty
eXP¢(k, k.Ti,0,11,,11,) = - Dtk pwf BLILIY (7.13)
i[p- Vo, z(k k) —op - (1, —10,)]
If we set
o' = Viep: #(ka, k) = View(C'K.) — Vk(mw(é(m)kfkm)), (7.14)

p=p-¢,qp=0p"(r, —11,),
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(cpT1 — gp)
p- Ve, ek k) —p-(r, —1y,)]

then (7.13) can be recast as

90(k7 ];7 Q7T1) = s (715)

op - Vi eXPW(ka k7 T1, 0,1y, rlm)

i(epm1 — gp)

eXpSO(k7E’T17Q7rllarlm) = eo(ka E7 Q7T1)'

(7.16)
If (2.51) holds, then ¢’ # 0, and to get |c,| # 0, we can take
~1
P=Il¢l ¢ el =po > 0. (7.17)
If (2.54) holds, we have ¢’ = 0, and we set
p=|(ri, —r,)| " (ri, —1,) (7.18)

Let consider first the case, where (2.51) holds. Notice that the denominator
in (7.16) vanishes for
ro="2 (7.19)
Cp
We split the integral with respect to 7; in (7.11) into the sum of two
integrals, namely

_7-'4(72f)(wl1 coowy, ) (k) = Fy + Fo, (7.20)

-

P = /eXp@(kavahQ’rll’rlm)
‘T10,7—1|20061*E|1n6‘ Do,

X A(k7 /;7 r;,,r, )a(mil)d/;dTh

-

5= /exp@(k,k,rl,g, r,,T,,)
[T10—T1|<coB'=¢[InB| Dm
X A(k7 /;7 I‘lNI'lm)a(m*l)d/;dTh
where ¢g is a large enough constant which we estimate below in (7.28).

Since w; are bounded in E and (2.48) holds, we obtain similarly to (4.10)
the estimate

m In
1Bslls < Ceof Il 8l T Iwi, I < Ca(R) Qﬂl“f § (7.21)

Jj=1
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To estimate the norm of Fy, we use (7.13) and integrate by parts the
integral in (7.20) with respect to k’. We obtain

F1 = / I(k, Tl)dTl, (722)

[T10—71|=8~¢|In G|

o[£k E )
U i(cpm1 — 04p)
Dnz
X p-Vy [eoA(k, E, r;, I‘lm)] &(m‘l)d/?,

According to (7.10) and (3.10), the expansion of the gradient Vy in the

k k(™)

. . . 1 ’ N
above formula involves the derivatives of x, 0y, 1% w;, and e™'m W

To estimate 0y and V6,, we note that

m*

/
R Lo —
00(k7k7g77-1) = , (p °n qp) R ,
(P-¢'11—q) + 1P [Viy, ¢k, k) — ¢]
1

_ _ . (1.23)
1+7p- [V z(k k) —¢']/(cpm1 — gp)

Since |10 — 71| = 0B [In B, from (7.19) we infer
lepT1 — qp| = cpcoBr | In . (7.24)
From (6.32) we see that in the integral (7.22) the integrands are nonzero
only if
KO — ¢CORP| < w8, [k — (k.| < mmofte, (7.25)

where 9 < 1. Using the Taylor remainder estimate for Vk/goC ¢ at I;*, we
obtain the inequality

Viepe gk, k) — ¢'| < 2mC, 58" <. (7.26)
Hence in (7.23)
71D+ [View ok, ) — &)/ (em1 — ay)] < 2mr.Cuz/(cpeol mBI).  (7.27)
Suppose that 5 < 1/2 is small and ¢y satisfies

mT*ng mT*Cw72
|lng] = In2

Then it follows from (7.23) with the help of (7.28), (3.2), (7.24) and (7.27)
that

1
< {lepleo. (7.28)

100(k., &, 0,71)| < 2. (7.29)
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Obviously,
_Tlvk/[ (Vk’@g C( E) - QDI)]

(epm1 — @) 14+ 71P- [Vie 2k, F) ']/ (cpm1 —q)]*
(7.30)

Vk’eo(ka Ea o, Tl):

Using (7.27), (7.28), and (3.2), we obtain

47, - 4T*Cw 2
— Vi Vi, =k k)—¢)]] < ———=—.
o _qp|| [P (Viwp, gk k) — &)l P—

(7.31)
To estimate Vi x, we use (3.13). We conclude that the absolute value of

the integral (7.22) is not greater than

Viebo(k, &, 0,71)| <

407,C,
I(k, )| < M/Mk kg, )dmDAE

|Tlcp_Qp|2
207, Alk. ki T(m—1)d7
P— (Vi Ak, k1, 1,)|]d k
P g
D
4Cw 20T QQT*
Lﬁc |2'|| (7~)||+ﬁ||(vw Vi )X ™ (k, )|
P
. 207 |IX "™ (K, -) T
< [T lwille + ﬁ T s ™ w1
j=1 16— dp j=2
m—1 )
+ T il [1Vieme™im® Wm||L1} (7.32)

j=1

Note that ||w;||z1 are bounded according to (2.27) and Vkm)ei”mk(m)wl

Viee™ 1 ¥ w; by (2.33). Hence we obtain

m?

CooB~ 172 C
(k)| < 298 S I (7.33)
T1Cp — dp [T1¢p — Gp]
Obviously,
T«—dp/Cp
_ T
[T1ep — gyl Ydrm = = o
P 1
|T1—qp/cp|ZcoBr 2| In 3] Coﬁl’g\lnﬁ\
1 c
— o S < (O s )

Cp cof¢[Ing|
1
< C—[C”r | In 3| + |1n|1n5||] < C—[C+2lln5|]~

P P
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Similarly, using (2.48), we get

|T10p — qp|72d7'1

|T1—ap/cp|ZcoBr=¢|In 3|

T«—dp/Cp

1 dn 1 { 1 1
c T2 cp LeoBr e npl T —aqp/cp
coB1—=|1n |
1 < ng

< < .
cpcoft|In Bl BTIEIn b
Hence we obtain for small 3

172 ) () < Cagis

Now let us consider the case, where (2.54) holds, ¢’ = 0 and p is defined
by (7.18). Turning to expression (7.23), we notice that

[In 3]. (7.34)

1
51+5

epm = ap = —olry, — 11, |, Telepm — g7
and, according to (7.26),

Viep ok k) = ¢| < CuafB' ™.
Then we estimate the denominator in (7.23) and (7.30) using (2.54):

N =

D - Ve, o, B) = ¢'1/(com1 — )] < muCl2B%(olr, —11,]) <

If 3 is so small that (7.28) holds, we again get (7.29) and (7.31). Hence we
obtain (7.34) in this case as well (in fact, in this case, the logarithmic factor
can be omitted). Finally, we obtain (7.35) from (7.34) after summing up
over all X, f (|

Lemma 7.2. Let the nk-spectrum S be universally resonance invari-
ant. Let the operators Fayn, 9(W), Fav.n,,o,diag(V), and Fay n, 9,coup D€
defined respectively by (6.5), (4.7), and (7.4). Let ¥, ||[¥|g~y < 2R, be a
multi-wavepacket solution of (6.9) with the nk-spectrum S. Then for small
G and o

[ Fav,mi,0,coup(V) [ B < ﬁH—E |In 3. (7.35)

PROOF. According to (6.5), (7.1), and (7.4), Favn,.9,coup iVOlves only
terms with X € Ay \ AL 4198 and it is sufficient to prove the estimate

(7.8) for indices X € ALy \ AT 928 Such indices involve at least two
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components \; = ((;, ;) and \j = ({j,1;) with{; # [; since the nk-spectrum
is universally invariant, see (3. 26) According to Theorem 6.13, the solution
Vv is a particle-like wavepacket. Therefore, all the components of V5 are
particle-like; (6.32) holds according to (5.11). Hence all the conditions of
Lemma 7.1 are fulfilled and (7.35) follows from (7.8). O

Note now that every equation (7.7) is an approximation of Equation
(4.6) with single-wavepacket initial data h;, namely

y(k, 7) = F(iy)(k, 7) + hy(k). (7.36)

One can apply to this equation Theorems 5.6 and 6.4 formally restricted to
the case N =1 of a single wavepacket. Based on this observation and above
lemma, we prove the following theorem which implies previously formulated
Theorems 2.14 and 2.15.

Theorem 7.3. Assume that the multi-wavepacket h= > by is particle-
like and its nk-spectrum is universally resonance invariant. Assume also
that either (2.51) or (2.54) holds. Let @ be asolution of Equation (4.6). Let
W, be solutions of (7.36). Then the superposition principle holds, namely

Hﬁ—zN:ulH ﬁ1+e|ln6| Ielid (7.37)
=1

PROOF. Let Vgiag,; be a solution of the decoupled system (7.7). We
compare the systems (7.5) and (7.6). The difference between the systems
is the term Fay n,.9,coup(V). According to Theorem 6.12, the solution v is
a particle-like wavepacket and we can apply Lemma 7.2. According to this
lemma, (7.35) holds. Applying Lemma 4.6 to Equations (7.5) and (7.6) and
using (7.35), we conclude that the difference of their solutions satisfies the
inequality

Vi = Vdiag,ill e < C' @1+e |In B| + C'B°. (7.38)

According to Theorem 6.13, the inequality (6.55) holds, where v is a solu-
tion of (6.9) which can be rewritten in the form of (7.5). From (6.55) and
(7.38) we infer

N
6= > vausa| < C gty B+ G (7.39)

=1
Note that Equation (7.7) for Vaiag,; coincides with the averaged equa-

tion (6.9) obtained for the wave interaction system derived for (7.36). There-
fore, applying Theorems 5.6 and 6.4 to the case N = 1 and h = h;, we
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deduce from (5.49) and (6.11) the estimate
[0 — Vaiag,i|| & < Ca0 + C55°. (7.40)
Finally, from (7.39) and (7.40) we infer (7.37). O

7.1. Generalizations.

In this section, we show that the particle-like wavepacket invariance can
be extended to the case, where nk-spectra S are not universally resonance
invariant. So, suppose that an nk-spectrum S is resonance invariant and
consider nonlinearities of the form similar to (6.5)

Fresmo(®) = > FM, Fm) = F o (Wg),  (7.41)

ny,9,£(X)

memF )\EA;” 9

where A’ 9 C An 9 1s a given subset of A™. Obviously, Fy, defined by
(6.5) has the form of (7.41) with A}, = A" ;. Let us introduce a multi-
wavepacket

W= (Wny +, Wny —yeos Wny 4, Wpy =) (7.42)
with the nk-spectrum S = {(n;,0), I =1,...,N;0 = +}.

We call a subset S C S sign-invariant if when it has (n;,0) as an
element, then (n;,—60) is also its element. Suppose that S’ C S is sign-
invariant. It is easy to see that if a set S’ C S is sign-invariant, then it
is uniquely defined by a subset of indices I’ = I'(S") ¢ I = {1,...,N},
namely

S' = {(n,0): 1€ I'(S), 6 =+}.

Definition 7.4. We call an index pair (m7 *l) Group Velocity Matched

(GVM) with Fregn, 0 if every nonzero term _7-' 19 50 in the sum (7.41) has

an index X such that for at least one component \; = (Q(j)7lj) of this
index the following equality holds:

Vwn, (k) = Vwmj (kat;)- (7.43)
We call S” a GVM set with respect to the nonlinearity Fres defined by (7.41)
if 8" C S is sign-invariant and every (n;, k) € S” is GVM.

Obviously, if S is universally resonance invariant and Aj, , = A} ; as
in (6.5), then S is a GVM set and, in this case, [; = I as in Definition 3.6. If
S’ C S is sign-invariant, we call a multi-wavepacket W as in (7.42) with the
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nk-spectrum S = {(n;,0),l =1,...,N;0 = £} partially S’-localized multi-
wavepacket if for every (n;,0) € S’ the wavepacket w,, ¢ is a spatially
localized with position r,;. Note that, according to Definition 2.7, if S” = S
and w is a partially S’-localized multi-wavepacket, then it is a multi-particle
wavepacket.

Theorem 2.10 on the particle-like wavepacket preservation can be gen-
eralized as follows.

Theorem 7.5 (preservation of spatially localized wavepackets). As-
sume that the conditions of Theorem 2.9 hold, in particular the initial datum
h = h(8,k) is a multi-wavepacket with an nk-spectrum S. Assume also that
S C S is a GVM set, h = h(8,k) is partially S'-localized wavepacket with
positions ., 1 € I'(S"), and (2.47) holds. Then the solution G(r,3) =
G(F(p(B)),h(B3))(1) to (2.14) for any T € [0,7.] is a multi-wavepacket with
the nk-spectrum S and it is an S’-localized wavepacket with positions T,
1l eI'(S"). Namely, (2.46) holds, where W is a wavepacket with the nk-pair
(ny,ke) € S defined by (2.45), the constants C,Cy,Cy do not depend on
r., and every 0y, 1 € I'(S"), is equivalent in the sense of the equivalence
(2.42) of degree s; = min(s, sg) to a spatially localized wavepacket with po-
S1EI0N Ty

PROOF. The proof of the theorem is the same as the proof of Theorem
2.10 since it used only the fact that a universally resonance invariant set
is a GVM one, that allows us to apply Lemma 6.9. One also have to use
the space (E1)2V(F,,S’) with the norm defined by the formula similar to
(6.46):

[Wll(zrzn .51y = Z [Wolle +8" > > [Vi(e™ ™™ )| o
D=+ el (S")
(7.44)
After replacing (F1)*V(F,) with (F1)*N(F,,5") we can literally repeat all
the steps of the proof of Theorem 2.10 and obtain the statement of Theo-
rem 7.5. U

Below we prove that the superposition principle can hold not only for
universal resonance invariant multi-wavepackets, but for other cases allow-
ing resonant processes such as the second and third harmonic generations,
three-wave interaction, etc. Here we prove a theorem applicable to such
situations, which is more general than Theorem 2.14.
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Let us consider a multi-wavepacket with a resonance invariant nk-
spectrum

S={(ni,ka), I=1,...,N}
as in (3.14), and assume that is the union of spectra Sy:

S=8U...USk, S,NS, =@ if p#£q. (7.45)

Recall that resonance interactions are defined in terms of vectors X € A™
(see (3.16), (3.17)). We call a vector X = ((¢',11),...,(C™) 1)) € A™ a
cross-interacting (CI) if there exist at least two indices (¢(¥,1;) and (¢4, 1;)
such that (((V,1;) € Sp,, ((9),1;) € S,, with p; # p;.

Definition 7.6 (partially GVM decomposition). We call the decom-
position (7.45) partially GVM with respect to Fres defined by (7.41) if the
following two conditions are satisfied: (i) every spectrum S;, j =1,..., K,
is resonance invariant; (i) a solution (m,¢,n, X) € P(S) of the resonance
equation (3.24) with CI vector X = ((¢',11), ..., (C(™,1,,)) has at least two
indices (((V,1;) € Sy, and (¢\9),1;) € S, with p; # p; such that both I; and
l; are GVM with respect to Fres and

|vk‘*’nu (k*li) - kanlj (k*lj)| 75 0. (7.46)

Now we use Lemma 7.1 for small coupling. Being given a partially
GVM decomposition (7.45), we introduce the set of coupling terms between
Sp, and S, as follows:

AT — {“ (1:0) € A™ - i # j such that I; € Sp,.1; € spj},
(7.47)
We also introduce a set of interactions reducible to every S, (block-diagonal)
which is similar to (7.2):

Am ,red _ Zﬁ)ﬁ \ A;n[,:;oup7 (748)

ng, 9
and the reduced operator

SN E: (m) = (m) =
faV7nlﬂ9;1"6d(w) - ‘Fnl,ﬁ,red ’ ‘Fnl,ﬁ,red(w)
meMp

(m)
F" e (W), (7.49)

m,red
XeAr's

where AZﬁ;’d is defined by (7.48). Note that if the set S is universal res-
onance invariant and every S, is a two-point set {(+,%;), (+,1;)}, then
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ATred = A %’ag We introduce also a partially decoupled, reduced system

ng, 9
similar to (7.6)
{’red = fav,\ll,red({}red) + h\p7 (750)
which can be rewritten in the decoupled form similar to (7.7):
Vred,p = fa(.v \)I’ red p(VrEd P) + hrcd wpr P = 1 K. (751)

Now Vyeq,p may include more than one wavepacket, namely

Vred,p = Z ({’red)nlxoﬂ hrcd,\p,p = Z (h\ll)nl79’ p=1..K
(n1,0)€Sp (n1,0)€Sp

(7.52)
The following theorem is a generalization of Theorem 2.14 on the superpo-
sition.
Theorem 7.7 (general superposition principle). Suppose that the
initial data h of (2.14) is a multi-wavepacket of the form

K
h=> ey, (7.53)
p=1

where h is a multi-wavepacket in the sense of Definition 3.8 with a resonance
invariant nk-spectrum S, ﬁredm s a multi-wavepacket with a resonance in-
variant nk-spectrum Sy, and the decomposition (7.45) is a partially GVM
in the sense of Definition 7.6 with respect to the nonlinearity F,, defined by
(6.5). Suppose also that (2.48) holds. Then the solution & = G(h) to the
evolution equation (2.14) satisfies the approzimate superposition principle

K K
g( Z ﬁred,p) = Z g(ﬁred,p) + f)a (754)
p=1 p=1

with a small remainder ]3(7') satisfying the following estimate:

su D(r < In 7.55
OgTgnll (Ml < 51+5| Bl, (7.55)

where € is the same as in Definition 2.1 and can be arbitrary small, T, does
not depend on (3,0, and &.

PROOF. The proof of Theorem 7.7 is similar to the proof of Theorem
7.3. The averaged system (6.9) can be written similarly to (7.5) in the form

{’:fav\llred( )+Fav\Dcoup( )+fl\p (756)

Comparing now the systems (7.56) and (7.50), we find that the difference
between them is the term Fay n,,9,00up(V). According to Theorem 7.5, the
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solution v is a spatially localized wavepacket and hence we can apply Lemma
7.2 getting the inequality (7.35). Applying Lemma 4.6 to Equations (7.56)
and (7.50) and using (7.35), we conclude that the difference of their solu-
tions satisfies the inequality

[V — Veedpll s < C’ﬁia g +C' 3 p=1,....K (7.57)

According to Theorem 6.13, the inequality (6.55) holds, where v is a solu-
tion of (7.56), and we infer from (7.57)

K
Hu_ § Vred,p
p=1

Similarly to (7.36) we introduce equation for Gyed,p = G(redp)

4

<G Blte

|In 8| + C18°. (7.58)

fired p(k, 7) = F(fred,p) (k. 7) + hreq p(k). (7.59)

Applying Theorems 5.6 and 6.4, we infer similarly to (7.40) the inequality
[Grea.p — Vieapllz < C20 + C38°. (7.60)

Finally, from (7.58) and (7.60) we infer (7.55). O

Acknowledgment: Effort of A. Babin and A. Figotin is sponsored by
the Air Force Office of Scientific Research, Air Force Materials Command,
USAF, under grant number FA9550-04-1-0359.

References

1. A. Babin and A. Figotin, Nonlinear Photonic Crystals: I. Quadratic
nonlinearity, Waves Random Media 11 (2001), no. 2, R31-R102.

2. A. Babin and A. Figotin, Nonlinear Photonic Crystals: II. Interaction
classification for quadratic nonlinearities, Waves Random Media 12
(2002), no. 4, R25-R52.

3. A. Babin and A. Figotin, Nonlinear Photonic Crystals: III. Cubic Non-
linearity, Waves Random Media 13 (2003), no. 4, R41-R69.

4. A. Babin and A. Figotin, Nonlinear Maxwell Equations in Inhomoge-
nious Media, Commun. Math. Phys. 241 (2003), 519-581.

5. A. Babin and A. Figotin, Polylinear spectral decomposition for nonlin-
ear Mazwell equations, In: Partial Differential Equations (M. S. Agra-
novich and M.A. Shubin, Eds.), Am. Math. Soc. Translations. Series 2
206, 2002, pp. 1-28.



132

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Anatoli Babin and Alexander Figotin

A. Babin and A. Figotin, Nonlinear Photonic Crystals: IV Nonlin-
ear Schridinger Equation Regime, Waves Random Complex Media 15
(2005), no. 2, 145-228.

. A. Babin and A. Figotin, Wavepacket Preservation under Nonlinear

Evolution, arXiv:math.AP /0607723.

. A. Babin and A. Figotin, Linear superposition in nonlinear wave dy-

namics, Reviews Math. Phys. 18 (2006), no. 9, 971-1053.

. D. Bambusi, Birkhoff normal form for some nonlinear PDFEs, Commun.

Math. Phys. 234 (2003), no. 2, 253-285.

W. Ben Youssef and D. Lannes, The long wave limit for a general
class of 2D quasilinear hyperbolic problems, Commun. Partial Differ.
Equations 27 (2002), no. 5-6, 979-1020.

N. N. Bogoliubov and Y. A. Mitropolsky, Asymptotic Methods in the
Theory of Nonlinear Oscillations, Hindustan Publ. Corp. Delhi, 1961.

J. L. Bona, T. Colin, and D. Lannes, Long wave approzimations for
water waves, Arch. Ration. Mech. Anal. 178 (2005), no. 3, 373-410.

J. Bourgain, Global Solutions of Nonlinear Schrédinger Equations, Am.
Math. Soc., Providence, RI, 1999.

T. Cazenave, Semilinear Schrodinger Equations, Am. Math. Soc., Prov-
idence, RI, 2003.

T. Colin, Rigorous derivation of the nonlinear Schridinger equation and
Davey-Stewartson systems from quadratic hyperbolic systems, Asymp.
Anal. 31 (2002), no. 1, 69-91.

T. Colin and D. Lannes, Justification of and long-wave correction to
Davey-Stewartson systems from quadratic hyperbolic systems., Discr.
Cont. Dyn. Syst. 11 (2004), no. 1, 83-100.

W. Craig and M. D. Groves, Normal forms for wave motion in fluid
interfaces, Wave Motion 31 (2000), no. 1, 21-41.

W. Craig, C. Sulem, and P.-L. Sulem, Nonlinear modulation of gravity
waves: a rigorous approach, Nonlinearity 5 (1992), no. 2, 497-522.

T. Gallay and C. E. Wayne, Invariant manifolds and the long-time
asymptotics of the Navier-Stokes and vorticity equations on R?, Arch.
Ration. Mech. Anal. 163 (2002), no. 3, 209-258.

Zh. Gang and I. M. Zhou, On soliton dynamics in nonlinear
Schridinger equations, Geom. Funct. Anal. 16 (2006), no. 6, 1377—
1390.

Zh. Gang and I. M. Zhou, Relazation of Solitons in Nonlinear
Schrodinger Equations with potential, arXiv:math-ph/0603060v1



Particle-Like Wavepackets 133

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

J. Giannoulis and A. Mielke, The nonlinear Schrédinger equation as
a macroscopic limit for an oscillator chain with cubic nonlinearities,
Nonlinearity 17 (2004), no. 2, 551-565.

G. Tooss and E. Lombardi, Polynomial normal forms with exponen-
tially small remainder for analytic vector fields. J. Differ. Equations
212 (2005), no. 1, 1-61.

J.-L. Joly, G. Metivier, and J. Rauch, Diffractive nonlinear geometric
optics with rectification, Indiana Univ. Math. J. 47 (1998), no. 4, 1167
1241.

B. L. G. Jonsoon, J. Frohlich, S. Gustafson, and I. M. Sigal, Long
time motion of NLS solitary waves in aconfining potential, Ann. Henri
Poincaré 7 (2006), no. 4, 621-660.

L. A. Kalyakin, Long-wave asymptotics. Integrable equations as the as-
ymptotic limit of nonlinear systems, Russian Math. Surv. 44 (1989),
no. 1, 3-42.

L. A. Kalyakin, Asymptotic decay of a one-dimensional wave packet in
a nonlinear dispersion medium, Math. USSR Sb. Surveys 60 (2) (1988)
457-483.

T. Kato, Perturbation Theory for Linear Operators, Springer, 1980.

S. B. Kuksin, Fifteen years of KAM for PDE, In: Geometry, Topology,
and Mathematical Physics, Am. Math. Soc., Providence, RI, 2004, pp.
237-258.

P. Kirrmann, G. Schneider, and A. Mielke, The validity of modulation
equations for extended systems with cubic nonlinearities, Proc. Roy.
Soc. Edinburgh Sect. A 122 (1992), no. 1-2, 85-91.

J. Krieger and W. Schlag, Stable manifolds for all monic supercriti-
cal focusing nonlinear Schrédinger equations in one dimension, J. Am.
Math. Soc. 19 (2006), no. 4, 815-920 (electronic).

V. P. Maslov, Non-standard characteristics in asymptotic problems,
Russian Math. Surv. 38 (1983), 6, 1-42.

A. Mielke, G. Schneider, and A. Ziegra, Comparison of inertial mani-
folds and application to modulated systems, Math. Nachr. 214 (2000),
53-69.

R. D. Pierce and C. E. Wayne, On the validity of mean-field amplitude
equations for counterpropagating wavetrains, Nonlinearity 8 (1995), no.
5, 769-779.

W. Schlag, Spectral theory and nonlinear partial differential equations:
a survey, Discr. Cont. Dyn. Syst. 15 (2006), no. 3, 703—-723.



134

36.

37.

38.

39.

40.

41.

Anatoli Babin and Alexander Figotin

G. Schneider, Justification of modulation equations for hyperbolic sys-
tems via normal forms, NoDEA, Nonlinear Differ. Equ. Appl. 5 (1998),
no. 1, 69-82.

G. Schneider, Justification and failure of the nonlinear Schrédinger
equation wn case of non-trivial quadratic resonances, J. Differ. Equa-
tions 216 (2005), no. 2, 354-386.

G. Schneider and H. Uecker, Ezistence and stability of modulating pulse
solutions in Mazwell’s equations describing nonlinear optics, Z.. Angew.
Math. Phys. 54 (2003), no. 4, 677-712.

C. Sulem and P.-L. Sulem, The Nonlinear Schrodinger Equation,
Springer, 1999.

A. Soffer and M. 1. Weinstein, Resonances, radiation damping and in-
stability in Hamiltonian nonlinear wave equations, Invent. Math. 136
(1999), no. 1, 9-74.

G. Whitham, Linear and Nonlinear Waves, John Wiley and Sons, 1974.



Attractors for Nonautonomous
Navier—Stokes System and

Other Partial Differential Equations

Vladimir Chepyzhov

Institute for Information Transmission Problems RAS
Moscow, Russia

Mark Vishik

Institute for Information Transmission Problems RAS
Moscow, Russia

General methods for constructing and studying global attractors of nonautonomo-
us evolution partial differential equations are presented. The nonautonomous
2D Navier—Stokes system with time-dependent external force serves as the main
example. The Kolmogorov e-entropy and fractal dimension of global attractors
are considered for this system and other important equations in mathematical
psychics. The convergence of global attractors of nonautotnomous equations with
singularly oscillating terms to attractors of the corresponding “limit” equations is
also established. Bibliography: 136 titles.

Introduction
One of the major mathematical aspect in the study of evolution equations
arising in different areas of mechanics and physics is the study of the final
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behavior of solutions when time is large or tends to infinity. The related im-
portant question concerns the stability of solutions as ¢ — +oo or the nature
of instability if a solution is unstable in some sense. Over the last decades,
considerable progress has been achieved in the study of autonomous partial
differential equations. For many basic autonomous evolution equations in
mathematical physics it was shown that the long time behavior of solutions
is characterized by finite-dimensional global attractors (see, for example,
[119, 91, 9, 68, 40, 115] and the references therein).

Nonautonomous evolution partial differential equations and their glob-
al attractors are less studied. However, in the last decade, a notable advance
was made in this perspective area of mathematical researches. In particular,
the global attractor was constructed and studied for the nonautonomous
2D Navier—Stokes system with external force depending on time t. We note
that the process {U(t,7)} :={U(¢,7) | t = 7; t,7 € R} corresponds to this
system. The mapping U(t,7) acts by the formula u(7) — U(t, 7)u(r) :=
u(t), where u(t) is a solution of the Navier—Stokes system with initial data
u(7). The process {U(t,7)} is a two-parameter family of mappings acting
in the phase space of the evolution equation. Therefore, the study of the
behavior of solutions u(t) of the nonautonomous evolution equation as ¢ —
+00o is equivalent to the study of the corresponding process {U(t,7)} as
t — +00. Thus, in the study of solutions u(t) of nonautonomous equations,
the processes {U(t,7)} play the same role as the semigroups {S(t),t > 0}
in the study of solutions u(t) of autonomous equations as ¢t — +oo.

In this paper, we deal with nonautonomous partial differential equa-
tions and the corresponding processes {U(¢,7)}. Particular emphasis is
placed to the study of the global attractor of the nonautonomous 2D Navier—
Stokes system.

In Section 1, we sketch out the general theory of global attractors of
semigroups and consider some basic autonomous equations in mathematical
physics. We also consider questions related to the dimension and e-entropy
of invariant sets and present upper estimates for the fractal dimension and
the e-entropy of global attractors of autonomous equations. We derive such
estimates for the 2D Navier—Stokes system, the dissipative wave equation,
and the complex Ginzburg-Landau equation.

In Section 2, we study the uniform global attractors of general processes
and nonautonomous equations. We note that, studying global attractors of
such equations, there is a good reason to introduce a notion of the time sym-
bol o(t). The time symbol of a nonautonomous equation is the collection of
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all time-dependent terms of this equation. Along with solution dynamics,
we study the symbol dynamics as t — 4o0.

In Section 2, we formulate results concerning the existence of the uni-
form global attractor A of the process {U, (¢, 7)} corresponding to a nonau-
tonomous equation with translation compact symbol o(t). We also present a
theorem on the structure of the set A. Then we consider the uniform global
attractor A of the 2D Navier—Stokes system with time-dependent external
force that is the symbol of this system. We study in detail the case, where
the system has a unique bounded complete solution {z(t),t € R} attracting
all other solutions {u(t),t > 7} of the 2D Navier—Stokes system as t — ~+oo
with exponential rate. Similar problems for a nonautonomous dissipative
wave equation and the nonautonomous Ginzburg-Landau equation are also
considered.

Many important questions related to the global attractors of nonau-
tonomous equations and the corresponding processes were discussed, for
example, in [73, 68, 34, 115] (see also the references therein), and in many
papers cited in the Bibliography to this paper.

As is known, the fractal dimension of the global attractor of a general
nonautonomous partial differential equation can be infinite (see, the exam-
ple at the end of Section 2). However, the e-entropy of the global attractor
is always finite since the attractor is a compact set.

In Section 3, we present estimates for the e-entropy of global attrac-
tors of nonautonomous equations with translation compact symbols. We
also consider applications to the nonautonomous 2D Navier—Stokes system
and some other equations in mathematical physics. A particular attention
is devoted to the case, where, for example, the external force of the 2D
Navier—Stokes system is a quasiperiodic function in time with k rationally
independent frequencies. In this case, the global attractor has finite fractal
dimension and the upper estimate for its dimension has a summand k. This
means that the fractal dimension can grow with no limit as k — oco. The
corresponding examples are given.

In Section 4, we study the global attractor A, of the 2D Navier—Stokes
system with singularly oscillating external force of the form

go(x,t) +e Pqi(z/e,t), 0<p<1l, 0<e<l.

The behavior of A, as € — 0+ is discussed. A similar problem is studied in
Section 5 for the nonautonomous complex Ginzburg-Landau equation.
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1. Attractors of Autonomous Equations

In this section, we briefly present fundamental results concerning the global
attractors of semigroups corresponding to autonomous evolution equations.
Details can be found in many books on infinite-dimensional dynamical sys-
tems and attractors (see, for example, [74, 119, 68, 9, 91, 122, 50, 38,
61, 112, 115, 34]).

1.1. Semigroups and global attractors.

We consider a general (nonlinear) semigroup {S(¢)} acting on E, where E
is a complete metric space or a Banach space. In particular, E can be a
closed subset of a Banach space.

Definition 1.1. A family of mappings S(¢) : E — E depending on
the real parameter (time) ¢ > 0 is called a semigroup acting on E and is
denoted by {S(¢)} if it satisfies the semigroup identity

S(tl)S(tQ) = S(tl + tz) Vi1, to =0 (11)

and
5(0) = Id. (1.2)

Hereinafter, Id denotes the identity operator. If S(t) is defined for any
real ¢ and the identity (1.1) holds for any ¢;,t2 € R, the {S(¢)} is called a
group.

Assume that a semigroup {S(¢)} acts in a complete metric space or a
Banach space E. Let B(E) be the collection of all bounded sets in E with
respect to the metric in F.

A semigroup {S(¢)} is said to be (E, E)-bounded if S(t)B € B(FE)
for all B € B(E) and ¢ > 0. A semigroup {S(t)} is said to be uniformly
(E, E)-bounded if for every B € B(FE) there exists By € B(E) such that
S(t)B C By for all t > 0.

We will consider dissipative dynamical systems. In application to gen-
eral semigroups, the dissipation property means the existence of bounded
or compact absorbing or attracting sets.

A set By C E is said to be absorbing for a semigroup {S(t)} if for
every B € B(E) there exists T' = T'(B) > 0 such that S(t)B C By for all
t>T. Aset PC FE is said to be attracting for {S(t)} if for any B € B(E)
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we have distg(S(t)B, P) — 0 as t — 400, where
distg(X,Y) =sup inf ||y —z|g, X, Y CE, (1.3)
zeX YEY

is the Hausdorff (nonsymmetric) distance between sets X and Y. It is clear
that any absorbing set is attracting.

A semigroup {S(¢)} is said to be compact if there exists a compact
absorbing set P € E for {S(t)} and asymptotically compact if there exists
a compact attracting set K € E. These notions reflect the dissipativity of
dynamical systems under consideration.

A semigroup {S(¢)} is (E, E)-continuous if every mapping S(t), t > 0,
is continuous from F into E.

The behavior of a semigroup {S(¢)} as t — 400 can be described in
terms of global attractors.

Definition 1.2. A set A € B(FE) is called a global attractor for {S(t)}
if it possesses the following properties:

1) A is compact in E (A € E),

2) A is an attracting set for {S(¢)}, i.e., distg(S(t)B, A) — 0 as t —
+oo for every B € B(E),

3) A is strictly invariant with respect to {S(¢)}, i.e., S(t)A = A for
all ¢ > 0.

As was shown in [9], the global attractor A for {S(¢)} is the maximal
bounded invariant set for {S(¢)} (see also [88, 89, 91]). This means the
following: if Y € B(E) and S(t)Y =Y for all t > 0, then Y C A. This
implies, in particular, the uniqueness of a global attractor for {S(¢)}.

Definition 1.3. For a bounded set B € B(E) the set
wB)= [ U S(t)B}E (1.4)
h>0  t>h

is called an w-limit set for B. Here, [-]g denotes the closure in E.

We formulate the classical attractor existence theorem.

Theorem 1.1. Let {S(t)} be a continuous semigroup in a complete
metric space E, and let {S(t)} have a compact attracting set K € E. Then
{S(t)} has a global attractor A (A C K). The attractor A coincides with
w(K): A=w(K). (If E is a Banach space, then the set A is connected).
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The proof can be found, for example, in [9, 119].

We need one more notion to describe the general structure of a global
attractor. A curve u(s), s € R, is called a complete trajectory of a semigroup
{S(1)} if

Sthu(s) =u(t+s) VseR, teR,. (1.5)

Definition 1.4. The kernel K of a semigroup {S(¢)} consists of all
bounded complete trajectories of {S(¢)}:

K = {u(:) | u(s) satisfies (1.5) and ||u(s)||g < C,, for s € R}.

Definition 1.5. The kernel section at time s € R is the set in F
defined by the formula K(s) = {u(s) | u € K}.

Remark 1.1. The kernel K of {S(¢)} corresponding to an autonomous
equation (see Section 1.2) consists of all solutions u(t) that are determined
on the entire time-axis {¢t € R} that are bounded in E. The kernel includes
equilibrium points, as well as periodic, quasiperiodic, and almost periodic
orbits. Heteroclinic and homoclinic orbits belong to K and, in general, the
structure of IC can be extremely complicated even with chaotic behavior of
its elements.

Theorem 1.2. Under the assumptions of Theorem 1.1, the global at-
tractor A of the semigroup {S(t)} coincides with the kernel section

A = K(0), (1.6)

where 0 can be replaced with any s € R.

The proof can be found, for example, in [9].

In the following sections, we apply Theorems 1.1 and 1.2 to different
semigroups {S(t)} corresponding to different partial differential equations
in mathematical physics.

1.2. Cauchy problem and corresponding semigroup.

For the sake of simplicity, we suppose that F is a Banach space. Let {S(¢)}
act on the entire Banach space E. Such semigroups are usually generated
by evolution equations of the form

Ou = A(u), (1.7)

where A is a (nonlinear) operator defined on a Banach space F; and A
maps F into a Banach space Ey. We suppose that £y C E C Ey, where
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all the embeddings are dense. We now construct the semigroup {S(t)}
corresponding to Equation (1.7) and acting on FE.

Assume that for arbitrary vy € F Equation (1.7) with initial data
u|t:0 = Up (18)

has a unique solution w(t), ¢ > 0, such that u(¢t) € E for all ¢ > 0. The
meaning of the expression “u(t) is a solution of the Cauchy problem (1.7),
(1.8)” should be clarified in each particular case. Usually, for every fixed
T > 0 the solutions u(t), 0 < t < T, of (1.7) are taken from the class Fr
of functions such that u(-) € Lo (0,T;E) and u(-) € L,(0,T; Ey), where
E; is the Banach space on which the operator A is defined and 1 < p <
0o. Moreover, A(u(-)) € Lq4(0,T; Ep) for some 1 < ¢ < oo and du(-) €
L,(0,T; Ey) (the derivative is taken in the sense of distributions). In this
case, Equation (1.7) is understood as equality in L4(0,T; Ep). Thus, u(¢)
satisfies (1.7) in the sense of distributions in D’(]0,T[; Ey) (see [96, 9] for
details). Using embedding theorems (see, for example, [95, 117]), one can
show that u(t) € C,,([0,T]; E) and even u(t) € C([0,T]; E) and (1.8) makes
sense: u(t) — up weakly or strongly in E as t — 0+ . Moreover, u(t) € E
for every t € [0, T]. In special cases, it is convenient to take the space Ej
sufficiently large since the extension of F does not cause any difficulties, but
facilitates the verification of the conditions A(u) € Ey and Oiu € Ey.

The operators S(t) : E — E generated by Equation (1.7) are usually
defined as follows. For arbitrary ug € E we consider the solution u(t), t > 0,
of the problem (1.7), (1.8). For all 7 > 0 the element u(7) of the space E is
uniquely determined. Therefore, the formula

S(7) : ug = uli=o — ult=r (1.9)

defines the family of mappings {S(7), 7 > 0}, S(r) : E — E. These
mappings form a semigroup. Indeed, suppose that vy € E, v1 = S(¢1)vo,
t;1 > 0, and vo = S(ta + t1)vo, t2 > 0. It is obvious that vy, v; and vy are
the values of the solution u(-) € Fiyqy, at t = 0, ¢t = t1, and t = to + &4
respectively. Consider the function ui(t) = u(t + t1), ¢ € [0,t2]. Since
u(+) € Fiytey, it follows that ui(-) € Fy,. It is clear that uq(¢) is a solution
of Equation (1.7). It is obvious that wui|i=p = v1 and wq|i=, = vo, i.e.,
ve = S(t)vy by the definition of {S(¢)}. Hence S(t2)S(t1)vo = S(t2 + t1)vo
for all vg € E and the semigroup identity (1.1) is proved.

Below, for particular equations of the form (1.7) we only formulate
the existence and uniqueness theorems and specify a space or a set where
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the semigroup {S(t)} acts. We assume that operators S(t) are defined by
formula (1.9).

1.3. Global attractors for autonomous equations.

1.3.1. 2D Navier—Stokes system. The Navier-Stokes system is prob-
ably the most popular example of a partial differential equation having a
global attractor. A considerable part of the theory of infinite-dimensional
dynamical systems has been developed from this example.

We consider the autonomous 2D Navier—Stokes system in a bounded
domain 2 € R?

Oyu + Z w0y, u = vAu — Vp + g(z),

(1.10)
(V, u) = 0 ulon =0, (x1,22) € £,

where u = u(x,t) = (u'(z,t),u?(z,t)) is the velocity vector, the scalar

function p = p( 775) is the pressure, v is the kinematic viscosity coefficient,

and g = g(z) = (¢'(x), g*(x)) is the forcing term.

We denote by H and V = H! the closure of the set V = {v | v €
(C§°(2))2, (V,v) = 0} in the norms |- | and || - || of the spaces (L2(Q))?
and (HE(9))? respectively. Recall that

ol = 190 = 3 [ (o).
=1 ¢

2

We denote by P the orthogonal projection from (L2(2))? onto H or an

extension of H.

Excluding the pressure, we can write the system (1.10) in the form

Opu + vLu + B(u,u) = go(x), (1.11)

2
where L = —PA, B(u,v) = P Y u'd,,v, go = Pg.

i=1

Denote by V' = V* the dual of V. The Stokes operator L, considered

as an operator on V N (H%(Q))?, is positive and selfadjoint. The minimal

eigenvalue \; of L is positive. Suppose that ¢g(-) € H. The initial conditions
are posed at t =0 :

Uli=0 = uo(x), wuo € H. (1.12)

The operator L is a bounded operator from V into V’.



Attractors for Nonautonomous Navier—Stokes System 143

Consider the trilinear continuous on V form
2
b(u,v,w) = (B(u,v),w) = Z u' 0y, 07w da,
o Bi=1

where the operator B maps V x V into V’. The form b satisfies the identities

b(u,v,v) =0, blu,v,w) = —b(u,w,v) Yu,v,weV (1.13)
and the estimate (see [87, 117])
[b(u, u, )| < cglulllull[lv]] Yu,v eV, (1.14)

where the constant ¢y can be taken from the inequality
1 llzay < lfIV2IVA2, f € Hy(Q), co =c. (1.15)
The constant ¢ (and ¢) is independent of €. In particular, from (1.14) it
follows that
|B(u, w)lv < cflullful.
Thus, if v € L2(0,7;V) N Loo(0,T; H), then —vLu — B(u,u) + g(z) €
L2(0,T; V"), Equation (1.11) can be considered in the sense of distributions
in the space D'(0,T; V"), and du € Lo(0,T; V).
Proposition 1.1. The problem (1.11), (1.12) has a unique solution
u(t) € C(Ry; H) N LPS(Ry; V), Gu € LSR5 V'), and the following
estimates hold:

u®)? < [u(0)Pe™ + 172272 g|?, (1.16)

u(®)* + V/ lu(s)|*ds < u(0)* +t~ A7 g[?, (1.17)
0

tlu®)|* < C(t [u(0)), (1.18)

where A = A1 is the first eigenvalue of the Stokes operator L and C(z, R) is
a monotone continuous functions of z =1t and R.

The existence and uniqueness theorem is a classical result. A detailed
proof can be found in [87, 96, 117, 9, 40].

Thus, there exists a semigroup {S(¢)} acting in H, i.e., S(¢t): H — H
for ¢ > 0, and corresponding to the problem (1.11), (1.12), i.e., S(¢t)ug =
u(t), where u(t) is a solution of (1.11), (1.12).

Proposition 1.2. The semigroup {S(t)} corresponding to the problem
(1.11), (1.12) is uniformly (H, H)-bounded, compact, and (H, H)-continuous.
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A detailed proof can be found, for example, in [9, 119]. The existence
of a bounded absorbing set follows from (1.16) (see also Section 2.6.1 below,
where a nonautonomous system is considered). By Propositions 1.1 and 1.2,
the semigroup {S(t)} satisfies all the assumptions of Theorem 1.2.

Theorem 1.3. The semigroup {S(t)} corresponding to the problem
(1.11), (1.12) has a global attractor A which is compact in H and coincides
with the kernel section, i.e., A= K(0).

Introduce a dimensionless number, called the (generalized) Grashof
number, by the formula
lg]
I/2>\1 '

It plays an important role in the analysis of the structure of \A.

Proposition 1.3. Suppose that
G<1/c, (1.19)

where ¢q is the constant from the inequality (1.14). Then FEquation (1.11)
has a unique stationary solution z € V', and this solution is globally asymp-
totically stable, i.e., A= {z}.

ProoF. It is well known that Equation (1.11) has a stationary solution
z (see, for example [117]), vLz + B(z,z) = g. By (1.17),

2l = 922 < 4T (1.20)
NS .
Every solution u(t) of Equation (1.11) can be written as u(t) = z + v(t),
where v(t) satisfies the equation

O +vLv + B(v,v) + B(v, 2) + B(z,v) = 0.
Multiplying by v and using (1.14), (1.13), the inequality |v| < )\1_1/2
and (1.20), we find
3dﬂ2+2VWM2=25@11z)<2%hMWMVH

—1/2 —
AP IRl < v glllv)*.

[[oll,

Finally,
Oelvf® +2(v — AT v gl l|v]1? <

Hence
Ailu(t)? + alu(t)]* <0,
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lgl
l/2>\1

()] = [u(t) — 2> < u(0) — 227",

Consequently, the stationary solution is unique and asymptotically stable,

and A = {z}. O

Remark 1.2. The inequality (1.15) was originally proved with ¢ <

16 \ 1/4
21/4 in [87]. It is known [109] that ¢ < (7) . As was shown in [16],
Qo
8

the constant ¢3 in (1.14) can be taken as c§ = - (F
b

V2
the attractor A is trivial if G < 3.2562.

If the Grashof number G = 9]
I/2>\1

Stokes system can tend, as t — +o00, to an attracting set much more com-
plicated than a stationary solution. Such a situation is plausible by the
physical evidence and simulation results. Respectively, the structure of the
global attractor A can be very complicated and, possibly, chaotic (see, for
example, [58, 59, 60]). In Section 1.4.2, we study upper bounds for the
dimension of the global attractors of the Navier—Stokes equations which de-
pend of the Grashof numbers. Roughly speaking, flows can be described by
a finite (possibly, very large) number of parameters, despite the fact that
the system is infinite-dimensional.

where o = 2(v — 2\ 'v 7 g|)AT! > 0 since =G < ¢ . This implies

1/2
) . Therefore,

is large, the solutions of the Navier—

1.3.2. Wave equation with dissipation. We consider the hyperbolic
equation

O2u+you = Au — f(u) + g(x), ulpg =0, € Q € R™, (1.21)

with the damping (dissipation) term vd,u, v > 0. We assume that g €
L>() and the nonlinear function f(v) € C!(R) satisfies the conditions

F(v) = —mv® — Gy, F(v) = /f(u})dw7 (1.22)
0

fo - F@) +mv? > —-C, VveR, (1.23)
where m > 0, v1 > 0, and m is sufficiently small (m < A1, where \; is the
first eigenvalue of the operator —A with zero boundary conditions).

Remark 1.3. The conditions (1.22) and (1.23) are satisfied, for ex-
ample, if
>0, liminf L0 —NF0)

|[v|—o00 v

llir‘n inf > 0. (1.24)
v|—00 v
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Assume that p is positive and p < 2/(n—2) for n > 3 and p is arbitrary
for n = 1,2. We also assume that

/()] < Co(1 + [u]?). (1.25)

The case p < 2/(n — 2) for Equation (1.21) was studied in [71, 64]
and other works. The case p = 2/(n — 2) was considered in [9, 90, 2] (see
also [55, 66, 111]). Here, we discuss the case p < 2/(n — 2).

Remark 1.4. Nonlinear hyperbolic equations of type (1.21) appear
in many branches of physics. For example, the dynamics of a Josephson
junction driven by a current source is simulated by the sine-Gordon equation
of the form (1.21) with

f(u) = Bsinu.
It is clear that the inequality (1.24) holds. Another important example is
encountered in relativistic quantum mechanics with the nonlinear term

fu) = [ulfu.
In this case, F(u) = |u[’™2/(p + 2) and the inequality (1.24) holds with
v =1/(p+2) (see [119] and the references therein).

From (1.25) it follows that

|f(0)] < CL(L + [ul”*). (1.26)
By the Sobolev embedding theorem,
H3(9) C L(pi1)(Q). (1.27)

For n = 1,2 it is valid for any p. For n > 3, by the above assumptions,
2(p+1) < 2n/(n — 2), where 2n/(n — 2) is the critical exponent in the
Sobolev embedding theorem.

Suppose that u € Loo(0,T; H}(2)) and dyu € Loo(0,T; La(£2)). Then
Au € Loo(0,T; H1(Q)) and f(u) € Loo(0,T;5L2(Q)) in view of (1.27).
Therefore, —ydu + Au — f(u) + g(z) € Loo(0,T; H1(Q)) and Equa-
tion (1.21) can be considered in the sense of distributions in the space
D'(0,T; H-1(2)). In particular, 0?u € Lo (0,75 H=(Q)) (see [96]).

The initial conditions are posed at ¢t = O:
ult—o = uo(x), Opuli=o = po(z). (1.28)

Proposition 1.4. If ug € H}(Q) and py € L2(RY), then, under the
above assumptions, the problem (1.21), (1.28) has a unique solution u(t) €
C(Ry; HY(9), u(t) € O(Ry; Lo(2)), GRult) € Log(Re; H(9).
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We write y(t) = (u(t), dyu(t)) = (u(t),p(t)), yo = (uo,po) = y(0)
for brevity. We denote by E the space of vector-valued functions y(z) =
(u(z), p(z)) with finite energy norm ||y||% = |Vul? + [p|? in E = H}(Q) x
L2(92). Then y(t) € E for every t > 0.

The unique solvability of the problem (1.21), (1.28) in the energy space
E and properties of solutions are established in [96, 9, 119, 68] (see also
[34] for more general cases).

The problem (1.21), (1.28) is equivalent to the problem
dru = p,
Op=—yp+Au— f(u)+y,
ult=0 = uo, Pli=0 = Po,

which can be written in the short form as

Ay = A(y), yli=o0 = vo- (1.29)
Thus, if yo € E, then the problem (1.21), (1.28) has a unique solution
y(t) € Cp(R4; E). This means that the semigroup {S(t)}, S(t)yo = y(¢), is
defined in .

Proposition 1.5. The semigroup {S(t)} corresponding to the problem
(1.21), (1.28) is bounded, asymptotically compact, and (E, E)-continuous.

We will come back to this assertion in Section 2.6.2, where more gen-
eral nonautonomous hyperbolic equations are considered.

Theorem 1.2 and Proposition 1.5 imply the following assertion.

Theorem 1.4. The semigroup {S(t)} corresponding to the problem
(1.21), (1.28) has a global attractor A which is compact in E and coincides
with the kernel section, i.e., A= K(0).

1.3.3. Ginzburg—Landau equation. This equation serves as a model in
many areas of physics and mechanics [84, 86], for example, in the theory of
superconductivity. The complex Ginzburg-Landau equation has the form

Owu = (1 + ai)Au+ Ru — (1 +iB)|ul*u, =€ Qe R" (1.30)

We consider the case of periodic boundary conditions in © =]0, 27 [ or zero
boundary conditions u|gpo = 0 in an arbitrary domain Q@ € R™. In (1.30),
u = u +iu?, o, B € R are the dispersion parameters, and R > 0 is the
instability parameter. For u = (u!,u?)" we have

atul = Aul — aAu2 + Rul — (|U1|2 + |U1|2)(U1 - 5“2),

1.31
0wu? = aAu' + Au? + Ru® — (Ju']? + [u']?)(Bu' + u?) (1.31)
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or, shortly,
Opu = aAu+Ru — f(u), (1.32)

(1 —a e (1 =P . .
where a = (a 1 ) and f(u) = |u] (ﬂ 1 )u. Consider the Jacobi

matrix of f(u)
fu(u)

_ ( 3(u)? —2B(u")(w?) + (u?)?  —B(u')? +2(u?)(u') - 36(u2)2>
30(u)? +2(u?)(ul) + B(u?)?  (u')? +2B(ul)(u?) +3(u?)* -
(1.33)

Denote by B the matrix of the bilinear form corresponding to the matrix
on the right-hand side of (1.33):

= (S T2 T B ) g
Blu)? +2(u?)(ut) — B(u?)?  (u')? +2B(u')(u?) + 3(u?)?
The diagonal elements of B are positive if |3] < v/3. Moreover,
det B= (3~ 3%)((u')? + (u*)*) = (3 = 5%)[u/*
is also positive. Thus, the matrix B is positive definite. Therefore,
fu(u)v-v = 0Vvu,v e R? (1.34)
if |8] < V3.

We use the spaces H = Ly(Q;C), V = H}(Q;C), and Ly = L4(Q2; C).
The Cauchy problem for Equation (1.32) with initial data

uli—p = up(z), ug(-) € H, (1.35)
has a unique weak solution u(t) :=

u() € C(Ry: H) N LE®

u(z,t) such that

(R+5V) N L*(Ry; Ly), (1.36)
and u(t) satisfies Equation (1.32) in the sense of distributions in the space
D'(Ry;H™™), where H" = H "(Q;C) and r = max{1,n/4} (recall that
n = dim(Q)). In particular, dyu(-) € La(0, M; H™ 1) + Ly/3(0, M;Lyy3) for
any M > 0. The existence of such a solution u(¢) can be proved, for example,
by the Galerkin approximation method (see, for example, [119, 9, 34]).
The proof of the uniqueness theorem is also standard and relies on the
inequality (1.34). If (1.34) fails, the uniqueness theorem for n > 3 and
arbitrary values of the dispersion parameters a and (§ was not proved yet
(see [101, 102, 136] for known uniqueness results).
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Any solution u(t),t > 0, of (1.32) satisfies the differential identity

1d
@] + [Va@®* + a5, - Rllu@|*=0 vt=0, (137

2dt
where the real-valued function [[u(t)||? is absolutely continuous for ¢ > 0.
Here, || - || denotes the Lg-norm in H.

The proof of (1.37) is similar to that of the identity for weak solutions
of the reaction—diffusion systems considered in [32, 34, 129].

Equation (1.32) generates a semigroup {S(¢)} in H which is (H, H)-
continuous and compact (see, for example, [119, 34]). By Theorem 1.1,
there exists a global attractor A of this semigroup. It describes the long
time behavior of solutions of the Ginzburg—Landau equation. As is known,
the dynamics of this system is chaotic for certain values of parameters, for
example, a3 < 0 (see [10, 46]). However, in Section 1.4.2, we show that
the dimension of the global attractor of the Ginzburg—Landau equation is
finite.

We consider the case |3| > /3, where (1.34) is not longer valid. If
n = 1,2, it is still possible to construct a semigroup in H = (L2(92))? with
a compact global attractor (see [63, 119]). If n > 3, it is possible to prove
the existence of a global attractor in L, = (L,())?, p > n, provided that
(o, B) € P(n), where P(n) is a subset of C (see [46, 47, 103, 101] for
details).

Thus, we see that if (1.34) fails and |3 < v/3, there is an obstacle for
constructing a semigroup and studying a global attractor. Fortunately, this
obstacle can be removed by using another approach based on the so-called
trajectory attractors (see [34, 129]). In particular, this method works for
the Ginzburg-Landau equation with arbitrary n, a, and (.

The inhomogeneous Ginzburg-Landau equation
0w = (1 + ai)Au + Ru — (1 +iB)|ul?u+ g(x), g € L2(Q;C),

is also considered in applications, where, for example, g(z) = § exp(ik - x),
k € Z™, 6 > 0. This equation generates a semigroup, and Theorem 1.1 is
applicable.

1.4. Dimension of global attractors.

In this section, we present some known results concerning the dimension
of global attractors of autonomous evolution equations. Upper and lower
dimension estimates are discussed in detail in [119] and [9] (see also [37, 3]).
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1.4.1. Dimension of invariant sets. We define the Kolmogorov e-
entropy of a compact set X in a Hilbert (Banach) space E. We denote by
N.(X,E) = N.(X) the minimum number of open balls in F with radius ¢
which is necessary to cover X :

N.(X) = {minN X GB(I‘i7E)}.
=1

Here, B(x;,e) = {x € E | ||z — 24||p < €} is the ball in F with center x;
and radius e. Since the set X is compact, N.(X) < +o0o for any € > 0.

Definition 1.6. The Kolmogorov e-entropy of a set X in the space E
is the number

H.(X,E) := H.(X) := logy N.(X). (1.38)

For particular sets X, the problem is to study the asymptotic behavior
of H.(X) as ¢ — 0 + . This characteristic of compact sets was originally
introduced by Kolmogorov and was studied in [83], where the e-entropy
was considered for different classes of functions. An important notion of
the entropy dimension of a compact set was also introduced there. This
dimension is often referred to as the fractal dimension.

Definition 1.7. The (upper) fractal dimension of a compact set X
in E is the number

dp(X, B) = dp(X) = limsup—e)

e—0+ logy(1/e) (1.39)

The fractal dimension of a compact set in an infinite-dimensional
space can be infinite. However, if 0 < dp(X) < 400, then H.(X) =~
dr(X)log,(1/¢). Therefore, in this case, N.(X) ~ (1/)37(X) points are
required for approximating the set X with accuracy e.

Another important characteristic of a compact set X is the Hausdorff
dimension

dy(X) :=inf{d | u(X,d) = 0},

where p(X,d) = inf > 7% and the infimum is taken over all coverings of
the set X by balls B(z;,r;) with radii r; < e (see [120]). Apparently,
dy(X) < dp(X), and there are examples of sets such that dg(X) = 0 but
dF (X) = +00.

In this paper, we deal only with the fractal dimension because it is
closely connected with the e-entropy of compact sets.
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Remark 1.5. The fractal and Hausdorff dimensions are very useful
for studying the structure of “nonsmooth” sets, for example, the selfsimilar
sets or fractals. The simplest example of such a set is the Cantor set K on
the segment [0, 1] for which dp(K) = dg(K) = logz 2 < 1. For a compact
smooth manifold the fractal (and Hausdorfl') dimension is equal to the usual
dimension and thereby is an integer. The example of the Cantor set shows
that the fractal dimension is not necessarily integer.

Consider the e-entropy and fractal dimension of strictly invariant sets
and global attractors of autonomous evolution equations of the form (1.7).
Let the Cauchy problem (1.7), (1.8) generate a semigroup {S(¢)} acting in
a Hilbert space E (see Section 1.1). Counsider a compact set X € E. Let
the set X be strictly invariant with respect to {S(¢)}, i.e., S(¢)X = X for
all t > 0. (For example, X = A, where A is the global attractor.) We
assume that the semigroup {S(¢)} is uniformly quasidifferentiable on X in
the following sense: for any ¢t > 0, u € X there is a linear bounded operator
(quastidifferential) L(t,u) : E'— E such that

[S(t)vr = S(t)v — Lt u)(vr — v)[le < v(lvr = vlle, t)vr —vlp  (1.40)

for all v,v; € X and v = v(§,t) — 0+ as & — 0+ for every fixed t > 0.
Assume that the linear operators L(t,u) are generated by the variational
equation for (1.7) which we write in the form

O = Ay (u(t))v, v|i=o =vo € E, (1.41)

where u(t) = S(t)uo, uo € X, Ay,(-) is the formal derivative in w of the
operator A(+) in (1.7) and the domain E; of the operator A, (u(t)) is dense
in E. We also assume that for every uy € X the linear problem (1.41)
is uniquely solvable for all vg € E. By assumption, the quasidifferentials
L(t,up) in (1.40) act on a vector vg by the rule L(¢, ug)vg = v(t), where v(t)
is a solution of Equation (1.41) with initial data vg.

Let j € N, and let L : E; — FE be a linear (possibly, unbounded)
operator. The j-trace of the operator L is the number

J
Tr;L:= sup Z(Lg@i7api), (1.42)
{eitioyi=1

where the infimum is taken over all orthonormal in E families of vectors
{¢i}ti=1,...,; belonging to E; and (¢, ¢) denotes the inner product of ¢ and
pin F.
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Definition 1.8. We set
T

~ 1
gj :=limsup sup — /TrjAu(u(t))dt7 j=12,..., (1.43)
T—+oo upeX T

where u(t) = S(t)ug.

Theorem 1.5. Suppose that a semigroup {S(t)} acting in E has a
compact strictly invariant set X and is uniformly quasidifferentiable on X.
Let q; < qj, j =1,2,3,..., where g; are defined in (1.43). Suppose that g;
is concave in j (like N). Let m be the smallest integer such that ¢ni1 < 0
(then, clearly, ¢, > 0). Let

d=m+—I (1.44)
dm — dm+1
Then X has the finite fractal dimension and
dp(X) < d. (1.45)

Furthermore, for every § > 0 there exist real numbers n € (0,1) and g9 > 0
such that for the e-entropy H.(X) of X the following estimate holds:

H.(X) < (d+9)logy(e0/ne) + Hey (X) Ve < gp. (1.46)

This theorem is proved in [34]. The proof is based on the study of
the volume contraction properties under the action of the quasidifferentials
of semigroup operators. Estimates, similar to (1.45), for the Hausdorff
dimension of invariant sets were first obtained [48] for a finite-dimensional
space E and then were generalized [41, 119] for an infinite-dimensional
space F (see also [76, 4, 9]).

We note that the estimate (1.46) for the e-entropy of A follows from
(1.45) and, in general, does not give any new information about global
attractors. However, in the study of nonautonomous equations (see Section
3), the estimates for the e-entropy of global attractors become more informal
and constitutive. This explains why the estimate (1.46) is included into this
key theorem.

Remark 1.6. In applications, the numbers g; are usually used in the
form ¢; = ¢(j), where ¢ = ¢(x), > 0, is a smooth concave function.
Consider the root d* of ¢, i.e., p(d*) = 0. It is obvious that d < d* since ¢
is concave. For large d the root d* is very close to d defined by (1.44). Since
d* is sometimes expressed in a simpler way than d, we will use d* instead
of d as the upper bound in (1.45) for the fractal dimension of attractors. In
this case, in (1.46), we can set 6 = d* — d if it is positive.
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Recently [16], the estimates (1.46) and (1.45) were proved for the exact
values ¢; = ¢; without the concavity assumption on g; in j. The so-called
(global) Lyapunov dimension of a set X (see [82, 49]) is defined by the
formula

dr, :=m+ #
dm — dm+1

The inequality dy (X) < dp(X) was proved in [48, 39, 119]. As was shown
n [16], dp(X) < dr(X). A similar result was obtained earlier in [12];
namely, it was proved that if g, < 0 for some m € N, then dp(X) < m (see
also [75]).

Many examples of evolution equations in mathematical physics and
mechanics are described in [9, 119, 68], where global attractors are also
constructed and upper estimates were proved for the Hausdorff dimension
and the fractal dimension of these attractors.

Further, we discuss fractal dimensions estimates for global attractors
of autonomous equations considered in Section 1.3.

1.4.2. Dimension estimates for autonomous equations.
2D Navier—Stokes system
We consider the 2D Navier—Stokes system
Opu = —vLu — B(u,u) + g, (V,u) =0, ulspg =0, (1.47)
Ult=0 = ug, ug € H, (1.48)

where g € H. The problem (1.47), (1.48) defines a semigroup {S(¢)} acting
in H (see Section 1.3.1). By Theorem 1.3, the semigroup {S(¢)} has a global
attractor A which is bounded in V' and is compact in H.

Theorem 1.6. The fractal dimension of the global attractor A of the
problem (1.47), (1.48) satisfies the estimate

lgl1€
dr A<c R (1.49)
where ¢ depends on the shape of Q (c¢(AQ) = ¢(Q) for all A > 0).
The Kolmogorov e-entropy of A satisfies the estimate
lgl1€ €0
H.(A) < 2 2 log, (%) FH., (A) Ve < e, (1.50)

where 1 and €9 are small positive numbers.
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PROOF. The semigroup {S(¢)} is uniformly quasidifferentiable on A
in H and the quasidifferential of {S(¢)} is the operator L(¢,ug)vo = v(t),
vo € H, where v(t) is a solution of the variation equation
0w = —vL — B(u(t),v) — B(v,u(t)) := Ay (u(t))v, v|t=0 = vo

(see [4, 9]). We need to estimate the j-trace of A, (u(t)). Note that for all
veV
(Au(u(t))v,v) = vlv]* = (B(v, u(t)),v) (1.51)
since (B(u,v),v) =0 for u,v € V.
Let ¢1,...,9; € V be an arbitrary orthonormal family in H. Using
(1.51), we find

J J
> (Au(ult))pi, o) :—VZIWZF > (Blgi,ult), i)
=1 =1
J 2
= —VZ|V<,0¢|2 —/ Z ©F 0, ul (t)plda
=1 =1 k,l=1

s

—VZ Voil? + / )| Vu(t) da

< —VZ IVeil® + |l Vu(t)], (1.52)
=1

where p(z) = zijl lpi(z)]? (see [41, 119]).

Since functions in V' vanish on 02 we can extend them by zero out-
side Q. Then we obtain functions ;(z), * € R2, in (H!(R?))? that are
orthonormal in (Lz(R?))2. The following result [94] is extremely important.

Lemma 1.1 (Lieb-Thirring inequality). Let ¢1,...,¢; € (H'(R™))™
be an orthonormal family of vectors in (Lo(R™))™. Then for

= leila))?
=1

the following estimate holds:

J
[ i < €y [ 19, (153
R i:IRn
where C, n, depends only on m and n.
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Remark 1.7. As was proved in [77], for m = 2, n = 2 one has
0272 < 2 if div Qi = 0.

By the variational principle,

J

Z|V§Di|2>)\1+>\2+...+)\j7 (1.54)
i=1
where A1, Ag, ... are the ordered eigenvalues of the operator L. It is known
that \; > Cy|Q|~%i. Therefore,
M4+ X E N 0'2 N & (1.55)
1 2 . / 2 1= 7470 .
7 Q) |€2]

where Cy, C7, and Cy are dimensionless constants depending on the shape
of Q (see, for example, [100]). Using (1.53) with Cso = 2, (1.54), and
(1.55), from (1.52) we find

J

d /
3 Vel + (2;|wi|2)1 V(o)

J -2
v 1/02] 1 9
QZX;IV%I VU < oo oIV
Thus,
vCoej? 1 5
Tr;(Ay < - — .
b (Au(u(t) < ~ T + V()

Using the estimate

/”u ||2d <| ()l |g|2t

1/2/\

(see (1.17)), we find

T

1

¢; = limsup sup — /Tfj(Au(“(t))dt
T—oco up€A T 5

vCoj? 1 5 gl?
< - Jim —— —.
oo A, pap Sup uol” 4 5

Since sup |ug|? < O3, we have
up €A

~ vCaj®  lgf?

UGS Ty

(1.56)
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Using the second estimate for A in (1.55), we find
~ vCei?  |g]?1Q]
; < — = = (..
qj 2|9 v3Ch #) =4

We note that the function ¢(j) is concave in j (like N). Looking for the

2 Q
root d* of the equation ¢(d) = 0, we find d* = /| =—- il | Hence (1.50)
0102 V2

and (1.49) immediately follow from Theorem 1.5 with ¢ = / % (see also

Remark 1.6). O

Remark 1.8. By (1.56), the estimate (1.49) takes the form
dr A< G, (1.57)

where G = |29)|\ is the Grashof number and ¢’ = 21/|2|A\1/C3 depends on
v\
the shape of Q. This estimate was proved in [39, 41] (see also [119]).

Remark 1.9. As was proved in [78], C; > 27, Cy > 7 in any domain
Q of finite measure. Therefore, the constant ¢ in (1.49) satisfies ¢ < 1/ and
for ¢ in (1.57) we have ¢/ < 24/|2A1 /7. These estimates were improved in
[16] as follows: ¢ < (27%/2)71 and ¢ < /[N /(V27).

Corollary 1.1. Let g € H. Then

1 gl (LY
dp A< Q)2 < : 1.58
r \/§7T(| A1) v o 2m3/2 2 (1.58)
We note that the last estimate in (1.58) contains only the explicit

physical parameters of system (1.47) and the estimate ¢ < (273/2)~! seems
the best up-to-date.

Remark 1.10. According to the proof of Proposition 1.3, A = {z}

1 2
9] < —. Since \; > —W, the

and, consequently, dp A = 0 if G = "W 2 Q

|9|| | 2 _

27
< — . Using the expression cfj =
c2
0

1/2
(%) (see Remark 1.2), we see that A = {z} and dr A = 0 provided

last inequality holds provided that

Igllﬂl (27773
“\72

Remark 1.11. The estimates (1.58) and (1.49) hold for the 2D Navier—
Stokes systems in unbounded domains with finite measure [78].

1/2
) ~ 20.46.
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Remark 1.12. For the 2D Navier—Stokes system (1.47) in = [0, 27]?
with periodic boundary conditions the estimate (1.57) was improved in [42]
(see also [119]). As was shown,

dr A< 'GP +10gQ), (1.59)

g
where G = WL

optimal in a sense (see [97, 135]).

(note that Ay = 1 in this case). The estimate (1.59) is

Dissipative wave equation

Consider the equation
O?u+you = Au — f(u) + g(z), ulogn =0, € Qe R (1.60)
where v > 0 (see Section 1.3.2). For brevity, we consider the case n = 3. We

assume that g(-) € La(Q), f(v) € C*(R;R), and f satisfies (1.22), (1.23),
and (1.25) with p < 2. We also assume that

[/ (01) = f'(02)] S C(loa 7 + Juaf*™° + 1)for — 02/’ 0< 5 <1 (1.61)

The Hilbert space E = H}(Q) x Ly(2) is the phase space for this
equation. We introduce the space E; = H?(Q) x H}(Q2) endowed with the
norm ||y|lz, = (||ul|3 + [|p||?)/2. We consider the semigroup {S(¢)} in F
generated by Equation (1.61). By Theorem 1.4, this semigroup has the
global attractor A € E. As was proved in [9, 119], the set A is bounded in
E1 :

lwlleg, <M YweA,
where the constant M is independent of w. By the Sobolev embedding
theorem,

luG)llo@ <My ¥V w=(u(-),p(-)) = w() € A (1.62)
We estimate dp.A using Theorem 1.5 and the technique described in
[64] (see also [119, 34]).

Theorem 1.7. For the fractal dimension of the global attractor A of
Equation (1.60) the following estimate holds:

dFA S %7

where o = min{y/4, A\1/(27v)} and C = C(Mn) (see (1.62)).
For the e-entropy of A the following estimate holds:

(1.63)

C (M) €0
H.(A) < 3 log, <%> +H. (A) Ve<eo, (1.64)
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where 1, €9 are some positive numbers.

PROOF. As in [64, 119], introduce the new variables w = (u,v)=
Roy = (u,ur + au) and vy = Owu, o = min{vy/4,\1/(27)}, where \; is
the first eigenvalue of the operator —Au, ulspq = 0. In these variables,
Equation (1.60) takes the form

dw = Low — G(w) =: Aqw, w|i=p = wo, (1.65)

where wgy € E,

—al I _ ol
L“:(A+aW— <47_aﬂ)v<%w%—mj<> g(x).  (1.66)

)

By (1.61), the operators {S(t)} are uniformly quasidifferentiable on A
and the quasidifferentials L(¢, wg)zo = 2z(t) satisfy the variation equation of
the problem (1.65):

Oz = Loz — Gy(w)z =: Agw(w(t))z, z|t=0 = 20, (1.67)

where z = (r,q) and Gy (w(t))z = (0, f'(u(t))r) (see, for example, [119]).
Let us estimate the sum

> (Aaw@(t)Gi, G e (1.68)
i=1

where (; = (r;,¢;) is an arbitrary orthonormal family in F. We have
(Aaw (w(t))Gi, 6B = (Lais G) — (f (w)ri, 4:) < —(/2) |Gl B
+Co(M)lrillollgillo < —a/4(llrilIF + lla:l1) + (C1(My)/a)|lril3.  (1.69)

The parameter « is chosen in such a way that the operator L,, is negative:

(Lati, i) < —a/2||G|1E-
Observe that it was essential that

sup {|lf/(u(t))lle, | (u(), 0u(-)) =w() € A t € R} < Co(My)  (1.70)

(see (1.62)). Since the system (; is orthonormal in E, from (1.69) it follows
that
J J
> (e (06,6 < (/1) + (GG /) 3 i
i=1 -
J

—(a/4)j + (C5(M1)fa) Y A
i=1

—(a/4)j + (CL (M) /)52, (L.71)
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where C1 (M) = ¢;CZ(M;) and \;, i = 1,..., 7, are the first j eigenvalues
of the operator —Au, u|spq = 0, written in nondecreasing order. It is known

J
that \; > coi?/3. Therefore, > )\;1 < 153, In the second inequality of
i:l
J
(1.71), we used the inequality E 12 < Z ! proved in [119]. Thus,

i=1 =1
Trj Aow(w(t)) < 0(j) = —(a/4)j + (C1(My)/a)j*/3, where the function
p(z) is concave. The root of ¢ is expressed as follows:
8C1(My)*?  C(My)

d* = =
ol a3

where C(M) = 8Cy(M;)*?. Finally, we obtain (1.64) and (1.63) from
Theorem 1.5 and Remark 1.6. O

We consider the sine-Gordon equation with f(u) = fsin(u). It is clear
that Co(M;) = 3 in (1.70). Therefore, Cy (M) = ¢13?, ie., C(M;) =
8¢3/?33 = ¢33, Thus, the estimates (1.64) and (1.63) for the sine-Gordon
equation have the form
63

dr(A) < o3, (1.72)

H.(A) < ﬂ log2<n)+Hso(A) Ve < e,

where the constant ¢ depends on 2.

Ginzburg—Landau equation

We consider an inhomogeneous equation similar to (1.30)
o = v(1 + ai)Au+ Ru — (1 +i8)|ul*u + g(z), = €]0,2r[3=: T3, (1.73)

with periodic boundary conditions in T? and g(z) = g'(z) + ig*(z) €
Ly(T3; C). Here, v is a positive parameter. For the sake of simplicity, we
take n = 3. We assume that |3| < v/3. Then Equation (1.73) generates the
semigroup {S(¢)} acting in H = (L2(T?))? and having a global attractor A
which is compact in H (see [119, 34]).

We write Equation (1.73) in the vector form (1.32)
Opu = vaAu+Rv — f(u) + g(z), (1.74)

wterea = (577 )t = v () v ato) = (@0 A

was proved in [4], the semigroup {S(¢)} is uniformly quasidifferentiable on
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A and the corresponding variational equation reads
Ov = vaAv+Rv — fy(u)v, v|i—g = vo € H, (1.75)
where the matrix f;(u) is defined by (1.33). By (1.34), we have
(valv + Ry — fa(u)v, v) = —v||[Vv]2 + RIv[? — (Fu(u)v, v)
< —v|Vv|? + R|v|? V¥veH (1.76)
In order to use Theorem 1.5 and to estimate dg(A), we need to study

the j-trace of the operator on the right-hand side of (1.75). By (1.76), we
have

J J
> (Au®)pir i) =Y —v[Veill® + Rllgill> — (Fa(u)ei, @;)
1=1 i=1
J J
<Y vVl + Rllgill* = —v Y IVeill* + R, (1.77)
=1 =1

where {¢;, i = 1,...,j} is an arbitrary set of functions from V = (H(T?))2,
orthonormal in H. By the variational principle,

J
SIVeilP = M+ X+ + A, (1.78)
i=1

where A1, Ag,... are the eigenvalues of the operator —A in H. It is well

known that the eigenvalues of this operator have the form k% + k3 + k3,
where (ki, ko, k3) € (Z4)?. Therefore, \; > Cyi?/3 and

IV D P D PN oY i (1.79)

with some constants Cp and Cy. Using (1.78) and (1.79) in (1.77), we obtain

TrjA,(u(t)) < —vC1°3 + Rj = () Vi=1,2,... (1.80)

The function p(z) = —vCi2®/? + Rz is concave and has the root d* =
(R/(Cyv))?/2. Thus, we have proved the following assertion.

Theorem 1.8. The fractal dimension of the global attractor A of
Equation (1.73) admits the estimate

1 )3/2, (1.81)

Civ
where Cy is an absolute constant taken from (1.79) and can be estimated
explicitly (see, for example, [93, 34]).

dr(A) < (
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The e-entropy of A satisfies the inequality

H.(A) < (%)3/2 log, (%) +H, (A) Ve<eo, (1.82)

where 1 and €y are some small positive numbers.

2. Attractors of Nonautonomous Equations

In this section, we consider general processes and their global attractors.
The notion of a process is used for describing the behavior of nonautonomous
dynamical systems. A process is a generalization of the notion of a semi-
group which plays a key role in the study of autonomous dynamical systems.
Nonautonomous dynamical systems and their global attractors are discussed
in [73, 34] (see also [14]).

In Section 2.1, we study processes {U(t,7),t > 7} and their uni-
form global attractors. Recall that the processes are generated by nonau-
tonomous evolution equations if, for example, an external force or some
other terms of the equation depend explicitly on time ¢t. If the Cauchy
problem for this equation is well-posed, the process {U(¢,7)} sends the
value of the solution u(7) at time 7 € R to the value of u(t) at time ¢ > 7.

Below, we give a definition of a general process {U (¢, 7)} and introduce
notions of uniformly absorbing and attracting sets of a process. We study
the main properties of w-limit sets for bounded sets. Then we define the
uniform global attractor A of a process {U(¢t,7)}. We prove the theorem
on the existence of a uniform global attractor of a process using the notion
of the w-limit set. We also define the kernel IC of a process and study its
properties.

In Section 2.2, we consider uniform and nonuniform global attractors
of a process and compare their properties. In particular, we present an
example of a nonautonomous equation, given by Haraux. This example
shows that the uniform global attractor can be larger than the nonuniform
one. We also study periodic processes for which uniform and nonuniform
global attractors always coincide.

In Section 2.4, we introduce the notion of the time symbol {o(¢),
t € R} of a nonautonomous equation. Roughly speaking, the time symbol
is the collection of all time-dependent terms of the equation. We define the
hull H(o) of 0. We also define a translation compact function. We mostly
study nonautonomous equations having translation compact symbols o(t).
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We present translation compactness criteria in different topological spaces,
which will be used in the sequel.

In Section 2.5, we formulate the main theorem about the existence
and structure of the uniform global attractor of a process {(U,(t,7} of a
nonautonomous equation with translation compact symbol o(t).

In Section 2.6.1, we study the uniform global attractor of the nonau-
tonomous 2D Navier—Stokes system with translation compact external force.
A special attention is given to the case, where the system has a unique
bounded complete solution attracting any other solution as t — +o0o with
exponential rate. In Sections 2.6.2 and 2.6.3, we consider analogous prob-
lems for the nonautonomous dissipative hyperbolic equation and for the
nonautonomous complex Ginzburg—Landau equation with translation com-
pact terms.

2.1. Processes and their uniform global attractors.

Let E be a complete metric space or a Banach space. Consider a two-
parameter family of operators {U(¢t,7), 7 € R,t > 7}, U(t,7): E — E.

Definition 2.1. A family of mappings {U(¢,7)} = {U(t,7),7 €
R,t > 7} in E is called a process if

1) U(r,7) =Id for all 7 € R, where Id is the identity operator,
2)U(t,s)oU(s,7)=U(t,7) forallt >s>7, 7 €R.

As in Section 1, we denote by B(E) the family of all bounded (in the
norm of E) sets in E. A process {U(t,7)} is said to be (E, E)-bounded if
U(t,7)B € B(E) for all B € B(E), 7 € R, t > 7. A process {U(t,7)} is
said to be wuniformly (E,E)-bounded if for every B € B(E) there exists
B, € B(E) such that U(t,7)B C By forall T e R, t > 7.

The following two notions describe the dissipativity properties of non-
autonomous dynamical systems. A set By C E is said to be uniformly (with
respect to 7 € R) absorbing for a process {U(t,7)} if for any set B € B(E)
there is a number h = h(B) such that

U(t,7)B C By Vt, 7, t—7 = h. (2.1)

A set P C FE is said to be uniformly (with respect to 7 € R) attracting for
a process {U(t,7)} if for every € > 0 the set O.(P) is uniformly absorbing
for {U(t,7)} (hereinafter, O.(M) denotes an e-neighborhood of a set M in
the space E), i.e., for every bounded set B € B(FE) there exists a number
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h = h(e, P) such that
U(t,T)BC O(P) Vt,7, t—7>h. (2.2)

The property (2.2) can be formulated in the following form: for every set
B € B(E)
supdistg(U(T + h,7)B,P) — 0 as h — 400, (2.3)
TER
where distg(X,Y") denotes the Hausdorff distance between sets X and Y in
the space E (see (1.3)).
A process having a compact uniformly absorbing set is called uniformly
compact and a process having a compact uniformly attracting set is called
uniformly asymptotically compact.

Now, we define the uniform global attractor A of a process {U(t,T)}.

Definition 2.2. A set A C F is called a uniform (with respect to 7 €
R) global attractor of the process {U(t,7)} if it is closed in E, is uniformly
attracting for {U (¢, 7)}, and satisfies the following minimality condition: A
belongs to any closed uniformly attracting set of the process.

It is easy to see that any process has at most one uniform global
attractor. A uniform global attractor was introduced in [73] (see also [18,
23, 25, 34]).

For an arbitrary set B € B(FE), we define the uniform w-limit set w(B)
by the formula

w(B) = [ U v T)B}E, (2.4)
h20 t—r2h
where [ ]z denotes the closure in the space E and the union is taken for all
t,7 such that 7 € R and ¢t > 7+ h (see (1.4)).

Proposition 2.1. If a process {U(t,7)} in E has a compact uniformly
altracting set P, then for any B € B(E)
(i) w(B) # @, w(B) is compact in E, and w(B) C P,

(ii) sup distg(U(h + 7,7)B,w(B)) — 0 (h — +00),
TER

(iil) if Y s closed and sup distg(U(h + 7,7)B,Y) (h — +00), then
TER
w(B) CY.

ProOF. From the definition (2.4) of w(B) it follows that

C - :
y e w(B) < { there are {z,,} C B, {7,} CR,{h,} C Ry

hy — 400, Uty + hn, Tn)Tn — y (n — 00). (2:5)
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(i) We show that w(B) # @. For any fixed 7 € R and = € B we con-
sider an arbitrary positive sequence {h,}, h, — 400 as n — oco. Accord-
ing to the uniformly attracting property (2.3), distg(U(7 + hy, )z, P) —
0 (n — 00), i.e., for some sequence {y,} C P

WU(T+ hp,T)x —ynllg — 0 as n — o).
Since the set P is compact, we can extract a subsequence {y, } of {y,}
converging to y € P. Hence U(rT + hy,7)z — y (' — o0). By (2.5),
y € w(B), ie., w(B) # @. Let us verify that w(B) C P. Let y € w(B) and
let {z,} C B, {7} C R, {h,} C R; be sequences defined in (2.5). By the
uniform attracting property of P (see (2.3)), we have
distg(U(7y + b, )20, P) — 0 as n — oo.

Therefore, distg(y, P) = 0. The set P is closed, i.e., y € P for all y € w(B)
and w(B) C P. This implies that w(B) is compact since w(B) is closed by
definition (see (2.4)).

(ii) Assume the contrary: for some B € B(E)
sup distg(U(T + h,7)B,w(B)) 4~ 0 asn — oo,

TER
i.e., for some sequences {z,} C B, {7,} CR, {h,} C Ry (hy — +)
distg (U (7 + hn, To)xn,w(B)) 20 >0 VnelN (2.6)

By the uniform attracting property of P,

distg(U(7y + b, )20, P) — 0 as n — oo.
So once again, we find a sequence {y,} C P such that

U (Tn + By 7o) — ynllg — 0 as n — oo.

The set P is compact, and we may assume by refining that y, — vy as
n — oo for some y € P, i.e., U(Ty, + hy, Tn)T, — y as n — 0. From (2.5) it
follows that y € w(B). However, (2.6) implies that distg(y,w(B)) =6 > 0,
which leads to a contradiction.

(iii) Let Y be a closed uniformly attracting set of the process {U (¢, 7)}.
If y € w(B), then, in view of (2.5), for some sequences {x,} C B, {7,} C R,
{hn} C Ry we have U(r, + hn, )@y — y as h, — oo. Since YV is a
uniformly attracting set, it follows that distg(U (7, + hn, Tn)Zn, Y) — 0 as
n — oo and, consequently, dist(y,Y) = 0, i.e., y € Y for all y € w(B).
Hence w(B) C Y. O

Using Proposition 2.1, we formulate the following important assertion.
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Theorem 2.1. If a process {U(t,7)} is uniformly asymptotically com-
pact, then it has a compact (in E) uniform global attractor A.

PRrROOF. We show that the set

A= [ w(B, } , 2.7

Yem], (27)

where B,, = {x € F | ||z||g < n}, is the required uniform global attractor.
Indeed, for the set A defined in (2.7) we have A C P (see Proposition
2.1,(1)). Moreover, if B C B(E), then B C B, for some n € N and,
consequently, w(B) C w(B,) C A, ie., A uniformly attracts U, (¢,7)B
(see Proposition 2.1,(ii)). However, by Proposition 2.1,(iii), the set w(B,,)
belongs to every closed uniformly attracting set. Therefore, the minimality
property is valid for A defined in (2.7). O

Remark 2.1. We cannot assert that A = w(P), where P is an ar-
bitrary compact uniformly attracting set for {U(¢,7)}. It is obvious that
w(P) € A since P C By for large N, so w(P) C w(By). Therefore,
w(P) C A. However, it is not clear if the inverse inclusion holds since we
do not know whether w(B) C w(P) for any B C B(E). However, if By is a
compact uniformly absorbing set, then apparently

A=w(By) = ﬂ[UUtTBo}

h>0 t—712>h

For a compact uniformly attracting set P the equality A = w(P) can be
also proved under some additional assumptions of continuity of the process
{U(t,7)} (see Theorem 1.1 for the autonomous case and [34] for the nonau-
tonomous cases).

Remark 2.2. In Theorem 2.1, we do not assume that the process
{U(t,7)} is continuous in E. (This assumption was essential in the existence
theorems for global attractors of semigroups corresponding to autonomous
evolution equations.) The reason is that we use only the minimality property
in the definition of a global attractor.

To describe a general structure of the uniform global attractor of a
process, we need the notion of the kernel of a process which generalizes the
notion of the kernel of a semigroup.

A function u(s), s € R, with values in E is called a complete trajectory
of a process {U(t,7)} if

Ut,T)u(t) =u(t) Vt=7, T €R. (2.8)
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A complete trajectory u(s) is said to be bounded if the set {u(s), s € R} is
bounded in E.

Definition 2.3. The kernel K of a process {U(t,7)} is the family of
all bounded complete trajectories of {U(t, 7)}:

K = {u(-) | u satisfies (2.8) and |lu(s)||g < C, V s € R}.

The set K(t) = {u(t) | u(-) € K} C E, t € R, is called the kernel section at
time .

It is easy to prove the following assertion.

Proposition 2.2. If the process {U(t,T)} has the global attractor A,
then

Ukw <A (2.9)

teR

Comparing (2.9) with identity (1.6) in the autonomous case, we see
that, in the nonautonomous case, K(t) may depend on time ¢ and the in-
clusion in (2.9) can be strict, i.e., in order to describe the structure of the
global attractor A of a process {U(t, 7)} it is not sufficient to know only the
structure of K. This question will be discussed in Section 2.5.

2.2. On nonuniform global attractors of processes
and the Haraux example.

Following Haraux [72, 73], we define a (nonuniform) global attractor of a
process {U(t,7)} acting in E. A set Py is called a (nonuniform) attracting
set of {U(t,7)} if for any bounded set B € B(E) and fized 7 € R
distg(U(t,7)B, Py) — 0 ast — +o0, (2.10)
i.e., for any € > 0 there exists T' = T'(1, B,e) > 7 such that
U, 7)BC O(P) VYt=T. (2.11)

A process having a compact attracting set is called an asymptotically com-
pact process.

Definition 2.4. A set Ay C F is called the (nonuniform) global at-
tractor of a process {U(t, 7)} if it is closed in F, is attracting for the process
{U(t, )}, and satisfies the property of minimality: Ay belongs to any closed
attracting set of the process.
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Theorem 2.2. If a process {U(t, )} is asymptotically compact, then
it has a compact (nonuniform) global attractor Ay.

It is obvious that a uniformly asymptotically compact process {U (¢, 7)}
is (nonuniformly) asymptotically compact as well and, thereby, 4y C A.
However, as was pointed out by Haraux, this inclusion can be strict, i.e.,
the uniform global attractor can be larger than the nonuniform one. We
describe the example from [72, 73]. Consider the nonautonomous ordinary
differential equation in R

dyu + a(t)u +u® =0 (dy = d/dt) (2.12)
with initial data
Ultmr = Ur, ur € R, (2.13)
where .
a(t) = n ?sin(2n"*). (2.14)
n=1

The function a(t) is almost periodic (see Example 2.1) since it is the uniform
limit of almost periodic (and even quasiperiodic) functions. Equation (2.12)
generates a process {U(¢,7)} in R : U(t, 7)ur = u(t), t > 7, 7 € R, where
u(t) is a solution of the problem (2.12), (2.13) with initial data u,. We set
t oo
A(t) = / a(s)ds = 3 n?sin?(n~4t), t € R. (2.15)
0 n=1
We find a (nonuniform) global attractor of the process {U(t,7)}. From
(2.12) it follows that
diu? = —2a(t)u® — 2u* < —2a(t)u®. (2.16)
Therefore,
u?(t) < u?(1) exp(2A(7)) exp(—24A(t)) Vt > T.
Setting n = [|t|*/*] + 1 in (2.15), we obtain
Alt) = ct|? YteR (2.17)

for some ¢ > 0. Hence u(t) — 0 as t — +4o0; moreover, U(t,7)B — 0 as
t — oo for each fixed 7 € R and any bounded set B € B(R). We conclude
that the process {U(¢,7)} has a (nonuniform) global attractor Ay = {0},
i.e., a single point.

Let us study the uniform global attractor of a process {U(t,7)}. First
of all, we note that the process is uniformly compact, i.e., it has a compact
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(bounded in R) uniformly absorbing set. Indeed, since a(t) is bounded, we
have
—2a(t)u2 —2u* <2Ru® — 2u* < —ul+C
for suitable positive R, -, and C. By (2.16),
diu® < —yu? 4+ O, uP(t) < uP(r) exp(—y(t — 7)) + C/r.

Hence the set By = {|u|? < 2C/~} is uniformly absorbing for the process
{U(t,7)}. The set By is compact, and the uniform global attractor A exists
in view of Theorem 2.1. It is clear that {0} = Ay C A. We claim that

A # {0}

It suffices to prove that there exists a nonzero bounded solution u(t) of
Equation (2.12) defined for all ¢ € R. Such a solution belongs to the kernel
K of the process {U(t,7)}, and from (2.9) it follows that { |J u(t)} C A.

tER
Hence A is larger than Ay = {0}.
Integrating (2.16), we obtain
dt(u2e2A(t)) + 2ute?AM) =, di(v) + 202e241) =,

where v(t) = u?(t)e*4(®). Integrating again, we obtain
¢

1 1
— = —— 42 [ ¢ 2AG)gs,
o~ w(0) " / ‘ ’

Note that e=24() € L;(R;Ry) due to (2.17). Finally,
t

1/2
~ 1
u(t) ==+ <62A(t)/<W + 2/62A(8)d8)> , teR,
0
0

is the desired solution of (2.12) if

0
1
W > 2 / 6_2A(s)dS.
0

The sign of w coincides with that of ug. Indeed, u satisfies Equation (2.12)
for all ¢ € R and is bounded in R.

Note that for a periodic process the uniform global attractor coincides
with the nonuniform global attractor (see [124, 26] for details). Now, we
present a simple result on periodic processes.

A process {U(t,7)} is said to be periodic with period p if
Ult+p,1+p) =Ut,7) Vt=71, TER (2.18)
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For a periodic process {U(t,7)}, in order to prove that a set P is uniformly
attracting for {U(¢,7)}, it suffices to show the following limit relation in-
stead of (2.3):

sup distg(U(r + h,7)B,P) -0 as h— +oc. (2.19)
7€[0,p)
Indeed, for arbitrary 7 € R we have 7 = 7/ +np, where 7’ € [0, p) and n € Z.
By periodicity, U(h + 7,7)B =U(h+ 1" +np, 7 +np)B=U(h+ 7',7')B
and (2.19) implies (2.3).

By the above arguments, the following assertion holds.

Theorem 2.3. If a periodic process {U(t,7)} is uniformly bounded
and has a compact (nonuniformly) attracting set, then it is uniformly as-
ymptotically compact. In particular, the process {U(t,T)} has both uniform
and nonuniform global attractors A and Agy, and A = Ay.

PRrOOF. Let Py € E be a compact attracting set of a periodic process
{U(t,7)} with period p. By Theorem 2.2, the process has a (nonuniform)
global attractor Aj.

Consider an arbitrary bounded set B € B(E). Since {U(¢t,7)} is uni-
formly bounded, we have

B= |J Up7)BeBE).
T€(0,p)

Since Py is (nonuniformly) attracting, for 7 = p we have
distg(U(t,p)B, Py) — 0 as t — +oo. (2.20)
Note that for all 7 € [0, p)
U(t,7)B =U(t,p)U(p,7)B CU(t,p)B Vt > p.
Then from (2.20) it follows that

sup distg(U(r + h,7)B, Py) < distg(U(t, p)B, Py) — 0 as t — 400,
7€[0,p)
and the relation (2.19) is proved for the set Py. Therefore, the process
{U(t,7)} is uniformly asymptotically compact. Repeating the above ar-
gument for Ay instead of Py, we conclude that the set A is uniformly
attracting. At the same time, Ag is the minimal uniformly attracting set
since it is minimal (nonuniformly) attracting. Thus, Ay = A is the uniform
global attractor of the periodic process {U(t,7)}. O
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In this paper, we study mostly uniform global attractors of processes
corresponding to nonautonomous evolution equations.

2.3. Cauchy problem and corresponding process.

We explain how to construct a process corresponding to a nonautonomous
evolution equation of the form

Ou = A(u,t), t =7, T €R, (2.21)

where A(u,t) is a nonlinear operator A(-,t) : By — Ey for every t € R, Ey
and Ey are Banach spaces, F1 C Ey. We study solutions u(t) for all ¢t > 7.
For t = 7 we consider the initial condition

U(T) = U|t:~r =Ur, ur € F, (222)

where F is a Banach space such that Fy C EF C Ey. We assume that for all
7 € R and u, € E the Cauchy problem (2.21), (2.22) has a unique solution
u(t) such that u(t) € E for all t > 7. The meaning of the expression “the
function wu(t) is a solution of the problem (2.21), (2.22)” should be clarified
for each particular example. As in the case of the solution of the autonomous
equation (1.7), the solutions u(t), 7 < t < T, of (2.21) are considered in the
class Fr p of functions such that u € Loo(7,T; E) and uw € Ly(7,T; Ey).
We assume that A(u,t) € Ly(7,T; Ep) for some ¢, 1 < g < oo, and dyu €
Ly(7,T; Ep). The equality (2.21) holds in the space Ly(7,T; Ey). Thus,
a function wu(t) in Frr should satisfy (2.21) in the sense of distributions
in the space D'(|7,T[; Eo) (see [96, 9, 34] for details). To interpret the
initial condition (2.22), we could use embedding theorems (see, for example,
95, 117)).

We study the following two-parametric family of operators {U (¢, 1)},
t > 7, 7 € R, generated by the problem (2.21), (2.22) and acting in E in
accordance with the formula

Ut,)ur =u(t), t > 7, T €R, (2.23)

where u(t) is a solution of the problem (2.21), (2.22) with initial data u, €
E. Since the Cauchy problem (2.21), (2.22) is uniquely solvable, the family
{U(t,7)} satisfies the properties from Definition 2.1. Thus, {U(¢,7)} is
referred to as the process corresponding to the problem (2.21), (2.22).

Below, we study global attractors of the processes corresponding to
different nonautonomous dissipative evolution equations in mathematical
physics.



Attractors for Nonautonomous Navier—Stokes System 171

2.4. Time symbols of nonautonomous equations.

Theorem 2.1 is applicable to processes generated by nonautonomous evolu-
tion equations. However, it provides a little information about the structure
of uniform global attractors, and we need to study some extra properties of
processes. For this purpose, the notion of the kernel of a process turns out
to be very useful (see Definition 2.3). Recall that the kernel of Equation
(2.21) is the union of all bounded complete solutions u(t), t € R, of (2.21)
determined on the entire time-axis {¢ € R}.

For the global attractor A of the nonautonomous equation (2.21) we
always have the inclusion (2.9). However, in the general case, the inclusion
can be strict, i.e., there exist points of the global attractor A that are not
values of bounded complete trajectories of the original equation (2.21) (see
Remark 2.7). Nevertheless, we can show that such points lie on the complete
trajectories of “contiguous” equations. To describe “contiguous” equations,
we introduce the notion of the time symbol of the equation under consider-
ation. Speaking informally, the time symbol reflects the time-dependence of
the right-hand side of the nonautonomous equation under consideration. We
assume that all the terms of Equation (2.21) depending explicitly on time
t can be presented by a function o(t), t € R, with values in an appropriate
Banach space . We write Equation (2.21) in the form

Ou = Agy(u), t =271, T€R. (2.24)

The function o(t) is called the time symbol of the equation. In applications,
o (t) consists of the coefficients and terms of the equation depending on time.
For example, for the nonautonomous Navier—Stokes system Oyu + vLu +
B(u,u) = g(z,t) with time-dependent external force g(z,t) € Cy(R; H) the
time symbol is o(t) = g(x,t). (This example will be considered in Section
2.6.1 in detail.)

We assume that the symbol o(t), regarded a function of ¢, belongs to
the enveloping space

=:={(t),t e R|&(t) € U for almost all ¢t € R}

endowed with the Hausdorff topology. In the case of the 2D Navier—Stokes
system, U = H and E = C,(R; H) can be taken for the enveloped space.
Recall that g(z,t) € Cp(R; H) if

lgCs lewmm = sap{llg(,t)llm, t € R} < o0
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We assume that the translation group {T'(h), h € R} acting by the formula
T(h)&(t) = €(h + t) is continuous in Z. This assumption is satisfied for
=E=0v(R; H).

The symbol of the original equation (2.21) is denoted by oo (t). We
also consider Equation (2.24) with symbol o, (t) = oo(t + h) for any h € R
and equations with symbols o(¢) that are the limits of oy, (t) = oo(t + hy)
as n — oo in E. The resulting family of symbols is the hull H(og) of the
original symbol o¢(t) in E.

Definition 2.5. The hull H(o) of o(t) in the space E is defined by
the formula

H(oo) :=[{o(t +h) | h € R}z, (2.25)

where [-]z denotes the closure in the topological space =.

We will study equations of the form (2.21) and (2.24) whose symbols
o(t) are translation compact functions in = (see [27, 28, 29, 34]).

Definition 2.6. A function o(t) € E is called a translation compact
function in Z if the hull H (o) is compact in =.

Consider the main examples of translation compact functions which
will be used in this paper.

Example 2.1. Let = = C,(R; M), where M is a complete metric
space. Let op(s) be an almost periodic function with values in M. By
the Bochner—Amerio criterion, an almost periodic function og(s) possesses
the following characteristic property: the set of all translations {og(s +
h) = T(h)oo(s) | h € R} is precompact in Cp(R; M) (see, for example,
[1, 92]). The closure in Cy(R; M) of this set is called the hull H(og) of
oo(s) (see (2.25)). By Definition 2.6, o¢(s) is a translation compact function
in Cp(R; M). If 0¢(s) is almost periodic, then any function o(s) € H(op) is
almost periodic. It is obvious that the time translation group {T'(h) | h € R}
is continuous in Cp(R; M).

Example 2.2. Let 2 = L;OC(R; £), where p > 1 and &€ is a Banach
space. The space L)°°(R; ) consists of functions £(t),t € R with values in
& that are p-power locally integrable in the Bochner sense, i.e.,

to
/ IRt < +00 V]t 1] € R.
t1
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We consider the following convergence topology in the space L;OC(R; ).
By definition, &,(t) — £(t) as n — oo in L)°°(R; ) if

ta
/mwwfm%ﬁeozwmam
t1

for every interval [t1,t2] C R. The space L;OC(R; £) is countably normable,
metrizable, and complete.

Consider translation compact functions in the space L;OC(R; £). The
following criterion holds (see, for example, [34]):

oo(t) is a translation compact function in LZI)OC(R; €) if and only if

t+h
(i) for any h > 0 the set { J oo(s)ds |t e R} is precompact in &,
t

(ii) there exists a positive function 3(s) — 0 (s — 0+) such that
t+1
[ loo(s) = onls + s < p(u) e e R
t

From this criterion it follows that
t+1
Sup/ loo(s)||2ds < +oo V¢ € R, (2.26)
teR
t

for any translation compact function in L)°¢(R; €).
It is obvious that {T'(h) | h € R} is continuous in L*°(R;€).

Example 2.3. Similarly, we can define translation compact functions
in the space C''°¢(R;&) of continuous functions £(t),t € R with values in
E. The space C'°°(R;€) is endowed with the local uniform convergence
topology on every interval [t1,f2] C R (see [34]). By the Arzeld—Ascoli
theorem, we obtain the following criterion (see [34] for details):

oo(t) is a translation compact function in C''°¢(R; &) if and only if

(i) the set {og(h) | h € R} is precompact in &,

(ii) oo(t) is uniformly continuous on R, i.e., there exists a positive
function a(s) — 0+ (s — 0+4) such that

||O'o(t1) — O'()(tz)”g < Oé(ltl — t2|) th,tg c R.
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In particular, any translation compact function in C''°¢(R; £) is bounded in
. The translation group {T'(h) | h € R} is continuous in C'1°¢(R; £).

Example 2.4. Almost periodic functions with values in &, i.e., trans-
lation compact functions in Cp(R; &), are translation compact functions in
Clo¢(R; E).

Example 2.5. In the class of almost periodic functions, we extract
the subclass of quasiperiodic functions. A function oo(t) € C(R; E) is said
to be quasiperiodic if

oo(t) = elant, ast, ..., axt) = p(at), (2.27)
where the function ¢(©) = p(w1,wa,...,wk) is continuous and 27-period-
ic with respect to each variable w;, € R : ¢(w1,...,w; + 27, ..., wi) =

oW1, Wiy wi), i = 1,...,k. Denote by T*¥ = [Rmod2nx]* the k-
dimensional torus. Then ¢ € C(T*;&). We assume that the real numbers
a1, Qa, ..., in (2.27) are rationally independent (otherwise, we can re-
duce the number of independent variables w; in (2.27)). It follows that the
hull of the quasiperiodic function og(t) in C(R;E) is the set

{(p(@t +(JJ1) | w1 € Tk} = H(O’o), o= (011,042, .. .,Ozk). (228)

Consequently, the set H(op) is the continuous image of the k-dimensional
torus T*. For k = 1 we obtain the periodic function og(t + 27) = oo (t).

In [34], there are other examples of translation compact functions in
C(R; &) that are not almost periodic or quasiperiodic.

2.5. On the structure of uniform global attractors.

Consider a family of equations of type (2.24) with symbols o(¢) from the
hull H(og), where o¢(t) is the symbol of the original equation,

i = Ay (u), o € H(op), (2.29)

with initial data

Ulpmr = Ur. (2.30)
We assume that og(t) is a translation compact function in the topological
space Z. For the sake of simplicity, we assume that H(og) is a complete
metric space. In the above examples, this assumption was satisfied. Suppose
that for every symbol o € H(op) the Cauchy problem (2.29), (2.30) has a
unique solution for any 7 € R and initial condition u, € E. Thus, we have
the family of processes {U,(t,7)}, 0 € H(op), acting in the space E.
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The family {U,(t,7)}, 0 € H(og), is said to be (E x H(og), E)-
continuous if for any ¢ and 7,t > 7 the mapping (u,0) — Us(t,7)u is
continuous from E x H(op) into E.

Proposition 2.3. If the process {U,,(t,7)} has a compact uniformly
attracting set P and the family {U,(t,7)}, o € H(oo), corresponding to
(2.29) is (E x H(op), E)-continuous, then for every o € H(og) the set P is
also uniformly attracting for {U,(t,7)}. Moreover, A, C A = A,,, where
Ao is the uniform global attractor of the process {Uy(t,T)} (the inclusion
Ay C Ay, can be strict).

The proof can be found in [25, 34].

Remark 2.3. A translation compact function oy in = is said to be
recurrent if H(o) = H(op) for every o € H(og). Any almost periodic
function is recurrent. If, in Proposition 2.3, the translation compact symbol
oo is recurrent (for example, almost periodic), then A, = A,, = A for
every o € H(op). In this case, the uniform global attractor A describes the
limit behavior of solutions of the entire family of Equations (2.29).

The following translation identity holds for the family of processes
corresponding to (2.29):

Urino(t,7) = Us(t +h,7+h) Vh=0,t 27,7 €R, (2.31)

where T'(h)o(t) = o(t+h). This identity directly follows from the uniqueness
of a solution u(t) of the problem (2.29), (2.30). To prove (2.31), we replace
o(s) in (2.29) with T'(h)o(s) = o(s + h) and make the change of variable
t 4+ h = t;. The identity (2.31) means that the shift by A of the argument
of the symbol o(s) in the problem (2.29), (2.30) is equivalent to solving
Equation (2.29) with symbol o(s) at time ¢ + h with initial data u|i=ryp =
Ur.

Consider a special case of the symbol o (t) of Equation (2.29) such that
the translation semigroup {T°(h) | h > 0} maps it into itself: T'(h)oo(t) =
oo(t + h) = oo(t) for all b > 0. In other words, o(t) is independent of ¢:
oo(t) = op for any s € R, where o¢ € W. Then, by (2.31), the corresponding
process {Uy,(t,7)} satisfies the equality Uy, (t,7) = Uyy(t + h,7 + h) =
Uso(t —7,0) for all h > 0, ¢ > 7, 7 € R. Thus, the process {Uy, (¢, 7)} is
completely described by the set of one-parameter mappings S(t) = Uy, (¢, 0),
t > 0. It is evident that {S(¢)} forms the semigroup corresponding to the
autonomous equation with the constant symbol o(t) = 0. Such equations
were treated in Section 1. We conclude that the semigroups generated by
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autonomous evolution equations are special cases of processes generated by
nonautonomous equations.

Having the family of nonautonomous equations (2.29), we consider the
extended phase space E x H(oyp). Using the identity (2.31), we construct
the semigroup {S(h),h > 0} acting in the space E x H(og) by the formula

S(h)(u,0) = (Us(h,0)u, T(h)o),h = 0. (2.32)
We prove that the family {S(h)} forms a semigroup in E x H(og). For this
purpose, it suffices to verify the semigroup relation
S(h1+ h2)(u,0) = (Us(h1 + ha,0)u, T (hy + ho)o)
= (Ug(hl + ho, hQ)Ug (hg, O)U, T(hl)T(hQ)U)
(Ur(hg)o (h1,0)Us (ha, 0)u, T'(h1)(T'(h2)o))
= S(h)(Us(h2,0)u, T (hs)o) = S(h1)S(ha)(u,0).
Here, the property 2 of Definition 2.1 and the translation identity (2.31)
were used. It is also obvious that S(0) = Id.
We denote by II; and Iy the projections operators acting from E x
H(op) onto E and H(og) by the formula

Iy (u,0) =u, Ia(u,0)=o.

We now formulate the main theorem about the structure of the global
attractor of Equation (2.21) with translation compact symbol (). Denote
by {Us,(t,7)} the corresponding original process with symbol .

Theorem 2.4. Suppose that oo (t) is a translation compact function in
E. Let the process {Uy,(t,T)} be asymptotically compact, and let the corre-
sponding family {U,(t,7)}, o € H(op), be (ExH(0op), E)-continuous. Then
the semigroup {S(h)} acting in E x H(og) by formula (2.32) has the global
attractor A, S(h)A = A for all h = 0. Moreover, the following assertions
hold:

(1) HQQ[ = H(O’o),

(ii) I, A = A s the global attractor of the process {Uy, (t,7T)},

(iil) the global attractor A admits the representation

A= | K= |J K., (2.33)
oc€H(o0) o€H(oo)

where Ko is the kernel of the process {Uy(t,7)} with symbol o € H(oy), t
is any fived number, the kernel K, is nonempty for every o € H(op).
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A detailed proof of Theorem 2.4 can be found in [25, 34]. The exis-
tence of the global attractor 2 follows from Theorem 1.1. To prove Theorem
1.1, we need to check whether the conditions of asymptotic compactness and
continuity hold for the semigroup {S(h)} acting in E x H(op) by formula
(2.32). Let P be a compact uniformly (with respect to o € H(oyp)) attract-
ing set for the family of processes {U,(t,7)}, o € H(op). It is obvious that
the set P x H(op) is a compact (in E x E) attracting set for the extended
semigroup {S(h),h > 0}. It is clear that the semigroup {S(h)} is continu-
ous since the family {U,(t,7)}, 0 € H(oo) is (E x H(0p), E)-continuous and
the translation semigroup {T'(h)} is continuous by assumption. Therefore,
by Theorem 1.1, the set

A = w(P x H(0)) ﬂ[Us (P x H(o0)] (2.34)

=0 n>h

is the global attractor of the semigroup {S(h)} and the first assertion of
Theorem 2.4 is proved.

The remaining assertions of Theorem 2.4 are proved (see [34] for de-
tails) with the help of the representation (see (1.6) in Theorem 1.2)

A ={~(0) | y(-) is a complete bounded trajectory of {S(h)}}. (2.35)

Remark 2.4. Using (2.33), it is easy to show that A = w(P), where
P is an arbitrary compact uniformly attracting set of the process {Uy, (t,7)}
(see Remark 2.1).

Remark 2.5. If the time symbol o¢(t) is periodic with period p,
oo(t+p) = oo(t), then the corresponding process {Uy, (¢, )} is also periodic
with period p. In this case, the uniform and nonuniform attractors coincide,
Ap = A (see Theorem 2.3 and [124, 26]). Moreover, the hull H(og) =
{oo(t+h) | h€[0,p)} and formula (2.33) can be written in a simpler form

A= U Ky, (h), where K, is the kernel of the original periodic process
hel0,p)

{Uso (t,7)} (see (2.9)).

2.6. Uniform global attractors for nonautonomous
equations.

In this section, we apply the general theory of uniform global attractors of
processes corresponding to abstract nonautonomous equations (2.21) and
(2.24) to some important evolution equation in mathematical physics.
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2.6.1. 2D Navier—Stokes system with time-dependent force. We
consider the nonautonomous 2D Navier—Stokes system with time-dependent

external force

0w = —vLu — B(u,u) + go(z,t), (V,u) =0,
5 (2.36)
ulon =0, z = (x1,22) € Q € R

We use the notation from Section 1.3.1, where the autonomous 2D Navier—
Stokes system (1.11) is considered with time-independent external force

go(z).
We assume that go(-,t) € H for almost every ¢t € R and go has finite
norm in the space L}(R; H), i.e.,

t+1

90l = Ny i=sup [ lon(eos)Pds < oo, (237)
teR )

We consider (2.36) with initial conditions

Ul=r = Ur, ur € H, T €R. (2.38)

The problem (2.36), (2.38) has a unique solution u(t) € C(R.; H) N
L5(R,; V) such that du € LY(R,; V'), R, = [r, +00) (see [96, 87, 119, 9,
34]). The solution u(t) in this space satisfies Equation (2.36) in the sense
of distributions in the space D'(R,;V’). Moreover, the following estimates
hold:

[u(® < [u(D)Pe ) 4 A L+ (03) Y gollZ. (2.39)
() + v / lu(s)|2ds < Ju(m)]? + (vA) ! / go(s)2ds,  (2.40)

(t = Dlu@®)]* < C(t =, [u(r)P, / |90(S)|2d8> (2.41)
where A = Ay is the first eigenvalue of the Stokes operator L and C(z, R, R1)
is a monotone continuous functions of z =t — 7, R, Ry (see [34]).

Consequently, the problem (2.36), (2.38) generates a process {Uy, (¢, 7)}
acting in H by the formula Uy, (¢, 7)u, = u(t), where u(t) is a solution of
(2.36), (2.38).

From (2.39) it follows that the process {Uy,(¢,7)} has the uniformly
absorbing set By = {u € H | [u| < 2R}, Rg = (vA)~' (14 (vA)"llgoll3,,
2
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By the inequality (2.41), the set

By = |J Uy (r+1,7)By (2.42)
TER

is also uniformly absorbing. Moreover, B; is bounded in V and, conse-
quently, is compact in H (see [96, 34]). Thus, the process {Uy,(¢,7)} is
uniformly compact in H. By Theorem 2.1, we conclude that the process
{Ug(t,7)} has the global attractor A and the set A is bounded in V. Using
Remark 2.1, we observe that the global attractor A can be constructed by
the formula

A=w(By) = [ U Un(t)Bo] .

h>0 t—7>h

We now assume that go(-,t) =: go(t) is a translation compact function
in Li°°(R; H). The corresponding necessary and sufficient conditions are
given in Section 2.4. We indicate another sufficient condition: g¢o(t) is a
translation compact function in Li°¢(R; H) if go € L5(R;V) and drgo €
LY(R; V'), ie.,

41

a0l =510 [ llgoC, )]s < M <+,
teR )

t+1
10101y =510 [ 10ugn(e5) s < Moy < o
t

(see [34]). We denote by H(go) the hull of go in the space Li°¢(R; H). It is
clear that

lgll7, < lgoll7y < M (2.43)

for every g € H(go)-

The symbol of Equation (2.36) is go(t) = oo(t). For every symbol
g € H(go) the corresponding problem (2.36), (2.38) (with external force
g instead of go) is uniquely solvable and the solution u,(t) satisfies the
inequalities (2.39)-(2.41). Hence the family of processes {Uy(t,7)}, g €
H(go), acting on H is defined. As is proved in [34], this family is (H x
H(go))-continuous. Therefore, from Theorem 2.4 it follows that

A= ] K40, (2.44)

g€H(g0)
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where /Cg4 is the kernel of the process {Ugy (¢, 7)} consisting of all the bounded
complete solutions uy(t),t € R, of the 2D Navier-Stokes system with ex-
ternal force g(t). The kernel KC; is nonempty for every g € H(go). Note
that
A C By = Br,(0), Rg = (vN)7 1+ (vA)"llgoll75 (2.45)
ACBy, Bi={ueV||v| <R}, (2.46)
where R’ depends on v, X, and [|go||%,. In particular, from (2.44) it follows
2

that
lu®)] <R VteR (2.47)

for every function u4(-) € K4, g € H(go)-

Consider an important special case of the system (2.36). As in the au-
tonomous case, we introduce the Grashof number G for the nonautonomous
2D Navier—Stokes system by the formula

gollzy
w2
Proposition 2.4. Suppose that G satisfies the inequality
G<1/c, (2.48)
where the constant ¢y is taken from the inequality (1.14) (see (1.19)). Then
for every g € H(go) the Navier—Stokes system
Ou = —vLu — B(u,u) + g(t) (2.49)
has a unique solution z4(t), t € R, bounded in H, i.e., the kernel IC; consists
)-

of a single trajectory z4(t). This solution z4(t) is exponentially stable, i.e.,
for every solution ugy(t) of (2.49)

lug(t) — 24(t)] < Colur — z(7)[e =) vt > 7, (2.50)

where ug(t) = Uy(t,T)ur, and the constants Co, B are independent of u,
and T.

PROOF. By (2.44), there exists at least one bounded solution z4(t) :=
z(t). Let ugy(t) := u(t) be an arbitrary solution of (2.49). The function
w(t) = u(t) — z(t) satisfies the equation

Ow +vLw+ B(w,w + z) + B(z,w) = 0.

Multiplying this equation by w and using the identities (B(z,w),w) =
(B(w,w),w) =0 (see (1.13)) and the inequality (1.14), we find

Orlwl + 2v||wl*= 2(B(w, 2), w) < 2cgwlllwlllz]l < vlw|*+ cgr™ wl*||]*.
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Since A|lw|? < ||Jwl||?, we have
Fwl® + vAjw]* < 8lwl* + v]wl* < corHuw 2% (2.51)

Consequently,
Oelwl* + (VA — g =) %) [w]* < 0. (2.52)

¢
Multiplying this inequality by exp{/(u)\ - céu71||z(s)||2)ds} and inte-

J
grating over [r,t], we obtain

t

WP < ur)Pexp { [ (-oA+ el a(9)]?)ds

— |w(7)|? exp{ VAt —7) + b / ||z(s)||2ds}. (2.53)

T

By (2.40), we have

/nz 2ds < v () + (AA) /|g )[2ds

vHa(n)P + PN THE T+ D)gll
v+ PN THE =7+ Dllgoll -
Since 2(7) € Ay(g,), from (2.45) it follows that

(T < @)@+ @A) Yllgoll7, = Re.

Hence
t
/ I2(s)|IPds < (v RE + (2 X) " HlgollZ,) + (*N) 71t = T)llgollZs

=R+ (*N) 7't = )llgoll7,

where R? = v~ 1RZ + (12)\) 1 ||go||ig. Substituting this estimate into (2.53),
we obtain the inequality

lw(t)* < [w(r)|*Co exp(=H(t — 7)),
where 3 = v\ — c5(*X) " Hgoll3 y and Co = exp(cgv~1R?). Note that

N2 ol = G2 < 1/ch
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and, consequently, 3 = vAc§(co* — v=*A72||go[|2,) > 0. This implies
2

lw(t)|? = |u(t) — z(t)]> < |u(r) — 2(7)|>Coe P,
The inequality (2.50) is proved.

Now, we show that such a function z(t) is unique. If there are two
bounded complete solutions z1(t) and 25(t), t € R, then

|21(t) — 22(8))? < |21(7) — 22(7)[2Coe P < C1ChePE—T)

in view of (2.50). Fixing ¢ and letting 7 — —o0, we obtain |21 (t)—22(¢)|> = 0
for all t € R. (]

The properties (2.50) and (2.44) imply that the set
A=z @) [ teRNu = (] {2(0)} (2.54)

9€H(g0)

is the global attractor of (2.36) under the condition (2.48).

Remark 2.6. In [16] it is shown that ¢ < (8/(277))"/? (see also
Remark 1.2). Therefore, formula (2.54) holds for G < 3.2562.

Remark 2.7. It is easy to construct examples of functions go(x,t)
satisfying (2.48) such that the set {z4,(t) | ¢ € R} is not closed in H.
Nevertheless, the set A is always closed, and to describe A, we need to
consider all the functions z,(t) in the kernels of equations with external
forces g € H(go).

Remark 2.8. The inequality (2.50) implies that, under the condition
(2.48), the global attractor A of the system (2.36) is exponential, i.e., A
attracts bounded sets of initial data with exponential rate.

Consider some special cases of the function g € H(go).

Corollary 2.1. Let g(t) in (2.49) be periodic with period p. Then z4(t)
has period p.

PrOOF. Consider the corresponding bounded complete trajectory z4(t).
It is obvious that z,(t 4 p) is a bounded complete trajectory of (2.49) with
external force g(t+p) = ¢(t). Therefore, belongs to the kernel K, consisting
of the single trajectory z4(t). Hence z4(t + p) = z4(1). O

Corollary 2.2. If g(t) € H(go) is almost periodic, then z4(t) is also
almost periodic.
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PrOOF. Consider the function w(t) = z(t)—z(t+p), where z(t) := z4(t)
and p is an arbitrary fixed number. As in the case of (2.52), we obtain the
inequality

Belw]? + (A — o 2P Jwl* < 2] - g(t) — gt +p)|,
which implies
Bulw]? + (WA = o 2O = O)wl* <67 Hg(t) — gt +p)[%,  (2.55)

where 0 is a fixed positive number which will be specified later. From the
inequality (2.40) it follows that

t

V/IIZ(S)II2d8 < Jz ()] + (V/\)_l/lg(S)Ist

T

< ()P + () 7HE =7+ 1)gll7,
< () + @A) THE =7+ Dllgoll 7y (2.56)
Since z(7) € A, from (2.45) it follows that

2(T) < ()T X+ (@A) Yllgoll7, = Re.

By (2.56), we have

t
/IIZ(8)||2d8 < TR+ (PN Hlgoll ) + PN THE = T)lgollZ
= Ri + (*N) 7 (t = 7)ol (2.57)

where R} = v RE + (v2X) " lgol12,- We set a(t) = vA —cjrz(t)||* — 4.
2
t
Multiplying (2.55) by exp { / a(s)ds} and integrating over [7,t], we find

T

t t t
~Ja(s)ds 1 [ a(s)ds
WP < umPe * "5 [lo) g4 pPe 2 s (259)
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Using (2.57), we find
t
—/a(s)ds < 031/73)\*1”90”%}2,@ —0) — (VA= 6)(t — 0) + cgv 'R}
G

(A=A goll2, — )(t — 0) + B
= —(B-6)(t—0)+ R2, (2.59)
where R% = civ™1R? and 8 = v\ — 031/*3)\’1”90”%3. We note that
VA g2, = P < 5
(see (2.48)). Therefore,
B=vA— A g2, > 0.

We set § = (/2. Then (2.58) implies that

|w(t)|2 < |w(T)|26R§e B(t— 7-)/2 /|g 0+p)|2 —B(t=0)/2p.

(2.60)

Let p be an e-period of g, i.e., |g(0) — g(0 +p)| < e for all § € R. By (2.60),
we have
t

2
lw(t)? < |w(r)[2Cae=Pt-7)/2 +02552/e*6<t*9>/2d9
< Jw(r)[PCoe P2 4 Cy((26) /8)P (1 — 77072
< Jw(T)[?Coe™PUTT2 4 Cy((20)/8)°, (2.61)
where Cy = ef2. Note that [w(r)| < €’ for all 7 € R. Using (2.61) and
letting 7 — —o0, we obtain the inequality

2V

5 (2.62)

[w(®)] = |2(t) - 2(t+p)| <

2_period of the function z(t). Hence z(t) is almost

Hence p is an ¢

periodic. 0

Consider the case, where go(t) is quasiperiodic, i.e.,

go(z,t) = p(x,ant, ..., axt) = p(x, at), (2.63)
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o(-,w) € CYP(T*; H), o = (w1, ...,ws), and real numbers (aq, ..., qr) = &
are rationally independent (see Example 2.5).

Proposition 2.5. Let the condition (2.48) hold, and let the func-
tion go(t) be quasiperiodic. Then the corresponding function zo(t) = zg, (%)
(unique by Theorem 2.4) is also quasiperiodic, i.e., there exists a function
®(z,w) € CVP(Tk; H) such that zo(w,t) = ®(z,a1t,...,axt) and the fre-
quencies (au, ..., a ) are the same as those for the function go(z,t).

Proor. Consider the external force g, (x,t) = @(x, at + @), where © €
T*. Tt is obvious that g5 € H(go) (see (2.28)). By (2.48), with each such an
external force g; we can associate a unique bounded complete trajectory
2 (2, t) of the Navier—Stokes equation with external force gg(x,t) which
satisfies (2.50). We set
O(z,w) = 25(,0) (2.64)
and prove that ® is the desired function. First of all, we note that
Z@(fE, t+ h) = Z&h+@(1’7 t) (265

)
because of the uniqueness of the bounded complete trajectory zznia(x,t)
corresponding to gan+o(z,t). It is easy to see that the function zg(x,t+ h)
satisfies the Navier—Stokes system with external force p(x,a(t + h) +©) =
Jah+o(z,t). By (2.64), we conclude that

2o(x, h) = @(x, ah + @),
ie., zp(x,t) = ®(z,at + @) for all t € R.

We show that ®(z, &) = ®(z,w1,...,wk) has period 27 with respect
to each variable w;. This property follows from the uniqueness of bounded
complete trajectories because

O(x, 0+ 27€;) = 2zptore, (,0) = 25(x,0) = O(x, ),

where {€;,i = 1,...,k} is the standard basis for R*. It remains to verify
the Lipschitz condition with respect to @ € T* for the function ®. We set
w(t) = 25, (t) — 2, (t). As in the case of (2.60), we prove the inequality

t
2
lw(t)]? < [w(r)[2Coe P/ 4 30 / |91 (0) — g, (0)[PeP1=0/2dg.

(2.66)
The function ¢ satisfies the inequality

|<p(@1) — (,0(@2” < %|(D1 — (.:}2| V w1,y € Tk.
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Therefore,
|95, (0) — ga, (0)] < 51 — wal. (2.67)
From (2.66) and (2.67), as in the case of (2.61) and (2.62), we find

2V

(O] =172, (8) = 22, (B)] < 2=

w1 — wal.
Finally, by (2.64), we have

[@(, 1) = @(, 02)| = |20, (0) — 22, (0)] <

2\2@|w1 —oal, (2.68)

ie., ®(x,0) € CHP(TF; H). O

Corollary 2.3. Under the assumptions of Theorem 2.5, the global
attractor A of the Navier—Stokes system is the Lipschitz continuous image
of the k-dimensional torus:

A= o(T") (2.69)

and the set A attracts solutions of the equation with exponential rate (see
(2.50)).

Recall that ®(-,©) = ®(-,at + @)|t=0 = 2&(7,t)|1=0, @ € T*.

Remark 2.9. By (2.69), the uniform global attractor A of the Navier—
Stokes system with quasiperiodic external force go satisfying (2.48) and
(2.63) is finite-dimensional, and dp(A) < k, where dp(A) is the fractal
dimension of A (see Section 1.4.1). It is easy to construct examples of ex-
ternal forces satisfying (2.48) and (2.63) such that dz(A) = k (see, for ex-
ample, [25]). Thus, the dimension of global attractors A of nonautonomous
Navier—Stokes systems may grow to infinity as & — oo, while the Grashof
numbers (or Reynolds numbers) remain bounded. Moreover, there are al-
most periodic external forces such that dp(A) = oo (see Section 2.7). Such
phenomena do not occur in the autonomous case, where the dimension of
the global attractor is always less than the multiple of the Grashof number
(see Theorem 1.6 and (1.57)). In Section 3, we will consider the Kolmogorov
e-entropy and the fractal dimension of uniform global attractors of nonau-
tonomous equations in detail.

2.6.2. Nonautonomous damped wave equations. Consider the non-
autonomous wave equation with damping

O2u + v0u = Au — fo(u,t) + go(z,t), ulsg =0, z € Q€ R™,  (2.70)
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where y0;u is the dissipation term (y > 0). The autonomous case was
considered in Section 1.3.2. We assume that fo(v,t) € C1(R x R;R) and

Fo(v,t) = —mv? — Cp, Fo(v,t) := /fo(w,t)dw, (2.71)
0

folv,t)v — 1 Fo(v,t) + mv? > —C,, V(v,t) ER xR, (2.72)

where m > 0 is sufficiently small and ~; > 0.

Assume that p is a positive number such that p < 2/(n—2) forn >3
and is arbitrarily large for n = 1,2. Let

100 fo(v, )] < Co(L+ [v]), |8efolv,t)] < Co(1+[v]**), (2.73)
OiFy(v,t) < 8 Fy(v,t) +C1 Y (v,t) € R x R, (2.74)
where § is sufficiently small.

Remark 2.10. Let fo(v,t) = f(v)p(t), where, for example, f(v) =
[v|Pv or f(v) = R+ Bsin(v), |B] < R, and ¢(s) is a positive bounded
continuous function such that ¢'(t) < 62p(t) for all t € R. Then fo(v,s)
satisfies (2.71)—(2.74).

From (2.73) it follows that
[fo(v, )] < Co(L+ [oP*1), [Fo(v, 8)| < Co(1 + [v]*2). (2.75)
Assume that go € L5(R; La(9)).
The initial conditions are posed at ¢t = 7:
Ulp=r = ur(x), Ouli=r =p-(x), T €R. (2.76)

Proposition 2.6. If u. € H}(Q) and p, € La(Q), then the problem
(2.70), (2.76) has a unique solution u(t) € C(R,; H3(Q)) such that dyu(t) €
C(R;; Lo(R)) and 9?u(t) € L(R,; H1(Q)).

The proof can be found in [119, 68, 9, 34].

We set y(t) = (u(t), dwu(t)) = (u(t),p(t)) and y, = (ur,p;) = y(7)
for brevity. Denote by E the space of vector-valued functions y(z) =
(u(x), p(z)) with finite energy norm

Iyl = [I(u, p)IIE = [Vul* + [p|?

in the space E = H(Q) x La(2). Recall that | - | denotes the norm in
Ly(©2). By Proposition 2.6, y(t) € E for all t > 0.
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The problem (2.70), (2.76) is equivalent to the system

Oyu =p Ulp=r = Ur
atU:_’7p+AU—fO(U7t)+go(l'7t), plt:T = Pr,

which can be rewritten in the operator form

Oy = Asoy(y),  Yli=r = yr, (2.77)

for an appropriate operator A, (), where oo(t) = (fo(v,t),go(z,t)) is
the symbol of Equation (2.77) (see Section 2.4). If y. € E then, by Propo-
sition 2.6, the problem (2.77) has a unique solution y(t) € Cp(R,; E). This
implies that the process {Uy,(t,7)} given by the formula U, (¢, 7))y, = y(¢)
is defined in E.

Proposition 2.7. The process {U,,(t,T)} corresponding to the prob-
lem (2.77) is uniformly bounded, and the following estimate holds:

ly(®)l|% < Cully- 152 exp(=B(t — 7)) + C2, B> 0, (2.78)
where y(t) = Uy, (t, T)yr and the constants Cy, Cy are independent of y-.

The proof can be found in [34].

By Proposition 2.7, the process {Uy, (¢, 7)} has a bounded (in F) uni-
formly absorbing set By = {y = (u,p) | ||ly||% < 2C2}, i.e., Uy, (t,7)B C Bo,
t—7 = h(B), for every B € B(E). The following result is more complicated
(see the proof in [34]).

Proposition 2.8. The process {U,,(t,7)} corresponding to the prob-
lem (2.77) is uniformly asymptotically compact in E.

By Theorem 2.1 and Proposition 2.8, the process {Uy, (¢, 7)} has the
global attractor A, and the set A is compact in E.

Now, we introduce the enveloped space = for the symbol og(t) =
(fo(v,t), go(x,t)) of Equation (2.77). Suppose that go(z,t) is a translation
compact function in Li°°(R; Lo(2)), the function fy(v,t) satisfies (2.71)-
(2.74), and (fo(v, 1), Ot fo(v, t)) is a translation compact function in C(R; M).
Here, M is the space of functions {(¢)(v), 11 (v)), v € R | (¥,91) € C(R; R?)}
endowed with the norm

st = sup{
veR

@I+ @) | ()] } (2.79)

o] +1 [v]” +1

It is obvious that M is a Banach space and oo(t) = (fo(v,t), go(z,1)) is a
translation compact function in = = C(RM) x L°(R; H).
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Consider the hull H(og) of the symbol ¢ in the space E. It is easy
to show that for any o(t) = (f(v,t),g(z,t)) € H(op), the function f(v,)
satisfies the inequalities (2.71)-(2.74) with the same constants as those for
fo(v,t). Thus, the problem (2.77) is well posed for all o € H(op) and
generates a family of processes {U,(¢,7)}, 0 € H(op), acting in E. The
following assertion is proved in [34].

Proposition 2.9. The family of processes {Uy(t,7)}, 0 € H(op),
corresponding to the problem (2.77) is (E x H(oy), E)-continuous.

Using Theorem 2.4, we obtain the following assertion.

Theorem 2.5. If o¢(t) = (fo(v,t), go(x,t)) is a translation compact
function in = = C(R; M) x LI°(R; Lo(R2)), then the process {Uy,(t,7)}
corresponding to the problem (2.77) has the uniform global attractor

A= |J Ko
o€H(oo)

where Ko is the kernel of the process {U,(t, )} with symbol o € H(op). The
kernel Ky is nonempty for all o € H(op); moreover,

A =w(By) = ﬂ[UUtTBo}

h>0 t—712>2h

We consider a special case of (2.70): the sine-Gordon type equation
with dissipation

0?u 4 you = Au — f(u) + go(z,t), ulog =0, = € Q, (2.80)
where Q € R", v > 0, f € C(R), go(-,t) € LI°°(R; L2(9)). Assume that
f(u) satisfies the inequalities

If(v)] < C YveR, (2.81)
|f(v1) = fv2)] < K|vg —wva| VYop,ve €R. (2.82)

Remark 2.11. For f(u) = Ksin(u) Equation (2.80) is the sine-
Gordon equation with dissipation (see [119]).
We assume that the external force g(x,t) satisfies the condition

t+1
ool = sup [ loo(s) 1, oy < o (2.83)
t
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As above, we consider the Cauchy problem for Equation (2.80) with initial
conditions

Ulimr = ur; € Hy(), Ostti—r = pr € La(Q). (2.84)
As in Proposition 2.6, we prove that for any u,(z) € H}(Q) and p,(z) €
L>(€) the problem (2.80), (2.84) has a unique solution u(t) € C'(R,; H}(2))
such that dyu(t) € C(R,; Lo(Q)) and d?u(t) € L(R,; H71(Q)) (see, for
example, [119, 68, 9, 34]). Denoting y(t) = (u(t),p(t)) = (u(t), du(t)) and
yr = (ur,pr), we see that y(t) € C(R;; E), y(r) = yr. Then the problem
(2.80), (2.84) has the form of an evolution equation

Oyu=p Uli=r = Ur,
RPN B (259
(see (2.77)). The time symbol of this system is a one-component function
o0(t) = go(-,t) with values in Lo(2). Since (2.85) has a unique solution, it
defines via y(t) = Uy, (¢, T)y- a process {Uy, (t,7)} acting in E. Propositions
2.7, 2.8, and 2.9 hold for the process {Uy, (t,7)} with p = 0. Consider the
uniform global attractor A of this process.

Proposition 2.10. Under the conditions (2.81), (2.82), (2.83), the
problem (2.85) has a global attractor A, and the set A is compact in E.

We refer to [34, 25, 36]. We note that the process {Uy, (¢, 7)} is not
uniformly compact, but only uniformly asymptotically compact.

For studying the structure of the global attractor .4, we assume that
go(w,t) is a translation compact function in L°¢(R; Ly(Q)). Consider the
hull H(go). For any symbol g € H(go) the problem (2.85) with g instead of
go generates the process {Uy(t,7)} in E. As was proved in [34], the family
of processes {Uy(t,7)}, g € H(go), is (E x H(go), E)-continuous. Using
Theorem 2.4, we obtain the following assertion.

Proposition 2.11. Let go(z,t) be a translation compact function in
LY°(R; La2(Q)). Then the global attractor A of the process {Ug,(t,7)} can
be represented as

A= ] K40, (2.86)
9€H(g0)
where ICy is the kernel of Equation (2.85) with symbol g € H(go). The kernel
Ky is nonempty for every g.

We now specify the case, where the global attractor A has a simple
structure and is exponentially attracting. We denote by A the first eigen-
value of the Laplacian on HE (). We have the following
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Theorem 2.6. Let the Lipschitz constant K in (2.82) satisfy the in-
equality
K <\ (2.87)

and let the dissipation rate v in (2.80) satisfy the condition

72> 8 =20\ — VA2 — K2). (2.88)

Then for every g € H(go) Equation (2.85) with external force g has a unique

bounded (in E) solution z(t) = (w(t), dw(t)) for all t € R. Moreover, for

any solution y(t) = Uy(t, 7)y- of Equation (2.85), the following inequality
holds:

ly(t) = z(t)l|& < Cllyr — 2(7) || g 77, (2.89)

where C'> 0 and > 0 are independent of y..

PROOF. We repeat the arguments of [36]. The relations below can be
justified with the help of the Galerkin approximation method (see [96, 119,
9]). Let uq(x,t) and us(z,t) be two solutions of (2.80) with external force
g € H(go). Then the difference w(z,t) := ui(x,t) — ua(x,t) is a solution of
the problem

2w + y0w = Aw — (f(u1) — f(uz)) in Q and w|pg = 0, (2.90)
The equation in (2.90) can be written in the form
Ot (0w + aw) + (v — @) (Orw + aw) — Aw — a(y — a)w
= —(f(u1) = f(u2)), (2.91)

where « is a suitable parameter which will be chosen later. Multiplying
Equation (2.91) by v = 0w + aw, integrating over €2, integrating by parts,
and using the condition (2.82), we arrive at the inequality

1d
§E(|vl2 +[Vul? — aly = a)lwl*) + (v = a)fvf?

+a([Vul® —aly — a)|w]?) = =(f(u1) = f(ug),v) < K|w||v].  (2.92)
We choose a > 0 such that
aly—a) <A (2.93)

Using the Poincaré inequality A|w|? < |[Vw|?, we find

<
Nwl* = aly = a)lw]* < [Vwl]* - a(y — a)|w]?,

i.e.,
| |2 < |V’LU|2 — OZ(’Y - a)|w|2
T A-aly—a)

(2.94)
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By (2.94) and (2.92), we have

K

1d
ey Xt rart o —— 28
2dt( ) {(/Y ) A—aly —a)

XY} <0, (2.95)
where X? = [v|? = |0w + aw|? and Y2 = |Vw|? — a(y — a)|w|?.
The quadratic form {...} in (2.95) is positive definite provided that
a>0,v—a>0,and
K
oy —a) - ———7——= > 0. 2.96
A T T R) (296)
We set o = a(y — «). The inequality (2.96) is equivalent to the inequality
K2
0> — o+ - <0 (2.97)

Since K < ), the quadratic inequality (2.97) is satisfied by any o such that

A_1/)\2_K2 A+1/)\2_K2
e (2.98)

From (2.98) it follows that o < A, i.e., a(y—«a) < X and the condition (2.93)
is satisfied. Thus, we need to find v > 0 such that

AV CR? AV K?
S <aly—a) < ——. (2.99)

Note that such « always exists if the maximum of a(y — «) with respect to
« is greater than the left bound in (2.99), i.e., if

2 _ 2 _ 2
WZ S ATVA TR ’\2K (2.100)

This inequality coincides with the assumption (2.88). Consequently, taking
a that satisfies both inequalities in (2.99), we see that the quadratic form
{...} in (2.95) is positive definite and
K

—a)X%®4+av? o
(y—a) a e ——

XY > B(X?+Y?), >0, (2.101)

where [ explicitly depends on v, A, K. Then (2.95) takes the form
1d

5a(X’Z +YH +BX2P+YH <0

and the Gronwall inequality yields
X2(t) + Y2(t) < (X2(1) + Y2(7))e 2807, (2.102)



Attractors for Nonautonomous Navier—Stokes System 193

We see that the expression X2 +Y? = |0,w+ aw|? + |Vw|? — a(y — a)|w|? is
equivalent to the norm ||y; — y2||% = |9sw|? + |[Vw|?. Hence (2.102) implies
the inequality

ly1(8) = y2(O)E < C2llya(r) — wa(7) e 2077 We =7, (2.103)

with some constant C' = C(~, \, «).

By Proposition 2.11, the kernel K, of Equation (2.85) is nonempty, i.e.,
there is a bounded (in E) solution z(t) = z,4(t), t € R, of the system (2.85).
Substituting z(¢) into (2.103), for any other solution y(t) = U,(t, 7)y, we
obtain the estimate

ly(t) = 2Ol & < Cllyr — 2(r)llge "7 vt >, (2.104)
which means that z(¢) is the unique bounded complete trajectory of the

process {Uy(t,7)} corresponding to (2.85). O

Now, we formulate consequences of Theorem 2.6 which can be proved
in the same way as the corresponding assertions for the 2D Navier—Stokes
system in Section 2.6.1 (see Corollaries 2.1-2.3 and Proposition 2.5).

Corollary 2.4. Under the assumptions (2.87) and (2.88), the global
attractor of Equation (2.85) has the form

A=[{z4(t) | t € R} U {24(0) (2.105)

g€M(g0)

Corollary 2.5. The constructed global attractor A is exponential, i.e.,
for every bounded set B C E

dist(Uy, (t,7)B, A) < C||B||ge ?*) V> (2.106)
where || Bl g = sup{|lyl|z | y € B}.

Corollary 2.6. If g(t) is periodic with period p, then z4(t) is also
periodic with period p.

Corollary 2.7. If g(t) is almost periodic, then z,(t) is also almost
periodic.

PROOF. As in the case of (2.102), we show that w(t) = z4(t) — z4(t +p)
satisfies the inequality

jt(X2+Y2) +28(X2%+Y?) < 2lg(t) — gt +p)||v], (2.107)
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where X2 = |v(t)|? = |0yw(t)+aw(t)|? and Y? = [Vw(t)|? —a(y—a)|w(t)]?.
Using the estimate

2|g(t) — gt +p)||v| < BXZ+ B g(t) — g(t +p)|?, (2.108)
we find that
CZ(XMY?) +B(X2+ Y2 < B g(t) — gt +p) . (2.109)

If p is an e-period of g, i.e., |g(t) — g(t +p)| < ¢ for all ¢t € R, then from
(2.109) it follows that

X2(0) + Y2(1) < (X3(r) + Y2(r))e 2 4 22/,

Fixing t and letting 7 — —oo, we find

2
€

l20(6) = 2t + )} < O3+ Y20) <O WeeR (2110

i.e., p is an ev/C/B-period of the function z, and thereby z,(t) is almost

periodic. 0

We now assume that go(t) is quasiperiodic and has k rationally inde-
pendent frequencies, i.e.,

go(t) = oz, art, ..., ait) = p(z, at), (2.111)
where p € CUP(TF; Ly(Q)), @ = (a1, .., 1) € R (see Example 2.5).
Proposition 2.12. If go(t) is a quasiperiodic function of the form

(2.111), then the corresponding function zg,(t) is also quasiperiodic. Thus,
there exists ® € CP(TF; Lo(Q)) such that 24 (t) = ®(z, cut, ..., axt).

The proof is similar to that of Proposition 2.5.

Corollary 2.8. If go(t) has the form (2.111), then the global attractor
A of Equation (2.80) is the Lipschilz continuous image of the k-dimensional
torus TF : A = ®(T*) and dr(A) < k.

Remark 2.12. Tt is easy to construct external forces go(t) of the form
(2.111) such that d 7 (A) = k. Moreover, there exist almost periodic external
forces such that dr(A) = oo (see Section 2.7).

Remark 2.13. Making the change of the time variable t = '/ in
(2.80), we obtain the problem

58t2u + Oru = Au — f(u) + go(z,t), ulon =0,

where ¢ = y72. The above results are applicable provided that | f’(u)] < A
forallu € Rand 0 < e <ep:=2"1 (A — VA2 —k2)7!
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2.6.3. Nonautonomous Ginzburg—Landau equation. Consider
the following nonautonomous generalization of the Ginzburg—Landau equa-
tion (see Section 1.3.3) with zero boundary conditions (periodic boundary

conditions can be treated in a similar way):
Oru = (1 +iap(t))Au+ Ro(t)u — (1 +iBo (1)) |ul*u + go(z, t), (2.112)
uloq =0, .

where u = u!(x,t) +iu?(x,t) is the unknown complex function and z € Q €
R™. The coefficients ag(t), Bo(t), and Ry(t) are given real-valued functions
in Cp(R). We assume that

Bo(t)] < V3 VteR. (2.113)

The phase space for (2.112) is H = Ly(€2;C). The norm in H is denoted
by || - ||. We also introduce the notation V.= H}(Q;C) and Ly = L4(Q2;C).
Assume that go(z,t) = g§(x,t) + ig2(z,t) belongs to LE(R; H), i.e.,

T+1

ool =510 [ (- 5) P (2.114)

Recall that Equation (2.112) is equivalent to the following system rel-
ative to the vector-valued function u = (u',u?)"

1 —aolt) L —Bo(t)
ou = (Ozo(t) f ) Au+ Ro(t)u — (50(15) f ) |u|2u+g0(5€,t),

where go = (g¢,92)". Under the above assumptions, the Cauchy problem
for Equation (2.112) with initial data

Ulp=r = ur(2), u-(-)eH, 7R, (2.115)
has a unique weak solution w(t) := u(z,t) such that
u(-) € Cp(Ry; H) N LY (R, V) N LY (R, 5 Ly)
and (2.112) is satisfied by u(¢) in the sense of distributions (see [119, 9, 34]).
Any solution u(t),t > 7, of (2.112) satisfies the differential identity

5 @I + [IVu@)|® + llu@)lz, — RO)lu)]®

=(go(t),u(t)) Vt=r. (2.116)
The function ||u(#)]|? is absolutely continuous for ¢+ > 7. We note that the
parameters ag(t) and Gy (t) are omitted in this identity. The proof of (2.116)

is similar to that of the corresponding identities for weak solutions of general
reaction—diffusion systems [34, 32] (see also [129]).
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Using standard transformations and the Gronwall lemma, from (2.116)
we deduce that any weak solution u(t) of (2.112) satisfies the inequality

lu()* < [lu(r)|Pe”X" +CF - vt >, (2.117)

where X is the first eigenvalue of the operator {—Au, ulsq = 0} and the
constant Cp depends on [|Ro| ¢, = sup [R(t)] and ||gol| Ly r;m)-
teR

Let {U(t,7)} be the process corresponding to the problem (2.112),
(2.115) and acting in the space H. Recall that the mappings U(¢t,7) : H —
H, ¢t > 7, 7 € R, are defined by the formula

U(t,T)ur =u(t) Vu.eH, (2.118)

where u(t), t > 7, is a solution of Equation (2.112) with initial data
tlt=r = u,. By the estimates (2.117), the process {U(t,7)} has the uni-
formly absorbing set

By ={veH||lv] <2Co} (2.119)

which is bounded in H.
The process {U(t,7)} has a compact in H uniformly absorbing set

By ={veV]||v|v<C} (2.120)

for an appropriate C{;. For the proof of this assertion we refer to [34, 129]
and Section 5.1. The set By is bounded in V and compact in H since the
embedding V € H is compact. Thus, the process {U(¢,7)} corresponding
to (2.112) is uniformly compact.

Applying Theorem 2.1, we conclude that the process {U(t,7)} has the
global attractor A and the set A is compact in H, bounded in V, and can
be constructed by the formula

A=w(By) = ﬂ{UUtTBO]

h=20 t—72h

The time symbol of Equation (2.112) is the function

oo(t) = (ao(t), Bo(t), Ro(t), go(x, 1)), t € R,
with values in U = R3 x H. We assume that (y(t) satisfies (2.113).

Let a(t), Bo(t), and Ry (t) be translation compact functions in C'1°¢(R),
and let go(z,t) be a translation compact function in L°¢(R; H). Then oq(t)
is a translation compact function in Z = C'°¢(R; R?) x Li°¢(R; H). Consider
the hull H (o) of the function oo(t) in the space C''°¢(R;R?) x Li¢(R; H).
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Along with Equation (2.112), we consider the family of equations
O = (1+ia(t))Au+ R(t)u— (14i8(t))|u*u+g(z,t), o € H(oo) (2.121)

with symbols o(t) = (a(t), 5(t), R(t), g(x,t)), where o € H(op). We note
that for every o = (o, 5, R, g) € H(o¢) the function 3(t) satisfies (2.113) and
g(x,t) satisfies (2.114). Therefore, Equations (2.121) generates the family
of processes {U,(t,7)}, o € H(op), acting in H (see [34, 129]). Recall
that {U(¢,7)} = {Us,(¢,7)} is the process corresponding to the Ginzburg—
Landau equation (2.112). Consider the kernels K, o € H(oy), of Equations
(2.121). As is proved in [34, 129], the family {U,(t,7)}, o € H(op), is
(HxH(00); H)-continuous. Then, by Theorem 2.4,

A= | K0, (2.122)
o€H(o0)
where the kernel K, of Equation (2.121) is nonempty for all o € H(oy).
Now, we describe an example of the Ginzburg—Landau equation having

a simple global attractor.

Proposition 2.13. Let By(t) satisfy (2.113), and let Ro(t) satisfy the
inequality
Ro(t) < A—=¢6 VteR, 0<d<A (2.123)

Then for any o € H(og) the kernel K, of Equation (2.121) consists of
a single element {z;(t), t € R}; moreover, {z,(t),t € R} exponentially
attracts any solution {us(t),t > 7} of Equation (2.121):

e (t) = 2o ()| < e fug(r) = 20 (T)|  VEZT. (2.124)
PROOF. Since the kernel I, of Equation (2.121) is nonempty, there
exists a bounded complete solution z,(t),t € R, of (2.121). Consider any

other solution {u,(t),t > 7} of Equation (2.121). The difference w(t) =
U (t) — 2z, (t) satisfies the equation

Brw(t) = (1 +ia(t))Aw(t) + R(t)w(t)
— (L4 B(0) (Ju(t) Pult) — [2()]2(t)). (2.125)

We set A(t)v = (1 +ia(t))Av + R(t)v and f(t,v) = (1 +i3(t))|v|?v. Using
(2.123), we find

(A(t)w, w) = —((1 + ia(t))Vw, Vw) + (R(t)w, w)
= —(Vw, Vw) + (R(t)w, w)
< —Mwl® + RE@)lwl® < ~dllul® (2.126)
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By (2.113), the function f(¢,«) is monotone with respect to w :
<f(tvu) = f(t,2),u— Z> = <f1:(t, v)(u—2),u— Z>
— (Lt vy, w) > 0, (2.127)

where v = z + 0(u — z), 0 < 0(x,t) < 1 (see (1.34) and [34] for details).

Multiplying Equation (2.125) by w, integrating over €2, and using
(2.126) and (2.127), we obtain the inequality

3 dtll w(t )II2 = (A()w,w) = (f(t,u) = f(t 2), w)
=0lw]* = (ot v)w, w) < =dl|w]?, (2.128)
which implies
lu() = 2(B)]* = w®)]* < e lu(r)|?
e 2D lu(r) — 2(7)|> VE=T.

Thus, the inequality (2.124) is proved for any function z,(¢) from the kernel
Ko of Equation (2.121).

From (2.124) it follows that {z,(¢), ¢t € R} is a unique element of the
kernel K, of Equation (2.121). O

Remark 2.14. The property (2.124) expressing the exponential at-
traction by the unique trajectory {z,(x,t),t € R} of all solutions {u,(z,t),
t > 7} of Equation (2.121) is a nonautonomous analog of the exponential
stability of the unique stationary point {z(z)} of the autonomous equation
(2.21) for R < X and |3] < V/3.

Finally, we formulate natural consequences of Proposition 2.13.

Corollary 2.9. Under the assumptions of Proposition 2.13, the global
attractor A of Equation (2.112) has the form

A= [UteR{ Zoo (¢ )}}H = U {2,(0 (2.129)

oc€H(o0)

moreover, the global attractor A is exponential, i.e., for every bounded set
BcCcH

distgr (Uy, (t,7)B, A) < C(||B|)e "™ Vit >, (2.130)
where || B|| = sup{|ly[| | y € B}.
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Corollary 2.10. If the symbol o(t) is periodic, then z,(t) is also
periodic. If o(t) is almost periodic, then z,(t) is almost periodic as well. If
the initial symbol oy(t) is quasiperiodic of the form

oo(t) = laat, ..., axt) = p(at),

where ¢ € CYP(TF, R3xH) and the numbers & = (a, ..., ay) are rationally
independent, then zs,(t) is also quasiperiodic, i.e., there exists a function
® € CUP(TF; H) such that z,,(t) = ®(aut,...,axt). Moreover, the global
attractor A is the Lipschitz continuous image of a k-dimensional torus TF :
A= ®(T*) anddr(A) < k.

The proof is similar to that of Corollaries 2.1-2.3 and 2.4-2.8.

Remark 2.15. There are symbols o (t) satisfying (2.113) and (2.123)
such that dp(A) = k. Moreover, it is easy to construct almost periodic
symbols such that dp(A) = co.

2.7. On the dimension of global attractors of processes.

Studying nonautonomous evolution equations, we see that the dimension of
the uniform global attractors depends on the dimension of the symbol hulls.
For example, for evolution equations with quasiperiodic time symbols the
fractal dimension of global attractors depends on the number of rationally
independent frequencies of the symbols (see Remarks 2.9, 2.12; and 2.15).

Let us show that the uniform global attractors of processes correspond-
ing to general nonautonomous evolution equation can have infinite fractal
dimension.

Consider a process {U(t,7)} acting in a Hilbert (or Banach) space E
and assume that it is uniformly asymptotically compact. By Theorem 2.1,
{U(t,7)} has a global attractor \A. Consider the kernel K of the process

{U(t,7)}. By Proposition 2.2, the set K = |J K(7) of all values of all
TER
complete trajectories u € K of the process belongs to 4. Moreover, the

closure K of this set in E also belongs to A since the global attractor is a
closed set.

We claim that the set K can have infinite dimension

drK = +00 (2.131)
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for all the problems discussed in Section 2.6. For example, for the Navier—
Stokes system we set

up(x,t) = Z aj(x) cos(ust) + bj(x) sin(pu,t), (2.132)
j=1

where aj(z) = (aj(x),a3(x)), bj(x) = (bj(x),b3(x)) are smooth linearly
independent vector-valued functions such that ajlao = 0, (V,a;) = 0,
biloa = 0, (V,b;) = 0. We assume that the series (2.132) and its deriv-
atives with respect to x and t converge rapidly. We also assume that the
frequencies pj, j = 1,2,..., are rationally independent real numbers. Set-

ting
go(z,t) = Opuo(x,t) + vLug(x,t) + B(ug(z,t), up(z,t)), (2.133)

and we see that go(-) € Cp(R; H). The system (2.36) with external force
go(x,t) generates a process {U(t,7)} in H having the compact attractor A
(see Section 2.6.1). The process {U (¢, 7)} has at least one complete bounded
solution; namely ug(t). Thus, the kernel IC is nonempty and ug € K. It is
easy to show that the projection uj) (x,t) of ug(x, ) onto the 2N-dimensional
space spanned by the vector-valued functions {(a;(z),b;(x)) | j=1,...,N}
provides a dense winding of the N-dimensional torus TN C H (the rational
independence of {y;} was used). Therefore, the set Imug = {uo(-,t) : t € R}
has the fractal dimension greater than N : d plmug > N for cach N € N,
ie., dplmug = oo. It is evident that Imug C K. Hence dpK = +oco. We
recall that K C A, and thereby dp.A = +00.

3. Kolmogorov e-Entropy of Global Attractors

As was shown at the end of Section 2, the fractal dimension of the global
attractor A of a nonautonomous evolution equation can be infinite. At
the same time, the global attractors are always compact sets in the corre-
sponding phase spaces. Therefore, it is reasonable to study the Kolmogorov
e-entropy because it is finite for every e.

Here, we derive upper estimates for the Kolmogorov e-entropy of the
global attractors of nonautonomous evolution equations with translation
compact symbols. These estimates are optimal in a sense and generalize
estimates for the e-entropy of the finite-dimensional global attractors of the
corresponding autonomous equations considered in Section 1.4.
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In Section 3.1, we present a general upper estimate for the e-entropy
of the uniform global attractor A of the process {U,(t,7)} corresponding
to the nonautonomous equation dyu = A, ) (u) with translation compact
symbol o (t).

In Section 3.2, we consider the case, where the fractal dimension d p.A
of the uniform global attractor A is finite. This property holds if, for exam-
ple, the time symbol o(¢) is a quasiperiodic function in ¢ with k rationally
independent frequencies. Then we show that dpA < d + k for some d
depending on the problem under consideration. This means that the di-
mension dp.A can grow to infinity as k — +o0.

In Section 3.3, the above-mentioned results are applied to the esti-
mates of the e-entropy and the fractal dimension of the uniform global at-
tractor of some nonautonomous equations in mathematical physics; namely,
the 2D Navier—Stokes system with translation compact external force, the
damped wave equation with translation compact terms, and the nonau-
tonomous complex Ginzburg—Landau equation.

We emphasize the fundamental role of the paper [83] in the study of
the e-entropy of compact sets in Hilbert or Banach spaces.

3.1. Estimates for e-entropy.

We use the notation from Section 2. Consider the family of the Cauchy
problems for nonautonomous equations

Oyu = Ao’(t)(u)7 U|t:~r =u; ur€E, (31)

with symbols o(t) € H(oo(t)). Here, E is a Hilbert space. We assume
that the symbol o((t) of the original equation (2.21) is a translation com-
pact function in the space Z. We assume that the topological space = is a
Hausdorff space. In applications, £ = C(R; V) or E = LII,OC(R; ), p > 1,
where ¥ is a Banach space, or the product of such spaces. The space =
is endowed with the local uniform convergence topology on every bounded
segment in R. By definition, a sequence {0, (-)} converges to o(-) as n — oo
in 2 if 1L, 4, (00 () — o(-))llz,,,, — 0 as n — oo for every closed interval
[t1,t2] C R. Here, II;, 4, denotes the restriction operator onto the interval
[t1,t2], Z¢, .1, is the family of Banach spaces generating =, and ||{|z,, ,,
is the norm of £ in Z¢, +,. For example, if 2 = C(R;¥), then =, ¢, =
C([t1,t2); ¥) and 0, (1) — o(+) as n — oo in C(R; ¥) provided that

max |op(s) —o(s)|le =0 asn — oo (3.2)
s€[t1,t2]
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for every [t1,to] C R. Similarly, 0,,(-) — o(-) as n — oo in E = L)°°(R; ¥)
if

to
/ llon(s) —o(s)||yds =0 asn— oo (3.3)
t1

for all [t1,t2] C R (see [34] for details). In addition, we assume that the
norms in =y, +, satisfy the following condition:

My, €llz,, o < I bl ., V(8] C [t Ea)- (3.4)

It is clear that (3.4) is valid for the spaces C([t1,t2]; W) and L)°°(t1,t9; V).

Suppose that for every o € H(op) the Cauchy problem (3.1) generates
the process {U,(t,7)} acting in E by the formula U, (¢, 7)ur = u(t), t > 7,
7 € R, where u(t) is a solution of the Cauchy problem (3.1) with initial
data u, € E. Let the assumptions of Theorem 2.4 hold. Then the process
{Uqs, (t,7)} has a global attractor A of the form (2.33).

Our goal is to study the s-entropy H.(A) = H.(A, E) of the global
attractor A in the space E (see Definition 1.6). We intend to estimate
H.(A) by using an information about the behavior of the e-entropy of the
sets Ilp H(op) in the space Zo; (where, for example, Z; = C([0,1]; ¥) or
Zo,y = Lzl,OC(OJ; U)). It is assumed that the behavior of the e-entropy is
known as | — 400 and € — 0+ . Here, Ily; denotes the restriction operator
on the segment [0, {].

To formulate the main theorem, we need to introduce some notions
and conditions on the process {U,,(t,7)}. First of all, we must general-
ize the quasidifferentiability property (1.40) introduced in Section 1.4.1 for
semigroups.

Let {U(¢,7)} be a process in E. Consider the kernel K of {U(t,7)}
(see Definition 2.3). It is clear that the kernel sections satisty the following
invariance property:

U, T)Kt)=K(r) Vi>71, TeR. (3.5)
Definition 3.1. A process {U(t,7)} in E is uniformly quasidifferen-

tiable on K if there exists a family of linear bounded operators {L(¢, 7,u)},
u € K(1),t =7, 7 € R, such that

WU, 7)uy — U, 7)u — L(t, 7, u)(u; — u)|| g
<Y(lur —ullg, t = 7)[Jur — ulle (3.6)

for all u,u; € K(7), 7 € R, where v = v(&,s) — 0+ as £ — 0+ for each
fixed s > 0.
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Assume that the process {U,,(t,7)} corresponding to (3.1) is uni-
formly quasidifferentiable on the kernel K, and the quasidifferentials of
this process are generated by the variational equation

O = Agou(u(t))v,  vlt=r =vr, vr €E, (3.7)

where u(t) = Uy, (t, T)ur, ur € Ko,(7), i€, L(t,T,u:)v; = v(t), where
v(t) is a solution of (3.7) with initial data v,. We assume that the Cauchy
problem is uniquely solvable for all u, € Ko, (7) and v, € E.

As in the case of (1.43), we introduce the numbers

T+T
- 1
gj = limsup sup sup — / Trj Agyu(u(t))dt, (3.8)
T—+oco T7ER u, k(1) T

where u(t) = Uy, (t, 7)u, and the j-trace Tr;(L) of a linear operator L in a
Hilbert space E is defined in (1.42).

Assume that the following Lipschitz condition holds for the processes
{U,(t,7)}, 0 € H(og) corresponding to (3.1):

[Us (h, 0)uo — Us, (h, O)uol|z < C(h)llor — o2z, , (3.9)

for all 01,09 € H(Uo), ug € A, h > 0.
From (3.9) it follows that

|Usy (t, T)ter — Uy, (t, T)ur | < C(|t = 7])[lor — 022,

for all 01,09 € H(op), ur € A, t > 7, 7T €R.

Now, we are ready to formulate the main theorem of this section.

Theorem 3.1. Let the assumptions of Theorem 2.4 hold. Suppose
that the original process {Uy, (t,T)} is uniformly quasidifferentiable on Ky, ,
the quasidifferentials of this process are generated by the variational equation
(3.7), and q; defined by (3.8) satisfy the inequalities

G <q, j=123.... (3.10)

Assume that the Lipschitz condition (3.9) holds for the family of processes
{Us(t,7)}, 0 € H(oo), and the function g; is concave in j (like N). Let m
be the smallest number such that gm+1 < 0 (then g, > 0), and let

m

d=m+4—Im
(Qm - Qm-‘rl)

(3.11)
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Then for every 6 > 0 there exist n € (0,1), 9 > 0, and h > 0 such that
€o
H.(A) < (d+6)log, (%) + H., (A)
+H_en (HO,hlogl/n(Eo/ns)H(Jo)) (312)

IC(R)

for all € < &g, where C(h) is the Lipschitz constant from (3.9).

Recall that H¢(Ilp ;H(00)) on the right-hand side of (3.12) denotes the
e-entropy of the set H(op) restricted to the interval [0,!] and the e-entropy
is measured in the space Zy; (for example, in C([0,!]; ) or L;OC(O, I;0)).

The proof of Theorem 3.1 is contained in [24, 34].

Remark 3.1. Comparing the inequality (3.12) with the estimate
(1.46) in the autonomous case, we observe that the term (d+ §) log,(g0/n¢)
corresponds to the upper estimate for the e-entropy of the kernel sections
K(7) and, in particular, dpK(7) < d for all 7 € R (see [34]).

Remark 3.2. If ¢ is small, the inequality (3.12) is optimal with re-
spect to the estimate of the e-entropy of the kernel sections. However,
another important parameter h in (3.12) tends to infinity as § — 0+ . The

€
parameter h controls the denominator in e = _77’ where C(h) is the

4C(h
Lipschitz constant in (3.9) which usually grows exg)o)nentially as h — oo.
Thus, if the hull H(op) is infinite-dimensional, then the e-entropy of H (o)
can grow rapidly as e — 0+ and faster than Dlog(1/e€) for arbitrary D.
Thus, it is reasonable to optimize the estimate (3.12) with respect to small
values of h. The following assertion presents a result in this direction. The
proof can be found in [34].

Theorem 3.2. Let the assumptions of Theorem 3.1 hold, and let ¢; <
g, J=1,2,.... Assume that
9
J
Then for any h > 0 there exist D > 0 and €9 > 0 such that
H.(A) < Dlog,((2¢0)/e) + H, (A)
+H__=_(Ilg 1 10g, (220 /6) H(00)) (3.14)

8C'(h)

— —00 asj — 0. (3.13)

for all e < go. (In applications, C(h) usually approaches 1 as h — +0.)

We consider a particular case, where oy () is an almost periodic func-
tion, i.e., the hull H(oy) is compact in C (R; ¥) with respect to the topology
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of uniform convergence on R. The norm in C,(R; ¥) is defined by the for-
mula

1€llcy mw) = sup [[€()]|w-
teR

Since
I€llcqonw) < l€lle,@wy V>0,
we have
H, (Il H(00); C([0,1]; ¥)) < He(H(00); Cp(R; V)
=H.(H(op)) VI>0, (3.15)

and Theorems 3.1 and 3.2 imply the following assertion.

Corollary 3.1. Let oy(t) be almost periodic, and let the assumptions
of Theorem 3.1 hold. Then

(H(op)) Ve <eo, (3.16)

H.(A) < (d+8)log, (%) +H.,(A)+H

ey
where He(H(og)) is the e-entropy of the hull H(og) in the space Cyp(R; ).

Corollary 3.2. Let the assumptions of Theorem 3.2 hold, and let
H(oo) € Cp(R; ). Then

2¢9 (H(oo)) Ve <eo.  (3.17)

H.(A) < Dlog, ( ) YH.,(A)+H

? BCE(h)

Remark 3.3. If it is known that H(op) € LZ(R; U), ie., oo(t) is an
almost periodic functions in the Stepanov sense, then the estimates (3.16)
and (3.17) hold. In this case, Hc(H(0o)) denotes the e-entropy of H(op) in

the space LZ(R; ¥) measured in the norm

t+1

1/p
g = (s [ 15as)
teR )

The estimate (3.16) shows that for a general almost periodic function
o0(t) having infinitely many rationally independent frequencies, the main
contribution to the estimate for the e-entropy of the global attractor A is
made by the e L-entropy of the hull H(oy), where L = (4C'(h))/n. However,
if o () has finitely many frequencies, i.e., it is quasiperiodic, then the contri-
bution of this quantity is comparable with that of the term dlogs(0/(an)).
This means that the global attractor of the nonautonomous equation has
finite dimension. We discuss this question later.
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We consider two important characteristics of a compact set X in F,
introduced in [83]. The number

, logy (He (X))
df(X,FE) =df(X) := limsup —=———= 3.18
(X, B) = df(X) = lim sup 3o e (1/) (3.18)
is called the functional dimension of X in E, and the number
1 H.(X
qQ(X,E) =q(X) := limsup log, (H. (X)) (3.19)

e—0+ log,(1/¢)
is called the metric order of X in E. It is easy to see that df (X) = 1 and
q(X) =0if dp(X) < +o0. Thus, the values df(X) and q(X) characterize

infinite-dimensional sets. Some examples of calculations of these values are
given in [83] (see also [125, 127]).

Using Corollaries 3.1 and 3.2, we obtain the following assertion.
Corollary 3.3. Let 0¢(t) be an almost periodic function. Then
df (A, E) < df(H(oo), Cp(R; ¥)), (3.20)
q(A, E) < q(H(o0), Co(R; ¥)). (3.21)

3.2. Finite fractal dimension of global attractor.

In this section, we study the fractal dimension of the uniform global attrac-
tor A of the process {Uy, (t,7)} corresponding to (2.21) and its dependence
on the fractal dimension of the hull H(oy).

We start with a very important example of a quasiperiodic symbol

oo(t) (see Example 2.5): oo(t) = p(art,ast,...,axt) = p(as), where
(@), 0 = (w1,...,wk), is a 2mr-periodic function in each variable w;, i = 1, k,
a=(ay,as,...,ar),a; €R, {a;} are rationally independent numbers. We

assume that () is a Lipschitz continuous function on the k-dimensional
torus T* = [Rmod 27]* with values in a Banach space ¥, ¢ € CP(T*; ¥),
ie.,
lp(@1) — o(@2)llw < Llwy — @zl ¥V o1, @2 € T, (3.22)
where | - |« denotes the usual Euclidean norm in R¥. By (2.28), the hull
H(op) of the function oo (t) in the space Cp(R; ¥) coincides with
{p(as+0) |6 € TF} = H(oo). (3.23)

Proposition 3.1. If o¢(t) is a quasiperiodic function, then

H. (H(00)) := H.(H(00), Cy(R; ¥)) < Hy(TF) < klog, (L2 ) (3.24)

€
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for all e < L™ and
dr(H(op)) =dr(H(oo),Cp(R; V) < k.

PROOF. If 01,00 € H(0p), then o; = p(as + 60;) for some §; € T*,
i=1,2, by (3.23) and

lor — o2y m;w) = sup [|o1(t) — o2(t) || w
teR
= suﬂg ||<p(6zt + él) — (p(@t + 52)”\1; < L|§1 — §2|']1‘k
te
by (3.22). Therefore,
N.(H(o0)) < Nr(TF).
It is known that the torus T* endowed with the Euclidean metric can be
covered by at most (2/¢)¥ balls of radius ¢ < 1 (see, for example, [43]).
Hence
Ne(H(00)) < (2/(L€))*, He(H(00)) < klogy(2/(Le)) Ve < L™
and, consequently,
H.(H(00))
dr(H(o = lim sup————= < k,
r(7tloo)) = Hmaomo, ie)
which completes the proof. 0

Remark 3.4. In the general case, H(op) is a Lipschitz continuous
manifold in C,(R; ¥), isometric to the torus T*. Hence dr(H(o9)) = k.

Theorem 3.3. Let the assumptions of Theorem 3.1 hold, and let oo(t)
be a quasiperiodic function of the form oo(t) = @(art, ast, ..., axt) = @(at),
where p(w1,ws, ... ,wk) = p(@) € CUP(TK, W), Then the estimate (3.16)
takes the form
8C(h)

Lne
where L is the Lipschitz constant from the inequality (3.22). Moreover,

dp(A) < d+ k. (3.26)

H.(A) < (d + 6) log, <n >+HEO(A) +klog2( ) Ve < eo, (3.25)

ProOOF. Indeed, the inequality (3.16), together with (3.24), yields
H(A) < (d0)logy ([2) + Hay(A) + B (H(o0)

&h))_

< (d+6)logy (77 )+H50(A)+klog2( Lne
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Passing to the limit in the ratio H.(A)/logy(1/e) as ¢ — 04, we find
dp(A) < d+d+ k. Since ¢ is arbitrarily small, we obtain (3.26). O

Recall that, in the autonomous case k = 0, the estimate (1.45) is an
analog of the estimate (3.26), where X = A: dr(A) < d.

We generalize Theorem 3.3 to the case of more general symbols og(t)
that are not almost periodic, but the dimension of the corresponding global
attractors A is finite.

As above, let 0¢(t) be a translation compact function in = and thereby
the hull H(op) is compact in Z. (For example, for = one can take C(R; ¥)
or £ = L)°(R; ¥).) As is proved in [34],

lim ?Jlip H (HO llog, (K /€) /10g2 1/6) (327)

is independent of K > 0 for any compact subset 3 € Z. For ¥ we introduce
the number

d (2, 1) := limsup He(Ilg j10g,(1/6)X)/ logy(1/€) (3.28)
e—0+

depending on the positive parameter .

Remark 3.5. If ¥ = H(0y), where oy is a smooth quasiperiodic func-
tion with k& independent frequencies, then dj9¢(%,1) < k for any [ because
H(0g) is the Lipschitz continuous image of the k-dimensional torus T* (see
Proposition 3.1).

If for some [ we have d9¢(3,1) < +o00. then we say that ¥ has the
local fractal dimension d}°¢(X,1) in the topological space C(R; ¥).
Theorem 3.4. Let the assumptions of Theorem 3.1 hold, and let
d2°(H(00), h1) < +00,
where hy = h(0)/logy(1/n). Then for any § > 0
dr(A) <d+6+dR°(H(oo), h). (3.29)
Moreover, if di°°(H(00),h) <k for all h > 0, then dp(A) < d+ k.

Indeed, dividing (3.12) by log,(1/e) and making the change of vari-
ables € = Ls, we find

1C(h)
H(oo)

0,h logl/a(%)

dr(A) < (d+0)+ limsup H,
F( ) ( ) e—0+ 10g2(1/€) + log, 4072}1)




Attractors for Nonautonomous Navier—Stokes System 209

HE(H Byl K H(UO))
= (d+6) + limsu Ol loga (/)
( ) eﬂo+p log2(1/e)
= (d +6) + d°(H(00), h1),

where K = ¢(/(4C(h)) and we used the fact that the expression (3.27) is
independent of K.

3.3. Applications to nonautonomous equations.

3.3.1. 2D Navier—Stokes system. Consider the family of the Cauchy
problems

Ou + vLu + B(u,u) = g(x,t), (3.30)
ult:T =Ur, Ur € H

(see Section 2.6.1) with external forces g € H(go). We assume that the origi-

nal external force go(z,t) is a translation compact function in L1°¢(R; H) =:
Z. The space Li°¢(R; H) is endowed with the topology of strong convergence
on every [t1,ts] C R. Then go € L5(R; H) and

t+1
lali, < ool =sup [ lao(s) s < o (3:31)
t

for every function g € H(go) (see (2.37) and (2.43)).

Consider the family of processes {Uy(t,7)}, g € H(go), corresponding
to the family of Cauche problems (3.30) and acting in H. As was proved
in Section 2.6.1, the process {Ug,(t,7)} has the uniform global attractor
A € H and the set A has the form

A= ] K40, (3.32)
9€H(g0)
where K, is the kernel of {Uy(t, 7)} with external force g € H(go).
Consider the Kolmogorov e-entropy H.(A) of the set A in H.
In [34], it is proved that the family {U,(¢,7)}, g € H(go), satisfies the
Lipschitz condition (3.9); namely,
[Ug, (B, 0)uo — Ug, (h, 0)uo| < C(R)llg1 — g2llLo(0,n5m) (3.33)
for all g1, 92 € H(go), uo € A, where the Lipschitz constant C'(h) depends

on v, A1, [[gol3, and exponentially grows in .
2

Consider the quasidifferentiability property in detail. As is proved in
[34], the process {Uy, (t,7)} is uniformly quasidifferentiable on Ky, and the
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corresponding variation equation has the form
Orv = —vLv — B(u(t),v) — B(v,u(t))

3.34
= Agou(u(t), v,  v)i—r = vy, (3.34)

where u(t) = Uy, (t, T)u, and u, € Ky, (7) (the proof is based on the meth-
ods from [9] and [119]). Thus, the quasidifferentials are the mappings
L(t,7;u;) : H — H and L(t,7;u;)v; = v(t), where v(t) is a solution
of (3.34).
Following the scheme described in Section 3.1, we set
T+T

~ 1
g; = limsup sup  sup (— / TrjAgOu(u(s))ds)7 JjeN,
T—oo T€ER u, €y, () T

where u(t) = Uy, (t,7)u, and Tr; denotes the j-dimensional trace of an

operator. As in the autonomous case (see the proof of Theorem 1.6), we

obtain the estimate
t

t
V02j2 1 1
[ gt < =Gt =)+ e+ 1 [ lao(s) s
Therefore,
~ VCsz |Q| 2 . .
< — M =: =q;, =1,2,..., .
qj 210 tos (l90l) =1 0(4) = ¢5, J (3.35)
where

T+T

, 1
M(|go|?) := lim sup sup (T / Igo(t)|2dt) < llgollzy < oo

and the dimensionless constants C and Cy are taken from (1.55) (see also
Remark 1.9). The function ¢(j) in (3.35) is concave in j.

Let m be the smallest integer such that ¢, +1 = p(m + 1) < 0 (see
Theorem 3.1). We set
dm
Am — m+1 )
Let d* be the root of the equation ¢(z) = 0, i.e.,

d=m-+

. M(go[»)' 219 1/2
==L o= (&) (3.36)
Then
d*<c||90||Lg|Q|

V2
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since M (|go|?) < ||go||ig. It is obvious that

Ngoll 51X

d<d < .

(3.37)

v
because the function ¢ is concave (see Remark 1.6).
Hence Theorem 3.1 is applicable, and we get the following assertion.

Theorem 3.5. For any § > 0 there exist h > 0, g9 > 0, and n < 1
such that

lgoll 19

&
H.(A) < (01,72 + 5) log, <77_z> +H,, (A
+ Hey)/acny) Moniog, , (co/(ne)) H(90)) (3.38)

for all € < e, where C(h) is taken from (3.33) and He(I1o;H(go)) denotes
the e-entropy of the set Iy H(go) in the space Lo(0,1; H).
Remark 3.6. The best up-to-date estimate for the constant ¢ in (3.38)
is as follows (see Remark 1.9 and [16]):
< 1
¢< 5375

Note that ¢(j)/j — —oo as j — oo (see (3.35)). Thus, using Theorem
3.2, we obtain the following assertion.

Theorem 3.6. For any h > 0 there are D > 0 and €y > 0 such that

2¢e
H.(A) < Dlog, (70) + Heo (A) + H g (To ko, ((20)/2)H(90)) - (3-39)
for all € < gg.

Consider a special case, where go(x,t) is a quasiperiodic function, i.e.,
go(w,t) = G(z,a1t,ast, ..., axt) = G(x,at), where G(-) € CVP(TF; H) and
the numbers @ = (a1, aq,...,qx) are rationally independent (see Section
3.2). Thus, H(go) = {G(x,at + 0) | € T*}.

By the Kronecker—Weyl theorem (see, for example, [85]),

T
. 1 =
M(|go|*) = Thm sup (T/|G(-,9+at)|2dt)

O geTk

0
1
- W/---/m(-,wl,...,wk)|2dw1...dwk T2,
Tk
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Then from (3.36) it follows that

M(H(g0)) V2100 _ TI0)

*
d<d" =c 5 5

1%
Using Theorem 3.3, we obtain the following assertion.

1%

Theorem 3.7. The fractal dimension of the uniform attractor A of
the 2D Navier—Stokes system with quasiperiodic external force go(z,s) =
G(x,as), G € O(T*; H) satisfies the estimate
Q|

2

drA <c + k, (3.40)

where the dimensionless constant ¢ depends on the shape of Q (¢(Q) =
c¢(AQ)) and admits the following absolute upper bound:
1

o2m3/2°

Remark 3.7. In the autonomous case k = 0, the estimate (3.40)
becomes the upper bound (1.49) for the fractal dimension of the attractor of
the autonomous Navier—Stokes system (where I' = |go|, go = go(z)). In the
nonautonomous case, the estimate (3.40) contains also the term k = dim T*,
i.e., the dimension of the hull H(go) = {G(x,as+0) | § € T*}, where k is the
number of rationally independent frequencies of the quasiperiodic external
force go(x,t).

Remark 3.8. As was proved in [34],

riQ
driCy(t) < c%l Vit e R

and, since dpH(go) < dimT* = k, we conclude that the estimate (3.40)
well agrees with the representation (3.32).

Remark 3.9. Assume that Gi(z,w1,...,wi) = Gr(z, @), oF € T*,
k=1,2,..., are such that

1 kyj2 k)
=— . < .
I <I2ﬂ|‘“/|Gk( L") dw) <R VkeN
Tk

c <

Assume also that 1/v < R;. Consider the global attractors {A¥} of the 2D
Navier—Stokes systems with external forces

gok(x,t) = Gz, ant, aat, . .., agt),

where the sequence {a;} consists of rationally independent numbers. From
(3.40) it follows that

dpA* <k+D VkeN, (3.41)
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where D = D(R, Ry). Therefore, the right-hand side of (3.41) tends to infin-
ity as k — oo, while the nonautonomous analogs of the Reynolds number Re
and the Grashof number Gr depending on R, 1/v, and || remain bounded.

Let us present an example of the external forces {ék(ac, wk)} satisfying
the conditions of Remark 3.9 such that

dpAqpe > k. (3.42)
Consider the function
k
u(x,t) = Z(az(x) cos(at) + aiqi () sin(ayt)), (3.43)
i=1
where a;(x), i =1,...,2k,..., are linearly independent vector-valued func-
tions, a;(z) = (a 11( ) 2z ))7 satisfying the following conditions: a;(z) €

()", <€

ai(z)) = 0, ajlaq = 0. We assume that the frequencies
(o1,...,Qp,...) are rationally independent. We set
g (z,at) = Oyu + vLu + B(u,u), (3.44)

where u(x,t) is defined by formula (3.43). It is obvious that gi(x,@t) is
quasiperiodic. The function u(zx,t) is a complete bounded trajectory of the
Navier—Stokes system with external force gi. If the coefficients a;(z) in
(3.43) decay rapidly, then T'y, < R for all k € N. We note that u(-,¢) € A for
all t € R. It is easy to see that the trajectory u(-,t) provides an everywhere
dense winding of the k-dimensional torus T* C H. Therefore, the closure

in H: {a(t) | t € R} = T* belongs to .A. Hence
drT* = k < dpA.

This example shows that the main term % in (3.41) is precise.
3.3.2. Wave equation with dissipation. We consider the nonautonomo-
us wave equation from Section 2.6.2:

O?u + you = Au — fo(u,t) + go(z,t), ulsq =0,

u|t:T = Ur, 6tu|t:7- = Pr, Ur S H&(Q)apT S LQ(Q)a
where x € Q € R3. The function fy(v,t) € C'(R x R;R) satisfies the
conditions (2.71)-(2.74) and the following inequality, similar to (1.61):

|fo(v1,t) = fo(va, )] < C(lo1 >~ + Jua>° + 1)[vr — s (3.46)

for all v1,v2 € R, t € R, where 0 < § < 1. Moreover, we assume that
(fo(v,t), for(v,t)) is a translation compact function in C(R; Ms) and go(x, t)
is a translation compact function in L1°¢(R; Lo(Q2)). The norm in the Banach
space My is defined bu formula (2.79). The symbol of the problem (3.45) is

(3.45)
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oo(t) = (fo(v,t), go(x,t)). Tt is clear that oo(t) is a translation compact func-
tion in = = C(R; Ma) x LI¢(R; Ly(f)). As usual, H(op) denotes the hull
of 0p(t) in E. Consider (3.45) with symbols o(t) = (f(v,t), g(x,t)) € H(oo).
By Proposition 2.6, the family of problems (3.45) generates the family of
processes {Uy(t,7)}, 0 € H(oo), Us(t,7) : E — E, acting in the energy
space E = H}(2) x Ly(Q). By Propositions 2.8 and 2.9, the process
{Us, (t,7)} is uniformly asymptotically compact and the family {U,(¢,7)},
o € H(og), is (E x H(oyp), E)-continuous. Proposition 2.5 implies that the
process {Uy, (t,7)} has the uniform global attractor
A= |J Ko
o€H(oo)
where IC,, is the kernel of {U,(¢,7)}. The set A is compact in E.
As is proved in [34], A is bounded in F; = H?(Q) x H}(Q) (recall
that Q € R?),
lyle, <M Vye A
where the constant M is independent of y. By the Sobolev embedding
theorem,
lu(Meom <My Vy=(u(),p()) € A (3.47)
We study the e-entropy of the global attractor A in E. As was proved
n [34], the family of processes {U,(t,7)}, 0 € H(op), corresponding to
the family of problems (3.45) satisfies the Lipschitz condition (3.6): for any
h>0
|U01 (h’7 O)y - UUz (h’7 O)y| < O(h’)Hgl - 0'2||Eo,h (348)
for all 01,09 € H(0g), y € A; Zg., = C([0, h]; M2) x La(0, h; L2(£2)). More-
over, there is an explicit formula for the Lipschitz constant C'(h) in [34].
As in the autonomous case (see the proof of Theorem 1.7), we write
the problem (3.45) in the form
dw = A(w) = Law — Goy ) (W), wli=r = wr, (3.49)

where w = (u,v) = (u,p + au), the operator L, is defined in (1.66), and
Goo(ty(w) = (0, fo(u,t) — go(x,t)). Here, a is a real parameter to be chosen
later.

The variational equatlon for (3.49) has the form
Otz = Loz — Goguw(w(t))z := Agyw (w(t))z,
zli=r = 2r, 2=(r9),
t)

where Gy, (w(t))z = (0, fu(u(t),t)r). As in the autonomous case (see [9]),
we prove that the process {Uy,(t,7)} of the problem (3.49) is uniformly

(3.50)

<
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quasidifferentiable on the kernel I, and the quasidifferentials are generated
by the system (3.50). We set

T+T

1
gj :=limsup sup  sup (— / TrjAgow(w(t))dt>, i=12...,
T—oo TER w,eKs,(T) T

where w(t) = Uy, (t, 7)w,. Arguing in the same way as in the proof of
Theorem 1.7, we obtain the following estimate for the numbers g;:
G < g5 = —(a/4)j + (C(M1)/a)j'* = ¢(j) VjeN, (3.51)

where, owing to the inequality (see (3.47)), M is such that
sup{flu(-, )l [t € R, (u(),dhul()) € Koy} < M

The function ¢(x), x > 0, in (3.51) is concave and the root of ¢ is
d* = 8C1(M,)3/?a~3 =: C(M;)a=3. All the assumptions of Theorem 3.1
are verified. Thus, we have the following assertion.

Theorem 3.8. For any § > 0 there exist h > 0, g > 0, and n < 1
such that

C €
H.(Ao) < (5 +6) log, (n—z) +H., (Ao)
+H en (Hoyh10g1/n(50/(n5))7‘((00)) (3.52)

1C(h)

for all € < eo, where o = min{~vy/4,\1/(27)} and C = C(My) (see (3.51)).
Here, H.(Ilp 1 H(00)) denotes the e-entropy of the set H(oo) measured in the
space Zo,; = C([0,1]; M2) x LI<(0,1; L2(12)).

Remark 3.10. We cannot apply Theorem 3.2 to the hyperbolic equa-
tion (3.45) because the function ¢(5) in (3.51) does not satisfy (3.13).
Consider a hyperbolic equation with quasiperiodic terms. Let
folv,t) = ®(v, art, ast, ..., agt) = (v, at),
go(z,t) = Gz, art, ast, ..., axt) = Gz, at),

where ®(v,0) € CUP(TF; My) and G(z,w) € CUP(TF; Ly(Q)). To obtain
the inequality (2.74), we assume that |a| <> < 1, where s = »(J). Now, if
O (v, @) satisfies the inequality

[P (v, 0)| < 20(v,@) +C; YV (v,@) € R x T,
then (2.74) is also valid for a small s«. Then
H(oo) = {(®(v,at + 0),G(x,as +0)) | § € TF}
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and hence
dr(H(og), Cp(R; Mo x La(Q2)) = dpH(og) < k.
Using Theorem 3.3 we obtain the following assertion.

Theorem 3.9. The fractal dimension of the uniform global attrac-
tor A of the hyperbolic equation (3.45) with quasiperiodic symbol oy(t) =
(®(v,at), G(x, at)) satisfies the estimate

c
dpA< 5+ (3.53)

To illustrate Theorem 3.9, we consider the dissipative sine-Gordon
equation with quasiperiodic forcing term

Ofu + 0w = Au — Bsin(u) + ¢(at)g(x), ulan =0, Q € R?, (3.54)

where ¢ € C1(T*;R) and g € Lo(£2). Observe that the constant C in (3.52)
and (3.53) does not exceed ¢3%, where ¢ depends on €2 (see (1.69) and (1.70)).
For the global attractor A of the problem (3.54) we have the estimate

63
drA< e +k. (3.55)

Remark 3.11. In the autonomous case k = 0, the estimates (3.53)
and (3.55) coincide with (1.63) and (1.72) respectively.

3.3.3. Ginzburg—Landau equation. We continue to study the nonau-
tonomous Ginzburg-Landau equation (2.112) from Section 2.6.3. Consider
the family of problems with periodic boundary conditions

Ou=v(l+ia)Au+ Ru— (1 +iB(t))|ul*u + g(x,t), z € T3,

Uli=r = ur(z), ur € H=Ly(T%C). (3.56)

For the sake of simplicity, we assume that the coefficients o« and R are
independent of time. The symbol o(t) = (8(t), g(z,t)) of (3.56) belongs to
the hull H(op) of the original symbol oo (t) = (5o(t), go(z,t)). We assume
that oo (t) is a translation compact function in C'1°¢(R y; R) x Li°¢(R;; H) =:
= and the parameter Gy(t) satisfies the inequality (2.113).

As in the autonomous case (see Section 1.4.2), we write the problem
(3.56) in the vector form

ou = vaAu+ Ru — f(u, 3(t)) + g(z,t), uli=r =u,, u, e H.  (3.57)

1 —«o

wterea= (1)t = v () ) v = (e anto) ™
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We know (see Section 2.6.3) that for every o € H(og) the problem
(3.56) has a unique solution u € C(R,;H) N LP(R,; V) N L1°(R,; Ly)
(see also [9, 25, 31]). Thus, for a given symbol o¢(t), the problem (3.56)
generates the family of processes {U,(¢,7)}, 0 € H(op), acting in H. It is
proved that the process {Uy, (¢, 7)} has the uniform global attractor A and

A= | K0,
oc€H(o0)
where K, is the kernel of {U,(¢,7)}. The set A is bounded in V.
In [34], the Lipschitz condition is established for the family of processes

{Us(t,7)}, 0 € H(oop):

[Us, (h, 0)ug — Us, (h, 0)uol|u

< CR)([IB1 = Balle(o,ny + 191 — g2l Loco,nsm))s (3.58)

VO'l = (ﬂlagl) S H(UO)702 = (62792) S H(O'()), Uug € A
In order to use Theorem 3.1, we need to check that the process {Uy, (¢, 7)}
corresponding to the problem (3.57) with the original symbol oq(t) is uni-
formly quasidifferentiable on the kernel K,,. This fact is proved in [34].
Recall that the variational equation for (3.57) is as follows:

v = vaAv + Rv — £, (u(t), (t))v =: Agyu(u(t))v,

3.59
V|i=r = v, € H, ( )

where the Jacobi matrix fy(u, ) is defined in (1.33). As in the autonomous
case, we prove that

T+T

~ 1
¢; =limsup sup  sup (— / Trj(Ac,Ou(u(t))dt>
T—oo 7T€ER u,eky,(7) T

< v+ Rj=19(j) =q;, j=1.2,...,
where u(t) = Uy, (t, 7)u,. Finally (see (3.11)),
R \3/2
o)

where d* is the root of the equation ¢(z) = 0 and C; was defined in (1.79).
Hence Theorem 3.1 is applicable to the problem (3.57) and the following
assertion holds.

dgd*:(

Theorem 3.10. For any 6 > 0 there exist h > 0, g > 0, and n < 1
such that
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H.(A) < ((%)3/2 + 5) log, (%) 1 H., (A

+H 2 (o hog, ,, (ca/ (ne) H(00))

for all € < gg, where C(h) is taken from (3.58) and H.(H(00)o,:) denotes
the e-entropy of H(oo) in C(]0,1]) x L2(0,1; H).

Theorem 3.2 implies the following assertion.

Theorem 3.11. For any h > 0 there are D > 0 and g9 > 0 such that

2e
H.(A) < Dlog, (%) +He, (A) + H = (Ilp 4 10g,(2¢0/2) H(00))

8C(h)

for all € < gg.

Consider the Ginzburg-Landau equation with quasiperiodic terms
Bo(t) = B(agt, ast, ..., ait) = B(at),
go(z,t) = Gz, art, aat, . .., apt) = G(z, at),
where B(w) € CUYP(T*:R), |B| < V3, and G(z,@) € CYP(T*; H). Asume
that the numbers (a1, as,...,ar) =: @ are rationally independent. As we
know, H(oo) = {(B(at +0),G(z,at +0)) | § € T*} and
dr(H(oo), Cp(R) x La(R; H)) = dpH(op) < k
(see Section 3.2). Using Theorem 3.3 we obtain the following assertion.
Theorem 3.12. The fractal dimension of the global attractor A of

the Ginzburg—Landau equation with quasiperiodic symbol o(s) = (B(at),
G(z,at)) satisfies the estimate
R \3/2
— +k
ClV)
As in the case of the Navier—Stokes system, we consider the sequence
of functions By (w") and Gy (z,w*) satisfying the above conditions. Denote

by A(k) the corresponding uniform global attractors. The inequality (3.60)
implies

drA < ( (3.60)

drA(k) < k+ D, (3.61)
where the constant D is independent of k.

As at the end of Section 3.3.1, we can construct examples of Ginzburg—
Landau equations with terms By (@"*) and Gy (x,@*) and the uniform global
attractors A(k) such that

k< dpA(k).
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Therefore, the main term & in the estimate (3.61) is precise.

4. Nonautonomous 2D Navier—Stokes System
with Singularly Oscillating External Force

We study the global attractor A° of the nonautonomous 2D Navier—Stokes
system with singularly oscillating external force of the form

go(z,t) +e Pgi(z/e,t), r€QeER? teR, 0<p< 1.

If go(z, t) and g1 (2, t) are translation bounded functions in the corresponding
spaces, then the global attractor A° is bounded in the space H (see Section
2.6.1). However, the norm | A®| g, regarded as a function of e, can be
unbounded as € — 0+ since the magnitude of the external force is growing.

Assuming that g1(z,t) admits the divergence representation
g1(z,t) = 0,,G1(2,t) + 0.,Ga(2,1), 2= (z1,2) € R?,

where G;(z,t) € L5(R; Z) (see Section 4.2), we prove that the global at-
tractors A® of the Navier—Stokes system are uniformly bounded:

Ay <C V0o<e<l.

We also consider the “limiting” 2D Navier—Stokes system with external
force go(z,t). We derive an explicit estimate for the deviation of the solution
u®(z,t) of the original Navier—Stokes system from the solution u°(z,t) of
the “limiting” Navier—Stokes system with the same initial data. If ¢1(z,t)
admits the divergence representation and go(z,t), g1(z,t) are translation
compact functiosn in the corresponding spaces, then we prove that the global
attractors A° converge to the global attractor AY of the “limiting” system
as € — 04 in the norm of H. In Section 4.5, we present the following explicit
estimate for the Hausdorff deviation of A° from .A°

distz (A%, A%) < C(p)e' =7

in the case, where the global attractor A° is exponential (providing that the
Grashof number of the “limiting” 2D Navier—Stokes system is small).

Some problems related to homogenization and averaging of the global
attractors for the Navier—Stokes systems and for other evolution equations
in mathematical physics with rapidly (nonsingularly) oscillating coefficients
and terms were studied in [70, 79, 80, 126, 131, 128, 53, 36, 17].
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4.1. 2D Navier—Stokes system with singularly
oscillating force.

We consider the nonautonomous 2D Navier—Stokes system

1
0, Lo, 20, u = vAu—V )+ — 1),
i+ U Oyt + u 0p,u = VAU p+ go(x )—|—€pgl(3:/5 ) (4.1)

Oz, u1 + Ogoue =0, ulpg =0, z:= (x1,22) €Q, Q E R2,

where u = u(z,t) = (u'(z,t),u?(z,t)) is the velocity vector field, p = p(x,t)
is the pressure, and v is the kinematic viscosity. In (4.1), € is a small
parameter, 0 < ¢ < 1, and p is fixed, 0 < p < 1. We assume that 0 € Q.

The vector-valued functions go(z,t) = (go1(x,t), go2(x,t)), © € Q,
t € R, and g1(2,t) = (q11(2,t),g12(2,1)), 2 € R* t € R are given. The
function go(z,t) + 2 g1(x/e,t) is called the external force. For every fixed &
the external force is assumed to belong to LY(R; Lo(Q)?) (we clarify this
assumption later). Under this condition, the Cauchy problem for (4.1) is
well studied (see, [96, 87, 117, 40, 9, 34] and Section 2.6.1).

As usual, we denote by H and V = H' funciton spaces which are the
closures of the set

Vo i= {v € (C§(0))? | gy v1(x) + Opyva(x) =0 Yz € Q}

2

in the norms | - | and || - || of the spaces L2(2)? and H}()? respectively.

We recall that
[o]|*= |V1)|2=/(|<9mlv1(56)|2 + 00,0 (@) + [0, 0% (2) 7 + |02, 0% () [ ) d.
Q

The space V' = V* is dual to V. We denote by P the orthogonal projection
from Lo(Q)? onto H (see Section 1.3.1) and set

1 x
“(2,1) = Pgo(x,t) + —P (—,t).
g (,1) go(w )+sﬂ 91( 2

Applying the operator P to both sides of the first equation in (4.1),
we exclude the pressure p(z,t) and obtain the following equation for the
velocity vector field u(x,t) :

Ou+ vLu + B(u,u) = ¢°(x,t), (4.2)

where L = —PA is the Stokes operator, B(u,v) = Plu'd,,v + u?0,,v] and
g°(-,t) € LI°(R; H). The Stokes operator L is selfadjoint and the minimal
eigenvalue A\ of L is positive.
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We assume that the function go(-,t) belongs to La(2)? for almost all
t € R and has finite norm in the space L5(R; L2(22)?), i.e.,

T4+1
9003 8,50 ) = Ny 5= 50 [ (oot ), s < +oc. (43

T

To describe the vector-valued function g1(z,t), z = (z1,22) € R?,
t € R, we use the space Z = L5(R?;R?). By definition,

©(2) = (p1(21, 22), p2(21,22)) € Z

if
z1+1 zo+1
O =IO gazan = s [ [ It Pdadé < +o.
® (z1,22)€ER?
zZ1 z2

We assume that ¢1(-,t) € Z for almost all ¢ € R and has finite norm in the
space L5(R; Z), i.e.,

T+1
91Oy = sup [ (nc,)]3)ds
TER

T

T4+1 2141 zo+1
= sup / ( sup / / |gl(C1,C27s)|2dCldC2>ds < +o0. (4.4)
TER (z1,22)ER?
T zZ1 z2

For (4.1) the initial data are imposed at arbitrary 7 € R :
Utmr = ur;, u; € H. (4.5)

For fixed € > 0 the Cauchy problem (4.1), (4.5) has a unique solution
u(t) := u(x,t) in a weak sense, i.e., u(t) € C(R,; H) N LY(R.; V), dpu €
LY¢(R,; V'), and u(t) satisfies (4.1) in the sense of distributions in the space
D'(R;; V'), where R, = [1,+00) (see [96, 87, 40, 9, 34, 119] and Sections
1.3.1, 2.6.1).

Recall that every weak solution u(t) of the problem (4.1) satisfies the
energy equality

5@ +vlu)l® = (ult), g°(t)) Vvt =T, (4.6)

where the function |u(t)|? is absolutely continuous in ¢ (see Section 1.3.1).

We need the following lemma proved in [34].
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Lemma 4.1. Let a real-valued function y(t), t > 0, be uniformly
continuous and satisfy the inequality

y'(t) +yy(t) < f(t) V=0, (4.7)
where v >0, f(t) >0 for allt >0, and f € LI°°(R,). Suppose that

t+1
[ s <n vizo (45)
t

Then
y(t) <y(0)e M+ M1 +~71) V0. (4.9)

Using standard transformations and the Poincaré inequality, from
(4.6) we obtain the differential inequalities

%Iu(t)l2 +ullu@®)® < (@A) a0, (4.10)
U
%W(t)l2 +rafu®))? < (vA)7Ha(t)]* (4.11)
Applying Lemma 4.1 to (4.11) with
y(t) =lut+ )7, ft+7)=@\) g @)%
Y= A M= ) g

we obtain the following main a priori estimate for a weak solution u(t) of
the problem (4.1):

Ju(t + 7)1 < Ju(m)Pe™ " + Dl|g°l1 2 g,y (4.12)

where D = (vA1)71(1 + (vA1)™1). The inequality (4.10) implies

¢ t
u(t)® + V/ [u(s)[ds < [u(r)? + (A1)~ / l97(s)|*ds. (4.13)
Lemma 4.2. If ¢(z) € Z = L5(R2R2), then p(z/e) € La(Q)? for all
e >0 and
- < : 2 g2 :
le ()], 0.0 < ClleO gz ey (4.14)

where the constant C' is independent of € and .
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PRrROOF. Indeed, making the change of variables /¢ = z, dx = £2dz,

we find
e = 1Dt =2 [ retar
Q

e~ 1Q
z1+1 z2+1
< C%e? SUPR2€2/ /|<P(C1,C2)|2dC1dC2
(21,22)€ 4 2

= 02”90(')”%15(11@;1&2)‘
In the last inequality, we used the fact that the domain e ') can be covered

by at most C?e~2 unit squares of the form [21, 21 + 1] X [22, 22 + 1], where
C depends only on the area of the domain €. O

Corollary 4.1. If go(z,t) € L5(R; L2()?) and g1(z,t) € L5(R; Z),
where Z = LY(R2;R2), then the external force
1
9°(z,t) = Pgo(x,t) + E—pPgl(ac/at)

belongs to the space L5(R; H) and

C
”gE”Lg(]R;H) < ||90||L3(JR;L2(Q)2) + €—p||91||Lg(R;Z)7 (4.15)

where the constant C' is independent of €.

The inequality (4.15) directly follows from Lemma 4.2 and formulas
(4.3) and (4.4) for the norms in L5(R; L2(Q2)?) and L4(R; Z).

Using the inequality (4.15) in (4.12), we find

ult + 1) < Jufr) et 4+ G + a0, (416)

where Cy and C; are constants depending on v, \;, and ||go||Lg(R;L2(Q)2),
g1l Ly(R;z) Tespectively.

We consider the process {U(t,7)} := {U:(t,7),t = 7,7 € R} corre-
sponding to the problem (4.2), (4.5) and acting in the space H (see Section
2.6.1). Recall that the mapping U.(t,7) : H — H is defined by the formula

Ues(t, )ur =u(t) Yure H, t>71, 7 €R, (4.17)
where u(t) is the solution of the problem (4.2), (4.5).

By the estimate (4.16), for every 0 < & < 1 the process {U.(t,7)} has
the uniformly (with respect to 7 € R) absorbing set

Bo. = {ve H| v <2(Co+ Cre")} (4.18)
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which is bounded in H for fixed ¢, i.e., for any bounded (in H) set B there
exists t' = t/(B) such that U(t + 7,7)B C By for all t > ¢(B) and 7 € R.

Arguing in a standard way, we prove that the process {U.(t,7)} has
the compact (in H) uniformly absorbing set

Bie={ve V||| <Cs(v,\,Co+ Cie™")}, (4.19)

where C(y1,y2,y3) is a positive increasing function in each y;,j = 1,2,3
(see (2.41)). Thus, the process {U.(t,7)} corresponding to the problem
(4.1), (4.5) is uniformly compact and has the compact uniformly absorb-
ing set By . (bounded in V) defined by formula (4.19). Consequently, the
process {U.(t,7)} has the uniform global attractor A® (see Section 2.6.1)
and A° C BO7E n Bl7e~

Since A® C By, from (4.16) and (4.18) if follows that
[ A% < (Co + Cre™"). (4.20)

Remark 4.1. For p > 0 the norm in H of the uniform global attractor
A€ of the 2D Navier—Stokes system (4.1) may grow up as ¢ — 0+ . In the
next sections, we present conditions providing the uniform boundedness of
A in H with respect to e. We also study the convergence of A° to the
global attractor A° of the corresponding “limiting” equation as & — 0+.

Along with the original Navier—Stokes system (4.1), we consider the
“limiting” system
st 4+ u O, v+ u0pyu = VAU — Vp + go(x, 1), (4.21)
8zlu1 + aacg“Q - Oa u|89 - 07 .
without the term depending on . Excluding the pressure, we obtain the
equivalent equation

Owu + vLu + B(u,u) = Pgo(z,t), (4.22)
where Pgo(x,t) € L(R; H). Then the Cauchy problem for (4.22) has a
unique solution u(t) := wu(x,t) in the sense of distributions. Hence there

exists the “limiting” process {Uy(t,7)} acting in H : Up(t, T)ur = u(t),
t > 7, 7 € R, where u(t) is the solution of the problem (4.22), (4.5). As in
the case of (4.12) and (4.13), we have

|u(t+7')|2 < |u(7_)|2e—1/)\1t +D||Pgo||ig(R1H), (423)

() + v / lu(s)|ds < fu(r)? + (vAr)~? / Pgo(s)[2ds.  (4.24)
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From (4.16) it follows that
u(t + 7)1 < Ju(r)Pe™ M + C3, (4.25)
which implies that the set
Boo={ve H]||v <2C} (4.26)

is uniformly absorbing for the process {Uy(¢,7)}. (The constant Cj is the
same as in (4.16).) Moreover, this process has the compact (in H) absorbing
set

Bio={veV]|v| <Car,A,Co)}. (4.27)

Therefore, the process {Up(t, 7)} is uniformly compact and has the compact
global attractor A° such that A% C By o N By o and

1A% < Co. (4.28)

4.2. Divergence condition and properties
of global attractors A°.

We consider the nonautonomous 2D Navier—Stokes system (4.2) with exter-
nal force

1
9°(z,t) = Pgo(z,t) + 8—pPgl(x/5,t).

We assume that the function go(z,t), © € Q, t € R, satisfies (4.3), i.e.,
”90(')”%*7(11%-@(0)2) < +00 and the function g1(2,t), 2 € R?, t € R, satisfies
2 3

(4.4), ie., ”91(')”ig(k;z) < +o0, where Z = L5(R%; R?).

e Divergence condition. There exist vector-valued functions G,(z,t) €
L5(R; Z), j = 1,2, such that 9.,G;(z,t) € L}(R; Z) and

0.,G1(21, 22,t) + 0.,G2(21, 22, 1) = g1(21, 22, 1) (4.29)
for all (21,22) € R% t € R.

Theorem 4.1. If g1(z,t) satisfies the divergence condition (4.29),
then for every 0 < p < 1 the global attractors A° of the 2D Navier—Stokes
system are uniformly (with respect to € €]0,1]) bounded in H, i.e.,

[A*lz < C2 Ve €]0,1], (4.30)

where Cy is independent of .
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PROOF. Taking the inner product of Equation (4.2) and u(t) in H, we
obtain the equality (4.6), i.e.,

()] + vlu)|® = (ul?), 9° (1))
= (90('a t)7 u('7 t)) + E_p(gl(-/&“, t)v ’LL(', t)) (431)

The first term on the right-hand side of (4.31) satisfies the inequality

DN | =
SR

(90,0, (1)) < PRI + —lgo(0) (432)
VAL

By (4.29), for the second term on the right-hand side of (4.31) we have

rp(gl <é7t>7u(~7t)> :,spil/ (aszj (g,t),u(m,t))dm

Q

= gl—pi (8%.Gj (g,t),u(x,t)>dx

j=1 0

2 x
:_gl—pZ/(Gj<g,t),81ju(ﬁc7t)>d$

Q
<203 [[6,(20) 'ae + Dputor @.33)
J E’ 4
Q

<.
I
—

In the third equality, we integrated by parts with respect to x taking into
account the zero boundary condition in (4.1). Substituting (4.33) and (4.32)
into (4.31), we find

2
d 2 2 2 2 2(1—p), ,—1 (T 2
GO + V]2 < ~lgo(®) + 220 E_j i(2.1)] ax.
- Q

By the Poincaré inequality,

Lo + v;afu(0)? < h(t) (4.34)

where

2
h(t) = ViAl|go(t)|2+252<17p>flZ/’Gj(g,t)fdm.

Jj=1 Q
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By assumption,
t+1
/ lgo(t)|2ds < ||go(-)||2Lg(R;L2(Q)2) =M, VteR. (4.35)
t

By Lemma 4.2,
t+1 )
[ [lei(E0)far< 6Ol =M wer j=12 (430)
t Q

where C' is independent of €.

Using Lemma 4.1 with y(¢) = |u(t+7)[%, v = v\, M = 2(vA\1) 1 My+
2e2(1=P) =1 (M, + M>), we obtain the following main estimate for the func-
tion wu(t):

fult + 7)1 < Ju(r) e + 2(vA0) " My
+ 2291 (M, 4+ My)] Dy, (4.37)
where D1 = (1 + (vA\;)7h).

Since 0 < p < 1 and 0 < € < 1, the inequality (4.37) implies that the
process {U.(t,7)} corresponding to (4.1) has the uniformly absorbing set

B={veH]| | <C}, (4.38)
where C3 = 2[2(v\1) "1 My + 201 (M; + M3)]D;. It is clear that the global
attractor A° belongs to any absorbing set, i.e.,

[A%lr < C2 VO<e<], (4.39)
provided that the divergence condition (4.29) is satisfied. O

We now estimate the deviation of the solution of the original 2D
Navier—Stokes system (4.2) from the solution of the “limiting” system (4.22).
We supplement (4.2) and (4.22) with the same initial data at ¢t = 7:

Uty = Ugp, U0|t:7 = Uy, UsE E, (4.40)

where the absorbing ball B is defined by formula (4.38). Recall that the set
B is independent of 0 < p<land 0 <e < 1.

Let u(x,t) and u°(z,t) be solutions of Equations (4.2) and (4.22) re-
spectively with the same initial data (4.40) taken from the ball B. Let
us estimate the deviation of u(x,t) from u®(z,t) for t > 7. Let w(x,t) =
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u(z,t) — u®(x,t). For the sake of simplicity, we set 7 = 0. The function
w(z, t) satisfies the equation

1
Oyw +vLw + B(u,u) — B(u®,u’) = g—pPgl (g,t) (4.41)

and zero initial data
wli=o = 0. (4.42)
We note that
B(u,u) — B(u®,u°) = B(w,u°) + B(u®,w) + B(w,w).

Taking the inner product of Equation (4.41) and w in H, we find

1d 9 9
5 7w @F +vilw@)” + (B(w,u), w)
+ (B(u®, w),w) + (B(w,w),w) = gip<gl (é,t),w>. (4.43)

From (1.13) it follows that (B(u°, w),w) = 0 and (B(w,w),w) = 0. There-
fore,

5 WO + vl + (Bl (@), w) = 2 (o1 (5,0)w).  (4.44)

Using the divergence condition, similarly to (4.33) we find

€—P<gl <é7t>,w> = —51—02/ (Gj (g,t),@mju(x,t)>d1‘

Q
< 1o20-0,1 i/ (2 t)‘de + )2 (4.45)
) : AN 2 ’ '
J:1Q
From (1.13) and (1.14) it follows that
[(B(w,u’),w)| = [{B(w,w),u’)| < c§|w][[w]][|u"]. (4.46)
Then
0 2 0 L 2 Lleh o002
[{B(w, u”), w)| < cplwlllu”[[llwll < Fvllwll® + 5 "HwllleT)" (4.47)

Combining (4.45) and (4.47) in (4.44), we find

d 2 _ € 20,0012 1 ~2(1—p), ,— - € 2

- < 0 p),,—1 ‘ (2 ’ )

I OF < SROP IO + 000 [les(2)] o
=la
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We set

) =), ()= 64V’llluo(t)ll2

b(t) = £2(1=0) *12/‘0

Jlg

Then we obtain the differential inequality

2'(t) < b(t) +~v(t)z(t), =z(0)=0.

Using the Gronwall lemma, we find

Ojb 5) exp / (o)do)ds < (O/t eXp

S

o\“

Recall that u°(t) satisfies (4.24) and ug € B, i.e.,

t

JECE / l°(®)]12ds
0

0
t
G (fuol? + ()™ [ lon(s)Pds)
0

N

<c
< Cs(t+1).

By (4.36),

t t

/b(s)ds:52(1fp)yflz//‘Gj<§,s>‘2dacd8
0 =10 O

j=1
2
<SUPUTCt+1) ) IG5l
J=1
< 2Pyt 1) (M] + M}).

Replacing (4.50) and (4.51) with (4.49), we find
|w(t)|2 < 82(1—P)V_1(t+ 1)(M{ +M£)603(t+1)

_ 52(1—;))1/—1(M{ +M£)€t603(t+1) _ 52(1_p)0262rt7

vds

ov (G + (vA) T E+ Dllgo Ol gm0 (0)2))

229

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)



230 Vladimir Chepyzhov and Mark Vishik

where C7 = v=Y(M] + M})e®, 2r = C3 + 1. The constants Cy and r are
independent of €. The inequality (4.52) holds for all 0 < p < 1. Thus, we
proved the following assertion.

Theorem 4.2. Let gi(z,t) satisfy the divergence condition (4.29).
Then for every initial data ur € B (see (4.38)) the difference w(x,t) =
u(z,t) — ul(z,t) of the solutions of the Navier-Stokes equations (4.2) and

(4.22) respectively with the initial data (4.40) taken from the ball B satisfies
the inequality

lw(t)] = |u(t) — u’(t)] < PP Cue ) Ve, 0 <e <1, 4.53)

(
where the constants Cy and r are independent of €, u, € E, 0<p<Ll.

In Section 4.4 below, using Theorems 4.1 and 4.2, we prove that the
global attractors A° converge to A° in the norm of H as & — 0+ .

4.3. On the structure of global attractors A°.

We start by considering translation compact functions with values in the
spaces L2(Q2)? and Z. The definition of a translation compact function in
E = L,°°(R; E) with values in a Banach space E is given in Section 2.4
(see Example 2.2). Below, we consider translation compact functions in the
case, where & = L;OC(R; Ly(Q)?) and E = L;OC(R; Z).

Consider vector-valued functions go(z,t), x € Q, t € R, and ¢1(z, 1),
z € R%, t € R, that appear on the right-hand side of the 2D Navier—
Stokes system. We assume that go(x,t) € LY°(R; Ly(Q)?) and g1(2,t) €
LY<(R; Z).

Proposition 4.1. If ¢g1(z,t) is a translation compact function in
LY°(R; Z), then for every fited 0 < & < 1 the gi(z/e,t) is a translation
compact function in LY°(R; L2(Q)?), Q € R2.

PROOF. We need to establish that the set {gi(x/e,t + h) | h € R}
is precompact in LY¢(R; Ly(2)?). Let {h,, n = 1,2,...} be an arbitrary
sequence of real numbers. Since g1(z,t) is a translation compact function
in LY¢(R; Z), there is a subsequence {h, } C {h,} such that gi(z,t + h,/)
converge to a function g (z,t) asn’ — oo in LY°(R; Z), i.e., for every interval
[th tQ] CcCR

to
/ llgi (-, s+ hnt) — Gi(-,8)|[|%ds — 0 asn/ — oo.
t1
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Using the inequality (4.14), we conclude that
to
Tl sn) -a(29)
€ €
t1

ta
< 02’/ 19108 + ) — G2, 8)]13 s,
t1

2

ds
L ()2

i.e., gi(z/e,t + hn) converge to gi(z/e,t) as n’ — oo in LY(R; Lo(2)?).
Thus, {g1(z/e,t+ h) | h € R} is precompact in L¥°(R; La(Q2)?). O

Proposition 4.2. Suppose that go(x,t) is a translation compact func-
tion in LY°(R; L2(Q)?) and g1(z,t) is a translation compact function in
LY*(R; Z). Consider the function

9" (x,t) = go(x, t) + e Pgu(x/e, 1)
as an element of the space LY<(R; Ly (2)?). Then ¢¢ is a translation compact
function in L¥°(R; Lo(2)?) and the hull H(g%(x,t)) (in LY°(R; La2(Q)?))
consists of (translation compact in LY°(R; Lo(Q)?)) functions §°(z,t) of the
form

g (z,t) = go(x,t) + e "gu(x/e, )
with some §0($7t) € H(go((E,t)), §1(th) € H(gl(ZVt))’ where H(go(l’7t))
and H(g1(z,t)) are the hulls of go(z,t) and g1(z,t) respectively.

PROOF. By Proposition 4.1, for fixed ¢ € (0,1] the function ¢°(x,t)
= go(x,t) + e Pg1(x/e,t) is translation compact in LY¢(R; Ly(2)?) (as the
sum of two translation compact functions). Let g°(x,t) € H(¢°(z,1)), i.e.,
there is a sequence {h,, } such that ¢°(x, t+hy,) = go(x, t+hy,)+e Pgi(x/e, t+
hyn) — g°(z,t) in LY(R; L2(Q)?) as n — oo. Since go(z,t) and g1(z,t)
are translation compact functions in L¥¢(R; Ly(22)?) and LY°(R; Z) respec-
tively, we can assume, passing to a subsequence {h,/} C {h,} if necesary,
that go(z,t+ hnr) — Go(w,t) in LYS(R; Ly(2)?) and g1 (z,t + hnr) — G1(2,1)
in LY°(R;Z) as n’ — oo. Therefore, ¢°(z,t + hp') = go(z,t + hp) +
e Pgi(x/e, t+hp) — Go(z,t) +e7Pg1(x /e, t) in LY(R; Ly(2)?) as n’ — oo.
Therefore,

9°(2,6) = T [go(a, -+ hn) + € Pga(/e,t + Do)

i go(z,t+ hy)+ lim e Pg(a/e,t+ ho)

=go(z,t) + e Pg1(z/e, t).
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Thus, every function g°(z,t) € H(g°(z,t)) has the form
g (z,t) = go(x, t) + e "gu(x/e, )
for some go(z,t) € H(go(z,t)) and gi1(2,t) € H(g1(z,1)). O

Consider Equation (4.2)
Oru + vLu + B(u,u) = ¢g°(x, 1), (4.54)

where ¢°(z,t) = Pgo(x,t) + e PPgi(x/e,t) and ¢ is fixed. Assume that
go(x,t) is a translation compact function in LY¢(R; Ly(Q)?) and g1(z,1)
is a translation compact function in LY¢(R;Z). In particular, go(z,t) €
L5(R; L2(Q)?) and g1 (z,t) € L(R; Z).
Let H(g%) be the hull of the function g°(z,t) in the space LY(R; H) :
H(g®) = {g" (.t +h) | h € RY| pioe(m,my- (4.55)
Recall that H(g%) is compact in LY°(R; H) and, by Proposition 4.2, each
element g°(x,t) € H(¢°(z,t)) can be written in the form
9 (z,t) = Pgo(x,t) + e PPgi(x/e, t) (4.56)

with some functions go(z,t) € H(go(x,t)) and g1(z,t) € H(g1(z,1)), where
H(go(z,t)) and H(g1(z,t)) are the hulls of the functions go(z,t) and g1 (z,?)
in LYS(R; Ly(2)?) and LY°(R; Z) respectively.
We note that
190l Ly (®; Lo (2)2) < 190l Ly @;a(0)2) V90 € H(go),
1910l y;z) < l91lloymzy Va1 € Higr).
By Corollary 4.1,

C
1971l g sy < ll9oll g (miLo(0)2) + €—p||91||Lg(JR;z) Vg®eH(g), (4.57)
where the constant C' is independent of go, g1, p, and ¢ (see (4.14) and
(4.15)).

It was shown in Section 4.1 that the process {U.(t,7)} := {Ug-(t,7)}
corresponding to Equation (4.54) has the uniform global attractor A® C
By, N By ¢, (see (4.18) and (4.19)) and

[ A%l < (Co + Cre™?), (4.58)

where the constants Co and C1 depend on ||go| s (w1, (0)2) and |91/l 2y ®;2)
respectively.
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Now, we describe the structure of the attractor A°. Along with Equa-
tion (4.54), we consider the family of equations

Ot + vLa + B(@, 1) = 5 (x, 1) (4.59)

with external forces g° € H(g®). It is clear that for every g° € H(g°) Equa-
tion (4.59) generates the process {Ug(t,7)} acting in H. We note that
the processes {Ug (t, )} possess properties similar to the properties of the
process {Uge(t,7)} corresponding to the 2D Navier—Stokes system (4.54)
with original external force ¢°(x,t) = Pgo(z,t) + e "Pgi(z/e,t). In partic-
ular, the sets By . and Bj . are absorbing for every process {Uy- (¢, 7)},9° €
H(g%) (see (4.57)). Moreover, every process {Uy (t,7)} has a uniform global
attractor Ag- which belongs to the global attractor A°* = Ay of the 2D
Navier—Stokes system (4.54) with initial external force ¢°(x,t), Az C Age,
where the inclusion can be strict (see Proposition 2.3).

Proposition 4.3. Suppose that go(x,t) is a translation compact func-
tion in LY°(R; La2(Q)?) and g1(z,t) is a translation compact function in
LY¢(R; Z). Then for any fired 0 < & < 1 the family of processes {Uz=(t,7)},
g° € H(g%), corresponding to Equation (4.59) has an absorbing set B .
which is bounded in H and V and satisfies the inequality

[Brellm < (Co+ Cie™?). (4.60)
The family {Uz-(t,7)}, 95 € H(g), is (H x H(¢%); H)-continuous, i.e.,

G5 — g% in LY°(R; H) as n — oo, (4.61)
Urp — Ur 0 H as n — o0, '
implies
Ugs (6, T)trn, — Uge (t, T)ur in H as n — oo. (4.62)
The proof is similar to that of the corresponding assertions in [34] in
the case of a nonoscillating translation compact external force in L¥(R; H)).

We denote by Kg- the kernel of Equation (4.59) (and of the process
{Ug=(t,7)}) with external force g° € H(g®). Recall that the kernel Kg- is
the family of all complete solutions u(t), t € R, of (4.59) which are bounded
in the norm of H :

[at)] < Mz VteR. (4.63)

The set ICg= (s) = {u(s) | u € K4}, s € R, in H is called the kernel section
at time ¢ = s.

We formulate the theorem (see the proof in [34]) about the structure

of the uniform global attractor A® of the 2D Navier-Stokes system (4.54)
(see also (2.44)).
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Theorem 4.3. If ¢°(x,t) is a translation compact function in the
space LY°(R; H), then the process {Ug:(t,7)} corresponding to Equation
(4.59) has the uniform global attractor A® and the following equality holds:

A= ) Kg(0). (4.64)
g=€H(g%)

Moreover, the kernel Kg- is nonempty for all g° € H(g®).

We note that the attractor A° is given by the formula
—UJBO ﬂ[UUstTBo},
h20 t—72h
which means that for constructing the attractor A° of the entire family
of processes {Uj-(t,7)}, g5 € H(g®), it is possible to use only the process
{Uq4=(t,7)} of the original equation (4.54) with external force
9° = Pgo(z,t) + e P Pgi(z/e, t).
All the above-mentioned results remain valid for the “limiting” 2D Navier—
Stokes system (4.22)
Opu + vLu + B(u,u) = ¢%(x,t) (4.65)
with translation compact external force ¢°(t) := Pgo(-,t) € LY(R; H).
Equation (4.65) generates the “limiting” process {Up(t,7)} = {Ug(t,7)}
which has the uniform global attractor A" (see Section 4.1).

Consider the family of equations
o+ vLu + B, 1) = g°(z,t) (4.66)

with external forces g € H(g") (the hull H(g%) is taken in the space
LY¥¢(R; H)) and the corresponding family of processes {Ug(t,7)}, g° €
H(g°).

We can directly apply Proposition 4.3 and Theorem 4.3 to (4.65) and
(4.66) by setting gi(z,t) = 0. Therefore, the family {Ujo(¢,7)}, g° € H(g°),
has a uniformly absorbing set By o (bounded in V),

[B1olla < Co, (4.67)
and the family {Ugo (¢, 7)}, 9° € H(g"), is (H x H(g"); H)-continuous. More-
over, the attractor A° of the “limiting” equation (4.65) has the form

A= ] Kg(0), (4.68)
g°€H(9%)

where Ko is the kernel of Equation (4.66) with external force g° € H(g").
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Formulas (4.64) and (4.68) will be used in the following section, where
we study the strong convergence of A° to A° as e — 0 +.

4.4. Convergence of the global attractors A° to A°.

Consider Equations (4.54) and (4.65), where go(z,t) and ¢1(z, t) are transla-
tion compact functions in LY(R; L2(Q)?) and LY°(R; Z) respectively. As-
sume that the function gi(z,¢) satisfies the divergence condition (4.29).
Then, by Theorem 4.1, the uniform global attractors A° of Equations
(4.54) with external forces g°(x,t) = Pgo(x,t)+e P Pgi(x/et) are uniformly
bounded in H with respect to ¢ :

A5 <Oy YO<e<, (4.69)

where the constant Cy is independent of €. We also consider the global
attractor A° of the “limiting” equation (4.65) with external force ¢°(t) =
Pgo(-,t). Tt is clear that the set A is bounded in H (see (4.67)).

We need a generalization of Theorem 4.2 which can be applied to the
solutions of the entire families of equations (4.59) and (4.66).

We choose an arbitrary element u, € B. Let @(-,t) = Uge (t, T)ur, t >
7, be the solution of (4.59) with external force g° = Pgo +¢ " Pg € H(g°),
and let @°(-,t) = U (¢, T)us, t > 7, be the solution of (4.66) with external
force g° € H(g"). We assume that the initial data at ¢ = 7 for both solutions
are the same: U(-,7) = @°(-, 7) = uo, ug € B, where the absorbing ball B is
defined in (4.38). (Note that g° can be different from the term g° = Pgy,
the first summand in the representation g° = Pgo 4+ ¢ ?Pg;.) Consider the
difference

W(x,t) = u(z,t) —ul(x,t), t=T.

Proposition 4.4. Let the original functions go(x,t) and g1(z,t) in
(4.1) be translation compact functions in LY°(R; L2(Q)?) and LY(R;Z)
respectively. Let g1(z,t) satisfy the divergence condition (4.29). Let

95(1,’ t) = Pgo(.??, t) + 87ppgl(x/6a t)7 gO(x’ t) = PgO(I7t)
Then for every external force g° = Pgy + e PPg; € H(g%) there exists an
external force g° € H(g°) such that for every initial data u, € B (see (4.38))
the difference
w(t) =au(t) — u’(t) = Uze (t, T)ur — Ugo (t, T)ur

of the solutions of the 2D Navier—Stokes systems (4.59) and (4.66) with
external forces §°(z,t) = Pgo(x,t)+e P Pgi(x/e,t) and g°(x,t) respectively



236 Vladimir Chepyzhov and Mark Vishik

and with the same initial data u, satisfies the inequality
[W(t)] = [a(t) — @°(t)] < ePPCue"® T Vo <e<, (4.70)

where the constant Cy and r are the same as in Theorem 4.2 and are inde-
pendent of € and 0 < p < 1.

Proor. Consider the functions
u(t) = Uge (t, T)ur, u’(t) = Ugp(t,7)u, Vt > T, (4.71)
where ¢°(t) = Pgo(t) + e PPgi(t) and ¢g°(t) = Pgo(t) are the original ex-
ternal forces. Using (4.71), we write the inequality (4.53) in the form
Uy (t, T)r — Ugo(t, T)ur | < 7P C0uem 7). (4.72)
By Theorem 4.2, the inequality (4.72) holds for all u, € B. We claim that
(4.72) also holds for the time-shifted external forces
g7 (t) =g°(t +h) = Pgo(t+ h) + e PPg1(t + h),
gn(t) = g°(t +h) = Pgo(t + h)
with arbitrary h € R, i.e.,
[Ugs (£, T)ur — Ugo (¢, T)ur| < =P Cyert=7), (4.73)

where the constants Cy and r are independent of h. Indeed, for every
h € R the time-shifted function ¢15,(z,t) = g1(z,¢t + h) apparently satis-
fies the divergence condition (4.29) for the time-shifted functions G;-L(z, t) =
Gj(z,t+h) € L5(R; Z), j = 1,2. Thus, (4.73) directly follows from Theorem
4.2.

We recall that the family of processes {Ug= (¢, 7)}, g° € H(g%), is (H x
H(g%); H)-continuous. In particular (see (4.61) and (4.62)), for fixed u, € B
G5 —§° in LY(R; H) as n — oo

implies
Uge (t, T)ur — Uge(t, T)ur in H asn — oo (4.74)
and, similarly,
Ugo (t, T)u; — Ugo(t,T)u; in H asn — oo (4.75)
if g% — g% as n — oo in LY¢(R; H) for some §° € H(g°).
We now fix an external force g5 = Pgo + e P Pg; € H(g%). Since g°(t)

is a translation compact function in LY(R; H), there exists a sequence
{hi} C R such that

g, — g in LY°(R;H) as n — oo, (4.76)
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where gi (t) = ¢°(t + h;). Consider a sequence of external forces gp =
g°(t+h;). Since g°(t) is a translation compact function in L¥°(R; H), there
exists a function g° € H(g°) such that

ggi — g% in LY(R; H) as n — oo (4.77)
(where we can pass to a subsequence of h;, if necessary). From (4.73) it

follows that
Uge (t,7)ur — Uy (8, T)u,| < e1=P et Vi e N. 4.78
9 h,

Using (4.76) and (4.77) in (4.74) and (4.75), we pass to the limit in (4.78)
as i — oo and obtain the required inequality:

Uge (t, T)ur — Ugo (t, T)ur| < g1 Cuem=7), (4.79)
Thus, the inequality (4.70) is proved. O

We formulate the main result of this section.

Theorem 4.4. Assume that 0 < p < 1. Let go(x,t) and g1(z,t) in
(4.1) be translation compact functions in the LY°(R; Lo(2)?) and LY(R; Z)
respectively, and let g1(z,t) satisfy the divergence condition (4.29). Then the
global attractors A of Equations (4.54) converge to the global attractor A°
of the “limiting” equation (4.65) in the norm of H as e — 0+, i.e.,

distr (A%, A%) — 0 ase— 0+. (4.80)

PROOF. Denote by u® an arbitrary element of A°. By (4.64), there
exists a bounded complete solution u®(t), t € R, of Equation (4.59) with
some external force g° = Pgy + ¢ ?Pg1 € H(g%), 90 € H(g90), 51 € H(q1),
such that

u® = u(0). (4.81)
Consider the point u°(—R) which clearly belongs to A° and hence
u°(-R) € B (4.82)

(see (4.38)). Recall that B is an absorbing set and the global attractor A°
belongs to B. The number R will be chosen later.

For the constructed external force g° we apply Proposition 4.4: there
is a “limiting” external force g € H(g") such that for any 7 € R and u, € B
the following inequality holds:

|Uge (t, T)ur — Ugo(t, T)ur| < =P Cue™ ") i > 7 (4.83)
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Consider the “limiting” equation (4.65) with the chosen “limiting”
external force g'. We set 7 = —R. Let @°(t), t > —R, be the solution of
this equation with initial data

@Pl—_g = @°(—R). (4.84)

Taking —R in place of 7 and —R + t in place of ¢, from (4.83) (see also
(4.82)) we find

[05(—R+1t) — (=R +1t)| <P Ce™ Wt >0, (4.85)
where U°(—R+1t) = Ug:(—R+t,—R)u*(—R) and @°(—R +t) = Uz (—R +
t,—R)u*(—R).
The set A° attracts Ugo(t + 7, 7)B in H as t — 400 (uniformly with
respect to 7 € R and g° € H(g°), see [34]). Therefore, for any § > 0 there
exists a number 7' = T'(d) such that

dist g (Ugo (t + 7,7)B, A%) < 0 vre R,g° € H(¢"),t = T(9).

2

Hence for 7 = —R and u*(—R) € B

distyy (Uzo (—R +t, —R)u*(—R), A°) < = Vg° € H(g%),t = T(9).

N >

In particular, for g° specified above we have

disty (@°(—R + 1), A°) = disty (Ugo (—R + t, —R)u*(—R), A°)
<6/2 Vit =T(6). (4.86)

Recall that T'(0) is independent of u € A°.
From (4.86) and (4.85) it follows that

disty (°(~R +t),.A%)
<@ (~R+t) —a°(—R+t)| + disty (@ (—R + t),.A%)

<P + g Vit > T(6). (4.87)
We set t = R =T(J) in (4.87). Since u*(0) = u®, we have
distzr (uf, A) = dist g (a°(0), A%) < =P e T 4 g Vu e A°
Consequently,

dist g (A%, A%) < e Cuer T 4 g V46> 0. (4.88)
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Finally, for arbitrary § > 0 we take €9 = €¢(d) such that
Egl—ﬂ)c4erT(6) _ 6/2

| 5N
Thus, if € < g(d) = (m> , then distg (A%, A”) < . Therefore,
disty (A%, A%) — 0 as ¢ — 0+. O

4.5. Estimate for the distance from .A° to A°.

Consider the 2D Navier—Stokes system (4.54) in the case, where the Grashof
number of the corresponding “limiting” Navier—Stokes system (4.65) is small.
In this case, the global attractor A is exponential, i.e., A? attracts bounded
sets of initial data with exponential rate as time tends to infinity. This prop-
erty allows us to estimate explicitly the distance from A° to A°.

We consider the “limiting” system (4.65) with external force ¢°(t) :=
Pgo(-,t) € LY°(R; H). Let the Grashof number G of this 2D Navier—Stokes
system satisfy the inequality

lg®re 1
G .= 2 < > (489)

% s

where the constant 3 is taken from the inequality (1.14).
Then, by Proposition 2.4, Equation (4.65) has a unique solution zgo (%),
t € R, bounded in H, i.e., the kernel KCjo consists of a single trajectory zgo(t).
This solution z4 (t) is exponentially stable, i.e., for every solution w4 (t) of
Equation (4.65)
lugo(t +7) — 240 (t + 7)| < Colur — zg0 (7)™t Vt >0, (4.90)
where ugo(t +7) = Uy (t + 7, 7)u, and Cp, B are independent of u,, 7.
The property (4.90) implies that the set
A =[{zpt) [teRYm= |J {z(0) (4.91)
9€H(9°)

is the global attractor of Equation (4.65) under the condition (4.89) (see
(2.54)).

Remark 4.2. As was shown in [16], the inequality (1.14) holds with

1/2
2 = (%) = 0.3071.... Based on the numerical result from [134], it
T

was also shown in [16] that ¢3 = 0.2924. ... This value is possibly the best
one for the inequality (1.14). Thus, (4.90) and (4.91) are valid if G < 3.42.
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Remark 4.3. The inequality (4.90) implies that the global attractor
AY of the system (4.65) is exponential under the condition (4.89), i.e., for
any bounded set B in H
sup distz (Ugpo(t +7,7)B,A%) < C1(|B)e"", (4.92)
TER
where C depends on the norm of B in H

The following assertion concerns the distance from A% to A°.

Theorem 4.5. Let the assumptions of Theorem 4.4 be satisfied. Sup-
pose that the Grashof number G of the “limiting” 2D Navier—Stokes system
satisfies (4.89). Then the Hausdorff distance (in H) from the global attrac-
tor A% of the original 2D Navier—Stokes system (4.54) to the global attractor
A° of the corresponding “limiting” system (4.65) satisfies the inequality

distg (A5, A°) < C(p)e'™” V0<e<1,
where 0 < p <1 and C(p) > 0 depends on v, |[gol 1y, and ||g1| -

The proof of Theorem 4.5 is similar to that of the corresponding as-
sertion concerning the complex Ginzburg—Landau equation with singularly
oscillating terms (see Section 5.4).

Remark 4.4. In this section, we consider nonautonomous 2D Navier—
Stokes systems with singularly oscillating external forces and prove results
concerning the behavior of their global attractors. Similar assertions holds
for other nonautonomous evolution equations in mathematical physics with
singularly oscillating terms, for example, for the damped wave equation

O?u + 0 = Au — f(u) + go(z,t) + e Pgi(z,t/e), uloq =0,

where v > 0,0 < p<py, 0 <e <1, teR ze Q&R and go(z,t),
g1(z,t) are translation compact functions in the corresponding spaces (see
[130])).

5. Uniform Global Attractor of Ginzburg—Landau
Equation with Singularly Oscillating Terms

In this section, we study the global attractor A of the nonautonomous
complex Ginzburg—Landau equation with constant dispersion parameters «,
(3 and singularly oscillating external force of the form go(z, t)+e ?g1(x /e, t),
reQeR, n >3 0<p< 1 Weassume that || < V3. In this
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case, the Cauchy problem for the Ginzburg-Landau equation has a unique
solution and the corresponding process {U.(¢,7)} acting in the space H =
Ly(92; C) has the global attractor A (see Sections 1.3.3 and 2.6.3). Along
with the Ginzburg-Landau equation, we consider the “limiting” equation
with external force go(x,t). We assume that the function g;(z,?) admits
the divergence presentation

g1(z,t) = Z@ZlGi(z,t), z=(z1,...,2n) € RY,
i=1

where the norms of G;(z,t) are bounded in LY(R;Z), Z = LY(R?;C) (see
Section 5.1).

We estimate the deviation (in H) of the solutions of the original
Ginzburg-Landau equation from the solution of the corresponding “lim-
iting” equation with the same initial data.

If g1 (2, t) admits the divergence representation and go(x,t) and g1 (2, t)
are translation compact functions in the corresponding spaces, we prove
that the global attractors A° converge to the global attractor A° of the
“limiting” system as ¢ — 0+ in the norm of H. We also study the case,
where the global attractor A° of the “limiting” Ginzburg-Landau equation
is exponential. In such a situation, we obtain the following estimate for the
deviation of the global attractor A from A°:

distgr (A5, A°) < C(p)et™” VO0<e<l,

where the constant C'(p) is independent of e.

5.1. Ginzburg-Landau equation with
singularly oscillating external force.

We consider the nonautonomous Ginzburg—Landau equation

Owu = (1 +ia)Au+ Ru — (1 +iB8)|ul*u + go(z, 1)
1 x (5.1)
+€_pgl<gat)7 U|aQ _07

where u = uy (z,t) + iua(x,t) is the unknown complex function of x € Q &
R™ and t € R (see Sections 1.3.3 and 2.6.3). We assume that 0 €  and

18] < V3. (5.2)

In (5.1), 0 < p < 1 and ¢ is a small positive parameter. Let H = Ly(; C)
and Z = L5(R";C). The norm in H is denoted by || - ||zz. A function f(z)
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belongs to Z = LY(R?;C), z = (21, 22, ..., 2,) € R, if
17O = 17Oy

z1+1 zn+1
o / / 1£(Clyee s o) PGy - dCy < 400, (5.3)
zeR™
Z1 Zn

We assume that go(z,t) = go1(z,t) + igo2(z,t), © = (x1,22,...,2Ty) € R,
belongs to the space LY(R;H) and g¢i(z,t) = g11(z,t) + igia(z,t), 2 =
(21,22,...,2n) € R™ belongs to the space LY(R;Z), i.e., these functions
have finite norms

T+1
lgoCo M nmay = sup [ llgo(-ss)llFds (5.4)
3 (R;H) TER
T4+1
= sup / (/ |go(x,s)|2dx>ds < 400,
TER
T Q
T4+1
91+ By =510 [l s) s (5.5)
T+1 z1+1 Zn+1
= sup / ( sup / / lg1(C1y .oy Cny 8)[2dCy - --an>ds < +00,
TER z€ER™
T 21 Zn
where z = (21, 29,..., 2n).

Equation (5.1) is equivalent to the following system of two equations
for the real vector-valued function u = (uy,us) "

ou = (; —1a> Au+ Ru — (; _15> lu|*u

1 T
)+ — (—,t), 5.6
+ go(w,1) 5pgl B (5.6)
where go = (go1,902) ' and g1 = (g11,912) -

Under the above assumption, for every fixed 0 < ¢ < 1 the Cauchy
problem for (5.1) with initial data

Upmr = ur (), ur(-) € H, (5.7)
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where 7 is arbitrary and fixed, has a unique solution u(t) := u(x,t) such
that

u(-) € C(R,; H) N LYS(R,; V) N LY(R,; Ly),

1 (5.8)
V = Hj(%C), Li=Li(%C), R, =[r,+00).

and u(t) satisfies (5.1) in the sense of distributions in the space D' (R; H™"),
where H™" = H"((;C) and r = max{1,n/4} (recall that n = dim(Q)).
In particular,

Ou(-) € Ly(r, T;H™ ") + Ly3(7,T; Lyy3) VT > 7.

The proof of the existence of such a solution w(t) is based on the Galerkin
approximation method (see, for example, [119, 9, 34]). The proof of the
uniqueness uses the inequality (5.2) (see, for example, [34]).

We recall that if (5.2) fails, for n > 3 and arbitrary values of the
dispersion parameters o and [ the uniqueness is not proved yet (see [101,
102, 136] for known uniqueness theorems).

We set || - || :== || - ||m for brevity. Any solution u(t), ¢ > 7, of (5.1)
satisfies the differential identity

1d

5 1@ + [IVe®* + [u®)llL, = Rlu@®)]* = (¢°(®),u(#)  (5.9)
for all t > 7, where g°(t) := go(z,t) + & Pg1(z/e,t). The function |ju(t)|? is
absolutely continuous for ¢ > 7. The proof of (5.9) is similar to that of the
corresponding identity for weak solutions of the reaction-diffusion systems
considered in [34, 32| (see also [129]).

Using standard transformations and the Gronwall lemma, from (5.9)
we deduce that any solution u(t) of (5.1) satisfies the inequality

lu(t +7)]]? < ||u(7')||2e_2)‘1’5 + C’g + C’fs_Q” Vt>0, T eR, (5.10)

where \; is the first eigenvalue of the operator {—Au, ulpq = 0}, the
constant Co depends on R and ||go|| Ly (g, and the constant Cy depends
on [[g1/[ Ly m;z) (see (5.4) and (5.5)). We also have the inequality

t

x 2\ (t—s
//‘gl(g,s)’ e~ Mt )ddeSC’Hngig(R;z) Vt>1,7eR, (5.11)
Q

T
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where C' is independent of €. Indeed,

/t/’gl (§,3>‘26_>\1(t_3)dxd8 :/te—M(t—s) (gn / g1 (Z, 8)|2d2’)d8
T Q
t

T e~ 1Q
z1+1 Zn+1
§C”/e‘>‘1(t_s)<sup / / |gl(C1,...,Cn,s)|2dC1---an)ds

zeR?

T 21 Zn

< C" O 2y

n

since the domain ¢! can be covered by C’e~" unit boxes (see the proof

of Lemma 4.2). Hence (5.11) is true.

Integrating (5.9) with respect to time from 7 to 7+t and using (5.10),
we find (see (5.4) and (5.5))

T+t
%IIU(T +1))|* + / (IVus)II* + llu(s)lL,)ds

T

T+t T+t
<IN+ R [ u)Pds+ [ g7 fu)lds,
JUTu@I® + Juts) I, )ds (512)

T

1 _
< 5P + Calt + 1) + Ca (ool 2y agar) + = 1911250,z

We consider the process {Ue(t,7)} := {U:(¢t,7) | t = 7,7 € R} corre-
sponding to the problem (5.1), (5.7) and acting in the space H (see formula
(2.118)). By (5.10), the process {U.(t,7)} has the uniformly absorbing set

BO7E = {’U ceH | ||1}|| <20y + Clé_p)} (513)

which is bounded in H for every fixed € > 0.

We now prove that the process {U.(¢,7)} has the compact (in H)
uniformly absorbing set

Bi.={veV||v|v<Ci+Cie "} (5.14)
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For this purpose, we take the inner product of the first equation in (5.1)
and —tAwu in H. Making standard transformations, we find

1d
57 HVul®) = ||VU||2th||AU||2—Rt||VU||2
—{((1+ iﬂ)|u|2u,tAu> = —(go, tAu) — e "(g1(x/e), tAu). (5.15)

Introduce the notation
1 —
f(v) = v (5 f) v, v =(v1,v3).

Since |B] < V/3, the matrix f/(v) is positive definite, i.e.,
AVw-w>=0 Vv=(vy,v), w=(w,wsz), t =0 (5.16)

(see (1.34)). Therefore, the term in (5.15) containing 3 is also positive.
Indeed,

— {1 +iB) ul*u, tAu) = —(f(u), tAu)
—tZ/fu )0y, 1,05, u)dx Vit > 0. (5.17)

zlﬂ

Integrating both sides of the equality (5.15) with respect to ¢ and taking
into account (5.17), we find

t t t
1 1
StV =5 [ IVuts)Pds + [ sldu()ds - & [ s|vu(s)ds
0 0 0

t ¢
<- / (g0(5), sAu(s))ds — e / (1 (x/e, 5), sAu(s))ds. (5.18)
0 0
Using (5.12), from (5.18) we obtain the inequality
t
%tHVU(t)Il2 +05/S||AU(S)||2dS < R/8||VU(8)||2dS

0
t

¢
+C’6</s||go( MPds + e~ 2”/s||gl (x/e,s)]] ds) (5.19)
0

0

Using an inequality similar to (5.11) in (5.19), we find

HTuI < CrleluO)® + 1+ 1+ tllgoll2y arny + 1 191 Py iz
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Assuming that u(0) € By, and setting ¢t = 1, we obtain
[Vu(D)| < Cs(L+ g0l Loemy + 91l Ly (miz))- (5.20)
It is clear that the same inequalities hold if we replace 0 and ¢ with 7 and
T+t
HIVu(r + )12 < Crltlulr) 2 + ¢+ 1+ tlgol 2y mean, + =191 2y )
Thus, if u(7) € By, then
IVu(r + DI < Cs(1+ llgoll y iy + € ll91llymizy) vr=0. (5.21)
By (5.21), the set
Bie={veV||vlv <Cs(L+lgolly +e llgrlly)} (5.22)

is uniformly absorbing for the process {U(t,7)} corresponding to the Ginz-
burg-Landau equation (5.1). The set B; . is bounded in V and compact
in H since the embedding V € H is compact. Thus, we have proved the
following assertion.

Proposition 5.1. For any fized ¢ > 0 the process {U:(t,T)} corre-
sponding to Equation (5.1) is uniformly compact in the space H and has the
compact uniformly absorbing set By . defined by formula (5.22).

Along with the Ginzburg-Landau equation (see (5.1)), we consider the
“limiting” equation

o’ = (1 +ia)Au’ + Ru® — (1 4+ i8)[u’Pu® + go(x, 1), u’|aq =0, (5.23)

where the coefficients «, 5, R and the external force go(z,t) are the same as

in (5.1). In particular, the conditions (5.2) and (5.4) are satisfied. Therefore,
the Cauchy problem for this equation with initial data

ulimr = ur(z), u () € H, (5.24)

has a unique solution u°(z,¢) and there exists the corresponding process
{Uo(t,7)} in H: Up(t,)ur = u’(t), t > 7 € R, where u°(t), t > 7, is a
solution of (5.23) with initial data u|;=, = u,. As in the case of (5.10), the
main a priory estimate for (5.23) reads

[u®(r + )|I* < [Ju®(r)|Pe M + CF. (5.25)

Following the above reasoning, we prove that the process {Uy(t,7)}
has the uniformly absorbing set

Boo={veH]||v] <2C}. (5.26)
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(Comparing (5.26) with (5.13), we see that the parameter £ is missing in
(5.26) since the term e gy (z/¢,t) is missing in Equation (5.23).) Moreover,
the process also has the uniformly absorbing set

Bro={ve V[[[Vullv < Cs(1 +[lgoll Ly r;ex)) } (5:27)

which is bounded in V and is compact in H. Hence the process {Uy(¢,7)}
corresponding to the “limiting” equation (5.23) is uniformly compact in H
and Proposition 5.1 holds for the “limit” case € = 0.

Based on this result, it is easy to see that the processes {U.(¢,7)}, € >
0, and {Uy(¢,7)} have the uniform global attractors A. and Ag respectively
(see [34] and Section 2.6.3) such that

[Aclla < Co + C1e™”, [ Aolla < Co.
However, the above conditions on ¢1(z,t) are not sufficient for establishing
the uniform boundedness of A, in H with respect to € > 0.

Now, we formulate a condition providing the uniform boundedness
of the global attractors A., 0 < & < 1. Assume that gq(z,t) satisfies the
following condition.

e Divergence condition. There exist vector-valued functions G,(z,t) €
L5(R;Z), j = 1,n, such that 0.,G,(z,t) € L5(R; Z) and

> 0.,Gi(z,t) = gi(z,t) VzeR" teR. (5.28)
j=1

Theorem 5.1. If g1(z,t) satisfies the divergence condition (5.28),
then for every 0 < p < 1 the global attractors A° of the Ginzburg—Landau
equations are uniformly (with respect to € €]0,1]) bounded in H, i.e.,

A5 < Oy Ve €0, 1. (5.29)

The proof is similar to that of Theorem 4.1.

5.2. Deviation of solutions of the Ginzburg—Landau
equation.

In this section, we consider the equation (see (5.1))

Ou = (1 +ia)Au+ Ru — (14 i8)ul*u + go(x, )
1 2 (5.30)
+€_pgl(gat)7 U|aQ 207
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where the coefficients satisfy the conditions (5.2)-(5.5) and 0 < p < 1. The
corresponding “limiting” equation has the form

o’ = (1 +ia)Au® + Ru® — (1 +iB)|u’Pu® + go(z,t), u’|sq = 0. (5.31)
The initial data are imposed at t = 7:
Ulimr = ur(x), ©li=r = u,(2), u,(-)€H. (5.32)

Suppose that u(x,t), t > 7, and u°(x,t), t > 7, are solutions of the problems
(5.30), (5.32) and (5.31), (5.32) respectlvely. We set w(z,t) = u(z,t) —
u®(x,t). The function w(t) := w(-,t) satisfies the equations

Oyw = (14 ia)Aw + Rw — (1 +if) (Jul?u — |[u’|*u?)
1 x
o0 (g,t)7 wlag =0

with initial data w(7) = 0.

(5.33)

Theorem 5.2. Under the divergence condition (5.28), the difference
w(t) = u(-,t) —u’(-,t) of the solutions u(x,t) and u’(z,t) of the problems
(5.30) and (5.31) respectively with the same initial data (5.32) satisfies the
inequality

lw(®)|| = u(-, ) —u’(-,t)|| < CeP=P e Vi > 7, (5.34)
where
0 R< A\
r={ s AL (5.35)
R—-—X+06, R>A\,

d > 0 is arbitrarily small, and C = C(5) for R > ).

PRrROOF. For the sake of simplicity, we assume that 7 = 0. Taking the
inner product of Equation (5.33) and w in H, we find

1 d 2 2 2

5 g Iwll” + [IVwl” = Rlwl]

(L +3B) (Jul?u — [u02u®), u — u) = e~ <91(I t) w> (5.36)
Since |8 < V/3, from (5.16) it follows that

(1 +iB)(|ulPu — [ulPu®),u —u®) >0 (5.37)
(see also (1.34) and [34]). From (5.36) and (5.37) we obtain

d 2 2 2 - <
— < P — . .
dt”wH +2||Vw||* < 2R|Jw||* + 2¢ <gl<€,t),w> (5.38)
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Using (5.28), we find
2e~ ”<gl(§,t>,w>ds—25 ”Z<8Z]G ( ),w>
<2030, (20) ) = 203 () )

3

J
Al 2“/)2/‘@ d+—/|wat)|dx §>0. (5.39)
j:l
We claim that
/‘G da;—s / G (2, 6)Pdz < C||G4 (- £)]12. (5.40)
_1Q

Here, we used an n-dimensional analog of Lemma 4.2. Hence

= x
Z/’Gj(g,t> CZIIG Oz vteR. (5.41)
j=1 Q
By (5.39) and (5.41), we have

27 (g1 (Z.t),w) < (%sﬂl*p)c)h(t) + i—f||Vw||27 50,

where h(t) = > ||G;(,t)||%. From (5.38) it follows that
j=1

d 2 -1 2 2 A1 2(1—
il — < 2 p) ] ]
Zlw]? + (2 = 2027 Vw2 < 2RJjwl? + (5320 IC)h(t).  (5.42)
Let 6 < A1. By the Poincaré inequality,
d 2 2 A1 2(1—
il < _ 21 P) ) )
Zlwl? < 2R = + 9|l + (55207C)he).  (5.43)
If R> A\, then r = R— A\ + 0 > 0 and, consequently,
d At
@) < rlw@)]? + (55207, wO) =0
By the Gronwall inequality (see (4.48) and (4.49)),

Jw(t)]]? < Al g2(t- P)o /h r(t=9) g, (5.44)
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Recall that G;(z,t) € L5(IR;Z) since g; satisfies the divergence condition.
Therefore,

t+1 n
[ 1 < Y16y = M (5.45)
t J=1

and, consequently,

t 1 2 t
/h(s)efrsds = /h(s)efrsds + /h(s)efrsds—k ot /h(s)efrsds
0 0 1 [t]

1 2 t

< /h(s)ds—ke”/h(s)ds—&—...—|—efm/h(s)ds
0 1 0

<SMA4+e "+ +eh<MA+em+..)

<M(1L+7r7h).

- 1—e"

Using this estimate in (5.45), we obtain

A
lw(®)]? < (2—;52(1“))0M(1 + r_l))e” vt >0, (5.46)

ie.,
lw(®)]| < C(8)e e,

where r = R — A\ + 6 and C(8) = (67127 '\ CM (1 +r)V2 If R < Ay,
then —r; = R— A1 +6 < 0 for sufficiently small § > 0. Then from (5.43) we
deduce

Sl < =il + (S320-9C)h). (5.47)
By Lemma 4.1 and (5.45),

lw(®)]* < lw(0)[[Pe™™* + 2715 ] MCM (1 4 1)) v >0,
and, since w(0) = 0,
lw(t)]| < C(8)"7,

where C(6) = (270" \\CM (1 +r71)Y? and r; = A\; — R— 6 > 0. The
inequality (5.34) is proved. O
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5.3. On the structure of attractors .A° and .A4°.

Consider the Ginzburg-Landau equation (see (5.30))
Ou = (1+ia)Au+ Ru — (1 +iB)|ul’*u+ ¢°(2,t), wulon =0, (5.48)

where ¢ is fixed and ¢(z,t) = go(x,t) + e Pg1(x/e,t) is the time symbol
(see Section 2.4). Assume that go(x,t) is a translation compact function in
LY(R;H) and gy(z,t) is a translation compact function in LY<(R;Z). In
particular, go(x,t) € L5(R; H) and g1(z,t) € LY(R; Z).

Let H(g®) be the hull of the symbol g*(x,t) in the space LY(R; H) :

Recall that H(g®) is compact in LY°(R; H) and every element g°(x,t) €
H(g%(x,t)) can be written in the form

9 (x,t) = golx,t) + e Pqi(x/e,t) (5.50)

with some functions go € H(go) and g1 € H(g1), where H(go) and H(g1) are
the hulls of the functions go(z,t) and g;(z,t) in LY°(R; H) and LY¢(R;Z)
respectively (see Proposition 4.2 which remains true for the n-dimensional
complex spaces H and Z).

As was shown in Section 5.1, the process {U.(t,7)} = {Uq(¢,7)}
corresponding to (5.48) has the uniform global attractor A* C By . N B .
(see (5.13) and (5.14)) and

[ A%l < (Co + Cre™?). (5.51)

Now, we describe the structure of the attractor A°. Along with Equa-
tion (5.48), we consider the family of equations

8t = (1 + Q) AT + RE® — (1 +40)[a°128° + 5 (2, 1), @lon =0 (5.52)

with symbols g° € H(g®). It is clear that for every g° € H(g°) Equa-
tion (5.52) generates the process {Uj-(t,7)} acting in H. We note that
the processes {Ug (t, )} possess properties similar to the properties of the
process {Uge(t,7)} corresponding to the Ginzburg-Landau equation (5.48)
with original symbol ¢°(x,t) = go(x,t) + e Pg1(x/e,t). In particular, the
sets Bo. and Bj . are absorbing for each process of the family {Ug- (¢, 7)},
g € H(g").

We denote by Kg- the kernel of the system (5.52) (and of the process
{Us=(t,7)}) with symbol g° € H(g°).
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We formulate the theorem on the structure of the uniform global at-
tractor A° of the Ginzburg-Landau equation (5.48) (see Section 2.6.3 and
(2.122)).

Theorem 5.3. If ¢°(x,t) is a translation compact function in the
space LY°(R;H), then the process {Uy:(t,7)} corresponding to (5.52) has
the uniform global attractor A and

A = U K5 (0); (5.53)
g°€H(g°)

moreover, the kernel Kge is nonempty for every g° € H(g°).

All the above results are valid for the “limiting” Ginzburg-Landau
equation (see (5.31))

O’ = (1 +ia)Au’ + Ru® — (1 +if)[u’*u’ + ¢°(x, 1), u’|oq =0, (5.54)
with translation compact symbol ¢°(t) := go(-,t) € L¥°(R; H). Equation
(5.54) generates the “limiting” process {Uy(t,7)} := {Ug(t,7)} which has
the uniform global attractor A° (see Section 5.2).

Consider the family of equations
o’ = (1 +ia)An” + Ra® — (1 +i8)[a°*u’ + °(2,t),@°|oq = 0, (5.55)

with symbols g° € H(g°) and the family of processes {Ugo(t,7)}, g° €
H(g"). Note that we can apply Theorem 5.3 directly to (5.54) and (5.55) by
setting gi1(z,t) = 0. Therefore, the attractor A° of the “limiting” equation
(5.54) has the form
A= ] Kg(0), (5.56)
g°€H(g°)
where Ko is the kernel of (5.55) with symbol g° € H(g").

5.4. Convergence of A° to A° and estimate for deviation.

All the results of Sections 4.3 and 4.4 can be also established for the Ginz-
burg-Landau equation. We consider (5.48) and (5.54), where go(z,t) and
g1(z,t) are translation compact functions in L¥¢(R; H) and L¥¢(R;Z) re-
spectively. Assume that gi(z,t) satisfies the divergence condition (5.28).
Then, by Theorem 5.1, the uniform global attractors A° of (5.48) with ex-
ternal forces ¢°(x,t) = go(x,t) + e Pg1(x/e, t) are uniformly (with respect
to €) bounded in H:

Al < Ce VO<e<L (5.57)
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We also consider the global attractor A° of the “limiting” equation (5.54)
with external force g°(t) = go(-, ).

We need to generalize Theorem 5.2 in order to apply the estimate
(5.34) to the families of equations (5.52) and (5.55).

Consider an arbitrary initial data u, € H. Let u°(-,t) = Ug- (¢, 7)ur,
t > 7, be the solution of (5.52) with symbol g = gy + 7?91 € H(g°),
and let @°(-,t) = Uy (t,7)ur, t > 7, be the solution of (5.55) with symbol
" € H(g%) and the same initial data. We note that the symbol g° can be
different from the function g = o in the representation g = gy + ¢ °g;.
Consider the difference

W(x,t) =0 (z,t) — ul(x,t), t>=T.
Proposition 5.2. Let go(x,t) and g1(z,t) in (5.1) be translation com-

pact functions in the spaces LY°(R; H) and LY°(R;Z) respectively, and let
g1(z,t) satisfy the divergence condition (5.28). Let

g°(z,t) = go(@,t) + £ gu(x/e,1),  ¢°(x,t) = go(x,1).
Then for every symbol G° = o + & Pg1 € H(g%) there exists a symbol g° €
H(g°) such that for every initial data u, € H the difference
w(t) = a°(t) — u’(t) = Uge (t, T)ur — Ugo(t, T)ur
of the solutions of the Ginzburg-Landau equations (5.52) and (5.55) with

symbols g% (z,t) = Go(x,t) + e Pg1(z/e,t) and §°(x,t) respectively and the
same initial data ur satisfies the inequality

@) = [[@(-, ) =@, )] < CeP et vt > 7, (5.58)

where the constants C' and r are the same as in Theorem 5.2 and are inde-
pendent of € and 0 < p < 1.

The proof is similar to that of Proposition 4.4.

We formulate an analog of Theorem 4.4 about the strong convergence
of the global attractors A. of the Ginzburg-Landau equation (5.30) to the
global attractor Ay of the “limiting” equation (5.31) ase — 0+ .

Theorem 5.4. Assume that 0 < p < 1. Let go(z,t) and gi(z,t)
in (5.30) be translation compact functions in the spaces LY°(R;H) and
LY<(R;Z) respectively, and let g1(z,t),z € R™, satisfy the divergence con-
dition (5.28). Then the global attractors A® of (5.30) converge to the global
attractor A° of the “limiting” equation (5.31) in the norm of H as e — 0+,
ie.,

distgr (A%, A°) — 0 ase— 0+. (5.59)
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The proof is similar to that of Theorem 4.4.
Using Proposition 2.13, we estimate distg (A%, A°) explicitly under the
assumption that the global attractor A° is exponential. Let
R< A\ —x VEeER, (5.60)

where > > 0 and ); is the first eigenvalue of the operator {—A, ulgpg =
0}. Then the global attractor has simple structure. We reformulate the
corresponding results from Section 2.6.3.

Proposition 5.3. Let the assumptions of Theorem 5.4 hold, and let
R satisfy the inequality (5.60). Then the following assertions hold.

(i) For every g° € H(g°) there exists a unique bounded (in H) com-
plete solution zz(t), t € R, of (5.55) with symbol §°, i.e., the kernel Kgo
consists of a single element zz and, in this case, formula (5.56) for the
global attractor A° has the form

A=) {0} (5.61)
goeH (%)
(ii) The complete solution zg(t), t € R, attracts any solution g (t) =
Ugo(t, T)ur, t = 7, with exponential rate:
l|tgo (t) — zgo ()| < [[ugo(T) — 250 (M)le " Vt>7 reR, (562)
and, consequently, the global attractor A° is exponential, i.e.,

sup  distu (U (t, 7)B,A) < Ce "7 ¢ =C(|Bllu), (5.63)
gYeH(g°)

where B is a bounded (in H) set of initial data and < is taken from the
condition (5.60).

From Propositions 5.2 and 5.3, we obtain the following assertion.

Theorem 5.5. Let 0 < p < 1. Suppose that the assumptions of Theo-
rem 5.4 and the condition (5.60) are satisfied. Then the Hausdorff distance
(in H) from the global attractor A to the “limiting” global attractor A°
satisfies the inequality

distg (A%, A°) < C(p)e' ™" V0 <e<1. (5.64)
PrROOF. We fix €. Let u® be an arbitrary element of A®. By (5.53),

there exists a bounded complete solution u®(t), t € R, of (5.48) with some
symbol g° = go(x,t) + e Pg1(x/e,t) € H(g®) such that

@°(0) = u°. (5.65)
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Consider the point u(—T) which clearly belongs to A°. From (5.57) it
follows that

[@(=T)|| < Ca, (5.66)
where Cs is independent of € and T'.

We apply Proposition 5.2 for the constructed external force g°: there
is a “limiting” external force g° € H(g°) such that for any 7 € Rand u, € H

|Uge (t + 7, TV — Ugo (t + 7, 7)ur || < CeU7P) vt >0, (5.67)

where 7 = 0 since R < A1 (see (5.35)). Here, C' is independent of u.

Consider the “limiting” equation (5.55) with the chosen “limiting”
external force g¥. We set 7 = —R. Let @°(t), t > —T, be the solution of
this equation with initial data

W|im_ = 0 (=T). (5.68)

By Proposition 5.3, there exists a unique bounded complete solution 2°(t),
t € R, of (5.55) with symbol g° such that

0% (=T 4 t) = 2°(=T + t)|| < |a°(~=T) — 2°(=T)|le " Vvt =0. (5.69)
Recall that 2°(t) € A° for all t € R. Therefore,

12°(=T)| < [|A° < ¢, (5.70)
where C’ is independent of 2° and T. By (5.68) and (5.66),
[2°(=1)|| = [[a*(=T)|| < Co. (5.711)

From (5.69), (5.70), and (5.71) it follows that
|0 (=T +t) = 2°(=T +t)|| < C"e > Vvt >0, (5.72)
where C” = C" 4 Cs.
Setting 7 = —T in (5.67), we have
[@* (=T +1t) = (=T +1)|
= |Uge (t + 7, T)ur — Ugo(t + 7, 7)ur || < C7P) Wt > 0. (5.73)
Using (5.72) and (5.73), we find
@S (=T +t) — 2°(=T + t)||
<|as (=T +t) = (=T + t)|| + [|a°(—T +t) — 2°(-T + t)|
< Cel=P 4 e, (5.74)
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1—
We choose T' from the equation e(1=7) = ¢=*T ie, T = p log(1/¢e) and
»

substitute ¢ = T in (5.74). Then
[2(0) — z°(0)|| < (C + ")l =7
and, consequently,
dister (u, A%) < [lu” = 2°(0)]| = [[@°(0) — 2°(0)] < C(p)et =7,

where C(p) = (C + C”). Since u® is an arbitrary point of A%, we have
distg (A%, A%) < C(p)e=r). O

Remark 5.1. In the case R < A1, Proposition 5.3 holds for (5.48) with
symbols g°(z,t) = go(z,t) + e Pg1(x/e,t) and for the family of equations
(5.52) with symbols g° € H(¢°) (see Proposition 2.13 and Corollary 2.9).
In particular, the global attractor A° of (5.48) is exponential, as well as the
global attractor A, and the attraction rate is the same.

Remark 5.2. In fact, the inequality (5.64) holds (with some other
constant C) for the symmetric distance distjy(A%,.A%) = distg (A%, A%) +
distyp(A°, A%):

distf; (A%, A°) < C1(p)et™" VO0<e<1.

This result relies on the property of the exponential attraction of solutions
to the global attractor A°, mentioned in Remark 5.1.
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Recent Results in Large Amplitude
Monophase Nonlinear Geometric Optics

Christophe Cheverry

University of Rennes I
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For quasilinear first order systems the standard regime is weakly nonlinear geomet-
ric optics which considers near some background state perturbations of amplitude
¢ with wave length € €]0,1] (¢ — 0). However, when the oscillations are associ-
ated to a linearly degenerate mode, stronger waves can also be considered. The
question of the existence, propagation, and interaction of such larger amplitude
waves is the matter of supercritical Wentzel-Kramers—Brillouin analysis. Some
recent results in this direction and, in particular, the case of incompressible Euler
equations are described. Bibliography: 22 titles.

1. Introduction
We start with a general presentation.
1.1. Background results in nonlinear geometric optics.

Many works are devoted to the study of high frequency oscillatory waves

u®(t,x) ~ul(t,x) == Zej/lUj(t,x,goE(t7x)/5), e — 0, (1.1)
j=0
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which satisfy quasilinear first order systems
d
Opu + Z Aj(t,z,u)0, ,u+ f(t,z,u) = 0. (1.2)
j=1

Here, € €]0,1] is a small parameter (going to 0), the profiles U;(t, x,6) are
periodic in the # variable, the phase ¢°(¢,x) is a real function, [ and d are
positive fixed integers. We will work with oscillations in the space variable,
assuming that

-1

e (t, @) = Z Ej/lsoj (t,z), Vapo #0. (1.3)

=0

In the notation

u (t,z) = UL (t,x, 9" (t,x)/e), UL(t x,0) Zej/l i(t,x,0),

the expression u is interpreted as a monophase oscﬂlatlon. Since ¢ can
depend on ¢ €]0, 1] through (1.3), we have

x):ig/@j(t’x,%t?m pultn) ety
j=0

S EV2) RS v/
with
0j(t,x,00,01, ce ,01_1) = Uj(t,l‘,eo + 01 +--+ 01_1) VJ € N. (15)

We see in (1.4) that multiphase and multiscale features are also present. Of
course, due to (1.5), they are organized in a very particular manner.

The goal is to construct families {u®}. which are solutions to (1.2) on
some open domain © C R x R? independent of & €]0,1] and which satisfy
the asymptotic behavior (1.1). This requires to identify the terms U; and
¢; in order to build approximate solutions u;, meaning that

d
£5 = 0pug + Y Aj(t, 2,05)0,, w0 + f(t,2,u) = O(eV)
j=1
for some N > 1. This includes also to study the validity of the nonlinear
geometric optics approximation uf. We want to know if there exists some
solution u® of (1.2) corresponding to u.

Looking at oscillations such as uf is a way to point some special mech-
anisms of nonlinear interaction. These mechanisms can be hidden in the
original full set of Equations (1.2). On the other hand, they can be visible
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at the level of the transport equations giving rise to the profiles U; or even
at the level of the eikonal equations yielding the phases ;.

The use of (1.1) implies that the smallest wavelength in u® is fixed: it
is €. Then the analysis depends crucially on the amplitude of the oscillation.

(i) If

37 €{0,---,1—1}; OpU; #0, (1.6)
the regime is called supercritical. The problem may as well be ill-posed.
Due, for instance, to the formation of shocks, it could be not possible to find
smooth solutions u® of (1.2) satisfying (1.1) on some open set 2 C R x R?
with © independent of ¢ €]0,1].

(ii) If

0pU; =0 Vjed0,---,1}, (1.7)
the analysis is of reduced interest: the transport equations for all U; are
linear and expansions similar to (1.1) are easily justified.

(ii) If

69Ul;7é0, (%UjEO VjE{O,"' ,l—l}, (1.8)
the regime is called critical. This situation is more interesting. It is the
matter of weakly nonlinear geometric optics, a theory which seems mainly
achieved (see [16, 17, 13, 14, 21] and the related references).

However, the above general picture, insisting on the relevance of (1.8),
is proving to be not convenient in many physical situations. This happens
when the transport equation for U is linear instead of being nonlinear,
meaning that some interaction coefficients are trivial. Then to exhibit non-
linear phenomena, waves of larger amplitude must be involved. The super-

critical regime becomes the situation to deal with. This typically occurs
when the wave u® is associated to a linearly degenerate mode.

1.2. Propagation of oscillations on a linearly degenerate field.

All linearly degenerate modes do not share the same properties. They can
be classified according to the transparency conditions which they induce [7].
Consider, for instance, the model of entropic gas dynamics

o+ (u-Vy)o+ pdivy,u=0,
du+ (u-Vy)u+ o 'V,p =0, (1.9)
s+ (u-Vy)s =0,
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where the pressure p is given by a state relation p = P(g,s). In (1.9),
entropy waves (carried by the component s) must be distinguished from
speed waves (related to some well polarized components of u).

Concerning entropy waves, a complete discussion is accessible [8]. We
can face (1.9) in the case (1.6) even if we deal with large amplitude oscilla-
tions (9pSp # 0). This includes some sort of stability results.

On the contrary, the study of speed waves can lead to violent insta-
bility phenomena. Fix [ = 2. Suppose that Uy(t, z,0) = ug(t,x) is a given
solution of (1.2). Seek Uy with 9pU; # 0. Select any m € N,. Then it is
possible to find two families {u®}. and {u®}. of solutions to (1.2) adjusted
in such a way that

[ u(0,) = u*(0,-) [|2= O(e™), (1.10)
whereas, at the time t* = —melne, we find
[ u(t%, ) — (2%, ) |27 ofe). (1.11)

In fact, the linearized equations of (1.2) along uf give rise to an amplification
factor of size O(e°*/¢) with ¢ > 0. Small O(¢™) error terms can therefore
be multiplied by e“*/¢ yielding an O(1) modification at the time ¢°. In [7],
this linear mechanism is shown to pass to the nonlinear framework (1.2).

The amplification phenomenon (1.10), (1.11) can be due to various
reasons. The structure of the background solution ug can suffice to engage
it. Even if ug is some constant basic state, the arbitrary oscillations con-
tained in the small remainder f (especially the oscillations according to
phases which are transversal to ¢g) can interact with ug in a way to affect
at the time ¢° the leading order term in the expansion uf. Such phenomena
have motivated many recent contributions, all issued from the pioneering
works [11, 15, 20]. The situation is still far to be completely understood.

A common idea in science texts is that partial differential equations
depend on parameters which are only known approximately. Therefore,
an infinitely accurate approximation is for all practical purposes as good
as an exact solution. Following this remark, the justification of nonlinear
geometric optics is often regarded as working only towards mathematical
ends.

The instability results alluded above seem to go in the opposite direc-
tion. Their interpretation is that, in supercritical WKB regimes, the replies
given by nonlinear systems are very sensitive to the selection of the para-
meters or initial data which are involved. This would incline to stop from
making determinist predictions.
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For all that, these considerations do not mean that exact or even for-
mal supercritical WKB expansions have no signification. Certainly, nothing
guarantees that the behavior coded in u® or u; is physically selected. Yet,
the nonlinear phenomena which intervene in the construction of u® or ug
are susceptible of occurring. This is the reason why they have not only
theoretical consequences, but also practical interests.

2. Case of Incompressible Euler Equations

The incompressible Euler equations
ou+ (u-Vy)u+Vyp=0, div,u=20 (2.1)

do not fall exactly within the scope (1.2). Yet, the evolution of u in (2.1)
can inherit some analogies with the evolution of the speed waves alluded
above. Up to certain extent, we can say that the divergence free condition
forces the wave u to have the behavior of a linearly degenerate speed mode
(even if this mechanism is distorted by the influence of the pressure term).
This fact is clear below when examining (2.1) in the case (1.8).

2.1. Weakly nonlinear geometric optics.

Weakly nonlinear geometric optics for (2.1) has not attracted many atten-
tion, probably because this is just an adaptation of general results stated
about (1.2). Yet, let us recall briefly what happens when doing formal
computations. Look at expansions u®(¢,z) and p®(¢,z) having the form
(1.1) in the case (1.8). In other words, u®(t,z) ~ U®(¢,z,¢°(¢,x)/e) and
pe(t,x) ~ Pe(t,x, % (t, x)/e) as € — 0 with

Us(t,2,0) = uo(t,x) + eUy(t, z,0) + O(+D/Y),
Pe(t,x,0) = po(t,x) + epi(t, ) + 2Py (t, x,0) + O(@+D/1),

We want to adjust the various ingredients composing u® and p*© so that they
furnish a solution of (2.1). Select some background solution of (2.1) made
of up(t,x) and po(t, x). Keep in mind to impose the eikonal equation

0 + (U -V,)¢° =0, (2.3)

where U¥? is the mean value of the profile U?, i.e.,

(2.2)

W@@:/U%mwﬁ U (t,2,0) == U(t, 2,0) — U°(t, z).
T



272 Christophe Cheverry

Observe that (2.3) contains
dvpo + (g - Vi )po = 0. (2.4)
Now, formal computations indicate that the divergence free condition im-
plies
div, U, =0, Va.po- U = 0. (2.5)
Plug u® and p° as above in (2.1). Expand with respect to the powers of

e €]0,1]. Use (2.3), (2.4), and (2.5) to simplify. The contribution which
remains with ¢ in factor is

OUL + (ug - V) )Ui + (Ur - Vi )ug + Vapr + 09 Pu Voo = 0. (2.6)
There is no difficulty to solve the system (2.5), (2.6). Start by extracting
U, and p; from

atUl + (Llo . VI)Ul + (Ul . Vx)uo + V.p; =0, div, Ul =0. (2.7)

Then, noting that I1y(¢, z) is the orthogonal projector onto the hyper-
plane V,po(t,2)* = {v € R% V,po(t,r) - v = 0}, it suffices to identify
II,U}r through the transport equation

(O +ug - Vo )IIoU + (IoU;" - Vi )ug — (9¢llo + (ug - V) o) U = 0.
By (2.5), we have U} =II,U;.

Observe that these manipulations involve only linear equations (to
identify the main profile U;). This indicates that the regime (1.8) is not
optimal within the framework (2.1). Again, this brings to consider stronger
waves (i.e., waves of larger amplitudes). Keeping in mind the specific struc-
ture of (2.1), some special supercritical WKB analysis is needed to do that.

Precisely, the purpose of the next two sections is to review recent
results in this direction, revealing in particular new nonlinear effects. From
now on, the task is to construct expressions u® which are given by (1.1) in
the case (1.6) and which are solutions to (2.1).

2.2. Creation of new scales by nonlinear interaction.

The hypothesis (1.6) can be separated in situations corresponding to grow-
ing difficulties. The first case to appear is when

= 2, (%Uo = 07 89U1 5_'5 0. (2.8)

This regime (2.8) is the one of strong oscillations. The WKB construction
can still be achieved in full generality (see [7]). However, phenomena of
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amplification like (1.10), (1.11) do occur and they prevent to show by usual
methods the existence of exact solutions u® close to uf.

A way to get round this difficulty consists in adding some well adjusted
anisotropic vanishing viscosity. On one hand, the viscosity is small enough
in the direction V,¢®(t,z) to allow us the propagation of oscillations like
(1.1). On the other hand, it is large enough in all the other directions to
kill by dissipation the transversal oscillations. It follows that it becomes
possible to justify the nonlinear geometric optics. This is basically this
argument which is exploited in [3, Theorem 1] and [4, Theorem 5.1].

Consider again (2.1), but now in the case

[ 2 37 89U0 = 07 69U1 5_'5 0. (29)

The situation (2.9) is more captivating for two main reasons:

i) Mathematically, WKB constructions involving (2.9) used to be in-
complete. For instance, the transport equations derived in [2, 19] rely on
some heuristic hypothesis which is not rigorously justified. The underlying
difficulty is related to closure problems.

ii) Physically, expressions ug satisfying (2.9) give rise to characteristic
rates of eddy dissipation which do not vanish when € — 0. Thereby, as it
is explained in [2, 19], the description is concerned with turbulent flows. It
must be connected to the general discussion of [1].

An analysis taking into account (2.9) within the framework (2.1) is
proposed in the recent article [4]. We observe that:

i) To get round the mathematical difficulty (the closure problems),
it is necessary to perform the WKB calculus with a phase including more
terms than in (1.3). More precisely, we do not plug in (2.1) an expression
ué with ¢ as in (1.3). Instead, we appeal to

w(t,z) = &'U;(t, 2,5 (t,2)/e), (2.10)
j=0
where ¢° is given by some complete expansion

o0
G (t,x) = o (tx) + Y _//',(t,x). (2.11)
j=l
The supplementary terms @;, j > [, are called adjusting phases. As was
explained in [5], they are crucial to put the system of formal equations in a
triangular form. They are the key to obtain an algorithm which allows us
to compute the profiles U; step by step.
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Of course, once u as in (2.10) has been identified, the adjusting phases
can be removed from u, just by performing Taylor expansions with respect
to e € [0, 1] in the expressions

Uj(t,z,0°(t, @) /e + @it x) + Y Gry(t,2)),  jeN,
j=1

in order to recover the form

= t t
u®(t,x) ~ug(t,z) + Zsj/lUj (t,x, soo(gw) + 1t 2)

1—1)/1
o c(l=1)/
wi—o(t,z)  wi—1(t,x)
o B2 =y ) £—0, (2.12)

Briefly, the construction of infinite accurate approximate solutions ué and
pS of (2.1) satisfying

o, + (ug - Vy)u; + Vop; =0(e™), divyu; =0 (2.13)

with u¢ as in (1.1) can be completed (see [4, Theorem 2.1]).

ii) The main physical phenomenon is the following: The scales associ-
ated with the phase shifts ;, j € {2,---,1—1}, can be created by nonlinear
interaction. For instance (case [ = 3), initial data like

we(0,2) ~ ug(0,z) + /30, (O,x, @) LOEY3) e0, (2.14)

can become at a time t > 0

t t
Lls(t, ‘r) ~ Llo(t, x) +€1/3U1 (t7$7 900( a‘T) + 902( a‘r)) + 0(52/3)7 e —0,

c 21/3
(2.15)
The condition

Vao(0,-) - Pdive (U5 (0,-) @ UF(0,-)) £ 0 (2.16)

is necessary and sufficient to see a nontrivial phase shift ¢y appearing. This
is explained in Remark 4.3.6 of [4]. Above, the notation P designates the
Leray projector, whereas the symbol (-) (as for =) means that we extract the
mean value of a profile.
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3. Large Amplitude Waves

Consider the oscillating problem made of (2.1) and the initial data
u®(0,z) =u;(0,z) = Z5jUJ(‘)(9C7¢($)/5)7 e €]0,1]. (3.1)
5=0

We work here in the (supercritical) regime of large amplitude high frequency
waves, meaning that 9pUJ # 0. The first approach would be to seek the
corresponding solution u® in the form (1.1) with

1=1, Uy #0. (3.2)

But, in general, this comes to nothing. We explain why in Section 3.1 by
looking at some links between the situations (2.9) and (3.2).

3.1. Preliminaries.

First look at (2.1) under the condition (2.9). Suppose that U;(0,-) = 0 for
all j & {1+ 1Ip,p € N}, ¢01(0,+) = 92(0,:) = -+ = ¢-1(0,-) = 0. In the
notation () := ¢o(0,-), U() := Ui41(0,-) forall p € N,, this means to
start with

oo

u(0,2) = u5(0,2) =1y " IUN(z, () /2), e €]0,1]. (3.3)

Jj=0

According to Section 2, whatever the data ¢ and UI(,) with p € N are, we
can construct supercritical WKB expansions

= Zej/l i(t,x, ¢ (t,x)/e), (t,r) € RT x RY, (3.4)
which satisfy

Zem (0,2, 00(0,2)/¢) —sl/lZéUO x,(x)/¢e)

7=0

and which are infinite accurate approximate solutions of (2.1). More pre-
cisely, the expression u is divergence free (div, uf = 0) and furnishes the
source term f£ := Jyus + (u - V,)ui + V,p: which, for all T' €]0, +o0],
s € R, and N € N is subjected to

SO N sup 556 [nemo< O s NN, (35)

te[0,T]

s
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Now, the incompressible Euler equations (2.1) are invariant under the change
u(t, )/ u(\t, z), p(t,z)/\>p(At,x), A > 0. If we take A = e~ 1/!, formula
(3.4) is transformed into

00 —1/1 —1/1
~ _ i/lrT [ ~—1/1 900(5 t,]}‘) 4101(5 t,I)
u(t,x) = Zosj U; (s t,z, . + R
j:
ora(e™ Vi) oy (e, @)
o PR P ). (3.6)
In (3.6), we have U; = Ujy; for all j > 1. In particular, at the initial

time ¢ = 0, we recover the large amplitude oscillation (3.1). The expression
U’ (t,x) gives rise to the error term £ := 9,0 + (05 - V)0 + V,pS. Due
to the change of time scale, the bound (3.5) becomes

3C(T, s, N); sup 1 £5(t, ) |ars rey< C(T', 5, N)e™. (3.7)
te[0,e1/17)

In other words, the preceding manipulations allow us to convert ug(t,z)
into some large amplitude oscillation @ (¢, z) which is proved to be an ap-
proximate solution of (2.1) on the time interval [0,'/!T]. By this way, they
bring informations about the oscillating Cauchy problem made of (2.1) as-
sociated with the initial data (3.1). Indeed, select any « €]0,1]. To seek
a WKB expansion which is issued from (2.1), (3.1) and which makes sense
on the time interval [0,e?], it suffices to select I > 1/« and to proceed as
above, i.e., to use @’ (¢, z).

Note that the structure of uf becomes more and more complicated
when [ is increasing. Gradually, all the adjusting phases ¢;, 1 < j < oo,
play a part at the level of the leading oscillating term. This confirms that
all the terms ¢;, 1 < j < oo, have straight off some intrinsic sense.

Observe also that times O(1) are not reached by this method. On one
hand, we do not know how the terms ¢; and Uj go together as | — +o0.
On the other hand, even if &g is globally defined (and therefore is a good
candidate to deal with), no control on the size (the smallness as ¢ — 0) of
C(e=*'T,s,N)eN has yet been obtained. Therefore, the pertinence of &g
for times O(1) is not sure to hold.

In short, concerning (2.1), general large amplitude WKB computations
based on the standard formula

u®(t,x) ~ul(t,x) = Zerj(tmm wo(t,x)/e), €—0, (3.8)
=0
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do not work. A way to proceed is to pass as above through (2.9) in order to
reach times O(¢'/!) for any [ € N,. What happens for times O(1) is not yet
clear. By (3.6), structures more complicated than (3.8) can spontaneously
appear.

In what follows, we still work with (3.8), but we take into account only
special situations. The purpose now is indeed t o prepare v and the initial
profiles U JQ in a way to be sure that the incoming wave (3.8) can be pertinent.
To understand the underlying matter, we advise the reader to refer to the
recent work [6]. Our goal here is only to illustrate through specific examples,
in a way as simple as possible, a few ideas already contained in [6].

3.2. Special oscillating initial data.

To simplify, we work in space dimension two (d = 2). This is a much more
easier case since the global in time existence is then guaranteed by standard
results. Note however that, due to (1.6), we have || curlu®(0,-) ||,= O(1/e)
for all LP norms || - ||,. Therefore, the situations under study get out (as
¢ — 0) the context of [9].

We will moreover limit our study to very special data. Select two
arbitrary scalar functions f € C*°(R;R) and g € C*°(R;R). Choose a C*
initial phase 1 which is defined on some open set w C R?, is bounded on w
with the bounded derivatives

sup [(z)] < o0, sup [V,h(x)] < oo,
rCew rew

and is such that

n(x) = f(W(x))dtb(z) Vo e w. (3.9)
For instance, we can impose
¥(0,22) = Yo(z2) Vaz €R, oo € Cp(R) (3.10)

and obtain ¢ (z) by solving (3.9), (3.10) on the strip w =] — X7, X1[xR for
some suitable X7 > 0.

Consider also scalar profiles p(r, 8) € C*°(RxT;R), ¢°(r, 0) € C*(Rx
T;R), ¢ € [0, 1], which are smooth with respect to the parameter ¢ € [0, 1].
Note that p* = p° 4+ ep' + O(e?) and ¢¢ = ¢° + eq* + O(e?).

Suppose that 9pp° # 0 and p° and ¢° are linked together by the relation

9 =g ')+ f2) + f'p° + (L4 £2)0eq°
Fe(l4 B0 +ef ' =0, (311)
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At the initial time ¢ = 0, we impose

(@) (Fa) |
w'(0,0) ~ 2D ( 1 )+p< () ()/s>( w(z)))

+eq (), ¥(x)/2) (f Wl(”f))) Vo € w. (3.12)

We recover the form (3.1) with, in particular,

)
_ 9@ (1‘)) fW(x)) -1

0 _ 0 f((x)) 1 -1
U9(e.0) = g w(x),e)( Y w00 (o )
By (3.9), the relation (3.11) is exactly what is needed to guarantee the

divergence free condition

divz u®(0,2) =0 Vz € w. (3.13)

Example 3.2.1 (linear phases). The choices f =a € R and g=b €
R are compatible with the selection of
Y(x) = x(axy +x2), x € C°(R;R). (3.14)

Then, if we take ¢° = 0, we can choose any profile p¢ without any contra-
diction with (3.11). It remains the oscillating initial data

0% (0, z) = U5 (x(azy + x2), x(az) + x2)/¢) (3.15)

ﬁg(r,e):Tl}( ! ) +p€(r,9)( o )

The Cauchy problem (2.1), (3.15) is easy to solve. The solution is explicit.
It is the simple wave 0° (¢, 2) = Ug(x(ax1 + 22 — bt)), p°(t,2) = 0. Observe
that the weak limit of the family {u°}. is

()1, 2) = 1 ( ClL ) + % (x(azy + 22 — bt)) ( _al )

14 a?

with

which is obviously still a solution of (2.1) with p = 0.

Remark 3.2.1 (nonlinear phases). By (3.9), linear phases such as
(3.14) are possible only if f* = 0. Equation (3.9) allows us to take into
account functions f with f’ # 0, Therefore, it contains many generalizations
of (3.15). The relation (3.9) means that ¢ is constant on pieces of lines. The
geometrical interpretation of the condition f’ # 0 is that v is not constant
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on parallel lines. When f’ # 0, because of the formation of shocks, smooth
solutions of (3.9) can exist only locally, on some open domain w strictly
included in R2. Moreover, if f’ is nowhere zero, the function p° can be
deduced from ¢° through (3.11).

Remark 3.2.2 (no creation of phase shifts). It is interesting to test
the condition (2.16) in the case (3.12). This means to replace ¢g(0,-) by
() and U5 (0,-) by UY*(+). First, use (3.9) to obtain

div, (Ug" ® Ug*) = ( 5??&1%])] )

where x(r) is a function such that x/(r) = f/(r)(p®*(r,-)?) for all r € R. Tt
is obvious that P div, (UJ* @ US*) = div,(US* @ UJ*), so that it remains

Vatp - Pdive (Ug* @ Uy*) = X' ()01, 21)) - ( gﬁ’f ) =0.

The conclusion is that data like (3.12) do not give rise to the phe-
nomenon of cascade of phase shifts quoted in Section 2. This is already
an indication that the monophase large amplitude structure (3.1) can be
preserved when it is issued from data as in (3.12).

3.3. Special local solutions.

Introduce the functions s(r) := g(r) + (1 + f(r)?)¢*(r,r/e), € €]0,1], and
compute
Dals* (V)] = g’ (V)02 + (1 + f(1)*)Dpq” (¥, ¥ /€) Do)
+e(L+ F()*)0ra° (W, 90 /€)0a + 2 F () f ()" (4,4 /€) Do

By the above assumptions on f, g, and ¢, we have

M := sup sup|s®(¢¥(x))] < oo, Msy:= sup sup|de[s®(¥(z))]] < co.
€€)0,1] z€w €€]0,1) r€w

It follows that the Cauchy problem
O + 5°(9%)029p" =0, ¢°(0,z) =(x) Vo ew, (3.16)

can be solved on the domain of determinacy Q := {(t,z) € RT xR?%* 0 <t <
Myt (21,29 +5My) € wVs € [—t,t]}. Tt is obvious that § is independent of
e €]0,1] and is such that QN({0} xR?) = w, QN(R xR?) # @. With (3.16),
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we find [0;+5°(¢%)02] (019 — [ (p°)029%) = —0a[s°(¢°)] (019" — f(°) D29%).

This implies that the relation (3.9) is preserved during the evolution

0" — f(97)02p" =0 V(e t, ) €]0,1] x Q. (3.17)
Consider the expression
ut(t7) = 8 (¢° (6, 2)) = U (o (ha), ¢ () fe)  (3.18)
with
~ r r E -1 - r
0 (7«,9)=7H_9(f()r)2 ( /) >+p (r,e)( o >+6q (r,o)< /) )
(3.19)
Consider

Op® + 0 Vaop® = 0 + (1+ f(£)*) T 9(¢) (F(9%) 016 + 02¢%)
+ 0797 97 /e) (019" + [(07)02¢7) + e¢7 (9%, 97 /) (f (97) 019" + Ba¢p%).
Using (3.16) and (3.17), simplify it as follows:
O0pp® +u° - V,0° = 04p° + 5°(¢°)020° = 0.
Therefore, for all (¢,x) € {2 we have
0pu® +u® - V,ut = (0pp° +u® - V,907)(0,-0°) (%) =0 (3.20)
and, exploiting again (3.11), we find
divyu®(t,z) =0 V(t,x) € Q. (3.21)

In other words, the expressions u® are on w pressureless solutions of (2.1).
Note that the functions u® are uniformly bounded:
sup  sup |u(t,z)| < M < 0.
€€]0,1] (t,z)eQ
On one hand, this majoration implies that the speed of propagation is uni-
formly bounded. On the other hand, following [10], it gives rise to a Young
measure
v Q — ProbM(R?) (t, ) — v 2 (u)
which is a (locally) measure-valued solution of (2.1). In other words, the
following equation is satisfied in the weak sense:

O (v, u) + divy(r,u @ u) + Vep =0,  divy(v,u) = 0. (3.22)

In the next section, in order to capture v, we study more precisely the family
{u®}og0,1) as e — 0.
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3.4. The asymptotic behavior of the family {u®}..

Consider the expression ¢y € C1(Q;R) which is obtained by solving the
Cauchy problem

Orpo + 9(0)02¢00 = 0, wo(0,2) = ¢(x) Vo€ w. (3.23)
Either directly from (3.9), (3.23) or from (3.17) we can extract
O1p0 — f(0)Dapo =0 V(t,z) € . (3.24)

Then decompose ¢° into ¢°(t, z) = @o(t, )+eP5 (¢, z, po(t, z) /). By (3.16),
the profile ®5 (¢, z, 0) must satisfy

®7(0,2,0) =0 V(e,z,0) €]0,1] xw x T. (3.25)
Plug ¢° as above in (3.16). Use (3.23) to make simplifications. It remains
to consider the equation
1 ®7 + g(po + €P7) 02 ®]
+e(1+ f(po +P5)?)q" (po + DT, 0 + BT
+we(t,x,0,27)0sP] + w(t,2,0,07) =0 (3.26)

where

w® (ta xz, 67 A) :25_1 [6&00 + s (QOO + 5)\)82@0]
1

= ( / g (¢o + ssA)ds) Do

0
+ (14 f(po + 5)\)2)q5(900 + e, 0+ \)0agp. (3.27)

The function w® is smooth with respect to (¢,x,0,\) € Q@ x T x R and also
e € [0,1]. Therefore, the solution ®5 of (3.25)—(3.26) is smooth with respect
to the same variables. In particular, we can get a complete expansion of ®§
in powers of e:

N
i(t,z,0) =Y O]t z,0)+O0(EVT), N>1.
j=0

In particular, the first contribution ®{(¢,z,6) is subjected to the scalar
conservation law

009 + g(0)02®) + w(t, 2,0, 80)9p®Y + w°(t, z,0,d%) = 0, (3.28)
where w'(t,z,0,X) = ¢'(¢0)d200A + (1 + f(£0)*)a" (¢o, 0 + X)D200.
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By (3.25), the evolution equation (3.28) must be completed with the
following initial data:

®(0,2,0) =0 V(z,0) € w x T. (3.29)
Coming back to (3.18), we can associate to {u®}. the following monophase

description: u®(t,z) = U°(t, 2, ¢o(t,x)/€) + O(e), where the main profile
UY is defined according to

_ g(po(t,z)) fpo(t,z))
V2.0 = 1ot ) ( 1 )

~1
% (po(t, ), 0 + ®Y(t, z,0)) ( Foolt.z)) ) . (3.30)

Of course, at the initial time ¢t = 0, we recover U%(0,z,0) = UJ(x, ) for
all (x,0) € w x T. On the other hand, for all ¢ € C°(R?;R?) and for all
v € Cp(R2), we have

hm // “(t,x))p(t, x)dtde = // V(t,a)s p(t, )dtdx

_ / / g(UO(t, 2, 0))p(t, 2)dtdadd.

QxT

By construction, the Young measure v is a measure valued solution of
(2.1). But is it possible to use it for defining a solution u(¢,z) of (2.1) in
the classical weak sense? This question is discussed in Section 3.5 and in
other issues concerning U°.

5. Conclusion and remarks.

The Navier—Stokes equations (with Reynolds number e~1) are given by
Ove + (vF - Vu)ve + V,p° =eA,ve, div, ve =0. (3.31)

Fix initial data

v (0,2) = vo(x). (3.32)
The structure of v°(¢,x) as ¢ — 0 is a problem of wide current interest
[1, 9, 10, 18]. The same comment applies to other approximations of the
Euler equations (2.1). If v is smooth, say vy € C5°(RY), there exists a
fixed interval of time [0,T], T > 0, where the Navier—Stokes solutions v©
converge strongly in L2. Moreover, the limiting fields v are on the strip
[0,T] x R? conventional solutions of (2.1).
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Now, the complexity of the flow can increase as time evolves. After the
time T, the solutions v¢ may converge weakly in L? (instead of converging
strongly in L?) due to the development of oscillations or concentrations.
The following majoration

sup  sup || ve(t,-) [[L2mr2)< 00 (3.33)
€€]0,1] t€[0,T]
is the only control which is known to be uniform in € €]0,1]. Of course, it
suffices to extract a Young measure v (see [10]) and, in particular, to isolate
a weak limit v(t,z) € L% But is v still a weak solution of (2.1)?

Our goal is to show that the following local version of (3.33)

sup  sup || u® ||p2@q)< oo, € is an open domain of R x R, (3.34)
€€]0,1] (t,z)eN

is not sufficient to deduce that v is still a weak solution of (2.1).

We will not deal directly with (3.31), (3.32). Instead, we consider
Equation (2.1). We want to model the situation which is alluded above
(after the time T'). For this purpose,, instead of fixing the initial data (as in
(3.32)), we look at a family {u®(0,-)}.cjo,1) of initial data such that u(0,-)
converges (as ¢ — 0) weakly (but not strongly) in L.

In fact, we consider the family {u®}. constructed in the previous sec-
tions. The functions u® satisfy (2.1) and (3.34). The corresponding weak
limit has been identified. It is

u(t,2) = Vs, ) = 0Ot 2) = / U0t 2, 0)d6.
T

Therefore, if it would be possible (through some kind of compensated com-
pactness argument) to pass to the limit as ¢ — 0 from (3.31) to (2.1) by
using only Equation (3.31) and estimates like (3.34), then both v(¢,z) and
u(t, z) should be weak solutions of (2.1).

However, this is not always the case. Objections can come from the
presence of oscillations as these contained in {u®}.. To see this, we have to
compute

f(t,x) :== Opu(t, z) + [(u- Vo)u](t, x). (3.35)

Because of the explicit formula (3.30) and Equations (3.23) and (3.24), the
function f can be reduced to

t=(§ ) = @m0+ ot + a0 (o).
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By (3.28) and (3.29), we have 9,®9(0, z,0) = —w"(0,2,6,0) and u-V,)®?(0, x, ) =
0. It follows that

f(0,2)i= ~(1+ FPN PO () 339
The constraint (3.11) implies that
9 =gl ')A+ 2) + £° + (L4 £2)9pq° = 0. (3.37)
This relation (3.37) can be split in two conditions
g —9ff'/(1+ )+ fp" =0, (3.38)
% 4+ (1+ £2)99q° = 0. (3.39)

Equation (3.38) means that p° can be determined from f and g. Equation
(3.39) imposes a link between p°* and 9pq°. Since (9pp°q°) = —(p°*Dpq°),
we have, in fact, to deal with

f@w%z—f@%ﬁ%%@%%w(f@)>- (3.40)

Introduce a function K € C*(R;R) such that K'(r) = —f/(r)(p"*(r, 6)?)
for all r € R. Use (3.9) to interpret (3.40) according to

£(0,2) == ( _(3?2[1[?(%])] ) (3.41)

Both function u(t, ) and source term f(¢, ) are smooth (at least, of class
C1). Therefore, we can state that the weak limit u(¢, ) is not a solution of
(2.1) if and only if there exists no scalar function p such that f = V,p, or
if and only if

curlf := 81f2 - 62f1 = Az [K(’(/))] §é 0. (342)

It remains to check this condition on formula (3.40). We find

curl £(0, z) = a{[1 + f (2 (2))?] 0 K (4 (x))]}-

Recall that the data f, g, p°* and also ¢p = ¥|z,=0 can be chosen arbitrar-
ily. In particular, they can be adjusted so that there exists o € R such
that curl£(0,0,x2) # 0, showing that the weak limit u is not necessarily a
solution of (2.1).

The preceding reasoning underlies a result which is pushed forward in
[6]. For the sake of completeness, we recall it below.

Theorem 1.1 (see [6]). There is a bounded open domain Q C R x R?
and a family of functions {u®}. such that

(i) u® € CH(Q), sup{]| u® [|z=(0);€ €]0,1]} < o0,
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(ii) u® is a solution of (2.1) on €,
(iii) u® converges weakly to u® € C1(Q) ase — 0.

But u® is not a solution of (2.1).

This result must be connected with the question raised in [18, p. 479]
since it produces local obstructions to the concentration—cancellation prop-
erty. We refer to [6] for details. In [6], the goal is to put in place a nonlinear
geometric optics under constraint for Burger type equations. Many new phe-
nomena, including the creation of O(¢7?) scales by interaction of O(s™1)
transversal oscillations, are revealed in [6].

Remark 3.5.1 (on nonlinearity of f). Note that if f' = 0, we have
£(0,-) = 0. This is the reason why the preceding arguments do not apply
when appealing only to simple waves involving linear phases, like in (3.15).
In fact [6], weak limits of the families {i}. are always still solutions of
(2.1) (see Example 3.2.1).

Consider a general sequence {1 }. uniformly bounded in L? and made
of approximate or exact solutions @° of (2.1). It would be very helpful
to find a criterion allowing us to decide if the weak extracted limits are
still solutions of (2.1) or not. For instance, this could be applied when
passing to the limit by vanishing viscosity (¢ — 0) in the Navier-Stokes
equations (3.31). The above discussion does not furnish such a criterion.
The constraint (3.42) can be expressed explicitly only in the case of the
families {u®}. under consideration. Yet, it indicates that, in order to have
(3.42), it is necessary to impose the nonlinearity of the phase (induced here
by the condition f’ # 0) that is rapid variations in moving directions.

Remark 3.5.2 (on interdependence between O(1) and O(e) terms).
The above construction also attracts attention to another more subtle im-
plemented effect which is important to notice. Seeking an equation on u
like (3.35) or, more generally, writing some closed set of equations in order
to deduce U(t,-) from UJ(+) (as it is proposed, for instance, in [22]) means
implicitly that the time evolution respects the hierarchy between the first
order contributions (i.e., of size €) and the lower order terms (say, of size
el or less): the first ones can be determined before the second ones.

However, in supercritical regimes such a separation between O(1) and
O(e) contributions turns to be artificial. A similar observation has already
been made in the context of time oscillations [12]. Let us explain how it
can be put in a specific form when dealing with space oscillations. To do
this, we examine more carefully what tells the study of U°.
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The preliminary remark is concerned with the preparation of the initial
data U%(0,-) = UY (see Section 3.2). The definition of U{ can already not be
dissociated from what happens at the level of the O(e) remainders. Indeed,
do not forget (3.11) and its consequence (3.37): the profiles U and U}
cannot be fixed independently.

Otherwise, the definition of UY(¢,) involves ®J(¢,-) which itself de-
pends on ¢° through (3.28). To verify that the influence of ¢° on U°(t,-)

actually occurs, it suffices to measure it for small times. From (3.26) deduce
that (¢, z,0) = —(1 + f((2))?)¢° (¥ (z), 0)t + O(t?). It follows that

P(¢o(t, @), 0+ @(t, 2,0)) = p"l(¢o(t, x), 0)
—t(1+ f((2))*)9ep° (po(t, ), 0)a° (¥(x),0) + O(t?).

Then it suffices to plug this time expansion inside (3.30). In particular, if
g =0, we have ¢q(t,-) = «(-) for all ¢ € [0, T] and it remains

U'(t, 2, 0) :po(w($)79)< f(q;(lx)) )

{1+ SO @0 (ot ) FOw). B

We recover here, in factor of ¢, the expression dyp°q® which has already been
observed at the level of (3.36). This product 9pp°q® combines the term p°*
with €% in factor at the level of u®(0,-) and the term ¢° with &' in factor at
the level of u®(0,-).

This mixing during the time evolution between an O(1) term and
an O(g) term was partly responsible for (3.42). It shows definitely that
O(e) perturbations at the initial time t = 0 can have some nontrivial O(1)
influence at a further time t > 0. This expresses a very strong instability.

Of course, this interpretation could be contested in view of the relation
(3.37). Indeed, the constraint (3.37) indicates that the preceding distinction
between the orders of p®* and p°* is debatable: in practice, we cannot modify

¢%* without touching p®*.

But it is still possible to make (at ¢ = 0) arbitrary perturbations of g°
with p® (and, therefore, UY fixed). By (3.43), this modify (at a time ¢ > 0)
the expression U°(¢,-) and, therefore, the Young measure v. This allows us
to give a certain sense to what is said above in italics.

Remark 3.5.3 (the weak limit is a more rigid object). Recall that
the weak limit of {u®}. is as follows:
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u(t,z) = % ( f(fO) > +x(t,2) ( f(_s010) )

with x(t,2) i= [ 1°(pa(t.2),6 + B3(¢..6))db.
T
Suppose that g = 0. Simple computations indicate that the function
X satisfies the equation

dex = — ' ()02 (p°* (1, 6)?),

where the influence of ¢° is removed. Therefore, the preceding construction
does not imply that O(e) perturbations can modify the weak limit. It only
means that the profile, the Young measure and other quantities (like the
energy) can be changed by this way.

In conclusion, we have made a review of recent progresses [3]-[8] in
large amplitude nonlinear geometric optics. We have also lay stress on the
construction (directly extracted from [6]) of extensions u® of the classical
simple waves ti°. On this occasion, we have observed new phenomena which
indicate that the study of weak solutions of (2.1) should require both mi-
crolocal and nonlinear tools within the framework of a supercritical WKB
analysis. Applications could be a better understanding of turbulent flows.
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1. Formulation of the result. We consider the 3D Navier—Stokes system
on R3 for incompressible fluids. The viscosity is taken to be 1, and no
external forcing is assumed. After the Fourier transform the system takes
the form
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v(k,t) = exp{—t|k[*}v(k,0)
—|—i/exp{—(t— s)|k|2}ds/<v(k — K, s),k)Pyo(K', s)d*K', (1)

0 R3
where v(k,0) is the initial condition, Py is the orthogonal projection to the

k
EZ: ki k. The values v(k,s) € C3,
the incompressibility means that (v(k,t),k) = 0. If v(k,t) is the Fourier

transform of a real-valued function u(z,t), then

subspace orthogonal to k, i.e., Prv = v —

v(—k,t) = v(k,t). (2)

However, in this paper, we consider arbitrary v(k,t) not assuming (2) (see
also [5]).

Beginning with the works of Leray [1], Hopf [3], Kato [4], people
considered the problem of local and global existence of solutions of (1) with
initial conditions having finite energy

E(0) = /(v(k,o)m(ho))dsk < oo.
RS

In this paper, we deal with another class of initial conditions having
infinite energy. Namely, we consider the initial condition of the form

”U(/ﬂ, 0) = iBjé(k - kj)7 (3)
j=1

where the sum is taken over a finite set {k;} of points k; # 0, (Bj,k;) =0
for any j, and 0(k — k;) is the delta-function concentrated at kj;. Since
§(k — k;) ¢ L*(R?), the initial condition v(k,0) has infinite energy.
Denote by G(k1, ..., ky) the semigroup generated by a finite set {k;},
ie, k € G(ki,...,ky) if and only if £ = )" p,k; for some nonnegative
=1

J
integers p;. The main results of this paper are the following theorems.

Theorem 1. Let v(k,0) = > B;jd(k — k;). There exists T > 0
j=1

depending on {k;}, {B;} such that there ezists a solution v(k,t) of (1)
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on the interval 0 < t < T which can be written as a signed measure
v(k,t) = > By(t)o(k — g). (4)
g€G(k1,....kn), g#0

The coefficients By(t) satisfy the inequalities:
o) n p(9) Ll -1
B0l <o (Sipl) - (1-deXml) o 6)
j=1 j=1

where p(g) = _min Z pi, C depends only on k;.
> piki=gi=1

Theorem 2. Let kj, 1 < j < n, belong to some cone with angle less
than m, i.e., the angle between any k;, and kj, is less than . Then for a

sufficiently small B and an initial condition v(k,0) such that Z |Bj| < B

there exists a global solution of (1) having the form (4) for whzch

> |B,y(t)| < oo.

9€G(k1,....kn), g#0

Some existence results for a similar class of initial conditions can be
found in [2, 8].

2. Proof of Theorems 1 and 2. The proofs of both theorems are based
on the method of power series introduced in [6, 7]. We consider a one-
parameter family of initial conditions Av(k,0) = va(k,0) and write down
the solution of (1) as a power series with respect to the complex parame-

ter A:
t

va(k,t) = Ahy(k,t) + Z Ap/exp{—(t — 8)|k|*Yhy(k, s)ds, (6)
p>1 0
where hy(k,t) = exp{—t|k|*}v(k,0). Substituting (6) into (1), we obtain
the following system of recurrent relations between the functions h,(k,?):

iﬂhﬂ:i/@%—ﬁﬁym&mﬁﬁwmﬁ%M—HF—ﬂwﬂfﬁ
R3

and for p > 2
t

hyp(k,t) = i/dSQ /(v(k — K',0), k) Pihy—1(K', s2)
0 RS
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x expl—tlk — K'|? — (t — s2)|K'|2}dPK’

t

t
/dsl/d82/<hpl(k—k/,81)7k>thp2(k/782)
p1t+pr2=p 0 R3

p1,p2>1 0

x exp{—(t — s1)|k — K'|> — (t — s2)|K'|*}d>K’

+z/dsl/ (k= K s1), k) Pro(k, 0)

X exp{—(t—sl)|k—k'|2—t|k'|2}d3k'. (7)

In our case of solutions of type (4), the convolutions given by the
integrals in (7) are well defined, and we can write

hi(k,t) = exp{—t|k;|*} B;d(k — k;).
j=1
Recall that B, are 3-dimensional vectors (Bj, k;) = 0. Further,

matbt)=i [ 3 <Bw’f>(B %)

R3 j17j2 1
x exp{—tlk — k'|*> — t|k'|*}5(k — k' — kj, )6 (k' — kj,)d*K’

i thjz (t)d(k - (kjl + ka))

J1,j2=1
with
Bj, . (t) = i(Bj,  kj, ) exp{—t|kj, |* — t|kj,|*}
" (B» _ (Bj, (kjy +kjp)) (Kj, +kj2)>.
2 ((kj, + k), (Bjy + Fjy))

If kj, + kj, = 0, then the corresponding term in the last sum is zero.

From the last formula it easily follows that
1B .52 ()] < C1]Bj, || By, |, (3)

C = max |k;|, and
1<j<n
n n 2
S Bis(®) <01(Z|Bj|) | (©)
i=1

J1,d2=1
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The proof of Theorem 1 is based on the following assertion.

Lemma 1. Assume that for any initial condition (3) and 0 < ¢t < 1
the functions hq(k,t), 2 < ¢ < p, can be written in the form

hakt) = > le...jqu)a(k—ikj), (10)

1<, 5Jq S0

where By, . j,(t) are continuous functions of t and

q
—1,4=2
|Bj1---jq(t)| < Cg 1t 2 H |sz|7 (11)

1=1
Cy is another constant which depends only on the vectors kj, 1 < j < n.
Then (8) and (9) are valid for g = p.

Using Lemma 1, we derive Theorem 1. We have

) =" Byexp{—tlk}o(k — k)

+2 i le...jp(t)(?(k—gkj,) (12)

P>1j17'~;jp:1

and
t

B (®) = [ exp{—(t = s) k) By, (),
0
If Bj,..;,(t) satisfies (8), then from Lemma 1 it follows that

|Bj...3,(1)] Cp 't H|B;l|

and
n

. 2 o1,
S 1By 0l < 2 (Z B, |) (13)

Jiseendp=1

n ~
Therefore, the series > > |Bj,..j,(t)| converges absolutely if
p>1 ji,..,Jp=1

t <min (1, (230 1B) ).
j=1
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Taking together all terms with the same value of the sum kj, +--- + kj,,
we get the representation of the solution v(k,t) as

9€G (kjy vekjy)

where for each B, (t) we have the estimate (5). Theorem 1 is proved. O

PROOF OF LEMMA 1. For p = 2 the statement of the lemma is already
proved (see (8), (9)). For p > 3 we use the recurrent relation (7). Denote

by h;,p vp 2)(k,t) the term in (7) which corresponds to pi, pa. Consider the
case p1, p2 = 2. We have

t

h(p1p2) k,t) = /dsl/d32/ o (k=K' s1), k)

0 0
X Pihy, (K, s9) exp{—(t — sl)|k — k|2 = (t — s2)|K'|*}d®K

t t n

:i/dsl/d«Sz > (B, (51),k)

0 0 JiJgp=1

Bj, i1..j,(52), k)k
x (ij1+1...jp(82) — < Jp1+1 |]iz|o2( ) > )

<[ (omtote=sumia(e- )
® (exp{—(— s2) o (1 - _i 1))
= > B S )

Ji---Jp

where ® is the convolution and

J(;flﬁji /dsl/d82< Ji---Jpy Sl Z kﬂ>

l=p1+1

xexp{ (t —s1) Zkﬂl| t—$2 Z ka|2}

l=p1+1
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P P
<BjP1+1"'jp(S2)’ l; k]l> Z kjl )

=1
X (ij1+1~~~jp (82) - P
IlZ1 kji[?

Here, we used the incompressibility condition
p1

<Bj1---jp1 (s1), Z kjl> =0.

=1

It is clear that BP****)(¢) is continuous as a function of ¢ € [0,1]. By the

assumption of Lemma 1,

S

p1—2 o
< /51 ? exp{—(s—81)|zka|2}d31
=1

(p1,p2)
‘Bh ()
0
S
X 82 eXp{ 3—52’ Z kaz’ H Z kﬂ‘d‘”
5 l=p1+1 l=p1+1
P1 p
< o T 1Balc= ] 1Bal.
=1 l=p1+1

In the integral with respect to s, we replace the exponent by 1, and we
estimate the integral with respect to so with the help of the Cauchy—Schwarz

inequality:

/ 525 exp{—(s — 52)[FI2}[Fldso

S

1
o 3
< <|;/s§22d52/exp{—2(s—52)|k|2}|k|2d52>
0

0

Thus, we get

B (s)| < cp 2H|Bﬂ| ——C"" 2H|Bﬁ|
e / 21 m /

1. The first and last terms

At the last step, we used the fact that 0 < s <

in (7) are estimated in a similar way:
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BEP - (s)]

Ji---Jp

SPT*Q p
p—2 | I )
§ C |BJL|
p—2
\/ 3 =1

p=2 P
_ S 2 _
|Bg('f).._;;1)(8)| < Fcp ? H |Bj |-
=1

2

and

For hy,(k, s) we have the representation:

hy(k, s) = Z h{prp=r) (s Z zn: B s)é(k—zn:kjl>

p1=1 p1=1j1...5p=1 =1
= Z lemjp(s)é(k_zkﬁ)v
JiJgp=1 =1
where
p—1
Bj, j,(s)= > BT (s),
p1=1

For Bj, . j,(s) we have the estimate

1Bjr...gn 21|B;’1’§,,”” s)|
p1
V2 2V/2
=ror2T] B ( + )
H| Jl| p122p1\/p_p1 \/p—2

It is easy to see that for p > 3 the sum

p—2
V2 2v/2
Z P1vVDP — 1 - Vp—2

p1=2
is bounded by some constant C;. Taking Cy = max(C1, max |k;]), we get

<jsn
the required inequality for ¢ = p. The lemma is proved. O

PrOOF OF THEOREM 2. We use the following lemma.

Lemma 2. Let {k;} be contained in a cone whose angle is less than
7. Assume that for 2 < ¢ < p the functions hq(k, s) have the representation
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(10) and for some constant D depending on initial conditions
q
|Bj1»--jq (S)| < Dt H |le |
Then the same representation is valid for ¢ = p.

ProOF. Using the notation from Lemma 1, we can write

P

o< fon fan] S for Lo TT i
l=p1 l=p1+1
P1 2
Xexp{—(s—sl) ijl (s — s2) Z kj, }
=1 l=p1+1
p
j4 . Z 1k]L
_ =p1+
<D 2H|le| P1 21 p 2
ijl E k]z
=1 I=p1+1

By the assumption of the lemma, | > ajk;| > d) " «;, where a; > 0 and
J

d > 0 is some constant depending on the initial vectors k;. Indeed, under

some rotation of R?, the vectors k; can be brought inside a cone of angle
less than 7 belonging to the subspace k(1) > 0. Then

kil = ZajEJ 220“1'“1}“%;1)’
J J

where k; is the image of k; under the above-mentioned rotation.

—(1
Put d = min |k§ )|. Now, we can write
j

p p2 max |k;|
B 5 (5) < DP 2H|Bﬂ|72d4 :
=1
Similarly, for p; =1
P (p — 1) max |k;|
1B, () < D [ 1Bal—p =gy
=1

and for p, =1
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: (p — 1) max |k;|
p—1,1 2 J
|BJ1 g ()< DP” H|331|W

As in the proof of Lemma 1, we have

p—1
1By, () < S B (5))
p1=1

<pr21[|B
mﬂ@gw[ ﬁ+zmpmA
The expression in the square brackets is bounded by some constant

Dg depending on initial conditions. Taking D > Dy max |k;|, we get the
IIN
required inequality for ¢ = p. The lemma is proved. O

Now, we derive Theorem 2 from Lemma 2. Using the notation from
the proof of Theorem 1, we can write

~ ? Byl _ DP I, 1By
B. (¢ Dp—l Hl:l | Ji =1 Ji
| ]1---.717( )| < D (pd)2

Ji

and
n

- pr—1 n 4
S Bl < O (S 1E)
Ji---Jp=1 j=1

Therefore, if

n

> IBjl <D,

j=1

S Y B0

p>0j1...p=1

then the series

converges absolutely for all £. The end of the proof is the same as in Theo-
rem 1. (]
3. Example. We consider n = 2 and the initial condition

’U(k},O) = B15(k — kl) + B25(l€ — kz), (14)

where the vectors k1 and ko are linearly independent and B; is orthogonal
to k1 and ko.
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Theorem 3. For the initial condition (14) the system (1) has a global
solution.

PROOF. In this case,

hi(k,s) = exp{—s|k;|*} B;jo(k — kj),

j=1
2
ho(k,s) = ZZ <k,Bj1><Bj2 _ %)
J1,j2=1
% exp{—slk;, [2 — slk;,[216(k — (k;, + ki)
2
= imzz:ﬂ(kjl + kjs, Bjy) (Bj (ki IT;;;%Q];(jQ + kh))

x exp{—s|kj,[* — sk |20 (k — (kj, + kjs).
It is easy to see that only the term with j; = 2, j; = 1 is different
from zero. Therefore,
ho(k,s) = (k1, Bo) By exp{—s|k1|* — s|ka|?}0(k — (k1 + k2)).

From the recurrent relation it easily follows that, in the sum (7), only the
term with p; = p — 1 is different from zero. If

hy(k,s) = BW(s)d(k — (k1 + (g — 1)k2)

and Cat
|B(s)| < ——=—===|B1||Bs|""",
(¢ —2)!
then the same inequality is valid for ¢ = p (see the proof of Lemma 1).
Theorem 3 is proved. O

Remark. Theorem 3 is equivalent to the estimates of simple diagrams
in [7].
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with bursting dynamics, where the ratio of the enstrophy at time ¢ = t* to the
enstrophy at t = 0 of some remarkable orbits becomes very large for very small
times t*; similarly for higher norms H®, s > 2. These orbits are topologically close
to homoclinic cycles. For the time intervals, where H® norms, s > 7/2, of the
limit resonant orbits do not blow up, we prove that the full 3D Euler equations
possess smooth solutions close to the resonant orbits uniformly in strong norms.
Bibliography: 41 titles.

1. Introduction

The issues of blowup of smooth solutions and finite time singularities of
the vorticity field for 3D incompressible Euler equations are still a major
open question. The Cauchy problem in 3D bounded axisymmetric cylin-
drical domains is attracting considerable attention: with bounded smooth
non-axisymmetric 3D initial data, under the constraints of conservation of
bounded energy, can the vorticity field blow up in finite time? Outstand-
ing numerical claims for this were recently disproved [25, 14, 23]. The
classical analytical criterion of Beale-Kato—Majda [8] for non-blow up in
finite time requires the time integrability of the L° norm of the vorticity.
DiPerna and Lions [27] gave examples of global weak solutions of the 3D
Euler equations which are smooth (hence unique) if the initial conditions
are smooth (specifically in WP(D), p > 1). However, these flows are really
2-dimensional in x1, x5, 3-components flows, independent from the third co-
ordinate x3. Their examples [15] show that solutions (even smooth ones) of
the 3D Euler equations cannot be estimated in W for 1 < p < oo on any
time interval (0, T') if the initial data are only assumed to be bounded in
WP Classical local existence theorems in 3D bounded or periodic domains
by Kato [24], Bourguignon—Brézis [11] and Yudovich [38, 39] require some
minimal smoothness for the initial conditions (IC), for example, in H?(D),
s> 2

The classical formulation for the Euler equations is as follows:

HV+(V-V)V=-Vp, V-V=0, (1.1)
V-N=0ondD, (1.2)

where 0D is the boundary of a bounded connected domain D, N the normal
to D, V(t,y) = (V1, Va, V3) the velocity field, y = (y1,y2,y3), and p is the
pressure.
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The equivalent Lamé form [3]

1
atV+cuer><V—|—V(p+ §|V|2> =0, (1.3)
V-V =0, (1.4)
Ow + curl (w x V) =0, (1.5a)
w=curl V, (1.5b)

implies conservation of energy

1
B0 =5 [ IVt dy (16)
D
The helicity Hel (¢) [3, 33], is conserved:

Hel (t) = | V- wdy, (1.7)
/

for D = R? and when D is a periodic lattice. Helicity is also conserved
for cylindrical domains, provided that w - N = 0 on the cylinder lateral
boundary at ¢t = 0 (see [29]).

From the theoretical point of view, the principal difficulty in the analy-
sis of 3D Euler equations is due to the presence of the vortex stretching term
(w- V)V in the vorticity equation (1.5a). Equations (1.3) and (1.5a) are
equivalent to the following:

Ow + [w, V] =0, (1.8)

where [a,b] = curl (a x b) is the commutator in the infinite dimensional Lie
algebra of divergence-free vector fields [3]. This point of view has led to
celebrated developments in topological methods in hydrodynamics [3, 33].
The striking analogy between the Euler equations for hydrodynamics and
the Euler equations for a rigid body (the latter associated to the Lie algebra
of the Lie group SO(3, R)) was already pointed out by Moreau [31]; Moreau
was the first to demonstrate conservation of helicity (1961) [32]. This has led
to extensive speculations to what extent/in what cases are the solutions of
the 3D Euler equations “close” to those of coupled 3D rigid body equations
in some asymptotic sense. Recall that the Euler equations for a rigid body
in R? is as follows:

m;+wxm=0, m= Aw, 1.9a)

m; + [w, m| =0, (1.9b)
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where m is the vector of angular momentum relative to the body, w the
angular velocity in the body, and A the inertia operator [1, 3].

The Russian school of Gledzer, Dolzhanskij, Obukhov [20] and Visik
[36] has extensively investigated dynamical systems of hydrodynamic type
and their applications. They considered hydrodynamical models built upon
generalized rigid body systems in SO(n,R), following Manakov [30]. In-
spired by turbulence physics, they investigated “shell” dynamical systems
modeling turbulence cascades; albeit such systems are flawed as they only
preserve energy, not helicity. To address this, they constructed and stud-
ied in depth n-dimensional dynamical systems with quadratic homogeneous
nonlinearities and two quadratic first integrals Fy, F5. Such systems can be
written using sums of Poisson brackets:

dIil 1 i149...0n 8F1 8F2 8F1 8F2
Z € Diy..in )

dxiz Ozis  Oz's Oxiz

dt 2

125-05Tn

(1.10)

where constants p;,  ;, are antisymmetric in iq, ..., %,.

A simple version of such a quadratic hydrodynamic system was in-
troduced by Gledzer [19] in 1973. A deep open issue of the work by the
Gledzer—Obukhov school is whether there exist indeed classes of I.C. for the
3D Cauchy Euler problem (1.1) for which solutions are actually asymptot-
ically close in strong norm, on arbitrary large time intervals to solutions
of such hydrodynamic systems, with conservation of both energy and he-
licity. Another unresolved issue is the blowup or global regularity for the
“enstrophy” of such systems when their dimension n — co.

This article reviews some current new results of a research program
in the spirit of the Gledzer-Obukhov school; this program builds-up on the
results of [29] for 3D Euler in bounded cylindrical domains. Following the
original approach of [4]-[7] in periodic domains, [29] prove the non blowup
of the 3D incompressible Euler equations for a class of three-dimensional ini-
tial data characterized by uniformly large vorticity in bounded cylindrical
domains. There are no conditional assumptions on the properties of solu-
tions at later times, nor are the global solutions close to some 2D manifold.
The initial vortex stretching is large. The approach of proving regularity is
based on investigation of fast singular oscillating limits and nonlinear av-
eraging methods in the context of almost periodic functions [10, 9, 13].
Harmonic analysis tools based on curl eigenfunctions and eigenvalues are
crucial. One establishes the global regularity of the 3D limit resonant Fuler
equations without any restriction on the size of 3D initial data. The res-
onant Euler equations are characterized by a depleted nonlinearity. After
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establishing strong convergence to the limit resonant equations, one boot-
straps this into the regularity on arbitrary large time intervals of the solu-
tions of 3D Euler Equations with weakly aligned uniformly large vorticity
at t = 0. The theorems in [29] hold for generic cylindrical domains, for a
set of height/radius ratios of full Lebesgue measure. For such cylinders the
3D limit resonant FEuler equations are restricted to two-wave resonances of
the vorticity waves and are vested with an infinite countable number of new
conservation laws. The latter are adiabatic invariants for the original 3D
Euler equations.

Three-wave resonances exist for a nonempty countable set of h/R (h
height, R radius of the cylinder) and moreover accumulate in the limit of
vanishingly small vertical (axial) scales. This is akin to Arnold tongues [2]
for the Mathieu—Hill equations and raises nontrivial issues of possible singu-
larities/lack thereof for dynamics ruled by infinitely many resonant triads
at vanishingly small axial scales. In such a context, the 3D resonant Euler
equations do conserve the energy and helicity of the field.

In this review, we consider cylindrical domains with parametric reso-
nances in h/R and investigate in depth the structure and dynamics of 3D
resonant Euler systems. These parametric resonances in h/R are proved
to be non-empty. Solutions to Euler equations with uniformly large initial
vorticity are expanded along a full complete basis of elementary swirling
waves (T? in time). Each such quasiperiodic, dispersive vorticity wave is a
quasiperiodic Beltrami flow; these are exact solutions of 3D Euler equations
with vorticity parallel to velocity. There are no Galerkin-like truncations
in the decomposition of the full 3D Euler field. The Euler equations, re-
stricted to resonant triplets of these dispersive Beltrami waves, determine
the “resonant Euler systems.” The basic “building block” of these (a pri-
ori oo-dimensional) systems are proved to be SO(3; C) and SO(3; R) rigid
body systems

U + A — M) U Uy, = 0,
Un + (A — M) UnUg = 0, (1.11)
Un + Mk = M) UrUp, = 0.
These N's are eigenvalues of the curl operator in the cylinder, curl ®F =
+A,®F; the curl eigenfunctions are steady elementary Beltrami flows, and
h
the dispersive Beltrami waves oscillate with the frequencies iQ—%’
TE Ap,
vertical wave number (vertical shear), 0 < e < 1. Physicists [12] computa-
tionally demonstrated the physical impact of the polarization of Beltrami

n3
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modes ®* on intermittency in the joint cascade of energy and helicity in
turbulence.

Another “building block” for resonant Euler systems is a pair of SO(3; C)
or SO(3;R) rigid bodies coupled via a common principal axis of iner-
tia/moment of inertia:

ar = Am — M) Taman, (1.12a)
am = (An — M) Tapag, (1.12b)
an = (M — An)lagam + (Ap — An)Tazam, (1.12¢)
am = (A — Ag)Tanag, (1.12d)
ap = (A — )\n)f‘aman, (1.12e)

where I’ and I are parameters in R defined in Theorem 4.10. Both reso-
nant systems (1.11) and (1.12) conserve energy and helicity. We prove that
the dynamics of these resonant systems admit equivariant families of homo-
clinic cycles connecting hyperbolic critical points. We demonstrate bursting
dynamics: the ratio

|u(0)||%1§7 S 2 17

la(t)llZ-/

can burst arbitrarily large on arbitrarily small times, for properly chosen
parametric domain resonances h/R. Here,

a®llz = D) *un (). (1.13)

n

The case s = 1 is the enstrophy. The “bursting” orbits are topologically
close to the homoclinic cycles.

Are such dynamics for the resonant systems relevant to the full 3D
Euler equations (1.1)—(1.8)7 The answer lies in the following crucial “shad-
owing” Theorem 2.10. Given the same initial conditions, given the maximal
time interval 0 < t < T;, where the resonant orbits of the resonant Euler
equations do not blow up, then the strong norm H? of the difference be-
tween the exact Euler orbit and the resonant orbit is uniformly small on
0 <t < T, provided that the vorticity of the I.C. is large enough. Para-
doxically, the larger the vortex stretching of the I.C., the better the uniform
approximation. This deep result is based on cancellation of fast oscillations
in strong norms, in the context of almost periodic functions of time with
values in Banach spaces [29, Sec. 4]. It includes uniform approximation in
the spaces H®, s > 5/2. For instance, given a quasiperiodic orbit on some
time torus T' for the resonant Euler systems, the exact solutions to the
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Euler equations will remain e-close to the resonant quasiperiodic orbit on
a time interval 0 < ¢t < maxT;, 1 < i < [, T; elementary periods, for large
enough initial vorticity. If orbits of the resonant Euler systems admit burst-
ing dynamics in the strong norms H®, s > 7/2, so do some exact solutions
of the full 3D FEuler equations, for properly chosen parametrically resonant
cylinders.

2. Vorticity Waves and Resonances
of Elementary Swirling Flows

We study the initial value problem for the three-dimensional Euler equations
with initial data characterized by uniformly large vorticity

OV +(V-V)V=—Vp, V-V=0, (2.1)
~ Q
V(t,y)le=o = V(0) = Vo(y) + Ses x y, (2.2)

where y = (y1,92,93), V(t,y) = (V1, Vo, V3) is the velocity field, and p is
the pressure. In Equations (1.1), e3 denotes the vertical unit vector and €
is a constant parameter. The field V(y) depends on three variables y1, yo,
and ys. Since curl (%83 x y) = Qes, the vorticity vector at initial time ¢t = 0
is

curl V(0,y) = curl Vo(y) + Qes, (2.3)
and the initial vorticity has a large component weakly aligned along eg,
when © >> 1. These are fully three-dimensional large initial data with
large initial 3D vortex stretching. We denote by H the usual Sobolev
space of solenoidal vector fields.

The base flow
Q
Vi(y) = §e3 x y,curl Vi(y) = Qes (2.4)

is called a steady swirling flow and is a steady state solution (1.1)—(1.4),
as curl (Qes x V4(y)) = 0. In (2.2) and (2.3), we consider I1.C. which are
an arbitrary (not small) perturbation of the base swirling flow V,(y) and
introduce

Vit.y) = Ges x y+ VL), (25)

curl V(t,y) = Qez + curl V(t,y), (2.6)

OV +curl VxV+4Qe3 xV+curl VxVi(y)+Vp =0, V-V =0,2.7)
V(t,y)l=0 = Vo(y). (2.8)
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Equations (2.1) and (2.7) are studied in cylindrical domains
C={(y1,y2,y3) € R*: 0 < y3 < 27/a, 3? + y% < R?}, (2.9)

where a and R are positive real numbers. If h is the height of the cylinder,
a =2m/h. Let

I'={(y1,y2,y3) € R}:0<ys < 27/, y% + y% = R2}. (2.10)

Without loss of generality, we can assume that R = 1. Equations (2.1) are
considered with periodic boundary conditions in ys

V(y17y2ay3) :V(ylay27y3+277/a) (2]‘]‘)
and vanishing normal component of velocity on I'
V.N=V-N=0onT, (2.12)

where N is the normal vector to I'. From the invariance of 3D Euler equa-
tions under the symmetry y3 — —ys, Vi — Vi, Vo — Vo, V3 — —V3, all
results in this article extend to cylindrical domains bounded by two hori-
zontal plates. Then the boundary conditions in the vertical direction are
zero flux on the vertical boundaries (zero vertical velocity on the plates).
One only needs to restrict vector fields to be even in y3 for V4, V5 and odd
in y3 for V3, and double the cylindrical domain to —h < y3 < +h.

We choose V(y) in H*(C), s > 5/2. In [29], for the case of “non-
resonant cylinders,” i.e., non-resonant o = 27/h, we have established regu-
larity for arbitrarily large finite times for the 3D Euler solutions for € large,
but finite. Our solutions are not close in any sense to those of the 2D or
“quasi 2D” Euler and they are characterized by fast oscillations in the eg
direction, together with a large vortex stretching term

oV ov ov
w(t,y) - VV(t,y) = wla—yl —|—w26—y2 +w33_y3’ t>0

0
with leading component |[Q2Q——V (¢,y)| > 1. There are no assumptions on

0ys3

oscillations in y1, o for our solutions (nor for the initial condition Vo (y)).

Our approach is entirely based on fast singular oscillating limits of
Equations (1.1)—(1.5a), nonlinear averaging, and cancelation of oscillations
in the nonlinear interactions for the vorticity field for large 2. This was
developed in [5, 6, 7] for the cases of periodic lattice domains and the
infinite space R3.

It is well known that fully three-dimensional initial conditions with
uniformly large vorticity excite fast Poincaré vorticity waves [5, 6, 7, 34].
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Since individual Poincaré wave modes are related to the eigenfunctions of
the curl operator, they are exact time-dependent solutions of the full non-
linear 3D Euler equations. Of course, their linear superposition does not
preserve this property. Expanding solutions of (2.1)—(2.8) along such vortic-
ity waves demonstrates potential nonlinear resonances of such waves. First
recall spectral properties of the curl operator in bounded connected do-
mains.

Proposition 2.1 ([29]). The curl operator admits a self-adjoint ex-
tension under the zero flux boundary conditions, with a discrete real spec-
trum A, = £|A|, |An] > 0 for every n and |\,| — +o0 as |n| — co. The
corresponding eigenfunctions ®

curl @ = £|\,|®F (2.13)

are complete in the space
h
J = {U € L*(D): V-U=0,U-Njpp = O,/Udz = 0}. (2.14)

Remark 2.2. In cylindrical domains, with cylindrical coordinates
(r,0, z), the eigenfunctions admit the representation
ing@eiangz

(2.15)

withne =0,£1,4+2,...,n3 ==+1,4+2,...;andny =0,1,2,.... Here, n; in-
dexes the eigenvalues of the equivalent Sturm—Liouville problem in the radial
coordinates and n = (ny,ng, ng) (see [29] for technical details). From now
on, we use the generic variable z for any vertical (axial) coordinate ys or 3.
For ng = 0 (vertical averaging along the axis of the cylinder) 2-dimensional
3-component solenoidal fields must be expanded along a complete basis for
fields derived from 2D stream functions:

in sN2,M3 = (¢T71’L1 yM2,M3 (/r)7 @9777/1 sN2,M3 (/r)7 ¢Z7Tl1 sN2,M3 (71)) €

P, = ((curl (pnes), <pne3))7 ©n = @n(r,0),
— ANn = Un@n, Pnlor =0,
curl e, = ((curl ((Pneg)7 ,U'n@neiﬁ))-

Here, ((a, bes)) denotes a 3-component vector whose horizontal projection
is a and vertical projection is bes.

Let us explicit elementary swirling wave flows which are ezact solutions
to (2.1) and (2.7).
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Lemma 2.3. For every n = (n1,ne,n3) the following quasiperiodic
(T? in time) solenoidal fields are exact solution of the full 3D nonlinear
Euler equations (2.1)

n3

Vit y) = Qeg X Yy + exp (%Jt){)n<exp ( — %Jt)y) exp (:ti|/\n|

ar)),
5 a
(2.16)
ns s the vertical wave number of ®,, and exp(%Jt) the unitary group of

rigid body rotations:

0 -1 0 cos(&) —sin(%) 0
J=[1 0 o0 |, V2= sin(Z)  cos(%) 0 |. (217
0 0 0 0 0 1

Remark 2.4. These fields are exact quasiperiodic, nonaxisymmetric
swirling flow solutions of the 3D Euler equations. For n3 # 0 their second
components

~ Q Q i

V(t,y) = exp (§Jt) <I’n<exp ( — EJt)y) exp (:t %o@t) (2.18)
are Beltrami flows (curl V x V = 0) exact solutions of (2.7) with V(¢ =

Q
In Equation (2.18), V(t,y) are dispersive waves with frequencies 3

2 -
and %97 a = % Moreover, each V(t,y) is a traveling wave along the
n
Q
cylinder axis since it contains the factor exp (iomg(izi mt)) Note that
n

ng large corresponds to small axial (vertical) scales, albeit 0 < afng/\,| < 1.

ProOOF OF LEMMA 2.3. Through the canonical rigid body transforma-
tion for both the field V(¢,y) and the space coordinates y = (y1, y2, y3):

Q
V(t,y) = e UL e 2y) + S dy, @ = T2y, (2.19)
the 3D Euler equations (2.1), (2.2) transform into

2L, U
O U+ (curl U+ Qes) x U= -V p—T(|x1| + |zo| )+T , (2.20)

V-U=0, Ut,z)|im0 = U(0) = Vo(), (2.21)
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For Beltrami flows such that curl U x U = 0 these Euler equations
(2.20), (2.21) in a rotating frame reduce to

U+ QesxU+Vr=0, V-U=0,

which are identical to the Poincaré-Sobolev nonlocal wave equations in the
cylinder [29, 34, 35, 3]

W+ Qey x U+ Vr=0, V- ¥ =0, (2.22)
62 5 ) 82
g curl* ¥ — Q 923 =0, ¥-N|sp =0. (2.23)

It suffices to verify that the Beltrami flows
W, (t,z) = ®,(x)exp ( |)\ |Qt>

where ®F(z) and +|)\,| are curl eigenfunctions and eigenvalues, are exact
solutions to the Poincaré—Sobolev wave equation, in such a rotating frame
of reference.

Remark 2.5. The frequency spectrum of the Poincaré vorticity waves

(solutions to (2.22)) is exactly 4208 = (n1,n2,n3), indexing the spec-

[An |
trum of curl. Note that ng = 0 (zero frequency of rotating waves) corre-
sponds to 2-dimensional 3-components solenoidal vector fields.

We now transform the Cauchy problem for the 3D Euler equations
(2.1), (2.2) into an infinite dimensional nonlinear dynamical system by ex-
panding V(¢,y) along the swirling wave flows (2.16)—(2.18)

Q Q
Vi(t,y) = 5€3 %Y + exp (§Jt>

x { S ) exp( | A”i"' ) ®, (exp (—%Jt) y) } (2.24a)

n=(n1,n2,n3)
9] -
Vit =0y)=Zes xy+Vo(y) (2.24b)

\70 (y) = Z un(o)i’n(y)v (224C)

n:(nl ,7127713)

where ®,, denotes the curl eigenfunctions of Proposition 2.1 if ng # 0, and
P, = ((curl (¢pnes), @neg)) if ng = 0 (2D case, Remark 2.2).
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As we focus on the case, where helicity is conserved for (2.1), (2.2),
we consider the class of initial data V¢ such that (see [29]) curl Vo-N =0
on I', where I is the lateral boundary of the cylinder.

The infinite dimensional dynamical system is then equivalent to the
3D Euler equations (2.1), (2.2) in the cylinder, with n = (n1, ng, ng) ranging
over the whole spectrum of curl, i.e.,

du, ) ns3 k3 m3 ) )
— = exp(i|+—+—+ —=]adt
dt Z; p( ( Pl = Tl = Thl

kz+mz=n3
ka+ma=n2

x (curl @ x @y, Py )ug (H) U, (1). (2.25)
Here,
curl ®F = £\, ®F if k3 £ 0,
curl ®;, = ((curl (pres), ngokeg)) if k3=0
(2D, 3-components, Remark 2.2), similarly for mg = 0 and ng = 0. The
inner product ( , ) denotes the L? complex-valued inner product in D.

This is an infinite dimensional system of coupled equations with qua-
dratic nonlinearities, which conserve both the energy

E(t) = [uu(t)]”

and the helicity
Hel (t) = £[An| [uf ().

The quadratic nonlinearities split into resonant terms, where the exponen-
tial oscillating phase factor in (2.25) reduces to unity and fast oscillating
non-resonant terms (2 >> 1). The resonant set K is defined in terms of

vertical wave numbers k3, m3,n3 and eigenvalues £\, +\,,,, £\, of curl:
k
K:{:I:—B:&:%:&:E:O,n3:k3—|—m3,n2:k2+m2}. (227)
M Am A
Here, ko, ms, ny are azimuthal wave numbers.

We call the “resonant Euler equations” the following co-dimensional
dynamical system restricted to (k,m,n) € K:

duy,
% + Y (eurl By x @y, B)upu,, =0, (2.28a)
(k,m,n)eK

u,(0) = (Vo, ®,,). (2.28Db)
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Here, curl i’ki = :I:/\k'lf if k3 # 0, curl &5 = ((curl (pres), ,U,k(pkeg)) if
ks = 0; similarly for ms = 0 and ng = 0 (2D components, Remark 2.2). If
there are no terms in (2.28a) satisfying the resonance conditions, then there

will be some modes for which % =0.

Lemma 2.6. The resonant 3D Euler equations (2.28) conserve both
energy E(t) and helicity Hel (t). The energy and helicity are identical to
that of the full exact 3D Euler equations (2.1), (2.2).

The set of resonances K is studied in depth in [29]. To summarize, K
splits into

(i) O-wave resonances, with ng = ks = mg = 0; the corresponding res-
onant equations are identical to the 2-dimensional 3-components
Euler equations with 1.C.

> =

h
/ o(y1, y2,y3) dys.
0

(ii) Two-wave resonances, with ksmsns = 0, but two of them are
not null; the corresponding resonant equations (called “catalytic
equations”) are proved to possess an infinite countable set of new
conservation laws [29].

(iii) Strict three-wave resonances for a subset K* C K.

Definition 2.7. The set K™ of strict 3 wave resonances is:

k
K* + 3:|:—:t— 0, ksmgns # 0,n3 = k3 + mg,no = ko + mo
AL A A
(2.29)

2
Note that K* is parameterized by h/R since o = %

parameterizes

the eigenvalues A, A\r, A\, of the curl operator.

Proposition 2.8. There exists a countable nonempty set of parame-
ters % for which K* # @.

PROOF. The technical details, together with a more precise statement,
are postponed to the proof of Lemma 3.7. Concrete examples of resonant
axisymmetric and helical waves are discussed in [28] (see Fig. 2 in [28]). O
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Corollary 2.9. Let

h
/Vo(ylv Y2, y3) dy3 = Oa
0

i.e., zero vertical mean for the 1.C. Vo(y) in (2.2), (2.8), (2.24c), and
(2.28b). Then the resonant 3D Euler equations are invariant on K* :

du,
W + Z /\k<q)k X P, (I’n>llkllm =0, ks3mgns 7é 0, (230&)
(k,m,n)eK*
u,(0) = (Vo, @), (2.30b)
where Vi has spectrum restricted to nz # 0.

PROOF. This is an immediate consequence of the “operator splitting”
theorem (see [29, Theorem 3.2]). O

We call the above dynamical systems the “strictly resonant Fuler sys-
tem.” This is an co-dimensional Riccati system which conserves energy and
helicity. It corresponds to nonlinear interactions depleted on K*.

How do dynamics of the resonant Euler equations (2.28) or (2.30) ap-
proximate ezact solutions of the Cauchy problem for the full Euler equations
in strong norms? This is answered by the following theorem proved in [29,
Sec. 4].

Theorem 2.10. Consider the initial value problem
Q _ .
V(it=0y) = 53 X y+Vo(y), Vo e Hy, s>7/2,

for the full 3D Euler equations, with ||\~70||Hg < MO and curl Vo - N = 0
onT.

QO .
e Let V(t,y) = 53X y+ V(t,y) denote the solution to the exact Euler

equations.

o Let w(t,x) denote the solution to the resonant 3D Euler equations with
the initial condition w(0,z) = w(0,y) = Vo(y).

o Let ||[w(t,y)|lms < My(Tar, M) on 0 <t < Ty, s>7/2.

Then for all € > 0 there exists Q*(Tar, M2, €) such that for all Q > Q*

HV(t, y) — exp (JTQt> {Zun(t)e—i?—iam@n(eﬁmy)} HHB <e

on0<t< Ty forall3>1, 8<s—2. Here, || ||gs is defined in (1.13).
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The 3D Euler flow preserves the condition curl Vo-N =0 on T, i.e.,
curl V(¢,y) - N = 0 on I, for every ¢ > 0 [29]. The proof of this “error-
shadowing” theorem is delicate, beyond the usual Gronwall differential in-
equalities and involves estimates of oscillating integrals of almost periodic
functions of time with values in Banach spaces. Its importance lies in that
solutions of the resonant Euler equations (2.28) and/or (2.30) are uniformly
close in strong norms to those of the exact Euler equations (2.1), (2.2), on
any time interval of existence of smooth solutions of the resonant system.
The infinite dimensional Riccati systems (2.28) and (2.30) are not just hy-
drodynamic models, but exact asymptotic limit systems for > 1. This
is in contrast to all previous literature on conservative 3D hydrodynamic
models such as in [20].

3. The Strictly Resonant Euler Systems:
the SO(3) Case

We investigate the structure and the dynamics of the “strictly resonant
Euler systems” (2.30). Recall that the set of 3-wave resonances is:

. k m n
K :{(k,m,n) : iA—Z + A—j + ﬁ — 0, kamang # 0,
n3:k3+m3,n2=k2+m2}. (3.1)

From the symmetries of the curl eigenfunctions ®,, and eigenvalues \, in
the cylinder, we have

if

Ng — —Na, N3 — —N3, (3.2a)
then

®(ny, —ng, —ng) = ®*(n1,n2,n3) (3.2b)
and

A1, —ng, —n3) = A(n1,n2, ng), (3.2¢)

where * designates the complex conjugate (see [29, Sec. 3] for details). The
eigenfunctions ®(n1, ng, ng) involve the radial functions J,, (8(n1, ne, ans)r)
and J},_(B(n1,ng, ans)r), with

N (n1,na,n3) = B%(n1,n9, ang) + a’n3;
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B(n1,n2,ans) are discrete, countable roots of Equation (3.30) in [29], ob-
tained via an equivalent Sturm-Liouville radial problem. Since the curl
eigenfunctions are even in r — —r, ny — —nj, we extend the indices
ny=1,2,...,400 to —n; = —1,—2,... with the above radial symmetry in
mind.

Corollary 3.1. The 3-wave resonance set K* is invariant under the
symmetries 0;, j = 0,1,2,3, where

oo(ni,n2,n3) = (n1,n2,n3), o1(n1,n2,n3) = (—n1,n2,n3),
o2(n1,n2,n3) = (n1, —nz,n3), o03(ny,n2,n3) = (n1,n2, —n3).
Remark 3.2. For 0 < i < 3,0 < j <3,0<1<3,0; = Id

005 = —oy, if i # j and 00501 = —Id, for ¢ # j # l. The o; do preserve
the convolution conditions in K*.

We choose an « for which the set K* is not empty. We further take
the hypothesis of a single triple wave resonance (k,m,n), modulo the sym-
metries o;.

Hypothesis 3.3. K* is such that there exists a single triple wave
number resonance (n,k,m), modulo the symmetries o;, 7 = 1,2,3, and
oj(k) #k, oj(m)#m, oj(n) #nfor j =2and j=3.

Under the above assumption, one can demonstrate that the strictly

resonant Euler system splits into three uncoupled systems in C3:

Theorem 3.4. Under the hypothesis 3.3, the resonant Euler system
reduces to three uncoupled rigid body systems in C>

dU, | .

Z + Z()\k — )\m)CkankUm =0, (3.3&)
du,
d—t’“ —i(Am = An)CrmnUn Uz, =0, (3.3b)
dc% — i = M) CromnUnlU = 0, (3.3¢)

where Crmn = 1(®g X Poy, P, Crmn real and the other two uncoupled sys-
tems obtained with the symmetries oo(k, m,n) and o3(k, m,n). The energy
and the helicity of each subsystem are conserved:

d

dt ([ch[le< + UmU:;z + UnU:) =0,

d
T CRURUE + AnUnU, + MUnU;) = 0.
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PRrROOF. From U_; = U} it follows that A(—k) = A(+k), similarly
for m and n; and in a very essential way from the antisymmetry of (®; x
®,,, ®*), together with curl @, = A\ Pj. That Clpy is real follows from
the eigenfunctions detailed in [29, Sec. 3]. O

Remark 3.5. This deep structure, i.e., SO(3; C) rigid body systems
in C3 is a direct consequence of the Lamé form of the full 3D Euler equations,
see Equations (1.3) and (2.7), and the nonlinearity curl V x V.

The system (3.3) is equivariant with respect to the symmetry operators

(21,22, 23) — (27,23, 23), (21,22, 23) — (exp(ix1)21,exp(ix2)22, exp(ix3)23) ,

provided x; = x2+x3. It admits other integrals known as the Manley-Rowe
relations (see, for instance [37]). It differs from the usual 3-wave resonance
systems investigated in the literature such as in [40, 41, 22] in that

(1) helicity is conserved,
(2) dynamics of these resonant systems rigorously “shadow” those of
the exact 3D Euler equations, see Theorem 2.10.

Real forms of the system (3.3) are found in [20], corresponding to
the exact invariant manifold Uy € iR, U,, € R,U, € R, albeit without
any rigorous asymptotic justification. The C3 systems (3.3) with helicity
conservation laws are not discussed in [20].

The only nontrivial Manley—Rowe conservation laws for the resonant
system (3.3), rigid body SO(3; C), which are independent from energy and
helicity, are as follows:

pn (rermry sin(@, — 0, — 6,,)) =0,

where U; = rjexp(i0;), j = k,m,n, and

E1= M = A)72 — (M — Ao)r2,
Ea=Am — A)rs — (A — Ap)72,.

The resonant system (3.3) is well known to possess hyperbolic equilib-
ria and heteroclinic/homoclinic orbits on the energy surface. We are inter-
ested in rigorously proving arbitrary large bursts of enstrophy and higher
norms on arbitrarily small time intervals, for properly chosen h/R. To
simplify the presentation, we establish the results for the simpler invariant
manifold Uy € iR, and U,,,U, € R.
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Rescale time as t — t/Clpyp. Start from the system
Un +i( Ak — M) UrUpn = 0,
Uy — i(Am — M) UU?, =0, (3.4)
Up — i(An — M) UnUf = 0.
Assume that Uy € iR and U,,,U, € R. Set p = iU, ¢ = Uy, and r = Uy,
as well as A\, = A\, A, = p, and A\, = v. Then
p+(p—v)gr=0,
¢+ (v —Arp=0, (3.5)
74 (A= p)pg = 0.
This system admits two first integrals
E=p*+¢ +r? (energy)

3.6
H = \p? + pg* + vr? (helicity) (3.6)

The system (3.5) is exactly the SO(3,R) rigid body dynamics Euler

equations, with inertia momenta I; = m7 j=k,m,n [1].
J

Lemma 3.6 ([1, 20)). With the ordering A\, > A > An, f€., A >

w > v, the equilibria (0,£1,0) are hyperbolic saddles on the unit energy

sphere, and the equilibria (£1,0,0), (0,0,=£1) are centers. There exist equi-

variant families of heteroclinic connections between (0,+1,0) and (0, —1,0).

FEach pair of such connections correspond to equivariant homoclinic cycles
at (0,1,0) and (0,—1,0).

We investigate bursting dynamics along orbits with large periods, with
initial conditions close to the hyperbolic point (0, F(0),0) on the energy
sphere E. We choose resonant triads such that A\, > 0.\, < 0, \x ~
IAnl, [Am] < Ak, equivalently:

A>p>v, Aw <0, g << Xand A ~ |y (3.7)
Lemma 3.7. There exists h/R with K* # & such that
A > A > A, A, <0, |)\m| L Mgy, Ap ~ |)\n|
Remark 3.8. Together with the polarity + of the curl eigenvalues,
these are 3-wave resonances where two of the eigenvalues are much larger in
moduli than the third one. In the limit |k|, |m]|, |n| > 1, \p ~ £|k|, Ap ~

+|m|, A, ~ £|n|, the eigenfunctions ® have leading asymptotic terms which
involve cosines and sines periodic in r (see [29, Sec. 3]). In the strictly
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resonant equations (2.30), the summation over the quadratic terms becomes
an asymptotic convolution in ny = k1 + ny. The resonant three waves in
Lemma 3.7 are equivalent to Fourier triads k +m = n, with |k| ~ |n| and
|m| < |k|,|n|, in periodic lattices. In the physics of spectral theory of
turbulence [17, 26], these are exactly the triads responsible from transfer
of energy between large scales and small scales. These are the triads which
have hampered mathematical efforts at proving the global regularity of the
Cauchy problem for 3D Navier-Stokes equations in periodic lattices [16].

PROOF OF LEMMA 3.7 (see [29]). The transcendental dispersion law

for 3-waves in K* for cylindrical domains, is a polynomial of degree four in
193 = ]./h22

P(93) = Pyo3 + P393 + P92 + Py + Py = 0, (3.8)
with ny = ko + mo and nz = k3 + ms.
Then with
o 62(k17]€270[k3) _ 62(m17m2,06m3) _ ﬂ2(n17n27an3)
hy = ——5—=, hm = 5 s =
k3 m3 ng

(see the radial Sturm-Liouville problem in [29, Sec. 3], the coefficients of
P(V3) are given by the formula

P, = -3,

Py = —4(hg + hop + hy),

Py = —6(hghm + hihn + homha),

P = —12hihpha,

Py = h2h2 + 022 + b2 b2 — 2(hphmh? + hihoh?, 4 hphoh?).

Similar formulas for the periodic lattice domain were first derived in [5, 6,
7]. In cylindrical domains, the resonance condition for K* is identical to

1 1 1
+ + + —0,
VO3 +he  VI35+hm  VI3+hy

with J3 = 1/h?%, hy, = B2(k)/k3, hm = 32(m)/m3, h, = 32(n)/n%; Equation
(3.8) is the equivalent rational form.

From the asymptotic formula (3.44) in [29] for large /3

B(n1,m2,n3) ~ nym + nzg + % + 1, (3.9)
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h

where ¢ = 0 if lim M2t _ 0 (for example, h ﬁxed — — 0)and ¢ = :t if

ms 27 m3

ma h mo .
lim — — = 400 (for example, o fixed, h — 00). The proof is completed
mg 2m 3

- - 1
by taking leading terms Py 4+ ¥3P; in (3.8), ¥3 = 72 < 1, and mg = 0,
]ﬂg = (9(].)7 Ng = O(].) (Il

We now state a theorem for bursting of the H® norm in arbitrarily
small times, for initial data close to the hyperbolic point (0, E(0),0).

Theorem 3.9 (bursting dynamics in H?). Suppose that A\ > u > v,
Av <0, |p] < A, and X ~ |v]. Let W(t) = Xop(t)? + uSq(t)? + vOr(t)?
be the H3-norm squared of an orbit of (3.5). Choose initial data such that
W(0) = A%p(0)* + p®q(0)* with A°p(0)* ~ 3W(0) and u®q(0)* ~ 3W(0).
Then there exists t* > 0 such that

W) > (3)6W<0>,

where t* < p2 LA |l (M 1)~

6
w(0)

Remark 3.10. Under the conditions of Lemma 3.7, (A\/u)® > 1,
whereas p?(Ln(M\/|u]))(A/|u|)~t < 1. Therefore, over a small time interval
of length O(u2(Ln(/|u))(M|ul) 1) < 1, the ratio [[U()]]s/I[U(0)]]r9
grows to reach a maximal value O ((A/|p[)?) > 1. Since the orbit is periodic,
the H? semi-norm eventually relaxes to its initial state after some time (this
being a manifestation of the time-reversibility of the Euler flow on the energy
sphere). The “shadowing” Theorem 2.10 with s > 7/2 ensures that the full,
original 3D Euler dynamics, with the same initial conditions, will undergo
the same type of burst. Notice that, with the definition (1.13) of || - ||z=,
one has

|Qes X y||gs = || curl®(Qes x y)||2 =0.

Hence the solid rotation part of the original 3D Euler solution does not
contribute to the ratio |[V (¢)||z3/||V(0)]| 3.

Theorem 3.11 (bursting dynamics of the enstrophy). Under the
same conditions for the 3-wave resonance, let =(t) = N2p(t)? + u?q(t)? +
v r( )2 be the enstrophy. Choose initial data such that Z(0) = A\?p(0)? +

2q(0)%+1%r(0)* with \*p(0)? ~ 12(0), p2q(0)* ~ $2(0). Then there exists
t** > 0 such that

=) = (V)
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where t** < \f \/— n(A/ [l ([~

Remark 3.12. It is interesting to compare this mechanism for bursts
with earlier results in the same direction obtained by DiPerna and Lions.
Indeed, for each p € (1,00), each § € (0,1) and each ¢ > 0, DiPerna and
Lions [15] constructed examples of 2D-3 components solutions to Euler
equations such that

IVO)llwis <e  while  [[V(B)llws > 1/6.
Their examples essentially correspond to shear flows of the form

u(w2)
V(t7$17$2) = 0 s
w(z — tu(ze), z2)

where u € ij while w € W;Q’p . It is obvious that

(09 — tu/ (22)01 )w(xy — tu(xza), x2)
curl V(t, z1,22) = —1w(xy — tu(xs), x2)
—u/(z2)

Thus, all the components in curl V (¢, z1,22) belong to L} ., except for the
term —tu/(z2)0hw(z1 — tu(zs),x2). For each ¢ > 0 this term belongs to
LP for any choice of u € Wl’p and w € Wzl1 v, if and only if p =

Whenever p < oo, DiPerna and Lions construct their examples as some

smooth approximation of the situation above in the strong W? topology.

In other words, the DiPerna—Lions construction works only in cases
where the initial vorticity does not belong to an algebra — specifically to
LP, which is not an algebra unless p = cc.

The type of burst obtained in our construction above is different: in
that case, the original vorticity belongs to the Sobolev space H?, which
is an algebra in space dimension 3. Similar phenomena are observed in all
Sobolev spaces H? with 3 > 2 — which are also algebras in space dimension
3.

In other words, our results complement those of DiPerna—Lions on
bursts in higher order Sobolev spaces, however at the expense of using more
intricate dynamics.

We proceed to the proofs of Theorems 3.9 and 3.11. We are interested
in the evolution of

== N2 + 2 4 vt (enstrophy) (3.10)



322

Compute
E=2(N(p-v) +pv

Then

—A) + 2\ — 1)) pqr-

(par) = —(u—v)@*r® = (v = Nr*p? — (A — p)p*.

Using the first integrals above, one has

2
Van | ¢? | =
2

E
HY,

where Van is the Vandermonde matrix

1
Van= 1| A
)\2

1 1
woov.
p? v

For \ # p # v # X this matrix is invertible and

pv —(p+v) 1
A=pA=v) A=pA-v) A=-pAr-v)

Van-1 — VA —(v+XN) 1
(=)= (p=v)(p=2) (p=v)(p=2A)

Ap —(A+p) 1
v=Nv-—p) @=-XNr-p EF-Nr-p

Hence
2 = —1 = — v v
P = S0 E-(p+v)H +wkE),
¢ = L (E—(w+ANH +VAE),
(L=v)(p—=A)
r? = ! E—-A+pH+M\uE),

Francois Golse, Alex Mahalov, and Basil Nicolaenko

(3.11)

(3.12)

(3.13)

(3.14)
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so that
(1= v)g?r? (E-Ww+ANH+VAE) (E— ()\+N)H+>\ME)7
A=A =v)(p—v)
(v — Ar2p? E-A+p)H+ME)(E—(p+v)H + prk)
A=A =v)(p—v) ’
O — )P = — (E—(p+v)H+ wkE)(E—(v+NH + I/)\E).
A=A =v)(p—v)
Later on, we use the notation
- (A p,v)=(p+v)H — pvE,
xy (A p,v) =(AN+v)H — WE.
Therefore, we find that = satisfies the second order ODE
==—2K,,.,(E~

x—(Av:LL7V))(E - xo(/\vluv V))

+(E - xO()V s V))(E - 5C+(>\, My V)) + (E - CC+()\7 s V))(E - $0(>\, Hy V)))
which can be put in the form

E= 2K, P ,.,(5), (3.16)
where P, is the cubic

P>\7M7V(X) = (X - CC,()\7/L, V))(X - CC()()\,/J,7I/))(X - $+()‘7M7 V)) (3'17)
and
Ky = N —v) +pPv =)+ 13\ —p)

A=)\ —=v)(p—v) : (3.18)

In the sequel, we assume that the initial data for (p,q,r) are such that
r(0) = 0, p(0)(g(0) # 0. Let us compute

z_ (A p,v) = Awp(0)? + p2q(0)* + p(A — v)p(0)*.
zo (A, 1, v) = Np(0)? + p12q(0)?,

(3.19)
2 O ) = X2p(0)% + (” . A Z—ﬁ) 24(0)?

We also assume that

A>pu>v, Av <0, | <A, A~y

(3.20)
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Then Ky, > 0. In fact, Ky ,,, ~ 2, and Z is a periodic function of ¢ such
that

inf Z(t) = zo(A\, p,v), supZ(t) = x4 (A u,v) (3.21)
teR teR

with half-period

1 :E+()\7;,L7I/) d
x
Ty = —F—— / —— (3.22)
2R )
zo(A,p,v)
We are interested in the growth of the (squared) H? norm
W (t) = Xop(t) + ulq(t)?* + vor(t)*. (3.23)

Expressing p?, ¢2, and 72 in terms of E, H, and =, we find

NE-z_-(\uv) ptE—-zi(\u,v) VSIE-z0(A\ @)

P TeN— - N
(3.24)
Hence, if E = x4 (A, p,v), then
XN o) — e w) | s (o) — zold )
e T N S S (YR V| R
/\6(x+(/\7 /le) — l‘_(>\, Hs V))
SO ORI R
Let us compute
e () — - () = (A — p)(A — »)p(0)?
(22 g0 2 a0 ~ g0 O

We pick the initial data such that
W(0) = A°p(0)° + 1°¢(0)° with A°p(0)* ~ $W(0) and p°q(0)* ~ FW(0).

(3.26)
When = reaches x4 (A, i, V), we have
A8¢(0)? A8 A6
W > ~ 1 W)~ I=W(0). (3.27
e R e R TR
Hence W jumps from W(0) to ~ %2—2 (0) in an interval of time that does

not exceed one period of the = motion, i.e., 2T} ,,. Let us estimate this
interval of time. We recall the asymptotic equivalent for the period of an
elliptic integral in the modulus 1 limit.
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Lemma 3.13. Assume that x_ < xog < xy. Then

dx 1 In 1
Ve =z ) (@ —wo)(wy —x)  VEr—a- 1 -, /2e=%0
T4 —T—
uniformly in r_, xg, and T4 as Ty,
Ty —T—
Here,
1 < 1 @ 2
Var O v) —a— (A )~ /A2(0 A W(0)
Further,
200\ 1, v) — - (01, ) = (A= ) (A — 1)p(0)? (3.28)
so that
1 1

o Ty —To A=) (A=v)p(0)?
1=/ o= \/1 OO+ (- V) — A= 202

A=A =)0 + (u(v + N) — vA — p?)q(0)?
2(A = p)(A —v)p(0)?
q(0)*  W(0)/2u° _ A°

T 2p(0)2 T 2W(0)/2X6 ~ 2u6

2B ( A6 ) 12 |pf ()\)
2T 0 < —n(—) < —In(—]). 3.29
Aty W(O) A 2/1/6 W(O) A L ( )

Conclusion: collecting (3.26), (3.27), and (3.29), we see that the
squared H? norm W varies from W (0) to ~ p®W(0) in an interval of time
12 p2lnp
< . (Here, p = \/p.
W) »p ( /w)
We now proceed by obtaining similar bursting estimates for the en-
strophy. We return to (3.21) and (3.22). Pick the initial data so that

[1]

(0) = A*p(0)* + p?q(0)* with A*p(0)* ~ 5E(0) and p?q(0)* ~ %E(O)-

N =
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Then

2 Oupov) — 2 (i) = = ) (3 — )p(0)? + (”* A oA 1) 124(0)?

A2 _
~ 2X%p(0)2 + A\%q(0)* ~ P:(0),

while zo(A, i1, v) — 2_ (A, 1, v) = (A — p)(A — v)p(0)% ~ 2X%p(0)? ~ =(0).
Hence, in the limit as p = \/|u| — +o00, one has
1 1 In 1
2v2 /p?2(0) 1-/1- 1505
3p°E
1 1 1 1 Inp
Zln ~ i
2\22(0)p 1—/1-2p2 /22(0) p
and = varies from xo(\, i, v) = Z(0) to x4 (\, i, v) ~ p*=(0) on an interval
of time of length T ,, .. O

2T>\7M7V

4. Strictly Resonant Euler Systems:
the Case of 3-Wave Resonances on Small-Scales

4.1. Infinite dimensional uncoupled SO(3) systems.

In this section, we consider the 3-wave resonant set K* when |k|?, |m|?,
In|> > 1/n%, 0 < n < 1, ie, 3-wave resonances on small scales; here
|k|? = k+k3+k3, where (K1, ko, k3) index the curl eigenvalues, and similarly
for [m|?, |n|?. Recall that ks +msa = na, ks +mg = ng (exact convolutions),
but that the summation on k1, mq on the right-hand side of Equations (2.30)
is not a convolution. However, for |k|?, |m|?, |n|?> > 1/5?, the summation
in k1, my becomes an asymptotic convolution.

Proposition 4.1. The set K* restricted to |k|?,|m|?, |n|?> > 1/n?, for
all 0 < n < 1 is not empty: there exist at least one h/ R with resonant three
waves satisfying the above small scales condition.

PRrOOF. We follow the algebra of the exact transcendental dispersion
law (3.8) derived in the proof of Lemma 3.7. Note that P(d3) < 0 for
B2 (ma, ma, ams)

5 = 0, say
m3

J3 = 1/h? large enough. We can choose h,, =

— 0, and B(mq,ma, mg) ~ mim + mgﬁ + T
ms 2 4

in the specific limit
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Then Py = hih2 > 0 and P(13) must possess at least one (transcendental)
root ¥z = 1/h2. O

In the above context, the radial components of the curl eigenfunctions
involve cosines and sines in 8r/R (see [29, Sec. 3]) and the summation in &y,
my on the right-hand side of the resonant Euler equations (2.30) becomes
an asymptotic convolution. The rigorous asymptotic convolution estimates
are highly technical and detailed in [18]. The 3-wave resonant systems
for |k|%, |m|?, |n|?> > 1/n? are equivalent to those of an equivalent periodic
lattice [0, 27] x [0, 27] % [0, 27h], ¥3 = 1/h?; the resonant three wave relation
becomes:

1

2 2\ ~3 k2 K2\ 7
:|:<193+191%+192%> (193+191 2+192 >

3 3 ks k2
m2 m3 -3
(193 + 191 2 + 199 —= ) =0, (4.1a)
m3 m3
k +m =n, k‘gmgng 7é 0. (41b)

The algebraic geometry of these rational 3-wave resonance equations has
been investigated in depth in [6] and [7]. Here, 1, Y2, ¥3 are periodic
lattice parameters; in the small-scales cylindrical case, 91 = ¥ = 1 (after
rescaling of ng, ko, ms), 93 = 1/h?, h height. Based on the algebraic
geometry of “resonance curves” in [6, 7], we investigate the resonant 3D
Euler equations (2.30) in the equivalent periodic lattices.

First, triplets (k,m,n) solution of (4.1) are invariant under the re-
flection symmetries og, 01, 02,03 defined in Corollary 3.1 and Remark 3.2:
oo = Id, O'j(k) = (Giyjki), 1<i<3, €5 = +1if ¢ 7é 7, €5 = —1ifi= 7,
1 € j < 3. Second, the set K* in (4.1) is invariant under the homothetic
transformations:

(k,m,n) — (yk,ym,yn), ~ rational. (4.2)

The resonant triplets lie on projective lines in the wave number space, with
equivariance under o;, 0 < j < 3 and y-rescaling. For every given equi-
variant family of such projective lines the resonant curve is the graph of Z—f

versus 3—37 for parametric domain resonances in 1, 2, 3.

Lemma 4.2 ([7, p. 17]). For every equivariant (k,m,n) the resonant
curve in the quadrant Y7 > 0,99 > 0,93 > 0 is the graph of a smooth
function 93/91 = F(92/91) intersected with the quadrant.
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Theorem 4.3 ([7, p. 19]). A resonant curve in the quadrant 93/91 >
0, ¥2/91 > 0 is called irreducible if

ki k3 ki
det | m3 m3 m? | #0. (4.3)
2 3 2

ny Ny Ny

An irreducible resonant curve is uniquely characterized by siz nonnegative
algebraic invariants P1, P2, R1, Ra, S1, and Sz such that

2 2
{ﬂ ”—3}:{79%,79;},

n3’ n?
ki k3
i) = (e5 )

2 2
{ﬁ m—é}:{s&s&},

27
3 M3
and permutations thereof.

Lemma 4.4 ([7, p. 25]). For resonant triplets (k, m,n) associated to a
given irreducible resonant curve, i.e., verifying Equation (4.3), consider the
convolution equation n = k+m. Let o;(n) # n for all 1 < i < 3. Then there
are at most two solutions (k,m) and (m,k) for a given n provided that siz
non-degeneracy conditions (3.39)—(3.44) in [7] for the algebraic invariants
of the irreducible curve are verified.

For more details on the technical non-degeneracy conditions see Ap-
pendix below. An exhaustive algebraic geometric investigation of all solu-
tions to n = k+m on irreducible resonant curves is found in [7]. The essence
of the above lemma lies in that given such an irreducible “non-degenerate”
triplet (k,m,n) on K*, all other triplets on the same irreducible resonant
curves are exhaustively given by the equivariant projective lines:

(k,m,n) — (yk,ym,yn), for some 7 rational , (4.4)
(k,m,n) — (ojk,o5m,o5n), j=1,2,3, (4.5)

and permutations of £ and m in the above. Of course, the homothety ~
and the o; symmetries preserve the convolution. This context of irreducible
“non-degenerate” resonant curves yields an infinite dimensional uncoupled
system of rigid body SO(3; R) and SO(3; C) dynamics for the 3D resonant
Euler equations (2.30).
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Theorem 4.5. For any irreducible triplet (k,m,n) satisfying Theorem
4.3 and under the “non-degeneracy’ conditions of Lemma 4.4 (csee Appen-
diz), the resonant Euler equations split into the infinite countable sequence
of uncoupled SO(3;R) systems

ak = Dimn(Am — An)aman, (4.6a)
dm = kan(An — /\k)anak, (4.6b)
dn = kan()\k — )\m)akam (4.6C)

fO’f’ all (kvman) = V(O'j(k*)vo'j(m*haj(n*))v

4.
y=41,42,43...,0<j < 3. (47)

E*,m*,n* are some relatively prime integer vectors in Z> characterizing the
equivariant family of projective lines (k,m,n); Timn = (P X By, L),
Lmn real.

Theorem 4.5 is a simpler version for invariant manifolds of more gen-
eral SO(3; C) systems. It is a straightforward consequence of Propositions
3.2 and 3.3 and Theorems 3.3-3.5 in [7]. The latter article did not explicit
the resonant equations and did not use the curl-helicity algebra fundamen-
tally underlying this present work. Rigorously asymptotic infinite countable
sequences of uncoupled SO(3; R), SO(3; C) systems are not derived via the
usual harmonic analysis tools of Fourier modes, in the 3D Euler context.
Polarization of curl eigenvalues and eigenfunctions and helicity play an es-
sential role.

Corollary 4.6. Under the conditions Apx — A= > 0, Ags — Apr >
0, the resonant Euler systems (4.6) admit a disjoint, countable family of
homoclinic cycles. Moreover, under the conditions A= > +1, A\ <
=1, [Ag| < An=, each subsystem (4.6) possesses orbits whose H® norms,
s = 1, burst arbitrarily large in arbitrarily small times.

Remark 4.7. One can prove that there exists some 0 < I'pax < 00,
such that |Tgpmn| < Tinae for all (k,m,n) on the equivariant projective lines
defined by (4.7). The systems (4.6) “freeze” cascades of energy; their total
enstrophy

Et) = Y (ARai(t) + Aal,(t) + Aoal (1))
(k,m,n)

remains bounded, albeit with large bursts of Z(¢)/Z(0), on the reversible
orbits topologically close to the homoclinic cycles.



330 Francois Golse, Alex Mahalov, and Basil Nicolaenko

4.2. Coupled SO(3) rigid body resonant systems.

We now derive a new resonant Euler system which couples two SO(3;R)
rigid bodies via a common principle axis of inertia and a common moment of
inertia. This 5-dimensional system conserves energy, helicity, and is rather
interesting in that dynamics on its homoclinic manifolds show bursting cas-
cades of enstrophy to the smallest scale in the resonant set. We consider
the equivalent periodic lattice geometry under the assumptions of Proposi-
tion 4.1.

In Appendix, we prove that for an “irreducible” 3-wave resonant set
which now satisfies the algebraic “degeneracy” (A-4), there exist exactly
two “primitive” resonant triplets (k,m,n) and (l;;,ﬁz,n), where k, m, k, m
are relative prime integer valued vectors in Z3.

Lemma 4.8. Under the algebraic degeneracy condition (A-4), the ir-
reducible equivariant family of projective lines in K* is exactly generated by
the following two “primitive” triplets:

n=k+m, k=ak, m=0bm, (4.8a)
n="k+m, k=do;k)+Vo;m), (4.8b)

i.e.,
n = ak + bm, (4.8¢)
n=do;(k)+bo;m), (4.8d)

where o; # o are some reflection symmetries, a, b, a/, V' are relatively
prime integers, positive or negative, and k, ™ are relatively prime integer
valued vectors in Z2, i.e., (a,a') = (b,b') = (a,b) = (a’,b) =1, (k,m) =1,
where () denotes the greatest common denominator of two integers. All
other resonant wave number triplets are generated by the group actions oy,
Il =1,2,3, and homothetic rescalings

(k,m,n) — y(k,m,n), (k,m,n) — y(k,m,n) (y€Z)
of the “primitive” triplets.
Remark 4.9. It can be proved that the set of such coupled “primitive”
triplets is not empty on the periodic lattice. The algebraic irreducibility

condition of Lemma 4.2 implies that +ks/|k| = +ks/|k| and +ms/|m| =
+ms/|m|, which is obviously verified in Equations (4.8).

Theorem 4.10. Under the assumptions of Lemma 4.8, the resonant
Euler system reduces to a system of two rigid bodies coupled via a,(t) :
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ar = Am — M) Taman, (4.9a)
am = (An — M) Tanag, (4.9b)
an = Mg — Am)lagam + Az — An)Tazanm, (4.9¢)
am = (A — A\p)Tanag, (4.9d)
ap = (A — )\n)f‘aman, (4.9¢)

where T' = i(®), X @, ®%), T = i(®] x 5, ®%). Energy and helicity are
conserved.

Theorem 4.11. The resonant system (4.9) possesses three indepen-
dent conservation laws

& =ai+(1—a)d?, (4.10a)

Ey = a2 +aa?, + (1 — a)aZ,, (4.10b)

& = a% + aa?,, (4.10¢)

where

o = (/\m _Ak)/(An —Ak), (4.11&)

& = (i — )/ O = ). (4.11b)

Theorem 4.12. Under the conditions
Am < Ak < Ap, (4.12a)
A < An < Ag, (4.12b)

which imply o < 0, & < 0, the equilibria (+a(0),0,0,0,+a;(0)) are hyper-
bolic for |aj,(0)| small enough with respect to |ax(0)|. The unstable manifolds
of these equilibria are one dimensional, and the nonlinear dynamics of the
system (4.9) are constrained on the ellipse & (4.10a) for ak(t), am(t), the
hyperbola €3 (4.10c) for a;(t), am(t), and the hyperboloid £ (4.10b) for
am(t), am(t), an(t).

Theorem 4.13. Let the 2-manifold £ N E; N E3 be coordinatized by
(am,am). On this 2-manifold, the resonant system (4.9) is Hamiltonian,
and therefore integrable. Its (multi-valued) Hamiltonian is defined by the
closed 1-form

~ dam,
T Py — ) 4.1
o T2 (4.13)

h = D(\, — Ap) 200
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while the symplectic 2-form is
da, N dag,
w=—

4.14
akana;} ( )

Proor. Eliminating ay(t) via &1, an(t) via £, ag(t) via &3, the reso-
nant system (4.9) reduces to
am = Ly — M) (& — (1 — a)a2)? (& — aa?, + (& — 1)a2)?,
am = £y — M) (&2 — ad?, + (@ — 1)a2,) % (&3 — aaZ,)%;

after changing the time variable into
t
t— /(51 S (1 - a)a2)H(E — a2, + (6 — 1)ad)} (& — dad)}ds.
0

On each component of the manifold £ N & N &3, the following func-
tionals are conserved:

H(am,am) = £ f‘(/\n - A]})/ & — (ldiM;)GQ )172

dam
:I:F()\n—)\k)/—(gg_da%l)lm. ]

We note that the system of two coupled rigid bodies (4.9) does not
seem to admit a simple Lie-Poisson bracket in the original variables (ay, @,
Qn, G, ag). Yet, when restricted to the 2-manifold & N & N &3 that is
invariant under the flow of (4.9), it is Hamiltonian and therefore integrable.

This raises the following interesting issue: according to the shadow-
ing Theorem 2.10, the Euler dynamics remains asymptotically close to that
of chains of coupled SO(3;R) and SO(3; C) rigid body systems. Perhaps,
some new information could be obtained in this way. We are currently
investigating this question and will report on it in a forthcoming publica-
tion [21].

Already the simple 5-dimensional system (4.9) has interesting dynam-
ical properties, which we could not find in the existing literature on systems
related to spinning tops.

Consider, for instance, the dynamics of the resonant system (4.9) with
I.C. topologically close to the hyperbola equilibria (+a(0),0,0,0, £a;(0)).
Under the conditions of (4.12) and with the help of the integrability theorem
(see Theorem 4.13), it is easy to construct equivariant families of homoclinic
cycles at these hyperbolic critical points.
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Corollary 4.14. The hyperbolic critical points (£ay(0),0,0,0,+az(0))
possess 1-dimensional homoclinic cycles on the cones

a4+ (1 —a)a? = —aa?, with a <0, & < 0. (4.15)

Note that these are genuine homoclinic cycles, NOT sums of hetero-
clinic connections. Initial conditions for the resonant system (4.9) are now
chosen in a small neighborhood of these hyperbolic critical points, the cor-
responding orbits are topologically close to these cycles. With the ordering:

Am < Ak < Ay, (4.16a)
el < [Aml; [Ak] < An, (4.16b)
A < Ap < A, (4.16¢)
|| < A, (4.16d)
Az > A, (4.16¢)

which can be realized with |a’/a| > 1 and [b'/b| < 1 in the resonant triplets
(4.8), we can demonstrate bursting dynamics akin to Theorems 3.9 and
3.11 for enstrophy and H® norms, s > 2. The interesting feature is the
maximization of |aj(t)| near the turning points of the homoclinic cycles on
the cones (4.15). This corresponds to transfer of energy to the smallest scale
k, Ap.

In the forthcoming publication [21], we investigate infinite systems of
the coupled rigid bodies equations (4.9).

Appendix

We focus on a resonant wave number triplet (n, k,m) € (Z*)? verifying

e the convolution relation

n==k+m, (A-1)
e the resonant 3-wave resonance relation
RV Zzng e RN szg N
s —0, (A-2)

\/ﬁlm% + ﬁzmg + ﬁgmg
e the condition of “non-catalyticity”

]ﬂgmgng 7é 0, (A'?’)
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e and the degeneracy condition of [7, p. 26]
Gﬁfj (k,m) = kinym; + kymyn; = 0, (A-4)
where (7, j,1) is a permutation of (1,2, 3).

As is known [7, Lemma 3.5 (2)], the system of equations (A-3)—(A-4) for
unknown k and m, given a vector n, admits exactly 4 solutions in Z3 x Z3:

(k,m), (m,k), (k,m), (m,k).
Here, k and m are two vectors of the original resonant triplet, whereas
k = ao(k), m = Boj(m), where
mikl - mlki

a=———2¢{0,+1}, f=

mgik; + myk; n mlkj + mjkl

mlkj - mjkl

¢ {0,+1},
and the symmetries o; and o; are defined by
0; 1 U= (ul)l:1)273 - ((_1)6“ul)l:1,2,3 :

One verifies that 02 = 0]2- =1Id, o;0; = 0j0; = —07y, i.e., the group generated
by o; and o; is the Klein group Z/2Z x Z/2Z.

Let us write irrational numbers a and 3 under the irreducible repre-
sentation & = a’/a, § = V' /b, with a,a’,b,b’ € Z* and (a,d’) = (b,0) =1
where () denotes the greatest common denominator of the integer pair.
From k € Z? it follows that aa’k. However, since (a,a’) = 1, the Euclid

- 1 1
lemma yields that a|k. Similarly, bjm. We set k = ~k € Z3, m = FmE VA
a
Hence the integer vector n admits two decompositions
n = ak + bm = da'o;(k) + b'o; ().
<3

\/1912’% + 1922’% + 1932%
0, we see that, within the resonance condition (A-2), we can replace each
vector k,m and n by any collinear vectors, integer or not. Suppose that
there exists a positive integer d # 1 such that d|k. Then d|n, so that by

Since the function z ——

is homogeneous of degree

1 _
setting ng = En, ko = Ek’ mo = Em, we finally obtain

ng = akg + bky = aIO'Z'(ko) + b'oj(mo).
The triplets (ng, ako, bmg) and (ng, a’c;(ko), b'c;(mg)) verify from the above
remark, the convolution relation (A-1), and the resonance relation (A-2).

Hence without loss of generality we can assume that ‘the only positive integer
d such that d|k and d|m is 1; which we denote by (k,m) = 1. Equivalently,

F1Z + koZ + ksZ + T Z + MoZ + MsZ+ = Z.
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Finally, suppose that there exists a positive integer d # 1 such that

1 1
d|a and d|b. Then dn. We set ng = g™ @0 = 74, by = Eb' Observe that

. — 1 . —
Gij(aok, bom) = =5 Gi';(ak, bm) = 0.

From [7, Lemma 3.5 (2)] it follows that the vector ng of the resonant triplet
(no, apk, bgim) can also be written as

ng = k + m with (ng, k, ) verifying (A-2).

But then n = dng = ak+bm = a'o;(k) + Vo, (m) = dk+din. By [7, Lemma
3.5 (2)], (dk,dim) must coincide with one of the pairs (a’c;(k), b o;(m)),
(V'o;(m),a'o;(k)). In particular, d|a’k and d|b'm. Since d|a and (a,a’) = 1,
we have (d,a’) similarly (d,b’) = 1. But then the Euclid lemma yields d|k
and d|m, which contradicts the fact that (k,7m) = 1. Hence we have proved
that (a,b) = 1. In a similar way, one can show that (a’,b') = 1.

Conclusion: From the above consideration it follows that n € Z*
admits two decompositions

n = ak +bm = d'o;(k) + b'o; (M)
with (a,a’) = (b,V') = (a,b) = (a’, V') =1, (k,m) = 1.

The triplets (n,ak,bm) and (n,d’o;(k),b'o;(m)) verify the resonant
condition (A-2) (from the homogeneity of this condition) and the condition
of non-catalyticity (A-3). Indeed, aba’b’ # 0 and the condition (A-3) on the
initial triplet (n, k,m) imply that the reduced triplet (n,k,m) also verifies
(A-3)). Finally, the degeneracy condition (A-4) Gﬁfj (ak,bm) = 0 is verified.
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for Some Elliptic Equations
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We derive some bounds which can be viewed as an evidence of increasing sta-
bility in the Cauchy problem for the Helmholtz equation with lower order terms
when frequency is growing. These bounds hold under certain (pseudo-)convexity
properties of the surface, where the Cauchy data are given, and of variable zero
order coefficient of the Helmholtz equation. Proofs use Carleman estimates, the
theory of elliptic and hyperbolic boundary value problems in Sobolev spaces, and
Fourier analysis. We outline open problems and possible future developments.
Bibliography: 12 titles.

1. Introduction

Uniqueness and stability in the Cauchy problem for partial differential equa-
tions is an issue of fundamental theoretical and applied importance. In
particular, it is quite important for control theory and inverse problems.
Uniqueness implies approximate controllability, and the Lipschitz stability
estimates lead to exact controllability. The Cauchy problem plays a cru-
cial role in recovery properties of media or obstacles from remote sensing.
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Theory of the Cauchy problem has a long history, starting with the classi-
cal Holmgren—John theorem about the uniqueness of continuation across a
noncharacteristic initial surface I" for equations and systems with analytic
coefficients.

In 1938, Carleman used weighted energy estimates to handle nonana-
lytic coefficients. His method generated a variety of results, mainly for scalar
equations, published in hundreds of research papers and monographs. This
method works under the so-called pseudo-convexity condition on the weight
function. If this condition is not satisfied, there are examples of nonunique
continuation across a noncharacteristic surface. With an exception of the
hyperbolic equations and space like initial surfaces I', the Cauchy problem
is not well posed, in particular, there exists no solution in classical function
spaces. If a solution is unique, then one can claim some stability provided
that solutions are bounded in some standard norms. As is well known [9],
for general analytic equations the best possible stability is stability of log-
arithmic type. This is quite pessimistic for the numerical solution of the
continuation problem and therefore for various applications. The Carleman
method implies much better Holder type stability estimates and, in some
interesting cases, even the best possible Lipschitz type estimates. For brief
history and references see [4, 5].

Needs of prospecting by acoustical, elastic, and electromagnetic waves
stimulate the study of this problem for the Helmholtz equation

(A+b-V+aik*)u= finQ, ue Hy(Q), (1.1)
with the Cauchy data
U= ug, dyu=uyonl, (1.2)

where (2 is a domain in R®, T’ € C* is an (open) part of its boundary 92, and
v is the exterior unit normal to 9€). For fixed k we have a conditional Hélder
stability estimate [5, Sec. 3.3], however the constants in this estimate may
depend on k. Due to the celebrated results of John [9], in the general case,
these constants blow up as k goes to co, and one can expect only a quite weak
logarithmic k-independent stability estimate. However, in several important
practical examples (for examples, in computations for inverse scattering
[1] and in near field acoustical holography [2, 8]), it was observed that
stability (and, as a consequence, resolution) in the Cauchy problem and
in some inverse problems is increasing with k. In [3], the authors found
new stability estimates explaining this phenomenon for constant ag and
illustrated it by the numerical solution of some important applied problems.
In [7], the author extended results of [3] to variable ap and b = 0. The goal
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of this paper is to show that the addition of regular b does not change
results of [7]. This is achieved by more careful and complicated analysis
using the general scheme of [7]. In particular, we again employ hyperbolic
energy inequalities in the low frequency zone, use Carleman estimates for
the time dependent wave equation to get k-independent Carleman estimates
for Equation (1.1), and “freeze” b,ap at certain points in a special way.
Again, we have to impose some (nontrapping) condition on ag. Proofs
are getting more complicated because, in addition to difficulties with the
(tangential) Fourier transform for variable coefficients, we have to handle
“non-selfadjoint” terms resulting from the Fourier transform of b - V.

This paper is organized as follows. In Section 1, we describe the cur-
rent state of the problem, our main results and adjust to the Helmholtz
equation the famous counterexample of Fritz John for the wave equation.
In Section 2, we give energy estimates in the low frequency zone for con-
stant and variable coefficients. An important ingredient of the proof of the
k-independent stability for the Cauchy problem is a Carleman type estimate
for (1.1) which does not depend on k. In Section 3, we derive this estimate
from a known estimate for hyperbolic equations exactly as in [7]. Using the
results of Sections 2 and 3, in Section 4 we give (standard and similar to
[7]) proofs of the main results.

We write © = (2/,2,) € R",2 < n. Let Q be an open subset of
the cylinder {0 < z,, < h,|2'| < r} with the Lipschitz boundary 9, Q C
{xn < h}, and let T" be the part of 9 contained in the layer {0 < x,, < h}.
Suppose that Q(d) = QN {d < x,} and Q*(d) = R" ! x (d,h), 0 < d. Let
en = (0,...,0,1). We denote by C and s constants that depend only on
2,8, ag,b,d. Any other dependence is indicated. We denote by [|ul|)(£2) the
standard norm in the Sobolev space H(;)(Q2) and write ||ul/(2) = [u () (£2).
We set My = [lull1y(), F' = [[f][(2) + [lul|(T) + [[Vul[(T), and F(k) =
F + k||lu|[(T). Denote by V (£, z,) the (partial) Fourier transform Fuv (€, zy,)
of a function v(x) with respect to x’.

Since we are interested in increasing wave numbers k, for the sake of
simplicity, we assume that

1< k. (1.3)
Theorem 1.1. Assume that b,ay € C*(Q),0 < ag on Q, and
0 < ap+ Vao -+ BnOnag, 0 < Onag on Q (1.4)

for some positive B,,. Let 0 < d. Then for any e there are C,C(e), »(d) €
(0,1) such that
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M7 F(k)* + F) (L5)

[[ull 0y (2(d)) < C(F+€||U||(1)(Q)+C(€) A
Jor all u solving (1.1), (1.2).

As is known, C(¢) indeed depends on d and blows up as d — 0 [3],[5,
Ch. 3].

Theorem 1.1 allows us to consider more general domains 2. Let S be
a compact subset of Q. We denote by P(v;d) the half-space of R"™ with
the exterior normal v which has the distance d from S. We denote by v all
v such that P(v;d) N0 is contained in I'. Let Q(v;T',d) be P(v;d) N,
and, finally, let (I, d) be the union of all such Q(v;T',d) over v € ~. If
' = 99, then (T, 0) is the difference of Q and the convex hull of S and
(T, d) is the collection of points of (T, 0) which are at distance d from S.
As in [3], applying Theorem 1.1 to any Q = Q(v;T',d), v € v and using an
appropriate partition of unity, we obtain the following assertion.

Corollary 1.1. Let the condition (1.4) be satisfied in any Q(v;T',d),
v € vy, with the x,,-direction replaced by v. Then the bound (1.5) with Q(T', d)
instead of Q(d) is valid.

There is an important particular case, where the norm of the data
does not explicitly depend on k. Let us keep the notation of Corollaryl.1.
Let w be an open subset of 2 with I' C dw (boundary layer) such that IT" is
at the distance do from dw N Q. Let F, = || fI|(2) + [Jul[1)(w).

Corollary 1.2. Under the assumptions of Corollary 1.1, there are
constants C,C(dy), C(e) such that for any solution u to the Cauchy problem
(1.1), (1.2)

M{~"F* + Fw)

[[ul (AT, d)) < C(do)(Fw + ellull) () + C(e) ?

(1.6)

To derive Corollary 1.2 from Corollary 1.1, we let x to be a cut off
function that is equal to 1 on 2\ w and vanishes near I". Applying Corollary
1.1 to yu instead of u and using that

(A+b-V+Ead) (xu) = x((A+E*u) +2Vx - Vu+ (Ax +b-VY)u
=xf+2Vx-Vu+ (Ax+b-Vx)u

and the function xu has zero Cauchy data on I', we obtain (1.6) from Corol-
lary 1.1.
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Theorem 1.1 and its corollaries show an improved stability in the
Cauchy problem (1.1), (1.2) when one continues the solution of the dif-
ferential equation inside the convex hull of I'. Due to the results of John
[9], this is impossible when one continues to the outside of a convex T'.

Our proof of Theorem 1.1 is based on the following assertion.
Theorem 1.2. Let the condition (1.4) be satisfied. Then there are
constants C, »(d) € (0,1) such that for any solution u to the Cauchy problem
(1.1), (1.2)
lull1)((d)) < C(F + (M) = F (k)”), (1.7)

which is of its own interest since C' and s are independent of k.

Due to the above-mentioned results of John, the stability estimates of
Theorems 1.1, 1.2 seem to be optimal. We remind the remarkable argument
from [9, p. 569-571].

Let n =2,r = |x|,x1 = rcosf,zy = rsinf. The functions
ug(z) = k_%Jk(kr)eikg
solve Equation (1.1) (with b = 0,ap = 1) in R?. Let Q be the annular
domain{3 < |z| < 2} and I' = {|z| = 1}. John showed that

1 2
| T (k7)| < ¢* when 3<r<j

for some 0 < ¢ < 1, and, on the other hand,
|uk| = Jk(k) > Cokié on {|5E| — 1}.

From the first bound and known recurrent relations for Bessel functions we
have a similar inequality for J;,, and hence

E|Jug||(T) + || Vur|[(T) < ¢* for some ¢ € (0,1),C < k. (1.8)
Moreover, from [9, p. 570]
l[ull1)(©2) < C (1.9)
and
2 1 s 1 1 1
2 _ 22 -t 2 T 2_\E_ -1t 1
Ji(kr) = 7Tk(r 1)72 cos ( 4+k((r 1)2 —cos T))+O<k)’ (1.10)

where o is uniform on (3/2,2). We have

B
/2cos2 (— % +k<(r2 - 1)% —cos™* %))dr > %/COSz (— 2 +ks)ds
%
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_fB-a sin(—% + 2ka) — sin(—% + 2k03) > 1 (111)
C 4Ck C
provided that k > C. Here, we used the substitution s = (r2—1)2 —cos™* 1

and observed that

1 d 3
5<d—i:(1—r*2)% <C’when§<r<2.
Using (1.10) and (1.11), we yield

| (€2)

= é /2(7"2 —1)7% cos? <_ % + k((r2 —1)7 — arccos %))Tdr + 0(%)

nlw

> %/2cos2 (— % +k((r2 — 1) — arccos %))d?ﬁ—o(%) > %

3

2
This inequality and bound (1.9) demonstrate that for different geometries
(when € is not in the convex hull of T') or without the condition (1.4)
Theorem 1.1 and its corollaries are wrong. Moreover, this example shows
that the constants in the bound (1.5) (which holds at fixed k, [5, Secs.
3.2, 3.3]) blow up when k grows. So, without convexity type conditions, the
stability in the Cauchy problem for the Helmholtz equation is not improving,
but on the contrary it is deteriorating.

2. Energy Type Estimates in Low Frequency Zone
We obtain some auxiliary results imitating the standard energy estimate for
hyperbolic initial value problems.

Lemma 2.1. Let a(n),b(n) € C*([0,h]) depend only on x,, and let
v € C%(Q*) solve the initial value problem

(A+b(n)-V+an)?k?v; =0;f; inQ*(d), j=1,....,n—1,

v; =0 on Q" (hy) 21)
for some hy € (d,h), fj € C®(Q*(d)), fj =0 on Q*(h1), and
V;(&, xn) = 0 when MW < €2 (2.2)
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Then there is a constant C depending only on h, sup(|b(n)| + |0nb(n)| +
la(n)| + |Ona(n)|), supa=t(n) over (0,h) such that

[l011(27(d)) < CIIf511(2(d))- (2.3)

ProOOF. By the Parseval identity, it suffices to show that the solution
to the initial value problem

OpVj + bu(n)0nV; + (a(n)?k* — [€*)V;

—ib(n) - €V; = —i&;jFjon (d,h), j=1,...,n—1, 24)
with zero final conditions
V; =0, F; = 0on (hy,h) (2.5)
satisfies the bound
/|V| (€.9) C/|F| (€& 5)ds, j=1,. . (26)

Multiplying both sides of (2.4) by 8, V;, taking the complex conjugate,
and adding results, we yield

(02V;)0nV; + (02V;)0nV; + 2b,,(n) |0,V 2
T (a(n)?k? = [€2)(Vi0uV; + V;0, V) — ib(n) - €(V;0,V; — V;0,V;)
= i§; (Fj0nV; — Fj0nV;).
Observing that 8, |V |? = V9,V +8,VV and multiplying by -e™", we obtain
— (0n]0aV )™ — by (n)2]0, V| ?eT
— (a(n)?k? = [)0n|Vj[?e™ " +ib(n) - £(V;0,V; — V;0,V;)e™"
= —i;(Fj0nV; — Fj0,Vy)e™™".
Integrating by parts over the interval (z,,, h) with the use of (2.5), we obtain
102 Vi (zn)e™ + (a®(n)k® — [€[*)|V;[* (zn)e™"

h
+ / (7 — 20 ()0 V; ()™ ds

Tn
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h

+ /(T(ai(n)k2 — &%) + 2a(n)8na(n)k2)|‘/}|2(s)e”ds

Tn

— g / (F0,V; — F,0,V;)(s)e™ds. (2.7)
By elementary inequalities,
h
o) 630,75 = V0,V ()7 s

Tn

/|b| 18,V (s “ds+/|5| Vi[2(s)emds

and
h

/ F;0,V; — F;0,V;)(s)e™ ds

/ €2 IF P (s)emds + / 9uV; (s)e7ds,

Tn

so, using the condition (2.2) and dropping the first two terms on the left-
hand side of (2.7), we yield

h

/(T = 2bn(n) = [V'(n)]* = D)|0nV;[*(s)eT*ds
+ /(T(ai(N)k2 — [€*) + 2a(n)dna(n)k? — €[)|V;[*(s)e™ ds

h
< / (€21 F ()¢ ds. (2.8)
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Choosing

T = max (sup (20, (n) + b/ (n)[*) + 1,4 sup ( — 6222?) + 2)7

where the supremum is taken over (0, k), we guarantee that
0< 7 —2b,(n) —[b/(n)]* — 1,
a(n)’k® 7

— < Za(n)?k? + 2a(n)dna(m)k? — |¢[

Hence from (2.8) we derive

h
= ARy 2 (s)emsds < / P IES P (s)emds

Tn

and, using (2.2), we arrive at (2.3). The proof is complete. O

Lemma 2.2. Let a(n) € C1([0,h]) depend only on x,, and let v, €
C?(Q*) solve the initial value problem

(A +b(n) -V +a(n)*k?*)v, = Opfn in Q(d),

v, =0 on Q" (hy) (2:9)
for some hy € (d,h), fn € C®(Q*(d)), fn =0 on Q*(hy), and
Vo (&, 2) = 0 when Ml&’ < |¢2. (2.10)

Then there is a constant C depending only on h,sup(|b(n)| + |0,b(n)| +
la(n)| + |Opa(n)]), supa=t(n) over (0,h) such that

[0 [[(€2(d)) < Clfull(27(d)). (2.11)

PROOF. By the Parseval identity, it suffices to show that solutions to
the initial value problem

D2V + by (n)0n Vi + (a(n)?k* — [€]2 —ib(n) - €)V,, = 0, F,, on (d, h) (2.12)
with zero final conditions

V., =0, F, =0o0n (hq,h) (2.13)

/|V| (.5) C’/|F 2(e, 5)ds. (2.14)

satisfy the bound
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Integrating Equation (2.12) over (z,, h) and using the final conditions
(2.13), we obtain

h
— OV (n) — bn(n) Vi (2r) — /(8nbn(n))V (s)ds

h
+ /(a(”)Q(S)k2 — [¢* = ib(n) - )Va(s)ds = —Fp(wn). (2.15)
Multiplying (2.15) by V;,(z,,)e™®", taking the complex conjugate, and adding,
we yield
— (On IV %) (@n )™ — 2by (n)| Vi |* (™"

/a b ) + (/hanbn (xn))em"

+ (/(a(n) - |£|2 _ zb( ) f)V ( )ds)V ( )eT"D"

Tn

h
+ (/(a(n)%? — |£|2 +ib(n) - )V (s )ds)V ()™

= —(FuVp + FuVp)(2)e™. (2.16)

Setting for brevity

A, €) = a(n)?(zn)k* = €2, Blwn, &) = b(n)(wn) - €, (2.17)
observing that

h h

(/(A—iB)V( )ds)V( )+ (/(A—HB)V( )ds)Vn(mn)

Tn Tn

(- %) (w[(A FiB)Va(s)ds) Va(a),
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and integrating (by parts) (2.16) over (z,,h), we arrive at

h

Vil ()™ + /(T — 2b,,(n))| Vi |*(5)e™%ds

h h
— 2Re / ( / 8nb(s7n)Vn(s)ds)Vn(t))e”dt

2

h

+m /(A—iB)(s)Vn(s)ds eren

h wn h )
+/(<A+2'B A+zB ‘/ Va(s)ds )eﬂdt>

h . h
+ / (%)“) ( / (A+iB)(s)Vn(s)ds> Vi (t)e™dt

- t
= —/(FnVn + F,V,,)(s)e™ ds

h h
</|Fn|2(s)e”ds+/|Vn|2(s)e”ds (2.18)

by the elementary inequality 2ab < a® + b2.
We will now bound some terms in (2.18).
We have

‘2Re /h (/hanb(&n)Vn(s)ds>Vn(t))e”dt‘

Tn

C/(
o

Vi (5)]|Vin (¢ )|ds)e”dt

(IVa(s)? + IVn(t)|2)ds> et

Tt Tt
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h h h
C(h/|Vn(t)|2e”dt+/ </|Vn|2(s)ds)e“dt)

< Ch/|Vn(s)|2eTsds. (2.19)

Tn

To bound the next term, we observe that

1 A
_ > A > o2
A+iB A%+ B? ¢

by the definition (2.17) of A and the condition (2.10), so the real part of
this term is nonnegative.

Re

Similarly,
On(A—1iB) L
g | SOk,
(A+iB)? ¢
and hence
T On(A—1iB) T
- = —. .
Re (A+2'B (A+iB)? ) Z k2 (2:20)

Finally, using again (2.17) and (2.10), we yield

2iB C
g_a
A+1iB k
and hence
h 0iB h
? [/ Tt
‘/(AHB /A—HB (8)Vin(s )ds)V()e dt‘
t
o h
<z/’/ —iB)(s) Vi (s)ds|[Val ()Tt
Tn t

<ol f-momo

Dropping the first and fourth terms in (2.18) and using (2.19), (2.20),
(2.21), we yield

e“dt+/|v ) ”dt) (2.21)
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h
/(T — b, (n) — Ch)| Vi [2(s)ds

_ _ Tt
C’k2 /’ / 1B)(s)Vy(s )ds etdt
< /|Fn(s)|2e”ds+/|Vn(s)|2e”ds.

Now, we choose
7 = max(2sup b, (n) + Ch +2,C?), sup over z,, € (0, h). (2.22)

Due to this choice of 7, the last inequality implies

h h
/|Vn(s)|2e”ds</|Fn(s)|2e”ds.

So we obtain (2.14) with C' = €™ and 7 defined by (2.22).
The proof is complete. (|

Lemma 2.3. Let a(n) € C'([0,h]) depend only on x,,, and let v, 11 €
C?(2*) solve the initial value problem

(A +b(n) -V +a(n)*k* v, = kfarr in Q7 (d),

2.23
Uny1 =0 on Q" (h1) (2:23)
fO?" some hy € (dv h); fn € COO(Q*(d)); fn+1 =0 on Q*(hl); and
2
Vit1(€, ) = 0 when MW < |¢2. (2.24)

Then there is a constant C depending only on h,sup(|b(n)| + [Onb(n)| +
la(n)| + |Opa(n)]),supa=t(n) over (0,h) such that

[vn+11(27(d)) < C|l frs1ll(*(d)). (2:25)
The proof of Lemma 2.3 is similar to that of Lemma 2.1.

Lemma 2.4. Let a(n) € C*([0,h]) depend only on x,. Let vy €
C?(Q*) solve the initial value problem
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(A +b(n) -V + a(n)*k*)vg = k2 fy in Q*(d),

2.26
vo =0 on Q" (hy) (2.26)
for some hy € (d,h), fn € C*®(Q*(d)), fat1 =0 on Q*(h1), and
2
Vo€, ) = 0 when —Em™ g2 |2, (2.27)

Then there is a constant C depending only on h,sup(|b(n)| + |0,b(n)| +
la(n)| + |Ona(n)|),supa=t(n) over (0,h) such that

[oo[ (€2°(d)) < C([fol[(2%(d) + [[0n foll (2(d)))- (2.28)

ProoF. We need to modify slightly the previous argument. Indeed,
as in the bounds for Vj,

|00 Vol? ()™ + (ap (xa)K* — [€]*)[Vo|* (20 )™
h

+ /(T —2b,,(n))|0,, Vo |*(s)e™*ds

h
+ /(T(a(s7n)2(s)k2 — €1%) + 2k2a(s,n)0na(s,n))|Vo | (s)e™*ds

Tn

h
+i/b(s, n) - E(Vo0n Vo — Vo0 Vo)(s)e™ ds

Tn

h
= —kQ/Re (Fo0, Vo) (s)e™ ds

Tn

h
= k*Re (FoVo)(zn)e™ + kz/Re ((OnFo + TFy)Vo)(s)e™ds.  (2.29)

Tn

To bound the last integral, we observe that

h
\ [otem)-€60,7% ~ Too o) e as

Tn

h
< / (b, m) P E1V[? + 100 Tol2)(s)e™ds

Tn
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h h
<C’k2/|V0|2(s)e”cls+/|8n170|2(s)e”ds

Tn

because || < Ck due to the condition (2.27). Dropping the first term on
the left-hand side of (2.29), using the elementary inequalities
1 a(n)?

RV, g(—F2 Vz),
| FoVol a(n)2| ol + 1 Vol

|(0nFo + TE)Vo| < 2(10, o + 72| Fo|?) + |Vo|?
and the assumption (2.27), we yield

h
a(n)?(xz,)k?
(n)”(wn ) |Vo|2(a:n)em"—|—/(T—2bn(n)—1)|8nVo|2(s)eTsds

+ / (Za2(n)k? = CH?) Vol (s)e™*ds

a®(zp,n)

k2 9
< T 1R ) +

a(a:n,n)2|FO| ( n)

h h
+k2/|V0|2(s)e”ds—|—k2/4(|8nF0|2+T2|F0|2)(s)e”ds.

Tn Tn

Choosing

7 = max(2sup b, (n) + 1,2sup(C + 1)a(n)~?2), sup over (0, h),

we guarantee the positivity of the second integral. So, we can absorb the

first integral on the right-hand side by the last integral on the left-hand side
to arrive at

a(n)?(w)|Vo|* (wn)e™"

h
4
g F 2 n TLp nF 2 2F 2 TS
Ty PR 48 [0 + 2R ) (s)emds
d

or

h
Vil en)e7 < QAP + [(0uFf + IR s)e”"ds
d
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Integrating with respect to x;,, over (d, h) and replacing e™" on the left-hand
side by 1 and on the right-hand side by ™, we arrive at (2.28).

The proof is complete. O

Now, using Lemmas 2.1-2.4, freezing the coefficient with respect to 2,
and partitioning unity, we obtain energy type estimates for general variable
aop, b.

Let € > 0. We denote by X (j) points with integer coordinates. Let
x(j), j=1,...,J, be points X (j) that are contained in Q' = {2’ : © € Q}.
It is clear that J < Ce™". The balls B’(z(j);e) form an open covering of
. We define Q; = B'(z(j);€) x (0,h). Let x(2';j) be a partition of unity
subordinated to this covering. We can assume that

0<x(4) <1, [Vx(j)| <Cel, |Ax(4)| < Ce™2 (2.30)

We introduce a “low frequency” projection v; = Pv of a function v.
Introduce a function x € C*°(R) such that x = 1 on (0,1/2), x = 0 on
(3/4,00), 0 < x < 1. Let x;j(2,;€) = x(kYay  (2(4), xn)|§|) We define

v(;7) = xG i), Pjo(;j) = F x;Fo(; j), ZPU (2.31)

For brevity we set [|v]| = [|v][(0)(2*(d)).
Lemma 2.5. Let v € C%(Q*(d)) solve the initial value problem
(A+b-V+a2k®v=01f1 + ...+ 0nfn+kfnr1 + k2 fo in Q*(d),
v =0 onQ"(hy)
for some hy < h. Then there is a constant C' such that
ol < CA+ 2R AN+ -+ (1 Fall) + [t
F ol + 10nfoll + €72k~ llay (0 (d)) + (ol + 18a0]])).  (2:33)

(2.32)

PROOF. From (2.31) and the Leibniz formula we have
Av(;7) +b-Vo(;j) + k%%v(;j)
= X(; -)(61f1 + .o+ O fat+Ekfa +k2f0)
+2Vx(;5) - Vo + (b-Vx(;5) + Ax())v,

v(;4) + ka3 (@' (§), 2 )v(; 5)
=31(x( )f)+ (x(7 ) frn) = 01XG ) f1 — oo = OnaX(55) fra
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+ kX () farr + X6 ) fo +2VXG ) - Vo + (b Vx(5) + Ax(5))v

+ (b(2' (), 2n) = b(2)) - Vo s 5) + k*((a5 (2" (5), 2n) — ag(x))v(; 5)-
Applying the low frequency projection P; to both sides, we yield

AP;jv(;j) +b(;4,n) - VPju(;5) + k*a(;n, 5) Pjo(; 7)

= F1O2x;Fvu(;5) + 2F 100X FOnv(; ) + bu(; 5)F  0nx; Fo(; )

+ 0P (xGi) ) + -+ 0nPi(XG ) fr) = Bin(X(G3) fn)

= Pi((0ixGiNf) = = Pi((On—1x(4)) fa—1)

+ kP (X(: J) fr+1) +k2p‘( (:7)fo)

+ Pi(2V'x(5) - Vo) + Pj((Ax(5) + b Vx(55))v)

+ Pi(b(;4) = b) - Vo(; 1)) + k2P ((a® (., 5) — ag)v(; 5)),
where Pj,,(f) = F10,x;Ff, b(;4) = b(@'(j),), and a(;n,j) = ao(2'(§),).
Observing that

(@®(;n,§) — ag)| +10n(a®(;n, §) — ap)| < Ce

on the support of v(; ) and || P; f|| < || fl|, using (2.30), and applying Lem-
mas 2.1-2.4, we obtain

PG < CUXGHAI + -+ IXCAFall? + 72672 f111* +
A1l + IxG3) a1+ IxG ) fol?
+IXGAOnSoll* + 272K Vol*(9))
+ e R0l P () + ([0l (92)) + [19a]]*(2)))- (2.34)
Now, summing the local estimates (2.34), we obtain a bound for v;
given by (2.31). The support of v(;j) intersects at most 2" supports of
other v(; k), but this is not true for P;v(;j). To make certain constants be

¢ independent (as in (1.5)), we use that (I — P;j)v(;j) is a high frequency
component of v(;j) as defined by (2.31). Hence

I(I = PpoGH)II” < CE2[lv )G
and
oG = 1PGHI? + 1= PoGill? < I1PwG)lI2 + Ck™2 oG )7,

Using that the multiplicity of covering 2; is at most 2" and summing (2.34)
over j =1,...,J, we yield

lvll* < CZIIU I? < (lex )foll* + +Z|Ix ) fraa|I?
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J
+ 2 IXG O fol® + e 2R AP 4+ 1 fal®)
j=1

2ol (27 (@) + (el + [Vel?)).

Using that x2(;1) + ... + x2(;J) < 1, we obtain (2.33) and complete the
proof of Lemma 2.5. (]

3. Some Carleman Estimates

Let
1
w(z;T) = /exp(QTe”(‘I*ﬁlzfeth))dt, (3.1)
e
where = (0,...,0,0,) is a vector to be chosen later. We remind a result

from [7]. We will give its short proof.

Lemma 3.1. Let the condition (1.4) be satisfied. Then there is a
constant C' such that

/«#+w%%WF+ﬂvm%waﬂ
Q

<c(/KA+a%%m%mTy+/«ﬁ+wk%mﬁ+ﬂvm%wgﬂ)(3@
Q [219]
for all uw € H*(Q) and 7 > C.

PROOF. As is known [5, 12], under the condition (1.4), there are
positive o, 0 depending on 2, ag, 3 such that with ¢(x,t) = eo(l2—B1*=0%¢%)
we have the following Carleman estimate for the wave operator:

(T} U+ 7|VU|? + 7]0:U|*)e* ™

Qx(—1,1)

< C( / (A = agof)U|Pe*™? +/(T3|U|2 +7|VU? + 70U *)e*™%

Qx(—1,1) o0x(—1,1)

+ [ WP ATUR £ aUR)e). (3.3)

Qx{-1,1}
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We apply (3.3) to the function
Uz, t) = u(x)e*t, (3.4)

choose large 7 to absorb the integral over Q x {—1,1} by the left-hand side
0f(3.3), and integrate with respect to ¢ to obtain the weight function w.

From the definition (3.4)
VU (z,t) = Vu(z)e™, 8,U(x,t) = iku(z)e*

and
(A = ag(2)07)U (2,1) = (Au(z) + af(z)u(z))e™.

Hence the Carleman estimate (3.3) implies that

1
/(73|u|2(x) + T|Vu(ac)|2 + Tk2|u(ac)|2)(/62T‘D(m’t)dt)dm

Q

o( / (A + a(a)ua) / POt da
Q —1

1
+ [+ 7B uf*(2) + 7| Vu( el t)dt
/ "
+ /((73 + 7k |ul*(z) + T|vu(g;)|2)e2w@71>dx). (3.5)
Q

Now, choosing 7 large and using different growth rate of the weight
function on the left-hand side of (3.5), we eliminate the last term on the
right-hand side. Indeed, let £ > 0. By definition,

pla,t) — iz, 1) = T8 (=0 — e > 2, (0)
when [t| < 1/2,2 € Q. Hence there is C'(E) such that

1/2 1
E < / 2 (e —e(@1) gy < /62T(¢(m,t)—<p(x,l))dt
~1/2 21

when C(F) < 7. Then

1
Ee27<p(z,l) < /62Tcp(w7t)dt
]
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provided that C(F) < 7. Setting E = 2C, we can absorb the last term on
the right-hand side of (3.5) by the left-hand side. The proof is complete. [J

4. Proofs of Theorems 1.1 and 1.2

PROOF OF THEOREM 1.2. We choose

22 3

B = (2 = 5d), B=(0,...,0,6.).

Introduce the notation Qg = QN {(d — 3,)? < |z — B]*}. We assume that
3d? < 1672, so that 3, < 0. Using the choice of 3 and considering the
intersection of level surface

o= 0 = (54— 6n)

with the lateral wall {|2’| = r} of the cylindrical domain, one can be con-
vinced that the boundary layer {z,, < d} N Q does not intersect Qd
Indeed, if (2/,z}) is a point of the intersection of this cylindrical domaln

d 2
and of the boundary of Q%, then 72 + (2% — 3,)? = (d—,)? = <§ + %) ;
d 2r%\2 2 d
(x5, = Bn)* = (g—%> ;and z;, — Bp = L—g, which gives z} = T
Hence there is a cut-off function y that is equal to 1 on Qd vanishes near

0Q N {x,, = 0}, and satisfies the bounds |Vy| < Cd~! |Ax| <Cd—2.

Writing Equation (1.1) as (A + k%a3)u = f — b - Vu, applying Lemma
3.1 to xu instead of u, and shrinking the domain in the norms on the left-
hand side of (3.2), we get

J(@® 4 ol + 71 9u )

Qq
<c( [iruen + [19uPutn+ [ 19 Yu+ @ouPutn)
Q Q Q\Q%
+ /((T3 + 7K |u|? 4+ 7|Vul? + T|V)(u|2)u/(;7'))7 (4.1)

T

where we used that y = 1 on Qd and the triangle inequality. Choosing
T > 2C, we absorb the second 1ntegra1 on the right-hand side by the left-
hand side.
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Let b = e7X° | by = eold=Bul® by = ¢718=Bul® where X = sup |z — f|
over = € (),

1 1 1
ot _ o2 —ot?
W(r) = /62”"3 “dt, wy (1) = /eQTble “at, wa(T) = /62”’2“3 .
-1 Z1 ]

Observing that w1 < w on Q4, w < W on Q, and w < wy on O\ Q%
and replacing w by its minimal value on the left-hand side and by maximal
values on the right-hand side of (4.1), we yield

TPwi (1) |u]|*(Qa)) + Twr (7)]|Vul* ()
SOCW(O)IFIPQ) + (7% + 7(k* + d72)|ul*(T) + 7| Vu|*(T))
+d™ wa (1) (V] 2(92) + [|ul*(€2))).
Dividing both sides of this inequality by w;, we obtain
7 [ull? (Qa) + 7| Vul* () < COW (T)wr (1) (IL/1%(2)
+ (7% + 7(k? +d72)) [u]2(T) + 7| Vu[*(T))
+d" wa (w (T (V| 2(9Q) + [ul?(). (4.2)

It is obvious that W (r)w; (1) < Ce€T. A crucial observation is that
wa(T)wy (1) < Ce™ 3.

Indeed, by the definition of b; and 3 and elementary calculations,

by — by — emﬁ-%ﬂ#—%)2)(60(%%#) NN
Therefore,
1
9242 62
w1 (7_) > /62sze 627'(1717172)e dt > UJQ(T)€2T/C.

21

Hence from (4.2) we have
ull?(Q) + | Vu|?(Qq) < C(eCT3F2(k) + e ™/ M?) when C < 7.
(4.3)

By increasing C, we can eliminate 72 on the right-hand side.

To use (4.3), we need 7 to be large. If M; < CF(k) for some C, then
we have the Lipschitz bound (1.7). Otherwise, we can equalize two terms
in (4.3) by setting

C? M,
= 2ln .
C?2+1  d?F(k,d)

T
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Then the right-hand side of (4.3) is

2seng20-2) 1
CF(k)**M; M=
and, using that Q(d) C Qg4, we obtain (1.7). The proof is complete. O

ProOOF OF THEOREM 1.1. Since T' is Lipschitz, by known extension
theorems, there is a function v* such that v = v*,Vu = Vu* on I' and

[y (22°(0)) < C(|[ul| (T) + [[Vu[(T)) < CF, (4.4)

where we used the definition of F. Let v = v —u* on Q and v = 0 on
Q*(0) \ Q. It suffices to obtain (1.5) for v instead of u. Observe that

Av+b-Vu+adk?v = f+ f* —b-Vu* — alk’u* in Q*(0), (4.5)

where f* = —div(Vu*). Since v vanishes outside some cylinder, by us-
ing known results about the H'-approximation of energy solutions by H?-
solutions, we can assume that v € H2(R"™! x (0,h)) and hence f* =
O fi+ ...+ Onfn+ fas1 with || f;|| < CF. By (4.5) and Lemma 2.5,

[l (R % (d, h)) < C((L+ 27T F + k7 F + [[u” + |90
+e 2k (ol @y (Ud)) + e([lv]l + [1onv]]))
S CO(F +C(e)k™ F + C(e)k™ull0) () + e([lull 1y (Q) + F)),

where we used that [[v||1) < |lull(1) + F due to (4.4). From this bound and
(1.7) we obtain the needed bound (1.5) for v. The proof is complete. [

Conclusion. It is clear that difficulties in theory and applications of
many important inverse problems are due to their notorious (exponential)
instability. In practical situations, logarithmic stability permits, as a rule,
to find only 10-20 Fourier coefficients of a solution at distance from I', which
results in very poor resolution and disappointment of engineers or scientists
expecting effective mathematical processing of experimental data whose ac-
quisition is often very laborious and expensive. So, any way to increase
stability and to increase resolution is indeed valuable. While increasing
stability with the wave number is observed experimentally in several basic
inverse problems, before there was no theoretical explanation. Moreover,
there is a belief that stability always grows with frequency. As was shown,
it is true only under some (convexity) type conditions. Otherwise, stability
might deteriorate.

One of the next natural questions is to trace the dependence of con-

stants on distance d and to study stability in the whole domain 2. For
example, we expect that C < Cpd—%, where Cy does not depend on d. To
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demonstrate it, we need more detailed Carleman type estimates. We ex-
pect that this increased stability is more dramatic in the three-dimensional
case, when the data are given at a larger distance, when singularities of
the solution are distributed over 92 \ T', and certainly for large frequen-
cies. Accordingly, the most stable solution (for the same space geometry as
in Section 1) is anticipated in the time domain (i.e., when the Helmholtz
equation is replaced by the wave equation) provided that the initial data are
zero. In near future we plan to study this issue theoretically and to link it to
the increased stability for the Helmholtz equation and to the (largely open)
problem of the exact controllabity in a subdomain. Observe that the exact
controllability in the whole domain is relatively well understood [6, 10].
The present paper outlines a possible way to study increasing stability of
the continuation for the equation

eAu+b-Vu+adu=0.

Large k corresponds to smaller viscosity € and has natural links to stan-
dard smoothing regularization technique. The analysis of Section 2 carries
through, however at present we do not know how to derive appropriate
Carleman type estimates, like in Section 3. These estimates help to handle
the high frequencies zone. As follows from John’s example, this high fre-
quency zone might interact with the low frequency zone (where the solution
is stable disregard of any (pseudo-)convexity conditions) and damage overall
stability. Similar results are expected for continuation from a lateral wall
of solutions to parabolic and hyperbolic equations

(0 — A —k?ad)u=0, (07 — A —Kk?ad)u=0
and for more general equations and systems.

The author already showed the increased stability of recovery a poten-
tial in the Schrédinger equation (—A — k2 +¢(x))u = 0 from its Dirichlet-to-
Neumann map. The results were presented at the international conferences
“Applied Inverse Problems 2005” in Cirencester, England, and “Inverse
Problems and Applications,” Banff, Canada, in 2006. The paper with com-
plete proofs using complex geometerical optics technique and some sharp
estimates of regular fundamental solutions of operators with constant co-
efficients [4, 5] is in preparation. Probably, it is harder to show increased
stability for the coefficient ag in the equation (—A — k?a3(x))u = 0. At
present, there are only some preliminary results (in the low frequency zone)
[11], methods of (complex) geometrical optics do not look promising, and
we do not know a good alternative. The next step is to obtain similar esti-
mates for the inverse scattering problems by obstacles and by the medium.
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In

particular, it is still an open question whether stability of recovery of

near filed from far field pattern is improving with growing frequency. It is
clear that one has to impose some (pseudo)convexity condition on unknown
coefficients or obstacles.
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