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Instability in Models Connected with Fluid Flows I, II

Two volumes of the International Mathematical Series present various top-
ics on control theory, free boundary problems, the Navier–Stokes equations,
attractors, first order linear and nonlinear equations, partial differential
equations of fluid mechanics, etc. with the focus on the key question in the
study of mathematical models simulating physical processes:

Is a model stable (or unstable) in a certain sense?

An answer provides us with understanding the following issue, extremely
important for applications:

Does the model adequately describe the physical process?

Recent advantages in this area, new results, and current approaches to the
notion of stability are presented by world-recognized experts.



Main Topics

• Navier-Stokes equations. Existence and smoothness results

— Local and global existence results for the 3–dimensional Navier-Stokes
system without external forcing when the initial conditions are the
Fourier transforms of finite-linear combinations of δ–functions.

Efim Dinaburg and Yakov Sinai, Vol. I

— The analyticity of periodic solutions of the 2D Boussinesq system.
Maxim Arnold, Vol. I

— Navier–Stokes equations in cylindrical domains. Leray approxima-
tions, Leray–Navier–Stokes equations, the Helmholtz projector and
stationary Stokes problem, the classical Navier–Stokes problem.

Sergey Zelik, Vol. II

• First order linear and nonlinear equations

— Nonlinear dynamics of a system of particle-like wavepackets, reduc-
tion of wavepacket interaction systems to averaged ones, superposition
principle and decoupling of wavepacket interaction systems.

Anatoli Babin and Alexander Figotin, Vol. I

— Transport equations with discontinuous coefficients, Keyfitz-Kranzer
type hyperbolic systems, generalized solutions of the Cauchy problem,
existence, uniqueness, and renormalization property.

Evgenii Panov, Vol. II

— Navier–Stokes approximations, moment approximations of the Boltz-
mann–Peierls kinetic equation, Chapman–Enskog projections of diffu-
sion and boundary-layer type, the mixed problem.

Evgenii Radkevich, Vol. II



viii Main Topics

• Finite time instabilities of Euler equations

— Large amplitude monophase nonlinear geometric optics, the case of
incompressible Euler equations, large amplitude waves.

Christophe Cheverry, Vol. I

— Bursting dynamics of the 3D Euler equations in cylindrical domains,
vorticity waves, strictly resonant Euler systems.

Francois Golse, Alex Mahalov, and Basil Nicolaenko, Vol. I

• Large time asymptotics of solutions

— Attractors for the Navier–Stokes system, autonomous and nonauto-
nomous equations, the Kolmogorov ε-entropy of global attractors, 2D
Navier–Stokes equations, the Ginzburg–Landau equation.

Vladimir Chepyzhov and Mark Vishik, Vol. I

• Statistical approach

— Exponential mixing for randomly forced partial differential equations
(method of coupling), Markov random dynamical system, dissipative
random dynamical systems, the complex Ginzburg–Landau equation.

Armen Shirikyan, Vol. II

• Water waves and free boundary problems

— Asymptotics for 3D water–waves, large time existence theorems, the
Kadomtsev–Petviashvilii approximation.

David Lannes, Vol. II

— Stability of a rotating capillary viscous incompressible liquid bounded
by a free surface.

Vsevolod Solonnikov, Vol. II

— Symmetric compressible barotropic Navier–Stokes-Poisson flows in a
vacuum, the existence of global weak solutions.

Alexander Zlotnik, Vol. II

• Optimal control

— Increased stability in the Cauchy problem for some elliptic equations,
energy type estimates in low frequency zone, Carleman estimates.

Victor Isakov, Vol. I

— Controllability and accessibility of equations of dynamics of incom-
pressible fluids controlled by low-dimensional (degenerate) forcing,
controllability of Navier–Stokes / Euler equations on a two-dimensional
sphere and on a generic Riemannian surface.

Andrey Agrachev and Andrey Sarychev, Vol. I
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Preface

1. Overview

These two volumes are devoted to mathematical analysis of equations of
continuous media (mostly fluids) describing phenomena for which the basic
underlying physics, i.e., their relation with First Principles, is well under-
stood and broadly accepted. One of the most important mathematical issues
is how these equations can be used for an accurate description of “matter.”
At present, this question is especially urgent in virtue of at least three in-
terconnected factors: new engineering problems, advantages of functional
analysis, and the emergence of digital computing.

• Modern engineering problems involve physics at different levels of ac-
curacy, corresponding to different equations. The properties of these
equations and the relations between them turn out to be important
for applications.

For instance, the Navier–Stokes equations and the Maxwell equa-
tions are the most commonly used to compute quantities related to
fluids and electromagnetic waves respectively. However, if a medium
is rarefied, other (more refined) equations should be used. This is typ-
ically the case for the re-entry in the atmosphere of a space vehicle
transiting very rapidly from a region where the gas is rarefied to a re-
gion of gas with normal density. Then the Boltzmann equation should
be used.

In the same way, the use of the transport kinetic equation is im-
perative for devices so small that the flux of electrons cannot reach
thermal equilibrium. At the other end of the scale spectrum, one con-
fronts issues like climate evolution, and therefore it is necessary to
use equations describing the interaction between the ocean and the
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atmosphere or the stability of very large structures in fluids such as
anticyclones and the Jupiter red spot.

• During the evolution of mathematics from the 19th to the 20th century,
the emphasis in studying these equations shifted from trying to find
an explicit form of solutions to investigating equations by functional
analysis methods due to Hilbert, Banach, and others.

• In fact, the systematic use of functional analysis is naturally com-
bined with access to digital computing, also not relying on explicit
solutions. Functional analysis is of paramount importance not only
for computing error estimates between a real solution and its discrete
approximation, but also, most significantly, for constructing a discrete
version of the problem that retains the basic properties of the original
problem (a necessary condition for convergence). For instance, in fluid
mechanics, any discrete approximation should preserve mass, momen-
tum, and energy. As predicted by von Neumann in 1946, digital com-
putation provides information not available through other methods.
It is important to note that, combined with mathematical analysis,
these computations have led to mathematical discoveries. The most
classical examples involve dynamical systems.

i) The observation of the singular behavior of a discrete version
of the Kortweg-de Vries equation made in 1955 by Fermi, Pasta, and
Ulam [4], which led Lax, in 1968, to the study of the integrability of
the Kortweg-de Vries equation by using the so-called Lax pair [8].

ii) The discovery of strange attractors by Lorentz [10] and Hénon
[6] on the basis of numerical experiments, which motivated a sys-
tematic research on properties of attractors; for fluids, in particular,
starting with the contribution of Ladyzhenskaya [7] in 1972.

While the range of applications of partial differential equations is ex-
tremely large, from quantum theory to biology, the equations of fluid me-
chanics have a particular status. It turns out that success in the inves-
tigation of these equations leads to new results in many other nonlinear
problems. Therefore, the equations of fluid mechanics often serve as models
in the study of other nonlinear problems arising in applications and as a
constant stimulus for new mathematical discoveries.

A striking example is the notion of a weak solution, implicitly pre-
sented in the analysis of shocks in conservation laws obeying the Rankine–
Hugoniot condition. This notion was formalized for the construction of
turbulent solutions to the Navier-Stokes equations by Leray [9] in 1933



Preface xiii

and was ultimately completed with the creation of distribution theory by
Sobolev [16, 17] in 1935/36 and by Schwartz [15] in 1945.

A description of a physical process by PDEs can be adequate only if
a certain stability property interpreted depending on the physical problem
takes place.

For linear partial differential equations the first formal definition of
stability (well-posedness) was given by Hadamard [5] in 1904. In 1937,
based on the notion of stability in the sense of Hadamard, Petrowsky [13]
proposed a systematic classification of general systems of PDEs.

The nonlinear structure of equations describing fluid flows dictates
different approaches to the introduction of the notion of stability. In addi-
tion to the classical stability (well-posedness in the Hadamard sense), there
are various definitions of stability reflecting specific mathematical aspects
of physical problems. In particular, the following variants will be discussed
in these volumes:

— the large time behavior of solutions, which is related to the Lyapunov
stability of stationary solutions and attractors

— stability relative to initial data (for example, wave packets)

— stability of averaged models obtained by introducing an infinite-dimen-
sional measure driven by a stochastic process

— stability of free-boundary problems

— stability problems in control theory

2. Classification of Contributions

and Comments

The idea was to gather a collection of contributions from experts to cover
current approaches to the study of stability of mathematical models sim-
ulating processes in fluid flows. We present several directions in this area
that are different by methods and problem statements, but all of them are
joined by the final goal of research: to clarify whether the mathematical
model under consideration possesses the property of stability (instability)
in a certain interpretation of this notion.

Below we classify the papers in both volumes according to the selected
directions and give our comments on presented results.
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2.1. Navier-Stokes equations. General results
(existence and smoothness of solutions).

This direction is presented by three papers, where nontrivial situations are
considered; in particular, the problem can be stated in an unbounded do-
main or the solution can be of infinite energy.

[DS] Efim Dinaburg and Yakov Sinai, Existence theorems for the 3D
Navier–Stokes system having as initial conditions sums of plane waves,
In: Instability in Models Connected with Fluid Flows. I / Intern.
Math. Ser. Vol. 6, Springer, 2008, pp. 289–300.

In this paper, the existence theorem for the Cauchy problem for the
3D Navier-Stokes equations is proved in the case, where the initial condition
is a finite sum of plane waves. The time interval, where the solution exists,
depends on the initial condition. We emphasize that the initial condition
is not assumed to be of finite energy. The proof is based on the method
of power series which is of independent interest. There is also an example,
where a solution exists on a time interval independent of the initial condi-
tion. We should note that the existence of solutions on an arbitrary time
interval was earlier obtained by another method in [18] for almost all coef-
ficients of the initial quasiperiodic polynomial with respect to the Lebesgue
measure.

[A] Maxim Arnold, Analyticity of periodic solutions of the 2D Boussi-
nesq system, In: Instability in Models Connected with Fluid Flows. I /
Intern. Math. Ser. Vol. 6, Springer, 2008, pp. 37–52.

The paper by Sinai’s former student M. D. Arnold is devoted to the
proof of the analyticity of periodic solutions to the 2D Boussinesq system,
an extension of the Navier-Stokes equations, and uses the method of [11].

[Ze] Sergey Zelik, Weak spatially nondecaying solutions of 3D Navier–
Stokes equations in cylindrical domains, In: Instability in Models Con-
nected with Fluid Flows. II / Intern. Math. Ser. Vol. 7, Springer,
2008, pp. 329–376.

Zelik develops an infinite energy theory for the Navier–Stokes equa-
tions in unbounded 3D cylindrical domains. Based on this theory, he es-
tablishes the existence of a weak solution in a uniformly local phase space
(without any spatial decay assumptions), the dissipativity of the solution,
and the existence of the so-called trajectory attractor. In particular, this
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phase space contains the 3D Poiseuille flows. Estimates on the size of the
attractor in terms of the kinematic viscosity are also obtained.

2.2. First order linear and nonlinear equations.

The difference in statements and approaches presented in the papers of
this direction reflects the rich variety of subjects and methods in current
investigations of different aspects of stability (instability) in this area.

[BF] Anatoli Babin and Alexander Figotin, Nonlinear dynamics of
a system of particle-like wavepackets, In: Instability in Models Con-
nected with Fluid Flows. I / Intern. Math. Ser. Vol. 6, Springer,
2008, pp. 53–134.

The authors highlight the propagation properties of quasilinear hyper-
bolic equations by introducing a special class of the so-called particle-like
wave packets. This notion has a dual nature. On one hand, a particle-
like wave packet is a wave with a well-defined principal wave vector. On
the other hand, it is a particle in the sense that it can be assigned to a
well-defined position in space. As was established in this paper, under this
nonlinear evolution, a generic multi-particle wave packet remains a multi-
particle wave packet with high accuracy and the constituent single particle-
like wave packet not only preserves the principal wave number, but also has
a well-defined space position evolving with constant velocity (their group
velocity). To prove these results, the authors use properties of the linear
(hyperbolic) part of the system under consideration and the particle-like
wave packet structure of the initial data. The methods used in [BF] are
close to those of [Ch] and [GMN].

[P] Evgenii Panov, Generalized solutions of the Cauchy problem for a
transport equation with discontinuous coefficients, In: Instability in
Models Connected with Fluid Flows. II / Intern. Math. Ser. Vol. 7,
Springer, 2008, pp. 23–84.

Transport equations with discontinuous coefficients arise in the analy-
sis of various nonlinear systems of conservation and balance laws with lin-
ear degeneracy of some components. For example, the system of Keyfitz–
Kranzer type, known in magnetohydrodynamics, reduces to a system of such
a kind. Furthermore, as is known [12], transport equations with discontinu-
ous coefficients appear as the adjoint equations corresponding to hyperbolic
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systems of conservation laws. Panov presents the well-posedness theory for
general nonhomogeneous transport equations which can be applied for es-
tablishing the existence and uniqueness of strong entropy solutions to the
Cauchy problem for Keyfitz–Kranzer type systems.

[R] Evgenii Radkevich, Irreducible Chapman–Enskog Projections and
Navier–Stokes approximations, In: Instability in Models Connected
with Fluid Flows. II / Intern. Math. Ser. Vol. 7, Springer, 2008,
pp. 85–154.

In order to derive the viscosity and heat diffusion coefficients from
the Boltzmann equation, Chapman and Enskog proposed an approximation
of solutions to the Boltzmann equation in terms of macroscopic quantities
or moments of the solution. This approach works very well for the first-
order approximation with respect to the Knudsen number ε. This leads to
the compressible Navier–Stokes equation and provides a way to derive the
viscosity and heat diffusion coefficients from First Principles. For the next
order in ε, the Burnett equation appears, an ill-posed equation in the sense
of Hadamard. As was noted in [2], a very good model for relaxation to
the equilibrium property of the Boltzmann equation is the nonlinear Euler
equation with relaxation term of order ε−1. Based on spectral analysis,
Radkewich proposed some other derivation. In particular, he proved that,
in the case of an odd number of equations, a well-posed approximation of
dependent variables of any order can be expressed as an equation of one
variable. If the number of equations is even, the approximation can be
expressed via two macroscopic variables.

2.3. Finite time instabilities of 3d incompressible
Euler equations.

The question whether solutions to the 3d incompressible Euler equations
with finite energy and smooth initial data may blow up in finite time is still
open. However, it is known that a family of smooth initial data may generate
growth in the vorticity that, even if not infinite, may be arbitrarily large.
Furthermore, even in the 2d case, a family of initial data with nonuniformly
bounded vorticity may generate pathological behavior. In [Ch] and [GMN],
the reasons leading to such patologies are investigated.
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[Ch] Christophe Cheverry, Recent results in large amplitude monophase
nonlinear geometric optics, In: Instability in Models Connected with
Fluid Flows. I / Intern. Math. Ser. Vol. 6, Springer, 2008, pp. 267–
288.

Using methods of nonlinear geometric optics applied to a family of
oscillating initial data, Cheverry shows that the weak limit of the corre-
sponding solutions does not satisfy the Euler equation any more.

[GMN] Francois Golse, Alex Mahalov, and Basil Nicolaenko, Burst-
ing dynamics of the 3D Euler equations in cylindrical domains, In:
Instability in Models Connected with Fluid Flows. I / Intern. Math.
Ser. Vol. 6, Springer, 2008, pp. 301–338.

To exhibit the stabilizing effect of a fast rotation, the authors consider
solutions to the Euler equations in a finite cylinder with initial data that is
a bounded perturbation of a large uniform rotation Ω along the axis of the
cylinder. Conjugating the solution with the Poincaré–Steklov operator (the
rotation in the space of divergence-free functions), they construct a resonant
limit system. Special solutions (in particular, periodic and integrable ones)
are studied by methods of the classical Hamiltonian mechanics for rigid
bodies. Using a shadowing lemma, the authors find that the solutions to
the original Euler equation have similar behavior. From the Editors’ point
of view, the major and remarkable result is the construction of time periodic
solutions with large variation of the ratio of the Hs(t) norms between two
different times t1 and t2 (for any s). Such a bursting dynamics, without
singularities, corresponds to the so-called depletion in the study of the Euler
equations.

2.4. Large time asymptotics of solutions.

The analysis of the large time behavior of solutions to the fluid equations
covers many applications and is connected with basic physical issues, for
instance, the route to turbulence. At the same time, it can be approached
through very different aspects. In addition to the contribution presented in
this subsection, the papers by Zelik (see Subsection 2.1) and by Zlotnik (see
Subsection 2.6 below) are directly related to this topic.
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[ChV] Vladimir Chepyzhov and Mark Vishik, Attractors for nonau-
tonomus Navier–Stokes system and other partial differential equations,
In: Instability in Models Connected with Fluid Flows. I / Intern.
Math. Ser. Vol. 6, Springer, 2008, pp. 135–266.

As was already mentioned, a description of attractors was a strong
stimulus for mathematical research. Beginning with the 80’s, the theory of
global attractors was actively developed by many authors towards different
directions, including the estimation of the Hausdorff dimension of attractors
by basic scaling numbers (Reynolds, Grasshoff, etc.) of a flow. Attractors
for nonautonomous equations were first studied by Chepyzhov and Vishik
[3] who have made the main contribution to the field.

In the present paper, the authors treat the case of nonautonomous
systems. The Hausdoff dimension of the global attractor can be infinite in
the nonautonomous case, and, by this reason, the authors use the notion of
an ε-entropy introduced by Kolmogorov for estimating the attractor size.
Nonautonomous partial differential equations with oscillating external forces
are analyzed. In particular, the authors consider the situation, where the
amplitude of the oscillation grows infinitely, whereas the attractor remains
bounded.

2.5. Statistical approach.

To derive an equation describing an instable movement, it is reasonable to
replace unspecified forces by random forces with time-independent incre-
ments, instead of omitting unspecified forces altogether. Then one obtains
a stochastic equation, i.e., a partial differential equation with white noise
on the right-hand side. The presented results of Shirikyan lead to a very
interesting setting of the problem that is adequate to described instable
physical processes.

[Sh] Armen Shirikyan, Exponential mixing for randomly forced partial
differential equations. Method of coupling, In: Instability in Models
Connected with Fluid Flows. II / Intern. Math. Ser. Vol. 7, Springer,
2008, pp. 155–188.

During many years, physicists were firmly convinced that the white
noise possesses a smoothing effect on solutions to a partial differential equa-
tion. In the case of the complex Ginzburg–Landau equation, this conjecture
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finds its rigorous justification in the paper by Shirikyan presented in this
collection. In fact, Shirikyan proves the ergodicity of stochastic partial
differential equations, i.e., the uniqueness of the steady-state statistical so-
lution even in the case, where the same partial differential equation, without
white noise on the right-hand side, possesses many individual steady-state
solutions belonging to an attractor of complicated structure. The smooth-
ing action of the white noise is precisely to transform the set of individual
steady-state solutions into a unique statistical steady-state solution. Us-
ing the coupling method, Shirikyan establishes a general criterion for the
uniqueness of stationary measures and an exponential mixing property. The
latter is understood as a certain kind of the Lyapunov exponential stability
of the steady-state statistical solution. The method is then illustrated by
the stochastic complex Ginzburg–Landau equation. Note that the results
presented in [Sh] are based on an approach developed in a series of papers
by Kuksin and Shirikyan (see references in [Sh]).

2.6. Water waves and free boundary problems.

The papers presented in this subsection are devoted to the study of delicate
physical situations, where the surface separating a liquid and an external
medium is not fixed. There are many different problems of such a kind.
Some of them are discussed in our volumes.

[L] David Lannes, Justifying asymptotics for 3D water-waves, In: Insta-
bility in Models Connected with Fluid Flows. II / Intern. Math. Ser.
Vol. 7, Springer, 2008, pp. 1–22.

A motion of a perfect incompressible irrotational fluid under the in-
fluence of gravity is described by the free surface Euler (or water-wave)
equations. These equations have rich structure, and many well-known equa-
tions in mathematical physics can be obtained as their asymptotic limits,
for example, the Korteweg-de Vries equations, the Kadomtsev–Petviashvilii
equations, the Boussinesq systems, the shallow water equations, the deep
water models, etc. Lannes studies the validation of such asymptotics. Since
the fluid is irrotational, it derives from a potential and therefore leads to the
Dirichlet–Neumann operator on the free boundary. An asymptotic analysis
of the Dirichlet–Neumann operator yields a linearized version of the prob-
lem. To reach the full nonlinear case, the perturbation method employing
the Nash–Moser theorem is used.
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[S] Vsevolod Solonnikov, On problem of stability of equilibrium figures
of uniformly rotating viscous incompressible liquid, In: Instability in
Models Connected with Fluid Flows. II / Intern. Math. Ser. Vol. 7,
Springer, 2008, pp. 189–254.

The free boundary problem governing the evolution of an isolated mass
of a viscous incompressible fluid, subject to capillary and self-gravitation
forces, is considered. The solvability of this problem in a finite time in-
terval was established by the author in his previous publications. In the
present paper, Solonnikov studies the stability of the solution correspond-
ing to the rigid rotation of a liquid about the vertical axis with constant
angular velocity. The main goal of this investigation is to show that the
stability/instability is driven by the second variation of the energy func-
tional, which has been done via analysis of the spectrum of the linearized
operator in a neighborhood of the stationary regime. Then the perturba-
tions are estimated in terms of the Hölder norms.

[Zl] Alexander Zlotnik, On global in time properties of the symmetric
compressible barotropic Navier–Stokes–Poisson flows in a vacuum, In:
Instability in Models Connected with Fluid Flows. II / Intern. Math.
Ser. Vol. 7, Springer, 2008, pp. 329–376.

Unlike the papers [L] and [S] dealing with incompressible fluids (for
instance, water) and several spatial dimensions, Zlotnik considers symmetric
self-gravitating flows of a viscous compressible barotropic gas/fluid around a
hard core with a free outer boundary in a vacuum. The density degenerates
at the free boundary. Under spherical symmetry, the problem becomes
one-dimensional relative to the spatial variables. Such problems arise in
astrophysics. For large discontinuous initial data and general state functions
(including increasing and not strictly increasing ones) the global-in-time
bounds for solutions are established, which allows one to study of their
large-time behavior. Results on the existence, nonexistence, and uniqueness
of the corresponding static solutions are also presented.

2.7. Control theory.

Control theory gives the most natural point of view for engineering sciences.
Indeed, instead of determining a solution in terms of data, one seeks to find
the most suitable data to produce the desired output. This approach was
first developed for time-dependent ordinary differential equations (see, for
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example, [14]). Due to the use of computers, advantages of functional analy-
sis, and modern technology, this approach is now extended to distributed
system. Note that control is closely related to the notion of observability,
where frequencies of the solution play a crucial role. This fundamental fact
was widely used by J.-L. Lions, one of the creators of control theory for
PDEs. The main feature of this area is that many control problems arising
in applications are ill posed in the sense of Hadamard.

[Sh] Victor Isakov, Increased stability in the Cauchy problem for some
elliptic equations, In: Instability in Models Connected with Fluid
Flows. I / Intern. Math. Ser. Vol. 6, Springer, 2008, pp. 339–362.

Variations of the boundary data for elliptic equations generate fluctu-
ations that show up everywhere in the domain. However, according to the
regularizing properties of these problems, these fluctuations may be very
small and the identification of their source is an ill-posed problem in the
sense of Hadamard. It turns out that, in this setting, the most convenient
tools for obtaining the best possible estimates are “Carleman estimates.”
Using these tools, Isakov derives some bounds which can be thought of as
the increasing stability of the Cauchy problem for the Helmholtz equation
with lower order terms when frequency is growing. These bounds hold un-
der certain pseudoconvexity conditions on the surface for the Cauchy data
and on the coefficient of the zero order term in the Helmholtz equation.

[AS] Andrey Agrachev and Andrey Sarychev, Solid controllability
in fluid dynamics, In: Instability in Models Connected with Fluid
Flows. I / Intern. Math. Ser. Vol. 6, Springer, 2008, pp. 1–36.

The authors consider the controllability and accessibility properties of
the Navier–Stokes and Euler systems controlled by a low-dimensional force
on the right hand side. After a survey of recent results, the authors establish
new results for these systems on the two-dimensional sphere and generic
two-dimensional Riemannian surfaces. They focus on geometric and Lie
algebraic ideas, adopting the approach due to Arnold and Khesin [1] and
making a connection with geometric methods in classical control theory.
This paper should be especially interesting for those specialists, familiar
with analytical methods, who wish to be introduced to the geometrical
approach and to make a step towards more applied points of view.
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3. Methods and Tools

To obtain the results presented in the volumes, the authors used well-known
methods and their modifications or developed new approaches. Keeping in
mind that mathematical methods are often as important as results they
produce, we list the main methods and tools used by the contributors and
indicate the corresponding references.

• Infinite dimensional geometric approach to fluid dynamics [AS]

• Nash–Moser theorem [L]

• Pseudodifferential calculus and harmonic analysis [L]

• Expansion of nonlinear part in terms of
perturbation series [DS], [A]

• Nonlinear optic high frequency approximations [BF], [Ch]

• Poincaré–Sobolev operator [GMN]

• Resonant frequencies [GMN], [BF]

• White noise, stochastic methods, coupling method in particular [Sh]
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We survey results of recent activity towards studying the controllability and ac-

cessibility issues for equations of dynamics of incompressible fluids controlled by

low-dimensional (degenerate) forcing. New results concerning the controllability

of Navier–Stokes / Euler equations on a two-dimensional sphere and on a generic

Riemannian surface are presented. Bibliography: 28 titles.

1. Introduction

We survey results of recent activity aimed at studying the controllability and
accessibility properties of the Navier–Stokes (NS) equations controlled by
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2 Andrey Agrachev and Andrey Sarychev

low-dimensional (degenerate) forcing. This choice of control is the character-
istic feature of our statement of the problem. The corresponding equations
are as follows:

∂u/∂t + ∇uu + gradp = ν∆u + F (t, x), (1.1)

div u = 0. (1.2)

The words “degenerate forcing” mean that F (t, x) can be represented as

F (t, x) =
∑

k∈K1

vk(t)F k(x), K1 is finite.

The word “controlled” means that the functions vk(t), t ∈ [0, T ], enter-
ing the forcing can be chosen freely among measurable essentially bounded
functions. In fact, any function space, dense in L1[0, T ], would fit.

The domains considered here include two-dimensional (compact) Rie-
mannian manifolds: a sphere, a torus, a rectangle, a generic Riemannian
surface diffeomorphic to a disc. We impose the so-called Lions boundary
condition whenever the boundary is nonempty.

Our approach stems from geometric control theory which is based on
differential geometry and Lie theory; the geometric control approach proved
its effectiveness in studying controlled dynamics in finite dimensions. We
report on some ideas of how such methods can be extended to the area of
infinite-dimensional dynamics and controlled partial differential equations.
Extensions of geometric control theory to the infinite-dimensional case are
almost unknown. The classical Lie techniques are not well adapted for the
infinite-dimensional case, and several analytic problems are encountered.

In this contribution, we concentrate almost exclusively on geometric
and Lie algebraic ideas of the accomplished work. For details on analytic
part we refer the interested reader to [7, 6, 23, 21, 22, 26, 27].

Applications of geometric theory to the study of the controllabil-
ity of finite-dimensional systems is a well established subject, although
many problems still remain unsolved. Starting point of the activity aimed
at controlling the Navier–Stokes equations by degenerate forcing was the
study [13, 4, 6, 25] of the accessibility and controllability of their finite-
dimensional Galerkin approximations on T2 and T3 (periodic boundary
conditions). One should note that the controllability of finite-dimensional
Galerkin approximations of the Navier–Stokes equations on many other do-
mains remains an open question. Answers for generic Riemannian surfaces
follow from the results of Section 9.
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The study in the infinite-dimensional case started in [5, 6, 7], where
we dealt with the 2D Navier–Stokes / Euler equations on a 2D torus T2. In
these publications, the notion of the solid controllability in projections and
that of the approximate controllability are introduced and sufficient criteria
for them are established.

To obtain such criteria, the technique of the so-called Lie extensions
in infinite dimensions was suggested. In the context of our problem, this
technique can be loosely interpreted as designing the propagation to higher
modes of the energy pumped by controlled forcing into the lower modes.

The control functions involved are fast-oscillating, and the analytic
part of the study consists of establishing the continuity properties of solu-
tions of the Navier–Stokes equations with respect to the so-called relaxation
metric of forcing. Being weaker than the classical metrics, it is adapted for
dealing with fast oscillating functions.

An extension of the above-mentioned techniques to the Navier–Stokes
equations with the Lions boundary conditions on a rectangle has been ac-
complished by Rodrigues [21]. In the course of this study, both geometric
and analytic parts needed to be adjusted: the Lie extensions turn more
intricate and the continuity properties need to be reproved. These results
are surveyed in Section 8.

A new approach is suggested for establishing the controllability on a
Riemannian surface diffeomorphic to a disc (Section 9).

Finally, the study of the Lie algebraic properties of spherical harmonics
results in a controllability criterion for the Navier–Stokes / Euler equations
on a 2D sphere (Section 10).

The results appearing in Sections 9 and 10 have not been previously
published.

An interesting extension of the above described methods to the case of
the Navier–Stokes equations on a 3D torus was accomplished by Shirikyan
[26, 27]. The geometric part of his study essentially coincides with that
in [6] and [25], but many additional analytic difficulties in the 3D case
arise. We do not survey these results here, but refer the interested reader
to [26, 27].

The controllability of the Navier–Stokes and Euler equations was ex-
tensively studied, in particular, by means of boundary control. There are
various results on the exact local controllability of the 2D and 3D Navier–
Stokes equations obtained by Fursikov and Imanuilov, the global exact con-
trollability for the 2D Euler equation obtained by Coron, and the global
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exact controllability for the 2D Navier–Stokes equations obtained by Coron
and Fursikov. We refer the reader to the book [14] and surveys [15, 11] for
the further references.

2. 2D Navier–Stokes / Euler Equations
Controlled by Degenerate Forcing.
Definitions and Problem Setting

2.1. Navier–Stokes / Euler equations on
2D Riemannian manifold.

The representation of the Navier–Stokes / Euler equations in the form (1.1),
(1.2) requires an interpretation whenever one considers the system on a
2D domain M with arbitrary Riemannian metric. There is a general way
of representing the Navier–Stokes / Euler equations on any n-dimensional
Riemannian manifold (see, for example, [10]), but we prefer to remain in
two dimensions and advance with some elementary vector analysis in the
2D Riemannian case.

We consider a smooth (or analytic) two-dimensional Riemannian man-
ifold M (with or without boundary) endowed with the Riemannian metric
(·, ·) and area 2-form σ. All functions, vector fields, and forms will be as-
sumed to be smooth.

Any vector field y on M can be paired with two differential 1-forms

y �→ y♭ : 〈y♭, ξ〉 = (y, ξ), y �→ y♯ : 〈y♯, ξ〉 = σ(y, ξ) (2.1)

for each vector field ξ. It is obvious that 〈y♯, y〉 = σ(y, y) = 0.

Note that for any 1-form λ

λ ∧ y♯ = 〈λ, y〉σ. (2.2)

To prove (2.2), it suffices to compare the values of 2-forms λ∧y♯ and 〈λ, y〉σ
on any pair of linearly independent vectors. It is obvious that (2.2) is valid
if y (and y♯) vanishes. If y �= 0, we take a pair y, z which is linearly
independent. Then

(λ ∧ y♯)(y, z) =

∣

∣

∣

∣

〈λ, y〉 〈y♯, y〉
〈λ, z〉 〈y♯, z〉

∣

∣

∣

∣

= 〈λ, y〉σ(y, z).

Now, we define the vorticity curl and divergence div of a vector field
via the differentials dy♭ and dy♯ which are 2-forms. We put dy♭ = (curl y)σ
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and dy♯ = (div y)σ or, by abuse of the notation,

(curl y) = dy♭/σ, (div y) = dy♯/σ. (2.3)

The gradient gradϕ of a function ϕ is the vector field paired with dϕ
metrically: (gradϕ)♭ = dϕ.

As in the Euclidean case, the vorticity of the gradient vector field of
a function vanishes: curl(gradϕ) = d(gradϕ)♭/σ = d(dϕ)/σ = 0.

In the 3D case, curl transforms vector fields into vector fields while,
in the 2D case it transforms vector fields into scalar functions (actually, the
component of a vector field directed along the additional third dimension).
We define the vorticity operator curl on functions. The result of the action
of curl on a function ϕ is a vector field curlϕ such that

〈λ, curlϕ〉σ = (dϕ ∧ λ)

for each 1-form λ. By (2.2) and the nondegeneracy of paring y �→ y♯, we
conclude:

(curl ϕ)♯ = −dϕ. (2.4)

As in the Euclidean case, the divergence of the vorticity of a function
vanishes:

div(curlϕ) = d(curl ϕ)♯/σ = −d(dϕ)/σ = 0. (2.5)

Coming back to Equation (1.2), we note that the condition div u = 0
can be written as

du♯ = 0. (2.6)

If M is simply connected, we conclude that u♯ must be a differential: u♯ =
−dψ, where ψ is the so-called stream function. By (2.4), curlψ = u.

For non-simply connected domains we impose a condition which guar-
antees the exactness; in the next subsection we comment on it.

For the symplectic structure on M defined by σ and (·, ·) we see that
u is the Hamiltonian vector field corresponding to the Hamiltonian −ψ:

u = −
−→
ψ .

The nonlinear term ∇uu on the right-hand side of (1.1) corresponds to
the covariant derivative of the Riemannian (metric torsion-free) connection
on M .

Finally, we define the Laplace–Beltrami operator ∆ as ∆ = curl2. In
the Hodge theory (see [10]), this operator transforms p-forms into p-forms;
in our notation ∆ transforms vector fields into vector fields and functions
into functions.
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2.2. Helmholtz form of 2D Navier–Stokes equations.

To obtain the Helmholtz form of the Navier–Stokes equations (1.1), (1.2), we
apply the operator curl to both sides of (1.1). As a result, for the vorticity
curlu = w we get the equation

∂w/∂t + curl(∇uu) = ν∆w + f(t, x), (2.7)

where f(t, x) = curlF (t, x).

Note that the vorticity of gradp vanishes and the operator curl com-
mutes with ∆ = curl2.

To calculate curl(∇uu) according to formula (2.3), we first compute
the 1-form (∇uu)♭ adapting the argument of [10, § IV.1.D].

Let y be a vector field that commutes with u: the Lie–Poisson bracket
vanishes, [u, y] = 0. Then

〈(∇uu)♭, y〉 = (∇uu, y) = Lu(u, y) − (u,∇uy). (2.8)

Hereinafter, Lu denotes the Lie derivative. Note that for the covariant
derivative of metric connection we have Lu(u, y) = (∇uu, y) + (u,∇uy).
Since the connection is torsion-free and [u, y] = 0, we have ∇uy −∇yu = 0
and the right-hand side of (2.8) can be represented as

Lu〈u
♭, y〉 − (u,∇yu) = Lu〈u

♭, y〉 −
1

2
〈d(u, u), y〉.

Moreover, Lu〈u♭, y〉 = 〈Luu♭, y〉 if Luy = [u, y] = 0 and we conclude:

〈(∇uu)♭, y〉 = 〈Luu♭, y〉 −
1

2
〈d(u, u), y〉.

As far as we can find a vector field y that commutes with u and has any
prescribed value at a given point, we conclude:

(∇uu)♭ = Luu♭ −
1

2
d(u, u).

Using the definition of curl (2.3), we get

curl(∇uu) = d((∇uu)♭)/σ = dLuu♭/σ = Ludu♭/σ = Lu(wσ)/σ = Luw.

Hence curl(∇uu) = Luw.

If u is a Hamiltonian vector field with Hamiltonian −ψ, then ∇uw =
−{ψ, w}, where {·, ·} is the Poisson bracket of functions.

The Helmholtz form of the Navier–Stokes equations (cf. [10]) reads

∂w

∂t
− {ψ, w} − ν∆w = f(t, x).
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Note that w = curl u = curl2 ψ = ∆ψ.

The Lions condition written in terms of the vorticity w and the stream
function ψ reads

ψ
∣

∣

∂M
= w

∣

∣

∂M
= 0. (2.9)

If the boundary ∂M of M is smooth, then the Hamiltonian vector field

u = −
−→
ψ is tangent to ∂M .

For the vorticity w and boundary conditions (2.9) one can recover in
a unique way the velocity field u corresponding to the exact 1-form u♯. The
corresponding formula is u = curlψ, where ψ is a unique solution of the
Dirichlet problem ∆ψ = w with the boundary condition (2.9). Indeed, such
u is divergence-free and the vorticity of u is equal to w by the definition
of ∆.

The Navier–Stokes equations can be written as

∂w

∂t
− {∆−1w, w} − ν∆w = f(t, x). (2.10)

This equation looks universal. In fact, its dependence on the domain is
encoded in properties of the Laplacian ∆ on this domain. It is well explained
in [8, 10] that the Euler equation for a fluid motion is an infinite-dimensional
analog of the Euler equation for rotation of a (multi-dimensional) rigid body,
and the Laplacian in (2.10) plays role of the inertia tensor for the rotating
rigid body.

2.2.1. Stream function on flat torus. Consider a flat torus T2 endowed
with the standard Riemannian metric and area form σ, both inherited from
the covering of T2 by the Euclidean plane. Let ϕ1, ϕ2 be the “Euclidean”
coordinates on T2. We proceed in the space of velocities u with vanishing

space average:

∫

T2

udσ = 0 (by flatness, we may think that all velocities

belong to the same linear space).

To establish the exactness of the closed 1-form u♯ (involved in (2.6)),
it suffices to prove that its integral along the generator of a torus vanishes.
By the Stokes theorem, the integrals of the closed form u♯ along any two
homologous paths have the same value.

Taking u = (u1, u2), we get u♯ = −u2dϕ1 + u1dϕ2. Integrating u♯

along the loop Γ : ϕ1 = α, we obtain the value of the integral

∫

Γ

u♯ =

2π
∫

0

u1dϕ2 = c(α),
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which, by the aforesaid, is constant: c(α) ≡ c. Integrating it with respect
to ϕ1, we conclude that

2πc =

2π
∫

0

u1dϕ2dϕ1 =

∫

T2

u1dσ = 0.

Hence
∫

Γ

u♯ = c = 0.

The same holds for the loops Γ′ : ϕ2 = const.

2.3. Controllability. Definitions.

In what follows, we reason in terms of the so-called modes which are eigen-
functions ϕk(x) of the Laplace–Beltrami operator ∆ defined in the space of
vorticities w: ∆ϕk(x) = λkϕk(x).

Representing w and f in (2.10) as series w(t, x) =
∑

k

qk(t)ϕk(x) and

f(t, x) =
∑

k

vk(t)ϕk(x) with respect to the basis of eigenfunctions, we can

write the Navier–Stokes equations as an infinite system of ordinary differ-
ential equations on the coefficients qk(t). Assume that

{ϕi(x), ϕj(x)} =
∑

k

Cij
k ϕk(x).

Then the system (2.10) can be written in the coordinate form as

q̇k −
∑

i,j

Cij
k λ−1

i qiqj − νλkqk = vk(t). (2.11)

Typically, we will consider a controlled forcing which is applied to
few modes ϕk(x), k ∈ K1, where K1 is finite. Then, in the system (2.11),
the controls enter only the equations indexed by k ∈ K1, while vk = 0 for
k �∈ K1.

Introduce another finite set Ko of observed modes. We always assume
that Ko ⊃ K1. We identify the space of observed modes with RN and denote
by Πo the operator of projection of solutions onto the space of observed
modes span{ϕk | k ∈ Ko}. The coordinates corresponding to the observed
modes are reunited in the observed component qo.

A Galerkin Ko-approximation of the 2D Navier–Stokes / Euler equa-
tions is the ordinary differential equation for qo(t) obtained by projecting the
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2D Navier–Stokes equations onto the space of observed modes and equating
all the components qk(t), k �∈ Ko, to zero. The resulting equation is

∂qo

∂t
− Πo{∆−1qo, qo} − ν∆qo = f(t, x). (2.12)

If Ko ⊃ K1, i.e., the controlled forcing f only affects a part of observed
modes, then Πof(t, x) = f(t, x).

In the coordinate form, the passage to Galerkin approximations means
omitting the equations in (2.11) for the variables qk with k �∈ Ko and equat-
ing these qk to zero in the remaining equations.

We say that a control f(t, x) steers the system (2.10) (or (2.12)) from
ϕ̃ to ϕ̂ in time T if for the system (2.10) forced by f the solution with the
initial condition ϕ̃ at t = 0 takes the “value” ϕ̂ at t = T .

The first notion of controllability considered is the controllability of
Galerkin approximations.

Definition 2.1 (controllability of Galerkin approximations). A Galer-
kin Ko-approximation of the 2D Navier–Stokes / Euler equations is time-T
globally controllable if for any two points q̃ and q̂ in RN there exists a control
that steers in time T this Galerkin approximation from q̃ to q̂.

This is a purely finite-dimensional notion. The following notion re-
gards a finite-dimensional component of solutions, but takes into account
the complete infinite-dimensional dynamics.

Definition 2.2 (attainable sets of Navier–Stokes equations). An at-
tainable set Aϕ̃ of the Navier–Stokes / Euler equations (2.10) is the set of
points in H2(M) attained from ϕ̃ by means of essentially bounded measur-
able controls in any positive time. For each T > 0 time-T a (time-� T )

attainable set AT
ϕ̃ (A�T

ϕ̃ ) of the Navier–Stokes / Euler equations is the set of
points attained from ϕ̃ by means of essentially bounded measurable controls
in time T (in time � T ). Then the attainable set Aϕ̃ =

⋃

T

AT
ϕ̃ .

Definition 2.3. The Navier–Stokes / Euler equations are time-T glob-
ally controllable in projection onto L if for each ϕ̃ the image ΠL

(

AT
ϕ̃

)

coin-
cides with L.

Definition 2.4. The Navier–Stokes / Euler equations are time-T L2-
approximately controllable if AT

ϕ̃ is L2-dense in H2.

Definition 2.5 (accessibility in finite-dimensional projection). Let L
be a finite-dimensional subspace of H2(M), and let ΠL be the L2-orthogonal
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projection of H2(M) onto L. The Navier–Stokes / Euler equations are time-
T accessible in projection on L if for any ϕ̃ ∈ H2(M) the image ΠL

(

AT
ϕ̃

)

contains interior points in L.

Definition 2.6. Fix an initial condition ϕ̃ ∈ H2(M) for trajectories of
the controlled 2D Navier–Stokes / Euler equations. Let v(·) ∈ L∞ ([0, T ]; Rr)
be a controlled forcing, and let wt be the corresponding trajectory of the
Navier–Stokes equations.

If the Navier–Stokes / Euler equations are considered on an interval
[0, T ] (T < +∞), then ET : v(·) �→ wT is called an end-point mapping,
Πo ◦ F/T T is called an end-point component mapping, and ΠL ◦ F/T T is
called an L-projected end-point mapping.

Definition 2.7. Let Φ : M1 �→ M2 be a continuous mapping between
two metric spaces, and let S ⊆ M2 be any subset. We say that Φ covers S
solidly if S ⊆ Φ(M1) and this inclusion is stable with respect to C0-small
perturbations of Φ, i.e., for some C0-neighborhood Ω of Φ and each mapping
Ψ ∈ Ω we have S ⊆ Ψ(M1).

Definition 2.8 (solid controllability in finite-dimensional projection).
The 2D Navier–Stokes / Euler equations are time-T solidly globally con-
trollable in projection on a finite-dimensional subspace L ⊂ H2(M) if
for any bounded set S in L there exists a set of controls BS such that
(ΠL ◦ F/T T )(BS) covers S solidly.

2.4. Statement of the problem.

In this paper, we discuss the following questions.

• Under what conditions the 2D Navier–Stokes / Euler equations are
globally controllable in the observed component?

• Under what conditions the 2D Navier–Stokes / Euler equations are
solidly controllable in a finite-dimensional projection?

• Under what conditions the 2D Navier–Stokes / Euler equations are
accessible in a finite-dimensional projection?

• Under what conditions the 2D Navier–Stokes / Euler equations are
L2-approximately controllable?

As we explained above, the geometry of controllability is encoded in
the spectral properties of the Laplacian ∆ and therefore depends on the
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geometry of the domain on which the controlled Navier–Stokes equations
evolves. Below we provide answers for particular types of domains.

3. Geometric Control. Accessibility and
Controllability via Lie Brackets

In this section, we collect some results of geometric control theory regard-
ing the accessibility and controllability of finite-dimensional real-analytic
control-affine systems of the form

ẋ = f0(x) +
r

∑

i=1

f i(x)vi(t), x(0) = x0, vi(t) ∈ R, i = 1, . . . , r. (3.1)

The geometric approach is coordinate-free, so that it is adapted for dealing
with dynamics on manifolds. However, we assume that the system (3.1)
is defined on a finite-dimensional linear space RN in order to maintain the
parallel with the Navier–Stokes equations which evolve in Hilbert spaces.

We use the standard notation Pt = etf for the flow corresponding to
a vector field f .

3.1. Orbits, Lie rank, and accessibility.

Let v(·) ∈ L∞ ([0, T ]; Rr) be admissible controls, and let x(t) be the corre-

sponding trajectories of the system ẋ = f0(x) +
r
∑

i=1

f i(x)vi(t) with initial

point x(0) = x0. We again introduce an end-point mapping ET : v(·) �→
xv(T ); here xv(·) is the trajectory of (3.1) corresponding to the control v(·).

For each T > 0 the time-T attainable set AT
x0 from x0 of the system

(3.1) is the image of the set L∞ ([0, T ]; Rr) under the mapping ET or, equiv-
alently, the set of points x(T ) attained in time T from x0 by means of admis-

sible controls. The time-� T attainable set from x0 is A�T
x0 =

⋃

t∈[0,T ]

At
x0 .

The attainable set from x0 of the system (3.1) is Ax0 =
⋃

T�0

AT
x0 .

An important notion in geometric control theory is an orbit of a control
system.

Definition 3.1 (orbits and zero-time orbits of control systems). The
orbit of the control system (3.1) passing through x0 is the set of points
obtained from x0 under the action of (the group of) diffeomorphisms of
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the form et1fu1

◦ · · · ◦ etN fuN

, where tj ∈ R, j = 1, . . . , N, and fuj

=

f0+
r
∑

i=1

f i(x)uj
i is the right-hand side of (3.1) corresponding to the constant

control uj = (uj
1, . . . , u

j
r) ∈ Rr. The zero-time orbit is the subset of the orbit

resulting from the action of these diffeomorphisms subject to the condition
∑

j

tj = 0.

If we consider the “symmetrization” of the system (3.1),

ẋ = f0(x)v0 +

r
∑

i=1

f i(x)vi(t), x(0) = x0, v0 ∈ R, vi(t) ∈ R, i = 1, . . . , r,

then the orbit of (3.1) can be interpreted as the attainable set from x0 of this
symmetrization corresponding to application of piecewise-constant controls.

The famous Nagano theorem relates properties of orbits and Lie alge-
braic properties of the system. It claims that the orbit and the zero-time
orbit of the analytic system (3.1) are immersed manifolds of RN and the
tangent spaces to these orbits can be calculated via the Lie brackets of
vector fields {f0, . . . , fm}.

Definition 3.2 (Lie rank and zero-time Lie rank). Take the Lie al-
gebra Lie{f0, . . . , fm} generated by {f0, . . . , fm} and evaluate vector fields
from Lie{f0, . . . , fm} at a point x. The dimension of the resulting linear
space Liex{f

0, . . . , fm} is the Lie rank of the system {f0, . . . , fm} at x.

Take the Lie ideal generated by span{f1, . . . , fm} in Lie{f0, . . . , fm}
and evaluate vector fields from it at x. The dimension of the resulting linear
space Lie0

x{f
0, . . . , fm} is the zero-time Lie rank of the system {f0, . . . , fm}

at x.

These Lie ranks either are equal or differ by 1.

The Nagano theorem claims that, in the analytic case, Liex{f0, . . . , fm}
and Lie0

x{f
0, . . . , fm} are the tangent spaces at each point x of the orbit

and zero-time orbit respectively.

The accessibility properties of the analytic control system (3.1) are
determined by the Lie ranks of this system. Recall that a system is accessible
if the attainable set Ax0 has nonempty interior and is strongly accessible if
for all T > 0 the attainable sets AT

x0 have nonempty interior.

Theorem 3.3 (Jurdjevic–Sussmann (Cω case) and Krener (C∞ case)).
If the Lie rank of a system of vector fields {f0, . . . , fr} at x0 is equal to n,
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then for all T > 0 the interior of the attainable set A�T
x0 is nonvoid. More-

over, A�T
x0 possesses the interior which is dense in it. If the zero-time Lie

rank at x0 is equal to n, then for all T > 0 the interior of the attainable set
AT

x0 is nonvoid and is dense in AT
x0 .

See [18, 2] for the proof.

Let L be a linear subspace of RN , and let ΠL be a projection of RN

onto L. The control system (3.1) is (strongly) accessible from x in projection
on L if the image ΠLAx0 (ΠLAT

x0) contains interior points in L (for each
T > 0).

From Theorem 3.3 we easily obtain the following criterion for accessi-
bility in projection.

Theorem 3.4. If ΠL maps Liex{f0, . . . , fm} ( Lie0
x{f

0, . . . , fm})
onto L, then the control system (3.1) is accessible (strongly accessible) at
x in projection on L.

Proof. Since the proofs of both assertions are similar, we sketch the
proof of the first one. Consider the orbit of the system (3.1) passing through
x0. The tangent space to the orbit at each of its points x coincides with
Liex{f0, . . . , fm}.

By Theorem 3.3, the attainable set of the system possesses relative
interior with respect to the orbit. Moreover, there are interior points xint ∈
Ax0 arbitrarily close to x0 so that ΠL maps Liexint

{f0, . . . , fm} onto L.
Then sufficiently small neighborhoods of xint in the orbit are contained in
Ax0 and are mapped by ΠL onto a subset of L with nonempty interior. �

3.2. Lie extensions and controllability.

Controllability is stronger and much more delicate property than accessibil-
ity. For the verification of controllability it does not suffice, in general, to
compute the Lie rank which accounts for all the Lie brackets. Instead, one
should select “good Lie brackets” avoiding “bad Lie brackets” or “obstruc-
tions.”

To have a general idea of what good and bad Lie brackets can be like,
we consider the following elementary example.

Example. ẋ1 = v, ẋ2 = x2
1. This is the two-dimensional control-affine

system (3.1) with f0 = x2
1∂/∂x2 and f1 = ∂/∂x1. The Lie rank of this sys-

tem is equal to 2 at each point. The system is accessible, but uncontrollable
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from each point x̂ = (x̂1, x̂2) given the fact that we cannot achieve points
with x2 < x̂2. One can prove that the attainable set Ax̂ coincides with the
half-plane x2 > x̂2 with added point x̂. One can see that it is possible to
move freely (bidirectionally) along the good vector field f1, while, along the
bad Lie bracket [f1[f1, f0]] = 2∂/∂x2, we can move only in one direction.

The good Lie brackets form the Lie extension of our control system.

Definition 3.5. A family F ′ of real analytic vector fields is

(i) an extension of F if F ′ ⊃ F and the closures of the attainable sets
AF (x̃) and AF ′(x̃) coincide,

(ii) a time-T extension of F if F ′ ⊃ F and the closures of the time-T
attainable sets AT

F (x̃) and AT
F ′(x̃) coincide,

(iii) a fixed-time extension if it is a time-T extension for all T > 0.

The vector fields from F ′ \ F are called (i) compatible, (ii) compatible
in time T , (iii) compatible in a fixed time with F in cases (i), (ii), and (iii)
respectively.

The inclusions AF (x̃) ⊂ AF ′(x̃) and AT
F (x̃) ⊂ AT

F ′(x̃) are obvious.
Less obvious is the following proposition (see [2]).

Proposition 3.6. If an extension F ′ of an analytic system F is glob-
ally controllable, then F is also globally controllable.

Remark 3.1. Talking about time-T extensions, one can consider also
extensions by time-variant vector fields Xt, t ∈ [0, T ]. We say that a vector
field Xt is time-T compatible with F if it drives the system in time T from
x̃ to the closure of AT

F (x̃).

Our idea is to proceed with a series of extensions of a control system
in order to end up with an extended system for which controllability can be
verified and then to apply Proposition 3.6.

Obviously, Definition 3.5 is nonconstructive. In what follows, we will
use three particular types of extensions.

The first natural type is based on the possibility of taking the topolog-
ical closure of a set of vector fields, maintaining the closures of attainable
sets.

Proposition 3.7. (see [18, Ch. 3, §2, Theorem 5]) The topological
(with respect to the C∞ convergence on compact sets) closure cl(F) of F is
a Lie extension.
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The second type is based on the theory of relaxed (or sliding mode)
controls. This theory [17, 16] is a far-going development of the pioneering
contributions by Young [28] and McShane [20] in the context of optimal
control theory. To introduce the extension, we consider a family of the
so-called relaxation seminorms ‖ · ‖s,K of time-variant vector fields Xt, t ∈
[0, T ]:

‖X·‖
rx
s,K = max

t∈[0,T ]

∣

∣

∣

∣

t
∫

0

‖Xτ‖s,Kdτ

∣

∣

∣

∣

, (3.2)

where K is a compact set in RN , s � 0 is an integer, and ‖Xτ‖s,K is the
Ck-norm on K. The family of relaxation seminorms defines the relaxation
topology (metric) in the set of time-variant vector fields.

Proposition 3.8 (see [17, 2]). Let a sequence of time-variant vector

fields Xj
t converge to a vector field Xt in the relaxation metric, and let these

vector fields have compact support. Then the flows of Xj
t converge to the

flow of Xt.

Based on this result, one can prove the following assertion.

Proposition 3.9. For the systems F and

coF =

{ m
∑

i=1

βifi, fi ∈ F , βi ∈ Cω(RN ), βi � 0,
m

∑

i=1

βi ≡ 1, i = 1, . . . , m

}

the closures of their time-T attainable sets coincide. Hence coF is an ex-
tension of F .

The proof of Proposition 3.9 and its modifications can be found in [2,
Ch. 8], [18, Ch. 3],[17, Chs. II, III].

The third type of extensions, we will use, relies upon Lie brackets. It
appeared in our earlier work on the controllability of the Euler equation for
a rigid body in [3] and was called there the reduction of a control–affine
system. We present a particular version adapted to our problem. The
repeated application of this extension settles the controllability issue for
finite-dimensional Galerkin approximations of the Navier–Stokes equations.

Proposition 3.10. Consider the control-affine analytic system

ẋ = f0(x) + f1(x)v̂1 + f2(x)v̂2. (3.3)

Let

[f1, f2] = 0, [f1, [f1, f0]] = 0. (3.4)
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Then the system

ẋ = f0(x) + f1(x)ṽ1 + f2(x)ṽ2 + [f1, [f2, f0]]v12,

is a fixed-time Lie extension of (3.3).

Sketch of the proof. Take Lipschitz functions v1(t), v2(t), v1(0) =
v2(0) = 0, and replace v̂1 and v̂2 in (3.3) with ε−1v̇1(t) + ṽ1 and εv̇2(t) + ṽ2

respectively. We obtain the equation

ẋ = f0(x) + f1(x)ṽ1 + f2(x)ṽ2 +
(

ε−1f1v̇1(t) + εf2v̇2(t)
)

. (3.5)

Applying the “reduction formula” from [3] or, alternatively, the “vari-
ation of constants” formula of chronological calculus [1], one can represent

the flow of (3.5) as the composition of the flow P̃t of the equation

ẏ = ead f1(y)ε−1v1(t)+ad f2εv2(t)f0(y) + f1(x)ṽ1 + f2(x)ṽ2 (3.6)

and the flow

Pt = ef1ε−1v1(t)+f2εv2(t). (3.7)

For the validity of this decomposition the equality [f1, f2] = 0 is important.

In (3.6), eadf is the exponential of the operator adf :

eadf =

∞
∑

j=0

(adf )j/j!.

The operator adf is determined by the vector field f and acts on vector
fields as adf g = [f, g], where [f, g] is the Lie bracket of f and g.

By the first relation in (3.4), the operators adf1 and adf2 commute
and, by the second one, any iterated Lie bracket of the form (adfi1 ) ◦ · · · ◦
(adfim )f0, ij = 1, 2, vanishes whenever it contains adf1 at least twice.

Taking the expansion of the operator exponential in (3.6) and using
these facts, we get 1

ẏ = f0(y) + f1(x)ṽ1 + f2(x)ṽ2 + ε−1[f1, f0](x)v1(t)

+ [f1, [f2, f0]](x)v1(t)v2(t) + O(ε). (3.8)

To obtain the flow of (3.5), we need to compose the flow of (3.8) with
the flow (3.7). For any fixed T one can get PT = Id in (3.7) by choosing
v1(·), v2(·) such that v1(T ) = v2(T ) = 0.

1 The time-variant vector field abbreviated by O(ε) in (3.8) is equal to

εϕ(ε adv2(t)f2) adv2(t)f2 f0 + ε2 ad2
v2(t)f2 ϕ(ε adv2(t)f2)[f1, f0],

where ϕ(z) = z−1(ez
− 1), ϕ(z) = z−2(ez

− 1− z).
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From now on, we deal with a fixed T and the flow of Equation (3.8).

In (3.8), we replace vj(t) with vj(t) = 21/2 sin(t/ε2)v̄j(t), where v̄j(t),
j = 1, 2, are functions of bounded variation. The relaxation seminorms of
the time-variant vector field ε−1[f1, f0](x)21/2 sin(t/ε2)v̄1(t) on the right-
hand side of (3.8) are O(ε) as ε → +0. On the right-hand side of (3.8), we
have

[f1, [f2, f0]](x)2 sin2(t/ε2)v̄1(t)v̄2(t)

= [f1, [f2, f0]](x)v̄1(t)v̄2(t) − [f1, [f2, f0]](x) cos(2t/ε2)v̄1(t)v̄2(t).

The relaxation seminorms of the addend [f1, [f2, f0]](x) cos(2t/ε2)v̄1(t)v̄2(t)
are O(ε2) as ε → +0.

Hence the right-hand sides of (3.8) with controls

vj(t) = 21/2 sin(t/ε2)v̄j(t), j = 1, 2,

converge in the relaxation metric to the vector field

f0(y) + f1(x)ṽ1 + f2(x)ṽ2 + [f1, [f2, f0]](x)v̄1(t)v̄2(t)

as ε → 0. We can consider the product v̄1(t)v̄2(t) as a new control v12 and
invoke Proposition 3.8. �

4. Computation of Brackets in Finite and Infinite
Dimensions. Controlling along “Principal Axes”

In this section, we adjust the statement of Proposition 3.8 for studying the
controllability of the systems (2.10) and (2.12).

From the viewpoint of geometric control, the Galerkin approximation
(2.12) of the Navier–Stokes / Euler equations is a special case of the control-
affine system (3.1). Its state space is finite-dimensional and is generated by
a finite number of eigenfunctions of the Laplace–Beltrami operator ∆ or
modes. The dynamics of this control system is determined by the quadratic
drift vector field

f0
o = Πo{∆−1qo, qo} + ν∆qo

and by controlled forcing
r

∑

i=1

f i(x)ui, where f i are constant (qo-independent)

controlled vector fields.

We start by computing the particular Lie brackets involved in the
formulation of Proposition 3.8. For two constant vector fields f1 and f2 we
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have

[f i, f0
o ] = Πo({f i, ∆−1w} + {w, ∆−1f i}) + ν∆f i, i = 1, 2,

[f1, [f2, f0
o ]] = Πo({f2, ∆−1f1} + {f1, ∆−1f2}),

[[f1, [f1, f0
o ]] = 2Πo{f1, ∆−1f1}.

This computation is finite-dimensional, but the same holds if one con-
siders constant vector fields acting in an infinite-dimensional Hilbert space.
Taking the “drift” vector field of (2.10) in infinite dimension,

f0 = {∆−1q, q} + ν∆q,

we obtain the following assertion.

Lemma 4.1. For two constant vector fields f1 and f2

[f i, f0] = {f i, ∆−1w} + {w, ∆−1f i} + ν∆f i, i = 1, 2,

[f1, [f1, f0]] = 2{f1, ∆−1f1},

B(f1, f2) = [f1, [f2, f0]] = {f2, ∆−1f1} + {f1, ∆−1f2}.

(4.1)

Let us clarify what is needed for the assumptions of Proposition 3.10
to hold. As long as f1 and f2 are constant and hence commuting, all what
we need is the following:

[f1, [f1, f0]] = 2{f1, ∆−1f1} = 0. (4.2)

Regarding the Euler equation for an ideal fluid

∂w

∂t
− {∆−1w, w} = 0,

formula (4.2) means that f1 corresponds to its steady motion. In particular,
the eigenfunctions of the Laplace–Beltrami operator ∆ correspond to steady
motions and satisfy (4.2). These eigenfunctions will be used as controlled
directions.

The eigenfunctions of the Laplacian are analogous to the principal
axes of a (multi-dimensional) rigid body.

By Proposition 3.10, for two constant controlled vector fields f1, f2,
one of which corresponds to a steady motion, we can extend our control sys-
tem by the new controlled vector field [f1, [f2, f0]] which is again constant.

Our method consists of iterating this procedure. The algebraic/geo-
metric difficulties arising in this way consist of scrutinizing newly obtained
controlled directions in order to pick among them the ones which satisfy
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(4.2). This will be illustrated in the following sections dealing with partic-
ular 2D domains.

Another (analytic) difficulty arises when we pass from the finite-di-
mensional approximations to the controlled partial differential equation. For
the latter the above sketch of the proof of Proposition 3.10 is not valid (for
example, one cannot speak about flows). We have to reprove the statement
of the proposition in each particular situation. The main idea will be still
based on using fast oscillating control and relaxation metric. The analytic
difficulties are in proving the continuity of forcing/trajectory mapping with
respect to such a metric. We will provide a brief comment later on; the
details can be found in [6, 7, 21, 22].

5. Controllability and Accessibility of Galerkin
Approximations of Navier–Stokes / Euler
Equations on T2

We survey results on the accessibility and controllability of Galerkin ap-
proximations of the 2D Navier–Stokes / Euler equations on T2.

5.1. Accessibility of Galerkin approximations.

The result of the computation (4.1) in the periodic case is easy to visualize
when the constant controlled vector fields corresponding to the eigenfunc-
tions of Laplacian ∆ on T2 are written as complex exponentials.

For two different complex eigenfunctions f1 = eik·x and f2 = eiℓ·x of
the Laplacian ∆ on T2, x ∈ R2, k, ℓ ∈ Z2, the Poisson bracket in (4.1) is
equal to

B
(

eik·x, eiℓ·x
)

= (k ∧ ℓ)(|k|−2 − |ℓ|−2)ei(k+ℓ)·x, (5.1)

i.e., it again corresponds to an eigenfunction of ∆ provided that |k| �= |ℓ|,
k∧ℓ �= 0. The conclusion is that for two given pairs of complex exponentials
e±ik·x and e±iℓ·x taken as controlled vector fields one can add to them the
controlled vector fields ei(±k±ℓ)·x.

Iterating the computation of the Lie–Poisson brackets (4.1) and ob-
taining new directions, we obtain a (finite or infinite) set of functions which
contains e±ik·x, e±iℓ·x and is invariant under the bilinear operation B(·, ·).

Therefore, in the case of T2, starting with the controlled vector fields
corresponding to the eigenfunctions eik·x, k ∈ K1 ⊂ Z2, of the Laplacian,
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the whole computation of Lie extensions “can be modeled” on the integer
lattice Z2 of “mode indices” k.

Actually, one has to operate with real-valued eigenfunctions of the
Laplacian on T2, i.e., functions of the form cos(k · x), sin(k · x). Also, in
this case, a computation of the iterated Lie–Poisson brackets (4.1) can be
modelled on Z2 and the addition formulas are similar to those of the complex
case.

Proposition 5.1 (bracket generating property). If

|k| �= |ℓ|, |k ∧ ℓ| = 1, (5.2)

then the following assertions hold:

(i) an invariant with respect to B set of functions, containing e±ik·x

and e±iℓ·x, contains all the eigenfunctions eim·x, m ∈ Z2 \ 0,

(ii) an invariant with respect to B set of real functions, containing
cos(k · x), sin(k · x), cos(ℓ · x), sin(ℓ · x), contains all the eigenfunctions
cos(m · x), sin(m · x), m ∈ Z2 \ 0.

The bracket generating property for a Galerkin approximation of the
2D Navier–Stokes equations with periodic boundary conditions was estab-
lished by E and Mathingly [13]. The following result from [13] is an imme-
diate consequence of Proposition 5.1 and Theorem 3.3.

Corollary 5.2 (accessibility by means of four controls). For any set
M ⊂ Z2 there exists a larger set M′ ⊇ M such that the Galerkin M′-
approximation controlled by the forcing

cos(k · x)vk(t) + sin(k · x)wk(t) + cos(ℓ · x)vℓ(t) + sin(ℓ · x)wℓ(t), (5.3)

with k and ℓ satisfying (5.2) is strongly accessible.

Here, four controls vk(t), wk(t), vℓ(t), wℓ(t) are used for providing
strong accessibility, but actually it can be achieved by a smaller number of
controls.

Example (accessibility by means of two controls). Consider the forc-
ing

gv(t) + ḡv̄(t), g = cos(k · x) + cos(ℓ · x), ḡ = sin(k · x) − sin(ℓ · x). (5.4)

The controlled forcing (5.3) involves four independent controls, each one of
which appears in just one of Equations (2.11). The controlled forcing (5.4)
involves two controls v and v̄, each of which appears in a pair of equations
in (2.11).
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Assume that |k| �= |ℓ|, k ∧ ℓ �= 0. We compute the bilinear form (4.1):

B(g, g) = (−|ℓ|−2 + |k|−2){cos(k · x), cos(ℓ · x)}

Up to a scalar multiplier, B(g, g) is equal to

(−|ℓ|−2 + |k|−2) sin(k · x) sin(ℓ · x)

= (k ∧ ℓ)(−|ℓ|−2 + |k|−2)(cos((k − ℓ) · x) − cos((k + ℓ) · x)).

Similarly, up to a scalar multiplier, B(ḡ, ḡ) is equal to

(k ∧ ℓ)(−|ℓ|−2 + |k|−2)(cos((k − ℓ) · x) + cos((k + ℓ) · x)).

The span of B(g, g) and B(ḡ, ḡ) coincides with the span of g01 = cos((k−ℓ)·x)
and g21 = cos((k + ℓ) · x). The direction ḡ01 = sin((k − ℓ) · x) is obtained
from the computation of B(g, ḡ). Choosing k = (1, 1) and ℓ = (1, 0), we get
m = k + ℓ = (2, 1) and n = k − ℓ = (0, 1).

Computing new directions B(g01, ḡ) and B(ḡ01, g), we note that, by the
equality |n| = |ℓ|, they coincide with B(g01, sin(k · x)) and B(ḡ01, cos(k · x))
respectively, and their span coincides with the span of ḡ12 = sin((k+n) ·x))
and ḡ10 = sin((k − n) · x)) = sin(ℓ · x)). Similarly, the span of B(g01, g)
and B(ḡ01, ḡ) coincides with the span of g12 = cos((k + n) · x)) and g10 =
cos((k−n) ·x) = cos(ℓ ·x). Then g−g10 = cos(k ·x) and ḡ− ḡ10 = sin(k ·x).
These two functions, together with g01 and ḡ01, form a quadruple satisfying
the assumptions of Corollary 5.2. Hence our system is accessible by means
of 2 controls.

Remark 5.1. It is plausible that the strong accessibility of Galerkin
approximations can be achieved by a single control.

5.2. Controllability of Galerkin approximations.

In general, the bracket generating property is not sufficient for controllabil-
itly. One has to select Lie brackets, which form a Lie extension; meanwhile,
in the previous example, {g, ∆−1g} and {ḡ, ∆−1ḡ} a priori do not corre-
spond to a Lie extension.

Even in the finite-dimensional case, a stronger result of Proposition 3.10
is required for proving the controllability property for Galerkin approxima-
tions. This was done in [4, 25] in the 2D and 3D cases.

Theorem 5.3. Let k, ℓ satisfy (5.2). For any subset M ⊂ Z2 there
exists a larger set M′ such that the Galerkin M′-approximation controlled
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by the forcing

cos(k · x)vk(t) + sin(k · x)wk(t) + cos(ℓ · x)vℓ(t) + sin(ℓ · x)wℓ(t),

is globally controllable.

The proof of this controllability result consists of the iterated applica-
tion of the Lie extension described in Proposition 3.10. At each step, we ex-
tend the system by new controlled vector fields corresponding, in accordance
with (4.1) and (5.1), to fm±ℓ = cos((m± ℓ) ·x) and f̄m±ℓ = sin((m± ℓ) ·x).
At the end of the iterated procedure, we arrive at a system with an extended
set of controls, one for each observed mode. It is evident that this system
must be controllable.

An important case, where the controllability of Galerkin approxima-
tions is implied by the bracket generating property, regards the 2D Euler
equations for an incompressible ideal fluid (ν = 0). Indeed, in this case, the
drift (zero control) dynamics is Hamiltonian and it evolves on a compact
energy level. By the Liouville and Poincaré theorems, the Poisson–stable
points of this dynamics are dense and one can apply the Lobry–Bonnard
theorem [2, 18] to establish the following assertion.

Theorem 5.4. For ν = 0 the Galerkin approximation of the 2D Euler
equations controlled is globally controllable by means of the forcing (5.4).

In the case of an ideal fluid, the controllability of Galerkin approxi-
mations of the 2D Euler system can be achieved by scalar control.

6. Steady State Controlled Directions.
Abstract Controllability Result for
Navier–Stokes Equations

We cannot apply Proposition 3.10 to the infinite-dimensional case directly.
However, the main idea of adding new controlled directions is still valid
for the Navier–Stokes equations. Now we want to formulate an abstract
controllability criterion based on the Lie extensions and computation of
Lemma 4.1. This criterion will be employed in the following sections for
establishing the controllability of the Navier–Stokes equations on various
2D domains.

Theorem 6.1 (controllability of Navier–Stokes equations via satura-
tion of controls). Let span{f1, . . . , fr} = S = D1 be a finite-dimensional



Solid Controllability in Fluid Dynamics 23

space of controlled directions. Assume that f1, . . . fr are steady motions of
the Euler equation (4.2). For each pair of linear subspaces L1 and L2 we
consider the span of the image B(L1,L2) of the bilinear mapping (4.1). De-
fine successively Dj+1 = Dj + spanB(Sj ,Dj), j = 1, 2, . . ., where Sj ⊆ Dj

is the linear subspace spanned by steady motions. If
⋃

j

Dj is dense in the

Sobolev space H2(M), then the Navier–Stokes equations are controllable in
finite-dimensional projections and are L2-approximately controllable.

If D1 consists of steady motions, then Dj+1 ⊇ Dj + spanB(D1,Dj).
Introduce another sequence of spaces

Dj+1
1 = Dj

1 + spanB(D1,Dj
1). (6.1)

It is evident that Dj
1 ⊆ Dj and the density of

⋃

j

Dj
1 in H2(M) guarantees

controllability.

Let Dfs
= {∆−1·, fs} + {∆−1fs, ·} for fs ∈ D1, Dfs

= B(fs, ·). The
iterated computations (6.1) correspond to iterated applications of the oper-
ators Dfs

to f1, . . . fr and taking the linear span.

Corollary 6.2. Let F be the minimal common invariant linear sub-
space of the operators Df1 , . . . , Dfl

which contains f1, . . . , fk. If F is every-
where dense in L2(M), then the system is L2-approximately controllable and
is solidly controllable in finite-dimensional projections.

7. Navier–Stokes and Euler Equations on T2

In this section, we formulate results regarding the controllability in finite-
dimensional projections and the L2-approximate controllability on T2.
Namely, we describe sets of controlled directions which satisfy a criterion
provided by Theorem 6.1.

We take the basis of complex eigenfunctions
(

eik·x
)

of the Lapla-

cian on T2 and introduce the Fourier expansion of the vorticity w(t, x) =
∑

k

qk(t)eik·x and the control v(t, x) =
∑

k∈K1

vk(t)eik·x. Here, k ∈ Z2. If w

and f are real-valued, we have q̄n = q−n and v̄n = v−n. We assume that
v0 = 0 and q0 = 0.

Using (5.1), we write the infinite system of ordinary differential equa-
tions (2.11) as follows:
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q̇k =
∑

m+n=k,|m|<|n|

(m ∧ n)(|m|−2 − |n|−2)qmqn − |k|2qk + v̂k(t). (7.1)

The controls v̂k are nonvanishing only in the equations for the variables
qk indexed by the symmetric set K1 ⊂ Z2 \ {0}. For k �∈ K1 the dynamics
is as follows:

q̇k =
∑

m+n=k,|m|<|n|

(m ∧ n)(|m|−2 − |n|−2)qmqn − |k|2qk, k �∈ K1. (7.2)

There is a symmetric set of those observed modes Ko ⊃ K1, which
we want to steer to some preassigned values. In the only interesting case,
where K1 is a proper subset of Ko, the equations indexed by k ∈ Ko \K1 are
of the form (7.2). They do not contain controls and have to be controlled
via state variables.

We give a hint of how this can be done; it is an infinite-dimensional
version of Proposition 3.10 for the Navier–Stokes equations on T2.

Let r, s ∈ K1, r ∧ s �= 0, |r| < |s|, k = r + s �∈ K1. The equations for qr

and qs contain controls v̂r and v̂s, while the equation for qk does not.

Take Lipschitz functions vr(t), vs(t), vr(0) = vs(0) = 0), and sub-
stitute ε−1v̇r(t) + ṽr and εv̇s(t) + ṽs for v̂r, v̂s into the right-hand sides of
Equations (7.1) for the variables qr, qs. We obtain

q̇r =
∑

m+n=r,|m|<|n|

(m ∧ n)(|m|−2 − |n|−2)qmqn − |r|2qr + ε−1v̇r(t) + ṽr,

q̇s =
∑

m+n=s,|m|<|n|

(m ∧ n)(|m|−2 − |n|−2)qmqn − |s|2qs + εv̇s(t) + ṽs.

Introduce q∗r = qr − ε−1vr(t) and q∗s = qs − εvs(t). Assuming vr(T ) =
vs(T ) = 0, we conclude qr(T ) = q∗r (T ), qs(T ) = q∗s(T ).

We write the infinite system of ordinary differential equations (7.1),
(7.2) via q∗r and q∗s in place of qr and qs. The right-hand side of the equation
for qk = qr+s contains the addend

(r ∧ s)(|r|−2 − |s|−2)(q∗r + ε−1vr(t))(q
∗
s + εvs(t))

and we see that the controls vr and vs enter this equation via the product
vr(t)vs(t). The same vr, vs enter this and all other equations linearly.

Substitute vj(t), j = r, s, by vj(t) = 21/2 sin(t/ε2)v̄j(t) with v̄j(t)
having bounded variations. Then the right-hand side of the equation for qk
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will gain the product 2 sin2(t/ε2)v̄r(t)v̄s(t) = (1− 2 cos(2t/ε2))v̄r(t)v̄s(t). If
ε → +0, this product tends to v̄r(t)v̄s(t) in the relaxation metric. In all
other equations, v̄r(t) and v̄s(t) enter linearly and are multiplied by the fast
oscillating functions 21/2 sin(t/ε2). Hence the corresponding terms tend to
0 in relaxation metric.

Therefore, one can pass (as ε → 0) to a limit system which now
contains the “new” control v̄rs = v̄r(t)v̄s(t) in the equation for qk = qr+s.
(This control corresponds to the control v12 from Proposition 3.10.)

A difficult analytic part is a justification of this passage to the limit.
It is accomplished in [6, 7] for T2 and in [21, 22] for a rectangular and
other kinds of regular 2D domains. We refer the interested reader to these
publications.

Note that the new controlled direction corresponds to the complex
exponential which is an eigenfunction of the Laplacian on T2. Hence we
can model the Lie extensions and formulate the controllability results in
terms of indices k ∈ Z2 of controlled modes.

Define iteratively a sequence of sets Kj ⊂ Z2 as follows:

j = 2, . . . ,

Kj = Kj−1
⋃

{m + n|m, n ∈ Kj−1
∧

‖m‖ �= ‖n‖
∧

m ∧ n �= 0}.
(7.3)

Definition 7.1. A finite set K1 ⊂ Z2 \ {0} of forcing modes is satu-

rating if
∞
⋃

j=1

Kj = Z2 \ {0}, where Kj are defined by (7.3).

Theorem 7.2 (controllability in finite-dimensional projection). Let
K1 be a saturating set of controlled forcing modes, and let L be any finite-
dimensional subspace of H2(T2). Then for any T > 0 the Navier–Stokes /
Euler equations on T2 is time-T solidly controllable in finite-dimensional
projections and is time-T L2-approximately controllable.

As we see, the saturating property is crucial for controllability. In [7],
the following characterization of this property was established.

Theorem 7.3. For a symmetric finite set K1 = {m1, . . . , ms} ⊂ Z2

the following properties are equivalent:

(i) K1 is saturating,

(ii) the greatest common divisor of the numbers dij = mi ∧ mj , i, j ∈
{1, . . . , s} is equal to 1, and there exist mα, mβ ∈ K1 that are not collinear
and have different lengths.
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Corollary 7.4. The set K1 = {(1, 0), (−1, 0), (1, 1), (−1,−1)} ⊂ Z2

is saturating. The solid controllability in any finite-dimensional projection
and L2-approximately controllability can be achieved by forcing four modes.

8. Controllability of 2D Navier–Stokes
Equations on Rectangular Domain

The study of the controllability in finite-dimensional projections and the L2-
approximate controllability on a rectangular domain has been accomplished
by Rodrigues [21, 22]. The main idea is similar to that in the periodic case,
but computations are more intricate. The reason is twofold: (i) the algebraic
properties of the bilinear operation calculated for the eigenfunctions of the
Laplacian are more complex and (ii) one needs to care about boundary
conditions.

For a velocity field u on a rectangular R with sides of length a, b,
a �= b, we assume that the Lions boundary conditions hold. In terms of the
vorticity w, they can be written as (2.9).

The (vorticity) eigenfunctions ϕk of the Laplacian are

ϕk = sin
(π

a
k1x1

)

sin
(π

b
k2x2

)

, (k = (k1, k2) ∈ Z
2. (8.1)

To find an extending controlled direction, one needs to pick two eigen-
functions f1 = ϕk, f2 = ϕℓ, k, ℓ ∈ Z2, and to proceed with the computation
(4.1). The result is a linear combination of at most four eigenfunctions ϕs.

Then again one can follow Lie extensions on the two-dimensional lat-
tice Z2 of Fourier exponents k = (k1, k2). If the controlled modes are
indexed by k ∈ K1 = {(k1, k2)|1 � k1, k2 � 3, k �= (3, 3)}, then one can
verify that after m Lie extensions the set of extended controlled directions
will contain all the modes (k1, k2), k1, k2 � m + 3, with the exception of
(m + 3, m + 3).

This leads to the following controllability result.

Theorem 8.1 (controllability on rectangular domain). Let 8 con-
trolled directions correspond to the functions (8.1) with k ∈ {(k1, k2)|1 �

k1, k2 � 3, k �= (3, 3)}. Then the Navier–Stokes equations defined on the
rectangular domain with the Lions boundary condition are controllable in
finite-dimensional projections and are L2-approximately controllable.
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9. Controllability on Generic Riemannian
Surface Diffeomorphic to Disc

In this section, we consider the Navier–Stokes equations under the boundary
conditions (2.9) on a Riemannian surface M . We manage to prove that for
a generic surface (the exact meaning of genericity will be specified below)
diffeomorphic to a disc one can choose 3 controlled directions corresponding
to the eigenfunctions (modes) of the Laplacian on M , which provides the
controllability in finite-dimensional projections.

In what follows, we assume that M has C∞-smooth boundary and is
endowed with a Riemannian metric.

The diffeomorphism Φ : M �→ D induces the C∞-smooth metric on
the disc D and we speak about various Riemannian metrics on the fixed
disc D instead of Riemannian surfaces. A generic Riemannian surface cor-
responds to a generic smooth Riemannian metric on D, meaning a metric in
a residual subset of the topological space of C∞ metrics. A subset is resid-
ual if it contains the intersection of countably many open dense subsets of
the topological space.

For controlled “directions” we take the modes or eigenfunctions fs of
the Laplace–Beltrami operator ∆ corresponding to each metric: ∆−1fs =
λ−1

s fs, s = 1, . . . , l. To apply the abstract controllability criterion (see Corol-
lary 6.2), it suffices to verify that functions of the form Dfs1

◦ · · · ◦Dfsm
fj ,

m � 0; j ∈ {1, . . . , l}, where Dfs
= {∆−1·, fs} + {∆−1fs, ·}, span a dense

subset of H2(M).

Theorem 9.1. For a generic Riemannian surface M diffeomorphic
to a disc there exist 3 eigenfunctions (modes) f1, f2, f3 of the Laplace–
Beltrami operator ∆ on M such that the Navier-Stokes / Euler equation on
M is controllable in finite-dimensional projections by means of a controlled
forcing applied to these modes.

Sketch of the proof. As was shown [7], it suffices to establish the
controllability in projection on any finite-dimensional coordinate subspace
L spanned by a finite number of eigenfunctions of the Laplace–Beltrami
operator. By Corollary 6.2, we need to verify that some determininat DetL
calculated via the (iterated) Poisson bracket of f1, f2, and f3 does not
vanish.

Assume for a moment that for some smooth metric µ0 on D the deter-
minant DetL does not vanish. Consider an analytic metric approximating
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µ0 (note that analytic metrics are dense in the space of smooth metrics) for
which DetL is nonvanishing and denote it by µ0 again.

Then taking any analytic Riemannian metric µ1 on D, we construct
a linear homotopy µt between µ0 and µ1:

µt|q(ξ, ξ) = (1 − t)µ0|q(ξ, ξ) + tµ1|q(ξ, ξ), 0 � t � 1.

Recall that the “values” of the Riemannian metrics at each point q ∈ M
are positive definite quadratic forms which form a convex cone.

The t-dependence of the Laplacians ∆(t) corresponding to the metrics
µt is analytic.

We want to trace the evolution of a finite number of the eigenvalues
λt

j , j ∈ J (J is a finite set), and the corresponding eigenfunctions of ∆(t)

with t varying in [0, 1]. This allows us to study the restriction of ∆(t) onto
a finite-dimensional space (see [19, Ch. 7]).

By the classical result of perturbation theory (see [19, Chs. 2, 7]), the
eigenvalues λt

j of an analytic family t �→ At of linear operators are analytic
with respect to t beyond a finite number of exceptional points in [0, 1].
Any moment t at which the eigenvalues λt

j , j ∈ J , are pairwise distinct

is nonexceptional. Singularities of the function t �→ λt
j may occur when λt

j

become multiple. The eigenvectors and corresponding eigenprojections may
have poles at exceptional points.

The picture is much more regular for normal operators, in particular,
for the Laplacians which are selfadjoint. In this case, the eigenvalues and
eigenfunctions are analytic functions of t everywhere on [0, 1] ([19, Ch.2,
Theorem 1.10]). The dependence of the derivatives of eigenfunctions on
t ∈ [0, 1] is also analytic. Hence the determinant DetL is an analytic function
of t. If it does not vanish at the point t = 0, it may vanish only at finitely
many points t ∈ [0, 1].

Take µt corresponding to all nonexceptional t ∈ [0, 1] for which DetL is
nonvanishing. Among nonexceptional t there exist ts which are arbitrarily
close to 1. The metrics µts

are arbitrarily close to µ1 in the C∞-metrics; for
the corresponding ∆(ts) the eigenvalues of interest are distinct and DetL is
nonvanishing. The dependence of the eigenfunctions and their derivatives
on the metric µ is continuous in the C∞-metric in a neighborhood of µts

.
Hence DetL is nonzero for all µ from small C∞-neighborhoods of these µts

.
Taking the union of these neighborhoods, we get an open set whose closure
contains µ1. Repeating the homotopy argument for each analytic metric
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µ1 on D, we get an open dense in C∞ set of metrics for which DetL is
nonvanishing.

One unsettled problem still remains: To find a metric µ0 on D for
which the determinant DetL is nonvanishing.

This problem is by no means minor. To construct such a metric,
we use the result mentioned in Remark 10.1 and obtained by Rodrigues
[24] who established the controllability of Navier–Stokes / Euler equations
on the half-sphere S2

+ with the Navier boundary conditions (in particular,

the Lions boundary conditions). The metric on S2
+ is inherited from the

embracing Euclidean space R3.

The degenerate control is applied to three modes, spherical harmonics
which are eigenfunctions of the Laplacian on S2

+. It is proved that this
system is controllable in any finite-dimensional projection.

Mapping S2
+ onto D analytically, we obtain the corresponding metric

µ0 and Laplacian on D for which the determinant DetL is nonvanishing.

Remark 9.1. The construction of the residual set of Riemannian
metrics can be transferred (almost) without alterations to the torus T2 for
which we studied the controllability of the Navier–Stokes / Euler equations
in Section 7. The conclusion claims that there exists a residual set of smooth
Riemannian metrics on T2 such that the assumptions of Corollary 6.2 are
verified and therefore the Navier–Stokes equations is controllable in finite-
dimensional projections by forcing four modes on T2 endowed with any of
these metrics.

A pertinent question would be whether the result of Theorem 9.1 holds
for a generic subdomain Q with smooth boundary in R2 diffeomorphic to
a disc and endowed with the Euclidean metric. The corresponding diffeo-
morphism Q �→ D sends the Euclidean metric on Q to the metric (9.1) on
D which possesses the zero curvature. An approximating analytic metric µ
admits the conformal form [12, Vol.1, § 11–13])

µ = ea(x1,x2)(dx2
1 + dx2

2). (9.1)

Note that the curvature of (9.1) is equal to

K = (1/2)e−a(x1,x2)
(∂2a

∂x2
1

+
∂2a

∂x2
2

)

.

Therefore, the plane metrics are distinguished by the condition

∂2a

∂x2
1

+
∂2a

∂x2
2

= 0. (9.2)
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On the contrary, if D possesses a Riemannian metric µ of the form
(9.1) satisfying (9.2), then D can be isometrically and analytically mapped
onto a 2D domain Q with Euclidean metric.

We can define the corresponding homotopy between

µ0 = ea0(x1,x2)(dx2
1 + dx2

2), µ1 = ea1(x1,x2)(dx2
1 + dx2

2)

as follows:

µt = e(1−t)a0(x1,x2)+ta1(x1,x2)(dx2
1 + dx2

2),

and then advance as in the previous proof.

The only problem would be to construct a plane domain Q with an-
alytic boundary and an Euclidean metric for which the controllability in
finite-dimensional projection holds.

A good candidate could be an analytically perturbed (smoothened)
rectangular Rε, ε > 0. The controllability on the rectangular R was estab-
lished in Section 8. We are confident that controllability also holds for Rε

with small ε > 0, but there are still some technical problems to be settled
in the proof.

10. Navier–Stokes / Euler Equations on Sphere S2

The controlled vector fields we employ in the case of S2 correspond to eigen-
functions of the corresponding spherical Laplacian or the so-called spherical
harmonics. We start with a brief description of them.

10.1. Spherical harmonics.

In this subsection, we introduce some notions and results regarding spherical
harmonics; our source was mainly the book [9, Chs.10, 11] by Arnold.

Consider the sphere S2 equipped with the Riemannian metric inherited
from R3 and area 2-form σ. The latter defines the symplectic structure
on S2.

The eigenfunctions of the spherical Laplacian are described by the
following classical result. Recall that a function g is homogeneous of degree
s on Rn \ 0 if g(κx) = κsg(x) for each κ > 0. A function g is harmonic
in Rn \ 0 if ∆g = 0, where ∆ is the Euclidean Laplacian. As is known, a
harmonic homogeneous function of degree s > 0 is extendable by continuity
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(g(0) = 0) to a harmonic function on Rn. This harmonic function is smooth
and therefore must be a homogeneous polynomial of integer degree s > 0.

Theorem 10.1 ([9]). Constants are eigenfunctions of the spherical
Laplacian (of degree 0). If a (smooth) harmonic function defined on Rn \ 0
is homogeneous of degree s > 0, then its restriction onto the sphere is the
eigenfunction of the spherical Laplacian ∆̃ corresponding to the eigenvalue
−s(s+n−2). Vice versa, every eigenfunction of ∆̃ is a restriction onto Sn

of a homogeneous harmonic polynomial.

Another famous result is the Maxwell theorem [9] which holds in R3.
It states that if ρ(x) = (x2

1 + x2
2 + x2

3)
−1/2 is the fundamental solution of

the Laplace equation in R3, then any spherical harmonic a on S2 can be
represented as the iterated directional derivative of ρ: a = l1 ◦ · · · ◦ lnρ,
where l1, . . . , ln ∈ R3 and {l1, . . . , ln} is uniquely determined by a.

Our controlled directions will correspond to spherical harmonics on
S2, which are the restrictions to S2 of homogeneous functions on R3. In
particular, we invoke the so-called zonal spherical harmonics which are the
iterated directional derivatives of ρ with respect to a fixed direction l.

Let a, b be smooth (not necessarily homogeneous) functions on R3.
The Poisson bracket of their restrictions to S2 can be computed as follows:

{a|S2 , b|S2}(x) = 〈x,∇xa,∇xb〉, (10.1)

where 〈x, η, ζ〉 stands for the “mixed product” in R3, calculated as the
determinant of the 3 × 3-matrix with columns x, η, and ζ. From now on,
we omit the symbol of restriction |S2 in the notation of the Poisson bracket.

The linear functions (l, x) are, of course, spherical harmonics. We

denote by �l the Hamiltonian field on S2 associated with Hamiltonian 〈l, x〉,

x ∈ S2. Obviously, �l generates a rotation of the sphere around the l-axis.

According to the aforesaid, �la = 〈x, l,∇a〉 is the Poisson bracket of the
functions 〈l, x〉 and a restricted to S2.

The group of rotations acts (by the change of variables) on the space
of homogeneous harmonic polynomials of fixed degree n. As is known, this
action is irreducible for any n (see [9] for a sketch of the proof). In other
words, the following result holds.

Proposition 10.2. For a given homogeneous harmonic polynomial b

of a nonzero degree n the space span{�l1 ◦ · · · ◦ �lkb : k � 0} coincides with
the space of all homogeneous harmonic polynomials of degree n.
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10.2. Poisson bracket of spherical harmonics
and controllability.

Calculating the Lie extensions according to formula (4.1), we obtain the
iterated Poisson bracket of spherical harmonic polynomials, which, in gen-
eral, need not to be harmonic. The following lemma shows that there is a
way of finding some harmonic polynomials among the Poisson brackets.

Lemma 10.3. For each n > 2 there exists a harmonic homogeneous
polynomial q of degree 2 and a harmonic homogeneous polynomial p of degree
n > 2 such that their Poisson bracket is again harmonic (and homogeneous
of degree n + 1) polynomial.

Proof. Consider the so-called quadratic zonal harmonic function q =
∂2ρ

∂x2
3

. Being restricted to the sphere S2, this function coincides with the

Legendre polynomial q(x3) = 3x2
3 − 1.

We consider homogeneous harmonic polynomials in variables x1, x2.
In the polar coordinates, they are represented as rm cosmϕ or, alternatively,
Re(x1 +ix2)

m, m = 1, 2, . . .. We pick the nth degree polynomial p(x1, x2) =
Re(x1 + ix2)

n.

According to (10.1), the Poisson bracket of q, p is equal to

{q, p} = 〈x,∇q,∇p〉 =

∣

∣

∣

∣

∣

∣

x1 0 p′x1

x2 0 p′x2

x3 6x3 0

∣

∣

∣

∣

∣

∣

= 6x3

∣

∣

∣

∣

∣

∣

x1 0 p′x1

x2 0 p′x2

x3 1 0

∣

∣

∣

∣

∣

∣

.

By (10.1), the determinant, which multiplies 6x3 on the right-hand
side of the formula, coincides with {x3, p(x1, x2)} = �e3p(x1, x2), where e3 =
(0, 0, 1) is the standard basis vector of R3. Hence, by Proposition 10.2,
the value of this determinant is a harmonic polynomial of degree n. It is
equal to p̃(x1, x2) = −x1p

′
x2

+ x2p
′
x1

and therefore does not depend on x3.
Then {q, p} = −6x3p̃(x1, x2). Since both −6x3 and p̃ are harmonic, we get
∆{q, p} = 2∇(−6x3) · ∇p̃ = −12∂p̃/∂x3 = 0. �

Theorem 10.4. Consider the Navier–Stokes / Euler equations on the
sphere S2. Let (constant) controlled vector fields correspond to independent
linear spherical harmonics l1, l2, l3, one quadratic harmonic q, and one
cubic harmonic c. Then this set of controlled vector fields is saturating and
the Navier–Stokes / Euler equations are controllable in finite-dimensional
projections.



Solid Controllability in Fluid Dynamics 33

Proof. It suffices to verify the assumption of Corollary 6.2. Without
lack of generality, we may think that q = q̃ is the second degree zonal
harmonic from Lemma 10.3. Indeed, otherwise we may transform q into q̃
by taking the iterated Poisson bracket with the linear harmonics l1, l2, l3.

In fact, taking the iterated Poisson bracket of q and c respectively with
l1, l2, l3, we obtain all quadratic and cubic harmonics. Thus, we manage
to obtain all the harmonics of degrees � 3.

We proceed by induction on the degree of harmonics. Assume that all
harmonics of degree � n are already obtained by taking the iterated Poisson
brackets of {l1, l2, l3, q, s}. Pick the harmonic polynomial p constructed in
Lemma 10.3. The Poisson bracket of p with q is a homogeneous harmonic
polynomial p̄ of degree n+1. Taking the iterated Poisson brackets of p̄ with
l1, l2, l3, we obtain all polynomials of degree n + 1. �

Remark 10.1. Following the lines of the previous proof, Rodrigues
[24] established the controllability of the Navier–Stokes / Euler equations
on the half-sphere S2

+. One can force three modes, spherical harmonics
on S2

+ in order to guarantee the controllability in any finite-dimensional
projection. The details will appear elsewhere.

Remark 10.2. Arguing in a similar way as in the previous section,
one can conclude that there exists a residual set of Riemannian metrics
on S2 such that the assumptions of Corollary 6.2 are verified and, conse-
quently, the Navier–Stokes equations are controllable in finite-dimensional
projections by forcing five modes on S2 endowed with any of these metrics.
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Analyticity of Periodic Solutions
of the 2D Boussinesq System

Maxim Arnold

Institute of the Earthquake Prediction Theory RAS
Moscow, Russia

The Cauchy problem for the 2D Boussinesq system with periodic boundary con-

ditions is studied. The global existence and uniqueness of a solution with initial

data (u(0), θ(0)) ∈ Φ(α) is established, where Φ(α) is the space of functions the

kth Fourier coefficients of which decay at infinity as
1

|k|α
, α > 2. It is proved that

the solution becomes analytic at any positive time. Bibliography: 10 titles.

1. Introduction. The viscous 2D Boussinesq system describing dynamics
of a homogeneous fluid with temperature transfer has the form

D

∂t
u(x, t) = ν∆u(x, t) −∇p(x, t) + �e2θ(x, t), (BS1)

D

∂t
θ(x, t) = µ∆θ(x, t), (BS2)

div u(x, t) = 0, (BS3)

where x = (x1, x2) ∈ R2, t ∈ R+ is time, �e2 = (0, 1), u(x, t) = (u1, u2) :
R2 × R+ �→ R2 is a 2-dimensional velocity vector, θ(x, t) : R2 × R+ �→
R is temperature, positive integers ν and µ are viscosity and diffusivity
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Fursikov / International Mathematical Series, Vol. 6, Springer, 2008 37
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coefficients respectively, and the scalar function p(x, t) denotes pressure.
On the left-hand side of (BS1), (BS2), we use the notation

D

dt
=

∂

∂t
+

d
∑

j=1

uj(x, t)
∂

∂xj
.

By a solution of the Cauchy problem for (BS1)–(BS3) with initial conditions

u(x, 0) = u(0)(x), θ(x, 0) = θ(0)(x),

div u(0)(x) = 0
(1)

we mean functions u(x, t), θ(x, t), p(x, t) satisfying (BS1)–(BS3) and (1).

Recent results about the existence and uniqueness of solutions of
(BS1)–(BS3) were obtained in [7, 2] and were based on the methods devel-
oped in [3, 4, 5].

The system (BS1)–(BS3) is similar to the 2D Navier–Stokes system,
and many methods developed for the Navier–Stokes equations can be ap-
plied to the Boussinesq system.

In this paper, we prove the analyticity of solutions to (BS1)–(BS3).
We use the methods of [8], where the global existence and uniqueness of a
solution were established for the 2D Navier–Stokes system. Note that the
arguments in [8] are similar to those in [6], but are more geometrical.

In [9, 10], and [1], there was introduced the space Φ(α) of functions
f(x) the Fourier transform of which can be written in the form

Ff(k) =
c(k)

|k|α
, sup

k
|c(k)| = h < ∞

The norm in Φ(α) is defined by the formula ‖f‖α = h = sup
k

|k|α|Ff(k)|.

In [8], the global existence and uniqueness theorems were proved for
the Cauchy problem for the 2D Navier–Stokes system with periodic bound-
ary conditions and initial conditions in the space Φ(α). The analyticity of
the solution was also established. These results were extended to the con-
tinuous case in [1]. In [9, 10], similar local in time results were obtained in
3D statement.

2. Formulation of the results. Consider the system (BS1)–(BS3) for
θ(x, t) and w(x, t) = curl u(x, t). Since u(x, t) ∈ R2, w(x, t) has only one

nonzero component w =
∂u2

∂x1
− ∂u1

∂x2
. The system (BS1)–(BS3) takes the
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form
∂

∂t
w(x, t) + 〈u,∇〉w(x, t) = ν∆w(x, t) +

∂

∂x1
θ(x, t),

∂

∂t
θ(x, t) + 〈u,∇〉θ(x, t) = µ∆θ(x, t),

div u(x, t) = 0, w(x, t) = ∇× u(x, t).

(2)

We expand w(x, t) and θ(x, t) into the Fourier series:

w(x, t) =
∑

k∈Z2

wk(t)ei〈k,x〉, θ(x, t) =
∑

k∈Z2

thetak(t)ei〈k,x〉.

Since w(x, t) and θ(x, t) are real-valued functions and wk = i(k1u
(2)
k −

k2u
(1)
k ) and k1u

(1)
k + k2u

(2)
k = 0, for wk(t) and θk(t) we get

d

dt
wk(t) = −ν|k|2wk(t) +

∑

l∈Z2

〈k, l⊥〉
|l|2 wl(t)wk−l(t) + ik1θk(t),

d

dt
θk(t) = −µ|k|2θk(t) +

∑

l∈Z2

〈k, l⊥〉
|l|2 wl(t)θk−l(t),

w−k(t) = wk(t), θ−k(t) = θk(t),

(3)

where l⊥ = (l2,−l1) and wk, θk, uk = (u
(1)
k , u

(2)
k ) denote the kth Fourier

coefficient of w, θ, and u respectively. Assume that θ0(t) = w0(t) = 0. We
consider the system (3) instead of (2).

It is natural to regard the 2D Boussinesq system as the 2D Navier–
Stokes system with θ(x, t) as an external forcing. The only difference is the
dependence of θ(x, t) on w(x, t).

From the results of Mattingly and Sinai [8] it follows that for initial
data from Φ(α), α > 1, and analytic external force the solution of 2D
Navier–Stokes system becomes analytic at any positive moment of time.
Thus, it suffices to show that θ(x, t) becomes analytic, i.e., its Fourier co-
efficients decay exponentially with |k|. Then the results of Mattingly and
Sinai can be used.

Introduce the notation

Θ(t) = ‖θ(·, t)‖2
L2 =

∑

k∈Z2

|θk(t)|2, W(t) = ‖w(·, t)‖2
L2 =

∑

k∈Z2

|wk(t)|2.
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Lemma 1 (termo–convection bound). Θ(t) is nonincreasing.

Lemma 1 implies the following assertion.

Lemma 2 (enstrophy estimate). For any Θ0 = ‖θ(0)‖2
L2 and W0 =

‖w(0)‖2
L2

W(t) � max
(
W0,

Θ0

ν2

)

Hereinafter, we assume that α > 2. Consider the initial conditions

w(0), θ(0) ∈ Φ(α), ‖w(0)‖α = C, ‖θ(0)‖α = B. (4)

Since α > 2, we have ‖w(0)‖L2 < ∞ and ‖θ(0)‖L2 < ∞. Using Lemmas
1 and 2, we derive a priori estimates for the solution of (3) with initial
conditions (4).

Theorem 1. For any initial data (4) there exists a constant B′ that
depends only on B, α, Θ0 and W0 and is independent of t such that for all
t > 0 the solution θ(t) of (3) satisfies the estimate ‖θ(t)‖α � B′.

Note that B′ is independent of C. Theorem 1 and [8, Theorem 1] imply
the following assertion.

Theorem 2. Under the assumptions of Theorem 1, there exists a
constant C′ depending only on the initial conditions such that ‖w(t)‖α � C′

for all t > 0.

Two theorems below provide the analyticity of the solution.

Theorem 3. If the initial conditions (4) satisfy the estimates

|θk(0)| �
B1

|k|α e−β|k|, |wk(0)| �
C1

|k|α e−β|k|

for all k ∈ Z2, where B1, C1, and β are constants, then there exist constants
B′

1 and C′
1 such that for all t > 0

|θk(t)| �
B′

1

|k|α e−β|k|, |wk(t)| �
C′
1

|k|α e−β|k| ∀ k ∈ Z
2.

Theorem 4. If the initial data satisfy the assumptions of Theorem

1, then for any t0 > 0 there exist constants B̃, C̃, δ1 > 0, and δ2 > 0
independent of k and such that for all t > 0 and k ∈ Z2

|θk(t)| �
B̃
|k|α e−δ(t)|k|, |wk(t)| �

C̃
|k|α e−δ(t)|k|,

where δ(t) = δ1 for t < t0 and δ(t) = δ2 for t � t0.
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Theorems 3 and 4 assert that if there exists a solution of (3) with initial
conditions (4), then it becomes analytic at any positive moment of time.
Namely, Theorem 4 implies that the solution becomes analytic and then
it remains analytic since Theorem 3 holds. Below we give an independent
proof of the local in time existence of a solution to the system (3).

Theorem 5 (local existence). Suppose that w(0) and θ(0) belong to

Φ(α), α > 2, ‖w(0)‖α, and ‖θ(0)‖α � N . Then there exist constants Ñ and
T > 0 such that, on [0, T ], there exists a solution (wk(t), θk(t)) of (3) such

that ‖w(t)‖α � Ñ and ‖θ(t)‖α � Ñ .

3. Proof of the main results. Our arguments are based on the following
technical estimate. Let h and g be scalar functions of 2-dimensional variable.

Proposition 1. Suppose that h ∈ Φ(α), ‖h‖α = H, and g ∈ L2,

‖g‖L2 = G. Then there exists a constant H̃ = H̃(α) such that for any
k ∈ Z2

∑

l∈Z2

∣∣∣
〈k, l⊥〉
|l|2

∣∣∣|gl||hk−l| � HH̃G|k| 32−α.

Note that ‖f‖L2 < ∞ for any function f ∈ Φ(α).

Proof of Lemma 1. Note that Θ(t) is a positive real-valued function.

Thus, it suffices to show that
d

dt
Θ(t) is nonpositive. By the Plancherel

theorem and (3), we can write for
d

dt
Θ(t):

d

dt
Θ(t) =

∑

k∈Z2

( d

dt
θk(t)θk(t) +

d

dt
θk(t)θk(t)

)

= −2µ
∑

k∈Z2

|k|2|θk(t)|2 + 2
∑

k∈Z2

∑

l∈Z2

〈k, l⊥〉
|l|2 wl(t)θk−l(t)θk(t).

Note that θ−k(t) = θk(t) and w−k(t) = wk(t). Then for every term of the
last sum there exists a term

〈k′, l⊥〉
|l|2 wl(t)θk′−l(t)θk′ (t), k′ = l − k,

for which the kernel gives

〈k′, l⊥〉
|l|2 = −〈k, l⊥〉

|l|2 .
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The factor wl(t)θk′−l(t)θk′(t) takes the form wl(t)θ−k(t)θk−l(t). Hence

〈k′, l⊥〉
|l|2 wl(t)θk′−l(t)θk′ (t) +

〈k, l⊥〉
|l|2 wl(t)θk−l(t)θk(t) = 0.

Thus, the last sum vanishes and we have

d

dt
Θ(t) = −2µ

∑

k∈Z2

|k|2|θk(t)|2 � −2µΘ(t).

The proof is complete. �

Proof of Lemma 2. By the Plancherel theorem, for
d

dt
W(t) we have

d

dt
W(t) =

∑

k∈Z2

d

dt
|wk(t)|2 =

∑

k∈Z2

(dwk(t)

dt
wk(t) +

dwk(t)

dt
wk(t)

)
.

Using (3), we find

d

dt
W(t) = −2ν

∑

k∈Z2

|k|2|wk(t)|2 + 2
∑

k∈Z2

∑

l∈Z2

〈k, l⊥〉
|l|2 wl(t)wk(t)wk−l(t)

+ 2i
∑

k∈Z2

k1θkwk(t).

The second term on the right-hand side vanishes by the same arguments
as in the previous proof. To estimate the third term, we use the Cauchy–
Schwarz inequality

∑

k∈Z2

k1θk(t)wk(t) �

√ ∑

k∈Z2

|θk(t)|2
√ ∑

k∈Z2

|k|2|wk(t)|2.

By Lemma 1, the first term on the right-hand side is not greater than
√

Θ0.
Hence

d

dt
W(t) � 2

√ ∑

k∈Z2

|k|2|wk(t)|2
(√

Θ0 − ν

√ ∑

k∈Z2

|k|2|wk(t)|2
)

� 2

√ ∑

k∈Z2

|k|2|wk(t)|2
(√

Θ0 − ν
√

W(t)
)
. (5)

By (5), W(t) >
Θ0

ν2
implies

d

dt
W(t) < 0, which completes the proof. �
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Proof of Proposition 1. We divide the summation domain into three
parts and derive estimates for each part separately.

1. |l| �
1

2
|k|. In this case, |k − l| �

1

2
|k|. Hence |fk−l| �

2αH

|k|α
. Then

∣∣∣
〈k, l⊥〉
|l|2

∣∣∣ �
|k|
|l| .

∑

|l|� |k|
2

∣∣∣
〈k, l⊥〉
|l|2

∣∣∣|gl||fk−l| � H|k|1−α
∑

|l|� |k|
2

|gl|
|l| .

By the Cauchy–Schwarz inequality,

∑

|l|� |k|
2

|gl|
|l| �

√√√√
∑

|l|� |k|
2

|gl|2
√√√√

∑

|l|� |k|
2

1

|l|2 � GB1

√
ln |k|,

where B1 can be found from the inequality

∑

|l|� |k|
2

1

|l|2 � B2
1 ln |k|.

Collecting the above estimates, we conclude that for |l| �
1

2
|k|

∑

|l|� |k|
2

∣∣∣
〈k, l⊥〉
|l|2

∣∣∣|gl||fk−l| � H|k|1−αGB1

√
ln |k|.

2.
1

2
|k| � |l| � 2|k|. We can estimate

∣∣∣
〈k, l⊥〉
|l|2

∣∣∣ by 2 and use again the

Cauchy–Schwarz inequality:

∑

|k|
2 �|l|�2|k|

∣∣∣
〈k, l⊥〉
|l|2

∣∣∣|gl||fk−l| � 2

√√√√
∑

|k|
2 �|l|�2|k|

|gl|2
√√√√

∑

|k|
2 �|l|�2|k|

|fk−l|2

� 2GH
√√√√

∑

|k−l|�3|k|

1

|k − l|2α
� 2GHB2|k|1−α,

where B2 is the constant in the estimate

∑

|l|�3|k|

1

|l|2α
� B2

2 |k|2−2α.
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3. |l| � 2|k|. In this region, |k − l| � |l| − |k| � |l| − 1
2 |l| = 1

2 |l|. Hence

∑

|l|�2|k|

∣∣∣
〈k, l⊥〉
|l|2

∣∣∣|gl||fk−l| � |k|
√ ∑

|l|�2|k|

|gl|2
√√√√

∑

|l|�2|k|

22αH2

|l|2+2α

� HG|k|2α

√√√√
∑

|l|�2|k|

1

|l|2+2α
� 2αHGB3|k|1−α,

where B3 is the constant in the estimate
∑

|l|�2|k|

1

|l|2+2α
� B2

3 |k|−α.

Collecting the estimates, we find

∑

l∈Z2

∣∣∣
〈k, l⊥〉
|l|2

∣∣∣|gl||fk−l| � G|k|1−α
(
B1

√
ln |k| + 2HB2 + 2αHB3

)

� HG|k| 32−α
(B1

H

√
ln |k|
|k| + 2B2 + 2αB3

)

Thus, for H̃ =
|B1|
H + 2|B2|+ 2α|B3| the last inequality proves the required

assertion. �

Proof of Theorem 1. Denote by Ω
(A)
α the set of functions whose

Φ(α)-norms are bounded by a constant A: Ω
(A)
α = {f : |fk| < A/|k|α}. By

assumption, θ(0) ∈ Ω
(B)
α . We fix a constant Kcrit depending only on the

initial conditions which will be defined later.

By Lemma 1, for |k| < Kcrit we have

sup
|k|�Kcrit

|θk(t)| �
√

Θ0,

which implies

sup
|k|�Kcrit

|θk(t)||k|α �
√

Θ0K
α
crit.

We show that for any k ∈ Z2, |k| > Kcrit, the vector field on the

boundary ∂Ω
(B)
α is directed inward. Then for B′ = max(B,

√
Θ0K

α
crit) the

required assertion holds for any t > 0.

Suppose that for some t > 0 θ(t) leaves Ω
(B)
α . Let t0 = inf{t : θ(t) /∈

Ω
(B)
α }. Then for t = t0 and all k ∈ Z2 we have the inequality |θk(t0)| �
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B/|k|α which becomes equality for some k. Denote by k∗ a point in Z2 such
that the equality takes place at this point and |k∗| � |k| at any other point
k ∈ Z2, where equality holds. Then for θk∗(t0) from (3) it follows that

dθk∗(t)

dt

∣∣∣∣
t=t0

= −µ|k∗|
2θk∗(t0) +

∑

l∈Z2

〈k∗, l⊥〉
|l|2 θk∗−l(t0)wl(t0). (6)

An obvious calculations shows that

2|θk(t)|d|θk(t)|
dt

=
d|θk(t)|2

dt
= θk(t)

dθk(t)

dt
+ θk(t)

dθk(t)

dt

= −2µ|k|2θk(t)θk(t) +
∑

l∈Z2

〈k, l⊥〉
|l|2 (wl(t)θk−l(t)θk(t) + wl(t)θk−l(t)θk(t))

� −2µ|k|2|θk(t)|2 + 2|θk(t)|
∑

l∈Z2

∣∣∣
〈k, l⊥〉
|l|2

∣∣∣|wl(t)||θk−l(t)|.

Thus, for |θk∗(t0)| we can write

d

dt
|θk∗(t0)| � −µ|k∗|2−αB +

∑

l∈Z2

∣∣∣
〈k∗, l⊥〉
|l|2

∣∣∣|θk∗−l(t0)||wl(t0)| (7)

By Proposition 1, the last term on the right-hand side of (7) is less than

or equal to |k∗|
3
2−α

√W0BA1, where A1 is a constant that is independent of
k∗ and t0 and can depend only on α. Thus,

d

dt
|θk∗(t0)| � |k∗|

3
2−α

√
W0BA1−µ|k∗|2−αB = B|k∗|

3
2−α(

√
W0A1−µ|k∗|

1
2 ).

Setting Kcrit =
W0A

2
1

µ2
, from the inequality |k∗| > Kcrit we immediately

conclude that d
dt |θk∗(t0)| is negative and, consequently, |θk∗(t0)| decreases.

Recall the estimate |θk(t)||k|α �
√

Θ0(Kcrit)
α for |k| � Kcrit. Setting

B′ = max(B,

√
Θ0Wα

0 A2α
1

µ2α
),

we complete the proof. �

Proof of Theorem 2. We argue in a similar way as in the previous

proof. We fix a constant K̃crit which depends only on α and will be defined

later. By Lemma 2, for any |k| � K̃crit we can write

|wk(t)||k|α � K̃α
crit|wk(t)| � K̃α

crit

√
W(t) � K̃α

critA2, (8)
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where A2 = max
(
W0,

Θ0

ν2

)
and thus is a constant which depends only on

the initial data.

Now, we show that for some constant K̃crit the inequality |k| > K̃crit

implies |wk(t)||k|α � C. By the assumption of the theorem, w(0) ∈ Ω
(C)
α .

Suppose that for some t > 0 w(t) leaves the Ω
(C)
α . Denote by t0 the

infimum of such t. Then for t = t0 we have the inequality

|wk(t0)| �
C

|k|α

which becomes equality for some k. Let k∗ be a point where equality takes
place. Assume that k∗ has the minimal norm among points of such a type.

By (3), for |wk(t)| we have

2|wk(t)|
d|wk(t)|

dt
=

d|wk(t)|2

dt
= wk(t)

dwk(t)

dt
+ wk(t)

dwk(t)

dt

= −2ν|k|2|wk(t)|2 +
∑

l∈Z2

〈k, l⊥〉
|l|2 (wk−l(t)wl(t)wk(t))

+ wk−l(t)wl(t)wk(t)) + ik1(θk(t)wk(t) + θk(t)wk(t)).

Thus,

d|wk(t)|
dt

� −ν|k|2|wk(t)| +
∑

l∈Z2

∣∣∣
〈k, l⊥〉
|l|2

∣∣∣|wk−l(t)||wl(t)| + |k||θk(t)|. (9)

By Proposition 1, the second term on the right-hand side of (9) is not

greater than |k| 32−αC√W0A3, where A3 is a constant depending only on α.
The third term is bounded by |k|1−αB′ because of Theorem 1. Thus, for
|wk∗(t0)| we have

d|wk∗(t0)|
dt

� −ν|k∗|2−αC + |k∗|
3
2−αC

√
W0A3 + |k∗|1−αB′

= |k∗|2−αC
(√W0A3√

|k∗|
+

B′

|k∗|C
− ν

)
(10)

If we define K̃crit =
W0A

2
3

4ν2
− B′

Cν
, then for |k∗| > K̃crit the right-hand

side of the inequality (10) is negative and, consequently, |wk∗(t0)| decreases.

The theorem is proved for C′ = max(C, A2(K̃crit)
α). �

Proof of Theorem 3. The required assertion is obtained by apply-
ing Theorems 1 and 2 to the functions θ̃k(t) = eβ|k|θk(t) and w̃k(t) =
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eβ|k|wk(t). From (3) we derive for θ̃k(t), w̃k(t)

d

dt
θ̃k(t) = −µ|k|2θ̃k(t) +

∑

l∈Z2

〈k, l⊥〉
|l|2 w̃l(t)θ̃k−l(t)e

β(|k|−|l|−|k−l|),

d

dt
w̃k(t) = −ν|k|2w̃k(t) +

∑

l∈Z2

〈k, l⊥〉
|l|2 w̃l(t)w̃k−l(t)e

β(|k|−|l|−|k−l|) + ik1θ̃k(t).

Since |k − l| + |l| � |k| and, consequently, e−β(|l|+|k−l|−|k|) � 1, we can
replace the corresponding terms with 1 and obtain the estimates

d

dt
|θ̃k(t)| � −µ|k|2|θ̃k(t)| +

∑

l∈Z2

∣∣∣
〈k, l⊥〉
|l|2

∣∣∣|w̃l(t)||θ̃k−l(t)|,

d

dt
|w̃k(t)| � −ν|k|2|w̃k(t)| +

∑

l∈Z2

∣∣∣
〈k, l⊥〉
|l|2

∣∣∣|w̃l(t)||w̃k−l(t)| + |k||θ̃k(t)|.

Then we repeat the proof of Theorems 1 and 2 without any change. �

Proof of Theorem 4. Let t0 > 0. Consider θ̂(x, t) and ŵ(x, t) with

the Fourier coefficients θ̂k(t) = eδ1t|k|θk(t) and ŵk(t) = eδ1t|k|wk(t) respec-
tively. The constant δ1 > 0 will be defined later.

We have ‖ŵ(0)‖α = C and ‖θ̂(0)‖α = B. It suffices to show that

θ̂(t) and ŵ(t) remain bounded in Φ(α) with some constants B̃ and C̃ for all
t ∈ [0, t0].

Since the inequalities

|ŵk(t0)| �
C̃

|k|α , |θ̂k(t0)| �
B̃
|k|α

imply

|wk(t0)| �
C̃

|k|α e−|k|δ1t0 , |θ̂k(t0)| �
B̃
|k|α e−|k|δ1t0 ,

we can use Theorem 3 with the initial data w(t0) and θ(t0). Thus, if at t0,
we have

‖ŵ(t0)‖α � C̃, ‖θ̂(t0)‖α � B̃,

then for all t > t0 the decay rate of the Fourier coefficients of the solution
remains exponential with k.
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By (3), we have

dθ̂k(t)

dt
= δ1|k|θ̂k(t) − µ|k|2θ̂k(t)

+
∑

l∈Z2

〈k, l⊥〉
|l|2 ŵl(t)θ̂k−l(t)e

δ1t(|k|−|l|−|k−l|),

dŵk(t)

dt
= δ1|k|ŵk(t) − ν|k|2ŵk(t)

+
∑

l∈Z2

〈k, l⊥〉
|l|2 ŵl(t)ŵk−l(t)e

δ1t(|k|−|l|−|k−l|) + ik1θ̂k(t)

From the inequality |k| � |l|+|k−l| it follows that eδ1t(|k|−|l|−|k−l|) � 1.
A calculation, similar to that in the proof of Theorems 1 and 2, shows that

d|θ̂k(t)|
dt

� δ1|k||θ̂k(t)| − µ|k|2|θ̂k(t)| +
∑

l∈Z2

∣∣∣
〈k, l⊥〉
|l|2

∣∣∣|ŵl(t)||θ̂k−l(t)|,

d|ŵk(t)|
dt

� |k|(|ŵk(t)|δ1 + |θ̂k(t)|) − ν|k|2|ŵk(t)|

+
∑

l∈Z2

∣∣∣
〈k, l⊥〉
|l|2

∣∣∣|ŵl(t)||ŵk−l(t)|

(11)

We fix a constant K which will be defined later. By Theorems 1 and 2, for

any t > 0 and k ∈ Z2 we have |wk(t)| �
C′

|k|α and |θk(t)| �
B′

|k|α . Thus, for

any t ∈ [0, t0] and |k| � K

|θ̂k(t)| �
B1

|k|α , |ŵk(t)| �
C1

|k|α (12)

where B1 = B′eKδ1t0 , C1 = C′eKδ1t0 .

As above, θ̂(0) ∈ Ω
(B)
α and ŵ(0) ∈ Ω

(C)
α . Assume that at some positive

τ ∈ [0, t0] the pair (θ̂(τ), ŵ(τ)) reaches the boundary of Ω
(B)
α × Ω

(C)
α . Then

we can estimate the sums on the right-hand side of (11) using Proposition 1:

d|θ̂k(t)|
dt

∣∣∣∣∣
t=τ

� |k|1−αδ1B + |k| 32−α
√
W0BA4 − µ|k|2|θ̂k(τ)|,

d|ŵk(t)|
dt

∣∣∣∣
t=τ

� |k| 32−α
√
W0CA5 + |k|1−α(B + δ1C) − ν|k|2|ŵk(τ)|,

(13)

where A4 and A5 are constants depending on the initial conditions.
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By (13), we can force the right-hand side of (11) to be negative on the

boundary of Ω
(B)
α × Ω

(C)
α for |k| � K by choosing K large enough, and thus

for such |k| the vector field on the boundary is directed inward.

Since for all other |k| we have (12), there exist constants B̃ = max(B,B1)

and C̃ = max(C, C1) such that for any t ∈ [0, t0] the pair (θ̂(t), ŵ(t)) belongs

to the region Ω
(B)
α × Ω

(C)
α . �

Proof of Theorem 5. Consider the classical iteration scheme. We
write Equations (3) in the integral form and consider the sequences

θ
(0)
k (t) = θk(0), w

(0)
k (t) = wk(0); (14)

θ
(n+1)
k (t) = e−|k|2tθ

(0)
k +

t∫

0

e−|k|2(t−s)
∑

l∈Z2

〈k, l⊥〉
|l|2 w

(n)
l (s)θ

(n)
k−l(s)ds,

w
(n+1)
k (t) = e−|k|2tw

(0)
k

+

t∫

0

e−|k|2(t−s)
( ∑

l∈Z2

〈k, l⊥〉
|l|2 w

(n)
l (s)w

(n)
k−l(s) + ik1θ

(n)
k (s)

)
ds. (15)

It is easy to check that θ
(n)
k (t) = θ

(n)

−k (t) and w
(n)
k (t) = w

(n)
−k (t). Hence

Lemmas 1 and 2 can be applied to all the functions θ(n)(t) and w(n)(t). We

proceed by induction. We show that for initial data from Φ(α) all {w(n)
k (t)}

and {θ(n)
k (t)} are bounded in Φ(α) uniformly with respect to n. Then we

show that {w(n)
k (t)} and {θ(n)

k (t)} are fundamental in the norm ‖ · ‖α and,
consequently, converge in Φ(α). By (15), the corresponding limits provide
a solution of (3).

Uniform bound. Assume that for some n ∈ N we have ‖θ(n)(t)‖α �

2N and ‖w(n)(t)‖α � 4N , where N is taken from the formulation of the
theorem. By Proposition 1,

∑

l∈Z2

∣∣∣
〈k, l⊥〉
|l|2

∣∣∣|w(n)
l (s)||θ(n)

k−l(s)| � 2NA6

√
W0|k|

3
2−α,

∑

l∈Z2

∣∣∣
〈k, l⊥〉
|l|2

∣∣∣|w(n)
l (s)||w(n)

k−l(s)| � 4NA7

√
W0|k|

3
2−α.
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Thus, for θ
(n+1)
k (t) and w

(n+1)
k (t) from (15), integrating with respect to s,

we find

|θ
(n+1)
k (t)| � 2NA6

√
W0|k|

−α− 1
2 + N|k|−α, (16)

|w
(n+1)
k (t)| � 4NA7

√
W0|k|

−α− 1
2 + |θ

(n+1)
k | + N|k|−α. (17)

By (16), for |k| > 4A2
6W0 we have

|θ
(n+1)
k (t)| � 2N|k|−α.

By (17), for |k| > 16A2
7W0 we have

|w
(n+1)
k (t)| � 4N|k|−α.

Denote K = 4W0 max(A2
6, 4A2

7). Then for k > K the inductive assumption
is satisfied.

For |k| � K Lemmas 1 and 2 imply

|θ
(n+1)
k (t)| �

√
Θ0, |w

(n+1)
k (t)| �

√
W0.

Setting Ñ = max(4N ,
√

Θ0K
α,

√W0K
α), for all k we get

‖θ(n)
k (t)‖α � Ñ < ‖w(n)

k (t)‖α � Ñ

uniformly with respect to n.

Convergence. Consider the functions g
(n+1)
k (t) = θ

(n+1)
k (t) − θ

(n)
k (t)

and g̃
(n+1)
k (t) = w

(n+1)
k (t) − w

(n)
k (t). From (15) it follows that

g
(n+1)
k (t) =

t∫

0

e−|k|2(t−s)
∑

l∈Z3

〈l⊥, k〉
|l|2

(
w

(n)
l (s)g

(n)
k−l(s) + g̃

(n)
l (s)θ

(n−1)
k−l (s)

)
ds,

g̃
(n+1)
k (t) =

t∫

0

e−|k|2(t−s)

[∑

l∈Z3

〈l⊥, k〉
|l|2 (w

(n)
l (s)g̃

(n)
k−l(s)

+ g̃
(n)
l (s)w

(n−1)
k−l (s)) + ik1g

(n)
k (s)

]
ds. (18)

Since, according to the first step of the proof, all θ(n)(t) and w(n)(t)
belong to Φ(α), we see that g(n)(t) and g̃(n)(t) also belong to Φ(α). Using
Proposition 1 and integrating over s, we find
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‖g(n+1)
k (t)‖α �

(
A8‖g(n)(t)‖α

√
W0 + A9‖g̃(n)(t)‖α

√
Θ0

)
|k|− 1

2 (1−e−|k|2t),

(19)

‖g̃(n+1)
k (t)‖α �

(
A10‖g̃(n)(t)‖αÑ |k|− 1

2 + |k|−1‖g(n)(t)‖α

)
(1 − e−|k|2t),

(20)

where A8, A9, and A10 are constants independent of k, t, and n. For

sufficiently large |k|t we can replace (1 − e−|k|2t) with 1 in the estimates
(19) and (20).

Since the power of |k| on the right-hand side of these inequalities
remains negative, for each given ε ∈ (0, 1) there exists Kε such that for
|k| > Kε we get

|g(n+1)
k (t)| � |k|−αε max(‖g(n)(t)‖α, ‖g̃(n)(t)‖α),

|g̃(n+1)
k (t)| � |k|−αε max(‖g(n)(t)‖α, ‖g̃(n)(t)‖α).

For |k| � Kε there exists Tε =
ε

(const)K2
ε

with some positive (const) such

that for any |k| � Kε and t ∈ [0, Tε] we can estimate (1−e−|k|2t) by
ε

(const)
.

Then (19) and (20) imply that for sufficiently large (const) and t ∈ [0, Tε]
we have

‖g(n+1)(t)‖α � ε|k|−α max(‖g(n)(t)‖α, ‖g̃(n)(t)‖α)

‖g̃(n+1)(t)‖α � ε|k|−α max(‖g(n)(t)‖α, ‖g̃(n)(t)‖α)
(21)

Note that Tε depends only on the constants in the inequalities (19), (20)
and, consequently, depends only on the initial conditions. By (21),

‖g(n)(t)‖α � εn max(‖g(0)(t)‖α, ‖g̃(0)(t)‖α),

‖g̃(n)(t)‖α � εn max(‖g(0)(t)‖α, ‖g̃(0)(t)‖α).

Thus, {θ(n)(t)} and {w(n)(t)} are Cauchy sequences in Φ(α). �
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Nonlinear Dynamics of a System

of Particle-Like Wavepackets
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This work continues our studies of nonlinear evolution of a system of wavepackets.

We study a wave propagation governed by a nonlinear system of hyperbolic PDE’s

with constant coefficients with the initial data being a multi-wavepacket. By def-

inition, a general wavepacket has a well-defined principal wave vector, and, as we

proved in previous works, the nonlinear dynamics preserves systems of wavepack-

ets and their principal wave vectors. Here we study the nonlinear evolution of

a special class of wavepackets, namely particle-like wavepackets. A particle-like

wavepacket is of a dual nature: on one hand, it is a wave with a well-defined

principal wave vector, on the other hand, it is a particle in the sense that it

can be assigned a well-defined position in the space. We prove that under the

nonlinear evolution a generic multi-particle wavepacket remains to be a multi-

particle wavepacket with high accuracy, and every constituting single particle-

like wavepacket not only preserves its principal wave number but also it has a

well-defined space position evolving with a constant velocity which is its group
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Fursikov / International Mathematical Series, Vol. 6, Springer, 2008 53
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velocity. Remarkably the described properties hold though the involved single

particle-like wavepackets undergo nonlinear interactions and multiple collisions in

the space. We also prove that if principal wavevectors of multi-particle wavepacket

are generic, the result of nonlinear interactions between different wavepackets is

small and the approximate linear superposition principle holds uniformly with

respect to the initial spatial positions of wavepackets. Bibliography: 41 titles.

1. Introduction

The principal object of our studies here is a general nonlinear evolutionary
system which describes wave propagation in homogeneous media governed
by hyperbolic PDE’s in Rd, d = 1, 2, 3, . . ., is the space dimension, of the
form

∂τU = −
i

̺
L(−i∇)U + F(U), U(r, τ)|τ=0 = h(r), r ∈ R

d, (1.1)

where (i) U = U(r, τ), r ∈ Rd, U ∈ C2J is a 2J-dimensional vector;
(ii) L(−i∇) is a linear selfadjoint differential (pseudodifferential) operator
with constant coefficients with the symbol L(k), which is a Hermitian 2J ×
2J matrix; (iii) F is a general polynomial nonlinearity; (iv) ̺ > 0 is a
small parameter. The properties of the linear part are described in terms of
dispersion relations ωn(k) (eigenvalues of the matrix L(k)). The form of the
equation suggests that the processes described by it involve two time scales.
Since the nonlinearity F(U) is of order one, nonlinear effects occur at times
τ of order one, whereas the natural time scale of linear effects, governed
by the operator L with the coefficient 1/̺, is of order ̺. Consequently,
the small parameter ̺ measures the ratio of the slow (nonlinear effects)
time scale and the fast (linear effects) time scale. A typical example of an
equation of the form (1.1) is the nonlinear Schrödinger equation (NLS) or a
system of NLS’s. Many more examples including a general nonlinear wave
equation and the Maxwell equations in periodic media truncated to a finite
number of bands are considered in [7, 8].

As in our previous works [7, 8], we consider here the nonlinear evolu-
tionary system (1.1) with the initial data h(r) being the sum of wavepackets.
The special focus of this paper is particle-like localized wavepackets which can
be viewed as quasiparticles. Recall that a general wavepacket is defined as
such a function h(r) that its Fourier transform ĥ(k) is localized in a β-
neighborhood of a single wavevector k∗, called principal wavevector, where
β is a small parameter. The simplest example of a wavepacket is a function
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of the form

ĥ(β;k) = β−de−ikr∗ ĥ
(k − k∗

β

)

gn(k∗), k ∈ R
d, (1.2)

where gn(k∗) is an eigenvector of the matrix L(k∗) and ĥ(k) is a scalar
Schwarz function (i.e., it is an infinitely smooth and rapidly decaying one).

Note that for ĥ (β,k) of the form (1.2) we have its inverse Fourier transform

h(β; r) = h(β(r − r∗))e
ik∗(r−r∗)gn(k∗), r ∈ R

d. (1.3)

Evidently, h(β, r) described by the above formula is a plane wave
eik∗rgn(k∗) modulated by a slowly varying amplitude h(β(r−r∗)) obtained
from h(z) by a spatial shift along the vector r∗ with a subsequent dilation
with a large factor 1/β. Clearly, the resulting amplitude has a typical spatial
extension proportional to β−1 and the spatial shift produces a noticeable
effect if |r∗| ≫ β−1. The spatial form of the wavepacket (1.3) naturally
allows us to interpret r∗ ∈ Rd as its position and, consequently, to consider
the wavepacket as a particle-like one with the position r∗ ∈ Rd. But how
one can define a position for a general wavepacket? Note that not every
wavepacket is a particle-like one. For example, let, as before, the function
h(r) be a scalar Schwarz function, and let us consider a slightly more general
than (1.3) function

h(β; r) = [h(β(r − r∗1)) + h(β(r − r∗2))]e
ik∗rgn(k∗), r ∈ R

d, (1.4)

where r∗1 and r∗2 are two arbitrary, independent vector variables. The wave
h(β, r) defined by (1.4) is a wavepacket with the wave number k∗ for any
choice of vectors r∗1 and r∗2, but it is not a particle-like wavepacket since it
does not have a single position r∗, but rather it is a sum of two particle-like
wavepackets with two positions r∗1 and r∗2.

Our way to introduce a general particle-like wavepacket h(β,k∗,
r∗0; r) with a position r∗0 is by treating it as a single element of a family
of wavepackets h(β,k∗, r∗; r) with r∗ ∈ Rd being another independent pa-
rameter. In fact, we define the entire family of wavepackets h(β,k∗, r∗; r),
r∗ ∈ Rd, subject to certain conditions allowing us to interpret any fixed
r∗ ∈ Rd as the position of h(β,k∗, r∗; r). Since we would like of course
a wavepacket to maintain under the nonlinear evolution its particle-like
property, it is clear that its definition must be sufficiently flexible to ac-
commodate the wavepacket evolutionary variations. In light of the above
discussion, the definition of the particle-like wavepacket with a transparent
interpretation of its particle properties turns into the key element of the
entire construction. It turns out that there is a precise description of a
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particle-like wavepacket, which is rather simple and physically transparent
and such a description is provided in Definition 2.2 below, see also Remarks
2.4, 2.5. The concept of the position is applicable to very general functions,
it does not require a parametrization of the whole family of solutions, which
was used, for example, in [25, 20, 21].

As in our previous works, we are interested in nonlinear evolution not
only a single particle-like wavepacket h(β,k∗, r∗; r), but a system {h(β,k∗l,
r∗l; r)} of particle-like wavepackets which we call multi-particle wavepacket.
Under certain natural conditions of genericity on k∗l, we prove here that un-
der the nonlinear evolution: (i) the multi-particle wavepacket remains to be
a multi-particle wavepacket; (ii) the principal wavevectors k∗l remain con-
stant; (ii) the spatial position r∗l of the corresponding wavepacket evolves
with the constant velocity which is exactly its group velocity 1

̺∇ωn(k∗l).

The evolution of positions of wavepackets becomes the most simple in the
case, where at τ = 0 we have r∗l = 1

̺r
0
∗, i.e., the case, where spatial posi-

tions are bounded in the same spatial scale in which their group velocities
are bounded. In this case, the evolution of the positions is described by the
formula

rl(τ) =
1

̺
[r0

∗ + τ∇ωnl
(k∗l)], τ � 0. (1.5)

The rectilinear motion of positions of particle-like wavepackets is a direct
consequence of the spatial homogeneity of the master system (1.1). If
the system were not spatially homogeneous, the motion of the positions
of particle-like wavepackets would not be uniform, but we do not study that
problem in this paper. In the rescaled coordinates y = ̺r, the trajectory
of every particle is a fixed, uniquely defined straight line defined uniquely
if ̺/β → 0 as ̺, β → 0. Notice that under the above-mentioned generic-
ity condition, the uniform and independent motion (1.5) of the positions of
all involved particle-like wavepackets {h(β,k∗l, r∗l; r)} persists though they
can collide in the space. In the latter case, they simply pass through each
other without significant nonlinear interactions, and the nonlinear evolu-
tion with high accuracy is reduced just to a nonlinear evolution of shapes
of the particle-like wavepackets. In the case, where the set of the principal
wavevectors {k∗l} satisfy certain resonance conditions, some components of
the original multi-particle wavepacket can evolve into a more complex struc-
ture which can be only partly localized in the space and, for instance, can
be needle- or pancake-like. We do not study in detail those more complex
structures here.
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Now let us discuss in more detail the superposition principle intro-
duced and studied for general multi-wavepackets in [8] in the particular
case, where initially all r∗l = 0. Here we consider multi-particle wavepack-
ets with arbitrary r∗l and develop a new argument based on the analysis
of an averaged wavepacket interaction system introduced in [7]. Assume
that the initial data h for the evolution equation (1.1) is the sum of a finite
number of wavepackets (particle-like wavepackets) hl, l = 1, . . . , N , i.e.,

h = h1 + . . . + hN , (1.6)

where the monochromaticity of every wavepacket hl is characterized by
another small parameter β. The well-known superposition principle is a
fundamental property of every linear evolutionary system, stating that the
solution U corresponding to the initial data h as in (1.6) equals

U = U1 + . . . + UN for h = h1 + . . . + hN , (1.7)

where Ul is the solution to the same linear problem with the initial data hl.

Evidently, the standard superposition principle cannot hold exactly as
a general principle for a nonlinear system, and, at the first glance, there is
no expectation for it to hold even approximately. We show though that, in
fact, the superposition principle does hold with high accuracy for general
dispersion nonlinear wave systems such as (1.1) provided that the initial
data are a sum of generic particle-like wavepackets, and this constitutes
one of the subjects of this paper. Namely, the superposition principle for
nonlinear wave systems states that the solution U corresponding to the
multi-particle wavepacket initial data h as in (1.6) satisfies

U = U1 + . . . + UN + D for h = h1 + . . . + hN , where D is small.

A more detailed statement of the superposition principle for nonlinear evolu-
tion of wavepackets is as follows. We study the nonlinear evolution equation
(1.1) on a finite time interval

0 � τ � τ∗, where τ∗ > 0 is a fixed number (1.8)

which may depend on the L∞ norm of the initial data h but, importantly,
τ∗ does not depend on ̺. We consider classes of initial data such that wave
evolution governed by (1.1) is significantly nonlinear on time interval [0, τ∗]
and the effect of the nonlinearity F (U) does not vanish as ̺ → 0. We
assume that β, ̺ satisfy

0 < β � 1, 0 < ̺ � 1, β2/̺ � C1 with some C1 > 0. (1.9)
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The above condition of boundedness on the dispersion parameter β2/̺ en-
sures that the dispersion effects are not dominant and they do not suppress
nonlinear effects, see [7, 8] for a discussion.

Let us introduce the solution operator S(h)(τ) : h → U(τ) relating
the initial data h of the nonlinear evolution equation (1.1) to its solution
U(t). Suppose that the initial state is a system of particle-like wavepack-
ets or multi-particle wavepacket, namely h =

∑

hl with hl, l = 1, . . . , N ,
being “generic” wavepackets. Then for all times 0 � τ � τ∗ the following
superposition principle holds:

S
(

N
∑

l=1

hl

)

(τ) =

N
∑

l=1

S(hl)(τ) + D(τ), (1.10)

‖D(τ)‖E = sup
0�τ�τ∗

‖D(τ)‖L∞ � Cδ
̺

β1+δ
for any small δ > 0. (1.11)

Obviously, the right-hand side of (1.11) may be small only if ̺ � C1β.
There are examples (see [7]) in which D(τ) is not small for ̺ = C1β. In
what follows, we refer to a linear combination of particle-like wavepackets
as a multi-particle wavepacket, and to single particle-like wavepackets which
constitutes the multi-particle wavepacket as component particle wavepack-
ets.

Very often in theoretical studies of equations of the form (1.1) or ones
reducible to it, a functional dependence between ̺ and β is imposed, re-
sulting in a single small parameter. The most common scaling is ̺ = β2.
The nonlinear evolution of wavepackets for a variety of equations which can
be reduced to the form (1.1) was studied in numerous physical and mathe-
matical papers, mostly by asymptotic expansions of solutions with respect
to a single small parameter similar to β, see [10, 12, 16, 18, 22, 24, 26,
32, 34, 36, 37] and references therein. Often the asymptotic expansions
are based on a specific ansatz prescribing a certain form to the solution.
In our studies here we do not use asymptotic expansions with respect to a
small parameter and do not prescribe a specific form to the solution, but
we impose conditions on the initial data requiring it to be a wavepacket or
a linear combination of wavepackets. Since we want to establish a general
property of a wide class of systems, we apply a general enough dynami-
cal approach. There is a number of general approaches developed for the
studies of high-dimensional and infinite-dimensional nonlinear evolutionary
systems of hyperbolic type, see [9, 11, 17, 19, 23, 29, 33, 36, 38, 40, 41]
and references therein. The approach we develop here is based on the intro-
duction of a wavepacket interaction system. We show in [8] and here that
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solutions to this system are in a close relation to solutions of the original
system.

The superposition principle implies, in particular, that in the process
of nonlinear evolution every single wavepacket propagates almost indepen-
dently of other wavepackets (even though they may “collide” in physical
space for a certain period of time) and the exact solution equals the sum
of particular single wavepacket solutions with high precision. In particular,
the dynamics of a solution with multi-wavepacket initial data is reduced
to dynamics of separate solutions with single wavepacket data. Note that
the nonlinear evolution of a single wavepacket solution for many problems
is studied in detail, namely it is well approximated by its own nonlinear
Schrödinger equation (NLS), see [16, 22, 26, 27, 36, 37, 38, 7] and ref-
erences therein.

Let us give now an elementary physical argument justifying the super-
position principle which goes as follows. If there would be no nonlinearity,
the system would be linear and, consequently, the superposition principle
would hold exactly. Hence any deviation from it is due to the nonlinear
interactions between wavepackets, and one has to estimate their impact.
Suppose that initially at time τ = 0 the spatial extension s of every involved
wavepacket is characterized by the parameter β−1 as in (1.3). Assume also
(and it is quite an assumption) that the involved wavepackets evolving non-
linearly maintain somehow their wavepacket identities, including the group
velocities and the spatial extensions. Then, consequently, the spatial ex-
tension of every involved wavepacket is proportional to β−1 and its group
velocity vl is proportional to ̺−1. The difference ∆v between any two dif-
ferent group velocities is also proportional to ̺−1. Then the time when
two different wavepackets overlap in the space is proportional to s/|∆v| and
hence to ̺/β. Since the nonlinear term is of order one, the magnitude of
the impact of the nonlinearity during this time interval should be roughly
proportional to ̺/β, which results in the same order of the magnitude of
D in (1.10)–(1.11). Observe that this estimate is in agreement with our
rigorous estimate of the magnitude of D in (1.11) if we set there δ = 0.

The rigorous proof of the superposition principle presented here is not
directly based on the above argument since it already implicitly relies on the
principle. Though some components of the physical argument can be found
in our rigorous proof. For example, we prove that the involved wavepackets
maintain under the nonlinear evolution constant values of their wavevectors
with well defined group velocities (the wavepacket preservation). Theorem
6.12 allows us to estimate spatial extensions of particle-like wavepackets
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under the nonlinear evolution. The proof of the superposition principle for
general wavepackets provided in [8] is based on general algebraic-functional
considerations and on the theory of analytic operator expansions in Banach
spaces. Here we develop an alternative approach with a proof based on
properties of the wavepacket interaction systems introduced in [7].

To provide a flexibility in formulating more specific statements re-
lated to the spatial localization of wavepackets, we introduce a few types of
wavepackets:

• a single particle-like wavepacket w which is characterized by the follow-
ing properties: (a) its modal decomposition involves only wavevectors
from β-vicinity of a single wavevector k∗, where β > 0 is a small para-
meter; (b) it is spatially localized in all directions and can be assigned
its position r∗;

• a multi-particle wavepacket which is a system {wl} of particle-like
wavepackets with the corresponding sets of wavevectors {k∗l} and po-
sitions {r∗l};

• a spatially localized multi-wavepacket which is a system {wl} with wl

being either a particle-like wavepacket or a general wavepacket.

We would like to note that a more detailed analysis, which is left for
another paper, indicates that, under certain resonance conditions, nonlin-
ear interactions of particle-like wavepackets may produce a spatially localized
wavepacket w characterized by the following properties: (i) its modal decom-
position involves only wavevectors from a β-vicinity of a single wavevector
k∗, where β > 0 is a small parameter; (ii) it is only partly spatially localized
in some, not necessarily all directions, and, for instance, it can be needle-
or pancake-like.

We also would like to point out that the particular form (1.1) of the
dependence on the small parameter ̺ is chosen so that appreciable nonlinear
effects occur at times of order one. In fact, many important classes of prob-
lems involving small parameters can be readily reduced to the framework
of (1.1) by a simple rescaling. It can be seen from the following examples.
The first example is a system with a small nonlinearity

∂tv = −iLv + αf(v), v|t=0 = h, 0 < α ≪ 1, (1.12)

where the initial data is bounded uniformly in α. Such problems are reduced
to (1.1) by the time rescaling τ = tα. Note that here ̺ = α and the finite
time interval 0 � τ � τ∗ corresponds to the long time interval 0 � t � τ∗/α.
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The second example is a system with small initial data considered on
long time intervals. The system itself has no small parameters, but the
initial data are small, namely

∂tv = −iLv + f0(v), v|t=0 = α0h, 0 < α0 ≪ 1, where (1.13)

f0(v) = f
(m)
0 (v) + f

(m+1)
0 (v) + . . . ,

where α0 is a small parameter and f (m)(v) is a homogeneous polynomial
of degree m � 2. After rescaling v = α0V we obtain the following equation
with a small nonlinearity:

∂tV = −iLV + αm−1
0

[

f
(m)
0 (V) + α0f

0(m+1)(V) + . . .
]

, V|t=0 = h, (1.14)

which is of the form (1.12) with α = αm−1
0 . Introducing the slow time

variable τ = tαm−1
0 , we get from the above an equation of the form (1.1),

namely

∂τV = −
i

αm−1
0

LV +
[

f (m)(V) + α0f
(m+1)(V) + . . .

]

, V|t=0 = h, (1.15)

where the nonlinearity does not vanish as α0 → 0. In this case, ̺ = αm−1
0

and the finite time interval 0 � τ � τ∗ corresponds to the long time interval
0 � t � τ∗/αm−1

0 with small α0 ≪ 1.

The third example is related to a high-frequency carrier wave in the
initial data. To be concrete, we consider the nonlinear Schrödinger equation

∂τU − i∂2
xU + iα|U |2U,

U |τ=0 = h1(Mβx)eiMk∗1x + h2(Mβx)eiMk∗2x + c.c.,
(1.16)

where c.c. stands for the complex conjugate of the prior term and M ≫ 1
is a large parameter. Equation (1.16) can be readily recast into the form
(1.1) by the change of variables y = Mr yielding

∂τU = −i
1

̺
∂2

rU + iα|U |2U,

U |τ=0 = h1(βr)eik∗1r + h2(βr)eik∗2r + c.c., (1.17)

where ̺ =
1

M2
≪ 1.

Summarizing the above analysis, we list below important ingredients
of our approach.

• The wave nonlinear evolution is analyzed based on the modal decom-
position with respect to the linear part of the system. The significance
of the modal decomposition to the nonlinear analysis is based on the
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following properties: (i) the wave modal amplitudes do not evolve un-
der the linear evolution; (ii) the same amplitudes evolve slowly under
the nonlinear evolution; (iii) modal decomposition is instrumental to
the wavepacket definition including its spatial extension and the group
velocity.

• Components of multi-particle wavepacket are characterized by their
wavevectors k∗l, band numbers nl, and spatial positions r∗l. The
nonlinear evolution preserves k∗l and nl, whereas the spatial positions
evolve uniformly with the velocities 1

̺∇ωnl
(k∗l).

• The problem involves two small parameters β and ̺ respectively in
the initial data and coefficients of the master equation (1.1). These
parameters scale respectively (i) the range of wavevectors involved in
its modal composition, with β−1 scaling its spatial extension, and (ii)
̺ scaling the ratio of the slow and the fast time scales. We make no
assumption on the functional dependence between β and ̺, which are
essentially independent and are subject only to inequalities.

• The nonlinear evolution is studied for a finite time τ∗ which may de-
pend on, say, the amplitude of the initial excitation, and, importantly,
τ∗ is long enough to observe appreciable nonlinear phenomena which
are not vanishingly small. The superposition principle can be extended
to longer time intervals up to blow-up time or even infinity if relevant
uniform in β and ̺ estimates of solutions in appropriate norms are
available.

• In the chosen slow time scale there are two fast wave processes with
typical time scale of order ̺ which can be attributed to the linear oper-
ator L: (i) fast time oscillations resulting in time averaging and conse-
quent suppression of many nonlinear interactions; (ii) fast wavepacket
propagation with large group velocities resulting in effective weaken-
ing of nonlinear interactions which are not time-averaged because of
resonances. It is these two processes provide mechanisms leading to
the superposition principle.

The rest of the paper is organized as follows. In the following Subsec-
tion 2.1, we introduce definitions of wavepackets, multi-wavepackets, and
particle wavepackets. In Subsection 2.1, we also formulate and briefly dis-
cuss some important results of [7] which are used in this paper, and, in Sub-
section 2.2, we formulate new results. In Section 3, we formulate conditions
imposed on the linear and the nonlinear parts of the evolution equation (1.1)
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and also introduce relevant concepts describing resonance interactions inside
wavepackets. In Section 4, we introduce an integral form of the basic evolu-
tion equation and study basic properties of involved operators. In Section
5, we introduce a wavepacket interaction system describing the dynamics of
wavepackets. In Section 6, we first define an averaged wavepacket interac-
tion system which plays a fundamental role in the analysis of the dynamics
of multi-wavepackets and then prove that solutions to this system approxi-
mate solutions to the original equation with high accuracy. We also discuss
there properties of averaged nonlinearities, in particular, for universally and
conditionally universal invariant wavepackets, and prove the fundamental
theorems on preservation of multi-particle wavepackets, namely Theorems
6.13 and 2.10. In Section 7, we prove the superposition principle using an
approximate decoupling of the averaged wavepacket interaction system. In
the last subsection of Section 7, we prove some generalizations to the cases
involving nongeneric resonance interactions such as the second harmonic
and third harmonic generations.

2. Statement of Results

This section consists of two subsections. In the first one, we introduce basic
concepts and terminology and formulate relevant results from [7] which are
used latter on, and in the second one, we formulate new results of this paper.

2.1. Wavepackets and their basic properties.

Since both linear operator L(−i∇) and nonlinearity F(U) are translation
invariant, it is natural and convenient to recast the evolution equation (1.1)
by applying to it the Fourier transform with respect to the space variables
r, namely

∂τ Û(k) = −
i

̺
L(k)Û(k) + F̂ (Û)(k), Û(k)

∣

∣

∣

τ=0
= ĥ(k), (2.1)

where Û(k) is the Fourier transform of U(r), i.e.,

Û(k) =

∫

Rd

U(r)e−ir·k dr, U(r)

= (2π)−d

∫

Rd

Û(k)eir·k dr, where r,k ∈ R
d, (2.2)
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and F̂ is the Fourier form of the nonlinear operator F(U) involving con-
volutions, see (3.9) for details. Equation (2.1) is written in terms of the
Fourier modes, and we call it the modal form of the original equation (1.1).
The most of our studies are conducted first for the modal form (2.1) of the
evolution equation and carried over then to the original equation (1.1).

The nonlinear evolution equations (1.1), (2.1) are commonly inter-
preted as describing wave propagation in a nonlinear medium. We assume
that the linear part L(k) is a 2J × 2J Hermitian matrix with eigenvalues
ωn,ζ(k) and eigenvectors gn,ζ(k) satisfying

L(k)gn,ζ(k) = ωn,ζ(k)gn,ζ(k), ζ = ±,

ωn,+(k) � 0, ωn,−(k) � 0, n = 1, . . . , J,
(2.3)

where ωn,ζ(k) are real-valued, continuous for all nonsingular k functions
and vectors gn,ζ(k) ∈ C2J have unit length in the standard Euclidean norm.
The functions ωn,ζ(k), n = 1, . . . , J , are called dispersion relations between
the frequency ω and the wavevector k with n being the band number. We
assume that the eigenvalues are naturally ordered by

ωJ,+(k) � . . . � ω1,+(k) � 0 � ω1,−(k) � . . . � ωJ,−(k) (2.4)

and for almost every k (with respect to the standard Lebesgue measure)
the eigenvalues are distinct and, consequently, the above inequalities be-
come strict. Importantly, we also assume the following diagonal symmetry
condition:

ωn,−ζ(−k) = −ωn,ζ(k), ζ = ±, n = 1, . . . , J, (2.5)

which is naturally presented in many physical problems (see also Remark
3.3 below) and is a fundamental condition imposed on the matrix L(k).
Very often we use the abbreviation

ωn,+(k) = ωn(k). (2.6)

In particular, we obtain from (2.5)

ωn,−(k) = −ωn(−k), ωn,ζ(k) = ζωn(ζk), ζ = ±. (2.7)

In addition to that, in many examples we also have

gn,ζ(k) = g∗
n,−ζ(−k), where z∗ is complex conjugate to z. (2.8)

We also use rather often the orthogonal projection Πn,ζ(k) in C2J onto the
complex line defined by the eigenvector gn,ζ(k), namely

Πn,ζ(k)û(k) = ũn,ζ(k)gn,ζ(k) = ûn,ζ(k), n = 1, . . . , J, ζ = ±. (2.9)
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As it is indicated by the title of this paper, we study the nonlinear
problem (1.1) for initial data ĥ in the form of a properly defined particle-
like wavepackets or, more generally, a sum of such wavepackets to which we
refer as multi-particle wavepacket. The simplest example of a wavepacket w
is provided by the following formula:

w(β; r) = Φ+(β(r − r∗))e
ik∗(r−r∗)gn,+(k∗), r ∈ R

d, (2.10)

where k∗ ∈ Rd is a wavepacket principal wavevector, n is a band number,
and β > 0 is a small parameter. We refer to the pair (n,k∗) in (2.10) as a
wavepacket nk-pair and r∗ as a wavepacket position. Observe that the space
extension of the wavepacket w(β; r) is proportional to β−1 and it is large
for small β. Notice also that, as β → 0, the wavepacket w(β; r) as in (2.10)
tends, up to a constant factor, to the elementary eigenmode eik∗·rgn,ζ(k∗) of
the operator L(−i∇) with the corresponding eigenvalue ωn,ζ(k∗). We refer
to wavepackets of the simple form (2.10) as simple wavepackets to underline
the very special way the parameter β enters its representation. The function
Φζ(r), which we call wavepacket envelope, describes its shape, and it can be
any scalar complex-valued regular enough function, for example, a function
from Schwarz space. Importantly, as β → 0, the L∞ norm of a wavepacket
(2.10) remains constant. Hence nonlinear effects in (1.1) remain strong.

Evolution of wavepackets in problems which can be reduced to the
form (1.1) was studied for a variety of equations in numerous physical and
mathematical papers, mostly by asymptotic expansions with respect to a
single small parameter similar to β, see [10, 12, 16, 18, 22, 24, 26, 32,
34, 36, 37] and references therein. We are interested in general properties
of evolutionary systems of the form (1.1) with wavepacket initial data which
hold for a wide class of nonlinearities and all values of the space dimensions
d and the number 2J of the system components. Our approach is not
based on asymptotic expansions, but involves two small parameters β and
̺ with mild constraints (1.9) on their relative smallness. The constraints
can be expressed in the form of either certain inequalities or equalities, and
a possible simple form of such a constraint can be the power law

β = C̺κ , where C > 0 and κ > 0 are arbitrary constants. (2.11)

Of course, general features of wavepacket evolution are independent of par-
ticular values of the constant C. In addition to that, some fundamental
properties such as wavepacket preservation are also totally independent of
the particular choice of the values of κ in (2.11), whereas other properties
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are independent of κ as it varies in certain intervals. For instance, disper-
sion effects are dominant for κ < 1/2, whereas the wavepacket superposition
principle of [7] holds for κ < 1.

To eliminate unbounded (as ̺ → 0) linear term in (2.1) by replacing
it with a highly oscillatory factor, we introduce the slow variable û(k, τ) by
the formula

Û(k, τ) = e−
iτ
̺
L(k)û(k, τ) (2.12)

and get the following equation for û(k, τ):

∂τ û = e
iτ
̺
LF̂(e

−iτ
̺

Lû), û|τ=0 = ĥ, (2.13)

which, in turn, can be transformed by time integration into the integral
form

û = F(û) + ĥ, F(û) =

τ
∫

0

e
iτ′

̺
LF̂(e

−iτ′

̺
Lû(τ ′))dτ ′ (2.14)

with an explicitly defined nonlinear polynomial integral operator F = F(̺).
This operator is bounded uniformly with respect to ̺ in the Banach space
E = C([0, τ∗], L

1). This space has functions v̂(k, τ), 0 � τ � τ∗, as elements
and has the norm

‖v̂(k, τ)‖E = ‖v̂(k, τ)‖C([0,τ∗],L1) = sup
0�τ�τ∗

∫

Rd

|v̂(k, τ)| dk, (2.15)

where L1 is the Lebesgue space of functions v̂(k) with the standard norm

‖v̂(·)‖L1 =

∫

Rd

|v̂(k)| dk. (2.16)

Sometimes, we use more general weighted spaces L1,a with the norm

‖v̂‖L1,a =

∫

Rd

(1 + |k|)a|v̂(k)| dk, a � 0. (2.17)

The space C([0, τ∗], L
1,a) with the norm

‖v̂(k, τ)‖Ea
= sup

0�τ�τ∗

∫

Rd

(1 + |k|)a|v̂(k, τ)|dk (2.18)

is denoted by Ea, and, obviously, E0 = E.

A rather elementary existence and uniqueness theorem (Theorem 4.8)

implies that if ĥ ∈ L1,a, then for a small and, importantly, independent of
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̺ constant τ∗ > 0 this equation has a unique solution

û(τ) = G(F(̺), ĥ)(τ), τ ∈ [0, τ∗], û ∈ C1([0, τ∗], L
1,a), (2.19)

where G denotes the solution operator for Equation (2.14). If û(k, τ) is a
solution to Equation (2.14), we call the function U(r, τ) defined by (2.12),

(2.2) an F-solution to Equation (1.1). We denote by L̂1 the space of func-

tions V(r) such that their Fourier transform V̂(k) belongs to L1 and define

‖V‖L̂1 = ‖V̂‖L1. Since

‖V‖L∞ � (2π)−d‖V̂‖L1 and L̂1 ⊂ L∞, (2.20)

F -solutions to (1.1) belong to C1([0, τ∗], L̂
1) ⊂ C1([0, τ∗], L

∞).

We would like to define wavepackets in a form which explicitly allows
them to be real valued. This is accomplished based on the symmetry (2.5) of
the dispersion relations, which allows us to introduce a doublet wavepacket

w(β; r) = Φ+(β(r − r∗))e
ik∗(r−r∗)gn,+(k∗)

+ Φ−(β(r − r∗))e
−ik∗(r−r∗)gn,−(−k∗). (2.21)

Such a wavepacket is real if Φ−(r), gn,−(−k∗) are complex conjugate re-
spectively to Φ+(r), gn,+(k∗), i.e., if

Φ−(r) = Φ∗
+(r), gn,+(k∗) = gn,−(−k∗)

∗. (2.22)

Usually, considering wavepackets with nk-pair (n,k∗), we mean doublet
ones as in (2.21), but sometimes we use the term wavepacket also for an
elementary one as defined by (2.10). Note that the latter use is consistent
with the former one since it is possible to take one of two terms in (2.21) to
be zero.

Below we give a precise definition of a wavepacket. To identify char-
acteristic properties of a wavepacket suitable for our needs, let us look at
the Fourier transform ŵ(β;k) of an elementary wavepacket w(β; r) defined
by (2.10), i.e.,

ŵ(β;k) = β−de−ik·r∗Φ̂(β−1(k − k∗))gn,ζ(k∗). (2.23)

We call such ŵ(β;k) a wavepacket too, and assume that it possesses the
following properties: (i) its L1 norm is bounded (in fact, constant) uniformly
in β → 0; (ii) for every ε > 0 the value ŵ(β;k) → 0 for every k outside a
β1−ε-neighborhood of k∗, and the convergence is faster than any power of
β if Φ is a Schwarz function. To explicitly interpret the last property, we
introduce a cutoff function Ψ(η) which is infinitely smooth and such that

Ψ(η) � 0, Ψ(η) = 1 for |η| � 1/2, Ψ(η) = 0 for |η| � 1, (2.24)
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and its shifted/rescaled modification

Ψ(β1−ε,k∗;k) = Ψ(β−(1−ε)(k − k∗)). (2.25)

If an elementary wavepacket w(β; r) is defined by (2.23) with Φ(r) being a
Schwarz function, then

‖(1 − Ψ(β1−ε,k∗; ·))ŵ(β; ·)‖ � Cε,sβ
s, 0 < β � 1, (2.26)

and the inequality holds for arbitrarily small ε > 0 and arbitrarily large
s > 0. Based on the above discussion, we give the following definition of a
wavepacket which is a minor variation of [8, Definiton 8].

Definition 2.1 (single-band wavepacket). Let ε be a fixed number,
0 < ε < 1. For a given band number n ∈ {1, . . . , J} and a principal

wavevector k∗ ∈ Rd a function ĥ(β;k) is called a wavepacket with nk-
pair (n,k∗) and the degree of regularity s > 0 if for small β < β0 with

some β0 > 0 it satisfies the following conditions: (i) ĥ(β;k) is L1-bounded
uniformly in β, i.e.,

‖ĥ(β; ·)‖L1 � C, 0 < β < β0 for some C > 0; (2.27)

(ii) ĥ(β;k) is composed essentially of two functions ĥζ(β;k), ζ = ±, which
take values in the nth band eigenspace of L(k) and are localized near ζk∗,
namely

ĥ(β;k) = ĥ−(β;k) + ĥ+(β;k) + Dh, 0 < β < β0, (2.28)

where the components ĥ±(β;k) satisfy the condition

ĥζ(β;k) = Ψ(β1−ε/2, ζk∗;k)Πn,ζ(k)ĥζ(β;k), ζ = ±, (2.29)

where Ψ(·, ζk∗, β
1−ε) is defined by (2.25) and Dh is small, namely it satisfies

the inequality

‖Dh‖L1 � C′βs, 0 < β < β0, for some C′ > 0. (2.30)

The inverse Fourier transform h(β; r) of a wavepacket ĥ(β;k) is also called
a wavepacket.

Evidently, if a wavepacket has the degree of regularity s, it also has
a smaller degree of regularity s′ � s with the same ε. Observe that the
degree of regularity s is related to the smoothness of Φζ(r) as in (2.10) so
that the higher is the smoothness, the higher s/ε can be taken. Namely, if

Φ̂ζ ∈ L1,a, then one can take in (2.30) any s < aε according to the following
inequality:

∫

|(1 − Ψ(βεη))Φ̂ζ(η)|dη � βaε‖Φ̂ζ‖L1,a � Cβs. (2.31)
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For example, if we define ĥζ similarly to (2.29) and (2.23) by the
formula

ĥζ(β;k) = Ψ(β−(1−ε)(k − k∗))β
−dΦ̂ζ(β

−1(k − k∗))Πn,ζ(k)g, (2.32)

where Φ̂ζ(k) is a scalar Schwarz function and g is a vector, then, according

to (2.31), the estimate (2.30) holds and ĥζ(β;k) is a wavepacket with
arbitrarily large degree of regularity s for any given ε such that 0 < ε < 1.

Now let us define a particle-like wavepacket following to the ideas
indicated in the Introduction.

Now let us define a particle-like wavepacket following to the ideas
indicated in the Introduction.

Definition 2.2 (single-band particle-like wavepacket). We call a func-

tion ĥ(β;k) = ĥ(β, r∗;k), r∗ ∈ Rd, a particle-like wavepacket with the posi-
tion r∗, nk-pair (n,k∗) and the degree of regularity s > 0 if (i) for every r∗
it is a wavepacket with the degree of regularity s in the sense of the above
Definition 2.1 with constants C, C′ independent of r∗ ∈ Rd; (ii) ĥζ in (2.28)
satisfy the inequalities

∫

Rd

|∇k(eir∗kĥζ(β, r∗;k))|dk � C1β
−1−ε, ζ = ±, r∗ ∈ R

d, (2.33)

where C1 > 0 is an independent of β and r∗ constant, ε is the same as
in Definition 2.1. The inverse Fourier transform h(β; r) of a wavepacket

ĥ(β;k) is also called a particle-like wavepacket with the position r∗. We
also introduce the quantity

a(r′∗, ĥζ(r∗)) = ‖∇k(eir′
∗
kĥζ(β, r∗;k))‖L1 (2.34)

which we refer to as the position detection function for the wavepacket
ĥ(β, r∗;k).

Note that the left-hand side of (2.33) coincides with a(r∗, ĥζ(r∗)).

Remark 2.3. If ĥ(β;k)= ĥ(β, r∗;k) is a particle-like wavepacket with

a position r∗, then, applying the inverse Fourier transform to ĥζ(β, r∗;k)

and ∇kĥζ(β, r∗;k) as in (2.2), we obtain a function h(β, r∗; r) which satisfies

|r− r∗||hζ(β, r∗; r)| � (2π)−da(r∗, ĥζ) (2.35)

implying that |hζ(β; r)| � a(r∗, ĥζ)|r − r∗|
−1. This inequality is useful

for large |r − r∗|, whereas for bounded |r − r∗| (2.27) implies the simpler
inequality

|hζ(β, r∗; r)| � (2π)−d‖ĥ‖L1 � C. (2.36)
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The inequalities (2.35) and (2.33) suggest that the quantity a(r∗, ĥζ(r∗))

can be interpreted as a size of the particle-like wavepacket ĥζ(β, r∗;k).

Evidently a particle-like wavepacket is a wave and not a point. Hence
the above definition of its position has a degree of uncertainty, allowing, for
example, to replace r∗ by r∗ + a with a fixed vector a (but not allowing
unbounded values of a). The above definition of a particle-like wavepacket
position was crafted to meet the following requirements: (i) a system of
particle-like wavepackets remains to be such a system under the nonlin-
ear evolution; (ii) it is possible (in an appropriate scale) to describe the
trajectories traced out by the positions of a system of particle-wavepackets.

Remark 2.4. Typical dependence of the inverse Fourier transform
h(β, r∗; r) of a wavepacket ĥ(β, r∗;k) on r∗ is provided by spatial shifts by
r∗ as in (2.21), namely

h(β, r∗; r) = Φ(β(r − r∗))e
ik∗·(r−r∗)g

with a constant g. For such a function h and for any r′∗ ∈ Rd

a(r′∗, ĥ(r∗)) = ‖∇k(β−deikr
′

∗ ĥ(β, r∗;k))‖L1

= ‖∇k(β−deikr
′

∗e−ikr∗Φ̂(k))‖L1‖g‖

= ‖g‖

∫

|i(r′∗ − r∗)Φ̂(k′) +
1

β
∇k′Φ̂(k′)|dk′.

Hence, taking for simplicity ‖g‖ = 1, we obtain

|r′∗ − r∗|‖Φ̂‖L1 +
1

β
‖∇Φ̂‖L1 � a(r′∗, ĥ(r∗))

� ||r′∗ − r∗|‖Φ̂‖L1 −
1

β
‖∇Φ̂‖L1 |. (2.37)

For small |r′∗−r∗| ≪
1
β we see that the position detection function a(r′∗, ĥ) is

of order O(β−1), which is in the agreement with (2.33). For large |r′∗−r∗| ≫
1
β the a(r′∗, ĥ) is approximately proportional to |r′∗ − r∗|. Therefore, if we

know a(r′∗, ĥ(r∗)) as a function of r′∗, we can recover the value of r∗ with
the accuracy of order O(β−1−ε) with arbitrary small ε. Namely, let us take
arbitrary small ε > 0 and some C > 0 and consider the set

B(β) = {r′∗ : a(r′∗, ĥ(r∗)) � Cβ−1−ε} ⊂ R
d, (2.38)
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which should provide an approximate location of r∗. According to (2.37),
r∗ lies in this set for small β. If r′∗ lies in this set, then

Cβ−1−ε � a(r′∗, ĥ(r∗)) � ||r′∗ − r∗|‖Φ̂‖L1 −
1

β
‖∇Φ̂‖L1 |

and |r′∗ − r∗| � C1β
−1−ε + C2β

−1. Hence the diameter of the B(β) is
of order O(β−1−ε). Observe, taking into account Remark 2.3, that the
accuracy of the wavepacket location obviously cannot be better than its
size a(r∗, ĥζ(r∗)) ∼ β−1. The above analysis suggests that the function
h(β, r∗; r) can be viewed as pseudoshifts of the function h(β,0; r) by vec-
tors r∗ ∈ Rd in the sense that the regular spatial shift by r∗ is combined
with a variation of the shape of h(β,0; r) which is limited by the funda-
mental condition (2.33). In other words, according Definition 2.2, as a
wavepacket moves from 0 to r∗ by the corresponding spatial shift, it is
allowed to change its shape subject to the fundamental condition (2.33).
The later is instrumental for capturing nonlinear evolution of particle-like
wavepackets governed by an equation of the form (1.1).

Remark 2.5. The set B(β) defined by (2.38) gives an approximate

location of the support of the function ĥ(β, r∗;k) not only in the spe-
cial case considered in Remark 2.4, but also when h(β, r∗; r) is a general
particle-like wavepacket. One can apply with obvious modifications the
above argument for eikr∗ ĥ(β, r∗;k) in place of Φ̂(k) using (2.33). Here we
give an alternative argument based on (2.35). Notice that the condition

a(r∗0, ĥ(r∗)) � Cβ−1−ε can be obviously satisfied not only by r∗0 = r∗.
But one can show that the diameter of the set of such r∗0 is estimated by
O(β−1−ε). Indeed, assume that a given function h(β, r) does not vanish at
a given point r0, i.e., |h(β, r0)| � c0 > 0 for all β � β0. The fulfillment
of (2.33) for the function h(β, r) with two different values of r∗, namely
r∗ = r′∗ and r∗ = r′′∗ implies that

a(r′∗, ĥ) � C1β
−1−ε, a(r′′∗ , ĥ) � C2β

−1−ε,

and, according to (2.35), for all r

|r − r′∗||h(β, r)| � (2π)−dC1β
−1−ε, |r − r′′∗ ||h(β, r)| � (2π)−dC2β

−1−ε.

Hence

|r0 − r′∗| �
(2π)−dC1β

−1−ε

c0
, |r0 − r′′∗ | �

(2π)−dC1β
−1−ε

c0
,

and

|r′∗ − r′′∗ | � C3β
−1−ε.



72 Anatoli Babin and Alexander Figotin

Note that if we rescale variables r and r∗ as in Example 2.13, namely
̺r = y and ̺r∗ = y∗ with ̺ = β2, the diameter of the set B(β) in the
y-coordinates is of order β1−ε ≪ 1, and hence this set gives a good ap-
proximation for the location of the particle-like wavepacket as β → 0. It is
important to notice that our method to locate the support of wavepackets is
applicable to very general wavepackets and does not use their specific form.
This flexibility allows us to prove that particle-like wavepackets and their
positions are well defined during nonlinear dynamics of generic equations
with rather general initial data which form infinite-dimensional function
spaces. Another approaches to describe dynamics of waves are applied to
situations, where solutions under considerations can be parametrized by a
finite number of parameters and the dynamics of parameters describes the
dynamics of the solutions. See for example [25], [20], [21], where dynamics
of centers of solutions is described.

Remark 2.6. Note that for a single wavepacket initial data h(β, r−
r′∗) one can make a change of variables to a moving frame (x, τ), namely
(r, τ) = (x + vτ, τ), where v = 1

̺∇ω(k∗) is the group velocity; this change

of variables makes the group velocity zero. Often it is possible to prove that
dynamics preserves functions which decay at infinity, namely if the initial
data h(β,x) decays at the spatial infinity, then the solution U(β,x, τ) also
decays at infinity (though the corresponding proofs can be rather technical).
This property can be reformulated in rescaled y variables as follows: if ini-
tial data are localized about zero, then the solution is localized about zero
as well. Then, using the fact that the equation has constant coefficients,
we observe that the solution U(β,y − y′

∗, τ) corresponding to h(β,y − y′
∗)

is localized about y′
∗ provided that h(β,y) was localized about the ori-

gin. Note that, in this paper, we consider the much more complicated case
of multiple wavepackets. Even in the simplest case of the initial multi-
wavepacket which involves only two components, namely the wavepacket
h(β, r) = h1(β, r − r′∗) + h2(β, r − r′′∗) with two principal wave vectors
k1∗ 	= k2∗, it is evident that one cannot use the above considerations based
on the change of variables and the translational invariance. Using other
arguments developed in this paper, we prove that systems of particle-like
wavepackets remain localized in the process of the nonlinear evolution.

Note that similarly to (1.2) and (1.4) a function of the form

β−d(e−ikr∗1 + e−ikr∗2)
[

ĥ
(k − k∗

β

)]

gn(k∗),
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defined for any pair of r∗1 and r∗2, where ĥ is a Schwarz function and all
constants in Definition 2.1 are independent of r∗1, r∗2 ∈ Rd, is not a single
particle-like wavepacket since it does not have a single wavepacket position
r∗, but rather it is a sum of two particle-like wavepackets with two positions
r∗1 and r∗2.

We want to emphasize once more that a particle-like wavepacket is de-
fined as the family ĥ(β, r∗;k) with r∗ being an independent variable running
the entire space Rd, see, for example, (1.2), (1.3), and (2.21). In particular,
we can choose a dependence of r∗ on β and ̺. An interesting type of such
a dependence is r∗ = r0

∗/̺, where ̺ satisfies (2.11) as we discuss below in
Example 2.13.

Our special interest is in the waves that are finite sums of wavepackets
which we refer to as multi-wavepackets.

Definition 2.7 (multi-wavepacket). Let S be a set of nk-pairs:

S = {(nl,k∗l), l = 1, . . . , N} ⊂ Σ = {1, . . . , J} × R
d,

(nl,k∗l) 	= (nl′ ,k∗l′) for l 	= l′,
(2.39)

and let N = |S| be their number. Let KS be a set consisting of all dif-
ferent wavevectors k∗l involved in S with |KS| � N being the number of
its elements. KS is called a wavepacket k-spectrum and, without loss of
generality, we assume the indexing of elements (nl,k∗l) in S to be such
that

KS = {k∗i, i = 1, . . . , |KS |}, i.e., l = i for 1 � i � |KS |. (2.40)

A function ĥ(β) = ĥ(β;k) is called a multi-wavepacket with nk-spectrum S
if it is a finite sum of wavepackets, namely

ĥ(β;k) =

N
∑

l=1

ĥl(β;k), 0 < β < β0 for some β0 > 0, (2.41)

where ĥl, l = 1, . . . , N , is a wavepacket with nk-pair (k∗l, nl) ∈ S as in

Definition 2.1. If all the wavepackets ĥl(β;k) = ĥl(β, r∗l;k) are particle-like
ones with respective positions r∗l, then the multi-wavepacket is called multi-
particle wavepacket and we refer to (r∗1, . . . , r∗N ) as its position vector.
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Note that if ĥ(β;k) is a wavepacket, then ĥ(β;k) + O(βs) is also a
wavepacket with the same nk-spectrum, and the same is true for multi-
wavepackets. Hence we can introduce multi-wavepackets equivalence rela-
tion “≃” of the degree s by

ĥ1(β;k) ≃ ĥ2(β;k) if ‖ĥ1(β;k) − ĥ2(β;k)‖L1 � Cβs

for some constant C > 0.
(2.42)

Note that the condition (2.33) does not impose restrictions on the term Dh

in (2.28). Therefore, this equivalence can be applied to particle wavepackets.

Let us turn now to the abstract nonlinear problem (2.14), where (i)

F = F(̺) depends on ̺ and (ii) the initial data ĥ = ĥ(β) is a multi-
wavepacket depending on β. We would like to state our first theorem on
multi-wavepacket preservation under the evolution (2.14) as β, ̺ → 0, which
holds provided its nk-spectrum S satisfies a natural condition called reso-
nance invariance. This condition is intimately related to the so-called phase
and frequency matching conditions for stronger nonlinear interactions, and
its concise formulation is as follows. We define for given dispersion rela-
tions {ωn(k)} and any finite set S ⊂ {1, . . . , J} × Rd another finite set
R(S) ⊂ {1, . . . , J}×Rd, where R is a certain algebraic operation described
in Definition 3.8 below. It turns out that for any S always S ⊆ R(S), but
if R(S) = S we call S resonance invariant. The condition of resonance
invariance is instrumental for the multi-wavepacket preservation, and there
are examples showing that if it fails, i.e., R(S) 	= S, the wavepacket preser-
vation does not hold. Importantly, the resonance invariance R(S) = S
allows resonances inside the multi-wavepacket, that includes, in particular,
resonances associated with the second and third harmonic generations, res-
onant four-wave interaction, etc. In this paper, we use basic results on
wavepacket preservation obtained in [7], and we formulate theorems from
[7] we need here. Since we use constructions from [7], for completeness we
provide also their proofs in the following subsections. The following two
theorems are proved in [7].

Theorem 2.8 (multi-wavepacket preservation). Suppose that the non-

linear evolution is governed by (2.14) and the initial data ĥ = ĥ(β;k) is a
multi-wavepacket with nk-spectrum S and the regularity degree s. Assume
that S tis resonance invariant in the sense of Definition 3.8 below. Let ρ(β)
be any function satisfying

0 < ρ(β) � Cβs for some constant C > 0, (2.43)
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and let us set ̺ = ρ(β). Then the solution û(τ, β) = G(F(ρ(β)), ĥ(β))(τ)
to (2.14) for any τ ∈ [0, τ∗] is a multi-wavepacket with nk-spectrum S and
the regularity degree s, i.e.,

û(τ, β;k) =
N

∑

l=1

ûl(τ, β;k),

where ûl is a wavepacket with nk-pair (nl,k∗l) ∈ S.

(2.44)

The time interval length τ∗ > 0 depends only on the L1-norms of ĥl(β;k)
and N . The presentation (2.44) is unique up to the equivalence (2.42) of
degree s.

The above statement can be interpreted as follows. Modes in nk-
spectrum S are always resonance coupled with modes in R(S) through the
nonlinear interactions, but if R(S) = S, then (i) all resonance interactions
occur inside S and (ii) only small vicinity of S is involved in nonlinear
interactions leading to the multi-wavepacket preservation.

The statement of Theorems 2.8 directly follows from the following
general theorem proved in [7].

Theorem 2.9 (multi-wavepacket approximation). Let the initial data

ĥ in the integral equation (2.14) be a multi-wavepacket ĥ(β;k) with nk-
spectrum S as in (2.39), regularity degree s, and parameter ε > 0 as in
Definition 2.1. Assume that S is resonance invariant in the sense of Defi-
nition 3.8 below. Let the cutoff function Ψ(β1−ε,k∗;k) and the eigenvector
projectors Πn,±(k) be defined by (2.25) and (2.9) respectively. For a solution
û of (2.14) we set

ûl(β; τ,k) =
[

∑

ζ=±

Ψ(Cβ1−ε, ζk∗l;k)Πnl,ζ(k)
]

û(β; τ,k),

l = 1, . . . , N.

(2.45)

Then every such ûl(β; τ,k) is a wavepacket and

sup
0�τ�τ∗

∥

∥

∥
û(β; τ,k) −

N
∑

l=1

ûl(β; τ,k)
∥

∥

∥

L1
� C1̺ + C2β

s, (2.46)

where the constants C, C1 do not depend on ε, s, ρ, and β and the constant
C2 does not depend on ρ and β.

We would like to point out also that Theorem 2.8 allows us to take val-
ues û(τ∗) as new wavepacket initial data for (1.1) and extend the wavepacket
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invariance of a solution to the next time interval τ∗ � τ � τ∗1. This ob-
servation allows us to extend the wavepacket invariance to larger values
of τ (up to blow-up time or infinity) if some additional information about
solutions with wavepacket initial data is available, see [7].

Note that the wavepacket form of solutions can be used to obtain
long-time estimates of solutions. Namely, very often the behavior of every
single wavepacket is well approximated by its own nonlinear Schrödinger
equation (NLS), see [15, 30, 16, 22, 26, 27, 34, 36, 37, 38] and references
therein, see also Section 6. Many features of the dynamics governed by
NLS-type equations are well understood, see [13, 14, 31, 35, 39, 40] and
references therein. These results can be used to obtain long-time estimates
for every single wavepacket (as, for example, in [27]) and, with the help of
the superposition principle, for the multi-wavepacket solution.

2.2. Formulation of new results on particle wavepackets.

In this paper, we prove the following refinement of Theorem 2.8 for the case
of multi-particle wavepackets.

Theorem 2.10 (multi-particle wavepacket preservation). Assume that
the conditions of Theorem 2.9 hold and, in addition to that, the initial
data ĥ = ĥ(β;k) is a multi-particle wavepacket of degree s with positions
r∗1, . . . , r∗N and the multi-particle wavepacket is universally resonance in-
variant in the sense of Definition 3.8. Assume also that

ρ(β) � Cβs0 , s0 > 0. (2.47)

Then the solution û(β; τ) = G(F(ρ(β)), ĥ(β))(τ) to (2.14) for any τ ∈ [0, τ∗]
is a multi-particle wavepacket with the same nk-spectrum S and the same
positions r∗1, . . . , r∗N . Namely, (2.46) holds, where ûl is a wavepacket with
nk-pair (nl,k∗l) ∈ S defined by (2.45), the constants C, C1, C2 do not
depend on r∗l, and every ûl is equivalent in the sense of the equivalence
(2.42) of degree s1 = min(s, s0) to a particle wavepacket with the position
r∗l.

Remark 2.11. Note that in the statement of the above theorem the
positions r∗1, . . . , r∗N of wavepackets which compose the solution û(β; τ,k)
of (2.13) and (2.14) do not depend on τ and, hence, do not move. Note

also that the solution Û(β; τ,k) of the original equation (2.1), related to
û(β; τ,k) by the change of variables (2.12), is composed of wavepackets
Ul(β; τ, r) corresponding to ul(β; τ, r), have their positions moving with
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respective constant velocities ∇kω(k∗l) (see for details Remark 4.1, see also
the following corollary).

Using Proposition 4.2, we obtain from Theorem 2.10 the following
corollary.

Corollary 2.12. Let the conditions of Theorem 2.10 hold, and let
Û(β; τ,k) be defined by (2.12) in terms of û(β; τ,k). Let

β2

̺
� C, with some C, 0 < β �

1

2
, 0 < ̺ �

1

2
. (2.48)

Then Û(β; τ,k) is for every τ ∈ [0, τ∗] a particle multi-wavepacket in the
sense of Definition 2.2 with the same nk-spectrum S, regularity degree s1,
and τ-dependent positions r∗l + τ

̺∇kωn(k∗l).

In the following example, we consider the case, where spatial positions
of wavepackets have a specific dependence on parameter ̺, namely r∗ =
r0
∗/̺.

Example 2.13 (wavepacket trajectories and collisions). Let us rescale
the coordinates in the physical space as follows:

̺r = y (2.49)

with the consequent rescaling of the wavevector variable (dual with re-
spect to Fourier transform) k = ̺η. It follows then that under the evo-
lution (1.1) the group velocity of a wavepacket with a wavevector k∗ in
the new coordinates y becomes ∇kω(k∗) and, evidently, is of order one. If
we set the positions r∗l = r0

∗l/̺ with fixed r0
∗l, then, according to (2.35),

the wavepackets |h(β; r)| in y-variables have characteristic spatial scale

y − r0
∗l ∼ ̺a(r∗l, ĥ) ∼ ̺β−1 which is small if ̺/β is small. The positions of

particle-like wavepackets (quasiparticles) Û(y/̺, τ) are initially located at
yl = r0

∗l and propagate with the group velocities ∇kω(k∗l). Their trajecto-
ries are straight lines in the space Rd described by

y = τ∇kω(k∗l) + r0
∗l, 0 � τ � τ∗,

(compare with (1.5)). The trajectories may intersect, indicating “collisions”
of quasiparticles. Our results (Theorem 2.10) show that if a multi-particle
wavepacket initially was universally resonance invariant, then the involved
particle-like wavepackets preserve their identity in spite of collisions and the
fact that the nonlinear interactions with other wavepackets (quasiparticles)
are not small; in fact, they are of order one. Note that r0

∗l can be chosen
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arbitrarily implying that up to N(N − 1) collisions can occur on the time
interval [0, τ∗] on which we study the system evolution.

To formulate the approximate superposition principle for multi-particle
wavepackets, we introduce now the solution operator G mapping the initial
data ĥ into the solution Û = G(ĥ) of the modal evolution equation (2.14).

This operator is defined for ‖ĥ‖ � R according to the existence and unique-
ness Theorem 4.7. The main result of this paper is the following statement.

Theorem 2.14 (superposition principle). Suppose that the initial data

ĥ of (2.14) is a multi-particle wavepacket of the form

ĥ =

N
∑

l=1

ĥl, N max
l

‖ĥl‖L1 � R, (2.50)

satisfying Definition 2.7 and its nk-spectrum is universally resonance in-
variant in the sense of Definition 3.8. Suppose also that the group velocities
of wavepackets are different, namely

∇kωnl1
(k∗l1) 	= ∇kωnl2

(k∗l2) if l1 	= l2 (2.51)

and that (2.48) holds. Then the solution û = G(ĥ) to the evolution equation
(2.14) satisfies the following approximate superposition principle:

G
(

Nh
∑

l=1

ĥl

)

=

Nh
∑

l=1

G(ĥl) + D̃, (2.52)

with a small remainder D̃(τ) such that

sup
0�τ�τ∗

‖D̃(τ)‖L1 � Cε
̺

β1+ε
| lnβ|, (2.53)

where (i) ε is the same as in Definition 2.1 and can be arbitrary small; (ii)
τ∗ does not depend on β, ̺, r∗l, and ε; (iii) Cε does not depend on β, ̺,
and positions r∗l.

A particular case of the above theorem in which there was no depen-
dence on r∗l was proved in [8] by a different method based on the theory of
analytic operators in Banach spaces. The condition (2.51) can be relaxed
if the initial positions of involved particle-like wavepackets are far apart,
and the corresponding results are formulated in the theorem below and in
Example 2.13.

Theorem 2.15 (superposition principle). Suppose that the initial

data ĥ of (2.14) is a multi-particle wavepacket of the form (2.50) with a
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universally resonance invariant nk-spectrum in the sense of Definition 3.8
and (2.48) holds. Suppose also that either the group velocities of wavepackets
are different, namely (2.51) holds, or the positions r∗l satisfy the inequality

τ∗|r∗l1 − r∗l2 |
−1 �

̺

2Cω,2β1−ε

if ∇kωnl1
(k∗l1 ) = ∇kωnl2

(k∗l2), l1 	= l2,
(2.54)

where the constant Cω,2 is the same as in (3.2). Then the solution û =

G(ĥ) to the evolution equation (2.14) satisfies the approximate superposition
principle (2.52), (2.53).

We prove in this paper further generalizations of the particle-like
wavepacket preservation and the superposition principle to the cases, where
the nk-spectrum of a multi-wavepacket is not universal resonance invari-
ant such as the cases of multi-wavepackets involving the second and third
harmonic generation. In particular, we prove Theorem 7.5 showing that
many (but, may be, not all) components of involved wavepackets remain
spatially localized. Another Theorem 7.7 extends the superposition prin-
ciple to the case, where resonance interactions between components of a
multi-wavepackets can occur.

3. Conditions and Definitions

In this section, we formulate and discuss all definitions and conditions under
which we study the nonlinear evolutionary system (1.1) through its modal,
Fourier form (2.1). Most of the conditions and definitions are naturally
formulated for the modal form (2.1), and this is one of the reasons we use
it as the basic one.

3.1. Linear part.

The basic properties of the linear part L(k) of the system (2.1), which is
a 2J × 2J Hermitian matrix with eigenvalues ωn,ζ(k), has been already
discussed in the Introduction. To account for all needed properties of L(k),
we define the singular set of points k.

Definition 3.1 (band-crossing points). We call k0 a band-crossing
point for L(k) if ωn+1,ζ(k0) = ωn,ζ(k0) for some n, ζ or L(k) is not contin-
uous at k0 or if ω1,±(k0) = 0. The set of such points is denoted by σbc.
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In the next condition, we collect all constraints imposed on the linear
operator L(k).

Condition 3.2 (linear part). The linear part L(k) of the system (2.1)
is a 2J × 2J Hermitian matrix with eigenvalues ωn,ζ(k) and corresponding
eigenvectors gn,ζ(k) satisfying for k /∈ σbc the basic relations (2.3)-(2.5). In
addition to that, we assume:

(i) the set of band-crossing points σbc is a closed, nowhere dense set in
Rd and has zero Lebesgue measure;

(ii) the entries of the Hermitian matrix L(k) are infinitely differentiable
in k for all k /∈ σbc that readily implies via the spectral theory, [28],
infinite differentiability of all eigenvalues ωn(k) in k for all k /∈ σbc;

(iii) L(k) satisfies the polynomial bound

‖L(k)‖ � C(1 + |k|p), k ∈ R
d, for some C > 0 and p > 0. (3.1)

Note that since ωn,ζ(k) are smooth if k /∈ σbc, the following relations
hold for any (n, k)-spectrum S:

max
|k±k∗l|�π0, l=1,...,N,

|∇kωnl,ζ | � Cω,1,

max
|k±k∗l|�π0, l=1,...,N,

|∇2
k
ωnl,ζ | � Cω,2,

(3.2)

where Cω,1 and Cω,2 are positive constants and

π0 =
1

2
min

l=1,...,N
min(dist{±k∗l, σbc}, 1). (3.3)

Remark 3.3 (dispersion relations symmetry). The symmetry con-
dition (2.5) on the dispersion relations naturally arise in many physical
problems, for example, the Maxwell equations in periodic media, see [1]–
[3], [5], or when L(k) originates from a Hamiltonian. We would like to
stress that this symmetry conditions are not imposed to simplify studies,
but rather to take into account fundamental symmetries of physical media.
The symmetry causes resonant nonlinear interactions, which create non-
trivial effects. Interestingly, many problems without symmetries can be put
into the framework with the symmetry by a certain extension, [7].

Remark 3.4 (band-crossing points). Band-crossing points are dis-
cussed in more detail in [1, Section 5.4], [2, Sections 4.1, 4.2]. In particular,
generically the set σbc of band-crossing point is a manifold of dimension
d − 2. Notice also that there is a natural ambiguity in the definition of
a normalized eigenvector gn,ζ(k) of L(k) which is defined up to a complex
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number ξ with |ξ| = 1. This ambiguity may not allow an eigenvector gn,ζ(k)
which can be a locally smooth function in k to be a uniquely defined con-
tinuous function in k globally for all k /∈ σbc because of a possibility of
branching. But, importantly, the orthogonal projector Πn,ζ(k) on gn,ζ(k)
as defined by (2.9) is uniquely defined and, consequently, infinitely differen-
tiable in k via the spectral theory, [28], for all k /∈ σbc. Since we consider

Û(k) as an element of the space L1 and σbc is of zero Lebesgue measure,
considering k /∈ σbc is sufficient for us.

We introduce for vectors û ∈ C2J their expansion with respect to the
orthonormal basis{gn,ζ(k)}:

û(k) =

J
∑

n=1

∑

ζ=±

ûn,ζ(k)gn,ζ(k)

=
J

∑

n=1

∑

ζ=±

ûn,ζ(k), ûn,ζ(k) = Πn,ζ(k)û(k) (3.4)

and we refer to it as the modal decomposition of û(k) and to ûn,ζ(k) as the
modal coefficients of û(k). Evidently,

j
∑

n=1

∑

ζ=±

Πn,ζ(k) = I2J ,

where I2J is the 2J × 2J identity matrix.

(3.5)

Notice that we can define the action of the operator L(−i∇r) on any Schwarz
function Y(r) by the formula

̂L(−i∇r)Y(k) = L(k)Ŷ(k), (3.6)

where, in view of the polynomial bound (3.1), the order of L does not exceed
p. In a special case, where all the entries of L(k) are polynomials, (3.6) turns
into the action of the differential operator with constant coefficients.

3.2. Nonlinear part.

The nonlinear term F̂ in (2.1) is assumed to be a general functional poly-
nomial of the form

F̂ (Û) =
∑

m∈MF

F̂ (m)(Ûm),

where F̂ (m) is an m-homogeneous polylinear operator,

(3.7)
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MF = {m1, . . . , mp} ⊂ {2, 3, . . .} is a finite set,

and mF = max{m : m ∈ MF }.
(3.8)

The integer mF in (3.8) is called the degree of the functional polynomial F̂ .

For instance, if MF = {2} or MF = {3}, the polynomial F̂ is respectively

homogeneous quadratic or cubic. Every m-linear operator F̂ (m) in (3.7) is
assumed to be of the form of a convolution

F̂ (m)(Û1, . . . , Ûm)(k, τ)

=

∫

Dm

χ(m)(k, �k)Û1(k
′) . . . Ûm(k(m)(k, �k)) d̃(m−1)d�k, (3.9)

where Dm = R
(m−1)d, d̃(m−1)d�k =

dk′ . . . dk(m−1)

(2π)(m−1)d
,

k(m)(k, �k) = k − k′ − . . . − k(m−1), �k = (k′, . . . ,k(m)). (3.10)

indicating that the nonlinear operator F (m)(U1, . . . ,Um) is translation in-
variant (it may be local or nonlocal). The quantities χ(m) in (3.9) are called
susceptibilities. For numerous examples of nonlinearities of the form sim-
ilar to (3.7), (3.9) see [1]–[7] and references therein. In what follows, the

nonlinear term F̂ in (2.1) will satisfy the following conditions.

Condition 3.5 (nonlinearity). The nonlinearity F̂ (Û) is assumed to
be of the form (3.7)–(3.9). The susceptibility χ(m)(k,k′, . . . ,k(m)) is infin-
itely differentiable for all k and k(j) which are not band-crossing points, and
is bounded, namely for some constant Cχ

‖χ(m)‖ = (2π)−(m−1)d sup
k,k′,...,k(m)∈Rd\σbc

|χ(m)(k,k′, . . . ,k(m))|

� Cχ, m ∈ MF , (3.11)

where the norm |χ(m)(k, �k)| of the m-linear tensor χ(m) : (C2J)m → (C2J)m

for fixed k, �k is defined by

|χ(m)(k, �k)| = sup
|xj|�1

|χ(m)(k, �k)(x1, . . . ,xm)|,

where |x| is the Euclidean norm.
(3.12)
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Since χ
(m)

ζ,�ζ
(k,k′, . . . ,k(m)) are smooth if k /∈ σbc, the following rela-

tion holds:

max
|k±k∗l|�π0, l=1,...,N

|∇χ
(m)

ζ,�ζ
(k,k′, . . . ,k(m))| � C′

χ (3.13)

if k∗l /∈ σbc, π0 is defined by (3.3), gradient is with respect to k. The case,

where χ(m)(k, �k) depend on small ̺ or, more generally, on ̺q, q > 0, can
be treated similarly, see [7].

3.3. Resonance invariant nk-spectrum.

In this section, being given the dispersion relations ωn(k) � 0, n ∈ {1, . . . , J},
we consider resonance properties of nk-spectra S and the corresponding k-
spectra KS as defined in Definition 2.7, i.e.,

S = {(nl,k∗l), l = 1, . . . , N} ⊂ Σ = {1, . . . , J} × R
d,

KS = {k∗l
, l = 1, . . . , |KS |}.

(3.14)

We precede the formal description of the resonance invariance (see Defin-
ition 3.8) with the following guiding physical picture. Initially, at τ = 0,
the wave is a multi-wavepacket composed of modes from a small vicinity of
the nk-spectrum S. As the wave evolves according to (2.1) the polynomial
nonlinearity inevitably involves a larger set of modes [S]out ⊇ S, but not
all modes in [S]out are “equal” in developing significant amplitudes. The
qualitative picture is that whenever certain interaction phase function (see
(4.23) below) is not zero, the fast time oscillations weaken effective nonlin-
ear mode interaction, and the energy transfer from the original modes in S
to relevant modes from [S]out, keeping their magnitudes vanishingly small
as β, ̺ → 0. There is a smaller set of modes [S]resout which can interact with
modes from S rather effectively and develop significant amplitudes. Now,

if [S]resout ⊆ S, then S is called resonance invariant. (3.15)

In simpler situations, the resonance invariance conditions turns into the
well-known in nonlinear optics phase and frequency matching conditions.
For instance, if S contains (n0,k∗l0) and the dispersion relations allow for
the second harmonic generation in another band n1 so that 2ωn0(k∗l0 ) =
ωn1(2k∗l0), then for S to be resonance invariant it must contain (n1, 2k∗l0)
too.

Let us turn now to the rigorous constructions. First we introduce

the necessary notation. Let m � 2 be an integer, �l = (l1, . . . , lm), lj ∈

{1, . . . , N} be an integer vector from {1, . . . , N}m and �ζ = (ζ(1), . . . , ζ(m)),
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ζ(j) ∈ {+1,−1} be a binary vector from {+1,−1}m. Note that a pair

(�ζ,�l) naturally labels a sample string of the length m composed of elements
(ζ(j), nlj ,k∗lj ) from the set {+1,−1} × S. Let us introduce the sets

Λ = {(ζ, l) : l ∈ {1, . . . , N}, ζ ∈ {+1,−1}}, (3.16)

Λm = {�λ = (λ1, . . . , λm), λj ∈ Λ, j = 1, . . . , m}.

There is a natural one-to-one correspondence between Λm and {−1, 1}m ×
{1, . . . , N}m, and we write, exploiting this correspondence,

�λ = ((ζ′, l1), . . . , (ζ
(m), lm)) = (�ζ,�l), �ϑ ∈ {−1, 1}m,

�l ∈ {1, . . . , N}m for �λ ∈ Λm.
(3.17)

Let us introduce the linear combination

κm(�λ) = κm(�ζ,�l) =

m
∑

j=1

ζ(j)k∗lj with ζ(j) ∈ {+1,−1}, (3.18)

and let [S]K,out be the set of all its values as k∗lj ∈ KS , �λ ∈ Λm, namely

[S]K,out =
⋃

m∈MF

⋃

�λ∈Λm

{κm(�λ)}. (3.19)

We call [S]K,out output k-spectrum of KS and assume that

[S]K,out

⋂

σbc = ∅. (3.20)

We also define the output nk-spectrum of S by

[S]out = {(n,k) ∈ {1, . . . , J} × R
d : n ∈ {1, . . . , J}, k ∈ [S]K,out}. (3.21)

We introduce the following functions:

Ω1,m(�λ)(�k∗) =
m

∑

j=1

ζ(j)ωlj (k∗lj ),

�k∗ = (k∗1, . . . ,k∗|KS|), where k∗lj ∈ KS ,

(3.22)

Ω(ζ, n,�λ)(k∗∗, �k∗) = −ζωn(k∗∗) + Ω1,m(�λ)(�k∗), (3.23)

where ζ = ±1, m ∈ MF as in (3.7). We introduce these functions to apply
later to phase functions (4.23).

Now we introduce the resonance equation

Ω(ζ, n,�λ)(ζκm(�λ), �k∗) = 0, �l ∈ {1, . . . , N}m, �ζ ∈ {−1, 1}m, (3.24)
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denoting by P (S) the set of its solutions (m, ζ, n,�λ). Such a solution is
called S-internal if

(n, ζκm(�λ)) ∈ S, i.e., n = nl0 , ζκm(�λ) = k∗l0 , l0 ∈ {1, . . . , N}, (3.25)

and we denote the corresponding l0 = I(�λ). We also denote by Pint(S) ⊂
P (S) the set of all S-internal solutions to (3.24).

Now we consider the simplest solutions to (3.24) which play an impor-

tant role. Keeping in mind that the string �l can contain several copies of a
single value l, we can recast the sum in (3.22) as follows:

Ω1,m(�λ) = Ω1,m(�ζ,�l) =

N
∑

l=1

δlωl(k∗l),

where δl =

⎧

⎨

⎩

∑

j∈�l−1(l)

ζ(j) if �l−1(l) 	= ∅,

0 if �l−1(l) = ∅,
(3.26)

�l−1(l) = {j ∈ {1, . . . , m} : lj = l, } , �l = (l1, . . . , lm), 1 � l � N.

Definition 3.6 (universal solutions). We call a solution (m, ζ, n,�λ) ∈
P (S) of (3.24) universal if it has the following properties: (i) only a single
coefficient out of all δl in (3.26) is nonzero, namely for some I0 we have
δI0 = ±1 and δl = 0 for l 	= I0; (ii) n = nI0 and ζ = δI0 .

We denote the set of universal solutions to (3.24) by Puniv(S). A
justification for calling such a solution universal comes from the fact that if

a solution is a universal solution for one �k∗ it is a solution for any other
�k∗. Note that a universal solution is an S-internal solution with I(�λ) = I0

implying

Puniv(S) ⊆ Pint(S). (3.27)

Indeed, observe that for δl as in (3.26)

κm(�λ) = κm(�ζ,�l) =

m
∑

j=1

ζ(j)k∗lj =

N
∑

l=1

δlk∗l (3.28)

implying κm(�λ) = δI0k∗I0 and ζκm(�λ) = δ2
I0

k∗I0 = k∗I0 . Then Equation

(3.24) is obviously satisfied and (n, ζκm(�λ)) = (nI0 ,k∗I0) ∈ S.

Example 3.7 (universal solutions). Suppose there is just a single
band, i.e., J = 1, a symmetric dispersion relation ω1(−k) = ω1(k), a
cubic nonlinearity F with MF = {3}. We take the nk-spectrum S =
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{(1,k∗), (1,−k∗)}, i.e., N = 2 and k∗1 = k∗,k∗2 = −k∗. This example
is typical for two counterpropagating waves. Then

Ω1,3(�λ)(�k∗) =

3
∑

j=1

ζ(j)ωlj (k∗lj ) = (δ1 + δ2)ω1(k∗)

and

κm(�λ) =

m
∑

j=1

ζ(j)k∗lj = δ1k∗1 + δ2k∗2 = (δ1 − δ2)k∗,

where we use the notation (3.26). The universal solution set has the form

Puniv(S) = {(3, ζ, 1, �λ) : �λ ∈ Λζ , ζ = ±}, where Λ+ consists of vectors
(λ1, λ2, λ3) of the form ((+, 1), (−, 1), (+, 1)), ((+, 1), (−, 1), (+, 2)), ((+, 2),
(−, 2), (+, 1)), ((+, 2), (−, 2), (+, 2)), and vectors obtained from the listed
ones by permutations of coordinates λ1, λ2, λ3. The solutions from Pint(S)
have to satisfy |δ1 − δ2| = 1 and |δ1 + δ2| = 1, which is possible only if

δ1δ2 = 0. Since ζ = δ1+δ2, we have ζκm(�λ) = (δ2
1−δ2

2)k∗ and ζκm(�λ) = k∗1

if |δ1| = 1 or ζκm(�λ) = k∗2 if |δ2| = 1. Hence Pint(S) = Puniv(S) in this
case. Note that if we set S1 = {(1,k∗)}, S2 = {(1,−k∗)} , then S = S1∪S2,
but Pint(S) is larger than Pint(S1) ∪ Pint(S2). This can be interpreted as
follows. When only modes from S1 are excited, the modes from S2 remain
nonexcited. But when both S1 and S2 are excited, there is a resonance

effect of S1 onto S2, represented, for example, by �λ = ((+, 1), (−, 1), (+, 2)),

which involves the mode ζκm(�λ) = k∗2.

Now we are ready to define resonance invariant spectra. First, we
introduce a subset [S]resout of [S]out by the formula

[S]resout =
{

(n,k∗∗) ∈ [S]out : k∗∗ = ζ(0)
κm(�λ), m ∈ MF ,

where (m, ζ, n,�λ) is a solution of (3.24)
}

, (3.29)

calling it resonant output spectrum of S, and then we define

the resonance selection operation R(S) = S ∪ [S]
res
out . (3.30)

Definition 3.8 (resonance invariant nk-spectrum). The nk-spectrum
S is called resonance invariant if R(S) = S or, equivalently, [S]

res
out ⊆ S. The

nk-spectrum S is called universally resonance invariant if R(S) = S and
Puniv(S) = Pint(S).

Obviously, an nk-spectrum S is resonance invariant if and only if all
solutions of (3.24) are internal, i.e., Pint(S) = P (S).
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It is worth noticing that even when an nk-spectrum is not resonance
invariant, often it can be easily extended to a resonance invariant one.
Namely, if Rj(S) ∩ σbc = ∅ for all j, then the set

R∞(S) =

∞
⋃

j=1

Rj(S) ⊂ Σ = {1, . . . , J} × R
d

is resonance invariant. In addition to that, R∞(S) is always at most count-
able. Usually it is finite, i.e., R∞(S) = Rp(S) for a finite p, see examples
below; also R∞(S) = S for generic KS .

Example 3.9 (resonance invariant nk-spectra for quadratic non-
linearity). Suppose there is a single band, i.e., J = 1, with a symmet-
ric dispersion relation, and a quadratic nonlinearity F , i.e., MF = {2}.
Let us assume that k∗ 	= 0, k∗, 2k∗,0 are not band-crossing points and
look at two examples. First, suppose that 2ω1(k∗) 	= ω1(2k∗) (no sec-
ond harmonic generation) and ω1(0) 	= 0. Let the nk-spectrum be the
set S1 = {(1,k∗)}. Then S1 is resonance invariant. Indeed, KS1 = {k∗},
[S1]K,out = {0, 2k∗,−2k∗}, [S1]out = {(1,0), (1, 2k∗), (1,−2k∗)} and an el-

ementary examination shows that [S1]
res
out = ∅ ⊂ S1 implying R(S1) = S1.

For the second example let us assume ω1(0) 	= 0 and 2ω1(k∗) = ω1(2k∗),
i.e., the second harmonic generation is present. Here [S1]

res
out = {(1, 2k∗)}

and R(S1) = {(1,k∗), (1, 2k∗)} implying R(S1) 	= S1 and hence S1 is not
resonance invariant. Suppose now that 4k∗, 3k∗ /∈ σbc and ω1(0) 	= 0,
ω1(4k∗) 	= 2ω1(2k∗), ω1(3k∗) 	= ω1(k∗) + ω1(2k∗), and let us set S2 =
{(1,k∗), (1, 2k∗)}. An elementary examination shows that S2 is resonance
invariant. Note that S2 can be obtained by iterating the resonance selec-
tion operator, namely S2 = R(R(S1)). Note also that Puniv(S2) 	= Pint(S2).
Notice that ω1(0) = 0 is a special case since k = 0 is a band-crossing point,
and it requires a special treatment.

Example 3.10 (resonance invariant nk-spectra for cubic nonlinear-
ity). Let us consider the one-band case with a symmetric dispersion relation
and a cubic nonlinearity that is MF = {3}. First we take S1 = {(1,k∗)}
and assume that k∗, 3k∗ are not band-crossing points, implying [S1]K,out =

{k∗,−k∗, 3k∗,−3k∗}. We have Ω1,3(�λ)(�k∗) =
3
∑

j=1

ζ(j)ω1(k∗) = δ1ω1(k∗)

and κm(�λ) = δ1k∗, where we use the notation (3.26), δ1 takes the val-
ues 1,−1, 3,−3. If 3ω1(k∗) 	= ω1(3k∗), then (3.24) has a solution only if

|δ1| = 1 and δ1 = ζ. Hence ζκm(�λ) = k∗ and every solution is internal.
Hence [S1]

res
out = ∅ and R(S1) = S1. Now consider the case associated with
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the third harmonic generation, namely 3ω1(k∗) = ω1(3k∗) and assume that
ω1(3k∗) + 2ω1(k∗) 	= ω1(5k∗), 3ω1(3k∗) 	= ω1(9k∗), 2ω1(3k∗) + ω1(k∗) 	=
ω1(7k∗), 2ω1(3k∗) − ω1(k∗) 	= ω1(5k∗). An elementary examination shows
that the set S4 = {(1, 3k∗), (1,k∗), (1,−k∗)(1,−3k∗)} satisfies R(S4) = S4.
Consequently, a multi-wavepacket having S4 as its resonance invariant nk-
spectrum involves the third harmonic generation and, according to Theorem
2.8, it is preserved under nonlinear evolution.

The above examples indicate that, in simple cases, the conditions on
k∗ which can make S noninvariant with respect to R have a form of several
algebraic equations, Hence for almost all k∗ such spectra S are resonance
invariant. The examples also show that if we fix S and dispersion relations,
then we can include S in a larger spectrum S′ = Rp(S) using repeated
application of the operation R to S, and often the resulting extended nk-
spectrum S′ is resonance invariant. We show in the following section that
an nk-spectrum S with generic KS is universally resonance invariant.

Note that the concept of a resonance invariant nk-spectrum gives a
mathematical description of such fundamental concepts of nonlinear optics
as phase matching, frequency matching, four wave interaction in cubic me-
dia, and three wave interaction in quadratic media. If a multi-wavepacket
has a resonance invariant spectrum, all these phenomena may take place in
the internal dynamics of the multi-wavepacket, but do not lead to resonant
interactions with continuum of all remaining modes.

3.4. Genericity of the nk-spectrum invariance condition.

In simpler situations, where the number of bands J and wavepackets N are
not too large, the resonance invariance of an nk- spectrum can be easily
verified as above in Examples 3.9, 3.10, but what one can say if J or N
are large, or if the dispersion relations are not explicitly given? We show
below that, in properly defined nondegenerate cases, a small variation of
KS makes S universally resonance invariant, i.e., the resonance invariance
is a generic phenomenon.

Assume that the dispersion relations ωn(k) � 0, n ∈ {1, . . . , J} are

given. Observe then that Ωm(ζ, n,�λ) = Ωm(ζ, n,�λ)(k∗1, . . . ,k∗|KS |) defined

by (3.23) is a continuous function of k∗l /∈ σbc for every m, ζ, n,�λ.

Definition 3.11 (ω-degenerate dispersion relations). We call disper-
sion relations ωn(k), n = 1,. . . , J , ω-degenerate if there exists such a point
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k∗ ∈ Rd\σbc that for all k in a neighborhood of k∗ at least one of the follow-
ing four conditions holds: (i) the relations are linearly dependent, namely

J
∑

n=0
Cnωn(k) = c0, where all Cn are integers, one of which is nonzero, and

the c0 is a constant; (ii) at least one of ωn(k) is a linear function; (iii)
at least one of ωn(k) satisfies the equation Cωn(k) = ωn(Ck) with some
n and integer C 	= ±1; (iv) at least one of ωn(k) satisfies the equation
ωn(k) = ωn′(−k), where n′ 	= n.

Note that the fulfillment of any of four conditions in Definition 3.11
makes impossible turning some non resonance invariant sets into resonance
invariant ones by a variation of k∗l. For instance, if MF = {2} as in Example
3.9 and 2ω1(k) = ω1(2k) for all k in an open set G, then the set {(1,k∗)}
with k∗ ∈ G cannot be made resonance invariant by a small variation of k∗.
Below we formulate two theorems which show that if dispersion relations
are not ω-degenerate, then a small variation of k∗l turns non resonance
invariant sets into resonance invariant; the proofs of the theorems are given
in [7]

Theorem 3.12. If Ωm(ζ, n0, �λ)(k′
∗1, . . . ,k

′
∗|KS |) = 0 on a cylinder G

in (Rd\σbc)
|KS| which is a product of small balls Gi ⊂ (Rd\σbc) then either

(m, ζ, n0, �λ) ∈ Puniv(S) or dispersion relations ωn(k) are ω-degenerate as
in Definition 3.11.

Theorem 3.13 (genericity of resonance invariance). Assume that dis-
persion relations ωn(k) are continuous and not ω-degenerate as in Defini-
tion 3.11. Let Krinv be a set of points (k∗1, . . . ,k∗|KS |) such that there exists
a universally resonance invariant nk-spectrum S for which its k-spectrum
KS =

{

k∗1, . . . ,k∗|KS |

}

. Then Krinv is open and everywhere dense set in

(Rd \ σbc)
|KS |.

4. Integrated Evolution Equation

Using the variation of constants formula, we recast the modal evolution
equation (2.1) into the following equivalent integral form:

Û(k, τ) =

τ
∫

0

e
−i(τ−τ′)

̺
L(k)F̂ (Û)(k, τ) dτ ′ + e

−iζτ
̺

L(k)ĥ(k), τ � 0. (4.1)
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Then we factor Û(k, τ) into the slow variable û(k, τ) and the fast oscillatory
term as in (2.12), namely

Û(k, τ) = e−
iτ
̺
L(k)û(k, τ), Ûn,ζ(k, τ) = ûn,ζ(k, τ)e−

iτ
̺

ζωn(k), (4.2)

where ûn,ζ(k, τ) are the modal components of û(k, τ) as in (3.4). Notice
that ûn,ζ(k, τ) in (4.2) may depend on ̺ and (4.2) is just a change of
variables and not an assumption.

Remark 4.1. Note that if ûn,ζ(k, τ) is a wavepacket, it is localized
near its principal wavevector k∗. The expansion of ζωn(k) near the prin-
cipal wavevector ζk∗ (we take ζ = 1 for brevity) takes the form

ωn(k) = ω(k∗) + ∇kωn(k∗)(k − k∗) +
1

2
∇2

kω(k∗)(k − k∗)
2 + . . . .

To discuss the impact of the change of variables (4.2), we make the change
of variables k − k∗ = ξ . The change of variables (4.2)

Ûn,+(k, τ) = ûn,+(k, τ)e−
iτ
̺

ωn(k)

= ûn,ζ(k, τ)e−
iτ
̺

ωn(k∗)e−
iτ
̺
∇kωn(k∗)(k−k∗)e−

iτ
̺

( 1
2∇

2
kωn(k∗)(k−k∗)2+...)

= ûn,+(k∗ + ξ, τ)e−
iτ
̺

ζωn(k∗)e−
iτ
̺
∇kωn(k∗)ξe−

iτ
̺

R(ξ), (4.3)

R(ξ)=ωn(k) − ωn(k∗) −∇kωn(k∗)(k − k∗)=
1

2
∇2

kωn(k∗)(ξ)
2+ . . . (4.4)

has the first factor e−
iτ
̺

ωn(k∗) responsible for fast time oscillations of

Ûn,ζ(k, τ) and Un,ζ(r, τ). The second factor e−
iτ
̺
∇kωn(k∗)ξ is responsible

for the spatial shifts of the inverse Fourier transform by τ
̺∇kωn(k∗). Since

the shifts are time dependent, they cause the rectilinear movement of the
wavepacket Un,ζ(r, τ) with the group velocity 1

̺∇kωn(k∗), the third factor

is responsible for dispersion effects. Hence the change of variables (4.2) ef-

fectively introduces the moving coordinate frame for Ûn,ζ(k, τ) for every k
and in this coordinate frame ûn,ζ(k, τ) has zero group velocity and does
not have high-frequency time oscillations. The following proposition shows
that if ûn,ζ(k, τ) is a wavepacket with a constant position, Ûn,+(k, τ) is
a particle wavepacket in the sense of Definition with position which moves
with a constant velocity.

Proposition 4.2. Let ûl(k, τ) be for every τ ∈ [0, τ∗] a particle
wavepacket in the sense of Definition 2.2 with nk-pair (n,k∗), regularity
s, and position r∗ ∈ Rd which does not depend on τ . Assume also that the
constants C1 in (2.33) and C, C′ in (2.27) and (2.30) do not depend on τ .

Let Ûl(k, τ) be defined in terms of ûl(k, τ) by (4.2). Assume that (2.48)
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holds. Then Ûl(k, τ) for every τ ∈ [0, τ∗] is a particle wavepacket in the
sense of Definition 2.2 with nk-pair (n,k∗), regularity s, and τ-dependent
position r∗ + τ

̺∇kωn(k∗) ∈ Rd.

Proof. The wavepacket ûl(k, τ) involves two components ûn,ζ(k, τ),
ζ = ±1 for which (2.29) holds

ûn,ζ(k, τ) = Ψ(β1−ε/2, ζk∗;k)Πn,ζ(k)ûn,ζ(k, τ), (4.5)

By (4.2),

Ûn,ζ(k, τ) = ûn,ζ(k, τ)e−
iτ
̺

ζωn(k).

According to Definition 2.1, the multiplication by a scalar bounded continu-

ous function e−
iτ
̺

ζωn(k) may only change the constant C′ in (2.30). There-

fore, it transforms wavepackets into wavepackets. To check that Ûl(k, τ) is

a particle-like wavepacket, we consider (2.33) with ĥζ(β, r∗;k) replaced by

ûn,ζ(k, τ)e−
iτ
̺

ζωn(k) and r∗ replaced by r∗ + τ
ρ∇kωn(k∗). We consider for

brevity ûn(k, τ) = ûn,ζ(k, τ) with ζ = 1, the case ζ = −1 is similar,
∫

Rd

|∇k(ei(r∗+ τ
̺
∇kωn(k∗))kûn(k, τ)e−

iτ
̺

ωn(k))|dk

=

∫

Rd

|∇k(ei(r∗+ τ
̺
∇kωn(k∗))kûn(k, τ)e−

iτ
̺

ωn(k)e
iτ
̺

ωn(k∗))|dk

=

∫

Rd

|∇k(eir∗kûn(k, τ)e−
iτ
̺

R(k−k∗))|dk � I1 + I2,

where R(ξ) is defined by (4.4),

I1 =

∫

Rd

| e−
iτ
̺

R(k−k∗)∇k(eir∗kûn(k, τ))|dk,

I2 =

∫

Rd

| (eir∗kûn(k, τ))∇ke−
iτ
̺

R(k−k∗)|dk.

The integral I1 is bounded uniformly in r∗ by C′
1β

−1−ε since ûn,ζ(k, τ)
satisfies (2.33). Note that

I2 =

∫

Rd

|(eir∗kûn(k, τ))∇ke−
iτ
̺

R(k−k∗)|dk

�

∫

Rd

|ûn(k, τ)|
τ

̺
|∇kR(k − k∗)|dk.
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Note that, according to (4.5) and (2.25), ûn,ζ(k, τ) 	= 0 only if |k − k∗| �

2β1−ε, and for such k − k∗ we have the Taylor remainder estimate

|∇kR(k − k∗)| � Cβ1−ε.

Therefore, I2 � C′β1−ε/̺ and

I1 + I2 � C′β1−ε/̺.

Using (2.48), we conclude that this inequality implies (2.33) for Ûl(k, τ).
Therefore, it is a particle-like wavepacket. �

From (4.1) and (4.2) we obtain the following integrated evolution equa-
tion for û = û(k, τ), τ � 0:

û(k, τ) = F(û)(k, τ) + ĥ(k), F(û) =
∑

m∈MF

F (m)(ûm(k, τ)), (4.6)

F (m)(ûm)(k, τ) =

τ
∫

0

e
iτ′

̺
L(k)F̂m((e

−iτ′

̺
L(·)û)m)(k, τ ′) dτ ′, (4.7)

where F̂m are defined by (3.7) and (3.9) in terms of the susceptibilities χ(m),
and F (m) are bounded as in the following lemma.

Recall that the spaces L1,a are defined by formula (2.17). Below we
formulate basic properties of these spaces. Recall the Young inequality

‖û ∗ v̂‖L1 � ‖û‖L1‖v̂‖L1 . (4.8)

This inequality implies the boundedness of convolution in L1,a, namely the
following lemma holds.

Lemma 4.3. Let Ĥ1, Ĥ2 ∈ L1,a be two scalar functions, a � 0. Let

Ĥ3(k) =

∫

Rd

Ĥ1(k − k′)Ĥ2(k
′)dk′.

Then

‖Ĥ3(k)‖L1,a � ‖Ĥ1(k)‖L1,a‖Ĥ1(k)‖L1,a . (4.9)

Proof. We have

(1 + |k|)a|Ĥ3(k)| � sup
k′,k′′

(1 + |k′ + k′′|)a

(1 + |k′|)a(1 + |k′′|)a

×

∫

Rd

(1 + |k − k′|)a|Ĥ1(k − k′)|(1 + |k′|)a|Ĥ2(k
′)|dk′.
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Obviously,

1 + |k′ + k′′|

(1 + |k′|)(1 + |k′′|)
�

(1 + |k′| + |k′′|)

(1 + |k′|)(1 + |k′′|)
� 1.

Applying the Young inequality (4.8), we obtain
∫

Rd

(1 + |k|)a
∣

∣

∣
Ĥ3(k)

∣

∣

∣
dk

�

∫

Rd

(1 + |k′|)
∣

∣

∣
Ĥ1(k

′)
∣

∣

∣
dk′

∫

Rd

(1 + |k′′|)
∣

∣

∣
Ĥ2(k

′′)
∣

∣

∣
dk′′.

Using (2.18), we obtain (4.9). �

Using Lemma 4.3, we derive the boundedness of integral operators
F (m).

Lemma 4.4 (boundedness of multilinear operators). Operator F (m)

defined by (3.9), (4.7) is bounded from Ea = C([0, τ∗] , L
1,a) into

C1([0, τ∗], L
1,a), a � 0, and

‖F (m)(û1 . . . ûm)‖Ea
� τ∗‖χ

(m)‖
m
∏

j=1

‖ûj‖Ea
, (4.10)

‖∂τF
(m)(û1 . . . ûm)‖Ea

� ‖χ(m)‖
∏

j

‖ûj‖Ea
. (4.11)

Proof. Notice that since L(k) is Hermitian,
∥

∥ exp
{

− iL(k)
τ1

̺

}
∥

∥ = 1.

Using the inequality (4.9) together with (3.9), (4.7), we obtain

‖F (m)(û1 . . . ûm)(·, τ)‖L1,a

� sup
k,�k

|χ(m)(k, �k)|

∫

Rd

τ
∫

0

∫

Dm

|(1 + |k′|)aû1(k
′)| . . .

×
∣

∣

∣
(1 + |k(m)|)aûm(k(m)(k, �k))

∣

∣

∣
dk′ . . .dk(m−1)dτ1dk

� ‖χ(m)‖

τ
∫

0

‖û1(τ1)‖L1,a . . . ‖ûm(τ1)‖L1,adτ1

� τ∗‖χ
(m)‖‖û1‖Ea

. . . ‖ûm‖Ea
,

proving (4.10). A similar estimate produces (4.11). �
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Equation (4.6) can be recast as the following abstract equation in a
Banach space:

û = F(û) + ĥ, û, ĥ ∈ Ea, (4.12)

and it readily follows from Lemma 4.4 that F(û) has the following proper-
ties.

Lemma 4.5. The operator F(û) defined by (4.6), (4.7) satisfies the
Lipschitz condition

‖F(û1) −F(û2)‖Ea
� τ∗CF ‖û1 − û2‖Ea

(4.13)

where CF � CχC(R), C(R) depends only on mF and R, if ‖û1‖Ea
, ‖û2‖Ea

�

2R, with Cχ as in (3.11).

We also use the following form of the contraction principle.

Lemma 4.6 (contraction principle). Consider the equation

x = F(x) + h, x,h ∈ B, (4.14)

where B is a Banach space, F is an operator in B. Suppose that for some
constants R0 > 0 and 0 < q < 1

‖h‖ � R0, ‖F(x)‖ � R0 if ‖x‖ � 2R0, (4.15)

‖F(x1) −F(x2)‖ � q‖x1 − x2‖ if ‖x1‖, ‖x2‖ � 2R0. (4.16)

Then there exists a unique solution x to Equation (4.14) such that ‖x‖ �

2R0. Let ‖h1‖, ‖h2‖ � R0. Then two corresponding solutions x1,x2 satisfy

‖x1‖, ‖x2‖ � 2R0, ‖x1 − x2‖ � (1 − q)−1‖h1 − h2‖. (4.17)

Let x1,x2 be two solutions of correspondingly two equations of the form
(4.14) with F1, h1 and F2, h2. Assume that F1(u) satisfies (4.15), (4.16)
with a Lipschitz constant q < 1 and that ‖F1(x)−F2(x)‖ � δ for ‖x‖ � 2R0.
Then

‖x1 − x2‖ � (1 − q)−1(δ + ‖h1 − h2‖). (4.18)

Lemma 4.5 and the contraction principle as in Lemma 4.6 imply the
following existence and uniqueness theorem.

Theorem 4.7. Let ‖ĥ‖Ea
� R, and let τ∗ < 1/CF , where CF is a

constant from Lemma 4.5. Then Equation (4.6) has a solution û ∈ Ea =
C([0, τ∗], L

1,a) which satisfies ‖û‖Ea
� 2R, and such a solution is unique.

Hence the solution operator û = G(ĥ) is defined on the ball ‖ĥ‖Ea
� R.

The following existence and uniqueness theorem is a consequence of
Theorem 4.7.
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Theorem 4.8. Let a � 0, (2.1) satisfy (3.11) and ĥ ∈ L1,a(Rd),

‖ĥ‖L1,a � R. Then there exists a unique solution û to the modal evolution
equation (2.1) in the function space C1([0, τ∗] , L

1,a), ‖û‖Ea
+ ‖∂τ û‖Ea

�

R1(R). The number τ∗ depends on R and Cχ.

Using (2.20) and applying the inverse Fourier transform, we readily
obtain the existence of an F−solution of (1.1) in C1([0, τ∗], L

∞(Rd)) from
the existence of the solution of Equation (2.1) in C1([0, τ∗], L

1). The ex-
istence of F -solutions with [a] bounded spatial derivatives ([a] being an
integer part of a) follows from the solvability in C1([0, τ∗], L

1,a).

Let us recast now the system (4.6), (4.7) into modal components us-
ing the projections Πn,ζ(k) as in (2.9). The first step to introduce modal

susceptibilities χ
(m)

n,ζ,�ξ
having one-dimensional range in C2J and vanishing if

one of its arguments ûj belongs to a (2J − 1)-dimensional linear subspace

in C2J (the jth null-space of χ
(m)

n,ζ,�ξ
) as follows.

Definition 4.9 (elementary susceptibilities). Let

�ξ = (�n, �ζ) ∈ {1, . . . , J}m × {−1, 1}m = Ξm, (n, ζ) ∈ Ξ, (4.19)

and let χ(m)(k, �k)
[

û1(k
′), . . . , ûm(k(m))

]

be m-linear symmetric tensor
(susceptibility) as in (3.9).

We introduce elementary susceptibilities χ
(m)

n,ζ,�ξ
(k, �k) : (C2J )m → C2J

as m-linear tensors defined for almost all k and �k = (k′, . . . ,k(m)) by the
following formula:

χ
(m)

n,ζ,�ξ
(k, �k)[û1(k

′), . . . , ûm(k(m))]

= χ
(m)

n,ζ,�n,�ζ
(k, �k)[û1(k

′), . . . , ûm(k(m))] = Πn,ζ(k)χ(m)(k, �k)

× [(Πn1,ζ′(k′)û1(k
′), . . . ,Πnm,ζ(m)(k(m)(k, �k))ûm(k(m)))]. (4.20)

Then using (3.5) and the elementary susceptibilities (4.20), we get

χ(m)(k, �k)[û1(k
′), . . . , ûm(k(m))]

=
∑

n,ζ

∑

�ξ

χ
(m)

n,ζ,�ξ
(k, �k)[û1(k

′), . . . , ûm(k(m))]. (4.21)

Consequently, the modal components F
(m)

n,ζ,�ξ
of the operators F (m) in (4.7)

are m-linear oscillatory integral operators defined in terms of the elementary
susceptibilities (4.21) as follows.
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Definition 4.10 (interaction phase). Using the notation from (3.9),

we introduce for �ξ = (�n, �ζ) ∈ Ξm the operator

F
(m)

n,ζ,�ξ
(û1 . . . ûm)(k, τ) =

τ
∫

0

∫

Dm

exp
{

iϕn,ζ,�ξ(k, �k)
τ1

̺

}

× χ
(m)

n,ζ,�ξ
(k, �k)

[

û1(k
′, τ1), . . . , ûm(k(m)(k, �k), τ1)

]

d̃(m−1)d�kdτ1 (4.22)

with the interaction phase function ϕ defined by

ϕn,ζ,�ξ(k, �k) = ϕn,ζ,�n,�ζ(k, �k)

= ζωn(ζk) − ζ′ωn1(ζ
′k′) − . . . − ζ(m)ωnm

(ζ(m)k(m)), (4.23)

k(m) = k(m)(k, �k),

where k(m)(k, �k) is defined by (3.10).

Using F
(m)

n,ζ,�ξ
in (4.22), we recast F (m)(um) in the system (4.6)-(4.7)

as follows:

F (m) [û1 . . . , ûm] (k, τ) =
∑

n,ζ,�ξ

F
(m)

n,ζ,�ξ
[û1 . . . ûm] (k, τ) (4.24)

yielding the following system for the modal components ûn,ζ(k, τ) as in
(2.9):

ûn,ζ(k, τ) =
∑

m∈MF

∑

�ξ∈Ξm

F
(m)

n,ζ,�ξ
(ûm)(k, τ) + ĥn,ζ(k), (n, ζ) ∈ Ξ. (4.25)

5. Wavepacket Interaction System

The wavepacket preservation property of the nonlinear evolutionary sys-
tem in any of its forms (1.1), (2.1), (4.6), (4.12), (4.25) is not easy to
see directly. It turns out though that dynamics of wavepackets is well de-
scribed by a system in a larger space E2N based on the original equation
(4.6) in the space E. We call it wavepacket interaction system, which is
useful in three ways: (i) the wavepacket preservation is quite easy to see
and verify; (ii) it can be used to prove the wavepacket preservation for
the original nonlinear problem; (iii) it can be used to study more sub-
tle properties of the original problem, such as the NLS approximation.
We start with the system (4.6), where ĥ(k) is a multi-wavepacket with
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a given nk-spectrum S = {(k∗l, nl), l = 1, . . . , N} as in (2.39) and a k-
spectrum KS = {k∗i, i = 1, . . . , |KS |} as in (2.40). Obviously, for any l
(k∗l, nl) = (k∗il

, nl) with il � |KS| and indexing il = l for l � |KS |
according to (2.40).

When constructing the wavepacket interaction system it is convenient
to have relevant functions to be explicitly localized about the k-spectrum
KS of the initial data. We implement that by making up the following cutoff
functions based on (2.24), (2.25):

Ψi,ϑ(k) = Ψ(k, ϑk∗i, β
1−ε) = Ψ(β−(1−ε)(k − ϑk∗i)),

k∗i ∈ KS, i = 1, . . . , |KS | , ϑ = ±,
(5.1)

with ε as in Definition 2.1 and β > 0 small enough to satisfy

β1/2 � π0, where π0 = π0(S) =
1

2
min

k∗i∈KS

dist {k∗i, σbc} . (5.2)

In what follows, we use the notation from (3.16) and

�l = (l1, . . . , lm) ∈ {1, . . . , N}m
,

�ϑ = (ϑ′, . . . , ϑ(m)) ∈ {−1, 1}m, �λ = (�l, �ϑ) ∈ Λm,
(5.3)

�n = (n1, . . . , nm) ∈ {1, . . . , J}m, �ζ ∈ {−1, 1}m, (5.4)

�ξ = (�n �ζ) ∈ Ξm �k = (k′, . . . ,k(m)) ∈ R
m, where Ξm as in (4.19).

Based on the above, we introduce now the wavepacket interaction system

ŵl,ϑ(·) = Ψ(·, ϑk∗il
)Πnl,ϑ(·)F

(

∑

(l′,ϑ′)∈Λ

ŵl′,ϑ′

)

+ Ψ(·, ϑk∗il
)Πnl,ϑ(·)ĥ, (l, ϑ) ∈ Λ, (5.5)

w̃ = (ŵ1,+, ŵ1,−, . . . , ŵN,+, ŵN,−) ∈ E2N , ŵl,ϑ ∈ E,

with Ψ(·, ϑk∗i), Πn,ϑ being as in (5.1), (2.9), F defined by (4.6), and the
norm in E2N defined based on (2.15) by the formula

‖w̃‖E2N =
∑

l,ϑ

‖ŵl,ϑ‖E , E = C([0, τ∗], L
1). (5.6)

We also use the following concise form of the wave interaction system (5.5):

w̃=F
Ψ
(w̃) + h̃

Ψ
, where (5.7)

h̃
Ψ

= (Ψi1,+Πn1,+ĥ, Ψi1,−Πn1,−ĥ, . . . ,ΨiN ,+ΠnN ,+ĥ, ΨiN ,−ΠnN ,−ĥ) ∈ E2N .

The following lemma is analogous to Lemmas 4.4 and 4.5.
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Lemma 5.1. The polynomial operator FΨ(w̃) is bounded in E2N ,
FΨ(0) = 0, and satisfies Lipschitz condition

‖FΨ(w̃1) −FΨ(w̃2)‖E2N � Cτ∗‖w̃1 − w̃2‖E2N , (5.8)

where C depends only on Cχ as in (3.11), on the degree of F , and on
‖w̃1‖E2N + ‖w̃2‖E2N , and it does not depend on β and ̺.

Proof. We consider any operator F
(m)

n,ζ,�ξ
(w̃) defined by (4.22) and

prove its boundedness and the Lipschitz property as in Lemma 4.4 using

the inequality
∣

∣

∣
exp

{

iϕn,ζ,�ξ
τ1

̺

}∣

∣

∣
� 1 and inequalities (2.24), (3.11). Note

that the integration in τ1 yields the factor τ∗ and consequent summation

with respect to n, ζ, �ξ yields (5.8). �

Lemma 5.1, the contraction principle as in Lemma 4.6, and the esti-
mate (4.11) for the time derivative yield the following statement.

Theorem 5.2. Let ‖h̃Ψ‖E2N � R. Then there exists τ∗ > 0 and
R1(R) such that Equation (5.5) has a solution w̃ ∈ E2N which satisfies

‖w̃‖E2N + ‖∂τ w̃‖E2N � R1(R), (5.9)

and such a solution is unique.

Lemma 5.3. Every function ŵl,ζ(k, τ) corresponding to the solution
of (5.7) from E2N is a wavepacket with nk-pair (k∗l, nl) with the degree
of regularity which can be any s > 0.

Proof. Note that, according to (5.1) and (5.7), the function

ŵl,ϑ(k, τ) = Ψ(k, ϑk∗il
, β1−ε)Πnl,ϑF(k, τ), ‖F(τ)‖L1 � C, 0 � τ � τ∗

involves the factor Ψl,ϑ(k) = Ψ(β−(1−ε)(k− ϑk∗l)), where ε is as in Defini-
tion 2.1. Hence

Πn,ϑ′ŵl,ϑ(k, τ) = 0 if n 	= nl or ϑ′ 	= ϑ, (5.10)

ŵl,ϑ(k, τ) = Ψ(k, ϑk∗il
, β1−ε)ŵl,ϑ(k, τ),

ŵl,ϑ(k, τ) = 0 if |k − ϑk∗l| � β1−ε,
(5.11)

Since

Ψ(k, ϑk∗il
, β1−ε)Ψ(k, ϑk∗il

, β1−ε/2) = Ψ(k, ϑk∗il
, β1−ε), (5.12)

Definition 2.1 for ŵl,ϑ is satisfied with Dh = 0 for any s > 0 and C′ = 0 in
(2.30). �
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Now we would like to show that if ĥ is a multi-wavepacket, then the
function

ŵ(k, τ) =
∑

(l,ϑ)∈Λ

ŵl,ϑ(k, τ) =
∑

λ∈Λ

ŵλ(k, τ) (5.13)

constructed from a solution of (5.7) is an approximate solution of Equation
(4.12) (see the notation (3.16)). We follow here the lines of [7]. We introduce

Ψ∞(k) = 1 −
∑

ϑ=±

|KS|
∑

i=1

Ψ(k, ϑk∗i) = 1 −
∑

ϑ=±

∑

k∗i∈KS

Ψ
(k − ϑk∗i

β1−ε

)

. (5.14)

Expanding the m-linear operator F (m)
((

∑

l,ϑ

ŵl,ϑ

)m)

and using the nota-

tion (3.16), (3.17), we get

F (m)
((

∑

l,ϑ

ŵl,ϑ

)m)

=
∑

�λ∈Λm

F (m)(w̃�λ), where (5.15)

w̃�λ = ŵλ1 . . . ŵλm
, �λ = (λ1, . . . , λm) ∈ Λm. (5.16)

The next statement shows that (5.13) defines an approximate solution to
the integrated evolution equation (4.6).

Theorem 5.4. Let ĥ be a multi-wavepacket with resonance invariant
nk-spectrum S and regularity degree s, let w̃ be a solution of (5.7), and let
ŵ(k, τ) be defined by (5.13). Let

D(ŵ) = ŵ −F(ŵ) − ĥ. (5.17)

Then there exists β0 > 0 such that

‖D(ŵ)‖E � C̺ + Cβs, if 0 < ̺ � 1, β � β0. (5.18)

Proof. Let

F−(ŵ) =
(

1 −
∑

l,ϑ

Ψil,ϑΠnl,ϑ

)

F(ŵ),

ĥ− = ĥ −
∑

l,ϑ

Ψil,ϑΠnl,ϑĥ.
(5.19)

Summation of (5.5) with respect to l, ϑ yields

ŵ =
∑

l,ϑ

Ψil,ϑΠnl,ϑF(ŵ) +
∑

l,ϑ

Ψil,ϑΠnl,ϑĥ.

Hence from (5.5) and (5.17) we obtain

D(ŵ) = ĥ− −F−(ŵ). (5.20)
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Using (2.28) and (2.30), we consequently obtain

‖Πnl,ϑĥi‖L1 � Cβs if nl 	= ni;

‖Ψil,ϑĥi‖L1 � Cβs if k∗il
	= k∗i,

‖ĥ−‖E � C1β
s.

(5.21)

To show (5.18), it suffices to prove that

‖F−(ŵ)‖E � C2̺. (5.22)

Obviously,

F−(ŵ) =
(

1 −
∑

l,ϑ

Ψil,ϑΠnl,ϑ

)

∑

m

F (m)(ŵm). (5.23)

Note that
∑

l,ϑ

Ψil,ϑΠnl,ϑ =
∑

ϑ=±

∑

(n,k∗)∈S

Ψ(·, ϑk∗)Πn,ϑ. (5.24)

Using (3.5) and ( 5.14), we consequently obtain
∑

ϑ=±

∑

(n,k∗)∈Σ

Ψ(·, ϑk∗)Πn,ϑ + Ψ∞ = 1, (5.25)

(

1 −
∑

l,ϑ

Ψil,ϑΠnl,ϑ

)

= Ψ∞ +
∑

ϑ=±

∑

(n,k∗)∈Σ\S

Ψ(·, ϑk∗)Πn,ϑ (5.26)

with the set Σ defined in (3.14). Let us expand now F (m)(ŵm) using (5.15).
According to (5.23) and (5.26), to prove (5.22) it suffices to prove that for

every string �λ ∈ Λm the following inequalities hold:

‖Ψ∞Πn,ϑF
(m)(w̃�λ)‖ � C3̺ for (n, ϑ) ∈ Λ, (5.27)

‖Ψ(·, ϑk∗)Πn,ϑF
(m)(w̃�λ)‖ � C3̺ if (n,k∗) ∈ Σ \ S. (5.28)

We use (5.10) and (5.11) to obtain the above estimates. According to
(4.24),

F (m)
[

w̃�λ

]

(k, τ) =
∑

n,ζ

∑

�ξ

F
(m)

n,ζ,�ξ
[ŵλ1 . . . ŵλm

] (k, τ). (5.29)

Note that, according to (5.10), if λi = (l, ϑ′), then

ŵλi
= Πn,ϑŵλi

if n = nl and ϑ′ = ϑ. (5.30)

Let us introduce the notation

�n(�l) = (nl1 , . . . , nlm), �ξ(�λ) = (�n(�l), �ϑ) for �λ = (�l, �ϑ) ∈ Λm. (5.31)

Since
Πn′,ϑΠn,ϑ′ = 0 if n 	= n′ or ϑ′ 	= ϑ, (5.32)
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(5.30) implies

F
(m)

n,ζ,�ξ
[ŵλ1 . . . ŵλm

] = 0 if �ξ = (�n, �ζ) 	= �ξ(�λ), and hence

F (m)[w̃�λ](k, τ) =
∑

n,ζ

F
(m)

n,ζ,�ξ(�λ)
[ŵλ1 . . . ŵλm

](k, τ),
(5.33)

where we used the notation (3.17), (5.31). Note also that

Πn′,ϑF
(m)

n,ζ,�ξ
= 0 if n′ 	= n or ϑ 	= ζ, (5.34)

and hence we have nonzero Πn′,ϑF
(m)

n,ζ,�ξ
(w̃�λ) only if

�ξ = �ξ(�λ), n′ = n, ϑ = ζ. (5.35)

By (4.22),

F
(m)

n,ζ,�ξ(�λ)
(w̃�λ)(k, τ) =

τ
∫

0

∫

Dm

exp
{

iϕn,ζ,�ξ(�λ)(k, �k)
τ1

̺

}

χ
(m)

n,ζ,�ξ(�λ)
(k, �k)

× [ŵλ1(k
′, τ1), . . . , ŵλm

(k(m)(k, �k), τ1)]d̃
(m−1)d�kdτ1. (5.36)

Now we use (5.11) and notice that, according to the convolution identity in
(3.9),

|ŵλ1(k
′, τ1)| · . . . · |ŵλm

(k(m)(k, �k), τ1)| = 0

if
∣

∣

∣
k−

∑

i

ϑik∗li

∣

∣

∣
� mβ1−ε.

(5.37)

Hence the integral (5.36) is nonzero only if (k, �k) belongs to the set

Bβ =
{

(k, �k) : |k(i) − ϑik∗li | � β1−ε, i = 1, . . . , m,
∣

∣

∣
k−

∑

i

ϑik∗li

∣

∣

∣
� mβ1−ε

}

. (5.38)

We prove now that if (n,k∗i) /∈ S, then for small β the following alternative
holds:

either Ψ(·, ϑk∗i)Πn′,ϑF
(m)

n,ζ,�ξ
(w̃�λ) = 0 (5.39)

or (5.35) holds and |ϕn,ζ,�ξ(k, �k)| � c > 0 for (k, �k) ∈ Bβ . (5.40)

Since ϕn,ζ,�ξ(k, �k) is smooth, in the notation (3.18) we get

|ϕn,ζ,�ξ(k, �k) − ϕn′,ζ,�ξ(k∗∗, �k∗)| � Cβ1−ε for (k, �k) ∈ Bβ,

�ϑ = (ϑ1, . . . , ϑm), k∗∗ = ζ
∑

i

ϑik∗li = ζκm(�ϑ,�l),
(5.41)
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Hence (5.40) holds if

ϕn,ζ,�ξ(k∗∗, �k∗) 	= 0, (5.42)

and, consequently, it suffices to prove that either (5.39) or (5.42) holds.
Combining (5.38) with Ψ(k, ϑk∗i) = 0 for |k − ϑk∗i| � β1−ε, we find that
Ψi,ϑF

(m)
[

w̃�λ

]

can be nonzero for small β only in a small neighborhood of

a point ζκm(�ϑ,�l) ∈ [S]K,out, and that is possible only if

k∗∗ = ζκm(�ϑ,�l) = ϑk∗i, k∗i ∈ KS . (5.43)

Let us show that the equality

ϕn,ζ,�ξ(k∗∗, �k∗) = 0 (5.44)

is impossible for k∗∗ as in (5.43) and n′ = n as in (5.34), keeping in mind
that (n,k∗i) /∈ S. From (3.23) and (4.23) it follows that Equation (5.44)
has the form of the resonance equation (3.24). Since the nk-spectrum S is
resonance invariant, in view of Definition 3.8 the resonance equation (5.44)
may have a solution only if k∗∗ = k∗i, i = il, n = nl, with (nl,k∗il

) ∈ S.
Since (n,k∗i) /∈ S, that implies (5.44) does not have a solution. Hence (5.42)
holds when (n,k∗i) /∈ S. Notice that (5.9) yields the following bounds

‖ŵλi
‖E � R1, ‖∂τ ŵλi

‖E � C. (5.45)

These bounds combined with Lemma 5.5, proved below, imply that if (5.42)
holds, then (5.28) holds. Now let us turn to (5.27). According to ( 5.14)

and (5.37), the term Ψ∞Πn′,ϑF
(m)(w̃�λ) can be nonzero only if ζκm(�λ) =

k∗∗ /∈ KS . Since the nk-spectrum S is resonance invariant we conclude as
above that the inequality (5.42) holds in this case as well. The fact that the

set of all κm(�λ) is finite, combined with the inequality (5.42), imply (5.40)
for sufficiently small β. Using Lemma 5.5, as above we derive (5.27). Hence
all terms in the expansion (5.23) are either zero or satisfy (5.27) or (5.28)
implying consequently (5.22) and (5.18). �

Here is the lemma used in the above proof.

Lemma 5.5. Let assume that

|Ψi,ϑ′Πn′,ζχ
(m)

n,ζ,�ξ
(k, �k)[ŵλ1 (k

′, τ1), . . . , ŵλm
(k(m)(k, �k), τ1)]| = 0

for (k, �k) ∈ Bβ and

|ϕn,ζ,�ξ(k, �k)| � ω∗ > 0 for (k, �k) /∈ Bβ , where Bβ as in (5.38).

(5.46)



Particle-Like Wavepackets 103

Then

‖Ψ(·, ϑ′k∗i)Πn′,ζF
(m)

n,ζ,�ξ
(w̃�λ)‖E �

4̺

ω∗
‖χ(m)‖

∏

j

‖ŵλj
‖E

+
2̺τ∗
ω∗

‖χ(m)‖
∑

i

‖∂τ ŵλi
‖E

∏

j �=i

‖ŵλj
‖E . (5.47)

Proof. Notice that the oscillatory factor in (4.22) is equal to

exp
{

iϕ(k, �k)
τ1

̺

}

=
̺

iϕ(k, �k)
∂τ1 exp

{

iϕ(k, �k)
τ1

̺

}

.

Denoting ϕn,ζ,�ξ = ϕ, Ψi,ϑ′Πn′,ζχ
(m)

n,ζ,�ξ
= χ

(m)
�η and integrating (4.22) by parts

with respect to τ1, we obtain

Ψ(k, ϑ′k∗i)Πn′,ζF
(m)

n,ζ,�ξ
(w̃�λ)(k, τ)

=

∫

B

Ψ(k,ϑ′k∗i)
̺eiϕ(k,�k) τ

̺

iϕ(k, �k)
χ

(m)
�η (k, �k)

× ŵλ1(k
′, τ) . . . ŵλm

(k(m)(k, �k), τ) d̃(m−1)d�k

−

∫

B

Ψ(k,ϑ′k∗i)
̺

iϕ(k, �k)
χ

(m)
�η (k, �k)

× ŵλ1(k
′, 0) . . . ŵλm

(k(m)(k, �k), 0) d̃(m−1)d�k

−

τ
∫

0

∫

B

Ψ(k,ϑ′k∗i)
̺eiϕ(k,�k)

τ1
̺

iϕ(k, �k)
χ

(m)
�η (k, �k)

× ∂τ1 [ŵλ1(k
′) . . . ŵλm

(k(m)(k, �k))] d̃(m−1)d�kdτ1, (5.48)

where B is the set of k(i) for which (5.38) holds. The relations (3.11) and

(2.24) imply |χ
(m)
�η (k, �k)| � ‖χ(m)‖. Using then (5.46), the Leibnitz formula,

(5.9) and (4.8), we obtain (5.47). �

The main result of this subsection is the next theorem which, com-
bined with Lemma 5.3, implies the wavepacket preservation, namely that
the solution ûn,ϑ(k, τ) of (4.25) is a multi-wavepacket for all τ ∈ [0, τ∗].

Theorem 5.6. Assume that the conditions of Theorem 5.4 are ful-
filled. Let ûn,ϑ(k, τ) for n = nl, let ŵl,ϑ(k, τ) be solutions to the respective
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systems (4.25) and (5.5), and let ŵ be defined by (5.13). Then for suffi-
ciently small β0 > 0

‖ûnl,ϑ − Πnl,ϑŵ‖E � C̺ + C′βs, 0 < β � β0, l = 1, . . . , N. (5.49)

Proof. Note that ûn,ϑ = Πn,ϑû, where û is a solution of (4.6) and,
according to Theorem 4.7, ‖û‖E � 2R. Comparing Equations (4.6) and

(5.17), which are û = F(û) + ĥ and ŵ = F(ŵ) + ĥ + D(ŵ), we find that
Lemma 4.6 can be applied. Then we notice that, by Lemma 4.5, F has the
Lipschitz constant CF τ∗ for such û. Taking CF τ∗ < 1 as in Theorem 4.7,
we obtain (5.49) from (4.17). �

Notice that Theorem 2.9 is a direct corollary of Theorem 5.6 and
Lemma 5.3.

An analogous assertion is proved in [7] for parameter-dependent equa-

tions of the form (2.1) with F̂(Û) = F̂(Û, ̺).

The following theorem shows that any multi-wavepacket solution to
(4.6) yields a solution to the wavepacket interaction system (5.5).

Theorem 5.7. Let û(k, τ) be a solution of (4.6). Assume that û(k, τ)

and ĥ(k) are multi-wavepackets with nk-spectrum S = {(nl,k∗l), l = 1, . . . ,
N} and regularity degree s. Let also Ψil,ϑ = Ψil,ϑ be defined by (5.1). Then

ŵ′
l,ϑ(k, τ) = Ψil,ϑΠnl,ϑû(k, τ) is a solution to the system (5.5) with ĥ(k)

replaced by ĥ′(k, τ) satisfying

‖ĥ(k) − ĥ′(k, τ)‖L1 � Cβs, 0 � τ � τ∗, (5.50)

and, if ŵl,ϑ are solutions of (5.5) with original ĥ(k), then

‖ŵ′
l,ϑ(k, τ) − ŵl,ϑ‖L1 � Cβs, 0 � τ � τ∗. (5.51)

Proof. Multiplying (4.6) by Ψil,ϑΠnl,ϑ, we get

ŵ′
l,ϑ = Ψ(·, ϑk∗il

)Πnl,ϑF(û)(k, τ) + Ψ(·, ϑk∗il
)Πnl,ϑĥ(k),

ŵ′
l,ϑ = Ψ(·, ϑk∗il

)Πnl,ϑû.
(5.52)

Since û(k, τ) is a multi-wavepacket with regularity s, we have

‖û(·, τ) − ŵ′(·, τ)‖L1 � Cεβ
s,

where ŵ′(·, τ) =
∑

l,ϑ

Ψ(·, ϑk∗il
)û(·, τ). (5.53)
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Let us recast (5.52) in the form

ŵ′
l,ϑ = Ψ(·, ϑk∗il

)Πnl,ϑF(ŵ′)(k, τ)

+ Ψ(·, ϑk∗il
)Πnl,ϑ[ĥ(k) + ĥ′′(k, τ)], (5.54)

ĥ′′(k, τ) = [F(û) −F(ŵ′)](k, τ).

Denoting ĥ(k) + ĥ′′(k, τ) = ĥ′(k, τ), we observe that (5.54) has the form

of (5.5) with ĥ(k) replaced by ĥ′(k, τ). The inequality (5.50) follows then
from (5.53) and (4.13). Using Lemma 4.6, we obtain (5.51). �

6. Reduction of Wavepacket Interaction System
to an Averaged Interaction System

Our goal in this section is to substitute the wavepacket interaction system
(5.5) with a simpler averaged interaction system which describes the evolu-
tion of wavepackets with the same accuracy, but has a simpler nonlinearity,
and we follow here the approach developed in [7]. The reduction is a
generalization of the classical averaging principle to the case of continuous
spectrum, see [7] for a discussion and further simplification of the averaged
interaction system. In the present paper, we do not need the further sim-
plification to a minimal interaction system leading to a system of NLS-type
equations which is done in [7].

6.1. Time averaged wavepacket interaction system.

Here we modify the wavepacket interaction system (5.5), substituting its
nonlinearity with another one obtained by the time averaging, and prove
that this substitution produces a small error of order ̺. As the first step, we
recast (5.5) in a slightly different form by using the expansions (5.15), (5.29)
together with (5.33) and (5.34) and writing the nonlinearity in Equation
(5.5) in the form

Ψ(·, ϑk∗il
)Πnl,ϑF(·, τ)

=
∑

m∈MF

∑

�λ∈Λm

Ψ(·, ϑk∗il
)F

(m)

nl,ϑ,�ξ(�λ)
(w̃�λ), �λ = (�l, �ζ), (6.1)

F
(m)

nl,ϑ,�ξ(�λ)
(w̃�λ)(k, τ) = F

(m)

n,ζ,�n,�ζ
[ŵλ1 . . . ŵλm

](k, τ)
∣

∣

�n=�n(�l), (n,ζ)=(nl,ϑ)
, (6.2)
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with F
(m)

n,ζ,�n,�ζ
as in (4.22) and �n(�l) as in (5.31), and we call F

(m)

nl,ϑ,�ξ(�λ)
(w̃�λ) a

decorated monomial F
(m)

nl,ϑ,�ξ(�λ)
evaluated at w̃�λ. Consequently, the wavepacket

interaction system (5.5) can be written in the equivalent form

ŵl,ϑ =
∑

m∈MF

∑

�λ∈Λm

Ψ(·, ϑk∗il
)F

(m)

nl,ϑ,�ξ(�λ)
(w̃�λ) + Ψ(·, ϑk∗il

)Πnl,ϑĥ,

l = 1, . . .N, ϑ = ±.

(6.3)

The construction of the above-mentioned time averaged equation reduces
to discarding certain terms in the original system (6.3). First we introduce
the following sets of indices related to the resonance equation (3.24) and
Ωm defined by (3.23):

Λm
nl,ϑ

=
{

�λ = (�l, �ζ) ∈ Λm : Ωm(ϑ, nl, �λ) = 0
}

, (6.4)

and then the time-averaged nonlinearity Fav by

Fav,nl,ϑ(w̃) =
∑

m∈MF

F
(m)
nl,ϑ

, F
(m)
nl,ϑ

=
∑

�λ∈Λm
nl,ϑ

F
(m)

nl,ϑ,�ξ(�λ)
(w̃�λ), (6.5)

where F
(m)

nl,ϑ,�ξ(�λ)
are defined in (6.2).

Remark 6.1. Note that the nonlinearity F
(m)
av,nl,ϑ

(w̃) can be obtained

from F
(m)
nl,ϑ

by an averaging formula using an averaging operator AT acting

on polynomial functions F : (C2)N → (C2)N as follows:

(AT F )j,ζ =
1

T

T
∫

0

e−iζϕjt

× Fj,ζ(e
iϕ1tu1,+, e−iϕ1tu1,−, . . . , eiϕN tuN,+, e−iϕN tuN,−)dt. (6.6)

Using this averaging, we define for any polynomial nonlinearity G : (C2)N →
(C2)N the averaged polynomial

Gav,j,ζ(�u) = lim
T→∞

(AT G)j,ζ(�u). (6.7)

If the frequencies ϕj in (6.6) are generic, Gav,j,ζ(�u) is always a univer-
sal nonlinearity. Note that Fav,nl,ϑ(w̃) defined by (6.5) can be obtained
by formula (6.7), where AT is defined by formula (6.6) with frequencies
ϕj = ωnj

(k∗ij
) (it may be conditionally universal if the frequencies ϕj are

subjected to a condition of the form (6.22), see the following subsection for
details, in particular for definitions of universal and conditionally universal
nonlinearities).
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Finally, we introduce the wave interaction system with time-averaged
nonlinearity as follows:

v̂l,ϑ = Ψ(·, ϑk∗il
)Fav,nl,ϑ(ṽ)+Ψ(·, ϑk∗il

)Πnl,ϑĥ, l = 1, . . .N, ϑ = ±. (6.8)

Similarly to (5.7) we recast this system concisely as

ṽ = Fav,Ψ(ṽ) + h̃
Ψ
. (6.9)

The following lemma is analogous to Lemmas 5.1, 4.5.

Lemma 6.2. The operator Fav,Ψ(ṽ) is bounded for bounded ṽ ∈ E2N ,
Fav,Ψ(0) = 0. The polynomial operator Fav,Ψ(ṽ) satisfies the Lipschitz
condition

‖Fav,Ψ(ṽ1) −Fav,Ψ(ṽ2)‖E2N � Cτ∗‖ṽ1 − ṽ2‖E2N (6.10)

where C depends only on Cχ in (3.11), on the power of F and on ‖ṽ1‖E2N +
‖ṽ2‖E2N , and, in particular, it does not depend on β, ̺.

From Lemma 6.2 and the contraction principle we obtain the following
theorem similar to Theorem 5.2.

Theorem 6.3. Let ‖h̃Ψ‖E2N � R. Then there exists R1 > 0 and τ∗ >
0 such that Equation (6.9) has a solution ṽ ∈ E2N satisfying ‖ṽ‖E2N � R1,
and such a solution is unique.

The following theorem shows that the averaged interaction system
introduced above provides a good approximation for the wave interaction
system.

Theorem 6.4. Let v̂l,ϑ(k, τ) be the solution of (6.8), and let
ŵl,ϑ(k, τ) be the solution of (5.5). Then for sufficiently small β v̂l,ϑ(k, τ)
is a wavepacket satisfying (5.10), (5.11) with ŵ replaced by v̂. In addition
to that, there exists β0 > 0 such that

‖v̂l,ϑ − ŵl,ϑ‖E � C̺, l = 1, . . . , N, ϑ = ±,

for 0 < ̺ � 1, 0 < β � β0.
(6.11)

Proof. Formulas (5.10) and (5.11) for v̂l,ϑ(k, τ) follow from (6.8). We
note that w̃ is an approximate solution of (6.8), namely we have an estimate

for Dav(ŵ) = ŵ −Fav,Ψ − ĥΨ which is similar to (5.17), (5.18):

‖Dav(ŵ)‖ = ‖ŵ −Fav,Ψ − ĥ‖E2N � C̺ if 0 < ̺ � 1, β � β0. (6.12)

The proof of (6.12) is similar to the proof of (5.22) with minor simplifications
thanks to the absence of terms with Ψ∞. Using (6.12), we apply Lemma
4.6 and obtain (6.11). �
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6.1.1. Properties of averaged nonlinearities. In this section, we dis-
cuss elementary properties of nonlinearities obtained by formula (6.5). A
key property of such nonlinearities Fj,ζ is the following homogeneity-like
property:

Fj,ζ(e
iϕ1tu1,+, e−iϕ1tu1,−, . . . , eiϕN tuN,+, e−iϕN tuN,−)

= eiζϕjtFj,ζ(u1+, u1−, . . . , uN+, uN−).
(6.13)

The values of ϕi, i = 1,. . . N , for which this formula holds depend on the
resonance properties of the set S which enters (6.5) through the index set
Λm

nl,ϑ
. First, let us consider the simplest case, where ϕi are arbitrary. An

example of such a nonlinearity is the function

F2,ζ(u1,+, u1,−, u2,+, u2,−) = u1,+u1,−u2,+.

We call a nonlinearity which is obtained by formula (6.5) with a universal
resonance invariant set S a universal nonlinearity.

Proposition 6.5. If Fj,ζ is a universal nonlinearity, then (6.13) holds
for arbitrary set of values ϕi, i = 1, . . . , N .

Proof. Note that the definition (6.5) of the averaged nonlinearity es-

sentially is based on the selection of vectors �λ = ((ζ′, l′), . . . , (ζ(m), lm)) ∈
Λm

nl,ϑ
as in (6.4), which is equivalent to the resonance equation (3.24) with

n = nl, ζ = ϑ. This equation has the form

−ζωn(k∗∗) +

N
∑

l=1

δlωl(k∗l) = 0 (6.14)

with

k∗∗ = −ζ
N

∑

l=1

δlk∗l, (6.15)

where δl are the same as in (3.26). If �λ ∈ Λm
nl,ϑ

and

w̃�λ = (ŵλ1 . . . ŵλm
) = (ŵζ′,l1 . . . ŵζ(m),lm)

= (e−iζ′ϕl1 v̂ζ′,l1 . . . e−iζ(m)ϕlm v̂ζ(m),lm),

then, using (6.2) and the multi-linearity of F (m), we get

F
(m)

nl,ϑ,�ξ(�λ)
(w̃�λ) = e−i ζ(j)ϕlj F

(m)

nl,ϑ,�ξ(�λ)
(ṽ�λ)

and
m

∑

j=1

ζ(j)ϕlj =
N

∑

l=1

δlϕl, (6.16)
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where δl are the same as in (3.26). If we have a universal solution of (6.14),
all coefficients at every ωl(k∗l) cancel out (ωn(k∗∗) also equals one of ωl(k∗l),
namely ωn(k∗∗) = ωnI0

(k∗I0 )). Using the notation (3.26), we see that
a universal solution is determined by the system of equations on binary
indices

δl =
∑

j∈�l−1(l)

ζ(j) = 0, l 	= I0, δI0 =
∑

j∈�l−1(I0)

ζ(j) = ζ. (6.17)

Obviously, the above condition does not involve values of ωl and hence if
δl, ζ correspond to a universal solution of (6.14), then we have the identity

−ζϕI0 +

N
∑

l=1

δlϕl = 0, (6.18)

which holds for any (ϕ1, . . . , ϕN ) ∈ CN . �

Consider now the case, where the nk-spectrum S is resonance invari-
ant, but may be not universal resonance invariant. Definition 3.8 of a reso-
nance invariant nk-spectrum implies that the set P (S) of all the solutions of
(3.24) coincides with the set Pint(S) of internal solutions. Hence all solutions
of (6.14), (6.15)) are internal, in particular k∗∗ = k∗I0 , ωn(k∗∗) = ωnI0

(k∗I0 )
with some I0.

If we have a nonuniversal internal solution of (6.14), ωl(k∗l) satisfy
the following linear equation:

ζωnI0
(k∗I0 ) +

N
∑

l=1

δlωl(k∗l) = 0, ζk∗I0 +

N
∑

l=1

δlk∗l = 0 (6.19)

where at least one of bj is nonzero. Note that if (6.19) is satisfied, we have
additional (nonuniversal) solutions of (3.24) defined by

∑

j∈�l−1(l)

ζ(j) = δl, l 	= I0,
∑

j∈�l−1(I0)

ζ(j) = ζ + δI0 . (6.20)

Now let us briefly discuss properties of Equations (6.20). The right-hand

sides of the above system form a vector �b = (b1, . . . , bN) with bl = δl, l 	= I0,

and bI0 = ζ + δI0 . Note that �l = (l1, . . . , lm) is uniquely defined by its level

sets �l−1(l). For every l the number δ+l of positive ζ(j) and the number δ−l

of negative ζ(j) with j ∈ �l−1(l) in (6.20) satisfy the equations

δ+l − δ−l = δl, δ+l + δ−l = |�l−1(l)|, (6.21)
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where |�l−1(l)| = cl is the cardinality (number of elements) of �l−1(l). Hence

δ+l, δ−l are uniquely defined by δl, |�l−1(l)|. Hence the set of binary solutions
�ζ of (6.20) with a given �b and a given �l = (l1, . . . , lm) is determined by sub-

sets of �l−1(l) with the cardinality δ+l elements. Hence every solution with

a given �b and a given �l can be obtained from one solution by permutations

of indices j inside every level set �l−1(l). If �b is given and the cardinali-

ties |�l−1(l)| = cl are given, we can obtain different �l which satisfy (6.20)
by choosing different decomposition of {1, . . . , m} into subsets with given

cardinalities cl. For given �b and �c = (c1, . . . , cm) we obtain this way the set

(may be empty for some �b, �c) of all solutions of (6.20). Solutions with the

same �b and �c we call equivalent.

When for a given wavepacket there are several nonequivalent nonuni-
versal solutions, the number of which is denoted by Nc, we obtain from
(6.19) a system of equations with integer coefficients

N
∑

l=1

bl,iωl(k∗l) = 0, i = 1, . . . , Nc, (6.22)

and solutions to (3.24) can be found from
∑

j∈�l−1(l)

ζ(j) = bl,i, for some i, 0 � i � Nc, (6.23)

where to include universal solutions, we set bl,0 = 0.

Hence when a wavepacket is universally resonance invariant, we con-
clude that all terms in (6.5) satisfy (6.17). Since (6.18) holds, we get (6.13)
for arbitrary (ϕ1, . . . , ϕN ) ∈ CN . If the wavepacket is conditionally univer-
sal with conditions (6.23), then,using (6.16) and (6.23), we conclude that
(6.18) and (6.13) hold if (ϕ1, . . . , ϕN ) satisfy the system of equations

N
∑

l=1

bl,iϕl = 0, i = 1, . . . , Nc. (6.24)

Now we wold like to describe a special class of solutions of averaged
equations. The evolution equation with an averaged nonlinearity has the
form

∂τUj,+ =
−i

̺
Lj(−i∇)Uj,+ + Fj,+(U1,+, U1,−, . . . , UN,+, UN,−),

∂τUj,− =
i

̺
Lj(i∇)Uj,+ + Fj,−(U1,+, U1,−, . . . , UN,+, UN,−),

j = 1, . . . , N,

(6.25)
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where L(−i∇) is a linear scalar differential operator with constant coeffi-
cients. The characteristic property (6.13) implies that such a system admits
special solutions of the form

Uj,ζ(r, τ) = e−iϕjτ/̺Vj,ζ(r), (6.26)

where V1,ζ(r) solve the time-independent nonlinear eigenvalue problem

−iϕjVj,+ = −iLj(−i∇)Vj,++̺Fj,+(V1,+, V1,−, . . . , VN,+, VN,−),

iϕjVj,−=iLj(i∇)Vj,+ + ̺Fj,−(V1,+, V1,−, . . . , VN,+, VN,−), (6.27)

j = 1, . . . , N.

6.1.2. Examples of universal and conditionally universal nonlin-
earities. Here we give a few examples of equations with averaged nonlin-
earities. When the multi-wavepacket is universal resonance invariant, the
averaged wave interaction system involves NLS-type equations.

Example 6.6. The simplest example of (6.25) for one wavepacket
(N = 1) and one spatial dimension (d = 1) is the nonlinear Schrödinger
equation

∂τU1,+ = −
i

̺
a2∂

2
xU1,+ −

i

̺
a0U1,+ + a1∂xU1,+ − iqU1,−U2

1,+,

∂τU1,− =
i

̺
a2∂

2
xUj,− +

i

̺
a0U1,− + a1∂xU1,− + iqU1,+U2

1,−.

(6.28)

Note that, by setting y = x + a1τ/̺, we can make a1 = 0. Obviously, the
nonlinearity

Fζ(U) = −iζqU1,−ζU
2
1,ζ

satisfies (6.13):

iζqe−iζϕ1U1,−ζ(e
iζϕ1U1,ζ)

2 = eiζϕ1iζqU1,−ζ(U1,ζ)
2.

The eigenvalue problem in this case takes the form

iϕ1V1,+ = −ia2∂
2
xV1,+ − ia0V1,+ + a1∂xV1,+ − i̺qV1,−V 2

1,+,

−iϕ1V1,− = ia2∂
2
xVj,− + ia0V1,− + a1∂xV1,− + i̺qV1,+V 2

1,−.
(6.29)

If a1 = 0 and we consider real-valued V1,+ = V1,−, we obtain the equation

(ϕ1 + a0)V1,+ = −a2∂
2
xV1,+ − ̺qV 3

1,+

or, equivalently,

(ϕ1 + a0)

̺q
V1,+ +

a2

̺q
∂2

xV1,+ + V 3
1,+ = 0.
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If

c2 =
a2

̺q
> 0,

(ϕ1 + a0)

̺q
= −b2 < 0, (6.30)

the last equation takes the form

−b2V1,+ + c2∂2
xV1,+ + V 3

1,+ = 0

with the family of classical soliton solutions

V1,+ = 21/2 b

cosh(b(x − x0)/c)
.

Note that the norm of the Fourier transform ‖V̂1,+‖L1 = Cb, where C is an

absolute constant. Hence to have V̂1,+ bounded in L1 uniformly in small ̺
according to (6.30), we should take ϕ1 = −a0 − b2̺q with bounded b.

If the universal resonance invariant multi-wavepacket involves two
wavepackets (N = 2) and the nonlinearity F is cubic, i.e., MF = {3},
the semilinear system PDE with averaged nonlinearity has the form

∂tU2,+ = −iL2(i∇)U2,+ + U2,+(Q2,1,+U1,+U1,− + Q2,2,+U2,+U2,−),

∂tU2,− = iL2(−i∇)U2,− + U2,−(Q2,1,−U1,+U1,− + Q2,2,−U2,+U2,−),

∂tU1,+ = −iL1(i∇)U1,+ + U1,+(Q1,1,+U1,+U1,− + Q1,1,+U2,+U2,−),

∂tU1,− = iL1(−i∇)U1,− + U1,−(Q1,1,−U1,+U1,− + Q1,1,−U2,+U2,−).

Obviously, (6.13) holds with arbitrary ϕ1, ϕ2.

Now let us consider quadratic nonlinearities. In particular, let us
concider the one-band symmetric case ωn(k) = ω1(k) = ω1(−k), i.e., J = 1,
MF = {2}, and m = 2. Suppose that there is a multi-wavepacket involving
two wavepackets with wavevectors k∗1,k∗2, i.e., N = 2. The resonance
equation (3.24) takes now the form

−ζω1(ζ
′k∗l1 + ζ′′k∗l2) + ζ′ω1(k∗l1) + ζ′′ω1(k∗l2) = 0, (6.31)

where l1, l2 ∈ {1, 2}, ζ, ζ′, ζ′′ ∈ {−1, 1}. All possible cases, and there are
exactly four of them, correspond to the four well-known effects in the
nonlinear optics: (i) l1 = l2, ζ′ = ζ′′ and ζ′ = −ζ′′ correspond respectively
to second harmonic generation and nonlinear optical rectification; (ii) l1 	=
l2, ζ′ = ζ′′and ζ′ = −ζ′′ correspond respectively to sum-frequency and
difference-frequency interactions.

Let us suppose now that k∗1,k∗2 	= 0 and ω1(k∗1) 	= 0, ω1(k∗2) 	= 0,
where the last conditions exclude the optical rectification, and that k∗i 	= 0
and k∗i, 2k∗i,0, k∗1 ± k∗2 are not band-crossing points. Consider first the
case, where the wavepacket is universally resonance invariant.
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Example 6.7. Suppose there is a single band, i.e., J = 1, with a
symmetric dispersion relation, and a quadratic nonlinearity F , i.e., MF =
{2}. Let us pick two points k∗1 and k∗2 	= ±k∗1 and assume that k∗i 	= 0
and k∗i, 2k∗i,0, ±k∗1 ± k∗2 are not band-crossing points. Assume also
that (i) 2ω1(k∗i) 	= ω1(2k∗i), i, j, l = 1, 2, so there is no second harmonic
generation; (ii) ω1(k∗1) ± ω1(k∗2) 	= ω1(k∗1 ± k∗2), (no sum/difference-
frequency interactions); (iii) ω1(0) 	= 0, ωj(k∗1) ± ωl(k∗2) 	= 0. Let set
the nk-spectrum be the set S1 = {(1,k∗1), (1,k∗2)}. Then S1 is resonance
invariant.

In this case, (6.31) does not have solutions. Hence Λm
nl,ϑ

= ∅ and the
averaged nonlinearity equals zero.

Now let us consider the case, where the wavepacket is not universal
resonance invariant, but conditionally universal resonance invariant. In the
following example, the conditionally resonance invariant spectrum allows
for the second harmonic generation in the averaged system.

Example 6.8. Suppose there is a single band, i.e., J = 1, with a
symmetric dispersion relation, and a quadratic nonlinearity F , i.e., MF =
{2}. Let us pick two points k∗1 and k∗2 such that k∗2 = 2k∗1 and assume
that k∗i 	= 0 and k∗i, 2k∗i,0, ±k∗1 ± k∗2 are not band-crossing points.
Assume also that (i) 2ω1(k∗1) = ω1(2k∗1) (second harmonic generation);
(ii) ωi(k∗1) ± ωj(k∗2) 	= ωl(k∗1 ± k∗2), i, j, l = 1, 2 (no sum-/difference-
frequencies interaction); (iii) ω1(0) 	= 0, ωj(k∗1) ± ωl(k∗2) 	= 0. Let set
the nk-spectrum be the set S = {(1,k∗1), (1,k∗2)}. Then S is resonance
invariant. The condition (6.19) is takes here the form

2ω1(k∗1) − ω1(k∗2) = 0, 2k∗1 − k∗2 = 0,

and the condition (6.24) turns into

2ω1(k∗1) − ω1(k∗2) = 0.

The wavepacket interaction system for such a multi-wavepacket has the form

∂tU2,+ = −iL2(i∇)U2,+ + Q2,2,+U1,+U1,+,

∂tU2,− = iL2(−i∇)U2,− + Q2,2,−U1,−U1,−,

∂tU1,+ = −iL1(i∇)U1,+ + Q1,2,+U2,+U1,−,

∂tU1,− = iL1(−i∇)U1,− + Q1,2,−U2,−U1,+.
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6.2. Invariance of multi-particle wavepackets.

The following lemma shows that particle wavepackets are preserved under
action of certain types of nonlinearities with elementary susceptibilities as
in (4.20). In the following section, we show, in particular, that universal
nonlinearities are composed of such terms.

Lemma 6.9. Let the components ŵli,ζ = ŵλi
of w̃�λ = ŵλ1 . . . ŵλm

be particle-like wavepackets in the sense of Definition 2.2, and let

F
(m)

nl,ϑ,�ξ(�λ)
(w̃�λ) be as in (6.5). Assume that

ŵli,ζ(k, β) = 0 if |k − ζk∗li| � β1−ε, ζ = ±, i = 1, . . . , m. (6.32)

Assume that the vector index �λ ∈ Λm
nl,ϑ

is such a vector which has at least

one component λj = (ζj , lj) such that

∇ωnl
(k∗l) = ∇ωnlj

(k∗lj ). (6.33)

Then for any r∗ ∈ Rd

‖∇k(e−ir∗kΨ(·,k∗l, β
1−ε)F

(m)

nl,ϑ,�ξ(�λ)
(w̃�λ))‖E

�Cτ∗‖∇ke−ir∗k
(j)

wlj‖E

∏

i�=j

‖wlj ,ζj
‖E

+ Cτ∗

(

β−1+ε +
β1−ε

̺

)

m
∏

j=1

‖wlj ,ζj
‖E, (6.34)

where C does not depend on r∗ and small β, ̺.

Proof. Note that

r∗k = r∗(k
′ + . . . + k(m)).

We have by (4.22)

∇ke−ir∗kF
(m)

nl,ϑ,�ξ(�λ)
(w̃�λ)(k, τ) = ∇k

τ
∫

0

∫

[−π,π]2d

exp
{

iϕ θ,�ζ(k, �k)
τ1

̺

}

× Ψe−ir∗kχ
(m)

θ,�ζ
(k, �k)wl1,ζ′(k′) . . .wlm,ζ(m)(k(m)(k, �k)) d̃(m−1)d�kdτ1. (6.35)

Without loss of generality, we assume that in (6.33) lj = lm (the general
case is reduced to this one by a re-enumeration of variables of integration).
By the Leibnitz formula,

∇k[Ψe−ir∗kF
(m)

nl,ϑ,�ξ(�λ)
(w̃�λ)](k, τ) = I1 + I2 + I3, (6.36)
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where

I1 =

τ
∫

0

∫

[−π,π](m−1)d

∇k exp
{

iϕθ,�ζ(k, �k)
τ1

̺
− ir∗k

}

Ψχ
(m)

θ,�ζ
(k, �k)e−ir∗k

′

× wl1,ζ′(k′) . . . e−ir∗k
(m)

wlm,ζ(m)(k(m)(k, �k))d̃(m−1)d�kdτ1,

I2 =

τ
∫

0

∫

[−π,π](m−1)d

Ψ exp
{

iϕθ,�ζ(k, �k)
τ1

̺
−ir∗k

}

×
[

∇k(Ψ(k,k∗l, β
1−ε)χ

(m)

θ,�ζ
(k, �k))

]

e−ir∗k
′

wl1,ζ′(k′) . . . e−ir∗k
(m)

× wlm,ζ(m)(k(m)(k, �k))d̃(m−1)d�kdτ1,

I3 =

τ
∫

0

∫

[−π,π](m−1)d

exp
{

iϕθ,�ζ(k, �k)
τ1

̺
− ir∗k

}

Ψχ
(m)

θ,�ζ
(k, �k)e−ir∗k

′

× wl1,ζ′(k′) . . .∇k(e−ir∗k
(m)(k,�k)wlm,ζ(m)(k(m)(k, �k)))d̃(m−1)d�kdτ1.

Since wj,ζ are bounded, we have

‖e−ir∗jk
(j)

wlj ,ζ(j)(k(j))‖L1 � ‖wlj ,ζ(j)(k(j))‖L1 � C1, j = 1, . . . , m. (6.37)

Using (4.8) and (6.37), we get

|I3| � ‖χ(m)‖
m−1
∏

j=1

‖wlj ,ζ(j)‖E

τ
∫

0

‖∇ke−ir∗k
(m)(k,�k)wlm,ζ(m)‖Edτ1. (6.38)

From (6.37), (2.25), (3.13) and the smoothness of Ψ(k,k∗l, β
1−ε) we get

|I2| � C2β
−1+ε

m
∏

j=1

‖wlj,ζj
‖E . (6.39)

Now let us estimate I1. Using (4.23), we obtain

I1 =

τ
∫

0

∫

[−π,π](m−1)d

[

exp
{

iϕθ,�ζ(k, �k)
τ1

̺

}

]

×
τ1

̺

[

− θ∇kωnl
(k) + ζ(m)∇kωnlm

(k(m)(k, �k))
]

× χ
(m)

θ,�ζ
(k, �k)wl1,ζ′(k′) . . .wlm,ζ(m)(k(m)(k, �k))d̃(m−1)d�kdτ1. (6.40)
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The difficulty in the estimation of the integral I1 comes from the factor τ1/̺
since ̺ is small. Since (6.32) holds, it is sufficient to estimate I1 if

|k(j) − ζ(j)k∗nj
| � β1−ε for all j. (6.41)

According to (3.18), since �λ ∈ Λm
nl,ϑ

, we have

k(m)(k∗nl
, �k∗) = k∗nlm

.

Hence, using (6.33) and (4.23), we obtain

∇kϕθ,�ζ(k∗nl
, �k∗)=[−θ∇kωnl

(k∗nl
) + ζ(m)∇kωnlm

((k(m)(k∗nl
, �k∗)))]=0.

(6.42)

Using (3.2), we conclude that, in a vicinity of �k∗ defined by (6.41), we have

t|[−θ∇kω(k) + ζ(m)∇kω(k(m)(k, �k))]| � 2(m + 1)Cω,2β
1−ε.

This yields the estimate

|I1| � C3β
1−ε/̺. (6.43)

Combining (6.43), (6.39) and (6.38), we obtain (6.48). �

We introduce a β-dependent Banach space E1 of differentiable func-
tions of variable k by the formula

‖w‖E1(r∗) = β1+ε‖∇k(e−ir∗kw)‖E + ‖w‖E. (6.44)

We use for 2N -component vectors with elements wi(k) ∈ E2 the following
notation:

w̃(k) = (w1(k), . . . ,wN (k)),

r̃∗ = (r∗1, . . . , r∗N ), wi(k) = (wi,+(k),wi,−(k)),

e−ir̃∗kw̃(k) = (e−ir∗1kw1(k), . . . , e−ir∗NkwN (k)),

(6.45)

Similarly to (5.6) we introduce the space (E1)2N (r̃∗) with the norm

‖w̃‖(E1)2N (r̃∗) =
∑

l,ϑ

‖ŵl,ϑ‖E1(r∗l). (6.46)

The following proposition is obtained by comparing (6.44) and (2.33).

Proposition 6.10. A multi-wavepacket w̃ is a multi-particle one with
positions r∗1,. . . , r∗N if and only if

‖w̃‖(E1)2N (r̃∗) � C,

where the constant C does not depend on β, 0 < β � 1/2, and r̃∗.
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In view of the above, we call E1(r∗) and (E1)2N (r̃∗) particle spaces.
We also use the notation

Ψ2w̃�λ = (Ψ(·,k∗l1 , β
1−ε/2)wλ1 , . . . ,Ψ(·,k∗lm , β1−ε/2)wλm

),

F
(m)

nl,ϑ,�λ,Ψ2
(w̃m) = Ψ(·,k∗l, β

1−ε)F
(m)

nl,ϑ,�ξ(�λ)
(Ψ2w̃�λ).

Lemma 6.11. Let w̃, ṽ ∈ (E1)2N (r̃∗) and F
(m)

nl,ϑ,�ξ(�λ)
(w̃�λ) be as in

(6.5). Assume that the vector index �λ ∈ Λm
nl,ϑ

is such a vector which has at

least one component λj = (ζj , lj) with lj = l. Assume that (1.9) holds
and Ψ(·,k∗, β

1−ε) is defined in (2.25). Let ‖w̃‖(E1)2N (r̃∗) � 2R. Then

‖F
(m)

nl,ϑ,�λ,Ψ2
(w̃)‖E1(r∗l) � Cτ∗‖w̃‖m−1

(E)2N‖w̃‖(E1)2N (r̃∗) (6.47)

where C does not depend on β, 0 < β � 1/2, and on r̃∗, r∗l and r̃∗ is
defined by (6.45). If ‖ṽ‖(E1)2N (r̃∗) � 2R the following Lipschitz inequality
holds:

‖F
(m)

nl,ϑ,�λ,Ψ2
(w̃) −F

(m)

nl,ϑ,�λ,Ψ2
(ṽ)‖E1(r∗l) � Cτ∗‖w̃ − ṽ‖(E1)2N (r̃∗). (6.48)

where C does not depend on β, 0 < β � 1/2, and on r̃∗, r∗l.

Proof. Note that Ψ2w̃�λ and Ψ2ṽ�λ are wavepackets in the sense of
Definition 2.2. To obtain (6.47), we apply the inequality (6.34) and use
(1.9); for the part of the E1-norm without k-derivatives we use (4.10). Using

multilinearity of F
(m)

nl,ϑ,�λ,Ψ2
, we observe that

F
(m)

nl,ϑ,�λ,Ψ2
(w̃) −F

(m)

nl,ϑ,�λ,Ψ2
(ṽ)

=

m
∑

j=1

F
(m)

nl,ϑ,�λ,Ψ2
(wλ1 , . . . ,wλj

− vλj
,vλj+1 , . . . ,vλm

). (6.49)

We can apply to every term the inequality (6.34). Multiplying (6.34) by
β1+ε and using (1.9), we deduce (6.48). �

Now we consider a system similar to (6.8),

v̂l,ϑ = Fav,Ψ2,nl,ϑ(ṽ) + Ψ(·, ϑk∗il
)Πnl,ϑĥ, l = 1, . . .N, ϑ = ±, (6.50)

where Fav,Ψ,nl,ϑ is defined by a formula similar to(6.5):

Fav,Ψ2,nl,ϑ(ṽ) =
∑

m∈MF

F
(m)
nl,ϑ

, F
(m)
nl,ϑ

=
∑

�λ∈Λm
nl,ϑ

F
(m)

nl,ϑ,�λ,Ψ
(ṽ). (6.51)
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The system (6.50) can be written in the form similar to (6.9)

ṽ = Fav,Ψ2(ṽ) + h̃Ψ . (6.52)

Theorem 6.12 (solvability in particle spaces). Let the initial data

h̃ in the averaged wavepacket interaction system (6.52) be a multi-particle

wavepacket ĥ(β,k) with the nk-spectrum S as in (2.39), regularity degree s,

and positions r∗l, l = 1, . . . , N . Let ‖h̃‖(E1)2N (r̃∗) � R. Assume that S is
universally resonance invariant in the sense of Definition 3.8. Then there
exists τ∗∗ > 0 which does not depend on r̃∗, β, and ̺ such that if τ∗ � τ∗∗,
Equation (6.52) has a unique solution ṽ in (E1)2N (r̃∗) such that

‖ṽ‖(E1)2N (r̃∗) � 2R, (6.53)

where R does not depend on ̺, β, and r̃∗. This solution is a multi-particle
wavepacket with positions r∗l.

Proof. Since S is universally resonance invariant, every vector index
�λ ∈ Λm

nl,ϑ
has at least one component λj = (ζj , lj) with lj = l. Hence

Lemma 6.11 is applicable and, according to (6.48), the operator Fav,Ψ2

defined by (6.51) is Lipschitz in the ball ‖ṽ‖(E1)2N (r̃∗) � 2R with a Lip-
schitz constant C′τ∗, where C′ does not depend on ̺, β,, and r̃∗. We choose
τ∗∗ so that C′τ∗∗ � 1/2 and use Lemma 4.6. According to this lemma,
Equation (6.52) has a solution ṽ which satisfies (6.53). This solution is a
multi-particle wavepacket according to Proposition 6.10. �

Theorem 6.13 (particle wavepacket approximation). Let the initial

data ĥ in the integral equation (2.14) with solution û(τ, β;k) be an multi-

particle wavepacket ĥ(β,k) with the nk-spectrum S as in (2.39), regularity

degree s, and positions r∗l l = 1, . . . , N , and let the components of ĥ(β,k)

satisfy the inequality ‖h̃‖(E1)2N (r̃∗) � R. Let τ∗ � τ∗∗. Assume that S is
universally resonance invariant in the sense of Definition 3.8. We define
v̂(τ, β;k) by the formula

v̂(τ, β;k) =

N
∑

l=1

∑

ζ=±

v̂l,ϑ(τ, β;k), l = 1, . . . , N, (6.54)

where v̂l,ϑ(τ, β;k) is a solution of (6.8). Then every such v̂l(k; τ, β) is a
particle-like wavepacket with position r∗l and

sup
0�τ�τ∗

‖û(τ, β;k) − v̂(τ, β;k)‖L1 � C1̺ + C2β
s, (6.55)

where the constant C1 does not depend on ̺, s, and β and the constant C2

does not depend on ̺, β.
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Proof. Let ṽ ∈ (E1)2N (r̃∗) be the solution of Equation (6.52) which
exists by Theorem 6.12. It is a particle-like wavepacket. Note that

Ψ(·,k∗l1 , β
1−ε/2)Ψ(·,k∗l1 , β

1−ε) = Ψ(·,k∗l1 , β
1−ε)

and a solution of (6.52) has the form v̂l,ϑ(τ, β;k) = Ψ(·,k∗l, β
1−ε)[. . .].

Consequently, for such solutions Ψ2ṽ�λ = ṽ�λ the nonlinearity F
(m)

nl,ϑ,�λ,Ψ2
(ṽ)

coincides with the equation Ψ(·,k∗l, β
1−ε)F

(m)

nl,ϑ,�ξ(�λ)
(ṽ�λ) and Equation (6.50)

coincides with (6.8). Hence ṽ is a solution of (6.8). The estimate (6.55)
follows from the estimates (6.11) and (5.49). �

Now, we are able to prove Theorem 2.10.

Corollary 6.14 (proof of Theorem 2.10). If the conditions of Theorem
2.10 are satisfied, the statement of Theorem 2.10 holds.

Proof. Note that the functions ŵ′
l,ϑ(k, τ) = Ψil,ϑΠnl,ϑû(k, τ), θ = ±,

in Theorem 5.7 are two components of ûl(τ, β;k) in (2.45). Hence (5.51)
implies that

‖ûl − ŵl,+ − ŵl,−‖E � C′βs, 0 < β � β0, (6.56)

where ŵl,ϑ are solutions to (5.5). According to (6.11), if v̂l,ϑ(k, τ) is the
solution of (6.8), we have

‖v̂l,ϑ − ŵl,ϑ‖E � C̺, l = 1, . . . , N ; ϑ = ±. (6.57)

Hence

‖ûl − v̂l,+ − v̂l,−‖E � C̺ + C′βs, 0 < β � β0. (6.58)

This inequality implies (2.46). We have proved that v̂l,ϑ is a particle-
like wavepacket as in Theorem 6.13. The estimate (6.58) implies that ûl

is equivalent to v̂l = v̂l,+ + v̂l,− in the sense of (2.42) of degree s1 =
min(s, s0). �

7. Superposition Principle and Decoupling
of the Wavepacket Interaction System

In this section, we give the proof of the superposition principle of [8] which
is based on the study of the wavepacket interaction system (6.8). We
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show that when we omit cross-terms in the averaged wavepacket interac-
tion system, the resulting error is estimated by ̺

β1+ε |lnβ|, i.e., compo-

nent wavepackets evolve essentially independently and the time averaged
wavepacket interaction system almost decouples.

Let Fav,nl,ϑ be defined by (6.5), and let a decoupled nonlinearity
Fav,nl,ϑ,diag be defined by

Fav,nl,ϑ,diag(w̃) =
∑

m∈MF

F
(m)
nl,ϑ

, F
(m)
nl,ϑ,diag(w̃)

=
∑

�λ∈Λm,diag
nl,ϑ

F
(m)

nl,ϑ,�ξ(�λ)
(w̃�λ), (7.1)

where the set of indices Λm,diag
nl,ϑ

is defined by the formula

Λm,diag
nl,ϑ

=
{

�λ = (�l, �ζ) ∈ Λm,
nl,ϑ

: lj = l, j = 1, . . . , m
}

. (7.2)

Note that F
(m)
nl,ϑ,diag in (7.1) depends only on wl,+ and wl,−:

F
(m)
nl,ϑ,diag(w̃) = F

(m)
ϑ,diag,l(wl), wl = (wl,+,wl,−). (7.3)

The coupling between different variables vl in (6.8) is caused by nondi-
agonal terms

Fav,nl,ϑ,coup(w̃) = Fav,nl,ϑ(w̃) −Fav,nl,ϑ,diag(w̃). (7.4)

Obviously, Equation (6.9) can be written in the form

ṽ = Fav,Ψ,diag(ṽ) + Fav,Ψ,coup(ṽ) + h̃
Ψ
. (7.5)

The system of decoupled equations has the form

ṽdiag = Fav,Ψ,diag(ṽdiag) + h̃Ψ (7.6)

or, when written in components,

vdiag,l = F
(m)
av,Ψ,diag,l(vdiag,l) + h

Ψ,l
, l = 1, . . . , N. (7.7)

We prove that the contribution of Fav,Ψ,coup in (7.5) is small. The proof is
based on the following lemma.

Lemma 7.1 (small coupling terms). Let F
(m)

nl,ϑ,�ξ(�λ)
(w̃�λ) be as in (6.5),

let all the components wλi
of w̃�λ satisfy (6.32) and be wavepackets in the

sense of Definition 2.1, and let (1.9) hold. Assume also that: (i) the vector

index �λ has at least two components λi = (ζi, li) and λj = (ζj , lj) with
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li 	= lj ; (ii) both wλi
and wλj

are particle wavepackets in the sense of
Definition 2.2; (iii) either (2.51) or (2.54) holds. Then for small β and ̺

‖F
(m)

nl,ϑ,�ξ(�λ)
(w̃�λ)‖EN � C

̺

β1+ε
|lnβ| . (7.8)

Proof. Since k∗l are not band-crossing points, according to Definition
3.1 and Condition 3.2 the inequalities (3.2) and (3.13) hold. According to
the assumption of the theorem, at least two ŵlj are different for different
j. Let us assume that lj1 = l1, lj2 = lm, l1 	= lm (the general case can be
easily reduced to this one by relabeling variables). Since ŵl1and ŵlm are
particle wavepackets, they satisfy (2.33) with r replaced by rl1 and rlm

respectively. Let us rewrite the integral with respect to τ1 in (4.22) as

F
(m)

nl,ϑ,�ξ(�λ)
(w̃�λ)(k, τ) =

τ
∫

0

∫

Dm

exp
{

iϕζ,�ζ(k, �k)
τ1

̺

}

A
(m)

ζ,�ζ
(k, �k)d̃(m−1)d�kdτ1,

(7.9)

where

A
(m)

ζ,�ζ
(k, �k) = χ

(m)

ζ,�ζ
(k, �k)wl1(k

′) . . .wlm(k(m)), (7.10)

and then rewrite (7.9) in the form

F
(m)

nl,ϑ,�ξ(�λ)
(w̃�λ)(k, τ) = F

(m)

ζ,�ζ
(wl1 . . .wlm)(k, τ)

=

τ
∫

0

∫

Dm

expϕ(k, �k, τ1, ̺, rl1 , rlm)A(k, �k, rl1 , rlm)d̃(m−1)d�kdτ1, (7.11)

where

expϕ(k, �k, τ1, ̺, rl1 , rlm) = exp
{

iϕζ,�ζ(k, �k)
τ1

̺
− irl1k

′ − irlmk(m)
}

,

A(k, �k, rl1 , rlm) = eirl1
k
′

eirlmk
(m)

A
(m)

ζ,�ζ
(k, �k). (7.12)

According to (3.10), k(m)(k, �k) = k − k′ − . . . − k(m−1). Hence, picking a
vector p with a unit length, we obtain the formula

expϕ(k, �k, τ1, ̺, rl1 , rlm) =
̺p · ∇k′ expϕ(k, �k, τ1, ̺, rl1 , rlm)

i[p · ∇k′ϕζ,�ζ(k, �k)τ1 − ̺p · (rl1 − rlm)]
. (7.13)

If we set

ϕ′ = ∇k′ϕζ,�ζ(k∗l, �k∗) = ∇k′ω(ζ′k′
∗) −∇k(m)ω(ζ(m)k

(m)
∗ ), (7.14)

cp = p · ϕ′, qp = ̺p · (rl1 − rlm),
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θ0(k, �k, ̺, τ1) =
(cpτ1 − qp)

[p · ∇k′ϕζ,�ζ(k, �k)τ1 − p · (rl1 − rlm)]
, (7.15)

then (7.13) can be recast as

expϕ(k, �k, τ1, ̺, rl1 , rlm) =
̺p · ∇k′ expϕ(k, �k, τ1, ̺, rl1 , rlm)

i(cpτ1 − qp)
θ0(k, �k, ̺, τ1).

(7.16)
If (2.51) holds, then ϕ′ 	= 0, and to get |cp| 	= 0, we can take

p = |ϕ′|
−1

· ϕ′, |cp| = p0 > 0. (7.17)

If (2.54) holds, we have ϕ′ = 0, and we set

p = |(rl1 − rlm)|
−1

· (rl1 − rlm). (7.18)

Let consider first the case, where (2.51) holds. Notice that the denominator
in (7.16) vanishes for

τ10 =
qp

cp
. (7.19)

We split the integral with respect to τ1 in (7.11) into the sum of two
integrals, namely

F
(m)

ζ,�ζ
(wl1 . . .wlm)(k, τ) = F1 + F2, (7.20)

F1 =

∫

|τ10−τ1|�c0β1−ε|lnβ|

∫

Dm

expϕ(k, �k, τ1, ̺, rl1 , rlm)

× A(k, �k, rl1 , rlm)d̃(m−1)d�kdτ1,

F2 =

∫

|τ10−τ1|<c0β1−ε|lnβ|

∫

Dm

expϕ(k, �k, τ1, ̺, rl1 , rlm)

× A(k, �k, rl1 , rlm)d̃(m−1)d�kdτ1,

where c0 is a large enough constant which we estimate below in (7.28).
Since wj are bounded in E and (2.48) holds, we obtain similarly to (4.10)
the estimate

‖F2‖L1 � Cc0β
1−ε |lnβ|

m
∏

j=1

‖wlj‖E � C1(R)
̺ |lnβ|

β1+ε
. (7.21)
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To estimate the norm of F1, we use (7.13) and integrate by parts the
integral in (7.20) with respect to k′. We obtain

F1 =

∫

|τ10−τ1|�β1−ε|ln β|

I(k, τ1)dτ1, (7.22)

I(k, τ1) = −

∫

Dm

̺ expϕ(k, �k, τ1, ̺, rl1 , rlm)

i(cpτ1 − ̺qp)

× p · ∇k′ [θ0A(k, �k, rl1 , rlm)] d̃(m−1)d�k.

According to (7.10) and (3.10), the expansion of the gradient ∇k′ in the

above formula involves the derivatives of χ, θ0, eirl1
k
′

wl1 and eirlmk
(m)

wlm .
To estimate θ0 and ∇θ0, we note that

θ0(k, �k, ̺, τ1) =
(p · ϕ′τ1 − qp)

(p · ϕ′τ1 − qp) + τ1p · [∇k′ϕζ,�ζ(k, �k) − ϕ′]

=
1

1 + τ1p · [∇k′ϕζ,�ζ(k, �k) − ϕ′]/(cpτ1 − qp)
. (7.23)

Since |τ10 − τ1| � c0β
1−ε |lnβ|, from (7.19) we infer

|cpτ1 − qp| � cpc0β
1−ε| lnβ|. (7.24)

From (6.32) we see that in the integral (7.22) the integrands are nonzero
only if

|k(j) − ζ(j)k
(j)
∗ | � π0β

1−ε, |k − ζk∗| � mπ0β
1−ε, (7.25)

where π0 � 1. Using the Taylor remainder estimate for ∇k′ϕζ,�ζ at �k∗, we

obtain the inequality

|∇k′ϕζ,�ζ(k, �k) − ϕ′| � 2mCω,2β
1−ε. (7.26)

Hence in (7.23)

|τ1p · [∇k′ϕζ,�ζ(k, �k) − ϕ′]/(cpτ1 − qp)| � 2mτ∗Cω,2/(cpc0| lnβ|). (7.27)

Suppose that β � 1/2 is small and c0 satisfies

mτ∗Cω,2

| lnβ|
�

mτ∗Cω,2

ln 2
�

1

4
|cp|c0. (7.28)

Then it follows from (7.23) with the help of (7.28), (3.2), (7.24) and (7.27)
that

|θ0(k, �k, ̺, τ1)| � 2. (7.29)
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Obviously,

∇k′θ0(k, �k, ̺, τ1)=
−τ1∇k′ [p·(∇k′ϕζ,�ζ(k, �k) − ϕ′)]

(cpτ1 − qp)[1+τ1p·[∇k′ϕζ,�ζ(k, �k)−ϕ′]/(cpτ1−qp)]2
.

(7.30)
Using (7.27), (7.28), and (3.2), we obtain

|∇k′θ0(k, �k, ̺, τ1)| �
4τ∗

|cpτ1 − qp|
|∇k′ [p · (∇k′ϕζ,�ζ(k, �k)−ϕ′)]| �

4τ∗Cω,2

|cpτ1 − qp|
.

(7.31)
To estimate ∇k′χ, we use (3.13). We conclude that the absolute value of
the integral (7.22) is not greater than

|I(k, τ1)| �
4̺τ∗Cω,2

|τ1cp − qp|2

∫

Dm

|A(k, �k, rl1 , rlm)|d̃(m−1)d�k

+
2̺τ∗

|τ1cp − qp|

∫

Dm

[

|∇k′A(k, �k, rl1 , rlm)|
]

d̃(m−1)d�k

�

[

4Cω,2̺τ∗
|τ1cp − qp|2

‖χ(m)(k, ·)‖ +
2̺τ∗

|τ1cp − qp|
‖(∇k′ −∇k(m))χ(m)(k, ·)‖

]

×

m
∏

j=1

‖wj‖L1 +
2̺τ∗‖χ

(m)(k, ·)‖

|τ1cp − qp|

[ m
∏

j=2

‖wlj‖L1‖∇k′eirl1
k
′

wl1‖L1

+

m−1
∏

j=1

‖wj‖L1‖∇k(m)eirlmk
(m)

wm‖L1

]

. (7.32)

Note that ‖wj‖L1 are bounded according to (2.27) and ∇k(m)eirlmk
(m)

wlm ,

∇k′eirl1
k
′

wl1 by (2.33). Hence we obtain

|I(k, τ1)| �
C2̺β−1−ε

τ1cp − qp
+

̺C2

|τ1cp − qp|2
. (7.33)

Obviously,

∫

|τ1−qp/cp|�c0β1−ε| ln β|

|τ1cp − qp|
−1dτ1 =

1

cp

τ∗−qp/cp
∫

c0β1−ε| lnβ|

dτ1

τ1

=
1

cp
ln

τ∗ − qp/cp

c0β1−ε| lnβ|
�

1

cp
(C + | ln[β1−ε| lnβ|]|)

�
1

cp
[C + | lnβ| + | ln | lnβ||] �

1

cp
[C + 2| lnβ|].
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Similarly, using (2.48), we get
∫

|τ1−qp/cp|�c0β1−ε| ln β|

|τ1cp − qp|
−2dτ1

=
1

cp

τ∗−qp/cp
∫

c0β1−ε| ln β|

dτ1

τ2
1

=
1

cp

[

1

c0β1−ε| lnβ|
−

1

τ∗ − qp/cp

]

�
1

cpc0β1−ε| lnβ|
�

C3̺

β−1−ε| lnβ|
.

Hence we obtain for small β

‖F
(m)

ζ,�ζ
(w1 . . .wm)(k, τ)‖E � C4

̺

β1+ε
| lnβ|. (7.34)

Now let us consider the case, where (2.54) holds, ϕ′ = 0 and p is defined
by (7.18). Turning to expression (7.23), we notice that

cpτ1 − qp = −̺|rl1 − rlm |, τ∗|cpτ1 − qp|
−1 �

1

β1+ε
,

and, according to (7.26),

|∇k′ϕζ,�ζ(k, �k) − ϕ′| � Cω,2β
1−ε.

Then we estimate the denominator in (7.23) and (7.30) using (2.54):

|τ1p · [∇k′ϕζ,�ζ(k, �k) − ϕ′]/(cpτ1 − qp)| � τ∗Cω,2β
1−ε/(̺|rl1 − rlm |) �

1

2
.

If β is so small that (7.28) holds, we again get (7.29) and (7.31). Hence we
obtain (7.34) in this case as well (in fact, in this case, the logarithmic factor
can be omitted). Finally, we obtain (7.35) from (7.34) after summing up

over all �λ, �ζ. �

Lemma 7.2. Let the nk-spectrum S be universally resonance invari-
ant. Let the operators Fav,nl,ϑ(w̃), Fav,nl,ϑ,diag(ṽ), and Fav,nl,ϑ,coup be
defined respectively by (6.5), (4.7), and (7.4). Let ṽ, ‖ṽ‖EN � 2R, be a
multi-wavepacket solution of (6.9) with the nk-spectrum S. Then for small
β and ̺

‖Fav,nl,ϑ,coup(ṽ)‖EN � C
̺

β1+ε
| ln β|. (7.35)

Proof. According to (6.5), (7.1), and (7.4), Fav,nl,ϑ,coup involves only

terms with �λ ∈ Λm,
nl,ϑ

\ Λm,diag
nl,ϑ

and it is sufficient to prove the estimate

(7.8) for indices �λ ∈ Λm,
nl,ϑ

\ Λm,diag
nl,ϑ

. Such indices involve at least two
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components λi = (ζi, li) and λj = (ζj , lj) with li 	= lj since the nk-spectrum
is universally invariant, see (3.26). According to Theorem 6.13, the solution
ṽ is a particle-like wavepacket. Therefore, all the components of ṽ�λ are
particle-like; (6.32) holds according to (5.11). Hence all the conditions of
Lemma 7.1 are fulfilled and (7.35) follows from (7.8). �

Note now that every equation (7.7) is an approximation of Equation

(4.6) with single-wavepacket initial data ĥl, namely

ûl(k, τ) = F(ûl)(k, τ) + ĥl(k). (7.36)

One can apply to this equation Theorems 5.6 and 6.4 formally restricted to
the case N = 1 of a single wavepacket. Based on this observation and above
lemma, we prove the following theorem which implies previously formulated
Theorems 2.14 and 2.15.

Theorem 7.3. Assume that the multi-wavepacket h̃ =
∑

ĥl is particle-
like and its nk-spectrum is universally resonance invariant. Assume also
that either (2.51) or (2.54) holds. Let û be asolution of Equation (4.6). Let
ûl be solutions of (7.36). Then the superposition principle holds, namely

∥

∥

∥
û −

N
∑

l=1

ûl

∥

∥

∥
� C

̺

β1+ε
| lnβ| + Cβs. (7.37)

Proof. Let vdiag,l be a solution of the decoupled system (7.7). We
compare the systems (7.5) and (7.6). The difference between the systems
is the term Fav,nl,ϑ,coup(ṽ). According to Theorem 6.12, the solution ṽ is
a particle-like wavepacket and we can apply Lemma 7.2. According to this
lemma, (7.35) holds. Applying Lemma 4.6 to Equations (7.5) and (7.6) and
using (7.35), we conclude that the difference of their solutions satisfies the
inequality

‖vl − vdiag,l‖E � C′ ̺

β1+ε
| lnβ| + C′βs. (7.38)

According to Theorem 6.13, the inequality (6.55) holds, where ṽ is a solu-
tion of (6.9) which can be rewritten in the form of (7.5). From (6.55) and
(7.38) we infer

∥

∥

∥
û −

N
∑

l=1

vdiag,l

∥

∥

∥
� C1

̺

β1+ε
| lnβ| + C1β

s. (7.39)

Note that Equation (7.7) for vdiag,l coincides with the averaged equa-
tion (6.9) obtained for the wave interaction system derived for (7.36). There-

fore, applying Theorems 5.6 and 6.4 to the case N = 1 and ĥ = ĥl, we
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deduce from (5.49) and (6.11) the estimate

‖ûl − vdiag,l‖E � C2̺ + C′
2β

s. (7.40)

Finally, from (7.39) and (7.40) we infer (7.37). �

7.1. Generalizations.

In this section, we show that the particle-like wavepacket invariance can
be extended to the case, where nk-spectra S are not universally resonance
invariant. So, suppose that an nk-spectrum S is resonance invariant and
consider nonlinearities of the form similar to (6.5)

Fres,nl,ϑ(w̃) =
∑

m∈MF

F
(m)
nl,ϑ

, F
(m)
nl,ϑ

=
∑

�λ∈Λ′
nl,ϑ

F
(m)

nl,ϑ,�ξ(�λ)
(w̃�λ), (7.41)

where Λ′
nl,ϑ

⊆ Λm
nl,ϑ

is a given subset of Λm. Obviously, Fav defined by

(6.5) has the form of (7.41) with Λ′
nl,ϑ

= Λm
nl,ϑ

. Let us introduce a multi-
wavepacket

w̃ = (wn1,+,wn1,−, . . . ,wnN ,+,wnN ,−) (7.42)

with the nk-spectrum S = {(nl, θ), l = 1, . . . , N ; θ = ±}.

We call a subset S′ ⊂ S sign-invariant if when it has (nl, θ) as an
element, then (nl,−θ) is also its element. Suppose that S′ ⊂ S is sign-
invariant. It is easy to see that if a set S′ ⊂ S is sign-invariant, then it
is uniquely defined by a subset of indices I ′ = I ′(S′) ⊂ I = {1, . . . , N},
namely

S′ = {(nl, θ) : l ∈ I ′(S′), θ = ±} .

Definition 7.4. We call an index pair (nl,k∗l) Group Velocity Matched

(GVM) with Fres,nl,ϑ if every nonzero term F
(m)

nl,ϑ,�ξ(�λ)
in the sum (7.41) has

an index �λ such that for at least one component λj = (ζ(j), lj) of this
index the following equality holds:

∇ωnl
(k∗l) = ∇ωnlj

(k∗lj ). (7.43)

We call S′ a GVM set with respect to the nonlinearity Fres defined by (7.41)
if S′ ⊂ S is sign-invariant and every (nl,k∗l) ∈ S′ is GVM.

Obviously, if S is universally resonance invariant and Λ′
nl,ϑ

= Λm
nl,ϑ

as

in (6.5), then S is a GVM set and, in this case, lj = I0 as in Definition 3.6. If
S′ ⊂ S is sign-invariant, we call a multi-wavepacket w̃ as in (7.42) with the
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nk-spectrum S = {(nl, θ), l = 1, . . . , N ; θ = ±} partially S′-localized multi-
wavepacket if for every (nl, θ) ∈ S′ the wavepacket wn1,θ is a spatially
localized with position r∗l. Note that, according to Definition 2.7, if S′ = S
and w is a partially S′-localized multi-wavepacket, then it is a multi-particle
wavepacket.

Theorem 2.10 on the particle-like wavepacket preservation can be gen-
eralized as follows.

Theorem 7.5 (preservation of spatially localized wavepackets). As-
sume that the conditions of Theorem 2.9 hold, in particular the initial datum
ĥ = ĥ(β,k) is a multi-wavepacket with an nk-spectrum S. Assume also that

S′ ⊂ S is a GVM set, ĥ = ĥ(β,k) is partially S′-localized wavepacket with
positions r∗l, l ∈ I ′(S′), and (2.47) holds. Then the solution û(τ, β) =

G(F(ρ(β)), ĥ(β))(τ) to (2.14) for any τ ∈ [0, τ∗] is a multi-wavepacket with
the nk-spectrum S and it is an S′-localized wavepacket with positions r∗l,
l ∈ I ′(S′). Namely, (2.46) holds, where ûl is a wavepacket with the nk-pair
(nl,k∗l) ∈ S′ defined by (2.45), the constants C, C1, C2 do not depend on
r∗l, and every ûl, l ∈ I ′(S′), is equivalent in the sense of the equivalence
(2.42) of degree s1 = min(s, s0) to a spatially localized wavepacket with po-
sition r∗l.

Proof. The proof of the theorem is the same as the proof of Theorem
2.10 since it used only the fact that a universally resonance invariant set
is a GVM one, that allows us to apply Lemma 6.9. One also have to use
the space (E1)2N (r̃∗, S

′) with the norm defined by the formula similar to
(6.46):

‖w̃‖(E1)2N (r̃∗,S′) =
∑

l,ϑ

‖ŵl,ϑ‖E + β1+ε
∑

ϑ=±

∑

l∈I′(S′)

‖∇k(e−ir∗lkŵl,ϑ)‖E .

(7.44)
After replacing (E1)2N (r̃∗) with (E1)2N (r̃∗, S

′) we can literally repeat all
the steps of the proof of Theorem 2.10 and obtain the statement of Theo-
rem 7.5. �

Below we prove that the superposition principle can hold not only for
universal resonance invariant multi-wavepackets, but for other cases allow-
ing resonant processes such as the second and third harmonic generations,
three-wave interaction, etc. Here we prove a theorem applicable to such
situations, which is more general than Theorem 2.14.
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Let us consider a multi-wavepacket with a resonance invariant nk-
spectrum

S = {(nl,k∗l), l = 1, . . . , N}

as in (3.14), and assume that is the union of spectra Sp:

S = S1 ∪ . . . ∪ SK , Sp ∩ Sq = ∅ if p 	= q. (7.45)

Recall that resonance interactions are defined in terms of vectors �λ ∈ Λm

(see (3.16), (3.17)). We call a vector �λ = ((ζ′, l1), . . . , (ζ
(m), lm)) ∈ Λm a

cross-interacting (CI) if there exist at least two indices (ζ(i), li) and (ζ(j), lj)

such that (ζ(i), li) ∈ Spi
, (ζ(j), lj) ∈ Spj

with pi 	= pj .

Definition 7.6 (partially GVM decomposition). We call the decom-
position (7.45) partially GVM with respect to Fres defined by (7.41) if the
following two conditions are satisfied: (i) every spectrum Sj , j = 1, . . . , K,

is resonance invariant; (ii) a solution (m, ζ, n,�λ) ∈ P (S) of the resonance

equation (3.24) with CI vector �λ = ((ζ′, l1), . . . , (ζ
(m), lm)) has at least two

indices (ζ(i), li) ∈ Spi
and (ζ(j), lj) ∈ Spj

with pi 	= pj such that both li and
lj are GVM with respect to Fres and

|∇kωnli
(k∗li) −∇kωnlj

(k∗lj )| 	= 0. (7.46)

Now we use Lemma 7.1 for small coupling. Being given a partially
GVM decomposition (7.45), we introduce the set of coupling terms between
Spi

and Spj
as follows:

Λm,coup
nl,ϑ

=
{

�λ = (�l, �ζ) ∈ Λm,
nl,ϑ

: ∃ i 	= j such that li ∈ Spi
, lj ∈ Spj

}

,

(7.47)
We also introduce a set of interactions reducible to every Sp (block-diagonal)
which is similar to (7.2):

Λm,red
nl,ϑ

= Λm
nl,ϑ

\ Λm,coup
nl,ϑ

, (7.48)

and the reduced operator

Fav,nl,ϑ,red(w̃) =
∑

m∈MF

F
(m)
nl,ϑ,red(w̃), F

(m)
nl,ϑ,red(w̃)

=
∑

�λ∈Λm,red
nl,ϑ

F
(m)

nl,ϑ,�ξ(�λ)
(w̃�λ), (7.49)

where Λm,red
nl,ϑ

is defined by (7.48). Note that if the set S is universal res-

onance invariant and every Spi
is a two-point set {(+, li), (+, li)}, then
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Λm,red
nl,ϑ

= Λm,diag
nl,ϑ

. We introduce also a partially decoupled, reduced system

similar to (7.6)

ṽred = Fav,Ψ,red(ṽred) + h̃Ψ , (7.50)

which can be rewritten in the decoupled form similar to (7.7):

vred,p = F
(m)
av,Ψ,red,p(vred,p) + h

red,Ψ,p
, p = 1, . . .K. (7.51)

Now vred,p may include more than one wavepacket, namely

vred,p =
∑

(nl,θ)∈Sp

(ṽred)nl,θ, h
red,Ψ,p

=
∑

(nl,θ)∈Sp

(h̃Ψ)nl,θ, p = 1, . . .K.

(7.52)
The following theorem is a generalization of Theorem 2.14 on the superpo-
sition.

Theorem 7.7 (general superposition principle). Suppose that the

initial data ĥ of (2.14) is a multi-wavepacket of the form

ĥ =

K
∑

p=1

ĥred,p, (7.53)

where ĥ is a multi-wavepacket in the sense of Definition 3.8 with a resonance
invariant nk-spectrum S, ĥred,p is a multi-wavepacket with a resonance in-
variant nk-spectrum Sp, and the decomposition (7.45) is a partially GVM
in the sense of Definition 7.6 with respect to the nonlinearity Fav defined by
(6.5). Suppose also that (2.48) holds. Then the solution û = G(ĥ) to the
evolution equation (2.14) satisfies the approximate superposition principle

G
(

K
∑

p=1

ĥred,p

)

=

K
∑

p=1

G(ĥred,p) + D̃, (7.54)

with a small remainder D̃(τ) satisfying the following estimate:

sup
0�τ�τ∗

‖D̃(τ)‖L1 � Cε
̺

β1+ε
| lnβ|, (7.55)

where ε is the same as in Definition 2.1 and can be arbitrary small, τ∗ does
not depend on β, ̺, and ε.

Proof. The proof of Theorem 7.7 is similar to the proof of Theorem
7.3. The averaged system (6.9) can be written similarly to (7.5) in the form

ṽ = Fav,Ψ,red(ṽ) + Fav,Ψ,coup(ṽ) + h̃
Ψ
. (7.56)

Comparing now the systems (7.56) and (7.50), we find that the difference
between them is the term Fav,nl,ϑ,coup(ṽ). According to Theorem 7.5, the
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solution ṽ is a spatially localized wavepacket and hence we can apply Lemma
7.2 getting the inequality (7.35). Applying Lemma 4.6 to Equations (7.56)
and (7.50) and using (7.35), we conclude that the difference of their solu-
tions satisfies the inequality

‖vp − vred,p‖E � C′ ̺

β1+ε
| lnβ| + C′βs, p = 1, . . . , K (7.57)

According to Theorem 6.13, the inequality (6.55) holds, where ṽ is a solu-
tion of (7.56), and we infer from (7.57)

∥

∥

∥
û−

K
∑

p=1

vred,p

∥

∥

∥
� C1

̺

β1+ε
| lnβ| + C1β

s. (7.58)

Similarly to (7.36) we introduce equation for ûred,p = G(ĥred,p)

ûred,p(k, τ) = F(ûred,p)(k, τ) + ĥred,p(k). (7.59)

Applying Theorems 5.6 and 6.4, we infer similarly to (7.40) the inequality

‖ûred,p − vred,p‖E � C2̺ + C′
2β

s. (7.60)

Finally, from (7.58) and (7.60) we infer (7.55). �
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General methods for constructing and studying global attractors of nonautonomo-

us evolution partial differential equations are presented. The nonautonomous

2D Navier–Stokes system with time-dependent external force serves as the main

example. The Kolmogorov ǫ-entropy and fractal dimension of global attractors

are considered for this system and other important equations in mathematical

psychics. The convergence of global attractors of nonautotnomous equations with

singularly oscillating terms to attractors of the corresponding “limit” equations is

also established. Bibliography: 136 titles.

Introduction

One of the major mathematical aspect in the study of evolution equations
arising in different areas of mechanics and physics is the study of the final
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behavior of solutions when time is large or tends to infinity. The related im-
portant question concerns the stability of solutions as t → +∞ or the nature
of instability if a solution is unstable in some sense. Over the last decades,
considerable progress has been achieved in the study of autonomous partial
differential equations. For many basic autonomous evolution equations in
mathematical physics it was shown that the long time behavior of solutions
is characterized by finite-dimensional global attractors (see, for example,
[119, 91, 9, 68, 40, 115] and the references therein).

Nonautonomous evolution partial differential equations and their glob-
al attractors are less studied. However, in the last decade, a notable advance
was made in this perspective area of mathematical researches. In particular,
the global attractor was constructed and studied for the nonautonomous
2D Navier–Stokes system with external force depending on time t. We note
that the process {U(t, τ)} := {U(t, τ) | t � τ ; t, τ ∈ R} corresponds to this
system. The mapping U(t, τ) acts by the formula u(τ) �−→ U(t, τ)u(τ) :=
u(t), where u(t) is a solution of the Navier–Stokes system with initial data
u(τ). The process {U(t, τ)} is a two-parameter family of mappings acting
in the phase space of the evolution equation. Therefore, the study of the
behavior of solutions u(t) of the nonautonomous evolution equation as t →
+∞ is equivalent to the study of the corresponding process {U(t, τ)} as
t → +∞. Thus, in the study of solutions u(t) of nonautonomous equations,
the processes {U(t, τ)} play the same role as the semigroups {S(t), t � 0}
in the study of solutions u(t) of autonomous equations as t → +∞.

In this paper, we deal with nonautonomous partial differential equa-
tions and the corresponding processes {U(t, τ)}. Particular emphasis is
placed to the study of the global attractor of the nonautonomous 2D Navier–
Stokes system.

In Section 1, we sketch out the general theory of global attractors of
semigroups and consider some basic autonomous equations in mathematical
physics. We also consider questions related to the dimension and ε-entropy
of invariant sets and present upper estimates for the fractal dimension and
the ε-entropy of global attractors of autonomous equations. We derive such
estimates for the 2D Navier–Stokes system, the dissipative wave equation,
and the complex Ginzburg–Landau equation.

In Section 2, we study the uniform global attractors of general processes
and nonautonomous equations. We note that, studying global attractors of
such equations, there is a good reason to introduce a notion of the time sym-
bol σ(t). The time symbol of a nonautonomous equation is the collection of
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all time-dependent terms of this equation. Along with solution dynamics,
we study the symbol dynamics as t → +∞.

In Section 2, we formulate results concerning the existence of the uni-
form global attractor A of the process {Uσ(t, τ)} corresponding to a nonau-
tonomous equation with translation compact symbol σ(t). We also present a
theorem on the structure of the set A. Then we consider the uniform global
attractor A of the 2D Navier–Stokes system with time-dependent external
force that is the symbol of this system. We study in detail the case, where
the system has a unique bounded complete solution {z(t), t ∈ R} attracting
all other solutions {u(t), t � τ} of the 2D Navier–Stokes system as t → +∞
with exponential rate. Similar problems for a nonautonomous dissipative
wave equation and the nonautonomous Ginzburg–Landau equation are also
considered.

Many important questions related to the global attractors of nonau-
tonomous equations and the corresponding processes were discussed, for
example, in [73, 68, 34, 115] (see also the references therein), and in many
papers cited in the Bibliography to this paper.

As is known, the fractal dimension of the global attractor of a general
nonautonomous partial differential equation can be infinite (see, the exam-
ple at the end of Section 2). However, the ε-entropy of the global attractor
is always finite since the attractor is a compact set.

In Section 3, we present estimates for the ε-entropy of global attrac-
tors of nonautonomous equations with translation compact symbols. We
also consider applications to the nonautonomous 2D Navier–Stokes system
and some other equations in mathematical physics. A particular attention
is devoted to the case, where, for example, the external force of the 2D
Navier–Stokes system is a quasiperiodic function in time with k rationally
independent frequencies. In this case, the global attractor has finite fractal
dimension and the upper estimate for its dimension has a summand k. This
means that the fractal dimension can grow with no limit as k → ∞. The
corresponding examples are given.

In Section 4, we study the global attractor Aε of the 2D Navier–Stokes
system with singularly oscillating external force of the form

g0(x, t) + ε−ρg1(x/ε, t), 0 � ρ � 1, 0 < ε � 1.

The behavior of Aε as ε → 0+ is discussed. A similar problem is studied in
Section 5 for the nonautonomous complex Ginzburg–Landau equation.
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1. Attractors of Autonomous Equations

In this section, we briefly present fundamental results concerning the global
attractors of semigroups corresponding to autonomous evolution equations.
Details can be found in many books on infinite-dimensional dynamical sys-
tems and attractors (see, for example, [74, 119, 68, 9, 91, 122, 50, 38,
61, 112, 115, 34]).

1.1. Semigroups and global attractors.

We consider a general (nonlinear) semigroup {S(t)} acting on E, where E
is a complete metric space or a Banach space. In particular, E can be a
closed subset of a Banach space.

Definition 1.1. A family of mappings S(t) : E → E depending on
the real parameter (time) t � 0 is called a semigroup acting on E and is
denoted by {S(t)} if it satisfies the semigroup identity

S(t1)S(t2) = S(t1 + t2) ∀t1, t2 � 0 (1.1)

and

S(0) = Id. (1.2)

Hereinafter, Id denotes the identity operator. If S(t) is defined for any
real t and the identity (1.1) holds for any t1, t2 ∈ R, the {S(t)} is called a
group.

Assume that a semigroup {S(t)} acts in a complete metric space or a
Banach space E. Let B(E) be the collection of all bounded sets in E with
respect to the metric in E.

A semigroup {S(t)} is said to be (E, E)-bounded if S(t)B ∈ B(E)
for all B ∈ B(E) and t � 0. A semigroup {S(t)} is said to be uniformly
(E, E)-bounded if for every B ∈ B(E) there exists B1 ∈ B(E) such that
S(t)B ⊂ B1 for all t � 0.

We will consider dissipative dynamical systems. In application to gen-
eral semigroups, the dissipation property means the existence of bounded
or compact absorbing or attracting sets.

A set B0 ⊂ E is said to be absorbing for a semigroup {S(t)} if for
every B ∈ B(E) there exists T = T (B) > 0 such that S(t)B ⊂ B0 for all
t � T. A set P ⊂ E is said to be attracting for {S(t)} if for any B ∈ B(E)
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we have distE(S(t)B, P ) → 0 as t → +∞, where

distE(X, Y ) = sup
x∈X

inf
y∈Y

‖y − x‖E , X, Y ⊆ E, (1.3)

is the Hausdorff (nonsymmetric) distance between sets X and Y. It is clear
that any absorbing set is attracting.

A semigroup {S(t)} is said to be compact if there exists a compact
absorbing set P ⋐ E for {S(t)} and asymptotically compact if there exists
a compact attracting set K ⋐ E. These notions reflect the dissipativity of
dynamical systems under consideration.

A semigroup {S(t)} is (E, E)-continuous if every mapping S(t), t � 0,
is continuous from E into E.

The behavior of a semigroup {S(t)} as t → +∞ can be described in
terms of global attractors.

Definition 1.2. A set A ∈ B(E) is called a global attractor for {S(t)}
if it possesses the following properties:

1) A is compact in E (A ⋐ E),

2) A is an attracting set for {S(t)}, i.e., distE(S(t)B,A) → 0 as t →
+∞ for every B ∈ B(E),

3) A is strictly invariant with respect to {S(t)}, i.e., S(t)A = A for
all t � 0.

As was shown in [9], the global attractor A for {S(t)} is the maximal
bounded invariant set for {S(t)} (see also [88, 89, 91]). This means the
following: if Y ∈ B(E) and S(t)Y = Y for all t � 0, then Y ⊂ A. This
implies, in particular, the uniqueness of a global attractor for {S(t)}.

Definition 1.3. For a bounded set B ∈ B(E) the set

ω(B) =
⋂

h�0

[ ⋃

t�h

S(t)B
]

E
(1.4)

is called an ω-limit set for B. Here, [ · ]E denotes the closure in E.

We formulate the classical attractor existence theorem.

Theorem 1.1. Let {S(t)} be a continuous semigroup in a complete
metric space E, and let {S(t)} have a compact attracting set K ⋐ E. Then
{S(t)} has a global attractor A (A ⊆ K). The attractor A coincides with
ω(K) : A = ω(K). (If E is a Banach space, then the set A is connected).
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The proof can be found, for example, in [9, 119].

We need one more notion to describe the general structure of a global
attractor. A curve u(s), s ∈ R, is called a complete trajectory of a semigroup
{S(t)} if

S(t)u(s) = u(t + s) ∀s ∈ R, t ∈ R+. (1.5)

Definition 1.4. The kernel K of a semigroup {S(t)} consists of all
bounded complete trajectories of {S(t)}:

K = {u(·) | u(s) satisfies (1.5) and ‖u(s)‖E � Cu for s ∈ R}.

Definition 1.5. The kernel section at time s ∈ R is the set in E
defined by the formula K(s) = {u(s) | u ∈ K}.

Remark 1.1. The kernelK of {S(t)} corresponding to an autonomous
equation (see Section 1.2) consists of all solutions u(t) that are determined
on the entire time-axis {t ∈ R} that are bounded in E. The kernel includes
equilibrium points, as well as periodic, quasiperiodic, and almost periodic
orbits. Heteroclinic and homoclinic orbits belong to K and, in general, the
structure of K can be extremely complicated even with chaotic behavior of
its elements.

Theorem 1.2. Under the assumptions of Theorem 1.1, the global at-
tractor A of the semigroup {S(t)} coincides with the kernel section

A = K(0), (1.6)

where 0 can be replaced with any s ∈ R.

The proof can be found, for example, in [9].

In the following sections, we apply Theorems 1.1 and 1.2 to different
semigroups {S(t)} corresponding to different partial differential equations
in mathematical physics.

1.2. Cauchy problem and corresponding semigroup.

For the sake of simplicity, we suppose that E is a Banach space. Let {S(t)}
act on the entire Banach space E. Such semigroups are usually generated
by evolution equations of the form

∂tu = A(u), (1.7)

where A is a (nonlinear) operator defined on a Banach space E1 and A
maps E1 into a Banach space E0. We suppose that E1 ⊆ E ⊆ E0, where
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all the embeddings are dense. We now construct the semigroup {S(t)}
corresponding to Equation (1.7) and acting on E.

Assume that for arbitrary v0 ∈ E Equation (1.7) with initial data

u|t=0 = u0 (1.8)

has a unique solution u(t), t � 0, such that u(t) ∈ E for all t � 0. The
meaning of the expression “u(t) is a solution of the Cauchy problem (1.7),
(1.8)” should be clarified in each particular case. Usually, for every fixed
T > 0 the solutions u(t), 0 � t � T, of (1.7) are taken from the class FT

of functions such that u(·) ∈ L∞(0, T ; E) and u(·) ∈ Lp(0, T ; E1), where
E1 is the Banach space on which the operator A is defined and 1 < p �

∞. Moreover, A(u(·)) ∈ Lq(0, T ; E0) for some 1 < q < ∞ and ∂tu(·) ∈
Lq(0, T ; E0) (the derivative is taken in the sense of distributions). In this
case, Equation (1.7) is understood as equality in Lq(0, T ; E0). Thus, u(t)
satisfies (1.7) in the sense of distributions in D′(]0, T [; E0) (see [96, 9] for
details). Using embedding theorems (see, for example, [95, 117]), one can
show that u(t) ∈ Cw([0, T ]; E) and even u(t) ∈ C([0, T ]; E) and (1.8) makes
sense: u(t) → u0 weakly or strongly in E as t → 0 + . Moreover, u(t) ∈ E
for every t ∈ [0, T ]. In special cases, it is convenient to take the space E0

sufficiently large since the extension of E does not cause any difficulties, but
facilitates the verification of the conditions A(u) ∈ E0 and ∂tu ∈ E0.

The operators S(t) : E → E generated by Equation (1.7) are usually
defined as follows. For arbitrary u0 ∈ E we consider the solution u(t), t � 0,
of the problem (1.7), (1.8). For all τ � 0 the element u(τ) of the space E is
uniquely determined. Therefore, the formula

S(τ) : u0 = u|t=0 �→ u|t=τ (1.9)

defines the family of mappings {S(τ), τ � 0}, S(τ) : E → E. These
mappings form a semigroup. Indeed, suppose that v0 ∈ E, v1 = S(t1)v0,
t1 > 0, and v2 = S(t2 + t1)v0, t2 > 0. It is obvious that v0, v1 and v2 are
the values of the solution u(·) ∈ Ft2+t1 at t = 0, t = t1, and t = t2 + t1
respectively. Consider the function u1(t) = u(t + t1), t ∈ [0, t2]. Since
u(·) ∈ Ft2+t1 , it follows that u1(·) ∈ Ft2 . It is clear that u1(t) is a solution
of Equation (1.7). It is obvious that u1|t=0 = v1 and u1|t=t2 = v2, i.e.,
v2 = S(t)v1 by the definition of {S(t)}. Hence S(t2)S(t1)v0 = S(t2 + t1)v0

for all v0 ∈ E and the semigroup identity (1.1) is proved.

Below, for particular equations of the form (1.7) we only formulate
the existence and uniqueness theorems and specify a space or a set where
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the semigroup {S(t)} acts. We assume that operators S(t) are defined by
formula (1.9).

1.3. Global attractors for autonomous equations.

1.3.1. 2D Navier–Stokes system. The Navier–Stokes system is prob-
ably the most popular example of a partial differential equation having a
global attractor. A considerable part of the theory of infinite-dimensional
dynamical systems has been developed from this example.

We consider the autonomous 2D Navier–Stokes system in a bounded
domain Ω ⋐ R2

∂tu +
2∑

i=1

ui∂xi
u = ν∆u −∇p + g(x),

(∇, u) = 0, u|∂Ω = 0, (x1, x2) ∈ Ω,
(1.10)

where u = u(x, t) = (u1(x, t), u2(x, t)) is the velocity vector, the scalar
function p = p(x, t) is the pressure, ν is the kinematic viscosity coefficient,
and g = g(x) = (g1(x), g2(x)) is the forcing term.

We denote by H and V = H1 the closure of the set V = {v | v ∈
(C∞

0 (Ω))2, (∇, v) = 0} in the norms | · | and ‖ · ‖ of the spaces (L2(Ω))2

and (H1
0 (Ω))2 respectively. Recall that

‖u‖2 = |∇u|2 =

2∑

i=1

∫

Ω

|∇ui(x)|2dx.

We denote by P the orthogonal projection from (L2(Ω))2 onto H or an
extension of H .

Excluding the pressure, we can write the system (1.10) in the form

∂tu + νLu + B(u, u) = g0(x), (1.11)

where L = −P∆, B(u, v) = P
2∑

i=1

ui∂xi
v, g0 = Pg.

Denote by V ′ = V ∗ the dual of V. The Stokes operator L, considered
as an operator on V ∩ (H2(Ω))2, is positive and selfadjoint. The minimal
eigenvalue λ1 of L is positive. Suppose that g(·) ∈ H. The initial conditions
are posed at t = 0 :

u|t=0 = u0(x), u0 ∈ H. (1.12)

The operator L is a bounded operator from V into V ′.
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Consider the trilinear continuous on V form

b(u, v, w) = (B(u, v), w) =

∫

Ω

2∑

i,j=1

ui∂xi
vjwjdx,

where the operator B maps V ×V into V ′. The form b satisfies the identities

b(u, v, v) = 0, b(u, v, w) = −b(u, w, v) ∀u, v, w ∈ V (1.13)

and the estimate (see [87, 117])

|b(u, u, v)| � c2
0|u|‖u‖‖v‖ ∀u, v ∈ V, (1.14)

where the constant c0 can be taken from the inequality

‖f‖L4(Ω) � c|f |1/2|∇f |1/2, f ∈ H1
0 (Ω), c0 = c. (1.15)

The constant c (and c0) is independent of Ω. In particular, from (1.14) it
follows that

|B(u, u)|V ′ � c2
0‖u‖|u|.

Thus, if u ∈ L2(0, T ; V ) ∩ L∞(0, T ; H), then −νLu − B(u, u) + g(x) ∈
L2(0, T ; V ′), Equation (1.11) can be considered in the sense of distributions
in the space D′(0, T ; V ′), and ∂tu ∈ L2(0, T ; V ′).

Proposition 1.1. The problem (1.11), (1.12) has a unique solution
u(t) ∈ C(R+; H) ∩ L loc

2 (R+; V ), ∂tu ∈ L loc
2 (R+; V ′), and the following

estimates hold:

|u(t)|2 � |u(0)|2e−νλt + ν−2λ−2|g|2, (1.16)

|u(t)|2 + ν

t∫

0

‖u(s)‖2ds � |u(0)|2 + tν−1λ−1|g|2, (1.17)

t‖u(t)‖2 � C(t, |u(0)|2), (1.18)

where λ = λ1 is the first eigenvalue of the Stokes operator L and C(z, R) is
a monotone continuous functions of z = t and R.

The existence and uniqueness theorem is a classical result. A detailed
proof can be found in [87, 96, 117, 9, 40].

Thus, there exists a semigroup {S(t)} acting in H , i.e., S(t) : H → H
for t � 0, and corresponding to the problem (1.11), (1.12), i.e., S(t)u0 =
u(t), where u(t) is a solution of (1.11), (1.12).

Proposition 1.2. The semigroup {S(t)} corresponding to the problem
(1.11), (1.12) is uniformly (H, H)-bounded, compact, and (H, H)-continuous.
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A detailed proof can be found, for example, in [9, 119]. The existence
of a bounded absorbing set follows from (1.16) (see also Section 2.6.1 below,
where a nonautonomous system is considered). By Propositions 1.1 and 1.2,
the semigroup {S(t)} satisfies all the assumptions of Theorem 1.2.

Theorem 1.3. The semigroup {S(t)} corresponding to the problem
(1.11), (1.12) has a global attractor A which is compact in H and coincides
with the kernel section, i.e., A = K(0).

Introduce a dimensionless number, called the (generalized) Grashof
number, by the formula

G =
|g|

ν2λ1
.

It plays an important role in the analysis of the structure of A.

Proposition 1.3. Suppose that

G < 1/c2
0, (1.19)

where c0 is the constant from the inequality (1.14). Then Equation (1.11)
has a unique stationary solution z ∈ V , and this solution is globally asymp-
totically stable, i.e., A = {z}.

Proof. It is well known that Equation (1.11) has a stationary solution
z (see, for example [117]), νLz + B(z, z) = g. By (1.17),

‖z‖2 = |∇z|2 �
|g|2
ν2λ1

. (1.20)

Every solution u(t) of Equation (1.11) can be written as u(t) = z + v(t),
where v(t) satisfies the equation

∂tv + νLv + B(v, v) + B(v, z) + B(z, v) = 0.

Multiplying by v and using (1.14), (1.13), the inequality |v| � λ
−1/2
1 ‖v‖,

and (1.20), we find

∂t|v|2 + 2ν‖v‖2 = 2b(v, v, z) � 2c2
0|v|‖v‖‖z‖

� 2c2
0λ

−1/2
1 ‖v‖2‖z‖ � 2c2

0λ
−1
1 ν−1|g|‖v‖2.

Finally,

∂t|v|2 + 2(ν − c2
0λ

−1
1 ν−1|g|)‖v‖2 � 0.

Hence

∂t|v(t)|2 + α|v(t)|2 � 0,
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where α = 2(ν − c2
0λ

−1
1 ν−1|g|)λ−1

1 > 0 since
|g|

ν2λ1
= G < c−2

0 . This implies

|v(t)|2 = |u(t) − z|2 � |u(0) − z|2e−αt.

Consequently, the stationary solution is unique and asymptotically stable,
and A = {z}. �

Remark 1.2. The inequality (1.15) was originally proved with c �

21/4 in [87]. It is known [109] that c <
( 16

27π

)1/4

. As was shown in [16],

the constant c2
0 in (1.14) can be taken as c2

0 =
c2

√
2

=
( 8

27π

)1/2

. Therefore,

the attractor A is trivial if G < 3.2562.

If the Grashof number G =
|g|

ν2λ1
is large, the solutions of the Navier–

Stokes system can tend, as t → +∞, to an attracting set much more com-
plicated than a stationary solution. Such a situation is plausible by the
physical evidence and simulation results. Respectively, the structure of the
global attractor A can be very complicated and, possibly, chaotic (see, for
example, [58, 59, 60]). In Section 1.4.2, we study upper bounds for the
dimension of the global attractors of the Navier–Stokes equations which de-
pend of the Grashof numbers. Roughly speaking, flows can be described by
a finite (possibly, very large) number of parameters, despite the fact that
the system is infinite-dimensional.

1.3.2. Wave equation with dissipation. We consider the hyperbolic
equation

∂2
t u + γ∂tu = ∆u − f(u) + g(x), u|∂Ω = 0, x ∈ Ω ⋐ R

n, (1.21)

with the damping (dissipation) term γ∂tu, γ > 0. We assume that g ∈
L2(Ω) and the nonlinear function f(v) ∈ C1(R) satisfies the conditions

F (v) � −mv2 − Cm, F (v) =

v∫

0

f(w)dw, (1.22)

f(v)v − γ1F (v) + mv2 � −Cm ∀ v ∈ R, (1.23)

where m > 0, γ1 > 0, and m is sufficiently small (m < λ1, where λ1 is the
first eigenvalue of the operator −∆ with zero boundary conditions).

Remark 1.3. The conditions (1.22) and (1.23) are satisfied, for ex-
ample, if

lim inf
|v|→∞

F (v)

v2
� 0, ; lim inf

|v|→∞

f(v)v − γ1F (v)

v2
� 0. (1.24)
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Assume that ρ is positive and ρ < 2/(n−2) for n � 3 and ρ is arbitrary
for n = 1, 2. We also assume that

|f ′(v)| � C0(1 + |u|ρ). (1.25)

The case ρ < 2/(n − 2) for Equation (1.21) was studied in [71, 64]
and other works. The case ρ = 2/(n − 2) was considered in [9, 90, 2] (see
also [55, 66, 111]). Here, we discuss the case ρ < 2/(n − 2).

Remark 1.4. Nonlinear hyperbolic equations of type (1.21) appear
in many branches of physics. For example, the dynamics of a Josephson
junction driven by a current source is simulated by the sine–Gordon equation
of the form (1.21) with

f(u) = β sin u.

It is clear that the inequality (1.24) holds. Another important example is
encountered in relativistic quantum mechanics with the nonlinear term

f(u) = |u|ρu.

In this case, F (u) = |u|ρ+2/(ρ + 2) and the inequality (1.24) holds with
γ1 = 1/(ρ + 2) (see [119] and the references therein).

From (1.25) it follows that

|f(v)| � C1(1 + |u|ρ+1). (1.26)

By the Sobolev embedding theorem,

H1
0 (Ω) ⊂ L2(ρ+1)(Ω). (1.27)

For n = 1, 2 it is valid for any ρ. For n � 3, by the above assumptions,
2(ρ + 1) < 2n/(n − 2), where 2n/(n − 2) is the critical exponent in the
Sobolev embedding theorem.

Suppose that u ∈ L∞(0, T ; H1
0 (Ω)) and ∂tu ∈ L∞(0, T ; L2(Ω)). Then

∆u ∈ L∞(0, T ; H−1(Ω)) and f(u) ∈ L∞(0, T ; L2(Ω)) in view of (1.27).
Therefore, −γ∂tu + ∆u − f(u) + g(x) ∈ L∞(0, T ; H−1(Ω)) and Equa-
tion (1.21) can be considered in the sense of distributions in the space
D′(0, T ; H−1(Ω)). In particular, ∂2

t u ∈ L∞(0, T ; H−1(Ω)) (see [96]).

The initial conditions are posed at t = 0:

u|t=0 = u0(x), ∂tu|t=0 = p0(x). (1.28)

Proposition 1.4. If u0 ∈ H1
0 (Ω) and p0 ∈ L2(Ω), then, under the

above assumptions, the problem (1.21), (1.28) has a unique solution u(t)∈
C(R+; H1

0 (Ω)), ∂tu(t) ∈ C(R+; L2(Ω)), ∂2
t u(t) ∈L∞(R+; H−1(Ω)).
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We write y(t) = (u(t), ∂tu(t)) = (u(t), p(t)), y0 = (u0, p0) = y(0)
for brevity. We denote by E the space of vector-valued functions y(x) =
(u(x), p(x)) with finite energy norm ‖y‖2

E = |∇u|2 + |p|2 in E = H1
0 (Ω) ×

L2(Ω). Then y(t) ∈ E for every t � 0.

The unique solvability of the problem (1.21), (1.28) in the energy space
E and properties of solutions are established in [96, 9, 119, 68] (see also
[34] for more general cases).

The problem (1.21), (1.28) is equivalent to the problem

∂tu = p,

∂tp = −γp + ∆u − f(u) + g,

u|t=0 = u0, p|t=0 = p0,

which can be written in the short form as

∂ty = A(y), y|t=0 = y0. (1.29)

Thus, if y0 ∈ E, then the problem (1.21), (1.28) has a unique solution
y(t) ∈ Cb(R+; E). This means that the semigroup {S(t)}, S(t)y0 = y(t), is
defined in E.

Proposition 1.5. The semigroup {S(t)} corresponding to the problem
(1.21), (1.28) is bounded, asymptotically compact, and (E, E)-continuous.

We will come back to this assertion in Section 2.6.2, where more gen-
eral nonautonomous hyperbolic equations are considered.

Theorem 1.2 and Proposition 1.5 imply the following assertion.

Theorem 1.4. The semigroup {S(t)} corresponding to the problem
(1.21), (1.28) has a global attractor A which is compact in E and coincides
with the kernel section, i.e., A = K(0).

1.3.3. Ginzburg–Landau equation. This equation serves as a model in
many areas of physics and mechanics [84, 86], for example, in the theory of
superconductivity. The complex Ginzburg–Landau equation has the form

∂tu = (1 + αi)∆u + Ru − (1 + iβ)|u|2u, x ∈ Ω ⋐ R
n. (1.30)

We consider the case of periodic boundary conditions in Ω =]0, 2π[n or zero
boundary conditions u|∂Ω = 0 in an arbitrary domain Ω ⋐ Rn. In (1.30),
u = u1 + iu2, α, β ∈ R are the dispersion parameters, and R > 0 is the
instability parameter. For u = (u1, u2)⊤ we have

∂tu
1 = ∆u1 − α∆u2 + Ru1 − (|u1|2 + |u1|2)(u1 − βu2),

∂tu
2 = α∆u1 + ∆u2 + Ru2 − (|u1|2 + |u1|2)(βu1 + u2)

(1.31)
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or, shortly,

∂tu = a∆u+Ru− f(u), (1.32)

where a =

(
1 −α
α 1

)
and f(u) = |u|2

(
1 −β
β 1

)
u. Consider the Jacobi

matrix of f(u)

fu(u)

=

(
3(u1)2 − 2β(u1)(u2) + (u2)2 −β(u1)2 + 2(u2)(u1) − 3β(u2)2

3β(u1)2 + 2(u2)(u1) + β(u2)2 (u1)2 + 2β(u1)(u2) + 3(u2)2

)
.

(1.33)

Denote by B the matrix of the bilinear form corresponding to the matrix
on the right-hand side of (1.33):

B =

(
3(u1)2 − 2β(u1)(u2) + (u2)2 β(u1)2 + 2(u2)(u1) − β(u2)2

β(u1)2 + 2(u2)(u1) − β(u2)2 (u1)2 + 2β(u1)(u2) + 3(u2)2

)
.

The diagonal elements of B are positive if |β| �
√

3. Moreover,

detB = (3 − β2)((u1)2 + (u2)2) = (3 − β2)|u|4

is also positive. Thus, the matrix B is positive definite. Therefore,

fu(u)v · v � 0 ∀u,v ∈ R
2 (1.34)

if |β| �
√

3.

We use the spaces H = L2(Ω; C), V = H1
0 (Ω; C), and L4 = L4(Ω; C).

The Cauchy problem for Equation (1.32) with initial data

u|t=0 = u0(x), u0(·) ∈ H, (1.35)

has a unique weak solution u(t) := u(x, t) such that

u(·) ∈ C(R+;H) ∩ Lloc
2 (R+;V) ∩ Lloc

4 (R+;L4), (1.36)

and u(t) satisfies Equation (1.32) in the sense of distributions in the space
D′(R+;H−r), where H−r = H−r(Ω; C) and r = max{1, n/4} (recall that
n = dim(Ω)). In particular, ∂tu(·) ∈ L2(0, M ;H−1) + L4/3(0, M ;L4/3) for
any M > 0. The existence of such a solution u(t) can be proved, for example,
by the Galerkin approximation method (see, for example, [119, 9, 34]).
The proof of the uniqueness theorem is also standard and relies on the
inequality (1.34). If (1.34) fails, the uniqueness theorem for n � 3 and
arbitrary values of the dispersion parameters α and β was not proved yet
(see [101, 102, 136] for known uniqueness results).
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Any solution u(t), t � 0, of (1.32) satisfies the differential identity

1

2

d

dt
‖u(t)‖2 + ‖∇u(t)‖2 + ‖u(t)‖4

L4
− R‖u(t)‖2 = 0 ∀ t � 0, (1.37)

where the real-valued function ‖u(t)‖2 is absolutely continuous for t � 0.
Here, ‖ · ‖ denotes the L2-norm in H.

The proof of (1.37) is similar to that of the identity for weak solutions
of the reaction–diffusion systems considered in [32, 34, 129].

Equation (1.32) generates a semigroup {S(t)} in H which is (H,H)-
continuous and compact (see, for example, [119, 34]). By Theorem 1.1,
there exists a global attractor A of this semigroup. It describes the long
time behavior of solutions of the Ginzburg–Landau equation. As is known,
the dynamics of this system is chaotic for certain values of parameters, for
example, αβ < 0 (see [10, 46]). However, in Section 1.4.2, we show that
the dimension of the global attractor of the Ginzburg–Landau equation is
finite.

We consider the case |β| >
√

3, where (1.34) is not longer valid. If
n = 1, 2, it is still possible to construct a semigroup in H = (L2(Ω))2 with
a compact global attractor (see [63, 119]). If n � 3, it is possible to prove
the existence of a global attractor in Lp = (Lp(Ω))2, p > n, provided that
(α, β) ∈ P(n), where P(n) is a subset of C (see [46, 47, 103, 101] for
details).

Thus, we see that if (1.34) fails and |β| �
√

3, there is an obstacle for
constructing a semigroup and studying a global attractor. Fortunately, this
obstacle can be removed by using another approach based on the so-called
trajectory attractors (see [34, 129]). In particular, this method works for
the Ginzburg–Landau equation with arbitrary n, α, and β.

The inhomogeneous Ginzburg–Landau equation

∂tu = (1 + αi)∆u + Ru − (1 + iβ)|u|2u + g(x), g ∈ L2(Ω; C),

is also considered in applications, where, for example, g(x) = δ exp(ik · x),
k ∈ Zn, δ > 0. This equation generates a semigroup, and Theorem 1.1 is
applicable.

1.4. Dimension of global attractors.

In this section, we present some known results concerning the dimension
of global attractors of autonomous evolution equations. Upper and lower
dimension estimates are discussed in detail in [119] and [9] (see also [37, 3]).
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1.4.1. Dimension of invariant sets. We define the Kolmogorov ε-
entropy of a compact set X in a Hilbert (Banach) space E. We denote by
Nε(X, E) = Nε(X) the minimum number of open balls in E with radius ε
which is necessary to cover X :

Nε(X) :=
{

min N | X ⊂
N⋃

i=1

B(xi, ε)
}

.

Here, B(xi, ε) = {x ∈ E | ‖x − xi‖E < ε} is the ball in E with center xi

and radius ε. Since the set X is compact, Nε(X) < +∞ for any ε > 0.

Definition 1.6. The Kolmogorov ε-entropy of a set X in the space E
is the number

Hε(X, E) := Hε(X) := log2 Nε(X). (1.38)

For particular sets X , the problem is to study the asymptotic behavior
of Hε(X) as ε → 0 + . This characteristic of compact sets was originally
introduced by Kolmogorov and was studied in [83], where the ε-entropy
was considered for different classes of functions. An important notion of
the entropy dimension of a compact set was also introduced there. This
dimension is often referred to as the fractal dimension.

Definition 1.7. The (upper) fractal dimension of a compact set X
in E is the number

dF (X, E) := dF (X) := lim sup
ε→0+

Hε(X)

log2(1/ε)
. (1.39)

The fractal dimension of a compact set in an infinite-dimensional
space can be infinite. However, if 0 < dF (X) < +∞, then Hε(X) ≈
dF (X) log2(1/ε). Therefore, in this case, Nε(X) ≈ (1/ε)dF (X) points are
required for approximating the set X with accuracy ε.

Another important characteristic of a compact set X is the Hausdorff
dimension

dH(X) := inf{d | µ(X, d) = 0},
where µ(X, d) = inf

∑
rd
i and the infimum is taken over all coverings of

the set X by balls B(xi, ri) with radii ri � ε (see [120]). Apparently,
dH(X) � dF (X), and there are examples of sets such that dH(X) = 0 but
dF (X) = +∞.

In this paper, we deal only with the fractal dimension because it is
closely connected with the ε-entropy of compact sets.
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Remark 1.5. The fractal and Hausdorff dimensions are very useful
for studying the structure of “nonsmooth” sets, for example, the selfsimilar
sets or fractals. The simplest example of such a set is the Cantor set K on
the segment [0, 1] for which dF (K) = dH(K) = log3 2 < 1. For a compact
smooth manifold the fractal (and Hausdorff) dimension is equal to the usual
dimension and thereby is an integer. The example of the Cantor set shows
that the fractal dimension is not necessarily integer.

Consider the ε-entropy and fractal dimension of strictly invariant sets
and global attractors of autonomous evolution equations of the form (1.7).
Let the Cauchy problem (1.7), (1.8) generate a semigroup {S(t)} acting in
a Hilbert space E (see Section 1.1). Consider a compact set X ⋐ E. Let
the set X be strictly invariant with respect to {S(t)}, i.e., S(t)X = X for
all t � 0. (For example, X = A, where A is the global attractor.) We
assume that the semigroup {S(t)} is uniformly quasidifferentiable on X in
the following sense: for any t � 0, u ∈ X there is a linear bounded operator
(quasidifferential) L(t, u) : E → E such that

‖S(t)v1 − S(t)v − L(t, u)(v1 − v)‖E � γ(‖v1 − v‖E , t)‖v1 − v‖E (1.40)

for all v, v1 ∈ X and γ = γ(ξ, t) → 0+ as ξ → 0+ for every fixed t � 0.
Assume that the linear operators L(t, u) are generated by the variational
equation for (1.7) which we write in the form

∂tv = Au(u(t))v, v|t=0 = v0 ∈ E, (1.41)

where u(t) = S(t)u0, u0 ∈ X , Au(·) is the formal derivative in u of the
operator A(·) in (1.7) and the domain E1 of the operator Au(u(t)) is dense
in E. We also assume that for every u0 ∈ X the linear problem (1.41)
is uniquely solvable for all v0 ∈ E. By assumption, the quasidifferentials
L(t, u0) in (1.40) act on a vector v0 by the rule L(t, u0)v0 = v(t), where v(t)
is a solution of Equation (1.41) with initial data v0.

Let j ∈ N, and let L : E1 → E be a linear (possibly, unbounded)
operator. The j-trace of the operator L is the number

TrjL := sup
{ϕi}

j
i=1

j∑

i=1

(Lϕi, ϕi), (1.42)

where the infimum is taken over all orthonormal in E families of vectors
{ϕi}i=1,...,j belonging to E1 and (ψ, ϕ) denotes the inner product of ψ and
ϕ in E.
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Definition 1.8. We set

q̃j := lim sup
T→+∞

sup
u0∈X

1

T

T∫

0

TrjAu(u(t))dt, j = 1, 2, . . . , (1.43)

where u(t) = S(t)u0.

Theorem 1.5. Suppose that a semigroup {S(t)} acting in E has a
compact strictly invariant set X and is uniformly quasidifferentiable on X.
Let q̃j � qj, j = 1, 2, 3, . . ., where q̃j are defined in (1.43). Suppose that qj

is concave in j (like ∩). Let m be the smallest integer such that qm+1 < 0
(then, clearly, qm � 0). Let

d = m +
qm

qm − qm+1
. (1.44)

Then X has the finite fractal dimension and

dF (X) � d. (1.45)

Furthermore, for every δ > 0 there exist real numbers η ∈ (0, 1) and ε0 > 0
such that for the ε-entropy Hε(X) of X the following estimate holds:

Hε(X) � (d + δ) log2(ε0/ηε) + Hε0(X) ∀ε < ε0. (1.46)

This theorem is proved in [34]. The proof is based on the study of
the volume contraction properties under the action of the quasidifferentials
of semigroup operators. Estimates, similar to (1.45), for the Hausdorff
dimension of invariant sets were first obtained [48] for a finite-dimensional
space E and then were generalized [41, 119] for an infinite-dimensional
space E (see also [76, 4, 9]).

We note that the estimate (1.46) for the ε-entropy of A follows from
(1.45) and, in general, does not give any new information about global
attractors. However, in the study of nonautonomous equations (see Section
3), the estimates for the ε-entropy of global attractors become more informal
and constitutive. This explains why the estimate (1.46) is included into this
key theorem.

Remark 1.6. In applications, the numbers qj are usually used in the
form qj = ϕ(j), where ϕ = ϕ(x), x � 0, is a smooth concave function.
Consider the root d∗ of ϕ, i.e., ϕ(d∗) = 0. It is obvious that d � d∗ since ϕ
is concave. For large d the root d∗ is very close to d defined by (1.44). Since
d∗ is sometimes expressed in a simpler way than d, we will use d∗ instead
of d as the upper bound in (1.45) for the fractal dimension of attractors. In
this case, in (1.46), we can set δ = d∗ − d if it is positive.
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Recently [16], the estimates (1.46) and (1.45) were proved for the exact
values qj = q̃j without the concavity assumption on q̃j in j. The so-called
(global) Lyapunov dimension of a set X (see [82, 49]) is defined by the
formula

dL := m +
q̃m

q̃m − q̃m+1
.

The inequality dH(X) � dL(X) was proved in [48, 39, 119]. As was shown
in [16], dF (X) � dL(X). A similar result was obtained earlier in [12];
namely, it was proved that if q̃m < 0 for some m ∈ N, then dF (X) � m (see
also [75]).

Many examples of evolution equations in mathematical physics and
mechanics are described in [9, 119, 68], where global attractors are also
constructed and upper estimates were proved for the Hausdorff dimension
and the fractal dimension of these attractors.

Further, we discuss fractal dimensions estimates for global attractors
of autonomous equations considered in Section 1.3.

1.4.2. Dimension estimates for autonomous equations.

2D Navier–Stokes system

We consider the 2D Navier–Stokes system

∂tu = −νLu − B(u, u) + g, (∇, u) = 0, u|∂Ω = 0, (1.47)

u|t=0 = u0, u0 ∈ H, (1.48)

where g ∈ H . The problem (1.47), (1.48) defines a semigroup {S(t)} acting
in H (see Section 1.3.1). By Theorem 1.3, the semigroup {S(t)} has a global
attractor A which is bounded in V and is compact in H.

Theorem 1.6. The fractal dimension of the global attractor A of the
problem (1.47), (1.48) satisfies the estimate

dF A � c
|g||Ω|

ν2
, (1.49)

where c depends on the shape of Ω (c(λΩ) = c(Ω) for all λ > 0).

The Kolmogorov ε-entropy of A satisfies the estimate

Hε(A) � c
|g||Ω|
ν2

log2

( ε0

ηε

)
+ Hε0(A) ∀ε < ε0, (1.50)

where η and ε0 are small positive numbers.
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Proof. The semigroup {S(t)} is uniformly quasidifferentiable on A
in H and the quasidifferential of {S(t)} is the operator L(t, u0)v0 = v(t),
v0 ∈ H, where v(t) is a solution of the variation equation

∂tv = −νL − B(u(t), v) − B(v, u(t)) := Au(u(t))v, v|t=0 = v0

(see [4, 9]). We need to estimate the j-trace of Au(u(t)). Note that for all
v ∈ V

(Au(u(t))v, v) = ν‖v‖2 − (B(v, u(t)), v) (1.51)

since (B(u, v), v) = 0 for u, v ∈ V.

Let ϕ1, . . . , ϕj ∈ V be an arbitrary orthonormal family in H . Using
(1.51), we find

j∑

i=1

(Au(u(t))ϕi, ϕi) = −ν

j∑

i=1

|∇ϕi|2 −
j∑

i=1

(B(ϕi, u(t)), ϕi)

= −ν

j∑

i=1

|∇ϕi|2 −
∫

Ω

j∑

i=1

2∑

k,l=1

ϕk
i ∂xk

ul(t)ϕl
idx

� −ν

j∑

i=1

|∇ϕi|2 +

∫

Ω

ρ(x)|∇u(t)|dx

� −ν

j∑

i=1

|∇ϕi|2 + |ρ||∇u(t)|, (1.52)

where ρ(x) =
j∑

i=1

|ϕi(x)|2 (see [41, 119]).

Since functions in V vanish on ∂Ω we can extend them by zero out-
side Ω. Then we obtain functions ϕi(x), x ∈ R2, in (H1(R2))2 that are
orthonormal in (L2(R

2))2. The following result [94] is extremely important.

Lemma 1.1 (Lieb–Thirring inequality). Let ϕ1, . . . , ϕj ∈ (H1(Rn))m

be an orthonormal family of vectors in (L2(R
n))m. Then for

ρ(x) =

j∑

i=1

|ϕi(x)|2

the following estimate holds:

∫

Rn

(ρ(x))1+2/ndx � Cm,n

j∑

i=1

∫

Rn

|∇ϕi|2dx, (1.53)

where Cm,n depends only on m and n.
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Remark 1.7. As was proved in [77], for m = 2, n = 2 one has
C2,2 � 2 if div ϕi = 0.

By the variational principle,

j∑

i=1

|∇ϕi|2 � λ1 + λ2 + . . . + λj , (1.54)

where λ1, λ2, . . . are the ordered eigenvalues of the operator L. It is known
that λi � C0|Ω|−1i. Therefore,

λ1 + λ2 + . . . + λj � C2
j2

|Ω| , λ1 �
C1

|Ω| , (1.55)

where C0, C1, and C2 are dimensionless constants depending on the shape
of Ω (see, for example, [100]). Using (1.53) with C2,2 = 2, (1.54), and
(1.55), from (1.52) we find

−ν

j∑

i=1

|∇ϕi|2 +
(
2

j∑

i=1

|∇ϕi|2
)1/2

|∇u(t)|

� −ν

2

j∑

i=1

|∇ϕi|2 +
1

ν
|∇u(t)|2 � −νC2j

2

2|Ω| +
1

ν
|∇u(t)|2.

Thus,

Trj(Au(u(t)) � −νC2j
2

2|Ω| +
1

ν
|∇u(t)|2.

Using the estimate

t∫

0

‖u(s)‖2ds �
|u(0)|2

ν
+

|g|2
ν2λ1

t

(see (1.17)), we find

q̃j = lim sup
T→∞

sup
u0∈A

1

T

T∫

0

Trj(Au(u(t))dt

� −νC2j
2

2|Ω| + lim
T→∞

1

ν2T
sup

u0∈A
|u0|2 +

|g|2
ν3λ1

.

Since sup
u0∈A

|u0|2 � C3, we have

q̃j � −νC2j
2

2|Ω| +
|g|2
ν3λ1

. (1.56)
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Using the second estimate for λ1 in (1.55), we find

q̃j � −
νC2j

2

2|Ω|
+

|g|2|Ω|

ν3C1
=: ϕ(j) = qj .

We note that the function ϕ(j) is concave in j (like ∩). Looking for the

root d∗ of the equation ϕ(d) = 0, we find d∗ =

√
2

C1C2

|g||Ω|
ν2

. Hence (1.50)

and (1.49) immediately follow from Theorem 1.5 with c =
√

2
C1C2

(see also

Remark 1.6). �

Remark 1.8. By (1.56), the estimate (1.49) takes the form

dF A � c′G, (1.57)

where G =
|g|

ν2λ1
is the Grashof number and c′ = 2

√
|Ω|λ1/C2 depends on

the shape of Ω. This estimate was proved in [39, 41] (see also [119]).

Remark 1.9. As was proved in [78], C1 � 2π, C2 � π in any domain
Ω of finite measure. Therefore, the constant c in (1.49) satisfies c � 1/π and

for c′ in (1.57) we have c′ � 2
√
|Ω|λ1/π. These estimates were improved in

[16] as follows: c � (2π3/2)−1 and c′ �
√
|Ω|λ1/(

√
2π).

Corollary 1.1. Let g ∈ H. Then

dF A �
1√
2π

(|Ω|λ1)
1/2 |g|

ν2λ1
�

1

2π3/2

|g||Ω|
ν2

. (1.58)

We note that the last estimate in (1.58) contains only the explicit
physical parameters of system (1.47) and the estimate c � (2π3/2)−1 seems
the best up-to-date.

Remark 1.10. According to the proof of Proposition 1.3, A = {z}
and, consequently, dF A = 0 if G =

|g|
ν2λ1

<
1

c2
0

. Since λ1 �
2π

|Ω| , the

last inequality holds provided that
|g||Ω|

ν2
<

2π

c2
0

. Using the expression c2
0 =

( 8

27π

)1/2

(see Remark 1.2), we see that A = {z} and dF A = 0 provided

that
|g||Ω|

ν2
<

(27π3

2

)1/2

≈ 20.46.

Remark 1.11. The estimates (1.58) and (1.49) hold for the 2D Navier–
Stokes systems in unbounded domains with finite measure [78].
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Remark 1.12. For the 2D Navier–Stokes system (1.47) in Ω = [0, 2π]2

with periodic boundary conditions the estimate (1.57) was improved in [42]
(see also [119]). As was shown,

dF A � c′′G2/3(1 + log G), (1.59)

where G =
|g|

λ1ν2
(note that λ1 = 1 in this case). The estimate (1.59) is

optimal in a sense (see [97, 135]).

Dissipative wave equation

Consider the equation

∂2
t u + γ∂tu = ∆u − f(u) + g(x), u|∂Ω = 0, x ∈ Ω ⋐ R

3, (1.60)

where γ > 0 (see Section 1.3.2). For brevity, we consider the case n = 3. We
assume that g( · ) ∈ L2(Ω), f(v) ∈ C2(R; R), and f satisfies (1.22), (1.23),
and (1.25) with ρ < 2. We also assume that

|f ′(v1) − f ′(v2)| � C(|v1|2−δ + |u2|2−δ + 1)|v1 − v2|δ, 0 � δ � 1. (1.61)

The Hilbert space E = H1
0 (Ω) × L2(Ω) is the phase space for this

equation. We introduce the space E1 = H2(Ω) × H1
0 (Ω) endowed with the

norm ‖y‖E1 = (‖u‖2
2 + ‖p‖2

1)
1/2. We consider the semigroup {S(t)} in E

generated by Equation (1.61). By Theorem 1.4, this semigroup has the
global attractor A ⋐ E. As was proved in [9, 119], the set A is bounded in
E1 :

‖w‖E1 � M ∀ w ∈ A,

where the constant M is independent of w. By the Sobolev embedding
theorem,

‖u(·)‖C(Ω) � M1 ∀ w = (u(·), p(·)) = w(·) ∈ A. (1.62)

We estimate dFA using Theorem 1.5 and the technique described in
[64] (see also [119, 34]).

Theorem 1.7. For the fractal dimension of the global attractor A of
Equation (1.60) the following estimate holds:

dFA �
C

α3
, (1.63)

where α = min{γ/4, λ1/(2γ)} and C = C(M1) (see (1.62)).

For the ε-entropy of A the following estimate holds:

Hε(A) �
C(M1)

α3
log2

( ε0

ηε

)
+ Hε0(A) ∀ ε < ε0, (1.64)
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where η, ε0 are some positive numbers.

Proof. As in [64, 119], introduce the new variables w = (u, v)=
Rαy = (u, ut + αu) and ut = ∂tu, α = min{γ/4, λ1/(2γ)}, where λ1 is
the first eigenvalue of the operator −∆u, u|∂Ω = 0. In these variables,
Equation (1.60) takes the form

∂tw = Lαw − G(w) =: Aαw, w|t=0 = w0, (1.65)

where w0 ∈ E,

Lα =

(
−αI I

∆ + α(γ − α) −(γ − α)I

)
, G(w) = (0, f(u) − g(x)). (1.66)

By (1.61), the operators {S(t)} are uniformly quasidifferentiable on A
and the quasidifferentials L(t, w0)z0 = z(t) satisfy the variation equation of
the problem (1.65):

∂tz = Lαz − Gw(w)z =: Aαw(w(t))z, z|t=0 = z0, (1.67)

where z = (r, q) and Gw(w(t))z = (0, f ′(u(t))r) (see, for example, [119]).
Let us estimate the sum

j∑

i=1

(Aαw(w(t))ζi, ζi)E , (1.68)

where ζi = (ri, qi) is an arbitrary orthonormal family in E. We have

(Aαw(w(t))ζi, ζi)E = (Lαζi, ζi) − (f ′(u)ri, qi) � −(α/2)‖ζi‖2
E

+C0(M1)‖ri‖0‖qi‖0 � −α/4(‖ri‖2
1 + ‖qi‖2

0) + (C1(M1)/α)‖ri‖2
0. (1.69)

The parameter α is chosen in such a way that the operator Lα is negative:

(Lαζi, ζi) � −α/2‖ζi‖2
E .

Observe that it was essential that

sup {‖f ′(u(t))‖Cb
| (u(·), ∂tu(·)) = w(·) ∈ A t ∈ R} � C0(M1) (1.70)

(see (1.62)). Since the system ζi is orthonormal in E, from (1.69) it follows
that

j∑

i=1

(Aαw(w(t))ζi, ζi)E � −(α/4)j + (C2
0 (M1)/α)

j∑

i=1

‖ri‖2
0

� −(α/4)j + (C2
0 (M1)/α)

j∑

i=1

λ−1
i

� −(α/4)j + (C1(M1)/α)j1/3, (1.71)
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where C1(M1) = c1C
2
0 (M1) and λi, i = 1, . . . , j, are the first j eigenvalues

of the operator −∆u, u|∂Ω = 0, written in nondecreasing order. It is known

that λi � c0i
2/3. Therefore,

j∑
i=1

λ−1
i � c1j

1/3. In the second inequality of

(1.71), we used the inequality
j∑

i=1

‖ri‖2
0 �

j∑
i=1

λ−1
i proved in [119]. Thus,

TrjAαw(w(t)) � ϕ(j) = −(α/4)j + (C1(M1)/α)j1/3, where the function
ϕ(x) is concave. The root of ϕ is expressed as follows:

d∗ =
8C1(M1)

3/2

α3
=

C(M1)

α3
,

where C(M) = 8C1(M1)
3/2. Finally, we obtain (1.64) and (1.63) from

Theorem 1.5 and Remark 1.6. �

We consider the sine-Gordon equation with f(u) = β sin(u). It is clear
that C0(M1) = β in (1.70). Therefore, C1(M1) = c1β

2, i.e., C(M1) =

8c
3/2
1 β3 = cβ3. Thus, the estimates (1.64) and (1.63) for the sine-Gordon

equation have the form

dF (A) � c
β3

α3
, (1.72)

Hε(A) � c
β3

α3
log2

( ε0

ηε

)
+ Hε0(A) ∀ ε < ε0,

where the constant c depends on Ω.

Ginzburg–Landau equation

We consider an inhomogeneous equation similar to (1.30)

∂tu = ν(1 + αi)∆u + Ru − (1 + iβ)|u|2u + g(x), x ∈]0, 2π[3=: T
3, (1.73)

with periodic boundary conditions in T3 and g(x) = g1(x) + ig2(x) ∈
L2(T

3; C). Here, ν is a positive parameter. For the sake of simplicity, we

take n = 3. We assume that |β| �
√

3. Then Equation (1.73) generates the
semigroup {S(t)} acting in H = (L2(T

3))2 and having a global attractor A
which is compact in H (see [119, 34]).

We write Equation (1.73) in the vector form (1.32)

∂tu = νa∆u+Rv − f(u) + g(x), (1.74)

where a =

(
1 −α
α 1

)
, f(v) = |v|2

(
1 −β
β 1

)
v, g(x) = (g1(x), g2(x))⊤. As

was proved in [4], the semigroup {S(t)} is uniformly quasidifferentiable on
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A and the corresponding variational equation reads

∂tv = νa∆v+Rv − fu(u)v, v|t=0 = v0 ∈ H, (1.75)

where the matrix fu(u) is defined by (1.33). By (1.34), we have

〈νa∆v + Rv − fu(u)v,v〉 = −ν‖∇v‖2 + R‖v‖2 − 〈fu(u)v,v〉
� −ν‖∇v‖2 + R‖v‖2 ∀v ∈ H2. (1.76)

In order to use Theorem 1.5 and to estimate dF (A), we need to study
the j-trace of the operator on the right-hand side of (1.75). By (1.76), we
have

j∑

i=1

(Au(u(t))ϕi, ϕi) =

j∑

i=1

−ν‖∇ϕi‖2 + R‖ϕi‖2 − 〈fu(u)ϕi, ϕi〉

�

j∑

i=1

−ν‖∇ϕi‖2 + R‖ϕi‖2 = −ν

j∑

i=1

‖∇ϕi‖2 + Rj, (1.77)

where {ϕi, i = 1, . . . , j} is an arbitrary set of functions from V = (H1(T3))2,
orthonormal in H. By the variational principle,

j∑

i=1

|∇ϕi|2 � λ1 + λ2 + . . . + λj , (1.78)

where λ1, λ2, . . . are the eigenvalues of the operator −∆ in H. It is well
known that the eigenvalues of this operator have the form k2

1 + k2
2 + k2

3 ,
where (k1, k2, k3) ∈ (Z+)3. Therefore, λi � C0i

2/3 and

λ1 + λ2 + . . . + λj � C1j
5/3 (1.79)

with some constants C0 and C1. Using (1.78) and (1.79) in (1.77), we obtain

TrjAu(u(t)) � −νC1j
5/3 + Rj = ϕ(j) ∀j = 1, 2, . . . (1.80)

The function ϕ(x) = −νC1x
5/3 + Rx is concave and has the root d∗ =

(R/(C1ν))3/2. Thus, we have proved the following assertion.

Theorem 1.8. The fractal dimension of the global attractor A of
Equation (1.73) admits the estimate

dF (A) �
( R

C1ν

)3/2

, (1.81)

where C1 is an absolute constant taken from (1.79) and can be estimated
explicitly (see, for example, [93, 34]).
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The ε-entropy of A satisfies the inequality

Hε(A) �
( R

C1ν

)3/2

log2

( ε0

ηε

)
+ Hε0(A) ∀ε < ε0, (1.82)

where η and ε0 are some small positive numbers.

2. Attractors of Nonautonomous Equations

In this section, we consider general processes and their global attractors.
The notion of a process is used for describing the behavior of nonautonomous
dynamical systems. A process is a generalization of the notion of a semi-
group which plays a key role in the study of autonomous dynamical systems.
Nonautonomous dynamical systems and their global attractors are discussed
in [73, 34] (see also [14]).

In Section 2.1, we study processes {U(t, τ), t � τ} and their uni-
form global attractors. Recall that the processes are generated by nonau-
tonomous evolution equations if, for example, an external force or some
other terms of the equation depend explicitly on time t. If the Cauchy
problem for this equation is well-posed, the process {U(t, τ)} sends the
value of the solution u(τ) at time τ ∈ R to the value of u(t) at time t � τ.

Below, we give a definition of a general process {U(t, τ)} and introduce
notions of uniformly absorbing and attracting sets of a process. We study
the main properties of ω-limit sets for bounded sets. Then we define the
uniform global attractor A of a process {U(t, τ)}. We prove the theorem
on the existence of a uniform global attractor of a process using the notion
of the ω-limit set. We also define the kernel K of a process and study its
properties.

In Section 2.2, we consider uniform and nonuniform global attractors
of a process and compare their properties. In particular, we present an
example of a nonautonomous equation, given by Haraux. This example
shows that the uniform global attractor can be larger than the nonuniform
one. We also study periodic processes for which uniform and nonuniform
global attractors always coincide.

In Section 2.4, we introduce the notion of the time symbol {σ(t),
t ∈ R} of a nonautonomous equation. Roughly speaking, the time symbol
is the collection of all time-dependent terms of the equation. We define the
hull H(σ) of σ. We also define a translation compact function. We mostly
study nonautonomous equations having translation compact symbols σ(t).
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We present translation compactness criteria in different topological spaces,
which will be used in the sequel.

In Section 2.5, we formulate the main theorem about the existence
and structure of the uniform global attractor of a process {(Uσ(t, τ} of a
nonautonomous equation with translation compact symbol σ(t).

In Section 2.6.1, we study the uniform global attractor of the nonau-
tonomous 2D Navier–Stokes system with translation compact external force.
A special attention is given to the case, where the system has a unique
bounded complete solution attracting any other solution as t → +∞ with
exponential rate. In Sections 2.6.2 and 2.6.3, we consider analogous prob-
lems for the nonautonomous dissipative hyperbolic equation and for the
nonautonomous complex Ginzburg–Landau equation with translation com-
pact terms.

2.1. Processes and their uniform global attractors.

Let E be a complete metric space or a Banach space. Consider a two-
parameter family of operators {U(t, τ), τ ∈ R, t � τ}, U(t, τ) : E → E.

Definition 2.1. A family of mappings {U(t, τ)} := {U(t, τ), τ ∈
R, t � τ} in E is called a process if

1) U(τ, τ) = Id for all τ ∈ R, where Id is the identity operator,

2) U(t, s) ◦ U(s, τ) = U(t, τ) for all t � s � τ, τ ∈ R.

As in Section 1, we denote by B(E) the family of all bounded (in the
norm of E) sets in E. A process {U(t, τ)} is said to be (E, E)-bounded if
U(t, τ)B ∈ B(E) for all B ∈ B(E), τ ∈ R, t � τ. A process {U(t, τ)} is
said to be uniformly (E, E)-bounded if for every B ∈ B(E) there exists
B1 ∈ B(E) such that U(t, τ)B ⊂ B1 for all τ ∈ R, t � τ.

The following two notions describe the dissipativity properties of non-
autonomous dynamical systems. A set B0 ⊂ E is said to be uniformly (with
respect to τ ∈ R) absorbing for a process {U(t, τ)} if for any set B ∈ B(E)
there is a number h = h(B) such that

U(t, τ)B ⊆ B0 ∀t, τ, t − τ � h. (2.1)

A set P ⊂ E is said to be uniformly (with respect to τ ∈ R) attracting for
a process {U(t, τ)} if for every ε > 0 the set Oε(P ) is uniformly absorbing
for {U(t, τ)} (hereinafter, Oε(M) denotes an ε-neighborhood of a set M in
the space E), i.e., for every bounded set B ∈ B(E) there exists a number
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h = h(ε, P ) such that

U(t, τ)B ⊆ Oε(P ) ∀t, τ, t − τ � h. (2.2)

The property (2.2) can be formulated in the following form: for every set
B ∈ B(E)

sup
τ∈R

distE(U(τ + h, τ)B, P ) → 0 as h → +∞, (2.3)

where distE(X, Y ) denotes the Hausdorff distance between sets X and Y in
the space E (see (1.3)).

A process having a compact uniformly absorbing set is called uniformly
compact and a process having a compact uniformly attracting set is called
uniformly asymptotically compact.

Now, we define the uniform global attractor A of a process {U(t, τ)}.
Definition 2.2. A set A ⊂ E is called a uniform (with respect to τ ∈

R) global attractor of the process {U(t, τ)} if it is closed in E, is uniformly
attracting for {U(t, τ)}, and satisfies the following minimality condition: A
belongs to any closed uniformly attracting set of the process.

It is easy to see that any process has at most one uniform global
attractor. A uniform global attractor was introduced in [73] (see also [18,
23, 25, 34]).

For an arbitrary set B ∈ B(E), we define the uniform ω-limit set ω(B)
by the formula

ω(B) =
⋂

h�0

[ ⋃

t−τ�h

U(t, τ)B
]

E
, (2.4)

where [ · ]E denotes the closure in the space E and the union is taken for all
t, τ such that τ ∈ R and t � τ + h (see (1.4)).

Proposition 2.1. If a process {U(t, τ)} in E has a compact uniformly
attracting set P , then for any B ∈ B(E)

(i) ω(B) �= ∅, ω(B) is compact in E, and ω(B) ⊆ P ,

(ii) sup
τ∈R

distE(U(h + τ, τ)B, ω(B)) → 0 (h → +∞),

(iii) if Y is closed and sup
τ∈R

distE(U(h + τ, τ)B, Y ) (h → +∞), then

ω(B) ⊆ Y.

Proof. From the definition (2.4) of ω(B) it follows that

y ∈ ω(B) ⇔
{

there are {xn} ⊆ B, {τn} ⊆ R, {hn} ⊂ R+ :
hn → +∞, U(τn + hn, τn)xn → y (n → ∞).

(2.5)
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(i) We show that ω(B) �= ∅. For any fixed τ ∈ R and x ∈ B we con-
sider an arbitrary positive sequence {hn}, hn → +∞ as n → ∞. Accord-
ing to the uniformly attracting property (2.3), distE(U(τ + hn, τ)x, P ) →
0 (n → ∞), i.e., for some sequence {yn} ⊆ P

‖U(τ + hn, τ)x − yn‖E → 0 as n → ∞).

Since the set P is compact, we can extract a subsequence {yn′} of {yn}
converging to y ∈ P . Hence U(τ + hn′ , τ)x → y (n′ → ∞). By (2.5),
y ∈ ω(B), i.e., ω(B) �= ∅. Let us verify that ω(B) ⊆ P . Let y ∈ ω(B) and
let {xn} ⊆ B, {τn} ⊆ R, {hn} ⊂ R+ be sequences defined in (2.5). By the
uniform attracting property of P (see (2.3)), we have

distE(U(τn + hn, τn)xn, P ) → 0 as n → ∞.

Therefore, distE(y, P ) = 0. The set P is closed, i.e., y ∈ P for all y ∈ ω(B)
and ω(B) ⊆ P . This implies that ω(B) is compact since ω(B) is closed by
definition (see (2.4)).

(ii) Assume the contrary: for some B ∈ B(E)

sup
τ∈R

distE(U(τ + h, τ)B, ω(B)) �→ 0 as n → ∞,

i.e., for some sequences {xn} ⊆ B, {τn} ⊆ R, {hn} ⊂ R+ (hn → +∞)

distE(U(τn + hn, τn)xn, ω(B)) � δ > 0 ∀ n ∈ N. (2.6)

By the uniform attracting property of P ,

distE(U(τn + hn, τn)xn, P ) → 0 as n → ∞.

So once again, we find a sequence {yn} ⊂ P such that

‖U(τn + hn, τn)xn − yn‖E → 0 as n → ∞.

The set P is compact, and we may assume by refining that yn → y as
n → ∞ for some y ∈ P , i.e., U(τn +hn, τn)xn → y as n → ∞. From (2.5) it
follows that y ∈ ω(B). However, (2.6) implies that distE(y, ω(B)) � δ > 0,
which leads to a contradiction.

(iii) Let Y be a closed uniformly attracting set of the process {U(t, τ)}.
If y ∈ ω(B), then, in view of (2.5), for some sequences {xn} ⊆ B, {τn} ⊆ R,
{hn} ⊂ R+ we have U(τn + hn, τn)xn → y as hn → ∞. Since Y is a
uniformly attracting set, it follows that distE(U(τn + hn, τn)xn, Y ) → 0 as
n → ∞ and, consequently, dist(y, Y ) = 0, i.e., y ∈ Y for all y ∈ ω(B).
Hence ω(B) ⊆ Y . �

Using Proposition 2.1, we formulate the following important assertion.
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Theorem 2.1. If a process {U(t, τ)} is uniformly asymptotically com-
pact, then it has a compact (in E) uniform global attractor A.

Proof. We show that the set

A =
[ ⋃

n∈N

ω(Bn)
]

E
, (2.7)

where Bn = {x ∈ E | ‖x‖E � n}, is the required uniform global attractor.
Indeed, for the set A defined in (2.7) we have A ⊆ P (see Proposition
2.1,(i)). Moreover, if B ⊆ B(E), then B ⊆ Bn for some n ∈ N and,
consequently, ω(B) ⊆ ω(Bn) ⊆ A, i.e., A uniformly attracts Uσ(t, τ)B
(see Proposition 2.1,(ii)). However, by Proposition 2.1,(iii), the set ω(Bn)
belongs to every closed uniformly attracting set. Therefore, the minimality
property is valid for A defined in (2.7). �

Remark 2.1. We cannot assert that A = ω(P ), where P is an ar-
bitrary compact uniformly attracting set for {U(t, τ)}. It is obvious that
ω(P ) ⊆ A since P ⊆ BN for large N, so ω(P ) ⊆ ω(BN). Therefore,
ω(P ) ⊆ A. However, it is not clear if the inverse inclusion holds since we
do not know whether ω(B) ⊆ ω(P ) for any B ⊆ B(E). However, if B0 is a
compact uniformly absorbing set, then apparently

A = ω(B0) =
⋂

h�0

[ ⋃

t−τ�h

U(t, τ)B0

]

E
.

For a compact uniformly attracting set P the equality A = ω(P ) can be
also proved under some additional assumptions of continuity of the process
{U(t, τ)} (see Theorem 1.1 for the autonomous case and [34] for the nonau-
tonomous cases).

Remark 2.2. In Theorem 2.1, we do not assume that the process
{U(t, τ)} is continuous in E. (This assumption was essential in the existence
theorems for global attractors of semigroups corresponding to autonomous
evolution equations.) The reason is that we use only the minimality property
in the definition of a global attractor.

To describe a general structure of the uniform global attractor of a
process, we need the notion of the kernel of a process which generalizes the
notion of the kernel of a semigroup.

A function u(s), s ∈ R, with values in E is called a complete trajectory
of a process {U(t, τ)} if

U(t, τ)u(τ) = u(t) ∀t � τ, τ ∈ R. (2.8)
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A complete trajectory u(s) is said to be bounded if the set {u(s), s ∈ R} is
bounded in E.

Definition 2.3. The kernel K of a process {U(t, τ)} is the family of
all bounded complete trajectories of {U(t, τ)}:

K = {u(·) | u satisfies (2.8) and ‖u(s)‖E � Cu ∀ s ∈ R}.
The set K(t) = {u(t) | u(·) ∈ K} ⊂ E, t ∈ R, is called the kernel section at
time t.

It is easy to prove the following assertion.

Proposition 2.2. If the process {U(t, τ)} has the global attractor A,
then ⋃

t∈R

K(t) ⊆ A. (2.9)

Comparing (2.9) with identity (1.6) in the autonomous case, we see
that, in the nonautonomous case, K(t) may depend on time t and the in-
clusion in (2.9) can be strict, i.e., in order to describe the structure of the
global attractor A of a process {U(t, τ)} it is not sufficient to know only the
structure of K. This question will be discussed in Section 2.5.

2.2. On nonuniform global attractors of processes
and the Haraux example.

Following Haraux [72, 73], we define a (nonuniform) global attractor of a
process {U(t, τ)} acting in E. A set P0 is called a (nonuniform) attracting
set of {U(t, τ)} if for any bounded set B ∈ B(E) and fixed τ ∈ R

distE(U(t, τ)B, P0) → 0 as t → +∞, (2.10)

i.e., for any ε > 0 there exists T = T (τ, B, ε) � τ such that

U(t, τ)B ⊆ Oε(P0) ∀ t � T. (2.11)

A process having a compact attracting set is called an asymptotically com-
pact process.

Definition 2.4. A set A0 ⊂ E is called the (nonuniform) global at-
tractor of a process {U(t, τ)} if it is closed in E, is attracting for the process
{U(t, τ)}, and satisfies the property of minimality: A0 belongs to any closed
attracting set of the process.
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Theorem 2.2. If a process {U(t, τ)} is asymptotically compact, then
it has a compact (nonuniform) global attractor A0.

It is obvious that a uniformly asymptotically compact process {U(t, τ)}
is (nonuniformly) asymptotically compact as well and, thereby, A0 ⊆ A.
However, as was pointed out by Haraux, this inclusion can be strict, i.e.,
the uniform global attractor can be larger than the nonuniform one. We
describe the example from [72, 73]. Consider the nonautonomous ordinary
differential equation in R

dtu + a(t)u + u3 = 0 (dt = d/dt) (2.12)

with initial data

u|t=τ = uτ , uτ ∈ R, (2.13)

where

a(t) =

∞∑

n=1

n−2 sin(2n−4t). (2.14)

The function a(t) is almost periodic (see Example 2.1) since it is the uniform
limit of almost periodic (and even quasiperiodic) functions. Equation (2.12)
generates a process {U(t, τ)} in R : U(t, τ)uτ = u(t), t � τ , τ ∈ R, where
u(t) is a solution of the problem (2.12), (2.13) with initial data uτ . We set

A(t) =

t∫

0

a(s)ds =
∞∑

n=1

n2 sin2(n−4t), t ∈ R. (2.15)

We find a (nonuniform) global attractor of the process {U(t, τ)}. From
(2.12) it follows that

dtu
2 = −2a(t)u2 − 2u4 � −2a(t)u2. (2.16)

Therefore,

u2(t) � u2(τ) exp(2A(τ)) exp(−2A(t)) ∀t � τ.

Setting n = [|t|1/4] + 1 in (2.15), we obtain

A(t) � c|t|1/2 ∀ t ∈ R (2.17)

for some c > 0. Hence u(t) → 0 as t → +∞; moreover, U(t, τ)B → 0 as
t → ∞ for each fixed τ ∈ R and any bounded set B ∈ B(R). We conclude
that the process {U(t, τ)} has a (nonuniform) global attractor A0 = {0},
i.e., a single point.

Let us study the uniform global attractor of a process {U(t, τ)}. First
of all, we note that the process is uniformly compact, i.e., it has a compact
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(bounded in R) uniformly absorbing set. Indeed, since a(t) is bounded, we
have

−2a(t)u2 − 2u4 � 2Ru2 − 2u4 � −γu2 + C

for suitable positive R, γ, and C. By (2.16),

dtu
2 � −γu2 + C, u2(t) � u2(τ) exp(−γ(t − τ)) + C/γ.

Hence the set B0 = {|u|2 � 2C/γ} is uniformly absorbing for the process
{U(t, τ)}. The set B0 is compact, and the uniform global attractor A exists
in view of Theorem 2.1. It is clear that {0} = A0 ⊆ A. We claim that
A �= {0}.

It suffices to prove that there exists a nonzero bounded solution ũ(t) of
Equation (2.12) defined for all t ∈ R. Such a solution belongs to the kernel
K of the process {U(t, τ)}, and from (2.9) it follows that

{ ⋃
t∈R

ũ(t)
}
⊆ A.

Hence A is larger than A0 = {0}.
Integrating (2.16), we obtain

dt(u
2e2A(t)) + 2u4e2A(t) = 0, dt(v) + 2v2e−2A(t) = 0,

where v(t) = u2(t)e2A(t). Integrating again, we obtain

1

v(t)
=

1

v(0)
+ 2

t∫

0

e−2A(s)ds.

Note that e−2A(s) ∈ L1(R; R+) due to (2.17). Finally,

ũ(t) = ±
(

e−2A(t)
/( 1

|u0|2
+ 2

t∫

0

e−2A(s)ds
))1/2

, t ∈ R,

is the desired solution of (2.12) if

1

|u0|2
> 2

0∫

−∞

e−2A(s)ds.

The sign of ũ coincides with that of u0. Indeed, ũ satisfies Equation (2.12)
for all t ∈ R and is bounded in R.

Note that for a periodic process the uniform global attractor coincides
with the nonuniform global attractor (see [124, 26] for details). Now, we
present a simple result on periodic processes.

A process {U(t, τ)} is said to be periodic with period p if

U(t + p, τ + p) = U(t, τ) ∀t � τ, τ ∈ R. (2.18)
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For a periodic process {U(t, τ)}, in order to prove that a set P is uniformly
attracting for {U(t, τ)}, it suffices to show the following limit relation in-
stead of (2.3):

sup
τ∈[0,p)

distE(U(τ + h, τ)B, P ) → 0 as h → +∞. (2.19)

Indeed, for arbitrary τ ∈ R we have τ = τ ′+np, where τ ′ ∈ [0, p) and n ∈ Z.
By periodicity, U(h + τ, τ)B = U(h + τ ′ + np, τ ′ + np)B = U(h + τ ′, τ ′)B
and (2.19) implies (2.3).

By the above arguments, the following assertion holds.

Theorem 2.3. If a periodic process {U(t, τ)} is uniformly bounded
and has a compact (nonuniformly) attracting set, then it is uniformly as-
ymptotically compact. In particular, the process {U(t, τ)} has both uniform
and nonuniform global attractors A and A0, and A = A0.

Proof. Let P0 ⋐ E be a compact attracting set of a periodic process
{U(t, τ)} with period p. By Theorem 2.2, the process has a (nonuniform)
global attractor A0.

Consider an arbitrary bounded set B ∈ B(E). Since {U(t, τ)} is uni-
formly bounded, we have

B̃ =
⋃

τ∈[0,p)

U(p, τ)B ∈ B(E).

Since P0 is (nonuniformly) attracting, for τ = p we have

distE(U(t, p)B̃, P0) → 0 as t → +∞. (2.20)

Note that for all τ ∈ [0, p)

U(t, τ)B = U(t, p)U(p, τ)B ⊆ U(t, p)B̃ ∀t � p.

Then from (2.20) it follows that

sup
τ∈[0,p)

distE(U(τ + h, τ)B, P0) � distE(U(t, p)B̃, P0) → 0 as t → +∞,

and the relation (2.19) is proved for the set P0. Therefore, the process
{U(t, τ)} is uniformly asymptotically compact. Repeating the above ar-
gument for A0 instead of P0, we conclude that the set A0 is uniformly
attracting. At the same time, A0 is the minimal uniformly attracting set
since it is minimal (nonuniformly) attracting. Thus, A0 = A is the uniform
global attractor of the periodic process {U(t, τ)}. �
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In this paper, we study mostly uniform global attractors of processes
corresponding to nonautonomous evolution equations.

2.3. Cauchy problem and corresponding process.

We explain how to construct a process corresponding to a nonautonomous
evolution equation of the form

∂tu = A(u, t), t � τ, τ ∈ R, (2.21)

where A(u, t) is a nonlinear operator A(·, t) : E1 → E0 for every t ∈ R, E1

and E0 are Banach spaces, E1 ⊆ E0. We study solutions u(t) for all t � τ.
For t = τ we consider the initial condition

u(τ) = u|t=τ = uτ , uτ ∈ E, (2.22)

where E is a Banach space such that E1 ⊆ E ⊆ E0. We assume that for all
τ ∈ R and uτ ∈ E the Cauchy problem (2.21), (2.22) has a unique solution
u(t) such that u(t) ∈ E for all t � τ. The meaning of the expression “the
function u(t) is a solution of the problem (2.21), (2.22)” should be clarified
for each particular example. As in the case of the solution of the autonomous
equation (1.7), the solutions u(t), τ � t � T, of (2.21) are considered in the
class Fτ,T of functions such that u ∈ L∞(τ, T ; E) and u ∈ Lp(τ, T ; E1).
We assume that A(u, t) ∈ Lq(τ, T ; E0) for some q, 1 < q < ∞, and ∂tu ∈
Lq(τ, T ; E0). The equality (2.21) holds in the space Lq(τ, T ; E0). Thus,
a function u(t) in Fτ,T should satisfy (2.21) in the sense of distributions
in the space D′(]τ, T [; E0) (see [96, 9, 34] for details). To interpret the
initial condition (2.22), we could use embedding theorems (see, for example,
[95, 117]).

We study the following two-parametric family of operators {U(t, τ)},
t � τ , τ ∈ R, generated by the problem (2.21), (2.22) and acting in E in
accordance with the formula

U(t, τ)uτ = u(t), t � τ, τ ∈ R, (2.23)

where u(t) is a solution of the problem (2.21), (2.22) with initial data uτ ∈
E. Since the Cauchy problem (2.21), (2.22) is uniquely solvable, the family
{U(t, τ)} satisfies the properties from Definition 2.1. Thus, {U(t, τ)} is
referred to as the process corresponding to the problem (2.21), (2.22).

Below, we study global attractors of the processes corresponding to
different nonautonomous dissipative evolution equations in mathematical
physics.
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2.4. Time symbols of nonautonomous equations.

Theorem 2.1 is applicable to processes generated by nonautonomous evolu-
tion equations. However, it provides a little information about the structure
of uniform global attractors, and we need to study some extra properties of
processes. For this purpose, the notion of the kernel of a process turns out
to be very useful (see Definition 2.3). Recall that the kernel of Equation
(2.21) is the union of all bounded complete solutions u(t), t ∈ R, of (2.21)
determined on the entire time-axis {t ∈ R}.

For the global attractor A of the nonautonomous equation (2.21) we
always have the inclusion (2.9). However, in the general case, the inclusion
can be strict, i.e., there exist points of the global attractor A that are not
values of bounded complete trajectories of the original equation (2.21) (see
Remark 2.7). Nevertheless, we can show that such points lie on the complete
trajectories of “contiguous” equations. To describe “contiguous” equations,
we introduce the notion of the time symbol of the equation under consider-
ation. Speaking informally, the time symbol reflects the time-dependence of
the right-hand side of the nonautonomous equation under consideration. We
assume that all the terms of Equation (2.21) depending explicitly on time
t can be presented by a function σ(t), t ∈ R, with values in an appropriate
Banach space Ψ. We write Equation (2.21) in the form

∂tu = Aσ(t)(u), t � τ, τ ∈ R. (2.24)

The function σ(t) is called the time symbol of the equation. In applications,
σ(t) consists of the coefficients and terms of the equation depending on time.
For example, for the nonautonomous Navier–Stokes system ∂tu + νLu +
B(u, u) = g(x, t) with time-dependent external force g(x, t) ∈ Cb(R; H) the
time symbol is σ(t) = g(x, t). (This example will be considered in Section
2.6.1 in detail.)

We assume that the symbol σ(t), regarded a function of t, belongs to
the enveloping space

Ξ := {ξ(t), t ∈ R | ξ(t) ∈ Ψ for almost all t ∈ R}

endowed with the Hausdorff topology. In the case of the 2D Navier–Stokes
system, Ψ = H and Ξ = Cb(R; H) can be taken for the enveloped space.
Recall that g(x, t) ∈ Cb(R; H) if

‖g(·, ·)‖Cb(R;H) := sup{‖g(·, t)‖H , t ∈ R} < +∞.
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We assume that the translation group {T (h), h ∈ R} acting by the formula
T (h)ξ(t) = ξ(h + t) is continuous in Ξ. This assumption is satisfied for
Ξ = Cb(R; H).

The symbol of the original equation (2.21) is denoted by σ0(t). We
also consider Equation (2.24) with symbol σh(t) = σ0(t + h) for any h ∈ R

and equations with symbols σ(t) that are the limits of σhn
(t) = σ0(t + hn)

as n → ∞ in Ξ. The resulting family of symbols is the hull H(σ0) of the
original symbol σ0(t) in Ξ.

Definition 2.5. The hull H(σ) of σ(t) in the space Ξ is defined by
the formula

H(σ0) := [{σ(t + h) | h ∈ R}]Ξ, (2.25)

where [·]Ξ denotes the closure in the topological space Ξ.

We will study equations of the form (2.21) and (2.24) whose symbols
σ(t) are translation compact functions in Ξ (see [27, 28, 29, 34]).

Definition 2.6. A function σ(t) ∈ Ξ is called a translation compact
function in Ξ if the hull H(σ) is compact in Ξ.

Consider the main examples of translation compact functions which
will be used in this paper.

Example 2.1. Let Ξ = Cb(R;M), where M is a complete metric
space. Let σ0(s) be an almost periodic function with values in M. By
the Bochner–Amerio criterion, an almost periodic function σ0(s) possesses
the following characteristic property: the set of all translations {σ0(s +
h) = T (h)σ0(s) | h ∈ R} is precompact in Cb(R;M) (see, for example,
[1, 92]). The closure in Cb(R; M) of this set is called the hull H(σ0) of
σ0(s) (see (2.25)). By Definition 2.6, σ0(s) is a translation compact function
in Cb(R;M). If σ0(s) is almost periodic, then any function σ(s) ∈ H(σ0) is
almost periodic. It is obvious that the time translation group {T (h) | h ∈ R}
is continuous in Cb(R;M).

Example 2.2. Let Ξ = L loc
p (R; E), where p � 1 and E is a Banach

space. The space L loc
p (R; E) consists of functions ξ(t), t ∈ R with values in

E that are p-power locally integrable in the Bochner sense, i.e.,

t2∫

t1

‖ξ(t)‖p
Edt < +∞ ∀[t1, t2] ⊂ R.
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We consider the following convergence topology in the space L loc
p (R; E).

By definition, ξn(t) → ξ(t) as n → ∞ in L loc
p (R; E) if

t2∫

t1

‖ξn(t) − ξ(t)‖p
Edt → 0 as n → ∞

for every interval [t1, t2] ⊂ R. The space L loc
p (R; E) is countably normable,

metrizable, and complete.

Consider translation compact functions in the space L loc
p (R; E). The

following criterion holds (see, for example, [34]):

σ0(t) is a translation compact function in L loc
p (R; E) if and only if

(i) for any h � 0 the set

{
t+h∫
t

σ0(s)ds | t ∈ R

}
is precompact in E ,

(ii) there exists a positive function β(s) → 0 (s → 0+) such that

t+1∫

t

‖σ0(s) − σ0(s + l)‖p
Eds � β(|l|) ∀t ∈ R.

From this criterion it follows that

sup
t∈R

t+1∫

t

‖σ0(s)‖p
Eds < +∞ ∀ t ∈ R, (2.26)

for any translation compact function in L loc
p (R; E).

It is obvious that {T (h) | h ∈ R} is continuous in L loc
p (R; E).

Example 2.3. Similarly, we can define translation compact functions
in the space C loc(R; E) of continuous functions ξ(t), t ∈ R with values in
E . The space C loc(R; E) is endowed with the local uniform convergence
topology on every interval [t1, t2] ⊂ R (see [34]). By the Arzelá–Ascoli
theorem, we obtain the following criterion (see [34] for details):

σ0(t) is a translation compact function in C loc(R; E) if and only if

(i) the set {σ0(h) | h ∈ R} is precompact in E ,

(ii) σ0(t) is uniformly continuous on R, i.e., there exists a positive
function α(s) → 0 + (s → 0+) such that

‖σ0(t1) − σ0(t2)‖E � α(|t1 − t2|) ∀t1, t2 ∈ R.
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In particular, any translation compact function in C loc(R; E) is bounded in
E . The translation group {T (h) | h ∈ R} is continuous in C loc(R; E).

Example 2.4. Almost periodic functions with values in E , i.e., trans-
lation compact functions in Cb(R; E), are translation compact functions in
C loc(R; E).

Example 2.5. In the class of almost periodic functions, we extract
the subclass of quasiperiodic functions. A function σ0(t) ∈ C(R; E) is said
to be quasiperiodic if

σ0(t) = ϕ(α1t, α2t, . . . , αkt) = ϕ(ᾱt), (2.27)

where the function ϕ(ω̄) = ϕ(ω1, ω2, . . . , ωk) is continuous and 2π-period-
ic with respect to each variable ωi ∈ R : ϕ(ω1, . . . , ωi + 2π, . . . , ωk) =
ϕ(ω1, . . . , ωi, . . . , ωk), i = 1, . . . , k. Denote by Tk = [R mod 2π]k the k-
dimensional torus. Then ϕ ∈ C(Tk; E). We assume that the real numbers
α1, α2, . . . , αk in (2.27) are rationally independent (otherwise, we can re-
duce the number of independent variables ωi in (2.27)). It follows that the
hull of the quasiperiodic function σ0(t) in C(R; E) is the set

{ϕ(ᾱt + ω̄1) | ω̄1 ∈ T
k} = H(σ0), ᾱ = (α1, α2, . . . , αk). (2.28)

Consequently, the set H(σ0) is the continuous image of the k-dimensional
torus Tk. For k = 1 we obtain the periodic function σ0(t + 2π) = σ0(t).

In [34], there are other examples of translation compact functions in
C(R; E) that are not almost periodic or quasiperiodic.

2.5. On the structure of uniform global attractors.

Consider a family of equations of type (2.24) with symbols σ(t) from the
hull H(σ0), where σ0(t) is the symbol of the original equation,

∂tu = Aσ(t)(u), σ ∈ H(σ0), (2.29)

with initial data

u|t=τ = uτ . (2.30)

We assume that σ0(t) is a translation compact function in the topological
space Ξ. For the sake of simplicity, we assume that H(σ0) is a complete
metric space. In the above examples, this assumption was satisfied. Suppose
that for every symbol σ ∈ H(σ0) the Cauchy problem (2.29), (2.30) has a
unique solution for any τ ∈ R and initial condition uτ ∈ E. Thus, we have
the family of processes {Uσ(t, τ)}, σ ∈ H(σ0), acting in the space E.
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The family {Uσ(t, τ)}, σ ∈ H(σ0), is said to be (E × H(σ0), E)–
continuous if for any t and τ, t � τ the mapping (u, σ) �→ Uσ(t, τ)u is
continuous from E ×H(σ0) into E.

Proposition 2.3. If the process {Uσ0(t, τ)} has a compact uniformly
attracting set P and the family {Uσ(t, τ)}, σ ∈ H(σ0), corresponding to
(2.29) is (E ×H(σ0), E)-continuous, then for every σ ∈ H(σ0) the set P is
also uniformly attracting for {Uσ(t, τ)}. Moreover, Aσ ⊆ A = Aσ0 , where
Aσ is the uniform global attractor of the process {Uσ(t, τ)} (the inclusion
Aσ ⊆ Aσ0 can be strict).

The proof can be found in [25, 34].

Remark 2.3. A translation compact function σ0 in Ξ is said to be
recurrent if H(σ) = H(σ0) for every σ ∈ H(σ0). Any almost periodic
function is recurrent. If, in Proposition 2.3, the translation compact symbol
σ0 is recurrent (for example, almost periodic), then Aσ = Aσ0 = A for
every σ ∈ H(σ0). In this case, the uniform global attractor A describes the
limit behavior of solutions of the entire family of Equations (2.29).

The following translation identity holds for the family of processes
corresponding to (2.29):

UT (h)σ(t, τ) = Uσ(t + h, τ + h) ∀h � 0, t � τ, τ ∈ R, (2.31)

where T (h)σ(t) = σ(t+h). This identity directly follows from the uniqueness
of a solution u(t) of the problem (2.29), (2.30). To prove (2.31), we replace
σ(s) in (2.29) with T (h)σ(s) = σ(s + h) and make the change of variable
t + h = t1. The identity (2.31) means that the shift by h of the argument
of the symbol σ(s) in the problem (2.29), (2.30) is equivalent to solving
Equation (2.29) with symbol σ(s) at time t + h with initial data u|t=τ+h =
uτ .

Consider a special case of the symbol σ0(t) of Equation (2.29) such that
the translation semigroup {T (h) | h � 0} maps it into itself: T (h)σ0(t) =
σ0(t + h) ≡ σ0(t) for all h � 0. In other words, σ0(t) is independent of t:
σ0(t) = σ0 for any s ∈ R, where σ0 ∈ Ψ. Then, by (2.31), the corresponding
process {Uσ0(t, τ)} satisfies the equality Uσ0(t, τ) = Uσ0(t + h, τ + h) =
Uσ0(t − τ, 0) for all h � 0, t � τ , τ ∈ R. Thus, the process {Uσ0(t, τ)} is
completely described by the set of one-parameter mappings S(t) = Uσ0(t, 0),
t � 0. It is evident that {S(t)} forms the semigroup corresponding to the
autonomous equation with the constant symbol σ(t) = σ0. Such equations
were treated in Section 1. We conclude that the semigroups generated by
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autonomous evolution equations are special cases of processes generated by
nonautonomous equations.

Having the family of nonautonomous equations (2.29), we consider the
extended phase space E × H(σ0). Using the identity (2.31), we construct
the semigroup {S(h), h � 0} acting in the space E ×H(σ0) by the formula

S(h)(u, σ) = (Uσ(h, 0)u, T (h)σ), h � 0. (2.32)

We prove that the family {S(h)} forms a semigroup in E ×H(σ0). For this
purpose, it suffices to verify the semigroup relation

S(h1 + h2)(u, σ) = (Uσ(h1 + h2, 0)u, T (h1 + h2)σ)

= (Uσ(h1 + h2, h2)Uσ(h2, 0)u, T (h1)T (h2)σ)

= (UT (h2)σ(h1, 0)Uσ(h2, 0)u, T (h1)(T (h2)σ))

= S(h1)(Uσ(h2, 0)u, T (h2)σ) = S(h1)S(h2)(u, σ).

Here, the property 2 of Definition 2.1 and the translation identity (2.31)
were used. It is also obvious that S(0) = Id.

We denote by Π1 and Π2 the projections operators acting from E ×
H(σ0) onto E and H(σ0) by the formula

Π1(u, σ) = u, Π2(u, σ) = σ.

We now formulate the main theorem about the structure of the global
attractor of Equation (2.21) with translation compact symbol σ0(t). Denote
by {Uσ0(t, τ)} the corresponding original process with symbol σ0.

Theorem 2.4. Suppose that σ0(t) is a translation compact function in
Ξ. Let the process {Uσ0(t, τ)} be asymptotically compact, and let the corre-
sponding family {Uσ(t, τ)}, σ ∈ H(σ0), be (E×H(σ0), E)-continuous. Then
the semigroup {S(h)} acting in E ×H(σ0) by formula (2.32) has the global
attractor A, S(h)A = A for all h � 0. Moreover, the following assertions
hold:

(i) Π2A = H(σ0),

(ii) Π1A = A is the global attractor of the process {Uσ0(t, τ)},
(iii) the global attractor A admits the representation

A =
⋃

σ∈H(σ0)

Kσ(0) =
⋃

σ∈H(σ0)

Kσ(t), (2.33)

where Kσ is the kernel of the process {Uσ(t, τ)} with symbol σ ∈ H(σ0), t
is any fixed number, the kernel Kσ is nonempty for every σ ∈ H(σ0).
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A detailed proof of Theorem 2.4 can be found in [25, 34]. The exis-
tence of the global attractor A follows from Theorem 1.1. To prove Theorem
1.1, we need to check whether the conditions of asymptotic compactness and
continuity hold for the semigroup {S(h)} acting in E × H(σ0) by formula
(2.32). Let P be a compact uniformly (with respect to σ ∈ H(σ0)) attract-
ing set for the family of processes {Uσ(t, τ)}, σ ∈ H(σ0). It is obvious that
the set P ×H(σ0) is a compact (in E × Ξ) attracting set for the extended
semigroup {S(h), h � 0}. It is clear that the semigroup {S(h)} is continu-
ous since the family {Uσ(t, τ)}, σ ∈ H(σ0) is (E×H(σ0), E)-continuous and
the translation semigroup {T (h)} is continuous by assumption. Therefore,
by Theorem 1.1, the set

A = ω(P ×H(σ0)) =
⋂

h�0

[ ⋃

η�h

S(η)(P ×H(σ0))
]

E×Ξ
(2.34)

is the global attractor of the semigroup {S(h)} and the first assertion of
Theorem 2.4 is proved.

The remaining assertions of Theorem 2.4 are proved (see [34] for de-
tails) with the help of the representation (see (1.6) in Theorem 1.2)

A = {γ(0) | γ(·) is a complete bounded trajectory of {S(h)}}. (2.35)

Remark 2.4. Using (2.33), it is easy to show that A = ω(P ), where
P is an arbitrary compact uniformly attracting set of the process {Uσ0(t, τ)}
(see Remark 2.1).

Remark 2.5. If the time symbol σ0(t) is periodic with period p,
σ0(t+p) = σ0(t), then the corresponding process {Uσ0(t, τ)} is also periodic
with period p. In this case, the uniform and nonuniform attractors coincide,
A0 = A (see Theorem 2.3 and [124, 26]). Moreover, the hull H(σ0) =
{σ0(t + h) | h ∈ [0, p)} and formula (2.33) can be written in a simpler form
A =

⋃
h∈[0,p)

Kσ0(h), where Kσ0 is the kernel of the original periodic process

{Uσ0(t, τ)} (see (2.9)).

2.6. Uniform global attractors for nonautonomous
equations.

In this section, we apply the general theory of uniform global attractors of
processes corresponding to abstract nonautonomous equations (2.21) and
(2.24) to some important evolution equation in mathematical physics.
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2.6.1. 2D Navier–Stokes system with time-dependent force. We
consider the nonautonomous 2D Navier–Stokes system with time-dependent
external force

∂tu = −νLu − B(u, u) + g0(x, t), (∇, u) = 0,

u|∂Ω = 0, x = (x1, x2) ∈ Ω ⋐ R
2.

(2.36)

We use the notation from Section 1.3.1, where the autonomous 2D Navier–
Stokes system (1.11) is considered with time-independent external force
g0(x).

We assume that g0(·, t) ∈ H for almost every t ∈ R and g0 has finite
norm in the space Lb

2(R; H), i.e.,

‖g0‖2
Lb

2(R;H) = ‖g0‖2
Lb

2
:= sup

t∈R

t+1∫

t

|g0(·, s)|2ds < +∞. (2.37)

We consider (2.36) with initial conditions

u|t=τ = uτ , uτ ∈ H, τ ∈ R. (2.38)

The problem (2.36), (2.38) has a unique solution u(t) ∈ C(Rτ ; H) ∩
Lb

2(Rτ ; V ) such that ∂tu ∈ Lb
2(Rτ ; V ′), Rτ = [τ, +∞) (see [96, 87, 119, 9,

34]). The solution u(t) in this space satisfies Equation (2.36) in the sense
of distributions in the space D′(Rτ ; V ′). Moreover, the following estimates
hold:

|u(t)|2 � |u(τ)|2e−νλ(t−τ) + λ−1(1 + (νλ)−1)‖g0‖2
Lb

2
, (2.39)

|u(t)|2 + ν

t∫

τ

‖u(s)‖2ds � |u(τ)|2 + (νλ)−1

t∫

τ

|g0(s)|2ds, (2.40)

(t − τ)‖u(t)‖2 � C

(
t − τ, |u(τ)|2,

t∫

τ

|g0(s)|2ds

)
(2.41)

where λ = λ1 is the first eigenvalue of the Stokes operator L and C(z, R, R1)
is a monotone continuous functions of z = t − τ , R, R1 (see [34]).

Consequently, the problem (2.36), (2.38) generates a process {Ug0(t, τ)}
acting in H by the formula Ug0(t, τ)uτ = u(t), where u(t) is a solution of
(2.36), (2.38).

From (2.39) it follows that the process {Ug0(t, τ)} has the uniformly
absorbing set B0 = {u ∈ H | |u| � 2R0}, R2

0 = (νλ)−1(1 + (νλ)−1)‖g0‖2
Lb

2
,
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By the inequality (2.41), the set

B1 =
⋃

τ∈R

Ug0(τ + 1, τ)B0 (2.42)

is also uniformly absorbing. Moreover, B1 is bounded in V and, conse-
quently, is compact in H (see [96, 34]). Thus, the process {Ug0(t, τ)} is
uniformly compact in H. By Theorem 2.1, we conclude that the process
{Ug0(t, τ)} has the global attractor A and the set A is bounded in V. Using
Remark 2.1, we observe that the global attractor A can be constructed by
the formula

A = ω(B0) =
⋂

h�0

[ ⋃

t−τ�h

Ug0(t, τ)B0

]

H
.

We now assume that g0(·, t) =: g0(t) is a translation compact function
in L loc

2 (R; H). The corresponding necessary and sufficient conditions are
given in Section 2.4. We indicate another sufficient condition: g0(t) is a
translation compact function in L loc

2 (R; H) if g0 ∈ Lb
2(R; V ) and ∂tg0 ∈

Lb
2(R; V ′), i.e.,

‖g0‖2
Lb

2(R;V ) := sup
t∈R

t+1∫

t

‖g0(·, s)‖2ds � M1 < +∞,

‖∂tg0‖2
Lb

2(R;V ′) := sup
t∈R

t+1∫

t

‖∂tg0(·, s)‖2
V ′ds � M−1 < +∞

(see [34]). We denote by H(g0) the hull of g0 in the space L loc
2 (R; H). It is

clear that

‖g‖2
Lb

2
� ‖g0‖2

Lb
2

� M (2.43)

for every g ∈ H(g0).

The symbol of Equation (2.36) is g0(t) = σ0(t). For every symbol
g ∈ H(g0) the corresponding problem (2.36), (2.38) (with external force
g instead of g0) is uniquely solvable and the solution ug(t) satisfies the
inequalities (2.39)–(2.41). Hence the family of processes {Ug(t, τ)}, g ∈
H(g0), acting on H is defined. As is proved in [34], this family is (H ×
H(g0))-continuous. Therefore, from Theorem 2.4 it follows that

A =
⋃

g∈H(g0)

Kg(0), (2.44)
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where Kg is the kernel of the process {Ug(t, τ)} consisting of all the bounded
complete solutions ug(t), t ∈ R, of the 2D Navier–Stokes system with ex-
ternal force g(t). The kernel Kg is nonempty for every g ∈ H(g0). Note
that

A ⊂ B0 = BR0(0), R2
0 = (νλ)−1(1 + (νλ)−1)‖g0‖2

Lb
2
, (2.45)

A ⊂ B1, B1 = {u ∈ V | ‖v‖ � R′}, (2.46)

where R′ depends on ν, λ, and ‖g0‖2
Lb

2
. In particular, from (2.44) it follows

that

‖u(t)‖ � R′ ∀t ∈ R (2.47)

for every function ug(·) ∈ Kg, g ∈ H(g0).

Consider an important special case of the system (2.36). As in the au-
tonomous case, we introduce the Grashof number G for the nonautonomous
2D Navier–Stokes system by the formula

G :=
‖g0‖Lb

2

λν2
.

Proposition 2.4. Suppose that G satisfies the inequality

G < 1/c2
0, (2.48)

where the constant c0 is taken from the inequality (1.14) (see (1.19)). Then
for every g ∈ H(g0) the Navier–Stokes system

∂tu = −νLu − B(u, u) + g(t) (2.49)

has a unique solution zg(t), t ∈ R, bounded in H, i.e., the kernel Kg consists
of a single trajectory zg(t). This solution zg(t) is exponentially stable, i.e.,
for every solution ug(t) of (2.49)

|ug(t) − zg(t)| � C0|uτ − zg(τ)|e−β(t−τ) ∀t � τ, (2.50)

where ug(t) = Ug(t, τ)uτ , and the constants C0, β are independent of uτ

and τ .

Proof. By (2.44), there exists at least one bounded solution zg(t) :=
z(t). Let ug(t) := u(t) be an arbitrary solution of (2.49). The function
w(t) = u(t) − z(t) satisfies the equation

∂tw + νLw + B(w, w + z) + B(z, w) = 0.

Multiplying this equation by w and using the identities (B(z, w), w) =
(B(w, w), w) = 0 (see (1.13)) and the inequality (1.14), we find

∂t|w|2+ 2ν‖w‖2= 2(B(w, z), w) � 2c2
0|w|‖w‖‖z‖ � ν‖w‖2+ c4

0ν
−1|w|2‖z‖2.
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Since λ|w|2 � ‖w‖2, we have

∂t|w|2 + νλ|w|2 � ∂t|w|2 + ν‖w‖2 � c4
0ν

−1|w|2‖z‖2. (2.51)

Consequently,

∂t|w|2 + (νλ − c4
0ν

−1‖z(t)‖2)|w|2 � 0. (2.52)

Multiplying this inequality by exp
{ t∫

τ

(νλ − c4
0ν

−1‖z(s)‖2)ds
}

and inte-

grating over [τ, t], we obtain

|w(t)|2 � |w(τ)|2 exp
{ t∫

τ

(−νλ + c4
0ν

−1‖z(s)‖2)ds
}

= |w(τ)|2 exp
{
− νλ(t − τ) + c4

0ν
−1

t∫

τ

‖z(s)‖2ds
}

. (2.53)

By (2.40), we have

t∫

τ

‖z(s)‖2ds � ν−1|z(τ)|2 + (ν2λ)−1

t∫

τ

|g(s)|2ds

� ν−1|z(τ)|2 + (ν2λ)−1(t − τ + 1)‖g‖2
Lb

2

� ν−1|z(τ)|2 + (ν2λ)−1(t − τ + 1)‖g0‖2
Lb

2
.

Since z(τ) ∈ AH(g0), from (2.45) it follows that

|z(τ)|2 � (νλ)−1(1 + (νλ)−1)‖g0‖2
Lb

2
= R2

0.

Hence
t∫

τ

‖z(s)‖2ds � (ν−1R2
0 + (ν2λ)−1‖g0‖2

Lb
2
) + (ν2λ)−1(t − τ)‖g0‖2

Lb
2

= R2
1 + (ν2λ)−1(t − τ)‖g0‖2

Lb
2
,

where R2
1 = ν−1R2

0 +(ν2λ)−1‖g0‖2
Lb

2
. Substituting this estimate into (2.53),

we obtain the inequality

|w(t)|2 � |w(τ)|2C0 exp(−β(t − τ)),

where β = νλ − c4
0(ν

3λ)−1‖g0‖2
Lb

2
and C0 = exp(c4

0ν
−1R2

1). Note that

ν−4λ−2‖g0‖2
Lb

2
= G2 < 1/c4

0
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and, consequently, β = νλc4
0(c

−4
0 − ν−4λ−2‖g0‖2

Lb
2
) > 0. This implies

|w(t)|2 = |u(t) − z(t)|2 � |u(τ) − z(τ)|2C0e
−β(t−τ).

The inequality (2.50) is proved.

Now, we show that such a function z(t) is unique. If there are two
bounded complete solutions z1(t) and z2(t), t ∈ R, then

|z1(t) − z2(t)|2 � |z1(τ) − z2(τ)|2C0e
−β(t−τ) � C1C0e

−β(t−τ)

in view of (2.50). Fixing t and letting τ → −∞, we obtain |z1(t)−z2(t)|2 = 0
for all t ∈ R. �

The properties (2.50) and (2.44) imply that the set

A = [{zg0(t) | t ∈ R}]H =
⋃

g∈H(g0)

{zg(0)} (2.54)

is the global attractor of (2.36) under the condition (2.48).

Remark 2.6. In [16] it is shown that c2
0 < (8/(27π))1/2 (see also

Remark 1.2). Therefore, formula (2.54) holds for G < 3.2562.

Remark 2.7. It is easy to construct examples of functions g0(x, t)
satisfying (2.48) such that the set {zg0(t) | t ∈ R} is not closed in H.
Nevertheless, the set A is always closed, and to describe A, we need to
consider all the functions zg(t) in the kernels of equations with external
forces g ∈ H(g0).

Remark 2.8. The inequality (2.50) implies that, under the condition
(2.48), the global attractor A of the system (2.36) is exponential, i.e., A
attracts bounded sets of initial data with exponential rate.

Consider some special cases of the function g ∈ H(g0).

Corollary 2.1. Let g(t) in (2.49) be periodic with period p. Then zg(t)
has period p.

Proof. Consider the corresponding bounded complete trajectory zg(t).
It is obvious that zg(t + p) is a bounded complete trajectory of (2.49) with
external force g(t+p) ≡ g(t). Therefore, belongs to the kernel Kg consisting
of the single trajectory zg(t). Hence zg(t + p) ≡ zg(t). �

Corollary 2.2. If g(t) ∈ H(g0) is almost periodic, then zg(t) is also
almost periodic.
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Proof. Consider the function w(t) = z(t)−z(t+p), where z(t) := zg(t)
and p is an arbitrary fixed number. As in the case of (2.52), we obtain the
inequality

∂t|w|2 + (νλ − c4
0ν

−1‖z(t)‖2)|w|2 � 2|w| · |g(t) − g(t + p)|,

which implies

∂t|w|2 + (νλ − c4
0ν

−1‖z(t)‖2 − δ)|w|2 � δ−1|g(t) − g(t + p)|2, (2.55)

where δ is a fixed positive number which will be specified later. From the
inequality (2.40) it follows that

ν

t∫

τ

‖z(s)‖2ds � |z(τ)|2 + (νλ)−1

t∫

τ

|g(s)|2ds

� |z(τ)|2 + (νλ)−1(t − τ + 1)‖g‖2
Lb

2

� |z(τ)|2 + (νλ)−1(t − τ + 1)‖g0‖2
Lb

2
. (2.56)

Since z(τ) ∈ A, from (2.45) it follows that

|z(τ)|2 � (νλ)−1(1 + (νλ)−1)‖g0‖2
Lb

2
= R2

0.

By (2.56), we have

t∫

τ

‖z(s)‖2ds � (ν−1R2
0 + (ν2λ)−1‖g0‖2

Lb
2
) + (ν2λ)−1(t − τ)‖g0‖2

Lb
2

= R2
1 + (ν2λ)−1(t − τ)‖g0‖2

Lb
2
, (2.57)

where R2
1 = ν−1R2

0 + (ν2λ)−1‖g0‖2
Lb

2
. We set α(t) = νλ − c4

0ν
−1‖z(t)‖2 − δ.

Multiplying (2.55) by exp
{ t∫

τ

α(s)ds
}

and integrating over [τ, t], we find

|w(t)|2 � |w(τ)|2e
−

t

τ

α(s)ds
+

1

δ

t∫

τ

|g(θ) − g(θ + p)|2e
−

t

θ

α(s)ds

dθ. (2.58)
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Using (2.57), we find

−

t∫

θ

α(s)ds � c4
0ν

−3λ−1‖g0‖2
Lb

2
(t − θ) − (νλ − δ)(t − θ) + c4

0ν
−1R2

1

= −(νλ − c4
0ν

−3λ−1‖g0‖2
Lb

2
− δ)(t − θ) + R2

2

= −(β − δ)(t − θ) + R2
2, (2.59)

where R2
2 = c4

0ν
−1R2

1 and β = νλ − c4
0ν

−3λ−1‖g0‖2
Lb

2
. We note that

ν−4λ−2‖g0‖2
Lb

2
= G2 < c−4

0

(see (2.48)). Therefore,

β = νλ − c4
0ν

−3λ−1‖g0‖2
Lb

2
> 0.

We set δ = β/2. Then (2.58) implies that

|w(t)|2 � |w(τ)|2eR2
2e−β(t−τ)/2 +

2

β
eR2

2

t∫

τ

|g(θ) − g(θ + p)|2e−β(t−θ)/2dθ.

(2.60)

Let p be an ε-period of g, i.e., |g(θ)− g(θ + p)| � ε for all θ ∈ R. By (2.60),
we have

|w(t)|2 � |w(τ)|2C2e
−β(t−τ)/2 + C2

2

β
ε2

t∫

τ

e−β(t−θ)/2dθ

� |w(τ)|2C2e
−β(t−τ)/2 + C2((2ε)/β)2(1 − e−β(t−τ)/2)

� |w(τ)|2C2e
−β(t−τ)/2 + C2((2ε)/β)2, (2.61)

where C2 = eR2
2 . Note that |w(τ)| � C′ for all τ ∈ R. Using (2.61) and

letting τ → −∞, we obtain the inequality

|w(t)| = |z(t) − z(t + p)| � ε
2
√

C2

β
. (2.62)

Hence p is an ε
2
√

C2

β
-period of the function z(t). Hence z(t) is almost

periodic. �

Consider the case, where g0(t) is quasiperiodic, i.e.,

g0(x, t) = ϕ(x, α1t, . . . , αkt) = ϕ(x, ᾱt), (2.63)
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ϕ(·, ω̄) ∈ C Lip(Tk; H), ω̄ = (ω1, . . . , ωk), and real numbers (α1, . . . , αk) = ᾱ
are rationally independent (see Example 2.5).

Proposition 2.5. Let the condition (2.48) hold, and let the func-
tion g0(t) be quasiperiodic. Then the corresponding function z0(t) = zg0(t)
(unique by Theorem 2.4) is also quasiperiodic, i.e., there exists a function
Φ(x, ω̄) ∈ C Lip(Tk; H) such that z0(x, t) = Φ(x, α1t, . . . , αkt) and the fre-
quencies (α1, . . . , αk) are the same as those for the function g0(x, t).

Proof. Consider the external force gω̄(x, t) = ϕ(x, ᾱt + ω̄), where ω̄ ∈
Tk. It is obvious that gω̄ ∈ H(g0) (see (2.28)). By (2.48), with each such an
external force gω̄ we can associate a unique bounded complete trajectory
zω̄(x, t) of the Navier–Stokes equation with external force gω̄(x, t) which
satisfies (2.50). We set

Φ(x, ω̄) = zω̄(x, 0) (2.64)

and prove that Φ is the desired function. First of all, we note that

zω̄(x, t + h) = zᾱh+ω̄(x, t) (2.65)

because of the uniqueness of the bounded complete trajectory zᾱh+ω̄(x, t)
corresponding to gᾱh+ω̄(x, t). It is easy to see that the function zω̄(x, t + h)
satisfies the Navier–Stokes system with external force ϕ(x, ᾱ(t + h) + ω) =
gᾱh+ω̄(x, t). By (2.64), we conclude that

zω̄(x, h) = Φ(x, ᾱh + ω̄),

i.e., zω̄(x, t) = Φ(x, ᾱt + ω̄) for all t ∈ R.

We show that Φ(x, ω̄) = Φ(x, ω1, . . . , ωk) has period 2π with respect
to each variable ωi. This property follows from the uniqueness of bounded
complete trajectories because

Φ(x, ω̄ + 2πēi) = zω̄+2πēi(x, 0) = zω̄(x, 0) = Φ(x, ω̄),

where {ēi, i = 1, . . . , k} is the standard basis for Rk. It remains to verify
the Lipschitz condition with respect to ω̄ ∈ Tk for the function Φ. We set
w(t) = zω̄1(t) − zω̄2(t). As in the case of (2.60), we prove the inequality

|w(t)|2 � |w(τ)|2C2e
−β(t−τ)/2 +

2

β
C2

t∫

τ

|gω̄1(θ) − gω̄2(θ)|2e−β(t−θ)/2dθ.

(2.66)
The function ϕ satisfies the inequality

|ϕ(ω̄1) − ϕ(ω̄2)| � κ|ω̄1 − ω̄2| ∀ ω̄1, ω̄2 ∈ T
k.
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Therefore,

|gω̄1(θ) − gω̄2(θ)| � κ|ω̄1 − ω̄2|. (2.67)

From (2.66) and (2.67), as in the case of (2.61) and (2.62), we find

|w(t)| = |zω̄1(t) − zω̄2(t)| � κ
2
√

C2

β
|ω̄1 − ω̄2|.

Finally, by (2.64), we have

|Φ(·, ω̄1) − Φ(·, ω̄2)| = |zω̄1(0) − zω̄2(0)| � κ
2
√

C2

β
|ω̄1 − ω̄2|, (2.68)

i.e., Φ(x, ω̄) ∈ C Lip(Tk; H). �

Corollary 2.3. Under the assumptions of Theorem 2.5, the global
attractor A of the Navier–Stokes system is the Lipschitz continuous image
of the k-dimensional torus:

A = Φ(Tk) (2.69)

and the set A attracts solutions of the equation with exponential rate (see
(2.50)).

Recall that Φ(·, ω̄) = Φ(·, ᾱt + ω̄)|t=0 = zω̄(x, t)|t=0, ω̄ ∈ T
k.

Remark 2.9. By (2.69), the uniform global attractor A of the Navier–
Stokes system with quasiperiodic external force g0 satisfying (2.48) and
(2.63) is finite-dimensional, and dF (A) � k, where dF (A) is the fractal
dimension of A (see Section 1.4.1). It is easy to construct examples of ex-
ternal forces satisfying (2.48) and (2.63) such that dF (A) = k (see, for ex-
ample, [25]). Thus, the dimension of global attractors A of nonautonomous
Navier–Stokes systems may grow to infinity as k → ∞, while the Grashof
numbers (or Reynolds numbers) remain bounded. Moreover, there are al-
most periodic external forces such that dF (A) = ∞ (see Section 2.7). Such
phenomena do not occur in the autonomous case, where the dimension of
the global attractor is always less than the multiple of the Grashof number
(see Theorem 1.6 and (1.57)). In Section 3, we will consider the Kolmogorov
ε-entropy and the fractal dimension of uniform global attractors of nonau-
tonomous equations in detail.

2.6.2. Nonautonomous damped wave equations. Consider the non-
autonomous wave equation with damping

∂2
t u + γ∂tu = ∆u − f0(u, t) + g0(x, t), u|∂Ω = 0, x ∈ Ω ⋐ R

n, (2.70)
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where γ∂tu is the dissipation term (γ > 0). The autonomous case was
considered in Section 1.3.2. We assume that f0(v, t) ∈ C1(R × R; R) and

F0(v, t) � −mv2 − Cm, F0(v, t) :=

v∫

0

f0(w, t)dw, (2.71)

f0(v, t)v − γ1F0(v, t) + mv2 � −Cm ∀ (v, t) ∈ R × R, (2.72)

where m > 0 is sufficiently small and γ1 > 0.

Assume that ρ is a positive number such that ρ < 2/(n− 2) for n � 3
and is arbitrarily large for n = 1, 2. Let

|∂vf0(v, t)| � C0(1 + |v|ρ), |∂tf0(v, t)| � C0(1 + |v|ρ+1), (2.73)

∂tF0(v, t) � δ2F0(v, t) + C1 ∀ (v, t) ∈ R × R, (2.74)

where δ is sufficiently small.

Remark 2.10. Let f0(v, t) = f(v)ϕ(t), where, for example, f(v) =
|v|ρv or f(v) = R + β sin(v), |β| < R, and ϕ(s) is a positive bounded
continuous function such that ϕ′(t) � δ2ϕ(t) for all t ∈ R. Then f0(v, s)
satisfies (2.71)–(2.74).

From (2.73) it follows that

|f0(v, t)| � C′
0(1 + |v|ρ+1), |F0(v, s)| � C′

0(1 + |v|ρ+2). (2.75)

Assume that g0 ∈ Lb
2(R; L2(Ω)).

The initial conditions are posed at t = τ :

u|t=τ = uτ (x), ∂tu|t=τ = pτ (x), τ ∈ R. (2.76)

Proposition 2.6. If uτ ∈ H1
0 (Ω) and pτ ∈ L2(Ω), then the problem

(2.70), (2.76) has a unique solution u(t) ∈ C(Rτ ; H1
0 (Ω)) such that ∂tu(t) ∈

C(Rτ ; L2(Ω)) and ∂2
t u(t) ∈ L loc

2 (Rτ ; H−1(Ω)).

The proof can be found in [119, 68, 9, 34].

We set y(t) = (u(t), ∂tu(t)) = (u(t), p(t)) and yτ = (uτ , pτ ) = y(τ)
for brevity. Denote by E the space of vector-valued functions y(x) =
(u(x), p(x)) with finite energy norm

‖y‖2
E = ‖(u, p)‖2

E = |∇u|2 + |p|2

in the space E = H1
0 (Ω) × L2(Ω). Recall that | · | denotes the norm in

L2(Ω). By Proposition 2.6, y(t) ∈ E for all t � 0.
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The problem (2.70), (2.76) is equivalent to the system
{

∂tu = p
∂tu = −γp + ∆u − f0(u, t) + g0(x, t),

{
u|t=τ = uτ

p|t=τ = pτ ,

which can be rewritten in the operator form

∂ty = Aσ0(t)(y), y|t=τ = yτ , (2.77)

for an appropriate operator Aσ0(t)( · ), where σ0(t) = (f0(v, t), g0(x, t)) is
the symbol of Equation (2.77) (see Section 2.4). If yτ ∈ E then, by Propo-
sition 2.6, the problem (2.77) has a unique solution y(t) ∈ Cb(Rτ ; E). This
implies that the process {Uσ0(t, τ)} given by the formula Uσ0(t, τ)yτ = y(t)
is defined in E.

Proposition 2.7. The process {Uσ0(t, τ)} corresponding to the prob-
lem (2.77) is uniformly bounded, and the following estimate holds:

‖y(t)‖2
E � C1‖yτ‖ρ+2

E exp(−β(t − τ)) + C2, β > 0, (2.78)

where y(t) = Uσ0(t, τ)yτ and the constants C1, C2 are independent of yτ .

The proof can be found in [34].

By Proposition 2.7, the process {Uσ0(t, τ)} has a bounded (in E) uni-
formly absorbing set B0 = {y = (u, p) | ‖y‖2

E � 2C2}, i.e., Uσ0(t, τ)B ⊆ B0,
t− τ � h(B), for every B ∈ B(E). The following result is more complicated
(see the proof in [34]).

Proposition 2.8. The process {Uσ0(t, τ)} corresponding to the prob-
lem (2.77) is uniformly asymptotically compact in E.

By Theorem 2.1 and Proposition 2.8, the process {Uσ0(t, τ)} has the
global attractor A, and the set A is compact in E.

Now, we introduce the enveloped space Ξ for the symbol σ0(t) =
(f0(v, t), g0(x, t)) of Equation (2.77). Suppose that g0(x, t) is a translation
compact function in L loc

2 (R; L2(Ω)), the function f0(v, t) satisfies (2.71)–
(2.74), and (f0(v, t), ∂tf0(v, t)) is a translation compact function in C(R;M).
Here, M is the space of functions {(ψ(v), ψ1(v)), v ∈ R | (ψ, ψ1) ∈ C(R; R2)}
endowed with the norm

‖(ψ, ψ1)‖M = sup
v∈R

{ |ψ(v)| + |ψ1(v)|
|v|ρ+1 + 1

+
|ψ′(v)|
|v|ρ + 1

}
. (2.79)

It is obvious that M is a Banach space and σ0(t) = (f0(v, t), g0(x, t)) is a
translation compact function in Ξ = C(RM) × L loc

2 (R; H).
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Consider the hull H(σ0) of the symbol σ0 in the space Ξ. It is easy
to show that for any σ(t) = (f(v, t), g(x, t)) ∈ H(σ0), the function f(v, t)
satisfies the inequalities (2.71)–(2.74) with the same constants as those for
f0(v, t). Thus, the problem (2.77) is well posed for all σ ∈ H(σ0) and
generates a family of processes {Uσ(t, τ)}, σ ∈ H(σ0), acting in E. The
following assertion is proved in [34].

Proposition 2.9. The family of processes {Uσ(t, τ)}, σ ∈ H(σ0),
corresponding to the problem (2.77) is (E ×H(σ0), E)-continuous.

Using Theorem 2.4, we obtain the following assertion.

Theorem 2.5. If σ0(t) = (f0(v, t), g0(x, t)) is a translation compact
function in Ξ = C(R;M) × L loc

2 (R; L2(Ω)), then the process {Uσ0(t, τ)}
corresponding to the problem (2.77) has the uniform global attractor

A =
⋃

σ∈H(σ0)

Kσ(0),

where Kσ is the kernel of the process {Uσ(t, τ)} with symbol σ ∈ H(σ0). The
kernel Kσ is nonempty for all σ ∈ H(σ0); moreover,

A = ω(B0) =
⋂

h�0

[ ⋃

t−τ�h

U(t, τ)B0

]

E
.

We consider a special case of (2.70): the sine-Gordon type equation
with dissipation

∂2
t u + γ∂tu = ∆u − f(u) + g0(x, t), u|∂Ω = 0, x ∈ Ω, (2.80)

where Ω ⋐ Rn, γ > 0, f ∈ C(R), g0(·, t) ∈ L loc
2 (R; L2(Ω)). Assume that

f(u) satisfies the inequalities

|f(v)| � C ∀v ∈ R, (2.81)

|f(v1) − f(v2)| � K|v1 − v2| ∀v1, v2 ∈ R. (2.82)

Remark 2.11. For f(u) = K sin(u) Equation (2.80) is the sine-
Gordon equation with dissipation (see [119]).

We assume that the external force g(x, t) satisfies the condition

‖g0‖2
Lb

2
= sup

t∈R

t+1∫

t

‖g0(s)‖2
L2(Ω)ds < +∞. (2.83)
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As above, we consider the Cauchy problem for Equation (2.80) with initial
conditions

u|t=τ = uτ ∈ H1
0 (Ω), ∂tu|t=τ = pτ ∈ L2(Ω). (2.84)

As in Proposition 2.6, we prove that for any uτ (x) ∈ H1
0 (Ω) and pτ (x) ∈

L2(Ω) the problem (2.80), (2.84) has a unique solution u(t) ∈ C(Rτ ; H1
0 (Ω))

such that ∂tu(t) ∈ C(Rτ ; L2(Ω)) and ∂2
t u(t) ∈ L loc

2 (Rτ ; H−1(Ω)) (see, for
example, [119, 68, 9, 34]). Denoting y(t) = (u(t), p(t)) = (u(t), ∂tu(t)) and
yτ = (uτ , pτ ), we see that y(t) ∈ C(Rτ ; E), y(τ) = yτ . Then the problem
(2.80), (2.84) has the form of an evolution equation

{
∂tu = p
∂tp = −γp + ∆u − f(u) + g0(x, t),

,

{
u|t=τ = uτ ,
p|t=τ = pτ

(2.85)

(see (2.77)). The time symbol of this system is a one-component function
σ0(t) = g0(·, t) with values in L2(Ω). Since (2.85) has a unique solution, it
defines via y(t) = Ug0(t, τ)yτ a process {Ug0(t, τ)} acting in E. Propositions
2.7, 2.8, and 2.9 hold for the process {Ug0(t, τ)} with ρ = 0. Consider the
uniform global attractor A of this process.

Proposition 2.10. Under the conditions (2.81), (2.82), (2.83), the
problem (2.85) has a global attractor A, and the set A is compact in E.

We refer to [34, 25, 36]. We note that the process {Ug0(t, τ)} is not
uniformly compact, but only uniformly asymptotically compact.

For studying the structure of the global attractor A, we assume that
g0(x, t) is a translation compact function in L loc

2 (R; L2(Ω)). Consider the
hull H(g0). For any symbol g ∈ H(g0) the problem (2.85) with g instead of
g0 generates the process {Ug(t, τ)} in E. As was proved in [34], the family
of processes {Ug(t, τ)}, g ∈ H(g0), is (E × H(g0), E)-continuous. Using
Theorem 2.4, we obtain the following assertion.

Proposition 2.11. Let g0(x, t) be a translation compact function in
L loc

2 (R; L2(Ω)). Then the global attractor A of the process {Ug0(t, τ)} can
be represented as

A =
⋃

g∈H(g0)

Kg(0), (2.86)

where Kg is the kernel of Equation (2.85) with symbol g ∈ H(g0). The kernel
Kg is nonempty for every g.

We now specify the case, where the global attractor A has a simple
structure and is exponentially attracting. We denote by λ the first eigen-
value of the Laplacian on H1

0 (Ω). We have the following
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Theorem 2.6. Let the Lipschitz constant K in (2.82) satisfy the in-
equality

K < λ. (2.87)

and let the dissipation rate γ in (2.80) satisfy the condition

γ2 > γ2
0 := 2(λ −

√
λ2 − K2). (2.88)

Then for every g ∈ H(g0) Equation (2.85) with external force g has a unique
bounded (in E) solution z(t) = (w(t), ∂tw(t)) for all t ∈ R. Moreover, for
any solution y(t) = Ug(t, τ)yτ of Equation (2.85), the following inequality
holds:

‖y(t) − z(t)‖E � C‖yτ − z(τ)‖Ee−β(t−τ), (2.89)

where C > 0 and β > 0 are independent of yτ .

Proof. We repeat the arguments of [36]. The relations below can be
justified with the help of the Galerkin approximation method (see [96, 119,
9]). Let u1(x, t) and u2(x, t) be two solutions of (2.80) with external force
g ∈ H(g0). Then the difference w(x, t) := u1(x, t) − u2(x, t) is a solution of
the problem

∂2
t w + γ∂tw = ∆w − (f(u1) − f(u2)) in Ω and w|∂Ω = 0, (2.90)

The equation in (2.90) can be written in the form

∂t(∂tw + αw) + (γ − α)(∂tw + αw) − ∆w − α(γ − α)w

= −(f(u1) − f(u2)), (2.91)

where α is a suitable parameter which will be chosen later. Multiplying
Equation (2.91) by v = ∂tw + αw, integrating over Ω, integrating by parts,
and using the condition (2.82), we arrive at the inequality

1

2

d

dt
(|v|2 + |∇w|2 − α(γ − α)|w|2) + (γ − α)|v|2

+ α(|∇w|2 − α(γ − α)|w|2) = −(f(u1) − f(u2), v) � K|w||v|. (2.92)

We choose α > 0 such that

α(γ − α) < λ. (2.93)

Using the Poincaré inequality λ|w|2 � |∇w|2, we find

λ|w|2 − α(γ − α)|w|2 � |∇w|2 − α(γ − α)|w|2,
i.e.,

|w|2 �
|∇w|2 − α(γ − α)|w|2

λ − α(γ − α)
. (2.94)
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By (2.94) and (2.92), we have

1

2

d

dt
(X2 + Y 2) +

{
(γ − α)X2 + αY 2 −

K√
λ − α(γ − α)

XY
}

< 0, (2.95)

where X2 = |v|2 = |∂tw + αw|2 and Y 2 = |∇w|2 − α(γ − α)|w|2.
The quadratic form {. . .} in (2.95) is positive definite provided that

α > 0, γ − α > 0, and

α(γ − α) − K

4(λ − α(γ − α))
> 0. (2.96)

We set ̺ = α(γ − α). The inequality (2.96) is equivalent to the inequality

̺2 − λ̺ +
K2

4
< 0. (2.97)

Since K < λ, the quadratic inequality (2.97) is satisfied by any ̺ such that

λ −
√

λ2 − K2

2
< ̺ <

λ +
√

λ2 − K2

2
. (2.98)

From (2.98) it follows that ̺ < λ, i.e., α(γ−α) < λ and the condition (2.93)
is satisfied. Thus, we need to find α > 0 such that

λ −
√

λ2 − K2

2
< α(γ − α) <

λ +
√

λ2 − K2

2
. (2.99)

Note that such α always exists if the maximum of α(γ −α) with respect to
α is greater than the left bound in (2.99), i.e., if

γ2

4
>

λ −
√

λ2 − K2

2
. (2.100)

This inequality coincides with the assumption (2.88). Consequently, taking
α that satisfies both inequalities in (2.99), we see that the quadratic form
{. . .} in (2.95) is positive definite and

(γ − α)X2 + αY 2 − K√
λ − α(γ − α)

XY � β(X2 + Y 2), β > 0, (2.101)

where β explicitly depends on γ, λ, K. Then (2.95) takes the form

1

2

d

dt
(X2 + Y 2) + β(X2 + Y 2) < 0

and the Gronwall inequality yields

X2(t) + Y 2(t) � (X2(τ) + Y 2(τ))e−2β(t−τ). (2.102)
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We see that the expression X2 +Y 2 = |∂tw+αw|2 + |∇w|2−α(γ−α)|w|2 is
equivalent to the norm ‖y1 − y2‖2

E = |∂tw|2 + |∇w|2. Hence (2.102) implies
the inequality

‖y1(t) − y2(t)‖2
E � C2‖y1(τ) − y2(τ)‖2

Ee−2β(t−τ) ∀t � τ, (2.103)

with some constant C = C(γ, λ, α).

By Proposition 2.11, the kernel Kg of Equation (2.85) is nonempty, i.e.,
there is a bounded (in E) solution z(t) = zg(t), t ∈ R, of the system (2.85).
Substituting z(t) into (2.103), for any other solution y(t) = Ug(t, τ)yτ we
obtain the estimate

‖y(t) − z(t)‖E � C‖yτ − z(τ)‖Ee−β(t−τ) ∀t � τ, (2.104)

which means that z(t) is the unique bounded complete trajectory of the
process {Ug(t, τ)} corresponding to (2.85). �

Now, we formulate consequences of Theorem 2.6 which can be proved
in the same way as the corresponding assertions for the 2D Navier–Stokes
system in Section 2.6.1 (see Corollaries 2.1–2.3 and Proposition 2.5).

Corollary 2.4. Under the assumptions (2.87) and (2.88), the global
attractor of Equation (2.85) has the form

A = [{zg0(t) | t ∈ R}]E =
⋃

g∈H(g0)

{zg(0)}. (2.105)

Corollary 2.5. The constructed global attractor A is exponential, i.e.,
for every bounded set B ⊂ E

distE(Ug0(t, τ)B,A) � C‖B‖Ee−β(t−τ) ∀ t � τ, (2.106)

where ‖B‖E = sup{‖y‖E | y ∈ B}.

Corollary 2.6. If g(t) is periodic with period p, then zg(t) is also
periodic with period p.

Corollary 2.7. If g(t) is almost periodic, then zg(t) is also almost
periodic.

Proof. As in the case of (2.102), we show that w(t) = zg(t)−zg(t+p)
satisfies the inequality

d

dt
(X2 + Y 2) + 2β(X2 + Y 2) � 2|g(t) − g(t + p)||v|, (2.107)
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where X2 = |v(t)|2 = |∂tw(t)+αw(t)|2 and Y 2 = |∇w(t)|2−α(γ−α)|w(t)|2 .
Using the estimate

2|g(t) − g(t + p)||v| � βX2 + β−1|g(t) − g(t + p)|2, (2.108)

we find that
d

dt
(X2 + Y 2) + β(X2 + Y 2) � β−1|g(t) − g(t + p)|2. (2.109)

If p is an ε-period of g, i.e., |g(t) − g(t + p)| < ε for all t ∈ R, then from
(2.109) it follows that

X2(t) + Y 2(t) � (X2(τ) + Y 2(τ))e−β(t−τ) + ε2/β2.

Fixing t and letting τ → −∞, we find

‖zg(t) − zg(t + p)‖2
E � C(X2(t) + Y 2(t)) � C

ε2

β2
∀t ∈ R, (2.110)

i.e., p is an ε
√

C/β-period of the function zg and thereby zg(t) is almost
periodic. �

We now assume that g0(t) is quasiperiodic and has k rationally inde-
pendent frequencies, i.e.,

g0(t) = ϕ(x, α1t, . . . , αkt) = ϕ(x, ᾱt), (2.111)

where ϕ ∈ C Lip(Tk; L2(Ω)), ᾱ = (α1, . . . , αk) ∈ R (see Example 2.5).

Proposition 2.12. If g0(t) is a quasiperiodic function of the form
(2.111), then the corresponding function zg0(t) is also quasiperiodic. Thus,
there exists Φ ∈ C Lip(Tk; L2(Ω)) such that zg0(t) = Φ(x, α1t, . . . , αkt).

The proof is similar to that of Proposition 2.5.

Corollary 2.8. If g0(t) has the form (2.111), then the global attractor
A of Equation (2.80) is the Lipschitz continuous image of the k-dimensional
torus Tk : A = Φ(Tk) and dF (A) � k.

Remark 2.12. It is easy to construct external forces g0(t) of the form
(2.111) such that dF (A) = k. Moreover, there exist almost periodic external
forces such that dF (A) = ∞ (see Section 2.7).

Remark 2.13. Making the change of the time variable t = t′/γ in
(2.80), we obtain the problem

ε∂2
t u + ∂tu = ∆u − f(u) + g0(x, t), u|∂Ω = 0,

where ε = γ−2. The above results are applicable provided that |f ′(u)| < λ

for all u ∈ R and 0 < ε < ε0 := 2−1(λ −
√

λ2 − k2)−1.
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2.6.3. Nonautonomous Ginzburg–Landau equation. Consider
the following nonautonomous generalization of the Ginzburg–Landau equa-
tion (see Section 1.3.3) with zero boundary conditions (periodic boundary
conditions can be treated in a similar way):

∂tu = (1 + iα0(t))∆u + R0(t)u − (1 + iβ0(t))|u|
2u + g0(x, t),

u|∂Ω = 0,
(2.112)

where u = u1(x, t)+ iu2(x, t) is the unknown complex function and x ∈ Ω ⋐

Rn. The coefficients α0(t), β0(t), and R0(t) are given real-valued functions
in Cb(R). We assume that

|β0(t)| �
√

3 ∀t ∈ R. (2.113)

The phase space for (2.112) is H = L2(Ω; C). The norm in H is denoted
by ‖ · ‖. We also introduce the notation V = H1

0 (Ω; C) and L4 = L4(Ω; C).
Assume that g0(x, t) = g1

0(x, t) + ig2
0(x, t) belongs to Lb

2(R;H), i.e.,

‖g0‖2
Lb

2(R;H) := sup
τ∈R

τ+1∫

τ

‖g0(·, s)‖2ds. (2.114)

Recall that Equation (2.112) is equivalent to the following system rel-
ative to the vector-valued function u = (u1, u2)⊤:

∂tu =

(
1 −α0(t)

α0(t) 1

)
∆u + R0(t)u −

(
1 −β0(t)

β0(t) 1

)
|u|2u + g0(x, t),

where g0 = (g1
0 , g

2
0)

⊤. Under the above assumptions, the Cauchy problem
for Equation (2.112) with initial data

u|t=τ = uτ (x), uτ (·) ∈ H, τ ∈ R, (2.115)

has a unique weak solution u(t) := u(x, t) such that

u(·) ∈ Cb(Rτ ;H) ∩ Lb
2(Rτ ;V) ∩ Lb

4(Rτ ;L4)

and (2.112) is satisfied by u(t) in the sense of distributions (see [119, 9, 34]).

Any solution u(t), t � τ, of (2.112) satisfies the differential identity

1

2

d

dt
‖u(t)‖2 + ‖∇u(t)‖2 + ‖u(t)‖4

L4
− R(t)‖u(t)‖2

= 〈g0(t), u(t)〉 ∀t � τ. (2.116)

The function ‖u(t)‖2 is absolutely continuous for t � τ . We note that the
parameters α0(t) and β0(t) are omitted in this identity. The proof of (2.116)
is similar to that of the corresponding identities for weak solutions of general
reaction–diffusion systems [34, 32] (see also [129]).
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Using standard transformations and the Gronwall lemma, from (2.116)
we deduce that any weak solution u(t) of (2.112) satisfies the inequality

‖u(t)‖2 � ‖u(τ)‖2e−2λ(t−τ) + C2
0 ∀t � τ, (2.117)

where λ is the first eigenvalue of the operator {−∆u, u|∂Ω = 0} and the
constant C0 depends on ‖R0‖Cb

= sup
t∈R

|R(t)| and ‖g0‖Lb
2(R;H).

Let {U(t, τ)} be the process corresponding to the problem (2.112),
(2.115) and acting in the space H. Recall that the mappings U(t, τ) : H →
H, t � τ , τ ∈ R, are defined by the formula

U(t, τ)uτ = u(t) ∀uτ ∈ H, (2.118)

where u(t), t � τ , is a solution of Equation (2.112) with initial data
u|t=τ = uτ . By the estimates (2.117), the process {U(t, τ)} has the uni-
formly absorbing set

B0 = {v ∈ H | ‖v‖ � 2C0} (2.119)

which is bounded in H.

The process {U(t, τ)} has a compact in H uniformly absorbing set

B1 = {v ∈ V | ‖v‖V � C′
0} (2.120)

for an appropriate C′
0. For the proof of this assertion we refer to [34, 129]

and Section 5.1. The set B1 is bounded in V and compact in H since the
embedding V ⋐ H is compact. Thus, the process {U(t, τ)} corresponding
to (2.112) is uniformly compact.

Applying Theorem 2.1, we conclude that the process {U(t, τ)} has the
global attractor A and the set A is compact in H, bounded in V, and can
be constructed by the formula

A = ω(B0) =
⋂

h�0

[ ⋃

t−τ�h

U(t, τ)B0

]

H

.

The time symbol of Equation (2.112) is the function

σ0(t) = (α0(t), β0(t), R0(t), g0(x, t)), t ∈ R,

with values in Ψ = R3 × H. We assume that β0(t) satisfies (2.113).

Let α0(t), β0(t), and R0(t) be translation compact functions in C loc(R),
and let g0(x, t) be a translation compact function in L loc

2 (R;H). Then σ0(t)
is a translation compact function in Ξ = C loc(R; R3)×L loc

2 (R;H). Consider
the hull H(σ0) of the function σ0(t) in the space C loc(R; R3) ×L loc

2 (R;H).



Attractors for Nonautonomous Navier–Stokes System 197

Along with Equation (2.112), we consider the family of equations

∂tu = (1+ iα(t))∆u+R(t)u− (1+ iβ(t))|u|2u+g(x, t), σ ∈ H(σ0) (2.121)

with symbols σ(t) = (α(t), β(t), R(t), g(x, t)), where σ ∈ H(σ0). We note
that for every σ = (α, β, R, g) ∈ H(σ0) the function β(t) satisfies (2.113) and
g(x, t) satisfies (2.114). Therefore, Equations (2.121) generates the family
of processes {Uσ(t, τ)}, σ ∈ H(σ0), acting in H (see [34, 129]). Recall
that {U(t, τ)} = {Uσ0(t, τ)} is the process corresponding to the Ginzburg–
Landau equation (2.112). Consider the kernels Kσ, σ ∈ H(σ0), of Equations
(2.121). As is proved in [34, 129], the family {Uσ(t, τ)}, σ ∈ H(σ0), is
(H×H(σ0);H)-continuous. Then, by Theorem 2.4,

A =
⋃

σ∈H(σ0)

Kσ(0), (2.122)

where the kernel Kσ of Equation (2.121) is nonempty for all σ ∈ H(σ0).

Now, we describe an example of the Ginzburg–Landau equation having
a simple global attractor.

Proposition 2.13. Let β0(t) satisfy (2.113), and let R0(t) satisfy the
inequality

R0(t) � λ − δ ∀t ∈ R, 0 < δ < λ. (2.123)

Then for any σ ∈ H(σ0) the kernel Kσ of Equation (2.121) consists of
a single element {zσ(t), t ∈ R}; moreover, {zσ(t), t ∈ R} exponentially
attracts any solution {uσ(t), t � τ} of Equation (2.121):

‖uσ(t) − zσ(t)‖ � e−δ(t−τ)‖uσ(τ) − zσ(τ)‖ ∀t � τ. (2.124)

Proof. Since the kernel Kσ of Equation (2.121) is nonempty, there
exists a bounded complete solution zσ(t), t ∈ R, of (2.121). Consider any
other solution {uσ(t), t � τ} of Equation (2.121). The difference w(t) =
uσ(t) − zσ(t) satisfies the equation

∂tw(t) = (1 + iα(t))∆w(t) + R(t)w(t)

− (1 + iβ(t))(|u(t)|2u(t) − |z(t)|2z(t)). (2.125)

We set A(t)v = (1 + iα(t))∆v + R(t)v and f(t, v) = (1 + iβ(t))|v|2v. Using
(2.123), we find

〈A(t)w, w〉 = −〈(1 + iα(t))∇w,∇w〉 + 〈R(t)w, w〉
= −〈∇w,∇w〉 + 〈R(t)w, w〉
� −λ‖w‖2 + R(t)‖w‖2 � −δ‖w‖2. (2.126)
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By (2.113), the function f(t, u) is monotone with respect to u :

〈f(t, u) − f(t, z), u − z〉 = 〈f ′
u(t, v)(u − z), u − z〉

= 〈f ′
u(t, v)w, w〉 � 0, (2.127)

where v = z + θ(u − z), 0 � θ(x, t) � 1 (see (1.34) and [34] for details).

Multiplying Equation (2.125) by w, integrating over Ω, and using
(2.126) and (2.127), we obtain the inequality

1

2

d

dt
‖w(t)‖2 = 〈A(t)w, w〉 − 〈f(t, u) − f(t, z), w〉

� −δ‖w‖2 − 〈f ′
u(t, v)w, w〉 � −δ‖w‖2, (2.128)

which implies

‖u(t) − z(t)‖2 = ‖w(t)‖2 � e−2δ(t−τ)‖w(τ)‖2

= e−2δ(t−τ)‖u(τ) − z(τ)‖2 ∀t � τ.

Thus, the inequality (2.124) is proved for any function zσ(t) from the kernel
Kσ of Equation (2.121).

From (2.124) it follows that {zσ(t), t ∈ R} is a unique element of the
kernel Kσ of Equation (2.121). �

Remark 2.14. The property (2.124) expressing the exponential at-
traction by the unique trajectory {zσ(x, t), t ∈ R} of all solutions {uσ(x, t),
t � τ} of Equation (2.121) is a nonautonomous analog of the exponential
stability of the unique stationary point {z(x)} of the autonomous equation

(2.21) for R < λ and |β| �
√

3.

Finally, we formulate natural consequences of Proposition 2.13.

Corollary 2.9. Under the assumptions of Proposition 2.13, the global
attractor A of Equation (2.112) has the form

A =
[ ⋃

t∈R
{zσ0(t)}

]

H

=
⋃

σ∈H(σ0)

{zσ(0)}; (2.129)

moreover, the global attractor A is exponential, i.e., for every bounded set
B ⊂ H

distH(Uσ0(t, τ)B,A) � C(‖B‖)e−δ(t−τ) ∀ t � τ, (2.130)

where ‖B‖ = sup{‖y‖ | y ∈ B}.
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Corollary 2.10. If the symbol σ(t) is periodic, then zσ(t) is also
periodic. If σ(t) is almost periodic, then zσ(t) is almost periodic as well. If
the initial symbol σ0(t) is quasiperiodic of the form

σ0(t) = ϕ(α1t, . . . , αkt) = ϕ(ᾱt),

where ϕ ∈ C Lip(Tk; R3×H) and the numbers ᾱ = (α1, . . . , αk) are rationally
independent, then zσ0(t) is also quasiperiodic, i.e., there exists a function
Φ ∈ C Lip(Tk;H) such that zσ0(t) = Φ(α1t, . . . , αkt). Moreover, the global
attractor A is the Lipschitz continuous image of a k-dimensional torus Tk :
A = Φ(Tk) anddF (A) � k.

The proof is similar to that of Corollaries 2.1–2.3 and 2.4–2.8.

Remark 2.15. There are symbols σ0(t) satisfying (2.113) and (2.123)
such that dF (A) = k. Moreover, it is easy to construct almost periodic
symbols such that dF (A) = ∞.

2.7. On the dimension of global attractors of processes.

Studying nonautonomous evolution equations, we see that the dimension of
the uniform global attractors depends on the dimension of the symbol hulls.
For example, for evolution equations with quasiperiodic time symbols the
fractal dimension of global attractors depends on the number of rationally
independent frequencies of the symbols (see Remarks 2.9, 2.12, and 2.15).

Let us show that the uniform global attractors of processes correspond-
ing to general nonautonomous evolution equation can have infinite fractal
dimension.

Consider a process {U(t, τ)} acting in a Hilbert (or Banach) space E
and assume that it is uniformly asymptotically compact. By Theorem 2.1,
{U(t, τ)} has a global attractor A. Consider the kernel K of the process
{U(t, τ)}. By Proposition 2.2, the set K =

⋃
τ∈R

K(τ) of all values of all

complete trajectories u ∈ K of the process belongs to A. Moreover, the
closure K of this set in E also belongs to A since the global attractor is a
closed set.

We claim that the set K can have infinite dimension

dF K = +∞ (2.131)
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for all the problems discussed in Section 2.6. For example, for the Navier–
Stokes system we set

u0(x, t) =
∞∑

j=1

aj(x) cos(µjt) + bj(x) sin(µjt), (2.132)

where aj(x) = (a1
j(x), a2

j (x)), bj(x) = (b1
j(x), b2

j (x)) are smooth linearly

independent vector-valued functions such that aj|∂Ω = 0, (∇, aj) = 0,
bj |∂Ω = 0, (∇, bj) = 0. We assume that the series (2.132) and its deriv-
atives with respect to x and t converge rapidly. We also assume that the
frequencies µj , j = 1, 2, . . ., are rationally independent real numbers. Set-
ting

g0(x, t) = ∂tu0(x, t) + νLu0(x, t) + B(u0(x, t), u0(x, t)), (2.133)

and we see that g0(·) ∈ Cb(R; H). The system (2.36) with external force
g0(x, t) generates a process {U(t, τ)} in H having the compact attractor A
(see Section 2.6.1). The process {U(t, τ)} has at least one complete bounded
solution; namely u0(t). Thus, the kernel K is nonempty and u0 ∈ K. It is
easy to show that the projection uN

0 (x, t) of u0(x, t) onto the 2N -dimensional
space spanned by the vector-valued functions {(aj(x), bj(x)) | j = 1, . . . , N}
provides a dense winding of the N -dimensional torus TN ⊂ H (the rational

independence of {µj} was used). Therefore, the set Im u0 = {u0(·, t) : t ∈ R}
has the fractal dimension greater than N : dF Im u0 � N for each N ∈ N,
i.e., dF Imu0 = ∞. It is evident that Imu0 ⊆ K. Hence dF K = +∞. We
recall that K ⊆ A, and thereby dFA = +∞.

3. Kolmogorov ε-Entropy of Global Attractors

As was shown at the end of Section 2, the fractal dimension of the global
attractor A of a nonautonomous evolution equation can be infinite. At
the same time, the global attractors are always compact sets in the corre-
sponding phase spaces. Therefore, it is reasonable to study the Kolmogorov
ε-entropy because it is finite for every ε.

Here, we derive upper estimates for the Kolmogorov ε-entropy of the
global attractors of nonautonomous evolution equations with translation
compact symbols. These estimates are optimal in a sense and generalize
estimates for the ε-entropy of the finite-dimensional global attractors of the
corresponding autonomous equations considered in Section 1.4.
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In Section 3.1, we present a general upper estimate for the ε-entropy
of the uniform global attractor A of the process {Uσ(t, τ)} corresponding
to the nonautonomous equation ∂tu = Aσ(t)(u) with translation compact
symbol σ(t).

In Section 3.2, we consider the case, where the fractal dimension dFA
of the uniform global attractor A is finite. This property holds if, for exam-
ple, the time symbol σ(t) is a quasiperiodic function in t with k rationally
independent frequencies. Then we show that dFA � d + k for some d
depending on the problem under consideration. This means that the di-
mension dFA can grow to infinity as k → +∞.

In Section 3.3, the above-mentioned results are applied to the esti-
mates of the ε-entropy and the fractal dimension of the uniform global at-
tractor of some nonautonomous equations in mathematical physics; namely,
the 2D Navier–Stokes system with translation compact external force, the
damped wave equation with translation compact terms, and the nonau-
tonomous complex Ginzburg–Landau equation.

We emphasize the fundamental role of the paper [83] in the study of
the ε-entropy of compact sets in Hilbert or Banach spaces.

3.1. Estimates for ε-entropy.

We use the notation from Section 2. Consider the family of the Cauchy
problems for nonautonomous equations

∂tu = Aσ(t)(u), u|t=τ = uτ , uτ ∈ E, (3.1)

with symbols σ(t) ∈ H(σ0(t)). Here, E is a Hilbert space. We assume
that the symbol σ0(t) of the original equation (2.21) is a translation com-
pact function in the space Ξ. We assume that the topological space Ξ is a
Hausdorff space. In applications, Ξ = C(R; Ψ) or Ξ = L loc

p (R; Ψ), p � 1,
where Ψ is a Banach space, or the product of such spaces. The space Ξ
is endowed with the local uniform convergence topology on every bounded
segment in R. By definition, a sequence {σn(·)} converges to σ(·) as n → ∞
in Ξ if ‖Πt1,t2(σn(·) − σ(·))‖Ξt1 ,t2

→ 0 as n → ∞ for every closed interval

[t1, t2] ⊂ R. Here, Πt1,t2 denotes the restriction operator onto the interval
[t1, t2], Ξt1,t2 is the family of Banach spaces generating Ξ, and ‖ξ‖Ξt1,t2

is the norm of ξ in Ξt1,t2 . For example, if Ξ = C(R; Ψ), then Ξt1,t2 =
C([t1, t2]; Ψ) and σn(·) → σ(·) as n → ∞ in C(R; Ψ) provided that

max
s∈[t1,t2]

‖σn(s) − σ(s)‖Ψ → 0 as n → ∞ (3.2)
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for every [t1, t2] ⊂ R. Similarly, σn(·) → σ(·) as n → ∞ in Ξ = L loc
p (R; Ψ)

if
t2∫

t1

‖σn(s) − σ(s)‖p
Ψds → 0 as n → ∞ (3.3)

for all [t1, t2] ⊂ R (see [34] for details). In addition, we assume that the
norms in Ξt1,t2 satisfy the following condition:

‖Πt′1,t′2
ξ‖Ξt′1,t′2

� ‖Πt1,t2ξ‖Ξt1,t2
∀ [t′1, t

′
2] ⊂ [t1, t2]. (3.4)

It is clear that (3.4) is valid for the spaces C([t1, t2]; Ψ) and L loc
p (t1, t2; Ψ).

Suppose that for every σ ∈ H(σ0) the Cauchy problem (3.1) generates
the process {Uσ(t, τ)} acting in E by the formula Uσ(t, τ)uτ = u(t), t � τ ,
τ ∈ R, where u(t) is a solution of the Cauchy problem (3.1) with initial
data uτ ∈ E. Let the assumptions of Theorem 2.4 hold. Then the process
{Uσ0(t, τ)} has a global attractor A of the form (2.33).

Our goal is to study the ε-entropy Hε(A) = Hε(A, E) of the global
attractor A in the space E (see Definition 1.6). We intend to estimate
Hε(A) by using an information about the behavior of the ε-entropy of the
sets Π0,lH(σ0) in the space Ξ0,l (where, for example, Ξ0,l = C([0, l]; Ψ) or
Ξ0,l = L loc

p (0, l; Ψ)). It is assumed that the behavior of the ε-entropy is
known as l → +∞ and ε → 0+ . Here, Π0,l denotes the restriction operator
on the segment [0, l].

To formulate the main theorem, we need to introduce some notions
and conditions on the process {Uσ0(t, τ)}. First of all, we must general-
ize the quasidifferentiability property (1.40) introduced in Section 1.4.1 for
semigroups.

Let {U(t, τ)} be a process in E. Consider the kernel K of {U(t, τ)}
(see Definition 2.3). It is clear that the kernel sections satisfy the following
invariance property:

U(t, τ)K(t) = K(τ) ∀t � τ, τ ∈ R. (3.5)

Definition 3.1. A process {U(t, τ)} in E is uniformly quasidifferen-
tiable on K if there exists a family of linear bounded operators {L(t, τ, u)},
u ∈ K(τ), t � τ , τ ∈ R, such that

‖U(t, τ)u1 − U(t, τ)u − L(t, τ, u)(u1 − u)‖E

� γ(‖u1 − u‖E, t − τ)‖u1 − u‖E (3.6)

for all u, u1 ∈ K(τ), τ ∈ R, where γ = γ(ξ, s) → 0+ as ξ → 0+ for each
fixed s � 0.
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Assume that the process {Uσ0(t, τ)} corresponding to (3.1) is uni-
formly quasidifferentiable on the kernel Kσ0 and the quasidifferentials of
this process are generated by the variational equation

∂tv = Aσ0u(u(t))v, v|t=τ = vτ , vτ ∈ E, (3.7)

where u(t) = Uσ0(t, τ)uτ , uτ ∈ Kσ0 (τ), i.e., L(t, τ, uτ )vτ = v(t), where
v(t) is a solution of (3.7) with initial data vτ . We assume that the Cauchy
problem is uniquely solvable for all uτ ∈ Kσ0 (τ) and vτ ∈ E.

As in the case of (1.43), we introduce the numbers

q̃j := lim sup
T→+∞

sup
τ∈R

sup
uτ∈K(τ)

1

T

τ+T∫

τ

TrjAσ0u(u(t))dt, (3.8)

where u(t) = Uσ0(t, τ)uτ and the j-trace Trj(L) of a linear operator L in a
Hilbert space E is defined in (1.42).

Assume that the following Lipschitz condition holds for the processes
{Uσ(t, τ)}, σ ∈ H(σ0) corresponding to (3.1):

‖Uσ1(h, 0)u0 − Uσ2(h, 0)u0‖E � C(h)‖σ1 − σ2‖Ξ0,h
(3.9)

for all σ1, σ2 ∈ H(σ0), u0 ∈ A, h � 0.

From (3.9) it follows that

|Uσ1(t, τ)uτ − Uσ2(t, τ)uτ | � C(|t − τ |)‖σ1 − σ2‖Ξτ,t

for all σ1, σ2 ∈ H(σ0), uτ ∈ A, t > τ , τ ∈ R.

Now, we are ready to formulate the main theorem of this section.

Theorem 3.1. Let the assumptions of Theorem 2.4 hold. Suppose
that the original process {Uσ0(t, τ)} is uniformly quasidifferentiable on Kσ0 ,
the quasidifferentials of this process are generated by the variational equation
(3.7), and q̃j defined by (3.8) satisfy the inequalities

q̃j � qj , j = 1, 2, 3, . . . . (3.10)

Assume that the Lipschitz condition (3.9) holds for the family of processes
{Uσ(t, τ)}, σ ∈ H(σ0), and the function qj is concave in j (like ∩). Let m
be the smallest number such that qm+1 < 0 (then qm � 0), and let

d = m +
qm

(qm − qm+1)
. (3.11)
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Then for every δ > 0 there exist η ∈ (0, 1), ε0 > 0, and h > 0 such that

Hε(A) � (d + δ) log2

( ε0

ηε

)
+ Hε0(A)

+ H εη
4C(h)

(Π0,h log1/η(ε0/ηε)H(σ0)) (3.12)

for all ε < ε0, where C(h) is the Lipschitz constant from (3.9).

Recall that Hǫ(Π0,lH(σ0)) on the right-hand side of (3.12) denotes the
ǫ-entropy of the set H(σ0) restricted to the interval [0, l] and the ǫ-entropy
is measured in the space Ξ0,l (for example, in C([0, l]; Ψ) or L loc

p (0, l; Ψ)).

The proof of Theorem 3.1 is contained in [24, 34].

Remark 3.1. Comparing the inequality (3.12) with the estimate
(1.46) in the autonomous case, we observe that the term (d+ δ) log2(ε0/ηε)
corresponds to the upper estimate for the ε-entropy of the kernel sections
K(τ) and, in particular, dFK(τ) � d for all τ ∈ R (see [34]).

Remark 3.2. If δ is small, the inequality (3.12) is optimal with re-
spect to the estimate of the ε-entropy of the kernel sections. However,
another important parameter h in (3.12) tends to infinity as δ → 0 + . The

parameter h controls the denominator in ǫ =
εη

4C(h)
, where C(h) is the

Lipschitz constant in (3.9) which usually grows exponentially as h → ∞.
Thus, if the hull H(σ0) is infinite-dimensional, then the ǫ-entropy of H(σ0)
can grow rapidly as ε → 0+ and faster than D log(1/ǫ) for arbitrary D.
Thus, it is reasonable to optimize the estimate (3.12) with respect to small
values of h. The following assertion presents a result in this direction. The
proof can be found in [34].

Theorem 3.2. Let the assumptions of Theorem 3.1 hold, and let q̃j �

qj, j = 1, 2, . . .. Assume that

qj

j
→ −∞ as j → ∞. (3.13)

Then for any h > 0 there exist D > 0 and ε0 > 0 such that

Hε(A) � D log2((2ε0)/ε) + Hε0(A)

+ H ε
8C(h)

(Π0,h log2(2ε0/ε)H(σ0)) (3.14)

for all ε � ε0. (In applications, C(h) usually approaches 1 as h → +0.)

We consider a particular case, where σ0(t) is an almost periodic func-
tion, i.e., the hull H(σ0) is compact in Cb(R; Ψ) with respect to the topology
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of uniform convergence on R. The norm in Cb(R; Ψ) is defined by the for-
mula

‖ξ‖Cb(R;Ψ) := sup
t∈R

‖ξ(t)‖Ψ.

Since

‖ξ‖C([0,l];Ψ) � ‖ξ‖Cb(R;Ψ) ∀l > 0,

we have

Hǫ(Π0,lH(σ0); C([0, l]; Ψ)) � Hǫ(H(σ0); Cb(R; Ψ))

= Hǫ(H(σ0)) ∀l > 0, (3.15)

and Theorems 3.1 and 3.2 imply the following assertion.

Corollary 3.1. Let σ0(t) be almost periodic, and let the assumptions
of Theorem 3.1 hold. Then

Hε(A) � (d + δ) log2

( ε0

ηε

)
+ Hε0(A) + H εη

4C(h)
(H(σ0)) ∀ ε < ε0, (3.16)

where Hǫ(H(σ0)) is the ǫ-entropy of the hull H(σ0) in the space Cb(R; Ψ).

Corollary 3.2. Let the assumptions of Theorem 3.2 hold, and let
H(σ0) ⋐ Cb(R; Ψ). Then

Hε(A) � D log2

(2ε0

ε

)
+ Hε0(A) + H ε

8C(h)
(H(σ0)) ∀ε < ε0. (3.17)

Remark 3.3. If it is known that H(σ0) ⋐ Lb
p(R; Ψ), i.e., σ0(t) is an

almost periodic functions in the Stepanov sense, then the estimates (3.16)
and (3.17) hold. In this case, Hǫ(H(σ0)) denotes the ǫ-entropy of H(σ0) in
the space Lb

p(R; Ψ) measured in the norm

‖f‖Lb
p(R;Ψ) :=

(
sup
t∈R

t+1∫

t

‖f(s)‖p
Ψds

)1/p

.

The estimate (3.16) shows that for a general almost periodic function
σ0(t) having infinitely many rationally independent frequencies, the main
contribution to the estimate for the ε-entropy of the global attractor A is
made by the εL-entropy of the hull H(σ0), where L = (4C(h))/η. However,
if σ0(t) has finitely many frequencies, i.e., it is quasiperiodic, then the contri-
bution of this quantity is comparable with that of the term d log2(ε0/(αη)).
This means that the global attractor of the nonautonomous equation has
finite dimension. We discuss this question later.
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We consider two important characteristics of a compact set X in E,
introduced in [83]. The number

df(X, E) = df(X) := lim sup
ǫ→0+

log2(Hε(X))

log2 log2(1/ε)
(3.18)

is called the functional dimension of X in E, and the number

q(X, E) = q(X) := lim sup
ǫ→0+

log2(Hε(X))

log2(1/ε)
(3.19)

is called the metric order of X in E. It is easy to see that df(X) = 1 and
q(X) = 0 if dF (X) < +∞. Thus, the values df (X) and q(X) characterize
infinite-dimensional sets. Some examples of calculations of these values are
given in [83] (see also [125, 127]).

Using Corollaries 3.1 and 3.2, we obtain the following assertion.

Corollary 3.3. Let σ0(t) be an almost periodic function. Then

df(A, E) � df(H(σ0), Cb(R; Ψ)), (3.20)

q(A, E) � q(H(σ0), Cb(R; Ψ)). (3.21)

3.2. Finite fractal dimension of global attractor.

In this section, we study the fractal dimension of the uniform global attrac-
tor A of the process {Uσ0(t, τ)} corresponding to (2.21) and its dependence
on the fractal dimension of the hull H(σ0).

We start with a very important example of a quasiperiodic symbol
σ0(t) (see Example 2.5): σ0(t) = ϕ(α1t, α2t, . . . , αkt) = ϕ(ᾱs), where
ϕ(ω̄), ω̄ = (ω1, . . . , ωk), is a 2π-periodic function in each variable ωi, i = 1, k,
ᾱ = (α1, α2, . . . , αk), αi ∈ R, {αi} are rationally independent numbers. We
assume that ϕ(ω̄) is a Lipschitz continuous function on the k-dimensional
torus Tk = [R mod 2π]k with values in a Banach space Ψ, ϕ ∈ C lip(Tk; Ψ),
i.e.,

‖ϕ(ω̄1) − ϕ(ω̄2)‖Ψ � L|ω̄1 − ω̄2|Tk ∀ ω̄1, ω̄2 ∈ T
k, (3.22)

where | · |Tk denotes the usual Euclidean norm in Rk. By (2.28), the hull
H(σ0) of the function σ0(t) in the space Cb(R; Ψ) coincides with

{ϕ(ᾱs + θ̄) | θ̄ ∈ T
k} = H(σ0). (3.23)

Proposition 3.1. If σ0(t) is a quasiperiodic function, then

Hǫ(H(σ0)) := Hǫ(H(σ0), Cb(R; Ψ)) � HLǫ(T
k) � k log2

( 2

Lǫ

)
(3.24)
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for all ǫ < L−1 and

dF (H(σ0)) = dF (H(σ0), Cb(R; Ψ)) � k.

Proof. If σ1, σ2 ∈ H(σ0), then σi = ϕ(ᾱs + θ̄i) for some θ̄i ∈ Tk,
i = 1, 2, by (3.23) and

‖σ1 − σ2‖Cb(R;Ψ) := sup
t∈R

‖σ1(t) − σ2(t)‖Ψ

= sup
t∈R

‖ϕ(ᾱt + θ̄1) − ϕ(ᾱt + θ̄2)‖Ψ � L|θ̄1 − θ̄2|Tk

by (3.22). Therefore,

Nǫ(H(σ0)) � NLǫ(T
k).

It is known that the torus Tk endowed with the Euclidean metric can be
covered by at most (2/ε)k balls of radius ε < 1 (see, for example, [43]).
Hence

Nǫ(H(σ0)) � (2/(Lǫ))k, Hǫ(H(σ0)) � k log2(2/(Lǫ)) ∀ǫ < L−1

and, consequently,

dF (H(σ0)) := lim sup
ǫ→0+

Hǫ(H(σ0))

logǫ(1/ε)
� k,

which completes the proof. �

Remark 3.4. In the general case, H(σ0) is a Lipschitz continuous
manifold in Cb(R; Ψ), isometric to the torus Tk. Hence dF (H(σ0)) = k.

Theorem 3.3. Let the assumptions of Theorem 3.1 hold, and let σ0(t)
be a quasiperiodic function of the form σ0(t) = ϕ(α1t, α2t, . . . , αkt) = ϕ(ᾱt),
where ϕ(ω1, ω2, . . . , ωk) = ϕ(ω̄) ∈ CLip(Tk; Ψ). Then the estimate (3.16)
takes the form

Hε(A) � (d + δ) log2

( ε0

ηε

)
+ Hε0(A) + k log2

(8C(h)

Lηε

)
∀ ε < ε0, (3.25)

where L is the Lipschitz constant from the inequality (3.22). Moreover,

dF (A) � d + k. (3.26)

Proof. Indeed, the inequality (3.16), together with (3.24), yields

Hε(A) � (d + δ) log2

( ε0

ηε

)
+ Hε0(A) + H εη

4C(h)
(H(σ0))

� (d + δ) log2

( ε0

ηε

)
+ Hε0(A) + k log2

(8C(h)

Lηε

)
.
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Passing to the limit in the ratio Hε(A)/ log2(1/ε) as ε → 0+, we find
dF (A) � d + δ + k. Since δ is arbitrarily small, we obtain (3.26). �

Recall that, in the autonomous case k = 0, the estimate (1.45) is an
analog of the estimate (3.26), where X = A : dF (A) � d.

We generalize Theorem 3.3 to the case of more general symbols σ0(t)
that are not almost periodic, but the dimension of the corresponding global
attractors A is finite.

As above, let σ0(t) be a translation compact function in Ξ and thereby
the hull H(σ0) is compact in Ξ. (For example, for Ξ one can take C(R; Ψ)
or Ξ = L loc

p (R; Ψ).) As is proved in [34],

lim sup
ǫ→0+

Hǫ(Π0,l log2(K/ǫ)Σ)
/

log2(1/ǫ) (3.27)

is independent of K > 0 for any compact subset Σ ⋐ Ξ. For Σ we introduce
the number

d loc
F (Σ, l) := lim sup

ǫ→0+
Hǫ(Π0,l log2(1/ǫ)Σ)

/
log2(1/ǫ) (3.28)

depending on the positive parameter l.

Remark 3.5. If Σ = H(σ0), where σ0 is a smooth quasiperiodic func-
tion with k independent frequencies, then d loc

F (Σ, l) � k for any l because
H(σ0) is the Lipschitz continuous image of the k-dimensional torus Tk (see
Proposition 3.1).

If for some l we have d loc
F (Σ, l) < +∞. then we say that Σ has the

local fractal dimension d loc
F (Σ, l) in the topological space C(R; Ψ).

Theorem 3.4. Let the assumptions of Theorem 3.1 hold, and let

d loc
F (H(σ0), h1) < +∞,

where h1 = h(δ)/ log2(1/η). Then for any δ > 0

dF (A) � d + δ + d loc
F (H(σ0), h1). (3.29)

Moreover, if d loc
F (H(σ0), h) � k for all h > 0, then dF (A) � d + k.

Indeed, dividing (3.12) by log2(1/ε) and making the change of vari-

ables ǫ =
η

4C(h)
ε, we find

dF (A) � (d + δ) + lim sup
ǫ→0+

Hǫ

Π
0,h log1/α(

ε0
4C(h)ǫ

)
H(σ0)

log2(1/ǫ) + log2
η

4C(h)
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= (d + δ) + lim sup
ǫ→0+

Hǫ(Π0,h1 log2(K/ǫ)
H(σ0))

log2(1/ǫ)

= (d + δ) + d loc
F (H(σ0), h1),

where K = ε0/(4C(h)) and we used the fact that the expression (3.27) is
independent of K.

3.3. Applications to nonautonomous equations.

3.3.1. 2D Navier–Stokes system. Consider the family of the Cauchy
problems

∂tu + νLu + B(u, u) = g(x, t),
u|t=τ = uτ , uτ ∈ H

(3.30)

(see Section 2.6.1) with external forces g ∈ H(g0). We assume that the origi-
nal external force g0(x, t) is a translation compact function in L loc

2 (R; H) =:
Ξ. The space L loc

2 (R; H) is endowed with the topology of strong convergence
on every [t1, t2] ⊂ R. Then g0 ∈ Lb

2(R; H) and

‖g‖2
Lb

2
� ‖g0‖2

Lb
2

= sup
t∈R

t+1∫

t

|g0(s)|2ds < ∞ (3.31)

for every function g ∈ H(g0) (see (2.37) and (2.43)).

Consider the family of processes {Ug(t, τ)}, g ∈ H(g0), corresponding
to the family of Cauche problems (3.30) and acting in H. As was proved
in Section 2.6.1, the process {Ug0(t, τ)} has the uniform global attractor
A ⋐ H and the set A has the form

A =
⋃

g∈H(g0)

Kg(0), (3.32)

where Kg is the kernel of {Ug(t, τ)} with external force g ∈ H(g0).

Consider the Kolmogorov ε-entropy Hε(A) of the set A in H.

In [34], it is proved that the family {Ug(t, τ)}, g ∈ H(g0), satisfies the
Lipschitz condition (3.9); namely,

|Ug1(h, 0)u0 − Ug2(h, 0)u0| � C(h)‖g1 − g2‖L2(0,h;H) (3.33)

for all g1, g2 ∈ H(g0), u0 ∈ A, where the Lipschitz constant C(h) depends
on ν, λ1, ‖g0‖2

Lb
2

and exponentially grows in h.

Consider the quasidifferentiability property in detail. As is proved in
[34], the process {Ug0(t, τ)} is uniformly quasidifferentiable on Kg0 and the
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corresponding variation equation has the form

∂tv = −νLv − B(u(t), v) − B(v, u(t))

=: Ag0u(u(t), t)v, v|t=τ = vτ ,
(3.34)

where u(t) = Ug0(t, τ)uτ and uτ ∈ Kg0 (τ) (the proof is based on the meth-
ods from [9] and [119]). Thus, the quasidifferentials are the mappings
L(t, τ ; uτ ) : H → H and L(t, τ ; uτ )vτ = v(t), where v(t) is a solution
of (3.34).

Following the scheme described in Section 3.1, we set

q̃j := lim sup
T→∞

sup
τ∈R

sup
uτ∈Kg0(τ)

( 1

T

τ+T∫

τ

TrjAg0u(u(s))ds
)
, j ∈ N,

where u(t) = Ug0(t, τ)uτ and Trj denotes the j-dimensional trace of an
operator. As in the autonomous case (see the proof of Theorem 1.6), we
obtain the estimate

t∫

τ

TrjAg0u(u(s))ds � −νC2j
2

2|Ω| (t − τ) +
1

ν2
|uτ |2 +

1

λ1ν3

t∫

τ

|g0(s)|2ds.

Therefore,

q̃j � −νC2j
2

2|Ω| +
|Ω|

C1ν3
M(|g0|2) =: ϕ(j) = qj , j = 1, 2, . . . , (3.35)

where

M(|g0|2) := lim sup
T→∞

sup
τ∈R

( 1

T

τ+T∫

τ

|g0(t)|2dt
)

� ‖g0‖2
Lb

2
< ∞

and the dimensionless constants C1 and C2 are taken from (1.55) (see also
Remark 1.9). The function ϕ(j) in (3.35) is concave in j.

Let m be the smallest integer such that qm+1 = ϕ(m + 1) < 0 (see
Theorem 3.1). We set

d = m +
qm

qm − qm+1
.

Let d∗ be the root of the equation ϕ(x) = 0, i.e.,

d∗ = c
M(|g0|2)1/2|Ω|

ν2
, c =

(
2

C1C2

)1/2

. (3.36)

Then

d∗ � c
‖g0‖Lb

2
|Ω|

ν2
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since M(|g0|2) � ‖g0‖2
Lb

2
. It is obvious that

d � d∗ � c
‖g0‖Lb

2
|Ω|

ν2
(3.37)

because the function ϕ is concave (see Remark 1.6).

Hence Theorem 3.1 is applicable, and we get the following assertion.

Theorem 3.5. For any δ > 0 there exist h > 0, ε0 > 0, and η < 1
such that

Hε(A) �
(
c
‖g0‖Lb

2
|Ω|

ν2 + δ
)

log2

( ε0

ηε

)
+ Hε0(A)

+ H(εη)/(4C(h))(Π0,h log1/η(ε0/(ηε))H(g0)) (3.38)

for all ε � ε0, where C(h) is taken from (3.33) and Hǫ(Π0,lH(g0)) denotes
the ǫ-entropy of the set Π0,lH(g0) in the space L2(0, l; H).

Remark 3.6. The best up-to-date estimate for the constant c in (3.38)
is as follows (see Remark 1.9 and [16]):

c �
1

2π3/2
.

Note that ϕ(j)/j → −∞ as j → ∞ (see (3.35)). Thus, using Theorem
3.2, we obtain the following assertion.

Theorem 3.6. For any h > 0 there are D > 0 and ε0 > 0 such that

Hε(A) � D log2

(2ε0

ε

)
+ Hε0(A) + H ε

8C(h)
(Π0,h log2((2ε0)/ε)H(g0)) (3.39)

for all ε � ε0.

Consider a special case, where g0(x, t) is a quasiperiodic function, i.e.,
g0(x, t) = G(x, α1t, α2t, . . . , αkt) = G(x, ᾱt), where G(·) ∈ C Lip(Tk; H) and
the numbers ᾱ = (α1, α2, . . . , αk) are rationally independent (see Section
3.2). Thus, H(g0) = {G(x, ᾱt + θ̄) | θ̄ ∈ Tk}.

By the Kronecker–Weyl theorem (see, for example, [85]),

M(|g0|2) := lim
T→∞

sup
θ̄∈Tk

( 1

T

T∫

0

|G(·, θ̄ + ᾱt)|2dt
)

=
1

|2π|k
∫

· · ·
∫

Tk

|G(·, ω1, . . . , ωk)|2dω1 · · · dωk =: Γ2.
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Then from (3.36) it follows that

d � d∗ = c
M(|H(g0)|2)1/2|Ω|

ν2
= c

Γ|Ω|

ν2
.

Using Theorem 3.3, we obtain the following assertion.

Theorem 3.7. The fractal dimension of the uniform attractor A of
the 2D Navier–Stokes system with quasiperiodic external force g0(x, s) =
G(x, ᾱs), G ∈ C(Tk; H) satisfies the estimate

dFA � c
Γ|Ω|
ν2

+ k, (3.40)

where the dimensionless constant c depends on the shape of Ω (c(Ω) =
c(λΩ)) and admits the following absolute upper bound:

c <
1

2π3/2
.

Remark 3.7. In the autonomous case k = 0, the estimate (3.40)
becomes the upper bound (1.49) for the fractal dimension of the attractor of
the autonomous Navier–Stokes system (where Γ = |g0|, g0 = g0(x)). In the
nonautonomous case, the estimate (3.40) contains also the term k = dim Tk,
i.e., the dimension of the hull H(g0) = {G(x, ᾱs+θ̄) | θ̄ ∈ Tk}, where k is the
number of rationally independent frequencies of the quasiperiodic external
force g0(x, t).

Remark 3.8. As was proved in [34],

dFKg(t) � c
Γ|Ω|
ν2

∀t ∈ R

and, since dFH(g0) � dim Tk = k, we conclude that the estimate (3.40)
well agrees with the representation (3.32).

Remark 3.9. Assume that Gk(x, ω1, . . . , ωk) = Gk(x, ω̄k), ω̄k ∈ Tk,
k = 1, 2, . . ., are such that

Γk =
( 1

|2π|k
∫

Tk

|Gk( . , ω̄k)|2dω̄k
)1/2

� R ∀ k ∈ N.

Assume also that 1/ν � R1. Consider the global attractors {Ak} of the 2D
Navier–Stokes systems with external forces

g0k(x, t) = Gk(x, α1t, α2t, . . . , αkt),

where the sequence {αi} consists of rationally independent numbers. From
(3.40) it follows that

dFAk � k + D ∀ k ∈ N, (3.41)
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where D = D(R, R1). Therefore, the right-hand side of (3.41) tends to infin-
ity as k → ∞, while the nonautonomous analogs of the Reynolds number Re
and the Grashof number Gr depending on R, 1/ν, and |Ω| remain bounded.

Let us present an example of the external forces {Ĝk(x, ω̄k)} satisfying
the conditions of Remark 3.9 such that

dFATk � k. (3.42)

Consider the function

û(x, t) =

k∑

i=1

(ai(x) cos(αit) + ai+k(x) sin(αit)), (3.43)

where ai(x), i = 1, . . . , 2k, . . ., are linearly independent vector-valued func-
tions, ai(x) = (a1

i (x), a2
i (x)), satisfying the following conditions: ai(x) ∈

(C2(Ω̄))2, (∇, ai(x)) = 0, ai|∂Ω = 0. We assume that the frequencies
(α1, . . . , αk, . . .) are rationally independent. We set

ĝk(x, ᾱt) = ∂tû + νLû + B(û, û), (3.44)

where û(x, t) is defined by formula (3.43). It is obvious that ĝk(x, αt) is
quasiperiodic. The function û(x, t) is a complete bounded trajectory of the
Navier–Stokes system with external force ĝk. If the coefficients ai(x) in
(3.43) decay rapidly, then Γk � R for all k ∈ N. We note that û(·, t) ∈ A for
all t ∈ R. It is easy to see that the trajectory û(·, t) provides an everywhere

dense winding of the k-dimensional torus T̃ k ⊂ H . Therefore, the closure

in H : {û(t) | t ∈ R} = T̃ k belongs to A. Hence

dF T̃
k = k � dFA.

This example shows that the main term k in (3.41) is precise.

3.3.2. Wave equation with dissipation. We consider the nonautonomo-
us wave equation from Section 2.6.2:

∂2
t u + γ∂tu = ∆u − f0(u, t) + g0(x, t), u|∂Ω = 0,

u|t=τ = uτ , ∂tu|t=τ = pτ , uτ ∈ H1
0 (Ω), pτ ∈ L2(Ω),

(3.45)

where x ∈ Ω ⋐ R3. The function f0(v, t) ∈ C1(R × R; R) satisfies the
conditions (2.71)–(2.74) and the following inequality, similar to (1.61):

|fv(v1, t) − fv(v2, t)| � C(|v1|2−δ + |u2|2−δ + 1)|v1 − v2|δ (3.46)

for all v1, v2 ∈ R, t ∈ R, where 0 < δ � 1. Moreover, we assume that
(f0(v, t), f0t(v, t)) is a translation compact function in C(R;M2) and g0(x, t)
is a translation compact function in L loc

2 (R; L2(Ω)). The norm in the Banach
space M2 is defined bu formula (2.79). The symbol of the problem (3.45) is
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σ0(t) = (f0(v, t), g0(x, t)). It is clear that σ0(t) is a translation compact func-
tion in Ξ = C(R;M2) × L loc

2 (R; L2(Ω)). As usual, H(σ0) denotes the hull
of σ0(t) in Ξ. Consider (3.45) with symbols σ(t) = (f(v, t), g(x, t)) ∈ H(σ0).
By Proposition 2.6, the family of problems (3.45) generates the family of
processes {Uσ(t, τ)}, σ ∈ H(σ0), Uσ(t, τ) : E → E, acting in the energy
space E = H1

0 (Ω) × L2(Ω). By Propositions 2.8 and 2.9, the process
{Uσ0(t, τ)} is uniformly asymptotically compact and the family {Uσ(t, τ)},
σ ∈ H(σ0), is (E ×H(σ0), E)-continuous. Proposition 2.5 implies that the
process {Uσ0(t, τ)} has the uniform global attractor

A =
⋃

σ∈H(σ0)

Kσ(0),

where Kσ is the kernel of {Uσ(t, τ)}. The set A is compact in E.

As is proved in [34], A is bounded in E1 = H2(Ω) × H1
0 (Ω) (recall

that Ω ⋐ R3),

‖y‖E1 � M ∀ y ∈ A,

where the constant M is independent of y. By the Sobolev embedding
theorem,

‖u(·)‖C(Ω) � M1 ∀ y = (u(·), p(·)) ∈ A. (3.47)

We study the ε-entropy of the global attractor A in E. As was proved
in [34], the family of processes {Uσ(t, τ)}, σ ∈ H(σ0), corresponding to
the family of problems (3.45) satisfies the Lipschitz condition (3.6): for any
h > 0

|Uσ1(h, 0)y − Uσ2(h, 0)y| � C(h)‖σ1 − σ2‖Ξ0,h
(3.48)

for all σ1, σ2 ∈ H(σ0), y ∈ A; Ξ0,h = C([0, h];M2)×L2(0, h; L2(Ω)). More-
over, there is an explicit formula for the Lipschitz constant C(h) in [34].

As in the autonomous case (see the proof of Theorem 1.7), we write
the problem (3.45) in the form

∂tw = A(w) = Lαw − Gσ0(t)(w), w|t=τ = wτ , (3.49)

where w = (u, v) = (u, p + αu), the operator Lα is defined in (1.66), and
Gσ0(t)(w) = (0, f0(u, t)− g0(x, t)). Here, α is a real parameter to be chosen
later.

The variational equation for (3.49) has the form

∂tz = Lαz − Gσ0w(w(t))z := Aσ0w(w(t))z,

z|t=τ = zτ , z = (r, q),
(3.50)

where Gσ0w(w(t))z = (0, fu(u(t), t)r). As in the autonomous case (see [9]),
we prove that the process {Uσ0(t, τ)} of the problem (3.49) is uniformly
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quasidifferentiable on the kernel Kσ0 and the quasidifferentials are generated
by the system (3.50). We set

q̃j := lim sup
T→∞

sup
τ∈R

sup
wτ∈Kσ0(τ)

( 1

T

τ+T∫

τ

TrjAσ0w(w(t))dt
)
, j = 1, 2, . . . ,

where w(t) = Uσ0(t, τ)wτ . Arguing in the same way as in the proof of
Theorem 1.7, we obtain the following estimate for the numbers q̃j :

q̃j � qj = −(α/4)j + (C(M1)/α)j1/3 =: ϕ(j) ∀j ∈ N, (3.51)

where, owing to the inequality (see (3.47)), M1 is such that

sup{‖u(·, t)‖C(Ω̄) | t ∈ R, (u(·), ∂tu(·)) ∈ Kσ0} � M1

The function ϕ(x), x � 0, in (3.51) is concave and the root of ϕ is
d∗ = 8C1(M1)

3/2α−3 =: C(M1)α
−3. All the assumptions of Theorem 3.1

are verified. Thus, we have the following assertion.

Theorem 3.8. For any δ > 0 there exist h > 0, ε0 > 0, and η < 1
such that

Hε(A0) �
( C

α3
+ δ

)
log2

( ε0

ηε

)
+ Hε0(A0)

+ H εη
4C(h)

(Π0,h log1/η(ε0/(ηε))H(σ0)) (3.52)

for all ε � ε0, where α = min{γ/4, λ1/(2γ)} and C = C(M1) (see (3.51)).
Here, Hǫ(Π0,lH(σ0)) denotes the ǫ-entropy of the set H(σ0) measured in the
space Ξ0,l = C([0, l];M2) × L loc

2 (0, l; L2(Ω)).

Remark 3.10. We cannot apply Theorem 3.2 to the hyperbolic equa-
tion (3.45) because the function ϕ(j) in (3.51) does not satisfy (3.13).

Consider a hyperbolic equation with quasiperiodic terms. Let

f0(v, t) = Φ(v, α1t, α2t, . . . , αkt) = Φ(v, ᾱt),

g0(x, t) = G(x, α1t, α2t, . . . , αkt) = G(x, ᾱt),

where Φ(v, ω̄) ∈ C Lip(Tk;M2) and G(x, ω̄) ∈ C Lip(Tk; L2(Ω)). To obtain
the inequality (2.74), we assume that |ᾱ| �κ ≪ 1, where κ = κ(δ). Now, if
Φ(v, ω̄) satisfies the inequality

|Φω̄(v, ω̄)| � δ2
1Φ(v, ω̄) + C1 ∀ (v, ω̄) ∈ R × T

k,

then (2.74) is also valid for a small κ. Then

H(σ0) = {(Φ(v, ᾱt + θ̄), G(x, ᾱs + θ̄)) | θ̄ ∈ T
k}
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and hence

dF (H(σ0), Cb(R;M2 × L2(Ω)) = dFH(σ0) � k.

Using Theorem 3.3 we obtain the following assertion.

Theorem 3.9. The fractal dimension of the uniform global attrac-
tor A of the hyperbolic equation (3.45) with quasiperiodic symbol σ0(t) =
(Φ(v, ᾱt), G(x, ᾱt)) satisfies the estimate

dFA �
C

α3
+ k. (3.53)

To illustrate Theorem 3.9, we consider the dissipative sine-Gordon
equation with quasiperiodic forcing term

∂2
t u + γ∂tu = ∆u − β sin(u) + ψ(ᾱt)g(x), u|∂Ω = 0, Ω ⋐ R

3, (3.54)

where ψ ∈ C1(Tk; R) and g ∈ L2(Ω). Observe that the constant C in (3.52)
and (3.53) does not exceed cβ3, where c depends on Ω (see (1.69) and (1.70)).
For the global attractor A of the problem (3.54) we have the estimate

dFA � c
β3

α3
+ k. (3.55)

Remark 3.11. In the autonomous case k = 0, the estimates (3.53)
and (3.55) coincide with (1.63) and (1.72) respectively.

3.3.3. Ginzburg–Landau equation. We continue to study the nonau-
tonomous Ginzburg–Landau equation (2.112) from Section 2.6.3. Consider
the family of problems with periodic boundary conditions

∂tu = ν(1 + iα)∆u + Ru − (1 + iβ(t))|u|2u + g(x, t), x ∈ T3,
u|t=τ = uτ (x), uτ ∈ H = L2(T

3; C).
(3.56)

For the sake of simplicity, we assume that the coefficients α and R are
independent of time. The symbol σ(t) = (β(t), g(x, t)) of (3.56) belongs to
the hull H(σ0) of the original symbol σ0(t) = (β0(t), g0(x, t)). We assume
that σ0(t) is a translation compact function in C loc(R+; R)×L loc

2 (R+;H) =:
Ξ and the parameter β0(t) satisfies the inequality (2.113).

As in the autonomous case (see Section 1.4.2), we write the problem
(3.56) in the vector form

∂tu = νa∆u + Ru− f(u, β(t)) + g(x, t), u|t=τ = uτ , uτ ∈ H. (3.57)

where a =

(
1 −α
α 1

)
, f(v,β) = |v|2

(
1 −β
β 1

)
v, g(x) = (g1(x), g2(x))⊤.
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We know (see Section 2.6.3) that for every σ ∈ H(σ0) the problem
(3.56) has a unique solution u ∈ C(Rτ ;H) ∩ L loc

2 (Rτ ;V) ∩ L loc
4 (Rτ ;L4)

(see also [9, 25, 31]). Thus, for a given symbol σ0(t), the problem (3.56)
generates the family of processes {Uσ(t, τ)}, σ ∈ H(σ0), acting in H. It is
proved that the process {Uσ0(t, τ)} has the uniform global attractor A and

A =
⋃

σ∈H(σ0)

Kσ(0),

where Kσ is the kernel of {Uσ(t, τ)}. The set A is bounded in V.

In [34], the Lipschitz condition is established for the family of processes
{Uσ(t, τ)}, σ ∈ H(σ0):

‖Uσ1(h, 0)u0 − Uσ2(h, 0)u0‖H

� C(h)(‖β1 − β2‖C([0,h]) + ‖g1 − g2‖L2(0,h;H)),

∀σ1 = (β1, g1) ∈ H(σ0), σ2 = (β2, g2) ∈ H(σ0), u0 ∈ A.

(3.58)

In order to use Theorem 3.1, we need to check that the process {Uσ0(t, τ)}
corresponding to the problem (3.57) with the original symbol σ0(t) is uni-
formly quasidifferentiable on the kernel Kσ0 . This fact is proved in [34].
Recall that the variational equation for (3.57) is as follows:

∂tv = νa∆v + Rv − fu(u(t), β(t))v =: Aσ0u(u(t))v,

v|t=τ = vτ ∈ H,
(3.59)

where the Jacobi matrix fu(u, β) is defined in (1.33). As in the autonomous
case, we prove that

q̃j = lim sup
T→∞

sup
τ∈R

sup
uτ∈Kσ0(τ)

( 1

T

τ+T∫

τ

Trj(Aσ0u(u(t))dt
)

� −νC1j
5/3 + Rj =: ϕ(j) = qj , j = 1, 2, . . . ,

where u(t) = Uσ0(t, τ)uτ . Finally (see (3.11)),

d � d∗ =
( R

C1ν

)3/2

,

where d∗ is the root of the equation ϕ(x) = 0 and C1 was defined in (1.79).
Hence Theorem 3.1 is applicable to the problem (3.57) and the following
assertion holds.

Theorem 3.10. For any δ > 0 there exist h > 0, ε0 > 0, and η < 1
such that
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Hε(A) �
(( R

C1ν

)3/2

+ δ
)

log2

( ε0

ηε

)
+ Hε0(A)

+ H εη
4C(h)

(Π0,h log1/η(ε0/(ηε))H(σ0))

for all ε � ε0, where C(h) is taken from (3.58) and Hǫ(H(σ0)0,l) denotes
the ǫ-entropy of H(σ0) in C([0, l]) × L2(0, l;H).

Theorem 3.2 implies the following assertion.

Theorem 3.11. For any h > 0 there are D > 0 and ε0 > 0 such that

Hε(A) � D log2

(2ε0

ε

)
+ Hε0(A) + H ε

8C(h)
(Π0,h log2(2ε0/ε)H(σ0))

for all ε � ε0.

Consider the Ginzburg–Landau equation with quasiperiodic terms

β0(t) = B(α1t, α2t, . . . , αkt) = B(ᾱt),

g0(x, t) = G(x, α1t, α2t, . . . , αkt) = G(x, ᾱt),

where B(ω̄) ∈ C Lip(Tk; R), |B| �
√

3, and G(x, ω̄) ∈ C Lip(Tk;H). Asume
that the numbers (α1, α2, . . . , αk) =: ᾱ are rationally independent. As we
know, H(σ0) = {(B(ᾱt + θ̄), G(x, ᾱt + θ̄)) | θ̄ ∈ Tk} and

dF (H(σ0), Cb(R) × L2(R;H)) = dFH(σ0) � k

(see Section 3.2). Using Theorem 3.3 we obtain the following assertion.

Theorem 3.12. The fractal dimension of the global attractor A of
the Ginzburg–Landau equation with quasiperiodic symbol σ(s) = (B(ᾱt),
G(x, ᾱt)) satisfies the estimate

dFA �
( R

C1ν

)3/2

+ k. (3.60)

As in the case of the Navier–Stokes system, we consider the sequence
of functions Bk(ω̄k) and Gk(x, ω̄k) satisfying the above conditions. Denote
by A(k) the corresponding uniform global attractors. The inequality (3.60)
implies

dFA(k) � k + D, (3.61)

where the constant D is independent of k.

As at the end of Section 3.3.1, we can construct examples of Ginzburg–
Landau equations with terms Bk(ω̄k) and Gk(x, ω̄k) and the uniform global
attractors A(k) such that

k � dFA(k).
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Therefore, the main term k in the estimate (3.61) is precise.

4. Nonautonomous 2D Navier–Stokes System
with Singularly Oscillating External Force

We study the global attractor Aε of the nonautonomous 2D Navier–Stokes
system with singularly oscillating external force of the form

g0(x, t) + ε−ρg1(x/ε, t), x ∈ Ω ⋐ R
2, t ∈ R, 0 < ρ � 1.

If g0(x, t) and g1(z, t) are translation bounded functions in the corresponding
spaces, then the global attractor Aε is bounded in the space H (see Section
2.6.1). However, the norm ‖Aε‖H , regarded as a function of ε, can be
unbounded as ε → 0+ since the magnitude of the external force is growing.

Assuming that g1(z, t) admits the divergence representation

g1(z, t) = ∂z1G1(z, t) + ∂z2G2(z, t), z = (z1, z2) ∈ R
2,

where Gj(z, t) ∈ Lb
2(R; Z) (see Section 4.2), we prove that the global at-

tractors Aε of the Navier–Stokes system are uniformly bounded:

‖Aε‖H � C ∀ 0 < ε � 1.

We also consider the “limiting” 2D Navier–Stokes system with external
force g0(x, t). We derive an explicit estimate for the deviation of the solution
uε(x, t) of the original Navier–Stokes system from the solution u0(x, t) of
the “limiting” Navier–Stokes system with the same initial data. If g1(z, t)
admits the divergence representation and g0(x, t), g1(z, t) are translation
compact functiosn in the corresponding spaces, then we prove that the global
attractors Aε converge to the global attractor A0 of the “limiting” system
as ε → 0+ in the norm of H. In Section 4.5, we present the following explicit
estimate for the Hausdorff deviation of Aε from A0

distH(Aε,A0) � C(ρ)ε1−ρ

in the case, where the global attractor A0 is exponential (providing that the
Grashof number of the “limiting” 2D Navier–Stokes system is small).

Some problems related to homogenization and averaging of the global
attractors for the Navier–Stokes systems and for other evolution equations
in mathematical physics with rapidly (nonsingularly) oscillating coefficients
and terms were studied in [70, 79, 80, 126, 131, 128, 53, 36, 17].
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4.1. 2D Navier–Stokes system with singularly
oscillating force.

We consider the nonautonomous 2D Navier–Stokes system

∂tu + u1∂x1u + u2∂x2u = ν∆u −∇p + g0(x, t) +
1

ερ
g1(x/ε, t),

∂x1u1 + ∂x2u2 = 0, u|∂Ω = 0, x := (x1, x2) ∈ Ω, Ω ⋐ R
2,

(4.1)

where u = u(x, t) = (u1(x, t), u2(x, t)) is the velocity vector field, p = p(x, t)
is the pressure, and ν is the kinematic viscosity. In (4.1), ε is a small
parameter, 0 < ε � 1, and ρ is fixed, 0 � ρ � 1. We assume that 0 ∈ Ω.

The vector-valued functions g0(x, t) = (g01(x, t), g02(x, t)), x ∈ Ω,
t ∈ R, and g1(z, t) = (g11(z, t), g12(z, t)), z ∈ R2, t ∈ R are given. The
function g0(x, t)+ 1

ερ g1(x/ε, t) is called the external force. For every fixed ε

the external force is assumed to belong to Lloc
2 (R; L2(Ω)2) (we clarify this

assumption later). Under this condition, the Cauchy problem for (4.1) is
well studied (see, [96, 87, 117, 40, 9, 34] and Section 2.6.1).

As usual, we denote by H and V = H1 funciton spaces which are the
closures of the set

V0 := {v ∈ (C∞
0 (Ω))2 | ∂x1v1(x) + ∂x2v2(x) = 0 ∀x ∈ Ω}

in the norms | · | and ‖ · ‖ of the spaces L2(Ω)2 and H1
0 (Ω)2 respectively.

We recall that

‖v‖2 = |∇v|2 =

∫

Ω

(|∂x1v
1(x)|2 + |∂x2v

1(x)|2 + |∂x1v
2(x)|2 + |∂x2v

2(x)|2)dx.

The space V ′ = V ∗ is dual to V . We denote by P the orthogonal projection
from L2(Ω)2 onto H (see Section 1.3.1) and set

gε(x, t) = Pg0(x, t) +
1

ερ
Pg1

(x

ε
, t

)
.

Applying the operator P to both sides of the first equation in (4.1),
we exclude the pressure p(x, t) and obtain the following equation for the
velocity vector field u(x, t) :

∂tu + νLu + B(u, u) = gε(x, t), (4.2)

where L = −P∆ is the Stokes operator, B(u, v) = P [u1∂x1v + u2∂x2v] and
gε(·, t) ∈ L loc

2 (R; H). The Stokes operator L is selfadjoint and the minimal
eigenvalue λ1 of L is positive.
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We assume that the function g0(·, t) belongs to L2(Ω)2 for almost all
t ∈ R and has finite norm in the space Lb

2(R; L2(Ω)2), i.e.,

‖g0‖2
Lb

2(R;L2(Ω)2) = ‖g0‖2
Lb

2
:= sup

τ∈R

τ+1∫

τ

(‖g0(·, s)‖2
L2(Ω)2)ds < +∞. (4.3)

To describe the vector-valued function g1(z, t), z = (z1, z2) ∈ R2,
t ∈ R, we use the space Z = Lb

2(R
2
z ; R

2). By definition,

ϕ(z) = (ϕ1(z1, z2), ϕ2(z1, z2)) ∈ Z

if

‖ϕ(·)‖2
Z = ‖ϕ(·)‖2

Lb
2(R

2
z;R2) := sup

(z1,z2)∈R2

z1+1∫

z1

z2+1∫

z2

|ϕ(ζ1, ζ2)|2dζ1dζ2 < +∞.

We assume that g1(·, t) ∈ Z for almost all t ∈ R and has finite norm in the
space Lb

2(R; Z), i.e.,

‖g1(·)‖2
Lb

2(R;Z) := sup
τ∈R

τ+1∫

τ

(‖g1(·, s)‖2
Z)ds

= sup
τ∈R

τ+1∫

τ

(
sup

(z1,z2)∈R2

z1+1∫

z1

z2+1∫

z2

|g1(ζ1, ζ2, s)|2dζ1dζ2

)
ds < +∞. (4.4)

For (4.1) the initial data are imposed at arbitrary τ ∈ R :

u|t=τ = uτ , uτ ∈ H. (4.5)

For fixed ε > 0 the Cauchy problem (4.1), (4.5) has a unique solution
u(t) := u(x, t) in a weak sense, i.e., u(t) ∈ C(Rτ ; H) ∩ Lloc

2 (Rτ ; V ), ∂tu ∈
Lloc

2 (Rτ ; V ′), and u(t) satisfies (4.1) in the sense of distributions in the space
D′(Rτ ; V ′), where Rτ = [τ, +∞) (see [96, 87, 40, 9, 34, 119] and Sections
1.3.1, 2.6.1).

Recall that every weak solution u(t) of the problem (4.1) satisfies the
energy equality

1

2

d

dt
|u(t)|2 + ν‖u(t)‖2 = 〈u(t), gε(t)〉 ∀t � τ, (4.6)

where the function |u(t)|2 is absolutely continuous in t (see Section 1.3.1).

We need the following lemma proved in [34].
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Lemma 4.1. Let a real-valued function y(t), t � 0, be uniformly
continuous and satisfy the inequality

y′(t) + γy(t) � f(t) ∀ t � 0, (4.7)

where γ > 0, f(t) � 0 for all t � 0, and f ∈ L loc
1 (R+). Suppose that

t+1∫

t

f(s)ds � M ∀t � 0. (4.8)

Then

y(t) � y(0)e−γt + M(1 + γ−1) ∀t � 0. (4.9)

Using standard transformations and the Poincaré inequality, from
(4.6) we obtain the differential inequalities

d

dt
|u(t)|2 + ν‖u(t)‖2 � (νλ1)

−1|g(t)|2, (4.10)

⇓
d

dt
|u(t)|2 + νλ1|u(t)|2 � (νλ1)

−1|g(t)|2. (4.11)

Applying Lemma 4.1 to (4.11) with

y(t) = |u(t + τ)|2, f(t + τ) = (νλ1)
−1|gε(t)|2,

γ = νλ1, M = (νλ1)
−1‖gε‖2

Lb
2(R;H),

we obtain the following main a priori estimate for a weak solution u(t) of
the problem (4.1):

|u(t + τ)|2 � |u(τ)|2e−νλ1t + D‖gε‖2
Lb

2(R;H), (4.12)

where D = (νλ1)
−1(1 + (νλ1)

−1). The inequality (4.10) implies

|u(t)|2 + ν

t∫

τ

‖u(s)‖2ds � |u(τ)|2 + (νλ1)
−1

t∫

τ

|gε(s)|2ds. (4.13)

Lemma 4.2. If ϕ(z) ∈ Z = Lb
2(R

2
zR2), then ϕ(x/ε) ∈ L2(Ω)2 for all

ε > 0 and ∥∥∥ϕ
( ·

ε

)∥∥∥
L2(Ωx)2

� C‖ϕ(·)‖Lb
2(R

2
z ;R2), (4.14)

where the constant C is independent of ε and ϕ.
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Proof. Indeed, making the change of variables x/ε = z, dx = ε2dz,
we find

∥∥∥ϕ
( ·

ε

)∥∥∥
2

L2(Ω)2
=

∫

Ω

∣∣∣ϕ
(x

ε

)∣∣∣
2

dx = ε2

∫

ε−1Ω

|ϕ(z)|2dz

� C2ε−2 sup
(z1,z2)∈R2

ε2

z1+1∫

z1

z2+1∫

z2

|ϕ(ζ1, ζ2)|
2dζ1dζ2

= C2‖ϕ(·)‖2
Lb

2(R
2
z;R2).

In the last inequality, we used the fact that the domain ε−1Ω can be covered
by at most C2ε−2 unit squares of the form [z1, z1 + 1] × [z2, z2 + 1], where
C depends only on the area of the domain Ω. �

Corollary 4.1. If g0(x, t) ∈ Lb
2(R; L2(Ω)2) and g1(z, t) ∈ Lb

2(R; Z),
where Z = Lb

2(R
2
z; R

2), then the external force

gε(x, t) = Pg0(x, t) +
1

ερ
Pg1(x/ε, t)

belongs to the space Lb
2(R; H) and

‖gε‖Lb
2(R;H) � ‖g0‖Lb

2(R;L2(Ω)2) +
C

ερ
‖g1‖Lb

2(R;Z), (4.15)

where the constant C is independent of ε.

The inequality (4.15) directly follows from Lemma 4.2 and formulas
(4.3) and (4.4) for the norms in Lb

2(R; L2(Ω)2) and Lb
2(R; Z).

Using the inequality (4.15) in (4.12), we find

|u(t + τ)|2 � |u(τ)|2e−νλ1t + C2
0 + ε−2ρC2

1 , (4.16)

where C0 and C1 are constants depending on ν, λ1, and ‖g0‖Lb
2(R;L2(Ω)2),

‖g1‖Lb
2(R;Z) respectively.

We consider the process {Uε(t, τ)} := {Uε(t, τ), t � τ, τ ∈ R} corre-
sponding to the problem (4.2), (4.5) and acting in the space H (see Section
2.6.1). Recall that the mapping Uε(t, τ) : H → H is defined by the formula

Uε(t, τ)uτ = u(t) ∀uτ ∈ H, t � τ, τ ∈ R, (4.17)

where u(t) is the solution of the problem (4.2), (4.5).

By the estimate (4.16), for every 0 < ε � 1 the process {Uε(t, τ)} has
the uniformly (with respect to τ ∈ R) absorbing set

B0,ε = {v ∈ H | |v| � 2(C0 + C1ε
−ρ)} (4.18)
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which is bounded in H for fixed ε, i.e., for any bounded (in H) set B there
exists t′ = t′(B) such that U(t + τ, τ)B ⊆ B0,ε for all t � t(B) and τ ∈ R.

Arguing in a standard way, we prove that the process {Uε(t, τ)} has
the compact (in H) uniformly absorbing set

B1,ε = {v ∈ V | ‖v‖ � C2(ν, λ1, C0 + C1ε
−ρ)}, (4.19)

where C2(y1, y2, y3) is a positive increasing function in each yj , j = 1, 2, 3
(see (2.41)). Thus, the process {Uε(t, τ)} corresponding to the problem
(4.1), (4.5) is uniformly compact and has the compact uniformly absorb-
ing set B1,ε (bounded in V ) defined by formula (4.19). Consequently, the
process {Uε(t, τ)} has the uniform global attractor Aε (see Section 2.6.1)
and Aε ⊆ B0,ε ∩ B1,ε.

Since Aε ⊆ B0,ε, from (4.16) and (4.18) if follows that

‖Aε‖H � (C0 + C1ε
−ρ). (4.20)

Remark 4.1. For ρ > 0 the norm in H of the uniform global attractor
Aε of the 2D Navier–Stokes system (4.1) may grow up as ε → 0 + . In the
next sections, we present conditions providing the uniform boundedness of
Aε in H with respect to ε. We also study the convergence of Aε to the
global attractor A0 of the corresponding “limiting” equation as ε → 0+.

Along with the original Navier–Stokes system (4.1), we consider the
“limiting” system

∂tu + u1∂x1u + u2∂x2u = ν∆u −∇p + g0(x, t),

∂x1u1 + ∂x2u2 = 0, u|∂Ω = 0,
(4.21)

without the term depending on ε. Excluding the pressure, we obtain the
equivalent equation

∂tu + νLu + B(u, u) = Pg0(x, t), (4.22)

where Pg0(x, t) ∈ Lb
2(R; H). Then the Cauchy problem for (4.22) has a

unique solution u(t) := u(x, t) in the sense of distributions. Hence there
exists the “limiting” process {U0(t, τ)} acting in H : U0(t, τ)uτ = u(t),
t � τ , τ ∈ R, where u(t) is the solution of the problem (4.22), (4.5). As in
the case of (4.12) and (4.13), we have

|u(t + τ)|2 � |u(τ)|2e−νλ1t + D‖Pg0‖2
Lb

2(R;H), (4.23)

|u(t)|2 + ν

t∫

τ

‖u(s)‖2ds � |u(τ)|2 + (νλ1)
−1

t∫

τ

|Pg0(s)|2ds. (4.24)
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From (4.16) it follows that

|u(t + τ)|2 � |u(τ)|2e−νλ1t + C2
0 , (4.25)

which implies that the set

B0,0 = {v ∈ H | |v| � 2C0} (4.26)

is uniformly absorbing for the process {U0(t, τ)}. (The constant C0 is the
same as in (4.16).) Moreover, this process has the compact (in H) absorbing
set

B1,0 = {v ∈ V | ‖v‖ � C2(ν, λ1, C0)}. (4.27)

Therefore, the process {U0(t, τ)} is uniformly compact and has the compact
global attractor A0 such that A0 ⊂ B0,0 ∩ B1,0 and

‖A0‖H � C0. (4.28)

4.2. Divergence condition and properties
of global attractors Aε.

We consider the nonautonomous 2D Navier–Stokes system (4.2) with exter-
nal force

gε(x, t) = Pg0(x, t) +
1

ερ
Pg1(x/ε, t).

We assume that the function g0(x, t), x ∈ Ω, t ∈ R, satisfies (4.3), i.e.,
‖g0(·)‖2

Lb
2(R;L2(Ω)2)

< +∞ and the function g1(z, t), z ∈ R2, t ∈ R, satisfies

(4.4), i.e., ‖g1(·)‖2
Lb

2(R;Z)
< +∞, where Z = Lb

2(R
2
z ; R

2).

• Divergence condition. There exist vector-valued functions Gj(z, t) ∈
Lb

2(R; Z), j = 1, 2, such that ∂zjGj(z, t) ∈ Lb
2(R; Z) and

∂z1G1(z1, z2, t) + ∂z2G2(z1, z2, t) = g1(z1, z2, t) (4.29)

for all (z1, z2) ∈ R2, t ∈ R.

Theorem 4.1. If g1(z, t) satisfies the divergence condition (4.29),
then for every 0 � ρ � 1 the global attractors Aε of the 2D Navier–Stokes
system are uniformly (with respect to ε ∈]0, 1]) bounded in H, i.e.,

‖Aε‖H � C2 ∀ ε ∈]0, 1], (4.30)

where C2 is independent of ε.
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Proof. Taking the inner product of Equation (4.2) and u(t) in H , we
obtain the equality (4.6), i.e.,

1

2

d

dt
|u(t)|2 + ν‖u(t)‖2 = 〈u(t), gε(t)〉

= (g0(·, t), u(·, t)) + ε−ρ(g1(·/ε, t), u(·, t)). (4.31)

The first term on the right-hand side of (4.31) satisfies the inequality

(g0(·, t), u(·, t)) �
1

4
ν‖u(t)‖2 +

1

νλ1
|g0(t)|2. (4.32)

By (4.29), for the second term on the right-hand side of (4.31) we have

ε−ρ
(
g1

( ·
ε
, t

)
, u(·, t)

)
= ε−ρ

2∑

j=1

∫

Ω

(
∂zj Gj

(x

ε
, t

)
, u(x, t)

)
dx

= ε1−ρ
2∑

j=1

∫

Ω

(
∂xj Gj

(x

ε
, t

)
, u(x, t)

)
dx

= −ε1−ρ
2∑

j=1

∫

Ω

(
Gj

(x

ε
, t

)
, ∂xj u(x, t)

)
dx

� ε2(1−ρ)ν−1
2∑

j=1

∫

Ω

∣∣∣Gj

(x

ε
, t

)∣∣∣
2

dx +
1

4
ν‖u(t)‖2. (4.33)

In the third equality, we integrated by parts with respect to x taking into
account the zero boundary condition in (4.1). Substituting (4.33) and (4.32)
into (4.31), we find

d

dt
|u(t)|2 + ν‖u(t)‖2 �

2

νλ1
|g0(t)|2 + 2ε2(1−ρ)ν−1

2∑

j=1

∫

Ω

∣∣∣Gj

(x

ε
, t

)∣∣∣
2

dx.

By the Poincaré inequality,

d

dt
|u(t)|2 + νλ1|u(t)|2 � h(t), (4.34)

where

h(t) =
2

νλ1
|g0(t)|2 + 2ε2(1−ρ)ν−1

2∑

j=1

∫

Ω

∣∣∣Gj

(x

ε
, t

)∣∣∣
2

dx.
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By assumption,

t+1∫

t

|g0(t)|
2ds � ‖g0(·)‖2

Lb
2(R;L2(Ω)2) = M0 ∀t ∈ R. (4.35)

By Lemma 4.2,

t+1∫

t

∫

Ω

∣∣∣Gj

(x

ε
, t

)∣∣∣
2

dx � C‖Gj(·)‖Lb
2(R;Z) = Mj ∀t ∈ R, j = 1, 2, (4.36)

where C is independent of ε.

Using Lemma 4.1 with y(t) = |u(t+τ)|2, γ = νλ1, M = 2(νλ1)
−1M0+

2ε2(1−ρ)ν−1(M1 + M2), we obtain the following main estimate for the func-
tion u(t):

|u(t + τ)|2 � |u(τ)|2e−νλ1t + [2(νλ1)
−1M0

+ 2ε2(1−ρ)ν−1(M1 + M2)]D1, (4.37)

where D1 = (1 + (νλ1)
−1).

Since 0 � ρ � 1 and 0 < ε � 1, the inequality (4.37) implies that the
process {Uε(t, τ)} corresponding to (4.1) has the uniformly absorbing set

B̃ = {v ∈ H | |v| � C2}, (4.38)

where C2
2 = 2[2(νλ1)

−1M0 + 2ν−1(M1 + M2)]D1. It is clear that the global
attractor Aε belongs to any absorbing set, i.e.,

‖Aε‖H � C2 ∀ 0 < ε � 1, (4.39)

provided that the divergence condition (4.29) is satisfied. �

We now estimate the deviation of the solution of the original 2D
Navier–Stokes system (4.2) from the solution of the “limiting” system (4.22).
We supplement (4.2) and (4.22) with the same initial data at t = τ :

u|t=τ = uτ , u0|t=τ = uτ , uτ ∈ B̃, (4.40)

where the absorbing ball B̃ is defined by formula (4.38). Recall that the set

B̃ is independent of 0 � ρ � 1 and 0 < ε � 1.

Let u(x, t) and u0(x, t) be solutions of Equations (4.2) and (4.22) re-

spectively with the same initial data (4.40) taken from the ball B̃. Let
us estimate the deviation of u(x, t) from u0(x, t) for t � τ. Let w(x, t) =
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u(x, t) − u0(x, t). For the sake of simplicity, we set τ = 0. The function
w(x, t) satisfies the equation

∂tw + νLw + B(u, u) − B(u0, u0) =
1

ερ
Pg1

(x

ε
, t

)
(4.41)

and zero initial data

w|t=0 = 0. (4.42)

We note that

B(u, u) − B(u0, u0) = B(w, u0) + B(u0, w) + B(w, w).

Taking the inner product of Equation (4.41) and w in H , we find

1

2

d

dt
|w(t)|2 + ν‖w(t)‖2 + 〈B(w, u0), w〉

+ 〈B(u0, w), w〉 + 〈B(w, w), w〉 =
1

ερ

〈
g1

( ·
ε
, t

)
, w

〉
. (4.43)

From (1.13) it follows that 〈B(u0, w), w〉 = 0 and 〈B(w, w), w〉 = 0. There-
fore,

1

2

d

dt
|w(t)|2 + ν‖w(t)‖2 + 〈B(w, u0(t)), w〉 =

1

ερ

〈
g1

( ·
ε
, t

)
, w

〉
. (4.44)

Using the divergence condition, similarly to (4.33) we find

ε−ρ
〈
g1

( ·
ε
, t

)
, w

〉
= −ε1−ρ

2∑

j=1

∫

Ω

(
Gj

(x

ε
, t

)
, ∂xj u(x, t)

)
dx

�
1

2
ε2(1−ρ)ν−1

2∑

j=1

∫

Ω

∣∣∣Gj

(x

ε
, t

)∣∣∣
2

dx +
1

2
ν‖u(t)‖2. (4.45)

From (1.13) and (1.14) it follows that

|〈B(w, u0), w〉| = |〈B(w, w), u0〉| � c2
0|w|‖w‖‖u0‖. (4.46)

Then

|〈B(w, u0), w〉| � c2
0|w|‖u0‖‖w‖ �

1

2
ν‖w‖2 +

1

2

c4
0

ν
|w|2‖u0‖2. (4.47)

Combining (4.45) and (4.47) in (4.44), we find

d

dt
|w(t)|2 �

c4
0

ν
|w(t)|2‖u0(t)‖2 + ε2(1−ρ)ν−1

2∑

j=1

∫

Ω

∣∣∣Gj

(x

ε
, t

)∣∣∣
2

dx.
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We set

z(t) = |w(t)|2, γ(t) = c4
0ν

−1‖u0(t)‖2,

b(t) = ε2(1−ρ)ν−1
2∑

j=1

∫

Ω

∣∣∣Gj

(x

ε
, t

)∣∣∣
2

dx.

Then we obtain the differential inequality

z′(t) � b(t) + γ(t)z(t), z(0) = 0. (4.48)

Using the Gronwall lemma, we find

z(t) �

t∫

0

b(s) exp
( t∫

s

γ(θ)dθ
)
ds �

( t∫

0

b(s)ds
)

exp
( t∫

0

γ(s)ds
)
. (4.49)

Recall that u0(t) satisfies (4.24) and u0 ∈ B̃, i.e.,

t∫

0

γ(s)ds = c4
0ν

−1

t∫

0

‖u0(t)‖2ds

� c2
0ν

−2(|u0|2 +
(
νλ1)

−1

t∫

0

|g0(s)|2ds
)

� c4
0ν

−2(C2
2 + (νλ1)

−1(t + 1)‖g0(·)‖2
Lb

2(R;L2(Ω)2))

� C3(t + 1). (4.50)

By (4.36),

t∫

0

b(s)ds = ε2(1−ρ)ν−1
2∑

j=1

t∫

0

∫

Ω

∣∣∣Gj

(x

ε
, s

)∣∣∣
2

dxds

� ε2(1−ρ)ν−1C(t + 1)

2∑

j=1

‖Gj(·)‖Lb
2

� ε2(1−ρ)ν−1(t + 1)(M ′
1 + M ′

2). (4.51)

Replacing (4.50) and (4.51) with (4.49), we find

|w(t)|2 � ε2(1−ρ)ν−1(t + 1)(M ′
1 + M ′

2)e
C3(t+1)

= ε2(1−ρ)ν−1(M ′
1 + M ′

2)ε
teC3(t+1) = ε2(1−ρ)C2

4e2rt, (4.52)
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where C2
4 = ν−1(M ′

1 + M ′
2)e

C3 , 2r = C3 + 1. The constants C4 and r are
independent of ε. The inequality (4.52) holds for all 0 � ρ � 1. Thus, we
proved the following assertion.

Theorem 4.2. Let g1(z, t) satisfy the divergence condition (4.29).

Then for every initial data uτ ∈ B̃ (see (4.38)) the difference w(x, t) =
u(x, t) − u0(x, t) of the solutions of the Navier–Stokes equations (4.2) and

(4.22) respectively with the initial data (4.40) taken from the ball B̃ satisfies
the inequality

|w(t)| = |u(t) − u0(t)| � ε(1−ρ)C4e
r(t−τ) ∀ε, 0 < ε � 1, (4.53)

where the constants C4 and r are independent of ε, uτ ∈ B̃, 0 � ρ � 1.

In Section 4.4 below, using Theorems 4.1 and 4.2, we prove that the
global attractors Aε converge to A0 in the norm of H as ε → 0 + .

4.3. On the structure of global attractors Aε.

We start by considering translation compact functions with values in the
spaces L2(Ω)2 and Z. The definition of a translation compact function in
Ξ = L loc

p (R; E) with values in a Banach space E is given in Section 2.4
(see Example 2.2). Below, we consider translation compact functions in the
case, where Ξ = L loc

p (R; L2(Ω)2) and Ξ = L loc
p (R; Z).

Consider vector-valued functions g0(x, t), x ∈ Ω, t ∈ R, and g1(z, t),
z ∈ R2, t ∈ R, that appear on the right-hand side of the 2D Navier–
Stokes system. We assume that g0(x, t) ∈ Lloc

2 (R; L2(Ω)2) and g1(z, t) ∈
Lloc

2 (R; Z).

Proposition 4.1. If g1(z, t) is a translation compact function in
Lloc

2 (R; Z), then for every fixed 0 < ε � 1 the g1(x/ε, t) is a translation
compact function in Lloc

2 (R; L2(Ω)2), Ω ⋐ R2.

Proof. We need to establish that the set {g1(x/ε, t + h) | h ∈ R}
is precompact in Lloc

2 (R; L2(Ω)2). Let {hn, n = 1, 2, . . .} be an arbitrary
sequence of real numbers. Since g1(z, t) is a translation compact function
in Lloc

2 (R; Z), there is a subsequence {hn′} ⊂ {hn} such that g1(z, t + hn′)
converge to a function ĝ1(z, t) as n′ → ∞ in Lloc

2 (R; Z), i.e., for every interval
[t1, t2] ⊂ R

t2∫

t1

‖g1(·, s + hn′) − ĝ1(·, s)‖2
Zds → 0 as n′ → ∞.
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Using the inequality (4.14), we conclude that

t2∫

t1

∥∥∥g1

( ·

ε
, s + hn′

)
− ĝ1

( ·

ε
, s

)∥∥∥
2

L2(Ω)2
ds

� C2

t2∫

t1

‖g1(·, s + hn′) − ĝ1(·, s)‖2
Zds,

i.e., g1(x/ε, t + hn′) converge to ĝ1(x/ε, t) as n′ → ∞ in Lloc
2 (R; L2(Ω)2).

Thus, {g1(x/ε, t + h) | h ∈ R} is precompact in Lloc
2 (R; L2(Ω)2). �

Proposition 4.2. Suppose that g0(x, t) is a translation compact func-
tion in Lloc

2 (R; L2(Ω)2) and g1(z, t) is a translation compact function in
Lloc

2 (R; Z). Consider the function

gε(x, t) = g0(x, t) + ε−ρg1(x/ε, t)

as an element of the space Lloc
2 (R; L2(Ω)2). Then gε is a translation compact

function in Lloc
2 (R; L2(Ω)2) and the hull H(gε(x, t)) (in Lloc

2 (R; L2(Ω)2))
consists of (translation compact in Lloc

2 (R; L2(Ω)2)) functions ĝε(x, t) of the
form

ĝε(x, t) = ĝ0(x, t) + ε−ρĝ1(x/ε, t)

with some ĝ0(x, t) ∈ H(g0(x, t)), ĝ1(z, t) ∈ H(g1(z, t)), where H(g0(x, t))
and H(g1(z, t)) are the hulls of g0(x, t) and g1(z, t) respectively.

Proof. By Proposition 4.1, for fixed ε ∈ (0, 1] the function gε(x, t)
= g0(x, t) + ε−ρg1(x/ε, t) is translation compact in Lloc

2 (R; L2(Ω)2) (as the
sum of two translation compact functions). Let ĝε(x, t) ∈ H(gε(x, t)), i.e.,
there is a sequence {hn} such that gε(x, t+hn) = g0(x, t+hn)+ε−ρg1(x/ε, t+
hn) → ĝε(x, t) in Lloc

2 (R; L2(Ω)2) as n → ∞. Since g0(x, t) and g1(z, t)
are translation compact functions in Lloc

2 (R; L2(Ω)2) and Lloc
2 (R; Z) respec-

tively, we can assume, passing to a subsequence {hn′} ⊂ {hn} if necesary,
that g0(x, t+hn′) → ĝ0(x, t) in Lloc

2 (R; L2(Ω)2) and g1(z, t+hn′) → ĝ1(z, t)
in Lloc

2 (R; Z) as n′ → ∞. Therefore, gε(x, t + hn′) = g0(x, t + hn′) +
ε−ρg1(x/ε, t+hn′) → ĝ0(x, t)+ ε−ρĝ1(x/ε, t) in Lloc

2 (R; L2(Ω)2) as n′ → ∞.
Therefore,

ĝε(x, t) = lim
n→∞

[g0(x, t + hn) + ε−ρg1(x/ε, t + hn)]

= lim
n′→∞

g0(x, t + hn′) + lim
n′→∞

ε−ρg1(x/ε, t + hn′)

= ĝ0(x, t) + ε−ρĝ1(x/ε, t).
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Thus, every function ĝε(x, t) ∈ H(gε(x, t)) has the form

ĝε(x, t) = ĝ0(x, t) + ε−ρĝ1(x/ε, t)

for some ĝ0(x, t) ∈ H(g0(x, t)) and ĝ1(z, t) ∈ H(g1(z, t)). �

Consider Equation (4.2)

∂tu + νLu + B(u, u) = gε(x, t), (4.54)

where gε(x, t) = Pg0(x, t) + ε−ρPg1(x/ε, t) and ε is fixed. Assume that
g0(x, t) is a translation compact function in Lloc

2 (R; L2(Ω)2) and g1(z, t)
is a translation compact function in Lloc

2 (R; Z). In particular, g0(x, t) ∈
Lb

2(R; L2(Ω)2) and g1(z, t) ∈ Lb
2(R; Z).

Let H(gε) be the hull of the function gε(x, t) in the space Lloc
2 (R; H) :

H(gε) = [{gε(·, t + h) | h ∈ R}]Lloc
2 (R;H). (4.55)

Recall that H(gε) is compact in Lloc
2 (R; H) and, by Proposition 4.2, each

element ĝε(x, t) ∈ H(gε(x, t)) can be written in the form

ĝε(x, t) = P ĝ0(x, t) + ε−ρP ĝ1(x/ε, t) (4.56)

with some functions ĝ0(x, t) ∈ H(g0(x, t)) and ĝ1(z, t) ∈ H(g1(z, t)), where
H(g0(x, t)) and H(g1(z, t)) are the hulls of the functions g0(x, t) and g1(z, t)
in Lloc

2 (R; L2(Ω)2) and Lloc
2 (R; Z) respectively.

We note that

‖ĝ0‖Lb
2(R;L2(Ω)2) � ‖g0‖Lb

2(R;L2(Ω)2) ∀ĝ0 ∈ H(g0),

‖ĝ1‖Lb
2(R;Z) � ‖g1‖Lb

2(R;Z) ∀ĝ1 ∈ H(g1).

By Corollary 4.1,

‖ĝε‖Lb
2(R;H) � ‖g0‖Lb

2(R;L2(Ω)2) +
C

ερ
‖g1‖Lb

2(R;Z) ∀ gε ∈ H(gε), (4.57)

where the constant C is independent of g0, g1, ρ, and ε (see (4.14) and
(4.15)).

It was shown in Section 4.1 that the process {Uε(t, τ)} := {Ugε(t, τ)}
corresponding to Equation (4.54) has the uniform global attractor Aε ⊆
B0,ε ∩ B1,ε, (see (4.18) and (4.19)) and

‖Aε‖H � (C0 + C1ε
−ρ), (4.58)

where the constants C0 and C1 depend on ‖g0‖Lb
2(R;L2(Ω)2) and ‖g1‖Lb

2(R;Z)

respectively.
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Now, we describe the structure of the attractor Aε. Along with Equa-
tion (4.54), we consider the family of equations

∂tû + νLû + B(û, û) = ĝε(x, t) (4.59)

with external forces ĝε ∈ H(gε). It is clear that for every ĝε ∈ H(gε) Equa-
tion (4.59) generates the process {Ugε(t, τ)} acting in H. We note that
the processes {Ugε(t, τ)} possess properties similar to the properties of the
process {Ugε(t, τ)} corresponding to the 2D Navier–Stokes system (4.54)
with original external force gε(x, t) = Pg0(x, t) + ε−ρPg1(x/ε, t). In partic-
ular, the sets B0,ε and B1,ε are absorbing for every process {Ugε(t, τ)}, ĝε ∈
H(gε) (see (4.57)). Moreover, every process {Ugε(t, τ)} has a uniform global
attractor Agε which belongs to the global attractor Aε = Agε of the 2D
Navier–Stokes system (4.54) with initial external force gε(x, t), Agε ⊆ Agε ,
where the inclusion can be strict (see Proposition 2.3).

Proposition 4.3. Suppose that g0(x, t) is a translation compact func-
tion in Lloc

2 (R; L2(Ω)2) and g1(z, t) is a translation compact function in
Lloc

2 (R; Z). Then for any fixed 0 < ε � 1 the family of processes {Ugε(t, τ)},
ĝε ∈ H(gε), corresponding to Equation (4.59) has an absorbing set B1,ε

which is bounded in H and V and satisfies the inequality

‖B1,ε‖H � (C0 + C1ε
−ρ). (4.60)

The family {Ugε(t, τ)}, ĝε ∈ H(gε), is (H ×H(gε); H)-continuous, i.e.,

ĝε
n → ĝε in Lloc

2 (R; H) as n → ∞,

uτn → uτ in H as n → ∞,
(4.61)

implies
Ugε

n
(t, τ)uτn → Ugε(t, τ)uτ in H as n → ∞. (4.62)

The proof is similar to that of the corresponding assertions in [34] in
the case of a nonoscillating translation compact external force in Lloc

2 (R; H)).

We denote by Kgε the kernel of Equation (4.59) (and of the process
{Ugε(t, τ)}) with external force ĝε ∈ H(gε). Recall that the kernel Kgε is
the family of all complete solutions û(t), t ∈ R, of (4.59) which are bounded
in the norm of H :

|û(t)| � Mu ∀t ∈ R. (4.63)

The set Kgε (s) = {û(s) | û ∈ Kgε}, s ∈ R, in H is called the kernel section
at time t = s.

We formulate the theorem (see the proof in [34]) about the structure
of the uniform global attractor Aε of the 2D Navier-Stokes system (4.54)
(see also (2.44)).
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Theorem 4.3. If gε(x, t) is a translation compact function in the
space Lloc

2 (R; H), then the process {Ugε(t, τ)} corresponding to Equation
(4.59) has the uniform global attractor Aε and the following equality holds:

Aε =
⋃

gε∈H(gε)

Kgε(0). (4.64)

Moreover, the kernel Kgε is nonempty for all ĝε ∈ H(gε).

We note that the attractor Aε is given by the formula

Aε = ω(B0) =
⋂

h�0

[ ⋃

t−τ�h

Ugε(t, τ)B0

]

H
,

which means that for constructing the attractor Aε of the entire family
of processes {Ugε(t, τ)}, ĝε ∈ H(gε), it is possible to use only the process
{Ugε(t, τ)} of the original equation (4.54) with external force

gε = Pg0(x, t) + ε−ρPg1(x/ε, t).

All the above-mentioned results remain valid for the “limiting” 2D Navier–
Stokes system (4.22)

∂tu + νLu + B(u, u) = g0(x, t) (4.65)

with translation compact external force g0(t) := Pg0(·, t) ∈ Lloc
2 (R; H).

Equation (4.65) generates the “limiting” process {U0(t, τ)} = {Ug0(t, τ)}
which has the uniform global attractor A0 (see Section 4.1).

Consider the family of equations

∂tû + νLû + B(û, û) = ĝ0(x, t) (4.66)

with external forces ĝ0 ∈ H(g0) (the hull H(g0) is taken in the space
Lloc

2 (R; H)) and the corresponding family of processes {Ug0(t, τ)}, ĝ0 ∈
H(g0).

We can directly apply Proposition 4.3 and Theorem 4.3 to (4.65) and
(4.66) by setting g1(z, t) ≡ 0. Therefore, the family {Ug0(t, τ)}, ĝ0 ∈ H(g0),
has a uniformly absorbing set B1,0 (bounded in V ),

‖B1,0‖H � C0, (4.67)

and the family {Ug0(t, τ)}, ĝ0 ∈ H(g0), is (H×H(g0); H)-continuous. More-
over, the attractor A0 of the “limiting” equation (4.65) has the form

A0 =
⋃

g0∈H(g0)

Kg0(0), (4.68)

where Kg0 is the kernel of Equation (4.66) with external force ĝ0 ∈ H(g0).
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Formulas (4.64) and (4.68) will be used in the following section, where
we study the strong convergence of Aε to A0 as ε → 0 + .

4.4. Convergence of the global attractors Aε to A0.

Consider Equations (4.54) and (4.65), where g0(x, t) and g1(z, t) are transla-
tion compact functions in Lloc

2 (R; L2(Ω)2) and Lloc
2 (R; Z) respectively. As-

sume that the function g1(z, t) satisfies the divergence condition (4.29).
Then, by Theorem 4.1, the uniform global attractors Aε of Equations
(4.54) with external forces gε(x, t) = Pg0(x, t)+ε−ρPg1(x/εt) are uniformly
bounded in H with respect to ε :

‖Aε‖H � C2 ∀ 0 < ε � 1, (4.69)

where the constant C2 is independent of ε. We also consider the global
attractor A0 of the “limiting” equation (4.65) with external force g0(t) =
Pg0(·, t). It is clear that the set A0 is bounded in H (see (4.67)).

We need a generalization of Theorem 4.2 which can be applied to the
solutions of the entire families of equations (4.59) and (4.66).

We choose an arbitrary element uτ ∈ B̃. Let û(·, t) = Ugε(t, τ)uτ , t �

τ, be the solution of (4.59) with external force ĝε = P ĝ0 + ε−ρP ĝ1 ∈ H(gε),
and let ũ0(·, t) = Ug0(t, τ)uτ , t � τ, be the solution of (4.66) with external
force g̃0 ∈ H(g0). We assume that the initial data at t = τ for both solutions

are the same: û(·, τ) = ũ0(·, τ) = u0, u0 ∈ B̃, where the absorbing ball B̃ is
defined in (4.38). (Note that g̃0 can be different from the term ĝ0 = P ĝ0,
the first summand in the representation ĝε = P ĝ0 + ε−ρP ĝ1.) Consider the
difference

ŵ(x, t) = û(x, t) − ũ0(x, t), t � τ.

Proposition 4.4. Let the original functions g0(x, t) and g1(z, t) in
(4.1) be translation compact functions in Lloc

2 (R; L2(Ω)2) and Lloc
2 (R; Z)

respectively. Let g1(z, t) satisfy the divergence condition (4.29). Let

gε(x, t) = Pg0(x, t) + ε−ρPg1(x/ε, t), g0(x, t) = Pg0(x, t).

Then for every external force ĝε = P ĝ0 + ε−ρP ĝ1 ∈ H(gε) there exists an

external force g̃0 ∈ H(g0) such that for every initial data uτ ∈ B̃ (see (4.38))
the difference

ŵ(t) = û(t) − ũ0(t) = Ugε(t, τ)uτ − Ug0(t, τ)uτ

of the solutions of the 2D Navier–Stokes systems (4.59) and (4.66) with
external forces ĝε(x, t) = P ĝ0(x, t)+ε−ρP ĝ1(x/ε, t) and g̃0(x, t) respectively
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and with the same initial data uτ satisfies the inequality

|ŵ(t)| = |û(t) − ũ0(t)| � ε(1−ρ)C4e
r(t−τ) ∀ 0 < ε � 1, (4.70)

where the constant C4 and r are the same as in Theorem 4.2 and are inde-
pendent of ε and 0 � ρ � 1.

Proof. Consider the functions

u(t) = Ugε(t, τ)uτ , u0(t) = Ug0(t, τ)uτ ∀t � τ, (4.71)

where gε(t) = Pg0(t) + ε−ρPg1(t) and g0(t) = Pg0(t) are the original ex-
ternal forces. Using (4.71), we write the inequality (4.53) in the form

|Ugε(t, τ)uτ − Ug0(t, τ)uτ | � ε(1−ρ)C4e
r(t−τ). (4.72)

By Theorem 4.2, the inequality (4.72) holds for all uτ ∈ B̃. We claim that
(4.72) also holds for the time-shifted external forces

gε
h(t) = gε(t + h) = Pg0(t + h) + ε−ρPg1(t + h),

g0
h(t) = g0(t + h) = Pg0(t + h)

with arbitrary h ∈ R, i.e.,

|Ugε
h
(t, τ)uτ − Ug0

h
(t, τ)uτ | � ε(1−ρ)C4e

r(t−τ), (4.73)

where the constants C4 and r are independent of h. Indeed, for every
h ∈ R the time-shifted function g1h(z, t) = g1(z, t + h) apparently satis-
fies the divergence condition (4.29) for the time-shifted functions Gh

j (z, t) =

Gj(z, t+h) ∈ Lb
2(R; Z), j = 1, 2. Thus, (4.73) directly follows from Theorem

4.2.

We recall that the family of processes {Ugε(t, τ)}, ĝε ∈ H(gε), is (H ×
H(gε); H)-continuous. In particular (see (4.61) and (4.62)), for fixed uτ ∈ B̃

ĝε
n → ĝε in Lloc

2 (R; H) as n → ∞
implies

Ugε
n
(t, τ)uτ → Ugε(t, τ)uτ in H as n → ∞ (4.74)

and, similarly,

Ug0
n
(t, τ)uτ → Ug0(t, τ)uτ in H as n → ∞ (4.75)

if ĝ0
n → g̃0 as n → ∞ in Lloc

2 (R; H) for some g̃0 ∈ H(g0).

We now fix an external force ĝε = P ĝ0 + ε−ρP ĝ1 ∈ H(gε). Since ĝε(t)
is a translation compact function in Lloc

2 (R; H), there exists a sequence
{hi} ⊂ R such that

gε
hi

→ ĝε in Lloc
2 (R; H) as n → ∞, (4.76)
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where gε
hi

(t) = gε(t + hi). Consider a sequence of external forces g0
hi

=

g0(t+hi). Since g0(t) is a translation compact function in Lloc
2 (R; H), there

exists a function g̃0 ∈ H(g0) such that

g0
hi

→ g̃0 in Lloc
2 (R; H) as n → ∞ (4.77)

(where we can pass to a subsequence of hi, if necessary). From (4.73) it
follows that

|Ugε
hi

(t, τ)uτ − Ug0
hi

(t, τ)uτ | � ε(1−ρ)C4e
r(t−τ) ∀i ∈ N. (4.78)

Using (4.76) and (4.77) in (4.74) and (4.75), we pass to the limit in (4.78)
as i → ∞ and obtain the required inequality:

|Ugε(t, τ)uτ − Ug0(t, τ)uτ | � ε(1−ρ)C4e
r(t−τ). (4.79)

Thus, the inequality (4.70) is proved. �

We formulate the main result of this section.

Theorem 4.4. Assume that 0 � ρ < 1. Let g0(x, t) and g1(z, t) in
(4.1) be translation compact functions in the Lloc

2 (R; L2(Ω)2) and Lloc
2 (R; Z)

respectively, and let g1(z, t) satisfy the divergence condition (4.29). Then the
global attractors Aε of Equations (4.54) converge to the global attractor A0

of the “limiting” equation (4.65) in the norm of H as ε → 0+, i.e.,

distH(Aε,A0) → 0 as ε → 0+. (4.80)

Proof. Denote by uε an arbitrary element of Aε. By (4.64), there
exists a bounded complete solution ûε(t), t ∈ R, of Equation (4.59) with
some external force ĝε = P ĝ0 + ε−ρP ĝ1 ∈ H(gε), ĝ0 ∈ H(g0), ĝ1 ∈ H(g1),
such that

uε = ûε(0). (4.81)

Consider the point ûε(−R) which clearly belongs to Aε and hence

ûε(−R) ∈ B̃ (4.82)

(see (4.38)). Recall that B̃ is an absorbing set and the global attractor Aε

belongs to B̃. The number R will be chosen later.

For the constructed external force ĝε we apply Proposition 4.4: there

is a “limiting” external force g̃0 ∈ H(g0) such that for any τ ∈ R and uτ ∈ B̃
the following inequality holds:

|Ugε(t, τ)uτ − Ug0(t, τ)uτ | � ε(1−ρ)C4e
r(t−τ) ∀t � τ. (4.83)
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Consider the “limiting” equation (4.65) with the chosen “limiting”
external force g̃0. We set τ = −R. Let ũ0(t), t � −R, be the solution of
this equation with initial data

ũ0|t=−R = ûε(−R). (4.84)

Taking −R in place of τ and −R + t in place of t, from (4.83) (see also
(4.82)) we find

|ûε(−R + t) − ũ0(−R + t)| � ε(1−ρ)C4e
rt ∀t � 0, (4.85)

where ûε(−R + t) = Ugε(−R + t,−R)ûε(−R) and ũ0(−R + t) = Ug0(−R +
t,−R)ûε(−R).

The set A0 attracts Ug0(t + τ, τ)B̃ in H as t → +∞ (uniformly with
respect to τ ∈ R and ĝ0 ∈ H(g0), see [34]). Therefore, for any δ > 0 there
exists a number T = T (δ) such that

distH(Ug0(t + τ, τ)B̃,A0) �
δ

2
∀τ ∈ R, ĝ0 ∈ H(g0), t � T (δ).

Hence for τ = −R and ûε(−R) ∈ B̃

distH(Ug0(−R + t,−R)ûε(−R),A0) �
δ

2
∀ĝ0 ∈ H(g0), t � T (δ).

In particular, for g̃0 specified above we have

distH(ũ0(−R + t),A0) = distH(Ug0(−R + t,−R)ûε(−R),A0)

� δ/2 ∀t � T (δ). (4.86)

Recall that T (δ) is independent of uε ∈ Aε.

From (4.86) and (4.85) it follows that

distH(ûε(−R + t),A0)

� |ûε(−R + t) − ũ0(−R + t)| + distH(ũ0(−R + t),A0)

� ε(1−ρ)C4e
rt +

δ

2
∀t � T (δ). (4.87)

We set t = R = T (δ) in (4.87). Since ûε(0) = uε, we have

distH(uε,A0) = distH(ûε(0),A0) � ε(1−ρ)C4e
rT (δ) +

δ

2
∀uε ∈ Aε.

Consequently,

distH(Aε,A0) � ε(1−ρ)C4e
rT (δ) +

δ

2
∀ δ > 0. (4.88)
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Finally, for arbitrary δ > 0 we take ε0 = ε0(δ) such that

ε
(1−ρ)
0 C4e

rT (δ) = δ/2.

Thus, if ε � ε0(δ) =
( δ

2C4erT (δ)

) 1
1−ρ

, then distH(Aε,A0) � δ. Therefore,

distH(Aε,A0) → 0 as ε → 0+. �

4.5. Estimate for the distance from Aε to A0.

Consider the 2D Navier–Stokes system (4.54) in the case, where the Grashof
number of the corresponding “limiting” Navier–Stokes system (4.65) is small.
In this case, the global attractor A0 is exponential, i.e., A0 attracts bounded
sets of initial data with exponential rate as time tends to infinity. This prop-
erty allows us to estimate explicitly the distance from Aε to A0.

We consider the “limiting” system (4.65) with external force g0(t) :=
Pg0(·, t) ∈ Lloc

2 (R; H). Let the Grashof number G of this 2D Navier–Stokes
system satisfy the inequality

G :=
‖g0‖Lb

2

λ1ν2
<

1

c2
0

, (4.89)

where the constant c2
0 is taken from the inequality (1.14).

Then, by Proposition 2.4, Equation (4.65) has a unique solution zg0(t),
t ∈ R, bounded in H , i.e., the kernelKg0 consists of a single trajectory zg0(t).
This solution zg0(t) is exponentially stable, i.e., for every solution ug0(t) of
Equation (4.65)

|ug0(t + τ) − zg0(t + τ)| � C0|uτ − zg0(τ)|e−βt ∀t � 0, (4.90)

where ug0(t + τ) = Ug0(t + τ, τ)uτ and C0, β are independent of uτ , τ .

The property (4.90) implies that the set

A0 = [{zg0(t) | t ∈ R}]H =
⋃

g∈H(g0)

{zg(0)} (4.91)

is the global attractor of Equation (4.65) under the condition (4.89) (see
(2.54)).

Remark 4.2. As was shown in [16], the inequality (1.14) holds with

c2
0 =

( 8

27π

)1/2

= 0.3071 . . .. Based on the numerical result from [134], it

was also shown in [16] that c2
0 = 0.2924 . . .. This value is possibly the best

one for the inequality (1.14). Thus, (4.90) and (4.91) are valid if G < 3.42.
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Remark 4.3. The inequality (4.90) implies that the global attractor
A0 of the system (4.65) is exponential under the condition (4.89), i.e., for
any bounded set B in H

sup
τ∈R

distH(Ug0(t + τ, τ)B,A0) � C1(|B|)e−βt, (4.92)

where C1 depends on the norm of B in H

The following assertion concerns the distance from Aε to A0.

Theorem 4.5. Let the assumptions of Theorem 4.4 be satisfied. Sup-
pose that the Grashof number G of the “limiting” 2D Navier–Stokes system
satisfies (4.89). Then the Hausdorff distance (in H) from the global attrac-
tor Aε of the original 2D Navier–Stokes system (4.54) to the global attractor
A0 of the corresponding “limiting” system (4.65) satisfies the inequality

distH(Aε,A0) � C(ρ)ε1−ρ ∀ 0 < ε � 1,

where 0 � ρ < 1 and C(ρ) > 0 depends on ν, ‖g0‖Lb
2
, and ‖g1‖Lb

2
.

The proof of Theorem 4.5 is similar to that of the corresponding as-
sertion concerning the complex Ginzburg–Landau equation with singularly
oscillating terms (see Section 5.4).

Remark 4.4. In this section, we consider nonautonomous 2D Navier–
Stokes systems with singularly oscillating external forces and prove results
concerning the behavior of their global attractors. Similar assertions holds
for other nonautonomous evolution equations in mathematical physics with
singularly oscillating terms, for example, for the damped wave equation

∂2
t u + γ∂tu = ∆u − f(u) + g0(x, t) + ε−ρg1(x, t/ε), u|∂Ω = 0,

where γ > 0, 0 � ρ � ρ0, 0 < ε � 1, t ∈ R, x ∈ Ω ⋐ Rn, and g0(x, t),
g1(x, t) are translation compact functions in the corresponding spaces (see
[130])).

5. Uniform Global Attractor of Ginzburg–Landau
Equation with Singularly Oscillating Terms

In this section, we study the global attractor Aε of the nonautonomous
complex Ginzburg–Landau equation with constant dispersion parameters α,
β and singularly oscillating external force of the form g0(x, t)+ε−ρg1(x/ε, t),

x ∈ Ω ⋐ Rn, n � 3, 0 < ρ � 1. We assume that |β| �
√

3. In this
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case, the Cauchy problem for the Ginzburg–Landau equation has a unique
solution and the corresponding process {Uε(t, τ)} acting in the space H =
L2(Ω; C) has the global attractor Aε (see Sections 1.3.3 and 2.6.3). Along
with the Ginzburg–Landau equation, we consider the “limiting” equation
with external force g0(x, t). We assume that the function g1(z, t) admits
the divergence presentation

g1(z, t) =
n∑

i=1

∂z1Gi(z, t), z = (z1, . . . , zn) ∈ R
n
z ,

where the norms of Gi(z, t) are bounded in Lb
2(R;Z), Z = Lb

2(Rn
z ; C) (see

Section 5.1).

We estimate the deviation (in H) of the solutions of the original
Ginzburg–Landau equation from the solution of the corresponding “lim-
iting” equation with the same initial data.

If g1(z, t) admits the divergence representation and g0(x, t) and g1(z, t)
are translation compact functions in the corresponding spaces, we prove
that the global attractors Aε converge to the global attractor A0 of the
“limiting” system as ε → 0+ in the norm of H. We also study the case,
where the global attractor A0 of the “limiting” Ginzburg–Landau equation
is exponential. In such a situation, we obtain the following estimate for the
deviation of the global attractor Aε from A0:

distH(Aε,A0) � C(ρ)ε1−ρ ∀ 0 < ε � 1,

where the constant C(ρ) is independent of ε.

5.1. Ginzburg–Landau equation with
singularly oscillating external force.

We consider the nonautonomous Ginzburg–Landau equation

∂tu = (1 + iα)∆u + Ru − (1 + iβ)|u|2u + g0(x, t)

+
1

ερ
g1

(x

ε
, t

)
, u|∂Ω = 0,

(5.1)

where u = u1(x, t) + iu2(x, t) is the unknown complex function of x ∈ Ω ⋐

Rn and t ∈ R (see Sections 1.3.3 and 2.6.3). We assume that 0 ∈ Ω and

|β| �
√

3. (5.2)

In (5.1), 0 � ρ � 1 and ε is a small positive parameter. Let H = L2(Ω; C)
and Z = Lb

2(Rn; C). The norm in H is denoted by ‖ · ‖H. A function f(z)
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belongs to Z = Lb
2(R

n
z ; C), z = (z1, z2, . . . , zn) ∈ Rn, if

‖f(·)‖2
Z

= ‖f(·)‖2
Lb

2(Rn
z ;C)

:= sup
z∈Rn

z1+1∫

z1

· · ·
zn+1∫

zn

|f(ζ1, . . . , ζn)|2dζ1 · · · dζn < +∞. (5.3)

We assume that g0(x, t) = g01(x, t) + ig02(x, t), x = (x1, x2, . . . , xn) ∈ Rn,
belongs to the space Lb

2(R;H) and g1(z, t) = g11(z, t) + ig12(z, t), z =
(z1, z2, . . . , zn) ∈ Rn, belongs to the space Lb

2(R;Z), i.e., these functions
have finite norms

‖g0(·, ·)‖2
Lb

2(R;H) := sup
τ∈R

τ+1∫

τ

‖g0(·, s)‖2
Hds (5.4)

= sup
τ∈R

τ+1∫

τ

( ∫

Ω

|g0(x, s)|2dx
)
ds < +∞,

‖g1(·, ·)‖2
Lb

2(R;Z) := sup
τ∈R

τ+1∫

τ

‖g1(·, s)‖2
Z
ds (5.5)

= sup
τ∈R

τ+1∫

τ

(
sup
z∈Rn

z1+1∫

z1

· · ·
zn+1∫

zn

|g1(ζ1, . . . , ζn, s)|2dζ1 · · · dζn

)
ds < +∞,

where z = (z1, z2, . . . , zn).

Equation (5.1) is equivalent to the following system of two equations
for the real vector-valued function u = (u1, u2)

⊤ :

∂tu =

(
1 −α
α 1

)
∆u + Ru−

(
1 −β
β 1

)
|u|2u

+ g0(x, t) +
1

ερ
g1

(x

ε
, t

)
, (5.6)

where g0 = (g01, g02)
⊤ and g1 = (g11, g12)

⊤.

Under the above assumption, for every fixed 0 < ε � 1 the Cauchy
problem for (5.1) with initial data

u|t=τ = uτ (x), uτ (·) ∈ H, (5.7)
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where τ is arbitrary and fixed, has a unique solution u(t) := u(x, t) such
that

u(·) ∈ C(Rτ ;H) ∩ Lloc
2 (Rτ ;V) ∩ Lloc

4 (Rτ ;L4),

V = H1
0 (Ω; C), L4 = L4(Ω; C), Rτ = [τ, +∞).

(5.8)

and u(t) satisfies (5.1) in the sense of distributions in the space D′(Rτ ;H−r),
where H−r = H−r(Ω; C) and r = max{1, n/4} (recall that n = dim(Ω)).
In particular,

∂tu(·) ∈ L2(τ, T ;H−1) + L4/3(τ, T ;L4/3) ∀T > τ.

The proof of the existence of such a solution u(t) is based on the Galerkin
approximation method (see, for example, [119, 9, 34]). The proof of the
uniqueness uses the inequality (5.2) (see, for example, [34]).

We recall that if (5.2) fails, for n � 3 and arbitrary values of the
dispersion parameters α and β the uniqueness is not proved yet (see [101,
102, 136] for known uniqueness theorems).

We set ‖ · ‖ := ‖ · ‖H for brevity. Any solution u(t), t � τ, of (5.1)
satisfies the differential identity

1

2

d

dt
‖u(t)‖2 + ‖∇u(t)‖2 + ‖u(t)‖4

L4
− R‖u(t)‖2 = 〈gε(t), u(t)〉 (5.9)

for all t � τ , where gε(t) := g0(x, t)+ ε−ρg1(x/ε, t). The function ‖u(t)‖2 is
absolutely continuous for t � τ. The proof of (5.9) is similar to that of the
corresponding identity for weak solutions of the reaction-diffusion systems
considered in [34, 32] (see also [129]).

Using standard transformations and the Gronwall lemma, from (5.9)
we deduce that any solution u(t) of (5.1) satisfies the inequality

‖u(t + τ)‖2 � ‖u(τ)‖2e−2λ1t + C2
0 + C2

1ε−2ρ ∀t � 0, τ ∈ R, (5.10)

where λ1 is the first eigenvalue of the operator {−∆u, u|∂Ω = 0}, the
constant C0 depends on R and ‖g0‖Lb

2(R;H), and the constant C1 depends

on ‖g1‖Lb
2(R;Z) (see (5.4) and (5.5)). We also have the inequality

t∫

τ

∫

Ω

∣∣∣g1

(x

ε
, s

)∣∣∣
2

e−λ1(t−s)dxds � C‖g1‖2
Lb

2(R;Z) ∀t � τ, τ ∈ R, (5.11)
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where C is independent of ε. Indeed,

t∫

τ

∫

Ω

∣∣∣g1

(x

ε
, s

)∣∣∣
2

e−λ1(t−s)dxds =

t∫

τ

e−λ1(t−s)
(
εn

∫

ε−1Ω

|g1

(
z, s)|2dz

)
ds

� C′

t∫

τ

e−λ1(t−s)
(

sup
z∈Rn

z1+1∫

z1

· · ·

zn+1∫

zn

|g1(ζ1, . . . , ζn, s)|2dζ1 · · · dζn

)
ds

� C′′(λ1)‖g1‖2
Lb

2(R;Z)

since the domain ε−1Ω can be covered by C′ε−n unit boxes (see the proof
of Lemma 4.2). Hence (5.11) is true.

Integrating (5.9) with respect to time from τ to τ + t and using (5.10),
we find (see (5.4) and (5.5))

1

2
‖u(τ + t)‖2 +

τ+t∫

τ

(‖∇u(s)‖2 + ‖u(s)‖4
L4

)ds

�
1

2
‖u(τ)‖2 + R

τ+t∫

τ

‖u(s)‖2ds +

τ+t∫

τ

‖gε(s)‖ · ‖u(s)‖ds,

t∫

τ

(‖∇u(s)‖2 + ‖u(s)‖4
L4

)ds (5.12)

�
1

2
‖u(τ)‖2 + C2(t + 1) + C3

(
‖g0‖2

Lb
2(R;H) + ε−2ρ‖g1‖2

Lb
2(R;Z)

)
t.

We consider the process {Uε(t, τ)} := {Uε(t, τ) | t � τ, τ ∈ R} corre-
sponding to the problem (5.1), (5.7) and acting in the space H (see formula
(2.118)). By (5.10), the process {Uε(t, τ)} has the uniformly absorbing set

B0,ε = {v ∈ H | ‖v‖ � 2C0 + C1ε
−ρ)} (5.13)

which is bounded in H for every fixed ε > 0.

We now prove that the process {Uε(t, τ)} has the compact (in H)
uniformly absorbing set

B1,ε = {v ∈ V | ‖v‖V � C′
0 + C′

1ε
−ρ}. (5.14)
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For this purpose, we take the inner product of the first equation in (5.1)
and −t∆u in H. Making standard transformations, we find

1

2

d

dt
(t‖∇u‖2) − 1

2
‖∇u‖2 + t‖∆u‖2 − Rt‖∇u‖2

− 〈(1 + iβ)|u|2u, t∆u〉 = −〈g0, t∆u〉 − ε−ρ〈g1(x/ε), t∆u〉. (5.15)

Introduce the notation

f(v) = |v|2
(

1 −β
β 1

)
v, v = (v1, v2).

Since |β| �
√

3, the matrix f ′
v
(v) is positive definite, i.e.,

f ′
v(v)w · w � 0 ∀v = (v1, v2), w = (w1, w2), t � 0 (5.16)

(see (1.34)). Therefore, the term in (5.15) containing β is also positive.
Indeed,

− 〈(1 + iβ)|u|2u, t∆u〉 = −〈f(u), t∆u〉

= t

n∑

i=1

∫

Ω

(f ′
u(u)∂xiu,∂xiu)dx � 0 ∀t � 0. (5.17)

Integrating both sides of the equality (5.15) with respect to t and taking
into account (5.17), we find

1

2
t‖∇u(t)‖2 − 1

2

t∫

0

‖∇u(s)‖2ds +

t∫

0

s‖∆u(s)‖2ds − R

t∫

0

s‖∇u(s)‖2ds

� −
t∫

0

〈g0(s), s∆u(s)〉ds − ε−ρ

t∫

0

〈g1(x/ε, s), s∆u(s)〉ds. (5.18)

Using (5.12), from (5.18) we obtain the inequality

1

2
t‖∇u(t)‖2 + C5

t∫

0

s‖∆u(s)‖2ds � R

t∫

0

s‖∇u(s)‖2ds

+ C6

( t∫

0

s‖g0(s)‖2ds + ε−2ρ

t∫

0

s‖g1(x/ε, s)‖2ds
)
. (5.19)

Using an inequality similar to (5.11) in (5.19), we find

t‖∇u(t)‖2 � C7(t‖u(0)‖2 + t + 1 + t‖g0‖2
Lb

2(R;H) + tε−2ρ‖g1‖2
Lb

2(R;Z)).
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Assuming that u(0) ∈ B0,ε and setting t = 1, we obtain

‖∇u(1)‖ � C8(1 + ‖g0‖Lb
2(R;H) + ε−ρ‖g1‖Lb

2(R;Z)). (5.20)

It is clear that the same inequalities hold if we replace 0 and t with τ and
τ + t:

t‖∇u(τ + t)‖2 � C7(t‖u(τ)‖2 + t + 1 + t‖g0‖2
Lb

2(R;H) + tε−2ρ‖g1‖2
Lb

2(R;Z)),

Thus, if u(τ) ∈ B0,ε, then

‖∇u(τ + 1)‖ � C8(1 + ‖g0‖Lb
2(R;H) + ε−ρ‖g1‖Lb

2(R;Z)) ∀τ � 0. (5.21)

By (5.21), the set

B1,ε = {v ∈ V | ‖v‖V � C8(1 + ‖g0‖Lb
2

+ ε−ρ‖g1‖Lb
2
)} (5.22)

is uniformly absorbing for the process {Uε(t, τ)} corresponding to the Ginz-
burg–Landau equation (5.1). The set B1,ε is bounded in V and compact
in H since the embedding V ⋐ H is compact. Thus, we have proved the
following assertion.

Proposition 5.1. For any fixed ε > 0 the process {Uε(t, τ)} corre-
sponding to Equation (5.1) is uniformly compact in the space H and has the
compact uniformly absorbing set B1,ε defined by formula (5.22).

Along with the Ginzburg–Landau equation (see (5.1)), we consider the
“limiting” equation

∂tu
0 = (1 + iα)∆u0 + Ru0 − (1 + iβ)|u0|2u0 + g0(x, t), u0|∂Ω = 0, (5.23)

where the coefficients α, β, R and the external force g0(x, t) are the same as
in (5.1). In particular, the conditions (5.2) and (5.4) are satisfied. Therefore,
the Cauchy problem for this equation with initial data

u0|t=τ = uτ (x), uτ (·) ∈ H, (5.24)

has a unique solution u0(x, t) and there exists the corresponding process
{U0(t, τ)} in H : U0(t, τ)uτ = u0(t), t � τ ∈ R, where u0(t), t � τ, is a
solution of (5.23) with initial data u|t=τ = uτ . As in the case of (5.10), the
main a priory estimate for (5.23) reads

‖u0(τ + t)‖2
� ‖u0(τ)‖2e−2λ1t + C2

0 . (5.25)

Following the above reasoning, we prove that the process {U0(t, τ)}
has the uniformly absorbing set

B0,0 = {v ∈ H | ‖v‖ � 2C0}. (5.26)
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(Comparing (5.26) with (5.13), we see that the parameter ε is missing in
(5.26) since the term ε−ρg1(x/ε, t) is missing in Equation (5.23).) Moreover,
the process also has the uniformly absorbing set

B1,0 = {v ∈ V | ‖∇v‖V � C8(1 + ‖g0‖Lb
2(R;H))} (5.27)

which is bounded in V and is compact in H. Hence the process {U0(t, τ)}
corresponding to the “limiting” equation (5.23) is uniformly compact in H
and Proposition 5.1 holds for the “limit” case ε = 0.

Based on this result, it is easy to see that the processes {Uε(t, τ)}, ε >
0, and {U0(t, τ)} have the uniform global attractors Aε and A0 respectively
(see [34] and Section 2.6.3) such that

‖Aε‖H � C0 + C1ε
−ρ, ‖A0‖H � C0.

However, the above conditions on g1(z, t) are not sufficient for establishing
the uniform boundedness of Aε in H with respect to ε > 0.

Now, we formulate a condition providing the uniform boundedness
of the global attractors Aε, 0 < ε � 1. Assume that g1(z, t) satisfies the
following condition.

• Divergence condition. There exist vector-valued functions Gj(z, t) ∈
Lb

2(R;Z), j = 1, n, such that ∂zj Gj(z, t) ∈ Lb
2(R;Z) and

n∑

j=1

∂zj Gj(z, t) = g1(z, t) ∀z ∈ R
n, t ∈ R. (5.28)

Theorem 5.1. If g1(z, t) satisfies the divergence condition (5.28),
then for every 0 � ρ � 1 the global attractors Aε of the Ginzburg–Landau
equations are uniformly (with respect to ε ∈]0, 1]) bounded in H, i.e.,

‖Aε‖H � C2 ∀ ε ∈]0, 1]. (5.29)

The proof is similar to that of Theorem 4.1.

5.2. Deviation of solutions of the Ginzburg–Landau
equation.

In this section, we consider the equation (see (5.1))

∂tu = (1 + iα)∆u + Ru − (1 + iβ)|u|2u + g0(x, t)

+
1

ερ
g1

(x

ε
, t

)
, u|∂Ω = 0,

(5.30)
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where the coefficients satisfy the conditions (5.2)–(5.5) and 0 < ρ � 1. The
corresponding “limiting” equation has the form

∂tu
0 = (1 + iα)∆u0 + Ru0 − (1 + iβ)|u0|2u0 + g0(x, t), u0|∂Ω = 0. (5.31)

The initial data are imposed at t = τ :

u|t=τ = uτ (x), u0|t=τ = uτ (x), uτ (·) ∈ H. (5.32)

Suppose that u(x, t), t � τ, and u0(x, t), t � τ, are solutions of the problems
(5.30), (5.32) and (5.31), (5.32) respectively. We set w(x, t) = u(x, t) −
u0(x, t). The function w(t) := w(·, t) satisfies the equations

∂tw = (1 + iα)∆w + Rw − (1 + iβ)(|u|2u − |u0|2u0)

+
1

ερ
g1

(x

ε
, t

)
, w|∂Ω = 0

(5.33)

with initial data w(τ) = 0.

Theorem 5.2. Under the divergence condition (5.28), the difference
w(t) = u(·, t) − u0(·, t) of the solutions u(x, t) and u0(x, t) of the problems
(5.30) and (5.31) respectively with the same initial data (5.32) satisfies the
inequality

‖w(t)‖ = ‖u(·, t) − u0(·, t)‖ � Cε(1−ρ)er(t−τ) ∀t � τ, (5.34)

where

r =

{
0, R < λ1,

R − λ1 + δ, R � λ1,
(5.35)

δ > 0 is arbitrarily small, and C = C(δ) for R � λ1.

Proof. For the sake of simplicity, we assume that τ = 0. Taking the
inner product of Equation (5.33) and w in H, we find

1

2

d

dt
‖w‖2 + ‖∇w‖2 − R‖w‖2

+ 〈(1 + iβ)(|u|2u − |u0|2u0), u − u0〉 = ε−ρ
〈
g1

(x

ε
, t

)
, w

〉
. (5.36)

Since |β| �
√

3, from (5.16) it follows that

〈(1 + iβ)(|u|2u − |u0|2u0), u − u0〉 � 0 (5.37)

(see also (1.34) and [34]). From (5.36) and (5.37) we obtain

d

dt
‖w‖2 + 2‖∇w‖2 � 2R‖w‖2 + 2ε−ρ

〈
g1

(x

ε
, t

)
, w

〉
. (5.38)
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Using (5.28), we find

2ε−ρ
〈
g1

(x

ε
, t

)
, w

〉
ds = 2ε−ρ

n∑

j=1

〈
∂zj Gj

(x

ε
, t

)
, w

〉

= 2ε1−ρ
n∑

j=1

〈
∂xj Gj

(x

ε
, t

)
, w

〉
= −2ε1−ρ

n∑

j=1

〈
Gj

(x

ε
, t

)
, ∂xj w

〉

�
λ1

2δ
ε2(1−ρ)

n∑

j=1

∫

Ω

∣∣∣Gj

(x

ε
, t

)∣∣∣
2

dx +
2δ

λ1

∫

Ω

|∇w(x, t)|2dx, δ > 0. (5.39)

We claim that
∫

Ω

∣∣∣Gj

(x

ε
, t

)∣∣∣
2

dx = εn

∫

ε−1Ω

|Gj(z, t)|2dx � C‖Gj(·, t)‖2
Z. (5.40)

Here, we used an n-dimensional analog of Lemma 4.2. Hence

n∑

j=1

∫

Ω

∣∣∣Gj

(x

ε
, t

)∣∣∣
2

dx � C

n∑

j=1

‖Gj(·, t)‖2
Z

∀t ∈ R. (5.41)

By (5.39) and (5.41), we have

2ε−ρ
〈
g1

(x

ε
, t

)
, w

〉
�

(λ1

2δ
ε2(1−ρ)C

)
h(t) +

2δ

λ1
‖∇w‖2, δ > 0,

where h(t) =
n∑

j=1

‖Gj(·, t)‖2
Z
. From (5.38) it follows that

d

dt
‖w‖2 + (2 − 2δλ−1

1 )‖∇w‖2 � 2R‖w‖2 +
(λ1

2δ
ε2(1−ρ)C

)
h(t). (5.42)

Let δ < λ1. By the Poincaré inequality,

d

dt
‖w‖2 � 2(R − λ1 + δ)‖w‖2 +

(λ1

2δ
ε2(1−ρ)C

)
h(t). (5.43)

If R � λ1, then r = R − λ1 + δ > 0 and, consequently,

d

dt
‖w(t)‖2 � r‖w(t)‖2 +

(λ1

2δ
ε2(1−ρ)C

)
h(t), ‖w(0)‖2 = 0.

By the Gronwall inequality (see (4.48) and (4.49)),

‖w(t)‖2 �
(λ1

2δ
ε2(1−ρ)C

) t∫

0

h(s)er(t−s)ds. (5.44)
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Recall that Gj(z, t) ∈ Lb
2(R;Z) since g1 satisfies the divergence condition.

Therefore,

t+1∫

t

h(s)ds �

n∑

j=1

‖Gj‖2
Lb

2(R;Z) =: M (5.45)

and, consequently,

t∫

0

h(s)e−rsds =

1∫

0

h(s)e−rsds +

2∫

1

h(s)e−rsds + . . . +

t∫

[t]

h(s)e−rsds

�

1∫

0

h(s)ds + e−r

2∫

1

h(s)ds + . . . + e−[t]

t∫

[t]

h(s)ds

� M(1 + e−r + . . . + e−[t]) � M(1 + e−r + . . .)

=
M

1 − e−r
� M(1 + r−1).

Using this estimate in (5.45), we obtain

‖w(t)‖2 �
(λ1

2δ
ε2(1−ρ)CM(1 + r−1)

)
ert ∀t � 0, (5.46)

i.e.,

‖w(t)‖ � C(δ)ε(1−ρ)ert,

where r = R − λ1 + δ and C(δ) = (δ−12−1λ1CM(1 + r−1))1/2. If R < λ1,
then −r1 = R−λ1 + δ < 0 for sufficiently small δ > 0. Then from (5.43) we
deduce

d

dt
‖w‖2 � −r1‖w‖2 +

(λ1

2δ
ε2(1−ρ)C

)
h(t). (5.47)

By Lemma 4.1 and (5.45),

‖w(t)‖2 � ‖w(0)‖2e−r1t + 2−1δ−1λ1CM(1 + r−1
1 )ε2(1−ρ) ∀t � 0,

and, since w(0) = 0,

‖w(t)‖ � C(δ)ε(1−ρ),

where C(δ) = (2−1δ−1λ1CM(1 + r−1
1 ))1/2 and r1 = λ1 − R − δ > 0. The

inequality (5.34) is proved. �
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5.3. On the structure of attractors Aε and A0.

Consider the Ginzburg–Landau equation (see (5.30))

∂tu = (1 + iα)∆u + Ru − (1 + iβ)|u|2u + gε(x, t), u|∂Ω = 0, (5.48)

where ε is fixed and gε(x, t) = g0(x, t) + ε−ρg1(x/ε, t) is the time symbol
(see Section 2.4). Assume that g0(x, t) is a translation compact function in
Lloc

2 (R;H) and g1(z, t) is a translation compact function in Lloc
2 (R;Z). In

particular, g0(x, t) ∈ Lb
2(R;H) and g1(z, t) ∈ Lb

2(R;Z).

Let H(gε) be the hull of the symbol gε(x, t) in the space Lloc
2 (R;H) :

H(gε) = [{gε(·, t + h) | h ∈ R}]Lloc
2 (R;H). (5.49)

Recall that H(gε) is compact in Lloc
2 (R;H) and every element ĝε(x, t) ∈

H(gε(x, t)) can be written in the form

ĝε(x, t) = ĝ0(x, t) + ε−ρĝ1(x/ε, t) (5.50)

with some functions ĝ0 ∈ H(g0) and ĝ1 ∈ H(g1), where H(g0) and H(g1) are
the hulls of the functions g0(x, t) and g1(z, t) in Lloc

2 (R;H) and Lloc
2 (R;Z)

respectively (see Proposition 4.2 which remains true for the n-dimensional
complex spaces H and Z).

As was shown in Section 5.1, the process {Uε(t, τ)} := {Ugε(t, τ)}
corresponding to (5.48) has the uniform global attractor Aε ⊆ B0,ε ∩ B1,ε

(see (5.13) and (5.14)) and

‖Aε‖H � (C0 + C1ε
−ρ). (5.51)

Now, we describe the structure of the attractor Aε. Along with Equa-
tion (5.48), we consider the family of equations

∂tû
ε = (1 + iα)∆ûε + Rûε − (1 + iβ)|ûε|2ûε + ĝε(x, t), ûε|∂Ω = 0 (5.52)

with symbols ĝε ∈ H(gε). It is clear that for every ĝε ∈ H(gε) Equa-
tion (5.52) generates the process {Ugε(t, τ)} acting in H. We note that
the processes {Ugε(t, τ)} possess properties similar to the properties of the
process {Ugε(t, τ)} corresponding to the Ginzburg–Landau equation (5.48)
with original symbol gε(x, t) = g0(x, t) + ε−ρg1(x/ε, t). In particular, the
sets B0,ε and B1,ε are absorbing for each process of the family {Ugε(t, τ)},
ĝε ∈ H(gε).

We denote by Kgε the kernel of the system (5.52) (and of the process
{Ugε(t, τ)}) with symbol ĝε ∈ H(gε).
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We formulate the theorem on the structure of the uniform global at-
tractor Aε of the Ginzburg–Landau equation (5.48) (see Section 2.6.3 and
(2.122)).

Theorem 5.3. If gε(x, t) is a translation compact function in the
space Lloc

2 (R;H), then the process {Ugε(t, τ)} corresponding to (5.52) has
the uniform global attractor Aε and

Aε =
⋃

gε∈H(gε)

Kgε(0); (5.53)

moreover, the kernel Kgε is nonempty for every ĝε ∈ H(gε).

All the above results are valid for the “limiting” Ginzburg–Landau
equation (see (5.31))

∂tu
0 = (1 + iα)∆u0 + Ru0 − (1 + iβ)|u0|2u0 + g0(x, t), u0|∂Ω = 0, (5.54)

with translation compact symbol g0(t) := g0(·, t) ∈ Lloc
2 (R;H). Equation

(5.54) generates the “limiting” process {U0(t, τ)} := {Ug0(t, τ)} which has
the uniform global attractor A0 (see Section 5.2).

Consider the family of equations

∂tû
0 = (1 + iα)∆û0 + Rû0 − (1 + iβ)|û0|2û0 + ĝ0(x, t), û0|∂Ω = 0, (5.55)

with symbols ĝ0 ∈ H(g0) and the family of processes {Ug0(t, τ)}, ĝ0 ∈
H(g0). Note that we can apply Theorem 5.3 directly to (5.54) and (5.55) by
setting g1(z, t) ≡ 0. Therefore, the attractor A0 of the “limiting” equation
(5.54) has the form

A0 =
⋃

g0∈H(g0)

Kg0(0), (5.56)

where Kg0 is the kernel of (5.55) with symbol ĝ0 ∈ H(g0).

5.4. Convergence of Aε to A0 and estimate for deviation.

All the results of Sections 4.3 and 4.4 can be also established for the Ginz-
burg–Landau equation. We consider (5.48) and (5.54), where g0(x, t) and
g1(z, t) are translation compact functions in Lloc

2 (R;H) and Lloc
2 (R;Z) re-

spectively. Assume that g1(z, t) satisfies the divergence condition (5.28).
Then, by Theorem 5.1, the uniform global attractors Aε of (5.48) with ex-
ternal forces gε(x, t) = g0(x, t) + ε−ρg1(x/ε, t) are uniformly (with respect
to ε) bounded in H:

‖Aε‖H � C2 ∀ 0 < ε � 1. (5.57)
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We also consider the global attractor A0 of the “limiting” equation (5.54)
with external force g0(t) = g0(·, t).

We need to generalize Theorem 5.2 in order to apply the estimate
(5.34) to the families of equations (5.52) and (5.55).

Consider an arbitrary initial data uτ ∈ H. Let ûε(·, t) = Ugε(t, τ)uτ ,
t � τ, be the solution of (5.52) with symbol ĝε = ĝ0 + ε−ρĝ1 ∈ H(gε),
and let ũ0(·, t) = Ug0(t, τ)uτ , t � τ, be the solution of (5.55) with symbol
g̃0 ∈ H(g0) and the same initial data. We note that the symbol g̃0 can be
different from the function ĝ0 = ĝ0 in the representation ĝε = ĝ0 + ε−ρĝ1.
Consider the difference

ŵ(x, t) = ûε(x, t) − ũ0(x, t), t � τ.

Proposition 5.2. Let g0(x, t) and g1(z, t) in (5.1) be translation com-
pact functions in the spaces Lloc

2 (R;H) and Lloc
2 (R;Z) respectively, and let

g1(z, t) satisfy the divergence condition (5.28). Let

gε(x, t) = g0(x, t) + ε−ρg1(x/ε, t), g0(x, t) = g0(x, t).

Then for every symbol ĝε = ĝ0 + ε−ρĝ1 ∈ H(gε) there exists a symbol g̃0 ∈
H(g0) such that for every initial data uτ ∈ H the difference

ŵ(t) = ûε(t) − ũ0(t) = Ugε(t, τ)uτ − Ug0(t, τ)uτ

of the solutions of the Ginzburg–Landau equations (5.52) and (5.55) with
symbols ĝε(x, t) = ĝ0(x, t) + ε−ρĝ1(x/ε, t) and g̃0(x, t) respectively and the
same initial data uτ satisfies the inequality

‖ŵ(t)‖ = ‖ûε(·, t) − ũ0(·, t)‖ � Cε(1−ρ)er(t−τ) ∀t � τ, (5.58)

where the constants C and r are the same as in Theorem 5.2 and are inde-
pendent of ε and 0 � ρ � 1.

The proof is similar to that of Proposition 4.4.

We formulate an analog of Theorem 4.4 about the strong convergence
of the global attractors Aε of the Ginzburg–Landau equation (5.30) to the
global attractor A0 of the “limiting” equation (5.31) as ε → 0 + .

Theorem 5.4. Assume that 0 � ρ < 1. Let g0(x, t) and g1(z, t)
in (5.30) be translation compact functions in the spaces Lloc

2 (R;H) and
Lloc

2 (R;Z) respectively, and let g1(z, t), z ∈ Rn, satisfy the divergence con-
dition (5.28). Then the global attractors Aε of (5.30) converge to the global
attractor A0 of the “limiting” equation (5.31) in the norm of H as ε → 0+,
i.e.,

distH(Aε,A0) → 0 as ε → 0+. (5.59)
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The proof is similar to that of Theorem 4.4.

Using Proposition 2.13, we estimate distH(Aε,A0) explicitly under the
assumption that the global attractor A0 is exponential. Let

R � λ1 − κ ∀t ∈ R, (5.60)

where κ > 0 and λ1 is the first eigenvalue of the operator {−∆, u|∂Ω =
0}. Then the global attractor has simple structure. We reformulate the
corresponding results from Section 2.6.3.

Proposition 5.3. Let the assumptions of Theorem 5.4 hold, and let
R satisfy the inequality (5.60). Then the following assertions hold.

(i) For every ĝ0 ∈ H(g0) there exists a unique bounded (in H) com-
plete solution zg0(t), t ∈ R, of (5.55) with symbol ĝ0, i.e., the kernel Kg0

consists of a single element zg0 and, in this case, formula (5.56) for the
global attractor A0 has the form

A0 =
⋃

g0∈H(g0)

{zg0(0)}. (5.61)

(ii) The complete solution zg0(t), t ∈ R, attracts any solution ûg0(t) =
Ug0(t, τ)uτ , t � τ, with exponential rate:

‖ûg0(t) − zg0(t)‖ � ‖ûg0(τ) − zg0(τ)‖e−κ(t−τ) ∀t � τ, τ ∈ R, (5.62)

and, consequently, the global attractor A0 is exponential, i.e.,

sup
g0∈H(g0)

distH(Ug0(t, τ)B,A) � Ce−κ(t−τ), C = C(‖B‖H), (5.63)

where B is a bounded (in H) set of initial data and κ is taken from the
condition (5.60).

From Propositions 5.2 and 5.3, we obtain the following assertion.

Theorem 5.5. Let 0 < ρ < 1. Suppose that the assumptions of Theo-
rem 5.4 and the condition (5.60) are satisfied. Then the Hausdorff distance
(in H) from the global attractor Aε to the “limiting” global attractor A0

satisfies the inequality

distH(Aε,A0) � C(ρ)ε1−ρ ∀0 < ε � 1. (5.64)

Proof. We fix ε. Let uε be an arbitrary element of Aε. By (5.53),
there exists a bounded complete solution ûε(t), t ∈ R, of (5.48) with some
symbol ĝε = ĝ0(x, t) + ε−ρĝ1(x/ε, t) ∈ H(gε) such that

ûε(0) = uε. (5.65)
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Consider the point ûε(−T ) which clearly belongs to Aε. From (5.57) it
follows that

‖ûε(−T )‖ � C2, (5.66)

where C2 is independent of ε and T .

We apply Proposition 5.2 for the constructed external force ĝε: there
is a “limiting” external force g̃0 ∈ H(g0) such that for any τ ∈ R and uτ ∈ H

‖Ugε(t + τ, τ)uτ − Ug0(t + τ, τ)uτ‖ � Cε(1−ρ) ∀t � 0, (5.67)

where r = 0 since R < λ1 (see (5.35)). Here, C is independent of uτ .

Consider the “limiting” equation (5.55) with the chosen “limiting”
external force g̃0. We set τ = −R. Let ũ0(t), t � −T , be the solution of
this equation with initial data

ũ0|t=−T = ûε(−T ). (5.68)

By Proposition 5.3, there exists a unique bounded complete solution z0(t),
t ∈ R, of (5.55) with symbol g̃0 such that

‖ũ0(−T + t) − z0(−T + t)‖ � ‖ũ0(−T )− z0(−T )‖e−κt ∀t � 0. (5.69)

Recall that z0(t) ∈ A0 for all t ∈ R. Therefore,

‖z0(−T )‖ � ‖A0‖ � C′, (5.70)

where C′ is independent of z0 and T. By (5.68) and (5.66),

‖ũ0(−T )‖ = ‖ûε(−T )‖ � C2. (5.71)

From (5.69), (5.70), and (5.71) it follows that

‖ũ0(−T + t) − z0(−T + t)‖ � C′′e−κt ∀t � 0, (5.72)

where C′′ = C′ + C2.

Setting τ = −T in (5.67), we have

‖ûε(−T + t) − ũ0(−T + t)‖
= ‖Ugε(t + τ, τ)uτ − Ug0(t + τ, τ)uτ‖ � Cε(1−ρ) ∀t � 0. (5.73)

Using (5.72) and (5.73), we find

‖ûε(−T + t) − z0(−T + t)‖
� ‖ûε(−T + t) − ũ0(−T + t)‖ + ‖ũ0(−T + t) − z0(−T + t)‖
� Cε(1−ρ) + C′′e−κt. (5.74)
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We choose T from the equation ε(1−ρ) = e−κT , i.e., T =
1 − ρ

κ
log(1/ε) and

substitute t = T in (5.74). Then

‖ûε(0) − z0(0)‖ � (C + C′′)ε(1−ρ)

and, consequently,

distH(uε,A0) � ‖uε − z0(0)‖ = ‖ûε(0) − z0(0)‖ � C(ρ)ε(1−ρ),

where C(ρ) = (C + C′′). Since uε is an arbitrary point of Aε, we have
distH(Aε,A0) � C(ρ)ε(1−ρ). �

Remark 5.1. In the case R < λ1, Proposition 5.3 holds for (5.48) with
symbols gε(x, t) = g0(x, t) + ε−ρg1(x/ε, t) and for the family of equations
(5.52) with symbols ĝε ∈ H(gε) (see Proposition 2.13 and Corollary 2.9).
In particular, the global attractor Aε of (5.48) is exponential, as well as the
global attractor A0, and the attraction rate is the same.

Remark 5.2. In fact, the inequality (5.64) holds (with some other
constant C) for the symmetric distance dists

H
(Aε,A0) = distH(Aε,A0) +

dists
H(A0,Aε):

dists
H(Aε,A0) � C1(ρ)ε1−ρ ∀ 0 < ε � 1.

This result relies on the property of the exponential attraction of solutions
to the global attractor Aε, mentioned in Remark 5.1.
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48. A. Douady and J. Oesterlé, Dimension de Hausdorff des attracteurs
[in French], C. R. Acad. Sci. Paris Sér. I textbf290, (1980), 1135–1138.

49. A. Eden, C. Foias, and R. Temam, Local and global Lyapunov expo-
nents, J. Dyn. Differ. Equations 3 (1991), no. 1, 133–177.

50. A. Eden, C. Foias, B. Nicolaenco, and R. Temam, Exponential Attrac-
tors for Dissipative Evolution Equations, John Wiley and Sons, New
York, 1995.

51. M. Efendiev, A. Miranville, and S. Zelik, Exponential attractors for a
nonlinear reaction-diffusion system in R3, C. R. Acad. Sci. Paris Sér.
I 330 (2000), 713–718.

52. M. Efendiev, S. Zelik, and A. Miranville, Exponential attractors and
finite-dimensional reduction for nonautonomous dynamical systems,
Proc. R. Soc. Edinb., Sect. A, Math. 135 (2005), no. 4, 703–730.

53. M. Efendiev and S. Zelik, Attractors of the reaction–diffusion systems
with rapidly oscillating coefficients and their homogenization, Ann.
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Recent Results in Large Amplitude

Monophase Nonlinear Geometric Optics
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For quasilinear first order systems the standard regime is weakly nonlinear geomet-

ric optics which considers near some background state perturbations of amplitude

ε with wave length ε ∈]0, 1] (ε → 0). However, when the oscillations are associ-

ated to a linearly degenerate mode, stronger waves can also be considered. The

question of the existence, propagation, and interaction of such larger amplitude

waves is the matter of supercritical Wentzel–Kramers–Brillouin analysis. Some

recent results in this direction and, in particular, the case of incompressible Euler

equations are described. Bibliography: 22 titles.

1. Introduction

We start with a general presentation.

1.1. Background results in nonlinear geometric optics.

Many works are devoted to the study of high frequency oscillatory waves

uε(t, x) ∼ uε
a(t, x) :=

∞
∑

j=0

εj/lUj(t, x, ϕε(t, x)/ε), ε → 0, (1.1)
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which satisfy quasilinear first order systems

∂tu +

d
∑

j=1

Aj(t, x,u)∂xju + f(t, x,u) = 0. (1.2)

Here, ε ∈]0, 1] is a small parameter (going to 0), the profiles Uj(t, x, θ) are
periodic in the θ variable, the phase ϕε(t, x) is a real function, l and d are
positive fixed integers. We will work with oscillations in the space variable,
assuming that

ϕε(t, x) =

l−1
∑

j=0

εj/lϕj(t, x), ∇xϕ0 �≡ 0. (1.3)

In the notation

uε
a(t, x) = Uε

a(t, x, ϕε(t, x)/ε), Uε
a(t, x, θ) :=

∞
∑

j=0

εj/lUj(t, x, θ),

the expression uε
a is interpreted as a monophase oscillation. Since ϕε can

depend on ε ∈]0, 1] through (1.3), we have

uε
a(t, x) =

∞
∑

j=0

εj/lŨj

(
t, x,

ϕ0(t, x)

ε
,
ϕ1(t, x)

ε1−(1/l)
, · · · ,

ϕl−1(t, x)

ε1/l

)
(1.4)

with

Ũj(t, x, θ0, θ1, · · · , θl−1) := Uj(t, x, θ0 + θ1 + · · · + θl−1) ∀j ∈ N. (1.5)

We see in (1.4) that multiphase and multiscale features are also present. Of
course, due to (1.5), they are organized in a very particular manner.

The goal is to construct families {uε}ε which are solutions to (1.2) on
some open domain Ω ⊂ R × Rd independent of ε ∈]0, 1] and which satisfy
the asymptotic behavior (1.1). This requires to identify the terms Uj and
ϕj in order to build approximate solutions uε

a meaning that

fε
a := ∂tu

ε
a +

d∑

j=1

Aj(t, x,uε
a)∂xj u

ε
a + f(t, x,uε

a) = O(εN )

for some N ≫ 1. This includes also to study the validity of the nonlinear
geometric optics approximation uε

a. We want to know if there exists some
solution uε of (1.2) corresponding to uε

a.

Looking at oscillations such as uε
a is a way to point some special mech-

anisms of nonlinear interaction. These mechanisms can be hidden in the
original full set of Equations (1.2). On the other hand, they can be visible
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at the level of the transport equations giving rise to the profiles Uj or even
at the level of the eikonal equations yielding the phases ϕj .

The use of (1.1) implies that the smallest wavelength in uε is fixed: it
is ε. Then the analysis depends crucially on the amplitude of the oscillation.

(i) If

∃j ∈ {0, · · · , l − 1}; ∂θUj �≡ 0, (1.6)

the regime is called supercritical. The problem may as well be ill-posed.
Due, for instance, to the formation of shocks, it could be not possible to find
smooth solutions uε of (1.2) satisfying (1.1) on some open set Ω ⊂ R×Rd

with Ω independent of ε ∈]0, 1].

(ii) If

∂θUj ≡ 0 ∀j ∈ {0, · · · , l}, (1.7)

the analysis is of reduced interest: the transport equations for all Uj are
linear and expansions similar to (1.1) are easily justified.

(ii) If

∂θUl �≡ 0, ∂θUj ≡ 0 ∀j ∈ {0, · · · , l − 1}, (1.8)

the regime is called critical. This situation is more interesting. It is the
matter of weakly nonlinear geometric optics, a theory which seems mainly
achieved (see [16, 17, 13, 14, 21] and the related references).

However, the above general picture, insisting on the relevance of (1.8),
is proving to be not convenient in many physical situations. This happens
when the transport equation for Ul is linear instead of being nonlinear,
meaning that some interaction coefficients are trivial. Then to exhibit non-
linear phenomena, waves of larger amplitude must be involved. The super-
critical regime becomes the situation to deal with. This typically occurs
when the wave uε is associated to a linearly degenerate mode.

1.2. Propagation of oscillations on a linearly degenerate field.

All linearly degenerate modes do not share the same properties. They can
be classified according to the transparency conditions which they induce [7].
Consider, for instance, the model of entropic gas dynamics

∂t̺ + (u · ∇x)̺ + ̺ divx u = 0,

∂tu + (u · ∇x)u + ̺−1∇xp = 0,

∂ts + (u · ∇x)s = 0,

(1.9)
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where the pressure p is given by a state relation p = P (̺, s). In (1.9),
entropy waves (carried by the component s) must be distinguished from
speed waves (related to some well polarized components of u).

Concerning entropy waves, a complete discussion is accessible [8]. We
can face (1.9) in the case (1.6) even if we deal with large amplitude oscilla-
tions (∂θS0 �≡ 0). This includes some sort of stability results.

On the contrary, the study of speed waves can lead to violent insta-
bility phenomena. Fix l = 2. Suppose that U0(t, x, θ) = u0(t, x) is a given
solution of (1.2). Seek U1 with ∂θU1 �≡ 0. Select any m ∈ N∗. Then it is
possible to find two families {uε}ε and {ũε}ε of solutions to (1.2) adjusted
in such a way that

‖ uε(0, ·) − ũε(0, ·) ‖L2= O(εm), (1.10)

whereas, at the time tε = −mε ln ε, we find

‖ uε(tε, ·) − ũε(tε, ·) ‖L2 �= o(ε). (1.11)

In fact, the linearized equations of (1.2) along uε
a give rise to an amplification

factor of size O(ect/ε) with c > 0. Small O(εm) error terms can therefore
be multiplied by ect/ε yielding an O(1) modification at the time tε. In [7],
this linear mechanism is shown to pass to the nonlinear framework (1.2).

The amplification phenomenon (1.10), (1.11) can be due to various
reasons. The structure of the background solution u0 can suffice to engage
it. Even if u0 is some constant basic state, the arbitrary oscillations con-
tained in the small remainder fε

a (especially the oscillations according to
phases which are transversal to ϕ0) can interact with uε

a in a way to affect
at the time tε the leading order term in the expansion uε

a. Such phenomena
have motivated many recent contributions, all issued from the pioneering
works [11, 15, 20]. The situation is still far to be completely understood.

A common idea in science texts is that partial differential equations
depend on parameters which are only known approximately. Therefore,
an infinitely accurate approximation is for all practical purposes as good
as an exact solution. Following this remark, the justification of nonlinear
geometric optics is often regarded as working only towards mathematical
ends.

The instability results alluded above seem to go in the opposite direc-
tion. Their interpretation is that, in supercritical WKB regimes, the replies
given by nonlinear systems are very sensitive to the selection of the para-
meters or initial data which are involved. This would incline to stop from
making determinist predictions.
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For all that, these considerations do not mean that exact or even for-
mal supercritical WKB expansions have no signification. Certainly, nothing
guarantees that the behavior coded in uε or uε

a is physically selected. Yet,
the nonlinear phenomena which intervene in the construction of uε or uε

a

are susceptible of occurring. This is the reason why they have not only
theoretical consequences, but also practical interests.

2. Case of Incompressible Euler Equations

The incompressible Euler equations

∂tu + (u · ∇x)u + ∇xp = 0, divx u = 0 (2.1)

do not fall exactly within the scope (1.2). Yet, the evolution of u in (2.1)
can inherit some analogies with the evolution of the speed waves alluded
above. Up to certain extent, we can say that the divergence free condition
forces the wave u to have the behavior of a linearly degenerate speed mode
(even if this mechanism is distorted by the influence of the pressure term).
This fact is clear below when examining (2.1) in the case (1.8).

2.1. Weakly nonlinear geometric optics.

Weakly nonlinear geometric optics for (2.1) has not attracted many atten-
tion, probably because this is just an adaptation of general results stated
about (1.2). Yet, let us recall briefly what happens when doing formal
computations. Look at expansions uε(t, x) and pε(t, x) having the form
(1.1) in the case (1.8). In other words, uε(t, x) ∼ Uε(t, x, ϕε(t, x)/ε) and
pε(t, x) ∼ Pε(t, x, ϕε(t, x)/ε) as ε → 0 with

Uε(t, x, θ) = u0(t, x) + εUl(t, x, θ) + O(ε(l+1)/l),

P
ε(t, x, θ) = p0(t, x) + εpl(t, x) + ε2P2l(t, x, θ) + O(ε(2l+1)/l).

(2.2)

We want to adjust the various ingredients composing uε and pε so that they
furnish a solution of (2.1). Select some background solution of (2.1) made
of u0(t, x) and p0(t, x). Keep in mind to impose the eikonal equation

∂tϕ
ε + (Ūε · ∇x)ϕε = 0, (2.3)

where Ūε is the mean value of the profile Uε, i.e.,

Ūε(t, x) =

∫

T

Uε(t, x, θ)dθ, Uε∗(t, x, θ) := Uε(t, x, θ) − Ūε(t, x).
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Observe that (2.3) contains

∂tϕ0 + (u0 · ∇x)ϕ0 = 0. (2.4)

Now, formal computations indicate that the divergence free condition im-
plies

divx Ūl = 0, ∇xϕ0 · ∂θU
∗
l = 0. (2.5)

Plug uε and pε as above in (2.1). Expand with respect to the powers of
ε ∈]0, 1]. Use (2.3), (2.4), and (2.5) to simplify. The contribution which
remains with ε in factor is

∂tUl + (u0 · ∇x)Ul + (Ul · ∇x)u0 + ∇xpl + ∂θP2l∇xϕ0 = 0. (2.6)

There is no difficulty to solve the system (2.5), (2.6). Start by extracting
Ūl and pl from

∂tŪl + (u0 · ∇x)Ūl + (Ūl · ∇x)u0 + ∇xpl = 0, divx Ūl = 0. (2.7)

Then, noting that Π0(t, x) is the orthogonal projector onto the hyper-
plane ∇xϕ0(t, x)⊥ := {v ∈ Rd;∇xϕ0(t, x) · v = 0}, it suffices to identify
Π0U

∗
l through the transport equation

(∂t + u0 · ∇x)Π0U
∗
l + (Π0U

∗
l · ∇x)u0 − (∂tΠ0 + (u0 · ∇x)Π0)Π0U

∗
l = 0.

By (2.5), we have U∗
l = Π0U

∗
l .

Observe that these manipulations involve only linear equations (to
identify the main profile Ul). This indicates that the regime (1.8) is not
optimal within the framework (2.1). Again, this brings to consider stronger
waves (i.e., waves of larger amplitudes). Keeping in mind the specific struc-
ture of (2.1), some special supercritical WKB analysis is needed to do that.

Precisely, the purpose of the next two sections is to review recent
results in this direction, revealing in particular new nonlinear effects. From
now on, the task is to construct expressions uε which are given by (1.1) in
the case (1.6) and which are solutions to (2.1).

2.2. Creation of new scales by nonlinear interaction.

The hypothesis (1.6) can be separated in situations corresponding to grow-
ing difficulties. The first case to appear is when

l = 2, ∂θU0 ≡ 0, ∂θU1 �≡ 0. (2.8)

This regime (2.8) is the one of strong oscillations. The WKB construction
can still be achieved in full generality (see [7]). However, phenomena of
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amplification like (1.10), (1.11) do occur and they prevent to show by usual
methods the existence of exact solutions uε close to uε

a.

A way to get round this difficulty consists in adding some well adjusted
anisotropic vanishing viscosity. On one hand, the viscosity is small enough
in the direction ∇xϕε(t, x) to allow us the propagation of oscillations like
(1.1). On the other hand, it is large enough in all the other directions to
kill by dissipation the transversal oscillations. It follows that it becomes
possible to justify the nonlinear geometric optics. This is basically this
argument which is exploited in [3, Theorem 1] and [4, Theorem 5.1].

Consider again (2.1), but now in the case

l � 3, ∂θU0 ≡ 0, ∂θU1 �≡ 0. (2.9)

The situation (2.9) is more captivating for two main reasons:

i) Mathematically, WKB constructions involving (2.9) used to be in-
complete. For instance, the transport equations derived in [2, 19] rely on
some heuristic hypothesis which is not rigorously justified. The underlying
difficulty is related to closure problems.

ii) Physically, expressions uε
a satisfying (2.9) give rise to characteristic

rates of eddy dissipation which do not vanish when ε → 0. Thereby, as it
is explained in [2, 19], the description is concerned with turbulent flows. It
must be connected to the general discussion of [1].

An analysis taking into account (2.9) within the framework (2.1) is
proposed in the recent article [4]. We observe that:

i) To get round the mathematical difficulty (the closure problems),
it is necessary to perform the WKB calculus with a phase including more
terms than in (1.3). More precisely, we do not plug in (2.1) an expression
uε

a with ϕε as in (1.3). Instead, we appeal to

uε
a(t, x) :=

∞
∑

j=0

εj/lŨj(t, x, ϕ̃ε(t, x)/ε), (2.10)

where ϕ̃ε is given by some complete expansion

ϕ̃ε(t, x) = ϕε(t, x) +

∞
∑

j=l

εj/lϕ̃j(t, x). (2.11)

The supplementary terms ϕ̃j , j � l, are called adjusting phases. As was
explained in [5], they are crucial to put the system of formal equations in a
triangular form. They are the key to obtain an algorithm which allows us
to compute the profiles Ũj step by step.
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Of course, once uε
a as in (2.10) has been identified, the adjusting phases

can be removed from uε
a, just by performing Taylor expansions with respect

to ε ∈ [0, 1] in the expressions

Ũj

(

t, x, ϕε(t, x)/ε + ϕ̃l(t, x) +

∞
∑

j=1

εj/lϕ̃l+j(t, x)
)

, j ∈ N∗,

in order to recover the form

uε(t, x) ∼ u0(t, x) +

∞
∑

j=1

εj/lUj

(

t, x,
ϕ0(t, x)

ε
+

ϕ1(t, x)

ε(l−1)/l

+ · · · +
ϕl−2(t, x)

ε2/l
+

ϕl−1(t, x)

ε1/l

)

, ε → 0, (2.12)

Briefly, the construction of infinite accurate approximate solutions uε
a and

pε
a of (2.1) satisfying

∂tu
ε
a + (uε

a · ∇x)uε
a + ∇xp

ε
a = O(ε∞), divx uε

a = 0 (2.13)

with uε
a as in (1.1) can be completed (see [4, Theorem 2.1]).

ii) The main physical phenomenon is the following: The scales associ-
ated with the phase shifts ϕj , j ∈ {2, · · · , l−1}, can be created by nonlinear
interaction. For instance (case l = 3), initial data like

uε(0, x) ∼ u0(0, x) + ε1/3U1

(

0, x,
ϕ0(0, x)

ε

)

+ O(ε2/3) ε → 0, (2.14)

can become at a time t > 0

uε(t, x) ∼ u0(t, x) + ε1/3U1

(

t, x,
ϕ0(t, x)

ε
+

ϕ2(t, x)

ε1/3

)

+ O(ε2/3), ε → 0,

(2.15)
The condition

∇xϕ0(0, ·) · P divx〈U
∗
1 (0, ·) ⊗ U∗

1 (0, ·)〉 �≡ 0 (2.16)

is necessary and sufficient to see a nontrivial phase shift ϕ2 appearing. This
is explained in Remark 4.3.6 of [4]. Above, the notation P designates the
Leray projector, whereas the symbol 〈·〉 (as for ·̄) means that we extract the
mean value of a profile.
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3. Large Amplitude Waves

Consider the oscillating problem made of (2.1) and the initial data

uε(0, x) = uε
a(0, x) =

∞
∑

j=0

εjU0
j (x, ψ(x)/ε), ε ∈]0, 1]. (3.1)

We work here in the (supercritical) regime of large amplitude high frequency
waves, meaning that ∂θU

0
0 �≡ 0. The first approach would be to seek the

corresponding solution uε in the form (1.1) with

l = 1, ∂θU0 �≡ 0. (3.2)

But, in general, this comes to nothing. We explain why in Section 3.1 by
looking at some links between the situations (2.9) and (3.2).

3.1. Preliminaries.

First look at (2.1) under the condition (2.9). Suppose that Uj(0, ·) ≡ 0 for
all j �∈ {1 + lp, p ∈ N}, ϕ1(0, ·) ≡ ϕ2(0, ·) ≡ · · · ≡ ϕl−1(0, ·) ≡ 0. In the
notation ψ(·) := ϕ0(0, ·), U0

p (·) := U1+lp(0, ·) forall p ∈ N∗, this means to
start with

uε(0, x) = uε
a(0, x) = ε1/l

∞
∑

j=0

εjU0
j (x, ψ(x)/ε), ε ∈]0, 1]. (3.3)

According to Section 2, whatever the data ψ and U0
p with p ∈ N are, we

can construct supercritical WKB expansions

uε
a(t, x) :=

∞
∑

j=1

εj/lUj(t, x, ϕε(t, x)/ε), (t, x) ∈ R+ × Rd, (3.4)

which satisfy

uε
a(0, x) =

∞
∑

j=1

εj/lUj(0, x, ϕ0(0, x)/ε) = ε1/l
∞
∑

j=0

εjU0
j (x, ψ(x)/ε)

and which are infinite accurate approximate solutions of (2.1). More pre-
cisely, the expression uε

a is divergence free (divx uε
a ≡ 0) and furnishes the

source term fε
a := ∂tu

ε
a + (uε

a · ∇x)uε
a + ∇xp

ε
a which, for all T ∈]0, +∞[,

s ∈ R, and N ∈ N is subjected to

∃C(T, s, N); sup
t∈[0,T ]

‖ fε
a(t, ·) ‖Hs(Rd)� C(T, s, N)εN . (3.5)



276 Christophe Cheverry

Now, the incompressible Euler equations (2.1) are invariant under the change
u(t, x)/λu(λt, x), p(t, x)/λ2p(λt, x), λ > 0. If we take λ = ε−1/l, formula
(3.4) is transformed into

ũε
a(t, x) =

∞
∑

j=0

εj/lŨj

(

ε−1/lt, x,
ϕ0(ε

−1/lt, x)

ε
+

ϕ1(ε
−1/lt, x)

ε(l−1)/l

+ · · · +
ϕl−2(ε

−1/lt, x)

ε2/l
+

ϕl−1(ε
−1/lt, x)

ε1/l

)

. (3.6)

In (3.6), we have Ũj = Uj+1 for all j � 1. In particular, at the initial
time t = 0, we recover the large amplitude oscillation (3.1). The expression

ũε
a(t, x) gives rise to the error term f̃ε

a := ∂tũ
ε
a + (ũε

a · ∇x)ũε
a + ∇xp̃

ε
a. Due

to the change of time scale, the bound (3.5) becomes

∃C(T, s, N); sup
t∈[0,ε1/lT ]

‖ f̃ε
a(t, ·) ‖Hs(Rd)� C(T, s, N)εN . (3.7)

In other words, the preceding manipulations allow us to convert uε
a(t, x)

into some large amplitude oscillation ũε
a(t, x) which is proved to be an ap-

proximate solution of (2.1) on the time interval [0, ε1/lT ]. By this way, they
bring informations about the oscillating Cauchy problem made of (2.1) as-
sociated with the initial data (3.1). Indeed, select any α ∈]0, 1]. To seek
a WKB expansion which is issued from (2.1), (3.1) and which makes sense
on the time interval [0, εα], it suffices to select l � 1/α and to proceed as
above, i.e., to use ũε

a(t, x).

Note that the structure of ũε
a becomes more and more complicated

when l is increasing. Gradually, all the adjusting phases ϕj , 1 � j � ∞,
play a part at the level of the leading oscillating term. This confirms that
all the terms ϕj , 1 � j � ∞, have straight off some intrinsic sense.

Observe also that times O(1) are not reached by this method. On one

hand, we do not know how the terms ϕj and Ũj go together as l → +∞.
On the other hand, even if ũε

a is globally defined (and therefore is a good
candidate to deal with), no control on the size (the smallness as ε → 0) of
C(ε−1/lT, s, N)εN has yet been obtained. Therefore, the pertinence of ũε

a

for times O(1) is not sure to hold.

In short, concerning (2.1), general large amplitude WKB computations
based on the standard formula

uε(t, x) ∼ uε
a(t, x) :=

∞
∑

j=0

εjUj(t, x, ϕ0(t, x)/ε), ε → 0, (3.8)
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do not work. A way to proceed is to pass as above through (2.9) in order to
reach times O(ε1/l) for any l ∈ N∗. What happens for times O(1) is not yet
clear. By (3.6), structures more complicated than (3.8) can spontaneously
appear.

In what follows, we still work with (3.8), but we take into account only
special situations. The purpose now is indeed t o prepare ψ and the initial
profiles U0

j in a way to be sure that the incoming wave (3.8) can be pertinent.
To understand the underlying matter, we advise the reader to refer to the
recent work [6]. Our goal here is only to illustrate through specific examples,
in a way as simple as possible, a few ideas already contained in [6].

3.2. Special oscillating initial data.

To simplify, we work in space dimension two (d = 2). This is a much more
easier case since the global in time existence is then guaranteed by standard
results. Note however that, due to (1.6), we have ‖ curluε(0, ·) ‖p= O(1/ε)
for all Lp norms ‖ · ‖p. Therefore, the situations under study get out (as
ε → 0) the context of [9].

We will moreover limit our study to very special data. Select two
arbitrary scalar functions f ∈ C∞(R;R) and g ∈ C∞(R;R). Choose a C1

initial phase ψ which is defined on some open set ω ⊂ R2, is bounded on ω
with the bounded derivatives

sup
x∈ω

|ψ(x)| < ∞, sup
x∈ω

|∇xψ(x)| < ∞,

and is such that

∂1ψ(x) = f(ψ(x))∂2ψ(x) ∀x ∈ ω. (3.9)

For instance, we can impose

ψ(0, x2) = ψ0(x2) ∀x2 ∈ R, ψ0 ∈ C1
b (R) (3.10)

and obtain ψ(x) by solving (3.9), (3.10) on the strip ω =]−X1, X1[×R for
some suitable X1 > 0.

Consider also scalar profiles pε(r, θ)∈C∞(R×T;R), qε(r, θ) ∈ C∞(R×
T;R), ε ∈ [0, 1], which are smooth with respect to the parameter ε ∈ [0, 1].
Note that pε = p0 + εp1 + O(ε2) and qε = q0 + εq1 + O(ε2).

Suppose that ∂θp
0 �≡ 0 and pε and qε are linked together by the relation

g′ − gff ′/(1 + f2) + f ′pε + (1 + f2)∂θq
ε

+ ε(1 + f2)∂rq
ε + εff ′qε = 0. (3.11)
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At the initial time t = 0, we impose

uε(0, x) =
g(ψ(x))

1+f(ψ(x))2

(

f(ψ(x))
1

)

+pε(ψ(x), ψ(x)/ε)

(

−1
f(ψ(x))

)

+ εqε(ψ(x), ψ(x)/ε)

(

f(ψ(x))
1

)

∀x ∈ ω. (3.12)

We recover the form (3.1) with, in particular,

U0
0 (x, θ) =

g(ψ(x))

1 + f(ψ(x))2

(

f(ψ(x))
1

)

+ p0(ψ(x), θ)

(

−1
f(ψ(x))

)

,

U0
1 (x, θ) = q0(ψ(x), θ)

(

f(ψ(x))
1

)

+ p1(ψ(x), θ)

(

−1
f(ψ(x))

)

.

By (3.9), the relation (3.11) is exactly what is needed to guarantee the
divergence free condition

divx uε(0, x) = 0 ∀x ∈ ω. (3.13)

Example 3.2.1 (linear phases). The choices f ≡ a ∈ R and g ≡ b ∈
R are compatible with the selection of

ψ(x) = χ(ax1 + x2), χ ∈ C∞(R;R). (3.14)

Then, if we take qε ≡ 0, we can choose any profile pε without any contra-
diction with (3.11). It remains the oscillating initial data

ûε(0, x) = Ûε
0(χ(ax1 + x2), χ(ax1 + x2)/ε) (3.15)

with

Ûε
0(r, θ) =

b

1 + a2

(

a
1

)

+ pε(r, θ)

(

−1
a

)

.

The Cauchy problem (2.1), (3.15) is easy to solve. The solution is explicit.

It is the simple wave ûε(t, x) = Ûε
0(χ(ax1 + x2 − bt)), p̂ε(t, x) = 0. Observe

that the weak limit of the family {ûε}ε is

〈û〉(t, x) :=
b

1 + a2

(

a
1

)

+ p̄0(χ(ax1 + x2 − bt))

(

−1
a

)

which is obviously still a solution of (2.1) with p ≡ 0.

Remark 3.2.1 (nonlinear phases). By (3.9), linear phases such as
(3.14) are possible only if f ′ ≡ 0. Equation (3.9) allows us to take into
account functions f with f ′ �≡ 0, Therefore, it contains many generalizations
of (3.15). The relation (3.9) means that ψ is constant on pieces of lines. The
geometrical interpretation of the condition f ′ �≡ 0 is that ψ is not constant
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on parallel lines. When f ′ �≡ 0, because of the formation of shocks, smooth
solutions of (3.9) can exist only locally, on some open domain ω strictly
included in R2. Moreover, if f ′ is nowhere zero, the function pε can be
deduced from qε through (3.11).

Remark 3.2.2 (no creation of phase shifts). It is interesting to test
the condition (2.16) in the case (3.12). This means to replace ϕ0(0, ·) by
ψ(·) and U∗

1 (0, ·) by U0∗
0 (·). First, use (3.9) to obtain

divx〈U
0∗
0 ⊗ U0∗

0 〉 =

(

−∂2[χ(ψ)]
∂1[χ(ψ)]

)

,

where χ(r) is a function such that χ′(r) = f ′(r)〈p0∗(r, ·)2〉 for all r ∈ R. It
is obvious that P divx〈U

0∗
0 ⊗ U0∗

0 〉 = divx〈U
0∗
0 ⊗ U0∗

0 〉, so that it remains

∇xψ · P divx〈U
0∗
0 ⊗ U0∗

0 〉 = χ′(ψ)(∂1ψ, ∂2ψ) ·

(

−∂2ψ
∂1ψ

)

≡ 0.

The conclusion is that data like (3.12) do not give rise to the phe-
nomenon of cascade of phase shifts quoted in Section 2. This is already
an indication that the monophase large amplitude structure (3.1) can be
preserved when it is issued from data as in (3.12).

3.3. Special local solutions.

Introduce the functions sε(r) := g(r) + ε(1 + f(r)2)qε(r, r/ε), ε ∈]0, 1], and
compute

∂2[s
ε(ψ)] = g′(ψ)∂2ψ + (1 + f(ψ)2)∂θq

ε(ψ, ψ/ε)∂2ψ

+ ε(1 + f(ψ)2)∂rq
ε(ψ, ψ/ε)∂2ψ + 2εf(ψ)f ′(ψ)qε(ψ, ψ/ε)∂2ψ.

By the above assumptions on f , g, and ψ, we have

M1 := sup
ε∈]0,1]

sup
x∈ω

|sε(ψ(x))| < ∞, M2 := sup
ε∈]0,1]

sup
x∈ω

|∂2[s
ε(ψ(x))]| < ∞.

It follows that the Cauchy problem

∂tϕ
ε + sε(ϕε)∂2ϕ

ε = 0, ϕε(0, x) = ψ(x) ∀x ∈ ω, (3.16)

can be solved on the domain of determinacy Ω := {(t, x) ∈ R+×R2; 0 � t �

M−1
2 , (x1, x2+sM1) ∈ ω ∀s ∈ [−t, t]}. It is obvious that Ω is independent of

ε ∈]0, 1] and is such that Ω∩({0}×R2) = ω, Ω∩(R+
∗ ×R2) �= ∅. With (3.16),
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we find [∂t+sε(ϕε)∂2](∂1ϕ
ε−f(ϕε)∂2ϕ

ε) = −∂2[s
ε(ϕε)](∂1ϕ

ε−f(ϕε) ∂2ϕ
ε).

This implies that the relation (3.9) is preserved during the evolution

∂1ϕ
ε − f(ϕε)∂2ϕ

ε = 0 ∀(ε, t, x) ∈]0, 1] × Ω. (3.17)

Consider the expression

uε(t, x) = ũε(ϕε(t, x)) = Ũε(ϕε(t, x), ϕε(t, x)/ε) (3.18)

with

Ũε(r, θ) =
g(r)

1 + f(r)2

(

f(r)
1

)

+ pε(r, θ)

(

−1
f(r)

)

+ εqε(r, θ)

(

f(r)
1

)

.

(3.19)
Consider

∂tϕ
ε + uε · ∇xϕε = ∂tϕ

ε + (1 + f(ϕε)2)−1g(ϕε)(f(ϕε)∂1ϕ
ε + ∂2ϕ

ε)

+ pε(ϕε, ϕε/ε)(−∂1ϕ
ε + f(ϕε)∂2ϕ

ε) + εqε(ϕε, ϕε/ε)(f(ϕε)∂1ϕ
ε + ∂2ϕ

ε).

Using (3.16) and (3.17), simplify it as follows:

∂tϕ
ε + uε · ∇xϕε = ∂tϕ

ε + sε(ϕε)∂2ϕ
ε = 0.

Therefore, for all (t, x) ∈ Ω we have

∂tu
ε + uε · ∇xu

ε = (∂tϕ
ε + uε · ∇xϕε)(∂rũ

ε)(ϕε) = 0 (3.20)

and, exploiting again (3.11), we find

divx uε(t, x) = 0 ∀(t, x) ∈ Ω. (3.21)

In other words, the expressions uε are on ω pressureless solutions of (2.1).
Note that the functions uε are uniformly bounded:

sup
ε∈]0,1]

sup
(t,x)∈Ω

|uε(t, x)| � M < ∞.

On one hand, this majoration implies that the speed of propagation is uni-
formly bounded. On the other hand, following [10], it gives rise to a Young
measure

ν Ω −→ ProbM(R2) (t, x) �−→ ν(t,x)(u)

which is a (locally) measure-valued solution of (2.1). In other words, the
following equation is satisfied in the weak sense:

∂t〈ν, u〉 + divx〈ν, u ⊗ u〉 + ∇xp = 0, divx〈ν, u〉 = 0. (3.22)

In the next section, in order to capture ν, we study more precisely the family
{uε}ε∈]0,1] as ε → 0.
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3.4. The asymptotic behavior of the family {uε}ε.

Consider the expression ϕ0 ∈ C1(Ω;R) which is obtained by solving the
Cauchy problem

∂tϕ0 + g(ϕ0)∂2ϕ0 = 0, ϕ0(0, x) = ψ(x) ∀x ∈ ω. (3.23)

Either directly from (3.9), (3.23) or from (3.17) we can extract

∂1ϕ0 − f(ϕ0)∂2ϕ0 = 0 ∀(t, x) ∈ Ω. (3.24)

Then decompose ϕε into ϕε(t, x) = ϕ0(t, x)+εΦε
1(t, x, ϕ0(t, x)/ε). By (3.16),

the profile Φε
1(t, x, θ) must satisfy

Φε
1(0, x, θ) = 0 ∀(ε, x, θ) ∈]0, 1] × ω × T. (3.25)

Plug ϕε as above in (3.16). Use (3.23) to make simplifications. It remains
to consider the equation

∂tΦ
ε
1 + g(ϕ0 + εΦε

1)∂2Φ
ε
1

+ ε(1 + f(ϕ0 + εΦε
1)

2)qε(ϕ0 + εΦε
1, θ + Φε

1)∂2Φ
ε
1

+ wε(t, x, θ, Φε
1)∂θΦ

ε
1 + wε(t, x, θ, Φε

1) = 0 (3.26)

where

wε(t, x, θ, λ) :=ε−1[∂tϕ0 + sε(ϕ0 + ελ)∂2ϕ0]

=

(

1
∫

0

g′(ϕ0 + εsλ)ds

)

∂2ϕ0λ

+ (1 + f(ϕ0 + ελ)2)qε(ϕ0 + ελ, θ + λ)∂2ϕ0. (3.27)

The function wε is smooth with respect to (t, x, θ, λ) ∈ Ω×T ×R and also
ε ∈ [0, 1]. Therefore, the solution Φε

1 of (3.25)–(3.26) is smooth with respect
to the same variables. In particular, we can get a complete expansion of Φε

1

in powers of ε:

Φε
1(t, x, θ) =

N
∑

j=0

εjΦj
1(t, x, θ) + O(εN+1), N ≫ 1.

In particular, the first contribution Φ0
1(t, x, θ) is subjected to the scalar

conservation law

∂tΦ
0
1 + g(ϕ0)∂2Φ

0
1 + w0(t, x, θ, Φ0

1)∂θΦ
0
1 + w0(t, x, θ, Φ0

1) = 0, (3.28)

where w0(t, x, θ, λ) = g′(ϕ0)∂2ϕ0λ + (1 + f(ϕ0)
2)q0(ϕ0, θ + λ)∂2ϕ0.
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By (3.25), the evolution equation (3.28) must be completed with the
following initial data:

Φ0
1(0, x, θ) = 0 ∀(x, θ) ∈ ω × T. (3.29)

Coming back to (3.18), we can associate to {uε}ε the following monophase
description: uε(t, x) = U0(t, x, ϕ0(t, x)/ε) + O(ε), where the main profile
U0 is defined according to

U0(t, x, θ) =
g(ϕ0(t, x))

1 + f(ϕ0(t, x))2

(

f(ϕ0(t, x))
1

)

+ p0(ϕ0(t, x), θ + Φ0
1(t, x, θ))

(

−1
f(ϕ0(t, x))

)

. (3.30)

Of course, at the initial time t = 0, we recover U0(0, x, θ) = U0
0 (x, θ) for

all (x, θ) ∈ ω × T. On the other hand, for all g ∈ C0(R2;R2) and for all
ϕ ∈ C0(Ω), we have

lim
ε−→0

∫∫

Ω

g(uε(t, x))ϕ(t, x)dtdx =

∫∫

Ω

〈ν(t,x), g(u)〉ϕ(t, x)dtdx

=

∫∫∫

Ω×T

g(U0(t, x, θ))ϕ(t, x)dtdxdθ.

By construction, the Young measure ν is a measure valued solution of
(2.1). But is it possible to use it for defining a solution u(t, x) of (2.1) in
the classical weak sense? This question is discussed in Section 3.5 and in
other issues concerning U0.

3.5. Conclusion and remarks.

The Navier–Stokes equations (with Reynolds number ε−1) are given by

∂tv
ε + (vε · ∇x)vε + ∇xp

ε = ε∆xv
ε, divx vε = 0. (3.31)

Fix initial data

vε(0, x) = v0(x). (3.32)

The structure of vε(t, x) as ε → 0 is a problem of wide current interest
[1, 9, 10, 18]. The same comment applies to other approximations of the
Euler equations (2.1). If v0 is smooth, say v0 ∈ C∞

0 (Rd), there exists a
fixed interval of time [0, T ], T > 0, where the Navier–Stokes solutions vε

converge strongly in L2. Moreover, the limiting fields v are on the strip
[0, T ]× Rd conventional solutions of (2.1).



Nonlinear Geometric Optics 283

Now, the complexity of the flow can increase as time evolves. After the
time T , the solutions vε may converge weakly in L2 (instead of converging
strongly in L2) due to the development of oscillations or concentrations.
The following majoration

sup
ε∈]0,1]

sup
t∈[0,T ]

‖ vε(t, ·) ‖L2(R2)< ∞ (3.33)

is the only control which is known to be uniform in ε ∈]0, 1]. Of course, it
suffices to extract a Young measure ν (see [10]) and, in particular, to isolate
a weak limit v(t, x) ∈ L2. But is v still a weak solution of (2.1)?

Our goal is to show that the following local version of (3.33)

sup
ε∈]0,1]

sup
(t,x)∈Ω

‖ uε ‖L2(Ω)< ∞, Ω is an open domain of R × R2, (3.34)

is not sufficient to deduce that v is still a weak solution of (2.1).

We will not deal directly with (3.31), (3.32). Instead, we consider
Equation (2.1). We want to model the situation which is alluded above
(after the time T ). For this purpose,, instead of fixing the initial data (as in
(3.32)), we look at a family {uε(0, ·)}ε∈]0,1] of initial data such that uε(0, ·)

converges (as ε → 0) weakly (but not strongly) in L2.

In fact, we consider the family {uε}ε constructed in the previous sec-
tions. The functions uε satisfy (2.1) and (3.34). The corresponding weak
limit has been identified. It is

u(t, x) = 〈ν(t,x), u〉 = Ū0(t, x) =

∫

T

U0(t, x, θ)dθ.

Therefore, if it would be possible (through some kind of compensated com-
pactness argument) to pass to the limit as ε → 0 from (3.31) to (2.1) by
using only Equation (3.31) and estimates like (3.34), then both v(t, x) and
u(t, x) should be weak solutions of (2.1).

However, this is not always the case. Objections can come from the
presence of oscillations as these contained in {uε}ε. To see this, we have to
compute

f(t, x) := ∂tu(t, x) + [(u · ∇x)u](t, x). (3.35)

Because of the explicit formula (3.30) and Equations (3.23) and (3.24), the
function f can be reduced to

f =

(

f1
f2

)

:= 〈∂θp
0(ϕ0, θ + Φ0

1)(∂tΦ
0
1 + (u · ∇x)Φ0

1)〉

(

−1
f(ϕ0)

)

.
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By (3.28) and (3.29), we have ∂tΦ
0
1(0, x, θ) = −w0(0, x, θ, 0) and u·∇x)Φ0

1(0, x, θ) =
0. It follows that

f(0, x) := −(1 + f(ψ)2)〈(∂θp
0q0)(ψ, θ)〉∂2ψ

(

−1
f(ψ)

)

. (3.36)

The constraint (3.11) implies that

g′ − gff ′/(1 + f2) + f ′p0 + (1 + f2)∂θq
0 = 0. (3.37)

This relation (3.37) can be split in two conditions

g′ − gff ′/(1 + f2) + f ′p̄0 = 0, (3.38)

f ′p0∗ + (1 + f2)∂θq
0 = 0. (3.39)

Equation (3.38) means that p̄0 can be determined from f and g. Equation
(3.39) imposes a link between p0∗ and ∂θq

0. Since 〈∂θp
0q0〉 = −〈p0∗∂θq

0〉,
we have, in fact, to deal with

f(0, x) := −f ′(ψ)〈p0∗(ψ, θ)2〉∂2ψ

(

−1
f(ψ)

)

. (3.40)

Introduce a function K ∈ C1(R;R) such that K ′(r) = −f ′(r)〈p0∗(r, θ)2〉
for all r ∈ R. Use (3.9) to interpret (3.40) according to

f(0, x) :=

(

−∂2[K(ψ)]
∂1[K(ψ)]

)

. (3.41)

Both function u(t, x) and source term f(t, x) are smooth (at least, of class
C1). Therefore, we can state that the weak limit u(t, x) is not a solution of
(2.1) if and only if there exists no scalar function p such that f = ∇xp, or
if and only if

curl f := ∂1f2 − ∂2f1 = ∆x[K(ψ)] �≡ 0. (3.42)

It remains to check this condition on formula (3.40). We find

curl f(0, x) = ∂2{[1 + f(ψ(x))2]∂2[K(ψ(x))]}.

Recall that the data f , g, p0∗ and also ψ0 ≡ ψ|x1=0 can be chosen arbitrar-
ily. In particular, they can be adjusted so that there exists x2 ∈ R such
that curl f(0, 0, x2) �= 0, showing that the weak limit u is not necessarily a
solution of (2.1).

The preceding reasoning underlies a result which is pushed forward in
[6]. For the sake of completeness, we recall it below.

Theorem 1.1 (see [6]). There is a bounded open domain Ω ⊂ R×R2

and a family of functions {uε}ε such that

(i) uε ∈ C1(Ω), sup{‖ uε ‖L∞(Ω); ε ∈]0, 1]} < ∞,
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(ii) uε is a solution of (2.1) on Ω,

(iii) uε converges weakly to u0 ∈ C1(Ω) as ε → 0.

But u0 is not a solution of (2.1).

This result must be connected with the question raised in [18, p. 479]
since it produces local obstructions to the concentration–cancellation prop-
erty. We refer to [6] for details. In [6], the goal is to put in place a nonlinear
geometric optics under constraint for Burger type equations. Many new phe-
nomena, including the creation of O(ε−2) scales by interaction of O(ε−1)
transversal oscillations, are revealed in [6].

Remark 3.5.1 (on nonlinearity of f). Note that if f ′ ≡ 0, we have
f(0, ·) ≡ 0. This is the reason why the preceding arguments do not apply
when appealing only to simple waves involving linear phases, like in (3.15).
In fact [6], weak limits of the families {ûε}ε are always still solutions of
(2.1) (see Example 3.2.1).

Consider a general sequence {ũε}ε uniformly bounded in L2 and made
of approximate or exact solutions ũε of (2.1). It would be very helpful
to find a criterion allowing us to decide if the weak extracted limits are
still solutions of (2.1) or not. For instance, this could be applied when
passing to the limit by vanishing viscosity (ε → 0) in the Navier–Stokes
equations (3.31). The above discussion does not furnish such a criterion.
The constraint (3.42) can be expressed explicitly only in the case of the
families {uε}ε under consideration. Yet, it indicates that, in order to have
(3.42), it is necessary to impose the nonlinearity of the phase (induced here
by the condition f ′ �≡ 0) that is rapid variations in moving directions.

Remark 3.5.2 (on interdependence between O(1) and O(ε) terms).
The above construction also attracts attention to another more subtle im-
plemented effect which is important to notice. Seeking an equation on u
like (3.35) or, more generally, writing some closed set of equations in order
to deduce U0(t, ·) from U0

0 (·) (as it is proposed, for instance, in [22]) means
implicitly that the time evolution respects the hierarchy between the first
order contributions (i.e., of size ε0) and the lower order terms (say, of size
ε1 or less): the first ones can be determined before the second ones.

However, in supercritical regimes such a separation between O(1) and
O(ε) contributions turns to be artificial. A similar observation has already
been made in the context of time oscillations [12]. Let us explain how it
can be put in a specific form when dealing with space oscillations. To do
this, we examine more carefully what tells the study of U0.
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The preliminary remark is concerned with the preparation of the initial
data U0(0, ·) ≡ U0

0 (see Section 3.2). The definition of U0
0 can already not be

dissociated from what happens at the level of the O(ε) remainders. Indeed,
do not forget (3.11) and its consequence (3.37): the profiles U0

0 and U0
1

cannot be fixed independently.

Otherwise, the definition of U0(t, ·) involves Φ0
1(t, ·) which itself de-

pends on q0 through (3.28). To verify that the influence of q0 on U0(t, ·)
actually occurs, it suffices to measure it for small times. From (3.26) deduce
that Φ0

1(t, x, θ) = −(1 + f(ψ(x))2)q0(ψ(x), θ)t + O(t2). It follows that

p0(ϕ0(t, x), θ + Φ0
1(t, x, θ)) = p0l(ϕ0(t, x), θ)

− t(1 + f(ψ(x))2)∂θp
0(ϕ0(t, x), θ)q0(ψ(x), θ) + O(t2).

Then it suffices to plug this time expansion inside (3.30). In particular, if
g ≡ 0, we have ϕ0(t, ·) ≡ ψ(·) for all t ∈ [0, T ] and it remains

U0(t, x, θ) = p0(ψ(x), θ)

(

−1
f(ψ(x))

)

− t(1 + f(ψ(x))2)(∂θp
0q0)(ψ(x), θ)

(

−1
f(ψ(x))

)

+ O(t2). (3.43)

We recover here, in factor of t, the expression ∂θp
0q0 which has already been

observed at the level of (3.36). This product ∂θp
0q0 combines the term p0∗

with ε0 in factor at the level of uε(0, ·) and the term q0 with ε1 in factor at
the level of uε(0, ·).

This mixing during the time evolution between an O(1) term and
an O(ε) term was partly responsible for (3.42). It shows definitely that
O(ε) perturbations at the initial time t = 0 can have some nontrivial O(1)
influence at a further time t > 0. This expresses a very strong instability.

Of course, this interpretation could be contested in view of the relation
(3.37). Indeed, the constraint (3.37) indicates that the preceding distinction
between the orders of p0∗ and p0∗ is debatable: in practice, we cannot modify
q0∗ without touching p0∗.

But it is still possible to make (at t = 0) arbitrary perturbations of q̄0

with p0 (and, therefore, U0
0 fixed). By (3.43), this modify (at a time t > 0)

the expression U0(t, ·) and, therefore, the Young measure ν. This allows us
to give a certain sense to what is said above in italics.

Remark 3.5.3 (the weak limit is a more rigid object). Recall that
the weak limit of {uε}ε is as follows:
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u(t, x) =
g(ϕ0)

1 + f(ϕ0)2

(

f(ϕ0)
1

)

+ χ(t, x)

(

−1
f(ϕ0)

)

with χ(t, x) :=

∫

T

p0(ϕ0(t, x), θ + Φ0
1(t, x, θ))dθ.

Suppose that g ≡ 0. Simple computations indicate that the function
χ satisfies the equation

∂tχ = −f ′(ψ)∂2ψ〈p
0∗(ψ, θ)2〉,

where the influence of q̄0 is removed. Therefore, the preceding construction
does not imply that O(ε) perturbations can modify the weak limit. It only
means that the profile, the Young measure and other quantities (like the
energy) can be changed by this way.

In conclusion, we have made a review of recent progresses [3]–[8] in
large amplitude nonlinear geometric optics. We have also lay stress on the
construction (directly extracted from [6]) of extensions uε of the classical
simple waves ûε. On this occasion, we have observed new phenomena which
indicate that the study of weak solutions of (2.1) should require both mi-
crolocal and nonlinear tools within the framework of a supercritical WKB
analysis. Applications could be a better understanding of turbulent flows.
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1. Formulation of the result. We consider the 3D Navier–Stokes system
on R3 for incompressible fluids. The viscosity is taken to be 1, and no
external forcing is assumed. After the Fourier transform the system takes
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v(k, t) = exp{−t|k|2}v(k, 0)

+ i

t
∫

0

exp{−(t − s)|k|2}ds

∫

R3

〈v(k − k′, s), k〉Pkv(k′, s)d3k′, (1)

where v(k, 0) is the initial condition, Pk is the orthogonal projection to the

subspace orthogonal to k, i.e., Pkv = v − 〈v, k〉
〈k, k〉k. The values v(k, s) ∈ C3,

the incompressibility means that 〈v(k, t), k〉 = 0. If v(k, t) is the Fourier
transform of a real-valued function u(x, t), then

v(−k, t) = v(k, t). (2)

However, in this paper, we consider arbitrary v(k, t) not assuming (2) (see
also [5]).

Beginning with the works of Leray [1], Hopf [3], Kato [4], people
considered the problem of local and global existence of solutions of (1) with
initial conditions having finite energy

E(0) =

∫

R3

〈v(k, 0), v(k, 0)〉d3k < ∞.

In this paper, we deal with another class of initial conditions having
infinite energy. Namely, we consider the initial condition of the form

v(k, 0) =

n
∑

j=1

Bjδ(k − kj), (3)

where the sum is taken over a finite set {kj} of points kj �= 0, 〈Bj , kj〉 = 0
for any j, and δ(k − kj) is the delta-function concentrated at kj . Since
δ(k − kj) /∈ L2(R3), the initial condition v(k, 0) has infinite energy.

Denote by G(k1, . . . , kn) the semigroup generated by a finite set {kj},
i.e., k ∈ G(k1, . . . , kn) if and only if k =

n
∑

j=1

pjkj for some nonnegative

integers pj. The main results of this paper are the following theorems.

Theorem 1. Let v(k, 0) =
n
∑

j=1

Bjδ(k − kj). There exists T > 0

depending on {kj}, {Bj} such that there exists a solution v(k, t) of (1)
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on the interval 0 � t � T which can be written as a signed measure

v(k, t) =
∑

g∈G(k1,...,kn), g �=0

Bg(t)δ(k − g). (4)

The coefficients Bg(t) satisfy the inequalities:

|Bg(t)| < t
p(g)
2 Cp(g)

( n
∑

j=1

|Bj |
)p(g)(

1 − t
1
2 C

n
∑

j=1

|Bj |
)−1

, (5)

where p(g) = min
pjkj=g

n
∑

i=1

pi, C depends only on kj.

Theorem 2. Let kj, 1 � j � n, belong to some cone with angle less

than π, i.e., the angle between any kj1 and kj2 is less than π. Then for a

sufficiently small B and an initial condition v(k, 0) such that
n
∑

j=1

|Bj | < B

there exists a global solution of (1) having the form (4) for which
∑

g∈G(k1,...,kn), g �=0

|Bg(t)| < ∞.

Some existence results for a similar class of initial conditions can be
found in [2, 8].

2. Proof of Theorems 1 and 2. The proofs of both theorems are based
on the method of power series introduced in [6, 7]. We consider a one-
parameter family of initial conditions Av(k, 0) = vA(k, 0) and write down
the solution of (1) as a power series with respect to the complex parame-
ter A:

vA(k, t) = Ah1(k, t) +
∑

p>1

Ap

t
∫

0

exp{−(t − s)|k|2}hp(k, s)ds, (6)

where h1(k, t) = exp{−t|k|2}v(k, 0). Substituting (6) into (1), we obtain
the following system of recurrent relations between the functions hp(k, t):

h2(k, t) = i

∫

R3

〈v(k − k′, 0), k〉Pkv(k′, 0) exp{−t|k − k′|2 − t|k′|2}d3k′

and for p > 2

hp(k, t) = i

t
∫

0

ds2

∫

R3

〈v(k − k′, 0), k〉Pkhp−1(k
′, s2)
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× exp{−t|k − k′|2 − (t − s2)|k′|2}d3k′

+ i
∑

p1+p2=p
p1, p2>1

t
∫

0

ds1

t
∫

0

ds2

∫

R3

〈hp1(k − k′, s1), k〉Pkhp2(k
′, s2)

× exp{−(t− s1)|k − k′|2 − (t − s2)|k′|2}d3k′

+ i

t
∫

0

ds1

∫

R3

〈hp−1(k − k′, s1), k〉Pkv(k′, 0)

× exp{−(t− s1)|k − k′|2 − t|k′|2}d3k′. (7)

In our case of solutions of type (4), the convolutions given by the
integrals in (7) are well defined, and we can write

h1(k, t) =

n
∑

j=1

exp{−t|kj |2}Bjδ(k − kj).

Recall that Bj are 3–dimensional vectors 〈Bj , kj〉 = 0. Further,

h2(k, t) = i

∫

R3

∑

j1,j2=1

〈Bj1 , k〉
(

Bj2 −
〈Bj2 , k〉k
〈k, k〉

)

× exp{−t|k − k′|2 − t|k′|2}δ(k − k′ − kj1)δ(k
′ − kj2)d

3k′

=

n
∑

j1,j2=1

Bj1,j2(t)δ(k − (kj1 + kj2))

with

Bj1,j2(t) = i〈Bj1 , kj2 〉 exp{−t|kj1 |2 − t|kj2 |2}

×
(

Bj2 −
〈Bj2 , (kj1 + kj2)〉(kj1 + kj2)

〈(kj1 + kj2), (kj1 + kj2)〉

)

.

If kj1 + kj2 = 0, then the corresponding term in the last sum is zero.

From the last formula it easily follows that

|Bj1,j2(t)| � C1|Bj1 ||Bj2 |, (8)

C1 = max
1�j�n

|kj |, and

n
∑

j1,j2=1

|Bj1,j2(t)| � C1

( n
∑

j=1

|Bj |
)2

. (9)
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The proof of Theorem 1 is based on the following assertion.

Lemma 1. Assume that for any initial condition (3) and 0 < t < 1
the functions hq(k, t), 2 � q < p, can be written in the form

hq(k, t) =
∑

1�j1,...,jq�n

Bj1...jq(t)δ
(

k −
q

∑

j=1

kj

)

, (10)

where Bj1...jq(t) are continuous functions of t and

|Bj1...jq (t)| � Cq−1
2 t

q−2
2

q
∏

l=1

|Bjl
|, (11)

C2 is another constant which depends only on the vectors kj, 1 � j � n.

Then (8) and (9) are valid for q = p.

Using Lemma 1, we derive Theorem 1. We have

v(k, t) =

n
∑

j=1

Bj exp{−t|k|2}δ(k − kj)

+
∑

p>1

n
∑

j1,...,jp=1

B̃j1...jp(t)δ

(

k −
p

∑

l=1

kjl

)

(12)

and

B̃j1...jp(t) =

t
∫

0

exp{−(t − s)|k|2}Bj1...jp(s)ds.

If Bj1...jp(t) satisfies (8), then from Lemma 1 it follows that

|B̃j1...jp(t)| �
2

p
Cp−1

2 t
p
2

p
∏

l=1

|Bjl
|

and
n

∑

j1,...,jp=1

|B̃j1...jp(t)| �
2

p
Cp−1

2 t
p
2

( n
∑

j=1

|Bj |
)p

. (13)

Therefore, the series
∑

p>1

n
∑

j1,...,jp=1

|B̃j1...jp(t)| converges absolutely if

t
1
2 < min

(

1,
(

C2

n
∑

j=1

|Bj |
)−1)

.
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Taking together all terms with the same value of the sum kj1 + · · · + kjp ,
we get the representation of the solution v(k, t) as

∑

g∈G(kj1 ,...,kjp )

Bg(t)δ(k − g),

where for each Bg(t) we have the estimate (5). Theorem 1 is proved. �

Proof of Lemma 1. For p = 2 the statement of the lemma is already
proved (see (8), (9)). For p � 3 we use the recurrent relation (7). Denote

by h
(p1,p2)
p (k, t) the term in (7) which corresponds to p1, p2. Consider the

case p1, p2 � 2. We have

h(p1,p2)
p (k, t) = i

t
∫

0

ds1

t
∫

0

ds2

∫

R3

〈hp1(k − k′, s1), k〉

× Pkhp2(k
′, s2) exp{−(t − s1)|k − k′|2 − (t − s2)|k′|2}d3k′

= i

t
∫

0

ds1

t
∫

0

ds2

n
∑

j1...jp=1

〈Bj1...jp1
(s1), k〉

×
(

Bjp1+1...jp(s2) −
〈Bjp1+1...jp(s2), k〉k

|k|2
)

×
[

(

exp{−(t− s1)|k|2}δ
(

k −
p1
∑

l=1

kjl

))

⊛

(

exp{−(t − s2)|k|2}δ
(

k −
p

∑

l=p1+1

kjl

))

]

=

n
∑

j1...jp

B
(p1,p2)
j1...jp

(s)δ

(

k −
p

∑

l=1

kjl

)

,

where ⊛ is the convolution and

B
(p1,p2)
j1...jp

(t) = i

t
∫

0

ds1

t
∫

0

ds2

〈

Bj1...jp1
(s1),

p
∑

l=p1+1

kjl

〉

× exp

{

−(t − s1)
∣

∣

p1
∑

l=1

kjl

∣

∣

2 − (t − s2)
∣

∣

p
∑

l=p1+1

kjl

∣

∣

2
}
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×
(

Bjp1+1...jp(s2) −
〈Bjp1+1...jp(s2),

p
∑

l=1

kjl
〉

p
∑

l=1

kjl

|
p
∑

l=1

kjl
|2

)

.

Here, we used the incompressibility condition

〈

Bj1...jp1
(s1),

p1
∑

l=1

kjl

〉

= 0.

It is clear that B
(p1,p2)
p (t) is continuous as a function of t ∈ [0, 1]. By the

assumption of Lemma 1,

∣

∣

∣

∣

B
(p1,p2)
j1...jp

(s)

∣

∣

∣

∣

�

s
∫

0

s
p1−2

2
1 exp

{

−(s − s1)
∣

∣

p1
∑

l=1

kjl

∣

∣

2}
ds1

×
s

∫

0

s
p2−2

2
2 exp

{

−(s − s2)
∣

∣

p
∑

l=p1+1

kjl

∣

∣

2}∣

∣

p
∑

l=p1+1

kjl

∣

∣ds2

× Cp1−1

p1
∏

l=1

|Bjl
|Cp2−1

p
∏

l=p1+1

|Bjl
|.

In the integral with respect to s1, we replace the exponent by 1, and we
estimate the integral with respect to s2 with the help of the Cauchy–Schwarz
inequality:

s
∫

0

s
p2−2

2
2 exp{−(s − s2)|k|2}|k|ds2

�

(

|;
s

∫

0

sp2−2
2 ds2

s
∫

0

exp{−2(s − s2)|k|2}|k|2ds2

)
1
2

.

Thus, we get

|B(p1,p2)
j1...jp

(s)| �
s

p1
2

p1

s
p2−1

2

√

p2−1
2

Cp−2

p
∏

l=1

|Bjl
| �

s
p−2
2

p1

√

p2−1
2

Cp−2

p
∏

l=1

|Bjl
|.

At the last step, we used the fact that 0 � s � 1. The first and last terms
in (7) are estimated in a similar way:



296 Efim Dinaburg and Yakov Sinai

|B(1,p−1)
j1...jp

(s)| �
s

p−2
2

√

p−2
2

Cp−2

p
∏

l=1

|Bjl
|

and

|B(p−1,1)
j1...jp

(s)| �
s

p−2
2

√

p−2
2

Cp−2

p
∏

l=1

|Bjl
|.

For hp(k, s) we have the representation:

hp(k, s) =

p−1
∑

p1=1

h(p1,p−p1)
p (s) =

p−1
∑

p1=1

n
∑

j1...jp=1

B
(p1,p−p1)
j1...jp

(s)δ

(

k −
n

∑

l=1

kjl

)

=

n
∑

j1...jp=1

Bj1...jp(s)δ

(

k −
n

∑

l=1

kjl

)

,

where

Bj1...jp(s) =

p−1
∑

p1=1

B
(p1,p−p1)
j1...jp

(s).

For Bj1...jp(s) we have the estimate

|Bj1...jp(s)| �

p−1
∑

p1=1

|B(p1,p−p1)
j1...jp

(s)|

� s
p−2
2 Cp−2

p
∏

l=1

|Bjl
|
( p−2

∑

p1=2

√
2

p1
√

p − p1
+

2
√

2√
p − 2

)

.

It is easy to see that for p � 3 the sum

p−2
∑

p1=2

√
2

p1
√

p − p1
+

2
√

2√
p − 2

is bounded by some constant C1. Taking C2 = max(C1, max
1�j�n

|kj |), we get

the required inequality for q = p. The lemma is proved. �

Proof of Theorem 2. We use the following lemma.

Lemma 2. Let {kj} be contained in a cone whose angle is less than

π. Assume that for 2 � q < p the functions hq(k, s) have the representation
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(10) and for some constant D depending on initial conditions

|Bj1...jq (s)| � Dq−1

q
∏

l=1

|Bjl
|.

Then the same representation is valid for q = p.

Proof. Using the notation from Lemma 1, we can write

|B(p1,p2)
j1...jp

(s)| �

s
∫

0

ds1

s
∫

0

ds2

∣

∣

∣

∣

p
∑

l=p1

kjl

∣

∣

∣

∣

Dp1−1

p1
∏

l=1

|Bjl
|Dp2−1

p
∏

l=p1+1

|Bjl
|

× exp
{

− (s − s1)

∣

∣

∣

∣

p1
∑

l=1

kjl

∣

∣

∣

∣

2

− (s − s2)

∣

∣

∣

∣

p
∑

l=p1+1

kjl

∣

∣

∣

∣

2
}

< Dp−2

p
∏

l=1

|Bjl
|

∣

∣

∣

p
∑

l=p1+1

kjl

∣

∣

∣

∣

∣

∣

p1
∑

l=1

kjl

∣

∣

∣

2∣
∣

∣

p
∑

l=p1+1

kjl

∣

∣

∣

2
.

By the assumption of the lemma,
∣

∣

∣

∑

j

αjkj

∣

∣

∣
� d

∑

αj , where αj � 0 and

d > 0 is some constant depending on the initial vectors kj . Indeed, under
some rotation of R3, the vectors kj can be brought inside a cone of angle

less than π belonging to the subspace k(1) > 0. Then
∣

∣

∣

∣

∑

j

αjkj

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

j

αjkj

∣

∣

∣

∣

�
∑

j

αj min
j

k
(1)

j ,

where kj is the image of kj under the above-mentioned rotation.

Put d = min
j

|k(1)

j |. Now, we can write

|B(p1,p2)
j1...jp

(s)| � Dp−2

p
∏

l=1

|Bjl
|
p2 max

j
|kj |

p2
1p

2
2d

4
.

Similarly, for p1 = 1

|B(1,p−1)
j1...jp

(s)| � Dp−2

p
∏

l=1

|Bjl
|
(p − 1)max

j
|kj |

(p − 1)2d2

and for p2 = 1
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|B(p−1,1)
j1...jp

(s)| � Dp−2

p
∏

l=1

|Bjl
|
(p − 1)max

j
|kj |

(p − 1)2d2
.

As in the proof of Lemma 1, we have

|Bj1...jp(s)| �

p−1
∑

p1=1

|B(p1,p−p1)
j1...jp

(s)|

< Dp−2

p
∏

l=1

|Bjl
| max
1�j�n

|kj |
[

2

(p − 1)d2
+

p−2
∑

p1=2

1

p2
1(p − p1)d4

]

.

The expression in the square brackets is bounded by some constant
D0 depending on initial conditions. Taking D � D0 max

1�j�n
|kj |, we get the

required inequality for q = p. The lemma is proved. �

Now, we derive Theorem 2 from Lemma 2. Using the notation from
the proof of Theorem 1, we can write

|B̃j1...jp(t)| < Dp−1

∏p
l=1 |Bjl

|
∣

∣

∣

p
∑

l=1

kjl

∣

∣

∣

<
Dp−1

∏p
l=1 |Bjl

|
(pd)2

and
n

∑

j1...jp=1

|B̃j1...jp(t)| <
Dp−1

(pd)2

( n
∑

j=1

|Bj |
)p

.

Therefore, if
n

∑

j=1

|Bj | < D−1,

then the series
∑

p>0

n
∑

j1...jp=1

|Bj1...jp(t)|

converges absolutely for all t. The end of the proof is the same as in Theo-
rem 1. �

3. Example. We consider n = 2 and the initial condition

v(k, 0) = B1δ(k − k1) + B2δ(k − k2), (14)

where the vectors k1 and k2 are linearly independent and B1 is orthogonal
to k1 and k2.
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Theorem 3. For the initial condition (14) the system (1) has a global

solution.

Proof. In this case,

h1(k, s) =
2

∑

j=1

exp{−s|kj|2}Bjδ(k − kj),

h2(k, s) = i

2
∑

j1,j2=1

〈k, Bj1〉
(

Bj2 −
〈k, Bj2〉k

|k|2
)

× exp{−s|kj1 |2 − s|kj2 |2}δ(k − (kj1 + kj2)

= i

2
∑

j1,j2=1

〈kj1 + kj2 , Bj1〉
(

Bj2 −
〈kj1 + kj2 , Bj2〉(kj1 + kj2)

|kj1 + kj2 |2
)

× exp{−s|kj1 |2 − s|kj2 |2}δ(k − (kj1 + kj2).

It is easy to see that only the term with j1 = 2, j1 = 1 is different
from zero. Therefore,

h2(k, s) = 〈k1, B2〉B2 exp{−s|k1|2 − s|k2|2}δ(k − (k1 + k2)).

From the recurrent relation it easily follows that, in the sum (7), only the
term with p1 = p − 1 is different from zero. If

hq(k, s) = B(q)(s)δ(k − (k1 + (q − 1)k2)

and

|B(q)(s)| <
Cq−1

√

(q − 2)!
|B1||B2|q−1,

then the same inequality is valid for q = p (see the proof of Lemma 1).
Theorem 3 is proved. �

Remark. Theorem 3 is equivalent to the estimates of simple diagrams
in [7].
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A class of three-dimensional initial data characterized by uniformly large vortic-

ity is considered for the 3D incompressible Euler equations in bounded cylindrical

domains. The fast singular oscillating limits of the 3D Euler equations are investi-

gated for parametrically resonant cylinders. Resonances of fast oscillating swirling

Beltrami waves deplete the Euler nonlinearity. These waves are exact solutions of

the 3D Euler equations. We construct the 3D resonant Euler systems; the latter

are countable uncoupled and coupled SO(3;C) and SO(3;R) rigid body systems.

They conserve both energy and helicity. The 3D resonant Euler systems are vested
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with bursting dynamics, where the ratio of the enstrophy at time t = t∗ to the

enstrophy at t = 0 of some remarkable orbits becomes very large for very small

times t∗; similarly for higher norms H
s, s � 2. These orbits are topologically close

to homoclinic cycles. For the time intervals, where H
s norms, s � 7/2, of the

limit resonant orbits do not blow up, we prove that the full 3D Euler equations

possess smooth solutions close to the resonant orbits uniformly in strong norms.

Bibliography: 41 titles.

1. Introduction

The issues of blowup of smooth solutions and finite time singularities of
the vorticity field for 3D incompressible Euler equations are still a major
open question. The Cauchy problem in 3D bounded axisymmetric cylin-
drical domains is attracting considerable attention: with bounded smooth
non-axisymmetric 3D initial data, under the constraints of conservation of
bounded energy, can the vorticity field blow up in finite time? Outstand-
ing numerical claims for this were recently disproved [25, 14, 23]. The
classical analytical criterion of Beale–Kato–Majda [8] for non-blow up in
finite time requires the time integrability of the L∞ norm of the vorticity.
DiPerna and Lions [27] gave examples of global weak solutions of the 3D
Euler equations which are smooth (hence unique) if the initial conditions
are smooth (specifically in W1,p(D), p > 1). However, these flows are really
2-dimensional in x1, x2, 3-components flows, independent from the third co-
ordinate x3. Their examples [15] show that solutions (even smooth ones) of
the 3D Euler equations cannot be estimated in W1,p for 1 < p < ∞ on any
time interval (0, T ) if the initial data are only assumed to be bounded in
W1,p. Classical local existence theorems in 3D bounded or periodic domains
by Kato [24], Bourguignon–Brézis [11] and Yudovich [38, 39] require some
minimal smoothness for the initial conditions (IC), for example, in Hs(D),
s > 5

2 .

The classical formulation for the Euler equations is as follows:

∂tV + (V · ∇)V = −∇p, ∇ ·V = 0, (1.1)

V ·N = 0 on ∂D, (1.2)

where ∂D is the boundary of a bounded connected domain D, N the normal
to ∂D, V(t, y) = (V1, V2, V3) the velocity field, y = (y1, y2, y3), and p is the
pressure.
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The equivalent Lamé form [3]

∂tV + curl V × V + ∇
(

p +
1

2
|V|2

)

= 0, (1.3)

∇ ·V = 0, (1.4)

∂tω + curl (ω × V) = 0, (1.5a)

ω = curl V, (1.5b)

implies conservation of energy

E(t) =
1

2

∫

D

|V(t, y)|2 dy. (1.6)

The helicity Hel (t) [3, 33], is conserved:

Hel (t) =

∫

D

V · ω dy, (1.7)

for D = R3 and when D is a periodic lattice. Helicity is also conserved
for cylindrical domains, provided that ω · N = 0 on the cylinder lateral
boundary at t = 0 (see [29]).

From the theoretical point of view, the principal difficulty in the analy-
sis of 3D Euler equations is due to the presence of the vortex stretching term
(ω · ∇)V in the vorticity equation (1.5a). Equations (1.3) and (1.5a) are
equivalent to the following:

∂tω + [ω,V] = 0, (1.8)

where [a, b] = curl (a×b) is the commutator in the infinite dimensional Lie
algebra of divergence-free vector fields [3]. This point of view has led to
celebrated developments in topological methods in hydrodynamics [3, 33].
The striking analogy between the Euler equations for hydrodynamics and
the Euler equations for a rigid body (the latter associated to the Lie algebra
of the Lie group SO(3,R)) was already pointed out by Moreau [31]; Moreau
was the first to demonstrate conservation of helicity (1961) [32]. This has led
to extensive speculations to what extent/in what cases are the solutions of
the 3D Euler equations “close” to those of coupled 3D rigid body equations
in some asymptotic sense. Recall that the Euler equations for a rigid body
in R3 is as follows:

mt + ω × m = 0, m = Aω, (1.9a)

mt + [ω,m] = 0, (1.9b)
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where m is the vector of angular momentum relative to the body, ω the
angular velocity in the body, and A the inertia operator [1, 3].

The Russian school of Gledzer, Dolzhanskij, Obukhov [20] and Visik
[36] has extensively investigated dynamical systems of hydrodynamic type
and their applications. They considered hydrodynamical models built upon
generalized rigid body systems in SO(n,R), following Manakov [30]. In-
spired by turbulence physics, they investigated “shell” dynamical systems
modeling turbulence cascades; albeit such systems are flawed as they only
preserve energy, not helicity. To address this, they constructed and stud-
ied in depth n-dimensional dynamical systems with quadratic homogeneous
nonlinearities and two quadratic first integrals F1, F2. Such systems can be
written using sums of Poisson brackets:

dxi1

dt
=

1

2

∑

i2,...,in

ǫi1i2...inpi4...in

(

∂F1

∂xi2

∂F2

∂xi3
− ∂F1

∂xi3

∂F2

∂xi2

)

, (1.10)

where constants pi4...in are antisymmetric in i4, . . . , in.

A simple version of such a quadratic hydrodynamic system was in-
troduced by Gledzer [19] in 1973. A deep open issue of the work by the
Gledzer–Obukhov school is whether there exist indeed classes of I.C. for the
3D Cauchy Euler problem (1.1) for which solutions are actually asymptot-
ically close in strong norm, on arbitrary large time intervals to solutions
of such hydrodynamic systems, with conservation of both energy and he-
licity. Another unresolved issue is the blowup or global regularity for the
“enstrophy” of such systems when their dimension n → ∞.

This article reviews some current new results of a research program
in the spirit of the Gledzer–Obukhov school; this program builds-up on the
results of [29] for 3D Euler in bounded cylindrical domains. Following the
original approach of [4]–[7] in periodic domains, [29] prove the non blowup
of the 3D incompressible Euler equations for a class of three-dimensional ini-
tial data characterized by uniformly large vorticity in bounded cylindrical
domains. There are no conditional assumptions on the properties of solu-
tions at later times, nor are the global solutions close to some 2D manifold.
The initial vortex stretching is large. The approach of proving regularity is
based on investigation of fast singular oscillating limits and nonlinear av-
eraging methods in the context of almost periodic functions [10, 9, 13].
Harmonic analysis tools based on curl eigenfunctions and eigenvalues are
crucial. One establishes the global regularity of the 3D limit resonant Euler
equations without any restriction on the size of 3D initial data. The res-
onant Euler equations are characterized by a depleted nonlinearity. After
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establishing strong convergence to the limit resonant equations, one boot-
straps this into the regularity on arbitrary large time intervals of the solu-
tions of 3D Euler Equations with weakly aligned uniformly large vorticity
at t = 0. The theorems in [29] hold for generic cylindrical domains, for a
set of height/radius ratios of full Lebesgue measure. For such cylinders the
3D limit resonant Euler equations are restricted to two-wave resonances of
the vorticity waves and are vested with an infinite countable number of new
conservation laws. The latter are adiabatic invariants for the original 3D
Euler equations.

Three-wave resonances exist for a nonempty countable set of h/R (h
height, R radius of the cylinder) and moreover accumulate in the limit of
vanishingly small vertical (axial) scales. This is akin to Arnold tongues [2]
for the Mathieu–Hill equations and raises nontrivial issues of possible singu-
larities/lack thereof for dynamics ruled by infinitely many resonant triads
at vanishingly small axial scales. In such a context, the 3D resonant Euler
equations do conserve the energy and helicity of the field.

In this review, we consider cylindrical domains with parametric reso-
nances in h/R and investigate in depth the structure and dynamics of 3D
resonant Euler systems. These parametric resonances in h/R are proved
to be non-empty. Solutions to Euler equations with uniformly large initial
vorticity are expanded along a full complete basis of elementary swirling
waves (T2 in time). Each such quasiperiodic, dispersive vorticity wave is a
quasiperiodic Beltrami flow; these are exact solutions of 3D Euler equations
with vorticity parallel to velocity. There are no Galerkin-like truncations
in the decomposition of the full 3D Euler field. The Euler equations, re-
stricted to resonant triplets of these dispersive Beltrami waves, determine
the “resonant Euler systems.” The basic “building block” of these (a pri-
ori ∞-dimensional) systems are proved to be SO(3;C) and SO(3;R) rigid
body systems

U̇k + (λm − λn)UmUn = 0,

U̇m + (λn − λk)UnUk = 0,

U̇n + (λk − λm)UkUm = 0.

(1.11)

These λ’s are eigenvalues of the curl operator in the cylinder, curl Φ±
n =

±λnΦ±
n ; the curl eigenfunctions are steady elementary Beltrami flows, and

the dispersive Beltrami waves oscillate with the frequencies ± h

2πǫ

n3

λn
, n3

vertical wave number (vertical shear), 0 < ǫ < 1. Physicists [12] computa-
tionally demonstrated the physical impact of the polarization of Beltrami
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modes Φ± on intermittency in the joint cascade of energy and helicity in
turbulence.

Another “building block” for resonant Euler systems is a pair of SO(3;C)
or SO(3;R) rigid bodies coupled via a common principal axis of iner-
tia/moment of inertia:

ȧk = (λm − λn)Γaman, (1.12a)

ȧm = (λn − λk)Γanak, (1.12b)

ȧn = (λk − λm)Γakam + (λk̃ − λm̃)Γ̃ak̃am̃, (1.12c)

ȧm̃ = (λn − λk̃)Γ̃anak̃, (1.12d)

ȧk̃ = (λm̃ − λn)Γ̃am̃an, (1.12e)

where Γ and Γ̃ are parameters in R defined in Theorem 4.10. Both reso-
nant systems (1.11) and (1.12) conserve energy and helicity. We prove that
the dynamics of these resonant systems admit equivariant families of homo-
clinic cycles connecting hyperbolic critical points. We demonstrate bursting
dynamics: the ratio

||u(t)||2Hs/||u(0)||2Hs , s � 1,

can burst arbitrarily large on arbitrarily small times, for properly chosen
parametric domain resonances h/R. Here,

||u(t)||2Hs =
∑

n

(λn)2s|un(t)|2 . (1.13)

The case s = 1 is the enstrophy. The “bursting” orbits are topologically
close to the homoclinic cycles.

Are such dynamics for the resonant systems relevant to the full 3D
Euler equations (1.1)–(1.8)? The answer lies in the following crucial “shad-
owing” Theorem 2.10. Given the same initial conditions, given the maximal
time interval 0 � t < Tm where the resonant orbits of the resonant Euler
equations do not blow up, then the strong norm Hs of the difference be-
tween the exact Euler orbit and the resonant orbit is uniformly small on
0 � t < Tm, provided that the vorticity of the I.C. is large enough. Para-
doxically, the larger the vortex stretching of the I.C., the better the uniform
approximation. This deep result is based on cancellation of fast oscillations
in strong norms, in the context of almost periodic functions of time with
values in Banach spaces [29, Sec. 4]. It includes uniform approximation in
the spaces Hs, s > 5/2. For instance, given a quasiperiodic orbit on some
time torus Tl for the resonant Euler systems, the exact solutions to the
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Euler equations will remain ǫ-close to the resonant quasiperiodic orbit on
a time interval 0 � t � maxTi, 1 � i � l, Ti elementary periods, for large
enough initial vorticity. If orbits of the resonant Euler systems admit burst-
ing dynamics in the strong norms Hs, s � 7/2, so do some exact solutions

of the full 3D Euler equations, for properly chosen parametrically resonant
cylinders.

2. Vorticity Waves and Resonances
of Elementary Swirling Flows

We study the initial value problem for the three-dimensional Euler equations
with initial data characterized by uniformly large vorticity

∂tV + (V · ∇)V = −∇p, ∇ ·V = 0, (2.1)

V(t, y)|t=0 = V(0) = Ṽ0(y) +
Ω

2
e3 × y, (2.2)

where y = (y1, y2, y3), V(t, y) = (V1, V2, V3) is the velocity field, and p is
the pressure. In Equations (1.1), e3 denotes the vertical unit vector and Ω

is a constant parameter. The field Ṽ0(y) depends on three variables y1, y2,
and y3. Since curl (Ω

2 e3×y) = Ωe3, the vorticity vector at initial time t = 0
is

curl V(0, y) = curl Ṽ0(y) + Ωe3, (2.3)

and the initial vorticity has a large component weakly aligned along e3,
when Ω >> 1. These are fully three-dimensional large initial data with
large initial 3D vortex stretching. We denote by Hs

σ the usual Sobolev
space of solenoidal vector fields.

The base flow

Vs(y) =
Ω

2
e3 × y, curl Vs(y) = Ωe3 (2.4)

is called a steady swirling flow and is a steady state solution (1.1)–(1.4),
as curl (Ωe3 × Vs(y)) = 0. In (2.2) and (2.3), we consider I.C. which are
an arbitrary (not small) perturbation of the base swirling flow Vs(y) and
introduce

V(t, y) =
Ω

2
e3 × y + Ṽ(t, y), (2.5)

curl V(t, y) = Ωe3 + curl Ṽ(t, y), (2.6)

∂tṼ + curl Ṽ × Ṽ + Ωe3 × Ṽ + curl Ṽ × Vs(y) + ∇p′ = 0, ∇ · Ṽ = 0,(2.7)

Ṽ(t, y)|t=0 = Ṽ0(y). (2.8)
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Equations (2.1) and (2.7) are studied in cylindrical domains

C = {(y1, y2, y3) ∈ R3 : 0 < y3 < 2π/α, y2
1 + y2

2 < R2}, (2.9)

where α and R are positive real numbers. If h is the height of the cylinder,
α = 2π/h. Let

Γ = {(y1, y2, y3) ∈ R3 : 0 < y3 < 2π/α, y2
1 + y2

2 = R2}. (2.10)

Without loss of generality, we can assume that R = 1. Equations (2.1) are
considered with periodic boundary conditions in y3

V(y1, y2, y3) = V(y1, y2, y3 + 2π/α) (2.11)

and vanishing normal component of velocity on Γ

V · N = Ṽ · N = 0 on Γ, (2.12)

where N is the normal vector to Γ. From the invariance of 3D Euler equa-
tions under the symmetry y3 → −y3, V1 → V1, V2 → V2, V3 → −V3, all
results in this article extend to cylindrical domains bounded by two hori-
zontal plates. Then the boundary conditions in the vertical direction are
zero flux on the vertical boundaries (zero vertical velocity on the plates).
One only needs to restrict vector fields to be even in y3 for V1, V2 and odd
in y3 for V3, and double the cylindrical domain to −h � y3 � +h.

We choose Ṽ0(y) in Hs(C), s > 5/2. In [29], for the case of “non-
resonant cylinders,” i.e., non-resonant α = 2π/h, we have established regu-
larity for arbitrarily large finite times for the 3D Euler solutions for Ω large,
but finite. Our solutions are not close in any sense to those of the 2D or
“quasi 2D” Euler and they are characterized by fast oscillations in the e3

direction, together with a large vortex stretching term

ω(t, y) · ∇V(t, y) = ω1
∂V

∂y1
+ ω2

∂V

∂y2
+ ω3

∂V

∂y3
, t � 0,

with leading component
∣

∣

∣
Ω

∂

∂y3
V(t, y)

∣

∣

∣
≫ 1. There are no assumptions on

oscillations in y1, y2 for our solutions (nor for the initial condition Ṽ0(y)).

Our approach is entirely based on fast singular oscillating limits of
Equations (1.1)–(1.5a), nonlinear averaging, and cancelation of oscillations
in the nonlinear interactions for the vorticity field for large Ω. This was
developed in [5, 6, 7] for the cases of periodic lattice domains and the
infinite space R3.

It is well known that fully three-dimensional initial conditions with
uniformly large vorticity excite fast Poincaré vorticity waves [5, 6, 7, 34].
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Since individual Poincaré wave modes are related to the eigenfunctions of
the curl operator, they are exact time-dependent solutions of the full non-
linear 3D Euler equations. Of course, their linear superposition does not
preserve this property. Expanding solutions of (2.1)–(2.8) along such vortic-
ity waves demonstrates potential nonlinear resonances of such waves. First
recall spectral properties of the curl operator in bounded connected do-
mains.

Proposition 2.1 ([29]). The curl operator admits a self-adjoint ex-

tension under the zero flux boundary conditions, with a discrete real spec-

trum λn = ±|λn|, |λn| > 0 for every n and |λn| → +∞ as |n| → ∞. The

corresponding eigenfunctions Φ±
n

curl Φ±
n = ±|λn|Φ±

n (2.13)

are complete in the space

J
0 =

{

U ∈ L2(D) : ∇ · U = 0,U · N|∂D = 0,

h
∫

o

U dz = 0
}

. (2.14)

Remark 2.2. In cylindrical domains, with cylindrical coordinates
(r, θ, z), the eigenfunctions admit the representation

Φn1,n2,n3 = (Φr,n1,n2,n3(r), Φθ,n1,n2,n3(r), Φz,n1,n2,n3(r)) ein2θeiαn3z

(2.15)
with n2 = 0,±1,±2, . . . , n3 = ±1,±2, . . . , and n1 = 0, 1, 2, . . . . Here, n1 in-
dexes the eigenvalues of the equivalent Sturm–Liouville problem in the radial
coordinates and n = (n1, n2, n3) (see [29] for technical details). From now
on, we use the generic variable z for any vertical (axial) coordinate y3 or x3.
For n3 = 0 (vertical averaging along the axis of the cylinder) 2-dimensional
3-component solenoidal fields must be expanded along a complete basis for
fields derived from 2D stream functions:

Φn =
((

curl (ϕne3), ϕne3

))

, ϕn = ϕn(r, θ),

−△ϕn = µnϕn, ϕn|∂Γ = 0,

curl Φn =
((

curl (ϕne3), µnϕne3

))

.

Here,
((

a, be3

))

denotes a 3-component vector whose horizontal projection
is a and vertical projection is be3.

Let us explicit elementary swirling wave flows which are exact solutions
to (2.1) and (2.7).
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Lemma 2.3. For every n = (n1, n2, n3) the following quasiperiodic

(T2 in time) solenoidal fields are exact solution of the full 3D nonlinear

Euler equations (2.1)

V(t, y) =
Ω

2
e3 × y + exp

(Ω

2
Jt

)

Φn

(

exp
(

− Ω

2
Jt

)

y
)

exp
(

± i
n3

|λn|
αΩt

)

,

(2.16)
n3 is the vertical wave number of Φn and exp(Ω

2 Jt) the unitary group of

rigid body rotations:

J =

⎛

⎝

0 −1 0
1 0 0
0 0 0

⎞

⎠ , eΩJt/2 =

⎛

⎝

cos(Ωt
2 ) − sin(Ωt

2 ) 0
sin(Ωt

2 ) cos(Ωt
2 ) 0

0 0 1

⎞

⎠ . (2.17)

Remark 2.4. These fields are exact quasiperiodic, nonaxisymmetric
swirling flow solutions of the 3D Euler equations. For n3 �= 0 their second
components

Ṽ(t, y) = exp
(Ω

2
Jt

)

Φn

(

exp
(

− Ω

2
Jt

)

y
)

exp
(

± in3

|λn|
αΩt

)

(2.18)

are Beltrami flows (curl Ṽ × Ṽ ≡ 0) exact solutions of (2.7) with Ṽ(t =
0, y) = Φn(y).

In Equation (2.18), Ṽ(t, y) are dispersive waves with frequencies
Ω

2

and
n3α

|λn|
Ω, α =

2π

h
. Moreover, each Ṽ(t, y) is a traveling wave along the

cylinder axis since it contains the factor exp
(

iαn3(±z± Ω

|λn|
t)

)

. Note that

n3 large corresponds to small axial (vertical) scales, albeit 0 � α|n3/λn| � 1.

Proof of Lemma 2.3. Through the canonical rigid body transforma-
tion for both the field V(t, y) and the space coordinates y = (y1, y2, y3):

V(t, y) = e+ΩJt/2U(t, e−ΩJt/2y) +
Ω

2
Jy, x = e−ΩJt/2y, (2.19)

the 3D Euler equations (2.1), (2.2) transform into

∂tU + (curl U + Ωe3) × U = −∇
(

p − Ω2

4
(|x1|2 + |x2|2) +

|U|2
2

)

, (2.20)

∇ · U = 0, U(t, x)|t=0 = U(0) = Ṽ0(x), (2.21)
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For Beltrami flows such that curl U × U ≡ 0 these Euler equations
(2.20), (2.21) in a rotating frame reduce to

∂tU + Ωe3 × U + ∇π = 0, ∇ · U = 0,

which are identical to the Poincaré–Sobolev nonlocal wave equations in the
cylinder [29, 34, 35, 3]

∂tΨ + Ωe3 × Ψ + ∇π = 0, ∇ ·Ψ = 0, (2.22)

∂2

∂t2
curl2 Ψ − Ω2 ∂2

∂x2
3

Ψ = 0, Ψ ·N|∂D = 0. (2.23)

It suffices to verify that the Beltrami flows

Ψn(t, x) = Φn(x) exp
(

± i
αn3

|λn|
Ωt

)

,

where Φ±
n (x) and ±|λn| are curl eigenfunctions and eigenvalues, are exact

solutions to the Poincaré–Sobolev wave equation, in such a rotating frame
of reference.

Remark 2.5. The frequency spectrum of the Poincaré vorticity waves

(solutions to (2.22)) is exactly ±i
αn3

|λn|
Ω, n = (n1, n2, n3), indexing the spec-

trum of curl. Note that n3 = 0 (zero frequency of rotating waves) corre-
sponds to 2-dimensional 3-components solenoidal vector fields.

We now transform the Cauchy problem for the 3D Euler equations
(2.1), (2.2) into an infinite dimensional nonlinear dynamical system by ex-
panding V(t, y) along the swirling wave flows (2.16)–(2.18)

V(t, y) =
Ω

2
e3 × y + exp

(

Ω

2
Jt

)

×
{

∑

n=(n1,n2,n3)

un(t) exp

(

±i
αn3

|λn|
Ωt

)

Φn

(

exp

(

−Ω

2
Jt

)

y

)

}

, (2.24a)

V(t = 0, y) =
Ω

2
e3 × y + Ṽ0(y) (2.24b)

Ṽ0(y) =
∑

n=(n1,n2,n3)

un(0)Φn(y), (2.24c)

where Φn denotes the curl eigenfunctions of Proposition 2.1 if n3 �= 0, and
Φn =

((

curl (ϕne3), ϕne3

))

if n3 = 0 (2D case, Remark 2.2).
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As we focus on the case, where helicity is conserved for (2.1), (2.2),

we consider the class of initial data Ṽ0 such that (see [29]) curl Ṽ0 ·N = 0
on Γ, where Γ is the lateral boundary of the cylinder.

The infinite dimensional dynamical system is then equivalent to the
3D Euler equations (2.1), (2.2) in the cylinder, with n = (n1, n2, n3) ranging
over the whole spectrum of curl, i.e.,

dun

dt
= −

∑

k,m
k3+m3=n3
k2+m2=n2

exp

(

i

(

± n3

|λn|
± k3

|λk|
± m3

|λm|

)

αΩt

)

× 〈curl Φk × Φm,Φn〉uk(t)um(t). (2.25)

Here,

curl Φ±
k = ±λkΦ

±
k if k3 �= 0,

curl Φk =
((

curl (ϕke3), µkϕke3

))

if k3 = 0

(2D, 3-components, Remark 2.2), similarly for m3 = 0 and n3 = 0. The
inner product 〈 , 〉 denotes the L2 complex-valued inner product in D.

This is an infinite dimensional system of coupled equations with qua-
dratic nonlinearities, which conserve both the energy

E(t) =
∑

n

|un(t)|2

and the helicity

Hel (t) =
∑

n

±|λn| |u±
n (t)|2.

The quadratic nonlinearities split into resonant terms, where the exponen-
tial oscillating phase factor in (2.25) reduces to unity and fast oscillating
non-resonant terms (Ω >> 1). The resonant set K is defined in terms of
vertical wave numbers k3, m3, n3 and eigenvalues ±λk, ±λm, ±λn of curl :

K =
{

± k3

λk
± m3

λm
± n3

λn
= 0, n3 = k3 + m3, n2 = k2 + m2

}

. (2.27)

Here, k2, m2, n2 are azimuthal wave numbers.

We call the “resonant Euler equations” the following ∞-dimensional
dynamical system restricted to (k, m, n) ∈ K:

dun

dt
+

∑

(k,m,n)∈K

〈curl Φk × Φm,Φn〉ukum = 0, (2.28a)

un(0) ≡ 〈Ṽ0,Φn〉. (2.28b)



Bursting Dynamics of the 3D Euler Equations 313

Here, curl Φ±
k = ±λkΦ

±
k if k3 �= 0, curl Φk =

((

curl (ϕke3), µkϕke3

))

if
k3 = 0; similarly for m3 = 0 and n3 = 0 (2D components, Remark 2.2). If
there are no terms in (2.28a) satisfying the resonance conditions, then there

will be some modes for which
duj

dt
= 0.

Lemma 2.6. The resonant 3D Euler equations (2.28) conserve both

energy E(t) and helicity Hel (t). The energy and helicity are identical to

that of the full exact 3D Euler equations (2.1), (2.2).

The set of resonances K is studied in depth in [29]. To summarize, K
splits into

(i ) 0-wave resonances, with n3 = k3 = m3 = 0; the corresponding res-
onant equations are identical to the 2-dimensional 3-components
Euler equations with I.C.

1

h

h
∫

0

Ṽ0(y1, y2, y3) dy3.

(ii) Two-wave resonances, with k3m3n3 = 0, but two of them are
not null; the corresponding resonant equations (called “catalytic
equations”) are proved to possess an infinite countable set of new
conservation laws [29].

(iii) Strict three-wave resonances for a subset K∗ ⊂ K.

Definition 2.7. The set K∗ of strict 3 wave resonances is:

K∗ =

{

± k3

λk
± m3

λm
± n3

λn
= 0, k3m3n3 �= 0, n3 = k3 + m3, n2 = k2 + m2

}

.

(2.29)

Note that K∗ is parameterized by h/R since α =
2π

h
parameterizes

the eigenvalues λn, λk, λm of the curl operator.

Proposition 2.8. There exists a countable nonempty set of parame-

ters h
R for which K∗ �= ∅.

Proof. The technical details, together with a more precise statement,
are postponed to the proof of Lemma 3.7. Concrete examples of resonant
axisymmetric and helical waves are discussed in [28] (see Fig. 2 in [28]). �
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Corollary 2.9. Let

h
∫

0

Ṽ0(y1, y2, y3) dy3 = 0,

i.e., zero vertical mean for the I.C. Ṽ0(y) in (2.2), (2.8), (2.24c), and

(2.28b). Then the resonant 3D Euler equations are invariant on K∗ :

dun

dt
+

∑

(k,m,n)∈K∗

λk〈Φk × Φm,Φn〉ukum = 0, k3m3n3 �= 0, (2.30a)

un(0) = 〈Ṽ0,Φn〉, (2.30b)

where Ṽ0 has spectrum restricted to n3 �= 0.

Proof. This is an immediate consequence of the “operator splitting”
theorem (see [29, Theorem 3.2]). �

We call the above dynamical systems the “strictly resonant Euler sys-

tem.” This is an ∞-dimensional Riccati system which conserves energy and
helicity. It corresponds to nonlinear interactions depleted on K∗.

How do dynamics of the resonant Euler equations (2.28) or (2.30) ap-
proximate exact solutions of the Cauchy problem for the full Euler equations
in strong norms? This is answered by the following theorem proved in [29,
Sec. 4].

Theorem 2.10. Consider the initial value problem

V(t = 0, y) =
Ω

2
e3 × y + Ṽ0(y), Ṽ0 ∈ Hs

σ, s > 7/2,

for the full 3D Euler equations, with ||Ṽ0||Hs
σ

� M0
s and curl Ṽ0 · N = 0

on Γ.

• Let V(t, y) =
Ω

2
e3 × y + Ṽ(t, y) denote the solution to the exact Euler

equations.

• Let w(t, x) denote the solution to the resonant 3D Euler equations with

the initial condition w(0, x) ≡ w(0, y) = Ṽ0(y).
• Let ||w(t, y)||Hs

σ
� Ms(TM , M0

s ) on 0 � t � TM , s > 7/2.

Then for all ǫ > 0 there exists Ω∗(TM , M0
s , ǫ) such that for all Ω � Ω∗

∣

∣

∣

∣

∣

∣
Ṽ(t, y) − exp

(

JΩt

2

)

{

∑

n

un(t)e−i
n3
λn

αΩtΦn(e−
JΩt
2 y)

}

∣

∣

∣

∣

∣

∣

Hβ
� ǫ

on 0 � t � TM for all β � 1, β � s − 2. Here, || · ||Hβ is defined in (1.13).
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The 3D Euler flow preserves the condition curl Ṽ0 · N = 0 on Γ, i.e.,
curl V(t, y) · N = 0 on Γ, for every t � 0 [29]. The proof of this “error-
shadowing” theorem is delicate, beyond the usual Gronwall differential in-
equalities and involves estimates of oscillating integrals of almost periodic
functions of time with values in Banach spaces. Its importance lies in that
solutions of the resonant Euler equations (2.28) and/or (2.30) are uniformly
close in strong norms to those of the exact Euler equations (2.1), (2.2), on
any time interval of existence of smooth solutions of the resonant system.
The infinite dimensional Riccati systems (2.28) and (2.30) are not just hy-
drodynamic models, but exact asymptotic limit systems for Ω ≫ 1. This
is in contrast to all previous literature on conservative 3D hydrodynamic
models such as in [20].

3. The Strictly Resonant Euler Systems:

the SO(3) Case

We investigate the structure and the dynamics of the “strictly resonant
Euler systems” (2.30). Recall that the set of 3-wave resonances is:

K∗ =
{

(k, m, n) : ± k3

λk
± m3

λm
± n3

λn
= 0, k3m3n3 �= 0,

n3 = k3 + m3, n2 = k2 + m2

}

. (3.1)

From the symmetries of the curl eigenfunctions Φn and eigenvalues λn in
the cylinder, we have

if

n2 → −n2, n3 → −n3, (3.2a)

then

Φ(n1,−n2,−n3) = Φ∗(n1, n2, n3) (3.2b)

and

λ(n1,−n2,−n3) = λ(n1, n2, n3), (3.2c)

where ∗ designates the complex conjugate (see [29, Sec. 3] for details). The
eigenfunctions Φ(n1, n2, n3) involve the radial functions Jn2

(β(n1, n2, αn3)r)
and J ′

n2
(β(n1, n2, αn3)r), with

λ2(n1, n2, n3) = β2(n1, n2, αn3) + α2n2
3;
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β(n1, n2, αn3) are discrete, countable roots of Equation (3.30) in [29], ob-
tained via an equivalent Sturm–Liouville radial problem. Since the curl
eigenfunctions are even in r → −r, n1 → −n1, we extend the indices
n1 = 1, 2, . . . ,+∞ to −n1 = −1,−2, . . . with the above radial symmetry in
mind.

Corollary 3.1. The 3-wave resonance set K∗ is invariant under the

symmetries σj , j = 0, 1, 2, 3, where

σ0(n1, n2, n3) = (n1, n2, n3), σ1(n1, n2, n3) = (−n1, n2, n3),

σ2(n1, n2, n3) = (n1,−n2, n3), σ3(n1, n2, n3) = (n1, n2,−n3).

Remark 3.2. For 0 < i � 3, 0 < j � 3, 0 < l � 3, σ2
j = Id,

σiσj = −σl, if i �= j and σiσjσl = −Id, for i �= j �= l. The σj do preserve
the convolution conditions in K∗.

We choose an α for which the set K∗ is not empty. We further take
the hypothesis of a single triple wave resonance (k, m, n), modulo the sym-
metries σj .

Hypothesis 3.3. K∗ is such that there exists a single triple wave
number resonance (n, k, m), modulo the symmetries σj , j = 1, 2, 3, and
σj(k) �= k, σj(m) �= m, σj(n) �= n for j = 2 and j = 3.

Under the above assumption, one can demonstrate that the strictly
resonant Euler system splits into three uncoupled systems in C3:

Theorem 3.4. Under the hypothesis 3.3, the resonant Euler system

reduces to three uncoupled rigid body systems in C3

dUn

dt
+ i(λk − λm)CkmnUkUm = 0, (3.3a)

dUk

dt
− i(λm − λn)CkmnUnU∗

m = 0, (3.3b)

dUm

dt
− i(λn − λk)CkmnUnU∗

k = 0, (3.3c)

where Ckmn = i〈Φk ×Φm,Φ∗
n〉, Ckmn real and the other two uncoupled sys-

tems obtained with the symmetries σ2(k, m, n) and σ3(k, m, n). The energy

and the helicity of each subsystem are conserved:

d

dt
(UkU∗

k + UmU∗
m + UnU∗

n) = 0,

d

dt
(λkUkU∗

k + λmUmU∗
m + λnUnU∗

n) = 0.
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Proof. From U−k = U∗
k it follows that λ(−k) = λ(+k), similarly

for m and n; and in a very essential way from the antisymmetry of 〈Φk ×
Φm,Φ∗

n〉, together with curl Φk = λkΦk. That Ckmn is real follows from
the eigenfunctions detailed in [29, Sec. 3]. �

Remark 3.5. This deep structure, i.e., SO(3;C) rigid body systems
in C3 is a direct consequence of the Lamé form of the full 3D Euler equations,
see Equations (1.3) and (2.7), and the nonlinearity curl V × V.

The system (3.3) is equivariant with respect to the symmetry operators

(z1, z2, z3) → (z∗1 , z∗2 , z∗3), (z1, z2, z3) → (exp(iχ1)z1, exp(iχ2)z2, exp(iχ3)z3) ,

provided χ1 = χ2+χ3. It admits other integrals known as the Manley–Rowe
relations (see, for instance [37]). It differs from the usual 3-wave resonance
systems investigated in the literature such as in [40, 41, 22] in that

(1) helicity is conserved,
(2) dynamics of these resonant systems rigorously “shadow” those of

the exact 3D Euler equations, see Theorem 2.10.

Real forms of the system (3.3) are found in [20], corresponding to
the exact invariant manifold Uk ∈ iR, Um ∈ R, Un ∈ R, albeit without
any rigorous asymptotic justification. The C3 systems (3.3) with helicity

conservation laws are not discussed in [20].

The only nontrivial Manley–Rowe conservation laws for the resonant
system (3.3), rigid body SO(3;C), which are independent from energy and
helicity, are as follows:

d

dt
(rkrmrn sin(θn − θk − θm)) = 0,

where Uj = rj exp(iθj), j = k, m, n, and

E1 = (λk − λm)r2
n − (λm − λn)r2

k,

E2 = (λm − λn)r2
k − (λn − λk)r2

m.

The resonant system (3.3) is well known to possess hyperbolic equilib-
ria and heteroclinic/homoclinic orbits on the energy surface. We are inter-
ested in rigorously proving arbitrary large bursts of enstrophy and higher
norms on arbitrarily small time intervals, for properly chosen h/R. To
simplify the presentation, we establish the results for the simpler invariant
manifold Uk ∈ iR, and Um, Un ∈ R.
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Rescale time as t → t/Ckmn. Start from the system

U̇n + i(λk − λm)UkUm = 0,

U̇k − i(λm − λn)UnU∗
m = 0,

U̇m − i(λn − λk)UnU∗
k = 0.

(3.4)

Assume that Uk ∈ iR and Um, Un ∈ R. Set p = iUk, q = Um, and r = Un,
as well as λk = λ, λm = µ, and λn = ν. Then

ṗ + (µ − ν)qr = 0,

q̇ + (ν − λ)rp = 0,

ṙ + (λ − µ)pq = 0.

(3.5)

This system admits two first integrals

E = p2 + q2 + r2 (energy)

H = λp2 + µq2 + νr2 (helicity)
(3.6)

The system (3.5) is exactly the SO(3,R) rigid body dynamics Euler

equations, with inertia momenta Ij =
1

|λj |
, j = k, m, n [1].

Lemma 3.6 ([1, 20]). With the ordering λk > λm > λn, i.e., λ >
µ > ν, the equilibria (0,±1, 0) are hyperbolic saddles on the unit energy

sphere, and the equilibria (±1, 0, 0), (0, 0,±1) are centers. There exist equi-

variant families of heteroclinic connections between (0, +1, 0) and (0,−1, 0).
Each pair of such connections correspond to equivariant homoclinic cycles

at (0, 1, 0) and (0,−1, 0).

We investigate bursting dynamics along orbits with large periods, with
initial conditions close to the hyperbolic point (0, E(0), 0) on the energy
sphere E. We choose resonant triads such that λk > 0, λn < 0, λk ∼
|λn|, |λm| ≪ λk, equivalently:

λ > µ > ν, λν < 0, |µ| ≪ λ and λ ∼ |ν|. (3.7)

Lemma 3.7. There exists h/R with K∗ �= ∅ such that

λk > λm > λn, λkλn < 0, |λm| ≪ λk, λk ∼ |λn|.

Remark 3.8. Together with the polarity ± of the curl eigenvalues,
these are 3-wave resonances where two of the eigenvalues are much larger in
moduli than the third one. In the limit |k|, |m|, |n| ≫ 1, λk ∼ ±|k|, λm ∼
±|m|, λn ∼ ±|n|, the eigenfunctions Φ have leading asymptotic terms which
involve cosines and sines periodic in r (see [29, Sec. 3]). In the strictly
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resonant equations (2.30), the summation over the quadratic terms becomes
an asymptotic convolution in n1 = k1 + n1. The resonant three waves in
Lemma 3.7 are equivalent to Fourier triads k + m = n, with |k| ∼ |n| and
|m| ≪ |k|, |n|, in periodic lattices. In the physics of spectral theory of
turbulence [17, 26], these are exactly the triads responsible from transfer
of energy between large scales and small scales. These are the triads which
have hampered mathematical efforts at proving the global regularity of the
Cauchy problem for 3D Navier–Stokes equations in periodic lattices [16].

Proof of Lemma 3.7 (see [29]). The transcendental dispersion law
for 3-waves in K∗ for cylindrical domains, is a polynomial of degree four in
ϑ3 = 1/h2:

P̃ (ϑ3) = P̃4ϑ
4
3 + P̃3ϑ

3
3 + P̃2ϑ

2
3 + P̃1ϑ3 + P̃0 = 0, (3.8)

with n2 = k2 + m2 and n3 = k3 + m3.

Then with

hk =
β2(k1, k2, αk3)

k2
3

, hm =
β2(m1, m2, αm3)

m2
3

, hn =
β2(n1, n2, αn3)

n2
3

(see the radial Sturm–Liouville problem in [29, Sec. 3], the coefficients of

P̃ (ϑ3) are given by the formula

P̃4 = −3,

P̃3 = −4(hk + hm + hn),

P̃2 = −6(hkhm + hkhn + hmhn),

P̃1 = −12hkhmhn,

P̃0 = h2
mh2

n + h2
kh2

n + h2
mh2

k − 2(hkhmh2
n + hkhnh2

m + hmhnh2
k).

Similar formulas for the periodic lattice domain were first derived in [5, 6,
7]. In cylindrical domains, the resonance condition for K∗ is identical to

± 1√
ϑ3 + hk

± 1√
ϑ3 + hm

± 1√
ϑ3 + hn

= 0,

with ϑ3 = 1/h2, hk = β2(k)/k2
3 , hm = β2(m)/m2

3, hn = β2(n)/n2
3; Equation

(3.8) is the equivalent rational form.

From the asymptotic formula (3.44) in [29] for large β

β(n1, n2, n3) ∼ n1π + n2
π

2
+

π

4
+ ψ, (3.9)
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where ψ = 0 if lim
m2

m3

h

2π
= 0 (for example, h fixed,

m2

m3
→ 0) and ψ = ±π

2
if

lim
m2

m3

h

2π
= ±∞ (for example,

m2

m3
fixed, h → ∞). The proof is completed

by taking leading terms P̃0 + ϑ3P̃1 in (3.8), ϑ3 =
1

h2
≪ 1, and m2 = 0,

k2 = O(1), n2 = O(1). �

We now state a theorem for bursting of the H3 norm in arbitrarily
small times, for initial data close to the hyperbolic point (0, E(0), 0).

Theorem 3.9 (bursting dynamics in H3). Suppose that λ > µ > ν,

λν < 0, |µ| ≪ λ, and λ ∼ |ν|. Let W (t) = λ6p(t)2 + µ6q(t)2 + ν6r(t)2

be the H3-norm squared of an orbit of (3.5). Choose initial data such that

W (0) = λ6p(0)2 + µ6q(0)2 with λ6p(0)2 ∼ 1
2W (0) and µ6q(0)2 ∼ 1

2W (0).
Then there exists t∗ > 0 such that

W (t) �
1

4

(

λ

µ

)6

W (0),

where t∗ �
6

√

W (0)
µ2Ln(λ/|µ|)(λ/|µ|)−1.

Remark 3.10. Under the conditions of Lemma 3.7, (λ/µ)6 ≫ 1,
whereas µ2(Ln(λ/|µ|))(λ/|µ|)−1 ≪ 1. Therefore, over a small time interval
of length O(µ2(Ln(λ/|µ|))(λ/|µ|)−1) ≪ 1, the ratio ||U(t)||H3/||U(0)||H3

grows to reach a maximal value O
(

(λ/|µ|)3
)

≫ 1. Since the orbit is periodic,

the H3 semi-norm eventually relaxes to its initial state after some time (this
being a manifestation of the time-reversibility of the Euler flow on the energy
sphere). The “shadowing” Theorem 2.10 with s > 7/2 ensures that the full,
original 3D Euler dynamics, with the same initial conditions, will undergo
the same type of burst. Notice that, with the definition (1.13) of ‖ · ‖Hs ,
one has

||Ωe3 × y||H3 = || curl3(Ωe3 × y)||L2 = 0 .

Hence the solid rotation part of the original 3D Euler solution does not
contribute to the ratio ||V(t)||H3/||V(0)||H3 .

Theorem 3.11 (bursting dynamics of the enstrophy). Under the

same conditions for the 3-wave resonance, let Ξ(t) = λ2p(t)2 + µ2q(t)2 +
ν2r(t)2 be the enstrophy. Choose initial data such that Ξ(0) = λ2p(0)2 +
µ2q(0)2+ν2r(0)2 with λ2p(0)2 ∼ 1

2Ξ(0), µ2q(0)2 ∼ 1
2Ξ(0). Then there exists

t∗∗ > 0 such that

Ξ(t∗∗) � (λ/µ)2,
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where t∗∗ �
1√
2

1
√

Ξ(0)
Ln(λ/|µ|)(λ/|µ|)−1.

Remark 3.12. It is interesting to compare this mechanism for bursts
with earlier results in the same direction obtained by DiPerna and Lions.
Indeed, for each p ∈ (1,∞), each δ ∈ (0, 1) and each t > 0, DiPerna and
Lions [15] constructed examples of 2D-3 components solutions to Euler
equations such that

||V(0)||W 1,p � ǫ while ||V(t)||W 1,p � 1/δ .

Their examples essentially correspond to shear flows of the form

V(t, x1, x2) =

⎛

⎝

u(x2)
0

w(x1 − tu(x2), x2)

⎞

⎠ ,

where u ∈ W 1,p
x2

while w ∈ W 1,p
x2

. It is obvious that

curl V(t, x1, x2) =

⎛

⎝

(∂2 − tu′(x2)∂1)w(x1 − tu(x2), x2)
−∂1w(x1 − tu(x2), x2)

−u′(x2)

⎞

⎠ .

Thus, all the components in curl V(t, x1, x2) belong to Lp
loc, except for the

term −tu′(x2)∂1w(x1 − tu(x2), x2). For each t > 0 this term belongs to
Lp for any choice of u ∈ W 1,p

x2
and w ∈ W 1,p

x1,x2
if and only if p = ∞.

Whenever p < ∞, DiPerna and Lions construct their examples as some
smooth approximation of the situation above in the strong W 1,p topology.

In other words, the DiPerna–Lions construction works only in cases
where the initial vorticity does not belong to an algebra — specifically to
Lp, which is not an algebra unless p = ∞.

The type of burst obtained in our construction above is different: in
that case, the original vorticity belongs to the Sobolev space H2, which
is an algebra in space dimension 3. Similar phenomena are observed in all
Sobolev spaces Hβ with β � 2 — which are also algebras in space dimension
3.

In other words, our results complement those of DiPerna–Lions on
bursts in higher order Sobolev spaces, however at the expense of using more
intricate dynamics.

We proceed to the proofs of Theorems 3.9 and 3.11. We are interested
in the evolution of

Ξ = λ2p2 + µ2q2 + ν2r2 (enstrophy) (3.10)
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Compute

Ξ̇ = −2
(

λ2(µ − ν) + µ2(ν − λ) + ν2(λ − µ)
)

pqr. (3.11)

Then

˙(pqr) = −(µ − ν)q2r2 − (ν − λ)r2p2 − (λ − µ)p2q2. (3.12)

Using the first integrals above, one has

V an

⎛

⎝

p2

q2

r2

⎞

⎠ =

⎛

⎝

E
H
Ξ

⎞

⎠ , (3.13)

where V an is the Vandermonde matrix

V an =

⎛

⎝

1 1 1
λ µ ν
λ2 µ2 ν2

⎞

⎠ .

For λ �= µ �= ν �= λ this matrix is invertible and

V an−1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

µν

(λ − µ)(λ − ν)

−(µ + ν)

(λ − µ)(λ − ν)

1

(λ − µ)(λ − ν)

νλ

(µ − ν)(µ − λ)

−(ν + λ)

(µ − ν)(µ − λ)

1

(µ − ν)(µ − λ)

λµ

(ν − λ)(ν − µ)

−(λ + µ)

(ν − λ)(ν − µ)

1

(ν − λ)(ν − µ)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Hence

p2 =
1

(λ − µ)(λ − ν)
(Ξ − (µ + ν)H + µνE) ,

q2 =
1

(µ − ν)(µ − λ)
(Ξ − (ν + λ)H + νλE) ,

r2 =
1

(ν − λ)(ν − µ)
(Ξ − (λ + µ)H + λµE) ,

(3.14)



Bursting Dynamics of the 3D Euler Equations 323

so that

(µ − ν)q2r2 = − (Ξ − (ν + λ)H + νλE) (Ξ − (λ + µ)H + λµE)

(λ − µ)(λ − ν)(µ − ν)
,

(ν − λ)r2p2 = − (Ξ − (λ + µ)H + λµE) (Ξ − (µ + ν)H + µνE)

(λ − µ)(λ − ν)(µ − ν)
,

(λ − µ)p2q2 = − (Ξ − (µ + ν)H + µνE) (Ξ − (ν + λ)H + νλE)

(λ − µ)(λ − ν)(µ − ν)
.

Later on, we use the notation

x−(λ, µ, ν) = (µ + ν)H − µνE,

x0 (λ, µ, ν) = (µ + λ)H − µλE,

x+(λ, µ, ν) = (λ + ν)H − λνE.

(3.15)

Therefore, we find that Ξ satisfies the second order ODE

Ξ̈ = − 2Kλ,µ,ν ((Ξ − x−(λ, µ, ν))(Ξ − x0(λ, µ, ν))

+(Ξ − x0(λ, µ, ν))(Ξ − x+(λ, µ, ν)) + (Ξ − x+(λ, µ, ν))(Ξ − x0(λ, µ, ν)))

which can be put in the form

Ξ̈ = −2Kλ,µ,νP ′
λ,µ,ν(Ξ), (3.16)

where Pλ,µ,ν is the cubic

Pλ,µ,ν(X) = (X − x−(λ, µ, ν))(X − x0(λ, µ, ν))(X − x+(λ, µ, ν)) (3.17)

and

Kλ,µ,ν =
λ2(µ − ν) + µ2(ν − λ) + ν2(λ − µ)

(λ − µ)(λ − ν)(µ − ν)
. (3.18)

In the sequel, we assume that the initial data for (p, q, r) are such that
r(0) = 0, p(0)(q(0) �= 0. Let us compute

x−(λ, µ, ν) = λνp(0)2 + µ2q(0)2 + µ(λ − ν)p(0)2.

x0 (λ, µ, ν) = λ2p(0)2 + µ2q(0)2,

x+(λ, µ, ν) = λ2p(0)2 +

(

ν + λ

µ
− νλ

µ2

)

µ2q(0)2.

(3.19)

We also assume that

λ > µ > ν , λν < 0 , |µ| ≪ λ, λ ∼ |ν|. (3.20)
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Then Kλ,µ,ν > 0. In fact, Kλ,µ,ν ∼ 2, and Ξ is a periodic function of t such
that

inf
t∈R

Ξ(t) = x0(λ, µ, ν) , sup
t∈R

Ξ(t) = x+(λ, µ, ν) (3.21)

with half-period

Tλ,µ,ν =
1

2
√

Kλ,µ,ν

x+(λ,µ,ν)
∫

x0(λ,µ,ν)

dx
√

−Pλ,µ,ν(x)
. (3.22)

We are interested in the growth of the (squared) H3 norm

W (t) = λ6p(t)2 + µ6q(t)2 + ν6r(t)2. (3.23)

Expressing p2, q2, and r2 in terms of E, H , and Ξ, we find

W =
λ6(Ξ − x−(λ, µ, ν))

(λ − µ)(λ − ν)
+

µ6(Ξ − x+(λ, µ, ν))

(µ − ν)(µ − λ)
+

ν6(Ξ − x0(λ, µ, ν))

(ν − λ)(ν − µ)
.

(3.24)
Hence, if Ξ = x+(λ, µ, ν), then

W =
λ6(x+(λ, µ ν) − x−(λ, µ, ν))

(λ − µ)(λ − ν)
+

ν6(x+(λ, µ ν) − x0(λ, µ, ν))

(ν − λ)(ν − µ)

�
λ6(x+(λ, µ ν) − x−(λ, µ, ν))

(λ − µ)(λ − ν)
.

Let us compute

x+(λ, µ ν) − x−(λ, µ, ν) = (λ − µ)(λ − ν)p(0)2

+
(ν + λ

µ
− νλ

µ
− 1

)

µ2q(0)2 � −νλq(0)2 ∼ λ2q(0)2.
(3.25)

We pick the initial data such that

W (0) = λ6p(0)6 + µ6q(0)6 with λ6p(0)2 ∼ 1
2W (0) and µ6q(0)2 ∼ 1

2W (0).
(3.26)

When Ξ reaches x+(λ, µ, ν), we have

W �
λ8q(0)2

(λ − µ)(λ − ν)
∼ 1

2

λ8

µ6(λ − µ)(λ − ν)
W (0) ∼ 1

4

λ6

µ6
W (0) . (3.27)

Hence W jumps from W (0) to ∼ 1
4

λ6

µ6 W (0) in an interval of time that does

not exceed one period of the Ξ motion, i.e., 2Tλ,µ,ν. Let us estimate this
interval of time. We recall the asymptotic equivalent for the period of an
elliptic integral in the modulus 1 limit.
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Lemma 3.13. Assume that x− < x0 < x+. Then

x+
∫

x0

dx
√

(x − x−)(x − x0)(x+ − x)
∼ 1√

x+ − x−
ln

⎛

⎝

1

1 −
√

x+−x0

x+−x−

⎞

⎠

uniformly in x−, x0, and x+ as
x+ − x0

x+ − x−
→ 1.

Here,

1
√

x+(λ, µ, ν) − x−(λ, µ, ν)
�

1
√

λ2q(0)2
∼ |µ|3

λ

√

2

W (0)
.

Further,

x0(λ, µ, ν) − x−(λ, µ, ν) = (λ − µ)(λ − ν)p(0)2 (3.28)

so that

1

1 −
√

x+−x0

x+−x−

∼ 1

1 −
√

1 − (λ−µ)(λ−ν)p(0)2

(λ−µ)(λ−ν)p(0)2+(µ(ν+λ)−νλ−µ2)q(0)2

∼ (λ − µ)(λ − ν)p(0)2 + (µ(ν + λ) − νλ − µ2)q(0)2

2(λ − µ)(λ − ν)p(0)2

∼ q(0)2

2p(0)2
∼ 1

2

W (0)/2µ6

W (0)/2λ6
=

λ6

2µ6
.

Hence

2Tλ,µ,ν �
2

√

W (0)

µ3

λ
ln

(

λ6

2µ6

)

�
12

√

W (0)

|µ|3
λ

ln

(

λ

µ

)

. (3.29)

Conclusion: collecting (3.26), (3.27), and (3.29), we see that the
squared H3 norm W varies from W (0) to ∼ ρ6W (0) in an interval of time

�
12

√

W (0)

µ2 ln ρ

ρ
. (Here, ρ = λ/µ.)

We now proceed by obtaining similar bursting estimates for the en-
strophy. We return to (3.21) and (3.22). Pick the initial data so that

Ξ(0) = λ2p(0)2 + µ2q(0)2 with λ2p(0)2 ∼ 1

2
Ξ(0) and µ2q(0)2 ∼ 1

2
Ξ(0).
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Then

x+(λ, µ, ν) − x−(λ, µ, ν) = (λ − µ)(λ − ν)p(0)2 +

(

ν + λ

µ
− νλ

µ2
− 1

)

µ2q(0)2

∼ 2λ2p(0)2 + λ2q(0)2 ∼ λ2

µ2
Ξ(0),

while x0(λ, µ, ν) − x−(λ, µ, ν) = (λ − µ)(λ − ν)p(0)2 ∼ 2λ2p(0)2 ∼ Ξ(0).
Hence, in the limit as ρ = λ/|µ| → +∞, one has

2Tλ,µ,ν ∼ 1

2
√

2

1
√

ρ2Ξ(0)
ln

1

1 −
√

1 − Ξ(0)
1
2
ρ2Ξ(0)

=
1

2
√

2Ξ(0)

1

ρ
ln

1

1 −
√

1 − 2ρ−2
∼ 1

√

2Ξ(0)

ln ρ

ρ
,

and Ξ varies from x0(λ, µ, ν) = Ξ(0) to x+(λ, µ, ν) ∼ ρ2Ξ(0) on an interval
of time of length Tλ,µ,ν . �

4. Strictly Resonant Euler Systems:
the Case of 3-Wave Resonances on Small-Scales

4.1. Infinite dimensional uncoupled SO(3) systems.

In this section, we consider the 3-wave resonant set K∗ when |k|2, |m|2,
|n|2 � 1/η2, 0 < η ≪ 1, i.e., 3-wave resonances on small scales; here
|k|2 = k2

1+k2
2+k2

3 , where (k1, k2, k3) index the curl eigenvalues, and similarly
for |m|2, |n|2. Recall that k2 +m2 = n2, k3 +m3 = n3 (exact convolutions),
but that the summation on k1, m1 on the right-hand side of Equations (2.30)
is not a convolution. However, for |k|2, |m|2, |n|2 � 1/η2, the summation
in k1, m1 becomes an asymptotic convolution.

Proposition 4.1. The set K∗ restricted to |k|2, |m|2, |n|2 � 1/η2, for

all 0 < η ≪ 1 is not empty: there exist at least one h/R with resonant three

waves satisfying the above small scales condition.

Proof. We follow the algebra of the exact transcendental dispersion
law (3.8) derived in the proof of Lemma 3.7. Note that P̃ (ϑ3) < 0 for

ϑ3 = 1/h2 large enough. We can choose hm =
β2(m1, m2, αm3)

m2
3

= 0, say

in the specific limit
h

2πm3
→ 0, and β(m1, m2, αm3) ∼ m1π + m2

π

2
+

π

4
.
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Then P̃0 = h2
kh2

n > 0 and P̃ (ϑ3) must possess at least one (transcendental)
root ϑ3 = 1/h2. �

In the above context, the radial components of the curl eigenfunctions
involve cosines and sines in βr/R (see [29, Sec. 3]) and the summation in k1,
m1 on the right-hand side of the resonant Euler equations (2.30) becomes
an asymptotic convolution. The rigorous asymptotic convolution estimates
are highly technical and detailed in [18]. The 3-wave resonant systems
for |k|2, |m|2, |n|2 � 1/η2 are equivalent to those of an equivalent periodic
lattice [0, 2π]× [0, 2π]× [0, 2πh], ϑ3 = 1/h2; the resonant three wave relation
becomes:

±
(

ϑ3 + ϑ1
n2

1

n2
3

+ ϑ2
n2

2

n2
3

)− 1
2

±
(

ϑ3 + ϑ1
k2
1

k2
3

+ ϑ2
k2
2

k2
3

)− 1
2

±
(

ϑ3 + ϑ1
m2

1

m2
3

+ ϑ2
m2

2

m2
3

)− 1
2

= 0, (4.1a)

k + m = n, k3m3n3 �= 0. (4.1b)

The algebraic geometry of these rational 3-wave resonance equations has
been investigated in depth in [6] and [7]. Here, ϑ1, ϑ2, ϑ3 are periodic
lattice parameters; in the small-scales cylindrical case, ϑ1 = ϑ2 = 1 (after
rescaling of n2, k2, m2), ϑ3 = 1/h2, h height. Based on the algebraic
geometry of “resonance curves” in [6, 7], we investigate the resonant 3D
Euler equations (2.30) in the equivalent periodic lattices.

First, triplets (k, m, n) solution of (4.1) are invariant under the re-
flection symmetries σ0, σ1, σ2, σ3 defined in Corollary 3.1 and Remark 3.2:
σ0 = Id, σj(k) = (ǫi,jki), 1 � i � 3, ǫi,j = +1 if i �= j, ǫi,j = −1 if i = j,
1 � j � 3. Second, the set K∗ in (4.1) is invariant under the homothetic
transformations:

(k, m, n) → (γk, γm, γn), γ rational. (4.2)

The resonant triplets lie on projective lines in the wave number space, with
equivariance under σj , 0 � j � 3 and γ-rescaling. For every given equi-

variant family of such projective lines the resonant curve is the graph of ϑ3

ϑ1

versus ϑ2

ϑ1
, for parametric domain resonances in ϑ1, ϑ2, ϑ3.

Lemma 4.2 ([7, p. 17]). For every equivariant (k, m, n) the resonant

curve in the quadrant ϑ1 > 0, ϑ2 > 0, ϑ3 > 0 is the graph of a smooth

function ϑ3/ϑ1 ≡ F (ϑ2/ϑ1) intersected with the quadrant.
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Theorem 4.3 ([7, p. 19]). A resonant curve in the quadrant ϑ3/ϑ1 >

0, ϑ2/ϑ1 > 0 is called irreducible if

det

⎛

⎝

k2
3 k2

2 k2
1

m2
3 m2

2 m2
1

n2
3 n2

2 n2
1

⎞

⎠ �= 0. (4.3)

An irreducible resonant curve is uniquely characterized by six nonnegative

algebraic invariants P1, P2, R1, R2, S1, and S2 such that

{

n2
1

n2
3

,
n2

2

n2
3

}

=
{

P2
1 ,P2

2

}

,

{

k2
1

k2
3

,
k2
2

k2
3

}

=
{

R2
1,R2

2

}

,

{

m2
1

m2
3

,
m2

2

m2
3

}

=
{

S2
1 ,S2

2

}

,

and permutations thereof.

Lemma 4.4 ([7, p. 25]). For resonant triplets (k, m, n) associated to a

given irreducible resonant curve, i.e., verifying Equation (4.3), consider the

convolution equation n = k+m. Let σi(n) �= n for all 1 � i � 3. Then there

are at most two solutions (k, m) and (m, k) for a given n provided that six

non-degeneracy conditions (3.39)–(3.44) in [7] for the algebraic invariants

of the irreducible curve are verified.

For more details on the technical non-degeneracy conditions see Ap-
pendix below. An exhaustive algebraic geometric investigation of all solu-
tions to n = k+m on irreducible resonant curves is found in [7]. The essence
of the above lemma lies in that given such an irreducible “non-degenerate”
triplet (k, m, n) on K∗, all other triplets on the same irreducible resonant
curves are exhaustively given by the equivariant projective lines:

(k, m, n) → (γk, γm, γn), for some γ rational , (4.4)

(k, m, n) → (σjk, σjm, σjn), j = 1, 2, 3, (4.5)

and permutations of k and m in the above. Of course, the homothety γ
and the σj symmetries preserve the convolution. This context of irreducible
“non-degenerate” resonant curves yields an infinite dimensional uncoupled
system of rigid body SO(3;R) and SO(3;C) dynamics for the 3D resonant
Euler equations (2.30).
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Theorem 4.5. For any irreducible triplet (k, m, n) satisfying Theorem

4.3 and under the “non-degeneracy” conditions of Lemma 4.4 (csee Appen-

dix), the resonant Euler equations split into the infinite countable sequence

of uncoupled SO(3;R) systems

ȧk = Γkmn(λm − λn)aman, (4.6a)

ȧm = Γkmn(λn − λk)anak, (4.6b)

ȧn = Γkmn(λk − λm)akam (4.6c)

for all (k, m, n) = γ(σj(k
∗), σj(m

∗), σj(n
∗)),

γ = ±1,±2,±3 . . . , 0 � j � 3.
(4.7)

k∗, m∗, n∗ are some relatively prime integer vectors in Z3 characterizing the

equivariant family of projective lines (k, m, n); Γkmn = i〈Φk × Φm,Φ∗
n〉,

Γkmn real.

Theorem 4.5 is a simpler version for invariant manifolds of more gen-
eral SO(3;C) systems. It is a straightforward consequence of Propositions
3.2 and 3.3 and Theorems 3.3–3.5 in [7]. The latter article did not explicit
the resonant equations and did not use the curl-helicity algebra fundamen-
tally underlying this present work. Rigorously asymptotic infinite countable
sequences of uncoupled SO(3;R), SO(3;C) systems are not derived via the
usual harmonic analysis tools of Fourier modes, in the 3D Euler context.
Polarization of curl eigenvalues and eigenfunctions and helicity play an es-
sential role.

Corollary 4.6. Under the conditions λn∗ − λk∗ > 0, λk∗ − λm∗ >
0, the resonant Euler systems (4.6) admit a disjoint, countable family of

homoclinic cycles. Moreover, under the conditions λn∗ ≫ +1, λm∗ ≪
−1, |λk∗ | ≪ λn∗ , each subsystem (4.6) possesses orbits whose Hs norms,

s � 1, burst arbitrarily large in arbitrarily small times.

Remark 4.7. One can prove that there exists some 0 < Γmax < ∞,
such that |Γkmn| < Γmax for all (k, m, n) on the equivariant projective lines
defined by (4.7). The systems (4.6) “freeze” cascades of energy; their total
enstrophy

Ξ(t) =
∑

(k,m,n)

(λ2
ka2

k(t) + λ2
ma2

m(t) + λ2
na2

n(t))

remains bounded, albeit with large bursts of Ξ(t)/Ξ(0), on the reversible
orbits topologically close to the homoclinic cycles.
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4.2. Coupled SO(3) rigid body resonant systems.

We now derive a new resonant Euler system which couples two SO(3;R)
rigid bodies via a common principle axis of inertia and a common moment of
inertia. This 5-dimensional system conserves energy, helicity, and is rather
interesting in that dynamics on its homoclinic manifolds show bursting cas-
cades of enstrophy to the smallest scale in the resonant set. We consider
the equivalent periodic lattice geometry under the assumptions of Proposi-
tion 4.1.

In Appendix, we prove that for an “irreducible” 3-wave resonant set
which now satisfies the algebraic “degeneracy” (A-4), there exist exactly

two “primitive” resonant triplets (k, m, n) and (k̃, m̃, n), where k, m, k̃, m̃
are relative prime integer valued vectors in Z3.

Lemma 4.8. Under the algebraic degeneracy condition (A-4), the ir-

reducible equivariant family of projective lines in K∗ is exactly generated by

the following two “primitive” triplets:

n = k + m, k = ak, m = bm, (4.8a)

n = k̃ + m̃, k̃ = a′σi(k) + b′σj(m), (4.8b)

i.e.,

n = ak + bm, (4.8c)

n = a′σi(k) + b′σj(m), (4.8d)

where σi �= σj are some reflection symmetries, a, b, a′, b′ are relatively

prime integers, positive or negative, and k, m are relatively prime integer

valued vectors in Z3, i.e., (a, a′) = (b, b′) = (a, b) = (a′, b′) = 1, (k, m) = 1,
where ( ) denotes the greatest common denominator of two integers. All

other resonant wave number triplets are generated by the group actions σl,
l = 1, 2, 3, and homothetic rescalings

(k, m, n) → γ(k, m, n), (k̃, m̃, n) → γ(k̃, m̃, n) (γ ∈ Z)

of the “primitive” triplets.

Remark 4.9. It can be proved that the set of such coupled “primitive”
triplets is not empty on the periodic lattice. The algebraic irreducibility
condition of Lemma 4.2 implies that ±k3/|k| = ±k̃3/|k̃| and ±m3/|m| =
±m̃3/|m̃|, which is obviously verified in Equations (4.8).

Theorem 4.10. Under the assumptions of Lemma 4.8, the resonant

Euler system reduces to a system of two rigid bodies coupled via an(t) :
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ȧk = (λm − λn)Γaman, (4.9a)

ȧm = (λn − λk)Γanak, (4.9b)

ȧn = (λk − λm)Γakam + (λk̃ − λm̃)Γ̃ak̃am̃, (4.9c)

ȧm̃ = (λn − λk̃)Γ̃anak̃, (4.9d)

ȧk̃ = (λm̃ − λn)Γ̃am̃an, (4.9e)

where Γ = i〈Φk × Φm,Φ∗
n〉, Γ̃ = i〈Φk̃ × Φm̃,Φ∗

n〉. Energy and helicity are

conserved.

Theorem 4.11. The resonant system (4.9) possesses three indepen-

dent conservation laws

E1 = a2
k + (1 − α)a2

m, (4.10a)

E2 = a2
n + αa2

m + (1 − α̃)a2
m̃, (4.10b)

E3 = a2
k̃

+ α̃a2
m̃, (4.10c)

where

α = (λm − λk)/(λn − λk), (4.11a)

α̃ = (λm̃ − λn)/(λk̃ − λn). (4.11b)

Theorem 4.12. Under the conditions

λm < λk < λn, (4.12a)

λm̃ < λn < λk̃, (4.12b)

which imply α < 0, α̃ < 0, the equilibria (±ak(0), 0, 0, 0,±ak̃(0)) are hyper-

bolic for |ak̃(0)| small enough with respect to |ak(0)|. The unstable manifolds

of these equilibria are one dimensional, and the nonlinear dynamics of the

system (4.9) are constrained on the ellipse E1 (4.10a) for ak(t), am(t), the

hyperbola E3 (4.10c) for ak̃(t), am̃(t), and the hyperboloid E2 (4.10b) for

am(t), am̃(t), an(t).

Theorem 4.13. Let the 2-manifold E1 ∩ E2 ∩ E3 be coordinatized by

(am, am̃). On this 2-manifold, the resonant system (4.9) is Hamiltonian,

and therefore integrable. Its (multi-valued) Hamiltonian is defined by the

closed 1-form

h = Γ(λn − λk)
dam̃

ak̃

− Γ̃(λn − λk̃)
dam

ak
, (4.13)
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while the symplectic 2-form is

ω =
dam ∧ dam̃

akanak̃

. (4.14)

Proof. Eliminating ak(t) via E1, an(t) via E2, ak̃(t) via E3, the reso-
nant system (4.9) reduces to

ȧm = ±Γ(λn − λk)(E1 − (1 − α)a2
m)

1
2 (E2 − αa2

m + (α̃ − 1)a2
m̃)

1
2 ,

ȧm̃ = ±Γ̃(λn − λk̃)(E2 − αa2
m + (α̃ − 1)a2

m̃)
1
2 (E3 − α̃a2

m̃)
1
2 ;

after changing the time variable into

t →
t

∫

0

(E1 − (1 − α)a2
m)

1
2 (E2 − αa2

m + (α̃ − 1)a2
m̃)

1
2 (E3 − α̃a2

m̃)
1
2 ds .

On each component of the manifold E1 ∩ E2 ∩ E3, the following func-
tionals are conserved:

H(am, am̃) = ± Γ̃(λn − λk̃)

∫

dam

(E1 − (1 − α)a2
m)1/2

± Γ(λn − λk)

∫

dam̃

(E3 − α̃a2
m̃)1/2

. �

We note that the system of two coupled rigid bodies (4.9) does not
seem to admit a simple Lie–Poisson bracket in the original variables (ak, am,
an, am̃, ak̃). Yet, when restricted to the 2-manifold E1 ∩ E2 ∩ E3 that is
invariant under the flow of (4.9), it is Hamiltonian and therefore integrable.

This raises the following interesting issue: according to the shadow-
ing Theorem 2.10, the Euler dynamics remains asymptotically close to that
of chains of coupled SO(3;R) and SO(3;C) rigid body systems. Perhaps,
some new information could be obtained in this way. We are currently
investigating this question and will report on it in a forthcoming publica-
tion [21].

Already the simple 5-dimensional system (4.9) has interesting dynam-
ical properties, which we could not find in the existing literature on systems
related to spinning tops.

Consider, for instance, the dynamics of the resonant system (4.9) with
I.C. topologically close to the hyperbola equilibria (±ak(0), 0, 0, 0,±ak̃(0)).
Under the conditions of (4.12) and with the help of the integrability theorem
(see Theorem 4.13), it is easy to construct equivariant families of homoclinic
cycles at these hyperbolic critical points.
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Corollary 4.14. The hyperbolic critical points (±ak(0), 0, 0, 0,±ak̃(0))
possess 1-dimensional homoclinic cycles on the cones

a2
n + (1 − α̃)a2

m̃ = −αa2
m with α < 0, α̃ < 0. (4.15)

Note that these are genuine homoclinic cycles, NOT sums of hetero-
clinic connections. Initial conditions for the resonant system (4.9) are now
chosen in a small neighborhood of these hyperbolic critical points, the cor-
responding orbits are topologically close to these cycles. With the ordering:

λm < λk < λn, (4.16a)

|λk| ≪ |λm|, |λk| ≪ λn, (4.16b)

λm̃ < λn < λk̃, (4.16c)

|λm̃| ≪ λk̃, (4.16d)

λk̃ ≫ λn, (4.16e)

which can be realized with |a′/a| ≫ 1 and |b′/b| ≪ 1 in the resonant triplets
(4.8), we can demonstrate bursting dynamics akin to Theorems 3.9 and
3.11 for enstrophy and Hs norms, s � 2. The interesting feature is the
maximization of |ak̃(t)| near the turning points of the homoclinic cycles on
the cones (4.15). This corresponds to transfer of energy to the smallest scale

k̃, λk̃.

In the forthcoming publication [21], we investigate infinite systems of
the coupled rigid bodies equations (4.9).

Appendix

We focus on a resonant wave number triplet (n, k, m) ∈ (Z∗)3 verifying

• the convolution relation

n = k + m, (A-1)

• the resonant 3-wave resonance relation

± n3
√

ϑ1n2
1 + ϑ2n2

2 + ϑ3n2
3

± k3
√

ϑ1k2
1 + ϑ2k2

2 + ϑ3k2
3

± m3
√

ϑ1m2
1 + ϑ2m2

2 + ϑ3m2
3

= 0, (A-2)

• the condition of “non-catalyticity”

k3m3n3 �= 0, (A-3)
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• and the degeneracy condition of [7, p. 26]

Gir
i,j(k, m) = kinjml + klmjni = 0, (A-4)

where (i, j, l) is a permutation of (1, 2, 3).

As is known [7, Lemma 3.5 (2)], the system of equations (A-3)–(A-4) for
unknown k and m, given a vector n, admits exactly 4 solutions in Z3 ×Z3:

(k, m), (m, k), (k̃, m̃), (m̃, k̃).

Here, k and m are two vectors of the original resonant triplet, whereas
k̃ = ασi(k), m̃ = βσj(m), where

α =
mikl − mlki

mikl + mlki
/∈ {0,±1}, β =

mlkj − mjkl

mlkj + mjkl
/∈ {0,±1},

and the symmetries σi and σj are defined by

σi : u = (ul)l=1,2,3 →
(

(−1)δilul

)

l=1,2,3
.

One verifies that σ2
i = σ2

j = Id, σiσj = σjσi = −σl, i.e., the group generated
by σi and σj is the Klein group Z/2Z× Z/2Z.

Let us write irrational numbers α and β under the irreducible repre-
sentation α = a′/a, β = b′/b, with a, a′, b, b′ ∈ Z∗ and (a, a′) = (b, b′) = 1,
where ( ) denotes the greatest common denominator of the integer pair.

From k̃ ∈ Z3 it follows that a|a′k. However, since (a, a′) = 1, the Euclid

lemma yields that a|k. Similarly, b|m. We set k =
1

a
k ∈ Z3, m =

1

b
m ∈ Z3.

Hence the integer vector n admits two decompositions

n = ak + bm = a′σi(k) + b′σj(m).

Since the function z �−→ z3
√

ϑ1z2
1 + ϑ2z2

2 + ϑ3z2
3

is homogeneous of degree

0, we see that, within the resonance condition (A-2), we can replace each
vector k, m and n by any collinear vectors, integer or not. Suppose that
there exists a positive integer d �= 1 such that d|k. Then d|n, so that by

setting n0 =
1

d
n, k0 =

1

d
k, m0 =

1

d
m, we finally obtain

n0 = ak0 + bk0 = a′σi(k0) + b′σj(m0).

The triplets (n0, ak0, bm0) and (n0, a
′σi(k0), b

′σj(m0)) verify from the above
remark, the convolution relation (A-1), and the resonance relation (A-2).
Hence without loss of generality we can assume that the only positive integer
d such that d|k and d|m is 1; which we denote by (k, m) = 1. Equivalently,

k1Z + k2Z + k3Z + m1Z + m2Z + m3Z+ = Z.
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Finally, suppose that there exists a positive integer d �= 1 such that

d|a and d|b. Then d|n. We set n0 =
1

d
n, a0 =

1

d
a, b0 =

1

d
b. Observe that

Gir
i,j(a0k, b0m) =

1

d3
Gir

i,j(ak, bm) = 0.

From [7, Lemma 3.5 (2)] it follows that the vector n0 of the resonant triplet
(n0, a0k, b0m) can also be written as

n0 = k̂ + m̂ with (n0, k̂, m̂) verifying (A-2).

But then n = dn0 = ak+bm = a′σi(k)+b′σj(m) = dk̂+dm̂. By [7, Lemma

3.5 (2)], (dk̂, dm̂) must coincide with one of the pairs (a′σi(k), b′σj(m)),

(b′σj(m), a′σi(k)). In particular, d|a′k and d|b′m. Since d|a and (a, a′) = 1,

we have (d, a′) similarly (d, b′) = 1. But then the Euclid lemma yields d|k
and d|m, which contradicts the fact that (k, m) = 1. Hence we have proved
that (a, b) = 1. In a similar way, one can show that (a′, b′) = 1.

Conclusion: From the above consideration it follows that n ∈ Z∗

admits two decompositions

n = ak + bm = a′σi(k) + b′σj(m)

with (a, a′) = (b, b′) = (a, b) = (a′, b′) = 1, (k, m) = 1.

The triplets (n, ak, bm) and (n, a′σi(k), b′σj(m)) verify the resonant
condition (A-2) (from the homogeneity of this condition) and the condition
of non-catalyticity (A-3). Indeed, aba′b′ �= 0 and the condition (A-3) on the

initial triplet (n, k, m) imply that the reduced triplet (n, k, m) also verifies
(A-3)). Finally, the degeneracy condition (A-4) Gir

i,j(ak, bm) = 0 is verified.
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We derive some bounds which can be viewed as an evidence of increasing sta-

bility in the Cauchy problem for the Helmholtz equation with lower order terms

when frequency is growing. These bounds hold under certain (pseudo-)convexity

properties of the surface, where the Cauchy data are given, and of variable zero

order coefficient of the Helmholtz equation. Proofs use Carleman estimates, the

theory of elliptic and hyperbolic boundary value problems in Sobolev spaces, and

Fourier analysis. We outline open problems and possible future developments.

Bibliography: 12 titles.

1. Introduction

Uniqueness and stability in the Cauchy problem for partial differential equa-
tions is an issue of fundamental theoretical and applied importance. In
particular, it is quite important for control theory and inverse problems.
Uniqueness implies approximate controllability, and the Lipschitz stability
estimates lead to exact controllability. The Cauchy problem plays a cru-
cial role in recovery properties of media or obstacles from remote sensing.
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Theory of the Cauchy problem has a long history, starting with the classi-
cal Holmgren–John theorem about the uniqueness of continuation across a
noncharacteristic initial surface Γ for equations and systems with analytic
coefficients.

In 1938, Carleman used weighted energy estimates to handle nonana-
lytic coefficients. His method generated a variety of results, mainly for scalar
equations, published in hundreds of research papers and monographs. This
method works under the so-called pseudo-convexity condition on the weight
function. If this condition is not satisfied, there are examples of nonunique
continuation across a noncharacteristic surface. With an exception of the
hyperbolic equations and space like initial surfaces Γ, the Cauchy problem
is not well posed, in particular, there exists no solution in classical function
spaces. If a solution is unique, then one can claim some stability provided
that solutions are bounded in some standard norms. As is well known [9],
for general analytic equations the best possible stability is stability of log-
arithmic type. This is quite pessimistic for the numerical solution of the
continuation problem and therefore for various applications. The Carleman
method implies much better Hölder type stability estimates and, in some
interesting cases, even the best possible Lipschitz type estimates. For brief
history and references see [4, 5].

Needs of prospecting by acoustical, elastic, and electromagnetic waves
stimulate the study of this problem for the Helmholtz equation

(∆ + b · ∇ + a2
0k

2)u = f in Ω, u ∈ H(1)(Ω), (1.1)

with the Cauchy data

u = u0, ∂νu = u1 on Γ, (1.2)

where Ω is a domain in Rn, Γ ∈ C1 is an (open) part of its boundary ∂Ω, and
ν is the exterior unit normal to ∂Ω. For fixed k we have a conditional Hölder
stability estimate [5, Sec. 3.3], however the constants in this estimate may
depend on k. Due to the celebrated results of John [9], in the general case,
these constants blow up as k goes to ∞, and one can expect only a quite weak
logarithmic k-independent stability estimate. However, in several important
practical examples (for examples, in computations for inverse scattering
[1] and in near field acoustical holography [2, 8]), it was observed that
stability (and, as a consequence, resolution) in the Cauchy problem and
in some inverse problems is increasing with k. In [3], the authors found
new stability estimates explaining this phenomenon for constant a0 and
illustrated it by the numerical solution of some important applied problems.
In [7], the author extended results of [3] to variable a0 and b = 0. The goal
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of this paper is to show that the addition of regular b does not change
results of [7]. This is achieved by more careful and complicated analysis
using the general scheme of [7]. In particular, we again employ hyperbolic
energy inequalities in the low frequency zone, use Carleman estimates for
the time dependent wave equation to get k-independent Carleman estimates
for Equation (1.1), and “freeze” b, a0 at certain points in a special way.
Again, we have to impose some (nontrapping) condition on a0. Proofs
are getting more complicated because, in addition to difficulties with the
(tangential) Fourier transform for variable coefficients, we have to handle
“non-selfadjoint” terms resulting from the Fourier transform of b · ∇u.

This paper is organized as follows. In Section 1, we describe the cur-
rent state of the problem, our main results and adjust to the Helmholtz
equation the famous counterexample of Fritz John for the wave equation.
In Section 2, we give energy estimates in the low frequency zone for con-
stant and variable coefficients. An important ingredient of the proof of the
k-independent stability for the Cauchy problem is a Carleman type estimate
for (1.1) which does not depend on k. In Section 3, we derive this estimate
from a known estimate for hyperbolic equations exactly as in [7]. Using the
results of Sections 2 and 3, in Section 4 we give (standard and similar to
[7]) proofs of the main results.

We write x = (x′, xn) ∈ Rn, 2 � n. Let Ω be an open subset of
the cylinder {0 < xn < h, |x′| < r} with the Lipschitz boundary ∂Ω, Ω̄ ⊂
{xn < h}, and let Γ be the part of ∂Ω contained in the layer {0 < xn < h}.
Suppose that Ω(d) = Ω ∩ {d < xn} and Ω∗(d) = Rn−1 × (d, h), 0 � d. Let
en = (0, . . . , 0, 1). We denote by C and κ constants that depend only on
Ω, S, a0, b, d. Any other dependence is indicated. We denote by ‖u‖(l)(Ω) the
standard norm in the Sobolev space H(l)(Ω) and write ‖u‖(Ω) = ‖u‖(0)(Ω).
We set M1 = ‖u‖(1)(Ω), F = ‖f‖(Ω) + ‖u‖(Γ) + ‖∇u‖(Γ), and F (k) =
F + k‖u‖(Γ). Denote by V (ξ, xn) the (partial) Fourier transform Fv(ξ, xn)
of a function v(x) with respect to x′.

Since we are interested in increasing wave numbers k, for the sake of
simplicity, we assume that

1 � k. (1.3)

Theorem 1.1. Assume that b, a0 ∈ C1(Ω), 0 < a0 on Ω, and

0 < a0 + ∇a0 · x + βn∂na0, 0 � ∂na0 on Ω (1.4)

for some positive βn. Let 0 < d. Then for any ε there are C, C(ε), κ(d) ∈
(0, 1) such that
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‖u‖(0)(Ω(d)) � C
(

F + ε‖u‖(1)(Ω) + C(ε)
M1−κ

1 F (k)κ + F

k

)

(1.5)

for all u solving (1.1), (1.2).

As is known, C(ε) indeed depends on d and blows up as d → 0 [3],[5,
Ch. 3].

Theorem 1.1 allows us to consider more general domains Ω. Let S be
a compact subset of Ω. We denote by P (ν; d) the half-space of Rn with
the exterior normal ν which has the distance d from S. We denote by γ all
ν such that P (ν; d) ∩ ∂Ω is contained in Γ. Let Ω(ν; Γ, d) be P (ν; d) ∩ Ω,
and, finally, let Ω(Γ, d) be the union of all such Ω(ν; Γ, d) over ν ∈ γ. If
Γ = ∂Ω, then Ω(Γ, 0) is the difference of Ω and the convex hull of S and
Ω(Γ, d) is the collection of points of Ω(Γ, 0) which are at distance d from S.
As in [3], applying Theorem 1.1 to any Ω = Ω(ν; Γ, d), ν ∈ γ and using an
appropriate partition of unity, we obtain the following assertion.

Corollary 1.1. Let the condition (1.4) be satisfied in any Ω(ν; Γ, d),
ν ∈ γ, with the xn-direction replaced by ν. Then the bound (1.5) with Ω(Γ, d)
instead of Ω(d) is valid.

There is an important particular case, where the norm of the data
does not explicitly depend on k. Let us keep the notation of Corollary1.1.
Let ω be an open subset of Ω with Γ ⊂ ∂ω (boundary layer) such that Γ is
at the distance d0 from ∂ω ∩ Ω. Let Fω = ‖f‖(Ω) + ‖u‖(1)(ω).

Corollary 1.2. Under the assumptions of Corollary 1.1, there are

constants C, C(d0), C(ε) such that for any solution u to the Cauchy problem

(1.1), (1.2)

‖u‖(Ω(Γ, d)) � C
(

d0)(Fω + ε‖u‖(1)(Ω) + C(ε)
M1−κ

1 F κ
ω + Fω

k

)

. (1.6)

To derive Corollary 1.2 from Corollary 1.1, we let χ to be a cut off
function that is equal to 1 on Ω\ω and vanishes near Γ. Applying Corollary
1.1 to χu instead of u and using that

(∆ + b · ∇ + k2a2
0)(χu) = χ((∆ + k2)u) + 2∇χ · ∇u + (∆χ + b · ∇χ)u

= χf + 2∇χ · ∇u + (∆χ + b · ∇χ)u

and the function χu has zero Cauchy data on Γ, we obtain (1.6) from Corol-
lary 1.1.



Increased Stability in the Cauchy Problem 343

Theorem 1.1 and its corollaries show an improved stability in the
Cauchy problem (1.1), (1.2) when one continues the solution of the dif-
ferential equation inside the convex hull of Γ. Due to the results of John
[9], this is impossible when one continues to the outside of a convex Γ.

Our proof of Theorem 1.1 is based on the following assertion.

Theorem 1.2. Let the condition (1.4) be satisfied. Then there are

constants C, κ(d) ∈ (0, 1) such that for any solution u to the Cauchy problem

(1.1), (1.2)

‖u‖(1)(Ω(d)) � C(F + (M1)
1−κF (k)κ), (1.7)

which is of its own interest since C and κ are independent of k.

Due to the above-mentioned results of John, the stability estimates of
Theorems 1.1, 1.2 seem to be optimal. We remind the remarkable argument
from [9, p. 569-571].

Let n = 2, r = |x|, x1 = r cos θ, x2 = r sin θ. The functions

uk(x) = k− 2
3 Jk(kr)eikθ

solve Equation (1.1) (with b = 0, a0 = 1) in R2. Let Ω be the annular
domain{ 1

2 < |x| < 2} and Γ = {|x| = 1
2}. John showed that

|Jk(kr)| � qk when
1

3
< r <

2

3

for some 0 < q < 1, and, on the other hand,

|uk| = Jk(k) � C0k
− 1

2 on {|x| = 1}.
From the first bound and known recurrent relations for Bessel functions we
have a similar inequality for J ′

k, and hence

k‖uk‖(Γ) + ‖∇uk‖(Γ) � qk for some q ∈ (0, 1), C < k. (1.8)

Moreover, from [9, p. 570]

‖uk‖(1)(Ω) � C (1.9)

and

J2
k (kr) =

2

πk
(r2−1)−

1
2 cos2

(

−π

4
+k

(

(r2−1)
1
2 −cos−1 1

r

))

+o
(1

k

)

, (1.10)

where o is uniform on (3/2, 2). We have

2
∫

3
2

cos2
(

− π

4
+ k

(

(r2 − 1)
1
2 − cos−1 1

r

))

dr �
1

C

β
∫

α

cos2
(

− π

4
+ ks

)

ds
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=
β − α

C
− sin(−π

2 + 2kα) − sin(−π
2 + 2kβ)

4Ck
�

1

C
(1.11)

provided that k > C. Here, we used the substitution s = (r2−1)
1
2 −cos−1 1

r

and observed that

1

C
<

ds

dr
= (1 − r−2)

1
2 < C when

3

2
< r < 2.

Using (1.10) and (1.11), we yield

‖uk‖2(Ω)

�
1

Ck

2
∫

3
2

(r2 − 1)−
1
2 cos2

(

− π

4
+ k

(

(r2 − 1)
1
2 − arc cos

1

r

))

rdr + o
( 1

k2

)

�
1

Ck

2
∫

3
2

cos2
(

− π

4
+ k

(

(r2 − 1)
1
2 − arc cos

1

r

))

dr + o
( 1

k2

)

�
1

Ck
.

This inequality and bound (1.9) demonstrate that for different geometries
(when Ω is not in the convex hull of Γ) or without the condition (1.4)
Theorem 1.1 and its corollaries are wrong. Moreover, this example shows
that the constants in the bound (1.5) (which holds at fixed k, [5, Secs.
3.2, 3.3]) blow up when k grows. So, without convexity type conditions, the
stability in the Cauchy problem for the Helmholtz equation is not improving,
but on the contrary it is deteriorating.

2. Energy Type Estimates in Low Frequency Zone

We obtain some auxiliary results imitating the standard energy estimate for
hyperbolic initial value problems.

Lemma 2.1. Let a(n), b(n) ∈ C1([0, h]) depend only on xn, and let

v ∈ C2(Ω̄∗) solve the initial value problem

(∆ + b(n) · ∇ + a(n)2k2)vj = ∂jfj in Ω∗(d), j = 1, . . . , n − 1,

vj = 0 on Ω∗(h1)
(2.1)

for some h1 ∈ (d, h), fj ∈ C∞(Ω̄∗(d)), fj = 0 on Ω∗(h1), and

Vj(ξ, xn) = 0 when
a2(xn; n)

2
k2 < |ξ|2. (2.2)
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Then there is a constant C depending only on h, sup(|b(n)| + |∂nb(n)| +
|a(n)| + |∂na(n)|), sup a−1(n) over (0, h) such that

‖vj‖(Ω∗(d)) � C‖fj‖(Ω∗(d)). (2.3)

Proof. By the Parseval identity, it suffices to show that the solution
to the initial value problem

∂2
nVj + bn(n)∂nVj + (a(n)2k2 − |ξ|2)Vj

− ib(n) · ξVj = −iξjFj on (d, h), j = 1, . . . , n − 1,
(2.4)

with zero final conditions

Vj = 0, Fj = 0 on (h1, h) (2.5)

satisfies the bound

h
∫

d

|Vj |2(ξ, s)ds � C

h
∫

d

|Fj |2(ξ, s)ds, j = 1, . . . , n − 1. (2.6)

Multiplying both sides of (2.4) by ∂nV̄j , taking the complex conjugate,
and adding results, we yield

(∂2
nVj)∂nV̄j + (∂2

nV̄j)∂nVj + 2bn(n)|∂nVj |2

+ (a(n)2k2 − |ξ|2)(Vj∂nV̄j + V̄j∂nVj) − ib(n) · ξ(Vj∂nV̄j − V̄j∂nVj)

= iξj(Fj∂nV̄j − F̄j∂nVj).

Observing that ∂n|V |2 = V ∂nV̄ +∂nV V̄ and multiplying by -eτxn, we obtain

− (∂n|∂nV |2)eτxn − bn(n)2|∂nVj |2eτxn

− (a(n)2k2 − |ξ|2)∂n|Vj |2eτxn + ib(n) · ξ(Vj∂nV̄j − V̄j∂nVj)e
τxn

= −iξj(Fj∂nV̄j − F̄j∂nVj)e
τxn .

Integrating by parts over the interval (xn, h) with the use of (2.5), we obtain

|∂nVj |2(xn)eτxn + (a2(n)k2 − |ξ|2)|Vj |2(xn)eτxn

+

h
∫

xn

(τ − 2bn(n))|∂nVj |2(s)eτsds
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+

h
∫

xn

(τ(a2
n(n)k2 − |ξ|2) + 2a(n)∂na(n)k2)|Vj |2(s)eτsds

+ i

h
∫

xn

b(n) · ξ(Vj∂nV̄j − V̄j∂nVj)(s)e
τsds

= −iξj

h
∫

xn

(Fj∂nV̄j − F̄j∂nVj)(s)e
τsds. (2.7)

By elementary inequalities,

∣

∣

∣

∣

h
∫

xn

b(n) · ξ(Vj∂nV̄j − V̄j∂nVj)(s)e
τsds

∣

∣

∣

∣

�

h
∫

xn

|b|2|∂nVj |2(s)eτsds +

h
∫

xn

|ξ|2|Vj |2(s)eτsds

and

∣

∣

∣

∣

ξj

h
∫

xn

(Fj∂nV̄j − F̄j∂nVj)(s)e
τsds

∣

∣

∣

∣

�

h
∫

xn

|ξ|2|Fj |2(s)eτsds +

h
∫

xn

|∂nVj |2(s)eτsds,

so, using the condition (2.2) and dropping the first two terms on the left-
hand side of (2.7), we yield

h
∫

xn

(τ − 2bn(n) − |b′(n)|2 − 1))|∂nVj |2(s)eτsds

+

h
∫

xn

(τ(a2
n(n)k2 − |ξ|2) + 2a(n)∂na(n)k2 − |ξ|2)|Vj |2(s)eτsds

�

h
∫

xn

|ξ|2|Fj |2(s)eτsds. (2.8)
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Choosing

τ = max
(

sup (2bn(n) + |b′(n)|2) + 1, 4 sup
(

− ∂na(n)

a(n)

)

+ 2
)

,

where the supremum is taken over (0, h), we guarantee that

0 � τ − 2bn(n) − |b′(n)|2 − 1,

a(n)2k2

2
�

τ

2
a(n)2k2 + 2a(n)∂na(n)k2 − |ξ|2.

Hence from (2.8) we derive

h
∫

xn

a(n)2k2

2
|Vj |2(s)eτsds �

h
∫

xn

|ξ|2|Fj |2(s)eτsds

and, using (2.2), we arrive at (2.3). The proof is complete. �

Lemma 2.2. Let a(n) ∈ C1([0, h]) depend only on xn, and let vn ∈
C2(Ω̄∗) solve the initial value problem

(∆ + b(n) · ∇ + a(n)2k2)vn = ∂nfn in Ω∗(d),

vn = 0 on Ω∗(h1)
(2.9)

for some h1 ∈ (d, h), fn ∈ C∞(Ω̄∗(d)), fn = 0 on Ω∗(h1), and

Vn(ξ, xn) = 0 when
a2(xn, n)

2
k2 < |ξ|2. (2.10)

Then there is a constant C depending only on h, sup(|b(n)| + |∂nb(n)| +
|a(n)| + |∂na(n)|), sup a−1(n) over (0, h) such that

‖vj‖(Ω∗(d)) � C‖fn‖(Ω∗(d)). (2.11)

Proof. By the Parseval identity, it suffices to show that solutions to
the initial value problem

∂2
nVn + bn(n)∂nVn + (a(n)2k2 − |ξ|2 − ib(n) · ξ)Vn = ∂nFn on (d, h) (2.12)

with zero final conditions

Vn = 0, Fn = 0 on (h1, h) (2.13)

satisfy the bound

h
∫

d

|Vn|2(ξ, s)ds � C

h
∫

d

|Fn|2(ξ, s)ds. (2.14)
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Integrating Equation (2.12) over (xn, h) and using the final conditions
(2.13), we obtain

− ∂nVn(xn) − bn(n)Vn(xn) −
h

∫

xn

(∂nbn(n))Vn(s)ds

+

h
∫

xn

(a(n)2(s)k2 − |ξ|2 − ib(n) · ξ)Vn(s)ds = −Fn(xn). (2.15)

Multiplying (2.15) by V̄n(xn)eτxn , taking the complex conjugate, and adding,
we yield

− (∂n|Vn|2)(xn)eτxn − 2bn(n)|Vn|2(xn)eτxn

−
((

h
∫

xn

∂nbn(n)Vn(s)ds
)

V̄n(xn) +
(

h
∫

xn

∂nbn(n)V̄n(s)ds
)

Vn(xn)
)

eτxn

+
(

h
∫

xn

(a(n)2k2 − |ξ|2 − ib(n) · ξ)Vn(s)ds
)

V̄n(xn)eτxn

+
(

h
∫

xn

(a(n)2k2 − |ξ|2 + ib(n) · ξ)V̄n(s)ds
)

Vn(xn)eτxn

= −(FnV̄n + F̄nVn)(xn)eτxn . (2.16)

Setting for brevity

A(xn, ξ) = a(n)2(xn)k2 − |ξ|2, B(xn, ξ) = b(n)(xn) · ξ, (2.17)

observing that

(

h
∫

xn

(A − iB)Vn(s)ds
)

V̄n(xn) +
(

h
∫

xn

(A + iB)V̄n(s)ds
)

Vn(xn)

= − 1

A(xn) + iB(xn))
∂n

∣

∣

∣

∣

h
∫

xn

(A − iB)Vn(s)ds

∣

∣

∣

∣

2

+
(

1 − A(xn) − iB(xn)

A(xn) + iB(xn)

)(

h
∫

xn

(A + iB)V̄n(s)ds
)

Vn(xn),
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and integrating (by parts) (2.16) over (xn, h), we arrive at

|Vn|2(xn)eτxn +

h
∫

xn

(τ − 2bn(n))|Vn|2(s)eτsds

− 2 Re

h
∫

xn

(

h
∫

t

∂nb(s, n)Vn(s)ds
)

V̄n(t))eτtdt

+
1

A(xn) + iB(xn)

∣

∣

∣

∣

h
∫

xn

(A − iB)(s)Vn(s)ds

∣

∣

∣

∣

2

eτxn

+

h
∫

xn

(( τ

A + iB
− ∂n(A − iB)

(A + iB)2
(t)

∣

∣

∣

∣

h
∫

t

(A − iB)(s)Vn(s)ds

∣

∣

∣

∣

2
)

eτtdt
)

+

h
∫

xn

( 2iB

A + iB

)

(t)

(

h
∫

t

(A + iB)(s)V̄n(s)ds

)

Vn(t)eτtdt

= −
h

∫

xn

(FnV̄n + F̄nVn)(s)eτsds

�

h
∫

xn

|Fn|2(s)eτsds +

h
∫

xn

|Vn|2(s)eτsds (2.18)

by the elementary inequality 2ab � a2 + b2.

We will now bound some terms in (2.18).

We have

∣

∣

∣

∣

2Re

h
∫

xn

(

h
∫

t

∂nb(s, n)Vn(s)ds
)

V̄n(t))eτtdt

∣

∣

∣

∣

� C

h
∫

xn

(

h
∫

t

|Vn(s)||Vn(t)|ds
)

eτtdt

� C

h
∫

xn

(

h
∫

t

(|Vn(s)|2 + |Vn(t)|2)ds
)

eτtdt
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� C
(

h

h
∫

xn

|Vn(t)|2eτtdt +

h
∫

xn

(

h
∫

xn

|Vn|2(s)ds
)

eτtdt
)

� Ch

h
∫

xn

|Vn(s)|2eτsds. (2.19)

To bound the next term, we observe that

Re
1

A + iB
=

A

A2 + B2
� A−1 � C−1k−2

by the definition (2.17) of A and the condition (2.10), so the real part of
this term is nonnegative.

Similarly,
∣

∣

∣

∣

∂n(A − iB)

(A + iB)2

∣

∣

∣

∣

� Ck−2,

and hence

Re
( τ

A + iB
− ∂n(A − iB)

(A + iB)2

)

�
τ

Ck2
. (2.20)

Finally, using again (2.17) and (2.10), we yield
∣

∣

∣

∣

2iB

A + iB

∣

∣

∣

∣

�
C

k
,

and hence

∣

∣

∣

∣

h
∫

xn

( 2iB

A + iB

)

(t)
(

h
∫

t

(A + iB)(s)V̄n(s)ds
)

Vn(t)eτtdt

∣

∣

∣

∣

�
C

k

h
∫

xn

∣

∣

∣

∣

h
∫

t

(A − iB)(s)Vn(s)ds

∣

∣

∣

∣

|Vn|(t)eτtdt

� C

(

1

k2

h
∫

xn

∣

∣

∣

∣

h
∫

t

(A − iB)(s)Vn(s)ds

∣

∣

∣

∣

2

eτtdt +

h
∫

xn

|Vn(t)|2eτtdt

)

. (2.21)

Dropping the first and fourth terms in (2.18) and using (2.19), (2.20),
(2.21), we yield
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h
∫

xn

(τ − 2bn(n) − Ch)|Vn|2(s)ds

+
( τ

Ck2
− C

1

k2

)

h
∫

xn

∣

∣

∣

∣

h
∫

t

(A − iB)(s)Vn(s)ds

∣

∣

∣

∣

2

eτtdt

�

h
∫

xn

|Fn(s)|2eτsds +

h
∫

xn

|Vn(s)|2eτsds.

Now, we choose

τ = max(2 sup bn(n) + Ch + 2, C2), sup over xn ∈ (0, h). (2.22)

Due to this choice of τ , the last inequality implies

h
∫

xn

|Vn(s)|2eτsds �

h
∫

xn

|Fn(s)|2eτsds.

So we obtain (2.14) with C = eτh and τ defined by (2.22).

The proof is complete. �

Lemma 2.3. Let a(n) ∈ C1([0, h]) depend only on xn, and let vn+1 ∈
C2(Ω̄∗) solve the initial value problem

(∆ + b(n) · ∇ + a(n)2k2)vn+1 = kfn+1 in Ω∗(d),

vn+1 = 0 on Ω∗(h1)
(2.23)

for some h1 ∈ (d, h), fn ∈ C∞(Ω̄∗(d)), fn+1 = 0 on Ω∗(h1), and

Vn+1(ξ, xn) = 0 when
a2(xn, n)

2
k2 < |ξ|2. (2.24)

Then there is a constant C depending only on h, sup(|b(n)| + |∂nb(n)| +
|a(n)| + |∂na(n)|), sup a−1(n) over (0, h) such that

‖vn+1‖(Ω∗(d)) � C‖fn+1‖(Ω∗(d)). (2.25)

The proof of Lemma 2.3 is similar to that of Lemma 2.1.

Lemma 2.4. Let a(n) ∈ C1([0, h]) depend only on xn. Let v0 ∈
C2(Ω̄∗) solve the initial value problem
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(∆ + b(n) · ∇ + a(n)2k2)v0 = k2f0 in Ω∗(d),

v0 = 0 on Ω∗(h1)
(2.26)

for some h1 ∈ (d, h), fn ∈ C∞(Ω̄∗(d)), fn+1 = 0 on Ω∗(h1), and

V0(ξ, xn) = 0 when
a2(xn, n)

2
k2 < |ξ|2. (2.27)

Then there is a constant C depending only on h, sup(|b(n)| + |∂nb(n)| +
|a(n)| + |∂na(n)|), sup a−1(n) over (0, h) such that

‖v0‖(Ω∗(d)) � C(‖f0‖(Ω∗(d) + ‖∂nf0‖(Ω∗(d))). (2.28)

Proof. We need to modify slightly the previous argument. Indeed,
as in the bounds for Vj ,

|∂nV0|2(xn)eτxn + (a2
n(xn)k2 − |ξ|2)|V0|2(xn)eτxn

+

h
∫

xn

(τ − 2bn(n))|∂nV0|2(s)eτsds

+

h
∫

xn

(τ(a(s, n)2(s)k2 − |ξ|2) + 2k2a(s, n)∂na(s, n))|V0|2(s)eτsds

+ i

h
∫

xn

b(s, n) · ξ(V0∂nV̄0 − V̄0∂nV0)(s)e
τsds

= −k2

h
∫

xn

Re (F0∂nV̄0)(s)e
τsds

= k2 Re (F0V̄0)(xn)eτxn + k2

h
∫

xn

Re ((∂nF0 + τF0)V̄0)(s)e
τsds. (2.29)

To bound the last integral, we observe that

∣

∣

∣

∣

h
∫

xn

b(s, n) · ξ(V0∂nV̄0 − V̄0∂nV0)(s)e
τsds

∣

∣

∣

∣

�

h
∫

xn

(|b(s, n)|2|ξ|2|V0|2 + |∂nV̄0|2)(s)eτsds
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� Ck2

h
∫

xn

|V0|2(s)eτsds +

h
∫

xn

|∂nV̄0|2(s)eτsds

because |ξ| � Ck due to the condition (2.27). Dropping the first term on
the left-hand side of (2.29), using the elementary inequalities

|F0V0| �
( 1

a(n)2
|F0|2 +

a(n)2

4
|V0|2

)

,

|(∂nF0 + τF0)V0| � 2(|∂nF0|2 + τ2|F0|2) + |V0|2

and the assumption (2.27), we yield

a(n)2(xn)k2

2
|V0|2(xn)eτxn +

h
∫

xn

(τ − 2bn(n) − 1)|∂nV0|2(s)eτsds

+

h
∫

xn

(τ

2
a2(n)k2 − Ck2

)

|V0|2(s)eτsds

�
a2(xn, n)k2

4
|V0|2(xn) +

k2

a(xn, n)2
|F0|2(xn)

+ k2

h
∫

xn

|V0|2(s)eτsds + k2

h
∫

xn

4(|∂nF0|2 + τ2|F0|2)(s)eτsds.

Choosing

τ = max(2 sup bn(n) + 1, 2 sup(C + 1)a(n)−2), sup over (0, h),

we guarantee the positivity of the second integral. So, we can absorb the
first integral on the right-hand side by the last integral on the left-hand side
to arrive at

a(n)2(xn)|V0|2(xn)eτxn

�
4

a(n)2(xn)
|F0|2(xn)eτxn + 8

h
∫

d

(|∂nF0|2 + τ2|F0|2)(s)eτsds

or

|V0|2(xn)eτxn � C(|F0|2(xn)eτxn +

h
∫

d

(|∂nF0|2 + τ2|F0|2)(s)eτsds.
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Integrating with respect to xn over (d, h) and replacing eτxn on the left-hand
side by 1 and on the right-hand side by eτh, we arrive at (2.28).

The proof is complete. �

Now, using Lemmas 2.1–2.4, freezing the coefficient with respect to x′,
and partitioning unity, we obtain energy type estimates for general variable
a0, b.

Let ε > 0. We denote by X(j) points with integer coordinates. Let
x(j), j = 1, . . . , J , be points εX(j) that are contained in Ω′ = {x′ : x ∈ Ω}.
It is clear that J � Cε−n. The balls B′(x(j); ε) form an open covering of
Ω′. We define Ωj = B′(x(j); ε) × (0, h). Let χ(x′; j) be a partition of unity
subordinated to this covering. We can assume that

0 � χ(; j) � 1, |∇χ(; j)| � Cε−1, |∆χ(; j)| � Cε−2. (2.30)

We introduce a “low frequency” projection v1 = Pv of a function v.
Introduce a function χ ∈ C∞(R) such that χ = 1 on (0, 1/2), χ = 0 on
(3/4,∞), 0 � χ � 1. Let χj(xn; ξ) = χ(k−1a−1

0 (x(j), xn)|ξ|). We define

v(; j) = χ(; j)v, Pjv(; j) = F−1χjFv(; j), v1 =

J
∑

j=1

Pjv(; j). (2.31)

For brevity we set ‖v‖ = ‖v‖(0)(Ω
∗(d)).

Lemma 2.5. Let v ∈ C2(Ω̄∗(d)) solve the initial value problem

(∆ + b · ∇ + a2
0k

2)v = ∂1f1 + . . . + ∂nfn + kfn+1 + k2f0 in Ω∗(d),

v = 0 on Ω∗(h1)
(2.32)

for some h1 < h. Then there is a constant C such that

‖v‖ � C((1 + ε−1−n/2k−1)(‖f1‖ + . . . + ‖fn‖) + ‖fn+1‖

+ ‖f0‖ + ‖∂nf0‖ + ε−2k−1‖v‖(1)(Ω
∗(d)) + ε(‖v‖ + ‖∂nv‖)). (2.33)

Proof. From (2.31) and the Leibniz formula we have

∆v(; j) + b · ∇v(; j) + k2a2
0v(; j)

= χ(; j)(∂1f1 + . . . + ∂nfn + kfn+1 + k2f0)

+ 2∇χ(; j) · ∇v + (b · ∇χ(; j) + ∆χ(; j))v,

so

∆v(; j) + b(x′(j), xn) · ∇v(; j) + k2a2
0(x

′(j), xn)v(; j)

= ∂1(χ(; j)f1) + . . . + ∂n(χ(; j)fn) − ∂1χ(; j)f1 − . . . − ∂n−1χ(; j)fn−1
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+ kχ(; j)fn+1 + k2χ(; j)f0 + 2∇χ(; j) · ∇v + (b · ∇χ(; j) + ∆χ(; j))v

+ (b(x′(j), xn) − b(x)) · ∇v(; j) + k2((a2
0(x

′(j), xn) − a2
0(x))v(; j).

Applying the low frequency projection Pj to both sides, we yield

∆Pjv(; j) + b(; j, n) · ∇Pjv(; j) + k2a2(; n, j)Pjv(; j)

= F−1∂2
nχjFv(; j) + 2F−1∂nχjF∂nv(; j) + bn(; j)F−1∂nχjFv(; j)

+ ∂1Pj(χ(; j)f1) + . . . + ∂nPj(χ(; j)fn) − Pj,n(χ(; j)fn)

− Pj((∂1χ(; j))f1) − . . . − Pj((∂n−1χ(; j))fn−1)

+ kPj(χ(; j)fn+1) + k2Pj(χ(; j)f0)

+ Pj(2∇
′χ(j) · ∇v) + Pj((∆χ(; j) + b · ∇χ(; j))v)

+ Pj(b(; j) − b) · ∇v(; j)) + k2Pj((a
2(; n, j) − a2

0)v(; j)),

where Pj,n(f) = F−1∂nχjFf , b(; j) = b(x′(j), ), and a(; n, j) = a0(x
′(j), ).

Observing that

|(a2(; n, j) − a2
0)| + |∂n(a2(; n, j) − a2

0)| � Cε

on the support of v(; j) and ‖Pjf‖ � ‖f‖, using (2.30), and applying Lem-
mas 2.1–2.4, we obtain

‖Pjv(; j)‖2 � C(‖χ(; j)f1‖2 + . . . + ‖χ(; j)fn‖2 + ε−2k−2(‖f1‖2 + . . .

+ ‖fn‖2) + ‖χ(; j)fn+1‖2 + ‖χ(; j)f0‖2

+ ‖χ(; j)∂nf0‖2 + ε−2k−2‖∇v‖2(Ωj)

+ ε−4k−2‖v‖2(Ωj) + ε2(‖v‖2(Ωj) + ‖∂nv‖2(Ωj)). (2.34)

Now, summing the local estimates (2.34), we obtain a bound for v1

given by (2.31). The support of v(; j) intersects at most 2n supports of
other v(; k), but this is not true for Pjv(; j). To make certain constants be
ε independent (as in (1.5)), we use that (I − Pj)v(; j) is a high frequency
component of v(; j) as defined by (2.31). Hence

‖(I − Pj)v(; j)‖2 � Ck−2‖v(; j)‖2
(1)

and

‖v(; j)‖2 = ‖Pjv(; j)‖2 + ‖(I − Pj)v(; j)‖2 � ‖Pjv(; j)‖2 + Ck−2‖v(; j)‖2
(1).

Using that the multiplicity of covering Ωj is at most 2n and summing (2.34)
over j = 1, . . . , J , we yield

‖v‖2 � C

J
∑

j=1

‖v(; j)‖2 � C
(

J
∑

j=1

‖χ(; j)f0‖2 + . . . +

J
∑

j=1

‖χ(; j)fn+1‖2
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+

J
∑

j=1

‖χ(; j)∂nf0‖2 + ε−n−2k−2(‖f1‖2 + . . . + ‖fn‖2)

+ ε−4k−2‖v‖2
(1)(Ω

∗(d)) + ε2(‖v‖2 + ‖∇v‖2)
)

.

Using that χ2(; 1) + . . . + χ2(; J) � 1, we obtain (2.33) and complete the
proof of Lemma 2.5. �

3. Some Carleman Estimates

Let

w(x; τ) =

1
∫

−1

exp(2τeσ(|x−β|2−θ2t2))dt, (3.1)

where β = (0, . . . , 0, βn) is a vector to be chosen later. We remind a result
from [7]. We will give its short proof.

Lemma 3.1. Let the condition (1.4) be satisfied. Then there is a

constant C such that
∫

Ω

((τ3 + τk2)|u|2 + τ |∇u|2)w(, τ)

� C
(

∫

Ω

|(∆ + a2
0k

2)u|2w(, τ) +

∫

∂Ω

((τ3 + τk2)|u|2 + τ |∇u|2)w(, τ)
)

(3.2)

for all u ∈ H2(Ω1) and τ > C.

Proof. As is known [5, 12], under the condition (1.4), there are

positive σ, θ depending on Ω, a0, β such that with ϕ(x, t) = eσ(|x−β|2−θ2t2)

we have the following Carleman estimate for the wave operator:
∫

Ω×(−1,1)

(τ3|U |2 + τ |∇U |2 + τ |∂tU |2)e2τϕ

� C
(

∫

Ω×(−1,1)

|(∆ − a2
0∂

2
t )U |2e2τϕ +

∫

∂Ω×(−1,1)

(τ3|U |2 + τ |∇U |2 + τ |∂tU |2)e2τϕ

+

∫

Ω×{−1,1}

(τ3|U |2 + τ |∇U |2 + τ |∂tU |2)e2τϕ
)

. (3.3)
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We apply (3.3) to the function

U(x, t) = u(x)eikt, (3.4)

choose large τ to absorb the integral over Ω×{−1, 1} by the left-hand side
of(3.3), and integrate with respect to t to obtain the weight function w.

From the definition (3.4)

∇U(x, t) = ∇u(x)eikt, ∂tU(x, t) = iku(x)eikt

and

(∆ − a2
0(x)∂2

t )U(x, t) = (∆u(x) + a2
0(x)u(x))eikt .

Hence the Carleman estimate (3.3) implies that

∫

Ω

(τ3|u|2(x) + τ |∇u(x)|2 + τk2|u(x)|2)
(

1
∫

−1

e2τϕ(x,t)dt
)

dx

� C
(

∫

Ω

|(∆ + a2
0(x))u(x)|2

(

1
∫

−1

e2τϕ(x,t)dt
)

dx

+

∫

∂Ω

((τ3 + τk2)|u|2(x) + τ |∇u(x)|2)
(

1
∫

−1

e2τϕ(x,t)dt
)

dx

+

∫

Ω

((τ3 + τk2)|u|2(x) + τ |∇u(x)|2)e2τϕ(x,1)dx
)

. (3.5)

Now, choosing τ large and using different growth rate of the weight
function on the left-hand side of (3.5), we eliminate the last term on the
right-hand side. Indeed, let E > 0. By definition,

ϕ(x, t) − ϕ(x, 1) = eσ|x−β|2(e−θ2t2 − e−θ2

) > ε1(θ)

when |t| < 1/2, x ∈ Ω. Hence there is C(E) such that

E <

1/2
∫

−1/2

e2τ(ϕ(x,t)−ϕ(x,1))dt <

1
∫

−1

e2τ(ϕ(x,t)−ϕ(x,1))dt

when C(E) < τ . Then

Ee2τϕ(x,1) <

1
∫

−1

e2τϕ(x,t)dt
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provided that C(E) < τ . Setting E = 2C, we can absorb the last term on
the right-hand side of (3.5) by the left-hand side. The proof is complete. �

4. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.2. We choose

βn = −
(2r2

d
− 3

8
d
)

, β = (0, . . . , 0, βn).

Introduce the notation Ωd = Ω ∩ {(d − βn)2 < |x − β|2}. We assume that
3d2 < 16r2, so that βn < 0. Using the choice of β and considering the
intersection of level surface

|x − β|2 =
(1

2
d − βn

)2

with the lateral wall {|x′| = r} of the cylindrical domain, one can be con-
vinced that the boundary layer {xn < 1

4d} ∩ Ω does not intersect Ω d
2
.

Indeed, if (x′, x∗
n) is a point of the intersection of this cylindrical domain

and of the boundary of Ω d
2
, then r2 +(x∗

n−βn)2 = (d−βn)2 =
(d

8
+

2r2

d

)2

,

(x∗
n − βn)2 =

(d

8
−

2r2

d

)2

, and x∗
n − βn =

2r2

d
−

d

8
, which gives x∗

n =
d

4
.

Hence there is a cut-off function χ that is equal to 1 on Ω d
2
, vanishes near

∂Ω ∩ {xn = 0}, and satisfies the bounds |∇χ| � Cd−1, |∆χ| � Cd−2.

Writing Equation (1.1) as (∆ + k2a2
0)u = f − b · ∇u, applying Lemma

3.1 to χu instead of u, and shrinking the domain in the norms on the left-
hand side of (3.2), we get

∫

Ωd

((τ3 + τk2)|u|2 + τ |∇u|2)w(; τ)

� C
(

∫

Ω

|f |2w(; τ) +

∫

Ω

|∇u|2w(; τ) +

∫

Ω\Ω d
2

|∇χ · ∇u + (∆χ)u|2w(; τ)

+

∫

Γ

((τ3 + τk2)|u|2 + τ |∇u|2 + τ |∇χu|2)w(; τ)
)

, (4.1)

where we used that χ = 1 on Ω d
2

and the triangle inequality. Choosing

τ > 2C, we absorb the second integral on the right-hand side by the left-
hand side.
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Let b = eσX2

, b1 = eσ|d−βn|2 , b2 = eσ| d
2
−βn|2 , where X = sup |x − β|

over x ∈ Ω,

W (τ) =

1
∫

−1

e2τbe−σt2

dt, w1(τ) =

1
∫

−1

e2τb1e−σt2

dt, w2(τ) =

1
∫

−1

e2τb2e−σt2

dt.

Observing that w1 � w on Ωd, w � W on Ω, and w � w2 on Ω \ Ω d
2

and replacing w by its minimal value on the left-hand side and by maximal
values on the right-hand side of (4.1), we yield

τ3w1(τ)‖u‖2(Ωd)) + τw1(τ)‖∇u‖2(Ωd)

� C(W (τ)(‖f‖2(Ω) + (τ3 + τ(k2 + d−2))‖u‖2(Γ) + τ‖∇u‖2(Γ))

+ d−4w2(τ)(‖∇u‖2(Ω) + ‖u‖2(Ω))).

Dividing both sides of this inequality by w1, we obtain

τ3‖u‖2(Ωd) + τ‖∇u‖2(Ωd) � C(W (τ)w−1
1 (τ)(‖f‖2(Ω)

+ (τ3 + τ(k2 + d−2))‖u‖2(Γ) + τ‖∇u|2(Γ))

+ d−4w2(τ)w−1
1 (τ)(‖∇u‖2(Ω) + ‖u‖2(Ω))). (4.2)

It is obvious that W (τ)w−1
1 (τ) � CeCτ . A crucial observation is that

w2(τ)w−1
1 (τ) � Ce−

τ

C .

Indeed, by the definition of bj and β and elementary calculations,

b1 − b2 = eσ(2r2− d
2

8
+( 2r

2

d
− 3d

8
)2)(eσ( 3d

2

8
+2r2) − 1) � C−1.

Therefore,

w1(τ) �

1
∫

−1

e2τb2e−θ
2

t
2

e2τ(b1−b2)e−θ
2

dt � w2(τ)e2τ/C .

Hence from (4.2) we have

‖u‖2(Ωd) + ‖∇u‖2(Ωd) � C(eCτ τ3F 2(k) + e−τ/Cτ3M2
1 ) when C < τ.

(4.3)

By increasing C, we can eliminate τ3 on the right-hand side.

To use (4.3), we need τ to be large. If M1 � CF (k) for some C, then
we have the Lipschitz bound (1.7). Otherwise, we can equalize two terms
in (4.3) by setting

τ =
C2

C2 + 1
2ln

M1

d2F (k, d)
.
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Then the right-hand side of (4.3) is

CF (k)2κM
2(1−κ)
1 , κ =

1

C2 + 1

and, using that Ω(d) ⊂ Ωd, we obtain (1.7). The proof is complete. �

Proof of Theorem 1.1. Since Γ is Lipschitz, by known extension
theorems, there is a function u∗ such that u = u∗,∇u = ∇u∗ on Γ and

‖u∗‖(1)(Ω
∗(0)) � C(‖u‖(Γ) + ‖∇u‖(Γ)) � CF, (4.4)

where we used the definition of F . Let v = u − u∗ on Ω and v = 0 on
Ω∗(0) \ Ω. It suffices to obtain (1.5) for v instead of u. Observe that

∆v + b · ∇v + a2
0k

2v = f + f∗ − b · ∇u∗ − a2
0k

2u∗ in Ω∗(0), (4.5)

where f∗ = − div(∇u∗). Since v vanishes outside some cylinder, by us-
ing known results about the H1-approximation of energy solutions by H2-
solutions, we can assume that v ∈ H2(Rn−1 × (0, h)) and hence f∗ =
∂1f1 + . . . + ∂nfn + fn+1 with ‖fj‖ � CF . By (4.5) and Lemma 2.5,

‖v‖(Rn−1 × (d, h)) � C((1 + ε−n/2−1k−1)F + k−1F + ‖u∗‖ + ‖∂nu∗‖

+ ε−2k−1(‖v‖(1)(Ω(d)) + ε(‖v‖ + ‖∂nv‖))

� C(F + C(ε)k−1F + C(ε)k−1‖u‖(1)(Ω(d)) + ε(‖u‖(1)(Ω) + F )),

where we used that ‖v‖(1) � ‖u‖(1) + F due to (4.4). From this bound and
(1.7) we obtain the needed bound (1.5) for v. The proof is complete. �

Conclusion. It is clear that difficulties in theory and applications of
many important inverse problems are due to their notorious (exponential)
instability. In practical situations, logarithmic stability permits, as a rule,
to find only 10–20 Fourier coefficients of a solution at distance from Γ, which
results in very poor resolution and disappointment of engineers or scientists
expecting effective mathematical processing of experimental data whose ac-
quisition is often very laborious and expensive. So, any way to increase
stability and to increase resolution is indeed valuable. While increasing
stability with the wave number is observed experimentally in several basic
inverse problems, before there was no theoretical explanation. Moreover,
there is a belief that stability always grows with frequency. As was shown,
it is true only under some (convexity) type conditions. Otherwise, stability
might deteriorate.

One of the next natural questions is to trace the dependence of con-
stants on distance d and to study stability in the whole domain Ω. For
example, we expect that C � C0d

−4, where C0 does not depend on d. To
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demonstrate it, we need more detailed Carleman type estimates. We ex-
pect that this increased stability is more dramatic in the three-dimensional
case, when the data are given at a larger distance, when singularities of
the solution are distributed over ∂Ω \ Γ, and certainly for large frequen-
cies. Accordingly, the most stable solution (for the same space geometry as
in Section 1) is anticipated in the time domain (i.e., when the Helmholtz
equation is replaced by the wave equation) provided that the initial data are
zero. In near future we plan to study this issue theoretically and to link it to
the increased stability for the Helmholtz equation and to the (largely open)
problem of the exact controllabity in a subdomain. Observe that the exact
controllability in the whole domain is relatively well understood [6, 10].
The present paper outlines a possible way to study increasing stability of
the continuation for the equation

ε∆u + b · ∇u + a2
0u = 0.

Large k corresponds to smaller viscosity ε and has natural links to stan-
dard smoothing regularization technique. The analysis of Section 2 carries
through, however at present we do not know how to derive appropriate
Carleman type estimates, like in Section 3. These estimates help to handle
the high frequencies zone. As follows from John’s example, this high fre-
quency zone might interact with the low frequency zone (where the solution
is stable disregard of any (pseudo-)convexity conditions) and damage overall
stability. Similar results are expected for continuation from a lateral wall
of solutions to parabolic and hyperbolic equations

(∂t − ∆ − k2a2
0)u = 0, (∂2

t − ∆ − k2a2
0)u = 0

and for more general equations and systems.

The author already showed the increased stability of recovery a poten-
tial in the Schrödinger equation (−∆−k2 +c(x))u = 0 from its Dirichlet-to-
Neumann map. The results were presented at the international conferences
“Applied Inverse Problems 2005” in Cirencester, England, and “Inverse
Problems and Applications,” Banff, Canada, in 2006. The paper with com-
plete proofs using complex geometerical optics technique and some sharp
estimates of regular fundamental solutions of operators with constant co-
efficients [4, 5] is in preparation. Probably, it is harder to show increased
stability for the coefficient a0 in the equation (−∆ − k2a2

0(x))u = 0. At
present, there are only some preliminary results (in the low frequency zone)
[11], methods of (complex) geometrical optics do not look promising, and
we do not know a good alternative. The next step is to obtain similar esti-
mates for the inverse scattering problems by obstacles and by the medium.
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In particular, it is still an open question whether stability of recovery of
near filed from far field pattern is improving with growing frequency. It is
clear that one has to impose some (pseudo)convexity condition on unknown
coefficients or obstacles.

Acknowledgments. This work was supported in part by the NSF
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— recurrent 175

— translation compact 172
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Galerkin approximation 8
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Navier–Stokes equations 38, 142,
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Number, band 64

O

Optics geometric nonlinear 267

— weakly 271
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— zero-time 12

Order metric 206

P

Phase, interaction 96
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Points, band-crossing 79

Position, wavepacket 65

Principle, superposition 58,78

Process 162

R

Relation, dispersion 64

S

Section, kernel 140

Semigroup 138

— (E, E)-bounded 138

— (E, E)-continuous 139

— compact 139

— — asymptotically 139

Set

— absorbing 138
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Solution universal 85

Stability increased 339

Susceptibility 82

— elementary 95
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T

Trajectory complete 165

— bounded 166

V

Variable slow 66

W

Wave

— large amplitude 275

— vorticity 307

Wavepacket 57, 65
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— multi-particle 58, 65
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