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Preface

In the last 25 years, the science and technology of composite materials have
experienced a period of substantial development. The initial goal was to
provide light, strong, and stiff materials for the aerospace industry. That was
met by the introduction of polymer matrix composites with continuous fiber
reinforcement, and with certain discontinuous reinforcements. Such mate-
rials are now routinley used not only in aerospace, but also in numerous
other applications, e.g., in automobile and construction industries.

Meanwhile, composite materials have been introduced, or are expected to
serve, in many other functions which cannot be fulfilled by conventional
materials, particularly in extreme environments. Accordingly, the research
focus has been broadened to include not only new polymer systems, but also
metal, intermetallic, and ceramic matrix materials. This has brought forth
a number of new problems in fabrication and processing, and in analysis of
composite material behavior and properties.

The latter set of problems is usually approached by various micromechani-
cal techniques. In recent years, their scope has been expanded from
prediction of overall properties of elastic, perfectly bonded systems, to
include problems associated with inelastic deformation of the phases,
debonding at interfaces, and growth of distributed damage. Many familiar
aspects of mechanical behavior, such as fracture, fatigue, compressive
strength and buckling have been reexamined and adapted for application to
the new material systems.

This volume contains a selection of recent work by leading researchers in
micromechanics that was presented at the [IUTAM Symposium on Inelastic
Deformation of Composite Materials at Rensselaer. The Symposium was
made possible by the generous support of AFOSR, ARO, NSF, IUTAM and
RPI. Thanks are due to the sponsors, and to the local organizing committee
for their support and work on behalf of the Symposium. Special thanks are
due to Christine Stephenson for her coordination of the local arrangements,
and for her contribution to the preparation of this volume.

George J. Dvorak
Troy, New York

June 1990
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Composite Materials with Interphase:
Thermoelastic and Inelastic Effects

Zvi Hashin!

Department of Mechanical Engineering
and Applied Mechanics
University of Pennsylvania
Philadelphia, PA

ABSTRACT

The effect of thin interphase between
constituents of a composite material is
described in terms of imperfect interface
conditions which involve interface parameters.
Elastic, viscoelastic and -elastoplastic
interphases are considered and their effect on
the mechanical properties of composites is
evaluated on the basis of the composite
cylinder/spheres assemblage models and the
generalized self consistent scheme
approximation.

INTRODUCTION

The effective properties of a composite
material depend on two kinds of information:
the properties of the constituents and the

1 On leave of absence from Tel Aviv
University, Tel Aviv, Israel
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interface geometry. The interface imposes
certain restrictions on the deformations and
stresses in the constituents which are called
interface conditions. The concept of
interface and interface conditions is of
course a simplified description of a complex
microscopic state in the region where the
constituents come in contact, but introduction
of such details into analysis of a composite
material would lead to prohibitively difficult
problems. Therefore investigation of the
effect of the nature of the interface on
composite material properties should be
divided into two stages. In the first stage
the nature of the interface is translated into
interface conditions, possibly on the basis of
micromechanics of the interface region, and in
the second stage the composite is analyzed
subject to the derived interface conditions.
The classical interface conditions assume
that displacements and tractions are
continuous at the interface. This will be
referred to as perfect interface conditions
and every other kind of interface condition
will be called imperfect. Unless we have
reason to be concerned with surface tension
interface traction continuity must be retained
for reasons of equilibrium. It is the
displacement continuity requirement which is
abandoned when the interface is imperfect and
to understand the underlying physics let us
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imagine that there is a thin region (compared
to typical constituent dimensions such as
fiber diameters) between the constituents,
called the interphase, which has properties
which are very different from those of the
constituents. The interphase may be a thin
layer of another material introduced by design
or by <chemical interaction of the
constituents, or it may be a region containing
many small defects such as pores or cracks.
The case of interest is an interphase with
stiffness much smaller than that of an
adjoining constituent. This will be the case
when the interphase material stiffness is very
small or when micro-defects reduce stiffness
considerably. The deformations of such an
interphase, though thin, may be of the order
of the deformations of stiffer constituents.
The interphase deformation is the difference
between displacements of adjoining
constituents. If the interphase, by virtue of
its small thickness, is idealized to become a
surface - i.e. the interface, then this
displacement difference becomes an interface
displacement discontinuity.

If the interphase is elastic the simplest
assumption is that normal and tangential
displacement discontinuities are proportional
to associated traction components. Thus with
respect to a local orthogonal system of axes
n,s,t originating at some point on the
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interface, Fig. 1, where n is normal direction
and s,t are tangential directions we describe
elastic imperfect interface conditions by the
relations

- u(D) @)

{1 = 1) = b [u]  [uy) = uf

(D) - 1(2)

Dyfu,]  [ug] = u{D) - u(®) (1)

u51) ) ugz)

T§1)=T$2) Dyfugl  [uyl
on S,,, where D,, D, and D, are spring
constant type parameters which will be called
interface  parameters. It is seen that
infinite values of these parameters imply
vanishing of the interface displacement jumps
and therefore perfect interface conditions.
At the other extremity, =zero values imply
vanishing of the interface tractions and
therefore disbond of the adjoining media. Any
finite positive values of the interface
parameters define an imperfect interface.

A special case of (1) is D, - o which
implies normal bond and imperfect shear bond.

If furthermore D, = D, = 0 there is no shear
bond and the case is referred to as free
sliding. The case of imperfect shear bond

only was considered by Mal and Bose (1975) and
Benveniste (1985) for the case of spherical
particle elastic composites. Mura et al.
(1985) have analyzed the axisymmetric problem
of a spheroidal inclusion with interface



Fig. 1 - Interface
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conditions of free sliding.

The more general interface conditions of
type (1) with imperfect normal and shear bond
were used by Achenbach and Zhu (1989, 1990)
for numerical analysis of periodic fiber
arrays and by Hashin (1990a,b,c) for analysis
of thermoelastic properties of fiber and
spherical particle composites and the elastic
problem of the spherical inclusion.

INTERFACE CONDITIONS AND INTERPHASE

Elastic Interface

It should be noted that the interface
conditions (1) have been introduced into the
literature as a convenient assumption without
examination of their general validity or
origin. It has ©been shown in Hashin
(1690a,b,c) that such interface conditions are
indeed valid for fibers of circular cross
section coated with transversely isotropic
interphase and for spherical inclusions which
are coated with isotropic interphase, provided
that interphase thickness and stiffness are
very much smaller than diameters and
stiffness, respectively, of fibers and
inclusions. It has been shown on the basis of
detailed model analysis that for fibers the
interface parameters are given by



(k; + Gp;)/8

n
Dy = Gp; /6 (2)

where n is radial outward direction to fiber
surface and s,t are transverse and axial
tangential directions, respectively, t is axis
of transverse isotropy, @& is interphase
thickness, k;, Gy, G, are interphase
material transverse bulk modulus, transverse
shear modulus and axial shear modulus,
respectively, which are supposed to be much
smaller than fiber elastic moduli

Note that D, in Hashin (1990a) was given
with a factor 2. This is a matter of
interpretation of the displacement continuity
due to axial shear. The present
interpretation seems to be preferable.

For spherical inclusions with isotropic
interphase it was shown in Hashin (1990b,c)
that

_ 4
D, = (K; +5G;)/s

(3)
Dy =D, =G;/s
where K; is isotropic bulk modulus. Note that
for isotropic interphase (2) become the same
as (3).
We can derive (2,3) in very simple
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fashion without recourse to model analysis.
Furthermore, the derivation is not restricted
to fibers of circular cross sections nor to
spherical inclusions but is wvalid for
generally cylindrical fibers and inclusions of
any (smooth) shape. Recall that the interface
is a very thin layer which is loaded by
assummedly smooth distribution of normal and
tangential tractions, equal in magnitude on
both sides. The variation of interphase
stresses with r, distance normal to interphase
bounding surfaces, can therefore be neglected.
It follows that if the interphase is
homogeneous the strains are also independent
of r. Therefore the displacement jumps
produced by the interphase are given by

(o) = i) 8
[ug] = 2¢{1)s (4)
[u,] = 2¢{D)s

where index i indicates interphase. Since e,
is the normal derivative of u, the first of
(4) is obvious. Establishment of the
remaining two, for curved interphase, is based
on neglect of the small number §/a with
respect to 1, where a is radius of curvature
of fiber or inclusion.

At constituent/interphase interfaces each



11

. . . (i) (1)
of the tangential interphase strains egc.; €,

must be equal to its constituent counterpart.
Assuming that particles and fibers are very
much stiffer than the interphase material the
tangential interphase strains can be neglected
relative to the normal interphase strain.
Thus

I R R R O R C)
where strains with no index are in fibers or
particles. Assuming isotropic interphase it
follows from the elastic stress-strain law of
the material that

agi) = (K; + 4Gi/3) egi)
ofs) = 26 e (6)
o1 = 26, oD

These stresses are the normal and tangential
tractions. Expressing them in terms of (4)
and using (1), the result {3) follows at once.
Derivation of (2) 1is entirely analogous.
There is in fact no difficulty to find the
interfac constants for interphase which is
orthotropic with respect to the n,s,t axes.
For more complicated interphase anisotropy,
when normal and shear strain/stress are no
longer decoupled, the interface conditions
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will no longer have the form (1) but each
traction component will be linearly related to
all displacement jumps in the n,s,t coordinate
system.

Work on the effect of interphase on the
properties of composite materials has often
been concerned with variability of interphase
properties in the normal direction; see e.g.
Sideridis (1988). The present approach can be
readily adapted to this case. The interphase
stresses remain constant through the thickness
for the same reasons given above but since
interphase stiffness now varies through the
thickness the strains will behave similarly.
The relations (4) are now replaced by

Jﬁ enn(r) dr

0
2f e (1) dr (7)

[u]

[ug]

[u,] = gfs e, (1) dr

Assuming transversely isotropic interphase
coating of a fiber we then have from the
elastic stress-strain relations

1 _ dr
D~ Jﬁ Ei(r)+GTi(r)

1 d
by e ®
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1 _ jﬁ dr

Dy~ Jo Tai(M)
with obvious specialization to isotropic
interphase.

Finally, we consider the case of thin
interphase with no stiffness restrictions in
which case the tangential strains (5) are no
longer negligible with respect to normal
strain. To be specific we consider the case
of isotropic interphase adjoining an isotropic
constituent. Expressing interphase normal
stress in terms of interphase strains and
using (4) and the left part of (5) the normal
interface condition now becomes

(9,116 = | s i
u = +
n K, + 4Gi/3 E,(1 - v;)

] Ty -

1 - »,)v.
é;(’r—z)—y @@ 4 o) %)

There is of course no difficulty to derive
similar relations for anisotropic interphase
and/or anisotropic constituents. It is seen
that (9) is no longer of the form (1) while
the shear interface conditions remain
unchanged.

Examination of (9) reveals that the
normal displacement jump is of the order of
interphase thickness multiplied by the ratio
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of stress to interphase stiffness. For
interphase stiffness which 1is not small
(compared to constituent stiffness) this ratio
will be a very small number which implies very
small normal displacement jump, a situation
which could be adequately represented by

normal displacement continuity - thus perfect
interface condition. Similar considerations
apply to shear interface conditions. For

isotropic interphase normal and shear

stiffness will be of the same order, thus
normal and shear interface conditicns will
both be either perfect or imperfect. However,
in the case of an anisotropic interface it is
possible to have shear stiffness which is very
much smaller than normal stiffness. This may
lead to perfect normal interface condition and
imperfect shear interface conditions.

If the interphase is such that perfect
interface conditions are appropriate, (9) or
its anisotropic counterparts are still useful
for purpose of determination of the stresses
in the interphase.

Viscoelastic Interphase

We consider the ~case of linear
viscoelastic isotropic interphase and make the
usual assumption that the bulk modulus K; is
time independent and thus the viscoelastic
effect is confined to shear and is
characterized by the relaxation modulus G(t)
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and the associated creep compliance g;(t).
Then the viscoelastic counterpart of (1,3) is
given by

T, (t) = D (t)[u,(0)] +

¢ ) : :
fo D (t - t') Zor [u (t')]dt
T (t) = Do (t)[ug(0)] +

t N Ny
jb D (t - t') S [ug(t')]dt

(10)
D (t) = [K; H(t) + 5 G;(t)]/3
D (t) = G;(t)/s
where H(t) is the Heaviside function. For

applications it is useful to introduce the
Laplace Transform (LT) of (10) which is

T, = pD_[u,] T, = pD [u]

- - A~ A (11)
4

b, = [K; + 3P G;|/6  pDy= pG;/s
where ~ indicates LT and p is the transform
variable. It follows from Tauberian theorems

for LT that the initial and final values of
the interface functions D,(t) and D,(t) are

D,(0/=) = [K; + :}Gi(O/w)]/a
(12)
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Dy (0/%) = G;(0/»)/8

Often G;(«) is so small that it may be assumed
to vanish. In this event the final shear
interface conditions reduce to free sliding.

The above interface functions are
appropriate for quasi-state effects of
relaxation and creep. In the case of steady
state oscillations it is convenient to use
complex moduli. Retaining the assumption of
elastic K, the complex interface parameters
are

5n(zw) [Ki + -g—Gi(w))]/S

(13)

ﬁs(cw) Gi(zw)/S

where w is frequency, ¢ = V=T and G;(ww) is
the complex shear modulus of the interphase.

Elastoplastic Interphase

In this case the interphase may develop
plastic yielding. The situation is more
complex than the previous ones considered
because of the nonlinear stress interaction
and it is therefore not clear if it is
possible to develop interface conditions of as
general a nature as Dbefore. Here the
development of the interface conditions for
elastoplastic interphase will be confined to a
specific geometrical model in the context of
unidirectional fiber composites to be
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considered below.

THERMOELASTIC EFFECTS

Thermoelastic properties of fiber
composites and of particulate composites have
been analyzed in Hashin (1990a,b) on the basis
of the composite cylinder assemblage (OCA)
model for fiber composites, the composite
spheres assemblage (CSA) model for particulate
composites and the generalized self consistent
scheme (GSCS) for both kinds of composites.
It will be recalled that the CCA and CSA are
described by filling out space with
geometrically similar composite cylinders and
composite spheres, respectively. The GSCS is
based on the assumption that the state of
strain/stress in any fiber or particle can be
approximated by embedding a composite cylinder
or composite sphere in an infinite medium
which has the properties of the composite
material. The GSCS, CCA and CSA give the same
results in all cases when an exact solution of
the two latter models can be cobtained.
However, the GSCS approximation can also be
applied when exact solutions for the CCA and
CSA are not available, thus for transverse
shear of fiber composites and shear of
particular composites.

The analysis can be much facilitated by
introduction of the concept of equivalent
fiber or particle. To explain this consider
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fiber/particle which is coated with a thin
interphase layer, or more abstractly-
exhibits the displacement jumps (1) when
subjected to surface tractions. It has been
shown that for the purpose of model analysis
such a fiber can be replaced by a homogeneous
fiber with the following equivalent
thermoelastic properties

_ ky
e 14 2 k2 _Q
k;#Gr; a

Exp VAe = VA2

>l'l'l
o
n

(14)
Gaz

A2 §
14 o
Gyi 2

;D
o
'

Xpe = A2 ATe = T2

Here k is transverse bulk modulus, E, », G and
a are Young’s modulus, Poisson’s ratio, shear
modulus and thermal expansion coefficient,
respectively, A denotes axial - in fiber-
direction and T denotes transverse direction
and 2 and e indicate fiber and equivalent
property, respectively.
Similarly, for a spherical particle the

equivalent bulk modulus is given by



% (15)

Ke = 9K, 5
1+ 5p=5- 3
where 2 now indicates particle. In case of

defined interphase the interface constants
appearing in (14, 15) are given by (2,3).

The implication of these results is that
in all cases where CCA and CSA results are
available for perfect interface conditions,
conversion to imperfect interface conditions
is simply effected by replacement of fiber or
particle properties by (14) or (15). In other
cases such as transverse shear for a
unidirectional fiber composite and shear for a
particulate composite the equivalent
fiber/particle concept is not rigorously valid
and the GSCS analysis has to be generalized to
accommodate imperfect interface conditions.

It turns out that in the case of a fiber
composite with transversely isotropic fibers
the effect of imperfect interface enters
through the nondimensional parameters

e = k2/Dna qQy = GAZ/Dta

(16)
m = Gp,/Dya qr = Gy, /D;a

with similar parameters in the case of a
particulate composite. Analysis has shown
that for a wunidirectional fiber composite
effective axial Young’s modulus, axial
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Poisson’s ratio and axial thermal expansion
coefficient are insignificantly affected by
interface imperfection, transverse bulk
modulus and transverse thermal expansion
coefficient are significantly affected
throough the parameter e only, axial shear
modulus and transverse shear modulus are
significantly affected - the former through q,
and the latter through m and gq,. These
effects are illustrated in Figs. 2-4. The
large effect of imperfect normal bond on
transverse thermal expansion coefficient is of
particular interest since it raises the
possibility of obtaining e, experimentally, in
simple fashion. Similarly, measurement of
effective axial shear modulus can be used to
determine q,.

For transverse shear modulus the relation
between m and q gives rise to various
possibilities. In the case of isotropic
interphase it follows from (2,3) that

1-2

V.
m/qT = HT_—Vi—)- (17)

where »; is the Poisson’s ratio of the
interphase. Figure 4 shows the case of
perfect normal bond-imperfect shear bond, in
which case m = 0, and the case of imperfect
normal and shear bonds for m = qp/5. If there
is an isotropic interphase then the first case
corresponds to »; = .5, thus an incompressible
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Fig.2 - Transverse Thermal Expansion Coefficient :

Elastic Interphase
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interphase, while the second case corresponds
to »; = .375.

In the case of particulate composites the
effective elastic moduli and the thermal
expansion coefficient are significantly
affected by interfac bond while the effect on
the Poisson’s ratio is moderate. See Hashin
(1990b).

VISCOELASTIC EFFECTS

Time dependent interphases are of
interest for modeling elevated temperature
behavior. They are also a convenient device
to produce relaxation, creep an damping
effects into an elastic brittle material such
as a ceramic composite. The interface
conditions resulting from a linear
viscoelastic interphase have been discussed
above. We outline here a method of evaluation
of the time dependence of composite properties
due to such interphase and we discuss some of
the results. For further details see Hashin
(19904d).

Analysis is much facilitated if we recall
the correspondence principle for viscoelastic
omposites, Hashin (1965), according to which
the LT of effective viscoelastic relaxation
moduli (creep compliances) by replacement of
phase elastic moduli (compliances) by p
multiplied LT of phase relaxation moduli
(creep compliances). The latter have been
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named for convenience TD (transform domain)
moduli (compliances). In the present case the
only source of viscoelasticity is the
interphase and inspection of (11) reveals that
these equations define TD interface parameters

pD, and pD,. It follows that to obtain LT of

effective viscoelastic properties the elastic
interface parameters appearing in expressions
for effective elastic properties are replaced
by these TD interface parameters.

Furthermore, it has been shown by
application of Tauberian theorems, Hashin
(1966), that the initial/final values of
effective relaxation moduli (creep
compliances) <can be simply obtained by
replacement of phase moduli (compliances) by
initial final values of phase relaxation
moduli (creep compliances). Thus in the
present case we can use initial/final values
of the interphase functions (12) to obtain
initial/final values of effective viscoelastic
properties, assuming that the interphase
relaxation shear modulus becomes vanishingly
small after infinite time.

Performing an elastic analysis with these
interphase parameters it is found that the
initial and final values of some properties
are numerically very close implying that the
viscoelastic effect <c¢n be neglected.
Procperties which are of this nature are:
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axial Young’s relaxation modulus and creep
compliance, transverse bulk relaxation modulus
and creep compliance, axial Poisson’s effect
and the axial and transverse thermal expansion
coefficients.

There is significant viscoelastic effect
for axial and transverse shear. Representing
interphase viscoelasticity by a differential
time operator the effective axial shear
relaxation modulus and creep compliance can be
evaluated analytically on the basis of the
correspondence principle and LT inversion.
Figures 5-6 show such results for Nikalon
fibers embedded in a Boron Silicate matrix.
The shear viscoelasticity of the interphase is
represented by the Maxwell model with shear
modulus G; and viscosity coefficient n;. Time
has been normalized with respect to the
characteristic time of the Maxwell model which
is given by

7 = n/G; (18)
The different plots of relaxation moduli and
creep compliances are characterized by the
nondimensional interface parameter

G
5 A2
U=ag (19)

i
It is seen that the smaller q, the more time
is required to develop the viscoelastic
effect. It is also seen that whatever the
value of q,, ultimately the fibers behave as
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cylindrical voids because of the free sliding
interface condition which develops as a final
state.

For transverse shear and transverse
uniaxial stressing/straining analytical LT
inversion is not possible but can in principle
be performed numerically. The Tauberian
theorems are readily applicable to this case.
The initial/final values are obtained by using
the initial/final values (11) with zero value
of final shear modulus in the elastic
analysis. Such results are shown in Fig. 7
for the effective transverse Young’s
compliance Ef (t).

Similar results for particulate
composites have been given in Hashin (1990b).

PLASTICITY EFFECTS

If the interphase material is subject to
plastic yielding the composite will behave as
an anisotropic elasto-plastic material. This
is again of particular interest for ceramic
composites as such an interphase introducs
ductility into an otherwise brittle material.

As in the case of viscoelastic interphase
it is to be expected that platicity effects
for a fiber composite with elasto-plastic
interphase will be signficant only for axial
and transverse shear and other loadings which
incorporate any of then, e.g. uniaxial stress.
In particular all axisymmetric states such as
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axial stress long fibers, isotropic transverse
stress and thermal expansion will be
adequately described by elastic analysis.

We focus attention on the important case
of axial shear in terms of the OCA or GSCS
models, which in the elastic case give the
same results for axial shear. The state of
stress for axial shear 1is antiplane and
therefore the only surviving stresses in
cylindrical coordinates are o, and o,. The
form of the stresses in CCA analysis is

o, = S, cos @
(20)

Og, = Sg S1N 0

Since the interphase is very thin r dependence
of interphase stresses can be neglected.
Introducing (20) into the surviving
equilibrium equation we find that the stresses
assume the simple form

g, = S cos @
(21)

Og; = -8 sin @

If initial yielding is governed by the Mises
criterion then the whole interphase will yield

when

s =7, = 0,/V3 (22)



29
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where o, is the uniaxial yield stress. Also
note that (21) is equivalent to a principal
pure shear of magnitude 7,. Therefore
continued yielding is governed by the one
dimensional shear stress-strain relation of
the interphase. This is taken in the simple
bilinear form

s = G, s < 7
(23)

S - 7y = Gi('y-'yy) s = 7y
It follows that the effective axial shear
stress-strain relation for the CCA or the GSCS
models is also bilinear and can be simply
obtained from the results for elastic
interphase with appropriate interphase shear
modulus in the two different linear ranges.
The macroscopic stress-strain relation
relating average axial shear stress strain oy
and €, is then also bilinear and is as
follows:

312 = 2G* ?12 + (G*-G* ) ?y 2?12 = 7)'
o - G g(l+vy) + (1+q) vy

71 g vyt (1+q)(1+v57
G+ g(1+v,y) + (1-97) vy

T U1 g vy F () (1FY,)
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T
Ty = G5 [8 vy + (r))(14vy)] v,
_Gpz 5 . _Sa2 s
ot vroa

and v,, v, are the matrix and fiber volume
fractions. Note that G* is the elastic axial
shear modulus for the case of interphase as
given in Hashin (1990a).

A plot of (24) for a composite consisting
of 50% Nikalon fibers and 50%BS matrix and
elasto-plastic interphase is shown in Fig. 8
for various values of the ratio Gi/G,. The
value .05 is appropriate for Aluminum
interphase while the value 0 implies ideal
plasticity.

The case of transverse shear can be
analyzed in similar simple fashion but
evaluation of stress-strain relations for
loading programs requires incremental
analysis.

OONCLUSION

It has been shown that the presence of
thin interphase between the constituents of a
composite material can be described in terms
of imperfect interface conditions which are
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formulated in terms of interface displacement
jumps and interface parameters. This has been
applied to elastic, vicoelastic and elasto-
plastic interphase. The appropriate interface
parameters can in each case be evaluated in
terms of interphase material properties and
thickness. Thermoelastic properties of
composite materials for these various kinds of
interphases have been evaluated with special
emphasis of unidirectional fiber composites.
It has been pointed out in which cases the
interphse has significant effect on
properties.
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Effect of a Viscoelastic Interfacial Zone on
the Mechanical Behavior and Failure of
Fiber-Reinforced Composites

B. Moran, M. Gosz and J. D. Achenbach
Center for Quality Engineering and Failure Prevention
Northwestern University, Evanston, IL 60208, USA

Abstract

The overall behavior and strength of fiber—reinforced composites is significantly
affected by the interfacial bonding between the fiber and matrix material. The
assumption of perfect bonding between constituents (i.e., continuity of
interfacial tractions and displacements) may not be suitable in the presence of a
thin interfacial zone (fiber coating) or cohesive type bonding (intermolecular
bonding). In this paper a simple viscoelastic model is used to characterize the
stiffness and viscosity of the interphase, and the finite element method is used to
obtain the mechanical response of the composite. Calculations are carried out
for a unit cell in a hexagonal array of fibers. The influence of loading rate on
interfacial crack initiation and growth is investigated for both displacement and
traction controlled failure processes. Stress distributions in the cracked
interphase and in the matrix material contiguous to the interphase are also
obtained.

1. Introduction

Unlike the axial strength and stiffness properties which are primarily governed
by the axial properties of the fiber, the behavior of the fiber-reinforced composite
in the transverse direction is dominated by a relatively low stiffness matrix
material and the nature of the bond between the fiber and matrix phases. This
may place severe limitations on the overall performance of the composite and
thus it is desirable to accurately characterize the transverse properties. In most
analytical and numerical work, investigators have assumed a perfect bond
between the fibers and the matrix material which is modeled by continuity of
interfacial tractions and displacements. In reality, however, the assumption of
perfect bonding may not be suitable in the presence of a thin interfacial zone
which connects the two phases (e.g. fiber coating or intermolecular bonding). In
this analysis it is assumed that the bond between the fibers and the matrix is
effected across an infinitesimally thin interfacial zone which supports a traction
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field with both normal and tangential components. Continuity of tractions is
assumed across the interphase, however, displacements may be discontinuous
from fiber to matrix due to the presence of the interphase in-between (see also
Aboudi, 1987; Needleman, 1987; Steif and Hoysan, 1987; Achenbach and Zhu,
1989a,89b; and Hashin, 1989).

2. Problem Formulation

In this paper, the finite element method is used to investigate interfacial crack
initiation and growth in a transversely loaded composite. We consider a unit cell
in a uniform hexagonal array of fibers as illustrated in figure 1 and, noting the
hexagonal symmetry, analyze the trapezoidal region ABEF. See Gosz et al.
(1990) for details of loading and boundary conditions. It is assumed that the
matrix is isotropic and linearly elastic. The fiber is taken to be linearly elastic
and transversely isotropic. The elastic constants employed in this analysis were
obtained by Kriz and Stinchcomb (1979) and are given in table 1. For the case
of plane strain, the stress-strain relations for the matrix phase can be written as

Oap = 2Uiap + AepSap m

where the parameters A and 4 are the Lame’' constants and the Greek indices a, 3,
and yrange over 1 and 2. For the transversely isotropic fiber phase, the elastic
stress-strain relations for the case of plane strain are given by Hashin (1979).
The in-plane components are written as

Oup= (Kr— Gr)€plap + 2G1E0p )

where Krand Gy are the transverse bulk and shear moduli respectively.

Ale—B C

Fig. 1. Schematic of the unit cell of the hexagonal array composite.
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Table 1. Elastic constants of the graphite/epoxy material system

E(GPd) v, E{GPa) v, G,GPi) G{GPa)  K(GPa)

Graphite fiber 232 0.279 15.0 0.490 24.0 5.03 15.0

Epoxy matrix 5.35 0.354 5.35 0.354 1.976 1.976 6.76

2.1 Interphase Model.

Both a linearly elastic and a linearly viscoelastic constitutive relation are
considered for the interfacial zone. For the linearly elastic interphase, it is
assumed that the normal traction between the fiber and matrix phases is
proportional to the jump in the normal displacement across the interphase.
Similarly, the tangential traction is taken to be proportional to the jump in the
tangential displacement across the interphase. Thus,

T,= kn[un]l

T, = kug; )
where

u, = unn and T, = (o;nn)n

u=u-u,and I,=T-T, @

are the normal and tangential displacement and traction vectors respectively, [ . 1;
denotes the jump in the quantity across the interphase, k, and k, are normal and
tangential stiffness parameters and T' is the traction vector (T; = o;n;). Here oj;
= oj; is the Cauchy stress tensor. A positive jump in normal displacement,
[u,];, denotes normal separation between the fiber and matrix phases. However,
we assume that a negative jump in normal displacement would correspond to a
physically unrealistic interpenetration of the matrix phase into the fiber phase
and, thus, we enforce the impenetrability constraint

[u,); 20. )

For the linearly viscoelastic interphase, the time dependent response of the
interfacial zone is taken into account. The material response in both the normal
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and tangential directions is considered to be that of a standard linear solid (SLS).
The SLS qualitatively represents the behavior of an idealized cross-linked
polymer and can be viewed as a spring in parallel with a spring and a dashpot.
The normal and tangential tractions T, and T, are then related to the displacement
jumps, [u,]; and [#,];, across the interphase by

. T, R
Tn + -T_ = gn[un]l + T[uu]I

. T . Kooy
T, + _17' = kg lu, ]+ T[u:]l ©)

where 7 is the relaxation time, k,, and k,, are the instantaneous (glassy) stiffness
components and k.., and k.., are the long term (rubbery) stiffness components.

2.2 Finite Element Implementation

We assume small displacements and the strain displacement relation is written as
g = (u; + w2 )

while the equilibrium equation (assuming no body forces) is given by
c;;=0. ®

The Principle of Virtual Work is written as
J‘ G,J&ng + j 5¢dS = J‘ T,-5u,-dF &)
Q S r

where  denotes the interior of the trapezoidal region shown in figure 1, I'is the
external traction boundary, and S is the interfacial traction boundary. The &; are
the kinematically admissible displacements (satisfying the periodic displacement
boundary conditions and vanishing on the prescribed displacement boundary).
The second term in the above equation is the virtual work of separation of the
matrix and fiber phases, i.e.

8¢ = T,8u,); + T,0u); . (10)

Due to the time dependence of the linearly viscoelastic interphase, the virtual
work expression, (9), must be discretized in both space and time. The approach
we use is based on the method presented by Taylor et al. (1970) and is discussed
more fully by Gosz et al. (1990). In order to satisfy the impenetrability
constraint (5) full Newton Raphson equilibrium iteration is employed with a
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penalty-like stress update scheme in which the interphase is taken to have a
suitably high normal stiffness parameter in compression.

3. Macroscopic Response

The macroscopic response of the composite is influenced by the impenetrability
condition (5) which acts as a unilateral constraint on the deformation of the
interphase. When the constraint is not imposed the response is transversely
isotropic as expected for a configuration with linearly elastic constituents and
hexagonal symmetry (see Love, 1927; Lekhnitskii, 1963). When the constraint
is-imposed the response is not transversely isotropic but depends upon the
direction and character of the loading. For example, the constraint gives rise to
significant differences in the tensile and compressive response. These differences
are most pronounced when the interfacial stiffness parameters are low. In the
present investigation we consider uniaxial tensile loading only, and in this case
the deviations from transverse isotropy are slight.

The effective transverse properties of the fiber-reinforced composite may be
calculated using the numerical procedure briefly outlined above. For the
composite with a linearly elastic interphase, the numerical results for the
effective transverse bulk and shear moduli are compared with the analytical
results of Hashin (1989) where the composite cylinder assemblage (CCA) model
is employed to obtain the effective transverse bulk modulus, and the generalized
self consistent scheme (GSCS) model is used to determine the effective
transverse shear modulus.

The numerical results for the effective transverse bulk and shear moduli and
the CCA and GSCS results of Hashin (1989) are shown in figures 2 and 3. In
figure 2, the effective transverse bulk modulus is plotted as a function of
normalized interfacial stiffness. The normal and tangential stiffness components
are taken to be equal (k,=k,). The normalization is chosen such that k=k,a/Gr,,
where, a, is the fiber radius and Gr,, is the transverse shear modulus of the
matrix. In figure 3, the effective transverse shear modulus normalized with
respect to the shear modulus of the matrix is plotted versus normalized interfacial
stiffness. Again, the normal and tangential stiffness components are taken to be
equal, and the normalization is chosen as before. As shown in figure 2, when
the impenetrability constraint (5) is not enforced, the numerical and CCA results
virtually coincide over the entire range of interphase stiffness parameters. When
this constraint is enforced, the numerical results only deviate from the CCA
results at relatively low interfacial stiffness parameters. For the effective
transverse shear modulus, when the impenetrability constraint (5) is enforced, the
numerical results deviate significantly from the GSCS results at relatively low
interfacial stiffness parameters, but the deviation at low stiffnesses is less
significant when this constraint is not enforced. It should be noted that the
magnitude of the deviation which results when the constraint (5) is enforced
depends on the loading condition considered in the numerical procedure. In the
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present analysis K T* and GT* are determined by subjecting the hexagonal array
model to tensile uniaxial loading. When the condition (5) is not imposed, the
numerical values obtained for both moduli are independent of the loading
condition considered.

Similar results for the time-dependent behavior of the composite may be
obtained. In this case suitable application of the correspondence principle allows
approximate analytical representations of the relaxation behavior to be derived
and compared with the numerical results (see Gosz et al. , 1990 for details). For
example, as shown in figure 4, the analytic results are compared with those
obtained numerically for the effective relaxation modulus in bulk. In this case,
the effective time dependent bulk modulus, KT*(t), normalized with respect to
the transverse bulk modulus of the matrix, is plotted versus time. The normal
and tangential stiffness components of the SLS are assumed to be synchronous.
The normalized glassy stiffness is chosen such that k, = k,,a/G7,, and the ratio
of glassy to long term stiffness is taken to be (k,/k..= 10).

1.0
Relaxation model
0.8 1
l_E_ Numerical results
x ---------- contact constraint enforced
- 06 i no contact constraint
x ot
X
041 @000 e
kg=10 TR
0.2 ; . ; . -
0.0 5.0 10.0 15.0

t/1

Fig. 4. Comparison of relaxation model in transverse bulk
with the numerical results.
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4. Failure Simulation

We now focus on the microscopic behavior of a transversely loaded fiber-
reinforced composite. In particular, for the graphite/epoxy composite with a
linearly viscoelastic interfacial zone, the effect of loading rate on interfacial crack
initiation and growth is examined. As in the previous section, the numerical
calculations are carried out for a unit cell in a periodic array of fibers (the
trapezoidal region of figure 1). The cell is loaded in the mid—closest packing
direction (see figure S5) and strained at a constant rate. Interfacial crack initiation,
i.e. debonding of the fiber and matrix, is assumed to occur in either a
displacement controlled or a traction controlled manner as discussed below. The
consideration of a periodic unit cell yields qualitative information about
micromechanical failure processes and the associated macroscopic response.

4.1 Failure Criteria

It is assumed that interphase failure can occur in either a displacement controlled
or a traction controlled manner. In the traction controlled process it is assumed
that failure occurs when the normal traction component, T,, between the fiber
and matrix phases reaches a critical value, T,*. The failure criterion is then

written simply as
T,-T,*=0. (11

In the displacement controlled failure process, it is assumed that bond failure
initiates when the normal jump in displacement across the interphase reaches a
critical value, 8. Thus, interfacial bond failure occurs when

[u,];- 6 =0. 12)
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<O O 0O-—

Fig. 5. Hexagonal array composite under Mid-CPD loading.
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Fig. 6. Displacement and traction controlled failure of the standard linear solid. The
lower solid line represents the constitutive response of the SLS as the time rate of
change of the jump in normal displacement, [u,], approaches zero. The upper solid
line represents the response as [u,]—c. The solid line in-between represents the
response at an intermediate rate.

The isolated response of the SLS subject to both failure criteria is shown in
figure 6. As shown in the figure, for the traction controlled failure process,
failure occurs at points along the horizontal dashed line, and an increasingly
brittle response of the SLS is observed as the loading rate is increased. For the
displacement controlled process, failure occurs at points along the vertical dashed
line and a tougher response is observed with increasing loading rate. When the
two failure processes are considered to be competing, failure will occur in either
a traction controlled mode or a displacement controlled mode depending on the
loading rate and the critical values of T,,* and .

4.2 Macroscopic Constitutive Response

The macroscopic constitutive response of the fiber-reinforced composite is
illustrated in figure 7. The fiber volume fraction is taken to be Vy=0.5. For
the displacement controlled process, the critical normal separation, &, is
arbitrarily chosen such that 6/a = 0.001. For a fiber diameter of 20um, for
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In both figures, the solid line represents the response of the

composite as the macroscopic strain rate £— 0. The dotted line represents the
response for £= 1.0E-04, while £= I.0E-03 for the dashed line.
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example, & can be considered of the order 10nm. For the traction controlled
process, the critical normal traction is chosen to be T,* = k..,6. The normal
interfacial stiffness parameters, normalized with respect to the fiber radius and the
transverse shear modulus of the matrix, are taken to be k,,a/G7, =5 and
kona/Grm = 1. It is assumed that the interphase exhibits a stiffer response in
shear than for normal separation. We thus choose the tangential stiffness
parameters such that (k,/ky = koon/k.qy = 0.1). The time constant associated with
each component is chosen to be unity for convenience.

As shown in the figure, the remote applied stress, ©.,, normalized with
respect to the critical normal traction, T,*, is plotted versus percent macroscopic
strain for both failure criteria. In the displacement controlled process, the point
of failure initiation occurs at a progressively higher remote applied stress and at a
greater macroscopic strain as the macroscopic strain rate is increased.
Qualitatively, under these circumstances, both the toughness and the ductility of
the composite increase with loading rate. In the traction controlled process, the
opposite trend is observed. The effect of increasing the strain rate tends to
embrittle the composite.

8.0

*
n

/T

o)

€ x100

Fig. 8. Illustration of the linear relationship between points of failure
initiation for displacement and traction controlled failure criteria.
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It is interesting to note that a linear relationship exists between points of
failure initiation at a given strain rate for both failure criteria as shown in figure
8. The lower solid line represents the response of the composite as the
macroscopic strain rate £é— 0. The upper solid line represents the response as
&£— oo, When the composite is strained at a given rate in-between these two
extremes, interfacial bond failure will initiate at a point on the dotted line for the
traction controlled process and at a point on the dashed line for the displacement
controlled process. Due to our choice of critical values 6 and T,*, the dotted and
dashed lines intersect at a point on the stress-strain curve corresponding to € —
0. Thus, the composite would always fail in a traction controlled manner if the
two processes were competing.

4.3 Stress Distributions

Significant changes in the stress distributions in the interphase and in the matrix
material just outside of the interphase are observed during the failure process.
The stress distributions shown in figure 9 are obtained during the traction
controlled simulation at a macroscopic strain rate of €= 0.001. In the upper
diagram, the normal traction in the interphase normalized with respect to the
critical value, T,*, is plotted versus angle, 6. In the lower diagram, the
circumferential stress, Ogg, normalized with respect to the critical normal traction
is plotted versus angle. The distributions represented by the solid lines are
obtained at the point on the stress-strain curve (the dashed line of figure 7) just
prior to failure initiation. The distributions represented by the dotted lines are
obtained after the onset of failure at a macroscopic strain of approximately 0.04
percent — the point where the remote applied stress begins to increase
monotonically. The distributions represented by the dashed lines are obtained at
a macroscopic strain of 0.2 percent.

The distributions plotted in the upper diagram indicate that interphase failure
initiates at an angle of zero degrees (see also figure 1), and an interphase crack
develops and propagates relatively quickly to an angle of approximately 35
degrees. As the composite is macroscopically strained further, the interphase
crack grows at a much slower rate to an angle of approximately 54 degrees when
a macroscopic strain of 0.2 percent is reached. It is expected that when the
macroscopic strain of the composite is increased beyond 0.2 percent, the crack
will continue to propagate until it reaches the compressive region which
develops in the interphase at approximately 82 degrees.

The corresponding circumferential stress distributions in the matrix material
just outside the interphase are illustrated in the lower diagram. These
distributions indicate that a large stress concentration develops at the crack tip as
the crack propagates around the fiber. This large circumferential stress
concentration may give rise to radial matrix cracking leading to severe
degradation of the mechanical properties of the composite.
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5. Concluding Remarks

In the present work, the transverse loading of the hexagonal array composite is
examined from both macroscopic and microscopic points of view. Interphase
failure initiation and growth are examined for displacement and traction
controlled failure processes. The macroscopic constitutive response of the
composite is obtained for both failure criteria. As the macroscopic strain rate of
the composite is increased, the toughness and ductility increase in the
displacement controlled process, while the composite becomes more brittle in
the traction controlled process. Stress distributions in the interphase and in the
matrix material contiguous to the interphase are obtained during the failure
simulations. Large circumferential stress concentrations in the matrix form at
the onset of interphase failure and redistribute and increase in magnitude as
failure progresses. This phenomenon may give rise to radial matrix cracking
leading to severe degradation of the macroscopic properties of the composite.
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Measurement of Strength of Thin Film
Interfaces by Laser Spallation Experiment

V. Gupta® and A. S. Argon
(Massachusetts Institute of Technology, Cambridge, MA 02139.)

Abstract

Laser Spallation Experiment is developed to measure the strength of planar
interfaces between a substrate and a thin coating(.3 to 3um). In this technique a
laser pulse of a high enough energy and a pre-determined length is converted
into a pressure pulse of a critical amplitude and width that is sent through the
substrate toward the free surface with the coating. The reflected tensile wave
from the free surface of the coating pries off the coating. The critical stress
amplitude that accomplishes the removal of the coating is determined from a
computer simulation process. The simulation itself is verified by means of a
piezoelectric crystal probe that is capable of mapping out the profile of the
stress pulse generated by the laser pulse. Interface strength values ranging from
3.7 to 10.53 GPa are determined for the SilSiC system, whereas for the
carbon/SiC system, an average value of 6.91 GPa is obtained. Furthermore,
sufficient experimental evidences are provided to show the potential of the laser
technique to determine the interface toughness, provided well characterizable
flaws can be planted on the interface.

I Introduction

It is now well recognized that considerable toughness in composites with
brittle, but strong reinforcing fibers, can be achieved by controlled debonding of
the fibers from the matrix to prevent premature fiber fracture. In composites
with brittle matrices, such as ceramics and glass, this is often the only means of
obtaining toughness (Evans 1989). In metal matrix composites, an additional
problem of interface reaction between the matrix and the fiber is present, which

*
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sooner or later, leads to the failure of fiber. To neutralize this problem, it is now
a standard practice to protect the fibers with a less reactive sacrificial coating

( Gupta et al. 1989). This also permits controlled delamination of the coating
from the fiber along the fiber-coating interface to prevent cracks external to the
fiber or residual reaction products on the fiber from damaging the latter. Thus, it
has been suggested (Gupta et al. 1989, Argon et al. 1989 a) that such fiber-
coating interfaces with tailored strength and toughness properties can be used as
mechanical fuses to decouple the undamaged fibers from their damaged
surroundings to prevent catastrophic failure of the part. An important dimension
of utilizing tailored properties of interfaces is the measurement of the tensile
strength and intrinsic delamination toughness of the fiber-coating interface. How
the intrinsic toughness can be determined from the spontaneous delamination
from the substrates of stressed coatings, where the coating is under positive or
negative residual stress, has been discussed earlier by us (Argon et al. 1989 a
&b). Here, we discuss how the tensile strength of such fiber-coating interfaces
can be measured by a laser spallation technique.

Although the development of the laser spallation experiment was motivated
by our specific interest in engineering the interfaces in composites, the
technique can be used to determine the strength of planar interfaces between
coatings (> .3 um in thickness) and substrates of any material. Hence, it
should be of considerable interest to researchers in the device and thermal spray
industries, where the mechanical problems stemming from the interface failure
are of critical importance.

Measurement of interface properties is not a new problem in the thin film
and coating technology, and the literature is replete with practical techniques
(Jacobsson 1976; Jacobsson and Kruse 1973; Chapman 1974; Chiang et al.
1981; Davutoglu and Aksay 1981; Chow et al 1976) for the measurement of
some average properties of thin films or coating interfaces, recently reviewed by
Mittal (1978). But, none of the tests mentioned above measure the strength of
interfaces. In order to measure the strength of interfaces between very thin
coatings and substrates, a new laser spallation technique has been developed that
had been initially introduced by Vossen (1978), utilizing shock waves produced
by short laser pulses (Lang 1974; Fox 1974; Ready 1965; Anderholm 1970;
Peercy et al. 1970). The technique involves impinging a high energy laser
pulse (pulse width of nanosecond duration), from a Nd-YAG laser (1.06 um
wavelength) onto a thin absorption layer on the back surface of the substrate to
which the coating of interest is attached. The sudden expansion of the absorbing
film generates a compressive shock wave directed towards the test
coating/substrate interface. It is the reflection of the compressive wave packet
from the surface of the test coating that gives rise to a tensile pulse and leads to
the removal of the coating, if the amplitude is high enough. The technique was
used earlier by Park (1986) to detach films from the substrates. In his
experiments, the absorbing film was sandwiched by a transparent fused quartz
disc in order to increase the amplitude of the generated stress pulse. In most of
the previous investigations of this phenomenon, ample evidence for the
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feasibility of the technique was provided, but insufficient details were given for
the quantitative use of the approach as a research tool.

Hence, the technique in its previous form, prior to the present development,
could be used at best only to provide a figure of merit of the interface. The
thrust of the present research has been to develop the laser spallation experiment
in a more definitive way capable of quantifying the interface strength.
Furthermore, the goal here is to detach thin films (0.3-2 um thick) from
various substrates in contrast to the experiments done by Vossen (1978) and
Park (1976), wherein test coatings of 20-30 um thickness were considered. In
our investigation to be presented here, we demonstrate that by careful use of the
technique accurate determinations of tensile strength of interfaces are possible.

II Strategy of Interface Strength Measurement

2.1 Experimental Arrangement

Since the actual interfaces of interest are between a cylindrical fiber and its
coating, which are not readily accessible to measurement by the spallation
technique, the experimental approach to be presented here utilizes a planar
arrangement of a model substrate and coating combination which is shown in
Fig. 1. The collimated laser pulse is made to impinge on a thin energy-
absorbing film sandwiched between the back surface of the substrate of interest
and a fused quartz confining plate, transparent to the laser wavelength (1.06 um
in this experiment). The characteristics of the ideal energy absorbing film are:
high absorptivity; a very small critical absorption depth (much smaller than the
thickness of the film); a high melting temperature, high coefficient of thermal
expansion, high elastic modulus, low thermal diffusivity, and finally a

. Substrate :
Confining f”;ﬁ:df:“a"z SiCrystal, Pitch - 55
/ Ribbon, etc.
"
Pulsin'g Laser ; Pressure wave
/
A'\* /
'-———V—-—"" d Surface acceierations
megsured
Wave length = |.06 um
Maximum energy 850 mJ
Normal pulse duration =8ns \
\
Energy absorbing goid film SiC Coating

Test interface
Figure 1. Schematic of the Laser Spallation Experiment.
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thickness, A, roughly equal to the test coating of interest applied to the front
surface of the substrate. Based on a figure of merit analysis that captures the
essence of the thermoelastic stress generation for various alternative energy
absorbing materials, it was concluded that gold is the most effective material
that maximizes the generated stress pulse amplitudes.

A key element of the experiment is to determine the amplitude of the
tension wave that is formed by reflection of the pressure wave from the free
surface of the coating attached to the rear surface of the substrate. The preferred
method of accomplishing this is to measure the time rate of change of
displacement of the free surface of the coating as the main compression pulse is
reflected. This is usually done by the laser Doppler interferometry used widely in
the plate impact research (Clifton, 1978). In the experiments to be reported here,
however, only pulsing lasers of limited power were available, requiring to focus
the beam over relatively small areas of roughly 1 mm?2. This limits the planar
portion of the pressure pulse to be reflected from the free surface of the test
coating to a similarly small area, which makes the accurate measurement of the
accelerations and decelerations of these small planar portions of the free surface
rather difficult by the laser Doppler interferometry. In view of this,
quantification of the measurements of the interface strength used here was based
on a three part strategy.

The first part of the strategy was the development of a finite element
computer simulation of the conversion of the laser light pulse into a pressure
pulse. Next, the traverse of this pulse through any desired substrate of interest is
monitored and finally the resulting amplitude and history of the tensile stress at
the interface is determined as the stress wave is reflected from the free surface of
the coating of given properties and thickness.

In the second part of our strategy, the pressure pulses were measured in a
micro-electronic device in which the conditions of the computer simulation
study were experimentally achieved. In this device, to be described below, the
substrate and its test coating were replaced by a X-cut piezoelectric (PE) crystal
equipped on its back face with an energy-absorbing gold film and on the front
surface with a very thin gold electrode for signal pickup. The PE crystal with its
attached fused quartz confining plate then became a pressure transducer operating
in the short circuit mode, capable of pressure wave determination with a time
resolution of 0.7 ns. The measured pressure signal profiles were then compared
with those obtained with the computer simulation in which the substrate is
appropriately given the elastic and thermal properties of the X-cut PE quartz
crystal. This permits verifying and fine tuning of the computer simulation.

In the third part of the strategy, actual spallation experiments were carried
out. The laser fluence necessary for the removal of the probed portion of the
coating at the interface was recorded, and the tensile stress across the interface
that accomplishes this was determined from the computer program.

In what follows, we discuss first in Section III the computer simulation of
the laser-pulse-generated pressure pulses. In Section IV, we present the
experimental details of the micro-electronic device for the measurement of
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pressure pulses with the PE crystal probe. We then present the results of the
pressure wave profiles that have been obtained. Results for the actual spallation
experiment and the specific interface strength values are given for the SiC/Si and
SiC/Carbon interface systems in Section V. In Section VI, the basic results of
the computer simulation are given as generalized interface stress charts for
various coating/substrate systems. Finally, Section VII provides a discussion of
the approach and its potential.

IIT Simulation of the Stress Pulses (Part I of Strategy)

3.1 Statement of the Problem

Figure 2(a) shows schematically the configuration of the laser spallation probe
consisting of, from left to right: the fused quartz confining plate (Q), the thin

Figure 2. Configuration for testing (a) Si/SiC and (b) Pitch-55 Ribbon/SiC systems.
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energy absorbing film (F) of thickness A, the substrate (§) and the coating
(C) of interest. The laser pulse impinging on the energy absorbing film (gold)
is generated by a Nd-YAG laser emitting at a wavelength of 1.06 pm. The laser
used was in the MIT George Harrison Spectroscopy Laboratory. The peak power
of the laser is 3 x 108 watts. The spatial profile of the laser pulse is Gaussian in
nature. The temporal profile, however, is a distorted Gaussian (Ready 1971).
The laser can be operated at 2.5 ns or 8 ns nominal pulse widths with a
maximum achievable energy of 800 mJ in a nominal laser beam diameter of 7
mm.

The critical penetration depth & of laser light at this wavelength into the
gold is only 20 nm (Ready 1965). Since this is very much smaller than the
thickness A(~1um) of the energy absorbing film, the simplifying assumption
is made that the energy is deposited on the interface between the film and the
fused quartz confining plate. The cross-sectional area of the laser beam incident
on this interface is of the order of 1-2 mm?.

Additional specifications in the simulation include: ignoring temperature
dependence in all the relevant physical properties, such as thermal conductivity,
coefficient of thermal expansion, specific heat, density, and elastic moduli. Such
variation can, in principle, be taken into account in the finite element solution
but were ignored in the initial simulation. Actual measurements and the
simulation indicated that melting of the energy-absorbing film is undesirable
since it broadens and diffuses the sharpness of the pressure wave, but is
necessary to endure in order to obtain the required level of interface stress.
Therefore, the simulation considers melting in the energy-absorbing film but
only solid-like behavior in all the other media. The effect of volume changes
associated with the phase change in the gold film is considered. This is quite
significant for the gold film which undergoes a volume expansion of 5.1%
(Smithells Metals Handbook 1983) on melting. The time constant for viscous
flow relaxations in the narrow molten region of the energy absorbing film is
much longer than the duration of the laser pulse. Therefore, even if melting of
portions of the film occurs, it is adequate to account in the simulation for only
the changes in the physical properties due to the melting transition, but to
ignore all viscous flow relaxations. Furthermore, the thermal diffusion distance
in most absorbing films during the laser heating time of 2.5 ns varies between
1 to 10 um. This distance is negligible as compared to the radius of the laser
heating spot of 1 mm. The absence of fluid-like flow of the molten material
and small thermal diffusion distance suggests that the individual material points
are blind to their neighbors in the radial direction and their deformation is
strictly governed by the amplitude of the laser energy impinging directly on
them. Hence, the generation of the stress pulse can be modelled as a one-
dimensional phenomenon.

The associated phenomenon of the pulse propagation in the substrate, and
the eventual spalling of the test coating are also modelled using the one-
dimensional stress wave equations. The validity of this assumption will be
verified later by the actual measured pressure pulse shapes to be discussed in
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Section IV below.

Ignoring the thermoelastic effect as being quite small, the simulation
considers two related, but uncoupled phenomena of transient heat transfer,
giving temperature distributions in and around the energy-absorbing gold film as
a function of time, and the related transient elastic wave propagation in all four
media of Q, F, § and C, that results from the time rate of change of the
thermal misfit, induced by transient heating. Since the Pitch-55 carbon ribbon
and the pyrolytic graphite substrate used to model the Pitch-55 fiber are
orthotropic in their elastic properties, the anisotropic effects are also considered
in the present formulation. The details of the governing equations and the
solution technique can be found in Gupta (1990). Here, we discuss briefly the
key features of the solution.

3.2 Solution of the Governing Equations

Figures 3 a & b show the traverse of pressure fronts in both the Q and §
spaces for two different normalized times of 70 and 109 for the constants H ,,
K q and Hg and K ((to be defined below) given in the figure. In Figure 3, the
time f; distance x, temperature T, displacement u, and the stress o are
normalized by introducing the variables:

C=x/A; Tt=tlty; 0=T/T,; ¢=ufu, X=0/0, (1)

where A,t,, T,, u, and o, are the fundamental units of length, time,
temperature, displacement and stress respectively, and are defined as
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Figure 3. Generation and propagation of stress pulses in Q and § spaces.
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where in turn, A, ¢, C, p, 8, 7 are the thickness, the one-dimensional pressure
wave velocity, the specific heat, the density, the characteristic penetration depth
of light energy and the Grueneisen constant respectively, all for the energy-
absorbing film, which is taken as the medium for the basis of normalization.
At} is duration of the laser pulse and ¢ is the absorbed laser fluence.The
parameters H and K enter the formulation when the different physical
properties of the substrate and confining quartz media are represented in terms of
the properties of the energy absorbing film as

Clc);
H;= Y ; K =(y
(cl) (yClc) 3)

In equations 2&3 above, the subscripts i and f refer to the substrate and the

energy-absorbing film respectively.

A more expanded figure of the pressure wave profile in the piezoelectric
substrate is shown in Fig. 4, which reveals, in addition to the expected main
pressure wave abc, an initially unexpected tension wave cde immediately
following the compression wave. This tension wave has been found in all
simulations with metallic energy absorbing films and should have useful
properties in providing additional tension across the test interface between §
and C. It appears to result from a space heating effect. As the thermal front
penetrates into the energy absorbing film away from the Q-F interface, the
interior of the film undergoes a "flash" expansion during the time increment
Aty of the short laser pulse, while the material in the forward direction still
experiences no effect of the pulse. The pressure wave released from such interior
slabs in the film and travelling back towards the Q-F interface will be partially
reflected from the interface back into the film and in the forward direction as a
tension wave, because of the lower modulus and much lower density of the fused
quartz in comparison to those properties of the gold film. This was also
confirmed by a test simulation where the elastic properties of the two media
were matched at the Q-F interface, resulting in the absence of the tension peak.
Furthermore, such a "rebounding” condition should be favored in a system in
which the "flash" expansion of the energy-absorbing packet cannot be
significantly counteracted by the elastic wave tending to disperse the misfit
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during the time, the laser pulse is on; i.e., systems in which

Figure 4. Detailed structure of the stress pulse in the piezoelectric substrate.
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the ratio of the average thermal velocity to the sound velocity is high. In eqn.
(4) above, A, is the thickness of the coating to be blown off and £ is the
thermal conductivity of the energy absorbing film. In systems with metallic
energy-absorbing films for which the simulations have been performed, where
the tension peak was found, the ratio

kIALCpc

in Eqn. (4) was found to be around 0.05-0.1, while for a carbon film which
does not show the peak, the ratio is as low as 3x1073,

In the simulation, the propagation of the stress pulse was monitored in the
substrate until it completed the tensile loading of the coating/substrate interface.
The stress history of the Si/SiC interface due to the pulse of Fig. 4 and for a
SiC coating of 1.5 um thickness is shown in Fig. 5. Zero values prior to the
main signal correspond to the time lag in the arrival of the stress pulse at the
interface. Thus, for a given threshold laser fluence, the interface strength can be
calculated from the amplitude of such plots.
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Figure 5. Stress history at the interface.

IV Experimental Stress Pulse Measurements (Part II of the
Strategy)

4.1 The Micro-electronic Device

A schematic view of the micro-electronic device with the X-cut piezoelectric
crystal is shown in Fig. 6. The assembly of fused quartz plate (Q), energy-
absorbing(gold) film (F), and the PE crystal, taking the place of a substrate, is
shown encased in a Bakelite housing. 1 um thick gold films were chosen
(Ditchburn 1963) to completely absorb the laser fluence in order to avoid the
well-known radial cracking phenomenon (Volkova 1967) in the substrate disc
due to its heating by the transmitted laser fluence. The laser-absorbing gold film
also acts as a ground electrode for the piezoelectric crystal. A rubber "O" ring
between the housing and the PE crystal radially compresses the latter when the
copper electrode housing (C) is attached to the bakelite housing. The radial pre-
compression of the substrate disc counteracts cracking of the substrate disc
subjected to the sudden impact of the generated stress pulse. Figure 7 shows a
perspective view of a typical sandwich element in the PE device. The PE device
has a gold energy-absorbing film sandwiched between the PE crystal and the Q
plate, acting also as the ground electrode of the PE device. As shown, this
extends all the way to the front surface of the PE crystal, where it terminates as
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an outer ring, to which the copper electrode housing makes contact. Six equally
spaced round gold electrode tabs of 2 mm diameter communicating with a
central round tab through thin conducting spokes (25 um wide) constitute the
secondary electrode. These electrodes were deposited by photolithographic
techniques. This geometry of the secondary electrode was designed to pick up the
one-dimensional structure of the current signal. This was ensured by focussing
the laser beam to a 2-3 mm spot on the laser-absorbing film in line with one
of the 2 mm diameter secondary electrodes as shown in Fig. 7. This assembly
permits as many as six separate measurements of the shapes of arriving pressure
pulses by indexing a new tab into the line of sight of the collimated beam.

Figure 6. A schematic view of the microelectronic device.

This assembly of fused and piezo-electric quartz is then encapsuled by a
copper electrode housing by lapping it onto the edges of the bakelite housing so
that the legs vv and hh of the copper piece (see Fig. 6) touch the outer ground
electrode ring on the rear face of the crystal. Thus, the whole copper enclosure
acts as a ground electrode. A specially constructed pickup probe with a copper
leg, insulated from the copper piece, is then inserted via the opening oo, so
that the copper leg touches the central secondary electrode. The short circuit
current derived between the two electrodes is picked up via a BNC plug fastened
on top of the pick-up probe and fed into a Lecroy high speed digitizer by a BNC
cable. A high speed Lecroy digitizer (1.3 GHz sampling rate) is needed to record
the stress pulses with sub-nanosecond rise times. Since the experiment is
performed in the single shot mode, the digitizer is triggered by an electronic
pulse that is fired just before the lasing of the optical pulse. The details of the
micro-circuitry and various considerations in designing the micro-electronic
device can be found in Gupta (1990 ).
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Figure 7. Perspective view of the micro-electronics device.

4.2 Pr Ises in the Piezo-electri

The procedure of using the X-cut PE quartz crystal to record ultra-short
duration high amplitude pulses follows the technique described by Graham et
al. 1965. The measurement is made in the short circuit mode, between the
ground electrode that is struck by the laser beam and the front electrode from
which the pressure wave is reflected, through an external circuit incorporating
the digitizer with a 50£2 impedance. The short circuit current i(z) obtained
from the crystal as the stress wave propagates in the crystal is given by (Graham
et al. 1965)

o _fA ]
i) =L4¢[ 0, (- 01 ()] ®)

where A is the effective cross-sectional area of the laser beam, [ is the
thickness of the crystal, ¢ is the velocity of the planar pressure wave, f is the
polarization coefficient of the crystal and, o,(t) and of¢) are the amplitudes of
the stress pulses on the ground (impacted energy-absorbing film) and front
surface electrodes of the crystal. The term oy(t) is to be interpreted as the
amplitude that hits the free surface, but is annulled instantly by an equal and
opposite virtual amplitude in order to satisfy the free surface boundary condition.
In the absence of such interpretations, which were apparently not explained by
(Graham et al. 1965), equation (5) could be misleading as the term oy(t) is
always zero. Nevertheless, if the wavelength of the stress packet is smaller than
the crystal thickness, equation (5) reduces to
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which gives the time dependent profile of the stress wave. Equation (6) predicts
that the stress at the input electrode is directly proportional to the instantaneous
current for times less than the wave transit time.

Most of the researchers (Lang 1974; Fox 1974; Ready 1965; Anderholm
1970; Park 1986) in the past have used the above equation to measure the
stresses at the input electrode of the crystal. However, if the thickness of the
crystal is greater than the width of the stress pulse, then two short-circuit current
signals corresponding to each electrode are obtained. The stress is related to the
current signal at the ground electrode via equation (6), but interestingly, the
current signal output when the pulse hits the rear electrode is exactly twice that
obtained from the ground electrode. This is explained in details by Gupta and
Epstein (1990), where the physical phenomenon described by the above
equations is elucidated. Because the laser fluences were sufficient to melt a part
of the input electrode, it became necessary to record the current signal emitted
from the rear electrode for more reliable measurement of the generated stress
pulse.

4.4 Comparison of Measurements with Predictions

The simulation presented in Section III considered only a one-dimensional case
of propagation of elastic waves due to the laser-pulse-induced, rate-of-change-of-
thermal-expansion misfit. That this is close to reality is demonstrated in Fig. 8,
where the input current profile resulting from the impingement of the laser
beam on the ground electrode is plotted above the current profile emitted from
the secondary electrode due to the first reflection of the compressive wave. Apart
from the expected amplification of the reflected current by a factor of 2 above the

...............................................

." 20 ns/div

Figure 8. Evidence of the planarity of the travelling stress wave.
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Figure 9. Comparison of the predicted and measured profiles of the stress pulse.

input signal, the two profiles are quite similar in the main portion, but differ in
the structure of their tails. This similarity is taken as evidence of planarity of
the main pulse.

Figure 9 shows a direct comparison of the predicted and measured profiles of
the input stress pulse for a fluence of 34,600 JIm?2 (with distinct melting
behavior of the gold film). Figure 9 shows that the predicted profile of the stress
pulse for an emissivity of 0.18 for the gold film is clearly similar in broad
outline to the profile measured by the PE device. The amplitudes of the
experimentally recorded pulse and the predicted ones are remarkably similar. This
is very encouraging for the simulation, as the ultimate aim in this exercise is to
predict the stress amplitudes at the substrate/coating interface. Figure 9, which
shows the structure of the recorded pressure pulses for an absorbing gold film,
demonstrates the presence of two compression peaks with an intervening deep
depression which in the simulation of Fig. 4 appeared as a tension peak. The
depression in Fig. 9 has remained in the compression region and has not gone
into tension as the simulation predicts. This currently remains a discrepancy that
must be resolved. This, however, is of little interest in the present strategy as
the laser fluence required to spall the test coatings is sufficiently high to cause
the melting of the gold film. Therefore, the computer model can be used with
sufficient confidence to predict the interface stress histories in other
substrate/coating pairs of interest to researchers in the thin film area. The
interface stress is determined from the amplitude of the interface stress history
plots of the type shown in Fig. 5.
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V Spallation Experiments

The spallation technique was applied to three substrates consisting of Si
single-crystal wafers with (100) plane surfaces, Pyrolytic graphite (PG) platelets
with the principal axis of layer normals lying in the plane of the platelet, and
Pitch-55 (P-55) type carbon ribbons of 600um width and 35um thickness
having a meso-phase morphology very similar to the Pitch-55 carbon fibers'.
Detailed description of the morphology of the Pitch-55 ribbon can be found in
Gupta and Argon (1990) and for PG in Gupta et al. (1988). In all these cases,
the coatings to be removed were amorphous SiC coatings deposited by the
plasma-assisted chemical vapor deposition technique. The coatings had a
thickness of about 1-3 um. They were deposited in a nearly stress free manner
by maintaining the substrates at a certain temperature to prevent the entrapment
of a significant concentration of hydrogen, which otherwise would have resulted
in high residual compressive stresses and premature delamination in a manner
described in detail by us earlier (Argon et al.1988).

The Si/SiC, PG/SiC interface systems were tested in an experimental
configuration of the type shown in Fig. 2 (a), whereas for the P-55/SiC system,
the setup of Fig. 2 (b) was employed. The coating could be successfully spalled
off in all cases with appropriate levels of laser pulse energy. The threshold laser
energy at which spallation occurs was recorded using a light power meter. Since

Figure 10. Spalled spot of SiC coating from Si single crystal.

1These exploratory Pitch-55 ribbons were specially prepared and furnished to us

by the textile Fibers Department of the DuPont Company for which we are
grateful to Dr. E. M. Schulz.
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the amplitude of the stress pulse should depend upon the absorbed laser fluence,
the diameter of the laser beam was recorded on photographic film for the
tabulation of the threshold laser fluence, as mentioned above.

(a) SilSiC interface: Figure 10 shows a micrograph of the spot from which

the SiC coating has spalled off. The laser fluence necessary to achieve this
spallation is 7,388 Jim2. The interface strength corresponding to this laser
fluence as calculated from the computer simulation is 5.29 GPa. The thickness
of the amorphous SiC coating of low modulus, deposited at low ion beam
energy, was 1.5 um. The dark portions of the micrographs are the regions
where the SiC coating still adheres to the Si substrate. The islands of SiC
within the spalled spots are due to the statistical variability of the interface
strength over the delaminated spot. The interface strength varies from 10.19 GPa
to 10.88 GPa, which is surprisingly low (only 7%) for a brittle interface.
The clean flat structure of the interface shows that the SiC coating has come off
uniformly from the substrate at the interface. In order to verify this, Auger
electron spectroscopy (AES) was performed on the spalled spot to determine the
location of the failure. The irregular pattern at the rim of the spalled spot is due
to the partial delamination and breaking of the coating at the circumference of
the spalled coating. It was possible to successfully delaminate coatings of
thicknesses ranging from 0.3 to 3 um.

Finally, the actual interface strength values for the various SiC/Si systems
produced by using different deposition parameters (of the SiC coating) vary from
3.7 GPa to 10.88 GPa. While such a variation may appear disappointing, this
degree of freedom is exactly what is required to carry out the interface
delamination scheme in composites as outlined in Section 1. The interface
strength between the carbon and the SiC interface is of interest in such an
endeavor. These measurements are discussed next.

(b) PG/SiC coating interface: Figure 11 shows a spot from which the SiC
coating of 2.1 um thickness is spalled off from the PG surface. The substrate
disc was 1.69 mm thick. Interestingly, the spalled pattern is elongated along the
edges of the graphitic planes that terminate perpendicular to the surface. This is
also the stiffest direction in that plane. For this case the interface strength is
determined to be 3.68 GPa. These calculations also include the anisotropic
character of the PG substrate. Since the surface techniques available were not
able to distinguish the carbon of the SiC from that of the PG substrate, the
depth of the crater as determined by a mechanical profilometer (to an accuracy of
2.5 to 10 nm) compared remarkably well with the thickness of the deposited
SiC coatings, thereby confirming the failure at the interface. Interface strength
values ranging from 3.4 to 7.48 GPa were obtained for different SiC coatings.

(c) Ribbon/SiC Coating Interface: Due to the presence of inhomogeneities
and the weak (transverse) strength of these ribbons across lamellae, failure was
predominantly observed to be within the ribbon. However, in some cases,
failure at the interface was also observed. Figure 11 shows a high magnification
view of an edge of a spalled coating. The coating is intact on the left of the
micrograph and is removed from the right side. For this sample, an average
interface strength value of .240 GPa was obtained. These calculations also
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include the anisotropic character of the ribbon material. A part of the same
ribbon was tested without the coating in order to determine the transverse
strength of the ribbon. A value of 0.26 GPa was obtained. As expected, this
value is higher than the interface strength observed on the same ribbon/coating
system. Interface strength values ranging from 0.22 to 0.24 GPa were obtained

Figure 11. Spalled spot of SiC coating from the Pitch-55 ribbon.

Figure 12. Spalled spot of SiC coating from PG substrate.
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for the Pitch-55 ribbon/SiC system. In all the above cases, the location of the
failure was confirmed by matching the coating thickness to the depth of the
spalled spot determined from a high-precision profilometer. The interface
strength determined from this test is significantly lower than that obtained from
the PG/SiC system. This is probably due to the inhomogeneities on the ribbon
surface (see Gupta 1990 for the structure of the ribbon), which act as sizable
interface flaws and lead to lower strength values. In view of the poor structural
integrity of the ribbon material, the PG/SiC system appears to be a better
candidate for determining the properties of the Pitch-55 fiber/SiC interface.
Nevertheless, the values obtained from both the systems are greater than the
desired level of interface strength of 200 MPa for interface delamination in the
SiC coated Pitch-55 fiber/aluminum matrix composites (Gupta 1990). Thus, it
is necessary to impair the interface strength by implanting embrittling agents at
the interface during the coating deposition process. This could be achieved by
planting a few atomic layers of either Na, Sb or As. Recently, Rice and Wang
(1989) have theoretically explored the effect of such foreign agents on the
interface toughness. Similar effects need to be experimentally achieved in the
present work in an attempt to bring down the interface strength levels.

Since the interface is loaded by a stress pulse that is external to the material
system, the laser spallation experiment is capable of determining the interface
strength for any thin film interface. To encourage the wide applicability of the
laser spallation experiment, the results of the computer code, which has been
verified by the piezo-electric probe, are furnished as generalized interface stress
charts so that researchers interested in using the technique do not have to
reproduce the computer code. These results should make such strength
measurements possible in most systems of interest to workers on composite
materials.

VI Interface Stress Charts

The intent of this section is to present generalized interface stress charts for
various substrate/coating pairs so that researchers interested in using this
technique do not have to reproduce the computer model. It is not possible to
give results for exhaustive sets of substrates. Here, we give results for four
substrates only, spanning wide ranges of Hg and K¢ values. An empirical
scheme for obtaining the stresses at other substrates (with arbitrary values of
Hg and K ¢ values)/coating interfaces can be found in Gupta (1990). Since the
stress pulse generated in the substrate is independent of the test coating on its
front surface, the interface stress can be further normalized as

o; = 0,/T )

where 0, is the normalized stress, defined before in Section 3.2 and T is the
acoustic transmission coefficient at the substrate/test coating interface, defined as
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2VE p,

T =
VEsps + VEcpc (8)

where p., E_ and py, E are respectively the density and Young's modulus of
the test coating and the substrate medium. With the above normalization, it is
possible to determine the stress at the interface between a substrate and coating
of any material provided the elastic properties of the two media are known
apriori in order to calculate the acoustic transmission coefficient T. A typical
interface stress chart is shown in Fig. 13. This chart can be used for any
substrate with the same H and K values. A catalogue of interface stress
charts valid for other systems can be found in Gupta (1990). Thus, the threshold
laser fluence determined from the experiment can now be converted into the
actual strength values via the interface stress charts over a wide range of
substrate/coating systems of interest to researchers in the device and thermal
spray industries.

Due to the absence of any gripping effects, the spallation experiment also
provides a good measure of the intrinsic strength of thin coatings and single
crystals. The results of such measurements can be found in Gupta et al. 1990.
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Figure 13. A typical interface stress chart.
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VII Discussion

The tensile strength of the interfaces between two media in many instances
determines the overall strength of a heterogeneous solid. For example,
considerations of initiation of cavities on interfaces of particles is of interest in
understanding the initial phases of the ductile fracture in metals and alloys.
Similar considerations abound in composite materials where the tensile strength
of interfaces between reinforcing fibers and the surrounding matrix, or between
the fiber and a protective coating is often of major importance. The
measurements of such strengths in macroscopic experiments has been attempted
by many investigators but is not free of problems. In most of the reported cases,
part of the interface is subjected to high stresses in an inhomogeneous
deformation field. The magnitudes of these stresses need to be determined
through the solutions of complex boundary value problems of elastic and plastic
deformation. While these attempts have often given operationally useful
answers, the factor of uncertainty in them has been considerable because of the
inadequacy of the solution of the local deformation problems. The measurement
of strength between a substrate and a thin coating presents particular difficulties
in the application of the stress by an inhomogeneous local deformation field
where premature failure elsewhere is likely, before the desired interface can be
probed.

It is in these latter cases that the laser spallation technique is an attractive
alternative, provided that the interface to be probed can be obtained in planar
form. If the coating to be pried off is of thickness A, , the required stress
pulses with widths of roughly the same magnitude as the coating thickness can

be achieved by a laser pulse of duration 477,
42

where p, C, and k are the density, specific heat and thermal conductivity of the
energy-absorbing film in which the primary thermal misfit is being generated.
Thus, for an energy-absorbing film of Au, the required laser pulse duration to
pry off a coating of 1 um thickness is about 8 ns. This is readily achievable
with many pulse laser systems. The three-part strategy which we have outlined
here furnishes an operationally attractive means of measurement of the strength
of planar interfaces that can be made part of a laser spallation probe. In this, the
fundamental tool is the computer code which permits a reliable means of
simulating the generation and propagation of elastic waves in the substrate. The
basic results of this code, which have been broadly verified by the piezo-electric
probe for various material pairs, are provided in the form of interface stress
charts presented in Section VI. These results should make such strength
measurements possible in most systems of interest to workers on composite
materials by using the interpolation scheme fumnished in Section 6.4.

Tensile strength of interfaces between amorphous SiC coatings and
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substrates of Pyrolytic graphite, Pitch-55 carbon ribbon and Silicon single
crystal discs were explored in the present investigation. The average interface
strength for the SiC/Si pair determined from the experiment ranges from 3.7
GPa to 10.88 GPa, depending upon the deposition conditions for the SiC
coating. Average interface strength values ranging from 3.68 to 7.48 GPa for
the PG/SiC system and 0.22 to 0.26 GPa for the Pitch-55 fiber/SiC system
were obtained.

Since the tensile stress causing the interface delamination is built up as a
result of the reflection of the main compressive pulse from the free surface of
the coating, it is necessary that the length of the initial compressive pulse is of
the same order as the thickness of the SiC coating. This will ensure building of
sufficient tensile stress at the interface to cause interface failure. It was found
that SiC coatings of thicknesses 0.3 to 3 um could be readily removed from
substrates. In order to spall even thinner coatings from the substrate, it will
become necessary to use picosecond laser pulses in place of nanosecond ones as
employed in the present investigation. Results of the numerical exercise in
Section III indicate other interesting possibilities to delaminate very thin
coatings (<1 um thick) from substrates, that are of considerable interest to
researchers in the semiconductor and device industry.

While the interface tensile strength is an important quantity required to
determine the critical initiation conditions in interface separation, in flawed
interfaces or in cases when the propagation of an existing crack along the
interface is the determining factor, the most relevant quantity required is the
fracture toughness K. or the critical energy release rate G, for the propagation
of a crack along the interface. A measure of this can also be obtained with the
laser spallation method, if well characterizable and reproducible flaws can be

Figure 14. Spalled pattern on a contaminated interface.
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placed on the interface, so that the cracks emanating from these can be
propagated under a critical reflected tensile stress pulse that can provide the
required G or produce the K. In a preliminary experiment where some local
interface contamination of an undetermined nature had apparently occurred during
the deposition of the SiC coating, flaws of a potentially interesting type were
implanted on the interface. When this specimen was subjected to a typical laser
pulse, the coating spalled off independently from individual spots as shown in
Fig. 14. Clearly, under the condition of the reflected tensile stress pulse, which
probes the interface, a central crack is formed in the area of the interface flaw
where a much reduced level of interface strength must have been present. After
the crack had propagated radially outward a certain distance, the effective ratio of
the crack tip stress intensity factors Ky and Kjy had apparently undergone
almost two full reversals of sign before the delamination is complete. This has
resulted first in an excursion of the crack away from the interface into the
coating, to be followed by a sharp reversal returning the crack back to the
interface, only to be followed by another reversal putting the crack into the
coating again where it continued to propagate to final fracture. Evidently, two
separate effects: the bi-material nature of the field in which the crack propagates
(Rice, 1988), and the dynamic nature of the crack propagation process (Freund,
1976) produce important changes in the driving forces that propagate the crack
must be better understood, before an interpretation of the phenomenon can be
attempted to extract a precise value of the interface fracture toughness out of the
experiment. Nevertheless, it is clear that the potential for the measurement of
the interface toughness is present in the laser spallation experiment.
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Abstract

The present paper is concerned with composites in
which the constituent interfaces are weak in shear and
therefore exhibit shear deformation associated with sliding.
Thermomechanical loadings of such systems are considered
which consist of homogeneous traction or displacement
boundary conditions and a uniform temperature change on the
outside surface of the composite. For binary systems with
isotropic constituents, it is shown that the actual fields in the
purely thermal problem can be uniquely determined from the
solution of the purely mechanical problem. This
correspondence relation is used to determine the effective
thermal strain and stress tensors on the basis of the effective
mechanical properties. For multi—phase systems with
anisotropic conmstituents undergoing interface slip and
separation, the theorem of virtual work is used to establish a
similar relation between the effective thermal tensors and the
mechanical concentration factors and constituent properties of
the composite.
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Introduction

Thermal problems in heterogeneous media have drawn
much interest in the last years due to the increasing
importance of high temperature composites. Several
fundamental aspects in the micromechanics of composites in
the context of thermomechanical problems have recently been
investigated by the authors, Dvorak (1986), Dvorak and Chen
&1989), Benveniste and Dvorak (1989) where the reader can

nd a list of references in the field.

Most of the work dealing with composites assumes
perfect bonding between the constituents. However, due to
poor bonding between the phases, a jump in the displacement
field may occur at internal boundaries, and it is of interest to
study thermomechanical problems in composites under such
circumstances.  Determination of the effective properties
requires special attention in the presence of imperfect bonding,
and a proper framework for the investigation of such problems
has been laid down by Benveniste (1985). Interfaces which are
weak in shear may be modeled by demanding that the normal
displacements are continuous, but the tangential displacements
exhibit a jump which is proportional to the shear tractions.
For limiting values of the constant of proportionality, the
special cases of perfect bonding and lubricated contact are
obtained. Such models of a flexible interface which may also
include imperfect bonding in the normal direction have been
previously used in the literature, see for example Lené and
Leguillon (1982), Benveniste and Aboudi (1984), Aboudi
(1987), Benveniste and Miloh (1986), Jasiuk and Tong (1989),
Achenbach and Zhu (1989), and Hashin (1990). The reader is
referred to these works for a further list of references on
imperfect interfaces. Recently, several problems of inclusions
which undergo pure slip at interfaces have been considered by
Mura et al. (1985), Tsuchida et al. (1986), and Jasiuk et al.

1988).

( )The present paper is concerned with binary systems
with flexible interfaces in shear, and isotropic constituents. It
starts by establishing a correspondence relation between local
fields induced in such two—phase composites by purely
mechanical and purely thermal problems. These relations are
obtained by using a decomposition scheme originally proposed
by Dvorak (1983, 1986), and further employed by Benveniste
and Dvorak (1989) in binary composites with anisotropic
constituents, arbitrary phase geometry, but perfect bonding



79

between the phases. Recently, Dvorak (1990) has thoroughly
explored the implications of this concept in regard to the
existence of uniform fields in heterogeneous media. We show
here that this decomposition scheme can be generalized to the
case of two—phase media undergoing slip at interphase
boundaries, but with isotropic constituents. The
implementation of the scheme shows that local fields in such
composites which are induced by a uniform temperature
change at external boundaries can be uniquely determined from
the solution of the same system subjected to uniform overall
mechanical loading. In the second part of the first section of
the paper, the established correspondence principle is used to
derive the effective thermal strain and stress tensors on the
basis of the effective mechanical properties of the composite.
The second section of the paper is concerned with multiphase
composites with anisotropic constituents undergoing slip of the
above described nature at interphase boundaries.  Only
effective properties are considered in this section, and a
generalization of Levin’s (1967) and Rosen and Hashin’s (1970)
result is derived using the theorem of virtual work. The
obtained results reduce correctly to those obtained in the
previous section for the case of binary composites with
isotropic constituents.

1. Correspondence Between Purely Mechanical and Purely
Thermal Problems in Binary Composites with Interfaces
Weak in Shear
la. General Theory

Consider a two—phase composite with isotropic
constituents, but arbitrary phase geometry. Let the
thermoelastic constitutive relations of the homogeneous phases
r = 1,2 be given by:

ge=L&+ 40 ’ r=1,2

(1)

=M o +md ,

where o, €. and 6 denote respectively the stress, strain tensors

-1
and temperature field, L, and M, = L, are the phase stiffness
and compliance tensors, m, is the thermal strain tensor (of
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expansion coefficients), and £ is the thermal stress tensor such
that £, = —L, m, In this paper we will denote the matrix
phase by the index r =1 and the inclusion phase by index
r=2.

The two—phase composite is assumed to have
constituents interfaces which are weak in shear and are
modeled by a jump in the tangential displacement which is
prescribed as proportional to the shear traction there. Perfect
bonding in the normal direction is assumed in this part of the
work; however, in the second part open cracks at interfaces are
allowed. Let p denote the unit normal vector at S, pointing

from phase r = 2 to phase r = 1, and let u and t denote

respectively the displacement and traction vectors The
interface conditions at S;, may be expressed in the following

manner. Let (p, q, s) be an orthogonal set of unit vectors at
S,, where p denotes the unit normal vector. The components

of the traction and displacements vectors in this coordinate
system are respectively expressed as t =t + t, + t;, u=1u,

+ u, + u,. The interface is then modeled by the following set
of equations:

[up] =0 ) [E] =0
Sqg Sq9

(2)
[}_lq] =R Eq [Es] =Q ES
12 S1a

where R and Q are constants of proportionality for the
interface which is flexible in shear and a square bracket [ ] on
a quantity 9 denotes the jump in that quantity across S,,, that

is

] -0, -0, ®

It is noted that for R — 0, Q — 0, perfect bonding in shear is
obtained, and that R — 00, Q — oo yield the case of
lubricated contact. The analysis which follows in this section
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is also valid if at part of the interfaces there exists imperfect
bonding (R # 0, Q # 0), and at other parts perfect bonding
prevails (R = 0, Q = 0); in fact different values of R and Q
may exist at different points in the interface.

Consider now purely mechanical problems in which the
outside surface of the composite is subjected to homogeneous
displacement or traction boundary conditions described by:

u(S)=¢ex &5) =0 )

4
&) =0 =0 ,

where u (S) and t(S) denote the displacement and traction
vector at S, n is the outside normal to S, ¢, and o, are
constant strain and stress tensors, and finally x denotes the

components of a Cartesian system.

Let the local strain and stress fields induced in the
phases by these boundary conditions be denoted by

&(x) = Al(x)¢ o:(x) =L Al(x)ep,  (5)

gr(it) = ],?r(?f)go ) fr(?f) = Mr ],?r(’f)go ) (6)

with (5) and (6) corresponding to (4), and (4), respectively.

Furthermore, let us denote the jump in the displacement
vector at S, by

[u (x)]S =F(x) gy , (7)

again, under (4), and (4), respectively. Of course, the fields

85), (6), and (7) satisfy the interface conditions in (2). Local
elds are denoted in this paper by the argument ()~c , whereas

expressions without such an argument will refer to average
quantities.
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Next, consider thermal loading problems in which the
surface of the composite is subjected to a uniform temperature
rise and to zero displacement or traction boundary conditions.

s) = 0, ws)=0 ®)

&(S) = b, (8) =0 : (9)

ghe local fields under (8) and (9) will respectively be denoted
y:

r(}f) = (E‘r?_‘r(?f) + fr) 00 ) (10)

x)
?f) = (Mr br (X) + IPr)go ) (11)

where the vectors d(x) and f(x) satisfy the interface conditions

in (2). We also note that a uniform temperature field will
prevail in the composite under (8) and (9).

It will be shown now that in the two—phase composite
with isotropic constituents characterized by the constitutive
relations (1) and the interface conditions (2), knowledge of the
tensors A (x), D(x) uniquely determines a/(x), d(x), and

B,(x), F(x) determine b (x), {(x).

Let us first establish the correspondence between the
fields induced by (4), and (8). This is achieved by using the

decomposition scheme described by Dvorak (1986), and
Benveniste and Dvorak (1989) for the case of perfectly bonded
composites. We will see here that this procedure can be used
to establish the desired correspondence relations in the case of
interface conditions (2) for two—phase composites with
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isotropic phases. In the first stage of this decomposition
scheme we seek a strain field e which is uniform in V under a
uniform temperature change 6,. This can be achieved by

demanding that ¢ and 6, result in a uniform stress field:

L

e >

+ 4,0, (12)

Tem >

+¢,6,=1L,

so that the tractions at S;, are continuous. Equation (12)

yields for g:

. -1
€= @1_%2) (£,— f1)00 . (13)

At this stage of the procedure, uniform strain and stress fields
prevail in the composite, and both the displacements and
tractions are continuous at S,,. Also, it turns out that for the

isotropic constituents, the created uniform stresses are
hydrostatic, and shear tractions at S,, vanish. Therefore, the

interface conditions at S,, described in (2) are automatically

satisfied. At the outside boundary S, displacements arisin
from (13) have been now induced and, as demanded by (8%
they need to be reduced to zero. To accomplish this, we apply
the following displacements on S:

u(S)=-ex , (14)
and obtain

& (x) = -A(x)e ,

|2 @5, =-De0: - (15)

By superposition with the uniform fields, the resulting
fields at the end of the decomposition scheme are therefore:
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e(x)=(I-A ()L—L) (L-£)6, ,  (16)

~r '~

EE RS SR CEIATIRN ()
12

with I being the fourth order identity temsor.  The
concentration factors a,(x) and d(x) can be therefore read out
as:

a,(x) = (I - A(x)) (L~ L) (L-£) (18)

d(x) == D(x) (Ly—Ly) " (45— £, (19)

The difficulty of extending the above procedure to
anisotropic constituents becomes now apparent. For such
constituents, shear tractions at S, would exist after the

reassembly of the aggregate. To remove these shear tractions,
one would have to solve a boundary value problem in which
the S,, interfaces are loaded by the negative of the shear

tractions induced therein. Even though the solution of such a
boundary value problem can be formulated in principle, it is
not clear at this time that such a solution can be related to a
purely mechanical problem with prescribed overall strain.

The correspondence between the fields resulting from
(4), and (9) can be similarly established. In the first step, a
uniform stress field o is sought which together with a
temperature change 6, causes a in uniform strain field, and
therefore continuous displacements throughout. The condition
is

1\~'Ilé+151100=1\~/[2§+111200 ; (20)
it yields

. -1
o=(M;-M,) (m,—m)f, . (21)
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Since some the constituents are isotropic, these stresses do not

result in shear tractions or displacement jumps at S,,. To

comply with (9), we now remove the tractions induced on the
outside surface by (21), by application of:

t(S)=-on , (22)

~

which by themselves cause the local effects

0.(x) = —B(x) ,
(ol = K ; (23)
This is superimposed with the uniform field o to yield:
0,(x) = (1 - B,(x)) (M, ~M,) (m,~m) 6, , (24)
[13(35)]812= F() (M- M;) (my-m) 6, ,  (25)
The concentration factors thus are
b(x) = (I - B,(x)) (M, ~ M,) "(m, - m,) (26)
£(x) = —F(x) (M, - M,) (m, —m,) . (27)

~

We have therefore established the desired
correspondence relations. It is of interest to note here that the
structure of (18) and (26), is similar to that given in
Benveniste and Dvorak (1989) for perfect bonding between the
constituents.
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1b. Application: Effective Thermal Stress and Strain
Tensors

One of the applications of the correspondence principle
described in the previous section is the determination of the
effective thermal tensors of the composite based solely on the
information obtained from the mechanical problem. Suppose
therefore that the effective constitutive law of the composite is
described by

Il
-kl o

Lo,

T e
mé |, (28)

ten 1 Q

+
g+
where L and M with M = y-l denote respectively the effective
stiffness and compliance tensors, £ and m with £ = —L m are
the effective thermal strain and stress tensors. The tensors ¢
and ¢, and the temperature 4 refer to average quantities.

i The tensors f and m are determined in principle by

subjecting the composite to boundary conditions (8) and (9)
respectively. Let us first consider the determination of £. It is

important to note here that since displacement jumps occur at
constituent interfaces, special care should be taken in defining
average quantities in the composite, and the reader is referred
to Benveniste {(1985) for a proper framework for the
computation of effective properties in these situations. Under
(8), the average strain in the composite vanishes, therefore in
accordance with the quoted paper

E=Cie T Ce—CJ=0 (29)

where J is a second order tensor representing the deformation
at internal boundaries, and is given by:

I =-;;Sf | (fud s + [o] p) 4S5 (30)
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where p; was defined in (2); ¢, and ¢ with r = 1, 2 denote the

phase volume fractions and phase strain averages respectively,
and V is the volume of the composite. The average stress in
the composite, in view of (1),, (28),, and (29) is given by

0=1C0+ Cy0, =
= ¢y(Lyes+£,0,) + co(Loeyt£,0) = L 0, (31)

where we have used the fact that a uniform temperature
prevails throughout.  Elimination of ¢, from (29) and

substitution into (31) provides:

f=cl +cly+c, @2 - @1) a,+c,Lia (32)

where the concentration factors are defined as in (10):

=30, , J=af . (33)

The tensor a, is simply the average of a,(x) in (18), and is
given by

ay=(1—A)(L—L) (- ¢) (34)

where A, is again the phase volume average of A, (x). The
tensor a is obtained by substituting (10), and (19) into (30):

-1
a= —1} (,I_'l_ E‘z) (fa - ,41) ) (35)

with the concentration factor J = A eo defined as:

Ajjia = —f (D (%) pj + Dy (x) p;) dSy, - (36)
2V S
12
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Substitution of (34) and (35) into (32) provides
L=cli+ ey +
+ Ly = L)(I - Ag)(Ly— L) (44— 4)
—6L AL -L) (4-1) (37)

hence £ has been determined in terms of the constituent phase
properties and the mechanical concentration factors A, and A.

Equation (37) can be further simplified. To this end,
recall that the effective stiffness L of the composite is obtained

by subjecting the external surface S to (4), and using the fact
that

E=CiE T Ceg—Cf = ¢ . (38)

After some manipulations this leads to (Benveniste (1985)):
L=Li+c¢(Ly—L)A,+cL,A . (39)

Solving for A, in (39), and substituting into (37), we obtain:

0= 4+ (L-L)(L,—L) (&£, (40)

Equation (40), interestingly enough, is the same as equation
(3.11) in Benveniste and Dvorak (1989). Note however that
imperfect bonding at S,, as described in equation (2) still

affects the effective thermal tensor ¢, since L itself is affected,

as in (39).
The determination of m follows similar steps, this time

under the stress boundary conditions (9). It leads to a set of
equations which are counterparts to (29), (31) and (32):
= ¢+ oy =0 , (41)
= Cy€; + o6, —CyJ = ¢((M0, + m,6,) +

+ ¢,(My0, + my8y) = mf, (42)

g
€
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= ¢, + ¢my + Cy(My— My)by—cb (43)

where we have defined the concentration factors b, and b as
follows:

gy = byl J =D, . (44)

~

In analogy to (34) and (35), these tensors can be written in the
form:

!32 = (,I_ - ],,32) (M1 - 1![2) (IPz _1511) ) (45)
-1
P =-B (Ml_ Mz) (IPz _IPI) ) (46)
with
1
B1_]k1 - f (Flkl(x)pj + F_]kl(x)p ) dSl2 (47)
Sig

The equation for m, finally becomes:

m = ¢m, + C,m, +
+ ¢y(My = M)(I — B,)(M, — M,) "(m, —m,)
+ c2B(M -M ) ( — 1511) . (48)

'(I‘he e);;pressmn for the effective compliance tensor (Benveniste
1985
M=M,+c¢,(M;—M)B;—¢,B , (49)

helps to reduce equation (48) to the form
-1
m=m,+ (M-M)(M,-M) (my—m,) , (50)

which is the counterpart of (40). Using ¢, =— L, m_ and the
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fact that L = IYI-l, one can verify that £ and m as given by (40)
and (50) fulfill the relation £ = —Lm.

We have utilized here the correspondence relations
established in the previous section to derive expressions for the
effective thermal tensors £ and m in terms of effective

mechanical properties of the composite. The correspondence
relations are limited to isotropic constituents, and therefore,
tlllli, derived equations (40) and (50) apply also to such systems
only.

Expressions for the effective thermal tensors in terms of
effective mechanical properties have been given before in the
literature for the case of composites with perfectly bonded
anisotropic phases. The basic idea was due to Levin (1967)
which used the principle of virtual work to this end. Levin’s
paper was extended to anisotropic constituents by Rosen and
Hashin (1970), see also Laws (1973) and Schulgasser (1989) for
an alternative derivation of these relations. We will show in
the next section that the virtual work theorem can again lead
to equations similar to (40) and (50) for the case of multiphase
materials with anisotropic phases and imperfect interfaces of
the type described in (2). It should be of course made clear
that in spite of its limitation to isotropic constituents in the
present case, the decomposition scheme is in a sense more
general than the results provided by the virtual work theorem
since it provides results on fields and not only on average
properties.

2. Effective Thermal and Stress Tensors in Multiphase
Composites with Anisotropic Constituents and Interfaces
Weak In Shear

We consider now multiphase composites described by
(1) and (2), but allow this time for general anisotropic
behavior in for the phases. As in Section 1, different parts of
the interfaces may possess different values of 0 < R < oo and 0
< Q < o0. An expression for the effective thermal stress
tensor £ in terms of purely mechanical properties will be first

derivedﬂby considering the boundary conditions (4), and (8).
For convenience, we let the fields induced by (4), be denoted
by primed quantities and those resulting from (8) by unprimed
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quantities. The principle of virtual work for composites with
imperfect interfaces can be found in Benveniste (1985). When
applied to the boundary value problems (4), and (8), it can

be written as:

f Uij(?f)fi; (x)dV

v

’ al ,
= f t;(x)u;(x)dS + 2_{ t3(x)[u;(x)]dS,, , (51)

S r=2slr

where t; and u; denote the traction and displacement vector,
r = 1 stands for the matrix, and S, denotes the boundaries of

the inclusion phases with the matrix.
Substitution of ¢y; from (1) into (51) yields:

f Lija 6a(x) &;(x) dV + f bj €55(x) 6,dV
v v

/ N
= fti(§)ui(§)ds + Ef ti(zf)[u/i(})]dsu , (52)
S

r=2s1r

with the material properties assuming the indexr=1,2,... N
depending on the position of the point x in the composite. For

the boundary condition (4), the first integral on the right
hand side of (52) can be simplified as:

[ tiomis = [ t@etixas
S S
0
= €;; f Oik (§)nkxde
S
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0 0
where, 03 denotes the overall average stress, and the fact that

the average strain vanishes under (8) has been used.
Substitution of (53) into (52) gives:

f Lijia & (X)es; (x)AV + f &; €5(x)8, AV
v v

0

N
=Y [ i s, + i 6 . (60

r=2 S]_r

The virtual work theorem is now applied to the
boundary value problems (4), and (8) with the alternative

choice of admissible displacement and stress fields; the fields in
(4), are denoted by primed quantities and those in (8) by

unprimed ones. The result is:

f 735 (%) ey(x)AV

'

N /
[tiwnas + ¥ [ @i, ©5)
S

r=25,

f Ljji €a(X) € (x)dV
v

N /
=Y [ s, | (6)
r=25;

where we used the condition u;(S) = 0. Subtraction of (56)
from (54) yields
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N
S 404

r=1

1 c ’ !
== z f {ti(lf)[ui(zt)] - ti(’f)[“i(’f)]] dSy

r=2 Sy;
0
+ ll.] Eij 00 . (57)

The integral on the right hand side involves the scalar product
between the traction vector in one loading system and the
displacement jump vector in the second system. The interface
conditions described in (2) make this term vanish. Equation
(57) therefore yields:

(58)

where we have invoked the definition of the concentration
factors A, and reverted again to the bold face tensorial

notation. The transpose sign in (58) denotes:

(‘f}?)ijkl = (Apuij - (59)

It is somewhat surprising to see that equation (58) is
the same as Rosen and Hashin’s (1970) result for perfect
bonding between the phases. Note however that due to

interface slip, the tensors é'f are not equal to those which

would be obtained under perfect bonding conditions. We
finally mention that if part of the interfaces at S, contain open

cracks,(58) remains valid since the tractions at these
boundaries vanish identically if all crack closure effects are
neglected.

For the case of binary composites equation (58) can also
be written in other equivalent forms with one among them
making contact with the results obtained in the previous
section. Under (4),, note that
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CA +CA—CA=T , (60)

where A was defined in (36). Solving for clé'll‘ in (60) and
substituting in (58) provides:

L=+ ¢ A5 (L— L)+, ATY, . (61)
Another form can be obtained by writing first (39) as:
L=L,+cAyL,~L)+c, AL, , (62)

where the diagonal symmetry of the stiffness tensors has been
invoked. Solving for 1}3 in (62) and substituting into (61)
provides:

-1
(=4 +(L-L)(L,—L) ({,—-¢) +
-1
+c "}T {fl— L, ({12 - !,11) (fz - f1)] . (63)

Equation (63) is the counterpart of (40) of the previous section

for the case of anisotropic constituents. Let us next prove that

in the special of isotropic phases the last term in (63) vanishes.
For isotropic phases let,

(L)y=aby

2
({"1)ijrs =p 6ij b + (6ir 5js + by 6jr _5 6ij 6rs) )
-1 2
(Pz‘{' l)rsmn = §050pn + ¢ Opmbsn + Orp s — §6rs6mn) )
(£2 - fl)mn =2 6mn ) (64)

where a, B, v, & (, A are constants. Writing 1}T in indicial
notation and carrying out the summation in (63) according to
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(64) shows that the tensor éT enters only as (,}T)pqii.
However, since according to the interface conditions (2) the
normal displacements are continuous at S, it follows from (36)
that A;;, = 0 or, in fact, (éT)pqii =0. We have therefore

.E.ho;vn that for the case of isotropic constituents (63) reduce to
40).

A similar implementation of the virtual work theorem
(51) to the boundary value problems (4), and (9) yields

equations for the thermal strain tensor m. For the sake of

brevity we will give only the final results, counterparts to
equations (58), (61) and (63). These are:

X T
m=23 c Bm (65)
S
m = m, + ¢, By(m, —m,) (66)
m=m+ (M-M)M,-M,) (m,—-m,)+
T -1
+¢, B (M, -M)) (m,—m,)) (67)

~

where the last two equations refer to binary systems only. It is
noted that the structure of (66) and (67) are not exactly
similar to (61) and (63) respectively. This is due to the fact
that ¢ and o in (29) and (31) and also (39) and (49) have a

different structure. For the same reasons mentioned above
equation (67) reduces to (50) for the case of isotropic
constituents.

Finally, it is easy to show that { and m, as given by

(58) and (65) for example, satisfy { = —Lm. From the

e -1
definitions of the A_ and B, tensors and also due to L = M it
results that

B,=L AL’ r=1,...N (68)
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which provides
T T
E,I}r=1}r£.r r=1,... N (69)

Multiplying (65) by (—L) from the left, using (69) and £, =
—L,m, shows readily that (58) is in fact recovered.
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Debonding in a Metal Reinforced by
Short Fibres

Viggo Tvergaard
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ABSTRACT — Failure of a whisker—reinforced metal—matrix composite by decohesion of the
fibre—matrix interface is analysed numerically. A cohesive zone model that accounts for decohe-
sion by normal separation as well as by tangential separation is used to model failure at the
interface. The composite material containing a periodic array of aligned fibres is represented in
terms of a unit cell model analysis. The effect of varying fibre aspect ratio and varying fibre
volume fraction is investigated, and the sensitivity of the predictions to mesh refinements is
studied.

1. INTRODUCTION

When aluminium alloys are reinforced by SiC—whiskers, in order to improve the
tensile properties, the ductility and the fracture toughness are simultaneously re-
duced, due to early void formation by debonding at the matrix—fibre interface
(Divecha et al., 1981; McDanels, 1985). A number of investigations of this debond-
ing behaviour have been carried out to improve the understanding of the influence
of different material parameters.

Needleman (1987) has modeled the debonding of an inclusion from a metal matrix
in terms of a potential that specifies the dependence of the interface tractions on
the interfacial separation. The formulation was used by Nutt and Needleman
(1987) to study the onset of failure by decohesion at the fibre ends, and good quali-
tative agreement was found between the theoretical predictions of initial void
shapes and experimental observations. Further analyses of the effect of fibre vol-
ume fraction and fibre spacing on debonding predictions were carried out by
Needleman and Nutt (1989). In a more recent paper Tvergaard (1989) has proposed
an alternative cohesive zone model that describes decohesion by purely tangential
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separation as well as the decohesion by normal separation considered previously
(Needleman, 1987). In addition to the failure initiation by void formation at the
flat fibre ends this alternative cohesive zone model makes it possible to also study
the continued failure process by fibre pull—out.

The assumption will be made here that all fibres are parallel to the principal tensile
direction. This is realistic, since processing based on extrusion can lead to almost
perfectly aligned fibres (Nieh, 1984; German and Bose, 1989). The same assump-
tion has been used in a number of analyses of the tensile properties of perfectly
bonded composites. Teply and Dvorak (1988) have applied minimum principles of
plasticity to derive upper and lower bounds on instantaneous stiffnesses for various
periodic models of fibrous and particulate composites. Christman et al. (1989a)
have used an axisymmetric unit cell model, representing a regular array of end—to-
end fibres, to account for the cylindrical whisker shape with sharp 90—degree cor-
ners at the ends that is usually observed experimentally. An alternative model
developed by Tvergaard (1990) represents fibres that are somewhat shifted relative
to one another, both in the axial and transverse directions. The shifted fibres result
in significant plastic shearing of the matrix material between adjacent fibre ends,
and the predictions of this alternative model are in reasonable agreement with ex-
perimental uniaxial stress—strain curves found by Christman et al. (1989a) for a
2124 Al-SiC whisker reinforced composite. The effect of shifted fibres and of fibre
clustering have also been studied in terms of a plane strain model by Christman et
al. (1989b).

The present paper gives an extension of the previous fibre—matrix debonding study
(Tvergaard, 1989) to consider the effect of varying fibre volume fraction and vary-
ing fibre aspect ratio. Furthermore, the sensitivity of the debonding predictions to
refinements of the mesh used for the numerical solution is studied in some detail.

2. DEBONDING MODEL

Debonding of an inclusion from a metal matrix has been modeled by Needleman
(1987) in terms of an interface potential that specifies the dependence of the trac-
tions T, and T; on the normal and tangential components, u, and u¢, of the
displacement difference across the interface. A positive un corresponds to increas-
ing interfacial separation. These interface constitutive relations specify the nonline-
ar variation of the normal traction T, from the value 0 at u, = 0 through a
maximum value opax and again down to the value 0 at uy = 6, where final
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separation is assumed to occur. This debonding model describes only debonding by
normal separation; but during fiber pull-out under significant normal compression
the positive normal separation up required for debonding in Needleman's model
will not occur. Therefore, an alternative debonding model was proposed by Tver-
gaard (1989), which coincides with that of Needleman (1987) for an interface un-
dergoing purely normal separation (u; = 0) . No potential exists in general for this
alternative debonding model.

A nondimensional parameter X is defined as

— | [ua]? ug] 2
=5+ B (21)
and a function F()) is chosen as

F(A) = 21 onax(1-2A+12) , for 0< A< 1 (22)

Then, as long as A is monotonically increasing, the interface tractions are taken to
be given by the expressions

To = %ﬁ F(\) , Ty= a%—: F(\) (2.3)

In purely normal separation (u; =0) the maximum traction is opax , total separa-
tion occurs at u, = 6p, and the work of separation per unit interface area is
90maxfn/16 . In purely tangential separation (up = 0) the maximum traction is
aonax , total separation occurs at uy = &, and the work of separation per unit
interface area is 9@onax6:/16 . For a given interface the values of the four parame-
ters én, 6t, onax and a will have to be chosen such that the maximum traction
and the work of separation in different situations are reasonably well approxi-
mated.

The expression (2.3a) for T, resembles the dependence of interatomic forces on
interatomic separation; but in the present paper the cohesive zone formulation is
viewed as a phenomenological model, which represents the average effect of de-
bonding mechanisms on a somewhat larger length—scale than atomic. These mecha-
nisms include the effect of small flaws or patches of poor bonding, or void forma-
tion in the matrix material near the interface as observed experimentally by
Christman et al. (1989a). As has been discussed by Tvergaard (1989), it is expected
that the behaviour due to plastic failure mechanisms at a metal/ceramic interface
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is analogous to the behaviour for ceramic/ceramic interface cracks, where the criti-
cal energy release rate has been found to be larger in mode II conditions than in
mode I conditions. The present debonding model represents this in terms of the
factor o for the strength increase in purely tangential separation and the factor
aby/ by for the increase of the work of separation.

The incremental expressions for the cohesive zone tractions are obtained from (2.3)

as
i Un n E
fa= LR+ 0
_ for A=Anax<1 and A0
Ty = a3t F() + ot 5
(2.4)
where
=G om(-1+2), A= [+ 3y (2:5)

For decreasing A a type of elastic unloading is used to represent the partly dam-
aged interface

Tn F(,\max) Ty = 0—5— F(Anax) , for A < Apax or A <0
(26)

Finally, under normal compression elastic springs with high stiffness are used to
approximately represent contact (instead of (2.4a) or (2.6&)), thus taking

Tn:-%amax%:l: , A= l%’:' ,fOI‘ up <0 (27)

Friction between fibre and matrix after the occurrence of debonding is often an
important effect in fibre pull-out problems. Such friction is readily incorporated in
the present formulation, as has been shown by Tvergaard (1989) for the case of
Coulomb friction. However, since the influence of friction found by Tvergaard
(1989) was rather small, this effect is not included in the present study.
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3. CELL MODEL ANALYSIS

A convected coordinate, Lagrangian formulation of the field equations is used for
the analysis, in which gj; and Gij; are metric tensors in the reference configura-
tion and the current configuration, respectively, with determinants g and G, and
7ij = $(Gij — gij) is the Lagrangian strain tensor. The contravariant components
7ii of the Kirchhoff stress tensor on the current base vectors are related to the
components of the Cauchy stress tensor i by

ij = [GJg oii (3.1)

The matrix material deformations are taken to be described by a finite strain gen-
eralization of J; flow theory, in which the incremental stress—strain relationship is
of the form 7ii = Lijkl iy , with the tensor of instantaneous moduli given by

N T L YT N v .
Lijkl = T {i(leGJI + GllG]k) + S GiiGKl

.y 3/2(E/E-1) siigkl
v — (120 a%

~ 3(Gikril 4 Gikril 4 Gilrik + Gilik) (3.2)

Here, the effective Mises stress is e = (3SijSij/2)% , sii = 7ii — Glitk/3 is the
stress deviator, and the value of § is 1 or 0 for plastic yielding or elastic un-
loading, respectively. Furthermore, E is Young's modulus, v is Poisson's ratio,
and E; is the slope of the true stress vs. natural strain curve at the stress level
ge . The uniaxial stress—strain behaviour is represented by

}% ,for o < oy
€= (3.3)

El[g—y]n ,for 0> oy
where oy is the uniaxial yield stress, and n is the strain hardening exponent.

An axisymmetric cell model analysis is used to approximately represent a material
with a periodic array of aligned fibres as that shown in Fig. 1 (Tvergaard, 1989). A
cross—section perpendicular to the fibres (Fig. 1b) shows a square array of fibres
with spacing 2ac , and the initial radius rc = (2/{7)ac of the axisymmetric model
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Fig. 1. Periodic array of aligned fibres. (a) Cross—section along fibres. (b) Cross-
section normal to fibres.

problem is chosen such that the fibre volume fraction of the cell is equal to that of
the material illustrated in Fig. 1. With the initial cell length £ , and the fibre
geometry specified by the initial half length ¢ and radius rf, the fibre volume
fraction f is

(=44 (3.4)

c 7

The initial fibre aspect ratio of and cell aspect ratio ac , respectively, are speci-
fied by

o = bifre , oc=Lfrc (3.5)

On the curved side of the circular cylindrical cell equilibrium and compatibility
with the neighbouring cells has to be represented. A neighbouring cell is identical
to that analysed, but is rotated 180 degrees so that it points in the opposite direc-
tion (see Fig. 1a). Compatibility and equilibrium in the axial direction are directly
specified in terms of the axial edge displacements and nominal tractions. In the
radial direction compatibility is represented by the requirement that the total
cross—sectional area (consisting of an equal number of cross—sections of the two
types of neighbouring cells considered) is independent of the axial coordinate. The
detailed formulation of the boundary conditions is not repeated here (see Tver-
gaard, 1989, 1990).
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The average straining of the material is determined from the average displacement
gradients Fyj , referring to a Cartesian frame, which are calculated as

Fyj = 8 + ‘I’Js uin;dS (3.6)

Here, &; is the Kronecker delta, V and S are the volume and surface, respec-
tively, in the reference frame, and u; and n; are the Cartesian components of the
displacements and the outward unit normal. The average nominal stresses Xj; are
computed as the appropriate area averages of the microscopic nominal stress com-
ponents on the surface (considering both the cell analysed and one of the neigh-
bouring cells of opposite kind). The axial stress and gradient components are Xy
and Fy, the transverse Cartesian components are Ype = Y33 and Fop = F33 for
the axisymmetric problem, and all shear components vanish. The average true
stresses oy and o2 and logarithmic strains € and e in axial and transverse
direction are calculated from these values.

The fibres are approximated as rigid, to simplify the debonding analysis. It has
been found for perfectly bonded whisker reinforced composites (Tvergaard, 1990)
that predictions for elastic or rigid fibres differ rather little when plastic yielding
has occurred.

Numerical solutions are obtained by a finite element approximation, using a linear
incremental method based on the incremental principle of virtual work (described
in more detail by Tvergaard, 1989). The elements employed are quadrilaterals each
built up of four triangular, axisymmetric, linear displacement elements. The
meshes used for the computations are somewhat finer than those used by Tver-
gaard (1989), and an example is shown in Fig. 2. A special Rayleigh Ritz — finite
element method is applied to implement the boundary conditions and to enforce a
fixed ratio p = oa/01 of the average true stresses in the transverse and axial direc-
tions, respectively.

E

¢ — Z.

Fig. 2. Mesh with 1792 elements used for some of the numerical analyses.
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4. RESULTS

The 2124 Al-SiC whisker reinforced composite investigated experimentally by
Christman et al. (1989a) had the fibre volume fraction f= 0.13 and the average
fibre aspect ratio of ~ 5 . Furthermore, the cell aspect ratio o ~ 6 gives a reason-
able representation of the observed average fibre spacings in the axial and trans-
verse directions. The uniaxial stress—strain curve for this matrix material can be
approximated by the power law (3.3) with oy/E = 0.005 and n = 7.66 . In the
analyses to be presented in the following these material parameters will be used,
and the influence of varying the fibre volume fraction or the fibre aspect ratio will
be investigated. In all cases uniaxial tension in the fibre direction is considered
(62=0).

In the first cases analysed the fibre geometry and spacing is taken to be specified
by f=10.13, o =5 and ac= 6. Different sets of parameters in the debonding
model (2.1)—(2.7) are investigated in Fig. 3. For opax = 5 0y, én = & = 0.02 ¢
and a=1 Fig. 3 shows rather good agreement between predictions obtained pre-
viously (Tvergaard, 1989) and those obtained here by*the finer mesh of Fig. 2 (1792
triangular elements instead of 768 elements). Such good agreement has also been
found in other cases; but not for « = 4, where the finer mesh gives significantly
earlier debonding (see Fig. 3). No tangential debonding at all is predicted for a =

Fig. 3. Stress—strain curves predicted for onax =50y, 6p = 0.021¢, 0y =5 and
f=0.13.
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Fig. 4. Stress—strain curves for ogax= 7oy, 0n= 6= 0021, @a=1, as=5
and f=0.13.

4 , but the mesh in Fig. 2 is significantly refined near the sharp fibre edge, and the
corresponding better resolution of the stress peak near the edge results in earlier
debonding. Fig. 3 also shows that taking either a=1 and =46, or a=1.5
and 6 = 1.5 gives debonding at a value of the overall strain ¢ between those
found for the first two cases considered. For a«¢=1 and 6 = 4 6, the work of
purely tangential separation is identical to that for a=4 and & = & ; but the
simultaneous increase of the peak stress in the latter case has the effect of elimi-
nating fibre pull-out.

A significant effect of the mesh refinement has also been found for opax = 7 gy,
fn= 6 =0.02rf and a=1, as shown in Fig. 4. Initial debonding occurs on the
flat fibre end near the sharp edge, and subsequently this toroidal void grows large
as illustrated in Fig. 5, without leading to complete debonding at the fibre end. By
contrast, the cruder mesh computation (768 elements) predicts complete debonding
at the fibre end with a corresponding steeper load drop and a lower load level
during the subsequent fibre pull-out. To check this further, the computation has
been repeated with a mesh specially designed to give a fine resolution at the fibre
end (2056 elements). This special mesh has 28 elements of equal length along the
flat fibre end. Due to the further mesh refinement, the decaying part of the stress-
strain curve (during debonding) is less jumpy; but otherwise the predictions obtain-



(b)

Fig. 5. Debonding behaviour and contours of maximum principal logarithmic strain
for omax =70y, h=6=0021¢,0a=1, =05 and f= 0.13; for 1792 ele-
ments. (a) ¢ = 0.078. (b) ¢ =0.112.

ed by the two finer meshes are in good agreement. It is noted that the development
of a small void near the sharp fibre edge, corresponding to the initial stages of that
shown in Fig. 5, has also been found by Nutt and Needleman (1987).

The effect of varying the fibre aspect ratio of is investigated Fig. 6. Here, opax =
6 oy and 6n = 0.02 r¢ are assumed, while a larger resistance to tangential separa-
tion than normal separation at the interface is modelled by taking o= 1.5 and
8 =1.56,. For f=0.13 the three values 2.5,5 and 10 of the aspect ratio of

0t

0 0.02 0.04 0.06 0.08 010 £ 012
1

Fig. 6. Stress—strain curves for opax = 60y, fo=0.0217, =156, a= 1.5
and £=0.13.
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have been analysed that were also considered for perfectly bonded composites by
Tvergaard (1990). Since the stress level in the material increases with increasing
of , it was expected (Tvergaard, 1990) that the ductility would decrease with in-
creasing value of of . In agreement with this Fig. 6 shows that the strain at which
debonding starts for of = 10 is less than half that for of = 5, and for af = 2.5
no debonding is found at all in the range considered. Both for ar =5 and of = 10
debonding starts at the sharp fibre edge and gradually spreads all over the flat end.
At ¢ = 0.12 the length of the tangential debonding region on the cylindrical fibre
surfaces, measured from the sharp edge, is 0.67r¢ for of= 10 and 0.13rf for
of=35.

The effect of varying the fibre volume fraction, for fixed fibre aspect ratio af =5,
is studied in Fig. 7. The parameter values used for the debonding model are identi-
cal to those considered in Fig. 6, and the fibre volume fractions analysed are 0.25 ,
0.13 and 0.08. For comparison, the uniaxial stress—strain curve of the matrix
material (f = 0) is included in the figure. Here, the relatively late onset of de-
bonding for f=0.25 isin contradiction to the expected reduction of ductility

4 — : —

G

0—y £=0.25

0 0.02 0.04 0.06 0.08 010 £ 012
1

Fig. 7. Stress—strain curves for opax =60y, 6= 0.021¢, §= 1568, a= 1.5
and af=5.
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associated with the increased stress level in the material. This is due to interaction
between neighbouring fibres in the particular periodic arrangement of whiskers
analysed here (Fig. 1). For f= 0.25 the neighbouring fibres overlap, and the dis-
tance between them is quite small, so that high shear stresses in a small overlap
region of the cylindrical fibre surfaces transmit a significant part of the axial load.
In fact, for f = 0.25 the first debonding is tangential, in this highly stressed over-
lap—region, even though a higher resistance to tangential debonding has been as-
sumed by taking a = 1.5 and & = 1.5 6y . The redistribution of stresses following
this tangential debonding leads immediately after to normal debonding at the fibre
end and the associated abrupt reduction of the average tensile stress shown in Fig.
7 (at € = 0.095) .

For a regular array of end to end fibres Needleman and Nutt (1989) do find earlier
debonding when f is increased, in agreement with the experimentally observed
reduction of ductility for increasing fibre volume fraction (e.g. see McDanels, 1985).
This regular array does not allow for shielding of fibre ends due to whisker overlap.
In a real material the whiskers are more or less randomly distributed so that some
fibre ends are shielded by overlap, while others are not, and clearly void formation
by debonding will tend to start at unshielded fibre ends. It has been found (Tver-
gaard, 1990) that the periodic fibre arrangement in Fig. 1 gives a good representa-
tion of the overall stress strain behaviour. However, from the point of view of de-
bonding the present results show the possibility of a strong effect of local interac-
tions. This emphasizes the need for more detailed studies of the effect of different
fibre distributions.

REFERENCES

Christman, T., Needleman, A., Nutt, S., and Suresh, S., 1989a, "On Micro-
structural evolution and Micromechanical Modelling of Deformation of a Whisker-
Reinforced Metal-Matrix Composite," Materials Science and Engineering, Vol.
A107, pp. 49-61.

Christman, T., Needleman, A., and Suresh, S., 1989b, "An Experimental and
Numerical Study of Deformation in Metal-Ceramic Composites," Division of
Engineering, Brown University.

Divecha, A.P., Fishman, S.G., and Karmarkar, S.D., 1981, "Silicon Carbide Rein-
forced Aluminum — A Formable Composite," J. of Metals, Vol. 33, pp. 12-17.

German, R.M., and Bose, A., 1989, "Fabrication of Intermetallic Matrix Compos-
ites," Materials Science and Engineering, Vol. A107, pp. 107—116.

McDanels, D.L., 1985, "Analysis of Stress—Strain, Fracture, and Ductility Behavi-
our of Aluminum Matrix Composites Containing Discontinuous Silicon Carbide
Reinforcement," Metallurgical Transactions, Vol. 16A, pp. 1105-1115.

Needleman, A., 1987, "A Continuum Model for Void Nucleation by Inclusion
Debonding," J. Appl. Mech., Vol. 54, pp. 525-531.



111

Needleman, A., and Nutt, S.R., 1989, "Void Formation in Short—Fibre Compos-
ites," Advances in Fracture Research, K. Salama et al., eds., Pergamon Press, pp.
2211-2220.

Nieh, T.G., 1984, "Creep Rupture of a Silicon Carbide Reinforced Aluminum
Composite," Metallurgical Transactions, Vol. 15A, pp. 139-146.

Nutt, S.R., and Needleman, A., 1987, "Void Nucleation at Fiber Ends in Al-SiC
Composites," Scripta Metallurgica, Vol. 21, pp. 705-710.

Teply, J.L., and Dvorak, G.J., 1988, "Bounds on Overall Instantaneous Proper-
ties of Elastic—Plastic Composites," J. Mech. Phys. Solids, Vol. 36, pp. 29-58.

Tvergaard, V., 1989, "Effect of Fibre Debonding in a Whisker—Reinforced Metal,"
Danish Center for Appl. Math. and Mech., Report No. 400.

Tvergaard, V., 1990, "Analysis of Tensile Properties for a Whisker—Reinforced
Metal—-Matrix Composite," Acta Metallurgica (to appear).



Damage



Fiber Stress Enhancement Due
to Initial Matrix Cracking

A. Dollar and P.S. Steif
Mechanical Engineering Department
Carnegie Mellon University
Pittsburgh, PA 15213

ABSTRACT

The tendency for a bridged matrix crack to induce fiber breakage is studied
theoretically. We contemplate a composite which has a single matrix crack
bridged by all fibers, and which is subjected to tension parallel to the
reinforcement. Of interest in judging whether the fibers will fail is the degree to
which the fiber stress deviates from its mean value, and the dependence of this
deviation on interface parameters. This issue is pursued here for an idealized
two-dimensional composite with widely spaced fibers and with a fiber-matrix
interface which is governed by Coulomb friction. It is shown that a stronger
interface causes a higher stress concentration at the fiber surface thereby raising
the likelihood of premature fiber failure.

INTRODUCTION

In ceramic-matrix composites subjected to tensile stresses parallel to the
fibers, large matrix cracks are sometimes observed. In fact, a single matrix crack
can traverse the entire specimen leaving the fibers intact (Aveston, Cooper and
Kelly, 1970). Depending on the composite, the applied load can often be raised
to the point that matrix cracks parallel to the first one can appear. The
composite can then go on to sustain stresses that are typical of the fiber
strengths. On the other hand, if the first matrix crack imposes undue stresses on
the fibers, then the fibers may break, causing premature composite failure.
Hence, further matrix cracking and, consequently, the ultimate strength are
dependent on the state of stress prevailing once a single bridged matrix crack has
traversed the entire specimen. From a microstructural point of view, the
tendency for fiber breakage to interrupt multiple matrix cracking is widely
believed to be dependent upon the characteristics of the fiber-matrix interface. In
particular, the higher the degree of bonding, or the greater the resistance to
slippage, the more likely it is for the fibers to break prematurely.

The source of the variety of behaviors can be readily appreciated. Regardless
of the interface properties, the average tensile stress in the fibers at the matrix
crack plane is the remote stress divided by the fiber volume fraction. Hence,
assuming the fiber properties are held constant, the difference between a
composite that sustains multiple matrix cracking and one which suffers
premature fiber breakage can be associated with the degree to which the tensile
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stress in the fiber near the matrix crack plane is non-uniform. For example, a
composite with a strong interface (in which the fibers break prematurely) will
have high stress concentrations where the matrix crack impinges upon the fibers.

A preliminary, highly idealized treatment of this problem is presented here in
which the composite is viewed as two-dimensional, the moduli of the fiber and
matrix are assumed to be equal, the influence of neighboring fibers is neglected,
and the fiber-matrix interface is characterized by a Coulomb friction interface
law. When interactions between fibers are neglected, the stresses in the vicinity
of the matrix-crack-impinged fiber can be deduced by studying the problem
shown in Figure 1. This problem is in some respects similar to one recently
treated by the authors (Dollar and Steif, 1989) in which a finite crack impinges
on Coulomb friction interfaces. There it was shown that the stress at the crack
tip is finite, and that the stress concentration is greater for interfaces that are
more resistant to slip. The model problem depicted in Figure 1 will give some
insight into the tendency for the interface to control the breakage of fibers after
matrix cracking has begun.

ANALYSIS

The two-dimensional problem considered here can be equivalently recast as a
half-plane problem, as shown schematically in Figure 2. The fiber, occupying
the region -a < x < a, is subjected to a uniform normal displacement and zero
shear stress; the tensile load transmitted by the fiber is P, which should be
viewed as equal to the tension applied to the composite divided by the fiber
volume fraction. This problem is similar to that of a half plane upon which is
pressed a flat, rigid, frictionless punch, except that the force applied to the punch
is tensile instead of compressive. The second, now crucial, difference is that the
fiber is not perfectly bonded to the matrix material; the particular interface law
employed here is the following. Relative motion at the interface is modeled
with Coulomb friction, an approach which has been used by the authors in two
recent papers (Dollar and Steif, 1988;1989). According to this interface law,
each point along the interface is either sticking, slipping, or opening.
Specifically, these three states along the interface x = a are described as follows:

dh_o

stick condition ¢ <0,|t| <p|ol, dg_o ,h=
dt dt (1a)

. . dg _dh_
1 dit c<0,t]=unlol, s n(-):s n(t) ,h=41=0
slip condition |T| = ulol, sg it gn(T) i1 (1)

open condition 6=1=0,h>0 (1o

with
G =0xx T= o'xy
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Figure 1. Schematic of a fiber bridging a matrix crack.

Figure 2. Bridged matrix crack recast as a half-plane problem.
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g = lim [v@-&y) - v@a-ey)]
e—0"

=
1]

lim [v@-&y) - va-&y)]
0"

In these equations Oxx and Oxy denote the usual Cartesian components of
stress, u and v denote the x- and y-components of displacement, respectively, and
M is the friction coefficient. An analogous interface law would hold for x = -a.
In applying equations (1), one must be careful to use the total stresses, including
any residual stresses. In real composites, residual stresses inevitably arise at the
interface, often due to differences in thermal expansion coefficient. Here we
simulate a residual compression at the interface by first subjecting the body to
uniform compression Gxx = - Go. Thus, two parameters characterize each point
on the interface: the residual stress o and the coefficient of friction yt. In the
problem posed below, both quantities will be assumed to be constant along the
interfaces. Symmetry of the problem shown in Figure 2 dictates that the extent
of slip is the same for both interfaces; however, it is dependent on the load in a
manner which comes out of the analysis.

Before we outline the solution method for the case of slippage at the
interface, we consider briefly the nature of the fields in the vicinity of the crack
tips. The near-tip behavior when a crack impinges upon a slipping interface was
discussed in some detail in a previous paper by the authors (Dollar and Steif,
1989); we found that the stress at the crack tip was finite. That is, there are no
admissible crack-tip eigenfunctions, satisfying the conditions of traction-free
crack faces and frictional slippage at the interface, which exhibit singular
stresses. The dominant eigenfunction is one involving piece-wise constant
stresses, the only non-zero stress component being the tensile stress oyy ahead
of the crack tip. Our solution method is such that this near-tip behavior can be
simulated. (Actually, the additional condition imposed in Dollar and Steif
(1989) was that slippage was to occur such that the crack opened; for a closing
crack, a singular compressive stress ahead of the crack tip is possible.)

The method of solution follows closely that used in other papers focusing the
effects of frictional slippage (Dollar and Steif, 1988, 1989). Slippage at the
interface is represented by a continuous distribution of dislocations. The total
stresses are the sums of the stresses associated with the perfectly bonded solution
(the negative of the flat, rigid, frictionless punch on the half plane) and the
stresses associated with the distributed dislocations. One obtains a singular
integral equation for the dislocation density by enforcing the friction condition
(1b) along the slip zone. The length of the slip zone is unknown and is found as
part of the solution.

The terms in the governing equations are conveniently expressed in terms of
the Muskhelishvili (1953) complex analytic functions ¢(z) and y(z), which are
related to the stress and displacements according to
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Oxx + Oyy = 2(¢' + ;) (28.)
Oyy - Oxx + 210xy = Az + v) (2b)
2GM + iv) = kb - 20 - § 20)

where z = x + iy, ( )' denotes complex differentiation with respect to z, an
overbar denotes complex conjugation, G is the elastic shear modulus, and k=3 -
4v in plane strain.

To use superposition as indicated above, one must have, as the kernel
solution, the solution to the problem of a dislocation in an infinite medium
which has two semi-infinite, traction-free cracks. The technique to find such a
solution is given by Lo (1978) (among others), who used distributed dislocations
to represent the kink of a kinked crack. For a dislocation in the y-direction with
Burger's vector by, one finds this kernel solution to be given by

¢ = 0u + OR (3a)
V' = Yo + YR (3b)
where
¢; (Z,Zo) = L \'[; = _a_ - .g_;.;
“a P @w)? (4ab)

0R(z,20) = - 0[F(z,20) + F(zZ0) + (z0-%0) H(zZ0)] + —S—
X(z)

®
VR(z.20) = 0= (2:20) - ¢k (Z.20) - 20R (2.:20) ©
1. X@)
Fzz0) = —X@.
2z-20) 0]
H(z,20) = dF (z,20)
9z ®)
X(@z) = V22 &)
o= G by
T (k+1) (10)

This solution appears quite similar to the kernel solution for a finite crack
(see Lo (1978)). One important difference here is that the branch of the square

root Vz2-2? is the one which has discontinuities along the branch cuts -co < x < -
a and a < x < eo, Here, the constant c can be evaluated by noting that the
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function ¢/Vz2-a? is the solution to the problem of a flat, rigid, frictionless
punch applied to the lower (or upper) half-plane. It is obvious that a solution to
the punch problem (with an arbitrary load) may be superposed on the dislocation
solution. Here, since we are superposing the distributed dislocations with the
punch loading of the perfectly bonded half-plane, the kernel dislocation solution
must involve zero net force transmitted across -a < x < a. Hence, ¢ must be
Zero.

The perfectly bonded solution, ¢'p, is given by (Mushkelishvili, 1953)

¢op = AP
2n X (2) an

where X(z) is defined by (9). As expected, the stresses are square-root singular as
the crack tip is approached. Once we allow frictional slip to occur, however, the
interface serves to "blunt" the impinging matrix crack.

To formulate an integral equation, we now assume (as was done by Dollar
and Steif, 1989) that slip occurs along a single portion of each interface (x = ta,
-L < y < L), with the remainder of the interface being in a stick condition.
Then, it is necessary to distribute dislocations (with Burger's vector in the y-
direction) only along the slipped portions of the interface. The distribution of
dislocations is chosen to satisfy the following integral equation which enforces
the friction condition Oxy = tlloxx| along the slip zones:

L
J b(yo) [Ro(y.yo) + Rui(y.yo) + MRz (y.yo)] dyo + f(y) = 0
0 (12)

where b(y) is the dislocation density, and the functions R( (the singular part),
R1, R and f are given in the Appendix. To write the equation along only 0 <y
< L, we have taken advantage of the symmetries of the problem. As in Dollar
and Steif (1989), the slip is adjusted (for a given P and 6¢) so that the net stress
intensity factor at the crack tips (x = *a, y = 0) is zero, and so that the
dislocation density vanishes at the ends of the slip zones.

Of the various quantities which may be computed from the solution, the
tensile stress immediately ahead of the crack tips is the most important one
considered here. This tensile stress, (Gyy)tip, can be obtained in two ways.
First, it is readily shown that this stress is related to the dislocation density as
one approaches the crack tip from the slip zone according to

ip = —E=b(0
(Syphip L2 ()] 13)

Alternatively, the stress at various points ahead of the crack tip can be
computed from the entire distribution of dislocations, followed by an
extrapolation to the crack tip. The degree to which these two methods yield the
same number is a measure of the accuracy of the numerical solution. Generally,
agreement to within a few percent was found.
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RESULTS

The principal result here is the tendency for the frictional interface to
effectively "blunt" the matrix crack (see Figure 3), Therefore, the stress at the
tip, Gtip, normalized by the average fiber stress P/2a, is plotted as a function of
the average fiber stress relative to the nominal friction stress uGqg. The
dependence on the fiber load, insofar as it is normalized by Loy, is typical of
problems involving frictional interfaces. As the applied stress increases relative
to Lo, the stress concentration diminishes; this is the blunting effect of the
frictional interface. For loads that are small compared with the [1Gg, the slip
zone becomes vanishingly small compared with the fiber diameter; in this limit
one recovers the infinitely large stress concentration of the perfectly bonded case.
The limit of small scale slipping was studied explicitly in Dollar and Steif
(1989), where it was found that the stress at the crack tip is proportional to 6g,
and independent of the applied load which is small compared with G

i 1
00 40 80 120 16.0 200
P/2a
A

Figure 3. Stress concentration as a function of fiber stress.
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We consider now the results for quantities which are commonly of interest,
and which can be deduced by approximate calculation. In Figure 4, the slip
length is plotted (in solid lines) as a function of the normalized fiber stress. For
comparison, we show the same quantity calculated by a highly approximate
method in which the shear stress at the interface is taken to be exactly equal to
noo. The approximate slip length, then, is that distance over which the fiber
load P is completely transfered to the matrix. This slip length is plotted as the
dotted line. Note the relatively modest discrepancy between the numerical results
and the highly approximate calculation. Note also that the curves for different
friction coefficients p are distinct. This is characteristic of similar problems
involving Coulomb friction (see Dollar and Steif, 1988, 1989); namely, that the
results depend to a greater or lesser degree on the parameters | and G
individually, and not just on their product.

Consider also the crack-tip opening displacement which is shown in Figure
5. This opening corresponds to the maximum amount of slip at the interface (as
y — 0). As in Figure 4, the solid lines are the results of the calculations carried
out here, and the dotted line is an approximate calculation of the maximum slip
based on the assumption of a constant interfacial shear stress (equal to Log).
There is reasonable agreement between the numerical and approximate results
though the latter does not, of course, predict any dependence on p alone.

100 (

L/o

"0.0 20 40 6.0 8.0 10.0
P/2a
K%

Figure 4. Slip length as a function of fiber stress.
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Figure 5. Crack-tip opening displacement as a function of fiber stress.
CONCLUSIONS

An idealized two-dimensional fiber composite with a single bridged matrix
crack has been studied, particularly for the degree to which the tensile stress in
the fiber deviates from its mean value. For loads which are small compared
with the friction stress JL10g, the maximum stress is proportional to G (as was
found previously) and, thus, highly concentrated. Even when the applied stress
is several times the friction stress, the stress at the fiber surface can be twice the
mean fiber stress. However, for reasonable material parameters, the blunting
that continues with increasing load appears to be sufficient to preclude premature
fiber failure, at least for an interface that is characterized by Coulomb friction. It
is likely that actual bonding (chemical) at the interface would raise the stress
concentration, though in that case one wonders how the first matrix crack
managed to get across at all. These questions are being pursued.
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APPENDIX

In this Appendix we give expressions for the terms in the dimensionless
version of equation (12). Stresses have been nondimensionalized by P/2a,
spatial variables by a, and the dislocation intensity b(yg) by Pr(x+1)/(2Ga).

Ro(y,yo) = =2
o(y.yo) ¥vo

=2 2 2 .2 ,
Ri(y.yo) = 2Im [hz] + Im [hS +hy |+ m} + 2y Re[H(z.20))
hs hy

— —2
Rxy.yo) = -Re [hB +h3 | het f| , 2y Im [H(zz0)] - 2 Re[H(z.z0))

h3 hs J
where
=1 -1 -1
b2 ) he Az b 470
PSR W Y P Y
X(@) + X(zo) X(@@) X(zo) X(@) - X@)I* X(z) X(z0)

H(z:z0) = H (zz0) H;Z’Zo)

The function f(y) is written as

f(y) = fi(y) + pfxAy)
where
fl(Y) = - Y Im [-——1—3]
X@)]

ty) = 2 {-Im[ 1 ]

X@ [X(Z)] ]}
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Abstract
In certain ceramics, the high stress in the tip of a macroscopic crack
induces martinsitic type transformation of second phase particles (e.g.,
Zirconia, Z 02). The transformation changes the near-tip stress by
decreasing Ené net stress intensity factor and the toughness of the
material is thereby enhanced. To evaluate the decrease of the stress
intensity factor, one needs to know the distribution of transformation
strain around the crack tip. Therefore, an incremental analysis of
plasticity, which takes into account the microstructural properties and
mechanism of the particle transformation, is generally required.

In this paper, we present a method of calculating the decrease of stress
intensity factor without considering the microstructural details or
performing an incremental analysis. Regardless of the history of loading
and unloading, the current crack opening displacement is all the
information needed for the calculation. It is proven that under a given
distribution of crack opening displacement, there are infinite numbers of
possible configurations of transformation zones with transformation
strains inside. Identifying the actual transformation strain and
transformation zone is impossible unless additional information is
provided. However, all these transformation strains inside the
corresponding transformation zones induce the same decrease of stress
intensity factor. In this sense, they are all equivalent. If we can
obtain any of these transformation strains with the

corresponding transformation zone, the decrease of stress intensity
factor is then determined.

The problem is formulated as a system of integral equations of the first
kind with transformation strains as unknowns and crack opening
displacement as input data. The regularization method is employed to
obtain a stable solution of these ill-posed integral equations. The
stress intensity factor is then computed by using Bueckner's weight
function.

1. Introduction

The high stress in the vicinity of a macroscopic crack induces local
plastic deformation of particles, such as martensitic type transformation
of second phase particles. The transformation decreases the net crack
tip intensity factor and thereby the toughness of the material is
enhanced. This fracture toughness enhancement has been observed in a
number of ceramic materials (e.g., Claussen, 1976; Evans and Heuer,

1980).
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McMeeking and Evans (1982) and Budiansky et. al. (1983) have studied the
problem by taking into account only the dilatant part of the
transformation. As they have pointed out, due to the neglect of shear
transformation, the increases in toughness predicted are less than
experimental values. The effects of shear components of transformation
with different shapes and orientations are further accounted for by
Lambropoulos (1986). In Lambropoulos’ analysis, a constitutive model is
proposed. The constitutive model is similar to the incremental theories
of metal plasticity in which the behavior of material is characterized by

a yield function, a loading criterion and a set of flow equations.

In this paper, measured crack opening displacement is used to evaluate
the increase of fracture toughness due to particle transformation
(dilation as well as shear). No particular constitutive law and loading
history are involved explicitly in our analysis. When crack opening
displacement is provided, no matter what loading (cyclic or monotonic)
was the material loaded, the changes of stress intensity factor can be

obtained by solving a set of integral equations.

2. Basic Equations
For simplicity of notations, we consider only Mode I problem. A material

D with a crack is loaded at its surface 4D (Fig. 1(a)). Transformation
zone Q1 is developed near the crack tips. It follows from the principle
of superposition (Fig. 1) that the net stress intensity factor K?et (SIF
for problem shown in Fig. 1(a)) is given by

net

(0)
K =K’ + K

where K%O) is the stress intensity factor that would be induced at the
tips by the applied loading in the absence of transformation zone (i.e.,

SIF for problem shown in Fig. 1(b)) and K. is the stress intensity factor

I
for problem 1(c).

There is a well developed body of knowledge for computing K§°). The
effort of this paper is to evaluate KI’ the change of stress intensity
factor due to the existence of particle transformation (SIF for problem
shown in Fig. 1(c). The net stress intensity factor is then obtained as

the sum of K%O) and KI'
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Let us first derive the integral equation for problem shown in Fig. 1(c).

It has been shown in our previous papers (Gao and Mura, 1989a and 1989b)

that the integral equation for the problem with transformation strain e

in a subdomain of D ( Fig. 2) is

1 p
J Cijke Ckm, 2 X - ¥') €5y (¥) ox
Q

-I Cijke Crm, 2 x - %) u(x) ny ds(x) )
aD
+ B u (x')

where 8 = 1 for x’ €D and g = 1/2 for x' ¢ 8D and ui(g) is displacement

: . : : : ety d ,
field. cijkl is elastic moduli of the material. ka(§ X ) is Green's

function for an infinite elastic medium and satisfies the equation of
equilibrium for a unit point force

Cijke Ckm, 5 X7 2 = - fgy 80 - %D

6im is the Kronecker data and 6(§ - 5') is the Dirac’s delta function.
If a crack is developed together with transformation strain e?. (Fig.
1(c)), the entire boundary consists of 8D plus upper and lower crack

faces. Therefore, the integral equation is

. ' P
I Cijks Ckm,p X - X') €5y (0) dx
Q

- J €1ike Ckm, 2 & 7 X" u ) 0y ds(®)
ap

+ B u(x') + f Ciiks Ckm, g (X - XD uj(®) ny ds(x)
r

* I Cijks Ckm,2 (&~ X)) u; () ny ds(x) + aluy (x')rup(x)] (2)
r

1)
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Fig. 1 Transformation zone Q with transformation strains e ! developed
near the crack tips in a body D. 4D is the boundary of D.
Problem (a) is the superposition of problems (b) and (c).

Fig. 2 Transformation strains are accumulated in I, a subdomain of
body D.
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where I' = {x I xle[-a, al, Xy = 0} is the crack face, u;(§’) and u;(§’)
are displacements on the upper and lower crack faces, respectively. The

parameters a and 8 in equation (2) are defined as

1 for x' ¢ D
B - 0.5 for x' ¢ 3D
0 for g' el
« - 0.5 for x' ¢ T
0 for x' X T.
Note that
(ng, ny)) = (0, 1) on upper crack face
and
(ng, ny) = (0, -1) on lower crack face.

We further simplify equation (2) to

r P
I Cijke Ckm,z (X - X') €55 () dx
Q

- I Cijke Ckm, 2 & - X uy(x) ny ds(x)
ap

a
A+ J Cioks Cxm, 0 & - X9 |x2=o[“1(x1) -y (xp)]dx)
-a

+ afur(x') + ul(x)]. 3

In the problem of transformation toughness, the size of transformation
zone is quite small compared with any characteristic length of the

material. The material is modeled as an infinite medium, which means the
integral along 4D in equation (3) disappears.

For model I problem

wi(x’) +u(x') = 0.
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Therefore, when X' ¢ I, we rewrite equation (3) as

’ p
J Cijke Ckm, g & - X7 €5y (%) Ax
Q

a
"J ©2k2 Ckm, 2 * - % | x,=0 21 (%) 4% )

-a

+ - : : :
where bi(xl) - ui(xl) - ui(xl) is the crack opening displacement.
Recalling the superposition shown in Fig. 1, we have

NG (b)
b, = b - by (5)

are the crack opening displacements for problems
p(a)
i

and

where b(a) bgb)
i i

shown 1in Fig. 1(a), and 1(b), respectively. are measured

experimentally. bgb) can be computed either analytically or numerically

for a given load. Therefore, bi’ as well as the right hand side term of

equation (4) is known after (5) is applied.

3. Fracture Toughness as a Global Property of Transformation Strains
Our goal is to compute transformation strain e?j by using given values of

bi(xl)’ and derive stress intensity factor KI by the computed e?j.
However, equation (4) for unknown e?j cannot be solved uniquely from
given crack opening displacement. In fact, given crack opening

displacement bi(x equation (4) has infinite numbers of solutions for

D
*
any chosen 2 , which covers the transformation zone Q.

The nonuniqueness of solutions for (4) is consistent with the fact that

particle transformation is irreversible plastic deformation, which is

loading history dependent. The computation of transformation strain egj

requires models accounting for microstructural details and for

constitutive equations characterizing the development of transformation
P
ij
needed because local unloading may occur even for monotonic loads.

strain ¢ and transformation zone. Incremental analysis is generally

It is important to notice that catastropic failure of material results
from propagation of the main crack. Our ultimate goal, therefore, is to

evaluate the effects of the transformation strain on the toughness of the
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p

main crack, which is a global property of the transformation strain eij

and can be related to the crack opening displacement.

It can be shown that all the solutions of equation (4) have some common
characteristic properties. One of these properties is that they induce
the same stress intensity factor at the crack tip (see Appendix for

details). This leads to a new idea to find any one of the solutions of

equation (4) and compute the stress intensity factor from the solution.

The question is, therefore, how to obtain a solution of equation (4). It
is impossible to solve equation (4) without specifying the transformation
zone {}. Since I is unknown, we choose another domain ﬂ* such that ﬂ*
contains Q2 (Fig. 3), which guarantees the existence of solution. By

%
replacing Q with @, we write equation (4) as

- ] P
In* cij11 ka,g (x - x") €1j (x) dx
(6)

a
=J Cioks Cum, 2 & - 2 | xy=0 Pi (¥p) 9%
-a
The solutions of equations (4) and (6) are denoted by eg.(g) and ??j,
respectively. Although egj(§) and Zgj(g) may be substantially different,
they induce the same stress intensity factor (Appendix). This enables us
to compute the crack intensity factor by using ep (x), without knowing

the actual transformation strain ep (x).

The stress intensity factor for transformation strain ?E distributed in
* ~

Q" is equal to that of the problem shown in Fig. 4, where egj is replaced

by body force X; and traction force t,

X (x) in Q

i~ Cijke kz JJ
(7)

= C <P in aﬂ*

€1 = Cijrge ke® M :

* *
30  in the above equation is the boundary of Q .
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*

Fig. 3. Domain @ 1is introduced to contain the transformatign zone Q.
The properly chosen transformation strains e in @ induce the
actual decrease of stress intensity factor KI.

Fig. 4. The transformaglon strains ¢ P are replaced by bogy forces K
in Q apd traction forces t, = C on 40 R
tﬁlkéounéary of Q t 13kt ket j
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A useful device for calculating the stress intensity factor due to body
force and traction (Fig. 4) is the weight function of Bueckner (1970).

The function hi’ a weight function, is defined in such a way that

KI = I . hi(§,a)ti(§)ds + I* hi(§,a)Xi(§)d§ (8)
a0

where ti(§) is the traction applied through the line BQ* and Xi(§) is the
*

body force applied inside domain Q. KI is the crack intensity factor

due to ti(g) and Xi(g). The agrument "a" of hi(g,a) is the half of the

crack length. The weight function is defined by

du} (x,a)

H
3a )

AK‘I’(a)

h, (x,a) =

where u¥(§,a) is the displacement field under a given load, K¥(a) is the

stress intensity factor under the load.

E
1-v

E for plane stress.

2 for plane strain
H =

E, v are Young'’s modulus and Poisson's ratio, respectively.
g P y

It should be pointed out that hi(g,a) is a universal function for a given
geometry and composition and bears no particular load system to which the

body may be subjected.
By plugging equation (7) into equation (8), we have

2P
KI - J . hi(§,a) Cijk! ek2(§) nj ds
a0
(10)
2P
; L By (%,8) Cjgpep iep, ;) &2
a

After applying Gauss’ theorem, equation (10) is rewritten as

K = J* U, ,(x,a) 2§2(§) dx (11)
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where Uk! - Cijkl hi’j(§,a). For a two dimensional half plane crack
problem, the expressions of U,
(1989) as

Uy = — 1 2 [cos %ﬁ + 3 cos %ﬁ]
16(1-v) J2x
3 -3/2 . 18 ;
U21 - U12 - sin 2 - sin
16(1-v) Jon

U22 = — r-3/2 [7 cos %‘9‘ - 3 cos 'Z—a]
16(1-v) J2n

kg vere given by Hutchinson (1974) and Gao

o

"] (12)

~

where r and § are shown in Fig 4.

4. Computation of ei?

There are several experimental techniques for measuring crack opening

displacement at any points on the crack face except those near the crack
tip. For the points near the crack tip, we use the asymptotic expansion

of the displacement field. In a Mode I problem,

2(1 r_ .28 g
u = —iEiZl K, /%; (1 - 2v + sin” ) cos 3
u, = Zi%iZl KI /%; (2 - 2v - 0052 %) sin %

0<sr=<é§<l

where 6§ is a chosen small parameter. For - a < X < -a+éand a - § <
Xy < a, we derive bi(xl) from the above expression. Therefore, equation

(6) is written as

_ ' P
In* €ijks Ckm,z X - X7 €45 ®) X

-a+é 2 a+x
_ , 8(1-»%) 1
K I €22k Ckm, 0 & - X 'x2-0 e/

-a

2 ¥
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a 2 a-x
, 8(1l-v ) 1
& I Co2k2 Ckm,2 2 - X)) |x2-0 g 4 I 9%
a-§
a-é
¥ I Cioks Ckm, g (57 5 Iy g Pylxp) dxy a3
-a+é

K. in the right hand side of (13) is the unknown stress intensity factor

1
we are looking for. Hence, equation (13) must be solved by trial and

error method or other iterative procedures so that KI is consistent with

the unknown egj(§) of the left hand side in equation (13).

The solution of equation (13) is nonunique and unstable. There are
several ways to convert equation (13) into a new well-posed problem.

us write equation (13) in the following compact form

J Clx - x') ¥V (x) dx = U(x' Kp) (14)
Q*

x'" el

where

Cl1ks G2, 02 X) » Coppg Oko, p(XX") » Crgpp Gpp, p(X°X")

o’y = [ Clike 1, 2@ XD+ Copup Cua XX v Cpogpp Cpg X2

V) = Legd, €5, 26,5
T
LJ(>~<', KI) = [gl ’ gz]

-a+é a+x

&y = Kp J €92kt Ckm, s %) |x2-0

-a

2
8(1-v™) 1
E Y 9

1S i
E 2n X

a
+ K J 2218 Ckm,2 XX |x2 0 1

a-§ =

a-§
+ I Cioks Ckm, g %7 |X2-0 by (%)) dx;.
-a+é
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One way to obtain a well-posed problem is to change problem (14) into

Min || Vo) |] 2

Subject to || Clx-x)V(max - Ux', k) |2 (15)
*

= €

where || ||2 is the square of L2 norm, i.e., the inner product of a

function with itself over the domain it is defined. For example,

Ny P -] vy w e
Q

The positive parameter ¢ measures the discrepancy of our crack opening
displacement data from the exact values. The detail discussions can be

found in Gao and Mura (198%a, 1989b).

An alternative way is to solve problem

min || [ cexn v a- v e, xp |
*x

9 (16)
Subject to || V(x) ||° = v

where v is a constant used to specify the norm of the solution. When we

know the order of norm of exact solution, vy is a given value.
The Euler equations for problems (15) and (16) are

[ danv@aray@-v"q
*
neq (17)

Q
I fﬂ Clx - x) ¥ (x) dx - U (x', Kp)

and

I Y @daray =0 (KD
ﬂ* *
n€Q (18)

v e |12 =+

respectively, where



) dx’ neq.

When the order of measurement error ¢ is known, problem (17) can be
employed. In some cases, we roughly know the order of norm of the

transformation strain, i.e., vy is known, problem (18) is suitable.

5. Numerical Examples
The method of imposing (15) or (16) to obtain a stable solution of an

ill-posed system is called regularization method, suggested first by
Tikhonov (1963). Tikhonov also showed that ||V(a)||2 is a monotonically
decreasing function of a ¢ [O+, «), where V %) satisfies the first
equation of problem (18). Therefore, the solution of problem (18) can be

obtained by a simple iteration procedure.

An example is presented as shown in Fig. 5. The half crack length "a" is

taken as the unit length. The material is undergoing transformation

strain,
P _ P _
511(5) = 622(5) 1 X € Q (19a)
-1 X, 20 and X ¢ 0
€ 112‘(x) - (19b)
1 X, =0 and x € Q
where Q is the domain,
r < £ w 0032 % , w=0.1, - <6 <m. (19¢)

In this test example, the crack opening displacement bi(xl) is obtained
by solving equation (4) for bi(xl) with eig(g) and @ given in (19a) =
(19¢). For an engineering problem, however, bi(xl) should be obtained by

using equation (5).

In solving for transformation strain €i§(§)’ (18) is employed. The

scheme is as follows.
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*
1. v and 2 are chosen from our knowledge about the order of the
transformation strain and the location of transformation zone Q; choose

K; as an initial value of K.

2. Solve the first equation in (18) numerically with the right hand
side replaced by U(E’ KI) - U(§, K;). The parameter a is selected such
that the second equation of (18) is also satisfied. This can be done
because I]V(a)llz is a monotonically decreasing function of «, where (@
is the solution of the first equation in (18) for the given value of «a.

3. Calculate the stress intensity factor KI deduced by the computed
transformation strain eiP (i.e., Y). In this calculation, equition (1)
is appiied. The method of trial and error is used to select KI such that
KI =~ KI.

In the example shown in Fig. 5, n* is chosen as 1. The comparison of
computer results with actual values of normalized stress intensity factor

is shown in Fig. 6. P is a normalized factor given by
_ P_P 1/2
P=/WE( J €53 €15 9X/A)
Q

where A is the area of the transformation zone Q, E is the Young's
modulus of the material. The horizontal axis of Fig. 6 is the distance
that the crack tip has advanced into the prior transformation zone,

normalized by w (see Eq. (19¢)).

A similar problem is also solved (Fig. 7). 0 is the actual

transformation zone

w = 0.06.

33

p P 1 in Q
11 T €22 T

0 outside Q,



Fig. 5.

Fig. 6.
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A local configuration of crack tip. The quation 05 Ehe

boundary 80 of transformation zone is r = — w cos 5 - TS 6

< m withw=10.1. 33

K;, the decrease of stress intensity factor, versus Aa, the

distance the crack tip has advanced into the prior

transformation zone. w = 0.1 is a characteristic length of the

transformation zone shown in Fig. 5. P = Juw E {( Ei? Ei?
1/2 . )

dx/A} , where A is the area of the transformation zone Q, E

is the Young'’s modulus of the material.



*
Q is
Q:r
*
Q:r

chosen to cover the transformation zone Q.

=

1A

8

3/3
8

33
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2

8

2

é
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with w = 0.06

with w = 0.09
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Domain ﬂ* is chosen to cover the transformation zone Q. Using the scheme
described above, a distribution of transformation strain ?kg inside ﬂ* is
obtained. The stress intensity factor KI is then calculated by applying
Eq. (11). With Aa/w = 0.5, the actual and computed values of KI/P are

0.39 and 0.40, respectively. P is defined as
P-/GE(I e.P e P ax/a*)1/?
n* ij iy "=

* *
where A is the area of Q .

6. Conclusion

The decrease of stress intensity factor due to particle transformation
has been analyzed by using measured crack opening displacement. We have
shown that crack opening displacement is not sufficient to determine the
details of particle transformation (the shape of transformation zone, the
distribution of transformation strain). This is easy to understand
because the process of the transformation is plastic deformation.
Nevertheless, the stress intensity factor induced by the transformation
strain is a global property of the transformation and uniquely determined

by the crack opening displacement.

According to our previous results (Gao and Mura, 1989b), crack opening
displacement can only determine the stress field outside the
transformation zone 1. Information about constitutive laws and loading
history is required to calculate the exact distribution of stress inside
. In this paper, we have extended these results by calculating the
stress intensity factor KI' which is an important quantity associated
with the crack tip stress field inside 2. The unique determination of KI
simply means that the leading term of the stress field near the crack tip

is uniquely determined by the crack opening displacement.

The advantage of this method is that no constitutive law and loading
history are explicitly involved in the calculation. The loadings can be
monotonic as well as cyclic. The stress intensity factor can be computed

as long as current crack opening displacement is provided.
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The existance of cracks can be simulated by a proper distribution of
transformation strain (Mura, 1982). Therefore, the present analysis can
be applied to calculate the decrease of stress intensity factor due to

the existance of micro-cracks near a main crack.
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Appendix

- *
Let e.?(§) and ‘i?(f) be defined in @ and @ and satisfy equations (4)
and (69, respectl@ely We want to prove that the stress intensity
factors induced by eij and eij are the same.

Define
P -z P N P
863 = €55 - €55 ()

and denote the corresponding displacement and stress as Aui, Ao
respectively. We have

ij’

- p -
J . Cijke Cim,p (% 0 X7 Beyy (%) dx =0
Q

which implies that Aei§(§) causes zero displacement on the crack face.

It has been pointed out (Gao and Mura, 1989a) that if both displacement
and traction are zero on a part of the boundary, then the displacement
and stress are zero in thg elastic domain which the boundary belongs to.
Here, in the domain D - Q@ , the material is elastic and

Au, =0
i
= 4 - [ -
Aaij nj 0 for x] e[-a, a] , X5 0.
Therefore,
*
Aui =0 inD - Q
Ao.. =0 in D -ﬂ*.
1]

Now we prove that the stress intensity factor AKI induced by Aeiﬁ(g) is
zero.

As we have mentioned (see equation (9)), the weight function h, is a
universal function which can be obtained from displacement field and the
corresponding nonzero stress intensity factor under any loading. We
choose this loading as the residual stress field caused by A €55
Therefore, if A KI (due to eij) is not zero, we have J

H

—H 3
Py @) =Tk (@) g M X D (AL

We prove A KI = 0 by deriving a contradiction from (Al).
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Consider the solid the same as ;he one shown in Fig. 3, but wi h)no

transformation strain in @ or 1 . The loading is a traction t applied
through)a contour I outside 0 . The corresponding crack intensity factor
KI(ti ) is obtained from equations (8) and (Al) as

(0 __H (0) §_

KI(ti QAK (a) Au, (x , a) dT
—_H 2 (0)
48K (a) aaI g0 Ay (2, ) &2
1
z
= 0.
*

The last equality holds since Aui is identically zero in domain D - Q .
Note that the concentfaged load t f ?rbitrary and thereby the stress
intensity factor KI(t , induced by t cannot be identically zero.

The contradiction 1s Caused by equatlon (Al). Therefore, we conclude
that

AKI(a) =0,

which means ei§(§) and Eiﬁ(g) cause the same stress intensity factor.
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ABSTRACT

Studies on short fibre reinforced brittle composite materials in-
dicate that the fibre ends act as crack initiators. An assessment
of the behaviour of such cracks is of considerable interest to the
adequate design of short fibre reinforced composites. This pa-
per examines the boundary element modelling of the behaviour
of penny-shaped cracks that are developed at the extremities
of cylindrical elastic fibre inclusions.

INTRODUCTION

The integrity of the bond between a fibre and the surround-
ing matrix is of fundamental importance to the development
of adequate reinforcing action in fibre reinforced composites.
Debonding and cracking at a fibre-matrix interface can be ini-
tiated by a variety of factors including stress concentrations
at sharp edges, inhomogeneities, thermal mismatch between
the matrix and the reinforcement and other environmentally
induced loading effects (Figure 1). The evaluation of the influ-
ences of such defects on fracture propagation, stiffness degra-
dation, etc., can contribute to the accurate modelling and ef-
ficient design of fibre reinforced composites (Sih and Tamuzs,
1979; Selvadurai, 1981; Hashin and Herakovich, 1983; Kelly
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Figure 1. Interaction of fibre reinforcement with defects
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and Rabotnov, 1983). This paper examines the elastostatic
crack-fibre interaction problem for a single cylindrical elastic
fibre which is embedded in an isotropic elastic matrix of in-
finite extent. The composite is weakened by penny-shaped
cracks which are located at the plane end of the cylindrical
fibre. In this instance the sharp boundaries at the plane end of
the fibre act as crack initiators (see e.g., Taya and Mura (1981)
and Mura (1982)). The composite region containing the fibre
with plane end cracks is subjected to a uniaxial stress field
(Figure 2) which induces stress concentrations at the penny-
shaped crack boundaries. The analysis of the problem focusses
on the evaluation of the stress intensity factors at the tip of the
penny-shaped crack. A boundary element technique is used to
determine the flaw opening mode and flaw shearing mode stress
intensity factors at the crack tip. The numerical scheme is used
to assess the manner in which these stress intensity factors are
influenced by the elasticity mismatch between the fibre and the
surrounding matrix and other geometrical parameters such as
the length to diameter ratio of the fibre and the radius of the
crack in relation to the radius of the fibre. The accuracy of
the numerical scheme is verified by comparison with analytical
solutions developed for classical penny-shaped crack problems
related to an isotropic elastic medium (Sneddon, 1946; Kassir

and Sih, 1975).
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BOUNDARY ELEMENT METHODS

The formulation of the boundary element method for elasto-
static problems is given by Brebbia (1978) and Banerjee and
Butterfield (1981). In this section we shall present a brief ac-
count of the boundary element equations applicable to a bi-
material elastic region. The generalization to a bi-material re-
gion will enable the examination of the crack-fibre interaction
problem shown in Figure 2. Attention is restricted to isotropic
elastic materials which satisfy the linear elastic stress-strain

relationships

a,-(;') = )\(,5,-ju£?,3 + Gq {ufg) + ug-f:) (1)

and the Navier equations

CaV2ul® + (Mo + Ga)ulTl =0 (2)

where G, and )\, are Lame’s constants; the subscript or super-
script ‘a’ refer to the matrix (m) or fibre (f) regions; u; and
oi; are respectively the displacement components and stress
tensor referred to the rectangular Cartesian coordinate system
T,Y,2; 4, = 2,Y,2; Aa = 2Gavs/ (1 —2v,); v, are Pois-
son’s ratios; V? is Laplace’s operator referred to the rectan-
gular Cartesian coordinate system and §;; is Kronecker’s delta
function. Here and in the sequel the Greek indices and su-

perscripts will refer to quantities pertaining to the matrix and



151

Figure 2. Delamination and fracture at the plane ends of an

elastic fibre
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fibre regions.

The boundary integral equation for the axisymmetric problem
pertaining to the fibre-matrix composite region can be written
in the form (see e.g. Kermanidis (1975); Cruse and Wilson
(1977))

(23 *( 23 *( s T
cunk® + [ (P - @) Lar =0 ()

where T, is the boundary of the region a; ug’) and P,Sa) are
respectively the displacements and tractions on the boundary
Ty and u, @) and P® are fundamental solutions. Also in (3)
¢ is a constant (= 0, if the point is outside the body; = §;; if
the point is inside the body; = §;;/2 if the point is located at a
smooth boundary and = a function of discontinuity at a corner

and of Poisson’s ratio (Banerjee and Butterfield, 1981)).

For axial symmetry

4(1-v) (P*+7%) = P*| 1
«(a) __
U,.,. = C] { 27'R K (m)




where

(8)

and K(m) and E(7) represent, respectively the complete el-
liptic integrals of the first and second kind. The corresponding

*(a)

terms for the traction fundamental solution P;;*’ can be ob-

tained by the manipulation of the results (4) to (7).

Upon discretization of the boundaries I', into boundary ele-
ments (Figure 3), the integral equation (3) can be represented

in the form of a boundary element matrix equation as follows:

[H(a) H ] [ u® ] [ M@ M) ] [P(") ] (9)
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Figure 3. The boundary element discretization

LA B Cc

o 0 tcruck tip

Figure 4. Detail at the crack tip
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where H’s and M’s are the influence coefficient matrices de-

rived from the integration of the fundamental solutions P;k(a)

and u;,(ca) respectively. In the instance where there is complete

bonding between the fibre-matrix interface we have

(m)

(N =

uy = uy

(10)
PY) = p™=p

Using the above result, the complete matrix equation governing
the fibre composite-crack interaction problem can be expressed

in the form

HO HY o ul)
o = H(m’] o |
u

N
[M(f) MP o ] [P .

P
0o ™M™ M pem)

MODELLING OF CRACK TIP BEHAVIOUR

In the boundary element discretizations discussed in the pre-
vious section, quadratic elements will be employed to model
the boundaries of the matrix and fibre regions. That is, the
variation of the displacements and tractions within an element

can be described by
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u,(-a)

= ag + a;{ + az(? (12)
Pi(a)

where ¢ is the local coordinate of the element and a, (r =
0,1,2) are constants of interpolation. However, in the context
of linear elastic fracture mechanics the stress field at the crack
tip should contribute to a 1/4/r type singularity. In the fi-
nite element technique, the quarter point element of the type
proposed by Henshell and Shaw (1975) and Barsoum (1976)
can be used to model the required /r type variation of the

displacements. That is

ne

=b0+b1\/;+b2r (13)
Pi(a)

if the same type of element is implemented in a boundary el-
ement method. Since the P,-(a) in (13) does not produce a
1/4/r type singularity, Cruse and Wilson (1977) developed the
so-called “singular traction quarter point boundary element”,
where the traction variations in (13) are multiplied by a non-
dimensional \/¢/r where £ is the length of the crack tip element.

The variations of tractions can be expressed in the form

_\c/o_; + o1+ e/ (14)

where b; and ¢; (1 = 0,1,2) are constants. The performance

P =
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of both types of quarter point elements have been studied by
Blandford et al. (1981), Smith and Mason (1982) and Sel-
vadurai and Au (1987,1989) and their accuracy established by

comparison with known exact solutions.

In the crack-fibre interaction problem examined in this pa-
per the axial straining induces a state axial symmetry in the
fibre-matrix composite region. Consequently only the Mode
I and Mode II stress intensity factors are present at the tips
of the penny-shaped crack region (Figure 2). The flaw open-
ing mode stress intensity factor can be evaluated by applying
the displacement correlation method which utilizes the nodal
displacements at four locations A, B, E, D and the crack tip
(Figure 4) i.e.

k@ - __Ga |27

= | 7 @) - wD)] + u(B) - w(4)

(15)

where ko = (3 — 4v,) and £ is the length of the crack tip ele-
ment. Similarly the flaw shearing mode stress intensity factor

can be written in the form

K = s 1)\/% {4 [ur(B) = we(D)] + ur(B) — ue(A)}

(16)
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NUMERICAL RESULTS

Owing to the symmetry of the crack-fibre interaction problem
about the plane z = 0, it is sufficient to consider a bound-
ary element discretization which is restricted to the region
z > 0. The Figure 3 shows the associated boundary element
discretization. The matrix region is modelled as a region of in-
finite extent. The accuracy of the boundary element modelling
has been verified by comparison with exact analytical solution
to the problem of a penny-shaped crack located in an isotropic
elastic medium which is subjected to a uniaxial state of stress
0o (Sneddon, 1946). In this case, the flaw opening mode stress

intensity factor is given by

Ky = 200vC (17)

™

where c is the radius of the penny-shaped crack. The boundary
element scheme provides numerical estimates for this stress

intensity factor to within an accuracy of 5 percent.

In the numerical evaluation of the stress intensity factors at the
extremities of the end cracks a number of factors need to be
taken into consideration. These include (i) the length/diameter
ratio of the elastic fibre (h/a), (ii) the radius of the crack in
relation to the radius of the fibre (¢/a), (iii) Poisson’s ratios
of the matrix and fibre materials (v,,,v;) and (iv) the modu-
lar ratio of the fibre in relation to the matrix (E;/E,). For

purposes of illustration, these non-dimensional parameters are
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assigned the following explicit or range of values; (h/a)e(3,10);
(c/a)e(1.5,3.0); vy = vy, = 0.2; (E4/En) e(1,10%).

The Figures 5, 6 and 7 illustrate the variations in which the
flaw opening mode stress intensity factor at the crack tip. From
the results given in Figure 7, it becomes evident that as the
modular ratio E;/E,, — 1, ¢/a > 1 and when h/a > 10, the
interaction between the cracks at the extremities of the fibre
inclusion is less significant and we obtain from the numeri-
cal results, the relevant stress intensity factor for the classical
problem of a penny-shaped crack in an elastic solid of infinite
extent. As h/a becomes small (in the range 3 to 5) the inter-
action between the cracks influences the result for K; even for
the case when (Ef/E,) — 1 and (¢/a) > 1. The results of
the numerical investigations also indicate that an increase in
the modular ratio E;/E,, has the effects of amplifying the flaw
opening mode stress intensity factor at the crack tip. This am-
plification becomes particularly significant as (h/a) increases

and as (¢/a) — 1.

The Figures 8, 9 and 10 illustrate the manner in which the
flaw shearing mode stress intensity factor K is influenced by
the geometric and material parameters indicated previously.
It is evident that the flaw shearing or mode II stress intensity
factor is considerably smaller than the corresponding mode I
stress intensity factor. The effects of mode II stress intensity

factor become appreciable only as (E;/E,) — 1. For values

of (E;/E,,) > 10%, the stiffness of the cylindrical inclusion is
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Figure 5. Mode I stress intensity factor at the crack tip
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Figure 6. Mode I stress intensity factor at the crack tip
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Figure 7. Mode I stress intensity factor at the crack tip
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Figure (8. Mode II stress intensity factor at the crack tip
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Figure 9. Mode II stress intensity factor at the crack tip
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Figure 10. Mode II stress intensity factor at the crack tip
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sufficient to suppress the flaw shearing mode for all choices of

(h/a) and (c/a).
DISCUSSION

This paper presents a boundary element approach to the study
of elastostatic interaction between a reinforcing fibre inclu-
sion and penny-shaped cracks which are developed at its plane
ends. The analysis focusses on the idealized situation where
two penny-shaped cracks are located symmetrically at the ends
of the cylindrical fibre inclusion. The boundary element formu-
lation accounts for elasticity mismatch between the fibre and
the matrix and other parameters which relate to the geomet-
ric aspect ratio of the inclusion and that of the crack. The
boundary element scheme accounts for the stress singularity
that is present in a crack located in a homogeneous solid. It
is shown that both the flaw opening and flaw shearing mode
stress intensity factors are considerably influenced by the elas-
ticity mismatch between the fibre and the matrix and the ge-
ometry parameters. In the special case where the crack reduces
to a delamination region at the plane ends of the cylindrical in-
clusion, the crack tip is located at the junction of a bi-material
elastic region. Any stress singularities that are computed via
the current scheme will give only approximate estimates for the
oscillatory stress singularities that can occur at a crack tip lo-
cated at the junction of a bi-material region (Atkinson, 1979).
In such situations the boundary element procedure needs to be

modified to account for the oscillatory phenomena (see e.g., Lee
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and Choi, 1988; Yuuki and Cho, 1988,1989). Similar consider-
ations apply for situations where the debonding at the plane
ends is restricted to a limited region within the cross sectional

area of the fibre.
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Abstract

A polycrystalline material is considered, in which any individual crystal
deforms by slip on a set of crystallographic slip systems. The rate of shear
on any one system is assumed to be a function of the resolved shear stress on
that system. A power law is used for illustration and this allows the overall
stress-strain-rate behaviour to be defined in terms of a characterizing stress
7o. Elementary bounds, corresponding to the Voigt and Reuss bounds of
linear elasticity, are easy to generate for 7, and are displayed. The main
result, however, is the development of a new upper bound for 7, which
corresponds to the Hashin-Shtrikman upper bound in the linear case. The
derivation makes use of elementary results from convex analysis.

1. Introduction

During the course of work directed mainly towards finding self-
consistent estimates for the overall creep behaviour of cubic polycrystals,
Hutchinson (1976) also presented some elementary bounds, analogous to the
Voigt and Reuss bounds of linear elasticity. The self-consistent method
involves an approximation and so, in a sense, the elementary bounds represent
the only mathematically rigorous information that is available for the polycry-
stals considered by Hutchinson. The present work is devoted to the develop-
ment of new bounds, of Hashin-Shtrikman type, for the overall strain-rate
potential of polycrystals. The formalism allows for single-crystal behaviour
more general than that assumed by Hutchinson (1976) and the polycrystal
itself could display texture. Detailed results, however, are presented here for
precisely the type of polycrystal considered by Hutchinson. For these, single
crystal behaviour is modelled as pure power-law creep on crystallographic
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slip systems, the polycrystal is taken as isotropic (with all crystallite orienta-
tions equally likely) and the relation between rate of shear and resolved shear
stress is taken as the same for each slip system of the same crystallographic
type. Implementation of the self-consistent method is easier for uniaxial load-
ing than for general loading and Hutchinson’s self-consistent results were res-
tricted to this case. In contrast, the present bound can be calculated for any
loading and a complete (upper bound) characterization of the polycrystal’s
response is obtained. The elementary (Voigt-type) upper bound follows
directly from the present formalism as a limiting case and is presented, again
for any loading, for comparison. Also, for completeness, the elementary
lower bound (of Reuss type) is calculated for any loading.

2. General framework

The polycrystals to be considered fall within a general class of compo-
site materials, with n distinct constituents firmly bonded across interfaces (the
possibility n — o being included). Material of type r has constitutive rela-
tion

JF,
gj = - (2.1a)
30,7
in suffix notation or, symbolically,
e=F) o) . (2.1b)

In equations (2.1), ¢ is the Eulerian strain-rate tensor and o is Cauchy stress.
The function F, is the strain-rate potential for material of type r; it is a func-
tion of the current stress o (with respect to which it is differentiated in equa-
tions (2.1)) but it may also (in general) depend on the history of stress and
deformation. In any event, F, is taken to be a convex function of o (Rice
1971, Mandel 1972).

The composite material is heterogeneous, with creep potential F(o, x),
given by

F(o,0) = Z F0) (D) 22)

where f, is the characteristic function of the region occupied by material r
and is zero otherwise.

The overall creep potential F(&) of the composite is defined as the
mean value of F(a, x), when the composite is subjected to boundary veloci-
ties
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vi=Ejx , x€N . 2.3)

Here, the composite is taken to occupy a domain Q and £ is a constant ten-
sor. The average value of the stress o over Q is denoted by & and £ is
chosen to generate a prescribed value for 6. Then, as discussed by Willis
(1989), F(5) is given precisely by

F(5)=inf [ F(o,x) dx , 4

the infimum being taken over stress fields o which have zero divergence and
whose mean value over Q is 6. In (2.4), units are chosen, for convenience,
so that Q has unit volume. Of course, for a composite, Q should be chosen
to be at least as large as a ‘representative volume element’, for which
response to any ‘macroscopically uniform’ boundary condition should be the
same: thus, in particular, the alternative boundary condition

O';j n,~ = 5., n,- , X E€E Q (25)
should lead to the same overall response, to whatever accuracy is specified,
though (2.4) in fact always yields the smallest F(5).

An elementary upper bound for F(&) follows directly by substituting
the admissible stress o = & into the integral in (2.4):

F@ <[ F@ x)dx . 2.6)

This is the analogue of the Reuss bound of linear elasticity; it is discussed
further in Section 6.

A family of lower bounds is now developed, following Willis (1983,
1986), Talbot and Willis (1985, 1987) and Ponte Castafleda and Willis
(1988), by introducing a function Fy(o) and defining

V(n, x) = sup {o*n — F(0, x) + Fo(0)} . )

It follows that
F(o,x) 2 a°n + Fo(0) - V(n, x) 28

and hence that

F(&) 2 inf jn [o°n + Fo(0) - V(n, x)] dx (2.9)
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the infimum being taken over stress fields o that are admissible for (2.4), for
any 1.

The infimum in (2.9) is easily calculated (at least formally) if F, is
chosen to be quadratic:

Fo(o) =4 o°Myo (2.10)

where M, is a fourth-order ‘tensor of compliances’. The infimum is then
attained when

c=5-An , (2.11)

where A is a linear operator, related to the Green’s function for a linear ‘com-
parison medium’ with tensor of compliances M, (Willis, 1981). Employing
(2.11) in (2.9) then gives

F(a) 2 jn (6°n — nAn + kn-AMyAn — G-An + Fo(6) — V(n, x)) dx
or, upon using the identities

J’nAndx=0 and AMpA = A

F(@) 2 jn (G'n -3 n°An - V(n, x)) dx + } 5-My5 . (2.12)

In the case that each F, is a quadratic function of o, (2.12) is one of
the bounds, for linearly elastic behaviour, of Hashin and Shtrikman (1962);
the general case of convex functions F, was developed by Willis (1983,
1986) and Talbot and Willis (1985).

Reverting explicitly to the form (2.2) for F(o, x),
V(n, x) = ’El Vi(n) fr(x) (2.13)

with V, related to F, in the obvious way, and n(x) is now chosen to have the
special form

109 = 2 i) @14

with 7, constants. The bound (2.12) then takes the form
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F(8) 2Z ¢ (G0, ~ 4 Z e, Batle = Vi(n,)) + 3 5MoT

(2.15)
where
& = o £r(0) dx 2.16)
is the volume fraction of material r and B,, is defined so that
c,Cs B,y = In fAf,) dx (no summation on r, 5) . 2.17)
The bound (2.15) is optimized by choosing 7, so that
V,'(n,)+};'.c_,B,, ne=06,r=1,2,",n. (2.18)
It may be noted that
e By = [Afdx=0 ,
from (2.17), since E f,(x) = 1. Therefore, equations (2.18) imply that
Zc, Vin) =3 , (2.19)

exactly.

The above discussion has assumed, implicitly, that V,(n) < e (other-
wise, the inequality (2.15) is true but trivial). It has thus been assumed,
implicitly, that each F, grows at least quadratically when o is large: this will
be the case in all of the examples considered. Now define

o, = V,(n,) (2.20)
and note that V, is the convex dual of F, — Fy:
V, = (F, - Fp)" . (21

It follows (see, for example, Van Tiel, 1984) that
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n, = V;'(6,) = (F, — Fo)"'(o,)
Then, if F, is defined so that
F,=(F, - F)" +Fy , (222)
equations (2.18) can be replaced by

6, + X ¢, B, (F.(0,) - Myo,) = G (2.23)

and the optimal bound corresponding to (2.15) is

F@) 2ZX¢c, (3(3 - 6,)F (0, + F/(0,)} . (2.24)

It may be noted that the inequality F, > F, follows directly from (2.22) and
that (2.23) also provides a bound for a composite whose rth phase has creep
potential F, (o).

If F, is replaced by F, in (2.23) and (2.24), the right side of (2.24) pro-
vides a variational approximation to F() but it is only a bound if F, = F,
in a neighbourhood of o, , for each r.

So far, no assumption has been made concerning the geometrical
arrangement of the composite. When, however, the constituents are arranged
in a manner that is statistically uniform and isotropic, it can be deduced
(Willis, 1981) that

C, rs = Q(‘s - C,) ’ (225)

for some constant tensor Q that depends only on M,. Then, equations (2.23)
reduce to

o, + QIF,(0,) - Mo0,] = G + Q Z¢,[F(0,) - Myo,] . (226)

The tensor Q can be given explicitly if M, is chosen to correspond to
an isotropic ‘comparison medium’, with bulk modulus K, and shear modulus
Ho. Then, using the symbolic notation of Hill (1965), so that

M, =

1 1
_—, — , 2.27
3K, 29 ] @27)
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and the general relation (Willis, 1981)

Q=Ly-LoPLy ,

with
p= 1 3(Ko + 240)
3Ko + 4o’ Suo(3Ko +4po) |
gives
12K, 2u0(9K, + 8
0-= oMo ’ #0(9Ko + 810) 2.28)
3Ko + 4y, 5(3Ko + 4#0)

Specializing further, to incompressible behaviour, so that each F, is
independent of hydrostatic stress and Ky, — oo, (2.27) reduces to

1
M, ~ — 2.29
0 0’ 2#0 ] ( )
while (2.28) gives
6u
Q- [4#0 : T°] : (2.30)

In this case, equations (2.26) can be restricted, without loss, to a ‘shear stress
subspace’ in which hydrostatic stress is zero. Restricted to this subspace,
M, and Q become, respectively, 1/2 4y and 6uo/5 times the identity and equa-
tions (2.26) become

6, + 3y Fi(0,) =G + 3po L ¢, F.(o,) . (2:31)

It should be noted that, although M, has been taken as isotropic and the
geometry of the composite has been assumed isotropic, no assumption of iso-
tropy has been made for F, , and the composite may still display overall
anisotropy through possession of texture. The variable o, has been intro-
duced, purely mathematically, through (2.20), but it can be regarded as an
approximation to the mean stress in material r, (2.19) guaranteeing that the
variables o, have the correct mean value 6. The ‘primary’ field n(x) was
taken as piecewise constant but there is no corresponding implication that the
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stress field, given by (2.11), is piecewise constant.

Before concluding this general development, it is noted that V,(n,) is
always well-defined if My = 0, and then F, = F, identically. For incompres-
sible and isotropic M,, this corresponds to uy — oo which implies, for (2.31),
the limiting form

F,(0,) =& with £¢,0,=07 , (2.32)

for some constant tensor £. Equations (2.32) generate the ‘Taylor approxima-
tion’, in which a uniform strain-rate £ is imposed upon the entire composite
(Taylor, 1938). It generates a bound analogous to the Voigt bound of linear
elasticity.

3. The polycrystal

The polycrystalline aggregate is assumed to be composed of crystallites,
each described by the same strain-rate potential F.(o), relative to crystallo-
graphic axes. The constituent r is characterized by the rotation R, that takes
its crystallographic axes to their correct orientation, from some reference
orientation. Thus,

F,(o) = F, (R;l 0') ’ 3.

where R;! o represents the operation of the rotation inverse to R, on g. In
standard tensor notation, this would become RT o R, , the superscript T
denoting transpose but the given form is preferred, in preparation for employ-
ing a matrix notation in which o is represented as a vector in a space of 6
dimensions (or 5 when restricted to the ‘shear stress space’).

The texture of the polycrystal is defined, within this framework, by the
distribution of orientations R,. It has no texture, and so is isotropic, if
n — oo and all rotations are equally likely (though overall isotropic behaviour
could conceivably be achieved with » finite). The behaviour of each crystal-
lite is defined by the function F.(c); this is discussed next.

It is supposed that any crystallite deforms by slip on a discrete number
of slip systems, with system k characterized by a slip plane with normal n‘®
and a direction of slip m‘® in the slip plane; m and n® are taken as unit
vectors. The system is specified by the second-order tensor

uP =3 (m®n® + mBafRy (32)

In terms of @, the resolved shear stress on the kth system is
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t® = geou® | 3.3)

If y® denotes the shear strain-rate (engineering definition) associated with
the kth system, then

€= )E y®y® 34)

It is supposed that ¥ depends on stress only through 7®, so that
y® = FP'(z®) (3.5

for some convex function F{¥; in practice, F{¥ will usually be taken to be

az® n+l

n+1

=
2P

F®(r) = , (3.6)

corresponding to the power-law behaviour

TGN i
* — r r
Pl m [13”] . X))
It follows now that
F (o) = §F Bz By 3.8

or, in the case of power-law behaviour,

+1
7 [

oo (39)

Fo)= o7

As noted by Hutchinson (1976), the form (3.9) has several attractive features,
stemming from its homogeneity. In particular, if the single-crystal constitu-
tive law is written in the form

e=F.(0)=M. o (3.10)

(in which the fourth-order tensor M, depends on o), then for (3.9),
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n—1
(Mdjpg = 2 (@) [0 fef2 ™ uf® up 1y
and also
M), = i 3.12
(“f“'naa,-,aa,,,, (3.12)

This concludes the general discussion of the polycrystal, except for not-
ing that if, in line with (3.10), material with the modified creep potential F, is
considered to have constitutive relation

e=F(o)=M o , (3.13)

then equations (2.31) can be expressed in the form

1 — — —
—1I+M,|0,=€, Xco0,=0 , 3.14
[3#0 ] 619

€ being fixed by the second of equations (3.14). The equations remain non-
linear because M, depends on o,. The limiting case u; — oo, corresponding
to (2.32), becomes simply

Mo, =g, Zco0,=0 , (3.15)

where F,(c) = M, o .
If matrix notation is employed, then from (3.1),

M, = R, M.(R;'o,) RS, (3.16)

which shows explicitly how M, may be calculated from M,. When F is iso-
tropic, a corresponding relation exists between M, and M., defined from the
modified single-crystal potential

F,=(F, - Fp)" +Fy . (3.17)

4. A relaxation of the problem

A practical difficulty with the formulation presented so far is that find-
ing the potential F,, defined by (3.17), requires a substantial computation.
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This is circumvented by introducing the auxiliary quadratic potential

Fio) =ZFP®) (CBY
where
+® |2
FP® = 4a +f" ey I @2)

corresponding to (3.8), ( 3.9) with n = 1. Then, ﬁ,(a) is defined so that
F(o)=F.(R o) . @3)
Now

F(0) =X [FP(E®) - FP®)] + F(0)
2L (FP - FP)"(¥) + F(o) “4)

because F** < F for any function F. Hence, if F,(o) is defined as

(0) =X (F®P — FOY"(z®) + F(0) , @5)

potentials P=’,(a) are given by
F.(0) = F.(R o) @6)

and, for any given isotropic F, the constant a in the definition (4.2) of f,_. is
chosen so that the quadratic function F, — F is convex, it follows that

F,(0) 2 F(0) @7
and

(F, - Fo)" =F, - F, . 4.8)
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The inequality (4.7) ensures that (&) is bounded below by the overall poten-
tial of a composite whose rth phase has potential F,(o) and this, in turn, is
bounded below by (2. 24), with o, defined by (2.23), except that in both of
these F, is replaced by F,. The introduction of F, renders the mequallty less
sharp but it has the advantage that the functions (F(") F®)** depend only
on a single variable and can be calculated explicitly. In fact, when F®(r)
has the power-law form (3.6),

(F® — F®Y* (1) = F®(5)) - F® (), el < 7

=F®() - F®P@) , |4 27 , 4.9)
where

7 = P (ala)*D (4.10)

5. Untextured polycrystals

The overall potential (&) of an untextured polycrystal is isotropic and
hence is a symmetric function of the three principal average stresses,
o, , 0 , 03 say. Equivalently, it is a function of the invariants

1 ,_ — —
6,.=§(61+02+63) ,

5o = (3 (@1 - 5ul + (02— 0P + (03 — G2
7= (2 (5 - 505, - a5 - G (5.1)

The first invariant, &,,, is the mean normal stress. The second, &,, is the
equivalent stress, equal to ;3 when &, = g, = 0 and the third, 7, indicates
the state of stress: |7] < a,, with equality when the stress is uniaxial, and
7 = 0 for pure shear when, for example, 6, = —63 and o, = 0.

The polycrystals under consideration are incompressible and so
independent of G,; there is no loss of generality, therefore, in considering
only states of stress for which &, = 0. The stresses &, and &; may then be
represented in the form

01 = 0O, [cosﬁ+w-] ,



5, = &, [cos g - 3‘%—/’] , 62)
in terms of which
T=a, {cos B 3 —4cos?B)}P . (5.3)

Thus, | 7]/, ranges from 1 to 0 as B ranges from O to /6.

In the particular case of pure power-law (and incompressible)
behaviour, F (o) becomes a homogeneous function of o, and 7 only and can
be expressed, fully generally, in the form

a? a n+l
F(5) = —> [——] , (5.4)

n+l |7,

in which the ‘normalizing stress’ 7, is a function of (?/E,) only. For any
chosen value of (?/&,) or, equivalently, any chosen B, the lower bound (2.24)
for F() can be translated into an upper bound for 7.

6. Cubic Polycrystals

The remainder of this section is devoted to the study of f.c.c. polycry-
stals, for which each crystallite has four slip planes of the (1, 1, 1) type and
three slip directions per plane, of the (1, 1, 0) type, giving 12 slip systems in
all. Power-law behaviour, as given in (3.9), will be assumed and the normal-
izing stress 7§*) will be taken as the same for each system, so that 7§ = 7, ,
say.

6.1 Elementary bounds

The simplest bound for F(3) is the upper bound given by (2.6). All
twelve slip systems contribute equally to the bound, so that

n+l
%‘(1)

F@) <
(o) o

7o { , 6.1)

n+1

the angled bracket here representing an average over all orientations of the
slip system k = 1. The ‘reference’ orientation can be chosen so that, at this
orientation,

m® =(1,0,0) and n® = (0,0, 1)
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Then, at a general orientation characterized by the Euler angles (@, 6, y),

m®M=(cos ¢ cos y - sin @ cos O sin y, - sin ¢ cos y — cos @ cos O sin y,

sin 0 sin y)

and

n® = (sin ¢ sin 0, cos @ sin 6, cos 6) .
The resolved average shear stress T is &; m{" n{¥ + G; m{ nf" , i.e.
T = &, (cos @ cos y — sin ¢ cos O sin ) sin @ sin 6 + &, sin O sin y cos 0

and (6.1) requires the calculation of
1 =% =2 . =)
J,—Z—n—z—fo do [~ dy [~ sin@de |tV 62)

with &; , G3 given by (5.2). The bound (6.1) can then be translated into a
lower bound for the normalizing stress T :

T/t 2 2,y ", (6.3)

where J, is evaluated with G, set equal to 1.

An clementary lower bound for (&), which induces an upper bound
for 1o, is obtained by solving equations (3.15) and substituting the solution
into (2.24), with My, = 0 so that F, = F,. As the form of (3.15) shows, this
bound is analogous to the Voigt bound of linear elasticity; in the context of
plasticity it is often called the Taylor bound and this terminology will be used
here. Although equations (3.15) have a solution, it is worth noting that the
tensor M,(c) can become singular for some stresses 6. This is because any
three tensors pn‘® associated with the same normal n are linearly dependent,
so there exist at most 8 linearly independent p‘®. If, now, s is an eigenvec-
tor of M,(c) with zero eigenvalue,

n~1

12 k),
M.(0)s = 0 implies oty £ J‘T—" (u®5) u® =0 ,
= 0

which can be satisfied if

either W+ = 0 or p¥+s = 0 for each k.
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This is possible since (disregarding hydrostatic stress) o and s each have 5
independent components and there are only 8 linearly independent u‘®). The
same argument applies to M,, which is obtained from M, by a rotation. It
was still possible, nevertheless, to obtain a solution of equations (3.15) by
Newton iteration, which is described more generally below.

6.2 The new bound

Improved lower bounds for (&), which induce corresponding upper
bounds for 7, follow by solving equations (3.14), but with F, replaced by F,
as given by (4.5), (4.6), and with the pair of constants a , g restricted so
that F, — F, is convex. For the cubic polycrystal, this implies

dpga 23 . (64)

In practice, the best bound is obtained by taking equality in (6.4), and a and
Ho were expressed in terms of the parameter 7,, through equation (4.10), with
each 7® equal to 7,. Equations (3.14) were solved by the Newton iteration
scheme

-1
l = r” = ” = ’
o, + AO', = {3#0 I+ Fr (0',)} Fr (O’,) Oy — Fr (O',)

1 - -17-1
+ |Z¢g {=— I + F,” (0,

= -1 = =
o-X¢ {?:7; I+ E" (ot)} {Fr" (6)) 0, - F/’ (Ut)}

t

6.5)

In the Taylor limit, g — oo, l?, — F, and the homogeneity of F, reduces
6.5 to

-1

-1
o, + A, = [" ] o, + % M [z, ¢, M,“] G. (6.6)

6.3 Results

Figure 1 shows plots of three bounds for the ratio ?0/10, against l/n,
for a loading pattern corresponding to uniaxial tension, so that 8 = 0 in (5.2)
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Plots (in ascending order) of the elementary lower bound, the new bound
and the Taylor bound, for ?o/ 79, against 1/n, for an untextured polycry-
stal subjected to uniaxial overall stress.
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Plots of the new bound for '?0/ 7o against the stress state parameter ‘?/ G.,
for n=1, 2,4, 8. The lowest curve corresponds to # = 1 and they
increase with n.
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(though other values of B also yield ‘?/6, = (). The lowest curve corresponds
to the lower bound (6.3) and the highest is the Taylor bound. The intermedi-
ate curve is a new upper bound, obtained as described above but with the
parameter 7; chosen optimally. The bound is relatively insensitive to the pre-
cise value of 7,, which varied between about 0.125 (for n = 2) and 0.14 (for
n = 8). The curves shown were actually calculated for a polycrystal with 125
different crystal orientations; the precise value of 7, would depend on these
also. In the linear case (n = 1), the bound reduces to the Hashin-Shtrikman
value 43/28. It always lies slightly above the self-consistent estimate of
Hutchinson (1976) and tends to the Taylor bound at large n.

An advantage of the present calculation over that of Hutchinson (1976)
is that equations (3.14) can be solved for any pattern of loading, correspond-
ing to any value of |7]/5, between 0 and 1. Figure 2 shows plots of the new
bound, for 7p/to, against the parameter |7]/G,, for the four values
n=1,2,4,8. They were obtained by varying § between 0 and 7r/6. The
lowest curve is for n = 1 and shows no sensitivity to stress state, as expected.
Higher curves correspond to increasing values of n and show some sensitivity,
though still not much, It is emphasised that the curves provide only bounds
but they nevertheless suggest that overall behaviour is reasonably well
approximated by the form (5.4), with 7, taken independent of stress. Figures
corresponding to Fig. 1 have been generated for values of S other than zero
but, as Fig. 2 suggests, they look very much like Fig. 1.

The present formalism is also capable of generating bounds for the
behaviour of polycrystals displaying texture. The simplest possibility is to
solve equations (3.14), with volume fractions ¢, giving different weight to
different orientations; a further possibility is to relax the assumption of
‘geometrical isotropy’ and to generate different tensors B,; from their basic
definition (2.17). These options are being pursued at present.
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R.A. Schapery*
Civil Engineering Department
Texas A&M University
College Station, TX 77843

ABSTRACT

Some analytical results for the mechanical behavior
of elastic composite materials and structures with
growing damage are summarized and then extended to
viscoelastic media. The effect of strain rate only at
crack tips is considered first; it is shown that if the
crack speed is a strong function of energy release rate,
the overall mechanical response is 1like that for an
aging elastic material. Both stable crack growth and
unstable crack growth followed by arrest produce this
aging-like behavior. Viscoelastic behavior throughout
one or more of the phases is then introduced. A
simplification is wused in which only one relaxation
modulus characterizes the viscoelasticity, apart from
that at crack tips. Upon replacing the physical
displacements in the response for an elastic material by
quantities called pseudo displacements, a simple model
for viscoelastic composites with growing damage is
obtained.
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1. Introduction

The problem of developing a realistic mathematical
model of the mechanical behavior of viscoelastic
composites with growing damage 1is a difficult one.
However, it is believed that considerable simplification
may be introduced 1in the description of both the
intrinsic viscoelastic behavior and the damage, while
retaining the essential elements needed for a realistic
description of deformation and fracture behavior of many
composites of engineering interest. The emphasis of
this paper is on simplifications which appear to be
applicable at least to particle and fiber reinforced
polymers when the matrix is soft relative to the
particles or fibers. The underlying model for elastic
behavior with damage is not restricted in this way.

We shall not give a general review of the
literature in this area; but, instead, contributions of
the author and coworkers on the issue of simplification
are emphasized. For a broader view of the subject, the
reader is referred to work by Onat and Leckie (1988) and
Weitsman (1988), where a tensorial description of damage
is addressed. The state variables used in the present
paper to characterize global deformation and the damage
may be scalars or tensors, but there is no need here to
identify them as such. Work on a nonlinear viscoelastic
composite-like material, polycrystalline ice, is
relevent to the present work. For some studies which
address both viscoelasticity and damage growth see
Harper (1986, 1989), Karr and Choi (1989), Schapery
(1989) and Sjolind (1987).

The present discussion is based in-part on results
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from Schapery (1990), as summarized in Section 2 where
elastic behavior with damage growth is covered. In
Sections 3 and 4 we fill in some of the details
concerning effects of growing cracks which were only
touched upon by Schapery (1990). In addition, some new
results are obtained for the case of a body with
distributed cracks which become unstable, grow
dynamically, and then are arrested. Rate effects at
crack tips only are considered in Sections 3 and 4,
while simultaneous effects of global and crack-tip
viscoelasticity are discussed in Section 5.

2. Elastic Behavior with Damage Growth

Some of the vresults from Schapery(1990) are
collected in this section. We consider an elastic
structure or material whose thermodynamic state is a
function of independent generalized displacements qj(j =
1,2,...J) and internal state variables Sy(m = 1,2,...M)
as well as temperature or entropy; inelastic behavior
arises from changes in the Sm. Generalized forces Qj
are defined in the usual way in that

SW' = deqj (j not summed) (1)

for each virtual displacement sqj, where 6W' is the
virtual work. Then, from thermodynamics

sz BW/BQJ- (2)

where W is the Helmholtz free energy (when temperature
is used as an independent state variable) or the
internal energy (when entropy, instead of temperature,
is an independent variable). For brevity, thermal
effects will not be considered here, and therefore we
shall refer to W simply as the strain energy. The
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generalized displacements qj may be, fcr example, the
uniform strains in a material element and Qj the
conjugate stresses, or q3 and Qj may be, respectively,
the displacements and forces applied to a structure.

The internal state variables serve here to define
changes in the structure such as micro- or macro-
cracking, and are called structural parameters.

Whenever any one $m¢0, we specify as the evolution law,
fo= aws/asm (3)

where Wg = W (Sp) is a state function of one or more Sp;
also, fm is the thermodynamic force,

fo= -BN/BSm (4)

The left side of equation (3) is the available force for
producing changes in Sy, while the right side is the
required force. For any specific set of processes (i.e.
histories qj(t)), equation (3) may not be satisfied for
all M of the parameters; if it is not, those S, will be
constant. The subscript r or p will henceforth be used
in place of m to designate the parameters that change,
which are taken to be R in number.

The total work done on the body by Qj during an
actual process (i.e., a process for which parameters
change 1in accordance with equation (3)), starting at
some reference state, is denoted by Wr,

NTE [ deqj (5)

where the summation convention for repeated indices is
used. From equations (2)-(5) we find

W= W+ W (6)

I

where W = wS = 0 in the reference state. Thus, ws may
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be interpreted as that portion of the total work Wy
which contributes to changes in the structure.

The second 1law of thermodynamics provides an
inequality as a constraint on the changes in state,

o

NS= TS'"20 (7)
where T is absolute temperature and S' is the entropy
production rate. Even if equation (3) is satisfied for

any one S this inequality may not allow it to

re
change. Moreover, instantaneous values of the S, are
such that they minimize the total work when the body

passes through stable states; i.e.,
awT/aSr= 0 (8)
2
(a NT/aSraSp)ssraSp >0 (9)

It is observed that equation (3) represents R
equations for finding the Sr as functions of qj. Then,
Wp = NT(qj,Sr(qj),Sq) where the Sq are the constant
parameters. From equation (5),

QJ'=

showing that the body exhibits hyperelastic behavior

awT/aqj (10)

during the time any particular set of parameters Sy
undergoes change. Because the total work is a potential
during inelastic processes, the incremental stiffness
matrix is symmetric. Conversely, given that the
stiffness matrix 1is symmetric when one or more Sr
change, then both equations (3) and (10) follow.

If forces act on crack faces then they have to be
included in the set Qj unless they are associated with
frictionless contact; in the latter case, the effect of
crack opening and closing may be taken into account
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through the form of the strain energy function. Coulomb
friction, if significant, cannot be accounted for
through a work potential, and therefore the stiffness
matrix is not necessarily symmetric during processes
involving crack face sliding. If, however, one can use
a potential to characterize the relationship between
crack-face forces and relative displacements between
crack faces, equation (10) may be extended to this case
by including this potential (which may depend on
additional structural parameters) in W3 such a
simplification is applicable with surface free-energy
effects (Schapery, 1990) and was proposed by Schapery
(1989) to account for crack-face friction in ice under
compression.

3. Rate Effects at the Crack Tip

Here we provide the background to Section 4; in
that section it is shown that a familiar equation for
crack speed, discussed next, leads to equation (3) as an
approximation.

Suppose that the 1local crack tip speed a (at an
arbitrary point on the crack edge) obeys a power law in
local energy release rate G,

8=ka (11)

where, for now, we assume q is a positive constant;
also, G = -aﬂ/aA where ﬂ is the strain energy of a body
with one or more cracks less the surface free energy,
and 3A 1is an increment in crack surface area. The
surface free energy 1is usually negligible (which we
assume here) so that W=W. The coefficient k may
change with time for various reasons, including



199

transient temperatures, material aging, and mode-ratio
effects; if the latter exist, we assume the mode ratio
is constant. It will be helpful to write k = cqkq,
where c; is a positive dimensionless function of time
and k; is a positive constant which has dimensions
appropriate for the units used in equation (11). Now,
integrate equation (11) with respect to time and then

take its qth root,
1/q _ 1/q
where Aa = a-a,, d, is the crack size at t=0, and
£
L = [ 6ddg'] 1/ (13)
)
is the so-called Lebesgue norm of G; also,
t
£ = ] cq(t')dt! (14)
0

is reduced time.

If q=w, then Lg = Gz’ where G2 is the largest
value of G up to and including the current time (Reddy
and Rasmussen, 1982). For many materials 0<<q <, which
leads to an approximation for Lg which is practically as
simple as for q = «. Consider first the case of power-

law reduced-time dependence G -~ gp where p > 0. Then,

Le= kpe'/% (15)

in which sz (0q + 1)-l/q (16)
The accuracy of equation (15) was studied by Schapery
(1982) (using pseudo strain rather than energy release
rate as the argument of the Lebesgue norm) for cases in
which the argument was a nondecreasing function of ¢,
not necessarily a power law. In terms of G used here,
let us define p as a logarithmic derivative,
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p = g—%gg—% (17)
where p > 0. With q > 4, good agreement was reported
between equation (15) and the value of Lg found by
numerical integration for a variety of histories with
p=np(e). If q is large or p is not strongly time
dependent, then k, may be taken as a constant, which we
shall do here; however, even if p is negative or k, is
not constant, approximations like that in equation (15)
can be developed, and they are useful in view of
numerical integration difficulties encounted when g>>1
(Schapery, 1982).
Use of equation (15) in (12) yields

G = (Aa/&)l/q/kzkll/q (18a)

which replaces equation (11) as the means for predicting
crack growth. The left side is the available work/area
for crack growth; therefore the right side may be
interpreted as the required work. Equation (18a) is
like the crack growth equation for a brittle elastic
material, where the right side is the critical fracture
energy, say Gc' However, in contrast to brittle elastic
behavior, G. here varies with crack growth and time.

That the Lebesgue norm depends primarily on the
current value of G when g>>1, rather than its entire
history of variation, is obviously due to the integrand
(G9) being a strongly increasing function of G and the
assumption dG/dg¢ > 0. Thus, even when the power law
equation (11) is not applicable we expect to be able to
use a crack growth law of the type

6 = 6 (sa/) (18b)
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to predict instantaneous values of aa. One may arrive
at equation (18b) directly by starting with

a = kf(G) (19a)

where k 1is such that f(1) = 1. The form of equation
(11) results by using the exponent

q = log f/log G (19b)

(Alternatively, one could define g as a logarithmic
derivative instead of a ratio.) Then, if ¢>>1 and
G >0 it is anticipated that equation (18a) will be a
good approximation, although its accuracy has not yet
been studied. As g is now a function of G, one needs to
solve for G; this yields equation (18b), in which Gc is
not necessarily a power law in aa/g.

Another generalization of interest is for cyclic
loading when the basic growth law is 1ike equation (11)
or (19), but a and G are replaced by da/dN and the
maximum value of G over a cycle, respectively.
Obviously, the above results may be used in this case,
but a reduced time based on N, rather than t, enters.
With a small modification one may also treat in the same
way the case where the amplitude of variation of G over
a cycle is used in place of the maximum G (Schapery,
1990).

It should be observed that when G < G2 and g>>1
then Ly, equation (13), is practically constant if the
time period for which G < G2 is not extremely Tlong.
This implies & = O constant and from (15) that

- 1/
Lg= ko8, "Gy (20)

where £, is the reduced time at which G first drops
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below the largest value Gz‘ This behavior is taken into
account in the elastic-like model if we assume 3 = 0
when G < G., where G = GC(Aa/El)' If G later increases

to Gz’ say at time £ then Gc again varies as in
equation (18); but ¢ should be replaced by g—(gL- 51)
for continuity of GC. In some cases, such as for cyclic
loading, it may be necessary to account for
contributions to LG when G is close to Gl by modifying
equation (15) (Schapery, 1982).

In arriving at equation (18) it was not necessary
to specify explicitly the manner in which G varys with
loading or with geometry of the one or more cracks that
may exist. However, this variation certainly will
affect the time-dependence of crack growth and thus
determine the accuracy of equation (18) and whether or
not a physically acceptable solution aa exists. In
order to illustrate this point, let us consider two
special cases before discussing the connection between
equations (3) and (18).

First, observe that if the energy release rate is
constant in time, equation (18) 1is an exact result.
This situation exists for some elementary delamination
and transverse microcracking problems in Taminates when
the applied displacement 1is constant. A second more
interesting case is that for which

6 = a6, (21)

where G; is a function of only the applied loads or
displacements; this form may be derived by dimensional
analysis for a linear or nonlinear homogeneous body with
an isolated, penny-shaped crack of radius a or straight-
edged, through-the-thickness crack of length a.
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Equation (18a) then can be written as

Yaq,, _ 1/q
. (a - ao) /a = kZ(klg) Gl (22)
If Glz 0 this equation predicts that ais a positive
function of ¢ for 0<g<gf, where
- g-1 q
Efzao(Q'l) /kl(quaOGI) (23)

Also, a =« at £ = gf and there is no solution for
£ > Ec. The crack size at time E¢ is

a = a,d/(g-1) (24)

(Note that a = a, if g>>1.) Equation (23) 1is the
limiting time for which a physically meaningful, stable
solution is obtained. Therefore E¢ may be interpreted
as the fracture time, unless the crack growth is

arrested by interaction with, for example, originally
remote particles or fibers.

When equation (21) 1is used in the original growth
law (11), with g>1, we obtain as the exact solution

aja,= (1-1) %/ 1-9) (25)
where
£
1= (a-1)kya (97D g 6dde" (26)

Observe that crack size 1is a monotone increasing
function of time and a = @ = = at the time for which I
= 1. Denoting this fracture time by Ep, We find

e= {(a-1)kpa (9g 9 (27)

if Gy 1is constant. Both £ and £ depend on a, and Gy
in the same way, and they are equal if we take kz =
(qg-1)/q; if g>>1, then ko= 1, as in equation (16).

Thus, for this case in which an instability develops,
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approximate equation (18a) provides essentially the same
crack growth behavior as the exact solution.

4. Work Functions with Rate Effects.

Let us now combine the results in Sections 2 and
3. We assume the instantaneous geometry of all cracks
in the body may be defined by the structural parameters
Spe
cracks tend to be at or close to interfaces or, at

For many particulate and fibrous composites, the

least, to have orientations and shapes defined more by
the microstructural geometry than by the loading. The
orientation of a crack relative to that of the loading
will of course affect its rate of growth. Elliptical
delaminations, transverse cracks (which are rectangular
cracks with planes parallel to fibers and normal to ply
surfaces) and cracks between hard particles and a soft
matrix are of this type. For these cases it is
realistic to use a finite and possibly small number of
parameters to define the damage state.

Stable Crack Growth: Use the right side of

equation (18a) to define a crack work function for the
th
n

crack,
_ 1/q 1/q
wn:nf aa”"dA/k, (kqE) (28)

where the integral is taken over the area of growth of
the nth crack, A - A,, which may not be planar or
otherwise regular; the various constants such as q may
be different for different cracks. The growth aa is a
local value which is defined along a curve that is
normal to the moving crack edge. If g = = this equation
is independent of the history of the crack geometry, and
yields simply wn ~ A—Ao. Since 1 << q < =, the effect
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of history is weak, and it is therefore appropriate to
use an 1idealization in which aa is a single-valued
function of A. For example, for cracks which can be
idealized as planar, through-the-thickness cracks with

straight edges, use a = A/B and a, = A,/B where B is
thickness; thus
A 1
W= (A-A ) /xky(k;BE)'/d (29)
where
x = (1+49)/4q (30)

On the other hand if the cracks are more or less
elliptical with moderate aspect ratios or circular use
A = naz in equation (28) and find

- 1/q
W= 2nq(a-a )" ""{a(a-a;)/q
+ (%= ) a0k, )Y (3
in which the substitution of
a = (A/m)t/2

into this result gives wn= wn(A,g). The area of each

(32)

crack is a function of one or more of the parameters Sm,
by previous assumption; if, for example, the cracks are
elliptical, we may use for each crack two parameters,
the major and minor axes. The total crack work
function, considering all cracks, is denoted by We,
W=z W (33)

n
so that Wy =W (Sp, £), as in equation (3), but now with

time-dependence. If q is the same for all cracks, Then
W~ g'l/q.

A crack work function based on the more general
equation (18b) may be easily derived. For additional
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generality, also use A = Ala“, where A; and « are
positive constants which may vary from crack-to-crack.

th

In this case we find for the n crack

f (o -1 c(p')do! (34)
)

where o = Aa/g and aa = (A/ ) /

(33) yields NS(Sm, £).

We may now use equation (18) to arrive at (3). Let

- 3. Then equation

6A be the local increment in area for a process in which
one or more crack edges advance an infinitesimal
amount. Multiply equation (18b) by &A and sum along
the crack edges, which yields -éW = sws. We want
this work equality to be valid for all changes
8A = (aA/aSm)ssm due to arbitrary changes ssm. This
requirement yields equation (3), where fp and W, are
given, respectively, by -equations (4) and (33).
Inasmuch as ws= wS(Sm,g), the behavior is the same as
for an aging elastic material. However, it should be
recalled that the aging stops during periods of "load
reduction" (cf. equation (20)).

For the special case in which there are only two
different q's, say one g<= and one g==, equations (28)
and (33) provide the simple power-law time-dependence,

- -1/q
NS— W+ ng (35)

where W _= wm(sm) and wq=wq(sm). Then, the R parameters

S, which change in a process are found from the R
equations,
aW aW
al ® q ,-1/q
- = + 3 (36)
aSr aSr aSr

Even if the qj are constant in time, equation (36)
yields time-dependent values of Sr’ and thus time-
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dependent stresses or forces through equation (2) or
(10).

The connection between equation (3) and crack
growth theory was established by considering the
propagation of individual cracks. However, in modeling
damage growth associated with microcracking, it is
normally practical to use only a small number of
averaging structural parameters which serve to
approximate the actual effect of damage on overall
mechanical behavior. As done previously (Schapery,
1990) let us require the approximate model to exhibit
the same overall limited path-independence of work as
implied by equation (10). Inasmuch as equation (3) is
necessary and sufficient for such 1limited path-
independence, this growth law should be used in the
approximate model. Carrying this argument one step
further, we would want the time-dependence of ws to be
essentially the same as that for the more complete
representation, e.g. equation (35).

Unstable Crack Growth: The special energy release
rate in equation (21) leads to unstable crack growth,
which is predicted to occur at a time PP equation (23),
that depends on the initial size. We shall consider a
situation in which there are many parallel, planar,
penny-shaped cracks with a distribution of radii
a,- It 1is assumed that when each crack becomes
unstable, it rapidly grows in the original plane to a
much larger size and then is arrested by some
obstacle. By considering the effect of each crack on
overall mechanical response after it reaches its final
arrested size, we can develop a work potential Wy which
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obeys the equations of Section 2. The procedure is
analogous to that used by Schapery (1990, Appendix B)
for brittle elastic behavior. In this earlier work,
generalized forces were used instead of displacements as
independent variables. While either set could be used,
for consistency with work in the previous sections, we
shall use displacements.
The work potential is found to be

wT= wo- gG1+ NS (37)

where W, = wo(qj) is the strain energy without cracks
and Gy = Gl(qj) is the function in equation (21). Also,
g=g(S) and ws= wS(S,g), where

S

Q 1
NS; - _(g.__l.).__.l_/‘ f (SI)"Q %gT ds' (38)
ka(kye) /9S

in which Q = (g-1)/q and Sy is the initial radius of the
largest pre-existing crack. The function g is
unspecified here, but depends on the details of
microstructure and accounts for the effect of randomly
or regularly distributed arrested crack sizes.

The stationary work condition, equation (8), is to
be satisfied by the proposed Wy. From equations (37)
and (38),

aW Q ¢-Q
B R iﬂ:ll__§____}gﬂ (39)
= +

The quantity in braces vanishes in view of equation (23)
if we consider S to be the initial radius of the crack
which becomes unstable at the current time; this
equation provides S = S(Gl, £). The smaller a crack
is, the Tlonger the time is for the crack growth to
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become unstable, so that §<0. The body is stable if
asz/aSZ> 0; from equation (39) one finds that dg/dS <
0. This condition on g not only assures stability, but
assures that the entropy production inequality, equation
(7), will be satisfied when §<0. If additional crack
orientations are introduced, the work potential will
depend in a similar way on additional structural
parameters.

We conclude that the work potential based on
unstable (micro)crack growth and arrest exhibits the
same behavior as that based on stable growth. The power
law time-dependence of ws appears in both cases, except
its physical origin is different. For stable growth, it
reflects the direct effect of continuous growth, while
for unstable growth it arises from the time delay for
instability. The two types of growth may co-exist
without changing the form of time-dependence.

5. Global Viscoelasticity

One approach to developing a model which includes
viscoelastic effects throughout the matrix and fibers,
besides that at crack tips, would be to introduce a
rate-type evolution law for a portion of the internal
state variables, say SB(B =1,2,...B), of Section 2.
For example, for Tlinear viscoelastic behavior with
damage given one would use (e.g. Schapery, 1964),

Sg= by f. (40)
where bBY is a symmetric matrix, and fY= -aw/aSY in
which W 1is quadratic in q; and SY. The remaining
internal state variables would be associated with the

damage, and thus obey equation (3); b may depend on

By



210

them. The problem with this approach is that the simple
crack growth theory in Section 3 and 4 is not in general
applicable because there is not a simple correspondence
between elastic and viscoelastic fields in the
cont inuum. Unless considerable simplification is
introduced in the description of the global viscoelastic
behavior of the constituent materials, it does not
appear to be possible to develop a practical analytical
model. Here, we shall briefly review a manageable
approach the author has used to account for linear and
nonlinear viscoelasticity of the matrix; it permits the
use of a slightly modified form of the crack growth
theory of Sections 3 and 4.

Let us give the constitutive equation without
damage and then discuss the modification needed in the
elasticity theory with damage. With small strains and
rotations the constitutive equation for any one of the
constituent materials or phases, in terms of stresses

943 and strains eij(i’j = 1,2,3), is given as

_ R
o5 awp/aeij (41a)
where W = W (EB.) and
AL e,
- i
€y 4 ER _:[ E(t-t,t) —a;’l dt (41b)

are so-called pseudo strains. The quantity E(t-t,t) is
the relaxation modulus, allowing for aging through the
second argument, while Ep is a free constant which can
be selected to have the units of modulus so that e§j is
dimensionless. As discussed elsewhere (Schapery, 1981)
equation (41) contains the special cases (1) Tinear
isotropic viscoelasticity (if the Poisson's ratio is

constant), (2) nonlinear elasticity (E=Eg) and (3)



211

linear and nonlinear viscous theory. Inasmuch as Np is
like strain energy density, but is a function of pseudo
strains, we call it pseudo strain enerqy density. It is

easily shown that a multiphase continuum may be
characterized by equations 1like (41) if each of the
phases obeys equation (41) and all have the same
relaxation modulus; phase-to-phase differences are
reflected in the particular pseudo strain energy density
employed. If the deformations in any phase are
relatively small, so that it may be assumed rigid, then
of course its relaxation modulus is not restricted to be
the same as that for the other phases.

A simple correspondence exists between the
mechanical state of elastic and viscoelastic bodies,
with or without crack growth, when equations like (41)
are applicable (Schapery, 1981, 1984). Large
deformations may be taken into account by using Piola
stresses and deformation gradients (in place of
eij); however, there is a basic limitation in that the
pseudo strain energy density may be significantly
affected by 1large rotations. This correspondence
enables us to use all of the theory in Sections 2-4 by
simply replacing q; with generalized pseudo

displacements,

1t d;
= ER_;[ E(t-1,t) I dt (42)
while retaining the Q; as generalized forces. The

superscript R comes from use of the name "reference

R
9

elastic solution" for the set of variables (q?, Qi);

they may be interpreted as the displacements and forces
in and on an elastic body which is identical to that of
the viscoelastic body except for the relaxation
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modulus. Observe that when the q? are used in Section
4, there will be hereditary effects due to both damage
growth and viscoelasticity of the continuum.

6. Conclusions

An approach to modeling the mechanical response of
viscoelastic composites with changing structure has been
described. Although the rate-type evolution law used
for the changing structure is that commonly identified
with crack growth, equations (11) and (19a), it is not
necessarily limited to crack growth. Indeed, the
approach may be used for any evolution law of the form
§m= Fm(fm)Em(Sm) for each m, where F_ is a strongly
increasing function of the associated thermodynamic
force f,. This is a special case of the form used by
Rice (1971) in a study of constitutive relations for
metal and other solids; he assumed §m= Sm(fm, Sys--sSy)
for each m.

Experimental verification of the viscoelastic
behavior predicted by the simplified theory described
herein 1is presently very Tlimited. However, existing
results on particle-filled rubber with constant and
varying damage (Schapery, 1982) and on fiber-reinforced
plastic with constant damage (Tonda and Schapery, 1987)
do support the theory.
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Abstract

A new variational method for estimating the effective properties of nonlinear
composites in terms of the corresponding properties of linear composites with
the same microstructural distributions of phases is applied to an isotropic,
incompressible composite material containing a brittle (linear) and a ductile
(nonlinear) phase. More specifically, in this particular work the prescription is
used to obtain bounds of the Hashin-Shtrikman type for the effective properties
of the nonlinear composite in terms of the well-known linear bounds. It can be
shown that in some cases the method leads to optimal bounds.

Introduction

PONTE CASTANEDA (1990a) has proposed a new procedure for estimating the
effective properties of composite materials with phases exhibiting nonlinear
constitutive behavior. The procedure, which is straightforward to implement,
expresses the effective properties of the nonlinear composite in terms of the
effective properties of a family of linear composites with the same distribution
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of phases as the nonlinear composite. Appropriate references for the linear theory
of composites are given by the review article of WILLIS (1982) and by the
monograph of CHRISTENSEN (1979). The new procedure was applied in the
above reference to materials containing a nonlinear matrix either weakened by
voids or reinforced by rigid particles. Estimates and rigorous bounds were
obtained for the effective properties of such materials. The Hashin-Shtrikman
bounds (obtained via the new method from the linear Hashin-Shtrikman bounds)
were found to be an improvement over the corresponding bounds obtained by
PONTE CASTANEDA and WILLIS (1988) for the same class of materials using an
extension of the Hashin-Shtrikman variational principle to nonlinear problems
proposed by TALBOT and WILLIS (1985). Recently, WILLIS (1990) has shown
that the Hashin-Shtrikman bounds obtained via the new method can also be
obtained by the method of TALBOT and WILLIS (1985) with an optimal choice of
the comparison material. More generally, however, the new procedure can make
use of linear higher-order bounds and estimates to yield corresponding bounds and
estimates for nonlinear materials. In fact, the new procedure can be shown to
yield exact results for a certain class of nonlinear composites. This is discussed
in detail by PONTE CASTANEDA (1990b).

In this paper we apply the general procedure to a composite containing a
brittle (linear) and a ductile (nonlinear) phase. We assume that the phases are
perfectly bonded to each other, incompressible and isotropic. Additionally, the
size of the typical heterogeneity is assumed to be small compared to the size of
the specimen and the scale of variation of the applied loads. It is further assumed
that the effect of the interfaces is negligible, so that the effective properties of
the composite are essentially derived from the bulk behavior of the constituent
phases. Both upper and lower bounds of the Hashin-Shtrikman type are given for
the isotropic composite as functions of the properties and volume fractions of
the phases. Specific results are given when the behavior of the nonlinear phase is
linear plus power-law, including the pure power-law case. Some of the bounds
are shown to be optimal (i.e., microstructures can be given attaining these

bounds).

Effective Properties

Consider a two-phase composite occupying a region of unit volume £2, with
each phase occupying a subregion ") (r = 1, 2), and let the stress potential,

U(o,x), be expressed in terms of the homogeneous phase potentials, U(c),
via

U(o,x)= ix"’(x)U"’(o), Y
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where

1 ifxe Q"
“Yx) = @
27 {0 otherwise
is the characteristic function of phase r. The phases are assumed to be
incompressible and isotropic, so that the potentials U(6) can be assumed to
depend on the stress 6 only through the effective stress

3
=,/2§-S,
o, 2

where S is the deviator of ¢. Thus, we assume that there exist scalar-valued
functions f such that
U(0) = f"(a,).
Then, the stress field ©, satisfying the equilibrium equations
0;;=0, 3)
is related to the strain field €, related to the displacement field u via

1
E;= E(“-'.i +u;.), @
through the constitutive relation
au
E,J = "a"&—(o.r x) . (5)

v

The commas in equations (3) and (4) denote differentiation, and the summation
convention has also been used in equation (3). We assume that the phases are
perfectly bonded, so that the displacement is continuous across the interphase
boundaries. However, the strains and, therefore, the stresses may be
discontinuous across such boundaries, and hence equation (3) must be interpreted
in a weak sense, requiring continuity of the traction components of the stress
across the interphase boundaries.

We note that if we let € represent the rate-of-deformation tensor and u the
velocity field, the above equations can be used to model high-temperature creep,
as well as high-rate viscoplastic deformations. Here we will present our work in
the context of time-independent plasticity (deformation theory), but in view of
the above comment the results could be given appropriate interpretations in
nonlinear creep and viscoplasticity.

To define the effective properties of the heterogeneous material we introduce,
following HILL (1963), the uniform constraint boundary condition

O;n;=0yn;, X €, ©
where dQ denotes the boundary of the composite, n is its unit outward normal,

and G is a given constant symmetric tensor. Then, the average stress is precisely
G, ie.
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o= o(av ™
and we define the average strain in a similar manner by
E=[ e(av. ®

The effective behavior of the composite, or the relation between the average
stress and the average strain then follows from the principle of minimum
complementary energy, which can be stated in the form

0@ = min U (o), ©
where

O(o)=[ Ue,x)av
is the complementary energy functional of the problem,
8(0)={olo;;=0in 2, and o1, = G;n; on IQ2}
is the set of statically admissible stresses, and where we have assumed convexity
of the nonlinear potential U(o,x). Thus, we have that

£ =—(0). 10
& Jo © (10)

Our task will be to determine bounds and estimates for U(G), which, under the
above assumptions, is known to be convex.

Bounds and Estimates

A new variational principle for determining bounds and estimates for the
effective properties of nonlinear composites in terms of the effective properties
of linear composites was proposed by PONTE CASTANEDA (1990a,b). In this
section, we specialize the derivation given in PONTE CASTANEDA (1990b) for
the case where both phases are incompressible, and phase #2 is linear so that

The new variational principle is based on a representation of the potential of
the nonlinear material in terms of the potentials of a family of linear
comparison materials. Thus, for a homogeneous nonlinear material with

"stronger than quadratic" growth in its potential, U(o), we have that
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U(o)= mixg({Ua (0)-v)}, (1)
where ’
V() = max{U,(6)-U(0)) (12)
and
U,,(c>=$of 13)

is the the potential of the comparison linear material.
To demonstrate this result, let

U(o) = ¢(s), 14
where s=o?. Then, the Legendre-Fenchel transform of the scalar-valued
function ¢ is given by

9" (@) = max{as - §(s)}, (15)
where a is assumed to be positive. A well-known result in convex analysis
(VAN TIEL 1984, §6.3) is that

¢(s) 2 max{sor - ¢"(a0)}» (16)
with equality if ¢ is a convex function of its argument. With the identifications
s=o> and ax=(61)", we can see that (11) and (12) are but simple re-
statements of (16) and (15), respectively. In particular,

V(u)= ¢($) a7

To derive the new variational principle, we apply (11) to the nonlinear phase
#1, and make use of the result in the complementary energy principle (9). Thus,
after some manipulations, we find that

U(G) 2 max {ﬁ.(a) - IV"’(u“’)dV}. (18)
B (® a®
where
17,(6)=qr:15i(r_;)l7',(0‘), (19
2
U,(6.x)=Y 2" (x)U(0),
r=1
and

1
(r) =
Uo (6) —611(’) O'f
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Note that the comparison linear material agrees with the actual material in phase
# 2 (which is linear). In the above derivation, we note that the comparison

moduli u® are functions of x, since the stress field ¢ will also in general be a

function of x within phase #1. If we assume that U (o) is "strongly convex"
(i.e. if ¢ is convex), then we have equality in (11), and hence, usually, equality
in (18). However, if the conditions for equality are not met, relation (18) still
provides a useful lower bound for U(G). An detailed derivation of this result,
discussing the precise conditions for equality, is given in PONTE CASTANEDA
(1990b).

The variational principle described by (18) roughly corresponds to solving a
completely linear problem for a heterogeneous material with arbitrary moduli
variation within the nonlinear phase, and then optimizing with respect to the
variations in moduli within the nonlinear phase. Thus, one can think of the
nonlinear material as a "linear" material with variable moduli that are determined
by prescription (18) in such a way that its properties agree with those of the
nonlinear material.

This suggests that if the fields happen to be constant over the nonlinear

phase, then the variable moduli 4™ (x) can be replaced by constant moduli z®.
More generally, however, we have the following lower bound for U(G)

0_(6>=;};;1’;{t7,(a>-c<‘>v“>(y“>)}, (20)

where ¢ is the volume fraction of phase #1. The result in this form is a special
case of a more general result first derived by PONTE CASTANEDA (1990a), when
only one of the phases is nonlinear, and the other one is linear.

We note that the prescriptions (18) and (20) lead to convex expressions for
the bounds and estimates of the effective potential of the nonlinear composite,
provided that the corresponding bounds and estimates for the linear composite are
convex. This is a desirable feature, because the effective potential of the
composite is known to be convex.

Application to Hashin-Shtrikman Bounds

HASHIN and SHTRIKMAN (1962) prescribed bounds for the effective moduli of
linear-elastic, isotropic composites, depending only on the volume fractions of
the phases. When there are only two phases, these bounds have been shown to
be optimal (i.e., microstructures can be given that simultaneously attain the
bounds for the shear and bulk modulus) by FRANCFORT and MURAT (1987).
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Figure 1. Rank-2 laminate.

Their construction made use of iterated laminates for which the effective
properties can be computed exactly. Such materials are obtained by layering the
two constituent phases to obtain a rank-1 laminate; the resulting material is once
again layered (in an arbitrary direction) with one of the original phases in a
smaller lengthscale. This procedure can obviously be iterated n times to obtain a
rank-n laminate. In general such materials will be anisotropic, but by choosing
appropriately the layer orientations at the different layering operations, it is
possible to obtain an isotropic composite, and its properties coincide with one of
the Hashin-Shtrikman (H-S) bounds depending on which constituent phase is
selected to play the role of the matrix material. Figure 1 depicts a rank-2
laminate (not to scale) with phase #2 as the matrix phase.

For the special case of incompressible materials, when there is only one
modulus for the composite, the H-S upper bound for the effective shear modulus
can be expressed in the form

D s e
. a u(l),#(z) -
o)

£ u® oM@ @
W if H < H
where

20U +(34+2c u®
= 2+ 3P )@ 4 3O

a( uo, u(z)) (22)
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The corresponding H-S lower bound is obtained by interchanging the expressions
in (21) for the upper bound (and keeping the conditions on the shear moduli u®
and u® fixed).

The above H-S upper bound for the effective shear modulus yields a lower
bound for the potential of the linear material U, . This information can be used in
combination with prescription (20) to yield a H-S lower bound for the potential

(23)

of the nonlinear material /. On the other hand, upper bounds for U, do not
necessarily generate upper bounds for U .

The result for the lower bound on U depends on which of the two branches
of (21) is used in conjunction with (20). If u® > u®, then the average effective
stress O, must be such that the condition

3u®f'(G,) <3, (24)
is satisfied (usually when the average shear stress is small enough). Here, for
simplicity, we have made the identification f®’ = f. The corresponding form of

the bound is then
U_()=£(3.). (25)
where
- 2+3¢?) 3}
fl(E.)=c“’f(s)+u"’[—-——( +2C ) -(%) ](f'(s))2 (26)
and s solves the equation
, @ — 2 _ -1/2
e+ 1(2 +36) ) =§[<2+3C 3)0(5{"') 2] . @n

On the other hand, if u® < u®, then the average effective stress &, must be
such that the condition

3u®f(s,) >0, (28)
is satisfied (i.e., when the average shear stress is large enough), and

U.(8)=£,@.), 29)
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where

(3+2c%)2 +cV(2+3c)s* -10c¢VsB,

@) =cVf(s)+ TBP® (30)
and s solves the equation
9P f(s) =55, - (2 +3c)s. (31)
The corresponding stress/strain relations have the form
e=% FCA 32)
where
- 3+2c")T, —5¢Ws
7o) =2 G200, 33)

3 6
but f1G.) does not have a simple expression.

In general, we do not expect the above lower bounds for U to be optimal. In
fact, expression (25) does not yield an optimal bound if condition (24) is
satisfied. However, it is shown in PONTE CASTANEDA (1990b) that if condition
(28) is satisfied, then the bound (29) is optimal. This is because the same
microstructure attaining the linear bounds can be also shown to attain the
nonlinear bound; the reason being that the fields are constant in the (nonlinear)
inclusion phase, and hence expressions (20) and (18) are identical. Similar
observations have been made by KOHN (1990) in a similar context (starting from
the Talbot-Willis nonlinear variational principle) and, independently, by PONTE
CASTANEDA (1990c) in the context of conductivity.

Conversely, in general, we do not expect that interchanging conditions (24)
and (28) would turn expression (25) and (29) into upper bounds for the nonlinear
potential U. This is contrary to the corresponding operation for the linear
composite. All that can be said, however, is that expression (29) is an estimate
for the upper bound for U if condition (24) is satisfied and that expression (25)
is an estimate for the upper bound for U if condition (28) is satisfied. Both of
these estimates are expected to get progressively better with weaker
nonlinearities.

Application to Power-Law Behavior

In this section, we specialize further the calculations of the previous section by
taking the constitutive behavior of the nonlinear phase to be governed by a linear
plus power relation
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flo)=> [u (ﬁ)%of"]of. (34)

Note that the case 4 — oo corresponds to pure power-law behavior, and the
limits n — 1 (in addition to 4 — o) or 17 — oo correspond to linear behavior.

The conditions (24) and (28) determining the appropriate branch of the
bound specialize to

u®
u

and the opposite inequality, respectively. The first condition guaranteeing that
(25) is a lower bound (and correspondingly that (29) is an estimate for the upper
bound) corresponds to small enough average stress on the composite.
Alternatively, the second condition (with > instead of <) corresponds to
sufficiently large average stress. Note that, if 4®/u >1, condition (35) can
never be satisfied and, conversely, the alternative condition is always satisfied.
This condition ensures that the difference between the potential of phase #1 and
that of phase #2 is convex. Here, we will consider two cases: one case, meeting
this condition, with 4 /u = 2, and the other with 4 /u =0, corresponding to
the pure power-law case.

The results for the bounds (25) and (29) specialized to the case when (34)
holds can be expressed in the form:

U(—) (2) n—l # @ }
@) {n IR & G

where the precise form of F depends on whether (25) or (29) applies, and

(2)
+ ’—:’-—6:“ <1 (35)

(1® /n)5:" plays the role of the independent variable, with £®/u, ¢® and n,
serving as parameters.

Results for the upper and lower bounds for U are given in Figures 2 and 3
for the case where u® /u =0, and in Figure 4 for the case where u®/u=2. In
the first case, condition (35) determining whether (29) is an estimate for the

upper bound or an optimal lower bound, and whether (25) is an estimate for the
upper bound, or a non-optimal lower bound, simply reduces to the condition of

whether the independent variable (1™ /1)G7 is less or greater than unity. For
that reason, we give results emphasizing the small stress and large stress
domains, separately, in Figures 2 and 3, respectively.

In each plot we have three sets of curves corresponding to three values of
¢® (0.1, 0.5 and 0.9). Additionally, we show the limiting cases corresponding
to ¢®= 0 and ¢®= 1. These limiting curves appear as straight lines, one with

with variable slope depending on the value of n and u®/u, and the other with
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Figure 2(a). Plots of the bounds for the effective energy of the
composite as functions of the average stress (appropriately normalized)

for ;tm/u = 0 and n = 3 (small stress).

zero slope (value equal to unity), respectively. The intermediate sets of curves
correspond to the upper and lower bounds.

In Figure 2, depicting results for two values of the nonlinearity parameter
(n = 3 and 10), the continuous line corresponds to the estimate for the upper

bound (for /), and the dashed line corresponds to the rigorous lower bound. In
Figure 3, showing also results for the same two values of the nonlinearity
parameter, the continuous line corresponds to the optimal lower bound, and the
dashed line is an estimate for the upper bound. For this value of u®/u, the
upper and lower bound coalesce when the value of the independent variable
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Figure 2(b). Plots of the bounds for the effective energy of the
composite as functions of the average stress (appropriately normalized)

for ym/u = 0 and n = 10 (small stress).

(1® [n)o7" approaches unity. In the linear case, this behavior corresponds to
the limit of the moduli of the phases approaching each other. More generally,

assuming that £ /u is less than unity, there is a value of the independent
variable (i.c., an average stress level) at which the bounds are equal, and hence
the effective energy of the composite is known exactly. This phenomenon is
related to the lack of convexity of the difference between the potentials of the
nonlinear and linear phases.

In Figure 4, depicting results for the same two values of the nonlinearity
parameter, the continuous line corresponds to the optimal lower bound (for /),
and the dashed line corresponds to the estimate for the. upper bound. In this case,
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Figure 3(a). Plots of the bounds for the effective energy of the
composite as functions of the average stress (appropriately

normalized) for u® / u = 0 and n = 3 (large stress)

with a convex difference between the nonlinear and linear potentials, there is no
value of the independent variable for which the upper and lower bound are equal.

Both in Figures 3 and 4, we observe that the lower bound approaches a
straight line with zero slope and the upper bound approaches a straight line with
slope depending on the value of n (smaller for larger n). This is consistent with
the following asymptotic behaviors for the lower and upper bounds

UG 1+2%c®
U(Z() (6")) = ( C(2) ) ’ (37)
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Figure 3(b). Plots of the bounds for the effective energy of the
composite as functions of the average stress (appropriately
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normalized) for u / i = 0 and n = 10 (large stress)
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Figure 4(a). Plots of the bounds for the effective energy of the
composite as functions of the average stress (appropriately

normalized) for pm/y =2andn=3.

respectively. These two behaviors correspond physically to the cases of a linear
matrix with voids and a power-law matrix with rigid inclusions (studied by
PONTE CASTANEDA, 1990a), respectively. The reason for these behaviors is that
the lower bound (for I/ ) corresponds to putting the stiffer material in the matrix
phase and the less stiff material in the inclusion phase (and viceversa for the
upper bound). Clearly, for large enough stresses, the linear phase is stiffer than
the nonlinear phase.

We note that accurate numerical calculations of the potential of a power-law
matrix with spherical rigid inclusion have yielded results of the form (38) with

w=1+ (g—?l)cm as ¢® 50, (40)
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Figure 4(b). Plots of the bounds for the effective energy of the
composite as functions of the average stress (appropriately

normalized) for #® /u = 2 and n = 10.

where g(n) is such that g(1) = 5/2, g(3) = 3.21 and g(10) = 6.09 (LEE and MEAR,
1990), and g(n) — 0.38n as n — e (HUTCHINSON, 1990). These results do not
compare very favorably with the corresponding results from (39): 5/2, 4.00, 9.25
and 0.75n, but it should be recalled that these results correspond to the case for
which we do not have a rigorous bound (it is simply an estimate of the bound).
None the less, the results of (38) with (39) may provide reasonable estimates for
larger values of the volume fraction of the linear phase.
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ABSTRACT

The dominant compressive failure mechanism of modern
fibre composites is microbuckling. This is
demonstrated in the form of a fracture map. For
polymer matrix composites microbuckling is a plastic
event. An analysis is presented of both elastic and
plastic microbuckling of unidirectional composites
under remote axial and shear loading. The effects of
fibre misalignment and inclination of the band are
included. We find that a simple rigid-perfectly
plastic analysis suffices for plastic microbuckling; it
demonstrates that the axial compressive strength
increases with decreasing fibre misalignment,
increasing shear strength of the matrix, and decreasing
remote shear stress. Finally, a -calculation is
performed of the remote axial and shear stress required
to propagate an existing microbuckle. We find that the
axial propagation stress is typically less than the
shear yield stress of the matrix material.

1. INTRODUCTION
Most fibre reinforced polymer matrix composites have a

compressive strength less than their tensile strength
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due to microbuckling of the load bearing fibres aligned
with the loading direction. In many applications
compressive strength is a design limiting feature.
Over the past ten years significant improvements have
been made to the tensile strength, impact resistance
and toughness of these composites. Unfortunately,
compressive strength has shown little concomitant
improvement.

In this paper, previous experimental studies
and theoretical models of microbuckling are reviewed.
A new analysis of microbuckling is presented, based
upon the kink band analysis of Budiansky (1983). The
composite is subjected to remote axial compression and
shear. Material inside and outside of the kink band is
taken to be homogeneous but anisotropic. The kink band
response is calculated for a variety of constitutive
behaviours: (1) elastic, (2) rigid-perfectly plastic,
and (3) elastic-perfectly plastic. An analysis is then
given for the remote axial and shear stress required to
propagate a microbuckle zone into undamaged material
across the section of a specimen. The analysis is
based upon a simple energy balance. We find remarkably
low values for the propagation stress. This suggests
that the compressive failure stress of large sheet
structures containing a microbuckle near a stress
raiser may be much less than that predicted for small
undamaged specimens.

The paper deals only with the response of
unidirectional unnotched composites. In many practical
applications notched multi-directional composites are

used. A design methodology is now emerging to deal
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with the effects of notches and off-axis plies (see for
example, Starnes and Williams (1982), Rhodes, Mikulas
and McGowan (1984), Soutis and Fleck (1990) and Soutis,
Fleck and Smith (1990)).

2. PREVIOUS THEORETICAL WORK

Rosen (1965) assumed that compressive failure is by
elastic microbuckling: he modelled the fibres as
columns supported by an elastic foundation. He
recognised that the composite plate may be a short
stiff structure which does not buckle in compression on
the macroscale, but the individual, fibres have small
diameters and buckle as slender columns on the
microscale. Two possible buckling modes were
distinguished, the shear mode and the extension mode.
For the shear mode, shear deformation occurs in the

matrix material, and the compressive strength o, is

given by,
Gm
o, = T, (2.1)
where Gm is the shear modulus of the matrix and Ve is
the fibre volume fraction. In the extension mode,

matrix material suffers direct straining in a direction
transverse to the fibre axis. The shear mode predicts
a lower strength than the extension mode and is assumed
to dominate.

The Rosen anaysis overpredicts strength
typically by a factor of four. This suggests that
microbuckling is a plastic rather than an elastic

event. Several investigators (eg. Lager and June
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(1969)) have introduced empirical correction factors in
order to improve the agreement between the Rosen theory
and experiment.

Argon (1972) and Budiansky (1983) identified

the shear yield stress k of the matrix material and the

initial misalignment angle ¢ of fibres in the
microbuckled band as the main factors governing the

compressive strength.The misalignment angle ¢, and band

inclination B are defined in the insert in Fig.l. For a

microbuckled

band
B
o} = I S
. — -
e ———— e
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Fig.1: Effect of shear yield stress k of polyester
matrix upon compressive strength o, of glass and Kevlar

composites. Data taken from Piggott and Harris (1980).
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rigid-perfectly plastic matrix material, Budiansky

found that the compressive strength o, is given by

b3
o, =% (2.2)
)
where,
g,
=k (1 + (—IT{?L)2 tan2p)% (2.3)

and oTy is the yield stress of the composite transverse
to the fibre direction.

There was little need to include fibre bending
explicitly in the analysis: a kinking analysis suffices
wherein material in the microbuckled band is treated as
a homogeneous anisotropic solid. This approach is
developed later in the present paper.

Recently, Steif (1988) has modelled the effect
of fibre-matrix debonding upon the elastic
microbuckling of fibre composites. The model is an
adaptation of the Rosen analysis to situations where
slip occurs at the fibre-matrix interface; slip begins
when the interfacial shear stress attains a critical
value. Interfacial shear failure is similar in many
respects to shear yielding of the matrix. Steif's
model gives reasonable predictions for ceramic matrix
composites when the wavelength of the buckle equals the

specimen length. This assumption is unrealistic.

3. AVAILABLE EXPERIMENTAL EVIDENCE

From the published literature it 1is apparent that
unidirectional composites fail by two distinct failure
mechanisms, fibre microbuckling and fibre collapse.

When the matrix yield stress is sufficiently
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high, the fibres suffer compressive collapse. This is
due to fibre yielding in the case of steel or Kevlar
fibres (see Moncunill de Ferran and Harris (1970),
Greszczuk (1972, 1975), Piggott and Harris (1980), and
Piggot (1981)). Alternatively, fibre collapse is by
compressive fracture from defects in the case of carbon
fibres or glass fibres (see Ewins and Ham (1973), Ewins
and Potter (1980), and Piggott and Harris (1980)).
Available experimental evidence for polymer
matrix composites supports the hypothesis that
microbuckling is a plastic rather than an elastic
phenomenon. A summary of the measured compressive
strengths for unidirectional, carbon fibre polymer

matrix composites is given in Table 1. The first three

Composi te Rt % |fo(MPa) [k (MPa)| F
System f
{MPa)
T800/924C |Soutis (1989)]1615 6000 60 |2.6°
HITEX |U.S.Polymeric 1447 5510 40 |1.4°
12K/E7 jK8 (1990)
HITEX 46-|U.S.Polymeric 1974 4400 67 |3.0°
3B/ETKST (1990)
AS4/PEEK |Jelf  (1990) (1200 4000 8 |3.4°
HS/MY720 |[Curtis and 400 3000 55 |7.5°
(Woven) |Bishop (1984)

Table 1: Comparison of measured compressive strength
o, of wunidirectional carbon fibre polymer matrix

composites with predictions of the Rosen model,
equation 2.1 and the Budiansky model, equation 2.2.
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data sets refer to carbon fibre epoxy composites, the
system AS4/PEEK is a carbon fibre Peek composite, and
the system HS/MY720 refers to a carbon fibre epoxy
0°/90° woven layup. The table includes predicted
strengths by the Rosen (1965) model, and the inferred

misalignment angle ¢ by substituting strength values o,

and k into equation 2.2. For simplicity we assume
B = 0 so that k* = k. The error in the inferred values

of ¢ is at most 20% by this approximation, for typical
values of E&/G and B. We conclude from Table 1 that

the Rosen model overpredicts compressive strength by a

factor of approximately 4. The inferred values for ¢

from Budiansky's model, equation 2.2, agree with

typical measurements of ¢, Jelf (1990). For polymer
matrix composites, the matrix yields rather than
microcracks. We are justified in viewing k as a
plastic yield stress.

Direct experimental evidence to support
equation 2.2 comes from measurements of the
microbuckling strength of glass fibre and Kevlar fibre
reinforced polyester by Piggott and Harris (1980).
They varied the matrix shear yield stress by
controlling the state of polyester resin cure from just
jelled to fully cured. The compressive strength is
proportional to k, provided that failure 1is by
microbuckling, see Fig.1l. This behaviour supports

equation 2.2. The slope of the graph in Fig. 1 gives

¢ = 3.7°, assuming 8 = O. When k is increased to
sufficiently high values the glass or Kevlar fibres

collapse prior to microbuckling.
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Early carbon fibre epoxy composites failed by
fibre collapse at test temperatures below approximately
100°C, see Fig. 2. At higher temperatures
microbuckling occurred; the progressive decrease in
microbuckling strength with increasing temperature T
for T > 100°C is associated with the decrease in matrix
shear yield stress k with increasing T, in accordance
with equation 2.2. Over the last decade the
compressive strength of carbon fibres has doubled,
while epoxy matrices have changed little in strength

G, (MPa)

—
——

7‘\ — ""2000
\

N\

fibre-collapse N icrobuckli
{XAS carbon \ microbuckling
fibre) N
1500+ N\
\
\
\
\

~ \\
re—
1000+ )’<‘x\’5<\\x\

fibre-collapse

(HT-S carbon X
fibre) microbuckling \x
500 4

/

| I\ L | |

-100 -50 0 50 100 150
T(°c)
Fig. 2: Effect of temperature T upon failure strength
o, of carbon fibre epoxy matrix composites.

Experimental data x-x are taken from Ewins and Potter
(1980). The dotted line gives the typical response of
more recent systems.
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due to demands for high impact strength and high
toughness of the composite. Thus the transition
temperature from microbuckling to fibre collapse has
shifted from approximately 100°C to -40°C (Barker and
Balasundaram (1987)), as shown in Fig. 2. Thus present
day carbon fibre epoxy composites fail by microbuckling
at ambient and at elevated temperatures.

The failure mechanisms exhibited by a

unidirectional fibre composite may be summarised in a

fracture diagram, with axes k/¢ and Gm/(l-vf), as shown
in Fig. 3. Failure is by three distinct mechanisms:
1. Elastic microbuckling. Rosen's analysis predicts a

microbuckling strength o, given by equation 2.1.

g & & &
= z| g z|
8 8 & 8
I
©
| V.
1000\ } || | 7 Fibre
| | I ? Collapse’
| Elastic
é microbuckling v
? l I ' ‘ T =340MPa Data from Piggott
(MPa) | I | % and Harris (1980)
| KL
soof | | ||
| | | Plastic __ 72~  4OOMPa
l l microbuckling === 300MPa
| = 200MPa
- __ G =100MPa
1 1
0 500 1000 1500

Fig.3: Fracture map for glass fibre polyester matrix
composite. Data taken from Piggott and Harris (1980).
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2. Plastic microbuckling. The Budiansky analysis

predicts a strength given by equation 2.2. For

simplicity we assume B = 0, hence k* = k.
3. Fibre collapse. This occurs when the stress in the

fibres attains a critical fracture value Ops such that

o (3.1)

c” V%

The fracture diagram contains contours of
compressive strength o, given by equations 2.1-2.3 and
3.1. The boundary of the fibre collapse regime depends

upon fibre volume fraction v,.: otherwise the diagram is

unique for a given fibre reiiforcement.

Data for glass fibre reinforced polyester are
included in Fig. 3, taken from the work of Piggott and
Harris (1980). The data are replotted from Fig. 1.
The experimental values support the common finding that
the yield stress and elastic stiffness of polymer
matrices scale in a linear fashion: thus the
compressive strength of the fibre composite varies
linearly with elastic modulus. This has led several
investigators (for example Dow and Gruntfest (1960) and
Rosen (1965)) to conclude erroneously that
microbuckling is an elastic event for polymer matrix
composites.

It is clear from the fracture diagram that the
maximum attainable compressive strength is dictated by
the intrinsic compressive fracture strength of the
fibres. This strength is rarely achieved in practice
for polymer matrix composites; requirements for high
composite toughness and impact strength dictate the use

of matrices with a low yield stress and high ductility.
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Thus, plastic microbuckling is the usual failure mode
in compression.

The ceramic matrix of ceramic fibre/ceramic
matrix composites displays a non-linear response due to
plasticity or to microcracking, Evans and Adler (1978).
A plastic microbuckling analysis remains appropriate
for such systems.

Preliminary unpublished tests by the authors
show that elastic microbuckling occurs in a glass
fibre/silicone rubber matrix composite. No systematic
experimental investigations of elastic microbuckling in
elastomeric matrix composites were found from the

literature.

4. KINKING ANALYSIS
We shall analyse the behaviour of a kinked band of
infinite length and finite width w, oriented at an

angle B as shown in Fig. 4. First we consider the

Fig.4: Detailed geometry of kink band.
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kinematics and equilibrium of the band. In subsequent
sections we explore the effect of the constitutive

behaviour upon the buckling response.

4.1 Kinematics
We assume inextensional fibres but allow the composite
to undergo direct straining transverse to the fibre
direction, and shear straining parallel to the fibre
direction. The fibres are assumed to have broken along
the boundaries of the band. We smear out the fibres
and matrix, and consider the composite to behave as a
homogeneous anisotropic solid. Fibre bending is not
treated explicitly; Budiansky has included the effects
of fibre bending elsewhere, Budiansky (1983). He found
that except for its role in setting the kink band
width, fibre bending has only a small influence on the
collapse response and can be neglected for most
practical applications.

Consider the buckled band shown in Fig. 4. An

arbitrary point P has a position vector r,

r=5 e, +§2 €2 (4.1)

in terms of Cartesian co-ordinates (§,,f,) and fixed
orthonormal base vectors (e1,€2) which are
instantaneously aligned with the fibre direction in the

band. The velocity v of the point P is
Y=y ™e +xbeo (4.2)
where 7® is the remote shear strain rate parallel to

the unbuckled fibres, $ is the rotation rate of the
fibres in the band, and the fixed unit vector e;, and

lengths x and y are defined in Fig. 4. We assume the
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remote direct strain rate transverse to the fibres

equals zero.
The velocity strain rate é in the band is
c=%(zy+ (xv)h (4.3)

where the superscript T denotes the transpose and the
gradient operator vV is

ad ad
Y =€ gErt e 5, (4.4)

The quantitites x, y, £; and £, are related by
x=F + s tan (B -9~ ¢)
and, y = §2 cosP sec (B - ¢ - ¢) (4.5)

Here, ¢ is the initial misalignment angle of
fibres in the band; it serves as an imperfection.

Unit vectors e, and e,, aligned with respect
to the remote fibre direction as shown in Fig. 4, can

be resolved into the ¢, and e, directions as,
€1 = €4 COS($.+ $) - €2 Sin($ + ¢)
€> = €4 sin(¢ + ¢) + e» cos(¢ + ¢) (4.6)

We can now evaluate the strain rate via

equations 4.2 - 4.7, to give

&= ($tan(p-9-9) —7 cos B sin(3+4) sec(B-$-¢))ezeo

+ %($+vocosPeos ($+d)sec(B-9-9)) (162 + £2€1) (4.7)
But ¢ equals [er exe2 + % 7(ei€z + €261)]

where by definition éT is the direct strain rate

transverse to the fibres in the band, and v is the

shear strain rate in the band. Identification of this
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expression for é with equation 4.7 gives,
eq = #tan(B-$-9) -7® cos B sin($+¢) sec(B-9-4)
and, ~ = ¢ + v cos B cos(¢ + ¢) sec (B - ¢ - ¢) (4.8)

For the case of vanishing remote shear,

equations 4.8 may be integrated directly to give,
on [cos!§—$;¢!]
cos(B-9)
and v = ¢. (4.9)

T

The band boundary rotates at a rate B which

depends upon the remote shear strain rate ~®,

B = - 7o cos2B (4.10)
Integration of 4.10 yields,
tanf = tanﬁo - (4.11)

where ﬁo is the initial inclination of the band.

4.2 Equilibrium
Now consider equilibrium of the band. Equating the

traction on both sides of the band boundary gives,
nege=n-+g (4.12)

where n = e, cosf + e; sin B is the unit normal to the

band, the remote stress g» is,

go=-o®e e +T° (e ex + €5 €1) (4.13)

~

and the stress inside the band ¢ is,

O =0, €4 €1 + O €2 € + T(e; €2 + €2 €1) (4.14)
~ L T

Here UL is the direct stress in the fibre direction.
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Substitution of 4.13 and 4.14 into 4.12, gives

via 4.6 the two equilibrium statements,
- o cosP cos($ + ¢) + ™ sin(B + ¢ + ¢)
=T sin(f - ¢ - ¢) + o, cos(B - $-¢) (4.15)
and o© cos B sin(¢ + ¢) + T cos(B + ¢ + ¢)
=Tcos(B-¢ - ¢)+ o sin(B - ¢ -¢) (4.16)

The longitudinal stress o

direction in the band is of limited interest (the

along the fibre

fibres are inextensional), and we consider equation
4.15 no further. The stress components Op and T are of
interest, and appear explicitly in our suggested
constitutive laws for the band; we shall make extensive
use of equation 4.16 in the calculation of the buckling

response of the kinked band.

Note that the stress rates &L’ o and T
defined with respect to the rotating fibres are
objective stress rates which are not equal to the

Jaumann stress rates. Nevertheless, they appear to be

the natural choice.

5. ELASTIC MICROBUCKLING

In this section we calculate the buckling load and the
post buckling response for an elastic composite under
remote compressive axial stress o® and remote shear
stress 7. Material inside and outside of the kinked
band has a transverse stiffness ET and a shear

stiffness G, such that,

T = Gvy©, T = G, op = ETeT (5.1)
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For simplicity, we assume remote proportional loading,

T® = eo® (5.2)

where the dimensionless parameter e is fixed, and

neglect the presence of any imperfections, ¢ = O.
Budiansky (1983) has argued elsewhere that
imperfections produce only small knock-down factors
upon the buckling load, and can be neglected.

First, we calculate the buckling load. We
differentiate the equilibrium equation 4.16 with
respect to ¢ and make use of equations 4.8, 4.10, 5.1
and 5.2, to give,

£(9) UL = 10 (5.3)

where, f,(¢) = cosP sin¢ + e %? sinB cos? B sin¢

+

+ e cos(B + ¢)

e? %? cos? B sin(B + ¢) - e cosPB cos¢

- e é-cos2 B sin(B - ¢) + e §I cosP sing tan(f - ¢)

G
T
+ e a—-cos2 B cos(B-¢)
£2(#) = cos(B - ¢) + & sin(B - ¢)
o/
+ gl sin(f - ¢) tan(f - ¢) - EZ cos(B - ¢)
- gf-cosﬁ cos¢ + e %? sin(B + ¢) (5.4)

In the limit ¢ - 0,f;(¢) » 0. Hence f,(0) =0

by equation 5.3, and the buckling load ag/G is

1 2
ZE.= 1+ c tan Bo (5.5)
G 1 -2e tan Bo :

In equation 5.5, Bo is defined as the limit of B as
¢ » 0, and not the inclination of the band boundary at
oo = 70 = 0.
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That is, Bo is the initial inclination at buckling.

Surprisingly, we find from equation 5.5 that a
negative value of remote shear stress ™ = e og» reduces
the buckling load. For a fixed 7w/o® value there
exists a critical initial inclination Bc such that og/G

is a minimum; this is demonstrated in Fig. 5a.

minimum, 3= B,

05

0 i 1 1 1 1 1
0 10° 20° 30°
Bo

Fig.5(a): Effect of initial band inclination Bo upon
the elastic buckling stress a*g, for the case ET/G = 4,
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An interaction diagram showing the buckling
locus for Bo = Bc is given in Fig. S5b. The collapse
locus is sensitive to the value assumed for EI‘/G’
(Typically, E‘T/G X 4). Equation 5.5 predicts Bc =0
for the limit of vanishing remote shear stress. This
is in disagreement with typical measurements of band
angle for ceramic fibre polymer composites, where the
observed angle is Bo = 10° - 30°. Budiansky (1983)
argues via an elastic bending analysis that geometrical
imperfections 1induce the onset of plastic yielding
along an inclined domain at Bo > 0. Thus, in order to
achieve Bo > 0O we must assume the presence of
imperfections and assume the material is able to yield
plastically.

(b)

-1A°
B_=10

45°

L
0 0 0.5 1

-t?

G

Fig.5(b): Interaction diagram for elastic
microbuckling. Plot of buckling locus for weakest
inclination Bo = Bc, for a range of E'I‘/G values.
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For most practical cases E&/G > 1 and the
presence of remote shear has only a small influence on

the buckling load ag/G as shown in Fig. 5b.

5.1 Elastic Post Buckling Response
The post buckling response is determined by integrating

numerically a system of 4 linear 1lst order differential

equations:

0,
T

UG L= G 5 g 8 9
d(r/G oo 1 9T

Lt=r @ 5 g 00
W) ey 9

g “MhGroePd
d 97

o O o ) (5.6)

The function h; is given by h; = f,/f; from
equations 5.3 and 5.4. Functions h,, h; and h, follow

naturally from equations 4.8, 4.10 and 5.1,

f
h, =1+ e = cos ¢ cos B sec(f - ¢)
1
s By
a =g tan(B - ¢) - e g sin ¢ cos B sec(B - ¢)
fa
and hy = -e cos?p Yau (5.7)

1
The system of equations 5.6 is integrated from
¢ = O using a Runge-Kutta scheme. Since f,(¢) and
f2(¢) are of order ¢ for ¢ small, care is required in
evaluating h, = f,/f, for small ¢.
Typical results are shown in Fig. 6. For
Bo = 0 and all 1®/ow, the post buckling response is

stable: 0%/G increases with increasing ¢. For Bo >0,
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a softening post bifurcation response 1is displayed.
Now consider the effect of 7w/0% upon the buckling
response, as shown in Fig. 6. When 19/0® = 0, the
minimum buckling load ag/G is achieved at Bo = 0. VWhen
To/0% = -1, ag/G is a minimum at ﬁo = 11.7°; the post
buckling response for this critical orientation is
sof tening initially and hardening later. A
snap-through response is predicted at large values of

|T/0w| and B,» such as T@/gw = -1, B = 30°.

2.5¢
®
o® B30 == =0
G
2
1.5
Q0
1 v ~_ BO: 00’ :r— = -1
\
rw
N—p,=1.7°, ey
0.5 L 1 i 1 1 |
0° 10° 20° " 30°

Fig.6: Elastic post buckling response, ET/G = 4.
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6. PLASTIC MICROBUCKLING

Polymer and metal matrix composites usually fail by
plastic microbuckling. Budiansky (1983) has previously
analysed plastic microbuckling by considering the
response to remote axial stress o® of a kink band made
from rigid-perfectly plastic material. We begin by
generalising this analysis for the case of a remote
stress o® with a remote shear stress 7®. Then, we
consider microbuckling of an elastic-perfectly plastic
solid under combined axial and shear stress. Plastic
microbuckling in a strain hardening solid will be

addressed in a future publication.

6.1 Rigid-Perfectly Plastic Solid

Consider the response of a rigid-perfectly plastic
composite containing a kink band as shown in Fig. 4.
The material is loaded remotely by an axial stress o®
and a shear stress 7. In general, the kink band is
inclined at an angle B, and fibres in the kink band

suffer an initial misalignment ¢.

During collapse, non-proportional plastic
straining occurs in the kink band. Remote material
remains rigid, thus B is constant and we can drop the
distinction between [ and Bo. Inclined kink bands
induce transverse stresses at the initiation of
kinking, so that a combined-stress plasticity law must
be invoked. We use arbitrarily a quadratic yield

condition,

T2 UT 2
P2+ )2 =1 (6.1)
Ty
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where k and aTy are the shear and tensile transverse
yield stresses of the composite with respect to the
fibre direction.

It appears reasonable to assume that an

associated plastic flow rule applies. Then, by
normality, 5 = %-.
oT .
_2-—-—
= Gk (6.2)

where the non-dimensional parameter A is positive for
active plastic straining.

Combining equations 6.2 with equations 4.8
(recalling that 7o = 0 since remote material is rigid),
gives,

o
Ty, 2 -
op =7 () tan (B - ¥ - ¢) (6.3)
and, via equation 6.1,
q, 2 _ _
rek(l+ (D) tan® (B-F-¢) 7 (6.4)

We can now obtain an expression for the o«
versus ¢ collapse response, by substituting the

equations 6.3 and 6.4 into 4.16,

a, 2 - — —_
k(1+(—£zo tan2(5~¢—¢))xcos(B—¢-¢)—Twcos(ﬁ+¢+¢)

am —
cosf sin(¢+¢)
(6.5)
For small $'and ¢, this simplifies to,
*
oo~ KD T2 (6.6)
¢+ ¢

o.
where k= = k (1 + (—%202 tan® ﬁ)% as given by equation
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2.3. Equation 6.6 has been given previously by Batdorf
and Ko (1987) in the limit B = 0. In the case of
vanishing remote shear, equation 6.6 reduces to
equation (2.2), given by Budiansky (1983).

For simplicity, we shall consider proportional
remote loading with 1@ = eow. Equations 6.5 and 6.6

then reduce to,

1+( )2tan2(3-¢-¢)

=@ _ cos(B-3-9) 3
¥ 1+( )2 tan2p cosBsin(¢+¢)+ecos(B+o+o)
(6.7)
and, TE-a+2e y? (6.8)
k $ ¢
respectively.
Results

Equations 6.7 and 6.8 are compared in Fig. 7. We

Equation 6.8. all B
™ b — — — Full solution, equation 6.7

Fig.7: Accuracy of small ¢ approximation for
microbuckling of a rigid-perfectly plastic solid.

UTy/k=2, ¢=
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deduce that the small (¢ + ¢) approximation is

adequate. Matrix failure or fibre-matrix debonding
occurs at small values of ¢ (typically 3°) and the kink
band then loses its load carrying capacity. Thus,
equation 6.8 suffices over the range of validity of the
analysis.

It is evident from equation 6.8 that the

maximum value of remote stress o® (at ¢ = 0) is
critically dependent upon the misalignment angle $. As

3' tends to zero, o® becomes unbounded; there is no
finite bifurcation load for the perfect structure. The
implication is that the materials manufacturer should

arrange processing conditions to maximise fibre

alignment, and thereby minimise ¢.

We also deduce from equation 6.8 that a
positive shear stress 7® reduces the buckling stress
o, This contrasts with the case of elastic
microbuckling where a negative value of T reduces the
bifurcation value of o®. To gain insight into this
apparent paradox we consider next the buckling response

of an elastic-perfectly plastic solid.

6.2 Elastic-perfectly Plastic Solid

We now examine the buckling response of an
elastic-perfectly plastic composite, of geometry shown
in Fig. 4. Consider the general case of the kink band

inclined at an angle B, loaded remotely by ow and T.

The fibres in the band have an initial misalignment ¢.
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Typically, the response consists of two stages:

(a) An initial elastic response, followed by

(b) Matrix yielding and an elastic-plastic response.
We are interested in the early stages of

deformation, and assume that ¢, the various strain

measures and E'are each small,such that equations
4.8 simplify to,

Y~ ¢+ ™, ~ ¢ tan B (6.9)

°T
The shear strain in the remote material -~
remains less than the shear yield strain T (= 0.1%-1%)

throughout the response. Thus B % Bo by equation 4.11.

(a) Initial Elastic Response

The equilibrium equation 4.16, the constitutive law 5.1

and equation 6.9 may be combined to give the initial

elastic response,

(C+E wtp)
(1 -2 e tan B) 7+ 0

Here, as elsewhere, we assume remote proportional

ow

(6.10)

loading with ™@ = e ow.
The matrix yields when equation 6.1 is
satisfied. At this instant ¢ attains the yield value

¢y. Application of 5.1 and 6.9 gives,

ow
T=0Gr = G(¢y + e E—)
o.

= Egep = Ep ¢, tan B (6.11)

The value of o» at which yield commences, o» = o;, is

determined by substituting equation 6.10 and 6.11 into
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the yield condition 6.1, and solving for ow by the
Newton-Raphson method. Predictions are compared in
Fig. 8a with the buckling stresses ag, 'rg for a
rigid-perfectly plastic solid,

*
k- 7o
c

o = (6.12)

¢
which is a restatement of equation 6.6 with ¢ = O.
It is clear from Fig. 8a that the collapse
locus given by the rigid-perfectly plastic solid well

Collapse locus, rigid-plastic

1.0 solid. Equation 6.12

- ——— Onset of yield in elastic-

o® Q plastic solid.
ki
0S5
0
Fig.8(a): Comparison of collapse load a*é’;/k* for

rigid-perfectly plastic solid with onset of yield load
o°y°§>-/k* for elastic-perfectly plastic solid.

- 2 _ % = 9° = =
E/G = (o5, /K)® = 4, $ = 2°, 7 = K/G = 0.001.
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approximates the onset of yield in the
elastic-perfectly plastic solid. A positive shear
stress T decreases both the buckling stress a‘g for the
rigid-perfectly plastic solid, and the stress a*; at
which the matrix yields for the elastic-perfectly

plastic solid. In the limit of e/¢ << 1 and ¢/¢ << 1,

a!; and a‘g reduce to the same expression,

om ~ on ~ k¥ (1 - 8 (6.13)
y c 3
Consider the special case T = O. Then

equations 6.11 and 6.1 give,

¢, =5+ (;‘-;;)2 (Gi)z en?) ¥ (6.19)

Rigid-plastic, alt B

-— — — Elastic-plastic ¢ Onset of yield
I: =0
c
1
- 77
A g/
k* A\E: = =0°
//// = R
%3 :0.p=20°
/1 ’ ﬁ=O 05
0.5F /// /Uao .
Y A
ﬂ"'\":
’I’/ t_w =0.05, p = 20°
i ’
A\{‘;: 2005, p = 0°
| 1 !

0 1

N
w

%

y

Fig.8(b): Comparison of collapse response for
rigid-perfectly plastic solid with that for

elastic-perfectly plastic solid. E/G = (UTy/k)z =

= 4,

¢ = 2°, v = 0.001.
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o
If we assume for mathematical convenience gz = (—EX)Z,
then equations 6.10 and 6.14 reduce to,
*
ow = k
y

R (6.15)
¢+¢y

* T %
where k = k (1 + (—EXJZ tan® B)”“, as before. This

value for (a;, ¢y) lies on the o» versus ¢ response for
the rigid-perfectly plastic solid given by equation
6.6.

(b) Post Yield Response

After matrix yield, the elastic-perfectly composite
suffers both elastic and plastic straining in the kink
band. The plastic strain rate is normal to the yield
locus given by equation 6.1. A derivation of the
relevant equations is given in Appendix A. Here, we
describe only the results.

The pre and post yield response for the
elastic-perfectly plastic solid is compared in Fig. 8b
with the post buckling response for the rigid-perfectly
plastic solid. We note that the matrix yields at
¢/1y§1, where wy = k/G is the shear yield strain of the
matrix. The elastic-plastic response quickly
approaches the rigid-perfectly plastic result, so that
they are indistinguishable beyond ¢/7y = 2. We
conclude that the rigid-perfectly plastic constitutive
description is adequate for practical purposes.

ET o.

In the limit of ™ = 0, with g = ()%, the

post-yield elastic-perfectly plastic response coincides

with the rigid-perfectly plastic response. In the
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limit of B = O, material in the kink band suffers
simple shear with T = k, Op = 0. Again, the post yield
elastic-perfectly plastic response coincides with the

rigid-perfectly plastic response.

7. PROPAGATION OF A MICROBUCKLE BAND

In practice, fibre microbuckling initiates at a stress
raiser such as an imperfection or a hole in a sheet.
The microbuckle band propagates across the remaining
section of the structure. Fleck and co-workers (Soutis
and Fleck (1990), Soutis, Fleck and Smith (1990)) have
analysed the early stages of microbuckle propagation by
treating the microbuckle as a crack with a bridging
zone at its tip. This approach is reasonable if the
traction is negligible across the microbuckled band, at
a distance far behind the tip of the advancing
microbuckle.

Here, we calculate the stress 0; required to
propagate a long microbuckle in steady state. In this
limit, the rubble strength of the microbuckled material
is not negligible. The geometry is shown in Fig. 9a.
We assume remote proportional loading where 7@ = eow
and e is fixed. We shall use a simple energy argument
to calculate og, and make use of the remote stress
versus remote displacement response of a microbuckled
band of infinite length. Chater and Hutchinson (1984)
used a similar method to calculate the pressure
required to propagate bulges and buckles in elastic
cylinders.

The predicted remote stress o® versus ¢

response of the infinite band is shown in Fig. 9b. We
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assume the infinite band displays the rigid-perfectly
plastic characteristic, equation 6.6, for small ¢.
When a critical fibre rotation ¢, is attained, the
tensile transverse strain in the band er equals the
failure strain erg (typically ers = 1X) and the matrix
fails, see Fig. 9b. The band strength vanishes with
continued fibre rotation ¢ until er reduces to zero at

¢ = ¢5,. Thereafter we imagine the fibres in the band

u Displacement
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-] D ——
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o® . lock-up
matrix
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oy &

Fig.9: (a) Geometry of a propagating microbuckle. (b)
Conjectured collapse response of a microbuckle.
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contact each other and the band locks—-up, with no
further straining of the band. Lock-up is based on the
idea that the composite resists compressive transverse
straining in a highly stiff manner. The condition
er = O corresponds to zero volumetric strain in the
band since the fibres are considered to be
inextensional. Chaplin (1977) and Evans and Adler
(1978) also argue that fibre rotation stops when the
volumetric strain in the band vanishes; they base their
arguments on direct measurements of microbuckling.
Consider conservation of energy when the
semi—-infinite microbuckle shown in Fig. 9a undergoes a

unit advance. For a deformation theory solid we get,

Vy uy
ag® Vv, + T® u, = oo dv + [ 7™ du + G_sec B (7.1)
P p o J c
o
where gp is the fixed remote stress. Horizontal

displacement u and vertical displacment v are defined
in Fig. 9a. The first two terms on the right hand side
of equation 7.1 refer to the work done by microbuckling
when material is taken from a state ¢ = o to a state ¢
= ¢, as shown in Fig. Sb. The last term on the right
hand side of equation 7.1 represents the dissipation
due to delamination and damage in off-axis plies.

Equation 7.1 provides a necessary condition
for microbuckling: a detailed collapse mechanism at
the tip of the advancing microbuckle would provide the
sufficient condition.

We next calculate ag from equation 7.1. The
matrix fails when er = eTf at a fibre rotation ¢,,

e,
¢y = Tt (7.2)

tan B - ¢ sec3B
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Lock—up occurs when er equals zero. This is achieved

at a fibre rotation ¢,, where by 4.9,
¢2 = 2(B - ¢) (7.3)

By kinematics, the remote displacements u and v, which
form the work conjugates of Tg and as respectively,

are,

sin(¢ + ¢) - sin ¢

cos ¢ - cos($ + ¢) (7.4)

2|< 2|

When ¢ is small, these reduce to,

2|c

=9¢
=% ¢ + ¢¢ (7.5)

2|<

Equation 7.1 can be evaluated using equations 6.6,
7.2-7.5 and the assumption of proportional remote
loading 1° = e o® to give,

a»

2 = [(1-cos2B - ¥ sin2B) + e(sin2B - §(1 + cos2p))] ™
“IVya canzpy® 4
x [0 (1 + (D? tan®p)” + g5 sec B (7.6)

where ¢, is specified by equation 7.2.

The buckle propagation stress ag is plotted
against band inclination B in Fig. 10, by evaluating
equation 7.6. We note that og increases with
increasing Gc and decreasing 7T®, as expected. A
critical angle of B exists for which a; is a minimum,
for any specified material parameters and loading ratio
e. Disappointingly, the predicted values of B are in
the range 45° - 75° which are larger than the values
10° - 30° typically measured. This suggests that the
angle B may be set and locked-in at the initiation of

kink
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propagation, by deformation patterns induced
elastically via initial misalignments, as proposed by
Budiansky (1983).

The kink band analysis does not provide us
with the value of the kink width w. Budiansky (1983)

has predicted w with reasonable success using an

elastic bending analysis. He finds for perfectly
brittle fibres (tensile failure strain = 0),
*
w_w 2k \-¥%
a=1GE) (7.7
where d is the fibre diameter. This expression

predicts correctly w/d ~ 10 for material properties

typical of carbon fibre epoxy composites.

7.1 Case Study
Soutis and Fleck (1990) have examined recently the

oy’

Arrow ? denotes minimum

Fig.10: Effect of band angle B upon propagation stress

a;/k. o /k =2, ¢ =2°, = 0.01.

Ty °Ts
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compressive failure of a unidirectional and
[i45°/02)3]s multidirectional carbon fibre epoxy
composite. They measured the following material

properties for the unidirectional material under remote

axial loading: B = 20°,k = 60 MPa, E-/G = (o /k)* = 4,

(ory
bc = 1600 MPa. Equation 6.6 predicts ¢ = 2.6° which is
consistent with the level of fibre misalignment
observed. The fibre rotation after microbuckling ¢,
was found to satisfy equation 7.3, supporting the
concept of lock-up. Soutis and Fleck were unable to
measure the buckle propagation stress a; since unstable
buckle propagation occurred once the microbuckle was
initiated. This is consistent with the predicted value
a; = 13 MPa from equation 7.6 which is much less than
the measured buckling strength o, = 1600 MPa.

Soutis and Fleck (1990) have also measured the
toughness Gc associated with splitting and delamination

in the [(i45/02)3]s laminate. They measured

Gc = 30 kJ/m? from the compressive fracture load of
specimens containing central slits transverse to the
loading direction. This value for Gc together with an
observed value for w = 60um, gives Gc/kw = 8.3, and
og = 2900 MPa via equation 7.6. This predicted value
for ag is too high, as the multi-directional laminate
was observed to fail unstably at a stress o, = 810 MPa.
We conclude that more detailed modelling of damage
development in the off-axis plies is required. This is
not surprising, since the measured toughness Gc
associated with delamination and splitting is more than

two orders of magnitude greater than the dissipation
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due to microbuckling per unit area advance of the

microbuckle.

8. COONCLUDING REMARKS

The elastic and ©plastic kinking analyses of
microbuckling is able to account for some but not all
of the experimental observations. Fibre bending must
be treated explicitly in order to predict the width w
of the microbuckle band and the band inclination f.

There remains a paucity of experimental
evidence on the underlaying features of microbuckling.
The authors are unaware of any systematic studies which
examine the influences of fibre misalignment upon
microbuckling strength. It is difficult to distinguish
experimentally between elastic and plastic
microbuckling of polymer matrix composites, as matrix
yield stress wusually scales linearly with matrix
stiffness. Data on the shape of the yield locus for
composites remain scant. It seems that few systematic
experimental studies have been conducted of the elastic
microbuckling of fibre composites with elastomeric
matrices.

The buckle propagation analysis suggests that
only a small compressive stress is required in order to
propagate an existing microbuckle. No measurements of
the microbuckle propagation stress were found from the

literature.
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APPENDIX A: DERIVATION OF POST-YIELD ELASTIC-PERFECTLY
PLASTIC RESPONSE

The post-yield elastic-perfectly plastic response is
given in rate form as follows. We shall use the
superscripts e and p to denote elastic and plastic,

respectively. The strain rate in the kink band is,

[ ] .e L ] * .e [ ]
Yy =~ + ’Yp, eT = eT + e¥ (Al)
e T e cIT

where, Y = G eT = —E‘.; (A2)

in accordance with equations 5.1, and

o.
P=IX &= (U—:“—)z — A (A3)
by equations 6.2; A is a positive number for active
plastic straining. Assume proportional remote loading
with ™ = eo®. We combine equations Al-A3, with the

yield condition 6.1 and the kinematic relations 4.8, to

obtain A and the stress rates in the kink band T and

/G| _ 1 [Agy Au] ¢ ]
° _A e 00

O,



o/ o/

E G+ (DR

>
I

(o}

A11=EI(EIT£;)2‘£‘:3D(B-$_¢)

a. —_
A <[ (gl;—)zcos(w) + sin(#+4)Je cosp sec(B-9-9)

Ayy = L (U_iz)z G_+ an (ﬁ_$_¢)
or Er
U —
Azs = [(—-;— (—’lzx)2 gE‘—[‘ cos($+¢)—sin($+¢)]e cosP sec(f-¢-¢)
. T UT .
op === (—kl) T (A4)

Equations A4 simplify in an obvious manner when we

assume small (¢+¢), and E/G = (aTy/k)z. To proceed,

we differentiate the equilibrium equation 4.16 with

respect to time, and substitute for '.r, c.rT using A4, and

for [3 using 4.10. This results in a 1st order
differential equation for d(o®/G)/d¢ of the type given
in 5.6, but with a new expression for h;. Similarly,
we obtain 1st order differential equations for
d(T/G)/d¢, d(aT/G)/d¢ and for df/d¢. The resulting
system of 1st order differential equations, analogous
to equations 5.6, is integrated numerically using a
Runge-Kutta routine. The starting values are given by
the onset of yield condition described in part (a) of

section 6.2. Results are shown in Fig. 8b.
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A Ciritical Evaluation for a Class
of Micro-Mechanics Models*

Richard M. Christensen

University of California
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Livermore, California

ABSTRACT

New results are derived for the effective properties of composite
materials composed of a continuous matrix phase containing a highly
concentrated suspension of rigid spherical inclusions. The result
ing analytical forms from several different theoretical micro-
mechanics models are found to vary widely and they are assessed with
respect to physical significance.

SUMMARY

Micro-mechanical analyses are required to predict the effective properties and
failure characteristics of composite materials. The term micro-mechanics
implies the use of a model which accounts for explicit interaction at the
level of a continuous matrix phase and one or more inclusion phases. There
are many theoretical micro-mechanical models which have been developed and
applied to predict the effective elastic properties of composite materials,
and these will be considered here. Furthermore there have been comparisons of
such model predictions with data but this has primarily been done in the range
where all of the more reasonable models are within the band of the experimental
error and only models containing known errors or the meaningless rule of
mixtures show large deviations. Few if any critical evaluations have been
offered. The present work is intended to provide a critical evaluation of
several of the prominent theoretical micro-mechanics models and this summary
is excerpted from a recent work] with this objective. The many micro-
mechanics models that have been developed for predicting the effective,
elastic properties of composite materials admit different forms depending upon

*Hork performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under contract number W-7405-ENG-48.
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whether the case of particulate reinforcement or fiber reinforcement is being
considered. Models which have a theoretical basis in either case include the
following:

Differential Method

Composite Spheres (Cylinders) Model

Self Consistent Method

Generalized Self Consistent Method
(Three Phase Model)

Mori-Tanaka Method

Although there are many other micro-mechanics models they usually are either
of an essentially numerical nature involving series or finite element
solutions, or they are of an empirical nature, or finally they involve grossly
oversimplifying assumptions. The primary references to the main theoretical
models are as follows. The Differential Method has a long and interesting
history, but it was most effectively developed and used by Roscoe.2 The
Composite Spheres Model is due to Hashin.3 The Self Consistent Method is
credited to Budiansky4 and Hi11.5 The Generalized Self Consistent Method

was formalized by Christensen and Lo6 and referred to as the Three Phase

Model by them. Finally, the Mori-Tanaka method has had many contributors, but
the most recent and simplest derivation of it has been given by Benveniste.7

To proceed further it is necessary to decide whether to follow the particulate
or fiber reinforced case. The present work will focus primarily upon the
particulate case since it is of interest in its own right, and the conclusions
found from it project over to the fiber reinforced case. In the area of
particulate reinforced composite materials explicit attention will be given to
the case of spherical inclusions in a continuous matrix phase. It is with
this spherical inclusion case that there exist the most relevant and explicit
theoretical forms, as well as the greatest 1iklihood of finding critical data
against which to test the various theories. The case of spherical inclusions
can be sub-divided into two major classes

i) Single Size Spherical Inclusions

i Polydisperse (Size) Spherical Inclusions
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The case of single size spherical inclusions have been extensively studied by
Frankel and Acrivos8 in the form of highly concentrated suspensions of rigid
inclusions, in the fluids context, and by Chen and Acrivos9 under deformable
inclusion conditions in the elastic context. The present work covers the
polydisperse case of spherical particle suspensions with isotropic properties.

Within the case of polydisperse suspensions of spherical inclusions, the
limiting case is specified by those suspensions which permit full packing with
c+1, where ¢ is the volume fraction of inclusions. Models which permit c-1
are of interest for at least three reasons. Micro-mechanics models which
permit c~1 are particularly amenable to theoretical treatment and in fact

are widely used in theoretical studies. Secondly, these micro-mechanics
models giving c~1 are appropriate for use in describing practical, poly-
disperse suspensions involving a gradation of sizes of particles. Thirdly,
models allowing c~1 can serve as reasonable approximations to the mono-
disperse case so long as the concentration is not too large. HWith the
restriction that the models permit the full packing of inclusions and for
purposes of rigorous comparison and evaluation, two of the previously mentioned
micro-mechanics models must be excluded from consideration. These are the
Composite Spheres Model and the Self Consistent Method. The Composite Spheres
Model does not give a solution for the effective shear modulus but rather only
for the bulk modulus. It does yield information on bounds for the shear
modulus but that is not of relevance here where concern is with explicit
predictions rather than bounds. Also, the shear deformation property is the
primary concern here for reason to be given next. The Self Consistent Method
when applied to multi-phase media does not always cover the full range of
volume fraction up to c»1. This is true particularly when there is a large
mis-match in properties of the two phases, which is the case of primary
interest here, for reasons which also will be outlined in the following
discussion. Thus, the micro-mechanics models which conform with the
requirements stated here are:

Differential Method
Generalized Self Consistent Method
Mori-Tanaka Method
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It is these models which will be extensively studied, compared and evaluated
in the following work.

Most of the comparisons will concern the shear modulus rather than the
corresponding volumetric property. This is because the shear property is much
more difficult than the volumetric property to analyse. In the more physically
based models the volumetric property is governed by a scalor potential whereas
the shear property involves vector potentials. Accordingly it is much easier
to bring spurious results into a shear modulus micro-mechanics model than it

is for the volumetric property.

It is important to search for and examine the range of behavior where the
differences between the various micro-mechanics models are the greatest. As
already briefly mentioned, most evaluations involve comparisons of models with
data in low volume fraction ranges where the differences between them are not
great. To see the greatest differences between the models it is necessary to
go to conditions involving concentrated suspensions. Furthermore, the greatest
differences between model predictions occur for suspensions that have phases
with the greatest mis-match in properties between the matrix and inclusions.
The work here therefore focuses upon the suspensions involving perfectly rigid
spherical particles under highly concentrated conditions in a continuous matrix
phase. This case also will provide the most discrminating means of assessing
the models relative to experimental data.

Brief mention should be made of the relationship of direct model predictions
for properties with corresponding information upon values of upper and lower
bounds for the properties. Bounds have value in several different situations.
Certainly bounds are of interest when it is not possible to obtain a direct
micro-mechanical solution for the effective property of interest. Also, bounds
are of use in testing the direct predictions from models. If predictions from
a particular model violate relevant bounds then the model is useless. If, on
the other hand, the predicitons from a particular model satisfy the relevant
bounds, then essentially no information is gained from the bounds relative to
the model. That is the situation in operation here. No further reference
need be made to bounds, other than to simply observe that all results given
and interpreted here are consistent with all relevant bounds information.
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The predictions from the various models are compared under high concentration
conditions. This is done through the derivation of asymptotic forms
appropriate in the 1imiting case of high concentration of the rigid spherical
inclusion phase. The leading terms in the expansions give the dominant effect
under high concentration conditions. The details of these lengthy derivations
are given by Christensen] and the end results of the derivations will be
given here. The dominant terms for the effective shear modulus u obtained
for the Differential Method, the Generalized Self Consistent Method and the
Mori-Tanaka Method are given in Table 1 where By is the shear modulus of

the matrix phase and ¢ is the volume concentration of the spherical particles.

Table 1. Effective Shear Modulus for a High Concentration
Rigid Spherical Inclusion Suspension

Compressible Incompressible
_Matrix —_ Matrix
F(v.)
Differential Method Lo el
Ym  (1-0) Y¥m o (1-0)
Generalized Self . floy wo, _27
Consistent Method By (-0 oo 1601-c)3
fv )
i o, __m w o, _5
Mori-Tanaka Method " a-c) e 20-0)

A1l results in Table 1 represent the high concentration leading terms of the
corresponding expansions except the result shown for the Differential Method
with the incompressible matrix phase which is an exact result valid at all
concentrations. The symbols F(vm) and f(vm) and f(vm) in Table 1 represent
functions of the Poisson's ratio, Yo of the matrix phase. These forms are
known from the solutions given in Ref. 1. For example for Y = 1/5 then F(vm)
=1, f(vm) = 2.38 and f(vm) = 2.1t is seen from Table 1 that the three
micro-mechanics models give drastically different predictions of behavior under
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high concentration conditions. In the incompressible matrix case the exponent
of the dominant (1-c) term ranges from -1 to -3 causing orders of magnitude
differences in predictions under very concentrated conditions. The only cases
in Table 1 where the different models give the same order of the (1-c) term is
for the Generalized Self Consistent Method and the Mori-Tanaka Method in the
Compressible Matrix case. However, even in this case the values of the two
functions of Poisson's ratio f(vm) and f(vm) in Table 1 can be very different.
This difference is shown in Table 2.

Table 2. Compressible Case, High Concentration

w n

L con
Hn (1-c)

v_=0 vm=]/4 vm=]/3 vm-.45 vm-]/Z

Generalized Self 2.05 2.54 3 5.92 ©
Consistent Method

Constant

Mori-Tanaka Method 1.87 2.05 2.14 2.36 5/2
Constant

The fact the constant becomes unbounded for the Generalized Self Consistent
Method as vm~l/2 is simply a reflection of the fact that in the incompressible
case the leading term in the expansion is of higher order than that of 1/(1-¢)
and the problem must be reformulated to get the 1I(1-c)3 dependence shown in
Table 1.

The results shown in Tables 1 and 2 reveal the fundamental differences between
the three micro-mechanics models. In Ref. 1 a detailed comparison is given of
the three micro-mechanics models with experimental data. The results are more
complex than can be simply stated here, because the full theoretical forms of
the models must be used rather than just the asymptotic results shown in Table
1. The comparison with experimental data favors the Generalized Self
Consistent Method rather than the other two models; see Ref. 1 for the
conditions and limitations of the evaluation. The main qualification of these
results is that of the restriction to very concentrated conditions for the
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suspension. Perhaps it could be argued that this limiting case is too severe
and under "normal conditions" all the micro-mechanics models discussed here
give reasonable predictions. The difficulty, however, is in defining the term
normal conditions since there is no clear dividing line. In this sense then a
model that gives reasonable behavior in some cases and unreasonable behavior
in other cases is no better than an empirical model. 1In any case, all models
recover dilute behavior adequately, and the major technical problem is to
properly model the other extreme of behavior, the concentrated suspension
case, as has been considered here.
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Abstract

This paper describes a part of a continuing program in
experimental verification of model predictions of the overall
inelastic behavior of fibrous metal matrix composites.
Measurements of initial and subsequent yield surfaces, and of
plastic strains were performed on thin—walled B/Al tubes with
unidirectional axial reinforcement, under torsion and internal
pressure that was applied along a complex incremental path.
The results were interpreted with three different models, the
periodic hexagonal array (PHA) model, the bimodal plasticity
theory, and a modified Mori—Tanaka scheme. The reliability
of the predictions varies significantly, particularly where
plastic strains are concerned. Only the PHA model appears to
be of value in this regard, but the shape and position of overall
yield surfaces was well predicted even by the
matrix—dominated mode of the bimodal theory.

1. Introduction

Numerous analytical models have been proposed for
prediction of the inelastic response of fibrous composites, an
extensive bibliography appears in a recent review by Dvorak
(1990). In contrast, experimental verification of such models,
and the experimental work itself, have attracted much less
attention. The present paper is a part of a program where
such questions are addressed, both in terms of physical
experiments, model development, and evaluation of the
reliability of model predictions by comparison with
experimental measurements of yield surfaces and plastic
strains.

The experimental technique and results for incremental
loading along a complex loading path are described in §2.
Section 3 presents certain general relations which govern
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motion of subsequent yield surfaces during loading, and
evaluation of plastic strains in the inelastic phases. Section 4
reviews some elements of the various models used in
subsequent simulations of the experiments in §5. Some
conclusions are noted in §6. In general, good predictions of
overall yield surfaces and of their shape and position during
plastic loading can be derived from several models. However,
evaluation of plastic strains is much more difficult and less
reliable even if performed with refined modeling techniques.

2. Experimental Results

The results described herein were obtained as a part of
a continuing program which was first discussed by Dvorak et
al. (1988). The work was performed on thin—walled tubular
specimens made of a unidirectionally reinforced 6061—Al/B
composite, with fibers aligned parallel to the axis of the tube.
Figure 1 shows the specimen dimensions, instrumentation, and
end attachments. The specimen tubes were fabricated by
diffusion bonding of monolayers which were wrapped around a
cylindrical madrel and then subjected to external pressure of

Fig. 1 Dimensions and instrumentation of
composite tube specimen.
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30 MPa at 500°C. In the finished form, the tube wall
contained seven layers of fiber, the fiber volume fraction was
cs = 0.45. The specimens were annealed at 400°C for two
hours, cooled at 10°C/hr to 260°C and then air cooled.

Specimen  instrumentation was  designed for
measurement and recording of axial, hoop and longitudinal
shear strains in the tube wall under incremental loading.
Typical resolution was 1.0x 10-6. Load was applied by a MTS
closed—loop servo—hydraulic machine in the stress controlled
mode. Independent components of axial force, torque, and
internal pressure were combined to create various incremental
loading paths. The machine was controlled by an IBM PC; the
accuracy of load application, in terms of the average stress in
the specimen wall was 0.1 MPa; the loading rate in all three
directions was about 4.2 MPa/min. All tests were performed
at room temperature. Additional information may be found in
op. cit.

The purpose of the experiments was to establish overall
yield surfaces and to measure plastic strain magnitudes for the
selected loading sequences. The yield surfaces were
constructed as loci of experimentally detected yield points on
stress—strain curves found during excursions from the elastic
region. As in op. cit., the yield points were defined at the
onset of deviation from linearity, and they were evaluated by
back—extrapolation from the initial inelastic part of the
stress—strain curve.

Figure 2 shows the path in the overall stress space
which was selected for the present experimental work, and for
the subsequent comparison of the results with several model
predictions, as discussed in the sequel. The path was chosen in
the 0,,0,, — stress plane, where o,, denotes the normal stress

transverse to the fiber, and o,, is the longitudinal shear stress.
The o,, corresponds to application of internal pressure. No

axial force was applied to compensate for the axial normal
stress caused by the internal pressure, hence such stress
coexists with o,, and the scale on the horizontal stress axis

in Fig. 2 was adjusted to reflect the resulting rotation of the
stress plane actually employed in the measurements.

The path starts at point 1, and follows the sequence
indicated by the arrows to point 11. The initial yield surface I
was found by loading excursions from point 1 to the
experimental yield points indicated. Subsequent yield surfaces
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II to IV were found in a similar manner at points 4, 7, and 11.
Note that points 6 and 11 lie outside their respective yield
surfaces, this "piercing" phenomenon is explained below. The
individual yield surfaces seen in Fig. 2 correspond to the
matrix—dominated deformation mode in fibrous media (Dvorak
and Bahei—El-Din 1987). The relevant equations appear next.

3. Yield surfaces and plastic strains

The origin and motion of the overall yield surfaces of
the fibrous material is related to the local stress field in the
phases, and to the hardening characteristics of the matrix
material which alone is responsible for the inelastic
deformation. The local fields may be thought of in terms of
piecewise uniform distributions, such as those that may be
evaluated by the finite element method. For this purpose, a
representative volume of the composite material may be
subdivided into N = Nf + N subelements where the stress
field is known in terms of some constant values. Under a

uniform overall stress Ethe local field is

gl‘k = ~I'k:0-_ , k = 1,2, N; (1)

where r = f, m, and Bk is the stress concentration factor of

subelement k. This concentration factor must be evaluated for
each subelement from the solution of a boundary value
problem for the representative volume of the composite
microstructure under consideration, or it may be estimated by
an approximate method.

The results found by Dvorak et al. (1988) indicate that
the annealed 6061 aluminum matrix hardens kinematically.
The equation of the matrix yield surface has the form

gm(gm_gm) =0 (2)

and the evolution of the back stress vector @, is reasonably
well described by the Phillips (1972) rule which stipulates that



288
dop, = do, . (3)

From the above one concludes that for each matrix
subelement there is a yield surface in the overall stress space
given by the equation

fu(0—0) = gu[Bux (0—04)] =0;k=12,.N . (4)

where a;, denotes the position of the current center in the local

stress space, and ?k denotes the position of the corresponding

surface in the overall stress space. The projections of the local
surfaces into the overall stress space may be referred to as
branches of the overall yield surface. Also, the following
relat%on exists between the local and overall stress vectors (Hill
1967):

Opk — Qg = ?mk(? - ?k) (5)

With regard to the Phillips hardening rule for the
matrix (3), the motion of the loaded branches of the overall
yield surface is then described as

The branches for subelements which currently undergo elastic
deformation also experience a translation, due to the stress
redistribution during plastic straining (Dvorak et al. 1988).
Equation (6) suggests that regardless of the actual form of the
local yield function (2), the loaded branches of the overall
surface translate by an amount equal to the overall stress
increment. As plastic yielding spreads through the entire
matrix volume, the said translation affects all branches of the
overall surface.

Evaluation of overall plastic strains in a composite
material must also proceed from local constitutive equations
for the matrix material. The local plastic strain is computed
from the familiar formula (Ziegler 1959):
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where de;; is the total strain increment, n;; is the direction of

the outward normal to the yield surface at the current stress
point, G is the elastic shear modulus of the matrix phase, and
H = H(oy;) is its instantaneous plastic tangent modulus. This

modulus was evaluated here from the two—surface theory
proposed by Dafalias and Popov (1976). Their approach
introduces a bounding surface, which is an isotropic expansion
of the initial yield surface. The two surfaces are coaxial in the
undeformed state. During deformation, the yield surface
follows a given hardening rule, such as that indicated by (3),
while the bounding surface undergoes the translation in which
the center of this surface moves by the amount

damnnmn

H
dg;; =d0‘ij_( ——0)———% . (8)
H pying

This is illustrated in Fig. 3a which also defines the terms in

(8). Note that at points s and s the two surfaces have parallel
outward normals. In an uniaxial test, the two—surface
approach leads to the scheme indicated in Fig. 3b. If ¢ is the

distance between s and s , then the instantaneous plastic
tangent modulus H follows from the formula

H = Hy+h6/(8y-0) (9)

where §;, is the value of § at the onset of yielding, H, is the

asymptotic value of H, and h is a material parameter. Note
that application of this model to a specific material requires
evaluation of the parameters Hy, h, and the size of the
bounding surface. After rearrangement, the above equations
lead to the following formula for evaluation of the
instantaneous stiffness of the matrix material:

2G

N R A V2 Te
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4. Composite material models

4.1 Bimodal plasticity theory

In their 1987 paper, Dvorak and Bahei—El-Din
suggested that fibrous composites reinforced by aligned elastic
fibers may exhibit two distinct deformation modes in response
to plastic straining in the matrix phase. In the fiber mode, the
composite behaves as a heterogeneous material where both
fiber and matrix carry the applied load. The self—consistent,
Mori—Tanaka, or other such models may be used to describe
overall behavior in this mode. In contrast, the matrix
dominated mode transfers all loads to the matrix and employs
the fiber to restrict plastic straining in the matrix to simple
shear deformation on planes that are parallel to the fiber axis.
Each of the two modes is activated by a different state of
applied stress, i. e., each has its own segment of the composite
yield surface in the overall stress space. The matrix mode
surface is independent of phase moduli, but the fiber mode
surface depends on these moduli, hence the two modes are
activated by different stress states in different composite
systems. The fiber mode is always present, but the matrix
mode is not. In general, existence of the matrix mode is
favored in systems where the fiber longitudinal shear modulus
is large compared to the matrix shear modulus, e.g., in the
present B/Al system, but also in SiC/Ti and SiC/TiAl
systems. This condition is seldom met in composites reinforced
by graphite fibers, hence only the fiber mode may exist in the
Gr/Al and similar systems.

The loading path of Fig. 2 activates only the matrix
dominated mode in the B/Al composite used in the
experiments. The corresponding yield surface was derived by
Dvorak and Bahei—El-Din (1987) as

r ~ 2 2
O91—Qyy O99— Q99

fa(f)=~ T ) +[ ™o *1]——1=Ofor|q|$1

(11)
r b 2
To1—Qyy
o) = —1=0 for >1
fo(o) T lq] 2
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where 7, is the composite yield stress in longitudinal shear, and

q = (05— a3y)/ (095 — @3y)-
This is a straight cylinder with oval cross—section and
generators parallel to the o, axis, as shown in Fig. 4 in the

initial state, a;; = 0. Figure 2 contains oblique sections of this
cylinder, with the yield stress 7, adjusted to fit the

experimental yield points at each of the displayed surfaces. As
observed by Dvorak et al., (1988), the matrix hardening has a
small isotropic component, possibly caused by strain and age
hardening, which affects the size of the experimentally detected
overall surface.

The model of the matrix—dominated mode of plastic
deformation also indicates a method for evaluation of plastic
strains; this has been outlined in the 1987 paper.

X3

o21/7To
3 X2
- x‘

fo T q =021/022

fa \1

o

Fig. 4 Transverse cross section of the initial
yield surface of the matrix—dominated
mode.
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4.2 The Periodic Hexagonal Array model

Dvorak and Teply (1985) and Teply and Dvorak (1988)
developed this model in an attempt to obtain better estimates
of the local fields, and bounds on instantaneous overall
properties of elastic—plastic composite materials. The
microstructural geometry is represented by a periodic
distribution of the fibers in a hexagonal array, Fig. 5. The
array is divided into two sets of unit cells, as indicated by the
shaded and unshaded triangles in Fig. 5. Under properly
prescribed periodic boundary conditions, the two sets of unit
cells have related internal fields when the material is subjected
to remotely applied uniform overall stresses or strains.
Accordingly, only one unit cell from either set needs to be
analyzed.

The actual analysis is performed by the finite element
method. The unit cell is subdivided into a selected number of
subelements, element material properties are prescribed as
suggested by (10), and solutions are generated as the cell is
subjected to prescribed incremental loading. Figure 6 indicates
two possible subdivisions of the unit cell; of course the fine
mesh is preferred when details of the local fields are of interest.
A separate subroutine has been developed for the coarse mesh
(Teply 1984), while the fine mesh has been implemented via
the ABAQUS program.

4.3 The Mori—Tanaka method

This approximate method for evaluation of estimates of
overall elastic properties of matrix—based heterogeneous media
was originally proposed by Mori and Tanaka (1973), and more
recently reformulated in a simpler form by Benveniste (1987).
The essential assumption of the method is that the local field
in each inclusion may be replaced by the field which exists
when this inclusion resides in an large volume of matrix that is
subjected to the average matrix stress or strain at infinity. In
a recent paper, Lagoudas, Gavazzi and Nigam (1990) adapted
this method to elastic—plastic systems. At each loading step,
their approach utilizes the Eshelby solution of the inclusion
problem in a homogeneous anisotropic matrix. Then, the
stress and strain distributions found in the phases are replaced
by their phase volume averages. These averages serve to
evaluate instantaneous matrix properties from the prescribed
constitutive law of the matrix, in the form suggested by (10).
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Fig. 5 Transverse cross section and unit cell of
the Periodic Hexagonal Array model.
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Fig. 6 Coarse and refined finite element meshes.
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5. Interpretation of experimental data

We now proceed to simulate the yield surfaces and
plastic strains measured along the path indicated in Fig. 2 by
the three models described in §4. With reference to the figure,
note that the initial part of the loading path, between points 0,
2, and 3 was used to fix the parameters in 1(10). This was done
empirically, albeit with prior knowledge of similar parameters
for the neat matrix. In particular, the initial matrix yield
stress in simple tension was found to be equal to 23.64 MPa,
the radius of the bounding surface in the same direction was
evaluated as 69.6 MPa. The material parameters in (9) were
selected as Hy = 1100 MPa and h = 80,000 MPa.

Figure 7 presents the initial yield surface I from Fig.
2,with the experimentally detected yield points, together with
a cluster of subelement branches of the overall yield surface
derived from the fine mesh in Fig. 6, according to &) at

o = 0. Some of these branches fall within the MDM surface

of the bimodal model, this reflects the presence of
microyielding prior to a definite deviation from linearity at the
yield point. Figure 8 shows the cluster after loading from the
origin to point 2 of the loading path in Fig. 2. Each loaded
branch translates according to (6). Since all branches pass
through the loading point 2, all matrix subelements have
yielded at this point. The outer normals to the innermost
branches at the loading point form a cone of normals which
must contain the overall plastic strain increment vector (Hill
1967). The directions of this vector found in experiments and
in the PHA simulation are shown to lie within this cone.

Similar yield surface configurations were found at other
loading points. Among those we display in Fig. 8 the data at
point 6. Again, all elements yield, the branches form a
hinge,and the cone of normals contains the experimental and
numerical (PHA) evaluations of the plastic strain increment
vector directions. Those are seen to lie in close proximity, but
not in the direction of the normal to the MDM surface found
from the bimodal theory fit to the experimentally measured
yield points.
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Piercing of the latter surface by the loading vector at
point 6 is seen to be caused during detection of the
experimental yield points. As the yield points are found after
loading to point 6, the cluster of subelement surfaces undergoes
a substantial rearrangement during the several loading
excursions, such that the point 6 no longer lies on the final
overall yield surface.

To indicate the differences in the direction of the plastic
strain increment vectors that were measured experimentally
and predicted by the PHA and bimodal models, we record here
the respective angles, measured in degrees in the
anti—clockwise direction from the o,, axis:

Directions of the plastic strain increment vector

Loading Experimental PHA model Bimodal

point theory
2 3.21 5.55 8.17
3 175.94 174.21 171.83
5 63.43 83.03 51.34
6 83.02 72.33 51.34
8 220.58 209.49 215.00
11 244.33 253.17 NA

This suggests that both methods approximate the
actual plastic strain direction with similar accuracy. Of
course, 1t is more meaningful to compare the actual plastic
strain magnitudes. This is done in Fig. 10 which shows the

normal plastic strains €}, as a function of the applied overall
stress oy, Also in Fig. 11, which presents the same
comparison for the longitudinal shear components.
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The normal plastic strains appear to be in reasonable
agreement up to point 5. There is a significant difference
between the Mori—Tanaka and bimodal theory predictions and
the experimentally measured plastic strains during loading
between points 5 and 6 and thereafter. The PHA model
predictions, while not in perfect agreement, appear to be
noticeably closer to the measured strains.
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0'21—622, response for loading path 0—11.
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The longitudinal shear plastic strain comparisons in
Fig. 11 show these differences to be even more pronounced.
The Mori—Tanaka model deviates most significantly from the
experiments, somewhat lesser but still large deviations are
shown by the bimodal model, and even the PHA predictions
are quite different from the experimental data. Note that most
of these differences occurred during loading from point 5 to
point 6.
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A final comparison, in Fig. 12, shows the plastic strain
path followed by the actual B/Al composite material and by
the respective models during the entire loading program. Here,
the PHA model comes relatively close to the experimental
data, whereas both the Mori—Tanaka and bimodal predictions

are very far away.
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6. Conclusions

The results suggest that heterogeneous media posses a
number of yield surfaces both initially and at subsequent
loading points. Each point of the inelastic phase or phases
may be associated with a branch of the composite yield surface
in the overall space. These branches form a cluster of yield
surfaces, the internal envelope of this cluster delineates the
purely elastic region devoid of any inelastic deformation. In
contrast, the experimentally detected surface which connects
the yield points that signify a definite deviation from linearity
on observed stress—strain diagrams in various loading
directions, is actually a locus of vertices formed in the above
cluster by the loading excursions. As suggested by Dvorak et
al, (1988), the experimental surface should be regarded as a
penetration envelope of the rearranged cluster of subelement
surfaces. This serves to emphasize the fact that the normality
rule applies only within a cone of normals, and not with
respect to the surface drawn through the vertices.

It is remarkable that the initial and subsequent
experimental surfaces are so well fitted by the bimodal model,
and specifically in the present case by the matrix—dominated
surface of Fig. 4. Also, it is surprising that the rigid—body
translation according to (6), which actually applies only to the
currently loaded branches of the cluster, is exhibited by the
entire experimental surface. In any event, it appears that the
bimodal model, in conjunction with (6) for a matrix that
follows the Phillips hardening law (3), is rather useful in
evaluation of subsequent yield surfaces along a general loading
path in the overall stress space. Our related work shows that
equally good predictions are obtained from the PHA model,
albeit with much greater effort.

Apart from the kinematic hardening which clearly
dominates overall behavior, there are isotropic hardening
components. In part, they are probably caused by age and
strain hardening. However, numerical simulation of certain
experimental loading sequences with the PHA model has
revealed that overall isotropic hardening may take place in the
PHA model material even if the matrix hardens only
kinematically, as demanded by (3). At the present time,
reliable modeling of the isotropic effects appears to be beyond
reach, and the effects themselves may not be very significant.
The same applies to time—dependent effects at the loading rate
employed herein. However, significant rate effects have been
detected in the present system at very low rates.
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Evaluation of plastic strains appears to be the most
difficult goal to reach in modeling. Both the Mori—Tanaka and
bimodal models give unreliable predictions. This is no doubt
caused by the reliance of these models on normality of the
plastic strain increment vector to model approximations of a
single current yield surface. The experiments and their
simulations show that normality holds within the cone of
normals, but not with respect to either the experimentally
detected surface, or to its approximations. The PHA model
appears to be more reliable in this regard, but it is also
susceptible to significant deviations from measured plastic
strains. Clearly, the problem is due, in part, to the unexact
nature of plastic strains predictions in the matrix material; this
is inherent in all available models, including the
Dafalias—Popov scheme used herein.
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Abstract

The effects of a superposed hydrostatic stress on the deformation and fail-
ure behavior of whisker reinforced metal-matrix composites are analyzed
numerically. The applied loading path consists of the imposition of a hy-
drostatic stress followed by tension along the fiber axis. Matrix cavitation
is the sole failure mechanism analyzed and an elastic-viscoplastic material
model is used that accounts for ductile fracture by the nucleation and sub-
sequent growth of voids to coalescence. The effect of the distribution of the
whiskers on failure is illustrated. A superposed hydrostatic stress is found
to have a much greater effect on ductility when the whiskers are clustered
than when they are uniformly distributed in the matrix. The predicted
variations in ductility for tensile and compressive superposed hydrostatic
stress, and the presence of zones which show highly localized strains, are in
qualitative agreement with available experimental results.

Introduction

Whisker-reinforced ductile matrix composites represent a broad class of ad-
vanced structural materials which often possess excellent specific strength
and stiffness values. The primary disadvantage of many particle-reinforced
materials is that they exhibit low ductility and poor fracture toughness.
In order to improve these macroscopic characteristics, it is essential to de-
velop an understanding of the deformation mechanisms on the local or
micro-level. A survey of published experimental wor<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>