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Preface 

During the last ten years a considerable volume of inform

ation has been accumulated regarding the inelastic behaviour of 

materials. The increasing number of communications published in 

specialised journals and also the frequency of meetings in these 

fields, indicates a considerable research effort aimed at such 

topics as plasticity, creep, fatigue, visco-plasticity and the 

like. 

This fact encouraged a group of Brazilian researchers, 

stimulated enthusiastically by Professor P. Germain, to submit 

a proposal for a Symposium on the "Inelastic Behaviour of Plates 

and Shells" to the General Assembly of IUTAM. Brazil had recently 

joined IUTAM and the Brazilian Association of Mechanical Sciences 

was eager to host an IUTAM meeting. 

In the selection of the subject, it was taken into account, 

besides a promising number of original contributions, the interest 

to be raised amongst the Brazilian researchers and engineers, in 

order to maximise the participation of the host country. 

The recent steps taken in this country towards the develop

ment of the aero-space industry, the construction of nuclear 

power plants a.nd the off-shore exploration of petroleum have 

required an intensification of research activities in several 

fields, structural behaviour of plates and shells being one of 

the most important. Therefore, the suggested theme would attract 

the interest or a significant group of Brazilian researchers and 

engineers and match the necessity for exchanging experience among 

leading scientists working in those fields. 

The organization of the scientific programme owes a great 

deal of its success to Professor A. Sawczuk, who was not spared 

the best of his enthusiasm and efforts to prepare a list of 

topics and potential contributors in cooperation with the other 

members of the Scientific Committee. Unfortunately, he did not 

live to see the success of the meeting which he so carefully 

helped to organise. Then Professor R. Valid accepted to replace 

him as Co-chairman. 
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ation. In Grenoble he received a doctorate honori_s causa at the 

Polytechnic Institute. In 1983 he was elected Resident Rector of 

the International Centre of Mechanical Sciences (CISM) in Udine, 

Italy, where he worked until his sudden death in 1984. Professor 

Sawczuk organized numerous scientific meetings, international 

symposia and conferences. Amongst others he was one of the co

organizers of the SMiRT- conferences devoted to structural mecha

nios in reactor technology. Until his death he was a member 

of the General Assembly of IUTAM and a member of lASS and RILEM. 

Professor Sawczuk was, moreover, a member of editorial Committees 

or Advisory Boards of a number of esteemed scientific journals, 

the International Journal of Mechanical Sciences, Archives of 

Mechanics, Journal de Mecanique Theorique et Appliquee and the 

Journal of Structural Mechanics and Engineering Transactions. 

Professor Sawczuk's contribution to mechanical sciences is 

outstanding. He published over one hundred scientific papers 

and several monographs, from which the first published in 1963 

'Tragfahigkeits-Theorie der Platten' written with the late Prof

essor Th. Jaeger still remains the fundamental book in the theory 

of the load-carrying capacity of plates. 

One of his main fields of scientific activity were problems 

of structural plasticity. Over half his publications were devo

ted to these problems. In this field he educated numerous 

young scientists who developed his ideas and his work. His 

scientific results have been widely referred to in the world 

literature of the subject. 

His other field of scientific activity concerned problems 

related to the fundamentals of the mechanics of continuous media, 

especially problems dealing with the mechanics of anisotropic 

continua. Also in this field he achieved significant results 

among others concerning new concepts in the description of the 

strain hardening of materials in which he again educated numerous 

young people. 

The decease of Professor Antoni Sawczuk is a great loss to 

the entire scientific community in the field of mechanics. 

Professor W. Szcepinski 
Polish Academy of Sciences 



Short Biography 

ANTONI SAWCZUK 
1927-1984 

Professor Antoni Sawczuk, a long-time member of the Edito

rial Board of the International Journal of Mechanical Sciences, 

died at the age of 57 on 27 May 1984 in Grenoble, France. Born 

in 1927 at Komarno in Poland, he graduated from the Warsaw Tech

nical University in 1951 and started his work as a designer in 

industry, which he continued until 1954. At the same time he 

started his scientific activities in the Department of Civil 

Engineering at the Warsaw Technical University teaching the 

Strength of Materials. Under the guidance of Professor Waclaw 

Olszak he received his Ph.D. degree there in 1953 and habilita

tion in 1960. 

In 1961 he began to work at the Institute of Fundamental 

Technological Research. In 1969 after the retirement of Profe

ssor Olszak he became the Head of the Department of Continuous 

Media at the Institute. Professor Sawczuk held this post until 

1981. In 1969 he was elected a corresponding member of the Po

lish Academy of Sciences and in 1983 he received the full mem

bership of the Academy. For a long time until 1984 Professor 

Sawczuk served as the President of the Committee of Mechanics of 

the Polish Academy of Sciences. 

Professor' Sawczuk had close ties with the scientific co

mmunity across the world, which started with his fellowship in 

the academic year 1958-1959 at the Illinois Institute of Tech

nology and at Brown University, Providence, where he worked with 

Professors P.G. Hodge and W. Prager. His cooperation with the 

Illinois Institute of Technology continued when he was a visiting 

professor in the academic year 1964-1965. He was appointed a visit

ing professor also at Grenoble University, France, where he orga

nized a group working with him inthe mechanics of plastic deform-
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The Effects of Thermal Loading on the 
Deformation of Shell Structures 
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Sununary 
The effect of severe cyclic thermal loading on the plastic and 

creep deformation of shell structures may be understood through the use of 
shakedown theory and its extension to time dependent material properties. 
The paper discusses methods of estimating shakedown limits, deformation in 
excess of shakedown, and steady state creep strain rates using solution 
technique based on this theory with the objective of forming a broad 
understanding of the material and structural phenomena involved. The 
incentive for this work arises from problems associated with the 
structural design of the U.K. Commercial Sodium Cooled Fast-Breeder 
Reactors. 

1) Introduction 

Sodium Cooled Fast-Breeder Reactors [1] retain high neutron flux 
densities within the core and efficient heat transfer from the core by 
using liquid sodium as a coolant. These advantages are offset by severe 
thermal loading conditions, particularly for components within and 
adjacent to the reactor core. A typical component is subjected to quite 
moderate dead loading (never greater than 0.25 of the plastic limit load) 
but is likely to be subjected to periodic severe temperature fluctuation 
When the reactor is shut-down. These transients can produce elastic 
stresses well in,excess of the yield stress and the temperatures can 
locally reach 600·C.well into the creep range of the designated structural 
alloy, ASME type 316 Austenitic stainless steel, as creep occurs at 
temperatures in excess of 480·C. The principal design concerns are that 
components, most of which are thin shells, should not suffer unacceptable 
incremental strain growth or long term creep or fatigue failure. This 
paper describes a sequence of theoretical studies, with correlations with 
some experimental data, which were developed to provide an understanding 
of the relationship between material properties and structural 
deformations under these conditions. The basic theoretical tools are 
those of classical plasticity, the shakedown theorems [2,3] and their 
extension to time dependent material properties [4,5,6]. The behaviour in 
excess of the shakedown limit for strain hardening materials is 
understood by expanding the solution about the perfectly plastic shakedown 
limit. The rate of ratchet of a perfectly plastic structure in excess of 
shakedown may also be estimated in this way. 

Section 2) discusses the use of the upper bound shakedown theorem 
as a basis for a finite element technique and the solution so obtained are 
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obtained in the form of interaction diagrams as an aid to design and 
design code formulation. In section (3) the behaviour for loads in excess 
of the shakedown limit is estimated by expanding the perfectly plastic 
solution and a strain hardening solution about the shakedown solution. 
It is shown that the number of cycles required to reach an asymptotic 
state for a strain hardening material can be very large for loads in 
excess of shakedown. 

In the final section (4) a method of estimating creep deformation 
rates is described, which is based on the idea of rapid cycle and slow 
cycle solutions. Comparison with experimental data suggests that the most 
significant feature in interpreting these solutions is an understanding of 
the load level in relation to the shakedown limit. The observation 
indicates that tests carried out in excess of the shakedown boundary are 
poor indicators of the validity for use in design of finite element 
techniques using complex constitutive relations. 

2) The General Problem and Shakedown Theory 

The general problem is shown schematically in Fig.l. A structure 
with volume V and surface S is subjected to constant loads II i:'i where II is 
a load parameter, and a cyclic history of temperaturee (x,t) which varies 
with spatial co-ordinates x, and time t. For the elastic-perfectly 
plastic case with uniaxial-yield stress cry the general features of the 
behaviour are shown in terms of a Bree diagram [7] with axis II/ilL 
where ilL the limit value for uniform temperatures, andat/ay , where 

at is the maximum effective thermo-elastic stress in the body. For 
proportional thermal loading where 

e = e + g(x) h(t)A e 
0 

and o : g(x) : 1 , o : h(t) < 1 

then at = kEQA e 

(1) 

(2) 

(3) 

where E anda are the (assumed) temperature independent elastic modulus 
and linear coefficient of expansion, and k, which depends on Poissons 
ratio, lies in the range 0 ~ k ~ 1. 

The diagram is subdivided into four regions: E where purely elastic 
behaviour occurs: S where shakedown occurs with elastic behaviour after 
some inelastic strain during the first few cycles; F where plastic strains 
occur over a confined volume of material but no incremental growth 
occurs, producing a reversed plasticity or plastic shakedown condition, 
and : R where incremental growth occurs during each cycle. Shakedown 
theory is concerned with the boundary CBD, whereas the ratchet boundary 
CBA provides the Significant design limit, if the separate problem of 
fatigue is taken into account. 

For most thin shell problems where the temperature variations 
through the thickness of the shell are small compared with variations 
along the shell surface, the region F is small or entirely absent and for 
small values of II with increasing at (i.e. Ae) the shell moves through the 
elastic and shakedown regions to incremental displacement growth in the R 
region. The question of the existence of the F region has been discussed 
by Karadeniz and Ponter [8] who have shown, using an extension of the 
shakedown theorems, that problems for which no F region exists can be 
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characterised by the following property. For values of a above the line 
BD there exists a volume of material where the thermo-elattic stress 
history cannot be contained within the yield surface by a rigid body 
translation in stress space. If this volume contains a mechanism of 
deformation on which the applied load does positive work, then no F region 
exists. For example, for axisymmetric shells if this condition occurs 
through the thickness of the shell a simple local extensional deformation 
mode would be activated by any axial load arising from P. For this 
reason, the shakedown limit is of particular significance for thin shells, 
and the transition from shakedown to ratchetting a significant event. 

The shakedown boundary CBD can be estimated from above and below by 
the shakedown theorems [2,3]. The theory applies to a material where the 
elastic component of strain ~e is given by 

where C is a temperature independent matrix of elastic constants. An 
increment of plastic strain dEP is given in terms of a yield function 
f(~') - ay(e) = 0 by the associated flow rule 

dA af 
30-' 

(4) 

(5) 

where a is thedeviatoric stress, dA a plastic multiplier anday(e) a 
temperature dependent uniaxial yield stress, and f a function which is 
homogeneous of degree unity in the deviatoric stress components. The 
total strain increment is then given by 

(6) 

where ~ is the Kroneker delta and a the (constant) linear coefficient of 
thermal expansion. Of these assumptions the temperature independence of 
C and a is the most questionable. We find that inclusion of strain 
fiardening effects can be included to some extent by treating it as a 
perturbation about the perfectly plastic model. 

The upper bound theorem may be expressed in tht following form. A 
kinematically ~dmissible history of plastic strain E satisfies the 
condition that the net increment of strain over the cycle 

c nE 
nt I E dt 
o -

(7) 

shall be compatible with a displacement fields nuc The upper bound 
then becomes 

where aC is the stress on the yield surface corresponding to EP=Ecand ae(x,t) 
is the-thermo-elastic stress history. The application of this theory to -
the solution of problems requires a specification of bothn£C and the entire 
history tC. This difficulty may be avoided if a linearized yield surface 
is used (such as the Tresca yield condition in terms of principal 



stresses) consisting in hyerplanes; 

where a~ 
deviatoric 
denoted by 

where 

Ni, i 
a = a i = 1. .. m (9) 

y 

is the yield surface corresponding to the i-th hyperplane in 
stress space. If the corresponding plastic multipliers are 
Ai then 

~c 

lit 

A. = I L dt 
~ 0 ~ 

(0) 

( 11) 

The volume integrand of the upper bound (8) may now be expressed as [9] 

where 

flit (r{ 
o 

c. min { (r{(t) 
~ o<t<lIt 

02 ) 

for i 1 .... m (3) 

The pointwise minimization process identifies the instant when the 
distance in stress space between a9 and the i-th hyperplane is a minimum. 
this minimization can be carried out at each point in the structure for 
each i, independently of the values of Ai or their spatial variation. A 
finite element technique may then be devised by specifying finite element 
approximation to both the individualAi's and to the displacement field 
lIu • The upper bound (8) becomes a linear function of nodal values by 
subjecting the displacement field to the constraint 

(4) 

The addition of equations which relate the nodal values of the Ai and 
lIu yields a linear programming problem. There are two practical 

difficulties. It is necessary to find spatial variations of Ai and lIsc 
so that the relationship b<=tween them is consistantly satisf ied 
throughout each element, and this cannot always be achieved. However, for 
axisymmetric shells and the Tresca yield condition such functions can be 
found. The second problem arises from the large number of variables 
involved (typically six A. and two components of lIu per node for an 
axisymmetric shell) which timits the size of problem which can be solved. 
Such a technique has been used successfully for cylindrical shells by 
Karadeniz and Ponter [7,10] and has been subsequently extended to 
axisymmetric shells, using simple linear displacement variation with 
curvatures concentrated on hinge circles at nodal points. By successive 
refinement of the element length in regions of rapid variation of a9 

convergent values of ~ can be calculated to three significant figures. 

The results of such calculation are shown in Figs. (2), (3), (4) 
and (5). The first three figures refer to the problem of a long 
cylindrical shell of radius R and thickness h subjected to an axial stress 
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Q"p • A temperature discor..tinuity lie occurs at the mid-point or the 
length of the cylinder and this discontinuity repeatedly traverses a 
length of cylinder 6x • The maximum thermo-elastic stress, which occurs in 
the hoop stress, corresponds to a value of k=0.5 in equation (3) and Fig. 
(2) shows a sequence of shakedown boundaries correEponair..g tc a range of 
values of 

{ 2 }0.25 
S = 3(1 - v ) 

R2 h2 
6XS/Tr where (15) 

and Tr/S is the decay length of the thermo-elastic stresses away from the 
temperature discontinuity. A temperature independent yield stress is 
assumed. The optimal mechanisms are shown in Fig.(3) for various regions 
of the diagrams together with a schematic representation of the 
thermo-elastic histories in terms o_faxial stress ax and hoop stress aq, 
For sufficiently large values of 6x > 3.6 the shakedown boundary anel. 
the boundary to the elastic region are nearly identical. The mode of 
deforwation (Mode III) consists of an inward movement of the cylinder. 
ForQ"p = ° , however, a localized reversed plasticity mechanism (Mode II) 
operates and no incremental growth would occur. When the effect of 
temperature on the yield stress is included the relative pOSition of these 
mechanisms in the diagrams changes as shown in Figure (4). Th~ most 
significant feature of this diagram is that for6x > 2.10~ndQ"p = 0, the 
shakedown limit involves a Mode III mechanism involving an inward 
movement, i.e. it implies that the shell would ratchet purely under the 
action of thermal fluctuation alone. There is some experimental support 
for this observation [11]. The last example shown in Figs. (5) and (6) 
simulate an experiment carried out at the Institute National Des Sciences 
Applique de Lyon where a cylinder of Type 316 stainless steel was 
subjected to an axial load and a complex cyclic temperature history 
induced by diverting the hot gases from a burner onto a narrow hoop of 
cylinder. The temperature history for a single cycle is shown in Fig. (5) 
and the interaction diagram obtained by linearly scaling the temperature 
history is shown in Fig. (6). The shakedown boundary consists of two 
parts AB and BC along which the mechanism remains constant. Along AB a 

localised axial extension occurs activated by the fluctuating axial 
bending moment (rather like the classic Bree problem [7] where the 
bending moment arises from a through-thickness temperature gradient) and 
along BC a reverse plasticity mechanism occurs activated by the 
fluctuation in the hoop stress. An experimental point is shown in the 
diagram as being outside the shakedown boundary and contours of 
accumulated plastic strain are shown based on a theory described in the 
next section. The prediction of about 1% strain after a number of cycles 
is a reasonable estimate of the observed values. 

The method is an example of a form of analysis which provides 
information which may be used directly for design. A large number of 
diagrams of the type shown in Figs. (3)-(6) are being generated as an 
atlas of special cases both for direct use in design and as a basis for 
formulation of less conservative design rules than those currently in use. 

3) Deformation Rates and Accumulated Plastic Strains for Loads in Excess 
of the Shakedown Limit 

The one available complete solution [7] indicates that the rate of 
strain growth becomes significant even for small increases in ~ above the 



shakedown limit. An understanding of this phenomena can be obtained by 
considering a shell at the shakedown limit,~ = ~s, for some at. The 
applied load is then increased by~~~ so that the stress history becomes 

(16) 

where the first term is the shakedown solution for ~ ~ =0, and 2P is the 
elastic stresses corresponding to ~ and p a constant residual stress 
field. The second term is the change in-the stress history in the cyclic 
state due to the increase in ~~. We assume, for sufficiently small ~~ 
that the shell will deform in the deformation mode of the shakedown 
solution ~u. A very general result can be derived for the relationship 
between ~~-and the magnitude of displacement~~/~N per cycle, but a 
simpler result is possible for the case of pro~ortional thermal loading 
(equations (1) and (2» where the increment ~~ is composed of two parts 

P 1 2 
~E = ~E + ~E (17) 

where L\El and ~.e:2are individually generally not compatible. If ~p is the 
residual stress field caused by imposing the strain distribution~;l in an 
initially stress free body, then the rate of ratchet per cycle is-given by 
[l2] 

~~~ .§I. = - J ~E.~rl dV 
~N v 

(18) 

For the case when ~~land ~E2 occur in distinct non-overlapping parts of 
the volume V then it is possible to show [12] that 

~~P ~u { ~ U(~~) (19) 
- ~N 

where U is the elastic strain energy of the body corresponding to the 
strain field ~E. If we assume, in addition, that the structure is 
kinematically determinate, i.e. ~E is proportional to the elastic strains 
corresponding to "!l ,:cr::L: __ ~ alone then 

~ ~ 4~ue, (20) 
~N 

where ~ueis the elastic displacement due to ~~P . This lower bound rate 
is very-high as a 1% increase in~P above the shakedown limit would cause 
an accumulation of displacement equal to the elastic displacement due to 
~P in 25 cycles. "For the Bree problem equality holds in equation (20) for 
small ~~ . Although inequality (20) is directly applicable to 
comparatively few problems, the rate of ratchet is found to be generally 
of this order of magnitude. In Fig.(7) contours of constant ratchet rate 
[13] are shown for the problem of Fig.(2) for a movement of a temperature 
discontinuity ~x=a which is small compared withtruhfor both a Tresca and 
a Von Mises yield condition. For the Tresca yield condition 

e 
~u = ~u 
~N 

(21) 

if the elastic solution assumes infinite stiffness outside the length, a, 
of cylinder which suffers incremental growth due to a reverse plasticity 
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mechanism. For the Von Mises yield condition the rate is both greater and 
less than this value depending upon the position on the shakedown 
boundary. Although the shakedown limits differ by only 15% the contours 
differ by a much greater amount as the ratchet rate is sensitive to the 
local curvature of the yield surface, particularly for small values of the 
axial stress 0p. 

For a work hardening materials these ratchet rates will not 
continue indefinitely but will decrease from close to the perfectly 
plastic rate until an asymptotic state is reached. An estimate of the 
number of cycles required to reach this state and the accumulated 
displacement can be found using a similar type of analysis to that 
described above for a linear kinematic hardening material with a uniaxial 
relationship between increments of stress do and plastic straindEP of 
the form 

(22) 

where K for 316 stainless steel is about 40. If we assume that the 
stress and strain state at the shakedown limit is the same as that of a 
perfectly plastic material and the load is then increased by ll/lP ,it can 
be shown [14] that the asymptotic displacement (again assuming t-he 
shakedown state displacement field) llua is bound from above by 

P llUa < K P llUe 

where llue is the elastic displacement due to ll/l~ assuming elastic 
incompressibility. For kinematically determinate structures equality 
holds in (23). 

(23) 

If we assume equality in (23) and (20) and ignore the differences 
between the definitions of Me in the two cases (i.e. the value of 
Poissons ratio) an estimate Of the number of cycles No to reach the 
asymptotic value ll~a at the perfectly plastic rate is given by 

llua '" No$.! 
dN 

(24) 

For the rates given by (20) and (21) this yields ~=K/4 and K respectively 
(i.e. N =10 and 40 for K=40). In practice the asymptotic state is 
approac~ed within say 10% for ~J : 3No~-mplying that at least 30 cycles are 
required. This relatively slow rate of convergence and its independants 
of the size of the'asymptotic state has caused considerable difficulty in 
the generation of finite element solutions and the interpretation of 
experimental results, as computer solutions and laboratory tests are often 
terminated before sufficient number of cycles have elapsed. As the growth 
in strain in the initial cycles often looks rather like a creep curve 
experiments have been interpreted erroneously as indicating the presence 
of creep strain or material ratchetting. The presence of creep can only 
be assessed by noting whether the displacement rate eventually becomes 
constant and does not reduce to zero. 

4) Estimates of Creep Deformation Rates 

If the temperature remains sufficiently high (for steels above 
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about 48GoC) for substantial periods during the cycle, time dependent 
strains occur which result in an asymptotic rate of deformation per cycle 
which is non-zero. The development of constitutive equations which are 
capable of describing creep behaviour for histories of stress and 
temperature remain under development. It is possible, however, to 
estimate deformation rates on the basis of a simple theory which requires 
knowledge of constant stress and temperature data and the evaluation of a 
single residual stress field. The basis of the technique is the "rapid 
cycle" solution which assumes that the cycle time f:., t is very small 
compared with characteristic material time scales [6] and has upper 
bounding properties. The steady state, achieved after sufficient number 
of cycles, is then gjven by the condition that the average rate of strain 
over an entire cycle ~ ,given by 

. If:.,t 
~ = lim 

f:.,t+o 0 

* (0 ) dt 

is compatible with a displacement rate field 
0* is given by 

0* = )l 
~p -8 
0+0 + f! 

(25) 

u The history of stress 

(26) 

where p is a constant residual stress field which may be evaluated from 
the compatibility of ~ . The precise form of (25) depends upon the creep 
constitutive relationship. 

The steady state creep behaviour of most metals can be described by 

.ss 
£ (27) 

where ,p( 0') is usually the Von Mises effective stress and EO is the 
uniaxial-creep rate at constant stress 0 0 and temperature 80 • The quantity 
A ensures consistency with uniaxial behaviour and y is a material 
constant. A number of constitutive equations may be constructed which 
are consistent with this equation but differ for variable stress and 
temperature. Two extreme cases seem to be a purely viscous material 
(i.e. equation (27) always holds) and a recovery model, the Bailey-Orowan 
model, which assumes the material has an internal yield stress [5]. The 
expression equation (25) for these two cases, takes the form, 

where 

If:.,t * 
£ = 1 ~ss(~ (t)) dt 

f:.,t 0 

... 
£ 

* * ¢(~ (to)) ~ ¢(~ (t)) 

viscous model (28) 

recovery model (29) 

o < t < f:.,t, 0 < to < f:.,t 

The expression (29) always gives the larger strain rate. In (29) if the 
extreme stress occurs at more than one instant in the cycle, say to and 
tc ' then the average rate is given by 
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~ 'ss * .ss * 
E q ~ (~ (to») + (l-q) ~ (~(t1) 

o < q < 1, <P(~:(t1))1 ~ <P (/(t)) 

<p(~ (to)) 

(30) 

Fig.(8) shows a comparison between average experimental strain rates on 
copper plates thermally cycled by means of infra-red heaters and these 
rapid cycle solutions, generated using finite element methods[I~.The plates 
were subjected to a constant thermal cycle (~t = 2 hours) and a sequence 
of increasing in-plane average stress which remained constant until a 
steady state was reached. The shakedown load assuming a yield stress uy 
equal to the 0.1% off-set stress at the maximum temperature, 250°C, is 
shown as the dashed line s.d.b in the figure. The results of some simple 
bounding calculations are also included. The most important feature of 
this experiment, and others in the same series, is that the rates within 
the shakedown boundary are very close to the rapid cycle solution for the 
recovery model, but the experimental points move over for increasing up to 
the solution marked "CI=O" which includes the variation of material properties 
with temperatures but assumes a zero coefficient of thermal expansion. 
This later solution closely approximates a "slow cycle" solution where ~t 
is assumed to be large with respect to material time scales. This 
transition appears to be due to increased strain rates within the cycle 
for stresses above yield. The generality of this behaviour can be judged 
by plotting the results of a number of tests involving a range of cycle 
times [16,18-22] against two parameters, 

x = (Eexp _ ~ )/(~ _ ~ ) 
o 0 (31 ) 

where ~ is the recovery rapid cycle solution, and where Eois the value for 
CI = o,and 

(32) 

where P, Ps and PL are the applied load, the shakedown load and limit load 
respectively, all using uO.1 at the maximum temperature. The resultant 
diagram, using either local or average strain rates [17] is shown in 
Fig.(9). Although there is a great deal of scatter the data points are 
consistantly less then X = 1 (i.e. rapid cycle) forA<o (within shakedown) 
and then decline to X=O (i.e. slow cycle) as A exceeds about 0.35. This 
type of information may well be sufficient for estimating creep 
deformation rates from rapid cycle solutions. This result has some 
significants for the interpretation of structural feature tests which are 
customarily used to "validate" computer codes and the associated 
constitutive relationships. The slow cycle solution is identical for all 
constitutive equations capable of predicting the same constant stress 
and temperature data. The rapid cycle solutions, however, can differ 
depending upon the constitutive assumptions, and this can be seen in 
Fig.(8) where the rapid cycle solutions for both the viscous and recovery 
model are shown. If features tests are performed at loads in excess of 
shakedown, a response close to the slow cycle solution will be obtained 



whereas the design situation is usually within shakedown. In other words, 
it is inadvisable to conduct tests at markedly greater loads than those 
expected in practice. 
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In-plane body forces, i.e. the weight, of a vertically mounted 
blanket, i.e. a plate of near-zero flexural stiffness and 
near-zero compressive strength, lead to the formation of curved 
wrinkles. Wrinkle lines bordering each finite size tension 
strip, and tension lines within each tension strip, assume 
shapes that are governed by the differential equation 

± o 

where q is the reduced distributed weight force, and H a 
horizontal pretension force parameter. 

The case of a blanket with sinusoidal boundaries, supported 
at two corner points is discussed in detail. 

Nomenclature 

B Bending energy stored in wrinkles, J 

F Horizontal component of tension strip tension force, N 

H Horizontal force component parameter, N 

P Potential energy change, J 

Q 
a. 

].-1 

a. 
]. 

T Tension strip tension force, N 

U Work done by horizontal force, J 

V Vertical component of tension strip tension force, N 

W Weight 'force of blanket, N 

a = Amplitude of cosine curve, m 

e = Horizontal displacement, m 

h Height of blanket, m 

Inelastic Behaviour of Plates and Shells 
IUTAM Symposium Rio de Janeiro 1985 
Editors: L. Bevilacqua, R. Feij60 and R, Valid 
© Springer, Berlin Heidelberg 1986 
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~ Distance between supports, m 

q Reduced distributed load, N/M 
a Slope angle, rad 
y Specific weight of blanket (x blanket thickness), N/m2 

a = Stress (x blanket thickness), N/m 
T = Shear stress(x blanket thickness), N/m 

Introduction 

There are new spacecraft designs, such as the one for 'Olympus' 
(L-Sat, +1986), that call for large solar power collection 
panels, which are loaded, as a result of spacecraft manoeuvres, 
not only normal to the panel, but also in the plane of the panel. 
Spacecraft engineers refer to the structural substrate of solar 
panels as blankets. These blankets are typically made of a 
plastic material, such as kapton. What engineers are very much 
afraid of, is that wrinkles might form in this substrate due to 
the in-plane component of the load. Such concerns have led to 
the study of a novel class of problems, concerned with the occu
rrence of wrinkling due to distributed body forces. 

By extending the tension field theory [1,2,3,4] for thin plates 
to include body forces, it can be shown [5,6,7] that tension 
lines, and wrinkles for that matter, are no longer straight, 
but curved, an effect brought about by the distributed in
plane body forces. 

Fortunately, in-plane loading of thin plates can easily be 
simulated in the laboratory, by suspending the plate vertically 

and using it~ weight as the distributed body force, and, if the 
self-weight proves insufficient, by adding small uniformly 

distributed wafers, which are glued to the plate surface and 
serve to increase the load without introducing stiffness. 

The case of ~ plate with sinusoidal boundaries and suspended 
at two corner points is discussed in detail. The tension line 
pattern is shown to consist then of sinusoidal lines, and 
theory and experiment are compared, showing good agreement. 
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The subsequent discussion is arbitrarily subdivided into Pre

Wrinkling and Post-Wrinkling. Under prewrinkling conditions 

there is no sideways fallout of the blanket, under postwrinkling 

conditions there is. The lateral fallout turns out to be of 

great significance, because it forces the horizontal force 

of each tension strip into the middle of the tension strip, 

H. 
J. 

leading to a uniform ax 

occurrence of a (small) 

tension stress distribution and the 

a compression stress, in contray 
distinction to the prewrinkling tension line field, where 

is varying and there is no compression stress. 

Pre-Wrinkling Tension Line Field 

a x 

We assume the blanket material to be inextensional. If no 

horizontal displacement of the supports has taken place (e.g. when 

e = 0 in Figure 14), then there is no change in the shape of the 

blanket. There is also no lateral displacement, i.e. in 

z-direction (Figure 7), of the blanket. 

Equilibrium 

The blanket is assumed to be thin. Thus az = O. The blanket 

is also assumed to be incapable of supporting compressive 

stress. The blanket shown in Figure 1, which is subjected to 

its own load, is about to exhibit a wrinkle pattern. Along the 

wrinkles, one principal stress is acting, which is tensile, and 

the lines along this stress are consequ~ntly either UJY>inkle 

lines or tension lines. Accross the wrinkles, the other prin

cipal stress is acting; its magnitude is zero. 

In Figure 2 a blanket element is shown, bounded by two vertical 

lines at x and x + dx, and two adjacent tension lines characte

rized by y and y + dy. 

Equilibrium in horizontal direction requires that 

or 

dH + adH dx ax 

adH 
--ax 

dH 

o 

(1) 

(2) 
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or expressed in words, there is no change in the horizontal compo

nent dH of the tension force dT in the tension strip of width 

dy. 

Equilibrium in vertical direction requires that 

adV dx 
ax Y dx dy 

where y is the weight/blanket area. 

Since 

dV ~dH ax 

equation (3) may also be written 

~:~ dH dx + ~ aa~ dx = Y dx dy 

(3 ) 

(4 ) 

(5) 

Because of equation (2), the second term on the left hand side 

of equation (5) vanishes, such that the latter might be written 

a-ax 
y':!:JL 

dH 
0 (6) 

If H increases as y increases, then 

lim ':!:JL ~ 
H+o dH aH (7 ) 

If H decreases as y increases 

lim ':!:JL -~ 
H+o dH aH (8) 

Incorporating (7) and (8) into (6), the equation of equilibrium 

becomes 

~ Y aH o (9) 



Solutions y = y(x,H) of the partial differential equation (9) 

represent a family of tension lines. Equation (9) is the same 
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as that given by Mansfield [5], with the exception of the + sign, 

which is new and allows for cos-shaped tension lines as well as for 

Cosh-shaped tension lines. 

The quantity H appearing in equation (9) is a parameter, repre

senting the horizontal component of the tension force. It has the 

dimension N The parameter H is zero for the zeroeth tension 

line of a field. For the last tension line of the field it equals 

F, i.e. the horizontal component of the total tension force T. 

Stresses 

The x-component of the stress in the blanket is 

a x 
'dH 

+ay ( 10) 

where the sign must be chosen such that ax is positive, and 

y must be an appropriately chosen vertical coordinate. 

The blanket material is assumed to be inextensional in tension. 

Further, it can only carry tensile stresses. The three principal 

stresses in the material are thus characterized by 

0 1 ~ 0 

1 
ali ~ 0 ( 11 ) 

aIII 0 

where 0111 is in the direction normal to the blanket plane. 

The tendency to form wrinkles (Figure 1) occurs in areas where 

the second principal stress also vanishes, i.e. when 

1 
( 12) 
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Coordinate transformation and equations (2)immediately lead to 

o 0 ,2 ( 1 3) x y xy 

0 or cos 2 a 

) 
x 

0 or sin2 a = 0 tan 2 a ( 14) Y x , or sin a cos a = ° x tan a xy 

where * = tan a is the slope of the tension line y = f (x ,H) 

(Figure 2) passing through the point P at which the stress 

is being determined. 

A Simple Solution 

By inspection we conclude that a family of curves of the type 

H 1T2 

-~ 
Y = a 0 e Y cos r x ( 15) 

satisfies equation (9) if the minus sign is valid. Note that 

the bottom boundary of the blanket is given by equation (11) 

with H = 0, i.e. the bottom boundary is defined by the zeroeth 

tension line (Figure 3). Also note that the top boundary of 

the blanket is given by equation (11) with F = Hn' i.e. the 

top boundary is defined by the last (the nth) tension line, 

where n is an arbitrary positive integer. It can be shown that 

F 

while the parameter 

H yl2 ln ao cos 1Tx/l 
1T2 Y 

The stress component in x-direction is 

° x 
'dH -ay 

( 16) 

( 1 7) 

( 1 8) 
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The relatively simple solution (11) is only valid for a blanket 

whose boundaries a cosine-shaped (Figure 3). The lower boundary 

is given by 

IT 
Y = ao cos y x 

The upper boundary is given by 

with a 
n 

IT 
Y an cos y x 

In the limit, the upper boundary may be a straight line, which 

implies an 0 and Hn 

In Figure 4, the stress distributions in a blanket with cosine

shaped boundaries is given, for a specific example. 

Other Solutions 

The simple solution (11) of the differential equation (9) 

requires, that the bottom boundary of the blanket is cosine

shaped. In practice, blankets of rectangular shape are, of 

course, very common. Mansfield [5] has shown that 

y 
4 ~ (_1)m 

- TI"aoL2m + 1 e 
m=O 

_ (2m + 1) 2 HIT2 yv IT 
cos (2m + 1) Y x ( 19) 

gives the tension lines for such blankets, as shown in Figure 5. 

Another case of interest is represented in Figure 6, where a 

cos-field and a Cosh-field of tension lines occur [7]. The 

latter results, when the + sign is used in equation (9), which 

then has a solution 

H c 2 

y 
- yY2 c 

h - A 0 e Cosh y x (20 ) 
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with h 
c = 2 ArCosh Ao 

Equation (19) and (20) have been presented to indicate the 

variety of solutions available. For purposes of the present 

paper we restrict ourselves to a consideration of the simple 

solution (11) which implies that the blanket boundaries are 

cosine-shaped as in Figure 3. 

Post-Wrinkling Tension Line Field 

Let us assume that a cosine field of tension lines had formed 

in a blanket with cosine shaped boundaries, and supported at 

two points as shown in Figure 7. As soon as the supports are 

moved in by a small amount e (Figure 14), the blanket will 

descend, the upper boundary more so than the lo~er. This will 

cause the blanket to bulge sideways, with no wrinkles forming 

if the blanket had sufficient bending stiffness, with a finite 

number of wrinkles for limited bending stiffness, and an infinite 

number of wrinkles in case of zero bending stiffness. 

Strictly speaking, the blanket material was assumed to be 

incapable of sustaining compressive stress, which would also 

mean that the material had zero bending stiffness. In reality 

there is, of course, some compressive strength and some bending 

stiffness present, be they ever so small. 

Evidence of the presence of some small bending stiffness is the 

formation of a finite number of wrinkles, which is typically 

observed in experiments. 

Let us put on record two consequences of the formation of a 

finite number'of wrinkles 

(1) The blanket moves into a zig-zag pattern. In the process, 

each finite-size tension strip assumes a (slight) out-of

plane curvature, enhancing the material's capability to 

sustain (small) compressive stresses. 

(2) Equilibrium of each finite-size tension strip requires that 

the resultant horizontal force component F is located along 
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the centre (Y m = m cos yX) of each tension strip, bringing 

about a uniform distribution of the x-component of the stress. 

In order to investigate the stresses in a tension strip after 

wrinkles have formed, we must thus relax the stipulation of 

zero compressive stress made in the beginning. 

Equilibrium with Lateral Fallout 

The formation of wrinkles makes a lateral fallout of the blanket 

inevitable. The lateral fallout brings about a uniform distri

It also leads to only a bution of the horizontal stress IJ x 
fraction of the specific weight Y acting as a load on 

the 'cable'. From Figure 8, 

Yf 
~ 

Y m 

a or Yf mY' (21) 

Using Yf (instead of Y) in equation (9 ) 

~ + 
a 3y 

0 dX 2 mY 'dH (22) 

For mathematical convenience, let us now select e.g. the third 

tension strip. Then 

'dH H 
ay - IJ X IT 

az cos y x - y 

(23) 

If we write for 

~ Y (az 
IT y) cos yX - q 

m3 
(24) 

then eventually [7] , 

d 2 y ± 'l.. 0 dx 2 H 
(25) 



28 

where the minus sign in equation (25) corresponds to the plus 

sign in equation (22). 

Solution 

For e.g. the third tension strip, with a bottom boundary of 

1T 
Yz = az cos y x 

equation (19) would read 

° 
with a reduced distributed load 

as an inspection of Figure 9 shows. 

Let a trial solution of equations (27) and (28) be 

1T 
Y a cos yx 

for which we find 

The quantity H serves again as a parameter. When H 0, 

a = az 

when H 

when H F3 

(26) 

( 27) 

(28) 

(29) 

(30) 



where F3 

The weight force of the third tension strip is 

or 

with Q 

or 

l/2 

2y (az - a 3) f cos T x 

o 

2yl 
W3 = -'IT-a 3 (Q - 1) 

2yl Q - 1 
-'IT- a 0 ----cp-

In general, for the ith tension strip 

w. 
~ 

2yl Q - 1 
--aD --.-

'IT Q~ 

with Q 

For the whole blanket 

w 2y l(ao 
'IT 

a ) 
n 

The horizontal force F3 can also be written 

2yl2 Q - 1 
--:rrr Q+T 

29 

( 31) 

(32) 

(33) 

(34) 

(35) 

(36) 

The slope of the tension force T3 at the support is obtainable 

from 

tan (X3 

See Figure 10. 

'lTa 3 (Q+1) 
2l (37) 
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Compression Stress 

After wrinkles have formed, the blanket material can withstand a 

(small) compressive stress because each finite tension strip 

now has a (slight) out-of-plane curvature. 

The Rimrott-Kingsland form (19) and the Mansfield equation (9) 

give the same result, if the latter is modified to read 

o (39) 

i.e. when the specific weight is no longer uniform but lighter 

in the upper half of the tension strip and heavier in the lower 

half. 

In other words, there is superimposed on the specific weight 

a supplementary specific force 

Yc 
Y (1 - ~) 

m 
(40) 

This force is produced by a compression stress in y-direction 

amounting to 

cr y = t ~ c dy = Y [( ~ 1 

Y a 

which, upon integration, gives 

cr y 

a ] IT - - ) da cos-x 
m] l 

(41) 

(42 ) 

IT 
It reaches a maximum magnitude along the centre line m3COS T x 

of the tension strip. 

ym3 (Q - 1)2 IT 
-2- ( Q + 1) 2 cos y x 

(43) 

The greatest magnitude is at x = 0, and amounts to 
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y m3 (Q - 1)2 (44) 
-2- (Q + 1)2 

We had arbitrarily chosen the third tension strip. In the first 

tension strip the greatest magnitude would be 

yml (Q - 1) 2 (45) 
-2- (Q + 1)2 

and since ml > m3, expression (45) will be larger than expres 

sion (44). If there are n tension strips in a wrinkled 

blanket, then, with Q = lbo/an' 

~(1+.!) 
2 Q 

aD Q + 1 
T-Q-

such that the compression stress in the whole blanket will 

have a greatest magnitude of 

yao (Q - 1) 2 

-4- Q(Q + 1} 

If the blanket material has a critical wrinkling stress of 

as a characteristic property then 

yao (Q - 1) 2 < I I -r- Q(Q + 1) - ocr 

(46) 

(47) 

° cr 

( 48) 

Since ocr cannot be exceeded, the number of wrinkles forming 

will adjust itself such that inequality (48) is observed. 

In Figures 11 and 12 experimental evidence is presented that 

shows that the,number of wrinkles increases as -the specific 

weight y of the blanket increases. The number of wrinkles 

also increases as the depth aD of the blanket increases. 

The Maximum Tension Force Criterion 

Let us assume that the (small) compressive stress had reached 

a critical value in the blanket (with cosine boundaries) of 

Figure 13. Consequently a buckle (= wrinkle) was beginning 

to form, obviously at the centre, where the compressive stress 
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reaches the critical value first. Will the wrinkle stay there, 

or will it locate itself at some other tension line Yl? 

The question may also be rephrased by asking which wrinkle 

line arrangement can carry the maximum (horizontal component H 

of the) tension force. 

In Figure 13 two views of the same blanket, bounded by 

and 

Yo 

1T a, COSyX 

1T ao cos y x 

are shown. In Figure 13b a wrinkle has appeared, along 

Yl 
1T 

al cos yX 

(49) 

(50) 

(51) 

The question is, at which amplitude al does the wrinkle line 

locate itself. We write 

F Fl 
yZ2 (1. (a 0 ad 1 az») F, n2 - + -(al -ml m, (52) 

with 

ao - al ml 2 
(53) 

al - az m, 2 
(54) 

and let 

aF a aal 
(55 ) 

which we find satisfied for ~ ~ al a, 

Thus we conclude, that the wrinkle does not locate itself 



at the centreline of the blanket (Figure 13), but such that 

az, al and ao form a geometric progression. 

The same result, viz. 

ao 
al 

~ 
a3 

- - - ~§ - •••••• - Q - Van 

is obtained for a field with (n - 1) wrinkles. 

(56) 

By similar reasoning, it can be shown that the amplitudes of 

the tension strip centrelines also form a geometric progression 

::-1 = Q =~ (57) 

with the same ratio as equations (56). 

If (n - 1) wrinkles have formed, then the horizontal component 

of the total tension force is 

F 

Each tension strip carries 

The amplitude 

strip is 

m. 
1. 

m. 
1. 

F 
n 

of the centre line of the 

(58) 

(59) 

ith tension 

(60) 

The stress component (J 
x in the ith tension strip is 

(J • 
Xl. 

yp F (61) 
1T 

n (a i-I - a i) cos T X 

33 
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If the number of wrinkles is infinity, then equation (58) will 

become 

F 

and the sum of all (infinitesimal) tension strips between 
IT IT 

Y = a COSyx and yo = ao cos yx will carry 

H 

The stress component 

a x 
'dH -ay 'dH'da 

- 'da 3ii 

a x is then 

yl2 

(62) 

(63) 

(64) 

Equations (62), (63), and (64) are seen to correspond to the 

prewrinkling equations (16), (17), and (18). 

Rotation of Moment 

In Figure 10, the third tension strip is shown. The horizontal 

forces F3 can be looked upon as forming a couple of magnitude 

(65) 

If the supported end is displaced horizontally by a distance 

e (figure 14), the moment M3 can be thought of as rotating 

through an angle 8 3 • The work done by F3 and the work done 

by M3 must be the same. 

giving 

1 -e 
m3 

If the ratio mi _ 1 jmi = constant, then 

(66) 

( 67) 



or 

1 
Q 

(68) 

(69) 

i.e. the upper tension strips rotate downwards more than the 

lower tension strips. 

In general (70) 

The centre point m3 of the centreline of the third tension 

trip will move down a distance 

(71) 

In general 

I:!.m. 
J. 

(72) 

or 

I:!.m. 
J. 

( 73) 

Energy Considerations 

The presence of a finite number of wrinkles suggests that the 

blanket material can be idealized and considered to have the 

following properties 

(1) It is inextensional in tension. 

(2) Its tensile strength is unlimited. 

(3) It can carry a (small) compression stress, limited by a 

critical stress. 

(4) The strain energy in tension is zero. In compression it 

is negligible. 

(5) The material can bend and there is bending strain energy. 

35 
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With these material characteristics we can now establish an 

energy balance, between potential energy P (due to lowering 

of the blanket weight), work U done by the horizontal force 

component F as it moves through a horizontal distance e, 

and the bending energy B stored in the wrinkles. 

The weight WI of the first tension strip is 

4ylml Q - 1 
TT Q+f 

It descends a distance l IT 8 I with 

such that 

4y [2 Q - 1 
~ Q+-fe 

(74 ) 

(75) 

(76) 

There are altogether n tension strips, such that the total 

potential energy change is 

p (77) 

The work done by the horizontal force components F is 

U 2eF (78) 

with F (79) 

Thus U = P "if no bending energy is stored in the wrinkles. 

Bending Energy 

In order to gain some insight into the amount of bending 

energy stored in the ·,.;rinkles, we assume the following 

scenario. (1) The forces H are each displaced a small 

distance e towards the centre without any wrinkles forming. 

(2) Thereafter a given blanket forms a wrinkle pattern which 



causes an increase in potential energy (and a change in the 

magnitude of H) but no work is done by the horizontal forces 

H because there is no horizontal displacement. The gain of 

potential energy is then stored as bending energy in the 

wrinkles. How much bending energy is stored in the wrinkles? 

In Table I the bending energy stored in the wrinkles is tabu

lated. The work done U, equation (78), by the horizontal 

force is normalized to 

with U and 

and listed in column (3). 

Q ~ 
a n 

The potential energy P, equation (76), is normalized to 

P* 

with P and Q=~ 

and listed in column (4). 

The bending energy B in all wrinkles is normalized to 

B 
"4Y"""P 
~ 

obtained from 

and listed in column (5). 

(80) 

{ 81} 

(82) 

(83) 

37 
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The critical stress cr 
crit ' equation (48) , is normalized to 

cr crit cr* (84) 
crit y a o/4 

and listed in column (6) • 

An inspection of Table I indicates how much energy is stored 

in the wrinkles. The more wrinkles, the more bending energy 

is stored. An infinite number of wrinkles means the highest 

bending energy storage, which is, however, finite. An inspec

tion of the last column shows, that for zero wrinkles, the 

blanket must have a high critical wrinkling stress. The lower 

the critical wrinkling stress, the greater the number of 

wrinkles that form. A vanishing critical wrinkling stress, 

means an infinite number of wrinkles. 

Observations 

1. Blankets form a fixed number of wrinkles, that can neither 

be changed by external perturbation, nor by an increase or 

decrease of the blanket deformation. 

2. Blankets exhibit a (very small) critical wrinkling stress 

that influences the number of wrinkles formed. The higher 

the critical stress of the blanket material, the smaller 

the number of wrinkles. 

3. The critical stress of a blanket material is the higher, 

the stiffer the blanket material, the lower the specific 

weight, 4nd the shorter the blanket height. (Installed 

on the Moon's surface a blanket will exhibit fewer wrinkles 

than on Earth.) 

4. There is typically some bending stiffness, be it ever so 

small, in blankets, such that there is a finite number of 

wrinkles. An infinite number of wrinkles is thus a limit 

state of theoretical significance only. 



5. The greater the number of wrinkles, the greater the amount 

of bending energy stored in the wrinkles. 

6. A prewrinkling state (as described at the beginning of the 

paper) never really exists. It is also a limit state of 

theoretical significance only, associated with zero defor

mation (e = 0) of a truly inextensional material. 
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7. In reality (obviously due to strains near the support points 

where the stress after all approaches infinity) wrinkles 

form immediately (i.e. even when e = 0). Thus wrinkling 

in a blanket can only be prevented by ensuring that both in

plane principal stresses are positive throughout the whole 

blanket. 

Conclusions 

In order to keep the subject matter within manageable limits, 

only blankets with cosine-shaped boundaries suspended at the 

two corner points, and subjected to gravitational body forces, 

have been considered. It is shown that a wrinkle-free tension 

line field is a theoretical possibility. In practice, however, 

blankets always. exhibit a finite number of wrinkles, which is 

associated with a lateral displacement of each tension strip 

between two wrinkle lines, which in turn affects the equili

brium of each blanket element. 

Thus a differential equation differing from the Mansfield 

equation governs the stress distribution in wrinkled blankets. 
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Fig. 1. Blanket suspended in Gravitational Field 

dV 
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o· 

dT + OT dx 
dX 

dV + ~dx 
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Fig. 2. Equilibrium on a Blanket Element 
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Fig. 5. Rectangular Blanket supported at Top Corners 
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Fig. 6. Simply Supported Rectangular Blanket 
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q • ~,y(yZ - y) y 

1T Fig. 9. Tension Lines y = acosr:c within 
the Third Tension Strip 
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-'~E' ====~=--~~'. 
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Fig. 10. The Third Tension Strip between 

Wrinkle Line 2 and Wrinkle Line 3 
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Derivation of the Inelastic Behaviour of Plates and 
Shells From the Three Dimensional Models and 
Extensions 
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Summary 

The elastoplastic behaviour of plates and shells is usually obtained in two 
different ways. First, the so-called global method assumes that the yield 
function can be expressed in terms of resultant in-plane stresses and ben
ding moments. The success of such a formulation is due principally to its 
simplicity as a natural generalization of the elastic theory of plates and 
shells. Besides the well-known difficulty on an adequate expression of the 
adopted criterion, such a model leads to a linear variation of in-plane 
stresses through the thickness of the structure. If this description is 
widely used and seems to give entire satisfaction in limit analysis, on the 
contrary, in the context of elastoplastic analysis, a more refined model is 
sometimes necessary. The second possibility to derive the inelastic beha
viour is to take account of the distribution of plastic strains along the 
thickness. This more complicated formulation is often preferred to the first 
one in computation by finite-element programs. The goal of our communica
tion is to give a mathematical justification of the second formulation by 
asymptotic analysis. It consists in considering the thickness of the shell 
as a small parameter governing equations for plates and shells are then de
rived exactly from the three-dimensional description by asymptotic develop
ment with respect to the thickness. In the case of elastoplasticity, this 
leads to a two dimensional model with respect to the displacements of the 
middle surface. The plastic behaviour is characterized by multiple plastic 
potentials in the sense of Koiter-Mandel, with hardening parameters which 
are residual stresses along the thickness. The in-plane stresses are no more 
linear through the thickness. The derivation of the bidimensional behaviour 
is presented in detail in the case of standard materials for both deforma
tion theory and incremental theory of plasticity. A comparison-betweenglo
bal models and the ones obtained in this paper is given for particular 
choice of yield criteria. A section is devoted to composite materials. It 
is assumed that a plasticity phenomenon can appear in the epoxy layers sti
cking together two layers of fibers. Then using asymptotic methods we de
duce a plate model which takes into account the effect of a gliding between 
two layers. Finally a buckling model is suggested. 

I. Three dimensional formulation for plates 

Let us consider an open set nE such that : 

nE = W x ]-E,d 

The plate we are dealing with, in this paper, occupies in space the set nE , 

Inelastic Behaviour of Plates and Shells 
IUTAM Symposium Rio de Janeiro 1985 
Editors: L. Bevilacqua, R. Feij60 and R. Valid 
© Springer, Berlin Heidelberg 1986 
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where w is the medium surface and 2 s the thickness. The lateral boundary 

is denoted by r~ = Yo x ]-s,s[ where y is the boundary of w. The upper and 

lower boundaries are r S = w x {is} (see figure 1). 
± 

/ 

/ 
/ 

/ 

I ,-----

/ xl 

Figure 1 

2E 

Yo x ]-s,d 

w x ]-s,d 

The plate is submitted to a system of loading. For sake of brevity in the 

notations, we only consider body forces the density components of which are 

denoted by f i . The displacement field is u = (u i ) and the stress field 

0= (0 .. ). The constitutive relationship is 
1J 

where 

o .. 
1J 

1 
Yij = 2' (oi u j + OJ u i ) 

(1) 

is the total strain and Y~. the plastic strain. The stiffness tensor deno-
1J 

ted Rijk2 would be such that : 

R 
a333 

The inverse of Rijk2 is the compliance and is denoted Sijk2' The yield 

criterion is written 

f (0) ,,;; k 

f(.) being a convex function and k a given positive constant. The evolu
p tion of the plastic strain Yij is governed by Hill's principle: 

V KS P 
";;0 T •. E Yij (T .. - O •. ) (2) 

1J 1J 1J 

with 

KE h (T .. ) T .. T .. f (T) "" k on 
~s} (3) 

1J 1J J1 



Finally the principle of virtual work can be written 

'1 E: 
fOij a. v. ff. v. (4 ) v E V 

~ J ~ ~ 

(lE: (lE: 

where VE: denotes the space of admissible displacement fields. 

AS a matter of fact relations (1), (2), (4) are the Prandtl-Reuss model. 

Our goal in this paper is to construct an approximation of the threedimen

sional solution based on asymptotic methods. The mathemical proof will be 

omitted and only the method and the results obtained will be pointed out. 

There are five parts. The first one presents the so-called asymptotic me

thod. It is applied to prandtl-Reuss model in the second part. A discussion 

about limit load analysis is carried out in section three and extension to 

composite materials is given in the fourth one. 

rI. The asymptotic method [1], [7] 

The thickness of the plate, ie 2E:, is supposed to be small in comparison 

with the other dimensions. This geometrical property allows simplifications 

in the three dimensional model. Basically this leads to the Kirchhoff-Love 

assumptions stating that the normal to the medium surface is un-strained 

and remains - during deformation - normal to the deformed medium surface. 

But some complementary assumptions concerning the constitutive relation

ship are also needed. As a matter of fact one assumes that the normal stress 

can be neglected when it is compared to the in-plane stresses. Asymptotic 

methods provide a general framework for obtaining such simplifications 

from the three dimensional. It is worth noticing that the models obtained 

through asymptotic. procedure are justified only from the energy point of 

view. It means that no confidence should be conceded to local interpreta

tion of the solution of the plate model. An interesting example which em

phasizesthis remark is the case of a transverse crack in a plate. One can 

prove that even if'the local behaviour is completely different from the one 

of the plate model solution, this last one enables to compute a correct 

value of the energy release rate [5]. Let us introduce now a new open set 

(l by : 

(l = w x J-1,1[ 

and let us consider the mapping from (l into (lE: by : 

(5 ) 

To this change of coordinates one associates a change of unknowns which is 
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very convenient in the sequel 

E ° FE (X) , uE(X) ° FE (X), 0aS (X) 0 
as 

u 
a a 

oE IX) E -10 ° FE (X), 
E ° FE (X), 

a3 a3 
u 3 (X) EU 3 (6) 

E -2 ° FE(X) . 0 33 (X) E 0 33 

Furthermore it is necessary to assume that the applied forces are such that 

(there are only body forces) 

f = f O 
a a 

in order to have finite displacements. Then a simple computation enables to 

transform problem (1),(2),(4) into an equivalent one, but now set over the 

open set ~. First of all, let us introduce the sets : 

K(E) = {T = (T .. ) ; T .. = T ; 
1J 1J ij 

v = vE for E = 1. 

Then the element (oE,u E) constructed from (o,u) solution of (1), (2), (4) 

with formulae (6) satisfies : 

(7) 

(8) 

and for E = 0 it is clear that the limit model consists in finding (oo,uo), 

element of the set K (0) x V such th2.t 

VTcK(O), SaS"v aO (T - 0° ) > (T - o~.) 
~ llV as as ij 1J 

·0 
Y ij (u ), 

(9) 

v v C V, (o~. a.v. = !<v i . 
J~ 1J 1 J ~ 

The goal of the next chapters will be to discuss the various simplified 

formulations of this model. An extension to geometrical non linearities is 

presented in the last one. 



III. Formulation of the Prandtl-Reuss model for plates 

There are five steps in the characterization of (oo,uo) solution of (9). 

Finally the model obtained will be the same as the one introduced in [9]. 

step 1. In the first relation (9), it is possible to choose arbitrarily the 

components Ti3 because K(O) involves only the components TaS. Hence: 

o i 1,2,3, 

or else : 

a = 1,2. 

This leads to a Kirchhoff-Love velocity field 

I ~~ 
·0 
u = 

a 

(10) 

a = 1,2. 

step 2. The first relation (9) is now restricted to in-plane stresses, we 

obtain 

V TaS E K(O) 
(11 ) 

and if we restrict the virtual displacement v, in the second relation (9), 

to Kirchhoff-Love fields, we obtain 

[v va lUl'~2)' S.B.C.* fn~s d Vs fFa v 
a a 

III III 

(12) 

where 1 1 

° =f~~ dX 3 and ff~dX3' naS F 
a 

-1 -1 and 

(13) 

where 

and 

There is a simple way to solve the obtained model. It consists in an incre

mental formulation, substituting the time derivative by differential ratio. 

Hence let us denote by o~S' n~S' m~S and u~ the various unknowns at time 

* S.B.C. = Satisfying Boundary Conditions. 
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tj 6t. Then the relation (11) is replaced by [8] 

(14) 

where 

g - S a j - y (u j ) 
as - aS~v ~v as 

If PK(O) denotes the orthogonal projection on the set K(O) with respect to 

the scalar product induced by the compliance tensor SaS~v' one has from (14) : 

(15) 

In the sequel we use the notation : 

The set of equations (16),(17) is obviously non linear because of the pro

jection PK(O). It is worth noticing that the model is two-dimensional in 
"+1 "+1 

the sense that the unknowns u~ , u~ are only dependent on the coordina-

tes xa. Hence it is not necessary to introduce multilayered finite element 

schemes to solve the Prandtl-Reuss model. A simple way for solving numeri

cally equations (16),(17) consists in constructing a sequence uP, which 

converges to u j +1 when p tends to the infinity, and which is defined by 

V v (xl,x2), S.B.C., (RHS Y (up+1) y S(v) 
a Jw a ~v ~v - a 

=lRH [y (uP) _wXP ] y S(v) +f F v , (18) 

V v, ~x::::), ::B~C. J ::"v" ',v vrt ,:,"v 
=(1 [d UP-QP]d v +(FV :(wMNdNV3 J w aS~v ~v 3 ~v as 3 J w 3 3 J w ~ ~ 

where 



) 
xP jJ rR" Y (uP) - x R a uP g ] 
as - K(O) as\1\J \1\J - 3 as\1\J \1\J 3 - as 

as -1 3 K(O) as\1\J \1\J - ~ \1\J 3 ~ 
QP = ~:r-lx P [R y (uP) - x3 Ra D \1\J a uP - gao], 

PK(O) being the orthogonal projection on the convex K(O) with help of the 

scalar product induced by the compliance tensor saS\1\J' and 

RH =1 ~1 dx 3 , I =J:i R dx as\1\J 1 as\1\J as\1\J 3 as\1\J 3 
-1 

Remark 1. The projection PK(O) on K(O) is a non linear problem which should 

be solved a large number of times through the thickness of the plate in 

order to have an accurate expression of x~S and Q~S. A nice algorithm can 

be formulated as follows. Let x be a symmetric matrix of ~2. Then there 

exists a positive constant, say \1, such that : 

where n is the outward normal to K(O) at the point PK(O)x. If we assume 

that the strength yield function f is such that : 

1 
f (x) = "2 (Bx,x), 

then 

or else 

But PK(O)x is on the boundary of K(O), hence 

(B (I + \1 B)-lx, (I + \1 B)-lx) = k 

The value of \1 can then be computed by Newton's algorithm. Practically it 

appears to be very fast. 

Step 4. computation of crO 
a3 

The second equations (9) can be explicited as follows 

fS cr~S + 
ae ° + f cr 3 a3 a 

cr = 0 for x3 = ± a3 

The solution of this system 

x3 

[crO = as ° - cr 
as a3 -1 

° step 5. Computation of cr 33 

0, a 

a 

is 

The last equation (9) (not yet used) is 

{
a 3 cr~3 + aa crg3 + f3 = 0, 

cr~ 3=0 for x 3 ± 1, 

1,2, 

1,2. 

(19) 
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the solution of which is : 

o o 
33 

J x3 0 J x3 
- d 0 - f 

-1 a a, -1 3 
(20) 

Remark 2. The elastoplastic model for plate, that we have obtained, is two

dimensional. It means that it can be solved with the help of unknown func

tions, only defined on the medium surface of the plate. As a matter of fact, 

they are the components of the displacement field (~,u3). But the stress 

field is generally three dimensional. 

Remark 3. One can obtain a simple characterization of the stress field 
j+1 

0aS solution of (14), (12) and (13). Integrating (14) over 0, leads to 

't T E K(O), f s OJ+1(T _ j+1 
o aS~v ~v as °as ) 

;? (T _ j+1) (j+1) 
)0 as 0 as YaS u + 

Then, if we define the space 

; T12 = T21 ; such that 

and 

with 

v 
a 

-] M 
w a 

't v 3 (x 1 ,x2 ) S.B.C., -imas daS v3 =J:3 v3 

naS = J~~s and maS = J 1X3 TaS l, 
________________ ~-71 -1 -2f ______________________ . 
it appears that o~;1 ~~-solu~:~~-~f 

{ 
oj+1 E K(O) n HF 

V T E K(O) n HF ,a(oj+1, T - oj+1) ;? gj (T _ oj+1) 

where 
a(o,T) =J~as~v 0aS T~V' gj(T) a (oj -y (Uj),T) 

oj+1 is also solution of the following problem : Hence, 

minimize'i a (T,T) - gj (T) 

T E K(O) n HF 

(14) 

(15) 

The solution exists and is unique as soon as K(O) n HF is not empty. An 

important consequence - but quite obvious from the physical point of view -

is that when only membrane loadings are involved, then the in-plane stress 

is reduced to % aBo This result is obtained with the help of (15). Indeed 

let oj+1 element of K(O) n HF , be solution of (15). We associate the stress 

resultant by : 



j+1_ r+1j+1 
naB - craS ' 

and we 
"-1 n j + 1 

consider the in-plane stress field "2 as . Because there are only in-

loading, it is clear that E.j +B1 E H • In other respects, from : plane 
2 a F 

1 . 
cr j + 1 E K(O) __ f(cr j + 1) .;; k ~r f(cr J + 1 ) .;; 2 k 

J 

one deduces that -1 

E K(O) 

Then using the expression 

cr j + 1 
j+1 

+ 3x 3 mj + 1 j+1 '::'as + 
as 2 2 aB TaB 

where : J 1j+1 
1 

0 and J x3 
j+1 

= 0, TaB TaB 
-1 -1 

one obtains : 

( '+1 '+1 ) 
a (cr j + 1 ,cr j + 1) n J n J ( 3x3mj+1 3x3 j+1) (j+1 j+1) = a - - + a 2 ' m + a T ,T 

2 2 2 

which implies that : 

a(cr j + 1 ,cr j + 1 ) ;;;. ( n j + 1 
a"2 ' 

%j+1 ) 

If we assume, by induction, that cr j is x3 independent and that u~ = 0, we 

have : 

scr j - y (u j ) , = ( _n2j+1) = g (_n2
j + 1 ) 

Finally we deduce that 

t a(cr j + 1 ,cr j + 1 ) _ g(cr j + 1 ) ;;;.t a(%j+1, %j+1) _ g(%j+1) 

which proves that : 

j+1 
n 
2 

j+1 
cr (16) 

[:J 

Remark 4. For more general loading cases it is not possible to simplify the 

elastoplastic model for plates and a coupling appears between membrane and 

bending effects. The in-plane stress remains three dimensional. It means 

that plastic zones can have quite arbitrary shapes. In particular the plas

ticity does not cross necessarily the thickness of the plate. 

IV. Global models in elastoplasticity 

An important problem arising in plasticity is the determination of limit 

load (limit analysis). Because of the three dimensional behaviour of the 

i~plane stress, it is very convenient to replace the convex set K(O) by a 
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new one, which just involves the stress resultant naS and the bending mo

ments maS. As a matter of fact we define two new convex sets, 

one being including in K(D) the other one being la:r:;ger 

This leads to a lower and an upper bound of the limit load. Let us consider 

a splitting of the stress field into three components as follows : 

T = ~ aD + 3X3 + T I as 2 I-' 2 maS aB 

with 

Hence, 

1 1 

J_~aB = J _~3 TaB 

we deduce that (f 

J 1 1 
f (T) = "2 f (n) + 

-1 
and the inequality 

f(T) ~ k 

implies : 

= D 

being a quadratic 

3 J 1 "2 f(m) + f(T) 
-1 

f(%)+ t fe;) ~ k 

If we set 

function) 

KGM {T = (TaS) , T12 = T21' such that on w 

f(%) + l f 
3 C;) ~ k} 

(where 
1 1 

naB = r~aB and maB = J _~3 TaS)' 

it appears that 

K(D) C KGM 

Let us now introduce the convex set 

TZl' and on Q 

Hence if the stress field 

~aS+ 3x 3 m 
2 2 as 

belongs to the convex set KGm , it is also in K(D). It means that 

(17) 

These inclusions enable to compare solutions obtained with help of the va

rious convex sets defined above. Let us define, for instance, Gm, GO andGM 

the three minimae of the functional (15) over the convex sets, KGm , K(O) 



and KGM • For sake of brevity we assume that gj = 0 in (15). Then we have 

lIa - aMII2 ';;;a(a - aM, a - aM) ';;;a(a, a _ aM) 

';;;a(a, a - T) + a(a, T - aM) 

and for any T in K(O) ; a (a, a - T) ';;;0, hence 

T E K(O) 

In a similar way one can prove that : 

lIa - amll 2 .;;; c lIamll inf liT - all 
TEKGm 

Finally the error between solutions obtained for different convex sets is 

bounded by the distance between KGm and KGM • The error is null when there 

is no bending effect and is maximum for a pure bending state of stresses. 

v. plastic behaviour of the junctions between two layers in composite la
minates 

Let us consider a thin plate mode of several layers sticked together by a 

thin layer of epoxy. We assume that this layer can have a plasticbehaviouL 

Because the thickness is very small compared to the other dimensions of the 

plate (even the thickness) it is possible to approximate the three dimen

sional elastoplastic model by a simplified one where the non linearity 

(behaviour) is limited to a surface (or several surfaces in case of multi-

layered plates). 

V.l. The plastic surface model 

Let us briefly recall the formulation of the plastic surface model intro

duced in [3]. For sake of brevity we just consider one plastic surface. 

The junction between the two layers is at the height EZ from the medium 

surface. The thickness of it is 2n and it occupies in space the open set 

Bn = W x ]EZ - n, EZ + n[ . 

The strength yiel? convex is defined by : 

Kn = iT = (T .. ) ; T .. = TOo and f(T)';;;k on Bn} 
1.J 1.J J1. 

where f(.) is the yield function. It is clear that.for nl <n2, we have 

Kn1 ~ Kn2. Hence the sequence Kn is increasing. Let us denote by HF the 

stress fields which equilibrate the applied forces (see chapter III). Then 

the Prandtl Reuss~ model consists in finding an element an in the space 

Kn n HF such that 

V T E Kn n HF , a(an , T - an) ~O 

A basic point in our analysis is to characterize the limit set Kn n HF when 
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n tends to zero. This result can be obtained with the help of Stokes for

mula. We proved in [3] that this limit set, denoted KO n HF is deduced from 

the strength yield function f(.). As a matter of fact KO depends on the 

normal components of the stress to the surface w. If we denote by PT the 

stress deduced from T by : 

(PT)ij = (Ti3 0j3 + Tj3 0i3)/2 

then KO is defined by : 

KO = {T = (Tij ) ; Tij = Tji ; f(PT) <k on w X{EZ}} 

From the mathematical point of view, it should be noticed that PT can be 

defined on the surface w x {EZ} as soon as T E HF • In the sequel it isvery 

convenient to use the convex set KO which just involves vector fields de-
'\, 

fined on w x {EZ} and which can be interpreted as the normal components of 

stress field of KO. Finally the limit model when n tends to zero can be 

formulated as follows 

tind 0 (t) E KO n HF such that 

V TE KOn HF , a(cr, T- 0);;;'0 

One can prove that there exists a unique displacement field u in the space: 

(ie v can be discontinuous across w x {EZ}). Furthermore, there is a uni-

que vector field A = (A.) in the convex set KO 
1. '\, 

such that : 

i) Rijk£ Yk£(u) on QE/w x {EZ}, o .. 
1.J 

ii) V vE V~, J °ij a. v. -J\ [vi] J fi v. 
1. J 1. 

~l/WX{EZ} WX{Ez} rl 
iii) V jl E It,0, (jli - A. ) [,;.] < 0 on w x {Ez} 

1. 1.-

were [<1>] denotes the jump of the function <I> across the surface w X{EZ}. This 

model is simple to be solved because it is basically linear, the non linea

rity being restricted to the surface w x {EZ}. It can be solved numerically 

with a duality algorithm (for instance Uzawa's method). OUr purpose now is 

to deduce from (20) a plate model. 

V.2. The elastoplastic plate model 

Using the same method as the one described in chapter II, we can transform 

problem (20) into an equivalent one but set over Q instead of QE. Let us set: 

v 
Z 

E 
= V 

Z 
for E = 

Then the limit model (for E = 0) can be formulated as follows 



find p,°,uo) E KOO x V such that 
'" z 

S 0° ( 0) as]J\I ]J\I = YaS u , 

° Y i3 (u ) = 0, 

V ]J E KOO (]Ja _ A 0) [u-O] ";;0 on w x {z} , 
a a 

jo .. a. v. f A~ [va] j f~ v. 
1J 1 ) 1 

Q/wx{z} wx{z} Q 

where KOO is the limit convex for £ = 0 (see section II). As a matter of 

'" fact, let us assume that 

KO {A = (A. ) ~ a .. A. A. ..;; k on w x {z} } , 
'" 1 i,j=1,E 1) 1 ) 

then 

~OO = {A = ( Aa) ~ aaS A A ..;; k on w x {z}} (22) 
a,S=1,2 

a S 

This notation implies in particular that "3 = O. Indeed the solution of 

(21) can be explicited with the help of two models, the non linearity being 

limited to one of these two. The displacement u~ is independent on x 3• 

° The components ua are piecewise linear with respect to x3 such that : 

, u~ + (x 3 - 1;+) a x3> z, ~a (x I 'x2 ) - u 3 a (23) t uO u - (x ,x ) (x 3 - I; 
- ) a X3 < z, - u a a I 2 a 3 

+ (C being the medium height of the two portions of the plate). The in-plane 

stress o~S is also piecewise linear in x 3• We set: 

I a~S (24) 

where 
h + (1 - z), h = (1 + z). 

Hence the behaviour relationships are 

[1 ] 1 

Ras]J\I] 
+' - + 

Vz(X 3 - 1;+) ° n = R (u ) a as j 'as]J\I Y]J\I- ]J\I u 3 ' 

z 

naS = V _:as]J\I]Y]J\I (~-) [~~=3 - 1;-) Ras]J\I] d]J\I ° u 3 

(25) 

[ Z 
1 

maS =- j'(X 3 - 1;-)2 
RaS]J\I + j (x 3 - + 2 - ] a ° 1;) RaS]J\I u 3 ' 

-1 z ]J\I 

+ [j(~ -
-1 3 

1;-) 
Ras]J\lJ Y]J\I (~-) + ~~X3 - It) R ] ( +) as]J\I Y]J\I ~ 
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+ I1 ° - I ° And from the equilibrium equations we obtain (with Fa = fa and F Z f ): 
Z a -1 a 

v v:' J n:S aa v; - J Aa v: 
w w 

V va' fwn~s aa v~ + fw Aa v~ V a 
(26) 

Finally the discontinuity of UO across the surface w x {z} is governed by 
a 

(on 

(27) 

° The transverse shear stress is then deduced from craS and AO by integration 
a 

of the three dimensional equilibrium relations. The same is true for cr~3' 

Remark 5. The model obtained is obviously non linear. Indeed there are se-

± ° ° ven unknown fields: ua ' Aa and u 3 ' The solution can be performed as for 

Prandtl and Reuss' model, using an incremental procedure. It is clear from 

(27) that if AO belongs to the inside of KOo, then the jump [~o] across 
a ~ a 

w x {z} is nUll. In such a case the model is linear and there is a decou-

pIing between membrane and bending effects. When [~o] ~ 0, a dislocation 
a 

appears between two layers. It is realistic to imagine that a delamination 
'0 crack can appear for [ua ] large enough. Hence a damage model would be to 

state a limitation on [uo] above which the delamination increases. Another 
a 

important point is that the crack (delamination) is submitted to shear 

stress (no opening mode). Hence a bifurcation would certainly appear de

pending of course on the toughness of each layer in the direction of the 

crack orientation. For instance it is clear that if the fibers of a layer 

are parallel to· the crack tip, the delamination will certainly jump across 

this'layer (see figure 2). 

Jump 

Fibers 

Layer 

~ Layer 2 
~~=-~~~~~-=~~ 

( Layer 3 

Figure 2 



VI. A MODEL FOR THE ANALYS IS OF ELAS TOPLAS TIC BUCKLING [8], [9] , 111] , [11J 

Let us consider in this section that the displacements of the structure are 

such that it is necessary to keep the complete expression of the strain 

tensor. Our goal is then to derive from the three dimensional a non linear 

plate model which permits to study both plastic and geometrical stability. 

The three dimensional formulation consists in finding an element (cr,u) such 

that on the one hand : 

o .. Rijk.Q, 1J ( :tU 
- p) Yk.Q, , 

where 
1 

YU 2 
(dk u 9. + d.Q, uk + d.Q, u. dk u.) 

'U J J 

and on the other hand 

'V v E ;;" rQ~ij di Vj + JQ~ik dk u.Q, '\ v.Q, =~Efi 
Furthermore the evolution of the plastic strain yp is 

verned by Hill's principle: 

'V T E KE, (T.. - cr .. ) 
1J 1J 

.p ,,;::: 
y~. "" 0 . 

1J 

(28) 

(29) 

V .• (30) 
1 

supposed to be go-

(31 ) 

The question of existence of a solution is still out of reach. But using 

the asymptotic method, it is possible to derive from (28), (31), a limit 

model the solution of which approximates the assumed three dimensional one. 

The process is the following one : 

let (OE,uE) be the element constructed from (cr,u) through formula 

(6). Then it is solution of the following set of relations : 

(32) 

+ 4 E2 5 . E 
(T 133 - crs 3) E2 

5 33 ).lV 
'E 

(T 
E 

) 
0.3133 cra.3 + 0 33 - 0 

).lV ).lV 

+ E2 S33).lV cr E (T 33 - 0~3 ) + E4 5 3333 O~3(T33 - 0~3) ).lV 

;;;. (T .. - o~.) (yij(uE ) + d. u 3 d. liE) 
1J 1J 1 a. J 3 

+ E-2 
(T ij - crr:.) d. u E d. u3 ' 1J 1 3 1 

VVE v,J cr~. a. jcr~j a. E a. v. + u v 
Q 1J 1 J 1 a. J a. 

Q 

(33) 

-2 J E a. E a. 1 f. v. + E 0 .. u V3 = 
Q 1J 1 3 J Q 1 1 

In order to construct an asymptotic expression of (OE,U E), with respect to 

E, it is necessary to assume that the external loads are such that : 

Otherwise the displacements would increase without limit when E tends to 

63 



64 

zero. Then if we set a priori 

(as ,us) = sZ (az,u z ) + s4 (a 4 ,u4 ) + ••••. etc 

and introducing this expression in (32), (33) and by equating the predomi-

nant terms in the reSUlting expression, we obtain: 

V T E K(O), SaS~v ~~v(Tas - a~B) ~ (Tij - afj) Yij (~Z) (34) 

( Z Z· Z 
+ Tij - a ij ) d i u 3 "j uS' 

(it is necessary to set k = sZko and this is an important assumption on 

the strength limit), 

V v E V, J"af j "i Vj + J"af j "i u~ "j v3 = J"f~ V. 
1 

(35) 

The solution of this limit model is similar to the one described in sec

tion III. An extended justification is given in [2 J. As a matter of fact, 

(aZ,u Z) can be computed as follows : 

The displacement u~ is only dependent on the coordinates Xl and x z ' and 

the other components are such that 

u Z = u 2 (x x) - x3 "~ u 23 . a -a l' Z 'A 

·Z The in-plane stress field velocity aaB is given by 

V TaS E K(O), SaBllv allV(T aB - a~S) ~ (36) 

(TaB - a~S) (YaB (~Z) - x3 "as u 3 + "a u~ "s ~~) 
and if n~S (respectively m~S) is the stress resultant (respectively the 

bending moment), then (Fa' F3 and Ma were defined in (13») 

{
V v a (x 1,x2 ), S.B.C., r n~S "a VB =J Fa va' 

-w W (37) 

V v 3 (x ,x ), S.B.C., -fm2s" SV +Jn2 S" U23"SV =JF3V3-JM" V . 12 wa a 3 wa a 3 w waa3 
The transverse shear stress a 2 and the normal stress a2 are given by the 

a3 33 
analogous with formulae (19) and (20). The stability problem can be stu-

died with the help of model (36),(37). As a matter of fact, it is more 

convenient to formulate the plate model only with respect to the displace

ment field. Then the stability depends on the sign of the tangent stiff-

ness. There is an interesting case where it is possible to make more ex

plicit the non linear model. It is obtained for an in-~lane loading (ie 

F 3 =Ma =0). 

the solution. 

Then u 2 = 0 up to the buckling, because of the uniqueness of 
3 

The displacement u 2 is solution of Prandtl and Reuss' model 
-a 

for plate ; (we have seen at remark 3 that in this case the in plane stres~ 
2 n 2 aaS' is reduced to the stress resultant 2 as). Hence, one can compute 



(n 2S,u2 ) up to the buckling with a simple model without geometrical non 
a -a 

linearity. Let us assume that the loading is proportional to a real para-

meter, say q. The limit load is supposed to be obtained for q£ and the 

plasticity appears in the structure for q • Obviously one has : 
p 

Let us discuss the stability model with respect to the value of q. First of 

all, if q < qp' ~is assumed to be positive), the stress resultant n~S is 

proportional to q. Let us set : 

If f (.) is the strength yielding function we have at each point of W: 

Hence the stability can be discussed in the elasticity framework. More 
'2 precisely the buckling can occur if there exists an element u 3 different 

from zero and satisfying the boundary conditions, such that 

'r/ v3 S.B.C., [IaS)J'V "as ~~ ")J'V v3 + qJ n~S "a ~~ "S v3 = 0 (38) 
-W W 

(indeed the non linear term "a u~ "S ~~ is null up to the buckling). The 

model (38) is a classical eigenvalue problem. After solving it one should 

check that the smallest eigenvalue is smaller than qp' The second possibi

lity is qp <q < q£. Let us denote by w the plastic area defined by : 
o p 

wp = {m E w : such that f (%L)= k} 

The inequation (36) can be written on w 

'r/, E K(O), SaS)J'V 0jJ'V('aS 

- x3 "as ~~) 

p 

(39) 

(because o~S 
for any , in 

n 2 2 as and u; = 0 up to the buckling). From (39) we deduce 

K(O) and independent on x 3 ' that 

n n 2 n 2 • 
SaS)J'V 2 )J'V ('aB - 2 as) ? ('as - 2 as) Yas(~2) 

Hence (~2,~2) is solution of the same model as if there were no buckling 

and can be computep separately. In other respects, (39) implies that there 

exists a positive real function ~(x3) such that 

R [y (~2) _ x " ~2] <If (n2) 
as)J'V )J'V - 3)J'V 3 = ~ RaS)J'V ~ 2 + 

)J'V 
and because ~ should be positive 
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f; = [R Q (y (~2) - x 3a ~23) ~ J+/(R af ~) 
a~~v ~v - ~v anaS aS~v anaS an~v . 

Hence, taking the time derivative of (37) 

V S B C J I a ~2 a + {d R ~ a (40) v 3 ••• , OJ aS~v as 3 ~v v 3 . OJ c, aS~v an~v as v 3 

+ r n~S aa ~~ as v3 = 0 
.' OJ 

where (R Q has be assumed to be constant in x 3) 
a~~v +1 

f;l =J x f; 
-1 3 

Another formulation can be deduced from (40) if we set 

OJp1 = {m E OJ where RaS~v y (~2) ~ < o} p ~v - an ' as 

{m E where y (~2) af 
= o}, OJp2 OJ RaS~v anaS p ~v -

OJp3 {m E OJ where RaS~v y (~2) ~ >o}. 
P ~v - anaS 

Then 0 on ~ p1 , 

f;l 0 on Wp2 

[ RaS~v af 
a ~2J (R ~ ~) on anaS 3 / aS~v anaS an~v ' ~v 

Finally problem (41 ) is reduced to a linear eigenvalue Eroblem 

OJ 
P3 

at each 

loading step. It consists in finding an element ~~-different from zero, 

satisfying the poundary conditions and such that : 

(41 ) 

, fas~v a ·2 af - af 
aaS v 3 ~v 

u 3 an %Sl-rv an o. as -- ~v 

OJ R l!. l!. 
p3 aS~v anaS an 

~v 

The basic point in the obtention of (41) is that the evolution of the mem

brane plastic strain is independent on the buckling mode. Furthermore the 

plastic behaviour of the branching solution is governed by membrane stresses. 

This particular model seems to be a nice candidate for studying the elas

toplastic buckling of plate under in-plane loading. 
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Summary 

Four specific problems of large plastic deformation in shell 
structures are analysed and discussed. They are:- inversion of 
a spherical shell; formation of "flaps" in long-running ductile 
fracture of a high-pressure pipeline; inversion of a tube; and 
propagating collapse of a confined tube under external pressure. 
All of these examples involve travelling plastic hinges; and 
indeed such hinges seem to be a recurrent feature of large 
plastic deformations of shells. Two different kinds of travell
ing hinge are encountered, and analysed in simple ways. The 
first is a sort of rolling crease, while the second is almost 
purely extensional in character. 

I. Introduction 

In this paper I shall describe some problems which involve large 

plastic deformation of shell structures. Each problem will 

illustrate different aspects of what can happen when a shell 

undergoes gross distortion in the plastic range, and how we may 

study the behaviour. I adopt this approach for several reasons. 

First, it seems to me that this scheme reflects the nature of the 

subject: engineers encounter definite problems when they use 

shell structures ~ in various applications - vehicles in collision, 

submarine pipes, general-purpose energy absorbers, etc. - and 

it is the task of applied mechanicians to explain the phenomena 

and thus to help their colleagues to set up rational design 

procedures. This kind of activity is characteristic of a scien

tific subject at an early stage in its development. In the later 

stages, of course, it may prove possible to condense our know

ledge and understanding into a few general statements and the

orems; which eventually may even turn into axioms for future 
workers. 

Inelastic Behaviour of Plates and Shells 
IUT AM Symposium Rio de Janeiro 1985 
Editors: L. Bevilacqua, R. Feij60 and R. Valid 
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Our subject may be taken as beginning around 1960. In the pre

ceding decade - which began with the publication of Hill's 

famous book [I} on the theory of plasticity - workers in the 

Soviet Union, Europe and the United States had established what 

is now known as the "simple plastic theory" of structures; 

which provided the key to rational design of many structures 

in the field of beams and frames, plates and shells. 

That theory is based on two major idealisations: the material is 

regarded as being non-hardening in the plastic range ("perfectly 

plastic"); and the kinematics of plastic distortion of the 

structure is regarded as involving only "small" changes from the 

original geometry. Under these restrictions it is possible to 

establish, as we all know, the central "limit theorems" of simple 

plastic theory, which are of proven value in many fields of 

engineering, as I have said. 

By 1960, however, it was becoming clear that many interesting 

practical problems lay beyond the range of "simple plastic 

theory", precisely because they did not fall wi thin the scope 

of the assumption about changes in geometry being "small". These 

problems included the plastic collapse of flat plates and arches, 

which can undergo major geometrical changes in the course of 

deformation. These problems also posed questions about the 

stability of equilibrium in the plastic range [2]. 

In 1960 there appeared two papers, by Pugsley & Macaulay [3] and 

Alexander [4], on the energy-absorbing characteristics of metal 

tubes as they crumple under axial loading. The impetus for this 

work came both from the collision-performance of railway vehicle 

bodies, and ,from the nuclear power industry, where it was 

necessary to equip heavy control rods with energy-absorbing 

devices in case of accidental dropping. It turned out that 

although the experimentally observed concertina-folding patterns 

of the tubes were rather complicated, it was nevertheless 

possible to ~o some relatively simple, crude and non-rigorous 

calculations which gave a satisfactory "first approximation" to 

the gross behaviour, furnished the appropriate dimensionless 

groups and provided useful design formulas. 



I said at the beginning that we are still in the early stages 

of development of a plastic theory for large deflections of 

shell structures. Thus, for instance, the tube-crushing 

phenomena first studied in 1960 have still not been fully 

explained, in spite of some good work by Wierzbicki [5J, [6J 

and others. 

Throughout the paper I shall assume, for the sake of brevity, 

that elastic effects may be disregarded. 

II. The ring-loaded cylindrical shell 

My first example lies within the scope of "simple" plastic 

theory; and I give it because it establishes quickly some ideas 

which will be useful in discussion later on. 
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A long cylindrical shell of radius a and thickness t is made of 

material which is perfectly plastic with yield stress Y in simple 

tension. It is subjected to a ring load of uniform intensity 

F applied radially at a given cross-sectional plane, as shown 

in Fig. 1. We enquire at what value of F plastic collapse 

takes place, according to simple plastic theory. 

Fig. 1. Ring-l'oaded cylindrical shell (radius a, thickness t) 
in state of plastic collapse. 

As in the elastic version of this problem, we are concerned 

primarily with a structural interaction between longitudinal 

bending and cir~umferential stretching. This kind of inter

action, between bending and stretching in orthogonal directions, 

seems to be an ever-recurring theme in shell structures of all 

types [7J. A detailed analysis of the full-plastic behaviour 

of an element subjected to circumferential stretching stress 
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resultant Ne and longitudinal bending stress resultant M¢ gives 

a curved, convex interaction diagram between the two (e.g. [8], 

[7J chapter 18); but for most purposes of this paper it will be 

satisfactory to use the well-known, crude "circumscribing" yield 

locus for the element: 

( 1) 

where t is the thickness of the shell; at yield one or both of 

these relations is satisfied. 

We can obtain an upper bound, pU, on the collapse value of P by 

doing an energy balance for the hypothetical mode of collapse 

shown in Pig. 1: there are three hinges, at an unknown spacing 

t in the axial direction, and the generators remain straight 

between them. Let the central hinge be displaced a small dis

tance w in the radial direction. Then the hinges rotate through 

angles of magnitude wit, 2w/t, wit respectively, and the mean 

circumferential strain in the plastically deforming zone is equal 

to w/2a. Equating the work done by the external load to the 

energy diSSipated in plastic bending and stretching, we have: 

PU.2na.w = Mo.2na.4w/t + No ·2na.2t.w/2a. 

Hence 

(2) 

We obtain the best upper-bound by minimising the RHS with respect 

to t: thus 

( 3) 

and 

( 4) 

This calculation agrees to within about 10% with the results of 

experiments [9], which is very satisfactory. The agreement is 

much better if a more exact yield locus is used, but for present 

purposes the crude yield locus (1) is of more interest. 

Several points emerge clearly from this simple piece of analysis. 

(1) The optimum mode involves plastic deformation over an axial 

length of order (at)~. 
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(2) In the optimum mode the energies dissipated in bending and 

stretching are equal. 

(3) The mean shearing stress resultant on planes adjacent to the 
u k plane of loading is given by F /2t = y (t/a) 2; and this is small 

in comparison with the yield stress of the material in pure shear 

(viz. ~y), provided aft > 10, say. This justifies the neglect of 

transverse shear effects in the setting up of the yield condition 

for the shell element. 

III. Inversion of a spherical shell 

Figure 2 shows, schematically, the cross-section of a spherical 

shell having radius R and thickness t, which is being inverted 

by an inward-directed force P. (The shell is reinforced locally 

so that purely local deformation or "punch through" failure does 

not occur.) 

---- ...... , /' 

p 

Fig. 2. Schematic cross-section of spherical shell (thickness 
t) being inverted by a radial force P. Hinge circles are 
marked by spots. 

This problem was first investigated experimentally and theoreti

cally by Wasti [10], a student of F.A. Leckie; and it has been 

tackled in a variety of ways subsequently [ll] - [14J . 

At any stage in the process, the inverted region is separated 

from the outer portion of the sphere by a narrow toroidal 

"knuckle", which moves outwards as deformation proceeds. The 

knuckle region is connected to the two spherical portions by two 

travelling circumferential plastic hinge circles, of radius 

r ± ~i. In a frame of reference which moves with the knuckle, 

the material enters the knuckle at the outer hinge, which imparts 

the toroidal curvature to the meridian; and when it leaves by the 
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inner hinge, curvature in the opposite sense is imposed. The 

meridional bending moment in the knuckle region changes between 

+Mo at one plastic hinge and -Mo at the other. Since the 

equations of equilibrium require M¢ to vary continuously along 

the meridian, it is reasonable to assume that during an incre

ment of deformation the meridian of the entire toroidal part 

between the two hinge circles rotates as a rigid body in the 

plane of the meridian. 

It follows immediately from kinematics (e.g. [15]) that the entry 

and exit hinge-circles lie in the same plane, as indicated in 

Fig. 2. 

One of the aims of our analysis will be to determine f in terms 

of R, t and r. Since the current configuration, Fig. 2, is a 

consequence of the entire preceding history of deformation, it 

is not immediately apparent that f can be dete~ined by a cal

culation related to a particular stage of the process. Here we 

shall treat the problem as if an "almost steady state" had been 

reached; this will involve, in particular, an assumption that 

the toroidal knuckle has uniform curvature, even though it will 

be found later that the mean curvature increases as the knuckle 

moves radially outwards. 

One further point follows from the kinematical description given 

:above. During an incremental rotation of the knuckle as a rigid 

body about the outer hinge, every elementary hoop of it moves 

inwards, towards the axis. Thus the entire knuckle region under

goes compressive hoop straining; and so we may deduce from the 

chosen yield locus that the entire knuckle region is at full 

circumferen~ial yield stress. 

Let us now turn to some conditions of equilibrium within the 

structure at the point of incipient plastic deformation. For 

the sake of simplicity we shall assume not only that the knuckle 

is "shallow", Le. r/R «1, but also that fir «1. (In fact 

there is no particular difficulty in relaxing either of these 

restrictions. ) 

Thus, we take the slope of the meridian at the ends of the 



knuckle as ± r/R; and by regarding the profile of the knuckle 

as parabolic we find that its "rise" t; (Fig. 2) is given by 

t; = rl/4R. (5) 
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Figure 3(a) shows the force and stress-resultants which act on 

the already-inverted central portion of the shell. At the outer 

edge we have a bending-stress resultant M¢ = M~, together with 

a tensile stress resultant N¢. The latter is shown as being 

tangential to the meridian, since otherwise M¢ would not be a 

maximum at the hinge-circle, as it evidently must be. In 

Fig. 3(b) this "membrane" resultant has been replaced by its 

vertical and horizontal components V and H. V is determined 

from equilibrium in the axial direction: 

V = P/21Tr 

and H follows from the known direction of the resultant: 

2 H = VR/r = PR/21Tr . 

(These expressions incorporate both of the simplifications 

described above.) A similar analysis provides the stress

resultants acting at the outer hinge circle. 

(6) 

(7) 

We are now in a position to to consider the equilibrium of an 

elementary circumferential piece of the knuckle. First we 

investigate the radial force-equilibrium of a piece subtending 

a small angle 8, as shown in Fig. 3(c). The forces transmitted 

across the circumferential edges are both inwards, and the cir

cumferential forces represent full plastic compression. Radial 

equilibrium gives 

2Hr8 ytl8 

(a) 

~ 
YJt~~e V!t 

~
M YJt/r 

H 0 • 

-(i ---
V t~ M. V H 

N'~N' 

(b) ( c) (d) 

Fig. 3. Stages of the analysis of the shell shown in Fig. 2. 
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and hence, by (7) 

v = YU/2R. (8) 

Next we consider moment-equilibrium about an axis tangential to 

the circumference. Figure 3(b) shows the stress resultants act

ing on the circumferential edges of a piece which has unit 

circumference at radius r for the sake of simplicity (i.e. 

e = l/r) , together with the resultant of the two forces Yti of 

Fig. 3(c). This resultant acts at the centroid of the (shallow) 

toroidal arc, i. e. at an elevation of 2t;/3 above the plane of 

the hinge circles. Taking moments about a point in that plane 

we obtain 

Vi = 2Mo + 2t;YtiI3r, 

and hence, by (5) 

(9) 

V = 2M Ii + Yti16R. (10) 
o 

Now by (8), the last term of (10) is equal to V/3; and so (10) 

becomes, finally (and with (1)): 

V = 3Moli = 3Yt2 /41. (ll) 

The two equilibrium equations (8) , (ll) may now be solved for 

i and V: 

i (3/2)~(Rt)~ = 1.22 (Rt)~ (12) 

V (3/8)~Yt~/R~ = 0.61 Yt~/R~ (13) 

Thus we find that both i and V turn out to be independent of r, 

which is an .interesting result. Expressions (12), (13) are 

evidently cousins of (3), (4). 

Within the assumption of shallow-shell geometry, the radial dis

placement w of the apex of the sphere is given by 

w = r2/R. (14) 

Equations (6) and (14) may thus be used to express P in terms 

of w: 

P (15) 

or 

1. 22 (wit) ~ . (16) 
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Fig. 4. Main curve, eqn (16); 
horizontal line, eqn (17); broken 
curve from ref. [121. 

Formula (16) is plotted in Fig. 4. Since it is the result of 

a calculation in which {/r is assumed to be small, it clearly 

cannot be considered reliable near the origin. Now when the 

load P is first applied, the spherical shell acts locally like 

a flat plate with clamped edges; for which the plastic collapse 

load [15J is given by 

P = 4nM . o 
(17) 

This line is also shown in Fig. 4, and we must regard it as 

cutting off the lower portion of (16). 
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Expression (16) agrees exactly with equation (68) of [13], when 

allowance is made for the fact that Updike considered the shell 

as being loaded through a flat surface pressed against the 

knuckle. In fact, Updike's analysis follows along very similar 

lines to mine: he uses the same yield condition, and invokes 

essentially the same statical condition (Fig. 3(a» at the inner 

hinge. He also has an equation equivalent to (10), although he 

derives it in a different way by means of an energy-balance. 

It is interesting to compare our results with those of Morris 

& Calladine [12J, which are also plotted in Fig. 4. Taking a 

perfectly-plastic, shallow-shell approach, they followed the 

development of the meridional profile in detail, step by step, 

using an accurate "upper bound" calculation at each stage. The 

main overall difference between the tw.o curves in Fig. 4 is a 

shift to the right equal to approximately one thickness. This is 

attributable to localised deformation near the apex in the early 

stages of deformation according to [121, which is ruled out by 
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assumptio~ in our analysis. 

An examination of the detailed results on which [12J is based 

shows that when r > 2l, 
_ l." 

l - 1. 3(Rt) (18) 

and 

which are both in fairly good agreement with (12), (13). It is 

re-assuring to find that our value of l corresponds closely to 

that which evolves in [12]; and indeed that both agree with 

photographs of deformed shells in [10]. The agreement between 

the present analysis and that of [12] is not complete, because 

we have used here a simplified yield locus (1), whereas in [12J 

a proper interaction between plastic bending and stretching 

effects was incorporated. It is comforting to know that a cr.ude 

treatment of the yield locus can nevertheless give good results. 

It is also interesting to note that de Oliverira & Wierzbicki 

[14] obtain by means of an energy-balance essentially our 

equation (10). But they do not use anything equivalent to (8), 

and instead find l by minimisation of V in (10). This gives l 

about 40% higher than our value, which is not in agreement with 

[12J. The lesson to be learned here is that it may be unwise to 

expect a reliable equilibrium condition to emerge from the mini

misation of an energy expression based on an approximate yield 

locus. 

IV. Long-running ductile fracture of high-pressure gas pipelines. 

The next example concernes an aspect of the behaviour of high

pressure gas.pipelines when a ductile fracture proceeds along 

the pipe at high speed [16J, [17J. This is a very complicated 

problem indeed. It involves a large number of different con

siderations including non-steady trans-sonic gas dynamics of a 

non-perfect gas, both local to the burst and in the pipe as a 

whole; fracture mechanics; and general dynamics. I shall not 

describe here any of these aspects of the problem: instead, I 

shall consider merely the problem of determining, by means of 

shell theory, the shape of the "flaps" which open up behind the 



79 

x 

Fig. 5. (a) Computed shape of flap-opening in pipeline~fracture 
problem for £ = 0.1, b/a = 0.5 (eqn (20) l. (b) Underformed pipe 
showing longi~udinal crack; surface co-ordinate system; and the 
narrow zone in which plastic stretching occurs. 

crack tip as it proceeds: see Fig. 5(a). These flaps form as a 

consequence of longitudinal plastic stretching within the centre

surface of the pipe wall. Although the flaps absorb consider

able energy on account of the necessary plastic stretching (my 

student Abbassian concludes that this is typically of the order 

of 5 times the work of ductile tearing at the crack tip), they 

do on the other hand provide a way in which the escaping gas can 

do sufficient work on the walls of the pipe to maintain an 

"energy balance" in steady-state propagation in certain circum

stances. 

Consider the steady-state propagation of a crack, with its 

associated flaps, in a frame of reference which moves forward 

with the crack tip. It is reasonable to suppose that the 

material is given some plastic stretching strain as it passes 

through a narrow circumferential zone straddling the top of the 

pipe, as shown schematically by the shaded region of Fig. 5(b); 

and that there,after, within the "flaps", it experiences no 

further plastic deformation apart from circumferential flexure 

as the flaps unfold. Consequently, along any generating line of 

the cylinder there is a constant pattern of strain within the 

region of the flaps. It is obvious that the geometrical form of 

the" flaps" is. constrained by the manner in which the material 

recei ves its plastic strain by the passage of a "travelling 

stretching hinge". 

In order to fix ideas, let us consider first a "small-deflection" 
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version of a flap, in the context of an x, y cartesian coordinate 

system in the surface of the original pipe, as shown in Fig.5(b). 

Let the origin of coordinates be at the bip of the crack, with 

the flaps opening up on the side x > o. 

Again, for the sake of simplicity let us suppose that the zone 

of active plastic stretching lies exactly along the y-axis, and 

that the strain imparted to the material as it flows through 

this zone is 

E 
X 

Eoexp(-y/b), x > o. (20) 

Here, EO is the longitudinal strain adjacent to the torn edge, 

and b is a circumferential "decay length": these two parameters 

thus characterize the deformation. 

In the small-deflection theory of cylindrical shells there is a 

useful geometrical expression which may be written as follows 

( [7J, p. 160) : 

(21) 

The LHS is an expression for the Gaussian curvature of the dis

torted surface in terms of the various components of surface 

strain, while the RHS is an expression for the Gaussian curva

ture in terms of principal curvatures of the surface: the 

negative sign on the RHS is needed when the radial component, 

w, of displacement is measured outwards. 

In the steady state (20) will apply to all material which has 

passed through the plastic zone, i.e. in the region x > 0: in 

the region x < 0, of course, EX = 0 and the pipe is undistorted. 

Equation (21) gives 

a 2w 2 
-2 = (a/b ) E exp(-y/b), 
(l x 0 

and integration subject to the obvious boundary conditions 

w = (lw/d x = 0 at x = 0 (22) 

gives 

w 2 2 (aE o /2b ) x exp(-y/b) (23) 
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as the deformed shape of the flaps for x > o. 

This analysis is very satisfactory in the "small deflection" 

range; but in practice we are concerned with larger deflections 

of the kind shown in Fig. S(a). The most obvious way of pro

ceeding would be to replace (21) by a suitable "large displace

ment" version, and then to integrate numerically forwards from 

the plane x = o. This turns out to be a rather difficult task. 

The trouble seems to be that the solution is not necessarily 

unique over the entire zone x > 0 on account of the possibility 

of creases forming in the characteristic directions of the 

twisted surface. These difficulties may be seen as a direct 

consequence of our modelling the shell by a mathematical surface: 

such creases would not occur, of course, in a shell of finite 

thickness. 

Abbassian has overcome this difficulty by making physical models 

out of thin cardboard. The material was sufficiently thin to 

act as a "surface", but it had sufficient flexural stiffness to 

avoid the ambiguities encountered in purely numerical studies of 

the surface. The first step was to make a model pipe of diameter 

200 mm out of the cardboard. The surface of this underformed 

pipe was divided into 40 mm squares, and the cardboard was 

folded along the generators. In the "flap" region the surface 

was made from longitudinal strips of cardboard, composed of 

trapezia of height 40 mm which were related to the squares of 

the "under formed" part of the model by application of the strain

ing pattern (2.0) at their edges. These figures were put onto the 

card by computer-graphics, cut out with "tabs" along the edges, 

scored along the edges and across the diagonals of the trapezia, 

and glued together. In most cases the models were made to extend 

3 diameters beyond the tip of the crack.When each model was 

complete, the cartesian coordinates of the grid points of the 

flaps were recorded; then the data were read back into the com

puter and pictures such as Fig. Sea) plotted out. In this way 

the geometry of the flaps has been determined for several values 

of the parameters (EO' b/a); and in turn these have been analysed 

in relation to factors which affect the distribution of pressure 

over the surface, and hence the input of energy to the pipe wall 
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in a steadily-running crack. 

Several points emerge from this large-deflection study of the 

shape of the flaps which are formed by plastic straining in the 

pipe wall as described above. 

(1) The flaps are formed by a travelling zone of surface 

stretching. The bending strains - which can be'determined, of 

course, for a given configuration when the thickness has been 

specified - are relatively small, and little energy of plastic 

deformation is absorbed in this way. 

(2) Construction of a physical model turned out to be the most 

expeditious way of establishing the geometry of the flaps in the 

large-deflection range. This kind of technique, using physical 

models, can be useful when the geometry is awkward. 

(3) The factors which determine the geometry of the flaps are not 

"self-contained", as in the problem of inversion of a spherical 

shell, for example; they depend on complicated gas-dynamical inter-

actions which are not yet fully understood. This kind of 

problem, in which a shell structure is coupled with another 

branch of mechanics, is to be expected in future applications of 

shell theory to engineering problems; and it provides both a 

challenge and a stimulus to our thinking. 

v. Axi-symmetric inversion of a tube 

The large-scale inversion of a cylindrical tube of ductile metal, 

in the manner of Fig. 6 (a) , is the central feature of widely 

used devices for absorbing kinetic energy (e. g. [181, [19J) . 

Figure 6 is adapted from a diagram in the first paper on the 

subject, by Guist & Marble, in 1966 [20J. This excellent paper 

raised a curious paradox which seems to have been overlooked by 

subsequent workers (e.g. [21J, [22J) and which I shall try to 

resolve. 

The basic analysis of [20J is extremely simple. It may be done 

in several different ways, and the following is perhaps the most 

straightforward. 

As the outer part of the tube (Fig. 6(a» moves downwards rela

tive to the inner part, each elementary piece of the original 

tube in turn enters the moving toroidal region, passes through 
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A 

( a) (b) 

Fig. 6. (a) Cross-section of tube during inversion. As the lower 
end of the inner tube is pushed upwards, the tube is inverted. 
(b) Schematic arrangement of the knuckle region in (a). 

it, and emerges at the other side. It enters as part of a tube 

of radius a, and it emerges as part of a tube of radius a + b. 

It thus experiences a circumferential strain of magnitude b/a 

as it passes through the toroidal region; and, if this component 

of strain has the largest magni tude ~ which is reasonable in view 

of the experimental observation that in this type of inversion 

the wall thickness changes little - then the energy absorbed per 

unit surface area of material is given by ytb/a for a perfectly 

plastic material which obeys Tresca's yield condition ([23J, §4.6). 

The same piece of material also goes through a history of bending. 

When it passes through the "entry" travelling-hinge circle it 

undergoes a change of curvature in the meridional direction. The 

curvature imparted is equal to 2/b (i.e. the reciprocal of the 

radius of curvature), and this curvature remains unchanged until 

the material flows out through the travelling exit-hinge, where 

the meridional curvature is removed. The energy absorbed in 

bending is thus that which would be absorbed in a single change 

of curvature equal to 4/b. Since Mo' the full plastic moment per 

unit length, is equal to yt2/4, the total energy absorbed in 

bending is equal to yt2/b. 

When unit area of surface is transferred in this way between the 

two tubes, the inner tube is shortened, relative to the toroidal 

region, by 1/2rra, while the outer tube is lengthened by an equal 

amount - to a first approximation, at least, if we assume that 
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b «a. It follows that if P is the axial force required to per

form the inversion, it does work equal to P/na du~ing the pro

cess. Equating this to the energy absorbed internally, we have 

2 
P/na = Ytb/a + Yt /h, 

which may be re-arranged as 

0; = 2n:tY = i [~ + ~]. (24) 

Here, on the left, the mean axial stress level 0* has been 

expressed as a fraction of the uniaxial yield stress of the 

material. 

So far, the diameter b of the toroid has been regarded as a vari

able. It is clear that 0* /Y is minimum wi th respect to b when 

b = (at) ~; (25) 

in which case 

o*/Y = (t/a)~. (26) 

This is a result first obtained in [20J, and subsequently refined 

in various ways in [2lJ, [22J. 

At this point it is interesting to compare the analysis with that 

of Alexander [4J for the collapse of a tube by the formation of 

axisymmetric folds in the manner of Fig. 7. Experiments show 

that the axial force rises to a peak as each new fold is initiated, 

and then falls as the lobe flattens. Alexander made an estimate 

of the mean a~ial crushing stress by equating the work done by 

the external load during the collapse of a single lobe to the 

total energy absorbed in plastic deformation within the lobe. 

Thinking again in terms of unit area of surface, we find that the 

load moves axially through a distance l/2na; that the mean circum

ferential strain is equal to c/2a (see Fig. 7); and that, since 

Fig. 7. Cross-section of tube under 
axially s~etric crumpling (after 
Alexander [4 J ) • 
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a length c of meridian is associated with a hinge rotation TI, 

each piece of material undergoes, on average, a change of curva

ture equal to TI/c. In place of (24) we therefore have 

CJy* = ~[~ + i ~ ] 
The RHS is minimum with respect to c when 

c = ~ 1. 25 (at) , 

and with this value of c, 
k 

CJ*/y = 1.25(t/a) 2 • 

(27) 

(28) 

(29) 

These two analyses of tube inversion and tube crushing are both 

very simple. The aim of both, of course, is to describe experi

mental behaviour and to provide a predictive tool for the engineer. 

In the absence of experimental data vV'e might well aver that the 

analysis of tube-crushing is likely to be less reliable than that 

of tube inversion, since it involves a non-steady process, and 

the axial spacing c of the hinge circles is more likely to be 

determined at the initial formation of the lobe than by a mini

misation of the total energy, as in (29). Paradoxically, the 

opposite is true: Alexander's formula (28) for the lobe-length 

agrees better with experiments that formula (25) for the toroidal 

diameter. And indeed, Guist and Marble found from experiments 

on aluminium tubes whose values of a/t ranged from 10 to 100 that 

the measured value of b was in the region of one-half of that 

given by (25); and that when the measured of b was used in (24) 

the calculated value of CJ/Y was only about 15% lower than the 

experimental one. 

This curious discrepancy over the value of b constitutes an 

interesting paradox, which warrants further study. 

Suppose that we were to manufacture a partly-inverted specimen, 

as in Fig. 6(a), from a perfectly plastic material, and with the 

value of b given by (25). What will happen when we apply an 

upward force to the inner tube? What will be the incipient mode 

of plastic deformation? 

One possibility, of course, is that hinge circles will form at 

locations shown as AA in Fig. 6(b), and that when infinitisimal 
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plastic deformation occurs the semi-circular cross-section of the 

toroid will rotate as a rigid body about A on the right, thereby 

giving an incremental hoop strain to every hoop of material 

within the toroid. An energy-balance performed for this mode 

of incremental deformation gives precisely expression (26) again. 

But it is also possible to have a different in·cipient mode, in 

which the two hinge circles BB appear in a different plane, as 

shown in Fig. 6(b). If incremental hinges were to occur in this 

way, of course, the cross-section of the toroid would not remain 

circular, and so we would no longer be dealing with a "self

reproducing", steady-state geometry. But there is no good reason, 

of course, for us to suppose that a toroidal region with an 

arbitrary radius would set up a self-reproducing incremental mode 

of deformation: this is precisely the point at which the original 

analysis conceals an unwarranted assumption. 

Let us analyse the situation shown in Fig. 6(b), in which the 

hinge circles subtend angles ±S from the axial direction. 

It is possible to do the calculation by applying the upper-bound 

theorem to a hypothetical incremental mode in which the two 

hinges rotate through equal small angles o. It is equally simple 

to repeat the calculation of section III in relation to the 

equilibrium of the segment shown in Fig. 3(c, d), but now relax

ing the "shallow shell" assumption; treating the curve BB as a 

circular arc; and using integration to obtain the moment

equilibrium relation. The results of these two types of c~l

culation are identical: 

~ = t[~[cosecs] + ~ [1 - scotS]]. (30) 

When S 900 we recover (24), as expected. 

It is easy to show that for given values of a, t and b, the RHS 

of (30) is minimum when 

cosS(1 + sinS)/S = b 2/at; (31) 

and we must therefore expect that the value of S which actually 

occurs will satisfy this relation. For example, in the case 
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b (at)~ (31) gives S = 57°, and then (30) gives 

(32) 

here subscript m refers to the minimisation w.r.t. S. 

This calculation indicates that a specimen made in this way would 

begin to deform plastically with hinges at S = 57 0 rather than at 

S = 90 0 , as assumed in the previous analysis. As I have already 

noted, the preferred incremental mode alters the shape of the 

toroidal profile, and in order to follow the deformation further 

it would be necessary to do some detailed, step-by-step numerical 

calculations. 

It is a straightforward matter to repeat the incremental calcula

tion for pre-formed toroidal regions having other arbitrary 

values of the diameter b. Figure 8 shows the results of the 
. k 

calculation as a plot of 0m/o* against b/(at) 2, and marks some 
k 

values of S at which the minimum, om' is obtained. As b/(at) 2 

decreases, 0m/o* and S come closer to 1 and 900 , respectively. 

Now the only value of S which gives a truly steady-state mode of 

deformation is S = 90°. Figure 8 is thus disappointing in rela

tion to the observations in [20] that steady-state inversion takes 
k 

place at b/(at) 2 " 0.5. 

There is, however, another factor which we can introduce at this 

point. So far we have analysed an inverted tube made from a non-

1·0,---_ 

0·95 

0·9 

0·85 

0·8 

0·75 
o 

Fig. 8. Results of detailed 
analysis of tube-inversion. 
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hardening, perfectly plastic material. Real materials, such as 

aluminium alloys, harden when they undergo plastic deformation. 

It is obvious that considerable plastic strain occurs during the 

process of tube-inversion. For example, the measurements of 

Guist & Marble [20] indicate that the meridional bending strain 

in the knuckle region varies from about 0.2 at a/t = 100 to 

about 0.4 for a/t = 10. Material strained by amounts such as 

these will have its yield stress raised by, say, 10% above its 

original value. These remarks lead to the observation that 

although the hinge at entry to the toroidal region is formed in 

"fresh" material, all other plastic straining takes place in 

hardened material. Therefore, in terms of our previous analysis 

of a non-hardening material, we should consider an entry-hinge 

at S = 900 to have a specially low local value of Y. This con

sideration will give a slight preference to the case S = 900 ; and 

so we might expect the steady-state mode to occur not when 

0m/o* = 1, as previously suggested, but when 0m/o* = 0.95, say. 

(This figure is a rough estimate, based on a notional 10% strain 

hardening, and taking account of the fact that in the region 
k bl (at) 2 '" 0.5 the "bending work" is dominant.) 

This calculation thus provides a way of reconciling Fig. 8 with 

the observation in [20] that steady-state inversion takes place 
k 

when b/(at) 2 '" 0.5. 

It would be possible, of course, to do a more refined calculation 

on the assumption of various models of hardening of the plastic 

material. The important point, however, is that the present 

analysis leading to Fig. 8, coupled with the notion of some 

strain hardening, successfully resolves the paradox posed by the 

work of Gui~t & Marble. 

VI. Propagating buckles in externally pressurised pipes 

Palmer & Martin [24J were the first to provide a satisfactory 

formula for the pressure required to prophgate a flattened, 

buckled region in a submarine pipe, after a buckle has been 

initiated. They argued that the primary mode of deformation in 

the change of the cross-section of the pipe from circular to the 

observed "dog-bone" flattened shape was one of plastic bending of 
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a ring; and by means of an energy-balance for an extremely simple 

hypothetical four-hinge mode (Fig. 9(a, b» they obtained an 

estimate of the pressure required to propagate the buckle. 

The calculation is very straightforward. Consider unit length of 

pipe. During the course of collapse the pressure does work on a 

volume corresponding to the shaded area in Fig. 9 (a); and this 

work is dissipated by the rotation of four plastic hinges through 

900 each. Thus 

hence 

p.2a2 =M 2n o' 

2 
pp/Y = (n/4) (t/a) . (33) 

Here, subscript p stands for Palmer: p is "Palmer's theoretical 
p 

pressure". Now that experimental data from many tests is avail-

able (e.g. [25J) over the range 

8 < aft < 50, ( 34) 

it is clear that (33) gives good agreement with experimental 

observations at the upper end of the range, but that it under

estimates the observed pressures for the lower values of aft 

(as in [24J) by as much as about 40%: the experimental observa

tions are fitted well by a formula [25J 

plY = c (t/a)2.3. (35) 

~(~:~~ 
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(a) (b) ( c) 

Fig. 9. Propagating buckles in externally pressurised pipelines. 
(a), (b) Simple hypothetical mode [24J for plastic collapse of 
unconfined tube. (c) Observed cross-sections of collapse of a 
pipe contained within a rigid cavity (c.f. Fig. 10): after [25J, 
Fig. 5.12, as far as the point of first touch-down. 
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Several authors (e. g. [26J, [27J, [28]) have sought to explain 

this discrepancy by invoking strain-hardening as an explanation, 

along the lines suggested by Reid and Reddy [29] for the (dia

metral) crushing of a tube between rigid plates. It is also 

possible that part of the discrepancy is attributable to longi

tudinal stretching effects; which are unavoidable, of course, in 

the transition region between the circular and "dctlgbone" cylin

drical porbions of the pipe. 

Kyriakides & Babcock [25J have more recently investigated another 

type of propagating buckle, in a pipe confined within a rigid 

cavity; and this will be my last example. 

The mode of deformation (Figs 9(c), 10) is clearly more complica

ted than that of an unconfined tube: the deformation of cross

sectional "rings" evidently involves travelling hinges, and it 

seems obvious that the longitudinal stretching of the material 

will also play an important part. 

The experimentally-observed propagation pressures are well fitted 

by the formula 

2 
plY = 1. 131T (t/a) (36) 

in the range 8 < aft < 50. Thus the pressure is equal to about 

4.5 times Palmer's theoretical pressure (33) for an unconfined 

pipe, irrespective of the value of (a/t). 

I shall now qttempt a preliminary analysis of the mechanics of 

this type of propagating buckle. The analysis will be in the form 

of an energy-balance, with the aim of checking that a pressure 

p = 4.5pp is sufficient to provide the energy absorbed in plastic 

deformation. Tn performing the calculation I shall make use of 

the experimentally observed cross-sectional profiles shown as 

Fig.9(c). 

We start with the hypothesis that energy is absorbed by two main 

types of structural action, namely circumferential bending and 

longi tudinal stretching. This is reasonable in any "long-wave" 

deformation of a cylindrical shell: see, for example [7], chapter 

9 • 
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Fig. 10. Sketch of collapse of 
confined pipe after photo
graphs in [25]. The near cross
section ("exit plane") is at 
the point where the principal 
longitudinal strip (broken 
curve) first touches the 
bottom of the pipe. 

Let us analyse the work done in circumferential bending. Return

ing first to the simple mode of Fig. 9(b), for the unconfined 
2 tube, we have a swept area of 2a , and a total hinge rotation of 

2n. It is useful to express the circumferential bending in terms 

of a mean change in curvature over the whole pipe. Since the 

circumference is equal to 2na, the mean curvature here is equal 

to l/a: the energy absorbed in circumferential bending is the 

same as if each hoop were slit once and unrolled into a flat 

strip. For the sequence of shapes shown in Fig. 9(c), we find 

that the total swept area up to the point where the pipe wall 

touches itself is equal to 2.4a2 i.e. 1.2 times the swept area 

for the mode of Fig. 9(a, b). The changes of curvature are, of 

course, more complicated to follow than those of Fig. 9(a, b), 

since some portions of the circumference are bent first one way 

and then the other as travelling hinges move through the material. 

In terms of en~rgy-absorption, of course, we must add together 

the-absolute value of all such changes~ and in this way we find 

that the mean change of curvature over the whole circumference 

is equal to 3.2/a. (These calculations have been done by 

S. Kamalarasa.)' 

It follows immediately that the pressure Pcb required to supply 

the energy dissipated in circumferential bending is given by 

p b/P = 3.2/1.2 = 2.7 . 
c p. 

(37) 

In this way we thus account for about 0.6 of the experimentally 

observed pressure of 4.5 p . 
P 

Consider next the energy absorbed in longitudinal plastic 
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stretching of the material. This is a much more difficult matter. 

The best way of beginning is to consider the narrow "principal" 

strip of material (Fig. 10) which starts out as the highest 

generator and ends up touching the lowest generator. Let the 

axial length of the curved part of this strip - from the apex of 

the knuckle to the cross-sectional plane through the pOint of 

touch down - be L. The usual "small deflection" expressions 

indicate that the mean strain EO in the curved part is given by 

2 
EO'" (8/3) (a/L) • (38) 

Now, since the stresses in the "banana-shaped" inverted part of 

the tube are unlikely to be high except at the knuckle, we must 

conclude that a longitudinal stretching strain of EO is imparted 

to the material when the travelling knuckle moves through it. 

It is also clear that the strip must be returned again to its 

original length in order to lie eventually along the lower 

generator of the tube; and hence we must conclude that a strain 

of -EO is imparted to the strip as the "exit-plane" - Le. the 

cross-section which includes the point of touch-down, Fig. 10-

passes through it. 

The easiest way of visualising this compressive straining is to 

think of the way in which the curved, banana-shaped inverted 

tube is turned into a cylindrical form when it passes through 

the plane: the action in this plane is like the straightening of 

a curved channel-section beam. It seems clear, indeed, that the 

"neutral axis" for this kind of bending must be close to the 

line AA in Fig. 10, which passes through the points where the 

inner and outer portions meet. Furthermore, the compressive 

straining in any longitudinal strip of the "curved channel" must 

be proportional to the perpendicular distance of the strip from 

the neutral axis. 

A geometrical study of the lowest curve of Fig. 9(c) along these 

lines indicates that the mean longitudinal strain in the inverted 

region between AA is equal to about 0.45 of the peak strain; and 

that the inner contour-length AA is equal to about 0.45 of the 

complete circumference. Thus we find that the mean compressive 

strain imparted at the exit-plane is equal to 0.2 EO. 



Now the extensional strain in any particular strip which is 

eliminated in passing through the exit-plane must have been 

provided when the material passed through the knuckle region; 

and so it follows that the effective mean plastic strain in the 

tube, taking the entry and exit processes together, is equal to 

0.4 EO. (Actually, conditions at the knuckle involve bending 

back-and-forth as well as stretching, so the effective strain 

may be somewhat larger, as we shall see later.) 
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We cannot now proceed beyond this stage of the analysis until we 

can determine somehow the magnitude of EO or, equivalently, of 

L/a. We shall return to this critical pOint later; but for the 

present let us be content to work out the value of EO which would 

make the energy balance come out right. 

Let PIs be the pressure required to provide the energy dissipated 

in longitudinal stretching. Since 

(39) 

(36) and (37) provide 

PI = 1. 8 P . s P 
(40) 

Now when the buckle moves forward by unit length, the energy

balance of longitudinal stretching gives 

This yields, on substitution from (40) and (36) the simple 

expression 

1.4.!: 
a 

or, equivalently, by (38) 
k a, 

Lt 2 /a 2 = 1.4 

(41) 

(42) 

( 43) 

For example, a tube having (a/t) = 15 would have L/a = 5.4. This 

seems to be consistent with photographs of buckled tubes in [25J. 

There now remains only the key question of what determines L/a in 

a given tube. Plainly we cannot invoke the idea that the value of 

L is that which minimises the total energy absorbed, since the 

energy of circumferential bending is independent of L and the 
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energy dissipated in stretching is inversely proportional to L2. 

Here then we have another example, like that of tube inversion, 

in which the minimisation of energy associated with an assumed 

steady-state mode of deformation does not help to determine the 
k ~ 

parameters of the mode-shape. The dimensionless group (Lt 2/a 2) 

in (43) is, of course, familiar in the mechanics of elastic 

cylindrical shells which deform in conditions where the main 

structural actions are circumferential bending and longitudinal 

stretching ([7J, chapter 9), so its appearance here also is not 

surprising. But this does nothing to explain why the group has a 

particular value in the present case. 

I now suggest that what determines the length L is in fact the 

axial strain EO which is imparted to the principal strip when it 

flows through the curved knuckle on entry to the inverted region. 

I claim that EO is determined by local conditions in the knuckle; 

and that these local conditions determine in turn the overall 

length L of the transition zone. 

Figure 11 shows some views of the apex of the curved knuckle 

shown in Fig. 10. Figure ll(a) is a perspective sketch in which 

the knuckle is represented by a single curved plane crease of 

intersection between two cylindrical surfaces. The plane of the 

crease makes a small angle 0 with the plane tangential to the tube 

at the upper generator; and thus the upper generator is bent 

through angle 20, as shown. Figure ll(b) is an enlarged view, 

normal to the plane of the crease, of a portion of the apex of 

the knuckle. The two cylindrical surfaces of Fig. ll(a) are 

actually jointed smoothly by a locally toroidal region of width 

£. The arrangement is analagous to Fig. 3(c), except that here 

(a) 

Yt~l 
Ya.t 

(b) (c) 

Fig. 11. Stage in the analysis of conditions at the apex of the 
knuckle in Fig. 10. 



the knuckle is subjected to a one-sided tension per unit length 

equal to aNO = aYt: we suppose that the longitudinal tension is 

some unknown fraction a « 1) of the full-plastic tension. The 

local radius of curvature of the apex-arc of the knuckle of 
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Fig. ll(b) is equal to Ba, from the geometry of Fig. ll(a); and 

this corresponds to the radius r of the knuckle shown in Figs 2 

and 3(c). We assume, as before, that the arc is in full-plastic 

compression; and thus the equilibrium of an element at the apex 

requires 

aYt.aB Y -tt , 

or 

-t = aBa • (44) 

Figure ll(c) shows a further enlarged section (in the axial, 

vertical plane) of the principal strip of the tube as it flows 

through the knuckle region. The centre-line length of the curved 

portion is -t. When it passes through the entry hinge from right 

to left, the strip is given a curvature 2B/-t; and this curvature 

is removed again at the exit-hinge. At the entry hinge there is a 

pure plastic bending moment, and the "neutral surface" is at the 

centre of the strip: the spot marks the instantaneous centre. At 

the exit-hinge, however, the situation is different: the "neutral 

surface" is eccentric by ~at, because the central part of the 

thickness of the sheet carries the longitudinal tension. Again, 

the spot marks the instantaneous centre, and the distribution of 

stress on the section is also shown. Since the neutral surface is 

inextensional, 'the centre-surface of the sheet receives an axial 

strain EO as it passes through the exit hinge, equal to the 

eccentricity multiplied by the curvature: thus 

EO = ~ab. 2B/-t (45) 

Using (44) we obtain finally the relation 

(46) 

This is a most unexpected and surprising result, since it indi

cates that EO has a universal value for a given tube, independent 

of both a and B: EO seems to be an invariant feature of this kind 

of "inverting knuckle". This result should be susceptible to 

simple experimental verification. 
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The final step in the analysis is the remark that (42) and (46), 

though not identical, do have the same form. We noted earlier 

that our estimation of the energy disSipated in material as it 

passed through the knuckle was rather crude, since it neglected 

the back-and-forth bending at the closely-spaced entry and exit 

hinges in Fig. ll(c). A simple calculation-shows that the energy 

dissipated per unit area of sheet in passing through the exit

hinge always exceeds YtE o by an amount proportional to a 2 ; and we 

should add to this the energy dissipated in the purely flexural 

entry-hinge. The total energy dissipated depends on the value of 

a, about which we have no information. If we take, as a guess, 

a = 0.5 we find that the energy dissipated per uni t area in the two 

hinges together is equal to 2.3 YtE o ' which is 1.3 YtE o greater 

than the previous estimate. This in turn would increase the mean 

total extensional strain, used in expression (41), from 0.4Eo to 

0.4 x (3.3/2)EO' which would give 

EO = 0.82 (t/a) (47) 

instead of (42); which would be very satisfactory. 

It is clear that more work needs to be done on the details of 

this calculation. But the main idea of the present analysis -

that L depends on EO' which in turn depends on local conditions 

at the inverting knuckle -- seems to be broadly in accord with 

available experimental data. 

VII. Conclusions 

The various examples which I have described illustrate some of· 

the wide range of interesting problems which occur in the field 

of large plastic deformations of shell structures. 

One of the most striking features of shell structures in general 

is the strong kinematic constraints which are imposed by the con

dition of continuity of the surface. An extreme form of kinematic 

constraint is that of complete inextensibility of the central 

surface of a shell; and indeed inextensional modes of deformation 

of "open" shells are well known (e.g. [7] chapter 6). Inexten

sional deformations are possible in some closed surfaces, also: 

two obvious examples are the change from a cylindrical surface 

into the well-known "Yoshimura" pattern of plane triangular 



facets, and the inversion of a spherical surface as in Fig. 2, 

but with a sharp circumferential crease instead of a smooth 

"knuckle". The sharp creases of these truly inextensional modes 

would act as rather complicated stress-raising features, and so 
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we would expect to see plastic deformation there. This effect will 

be obvious to anyone who has applied axial load to a cylinder 

already folded in the "Yoshimura" pattern. 

But purely inextensional deformation is not a totally satis

factory starting-point for thinking about our subject, as it 

immediately raises great difficulties. Thus, in particular, the 

flexural stiffness of sheet material inhibits that sharp, angular 

folding which is required by the conditions of strict inexten

sionality. In the problem of inversion of a spherical shell it is 

the knuckle region which absorbs almost all of the analytical 

effort; and the notion of starting with a sharp crease rather 

than a smooth knuckle is not helpful. 

In fact the travelling plastic hinge is of the essence of each of 

my large-deformation examples, apart from Alexander's [4] axi

symmetric crumpling of a tube. These examples, taken as a whole, 

illustrate two kinds of travelling plastic hinge. In the first 

kind there is a tightly-curved knuckle contained between two 

moving flexural hinges: the separation between these hinges is 

generally by a length of order (Rt)~, where R is an overall 

radius of curvature and t is the thickness of the shell. In such 

an arrangement,the energies dissipated in plastic deformation of 

bending and stretching are of the same order of magnitude; but 

there seems to be no over-riding condition that they should be 

egual, in contrast to the small-deflection, non-travelling hinge 

problem of section III, and in spite of the frequent occurrence 

of equations such as (10), (24) and (27). 

The second kind of travelling plastic hinge in my examples is the 

"stretching" variety. This is seen in the problem of the propa

gating fracture of a pipeline (Fig. 5) and also, less obviously, 

at the exit-plane of the propagating buckle in the confined tube 

(Fig. 10). Hinges of this type absorb practically no energy in 

bending. 
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Another lesson to emerge from the assorted examples is that mode

forms of travelling hinge patterns cannot necessarily be deter

mined by the minimisation of global energy functions with respect 

to "pattern parameters". Indeed, in the case of the propagating 

buckL~ (Fig. 10) it seems clear that the overall length of the 

inverting region is determined by the mechanical behaviour within 

a small, quite local region of the advancing knuckle. Some may 

argue, I suppose, that any local problem may be converted into 

an extremum-global problem by means of suitable mathematical 

manipulations. This idea seems to be not very useful in our 

present field of study. 

All of my examples have been extremely simple geometrically, and 

have involved a minimum of complicating factors such as strain

hardening and dynamics (c.f. [30J-[32J). Practical engineers are 

interested in the deformation of structures having much more com

plicated geometries, such as vehicle bodies consisting of shells 

which are reinforced by ribs of various sorts, or which are con

structed as assemblies of relatively flat plates. Moreover, even 

shells having a simple geometry need not necessarily deform in a 

simple way: for example, the process of inversion of a spherical 

shell (FIg. 2) can involve, in later stages, a non-circular 

travelling knuckle region, becoming polygonal in form [lOJ and 

involving folds somewhat reminiscent of Fig. 10. 

Another important problem-area, which I have only marginally 

touched on, ~s the tearing of structures: here the strong kine

matical constraints are overcome by a mixture of tearing and the 

passage of plastic hinges. These further problems provide us 

with an interesting challenge; and I venture to hope that the 

methods which I have expounded here will prove to be fruitful 

in this extended domain. 
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Summary 

The dynamic behaviour cf structural elements subjected to 
compressive loading is investigated by means of three simplified 
theoretical models. Curves of the square of the frequency 
versus the applied axial loading illustrate such a behaviour . 
The corresponding equilibrium paths are presented. The effect 
of the initial imperfection is taken into account. Theoretical 
results for a rectangular plate are also presented. 

Introduction 

The present work illustrates how simplified theoretical models 

can be used in order to get a better understanding of the 

complex behaviour of structural elements. Three models are 

presented and they reproduce the behaviour of beams, plates 

and cylindrical shells axially compressed. Each model has a 

different degree of complexity. 

The adequacy of the models introduced is guaranteed by the fact 

that they reproduce equilibrium characteristics of beams,plates 

and cylindrical shells known both from experiments and theoret 

ically. Such characteristics can be summarized by the equili

brium paths shown in Figure 1. 

The great advantage of the simplified model is the capability 

of including different factors such as initial imperfection , 

for instance, in the analysis without increasing substantially 

the degree of complexity. And this is a very important aspect 

for the interpretation of experimental results since the 

recorded response may include the effects of different factors 

such as initial imperfection, residual stresses, changes in 
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the boundary conditions during the loading process etc ... ,just 

to mention a few. These factors can be combined in such a way 

that not always the individual contributions can be quantified. 

P = AXIAL LOAD L>o= INITIAL IMPERFECTION 

PcR=CRITICAL VALUE OF P 
L>=LATERAL AND TRANSVERSE DISPLACEMENT 

P+ 
I 
I 

PcRb== 

Jb---.L> 
a) Beams 

:1/ 
~ 
b) Plates 

-- STABLE 

o CRITICAL 

--:.. UNSTABLE 

o L>o L> 
c) Cylindrical Shell 

Figure 1 - Equilibrium Paths 

All the difficulties mentioned up to now are related to static 

aspects of the problem. The degree of complexity increases 

substantially when we consider the dynamics of the problem: the 

relationship between the applied axial load and the natural 

frequency of vibration taking into account initial imperfectbn, 

residual stresses, etc 

The simplified models represent a valuable contribution for the 

understanding of such a complex behaviour of structural 

elements. 

What follows ~s a series of theoretical results obtained for 

three simplified models and the rectangular plate. 

The Rigid-Bars Model 

The mechanical model of Figure 2 reproduces the stable symmet

rical and the unstable-symmetrical bifurcation. 

It consists Qf two rigid bars of the same length L linked by a 

hinge with a force and a moment spring of stiffness K and C 

respectively. The springs reproduce elastic characteristics of 

structural elements. 



~
eo aa 

p-~~ 

L L 
K 

,....-------;: 
KC ' 

"'= 
KL2+4C 

Figure 2 - The Rigid-Bars Model 

.Equilibrium paths for both the perfect and the imperfect model 

are shown in Figure 3 for different values of K and C. The 

equilibrium characteristics are also presented schematically 

-.--.--r-.---.-1IL-,-r-r-r-~ 8CRAD.) 
-1,0 -0.2 0 0.2 

Cb) Cl=l,O 

Figure 3 - Equilibrium Paths 

1,0 

The curves of Figure 3-a reproduce the equilibrium paths of 

beams and plates whereas the curves of Figure 3-b are similar 

to those of the cylindrical shells (the equilibrium charac -

teristics) • 

Therefore the rigid-bars model has the capability of reproducing 

equilibrium characteristics which are similar to those of 

beams, plates and cylindrical shells (depending on the ratio 

between K and C) • 

Once the equilibrium characteristics are known the vibration 

characteristics can be determined and expressed in terms of the 

curves ofaxiai load versus the square of the natural frequency 

as shown in Figure 4. 
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1,0 
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---- UNSTABLE 

0,5 

1,0 

0,' 
'0 +-r-r-.----.--,-,-rl-++~

0,5 -0,1 

0,1, p - 0,5 

o 0,1 0,5 1,0 1,5 

(a) 0:=0,00 

-1,0 

Figure 4 - (Frequency) 2 vs. Axial Load 

The curves of Figure 4-a correspond to the equilibrium paths of 

Figure 3-a whereas those of Figure 4-b correspond to the equi

librium paths of Figure 3-b. 

Figure 4 therefore summarizes the dynamic aspect of the problem: 

the relationship between the axial load (and therefore the equ! 

librium paths) and the natural frequency of vibration. 

Important conclusions are obtained from the diagrams of Figure 

4 and they apply to beams, plates and cylindrical shells axially 

compressed 

i ) Figure 4-a shows that for systems with stable equilibrium 

characteristics the square of the natural frequency is always 

positive vanishing only when the system is perfect (and in the 

absence of damping as it is shown by the author in the work 

used as reference for the present one); it also shows a 

decrease of the natural frequency with an increase of the axial 

load until a minimum is reached and then an increase of the 

natural frequency when the load increases (the author also 

shows in the above mentioned work that the rate of increase is 

twice that of the decrease in the vicinity of the critical 



load, for the perfect system). The effect of the initial 

imperfection in this case is to raise the natural frequency 

when compared to the perfect situation, for the same level of 

load. Figure 4-a reproduces the behaviour of beams and plates. 

ii) 'rhe main characteristic of Figure 4-b is the negative value 

reached by the square of the natural frequency corresponding 
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to levels of load lo\>,er than the critical. The effect of the 

initial imperfection in this case is to lower the natural 

frequency when compared to the perfect situation, for the same 

level of load. This is the behaviour of the cylindrical shells. 

Therefore from the simple mechanical model of Figure 2 impor

tant concluBions regarding the dynamic behaviour of complex 

structural elements can be obtained. It will be shown next 

theoretical results for two specific models for rectangular 

plates and cylindrical shells which confirm the predictions 

made from the rigid-bars model. 

The Rectangular Plate Model 

A mechanical model suitable for the analysis of rectangular 

plates is shown in Figure 5. It consists of several force and 

moment springs which reproduce elastic characteristics of a 

plate. 

The equilibrium and the vibration characteristics of such a 

model are prese'nted in terms of the equilibrium paths and the 

curves of load versus the square of the frequercy respectively 

in Figure 6. The initial imperfection is represented by a 

deflection of tpe centre section of the model and its effect 

is included in those diagrams. 

The curves of Figure 6 are similar to those of Figures 3-a and 

4-a of the rigid-bars model with a = 0.0 . Therefore the 

behaviour of rectangular plates previously obtained from the 

model of Figure 2 were confirmed. 
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Figure 5 - The Rectangular Plate Model 

Analytical results obtained by the author for a rectangular 

plate treated as such confirm these results and are shown by 

the diagrams of Figure 7. This result stresses the initial 

afirmative regarding the adequacy of such a simplified model. 
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Figure 6 .- Characteristic Curves - Rectangular Plate Model 

The Cylindrical Shell Model 

The cylindrical shell model consists of two elements: a strut 

and an arch which are associated to the main directions of the 

shell. This'model is represented in Figure 8. 
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Figure 7 - Characteristic Curves - Rectangular Plate 

As it can be seen from Figure 8 the cylindrical shell model has 

a higher degree of complexity when compared to the ones 

previously presented for instead of springs the elements are 

treated as such. 

e 

(o) CYLlNDR'CAL SHELL (b) THE MODEL 

Figure 8 - The Cylindrical Shell Model 

Equilibrium paths and curves of load versus the square of the 

frequency for the cylindrical shell model are shown in Figure 

9 where different levels of initial imperfection were considered 

Such an imperfection is represented by the deflection of the 

centre section of the model. 
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Figure 9 - Characteristic Curves of the Cylindrical Shell 
Model 

As in the case of the rectangular plate the characteristics 

obtained from the rigid-bars model were reproduced, in the 

present case with a = 1.0 . The comparison of the diagram of 

Figures 3-b, 4-b with those of Figures 9-a, 9-b, respectively 

highlights this fact. 

Therefore although the cylindrical shell model is much more 

complex than the rigid-bars model, in terms of the behaviour 

the latter one gives valuable information regarding the 

characteristics of a cylindrical shell. 

conclusions 

main 

Three simplified models with different degrees of complexity 

were presented. The equilibrium and the vibration characteristics 

of each of them were summarized in terms of the equilibrium 

paths and the curves of load versus the square of the natural 

frequency. 

Analytical results for the rectangular plate were also presenred 

in terms of the same curves. They confirm the results obtained 

from the simplified models. 

The capability of such models incorporating effects such as 

initial imperfection was stressed. It is hoped that the main 



aim of the present work was achieved: the use of simplified 

models for the understanding of the dynamic behaviour of 

structural elements liable to buckling. 
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Abstract 

In analyzing ice plates it has been customary to use rather simple material 
models. In this paper a theory for viscoelastic plates is presented which 
uses a more realistic nonlinear constitutive law for ice, incorporating 
the most recent experimental data and including all three stages of creep 
and hereditary effects. In particular, the hardening phenomenon in the 
primary creep phase, the strain softening effect during the tertiary 
stage, and the inherent brittleness of the material, leading to some 
stress anisotropy, are taken into account. The constitutive law in this 
form facilitates analysis of ice structures up to failure. 

An incremental formulation and numerical technique, introduced elsewhere, 
allows effective and efficient treatment of the governing equations, a 
solution technique which is demonstrated by solving the problem of a long 
ice plate subjected to in-plane compressive forces and undergoing cylindri
cal bending. 

Introduction 

Since even under arctic conditions ice is relatively close to its melting 

point, in dealing with ice structures, the viscous/time dependent properties 

of the material play a primary role and must be treated with extreme care 

in the analysis. This, in turn, suggests that the reliability of such 

analyses is very much a function of the accuracy of the constitutive law 

used. Such laws for time dependent materials are usually quite complex 

* and general [1,2,31 which makes their applicability to a specific material 

rather questionable. 

A most convenient linearized form of the constitutive relation for such 

time dependent materials, presented in an elegant form in [1], is quite 

* 
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unacceptable for ice due to the significant nonlinearity in this material's 

stress/strain behaviour observed in creep tests. Despite this fact such 

linear approximation to the actual constitutive law was used frequently in 

the past [4,5,6]. 

A simple nonlinear constitutive law, assuming a strain rate-stress relation 

for the steady creep stage, was used in the analysis of ice plates in 

[7,8]. However, even such a constitutive relation represents a severe 

approximation. For example, it does not take into account the hardening 

effect observed in the behaviour of ice during its primary creep phase, 

nor does it allow for the strain-softening depicted by experiments during 

advanced stages of the tertiary creep phase. To remedy some of these 

deficiencies, a non-linear hereditary type constitutive law for non-ageing 

materials with fading memory was introduced in [9] for the uniaxial case 

and in [10] for the multiaxial case, to describe the primary (hardening) 

and steady creep phases of ice. An extension to this model, taking into 

account strain-softening effects in the tertiary phase, was presented in 

[11] for the uniaxial case. 

Finally, to model the differences in ice response observed experimentally 

for samples tested in tension as opposed to compression, a damage function 

was introduced in [12] which was assumed to depend on the tensile stress 

state and which admits stress anisotropy and limits the creep process at 

the moment of failure. 

Utilizing the constitutive law discussed in [12], this paper presents a 

theory of thin ice plates based on a so-called strain formulation in which 

the current strain depends on the current stress and stress history. In 

such a formulation the problem arises as to how to treat a structure in 

which stress varies temporally even under constant external loads. To 

demonstrate the relative ease with which such problems can be solved using 

the approach presented here, the cylindrical bending of long ice plates 

with initial imperfections and subjected to in-plane compressive forces 

applied along the longitudinal edges is treated numerically. 

2. Constitutive Law for Ice 

In the analysis of structures made of time-dependent materials, a proper 

formulation of the constitutive law is usually one of the most difficult 



problems. It goes without saying that such a law should be based on 

extensive experimental data. 

Despite recent intensification in experimental studies, knowledge of the 

mechanical properties of ice is rather incomplete [13] in the sense that 

only its behaviour in uniaxial compression has been studied extensively 

[14,15,16]. Let us, therefore first discuss some possible forms of uni

axial constitutive laws which take into account such experimental 

findings. Using a so-called strain formulation, a general constitutive 

relation for viscoelastic materials at a constant temperature may be 

written in the form 

e(t) r F[0(T,t)]dT 
o 

(1) 

where e and a denote strain and stress, respectively, while F is a 

function describing the viscous properties of the material. From Equ. (1) 

it is clear that these properties are functions of the stress history, 

from the 'virgin' state (T=O) up to the current moment (T=t). 

Some creep test data can be described reasonably well, at least within the 

first two stages of creep, by assuming Equ. (1) in the form 

e(t) = a(~) + ft F[a(T)][A1j(t-T) + AZ]dT 
o 

(Z) 

in which the elastic response is separated, with E denoting Young's 

modulus. and Al and AZ signifying parameters related to the recoverable 

and permanent creep deformations [10], respectively, F(a) defining the 

strain-stress nonlinearity of the material and jet), a monotonically 

decreasing functi'on of time (with j (t)+O as t+"" and for convenience nor

malized as j(O) = 1), describing the hardening effects associated with the 

primary creep stage. A detailed discussion of the parameters and func

tions appearing in Equ. (2) was given in [9-1Z]. In particular, the non

linearity function vlaS assumed in the form of Norton's power law as 

F(a) (3) 

where Band n are material COllstants. Using this expression for F(a) in 
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Equ. (2) and differentiating with respect to time, the strain rate, ~(t) 

is established as 

~(t) (4) 

where \II = 1/(A 1B) and \1 2 = 1/(A2B). The coefficients \)1' \1 2 and n can be 

determined from experimental creep data by plotting the initial (maximum) 

and minimum creep rates against given (constant) stress, on a log-log 

plot. The function jet) can also be specified from creep curves by 

determining two stress-independent parameters, to and t1 (see Fig. 1), 

where to is proportional to the 'latent' elastic energy accumulated during 

the hardening process, energy which is recoverable upon unloading, and 

where tl indicates the initial rate of hardening or initial deceleration 

of strain rate (see [11] for details). Calculation of the derivative of 

the Volterra-type integral appearing in Equ. (4) will be accomplished with 

relative ease by means of a numerical technique introduced in [10]. 

For a limited range of viscous deformations restricted to the first two 

stages of creep and for which Equ. (4) is applicable, ice can be assumed 

to be an isotropic material. For this domain of behaviour, Equ. (4) can 

be generalized to a constitutive law for multiaxial stress states by 

postulating the existence of a complementary power potential, ?(oij) in 

the form [10] 

o ij 

P (0 .. ) = f ~.. do <J. ; 
~J '0 ~J • 

E •• 
~J 

'ilP 

~Ojj 
(Sa,b) 

For a material obeying Norton's power law, the following specific form for 

P was assumed in [10] 

1 d It n+1 
+ ~ dt 0 ~n+1) j (t-T)dT 

1 Sn+l 
+- ---

\1 2 (n+1) 
(6) 

where 

and where Kb and G denote the bulk and shear modulus, respectively. Using 
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Equs. (Sb) and (6) one obtains. the strain rate as 

where 

and where ~ denotes Poisson's ratio and the 'effective viscoelastic 

stress', aij , is defined by 

__ ~ [3 
a ij - Is .. I 2" I s ij I 

1J 

(8a) 

(8b) 

(8c) 

(8d) 

(9) 

One can show that relations (8) reduce to Equ. (4), for the uniaxial case. 

In addition, for a linear material for which n=l, these relations become 

the constitutive equations of linear viscoelasticity as given, for 

example, in [1]. Since skk = 0, the rate of dilatation, Ekk , is found to 

be 

(10) 

confirming the volume change to be creep-independent. 

As indicated in the previous section, ice exhibits significant stress 

anisotropy at advanced stages of deformation due mainly to the development 

of internal micro cracking resulting from inherent material brittleness. 

Consequently, there is substantial digression in behaviour of ice when 

subjected to compression as opposed to tension, in the former case the 

samples usually exhibiting long tertiary (accelerating) creep phases while 

for a tensile stress state this stage of creep is normally very short or 



may disappear altogether [17]. Microcracking, which disrupts the continu

ity of the material, is difficult to describe analytically. The effects 

of this deterioration can be described, qualitatively, by the introduction 

of a damage function, w(t), [1], which physically represents the relative 

decrease in effective area available for stress transmission. Thus for a 

'virgin' material, 00=0, while at the instant of rupture, 00=1. 'True' 

stress, the stress value governing the viscous process, is obtained by 

.dividing the 'nominal' stress by (1-00). In [12] it was assumed that 

microcracking affects only the permanent portion of the viscous strain 

rate since during advanced stages of creep, the rate of reversible viscous 

strain approaches zero. Thus we had [12] 

_ 1 (l\o(t) In 
--~ 

"2 1-w(t) 
(11) 

To define the evolution law for the damage function, we note from [12] 

that tensile creep test data could reasonably be modelled, up to failure, 

by a.~suming the damage rate, ~(t), to be a function of the 'true' stress 

and the current damage, in the .form 

a r 
K b~:x). 1 (12) 

(1-00) n-r 
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in which amax denotes the largest tensile stress. For a purely compressive 

stress state, amax=O. The material constants, K, rand n can be determined 

from tensile creep tests up to failure. In particular, n represents the 

ductility of the material at brittle failure (see Fig. 1). As was discussed 

in [12], for ice n>r which physically means that the damage process 

intensifies significantly as final rupture is approached, or alternatively, 

that the tertiary creep phase is very short. Integrating Equ. (12) for 

a =const, one obtains a relation involving the rupture time, tR (for which max 
00=1.0) in the form 

1 ' (13) 

which allows determination of K and r from a log-log plot of tR vs. amax • 

• 
In compression creep tests of ice, the tertiary creep phase is normally 
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quite long, with strain magnitudes reaching several percent. It has been 

demonstrated experimentally [15,16], that the accelerating creep stage is 

initiated at a certain level of strain, independent of stress magnitude. 

The time associated with the start of the tertiary creep phase is called 

failure time, t f , (see Fig. 1) which satisfies the empirical relation 

constant c (14) 

where the constant, C. upon reflection and use of Equ. (4) for 0= const., 

physically clearly represents the permanent viscous strain. e~, 

accumulated during the primary and secondary creep stages. Analyzing test 

data from uniaxial compressj.on tests, it was shown in [11] that such data 

for strains exceeding eP can be predicted with satisfactory accuracy by 
o 

assuming the rate of permanent creep to depend on stress level as well as 

on the magnitude of accumulated permanent strain. In the case of a 

multiaxial stress state [12], the effective permanent axial strain. e~f' 
was defined as 

(15) 

while the rate of permanent viscous strain. Equ. (11), is finally modified 

to read 

(16) 

where a=O for ePf<eP and a>O for ePf>eP• The material parameters a and a 
e 0 e 0 

are determined from the accelerating stages of compression creep test 

curves. The strain-softening effect observed in tests on ice subjected to 

constant strain 'rate [15] is also simulated by Equ. (16) (using Equ. 8a). 

For the uniaxial compressive case, our constitutive model was verified 

against experimental data in [11). 

In summary and before leaving this brief review of a multiaxial consti

tutive law for ice. let us note that modelling the behaviour of this 

material in tension and compression and up to failure requires the following 

constitutive constants: 



Z elastic parameters, E and p; 

5 viscous parameters, vI' v z' n, to and t 1 , determined from and 

defining the first two stages of creep; 

3 viscous parameters, K, r, and n, determined from and defining 

the tensile tertiary creep stage; 

3 viscous parameters, EP, a and a, determined from and defining 
o 

the compressive tertiary creep phase. 

3. Equations of a Viscoelastic Plate Theory 

Consider a thin plate element of thickness h as shown in Fig. Z. Denoting 

the stress components at a distance Z from the midsurface by o~B and 0~3 
(a=I,Z), the in-plane and transverse stress resultants, NaB and Qa , and 

the bending moment resultants, MaB , are defined as 

h/Z h/Z h/Z 

N().B J O~BdZ; Qa J O~3dz; MaB J O~BZdZ; a=I,Z (17) 

-h/z -h/Z -h/Z 

Differentiating these expressions with respect to time, one can obtain the 
• •• • z 

stress and moment resultant rates, NaB' Qa and NaB' as functions of 0aB 

and cr~3. The stress rates are determined using Equ. (8), with (8d) 
Z replaced by expression (16). Assuming 0 33=0, after some algebra one 

arrives at 

"Z 

°aB (l8a,b) 

where 

(o"azB)e E [(1 )"Z "Z cS 1 ("z)e = --- -p E + P Eyy a"; 0a3 
(1-/) aB .., 

(l8c ,d) 

(l8e,f) 

and where 

(18g) 

in which 
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(l8h) 

In these expressions, the superscript fe' denotes the 'elastic' portion of 

the stress rate while a viscous correction to this elastic rate is 

indicated by 'v'. The strain rate ~:3 is defined by Equ. (8) and 
·z ·z ·z 
Eyy = Ell + EZZ ' Note also that the elastic portion of the stress rate 

depends on the strain rate while the viscous parts are functions of the 

stress. 

z Using the Kirchhoff-Love hypothesis, the strains in a parallel plane, Ea~' 

are expressed in terms of midsurface tangential and bending strains, Ea~ 

and Ka~' as 

(l9) 

·z which when substituted into Equs. (18) one obtains 0a~ as functions of the 

midsurface strains. Substituting such results into Equ. (17) leads to 

where 

and where 

h/Z 

,I.' =.l J i;z dz' 
'fa~ h a~' 

-h/Z 

h/Z 
ili" lZ J!Z dz 'f = - E Z 

a/3 h3 a~ 
-h/Z 

Z lZ(l-jJ ) 

Analogous expressions can also be written for Qa in the form 

with 

(ZOa,b) 

(ZOc,d) 

(ZOe,f,g) 

(ZOh,j) 

(21a) 



h/2 

2G J ~~3dz; 
-h/2 

h/2 

2G J ~~3dz 
-h/2 

(21b,c) 

Any further details concerning the transverse shear stress resultants 
z requires specification of the variation of ~a3 across the thickness. 

Since in thin plate theory, Qa is normally eliminated from the governing 

equations, we will not pursue this topic any further. 

Equations (20) are the materially nonlinear constitutive relations for 

thin viscoelastic plates which when used in conjunction with standard 

equilibrium equations and geometrical (strain-displacement) relations lead 

to the governing equations for thin ice plates. Thus, for example, 
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admitting effects of membrane stress resultants on the equilibrium of the 

deflected plate in the surface normal direction leads to a set of equilibrium 

equations in the form 

N + qo = 0 aB,a ~ 
(22a) 

o (22b) 

M - Q = 0 aB,n B (22c) 

in which a comma before a subscript indicates partial differentiation with 

respect to that index. Using Equ. (22c) in (22b), one obtains 

M i3 0 - K i3 N i3 + Q = 0 (22d) a ,a~ a a -z 

thereby eliminating Qa from the theory. Note that all inertia effects 

have been omitted from these equilibrium equations in view of the quasi

static nature of the slow viscous processes. 

Restricting the discussion to infinitesimal displacement gradients, the 

strain-displacement reiations are written as 

(23a) 

(23b) 
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where uet and w denote mid surface displacement components. Substituting 

Equ. (23) into relations (20) and the results into Equs. (22a,d) one 

arrives at 

o (24a) 

[[ l~~) (u• + u· B ) 
B 0., ,a. 

o (24b) 

These equations, as can be noted, are linear in the displacement rates, 

uet ' w. Thus knowing the current stress and stress history at a particular 

instance, which allows determination of 1jJ~B and 1jJ~B' together with the 

current displacements (which are required to determine NaB and w'aS) the 

displacement rates can be determined from Equs. (24) from which, in turn, 

the stress, strain and displacement components for the next time interval 

can be obtained using some iterative scheme. 

Instead of solving the above three equations for the displacement rates, 

one can reduce the number of unknowns to two by introducing a stress 

resultant function, ~, so as to express NaS in the form 

(25) 

which for the case of qS=O, reduces Equ. (22a) to an identity, while 

expression (22d) takes the form 

D (' + ./." ) -' ('" '" 6) w'aSetB o/aB,aB w'aB o/'ap - 'Y'yy aB 

an equation which contains two unknowns, w and ~. 

- w'aS(~'aB - ~'yy caB) 
+ qz = 0 (26) 

The second equation 

required for the solution of this problem is obtained from compatibility, 

which takes the form 

o (27) 



Substituting Equ. (25) into (20) and using the results to calculate Eae' 

substituting into Equ. (27) leads to the desired second equation in the 

form 

• Eh 
CP'aeae - --2- [1/I~a,ee - (1+11) 1/I~e,ae] = 0 

(I-II ) 
(28) 

The form of the equations derived in this section suggests an incremental 

approach for their numerical solution, a technique which is discussed in 

detail in [12] and will be used in the next section to analyze the cylin

drical bending of a long ice plate with initial (imperfection) displace

ments wo(x) and subjected to uniform in-plane compressive loads, Nxx=-No ' 

applied along the longitudinal boundaries (see Fig. 3). For such a 

problem in which all variables are independent of the coordinate y, the 

governing equations reduce to 

(29) 

while the membrane stress resultants in such a cylindrical bending probleJll 

have to satisfy the conditions 

N N 0; r N dx = 0 xx xy o yy 
(30a,b,c) 

which when used in Equ. (20) leads to 

E + II E 1/I~x xx yy (31a) 

t It E + ~ £ dx = - 1/1' dx 
yy b 0 xx b 0 yy 

(31b) 

Note that this apparently uniaxial problem has to be solved in two spatial 

dimensions due to the coupling effects resulting from the functions 1/1~, 

1/I~y and 1/I;x' the calculation of which requires both 0xx as well as 0yy. 

4. Numerical Procedure and Results 

The numerical solution procedure, using an incremental approach, consists 

of the following steps (for details see [12]): 
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1. at a certain instant of time, the complete states of stress, deforma

tion/deflection and damage should be known (at t=O the elastic solu

tion is taken to be the initial deformed state). 

2. using the equations presented, the rates of displacements, (Equ. 24) 

strains (Equ. 23), stresses (Equ. 16) and damage (Equ. 12) are 

determined at selected points (nodes) of the plate. 

3. using some time interval, ot, increments for all variables during 

this time interval are calculated and are added to the previous 

values to obtain updated values for the time (t+ot). 

4. steps (1)-(3) are repeated until the damage function reaches the 

rupture level (w:1). 

On the basis of experimental data presented in [14], the following visco

elastic constants are assumed for ice at a temperature of _7°C: 

E 4.25 GPa; 0.33 

n 

The parameters defining the damage process are taken in accordance with 

[12] as 

r 1.8; n 15.0; K -4 r-1 6.5 x 10 [(MPa) hr] 

while the material constants associated with the tertiary compressive 

creep stage of ice were selected as [11] 

~ = 0.65; 0.7%; a = 1.0 

The geometry of the plate was taken to be h=3.5 cm, b=100 cm, the initial 

imperfection at midspan, wo=1.0 mm. The plate was divided into 10 

sectors in each of the x and y directions reSUlting in 100 node points at 

each one of which the above outlined step-wise procedure was applied. 

Some of the results from this numerical analysis are indicated on Fig. 3. 

Typical load-deflection behaviour is depicted on Fig. 

The time parameter, t , is calculated as t =v 1/0n 
p p avg 

is terminated at the instant of collapse, designated 

3a for 0 =0.1 MPa. avg 
The viscous process 

by the collapse time, 
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tc' for which the damage function at point A on the upper surface, wA' 

reaches the rupture level (w=1.0). Variation of w with time, for the same 

point, is also shown on the same figure and indicates the rapid increase 

in w as t+t • 
c 

Figs. 3b and c show stress and strain histories for selected points in the 

cross section containing point A, with superscripts u, m, and L denoting 

the upper, the middle and the lower plate surface, respectively. Fig. 3d 

shows the variation of the damage function across the plate width and 

indicates the relative concentration of damage near midspan. 

As a result of the coupling effects inherent in the problem and mentioned 

above, the membrane stress resultant, N ,which at t=O is equal to zero, 
yy 

varies across the plate width as shown in Fig. 3e. The last graph, Fig. 

3f, depicts the collapse time, tc' and the corresponding midspan deflection, 

wc ' as a fUIlction of the average stress, (J avg Note that for relatively 

light loads (ie. low (Javg) , the collapse deflection, wc ' decreases with 

decreasing cr ,which is a consequence of the damage process progressing avg 
in areas of tensile stress even at small stress/deflection levels, provided 

such stress duration is sufficiently long. 

Conclusions 

As opposed to previous work on ice plates, this paper presents a theory 

for nonlinear viscoelastic thin plates based on a constitutive model which 

takes into account all experimental data on ice available to the writers. 

The model defines the behaviour of ice in tension and compression up to 

failure thus including all stages of creep. To simulate the effects of 

micro-cracking and resulting stress anisotropy at advanced stages of 

deformation, a damage function is introduced which is assumed to be 

tensile streng~h dependetlt. The model also describes the hardening effect 

observed during the primary creep stage as well as the strain softening 

phenomenon exhibited by ice samples during their tertiary creep phase. 

This constitutive law is of a hereditary type. Accordingly, the current 

strain rate is a function of the current stress and stress history. With 

all theee featu.res, simulating actual ice behaviour, it is felt that this 

is a more realistic representation of material behaviour than previous models 

taken from linear viscoelasticity or the constitutive relations used in 

describing the time-dependent behaviour of metals at elevated temperatures. 



Since the emphasis of this paper is on the treatme~t of material 

nonlinearity and the associated numerical techniques and convergence 

difficulties, the constitutive model was applied to a relatively simple 

structure, namely the cylindrical bending of a thin long plate with 

initial (imperfection) deflections subjected to uniform compressive loads 

applied along its longitudinal edges. The example was chosen because even 

under such constant external loading, the internal stress and strain 

states vary temporally. In addition, the numerical example was also 

selected so as to demonstrate the effectiveness of the incremental formu

lation introduced in L10], a formulation which facilitates the numerical 

solution of such time dependent problems. 
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The results indicate that the governing feature in the behaviour of such 

plates is the limited tensile strength of ice. The importance of a damage 

function, describing the effects of micro-cracking and stress anisotropy, 

was therefore brought into focus, underlining the urgency of the development 

of more comprehensive and precise damage theories for brittle materials as 

well as the need for additional experimentation designed to allow determina

tion of parameters defining the damage process in ice. The results also 

confirm the fact that due to the inherent brittleness of the material, the 

collapse deflections of the plate are relatively small, keeping strain and 

displacement magnitudes well within the domain of a geometrically linear 

theory. From a practical viewpoint, this observation suggests reinforcing 

the material thereby providing tensile strength to ice, as was done for 

other brittle materials, such as concrete. 

Finally, we note that the constitutive model presented here and in [12) 

should be considered a first attempt in simulating the complex behaviour 

of brittle materials, such as ice. Refinement of a model such as this, 

however, will require substantial additional experimental data. 
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Swmnary 

A survey of the up-to-date state of the fracture and fatigue 
theory is presented with special emphasis on delaminations, edge 
effects and related phenomena typical for composite plates and 
shells. Equations governing the growth of delaminations are 
presented based on the generalized concept of energy release 
with an account of damage accumulated in the interlayer zone. 
For example, delaminations in multilayered composite plates, 
spherical and circular cylindrical shells are studied. The 
physical non-linearity due to the microdamage accumulation, as 
well as the geometrical non-linearity originated from the buck
ling of a delaminated region are taken into account. Cyclic, 
static and combined fatigue are considered. The effect of delam
inations on the load carrying capacity of composite plates and 
shells is discussed. 

Introduction 

Properties of most of structural composite materials are unique. 

Firstly, they combine extremely high strength with low mass dens

ity. Secondly, manufacturing of composites requires less human 

labor and ener~y than that of most conventional structural mater

ials. In third place, manufacturing of composites can be main

tained with less environment pollution than, say, steel product

ion. From all of these three viewpoints, composites may be con

sidered as materials of the future. 

High strength of up-to-date composites is achieved by the adequate 

association of components' properties, and high strength of 

composite structures - by coordination between the fields of 

mechanical properties and the stress fields under design loads 

and actions. But properties of composites and composite struct

ures are ambivalent. For example, high strength of a composite 

in the direction of reinforcement is accompanied with a rather 
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low resistance against transverse shear and transverse tension. 

Therefore, composite structures are more sensitive to small dev

iations of loads and actions from their design values and direct

ions, compared with structures made of conventional quasi-iso

tropic materials. Effects accounting for the latter type of 

structures as second rate and even negligible, become of signi

ficance for those composites which are highly anisotropic, and/ 

or highly non-homogeneous in the microscale. 

Most composite structures are realized as plates and shells, 

which may be treated as laminated structures [1]. For example, 

each ply of a composite shell manufactured by filament winding 

is, in the macroscale, an anisotropic thin shell. There are 

also very thin matrix inter layers between neighbouring plies. 

These inter layers are of special significance when the trans

verse shear and tension are considered. Generally, a composite 

plate or shell has a more or less regular structure along the 

thickness, and "strong" layers alternate with "weak" ones [2,3]. 

Since the strength of matrix is relatively low, composite stru

ctures are especially sensitive with respect to inter layer flaws 

such as delaminations. Most of these flaws are initiated at the 

fabrication stage due to shrinkage of the matrix and the thermal 

stresses [4]. Delaminations can be created also at the transport

ation, storage and service stages under thermal actions, local 

forces, surface impacts, etc. 

Two kinds of inter layer flaws are distinguished in the present 

study. The first ones are situated in the bulk of a structure. 

With application to shell structures, the position of a flaw can 

be characterized by the distances HI and H2 from the external 

surfaces of a shell. If HI ~ H2 ~ H, where H is the thickness 

of the shell, we say that the flaw is an internal delamination 

(Fig. la). The second kind of flaws are those ~vhich are si t

uated near the surface. The thickness h of the delaminated part 

of a structure satisfies to the condition h « H (Fig. lb). We 

call these flaws the surface delaminations. 



Fig. 1. 

h 

(a) (b) 

Delarninations in composite shells: (a) internal; 
(b) surface delaminations. 
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Behavior of surface delaminations, generally, includes the buck

ling phenomena. It is typical for compressed structural compon

ents, and for non-uniform temperature fields. Due to the Poisson's 

effect, buckling can also be met in components in tension. It 

is evident that an adequate fracture mechanics of surface delam

inations should include the account of buckling, and, therefore 

of geometrical non-linearities. Typical examples are presented 

in Fig. 2. Fig. 2a and b correspond to components in tension 

with initial surface notches. Fig. 2c corresponds to components 

Fig. 2. Fracture of composite shells in delamination modes: 
(a) peeling in tension; (b) pocket-like peeling in ten
sion; (c) buckling in compression; (d) edge buckling 
in compression. 
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in compression when the origin of a delamination is either an 

initial poor adhesion or a shrinkage crack. Fig. 2d shows a 

delamination originated from an edge effect. Only in case 2a 

we may not take into consideration the geometrical non-linearity. 

The following groups of problems for composite plates and shells 

containing delaminations are of interest: 

- stability of delaminations (in the sense of fracture 

mechanics) ; 

- growth of delaminations under long acting and lor cyc

lic loading; 

- ultimate loads and ultimate loads combinations for 

delaminated structures; 

- admissible sizes of delaminations with respect to long 

acting and/or cyclic loading. 

The behaviour of internal delamination in opening and shear frac

ture modes is more or less similar to that of cracks in the con

ventional fracture mechanics, although there are some complic

ations due to the essential non-homogeneity and anisotropy of 

composites [6]. But even the basic problem of fracture of uni

directional fibrous composites in tension along fibres does not 

fit into the patterns of the linear fracture mechanics. To ex

plain the "brush-like" character of fracture, additional factors 

should be taken into account such as the separation of fibers 

due to the damage of the matrix and the scale effect of strength 

of fibres [7]. Concerning the surface delaminations in compr

ession, we must take into account geometrical non-linearities 

[8]. As to the growth of delaminations under long acting and/ 

or cyclic loading; an essential generalization of the convent

ional fracture mechanics is required [9]. 

A United Model of Fracture and Fatigue 

It is common. knowledge that the fatigue cracks growth is conn-

ected closely with the microdamage accumulation in the material's 

structure. Initiation of fatigue cracks is the result of a local 

damage accumulation near the most stressed or weakest microstruct

ural elements. Moreover, interaction between the microcracking 
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near the crack-tip and the energy release due to the crack growth 

seems to be the principal mechanism governing the propagation of 

fatigue cracks. This conclusion is valid both for cyclic and 

static fatigue, for linear-elastic, elasto-plastic and visco-· 

elastic materials. 

In paper [ 9 ] a theory of fatigue crack growth was proposed. Gen

eralizing the Griffith's energy approach, the damage accumulat

ion near the crack-tip and on the crack's prolongation was taken 

into account. The essential point of the theory is the assumpt

ion that stresses near the crac~tips are bounded. Opposite to 

the common fracture mechanics, a crack is treated as a slit with 

finite curvature near the tips. This assumption introduces cha

racteristic length parameters which are of significance for any 

consistent theory of crack growth. Another part of the proposed 

theory is the introduction of kinetic equations governing micro

damage accumulation. The proposed model can be generalized eas

ily upon multi-axial stress-strain states, multiparameter cracks, 

combination of static and cyclic fatigue, corrosion cracks, etc. 

The theory permits to include quite naturally geometrical non

linearities, and, therefore, becomes applicable to delaminations 

in compressed composite plates and shells [5,9]. 

We treat the Griffith's concept in terms of the principle of 

virtual work. The central concepts of the theory are: the Gr±-· 

ffith's variation, equilibrium and.stability of a cracked body 

in the Griffith's sense. Following the Griffith's original idea, 

we consider the whole energy of the system "cracked body loading". 

Introduce a small isochronic increment of this functional due 

to virtual irreversible variations of cracks sizes and calcul

ated under the following conditions: both the initial and dist

urbed states satisfy equilibrium and compatibility equations (exa-· 

ept maybe vicinities of the crack-tips), heat flow to the body is 

absent, external loads and external displacements are fixed. This 

increment by definition is the Griffith's variation of the funct

ional. Conslder the Griffith's variation of the whole energy 

taken with the opposite sign: 

81 -8U + 8A 
p 

8cjJ - 8A 
Y 

(1) 
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Here U is the potential energy of the body, oA is elementary 
p 

work of external loads, o~ is elementary isochronic dissipation 

in the volume of the body, and OAy is elementary work spent on 

crack propagation. We say that a state of a cracked body is 

equilibrium in the Griffith's sense if 01 = O. We say that the 

body is in the sub-equilibrium state if 01 < 0, and in the non

equilibrium state if 01 > O. Sub-equilibrium states are stable 

by definition. Stability of equilibrium states depends on the 

sign of the second Griffith's variation 0 2 1 = 0(01). If 0 21< 0 

an equilibrium state is stable, if 0 21 > 0 it is unstable. In 

the case 021 = 0 an equilibrium is neutral, and the study of 

variation of higher order is required. 

There is the analogy between the preceding interpretation of 

the Griffith's concept and general principles of analytical stat

ics. The central notion of the Lagrange-Dirichlet principle is 

potential energy U of a conservative system. A system is in the 

equilibrium state if oU = O. The equilibrium is stable if o~ > 0 

and tmstable if o~ < O. This theorem is usually illustrated with a heavy ball 

placed on an ideally srrooth surface. The simplest mechanical model of 

a cracked body is shown in Fig. 3. A heavy cylinder is placed 

on a geared cylindrical surface. The cylinder is equipped with 

a ratchet detent preventing the return motion. The notions of 

sub-equilibrium and non-equilibrium states, as well as of stable, 

neutral and unstable states are covered completely by the model 

presented in Fig. 3. The essential feature of fatigue crack 

problem is that all cracks are "incurable". Hence the condition 

01 > 0 holds. The cylinder with the ratchet is a mechanical 

system with unilateral constraints having an irreversible set 

of equilibr~um states. In this meaning, condition 01 ~ 0 is 

an analogue of the condition oA ~ 0 of the principle of virtual 

work for mechanical systems with unilateral constraints. 

Consider a body containing a set of cracks given with vector 
T 

1 = (11' ..• ,,1m) where lj are characteristic sizes of cracks. 

We re-write Eq. (1) in the form 

m 

L (Go - rJo) O1 Jo 
j=l J 

(2) 



137 

Fig. 3. The simplest mechanical model illustrating crack growth. 
States: (a) sub-equilibrium; (b) stable equilibrium; 
(c) neutral equilibrium; (d) instable equilibrium; 
(e) non-equilibrium. 

where G. are generalized forces moving cracks, i.e. analogues 
] 

of Irwin's energy release rate G. Corresponding resistance forc-

es f. relate to elementary work aA and are similar to the crit-] y 
ical value of energy release rate Gc . The condition of equilib-

rium 01 = 0 results in 

G. 
] 

f. (j 
] 

1, ... ,m). (3) 

Stability of the system depends on the sign of the quadratic 

form 

m m 

L L 
j=l k=l 

under the condition that all 01. ? O. 
] 

(4 ) 

To apply the theory to growing fatigue cracks, damage accumul

ation in microstructure should be taken into account. Damage 

at the crack-tip is described with the damage vector ~ = (~l' ... 
T 

'~m) . Components of this vector are associated either with 

crack sizes (i.e. with components of vector 1) or with the type 

of microcracking. Damage vector ~ enters into Eqs. (3) and (4) 

with the resistance forces f. because the latters are assumed 
] 

diminishing due to microcracking. The moving forces Gj , gener-

ally, also may depend on ~. 

Consider firstly the static fatigue when loads and actions are 
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varying very slowly. 

loads and actions. 

forces 

Introduce the vector s(t) characterizing 

Consider the differences of generalized 

H. (t) 
] 

G. [l(t) ,s(t) ,1jJ(t)]-f. [l(t) ,s(t) ,1jJ(t) ] 
] J 

(j = 1, ... , m) (5) 

If at t=t the body is in a sub-equilibrium state, all H. (t ) 
o J 0 

< O. One of the cracks begins to grow with respect to the gene-

ralized coordinate lj when the equality Hj(t) = 0 is reached for 

the first time. The growth is stable if the quadratic form giv

en with Eq. (4) is definitely negative. Then the equality H. (t) 
J 

= 0 will be followed at a certain time segment until the crack 

growth terminates because of the load drop, a non-homogeneity 

entered on the path of the crack, etc. The other case is the 

instability of the crack in the form of a jump-like growth to 

a new sub-equilibrium state, or to the final failure. In the 

absence of these phenomena, a stable fatigue crack is developing 

remaining approximately to be in equilibrium and stable in the 

Griffith's sense. This postulate was suggested firstly in [ 9]. 

To obtain a closed set of equations, additional equations should 

be taken governing the damage accumulation on the prolongations 

of cracks. We take these equations in the form 

a4> (A, t) 
at 

T=t 
<P o.,l(T),s(T),4>(A,T)} 

T=t o 

(6) 

where <p{.} is a functional of the history of loading and damage, 

A is the. prdlongation of vector 1, and 4> (A,t) is the damage vec

tor on this prolongation. Evidently, the following identity takes 

place 

1jJ(t) ::: 4> [l(t),t]. (7) 

Similar equations are valid in the case of cyclic fatigue. In

stead of H. (t) the functional sup H. (t) is used. Supremum is 
J J 

taken at the segement (tn_l,tn ) corresponding to n-th cycle of 
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loading. Then the equation similar to Eq. (6) is to be replaced 

with a finite-difference analogue with respect to ¢(A,t )- ¢(A,t 1). 
n n-

A crack advances at a distance with the order of magnitude equal to 

the characteristic size of the material's structure, if during 

the n-th cycle even if once the inequality sup H. (t) > 0 takes 
J 

place. But, when the number of cycles up to fracture is very 

large, and extremum values of the components of the vector s(t) 

are varying slowly from one cycle to another, the cycle number 

n may be treated as a continuous argument. As a result, we come 

to Eqs. (5)-(7) replacing t by n. 

The process s(t) includes extreme values of loads or nominal 

stresses. In the case of combined loading when the input both 

of quasistatic and cyclic actions is important, damage origin

ated from both sources ought to be summarized. It should be 

mentioned that Eq. (1) and its analogue for the cyclic fatigue, 

in principle, can incorporate also temperature, concentrations 

of active agents, and other environmental factors which have an 

influence on the damage accumulation and are considered signif

icant. 

Delamination in a Notched Composite Plate in Tension. 

To illustrate the application of the theory, consider an elastic 

laminated plate with an initial surface notch which has a depth 

h. Let in the vicinity of the notch, a delamination zone be 

originated with the length 21 and the width b (Fig. 4). Assume 

that the delamination is in a plane strain state, and omit all 

secondary details. Denote s the nominal tensile strain in x

direction. p~t~ntial energy of the plate U = const - ~ Exbhls2 

(1 - V -v ) -. Here Ex is Young's modulus in x-direction and xy yx 
Vxy,V yx are Poisson's ratios. The moving generalized force 

related to one of the branches of the delamination is 

G 
E bhs 2 

1 x 
"2 l:"v v 

xy yx 
(8 ) 

Virtual fracture work corresponding to the advancement of one of 

the branches on the distance 01 is oAy = yobol + ylhol. Here 
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Yo is the specific fracture work for the matrix inter layer , and 

Yl is the specific fracture work spent on splitting along the 

delamination. For unidirectional layers Yl ~ Yo. Then at h « b 

the generalized resistance force for the undamaged composite may 

be taken as 

r 
o 

(9) 

The state of the delamination in undamaged composite is equili

brium at G = roo Hence the critical (in the Griffith's sense) 

nominal strain is 

c. = [ 

2y (l-v v ) r o xy yx 
E h x 

(10) 

The corresponding equilibrium state is neutral since 021 = 0. 

But this circumstance has no significance for further analysis 

because we are going to treat the case when G < roo 

At a certain time segment [O,t*] the delamination does not grow 

because it is in a sub-equilibrium state. This situation corr

esponds to the initiation stage during which damage is accumul

ated at Ixl ~ 1. Introduce damage measure ¢(x,t) for the matrix 

interlayer. As usual, we assume ¢ = ° for the undamaged inter

layer, and ¢ = 1 for the completely debonded layer. We assume 

that the damage is created by tangential stresses T(X,t) in the 

interlayer. Let Eq. (6) take the form 

f 0, I T I '" Tth 

l~ ( I TIT th) m I T I > T th· 
t c . TljJ 

(ll) 

Here Tth is a threshold damaging stress, and TljJ is a material 

constant characterizing resistance of the inter layer against the 

damage accumulation. Power exponent m is analgous to exponents 

of static fatigue curves in standard tests, and tc is a certain 

time constant. The simplest equation for the stress T(X,t) in 



the membrane approximation is 

G A E 
m 0 

~ ( x-I ) exp --x-;- (12) 

with the shear modulus Gm, the matrix interlay€r thickness hm' 
and the characteristic length 

(13) 
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The latter can be interpreted as a characteristic length of the 

boundary effect [ 2 ] or an ineffective length in the vicinity of 

ruptured fiber or monolayer [11]. Using Eqs. (11) and (12), and 

the initial condition ~(x,O) = ~ (x), the damage measure W(t) = o 
~[l(t),t] at the tip of the delamination is 

t ft' [1 (t, ) ;:~ w(t) 
I-T 1 m 

th J dtl · (14) 

o 

The special notation of the integral reminds that at T(tl)< Tth 

the integral must be placed to zero. 

For furbher diqcussion, the relation r(W) ought to be specified. 

We assume r r (1 - Wa ) where r is taken from Eq. (9), and o 0 
a > 0, e.g. a = 1. This assumption is more or less realistic. 

The moment of termination of the initial stage is the first pos

itive root of the equation G(t) = r(t) at 1 = 10 = const. Using 

Eqs. (10) and (14) we obtain equation with respect to t*: 

f [I, ['0;:') I-'th 

o 
(15) 

After the tip begins to propagate, the half-length l(t) is to be 

found from equation 
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l/a 

(16) 

Eqs. (15) and (16) are to be solved numerically. 

Consider in more details the case E = canst, cp o(x) = 0, and Tth 
= O. An explicit formula for t* follows from Eq. (15) 

t= t (~) m (1 -
2 y/a E (17) * c E 2: E 
ex; 

The process of growth of the delamination is illustrated in Fig. 

Sa, and the process of damage accumulation at the tip in Fig. 5b. 

Lines 1,2,3 correspond to various nominal strain levels E= const. 

Fig. 5. 

2 1 

____ 1 

-+----2 
--+-----3 

o 
t 

Static fatigue in tension: (a) delamination growth; 
(b') damage accumulation in the matrix interlayer near 
the tip of the delamination, Lines 1,2 and 3 corres
pon to three ascending nominal strain levels. 
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At t > t* a nonstationary stage of propagation takes place. Then 

the growth rate dl/dt as well as the damage measure ~ approach 

certain asymptotic values. To estimate these values, we put in 

Eq. (14) dl/dt % const, l(t) % l(tl ) + (dl/dt) (t - tl)' and re

place the lower limit of integration by -00 Then 

A ()-l )m o dl ( £ 
~ ~ mtc dt £~ , 

dl 
dt 

(18) 

(19) 

Eq. (19) reminds the well-known semi-empirical equation of fatigue 

crack growth [12], and is analgous to the corresponding theoret

ical equations [9,10]. Eq. (19) is also valid when £(t) is var

ying sufficiently slowly. More precisely, the relative variat

ion of £ should be small during a time segment of the order of 

magnitude Ao(dl/dt)-l. Then Eq. (19) becomes the differential 

equation with respect to 1 describing slow propagation of the 

delamination in static fatigue. Initial condition is l(t*) 10 

where t* is the last moment of the initiation stage. Thus, Eqs. 

(15) or (17) should be applied before the use of Eq. (19). 

Delamination in a Composite ~late in Compression 

Let a delamination be located in the compression zone of an elast

ic plate or shell. The source of compression may be external 

loading, non-uniform temperature distributiqn or residual stress

es created in the fabrication process. If the delamination is 

buckled, geometrical non-linearity has to be taken into account. 

The simplest problem of this kind is shown in Fig. 6. We assume 

the initial state of the delamination to be plane and non-stress

ed. Before buckling occurs, the delamination is subjected to 

the same compression strain £ as the attached part of the plate. 

Buckling begins at £ > £* where £*(1) is the critical (in the 

Euler's sense)strain 

1T2(h)2 £*(1) = 3 I (20) 
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Fig. 6. Fracture of a layered plate in compression. 

In this section we assume € > 0 for compression. 

form of the delaminated zone is taken as 

Post-buckling 

2 (1TX ) w(x) = f cos lL (21) 

where f is the maximum deflection (Fig. 6). Relative displace

ment of the boundaries of the delamination is connected with the 

nominal strain £. At £ > £*(1) we obtain 

f (22) 

With the account of bending in the delamination zone, potential 

energy of the stressed plate is 

u 
1/2 2 1 

~~ s (:~~) dX_ 

-1/2 

1 Substituing Eqs. (21) and (22), we obtain U = const - 2 Exbh(l -
-1 2 . 

VxyVyx ) [£ - £* (1)] . If the loading is "rigid", i.e. kine-

matic one, virtual work of external forces is equal to zero, and 

G (23) 
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Here notation (20) for the critical strain is used. 

The generalized resistance force for undamaged composite is given 

with Eq. (9). The condition of equilibrium G = ro with account 

of Eqs. (10) and (23) results in 

(24) 

Eq. (24) may be interpreted as an equation with respect to equi

librium (in the Griffith's sense) sizes of the delamination. 

Stability condition for an equilibrium state is 

~; > O. (25) 

Let £**(1) be the value of £ satisfying Eq. (24) and the inverse 

relation be 1 = 1**(£). A typical stability diagram is present

ed in Fig. 7. According to Eq. (25), the ascending branch of 

Fig. 7. The region of stability (in the Euler's sense) of the 
plane form of a delamination, and the region of instab
ility of the buckled delamination (in the Griffith's 
sense). Stable growth of the delamination occurs in 
the unshaded region. 
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the line 1 = l**(E) is stable, and the descending one is unstable. 

The relation 1 = l*(E) is plotted in Fig. 7, too, corresponding 

to Eq. (20) for the buckling strain E*(l). The initial plane 

state of the delamination remains plane and stable in the shaded 

area on the left hand side from the line 1 - l*(E). The unshad

ed area corresponds to sub-equilibrium and, therefore, stable 

(in the Griffith's sense) buckled delarninations. The area loc

ated on the right-hand side from the line 1 = l**(E) corresponds 

to non-equilibrium and, therefore, unstable delaminations. 

Thin buckled delaminations have already been discussed by a num

ber of authors [13-18 1 mainly from the stability viewpoint. The 

problem of growth of buckled delarninations due to static and/or 

cyclic fatigue and fracture was studied in [91. For the sake 

of determination, static fatigue is considered later. Let the 

damage measure be the solution of Eq. (11). Condition G(t) = 
r [1 - ~a(t)1 with ~(t) defined from Eq. (14) results in equa-

o 
tions similar to Eqs. (15) and (16). In particular, duration 

of the initiation stage is characterized by the root t* of equa

tion 

4J (1 ) + ;.-
o 0 c 

(26) 

The stahle g~owth at t > t* is governed by equation 

4J [1 (t) 1 + t l 
o c 

~ T }m 
th dt l 

_E_2_(t_) __ + __ 2_E_(_t_)~;* __ [1_(_t_)_1 __ - __ 3_E~ __ (l __ (t_)_1 J l/a 

Eoo 

(27) 
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If the tip is propagating monotonically and sufficiently slowly, 

Eq. (27) may be reduced approximately to a differential equation 

similar to Eq. (19). The right-hand side becomes rather cumbev-· 

some if bending and shearing of the surface layer are incorpor

ated. Only to keep transparency, we apply Eq. (12) which does 

not account for these effects. At Tth = 0 we obtain 

(28) 

At E » E*(l) all moment effects become negligible, and Eqs. (26), 

(27) and (28) turn into Eqs. (15), (16) and (19) correspondingly. 

It means that the difference between delaminations in tension 

and in compression becomes negligible. 

Soon qualitative conclusions from Eqs. (26)-(27) are presented 

in Fig. 8. Lines 1, 2, and 3 correspond to initial states I, 2 

1 -r 
1 

1 
1 

2 
a a 

t t 
(b) * 

t 

Fig. 8. Static fatigue in compression: (a) delamination growth; 
(b) damage. accumulation in the matrix inter layer near 
the tip. Lines 1,2 and 3 correspond to the respective 
initial states from Fig. 7. 

and 3 in Fig. 7, respectively. In case 1 the initial size of 

the delamination is comparatively large, and E «Eoo. The init

ial state is sub-equilibrium. The size of the delamination~ 
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to grow after the end of the initiation stage. Meanwhile, the 

size increases, the first (momentless) term in the brackets of 

Eq. (23) becomes dominant. The general picture in case 1 is 

similar to that for a notched plate in tension (Fig. 5). The 

initial state in case 2 is sub-equilibrium, and a comparatively 

short initiation stage exists too. After the growth of the 

delamination up to a certain unstable state, a jump to a new 

sub-equilibrium state occurs. The new size can be evaluated 

from energy balance considerations [9]. The damage measure ¢ 
in the new state drops essentially since the tip propagates into 

a comparatively undamaged zone (see line 2 in Fig. 8b). Then 

the second initiation stage takes place resulting in the follow

ing stable growth. 

The initial values 10 and £ in case 3 correspond to a point loc

ated in a narrow zone between the area where no buckling occurs, 

and the non-equilibrium area (Fig. 7). Very short incubation 

and stable growth stages terminate in total splitting of the 

surface layer. 

Elastic limit strain for 

order of magnitude 10-3 • 

pressed delaminations is 

most structural composites is of the 

Hence, the typical behaviour of com

described by line 1 in Fig. 8. It 

should be mentioned, however, that delaminations in real struct

ures are usually pre-buckled and/or pre-stressed due to the fab-· 

rication flaws and the loading prehistory. Therefore, the damage 

accumulation'and the delamination growth begin at £ < £*(1). 

The effect of initial deflections and initial stresses was stud

ied in [5]. 

Elliptical delaminations 

Elliptical delamination appears to be a comparatively adequate 

model of fabrication flaws in composite plates and shells. For 

example, a delamination in an orthotropic circular cylindrical 

shell is shown in Fig. 9. We assume that in involution or in 

projection on a tangential plane, the form of the delamination 

is close to an ellipse with semi-axes a and b. If principal 

directions of orthotropy and ones of the nominal strain field 



Fig. 9. Elliptical delamination in a circular cylindrical comp
osite shell in compression. 

149 

coincide with the principal axes of the ellipse, the form of the 

delamination will remain close to the ellipse during the further 

loading history. This means that we come to a two-parametrical 

problem of the fracture mechanics. This problem was studied 

primarily in [5]. 

Define E and E , the nominal principal strains, assuming them x y 
positive in compression. Let the buckling deflection f satisfy 

to condition f « min {a,b}. In a typical situation f ~ h, where 

h is the thickness of the delamination. Let max {a,b} « min 

{Rl ,R2 } with principal curvature radii of the shell Rl and R2 . 

Then the delamination may be treated in the framework of the 

theory of thin shallow shells. 

A variational approach was used in [5 ] to obtain an approximate 

solution. Both initial and following deflections are taken in 

the form 

w(x,y) (29) 

The right-hand side of Eg. (29) satisfies to conditions for the 

delamination clamped on the boundary which is an ellipse with 

the semi-axes a and b. Outside of the elliptic area w=O. If 

f ~ h, membrane strains in the delamination are close to the 
* critical buckling values. Denote the critical strains Ex and 
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* Ey . In the general case, the latter depends on a and b, as well 
* * as on the nominal strains E and E. To express f, E and E 

x y X Y 
through EX' Ey ' a and b, three equations are needed. The first 

equation follows from the variational principle of the theory 

of elastic stability under the assumption that the buckling mode 

is taken from Eq. (29). To obtain two remaining equations, we 

use relations between averaged deformation of the chords of the 

ellipse, the nominal and critical strains. Final equations are 

cumbersome, and we refer to papers [5,19,20] for more details. 

Now potential deformation energy U of the delaminated shell is 

calculated. Treating the loading as "rigid", the generalized 

forces moving the delaminations are Ga = -aU/aa, Gb = -aU/abo 

Virtual work of fracture for initially undamaged composite is 

OAy = yo[rr(a + oa) (b + ob) - rrab]. Hence, the generalized re

sistance forces are ra = 2rryob, rb = 2rryoa. The state of the 

delamination is a sub-equilibrium one if 

(30) 

When the equality occurs in one of Eqs. (30), it does not mean 

necessarily that the delamination becomes unstable. Stability 

of an equilibrium state depends on properties of the quadratic 

form (4) at m = 2, and 011 = oa ~ 0, 01 2 = ob ~ o. 

Analysis of stability of delaminations in a spherical shell in 

hydrostatic pre ssure was made in [19]. A similar study is pre

sented in [20] for a circular cylindrical shell in longitudinal 

compression. A typical diagram for a spherical transversally 

isotropic shell is given in Fig. 10. Non-dimensional sizes a/h 

and b/h are plotted along horizontal axes, and nondimensional 

nominal deformation ER/h along the vertical axis. The line ABC 

is the trace of intersection between the surface corresponding 

to the boundary of buckling of the delamination and the boundary 

of a rectangular parallelepiped. The line A'B'C' is the trace 

of the similar surface corresponding to one of conditions Ga(a,b) 

= 2rryob, Gb(a,b) = 2rryoa. Both conditions are satisfied simul

taneously only at a = b. In the point B" and in neighbouring 

points of the surface A'B'C' stability of an equilibrium state 



Fig. 10. 

SR/h 

100 b/h 

a/h 

States of an elliptical delamination in a spherical 
composite shell in external uniform pressure. The 
region of buckling is limited with the surface ABC, 
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and the region of instability of the buckled delamin
ation(in the Griffith's sense) with the surface A'B'C'. 

changes into instability. From the viewpoint of fatigue, the 

most interesting points are in the area between the two mention

ed surfaces (compare with Fig. 7). 

A simpler analytical example is taken from paper [5]. Let a 

delamination have a circular form with the radius a. The plate 

is in homogeneous compression with nominal strains Ex = Ey = E. 

The material of the delamination is isotropic with Young's mod

ulus E and Poisson's ratio v = 1/3. The buckling critical str

ain determined'with a variational method using Eq. (29) is 

The generalized moving force is 

(32) 

To estimate damage at the tip of the delamination we use Eq. (11) 

at Tth = 0 and T with accordance with Eq. (12). The coordinate 
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x is measured in the radial direction. The slow growth of the 

delamination is governed with equation 

da 
dt (33) 

where Eoo is the critical (in the Griffith's sense) value of nom

inal strain for undamaged plate: 

(34) 

It is evident that Eqs. (31), (32), (33) and (34) are analogous 

to Eqs. (20), (23), (19) and (10), respectively. The considered 

problem is actually, one-parametric. In more general cases, the 

growth rate depends on a number of factors, such as relations 

between magnitudes and signs of nominal strains, orthotropy and 

curvature parameters of a delamination, etc. Behavior of a de

lamination depends on its relative thickness too. For example, 

an initially circular isotropic delamination in a plate subjected 

to uni-axial tension grows in the direction of tension if the 

relative thickness is small. But when bending effects in the 

delamination become significant, the picture varies. Due to the 

Poisson's transverse shortening buckling of the delamination 

occurs, and the transverse moving force becomes dominant. The 

delamination begins to grow in the transverse direction. 

Delaminations of arbitrary form 

Following paper [21] we consider briefly a thin delamination 

which has an arbitrary form in the projection on a tangential 

x,y plane (Fig. 11). Let h/a« 1, a/R« I, h/H« 1 where h 

is the thickness, a" is the characteristic size of the delamin

ation, R is the minimum curvature radius of the shell, and H is 

the shell thiockness. Let the delaminated zone be limited with 

a smooth curve S. Equations of S in the polar coordinates r,8 

let r = p(8,t). Neglecting the potential energy of bending, we 

obtain 



Fig. 11. 

u 

s 

s 

x 

Delamination of arbitrary form in the projection on 
a tangential plane. 

const - ~JI Ex h£;d[2. 

[2 

(35) 
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Here £ is the reduced nominal strain in the main shell. For 
r 

example, in the case of orthotropy £2 = (1 - v v )-1[£2 + 2v 
2 2 r xy yx x xy 

£x£y + (Ey/Ex)£y = (2Gxy/Ex)£xy l where cornmon notations of elas-

tic constants are used. Virtual work of fracture with account 

to damage is 

oA y J y (ljJ) I ds x 011. 
s 

Eqs. (35) and (36) result in 

(36) 

(37) 

This condition is to be satisfied in all the points of the bound

ary S where the delamination grows slowly. The tip of delamin

ation remains fixed where Exh£; < 2y(ljJ). Evidently Eq. (37) is 

a generalization of the equilibrium condition G. = r. (ljJ) upon a 
J J 

continuum-degree-of-freedom system. The polar angle e with the 

values from the segment [ O,2nltakes the part of the index j at 

G. and r. (ljJ), and the polar radius pre) takes the part of the 
J J 
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set of generalized coordinates. 

Let the damage in the inter layer be produced by tangential stress

es T(~,t). In the momentless approximation T is proportional to 

the strain £n in the direction of the normal vector n to the 

boundary S(Fig. 11). With an account of Eq. (12) we obtain the 

equation 

(38) 

where f(.) is a function similar to the power function (11) at 

Tth = 0; t c ' Ao' and £w are of the same meaning as in Eqs. (12), 

(17) and (19). Notation 8 1 for the angle between vectors nand 

r(8) is introduced in Eq. (38). To close the set of equations, 

we place W(8,t) = <P[p(8,t),t]. 

Approximate equation analogous to Eq. (19) takes the form 

The initial condition is p[8,t*(8)] = po(8) where r = po(8) is 

the equation of the boundary in the initial state, and t*(8) is 

the moment of termination of the initiation stage at the point 

with the polar angle 8. 

In principle" physical non-linearity of reinforcement layer also 

can be included into the theory, as was done in [9] where the 

effect of damage on the potential energy release, and therefore, 

on the generalized moving forces was taken into consideration. 

Load Capacity of Delaminated Plates and Shells 

Effect of delaminations on the carrying capacity of structural 

components in compression has been studied in [22]. Some num

erical results are presented in Fig. 12 relating to a compressed 
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layered plate with a delamination placed symmetrically with res

pect to the length of the plate. One-dimensional problem, i.e. 

cylindrical bending is considered. Fig. 12 shows the dependence 

of the ratio N*/N~ on h/H and l/L. Here N* and N~ are critical 

forces for the damaged and undamaged plate,h and H are the thick

ness of the delamination and the total thickness of the plate, 1 and L are 

the lengths of the delamination and of the span of the plate, respectively. 

Dotted lines are plotted using the m::del of local buckling. Dashed lines 

correspond to a monolythic plate whose equivalent stiffness varies 

step-wise along the x-axis. The stiffness of the delaminated 

part of the plate is calculated as for a packet from two unbound

ed plates. Such an approximate approach is used widely in engin

eering design. It follows from Fig. 12 that this approach fails 

even qualitatively. 

Fig. 12. 

NINo * . * l/L =0,2 

1 
0,6 

0,8 

0,5 0,2 

0,4 

O~6 

0 h/H 

Layered composite plate in compression: critical load 
versus the length of delamination and its position 
with respect to the plate thickness. Lines: solid -
exact results; dotted - local buckling; dashed - step
wise varying stiffness. 

A spherical transversally isotropic shell with an axisymmetrical 

delamination subjected to external hydrostatic pressure was cons

idered in [231. It is necessary to make a difference between 
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the local buckling of surface delaminations and the global inst

ability. Buckling modes are presented in Fig. 13. Analytical 

solutions of eigenvalue problems, generally, include selr-~nter

secting, i.e. physically non-consistent modes (see the dotted 

line in Fig. l3b). In these cases, contact problems should be 

considered with an account for supports of the. delaminations 

in the center (Fig. l3c) or along concentrical circles. 

Some numerical results are presented in Fig. 14 where the ratio 

p*/p~ is plotted against the ratio h/H and the central angle 28 0 • 

Here p~ is the critical pressure for the monolithic shell, and 

p* for the delaminated one. As in Fig. 12, results obtained in 

the buckling approximation are plotted with dotted lines. 

Fig. 13 .. 

~ 
(b) 

~ 
(c) 

Spherical layered composite shell in uniform external 
pressure. Modes of instability: (a) glo~al;. (b) local: 
(c) supported in the center of the delam~nat~on. 

For one of the ratios h/H a self-intersection mode was found, 

and a contact problem with a support in the center was solved. 

Numerical results with the use of the step-wise stiffness model 

are presented in Fig. 15 with dashed lines. Discrepancy of res

ults is less than for spherical shells, especially when a delam-
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Critical pressure on spherical composite shell with 
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a circular delamination. Lines: solid - exact results; 
dotted - local buckling; dot-dahsed - with account of 
support in the center. 

0,1 

h/H 

Fig. 15. The same as in Fig. 14. Dashed lines correspond to the 
model of step-wise varying stiffness. 

ination is far from the surface, and the angle 80 is not too 

large. Details are given in [ 23 J. 

Instability of a structural component in the Euler's sense does 
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not mean necessarily the total failure. It is illustrated in 

Fig. 16 where two plates in compression are compared with the 

delamination thicknesses h' and h". Critical compressive forces 

But the load carrying are in relation N~, < N~' if h' 

capacities N** and N~~ can be in 

the carrying capacity is limited 

delaminations. 

< h". 

relation N~* > N~~. In Fig. 16 

with the strength of buckled 

Structural reliability considerations should include a number 

of various factors: load carrying capacity of the main component, 

stability of delaminations in the Griffith's sense, strength of 

delaminations, and other requirements such as structural integr

ity, exterior looks, etc. The general character of restrictions 

is illustrated in Fig. 17, on the plane E, a. Here E is a char

acteristic nominal strain, and a is a characteristic size of the 

delamination. A sample E = E(t), a a(t) of the loading and 

Fig. 16. 

N f 

o N 

Schematic relation between the instability in the 
Euler's sense, and the loss of load carrying capac
ity. Two layered plates in compression are compared 
with the delamination thicknesses h' and h". 

and delamination growth processes is presented in Fig. 17. The 

part of the plane limited with the restriction lines is an adm

issible region. The point corresponding to the current state of 

the system must not leave this region during the planned life-



159 

a 

3 

1 

2 

Fig. 17. Statement of the reliability problem for a structural 
component with a delamination. Restrictions are based 
on: (1) load carrying capacity of the component; (2) 
stability (in the Griffith's sense) of the delamination; 
(3) strength of the delamination; (4) other restrict
ions. 

time T. The reliability function of a structural element is 

equal to the probability of staying of the process £ = £(t), 

a = aCt) in the admissible region during the time T [24]. An 

inverse problem is of interest: to find such admissible initial 

sizes of flaws that the reliability function to the end of the 

planned life-time remains to be sufficiently close to unity. 
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Reference Stress Concepts for the High 
Temperature Deformation and Rupture of 
Cyclically Loaded Shell Structures 
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University of Illinois at Urbana-Champaign 

Summary 

The theory of continuum damage mechanics is used to determine the properties 
of shells operating at temperatures sufficiently high for time-dependent 
deformations and material damage to be dominant factors affecting load
carrying capacity. Constitutive equations are proposed which reflect the 
micro-mechanical laws of damage growth, and it is demonstrated how these 
equations can then be used to determine results at the structural level which 
form the basis for consistent design procedures. The effectiveness of the 
method is studied by referring to the results of a number of experimental 
programs. 

1. Introduction 

When metals are subjected to stress at temperatures in excess of Tm/3, where 

Tm is the melting temperatures in oK, the metal suffers time-dependent creep 

deformations. In addition, internal damage occurs so that the metal ultimate

ly ruptures. Consequently, when designing shell structures which operate at 

such elevated temperatures, consideration must be made to ensure that creep 

deformations do not exceed operational requirements during the life of the 

component. Common allowable deformations are 1% average and 5% maximum strain. 

In addition, the rupture conditions are that no part of the component may 

separate nor that local leakage can occur. 

By establishing suitable constitutive equations which give the strain rates 

and the rate of internal damage of the material, it is possible in principle 

to establish by numeric means, the strain, stress and damage history at all 

points in the shell. Such procedures tend to be very complex and it is diff

icult on the basis of the calculations to draw conclusions of the type which 

can help to reach a deeper understanding of the shell behavior. The approach 

to be used here is to use the results of theorems which have been established 

within the last ten years and which have made it possible to extend the Limit 

Load and Shakedown concepts to conditions ,,,hen high temperature effects be

come important. 
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For the purpose of illustration the behavior of a cylindrical shell shall be 

studied. The shell is loaded by cyclic internal pressure ± ~ and a constant 

ring load, P, and both time dependent deformation and rupture shall be taken 

into consideration (Fig. 1). 

Fig. 1. 

St lP P 

;I+ t + + + + 
±P Ate t e 

t t t t t t -p 

J 
Cylindrical shell of infinite~length subjected to a constant ring 
load P and a cyclic pressure p. 

2. Material Behavior 

The high temperature strain/time response of a metal subjected to constant 

stress has the form shown in Fig. 2. After the initial time independent res

ponse, the strain rate decreases with time during the so-called transient 

period I when the hardening processes which occur within the material exceed 

the effects of thermal softening. In the region II, referred to as the steady 

state, the hardening and thermal rate are equal and opposite so that the 

strain rate is constant. In the tertiary region III, the effects of internal 

damage become evident so that the strain rate increases until rupture event

ually occurs. In order to simplify the description of the material behavior, 

two sets of constitutive equations shall be used. When considering the deform

ations of the shell, equations shall be used which are appropriate to portions 

I and II of the strain/time curve when the internal hardening and softening 

effects are predominant. For rupture life predictions, equations are used 

which describe the internal damage occurring within the metal and the incre

asing strain rate characteristic of the tertiary behavior. 

Rupture Time to 

Fig. 2. Uniaxial creep curve showing the three stages of creep. 



2.1 Transient Deformation Constitutive Equations 

The elastic strains are defined by the equation 

where Cijk1 is the compliance matrix. 

(2.1a) 

The time-dependent response of the material to a given multiaxial stress 

state can be expressed in terms of a scalar state variable s that is a 

measure of the present size of the yield surface in stress space. Hence 

(2.1b) 

· s = h(s) f($ - s) - r(s) (2.1c) 

where <l>(°ij) is a homogeneous function of degree one in 0ij . In its 

simplest form, f is given by the step function 

> 0 when $ = s $ ;. 0 
f($ - s) . (2.ld) 

0 when $ < s or $ = s and <I> < 0 

The condition $ > s cannot be achieved. The quantities h(s) and 

r(s) are the rates of strain hardening and thermal softening which depend 

on the value of the state variable s. 

For fast loading the term r(s) in Eq. 2.1c can be neglected, and <I> = s 

so that Eqs. 2.lb and c then give 

• s ()$ 
E ij = h (s) 00 ij 

The function <I> is chosen such that in a uniaxial tension test this 

equation reduces to 

. do 
dE = h(O) (2.2) 

The function h(s) can then be determined from the uniaxial stress-strain 

diagram. 

Under steady state conditions uniaxial tests give the result 

E 

· E 
o 

[~] 
o 

o 

n 
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. 
where EO is the strain rate corresponding to the stress cro and n is 

the so-called creep index. Also at the steady state condition s = 0 in 

Eq. 2.1c so that 

and 

f(~ _ s) - r(s) _ r(~) 
- 'ii('S') - h( ~) 

In uniaxial loading this gives the result, 

• r(~) • [~Jn 
E=~=Eocr 

o 

so that the r~covery function r(~) can now be deduced since the hardening 

function is already known. 

E 

Fig~ 3 Predictions of recovery model for rapid cycling 

It is informative to deduce the prediction of the equations (2) to a cyclic 

stress loading of the form shown in Fig. 3. No additional creep strain is 

predicted during the period of unloading while softening continues, but on 

reloading the_hardening is recovered with an instantaneous strain ~t e1 ' 

so that the final strain is equal to that of a continuously loaded 

specimen. Such a prediction is generally close to reality, and when in 

error overestimates the strains so that the equations form the basis of 

calculations which are conservative. 



2.2 Creep Rupture Constitutive Equations 

The constitutive equations which have the form describing the tertiary 

portion of the creep curve are given by, 

. 
E •• 
2J. 
E 

o 

W 

a .. 
",n (~) 0<1> ) 
'i' a oa .. gI(w 

o 1J 

a .. 
A ~V( a1J ) g2(w) 

o 
(2.4a-b) 

where W is a measure of the internal damage. The physical nature of the 

damage is not discussed here but it is sufficient to say that it is 

possible to identify W rather precisely with specific forms of damage and 

that special forms of gI(w) and g2(w) in eqns. (2.4) can indeed be used 

to describe the range of mechanisms which have been identified [1]. The 

function of stress ~(aij/ao) describes the so-called isochronous surface 

which is the locus of multiaxial stress states for which the rupture time 

is constant (Fig. 3). The constant A can be selected to give the rupture 

time for an applied stress ao ' For the uniaxial loading with a = ao ' 

Eq. (2.4b) becomes 

which on integration gives the rupture time to 

Two specific forms of ~ are discussed which represent the extremes of 

material behavior. For some materials strengthened by precipitate 
a .. 

hardening ~(a1J) 

then has the f8rm 

. 
w a 

A ( a 
o 

) 
v 

a 
a 

o 
where a is the effective stress, and Eq. 2.4b 

(2.4c) 

A material within this class shall be referred to as a a material. For 

another class of materials the growth of damage is dictated by the maximum 
a. . a r 

stress a r so that ~(~) a 
o o 

w 

and the damage growth equation becomes 

(2.4d) 
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Materials satisfying this relationhip are referred to as 0 1 materials. 

These extreme forms of the isochronous surface for plane stress conditions 

are shown in Fig. I. ~nrl both forms shall be used in this study. 

Precipitate 
Hardened 
Type Material 

·Copper Type 

Fig. 4 Isochronous surfaces for a and or materials 
in plane stress space. 

Nonproportional loading tests [2] on a precipitate hardened aluminum 

indicate that the damage is isotropic. Similar tests on copper indicate 

however that damage grows on planes independent of each other. 

Consequently if the stress field is rotated, the life of the material is 

dictated by the rupture of the plane which suffers longest exposure to 

maximum stress, and the failure time is independent of the damage in other 

directions. Consequently the concept of independent damage directions 

becomes useful and this property shall be used in the next section. 

3. Generalized Forces and Moments 

The generalized forces to be considered in this problem are the hoop stress 
resultant Ne and the moment resultant M$. 

From the constitutive e~uations (2.1) it is possible to determine the 

expression for the steady state creep energy dissipation rate as 

_ ° E $n+1 t ij ) 
o 0 a (3.1) 

o 

To simplify the shell analysis expressions for the constant energy 

dissipation rate surfaces and for the isochronous surfaces should be 

expressed in terms of Ne and M$' This can prove to be a lengthy 

exercise in itself and instead of following this route, use shall be made 

of the results of Hodge [3]. 

3.1 Constant Energy Dissipation Rate Surfaces 

The constant energy dissipation rate 00 Eo per unit thickness is shown in 



Fig. 4, where Mo and No are the normalizing factors 

° t 2 
M 0 and N 0.2) = -z;-- ° t . 

0 0 0 

These expressions are recognized as those used in Hodge's expressions 

with 00 replacing the yield stress 0y' In forming the surface of Fig. 

5a the same through thickness stress fields as exist in plasticity are 

assumed to exist in creep also. This procedure gives an upper bound on 

energy dissipaton rates [4], which is nevertheless close to the exact 

value. 

(a) (b) 

Fig. 5 (a) Surface of constant enerKY dissipation rate and 
isochronous surface for ° material. 

(b) Isochronous surface for 01 material. 

3.2.1 Isochronous Surface for ° Material 

For materials whos~ rate of creep damage is governed by the effective 

stress 0, damage occurs irrespective of the sign of the stress. 

Experiments by Hayhurst [5] on preci pi tate hardened aluminum beams in 

bending verify the validity of the assertion. He also demonstrates that 

when the applied m6ment is 

M 
o (3.3) 

that the rupture time of the beam is to' From this behavior it can be 

deduced that the isochronous surface for rupture time to has the same 

form as the constant energy dissipation rate surface. The resulting 

isochronous surface for a ° material and for the given shell is then that 

shown in Fig. 5(a). 
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3.2.2 Isochronous Surface for 0J Material 

When materials suffer the type of creep damage which is dependent on the 

value of the maximum stress, it is implied that the stress is tensile. 

Damage does not grow when the stress is compressive. This means in the 

case of a beam in bending that damage only occurs in those portions where 

stress is tensile. Hayhurst [5] has shown in this case that the moment 

which gives a rupture time to is given by 

M 
o 

('3.4) 

Since the beam is symmetric a moment of opposite sign shall give the same 

rupture time except that it is the opposite face that shall suffer damage. 

Finally it was noted from previous experiments [2] that faces in different 

directions do not interact. Hence since M~ and Ne are noninteracting, 

and the isochronous surface shown in Fig. 5(b) is obtained. Since no 

damage is caused by compressive stress the surface extends infinitely far 

to the left. 

4. Bounding Theorems for Deformation and Rupture Time 

Using constitutive equations described by Eq. (2.1) Ponter [6] obtained 

deformation bounds for structures subjected to cyclic loading. The general 

deformation bound takes the form 

1 . ~n+l 
0 .. 

J J [ n 1J (t ) 1 T. u. dS " E 0 n+T (J" dV 
ST 

L L n 0 0 V m 
0 

(4.1) 

where 

0"!<. 0*P + 0*T + 0 .. (t) 
1J ,ij ij LJ 

(4.2) 

and 

0"!<~ is a stress field in equilibrium with the applied primary load Pi ' 
1J 

*T 0ij is a stress distribution in equilibrium with a dummy load Ti 

applied in the direction of the required displacement rate ui 

0ij (t) is the elastic stress distribution resulting from the variation of 

load at time t, 



is the time in the cycle when 
~ _ (t ) 

<I> [ 1J m 1 
a J 

is a maximum, 
o . 

ui is the mean displacement rate in the direction of Ti and ST is 

the surface over which Ti is applied, 

V is the volume of the structure. 

An optimum bound can be found by making appropriate 

magnitude of T1- and the stress distributions a*P ij 

choices of the 

an-d a*T However ij • 
this shall not be attempted here and use shall be made of solutions which 

arise from a shakedown analysis. 

Consider the situation where a structure is subjected to a cyclic history 

of loading Pi(t). A value of the yield stress, ay = ao' can be chosen such 

that a replica structure composed of an elastic-perfectly plastic material 

just shakes-down. Then an equilibrium stress field exists such that 

(4.3) 

When the replica structure is subjected to a dummy load plastic collapse 

occurs when 

For T = DTL an equilibrium stress field can be found such that 

(4.4) 

Substituting eqns. (4.3) and (4.4) into eqn. (4.1) and making use of the 

inequality 

gives 

a {~ (1 + D)}n y. n+1 
uT ~ -- E ~----~------ V 

TL 0 n D 

Optimizing eqn. (3.5) w.r.t. gives n and 

(4.5) 

This bound requires a knowledge of the limit load TL and the shakedown . 
solution which determines ao and, hence, EO 
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When a bound on the mean displacement rate over an area, A, of the 

structure is required a dummy pressure p can be applied over this area 

and the bound becomes 

u 
n 

(4.6) 

where u 
n 

is the mean displacement rate and is the limit load for the 

dummy pressure. We use this result in section 6 to obtain a bound on the 

mean displacement rate of the section of a shell. 

Care should be exercised in the use of this bound. Acceptable results can 

be obtained in situations where, in the shakedown and limit load solution, 

the entire structure deforms plastically. In the problem analyzed in this 

paper, however, the ratchet mechanism beyond the shakedown boundary and the 

collapse mechanism at the limit load are such that only a small proportion 

of the structure deforms plastically. We discuss the applicability of eqn. 

(4.6) to this type of problem in section 6. 

An upper bound can be obtained on the rupture time in terms of the 

shakedown load associated with a yield surface of the same form as the 

isochronous surface for the material [7]. We follow Ponter [7] in deriving 

a bound on the time for initiation of rupture in a structure subjected to 

cyclic loading of the type shown in Fig. 1, where one extreme of loading is 

maintained for 0 ( ~ < A and the other extreme for A ( ~ ( 1, where 

o ( A (0.5 and ~ = t c ' tc being the cycle time. 

From eqn. (2.4) we note that prior to failure of a material element which 

experiences a stress 0ij that 

w 
f 

o 

1 dw (t 
A g2(w) 0 

(4.7) 

where w (1. For conditions of rapid cycling the stress at each end of 

the cycle remains approximately constant and the convexity condition for 

6v at any instant is given by 

s 
(0 0 0 - 0iJo ) ~ 0 

1.J 
(4.8) 



s We identify a ij with the actual solution and aij with the shakedown 

solution for a perfectly plastic material of yield strength ao' where 

a, , 
fj. v (21.) 

a 
o 

(4.9) 

represent the yield surface and associated flow rule. and apply eqn. (4.8) 

at each extreme of the cycle: 

a1 a1s 
MV 

( a!j 
Is 

} 
fj.V(.ii) _ I!. fj.v (.ii) " 0 I!. 1 a 1 a - 1!.1 ---ys - a ij) 

0 0 Cla ij (4.10) 

a2 a2s 
MV 2 

- a~~) " 0 fj.V(.ii) - 1!.2fj.V( ~j ) - 1!.2 -zs (aij I!. 2 a 1.J 
0 0 Cla, , 

1.J 

where the first of eqns. (4.10) applies when 0 ( ~ < ~ and the second 

when ~ ( ~ (1. Combining eqns. (4.10) and noting that plastic straining 
as 

A V(_ij) -_ 1 can only occur when U a for the perfectly plastic material we 

obtain 0 

II ~1 , 2 
~1 vi I!. 2 OCi , 
_MV(_J) (1 ~)fj.V(_J) (+ )-d P "0 ~ a + ~ - a - I!. 1 1!.2 Ei,Pi , 

o 0 J J 
(4.11) 

1 Is 2 _ ~2s where Pij = aij - aij = aij v ij is a residual stress field and 

the is the plastic strain experienced by the element of material during 

cycle at shakedown. The inequality of eqn. (4.11) is still retained if 

1!.1/~ and 1!.2/(1 -~) are replaced by I!.. where I!. is the maximum of 

1!.1/~ and 1!.2/(l '"" ~). Integrating eqn. (4.11) over the volume then gives 

(4.12) 

Integrating eqn. (4.12) from t = 0 to t = tit the initiation time for 

rupture. and making use of the inequality of eqn. (4.7) yields 

f ; dV t 
( t _V,....-____ ( .2 

o r (1!.1+1!.2)dV ~ 
V 

(4.13) 

where to is the time to failure in a uniaxial test under a stress ao• 

As discussed by Ponter [7) this bound can drastically overestimate the time 
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to rupture if ~ is small. In the present paper we limit our attention to 

situations where ~ = 1/2 and eqn. (4.13) becomes 

(4.14) 

5. Shakedown Solutions for Shell Problem 

For the present class of problems where a structure is subjected to a 

constant load and a cyclic load the shakedown boundary is best obtained 

using a method due to Gokhfeld and Cherniavsky [8]. The method involves 

the construction of a modified yield surface which is used in a limit load 

calculation for the structure subjected only to the constant load. For the 

shell problem considered here it proves advantageous to obtain a modified 

yield condition directly in terms of Ne and M~. Fig. 6a shows the 

limited interaction yield surface and the range of stress experienced by an 

element of material during the application of the cyclic pressure 

loading, p. If the line representing this stress history is translated 

such that one end touches the yield surface and the other end remains 

inside or on the surface, then the locus of the centre of this line 

represents the modified yield surface, Fig. 6b. If a distribution of Ne 
and ~ can be found that is in equilibrium with the applied constant 

load p. and nowhere violates "modified yield," then when the cyclic 

loading is applied the generalized force and moment always lie within the 

actual yield surface and the structure will shakedown [9]. We now use this 

method to obtain modified limit load solutions for the limited interaction 

and Hodge yield conditions. 

(0) (b) 

Actual Yield 
Surface 

Fig; 6 Method of constructing modified yield surface 

5.1 Equilibrium Equations 

If the ring load is applied at x = 0 along the length of the tube, then 

for x > 0 the governing equilibrium equation becomes [3] 



where 

2 
d m<j> 
-=z + 4ne 
dx 

o 

and x = _-.::x __ 

14M R!N 
o 0 

(5.1) 

The value of US is limited by the yield condition. As a result both 
dm<j> 

m<j> and must be continuous along this length of tube. 
dx 

5.2 Limited Interaction Surface 

The modified yield surface for a given internal cyclic pressure, Po 

where 

N /R 
o 

(5.2) 

is shown in Fig. 6b. Before attempting to solve the equilibrium equation 

subject to this modified yield condition, it is instructive to inquire as 

to the likely mechanism of incremental collapse. In the absence of any 

cyclic loading the collapse mechanism is that in Fig. 7: at x = 0 a 

hinge line forms and ~ = - 1; between x = 0 and x L the radius of 

the tube increases so that ne = 1; another hinge line forms at x = Land 

me = 1. We might expect a similar mechanism when the cyclic pressure is 

applied. Then for Ixl ~ L 

ne = 1 - Po 

and eqn. 5.1 becomes 

-4(l-P) 
o 

2R ---

t 
~ • 

Fig. 7 Collapse mechanism for ring load alone 

Solving this equation subject to the boundary condition 
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m<l> = -

) 0 at x = 
om<l> P 
-- = a PL 0;; 

m<l> = 

l L at x = 

om<l> 
-= 0 
0-; 

where a = 212 and 

8M 
PL 

0 

14MoR/No 

is the limit load in the absence of cyclic loading, 

gives L (l - p 
0 

)-1/2 

and 

This equation is plotted in Fig. 8. 

o.s 

0.6 

0.4 

0,2 

Hodge Yield J 
Surface 

rLimited Interaction 
Surface 

°0~--~0~.2----~0~,4----~0.~6----~0~B----~~ 
P/PL 

Fig. 8 Shakedown boundaries of limited interaction 
and Hodge yield conditions. 

(5.3) 

(5.4) 

(5.5) 

Before stating 'that this is a possible solution for the shakedown boundary 

we must check if a solution to egn. (5.1) can be found beyond -; = L which 

does not violate the modified yield condition. A solution can be found by 

expressing ~ in terms of a polynomial and choosing the coefficients such 

that ~ and ne remain inside the yield surface. A possible solution is 



- 3 2 

} 
m<l> 2 ( 1.) - 3 ( 1. ) + 1 

k k 
o .. y .. k (5.6) 

_ 3 ( - 2 ( !) ) n<l> -:;::! 1 
2k k 

o y > k 

5.3 Hodge's Yield Condition 

A solution using Hodge's yield condition can be obtained in much the same 

way as the solution of the previous sub-section. We again assume that 

hinges form at x 0 and i = I and that the values of m<l> and nS in 

between lie along the line ABC of the modified yield surface of Fig. AI. 

The analysis is more complex than the above and details are given in the 

Appendix. The resulting shakedown boundary is given in Fig. 8. Again the 

load P has been normalized using PL' but now PL is the limit load for 

the Hodge yield condition: 

6.92 M 
o 

6. Deformation and Life Bounds for Shell Problem 

(5.7) 
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The results of the last section can be combined with the results of section 

4 to give bounds on the deformation rate and life of the structure. When 

applying the deformation bound the best results are obtained if in the 

solution of the dummy limit load problem the region of plastic deformation 

is similar to that in the shakedown solution. We achieve this by applying 

a uniform dummy pressure over the region that deforms plastically in the 

shakedown solution. The result then bounds the mean displacement rate over 

this region. 

The shakedown boundary for the Hodge yield condition is given in Fig. 8. 

This boundary can'be represented by an equation of the form 

(J 
y 

P 
= - C1 • 

PL Y 
(6.1) 
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where function of the ratio of normalized loads. Since 

0y/PL is independent of material properties and the 

r.h.s. of eqn. 6.1 is only a function of the applied loading and 

geometry. The limit loads PL and PL are given by eqns. (5.2) and 

(5.7), which, for the values of Mo and No given in section (3.1) become 

For given 

that 

° 0 

values of P and p a reference stress, 00' can be chosen such 

P p/PL 
= - ° f( P!i':") PL y 

L 

4 

ooL----~O~,5----~1~,O 

PPL/i\p 

Fig. 9 Values of L and ~ obtained from the 
shakedown solution of Appendix A. 

(6.2) 

For a given ratio of loads the extent of the plastic~lly deforming region 

is given in Fig. 9. The dimensionless length ~ is defined in Appendix 

A. If a uniform pressure is applied over the length 21 the resulting 

limit load is that shown in Fig. 10. A bound on the mean displacement rate 

is then given by eqn. (4.6) where 

test conducted at constant stress 

. 
E is the strain rate in a uniaxial o 
00 and 

where a is given in Fig. 10. For the volume V we use the volume of the 

plastically deforming region so that 

V 
X- h 



and eqn. (4.6) becomes 

u .. 
m 

. 
R e 

o 1.21"""T---r----r----.,..------. 

o 
Z ..... 
0:: .... 1.1 
0.. 

" !j 

1.0 

1 2 3 
I 

4 5 

Fig. 10 Normalized limi~ load for pressure loading 
over a length 2L of the cylinder. 

(6.3) 

We would expect this bound to give a reasonable estimate of the deformation 

rate provided the ratchet mechanism from the shakedown solution does not 

extend over a significant length of tube. This limits the applicability of 

eqn. (6.3) to small values of P PL/PLP , certainly less than 0.8, Fig. 9. 

The reference stress for the time to rupture is also given by the shakedown 

boundary solution. For an effective stress material the reference stress 

is the same as that used above for the deformation of the shell and the 

time to failure is given by eqn. (4.14). For a material that fails 

according to a maximum principal stress criterion the appropriate shakedown 

solution is that for the limited interaction surface of section 5.1 (the 

solution presentea in section 5.1, for the complete limited interaction 

surface of Fig. 6, is the same as that for the surface of Fig. 5b since the 

normal forces always remain tensile). The shakedown boundary is then given 

by eqn. (5.4), or, in the form of eqn. (6.1) by 

(6.4) 

where PL and PL are obtained from eqns. (5.2) and (5.4) with No and 

Mo given by eqns. (3.2) and (3.4): 
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The reference stress then becomes 

(6.5) 

for arbitrary values of p and P. The time to failure is again bounded 

by eqn. (4.14), where to is the time to failure in the reference test. 
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Appendix A Shakedown Boundary for Hodge Yield Condition 

1 
First we consider the situation where Po < 2 ' and the shape of the 

modified<yield surface is given in Fig. Al(a). We assume that the tube 

deforms plastically over a length 2L such that the stress state moves 

along ABC of the yield surface as x increases. 

If the stress state lies along BC of Fig. Ala 

1 - p 
o 

m4> 
+-

2 
(AI) 



(0) 

Modified Yield 
Surface 

(b) 

Fig. Ala. Modified yield s1rfaces for Hodgelyield condition 
when (a) Po < 2 and (b) Po > 2 . 

and eqn. (5.1) becomes 

2 
a m4> 
~2 + 2m = - 4(1 - p ) 
ax 4> 0 

The general solution to this equation is 

For a stress state along AB of Fig. Al(a) 

and IDq> = Cexp (IIi) + Dexp(- IIi) + 2(1 - po) 

(A2) 

(A3) 

(A4) 

(AS) 

(A6) 

We solve these equations subject to the boundary conditions of (5.3) with 
am4> 

a = 2.45 and in addition impose the conditions that IDq> and are 
ax 

continuous as the solution to the governing equations changes from eqn. 

(A3) to eqn. (A6); i.e., 

m4> = 0 

} amI(> 
at x = .t 

is continuous 
a; 

(An 
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The result is 

P 
PL = 

where 

8(1 - po) - 4(1 - 2Po)cos/zi 

sinl2 T 
(A8) 

(1 - 2po ) = 2(1 - P )cos/zI - (1 - 2p )sin/ZT sinh/Z(L - I) (A9) 
o 0 

and cosh I2(L - T) (A10) 

The values of L and I given by eqns. (A9) and (A10) are shown in Fig. 9 

and the shakedown boundary of eqn. (A8) is plotted in Fig. 8. 

An equilibrium stress field in 

violate yield is given by eqn. 

the remainder of the tube 

(5.6) with it = I 1 3 
2('2 - Po) 

which does not 

When 1 Po ) '2 the modified yield surface is like that in Fig. A1(b). The 

governing equations for stress states along Be and AB of the yield surface 

are given by eqns. (A3) and (A6). These must now be solved subject to the 

boundary conditions 

~ = - 2(1 - po) 

} omcl> = 
at 

P 
2.45 p-

ox L 

~= 0 }., omcl> 
is continuous 

o~ 

~.= 2(1 - po) 

}" omcl> = 
0 

ox 

We find L = co'; T = ~ 
2/2 

and I- = 1.15(1 - po) PL 

x = 0 

x = L 



This equation completes the shakedown boundary of Fig. 8. 

Appendix B Limit Load for Shell 

In this Appendix we obtain the limit load for a thin wall tube which is 

subjected to a constant pressure, p, over the region - L ~ x ~ L. For 

Ixl ~ L the equilibrium equation is 

where _.P! 
Pi - N 

o 

o 

and for Ixl > L the equilibrium equation is 

If the resultant forces lie along Be of Fig. Sa 

and equation (Bl) becomes 

whose general solution is 

~ = A cos 12~ + B sin 12~ + 2(Pl - 1) 

For a combination of forces along AB 

which has the general solution. 

(Bl) 

(B2) 

(B3) 

(B4) 

(BS) 

(B6) 
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When equilibrium is determined by eqn. (B2) and the force resultants are 

along AB of the yield surface, we obtain the relationships 

2 
o mel> 
-=2-
Ox 

2m = - 4 
eI> 

and fficJ> = Eexp (/2~) + Fexp(- 12~) + 2 (B7) 

We assume a solution where eqn. (B4) holds for 0 ( Ixl ( ! eqn. (B6) 

for T ( Ixl (L and eqn. (B7) for L < x ( k. These equations must be 

solved subject to the following boundary conditions: 

mel> = - 1 

omel> = 
0 

o~ 

mcl> 0 

o mel> 
continuous 

0-; 

mcl> continuous 

omcl> 
continuous 

0-; 

mel> 

omcl> = 
0 

0-; 
The limiting pressure is then given by 

x (PI exp(I2L) - (PI - l)exp(I2T)(l - tan(/ZT» 

= 0.25 

The value of I can be chosen to give the optimum value of Pl. The 

resulting bound is plotted in Fig. 10 as a function of L. 

(B8) 

(B9) 



Failure of Hyperbolicity in Soft Shells 

Michail Zak 
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Introduction 

The loss of hyperbolicity in elastodynamics leads to a 

special type of instability (wrinkling) which is accompanied 

by a collapse of elasticity, Refs. [lJ-[3J. From the mathe

matical viewpoint this phenomenon is associated with occur

rence of imaginary acoustic speeds and local maxima of the 

potential energy as a function of strains (Hadamard's 

instability). From the mechanical viewpoint the collapse of 

elasticity results from the failure of shear resistance under 

severe compression loading. 

The criteria of the collapse of elasticity are 

f- 3Tij 
if i j 3E: ij 

Tii < 

t- 1 3T ij 
if i i j "2 ~ 

:LJ 

in which the stresses Tij and strains 

to a local cartesian basis. 

E:, , are referred 
:LJ 

Practically, these inequalities occur in such materials 

where the stiffness in one direction is significantly 

smaller (or larger) than the stiffness in other directions 

(thin films, soft shells, laminated materials, etc.). 

Solutions to the governing equations of elastodynamics in 

the region of instability have the following structure 

(Refs. 1, 2): 

(1 ) 
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~(r,t) + ii(r,t) (2 ) 

in which u, and u are the basic and perturbed displacements, 

respectively, r is the position vector of points in space, 

while 

u 

Her'.e 

A 2 
0 

in which p 

U 
-0 
~ exp (k - A o)t sin ~.£, 

fHT ii 
+ ! aT ij ) if 

2 a EO •• 
lJ 

., ~ (Tii + aTii) if 
a EO •• 

II 

is the material density. 

i 

i 

u 
-0 

" 

u t=o + 0, k + 

j 

j 

In the case of the inequality (1) the acoustic speed AO 

given by Eq. (4) become imaginary, and the perturbed dis

placement (3) grows exponentially no matter how small the 

initial value ~ is chosen if the magnitude of the wave 

vector k is sufficiently large. 

The constitutive law Tii (EO •• ) fails in all the directions 
lJ 

where AO < 0. 

(3 ) 

(4) 

The purpose of this work is to develop a new constitutive law 

in the region of the collapse of elasticity describing 

inelastic behavior of soft shells. 

2. Governing Equations for Soft Shells 

A soft shell is defined as a thin shell for which the inplane 

strains of the middle surface are negligible in comparison to 

the strains in the transverse direction, i.e., the transverse 

rigidity is negligible in comparison to the inplane rigidity 

of the middle surface: 

(5 ) 



in which GT is the through-the-thickness shear modulus, and 

ER. is the longitudinal Young's modulus. Such a shell is 

formed by a soft material with an almost inextensible "skin." 

It is clearly understood that the thickness of the shell is 

negligible in comparison to the inplane dimensions. 

In the limit G,!, + 0 soft shell is considered as a 

membrane. 

The governing equation for a soft shell are given in the 

following form (Ref. 3): 

+ J19T 1,2; i,j,s 1,2,3 

while 

o 

(6) 

(7 ) 

Here ~(l) and ~(2) are Gaussian material coordinates of the 

middle surface, ~(3) is the out-of-plane material coordinate, 

g .. is the metric tensor, g .. is the initial state matric l.] l. ) . . 
tensor, while A = detIlA .. II, T S ] is the stress tensor, vl. 

l.] . 
is the velocity vector, p is the initial density, rl.. are 

o S] 

the connection coefficients defined by Christoffel symbols: 

1 nR. ( ag H ag R. . ag .. ) 
2 9 ---(-.-) + ~ - ~ , for i,j,n 

aljJ J a~ 1 a 1/1 
1,2 

(8) 

3 
for i, j 1, 2 (9) 

i,k 1, 2; n, R. 1, 2, 3 (10) 
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1 

2 
1, 2; n 1, 2, 3 (ll) 

in which b .. are the coefficients of the second fundamental 
1J . 

form of the middle surface, and r1. are kinematical con
t] 

nection coefficients defined from the following compatibility 

equations: 

k 
f st 

k 
dV n k 

--- + v rsn 
d 1jJ ( s) 

+ 

The compatibility equations 

1 
2' 

2 
d gll 

2 
d ~ (2) 

+ 

(y,6,cx,S = 1,2) 

+ (ri22 - f il
1)b12 

1 
2' 

and the constitutive equations for a Hookian material: 

where cijkm is the elastic modulus tensor, 

strain tensor: 

E is the 
km 

(12) 

(13) 

(14) 

(15) 

(16 ) 

( 17) 



(18) 

close the system of governing equations for a soft shell. It 

is easy to verify that all variables in these equations are 

expressed via geometrical invariants of the middle surface, 

i.e., via its shape b .. and strains E: ••• 
lJ lJ 

One should notice that all the governing equations are tWQ

dimensional. However, in contrast to the classical thin 

shell model, they do not contain bending moments. At the 

"arne time, unlike the model of a membrane, they contain 

transverse shear stresses. From this point of view, the 

soft shell model and the plane section model are at the 

opposite ends of the spectrum of shell models. 

3. Wrinkling Criteria 

Referring the criteria of the failure of hyperbolicity (1) 

(which are written in a local cartesian basis) to the 

current coordinates ~(i) one arrives at the following 

wrinkling criteria, Ref. 3: 

1 + G3131 -

* T .. 
lJ min < 0 (12 ) 

in which 

I, 2 (13) 

1, 2 (14) 
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while 

(15) 

(16) 

where rl is the specific potential energy of the shell 

material, £s are the initial state basis vectors, £s are 

the current basis vectors, and ~k are the cartesian basis. 

* The angle a corresponding to the direction in which 

wrinkles occur is defined by: 

* a 

Clearly, the inequality (12) can lead to such a zone 

within which 

(17) 

(18) 

(19) 

and, consequently, the instability can occur in any direction 

between the angles a l and a 2 • 

These angles are defined by the following expressions: 

(20) 



where 

Tl + 1 ( 1 1) 12 2 G3132 + G3231 

Four different situations can occur: 

(a) 

i.e., a l a 2 are real and there are zones of instability 

given by (18) 

In this case 

* a 

(21 ) 

(22) 

(23) 

(24) 

and the instability can occur only in the form of the 

cumulative effect (Ref. 3) in the direction defined by the 

* angle a because 

'-'/hile 

* (T .. ) .. 
1J m1n 

~ .. I *>0 
1J ao/a 

~ .. I * 1J a=a 
o 

Obviously that here the instability can occur in any 

direction. 

(30) 

(31) 
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(c) 

In this case the expression (30) becomes imaginary, i.e., 

there is no instability at all because 

(32) 

(33) 

Returning to the case (a) let the conditions defining the 

type of instability be recorded. As it was pointed out in 

Ref. 3, the wrinkling can occur only if the corresponding 

direction of instability coincides with an asymptotic line 

of the layer, i.e., if 

o (39) 

i3 
where b 22 is the coefficient of the second fundamental form 

referred to the axis ~~ of the basis ~f, ~~, ~~, = ~3 turned 

through the angle p about the axis ~3. Then: 

~ b 22 
1 b22 cos 2 a + 1 b ll sin2 13 1 b 12 sin213 (35) 

where 

b .. *s*J!.*i*i b ij 
~J akaq!:s~J!. 

~q r r q r q 1 qks 
2 Ji9f 

e E.k x r 
~ -s -s 

(36) 

* The angle i3 corresponding to the equality (36) is given by 

the following expre.ssion: 

where 

* [ 1 13 = a~ctan -1-
b 11 

K b l bl _ b 12 
11 22 12 

(37) 

(38) 



'rhus, the existance of the asymptotic directions (bf2 0) 

depends on the sign of the Gaussian curvature K. 

There are two asymptotic directions for K < 0, there is only 

one asymptotic direction if K=O, and there is no such 

uirections at all if K > o. 

Now the conditions of wrinkling are formulated in the 

following form: 

where u l and u 2 are given by equation (20). 

(35 ) 

Consequently, the wrinkling occurs only in the points with a 

non-positive Gauss curvature of the middle surface if the 

corresponding asymptotic lines are located within the zone 

of instability given by inequalities (39). 

In all other cases the instability leads to the snap-through 

wrinkling, (Ref. [3J which is accompanied by strong 

discontinuities, i.e., by jumps of strains and stresses. 

4. Constitutive Low for Inelastic Domain 

Formally the solutions to the governing equations of soft 

shells in the domain of wrinkling are unstable and cannot be 

used for quantitative description of the motion. Physically 

in the course of the instability, the geometry of the macro

structure of the material fails and it loses all the elastic 

resistance in the directions of wrinkling. However, on the 

micro-scale the material properties remain unchanged. In 

other words, collapse of elasticity is caused not by changes 

in the rheology of the material, but rather by changes in its 

geometrical structure. The energy transformations in the 

course of the instability can be described as following: the 

elastic potential energy accumulated in the macrostructure is 

released through the kinetic energy of high frequency fluctu

ations while the latter dissipates through some friction 

mechanisms. 
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It is reasonable to assume that in solids the rate of dissi

pation of energy of the fluctuations is high and therefore 

the contribution of the fluctuations in the average motion 

can be neglected after some finite period of time. 

This assumption allows the possibility of introducing sim

plified post-instability models of solids which will be dis

cussed below. Indeed, as shown in Ref. 2, the characteristic 

speeds vanishes as soon as the corresponding fluctuations

llisappear. 

Referring to the expression for the characteristic speeds in 

elastici"ty given in Ref. 2, the following constitutive law 

describing inelastic behavior caused by wrinkling can be 

introduced: 

"I a'f' .. 
1J 

-2~ 
1J 

(40) 

Observance of this inequality guarantees that all the char

acteristic speeds will be positive or zero, which means that 

there will not be failure of hyperbolicity any more. 

One should note that the inequality (40) has practical appli

cations only if the material does not lose its elastic pro

perties before the limit (40) occurs. Hence, the models 

given by Equation (40) can be applied to thin films, soft 

shells or laminated elastic materials, etc. 

First of all let us consider the particular case of the 

Equation (40') when the derivative aT . . laE .. does not 
1.J 1J 

depend on a direction selected in the body, i.e., 

aT .. 
1.1 

a E •• 
1.1 

E, 
1 aT ij 
'2 aE ij 

G{i # j), E > G . 

Then the Equation (40) can be written in terms of the 

principal stresses: 

* T .. ) -G • 
11. 

(4l) 

(42) 



But in general cases when the derivative dT .. /dE .. depends 
~J ~J 

on the direction selected in the body (which can occur even 

in isotropic material due to pre-stresses) the Equation (40) 
cannot be written in an invariant form because the left-hand 

part of this equation belongs to a tensor of the second rank 

Tij while the right-hand part belongs to a tensor of the 

fourth rank dTij/aEkS' 

Returning to the equation (42) let us consider a thin film 

as a particular case of a soft shell for which: 

G o . (43) 

Then Equation (40) or (42) leads to a model presenting film 

as a no-compression material: 

~ll ) 0 , t22 ) 0 . (44) 

5. Principal Stress Formulation of Post-Instability Models 

Equation (42) formulates models in terms of principal 

stresses. In order to operate with principal stresses in 

the governing equations they must be projected on a specially 

selected system of coordinates, a local basis vector of which 

coincides with the principle directions of the corresponding 

local stress tensor, i.e., in the general case this system 

\.d.ll be curvilinear, orthogonal and non-material. 

Because this system is fully determined by the state of the 

continuum and therefore does not contain any arbitrariness, 

the invariant properties of the solutions are expected to be 

found. 

Indeed, as shown in Ref. 2, where the principal stress 

formulation is .applied to a film as a no-compression 

material, the coordinate lines are observed as running 

wrinkles. 

Ci. Geometry of Principal Stress Coordinates 

The principal stress coordinates qi (i = 1,2,3) geometrically 
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can be introduced as orthogonal curvilinear coordinates with 

the metric which is supposed to be defined from dynamics: 

or or fgij if i=j 

aq:- oqi -to l if ifj 

where £. is the radius vector of the medium points, 

9ij are components of the metric tensor. 

Let us introduce also a material coordinate Wi(i 

by the transformation Wi = Wi (Ql,Q2,q3) and 

denote the coefficients: 

a~ 
l 

while 

or or 
3T."" 

l 
w:-

l 

or 
1 + w:-

l 

or 
~ 

J 

2£ .. 
lJ 

1,2,3) 

",here £ •. are the covariant components of the strain 
J. J 

tensor in the material system. 

It follows from (46) that 

or 
a~ 

or or ~j or 
a~ ~k ok aq,- W- , 

~ 
a. aq,- , a. 

1 1 1 J s 
1 J 1 J 

and 

a a~ £. a. £ 
lj l J as 

where £. Lj are the strain tensor components in the 

principal stress system. 

Besides that, from (46) the geometrical equations of 

compatibility for the transformation coefficients 

follow: 

a .. 
1. J 

(45) 

(46) 

(47) 

(48 ) 

(49) 



<la~ 
1 

<lq. 
J 

(50) 

b) Kinematics of Principal Stress Coordinates 

A velocity in the principal stress coordinates is given by: 

v + 
3 <lr 

i~l <lqi vi 
(51 ) 

where v. = <lq./<lt are the relative velocities of the indi-
1 1 

vidual particles with respect to the system of coordinates. 

Keeping in mind Equation (46) the following kinematical 

equations of compatibility are obtained: 

3 
I: 

j=l 
a~ v 

1 j i=l,2,3 

c) Dynamics in Principal Stress Coordinates 

(52) 

Starting with one of the conventional forms of dynamics in 

orthogonal coordinates: 

p~ - F 
-1/2 <l 

(gllg22g 33) 3qs 
<lr] 

<lqk 

(53) 

where p is the density, a is the acceleration, T is the 

stress tensor, and F is the external force, and taking into 

account that 

a =(~ 
3 

<l ) 2 + I: v. 
<lqi .£ (55) - at i=l 1 

Tij 0 , 
(i " 

j) (56) 
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finally, 

( a! + 
3 o )2 p E vi -- r F 

i=l oq. -
l , 

-1/2 3 
0 + .. 

(g 11 9 22g 3 3) E 
Tll or [ 1/2 

3qi (g11 g 22g 33) 
i=l 

-I 
~ 

l~ 

+ .. 
where Tll are the principal stresses. The density p is 

expressed via the initial density Po by the formula: 

p 
p 

.") 

(57) 

(58) 

The Equation (57) must be completed by constitutive equations: 

whi l(~ 

E .. (i-=lj)=O 
.lJ 

or because of Equation (50) 

o , (a -=I B) • 

(59) 

(60) 

(61) 

It can be verified that Equations (57), (58), (59), (61) 

together wi:th Equations (42), (47), (48), (49), (50), (52) 

form a closed system. 

Indeed, the vector equation (57) with respect to unknown 

vector r(ql'~2,q3,t) contains the following additional 
lL unknowns: T , g .. , vk . All of them by means of the 

'. JJ' 
Equations (48), (59), (48), (52) are expressed via £, 
t: .. and a~. But strains t: .. are also expressed via r by 
lJ l lJ 

means of Equations (49), (48), (48), while nine coefficients 

a~ are coupled by nine equations (50), (61). 
l 



Now the governing equations for the enlarged model which 

includes non-elastic domains are written in the following 

form: 

P ( a! + 
3 

a ) 2 l: v. 
aqi i=l l 

1 -1/2 
(gIl g22g 33) 2 

where 

f 1ii if t ii 
* .. 
'I'll 

t -G if ;t;" :"l 

£ 

x 

;;> 

< 

F 

-G 

-G 

*ii 
T ar] 

aqi 

Some applications of the theory to wrinkling films are 

considered in Ref. 2. 

(62) 

(63 ) 

In Ref. 4 the constitutive law for inelastic domains is 

generalized: it includes the contributions of the kinetic 

energy of micro-structural fluctuations. The theory is 

generalized on liquid shells in Ref. 5. 
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Summary 

The results of the nonlinear shell buckling theory have been 
extended to apply to the reinforced concrete shells. A simple 
relation is derived for the snap through critical load of r.c. 
shells. The solution contains the special properties of r.c. 
shells, i.e. the random imperfections of the shell, the quantity 
of reinforcement and the quality of concrete, and the nonlinear 
properties of r.c. shells, i.e. cracks in the cross sections, 
creep of the concrete and the plasticity of concrete and rein
forcement respectively. The proposed method adequately describes 
the results and the situation of erected domes. 

1. Buckling of Shells Made of Elastic Material 

The safety of a r.c. shell with respect to buckling is satis

factory if 

p :5. Pcr /Y (1) 

Here p is the actual load acting on the shell, Pcr is the crit

ical load and y is the safety factor. 

In the case of r.c. shells we have to analyse independently the 

critical load and the safety factor too. That is, these values 

differ from those of the homogeneous shells. 

The behaviour of the r.c. shell is influenced by the geometric 

data of the shell and of the cross section, by the material prop

erties of both the concrete and the reinforcement, by the quantity 

of reinforcement, and by the concrete covering. 

On the whole, reinforced concrete differs from the elastic homo

geneous material in the following: 
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the concrete zone under compression creeps, 

- the concrete zone under tension cracks, reducing the stiffness 

of the cross section. At this stage the position, quantity 

and quality of the reinforcement play an important role, 

- the materials of the shell behave elasto-plastically. 

Due to the afore mentioned factors, the critical load of the r.c. 

shell becomes much lower than the critical load of the homogen

eous shell. 

The critical load of the r.c. shell can be computed from the 

formula: 

(2 ) 

Here, the effect of plasticity is expressed by s, and the effect 

of cracks and the reinforcement by S. The pcr(¢) is the critical 

load of the homogeneous shell made of elastic material, including 

the creep effect of the concrete. 

When considering a homogeneous, elastic shell with perfect geo

metry, the differential equations of equilibrium and compatib

ility restricted to small deflections lead to an eigenvalue pro

blem. The lowest eigenvalue is the critical load of the shell 
lin (pcr ), obtained with the linearized theory. 

The deformation of the shell with an initial imperfection of 

amplitude denoted by Wo increases with the load intensity. The 

load intensity reaches a maximum value and, afterwards, decreases 

with increasing deformation ("snap-through" phenomenon). This 

maximum load will be called the upper critical load (p~r). 

The ratio of the upper critical load to the critical load corr

esponding to the linearized theory of the homogeneous shell is: 

u lin 
P = pcr/pcr . (3) 

Figure 1 illustrates graphically the definitions given above. 

The p values of radially loaded spheres and axially compressed 

cylinders, furthermore of radially compressed short, medium

length and long cylinders are represen'ted by the curves of Fig. 2. 



1.0 

0.5 

o 

p 

Buckling of elastic shells 

Fig.1 
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e 
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1.0 

~n 
. plower 

cr 

w 

Laterall 
compressed 

long, 

medium, 

short 
cylinder 
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spherical shells with increasing initial imperfectian Wo 
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These curves may be closely approximated in the range wolt < 1 

by the expression: 
1 

(4) 
1 + A(wo/t) 

where t is the shell thickness (see in [11]). The value of A 

is different for various shell types. The value of p correspond

ing to wolt = 0.5, p(0.5) (see Fig. 3) can be obtained from the 

literature on shell buckling. The constant A can thus be comp

uted from the formula: 

A 2 [":.,, -1] 
Being aware of the value of the lower critical load (plower) 

cr 

(5) 

(this notation was used by Karman), the value of p (0.5) can be 

assessed from the expression: 

P (0. S) + S 

lower 
Pcr 
lin 

Pcr J (6 ) 

Values of p(0.5) and A are, for long or short cylinders, subj

ected to lateral pressure p(O.S) = 0.59 or 1.00, and A = 1.4 or 

0.0, respectively, and for the axially compressed cylinder and 

radially compressed sphere p(0.5) = 0.25 and A = 6.0. 

Finally, the critical load of the homogeneous elastic shell is 

determined by the for,mula: 

lin 
PPcr (E, t, R), (7) 

where E and R are the modulus of elasticity and the radius of 

the shell res,pectively. 

2. The Influence of the Creep of Concrete 

The effect of creep may be estimated by reducing the value of 

the modulus of elasticity of concrete according to the formula: 

E c E 1(1 + rjJ ) C,o c (8) 

where Pc is the creep factor (see [8]). The initial modulus of 

elasticity can be calculated from the well known expression: 
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E = 6750 FC' . C,o VIC· (9) 

Here f' is the cylinder strength of the concrete in N/mm2 . Ult
c 

imate compressive stress of the concrete obtained with cylindr-

ical test samples. 

The creep factor depends on the thickness of the structure, the 

quantity and quality of the cement used, the water cement ratio, 

and environmental factors. For normal circumstances <Pc depends 

only on the ultimate strength of the concrete as follows: 

40 

¢ c :i; 10 f' + 
(10) 

c 

If only a fraction of the load Po is acting from the beginning, 

and the other fraction Pt begins to act only at a later stage t, 

we may reduce the creep factor <Pc according to Trost [13] and 

Zerna [14] by the formula: 

¢ c 
kO + 0,75 ktpt/Po 

1 + Pt/po 
(11) 

The coefficient k takes into account the decreasing creep sens

itivity of the concrete with increasing time. The value of k 

is 1.8 at the beginning of concrete hardening,l.O at the age of 

one month, and decreases to k = 0.5 for concretes older than one 

year. The value of k valid at the onset of Po is denoted by ko' 

while that valid at the onset of Pt is denoted by k t . 

The meteorological loads act only for a short term, therefore 

the modulus of ,elasticity should be only partially reduced in 

proportion to the ratio of short term load to all loads, but 

the seismic loads do not cause any creep. 

3. Imperfection and Eccentricity 

We have seen in Fig. 2 that the critical load of most shells 

sharply decrease with the initial imperfection. The imperfection 

consists of two parts. One part is the accidental imperfection, 
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the amplitude of which we denote by wo'accid' By evaluating 

measurements on erected cooling towers, we propose the following 

empirical formula for the accidental imperfection! 

wo'accid 

a 
0.05 t + R/t 1000 

1000 + R/t [20
R
OO 1 (12) 

Here the factor "a" represents the influence of the accuracy of 

the erection method. For example, we can assume a = 1 for shells 

with rigid formwork, while for sliding shuttering we can take 

a = 6. 

The other part of the imperfection can be calculated by the 

bending theory of shells. Its amplitude will be denoted by 

wo,calc' 

The superposition of the maximum values of both imperfections 

is rather improbable. Thus, according to the rules of the prob

ability theory, we may take as a 95% fractile the following value 

for the design imperfection Wo! 

w = / w2 + 1. 4 w w . + w2 . (13) o V o,calc o,calc o,accld o,accld 

By doing so, we have taken the probability of superposition of 

the mean values of imperfection amplitudes into account. The 

standard deviation of the imperfection from their mean values 

will be considered in the safety factor. 

We shall see later that the stiffness of the r. c. cross section dep

ends on the eccentricity of normal forces. But only a part of 

the imperfection causes bending moment, i.e. eccentricity. 

Therefore, the relation between imperfection and eccentricity 

can be analysed as follows. If we impose a small deformation 

w onto a shell with a given geometry and state of stress, we can 

determine the corresponding bending moment and the change in the 

membrane forces at any point and in any direction with the aid 

of the classical bending theory. Dividing the bending moment 

by the modified value of the membrane force, we arrive at the 
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magnitude of the eccentricity. Performing this investigation 

for several shell surfaces and for various states of stresses 

the following (approximate) results for the 

the range 0.167 < Wolt < 0.5, was obtained: 

- cylindrical shells: c 1.00; 

- domes: 

- hyperbolic shells: 

c 

c 

0.67; 

0.50. 

4. Stiffness of R.C. Cross Sections 

ratio c = e Iw in o 0 

In the following section we have to deal with the cracks of the 

cross section and with the reinforcement respectively. 

It was shown in [5] that the critical load of shells depends on 

the extensional and bending rigidities of the shell, T and B 

respectively. 

These can be taken into account as a unique, coupled "shell

buckling stiffness" 

K \fBT 
If the eccentrically compressed cross section cracks, the tensile 

stresses are transferred onto the reinforcement, and the rigidity 

of the cross section drops. The typical variation of the rigid

ity decreasing with increasing values of the eccentricity is to 

be seen in Fig. 4. 

The rigidity of the uncracked cross section - which is perpend

icular to the direction of the reinforcement - is Ko ~oKc' 

and in the bisector direction of the perpendicular mesh it is 
1 Ko = 2 (1 + ~o)Kc· After cracking, the shell buckling stiff-

ness of the cross section perpendicular to the reinforcement 

direction and for very large eccentricities of the compressive 

force is Koo = ~ooKc' where Kc is the stiffness of the uncracked 

concrete cross section. In the bisector direction the stiff

ness is smaller, but it is increased by the effect of "tension 

stiffening". According to more accurate analysis we can take 

the Koo into account in all cases. 
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5. The Critical Load of Cracked, Elastic R.C. Shells 

Fig. 5 shows the load-deformation (or - eccentricity) diagram 

pIe) of the homogeneous elastic cylindrical panel (see in [9]). 

In the lower part of Fig. 5, the shell buckling stiffnesses K of concrete 

and r.c. cross sections are shown for varying values of the 

eccentricity. 

The ordinates p of the "homogeneous elastic" load-deflec1:ion 

curve p(w) have to be reduced proportionally to the diminishing 

buckling rigidity of the shell K(e). Thus, for concrete and 

r.c. shells respectively, the dotted and dash-dotted lines are 

obtained. The maximum values of these curves give the elastic 

critical loads belonging to the assumed imperfection amplitude 

for concrete and r.c. shells. It can be seen that the critical 

load of the r.c. shell is smaller than the critical load of the 

homogeneous shell, and the critical load of the concrete shell 

is smaller than the critical load of the r.c. shell. 

Finally, we can set up the following formulae for r.c. shells: 

e 
o < 0 5 u t .: Pcr,rc 

e 
o u 

t > 0.5: Pcr,rc 

1 + 1/Jo 

2 

(l4a) 

(l4b) 

The critical load of the concrete shell without any tensile str-

ength can be well approximated by the formula 

u 
Pcr,c 

2e 1.5(1+w Ie ) 
,lin (l _ ---.Q) 0 0 
Pcr t (15) 

In r.c. shells two kinds of reinforcement are generally used: 

the single-layer grid (placed, as a rule, in the middle of the 

thickness) denoted by index 1, and the double-layer grid (placed 

on the two sides of the cross section), denoted by index 2. 

The 1/J values, calculated on the basis of the theory of r.c., 

are shown in Fig. 6 and in Table I. 
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Table I. 1/1 values. 

nJl 0 0.05 0.1 0.2 0.4 0.15 0.30 0.50 

1/101 1. 00 1. 03 1. 05 I 1.10 I 1.18 1. 07 1.14 1.23 

1/10 ,2 1. 00 1. 05 1.10 1.21 1. 42 1.16 1. 31 1. 52 

1/1 00,1 0 0.14 0.21 0.32 0.46 0.27 0.39 0.51 

1/100 2 0 0.18 0.29 0.45 0.73 0.37 0.60 0.86 , 

It can be seen that the rigidity of the double-layer mesh is 

greater than the rigidity of the single-layer mesh. 
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In shell structures the usual reinforcement is mostly weak, so 

that 1/10 only slightly exceeds unity. If we use the approximation 

1/10 ~ 1, ~e can further simplify the procedure as follows (see 

in [10]). Introducing the ratio: 

(16) 

we can determine the critical load of the cracked, elastic r.c. 

shell by the formula: 

8 lin 
P Per (17) 

The numerical values of 8 for different values of eo/t, eo/wo 

and 1/1 00 are compiled in Table II. The values corresponding to 

p(O.5) = 0.25 refer to shells which behave like the axially 

compressed cylinder. Those values have been plotted in Fig. 7. 

The domain between the values 1/1 = 0 and 0.2 corresponds to the 

cases of practice. 

Looking at the horizontal lines for the values 1/1 = 0.2, it can 

be seen that the decrease of 8 is smaller at smaller values of 

p (0.5). The reason for this is that the decrease of the critical 

load is greater without cracks than in the other cases. 

Multiplying the values of P and 8 for the axially compressed 

cy linder and for the value 'I' = 0.2, it can be seen that rein

forced concrete shells are more sensitive to imperfections than 

homogeneous shells (Fig. 8). 
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Table II. Values of the factor S. 

p (0.5) l/! I eo/wo I eo/t=O 0.1 0.2 0.3 0.4 >0.5 

1.0 i 0.5 i 1.0 1.0 1.0 1.0 1.0 1.0 1.0 i 

0.6 0.5 1.0 0.75 0.64 0.61 0.6 0.6 1.0 0.80 0.69 0.63 

0.4 0.5 1.0 0.62 0.46 0.41 0.4 0.4 1. 00 1.0 0.71 0.53 0.44 

0.2 0.5 1.0 0.49 0.28 0.21 0.20 0.2 1.0 i 0.61 0.37 0.25 0.21 
i 

0.0 0.5 1.0 0.37 
i 

0.10 0.02 0 0 1.0 0.51 
I 

0.22 0.06 0.01 
t-- ---:- i 0.5 I 

1.0 1.0 1.0 I 1.0 1.0 1.0 i 1.0 1.0 
, I 

0.6 0.5 1.0 
! 0.77 0.65 0.61 I 0 6 

1.0 I 0.82 0.70 0.63 I . 0.6 
I 

0.4 0.5 1.0 
I 

0.65 0.48 0.41 I 0.40 0.4 0.75 1.0 0.73 0.55 0.45 0.41 

0.5 i 
0.53 0.30 0.22 ! 0.20 0.2 1.0 I I 0.2 1.0 I 0.64 0.40 0.26 I 0.21 

0.5-I--- I I - f---, 
0.42 0.13 0.02 i 0 0.0 1.0 i 0 1. 0 ' 

, 
0.55 0.24 0.08 I 0.01 

) 

0.5 I ! , 
1.0 i 1.0 1.0 1.0 1.0 1.0 1.0 1.0 i 
0.6 0.5 

I 1.0 
[ 

0.81 0.67 ! 0.61 0.60 0.6 1.0 0.85 0.72 0.64 0.61 
: 

0.50 0.4 0.5 

I 
1.0 i 

0.71 0.51 I 0.42 0.40 0.4 1.0 0.77 0.58 I 0.46 0.41 

0.5 , I 0.61 0.34 ; 0.23 0.20 0.2 1.0 i 1.0 i 0.69 0.44 ! 0.28 0.20 0.2 
I 

0.5 
I I 0.51 0.18 I 0.04 0 0.0 i 1.0 0 1.0 I , 

0.61 0.30 ! 0.10 0.01 I 

I 
I 

1.0 0.5 1.0 I 1.0 1.0 1.0 1.0 1.0 1.0 I I 
I 

0.6 0.5 1.0 I 0.92 0.74 0.63 
I 

0.60 0.6 1.0 i 0.93 0.79 0.67 0.61 
I 

0.5 I 0.88 I 0.60 0.44 0.40 0.25 0.4 1.0 
, 

0.4 1.0 I 0.89 0.69 0.51 0.42 I 

0.2 0;5 
1.0 0.84 0.47 0.26 0.20 0.2 1.0 0.86 0.58 0.34 0.22 

0.0 0.5 1.0 0.81 0.34 0.07 0 0 
: 1.0 0.82 0.48 0.18 0.03 
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6. ~ffect of Plasticity 

If during shell buckling, the deformations exceed the elastic 

limit of the r.c. shell and they become plastic, the critical 

load becomes less than that given by the elastic theory. Hence 

it is necessary to take the influence of plasticity into consid

eration. 

More accurate investigations on r.c. shells made of approximate

ly ideal elastic-plastic material [4], [7] showed that the crit

ical load, which also considers plastic deformations, can be 

approximated within an error limit of ± 10% by the second-order 

Dunkerley formula: 

+ 1. (18) 

Here Pcr is the critical load which also considers plasticity, 

pU is the upper critical load in the case of linearly elastic cr,rc 
material, and Ppl is the load which causes plastic failure assum-

ing that the resultant force referred to in the cross-section 

acts with the initial eccentricity eo' which may be calculated 

by the strength theory of r.c. Typical variations of Ppl can 

be seen in Fig. 9. 

The factor S, including the effects of plastic deformation can 

be calculated by the formula 

s 
Pcr )1+ [P~r,rc (19) ----

2 u 

J 
Pcr,rc 

_ Ppl 

7. Critical Load for Cracked R.C. Shells of Plastic Behaviour 

The plastic behaviour of cracked r.c. shells can be considered 

by the previous formula 

(2) 

To obtain a better view, the surface of the critical load was 

depicted in Fig. 10. 
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We computed the critical loads of all the experimental r.c. she

lls reported in the literature by means of Eq. (2) and compared 

them with the experimental values. The results are plotted 

against R/t in Fig. 11. Computing the probability of these 

results, we obtained as indicators the mean value 1.0 and 

the variance 11%. This shows that our procedure presented here 

is fairly realistic. 

8. The_Safety Factor [12] 

According to the probability theory, the safety factor can be 

expressed as follows: 

Yo 
y = (20) 

1 - 2 uR 

Defining the safety according to the ACI Standard we obtain 

Yo = 1.16. The resultant coefficient of variation can be comp-

uted from the formula: 

= VV~oad + 
2 2 2 2 (21) vR vE + Vcp + v + v pl cr 

Here vload is the coefficient of variation of the average load; 

vE is that of the critical load of concrete or r.c. shells, 

taking the dispersion of the modulus of elasticity E beyond the 

limit of nominal strength also into account. Since the critic

al load is linearly proportional to E, vE is in fact, the co

efficient of variation of E; Vcp is the coefficient of variation 

of the critical load due to that of the creep factor CPc of the 

concrete; vcr is the coefficient of variation of the critical 

load due to the change in the radius of curvature R caused by 

the coefficient of variation of the imperfection amplitude w ; 
• 0 

vpl is the coefficient of variation of the failure load due to 

that of the strength of the material. 

We thus arrive at the values vload = 0.135; vE = 0.1; Vcp = 0.16; Vcr = 

0.24; vpl 0.15. We have to take v E = Vcp = vcr = 0 for fail

ure without buckling, and Yel = 3.5 for elastic buckling. 

In practice, we need a unique safety factor. This can be comp

uted by introducing Ypl and Yel into formula (18), and taking 
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into account the snap-through behavior of ·the shell through the 

factor p(0.5). We thus obtain the unique safety factors shown 

in Table III. 

Table III. The Values of the Unique Safety Factor. 

p (0.5) 0.25 0.50 0.75 1. 00 

u 2.00 2.00 2.00 2.00 Ppl/Pcr,rc=o Ypl 

0,5 2.39 2.33 2.28 2.22 

1,0 2.87 2.75 2.63 2.51 

2,0 3.27 3.10 2.92 2.75 

00 3.50 3.30 3.10 2.90 Yel 

We determined the critical loads of several erected large r.c. 

concrete domes and plotted them in Fig. 12, compared with their 

actual loads. On the basis of this comparison, we believe that 

if we compute the critical load with our method by assuming the 

proposed safety factors, which give an unique safety factor 2.9 

at R/t = 500, we obtain a safety level corresponding to the 

practice followed until now. 

9. Numerical Example 

Let us perform the stability analysis of the domes of the Bel

grade Exhibition Centre, consisting of a spherical surface with 

radius R = 56.2 m, covering a square flat area of 48 x 48 m. 

The she~ls are'supported by vertical arches which rest on col

umn rows, so that the shells cannot exert lateral thrust. The 

shells have a thickness of 90 mm, which increases to 200 mm in 

the corners. Due to lack of detailed data, we suppose that the 

shell wall has been thickened to 140 mm along the edges. They 

are made of co~crete with a cube strength of 22.5 N/mm2 , re

inforced by mild St37 steel (ault = 370 N/mm2). ~ 6/250 mm 

reinforcing meshes were applied, in the central zone as a single 

layer reinforcement, and along the edges in double-layer arrange-
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ment near the surfaces of the shell wall. The area of reinforce

ment in one direction is, accordingly, 113 mm2/m in the single

layer zone. 

We perform the weight analyses with estimated data, assuming 

90 mm thickness in the central part of the shell. 

10 mm damp course 0.15 kN/m2 

90 mm cork heath isolation 0.14 kN/m2 

r.c. shell 2.16 kN/m2 

2.46 kN/m2 

We further assume 0.8 kN/m2 snow load. The cylinder strength 

of the concrete is: 

f~ = 0.8 0cube = 0,8 (22.5) = 18 N/mm2 • 

The modulus of elasticity is given by Eq. (9): 

E = 6750"Vi8 = 28640 N/mm2 . c,o 

The final value of the creep factor is determined from Eq. (10): 
46 

1. 43. 
10 + 18 

Three quarters of the load consist of dead load while the re

maining 25% is the snow load occurring only at a later date for 

a not very long duration. Hence we set k t = 0,5 for the snow 

load and, for the benefit of safety, we assume k = 1. Accord-
o 

ingly, we can compute the modulus of deformation from Eq. (8) 

with the value of the creep factor from Eq. (11): 

28640 
12970 N/mm2 

1+ 1 + 0.75(0.5)0.33 1 43 
1 + 0.33 • 

The ratio of the moduli of deformation of steel and concrete 

is: 
E st 206000 n ~ 12970 15.9. 
c' 

Due to the different stress states, the two kinds of reinforce

ment and the variable thickness, we have to investigate the 

stability of the shell at three places: in the middle of the 
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shell, near the edges, and in the corners. We present here the 

stability analysis at the centre only. 

stability analyses at the centre of the shell 

nJ.! = 15.9 113 
9000 0.0199. 

Interpolating from Fig. 6 we obtain: 

'1'0,1 1. 000 + 0,030 0.0199 
0.050 

'I' = 0.140 0.0199 = 0.055. co,l 0.050 

1. 01, 

In the middle part of the shell the bending moment is zero, 

hence the imperfection amplitude consists only of the accidental 

part: wo,design = wo,accid •• Assuming an average value, we have 
from Eq. (12): 

wo,design 0.05 (90) + 56200 [ 1 
2000 5620/9 + 

1000 
1000 J 

5620/9 

eo,design = 0.67(17.1) = 11.46 rnrn. 

From Eq. (4) and (5) we obtain: 

p 

The linear 

lin 
Pcr 

1 
1 + 6 17.1 

90 

critical load 

Et2 
1.2 -2-

R 

Equation (7) yields: 

0.467 (39.5) 

and Eq. (15) gives: 

0.467. 

of the sphere is: 

12970(90)2 
1.2 2 

(56200) 

2 18.5 kN/m , 

0.0395 N/rnrn2 

2 39.5 kN/rnrn , 

u 
Pcr,c 39.5 [1 2(1~046)J 

2 

1.5(1+17,1/11,46) 

13.2 kN/m • 

Equation (14/a) yields: 

17.1 rnrn. 



u 
Pcr,rc 

1 + 1.01 13.2 + 0.055(18.5-13.2) 
2 
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13.6 kN/m2 • 

We compute the plastic failure load neglecting the reinforcement, 

assuming a 10 mm tolerance in the thickness and considering only 

that part of the concrete cross section on which the load is 

acting centrally 

2(80)18 
56200 [ 1-2(11.46) 1 

80 -4 

0.0366 N/mm2 2 36.6 kN/m • 

Equation (19) gives: 

1,. (~3. ')2 = O. 94 . 
\36.6 

Hence, the upper critical load of the reinforced concrete shell 

becomes: 

Pcr = 0.94 (13.2) = 12.4 kN/m2 • 

The load perpendicular to the shell surface consists of the 

shell's own weight and of the snow load: 

Pactual = 2.45 + 0.8 = 3.25 kN/m2 • 

The safety factor thus becomes: 

y = 
Pactual 

12.4 
3.25 = 3.8 > 3.4 

which can be regarded as sufficient. 

10. Summary. 

In this paper the results of the nonlinear shell buckling theory 

have been generalized and applied to r.c. shells. The solution 

considers the special properties of r.c., i.e. cracks, plast

icity, creep, and quantity of reinforcement. The proposed method 

adequately describes the results and the situation of erected 
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domes. 

The main results of our research are the following: 

the critical load of the r.c. shell is reduced by the plast

icity, the creep, the imperfections and the cracks of the 

concrete; 

- the critical load will be decreased by the permanent charac

ter of the load and the imperfection of the shell; 

- the critical load of the r.c. shell will be increased by 

increasing the quantity of reinforcement and by arranging it 

in two layers. 
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Shell: A Second Order Differential Equation 
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Summary 

In the case of a Loss-Of-Coolant Accident an impulsive pressure 
acts on the core-support-barrel within the nuclear reactor, and 
the danger arises that the out-of-round shell will buckle. The 
dimensionless equation governing the growth g(t) of initial im
perfection g W'm;n) = 1 is 

E{g(t;n)} :: gil -pg'cosec t-qg-r = 0 

as derived in Horvay-Veluswami [7]. Here g is amplification, , 
dimensional time, 'm time to failure, n natural frequency of me!!! 
brane oscillation. t = n('m - ,) is reversed time, Le., n'm re
presents the instant of initiating the impulse, t = 0 the time of 
collapse. p(n), q(n), r(n) are functions of material properties, 
geometry (i.e., dimensions of the shell), and the buckling mode 
n; r in addition depends also on the loading condition. The math 
ematical problem: to so solve E =0 that the boundary conditions 
be satisfied: (a) g(n'm) = 1 (normalization condition), (b) g' 
(n'm) = 0 (zero initial velocity), (c) g'(O) = 0 (zero final v~ 
locity), (d) g (0) = peak value (solve the E = 0 problem vs nand 
then select the value ncrit for which g reaches peak value) . 
Note that conditions (c) and (d) are redundant, because when peak 
value is reached, the velocity is zero. Three methods of solu
tion are consLdered: I. Power series expansion in t (in conjunc 
tion with Pade approximants), exceedingly rapid convergence is 
observed; II. Cosine series solution, and its pair obtained by 
the variation of parameters method; III. Pseudo-Hell analysis. 
But only I is carried to completion, including a numerical con
firmation that for the aluminum shell of Vaughan-Florence [4], 
the results coincide with those of Horvay-Veluswami-Stockton [6], 
based on time-consuming (and eo ipso, expensive) numerical for
ward integration, which also requires a passage to 00 in the num 
ber N of integration steps. Because of the excellence of I, the 
traditional method II is stopped short of numerical calculations. 
While III constitutes a fascinating counterpart of the Hill-Mathieu 
theory, it would primarily reveal behavior of the solution of 
E = 0 at large negative values of t, whereas the physical problem 
terminates at t = 0; for this reason no effort was made to carry 
out the analysis III, only its principal features are outlined. 

* This paper represents joint work of the authors while they were 
associated with the University of Massachusetts. 
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Introduction 

Dynamic buckling of rigid-strainhardening plastic cylindrical 

shells, as initiated by an inward impulse, was first studied by 

Abrahamson-Goodier [1). Their work was continued by Anderson

-Lind~erg [2), Florence-Vaughan [3), Vaughan-Florence [4) (to 

be referred to hereinafter as VF), and others; for literature 

survey see Jones lSI, SII]. Using VF as point of departure, 

Horvay-Veluswami-Stockton [6, call it HVS), and Horvay-Veluswami 

[7, call it HV] reconsidered the VF analysis. An inward 

membrane motion of velocity u is governed by the equation o 
(u = du/d,) 

(1) 

where the dimensionless quantities 

(2) 

are inward displacement (wo = dimensional displacement, a = 
= shell radius), Vo = initial velocity due to impulse, ,= time 

(t = dimensional time), ~ = natural frequency of oscillating 

membrane motion, p = mass density, Et = strain-hardening 

coefficient, while 

k - f: /f: x 8 
(3a) 

is the ratio of axial strain rate to hoop strain rate, having, 

seen VF, an experimental value (L = length of shell) 

k _ ~ e-L / 4a 
2, 

Finally, 

(3b) 

(3c) 

is time to maximum amplitude of uo (i.e., failure) when the ~2 

term in (1) is neglected. The notation 

(2-k) /Kl (4a) 



o = initial yield stress (4b) 

is used. One finds that 

sin rlT - COSrlT 
(5) 

is the ensuing membrane displacement. (All this may be found 

in VF). When the rl 2 term of (1) is not neglected, then 

rl- 1 arctan rlTf (6) 

is the time to maximum deflection; this reduces to Tf when the 

series expansi.on of the arctan is terminated after the first 

term, on assumption of small QT f • 

The shell is assumed to have initial imperfections (u is 

dimensionless bending deflection, bar denotes initial value) 

u(O) I A(O,n)cos ne = u = w/a = I a cosne 
o - 0 n 

(7) 

(We assume no axial dependence of initial velocity, or of 

imperfections, or of loading; for consideration of the latter 

case see Veluswami-Horvay [8].) It follows that the initial 

out-of-roundness an induces a "bending response" 

(8) 

which is governed by the equation HV(11); 

d 2A dA /dT -n 4 _n 
--+nes ----
dT2 dUo/dT 

(9) 

where h is wall thickness, and 

(10) 

It was shown in HV that equation (9) for the "amplification" 

A(n) may be rewritten in the form 

o (11) 
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where 

and 

T 

t llT T 
m 

(12 ) 

(13) 

are reversed time referred to the maximum membrane deflection 

instant as reference zero. The coefficients in (11) have the 

expressions 

Correspondingly, 

T ( 15a) 

represents the initiation time for inward motion uo ' 

T o ( 15b) 

represents the instant of maximum membrane deflection (where 

duo/dT) = 0). We cannot progress to 

T -1 ( 15c) 

which would represent the instant of resumption of zero 

membrane deflection if the original plastic loading line (and 

not the elastic line which governs) were followed also in 

unloading. 

The equation E o is subject to the boundary conditions 

A( 1) 1, d~ A (1 ) 0, d~ A (0) o (16a,b,c) 

The critical' n is to be so determined that all three boundary 

conditions be satisfied, and that at the same time 

A(O) peak value ( 16d) 



However one notes from (11) that all solutions bounded at T = 0, 

i.e., at T = Tm' obey (16c). For, if dA(O)/dT = 0 were 

violated, the second term of E would become unbounded, causing 

also the unboundedness of A(O) (or of d 2 A(O)/dT 2 ). So condition 

(16c) is omitted, and only (16a,b) need to be specified. It 

will be seen furthermore in Section 3 that (16d) is the 

boundary condition which determines the value of ncrit . 

Remember that the equation (1) came about, see VF, by equating 

the resultant membrane hoop force to the inertia force 

Ne = ha = aqhd 2 w /dt 2 (17) e,av 0 -

and noting that, in accordance with VF (17), (16) 

(18) 

(The average is taken over the shell thickness.) Note that a 

is the initial yield stress. However, in the light of VF's 

decision to neglect the ~2 term in (1), their recommendation 

was that mean yield stress value over the loading range be 

used for a. (In HVS and HV, however, the mean yield stress 

value was assigned, in error, to a in spite of the fact that 

the ~2 term was retained. In this sense the a values used for 

the aluminum shell and the steel sllell in HVS, HV and [8] are 

excessive. But the present paper will retain, for convenience 

of comparison, the previously used a values.) 

In the present paper our interest concentrates on establishing 

more compact metDods for solving for A(n) from (11), (16) than 

was deve'loped in HVS and HV for solution from (9), and 

concurrently, determining the critical mode number ncrit at 

which the amplification A(n) becomes most severe. 

Method I. Power Series Solution of the Governing Equation; Pade 

For convenience we rewrite (11), (16) in terms of the backward 

variable 

t (19 ) 
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Replacing A by g, and using prime to denote t differentiation, 

we obtain 

E{g(t;n)} _ g"sin t-pg' -qgsin t-rsin t o (20a) 

(20b) 

(Note that the symbols p, q, r, which are used in HVS, serve a 

different purpose: they denote n- 4p, n- 4 Q, n- 4 R.) 

Inasmuch as for the aluminum shell of HVS for which we shall 

illustrate our results (see (33)) 

nTm = 0.86859, p 0.88355 (21 ) 

while for the steel shell of HV it is 

nTm = 0.47969, p = 2.2352 (22) 

we are prompted to formulate the problem in terms of the 

backward variable t, so that (-forward time)1+p in (24) below 

make sense. (One may safely say that p is never an integer. 

If it were, then the t 1+p factor of (24) would be replaced by 

a log t factor, as in the Bessel equation.) Accordingly, we 

specify, with respect to t, the boundary conditions 

O. g' (0) o (23a,b,c) 

g(O,ncrit ) = peak value (23d) 

The solution to (21) may be written in the form 

(24) 

In the above -r/q is the particular integral, and G1 ,t1+p G2 

represent the complementary function; A and B are coefficients 

to be determined, for assumed n, from the boundary conditions 

(23a,b) . 



231 

We write the complementary function as 

(25) 

and find, as stated in (24), that 

Ci. = 0, 1 + P (26) 

are the roots of the indicial equation. The first solution we 

label GI , the second t 1+p G2 • For the coefficients in GI we 

retain the notation c k ' while the coefficients in G2 we la1:el ~. 

In this fashion one obtains, on choosing 

the expressions 

k ~ 1: 

d o 

1 k-1 . [ 
ck = I (-1 ) J c q-

2k(2k-1) j=O k-j-1 (2j+1)! 

_ (2k-2-2j) (2k-3-2 j )] 
(2j+ 3) ! 

k=1 
d k I (-1 ) j d [q 

2k(2k+1+p) j=O k-j-1 (2j+1)!-

_ (2k+p-1-2j) (2k+P-2-2 j )] 
(2j+3) ! 

The Boundary Value Problem 

(27a) (26a) 

(27b) 

(28b) 

The expressions (24), (25), (26) bear out our earlier statement 

that (23c) is automatically satisfied by all solutions of (20). 

We satisfy (23a,b) by solving simultaneously for A(n) and B(n). 

Denoting 

g' (t) (29) 

where 
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G3 1 22 t 2 C 3 t 4 4 
C 4 6 

+ + 3 - + -t + ... 
C 1 C 1 C 1 

G4 = 1 + p+3 d t 2 + 
p+5 d 2 t4 + p+7 d t 6 + ... (30) 

p+l 1 p+l p+l 3 

we determine A(n), B(n) for a range of n values. Finally we 

seek out the ncrit value for which the curve g.(nTm in) reaches 

a maximum. 

Recognizing that QTm,in practice, is a relatively small 

quantity « 1, see (21», the aim is to replace the numerical ,., 
forward integration of (9), as carried out in HVS and HV for 

a variety of n followed by drawing the Amax vs n curve and 

thereby finding the pair ncrit' Apeak' by use of the explicit 

solution (24). This is carried out most conveniently by the 

Pade approximant scheme. We shall determine A(n), B(n) and 

g(QTmin), in accordance with the Appendix, by 

Pade [N/N] = [1/1], [2/2], [3/3] (31) 

The Aluminum Test Shell of VF 

The geometrical parameters and the material properties, see HVS 

(21a), are as follows: 

a 0.037338m = 1.47 in, h = 0.001651m 

= 0.076293m = 3.0037 in 

0.065 in, L 

p 2706kg/m 3 = 0.0 3253 Ibsec 2 /in4, a = 289.58MPa 

= 42000 psi, Et = 2275MPa = 330000 psi 

One obtains the derived parameters, see HVS (23), HV (20a) i 

k 0.3, Kl = 1.58, K2 = 1.5395, K3 = 1.07595 

Tf= 0.17324, Tm = 0.12731, QTm 

t(sec) 0.032609T 

while for 

0.86859, 

(32) 

(33) 
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n 17 (34a) 

the coefficients of the governing equation acquire the values 

P 

P 

0.76744, 

0.88355, 

Q 

q 

15.9919, 

21.197, 

R 

r 

11.047 

14.642 (34b) 

In calculating the function values, as suggested by the results 

of HVS, e.g., for n = 17: 

G1 = 1 + 91.010623t 2 + 231.037798t 4 + 203.914902t 6 

+ 92.346862t B + 25.737342t 10 + 4.930321t 12 

+ 0.702892t 14 + 0.079656e 6 

+ 0.03661t 20 + 

+ 2.764737t 2 + 2.558682t 4 + 1 .19743 3t 6 

+ 0.342110t 8 + 0.066883tlO + 0.029673t12 

+ 0.021109t 14 + 0.03107t 16 + 0.05931t18 

+ 0.06772t20 + 

+ 5.077161t 2 + 6.721685t 4 + 4.058729t 6 

+ 1.413975t 8 + 0.325038t 1O + 0.054058t 12 

+ 0.027002t14 + 0.03755t16 + 0.04726t18 

+ 0.05662t20 + 

+,5.700405t 2 + 7.992430t 4 + 5.011826t 6 

+ 1.795153t 8 + 0.412596t 1O + 0.071299t12 

+ 0.029353t14 + 0.021018t 16 + o .0 498 3t 18 

+ 0.05897t20 + 

we Pade Gk individually, e.g., 

(35) 

On using K = 0,1 we obtained unreasonable results; this must 

probably be attributed to the fact that the Gk commence as 

series with ascending (positive) coefficients, and to 

effectively use Pade it is desirable to have a descending 
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series on hand. [N/N] = [1/1] gave unsatisfactory results; 

evidently for this problem Pade must be carried at least to 

[2/2], to give satisfactory results. [4/4] was also tried, 

using explicit formulas like (A4). However the results were 

unsatisfactory. This must be ascribed to round-off errors. 

An exploration of double precision calculations for other cases 

suggests that this may perhaps eliminate the difficulty. But 

memory storage requirements were found to be excessive, and so 

the effort to carry out a double precision [4/4] calculation was 

abandoned. It may very well be, as suggested by [13], [14] 

that using the Baker recurrence formulas [15, p. 77] the 

difficulty with round-off errors may be eliminated or at least 

mitigated. Because of time requirements this avenue was not 

pursued. 

Table 1 below shows some numerical results for n = 17, and 

K.N = 2,2; ... ;5,3. (If need be one could go to higher Nand 

then extrapolate to N = 00 in the fashion of HV Fig. 8b. But it 

is found that there is no need for this.) 

TABLE 1. Parameter Values for n 17 

K,N 2,2 2,3 3,2 3,3 5,2 5,3 

A 103.445 20.217 20.975 20.261 20.263 20.262 

B -8476.443 -1656.565 -1718.683 -1660.233 -1660.400 -1660.327 

g(O) 102.754 19.526 20.284 19.571 19.573 19.572 

Making similar calculations for n = 10 through 24 one obtains 

the curves of Figs. 1,2. The infinities in the B(n) curve 

indicate that the determinant of the system for A and Bvanishes 

at n = 17.5 and 23.1. 

One thus finds for the aluminum test shell of VF at Lm 

ZVH: n crit 

gpeak 

17.0: A 

19.572 

20.262, B -1660.327, 

(37) 

This compares with the more time consuming and (because of 

truncation and round-off errors in the 4th order Runge-Kutta 

scheme) probably less accurate results 'of HVS: 
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HVS: ncrit = 17.0: gpeak 19.589 (38) 

Method II. The Cosser Solution 

Substitute 

00 

o 
I A m cosmt (39) C 

into the homogenized (20a), 

g"sin t - pg' - qgsin t o (40) 

One finds 

Ao = 0, Al = 1 (normalization) (41a,b) 

The other coefficients of the cosine series ("cosser") solution 

are obtained from the recurrence formula 

{ (M+1) 2 + q}~+1 + 2PM~ - {(M-1) 2 + q}~-1 

A series 

s I Bm sinmt 
1 

o (42) 

(43) 

cannot be a Second solution, for one finds from the recurrence 

formula that 

o (44) 

In the usual way S is determined by substituting 

S k(t) C(t) (45) 

into (40), which then reduces to 

k' (2C' sint + C) + k" C o (46) 

Solving for k one arrives at 
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g coC + CIS, S (t) = C (t) Jot dtIexpLJotl db I 1 1+2sint2 C'(t2)/C(t2) \ 

(47) 
containing two arbitrary constants, co' c l . For small t the 

power series solution of Section 2 appears most useful. 

Method III. Pseudo-Hill Solution 

We write in accordance with the familiar theory of differential 

equations with periodic coefficients, see Whittaker and watson 

[9], Stoker [10], Strutt [11] (the yield stress symbol 0 won't 

be used hereafter; henceforth io will denote the characteristic 

exponent), 

g (48 ) 

and find, relabeling M = m-l, m, and m+l, respectively, that 

-{(0+M+l)2 +q}~-l] = 0 (49a) 

or written out in detail for the 5 central equations 

M = 

-2: -{(0-3)2+q}A_3+2p(0-2)A_2+{(0-1)2+Q}A_I = 0 

-1: -{ (0-2) 2+ q }A_ 2 +2p (0-1 )A_ I+(02+ q )Ao = 0 

0: (49a) 

1 : -{02+q}AO+2p(0+1)AI+{(0+2)2+q}A2 = 0 

2 : -{ (0+1) 2+q }AI +p (0+2)A 2+{ (0+3) 2+q ) }A 3 = 0 

The value 0 is determined from the requirement that the infinite 

system be consistent: 

M -3 -2 -1 0 2 3 

I ~ -2 ,-{(a-3)2+q} 2p(a-2) {(a-1)2+q ) 0 0 0 0 

-1 0 -{ (a-2) 2+q} 2p(a-1) {a4q} u 0 0 

0 fl ;; 0 0 -{(a-l)2+q) 2pa {(a+1)2+q 0 0 = 0 

0 0 0 -{a 2+q} 2p(a+1) {(a+2) Z+q} 0 

0 0 0 0 -{ (a+l)Z+q) Zp(o+Z) {(a+J)2+q) (50) 
--.,." 
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Several observations about the roots 0 are immediate. (a) If 0 = s 

is a root, then so is Sconjugate. This, in the familiar manner, 

is an immediate consequence of the fact that the coefficients 

in (50) are real. (b) If o=s is a root, then so is o=s±k, 

k = integer. This follows from the fact that by relabeling 0 in 

(51) as s + k, the infinite determinant does not change; in 

particular, since s = 0 is a solution, hence so is k = any integer. 

(c) If 0 = s is a root, so is -s. Proof: relabel. 

On expanding by the zeroth column we convert (50) into the more 

convenient from 

2p(0-1) _{ (0-2) 2+q } 0 0 

t-,* :: 2po { (0-1 ) 2+q } 2p(0-2) _{ (0-3) 2+q} 0 x 

0 { (0-2) 2+q } 2p (0-3) _{ (0-4) 2+q } 

2p(0+1) {(0+2)2+q } 0 0 

x _{ (0+ 1) 2+q } 2p (0+2) {(0+3)2+q } 0 + 

0 _{(0+2)2+q} 2p (0+3) {(0+4) 2+q } 

2p(0-1 ) _{ (0+2) 2+q} 0 0 

+(02+q ) {(0+1)2+q } 2p(0+2) _{ (0-3) 2+q} 0 

0 {(0-2) 2+q } 2p(0-3) _{(0_4)2+q } 
x 

{(0+1)2+q} 0 0 0 

_{ (0+ 1) 2+q } 2p(0+2) {(0+3)2+q} 0 
x 

0 _{ (0+2) 2+q } 2p(0+3) {(0+4)2+q } 

2p (0+ 1) {(0+2)2+q} 0 0 

_{ (0-1: 1) 2+q } 2p(0+2) {(0+3)2+q } 0 x 

0 _{(0+2)2+q} 2p(0+3) {(cH4) 2+q } • 

_{(0_1)2+q } 0 0 0 

{(0_1)2+q } 2p(0-2) _{ (0-3) 2+q } 0 
x 

0 {(0_2)2+q } 2p (0-3) _{ (0-4) 2+q } 
0 

(51 ) 



The mathematical interest in equation (40) stems principally 

from the fact that it appears as a counterpart to the Mathieu 

differential equation. The Floquet theory, e.g., [9, p.412], 

applies unchanged. The unnatural feature is that the solution 

pair 

1 , o (52a) 

0, (52b) 

constituting the fundamental pair in the Mathieu theory, e.g., 

[12, p.283], must be modified, inasmuch as G' (0) == OJ hence 

condition (52b) cannot be prescribed. 
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In the Hill equation there is no first derivative term and the 

periodic terms all multiply only g(t) in (42). Most 

importantly, the structure of the determinant is such that none 

of the diagonal terms vanish, so that all equations may be 

divided by the coefficient of the diagonal term, thus creating 

in the determinant all 1 in the main diagonal, while the off

-diagonal terms become, upon division by the main diagonal term 

suitably small so that convergence of the infinite determinant 

is assured, and an explicit formula may be obtained for the 

roots o. However, in our (50) we cannot reduce the diagonal 

terms to 1, because the divisors may take on the value o. 

The key problem-becomes -to establish the counterpart of the 

familiar explicit solution of the Hill determinant h. = O. A 

further problem is to expand the solutions of the boundary 

value problem in terms of the pseudo-Hill functions. 

While some progress has been made in exploring the solutions of 

h. = 0 by successive approximations, presentation of these partial 

results will be postponed to a later occasion, when a complete 

theory of /', = 0 will be available. 
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Appendix. Pade Approximant Scheme 

We denote all series G1 , G2 , G3 , G4 by 

Z 1 + a Z + a Z + ••• + (At) 

(e.g., for Z = Gl: Z = t 2 , a k = c k ), and by Pade [13,14] we 

represent Zn' the partial series for Z up to power zn, by ratios 

of polynomials 

n, N 
r 

Vc 1 D Dc Z 
c 

+ Z + ... + (A2) 

Using the abbreviations 

k4 a 2 - a 1 a 3 , ks a 2 - a 2a 4 2 3 (A3) 

and restricting ourselves to the diagonal sequence, where r = c, 

we find the approximants N = 1 ,2 ,3: 

N 1 : Z2-[1/1]: D1 - a 2/ a 1 

N1 a 1 + Dl 

N 2 : Z4-[2/ 2 ] : D1 -(a2a3-ala4)/k4 

D2 -(a 3-D 1a 2)/a 1 

N1 a 1 + D1 

N2 a 2 + a 1D1 + D2 

N 3: Zs-[3/3]: D1 - { (a 3 a 5 -a 2 as) k 4 (a2 a 4-a 1a S) k s } I 
I { (a 3a 4-a 2a S) k4 (a 2a 3-a 1 a 4 ) k s } 

D2 -{a 3a S-a 2a S + (a3a4-a2aS)D1}/ks 

D3 -{as+a4D1+a3D2}/a2 

Nl a 1 + D1 

N2 a 2 + aID 1 + D2 

N3 a 3 + a 2D1 + a 1D2 + D3 
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Summary 

The great interest of mixed, hybrid, or complementary energy principles 
lies in the search of more refined stress-fields than by use of the 
primal method, in particular in zones of high stress-gradients. Moreover 
the accuracy of the stresses is of primary importance in buckling and 
post-buckling problems. 
After having recalled the author's extension of the buckling criterion to 
various mixed principles by means of a very general method, one applies 
these criteria to the case of thin elastic or elastoplastic shells 
without shear strain, and in particular in the case of a surf~ce 
principle of complementary energy with finite rotation. 
It is also provided post-buckling formulae for mixed principles in the 
classical cases of limit points or symmetric and asymmetric bifurcation 
point with or without imperfections. 
The criteria can be applied through a partitioning primal-mixed strategy. 

1. Introduction 

Since the pioneered works which marked the shell theory at its origins 

[1,2] and the numerous researches, discussions and controversies that 

they prompted [1;4], the researches have been extended in the non linear 

domain where problems were sharply posed as more from a fundamental than from 

a practical point of view [5-9]. We will then just evoke a weak part of 

them in relation ~ith our goal. 

Among these researches, because of the great importance of large rotation 

effects in shell problems with large displacements, some authors have 

introduced the finite rotation in the theory as independent variable 

[10-13]. More generally, the associated problems of structural analysis, 

the prodigious development of powerful computers and the modern methods 

of discretization [14] have thrown a strong emphasis on the variatIonal 

methods [15-22] in particular in the shell domain [19,23-25]. In fact, the 

search of accurate stresses in the linear and non linear problems of 

damage, fatigue, cracks, stability, limit loads, or more simply of 
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plastification, increased the interest on the utilization of mixed or 

hybrid variational principles, and in particular on the search of non 

linear complementary principles [26-28] , of which some of them could be 

extended to shell structures [29,13,30] • 

Such investigations in the computation of as accurate as possible surface 

stress fields do not prevent theoretical and applied researches Or} 

three-dimensional boundary-layer phenomena like edge or interface 

effects, which need the introduction of additional solutions, but it goes 

without saying that such solutions could be justifled only if they come 

to correct relati~ely good shell solutions by themselves. 

One of the most important problems associated with the theory and 

analysis of non linear shells is the stability problem. Since the 

fundamental and remarkable contributions of Koiter in that field [31,32], 

the theory has been enriched and improv-ed in numerous publications 

[33-38] , and though it has been illustrated by many numerical 

applications [39], important difficulties remain due in particular to the 

great number of degrees of freedom and the very rapid increase of 

computational costs as soon as the structural complexity increases, but 

due also to numerical instab i 1 i ties in the vicinity of critical points, 

or to unavoidable couplings between local 8.r}d overall buckling [40,41], 

and finally to the lack of knowledges on the actual imperfections which 

have to be taken into account in the analysis [42-44]. 

These difficulties are naturally ir}creased when some parts of the 

structure enter the plastic domain, and most interesting theoretical or 

applied works on the structural analysis and huck ling load prediction of 

elasto-plastic shells have been published [45-56]. Likewise many funda

mental works on the plastic buckling and post-buckling of general 

structures, and of shell structures in particular, have been devoted to 

this research since those of Hill [57-63]. 

The choice of' non-linear mixed functior}als and the need of refined 

computed buckling loads in the elastic or plastic domain led to an 

extension of the classical stability criterion of minimum of the total 

potential energy, solutions of such principles being in general saddle 

points of those functionals. Moreover the extension of the mixed method 

to post-buckling problems was necessary to make the whole method 

completely consistent. 

In the following, one proposes to recall the mixed principles in the non-

linear shell theory with an emphasis on the principle of 



cOlnplementary energy with finite rotation and some variants. Then, after 

having recalled the general stability criterion in constrained systems 

[64], we will indicate its application to the preceding principles in the 

elastic case. The method will then be extended to the plastic case. 

In a further section the results of the classical post-buckling theory 

wi1l be extended to the mixed principles and the case of elasto-plastic 

unloading will be evoked. 

One will end by an extension of the results relative to the stability of 

the post-buckling paths. 

In all the sequel the case of Kirchhoff-Love shells will be considered 

alone in order to simplify the presentation, which wi1l be made in 

general in an intrinsic and compact formulation. 

II. Notations and primal formulation [18,9] 

One considers a shell whose middle surface Lm is a differentiable mani

fold of dimension 2, embedded in the three-dimensional Euclidian space 

E3' Lm, of generic pOint m, is supposed to be compact, oriented and 
...". 

Riemannian, namely there exists on the tangent plane E2 at m an induced 

scalar product, an associated topology and an orthogonal projector field - -n which project E3 onto E2, 
2. L--n = n = n E: (E3,E3), 

where, as in the sequel, the bar designates transposition. Let 0 be an 

open set oftR2. and a map(*) 

m : m = m(X), X ~ 0 C; 1H2, 
N '" 

the natural basis at m is a line of vectors such that : 

3 = ~~ = [a 1m a2m] = [31 32],X = [i~] , a(lm = ::(l' (l = 1,2. 

A point M of the she1l on the unit normal N at m, wi1l be given by 

M = m + Nz 

where z is the normal coordinate. A virtual displacement of M will be 

oM = om + oNz + Noz 
The Kirchhoff-Love hypotheses are summarized by 

(i) the geometrical normal:; the material normal 

(ii) the normal strain energy is negligible compared with the others. 

This gives 
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[
NoN = 0 :PoN E 82 (NoN = Ni oNi , i = 1,2,3) 

o [Ndm] = 0 V dm E. 82 ,om E 83 =?oN =- ~:~. 
(2) 

(*) The underlined tilde will mean "function of". 
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The three-dimensional strain energy gives with (1) and (2) in the 

deformed state 

[ 'w " ~'m T (n' 8y + m' 15K) , (-Ifn,as 8y ,as 
8Kacl ,a,S 1,2) + m r - as 

m (3) 

n' n', m' = ii', 8y = 8y, 15K = 15K L + + (: (E2 ,EZ )' 

with 

['Y 
1 la8m -a8m} cy = 2: 1I:fiil + 1I0iij- = Y 

(4) 

15K = 
o8N -aKm aN OK, with 8N = ~~~~. 1Iam- + 1Iam- am 

If a former state ~ is taken as a reference one, (3) becomes 

with 

8W = JZ Tr(n 8r + m 15K), (=JZ [NaS 8raS +MaS 8KaS],a,s 1,2) 

[

-"r 1 [;~ o8m aom om] ;:0 
u = 2: am- om + 1Iam- am- = 01 

o 0 0 0 

a-ill o8N aom aN :=-
8 K = "(jjj) 11 am + 11 am- liiil = uK 

(5) 

o 0 0 0 

One recalls the definitions of the two fundamental forms variations of 

Zmo 

(6) 

m = mo + V, 

where V is the displacement of the point mo of the middle surface, and 

whose virtual variations give (5)2 and (5)3' The principle of virtual 

work gives then the equilibrium equation 

8w - OT = 0 V Il m LA., (7) 

where .) T is the virtual work of prescribed external loads for any 

arbitrary kinematic admissible (K.A.) displacement (, m. 

Remarks 

1) n', m' are the Cauchy surface stresses, whilst n, m are the Piola

Kirchhoffsurface stresses. 

2) Eq. (5) and (7) give the local equations of equilibrium [91 • 

III. Classical mixed formulations of Kirchhoff-Love shells 

Let us pose 

C = [:], D = [~1 



3:1d the scalar product in. [L('t20'~0)] 2, where the over lined tilde means 

transposition, 

C 6D = n or + m oK = Tr (n or + m oK). 

Let us write also (6) in the form 

r=£(v), K = K(V), 
", 

or D = D(V). 
N 

(8) 

The primal principle can be written, given the constitutive equation 

Iz 
mo 

CoD - oT = 0 with D = D(V) If V K.A. 
~ 

(9) 

We may take then rand K, Le. D, as independent variables under the 

condition of introducing the constraint (8) in (9) by means of a 

Lagrange-multiplier 

A = [:]<: lL(E20 ,E:20 )]Z. 
The result is the five-fields principle of Hu-Washizu 

[
fr. [C oD +~[~(Vm - oT = 0 

If :: C ~ LZ eLm ), V K.A. s.t. D(V) £ L2 eL ). ,., m 
o 0 

(10) 

In the case of an hyperelastic shell, 3 a surface strain density a -
(l = S(D), C = ~~, or rn iii] = [~~ ~~J. 

Then (10) can be written 

[
OW(D,I\,V) =6[fLmJ~(D) -h[ll(V) -DJ]-T] 

If v: K.A., (l(D) t Ll (L ) 
,... mo 

= 0 

( 11) 

It should be noted that principle (11) does not need any inversion of the 

constitutive equation. Now (10) gives also 

Iz. [[e -idoD1+A. o~(V) +6'\ [~(V) 
mo 

D]] -or = o. 

If we stricly take the local Euler eq~ation to be satisfied, 

C = 1\, 

(12) 

and suppose that the constitutive equation is elastic and admits an 

inverse 

C = C(D), D = D(C), 
N 
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(12) gives 

f 2: [0 [~. £ ( V ~ - 0 ~ . £ ( C )] - OT 
ill 

o 

O. (13) 

In the case of an hyperelastic shell with a strain energy density a,we in

troduce the complementary energy density B with the Legendre trans for

formation 

B = ~(C) = C D - a, with a = ~(D), D = £(C), 

and we easily find the three-Cields principle oC Hellinger-Reissner 

[
O!§ (C, V) = 0 [f 2: m [ ~ £ (V) - B] - T 1 = 0 

o (14) 

'if C s.t. BE Ll(2: ) and V K.A. s.t. D(V) E L2(2: ). 
m ~ m 

o 0 

Remark: The principle (14) or (13) gives again the principle of virtual 

work by variation of V, and the inverted constitutive equation in a weak 

form, by variation of C. 

If to is a prestressed state, calling Co the prestress and oT the 

virtual work of the prescribed external forces, we write : 

C = Co + Cl, OT = OTo + OT1' 

In state 1.0 the equilibrium is written 

f2: l ~o 0 £(0)] - OTo 
m 

= O.'If OV K.A. 
( 15) 

0 

(14) and (15) give the three-field principle of Hellinger-Reissner in the 

updated Lagrangian formulation, namely 

f 2: [0 [~o 1£ (V 1) - E ( 0 )J] + 0 [~1 ~ ( V 1 ) ] - 0 C l' E ( C 1) J -
m 

o 

- OT 1 = 0, 'If 0 C1, 0 V1 

If the body is hyperelastic from 60 (16) gives 

[
O;(C1'V 1) = O[f2:mo[CO[~(Vl) - £(0)] + C1 £(V 1) - ~ 

'If C1, V1 adm. 

( 16) 

(C 1)]-T1] =0 

(17 ) 

If the reference state is the natural state Coo and to a prestressed 

intermediate state, one obtains the total Lagrangian formulation : 

[ 
ok( C 1 ,V 1) = 0 r f 2: m [ ;0 [~( V 1 ) - ~ (V 0)] + ; 1 £ (V 1) - ! (C 1) ] -

l 00 (18) 

- Tl 1 = 0 

with V = Vo + Vl. 



Principle ('7) can be written in a linearized form in view of utilization 

of Newton-Raphson numerical procedure, and assuming mo = 0, it comes : 

[ 
[ 

N av, av, "" av, '" [ ;w, ::lNo 
~ IE ! no am- am- + n, no am- + m, no am- am- -

mo 0 0 0 0 0 ('9) 

- 1To a!o [:::No]] - f3] - T,] = 0 V n, = 0" m, = iii, E L(E20 ,E20 ) 

and V K.A. 

Remark. In the Donnel-Mushtari-Vlasov (D-M-V) approximation [5], the non

- av, av, 
linear term ! no am- am- is replaced by 

aw- aw 0 0 
, , 'j 

! n -- -- where w is the deflection from state 6. • 
o am am' 0 

o 0 

Principle ( '9) can be modified by integrating by parts the second and 

third term and using the following formulae [18] 

"def av -:I: 
div V = Tr(1To amo)' V V E ~20 

(20) 
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"" IE div V = IaE \10 V ds (Stokes), where s is the boundary abscissa, 
mo mo 

-+ 
vo the external unit normal to aEmo in £20. 

It comes the mixed modiried tbree-rield principle or Hellinger-Reissner 

<5 [I E [! ~o ::' ::' - dlv [ n, + m, ::0 + No d!v m,] V, - f3 J + 
moo 0 

+ bou:dary· terms - T, 1 = 0 

(21) 

It should be noted that V, must be continuous at the interfaces of Emo 
....... 

and that C, E H(div, Emo )' which imposes that the fluxes be continuous as 

well at the interfaces. 

The stress C, can be taken such that 

~[n, aNo 1 
+ m1 amo + No div m, + f1 = o IE piecewise, I lmo 

(22) 

where f, is the ,sur-face density of the prescribed for-ces. It is then 

found the bybrid dual principle of Pian [17,23], where the fluxes may be 

taken discontinuous at the interfaces, but where C, is not strictly 

statically admissible because the prestress term is not taken into 

account in (22). 
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The surface stresses can be derived from a stress function V* in order to 
1 

satisfy the is found [18]: 

(23) 

where 

IV. The complementary energy principle with finite rotation. 

The finite rotation can be introduced in principle (9) by use of a 

surface polar decomposition of the derivative am/amo [13], by extension 

to shell problems of Fraeijs de Veubeke's method [28]. 

extension and R the finite rotation, one finds 

-a - = R IT 1E 
mo 0 20 

Calling[ a~ the memb[rane 
+ h], h = h Eo L(E20 ,E20 ), R IR il:R R=1 E ,R E L(E3,E3) 

3 (24) 
am am 
amo -amo = [1E20 

It is worth noting that RlTo RlTo = 1E20 ~ RlTo is a "left inverse" of RlTo, 

and that (24)2 gives a constitutive law independent of R as it must be. 

Introducing the constraint (24) in (9) by means of a Lagrange multiplier 

t f L(~,E2o) and the constraint (6)2, namely 

am aN aNo 
-- - - K = 0, 

by means of a multiplier s E L(E2o,E2o), the variables R, h, and K can be 

taken as independent variables. In the case of an hyperelastic shell and 

after elimination of hand K, one finds the principle 1 
o~(t,m,V,R) = 0lI EmfTr(t ~:o + m K(V) - t R lTo) - 8] - T 

r- au IR-with = '8 = Tr(rh ~ mK) - a;a ~*(h,K), r = ah' R R = 

= 0 

(25) 

1E 
3 

Remarks 

1) t is the surface stress of Boussinesq (or Piola-Lagrange) and is non 

symmetric ; r is the surface stress of Jauman, and 
tR'!T ,+ tR1i 

l' = o 0 

2 

2) Constraint RR = 1E3 can be introduced directly 

perhaps more simply through a Lagrange multiplier. 

(26) 

in (25) [11], or 



(27) 

which is equivalent to 5 scalar independent functions. 

V. Stability criteria in mixed formulations 

V.l. Elasticity. As all the various mixed principles were written through 

the introduction of new variables and some constraints, the classical 

primal criterion 

~2y(X) ~ 0 :::;:'Stability, x E: X, a normed linear space, must be 

extended in case of a constraint 
~ 

z = z(x) = 0, z ~ E, a normed vector space, has to be taken into 

account. 

It is easily found with a Lagrange multiplier [64] : 

[ Orr -II,] ~ OY "Ex. -+ 
OAf E' (~ equilibrium) (28) 

o{y -I\z] ~O V &c exs.t. & = ° (~stabili ty) • 

Remark: It should be emphasized that (28)2 is calculated with ~2X =szl\:~ 

a t the point $olution given by (28),, and with all the constraints 

introduced from the beginning, even if some of them have been eliminated 

in the final principle. 

Application of (28) to Hu-Washizu principle (11) gives [64-25] 
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II: [~II(D)(6D)(OD) + C !2:'(V)(6V)(6V)] ~ 0, (dead load), 
m 

o 

V 6D and 6V K.A. s.t. II: 6C [6 D(V) - 6D] = 0 V 6C 
m 

o 

and to Hellinger-Reissner principle (14) : 

[ 

II:mJ~II(C)(6C)(OC) + C ~'(V)(OV)(6V)] ~ 0 

V oC, 6V K.A. s.t. II: [0 ~(V) - ~1I(C)(6C)]OC 
m 

o 

o V 6c. 

(29) 

(30) 

As for the complementary principle with rotation (25), one finds 

Remarks 

'f 6C, 6R lfi R = 1E ' 6 V K.A., s.t. 

II: m T~[~~: -o [R
3

TI o[1 + hD] 
o 

with lOh 15K] = ~"(C)(6C)(6C), 

+ om 6 am ~ - K ) am am 
o 0 

C = [:]. 

0, V 6 t, 15m 

1) The constraint appears always linearized due to the use of a local 

criterion near a given state. It means the local compatibility or 

constitutive equation in a weak form. 

2) Criteria (29)-(31) are unchanged for modified mixed principles due to 

a preceding remark, but functional spaces are correspondingly modified. 

3) In all cases the notions of elastic and geometric stiffnesses are 

recovered. 

4) The criteria are unchanged if linear elasticity exists only from the 

critical state (example hypoelasticity). 

5) Extension to Koiter's sufficient condition of stability can be found 

for neutral equilibrium in terms of mixed formulations. 

6) Quantities like oN(V),02 N(V),03 N(V) ••• are easily found in terms of oV 
'V N N 

using (2). 

V.2. Elasto-plasticity. In that case, the analysis uses the elasto

plastic three-dimensional incremental constitutive law : 



where 

~ ['i a el 

< 0 ael It )2 

h (0 *) + cr a a) 1 
el 

.ael is the elastic constitutive mapping 

-0 .< ael E: ) = 0 if the yield condition is not reached 

• h is an experimental function of the strain-hardening parameter 

0*. 
Hill's criterion of stability [57] is applied, an extension of wh:i,ch is 

given by Nguyen Q.S. et al. [61] namely in a three-dimensional formu

lation based on Liapunov's definition. The result is : 

J [ -aU auJ 
~(U,A) = rio U o (€) + (To aMo aMd >":9Stability 

But following Hutchinson [60] 

[1 Bifurcation] ~ [F = 0 + no unloading] 

The preceding theorem allows to apply the standard criterion with the 

elasto-plastic law from a prestressed state. 

In the case of shells the following identification 

(34 ) 

with the introduction of kinematic assumptions such that E: f(r,K,z) 

[68] gives : 
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C = A D, or ~(D) DAD and S(C) C A ep C 
(35) 

ep - ep ,., 

where Aep is the shell elasto-plastic mapping. Then use is made of the 

preceding criteria. 

Remarks 

1) In general for Kirchhoff-Love (K-L) shells [18] 

[

• 1 [. • [. a NaN • 
2 E: = 11- 2 Y + 2 z K + z2 K amO + amo K + 

, aN 0 0 
o 

where 11 = 1E + Z -a--
20 mo 

(36) 

2) Great simplifications are then obtained for D-M-V shells (shallow 

shells) [60,49,55,67].' With that assumption Nguyen Q.S. showed that the 

evolution of the internal parameters satisfies the general law of 

convexity and normality in a resulting infinitely multiple plastic 

potential [52]. 
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3) Other methods for elasto-plastic analyses are based on Ilyushin 

approach [65,45], that is to replace all quantities in (32) by surface 

ones (for K-L shells) : a by C, £ by D, ••• , and the yield condition f(a) 

by T( C). This way has been improved to take account of strain-h'lrdening 

(Criesfield [66]), but we shall prefer the integration of the three

dimensional law with respect to z, to take account precisely (at least 

layer by layer) of local plastification through the thickness. 
1 1 

4) Aep- may not be drawn from aep- because of use of kinematic 

assumptions. 

VI. Post-buckling in mixed formulation [63] 

Asymptotic expansions following Koiter's method [31-38] is used for 

perfect shells (P. S.) or imperfect shells (I. S. ), by two ways so called 

"direct method" (expansion from a critical point), or "indirect method" 

(expansion from the fundamental path). 

VI.1. Elastic Shells. For perfect shells, expansion is made of the weak 

form of the ~quilibrium equation from the critical st'lte tc : 

IE C OD - O!(V,A) = ° 
where A is l V • 

C = 
A 

m 
o 

the 

Vc = 

loading parameter, 

£ V1 + £2 V2 + 

C1 + £ C1 + £2 C2 + 

Ac + £ A1 + £2 A2 + 

(37 ) 

with 

(38) 

Account is taken for the criterion of the 

J" [~M.D' (oV) + ~ .D"(oV)(V M)] 
~ 0 c c c 0 

critical state 
_ T"(oV)(V M) 

c 0 
0, V oV K.A., 

m 
o 

where (CoM,VoM) is the mixed eigel1mode, supposed to be unique. 

The discussion depends on Fredholm's condition: 
M • aT aT. 

T~(Vo ) A1 = 0, where T = aA' T' = aV (Dlrect method). 

The following results are found with 

[C]= q n = I [* ~ .D'" (V M)(V M)(V M) + ~ M.D,,(V M)(V M)] 
V ' E' c coo 0 0 coo m 

o 

~ T""(VoM)(VoM)(VoM). 
c 

(39) 

(40) 

a) Limit point. t~(VoM) i, A1 = ° 
q = qc :.. qo M~ + q~~2 + .1.t M. d d d q2- - qo glven by 2 or er mixe 

equation, 

A1 = ~2 n/T'(V M) 
c 0 



b) Asymmetric bifurcation : T~(VOM) = 0, A1 ~ 0, n ~ ° 
M J. 

A 1, 
.L M mixed q = qc + qo r, + q1 q1 J.. qo given by equation, 

:>"1 is given by a 2d order equation. 

c) Symmetric bifurcation: T'(VoM) = 0, n = 0, A1 = ° M c 
A = AC + A2~2. q = qc + qo ~ + ~~2, 

For imperfect shells, we pose in addition to (38), with n an imperfection 

parameter 

[ 
n = ° + e; n 1 + e;2 n2 

M M 2. M 2M qo = qo + e; qi + e; q2+ ....... . (41) 

and expand t~e two equations : 

IE c.o~(v,n) - 01(V,A,n) = ° (equilibrium) 
mo (42) 

which expressed the fact that (C,V,A,n) is a critical pOint. The results 

are : 

a) t (VoM) = 0, (C,V,A,O) is a limit point of the P.S. 
c A =_[T'*(VM)+;.D,(vM)ln/t,(vM) (T*=~nT). 1 c 0 c c 0 ~ ,'c 0' 011 

M ... 
q = qc = qo ~ + q 1 A 1 +... ; A 1 = ° if n = ° 
q1 M .l.qoM is known by (42)2 + weak constitutive equation. 

b) t~(VoM) ~ 0, (CC,VC,AC'O) is an asymmetric bifurcation point of the 

P.S. 

q = qc = qoM~ + qt A1, n =~2n2. 
c) t~(Von) ~ 0, (Ce,VC,AC'O) is a symmetric bifurcation point of the P.S. 

n 0, n1 = n2 = 0, A1 = 0, n = ° (~3) ; q = qc + qoM~ + q2 ~2, 
A AC + ° (~2). 

Remark 

The same .orders of magnitude are found again as with the primal method 

obviously, either by the direct or by the indirect method. 

VI.2. Elasto-plastic shells. The results follow those given by Hutchinson 

in the primal case by the indirect method for the P.S. [60] where 

V = VF + ~ YoM + ~'1+ a V2 + ••• (VF = fundamental path). 

Shanley's condition (no unloading) is used and gives that the existence 

of an elasto-plastic bifurcation is subjected to no unloading as a 

necessary condition. 
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In case of unloading (U.L.), two cases may be distinguished 

standard case of hypoelasticity. 

b) A1/~ A1 UL the elastic zone of U.L. spreads from a priming point. 

This case involves a singular perturbation technique which gives S = 1/3 

for D-M-V shells. Then A2 can be calculated. 

The case of imperfect shells has been examined by Hutchinson under some 

assumptions, when bifurcation occurs before or after plastification. This 

author confirms that no general treatment is available like Koiter's 

theory for conservative systems. 

All the study may be looked upon with minor modifications from a mixed 

viewpoint. 

VIII. Conclusions 

The problem of mixed variational formulations, buckling and post

buckling, has been treated for Kirchhoff-Love shells, but the methods can 

be extended to the case of shells which undergo non negligible transverse 

shear strains, cases of considerable importance for multilayered 

composite materials. Pointless to say that for finite rotation 

formulations unavoidable adaptations would be necessary for the latter. 

The preceding intrinsic and compact presentation has the merit, to our 

feelings, to be relatively simple in spite of the classical difficulties 

which are inherent to curved space mathematics. It may nevertheless mask 

some complexity in passing to detailed formulae. 

In fact, considering for instance the term ~ aM 1 

mo am- am-' 
00 00 

which appears in some incremental formulations where N1 is the increment 

of the unit normal to the middle surface, one finds in terms of 

components:_ 

~o ::1 ::1 =JtaS{Y,\lr.gspr~la + Ya\l~aJhX + Vall~t"a] + 
00 00 ~, ~ 

+1~1I'( [gasb~f, +V~fIXo(f, +V~lIxf"aJ}, 

with \l ~Ilt 

a,S,y,x,p = 1,2. 



But we stress the fact that the theoretical formulae can be written in an 

automatic way without any difficulty. 

In general the numerical analysis in mixed principles brings into play 

many more unknowns than in the primal method, and it seems always 

judicious to apply some computational strategies like 

*) Ritzian corrected methods [69,70], possibly through modal synthesis 
[71] 

* postponed analysis in critical zones after application of the primal 

method ; 

* coupling of mixed principles with the primal one by partitioning, 

reserving the former to critical zones, for the buckling problem which 

remains a global phenomenon even if there exists local weaknesses 
[72,73] • 

Important problems are still open and not only from a mathematical point 

of view. One has evoked in particular those of unknown imperfection data, 

or that of local effects or also buckling of inelastic shells comprising 

numerous stiffners or holes, which prompted recent delicate 

investigations. In spite of a great research activity, the analysis of 

inelastic shells remains, as we saw, a difficult task. 
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Limit state induced by buckling of steel cylindrical struc
ture under earthquake loadings is investigated from standpoint 
of energy concept. A number of the buckling tests of steel cyl
indrical shell structures have been made, which showed that they 
have the stable load-displacement relation and the adequate de
formation capacities beyond the buckling. 

The authors have proposed that energy input imparted by 
strong earthquakes to buckled structures and the deformation 
capacity in the post-buckling are suitable indices for seismic 
resistance of the steel cylindrical shell structures because 
the buckling does not cause the structure to immediately coll
apse in the case of such a repeated loading as earthquake motions. 

The purpose of this study is to investigate the energy input 
to buckled steel cylindrical structures with the increase of 
intensity of earthquake motions. A series of the nonlinear dy
namic analysis were performed under various types of the earth
quake records by using the hysteresis loop including buckling, 
which was derived from the buckling tests. 

The limit state could be defined as the state in which de
formation and energy input to buckled structures increase diver
gently when the intensity of the earthquake excitation exceeds 
a certain value. The result obtained in this paper is intended 
to adopt the limit state in the post-buckling region to evaluate 
the margin of safety against the buckling resistance of steel 
cylindrical structures under strong earthquake loadings. 

Introduction 

The most important and primary question in the earthquake re

sistant design is: 

or 

What is the loading effect of the earthquake? 

What is the difference between the gravity loading and the 

earthquake loading? 

The simplest answer to these is: 

The gravity loading is time-independent and the load itself 
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absolutely proportional to the mass of structure. 

Contrarily, the earthquake loading is time-dependent and is 

exerted during a very short time, say almost within one 

minute. 
Thus, when these effects are expressed in terms of energy, they 

can be described as follows: 
The gravity loading can supply infinitely large amount of 
energy to the structure, if the structure loses its static 
equilibrium. On the other hand, the energy which is applied 
to a structure during an earthquake is finite. 

The energy input exerted by earthquakes has been found out to be 
a very stable amount which is mainly dependent on the total mass 
and the fundamental natural period of the structure. Therefore, 
it can be concluded that the loading effect of the earthquake 

should be measured by its energy input to the structure. 

Fig. I demonstrates the loading effect of the gravity loading. 
The solid line indicates the load-deformation curve of the stru
cture under the vertical load. The level of the gravity load is 
shown by the lines parallel to the abscissa. Under the level-A, 
the structure is stable and can resist to the load. 

Under the level-C, the structure becomes unstable and cannot 

resist to the load. The limit-state for the gravity load corr
esponds to the loading level-B. Beyond the level-B, no equil
ibrium exists. Thus, when the buckling phenomena limit the load 

carrying capacity, to investigate the post-buckling behavior is 
meaningless. 

Fig. 2 demonstrates 'the loading effect of the earthquake loading. 

The solid line indicates the load-deformation curve of the stru
cture subjected to the horizontal load. The level of the seis
mic loading is shown by the lines parallel to the ordinate. Be
low the level-A, the structure remains elastic. 

Under the level-B, the structure develops its maximum strength. 
Beyond the level-B, while the strength of structure decreases, 
the structure is still stable in the sense of dynamic equilibrium. 
Under the level-C, the structure loses its horizontal resistance 
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and collapses ultimately. 

The energy required to make the structure collapse is written as 

E JU Q do (1) 

o 

where 0u deformation at the collapse point. 

Therefore, the criterion for the aseismic design can be basic

ally described by 

(2) 

where E : energy input due to the earthquake 

ER: energy absorption capacity of the structure. 

w 
~ 
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Fig. 1. Gravity Loading Fig. 2. Seismic Loading 
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Research on the buckling of the steel containment vessel of the 

fast breeder eactor "Monju" were carried out in 1983 and 1984 

to evaluate the seismic safety against the buckling of the steel 

cylindrical shells with ring-stiffeners [3]. 

In this research programme, a number of static buckling tests 

of large, fabricated steel models have been included. 

In this paper, the buckling resistance under strong earthquake 

motions will be tried to evaluate the results of the buckling 

tests by energy input concept. 

The hysteresis under repeated transverse loads and deformation 

capacity are obtained from buckling tests of large, fabricated 

steel cylinder models under transverse loadings, simulating the 

overturning moment with transverse shear during the horizontal 

earthquake loadings. 

Non-linear dynamic analysis of single-degree-of-freedom system 

is carried out, non-linear spring constant of which is the re

storing force characteristics of regarding type. That is model

ized from the experimental hysteresis loop under repeated load

ing. 

By changing the stepwise the maximum acceleration of various 

sei~c motion, the limit of the structure is investigated to 

consider the maximum displacement as the deformation capacity 

and to compare the energy input imparted by earthquakes with 

energy absorption capacity of the structure [4]. 

Buckling Test 

Free standing, ring-stiffened steel containment vessel of FBR 

"Monju" as shown in Fig. 3(a), has the radius-to-thickness ratio 

R/t of 65l.~ and ring-spacing-to-radius ratio ~/R of 0.27 except 

for 0.14 in the lowest part. Two steel cylindrical models, about 

1/19 of full size, were fabricated by rolling and welding. These 

models are deSignated by BP-l and BP-2 of which ring-stiffeners 

were disposed equivalently to the lower part of the actual con-



tainment vessel, as shown in Fig. 3(b). 

The mechanical properties of the steel plating of each model 
are given in Table 1 by the tensile tests on the specimens cut 

from the same sheet of materials (JIS SAPH-4S). 
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The initial imperfections of the fabricated steel models were 
measured precisely to obtain the local out-of-roundness and lo

cal out-of-straightness of the surface of the models. For ex
ample out-of-straightness is given in Table 2, which is the lo
cal shell imperfection between two ring-stiffeners. 

Static buckling tests of transverse-loaded, ring-stiffened cyl

inders were carried out, as shown in Fig. 4, simulating the cha

racteristic load distribution at the earthquake as shown in Fig. 
5. 

Under the constant axial compressive loads equivalent to dead 
weight and vertical earthquake load, the transverse load V was 
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Fig. 3. Steel Containment Vessel and Cylindrical Model. 
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Table 1 Mechanical Properties 

Model Young's Modulus Yield Stress Tensile Stress Elongation 
E (kg/Im1 2) (Jy (kg/mm2) (JB (kg/mm2) 6 (%) 

BP-l 20400 31.6 48.1 33.8 

BP-2 20000 33.4 49.1 27.4 

o Cross head speed 0.2 mm/min. 

Table 2 Initial Imperfection (out-of-straightness) 
(mm) 

~ 00 45° 900 1350 1800 2250 2700 3150 

C 1.15 1.17 1.10 1.10 0.95 1.20 1.15 0.98 

BP-l 
D 0.66 0.90 0.68 0.60 0.90 0.83 0.85 0.65 

C 0.90 1.15 0.65 0.78 0.60 0.57 1.06 0.52 

BP-2 

D 0.42 0.80 0.20 0.57 0.43 0.42 1.00 0.40 

o Value is lateral displacement of shell plate between two ring-stiffeners. 
D is for lowest bay with .Q,fR=0.14 and C is the bay above D with Q/R=0.27. 

Table 3 Results of Buckling Tests 

Buckl ing 
Buckl ing Stress Buckling Coefficient 

Max. Bending Max. Sheanng Cb- Cv-
Model Load Strers at Stress (Ja * + (Jb Vcr(ton) Buck ed Ba¥ T 

rJb (kg/mm ) T ( kg/mm2) Ex (t/R) E x (t/R) 

BP-l 68.9 11.4 8.4 0.39 0.26 

BP-2 69.1 11.4 8.4 0.40 0.27 

* (Ja; Axial stress 0.8 kg/mm2 due to constant dead weight equal to 13 ton. 
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applied to the top of the model at a distance L equal to 1.5R 

from the bottom. As shown in Fig. 6, a load V produces the max

imum-bending-to-shear stress ratio ab/~ equal to 1.5 at the bottom 
of the model, which was predicted by a modal analysis of the con

tainment vessel for a horizontal earthquake loading. Under con
stant dead weight load of 13 tonf, horizontal load was applied 
in forward direction until the buckling occurred by the hydraulic 

actuator (the maximum capacity of 125 tonf). 

The results of the two tests are shown in Table 3. 

The dominant mode of buckling is the shell buckling between two 

ring-stiffeners in the lower part due to transverse shear and 
bending loads, as shown in Fig. 7. 

Because the moment of inertia of the ring-stiffener is adequate, 

the mode of buckling was limited to local one between two ring
stiffeners as shown in Fig. 7. The adjacent ring-stiffeners to 
this bay maintained the original shapes with no distortion. 

The buckling load could be estimated by the extrapolation curves 

from the previous data [ 5] [6], which were obtained by the buck
ling tests of the metal, unstiffened cylindrical models, as~ 

in Fig. 8. 

Extrapolation from unstiffened, short cylinders to the ring

stiffened cylinders for the interframe buckling could be given 

by 

( a~,cr)2 
bo 

1 (1) 

Where ab,cr in the maximum bending stress at buckling, and ~cr 

is the maximum shear at 900 away from ab,cr. 

abo is the buckling stress due to pure bending, expressed by 
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( R-)n t 
abo = a x I:RT E R (2) 

and TS is the buckling stress due to pure shear with a sinusoidal 

distribution, expressed by 

(3 ) 

Where T t is buckling stress due to pure torsion [8] 

4.83 x (l/(R-/tRt)2) x ;{+O.0239(R-/IRt)3 x E(t/R) 

(4) 

From the NACA data of R/t=682, R-/R=O.5 and R-/R=l.O shown in Fig. 

8, a=O.64, b=l.3 and n=-O.l4 were obtained as extrapolation~s. 

Fig. 8. 
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Interaction Buckling with Bending Stress and Shear. 
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The results of these tests have the connection with the inter

action-buckling results for shear and bending compression of the 

previous data in short, unstiffened metal cylinders. 

The buckling loads in BP-l and BP-2 scattered within a narrow 

range and reproduction of the bucklings under the same condition 

was quite satisfactory in these large, fabricated steel cylin

ders. 

The ring-stiffener does increase only the buckling strength of 

the cylinders under shear and bending loadings, but also prevent

ed the spread of the buckling deformation to the overall. 

Post-Buckling Behaviour 

After buckling due to bending moment with transverse shear, the 

load was applied continuously, and reversedly. 

It was proved that the steel cylinders have the high capacity 

of energy absorption even after buckling with stable hysteresis 

of regular characteristics, typically as shown in Fig. 9. The 

deformation of the buckled cylinder was concentrated to the in

itially buckled bay, and a large deformation capacity of the 

whole structural system was shown. The final shape of the test

ed model was shown in Fig. 10. 

The different loading-processes were given to each model in the 

post-buckling region. 

Fig. 11 shows the load-displacement relationship between the 

transverse load V and horizontal displacement 0 in the BP-lmodel. 

The initial buckling occurred over half the circumference of the 

shell plating, between two ring-stiffeners, second as counts 

from the bottom. Therefore, reverse transverse load was applied 

to develop buckling in the remaining half the circumference. 

Furthermore, repeated transverse load was applied under displace

ment control. The stable load-displacement hysteresis were obt

ained and deformation developed mainly in the buckled section 



274 

-----: Test 

O/Ocr 
1.0 

--: Restoring force chclr«teristics 
for monotonic I odding 

0.5 

-1.0 

-a/Ocr 

Fig.9 Typical Restoring Force Characteristics in Test 

Fig . 10 Buckl ed Shell between Ring-Stiffeners 
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between two ring-stiffeners. Buckling mode was diamond pattern 

between two ring-stiffeners which were not buckled and maintained 
the original shape. 

V (ton) 

2'=-0 ---:;".c..---f;;----J~----;¥=---+--_Tn___::7"_--_:: _ _::;:2'0 o(mm) 

Fig. 11 

V'max : 55ton 

Order of Loading Steps 

0.1.2 ···9 

Load-Displacement Relationship at the Top of Model BP-l 

In BP-2 models shown in Fig. 12 a transverse load was applied 
repeatedly onlY' in one direction after initial buckling, and 

thereafter a reverse one was applied to buckle the opposite side. 
In this case, the stable hysteresis with regular characteristics 
could be obtained. 

Table 4 shows the total energy input E to the model applied by 
a transverse load measured in the tests. The quantities E were 

12.5 to 14.5 times as large as the elastic strain We until buck

ling occurred (;.e. We = Vcr x 0cr/2, where Vcr is the buckling 
load and ocr is elastic deformation at buckling). 

Nevertheless the model neither ~s fissured nor collapsed, 

and behaved stably. From this fact, it is considered that the 
model was highly capable of energy absorption after buckling 
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due to reciprocal transverse loads. 

V(ton) 

-50 

2~0----------~10~----~---+~L--+----~~--~----~20 S-(mm) 

V'max : 63. 5ton 

Order of Loading Steps 

1,2···11 

Fig. 12. Load-Displacement Relationship at the Top of ModelBP-l. 

Table 4. Total input energy into model before and after buckling. 

Energy input per half cycle Total energy Elastic Ratio Model input energy 
liE; ( ton-mm) E (ton-mm) We*l(ton-mm) E/We 

BP-1 250, 352, 456, 53B, 196 1972 124.0 14.5 

BP-2 140, 20, 192, 56, 262, 500, 392 1562 120.9 12.9 

+ ~+ ..... 
AE3 

+ /AE2 + Lf!!? +/AE
4 + ...... . 

AE3 
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Hysteretic Rules 

The results of the load-displacement relationships showed that 

a simplified rule for hysteresis and restoring force character-
istics could be produced, as follows. 

The converted force Q is used, which represents the transverse 

shear load concentrated to the center of gravity of an actual 
containment vessel and displacement 0 is corresponding to this 

point. 
1) Restoring force characteristics under rnonoUxllc loading 

The Q-o relation under positive loading and that under negative 

loading are doomed to be equal to each other. The restoring 
force characteristics under monotonic loading are shown in com-· 
parison with the experimental results in Fig. 9. 

2) ~steretic rules under repeated loading 

Summarizing these test results, the pos~buckling behavior of 
the cylindrical shells has been reduced to a hysteresis rule 

which governs the restoring-force characteristics of this type 
of structure. This hysteresis rule is of primary concern for 
us to evaluate the energy absorption capaeity of the structure 
influenced by buckling. 

To describe the hysteresis rule, some definitions are introduced. 

°The loading path and the unloading path are defined as 
follows: 

a) The loading path is identified by the condition; 

'Q do > 0 (5) 

b) The unloading path is identified by the condition; 

Q do < 0 

where Q: load or stress 
0: deformation 

(6) 

°The skeleton curve is identified by the Q-o curve under 

the monotonic loading. 

°The unloading point is defined by the point which rests 
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on the skeleton curve and terminates the loading path. 

°The initial unloading path is defined by the point on which 

buckling occurs. 

Q 

parallel 

skeleton curve 
loading p~th 
(Qd8"">O) 

unlOeding path 
(Qdo<O) 

• initial unloading pOint 
o unloading pOint 
o intermediClte unloading point 

Fig. 13. Hysteresis Rule. 

°The intermediate unloading point is defined by the point 

which terminates the loading path but does not reach the 

skeleton curve. 

Under the assumption that the initial unloading points under 

positive and negative loading domains have been already exper

ienced, the hysteresis rule is described as follows. 

a) The loading path pOints to the preceding unloading point 

in the same loading domain. After the preceding unload

ing,point is reached, the loading path follows the skel

eton curve. 

b) The loading path from the unloading point points to the 

initial unloading point in the reverse loading domain. 

The unloading path from the intermediate unloading point 

has the same slope as that of the preceding unloading 

path from the unloading point in the same loading domain. 

Fig. 13 illustrates a typical pattern of restoring-force characu-· 

eristics according to the above-mentioned hysteretic rule. In 



Figs. 14 and IS, restoring-force characteristics are shown and 

compared with the predicted curve. 

Fig. 14. 

Q 
BP-2 

-:Simplitied Rule 
----:Test 

7 

I' 

Comparison of Simplified Load-Displacement Relation 
with Test Results(One Side Buckling). 

It is considered that these rules give conservative estimates 

of areas enclosed by hysteresis loops. 
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The proposed hysteresis rule has been ascertained to be applic

able to general 'cylindrical shells with a large variety of geo

metry [7]. 

Energy Input Imparted by Earthquake Motions 

Buckling of sherls limits the load carrying capacity of steel 

cylindrical shell, which is subjected to the overturning moment 
with transverse shear load during the horizontal earthquake mot
ions. 
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Q 

II 

-Q 

BP-l 
-: Simplified Rules 
---: Test 

This test SimplifiedRules 
3 ------ 4' 3 -- 4 
5 ------ 8 5 - 6 - 7 -8 
8 ------11 8 - 9 -10-11 

Fig. 15. Comparison of Simplified Load-Displacement Relation 
with Test Results (Both Sides Buckling). 

The energy absorption and the maximum deformation in the posb-· 

buckling behavior of the steel containment vessel under strong 

earthquake excitations are investigated to evaluate the buckling 

resistance by the energy input concept [2). 

The motion at the center of the gravity of the containment vess

el can be expressed as for the fundamental mode of the deform

ation in the structural system as follows; 

Mo + Co + F(o) = Fe (7) 

where M mass of the structure concentrated to the center of 

gravity 

C6 'd~ping force 

F(o); restoring force 

Fe seismic force (= -MZo ) 

Zo horizontal ground motion 
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o displacement at the center of gravity relative to the 

ground. 

Multiplied by dc5 edt on both sides, and integrated over the 

entire duration of an earthquake, Eq. 7 is reduced to 

to to to to 

M J 0 edt + C J i 2dt + J F(c5) edt r F edt (8) e 

0 
0 0 0 

The first term of the left hand side expresses the kinetic energy. 

Second term expresses the energy consumed by the damping mechan

ism Who Third term expresses the strain energy deposited in the 

spring system, which consist of cumulative plastic strain energy 

Wp ' and elastic strain energy at the instant when the earthquake 

motion fades away. The kinetic energy and the elastic strain 

constitute the elastic vibrational energy, We. 

The right hand side of Eq. 8 expresses the total amount of input 

energy exerted by an earthquake. 

The total energy input E exerted by an earthquake causes the 

structure to oscillate and is transformed into the elastic vib

rational energy, We' the energy absorption caused by inelastic 

deformation Wp and the energy absorbed by damping WhO Thus foll

owing equation holds 

E (9) 

The elastic vibrational energy has a range of 

where Qcr; buckling force 

ocr; displacement at buckling 

W is the accumulated effect of the post-buckling deformation 
p 

of the spring-system. 
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The quantity ED = W + W means the energy input attributable e p 
to the damage, which is evaluated in comparison with the energy 

absorption capacity of the structure beyond the buckling and 

with the maximum deformation in post-buckling region. 

In this study ED is converted to the equivalent velocity VD as 
follows: 

(10) 

The index related to energy absorption is denoted by nondimens

ional quantity VD/VE as follows. 

(11) 

Where the VE is converted velocity related to the upper limit 

of the elastic strain energy We' We may be defined as (Qcr'ocr) 
12, where Q is the buckling load and 0 is elastic displacenent at cr cr 
buckling. 

Table 5. Maximum acceleration of ground motions. 

Ground motion Damping Maximum 
* Maximum * 

h acceleration Velocity (Original wave) (% of critical) (cm/5 2) (cm/5) 

0 1998 187 

El-centro 1 3098 184 

2 4007 186 

Sendai 
0 1400 181 

1 2930 157 
Tokachi-oki 0 2172 175 

Artificial 0 2281 200 

* Peak acceleration of ground motion was amplified to this acc-
eleration which causes the buckling to structure. 
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Non-linear dynamic response was performed for the single-degree

of-freedom system, of which restoring force characteristics are 

modelled from the above mentioned. By integrating the response 

the energy input to a structure and cumulated inelastic strained 

energy were obtained. 

Analysis and Results 

The four earthquake records are selected as input ground motions, 

of which accelerations umax are scaled and changed stepwise from 

the initial value ucr upwards. Seismic waves with peak acceler

ation equal to ucr cause the maximum displacement ocr related 

to buckling at the fundamental natural period of the structure 

with no damping. 

The, investigation focuses on the total energy input, inelastic 

strain energy and the maximum displacement 0max' in comparison 

with the intensity of the earthquake, as characterised by the 

peak acceleration ratio y = umax/ucr. 

Parametric analyses were carried out for the steel containment 

vessel subjected to scaled earthquake motions, acceleration ratio 

y of which ranges from 1.0 to 2.0. 

The steel containment vessel was represented by one-degree-of

freedom system with the fundamental natural frequency w of 6.4Hz 

and with the aforementioned restoring force characteristics which 

was scaled to the actual containment vessel. The buckling force 

Qcr is equal to 2.5 x 107kg and corresponding displacement ocr 

is 5.1 cm. Input ground motions used are shown in Table 4 with 

the peak acceleration which causes the displacement equal to 

ocr. Fig. 16 shows the energy spectrum in elastic responses 

by these earthquake records with the peak accelerations scaled 

to 100 cm/s2. 

Fig. 17 shows the relation between the total energy input VD/VE 
and the intensity of earthquakes in the case of no damping, Where 

total energy input to a structure is equal to total energy ab

sorption. VD!VE begins to diverge when the intensity of the 
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[ MaxiMuM Acceleration of 
Each Motion 

a ... = lOOca/s' 

1.0 L.l..ll::-'---'-....I-L..I....U.llL.----l..-L.J..Lu.J...LJ 

0.1 0.5 1.0 5.0 10.0 
Period (sec) 

Fig. 16. Four Earthquake Waves. 
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earthquake reaches to some value beyond Y equal to 1.0. The 

portion beyond this value is shadowed in Fig. 17. Limit state 

can be defined as the state where VD/VE begins to diverge. 
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Fig. 18 shows the maximum displacement during the earthquake for 

the intensity of the earthquakes in the case of the no damping. 

In the same manner, such relations including the effects of 

damping of 1% and 2% of critical are shown in Fig. 19 and 20. 

Fig. 21 shows the relation between the maximum displacement and 

the inelastic strain energy absorptions by the post-buckling 

behaviors during the earthquakes by which the limit state is not 

reached. 

The following results were obtained as to the effect of the sev

erity of the earthquake on the total energy absorption and max

imum displacement in the post-buckling region. 

Fig. 18. 
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(1) Limit state 

The limit state where the energy absorption ED and maximum dis

placement ~max commence to increase divergently is reached when 
the severity of the earthquake y reaches to a certain level as 

follows. 
with no damping y 

(y 

1.67 

2.25 with a damping of 1% and 2% of critical) 

(2) Energy absorption from the initiation of buckling to the 

limit state. 

Despite high irregularity of ground motions, the energy input to 
a buckled structure is a comparatively stable quantity. 

The energy absorption VD/VE increases with a constant rate when 
the intensity of the earthquake y increases, as shown in Fig. 17 
and 19. 

The relation between them can be shown as follows: 

1.5y (12) 

The constant coefficient equal to 1.5 in Eq. 12 shows the upper 
limit of the increasing effect of energy input to a buckled str

ucture below the limit state. 

Such an increase of energy input due to plastification is a 
significant feature of the high frequency structures while the 
energy input in the lower frequency structures such as buildings 
is generally~stable amount[2]. 

(3) Maximum displacement. 

When the earthquakes do not make the structure reach the limit 

state, the maximum displacement increases in proportion to the 
intensity of the earthquake y. The maximum displacement is also 
of importance from the point of view of the functional require
ment of a nuclear containment vessel. Before the limit state 
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is not reached, it is of the same order as the elastic deform

ation at buckling and does not show a rapid rate of increase as 

shown in Fig. 18. Within such an extent, it is considered that 

the maximum displacement does not make an integrity of a contain

ment vessel lose. 

Below the limit state the maximum displacement ratio 0max/ocr 

is proportional to the total inelastic strain energy imparted 

to a structure Wp normalized by its elastic strain We 

3.0 r-------.------,--------, 

2.0 

Fig. 21. 

Conclusion 

0 h = 0% 

1::. h = 1% E J Cen tro (NS) 
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• h = 0% 

• h = 1% 
Sendai 

0 h = 0% Tokachi 
0 h = 0% ArtificaJ 

UJ= 6.4Hz 

5.0 10.0 15.0 
Wp/WE 

Maximum Displacement 0max and Inelastic Strain Energy 
W . 

P 

Occurrence of buckling due to seismic loading does not mean the 

catastrophic failure or immediate collapse, even in the case of 

the elastic buckling region of cylindrical shells of large R/t 

ratio dealt in this paper. 

If the limit state is not reached during excitations, the total 

energy input to structure, which dissipated by post-buckling 



289 

behavior, is limited to a certain extent. The maximum displace

ment remains about the same order of the initial critical dis

placement. 

The intensity of the earthquake, by which the limit state can be 

reached, is 1.67 times as strong as the earthqu~e that can cause 

the buckling in the case of the steel containment vessel with no 

damping. 

The margin of safety for the buckling resistance against a seis

mic loading should be set up for this limit state so far as the 

maximum displacement does not lose the integrity of steel con

tainment vessel (in many cases it can be satisfied because the 

maximum displacement is not so excessive below the limit state). 

At least, it may be inadequate and too conservative to apply the 

lower bounds of previous, scattered buckling data as a single 

criterion to prevent the buckling mode of failure. 
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Buckling of Spherical Domes Made of 
Microconcrete and Creep Buckling of Such 
Domes Under Long-term Loading 
D. VANDEPITTE and G. LAGAE 

Laboratorium voor Modelonderzoek 
State University at Ghent 

Summary 

The major part of an investigation that began about 15 years ago consisted 
in testing 75 spherical model domes made of microconcrete. Some were sub
jected to rapidly increasing uniform radial pressure until they buckled, and 
some were subjected to a radial pressure held constant until they buckled 
(two of the latter specimens have not yet failed, ten years after the constant 
load was applied). Non-linear calculations reflecting the effects of the rapid 
loading and of the loading of long duration have been carried out and their 
results have been compared with the data obtained experimentally. The 
numerical results do not support GERARD's and KOLLAR's creep buckling 
hypothesis, while the set of experimental results of the long-term loading 
tests supports the hypothesis quite well in a statistical sense. 

Test specimens 

All the test specimens were nominally identical. Their geometry 
(fig. 1) was such that buckling occurred before the microconcrete 

A-Thrust ring 

[rA 
190cm 

Fig. 1 - Geometry of test domes 

would be crushed by excessive compression when a liquid applied 
inward radial pressure to the spherical domes. The microcon
crete of the caps, the very rigid steel mould in which these were 
cast and the casting method were described in detail in reference 

[IJ. It took us nearly a year of fruitless attempts before we 
succeeded in producing sound microconcrete shells of 0.7 cm 

Inelastic Behaviour of Plates and Shells 
IUT AM Symposium Rio de Janeiro 1985 
Editors: L. Bevilacqua, R. Feij60 and R. Valid 
© Springer, Berlin Heidelberg 1986 
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thickness and with a circumference of 1.9m diameter. 

The edge of each model dome was cast in a groove in a steel ring 

(detail A in figure 1) designed to withstand the thrust exerted 

by the loaded shell. The thrust ring of more than half of the 

specimens was prestressed by means of 4 1/2" circumferential 

steel strands of the kind used for prestressing concrete struc

tures and tensioned around the ring. The purpose of the 

prestressing was to compensate for the elastic extension of the 

steel ring due to the thrust and for the contraction of the con

crete due to the liquid pressure, so that a membrane state of 
stress was achieved in the cap (in the creep tests) or so that 

a membrane state was achieved approximately (in the rapid loading 
tests). 

The modulus of elasticity and the creep strains of the micro
concrete were measured on thin bars (2xlxlO cm 3 ) which were cast 
on the same day and from the same batch as the corresponding 

model dome. The bars were loaded so that the uniaxial compressive 
stress equalled the biaxial compressive stress in the cap as cal
culated with membrane theory. For most of the model domes sub

jected to permanent loading, the changes of length of unloaded 
bars, otherwise kept under the same conditions as the loaded bars 

and due to changes of temperature and moisture, were also recorded. 

Buckling formulae and carputer codes for spheres and for spherical caps 

Actual buckling pressures Pu can be expressed in terms of the 

critical uniform radial pressure PaZ given for a perfect elastic 

sphere by ZQELLY's classical formula [2J : 

(1) 

where rand t' are the radius and the thickness of the sphere, 

respecti velY'. 

When POISSON's coefficient v is assumed to be 0.2, a reasonable 

value for uncracked concrete, equation (1) becomes 

(t')2 PaZ = y E r ~ with Y = 1.18 (2) 

Several authors have tried to account for low experimental buckling 
pressures by non-linear theories, which also led to formula (2), 

but with lower values of y. von KARMAN and TSIEN found y = 0.365 
and TSIEN [3J found y = 0.34. 
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The buckling pressure P1 for a spherical cap depends on its geo

metry, which, according to BUDIANSKY [4J, is represented by the 

parameter 

A = 2~J(1-\l2;' ff, (3) 

where t' is the thickness of the cap and h is its height (fig. 1). 

In figure 2, the ratio P1/Pel found by BUDIANSKY on the assumption 
that the buckling mode is axisymmetric is given as a function of A. 

U~----------------------------------------, 

to Cl.§.~icalJheoJ}' 
(Zoelly) 

---...... -_-----------------------~----------- P2 

0.5 Symmetric 
(Budiansky) 

5 

Asymmet ric Pcl 
(Huang) 

10 15 

Fig. 2 - Theoretical buckling pressures 

20 

Other authors have considered unsymmetrical buckling modes, 
characterized by a number, n, of complete buckling waves along 
a parallel circle, when studying bifurcation of the equilibrium 

of the cap. HUANG [5J has obtained buckling pressures P2 which 
are also represented in terms of Pel in figure 2. For perfect 
calottes with A> 5.5 HUANG's curve is located below BUDIANSKY's 
and buckling should be expected to be unsymmetrical. 

Nominally, all our test domes had the same A, but in fact, there 
were slight variations in the real geometry and A actually ranged 
between 13.321 and 14.266 , with an average slightly below 14. 

The computer program BOSOR 4 [6J allows the buckling load of 
elastic shells of revolution to be determined, taking into account 

possible unsymmetrical buckling modes and non-linear relations 
between displacements, strains and curvatures, as well as the 

real boundary conditions. Thus the increase in diameter of the 
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steel ring under the influence of the thrust, the rotational 

restraint of the edge of the calotte provided by the thrust ring, 
and the effect of prestressing a thrust ring could be considered 

in the calculations. Pb denotes the elastic buckling pressure 
resulting from BOSOR 4 computations. BOSOR 4 does not account 
for non-linear material behavior. 

Rapid tests on domes with unprestressed thrust rings 

In the "rapid" tests the liquid pressure was increased gradually 

until failure of the dome ensued. Each test was completed within 

a few hours. 

Table I contains the main results of the tests on 23 caps whose 
thrust ring was not prestressed. t' is the average thickness and 

r is the average radius of curvature of the model shell considered. 
f21 is the strength of the concrete, measured on BxBxB cm 3 cubes 

Table I - Rapid tests - Ring not prestressed 

N1' t' -
f21 Eo 

Pu Pu Pu Pu 
l' Pu y 

PeZ P1 P2 Ph 
(nun) (nun) (N/nun 2) (N/em 2) (N/nun 2 ) 

K4 7.12 2431 60 14.2 30356 0.545 0.465 0.484 0.592 0.703 
K6 7.07 2438 46 11.8 25667 0.546 0.465 0.482 0.593 0.703 
K7 6.91 2428 59 11.3 22799 0.611 0.520 0.533 0.665 0.787 
K9 6.98 2450 66 13.7 29013 0.583 0.497 0.509 0.635 0.751 
K33 6.91 2469 51 11.9 33652 0.450 0.384 0.391 0.489 0.580 
K36 6.90 2479 76 13.2 31527 0.542 0.462 0.469 0.589 0.698 
K38 6.86 2524 65 11.3 29269 0.521 0.444 0.449 0.564 0.672 
KN12 7.07 2538 64 11. 6 26126 0.568 0.484 0.492 0.617 0.732 
KN15 6.94 2554 66 11.8 26537 0.604 0.512 0.518 0.650 0.774 
KN19 6.99 2537 71 12.9 34230 0.498 0.425 0.430 0.541 0.642 
KN24 7.10 2560 65 12.6 32716 0.499 0.425 0.430 0.541 0.643 
KN26 7.06 2546 59 10.2 26766 0.496 0.422 0.428 0.538 0.638 
KN27 7.09 2557 62 11.9 30523 0.506 0.431 0.437 0.549 0.652 
KN28 7.01 2540 61 11.8 30033 0.515 0.438 0.444 0.558 I 0.663 
KN29 6.76 2535 58 11.8 31449 0.526 0.448 0.452 0.568 0.678 
KN30 6.98 2515 65 12.6 32958 0.496 0.423 0.428 0.538 0.639 
KN31 7.04 - 58 13.5 33825 0.518 0.441 0.448 0.562 0.667 
KN32 6.93 - 55 10.4 26904 0.516 0.440 0.445 0.560 0.665 
KN33 7.02 - 62 12.1 26888 0.584 0.498 0.504 0.634 0.753 
KN34 6.94 - 63 13.1 28962 0.604 0.515 0.521 0.655 0.779 
KN35 6.83 - 61 14.9 34208 0.600 0.511 0.516 0.647 0.772 
KN36 6.98 - 61 15.5 34760 0.587 0.500 0.507 0.637 ' 0.756 
KN37 6.89 - 59 11.8 33326 0.477 0.407 0.411 0.517 0.615 

x 6.97 2506 62 12.5 30108 0.539 0.459 0.466 0.584 0.694 
6(%) 1.3 1.9 9.8 10.7 11.1 8.5 8.5 8.6 8.5 8.5 
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that were 21 days old. Pu is the experimental buckling pressure. 

Eo = alE is the modulus of elasticity derived from the strain E 

of (2xlxlOcm3 ) microconcrete bars on the day of the test under 

a compressive stress a equal to the membrane stress produced in 
the test dome by the failure load. Hence Eo is a secans modulus. 

Buckling strength of the model domes -------------------------------------
Pu varies between 10.2 and 15.5 Nlam', with an average of 12.5 Nlam' 

and a coefficient of variation 6 of 10.7%, in spite of the fact 
that all test specimens were made with the same aggregates and 

with the same kind of cement (but the properties of cement exhibit 

seasonal fluctuations). Eo varies even more than f21 and Pu • 

The numbers y in Table I were calculated from the equation 

(tl)2 
Pu = yEo r (4) 

The' correlation between the buckling load of a shell and t 'Ir seems 

to be better than that between the buckling load and (t'/r)min 
[7J. In our tests failure occurred mostly in an area where t ' 
was smaller than t', but not systematically where t' was minimal. 
y is 0.539 on the average, but ranges from 0.450 to 0.611. 

In the last four columns of Table I, Pu is compared with PaZ' 

P1 ' P2 and Pb' Although much care has been taken to keep im
perfections to a minimum, Pu is always considerably lower than 
ZOELLY's classical buckling pressure PaZ' The average value of 

PulPaZ is 0.459. Nevertheless, y appreciably exceeds von KARMAN's 
and TSIEN's va~ue 0.365 for every single test specimen. 

Pu is also lower than P1 ' P2 and Pb ' but is closer to P2 than 
to P1 and closer to Pb than to P2 Average ratios are 

PulP1 = 0.466, PulP2 = 0.584 and pulPb = 0.694, and cS in each case is 
about 8.5%. It 'is not surprising that BOSOR 4 provides a better 
approximation than either BUDIANSKY's or HUANG's theory, for the 
BOSOR calculation reflects the boundary conditions more faithfully. 

Yet Pu is still 30.6% lower than Pb ' on an average. This is 
presumably due to a number of factors : 

1) The inheren~ heterogeneity of the material microconcrete. 

2) The non-linear behavior of the material. 

3) The fact that we measured Eo on bars compressed in one direc

tion, while the material of the model domes, in their membrane 

state of stress, was subjected to equal compression in all 
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directions parallel to a tangent plane. 

4) The radial displacements of the thrust ring were somewhat 
impeded by the steel dish which, together with the model dome, 
enclosed the water exerting the test pressure on the dome [IJ. 
Hence the boundary conditions assumed in the calculations were 

not quite correct. 

S) The imperfections of the test shells. All theoretical results, 

including the BOSOR 4 values Pb ' hold true for shells that 
are perfectly spherical in the unloaded condition. 

In view of the notorious imperfection sensitivity of spherical 
shells subjected to radial pressure, the last factor is probably 
the most influential one. 

An indication to the same effect is given by the results of two 
compara ti ve calculations, both assuming the overall geometry 
shown in figure 1, a rigidly clamped edge along the perimeter 
of the dome, E == 29430 N/mm 2 and v == 0.18. One of the shells is 
perfectly spherical, with a circular meridian of radius r == 245 em. 

Fig.3 - Meridian of imperfect dome 

Each half meridian ABC (fig. 3) of the other shell is obtained 
by replacing the 40 em long stretch BC of a perfectly circular 
arc of radius 245 em by a circular arc of radius 310 em adjoining 
the clamped ~dge C and thus contains an angular discontinuity of 
0.98 degrees at the junction of the two arcs in B. 310 em was, 
roughly, the average of the highest radii of curvature locally 
recorded in the test caps and we assumed that value to hold 
throughout the part where buckling was likely to occur (as will 
be seen in the next section). The buckling pressure obtained 
by means of 'the BOSOR 4 program was 21.7 N/em 2 for the perfectly 
spherical dome and 17.7 N/em 2 for the dome comprising a flatter 
area along its circumference. Hence, according to these compu
tations, the presence of this flatter annular zone would account 
for a 19% decrease in buckling strength. 
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Buckling mode 

HUANG's theory and the BOSOR 4 program predict an unsymmetrical 
buckling failure, with a certain number of dents and bulges in 
the circumferential direction. 

All our model domes failed in the same manner : an almost cir
cular, sometimes slightly elliptic part of the shell wall, broken 
into a number of sectors or pieces of another shape, was punched 
out towards the center of the sphere [12J. This may be inter

preted as follows : along the perimeter of one of the buckling 
dents,perhaps of the deepest dimple, the brittle unreinforced 
concrete cracked at the convex side of the dome and was crushed 
by excessive local bending at the concave side, while it was 
crushed along a number of radiuses of the dent at the convex 
side, and the punched hole was a frozen materialization of the 
buckling dent. After each collapse the fragments of the punched 
out disk could be pieced together. The disk was always nearly 
circular : the ratio of its greatest to its smallest dimension 
seldom exceeded 1.15. Its size was also remarkably constant and 
the average of the mean of both diameters was 36 em, which is 
equal to 2. 76;;;tt'. 

The BOSOR 4 calculation predicted oblong buckling waves with 
their greatest dimension in the meridional and their smallest 
dimension in the circumferential direction. On an average, the 
actual size of the punched out disks was only 61% of the size the 
BOSOR program led to expect in the meridional direction, and it 
was 139 % of the theoretical size in the circumferential direction. 

According to the calculation the buckling waves should appear 
close to the edge of the dome. In most cases a hole was indeed 
punched into the cap in the vicinity of its edge. There were 
very few cases in which failure occurred in the neighborhood of 
the crown of the 'shell, perhaps because the shell wall had a local 
weakness there. 

Rapid tests on domes with prestressed thrust rings 

Table II, in which the symbols have the same meaning as in Table I, 
is a collection of data concerning 11 tests in which the radial 
pressure on the dome and the circumferential prestressing force 
around the ring were increased together in four stages, up to 
8 N/em 2 and to 400 kN, respectively. Thereafter, the prestressing 

force was kept constant, while the liquid pressure was augmented 
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Table II - Rapid tests - Ring prestressed 

Nr ti' r 121 Eo 
Pu Pu Pu Pu 

Pu y 
PeL P1 P2 Pb 

(mm) (mm) (N/mm·2) (N/cm 2) (N/mm 2) 

K11 7.04 2418 70 14.0 23300 0.710 0.605 0.628 0.771 0.771 
K12 6.97 2431 54 12.8 30409 0.510 0.435 0.447 0.554 0.554 
K13 7.18 2419 67 14.2 27124 0.595 0.507 0.530 0.646 0.646 
Kl4 6.95 2425 72 15.7 25852 0.739 0.630 0.648 0.803 0.803 
K15 7.01 2402 78 l4.7 28729 0.601 0.512 0.533 0.653 0.653 
K16 7.14 2339 60 13.2 24786 0.573 0.488 0.512 0.624 0.623 
K17 7.13 2435 66 16.2 26432 0.714 0.608 0.634 0.775 0.776 
K19 7.10 - 72 15.2 24016 0.750 0.639 0.662 0.813 0.814 
K27 6.90 2416 71 14.4 28092 0.629 0.536 0.550 0.685 0.683 
K28 6.85 2418 65 11.8 28712 0.511 0.435 0.445 0.556 0.555 
K34 6.93 2484 50 11.1 28481 0.504 0.430 0.436 0.547 0.547 

x 7.02 2418.7 66 13.9 26903 0.621 0.530 0.548 0.675 0.674 
<I (':b) 1.6 1.5 12.9 11.3 8.3 15.2 15.1 15.5 15.1 15.1 

until failure resulted. Since the buckling pressure in one case 

was as high as 16.2 N/em 2 , the prestressing force was insufficient 

to produce a membrane state of stress in the dome and bending did 

arise during the last loading stages. Nevertheless, the carrying 

capacity was higher on the whole (though not in every single test) 

than for the domes whose thrust ring was not prestressed : 

Pu = 13.9 N/em 2 instead of Pu = 12.5 N/em 2 • y is also higher, of course: 
0.621 instead of 0.539, and much higher than von KARMAN I sand 

TSIEN I S value 0.365 for complete spheres. y varies more from 

specimen to specimen than in the series of tests with unprestressed 

rings. 

BUDIANSKY and HUANG did not assume a membrane state of stress in 

their theories. Yet it is not inappropriate to list the values of 

Pu/P1 and Pu/P2 in Table II, because such a state did not exist 

just prior to failure. 

Al though Pu is generally higher than for the domes with un

prestressed thrust rings, the ratio Pu/Ph is somewhat lower: 

the average value of the ratio is only 0.674 instead of 0.694, 

because the beneficial effect of the prestress is taken into 

account in the BOSOR calculation and leads to a 19% higher vaiue 

of Ph . 

The failure mode was the same as in the tests with unpre'stressed 

rings, but the punched holes were slightly smaller. 
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Creep buckling calculations 

The BOSOR 5 version of BUSHNELL's computer code [8 - 9J has the 

capability of accounting for the effect of creep deformations on 
the buckling load. It is assumed in the BOSOR 5 program that 

the effective creep strain Ec varies with time in accordance with 
an equation of the type 

Ec = (~ r t S (5) 

where 00 ' a and 8 are constants, 
t is the time elapsed after application of the load, 

2 2 Ih 
0= (01 + 02 - 01 02) represents the effective stress, 01 and 02 

being the meridional and the circumferential stress in the 
shell, respectively. For a spherical dome in a membrane 

state of stress we have 01 = 02 and 0 = 01 = ° 2 • 

If the shell material is loaded into the plastic range during a 
load increment, the total strains E1 and E2 are composed of the 
total strains at the beginning of the load step, plus the new 
elastic strains 

and 

due to the current load step, plus the new plastic and creep 
increments 

and (i = 1,2) 

due to the current load step. The strain increments are thus 

I::.E1 
1 = It (1::.°1 - v.I::.°2 ) + (I::.£p - ) dO + I::.Ec -d-

°1 
(6) 

1 
- v.I::.°1 ) + (I::.Ep + l'1£c) 

dO (7) I::.E2 = It U'02 dOZ 

where 
dO °2 - dO (02 _ O~ ) /0 (8) 

dOl = (°1 - 2) / ° and 
d02 

The system of equations (6) and (7) contains 3 unknowns: 1::.°1 ' 

1::.02 and I::.£p. I::.Ec is a known function of a and t, and ° is a 
known function of 0io + 1::.0,£ ' in which 0io ' the stress at the 
beginning of the load step, is known. The third equation, needed 
in general for solving the system, is the given stress-strain 
curve, by which an effective stress increment is related to an 
effective plastic strain increment. 

When employing the BOSOR 5 computer program, we have assumed 
linearly elastic material behavior, except for creep, and we have 
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dropped the terms having the index p in the above equations. The 

acting stress seldom exceeded f21/4. 

The creep strains we measured on the 2xlxlO cm 3 microconcrete 

bars exhibited considerable scatter, as creep strains always do. 

Moreover, the compressive stress applied to the bars varied only 

within the rather narrow interval 7 - 17.5 N/rronz • The rather 

bewildering array of recorded creep strains could not easily be 
compressed into a law of the type defined by equation (5). The 

constants that seemed to produce the best data fitting f,ormula 

of that type are 00 = 98100 N/rron z , a = 1 , B = 0.4, and the corres

ponding creep equation is 

- _ 0 0.4 
Ea-98100 t 

wi th 0 expressed in N/rronz 

fairly well for 0 < t < 125 

(9) 

and t in days. Equation (9) holds 

days, but its validity is somewhat 
doubtful for longer loading periods, because not many bars were 

loaded during a longer span of time. 

We performed creep buckling calculations, using equation (9) , for 

the imperfect dome whose meridian is defined in figure 3, assuming 
that its :support 'preciudes any. linear displacemen-t ana' any rota

tion along its circumference and again letting E = 29 430 N/rron z and 

v = 0.18. Besides the rapid loading case mentioned before, three 
levels of permanent pressure were considered 

p = 14.71 N/am z p = 11.77 N/am z and p = 8.83 N/am 8 • 

The calculated maximum immediate deflection of the shell under 
the radial pressure p = 14.71 N/em z is w = 2.83 rron. When the pressure 
is kept constant, the maximum deflection amounts to w = 4.86 mm 

after t = 10' days and creep buckling occurs after tu days, with 

10 < tu < 12 , the number of full buckling waves in the circum
ferential direction being n = 8. The critical duration of the 

loading, tu ! varies little, however, with n. 

When p is taken equal to 11.77 N/emz , the deflection increases from 
the initial value w = 2.14rron to w = 7.06rron after t = 110 days and 

110 < tu < 115. n is· again 8. 

When the creep buckling calculation is carried out for the con

stant load p = 8.83 N/amz , w is found to be 1.54 rron at f; = 0 and 

13.75 rron at t = 1150 days. Further: 1150 < tu < 1200 and n = 3 . 

It should be noted that not as many iterative computations were 

performed for each of the numerous time increment's required for 

the loading level p = 8.83 N/em 2 as may have been desirable. 
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Together with the weak sensitivity of the critical duration of the 

loading to n, this may explain why n = 3 is found for this loading 

case, whereas n = 8 was found for higher pressure levels and cor

respondingly shorter loading periods. 

GERARD's and KOLLA~'s creep buckling hypothesis 

GERARD [10J suggested that a critical strain be derived from known 

solutions of shell buckling problems without creep and surmised 

that a shell should collapse under constant load when the tota~ 

strain £t' including the creep strain, equals that critical strain. 

KOLLAR's proposition [11] is equivalent: according to him, the 

pressure causing creep buckling can be obtained by replacing 

YOUNG's modulus in the formula for the elastic critical pressure 

by o/£t' where a is the constant stress and £tis the total strain 

at the time, t, of collapse. 

A possible formulation of GERARD's and KOLLAR's assumption is , 
~ = -p- = constant, independent from p 
Et 2-

£t 

(l0) 

The value of p/Et , for example for p = 11.77 N/em 2 , can be obtained 

as follows. The stress computation gives the effective membrane 

stress a in the middle of the 40 em wide, flatter edge zone of 

the imperfect shell: 0" = 23. 54N/mm 2 • The corresponding effective 

elastic strain is 2(l3~v)a 2(~ ~ ~[/:1023. 54 629x10-6, and the cor

responding creep strain at t = 110 days is ~~i~b 1100• 4 1573x10-6• 

Hence £t = 2202 x10-6 , Et = a /Et = 10690 N/mm 2 and 

p/Et = 0.1177/10690 = 1l.01x10-6 . 

Similar calculations for p = 14.71 N/em 2 and p = 8.83 N/em 2 yield 
- -6 - -6 

p/Et =7.84x10 and p/Et = 17.44x10 , respectively. For tu=O 

(rapid loading! we had Pu:: 17.66 N/em 2 and consequently pulE = 

2(1 + v)pu- 2(l + 0.18)0.1766 -6 
3E = 3 x 29430 = 4.72x10 • 

Hence, we obtain for p /Et the numbers 

4. 72x10- 6 7. 84x10- 6 11.01x10-6 and -6 17. 44x10 ,instead of a 

when p amounts_to constant, 

17.66 14.71 11.77 and 8.83 N/em 2 , 

respectively. 

The calculations described above manifestly do not corroborate 

GERARD's and KOLLAR's hypothesis. 
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Creep tests on domes with un prestressed thrust rings 

We have previously reported [12J upon the major part of the ex
perimental results of our series of creep tests, which "appears 
to have been the first experimental study of the effect"of creep 
on buckling of concrete shells" [13]. The present report provides 
more complete data. 

Data concerning 18 tests of long duration on model domes whose 
thrust rings were not prestressed are collected in Table III. 

Table III - Tests of long duration - Ring not prestressed 

Nt' t' r 121 tu P Eo E- E' .E.. Et E- n 
Po t Pt Pt 

(Tm/) (Tm/) (N/",n 2) (days) (N/em2) (N/Tm/ 2) (N/1Tl1l 2 ) (N/~) 

KN4 6.89 2538 60 26.5 5.9 31618 0.466 14468 1.019 16071 0.917 9 
KN5 6.96 2538 62 574 4.9 34111 0.353 6833 1. 762 8093 1.488 
KN6 6.97 2566 57 80 4.9 27810 0.441 8670 1.416 8906 1.377 9 
KN7 6.95 2540 64 49 5.9 32454 0.447 10781 1.345 11 095 1.307 8 
KN8 6.87 

2536
1 

66 1733 3.9 30445 0.324 8229 1.199 8457 1.166 
KN9 6.79 2526 64 - 3.9 28634 0.350 still carried P after 2065 day 
KN10 6.82 2523 66 33 

I 
5.9 30152 0.493 17000 0.875 - - 9 

KNll 6.96 2530 72 14 6.9 33882 0.494 15932 1.051 17509 0.956 9 
KN13 7.00 2557 61 316 4.9 31303 0.386 7647 1.577 13015 0.928 9 
KN14 6.84 2516 63 35 7.8 34769 0.563 14 842 1.320 15899 1.232 9 
KN16 6.96 2562 67 0.5 8.8 34422 0.641 28878 0.765 30023 0.735 
KN17 7.00 2553 60 4 8.8 30059 0.721 22354 0.970 24500 0.884 
KN18 6.94 2580 60 4.5h 8.8 29749" 0.733 27732 0.812 29047 0.775 
KN20 6.93 2526 69 8.5 7.8 28768 0.669 20092 0.957 21120 0.911 
KN21 6.96 2537 68 

n.' I 7.8 35547 0.541 23167 0.831 23983 0.802 10 
KN22 6.90 2530 65 42.5 6.9 30916 0.551 11586 1.471 12626 1.349 10 
KN23 7.08 2501 61 63.5 6.9 36985 0.427 19058 0.829 21543 0.734 9 
KN25 6.96 2522 64 45 7.8 35403 0.537 17993 1.057 17993 1.057 9 

'" 6.93 2538 64 32057 1.133 1.039 
0(:1) 1.02 0.77 5.9 8.5 26.5 23.9 

'--- '-----

t', rand 121 have the same meaning as in Tables I and II. The 
constant pressure P was applied 21 days after each shell was cast. 
tu is the time that elapsed between the application of the load 
and the failure of the dome. tu ranges between 4.5 hours and 
1733 days. 

Eo is the modulus of elasticity at t = 0, i.e. measured on 
2xlxlOcm3 bars at the time the load was applied to the dome. 
Po in the column under the heading p/po was obtained from the 

- - - 2 -equation Po =: yEo(t' /r) , where y = 0.539 is the average value of 
y derived from rapid tests on domes with unprestressed thrust 
rings (see Table I). We do not know the pressure that would have 
caused the model domes in Table III to buckle in a rapid test and 

Po is the best estimate of that pressure that is available to us • 
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It cannot be presumed to be a very accurate estimate, since the 
lowest y is 17 % lower than y and the highest y is 13% higher than y. 

The p/Po column in Table III shows that the permanently applied 
pressure ranged from 32.4% to 73.3% of the most probable value 

of Po . 

In Table III Et = (J / El, , where (J is equal to the permanent mem
brane stress in the dome in question and also to the constant 
compressive stress in the corresponding bars, and where Et is 

the total strain of these bars on the day the shell failed. Pt 
in the column under the heading P / Pt is given by Pt = yEt (~ )2. 

I l' 
One can see from that column that the ratio p/Pt fluctuates round 
uni ty and has an average value of 1.133 and a coefficient of 
variation 0 = 26.5%. 

Et and Et contain the effect of temperature and moisture changes 
on the length of the bars. It is logical to subtract this effect,. 
as measured on identical unloaded bars, from Et. From the re
maining sum E t of the elastic strain and the creep strain ~ higE,er 
modulus of elasticity Et = (J/ Et and a higher pressure Pt = yEt ( ~.)2 
were calculated. In the last column but Qne of Table III, P is 
compared with Pt. The average value of the ratio p/Pt for 16 
tests is 1.039. This tallies very well with GERARD's and KOLLAR's 
proposition, since the ratio would be 1 if the proposition were 
true. The standard deviation is, however, quite high: it is 
0.239x1.039. The lowest ratio p/Pt is 0.734 and the highest is 1.488. 

It is not astounding that the numerical values of P / Pt are 
scattered so widely, since we are dealing with a type of failure 
involving simultaneously instability of shells and creep of 
concrete. Each of these two phenomena by itself is notoriously 
precarious and the combination of both is bound to be highly 
capricious. 

The failure zone of the model caps was subjected to direct com
pression and bending, whereas creep strains were measured on bars 
loaded in uniaxial compression. It is conceivable, though by 
no means certain, that the values of p/Pt would have been less 
widely scattered if the creep strains had been measured on spe
cimens subjected to biaxial compression or to simultaneous com
pression and bending. 

One model dome, KN8, finally buckled after 4 years and 9 months 

under a load which was only 32.4% of our best estimate of its 
carrying capacity under rapid loading. 
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As to model cap KN9, after it had carried a constant radial 

pressure P = 3.9 N/am B for 2065 days, the pressure was increased 

to Pu = 6.9 N/am B , which caused buckling of the specimen. On the 

day of this (swift) increase of the load, Et and Et ' determined 
from measurements on small bars made at the same time and from 
the same batch of microconcrete as dome KN9, amounted to 
Et = 6882 N/rronB and Et = 8307 N/rron B • The corresponding value 
Pt = 3.24 N/am B is lower than P and the test dome should already 
have buckled before if GERARD's assumption held strictly true 

for every single shell. 

Deformation of the domes under long-term loading 

Theoretically the deformation of a perfectly spherical dome is 
axisymmetric until an asymmetric pattern of dimples and bulges 
suddenly appears under the bifurcation load. Our test shells 
were not perfectly spherical, but their shape was nearly axi
symmetric. Nevertheless, their deformation was already asymme
tric soon after the loading was applied. In the tests of long 
duration we have measured the deformation of the domes after cer
tain intervals and in most cases, but not in all, a number of 
full waves could be detected in the circumferential direction. 
The last column of Table III shows that this number, n, is almost 
always equal to 9, once to 8 and twice to 10. This squares with 
theory, for HUANG's diagram predicts 9 full waves when A = 14 and 
the BOSOR 4 calculation also predicts 9 waves. 

The wave pattern was never regular and the amplitude of the radial 
displacement was different from wave to wave. In most creep tests 
the curvature due to the deformation was notably greater in one 
wave than everywhere else. There a disk would eventually be 
punched out and in many cases we could thus predict where buckling 
would occur. The critical area became almost flat and in 13 cases, 
especia~ly under low radial pressures, the sign of the actual 
curvature of the shell even changed locally, sometimes several 
weeks before failure. 

Creep tests on domes with prestressed thrust rings 

Table IV, which is made up in the same way as Table III, contains 
data regarding 23 domes which were permanently subjected to' a 
constant radial pressure p and whose thrust ring was (or still 
is) prestressed. Two caps have now withstood p =4.9N/amB for 
10 years. The other 21 domes failed after being pressurized for 
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Table IV - Tests of long duration - Ring prestressed 

NT' t' r f21 tu P Eo .E. E' ..E.. Et .E. n 
Po t 

Pt Pt 
Irrrn) Irrrn) IN/rrrn2) I days) IN/cm2 ) IN/rrrn2 ) IN/rrrn2) IN/mm 2 ) 

K18 6.97 2407 65 1 11.8 30095 0.755 22 717 1.0 - -
K22 7.16 2428 69 132 7.8 27273 0.535 11971 1. 220 - -
K24 6.99 - 70 10 8.8 29340 0.580 19151 0.888 - -
K25 7. 08 

1
2402 

64 79 7.8 22239 0.657 18242 0.801 - -
K26 6.92 2428 75 70 7.8 28824 0.542 13623 1.148 - -

I 
K30 6.87 2462 58 3 9.8 28678 0.711 19312 1.056 - -
K31 6.91 - 67 8 9.8 35851 0.548 20833 0.942 - -
K32 6.85 2441 64 98 5.9 35089 0.345 12578 0.962 - -
K35 6.93 2462 - 2675 5.9 33667 0.357 7328 1. 640 9523 1. 262 

, K37 6.97 2480 72 167 6.9 28367 0.496 10552 1. 333 13059 1.077 9 
K39 7.03 2493 71 - 4.9 37007 0.270 has carried P since 01-7-75 
K40 6.99 2470 71 - 4.9 35127 0.283 has carried P since 15-7-75 
K41 7.07 2498 59 45 6.9 31263 0.444 10232 1. 356 11 382 1. 219 9 
K42 6.86 2527 64 27 7.8 33659 0.512 13657 1. 262 14 907 1.156 9 
K43 7.26 2477 69 34 7.8 33219 0.445 13367 1.106 15855 0.932 9 
K44 6.90 2493 70 6 8.8 29445 0.633 20444 0.912 20254 0.921 
K45 6.91 2552 69 31 8.8 36915 0.528 15484 1. 258 18135 1. 075 9 
K46 6.80 2556 60 66 5.9 33516 0.402 10804 1. 245 13527 0.995 
K48 6.99 2554 62 21.5 6.9 34736 0.427 13584 1. 092 15863 0.935 9 
K49 6.92 2558 66 5 8.8 35442 0.551 26234 0.744 . 27071 0.721 
K50 6.87 2511 67 40 8.8 33616 0.568 15793 1. 208 17 324 1.102 9 
K53 6.89 2532 65 0.3 8.8 29729 0.649 - - - -
K54 6.91 2555 68 0.3 9.8 31318 0.713 24401 0.916 25011 0.893 

:;; 6.96 2490 67 31804 1.104 1. 024 
0(%) 1.5 2.0 6.6 11.5 19.7 15.0 - ~ 

periods tu ranging between 0.3 and 2675 days. 

Po in Table IV has also been calculated with the formula 
Po =yEo Ct'/r)2, but with a highery than the one used in Table III, 
namely with the average value y = 0.621 determined from rapid 
tests on caps ~ith prestressed rings (see Table II). The test 

pressure P ranged from 0.270po to 0.755po ' 

The average value of the ratio p/p~ is 1.104, with a coefficient 
of variation 0 = 19.7 %. Et and Pt are not known for all the domes 
in this series,' because we did not measure the length variations 
of unloaded microconcrete bars at the beginning of our test pro
gram. The average of the 12 known values of p/Pt is 1.024, the 
coefficient of variation being 0 = 15 %. The scatter is much less 
than for the creep tests on calottes with unprestressed thrust 
rings. 

In all cases where a number, n, of circumferential waves could 

be counted, we found n = 9. 

Figure 4 and figure 5 show lines of equal spatial curvature for 

the test domes K39 and K40 respectively, in the deflected shape 
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Curvatur£s in m-1 

Fig. 4 - Model dome K39 - t = 3543 days -
Lines of equal spatial curvature 

brought about, by a constant load of almost 10 years duration. 

Two adjacent curves correspond with a O.05m-l curvature diffe

rential. The actual curvature of dome K40 is zero along the 

perimeter of the small shaded area in figure 5 and it is just 

slightly convex towards the center of the nominal sphere within 

the shaded are,a. If K40 ever buckles under p = 4.9 N/cm 2 or if we 

caused it to buckle by increasing the pressure, the shaded area 

would no doubt be part of the disk that would be punched out. 



Curvatures in m-1 

Fig. 5 - Model dome K40 - t = 3529 days 
Lines of equal curvature 

Creep buckling failure mode 
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Long-term radial.pressure has invariably caused the model domes 
to fail in the same way as rapid loading, namely by punching out 
a circular or slightly elliptical disk, normally near the edge 
of the shell. The disks were somewhat larger than in the case 
of rapidly increasing load. The mean diameter of the disks was, 
on an average, . about equal to 2. 94rrt". 

Conclusions 

1) In "rapid" tests, carefully made spherical unreinforced micro

concrete model domes buckled under a uniform radial pressure 
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Pu which was much lower than the critical pressure Pel given 
by the ZOELLY formula (1), but higher than the pressure given 
by von KARMAN and TSIEN, and which, on an average, was 30.6% 

lower or, when a state of stress approaching a membrane state 
was achieved by prestressing the thrust rings, 33.6 % lower 
than the buckling pressure predicted by a BOSOR 4 calculation 
for a perfect dome. For individual model domes the experi
mental buckling pressure could be as low as 54.7 % of the 
buckling pressure calculated with the BOSOR 4 program. 

2) Achieving a state of stress which approached a membrane state 
increased the buckling load for a given geometry of the sphe
rical cap the average value of y in formula (4) rose from 
0.539 to 0.621, i. e. by about 15 %, when the domes were tested 
to failure within a few hours. The average value of y would 
be lower for more imperfect shells. 

3) The test shells invariably failed by the punching out of a 
circular or slightly oval disk, usually quite near the edge 
of the cap. In rapid tests, the mean diameter of the disk 
was about 2.76.fitT' when the thrust ring was not prestressed 
and somewhat smaller when the thrust ring was prestressed. 
In tests of long duration the diameter of the disk was about 
2. 94/rt' i. 

4) Under long-term loading, the carrying capacity of the domes 
decreased drastically, owing to creep of the microconcrete. 
One dome failed after having been subjected for 4 years and 
9 months to a constant radial pressure P which was only ~.4% 
of the best estimate that we can make of its carrying capacity 
Po under short-time loading. Another test cap, which was kept 
more nearly in a membrane state of stress, buckled after having 
carried for 7 years and 4 months a constant pressure amount
ing to only 35.7 % of Po • 

5) Given the geometry of the dome, its carrying capacity under 
long-term loading increases when it is kept in a membrane 
state of stress. 

6) Two model domes, in which the state of stress approaches a 
membrane state, have now withstood for 10 years a pressure 

P = 0.270po , and a pressure P O.283po ' respectively. This 
suggests, but does not prove, that spherical concrete shells 
may be able to withstand permanently a pressure amounting ap
proximately to O.3po • 

7) Due to the imperfection of the model domes, their deformation 
under permanent uniform radial pressure was not axisymmetric, 
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even long before they buckled. If it were feasible to regu

larly measure the curvature of a full-size spherical dome in 

a number of points, it might perhaps be possible to foresee 

a creep buckling failure. 

8) A BOSOR 5 calculation, carried out on the assumption that the 

creep strain varies with time in accordance with equation (9), 

enables an analyst to estimate the period tu during which a 
spherical concrete dome might be expected to withstand a uni

form radial pressure of given intensity. The critic~l time 

span tu thus estimated gives, at best, only an idea of the 
order of magnitude of the real critical time span. 

9) In a statistical sense, GERARD's and KOLLAR's creep buckling 

hypothesis for shells, which, to the best of the authors' 

knowledge, is unproven so far, is corroborated quite well by 

the tests described in this paper. Neglecting the scatter, 

it may be said that a spherical concrete dome fails under the 

permanent radial pressure given by the formula 

p = P t = yEt (~')2 = Y :t (~' y ( 11 ) 

which, again in a statistical sense, is about 3% conservative. 

Substitution of equation (11) into the expression 0 = ;:' for 
the compressive membrane stress in the dome yields the equation 

Et = Y2~' • The conclusion is that the dome buckles when the 

total strain Et ' produced by the membrane stresses and in

creasing on account of creep, equals a critical value given 

yt' 
by Et = 2r (12) 

whether thelimi t is reached within a short time or after a 
long span of time. In equation (2) y is equal to either 0.539 

or 0.621, as explained above, for the excellent shells reported 

upon in this paper. The limit value (12) of E t does not depend 

on the acting pressure. Et is the total strain produced by 

the membrane stresses, but it does not include climatic length 
variations. 

10) As may be expected when shell instability and creep of con

crete are combined, reality may deviate considerably from the 

statistical ,truth embodied in statement 9) and the limit value 

of E t may diminish to 0.72 times that given by equation (12). 

11) In view of the scatter characterizing the limit value of E t 
and since the corresponding time intervals are scattered even 

more widely, it does not seem possible to predict with any 
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degree of accuracy the span of time tu that will elapse be
fore creep buckling of a concrete shell occurs. The column 
headed tu in Table IV provides an illustration: three nomi
nally identical spherical domes, subjected to a permanent 
radial pressure p = 5.9 N/em 2 , buckled after 66 days, 98 days 
and 2675 days, respectively. 

12) BOSOR 5 calculations, in combination with creep equation (9), 
do not support GERARD's and KOLLAR's creep buckling assump
tion. The experimental evidence, that is referred to in 9) 
-and that bears out the assumption, is more conclusive. The 
contradiction between theory and experiment may be due to the 
use of a creep strain equation of type (5) in the computer 
program. A creep strain equation of the more commonly em
ployed type Ee = Eeoo (-1 - e-6t ), where Ee oo is the final value of 
the creep strain (at t = (0) and 9 is a constant, might lead 
to results that would perhaps tally better with GERARD's and 
KOLLAR's proposition. 

13) Not discussed in this paper is the fact that the rapid tests 
described above show that a Southwell plot, in which changes 
of curvature are used instead of absolute displacements, is 
able to predict the buckling pressure for a spherical con
crete dome with good accuracy, but only if its thrust ring 
is not prestressed [14J. 
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Dynamic Stability of Voscoelastic Shallow Shells 
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Summary 

The quasi static and dynamic stability and post-buckling beha
viour of viscoelastic shallow shells are studied on the basis 
of the generalized Karman-Donnell-Vlasov equations. An analysis 
is made for a thin-walled cylindrical panel subject to a compre
ssion and a periodical loading. 

Introduction 

When dealing with buckling and postbuckling analysis of visco

elastic shells similarly as in the case of elastic shells we 

derive governing equations applying linear constitutive equa

tions and geometricallv non-linear theory. The first informa

tion about critical loads can be obtained from the analysis of 

linearized problems, too. When considering infinitesimal per

turbations we may feel justified in neglecting non-linear terms. 

Then we can easily to determine critical loads with infinite 

critical time and instant critical loads. However, in the case 

of instability-with respect to infinitisimal perturbations we 

arrive at an apparent contradiction. We assume infinitesimal 

perturbations and find out that they grow without boundsl11 • 

Therefore it is necessary to deal with non-linear analysis of 

stability problems. 

When studying non-linear problems we may find out that in con

tradiction to linear problems postbuckling deformations tend to 

finite values instead of growing to infinity. Therefore the 

solution of a postbuckling viscoelastic problem cannot be sol

ved by successive aproximation that require only the solution 

of linear problems. 
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We shall show some characteristic features of buckling analysis 

of quasistatic problems and deal with dynamic stability of 

viscoelastic shallow shells. 

Basic equations 

When deriving the governing equations of large deflection theo

ry of viscoelastic shallow shells similarly as in the case of 

elastic shells we apply physically linear constitutive equations 

and the tensor of large deflections. Then the governing equati

ons of viscoelastic shallow shells assume the form 

t 

\ G, 'kl(t-T)D w,' 'kl (T) dT 
lJ T ,lJ 

o 

t 

\ Kijkl(t-T) D,F'ijkl (,)d, 
o 

( 1) 

where w is the trans'Jerse displacement, posi ti ve in the outward 

direction, F the Airy stress function, q the external loading, 

positive in the outward direction, Nij - h 0ij the boundary 

loading, b ij the curvature tensor, h the shell thickness,eij 

the alternating tensor, DT = a/aT, Gijkl(t) the tensor of 
relaxation functions, 

Kijkl(t)= 'e im e jn ekr e ls Jmnrs(t) I 

where Jmnrs(t) is the tensor of crep functions. 

( 2) 

We assume that the domain of definition Q is a rectangular panel 

or a closed cylinder. We shall consider the following boundary 
conditions 

w on aQ , ( 3 ) 
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or 

w rJ\ nn 0 on a\l C 4) 

and 

F = - Fsn 0 on a\l , C 5) ss 
or 

a 3F aF 
=0 a\l C 6) an = 

~ 
on , 

where n is the direction of the outward normal to a\l and s is 

the direction of the tangent to a\l . 

Relaxation and creep functions are not independent. When we 

denote the coresponding tensor operator 

and 

or 

t 

G = \ GijkICt-T) ~TC . ) dT 
o 

similarly J. Then it holds 

t 
G- 1 = J = \ JijkICt-T) .Lc 

aT 
0 

in the form of Laplace transform 

p JijklCp) 

) dT 

C 7 ) 

C 8) 

C 9) 

As this inversion can be too complicated very often it is more 

convenient to consider the governing equations for a viscoelas

tic shallow shells in terms of displacements. They assume the 

form 

t 

~ 'GijkICt-T) DTW'ijklCT) dT 

t 

- h CW'ij - b ij ) \ Gijk1Ct-T) DTCuk,lCT) + 

o 

C lQ)) 
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t 

\ Gijkl(t-T) DT(uk,lj(T) + W'k(T) W'lj(T) + 
o (10) 

When we have to solve the classical time dependent stability 

problems with respect to initial perturbations we have to ana

Ivse the influence of initial perturbations;. As Boltzmann 

equations have been derived for homogeneous initial conditions, 

it is necessary to express governing equations in a differential 

form or to derive and add to the governing eauations (1,10) ad

ditional terms for initial values. These terms are different for 

different relaxation and creep functions. 

In the case of a standard material with constitutive equations 

( 11) 

the governing equations are 

(1 + aD t ) q -

- Nij (w'ij - b ij ) + h e ik e jl (w'ij - b ij ) F'kl; 

( 1 2 ) 

where ~ijkl~Dt)is the adjoint matrix and V(Dt ) the determinant 

of Eijkl + ~ijkl Dt ' considering common contracted indices for 

pairs of indices ij and kl. In the integral form we get 

3 h 
12 

t 

\ 
o 



where 

and 

NO C 0 _ b ) -t/a 
+ ij W'ij ij e 

t 

\ Kijk1Ct-T) D. F'ijklCT)dT 
o 

(13) 

Ct) C) C 1~) e- t / a (15) Gijk1 Eijk1 H t - Eijk1 - a"ijkl 

-1 

Kijk1 e im e jn e kr e 1s [p2 G] mnrs C 16) 

t ) -1 
B = Q. ijkl Eijk1 " 
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As derivative DT in governing equations have to be taken in the 

sense of distributions it is better to rewrite them" in the form 

t 

\ 
o 

1 Q 0 e-t/a) 
~ ijkl W'ijkl 

t 

Kijk1CO) F'iJkl + \ DtKijklCt-T) F'ijkl CT ) dT = 
o 

+ 
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( 18) 

Quasistatic stability 

When dealing with analysis of the quasi static stability and 

postbuckling behaviour of viscoelastic shallow shells we 

restrict ourselves to a cylindrical rectangular panel or a 

closed cylinder. Then b il = 0, b I2 = 0 and b 22 = I/R , where 

R is the radius of the cylinder or of the panel. ·We put q = 0 

and NIl = pet), NI2 = N22 = O. 

Then applying formally to (1) Laplace transform and then 

Tauber-s theorem [2j we arrive at 

+ w, 11 (0) /R 

for t o and 

+ w'Il(oo)/R 

for t 

(19) 

(20) 

For the limit values of the tensors G(t) and J(t) we have the 
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following relations 

J ( 0 ) = G- 1 ( 0 ) J(oo) ( 21) 

and 

( 22) 

Equations (19,20) corespond to Karman-Donnell-Vlasov ~e ~tions 

for cylindrical shells with material constants given by limit 

values (21) of relaxation and creep functions. 

Thus the buckling load and post-buckling deformations of 

a viscoelastic cylindrical shell at t = 0 are equal to that 

load and deformations of an elastic shell with the instant 

moduli. We denote the corresponding critical load Picr. 

Similarly buckling load and post-buckling deformations for 

t = 00 are the same as the buckling loads and post-buckling 

deformations of an elastic shallow shell with the longtime 

moduli. We denote the critical load for t = 00 by Plcr. Then 

from Gijkl(O) > Gijkl(oo) it follows Picr > Plcr . 

A detailed analysis similar to those for isotropic viscoelas

tic plates [3] shows: For J) < Plcr there exists only the 

trivial unperturbed solution w = 0 and initial perturbations 

decrease to zero. For Plcr < p < Picr there exists only a 

trivial unperturbed solution and initial perturbations grow to 

the post-buckling solution which for t =00 assumes values deter

mined by the equation (20) For p = Picr there exists a non

trivial unperturbed solution increasing continuously from zero 

at t = 0 to a finite value determined by the equation (20) 

For p > Picr the postcritical solution starts by a jump at 

t = 0 , given by (19) . 

Dynamic stability 

In the following we shall deal with analysis of dynamic stabili

ty of viscoelastic cylindrical shells and assume q = - p D~W 

and NIl = pet) = PI + P2 cos 8t. In order to get qualitative 
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results we restrict ourselves to analysis of linearized problems. 

For the sake of simplicity we consider a shell of standard solid 

with homogeneous relaxation spectrum S"lijkl B Eijkl . Then 

the linearized problem leads to analysis of the equations 

- p ( t) w, 11 - h F, 11 /R) , 

(23) 

where 

c (24) 

We consider the following initial conditions 

w( 0) o F(O) o ( 2 S) 

Then eliminating F we arrive at 

( 26) 

Now we consider orthotropic cylindrical shells with simply 

supported boundaries. Then the solution can be sought in the 
form 

00 

w I: 
m=l 

sin mrrx sin ~ 
a b ( 27) 

in the case of a cylindrical panel, where a,b are dimensions of 



the oanel and in the form 

W :: 
00 

L 
m::l 

00 

!. wmnCt) sin mrrx cos nl1y 
L ~ n::O 

C 28) 

in the case of a closed cylinder, where L is the length of the 

cylinder and R its radius 
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Denoting m:: n l ' n :: n 2 ' x :: xl ' y = Y2 ' a :: a l ' b :: a 2 ' 

L :: a l ' R :: a 2 for both cases we arrive at the following 

differential equation for 

{A - pCt) + a p' Ct) B} wmnCt) + { S A -

- a B pet)} w'mn Ct ) + C w"mn Ct ) 

+ a C w"~n(t) 0 

where 

h 3 n. n. nk n l nm n n 
A K Eijkl 

1 ] n r 
12 mnrs a. a. a k a l a a a 

1 ] m n r 

2 

B 
n l n. n. nk n l 

Kijkl 
1 ] 

2 a l a. a. a k a l 1 ] 

2 

B 
a l 

p 2" n l 
c 

Then in the quasi static case when 

p :: 0 

when looking for the solution in the form wmn 

we get 

w mn 

A - p B 
wO exp (_ mn . mn t) 

mn S Amn - a p Bmn 

ns 
a s 

(29) 

4 n l I h + 4 R2 a l 

(30) 

C 31) 

WO expCw t) mn 

( 32) 
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As S > a the solution decreases to zero for p < Amn/Bmn 

Amn/Bmn < p < S Amnia Bmn and and increases to infinity for 

becomes instantly unstable for p = B Amnia Bmn . Therefore 

we cL.ll 

( 33) 

the longtime critical values and 

= ~ p 
a -mnlcr ( 34) 

the instant critical values. These values correspond to criti

cal values of equations (20) and (19) . 

In the dynamic case with a constant pressure Pl we arrive at 

the characteristic equation 

(A - Pl B) + (6 A - a P l B) w + C w2 + a C 3 
w o (35) 

Properties of the solution depend on the roots of this equation. 

For A - Pl B < 0 at least one root is positive and thus for 

AlB the solution is unstable. From the analysis of 

relations between roots and coefficients of (35) it is obvious 

that Plcr = Amn/Bmn and thus the longtime values are simi-

lar, as in the case of quasi static stability problems, critical 

values with respect to initial perturbations. 

Now we shall deal with the dynamical stability of -the visco

elastic cylindrical shell subjected to periodic axial pressure 

p (t)= Pl +P2 CQS at 

We shall look for the solution of the corresponding differen-

tial equation for 

wet) I: 
k=-oo 

w mn in the form 

e ikat/2 
Wk 

where for the sake of simplicity we leave out indices m,n. 

( 36) 



Then inserting (36) into (29) and comparing coefficients at 

exp (ik t/2) we arrive at 

2 2 
{A - PI B + i (B A - a PI B) k 0/2 - C k 0 /4 

- i 3 3 I 
a C k 0 /8} wk - Z-P 2 B (1 + 

+ a i k 0/2)(wk _ 2 + wk +2 ) O. 

( 37) 

In fact we have two independent systems of equations. For odd 

indices we have a system with the period TI = 2T 4rr/0 and 

for even indices we get a system with the period T = 2rr/0 . 

These systems have solutions only when their determinants are 

equal to zero. Values of 0 which fulfil the determinental 

equation ~(0) = 0 are critical frequencies. An analysis of 

critical frequencies has to be done numerically as also appro

ximate analysis is connected with the analysis of equations 

of sixth degree. 

When we restrict our analysis to shells of Voigt solids 

a = 0 and we arrive at 

which leads to similar analysis as in the case of elastic 

shells with.dam~ing [41 . 

Oonclusions : 

(38) 

We have analysed qualitative properties of quasistatic stabi

lity of viscoels?tic cylindrical shells and have shown that 

a shell is unstable to initial perturbations for an axial 

compression greater than the longtime critical load Plcr which 

is less than the instant critical load corresponding to the 

critical load for an elastic shell. 

323 



324 

Similar qualitative results have been shown in analysis of the 

dynamic stability of the cylindrical shell subject to a constant 

axial pressure. 

In the case of a periodic load the analysis leads to problems 

what it is necessary to analyse numerically. 
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N.V. BANICHUK 

Institute for Problems in Mechanics 
USSR Academy of Sciences, Moscow. 

Summary 

The shape optimum design for elastic-plastic structures loaded 
by fixed and variable repeated forces is considered. Formulated 
variational problems with unknown boundaries and partial deriv
atives are investigated by the methods of distributed parameter 
control theory. The necessary optimality conditions for unknown 
boundaries are obtained taking into account load carrying capa
city and shakedown constraints. The derived sensitivity anal
ysis formulas are applied to the different problems of elastic
plastic design. 

Introduction 

Strength and weight requirements are the most important factors 

in the theory of optimum design. Various failure modes are 

considered in modern studies. But because of the complexity of 

the collapse mechanism, it is difficult to take the real streng

th condition into account in the solutions. This probably expl

ains why the theory of optimum design is far from being complete. 

Contemporary investigations in this field are concerned with 

the research of the new statement of the problems, taking into 

account the different types of nonlinear behaviour of the mat

erial, consideration of the complex structural elements (plates, 

shells, three-dimensional solid bodies). Considerable efforts 

are being applied to the development of design sensitivity anal

ysis and effective optimization methods for minimization of the 

structural weight or another cost functionals under strength 

constraints. Related problems of the strength maximization un

der some inequality constraints are also considered. Research 

made in this field can be classified into two basic groups. 

In the first group belong those studies in which behaviour of 
the structures is supposed to be pure elastic (see, for example 
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[1-3]). Typical problems consist of minimizing the stress con

centration for the structural elements with rapidly varying geo

metry and weight minimization for shell structures under constr

aint on admissible stress intensity level. Besides rigorous 

solutions, some results were obtained with the application of 

intuitively selected criteria such as equal stress or equal 

strength criteria. Note refs. [4-6 ] which contain the discuss

ion of the designs based on the concept of equal strength. 

In the second group belong the studies based on representations 

about load carrying capacity and behaviour of the structure imm

ediately before the collapse. The problems of weight minimiz

ation for given critical loads [7-16] were solved here in the 

frame of the theory of elastic-plastic behaviour of the materials. 

Some problems with shakedown requirement have been considered 

in [17-19] for the case of variable repeated loads. Note also 

that numerous optimal design problems for plastic and elastic

plastic structural elements were discussed in [20-26]. In the 

developments described herein, it is well established that if 

plastic properties are taken into account, then it is possible 

to achieve an additional meaningful economy of materials. Here 

we mean that the weight of plastic design is compared with the 

weight of pure elastic design for the same stress intensities. 

Shape Optimal Design of Elastic-Plastic Structures under Carry
ing Capacity Constraint. 

Let us consider the equilibrium state of a solid body, occupying 

a domain n. The body is under action of volume forces qi and 

external loads Ti applied to the part ra of the body surface r. 

The rigid clampi~g conditions are supposed to be satisfied for 

another part ru of the body surface (r a + ru = r). This signif

ies that the displacement vector is equal to zero on this part 

of the surface: (u)r u = O. Behaviour of the material is assumed 

to be ideal elastic-plastic. An admissible stress state is 

characterized by means of the inequality g(a .. ,k) ~ O. Here k 
~] 

- plasticity constant, a . . -stress tensor components, g - given 
~] 

function. The yield state is attained if the sign of equality 

holds for this relationship. The behaviour of the material is 
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pure elastic if the stresses satisfy the discussed condition 

with rigorous inequality sign. The family of convex closed sur

faces, which contain the origin of coordinates in stress space 

and correspond to different values of k, is given by equation 

g(o .. ,k) = O. These surfaces tend to the origin when k + O . 
.l.J 

We assume that plasticity regions are raised for applied loads. 

However, we consider that the spreading of plasticity zones is 

such that the carrying capacity of the body is not exhausted. 

This is the only constraint we take into account. Exhaustion 

of carrying capacity means unbounded increasing of strains for 

constant loads. 

Analysis of stresses and strains can be fulfilled for elastic

plastic body by means of developed numerical methods. Perform-' 

ing the corresponding calculations is possible only with the 

help of high speed computers. An especially large volume of 

calculations are necessary for the optimum design of elastic

plastic bodies. These calculations are needed to compare diff

erent admissible design variants. This is the reason why, up 

to now, there are essential difficulties in solving optimal 

structural design problems for elastic-plastic bodies using 

full elastic-plastic analysis. 

Essential simplification is achieved for problems of elastic

plastic analysis, when the load carrying capacity is evaluated 

and no additional information concerning stress-strain state 

and stiffness (rigidity) characteristics of the structure is 

required. Fundamental theorems of limit equilibrium state can 

be used in this' case [27,28]. According to the statical theorem 

of the limit equilibrium theory, the body carries the applied 

loads, if a statically admissible stress field 0 .. is possible 
.l.J 

satisfying the safety requirements and the equilibrium condit-

ions 

0 ... +q . 
.l.J,J .1. 

(0 .. n.) r 
.l.J J 0 

o 

T . 
.1. 

(1) 

(2) 
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and such that 

(3) 

where n. represents the unit vector along the external normal 
J 

to the surface of the body. A subscript after the comma denotes 

the differentiation with respect to the corresponding coordinate. 

Taking into account the statical theorem of limit analysis, we 

can formulate the next optimization problems: it is required to 

minimize the volume of the material 

(4) 

subject to constraints (1)-(3) on load carrying capacity. Part 

of the boundary rvc ra of the body is taken as a design vari

able. 

The set of a . . , satisfying (1)- (3) (safety stresses), is non-
1J 

closed. This is the reason why the statement of the optimal 

design problem in the form (1)-(4) is incorrect. For regular

ization of the problem let us consider next an approximate trans

formation. Consider two yield surfaces corresponding to the 

original parameter k and a varied parameter k f , where k > k f 
and k = k f + €, € > 0 - small number. Considering the class

ical geometrical representation of the yield surfaces, it is 

not difficult to note that the rigorous inequality (3) is ful

filled "automatically" if statically admissible stress fields 

satisfy relationships (1), (2) and condition 

g(a ... ,k f ) " 0 
. 1J 

(5) 

Thus, these fields are at the same time safety statically admiss

ible for original yield surface. The solution of the optimal 

design problem can be obtained with any desired accuracy by 

defining a s-ufficiently small value € and taking into account 

(5) instead of (3) in basic relations (1)-(4). 

Application of this approach, based on the introduction of the 

modified yield surface, is not the reason for additional mistakes 
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if small enough, value € is taken. Note here that there is 

some roughness in the experimental evaluation of plasticity 

constant k for real materials and the obtained values character

ised by some dispersion. 

To investigate the formulated problem, let us apply an approach 

based on sensitivity analysis. Introducing the slack variable 

~, we transform the inequality (5) into 

(6) 

Augmented Lagrange functional has the following form: 

J f dQ + J 1)! i (CJ i j , j +q i ) dQ + J A (g+~ 2 ) dQ (7 ) 

Q Q Q 

where 1)!i (i=I,2,3) and A are adjoint variables. Next the express

ion for oJ may be sought by varying the surface rv and taking 

into account the boundary conditions 

oJ J (A~ 00 .. 
lJ 

Q 

1)! ) (0 0. . - 0. . k 0 x k ) dQ + 
i,j lJ lJ, 

+ f2)'lldQ + j1)!.n. (00 .. - 0 .. oxk)dr + 
l J lJ lJ 

Q r 

+ J {l + U g + lJ 2) } nk 0 x k d r 

r 
v 

(8) 

In the derivatipn of the relation between oJ and variation of 

surface r v ' we use the property of the symmetry of the stress 

tensor (0 .. =0 .. ) and define the adjoint variables 1)!. as a funct-lJ Jl l 
ion satisfying the partial differential equations and boundary 

conditions 

o 

og 
~ 

lJ 
(9 ) 

(10) 
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Let us suppose that ~ and ~ are subjected to the relation 

~~ = 0 X E ~ (11) 

The two last integrals in the right hand of (8) are equal to 

zero, requiring the functions ~i' ~, ~ to obey (9)-(11). The 

loads Ti and qi 

coordinates T. 
1 

are supposed to be given as functions of spatial 

= Ti (xk ) , qi = qi(xk )· For shape variations 

of the body we assume also that variations of the boundary 

conditions have the form 0 (a . . n.) = n.oa .. + a . . on. = T .. ox .. 
1J J J 1J 1J. J 1, J J 

Variation on j is expressed in terms of derivatives of 1 and co-

efficients of the first quadratic form of varied surface. The 

term including on. is transformed with the help of Gaussian 
J 

equations. The derived expression depends explicitly on the 

mean curvature H. We have as a result the next expression for 

oJ 

oJ ~{l + ~g - 2H~iTi - (~iaij)'j + 

r 
v 

(12) 

Formula (12) determines the sensitivity of the optimized funct

ional to the variations of design variables (shape variations 

sensitivity) and gives us the possibility to develop the numer

ical methods of successive optimization [2]. Using the express

ion (12) and the stationarity principle'oJ=O we can write the 

necessary optimality condition: 

l+~g-2H~.T.-(1/J.(J .. ), .+(~.T.) 'knk 
1 1 1 1J J 1 1 

o on r 
v 

(13) 

Consider the particular case when the volume forces are absent 

(q.=O) and free boundary (T.=O) is varied. We suppose also that 
121 

g=g (a . . )-kf , where g (0 .. ) is a second order homogeneous funct-
o 1J 0 1J 

ion of stress tensor components. The optimality condition is 

simplified 

~ [2k~ + g] 1 on r 
v 

(14) 

In this case the optimality condition doesn't depend on adjoint 

variables 1/Ji. Thus the solution of the optimum design problem 



may be found on the base of equations (1), (2),(6), (11) and the 

expression for oJ 

oJ = J {l - A[2k~+g]}cSldr 
r 

v 

(15) 

In general, the case determination of the optimal solution is 

based on a full system of relations (1), (2), (6), (9)-(12). 
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It is not difficult to note that the analogy between the equat

ions (1), (2), (9) , (10) and the equations of rigid-plastic model. 

For this analogy there is a correspondence of adjoint variables 

~. to displacement velocities v., values !2(~' .+~ .. ) to strain 
1 1 1,J J,l 

velocities, and relation (9) to associate flow rule of plastic-

ity theory. 

Using the analogy we introduce the notation: 

E •. 
1J 

1 
-2 (~. . + ~ .. ) 

1, J J,l 

Multiplying (9) by o .. 
1J 

and taking the property of homogeneity 

of g (0 .. ) into account, we obtain 
o 1J 

0 .. E .. = 2Ag 
1J 1J 0 

(16) 

With the help of the equality (16) we can transform the optim

ality condition (14). Consider two cases: g ~ 0 and g = O. If 

for the varied part of the boundary g ~ O(go < k 2 ) then ~ ~ O. 

This inequality and condition (11) give us A O. It means that 

the optimality condition (14) is not fulfilled if the given 

assumption (g ~ 0) takes place. Suppose that g = O(gO=k~) in 

(14). From this condition and on the basis of (6),(11) we have 

A = 0ij Eij/2k~. Hence the optimality condition can be written 

in the form 

0 .. <" .. 
1J 1J 

1 on r 
v 

(17) 

Thus, we attain the classical optimality condition, obtained in 

the paper [9]. Condition (17) means that the rate of energy 

dissipation is constant along the unknown part of the boundary 
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fv. Note that stress intensity is also constant 

2 go = k f 

along fv. Consequently, if for solving the problem the improved 

succession of shapes converge, then the limit optimal boundary 

fv will be uniformly stressed. 

A numerical solution of the optimization problem can be obtained 

with an application of the successive optimization method- [2] 

or some other iteration method. Computations of the next two 

types must be performed when the successive optimization method 

is used. Computations of the first type are connected with the 

solving of the rigid-plastic analysis problem. As a result, 

the values o . . ,W. ,A,W are determined for a given shape of the 
lJ l 

body. Computation of the second type furnish the improved var-

iations of the boundary shape. Calculated values o . . ,W. ,A,W 
lJ l 

and the derived formulas of sensitivity analysis are used for 

this purpose. Many different methods of calculus of variations 

and the mathematical programming theory can be used for effect

ive realization of sensitivity analysis. Note that various 

methods were used in the frame of successive optimization algo

rithm, but the gradient method appeared to be the most efficient 

from the practical point of view [1,2]. 

The approach based on the successive optimization method has 

been developed for solving minimum weight design problems with 

constraints on load carrying capacity. The results of comput

ations are presented in Figs. 1-3 for plane elastic-plastic 

elements. The behaviour of these elements is characterized by 

two-dimensional equilibrium equations and Mises yield condition. 

In Fig. 1 an improved supporting element is shown. We take into 

account the symmetry of external loads boundary conditions and 

the geometry of the element with respect to the axis x. There~ 

fore only half of the element is presented in Fig. 1 and also 

in Fig. 2. Compressive loads are uniformly distributed and 

applied to the part of the boundary CD. The unknown part of 

the boundary BC is free from loads. The line BC is considered 

as a design variable and improved by iterations. There is contact 



y 

0.5 B 

Fig. 1. Plastic design for compressed element. 

x 

between the element under compression and the perfectly rigid 

and smooth surface AB. We suppose that the friction on AB is 

absent and the displacements in the x-direction are equal to 

zero. 
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The results obtained were compared to the corresponding pure 

elastic minimum weight design. For this purpose the minimum 

weight design problem was solved under the stress intensity 

constraint gO~0 .. ) < 1. The solution was obtained by the applic-
lJ 

ation of the algorithm of elastic optimization proposed in [29]. 

Computations were performed for the same geometrical and loading 

parameters (datas) with the application of closed system of equ

ations of the elasticity theory. An approximate solution is 

presented in Fig. 2. Comparison of numerical results, corresp

onding to elastic designs, show that taking into account the 

stress intensity constraint in elastic property of material we 

can achieve significant reduction of weight. Additional weight 

decreasing of plastic design with respect to elastic design is 

more than 6.6%. 

Equal stress intensity lines are presented by solid curves in 
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y 
0.5 B 

Fig. 2. 

x 

Elastic design for compressed element. 

Figs. 1 and 2. We see that for plastic design the stress fields 

become smoother. 

As another example, we shall consider the plane structural ele

ment shown in Fig. 3a,b. The loads are uniformly distributed 

along the boundary AB and oriented in x-direction. For the 

part of the boundary AD we have a rigid clamping condition. 

Free of the loads part of the boundary BC has been varied in 

designing process. Beginning with the initial shape presented 

in Fig. 3a r we obtain, after computation, the improved boundary 

shape shown in Fig. 3b. In the present example as in the prev

ious one, the solid curves in Fig. 3a,b signify the equal stress 

intensity lines. 

Shape Optimum Design Under Shakedown Constraint 

In the case of invariable loads it is sufficient for structural 

safety to take the load carrying capacity constraint into acc

ount. But in the general case of varying loads, this constraint 

is a necessarY,but not a sufficient condition and the collapse 

of the structure can occur. The reason for this is the follow

ing: the cycles of the rates of plastic deformations can arise 
when repeated variable loads are less than the critical value. 
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y y 

2 B 2 B 

x 

Fig. 3. Initial (a) and improved (b) shapes 

This is the so called collapse by cyclic plastic deformations 

which furnish the increasing of general deformation. There is 

no collapse and the shakedown takes place if during the loading 

the body accumulates residual stresses such that for the next 

part of the loading programme the deformations become pure elas

tic. Below we use the main statical theorem (Melan's theorem) 

of the shakedown theory [27]. If it is possible to find the 

independent time distribution of the residual stresses o~., such 
lJ 

that their sum with elastic stresses o~. gives safety stress 
lJ 

state (g(o~. + o~.,k) < 0) for any point of the body and for all 
lJ lJ 

combinations of loads, lying in given limits, then the shakedown 

will be reached by the structure. For the future variations of 

the loads in given limits the behaviour of the structure will 

be perfectly elastic. 

Let us formulate the optimization problem with shakedown cons

traint. It is necessary to determine the part of the body sur

face fv' minimizing the functional (4) such that the stresses 

oe o~. satisfy the system of equations 
ij' lJ 
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e 
0, 0, , + qi = 

lJ,j 

e 
(oijnj)r o 

= Ti , 

r 
0" , lJ,J 

0, o~, 
lJ 

and the inequality 

e 1 
Cijkl(uk,l 

e 
0, , + ul,k) lJ 2 (18) 

e 
(ui)r 0 

u 

0, r 
(0, ,n,) r 

lJ J 0 
o (19) 

(20) 

for all loads Ti,qi. 

the loading programme T, 
l 

We assume that all loads are included into 

= Ti (x,t), qi = qi (x,t), t E [O,tkl. 

dot above the symbol denotes the diff-Here tk is given and the 

erentiation with respect to t(the remaining symbols are usual). 

As was done previously, the constant k in plasticity condition 

(20) is replaced by the constant k f . 

We express the minimized volume of the structure in the following 

form 

(21) 

o rl 

Taking into account (21) and (18)-(20) we construct the augmented 

Lagrange functional 
tk 

J J S fLdrldt , 

o rl 

e e e e err 
~l' (Ol'J',J,+ql') + X" (0, ,-C, 'kluk l)+~'o" , lJ lJ lJ , l lJ,J 

(22) 

ere 
By means of ~r' ~i' Xij' A we denote the adjoint variables. To 

obtain the expression for oJ vary the surface rv and use the 

boundary conditions for state variables. Also we assume that 

the variations of o~, do not depend on t. The adjoint variables 
lJ 



are defined with the help of the next system of equations 

1 e + 1jJ~ .) e + A~ in It (23) 2(1jJ· . Xij l,] ],l aoe 
ij 

e 0 (24) (ljJi) r = 
u 

e 
(Cijkl X kl) ,j 0 in It (25) 

e 
0 (26 ) (Cklij X kl n j ) r 

0 

1 r 1 
tk 
~ 2(1jJ· . + 1jJ~ .) J A dt in r2 (27) 

l,J ],l tk a oX: . 
l] 

0 

r 
(ljJi) r 0 (28) 

u 

LjJ 0 in It (29) 

If the relations (23)-(29) are satisfied then the next formula 

for oJ is valid 

oJ 

f 0 
v 

(30 ) 

Here H is the mean curvature of surface fv' and 01 denotes the 

variation of tpe unit normal. 
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The main formula of sensitivity analysis (30) connects the var

iation of the functional with the shape variation of the body. 

To construct the improved boundary shape it is necessary to 

obtain the infDrmation concerning elastic stresses O~j and adj

oint variables 1jJ~,IjJX:'X~.,A for t [ [O,tkJ. 
l l lJ 

Straightforward consideration gives us the necessary optimality 

condition 
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1 

tk 

o 

[Ag - 2H1jJ~T. -
l l 

(31) 

In the case, when the volume forces and surface loads on fv are 

absent (qi = 0 in ~, Ti = 0 on fv) and the yield condition is 

given as g(CJ .. ,k f ) = gO(CJ .. ) - k f2 ~ 0, where gO(CJ .. ) is the 
lJ lJ lJ 

second order homogeneous function, optimality condition is simpl-

ified 

(1jJ~CJ::.) . - 1 
l lJ ,J 

Optimal Plastic Anisotropy 

[ Ag - (1jJ~CJ~.) .J dt 
l lJ ,J 

(32) 

Various optimization problems may be formulated within the frame

work of the theory of anisotropic bodies; one of them will be 

discussed here. The problem is concerned with optimum distrib

ution of plastic constants (moduli) Bijkl , which are contained 

in the formula g = BijklCJijCJkl - 1 for yield function. For 

definiteness let us assume that the critical loading parameter 

will be maximized. Suppose the body is to consist of identical 

infinitesimal crystals arbitrarily oriented with respect to 

each other. The fact that the crystals are identical but arbit

rarily oriented means that the positions of the axes of plastic 

symmetry with respect to a fixed Cartesian reference frame change 

with the position within the body, but the values of the plastic 

moduli measured along the axes of plastic symmetry remain un

ch?nged. Let us denote the orientation of the axes of anisotropy 

at each point x = {xl ,x2 ,x3 } of the medium with respect to a 

fixed Cartesian coordinate system (x l ,x2 ,x3 ) by the angles al(x), 

a 2 (x), a 3 (x) representing the components of a vectorial function 

a(x), that is a(x) = {a l (x),a 2 (x),a 3 (x)}. Let aj(j = 1,2,3) den

ote the angle made by the plastic symmetry axis x~ and the fixed 
J 
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coordinate axis x .. 
J 

The problem of determination of the optimum 

orientation of the axes anisotropy, i.e. finding the vector func-

tion a(x) from the condition of maximum critical loading para

meter is now reduced to 

p* = max pta) 
a 

l7.a + q 

(a .n) r 
a 

° 
T 

g(a) =a·· B··a-l';;: ° 

(33) 

(34) 

(35) 

(36) 

where q = pqo, T = pTO(qO,TO - given vector-functions of space 

coordinates), a - second order stress tensor, B - fourth order 

tensor of plasticity constants. The dot between the symbols 

signifies the scalar product and two dots . denote the double 

scalar product. 

The solution of the problems (33)-(36) and the determination of 

the optimum distribution of plastic moduli makes it possible to 

find the most suitable directions of the reinforcement, and to 

evaluate the quality of the structures traditionally used in 

practice. Even in cases in which the optimum.structural ani

sotropy proves to be difficult to realize in practice, solutions 

of the optimization problems may be used to determine the limit

ing possibilities and the quasi-optimum reinforcement schemes. 

Let us derive optimality conditions for the problems (33)-(36). 

To this end we denote the tensor of plasticity constants inprin

cipal axes by means of b and write the relation between tensor 

b and tensor B in space coordinates 

* 
B = ° (0 . b . 0) . 0, 0· ° = E (37) 

where ° - orthogonal rotational tensor of the second order. 

Variation of B corresponding to the variation 00 is written in 

the form 

* oB 4B • ° . 00 (38) 
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We can express the optimized functional (33) in the form 

p 1 
mesQ J pdQ (IJp 

Q 

0) (39) 

Taking into account (33)-(37), (39) we construct the augmented 

Lagrange functional 

J 
1 

mesQ J pdQ + 

Q 

J W·(IJ·C5 + q)dQ + 

Q 

+ J It (g + )12) dQ + J n * • (0 • 0 - E)dQ (40) 

To obtain the expression for oJ we vary the tensor of plasticity 

constants in accordance with formula (38) and use boundary cond

itions (35). We also suppose that the variations of p in (40) 

do not depend on spatial coordinates (IJp = 0) and that the adj

oint variables and Lagrange multiplier It satisfy the equations 

2ltB • • C5 (41) 

o 0) (42) 

Taking into account the equations (41), (42) and the principle 

oJ = 0, we obtain the optimality condition 

C5 . .' B . C5 = C5 • B • . C5 (43) 

Using indexing notation we rewrite the criteria (43) C5ijC5klBijkp 

= C5ijC5kpBijkl. The derived criteria (43) shows that the plastic 

anisotropy axes have a special orientation and for optimal body 

tensor C5 .• B . C5 is a symmetric one. 

Note that the paper was mainly concerned with the weight and 

critical loading parameter functionals. The shape of the struc

ture and the orientation of anisotropy axes were considered as 

the unknown design variables. No additional constraints were 
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imposed on the distribution of design variables. However, from 

mathematical and physical points of view in some cases we must 

restrict the variations of design functions to obtain more reg

ular solutions. First of all, we mean the correctness of the 

mechanical model of the structure and the existence of the opti

mum design. These aspects were discussed in [30,31]. 
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Optimization of Elasto-plastic Plates and Shells 
Under Complete Plastic Failure 
A. CYRAS and A. DANIUNAS 
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Vilnius, Lithuanian SSR, USSR. 

Summary 

Mathematical models for the analysis and optimization of elas
tic perfectly plastic structures under different types of load
ing are derived on the basis of the dual extremum principle for 
the minimum elastic potential of residual forces and maximum 
complementary work of residual displacements. The application 
of these typesof mathematical models to the design of plates and 
shells is illustrated by examples. 

1. Formulation of the Problem. 

The mathematical models for the optimization of elastic perfect

ly plastic structures based on the method of limit equilibrium 

do not impose any constraints on the displacements. Neverthe-

less, the displacements corresponding to the stage of plastic 

failure frequently are considerable and these must be taken into 

account in the design problem, otherwise the optimization of 

the structure has no sense. Hence, it follows that for the 

optimum design of elastoplastic structures, it is necessary to 

consider the constraints on the displacements. Subsequently, 

there arises a problem of elastoplastic design of structure for 

which the strepses and strains are not Laken to the limit state, 

but to the state corresponding to incomplete plastic failure. 

It is known that this state is defined by relations which are 

quite different from those used in the method of limit equilib

rium. In this paper the relations of this type are considered, 

and the application of these to the formulation of an optimiz

ation problem are presented. 

Consider an elastic perfectly plastic discrete system subjected 

to an external loading, which does not exceed its limit value, 
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though it causes plastic strains. The problem of the analysis 

of such a structure consists of the determination of its stress

es and strains, with the physical characteristics, both elastic 

(stiffness) and plastic (limit forces), being prescribed. In 

the optimization problem the plasticity characteristics are the 

values to be searched for, and to determine these it is necess

ary to satisfy the condition of the quality of the structure. 

2. Problem of Analysis 

To determine the actual stresses and strains of an elastic per

fectly plastic structure we use an extremum principle for the 

minimum elastic potential of residual forces and for the maxim

um complementary work of residual displacements [1], [2]. 

In the case of monotonically increasing loading, the following 

dual pair of mathematical programming problems correspond to 

this principle: 

Static Formulation 

Kinematic formulation 

- {f({Se} + {Sr})}) + max, 

[D] {Sr} + [f({Se} + {Sr})] Pd- [A]T{Ur } = {a}, 

{A} > {a} 

(la) 

(lb) 

Where {Sr} is the vector of the residual forces; {Se} is the 

vector of the forces of the elastic solution; {S } is the vector o 
of the limi t forces; { f ( )} is the yield vector-function, and [f ( )] is 

'its gradient;[ A'] is the algebraic operator of the eqvilibrium eauations; [D] 



347 

is the flexibility matrix of the structure; fUr} is the vector 

of the residual displacements; {A} is the vector of the multi

pliers. We assume that the force vector of the elastic solution 

{Se}is known, and this is determined through {Se} = [a]{F},where 

[a] is the influence matrix of the forces, and {F} is the vector 

of the external loading. 

* * By solving problem (1) we obtain the unknowns {S },{A } and {U*} 
r r 

The values of the actual forces and the displacements are-obt-

ained through: 

(2) 

where the values of the displacements of the elastic solution 

fUel are assumed to be known, and these are determined through 

the relation fUel = [B]{F}, where [B] is the influence matrix 

of the displacements. 

In cyclic loading when the external loading is defined by the 

variation bounds {F+} and {F-}, we have the following dual pair 

of problems [2]: 

Static formulation 

iE:J, 

(3a) 

Kinematic formulation 

(-i{S }T[D]{~ }_L{A:}T[f({S+.}+{S })]T{S}_ 
r r i 1 el r r 

-E{A:}T~~({S-.}+{S })]T{S }-E{A:}T({S }-{f({S+ }+{Sr})})-
. 1 el r r. 1 0 el 
1 1 

_~{A~}T({SO}-{f({S:i}+{Sr})}» ~ max, 
1 
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where the notation is the same as in problem (.1). The extremum 

forces of the elastic solution co·rresponding to the i-th vertex 

of the polyhedron of the elastic forces [2] which is symmetric 

about its centre, are determined on the basis of the following 

relations: 

(4) 

where the matrices [a:], [a~] are formed from the influence mat-
l.+l. _ + 

rix [a]. The vectors {a .. } and {a .. } formed the matrices [a ] 
_ l.J l.J + 

and [a. ] are chosen according to the following rule: {a .. } l. _ _ + l.J 
{aij } if {aij } = {OJ, and {aij } = ~aij} if {aij } = {oJ. It is 

not difficult to see that {at.}+{a .. }={a .. }. 
l.J l.J l.J 

By solving the mathematical programming problem (3) we obtain 
* +* -* * the values of the unknowns {Sr},{A },{A } and fUr}. The var-

iation bounds of the forces are determined on the basis of the 

relation: 

(5) 

+* -* where {S .} and {S .} are taken corresponding to the multipliers 
* el. _* el. 

{A t } and {A i }. 

Thus, the mathematical models (1) and (3) enable the actual str

esses and strains of the structure to be determined i.e. the 

problem of analysis to be solved. 

3. Optimization Problem 

The optimization problem may be formulated as follows: the ext

ernal loading and the configuration of the elastoplastic struct-
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ure being prescribed, it is necessary to determine the forces 

and displacements satisfying the conditions of strength and stif

fness, as well as the limit force vector {So} corresponding to 

the optimality criterion. To be in line with the above state

ments we assume that the optimality criterion is as follows: 

CP({S }) -+ min, (6) 
o 

where CP( ) is a scalar function. The form of the function may 

be varied, and by suitably choosing it we can obtain for an act

ual structure a definite economical interpretation of the optim

ality criterion [3]. Firstly, the conditions determining the 

actual stresses and strains must be considered as the constrain

ts in the problem of optimization of the elastoplastic structure. 

These conditions are the dual pairs (1) and (3). According to 

the mathematical programming theory, the dual pair (1) and (3) 

are equivalent to the generalized Lagrange problem consisting 

of all conditions of the relevant dual pair and of Kuhn-Tuckers 

conditions. Secondly, the constraints for the elastoplastic 

structure must be the constraints on the displacements, the dir

ections and position of these being prescribed. The general 

form of these constraints may be prescribed as follows: 

(7) 

where {U-} and {U+} are the specified values of the displace-
n n 

ments, and the elements of the matrix [L] are chosen according 

to the following logical rule: 

Lj£ 1, if the constraint is imposed on the displacement 

at the j-th section in the direction £; 

Lj£ 0, otherwise. 

Besides these necessary conditions-constraints there may exist 

some others. For example, according to the design codes the 

values of the limit force S . in some cases must have equal val-
OJ 

ues at some design sections. Then the number of the components 

of the unknown vector {So} is fewer than the number of inequality 

of the yield conditions. In this case it is convenient to intro

duce in the calculation the so-called configuration matrix the 
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structure of which is determined according to the following log

ical rule: 

Gkj 1, if the k-th component of the limit force is incl

uded in the j-th yield condition; 

Gkj = 0, otherwise. 

Some other technological limitations are possible with respect 

to both limit forces and the displacements and strains. 

Thus, the optimization problem for monotonically increasing load

ing, when the above statements are taken into account, will have 

the form: 

[G ]{S }-{f({S }+{S })} ~ {O}, 
o e r 

[A] {Sr} = {O}, 

[D]{S }+[i({s }+{S })]{A}-[A]T{U} = {O}, r err 

{A}T{W} = 0, {A} ~ {O}, {So} ~ {O}, 

{U-} ~ [L] ({U }+{U }) ,.: {u+}. 
n ern 

(8) 

We obtain a non-linear multiextremum mathematical programming 
* * * * problem, in which unknowns are {S}, {S }, {A } and {U }. orr 

The non-line~rity is caused by the form of the function ¢( ), 

and the multiextremum character - by the Kuhn-Tucker's condition 
{A}T{W} = 0, 

Now we spall 'discuss some aspects of the application and the 

truth of the mathematical model (8). 

The formulation of the problem can be based on two different 

initial conditions: 1) the limit force {S } is not related to 
o 

the elastic characteristics of the design element; 2) the limit 

force {S } is related to the elastic parameters of the structure. o 
In the former case the solution of the problem is obtained by 

the one step procedure. The latter requires relationships betw-
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een the components {S } and the stiffnesses of the elements to o 
be available, and the design is carried out by the iteration 

technique. It should be noted, that for the structures in which 

the specific dimensions of the section have a fixed value, e.g. 

the thickness of reinforced concrete plates and shells, the sti

ffness of the design element may be considered as not related 

to the limit force. In this case, the solution may be obtained 

by the one step procedure. 

The extremum principle which has been assumed as the basis of 

the design, leads to a unique distribution of the residual forc

es, but not always to a unique distribution of the residual dis

placements. To ensure the uniqueness of the residual displace

ments we need to observe the holonmmic law, i.e. the plastic 

strain in loading should not decrease and unloading is not per

mitted. Unloading phenomen is rare in monotonically increasing 

loading of real structures. Besides, when unloading occurs, the 

residual strains are less than those obtained by solving prob

lem (1). Thus, the result obtained through mathematical model 

(8) will always have some margin. 

Likewise, we can derive a mathematical model of the optimizat

ion problem for cyclic loading. In this case, however, certain 

difficulties arise. The fact is, that for dissipative struct

ures the strains are related to the way of loading, while in 

cyclic loading.the way of loading itself is not known. Though 

we have reliable methods for the determination of the limits of 

displacements, e.g. see [41, nevertheless, these methods can 

be applied only when the distribution of the limit forces {So} 

are known. But in case of optimization the limit forces {So} 

are the unknown values to be obtained. Hence, the solution of 

the problem in this case is of a complex iteration character. 

4. Numerical Example of the Problems of Analysis and Optimiz
ation 

We consider a thin flexible simply supported plate which obeysl 

the assumpfions of the technical analysis theory. The dimen

sions of the plate in the directions of the coordinates Xl' and 
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X2 are equal to L. The material of the plate is isotropic, the 

section is a sandwich type. The limit moment Mo is constant 

through the plate. The Poisson's ratio v = 0.3. The plate is 

subjected to a monotomically increasing uniformly distributed 

loading of the intensity F 22.6nM /L2. We calculate the plate 
o 

in three levels of loading n = (0.93, 0.95, 0.97). Up to the 

stage n = 0.69 the behaviour of the plate is elastic, but at 

n = 1.0 it reaches the limit state. Thus, the plate is in an 

elastoplastic state when 0.69 ~ n ( 1.0. 

The design is based on the finite elements technique, the stress 

distribution is prescribed. The finite element discretization 

of the equilibrium equations is accomplished by the Bubnow-Gal

iorkin method. This provides the duality of adjoint algebraic 

operators of equilibrium and geometric equations. Plastic beh

aviour of plate is defined by the linearized Tresca yield cond

itions, which are derived for the vicinity of the nodal point 

of the element. Due to the axial symmetry only one quadrant of 

the plate is considered with the finite element mesh 6 x 6. The 

elements are assumed to have four nodes. 

The problem is solved by using the algorithm of linear complem

entarity [5]. In Fig. 1, the curves are plotted representing 

the variation of the deflection values (to within the constant 

mUltiplier MoL2/D, where D is the stiffness of the section) on 

the axis of symmetry corresponding to various levels of loading. 

The development plastic strains in relation to the value of load

ing is shown in Fig. 2. 

To illustrat~ the solution of an optimization problem we under

take the design of an elastoplastic simply supported circular 

plate of a constant thickness. The plate is subjected to a uni

formly distributed loading F (Fig. 3a). The Poisson's ration 

is v = 0.3, the cylindrical stiffness is D = const. The plate 

is divided into four design elements of equal width (Fig. 3a). 

It is necessary to find an optimum distribution of limit bending 

moments, when the constraint on the deflection in the centre of 

the plate is being prescribed by U;n = 0.0673 FR4/D. The problem 
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is solved on the basis of mathematical model (8), which for the 

linear yield conditions of Tresca has the form: 

{ 1jJ } [G l{ M o} - [<!J 1 ({ Me} + {Mr }) ;> {O}, 

[ A ]{ Mr } = {O}, 

[0 l{~} + [<!J lT O } - [AlT{Ur } = {O}, 

O}T{1jJ} = 0, O} ;. {OJ, {Mo} ;, {OJ, 

{U-} ~ [L l({u } + {U }) < {U+}. 
n ern 

<t 

j 
/ 

F 
I 

0.5L 

a 0.0833L O.l67L 0.250L 0.333L o.417L O.500L X 

0.025 

0.050 
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O.fOO 
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0.150 

Qf75 

........ ~ 
-,.~/ 

--:~. _. ___ :~A~ 
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l--:::::::::! /' 

f
4.-" /. 

~. 

.~. 
T u ---e--- '1=0.69 

I --e-- 1]=0.93 

--4.--
--.--

1 = 0.95 

I"[ = 0.97 

(9) 

Fig. 1. The deflections on a centre-line of the simply sup
ported square plate at the different load levels. 
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Fig. 2. The plastic zones in the simply supported square plate 
at the different load levels. 

The cost function for the plate has the form: 

By the branch-and-bound method [6], [7] vJe obtain: MOl = O. 214FR2 , 

M02 = 0.158 FR2, the cost function {A}~ {Mo } = 0.179. The values 

of the actual bending moments (radial MR and circular M¢ to with

in the multiplier FR2) are shown in Fig. 3b,c. The values of 

the actual deflections (to within the multiplier FR4/D) are shown 

in Fig. 3d. The positioning of plastic circular lines is given 

as well. 
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In this paper, recent work on the optimal plastic design of 
plates, shells and shellgrids is reviewed critically and certain 
important conclusions are arrived at. Of particular significance 
is the finding that the minimum weight design of solid plates and 
shells with a maximum thickness const_raint contains a r_heoret_i
cally infinite number of rib-like formations. At_ relar_ively low 
load intensities, the layout of such ribs is furnished by the 
classical optimal grillage t_heory but at_ higher load levels a 
more advanced formulation is necessary. The latt_er has also been 
ext_ended from optimal plastic design to opt_imal elast_ic design 
with st_ress, compliance and deflecr_ion const.raint_s and this ex
tended theory has been applied r_o plat_es. Moreover, it_ is shown 
t_hat_ ribs in t.he solur_ion can be suppressed by int.roducing 
additional geometrical constraints (termed "Niordson-con
straints") or segmentation. 

The above developments are based on a general theory of opt_imal 
layour_s which was developed by Professor W. Prager (Brown Uni
versity) and t_he first aut_hor in t_he lat_e seventies. A further 
application of this theory concerns grid-shells (arch-grids) and 
membrane shells· for which a large number of closed-form solutions 
are now available. 

Introduction 

Recent research int_o optimal plastic plate design has unusually 

far-reaching implications, revealing some entirely unexpected 

fear_ures of solid, minimum-weight_ st_ruct_ures. The above break

through has been made possible by two theoret.ical developmenr_s: 

S tat i c - kin e mat i cop tim ali t y c r i -

t e ria, first int_roduced by Prager and Shield [1 1 and lat_er 

considerably extended by the first author's research group 12,3); 

and the the 0 r y 0 fop tim a 1 s t r u c t u r a 1 
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lay 0 u t S , developed in the late seventies by Prager (Brown 

Univ.) and the first author 14-9]. 

It may appear surprising that t_he search for the most-_ efficient-_ 

thickness distribution of plates and shells involves layout opti

mization, which is usually aimed at the selection of the best-_ 

configuration for isolated members. Undoubtedly, if the optimal 

thickness funct_ions turned out t_o be (at least_ piece-wise) con

tinuous or even smoot-_h, then t_raditional met_hods for dist-xibuted 

parameter problems could prove adequate. However, as most optimal 

solutions for the considered problems contain a theoret-_ically 

infinite number of discontinuities, the layout (as well as t-_he 

density) of the infinit-_esimally spaced "ribs" must be optimized. 

A similar finding was obtained in the context of plastic torsion 

problems by Strang and Kohn [10 1 who est-_ablished t-_hat-_ uncon

strained shape optimization usually results in an infinite number 

of internal boundaries ("holes") which require layout-_ opt-_imi

zat-_ion. 

Aft_er reviewing briefly the concepts of st_at-_ic-kinemat-_ic opt-_i

mality criteria and optimal layout t_heory and their applicat-_ions 

to sandwich plates and grillages, the optimal design of solid 

plates is discussed in detail. Finally, a brief selective review 

of shell and shellgrid optimization is given. 

Static-Kinematic Optimality Criteria and Optimal Layout Theory 

Using Prager I s terminology, the "basic variables" of st-_ruct-_ural 

mechanics are "generalised" st-resses (local st--resses or st_ress

resultants) g, strains 3, loads E and displacements u. In opti

mal plastic design, the specific cost-_ (cost per unit-_ lengt-_h, 

area or volume) q, _can be expressed in t~erms of the generalised 

stresses q,=q,(g) and the tot-_al cost_ q; is t-_hen minimized subject-_ t-_o 

statical admissibility (s): 

min II'! 
gS 

f q, (Q) dx 
D -

(1 ) 
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where D is t.he st.ruct.ural domain and x is an element of D. The 

P rag e r - S hie 1 d con d i t. ion [i] convert.s r.he 

problem in (1) into an op~imal strain-stress relation 

on D, (2 ) 

where k denotes kinema~ic admissibility and G is the generalised 

gradient [2,3] , which has t.he following meaning: If (~(Q) is 

differentiable at. a Q value t.hen G = grad = (iljoQl,···,ojDQn)· At. 
-

slope discontinuities of <jJ(Q) , ~[<jJ(Q) ] consist.s of any convex 

combination of the limiting gradient values for the considered g
value. Finally if <jJ(Q) is discontinuous a~ a st.ress value 9 t.hen 

G[<jJ(Q)] contains an impulse (Dirac dis~ribu~ion) at Q. The above 

extended form of the Prager-Shield condi~ion was proposed by the 

first. author [2,3] and constit.ut-.es a necessary and sufficient. 

condition for optimalit.y when <jJ(Q) is convex and t.he equilibrium 

equations linear and a necessary one for non-convex problems, 

provided that the solu~ion exists. 

S~a~ic-kinematic optimality criteria convert, in effect., a 

problem of opt.imizat-.ion int.o a problem of st.ruct.ural analys is. 

A large number of generalisations of the Prager-Shield condi~ion 

have been obtained [2,3]. For example, the effecr. of s elf -

wei g h t is automat.ically taken int.o considerat.ion if (2) is 

replaced by [ll 1 

on D, k 
~ (3) 

where u is the fic~i~ious vertical deflec~ion associated with the 

st.rains ~. 

If the st.ruct.ural domain D is divided int.o segment.s 

Di (i=l,2, ... ,n) such t-.hat on each segment. i t.he design value ~ of 

the specific CGst must be a mUlt-.iple of a prescribed "shape 

funct.ion" Y i (~) 

-;j; = 11.. Y. (x) 
]. ].-

(4) 
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where Ai is an unspecified constant then (2) is replaced by 

[2,12] 

k A.. (x) G [</I (gs) ]. ~ = 
1. -

JD. y. (x) dx JD . y. (x) I,. (x) dx (5 ) 
1. - 1. - 1. -

1. 1. 

at. ~, A.. > 0 only if 
1. 

(~ (~) el' [g (~) J (6) 

By (6) the non-negative Lagrangian functions A.i(x) are usually 

nonzero at isolated points (lines) only and hence t.lley oft.en con

sist of impulses (Dirac distributions). 

More recent.ly, t.he above optimality criteria were extended t.O 

e 1 a s tic pro b 1 ems [13-15J and were supplemented by 

new dualit-.y theorems [16-18 J • 

It is important t.o mention t.hat the Prager-Shield condition can 

also be derived from theorems of Save l19 j. Mroz [20 j or Masur 

[21 J. 

The optimal struct.ural layout t.heory is based partly on st.at.ic

kinematic optimality criteria and partly on t.he concept of 

s t r u c t u r a 1 u n i v e r s e. The latter consists of all 

pot.ent-.ial (or feasible or "candidat.e") members. Since a st-.at-.ic-

kinematic optimalit.y condition gives a st.rain requirement. (usu

ally inequality) also for vanishing stresses (i. e. non-optimal 

members), its fulfilment. for the ent.ire st.ruct.ural universe con

stit.utes a necessary and sufficient condition of layout. optimali

ty for convex specific cost. funct.ions. This means that-. by imbed

ding the' layout problem int.o a struct.ural universe, it.s convexity 

can be preserved which would not. be possible in the case of ot.her 

formulat.ions. 

Application of Static-Kinematic Optimality 

Criteria: Sandwich Plates 

A "sandwich plate" is a rather theoretical concept. which is used 
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mostly for illustrating principles of plastic analysis and opti

mal design. It consist.s of two cover plates whose t.hickness is so 

small thar. r.he lever arm bet.ween t.he middle surfaces of t.he cover 

plates can be assumed to be constant. The shear is transmitted by 

an infill ( in the space in between the cover plates) whose cost 

(or weight) is not taken into consideration. 

It follows that t.he specific cost (weighr. of cover plar.es per 

unit-. plate area) is a linear funct.ion of the "yield llIOment.", 

k M 
Y 

where k is a given constant. 

(7) 

For sandwich plates obeying the Tresca yield condition, for 

example, the yield momenr. can be expressed as 

(8 ) 

and hence r.he specific cost. becomes 

(9 ) 

In t.his case, t.he "generalized st.resses" Q l and Q 2 become the 

principal moments Ml and M2 . The above specific cost funet.ion is 

represented graphically by cost cont.ours for 'v = 1/2 and 'v = 1·0 

in Fig. lao The gradient vect.ors G [,HMl ,M 2 )] for the sides "a" 

and "f" in Fig. la are (k,a) and (a,k), see vecr.ors normal t.O "a" 

and "f" in Fig. la, and for the corner "A" the gradient. becomes 

v(k,a)+(l-v) (a,ok) with a " v <; 1, see t.he set. of vect.ors at A. 

The optimal principal curvature vect.ors (Ql,Q2) (K1,K L ) for 

various sides and corners in Fig. la are shown in Fig. lb. This 

means that an optimal solution for a sandwich plat.e with any 

loading and boundary conditions can be est.ablished if we find a 

st.at.ically admissible moment field (M~, M~)and a kinemat.ically 

admissible curvat.ure field (K~' K~) such Lhat t.he "st.rain-st.ress" 

relation between the above two is given by Fig. 1. 
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I • 
(b) 

Fig. 1. Specific cost function and cos~ gradients for Tresca 

sandwich plates. 

Considering a circular, 

with a diameter 2R [2, 

clamped, uniformly loaded 

pp. 48-51], for example, 

momen~ and curvature fields become 

(for r < 2R/3) 

(for > 2R/3) 

Me = 0, Mr k ( R-r) 2/2 

Tresca-plate 

the opt-.imal 

(10) 

where Mr and Me are radial and circumferential moments and 

p=const. is the uniform load intensity. The corresponding curva

tures CKe=-U' /r, Kr=-U") then become (for r<2R/3) Kr =K e =k/2 

(Point P on side A in Fig. lb) and (for r>2R/3) Kr=-k, 0 ~ Ke( k 

(side C in Fig. lb.). Side A in Fig. Ib corresponds t-.o 

M =M =M =M ;.0 1 2 r e in Fig. la and side C represents Mr(O, MO=O. The 

above optimalit-.y requirement-.s are clearly sat.isfied by the moment-. 

fields in (10). Moreover, the st.at.ic/kinemat.ic boundary and con

tinuity conditions Me=M at r=O, M =0 at r=2R/3, U and u' con-. r r 
tinuous across r=2R/3, u'=O at r=R are also satisfied by the 

above solution. The same result was obt.ained by Onat., Schumann 

and Shield [22] in 1957 by another method (uniform energy dissi-



363 

pation). Other solutions for sandwich plat_es were derived by 

Megarefs in 1966-68 [23] by a purely st-.atical met-.hod and in 1967 

by Marc;:al [24] who also proposed an early ver~ion of the Prager

Shield condir.ion. The optimal st-xess fields for sandwich plat.es 

are relatively well-behaved funcr.ions except. t.hat_ a moment.

impulse (in Me) may occur at-. free edges 1"231. An excellent. review 

of early work on sandwich plates is given by Save and Massonet-. 

[35 J. 

An Application of Optimal Layout Theory: Least-Weight Grillages 

Although Michell's 1904 classical opt.imalir.y criteria [25] for 

least.-weight trusses can also be readily derived from optimal 

layout r.heory [6 J, the theory of leasr.-weighr. grillages is parti

cularly important for the following reasons: 

(i) As Prager 

first class of 

has pointed our. [26] , 

truly two-dimensional 

grillages constitute 

optimization problems 

the 

for 

which closed form analytical solur_ions are available for almost. 

all possible boundary and loading conditions. 

(ii) Optimal grillages (beam layouts) are more pract.ical than 

Michell-strucr.ures [25 J because t_he latt.er is subject. t.o inst.abi

lity which is ignored in the formulation. 

(i ii) The optimal rib layout in least-weight plates has been 

found similar to r.he layout of minimum weight. grillages. 

The grillage t-.h~ory is based on the following two assumptions: 

(a) The beams have a given depth and variable width and hence 

r.heir speci fie cost funct.ion becomes 

(11 ) 

where M is the beam bending moment and k is a given constant; 

(b) . The total beam volume is small compared to r.he feasible 
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volume and hence t-.he effect-. of beam int-.ersec~.ions on t-.he to~.al 

cost is neglected. 

Considering the specific cost function in (11), the Prager-Shield 

condition in (2) furnishes the following opt-.imalit-.y crit-.eria: 

K = k sgn M (12) 

(for M=O) (13) 

where K=-u"=d 2 u/dz 2 is t-.he curvature of the "associated" or 

"Pragerian" beam deflect-.ion u(z) and z is the dist-.ance measured 

along a particular beam. Considering the displacement-. surface 

u(x,y) at a point, the maximum and minimum curvatures occur in 

the principal direct-.ions, at right angles. Since (12) and (13) 

require t.he maximum absolut-.e value of the curvatures to be k, the 

condition IKI~ k for a nonzero cross-section can only be fulfilled 

in one or both principal direct.ions (unless t.he curvature is the 

same in all directions). It follows thaI". only the following t.ypes 

of regions are admissible in loaded areas of optimal solutions: 

R+ : K = 
1 

k, IK21 ~ k Ml ;. 0, M2 0 

-
1 Kli k, -k 0, ° R : ~ K2 Ml M2 ( 

S+ : Kl K2 k Ml ;. 0, M2 " ° 
-S : K 1 K2 -k Ml ,,; 0, M2 ~ ° 

T Kl = -K2 = k Ml ;. 0, M2 " ° (14) 

The least-weight grillage problem has therefore been transformed 

into t-.he following .geomet.rical problem: the area of the grillage 

must be covered with t-.he optimal regions given in (14) such that-. 

(i) the deflection u( x, y) and its slope are continuous along 

reg ion boundaries and (i i) the kinemo.t-.ic boundary condi tions are 

fulfilled by u(x,y). Opt.imal beams must-. then be placed in t.he 

direct-.ions of principal curvat.ures with 1 K 1 = k and the sign of 

beam moment.s must mat-.ch t-.hose of the principal curvatures. A 
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simple example of an optimal solut-_ion for a simply supported 

square grillage is given in Fig. 2. 

k 2 k 2 
W 2 =-(x-...t2al --y 

2 2 

k _= 2 k 2 w3 =-(x+-v2al --y 
2 2 y 

Ca) 

I;")T 
W 

M 
WT 

e 

TM 
W 

S+ 
I;") 

TW 

Cb) 

Fig. 2. Example of an optimal grillage layout. 

Extensive reviews of the grillage theory were given by Prager and 

the first author [2,6,26,27,28]. Analytical solutions are now 

available for slmply supported and clamped boundaries, free 

edges, beam supported edges, non-uniform depth, allowance for 

cost of supports, bending and shear dependent cost_ [29], upper 

constraint on the beam cross-sectional area per unit width [60], 

partial discretization [68], and allowance for self-weight 

[7,30,31,32]. The latest development concerns optimal grillage 

layouts for prescribed elastic deflection [33]. It was shown 

earlier [3,34] that plastically designed least-weight_ grillages 

are also valid for elastic grillages with prescribed maximum 

stress, compliance or natural frequency. 

Anot-_her unique- feature of the opt_imal grillage t-J1eory is t.he 

availability of a computer algorithm [36,37] for generating 

a n a 1 y tic all y and plotting least-weight layouts for a 

broad class of loading and boundary conditions. 
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Optimal Plastic Design of Solid Plates 

It was established already in the late sixties (e.g. by Kozlowski 

and Mroz [38]) and shown more rigorously recent.ly ['39] that. t.he 

weight of a solid plate can be reduced t.o an arbit.rari ly small 

value by employing a syst.em of sufficient.ly high and t.hin ribs. A 

finite value for the struct.ural weight. can be ensured, however, 

by introducing an u p per con s t. r a i n t. on t.he plate 

t.hickness. For elastic plates with such const.raint.s, Olhoff and 

Cheng [40] obt.ained n u mer i cal solut.ions which show the 

development. of st.iffener-like format.ions of maximum thickness. 

It was then pointed out by the late Professor Prager in 1980 that 

t.he layout of the st.iffeners in t.he Olhoff-Cheng solut.ions is 

similar to the optimal layout of grillages for the same boundary 

and load conditions, obtained about. a decade earlier by the first. 

author, [41] and later confirmed by Prager [4,5]. Following up 

Prager's intuitive remarks with a rigorous analysis, the first. 

author, Olhoff, Cheng, Taylor and Wang [39, 42] derived exact. 

analytical minimum weight solutions for plastically designed 

solid plat.es with a constraint on t.he maximum t.hickness. These 

solut.ions contain regions with a dense syst.em of ribs (of theore

tically infinitesimal spacing) and thus indicate that a number of 

earlier papers on least-weight plates, based on a "smoot.h" thick

ness variation or a small number of finite element.s, represent. 

erroneous solutions. The above improved results were obtained by 

establishing a specific cost function ~(Ml,M2) through local 

optimization of the rib/plat.e configuration for given values of 

the principal moments Ml , M2 and then employing the Prager-Shield 

condition [1] together with the optimal layout t.heory [2-6]. All 

least-weight. solutions have been found to consist of the follow

ing types of regions: 

(a) Ribs in one principal direct.ion only, infinit-.esimal plate 

thickness in between ribs; 

(b) solid plate of non-maximum thickness wit.h Ml =M 2 ; 

(c) solid plate of maximum thickness. 
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As an example, Fig. 3 shows the optimal weigh~ ~l of plastically 

designed circular simply supported solid plates at various levels 

of non-dimensional load v. For a comparison, rP2 shows the minimum 

weight of piece-wise smooth solu~ions and ~3 ~hat of solutions of 

constant thickness. At very low levels of ~he non-dimensional 

load v, the solu~ion always tends to the op~imal g r ill age 

1 a you ~ with type (a) regions only. 

Volume 

V 
Load 

Fig. 3. The total weight of various solutions for plastic 

circular solid plates. 

Optimal Plastic Design of Perforated Plates 

A perforated plate may only have t".wo t".hicknesses: a prescribed 

maximum thickness or zero thickness. The latter occurs over "per

forations" whose in-plane dimensions are assumed to be small so 
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that the load over areas of zero t.hickness can be t.ransmit.t.ed t.o 

the adjacent plate segments by some secondary systems of infi

nitesimal volume. In minimizing the T..ot.al material volume (or 

weight) of a perforated plate, it is assumed that: t.he plat.e mat.e

rial obeys the Tresca yield conditions. In perforated regions, 

the optimal microstructure can be shown to consist of ribs 

running in the directions of the principal moments (Ml ,M2 ). As 

s t res s e s 0 f the sam e s i g n do not influence 

the yield value of the major stress in t.he Tresca yield condi

tion, a saving can be achieved at the rib intersections but such 

a saving is not possible if the s t res s e s are of 0 p -

p 0 sit e s i g n [39]. Consequently the non-dimensionalised 

specific cost function becomes (Fig. 4) 

ljJ = 1.0 

( 

Fig. 4. Specific cost function for plastic perforated plates. 



369 

(15) 

Making use of the Prager-Shield condition (1), the second author 

has shown that for plast.ic axisymmet.ric perforated plat.es the 

least-weight solution I~y only consist of two types of regions: 

(a) unperforated regions (stress regimes A and C in Fig. 4) and 

(b) ribs in the radial directions (Me=O). 

Introducing the non-dimensional notation r=r/R, p=pR 2 /M, M.=M./M 
~ ~ 

(i=e, r), where r is the radial coordinate, R is the plate radius 

and M is the maximum feasible moment capacity, the optimal 

solution turns out to be the following : 

(0 , r < g) Me=l, 

g=p/6 

M =1-pr 2 /6 r (Region "a") 

M =p(1-r 3 )/6r (Region "b") 
r 

(16) 

To demonstrate t.he validity of the above conclusion, the volume 

of various intuit.ively select.ed designs is compared in Fig. 5 

where: Design A consists of circumferential ribs only (the shear 

transmission is assumed to be costless), Design B of radial and 

circumferential ribs of equal width (Me=Mr) throughout, Design C 

with Mr=M e in an inner region and Mr=O (only circumferential 

ribs) in the outer region and Design D (optimal design) with 

Me=Mr in an inner region, and Me=O (only radial ribs) in the 

outer region. 

The second author ~as also obtained optimal solutions for clamped 

circular perforated plates and found that, depending on the load 

level p, the optimal solution may consist of one or two unper

forated regions and one region with only radial ribs. 

In the near future, the above conclusions will be extended t.o 
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non - a xis y m met ric p 1 ate s. It is expected 

that the solution will consist of unperforated regions, governed 

by the usual yield-line analysis 

g ion s wit h rib sin 

for Tresca-plat-_es and r e -

one d ire c t ion, for 

which the Prager-Shield condition requires a constant curvature 

in the direct-_ions of the ribs. For plastic perforated plates, 

therefore, a combination of y i e 1 d - lin e a n a 1 y sis 

and 0 p tim a 1 g r ill age the 0 r y will give the 

optimal solution. A similar result was obt-_ained for constrained 

Michell frames by Strang and Kohn [43]. 

8~opt Ip 

os 

4 6 P 

Fig. 5. Comparison of various solutions for plastic circular 

perforated plates. 
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Classical and Advanced Layout Theories 

"Classical" layout r.heory [4-9], a generalisation of Michell's 

theorem [25 1, which has been used for the opr.imization of 

grillages [4,26-34 J, grid-shells and cable-ner.works [44-48 J, is 

based on two fundamental features; (a) at any point of the 

struct.ural domain potent.ial members may run in any number of 

direct.ions (Fig. 6a), but (b) the effect. of member int.ersec

tions on both the cost. and st.rengt-_h (or st.iffness) is neglecr.ed. 

The above assumpt_ions are realist.ic in tche case of low

den sit y syst.ems in which the mar_erial VOlume/feasible 

volume ratio is relatively low. In facr., detailed invest.iga

tions [39, 42,49] have shown that t-.he opr.imal solution for 

various optimization problems reduces to t.he one given by the 

classical layout t.heory, if the above ratio r.ends r.o zero and 

the effect. of intersections is taken into consideration (i. e. 

the microstructure is also optimized). 

Is, 

(a) 

DO 
DO 

(b) 

Fig. 6. Classical and advanced layour_ r.heories. 

The development of "advanced" layout t-.heory was prompt.ed by the 

discoveries that optimized conr.inua develop an infinite number 

of internal boundaries [lOJ and that least-weight plates contain 

dense systems of ribs [39,40,42]. As a result of these findings, 

much recent research was devoted to t.he optimization of the 
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m i c r 0 s t r u c t u r e of perforated and composite struc

tures [50-56]. Considering an elastic (or plastic) continuum, the 

microstructure is first optimized locally by minimizing the mate

rial volume ~ per unit area (or volume) for given stiffnesses Sl 

and S2 (or generalised stresses Ql and Q2) in two (or three) 

principal direct_ions (see Fig. 6b). It follows t_hat_ t_he specific 

cost function ~ (Sl,S2) is a non-separable function of both (or 

all three) stiffnesses (or generalised stresses) whereas in 

classical layout theory it was the sum of functions of each 

st_iffness value ~ = (~l(Sl)+"'+ (~n(Sn)' Advanced layout t_heory 

results in substantial extra savings if a high proportion of the 

feasible space is occupied by struct_ural material. Once to_he 

locally optimized microstruct_ure and the corresponding specific 

cost funct_ion I~ are established, opt i mal p las tic 

des i g n met hod s (e.g. the Prager-Shield condition 

[l ]) can be extended for the optimization of elastic 

con tin u a. This will be demonstrated by considering the 

optimization of elastic perforated plates. 

Optimal Elastic Design of Perforated Plates 

In recent papers by Lurie, Cherkaev and Fedorov [50-54 J as well 

as by Strang and Kohn [55,56], least-weight solut-_ions cont-_ain 

regions with two set_s of intersecting ribs (st_rips of mat-_erial): 

one such set has a first order infinitesimal spacing r of O( 5) 

with 6+0] and the other set a second order infinit-_esimal spacing 

[of O( 6 2 ) ]. The implications of these results on plate optimi

zation were invest_igated recent_ly by the authors Olhoff, 

Bendss6e, Sze,to and Sandler [49,57] who have arrived at the 

following conclusions: 

(a) Given a horizontal system of intersect_ing first_ and second 

order ribs whose depth is significantly smaller than it-os span, H_ 

is reasonable to assume that u n d era dis t rib ute d 

v e r tic a 1 loa d the normal stresses in t_he ribs are 

proportional to the distance from the middle surface. As a con

sequence of St. Venant's principle (and a detailed finite element 

analysis), any horizontal slice of a rib of second order infi-
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nit".esimal width is subjected on its interior to stresses in the 

direction of the rib middle plane only. The same conclusion can 

be obtained for ribbed systems i n p 1 a n est res s. 

Hence second order ribs do not contribute to the stiffness in the 

direcT.ion normal to t".heir plane. In this respect". , the above for

mulation differs from recent mathematical studies of this problem 

[50-51]. 

1.0 

0.5 

Average 
stiffness 

O----~--~--~---L--~--~--~~--~--~--~~ o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Fig. 7. Comparison of first/second and first/first order 

microstructures at various rib-densities. 



374 

(b) In minimizing the weight of a perforated plate for a g i -

v e nco m p 1 ian c e, it was shown on the basis of an 

intuitive argument that at low rib - den sit i e s the 

material consumption is smaller for a first/ second order ribbed 

system than for a first/first order syst.em. However, the same 

conclusion did not seem plausible at h i g h rib - den -

sit i e s. The above arguments were followed up by d e -

t ail e d fin i tee 1 erne n tan d fin i t e 

d iff ere n c e a n a 1 y s e s which confirmed t.he above 

findings. Fig. 7 indicates the average stiffness for various rib

densities for plane first/second and first-/first order ribbed 

systems having a Poisson's ratio of zero value (v=O). The savings 

are more significant if t.he value of Poisson' s ratio is nonzero 

(v*O) . 

til =1.0 
1.0-t---'------------}I( 

0.9 / 

0.8 

0.5 

o 
o 0.5 1.0 

Fig. 8. Specific cost function for elastic perforated plates. 
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(c) Assuming a first/second order micro-model at all rib-

densities, a specific cost function for perforated plates in 

bending or plane stress was derived. For v=O, the latter gives a 

relationship between the stiffnesses (Sl,S2) in the principal 

direct"_ions and the material volume 'v per unit area of the middle 

surface (Fig. 8): 

(17) 

(d) The proposed specific cost function was then used for exa

mining the design of circular, uniformly transversely loaded 

elastic perforated plates of given compliance. 

(e) It was found that the optimal design for the above problem 

reduces to t"_hat for grillages [2] if the average rib density 

approaches zero (i.e. at very low load levels). 

(f) Static/kinematic opt"_imality criteria (similar to t"_hose used 

in optimal plastic <;lesign) were derived by variational analysis, 

using the proposed microstruct"_ure. 

(g) The variational formulation indicated t_hat_ for transversely 

loaded axially symmet"_ric plates only two t_ypes of regions may 

occur in loaded segments of the optimal solution: 

(i) unperforated regions 1 

(ii) regions consisting of radial ribs only. 

(h) On the ba-sis of the above findings, optimal solut_ions were 

derived for simply supported and clamped circular plates with 

uniformly distributed full and partial loading as well as a 

central point load and for simply supported circular plates with 

edge loading. 

(j) The above results were confirmed by optimizing a number of 

intuitively select_ed designs with respect_ too certain design para

met_ers and also by independent numerical solutions. In Fig. 9, 

for example, the volume <11 of various partially optimized in-
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tuitive designs is compared as a function of the compliance C. 

As predicted by variational analysis, Design D is optimal at all 
C-values. 

64Ct opt 
A 

1.0 

0.8 

N~~m~ 

[m] 
I .. gR '1 

tm=l 
I" R _I 

1 
C 

Fig. 9. Comparison of various solutions for elastic circular 

perforated plates. 
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(k) More recently, the above results were extended to plat-_es with 

a non-zero Poisson's ratio (v:l:O). Whereas for v=O the specific 

compliance c was given by c = Ml2j Sl + M22j S2 where 1>11 and 1>12 

are the principal moments and Sl and S2 principal stiffnesses, 

for v:j:O the specific compliance can be expressed as c = Ml/.j Sl + 

+ r-t2 2 j S2 -2 vMl M2 where Sl and S2 are paramet_e~s depending on T_he 

rib-densities (d l ,d2 ) in the principal direct-.ions. Then t_he spe

cific cost funct_ion will be t_he same as in (17) but_ the compli

ance const-raint_ will be different. Optimal solutions have been 

det_ermined for the various axisymmet_-ric loading and boundary 

conditions with v:l:O. 

(1) It can be concluded from the above investigation that for the 

class of plates considered, the i n t rod u c t. ion 0 f 

fir s t j sec 0 n d 0 r d e r m i c r 0 s t r u c t u r e 

has not res u 1 ted ina n imp r 0 v e dec 0 -

nom y. 

(m) The above investigation has also been extended to (i) allow

ance for the effect of shear and (ii) composite plates consisting 

of two elastic materials. At a given point of the middle surface, 

either one or the ot.her material must occupy the ent-.ire dept-.h of 

the plate. 

Design Constraints for Suppressing Ribs in Optimal Plate 

Solutions 

Both rib-like formations and vanishing cross-sections can be pre

vented in least-weight plate solutions by introducing 

(a) segmentation, see Eqs. (4)-(6), or 

(b) an upper limit. on the slope of the plate t-_hickness 

(="taper"), as proposed originally by Niordson [61]. 

A general theory of optimal segmented structures is now available 

for both plastic [2,12] and elastic [15] design. A theory for in

corporating "Niordson-constraints" in plast.ic design has been 
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developed by the first author [59] and later applied to axisymme

tric plates [62]. 

Optimal Design of Long-Span Membrane Shells, Archgrids 

(Gridshells) and Cable Networks 

The optimal plastic design of long-span membrane shells under 

self-weigh1-. and o1-.her loads was discussed by Ziegler I: 63 I. Issler 

r: 64 J. Prager and Rozvany [65], Nakamura, Dow and Roz vany 166 I and 

Dow, Nakamura and Rozvany [67]. 

The optimal design of archgrids (shellgrids) and cable-ne1-.works 

was suggested by W. Prager. These surface s1-.ructures consist. of a 

dense syst-.em of int.ersec1-.ing arches or cables in which all mem

bers are subjected to axial compression or tension (without bend

ing). Before Prof. Prager's unfortunate death in 1980. he and the 

first author [44] derived only leas1-.-weight archgrids and cable 

networks in which the direc1-.ion of arches or cables was pre

scribed. The effect. of selfweigh1-. on t.he optimizat.ion of the same 

type of syst.ems was considered lat.er [45]. The optimizat.ion of 

the 1 a you t of archgrids and cable ne1-.works was invest.iga

ted by the first. author and Wang [9,46-48] who t.ermed t.he resul t-

ing syst.ems P rag e r - s t r u c t u res. The latter have 

t.he following remarkable charact.erist.ics: 

(a) The same optimal solut.ion can be obt.ained for two different. 

classes of problems. viz. 

(i) a surface struct.ure, in which t.he middle surface of the 

system as well as the layout of the members within the sur

face are to be optimized in such a way that all members are 

in pure tension or compression; or 

(ii) a space-st.ruct.ure, in which eit.her all members are in 

pure tension or all members in pure compression and the ele

vation of the ext.ernal loads is also opt.imized. The la1-.t.er 

class of problem is essent.ially a Michell-frame [25] in which 

1-.he permissible st.ress for either compression or 1-_ension 
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tends r.o zero and the ext.ernal loads are movable along r.heir 

line of act.ion. It. was shown rigorously [9,46] on the basis 

of t.he opr.imal layout. t.heory [4-9] that. t.he solur.ion t.o r.his 

lar.t.er class of problem (modified Michell space-frames) 

reduces to a surface-structure (as under i). 

(b) Closed form analytical solutions are now available [46-48] 

for any axisymmet.ric and "quasi-axisymmetric" [9,46] boundary and 

load conditions. 

(c) The minimum tor.al weight for Prager-st.ruct.ures is propor

tional to r.he producr. of loads and t.heir opt.imal elevat.ions 

[7,9,47]. 

(d) All r.he above conclusions have been ext.ended, on r.he basis of 

Eq. (3) herein, to Prager-st.ruct.ures subject.ed to ext.ernal loads 

plus self-weight. 

(e) It has been shown t.hat. Prager-struct.ures are opr.imal not. only 

for plastic design but also for elastic design with stress, com

pliance or natural frequency constraints. 

Concluding Remarks 

It will be seen that t.he concepr.s of stat.ic/kinemat.ic opr.imalir.y 

criteria and optimal layout. t.heory (st.ruct.ural universe) are 

highly suitable for the treatment of optimal plast.ic design of 

plates, shells and shellgrids. Closed form a n a 1 y tic a 1 

solut.ions are now available, and can even be generated on the 

comput.er, for broad classes of design problems. t10re recently, 

the same results have been ext.ended r.o elasr.ic sr.rucr.ures. An 

unexpect.ed feature of least.-weight. plate solur.ions with an upper 

consr.raint on t.he thickness is r.he appearance of infinitesimally 

spaced rib-like format. ions , indicating thaI". a large number of 

past research papers were based on erroneous solutions. 
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Summary 

Optimal structural design of cylindrical shells under overall 
bending, torsion, tension and internal pressure in creep cond
itions is considered. The material is assumed to be governed by 
the Norton-Odqvist nonlinear steady creep law. Minimal weight 
of the shell is the design objective, radius and wall thickness 
are design variables, and the constraint refers to brittle creep 
rupture as described by the Kachanov-Sdoburev hypothesis. Elim
ination of circumferential bending in the wall results in a 
circular profile. The condition of uniform creep strength deter
mines the thickness distribution, whereas the optimal radius is 
determined numerically. 

1. Introductory Remarks 

Cylindrical shells work very often in creep conditions, e.g. 

metal shells at elevated temperatures (pipelines, elements of 

jet engines etc.), or shells made of plastics or concrete at 

room temperature. If the loading does not conform to rotational 

symmetry, then circular cylindrical shells of constant thick

ness are not optimal inasmuch as their weight is concerned. In 

general, two functions as design variables may then be consider

ed: current radius r r(¢) and wall thickness g = g(¢), where 

rand ¢ denote polar (or cylindrical) coordinates. Sometimes 

the areas of possible longitudinal ribs may also serve as design 

variables. Such optimization problems under elastic stability 

constraints were discussed by Zyczkowski and Kruzelecki [1,2,3]. 

Optimal structural design in creep conditions was initiated at 

the end of the sixties by Reytman [4], Prager [5], Nemirovsky 

[6]and Zyczkowski [7], and widely developed at the Technical 

University of Cracow; more recent results were summarized by 

Zyczkowski in [8]. In contradistinction to static problems of 
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elastic or plastic optimal design, it introduces a new factor, 

namely the factor of time. Most structures working in creep 

conditions are designed for a finite life-time, usually deter

mined by creep rupture or creep buckling; however, in some part

icula~ problems the stiffness in creep or stress relaxation may 

also serve as optimization constraints. 

Optimal structural design of shells is very well developed; a 

survey by Kruzelecki and Zyczkowski [9] reviews over 600 papers. 

Most papers, however, deal with elastic or plastic shells, where

as optimal design of shells in creep conditions is represented 

by very few papers only. 

The present paper considers optimal structural design of cylind

rical shells under fairly general combined loadings which result 

in longitudinal homogeneity of the stress state: overall bending 

by the moment Mb , overall torsion by Mt , axial force N, and 

uniformly distributed normal internal pressure p, Fig. 1. Such 

a system of loadings may often be encountered e.g. in pipelines 

y 

Fig. 1. Cylindrical Shell under Combined Loadings. 
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The paper constitutes a generalization of previous considerations 

by the authors, [10,11]: first, torsion is introduced here and 

axial and circumferential directions are no longer principal; 

second, the creep rupture hypothesis is more general than that 

used before, and hence it covers a wider class of materials. 

Both these generalizations change the problem, mainly ~licating 

it; however, a certain simplification will also appear, since 

ordering of principal stresses is easier if shearing stresses 

due to torsion take place and division of the shell into separ

ate zones is no longer necessary. 

2. Statement of the Problem 

The optimization problem is stated as follows: 

(1) Minimal weight of the shell is the design objective. Under 

the assumptions of a constant bending moment along the axis and 

of a homogeneous material this design objective reduces to the 

minimal area of the overall cross section. In most engineering 

applications the bending moment is variable along the axis; then 

the most stressed section may be considered as decisive. 

(2) As the design variables we consider two functions describ

ing a cylindrical shell (Zyczkowski and Gajewski [12]): middle 

surface of a cylindrical, not necessarily circular shell is desc

ribed by the function r = r(~), and wall thickness - by the func

tion g=g(~). Moreover, in the case of a shell reinforced by long

itudinal ribs, located at extreme fibres and convenient to carry 

large bending moment, we should introduce two parameters Al and 

A2 corresponding to optimal areas of those ribs regarded as con

centrated; however, the present paper will not discuss any rib 

reinforcement, thus leaving prevailing bending beyond consider

ation. 

(3) The optimization constraint refers to creep rupture of the 

shell under a given system of loadings: ~,Mt,N and p. In part

icular, the Kachanov-Sdobyrev hypothesis of brittle creep rupture 

in its scalar form is adopted [13,14]. According to that hypo

thesis, a measure of material continuity during the damaging 

process, W, is governed by the evolution equation: 

(2.1) 
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where Os denotes Sdobyrev's reduced stress, 

(2.2) 

01 and 0e are the algebraically maximal principal stress, and 

the effective stress (stress intensity) ,'respectively, finally 

R, v and 0 are material constants, 0 , 0 ~ 1. Leckie and Hay

hurst [15] found that damaging process of some materials is bet

ter descr-ibed by 01 (e.g. copper), and of others - by 0e (e.g. 

steel and aluminium alloys). Hence the combination (2.2) is 

sufficiently general as to cover a fairly broad class of mater

ials. 

If a steady creep is considered and 0 .. = const(t), without 
l] 

redistribution of stresses due to elastic effects, geometry 

changes etc., we may integrate (2.1) in a general form. Making 

use of the initial condition ~(O) = 1 (perfect continuity, no 

deterioration) and of the condition of full local deterioration 

at the point under consideration ~(tR) = 0, we obtain for creep 

rupture time tR the following "local" formula 

1 (2.3) 

It is supposed that in optimal structures designed for a given 

creep rupture time t R, this value should be reached, if possible, 

simultaneously at all points of the body (a structure of uniform 

creep strength). Denoting the relevant stress in (2.3) by 0 SR ' 

introducing a certain safety factor for stresses, j, we obtain 

the following condition of uniform creep strength 

1 def 

° o constr (r ,0) . (2.4) 

It should be noted that the condition of uniform creep strength 

is, in general, neither a necessary nor a sufficient optimality 

condition. It may not be necessary either if geometry changes 

are taken into account (Swisterski, Wroblewski and Zyczkowski 

[16]), or if other constraints are introduced; it may not be 

sufficient if it does not result in a unique solution. In the 



case under consideration geometry changes are disregarded and 

no other constraints are introduced, and hence we regard (2.4) 

as a necessary condition; on the other hand, it is not suffic~ 

ient here and further optimization will be performed. 
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As was mentioned above, other constraints, in particular creep 

buckling constraints for the shell, will not be considered in 

the present paper. Such an approach may be justified if the 

wall thickness is not too small; this case takes place if press

ure and axial tension are predominant in comparison to torsion 

and bending. 

(4) As a first step towards optimal design we look for elimin

ation of bending states in the shell, in particular for elimin

ation of circumferential bending. Indeed, any bending of the 

wall results in transversally nonhomogeneous state of stress 

and (2.4) cannot be satisfied at any point of the shell. Subst

ituting into the general equilibrium equations of the engineer

ing theory of shells (Wlassow [17], p.201) all the moments and 

shearing forces equal to zero, we obtain 

and hence 

0, 

const k = L , 2 n 
cP 

0, (2.5) 

const, (2.6) 

where k 2 (CP) = l/p(CP) denotes the circumferential curvature of 

the shell ncp = 0cp(CP)g(CP) is the circumferential membrane force, 

and the internal,pressure p was assumed to be constant (self

weight of the medium inside the shell being disregarded). So, 

it turns out that the necessary conditions of the membrane state 

result here in a circular cylindrical shell, though this shape 

was not assumed a priori. Hence we reduce design variables in 

the optimization problem under consideration to one function of 

one variable g = g(CP) and to one parameter p = r = const. More

over, the design variable g(CP) and the stress 0cp(CP) are inter

related by 

pr, (2.7) 
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resulting from (2.6). 

It should be noted that the necessary conditions of membrane 
state (2.5) are not the sufficient ones. For example, the circ
umferential bending effects in the wall under similar loadings 
were studied in the plastic range by Mrowiec and Zyczkowski [18, 

19]. In the present paper, however, we neglect these effects and 
assume the membrane state. 

(5) Equations of state are assumed as the Norton-Odqvist const
itutive equations for an incompressible body: 

(2.8) 

~ii = 0, (2.9) 

where eij and Sij denote deviatoric strain rates and deviatoric 
stresses respect1vely, Ee and 0e are the effective strain rate 
and the effective stress as described by the Huber-Mises-Hencky 
hypothesis, K and n stand for material constants, and in the 
last equation the summation convention holds. In the case of 
plane stress under consideration we have 

(2.10) 

(2.11) 

where the usual engineering notation for stresses and strain 
rates has been introduced. 

(6) Finally, the optimization problem is stated as follows. 

We minimize the overall cross-sectional area 

A 2r 

TI/2 

~ g(~)d~ + 

-TI/2 

min (2.12) 

under the constraint for stresses (2.4), and under the integral 

constraints 



N 

n/2 

2r S cr z (<jJ ) g (<jJ ) d<jJ 

-n/2 

n/2 

S Tz<jJ(<jJ)g(<jJ)d<jJ 

-n/2 

n/2 

const 

const, 

2r J ',($) (r s1n$ - yo)g($)d$ 

-n/2 
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(2.13) 

(2.14) 

const, (2.15) 

where Yo denotes the coordinate of the centre of gravity of the 

unsymmetric cross-section, 

n/2 n/2 

r S g(,)s1n,d,/ S g($)d$. (2.16) 

-n/2 -n/2 

with the equations of state (2.8), (2.9), and the remaining 

fundamental equations of continuous media (equilibrium, compat

ibility) . 

3. Stress and Strain Rate Distribution 

The distribution of shearing stresses TZ<jJ follows directly from 

equilibrium equations. Hydrodynamic analogy yields 

TZ<jJ(<jJ)g(<jJ) = const(<jJ) = c. (3.1) 

Substituting (3.1) into (2.14) we calculate C and express shear

ing stresses in terms of the twisting moment: 

Mt 
--2-
2nr g 

(3.2) 



392 

now the constraint (2.14) disappears. Further, making use of 

(2.7) we eliminate the thickness g($) and rewrite (2.12)-(2.16) 

in the form: 
TI/2 

A 2pr 2 S 1 d$ -+ min, 
0$ 

(3.3) 

-TI/2 

TI/2 

N 2pr 2 J °z 
0$ 

d$ const (3.4) 

-TI/2 
TI/2 

TI 12 J sin$ d$ 3j" -TI/2 0$ 
~ 2pr 0; (sin$ - TI/2 )d$ const (3.5) 

J 1 d$ -TI/2 0$ 

-TI/2 

M;)reover, the formula for 'z$' (3.2) , turns into 

, z$ 
Mt 

0$ (3.6) 
2TIpr3 

Compatibility equations make it possible to determine the dist

ribution ox axial strain rates ~z. Using Cartesian coordinates 

we may write 

(3.7) 

in the problem under consideration the strains do not depend 

on z, hence two derivatives in (3.7) vanish, and ~z mustbe lin

ear function of y. Returning to cylindrical coordinates we write 
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this function in the form 

K r sin<j> + ~o' (3.8) 

where K denotes the curvature rate and E is the rate of elongo 
ation of axis of the cylinder 

roidal axis, shifted by Yo). 
hypothesis, but, in fact, it 

(not coinciding here with the cent-

Eq. (3.8) resembles Bernoulli's 

exceeds that hypothesis: plane 

sections not necessarily remain plane, warping may occur. 

Now, the rema~n~ng four unknowns 0z' 0<j>' E<j>' and Yz<j> may befamd 
from the Norton-Odqvist equations (2.8), (2.9), and the condition 

of uniform creep strength (2.4). First we eliminate f from (2.9) 

performing contraction of the deviators and making use of (2.8): 

Using the last equation as joining ~z and Sz we obtain 
n-l 

(3.9) 

K r sin<j> + ~o ~(O~ + O~ - oz0<j> + 3m20~}--2-(20z - 0<j>)' 

(3.l0) 

where the dimensionless parameter: 

m (3.11) 

Jo~ns the loadings and the design variable r. The rema~n~ng 

two independent equations (3.9) determine E<j> and YZ<j>' but they 
will not be used effectively. On the other hand, (2.4) with 

(2.2) and (3.6), yield 

i[o + VcOz -
2 2 2 1 0<j> + . 0<j>} + 4m 0<j> + 2 z 

+ (1- 8) /02 
2 2 2 (3.l2) + 0<j> - 00+ 3m 0<j> ° . I z z <j> 0 

The solution of the system of equations (3.l0) and (3.l2) with 

respect to 0z and 0<j> would enable us to determine the stress 
distribution in terms of the coordinate <j> and of the parameters 
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K, to Then we could use (3.4) and (3.5) to evaluate K and Eo 

and perform minimization of (3.3) as a function of the design 

variable r. 

4. Change of Variables 

An analytical solution of (3.10) and (3.12) with respect to Oz 

and o~ seems impossible. However, the left-hand side of (3.12) 

is homogeneous of the first degree in stresses and an essential 

simplification will be obtained by introducing instead of o~, 0z 

two new, dimensionless unknowns s, s by the formulae 

o~ = 00s sins, (4.1) 

These formulae resemble the Nadai-Sokolovsky parametrization of 

the Huber-Mises-Hencky yield condition expressed in principal 

stresses, but they are used here in some other sense since TZ~ 

is also present and s is not proportional to the stress intensity. 

In the problem under consideration we have 0 < s < TI, because 

o~ must be positive. Now, in view of the mentioned homogeneity 

of (3.12), this equation may be solved with respect to s = s(s): 

s 

and (3.10) yields 

Kr sin~ + EO 

.:!!:.) + sin s + 
3 

] + 

(4.2) 

(4.3) 

where s(s) is given by (4.2), and the following dimensionless 

parameters have been introduced 

K E 0 (4.4) K S 
OnK 0 onK 

0 0 

So, we have reduced two equations (3.10) , (3.12) to only one 
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equation (4.3) with the unknown ~ = ~(~). This equation cannot 
be solved for ~, but it can easily be solved with respect to 

~ = ~(~), and this inverse function will be used in further calc
ulations: 

~ = 
- £ 

arc sin ________ ~o 
f(~) 

- (4.5) 
K r 

where f(~) stands for the right-hand side of (4;3) with substit

uted (4.2). 

Now, the integrals (3.3)- (3.5) may be rewritten with the integ

ration variable changed into ~, and so the optimization problem 
will be presented in an effective form. Moreover, we replace 
the dimensional design variable r by a dimensionless one, m, 
substituting, in view of (3.11), 

31M;" 
r = v'~. 

Finally, we look for a minimum of the integral 

-a 

under the constraints 

n 

~ J~2~~1~~ d~ d~ + min 
m2t3 s(~)sin~ d~ 

1 =m-m 

~l 

~2 

\ sin(~ -

J sin~ 

~l 

2::.) 
3 d~ d~ 

d~ 

(4.6) 

(4.7) 

const 

(4.8) 
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1;2 

rUb (l;l,1;2,m) 
1 { sin(, - }) 

[ sin<p (0 -mb m sinl; 

1;2 1;1 
[Sin<!> (1;) d<p dl; 

I; s(l;)sinl; dl; ] d. (4.9) 
1 dl; dl; const, 

1;2 

~(I;~Sinl; d<p dl; 
dl; 

1;1 

where s (1;) is given by (4.2), d<P/dl; is to be calculated from (4. 5) and 

the ~ionless quantities a, n, rob are defined as follows 

-a -n 
2/3 

J:...(~) N 
2 M ' m p t 

n 
M~· t 

(4.10) 

-The limits of integration 1;1,1;2 may be expressed in terms of £0 

and K by solving (4.5) with substituted <p = -n/2 and <p = n/2, 

respectively. However, this is not necessary: Eo and K should be 

determined from (4.8), (4.9) in terms of n and ron' so we may sim

ply solve (numerically) (4.8), (4.9) with respect to 1;1 and 1;2 

instead of Eo and K. Finally, after 1;1 and 1;2 have been evalua
ted, we look for a minimum of (4.7) as of a function of one var

iable m (m is hidden in z (I;) and <P( 1;) as well). 

5. Numerical Examples 

The system of two equations (4.8), (4.9) is solved with respect 

to 1;1,1;2 by Newton's procedure for subsequent values of m and 
then a numerical minimization of the function a = a(m) is perform

ed. However, some complications appear when calculating numeric

ally the integrals: they are improper, since d<P/dl; increases inf

initely for <p = -n/2 and <p = n/2 i.e. for I; = 1;1 and I; = 1;2. 
Accuracy of most numerical "procedures is then poor, but those 

singulari tie's may be removed by integration per partes of the 

type 

(5.1) 
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where u i stand for the relevant integrands in (4.7)-(4.9). 

The resulting optimal shapes and the relevant stress diagrams 

are shown in Figures 2 (8 = 0, Kachanov-Huber-Mises), 2(8 = 0.5, 

Kachanov-Sdobyrev), and 4(8 = 1, Kachanov-Galileo). 

6. Final Remarks 

The shapes shown in Figures 2-4 are optimal, but they may be 

difficult in manufacturing. Much easier, but less effective 

optimization may be achieved by applying constant wall thickness 

reinforced by two longitudinal ribs to carry overall bending of 

the shell. This problem of purely parametric optimization will 

be discussed separately. 
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The Collapse of Continuously Welded Stiffened 
Plates Subjected to Uniaxial Compression Load 
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Summary 

This paper outlines the results of several series of tests 
which have been carried out at the Structural and Material 
Laboratory of Pontificia Universidade Catolica do Rio de Janei 
ro, to determine the collapse load and types of instability 
failure of continuously welded stiffened plates subjected to 
uniaxial compression load. The plates were stiffened longitu
dinally and transversally. 

Experimental results are discussed in relation to the influence 
of stiffeners cross-sections on collapse load and to various 
currently available methods of analysis. 

Introduction 

Stiffened plates very frequently form components of structures 

such as slender ship hulls, box girder bridges, bridge decks, 

super structures of off-shore oil platforms, buildings and 

other structures in which high strength-to-weight ratio (S/W) 

is important. In the case of steel bridges, the need to 

understand ultimate load behaviours of stiffened plates was 

emphasized in a tragic way by the collapse of several major 

box girder bridges in Europe and Australia during the last two 

decades. Despite a substantial amount of theoretical and 

experimental research into the ultimate load behaviour of 

stiffened plates, the collapse load in relation to all possibre 

failure mode, allowing for the complex interactions between 

plate and stiffeners with the consideration of stiffeners type, 

residual welding stresses and initial out of plane imperfection 

is not yet accurately predicted. 

As part of a research program directed to provide an improved 

understandinq of the ultimate load behaviour of stiffened 
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plates hence establishing an accurate design method in the last 
five years, a modest effort at the Structural and Material 
Laboratory of Pontificia Universidade Catolica do Rio de Janei
ro was devoted to the subject. The results of these investiga
tions have been reported in detail elsewhere (1,2,3,4,5,6,7,8). 

The insight gained from the experimental work which is summa -
rized in this paper helped to judge the validity of the 
assumptions on which the various theories and approximate 
methods are based and also to assess which method of design can 
be most efficiently used to answer specific problems. 

Description of Test Plates 

In this research program simply supported stiffened steel plates 
of overall length L and width B with three types, of longitudi
nal stiffeners i.e. rectangular, Land T cross-section, as 
shown in Fig. 1, with or without transversal stiffener of T 
cross-section have been studied. 

d 
t 

R T 

TYPE OF STIFFENERS, R,T, L 1IIIIIfilli 

LONGITUDINAl: --h----+-. I 
STIFFENER(R,L,Tl '/ ~~ I 
PLATE / . ------/~ L I Itt L ttl / /1' 

B ~! 
I 

Fig. 1 _ A typical plate stiffened longitudinally and trans -
versally. 



There were six series of specimens, all in the form of square 

plates of L x B = 750 x 750 mm . 

Series I 2 isotropic plate (denoted as P). 

Series II plates with one longitudinal stiffeners of the R, 

Land T cross-section (denoted as P1R, P1L and P1T) . 

Series III plates with two longitudinal stiffeners of the 

R, Land T cross-sections (denoted as P2R, P2L and P2T). 

Series IV Plates as in series II with addition of one trans 

versal stiffener (denoted as P1R1T, P1L1T and P1T1T) . 

Series V : Plates as in series III with addition of one trans 

versal stiffener (denoted as P2R1T., P2L1T and P2T1T) . 

Series VI : Plates as in series III with addition of two trans 

versal stiffeners (denoted as P2R2T, P2L2T and P2T2T) . 
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The dimensions of the stiffeners and their spacing with the 

total area of the stiffeners "As" are given in Table 1. For the 

notation refer to Fig. 1. Plate thickness "t" was 4,8 mm and 

4,4 mm for the first and the second set respectively. The span 

of the plates between supports for all series was 650 x 650 mm. 

The boundary conditions were simply supported. However, the 

first set had discretized points and the second set continuous 

supports. All stiffeners were continuously welded to the 

isotropic plate. The welding was carried out manually by the 

same welder for all the test series. The throat of the fillet 

weld was in order of 3,0 mm. Two base plates of 51 x 16 x 750, 

were welded at the upper and lower parts of the plates. This 

resulted in applying uniform compression load. 

Measurement of Initial Out-of-Plane Deflection 

The initial out-of-plane deflection of each plate before and 

after welding was thoroughly investigated, it was measured 

relative to the plate ends using a perfectly straight aluminium 

bar. 
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Table 1 - Dimensions~of Plates Tested 

Measurement of Residual Welding Strains 

For the measurement of residual welding stresses on both sides 

of the plates, a Demec mechanical extensometer with 50 mmgauge 

length was used. The readings were made before and after 

welding of the stiffeners. Strain readings were corrected 

where necessary for temperature effects. Each set of Demec 

readings was taken at least three times, normally by a differ

ent person. 

The Testing,Rig 

A general purpose testing rig as shown in Fig. 2 was designed 

and constructed in the Structural and Material Laboratory. The 

maximum capacity of the rig is 1000 kN axial load. The load 

was applied through two 500 kN jacks to the rigid loading beam 

which was constrained by sliders and rollers to move to the 

direction of load, and in the plane of the test plate. In 

order to distribute the load into the test plate in a uniform 

manner, avoiding the possibility of premature failure close to 
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the load beams, two bars of 16 x 51 mm cross-sections were 

fixed at the ends of the test plates. As the boundary condi

tions were simply supported this type of reinforcement had 

negligible influence on the overall behaviour of the plate 

During the experiment the loads were applied incrementally. At 

the end of each increment, the strain lateral deflections and 

shortening of the plate were registered : 

Strain Measurement 

Fig. 2 - Test Plate 

Positioned in the Testlig 

Rig. 

For the measurement of the strain in the stiffeners and platlig, 

linear, Land rossete electrical strain gauges of 10 mm and 5 

mm gauge length were used. The strain instrumentation in all 

test plates were almost identical. The linear gauges were 

fixed on the stiffeners extreme an~ to the plates opposite side 

to record both , in plane and flexural components of strains. In 

general about 50 strain gauges were fixed on each test plate 

At each load increment complete measurement of strains in 

stiffeners and plating were made. 
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Deflection Measurement 

Lateral deflections and plate shortening of plates were measured 

by electrical transducer and mechanical dial gauges of 0,001 mrn 

precision, mounted on an independent deflection frame along the 

rig as shown in Fig. 2. The deflection frame was designed to 

allow maximum choice of gauge positions. 

Test Results 

A summary of material properties of plates and stiffeners with 

those of maximum initial imperfections "Wo" maximum deflection 

at collapse "Wmax ", maximum in-plane shortening "Umax ", slender 

ness ratio" 9v/r" and bit, maximum collapse stress Gm in relat:ian 

to the yield stress of plate "Oyp" and the ultimate load "PU" 

in relation to squash load "P sq " is given in Table 2. 

The maximum collapse stress for each specimen was obtained by 

dividing the ultimate load to the overall cross-sectional area 

of the plate. 

(1) 

and the squash load is calculated as 

(2) 

Discussion of the Results 

The effect of the type of longitudinal stiffener on the collcpse 

stress of the plates can be obtained by comparing the results 

of Gm/Gyp and Pu/P Sq for each series of tests. It was not to 

our prediction in series II that Gm/Gyp for the rectangular 

stiffener was higher than those for Land T. This can be 

attKibuted to the form of initial imperfections. In cases of 

plates with bit = 45 and bit = 49 the values of Gm/Gyp were 

higher for T,and L - type stiffener. In general, in each test 

series the values of Gm/Gyp were not significantly different 

from each other. This may be related to the small percentages 

of stiffeners area to the overall plates area used in these 
investigations. 



During the tests the redistribution of the deformations in the 

plates was registered. This indicated that there was an inter

action between the local buckling of the plates and buckling of 

the stiffeners. 

Table 2 Summary of Material Properties, Initial, final 

deflections and shortening, etc ... 
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The maximum shortening of the plates were highest for test 

series V and VI which was in the range of 0,51 to 0,63 percent. 

For the other series the shortening changed between 0,31 and 

0,48 percent of plate's length. 

Comparison with the Predicted values 

The predicted values of the maximum mean stress obtained from 

various methods and codes compared with "am" of the tests are 
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discussed in the following (see Table 3 and Fig. 3) 

Table 3 - Comparison of the Predicted Plate Strength by Various 

Method with the Mean Collapse Stress of Tests. 

Colla".". I Jlurra~. Carlsen -;;;:;:;;;:- Morrison AISC I ASSC Alle~ I 
stres3J~+-Test ~ TeSt· ~ TeSt Test - TeStJ 

I 72" -I~:I 1 ;::0 :::0 :::0 ~%I I. ~::2 (:1 f. i m· I .~'" I M.' I ~.' ~.' .'+ -4" 
~ PIL - I 151 1 88,0 I 74,0 99,0 49,0 1 104 ,0, 96,J I 37,0 

'~r --------1----·1 98,0 ! 102,0 109,0 56'6--f-l~6T-l0~T:;~ 

~ I~;~-----rn~:: I 99 I 99,0 ~~ 1 4~,6 : '~~2~0! ~~; ll~'~ 
~=--i 165 I 106 I 86,OJ 1~~ _I _1l7~Ll~5'7: 115,~r 
,itj P2T I 165 I 116 : 102,9 ! 119,4 i 49,6 : 117,oi 115,,' 121 0 

t.~ - -r~06 1--=--1-~ l-~~~~I __ ?~~:~I-~~~~-~ :~-
;:l~l~ 162 85,8 1 5~'~_80~~-l--=6_'7 __ I_~8i _7~.:.~~ 116,4 

~! 'ILIT 1 160 92,0 I 69,0 1 85,6 61,2 ! 92,S; 78,1, 151.2 

~r;11:1~--1 ~ 89,2 81,~G --60~1-~~~r -;0-'~1~;-8 
-'r~2RIT-- 194 91,0 66,0 -1-8~:7---~-r~~r~9:1! 120,1 

~ ~~~l~ - _ 192 96,8 84,1 93,7 60,9 -~~:'21127'1 
.1 1 1 
tl)1 F2'1'lT 196 93,0 88,0 83,7 61,2 93,4, 82,6, 178.6 

r~2~~---1 194 96,0 72,0 93,8 61,3 95,41 93,31121,6 
~I_~ ____ - _, __ 

~! P2L21' 1 221 85,S 78,7 e2,3 51,6 84,1 80,0: 105,7 

-;: 1---.-----+. -----1---7------;------;-------;-
.1l1~~ I 225 82,0 77,0 80,0 I ~~,~,:~_~~~ 

In Murray's method [9] the collapse load and the direction of 

the collapse, of steel plates with open section type stiffeners 

are calculated based on Perry-Robertson formula with an 

expression for the imperfection term n given by 

n (3) 

where y' is taken as to appropriate distance to the extreme , 
fibre depending upon whether (0 0 + t;) is r,ositive or negative 

and r' is the radius of gyration of stiffener and associated 

plate which is calculated for effective cross-section. It can 



be seen in "'.lble 3 that the predicted values are very close to 

the test results, although this method does not take into 

account the residual weldina stress. 

o ALLEN D MURRAY 

• CARLSEN _ WINTER -
A MERRISSON + AASC 
• AISC x BCSB -

0 -

'·2 c- O +- A 0 -

A [J 
0 

-+ • A 
D , 

• 0 D + - D+_, 
I- D • - • _ A 

x x + x • x 

'·0 

o·a 

1-. x· &\ &\ x &\ + A &\ 
0·6 

0·4 l-

0·2 I-

o 
SERIES I SERIES II SERIES III SERIES IV SERIES V SERIES VI 

Fig. 3 - Comparison of Test Results with Various ~1ethods of 

Plate Analysis. 

Carlsen's method [10] is also based on the Perry-Robertson 

concept but with calibrated expression for effective width of 

the plate. This method accounts for interaction between 

adjacent stiffener spans. It considers the influence of impeE 

fection, residual-welding stress and the failure modes. 

Possibly because of an oversimplified consideration of imper

fection, the predicted results are relatively conservative. 

Winter's method [11] is very simple to use. It is based on tie 

effective width concept. It takes into consideration the 

influence of imperfection and residual welding stress as a 

reduction factor for ultimate load. It is noted that the 

results for plates with low ~/r i.e. set two tests were very 

satisfactory but for the case of P2R it overestimates about 30 

percent. 

In the Merrison Rule [12] the strength of the plate is calcu -
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lated based on nominal plate thickness and 0yp' It considers 

geometrical imperfections "Wo" residual welding stress "or" arrl 

failure mode. It is generally regarded as a too complicated 

method and overestimates both "or" and "Wo" which results in a 

very conservative prediction. As can be noted from Table 3 and 

Fig. 3 this fact was true in this investigatio? For the first 

set the predicted values were about 50 percent of experimental 

results. However, in each test series the results were very 

consistent and had almost the same variation. 

AISC method [13] is like Winter's method, based on effective 

width be which is inversely proportional to bit and or' For 

t/r < 56 the obtained results by this method were satisfactory. 

For series V the result differs from the experiment only 7 peE 

cent. However, this method overestimated the collapse stress 

for the first set of tests. 

ASSC method [14] is similar to the previous method but uses 

equations for the verification of the maximum stress of the 

plate which leads to the lower predicted values in comparison 

with AISC. The pattern of the results is the same as for AISC. 

Allen's method [14] is based on a general interaction formula 

based on experimental results which consider only initial 

imperfections. Except for tests P1R and P1L this method over

estimated the maximum collapse stress significantly, especially 

for test series IV and V. 

BCSB - Brazilian Code for Steel Bridges [15] is based on 

effective width concept with the consideration of initial 

imperfection of plate as 0,145 bOylE and residual welding 

stress as 0,1 0y • As can be noted in Fig. 3, this method is 

a conservative method but the results are not as low as those 

obtained from the Merrison rule. 

Conclusions 

The results of the investigation based on seventeen tests 

indicated that 



a - The type of stiffeners cross-section had relatively small 

influence on the ultimate stress, but had influence on the 

failure mode as in tests P1R, P1L and P1R1T, P1L1T where 

stiffeners failure occurred. 

b - The introduction of transverse stiffeners did not change 

the maximum stress significantly but they reduced substan

tially the maximum out of plane deflections. 

c - Among the various methods for the prediction of the maxmum 

stress the Murray's method was the most satisfactory and 

then AISC. Although the Merrison rule considered most of 

the variables it gave a very conservative result. The 

Brazilian Code for Steel Bridge is also a conservative 

method although not as much as the Merrison rule. 

d - The variation between methods was indeed very large (see 

Fig. 3) which recommended still more research for 

establishing a general method for the prediction of the 

ultimate load for such structures. 
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Abstract 
For the sake of self-consistency, we recall in the introduction 
the main aspects of limit analysis and of optimal design for 
assigned limit load, in which we formulate the optimality cri
terion used in the examples of the following sections. We then 
deal with two problems with axial symmetry, namely the circular 
plate and the circular cylinder, both with piecewise constant 
thickness. Limit loads and minimum-volume designs are obtained, 
either by a computer aided analytical approach or by mathemati
cal programming. Minimum-volume of reinforcement of reinfoTced 
concrete cylinders under radial pressure is also considered. 
We finally quote briefly some other related problems, stress 
the complementarity of the approaches used, and recall the ne
cessity of experimental assessment of the range of validity of 
the solutions. 

Introduction 

1. Plastic limit analysis 

In a structural shell theory we start from the choice of the 
generalized strains qi Ci=l, ... ,n) that are sufficient for the 
complete descr'iption of the deformation of the shell when the 
basic Kirchoff-Love assumptions are accepted. The corresponding 
generalized stresses Qi must be so defined as to obtain the 
virtual specific internal work by the relation 

W C 1 ) 
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or equivalently, regarding the qi and Qi as components of the 
two n-dimensional vectors q and Q, 

w Q.q, (2) 

where the central dot denotes scalar product. Relations (1) or 
(2) must be valid for any independent Q or q. Similarly, deno
ting by q the strain rate vector with components q. = 3q./3t, 

1 1 

where t stands for some measure of time, we have the virtual 

internal power 

p = E Q.q. 
·11 
1 

Q.q (3) 

In the limit analysis and design of structures we then postula
te perfect plasticity of a shell element. This property is des
cribed in superimposed stress space and strain-rate space with 
coordinates Q. and q. respectively by the yield locus of the 

1 1 
shell element and the flow rule or normality rule. A generic 
two-dimensional example is shown in fig. 1. The relevant yield 
loci for a variety of shells can be found in standard texts 
(see ref. {1} for example). A yield locus can be either derived 
from the yield condition applied to every internal component 

Fig. 1. Two-dimensional yield locus (same structural element, 
two different yield limits) 



sheet of the shell element or, if necessary, considered as a 

global (maybe experimental) information. 

419 

As far as interest is focussed on the collapse state of the 

structure, and possibly on post-limit behavior, the rigid

perfectly plastic model will be sufficient, as seen in fig. 2. 

It is the simplest possible model for the analysis and design 

of plastic structures for the evaluation of the limit load for 

proportional loading. For purely mechanical loading, the 

elastic-perfectly plastic model introduces no improvement. In

deed, at incipient collapse, the structure deforms purely plas

tically under constant load and state of stress. As the unde

formed geometry is referred to in describing the limit state, 

the latter is therefore identical with that of the rigid

perfectly plastic structure. With both models, the limit load 

o 

Fig. 2. Typical load vs. deflection curves 

will be obtained only if the elastic-plastic deformations for 

smaller loads do not substantially alter the geometry of the 

real structure. This can be verified only through a step-by

step analysis of the elastic-plastic deformations, or at least 

by an evaluation of these deformations just prior to theoreti

cal collapse. In the following we shall assume that such a ve

rification can successfully be made, and that no instability 

phenomenom of any kind will interfere with the formation of 

the unrestricted plastic flow mechanism. 
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On the other hand, the rigid-perfectly plastic model is able to 

indicate the real physical significance of the limit load. In

deed, a post-yield behavior analysis will give the relation 

between the load parameter A and a relevant deflection 6 as 

shown in fig. 2. A rising curve indicates favorable changes of 

geometry (so-called geometrical work-hardening). The structure 

remains stable under the limit load and higher loads, but un

loading will result in large permanent deflections that most 

often will render the structure unusable. A downward sloping 

curve indicates instability of the structure at the limit load, 

resulting most often in catastrophic, complete collapse (and 

even fracture), except if important material work-hardening has 

been neglected. Also, the theoretical limit load is likely not 

to be reached because prior elastic-plastic deformations will 

accelerate the onset of the global instability phenomenom 

(point A in fig. 2). 

In rigid-perfectly plastic structures, no deformation occurs 

before the limit state is reached. Therefore, the limit load 

also is the "yield point load" of the structure. Denoting by 
- -
Fa the applied forces and by 0a the velocities of their points 

of application at collapse, the basic concepts used in limit 

load evaluation are as follows: 

a stress field is called statically admissible for the given 

loads AFa if it satisfies all the equilibrium and static 

boundary conditions for these loads; 

a stress field is called plastically admissible it it does 

not violate the yield condition at any point; 

- a stress field is called licit if it is simultaneously sta

tically and plastically admissible; the load factor corres

ponding to- such a field is called a licit static multiplier 

and is denoted by As; 

- a strain-rate field is called kinematically admissible if it 

is derived from a· field of velocities 0 that satisfies the 
a 

kinematic boundary conditions; 

- a strain-rate field is called plastically admissible if (i) 

the velocity field from which it is derived is such that the 

corresponding exterior rate of dissipation EaF.O is nonnega

tive, and (ii) it belongs to the set on which the interior 

dissipation function of a typical structural element is 



defined; 

- a strain-rate field is called licit if it is simultaneously 

kinematically and plastically admissible; its "power equa

tion", equating the exterior rate of dissipation to the total 

interior rate of dissipation, yields a load factor Akcalled 

licit kinematic multiplier. 

The basic theorems of limit analysis establish that the limit 

load factor A£at collapse, any licit static multiplier AS and 

any licit kinematic multiplier Ak satisfy the continued funda

mental inequality: 

(4) 

Relation (4) applies to any perfectly-plastic "standard" struc

ture for every element of which: 

(i) there exists a convex yield locus, fixed in the stress 

space; 

(ii) the internal dissipation is obtained by application of the 

normality rule to this yield locus. 

For non proportional loading, the basic theorems are generali

zed as follows {2} : 

- if, at any stage of loading, a licit stress field can be 

found, the structure will not collapse during the loading 

process; 

- if, at some stage of loading, a licit strain-rate field can 

be found, the, structure will not be able to reach this loa

ding stage without exhibiting plastic collapse. 

2. Optimal plastic design 

Initiated by the pioneering paper of Drucker and Shield in 
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1956 {3}, optimal limit design has since made enormous progress: 

optimality criteria and examples of applications successively 

included: muitiple loading {4} and movable loads {5-9}, genera

lized convex {lD,ll} and nonconvex {12} cost functions (instead 

of simply volume or weight), piece-wise varying (or partially 

pre-assigned) design variables and upper and lower bounds on 

the design variables {13} (so called technological constraints) 

and optimal location of discontinuities or supports {14} . 
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Simultaneously, layout optimization of concrete plate reinfor

cement, grids and arch-grids developed very rapidly, mostly due 

to Prager and Rozvany {14-17}. Most applications based on the 

optimality criteria so derived are analytical, even if computer

aided. Some plate problems have been tackled by a basically nu

merical approach (by finite elements) using the optimality cri

terion as the test for design improvement. Most numerical opti

mal plastic designs however have been treated by mathematical 

programming methods, resulting in a large number of scientific 

and technical papers {18-Z4}. 

Consider a structure, the general layout of which is given 

(axes for systems of beams, midsurface for shells). Denote by 

s an arbitrary point on that layout, and by d s the correspon

ding line or surface element. The yield locus of the structure 

at a generic point s~ is as depicted in fig: 1 by curve (a) of 

a simple two-dimensional case. When s varies, the yield surface 

is allowed to vary its size homothetically, hence retaining its 

shape and its position with respect to the axes. 

We call plastic strength of the structure at point s the measu

re R(s) of the length of the ray joining 0 to a point of the 

yield surface in a fixed but otherwise arbitrary direction 

(for example the length of OA if the positive QZ direction is 

chosen). 

The plastic' power of dissipation per unit length or per unit 

area of the layout is called specific dissipation and is given 

by 

or equivalently by 

D. = Q.q, (5) 

where the stress and strain vectors Q and q are associated by 

the "normality law". When yield surfaces are homothetic, a pro

proportionality relation is obtained between D and R for 



given q: 

D = k.R, (6) 

where the proportionality factor k depends on q only. 

By definition, a "design" of the structure will be a function 

R(~), R(~) being materialized in any manner (for example, by 
varying the thickness of the structure with one material, or 
only varying the strength of the material with constant thick
ness, or both, etc.), provided relation (6) holds. 
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Assume next that the specific cost C of the structure (that is, 

per unit length or area of the layout) is a convex function of 
R. 

We now consider the following problem: design the structure for 

minimum total cost with the behavioral constraimof supporting 
assigned loads F . Assuming that bounds R- and R+ are set on R 

Ct 

by 0 < R- < R < R+, the sufficient optimality condition is 
(see refs. {11} and {13}) that the collapse mechanism be such 
that: 

( ... dC ifR R 
- (7 a) ( dR R=R(O' 
, 

( 

4(~) 
( 

dC + 
k ( 

dR R=R(O' 
if R < R < R , (7b) 

( 
( 
( dC ifR R+ (7c) ( ? 3R R=R(O' 

This condition (7) can be extended to multiple loadings, mova

ble loads and design-dependent forces {11}. Note that it is al
so a necessary condition for local optimality, independently of 
convexity consi~erations. 
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2. Circular plates with piecewise constant thickness 

The generic plate treated is shown in fig. 3: division radii 

are arbitrary, as well as yield moments M~ = k.Mo. The plate 
1 1 

may have a central hole (b > 0). When loads p and q exist to-

gether, either one is fixed or their ratio is given:only one 

parameter A is unknown. Obviously a > b. Inne~ and outer boun

dary may be either supported or built-in. The yield condition 

of Tresca is used. 

b 

Fig. 3a. 

//: 

"/~// /// 
_._. /" 

/ 

_.._ .. -. __ . // 

Fig. 3b. 
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The aim was to write a very efficient "ad hoc" programme for 

the considered problem. The statical approach was used to achie

ve complete solutions through the association of corresponding 

collapse mechanisms, with the reasonable assumption that for 

both non negative loads p and q the slope of the collapse me

chanism does not change sign within the whole plate, or equiva

lently that only regimes AB and BC (fig. 3b) prevail. Integra

tion of the equilibrium equation with these plastic regimes is 

straightforward. 

The programme assumes a starting value of the limit load para

meter A equal to the average of the limit load parameters for 

uniform thickness plates with yield moments kmax MO and kminMo 

respectively. 

A licit moment field is constructed from the central ring to

ward the external boundary. Modification of the assumed load 

parameter occurs to restore plastic admissibility when this 

turns out to be violated. When Mr is found to be negative in 

regime AB for some 1', the radius 1'* of transition from regime 

AB to BC is obtained from the condition M (r*) = 0 in the pro-
.r 

per ring, solving the corresponding transcendental equation 

with a special subroutine. Remark that, whereas Mr is a conti

nuous function of 1', Me may exhibit discontinuities. It is al

so worth noting that the collapse mechanism may exhibit rigid 

regions. 

The procedure described above can be performed in a purely 

analytical manner for the simple uniformly loaded plate made 

of only two rings (fig. 4 and 5): the limit load p can be ob

tained for all values of r 1 and k for either k > or k < ,. 

From these results, minimum-volume designs can be directly stu

died: optimal k values are first determined for each r, and 

the corresponding volume plotted versus 1', as shown in fig. 6 

where relative ~inima arc clearly seen. Absolute minimum is 

reached for r, = 0.85 with k = 1.73. 
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r,1R 

Fi2. 6. ZMinimum4values of nondimensional cost V = nMO r~ + 
(R - r 1 )k /npR ,(with respect to k) plotted versus ratIo 
r,lR 

When applied to plates regularly reinforced by equal rings re

sulting in yield moments as shown in fig. 7 and 8, the method 

enables comparison with the "smearing-out" technique which re

places the given plate by a so-called equivalent orthotropic 

plate with yield moments M; = MO and M: = (k + 1)Mo/2. This 

substitution corresponds to the case n = 00. The conclusions 

are: a) for a built-in plate, the "smearing-out" procedure un

derestimates the limit load up to more than SO %. To achieve 

less then 10 % error with 1 ~ k ~ 3 it can be used only forn 

> 16;b) the situation is better for the simply supported plate 

where overestimation occurs as a rule and where the same ac

curacy of at least 90 % is already obtained for n even and not 

smaller than 4. Note that the inaccuracy of the "smearing-out" 

technique comes from the fact that it does not take the loca

tions of the reinforcing rings into account but only their num

ber and size: for example it makes no difference between the 

two plates of fig. 9. 
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1.5 2 
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Fig.? Limit value of uniform load p vs coefficient k of cir
cumferential reinforcement for supported plates with radial 
yield moment MO. 

p 
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-\I-;-""\- -'- -. -= n ~n ___ . , r 
R kMOMO . 1 

1--1 ---.!.!o.- . I 
21 

--------
11 --- Orthotropic plate 

IB 2.2 

k 

Fig.H. Limit value of uniform load p vs coefficient k of cir
cumferential reinforcement for huilt-in plates with radial 
yield moment MO. 
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Fig. 9a. 

R 

Fig. 9b. 

We now turn to minimum-volume design of these plates with 

piecewise constant thickness, considering successively sandwich 

plates, in which the volume of the face sheets is to be minimi

zed, and solid plates. For hrevity we hereafter restrict our

selves to the discussion of two examples, though a variety of 

cases have been treated (see ref. {25} and {26}). 

The optimality ~ondition (7), when applied to structures with 

piecewise constant strength must be satisfied In average in 

each region over which the strength is constant. 

1he design procedure is as follows: 

a) make physically reasonable assumptions on the stress regime 

(on the yield locus) for each ring, and on the relative va

lues of the yield moments; 
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b) use the normality law to verify that the optimality condition 

can be satisfied; otherwise, modify the stress regimes; 

c) use the final stress regimes in the equilibrium equation 

which, upon integration, gives the stress field. The boundary 

conditions finally enable the design to be found explicitly. 

When the uniformly loaded, circular, sandwich plate is built in, 

the stress profile for any ring is formed of regimes AB or BC 

or both on the hexagon for that ring. In fig. 10 we show the 

yield hexagons of all rings superimposed on the same diagram. 

We assume that M~ decreases with r in a central region 0 < i 
1 

< k and then increases, k < i < n. In a typical ring of the 

central region the stress profile goes with increasing r from 

A to some point between A and B, possibly reaching B. In the 

outer region it goes from E, or some point between Band C, to 

point C. In the intermediate ring k where the stress regime 

changes at radius r* from AB to Be, three types of regimes can 

occur, as shown in fig. 10. Either a positive hinge circle oc

curs at the inner radius of the ring and a negative hinge circle 

-M~: 
I 
I 
I I 
I I I 

L -- --- - -- ---r- / 
/ 

/ 

/ 
/ 

/ 
M, 

Fig. 10. Stress profile for optimal built-in plates with piece
wise-constant yield moment. l--) hinge circle at both ends; 
l-·-·-)hinge circle in r k ; l---) hinge circle in r k + 1 . 



at the outer radius, or only one of these two hinge circles oc
curs. For each of these three cases an equation for r* is ob

tained by combining equilibrium, continuity, and yield condi

tions. Since k is unknown, the solution is obtained by succes

sive approximation by a numerical procedure implemented on an 
IBM 360 computer by Lambl in {25} . 

2 For n = 1 (constant yield moment) we recover MO 0.089pR 

(Save and Massonnet {l}) with C 0.089TIpR4 . The design 
c 

with continuously varying thickness and a = R will be obtained 
by letting n tend to infinity, giving the absolute minimum cost 

C 0.058TIpR4 . Results for values of i from 1 to 6 are given a 
in Table 1. Optimal values of the dividing radii have been ob-

tained numerically by a grid method. We see that the saving in

creases very rapidly from i = 2 to i = 5 and then has a tenden
cy to slow down strongly. Caution must be exercised in the nu

merical search for the optimal radii, because several local mi
nima can exist . 

Table 1a.Optimal divison radii 

Number 
of rings 

1 

2 

3 

4 

5 

6 

0.860 

0.816 

0.490 

0.498 

0.411 

0.915 

O. 8U 1 o . 91 0 

0.774 0.860 

0.549 0.769 

0.934 

0.858 0.932 

Gain G 
(%) 

o 
12.10 

15.86 

19.82 

21.94 
23.41 

34.0() 

431 
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Table 1 b. Optimal plastic yield moments 

Number MOl R2 MOl R2 M3/pR2 MOl R2 MOl R2 MOl R2 

of rings 
1 p 2 P 4 P 5 P 6 P 

0.08900 

2 0.06565 0.11360 

3 0.05914 0.09150 0.12141 

4 0.01l300 0.04300 0.07950 0.11190 

5 0.07945 0.03812 0.06627 0.09187 O. 11587 

b 0.08971 0.06156 0.03240 0.06183 0.08769 0.11261 

Lamblin and a1. {26} give the solutions for various cases of 

loadings and boundary conditions for circular and annular pla-
+ tes. When an "edge' effect" is expected, an upper bound M is 

set on the yield moment. Obviously, M+ must be larger than the 

yield moment MO of the plate with constant thickness, otherwise 
c 

the plate could not support the load. On the other hand, for 

the condition MO < M+ to be relevant, the upper bound must be 

smaller than the maximum yield moment of the corresponding de

sign without bound. Using the superscript * to denote, for com

parison, elements pertaining to a design without upper bound, 

we must have 

( 8 ) 

Consider for example, an annular plate simply supported at the 

outer edge, free at the inner edee of radius a, and uniformly 

loaded. Assuming that Eq. (8) is satisfied and Mi+ 1 < Mi' as in 

the absence of bounds, we choose the following stress profile 

(see fig. 11): 

a) in the central ring and possibly in some neighboring rings 

i = 1, .. . ,j, where MO = M+, regime AB, from B to some inter

mediate point; 

b) in the neighboring ring j+1, regime AB between two interme

diate points; 

c) in all other rings, regime AB from A to an intermediate 

point as in the simply supported circular plate. 
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~~-------;r-------,A 

M, 

Fig. 11. Stress profiles for optimal supported annular plate. 

We then show that this stress profile is compatible with the op
timality condition. The design is next obtained as usual from 

equilibrium, continuity, and yield conditions. Because the num
ber j of rings· where MO = M+ is unknown, the solution is ob

tained numerically by successive approximations starting from 

j=l and going up to the point where all conditions are satis
fied. An example of. results in the case of a plate made of four 

rings can be found in fig. 12. 
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0.92 

~u D.82 
> 

D.80 

0.74 

IJ I .. 

~---------------

---::>_--- ~1"'41 
I 

2.2 

Fig. 12. Optimal supported plates with central hole. V is the 
plate volume, V is th~ volume of uniform thickness plate with 
the same limit ioad, MO is the upper bound on yield moment, and 
Me is the yield moment of uniform thickness plate with the same 
Ilmit load. (--) Equal rings. (---) Optimized rings. 

Both sandwich and solid cylindrical shells with piecewise cons

tant thickness were studied by Kouam in his thesis {27}. fie 

successively considered limit analysis and minimum-weight limit 

design with both the "limited interaction" the hexagonal 

yield condition of f10dge and the sandwich Mises condition for 

cylinders without end load. Constant or linearily varying pres

sure was applied with various end conditions. For the simpler 

cases with a ~mall number of different thicknesses (2 or 3), 

analytical computer-aided solutions were ohtained following a 

procedure similar to that described in section 2 for circular 

plates. Linear and non linear mathematical programming were then 

used for larger numher of rings. Each rin&, was divided into 

suh-rings regarded as finite clements. The method was to descri

be in each element either the radial velocity or the generalized 

stresses in polynomials of degree three, with suitable boundary 
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conditions, and find the unknown coefficients by the mathemati

cal progra~ning procedure. 

Some conclusions are worth pointing out: 

a) !~r_!!~!!_~~~!~~!~, from a systematic variation of the number 
of rings, the number of elements per ring, the shell geome-

try and the boundary conditions, it was found that: 1) for 

a shell with uniform thickness, 4 elements are sufficient 

(the increase in accuracy is smaller than 1.16 , when using 

6 elements; ) 

2) for a 

simply supported shell made of 2 to 5 rings, 2 elements per 

ring are enough; 

3) for a 

built-in shell (at one or both ends) at least 3 elements per 

ring are necessary; 

b) 2r~~!!~~!_~~§!gn§ of vertical cylindrical tanks filled with 

liquid are classically made according to limitation of mem

brane stress, possibly empirically modified as indicated in 

the API 650 Code, or following the so-called Z ick and Mc 

Grath,procedure. Lxamples of such tanks made of 6 and 8 rings 

were analysed very easily and their safety with respect to 

plastic collapse were found to vary from 1.70 to 1.81, under 

the assumption of free upper edge and simply supported lower 

edge; 
c) !~r_~E!!~~!_~~~!g~, whereas a number of cases of sandwich 

shells were treated by various methods, only the symply sup

ported uniformly loaded solid shell made of 3 rings was sol

ved using the optimality criterion and writing an ad hoc 

program to ~olve the set of equations. Application to expe
rimental models of short steel shells gave satisfactory com
parison (less than 10 % difference). 

4. Indications on some othe~roblems 

Cylindrical shells subjected to radial pressure often exhibit 

ring stiffener~. The treatment of these ring stiffeners has 

been as a rule done by the smearing-out technique which, as for 

stiffened plates, will give bad results in the case of a small 

number of strong sti ffeners. In his thesis {28} and in subse

quent papers with co-workers {29-30J, Guerlement has given 



436 

computer-aided analytical solutions of the limit behavior of 

Cal simply supported cylindrical shells with one central stif
fening ring, with and without axial load, and Cb) infinitely 

long cylindrical shells with regularly spaced stiffening rings, 
with and without end-loads. The linearized Tresca yield condi

tion is used, and due account is taken of the curvature of the 
stiffeners that are treated in bi-axial state of stress. Stif

feners of rectangular and cross-section are studied, the latter 

giving birth, by extension of the flanges, to the case of the 

double-layer shell. 

At Liege University, Belgium, Nguyen Dang Hung and co-workers 
{32} {33} have developed the numerical approach to limit loads 

of axisymmetric shells using conical finite elements and non
linear programming. 

Information on limit analysis and design of containment vessels 
can be found in the review paper {34} by the senior author, in

cluding indications on theoretical designs for minimum volume 
of reinforcement of concrete cylindrical tanks. 

Finally, it is worth remarking that limit load evaluation can 

sometime prove useful even for plastic buckling {3S} and for 

estimation of residual safety of cracked structures {36}. 

S. Conclusions 

It is firmly believed that limit analysis and design are and 

remain adequate for a number of practical situations where they 

can be of much value in providing safer and more economical 

structures, provided the range of applicability of the solu

tions have been evaluated experimentaly and good computing 

tools are proposed to the designer, both directions in which 
efforts should be pursued. 
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Analysis of the Finite Deflection of Visco-plastic 
Plates Using the Finite System Method 
:P •• Baltov 

Institute of Mechanics and Biomechanics 
Bulgarian Academy of Sciences, Sofia, Bulgaria. 

Summcgy 

A method for the determination of finite deflections of flexib
le elasto-visco-plastic plates under dynamic impulsive loading 
is given. The energetic visco-plastic model is adopted for the 
description of the material behaviour. Velocities and stress 
resultants are determined by using the Finite System Method 
(FSM). The results of the calculations, concerning square and 
circular plates, are presented as an illustration. 

Statement of the Problem 

Flexible metal plates, under impulsive loading, are considered. 

The load intensity is taken to be such, that inelastic strain 

rates in a range 1-10 5 s-l develop in the plate. The deflect

ions are of the same order as the plate thickneSs and the elas

tic strain is not to be neglected. The impulsive load is taken 

as a transient regime, so that no shock waves occur in the plate. 

The aim of the present study is to propose a method for deter

mination of deflections (including residual deflection as well) 

when the plate undergoes dynamic inelastic deformation. One 

might come across such a problem in the cases of impulsively 

loading struct~res or during dynamic forming processes. The 

dynamic behaviour of inelastic plates have been studied in num

erous papers (see refs. [1], [2], [3] etc.) The specific aim of 

the present paper is: 

(a) to use the energetic visco-plastic model to describe the 

material behaviour of the plate [4]; 

(b) to use the Finite System Method [5] to solve the geometr

ically and phYSically nonlinear problems under consideration. 

(c) to consider the elastic part of the strain together with 

the visco-plastic one. 
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Model of the Flexible Plate 

Taking into account the range of the deflections, the Von Kar

man's theory of flexible plates is adopted [6]. A material desc

ription of the deformation process is assumed. The curvilinear 
k orthogonal material coordinate system OX , (K = 1,2,3) is intro-

duced. Xa, (a = 1,2) are the coordinates of the points in the 

middle plane of the plate (before deformation) and the axis ox 3 

is normal to that plane. The plate is loaded dynamically by p3 

(Xa,t). The following material variables are used: 

(1) Displacements of the middle plane points UK(Xa,t) and its 

velocities vk = OK. The dot denotes time differentiation; 

(2) Material strain tensor EKL(XM,t) and its values at points 

(Xa ): E~i3(XY,t), (a,i3,y = 1,2). The strain rate tensors: E~B' 
EKL ; 

(3) Measure of the change of middle surface curvature of the 

plate during deformation: Xai3 and its velocity X 13; 
KL M a 

(4) Second Piola-Kirhoff stress tensor Z (X ,t); 

(5) Stress resultants in the plate: 

Nai3 (XY ,t) = f Zai3dx3, MaS (XY ,t) 

-H 

where 2H = const is the plate thickness. 

Following Von Karman's approach we introduce: 

a) Geometr~cal equations in the form: 

where 

(1) 

(2) 

(3) 

The vertical line denotes covariant differentiation with respect 

to xa. 

Regarding dynamic processes, it is convenient to use the geom

etrical equations, expressed in terms of velocities: 

(4) 



b) Equations of motion: 

-·a 
pV 

where p is density, assigned to a middle plane unit area. 

Material Model 
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(4) 

(5) 

Since the plate deflections are finite, but the strains are sma

ll, mechano-mathematical models for infinitesimal deformations 

might be used. We adopt the energetic visco-plastic model of 

the body material behaviour [4 J. The model is based on the 

following assumptions: 

(a) Deformation consists of two parts: elastic and visco-plast-

ic, 1· e c = c (e)+ c (a) • 
• • ~KL ~KL ~KL' 

(b) The elastic strain tensor is related to the stress tensor 

by means of the Hooke's law; 

(c) Material is inelastically incompressible, i.e. E:i~)= 0; 

(d) Visco-plastic strain rate depends on the surpassing of an 

energetic measure over the corresponding energetic barrier. This 

barrier corresponds to the energetic state of the infinitesimal 

neighbourhood of a material point, when the strain rate intens

ity reaches the static value Bs. Bs is a limit rate, over ~vhich 

the material expresses a strain rate sensitivity. The main idea 

of the model formulation is based on the thermo-fluctuation 

micro-mechanism of the visco-plastic deformation, according to 

Boltzman's statistical law [7l. In the case of isotropic elas

tically deformed material the energetic measure reads: 

where 

z =~(L:)2+ 
f 2].1 0 

L: .3 (a) 
00' 

(6) 
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(7) 

~ is the elastic constant and oKL is the Kronecker symbol. The 

inelastic deformation condition is assumed to be of Mises type: 

where 

Z eq 

Z 
P 

, 
~p 

Z (3 (a) '3
0

), 
po' "30 

/2' 'LK ~ ..,. 
"3 KL°':> 

A dimensionless parameter is introduced: 

:y= 
(Z ) 2+2~Z • .3 (a) 
000 

where the energetic barrier Zfs is: 

Z = 1 (Z ) 2 LS 
fs 2~ s ' 

Z (? (a) B ). 
po' s 

- 1, 

Visco-plastic strain rate tensor is expressed as 

f' ' , Z 
~(a)= 

eq s 

KL 
J\exp{Da}SKLILo' Z ~ LS eq 

(8) 

(9 ) 

(10) 

(11) 

follows: 

(12) 

The material functions J\(~(a)) D(3(a) 3 ) and L (~(a) 3) are 
0' 0'0 po'o 

to be determined by performing uniaxial dynamic tensile tests 

[7 J. According to computational procedure of FSM, it is conv

enient to express the constitutive equations in an equivalent 

form, involving deformation measures: 

where 

• (a) [0, r < 3s ' 

EKL = J\ exp{DJJ (3 KL - E~) Ir, r ~.3s' 

.3 
KL 

(13) 

1 



r 

~ s 

(3(a»2_1':. 
o ' 

::I ~(a) 
o· 0 ' 

(14) 

The constitutive relations, written in terms of stress result

ants-strain in the middle plane are as follows: 

Ka(3YeS(E~eS 

Oa(3yeS ( 
XyeS 

_ Eo(a» 
yeS ' 

(a) 
- Xyo ), (15) 
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where Ka (3yeS and oa(3yeS are the tensors of elastic stiffnesses 

[8]. X~~) is the measure of the inelastic change of the middle 

surface curvature during deformation: 

H 

2~3 J 
-H 

We assume that the residual inelastic 
(a) determined by using the equation Xa (3 

Application of the FSM 

(16) 

deflection u(a)3 can be 
_ u(a)3 
- - 1 a(3 • 

The FSM, proposed by the author [5], has been successfully appl

ied to the analysis of the dynamic behaviour of structural elem

ents ([8], [9] etc.). The FSM is also suitable to solve the 

problems, formulated in the present paper. The main idea of 

the method consists of treating the body as a cybernetic system, 

that consists of finite number (after discretization) of inter

acting subsyst~ms. The FSM is applied according to the algor

ithm, presented in Fig. 1. The process is discretized in time 

with step I':.T. The middle plane is covered by mesh with steps 

I':.a l and l':.a 2 • The differential operators are substituted by 

other ones. The iteration procedure, presented in Fig. 1, is 

realized at each time step in each mesh point. The input para

meters at the first stage of the subsystem action are E~(3 and 

Xa (3' while the corresponding output parameters are Na (3 and Ma (3 

The inelastic deformation measures E~~) and X~~) describe the 

subsystem state. Equations (13) and (16) give the change of 
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Transition eqs. (15) 

o 
-E as , I stage NaS. ____ . 

Subsystem state 

r7-
xis 

pa 
(a) (a) 

rameters EaS and XaS 

S 

11\ ~ 

I 

III Stage 

Subsystem 

interactions 

'I' t 3 3 
-VI a'Vla 

:.P Is 

ubsystem state change 

eqs. (11) and (14) 

Transition eqs. (5) 

MO.S 
ISa NaS 

S 

t \~ 

II stage 

Subsystem 

interactions 

t ~ 
v3 ,/" 

Transition eqs. (4)2 and (4)3 J 

S 

Figure 1 

~. 



the subsystem state. The output-input transition is described 

by means of the constitutive equations (lS). The second stage 

is characterized by interaction between the neighbouring sub-

h . NaS d MaS Th systems. T e lnput parameters now are IS an ISa. e corr-

esponding output parameters are Va and v3 and the transition 

equations are given by expressions (S). 
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The load p3 stands for an external input parameter. Infinite

simally neighbouring subsystems interact again at the third 

stage. The input parameters are VIS' Via and ViaS. The output 
parameters are the input parameters of the first stage, e.g. 

E~S and XaS· Equations (4)2 and (4)3 are the transition equat

ions. Quantities Ula' appearing in these equations, are deter

mined by the integration in time of Via. The subsystem action 

is closed in a cycle, which allows to organize the iteration 

procedure. Displacements are determined through velocities and 

the residual deflection - through the inelastic curvature chang

es. The mesh steps and the time step obey some restrictions to 

provide the convergence of the iteration process [8 J. However, 

the FSM possesses some additional advantages - the possibility 

to change the material model easily because of the change only 

to uhe corresponding block in the computing programme. This 

allows for an unification, regarding a set of material models. 

Numerical Examples - Discussion. 

The method, proposed for the determination of velocities, stress 

resultants and deflections of flexible elasto-visco-plastic pl

ates, undergoing impulsive loading, is illustrated by solving 

some characteristic problems: 

A. Square plate, loaded by uniformly distributed load: 

. {l IT 3 2P[1-Cos(SLltt)J, t E[O,SLlTJ, 
p (t) = 

, P, t E [SLIT, TJ . 

Material is aluminium with material characteristics: E 

N/m2 ; v = 0,36; P = 2700 Ns2/m4; A = O,933S4 + 10,71 
~ (a) _ 440 24 (3 (a) ) 2. 3 = 0,014 + S 3 3 (a) - 0,46. 10 3 

o ' 0 's ' 0 

(17) 
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a 2 4 6 8 10 I? ] I./-

1 

Fig. 2: Maximum deflection at the centre of the plate. 
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The plate sizes are: H = 0,002 m; a = 0,8 m; Load is equal to 

p = 2.10 8 N/m2 . The discretization is performed with steps: ~T 
10-5s .; ~a = a/5. The time variation of the maximum deflection 

W = 2u3/a in the center of the plate is given in Fig. 2. The 

three characteristic cases are considered: (I) geometrically non

linear visco-plastic case; (II) geometrically linear visco-plast

ic case; (III) geometrically nonlinear elastic case. The anal

ysis of the solution shows that: (a) the FSM stands effective 

for the cases under consideration: (b) the elastic strains are 

comparable with the visco-plastic strains; (c) the geometrical 

non-linearity is to be taken into account. 

B. Circular plate, loaded by variable loading: 

3 P (T ,t) 

2 
T , T £ [O,R] (18) 

Material is aluminium with characteristics given in the previous 

case A. Load parameters are: P = 5.10 8N/m2 ; L 
o 0,04 ,; Vd = 

~T = O,lR; 0,006 m/~s; t = 10~s. Discretization steps are: 
-2 a 

~T = 5.10 ~s. The plate sizes are: R = 0,264 m; H = 0,01 m. 

The load distribution, as well as the total and residual defl-

ections at the moments: t = 5~T, t = 9~T, t = 11~T, are given 

in Fig. 3. ,The residual deflection determination permits the 

use of the solving method in the cases of dynamical forming of 

the plate elements. 
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On a Nonlocal Biaxial Strength Criterion for 
Concrete and its Application to Ultimate Load 
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A change of the nechanical state of a point of a body such as the tran
sition of the material from the elastic to the plastic state or the ini
tiation of a crack usually also depends on the nechanical states of points 
in the neighborhood of the considered point. This is referred to as a 
"nonlocal dependence". As a first approximation of this unprecise notion, 
the dependence of the change of the nechanical state of the point on the 
spatial gradients of local strains and stresses may be determined. The 
aim of this paper is to report on a nonlocal biaxial strength criterion for 
concrete and on its application to ultimate load analysis of reinforced 
concrete (RC) shells by the finite elenent nethod (FEM). It is based on the 
assumption that the biaxial strength of concrete increases with increasing 
gradient of the strain energy density in the considered point of the shell. 
In the numerical study it is shown that the influence of the nonlocal 
character of the proposed biaxial strength criterion on the global re
sponse of two different RC shells is rather small. 

Background of Problem 

It is well known that a change of the nechanical state of a point of a 

body usually does nOt only depend on the considered instant of time but 

also on prior states of this point. By "change of the nechanical state", 

e.g., the transition of the material fran the elastic to the plastic state 

or the initiation of a crack is neant. The term "prior states" refers to 

a temporal neighborhood, e. g., to a finite interval in time before the 

considered instant. 

Lacking a precise definition, the notion "temporal neighborhood" does not 

represent a useful basis for quantifying the dependence of the change of 

the nechanical state of a point on prior states of this point. However, 

as a first approximation of this quantity, the dependence of the change 

of the nechanical state of this point on the time gradients of nechani

cal quantities defining the state of the point at the considered instant 
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of t.irre may be detennined. '!he dependence of the yield limit on the rate 

of loading and deformation, representing an irrportant item of the theory of 

viscoplasticity, is an example for such a first approximation. 

It seems to be less well known that a change of the IIEChanical state of 

a point of a body usually also depends on the mechanical states of points 

in the neighborhood of the considered point. '!he phenonenon of the so

called "overelasticity" [1] ,[2J , [3] is an example for this nonlocal de

pendence. '!he notion "nonlocal dependence" rooans that this dependence is 

not restricted to the considered point. It is characterized by an in

crease of the yield limit for the case of a nommifonn stress distribution 

as compared to the yield limit for a unifonn stress distribution. 

Carrpus [ 1] reported on exper.irrental evidence of overelasticity. He tested 

steel beams of rectangular cross-section, subjected to pure bending. '!he 

exper.irrents showed that the stress gradient leads to an increase of the 

yield limit. Analogous to the role of the t:ime gradients of mechanical 

quantities in the theory of viscoplasticity, the spatial gradients of 

these quantities may be used to detennine a first approximation of the 

dependence of a change of the physical state of a point of a body on the 

spatial neighborhood of this point. 

Konig and Olszak [4] presented a theory of overelasticity, characterized 

by the following general fonn of the yield condition: 

(1 ) 

where a ij,k is the gradient of the stress tensor a ij and E ij,k is the 

gradient of the strain tensor E ij. KOnig and Olszak applied their theory 

to the proble!m of pure bending of a rectangular beam corresponding to the 

exper.irrents by Corrptu. Unfortunately, experimental investigations concern

ing overelasticity in the context of multiaxial states of stress do not 

exist. Nevertheless, the application of a multiaxial theory of overelas

ticity to a multiaxial stress problem WJUld have been important in its own 

right. 

Analogous to the yield limit of metals, the uniaxial tensile strength of 

concrete depends on the mechanical states of points in the neighborhood 

of the considered point. '!here is much experimental evidence of this non-



local dependence. 

Evaluatmg a large number of test results from the literature, Hellmann[51 

presented the followmg expression for the nodulus of rupture (bending 
(10) tensile strength) of concrete of beams of 10 ern depth, f btu : 

f (10) 
btu 

2 

(2) 

where f cu' is the cube strength of concrete and ~t = 0.98 is a propor

tionality factor. Hellmann also presented a similar fonnula for the direct 

tensile strength of concrete, f tu : 

2 

f = c (f ')'3 
tu t cu (3) 

where c t = 0.52 is a proportionality factor. Equations (2) and (3) repre

sent coarse approxlina.tions of the true situation. Fran these equations it 

follows that 

1.88. 

Thus, analogous to the mcrease of the yield limit of metals, the stress 

gradient yields an mcrease of the uniaxial tensile strength of =ncrete 

(Fig. 1 (a». This observation is corroborated by the fbtu/f~~) - h dia

gram (Fig. 1 (b» presented by Mayer [6J who has evaluated a large number 

of test results from the literature. 'Ihis diagram shows that the llDdulus 

of rupture, fbtu ' mcreases with decreasmg depth of the beam, h. Since 

it is justified to assume the validity of the Navier stress distribution 

at mcipient cracking of concrete, a decrease of h is associated with an 

mcrease of the stress gradient. 

Statement of Problem 

For ultlina.te load analysis of plates and shells made of remforced =n

crete (Re) , knowledge of the biaxial strength of concrete is necessary. 

Fig. 2(a) shows a frequently employed fracture envelope representmg the 

geometric locus of the biaxial fracture strength 0lu (et1) , 02u (et1) , 

where et 1 = 0/01 is kept constant as the unifonnly distributed principal 

stresses °1 , 02 are mcreased up to 0lu' 02u. This fracture envelope was 

(4) 
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obtained by Kupfer [7] using plates of 20 ern length and width and 5 ern 

thickness as test specimens. Because of the unifonn distributions of °1 
and °2 , the gradients of stress and strain are zero. Unfortunately, experi

mental investigations concerning the dependence of 0 1u and 0 2u on the 

gradients of stress and strain do not exist. 

I-·-I-E-----++ 
f(1O) > f 
btu tu I 

.. I .. 0---1/2 ---0 ..... 1 

i 
(a) Dependence of uniaxial ten

sile strength of concrete on 
the stress distribution [5] 

1·5 

J.O-~ 
0·5 

a 10 20 30 40 h[cm] 

(b) Dependence of bending tensile 
strength of concrete on depth 
of beam [6] 

Fig.1. Dependence of uniaxial tensile strength of concrete on the stress 
gradient 

COncerning Kupfer I s fracture envelope, for 1 ;'; ct2 = 1/ ct1 ;'; 00 (biaxial

tension domain) and - 00 ;'; ct2 ;'; ct2L (part of tension-compression domain) 

with ct2L = f(fcu/ftu)' where fcu is the prism strength of concrete, it is 

assumed that failure of concrete occurs by cracking of concrete normal to 

the direction of °1 . Cracked concrete retains its capacity to carry inter

nal forces in the direction parallel to the cracks so long as feu < °2 < 

< f tu . Because 'of tension stiffening, activated by bond-slip betwc~ the re

inforcement and the surrounding concrete, the latter also retains part of 

its strength normal to the cracks. For ct2L < ct2 ;'; 1 (part of tension-can

pression domain, biaxial compression domain), it is assumed that concrete 

fails by crushing, thereby losing all of its strength. The concept of a 

sudden change of the fracture mode of concrete for a certain ratio of prin

cipal stresses (ct2 = ct2L) represents a coarse simplification of the true 

physical situation. This concept facilitates the mathematical analysis. 
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(a) Fracture envelope based on 
uniform distribution of 6'1 
and 02 [7] 
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ilil Strain energy density Uo in 
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face.o.of a shell 

Fig.2. On the dependence of the biaxial strength of concrete on the 
gradient of the strain energy density 

The aim of the present paper is to report on a nonlocal biaxial strengt..1-J. 

criterion for concrete and on its application to ultimate load analysis 

of RC shells by the finite element rrethod (FEM). It is based on the 

assumption that the biaxial strength of concrete increases with increasing 

gradient of the strain energy density Uo in the considered point of the 

shell. This assumption is consistent with the experimentally observed fact 

that the "lIDiaxial tensile strength of concrete increases with increasing 

gradient of stress. 

For the limiting case of IJUO = 0, the biaxial strength of concrete is 
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taken from Kupfer I s failure envelope. Ibint A in Fig. 2 (b) refers to this 

limiting case, providing dUO/d~ = O. However, e.g., at point B in Fig. 2(b) 

IJUO F 0, leading"to an increase of (J iu' i=1,2. Thus, the proposed strength 

criterion for concrete can be formulated mathematically as 

a i :;; G~u = k(J. 
lU 

(5) 
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where k ~ 1 is a function of I17Uol. Conceptually, equation (5) represents 

a nonlocal strength criterion. Ccrrputationally, however, it is a local 

criterion. 

For -0.1 ;;; <l2 :;; 1 the magnifying factor k is set equal to 1, irrespective 

of the value for 117001. Reasons for disregarding a possible increase of ° iu 

in this case are 

(a) the fact that the process of the structural degradation of thin RC 

shells is usually controlled by cracking rather than crushing of 

concrete, 

(b) the lack of exper:inentally co=borated knowledge about the dependence 

of failure of concrete by crushing on the stress gradient for uniaxial 

states of stress, not to speak of the dependence of 0iu on II7Uol for 

rnul tiaxial states of stress, and 

(c) the avoidance of mathematical difficulties resulting fran the consider

ation of the influence of plastic deformations of concrete on k. 

By contrast with the situation for -0.1 :;; <l2 ;;; 1, plastic deformations of 

concrete outside this interval are rather insignificant. '!his justifies 

replacing Uo by the elastic strain energy density 00 for the purpose of 

carputing k. 

Determination of this factor is the nucleus of the theoretical part of the 

present paper. '!he nonlocal biaxial strength criterion, given by equation 

(5), is applied within the framework of ultimate load analyses of a built 

RC natural draught cooling tower shell subjected to dead load and quasi

static wind load and of a RC hypar groined vault subjected to dead load 

and snow load. 

The main purpose of the numerical investigation is to study the influence 

of the nonlocal character of the proposed strength criterion on the global 

response of tlie two shells. Another reason for analyzing the hypar groined 

vault, representing a relatively brittle shell, is to investigate whether 

the conventional restriction to a fixed failure envelope (Fig. 2 (a)) yields 

an objective result for the collapse load and, if this should not be the 

case, whether the proposed nonlocal strength cri rerion for concrete leads 



to the objectification of the result for the collapse load. By objectivity, 

convergence of a sequence of corresponding nurrerical results to the exact 

solution in the limit of consistently refined FE discretizations is meant. 

For a rather ductile shell such as the mentioned natural draught cooling 

tower the objectivity of the nunerical results is not an issue. 

Criticism of a fixed failure envelope was raised first by Bazant and Cedo

lin [8J ,[gJ, [lOJ in the context of FE analysis of blunt crack propagation. 

Restricting attention to linear elasticity, for a sharp crack, representing 

the limiting case of a blunt crack band, the stresses at the crack tip tend 

to infinity. '!'hus, for this limiting case the conventional fracture cri

terion 

(6) 

characterized by fixed quantities Diu (el1), is always satisfied, indicating 

the lack of objectivity of this criterion. 

Recently, Bazant [11J investigated the size effect in fracture criteria 

for concrete. He introduced a so-called n size reduced-strength n represen

ting a characteristic of the entire structure rather than of the material. 

Although it is doubtful whether, in general, such a global characteristic 

exists, Bazant' s criticism of fixed quantities 0-. (el1) is justified. 
lU 

Detennination of Magnifying Factor k for Diu 

Supposing that the depth h of a fictitious concrete beam with rectangular 

cross-section (Fig. 3) was known which satisfies the condition 

fbtu(h) 

f tu 

where the right hand side refers to the considered point of the investi

gated shell. '!'hen, by =!bining equations (5) and (7), k could be deter

mined as 

In equations (7) and (8), fbtu (h) is the IlDdulus of rupture of the beam 

(7) 

(8) 
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shown in Fig. 3 (a). By contrast with f btu ' the direct tensile strength of 

concrete , ftu I may be considered as a material property. '!hus I its depen

dence on the depth of a beam subjected to axial tension (Fig. 3 (c» may be 

neglected. '!he expression on the right hand side of equation (7) requires 

that 

(9) 

which is consistent with Kupfer I s tests carried out for proportional load

ing. In Ref. [12], equation (7) did not serve as the starting point for 

detennination of k. Instead of it, this equation was derived from a con

dition involving strain energy densities released when concrete fails by 

cracking. 

P /2 t---=---! 

z· - ------~ r ill f-------- I ~ 
ll2 b· l/2 

(a) Pure bending for 
1/3 > x > 21/3 

~ ~I·----------------~·I 
i 

~) Cross- (c) Axial tension 
section 

Fig.3. Fictitious concrete beam [12J 

Multiplying the numerator and the denaninator of equation (8) by f~~~) 
and naking use of equation (4) yields 

f btu 
k = 1.88 (10) 

f btu 
(10) 

'!hus, the k - h diagram (Fig.4) is obtained by multiplying the ordinates 

of the fbtu/f~~) - h diagram shown in Fig. 1 (b) by 1.88. '!he dashed parts 
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of the k - h diagram represent extrapolations of t.he part of the curve which 

is based on experimental results. As will be shawn in the following, the 

lines h = 0 and k = 1 must be asymptotes of the k - h diagram. 

k 

3·0 

2·0 

1·0 

I 
\ 
\ 
\ 

~----
o 10 20 30 40 50 60 h [em] 

Fig .4. Dependence of the magnifying factor k for a iu on the depth h of a 
fictitious concrete beam 

'!he depth h of the fictitious concrete beam is determined from a hypothesis 

of comparison, given as [12]: 

(11 ) 

where the left hand side refers to the =sidered point of the investigated 

shell, 

(12) 

is the strain energy density in a point of the middle third of the tensile 

fiber of the fictitious concrete beam of Fig.3(a) and 

(13) 

is the gradient of ucib ) in this point. Since Hooke's law holds for the 
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uncracked beam, it appears logical to use 00 and !vOol for the conparison 

expressed by equation (11). 

Substituting the expressions for u(b) and dU(b) /dz into equation (11) o 0 
yields 

h = (14) 

Details of canputation of 00 and I VOol are given in Ref. [12]. 

For the limiting case 00 + "', I rool tends IIDre strongly to '" than 00. Thus, 

according to equaticn (14), h + O. Since k + 00 for this limiting case 

which is related to linear fracture rrechanics, the line h = 0 IlRlst be an 

asyrrptote of the k - h diagram. Needless to say, this information is in

sufficient for a reliable extrapolation of the part of the curve in 

Fig.4 which is based on experimental results. How:!ver, by contrast with FE 

analysis of blunt crack propagation, this extrapolation is rather insig

nificant for ult:i1!late load analysis of RC plates and shells by the FEM be

cause, in general, the values taken on by h are outside the range of the 

rrentioned extrapolation. According to equation (14)/ for the limiting case 

I roo I + 0, h + "'. Since k = 1 forlVOol = 0, the line k = 1 must be the second 

asyrrptote of the k - h diagram. When h takes on a value outside the range 

of the depth of a beam of length and width of typical test beams, this 

value should be regarded rrerely as an abstract analysis quantity related to 

00 and I roo I in the considered point of the investigated shell. 

Ult:i1!late Load Analysis of RC Plates and Shells by the FEM 

The proposed no.nlocal biaxial strength criterion was incorporated into a 

canputer program for ult:i1!late load analysis of RC plates and shells by the 

FEM. M:!chanical fundamentals and analysis algoritluns of this program are 

described in detail by Floegl [ 131. 

Georretric nonl:ipearity is considered within the framework of Koiter I s theory 

of small displacements and IIDderately large rotations [14] which has proved 

to be adequate for ultimate load analysis of RC shells. '!he constitutive 

IIDdel for the intact concrete is a so-called "equivalent uniaxial IIDdel" 

proposed by Liu, Nilson and Slate [15]. It is based on the previously 

rrentioned biaxial tests conducted by Kupfer [7]. 



CUrved, triangular, C 1-conforming, thin-shell elements [16] aT"; used for 

discretization. 'Ihey are subdivided into sufficiently many thin layers of 

concrete such that, approximately, a plane state of stress may be assumed 

to exist in each layer. 'Ihe reinforcerrent is "smeared" to thin layers. 

'Ihe states of strain and stress are determined at seven integration points 

each in the individual concrete and steel layers. 
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If the strength criterion signals cracking of concrete at a certain inte

gration point, it is assumed that a band of equidistant parallel cracks 

normal to 01 (01 > °2 ), distributed over the tributary domain of this point, 

will open. 'Ihis is the basis for the stress-controlled "sITEared" technique 

for modelling the cracked concrete. 

Numerical Investigation 

'Ihe numerical investigation consists of ultimate load analysis of a built 

RC natural draught cooling tower shell subjected to dead load and quasi

static wind load and of a hypar groined vault subjected to dead load and 

snow load. 

Fig. 5 shows characteristic dimensions, the thickness profile and the FE 

ITEsh of a hyperbolic cooling tower of approximately 93 m height, erected 

in Voitsberg, Styria, Austria, designated as cooling tower Voitsberg III. 

In Fig. 5, r (z) is the radius of the middle surface of the shell at z = B. 

'Ihe coefficients A,B, ... F for determination of the generatrix of the shell, 

Az2 + 2Brz + Cr2 + 2Dz + 2Er + F 0, (15 ) 

are listed in Ref. [12]. According to M=hl [18], the simplifying assumption 

of a rigid, hinged base is justified. Material paraItEters are compiled in 

Ref.[12]. Because of symmetry of the quasi-static wind load with respect 

to the luff and the lee meridian, only one half of the shell needs to be 

analyzed. 'Ihe distribution of the wind-load function Ps was chosen as 

proposed by Kratzig, Peters and Zerna [19]. 

ultimate load analysis of the Voitsberg III cooling tower, reported in 

more detail in Ref. [12 J, is based on the load combination g + XPS where 
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g is the dead load and X is a magnifying factor for PS. Fig. 6 shows diagrams 

of displacement components, at two different points of the shell, versus X. 

The solid (dashed) curves were obtained by rreans of the new (conventional) 

strength criterion. The wind load associated with point A (B) is terrred 

"crack load". It represents a lower bound to the ultimate load. The latter 

is characterized by the failure of the equilibrium iteration to converge 

while the displacements increase rapidly. Fig. 6 shows that the influence 

of the nonlocal character of the proposed strength criterion on the global 

response of the shell is rather small in spite of relatively large values 

of ~ (e.g., ~(X = 2.35) =1.84, ~¥J{(X = 2.81) = 2.14). The values 

are located on the part of the k - h diagram (Fig. 4) which is based on 

experimental results. 

1.86 kN/m2 
22.60 

21.t.O 

n 

r 

(a) Characteristic 
dimensions 

0.
1510.16 0..15 0.16 

0..25 

0.16 

n.z 
20.01 

18.76 
18.41 

15.70 

(b) Thickness 
profile 

(c) Finite Element 
Mesh 

Fig.5. Cooling tower Voitsberg III, Styria, Austria [17J. 

Fig. 7 shows plots of "smeared cracks" in three different concrete layers, 

at X 2. 35, for the proposed nonlocal strength criterion (k ;;; 1) as well 

as for the conventional strength criterion (k = 1). The direction of the 

dashes indicates the direction of the cracks. Expectedly, the nonl=al 

strength criterion leads to a reduction of the amount of cracking. The con

clusion that the biaxial tensile strength of concrete does not have much 



influence on the global response of a rather ductile shell such as the 

Voitsberg III cooling tower corresponds with an analogous conclusion for 

RC beams, drawn by Dodds, Darwin and Leibengood [20J on the basis of ulti

mate load analysis of the beams by the FEM. 
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Fi~ 8(a) shows a hypar groined vault previously analyzed by Schaper [21J. 

The side lengths 29" of the square in plan view are 30.48 m. The height ~ 

of the shell at the mid-points of the four edges is 11.43 m above the plane 

spanned by the supports. The height hc of the mid-point of the groined 

vault is 9.60 m ab:::>ve this plane. The shell has a uniform thickness t of 

0.1016 m. 

For dead load and snow load it is sufficient to consider only one octant 

of the hypar groined vault. Fig. 8 (b) shows the mapping of the FE grids 

(coarse grid: FE grid 1, medium grid: FE grid 2, fine grid: FE grid 3i of 

the considered shell octant on the x - y plane. Tne medium and the fine 

grid are successive consistent refinements of the groin region where large 

stress gradients are expected. Fig. 9 shows the discretizations of the 

whole hypar grained vault (FE grid 2). 
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Fig.7. "Srreared cracks" :in t"rree different concrete layers, at X = 2,35 [12] 

The middle surface of the hypar accord:ing to Fig. 8 (b) is given, :in explicit 

forn, on 

z ( 16) 



ta l Hypar grained vault 

Fig.B. Hypar grained vault [21] , [22J 

- -, 

~l Mapping of FE grids on 
x-y plane 

Fig.9. Discretization of hypar groined vault (FE grid 2) [22J 
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where a = Q,2/1~ = 20.23m and b= 9, 2/(hE - he) = 126.92 m. The pi:eviously 

mentioned compu~r program is restricted to orthogonal parameter lines [13]. 

?arameter lines a = x = const., B = Y = canst., representing a logical 

choice for a parametric description of the middle suface of the hypar, 

ho~ver, are nonorthogonal one to a'lother. Enploying the =ncept of discrete 

orthogonalization of parameter lines at the integration points of the f~,ite 
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elements [23], the available computer program can be used without any modi

fications. Details concerning the selected pararreter form for description 

of the middle suface of the hypar as well as the material data are given 

in Ref. [22]. 

Ultimate load analysis of the hyperbolic groined vault, reported in rrore 

detail in Ref. [221, is based on the load canbination ~ + X 5 where 

g = 2.929 kN/rn" is the dead load per unit area of the middle surface of 

the shell, s = '1.464 kN/m2 is the reference snow load per unit area of the 

horizontal projection of the middle surface of the shell and X is a magni

fying factor for S. The value of X for which collapse of the shell is 

signalled by the analysis is denoted as Xcr ' 

Fig. 10(a) shows diagrams of the vertical displacement of the crown of the 

shell (point M), wM' versus X , based on the new and the conventional 

strength criterion, respectively, for FE grid 3. This figure illustrates 

the brittleness of the shell. In conparison with the hypar groined vault, 

the Voitsberg III cooling tower is a relatively ductile shell (see Fig. 6). 

X Xcr 

I 
25 15 

20 

10 -----0 
15 

------ k = 
10 

----- k = 1 5 

--k~l 5 ----.....- k ~ 1 

0 0 
0 2 3 W M [em] 4 16 

(a) WM versus X [22] (b) 'Ker versus n [22] 

Fig. 10. Load-displacement diagram and convergence study for the ultimate 
load 

n 

Fig. 10(b) shows the dependence of Xcr on the FE grids for the new as well 

as for the conventional strength criterion. n = 4 and 16, respectively, 



is the nunrer of finite elenents into which a typical elerrent of FE grid 1 

(n = 1), coinciding at one of its edges with the groin, must be subdivided 

in order to obtain a typical element of FE grid 2 and 3, respectively, 

coinciding at one of its edges with the groin [22]. The reason for this 

"local relation" of n is the restriction of the mesh refinement to the 

vicinity of the groin arches. 
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Fig. 10 (b) indicates that convergence of X cr is relatively slow. '!he figure 

also shows that the difference of corresponding results for X cr obtained 

for k;;; 1 and k = 1, respectively, increases with increasing n. These are 

consequences of the brittleness of the hypar groined vault and of the 

large stress gradients in the groin region. Because of this situation the 

hypar groined vault represents a tough test for the applicability of 

strength criteria for concrete. How::!ver, the concern for the objectivity 

of such criteria, although justified in principle [8],[9],[10], appears to 

be exaggerated. 

By contrast with the results for the cooling to'Wer, for the hypar groined 

vault, X cr (k = 1) ;;; X cr (k ;;; 1). In the context of this result it is 

errphasized that the collapse of a structure is a global phenomenon. There

fore, fran a ~ ;;; a. it cannot be concluded that necessarily X (k;" 1) ;" 
~u ~u cr - -

;;;Xcr(k = 1). 

Fig. 11 shows plots of "smeared cracks" in tv;o different concrete layers, 

at X = 14.0, for k ;;; 1. The plots refer to FE grid 3. The nunrer of "cracked 

integration points" is 1532. Altogether there are 12705 integration points. 

For k = 1, the total nunrer of "cracked integration points" is 2503. The 

cracks are restricted to the vicinity of the groin arches. Needless to say, 

for such a concentration of cracks a "smeared teclmique" for !lDdelling 

the cracked concrete is less well suited than for crack distributions over 

relatively large subdomains of structures as is the case for the Voits

berg III cooling to'Wer (Fig. 7). 
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, groin 

~ 
~ ~ 
~ 

(a) Outermost layer (b) Innermost layer 

Fig. 11. "Smeared cracks" in tw:l different concrete layers, at X = 14. a 
for k ;;; 1 (FE grid 3) [22J 

COnclusions 

ultirPate load analyses of a natural draught hyperbolic cooling tower, re

presenting a relatively ductile shell, and of a hypar groined vault, serv

ing as an example for a brittle shell, have shown that the influence of 

the nonlocal character of the proposed strength criterion on the global 

response of the two shells is relatively small. For the conventional as 

,well as for the new strength criterion convergence of results for the ulti-

nate load of the hypar groined vault is relatively slow. MJreover, the 

difference of co=esponding results for the ultimate load obtained by the 

tw:l criteria was found to increase as the coarse FE grid is refined. These 

shortcomings fo~low from the brittleness of the shell and from the large 

stress gradients in the groin region. They show that ultimate load analysis 

of the hypar groined vault is a tough test for the applicability of strength 

criteria for concrete. Nevertheless, it appears that the concern for the 

objectivity of such criteria is exaggerated. 
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Global Methods for Reinforced Concrete Slabs 
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Summary 

This paper develops the global method strategy to compute elastoplastic 
thin shells or beams. 
It is shown how this methodology can be applied to the case of reinforced 
concrete structures. 
Two cases of applications are presented: one static, the other dynamic. 
The numerical results are compared to experimental data. 

1. THE GLOBAL METHOD 

1.1 - Principle of 'global models' 

From a purely intui ti ve standpoint, it seems natural to def ine stresses 

and 'strains' in the usual manner. However, it is also important to 

consider a formal viewpoint [lJ. The basis of this formalism is the notion 

of generalized stress and generalized 'strain' introduced by Prager [2J 

which is necessary for the proper introduction of minimum principle. [3J. 

Briefly, generalized stresses and generalized strains should make it 

possible to write the expression of the virtual work of internal forces 

(strain energy virtual variation). In more formal terms, it is necessary 

to wri te that the space E of 'generalized strains' and the space S of 

'generalized strains' may be placed in duality by a bilinear (e.s> form 

with real value, which can be called virtual work. The plasticity 

equations can be expressed directly with generalized stresses and 

strains: 'yield surface, plastic flow laws and hardening properties' • If 

work hardening is assumed to be null, we fall back on the method of limit 

analysis. It is nevertherless important to note that it is theoretically 

possible to account for work hardening [lJ with the notions of generalized 

stresses and strains. 
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1.2 - General formulation 

A set of pOints in the structure (the normal of a shell, the cross section 

of a bar, or of pipe) is defined by a set of (xi) coordinates. This set is 

a generalized pOint. At this point are defined a 'generalized stress' 

vector with (si) components and the dual 'generalized strain' with (ei) 

components. 

A variation of eei in strain ei correspond to a virtual work 

oW = si eei 

The 'yield surface' is defined by an equation containing the generalized 

stresses si and the variables of state ].lk representing the history of 

generalized pOint 

F(si, ].lk) = 0 

Plastic or visco-plastic flow is obtained by assuming a law of normality 

dll 

The computation is then continued by conventional incremental methods. 

1.3 - Potential capabilities of 'global models' 

Global models have to be governed by qualification procedures. Apart from 

the saving in computation cost, they offer the advantage of directly 

accounting for certain heterogeneities in the structure. For example, the 

tensile (and bending) strength curves may be taken directly from plate 

samples. Hence they make it possible to take account directly of the 

mechanical properties of the components used. 

Moreover, the potential possibilities of global models are far broader in 

scope than may be imagined. The use of improved descriptions of work 

hardening increases the scope considerably. In particular, multilayer 

mOdels make it possible to increase their effectiveness during cycle 

changes. They can be used to represent composite shells for instance 

reinforced concpete. These models have been used in the CA$TEM Finite 

Element System [lj], [5J, [6J, for shells and piping. Consequently, we 

shall now examine the formulations in these two cases. 

1.lj - Applications to shells 

Here the 'generalized point' is a normal to the mean surface. 

The components of the generalized stresses [7J, [8J are (see figure 2) 

membrane stresses Nl N2 N3 (or Nll N22 Nl2 ), 

bending moments Ml M2 M3 (or Mll M22 Ml2 ), 



corresponding to the following components of 'generalized strains' 

membrane strains e l e 2 e 3 (or ell e 22 e 12 ) 

curvature variations Xl X2 X3 (or XII X22 XI2). 

In routine practice, the yield surface employed is a generalization of the 

Von Mises criterion (with, if necessary, several sub-materials). It is 

expressed as a funct ion of the second order invar iants of the dev ia tors 

of the generalized stresses. 

There are three invariants of this type 

thanks to which the yield surface 1s expressed as 

F(M, N, cos 1jJ, Ill' ••• ) = a 
The hypothesis of normality of plastic flow may be written 

~ aF NI - 0,5 N2 aF MI - 0,5 M2 +---
dA aN N acos 1jJ M 

~ aF N2 - 0,5 N2 aF M2 - 0,5 MI + -
dA aN N N acos 1jJ M 

~ aF l!:h aF ~ + -
dA aN N N acos 1jJ M 

E.ll aF MI - 0,5 M. aF NI - 0,5 N2 + 
dA elM M M acos 1jJ N 

~ aF M2 - 0,5 MI aF N2 - 0,5 N, 
+ 

da aM M M acos 1jJ N 

~ (IF ~ aF l!:h + 
dA aM M acos 1jJ N 

In practice, one can often ignore the effect of cos 1jJ, making it possible 

to replace the derivative of F by two isotopic work hardening parameters : 

* 2' ~ (de l )2 + 1 2 de (de 2) 2 + del de 2 + de 3 

i3 4 
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* dX (dXl)2 + (dX2)2 + dXl dX2 + 1 
4 

which leads to the classic expressions 

de! de 2 de 3 de* 

Nl - .1. N2 
2 

Nl 
1 - "2 N2 3N 3 N 

dXl dX. E.:ll ~ 
Ml .1. M M2 - 1 

Ml 3M3 M 2 2 2 

and then to the usual computations. 

Models of this type are employed in the BILBO, INCA and PLEXUS modules 

[9J, [10J, [llJ which deal with shells of any shape, or simply axisymetric 

shells. 

1.4 - Application to beam and piping system analysis 

Here the generalized point is the cross-section, and its coordinates are 

simply those of the neutral fiber of the beam or pipe. Consequently, it is 

possible to use a beam type method [12], [13], [14J in plasticity and 

viscoplasticity. 

The generalized stresses are the overall tension, bending, torsion and 

pressure in case of pipes, and it is more practicable to select as the 

components for a tube : 

N a =--
n lfOt 

PO 
ap = 2t 

Mb 

lf0 2 ! 
4 

Mt 

lf0 2 ! 
4 

which corresponds to the following generalized strain components 

1I1 

1 

such that the>strain energy per unit volume is given by 

Ow = an OEn + ap OEp + ab OE b + at OE t 

where the notations employed are : 

D mean diameter, 1/1 axial elongation, 

t thickness, X curvature variation, 

N tensile force, ~ twist variation. 

p internal pressure, 

Mb bending moment, 

Mt torsion moment, 



As a rule, tension, bending and torsion are the most important. The useful 

components are thus reduced to three au, 0b and at (with Eb and Et). 

1.6 - Construction of the 'global' stress-strain curve SAMSON preprocessor 

The main problem occuring in this approach is to derive the stress-strain 

curve in global variables. Non linear homogeneisation has to be carried 

out. The idea to achieve this, is simple. We present it on beams. 
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We discretise a current section of the beam so that all the characteristics 

of the beam can be taken into account (geometry, different materials e-g. 

steels, concrete ••• ). Applying St Venant's principle for each normal 

effort N we can derive a moment curvature curve (see figure 3). We then 

have a set of stress strain curves associated with each normal effort N 

(Figure 4). This set of curves is used to compute the equivalent beam. The 

same procedure can be generalized to shells in the same way. 

2. APPLICATIONS 

The method is used to compute the static and dynamic limit load of a 

reinforced concrete slab. The slab is a square plate and the reinforcement 

is defined on Figure 5. The structure is horizontal and is loaded at its 

center by a vertical load. 

2.1 - Determination of global stress-strain curve 

The SAMSON preprocessor has been used to precompute the 'global' 

stress-strain curve taking into account the concrete and the steels. 

Figure 6 gives the stress-strain curve for the concrete. (The limit loads 

in traction is 4.~ MPa and in compression, 28.4 MPa). 

Figure 7 give a typical stress-strain curve for the steels. The Young's 

modulus and conventional yield stress are 00.2 % for the two types of 

steels : 

Ii) 6 

Ii) 4 

E 

170 000 MPa 

200 000 MPa 

°0.2 

370 MPa 

600 MPa 

A typical global stres's-strain curve for zero, normal stress is given on 

Figure 8. 

The curve is then simplified to be able to go through a standard F E 

computation. 
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The equivalent Young's modulus is kept. 

The yield stress is chosen as the minimum stress after the teak of stress 

and a new shape is constructed corresponding to the following drawing : 

a Samson stress strain curve 

simplified stress-strain curve 

E 

2.2 - Static analysis with BILBO 

The computation is done with BILBO code in large displacements and 

elastoplastic regime. The mesh is given on Figure 9 the load deflection 

curve is compared wi th experimental results on Figure 10 and the crack 

pattern is obtained in Figure 11. The ruin mode and global rigidity is 

very well represented by this approach. 

2.3. - Dynamic analysis with PLEXUS code 

The same analysis with the same mesh has been performed with the same 

characteristics but with an impulsive load. 

The explicit dynamic code PLEXUS is used for the analysis unilateral 

contact are put on nodes 8 and 16. An additional mass of 269.2 Kg is added 

to the two central elements. The init ial speed of the central part was 

6.1 m/sec. Figure 12 gives the deformed shape at the time when the maximum 

displacement occurs. The maximum computed displacement is 22 mm, which 

compares well with the experimental value of 20 mm. 

3. CONCLUSION 

The global model is a good model to obtain the limit loads of reinforced 

concrete strupture either in dynamic or in static. It allows to make 

reasonable' computations which would be hardly possible if one would 

compute these with a mesh representing all the steels and concrete in 

three dimensions. 
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Fig. 9 - MESH FOR THE ANALYSIS 



484 

24 

18 

12 

6 

4 8 12 16 20 24 28 

Fig. 10 - COMPARISON EXPERIMENTAL COMPUTED 
RESULTS STATIC ANALYSIS 

Fig. 11 - ISO VON MISES CURVE 
A T MAXIMUM LOAD 



485 

t = 2ms 

t = 4ms 

t = 9.'1ms 
fig. n _ OEfORMEO SHAPE 



486 

References 

1. Nayroles, B. 'Structure algebrique des theories classiques' in 
'Plasticite et vil3coplasticite' edited by R. Radenkovic and 
J. Salencon, Ediscience, Mc-Graw-Hill, Paris 1974. 

2. Prager, W. : 'The general thoery of limit design'. Proc. 8th. Int. 
Congr. Appl. Mach., (Istanbul 1952), 1956. 

3. Hodge, P .G. Jr. 'Numerical applications of mInImum principles in 
plasticity in 'Engineering Plasticity' edited by J. Heymann and 
F.A. Leckie, The University Press, Cambridge, 1968. 

4. Jeanpierre, F. et al : 'CEASEMT System of Finite Element Computer 
Programs' Use for inelastic analysis in liquid metal cooled reactor 
components IAEA-IWGFR Specialist's Meeting on High Temperature 
Design Technology, Champin, Pennsylvania, April 1976. 

5. Jeanpierre, F. et al : 'Systeme CEASEMT. Ensemble de programmes de 
calcul de structure ~ usage industriel' Note CEA-N-1938, Sac lay 1976. 

6. Hoffmann, A. et al ' Apergus theoriques sur les 
Elements. Dynamiques. Non-linearites geometriques. 

programmes. 
Flambage. 

Plasticite' Note CEA-N-1934, Saclay 1976. 

7. Hoffmann, A. et al : 'Analyse des coques de forme quelconque dans Ie 
domaine plastique par la methode des elements finis. Modeles, 
comparaison avec l'experience' SMIRT 3, Berlin 1973. 

8. Vrillon, B. et al : 'Comparison between experimental and computer 
analysis of the behaviour under pressure of a 90 0 bend with an 
elliptical section' Pressure Vessel Technology, Part III, Discussions, 
2nd Int. Conf. on Press. Vessel Techn., San Antonio, October 1973. 

9. User's manual of the code BILBO 

10. User's manual of the code INCA 

11 • User's manl,lal of the code PLEXUS 

12. Roche, R.L. ' Modele simple pour Ie calcul plastique d'une 
tuyauterie' - Note CEA-N-1872, Saclay, September 1975 

13. Roche, R.L. and Hoffmann, A. : 'Inelatic Piping Flexibility AnalySis. 
A beam t'ype method' paper 
Temperature Design Technology 
April 1976 (IWGFR-IAEA, Vienna) 

II-3, Specialists'Meeting on High 
of LMFBRs, Champion, Pennsylvannia, 

14. Roche, R.L., Hoffm~nn, A. and Vrillon, B. : 'Inelastic Piping Systems, 
a simplified numerical method'. 3rd Int. Conf. on Pressure Vessel 
Technology, Tokyo, April 1977 (ASME edit.) 



On Theories of Elasto-Plastic Shells in Mixed 
Tensor Formulation 
w. WUNDERLICH and H. SPRINGER 

Institut fUr Konstruktiven Ingenieurbau 
Ruhr-University Bochum, F.R. Germany 

In extension of a formulation of a theory for thin elastic 
shells using mixed-variant tensorial components an incremental 
theory for elasto-plastic shells is derived. In the basic vari
ational principle the flow rule is included, and the correspon
ding plastic parameter leads to additional plastic resultants. 
With the mixed components e. g. the elastic part of the consti
tutive equations can be shifted to the reference surface in 
closed form. For the plastic part some coefficients are evalu
ated numerically. In addition to the global variational form 
the corresponding local equations (equilibrium, strain-dis
placement-relation, flow-rule) of a two-dimensional elasto
plastic shell theory are given. 

I. Introduction 
---------------

Theories for thin elastic shells have been given by many au

thors [1, 2, 3J. Although consistent formulations have to sa

tisfy certain invariance requirements, different consistent 

shell theories seem to be possible due to slightly different 

definitions of resultants and curvature measures in the reduc

tion from the continuum to the shell surface. Most of the ten

sorial formulated shell theories use contravariant stress and 

covariant strain components. It was shown in [4] that the defi

nition of variables through mixed-variant tensor components has 

advantages in the formulation for linear elastic shells. This 

holds especially for the reduction of the constitutive equa

tions to the shell surface. The description of generalized 

Hooke's law with mixed components does not contain metric coef

f icients exp] icitly which would lead to series expansions and 

lengthy expressions in the transformation to the surface. 

Inelastic Behaviour of Plates and Shells 
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Editors: L Bevilacqua, R. Feij60 and R. Valid 
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In this paper the formulation for linear shells is extende~ in

to the elasto-plastic range assuming small displac 0 ments ann 

small strains and a flow theory of plasticity. Thus, the des

cription has to be given in incremental form. It is now also 

advantageous in elasto-plastic material laws to employ mixed

variant tensor components, e. g. invariants arE' most naturally 

formed in this way. Al so, in the recluction from the continuum 

to the shell surface no metric coefficients ar~ explicitely 

involved, and it seems to be a straightforward path to derive 

elasto-plastic shell theories using mixed-type components. 

Another problem in the derivation of two-dimensional theories 

of elasto-plasticity is to express flow rule and yield condi

tions also in quantities referred to the shell surface (e. g. 

in forces and moments). This holds especially for stress quan

tities as plastic zones influence the distribution of the 

stresses across the thickness essentiallv. It is for this rea

son that inelastic shell theories which use constant and linear 

stress resultants are applicable in certain cases only; e. g. 

for proportional loading [5, 6, 7]. Theories with higher-order 

moments were proposed [10] but seldom used in numerical calcu

lations. Instearl, in many finite-element-solutions the thick

ness is subdiv·iclecl into a number (say 5 to 9) of layers or 

integration points to trace the yield limits and the changes 

due to loading and unloading. This approach is used widely, e. 

g. for the determination of ultimate loads or plastic buckling 

loaes of shells of revolution in [9]. Nevertheless, the use of 

appropriate global shell quantities could lead to a more effi

cient solution. 

For the derivation of such a shell theory we introduce an addi

tional unknown quantity that represents the distrihution of the 

plastic strain over the thickness which may be expresse~ by the 

normality rule of plasticity by a scalar parameter. In ad~i

tion, we empioy the distribution of the total strain across the 

thickness as unknowns. For the usual theory of plasticity (un

cler small strains) holds the assumption that this clistribution 

is linear. Therefore, it is enough to take global parameters 

for the constant and linear total strains. 
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As basis for the derivation a generalized variational principle 

is used which contains as corresponding local equations not 

only equilibrium and kinematics but also the flow rule. Some 

principles in which by independent variation of the plastic 

strains (or the plastic multiplier) the flow rule can be ob

tained were given in [8]. In connection with the mixec'l-type 

tensor components the generalized variational form is first 

transformed to the surface by shifting. Then, assumptions 

regarding the distribution of the increments of the total 

strains, the displacements and the plastic strains across the 

thickness are made to render a two-dimensional theory of 

elasto-plastic shells. On the basis of similar variational 

forms and hardening rules other variants of elastic-plastic 

shell theories might be derived. These are not given here in 

detail. 

For the description of the shell curvilinear coordinates~aof 

the surface and the coordinate ~ normal to it are used. With 

the base vectors~j of an arbitrary point of the threedimen

sional shell space the position vector can be expressed by 

(2.1) 

It is referred to a point of the two-dimensional shell surface 

with the base vectors ga' g3. In the relationship between quan

tities of the two reference states shell shifters P~ are used, 

which contain also the curvatures of the shell, for further de

tailssee[4]. 

The use of mixed variant tensorial components is one essential 

feature of th~ theory proposed in this paper. Their definition 

in the shell space is given for the stresses by 

(2.2) 
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The relations 

.,..i .,..in 
• 'k =. gnk 

"i _ ,nig 
k - nk (2.3) 

show that only for symmetric contravariant stress components 

the marking of the corresponding mixed components is immateri

al. However, the quantities ~ arc not symmetric tbemselves, 

they are also called pseudo-symmetric. In case that the same 

three-dimensional quantities are referred to the surface coor

dinates, they are marked by a bar: 

(2.4) 

Reduction to a two-dimensional theory is accomplished by as

sumptions across the thickness, related quantities have Greek 

indices. 

It should also be emphasized that incremental quantities remain 

unmarked but variables of the previous (fundamental) state car

r y a s u pe r s c rip t, e. g. n; are the nor In a I for c e s 0 f ash ell 

theory calculated to a certain 10Dd level, and these are also 

given quantities in the next incremental step, in which e. g. 

n; are unknowns. Mixed definition may be visualized for two-di

mensional quantities [4]. The components a=p are normal to the 

coordinate lines, and their values coincide with those of their 

physical quantities. 

As basis for the derivation a generalized variational principle 

for an elasto-plastic body in static equilibrium is employed. 

The principle contains the equilibrium conditions, the kinema

tics and the flow rule as governing local equations. 

The ,'ependence of strains in the plastic region on the load ing 

history will be described correctly only by the flow theory of 

plasticity. Assuming inEinitesimal small increments, the go-
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verning equations may be linearized. In the framework of a geo

metrically linear theory this influences the stress-strain re

lations only, and the well known linear equations of equilibri

um, linear strain-displacement relations and related boundary 

conditions may be adapted, taking the variables as increments: 

Equations of equilibrium (3.1) 

Strain-displacement relations (3.2) 

Boundary conditions on Sp, (3.3) 

As the most common description of various possibilities the 

Prandtl-Reuss equations as an associated flow rule on the basis 

of the v. Mises yield condition are employed here to describe 

the elasto-plastic stress-strain relations. The expressions 

needed in the further derivation are briefly summarized: 

Assumption 

Yield condition 

Normality rule 

Flow rule 

.,/ = k 

1 02 
- '3' 0'". = 0 

= il... i+ it aL. 1L . .2. EE, = 0 
af~ Tj iJf! Jf! 3 £-£ 

J ,J' ~ 

h 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

For isotropic hardening only the yiela stress 0'". changes, in 

case that kinematic hardening shall be described the transla

tion tensor aj of the center of the yield surface has to be 
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OJ 
accounted for in calculating the deviatoric stress tensor ~ . 

Deviatoric stresses for 

kinematic hardening 

Pragers hardening rule 

fi = 
J 

o:~ - 2 EEt p 
J - 3 E-Ef j 

(3.8) 

(3.9) 

Thus, the direction and magnitude of plastic strains will be 

influenced by the choice of the hardening rule but not the 

general procedure. 

Remarking that 

j k ar o· 
Ej{ aJtk = 2G T; 

i 
(3.10) 

the linear relation between stress increments and strain incre

ments can be written as 

,f = if - t! 
J J J (3.11 ) 

O' Ok 

7! = 1.. (,!_.JL 6~ 'rr) + T/ T{ ,{ 
J 2G J l+v J h k (3.12 ) 

It is preferred to calculate the plastic strains in strain 

space rather than in stress space because there is always a 

unique relation between stresses and plastic strains. For an 

elastic-idead plastic material the quantity h vanishes and the 

determination of plastic strains in stress space (3.12) is not 

possible. Thus, plastic strains must be obtained by the last 

term of (3.11) to 

(3.13) 

with (3.14) 
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The inverse relation of (3.13) is useful for opriving the glo

ba] form of the elasto-plastic material lm! ane' rrans 

(3. ' 'i) 

To obtain a consistent approximation for al~ basic equations, 

the principle of virtual work can be generalizeCl by a~~ing the 

v3riational forms of the kinematic unr. constitutive equations. 

This leans to functionals of Hellinger-Reissner or Hu-Washi zu 

type depennent on the choice of in~ependent variubles [10]. 

The generalized principle reads 

(3. H) 

Since the shell equations shall be approximute0 by assumptions 

for Clisplacements and strains only, the stresses cun be elimi

nateCl introducing the stress-strain relation as subsiCliory con

dition and replacing all stresses by total an~ plastic strains 

using (3.Jl): 

( 3.17) 

- boundary terms.: 0 

. p. 
Inserting (3.15) and substituting 1; by 1} in the last volume 

term, the principle gets its final form. Thp independent vari

.ables are the ~isplacements, t~e total and the plastic strains. 

The corresponding matrix form exhibits the symmetric structure 

of the theory: 
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or 

oj = 1 
V 

r o~/l 
--I 
0/ 
r--

c5;t 
L. 

r 

0'£ u- -

f Qu -£ 

-:Jlf Qu 
L. 

- r -

-uQTf ;)1 !:!. 
r--

1 --
;;/f J1 

+J/EJ1 
A 

-

boundary 0 
dV- = J 

terms 

Jf = Jf 
- Jt~ 

(3.18 ) 

Through the normality rule (3.f) the plastic multiplier ;t is 

used instead of the plastic strains. 

A slightly simpler form can be obtainec if the elasticity ten

sor f is combined with the strains to introduce fictitious 

stresses T = £ 7 . 

Since the elastic material law is a subsidiary condition, the 

content of the principle doesn't change due to the introduction 

of fictitious stresses but the energy expressions in the re

lated generalized functional get a simpler form: 

oj =1 
V 

oJ 
l"-

or 
r---

o;t 

Qu 

-J12GQu 

Dr 
u-

-1 
-~ 

or 

r -
uQ'2GJi ~ 

e---

f 
r--

H ;t 
'-

dV - boundary= 0 J 

terms 

dV 

J j-j - p/ u - u } dS - J u j Pj dS - J u j kJ dV 

Su Sp V 

(3.19) 

(3.20) 



495 

The functional (3.20) may be looked at as a generalized form of 

the Hellinger-Reissner stationary theorem. In the absence of 

plastic strains, the functional takes the form, which was al

ready used in the derivation of the linear version of the mixed 

tensor shell theory [4]. It should be noted, that the part of 

the functional which gives the influence of the plastic strain 

has to be applied only within the plastic regions of the shell 

which are determined by the initial yield condition. 

The transformation of the three-dimensional functional (3.20) 

related to general curvilinear coordinates with base vectors g. 
. -I 

to the curvilinear coordinates of the shell reference surface 

with base vectors ga' Q3 is straightforward and follows the 

procedure outlined in [4]. The reduction is quite simple, be

cause products of the shifter and its inverse vanish for common 

tensor components. Only the transformations of the volume in

tegral and the expression for the internal work in (3.20) leave 

some additional coefficients resulting from the shifter. Combi

nation of the additional terms in the expression for the inter

nal work with the strains leads to symmetrical stresses and a 

special definition for the strains, which can be given in a 

convenient closed form. 

Thus, hy the transformation of the internal work expression 

con~ugate stress and strain measures will be defined charac

terizing the reSUlting stress and strain resultants and the 

+ (f3C( - ~3C() ~ ( P-')t [ U3'9 - b9.:1. Ii .:I.] 

,----JL 
P. [ afl'3J 

(3.21 ) 

} dJ. dS 

T~ -------0 .. - 71 
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The barred quantities are related to the surface coordinates, 

but still are three-dimensional. The physical meaning of the 

plastic stresses is more clearly exhibited by 

p. 2. 
T.' = 2G T~ A 
J J 

(3.22) 

Using mixed tensor components the constitutive equations and 

the expression for the specific internal energy do not contain 

the metric coefficients explicitly. This is true for the plas

tic part, too. Thus, the transformation of the specific inter

nal energy expressions is straightforward, without any approxi

mations, as was mentioned earlier. 

The complete generalized functional (3.20), after shifting, has 

the form 

(3.23) 
J [(-3 - =3 -3) dS 

- "l" ... U +"l"J U P. 
Sp 

- J j[f;(p.-'): n ... ii"+ T;(p.-I): fi ... il3] P. dJ. dS 
SpJ. 

- J j[('(; - f;)( p.-I); n.,.([/ - (iii) + f;(p. -I); n ... ([/ - OJ)] P. d$ dS } = 0 I 

SUJ. 

with 

W*('f) = W*(~) - W'( X) 

=..1. [(1+ v)~a ~(j _ V~9 ~A+2f1+v)~'" yJ + i'J(y3_2Vy9)] 2E Ii'" 9 A J... J 3 9 

_Lri fj(2 EEt + 2G )XX 
2 j j 3 E-Et 

where the prescribed values are marked by douhle bars and n ... 
are the components of the outward normal vector at a shell 

boundary. As was already mentioned above, the incremental func

tional is quite similar to the linear one, the only difference 
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appears through the splitting of the stresses into a fictitious 

part and a plastic part. The variation of the additional un

known X gives the flow rule (3.7) as additional Euler equation 

of the variational principle, thus the plastic strains can he 

approximated independently together with the total strains and 

displacements. 

For thin shells the assumptions of a plane stress state and a 

linear distribution of tangential total strains remain valid 

for the usual theory of plasticity provided that the strains 

are small. These assumptions are met by introducing a constant 

and linear distribution of fictitious stress increments (equi

valent to total strains) across the shell thickness: 

(4.1) 

Fig.l.: Distribution of fictitious stress increments across the 
shell thickness 

Inserting the stress assumptions into the elastic part of the 

material law (3 .. 11) gives exactly a linear function for the 

tangential total strain increments 

(4.2) 

Admissible functions for the displacements are 

(4.3) 
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Inserting these functions into the strain-displacement rela

tion, see (3.21), gives a quadratic function for the strains, 

which on the other hand should have a linear distribution. The 

quadratic term is not compatible with the strain assumption, 

but the error will be minimized due to the variation procedure, 

together with additional errors resulting from approximations 

for plastic strains. The functional (3.23) relates total strain 

increments to the difference of fictitious elastic and plastic 

stress increments. Thus, it seems most natural to define ficti

tious stress resultants according to total strain resuJtants 

and in arldition the plastic resultants. 

During the loading history the stress distribution across the 

thickness may become highly nonJinear although the total 

strains remain linear. This results from the dependence of the 

plastic strain increments not only of the total strain incre

ments but also of the previous stress state, see (3.13). For 

this reason the distribution of plastic strain increments ne

cessarily must become nonlinear. Probably the simplest approxi

mation which produces an adequate description of the eJasto

plastic stress distribution must subdivide the thickness into 

an inner elastic layer and one or two outer plastic zones, as 

was proposed e. g. by 11empner [10]. 

plastic zone 

-r 
.3- --- . .--.--. \ 

\. ./. 
\y 

X 
\ 

with 

tX+-

(4.4) 

Fig.2.: Linear distribution of plastic multiplier A across the 
plastic zone 
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Satisfactory results could then be achieved assuming a linear dis-

tribution for the increments of the plastic multiplier X inde

pendent in each plastic zone.They are obtained in an optimal 

weighted sense as unknowns of the variational principle. 

Fig. 2 shows a possible distribution of increments of total and 

plastic strains for an upper plastic zone. An assumption for a 

second lower zone is quite analogous regarding that X must al

ways be positive according to the loading condition. For sim

plicity only one zone will be considered in the further deriva

tion, keeping in mind, that all resulting terms for one zone 

could be substituted by the sum of all plastic zones. The spe

cial case of nearly pure membrane stresses in the shell is in

cluded letting ~+ tend towards -aJ. 

At this stage ~,e must presuppose that the fundamental state, e. 

g. the stresses across the thickness and the position of the 

interface between elastic and plastic zone, is known and re

mains constant during an infinitesimal small loading increment. 

Deviations of this state during finite increments must be ac

counted for by usual iteration or subincrementation techniques. 

The stress distribution across the thickness may be arbitrary, 

e. g. stored at some discrete integration points, ann it is 

presupposed that the yield condition holds for the stresses in 

the plastic zone. 

Plastic strains in thin shells usually are determined for a 

plane stress assumption. This coincides with the choice of a 

linear tangential strain distribution. Thus for a complete 

plane stress state the shear stresses T; or T; and the lateral 

stresses T; can be neglected. This would lead to a shell theory 

of Kirchhoff-Love type. It is also possible to retain the shear 

stresses, regarding- them pure elastic, by introducing a quad

ratic polynomial for T3a • 

Introduction of the assumptions into the functional (3.23) and 

performing the integration yields the two-dimensional form of 

the variational principle for the shell surface (e. g. includ

ing average shear 0eformations): 
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oj = !o{-[t1/'(n,m,qJ - W"O:'J]" [en; - hp)(vf1ja- b~ v3)] 
S 

.. [(m; -,h;)(w'1a" (b; - 2HGoaA)(v/36.- bf v3))] 

.. [ q; w a .. q3a(V~a • baA vA;J] - [pa va. ,03 v3]} dS 

with 

with 
\1 

2HG = b\1 
D = £-t 

B = Dt 2/12 

(<1.5) 

The qu<!ntities to be prE'scrihec:l at the "1ounaaries are giv,">n hy 

(4.7) 

where the expression~ are to he ta~en with the appropriate su

pers1<ript requirea in (4.5). 

The Rrbitrary distribution of the stresses of the fundameptal 

state requires a special treatmE'nt of the coefficients of the 

plastic mul~ipliers A+. These terms, denoteo as plastic-stress 

rp.sultants h; I,t;,; and hardening pari'meter H are determined by 

integrating the deviatoric strE'sses multiplied by the form 

function of A4 and the shell shifter. # not across the whole 
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thickness but across the plastic zone. Thus a numerical inte

gration procedure is indicated to prevent cumbersome expres

sions, e. g. resulting from series expansions of the deviatoric 

stresses and the use of highpr order moments: 

(4.8) 

The 0stablished variational form (4.5) under the given assump

tions is still in closed form with no additional approximations 

and can be taken as the starting point of numerical discretiza

tion techniques. There are some quadratic terms neglected re

sulting from the mentioned incompatihility of displacement and 

strain assumptions, the admissibility is discussed extensional

ly in [4]. 

Application of GauR' divergence theorem to the variational 

principle (4.5) renders the corrresponding local equations. 

The clastic cOAstitutivp equations are given as subsidiary con

ditions of the principle. They follow from the complementary 

specific energy 

(5. J ) 

The equilihrium conditions and the kinematic relations follow 

by variation of displacements and fictitious stress resultants: 
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Equilibrium 

(n%-~«JV[(b:-2HGc5:)(m;-,)'2~~J?l- b; qa + PfJ = 0 , 
'na /i,a p ~ 

b:(n;-)'2GtifJa) K(m:-)'2G~:) + qa1rx+ P3= 0 

(In; - ). 2G iCtPJla - qfJ" = 0 

Kinematics 

a; = ~ (Va IfJ + vfJla) - b~ V 3 
I 

f3% =-v31~ - ~A vA_ b;VAlfJ - bf vA1a+ b;rpf + bfrp; - 2'1.rpt+ Kc5: v3 

with rp: = l(valfJ+ vfJ1a) • 

(5.2) 

(5.3) 

The equations (5.1)-(5.3) are exactly the same as in the linear 

elastic case, except that the elastic stress resultants are re

placed by the difference of fictitious total and plastic resuJ

tants. The plastic resultants are dependent on the plastic mul

tiplier ).+ determined by the global form of the flow rule: 

Flow rule (5.4) 

"Thus, we have achieved a complete analogy calculating plastic 

stresses at discrete material points or plastic stress resul

tants for a special point of the shell reference surface with 

arbitrary stress distribution. The deviatoric resultants N;, 
oa 0 

Mil' J2 may be regarded as a numerical approximation of a 

v. Mises yield condition for stress resultants 

= 0 .. (5.5) 

An analytical form for such a global yield condition could not 

be given until now. Many authors tried to develop some semi-em

pirical yield conditions which are valid at least only for spe

cial cases, e. g. monotonic, proportional loading [5, 6, 7]. 

Under general loading conditions these yield conditions fail 

totally, and some semi-numerical techniques must be applied. 
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An elasto-plastic shell theory is proposed which permits the 

calculation of plastic stress and strain resultants directly 

from total strain resultants for th~ shell reference surface. 

Therefore linear distributions for total strains and displace

ments across the shell thickness an~ linear distributions of 

plastic multipliers A in the plastic zones were assumed. 

The parameters of the generalized yiel~ condition are to be de

termined numerically. In the respective numerical integration 

only the current deviatoric stresses across the thickness are 

involved. This fact can be used advantageous in iterative solu

tion algorithms like the initial stress method. If one assumes 

that the current state does not change during a load increment, 

thus ignoring the incremental expansion of the plastic zone, 

the evaluation of the numerical inteqration of the deviatoric 

t ·· AO, IX A"AIX )0. . 1 1 . d quan 1tles ,v{3"Y'{3' 2 1S requ1re r on yonce per 1ncrement an. 

not in each iteration step. In contrast, having no global yiel~ 

condition and employing a layered model, the complete calcula

tio~ of plastic strains in each integration point across the 

thickness and the numerical integration of the strains must be 

performed in each iteration step. Thus, there is a potel'tial 

reserve in saving computer time when applying an iterative so

lution technique. Further research could be spend to include 

the expansion of the plastic zone during a finite increment, e. 

g. by extrapolation of the generalized yield condition. 

In the case of monotonic loading, the determination of plastic 

zones is quite simple. Inserting the stress assumption (4.1) 

into the initial yield condition (3.5) gives a quadratic equa

tion for the yield limit 

PH 
3 °a o(J NQ ;/' " N(J Na.- 9 A-

(6.1) 

PM 
3/1a /1(J _ MQ MA- Na_ f ~; {3 a 9 A- {3-

FNM" 
6Na /1(J 

'(3 a 
- 2N9 /1A-

9 A-
o(x 5 StX 

M(J = t m(J 
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If ,3-+> tl2 or ,3--<-tI2 then there is still no plastic zone. 

Another special case is remarkable, e. g. if ,3-+ < -t/2 then 

the cross section is fully plastifier. and if ,3-+tenos towarc'ls 

infinity, there are no bending strains but pure extensio~R] 

plastic strains.Some further developement is needed to deter

mine the plastic zones under arbitrary cycling loading condi

tions. This is possible in general by tracing the yield limits 

ano yipld stresses etc. across the she] 1 thickness, but this 

takes ac'lditional computational effort. 
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Summary 

Two numerical methods are presented for the limit analysis of 
shells of revolution with arbitrary shape and using the 
sandwich Tresca model. The statical method is developed by 
constructing an approximately equilibrated interpolation of 
stresses. Equilibrium equations are exactly as derived from 
the correct geometry of the shell. Plastic admissibility is 
partially enforced choosing representative points. The 
kinematical method includes FEM interpolations of velocity and 
plastic multiplier rates to compute linear expressions for 
internal and external dissipations. Both interpolations are 
constrained to fulfil plastic kinematical admissibility in a 
set of freely selected points. The numerical methods presented 
are demonstrated in applications related to circular plates, 
tubes, cones, spherical caps and a cylindrical nozzle. 

1. Introduction 

The aim of this work is to present two numerical methods suited 

for limit analysis of shells of revolution with arbitrary 

shape and axisymmetric loadings. Even for these geometry and 

loads, and material isotropy, a non-axisymmetric collapse may 

occur but this possibility, as for any geometrical instability 

phenomenon, is, not considered here. 

The numerical methods are developed by transforming the first 

and second plastic collapse theorems [1], stated for variable 

static and kinematical fields, into discrete versions where 

variables are finite dimensional vectors collecting 

interpolation parameters of FEM approximations of the 

corresponding fields. In this way two independent numerical 

methods are generated to solve the same critical load prob-lem. 

Finite element interpolation for stresses and velocities are 
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constructed without any approximation of the geometry of 

meridian, and consequently using true kinematical and 

equilibrium equations. The meridian shape must then be 

prescribed in explicit form, also in the computer codes. A 

different approach has been adopted for instance by Nguyen 

Dang Hung et al [2] to treat the same aspect of the problem. 

In the static method the stress interpolation is selected to 

satisfy two of the three equilibrium equations. The remaining 

one is imposed in a discrete set of points by enforcing a 

system of linear constraints on variable coefficients of 

interpolation. 

Even when the considered stress fields are related to a finite 

number of interpolation coefficients, the static theorem still 

imposes an infinite number of plastic admissibility constraints. 

A discrete static formulation is only achieved replacing these 

constraints by a finite set of representative restrictions. We 

use for this purpose the collocation method and let the number 

and coordinates of the representative points be chosen 

independently of interpolation nodes and equilibrium points. 

This statical discrete formulation of limit analysis becomes a 

linear programming problem if the yield function is piecewise

linear. If this is not the case, it is necessary to choose 

either to proceed with non-linear programming techniques or to 

linearize the yield condition and solve a linear problem. 

Recalling that there exists a set of linear equilibrium 

constraints in the formulation, the linearization of remaining 

constraints seems preferable. This is achieved with the 

sandwich Tresca model of the shell [3]. 

For the kinematical. formulation, the problem of·obtaining a 

discrete linear version is completely different. As a first 

step, the space of. possible solution velocity fields is 

replaced by a finite dimensional one by means of FEM inter

polation. Also a linearization of plastic limit is necessary 

but not sufficient to reach a linear programming formulation. 



For a piecewise-linear yield function the internal dissipation 

is linearly expressed in terms of plastic multiplier rates. 

For this reason an independent approximation is constructed 

for plastic multipliers rates, and admissibility constraints 

are induced, enforcing that the deformation rates related to 

plastic multipliers are equal to the deformation rates derived 

from approximate velocity used in external -power computations. 

2. Model of the Shell 

The kinematical and equilibrium equations of a general shell 

of revolution under axisymmetric loading are settled in this 

section using cylindrical (er,eS,ez ) and intrinsic (e¢,es,ew) 

reference frames shown in Figure 1. 

Fig. 1. Shell of revolution 

In order to use dimensionless variables the following reference 
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values are adopted 

L : characteristic length 

No: yielding membrane force in pure traction 

Mo: yielding moment in pure bending 

The dimensionle~s variables are defined as follows. 

Coordinates (divided by L) 

r cylindrical·radial coordinate 

z axial coordinate 

s curvilinear coordinate along the meridian· 

Displacements (divided by L) 

Generalized strain 

u e + u e r r z z ( 1 ) 

(2) 

Eo/,Ee: membrane deformations in meridian and parallel directions 

ko/,ke: curvature deformations in meridian and parallel 

directions (divided by No/Mo) 

Generalized stress 

(3) 

no/,ne: membrane forces in meridian and parallel directions 

(per unit length of parallel and divided by No) 

mo/,me: bending moments in meridian and parallel directions 

(per unit length of parallel and divided by Mo) 

v shear force in meridional direction (per unit length 'of 

parallel and divided by No) 

External loads 

p : normal pressure (divided by No/L) 



fr,f z : radial and axial components of a load concentrated 

along a parallel (per unit length of parallel and 

divided by No) 

Dissipation power 

dint,dext: internal and external dissipation (divided by 

21TL2 No) 

To write the equations for dimensionless variables we denote 

by ( ) I derivatives with respect to s, by r 1 the curvature of 

the meridian, and we use S=Mo/LNo as dimensionless thickness 

of the shell. 

The kinematical equations defining the deformation operator 

assumed are 

r (u¢ cos¢ - w sin ¢) 

Sy' 

S cos 
r 

(4,5) 

¢ y (6,7) 

where y=-u¢/r1-w ' is the rotation of a meridian element. 

The corresponding differential equilibrium equations are 

(rn¢) I ¢ 
r 0 - cos ne - v = r 1 

(8) 

sin ¢ 
r (rv) I 0 ne + n¢ + + rp r 1 

(9 ) 

S [ (rm ) I - cos ¢ mel - rv 0 (10) 

For the assumed loads the external dissipation is computed as 

follows 

fSopwr' ds + 1: (f u +f u )r 
r r z z ( 11) 

with the summation extended to all points of the meridian 

where annular loads are applied. 

The internal dissipation for a particular deformation rate q 
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can be evaluated using the corresponding stress value Q 

(associated with q, considered purely plastic, by the 

constitutive relation) and computing 

where summation extends to all points undergoing expansion 

(and) or rotational hinge deformation of intensities ~u¢ and 

~y. 

A sandwich shell model approximates the homogeneous shell if 

we set No =hoy =2toy and Mo =h2 oy /4=th'oy where hand 0y are the 

thickness and yielding stress for the homogeneous shell, and 

h', t and 0y are the thickness, layers thickness and layers 

yielding stress for the sandwich shell. 

Both internal (-) and external (+) membranes of the sandwich 

shell are in plane stress state, therefore the Tresca yield 

condition states 

(13 ) 

·where the principal stresses 01 and 02 are either o¢ or 0e due 

to the symmetry of geometry and loads. These stresses are 

related to generalized ones by 

(14 ) 

Replacement of these equations in Tresca condition for each 

skin of sandwich shell leads to the following set of 12 

inequalities [3,7] 

T 
<P (Q) =, N Q - R :;; 0 (15 ) 

where N is a constant matrix with columns been the normals to 

each of the twelve linear plastic modes, and R a constant 

vector containing the corresponding distances of each mode to 



the origin (that is, one for the present case). Therefore the 

yielding limit of the model is piecewiselinear. 

According to the associated flow rule, the plastic strain rate 

is a linear combination of the gradients of all modes, that is 

N\ (16) 

where \ is a-vector of twelve non-negative components, each 

one of them being zero for non-active yielding modes, that is 

to say 

o \ ~ 0 (17) 

The above equality allows us- to compute the specific internal 

dissipation corresponding to a pure plastic strain rate. Indeed 

¢o\=NTQo\_Ro\=QoqP_Ro\ so that 

(18) 

whenever Q, qP and \ are related by the constitutive equation~ 

3. A Statical Method for Limit Analysis of Shells of Revolution 

We develop in this section a numerical method to solve the 

limit load problem by interpolation of the statical variables 

and application of the first theorem of plastic collapse. 

The base functions for the stress representation are constructed 

by the FEM and ,trying to satisfy equilibrium constraints 

independently of coefficient values. This is only partially 

achieved. The plastic admissibility of interpolated stresses 

is then imposed approximately by means of linear constraints 

on interpolation parameters. 

The shape of the meridian curve is not approximated as in [2] 

for instance, but assumed to be given exactly by functions 

r(s) and ¢(s). In this way we formulate exact equilibrium 

equations and propose stress interpolation functions that 
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satisfy identically two of these equations and approximately 

the remaining one. 

The meridian is discretized in ne finite elements by selecting 

n =n ~1 nodes. In each element i of length 2£i it is defined n e 
a normalized dimensionless variable n e [-1,1] such that 

(0) , (19 ) 

The stress interpolation is developed in what follows, denoting 

with hn(n) (n=1,2,3,4) the cubic Hermite polynomials. 

3.1. Stress interpolation 

i) Interpolation functions m¢ and me for bending efforts are 

chosen first taking into·account continuity requirements. A 

cubic approximation is used for the product rm¢, and inter

element continuity for m¢ is ensured adopting nodal values 
i i r m¢ as interpolation parameters. It is assumed a piecewise 

constant interpolation for me because no continuity require

ment exists for the variation of me in the meridional 

direction. Consequently 

(21 ) 

Super-index i+ denotes the value of the corresponding function 

computed as defined in the element i+1 following node i, and 

super-index i- means that it is computed in the element i 

before node i. This notation is necessary in the case of 

discontinuous functions such as (rm¢)'. 

ii) To satisfy iden"tically the third equilibrium equation the 

shear force v is interpolated by the function v such that 

Using this equation the expression of m¢ given in Eq. 20 

transforms into 

(22) 



h i+l 
2 r 

r 

Q,i i+ ,,(i+l)-) i 
+ r (h3cos cp +h 4 cos't' me+ 

+ 

i+ v + 

(23) 

Fig. 2. Loads and stresses in local and global coordinates, for 
two adjacent elements 

iii) A linear approximation is adopted for the function rncp. 
Membrane force ncp may be discontinuous in nodes where there is 

a jump in meridian slope or an annular force is applied. 

Therefore 

i 
r (l-n) i+ 

2r ncp (24) 

iv.l) The first equilibrium equation is ensured in every point 

along the element if the approximate ne is chosen as 
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(25 ) 

This procedure is not possible when the element has the shape 

of a cylinder because cos ¢ is zero in this case. We call (P) 

the interpolation developed in this item (iv.l), suitable for 

plates and all shell geometries others than cylinder. We 

develop in the next item (iv.2) an interpolation of type (C), 

appropriate for cylinder and other shell elements excepting 

annular plates. 

Replacing the expressions of D¢ and v previously obtained, 

Eqs. 24,22 and 23, into the last equation it follows that the 

interpolation of type (P) for ne is 

Bh~r 
i 

Bh~r 
i+l 

i i+l 
De ¢ m¢ -

¢ m¢ r1cos r1cos 

i ¢i+ +i!ih~COS ¢(i+l)- ¢) B(£ h;cos -cos i 
¢ me -r1cos 

£ih;r i £ih~r i+l 
i+ v(i+l)-- v 

¢ 
-r 1 cos ¢ r1cos 

(26) 

iv.2) The second equilibrium equation becomes identically 

satisfied if we adopt 

rDp 
[ r + (rv) I + rp 1 

sin ¢ 1 
(27) 

Only piecewise constant pressure is allowed in what follows 

-i P = ap (28) 

where a is the amplifying factor for all external loads, which 

is the principal variable of the problem. The interpolation of 

type (C) for ne is then obtained replacing Eqs. 24, 22, 23 and 

28 in Eq. 27. 



The four interpolation expressions for n~, m~, ne and me 

constructed so far, Eqs. 24, 23, 26 and 21, define a matrix 
i field YQ(n) with 4 rows and 7 columns, and a vector field 

'Qi(n) with 4 components and equilibrated with surface load p. 

These matrices Y~(n) and 'Qi(n) describe the interpolation 

operator. The above mentioned four equations are then written 

in the form 

+ a (29) 

where a i is the vector of interpolation parameters of element 

i, in local coordinates, that is 

i [ i+ i+ (i+1)- v(i+1)- i i+1 i]T a n~ v n~ m~ m~ me 

and 

'Qi(n) 
-i 

0] T [0 0 -~ sin ~ 

for (P) -interpolation, or all the components of 'Qi (n·) 

when (C)-interpolation is used. 

3.2. Equilibrium constraint in an element 

(30) 

(31 ) 

are zero 

In the interpolation scheme (P) previously described, the 

first and third equilibrium equations have been imposed 

identically. Since the whole basic approximation functions 

have been defined so far, we can only hope to satisfy the 

remaining second equation by restraining the interpolation 

coefficient values. The collocation method is adopted for this 

purpose. Consequently, the functions ne , n~, v and p written 

in Eqs. 26, 24, 22 and 28 are replaced in the second 

equilibrium relation, Eq. 9 to give 

515 



516 

h;sin ¢ 
+sQh (h;'cos ¢- r ) cos ¢ i+ + (h~cos ¢-

(32) 

For the interpolation alternative (e) we proceed in a similar 

way. In this case the remaining equilibrium equation is the 

first one. The resulting equilibrium, to be imposed by 

adjusting interpolation parameters, coincides with Eq. 32 

corresponding to type (P) interpolation. 

The last equation, that expresses the only remaining 

equilibrium condition, can be written in matrix form as 

o i=1, ..• ,ne (33) 

A set of n points is prescribed in each element in order to eq 
impose this ~ondition, at least for these points. Since this 

equation is not an identity between polynomial functions, 

except for some particular shell geometries, it is not 

possible in general to guarantee this condition identically, 

no matter how many points are used to enforce its local 

validity. 

3.3. Equilibrium constraints in global coordinates 

We define a vector S of all global interpolation parameters 



iii i gr' gz' m¢ and me' a vector F of prescribed nodal forces (to 

be multiplied by the load factor a) and a vector FR of nodal 

reactions (to be considered as additional variables). Then we 

can set 

(34) 

where Li , yi and Li are boolean matrices and Ti and Ti are R F 
rotation matrices. 

This equation is replaced in Eq. 32 and the resulting 

equilibrium condition is enforced in n points per element, eq 
that is 

i=l, •.. ,ne j =1, . - .. ,n eq 

o 

(35) 

This is a set of n xn linear constraints for parameters S, eq e 
and FR that can be cast in matrix notation as 

o (36) 

iii Variables gr' gz. and m¢, i.e. the components of vector S, must 

obey some additional constraints corresponding to the 

particular conditions existing at both ends of the meridian. 

3.4. Plastic admissibility of stresses 

The condition that the approximate stress field has plastically 

admissible values at any point gives rise to an infinite 

number of linear constraints on interpolation coefficients S, 

load factor a and reactions FR' In the discrete version of the 

problem a selected set of n points is used to represent this 
p 

condition approximately. 

The interpolation expression for generalized stress field Q(s), 

Eq. 29, is introduced in the plasticity inequality Eq. 15 and 

also the element parameters a i replaced by global ones to 
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obtain 

i=l, ... ,ne j =1, ... ,np (37) 

This system of 12xn xn inequalities is referred to in what 
e p 

follows as 

(38) 

3.5. Limit load computation in the statical approach 

The static theorem of plastic collapse is applied to formulate 

the following linear programming problem 

a max a (39) 
a,S,FR 

under the constraints 

JNT S + MFR + aQ ;;; :m (plastic admissibility) (40) 

BTS + HFR - aJF = 0 (equilibrium) (41) 

C1S + C2 FR + aC 3 F 0 (boundary conditions) (42) 

The number of variables of this problem, 4xn +n +4 
e r (where 

n is the number of elements and n the number of reaction e r 
components)" changes to 8xne+2xnr+7 effective variables when 

this problem is transformed to the standard form involving 

positive variables. The number of constraints is essentially 

12 xn xn inequalities plus n xn equalities (where n is the e p . e eq p 
number of critical points for plastic admissibility) excepting 

boundary conctition restraints. 



4. A Kinematical Method for the Limit Analysis of Shells of 

Revolution 

Finite element method is used next to build interpolation 

fields for displacements. Deformation operations are then 

applied to these functions to .give interpolation expressions 

for generalized strains. This procedure ensures satisfaction 

of kinematical admissibility. However, it is not possible to 

use this strain field to compute internal dissipation as a 

linear combination of interpolation-parameters, as needed to 

transform the problem into a linear programming one. To 

accomplish this an independent interpolation is used for 

plastic factor A. Consequently, a kinematical compatibility 

condition appears when it is imposed that purely plastic 

strains NA used to compute internal dissipation, equals 

identically the strain field associated with the velocity 

field used to compute external dissipation. 

Once internal and external dissipation are represented as 

linear combinations of interpolation coefficients, the 

kinematical theorem is applied to formulate the limit analysis 

as the problem of finding the coefficient values minimizing 

internal dissipation for unit external power under the 

additional kinematical admissibility constraint previously 

explained. 

The kinematical admissibility will be exactly fulfilled only 

in a discrete number of points so that no guarantee is obtain

ed that the approximate collapse load results are greater than 

or equal to the exact ones. 

The deformation equations are dependent on meridian geometry, 

which is assumed to be exactly specified as in the static 

numerical method. Thus the functions r(s) and ~(s) will appear 

in the interpo~ation operator for generalized strains. 

4.1. Displacement interpolation 

It is assumed a linear interpolation for the tangential 
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displacement u¢ and a quadratic one for the normal displace

ment w. 

Inter-element discontinuities in u¢ and ware only allowed to 

accomplish with nodal jumps in. the meridian slope. This means 

that expansion hinges are not represented in the approximation 

field set. 

The values of the rotation of meridian y, derived from u¢ and 

w approximations by the kinematical equation, may be different 

in a particular node when computed in each of the two elements 

pertaining to this node. Therefore, rotationally non-expansive 

hinges are included in interpolation fields. 

According to previous assumptions 

(43 ) 

where a i is the vector of element interpolation coefficients 

in local coordinates 

i 
a i+ 

w 

and Yu(n) is the interpolation matrix 

o 1+n 
-2-

o 

o 

(44) 

(45) 

where the normalized variable n e [-1,1) replaces s in the 
i element i of length 2£ , and h n (n) (n=1,2,3) denote quadratic 

Lagrange polynomials. 

Variables i 
u z 

and wCi are collected in a vector U such that 

(46 ) 

where Ti is a rotation matrix and Li a boolean matrix. 



Supporting conditions of the shell impose nul~ity of some of 

the components of U. Also, variables u 1 and u n must be 
r r 

constrained to be zero when the shell has closed ends. 

4.2. Strain interpolation 

The adopted displacement field Eq. 43 is introduced in the 

kinematical relation y=-u¢/r1-w ' to give 

where 

Y~(n) [_ 1-n 
2r 1 

-h' 
1 

(47) 

h I 
- 3 (48) 

The generalized strain vector q is now approximated applying 

deformation operations, Eqs. 4-7, to the interpolated u of 

Eq. 43. Thus 

(49) 

where the interpolation operator Y~(n) is shown in Table 1. 

1:\ 
£¢ 

k¢ 

£e 

ke 

ui + i+ (i+l)- w(i+l)-
¢ 

w u¢ 

1 hI 1 h3 
---, --

2£,i 
--

2£,1 r l r l 

1 1 - --,- + --,-+ 
2£,lr l 2£,lr l 

-Sh~ -Sh~ 
l-n (l:....) 

I l+n (l:....) 
I 

+ -- +2 2 r l r l 

(l-n) cos ¢ 
hI sen ¢ (l+n) cos ¢ 

h3 sen ¢ 
- -2r r 2r r 

S(n-l)cos ¢ Shicos ¢ S(l+n)cos ¢ Sh~cos ¢ 
- - -2r r l r 2r r 1 r 

Table 1. Strain interpolation matrix y 1 (n) 
q 

ci w 

h2 
--r l 

-Sh~ 

h 2sen 
- r 

Sh;cos ¢ 
- r 
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4.3. Interpolation of plastic multipliers 

The yielding factors 

(50) 

are field variables of the problem. They are interpolated 

quadratically because they are related with strains by the 

plastic kinematical admissibility. We recall that strain 

interpolation resulted almost quadratic and the plastic 

kinematical admissibility is given by the constant matrix N. 

Therefore 

X. 
J 

hlA~+ ci h3A~i+1)-J + h2 Aj + J j=1, ••• ,12 (51) 

where hn(n) are quadratic Lagrange polynomials. 

The previous equations take the form 

(52) 

when we define the element vector of interpolation parameters 

for plastic multipliers 

(53) 

and the following interpolation matrix, of size 12x36, 

J (54) 

h3 

There is also a global vector of parameters A, collecting all 

A~+, A~i and Ai - such that 
J J j , 

(55) 

The approximated plastic multiplier fields X(s) should be 



positive or zero in any point along the meridian. Instead of 

this strong condition it will only be imposed that the inter

polation parameters are non-negative, so implying that XIs) is 

also non-negative in three points on each element. 

As we mentioned before the independent interpolation of plastic 

factor A is needed in order to obtain a linear expression for 

internal dissipation because this cannot be reached by direct 

use of approximated strain rates. 

We have developed so far a representation of A(s) associated 

with distributed strain rate, then we must also develop a 

representation for A parameters related to the non-expansive 

hinges admitted in the approximate strain rate fields. In 
. . i 

fact, it is easy to compute the meridian slope Jump (6y) in 

any node by using displacement fields in the elements 

pertaining to this node, however the dissipation expression 

Mol (6y)il is not linear due to the absolute value involved. 

According to 

.variables Ai 
+ 

the previous considerations we define nodal 

and Ai respectively related to positive hinges 

(outward concavity) and negative hinges. These variables are 

defined by the following properties: 

i they are non-negative and complementaries to 

is 

Ai 2; 0 and Ai 0 if (6y) i ;;; 0 
+ 

Ai 0 and Ai 2: 0 if (6y) i :;; 0 
+ 

ii their difference is the hinge angle 

iii) their sum is the concentrated dissipation 

. i 
(6y) , that 

(56) 

(57) 

(58) 
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4.4. Internal dissipation 

The power of internal efforts is written as a linear combination 

of interpolation parameters for A when Eqs. 18 and 58 are used 

in the expression of internal dissipation Eq. 12. This 

procedure leads to 

n e 
L 

i=1 

n 
n 
L 

i=1 

where the vector of 36x1 components 

• 12 • 
1. . 1. 

J 3 ••• ) 1 
.i 
), 

.i l )3 

contains the following integrals of Lagrange polynomials 

(59) 

(60) 

(61 ) 

ji = t i J1 rh dn n=1,2,3 (62) 
n -1 n 

Hence the internal dissipation is the known linear form 

(63) 

in the variables A~, A! and Ai collected in global vectors A, 

A+ and A respectively. 

4.5. External Power 

The power of reference external loads, i.e. pressure pIs) and 

the nodal forces F, is 

d = ext. 

n e 
L 

i=1 

i+1 r i pwr ds + 

s 

n n 
L 
i=1 

(64) 

Assuming constant pressure along each element and replacing 

the velocities by the interpolation given before, Eqs. 43 and 



46 we get 

where 

[0 

n 
e 
L 

i=l 

j~ 0 
.i 
J3 

.i l J2 

External dissipation is then of the form 

4.6. Plastic kinematical admissibility 

i) along the interior of an element 

(65) 

(66) 

(67) 

The product R'~ correctly represents the internal specific 

dissipation corresponding to a certain strain rate q, as has 

been assumed in the previous calculations, only if 

q = N~ (68) 

Both fields q and ~ have been independently approximated, then 

we can only force this equality to be true in a set of 

selected points, establishing in this way a system of linear 

constraints for interpolation parameters. Replacing Eqs. 49, 

46,52 and 55 in the previous equation it follows that 

o i=l, ... ,ne k=l, ... ,np (69) 

or in matrix notation 

BD - JNJ\ o (70) 

ii) nodal 

The rotation rate y of an infinitesimal element of meridian 

has been interpolated independently in adjacent finite 

elements. So there is a nodal gap (~y)i representing the non-
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expansive hinge deformation rate intensity. This strain rate 

must be related to coefficients Ai and Ai by Eq. 57 so that 
+ -

internal dissipation is correctly computed by the latter 

variables, that is 

The interpolations of y in the elements pertaining to node i 

are substituted in the above equation to give 

o i=2, .•• ,ne (71) 

For the first and last nodes of the meridian this constraint' 

adopts a slightly different form depending on clamping 

conditions and on whether the shell ends are open or closed. 

Equation 71 together with the two equalities for shell ends 

are then written as 

GU - A+ + A o (72) 

4.7. Limit load computation in the kinematical approach 

The critical load factor a for prescribed pressure p and 

concentrated (annular) loads F is now approximated by solving 

the linear programming problem 

under the cqnstraints 

jp·U=1 

BU-m1\=O 

GU-A +A =0 

CU=O 
1\;;:0 

+ 

A;;:O A;;:O 
+ 

(unit external power) 

(internal plastic admissibility) 

(nodal plastic admissibility) 

(boun~ary conditions) 

(non-negative plastic factors) 

(non-negative hinge plastic factors) 

The total number of variables in this problem, 41n +5 e 

(73) 

(74) 

(75) 

(76) 

(77) 

(78) 

(79) 



(3xne in U, 36xne in A, nn in A+ or A_),becomes 44ne+8 in 

standard formulation of linear programming (ne is the .number 

of finite elements). 

Excluding non-negativity constraints, and boundary conditions 

the total number of constraints of the problem is 4xn xn +n +2 
e p e 

(n is the number of points chosen in each element to enforce 
p 

admissibility). 

This linear programming problem does not coincide with the 

dual problem of the static formulation but it is of the same 

form and physical significance. We note that, for instance, 

matrix BT used in the statical approach ~s not the transpose 

of matrix B deduced in this section, although we have used the 

same symbol for simplicity. 

5. Applications 

Circular plates, tubes, spherical caps and cones have been 

used to compare numerical approximations of the loading 

capacity with analytical (exact) values, and in some cases 

with approximations published by other authors [2,4,5]. 

A nozzle made of portions of cylinder and spherical shell is 

also treated to demonstrate the advantages derived from the 

introduction of an exact shape (with singular points) in the 

equations of the methods developed in this work. 

Rules for the ,appropriate choice of points for plastic 

admissibility constraints must be obeyed for the particular 

cases of cylindrical and plate finite elements. These rules 

are demonstrated for cylinders in the following section. For 

plate elements n =2 imposes equilibrium identically but no eq 
guarantee of 9tatic or kinematic admissibility is achieved. 
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reactions elern. number of (!) UJ constraints 'CI l:iJnit diff. points .~ (!) 

0 .-I 
.j.J {l .<:: f mcp n plast. equi1. 0 

.j.J load % z e (!) . .-l ;; = 
(!) n n 4-< l-< 

::;: P eq 4-< ~ (!) 

E • 11259 o . -.0563 -1.00 - - - - - -
S .11952 6.2 -.0598 -1.29 2* 2 2 25 48 7 

S .11084 -1.6 -.0554 -1.15 2* 3 2 25 72 7 

S .11924 5.9 -.0596 -1.32 3 2 2 33 72 9 

S .10964 -2.6 -.0548 -1.16 3 3 2 33 108 9 

S .11784 4.7 -.0589 -1.20 5 2 2 49 120 13 

S .11054 -1.8 -.0553 -1.05 5** 2 2 49 120 13 

K .12000 6.6 - - 1 2 - 50 - 14 

K .11245 -0.1 - - 2* 2 - 94 - 23 

Table 2. Limit uniform load (divided by NolL) for a clamped 
circular plate of thickness 6=0.01. Reference length 
L is the external radius. 
Methods: exact E, statical S and kinematical K. 
Nodal coordinates are uniformly distributed exceptfor 
* (0.,.7,1.) 
** (0. ,.2,.4,.7,.95,1.) 
Constraints are enforced in Gauss points. 

5.1. Cylinders 

When the present statical approach is applied in a shell 

containing a cylindrical finite element, the equilibrium 

constraint Eq. 32 reduces to 

(80) 

Therefore in these elements we must use a single point (n =1) eq 
to enforce th~s identity because otherwise redundant constraints 

are introduced. 

In a cylinder the stress interpolation becomes linear 

(continuous) for ncp' cubic (continuous with continuous 

derivative) for mcp' linear (discontinuous) for n e , and piece

wise constant for me. Therefore it is impossible to ensure 



plastic admissibility of stresses as an identity despite of 

the choice of the set of n points. 
p 

The kinematical method for the case of cylinders generates an 

identically admissible pair of fields (u,A) by using n =3 as 
p 

can be demonstrated from the examination of the particular 

interpolation functions for a straight meridian. 

However the approximate collapse load cannot be guaranteed to 

be a true upper bound because the non-negative condition for 

XIs) is only assured for three points per element. 

A tube under different conditions of loads and supports generates 

several examples suitable to check the two present methods and 

their corresponding computer programs. For instance, plastic 

collapse can be induced by simple axial tension, by uniform 

pressure, or both loads combined. These examples have been 

treated numerically and trivially verified. 

Tube Exact Statical method Kinematical method 
half- limit limit number n limit number length load load of elem. p load of elem. 

4.0000 1. 7320 1. 713 5 2 1. 755 9 

3.4772 1. 7320 1. 723 5 2 1. 759 7 

2.4273 1.5411 1. 544 5 2 1. 568 7 

1.0472 1.2247 1. 2247 3 2 1. 229 5 

0.7227 0.9354 0.9350 1 2 0.938 3 

0.1000 0.14142 0.1412 1 2 0.1412 2 

Table 3. Limit annular load (per unit length and divided by 
No) of tubes of different lengths. 
Constraints are enforced in Gauss points; as r~red 
neq=l for statical method and np=3 for kinematical 
method. 

A tube with a ring load at middle section has also been 

considered to check the methods in a collapse situation under 

combined longitudinal bending and circunferential tension. 
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Results for several tube lengths are shown in Table 3 and 

compared with analytical solutions [6,7]. Tube length for that 

ring load case drastically changes plastic collapse 

characteristics[7,8] • 

5.2. Spherical cap 

A built in spherical cap under uniform pressure p=1 is analysed 

for several values of maximum angle ~ and dimensionless 

thickness 8=h/4L, with L and ~ shown in Figure 5, and h the 

thickness of the homogeneous shell approximated by the 

equivalent sandwich shell. 

I 
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I 
0.2 0.4 0.6~ 0.8 

Fig. 3. Limit pressure for a spherical cap of thickness 8=0.02 
. Exact, from Lee and Onat [5] 

Statical method • Kinematical method 

This case has been solved by Lee and Onat [5] by direct 

numerical integration of the problem equations so that these 

results will be called exact and compared with present 

approximations. 

Figure 3 and Table 4 show corresponding results. For the case 

of the deep shell example, with semiangle 380 50', the exact 

solution includes two hinges of the expansion-rotation type, 

and also an infinite value for a A componertt, as pointed out 

in reference [5]. This may explain the discrepancy of 

kinematical results for this angle if we recall that these 



kinds of plastic hinges have been excluded from the set of 

interpolation functions. The approximate stress fields compare 

well with exact ones which are essentially analogous to plate 

collapse stresses. 

max. limit number number number of 
Hethod angle load of of eff. constraints 

cp a elem. var. ;;; = 

Exact [5] 16°8' 2.78 - - - -

Static 16°8' 2.98 2 27 48 7 

Static 16°8' 2.95 5 51 120 13 

Hean S-K 16°8' 3.10 - - - -
Kin. 16°8' 3.24 5 226 - 53 

Kin. 16°8' 3.48 2 94 - 26 

Exact [5] 38°50' 2.00 - - - -

Static 38°50' 1. 81 1 19 24 5 

Static 38°50' 1. 98 4 41 96 11 

Mean S-K 38°50' 2.02 - - - -
Kin. 38°50' 2.07 4 182 - 44 

Table 4. Limit pressure for built in spherical caps of thick
ness 6=0.02 and different angles cp. For all cases 
np=2 and neq=2. Nodal coordinates are 

_ 2 elements: ¢i=Oo 12°, 16°8' 

_ 4 elements: ¢i=OO 9°, 30° , 38°50' 

_ 5 elements: ¢i=oo, 4°, 8°, 12°, 15°, 16°8' 

5.3. Cone 

A built in cone of base radius L, height 2L and thickness 

6=0.02 is analysed with respect to plastic collapse produced 

by internal pressure (p=-1). The results obtained are compared 

in Table 5 with values published by Dang Hung et al [2]. These 

authors used a sandwich Mises model of shell so that our 

results should be lower than those values. 
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shell limit diff. number 
Authors 

model method 
rressure % 

of elem. 
n e 

present ST S (P) 1. 2402 0.1 5 

present ST S(C} 1. 2402 0.1 5 

present ST S 1. 2204 -1.5 8 

present ST S 1. 2124 -2.1 10 

present ST mean S-K 1. 2385 O. -
present ST K 1. 2646 2.1 7 

present ST K 1. 2964 4.7 5 

Dang Hung [2] SM S 1.2924 0.3 4 

Dang Hung [2] SM S 1.2540 -3.2 8 

Dang Hung [2] SM S 1. 2406 -4.3 10 

Dang Hung [2] SM mean S-K 1. 2961 o. -
Dang Hung [2] SM K 1. 3516 4.3 8 

Dang Hung [2] SM K 1.3574 4.7 6 

Dang Hung [2] SM K 1.3694 5.7 4 

Table 5. Limit pressure of a clamped cone of base radius L, 
height 2L and thickness B=0.02 
Shell model: sandwich Tresca ST and sandwich Mises 

SM 
Methods: statical S and kinematical K 

:: q .. _:p~ n:~~J~_r==;~.--1 

06 t J& : -,--/. ,F---7. 
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Fig. 4. Collapse stresses in the cone 
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5.4. Cylindrical nozzle 

As a final application we present values for the collapse 

pressure of a nozzle consisting of a cylinder of radius rc and 

a spherical portion of radius reo Both cylinder and sphere have 

the same dimensionless thickness 6=h/4L. Here L is taken to be 

1.in. External loads include the axial traction fl=-O.5r p z c 
corresponding to the internal pressure p. 

The meridian curve of the considered shell has then a singular 

point, where discontinuities and hinges may be expected, and a 

spherical part that will be exactly represented in the methods 

presented in this paper. 

Table 6 contains limit load approximations obtained by the 

two present methods and also results due to Biron et al [4], 

the latter ones corresponding to a sandwich model of the Mises 

type. 

h 

Fig. 5. Nozzle model. re=10.; rc=4.; H=5. (reference value 
L=1.in); 6=h/4L=O.025; p=-1.; fz=-2. 

"------. 
r 
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~ 1:iInit diff. nUlllber of nodal coordinates 

pressure % e1em. cy1ir.tder sphere 
~ s~ <pi (degrees) 
S .055024 -13.4 4 o. ; 3.; 5.83 23.6; 30; 45 
S .055030 -13.4 5 o. ; 3.; 5.83 23.6; 30; 36; 45 
S .056838 -10.5 4 o. ; 4.5; 5.83 23.6; 33; 45 
S .055712 -12.4 8 o. ; 1.5; 3.; 4.5; 5.83 23.6; 28; 33; 38; 4'i 
S .056441 -11.2 8 0.; 1.5; 3.; 4.5; 5.83 23.6; 26; 30; 36; 4S 

nean .063563 o. - - -
K .070685 11.2 8 0.; 1.5; 3.; 4.5; 5.83 23.6; 27; 30; 36; 4S 
K .073648 15.9 4 o. ; 1.5; 5.83 23.6; 33; 45 
K .075401 18.6 5 0.; 3.; 5.83 23.6; 30; 36; 45 

S[4] .06 - 7.8 
nean .065 o. 
K[4] .07 7.8 

Table 6. Limit pressure (referred to NolL, with L=l.in) for 
the nozzle of Figure 5. 
Methods: statical S and kinematical K 
All constraints are imposed iti two points placed in 
Gauss coordinates 

6. Conclusions 

Present statical and kinematical numerical methods are deduced 

from interpolation functions where exact geometry is introduced 

and moderately low degrees of polynomials are assumed. Further

more, compatibility with respect to equilibrium and deformation 

.differentia1 operations, and continuity conditions, are taken 

into account to select these approximation functions. 

An important characteristic of the present numerical methods is 

that equilibrium and kinematical equations used are exact, 

although partially enforced by collocation method. 

Applications 'show that the assumed interpolation fields are 

appropriate in simple examples where several basic combinations 

of collapse strains and stresses appear. 

Only non-expansive hinges are admitted in the set of 

interpolation fields for velocities. To introduce also nodal 

discontinuities for tangential velocity leads to an increase in 

the number of parameters for concentrated plastic factors. 

We note that the great number of inequality constraints of the 

statical scheme, and of interpolation parameters for A in the 

kinematical one, are mainly due to the great number of plastic 

modes in the shell model. The use of a Mises condition reduces 

the number of plastic modes but introduces non-linear 



constraints. We have preferred to linearize this condition 

because a great number of linear constraints are needed to 

impose equilibrium or kinematical admissibility and this would 

complicate the solution of a non-linear formulation. Never

theless, it is possible to deal with large linear programming 

problems when appropriate techniques are used. 
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Inelastic Behaviour of Shells under Concentrated 
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Summary 

The paper is devoted to the description of the present state of knowledge 
in the theory of inelastic shells under concentrated and local 
loads. Problems of current interest, and in the broad sense, 
the analytical and numerical methods that can be brought to bear, 
are discussed. Other problems involving stress concentration 
in shells, such as crack propagation and concentration of stress
es caused by irregularities of the shape, or holes and cutouts, 
are not the subject of the paper. 
The action of concentrated loads on shells has drawn the attent
ion of many researchers for the last 20 years. The problems 
concerning stress and displacement distribution in linear, elas
tic thin shells under the static action of concentrated loads 
applied at one point of shell surface, or subjected to locally 
distributed loads, were examined at first and were the subjects 
of those early investigations. Many papers from the western 
countries as well as from the U.S.S.R. were published in those 
years. 
Mostly, the linear theory of shells was the starting point of 
these works. This area seems to be sufficiently explored at 
present. However, as far as we consider the similar problems 
in inelastic, non-linear shells, we recognize that many problems 
are not yet solved or are not solved in a satisfactory, general 
manner. 
The rapid expansion of numerical methods and techniques in rec
ent years has enabled the solution of many difficult problems. 
However, these solutions usually concern particular situations 
and are often difficult to generalize. 
The state of knowledge concerning the following problems of 
inelastic shells is presented in the paper. 
1) The geometrical non-linearities, large deformations of 

elastic shells under local loads and complex loads when 
the local, concentrated load is accompanied by a distrib
uted general load. 

2) Contact problems in shells involving the geometrical and 
physical non-linearities 

3) Problems related to concentrated loads acting on shells 
made of inelastic materials 

4) Elasto-plastic behaviour of shells under concentrated loads 
associated with large defomrations of shells, collapse and 
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limit local loads. 
5) Simplified solutions of dynamical problems. 
6) Optimum design of shells loaded by concentrated forces. 
The paper covers both the results of experimental investigat
ions in each of the above-mentioned areas, as well as the desc
ription of the analytical and numerical methods used. 

1. Introduction 

The paper reviews problems concerning the action of concentrated 

forces on shells. It is based on works published in the last 20 years. 

The paper discusses nonlinear solution whose nonlinearity has geometrical 

(large deflections) or material character. The action of concentrated 

forces on shells has aroused interest of researchers for more than 20 

years. Numerous papers were published based on the linear theory of 

shells. Their discussion can be found in the publications of the present 

author [1,2J. This area seems to be well explored. However, as far as 

inelastic, nonlinear shells are concerned, many problems are not yet 

solved or are not solved in a satisfactory general manner. The area of 

geometrical type nonlinearities, and elastic post-buckling behaviour of 

shells has been best explored. There are also several solutions concern

ing the problems of load carrying capacity of shells under concentrated 

forces. The situation looks worse in the case of problems concerning 

material and geometrical nonlinearities, elasto-plastic and visco-elasto

plastic problems. There are very few solutions available and most of them 

obtained using the finite element method. Also solutions concerning local 

dynamic loads acting on shells with large displacements made of nonlinear 

materials are scarce. The nonlinear, three-dimensional solution for the 

region surrounding the point of application of the concentrated force on 

shell is nonexistent too. 

field are very limited. 

The experimental investigations in this 

Rapid expansion of numerical methods and techniques, as for example 

finite element'method'- in recent years, has enabled the solution of many 

difficult problems. However, these solutions usually concern particular 

situations and are often difficult to generalize and verify. Therefore 



more analytical approaches would be valuable. The following topics 

concerning the action of concentrated forces are discussed in the paper: 

- The geometrical nonlinearities and large deflections of elastic shells 

under local loads and complex loads, 

- Problems related to elasto-plastic behaviour of shells under concen

trated loads associated with large deflections, collapse and limit 

loads, 

- Contact problems of shells involving the geometrical and physical non

linearities, 

- Optimum design of shells loaded by concentrated forces. 

2. Geometrical Nonlinearities, Stability and Large Deflections 

2.1 Spherical Shell Under Concentrated Normal Force 

The nonlinear behaviour of spherical shells under a central concentrated 

force was the subject of the early papers concerning the action of concen

trated loads on shells. In this case the problem is axially symmetrical 

which makes theoretical analysis much easier. The experiments prove that 

already for relatively small deflection of the order of several thickness

.es, the force-deflection relation becomes nonlinear and is not compatible 

with that calculated using Linear Theory of Shells. When the concentrated 

force is applied to the spherical elastic shell a "circular dimple", i.e. 

a region of reversed curvature, appears in the shell and spreads outwards 

as the load increases. This problem was first solved by Biezeno (1935) 

[3]. He obtained a nonlinear relation between load and deflection. 

Several researchers later treated the same case using no~linear shallow 

shell equations ~nd energy methods and obtained similar results, (see 

Chien and Hu [4], and D.G. Ashwell [5]). Ashwell solved the nonlinear 

problem of large displacement of shells by means of the combination of two 

linear solutions. R. Archer l6] reduced the problem of the spherical 

shell loaded by a concentrated force to the solution of three algebraic 

equations by use of the nonlinear Reissner equations and the method of 

finite differences. A method proposed by A.V. Pogorelov [7], resembling 

that of Ashwell, is interesting and worth wider discussion. Pogorelov 

noticed that when the shell deflects elastically, it takes the form of its 

isometric transformation. That makes possible to predict to a certain 

degree the shape of the deflected shell by looking for it among the 

isometric transformations [17]. In the case of the spherical shell the 
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simplest isometric transformation corresponds to mirror-like reflection 

(Fig. 1). 

• I 
\ \SOMETRlt DEFORMATION 

'-QUASHSOMETRICAL DEFORMATION 

Fig. 1 Regions in a deformed spherical shell. 

The problem was solved variationally with the assumption that the dis

placement u and w in the ridge area are of local character and vanish at a 

certain distance from the ridge. Finally, a very simple relation for the 

energy caused by the change of the shape of the shell was obtained 

U = 2wc E(2f)3/2 h5 / 2 ! (1) 
R 

'where 2f is total deflection at the point of application of the load. c-

constant value equal to c ~ 0.19, E, hand R are Young modulus, thickness 

and radius of the curvature of the shell respectively. Knowing relation 

(I), only one step more was required to obtain the load-deflection 

relation i.e. the calculation of the work of the external load. Equating 

the variation of the functional with respect to f, to zero, results in the 

following simple formula for the deflection of the shell. 

or P = 3wcEh5/ 2 
R lIT 

(2) 

This relation is presented graphically in Fig. 2. The results of experi

ments by F;A. Penning [9] are also shown there. These experiments were 

performed with a number of shallow spherical shells with clamped edges 

made of aluminum and loaded at the apex through a small circular contact 

area. The geometry of the shell was defined by a parameter ~ = a/1, 

a being the radius of the clamped edge and 1 a characteristic length of 

the shell. 
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Fig. 2 Comparison of results by Pogorelov's theory with 
results by F.A. Penning's experiments 

This revealed that the behaviour of the spherical cup depends on the 

radius of the clamped edge. Different patterns were observed during the 

testing. The thicker shells suffered plastic yielding in the vicinity of 

the load and did not buckle. Thus permanent deflections remained at the 

apex. The thinner walls buckled and did not show any evidence of perma

nent deflections after having been loaded to their highest values of the 

load. Deflection calculated from linear theory showed good agreement for 

the initial shape of 4 load-deflection curves. The deflection given by 

Pogorelov's formula (2) corresponds quite well to the curve resulting from 

experiments for small values of the load. The formula, Eq. 3, was ob

tained by Pogorelov using many simplifications. One of the most important 

seems to be the ,assumption that the strain energy can be calculated for 

the unit length of the ridge which is considered as very narrow not taking 

into account the real dimensions of that area. Recent, more precise 

calculations performed by the present author confirm the result (Eq. 3) 

obtained by Pogorelov. The membrane energy in the ridge can be obtained 

solving the set of nonlinear shells equations. Then the energy of the 

whole system can be obtained in terms of the deflection and the stress 

function. 

Pogorelov's result can be checked calculating the coefficient c from the 

equation. 

(3) 
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where U is the total strain energy associated with the dimple on the shell 

surface, h - thickness of the shell, R - radius of the shell, E - Young 

modulus, w - deflection at the point of application of the load. Finally, 

it has been obtained that indeed c is almost a constant value, for 

3 
R/h = 1200 and for p* = P/E~ = 2, c = 0.174, for p* = g , c = 0.184 . 

It has also been found that the value of c is independent of the value of 

h/R. Pogorelov's value for the constant c is c = 0.19 which is a suffi

ciently close value. The maximal bending stress in the ridge area is 

defined by Polorelov 

cr 
max 

Eh ( h)I/2 
2" max (wI!) = 0.9E w R (4) 

This value of constant coefficient c' = 0.9 was compared to the more 

precise solution and the following was obtained: c' = 0.56 f 0.61 from 

cr R 
the equation c' = --m--where cr is the maximum stress obtained using the 

m 
EIWH 

above described more precise method. 

The experiments proved that the deflection patterns are symmetrical only 

when the force is smaller than a certain critical value. After surpassing 

this value the shape of the deflection becomes non-symmetrical and its 

magnitude grows rapidly. The deformed area takes the form similar to the 

triangle, quadrangle, etc. The critical force corresponding to that 

phenomenon can be found analysing the stability of the shape of the ridge 

appearing on the shell surface. Pogorelov solved this problem presenting 

this shape in the form of the equation 
.J: P (1 + P cos k 8) p « 1 
R 0 0 

where p is the mean nondimensional position radius of the 
0 

number of waves on the circumference, 8 - angle measured 

the ridge, p - a certain small arbitrary parameter p < 1. 

The following critical value for k = 3 was obtained. 

P cr 

3 
31T~ 

R 
p 

o 
,IE. 

c R 

in 

(5) 

ridge, k -

the plane of 

(6) 

In Fig. 2 this force is given by the horizontal straight line. Fig. 3, 

[12], presents the load as a function of the parameter A for a shallow 

shell with the built-in edge. He observe that for small value of A only 

symmetrical mode is possible. For larger values of A the nonsymmetrical 



deformation patterns are possible. No rapid jumps of the load were 

observed when the shell changed its configuration. 

p. 

20 / 

/ 

* 16 

12 /3 

4 8 12 16 20 A 

Fig. 3 Buckling mode as a function of A 

2.2 Concentrated force and interal pressure 

The combined effect of uniform pressure and central concentrated load was 

theoretically discussed and experimentally measured by Evan-Iwanowski, 

Cheng and Loo [14]. The typical results obtained by them are presented in 

Fig. 4 where the correlation between the critical buckling pressure qcr 

and the concentrated force Pcr acting on the shell can be observed. It is 

seen that for small values of external pressure the shell behaviour is 

similar to that for a concentrated force alone, but that as the pressure 

-increases the behaviour rapidly changes to that for uniform pressure 

alone. 

* P 

The above problem can also be solved using Eq. 3 for the strain 

PR 

Eh3 

w 
h 

Fig. 4 Typical load deflection curves for a clamped spherical shell 
subjected to a central concentrated load combined with uniform 

pressure, Loo and Evan-Iwanowski (1964) 

energy. The following relation between critical buckling pressure and the 

critical buckling force was obtained [15], 
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where 

L . .L = 1. c2 .6(1_\12) 
Pc qc 8 

31TEh3 
Pc = -R-

2E 

const. (7) 

and P, q are the concentrated force and external pressure reacting on the 

shell, respectively. In the above solution the radius of the base of the 

shell does not have the effect on the value of the critical load. It is 

obvious that this result can be applied only if a is relatively large, 

several times larger than the characteristic length, 1. The results from 

the experiments support this conclusion. The relation, (Eq. 7), (a 

straight line) compared in Fig. 5 with the results by Ta Cheng Loo and 

so!. 
Pc 

a 

2 

1.5 

10 

• 
• 
4 

2 
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Fig. 5 Correlation between critical load and critical pressure 

Evan Iwanowski [14]. The curved lines were obtained by the assumption 

that the first plastic deformation limits the movement of the ridge on the 

shell surface: The analysis of the spherical cup subjected to a local 

axisymmetric pressure load was performed by Fitch and Budiansky [8], 

(1970). The ring loaded shell was the subject of the paper by Akkas and 

Bould [17], (1971). The effect of the geometrical parameter 

(8) 

was examined using method of Fitch and Budiansky. Here H is the height of 

the cup. The parameter A is related to the previously used parameter p. 



For small H = a2 /2R, a - radius of the cup base, ~ = A. The buckling of 

truncated or complete spherical shell was discussed by Onoda [25], (1973). 

The maximum stress for a locally loaded spherical shell was calculated by 

Kao and Perrone [21], (1973) using nonlinear shallow shell equations. The 

results show the effect of the value of the radius of the small area on 

which the load is distributed r • 
o 

The application of the nonlinear theory 

shows that the linear theory gives higher stresses, (about 1.5 times 

higher than those resulting from the linear theory for wlh = 0.6 and 

r IIRh 0.5). The solution was obtained using nonlinear relaxation 
o 

method. The nonlinear differential equations were replaced by a set of 

two nonlinear algebraic finite-difference equations. Mescoll [26] (1966) 

solved the problem of the spherical shell under the concentrated load 

assuming small deformations but finite rotations using Reissner equations 

and the method of finite differences. He obtained positions of equilibri

um in the postbuckling state corresponding to positive and negative value 

of the load, see Fig. 6. Large deflections of deep spherical shells under 

1.0 

0.6 

0.2 

p' 0~--~~~~~~~~2'6 

-0.2 w/h 

-0.6 

-\.O 

Fig. 6 Load deflection curve 

concentrated force were discussed by Ranjan and Steel [22], (1977). The 

shell filled with fluid was the subject of the paper by Taber [23], 

(1982), as was the compression of the spherical shells and membranes 

filled with fluid by a rigid cylindrical intender [24], (1983). The 

solutions were obtained using bending shell theory as well as a membrane 

model where only stretching was included. The experiments were conducted 

on rubber shells (raquetballs). Iso~etric mode of displacements could be 

observed. A spherical sandwich shell under concentrated force and a 
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centrally distributed pressure was the object of the paper by Akkas and 

Bauld [27]. The critical buckling loads for clamped shallow spherical 

shell under centrally distributed pressure and concentrated load at the 

apex were obtained using perturbation technique proposed by Koiter [28]. 

The p0st-buckling behaviour was investigated using series representations 

for the Airy stress function and normal deflections. 

2.4 Dynamic application of the load 

A simplified solution to the dynamic problem can be also obtained using 

geometrical method. In the case when the load is applied dynamically and 

the displacements are the functions of time, we have to include to the 

functional T, the kinetic energy of the shell. This can be done easily if 

we notice that this· energy is almost entirely contained in the cases of 

internal value I and the ridge zone II. 

If we assume that the displacements in the deformed area are purely 

isometrical then 

2 2 
w ~ 2f(l - r 2) = 2 (f - E-) 

2R 
(9) 

a 

then 2 2Rf and 2f where dw/dt. a w w 

The stationary value of the Hamiltonian gives the following equation 

31fc Eh5/ 2 ~ ·2·· 
R (2f) + 21fR (f + 2ff) + 2Mf = P (10) 

where M is the mass of the body applied at the apex. This equation can be 

easily solved using numerical integration routine as for example Runge

Kutta routine. The above described solution is very simple. However, it 

should be considered only as an approximation which is true only if the 

assumed shape of the deflection function is correct. If the inertia 

forces of the shell have a large effect, i.e. for very fast excitation, 

this result cannot describe the real behaviour of the shell. 

2.5 Shell of positive double curvature 

The nonlinear deformation of a shell of double Gaussian curvature can be 

considered in a manner" similar to that for a sphere. An elliptical dimple 

which has the form of the original surface, but negative reversed curva

ture is observed during the experiments with the shell loaded by a concen-



trated normal force, Fig. 7. Also for this case Pogorelov obtained a 

simple result calculating the total energy as the effect of the dimple, 

adding the bending energy of the isometrically deformed area and the 

energy stored in the area along the ridge. The total strain energy in the 

shell is given by a similar simple solution. Calculating the work of the 

external force H = P • 2f and equating the variation of the fundamental T 

= U - W to zero, he found the relation between the deflection of the shell 

and the load 

P (11) 

Fig. 7 Isometrical deformations of the shell of positive 
Gaussian curvature, decomposition into elements 

The maximum stresses appear near the ridge and are the effect of bending 

in the direction perpendicular to the ridge. The stresses can be cal

culated approximately from 

Eh a = - max o 2 
(12) 

For a concentrated force acting through the rigid insert, the similar 

formula of the critical buckling force [7] was obtained. 

2.6 Shells of Revolution 

Geometrically nonlinear deformations of multilayered shells of revolution 

under the action of local loads were discussed in the paper by Grigorenko 

and Timotin [29], (1982). The shells were closed in the circumferential 

direction and characterized by a small shear stiffness. Transverse stress 
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was included. The expansion in trigometric series was used and the 

problem was reduced to boundary value problem for a system of nonlinear 

first-order ordinary differential equations. The cylindrical and 

hemispherical shells were discussed as the examples. 

2.7 Ponding of the Shell 

The problem of stability of shells of positive Gaussian curvature subject

ed to a concentrated load, internal or external pressure and an accumulat

ing ponding fluid in the depression caused by the concentrated load was 

discussed by Lukasiewicz and Glockner [38]. Critical values of the load 

were calculated using the above described geometrical method. The simple 

relations for the critical loads as well as the post buckling behaviour of 

the shell were obtained. The load curve-deflector was defined by the 

equation 

P = 11lc Eh5 / 2 (L + L) IW + 1Iq IRR w 
2 R1 R2 1 2 

- 0.175 11 Y IR1R2 w2 (13) 

where w - deflection of the point of application of the load. The maximum 

value of Pmax Pcr (a cri.tical load) can be obtained from the condition 

-06 -05 -04 -03 -02 
EXTERNAL PRESSURE 

"lYe sl.5. _pi -Q353 

o 01 02 03 04 05 ,q/Clc 
mERNAL PRESSURE 

Fig. 8 Critical load as a function on internal and external 
pressure for different fluid densities 

~ = O. The results are presented in Fig. 8. The dotted lines in this 

figure present the values of the force taking into account the first 

plastification of the ridge area. Assuming that the movement of the ridge 



over the surface of the shell is limited by the plastic deformations in 

the ridge, we obtain from (4) 

(14) 

Introducing the value into Eq. 13 we find the corresponding critical force 

which is presented in the Fig. 18 by dotted straight lines. The assump

tion that the ridge does not move after the first plastic deformation 

appears [7], is only approximate. The more exact analysis of this case 

discussed in the ~ 3.1 shows that this zone changes its position, however 

much slower than in the elastic state. 

2.8 Cylindrical Shell Under Normal Point Load 

The literature concerning the cylindrical shells under concentrated loads 

is extremely rich. However, if we consider the nonlinear large deforma

tions the number of papers is limited. Experiments performed with the 

cylindrical shells under a concentrated load proved the load deflection 

curves become nonlinear, if deflection is of the order of several thick

nesses of the shell. Then the deformation pattern corresponding to the 

small deflection linear solution (ellipse elongated in the direction of 

.the generator) changes rapidly into a new configuration which takes the 

form resembling the isometric transformation of the cylindrical surface. 

This form consists of one diamond segment of Yoshimura pattern observed 

during the experiments with cylindrical shells under compressive axial 

load accompanied by inextensionally deformed large cylindrical panels. 

The solutions to the nonlinear problems of cylindrical shells were usually 

based on the nonlinear shell equations. For example, in the paper by 

Almroth and Brogan [31] a cylindrical panel under concentrated transverse 

load was discussed and the linear buckling load was obtained. There are 

also numerous solutions using Finite Element Method, FEM., see paragraph 

(2.11). The method which can be applied in the case of analysis of very 

large deflections, based on the geometrical approach was discussed by 

Lukasiewicz and Szyszkowski [17], [32]. The main idea of that method will 

be presented here. We know that the cylindrical surface is a surface of 

zero Gauss curvature. Therefore basing on the Gauss theorem, we conclude 

that the ideally isometrically transformed cylindrical surface can be 

built only from the surfaces and planes of zero Gauss curvature. Looking 

on the deformed cylinder under the action of concentrated load (see Fig. 
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9) we can distinguish the areas of different shapes as conical surfaces, 

planes and cylindrical surfaces. The ideal isometric transformation of 

the cylindrical surface is not possible without the discontinuities of the 

surface which in real shell is prevented by its bending rigidity. There

fore the shell deforms only to a nearly-isometric form; there appear the 

areas where the deformation is not possible without the change of the 

Gaussian curvature. That leads to the change of the metric tensors which 

causes the membrane stresses in that region. That kind of region is 

called "apex" in Fig. 10 where we observe a strong double-curvature of the 

surface. The above observations are the basis for the so called "Geomet

rical Method" [40], GM, which can be considered a particular version of 

Fig. 9 Deformed shape of the cylindrical shell. 

FEM. The approach is based on Lagrangian variational principle and the 

assumption that during large deformation the shell structure deforms in a 

nearly-isometrical manner. The structure is subdivided into elements in 

which the strain energy can be calculated as a function of a small number 

of geometrical parameters. This energy is calculated for the geometrical 

boundary conditions taking into account the fact that the membrane stres-

ses produced by the deformation of the surface can exist only in the 

non-isometrically transformed areas. Thus the "library" of different 

elements can be established and the corresponding strain energy deter

mined. The method is quite general. The dynamic as well as elasto-plastic 



Fig. 10 Subdivision of the cylindrical shell into elements 

problems can be solved if we include the kinetic energy and energy of 

plastic deformations. The kinetic energy can be obtained easily if the 

deformations of the structure are known. The most important feature of 

the method is that there are no limitations as to the magnitude of the 

displacements. The details for the cylindrical shell loaded by a 

concentrated force can be found in the paper by Lukasiewicz [40]. The 

load-deflection curve, corresponding ratio A = b 1/b2 and b = b1, obtained 

numerically minimizing the total potential energy are presented in Fig. 

11. In this figure we find a load-deflection curve obtained experimen

tally for a cylindrical shell supported by rings at the ends and loaded by 

a concentrated force at the centre. The shell was made of mylar for which 

the coefficient ay/E is high. We observe a very good agreement for the 

very large deflec~ion i = 0.1 t 0.5. The results predicted by GM for the 

ini.tial small deflection show some discrepancies. However, this is caused 

by the fact that the non-isometrical deflections corresponding to the 

local effect of the concentrated load in the linear stage are not taken 

into account in the assumed deformation pattern. It can be easily 

improved adding this deflection pattern and introducing more parameters 

defining that effect. The experiments with cylindrical shells of metal 

and fiberglass reinforced plastic have been performed by Rabotnov, [34], 

(1982). The shells were fixed at the ends and loaded at the central 

cross-section by a piston with rubber gaskets. The load-deflection 

curves, as well as the deflections in circumferential direction and 

longitudinal direction were measured. The measured maximum displacements 

were in the range of w/h < 1.0. The load-deflection curves slightly 
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deviated from the straight lines predicted by the linear theory. The 

deformation of cylindrical shell local loads were measured using 

holographic interferometry by Matsumoto, Iwota and Nagata, [35]. 

Behaviour of the shell with concentrated masses under dynamic external 

pressure was experimentally measured in [36]. Stresses in a pressure 

vessel flanges near the threaded holes for studs were obtained in [37]. 

Stresses and displacements were measured in cylindrical pressure vessels 

loaded by loads applied to the nozzles, [39]. 
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Fig. 11 Load deflection diagram for the cylindrical shell 
under concentrated static load. 

2 • 9 Shallow Shell 

Large deflection of shallow paraboloid shells were the subject of the 

paper by Neng-Hing Wong, Hilario Oh and Kuo-Kuang Chen [42] who obtained 

the solution for the geometrically nonlinear shell using Ritz method. The 

results were presented in the form of diagrams for a variety of shells of 

clamped edges. The satisfactory convergence of the computations was 

observed only for shells of relatively small rise to thickness ratio (less 

than 15). 

2.11 Method of Finite Elements 

The Finite Element Method, FEM, was applied to the analysis of the stabil

ity and postbuckling behaviour of shells under concentrated loads. The 

literature devoted to the FEM is extremely rich. It is difficult to 



discuss in detail all aspects of that approach. However, we should 

mention here the papers by G. Horrigmoe and P. Bergana [43], A.B. Sabira 

and A.C. Lock [44], (1973), M.A. Crisfield [45] and T.Y. Chang and K. 

Swamiphakdi [46], (1982) where the results concerning concentrated forces 

are presented. In the last paper, the finite element formulation was 

based on the 9-mode shell element, and on the updated Lagrangian descrip

tion of the deformed state. The effect of deformation dependent loads was 

treated in an approximate manner by changing the right-hand side of the 

equilibrium equations in reference to the updated geometry. The post

buckling analysis was conducted by New-Raphson procedure with a constant

displacement length method when the limit load of the structure was 

reached. The results for the case of thin cylindrical shell segment 

hinged supported along the longitudinal edges and free along the curved 

edges and subjected to the concentrated force applied at the top were 

obtained. The other example of the application of FEM is given in the 

paper the Brendal and Ramm [47] (1980). The linear and nonlinear stabil

ity of the cylindrical panel under a concentrated transverse load is 

discussed in this paper which describes the application of the curved 

isoparametric shell element to large displacement analysis. The 

Lagrangian formulation has been adopted using the incremental - iterative 

solution procedure. The linear stability analysis performed for the 

initial position has been repeated at several advanced equilibrium 

positions on the nonlinear prebuckling path. Finally, a current estimate 

of the failure load was given. The load-deflection curves were presented 

in the diagram. The longitudinal edges of the examined panel were free 

and the curved boundaries were either clamped or simply supported i.e. in 

the latter case, the edges were not restrained from motion in the axial 

direction. The results show a large effect of the boundary conditions on 

the behaviour in the post buckling state. 

3. Elasto-plastic behaviour of Shells 

Performing the experiments with shells made of the plastic materials under 

local loads, we observe that at a certain value of the applied load the 

shell undergoes permanent deformation. The first zone which becomes 

plastic is the close vicinity of the point of application of the load. 

The dimensions of the area on which the load is distributed are the most 

important factors deciding the value the load producing first plastifica

tion. When the deflection of the shell further increases, the shell 
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deforms according to its isometric transformation. Then the local, 

strongly bent area with plastic strains appears at the distant points on 

the shell surface. The next step of the mechanism of the deformation 

consists in the motion of these zones and creation of new plastic regions 

accompanied by the unloading zone in the previously plastitied areas. 

This mechanism can be easily investigated on the example of the spherical 

shell. 

3.1 Large elasto-plastic deflections of the spherical shell 

The similar approach to that described in the previous paragraph can be 

used to examine the behaviour of the shell. We observe that if the 

deflection increases, the curvature change in the ridge area also in

creases which is the reason for the plastic deformation in that place. 

The other zone where the stress can reach the plastic limit is, of course, 

the vicinity of the point of application of the load • 
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Fig. 12 Elasto-plastic behaviour of the spherical shell. 



The experiments with the spherical shells show that the bending of the 

surface plays the most important role also during the elasto-plastic 

deflections. The mechanism of the deformations is presented in Fig. 12. 

We observe that the ridge area in which the largest deformation appears 

moves in outwards direction on the shell surface. The region which was 

before under the largest bending flattens and finally is being bent into 

the reverse direction when it becomes a part of the central isometrically 

transferred area. The G}! used before in the solution of the elastic case 

can also be easily applied here. The description of the method can be 

found in the paper by Lukasiewicz and Opalinski [51]. 

The stationary values of the total potential energy of the system were 

obtained using optimization routine. The optimization was performed with 

respect to geometrical parameters defining the shape of the deformed 

shell. The results of calculations are presented in Fig. 12, [51] for the 

shell with the following parameters: radius of the sphere, R = 500 mID, 

thickness h = 0.5 mm, Young modulus 0.8 • 105 MPa, Poisson ratio v = 0.35, 

yield stress a 
p 

200 MPa, radius of the loaded area c = 0.54 mID, which 
o 

corresponds to R/h = 1000, ap/E = 0.0025. We observe that the first 

* plastic zone appears near the point of application of the load for P 

2.0. Then the plastic zone spreads more and more as the load increases 

'but this zone is always very localized, Fig. 13. 

5.5 the plastic zone at the ridge can be observed. 

* At the load value P 

With the increase of 

the load this zone spreads outwards. As the ridge area moves, there 

remains the unloaded area with residual strains. 
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Fig. 13 The plastic zones for different values of the load. 

Leckie [49] (1967) studied the snap-through behaviour of a spherical shell 

with a uniform thickness loaded at its apex with a concentrated load 

applied through a rigid boss and obtained a corresponding limit load. The 

study was based on so-called two-moment-limited-interaction criterion 
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which allows the moment resultants and force resultants to assume their 

respective ultimate values separately. This is not justified physically. 

Recently Podovan and Tovichakchaikul [50], (1983) presented results for 

the elasto-plastic postbuckling collapse of a spherical cap under central 

point load obtained using FEM. However, the results obtained by them seem 

to be wrong or very inaccurate. The nondimensional deflection w/h cal-
* 3 culated for the non-dimensional force P = PR/(Eh ) = 12.3 should be about 

w/h = 30, (using Pogorelov's relation for elastic deflection). They 

obtained only w/h = 2.0, the progress of the elastoplastic zones presented 

does not seem to be reasonable. 

3.2 Elastoplastic behaviour of the double curved shell 

A simplified solution for an elastoplastic case can be easily obtained 

using assumption that the energy stored in the shell can be calculated for 

the unit length of the ridge and basing on the local configuration of this 

area. The results obtained in this way by Lukasiewicz and Opalinski [51] 

are given in Figs . 14 a,b where the plastic and unloaded zones are pre

sented. This simplified analysis for the double curved shell is based on 
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Fig. 14 Elasto-plastic zones in the shell of positive 
Gaussian curvature. 

the observations and results obtained for the sphere where the boundaries 

of the zones were obtained as a function of the applied load and the local 

values of the curvature of the ridge. Calculating the total energy 

contained in the elastic and plastic zones it was found that the load-



deflection relations is in the case of not very much developed plastic 

state zp < h/4 almost the same as for the elastic deformations (Eq. 2.) 

Fig. 14 a and b present the results obtained for two values of the applied 

loads. We observe that the ridge area moves in the outward direction. 

The plasticized zones move forward leaving behind the unloaded zones with 

residual stresses. 

3.4 Load carrying ability of thin shells loaded by concentrated forces 

The normal force 

The maximum limit load which can be carried by a shell can be obtained 

examining plastic failure mechanism. If we define the kinematically 

admissible field of deflection, we can obtain analytical expressions 

relating the limiting values of the concentrated loads with the shell 

geometric parameters for the corresponding plastic failure mechanism. In 

the first paper devoted to this problem by Drucker and Shield [53], 

[1959], the symmetrically loaded shells of revolutions were discussed. 

Kulikov and Khomyakov [54], (1976) applied that method to the solution of 

spherical and cylindrical shell under the action of a concentrated normal 

load Q and the internal pressure p. The material of the shell was assumed 

rigid-plastic. The problem of crushing of a tube between rigid plastic 

plates was discussed in [55]. The modes of collapse of rigid-plastic 

circular cylindrical shell not supported at the edge subjected to applied 

opposed point loads were analysed by S.R. Reid [56]. He considered the 

mode of collapse of the-cylinder to be composed of a number of 

inextensional regions separated by plastic hinges. The work dissipated in 

the region of plastic hinges was calculated as the work of membrane forces 

and bending moments on the corresponding deformation rates. Three modes 

of deformation were examined (Fig. 14). For the regions IV and V the 

inextensibility conditions were assumed. The collapse loads for each 

plastic mode were'obtained using interaction as (Fig. 14). The analogy 

with the rigid-plastic beam on elastic foundation was discussed. Author 

claims that reasonably well defined limit loads were obtained only for 

relatively short tubes when the ring-like deformation mode was applied. 

The lack of success was probably caused by the assumed collapse modes 

which do not satisfy conditions of inextensibility in the central 

cross-section. Rather the mode of deformations presented in Fig. 9 

should be applied. 

557 



558 

tSJ , , 

cETI-:::-~'~j · 
It (c.} 

o to , 

Fig. 15 The modes of collapse of rigid-plastic cylindrical shell 

3.4.3 Shallow Shells 

The paper by Dekhtyar and Tyutyunnik [57] (1974) contains the calculations 

for the limit loads for shallow shells, the middle surface of which is 

formed by a quadratic parabola of revolution and hyperbolic paraboloid 

with a negative Gaussian curvature. All the upper bounds of limiting 

loads obtained for shells of positive and negative Gaussian curvature are 

in agreement with the result for plates and shells. The results are shown 

in Fig. 16 where the hatched portion corresponds to the region of the 

parameters £ = h/R and y = fiR for which the exhaustion of load carrying 

capacity is of local nature. In the next paper by Dekhtyar and Kotova 

[58] (1980) the problem of a force concentrated at an arbitrary point of 

the shell was studied. To solve the problem, the normal displacement w 

was sought in the form of two functions usually used to describe the 

Gaussian probability distribution. Finally the limit loads were obtained 

for elliptical and hyperbolic paraboloids. 

'Fig. 16 . Collapse modes of the shallow shell 

Experimental investigation of the load carrying capacity of reinforced 

concrete ribbed shallow shells at large deflections under combined action 



of concentrated and distributed loads was the subject of the article [89] 

by Shugaev and Luydkovsky. It was shown that the local failure takes 

~lace in the zone of concentrated load application. The obtained results 

were compared with the results of calculations. The results of experi

ments with the shallow reinforced concrete shell under concentrated loads 

were presented in [79]. 

4. Optimum design 

The optimum design of shells under concentrated loads is usually performed 

in order to eliminate concentration of stress which is the result of the 

application of the local load. This can be achieved in different ways. 

The shell can easily be strengthened at the loaded place by welding 

strips, ribs or other strengthening elements. Optimum shell can also be 

achieved by a proper forming of its thickness and middle surface. The 

objective functions which are used are minimum weight, minimum volume, 

surface, minimum or maximum stiffness, maximum stability, frequencies of 

vibrations, etc. First papers in the field of shell optimisation used the 

most simple form of the condition of uniform strength 0 1 = O2 ± k = const. 

This condition together with the equations of equilibrium defines uniquely 

the shape of the shell. i.e. thickness and the shape of the middle sur

face. Assuming that the thickness of the shell is constant, its shape can 

be defined using membrane equations of equilibrium and the condition of 

minimum volume 

eV = he fsii ds = 0 

which gives the equation of minimum surface of the shell. In the case of 

shallow shells this equation can be simplified to 

~z = p/hoo 
where p(x,y) is the load distribution, and z coordinate of the middle 

surface. For shells of revolution of constant thickness loaded by a 

concentrated force and constant pressure simple solution can be found, 

[2].If the more general condition is used as for example 

0 2 = 0 2 - 0 0 - 0 2 = k2 = constant r 1 122 
it is possible to'use the objective function for further optimisation, to 

achieve, for example, a minimum volume of the shell. Lukasiewicz [59], 

(1969) obtained in this way the shapes of the symmetrical shells of 

variable thickness loaded by a concentrated force and external or ~nternal 
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Fig. 17 Shapes of shells of minimum weight subjected to the single 
force P and the pressure Po 

pressure, Fig. (15). The shape of the shell in the vicinity of the place 

of application of the load takes the form resembling the conical shell 

with the thickness decreasing with the distance from that point. The 

paper by Agafonov is devoted to the design of a structurally orthotropic 

cylindrical shell [66], (1979). Grigorenko [67] considered shells of 

revolution of variable stiffness (1973). Thevendran [68], (1982) 

considered the maximum weight design of a spherical shell under a concen

trated load at the apex. The finite element was used to discretize the 

design parameters. The nonlinear minjmization problem is solved using 

optimisation routine. In this paper, the bending state of stress was not 

eliminated. Maksimenko [69] examined the problems of determining the 

minimum weight of discretely reinforced cylindrical shells under the local 

loads applied to curvilinear contour. The number of ribs in both 

directions and their stiffness was different with the regular and 

irregular arrangement. The problem was solved by the method of finite 

differences using the shallow shells equations. As the example a 

cylindrical shell reinforced with eight stringers and rings was discussed. 

The shell was loaded with four longitudinal symmetrical compressible 

forces. It was indicated that the sections of the stringers located far 

from the load application had almost no effect on the stress state of the 

shell. A similar problem was also discussed by Drugach, Polyakov and 

Maksimenko [70]. The stress distribution in the area where the 

cylindrical shell is supported were calculated in the paper by Modestova, 

Simakin, and Samoilenko [71]. This area was reinforced by increasing by 

steps the thickness of the shell. The results were compared with 

experiments. Optimum design of shallow shells and plates taking into 



account the physical nonlinearities was the subject of the paper by 

Bocharev and Krysko [70] (1981). The thickness of the shell was obtained 

by a variational Vlasov-Kantorovich method. Two partial differential 

equations were replaced by a system of two ordinary differential equations 

with variable coefficients which were solved using finite differences. 

The process of the design was performed by successive iterations. The 

optimum design of circular shallow shells with respect to stability was 

presented in an interesting paper by Plaut and Johnson [73] (1984). The 

objective function was the maximum of the critical buckling load under a 

uniformly distributed load or a concentrated load at the center. The form 

of the middle surface was varied for clamped and simply supported boundary 

conditions. The set of nonlinear differential shallow shell equations 

were solved for primary equilibrium state under the applied load. Then 

the small vibrations about this state were examined. The critical load 

was found when the vibration frequency decreased to zero. The optimality 

conditions derived by the calculus of variations was used to improve the 

shell form by successive iterations. The form of the shell and the 

deflected shape at a critical concentrated load for clamped edge and A 

8.5 are presented in Fig. 18. 

~ 
........ _----,..,...., 

(0) (b) 

Fig. 18 Shell <form and deflected shape at critical concentrated load 
for clamped edge, A = 8.5: (a) spherical form; (b) optimal form 

The shape of the shell corresponding to the given stress was determined by 

Alpe, Bozzo, Corsauega, and Del Grosso, [74]. The shells rectangular in 

plane on point-like supports were considered. The solution was obtained 

using finite differences method. 

The problem of the optimum design of the attachment introducing the load 

into the spherical shell was discussed by Lukasiewicz [76,77] (1974). The 

shape of the attachment was obtained by solving the equations of continu

ity of strains allowing the line of the contact between the shell and 

attachment for the assumed distribution of constant stresses. The stress 

distribution was chosen in such a way that the shell was uniformly loaded 
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along the line of contact with the attachment. Similar problem was 

discussed by Popov and Uzhva [78] (1981). The concentrated normal force 

was introduced into the shell by means of a designed rib of variable cross 

section. The method of nonlinear programming was applied. Optimisation 

of dynamic effects in shells of revolution under axisymmetric dynamic 

force was discussed by Burak and Domanski [75]. The example solved was a 

circular cylindrical shell under dynamic application of the symmetrically 

applied load. The distribution of that load was optimised in order to 

minimise the kinetic energy of the shell. 

5. Contact Problems 

A very important domain, but not very well explored, are the contact and 

impact problems. The load is always applied to the shell by means of 

another body which can have just an arbitrary shape and properties. The 

solution of the contact problem requires the determination of the form and 

rise of the contact region, usually small in comparison to the dimensions 

of the shell, and distribution of the contact forces. During impact the 

contact forces are transmitted in time depending on contact zones. Shell 

contact problems have not been yet extensively studied as compared to 

solid body contact. Because of large deflections and variable boundary of 

the contact zone these problems are essentially nonlinear. Updike and 

Kalnins [80], (1972) studied contact between an elastic spherical shell 

and a rigid plate. A comparison of the results of linear and large 

deflection shell theory was given in this paper as well as the important 

question of the effect of transverse shear deformations was investigated. 

A similar problem was studied by Kitching, Houlston and Johnson [81], 

(1975) and a good agreement between experiment and large deflection shell 

theory was found. Tielking and Schapery [82], (1981) studied a static 

contact of a toroidal shell (a pneumatic tire) with a rigid plane. The 

linear and nonlinear solution was obtained using discrete Fourier trans

form. The contact pressure between two co-axial cylindrical shells under 

axisymmetrical loads was investigated by Paczelt and Herpai [83]. (1977). 

The problem was discretized and reduced to quadratic programing problem. 

Variational formulation of a contact problem for linearly elastic and 

physically nonlinear shallow shells was presented by Lvov [84]. The author 

reduced the problem to the minimizing a Lagrange functional in a set of 

allowable displacements. No example was given. The same author studied 

contact problems of shell creep [85]. The methods of the solution of 



contact problems in the theory of plates and shells were presented by 

Mossakovskii Gudramovich and Makeev [87], (1978) and by Grigoluk and 

Tolkachev [86], (1980). Impact-contact problems of thin elastic shells 

taking into account geometrical nonlinearities within the contact region 

were the subject of the paper by Stein and Wriggers [88], (1982). The 

paper used FEM formulation. The example contained the solution for a 

spherical shell impacting a rigid plane. The comparison of the results 

obtained from linear and nonlinear approach was given. Several papers 

were devoted to the analysis of stresses in the saddle supported 

cylindrical vessels. 
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Summarv 

Plastic collapse mechanisms involving axial deformation of metal circular 
tubes provide efficient means of absorbing kinetic energy following' 
impact. Experimental data concerning a variety of these mechanisms 
including axial buckling, tube inversion, axial splitting and the crushing 
of tubular rings are described and discussed. Areas where further 
theoretical work is required are identified. 

The design of metal shell structures and structural components capable of 

sustaining predictable loads under conditions of gross plastic deformation 

is one of the prime means of improving the crashworthiness of vehicles 

[1,2]. In addition, such components find extensive use in other areas 

where one needs to mitigate the effect of impact/impulsive loading, for 

example in the design of pipe-whip restraint systems used in the nuclea~ 

industry [3j. Comprehensive reviews of the properties of many of these 

devices are to be found in [4,5] whilst the recent reviews by Reid [6,7] 

pay particular attention to the characteristics of metal tubes, both 

circular and non-circular. 

Thin--walled circu:j.ar tubes (D/t > 20, where D is the mean diameter of the 

tube cross-section and t its wall thickness) compressed axially provide a 

number of particularly efficient energy absorbing mechanisms. These 

include axial buckling, inversion and axial splitting, the last two 

usually requiring the use of a radiused die on to which the tube is 

compressed. The first two modes of deformation have received considerable 

attention in the literature and formulae have been produced which enable 

the operating load and energy absorption capacity to be estimated. 

However rigorous analyses of these gross deformation fields have yet to be 

produced. Axial splitting of circular tubes has been identified as a 
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failure mode, for a tube undergoing external inversion (8]. It has however 

been investigated and developed recently as a primary energy absorbing 

mechanism. Experiments will be described in which each of these three 

primary axial deformation modes have been produced using the same tube 

stock so providing a direct comparison between them. 

A further example will be provided of a device which uses metal tubes of 

circular cross-section whose response is strongly influenced by the axial 

loads generated in it during gross deformation. This device has been 

termed a tubular ring [9] and consists of four lengths of circular tube 

welded together at mitred joints to produce a "square torus". The ring is 

crushed between flat plates in a direction perpendicular to its plane and 

exhibits significantly greater energy absorbing capacities than other tube 

configurations loaded laterally. An experimental and theoretical 

treat.ment of an axisymmetric toroidal shell undergoing the same type of 

loading has been produced recently by Sugita [10]. Both of these studies 

show that the improved performance stems from the axial (or 

circumferential in the case of the toroidal shell) stresses generated by 

the mut.ual constraint between the neighbouring elements. 

Attention will be concentrated upon the quasi-static, large deformation 

response of the various components. However reference will be made to the 

influence of dynamic effects and some data provided on the major changes 

produced by impact loading. In the main the paper provides an account of 

experimental data and observations although, where appropriate, available 

theoretical models are described and applied and suggestions are made 

regarding areas where further work is required. 

2. Circular Tubes Under Direct Axial Loads 

2.1 Experiments and Results 

Seamless mild steel tubes, 50.8 mm outside diameter and 1.6 mm wall 

thickness, were used in the experiments conducted using an Instron 1185 

universal testing machine at a cross-head speed of 0.167 mms-l . All the 

specimens were" of 100 mm length. The buckling mode was produced by 

compressing a tube specimen axially between two flat plates. The 

inversion and splitting modes were produced by compressing nominally 

identical specimens on to a lubricated die. The di fferent modes were 



generated by using hardened dies of different fillet radius. The yield 

stress, 00' (or plane strain flow stress) was measured by performing a 

lateral compression test [11] on a tube of 100 rom length. This provided a 

value for 00 of 732 N/rom2 . 

2.1.1 Axial bucklirrg 

Fig. 1 shows the load-compression characteristic of the test and the 

specimen is also shown in the inset. The axisymmetric (concertina) mode 

of buckling 

fluctuation 

compression 

compression 

occurred. A mean load of 80 kN, 

having a peak-to-peak amplitude 

possible was 70 rom after which 

resistance in excess of 500kN. 

undeformed, length at the end of the tube. 

2.1.2 External inversion 

was obtained with a load 

of 45 kN. The maximum 

the specimen produced a 

There was a straight, 

Fig. 2a shows the load--compression curves from the inversion tests. With 

dies of radii 4 rom and 6 rom, inversion was accomplished successfully. 

After an initial transient phase during which the leading edge rotates 

through 2700 , the inversion load achieved an essentially constant value. 

Wi th a 10 rom radius die, the tube flared and cracked. Wi th a 3.2 rom 

radius die, the tube inverted but the leading edge of the tube pressed 

against the tube. The consequent increase in resistance to deformation 

resulted in this tube buckling. Fig. 2b shows the deformed specimens for 

the dies of fillet radius 10 rom, 6 rom and 4 rom. 

2.1.3 Axi~§QJitti!llf 

A tube identical to the one which cracked in the inversion test was 

compressed on to the 10 rom radius die. The tube flared and cracked at 

five locations around the circumference. The cracks did not appear 

simultaneously. - However, only two cracks propagated and three stopped 

within 5 rom. It is interesting to note, however, that the two propagating 

cracks bifurcated successively to produce a total of five cracks. The 

cracks realigned and were propagating axially again at a compression of 

approximately 60 rom. The other splitting specimens each had four saw cuts 

of 3 rom depth introduced symmetrically around their circumference. Cracks 

started from the tips of these stress raisers and the strips so formed 

cur led up as the tubes were compressed on to the dies. The strips were 

also flattened in the circumferential direction in the bending process. 
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Fig . l. Load-deflec tion curve for axial buckling tes t. Inset shows deformed 
specimen. 
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Fig.2(a) Load-deflection curves for external inversion tests. 

Fig.2(b) Deformed inversion specimens for b=lOmm, 6mm, and 4 mm (left to 
right) 
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Fig.3. Load-deflection curves for splitting and curling tubes. 



The load-compression curves for these tests and the one involving the tube 

without initial cuts are presented in Fig. 3. The cur ling strips made 

contact with the tube when they completed one convolution, the load 

slightly increased at this point, (A in Fig. 3) and decreased again. 

However, after this instant, i.e. strips completing one convolution, the 

load-deflection curves hardened, the slope being larger the smaller the 

die radius. At .points marked B, the strips came into contact with the top 

plate, first to be straightened at the base and then the curls themselves 
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0 
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Compression,mm 

No stopper plate 

Curls contact 
top plate 

Stopper plate 3 } 
--- 2mm 

stand off ---- mm 
--5mm 

70 80 90 100 

Fig. 4.Effect of curl-stopper plate at various stand-off distances. 

were compressed beyond point C. These test results are quite typical of 

the basic splitting mechanism more details of which can be found in 
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[12] . In terms of performance as an energy absorber, an improved 

arrangement has been devised. To illustrate this. tests were conducted 

using the 6 mm die and identical tube specimens but fixing a 

"curl-stopper" plate at a certain stand-off distance, s, from the surface 

of t,)e die. Essentially, this plate prevents the strips from curling and 

forces them to move radially as the compression progresses. Fig. 4 shows 

the load-deflection curves for different values of s. It may be noted 

that in t.he two larger spacing tests the strips developed a wavy pattern 

at their edges (see Fig. 4(b)). This decayed towards the centre of the 

strips. The ampli t.ude of t.hese waves (peak-to-peak) was equal to sand 

the wavelength corresponded to t.he distance between peaks in the 

load-compression curves. Wit.h a 2 mm st.and-off no such waviness was 

observed. The deformed specimens whose load-compression characterist.ics 

are shown in Figs. 3 and 4 can be seen in Fig. 5. 

(a) 

( b) 

Fig.5. Axial split.ting specimens. 
(a) Free t.o curl. Left to right b o- lO mm,6 mm,4 IIDl1jb=10 mm, no jnitial 
cut.s 
(b) Curl st.opper t.ests, b=6 mm. Left t.o right., s=2 mm,3 mm,5 1IDl1. 



2.1.4 Comparison of mechanisms vis a vis energy absorbin~ capacity 

A summary of the principal features of the test results is given in Table 

1. The mean load calculations are accurate to 5%. The similarities and 

differences in the energy absorbing mechanisms will be discussed below but 

their global effects are evident in the data presented in Table 1. The 

two modes which do not involve fracture possess a high mean load 

reflecttng the efficient mechanisms consisting of circumferential 

stretching and axial bending about circumferential hinges. The stroke or 

effective crushing length is of the order of 70% of the tube length. ~'or 

the spl itt ing mechanism the lower mean loads are offset by the increased 

stroke of 95% resulting in comparable energy absorbing capacities for' the 

smaller die radii. Particular benefits (e.g. an essentially constant 

steady state force) accrue from the use of the curl-stopper plate which 

actually provides a device with comparab Ie if not better performance than 

the ot.her two mechanisms and allows for a degree of tuning in the 

performance of t.he component. 

L~l~J 

Sununarv of the axial tube compr:.§ssion tests 

SPECIMEN DEFORMATION MEAN LOAD COMPRESSION ENERGY 

NUMBER MODE (kN) (= stroke %) ABSOHBED (J/mm) 

1 axial buckling 80.0 70 56 

2 inversion b=4mm 85.0 66 56.1 

3 inversion b=6mm 80.0 70 56 

4 splitting: curls 

form b=4mm 60.0 95 57 

5 -ditto- b=6mm 42.5 95 40.4 

6 -ditto-- b=lOmm 30.0 95 28.5 

7 splitting: cur Is 

prevented s=5mm 50.0 95 47.5 

8 -ditto- s=3mm 52.0 95 49.4 

9 -ditto- s=2mm 52.5 95 49.9 
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2.2 Discussion of deformation mechanisms and comparison with theoretical 

models 

Both axisymmetric buckling and external inversion involve a combination of 

and interaction between meridional (axial) bending and circumferential 

stretching. Additionally for inversion using a die one should make some 

allowance for the effects of friction. Much has already appeared in the 

literature on these two mechanisms and so, in the main, attention will be 

drawn to areas which would benefit from further study. 

2.2.1 Axisymmetric buckling 

Abramowicz and Jones [13] have provided a comprehensive review and 

substantial data concerning both axisymmetric and non-axisymmetric 

buckling modes. They re-worked the rigid-plastic analysis due t.o 

Alexander [14], the essence of which is contained in Fig. 6(a). The 

buckling process is assumed to take place in a section of length 2H, and 

to consist of a set of three stationary (relative to the material) plastic 

hinges separating two 

circumferential stretching. 

outward moving portions which undergo 

Common to much of the current work in the 

analysis of crushing structures, this kinematic field is used to calculate 

the mean crushing force, PB' in terms of the parameter H defining the 

extent of the buckling region. The relevant value of H and consequently 

the value of PB are determined in terms of the material properties and the 

geometry (R and h) of the tube by minimisation, invoking a global minimum 

work hypothesis, to give 

and 

20.79 (2R/t)H + 11.90 

1. 76 (t/2R)U 

where Mo = 00t2/4, 00 being the plane strain yield stress. 

(1) 

(2) 

For the above experiment, equations (1) and (2) give PB = 59.6 kN and 

H = 7.8 rom. Experimentally H = 7.4 rom approximately but PB = 80 kN. 

This significant underestimate is fairly typical of the predictions of 

equation (1) and was ascribed by Abramowicz and Jones to the assumption 

that the convolu~ions flatten into discs as shown in Fig. 6(a). Primarily 

because of the effects of strain hardening the convolutions remain and an 

approximate analysis gives an effective crush length per convolution, be' 

given by 



Se/2H = 0.86 - 0.568 (t/2R)~. (3) 

Using this reduced crush length instead of 2H, as assumed in the Alexander 

analysis, produces a value for PB of 78.6 kN, much closer to the 

experimental value. 

Sloges In 

buckling -
proces$. 

i 
~~R~I 

I 

I ! 

I Hinges (..~" . Ij 
I . 

p 

(a) 

End shortening 

(b) 

Fig.6. (a) Axi-symmetric axial buckling collapse mechanism due to 
Alexander [14] 

(b) Relationship between generator shape and shape of 
load-deflection curve for .axially symmetric buckling mode 
(adapted from [16]) . 
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Equation (3) results from an analysis of the geometry of the plastic 

"hinge" region involving the effects of strain hardening. The analysis, 

taken from an earlier paper by Abramowicz [15], demonstrates the 

significant effect that strain hardening can have on the geometry of a 

structure undergoing gross plastic bending deformation. Similar effects 

have been analysed in other problems involving regions of intense plastic 

bending by Reid and Reddy [16). The important point to note is that the 

effects nf strain hardening show themselves not only in enhanced values 

for the yield stress (a feature normally accounted for by the use of a 

flow stress or by estimating a mean strain level appropriate to the 

process) but also in local geometry changes which can have significant 

effects on the loarls involved and the way in which t.he load vades during 

progressive deformation. 

The t.heory presented by Abramowicz and Jones provides a good method for 

esqmating the mean crushing load and the stroke of an axially buckling 

tube even in the non-axisymmetric range. However, a complete theory for 

predicting the shape of the load-deflection curve is still wanting. The 

theory as presented gives no estimate for the amplitude of the oscillation 

of the load about the mean level let alone the shape of a typical cycle of 

load. The variation in load shnwn in Fig. ] shows a double wave structure 

within each portion of stroke lie" Fig. 6(b), adapted from the interesting 

article by Allan [17], gives an impression of the variation with stroke of 

the shape of the generator of an axisymmetric buckling tube. These 

observations are consistent with those made in t.he present t.est. The 

waves are lai.d down in a manner which clearly does not have the symmetry 

or the simplicity of the model suggested by Alexander. Slight inward as 

well as the dominant outward movement of the shell is not.iceable as indeed 

it was in the cylinder tested 

Several factors suggest that. an exploration of' the analogous 

beam-foundation problem may provide a useful step towards understanding 

this complex problem. In this context the papers by Reid [18] and fun and 

Kyriakides (19) may prove useful although it is clear that any successful 

theory would req~ire both large beam deflections and strain hardening to 

be included in the formulation. 



2.2.2 External tube inversion 

Several authors [8,20--23] have analysed both external (as depicted in 

Fig. 2) and internal inversion. An estimate of the steady state inversion 

load can be made using the principle of virtual work assuming a 

deformation field (see Fig. 7) in which the tube \'1all undergoes axial 

(meridional) bending at A, the point of contact. with t.he die, 

circumferential stretching in the toroidal region and unbending at B. 
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Fig. 7. Comparison between theory and experiment for ext.ernal tube 
inversion 
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Allowance can be made for the effect of friction by estimating the contact 

pressure, using Coulomb friction and treating the tube-die interface as a 

tangential velocity discontinuity. The applied force P can be estimated 

by equating its rate of working with the sum of the rates of energy 

dissipation in the three principal mechanisms, bending, stretching and 

interface friction. It is assumed that the material is rigid perfectly 

plastic, that there is no interaction between membrane force resultants 

and bending moments, that the contribution from circumferential bending is 

negligible and that the interface pressure is given simply by p:=No/r2 

where No=oot is the membrane yield force per unit length. 

In general the rate equation gives 

(4) 

where Ne and N¢ and the circumferential and meridional membrane forces and 

ce and c¢ their respective strain rates, A is the surface area of the 

part-toroidal shell into which the cylinder has been deformed, 1 is the 

length of the hinges at A (and B if ella > 11), A* is the contact area 

between the shell and the die and v=voR/a is the local tangential velocity 

of the shell over the die surface. 

Using the Tresca yield criterion and associated now rule with o¢<p<O<oe 

(which implies that c¢ = -ce and thickness, t, is constant) and 

ce=(vsin¢)/a, the first term reduces as follows, 

since a 

P 

211RNovobsin¢ de!> 
a 

R + bCl-cos¢) and putting ao a(eIlo)' Thus we have, 

(5) 

(6) 



for O<~<rr/2. For rr/2<~o<rr the upper limit of the integral is set at rr/2. 

For ~o>rr the tube has passed hinge B and equation (6) is replaced by the 

steady state equation 

2rrRNo [lnO + 2b) t + tJb Jrr/2cos~ d~] 
It + 2b a o 

(7) 

As shown in Fig. 7, these equations provide a reasonable representation 

for the transient and steady state load sustained by specimen ~~ in Table 

1. A value of 732 N/mrn2 has been used for 00 together with ~=O.2. Also 

included in Fig. 7 is the initial elastic response derived using the 

classical ring edge load solution for a circular cylinder [24]. The dip 

in the experimental curve and the change of slope corresponds to the 

formation of the lip visible at the leading edge of the invert.ed tube, the 

reduction in load being associated with circumferential unloading. In 

this region equation (6) simply shows a change in slope as circumferential 

stretching gives way to bending at B. 

There is an interesting st abili ty problem associated with the transition 

from forming the toroidal shell to the development of the hinge at Band 

subsequent steady state inversion. As with the axial buckling problem, 

whilst the technological theory described above (which itself is a minor 

variant of those found in the literature) provides estimates of PI which 

are suitable for design purposes, it would appear that a full 

understanding of the st.ability problem referred t.o above would only result 

from more sophisticated analyses than. the kinematic methods which dominate 

the literature. Again one would expect that st.rain hardenin1. would play a 

significant role given the fact that rrb is of the order of the length of a 

typical plastic "hinge" in a real shell. The assumption that all the 

bending is concept.rat.ed at A and B may therefore mask a major feature of 

the stress field which controls these more detailed features of the 

inversion process. Calladine has discussed this in the context of 

free-tube inversion elsewhere in these proceedings. 

2.2.3 AxiaLS.J>lit.!:ipz 

The analysis of the mechanism of tube splitting is at a preliminary stage. 

Reference [12] contains a description of circular tubes (with and without 
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initial slots cut int.o the leading edge) being split by compression on to 

dies of various radi i. The results shown in Figs. :~ to 5 convey the 

qualit.ative features of these tests including t.he effect of using a curl 

stopper plate. The latter is a particularly useful modification to the 

basic splitting and curling mechanism since it removes the hardening 

characteristic of the load-deflection curve. This results from the 

increased frictional contributions and addit:ional plastic deformatlon 

which occurs when the curls are forced to reduce in radius as they coil 

following point A in Fig. a. 

1 f no slots are cut into the leading edge of the tubes t.he experiment.al 

evidence [12J is that a characteristic number of fractures is produced in 

t.he st.eady stat.e. The five fract.ures produced in the specimen compressed 

on to the 10 mID radius die provides a typical example of this, the steady 

st.ate being achieved following a crack init.iation stage and a series of 

bifurcations. The linking of the number of fractures to the material 

properties requires explanat.ion but it is relat.ively unimportant. from t.he 

point of view of energy absorption and indeed it would be preferable to 

remove t.he load fJuctuations associated with this transient phase by 

pre-trigger ing a certain number of cracks. One practically important 

feature of the characterisUc number of cracks for a !~iven tube is that it. 

provides an upper limit on the number of fractures that can be maintained 

in the tube. Attempts to exceed this number usually result in a number of: 

the cracks not propagating. A simple minimum energy argument has 

est.ablished that a bound can be placed upon the number of fractures 

initiated [25J. 

Since five cracks were produced in the un--t.rifl)','ered tube, four slots were 

cut into the remaining specimens. This creates a situat ion simi lar to 

that examined by Strange et al [26] who performed splitting and curling 

tests on square tubes of aluminium and mild steel, the deformation being 

achieved using contoured dies. In earlier work (referred t.o in [2(1) the 

mechanisms had been achieved by compressing tubes with sawcuts at each 

corner on to a flat plat.e. strange et. al [26J developed a rate equation 

for the latter situation which contained contributions to the energy 

dissipation rate from plastic bending, fracture and friction. In this the 

contact force between the tube walls and the plane was relatively easy to 

define and locate. An interesting discussion was provided of the role of 



strain hardening in the deformation of the curled plates although these 

effects were ignored in deducing quantitative information from the model. 

It has been noted that in the tests performed that meridional bending, 

circumferential flattening and crack propagation occurred. Incorporating 

these into a rate equation for splitting and curling leads to 

(8) 

I"lhere b is the die radius as before, n is the number of' fractures and Gc 

is the fracture touglmess (approximately lOOkJ/m2 for mild steel! of the 

material. Wf is the rate of dissipation of energy by friction and this 

clearly depends upon the nature of the contact between the strips and the 

die. Using the model of ref. [26J, Wf=J.IPs V. If the resultant reaction 

force on each strip is S and this is inclined at an angle 0: to the 

hOI'j.zontal, then Wf=nJ.lSv/(l+J.I2 )Y.!=l.lPs v/sincx(1+J.I2 )Y.!. Thus equation (8) 

gives 

r Rrt + t 1 G t ~rrNo l4b 4R' + n c 
(9) 

l-J.l/sino:( 1 +/.I2)h! 

The case assumed by Stronge et al corresponds to 0:=1T/2+<P where tan<P"/.I and 

the denominator reduces to 1-/.1. The estimate is clearly sensitive to both 

/.I and 0:. In l121 it is suggested that 0:=1T/4 is a reasonable first. 

eshmate representing the direction of the resultant for'ce. For a 

different batch of mild steel tubes (oo=800N/mm2) splitting into twelve 

strips, /.1=0.2 provtded a good estimate for 1's' In the present tests, Fig. 

S shows that a higher value of approximately 0.45 is required to match the 

experimental data. This probably reflects the more severe loading 

conditions at the edges of the four strips compared with the case when 

twelve strips are produced. 

The curl prevention tests involve both extra bending plastic work (t/4b is 

replaced by t/2b in equation (9)) as the strips are unbent and, more 

problematical, extra frictional dissipation. The latter presumably leads 

to a modification of the die contact force distribution which requires 

further study. The addition of the extra bending term int.o equation (9) 

results in an estimate of 60 kN for the three curl prevention tests. To 

summarise, the analysjs of curl split.ting is st.ill at an elementary stage. 
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Consideration of the bending moment distribution in the curls, as outlined 

in [26], leads to the conclusion that strain hardening again plays an 

important role in controlling the deformation field in the bending 

regions. 
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Fig.8. Operating loads for tube splitting and curling compared with 
predictions of equation (9) and operating loads for curl-stopper tests 
using a 6~ die· radius. 



2.3 Effects of loading rate 

The initial yield stress of mild steel increases significantly with strain 

rate and this is reflected in the operating loads of energy absorbing 

devices whose behaviour is dominated by plastic deformation. The 

operating loads, PB and PI, axial buckling and inversion respectively are 

each increased under dynamic loading conditi ons. Abramowicz and Jones 

(13) suggest a dynamic enhancement factor, m, given by 

[ 
0.25V ]1/3.91 

m = 1 + 6844R {O.86-0.568(t/2R)*} (10) 

for axi-symmetric axial buckling, where V is the impact speed. This makes 

allowance for the fact that the strain rate enhancement reduces for large 

strains. A similar factor applled to the inversion tube dat.a produces 

results consistent with the experimental data. 

Stronge et a1 [26] estimated a factor of 2.5 to 3 for mild steel square 

tubes. This was partly ascribed to strain rate enhancement of the yield 

stress and partly t.o increases in the value of /.I.. The results of Reddy 

and Reid [12 J indicate that where a larger number of fractures are 

produced (say eight to twelve) t.he operating force may not differ 

significantly from the quasi-static value. It should be noted that in 

[12] dynamic forces were measured directly whereas in [26] they were 

estimated from energy considerations. The result in [12J may not be too 

surprising since the increase in flow stress result.ing from increasing the 

strain rate is often accompanied by a reduction in the strain to fracture 

which would be reflected by lower dynamic Gc values. It is wort.h pointing 

out that Thornton and Dharan (27) report that the flow stress of an 

aluminium magnesium alloy foam reduces under high rate loading. They 

state that "notch sensitivity increases with increase in strain rate, and 

so the strength of the foam would be decreased." Where fracture is a 

significant mechanisms in the deformation field, caution should be 

exercised in predicting the influence of increased strain rate. 

587 



588 

3. Tubular Rings 

3.1 Experimental data 

Fig. 9(a) shows a typical tubular ring. It is fabricated from four 

lengths of mild steel tube (D=50.8mm, t=1.6mm) welded together at mitred 

joints. The behaviour of single components of this type and multilayered 

systems has been described by Reid et al [9]. Fig. lO(a) shows the 

quasi-static load per unit leng"th versus deflection curves for a series of 

single elements of different side lengths, W, compared with a single 

length of tube (curve 1) under lateral compression between flat plates. 

The interaction between the tubes in the ring (which stems from the mutual 

constraint. at the mitred joints which prevents t.he warping shown in Fig. 

9(b» clearly produces a dramatic increase in the energy absorbing 

capacity of the tubes. Fig. lOeb) and (c) shows that t.he initial collapse 

loads and the energy absorbing capacities per unit length arrange 

themselves in a hierarchy of efficiency with an optimum corresponding to a 

side length of approximately 114 mm (central hole of side 13 mm). 

( b) 

Fig. 9. (a) Tubular ring (w=152.4mm) before and after lateral compression 
(b) Warping of edge of tube cut at 45 · to axis following lateral 

compression. 

3. 2 p~f.9rmation me£!L'!!.Ij.J!J!I~ 

As descdbed in [9], as the tubular ring is compressed laterally, the 

warping constraint generates axial stresses and in-plane moments. These 

result. in several features in the history of deformation. Fig. 11 shows 

the state of a specimen of side W=127 mm (curve 5 in Fig. 10 (a» at 
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(10) (12) (15) 

Fig.II. Stages in the deformation of a I27mm tubular ring specimen. 



approximately 2.3 mm deflection increments from the undeformed state (1). 

Stage 2 represents the initial collapse state (deflection, S~2.8 mm) which 

occurs at a load of 27.8 kN. As is evident from stages 2 and 3 the lack 

of deformation on t.he inner and outer peripheries reveals t.hat the 

collapse mechanism is localised close to the upper and lower generators 

which are in contact. with the loading plat.ens. This t.ype of collapse 

mechanism and the consequent enhancement in collapse load are reminiscent 

of the coLlapse of braced metal tubes [281. In this case the braC'ing 

results from the pinch effect produced by the in-plane bending moments as 

described in a d:lfferent context. by Calladine [29]. 
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The outer generators of the tube go into a tensile state whilst the inner 

generators are in compression. Eventually the inner generators buckle and 

a form of internal inversion occurs as is evident In the later sta~es of 

the deformation shown in Fig. 11. 

3. 3 TheQ!:et i ~!'!.Ll!!Qg~~1! 

The increase .i.n t.he collapse load perlllit length shown in ~'i g-. lOCb) is 

consistent with the predictions of simple upper bound calculations similar 

to those found in [28] apart from the existence of a local maximum. As 

yet no large deflection analysis for the tubular ring has been formulated. 

Sugita [IO] has produced an Interesting- comput.ational technique for the 

axisymmetric deformat ion of toroidal shell loaded laterally between flat 

plates. This is based on an incremental Rayleil{h-llHz method in which the 

meridional curvature distribution is approximated by a trigonometric 

series. Larf{e deflections and the effect.s of stra:in hardeninp; are 

included in the analysis which shows good agreement with experiments. In 

these experiment.s on toroidal shells there IS some evidence of 

non-axisymmetric (local buckling) behaviour. Recent calculations (see 

Fi~. 12) performed by Sugita [30 J aimed at investigat.:inl, the behaviour of 

toroidal shells for small values of the central hole radius (ro in Fig'. 

12) do not show the local maximum in the collapse load or indeed any 

reduction in t.he energy absorbing capac] ty per unit leng-t.h. [t seems, 

clear therefore that the observed phenomenon is due to the onset of local 

buckling at an early st.age and hence to non-a'(isymmet.ric behaviour. This 

is currently under investigation as is the general phenomenon of the onset 

of local buckling in toroidal shells. 

A full underst.anding of the performance of metallic impact cneq,'Y 

absorbing components depends upon the ability to analyse large deflection 

plastic deformat.ion mechanisms of shells. In t.his paper emphasis has been 

placed upon those mechanisms which result from axial loads applied to 

circular tubes. The resulting modes of deformation gener-aUy involve 

local, intense regions of bending and stretching. Biaxial strain fields 

are produced and iII many instances st.rain hardening plays a significant 



role both :in controlling the force levels "involved as \'Iel1 as the local 

geometry ill the deforming region. Whilst simple kinematic analyses do 

provide formulae which are useful for design purposes it is clear that. 

there are many aspects of the deformation mechanisms which require more 

det.ailed analysis. 
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Summary 

Experimental and theoretical studies of thin circular, square 
and rectangular plates subjected to impulsive loading are des
cribed. The range of interest is that where permanent deflec
tions are large compared to the plate thickness. Experiments 
have been carried out on a ballistic pendulum using sheet 
explosive to provide the loading: displacement-time histories 
were measured using a light interference device which is 
mounted on the pendulum. Experimental results are compared to 
theoretical predictions based on the assumption of rigid-visco
plastic behaviour. A mode approximation technique was used in 
the theoretical model: membrane effects were considered pre
dominant, and the mode shape is updated as the geometry of the 
plate changes during deformation. 

INTRODUCTION 

The deformation of thin plates subjected to large impulsive 

loads is a classical problem in plastic structural dynamics. 

Experimental studies have been reported by Witmer, Balmer, 

Leech and Pian (1), Florence (2), Jones, Uran and Tekin (3), 

Wierzbicki and Florence (4), Duffey and Key (5), Jones, Griffin 

and van Druzen (6), Bednarski (7), Jones and Baeder (8), Ghosh 

and Weber (9), Bodner and Symonds (10), (11) and Nurick and 

Martin (12). A number of theoretical studies have also been 

reported, covering the range of analytical approaches, finite 

element analyses and approximate methods. 

A new series of experimental results is reported in this paper. 

The experiments" cover fully clamped circular, square and rec

tangular plates, over a range of deformations from 3 to 12 

plate thicknesses. Maximum permanent deformations were measured, 

and detailed contour plots of the final deformed shape were 

obtained. The deflection-time history at the centre of the 
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plates was measured using a light interference device. 

Theoretical studies were based on the mode approximation method, 

proposed by Martin and Symonds (13) and extended to the finite 

deformation of plates by Chon and Symonds (14),(15), Symonds 

and Wierzbicki (16), Guedes Soares (17) and Perrone and Bhadra 

(18), (19). The attraction of this approach lies not only in 

its potential to provide reasonably accurate predictions of the 

permanent deformations, but also in its potential to isolate 

the governing mechanisms occurring in the deformation and thus 

to provide insight into the mechanics of the problem. 

The mode approximation presented in this paper is based on the 

assumption that membrane stresses predominate, and that the 

behaviour can be modelled as rigid-viscoplastic. It is also 

assumed that at any instant the shapes of the displacement 

field and the velocity field are the same: the shape is cal

culated by means of a modification of the algorithm for the 

computation of the mode given by Martin (20). Very simple kine

matic and dynamic conditions are imposed, and an iterative 

forward integration scheme is used to advance the solution in 

time. 

The tests were carried out on mild steel plates, and the 

results of Manjoine (21) were adopted to describe the relation 

between dynamic yield stress cr and strain rate ~, in the form 

~o = 1 + [~~] 
lin 

where cr is the static yield stress and ~ , n are material 
o -1 0 

parameters with the values of 40s and 5 respectively. 

EXPERIMENTAL RESULTS 

A total of 111 tests were carried out, consisting of 26 cir

cular, 40 square and 45 rectangular plates. The specimens were 

cut from two sheets of 1.6mm thick commercially avilable cold 

rolled structural steel plate. After clamping, the specimens 

were of equal area, with the circular plates being 100mm dia-



metre, the square plates 89rnrn x 89rnrn, and the rectangular 

plates 113rnrn x 70 rnrn 

Typical stress-strain curves from tension tests are shown in 

Fig.l . The static yield stress was computed using the results 

of the tests and substituting into equn. (1) : the average 

static yield stresses for the two plates were 282 MPa and 

296 MPa respectively. 

The experimental procedure adopted in the tests has been des

cribed by Nurick and Martin (12), and the light interference 

device has been described by Nurick (22). Metabel sheet explo

sive was used to provide the impulsive load, and was arranged 

in two concentric annuli of the shape of the plate, as shown 

in Fig. 2 . A 16rnrn thick polystyrene pad was placed between 

the sheet explosive and the plate, both to protect the plate 

surface and to provide an approximately uniform impulse on the 

plate surface. 

The test data and the results are given in Tables 1-3 . The 

displacement-time history at the centre of each plate was re

corded over a period of 14ms, and Figs. 3-5 show typical 

responses for plates of different geometries subjected to 

similar impulses. The maximum deformation and deformation 

time were obtained from these traces. 

The permanent deformation at the centre of the plate was 

measured mechanically. Independently, profiles of the final 

deformed shape were measured by the use of a Reflex Metro

graph (Nurick and Adams (23)). This permitted contour plots 

of the final displacements to be plotted, and typical results 

are shown in Fig. 6 . 

Figs. 7-9 show the measured permanent central deflection to 

thickness ratio,plotted against impulse for each of three 

plate geometries. The deflection-thickness ratio is replotted 

in Fig.10 against the dimensionless parameter y = I 2 /pM A2. 
o 

599 



600 

MODE APPROXIMATION 

Mode approximations have been applied to impulsively loaded 

thin plates in which bending is ignored by Symonds and 

Wierzbicki (16) (who compute a mode shape which was fixed 

throughout the motion), Guedes Soares (17), Duffey (24) and 

Perrone and Bhadra (18), (19) (all of whom assumed the mode 

shape). The model adopted in this paper differs primarily in 

that the mode shape is recomputed at each time step. We assume 

that the displacement u at a point on the plate is vertical 

(i.e. transverse to the original plate position), and can be 

written at a particular instant of time t as 

(2 ) 

where u is a function of spatial coordinates defining a point 

on the original plate surface and of time, Uc is the central 

displacement of the plate depending only on time, and ~ is a 

mode shape which may vary with time. The mode shape is norma

lised so that its magnitude at the centre of the plate is 

unity. 

We further assume that the velocity and acceleration fields 

at time t can be written as 

(3 ) 

where uc ' tic are respectively the velocity and acceleration at 

the centre of the plate. This assumption implies that equn. 

(2) can be differentiated at the instant t without taking into 

account the variation of the mode shape ~ wi th time: this has 

been referred to as an instantaneous or stationary mode 

assumption. 

It is evident from equn. (3) that at the instant t we can 

write 

- AU (4 ) 
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where A is a scalar multiplier. We assume that, at any instant 

t, uc(t), uc(t) are known, and that A and ~ must be determined. 

In order to carry out this computation, we discretise the 

problem by assuming contours along which ~ is constant, as 

shown diagrammatically by the full lines in Fig. 11 . At the 

centre of the plate ~o = 1, and we label contour levels from 

the centre as ~l' ~2' ... ~n· For the circular plate the con

tours are circular, as is dictated by axial symmetry. For the 

square plate, symmetry also dictates square contours. For the 

rectangular plate, the contours have been formed by drawing 

lines at 45° to the clamped edges from the corners: this is 

approximately in accord with the contours found experimentally 

and shown in Fig. 6 . At time t the number of unknowns is thus 

(n+l), made up of A, ~l' ~2' ... ~n· 

The mode shape ~ is assumed to vary linearly with distance 

between the contour levels, so that between contours ~i and 

~i+l the mode shape is that of a frustum of a cone for the 

circular plate and the frustum of a pyramid for the square 

and rectangular plates. We also draw intermediate contours, 

shown dotted in Fig. 11, which are equidistant between 

~l' ~2,··· ¢n and which are labelled ~l' ~2 ... , ~n+l· 

The mass mi of the plate lying between contours <Pi' ~i+l is 

lumped at contour ~i' with the lumped mass mo at the centre of 

the plate being the mass contained within the contour $1. 

We can now write (n+l) dynamic equations for the lumped masses; 

the i-th contour or node is shown diagrammatically in Fig. 12. 

The force Ami4iuc is the inertia force arising from the 

deceleration of the node, and it must be equilibrated by 

forces Fi , Fi +l . The forces Fi , Fi +l are taken as the vertical 

components of the membrane stresses integrated along the 

contours ~i' ~i+l respectively. 

Along the contour <P i +l , the membrane stresses are assumed to 

be perpendicular to the contour. The strain component perpen

dicular to this contour is 
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(5 ) 

where e. is the shortest horizontal distance between the con-
1 

tour $i and $i+l' The length ei is constant for the contour 

shapes shown in Fig.ll. The strain rate is then taken as 

E i+l (6 ) 

with the assumption the $i+l' $i are fixed at time t in the 

differentiation of equn. (5). The stress component in the plate 

normal to the contour line ~i+l is then computed from equn.(l), 

giving 

The in-plane force per unit length is ho i +l , where h is the 

thickness of the plate. The inclination of the force to the 

horizontal is 8i +l , where 

tan 8i +1 

It then follows that 

h 0i+l sin 8i +1 dL 

where Li +l is the length of the contour $i+l' 

The dynamic equations then take the form 

i 1,2, ... ,n . 

(7 ) 

(8 ) 

( 9 ) 

(10 ) 



At the centre of the plate we have an additional equation, 

Am u o c 
(11) 

At time t we regard uc ' Uc as known, and equns.(lO) and (11) 

provide (n+l) equations for the multiplier A and the modal 

coefficients $1' $2' ... , $n· The equations are highly non

linear, and are solved by a Newton-Raphson technique. 

The motion is integrated forward in time using an implicit 

constant average acceleration algorithm. We write 

(l1a) 

(lIb) 

and (12) 
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A second, outer, iteration loop is used to solve these equations. 

At the beginning of a time step we set uc(t+~t) = uc(t) and 

take the value of A from the last iteration of the previous 

time step: we use equns.(lla) and (lIb) to obtain corrected 

values of uc(t+~t), uc(t+~t), and then recompute A from the 

Newton-Raphson solution of equns.(lO) and (11). This iterative 

procedure cont·inues until a prespecified tolerance is met, and 

we then continue to the next time step. 

The initial conditions for the problem as a·whole are U c (0 )=0, 

uc(O)=uco . The initial central velocity is computed from the 

initial total impulse I, which is assumed to impart a uniform 

velocity to the plate uo ' given by 

Uo 
I 
n 
E. m. 

i=O ~ 

The initial mode velocity, u co ' is then obtained from a 

generalised momentum balance: 

(13) 
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u co 
n 
l: 

i=l 
m.;.)/ (m + ¥ m.;~)J' 

l l 0 i=l l l 

where $Lis the initial mode shape. The initial mode shape 

cannot in fact be computed, since equns.(lO) and (11) are 
~ 

singular for uc=O. For this reason, $i was taken to vary 

(14) 

linearly, implying a conical or pyramidal initial mode shape. 

Further, for the first time step t l , the stiffness of the plate 

was assumed to be zero, and we put 

(15 ) 

The iterative solution then began on the second time step. The 

forward integration terminated at time t f when uc(tf ) = O. 

If in a particular time step the predicted velocity at the end 

of the step was negative, this step was taken as the final step 

and the Uc was assumed to vary linearly with time over this 

final step. 

Solutions were found for a range of impulses for each of the 

plate geometries, using n=4, an initial time step of 1 ms and 

subsequent time steps of 15 ~s. The final time was approxi

mately 100 ~s, so that in all 6-8 time steps were used. The 

predicted results are shown on Figs. 7-9. Convergence of the 

algorithm was rapid, and an increase in the number of nodes or 

the number of time steps did not significantly change the 

solution. 

Computationally, the algorithm is very efficient: each compu

tation runs for about 10 seconds on the Sperry 1100/80 main

frame computer on which the calculations were carried out. 

Predicted permanent central deflections computed by this 

method have been plotted on Figs. 7, 8 and 9, together with 

the predictions, for the circular plate, of Symonds and 

Wierzbicki (16), Guedes Soares (17), Perrone and Bhadra (19) 

and Duffey (24). 
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DISCUSSION 

The central permanent deflection predicted for the circular 

plate, shown in Fig.7, compares favourably with the experi

mental results, particularly at the higher deflection thick

ness ratios where the membrane effect is predominant. By com

parison, the predictions of Symonds and Wierzbicki (16), who 

computed a mode shape which remained fixed through the motion, 

tend to underestimate the deflection at higher-deflection 

thickness ratios. The predictions of Guedes Soares (17), 

Perrone and Bhadra (19) and Duffey (24) are less accurate, 

showing the advantage of including in the mode approximation at 

algorithm for computing the mode shape. 

The predicted deflections for the square plates, shown in Fig. 

8, also compare favourably with the experimental data. No other 

large deflection membrane mode approximation results are known 

to the authors for this case. The final mode shapes predicted 

by the model for the circular and square plates also show 

good agreement with the experimental results, as can be seen 

in Fig.13. 

Predictions for the rectangular plates show a slightly different 

trend from the experimental results, although the correlation 

is reasonably good. Further attention will be given to this 

case, where the consequences of the choice of the shape of 

the contours ~Fig.11) has not been fully assessed. 

The dimensionless plot shown in Fig.lO shows quite clearly that 

for plates of equal area subjected to equal total impulses the 

midpoint deflection of the circular plate exceeds that of the 

square plate, which in turn exceeds that of the rectangular 

plate. 
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Table 1. Test Data For Circular Plates 

Test No. Impulse Measured Deflection-Thickness 
Mid-Point Deflection 

(Ns) (mm) 

1006851 9,0 10,62 6,64 
2 9,5 10,90 6,81 
3 5,6 6,14 3,84 
4 10,0 11 ,96 7,48 
5 9,9 12,08 7,55 

1106851 10,8 12,26 7,66 
2 10,6 12,20 7,63 
3 10,8 12,80 8,00 
4 11,5 13,62 8,51 
5 11,7 13,22 8,26 
6 11,4 14,00 8,75 

1306851 12,6 14,90 9,31 
2 12,4 14,60 9,13 
3 12,9 15,28 9,55 
4 12,8 16,08 10,05 
5 13,6 16,30 10,19 
6 13,4 16,38 10,24 

1706851 14,1 17,70 11,06 
2 13,8 17,06 10,66 

1906851 14,7 18,56 11,60 
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Table 2 Test Data for Square Plates 

Test No. Impulse Measured Deflection Thickness 
Mid-Point Deflection 

(Ns) (rom) 

1704851 9,5 10,46 6,54 
2 11,2 11,58 7,24 
3 12,1 12,54 7,84 
4 8,7 9,44 5,90 

2204851 11,2 12,78 7,99 
2 11,4 12,78 7,99 
3 11,4 13 ,10 8,19 
4 12,8 13,98 8,74 
5 13,4 14,44 9,03 
6 13,8 15,66 9,79 

2304851 15,3 17,78 11,11 
2 16,6 19,14 11,96 
3 16,0 17,96 11,23 

2404951 15,3 17,40 10,88 

2504851 14,0 15,18 9,49 
2 12,9 14,10 8,81 
3 12,2 12,76 7,98 
4 13,9 15,50 9,69 
5 10,5 11,14 6,96 

2904851 9,6 9,62 6,01 
2 9,4 9,84 6,15 
3 10,3 11,72 7,33 
4 9,3 9,92 6,20 
5 11,2 13,10 8,19 
6 9,1 10,40 6,50 

0605851 9,5 10,62 6,64 
2 9,7 10,62 6,64 
3 10,4 12,12 7,58 
4 lI,7 13 ,00 8,13 
5 13,1 14 ,32 8,95 
6 14,1 15,70 9,81 
7 14,9 16,94 10,59 

0705851 15,3 16,72 10,45 
2 14,7 16,36 10,23 
3 15,0 17,09 10,68 
4 15,3 17,34 10,84 
5 16,1 17,86 11,16 
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Table 3 Test Data for Rectangular Plates 

Test No. Impulse Measured Deflection-Thickness 
Mid-Point Deflection Ratio 

(Ns) (rnrn) 

0801851 5,2 4,68 2,93 
2 9,1 7,58 4,74 

0901851 7,1 6,38 3,99 
2 5,8 5,30 3,31 

1501851 7,4 7,56 4,73 
2 6,1 7,26 4,54 

1601851 8,8 9,04 5,65 
2 9,6 9,86 6,16 

1701851 11,6 12,02 7,51 
2201851 11,2 11,88 7,43 

2 12,2 13 ,40 8,38 
3 12,2 12,68 7,93 

2301851 8,8 9,12 5,70 
2 9,5 9,98 6,24 
3 7,8 9,48 5,93 
4 13,1 13,88 8,68 

2501851 12,8 13,62 8,51 
2 13,6 14,50 9,06 
3 13,4 14,60 9,13 
4 14,1 14,88 9,30 
5 13,7 14,82 9,26 

2801851 13,8 14,26 8,91 
2 13,6 14,52 9,08 

2901851 14,5 14,86 9,29 
2 14,5 15,30 9,56 
3 14,9 15,84 9,90 
4 15,3 16,72 10,45 

0102851 15,7 16,72 10,45 
2 16,7 17,88 11,16 
3 17,4 18,24 11,40 

0402851 15,2 16,58 10,36 
2 8,3 8,40 5,25 
3 8,4 8,82 5,51 
4 9,1 9,84 6,15 
5 7,8 9,42 5,89 

0502851 1'0,5 10,76 6,73 
2 9,2 10,36 6,48 
3 11,6 11,98 7,49 
4 11,3 12,00 7,50 
5 11,6 12,58 7,86 

0702851 11,4 12,12 7,58 
2 10,8 11,02 6,89 
3 10,98 6,86 
4 16,0 16,60 10,88 
5 16,3 17,86 11,16 
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Fig.6. Contour Plots of Deformed Plates. 
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Fig.7. Graph of Measured 
Mid-Point Deflection
Thickness Ratio vs. 
Impulse for Circular 
Plates. 
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(Ref.17 ) 

Fig.8. Graph of Measured 
Mid-Point Deflection
Thickness Ratio vs. 
Impulse for Square 
Plates. 
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Collapse Behaviour of Circular Aluminium Plates 
G. H. LITTLE 
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Summary 
Circular aluminium plates are analysed to collapse under two 
separate loading conditions, one being uniform lateral pressure, 
and the other uniform radial in-plane compression. Attention is 
restricted to simply supported plates with axial symmetry. The 
method of analysis incorporates classical strain-displacement 
equations for moderately large deflections, together with the 
incremental stress-strain relationship based on J 2 flow theory, 
with isotropic hardening for the in-plane loading cases and with 
kinematic hardening for the lateral loading cases. For 
kinematic hardening, a method is proposed for determining the 
material state relative to the uniaxial stress-strain curve. 
This curve is characterised for aluminium by the Ramberg-Osgood 
formula. Some plates are initially perfect and some imperfect, 
and the main features examined in the results are the effects of 
the initial imperfection amplitude and of the sharpness of the 
"knee" of the material stress-strain curve. Some interesting 
cases of snap-through failure are evident for both types of 
loading. 

INTRODUCTION 

The paper is concerned with the numerical analysis of the 

behaviour of thin circular aluminium plates, simply supported 

around the edge~ when subjected to either a uniform lateral 

pressure loading, or a uniform in-plane radial edge compression. 

The plate behaviour is restricted to being axially symmetric in 

all cases, and the material behaviour is assumed to be 

characterised by a uniaxial stress-strain curve of the 

Ramberg-Osgood type. Some steel plates are also analysed, as an 

extreme case for which the curve becomes two straight lines. 

Circular plates are of interest for two reasons. Firstly, they 

are a widely used structural component, appearing in structures 

of many different sizes and types. Secondly, they are of 

special interest to the analyst, since, for the axisymmetric 

Inelastic Behaviour of Plates and Shells 
IUTAM Symposium Rio de Janeiro 1985 
Editors: L. Bevilacqua. R. Feij60 and R. Valid 
© Springer. Berlin Heidelberg 1986 
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case, they form probably the simplest case of plane stress 

combined with non-linear geometrical and material behaviour. 

Thus, although a circular plate might be regarded as a "simple 

model" compared to other more complicated plated structures, 

basic analytical techniques developed, cheaply, for a circular 

plate are likely to be effective for more complicated 

structures. 

For the above reasons, circular plates have received a great 

deal of attention from research workers over the past fifty 

years, both theoretically and experimentally, but most of this 

has been devoted to the case of lateral pressure loading rather 

than in-plane compression. Early non-linear analyses were 

restricted to geometrical non-linearity, the material remaining 

elastic, and this work is summarised in ref. 1. The advent of 

the digital computer made it possible to include plastic 

behaviour of the material, and various results including both 

geometrical and material non-linearity have appeared since about 

1960. A useful summary is given in ref. 2. The theoretical 

work referred to so far has all assumed either elastic or 

elasto-plastic material behaviour. A further line of approach 

is via the assumption of rigid-plastic behaviour in an upper 

bound calculation of the type described by Calladine [3]. Such 

an approach gives a simple analysis for sufficiently stocky 

plates, but does not include elastic strains or membrane 

effects, which become important in more slender plates. 

Despite the large volume of literature on circular plate 

analysis, the number of available results based on rigorous 

non-linear theory is surprisingly small. There appears to have 

been no systematic study made of the effect of initial 

imperfections and of the shape of the material stress-strain 

curve on collapse behaviour. These are the two effects that are 

particularly examined in the present work, both for lateral 

pressure and for in-plane compression. The method of analysis 

is basically the same as was used in previous studies of columns 

[4] and of rectangular plates [5]. The method is described 

briefly here, but in greater detail in papers currently in 

preparation. The basic equations include standard strain-
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displacement relationships for moderately large deflections, 

incremental stress-strain relations based on J together with 

flow theory. 
2 

Although isotropic hardening has been assumed for 

in-plane compressive loading, this was recognised to be 

unrealistic for certain cases of lateral pressure loading, and 

kinematic hardening was used for all the lateral pressure cases 

analysed. A simple improvement to previous kinematic hardening 

formulations is proposed. Some of the results show snap-through 

buckling actions, at constant load for lateral pressure, and at 

constant radial shortening for in-plane compression. 

PLATE DETAILS AND BOUNDARY CONDITIONS 

A typical circular plate as considered ~n the analysis is 

illustrated in Fig. 1. The plate is of radius R and uniform 

~ , R 

mid - thickness (z = 0 ) 
z 

Fig. Diametral section through plate 

thickness t, and is simply supported around the edge. The rand 

e axes are radial and circumferential, and the z axis is 

lateral, with z zero at mid-thickness. As usual with thin plate 

analysis, plane stress is assumed. The assumption of axially 

symmetric behaviour then has the following consequences: 

(a) No quantity varies with e. 
(b) There is no circumferential displacement, the only 

non-zero displacements being radial (with u at mid-

thickness), and lateral (w). On a diametral plane, the 

displacements u and ware anti-symmetrical and symmetrical, 
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respectively, about r = O. 

(c) There is no shearing stress 'rs' the only non-zero stresses 

being the direct stresses a and a which are the principal 
r S 

stresses. Similarly the shearing strain Yrs is zero, with 

only the direct strains ~ and ES present. 

The stress and strain vectors at (r,z) are therefore: 

aT {ar as} and ET { Er ES 

And the stress resultants per unit length at radius rare: 

N f
+t/2 

£ dz 

-t/2 

and M = z £ dz J
+t/2 

-t/2 

Any vector contains two components: a radial component 

(subscript r) and a circumferential component (subscriptS ). 

With regard to the loading, there may be a uniform lateral 

pressure of magnitude p, and a uniform radial in-plane edge 

compressive stress of magnitude a A lateral central ring 
av 

load is considered in a later section for comparison with 

previous work. 

The mean lateral displacement w is defined as: 

w 
av 

2 
R2" 

av 

r dr 

and the radial edge shortening strain e is: 

e = -ur=R/R 

(1) 

(2 ) 

(3) 

(4) 

The boundary conditions (Bes) may now be stated as, at r R: 

1 
w o 
M o 

r 
and 

Either u - eR ) or N - a t 
r av 

Equation (5) gives the Bes corresponding to simple 

support agai~st lateral deflections. Equation (6a) is the 

(5 ) 

(6 a) 

(6b) 
I 

in-plane Be tor the prescribed-e case (e.g. a stiff testing 

machine) and (6b) is the in-plane Be for the prescribed- a case 
av 

(e.g. dead loading). 

The plate is assumed to be initially stress-free, and may have 



an initial geometrical imperfection w of amplitude 0 The 
o 0 

lateral deflection is therefore (w - w). The material 
o 

behaviour is initially elastic with Young's modulus E and 

Poisson's L"atio v, which is taken to be 0.33 throughout. The 

material behaviour is described with reference to the uniaxial 

stress-strain curve as shown in Fig. 2(a). This curve will be 

referred to as the MSSC, which is an abbreviation of 

Q 
Oa. 

1"0 

n 
5 

10 
25 
00 
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O EE/Oa. ·OL---__ ~ __ ~~ ____ ~_ 

(0) 

Fig. 2 

0·0 1·0 (1+cx.) 2·0 

Material stress-strain curves. 
(a) A typical curve. 

( b) 

(b) Ramberg-Osgood curves for various values 
of n 

"material stress-strain curve". Note from Fig. 2(a) that the 

initial yield stress is 00' and the tangent modulus in the 

plastic range is E. The MSSC will be defined by the 
t 

Ramberg-Osgood' formu la as fo llows: 

(7) 

where n factor which determines the degree of sharpness of 

the "knee" of the MSSC 

0a stress at which the plastic strain is equal to a 

times the elastic strain. 
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In the present work a is taken as 0.7 throughout, and Fig. 2(b) 

shows typical curves plotted from equation (7) for various 

values of n. Note that n = 00 implies an elastic-perfectly-

plastic MSSC typical of mild steel, for which 0a = 0 0 • An 

apparent inconsistency between equation (7) and Fig. 2(a) is 

that equation (7) does not exhibit an initial elastic range. In 

fact (7) is applied in the following, slightly modified, form: 

o .::: 0 0 E E /0 a 0/0 a ( 8 a ) 

o > a EE/O N a/oN + a (0/0 )n - a(o /0 )n (8b) 
o ~ ~ a 0 a 

which has the required elastic range. For isotropic hardening, 

0 0 
is chosen so that the final term in equation (8b) is 

negligible [5]. For kinematic hardening, however, it is 

essential to have a realistic value of which is chosen such 

that: 

0.02 (9 ) 

and this gives 0%a values which seem appropriate by inspection 

of Fig. 2(b). 

DETAILS OF THE ANALYSIS 

Accurate collapse analysis of structures is necessarily of an 

incremental nature, and that gives rise to the following two 

items of notation: 

(a) The bar superscript (e.g. 8) denotes the quantity value at 

the beginning of the current increment - the initial 

value, and 

(b) The prefix & denotes the change during the current 

increment. Thus, for example: 

current stress 0 in it i a 1 s t res s a + &0 

And a third item of notation is as follows: 

( ')' = ...! ( and 
dr )" = ~( 

Basic Equations 

The equilibrium equations are: 

radial direction 

lateral direction 

(rN )' - N = 0 
r e 

(rM )" + (rN w' - Me)' + pr 
r r 

The strain-displacement equations are: 

&Er= &u' + &w' (~&w' + w') - z&w" 

&Ee = ~ &u - ~ &w' 

(10 ) 
o 

(11) 
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The non-linear equations (11) account for deflections of 

magnitude similar to t but small compared to R, and incorporate 

the Love-Kirchhoff hypothesis. 

The stress-strain relations may be written: 

(12 ) 
e 

where, for elastic behaviour, Q = p the ordinary elastic 

isotropic stress-strain matrix for plane stress. 

behaviour Q may be deduced from the following: 

For plast{c 

~ 

A 

A 

0 2 
e 

m 

o os 

~Q = 
e 

D [ ~~ - A~ 1 

!Q: 
1 [2 
"3 -1 -~J 
~T~e~:I (~T~e~ 
3 T 

~ - 0 2 -
EtE/(E-Et ) 

from the MSSC 

greater of 0 0 

and E 
t 

at 0 = 
and ( 0 

e 

is taken 

0 
os 

) 
max 

(13 ) 

(14 ) 

(15 ) 

(16 ) 

(17) 

(18 ) 

(19 ) 

In the above, S is the vector of stress deviators, AS are the 

plastic strain increments, 0 is the von Mises effective stress, 
e 

o is the yield function, and (0) is the maximum value 
os e max 

attained by 0 throughout the stress history. The conditions 
e 

for p last ic flow to occur are as follows: 

0 2 0 2 } e os 

A > 0 

(20 ) 

Otherwise, A is set to zero resulting in an elastic response. 

Equations (12) to (20) summarise J flow theory for plane stress 
2 

with isotropic hardening. In the numerical analysis, the 

equations are applied using initial stress values, thus 

linearising the incremental relationship of equation (12). 

Plastic flow automatically causes an increase in 0 , and 
e 

correspondingly, in 0 (provided E >0, of course). 
os t 

Kinematic Hardening 

Isotropic hardening means that any increase in effective yield 

stress (0 ) due to strain hardening is equally effective under 
os 

reversed loading conditions. In other words, no account is 
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taken of the Bauschinger effect. Therefore, if reversed 

stressing is a prominent feature of any case being analysed, it 

is necessary to calculate plastic flow using a kinematic 

hardening theory based on Ziegler's modification [6] of Prager's 

original proposal [7]. Such a theory assumes that, as plastic 

flow occurs, the yield surface remains of constant size and 

shape, and does not rotate. Strain hardening causes a shift of 

the position of the yield surface, this being defined by ~, the 

position vector of the centre of the surface. This mQdel gives 

a "complete" Bauschinger effect, which may not precisely conform 

to the material behaviour. 

where 

and & 

2 
a 

o 

3 
2 

~ § 
a - c 

The yield criterion becomes: 

S 

1 
(22) 

During each increment when plastic flow occurs, changes occur 

both in a and in c such that the yield criterion (21) is not 

violated. Thus: r (&:)} T 
T 

/:; (&:) --- /:;a + e~~e2)} /:;c 
da --

o 

3 
"T 
~ /:;a - 3 

AT 
~ ~£ 0 

Equations (13) to (18) give kinematic hardening if S is 

by ~ in (13).(14) and (16), £ is replaced by & in (14) 

(23 ) 

replaced 

and a2 
e 

by a~ in (16). In determining A, m is still found from the 

MSSC at a stress level a ,but the problem is how to determine 
os 

a Pifko, Levine and Armen [8] have suggested various ways of 
os . 

doing this, involving some rather involved functions of the 

stresses. However, the method now described is simple, logical, 

and does not appear to have been used previously. As in the 

case of isotropic hardening, plastic flow requires A > 0, and 

in /:;a in e qua t ion (23) 
~- AT 

this ensures that the term 

is positive, i.e. there is an increase of 3 ~ ~Q 

ass 0 cia ted wit h /:;a This represents an increase 

given by: 

since & 
e 

a 
o 

(/:;& e )a 

at yield. 

( 3 ) AT = -- S /:;a 
2a ---o 
The present proposal is to set 

in & 
e 

(24) 

a 
os 



originally to 0 , and then to increment it each time plastic 
o 
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flo,~ 0 c cur s by the val u e 0 f (6& e ) 0 g i v en bye qua t ion (24), i. e • 

60 (6&e) 0 ( 25 ) 
os 

The original setting for c is Q, and ~~ is found from equation 

(23) together with Ziegler's proposal [7] that: 

(26 ) 

where ].I must be positive, and this is ensured by a positive A • 

In fact equations (21)-(26) give: 

].I 60 / 0 
os 0 

The proposed formulation for kinematic hardening satisfies the 

necessary condition of being correct for uniaxial stressing. 

The formulation is again applied using initial stress values, 

giving a linear incremental stress-strain relationship. 

Solution by a Rayleigh-Ritz Method 

Adopting a Rayleigh-Ritz procedure, displacement functions 

satisfying the geometric BCs are used to describe the deformed 

shape of the middle surface (u and w). For any set of values of 

the displacement function amplitudes, the strain increment 

distribution can be found via equations (11), and the 

corresponding stress increments from (12). This enables the 

value of a particular energy function F (defined below) to be 

calculated. For any prescribed value of p (or w ) and 0 
av av 

(or e), the displacement function amplitudes are varied until F 

has been minimised. This gives the combination of the given 

displacement functions which best satisfies equilibrium 

throughout the plate together with the static BCs. If w 

and/or e had b~en prescribed, then p and/or 0 
av 

must be 
av 

calculated, before moving on to the next stage of loading. 

energy function F is defined as follows: 

j " 
T 

F + t~~ ) M. d<Vol) - (1TR 2 )pw - (21TR2 t)0 e 
av av 

vol 
If w is prescribed, the w term is omitted; if e is 

av av 
prescribed the e term is omitted. 

The 

(28 ) 

The displacement functions used in the present work are Fourier 
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series as follows: 

u - er + 

w 

U sin mnr 
R m 

m=l, 2, 3, •.• } (29) 

and the first four terms of each series for u and w have been 

used in the numerical analysis. 

been taken as: 

The initial imperfection w has 
o 

(u/2R) (30 ) 

The 

VJ 
o 

stress-strain 

<5 cos 
o 

state over a radial section monitored using 

a mesh of grid points numbering 9 and 5 in the rand z 

directions respectively. This enables F to be evaluated by 

numerical integration using Simpson's rule. It is essential to 

store a and a at each grid point, and, for kinematic hardening 
os c must also be stored, considerably increasing the storage 

requirements. The minimum of F is found using a quasi-Newton 

algorithm - a type of procedure that is particularly effective 

for the present problem [5]. Although the solution procedure is 

based on the equations given above, those equations are actually 

used in a normalised form having various computational 

advantages [5]. For the arrangement described, a typical CPU 

time per increment on a CDC7600 computer in single precision is 

only 0.015 secs. 

COMPARISON WITH PREVIOUS WORK 

At the end of the previous section, details were given of the 

precision of the numerical model used for the present results. 

That arrangement was decided on as a result of previous 

experience [4, 5], and of many comparisons made with previous 

work, partic~larly with classical elastic large-deflection 

results for circular plates such as those included in ref. 1. 

Space does not permit the details of all these comparisons to be 

included here. The- one comparison which will be given is that 

of the present results with those of Winter and Levine [9], 

theirs being both theoretical and experimental for an aluminium 

plate subjected to a central lateral load from a rod of diameter 

9.53 mm = 0.144R. 

free-to-pu 11- in (a 

The edge is both simply supported and 

0) • The comparison is shown in Fig. 3. 
BV 

Winter and Levine helpfully provide all the necessary 
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experimental data, including the Ramberg-Osgood equation for the 

NSSC. Their theoretical results were obtained using the PLANS 

finite element system [8] with kinematic hardening. Because of 

the similarity of the loading to a central point load, and the 

fact that centrally loaded plates tend towards a conical shape 

as deflections become large, an additional displacement function 

for w was introduced into the present analysis. This consists 

of a short parabolic section from r o to r = YR, joining to a 

straight section which then extends to the edge. The slope is 

zero at r = 0 and continuous throughout. This was used together 

with the first three terms of the series in equation (29), 

making four functions in all, as before. It was necessary to 

increase the number of grid stations in the r direction from 9 

5000 

4000 

Load ( N) 

3000 

2000 

1000 

Fig. 3 

isotropic hardening 

k inemat ic harden i ng 
} Present 

Work 

----- theory 

• experiment 
R = 66·3mm 

} Winter and 
Levine 

= 3· 266 mm 
n = 
0cx. = ~~~~ 1N/mm 2 

Def lection of loading rod (mm) 

Comparison of present results with those of Winter 
and Levine [9] 

to 11 in order to integrate accurately over the central region 

wherE the parabola is. The value of Y = 0.05 was found to be 

suitable. The present results incorporate the loading as a ring 
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load of diameter 9.53mm, requiring a minor adjustment to the 

energy formulation. The lateral deflection of the ring load was 

prescribed, with an increment size of 0.02t, and the plate was 

analysed as initially flat. 

Fig. 3 shows the present results for both isotropic and 

kinematic hardening, together with Winter and Levine's 

experimental and theoretical results. Clearly, even for this 

initially flat plate, the difference between the two hardening 

formulations becomes significant as deflections become large. 

This is due to reversed plastic stressing in the region between 

mid-thickness and the loaded surface. In the early stages of 

loading, this region yields due to compressive bending stresses, 

but as deflections increase tensile membrane stresses become 

dominant. The present kinematic hardening results agree very 

satisfactorily with both the theory and experiment of Winter and 

Levine. 

BEHAVIOUR OF PLATES UNDER LATERAL PRESSURE 

Results 

Lateral pressure-displacement curves, calculated using the 

present method, are given in Fig. 4 for various simply supported 

plates with in-plane edge movement prevented (e = 0). The 

curves are plotted in normalised form with pRq IEt q as ordinate 

and w It as abscissa, where w is w at r = o. In each case 
max 

the plate 

and 

max 
ilepderness B is unity, where: 

~ (0 I 0 ) 
(l cr 

o elastic buckling stress 
cr o .4 E I ( R I t)2 W hen v = 0.33 

B = 1.0 means an intermediate plate slenderness and 

(31) 

(32) 

cor res p 0 n d s toR I t = 11. 83 for an a 110 y h a vi n g 0 (l = 200 N I mm2 

and E = 70 kN/mm 2 • The following values of the parameters 0 It 
o 

and n have been used: 

o It - 1.0, 0.0, + 1.0 
(33 ) o 

n 5, 10, 25 

A negative 0 It means that the lateral pressure is applied to 
o 

the convex surface (Fig. 1). For all three n values, kinematic 

hardening was employed. In addition to the n values given 

above, for each 0 It value a curve is given for a ~teel plate, 
o 



together with on~ based on completely elastic material 

behaviour. There is therefore a total of 15 curves in Fig. 4. 

Each curve was computed using the prescribed-w 

define each load stage, with 
av 

w It = 0.01. The 
av 

method to 

curves are 

plotted as a series of straight lines joining the computed 

629 

points, and are presented exactly as plotted (i.e. they have not 

been traced). 

Effect of the Initial Imperfection 

Plates carry lateral pressure loading through a combination of 

bending and membrane effects. Membrane stresses help to carry 

the load in association with the curvature and slope of the 

plate. Considering firstly the results for initially flat 

5·0 

4·0 

3'0 

2·0 

1·0 

n 
5 

10 
25 

- - oo{steeO 
---.--- elastic 

o·o~~--~--~--~--~~--~--~--~~ 
1-0 2·0 3·0 

Fig. 4 

wmax It 

Normalised lateral pressure-central displacement 
curves for S = 1.0. The wmax/t value at zero 

pressure indicates the initial imperfection 
amplitude ~/t in each case. 
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plates ( o/t=O), for small deflections both the membrane 
o 

stresses and the curvature are negligible, and so virtually all 

the load is carried through bending of the plate. As 

deflections increase, however, the membrane action becomes 

steadily more significant, especially for in-plane edge fixity, 

and the plate response becomes correspondingly more stiff. Even 

with plasticity allowed for, the load is predicted to rise 

continuously with no maximum being reached. 

The results for a positive initial imperfection (oo/t = + 1.0) 

show behaviour broadly similar to that of an initially flat 

plate, except that the initial stiffness is considerably larger 

(by a factor of five). This increased stiffness is because the 

presence of the imperfection results in an immediate load-

carrying action from membrane stresses. Interestingly though, 

as displacements increase, and plasticity spreads, corresponding 

curves for 0 It = 0 and 0 It = + 1.0 come together. Clearly at 
o 0 

large displacements, and at the same w It value, two such 
max 

plates have similar stress distributions, the effect of the 

initial imperfection having effectively been "washed out". 

We turn now to the results for a negative initial imperfection. 

An immediately striking aspect of the curves in Fig. 4 is that, 

for 0 It = -1.0, a definite stationary maximum load is 
o 

reached 

at negative w ,followed by a minimum at positive w , 
max max 

followed by sheadily increasing load as w becomes larger in 
max 

the positive direction. This behaviour is a well-known 

phenomenon found in shallow shells and arches (e.g. ref. 10), 

which is difficult to observe completely in an experiment. For 

pressure loading the tendency would, of course, always be to 

snap through from the maximum point, at constant load, to the 

rising curve at positive w The general shape of these 
max 

negative o 
o 

curves is explained by reference to membrane 

effects. Init ia lly membrane compression, together with the 

negative curvature, carries a significant proportion of the 

load. As the load increases, the compression increases, but the 

negative curvature decreases. At the maximum point, the latter 

effect is about to become dominant, and the load begins to fall. 

However, as w increases through the positive range, the 
max 
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membrane compression decreases and eventually changes to 

tension, the curvature is then increasingly positive, and this 

combination is again making significant and increasing 

contributions to the load carried by the plate. 

As mentioned above, corresponding curves for 6 It = a and + 1.0 
o 

come together at large w ,but the same does not happen for 
max 

the corresponding negative 6 case. More will be said about 
o 

that in the next section. 

It is worth noting that the increase in initial stiffness 

associated with an initial imperfection is exactly the same for 

a negative imperfection as for a positive one of the same 

magnitude. 

Effect of the MSSC (n) and of Kinematic Hardening 

As might be expected, the effect of the shape of the MSSC 

increases as displacements increase and the degree of plastic 

straining increases. Thus at large w the curves for n = 5 
max 

lie considerably higher, and stiffer, than those for n For 

small deflections (up to about 0.25t), the effect of n is small. 

The cases covered in Fig. 4 were also analysed assuming 

isotropic hardening, although those results are not presented 

here. A comparison of them with the kinematic hardening results 

in Fig. 4 shoWB relatively small differences «5 %) in all cases 

except those with negative 

agreement is close until w 

6 • 
o 
It 

max 

For the negative 6 cases, 
o 

exceeds about + 0.5, whereupon 

the isotropic curves rise above the kinematic, and "home in" on 

the correspond'ing curves for 6 It = a and + 1.0. The 

corresponding 

10~ler as is 

for negative 

o 
kinematic curves, 

evident from Fig. 

by 

4. 

contrast, lie considerably 

This is not surprising, as 

6 ,'a considerable amount of reversed plastic 
o 

stressing occurs through a large proportion of the plate volume, 

if the plate is loaded beyond the maximum and minimum points. 

This is therefore a good example of a case where isotropic 

hardening is inappropriate, and an unsafe assumption. 

The difference between results for isotropic and kinematic 
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hardening decreases as n increases, and is, of course, zero at 

n = 00, when there is no hardening. The fact that the comparison 

between the results of the two hardening theories suggests such 

reasonable conclusions, gives support to the p~esent method of 

incorporating kinematic hardening into the analysis. 

BEHAVIOUR OF PLATES UNDER IN-PLANE COMPRESSION 

Results 

Theoretical in-plane load-radial shortening curves (abbreviated 

to LS curves) are given in Fig. 5 for various simply supported 

plates under zero lateral loading. The curves are plotted in 

normalised form with a 10 as ordinate, and eE/o as abscissa. 
av CY. CY. 

As in the case of Fig. 4, all cases considered have slenderness 

8= 1.0, and the same three n values, together with steel, are 

used. The imperfection amplitudes are different though, and are 

0.0, 0.05, 0.15, 0.35, as shown in Fig.5. 

values, isotropic hardening was employed. 

For all three n 

The imperfect cases 

were also analysed with kinematic hardening, and the difference 

found to be negligible, as would be expected. All curves, 

except two (to be mentioned later), were computed using the 

prescribed-e method to define each load stage, with 

(lle) E lacy' = O. 0 1 • The curves are plotted as a series of straight 

lines joining the computed points, as before. 

Behaviour of Initially Flat Plates 

By contrasi to the case of lateral pressure loading, for the 

case of in-plane compression the most complex behaviour, and the 

most difficult to analyse, is that of initially flat plates. 

The analysis begins by determining 

a P , based on 'the Shanley concept, 

the plastic buckling stress, 

using formulae stated by 
cr 

Needleman .[11]. For 8 = 1.0, the value of oP for each n value 
cr 

is as follows: 

n = 5 

oP 10 = 0.673 crl CY. 

n = 10 

0.746 

n = 25 

0.841 

The process of increme.nting e then begins at a level 

corresponding to a 10 ( oP 10 - 0.1, at which the. plate 
av CY. cr CY. 

will remain flat. In the early stages, at each increment of e, 

the initial guess for w is a small sinusoidal out-of-flatness, 

and iterations to the equilibrium state recover th~ flat form. 
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Then the plate is in a state of uniform biaxial compression, 

i.e. (J throughout, and the normalised in-plane 
r (Je -(Jav 

stiffness of the flat plate is 1/(1 - v). The uniform biaxial 

compression does not, of course, affect the load at first yield, 

,~hich occurs when (J 

av 

1-0 

u • 
o 

The plate remains flat until the 

Bolt 
a-a 

0-05 
0-15 

n 
5 

10 
25 

0-35 

00 (steel) 

O-OL---~----~----L---~----~----L---~ 
a-a 

Fig. 5 

1-0 eE/Oa. 

Normalised in-plane load-radial edge shortening 
curves for S = 1.0. Each 0 It value indicates 
a group of four curves, alloof that colt value, but 
of different n values as given by the key. 

prescribed-e value reaches a 

stress slightly greater than 

level corresponding to an edge 
P 

(J At this stage the equilibrium 
cr 

state remains slightly unflat, with a very small region of 

material unloading from yield, the remainder continuing to load. 

In other words, buckling has occurred at uP, providing further 
cr 

evidence in support of the Shanley concept. Buckling occurs 



634 

closely at P 
o 
cr 

for all three n values. 

As loading proceeds into the post-buckling range, the region of 

material unloading from yield spreads at a rate which Lncreases 

as n increases. Indeed at n=25, this rate is so rapid that 

there is a catastrophic snap-through buckling effect to a lower 

load even with e prescribed. In the extreme case (n= 00 ), the 

steel plate unloads throughout its volume at the instant of 

buckling, and even if it were held in a perfectly rigid testing 

machine, ~v would suddenly snap from 0a 

shortening given by eE/o = 1 - v = 0.67 
a 

to 0.650 at a radial 
a 

This type of 

behaviour is a consequence of the plate slenderness S being such 

that the elastic buckling stress is equal to the yield stress of 

the steel, and has been described by the author with reference 

to steel columns in previous work [4], where it is an even 

larger effect. In order to follow the complete equilibrium path 

accurately in the analysis, it is necessary to make use of both 

prescribed- 0 and prescribed-e loading types in a manner 
av 

similar to that described in ref. 4. The present results 

confirm that similar behaviour is to be expected of aluminium 

pIa t e s wit has u f f i c i e n t 1 y s h a r p "k nee" 0 nth e ~J sse (i. e. n ~ 25 

approx.) and proportioned such that S 1 .0. For a more rounded 

MSSC, no such catastrophic post-buckling behaviour occurs. 

Behaviour of Initially Imperfect Plates 

As is evident from Fig. 5, the effect of the imperfection 

amplitude 0 It on the in-plane behaviour of circular plates is 
o 

basically similar to the effect of imperfection size on columns 

and rectangular plates [4, 5]. An increase in 0 It causes a 
, 0 

decrease in both strength and initial stiffness, for all n 

values. This weakening effect is very marked in Fig. 5 since 

the plate slenderness (S = 1.0) is that of greatest 

imperfection-sensitivity. The imperfection-sensitivity is 

greatest also at low 0 It, so that, for example, even the 
o 

curves for 0 It = 0.05 show maximum loads considerably lower 
o 

than the curves for initially flat plates, and at high n, i.e. 

the more rounded the MSSC, the less the effect of 0 
o 

The effect of the n value on the LS curves is shown to be 
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broadly similar to its effect on the MSSCs in Fig. 2. Thus in 

the initial stages of loading the curves for a high n value lie 

above those for low n; however, for e larger than a certain 

value, this situation reverses. It is perhaps strange that this 

reversal does seem to occur at a point, all four curves for a 

given 6 value apparently intersecting at a well-defined point 
o 

(which varies with 6 ), except for the initially flat plates. 
o 

The author cannot see an obvious explanation for this, although 

the same thing was predicted for rectangular plates [5]. 

For most plates considered, the maximum load is reached in the 

region of eE/cr o .6. Ho,~ever , for plates with large 
a 

imperfections and 10~1 n values, the LS curves are still rising 

at eE/cr = 1.4, the maximum value considered. 
a 

CONCLUSIONS 

Numerical results for the collapse analysis of thin, simply 

supported, circular plates, of slenderness B = 1.0, gave rise to 

the following conclusions: 

For lateral pressure loading: 

1. The main effect of a positive imperfection 6 is to 
o 

increase plate stiffness, due to membrane action, in the 

initial stages of loading. 

2. A negative imperfection of magnitude 8 /t = - 1.0 is large 
o 

enough to iesult in a stationary maximum load point at 

negative w at which, at constant load, the plate will 
max 

snap through to the rising load path at positive w For 
max 

such a pla~e, if the complete equilibrium path is followed, a 

large amount of reversed stressing occurs, and accurate 

analysis requires a kinematic, rather than isotropic, 

hardening theory. 

3. The proposed kinematic hardening formulation is simple to 

apply, has .a rational basis, and has so far given reasonable 

results. 

4. The effect of n, the "knee" factor of the MSSC, is greatest 

at large displacements, when the lower the value of n (the 

more rounded the knee), the stiffer the plate. 
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For in-plane compression: 

5. The results provide further confirmation that flat plates 

buckle at the load predicted using the Shanley concept. 

6. Initially flat plates of large n show snap-through post

buckling behaviour even if loaded by a rigid testing machine. 

7. Imperfection-sensitivity is greatest at low 6 It and high n. 
o 
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Summary 

Tubular elements are oft-used in various structural systems. To evaluate 
the safety of those structural elements under cyclic loading cases and, 
in particular, in the presence of variable temperature fields, the shakedown 
analysis should be employed rather than plastic limit analysis. A shakedown 
procedure for axisymmetric cylindrical shells is outlined in connection 
with a discussion of experimental investigations. The specimens were 
exposed to cyclic load and temperature variations by means of a specially 
designed set-up with automatic load and temperature variation control 
and data recording. Then, a proposal is presented for a more refined 
analysis, accounting for strain-induced geometry changes as well as for 
material strainhardening. It seems to be able to explain some peculiarities 
observed in the experiments. 

1. Remarks on Structural Safety Assessment 

Any engineering structure has to satisfy safety conditions. They were 

usually based on an elastic brittle material model. However, the majority 

of metals exhibit non-negligible inelastic deformations without immediate 

material failure. Therefore, the further development of structural mechanics 

has tried to account 

o for immediate inelastic (plastic) deformations. Plastic yielding results 

in redistribution of the stress field making it more homogeneous and, 

therefore, allows for a more economic design. However, in the course 

of such a redistribution, structural deformations may happen to enlarge 

signi ficantl y. 

o for irreversible (viscous) strains which grow up with time even under 

constant stress. They show up at higher stresses and - especially -

at more elevated temperatures, though, by means of more precise measure

ments, they can be detected even at low temperatures and low stresses. 

Occurence of them (creep) may lead, after a sufficiently long time, 
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to excessive structural deformations and, eventually, to failure. On 

the other hand, viscous deformations may cause a relaxation of higher 

stressed elements, thus also contributing to the stress redistribution. 

Plastic limit analysis allows to determine the maximum load which can be 

carried by the structure. However, this approach may fail to give a 

proper answer if the loads acting upon the structure vary in a non-monotonous 

way within too wide limits. A better approach in this case, especially 

if there are also temperature variations, is the shakedown analysis which 

allow.s to detect a possible accumulation of plastic deformations as well 

as low-cycle material fatigue. 

All the above general remarks were made in a deterministic context. It is 

obvious that a probabilistic approach would be more relevant. However, the 

existing theories accounting for the random character of loads, structural 

dimensions, material strength etc. do not account for peculiarities of the 

inelastic structural analysis. 

2. The Structural Behaviour in the Case of Cyclic Influences 

In the presence of inelastic deformations the stress-strain dependence is 

no more a one-to-one relation and, therefore, response of a given structure 

to cyclic loading or temperature changes may vary from cycle to cycle. 

Moreover, presence of a temperature field 

o alters the stress field within a structure because of appearance of 

additional thermal stresses; 

o influences th,e material properties such like its viscosity (creep strain 

rates will be higher), the yield stress (drops down with temperature, 

usually), or elastic moduli. 

Moreover, cyclic changes of temperature contribute to material fatigue 

analogously like stress variations do,., 

For a broad spectrum o( materials and structures acted upon by cyclic 

loads and temperature fields resulting in inelastic deformations, the 

following patter~ of structural response can be observed, see Fig. 1 

(deformations at the end of each cycle are marked, only): 

a) First, we have a transition period. The deformation increments in a 

single load/temperature cycle are high but they diminish fast with the 

number of cycles. 



Fig. 1. 

transition 
period 

faillJre 

deformation 

steady deformation 

(ii) 

number of c cles 

Structural response to cyclic external actions 
(i) Non-vanishing deformation increments 
(ii) Stabilisation of deformations 

b) Then, the deformation increments in subsequent cycles become nearly 

constant and the stress state becomes a cyclic function of time, with 

the same period as of the external actions, curve (i). Some authors 

call the particular case when the strain increment per cycle vanishes, 

curve (ii), adaptation or shakedown though this term has been employed 

in the literature only for the case when inelastic strain variations 

cease. The process of a linear deformation accumulation (curve (i) in 

Fig. 1) is called ratcheting or incremental collapse. 
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c) In the case of non-vanishing deformation increments, after a certain 

(rather high) number of cycles, the deformation process accelerates. 

This may take place due to progressive material degradation (appearance 

of defects, v~ids, pores etc.) but may be, also, due to geometric 

effects which begin to be non-negligible at higher deformations. 

The above-sketched structural behaviour pattern was observed, e.g. in our 

experimental investigations, cf. [1, 2, 3J, performed on aluminium specimens 

exposed to cycles Df mechanical loads as well as of temperature field, 

Fig. 2. These investigations were aimed to check if the shakedown theory, 

confirmed experimentally in the case of mechanical loads, holds also in 

the presence of simultaneous temperature field variations. If stabilisation 
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Fig. 2. Experimental data of tests performed on tubular specimens 
subjected to cycles of mechanical loads (internal pressure, local pressure) 
and of the internal temperature: (i) stabilisation of deformation 

(ii) ratcheting 

of the deformations was attained for certain load and temperature ampli

tudes e.g. like in curve (i) of Fig. 2, this means that the corresponding 

loads and temperatures belong to the shakedown range. 

In further tests, their magnitudes were enlarged to attain a clearly 

non-zero deformation increment per cycle. In such a way, the border 

between shakedown and ratcheting ranges could be approximated by bounding 

it from below and from above. An example of such a shakedown surface 

is given in Fig. 3. A fairly good agreement of the theory and of the 

experimental dala can be seen. 

3. The Classical Shakedown Analysis of Axisymmetric Cylindrical Shells 

In the case of axial symmetry, usually, there is no need to employ more 

sophisticated numerical methods since reasonable approximate solutions 

can be obtained analytically or semi-analytically. Moreover, one should 

keep in mind that the shakedown analysis is based on rather rough assump

tions and, therefore, precise computations do not necessarily mean a better 

description of the actual structural response. The assumptions are as 

follows: 

o deformations are small, 

o there is no material strainhardening, 
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x 
o 

experimental points at which shakedown has been observed 
experimental points at which ratcheting has appeard 

o the elastic moduli as well as the thermal expansion coefficient do not 

vary with temperature, 

o there are no viscous strains i.e. no creep. 

To determine the load and temperature variation limits ensuring safety 

against plastic ratcheting within the framework of the above-listed 

assumptions, one can employ the formula resulting from the kinematic 
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shakedown theorem of Koiter [4, 5J. The original Koiter's theorem, in the 

case of thermal effects, reads (the formulation is given for the case of 

axially symmetric cylindrical shells): 

A given structure is safe against inadaption in a mechanism defined by a 

kinematically admissible field of displacement increments 6w, 6u over a 

certain time period [O,TJ if 

o for any load/temperature cycle, admitted by their limits and resulting 
E E in thermoelastic stresses o~(z,x,t), 0x(z,x,t), and 

0 for any cycle of plastic strain rates E~(Z,x,t), E (z,x,t) - indepen-x 
dent of the stress cycle - such that 

T 6w T d d2 
6 E J E dt R 6 E J E dt dx(6u) - z -2(6w) (3.1) 

~ ~ x x 
0 0 dx 

the following inequality holds: 

T h/2 
E -=- E T h/2 

J J J -
) J J J D(E ,E ,8) (0 E + 0 E dz dx dt :s dz dx dt 

L -h/2 ~ cp x x 
L -h/2 ~ x 0 0 0.2) 

Here: wand u are radial and axial displacements of the shell middle 

surface, z is the coordinate along the shell radius measured from that 

surface, x is the coordinate along the shell axis, t denotes time, 

R is the mean shell radius, h is its wall thickness, 8(z,x,t) describes 

the temperature field and L symbolises the shell length. 

D(E~, Ex,8) denotes plastic energy dissipation depending on the form of 

yield condition and on temperature. We assume that the yield stress V 
varies linearly with temperature, 

V(8) 

Then, the dissipation does this also: 

O(E, € ,8) 
~ x 

D (E , E ). (1-e8) 
o ~ x 

where e is a material constant. 

(3.3) 

0.4) 

The formulae (3.1) mean that the plastic strain rates result in kinematically 



admissible displacement increments whereas (3.2) states that the work done 
E E by stress field a, a on the above-said strain rates over the time 
cp x 

interval [O,TJ is not higher than the plastic energy dissipated with 

these strain rates and integrated over the same time period. 

Occurence of alternating plasticity can be analysed in terms, solely, of 

thermoelastic stress. Therefore, let us transform the formula (3.2) to a 

form appropriate for incremental collapse, exclusively. In this case, the 

plastic strain rates are proportional to the total increments: 
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E (z,x,t) 
cp 

lIw(x) J\(z,x,t) -R- Ex(z,x,t) = ~(z,x,t)[~x lIu(x)- z d2
2 lIw(x)] , 

dx 

where J\(z,x,O) 0, J\(z,x,tl ;;0 0, l\(z,x,T)=1 (3.5 ) 

The result of substituting of (3.5) into (3.2), in view of (3.4), is as 

below 

T h/2 E E J J J [0 (z,x,t) liE (z,x) + ax(z,x,t) liE (z,x) + e8(z,x,t) D (liE ,liE )]. 
o L -h/2 cp cp x 0 cp x 

h/2 
• J\(z,x,t) dz dx dt ~ J J 

L -h/2 
D (liE ,liE) dz dx o cp x 

(3.6) 

The most stringent condition follows if the left-hand side of (3.6) assumes 

its maximum. This takes place when A(z,x,t) is Dirac impulse function, 

concentrated for each material point (z,x) at that instant to(z,x) at 

which the expression in brackets assumes its maximum: 

A(z,x,t) (3.7) 

and 

In practice a given structure is usually subjected to m independent 

load and temperature agents and the thermoelastic stresses as well as the 

temperature fieldS associated with them are linear functions of parameters 

Bk(t), k=l, ... , m, characterising intensities of the agents: 

E a (z,x,t) 
cp 

m Ek I Bk(t)orn (z,x) 
k=l 'i' 

m Ek I Bk(t)a· (z,x) 
k=l x 
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8(z,x,t) 
m k I Bk(t) " 8 (z,x) 

k=l 
(3.9) 

whereas the limits of variation of these parameters are independent of 

each other 

k 1, ... , m (3.10) 

ak , bk being constants. 

In such a case the maximum magnitude (3.8) is equal to 

m 
I Qk(z,x)"Jk(z,x) 

k=l 

where 

if 

(3.11) 

if 

cf. [4J. 

Thus, when employing the above result to incremental analysis of a particu

lar cylindrical shell, the following stages are to be performed: 

a) Ek Ek Thermoelastic stress fields a (z,x), a (z,x) are to be determined 
cp x 

for each one of the external agents which are going to vary. For those 

remaining constant this is not needed. 

b) Some expectable mechanisms of incremental collapse are to be selected. 

Practically, there is no purpose to look for very complicated ones. 

They should be of simple form, rather, but should contain some free 

parameters allowing for a further optimisation of the safety bounds. 

c) For an assumed mechanism ~w(z,x), ~u(z,x), strain increments (3.1), 

the dissipation 0 (~( , ~E) as well as the expressions 
o cp x 

and ak(z,x) are to be calculated. 
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d) All the above-calculated terms are to be plugged into the safety criterion 

resulting from (3.6). It reads, 

m h/2 
f[p (x) 6w(x) + p (x) 6u(x)]dx + L f f ak(z,x) Jk(z,x) dz dx ~ 

L r x k=l L -h/2 
h/2 

-~ f f D (6E ; 6E.) dz dx (3.12) 
L -h/2 0 cp 

where Pr(x), px(x) denote constant loads, the radial and axial ones, 

respectively. Difficulties may appear with integration over the shell 

volume as well as for determining the ranges of constant sign of the 

Jk-expressions. 

e) The final result (3.12) is to be optimised with respect to the free 

parameters of the mechanism of incremental collapse. 

f) Steps c), d), e) are to be repeated for other mechanisms as to assess 

the lowest upper bound to the actual safety condition against incre

mental collapse. 

Let us notice that in the case of constant loads only and no thermal 

effects, the formula (3.12) becomes identical with that appropriate for 

the kinematic method of the plastic limit analysis. 

To illustrate the procedure, let us consider the case depicted in Fig. 3a 

but for the constant local pressure q = q = const. There are two load/ 

temperature parameters p and 8 
o 

varying within the limits 

o ~ 8 ~ e-
o 

(3.13 ) 

The corresponding unit thermoelastic stresses and temperature fields are 

Ep R oEp= 0 8 P 0 0 h cp x 

E8 E8 Eaz 8 l(1_2z) (3.14 ) 0 = 0 (I-v)h 8 = cp x 2 h 

where E is Young modulus, v is Poisson ratio, a is linear thermal 

expansion coefficient and, due to h«R, the temperature has been assumed 

to vary linearly across the shell wall thickness. 
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__ . ___ I ~ __ 0_ += _0 __ . I 
R 

r 
Fig. 4. An incremental collapse mechanism for the shell of Fig.3a 

Let us investigate the incremental collapse mechanism given in Fig. 4, 

IN 
!:JW(X) = o (1 Tfx) ""2" + cos a (3.15 ) 

containing the free parameter a The associated strain increments are 

E: 
CjJ 

IN 
o 2R (1 + cos TfX) 

a 
E: 

IN Tf2 

X 

o TfX --- cos • z 
2 a 2 a 

(3.16 ) 

Let us employ the Huber-Mises yield condition. The corresponding dissipation 

is (for plane stress) 

D -_ 2Y J~2 - - -2 --. E: +E: E: +E: 
o /3 CjJ CjJ x x 

YlNo [( TfX 2 zR 2 TfX z2 R2 4 2 TfX Jl/2 
l+cos a-) + -z Tf cos a- + --4- Tf cos a-

R/3 a a 

INhere Y is the yield stress at pure tension. 

The expressions defined by (3.11) are 

IN 
J (z,x) 

p 
2~ (1+cos :x) 

EalN 
o 

2Rh(1-v) 

a 

z 

E8 E8 E: + a 
CjJ CjJ x 

(1+cos Tfx) 
a 

8 D E: + e 8 x 0 

EalN 2 2 0 + 
2/h(l-v) 

Tf z cos TfX e -+-a 2 

Tfx)2 zR 2 TfX z2 R2 4 cos2 TfxJl/2 
+ cos a + -Z Tf cos a- + --4- Tf - a 

a a 

(3.17) 

YIN 
(1- g) ~[(l+ 

h R/3 

(3.18) 
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One can see that J p ~ 0 everywhere for Ixl ~ a whereas the regions of 

positive and negative J e have to be specially determined. When integrating 

the dissipation (3.17) one had to make a certain approximation but with a 

very small error. This allowed to arrive at the following closed form result 

(given here only for e=O): 

p + q (£ + 1 sin nc) 
a n a 

- 2Y h 
+ Eaeh [1 + 2nh ] = _0_ 

4R(1-v) 3a2 13 R 

where c denotes the length of the region where the local pressure is 

applied, see Fig. 3a. 

(3.19) 

The final optimisation with respect to the free parameter a had to be 

performed numerically. 

4. A Proposal of Non-Classical Shakedown Analysis 

It can be seen in Fig. 3c that the discrepances between the experimental 

data and the results of theoretical analysis are not very dramatic. Never

theless, they exist and one should try to explain them. In our opinion, 

the main reasons of the differences are 

a the influence of strainhardening, 

a the geometry changes. 

What concerns the former, there exist shakedown theorems, cf. e.g. [7] 

accounting for linear strainhardening. In such a formulation (with positive 

definite hardening matrix) the occurence of incremental collapse is princi

pally excluded. Therefore, they seem to be inapplicable for our purpose. 

What concerns the latter effect, nothing like a geometrically non-linear 

shakedown theory h~s been worked out. Some cases of geometric effects were 

analysed by Davies [6] and Maier [7] but their approach would not suffice. 

In our opinion, the most promising is the proposal formulated first in [8]. 

Its idea consists of investigating of the current shakedown load and tempe

rature bounds at e~ery stage of the deformation process. If one neglects the 

initial transition period (cf. Fig. 1 and 2) then the further structural 

geometry changes are only due to a kinematically admissible mechanism which 

can be determined by the procedure outlined in section 3. In such a way 

the current geometry changes are defined by a parameter characterising the 
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mechanism. Thus, the changes of thermoelastic stresses o~k, o~k associated 

with various load and temperature agents can be evaluated. Moreover, also 

the strainhardening influence on the yield stress can be accounted for. 

Such an approach holds under the condition that the structural geometry 

change in a single cycle is small. But this requirement is usually fulfilled 

(cf. Fig. 2). 

In the proposed procedure one employs the formula (3.12) at each stage of 

the deformation process but the elastic stresses as well as the plastic 

dissipation are to be adjusted according to the geometry changes and to the 

resulting strainhardening. 

Let us notice that the bounds resulting from the above described analysis 

can be broader or narrower than for the virgin, undeformed structure. The 

latter case deserves a special attention as geometry changes make the 

results of the geometrically linear analysis invalid and unsafe. 

To illustrate the general considerations let us regard the axisymmetric 

shell of Fig. 3a if acted upon only by variable repeated internal pressure 

p and internal temperature 80 , varying within the limits (3.13). The 

only reasonable shell geometry change consists of increasing of its radius 

from R to R+~R, of decreasing of the wall thickness from h to h-~h 

and of the shell length from L to L-~L. Moreover, the plastic incompres

sibility yields 

~R 

"R (4.1) 

Such a deformation pattern would result from the following incremental 

collapse mechanism: 

~w(z,x) const ~u(z, x) x = w = = u "[ 0 0 

thus w u w u 
0 0 0 o· (4.2 ) ( ="R ( =r- ( = -( -( = -"R-r-cp x r cp x 

We shall employ the HUBer-Mises yield condition but, for the sake of 

simplicity, neglecting the temperature dependence of the yield stress i.e. 

assuming e=O in formula (3.3). We account, however, for the increase of 

the latter with deformations following the isotropic hardening rule, 



(4.3) 

where 

)( = (4.4) 

is the Odqvist parameter integrated with respect to time and G is the 

hardening modulus. One can easily calculate that 

Z Woj-Z 
)( = /3 R" I-lJ+lJ where 

u R 
o 

lJ=-w-r 
o 

Employing the thermoelastic solutions (3.14) we have 

Eaz w 
Je = Rh(l-v) (l-lJ) 

(4.5) 

(4.6) 

thus J p > 0 everywhere and Je > 0 

Moreover, the dissipation is 

for z > 0 ,provided ~ < 1 . 

D 
o 

Zy ~ -2 -= - E: + E: E: /3 cP cpx 
-2 

+ E: x 
(4.7) 

In view of (4.2), (4.6) and (4.7), the classical shakedown approach (geo

metrically linear, with no strainhardening) would give us the following 

condition of safety with respect to incremental collapse 

EaGh 
p + 4R(1-v) (l-~) 

2 Y h I 2 
= R"; V l-~+~ (4.8) 

which has to "be optimised with respect to the parameter ~. This optimi

sation gives: 

~opt 
1 

2 + Eah e 
4R(l-v)"= 

p 

~4.9) 

deformed 
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Now, let us repeat this incremental collapse analysis but for a 
wo 

shell of radius R + ~R = R(l+ R) , of wall thickness h - ~h = h[l_~o(l_~)] 
Wo 

and of length L -.~L = L(l-~ R) and with the current yield stress defined 

by (4.3) and (4.5). This would give 
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w 

p + 
w 1-- h[l---2.(l-ti)] 

(1+13 .L R 0 1l-iJ.+llh R w 

13 R(l+ ~) 
R 
(4.10) 

It can be seen that for a constant temperature amplitude e and sufficiently 

high strainhardening modulus 13, the internal pressure amplitude p, in 

~R = Wo ' would 

and decrease, 

the course of deformation development i.e. for increasing 

first grow up then attain a maximum at a certain ~R = ~Ropt 
afterwards. 

Existence of such a maximum implies that an incremental collapse process 

going on at a certain constant amplitude p would have a tendency to slow 

down at lower defleclions ~R < ~Ropt and to accelerate for ~R > ~Ropt 

The formula (4.10) could be analysed, in the same way, also in the case of 

other hardening laws e.g. if B were a function of K One could put here 

even the actual hardening function taken directly from a material test. 

Also, at least in principle, one could account for the effect of cyclic 

hardening but this can be done only in a semi-empirical way since information 

on the number of cycles is needed in this case. 
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Fig. 5. Maximum radial deflection as function of the load amplitude and 
temperature. x shakedown, 0 incremental collapse 

(a) tests at room temperature (b) tests at elevated temperature 



The above outlined effect can explain some peculiarities observed in our 

experimental investigations, cf. Fig. 5a. Namely, the w -load amplitude max 
curve possesses a turning point in the vicinity of the shakedown load. 

The general shape of that curve fits well into the theoretical upper bound 

to shakedown deflections for lower load amplitudes. At the shakedown load 

the theoretical upper bound loses its physical sense - the maximum theore

tical deflection tends to infinity. The actual one grows up, also, and the 

strainhardening effect begins to playa more important role. Because of its 

influence the deflection rate per cycle falls down, temporarily and, 

then, begins to increase again. In this way the turning point on the 

w -load amplitude curve appears. At more elevated temperatures this max 
turning point was not clearly visible or just did not occur, Fig. 5b. This 

is understandable because the hardening modulus G falls with temperature 

and, therefore, over a certain critical temperature, the whole effect 

vanishes. 

5. Remarks on Experimental Shakedown Investigations 

The theory of shakedown seems to be sufficiently confirmed by experimental 

investigations for structures subjected to cycles of mechanical loads. 

However, there are only few reports on such tests made in the presence of 

the temperature field variations. Our experience from investigations, cf. 

[1, 2, 3J, performed at the Institut fur Mechanik (Universitat Hannover, 

Hannover, Federal Republic of Germany) suggest the following directions: 
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1° Shakedown experiments intended to include thermal field variations 

require a special set-up, properly designed. It should enable to perform 

high numbers (at least a few thousand) of load and temperature cycles. 

Therefore, the stearing of the load and temperature variations, must 

be possible to'be preprogrammed and, then, executed automatically. 

Also, the data recording should be automatised. 

2° The appearance for ~reep can be seen under higher stress intensities 

even at room temperature if the deformations are recorded with a 

sufficient precision. At higher temperatures, this influence becomes 

more pronounced. Therefore, in the course of a shakedown test, even 

if plastic strains tend to stabilise, the total permanent deformation 

increments still do not cease, usually, and some rules enabling to 
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recognise a particular result as shakedown or inadaptation must be 

adopted. 

30 Controlling of the creep deformation may require high-precision deflec

tion measurements. Therefore, we have used inductive gauges to record 

the radial displacements. 

40 Tests to be made in conditions of axial symmetry require a very 

precise machining of specimens as to avoid any imperfections of their 

shape. The latter would distort the results by causing a non-symmetric 

deformation pattern development. 
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