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Preface

Random Schrödinger operators are models for the quantum mechanical de-
scription of disordered media. The main aim of the analysis of such models
is the understanding of the (charge) transport properties of the material. It
turns out that many of the properties of interest of random Schrödinger oper-
ators are related to a quantity called integrated density of states. It measures
or ‘counts’ the number of electron energy levels of the Hamiltonian per unit
volume. An alternative name for the integrated density of states is spectral
distribution function since it is the distribution function of a spectral measure
associated to the random family of operators. Many features of this quan-
tity have an intuitive physical interpretation, others play a prominent role in
proofs of key theorems. Moreover, the spectral distribution function is an ob-
ject of study in other fields of mathematics, like differential geometry, group
and von Neumann algebras, and homological algebra.

What are the properties of the integrated density of states which have
been studied in the literature? It would be hard to give an exhaustive answer,
but there are several classes of questions that have drawn the attention of
many authors.

The first class is concerned with the definition and construction of the inte-
grated density of states. Can it be expressed as a limit of a sequence of distrib-
ution functions associated to the spectra of ‘simpler’ operators? These opera-
tors are usually restrictions of the original Schrödinger operator to some finite
volume set. There are various ways how to choose the approximation sequence
of operators. Thus another question comes up naturally: Does this choice in-
fluence the final outcome, or does one obtain the same distribution function,
independently of the approximation procedure? Furthermore, is there a closed
formula for the integrated density of states? If there are various such formulas,
are some of them better suited for certain applications than others?

Another circle of ideas concerns the continuity properties of the integrated
density of states and its set of points of increase: Can one characterise the lo-
cation and size of the discontinuities? What is the structure of the sets of
constancy of the integrated density of states? Since it is a spectral measure
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distribution, these questions are intimately related to the spectrum of the
random operator. Can one prove quantitative regularity properties of the in-
tegrated density of states: Is it log-Hölder, Hölder, or Lipschitz continuous?
Does it exhibit even stronger regularity properties like differentiability or an-
alyticity? Is it possible to give upper and lower bounds on the derivative?

Finally, one is interested in the behaviour of the integrated density of states
as the energy variable approaches a spectral boundary. The most studied case
is the infimum of the spectrum, although the behaviour at very high energies,
or at internal spectral edges is of interest, too. Can one give a characteristic
law of the asymptotics of the integrated density of states at the boundaries? Is
it polynomial, is it exponential? Can one specify or estimate the characteristic
exponents?

Of course, the answers to the above questions often depend on the type
of random operator one is considering. Thus one my also ask: How do the
parameters entering the model influence the abovementioned features? Is there
a universal behaviour or some phase transition phenomenon?

We used above the term random Schrödinger operator although this termi-
nology refers to just one instance amongmany types of equivariantHamiltonians
in various geometric settings for which the integrated density of states may
be defined. A substantial body of papers is devoted to operators acting on
combinatorial graphs, the simplest being the integer lattice Zd. Others consider
operators acting on L2(Rd), which includes Schrödinger operators. For models
on Rd, one may require a Rd or a Zd-equivariance condition. In the latter case,
there is still a discrete structure present in the random operator, albeit it acts
on continuous space. All settings mentioned so far concern the spaces Zd or Rd,
and thus Euclidean geometry. Going beyond these, there are interesting related
models on coveringmanifolds, finitely generated groups, aswell as combinatorial
and metric graphs with a quasi-transitive structure.

In the remainder of the preface we describe briefly the potential audience
of the book, the recommended prerequisites, the approach taken to present
the material, the selection of topics and the structure of the text.

The aim of the text is to give researchers interested in the subject of
random Schrödinger operators an overview of known results and methods.
Specialists may find it useful as a guide to further reading. The subject matter
of the book draws on various mathematical disciplines. For that reason it was
not possible to include all the background material, but the reader can find
detailed descriptions of the relevant facts using the references to textbooks
and monographs. Thus, the text should be accessible to graduate students
who have a working knowledge of selfadjoint operators and quadratic forms,
possibly from a course on linear operators in Hilbert space or an advanced
functional analysis class. For students without this background any one of the
following books is recommended as a reading companion: [18, 19] by Akhiezer
and Glazman, [47] by Birman and Solomyak, [110] by Davies, [494] or [495]
by Weidmann, or [497] by Werner, the last two references being in German.
The reader will find the relevant material also in the treatises [140, 141, 142]



Preface VII

by Dunford and Schwartz, [239] by Kato, or [407, 408, 409, 410] by Reed and
Simon. For the reader who wants to know more about the physical background
of the models discussed here we recommend the monographs [53, 145, 340, 312,
143] where properties of disordered systems are discussed from the point of
view of theoretical physics.

As already mentioned, the integrated density of states can be defined in
various geometric settings and for operators with various equivariance types.
If one aims at discussing all such models in a text, one could treat them
subsequently one by one, or order the text according to various results and
properties and discuss each time all models. One could also first develop a
general approach which covers all models, and prove theorems on an abstract
level. Although all these seem viable options, here we choose a different and
more modest way: We consider just one model in detail and refer in remarks
to sources in the literature where the proof for other variants may be found.
More precisely, we concentrate here on operators on a continuous configuration
space with a discrete group structure. The most important example is the
alloy-type model, a Zd-ergodic operator acting on L2(Rd), but operators on
Riemannian manifolds with non-abelian group actions are also considered.

While most of the relevant aspects of the spectral theory of random
Schrödinger operators figure in the text, the presentation is centred around
the integrated density of states. A broader view is taken in the monographs
[81] by Carmona and Lacroix and [389] by Pastur and Figotin which describe
the state of the art at the beginning of the 1990s. There are several other text
of a survey nature on the subject from the second half of the 1980s, including
the introductory article [247] by Kirsch, a section on random Jacobi matrices
in [102] by Cycon, Froese, Kirsch and Simon, and the Lifshitz memorial issue
[335]. In recent years there have been two more monographs treating related
topics. The theory of Anderson localisation for random Schrödinger operators
is exposed in detail in [458] by Stollmann. Many features of the spectral dis-
tribution function in the context of geometry, group theory and K-theory are
discussed in Lück’s book [346].

Let us mention a few recent overview articles which discuss certain as-
pects of the theory covered only marginally in the present book. A survey of
localisation results for one-dimensional random models is provided in [459] by
Stolz. A detailed account of Rd-ergodic random Schrödinger operators, which
model amorphous media, is given by Leschke, Müller and Warzel in [331]. The
present text emphasises the construction of the integrated density of states
and its continuity properties, while its asymptotic behaviour at the infimum
of the spectrum is discussed only in remarks. An overview of the results de-
voted to the last mentioned topic can be found in the recent [259] by Kirsch
and Metzger. There also spectral properties of random surface models are
discussed. We mentioned above that it is possible to introduce the integrated
density of states in a general, abstract framework applicable to various types
of equivariant operators and geometric settings. Such an approach is taken
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for instance in [328], which covers e.g. Hamiltonians on Euclidean space and
lattices, on covering manifolds, Delone sets, and on percolation graphs.

Of course, there are many other excellent sources in the literature not
mentioned here in the preface. We hope to have them adequately quoted in
the main text.

Here is a sketch of the contents and the structure of the book: The intro-
duction explains how one arrives at random Schrödinger operators starting
from the quantum mechanical theory of disordered solids. There we also fix
frequently used notation, recall basic facts about selfadjoint operators, and
define our models. Finally, the introduction explains the relation between
spectral and transport properties of Schrödinger operators as well as the no-
tion of spectral fluctuation boundaries.

The second chapter presents two alternative proofs of the approximation
of the integrated density of states by its finite volume analoga. One of the
approaches is general enough to be applicable to random Schrödinger and
Laplace-Beltrami operators on manifolds.

The third chapter explains the relevance of Wegner estimates and regu-
larity properties of the integrated density of states for other aspects of the
theory of random Schrödinger operators. A prominent example would be the
use of a Wegner bound in the multiscale proof of localisation.

The last two chapters present each a proof of Wegner’s estimate for the
alloy type or continuum Anderson model on L2(Rd). The reason to present two
different methods is that each of them has its own advantages when applied to
models exhibiting various non-trivial features. We consider alloy type models
with long-range or negative correlations, as well as singular and non-monotone
dependence on the coupling constants. Several remarks are devoted to similar
results for operators on graphs and manifolds mentioned above. Finally, an
appendix is devoted to some facts from the theory of the spectral shift function
which are used in the main text. More details can be found in the table of
contents.

The present text is a revised version of the thesis [486] prepared for the
habilitation at the Department of Mathematics of the Technische Universität
Chemnitz, which in turn is based on [483]. W. König, P. Stollmann, and
S. Teufel have kindly accepted the request of the Department to act as referees
of the thesis and I would like to thank them at this occasion. The material
presented here draws to a large extent on joint work with colleagues: I have
greatly profited from discussions with T. Antunović, D. Borisov, M. Gruber,
M. Helm, D. Hundertmark, R. Killip, W. Kirsch, S. Kondej, V. Kostrykin,
D. Lenz, P. Müller, S. Nakamura, N. Peyerimhoff, O. Post and P. Stollmann
and enjoyed working with them. This work has been made possible through
the financial support of the Deutsche Forschungsgemeinschaft. I thank the
staff of Springer in charge of the LNM series for their flexibility and efficiency
in the course of the preparation of the manuscript.

Technical University Chemnitz, Germany Ivan Veselić
September, 2007
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1

Random Operators

1.1 Physical Background

Random Schrödinger operators are used as models of disordered solids within
the framework of quantum mechanics.

A macroscopic solid consists of an order of magnitude of 1023 of nuclei and
electrons. The resulting Hamiltonian taking into account all interactions is
highly complicated. To arrive at a Schrödinger operator which can be studied
in some detail one neglects the electron-electron interaction and treats the
nuclei in the infinite mass approximation. Thus one arrives at an one-electron
Schrödinger operator with an external potential due to the electric forces
between the electron and the nuclei, which are assumed to be fixed in space.

In the case that the nuclei are arranged periodically on a lattice, the po-
tential energy of the electron is a periodic function of the space variable.

On the other hand, the electron could be moving in an amorphous medium,
in which case there is no large group of symmetries of the Hamiltonian. How-
ever, from the physical point of view it is reasonable to assume that the local
structure of the medium will be translation invariant on average. This means
that we consider the potential which the electron experiences as a particular
realisation of a random process and assume stationarity with respect to some
group of translations. Moreover, physical intuition suggests to assume that
the local properties of the medium in two regions far apart (on the micro-
scopic scale) are approximately independent from each other. Therefore the
stochastic process describing the potential should have a correlation function
which decays to zero, or — more generally — should be ergodic.

There are interesting models which lie between the two extreme cases of
lattice-periodic and amorphous media. They still have an underlying lattice
structure which is, however, modified by disorder. Probably the best studied
Hamiltonian with this properties is the alloy type model. We leave its precise
definition for the next section and introduce here a special case on the intuitive
level. Consider first the potential
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Vω(x) :=
∑
k∈Zd

uk(ω, x)

Each k corresponds to a nucleus sitting on a lattice point. The function uk(ω, ·)
describes the atomic or nuclear potential at the site k and depends on the ran-
dom parameter ω which models the different realisations of the configuration
of the nuclei. If there is only one type of atom present, which has a spheri-
cally symmetric potential, all the uk(ω, ·) are the same, and Vω is periodic.
Now assume that there are two kinds a and b of atoms present, which have
spherically symmetric atomic potentials of the same shape, but which differ
in their nuclear charge numbers qa and qb.

In this case the potential looks like

Vω(x) :=
∑

k occupied by a

qa u(x− k) +
∑

k occupied by b

qb u(x− k)

If the two sorts of atoms are arranged on the lattice in a regular pattern, this
again gives rise to a periodic potential.

However, there are physically interesting situations (e.g. binary alloys)
where the type of atom sitting on site k is random, for example obeying the
law

P{k is occupied by atom a} = P, P{k is occupied by atom b} = 1− P

with some P ∈]0, 1[. Here P{. . . } denotes the probability of an event. If we fur-
thermore assume that the above probabilities are independent at each site and
the parameter P is the same for all k, we arrive at the continuum Bernoulli-
Anderson potential

Vω(x) =
∑

k

qk(ω)u(x− k)

Here qk(ω) ∈ {qa, qb}, k ∈ Zd denotes a collection of independent, identically
distributed Bernoulli random variables and u is some atomic potential.

This model is a prototype which has motivated much research in the
physics and mathematics literature, a part of which we will review in the
present work.

1.2 Model and Notation

We introduce here, respectively recall, basic notions on Lp spaces, selfadjoint
operators in general and Schrödinger operators in particular, and specify the
model Hamiltonian which will be studied throughout the text. We suppose
that the reader is acquainted with the theory of selfadjoint operators in Hilbert
space. In the Preface one can find a list of monographs which provide the
necessary background of this theory.
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Let us start with some mathematical notation. The symbols R, Z, N, N0

denote the set of reals, the set of integers, the set of natural numbers, and
the set of non-negative integers, respectively. For a set A ⊂ B we denote by
Ac := B \A its complement. A measurable subset of Rd will be often denoted
by Λ, and if there is a sequence of such sets its members will be denoted
Λ1, . . . ,Λl, . . . . The symbol |Λ| is used for the Lebesgue measure of Λ. We
write |x| for the norm of x ∈ Rd, while the norm of a vector f in a function
space is denoted by ‖f‖.

The Hilbert space of (equivalence classes of) measurable functions on Λ
which are square integrable with respect to Lebesgue measure is denoted by
L2(Λ). Similarly, Lp(Λ) with p > 0 stands for the Banach space of measurable
functions f such that |f |p is integrable, while L∞(Λ) is the set of measurable
functions which are essentially bounded with respect to Lebesgue measure.
The space of sequences {an}n∈N such that |an|p is summable is denoted by
�p(N). Note that the case p ∈]0, 1[ is included in our notation. In our context
we will often choose the exponent p dependent on the dimension of the config-
uration space. In the following we denote by p(d) any number in [1,∞[ which
satisfies

p(d)

{
≥ 2 if d ≤ 3,

> d/2 if d ≥ 4
(1.1)

For Λ ⊂ Rd open, the symbols C(Λ), C∞(Λ) stand for the continuous, respec-
tively smooth, functions on Λ. The subscript c in Cc(Λ), C∞

c (Λ), Lp
c(Λ) means

that we consider only those functions which have compact support in Λ. In
the sequel we will often consider potentials from the class of functions which
are uniformly locally in Lp. More precisely, f is in the set of uniformly locally
Lp-functions, denoted by Lp

unif,loc(R
d), if and only if there is a constant C

such that for each y ∈ Rd

∫
|x−y|<1

|f(x)|p dx ≤ C

The infimum over all such constants C equals by definition ‖f‖pp, unif,loc. Fi-
nally, we introduce Sobolev spaces W k,2 of order k. For Λ ⊂ Rd open, a
function f ∈ L2(Λ) is in W k,2(Λ) if all its partial derivatives up to order
k exist in the sense of distributions and are elements of L2(Λ). Obviously,
C∞

c (Λ) is a subset of W k,2(Λ). Its closure (with respect to the canonical norm
of W k,2(Λ)) is denoted by W k,2

0 (Λ).
Let ∆ denote the Laplacian on Rd. If we choose its operator domain D(∆)

to be the Sobolev space W 2,2(Rd), it becomes a selfadjoint operator. The
restriction of ∆ to an open true subset Λ ⊂ Rd becomes selfadjoint only if we
specify appropriate boundary conditions (b.c.). Dirichlet b.c. are defined in
Remark 2.2.3. For the definition of Neumann and periodic b.c. see for instance
[408].
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Let A,B be two densely defined symmetric operators on a Hilbert space
H, whose norm we denote by ‖ · ‖. The associated scalar product we denoted
by <. , .>. We say that B is (relatively) A-bounded if the domains obey the
inclusion D(A) ⊂ D(B) and there are finite constants a and ca such that for
all f ∈ D(A)

‖Bf‖ ≤ a‖Af‖+ ca‖f‖ (1.2)

The infimum over all a such that the estimate holds with some ca is called
relative bound (of B with respect to A). If B is A-bounded with relative
bound zero, we call it infinitesimally A-bounded. Let A be selfadjoint, and B
symmetric and relatively A-bounded with relative bound smaller than one.
Then the operator sum A + B on the domain D(A) is selfadjoint by the
Kato-Rellich Theorem, see e.g. Sect. X.2 in [407]. We will apply this result to
the sum of the negative Laplacian and a potential. A multiplication operator
by a function V ∈ Lp

unif,loc(R
d) is infinitesimally ∆-bounded if p = p(d),

cf. Theorem XIII.96 in [408]. Moreover, the constant ca in (1.2) depends only
on ‖V ‖p, unif,loc. Thus the sum H := −∆ + V is selfadjoint on W 2,2(Rd). In a
similar way it is possible to introduce the notion of relative form-boundedness.
Here we consider A which is selfadjoint and bounded below. Denote by D(QA)
its quadratic form domain. A symmetric operator B is said to be (relatively)
A-form bounded if the quadratic form domains obey the inclusion D(QA) ⊂
D(QB) and there are finite constants a,Ca such that

|〈φ,Bφ〉| ≤ a〈φ,Aφ〉+ Ca〈φ, φ〉 (1.3)

The relative A-form bound of B is the infimum of all a which satisfy (1.3).
See Sect. VI.1.7 in [239] for more details.

Before we introduce random operators we want to fix notation concern-
ing some terminology in probability theory. The triple (Ω,BΩ, P) stands
for a probability space with associated σ-algebra and probability measure,
while E {. . . } denotes the expectation value with respect to P. A collection
Tj : Ω → Ω, j ∈ J of measure preserving transformations is called ergodic if
all measurable sets in Ω which are invariant under the action of all Tj , j ∈ J
have measure zero or one.

Definition 1.2.1. Let p = p(d) be as in (1.1), u ∈ Lp
c(R

d) and qk : Ω → R,
k ∈ Zd a sequence of bounded, independent, identically distributed random
variables, called coupling constants. Then the family of multiplication opera-
tors given by the stochastic process

Vω(x) :=
∑
k∈Zd

qk(ω)u(x− k) (1.4)

is called alloy type potential. The function u is called single site potential. Let
H0 := −∆+Vper be a periodic Schrödinger operator with Vper ∈ Lp

unif,loc(R
d).

The family of operators
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Hω := H0 + Vω, ω ∈ Ω (1.5)

is called alloy type model.
The distribution measure of the random variable q0 will be called single

site distribution and denoted by µ. If not stated otherwise, in the sequel we
assume that µ is absolutely continuous with respect to the Lebesgue measure
and has a bounded density. The density function is denoted by f .

Due to our assumptions on the boundedness of the coupling constants, for
each a > 0 there is a constant ca such that for all ω and all ψ ∈ D(∆)

‖Vωψ‖ ≤ a‖∆ψ‖+ ca‖ψ‖, ‖Vperψ‖ ≤ a‖∆ψ‖+ ca‖ψ‖
In particular H0 and all Hω are selfadjoint on the operator domain of ∆. It
will be of importance to us that the constant ca may be chosen independently
of the random parameter ω.

Remark 1.2.2. (a) In several sections we study Hamiltonians as in Definition
1.2.1, but where some of the hypotheses on the single site potential or
the coupling constants are relaxed. More precisely, we will consider single
site potentials with non-compact support and coupling constants which are
unbounded, correlated, or do not have a bounded density.

(b) If the coupling constants are not bounded, one has to impose some
moment condition to make sure that the alloy type model still makes sense.
The main difference (to the bounded case) is that for ω in a set Ω′ ⊂ Ω of full
measure the operator Hω will be (essentially) selfadjoint, however this may
fail to hold for ω in the complement Ω \ Ω′. See for example [255, 256, 258]
for more details.

(c) There is a group of measure preserving transformations Tk, k ∈ Zd on
(Ω,BΩ, P) such that (1.4) obeys

Vω(x− k) = VTkω(x)

In other words, the stochastic process V : Ω × R → R is stationary with
respect to translations by vectors in Zd. Moreover, the group Tk, k ∈ Zd acts
ergodically on Ω, therefore we call V an Zd-ergodic potential.

To see that the above statements are true we pass over to the canonical
probability space Ω = ×k∈Zd R, equipped with the product measure P :=
⊗k∈Zd µ. Now the stochastic process {πk}k∈Zd , defined by πk(ω) = ωk for all
k ∈ Zd, has the same finite dimensional distributions as {qk}k. It is easily
seen that the transformations (Tk(ω))j := ωj−k are measure preserving and
that the group (Tk)k∈Zd acts ergodically on Ω. See Sect. 3 in [247] or Sect. I.1
in [389] for more details.

Using the stochastic process {πk}k the alloy type potential can be writ-
ten as

Vω(x) :=
∑
k∈Zd

ωk u(x− k) (1.6)

We will use notations (1.4) and (1.6) without distinction in the sequel.
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Abstracting the properties of stationarity and ergodicity we define general
random potentials and operators with a Zd-ergodic structure.

Definition 1.2.3. Let V : Ω × Rd → R be a stochastic process such that for
almost all ω ∈ Ω the realisation of the potential obeys Vω ∈ Lp

unif,loc(R
d),

p = p(d) and additionally E {‖VωχΛ‖pp} < ∞, where Λ is a unit cube. Let
Tk, k ∈ Zd be a group of measure preserving transformations acting ergodically
on (Ω,BΩ, P) such that

Vω(x− k) = VTkω(x)

Then we call {Vω}ω a (Zd-ergodic) random potential and {Hω}ω with Hω =
−∆ + Vω a (Zd-ergodic) random operator.

The restriction of Hω to an open subset Λ will be denoted by HΛ
ω if we

impose Dirichlet boundary conditions and by HΛ,N
ω in the case of Neumann

b.c. While we will be mainly concerned with Zd-ergodic operators we will give
some comments as asides on their counterparts which are ergodic with respect
to the group Rd. The overview [331] is devoted to such models that model
amorphous media. Insight in the research on almost-periodic operators can be
obtained for instance in the papers [431, 432, 32, 40], the literature quoted on
page 9, the monographs [102, 389], and the references therein.

Remark 1.2.4. All Zd-ergodic potentials can be represented in a form which
resembles alloy type potentials. In fact, for such V : Ω× Rd → R there exists
a sequence fk, k ∈ Zd of random variables on Ω taking values in the separable
Banach space Lp(Rd) such that V can be written as

Vω(x) =
∑
k∈Zd

fk(ω, x− k). (1.7)

This representation is of interest because it ensures that after passing to an
equivalent probability space and stochastic process one may assume that the
sigma algebra on Ω is countably generated. See [245] and Remark 2.8 in [328]
for more information.

1.3 Transport Properties and Spectral Types

The main interest in the study of random operators is to understand the
transport properties of the materials they model. In the particular case of
the quantum mechanical Hamiltonian of an electron in a disordered solid the
electric conductance properties are the principal object of interest.

The Hamiltonian governs the equation of motion, i.e. the time dependent
Schrödinger equation

∂ψ(t)
∂t

= −iHωψ(t) (1.8)
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The time evolution of the vector ψ(t) in Hilbert space describes the movement
of the electron. Since we chose the space representation in the Schrödinger
picture, we can think of ψ(t) as a wave packet which evolves in time. The
square of its absolute value |ψ(t, ·)|2 ∈ L1(Rd) is a probability density. More
precisely,

∫
A
|ψ(t, x)|2dx is the probability to find the electron in the set A⊂Rd

at time t. We will be only concerned with Hamiltonians Hω which are time
independent. In this case the solution to the equation (1.8) is given by ψ(t) =
e−itHψ(0) where ψ(0) denotes the initial condition at time 0.

For a given initial state ψ(0) supported in a compact set A ⊂ Rd one
would like to know whether for large times the function ψ(t) stays (essentially)
supported near A, or moves away to infinity. In the first case one speaks of a
bound state, since it remains localised near its original support for all times.
The other extreme case would be that ψ(t) leaves any compact region in
Rd (and never comes back) as time goes to infinity. Such a state is called a
scattering or extended state. By the RAGE theorem it is possible to relate
the dynamical properties of states just described to the spectral properties of
the Hamiltonian. Roughly speaking, bound states correspond to pure point
spectrum and scattering states to (absolutely) continuous spectrum.

For a more precise formulation we assume that the Schrödinger operator H
satisfies the following local compactness property: If χB is the characteristic
function of an arbitrary ball B = BR(x) ⊂ Rd and P (I) the spectral projection
of H associated to a bounded interval I ⊂ R, then the operator χRP (I) is
compact. Under this condition a vector ψ is in the subspace associated to the
continuous spectrum of H if and only if for arbitrary BR(x)

lim
T→∞

1
T

∫ T

−T

dt

∫
BR(x)

|ψ(t, x)|2dx = 0 (1.9)

Here we used the notation ψ(t, x) = (e−itHψ)(x). A vector ψ satisfying (1.9)
is called a scattering state in time mean. Under the same local compactness
assumption, a vector ψ is in the subspace associated to the pure point spec-
trum of H if and only if for any ε > 0 these exists a radius R = R(ψ, ε) such
that

sup
t∈R

∫
Rd\BR(0)

|ψ(t, x)|2 ≤ ε (1.10)

For a broader discussion consult for instance [409, 102, 458, 496].
The above relation to the dynamical properties of states motivates the sys-

tematic study of spectral features of the Schrödinger operators appearing in
the time evolution equation (1.8). If a random Schrödinger operator exhibits
almost surely only pure point spectrum in an energy region one speaks of
Anderson or spectral localisation. The name goes back to Anderson’s seminal
work [20]. This property has been established for a variety of random mod-
els. In most of those cases one can additionally prove that the correspond-
ing eigenfunctions decay exponentially in configuration space, a phenomenon
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called exponential (spectral) localisation. The situation is different for ran-
dom potentials with long range correlations, where sometimes only power-law
decay of the eigenfunctions has been established [263, 170, 500].

If an energy interval contains almost surely only pure point spectrum, we
call it localisation interval. An eigenfunction of Hω which decays exponentially
is called an exponentially localised eigenstate. The region or point in space
where the localised state has its highest amplitude will be called localisation
centre (we will not need a mathematically precise definition of this notion).

However, it turns out that the spectrum provides only a rough view on
the dynamical properties of the quantum mechanical system. A more detailed
understanding can be obtained by studying the time evolution of the mo-
ments of the position operators. This led to a formulation of several criteria
of dynamical localisation. One possible characterisation of this phenomenon,
namely strong dynamical localisation in Hilbert-Schmidt topology means that
for all q > 0

E

{
sup

‖f‖∞≤1

∥∥∥|X|q/2f(Hω)Pω(I)χK

∥∥∥2
HS

}
<∞ (1.11)

Here Pω(I) denotes the spectral projection onto the energy interval I associ-
ated to the operator Hω, ‖ · ‖HS denotes the Hilbert-Schmidt norm, K ⊂ Rd

is any compact set, and |X| denotes the operator of multiplication with the
function |x|. For the interpretation of (1.11) as non-spreading of wave-packets
one chooses f(y) = e−ity. Dynamical localisation (1.11) implies in partic-
ular that the random Hamiltonian Hω exhibits spectral localisation in I.
In [414] it was first pointed out that, in general, it is important to distin-
guish between dynamical and spectral localisation. The derivation of various
forms of dynamical localisation using the multiscale analysis can be found in
[183, 107, 186, 187, 188, 190], while a proof of the same fact based on the
fractional moment method is the content of the papers [6, 60]. Actually, dy-
namical localisation has first been proven for discrete Schrödinger operators
using the latter method in [9, 4, 7, 11]. In [414, 111, 235] examples are dis-
cussed where spectral localisation occurs, but certain dynamical criteria for
localisation are not satisfied.

For the operators discussed in the present volume these distinctions are not
crucial. In the case of the alloy type model, to which we devote most attention,
spectral and dynamical localisation coincide, cf. [107, 190]. In the sequel we
mean by localisation that the considered operator exhibits in a certain energy
interval only pure point spectrum, and that the corresponding eigenfunctions
decay sufficiently fast.

Since we are dealing not just with a single Hamiltonian, but with a whole
family of them, we have to say something on how the spectral properties
depend on the parameter ω describing the randomness: many properties of the
spectrum of an operator pertaining to the family {Hω}ω hold almost surely,
i.e. for ω in a set such that its complement has measure zero in Ω. This is at
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least true for the properties we discuss in the present work. There are other
quantities which are highly dependent on the randomness, like eigenfunctions
of Hω or the set of its eigenvalues (not its closure!).

We shortly describe what kinds of spectral types one expects from the
physical point of view for random Schrödinger operators, say of alloy type. In
case there are rigorous results which have confirmed this intuition we quote
the reference.

In one space dimension the spectrum is pure point for all energies almost
surely. A rigorous proof of this statement was first given in [202] for random
potentials generated by Brownian motion on a compact manifold. Later the
theorem was extended to Anderson and alloy type models with continuous
[306] and Bernoulli randomness [80, 429, 104]. In general one could say that
the understanding of the localisation phenomenon is more advanced in the
one-dimensional situation than in the higher-dimensional one. This is due
to a variety of ideas and methods which are specific — or at least more
powerful — for one-dimensional operators, like Kotani theory, subordinacy
theory, transfer matrices, Lyapunov exponents, the Prüfer transformation, two
parameter spectral averaging, reflection coefficients, inverse spectral theory
and scattering theory. These aspects are discussed among others in [303, 252,
304, 444, 306, 305, 198, 197, 365, 73, 271, 296, 111, 445, 459, 74, 105, 106] and
surveyed in [460].

In three or more dimensions it is expected that the spectrum is pure point
near the boundaries of the spectrum while in the interior it is purely absolutely
continuous. In the latter case one speaks also of an energy region with delo-
calised states. However, for alloy type Hamiltonians in Euclidean space the
proof of delocalisation is still open. For several different types of random op-
erators results on existence of absolutely continuous spectrum have been ob-
tained: for random operators on trees in [276, 277, 13, 14, 15, 16, 172], for alloy
type models with decaying randomness in [315, 253, 219, 316, 250, 317, 171],
and for certain one-dimensional quasi-periodic operators in [114, 149, 58, 161,
162, 163, 31]. It is expected that there is a sharp transition between energies
with localised and those with delocalised spectrum. The threshold energy is
called mobility edge. For partial results see [230, 253, 190, 161]. There are also
related results in terms of the dynamical properties of the time evolution of
states, see [111, 235, 190, 192].

The literature on the existence of pure point spectrum near spectral bound-
aries is extensive. We discuss it in more detail in Sect. 3.2.

How large the intervals with point or continuous spectrum are, depends on
the disorder present in the model. For instance, in (1.5) one could introduce
a global coupling constant λ in front of the potential

Hω = H0 + λVω

Now large λ means large disorder, small λ small disorder. The larger the disor-
der, the larger is the portion of the spectrum which contains localised states.
For a quantitative formulation of this intuition see for instance [491, 287, 286,
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187, 188]. Similarly, as the disorder increases the exponentially localised states
decay faster, i.e. the localisation length decreases, cf. e.g. [491, 423, 424]. For
other types of random Schrödinger operators there are similar ways to intro-
duce a disorder parameter.

1.4 Fluctuation Boundaries of the Spectrum

The phenomenon that localised states emerge at the edges of the spectrum
can be understood in terms of the so-called fluctuation boundaries. These are
the regions of the spectrum which correspond to extremely rare configurations
of the potential. Consequently, the density of states, which measures the con-
centration of the spectrum (see the next two chapters for a precise definition)
is very thin in this region. Under certain assumptions it can be shown that
localisation occurs precisely in those energy regions where the spectrum is
sufficiently sparse. See e.g. [190] for a rigorous formulation.

The characteristic behaviour of the integrated density of states near fluc-
tuation boundaries of the spectrum has been first understood on physical
grounds by I. M. Lif̌sic in [336, 337, 338]. For this reason the tails of the
integrated density of states at these boundaries bear the name Lifshitz-
asymptotics or Lifshitz-tails. To explain this behaviour, let us denote by E0

the minimum of the spectrum of a lower-bounded random operator, which is
by ergodicity independent of the realisation almost surely. Then the integrated
density of states N behaves for energies E > E0 near E0 like

N(E) ∼ exp(−const(E − E0)−d/2).

The most precise bounds for this asymptotics have been obtained for random
Schrödinger operators with a potential generated by impurities which are dis-
tributed randomly in space according to a Poisson process, see e. g. [128, 387,
379, 465, 467]. Similar results hold for a discrete relative of this operator,
namely the Anderson model on �2(Zd), see e.g. [129, 23, 284, 52, 360, 476].
The reason why these models are amenable to a very precise analysis is
the applicability of Brownian motion, respectively random walk techniques
and Feynman-Kac functionals. For several other types of random operators a
weaker form

lim
E↘E0

log | log(N(E)−N(E0))|
| log(E − E0)| =

d

2
(1.12)

of the exponential law has been established using estimates based on inequal-
ities by Thirring [473] and Temple [472]. In particular, this method can be
applied to show that the asymptotics (1.12) holds for the Anderson model
on �2(Zd) and the alloy type model on L2(Rd). This strategy of proof was
pursued in the 1980s in several papers [257, 361, 440, 262, 362, 363, 441].

Further works devoted the study of the asymptotics near fluctuation
boundaries include [385, 386, 302, 178, 180, 179, 466, 364, 283, 456, 288,
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290, 291, 287, 285, 220, 269, 251, 270, 260, 266, 487, 371, 25, 24]. At the
end of Sect. 5.7 one can find references to results on Lifshitz tails for random
Schrödinger operators with magnetic fields.

The existence of localised states for random Schrödinger operators is in
sharp contrast to the features of periodic operators. Indeed, for operators with
periodic potential, satisfying some mild regularity assumptions, it is known
that the spectrum is purely absolutely continuous, [474, 49, 450, 427, 428, 318].
This difference might seem somewhat surprising, given the similarity of the
structure of an alloy type and a periodic operator.

When looking at the integrated density of states one also sees a quite dif-
ferent behaviour for the above discussed random and periodic models. Namely,
for periodic Schrödinger operators and their discrete analogues the low energy
asymptotics of the integrated density of states is governed by the so-called van
Hove singularities. This means that the integrated density of states vanishes
polynomially when the energy variable approaches the bottom of the spec-
trum, in the sense that

lim
E↘E0

log N(E)
log(E − E0)

=
d

2
. (1.13)

which is in sharp contrast to the Lifshitz tail behaviour outlined above.





2

Existence of the Integrated Density of States

Intuitively, the integrated density of states (IDS) measures how many electron
energy levels can be found below a given energy per unit volume of a solid. An
alternative name for this quantity is spectral distribution function. It can be
used to calculate the free energy and hence all basic thermodynamic quantities
of the corresponding non-interacting many-particle system.

To define the IDS mathematically one uses an exhaustion procedure. More
precisely, one takes an increasing sequence Λl of open subsets of Rd such that
each Λl has finite volume and

⋃
l Λl = Rd. Then the operator H l

ω, which is
the restriction of Hω to Λl with Dirichlet boundary conditions, is selfadjoint,
bounded below and its spectrum consists of discrete eigenvalues λ1(H l

ω) ≤
λ2(H l

ω) ≤ · · · ≤ λn(H l
ω) → ∞. Here λn = λn+1 means that the eigenvalue is

degenerate and we take this into account in the enumeration.
The normalised eigenvalue counting function or finite volume integrated

density of states N l
ω is defined as

N l
ω(E) :=

#{n|λn(H l
ω) < E}

|Λl| (2.1)

The numerator can equally well be expressed using the trace of the spectral
projection P l

ω(I) associated to the operator H l
ω and an energy interval I,

namely
#{n|λn(H l

ω) < E} = Tr
[
P l

ω

(
]−∞, E[

)]
Note that N l

ω : R → [0,∞[ is a distribution function of a point measure for
all l ∈ N, i.e. N l

ω(E) = νl
ω(]−∞, E[). Here νl

ω is the finite volume density of
states measure defined by

νl
ω(I) := |Λl|−1 #{n|λn(H l

ω) ∈ I}
By definition, a distribution function is non-negative, left-continuous and
non-decreasing. In particular, it has at most countably many points of
discontinuity.
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Under specific additional conditions on the random operator and the
exhaustion sequence Λl, l ∈ N one can prove that

(i) For almost all ω ∈ Ω the sequence N l
ω converges to a distribution func-

tion Nω as l goes to infinity. This means that we have N l
ω(E)→ Nω(E)

for all continuity points E of the limit distribution Nω.
(ii) For almost all ω ∈ Ω the distribution functions Nω coincide, i.e. there is

an ω-independent distribution function N such that N = Nω for almost
all ω. This function N is called the integrated density of states. Note
that its independence of ω is not due to an explicit integration over the
probability space Ω, but only to the exhaustion procedure. This is the
reason why the IDS is called self-averaging.

(iii) In most cases there is a formula for the IDS as an expectation value of a
trace per unit volume of a spectral projection. For Zd-ergodic operators
it reads

N(E) := E

{
Tr
[
χΛPω(]−∞, E[)

]}
(2.2)

Here Λ denotes the unit box ]0, 1[d, which is the periodicity cell of the
lattice Zd. Actually, one could choose certain other functions instead of
χΛ, yielding all the same result, cf. Formula (2.15). The equality (2.2)
holds for Rd-ergodic operators, too. It is sometimes called Pastur-Shubin
trace formula.

In the following we prove the properties of the IDS just mentioned by
two methods. In Sects. 2.2–2.6 a detailed proof is given using the Laplace
transforms of the distribution functions N l

ω, while Sect. 2.7 is devoted to an
alternative method of proof. It uses Dirichlet-Neumann bracketing estimates
for Schrödinger operators, which carry over to the corresponding eigenvalue
counting functions. These are thus super- or subadditive stochastic processes
to which an ergodic theorem can be applied.

Actually the proof using Laplace transforms will apply to more general
situations than discussed so far, namely to more general geometries than the
Euclidean one. To be precise, we will consider random Schrödinger operators
on Riemannian covering manifolds, where both the potential and the met-
ric may depend on the randomness. This includes random Laplace-Beltrami
operators.

We follow the presentation and proofs in [392, 327]. The general strategy
we use was developed by Pastur and Shubin in [384] and [431] for random
and almost-periodic operators in Euclidean space. A particular idea of this
approach is to prove the convergence of the Laplace transforms Ll

ω of the
normalised finite volume eigenvalue counting functions N l

ω instead of proving
the convergence of N l

ω directly. This is actually the main difference to the
second approach we outline in Sect. 2.7, which is taken from [254]. The Pastur-
Shubin strategy seems to be better suited for geometries with an underlying
group structure which is non-abelian.

Indeed, one of the differences between random operators on manifolds
and those on Rd is that the operator is equivariant with respect to a group
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which does not need to be commutative. This means that one has to use
a non-abelian ergodic theorem to derive the convergence of the distribution
functions N l

ω or, alternatively, of their Laplace transforms Ll
ω. This imposes

some restriction on the strategy of the proof since ergodic theorems which
apply to non-abelian groups need more restrictive assumptions than their
counterparts for commutative groups, cf. also Remark 2.6.2. For processes
which are not additive, but only super- or subadditive, there is a non-abelian
maximal ergodic theorem at disposal (cf. 6.4.1 Theorem in [313]) but so far
no pointwise theorem. This is also the reason why the Dirichlet-Neumann
bracketing approach of Sect. 2.7 does not seem applicable to random operators
living on a covering manifold with non-abelian deck-transformation group
(covering transformation group).

2.1 Schrödinger Operators on Manifolds: Motivation

In this chapter we study the IDS of random Schrödinger operators on mani-
folds. Let us first explain the physical motivation for this task.

Consider a particle or a system of particles which are constrained to a
sub-manifold of the ambient (configuration) space. The classical and quantum
Hamiltonians for such systems have been studied e.g. in [367, 173] (see also the
references therein). To arrive at an effective Hamiltonian describing the con-
strained motion on the sub-manifold, a limiting procedure is used: a (sequence
of) confining high-barrier potential(s) is added to the Hamiltonian defined on
the ambient space to restrict the particle (system) to the sub-manifold. In
[367, 173] one can find a discussion of the similarities and differences between
the obtained effective quantum Hamiltonian and its classical analogue.

A important feature of the effective quantum Hamiltonian is the appear-
ance of a so-called extra-potential depending on the extrinsic curvature of
the sub-manifold and the curvature of the ambient space. This means that
even if we disregard external electric forces the relevant quantum mechanical
Hamiltonian of the constrained system is not the pure Laplacian but con-
tains (in general) a potential energy term. This fact explains the existence
of curvature-induced bound states in quantum waveguides and layers, see
[157, 138, 343, 139] and the references therein.

As is mentioned in [367], the study of effective Hamiltonians of constrained
systems is motivated by specific physical applications. They include stiff mole-
cular bonds in (clusters of) rigid molecules and molecular systems evolving
along reaction paths. From the point of view of the present work quantum
wires, wave guides and layers are particularly interesting physical examples.
Indeed, for these models (in contrast to quantum dots) at least one dimension
of the constraint sub-manifold is of macroscopic size. Moreover, it is natural
to assume that the resulting Hamiltonian exhibits some form of translation
invariance in the macroscopic direction. E.g. it may be periodic, quasi-periodic
or — in the case of a random model — stationary.
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For random quantum waveguides and layers the existence of dense point
spectrum is expected, cf. the discussion of localisation in Sect. 1.3. Indeed, for
a specific type of random waveguide embedded in the Euclidean plane this has
been rigorously proven in [274, 275]. The question of spectral localisation due
to random geometries has been raised already in [109]. There the behaviour
of Laplace-Beltrami operators under non-smooth perturbations of the metric
is studied.

While the motivations presented above stem from solid state physics a
further stimulus to study the IDS comes from within mathematics itself:
For various geometries with a group action it makes sense to define trans-
lation invariant or periodic operators. This applies to covering manifolds,
Cayley graphs and more generally quasi-transitive graphs, as well as for
CW-complexes. These carry naturally defined Laplace operators on func-
tions and more generally on p-forms. Related objects are magnetic Laplacians
and Schrödinger operators, for which it is also makes sense to formulate an
equivariance condition.

Here, by the term periodic we mean the property that there is a subgroup
of the automorphism group of the geometric space such that the operator is
invariant under conjugation with unitary transformations which are associated
to elements of the subgroup.

Due to the wealth of possibilities of the geometric structure, here even
Laplacians without any random perturbation may exhibit intriguing spectral
properties, part of which is captured by the IDS, respectively the spectral dis-
tribution functions of Laplacians on forms. Instances of such features are L2-
Betti numbers, Novikov-Shubin invariants and other geometric L2-invariants,
the jumps of the IDS, and the gap structure of the spectrum.

Geometric L2-invariants describe the behaviour of the spectral distribution
function at energies near the spectral bottom. For instance, the pth L2-Betti
number is the size of the jump at zero energy of the distribution function
of the Laplacian on p-forms, see for instance [30, 118, 126]. Novikov-Shubin
invariants correspond to characteristic exponents of the asymptotic behaviour
of the IDS near zero, cf. e.g. [381, 380, 144, 208, 344, 160, 433, 347, 382, 25, 24].
L2-torsion is a generalisation of ordinary torsion and has an analytic as well as
a combinatorial variant. These invariants have been introduced in [348, 344,
356, 77] and studied in [349, 75, 76, 103, 71, 321, 272, 62].

Another interesting feature of some periodic Laplace-Beltrami operators
is the existence of L2-eigenfunctions, a phenomenon which cannot happen in
Euclidean space. Since the IDS is a spectral measure of the periodic operator,
the set of discontinuities of this function is precisely the set of eigenvalues of
the operator. These issues have been studied for instance in [126, 461, 292,
462, 325]. For more details see the discussion in Remark 3.1.3.

The analysis of the gap structure of the spectrum of periodic operators
of Schrödinger type is a further topic which has attracted attention. More
precisely, one is interested whether the spectrum in interrupted by spectral
gaps, i.e. intervals on the real line which belong to the resolvent set. In case
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there are gaps: can one establish upper and lower bounds for the width and
number of gaps and the spectral bands separating them? For different types of
periodic or gauge-invariant elliptic differential operators on manifolds spectral
gaps have been analysed in [463, 70, 69, 238, 393, 394]. See Example 2.2.5 for
a particular case. Even for periodic Schrödinger operators in Euclidean space
it is not trivial to characterise the gap structure. This is illustrated by works
devoted to the Bethe-Sommerfeld conjecture, e.g. [451, 446, 447, 448, 211]. For
almost periodic operators the situation is even more difficult and additional
questions arise like the gap labelling problem, see [37, 477, 240, 39, 42, 237, 38]
and the references therein. Although the gap structure of the spectrum is a
mathematically intriguing question for its own sake, it is also important from
the physical point of view. The features of gaps in the energy spectrum are
relevant for the conductance properties of the physical system cf. e.g.[339].

The periodic operators on manifolds discussed so far are generalised by
their random analogues studied in this chapter.

2.2 Random Schrödinger Operators on Manifolds:
Definitions

Let us explain the geometric setting in which we are working precisely: let X
be a complete d-dimensional Riemannian manifold with metric g0. We denote
the volume form of g0 by vol0. Let Γ be a discrete, finitely generated subgroup
of the isometries of (X, g0) which acts freely and properly discontinuously on
X such that the quotient M := X/Γ is a compact (d-dimensional) Riemannian
manifold. Let (Ω,BΩ, P) be a probability space on which Γ acts by measure
preserving transformations. Assume moreover that the action of Γ on Ω is
ergodic. Now we are in the position to define what we mean by a random
metric and consequently a random Laplace-Beltrami operator.

Definition 2.2.1. Let {gω}ω∈Ω be a family of Riemannian metrics on X.
Denote the corresponding volume forms by volω. We call the family {gω}ω∈Ω

a random metric on (X, g0) if the following five properties are satisfied:

(2.3) The map Ω× TX → R, (ω, v) �→ gω(v, v) is jointly measurable.
(2.4) There is a Cg ∈ ]0,∞[ such that

C−1
g g0(v, v) ≤ gω(v, v) ≤ Cg g0(v, v) for all v ∈ TX.

(2.5) There is a Cρ ∈ ]0,∞[ such that

|∇0 ρω(x)|0 ≤ Cρ for all x ∈ X,

where ∇0 denotes the gradient with respect to g0, ρω is the unique
smooth density of vol0 with respect to volω, and |v|20 = g0(v, v).

(2.6) There is a uniform lower bound (d− 1)K ∈ R for the Ricci curvatures
of all Riemannian manifolds (X, gω). Explicitly, Ric(gω) ≥ (d− 1)Kgω

for all ω ∈ Ω and on the whole of X.
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(2.7) The metrics are compatible in the sense that the deck transformations

γ : (X, gω)→ (X, gγω), γ : x �→ γx

are isometries.

Property (2.7) implies in particular that the induced maps

U(ω,γ) : L2(X, volγ−1ω)→ L2(X, volω), (U(ω,γ)f)(x) = f(γ−1x)

are unitary operators. The density ρω appearing in (2.5) satisfies by definition∫
X

f(x) dvol0(x) =
∫

X

f(x)ρω(x) dvolω(x).

It is a smooth function and can be written as

ρω(x) =
(
det g0(ei

ω, ej
ω)
)1/2

=
(
det gω(ei

0, e
j
0)
)−1/2

Here e1
0, . . . , e

d
0 denotes any basis of TxX which is orthonormal with respect

to the scalar product g0(x), and e1
ω, . . . , ed

ω ∈ TxX is any basis orthonormal
with respect to gω(x). It follows from (2.4) that

C−d/2
g ≤ ρω(x) ≤ Cd/2

g for all x ∈ X, ω ∈ Ω (2.8)

which in turn, together with property (2.5) and the chain rule, implies

|∇0 ρ± 1/2
ω (x)|0 ≤ C3d/4

g |∇0 ρω(x)|0 for all x ∈ X, ω ∈ Ω (2.9)

Moreover, for any measurable Λ ⊂ X by (2.8) we have the volume estimate

C−d/2
g vol0(Λ) ≤ volω(Λ) ≤ Cd/2

g vol0(Λ) (2.10)

We denote the Laplace-Beltrami operator with respect to the metric gω by ∆ω.
Associated to the random metric just described we define a random family

of operators.

Definition 2.2.2. Let {gω} be a random metric on (X, g0). Let V : Ω ×
X → R be a jointly measurable mapping such that for all ω ∈ Ω the po-
tential Vω := V (ω, ·) ≥ 0 is in L1

loc(X). For each ω ∈ Ω let Hω = −∆ω + Vω

be a Schrödinger operator defined on a dense subspace Dω of the Hilbert space
L2(X, volω). The family {Hω}ω∈Ω is called a random Schrödinger operator if
it satisfies for all γ ∈ Γ and ω ∈ Ω the following equivariance condition

Hω = U(ω,γ)Hγ−1ωU∗
(ω,γ) (2.11)
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Remark 2.2.3 (Restrictions, quadratic forms and selfadjointness). Some re-
marks are in order why the sum of the Laplace-Beltrami operator and the
potential is selfadjoint. We consider the two cases of an operator on the whole
manifold X and on a proper open subset of X simultaneously. The set of all
smooth functions with compact support in an open set Λ ⊂ X is denoted by
C∞

c (Λ). For each ω ∈ Ω we define the quadratic form

Q̃(HΛ
ω ) : C∞

c (Λ)× C∞
c (Λ)→ R, (2.12)

(f, h) �→
∫

Λ

gω(x)
(
∇f(x),∇h(x)

)
dvolω(x) +

∫
Λ

f(x)Vω(x)h(x) dvolω(x)

We infer from Theorem 1.8.1 in [108] that this quadratic from is closable
and its closure Q(HΛ

ω ) gives rise to a densely defined, non-negative selfadjoint
operator HΛ

ω . Actually, Q(HΛ
ω ) is the form sum of the quadratic forms of

the negative Laplacian and the potential. By the very definition, C∞
c (Λ) is

dense in the domain of Q(HΛ
ω ) for all ω. The result in [108] is stated for

the Euclidean case X = Rd but the proof works equally well for general
Riemannian manifolds.

The unique selfadjoint operator associated to the above quadratic form
is called Schrödinger operator with Dirichlet boundary conditions. It is the
Friedrichs extension of the restriction HΛ

ω |C∞
c (Λ). If the potential term is

absent we call it negative Dirichlet Laplacian.

There are special subsets of the manifold which will play a prominent role
later:

Definition 2.2.4. For an x ∈ X the set O(x) := {y ∈ X| ∃γ ∈ Γ : y = γx}
is called the Γ -orbit of x. The relation x ∼ y ⇐⇒ O(x) ∩O(y) �= ∅ partitions
X into equivalence classes. A subset F ⊂ X is called Γ -fundamental domain
if it contains exactly one element of each equivalence class.

In [2, Sect. 3] it is explained how to obtain a connected, polyhedral
Γ -fundamental domain F ⊂ X by lifting simplices of a triangularisation of M
in a suitable manner. F consists of finitely many smooth images of simplices
which can overlap only at their boundaries. In particular, it has piecewise
smooth boundary.

To illustrate the above definitions we will look at some examples. Firstly,
we consider covering manifolds with abelian deck-transformation group.

Example 2.2.5 (Abelian covering manifolds). Consider a covering manifold
(X, g0) with a finitely generated, abelian subgroup Γ of the isometries of
X. If the number of generators of the group Γ equals r, it is isomorphic
to Zr0 × Zr0

p1
× . . . Zrn

pn
. Here

∑
ri = r and Zp is the cyclic group of order

p. Assume as above that the quotient X/Γ is compact. Periodic Laplace-
Beltrami and Schrödinger operators on such spaces have been analysed e.g. in
[462, 393, 394].
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In the following we will discus some examples studied by Post in [393, 394].
The aim of these papers was to construct covering manifolds, such that the
corresponding Laplace operator has open spectral gaps. More precisely, for any
given natural number N , manifolds are constructed with at least N spectral
gaps. For technical reasons the study is restricted to abelian coverings. In
this case the Floquet decomposition of the periodic operator can be used
effectively. Post studies two classes of examples with spectral gaps. In the
first case a conformal perturbation of a given covering manifold is used to
open up gaps in the energy spectrum of the Laplacian. The second type of
examples in [394] is of more interest to us. There, one starts with infinitely
many translated copies of a compact manifold and joins them by cylinders to
form a periodic network of ‘pipes’. By shrinking the radius of the connecting
cylinders, more and more gaps emerge in the spectrum. Such manifolds have
a non-trivial fundamental group and are thus topologically not equivalent
to Rd. On the other hand their deck-transformation group is rather easy to
understand, since it is abelian. In particular, it is amenable (cf. Definition
2.3.4), which is a crucial condition in the study conducted later in this chapter.
Some of the examples in [393, 394] are manifolds which can be embedded in
R3 as surfaces. They can be thought of as periodic quantum waveguides and
networks. See [393] for some very illustrative figures.

Furthermore, in [394] perturbations techniques for Laplace operators on
covering manifolds have been developed, respectively carried over from earlier
versions suited for compact manifolds, cf. [85, 22, 177]. They include con-
formal perturbations and local geometric deformations. Floquet decomposi-
tion is used to reduce the problem to an operator on a fundamental domain
with quasi-periodic boundary conditions and discrete spectrum. Thereafter
the min-max principle is applied to geometric perturbations of the Laplacian.

Related random perturbations of Laplacians are studied in [326, 325]
(cf. also Example 2.2.7). In particular a Wegner estimate for such operators
is derived.

Now we give an instance of a covering manifold X with non-abelian deck-
transformation group Γ .

Example 2.2.6 (Heisenberg group). The Heisenberg group H3 is the manifold
of 3× 3-matrices given by

H3 =

⎧⎨⎩
⎛⎝ 1 x y

0 1 z
0 0 1

⎞⎠ | x, y, z ∈ R

⎫⎬⎭ (2.13)

equipped with a left-invariant metric. The Lie-group H3 is diffeomorphic to
R3. Its group structure is not abelian, but nilpotent.

The subset Γ = H3 ∩M(3, Z) forms a discrete subgroup. It acts from the
left on H3 by isometries and the quotient manifold H3/Γ is compact.
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Next we give examples of a random potential and a random metric which
give rise to a random Schrödinger operator as in Definition 2.2.2. Both have an
underlying structure which resembles alloy-type models (in Euclidean space).

Example 2.2.7. (a) Consider the case where the metric is fixed, i.e. gω = g0 for
all ω ∈ Ω, and only the potential depends on the randomness in the following
way:

Vω(x) :=
∑
γ∈Γ

qγ(ω)u(γ−1x), (2.14)

Here u : X → R is a bounded, compactly supported measurable function
and qγ : Ω → R is a sequence of independent, identically distributed random
variables. By considerations as in Remark 1.2.2 the random operator Hω :=
−∆ + Vω, ω ∈ Ω is seen to satisfy the equivariance condition.

(b) Consider the situation where the metric has an alloy like structure. Let
(g0, X) be a Riemannian covering manifold and let a family of metrics {gω}ω
be given by

gω(x) =
(∑

γ∈Γ

rγ(ω)u(γ−1x)
)

g0(x)

where u ∈ C∞
c (X) and the rγ : Ω→ ]0,∞[, γ ∈ Γ are a collection of indepen-

dent, identically distributed random variables. Similarly as in the previous
example one sees that the operators ∆ω are equivariant.

Operators of the above type are discussed in [325].

2.3 Non-Randomness of Spectra and Existence
of the IDS

Here we state the main theorems on the non-randomness of the spectral com-
ponents and the existence and the non-randomness of the IDS. They refer to
random Schrödinger operators as defined in 2.2.2.

Theorem 2.3.1. There exists a subset Ω′ of full measure in (Ω,BΩ, P) and
subsets of the real line Σ and Σ•, where • ∈ {disc, ess, ac, sc, pp} such that
for all ω ∈ Ω′

σ(Hω) = Σ and σ•(Hω) = Σ•

for any • = disc, ess, ac, sc, pp. If Γ is infinite, Σdisc = ∅.
The theorem is proven in [328], see Theorem 5.1. The arguments go to a

large part along the lines of [388, 319, 255]. Compare also the literature on
almost-periodic Schrödinger operators, for instance [431, 32].

For the proof of the theorem one has to find random variables which encode
the spectrum of {Hω}ω and which are invariant under the action of Γ . By
ergodicity they will be constant almost surely. The natural random variables
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to use are spectral projections, more precisely, their traces. However, since R is
uncountable and one has to deal also with the different spectral components,
some care is needed.

Random operators introduced in Definition 2.2.2 are naturally affiliated
to a von Neumann algebra of operators which we specify in

Definition 2.3.2. A family {Bω}ω∈Ω of bounded operators Bω: L2(X, volω)→
L2(X, volω) is called a bounded random operator if it satisfies:

(i) ω �→ 〈gω, Bωfω〉 is measurable for arbitrary f, g ∈ L2(Ω×X, P ◦ vol).
(ii) There exists a ω-uniform bound on the norms ‖Bω‖ for almost all ω ∈ Ω.
(iii) For all ω ∈ Ω, γ ∈ Γ the equivariance condition

Bω = U(ω,γ)Bγ−1ωU∗
(ω,γ)

holds.

By the results of Sect. 2.4, {F (Hω)}ω is a bounded random operator for any
measurable, bounded function F .

It turns out that (equivalence classes of) bounded random operators form
a von Neumann algebra. More precisely, consider two bounded random op-
erators {Aω}ω and {Bω}ω as equivalent if they differ only on a subset of Ω
of measure zero. Each equivalence class gives rise to a bounded operator on
L2(Ω×X, P ◦ vol) by (Bf)(ω, x) := Bωfω(x), see Appendix A in [328]. This
set of operators is a von Neumann algebra N by Theorem 3.1 in [328]. On N
a trace τ of type II∞ is given by

τ(B) := E [Tr(χF B•)]

Here Tr := Trω denotes the trace on the Hilbert space L2(X, volω). Actually,
for any choice of u : Ω×X → R+ with

∑
γ∈Γ uγ−1ω(γ−1x) ≡ 1 for all (ω, x) ∈

Ω×X we have
τ(B) = E [Tr(u• B•)] (2.15)

In analogy with the case of operators which are Γ -invariant [30] we call τ the
Γ -trace. The spectral projections {Pω

(
]−∞, λ[

)}ω of {Hω}ω onto the interval
]−∞, λ[ form a bounded random operator. Thus, it corresponds to an element
of N which we denote by P (]−∞, λ[). Consider the normalised Γ -trace of P

NH(λ) :=
τ(P
(
]−∞, λ[

)
E [vol•(F)]

(2.16)

The following is Theorem 3 in [327], see also [328].

Theorem 2.3.3. P (] −∞, λ[) is the spectral projection of the direct integral
operator

H :=
∫

Ω

⊕
Hω dP(ω)
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and NH is the distribution function of its spectral measure. In particular, the
almost sure spectrum Σ of {Hω}ω coincides with the points of increase

{λ ∈ R|NH(λ + ε) > NH(λ− ε) for all ε > 0}
of NH .

That the IDS can be expressed in terms of a trace on a von Neumann Algebra
was known long ago. In [430] and [431] Shubin establishes this relation for
almost-periodic elliptic differential operators in Euclidean space.

We want to describe the self-averaging IDS by an exhaustion of the whole
manifold X along a sequence Λl ↗ X, l ∈ N of subsets of X. To ensure the
existence of a sequence of subsets which is appropriate for the exhaustion
procedure, we have to impose additional conditions on the group Γ , which
will be discussed next.

Definition 2.3.4. A group Γ is called amenable if it has a left invariant mean
mL.

Amenability enters as a key notion in Definition 2.3.6 and Theorem 2.3.8.
For readers acquainted only with Euclidean geometry, its role is motivated in
Remark 2.3.10.

Under some conditions on the group, amenability can be expressed in other
ways. A locally compact group Γ is amenable if for any ε > 0 and compact
K ⊂ Γ there is a compact G ⊂ Γ such that

mL(G∆KG) < εmL(G)

where mL denotes the left invariant Haar measure, cf. Theorem 4.13 in [390].
This is a geometric description of amenability of Γ . If Γ is a discrete, finitely
generated group we chose mL to be the counting measure and write instead
| · |. In this case Γ is amenable if and only if a Følner sequence exists:

Definition 2.3.5. Let Γ be a discrete, finitely generated group.

(i) A sequence {Il}l of finite, non-empty subsets of Γ is called a Følner
sequence if for any finite K ⊂ Γ and ε > 0

|Il�KIl| ≤ ε |Il|
for all l large enough.

(ii)We say that a sequence Il ⊂ Γ, l ∈ N of finite sets has the Tempelman or
doubling property if it obeys

sup
l∈N

|IlI
−1
l |
|Il| <∞

(iii)We say that a sequence Il ⊂ Γ, l ∈ N of finite sets has the Shulman
property if it obeys

sup
l∈N

|IlI
−1
l−1|
|Il| <∞
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(iv) A Følner sequence {Il}l is called a tempered Følner sequence if it has
the Shulman property.

In our setting Γ is discrete and finitely generated. (Actually, K := {γ ∈ Γ |
γF ∩F �= ∅} is a finite generator set for Γ . This follows from the fact that the
quotient manifold X/Γ is compact, cf. Sect. 3 in [2].) Under this circumstances
a Følner sequence exists if and only if there is a sequence of finite, non-empty
sets Jl ⊂ Γ, l ∈ N such that liml→∞

|Jl
γJl|
|Jl| = 0 for all γ ∈ Γ . Moreover, for

discrete, finitely generated, amenable groups there exists a Følner sequence
which is increasing and exhausts Γ , cf. Theorem 4 in [1].

Both properties (ii) and (iii) control the growth of the group Γ . Linden-
strauss observed in [342] that each Følner sequence has a tempered subse-
quence. Note that this implies that every amenable group contains a tempered
Følner sequence. One of the deep results of Lindenstrauss’ paper is, that this
condition is actually sufficient for a pointwise ergodic theorem, cf. Theorem
2.6.1. Earlier it was known that such theorems can be established under the
more restrictive Tempelman property [470, 313, 471]. Shulman [434] first re-
alised the usefulness of the relaxed condition (iii).

In the class of countably generated, discrete groups there are several prop-
erties which ensure amenability. Abelian groups are amenable. More generally,
all solvable groups and groups of subexponential growth, in particular nilpo-
tent groups, are amenable. This includes the (discrete) Heisenberg group con-
sidered in Example 2.2.6. Subgroups and quotient groups of amenable groups
are amenable. On the other hand, the free group with two generators is not
amenable.

For the discussion of combinatorial properties of Følner sequences in dis-
crete amenable groups see [1].

Any finite subset I ⊂ Γ defines a corresponding set

φ(I) := int
( ⋃

γ∈I

γF
)
⊂ X

where int(·) stands for the open interior of a set.
In the following we will need some notation for the thickened boundary.

Denote by d0 the distance function on X associated to the Riemannian metric
g0. For h > 0, let ∂hΛ := {x ∈ X| d0(x, ∂Λ) ≤ h} be the boundary tube of
width h and Λh be the interior of the set Λ \ ∂hΛ.

Definition 2.3.6. (a) A sequence {Λl}l of subsets of X is called admissible
exhaustion if there exists an increasing, tempered Følner sequence {Il}l with⋃

l Il = Γ such that Λl = φ(I−1
l ), l ∈ N.

(b) A sequence Λl, l ∈ N of subsets of (X, g0) is said to satisfy the van
Hove property [478] if

lim
l→∞

vol0(∂hΛl)
vol0(Λl)

= 0 for all h > 0 (2.17)
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In our setting amenability of Γ ensures that an admissible exhaustion al-
ways exists. It is easy to see (cf. e.g. Lemma 2.4 in [392]) that every admissible
exhaustion satisfies the van Hove property. Inequality (2.10) implies that for
a sequence with the van Hove property

lim
l→∞

volω(∂hΛl)
volω(Λl)

= 0 for all h > 0

holds for all ω ∈ Ω. Let us remark that one could require for the sets Λl in
the exhaustion sequence to have smooth boundary, cf. Definition 2.1 in [392].
Such sequences exist for any X with amenable deck-transformation group
Γ , as well. This may be of interest, if one wants to study Laplacians with
Neumann boundary conditions.

For groups of polynomial growth it is possible to construct analoga of
admissible exhaustions by taking metric open balls Brl

(o) around a fixed
point o ∈ X with increasing radii r1, . . . , rn, · · · → ∞, cf. Theorem 1.5 in
[392].

Remark 2.3.7. In our setting it is always possible to chose the sequences {Il}l
and {Λl}l in such a way that they exhaust the group, respectively the mani-
fold. However, this is not necessary for our results.

A simple instance where ∪lΛl �= X can be given in one space dimension.
Let X = R, Γ = Z, Il = {1− l, . . . , 0}, F = [0, 1[ and consequently Λl =]0, l[.
One can use this sequence of sets to define the IDS of random Schrödinger
operators although ∪lΛl = [0,∞[. A non-trivial example where the sets Λl

do not exhaust X can be found in [464, 466]. There Sznitman considers ran-
dom Schrödinger operators in hyperbolic spaces. In that setting the approach
presented here does not work due to lack of amenability. Sznitman constructs
the IDS by choosing a sequence of balls Λl which converges to a horoball of
the hyperbolic space. The resulting IDS corresponds to the restriction of the
random operator to the horoball and not to the one on the whole space.

We denote by H l
ω the Dirichlet restriction of Hω to Λl, cf. Remark 2.2.3,

and define the finite volume IDS by the formula

N l
ω(λ) := volω(Λl)−1#{n | λn(H l

ω) < λ}

Now we are able to state the result of [327] on the existence of a self-
averaging IDS.

Theorem 2.3.8. Let {Hω}ω be a random Schrödinger operator and Γ an
amenable group. For any admissible exhaustion {Λl}l there exists a set Ω′ ⊂ Ω
of full measure such that

lim
l→∞

N l
ω(λ) = NH(λ), (2.18)

for every ω ∈ Ω′ and every continuity point λ ∈ R of NH .
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Definition 2.3.9. The distribution function defined by the limit in (2.18) is
called integrated density of states.

Thus all properties (i)–(iii) on page 14 can be established for the model un-
der study. In particular, formula (2.18) is a variant of the Pastur-Shubin trace
formula in the context of manifolds. Theorem 2.3.8 is proven in Sects. 2.4–2.6.
It recovers in particular the result of Adachi and Sunada [2] on the existence
of the IDS of periodic Schrödinger operators on manifolds.

Remark 2.3.10. Let us motivate, for readers acquainted only with Euclidean
space, why it is natural that the amenability requirement enters the theorem.
In the theory of random operators and in statistical mechanics one often
considers a sequence of sets Λl, l ∈ N which tends to the whole space. Even in
Euclidean geometry it is known that the exhaustion sequence Λl, l ∈ N needs
to tend to Rd in an appropriate way, e.g. in the sense of van Hove or Fisher
[417]. Convergence in the sense of van Hove [478] means that

lim
l→∞

|∂εΛl|
|Λl| = 0 (2.19)

for all positive ε.
If one chooses the sequence Λl, l ∈ N badly, one cannot expect the conver-

gence of the finite volume IDS’ N l
ω to a limit as l → ∞. In a non-amenable

geometry, any exhaustion sequence is bad, since (2.19) cannot be satisfied,
cf. Proposition 1.1 in [2].

Remark 2.3.11. We have assumed the potentials Vω to be non-negative and
some of our proofs will rely on this fact.

However, the statements of Theorem 2.3.1 on the non-randomness of the
spectrum and Theorem 2.3.8 on the existence of the IDS carry over to Vω

which are uniformly bounded below by a constant C not depending on ω ∈ Ω.
Indeed, in this case our results directly apply to the shifted operator family
{Hω −C}ω∈Ω. This implies immediately the same statements for the original
operators, since the spectral properties we are considering transform trivially
if a constant is added to the operator.

Remark 2.3.12 (Uniform convergence of the IDS). For many types of random
Hamiltonians on discrete geometric structures the convergence (2.18) of the
IDS is actually uniform in the spectral parameter almost surely, cf. [323, 330,
147, 148, 324, 329]. Note that this statement is non-trivial, since the IDS may
have discontinuities, as discussed in Remark 3.1.3.

Uniform convergence of the IDS has also been established for certain types
of random Schrödinger operators on metric graphs, cf. [209].

2.4 Measurability

Since we want to study the operators HΛ
ω as random variables we need a

notion of measurability. To this aim, we extend the definition introduced by
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Kirsch and Martinelli [255] for random operators on a fixed Hilbert space to
families of operators where the spaces and domains of definition vary with
ω ∈ Ω.

To distinguish between the scalar products of the different L2-spaces we
denote by 〈·, ·〉0 the scalar product on L2(Λ, vol0) and by ‖ · ‖0 the corre-
sponding norm. Similarly, 〈·, ·〉ω and ‖ · ‖ω are the scaler product and the
norm, respectively, of L2(Λ, volω).

Definition 2.4.1. Consider a family of selfadjoint operators {Hω}ω, where
the domain of Hω is a dense subspace Dω of L2(Λ, volω). The family {Hω}ω
is called a measurable family of operators if

ω �→ 〈fω, F (Hω)fω〉ω (2.20)

is measurable for all measurable and bounded F : R → C and all measurable
functions f : Ω× Λ→ R with f(ω, ·) = fω ∈ L2(Λ, volω) for every ω ∈ Ω.

Theorem 2.4.2. A random Schrödinger operator {Hω}ω∈Ω as in Definition
2.2.2 is a measurable family of operators. The same applies to the Dirichlet
restrictions {HΛ

ω }ω∈Ω to any open subset Λ of X.

For the proof of this theorem we need some preliminary considerations.
As the next lemma will show, assumption (2.4) in our setting implies that

it is sufficient to establish the weak measurability (2.20) for functions f which
are constant in ω. To formulate the precise statement, we first note that the
Hilbert spaces L2(Λ, vol0) and L2(Λ, volω) coincide as sets for all ω ∈ Ω,
though not in their scalar products. Thus it makes sense to speak about a
function fω ≡ f as an element of L2(Λ, volω) ”=” L2(Λ, vol0).

Lemma 2.4.3. A random Schrödinger operator {Hω}ω is measurable if and
only if

ω �→ 〈f, F (Hω)f〉ω is measurable (2.21)

for all measurable and bounded F : R→ C and all f ∈ L2(Λ, vol0).

Proof. To see this, note that (2.21) implies the same statement if we replace
f(x) by h(ω, x) = g(ω)f(x) where g ∈ L2(Ω) and f ∈ L2(Λ, vol0). Such
functions form a total set in L2(Ω× Λ, P ◦ vol).

Now, consider a measurable h : Ω × Λ → R such that h(ω, ·) ∈
L2(Λ, volω) for every ω ∈ Ω. Then hn(ω, x) := χh,n(ω)h(ω, x) is in
L2(Ω× Λ, P ◦ vol) where χh,n denotes the characteristic function of the set
{ω ∈ Ω| ‖h(ω)‖L2(Λ,volω) ≤ n}. Since χh,n → 1 pointwise on Ω for n→∞ we
obtain

〈hn(ω), F (Hω)hn(ω)〉ω → 〈h(ω), F (Hω)h(ω)〉ω
which shows that {Hω}ω is a measurable family of operators. ��
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To prove Theorem 2.4.2 we will pull all operators HΛ
ω onto the same Hilbert

space using the unitary transformation Sω induced by the density ρω

Sω : L2(Λ, vol0)→ L2(Λ, volω), (Sωf)(x) = ρ1/2
ω (x)f(x)

The transformed operators are

Aω := −S−1
ω ∆Λ

ω Sω (2.22)

Aω : S−1
ω D(∆Λ

ω) ⊂ L2(Λ, vol0) −→ L2(Λ, vol0)

The domain of definition S−1
ω D(∆Λ

ω) is dense in L2(Λ, vol0) and contains all
smooth functions of compact support in Λ.

The first fact we infer for the operators Aω, ω ∈ Ω is that they are uni-
formly bounded with respect to each other, at least in the sense of quadratic
forms. This is the content of Proposition 3.4 in [327] which we quote without
proof.

Denote the quadratic forms associated to the operators −∆Λ
0 , respectively

Aω, by Q0 and Qω, and the corresponding quadratic form domains by D(Q0)
and D(Qω).

Proposition 2.4.4. Let D ⊂ L2(Λ, vol0) be the closure of C∞
c (Λ) with respect

to the norm
(
Q0(f, f) + ‖f‖20

)1/2. Then

D = D(Q0) = D(Qω)

and there exists a constant CA such that

C−1
A

(
Q0(f, f) + ‖f‖20

) ≤ Qω(f, f) + ‖f‖20 ≤ CA

(
Q0(f, f) + ‖f‖20

)
(2.23)

for all f ∈ D and ω ∈ Ω.

In the proof of this proposition the bound (2.5) — more precisely (2.9) — on
the gradient of the density ρω is needed. It seems to be a technical assumption
and in fact dispensable by using a trick from [109], at least if Λ is precompact
or of finite volume.

Since we are now dealing with a family of operators on a fixed Hilbert
space, we are in the position to apply the theory developed in [255]. The
following result is an extension of Proposition 3 there. It suits our purposes
and shows that our notion of measurability is compatible with the one in [255].

Let H be a Hilbert space, D ⊂ H a (fixed) dense subset and Bω : D → H,
ω ∈ Ω non-negative operators. Denote by Σ̃ =

⋃
ω σ(Bω) the closure of the

union of all spectra, and by Σ̃c its complement. To establish the measurability
of the family {Bω}ω one can use one of the following classes of test functions:

• F1 = {χ]−∞,λ[|λ ≥ 0},
• F2 = {x �→ eitx| t ∈ R},
• F3 = {x �→ e−tx| t ≥ 0},
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• F4 = {x �→ (z − x)−1| z ∈ C \ Σ̃},
• F5 = F4(z0) = {x �→ (z0 − x)−1} for a fixed z0 ∈ C \ Σ̃,
• F6 = Cb = {f : R→ C| f bounded, continuous},
• F7 = {f : R→ C| f bounded, measurable}.

The following proposition says, that it does not matter which of the above
sets of functions one chooses for testing the measurability of {Bω}ω.

Proposition 2.4.5. For i = 1, . . . , 7 the following statements are equivalent:

(Fi) ω �→ 〈f, F (Bω)h〉H is measurable for all f, h ∈ H and F ∈ Fi

Proof. It is obvious that (F4) ⇒ (F5), (F7) ⇒ (F6), and (F6) ⇒ (F3). The
equivalence of (F1), (F2) and (F4) can be found in [255].

To show (F5) ⇒ (F4), consider the set

Z := {z ∈ Σ̃c|ω �→ (z −Hω)−1 is weakly measurable}

in the topological space Σ̃c. It is closed, since zn → z implies the convergence
of the resolvents, see e.g. [410, Theorem VI.5]. A similar argument using the
resolvent equation and a Neumann series expansion shows that z ∈ Z implies
Bδ(z) ⊂ Z where δ := d(z, Σ̃). Since Σ̃c is connected, Z = Σ̃c follows.

(F3)⇒ (F1): By the Stone-Weierstrass Theorem, see e.g. [410, Thm. IV.9],
applied to C([0,∞]) it follows that F3 is dense in the set of functions
{f ∈ C([0,∞]) | f(∞) = 0} = C∞([0,∞[ ). We may approximate any χ]−∞,λ[

pointwise by a monotone increasing sequence 0 ≤ fn, n ∈ N in C∞(R). Po-
larisation, the spectral theorem, and the monotone convergence theorem for
integrals imply that χ]−∞,λ[(Hω) is weakly measurable. An analogous argu-
ment shows (F1)⇒ (F7), since any non-negative f ∈ F7 can be approximated
monotonously pointwise by non-negative step functions fn, n ∈ N. ��

We use the following proposition taken from [458] (Prop. 1.2.6.) to show
that {Aω}ω is a measurable family of operators.

Proposition 2.4.6. Let Bω, ω ∈ Ω and B0 be non-negative operators on a
Hilbert space H. Let Qω, ω ∈ Ω and Q0 be the associated closed quadratic
forms with the following properties:

(2.25) Qω, ω ∈ Ω and Q0 are defined on the same dense subset D ⊂ H.
(2.26) There is a constant C > 0 such that

C−1
(
Q0(f, f) + ‖f‖20

) ≤ Qω(f, f) + ‖f‖20 ≤ C
(
Q0(f, f) + ‖f‖20

)
for all ω ∈ Ω and f ∈ D.

(2.27) For every f ∈ D the map ω �→ Qω(f, f) is measurable.

Then the family {Bω}ω of operators satisfies the equivalent properties of
Proposition 2.4.5.
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By property (F7) and Lemma 2.4.3, {Bω}ω as in Proposition 2.4.6 is a mea-
surable family of operators.

We apply the proposition to Bω = Aω, where {Aω}ω is defined in (2.22).
To do so, we check that the properties (2.25)–(2.27) are satisfied: Properties
(2.25) and (2.26) follow from Proposition 2.4.4. Property (2.27) is obvious for
f ∈ C∞

c (Λ) and follows by approximation for all f ∈ D, since C∞
c (Λ) is dense,

again by Proposition 2.4.4.

Proof (of Theorem 2.4.2). We already know that the transformed ‘kinetic’
part Aω, ω ∈ Ω of the Hamiltonian is measurable. To deal with the singular
potential we introduce the cut off

Vω,n(x) := min{n, Vω(x)} for n ∈ N and ω ∈ Ω

The auxiliary potential Vω,n is bounded and in particular its domain of defi-
nition is the whole Hilbert space L2(Λ, vol0). Thus the operator sum

Aω,n := Aω + Vω,n, ω ∈ Ω

is well defined and [255, Prop. 4] implies that it forms a measurable family of
operators. To recover the unbounded potential Vω, we consider the semigroups
ω �→ exp(−tAω,n), t > 0 which are weakly measurable.

The quadratic forms of Aω,n converge monotonously to the form of
A∞

ω := Aω + Vω. Now Theorems VIII.3.13a and IX.2.16 in [239] imply that
the semigroups of Aω,n converge weakly towards the one of A∞

ω for n → ∞.
Thus exp(−tA∞

ω ) is weakly measurable, which implies the measurability of
the family A∞

ω .
Finally, since Sω is multiplication with the measurable function (x, ω) �→

ρω(x), this implies the measurability of the family Hω = SωA∞
ω S−1

ω , ω ∈ Ω.
��

For later use let us note that the trace of measurable operators is mea-
surable. More precisely we will need the fact that for Λ of finite volume the
mappings

ω �→ Tr(χΛe−tHω ) and ω �→ Tr(e−tHΛ
ω ) (2.28)

are measurable. Note that one can chose an orthonormal basis for L2(Λ, volω)
which depends in a measurable way on ω, cf. for instance Lemma II.2.1 in
[117]. Thus (2.28) follows immediately from the Definition 2.4.1 of measurable
operators.

2.5 Bounds on the Heat Kernels Uniform in ω

This paragraph is devoted to heat kernel estimates of the Schrödinger oper-
ators Hω. It consists of four parts. Firstly we discuss existence of L2-kernels
of e−tHω , t > 0 and derive rough upper bounds relying on results in [108].
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Secondly, we infer Gaussian off-diagonal decay estimates of the kernels using
estimates derived in [332]. We then present an idea of H. Weyl to derive the
principle of not feeling the boundary, and finally we state a proposition which
summarises the information on the heat kernel needed in the next section.

We have to control the dependence on the metric and potential of all
these estimates since both the metric and the potential vary with the random
parameter ω ∈ Ω.

As Hω is non-negative, the semigroup e−tHω , t > 0 consists of contractions.
Moreover, the semigroup satisfies some nice properties formulated in the fol-
lowing definition which enable us to derive estimates on the corresponding
heat kernel.

Definition 2.5.1. Let Λ ⊂ X be open and µ a σ-finite Borel measure on
Λ. Let A be a real, non-negative, selfadjoint operator on the Hilbert space
L2(Λ, µ). The semigroup e−tA, t > 0 is called positivity preserving if e−tAf ≥
0 for any 0 ≤ f ∈ L2(Λ, µ) and t > 0. Furthermore, e−tA, t > 0 is called
a Markov semigroup, if it is well defined on L∞(Λ, µ) and the two following
properties hold

e−tA : L2(Λ, µ) −→ L2(Λ, µ) is positivity preserving for every t > 0
(2.29)

e−tA : L∞(Λ, µ)→ L∞(Λ, µ) is a contraction for every t > 0 (2.30)

In this case A is called a Dirichlet form.
A Markov semigroup e−tA is called ultracontractive if

e−tA : L2(Λ, µ)→ L∞(Λ, µ) is bounded for all t > 0 (2.31)

The above (2.29) and (2.30) are called Beurling-Deny conditions [44, 45].
We infer from [108] the following facts: A Markov semigroup is a con-

traction on Lp(Λ, µ) for all 1 ≤ p ≤ ∞ (and all t > 0). For all ω ∈ Ω the
Schrödinger operator HΛ

ω on L2(Λ, volω) is a Dirichlet form, [108, Thm. 1.3.5].
There the proof is given for X = Rd, but it applies to manifolds, too. By
Sobolev embedding estimates and the spectral theorem et∆Λ

ω is ultracontrac-
tive. Thus by Lemma 2.1.2 in [108] each et∆Λ

ω has a kernel, which we denote
by kΛ

ω (t, ·, ·), such that for almost all x, y ∈ Λ

0 ≤ kΛ
ω (t, x, y) ≤ ‖et∆Λ

ω‖1,∞ =: CΛ
ω (t) (2.32)

Here ‖B‖1,∞ denotes the norm of B : L1 → L∞. For Λ = X we use the
abbreviation kω = kX

ω .
To derive an analogous estimate to (2.32) for the full Schrödinger operator

with potential we make use of the Feynman-Kac formula. Using the symbol
Ex for the expectation with respect to the Brownian motion bt starting in
x ∈ X the formula reads

(e−tHωf)(x) = Ex

(
e−
∫ t
0 Vω(bs) ds f(bt)

)
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For a stochastically complete manifold X and bounded, continuous Vω the
formula is proven, for instance, in Theorem IX.7A in [150]. It extends to
general non-negative potentials which are in L1

loc using semigroup and integral
convergence theorems similarly as in the proof of Theorem X.68 in [407].
Since we consider (geodesically) complete manifolds whose Ricci curvature is
bounded below, they are all stochastically complete, cf. for instance [206] or
Theorem 4.2.4 in [217].

Since the potential is non-negative, the Feynman-Kac formula implies for
non-negative f ∈ L1(Λ, volω)

0 ≤ (e−tHΛ
ω f
)
(x) ≤ (et∆Λ

ωf
)
(x) ≤ CΛ

ω (t) ‖f‖L1

for almost every x ∈ Λ. Thus e−tHΛ
ω : L1(Λ, volω)→ L∞(Λ, volω) has the same

bound CΛ
ω (t) as the semigroup where the potential is absent. This yields the

pointwise estimate on the kernel kΛ
Hω

(t, ·, ·) of e−tHΛ
ω :

0 ≤ kΛ
Hω

(t, x, y) ≤ CΛ
ω (t) for almost every x, y ∈ X. (2.33)

In the following we derive sharper upper bounds on the kernels which im-
ply their decay in the distance between the two space arguments x and y. Such
estimates have been proven by Li and Yau [332] for fundamental solutions of
the heat equation. One would naturally expect that the fundamental solution
and the L2-heat kernel of the semigroup coincide under some regularity as-
sumptions. This is actually the case as has been proven for instance in [119]
for vanishing, and in [327] for smooth, non-negative potentials. The proof in
the last cited source uses that Hω is a Dirichlet form.

To formulate the results of Li and Yau [332] which we will be using, we
denote by dω : X ×X → [0,∞[ the Riemannian distance function on X with
respect to gω. Note that the following proposition concerns the heat kernel of
the pure Laplacian.

Proposition 2.5.2. For every t > 0 there exist constants C(t) > 0, αt > 0
such that

kω(t, x, y) ≤ C(t) exp
(− αt d2

0(x, y)
)

(2.34)

for all ω ∈ Ω and x, y ∈ X.

Proof. For a fixed Schrödinger operator the estimate (with d0 replaced by
dω) is contained in Corollary 3.1 in [332]. There the upper bound is given
explicitly in terms of the geometric bounds on the manifold. This enables one
to show that properties (2.4), (2.8) and

C−1
g d0(x, y) ≤ dω(x, y) ≤ Cgd0(x, y)

ensure that the constants C(t) and αt in (2.34) may be chosen uniformly in
ω. Moreover, for measuring the distance between the points x and y we may
always replace dω by d0 by increasing αt. ��
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Let us collect various consequences of Proposition 2.5.2 which will be useful
later on.

(i) The pointwise kernel bound on the left hand side of (2.33) can be chosen
uniformly in ω ∈ Ω.

(ii) We stated Proposition 2.5.2 for the pure Laplacian, although Li and Yau
treat the case of a Schrödinger operator with potential. The reason for
this is that we want to avoid the regularity assumptions on the potential
imposed in [332].
To recover from (2.34) the case where a (non-negative) potential is
present we use again the Feynman-Kac formula. We need now a local
version of the argument leading to (2.33). More precisely, we consider
e−tHω as an operator from L1(Bε(y)) to L∞(Bε(x)) for small ε > 0.
Thus, we obtain

0 ≤ kHω
(t, x, y) ≤ C(t) exp

(− αt d2
0(x, y)

)
(iii) The estimates derived so far immediately carry over to the case where

the entire manifold is replaced by an open subset Λ ⊂ X.

0 ≤ kΛ
Hω

(t, x, y) ≤ kHω
(t, x, y)

This is due to domain monotonicity, see for example [108, Thm. 2.1.6]
where this fact is proven using functional analytic tools. Another way to
see that this estimate is true, is to use the probabilistic representation
of the heat semigroup, cf. [35, 435].

(iv) The Bishop volume comparison theorem controls the growth of the vol-
ume of balls with radius r, see for instance [51], [84, Thm. III.6] or [72].
It tells us that the lower bound (2.6) on the Ricci curvature is sufficient
to bound the growth of the volume of balls as r increases. The volume
of the ball can be estimated by the volume of a ball with the same ra-
dius in a space with constant curvature K. The latter volume grows at
most exponentially in the radius. For our purposes it is necessary to have
an ω-uniform version of the volume growth estimate. Using Properties
(2.4), (2.6) and (2.8) we obtain the uniform bound

volω
({y| dω(x, y) < r}) ≤ C1 eC2r for all x ∈ X

where C1, C2 do not depend on x and ω. This implies that for all expo-
nents p > 0, there exists a Mp(t) <∞ such that the moment estimate∫

Λ

[kΛ
Hω

(t, x, y)]p dvolω(y) ≤Mp(t)

holds uniformly in Λ ⊂ X open, in x ∈ Λ and ω ∈ Ω. We set M(t) :=
M1(t).
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(v) The heat kernel estimates imply a uniform bound on the traces of the
semigroup localised in space. Let Λ ⊂ X be a (fixed) open set of finite
volume. There exists a constant CTr = CTr(Λ, t) > 0 such that for all
ω ∈ Ω

Tr
(
χΛ e−tHω

) ≤ CTr

Intuitively this is the same as saying that
∫
Λ

kHω
(t, x, x) dvolω(x) is uni-

formly bounded. However, since the diagonal {(x, x)|x ∈ Λ} is a set
of measure zero, the integral does not make sense as long as we con-
sider kHω

as an L2-function. We do not want here to address the ques-
tion of continuity of the kernel. Instead we use the semigroup property
e−2tHω = e−tHωe−tHω , t > 0 and selfadjointness to express the trace as

Tr
(
χΛ e−tHω

)
=
∫

Λ

∫
Λ

[kHω
(t/2, x, y)]2 dvolω(x) dvolω(y) ≤M2(t/2) volω(Λ)

(2.35)

By (2.10) this is bounded uniformly in ω ∈ Ω. Applying domain
monotonicity once more, we obtain

Tr
(
e−tHΛ

ω
) ≤M2(t/2) volω(Λ) ≤M2(t/2)Cd/2

g vol0(Λ) (2.36)

The following lemma is a maximum principle for Schrödinger operators
with non-negative potentials. Combined with the off-diagonal decay estimates
in Proposition 2.5.2 it will give us a proof of the principle of not feeling the
boundary.

Lemma 2.5.3 (Maximum principle for heat equation with non-neg-
ative potential). Let Λ ⊂ X be open with compact closure, V be a non-
negative function, and u ∈ C([0, T [×Λ) ∩ C2(]0, T [×Λ) be a solution of the
heat equation ∂

∂tu+(−∆+V )u = 0 on ]0, T [×Λ with non-negative supremum
s = sup{u(t, x) | (t, x) ∈ [0, T [×Λ}. Then,

s = max

{
max
x∈Λ

u(0, x), sup
[0,T [×∂Λ

u(t, x)

}

Note that regularity of V is not assumed explicitly, but implicitly by the
requirements on u. They are e.g. satisfied if V is smooth. Indeed, in that
case the heat kernel is smooth, as can be seen following the proof of [108,
Thm. 5.2.1].

Now we are in the position to state the second, refined estimate on the
heat kernels, the principle of not feeling the boundary. It is a formulation of
the fact that the heat kernel of the Dirichlet-Laplacian on a (large) open set
Λ does not differ much from the heat kernel associated to the Laplacian on
the whole manifold, as long as one stays well inside Λ. As before, we derive
this estimate first for the pure Laplacian and then show that it carries over
to Schrödinger operators with non-negative potential.
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Proposition 2.5.4. For any fixed t, ε > 0, there exists an h = h(t, ε) > 0
such that for every open set Λ ⊂ X and all ω ∈ Ω

0 ≤ kω(t, x, y)− kΛ
ω (t, x, y) ≤ ε

for all x ∈ Λ, y ∈ Λh.

Proof. The first inequality is a consequence of domain monotonicity. So we
just have to prove the second one.

Fix ω ∈ Ω and t, ε > 0. Choose h > 0 such that

C(t) exp
(
− αt

(
h/2
)2) ≤ ε

Note that the choice is independent of ω. For any y ∈ Λh and 0 < δ < h/2
denote by Bδ(y) the open d0-ball around y with radius δ. Let fδ ∈ C∞

0 (Bδ(y))
be a non-negative approximation of the δ-distribution at y.

We consider now the time evolution of the initial value f under the two
semigroups generated by ∆ω and ∆Λ

ω , respectively.

u1(t, x) :=
∫

X

kω(t, x, z)fδ(z)dvolω(z) =
∫

Λ

kω(t, x, z)fδ(z)dvolω(z).

u2(t, x) :=
∫

Λ

kΛ
ω (t, x, z)fδ(z)dvolω(z).

The difference u1(t, x) − u2(t, x) solves the heat equation ∂
∂tu = ∆ωu and

satisfies the initial condition u1(0, x) − u2(0, x) = fδ(x) − fδ(x) = 0 for all
x ∈ Λ. Now, by domain monotonicity we know kω(t, x, z) − kΛ

ω (t, x, z) ≥ 0,
thus

u1(t, x)− u2(t, x) =
∫

Λ

[
kω(t, x, z)− kΛ

ω (t, x, z)
]
fδ(z) dvolω(z) ≥ 0

for all t > 0 and x ∈ Λ. The application of the maximum principle yields

u1(t, x)− u2(t, x) ≤ max
]0,t]×∂Λ

{u1(s, w)− u2(s, w)} . (2.37)

The right hand side can be further estimated by:

u1(s, w)− u2(s, w) ≤
∫

Λ

kω(s, w, z)fδ(z) dvolω(z)

=
∫

Λh/2

kω(s, w, z)fδ(z) dvolω(z).

Since w ∈ ∂Λ and z ∈ Λh/2, we conclude using Proposition 2.5.2:∫
Λh/2

kω(s, w, z)fδ(z)dvolω(z) ≤ C(t) exp
(− αt(h/2)2

) ≤ ε

Since the bound is independent of δ we may take the limit δ → 0 which
concludes the proof. ��
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One can prove the principle of not feeling the boundary by other means too, see
for instance [349, 122, 392]. This alternative approach uses information on the
behaviour of solutions of the wave equation. Unlike the solutions of the heat
equation, they do not have the unphysical property that their support spreads
instantaneously to infinity. Actually, the solutions of the wave equation have
finite propagation speed [468]. Fourier transforms and the spectral theorem
turn this information into estimates on the difference of the solutions of the
free and restricted heat equation. Sobolev estimates lead then to the principle
of not feeling the boundary. See also Sect. 7 in [406].

Remark 2.5.5. Similarly as in Lemma 2.5.3, one can prove the proposition, if a
potential is present. More precisely, Proposition 2.5.4 is valid for Schrödinger
operators with potentials V such that for continuous initial and bound-
ary values the solution of the heat equation ∂

∂tu = −(−∆ω + V )u is in
C([0, T [×Λ) ∩ C2(]0, T [×Λ). However, Proposition 2.5.4 implies an analo-
gous estimate for the case where a non-negative potential is present, similarly
as in (ii) on page 33. This will be explained next.

Consider e−tHω−e−tHΛ
ω as an operator from L1(Λh) to L∞(Λ), and denote

by τΛ
x the first exit time from Λ for a Brownian motion starting in x. By the

Feynman-Kac formula, we have for 0 ≤ f ∈ L1(Λh)

[(e−tHω − e−tHΛ
ω )f ](x) = Ex

(
e−
∫ t
0 dsV (bs)f(bt)χ{b| τΛ

x ≤t}
)

≤ Ex

(
f(bs)χ{b| τΛ

x ≤t}
)

=
∫

[kω(t, x, y)− kΛ
ω (t, x, y)]f(y) dvolω

≤ ε

∫
f(y) dvolω

if we chose h as in Proposition 2.5.4. Thus for almost all x ∈ Λ, y ∈ Λh

kHω
(t, x, y)− kΛ

Hω
(t, x, y) ≤ ‖e−tHω − e−tHω‖L1(Λh)→L∞(Λ) ≤ ε (2.38)

The upper bounds on the heat kernel and the principle of not feeling
the boundary enable us to prove a result on the traces of localised heat-
semigroups: In the macroscopic limit, as Λ tends (in a nice way) to the whole
of X, the two quantities

Tr(χΛe−tHω ) and Tr(e−tHΛ
ω )

are approximately the same. The precise statement is contained in the
following

Proposition 2.5.6. Let {Λl}l∈N, be a sequence of subsets of X which satisfies
the van Hove property 2.17 and let {Hω}ω be a random Schrödinger operator.
Then

lim
l→∞

sup
ω∈Ω

1
volω(Λl)

∣∣∣Tr(χΛl
e−tHω )− Tr(e−tHl

ω )
∣∣∣ = 0



2.6 Laplace Transform and Ergodic Theorem 37

Proof. We consider first a fixed l ∈ N and abbreviate Λ = Λl. For the operator
e−tHΛ

ω we may write the trace in the same way as in (2.35) to obtain

Tr(e−tHΛ
ω ) =

∫
Λ

∫
Λ

[kΛ
Hω

(t/2, x, y)]2dvolω(x)dvolω(y) (2.39)

We express the difference of (2.35) and (2.39) using

(kHω
)2 − (kΛ

Hω
)2 = (kHω

− kΛ
Hω

)(kHω
+ kΛ

Hω
)

Next we chose h = h(t/2, ε) > 0 as in Proposition 2.5.4 and decompose the
integration domain according to

Λ× Λ = (Λ× Λh) ∪ (Λ× ∂hΛ)

The difference of the traces can be now estimated as

0 ≤ Tr(χΛ e−tHω )− Tr(e−tHΛ
ω )

=
∫

Λ

∫
Λh

[
kHω

(
t
2 , x, y

)−kΛ
Hω

(
t
2 , x, y

)] [
kHω

(
t
2 , x, y

)
+kΛ

Hω

(
t
2 , x, y

)]
dvolω(x, y)

+
∫

Λ

∫
∂hΛ

[
kHω

(
t
2 , x, y

)−kΛ
Hω

(
t
2 , x, y

)] [
kHω

(
t
2 , x, y

)
+kΛ

Hω

(
t
2 , x, y

)]
dvolω(x, y)

(2.40)

The first term is bounded by 2M(t/2) ε volω(Λ) and the second by

2M(t/2)C(t/2) volω(∂hΛ)

It follows that

1
volω(Λ)

(
Tr(χΛ e−tHω )−Tr(e−tHΛ

ω )
)
≤ 2M(t/2)ε+2M(t/2)C(t/2)

volω(∂hΛ)
volω(Λ)

Now, we let l go to infinity. Since the sequence Λl satisfies the van Hove
property (2.17) and since our bounds are uniform in ω, the proposition is
proven. ��

2.6 Laplace Transform and Ergodic Theorem

This section completes the proof of Theorem 2.3.8. It relies, apart from the re-
sults established in Sects. 2.4–2.5, on a general ergodic theorem and a criterion
for the convergence of distribution functions.

Lindenstrauss proved in [342, 341] an ergodic theorem which applies to
locally compact, second countable amenable groups. It includes as a special
case the following statement for discrete groups.
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Theorem 2.6.1. Let Γ be an amenable discrete group and (Ω,BΩ, P) be a
probability space. Assume that Γ acts ergodically on Ω by measure preserving
transformations. Let {Il}l be a tempered Følner sequence in Γ . Then for every
f ∈ L1(Ω)

lim
j→∞

1
|Il|
∑
γ∈Il

f(γω) = E (f) (2.41)

for almost all ω ∈ Ω.

In the application we have in mind f ∈ L∞, so the convergence holds in the
L1-topology, too.

Remark 2.6.2. Some background on previous results can be found for instance
in Sect. 6.6 of Krengel’ s book [313], in Tempelman’s works [469, 470, 471] or
some other sources [152, 204, 26, 151, 383]. The book [471] gives in Sect. 5.6 a
survey of Shulman’s results [434]. Mean ergodic theorems hold in more general
circumstances, see for instance [313, Sect. 6.4] or [471, Ch. 6].

We will apply the ergodic theorem above not to the normalised eigenvalue
counting functions N l

ω, but to their Laplace transforms Ll
ω. The reason is, that

the Ll
ω are bounded, while the original N l

ω are not. The following criterion
of Pastur and Shubin [384, 431] says that it is actually sufficient to test the
convergence of the Laplace transforms.

Lemma 2.6.3 (Pastur-Shubin convergence criterion). Let Nn be a se-
quence of distribution functions such that

(i) there exists a λ0 ∈ R such that Nl(λ) = 0 for all λ ≤ λ0 and l ∈ N,
(ii) there exists a function C : R+ → R such that Ll(t) :=

∫
e−λtdNl(λ) ≤

C(t) for all l ∈ N and t > 0,
(iii) liml→∞ Ll(t) =: L(t) exists for all t > 0.

Then L is the Laplace transform of a distribution function N and for all
continuity points λ of N we have

N(λ) := lim
l→∞

Nl(λ)

Finally, we present the proof of Theorem 2.3.8 on the existence of a self-
averaging IDS:

Proof (of Theorem 2.3.8). We have to check the conditions in the previous
lemma for the normalised eigenvalue counting functions N l

ω. The first one is
clearly satisfied for λ0 = 0, since all operators we are dealing with are non-
negative. To see (ii), express the Laplace transform by the trace of the heat
semigroup

Ll
ω(t) =

1
volω(Λ)

∑
n, λn∈σ

e−tλn =
1

volω(Λ)
Tr(e−tHl

ω )
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The sum extends over all eigenvalues λn of H l
ω, counting multiplicities. Now,

(2.36) implies condition (ii) of the Pastur-Shubin criterion.
To prove (iii) we will show for all t > 0 the convergence

lim
j→∞

Ll
ω(t) =

∫
R

e−tλdNH(λ)

in (L1 and) P-almost sure-sense. For technical reasons we will deal separately
with the convergence of the enumerator and denominator in

Ll
ω(t) = volω(Λl)−1 Tr(e−tHl

ω )

However, we need some normalisation, to avoid divergences. Consider first
the enumerator with an auxiliary normalisation

|Il|−1 Tr(e−tHl
ω ) (2.42)

Introduce for two sequences of random variables al(ω), bl(ω), l ∈ N the equiv-

alence relation al
j→∞∼ bl if they satisfy al − bl → 0 almost surely for l →∞.

By Proposition 2.5.6, the equivariance, and Lindenstrauss’ ergodic theorem
2.6.1

|Il|−1 Tr(e−tHl
ω )

j→∞∼ |Il|−1 Tr(χΛl
e−tHω ) = |Il|−1

∑
γ∈I−1

l

Tr(χγF e−tHω )

= |Il|−1
∑
γ∈Il

Tr(χF e−tHγω )
j→∞∼ E

{
Tr(χF e−tH•)

}
Similarly we infer for the normalised denominator

|Il|−1volω(Λl) = |Il|−1
∑

γ∈I−1
l

volω(γF) = |Il|−1
∑
γ∈Il

volγω(F)
j→∞∼ E {vol•(F)}

Note that by (2.10) all terms in the above line are bounded from above and
below uniformly in ω. By taking quotients we obtain

Ll
ω(t) =

|Il|−1 Tr(e−tHl
ω )

|Il|−1 volω(Λl)
j→∞∼ E

{
Tr(χFe−tH•)

}
E {vol•(F)}

Uniform boundedness implies that the convergence holds also in L1-sense. The
right hand side is the Laplace transform of NH , see the proof of Theorem 6.1
of [328] for a detailed calculation. ��

2.7 Approach Using Dirichlet-Neumann Bracketing

We outline an alternative proof of the existence of the IDS due to Kirsch
and Martinelli [254]. It applies to random Schrödinger operators on Rd. It
relies on an ergodic theorem for superadditive processes by Akcoglu and
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Krengel [17] and estimates on the number of bound states essentially implied
by the Weyl asymptotics.

Let us explain the notion of a superadditive process in our context. Denote
by Z the set of all multi-dimensional intervals or boxes Λ in Rd such that
Λ = {x| aj < xj < bj , for j = 1, . . . , d} for some a, b ∈ Zd with aj < bj for all
j = 1, . . . , d. The restriction of Hω to a Λ ∈ Z with Dirichlet boundary con-
ditions is denoted by HΛ

ω and with Neumann boundary conditions by HΛ,N
ω .

Consider a group {Tk}k∈Zd (or semigroup {Tk}k∈Nd
0
) of measure preserving

transformations on the probability space (Ω,BΩ, P).

Definition 2.7.1. A set function F : Z → L1(Ω) is called a (discrete) super-
additive process (with respect to {Tk}k) if the following conditions are satisfied

FΛ ◦ Tk = FΛ+k for all k ∈ Zd (or Nd
0),Λ ∈ Z (2.43)

if Λ1, . . . ,Λn ∈ Z such that Λ := int
( n⋃

k=1

Λk

)
∈ Z then, FΛ ≥

n∑
k=1

FΛk

(2.44)

γ := γ(F ) := sup
Λ∈Z
|Λ|−1 E {FΛ} <∞ (2.45)

F is called subadditive if −F is superadditive.

Similarly one can define superadditive processes with respect to an action of
Rd on Ω.

We formulate the main result of [17] in the way it suits our needs (see
Theorem 2.4 and the Remark on page 59 in [17] and Sect. 6.2 in [313]).

Theorem 2.7.2. Let F be a discrete superadditive process. For l ∈ N set
Λl :=]− l/2, l/2[d. Then the limit

lim
l→∞

l−d FΛl
exists for almost all ω ∈ Ω

If {Tk}k acts ergodically on (Ω, P) we have liml→∞ l−d FΛl
(ω) = γ(F ) almost

surely.

More generally, one can replace the cubes Λl, l ∈ N by a so-called regular
sequence, cf. [470, 17, 254] or Sect. 6.2 in [313].

To apply the superadditive ergodic theorem we consider for arbitrary, fixed
λ ∈ R the processes given by the eigenvalue counting functions of the Dirichlet
and Neumann Laplacian

FD
Λ := FD

Λ (λ, ω) := #{n|λn(HΛ
ω ) < λ}, Λ ∈ Z

FN
Λ := FN

Λ (λ, ω) := #{n|λn(HΛ,N
ω ) < λ}, Λ ∈ Z

where Hω is a random operator as in Definition 1.2.3. Obviously for Λ = Λl =
]− l/2, l/2[d we have FD

Λ (λ) = ldN l
ω(λ). We will show that FD

Λ ,Λ ∈ Z is a
superadditive process, which is also true for −FN

Λ ,Λ ∈ Z. Property (2.43)
follows from the equivariance of {Hω}ω, while (2.44) and (2.45) are implied
by the following
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Lemma 2.7.3. Let Hω be a random operator as in Definition 1.2.3 and λ a
fixed energy value.

(i) For two cubes Λ(1) ⊂ Λ(2) we have FD
Λ(2)
≥ FD

Λ(1)
and FN

Λ(1)
≥ FD

Λ(1)
.

(ii) If Λ(1),Λ(2) ∈ Z are disjoint such that Λ = Λ(1) ∪ Λ(2) ∪M ∈ Z where
M ⊂ Rd is a set of measure zero, then

FD
Λ ≥ FD

Λ(1)
+ FD

Λ(2)

FN
Λ ≤ FN

Λ(1)
+ FN

Λ(2)

(iii) There exists a Cλ ∈ R such that for all Λ ∈ Z and ω ∈ Ω we have
FD

Λ (ω) ≤ Cλ |Λ|.
Proof. The first two statements are known as Dirichlet-Neumann bracketing
and are stated e.g. in Proposition XIII.15.4 in [408]. See also Sect. I.5 in [84]
for analogous results on manifolds. Lemma A.3.1 in the Appendix and its
proof imply property (iii) with Cλ =

(
e

2πdλ
)d/2. ��

More background on bracketing techniques can be found in Sects. XIII.3, 15
and 16 in [408]. The Weyl type bounds are related to the Lieb-Thirring and
Cwikel-Lieb-Rozenblum estimates for bound states [416, 334, 333, 101].

Now we can state the main result of [254].

Theorem 2.7.4. There exists a set Ω′ ⊂ Ω of full measure such that

N(λ) := lim
l→∞

N l
ω(λ) (2.46)

exists for every ω ∈ Ω′ and every continuity point λ ∈ R of N .

Proof. For a fixed λ ∈ R one applies Theorem 2.7.2 to FD
Λ (λ, ω), Λ ∈ Z, and

denotes the corresponding γ(F ) by γ(λ). By definition FD
Λ (λ, ω) ≤ FD

Λ (λ̃, ω)
for all λ ≤ λ̃ and all ω ∈ Ω, Λ ∈ Z. Thus λ �→ γ(λ) is a non-decreasing
function. It has at most a countable set of discontinuity points. We denote
its complement by C and choose a dense countable set S ⊂ C. Hence γ is
continuous at each λ ∈ S.

Since our transformation group is ergodic, for each λ there is a set Ωλ of
measure one on which the convergence liml→∞ l−d FD

Λl
(ω) = γ(λ) holds. Since

S is countable, Ω′ = ∩λ∈SΩλ has full measure, and the convergence statement
of Theorem 2.7.2 holds for all λ ∈ S and ω ∈ Ω′. Define the distribution
function N(λ) := limS�λ̃↗λ γ(λ̃). Thus, γ and N coincide on C.

The monotonicity of λ �→ FD
Λl

(λ, ω) and the continuity of N on C imply
the statement of the theorem. To see this, choose a sequence λn ∈ S, λn ≥
λ ∈ C, limn→∞ λn = λ. Then we have

l−dFD
Λl

(λ, ω)−N(λ) ≤ l−dFD
Λl

(λn, ω)−N(λn) + N(λn)−N(λ).
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For ω ∈ Ω′ and ε > 0 we choose first n sufficiently large s.t. N(λn)−N(λ) ≤
ε/2 and then l sufficiently large s.t. l−dFD

Λl
(λn, ω) −N(λn) ≤ ε/2. Thus one

sees that
lim sup

l→∞
l−dFD

Λl
(λ, ω) ≤ N(λ).

Similarly one can choose a sequence λn ∈ S, λn ≤ λ ∈ C, limn→∞ λn = λ and
then show that lim infl→∞ l−dFD

Λl
(λ, ω) ≥ N(λ). ��

For models which satisfy both the conditions of the previous theorem and
of 2.3.8 the two definitions of the IDS coincide.

Under certain regularity assumptions the theorem remains true if Neumann
boundary conditions are used to define the IDS, cf. Theorem 3.3.(b) of [254].
In this case one works with the subadditive process FN

Λ (λ, ω), Λ ∈ Z. There
are versions of the above theorem for Rd-ergodic potentials, cf. for instance
[254, 224].

2.8 Independence of the Choice of Boundary Conditions

Consider again the more general setting of Schrödinger operators on a
Riemannian covering manifold X. If the open subset Λ ⊂ X of finite volume is
sufficiently regular, the Neumann Laplacian HΛ,N

ω on Λ has discrete spectrum.
One condition which ensures this is the extension property of the domain
Λ, see e.g. [108], which is in turn satisfied if the boundary ∂Λ is piecewise
smooth. Minimal conditions which ensure the extension property are discussed
in Sect. VI.3 of [454]. Thus it is possible to define the normalised eigenvalue
counting function

NΛ,N
ω (λ) :=

1
|Λ| #{n ∈ N|λn(HΛ,N

ω ) < λ}

Let Λl be an admissible exhaustion Λl ⊂ X, l ∈ N of sets which all have the
extension property. Consider the sequence of distribution functions N l,N

ω :=
NΛl,N

ω . It is natural to ask whether it converges almost surely, and, moreover,
whether its limit coincides with N as defined in Theorem 2.3.8. If this is
true, the IDS is independent of the choice of Dirichlet or Neumann boundary
conditions used for its construction. This indicates that boundary effects are
negligible in the macroscopic limit.

However, this turns out not to be true for all geometric situations.
Sznitman studied in [464, 466] the IDS of a random Schrödinger operator
on a horoball in hyperbolic space with potential generated by a Poissonian
field. He showed that the IDS does depend on the choice of boundary condi-
tion used for its construction. Actually, he computes the Lifshitz asymptotics
of the IDS at energies near the bottom of the spectrum and shows that it is
different for Dirichlet and Neumann boundary conditions.
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In contrast, in the case of Euclidean geometry X = Rd, the question of
boundary condition independence has been answered positively already some
decades ago [43, 254, 432, 137] for a large class of Zd or Rd-ergodic ran-
dom potentials. More recently, there has been interest in the same question
if a magnetic field is included in the Hamiltonian, see also Sect. 5.7. In this
case the coincidence of the IDS defined by the use of Dirichlet and Neumann
boundary conditions was established for bounded (electric) potentials in [375],
for non-negative potentials in [125], and for certain potentials assuming both
arbitrarily large positive and negative values in [224] and [222]. The last men-
tioned approach seems to be extensible to non-Euclidean geometries.





3

Wegner Estimate

In 1981 Wegner [493] proved on a physical level of rigour a lower and upper
bound on the density of states (DOS) of the (discrete) Anderson model and
similar lattice Hamiltonians. The density of states — if it exists — is the
density function of the IDS.

Wegner’s argument did in particular not rely on any information about the
type of the spectrum in the considered energy interval. This was important,
since before Wegner’s result there where various conjectures in the physics
community how the DOS should behave at the mobility edge, if it exists. This
is the name for the critical energy which is supposed to form the boundary
between an interval with pure point spectrum and another one with contin-
uous spectrum. Note however that there is so far no rigorous proof of the
existence of continuous spectrum for ergodic random Schrödinger operators.
There were arguments suggesting that the DOS should diverge to infinity at
the mobility edge, others that it should vanish. Wegner’s estimates discarded
this misconceptions by establishing upper and lower bounds on the DOS. In
a sense it is a negative result: one cannot recognise the borderline of different
spectral types by looking at the IDS.

In the sequel we concentrate on alloy type models as defined in 1.2.1 (and
Remark 1.2.2). We will be concerned here with upper bounds on the DOS
only. It is derived by considering its analoga on finite boxes. So what we are
speaking about in this chapter is an estimate on

E
{
TrP l

ω(I)
}

= |Λl|E
{
N l

ω(E2)−N l
ω(E1)

}
where for the moment for notational convenience we only consider half open
energy intervals I = [E1, E2[. By the Čebyšev-inequality one sees

P
{
σ(H l

ω) ∩ I �= ∅} = P
{
TrP l

ω(I) �= 0
} ≤ E

{
TrP l

ω(I)
}

(3.1)

This means that a bound on the averaged trace of the projection gives
immediately a bound on the probability to find an eigenvalue in the considered
energy interval. Actually, in the literature on Anderson localisation often the
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(weaker) bound on P
{
TrP l

ω(I) �= 0
}

is called Wegner estimate, since it is
sufficient for the purposes of multiscale analysis, see Sect. 3.2.

In the following we will adopt the following notation: Λl :=]−l/2, l/2[d⊂ Rd

denotes the cube of side length l centred at zero. Occasionally we suppress
the dependence on the size and just write Λ. A cube centred at x ∈ Rd is
denoted by Λl + x = {y + x| y ∈ Λl} or Λl(x). The characteristic function of
the unit cube Λ1 + j is abbreviated by χj . The symbol Λ̃l = Λl ∩ Zd denotes
the lattice points contained in Λl. For l ∈ 2N + 1 we have

int
( ⋃

j∈Λ̃l

Λ1(j)
)

= Λl

3.1 Continuity of the IDS

The estimates on the expected number of energy levels in I, which most
authors derive or use (for localisation proofs) are ‘polynomial’, more precisely

E
{
TrP l

ω(I)
} ≤ CW |I|a |Λl|b (3.2)

Here |I| and |Λl| denote the (1-dimensional, respectively d-dimensional)
Lebesgue measure of the energy interval I, and the set Λl, respectively. The
Wegner constant CW depends on the various parameters of the model and
for continuum Hamiltonians on the supremum of I. Actually, CW can be
assumed to be a monotone non-decreasing function of sup I. However, once
sup I is fixed, CW is independent both of the energy interval length and the
volume. It is obvious that the energy and volume exponents must satisfy
a ∈]0, 1], b ∈ [1,∞[. As far as the exponents are concerned, the Wegner esti-
mate is optimal if the dependence on the volume and energy length is linear,
i.e. a = b = 1.

For, if b = 1, the bound (3.2) carries over to the infinite volume IDS:

lim
l→∞

E
{
N l

ω(E2)−N l
ω(E2)

}
= lim

l→∞
E
{
TrP l

ω([E1, E2[)
}

|Λl| ≤ CW |E2 − E1|a

(3.3)

Since we know from Theorem 2.3.8 and dominated convergence that for E1, E2

in a dense set of energies

lim
l→∞

E
{
N l

ω(E2)−N l
ω(E1)

}
= N(E2)−N(E1)

it follows
N(E2)−N(E1) ≤ CW |E2 − E1|a

where CW = CW (E2). Now the monotonicity of the IDS implies its Hölder
continuity. Moreover, if the estimate (3.2) is linear in the energy, i.e. a = 1,
the IDS is even Lipschitz continuous. Thus its derivative, the DOS
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n(E) :=
dN(E)

dE
(3.4)

exists for almost every energy E ∈ R and is locally bounded

n(E) ≤ CW (E2) for all E ≤ E2

So the Wegner constant turns out to be a locally uniform bound on the DOS.
As mentioned above Wegner’s paper gives also a lower bounds on the DOS.

These have been rigorously established in [234, 215]. In the second reference
the extension of this result to the alloy-type model on L2(R) discussed.

Remark 3.1.1. For certain models the bounds derived on P
{
σ(H l

ω) ∩ I �= ∅}
are not polynomial in the volume. This is the case for one-dimensional
Anderson or alloy type models where the coupling constants ωj , j ∈ Z are
distributed according to the Bernoulli distribution: for some p ∈]0, 1[ the ran-
dom variable ω0 takes on the value 1 with probability equal to p and the
value 0 with probability 1 − p. Since this disorder regime is highly singular,
the ‘usual’ proofs of the Wegner estimate, see Chapters 4 and 5, fail. The
ones that do work, yield somewhat weaker results. Indeed, it is proven in
[80] (cf. also [429]) for the discrete Anderson model and in [104] for the con-
tinuum alloy type model, that for a fixed compact energy interval I and all
β ∈]0, 1[, γ > 0 there exist l0 ∈ N and α > 0 such that

P{d(σ(H l
ω), E) ≤ e−γlβ} ≤ e−αlβ (3.5)

for all E ∈ I and all l ≥ l0. Here in the case of the continuum model it has to
be assumed that I is disjoint from a discrete set of exceptional energies.

This estimate obviously does not imply continuity of the IDS. Interestingly,
for these models, the Hölder continuity of the IDS is established using other
techniques which are specifically tailored for the one dimensional case, see
[320], [80, App. to Sect. 5] and [104, Thm. 4.1]. Subsequently, this regularity
result is used to derive the finite volume estimate (3.5). In higher dimensions,
as we have discussed above, one proceeds in the other direction, carrying over
finite volume estimates to the macroscopic limit.

The bound (3.5) is still sufficient as an input for the multiscale analysis
which proves localisation, cf. e.g. [136] or our discussion in Sect. 3.2. In the
discussion of Spencer’s example in Sect. 3.2 we will obtain an insight why
subexponentially small eigenvalue splittings are effective enough to prevent
resonances.

Remark 3.1.2 (Continuity of the IDS on the lattice and in one dimension).
In [116] Delyon and Souillard showed by a very simple argument that the
IDS of the Anderson model on the lattice Zd is continuous, regardless of the
continuity of the distribution of the potential values. The potential may even
be correlated over long distances, as long as it is an ergodic stochastic field.
Delyon and Souillard use the unique continuation property of the discrete
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Schrödinger equation, to prove that no eigenvalue can be sufficiently degener-
ated to produce a jump of the IDS. At the end of Remark 3.1.3 we contrast
their theorem with the situation in graphs other than the lattice. In [99] a
quantitative version of the continuity is proven: for random, ergodic lattice
Hamiltonians the IDS is actually log-Hölder continuous. See also [345] and
[159, 123, 87, 357, 124] for related results for Hamiltonians on combinatorial
graphs.

Similarly, the IDS is continuous for one dimensional Hamiltonians, both on
Z and on R, [388, 236, 32]. Again, this result can be strengthened to log-Hölder
continuity, cf. [100].

Remark 3.1.3 (Continuity of the IDS and geometry). So far we have only men-
tioned proven or expected assertions on the continuity of the IDS. One might
ask whether there are interesting models which exhibit a discontinuous IDS.
It turns out that this phenomenon may occur, if the configuration space has a
more complicated geometry than Zd or Rd. Another example would be the IDS
of the Landau Hamiltonian, cf. e.g. the references in Sect. 5.7, in particular
[375].

Maybe the simplest example to illustrate the difference between Euclidean
and more general geometry is provided by periodic Schrödinger operators.
Under mild assumptions on the Zd-periodic potential Vper the IDS of the
Schrödinger operator H0 = −∆+Vper on Rd is absolutely continuous, see the
references at the end of Sect. 1.4. In particular the IDS cannot have jumps.
However, precisely this can occur for Laplace-Beltrami operators (even with-
out potential) on a Riemannian covering manifold X, see [461, App. 2] and
[326, 325]. This phenomenon can be deduced from the fact that Laplacians
on covering manifolds may have eigenvalues, as has been shown in [292].
Furthermore, the size of the jumps of the IDS is related to certain geometric
invariants. Examples of such invariants are the order of the torsion subgroup
of the deck transformation group Γ of X and the L2-Betti numbers of X,
which can be expressed in terms of the Γ -trace on a certain von Neumann
algebra, establishing the connection to the representation of the IDS discussed
before Theorem 2.3.3, see [118, 126, 122, 123, 421, 124]. Related material can
be found in [30, 462, 345, 433, 420, 205, 422, 357, 121, 346, 351, 350, 120, 329].

Some of the Wegner estimates we present in Chapters 4 and 5 extend to
alloy type models on manifolds. A particularly interesting phenomenon occurs
if one considers a periodic Laplace-Beltrami operator with discontinuous IDS,
and perturbs it randomly such that the IDS of the perturbed operator is
continuous. This happens if either an appropriate alloy type potential is added
to the Hamiltonian or if the metric is multiplied by an appropriate alloy type
perturbation, see [325, 326].

A discontinuous IDS may also occur for models with a random geometry.
This is the case for the tight-binding Hamiltonian defined on Delone sets
studied in [330, 273]. Ideas related to [273] have been used in [419] and in
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Sect. 2 of [357]. The paper [419] is devoted to the proof of the existence of
spectral gaps for certain graph Hamiltonians.

We will discuss a different example, the quantum percolation model, in
some more detail, since it fits readily in the class of models which we have
described so far. This model has been studied amongst others in [112, 113,
244, 426, 86, 52, 484, 485, 260, 328, 371, 25, 24, 370, 329]. We sketch the
site percolation problem on Zd with probability parameter p: let vk : Ω →
{0,∞}, k ∈ Zd be a sequence of independent, identically distributed random
variables which take on the value 0 with probability p and the value ∞ with
probability 1− p. Define Xω to be the infinite component of the set of active
sites {k ∈ Zd| vk(ω) = 0}. The graph Xω is called the (active) infinite cluster.
For p above a certain critical value pc it is known that almost surely an infinite
cluster exists [242, 207] and is unique [8, 181], while for p < pc there is no
infinite cluster almost surely.

One defines the Laplacian hω on Xω as the restriction of the finite differ-
ence operator onto �2(Xω). For a cube Λl one defines X l

ω to be those active
sites in Λl ∩Zd which are connected to the boundary ∂Λl by a chain of active
sites. The finite volume Laplacian hl

ω is the usual finite difference operator
restricted to �2(X l

ω).
Although the finite active clusters, which would obviously give rise to

bound states, are not taken into consideration, it turns out that hω has bound
states. This was as first observed in [244]. Eigenstates with finite support in
the infinite cluster are called molecular states. The existence of such states
affects the properties of the IDS of hω, which is defined in the following way.
For each l ∈ N the normalised eigenvalue counting function of the Hamiltonian
hl

ω is defined as

N l
ω(E) :=

1
#(Λl ∩ Zd)

#{n|λn(hl
ω) < E}

which converges for l→∞ to a non-random limit almost surely [86, 484, 485].
A construction resembling the Schwarz mirror charge principle in electrosta-
tics shows that there are compactly supported eigenfunctions, cf. [86]. Due
to their finite support they depend only on the pattern of Xω in a bounded
region. Consequently the patterns and the associated localised eigenfunctions
occur with a non-zero density along the infinite cluster and thus produce
jumps of the IDS at the corresponding energy. In [86] it is shown by physical
arguments that the discontinuities of N constitute a dense set of energies.

Actually, uniqueness of the infinite cluster is not used in the arguments of
[86] and a similar argument for constructing finitely supported eigenfunctions
does work on the Bethe lattice as well, although there the infinite cluster is not
unique. For the quantum percolation model on the Bethe lattice compactly
supported eigenfunctions have been constructed in [80, Sect. 7].

A mathematically rigorous study of the quantum percolation model on
amenable graphs is undertaken in [484, 485]. There the discontinuities of the
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IDS are explained in terms of the breakdown of the unique continuation prop-
erty of eigenfunctions of the adjacency operator, see also Remark 3.1.2. More-
over, the set of these energies is characterised in the case X = Zd. From a
wider perspective, the properties of this set are related to the Atiyah conjec-
ture, cf. [121]. The low energy asymptotics of percolation Hamiltonians has
been studied in [260, 371, 25, 24, 370].

Remark 3.1.4. While the continuity of the IDS has clearly to do with the
distribution of eigenvalues of the random Hamiltonian, it only captures a part
of the properties of this distribution. The theory of level statistics is concerned
with the finer structure of the fluctuations of eigenvalues. It can be studied
by an appropriate scaling procedure. This has been carried out for certain
one-dimensional and discrete models in [369, 368, 413, 412, 366, 195]. More
recently the joint distribution of eigenvalues and eigenfunctions in energy and
space has been studied in [378, 243].

Another spectral property related to the continuity of the IDS is the
multiplicity of the spectrum. The question is whether the spectrum is simple,
whether it has finite multiplicity or is infinitely degenerate. For discrete
Anderson type models (with absolutely continuous distribution of coupling
constants) it has been proven that exponentially localised spectrum, and
indeed singular spectrum in general, is simple almost surely, see [442, 230,
233, 279].

3.2 Application to Anderson Localisation

In the last section the implications of Wegner estimates for the IDS were
presented. Now we focus on the second main application of those bounds,
namely Anderson localisation.

As we discussed earlier in Sect. 1.3, this phenomenon tells us that a random
family of Schrödinger operators exhibits in a certain energy interval dense pure
point spectrum, almost surely. Moreover, the eigenfunctions of the eigenvalues
lying in this interval decay exponentially. Even a stronger property, namely
dynamical localisation, holds. See Sect. 1.3 for more details and references.

For multi-dimensional configuration space there are two techniques at dis-
posal to prove localisation: the fractional moment method and the multiscale
analysis (MSA). The first one is also called Aizenman-Molchanov technique
and was introduced in [9, 5, 4, 203, 7]. It was so far applicable only to lattice
Hamiltonians, up to the recent extension to continuum configuration space
[6, 60]. For discrete models it has in fact been proven [10, 11] that in the en-
ergy regime where the MSA applies, the Aizenman-Molchanov method works,
too.

However, we will discuss in a little more detail only the MSA, since it has
found applications to a variety of models and since the Wegner estimate is a
key ingredient in the MSA. We first sketch the basic ideas of the MSA, and
then discuss shortly its history.
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To carry through the MSA one needs two a priori estimates: the initial scale
estimate and the Wegner estimate. These two conditions essentially determine
for which single site potentials u, single site distribution measures µ and which
energy intervals localisation can be derived. Note that u and µ are parameters
which determine our alloy type potential, see Definition 1.2.1.

In the literature one can find multiscale analyses which are adapted to
operators describing the propagation of classical waves or to abstract families
of differential operators, see among others [165, 166, 98, 107, 458, 186, 278].
In this context one has also to make sure that certain other conditions are
satisfied, like the geometric resolvent inequality, the generalised eigenfunction
expansion, a rough upper estimate on the trace of spectral projections of finite
box operators (obtained e.g. by the Weyl asymptotics), etc. However, since
we discuss here only (random) Schrödinger operators, these conditions are
automatically satisfied, cf. [458, Sect. 3.2] or [190, App. A].

The multiscale analysis is an induction argument over a sequence of in-
creasing length scales lk, k ∈ N. Each scale lk+1 is a power lαk of the preceding
one, where α ∈]1, 2[. Actually, for technical reasons one truncates the scales
so that all lk lie in 6N.

One considers the restriction of the alloy type model Hω to the open cube
Λ(k) := Λlk(0) of side length lk. The corresponding restricted operator is
denoted by H

(k)
ω , where Dirichlet, Neumann or periodic boundary conditions

ensure its selfadjointness. One wants to study decay properties of the Green’s
function of H

(k)
ω , i.e. the integral kernel of the resolvent operator R

(k)
ω (z) =

(H(k)
ω − z)−1, where z is taken from the resolvent set C \ σ(H(k)

ω ). Since we
are not interested in pointwise properties of the kernel of R

(k)
ω (z), and since

they tend to be unpleasant near the diagonal, we may consider instead the
sandwiched resolvent

χout(H l
ω − E)−1χin

Here χout denotes the characteristic function of the boundary belt Λl−1 \ Λl−3,
and χin the characteristic function of the interior box Λl/3.

The initial scale estimate is stated in terms of the notion of regular cubes.
A box Λl = Λl(0) is called (E, γ)-regular if l ∈ 6N, E �∈ σ(H l

ω), and

‖χout(H l
ω − E)−1χin‖ ≤ e−γl (3.6)

The exponent has to satisfy γ ≥ lβ for some β > −1. So regularity describes
quantitatively how fast the Green’s function on a finite box decays. The expo-
nent β must be greater than −1 otherwise the right hand side of (3.6) would
be of order one. Estimate (3.6) can be deduced from so-called Combes-Thomas
estimates [88, 34, 265] if one knows that d(σ(H l

ω), E) > γ.
The initial scale estimate is satisfied if there exist a scale l1 <∞ such that

for some ξ > 0

P{ω| ∀E ∈ I : Λl is (E, γ)-regular for ω} ≥ 1− l−ξ (3.7)

for any l ≥ l1.
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The weak form of the Wegner estimate as it is needed for the MSA is:

P{d(σ(H l
ω), E) ≤ e−lθ} ≤ l−q for all l ∈ 6N (3.8)

where θ < 1/2 and q > d. Note that this type of estimate is implied by the
bound (3.5) discussed in Remark 3.1.1.

The initials scale estimate (3.7) serves as the induction anchor of the MSA.
The induction step uses the Wegner estimate and proves that the exponential
decay property holds on the subsequent scale l2 with even higher probability,
and that the decay exponent γ essentially does not change. As one repeats
the procedure on the scales l1, l2, . . . one proves that the decay of the Green’s
functions χout(H(k)

ω −E)−1χin holds with probability which tends to one, with
error bounded polynomially in l−1

k .
Thus one establishes the exponential decay of the sandwiched resolvent on

arbitrary large cubes, where the decay exponent γ is bounded away from zero
uniformly in the scales. Now one uses polynomial bounds on the growth of
eigenfunctions and subsolution estimates to prove spectral localisation, cf. for
instance [458, Sect. 3.3]. To prove dynamical localisation one has to do more
work, see e.g. [458, Sect. 3.4] or [183, 107, 186].

The assumptions for the MSA depend on several parameters, and so do
the various versions of localisation which may be obtained by it. Germinet and
Klein showed in [186] using a bootstrap MSA how to optimise the dependence
of the MSA on the various parameters, i.e. how to obtain with the weakest
assumptions in the input the strongest conclusions.

The MSA was introduced by Fröhlich and Spencer in [176]. The method
applied to the Anderson model on the lattice and experienced various im-
provements and applications [354, 355, 175, 444, 115].

Based on results from [135] and [453] von Dreifus and Klein presented in
[136] a streamlined version of the MSA. Although results on localisation for
continuum Hamiltonians existed earlier [353, 306], it was this simplification
of the MSA, which made alloy type Schrödinger operators more accessible to
systematic research.

There was a series of articles which proved various variants of the MSA
for continuum models [280, 89, 282, 265, 183, 170, 107, 458, 186]. Other works
concentrated onto identifying energy/disorder regimes where one can prove
the assumptions needed to apply the MSA [280, 281, 282, 34, 265, 264, 186,
457, 480, 481, 213, 500, 287, 188, 187]. Using Combes-Thomas estimates, the
initial scale estimate (3.7) can be verified in energy intervals where the IDS
is very sparse. This is for instance the case in neighbourhoods of spectral
fluctuation boundaries, which we discussed in Sect. 1.4.

Remark 3.2.1. One dimensional models play a special role in the game of lo-
calisation. Namely, for d = 1 there are some specific techniques available which
do not exist in higher dimensions, or are not as effective. See the discussion
on page 9.
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Consequently, in one space dimension localisation has been proven for some
models even before the MSA technique was available. See [202, 369, 201, 78,
415, 306] for various models on Z or R. Furthermore there are certain types
of random Schrödinger operators which even now can be treated only in one
dimension, like the random displacement model [74, 445] or discrete models
with Bernoulli disorder [80, 429]. This restriction to d = 1 is partially due to
the fact, that there is no Wegner estimate at disposal in these cases. However,
for the continuum analog of the Bernoulli-Anderson model, localisation has
been proven in arbitrary dimension at low energies in [59], see Sect. 4.8. Based
on this work, localisation has been established for Schrödinger operators with
Poissonian random potential at low energies in [184, 185].

Let us also mention that one dimensional techniques usually establish lo-
calisation on the whole energy axis. For higher dimensional continuum models
localisation results are restricted to energies near spectral boundaries.

The following section gives an idea where the Wegner estimate is used in
the MSA.

3.3 Resonances of Hamiltonians on Disjoint Regions

Rather than describing precisely how the Wegner estimate enters in the in-
duction step of the MSA we will confine ourselves to present an illuminative
example due to Spencer [452]. It was originally formulated for lattice Hamil-
tonians, but can also be considered in the continuum case, as we have learned
from P. Müller.

As we mentioned earlier, (3.2) implies for 0 ≤ δ < 1

P{ω| d(σ(H l
ω), E) ≤ δ} ≤ CW (E) δa |Λl|b (3.9)

This inequality implies that with respect to the parameter ω the eigenvalues
of H l

ω do not cluster on the energy axis. To give a more precise meaning to this
statement, consider two Hamiltonians H1 = H

Λl(x)
ω and H2 = H

Λl(y)
ω which

are restrictions of Hω to the cubes Λl(x) and Λl(y) respectively. Assume that
the boxes Λl(x) and Λl(x) are sufficiently far apart such that H1 and H2 are
independent. Let I be a bounded interval and consider the event

Ω(σ1, σ2) := {ω|Bδ(σ1) ∩ Bδ(σ2) �= ∅}
where σi stands for σ(Hi) ∩ I. Let λ1, . . . , λN be the eigenvalues of H1 in I.
By Weyl’s law we know that N ≤ CI |Λl|, where CI is independent of ω. Since

Ω(σ1, σ2) ⊂
N⋃

n=1

Ω(n, σ2) where Ω(n, σ2) := {ω|B2δ(λn(ω)) ∩ σ2 �= ∅}

we may use (3.9) to conclude

P{Ω(σ1, σ1)} ≤ Cδa |Λl|b+1 (3.10)
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This means that resonances of H1 and H2, i.e. the occurrence of approximately
the same eigenvalues for both operators, are very unlikely.

The feature which is common to Spencer’s example and the MSA is the ef-
fect of resonances between Hamiltonians which are localised to disjoint cubes.
As we mentioned earlier, in the induction step of the MSA one puts together
boxes Λl of side length l to form a larger cube ΛL of side length L. Assume
that one knows already that the Green’s functions of the operators H l

ω living
on any one of the small cubes Λl decays exponentially.

The Schrödinger operator HL
ω on ΛL is obtained when we remove the

boundary conditions which separate the smaller boxes Λl. The question is
whether the Green’s function on ΛL will still decay (with approximately the
same rate). To answer this question affirmatively it is not enough to know the
exponential decay of the individual Green’s functions on the small boxes Λl,
but it has to be ensured that they are not in resonance with each other.

Resonance means in this context that the spectra of two restriction H1,H2

of Hω to disjoint cubes are very close to each other. An appropriate quanti-
tative formulation can be given in terms of

d(σ1, σ2) := inf{d(λ1, λ2)|λ1 ∈ σ1, λ2 ∈ σ2} (3.11)

as we will see below.
The model situation we are about to consider is easier than the one oc-

curring in the MSA because we do not introduce boundary conditions but
confine ourselves to the analysis of the discrete spectrum below zero.

Example 3.3.1 (Spencer’s example [452, p. 903–904]). Consider two smooth
potentials V1, V2 ≤ 0 with compact support and set

Vi := suppVi ⊂ Br(ai), r > 0, ai ∈ Rd, i = 1, 2 (3.12)

It follows d(V1,V2) ≥ |a1 − a2| − 2r =: �. Consider furthermore the operators

H := H0 + V1 + V2, H0 := −∆ (3.13)
Hi := −∆ + Vi, i = 1, 2 (3.14)

Denote by σi := σ(Hi)∩ ]−∞, 0[, i = 1, 2 the negative spectra, which are
purely discrete. We are interested in the localisation and decay properties of
the corresponding eigenfunctions.

We look at two cases, where the first has a special symmetry and the sec-
ond corresponds to the situation expected to occur in a random medium.

Case (A):
Consider first the exceptional case in which V2 is obtained from V1 by a re-
flection along an axis of symmetry. Without loss of generality

V2(x1, x2, . . . , xd) = V1(−x1, x2, . . . , xd) (3.15)
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Thus H commutes with the reflection operator

Π : L2(R2)→ L2(R2), (Πf)(x1, x2, . . . , xd) = f(−x1, x2, . . . , xd) (3.16)

In particular, for every eigenfunction ψ

Hψ = λψ, λ < 0

the reflected function Πψ is an eigenvector of H as well. If ψ is localised around
a1 Πψ will be localised around a2. Thus a typical vector from span{ψ,Πψ}
will have non negligible amplitudes both at a1 and a2, even for large distances
�. For short, eigenfunctions of H do not need to have just one centre of
localisation.

We are dealing with a resonance between the two disjoint regions V1,V2,
or more precisely between the spectra of H1 and H2. Actually, we encountered
the extreme case where the the spectra σ1 and σ2 are not only close to each
other but identical.

The example we just considered exhibited a special symmetry, namely
[H,Π] = 0. For random potentials we expect generically that such symme-
tries are absent and that the spectra σ1 and σ2 have positive distance. This
situation is considered in

Case (B):
We give a condition on d(σ1, σ2) which ensures that the eigenfunctions of

H (defined in (3.13)) are localised at only one of the potential wells V1, V2.
Namely, assume that

d(σ1, σ2) ≥ e−
√

� =: ε (3.17)

For an eigenvalue λ ≤ − 2
� , with corresponding equation Hψ = λψ, we have

either

|λj
1 − λ| ≥ ε/2, ∀λj

1 ∈ σ1 or |λj
2 − λ| ≥ ε/2, ∀λj

2 ∈ σ2 (3.18)

Assume without loss of generality the first case. The eigenfunction equation
implies

−ψ = (H1 − λ)−1V2ψ

Applying twice the resolvent equation we obtain

−ψ = [R0 −R0V1R0 + R0V1R1V1R0] V2ψ, (3.19)

where Ri := (Hi − λ)−1, i = 0, 1 denotes the resolvents. We show that the
amplitude of ψ on V1 is exponentially small in the parameter �. Denote with
χi the characteristic function of Vi for i = 1, 2 and multiply (3.19) with χ1

− χ1ψ = χ1R0χ
2V2ψ − χ1R0V1χ

1R0χ
2V2ψ + χ1R0V1R1V1χ

1R0χ
2V2ψ

(3.20)
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The free resolvent decays exponentially, see e.g. [3] or [407, IX.30],

R1,2 := ‖χ1R0χ
2‖ � e−�

√−λ,

the terms ‖V2ψ‖, ‖χ1R0V1‖ are bounded uniformly in �, and (3.18) implies

‖R1‖ ≤ 2
ε

= 2e
√

�

Consequently

‖χ1ψ‖ ≤ R1,2 ‖V2ψ‖+ ‖χ1R0V1‖ R1,2 ‖V2ψ‖
+ ‖χ1R0V1‖ ‖R1V1‖ R1,2 ‖V2ψ‖

is bounded by a constant times exp(−√�) ‖ψ‖, since �−1 ≤ −λ.

Let us finish this section by discussing some aspects and contrasts of the
two cases considered in the example.

(i) In general, the spectrum alone describes only general properties of the
solution of the eigenvalue equation. In our example it is the additional
information contained in (3.15) and (3.17), respectively, which allows us
to analyse the eigenfunctions more precisely.

(ii) Obviously, in Case (A), the Green’s function decays in space, too. How-
ever, this decay is not yet felt at the scale �, since |ψ(a1)ψ(a2)| converges
to a positive constant for �→∞. On the contrary, in Case (B), the am-
plitude is small either at a1 or a2, more precisely

|ψ(a1)ψ(a2)| � e−
√

�

(iii) A semiclassical analysis of double well potentials is carried out, for in-
stance, in [216].
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Wegner’s Original Idea. Rigorous
Implementation

In this section we present a proof of Wegner’s estimate following his original
ideas in [493]. His proof was originally formulated for the discrete Anderson
model. In the meantime, it has been cast into mathematically rigorous form
and adapted for continuum Hamiltonians. We follow mostly the arguments of
Kirsch [249]. There are proofs of Wegner’s estimate by other authors, which
make use of the ideas in [493]. Let us mention [353, 352, 280, 281, 169, 94, 93].

The theorem to be proven is

Theorem 4.0.1. Let Hω be as in Definition 1.2.1 and assume additionally
that there exists a κ > 0 such that

u ≥ κχ[−1/2,1/2]d (4.1)

Then for all E0 ∈ R there exists a constant CW = CW (E0) such that for all
l ∈ N, E ≤ E0 and all ε ∈ [0, 1]

E
{
Tr
[
P l

ω([E − ε,E + ε])
]} ≤ CW ε l2d (4.2)

As before P l
ω denotes the spectral projection associated to the operator H l

ω.
The theorem is proven in the next section. Its bound with respect to the
volume term ld is quadratic and does not yield a continuity statement for the
IDS. Subsequently we show how this estimate was improved in [97]. Denote
by ω+ and ω− the largest, respectively the smallest value a coupling constant
may take.

4.1 Spectral Averaging of the Trace of the Spectral
Projection

We show that the expectation over the randomness smears out the eigenvalues
of H l

ω and thus regularises the trace of P l
ω(I).

By definition, the spectral projection P l
ω(I) = χI(H l

ω) is the characteristic
function of H l

ω. For certain purposes it will be necessary to differentiate this
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function with respect to the energy parameter, which motivates the introduc-
tion of the following smooth ‘switch function’.

Let ρ be a smooth, non-decreasing function such that on ]−∞,−ε] it is
identically equal to −1, on [ε,∞[ it is identically equal to zero and ‖ρ′‖∞ ≤
1/ε. Then

χ]E−ε,E+ε[(x) ≤ ρ(x− E + 2ε)− ρ(x− E − 2ε) =
∫ 2ε

−2ε

dt ρ′(x− E + t)

Thus by the spectral theorem

P l
ω(]E − ε,E + ε[) ≤

∫ 2ε

−2ε

dt ρ′(H l
ω − E + t)

in the sense of quadratic forms. Since Bε(E) =]E − ε,E + ε[ is bounded and
σ(H l

ω) discrete, the above operators are trace class and we may estimate:

Tr
[
P l

ω(Bε(E))
]
≤ Tr
[ ∫ 2ε

−2ε

dt ρ′(H l
ω −E + t)

]
=
∑
n∈N

∫ 2ε

−2ε

dt ρ′(λl
n(ω)−E + t)

where λl
n(ω) denotes the eigenvalues of H l

ω enumerated in non-decreasing
order and counting multiplicities. Only a finite number of terms in the sum
are non-zero. More generally the above arguments prove the following.

Lemma 4.1.1. Let H be an operator with purely discrete spectrum. Denote
by λ1 ≤ λ2 ≤ . . . the eigenvalues of H. Then for E ∈ R and ε > 0

Tr
[
χBε(E)(H)

]
≤
∑
n∈N

∫ 2ε

−2ε

dt ρ′(λn − E + t)

In the following we analyse the behaviour of the spectrum of the Schrö-
dinger operator under the perturbation ωj u(· − j). Fix a box-size l ∈ N,
a lattice site j ∈ Λ̃l and a configuration of coupling constants ω ∈ Ω and
consider the one-parameter family of operators

t �→ Ht := H + tU, where H = H l
ω and U = u(· − j)

By the arguments in Sect. 1.2 the single site potential is infinitesimally
bounded with respect to H, thus Ht forms a holomorphic family of type
(A) in the sense of Kato [239] for t in a neighbourhood of the real line,
cf. e.g. XII. Sect. 2 in [408]. Moreover, Ht has compact resolvent by XII. Sect. 14
in [408]. Hence one may apply a theorem of Rellich [411], see also Theorem
VII. Sect. 3.9 in [239]. It says that the eigenvalues and eigenvectors of Ht can
be chosen to be real analytic on R. Actually, each eigenvalue is holomorphic
on a neighbourhood of R in the complex plane, but their intersection may
contain only R.
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If λn(t) is a non-degenerate eigenvalue of Ht, first order perturbation the-
ory tells us that there exists a normalised eigenfunction ψn(t) such that

dλn

dt
(t0) = 〈ψn(t0), Uψn(t0)〉 (4.3)

Remark 4.1.2. This is sometimes called Hellmann-Feynman formula, and it
holds true also if the eigenvalue λn happens to be degenerate at t = t0, cf. for
instance [228]. One has however to chose the enumeration of the eigenvalues λn

and eigenvectors ψn in such a way that the pair λn(t), ψn(t), t < t0 continues
holomorphically into λn(t), ψn(t), t > t0. Note that this is actually not the case
with the enumeration we chose earlier, where λn(t) denotes the nth eigenvalue
of Ht. There are two possibilities to solve the problem: either one chooses
a somewhat un-intuitive enumeration of eigenvalues which makes them —
together with the eigenvectors — holomorphic functions of t. Or one sums
over the eigenvalues. Indeed, formula (4.3) remains true if we sum over all
eigenvalues which correspond to a degeneracy. More precisely, for a degenerate
eigenvalue λn(t0) denote by l, k ∈ N the largest numbers such that λn−l(t0) =
· · · = λn(t0) = · · · = λn+k(t0) and set S(t) =

∑n+k
m=n−l λm(t). Then we have

dS

dt
(t0) =

n+k∑
m=n−l

〈ψm(t0), Uψm(t0)〉

In the application of (4.3) in the next proposition we will be considering all
eigenvalues below a certain energy. Thus, if we consider one eigenvalue par-
ticipating in a degeneracy we will actually take into account all participating
eigenvalues.

The results for one parameter families of operators carry over to the multi-
parameter family ω �→ H l

ω. Thus we have

∑
j∈Λ̃

∂λl
n(ω)

∂ωj
=
∑
j∈Λ̃

〈ψn, u(· − j)ψn〉

where ψn are normalised eigenvectors corresponding to λl
n(ω) and Λ̃ = Λ̃l. By

assumption (4.1) we have∑
j∈Λ̃

〈ψn, u(· − j)ψn〉 ≥ κ > 0 (4.4)

Now the chain rule

∑
j∈Λ̃

∂ρ(λl
n(ω)−E + t)

∂ωj
= ρ′(λl

n(ω)− E + t)
∑
j∈Λ̃

∂λl
n(ω)

∂ωj
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implies

ρ′(λl
n(ω)− E + t) ≤ κ−1

∑
j∈Λ̃

∂ρ(λl
n(ω)− E + t)

∂ωj
(4.5)

Due to monotonicity, when integrating over one coupling constant, we obtain∫
dωj f(ωj)

∂ρ(λl
n(ω)− E + t)

∂ωj
≤ ‖f‖∞

∫
dωj

∂ρ(λl
n(ω)− E + t)

∂ωj

= ‖f‖∞
[
ρ(λl

n(ω, j = max)− E + t)− ρ(λl
n(ω, j = min)− E + t)

]
where λl

n(ω, j = max) denotes the nth eigenvalue of the operator

H l
ω(j = max) := H l

ω + (ω+ − ωj)u(x− j)

corresponding to the configuration of the potential where ωj takes its maximal
value. Analogously, we use the notation λl

n(ω, j = min). This proves

Proposition 4.1.3.

E
{
Tr
[
P l

ω([E − ε,E + ε])
]} ≤ ‖f‖∞

κ

∑
n∈N

∫ 2ε

−2ε

dt
∑
j∈Λ̃

E

{
ρ[λl

n(ω, j = max)− E + t]− ρ[λl
n(ω, j = min)− E + t]

}
The upper bound can be also written as

‖f‖∞
κ

∫ 2ε

−2ε

dt
∑
j∈Λ̃

E

{
Tr
[
ρ[H l

ω(j = max)−E+t]−ρ[H l
ω(j = min)−E+t]

]}
Since ρ ≤ 0

∑
n∈N

ρ[λl
n(ω, j = max)− E + t]− ρ[λl

n(ω, j = min)− E + t]

≤ −
∑
n∈N

ρ[λl
n(ω, j = min)− E + t] ≤ CE+3ε ld ≤ CE0+3 ld (4.6)

by bound (iii) in Lemma 2.7.3. This proves Theorem 4.0.1.

Remark 4.1.4. The suboptimality of the volume bound in Theorem 4.0.1 is
due to the rough estimate (4.6). The left hand side of the inequality is the
net increase of the number of eigenvalues in the energy interval ]E − t − ε,
E− t+ ε[ due to the increase of the jth coupling constant from its minimal to
its maximal value. The average of this quantity is independent of Λ, cf. [92].
However, in (4.6) we estimated it by the total number of eigenvalues below the
energy E + 3ε, which is by Weyl’s law proportional to the volume of Λ. Thus
we get an extra volume factor in the upper bound of the Wegner estimate.
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4.2 Improved Volume Estimates

As we mentioned earlier, Theorem 4.0.1 is unsatisfactory with respect to the
volume dependence of the upper bound. Since it is quadratic, it does not imply
any regularity property of the IDS. There is a number of papers [34, 97, 298,
93, 95, 218] which prove an upper bound which is linear in the volume. Mostly
the trade-off is that either the bound is worse with respect to the length of the
energy interval [E − ε,E + ε], or that it holds only under certain additional
hypotheses on the model or energy regime. Only the very recent preprint [91]
gives a Wegner estimate with an upper bound which is linear both in the
volume and the length of [E− ε,E + ε], without adding extra assumptions on
the model or energy regime (except the periodicity of the deterministic part
of the operator). A different method of proof which yields Wegner estimates
with linear volume and energy dependence is discussed in Chapter 5.

We describe results from two of the abovementioned papers in some detail.
Let us start with the work [93] of Combes, Hislop and Klopp where they study
alloy type models with single site potentials of small support, and establish
the Hölder continuity of the IDS at all energies.

They consider the case where the single site potential u ∈ L∞
c (Rd) is non-

negative and not identically equal to zero, and treat three different situations.
In all of them the unperturbed background operator H0 = (−i∇− A)2 + V0

may include a magnetic vector potential A and a (scalar) electric potential
V0. The potentials have to satisfy some regularity conditions such that H0 is
selfadjoint and has C∞

0 (Rd) as an operator core. The coupling constants are
independent identically distributed with distribution µ, which has a density
in L∞

c (R).
Here are several hypotheses each of which is sufficient for a continuity

result on the IDS.

(i) The background operator H0 has an IDS N0, which is Hölder continuous

|N0(E2)−N0(E1)| ≤ C0|E2 − E1|α̃

with Hölder exponent α̃ ∈]0, 1]. The constant C0 = C0(I) can be chosen
uniformly for E2, E1 in a given compact interval I.

(ii) The background operator H0 is periodic with respect to the lattice Zd

and has the unique continuation property, cf. Definition 4.2.2 below. The
set {x|u(x) > 0} contains an open subset of Rd.

(iii) The space dimension is d = 2. The operator H0 = (−i∇ − A)2 + Vper

consists of a Landau Hamiltonian with vector potential A(x1, x2) =
B
2 (−x2, x1) and a periodic scalar potential Vper. Here B > 0 is the
(constant) magnetic field strength. The magnetic flux trough a unit cell
satisfies the rationality condition

B ∈ 2π Q (4.7)

The scalar potential Vper is a Z2-periodic function in L2
loc(R

2).
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In case (i) set αc = α̃
α̃+2 , otherwise set αc = 1.

Theorem 4.2.1. Let Hω be an alloy type model satisfying either one of the
above conditions (i)–(iii). Then, for each a ∈]0, αc[, and any compact interval
I ⊂ R there exists a constant Ca,I such that the IDS of Hω satisfies

|N(E2)−N(E1)| ≤ Ca,I |E2 − E1|a for all E1, E2 ∈ I

In a follow up work [95] on the Landau Hamiltonian in collaboration with
Raikov condition (4.7) in hypothesis (iii) has been removed.

Note that this result is formulated not in terms of the average of the
eigenvalue counting function on a finite cube, but rather in terms of IDS
itself. The following property appeared in the hypotheses of the theorem.

Definition 4.2.2. A Schrödinger operator H on Rd has the unique continu-
ation property if the following condition holds: Let E ∈ R be arbitrary and
φ a function in the domain of the operator H satisfying (H − E)φ = 0. If φ
vanishes on some open set, then it vanishes identically on Rd.

For a discussion of this property, see for instance [498].
The next two results are taken from [218]. Let µ as before denote the

distribution of any of the bounded random coupling constants ωk, k ∈ Zd.

Theorem 4.2.3. Let Hω be an alloy type model as in Definition 1.2.1. As-
sume that Vper has the unique continuation property and is bounded below, µ
has a density in L∞

c (R) and 0 ≤ u ∈ L∞ is strictly positive on an open set.
Then, for each E0 ∈ R there exists a constant CW such that

N(E + ε)−N(E − ε) ≤ CW ε | log ε|d (4.8)

for all E ≤ E0 and ε ≤ 1/2.

The next result is formulated in terms of a Wegner estimate, i.e. a bound
on the average of a finite volume IDS measure of a small energy interval.

For ε > 0 we define the (global) modulus of continuity of µ by

s(µ, ε) = sup
{

µ
([

E − ε

2
, E +

ε

2

]) ∣∣∣E ∈ R

}
(4.9)

This allows us to formulate the next theorem.

Theorem 4.2.4. Let Hω be an alloy type model as in Definition 1.2.1 and
u ≥ κχ[−1/2,1/2]d for some positive κ. Then, for each E0 ∈ R there exists a
constant CW such that, for all E ≤ E0 and ε ≤ 1/2

E {Tr[χ[E−ε,E+ε](H l
ω)]} ≤ CW s(µ, ε) | log ε|d |Λl| (4.10)

Actually, both of these results may be formulated for background operators
H0 which incorporate quite general magnetic vector potentials, see Sect. A.3
and [218]. We will prove Theorem 4.2.4. The proof of Theorem 4.2.3 relies on a
combination of results of [93] and [218]. In particular, the unique continuation
properties of periodic operators developed in [93] play a crucial role.
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Remark 4.2.5 (Analogous results on combinatorial and metric graphs). In
[218] one can find also an analogous Wegner estimate for the Anderson model
hω on �2(Zd). Since the model is discrete, single site potentials correspond to
finite rank operators. For this reason one has uniform estimates on the spec-
tral shift function at disposal. Consequently, the Anderson model satisfies the
following Wegner bound

E {Tr[χ[E−ε,E+ε](hl
ω)]} ≤ CW s(µ, ε) |Λl| (4.11)

(See also [314] for similar results.) An adoption of the bound (4.11) to random
Schrödinger operators on metric graphs has been derived in [210].

A partial integration estimate concerning probability distributions which
do not have densities, which is used in the proof of Theorem 4.2.4, is deferred to
Sect. 4.7. A further important tool in the proof are estimates on the spectral
shift function (SSF) which are developed in Appendix A, see in particular
Corollary A.4.3.

Proof (of Theorem 4.2.4). Let x �→ ρE,ε(x) = ρ0,ε(x−E) be a switch function
adapted to the interval [E − ε,E + ε], see the beginning of Sect. 4.1 or the
discussion preceding (A.24). Then

χ[E−ε,E+ε](x) ≤ ρ(x + 2ε)− ρ(x− 2ε)

We may assume without loss of generality κ = 1, see Remark 5.0.2, and thus∑
k u(· − k) ≥ 1. By the mini-max principle for eigenvalues, we conclude

Tr[ρ(H l
ω + ε)] ≤ Tr

[
ρ(H l

ω + ε
∑

k

u(· − k))
]

(4.12)

Assume without loss of generality that l ∈ N. Then Λl is decomposed in L := ld

unit cubes. We enumerate the lattice sites in Λl by k : {1, . . . , L} → Λ̃ = Λ∩Zd,
n �→ k(n) and set

W0 ≡ 0, Wn =
n∑

m=1

u(· − k(m)), n = 1, 2, . . . , L

Thus

E {Tr[χ[E−ε,E+ε](H l
ω)]} ≤ E {Tr[ρ(H l

ω + 2ε)− ρ(H l
ω − 2ε)]}

≤ E {Tr[ρ(H l
ω − 2ε + 4εWL)− ρ(H l

ω − 2ε)]}

≤ E

{
L∑

n=1

Tr[ρ(H l
ω − 2ε + 4εWn)− ρ(H l

ω − 2ε + 4εWn−1)]

}
(4.13)

We fix n ∈ {1, . . . , L}, denote

ω⊥ := {ω⊥
k }k∈Λ̃, ω⊥

k :=

{
0 if k = k(n),
ωk if k �= k(n),
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and set

φn(t) := Tr
[
ρ
(
H l

ω⊥ − 2ε + 4εWn−1 + t · u(· − k(n))
)]

, t ∈ R.

The function φn is continuously differentiable, monotone increasing and
bounded. By definition of φn,

E {Tr[ρ(H l
ω − 2ε + 4εWn)− ρ(H l

ω − 2ε + 4εWn−1)]}
≤ E {

∫
[φn(ωk(n) + 4ε)− φn(ωk(n))] dµ(ωk(n))}

Let a = (inf suppµ)−1 and b = (sup suppµ)+1. Using Lemma 4.7.1 together
with Corollary A.4.3, we have∫

[φn(ωk(n) + 4ε)− φn(ωk(n))] dµ(ωk(n)) ≤ s(µ, 4ε)[φn(b + 4ε)− φn(a)]

≤ CE s(µ, 4ε) (log(1/ε))d

which implies that (4.13) is bounded by

CE

L∑
n=1

s(µ, 4ε) (log(1/ε))d ≤ CE s(µ, 4ε) (log(1/ε))d
ld

Note that we apply Corollary A.4.3 successively L times. For this reason it is
important to realise that, the constant CE depends only on the diameter of
u and a local norm of the negative part of the background potential. For this
local norm exist a uniform estimate independent of Λl and the configuration
of the coupling constants ωk, k �= k(n). ��

The recent preprint [91] contains several Wegner estimates for variants
of the alloy type model Hω. Let us formulate one of them, which concerns
the models studied in the present section. Under the assumption that the
periodic part of the operator H0 = −∆ + Vper has the unique continuation
property, that the single site potential L∞

c (Rd) � u ≥ 0 is positive on an open
subset of Rd, that the random coupling constants ωk, k ∈ Zd are independent
identically distributed with distribution µ, and that µ is compactly supported
and Hölder continuous, the results of [91] imply that the IDS of Hω is Hölder
continuous with the same Hölder exponent as µ.

4.3 Sparse Potentials

From the physical point of view there are some interesting models which have
a potential

Vω(x) =
∑
k∈Γ

ωku(x− k) (4.14)

resembling the alloy type model. However, the set Γ may be much more
general than the lattice Zd. A class of particular interest are surface models
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where Γ = {0} × Zν and ν < d is the dimension of a hyperplane in whose
neighbourhood the potential is concentrated. The literature on such models
includes [82, 297, 298, 61]. Even earlier [153, 154] so-called interface models,
which are closely related to surface potentials, have been studied.

The results in this section are essentially taken from [268]. We consider
arbitrary sets Γ , which are uniformly discrete in the following sense

sup
x∈Rd

#{Γ ∩ B1(x)} <∞

For uniformly discrete Γ the number of points of Γ contained in the cube
Λl(x) can be bounded linearly in the volume of the cube and independently
of its centre x.

Consider a background Schrödinger operator H0 = −∆ + Vper with a
periodic potential Vper ∈ Lp

unif,loc(R
d) where p = p(d) is as in (1.1). By adding

a constant we may assume that inf σ(H0) = 0. Let Hω = H0+Vω be a random
operator with a generalised alloy type potential Vω as in (4.14).

As before H l
ω stands for the restriction of Hω to the cube Λl with Dirichlet

boundary conditions (we may as well use Neumann or periodic ones), and P l
ω

denotes the corresponding spectral projection.

Theorem 4.3.1. Assume that the single site potential u ∈ L∞
c (Rd) is non-

positive, and that the single site distribution µ has a support in [0, ω+].
Then, for any −E′ < 0 there exists a finite C such that for any E ∈ R

and 1
2 ≥ ε ≥ 0 satisfying E + 3ε ≤ −E′:

E
[
TrP l

ω(Bε(E))
] ≤ C s (µ, ε) | log ε|d |Λl|

The proof of the theorem follows from the arguments of Sect. 4.2, once a
replacement for the estimate (4.12) has been established. This is provided by
the following lemma. Denote by Λ+ := Λ+

l := {k ∈ Γ | supp u(· −x)∩Λl �= ∅}
the set of indices whose coupling constants influence the value of the potential
in the cube Λl. Recall that the supremum of the support of f is denoted by ω+.

Lemma 4.3.2. Assume that the nth eigenvalue of the operator H l
ω satisfies

λl
n(ω) ≤ −E′ < 0. Then

ρ′(λl
n(ω)− E + t) ≤ ω+

E′

[
−
∑

k∈Λ+

∂ρ(λl
n(ω)− E + t)

∂ωk

]

For ε > 0 and an isotone function ρ such that ρ(x) = 0 for all x ≥ −E′ we
have

Tr
[
ρ(H l

ω −
E′

ω+
ε)
]
≥ Tr
[
ρ(H l

ω + ε
∑

k∈Λ+

u(· − k)
]
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Proof. Let ψn be the normalised eigenfunction corresponding to λl
n(ω). Then

ψn satisfies by definition 〈ψn, (H l
0 − λl

n(ω))ψn〉 = −〈ψn, Vωψn〉. We have∑
k∈Λ+

ωk 〈ψn,−u(· − k)ψn〉 = −〈ψn, Vωψn〉 = 〈ψn, (H l
0 − λl

n(ω))ψn〉 ≥ E′

The Hellmann-Feynman theorem implies

−
∑

k∈Λ+

∂λl
n(ω)

∂ωk
=
∑

k∈Λ+

〈ψn,−u(· − k)ψn〉

≥ ω−1
+

∑
k∈Λ+

ωk 〈ψn,−u(· − k)ψn〉 ≥ E′

ω+

We conclude the first claim of the Lemma in the following way:

ρ′(λl
n(ω)− E + t) = −

[
−
∑

k∈Λ+

∂λl
n(ω)

∂ωk

]−1 ∑
k∈Λ+

∂ρ(λl
n(ω)− E + t)

∂ωk

≤ ω+

E′

[
−
∑

k∈Λ+

∂ρ(λl
n(ω)− E + t)

∂ωk

]
(4.15)

Now consider the operator H l
ω(t) := H l

ω + t · χΛl

∑
k∈Λ+ u(· − k) and its

eigenvalues λl
n(ω, t). We have for all λl

n(ω) ≤ −E′

λl
n(ω, ε)− λl

n(ω, 0) =
∫ ε

0

∂λl
n(ω, t)
∂t

dt =
∫ ε

0

∑
k∈Λ+

∂λl
n(ω)

∂ωk
dt ≤ − E′

ω+
ε

Since ρ is isotone, ρ(λl
n(ω, ε)) ≤ ρ(λl

n(ω, 0)− E′
ω+

ε) and the Lemma is proven.
��

Note that since ρ is monotone increasing and u is non-positive, (4.15) is a
non-negative real.

Related models and results as presented in this section are discussed in
Sect. 3.1 of [94]. In [268] two more classes of generalised alloy type models
are analysed. Firstly, the case where the number of points in Γ ∩ B1(x) is
not uniformly bounded, but grows at a controlled rate as x goes to infinity.
Secondly, the case where Γ is itself a random point process, for example of
Poissonian type, cf. also [89].

4.4 Locally Continuous Coupling Constants

In this section we present a Wegner estimate which requires the coupling
constants ωk to have a continuous distribution merely in a neighbourhood of
their extremal value ω+ = sup supp f . Both the result and its proof are taken
from [268], with some improvements from [218].
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Consider a background Schrödinger operator H0 = −∆ + Vper with a pe-
riodic potential Vper ∈ Lp

unif,loc(R
d). Let Hω = H0 +Vω be a random operator

with an alloy type potential Vω. Assume that the coupling constants ωk, k ∈ Zd

take values in the bounded interval [ω−, ω+]. By modifying the periodic back-
ground potential we may consider only the case that the coupling constants
are non-negative. For a value ωc ∈ [0, ω+] introduce the auxiliary periodic po-
tential Vc = ωc

∑
k∈Zd u(x−k) and the threshold energy Ec = inf σ(H0 +Vc).

Theorem 4.4.1. Assume that the single site potential u ∈ L∞
c (Rd) is non-

positive, and that the restriction of the single site distribution µc := µ|]ωc,ω+]

has a density f ∈ L∞.
Then, for any E′ < Ec there exists a finite C such that for any E ∈ R and

ε ≥ 0 satisfying E + 3ε ≤ E′:

E
[
TrP l

ω(Bε(E))
] ≤ C ε| log ε|d ld

Proof. The value ωc is a critical one for the random variable ωk in the sense
that for ωk > ωc we know that it is continuously distributed, while for smaller
values we do not know anything. We introduce a corresponding decomposi-
tion of the ’probability’ space Ωl := ×k∈Λ+R ∼= RL. This is the part of the
randomness on which the restricted Hamiltonian H l

ω depends. For a given
configuration of coupling constants {ωk}k∈Λ+ set

Λac(ω) = {k ∈ Λ+|ωk > ωc}

This defines an equivalence relation on Ωl by setting for any A ⊂ Λ+

Ω(A) := {ω|Λac(ω) = A}

Consequently ∑
A⊂Λ+

∫
RL

∏
k∈Λ+

dµ(ωk)χΩ(A)(ω) = 1. (4.16)

Split the potential now into two parts, a singular and an absolutely continuous
one. The singular one

V s
ω (x) :=

∑
k∈Λ+,ωk≤ωc

ωku(x− k) +
∑

k∈Λ+,ωk>ωc

ωcu(x− k) ≥ Vc(x)

will be considered as part of the background operator, while the absolutely
continuous one

V ac
ω (x) :=

∑
k∈Λ+,ωk>ωc

rku(x− k) =
∑

k∈Λac

rku(x− k), with rk = ωk − ωc > 0

will be used for spectral averaging.
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Consider an eigenvalue λl
n ≤ E′ < Ec and an eigenfunction H l

ωψn = λl
nψn

and set δ = Ec − E′. We have

−〈ψn, V ac
ω ψn〉 = 〈ψn, (H l

0 + V s
ω − λl

n)ψn〉 ≥ 〈ψn, (H l
0 + Vc − λl

n)ψn〉 ≥ δ

which implies similarly as in Lemma 4.3.2

−
∑

j∈Λac

∂λn(ω)
∂ωj

≥ 1
ω+ − ωc

∑
j∈Λac

rj 〈ψn,−uj(· − j)ψn〉

= −〈ψn, V ac
ω ψn〉

ω+ − ωc
≥ δ

ω+ − ωc

Consider first the case ∅ �= A ⊂ Λ+ and estimate∫
RL

∏
k∈Λ+

dµ(ωk)χΩ(A)(ω)
∑
n∈N

∫ 2ε

−2ε

dt ρ′(λn(ω)− E + t)

≤ ω+ − ωc

δ

∫
RL

∏
k∈Λ+

dµ(ωk)χΩ(A)

∑
n∈N

∫ 2ε

−2ε

dt

⎡⎣− ∑
j∈Λac

∂ρ(λn(ω)− E + t)
∂ωj

⎤⎦
As we know that all sites j ∈ Λac correspond to coupling constants ωj with
values in the absolutely continuous region of the conditional density f we may
estimate as in Sect. 4.1:

−
∑
n∈N

∫
R

dµ(ωj)χΩ(A)(ω)
∂ρ(λn(ω)− E + t)

∂ωj

= −
∑
n∈N

∫ ω+

ωc

f(ωj)dωj
∂ρ(λn(ω)− E + t)

∂ωj

≤ ‖f‖∞
∑
n∈N

[ρ(λn(ω, ωj = ωc)− E + t)− ρ((λn(ω, ωj = ω+)−E + t)]

which can be estimated as in Sect. 4.2. We have to say something how we deal
with the special case A = ∅. In this situation V ac

ω ≡ 0 and Hω = H0 + V s
ω ≥

H0 +Vc ≥ Ec. Thus there are no eigenvalues in the considered energy interval
for this potential configuration.

Finally we use the decomposition (4.16) and Corollary A.4.3 to finish the
proof:

E
(
TrP l

ω([E − ε,E + ε])
)

≤
∑

A⊂Λ+

∫
RL

∏
k∈Λ+

dµ(ωk)χΩ(A)(ω)
∑
j∈A

(ω+ − ωc)
δ

4ε‖f‖∞CE+2ε | log ε|d

≤ 4CE+2ε
(ω+ − ωc)

δ
‖f‖∞ ε| log ε|d |Λ+|

��
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4.5 Potentials with Small Support

In Sect. 4.1 we used in a crucial step in the derivation of the Wegner estimate
that the single site potentials were lower bounded by a partition of unity∑

k∈Zd

u(x− k) ≥ κ on Rd

It is of natural interest, whether a Wegner estimate holds if this condition is
relaxed. In this section we consider the case that u is of fixed sign, but has
small support. More precisely, we assume throughout this section merely that
there is an open set O ⊂ Rd and a positive κ such that

u(x) ≥ κχO (4.17)

The first Wegner estimates under this relaxed condition on the single site
potential were derived for spectral boundaries, i.e. for energies either near
the bottom of the spectrum, or near an internal spectral boundary. The case
of the infimum of the spectrum was treated e.g. in [282, 249], and internal
spectral boundaries in [265]. These works derived a Wegner estimate where
the volume dependence of the bound was growing faster than linearly. Thus
they were not sufficient to derive a result on the regularity of the IDS, cf. our
discussion in Sect. 3.1. A linear bound for the same energy regimes was found
in [97].

By now there are Wegner estimates which under the relaxed condition
(4.17) derive Wegner estimates valid for any bounded interval on the energy
axis. We consider here the one-dimensional case where the result is particularly
clear and the proof simple. We follow [267] in the presentation, see [194, 93]
for other proofs. The higher-dimensional case is discussed without proofs in
Sect. 4.2.

Assume that the single site potential u and the periodic potential Vper are
bounded.

Theorem 4.5.1. Let d = 1. Assume that u is compactly supported and obeys
(4.17). For any E0 ∈ R there exist a constant C such that

E
[
TrP l

ω(Bε(E))
] ≤ C ε l, ∀ ε ∈ [0, 1], E ≤ E0, l ∈ N (4.18)

Thus the IDS is Lipschitz-continuous. A similar result can be derived for
Schrödinger operators on metric graphs, see [212].

Proof. First we show how to replace (4.4) in the case of small support. By
shifting the origin of R we may assume without loss of generality that there
is a s > 0 such that Λs(0) ⊂ O. Likewise, we may assume κ = 1 by rescaling
the single site potential and the coupling constants.

We set S =
⋃

k∈Λ̃ Λs(k). The Hellmann-Feynman theorem gives us∑
k∈Λ̃

∂λl
n(ω)

∂ωk
=
∑
k∈Λ̃

〈ψn, u(· − k)ψn〉 ≥
∫

S

|ψn|2.

where ψn is a normalised eigenfunction corresponding to λl
n(ω).
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If the integral on the right hand side would extend over the whole of Λl it
would be equal to 1 due to the normalisation of ψn. A priori the integral over
S could be arbitrary close to zero, but the following Lemma shows that this
is not the case.

Lemma 4.5.2. Let I be a bounded interval and s > 0. There exists a constant
c > 0 such that ∫

Λs(k)

|ψ|2 ≥ c

∫
Λ1(k)

|ψ|2

for all l ∈ N, all k ∈ Λ̃l and for any eigenfunction ψ corresponding to an
eigenvalue E ∈ I of H l

ω.

Proof (of the Lemma). For

φ(y) :=
∫

Λs(k+y)

dx |ψ(x)|2 =
∫

Λs(k)

dx |ψ(x− y)|2

one has

∣∣∣∣ ∂

∂y
φ(y)
∣∣∣∣ =
∣∣∣∣∣∣∣
∫

Λs(k)

dx

[
∂

∂y
ψ(x− y)

]
ψ(x− y) +

∫
Λs(k)

dx ψ(x− y)
∂

∂y
ψ(x− y)

∣∣∣∣∣∣∣
≤ 2 ‖ψ‖L2(Λs(k+y)) ‖ψ′‖L2(Λs(k+y)) .

Sobolev norm estimates (e.g. Theorems 7.25 and 7.27 in [196]) imply

‖ψ′‖L2(Λs(k+y)) ≤ C5 ‖ψ‖L2(Λs(k+y)) + ‖ψ′′‖L2(Λs(k+y))

By the eigenvalue equation we have∣∣∣∣ ∂

∂y
φ(y)
∣∣∣∣ ≤ C6 ‖ψ‖2L2(Λs(k+y)) = C6 φ(y), C6 = C6(‖Vper + Vω − E‖∞)

(4.19)

Gronwall’s Lemma implies φ(y) ≤ exp(C6|y|)φ(0) and thus∫
Λ1(k)

|ψ|2 ≤ eC6 s−1

∫
Λs(k)

|ψ|2

��
Thus

∫
S
|ψ|2 ≥ c

∫
Λl
|ψ|2 with the same constant as in Lemma 4.5.2.
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It remains to estimate the spectral shift∑
n∈N

[
ρ(λl

n(ω, j = max)−E + t)− ρ(λl
n(ω, j = min)− E + t)

]
(4.20)

We may assume without loss of generality that the single site potential u
is supported in the interval [−R,R]. Introduce now the operator H l,D

ω (j =
max) which coincides with H l

ω(j = max) up to additional Dirichlet boundary
conditions at the points j −R and j + R. Likewise, H l,N

ω (j = min) coincides
with H l

ω(j = min) up to additional Neumann boundary conditions at the
same points. Their eigenvalues are λl,D

n (ω, j = max) and λl,N
n (ω, j = min),

respectively. By Dirichlet-Neumann bracketing, the square brackets in (4.20)
are bounded by

ρ(λl,D
n (ω, j = max)− E + t)− ρ(λl,N

n (ω, j = min)− E + t) (4.21)

Since for both ∗=D,N the Hamiltonian H l,∗
ω is a direct sum of an operator

Hj,∗
ω acting on L2(j−R, j+R) and another one Hc,∗

ω acting on L2(Λl\[j−R, j+R])
the sum over the terms in (4.21) can be separated:∑

n

ρ(λc,D
n (ω)− E + t)− ρ(λc,N

n (ω)− E + t) (4.22)

+
∑

n

ρ(λj,D
n (ω, j = max)− E + t)− ρ(λj,N

n (ω, j = min)− E + t) (4.23)

Here λc,∗
n (ω) denotes the eigenvalues of Hc,∗

ω , λj,D
n (ω, j = max) the eigenvalues

of Hj,D
ω with ωj maximal, and λj,N

n (ω, j = min) the eigenvalues of Hj,N
ω with

ωj minimal. Note that the eigenvalues in (4.22) are independent of ωju(·− j).
Since the difference in the boundary conditions is a rank two perturbation in
resolvent sense (see e.g. [443]), the interlacing theorem says that

ρ(λc,D
n (ω, j = max)− E + t) ≤ ρ(Ec,N

n+2(ω, j = max)− E + t)

A telescoping argument bounds the whole sum in (4.22) by twice the total
variation of ρ, which is equal to one. The sum in (4.23) we estimate by

Tr
[
χ[E−3ε,∞[(Hj,D

ω (j = max))− χ]E+3ε,∞[(Hj,N
ω (j = min))

]
≤ 2+Tr

[
χ[E−3ε,∞[(Hj,D

ω (j = min) + ‖uj‖∞)− χ]E+3ε,∞[(Hj,D
ω (j = min))

]
which is bounded by a constant, that is independent of Λl, j ∈ Λ̃l, ε > 0 and
the configuration ω. (Note that the parameter ε determines the support and
the derivative of the switch function ρ.) ��

In the remainder of this chapter we give an overview of various Wegner
estimates which are based or related to techniques presented at the beginning
of Chapter 4. However, we refrain from giving the proofs of this results but
refer to the original articles.
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4.6 Hölder Continuous Coupling Constants

There is special interest to extend Wegner’s estimate to coupling constants
with singular distribution. The reason is the intuitive interpretation of the
coupling consonants as nuclear charge numbers modulating the strength of
atomic potentials. In this case their distribution would correspond to a pure
point measure.

In Remarks 3.1.1 and 3.2.1 we mentioned already results for one-dimensional
models with singular randomness. The first result in this direction for multi-
dimensional alloy type models was obtained by Stollmann in [457]. Stollmann’s
version of Wegner’s estimate applies to single site measures µ which have
compact support. It is formulated in terms of the modulus of continuity of the
single site distribution µ. Stollmann applied this estimate to prove localisation
for certain alloy type potentials with Hölder continuous µ. A distribution is
called (uniformly) Hölder continuous with exponent α > 0 if there is a constant
Cµ such that the modulus of continuity of µ satisfies

s(µ, ε) := sup{µ([a, b])| b− a ≤ ε} ≤ Cµ εα for ε ≥ 0 (4.24)

For the following discussion a wider class of distributions will be of interest,
which we describe next. We call a measure µ (uniformly) log-Hölder continuous
with parameter α > 0 if there is a constant Cµ such that for all 1

2 > ε > 0 we
have

s(µ, ε) ≤ Cµ | log ε|−α

We state the main result of [457] without proof:

Theorem 4.6.1. Let Hω be an alloy type model as in Definition 1.2.1, but
require for the single site measure merely that is has compact support. Assume
additionally that the single site potential obeys u ≥ χ[0,1]d . Then for any E ∈ R

there exists a constant C such that for any open interval I ⊂] − ∞, E[ and
any l ∈ 2N

P{ω|σ(H l
ω) ∩ I �= ∅} ≤ C s(µ, |I|) · l2d (4.25)

holds.

By now it has become quite standard to formulate Wegner estimates in
terms of the modulus of continuity of the distribution µ. This is for instance
the case for the results presented in Sect. 4.2, see also the papers [218, 91].

Since these estimates apply to arbitrary distributions of compact support,
one can use them for rather singular µ. This is of interest for applications. As
discussed before, Wegner estimates are used to establish regularity properties
of the IDS and as an input for the multiscale analysis, cf. Sect. 3.2.

Let us illustrate the usefulness of Wegner estimates expressed in terms of
the modulus of continuity by the following lemma. It turns such a bound,
under the condition that µ is log-Hölder continuous, into the sort of estimate
as it is used for the induction step of the multiscale analysis.
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Lemma 4.6.2. Let Hω, ω ∈ Ω be a random Schrödinger operator and E0 ∈ R.
Assume that there exist constants CW , l0 such that for all ε ∈]0, 1/2], all
E ≤ E0 and all N � l ≥ l0

E {Tr[χ[E−ε,E+ε](H l
ω)]} ≤ CW s(µ, ε) ld (4.26)

For some θ, q > 0 assume that the measure µ is log-Hölder continuous
with parameter α > (q + d)/θ > 0. Set δ := αθ − q − d > 0 and
l1 := max

(
l0, (CW Cµ)1/δ

)
. Then for all energies E ≤ E0 we have

P{d(σ(H l
ω), E) ≤ e−lθ} ≤ l−q for all l ∈ N, l ≤ l1 (4.27)

Proof. P

{
ω | dist

(
σ(H l

ω), E
) ≤ e−lθ

}
≤ E

{
Tr
[
χ]E−e−lθ ,E+e−lθ [(H

l
ω)
]}

≤ CW ld s(µ, e−lθ ) ≤ CW ld Cµ| log e−lθ |−α ≤ l−q for all l ≥ (CW Cµ)1/δ. ��
Remark 4.6.3. Assumption (4.26) can be verified for various models. For dis-
crete Anderson models on �2(Zd) it is established in [218], for continuum alloy
type models on L2(Rd) it is given in [91], and for alloy type models on metric
graphs one can infer it from [210].

If instead of (4.26), a bound as in (4.8) or (4.25) is given, an obvious
modification of Lemma 4.6.2 holds.

4.7 A Partial Integration Formula for Singular
Distributions

A different way to deal with random coupling constants whose distribution is
not absolutely continuous is the following integration by parts formula. It is
used in the proof of Theorem 4.2.4. For a similar idea see Lemma 6.1 in [301].

Lemma 4.7.1. Let µ be a probability measure with support in ]a, b[, φ ∈
C1(R) be a non-decreasing, bounded function, and s(µ, ε) as defined in (4.9).
Then for any ε > 0,∫

R

[φ(λ + ε)− φ(λ)] dµ(λ) ≤ s(µ, ε) · [φ(b + ε)− φ(a)]

If suppµ ⊂]a,∞[ is unbounded from above the Lemma still holds if one re-
places φ(b + ε) by the (well-defined) limit limx→∞ φ(x).

Proof. We write dµ = dM , where M is the distribution function of µ. In the
following, all integrals are defined as Stieltjes integrals. Shifting variables and
using that M is constant outside of [a, b] gives∫

[φ(λ + ε)− φ(λ)] dµ(λ) =
∫ b+ε

a

φ(λ) d[M(λ− ε)−M(λ)]
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Integrating by parts gives∫
[φ(λ + ε)− φ(λ)] dµ(λ) =

[
φ(λ)[M(λ− ε)−M(λ)]

]b+ε

a

−
∫ b+ε

a

φ′(λ)[M(λ− ε)−M(λ)] dλ

The first term is zero, since M is constant outside of [a, b] (in case b =∞, one
uses boundedness of φ and limλ→∞[M(λ− ε)−M(λ)] = 0). The second term
is bounded by∫ b+ε

a

φ′(λ)[M(λ)−M(λ− ε)] dλ ≤ sup
λ

[M(λ)−M(λ− ε)] ·
∫ b+ε

a

φ′(λ) dλ

≤ s(µ, ε) · (φ(b + ε)− φ(a))

since φ′ ≥ 0. ��

4.8 Coupling Constants with Bernoulli Disorder

In the recent paper [59] Bourgain and Kenig study alloy type models as in
Definition 1.2.1 with Bernoulli disorder. More specifically, they consider the
case where the periodic potential Vper is absent, the single site potential u �≡ 0
is smooth, non-negative and has support in the ball of radius 1/10 around zero,
and the coupling constants are independent obeying P{ωk = 0} = 1−P{ωk =
1} = P ∈]0, 1[ for all k ∈ Zd.

They use a quite heavy machinery to prove a form of Wegner estimate
similar to the one in (3.8). This bound is much weaker than those discussed
in the present work, but still sufficient to prove localisation, see the discussion
in Sect. 3.2. To deal with the singular nature of the Bernoulli distribution of
coupling constants, the proof in [59] makes use of a strong quantitative version
of the unique continuation property, of Sperner’s Lemma, and a special mul-
tiscale analysis to obtain inductively a Wegner estimate on increasing scales.
Recall from the discussion in Sect. 3.2 that usually one uses the multiscale
analysis to prove exponential decay of Green’s functions, whereas the Wegner
estimate is an input for this procedure which is proven beforehand for all
length scales simultaneously.

4.9 Single Site Potentials with Changing Sign

First Wegner estimates for indefinite alloy type potentials were derived in
[282]. In [213] Hislop and Klopp combine the techniques from [282] and [97] to
prove a Wegner estimate valid for general indefinite single site potentials and
for energy intervals at edges of σ(Hω). They assume the single site potential
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u ∈ Cc(Rd) satisfies u(0) �= 0. The density f ∈ L∞
c of the random variable ω0

(which may be in fact the conditional density with respect to ω⊥0 := (ωk)k �=0)
is assumed to be piecewise absolutely continuous. For any α < 1 and any
compact energy interval I strictly below the spectrum of the unperturbed
operator H0 they prove

P{σ(H l
ω) ∩ I �= ∅} ≤ C |I|α ld

where the constant C depends only on α, d and the distance between the
interval I and σ(H0). With a sufficiently small global coupling constant λ the
same result holds for the operator H0 + λVω for I in an internal spectral gap
of H0. The results of [213] extend to more general models including certain
operators with random magnetic field.

In Sect. 5.5 we discuss in more detail an alternative technique to obtain a
Wegner estimate valid for single site potentials which change sign. It applies to
a more restricted class of potentials but yields stronger results. In particular,
it proves the Lipschitz continuity of the IDS at all energies.

4.10 Uniform Wegner Estimates for Long Range
Potentials

Kirsch, Stollmann and Stolz proved in [264] a Wegner estimate for single site
potentials which do not need to have compact support, but merely need to
decay sufficiently fast. They consider u of polynomial decay

|u(x)| ≤ C(1 + |x|2)−m/2 (4.28)

where m > 0 is required to be larger than 3d. For certain applications they
can also deal with the case where m is only larger than 2d, cf. [263, 500].

For such single site potentials the restrictions of the alloy type potential to
two finite cubes may be correlated, even if the cubes are far apart. This makes
it necessary to use an enhanced version of the multiscale analysis for the proof
of localisation. Among others, this requires a uniform Wegner estimate. By
this we mean a Wegner estimate for the Hamiltonian H l

ω restricted to the
cube Λl which is uniform in the coupling constants ωk with index ‖k‖∞ > r
where r is a function of l.

To formulate the Wegner estimate from [264] let us first introduce some
notation. For any cube Λ ⊂ Rd and Λ̃ = Λ ∩ Zd we denote by ΠΛ the
projection

ΠΛ : Ω �→ ×̃
Λ

supp µ ΠΛ(ω) := {ωk}k∈Λ̃

For a measurable set A ⊂ Ω we denote by A∗
Λ the cylinder set

A∗
Λ := Π−1

Λ (ΠΛA) = {ω ∈ Ω| ∃ω′ ∈ A such that ΠΛ(ω′) = ΠΛ(ω)}
The following observation plays a crucial role in the enhanced multiscale
analysis.
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Lemma 4.10.1. For two disjoint cubes Λ,Λ′ and two events A,B ∈ Ω, the
induced events A∗

Λ and B∗
Λ′ are independent.

The following lemma allows one to turn a ’usual’ Wegner estimate, as we
have it discussed before, into a uniform Wegner estimate. It relies on the poly-
nomial decay of the single site potential (4.28). Let I be a compact interval,
E ∈ I and ε ∈]0, 1]. We denote by A(E, ε, l) the event {ω| d(E, σ(H l

ω)) < ε}
and use the abbreviations Πl := ΠΛl

, A∗
l := A∗

Λl
.

Lemma 4.10.2. Under the above assumptions there exists a finite constant c,
independent of ω ∈ Ω, l, r ∈ N and ε ≤ 1 such that

P{A(E, ε, l)∗l+r} ≤ P{A(E, ε + cr−(m−d), l)}

Proof. By definition, for an ω ∈ A∗
l+r there exists an ω′ ∈ A such that

Πl+rω
′ = Πl+rω

Thus, the coordinates of ω and ω′ with index k within the cube of size l + r
coincide and we have for x ∈ Λl

|Vω(x)− Vω′(x)| ≤
∑

|k|∞>l+r

|ωk − ω′
k|u(x− k)

≤ c′
∑

|k|∞>l+r

|x− k|−m ≤ cr−(m−d)

Therefore d(E, σ(H l
ω′)) < ε implies d(E, σ(H l

ω)) < ε+cr−(m−d), which proves
the lemma. ��

Let us have a look on the implications of the preceding lemma for a con-
crete example. Assume that the single site potential is bounded below on the
unit cube around zero by κ > 0. Then we have by Theorem 5.0.1

P
{
ω|σ(H l

ω) ∩ [E − ε,E + ε] �= ∅} ≤ CW (I) ε ld

for all E, ε such that [E − ε,E + ε] is contained in the open interval I. This
Wegner estimate implies its uniform analog

P

({
ω|σ(H l

ω) ∩ [E − ε,E] �= ∅}∗
l+r

)
≤ CW (I) (ε + cr−(m−d)) ld (4.29)

for sufficiently large r > 0. In the application in the multiscale analysis, both ε
and r are chosen as functions of l. From the estimate in (4.29) it might seem to
be sufficient to choose m > d. This is also the minimal requirement to make the
alloy type model with long range single site potentials well defined as a densely



4.10 Uniform Wegner Estimates for Long Range Potentials 77

defined operator. However, for technical reasons, for the multiscale analysis to
work one has to assume at least m > 2d. Under this assumption one can prove
that the spectrum of Hω is almost surely pure point near its bottom, and that
the corresponding eigenfunctions decay faster than any inverse polynomial,
cf. [263, 500]. To obtain exponential decay of the eigenfunctions, one has to
require m > 3d, see [264].

In the paper [500] by Zenk the above results have been extended to a
model which incorporates random displacements of the single site potentials.





5

Lipschitz Continuity of the IDS

In [306] Kotani and Simon extended to continuum alloy type models certain
arguments previously used for the derivation of Wegner’s estimate for the
discrete Anderson model. They treated only the case where the single site
potential is the characteristic function of the unit cube, but Combes and
Hislop showed in [89] that the same argument extends to non-negative single
site potentials with uniform lower bound on the unit cube. There also some
steps of the proof have been streamlined.

One of the ideas in [306] is that in the same way as rank one perturbations
are used for discrete Laplacians, positive perturbations may be used in the
continuum case. This is related to the Aronszajn-Donoghue Theory [27, 28,
29, 127]. See [79, 304, 444, 443] for more background and references. This
was essential, since a finite rank potential in the continuum may be a Dirac
distribution, but not a function.

Theorem 5.0.1. Let Hω as in Definition 1.2.1 and assume additionally that
there exists a κ > 0 such that

u ≥ κχ[−1/2,1/2]d

Then for all E ∈ R there exists a constant CW = CW (E) such that for all
l ∈ N and all intervals I ⊂]−∞, E]

E
{
Tr
[
P l

ω(I)
]} ≤ CW |I| ld (5.1)

Remark 5.0.2. (a) It is sufficient to prove the theorem for the case κ = 1. Since
ω0u = κω0 κ−1u, the general case follows by rescaling the coupling constants
and single site potentials.

(b) The statement of the theorem remains true if one uses Neumann or
periodic boundary conditions for H l

ω.
(c) An explicit formula for the Wegner constant CW is given in (5.17). Since

(5.1) is linear in the volume it follows |N(E2)−N(E1)| ≤ CW |E2−E1|. Thus,
as we discussed already in Sect. 3.1, the density of states n(E) := dN(E)/dE
exists almost everywhere and is bounded by n(E) ≤ CW (E2) for all E ≤ E2.
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The next four sections are devoted to the proof of Theorem 5.0.1. Up to
some modifications we follow the line of argument in Sect. 4 of [89].

5.1 Partition of the Trace into Local Contributions

In the present section we derive preparatory estimates on

E
{
TrP l

ω(I)
}

(5.2)

where we do not yet use the specific alloy-type structure of the potential.
They have two aims. Firstly, to decompose the trace to contributions of unit
cubes in Λl. This will later facilitate the averaging procedure with respect to
random parameters, whose effect on the potential is felt only locally. Secondly,
it allows us to reduce the averaging of the trace of the spectral projection to
the averaging of the quadratic form of the resolvent. The latter is technically
easier to perform.

Denote by ∆l and ∆l
N the Laplace operator on Λl with Dirichlet, respec-

tively Neumann boundary conditions. In Sect. 1.2 we saw that the potential
V = Vper + Vω is infinitesimally bounded with respect to −∆ and that the
constants in the bound can be chosen uniformly in ω ∈ Ω. This implies that V
is infinitesimally form bounded with respect to any of the operators −∆, −∆l

and −∆l
N with bounds uniform in ω ∈ Ω, l ∈ N and the choice of Dirichlet or

Neumann boundary conditions. Consequently, there is a C0 < ∞ such that
for all ω ∈ Ω and l ∈ N

|〈φ, V φ〉| ≤ 1
2
〈φ,−∆l

Nφ〉+ C0‖φ‖2

which implies

〈φ,H l
ωφ〉 ≥ 〈φ,−1

2
∆l

Nφ〉 − C0‖φ‖2 ≥ −C0‖φ‖2 (5.3)

Thus H l
ω + C0 is a non-negative operator.

Definition 5.1.1. A monotone decreasing, convex function r : [0,∞[→]0,∞[
such that

CTr := CTr(r) :=
∑

n∈Zd,nj≥0

r

(
π2

2

d∑
j=1

n2
j

)
<∞ (5.4)

will be called trace regularising.

Throughout the rest of this chapter we denote by Λ the unit cube centred
at zero, and by χj the characteristic function of its translate Λ + j, where
j ∈ Zd .
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Remark 5.1.2. The bound (5.4) means that the operator r(− 1
2∆Λ

N )=r(− 1
2∆1

N )
has finite trace. Namely, the eigenvalues of the Neumann Laplacian on the unit
cube are given by

π2
d∑

j=1

n2
j for all n ∈ Zd such that nj ≥ 0, j = 1, . . . , d

cf. for instance [408], page 266. By the spectral mapping theorem the eigen-
values of r(− 1

2∆Λ
N ) are just r

(
1
2π2
∑d

j=1 n2
j

)
.

Examples of functions r which are trace-regularising are the exponential
functions r : x �→ e−tx for t > 0. They have been used in [89] to implement
the procedure outlined in this chapter. Another choice for r is a sufficiently
high power of the resolvent x �→ (x + 1)−k for k > d/2, which was used in
[306]. That the operator (− 1

2∆Λ
N +1)−k is actually trace class can be inferred

from [439].
The possibility to choose r from a large class of functions is of inter-

est, if one wants to give explicit upper bounds on the density of states. For
instance, Sect. 3.2 of [223] is devoted to deriving such explicit upper estimates.
However, there, following [89], the function r(x) = e−tx is used. Due to this
choice, the upper bound on the density of states is exponentially growing in
the energy. This can be improved to a merely polynomial growing bound.
Furthermore, if one studies coupling constants which may take on arbitrarily
negative values, the choice of r will determine which moment conditions one
has to impose on the negative part of ω0, see also Sect. 5.7. The role played
here by r resembles the one of the function g in Sect. 4.2 and Appendix A.

Proposition 5.1.3. Let I = [E1, E2] be an interval. With C0 as in (5.3) we
have

E
{
TrP l

ω(I)
} ≤ r(E2 + C0)−1 CTr(r)

∑
j∈Λ̃l

∥∥E {χjP
l
ω(I)χj}

∥∥
Proof. Since 1

r is well-defined and bounded on the compact interval I, we have

Tr
[
P l

ω(I)
]

= Tr
[
r(H l

ω + C0)−1 P l
ω(I) r(H l

ω + C0)
]

Furthermore, by spectral calculus and since for positive operators A,B we
have Tr(AB) ≤ ‖A‖ Tr(B), the above line is bounded by

r(E2 + C0)−1Tr
[
P l

ω(I) r(H l
ω + C0)

]
According to the direct sum decomposition

L2(Λl) =
⊕
j∈Λ̃l

L2(Λ + j)
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we consider the Laplace operators −∆N,j on L2(Λ+j) with Neumann bound-
ary conditions. Dirichlet-Neumann bracketing implies

H l
ω + C0 ≥ −1

2
∆l

N ≥ −
1
2

⊕
j∈Λ̃l

∆N,j =: ⊕H (5.5)

For a normalised eigenfunction φ of H l
ω corresponding to the eigenvalue λ we

have by the spectral mapping theorem

〈φ, r(H l
ω + C0)φ〉 = r(λ + C0) = r(〈φ, (H l

ω + C0)φ〉) ≤ r(〈φ,⊕Hφ〉) (5.6)

Applying Jensen’s inequality to the spectral measure of ⊕H we estimate (5.6)
from above by 〈φ, r(⊕H)φ〉. Let φn, n ∈ N be an orthonormal basis of eigen-
vectors of H l

ω with corresponding eigenvalues λn, n ∈ N. We apply the above
estimates to the trace

Tr
[
P l

ω(I)r(H l
ω + C0)

] ≤ ∑
n∈N,λn∈I

〈φn, r(H l
ω + C0)φn〉

≤
∑

n∈N,λn∈I

〈φn, r(⊕H)φn〉 ≤ Tr
[
P l

ω(I)r(⊕H)
]

For the next step we write down the trace with respect to different basis.
For each j ∈ Λ̃l let {ψj

n|n ∈ N} be an orthonormal basis of L2(Λ + j), then
{ψj

n|n ∈ N, j ∈ Λ̃l} is an orthonormal basis of L2(Λl). Since r(⊕H)ψj
n =

r(− 1
2∆N,j)ψj

n it follows for the trace

Tr
[
P l

ω(I)r(⊕H)
]

=
∑
j∈Λ̃l

∑
n∈N

〈ψj,n, P l
ω(I)r(⊕H)ψj,n〉

=
∑
j∈Λ̃l

∑
n∈N

〈ψj,n, χjP
l
ω(I)χjr(− 1

2∆N,j)χjψj,n〉

=
∑
j∈Λ̃l

Tr
[
χjP

l
ω(I)χjr(− 1

2∆N,j)χj

]
Thus we have decomposed the trace to contributions from each unit cube. We
summarise the estimates so far:

TrP l
ω(I) ≤ r(E2 + C0)−1

∑
j∈Λ̃l

Tr
[
χjP

l
ω(I)χjr(− 1

2∆N,j)χj

]

Since I is a bounded interval and Vper+Vω is an infinitesimally small perturba-
tion of −∆l independently of ω, it follows that the dimension of P l

ω(I)L2(Λl)
is bounded by a constant C uniformly in ω. Thus for all ω ∈ Ω
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Tr
[
χjP

l
ω(I)χjr(− 1

2∆N,j)χj

] ≤ C r(0)

is an upper bound by an integrable majorant and we are able to interchange
the trace and the expectation by Lebesgue’s theorem on dominated conver-
gence:

E
{
Tr
[
χjP

l
ω(I)χjr(− 1

2∆N,j)χj

]}
= Tr

[
E
{
χjP

l
ω(I)χjr(− 1

2∆N,j)χj

}]
= Tr

[
E
{
χjP

l
ω(I)χj

}
χjr(− 1

2∆N,j)χj

]
≤ ∥∥E

{
χjP

l
ω(I)χj

}∥∥ Tr
[
r(− 1

2∆N,0)
]

By assumption, r is trace regularising, so the trace in the last line is finite. ��

5.2 Spectral Averaging of Resolvents

Now we consider how resolvents are averaged when integrated over a random
parameter. Together with the partition result in Sect. 5.1 this will enable us
to complete in Sect. 5.4 the proof of Theorem 5.0.1.

Apart from this, the spectral averaging result bears in itself a meaning.
Consider a non-negative operator H with discrete spectrum. Its resolvent
R(E) = (H − E)−1 has singularities at the eigenvalues of H, which are of
the form (λn − E)−1, λn ∈ σ(H). Thus for a general vector ψ the function
E �→ 〈ψ,R(E)ψ〉 will not be bounded nor even integrable over the energy
axis R. Now, if H = H(ζ) depends on a random parameter ζ, we might
hope that the averaged resolvent

∫
dP(ζ)〈ψ,R(ζ, E)ψ〉 will be integrable or

even bounded as a function of the variable E. This would mean that the
singularities of the resolvent have been smeared out sufficiently by the integral
over ζ. The lemma in this section shows that this is actually the case for
operators which depend in a specific way on the random parameter.

Consider the following operators on a Hilbert space H. Let H be a selfad-
joint operator, W symmetric and infinitesimally bounded with respect to H,
and J bounded and non-negative with J2 ≤W . Choose two parameters

z ∈ C− := {z ∈ C| Im z < 0}
ζ ∈ C+ := {ζ ∈ C| Im ζ ≥ 0}

and set
H(ζ) := H + ζ W, K(ζ, z) := J(H(ζ)− z)−1J (5.7)

The following lemma is a slight generalisation of Lemma 4.1 in [89].

Lemma 5.2.1. For all z ∈ C−, all t > 0 and any normalised φ ∈ H we have∣∣∣∣∫
R

〈φ,K(ζ, z)φ〉 dζ

1 + tζ2

∣∣∣∣ ≤ π (5.8)
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Proof. By Pythagoras we have |〈φ, (A + iB)φ〉|2 = |〈φ,Aφ〉|2 + |〈φ,Bφ〉|2 for
any two selfadjoint operators A,B. Thus the norm of K(ζ, z) is bounded by
| Im z|−1 ‖J‖2. On the other hand, the equation

− Im K(ζ, z) = J [(H(ζ̄)− z̄)−1[(Im ζ)W − Im z](H(ζ)− z)−1]J

implies
‖K(ζ, z)‖ ≤ | Im ζ|−1 (5.9)

Here we used that W (H(ζ) − z)−1 is a bounded operator. Now observe that
for all z ∈ C− the function ζ �→ K(ζ, z) is holomorphic and bounded on C+.
The residue theorem, integration over a closed curve in C and the bounds on
K imply ∣∣∣∣∫

R

〈φ,K(ζ, z)φ〉 dζ

1 + tζ2

∣∣∣∣ = π√
t
|〈φ,K

(
i/
√

t, z
)〉| (5.10)

Together with (5.9), this completes the proof. ��
Remark 5.2.2. The lemma shows that for the particular family of operators
H(ζ) in (5.7), for ζ a random variable with measure P(dζ) := dζ

1+tζ2 , and for
vectors ψ in the range of J , the ζ-averaged resolvents

∫
dP(ζ)〈ψ,R(ζ, E)ψ〉

are indeed bounded with respect to the energy variable. Thus the singularities
of the resolvent have been smeared out.

5.3 Stone’s Formula and Spectral Averaging
of Projections

Stone’s formula allows one to express the spectral projection in terms of the
resolvent. This is handy because the resolvent has some nice analytic prop-
erties. In our case we use Stone’s formula to derive the analog of (5.8) for
spectral projections.

A sequence of bounded operators An, n ∈ N on the Hilbert space H con-
verges strongly (or in strong topology) to A if for every φ ∈ H

lim
n→∞ ‖Aφ−Anφ‖ = 0

Lemma 5.3.1 (Stone’s formula). Let H be a selfadjoint operator, I ⊂ R an
interval, and P (I) the corresponding spectral projection. Then the following
limit holds in the strong topology

lim
δ↘0

1
2πi

∫ E2

E1

[
(H − E − iδ)−1 − (H − E + iδ)−1

]
dE

=
1
2

[
P
(
[E1, E2]

)
+ P
(
]E1, E2[

)]
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Proof. The function

fδ(x) :=
1
π

(
arctan

x− E1

δ
− arctan

x− E2

δ

)
(5.11)

=
1

2πi

∫ E2

E1

[
(x− E − iδ)−1 − (x− E + iδ)−1

]
dE

= − 1
π

Im
∫ E2

E1

(x− E + iδ)−1dE

converges for δ ↘ 0 to
1
2
(
χ[E1,E2] + χ]E1,E2[

)
Now one applies the spectral theorem to fδ(H). ��
More details on Stone’s formula can be found in [410], or Sect. 7.3 of [494]
where the spectral calculus is actually introduced in this way.

Now let H(ζ) be as in the last section and P (ζ, I) the corresponding spec-
tral projection onto an interval I. For a normalised vector ψ in H denote
P (ζ) := 〈ψ, JP (ζ, I)Jψ〉. The next lemma contains a spectral averaging esti-
mate for P.

Lemma 5.3.2. Let � ∈ L∞(R) ∩ L1(R). Then∫
R

�(ζ)P (ζ) dζ ≤ ‖�‖∞|I| (5.12)

While Combes and Hislop [89] considered compactly supported �, it was first
observed in [168] that densities with non-compact support can be treated.
There this extension was necessary to derive estimates for Gaussian random
potentials.

Proof. We first consider the special density 1
1+tζ2 , for t > 0 and an open

interval I. By Stone’s formula∫
R

dζ

1 + tζ2
P (ζ) ≤ −

∫
R

dζ

1 + tζ2
lim
δ↘0

1
π

Im
∫

I

dE〈ψ,K(ζ, E − iδ)ψ〉 (5.13)

Note that dζ
1+tζ2 is a finite, outer regular Borel measure on R and that (5.11)

implies that |fδ(·)|, and hence ‖fδ(H(ζ))‖, is bounded by one. Thus we may
apply the dominated convergence theorem to interchange the limit and the
integration, and bound (5.13) by

1
π

lim
δ↘0

∣∣∣∣∫
I

dE

∫
R

dζ

1 + tζ2
〈ψ,K(ζ, E − iδ)ψ〉

∣∣∣∣ ≤ |I| (5.14)
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The last inequality follows from Lemma 5.2.1. This implies for all � ∈ L∞

with compact support:∫
R

�(ζ)P (ζ) dζ ≤ sup
supp �

[
�(ζ)(1 + tζ2)

] ∫
R

P (ζ)
1 + tζ2

dζ

≤ sup
supp �

[
�(ζ)(1 + tζ2)

] |I|
→ ‖�‖∞ |I| for t→ 0

Finally, assume only that � ∈ L∞∩L1. Set �y := � ·χ{x| |x|<y} and decompose
� = �y + �y. For y → ∞, �y tends to zero pointwise. Since P is bounded by
one, � ∈ L1(R, dζ) is a y-uniform majorant for �yP and we may apply the
dominated convergence theorem to conclude∫

R

�(ζ)P (ζ) dζ = lim
y→∞

∫
R

�y(ζ)P (ζ) dζ ≤ ‖�‖∞ |I| (5.15)

If I is not open, we write it as an intersection of open, decreasing sets and use
monotone convergence to conclude (5.12). ��

5.4 Completion of the Proof of Theorem 5.0.1

The results on the localisation of the trace to unit cubes and spectral averaging
of projections allow us to assemble the proof of Theorem 5.0.1.

To estimate the operator norm appearing in Proposition 5.1.3 we may as
well bound the corresponding quadratic form since∥∥E

{
χjP

l
ω(I)χj

}∥∥ = sup
‖φ‖=1

〈φ, E
{
χjP

l
ω(I)χj

}
φ〉 (5.16)

Now we apply Fubini’s Theorem and Lemma 5.3.2 with the choice � = f ,
H = L2(Λl), J = χj , H = H0 +

∑
k∈Λ̃\j ωk u(· − k), ζ = ωj , W = u(x − j),

and obtain:
〈φ, E

{
χjP

l
ω(I)χj

}
φ〉 ≤ ‖f‖∞ |I|

This bound is j-independent and thus yields

E
{
TrP l

ω(I)
} ≤ r(E2 + C0)−1 CTr(r) ‖f‖∞ |I| |Λ̃l| (5.17)

��
Remark 5.4.1. Now it becomes clear why we introduced the operator r(H l

ω +
C0)−1r(H l

ω + C0) = Id in Proposition 5.1.3: Due to this regularisation we
needed merely to derive bounds on the operator norm of χjP

l
ω(I)χj , rather

than on its trace. The trace was applied to the single, deterministic operator
r(− 1

2∆N,0), where all dependencies on Λl, ω, and I drop out. Without the
use of a trace regularising function it is still possible to estimate

E {Tr χjP
l
ω(I)χj} ≤ const. |I| |Λ̃l|

However, this leads to a Wegner estimate with quadratic volume bound.
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5.5 Single Site Potentials with Changing Sign

In Sect. 4.9 we saw an extension of the Wegner-Kirsch approach to single
site potentials of changing sign. The Kotani-Simon-Combes-Hislop proof of
Wegner’s estimate also allows such a generalisation which we present in this
section. Its main shortcoming in comparison to the results in Sect. 4.9 is that
it is restricted to single site potentials which have a (generalised) step function
form. On the other hand, it is valid not only at spectral boundaries, but on
the whole energy axis. Furthermore, it yields the Lipschitz continuity of the
integrated density of states and thus locally uniform upper bounds on the
density of states. The results of this section are taken from [481, 301], see also
[479, 300, 482].

First we describe the class of alloy type potentials which can be treated
by the methods of this section.

Definition 5.5.1. Let Lp
c(R

d) � w ≥ κχΛ1 with κ > 0 and p = p(d) as in
(1.1). Let Γ be a finite subset of Zd. A function of the form

u(x) =
∑
k∈Γ

αk w(x− k) (5.18)

will be called a generalised step-function and the vector α ∈ RΓ a convolution
vector. We set αk = 0 for all k ∈ Zd \ Γ . Thus, we consider α as an element
of c0(Zd), the space of all sequences with elements indexed by j ∈ Zd which
have finite support. The set Γ will be called the support of α, supp α = Γ .

A linear operator A = {Aj,k}j,k∈Zd with matrix coefficients Aj,k :=
〈δj , A δk〉 for j, k ∈ Zd is called (multi-level) Laurent matrix if it satisfies

Aj+i,k+i = Aj,k for all j, k, i ∈ Zd

Here δk(i) = 1 , if k = i ∈ Zd, and zero otherwise. So, a Laurent matrix
is a doubly-infinite Toeplitz matrix. For a subset Θ ⊂ Zd denote by AΘ the
truncated matrix with the coefficients AΘ k,j := 〈δk, AΘ δj〉 for k, j ∈ Θ. The
matrix A may be considered as a bounded linear operator A : �p(Zd)→ �p(Zd),
p ∈ [1,∞[ acting as

(Aφ)(j) =
∑
j∈Γ

Aj,kφ(k) =
∑
j∈Γ

αj−kφ(k)

Similarly, AΘ : �p(Θ)→ �p(Θ) is a bounded operator, which can be related to
A by the formula AΘ = χΘ Aχ∗

Θ. Here

χΘ : �p(Zd)→ �p(Θ), (χΘφ)(j) =

{
φ(j), if j ∈ Θ,

0 otherwise

is the projection onto the set Θ. If A, respectively AΘ, are invertible operators,
the inverse to A will be denoted by B and the inverse to AΘ by BΘ. Each
convolution vector α generates a Laurent matrix by the rule A = {αj−k}j,k∈Zd .
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Remark 5.5.2 (Notational conventions). Let as before Hω = H0 + Vω be an
alloy type Schrödinger operator as in Definition 1.2.1. Thus, the single site
potential u and the distribution µ are building blocks of the random potential
Vω. We assume throughout this section that 0 �≡ u ∈ Lp

c(R
d), p = p(d) is a

generalised step-function as in (5.18). Given such a function u, α will always
denote the convolution vector by means of which u is defined, A the Laurent
matrix associated to α, and sα its symbol, cf. Definition 5.5.7. Furthermore
we assume that µ has a density f ∈ BVc(R) with compact support and finite
total variation. We will denote the total variation norm of f by ‖f‖Var. Recall
that Λ+

l = {k ∈ Zd| supp u(· − k) ∩ Λl �= ∅} denotes the set of indices whose
coupling constants influence the value of the potential in the cube Λl.

The following standard approximation result, see e.g. [501], will be useful
in the proof of the subsequent theorem.

Lemma 5.5.3. Let f : R → R+ be a function of finite total variation with
‖f‖1 = 1. Then there exists a sequence fk ∈ C∞

0 (R) such that ‖fk‖1 = 1 for
all k ∈ N,

lim
k→∞

‖fk‖Var = ‖f‖Var, and lim
k→∞

‖fk − f‖1 = 0.

Theorem 5.5.4. Let Hω be as in Remark 5.5.2. For a cube Λl assume that
there exists Θ ⊂ Zd such that

(i) Λ+
l ⊂ Θ,

(ii) AΘ is invertible and BΘ : �1(Θ)→ �1(Θ) is bounded with norm ‖BΘ‖1.
Then for all E ∈ R and for all intervals I ⊂]−∞, E]

E
{
TrP l

ω(I)
} ≤ r(E + C0)−1 CTr(r) ‖f‖Var

‖BΘ‖1
κ

|I| ld (5.19)

where we used the same notation as in Proposition 5.1.3.

Proof. We first prove the theorem for densities f ∈W 1,1
c (R). From Proposition

5.1.3 we infer

E
{
TrP l

ω(I)
} ≤ r(E + C0)−1 CTr(r)

∑
j∈Λ̃l

∥∥E {χjP
l
ω(I)χj}

∥∥
Thus it is sufficient to estimate E {〈φ, χjP

l
ω(I)χjφ〉} for any normalised φ ∈

L2(Λl) by a uniform constant. To do this we introduce a transformation of
coordinates on the probability space Ω. Since Λ+

l ⊂ Θ, the operator H l
ω

depends only on the truncated random vector (ωk)k∈Θ ∈ RΘ. On such vectors
acts the truncated Laurent matrix AΘ, whose inverse BΘ = {bk,j}k,j∈Θ is
bounded in the column-sum norm ‖BΘ‖1 by assumption. Set L := #Θ.

We drop now the subscript Θ and denote with η := Aω the vector of the
transformed random coordinates. They have the common density
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k(η) = |det B|F (Bη) (5.20)

where F (ω) =
∏

k∈Θ f (ωk) is the original density of the ωk. We abbreviate
wj(x) := w(x − j) and calculate the potential Vω written as a function of η
(and x ∈ Λl):

Vω(x) = VBη(x) =
∑
j∈Λ̃l

ηj wj(x)

In the new representation of the potential the single site potentials are non-
negative, so we can make use of the spectral averaging formula in Lemma
5.3.2∫

R

dηj k(η)S(η) ≤ |I|
κ

sup
ηj

|k(η)|, where S(η) := 〈φ,wjP
l
Bη(I)wjφ〉

(5.21)

Fubini’s theorem, (5.21), and the fundamental theorem of calculus give∫
RL

dη k(η)S(η) ≤ |I|
κ

∫
RL−1

dη⊥j sup
ηj

|k(η)| ≤ |I|
κ

∫
RL

dη |(∂jk)(η)| (5.22)

Here η⊥j is an abbreviation for {ηk| k ∈ Θ \ j}. The last integral equals

|det A|
∫

RL

dω |(∂jk)(Aω)|

which is bounded by ‖f ′‖L1
∑

k∈Θ |bk,j |. Thus, for f ∈ W 1,1
c (R), we have

obtained the desired bound

E
{〈φ,wjP

l
ω(I)wjφ〉

} ≤ κ−1|I| ‖f ′‖L1‖B‖1 (5.23)

Now let f be a function of finite total variation. Let {fk}k be an approximation
sequence of C∞

0 -functions as in Lemma 5.5.3. We have∫
RL

dω F (ω) 〈φ,wjP
l
ω(I)wjφ〉 =

∫
RL

dω
∏
k∈Θ

fk(ωk) 〈φ,wjP
l
ω(I)wjφ〉

+
∫

RL

dω

[∏
k∈Θ

f(ωk)−
∏
k∈Θ

fk(ωk)

]
〈φ,wjP

l
ω(I)wjφ〉

By our previous considerations, the first integral on the right is bounded by

|I| ‖fk‖Var ‖B‖1
which tends to |I| ‖f‖Var‖B‖1 for k →∞. A telescoping argument shows that
the norm of the second integral is bounded by

L ‖w‖2∞ ‖f − fk‖1
which by Lemma 5.5.3 tends to zero as k →∞. ��
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If we are able to find for arbitrarily large cubes Λl ⊂ Rd subsets Θ of Zd

such that Θ ⊃ Λ+
l with bounded BΘ, Theorem 5.5.4 may be used to obtain a

Wegner estimate. A particularly important case is when the BΘ are uniformly
bounded independently of Θ.

Theorem 5.5.5. Let Hω be as in Remark 5.5.2. Assume furthermore that
there exist a constant CB ∈ R and an exhaustion Θ1 ⊂ Θ2 ⊂ . . . of Zd such
that ‖BΘn

‖1 ≤ CB for all n ∈ N. Then we have for any E ∈ R, any interval
I ⊂]−∞, E], and all l ∈ N

E
{
TrP l

ω(I)
} ≤ CW |I| ld (5.24)

where CW = r(E + C0)−1 CTr(r) ‖f‖Var CB.

The theorem implies that the density of states, the derivative of the IDS,
exists for a.e. E and is locally uniformly bounded:

n(E1) :=
dN(E1)

dE1
≤ r(E + C0)−1 CTr(r) ‖f‖Var CB for all E1 ≤ E

Proof. For any l ∈ N we can find an n ∈ N such that Λ+
l ⊂ Θn. Thus by

Theorem 5.5.4 and our assumption we have

E
{
TrP l

ω(I)
} ≤ r(E + C0)−1 CTr(r) ‖f‖Var ‖BΘn

‖1 |I| ld
≤ r(E + C0)−1 CTr(r) ‖f‖Var CB |I| ld

��
Now let us turn to the question under which conditions the assumption of

Theorem 5.5.5 is satisfied. A simple criterion is the following

Lemma 5.5.6. Assume that the convolution vector of the single site potential
satisfies

α∗ :=
∑
k �=0

|αk| < |α0|

Then we have for any Θ ⊂ Zd

‖BΘ‖1 ≤ α0

1− α∗

Proof. Since A is the Laurent matrix generated by the vector α, we can write
it as

A =: α0 Id + S, ‖S‖1 =
∑
k �=0

|αk| = α∗ < |α0| (5.25)

by the assumption on α∗. The decomposition and the bound in (5.25) remain
true for any truncation AΘ. By the Neumann series expansion the inverse BΘ

of AΘ exists and obeys the bound ‖BΘ‖1 ≤ α0
1−α∗ for any Θ ⊂ Zd. ��
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The assumptions on the convolution vector can be further relaxed. To
formulate these weaker hypotheses we need the notion of the symbol of a
Laurent matrix.

Definition 5.5.7. The symbol of a convolution vector α, respectively the as-
sociated Laurent matrix A, is defined as the function

sα : [−π, π[d→ C, sα(θ) =
∑
k∈Zd

αk ei〈k,θ〉, θ = (θ1, . . . , θd)

The symbol sα is called sectorial if there is a φ ∈ [−π, π[ such that

Re (eiφsα(θ)) ≥ 0 for all θ ∈ [−π, π[d

Since we assume that only finitely many components of α are different from
zero, sα is actually a trigonometric polynomial. Thus it is a uniformly con-
tinuous and bounded function with a finite number of zeros, unless it vanishes
identically.

If the symbol function sα has no zeros, we define for every i = 1, . . . , d the
ith winding number

wni(sα) =
1

2πi

∫
[−π,π[

d

dt
log sα(θ1, . . . , θi = t, . . . , θd) dt

This number is an integer independent of θ. The vector of winding numbers

wn(sα) := (wn1(sα), . . . ,wnd(sα)) ∈ Zd

is called also the topological index of the symbol sα.

Remark 5.5.8. Let Hω be as in Remark 5.5.2. If the symbol function sα associ-
ated to u does not vanish on [−π, π[d we can assume without loss of generality
that wn(sα) = 0.

Proof. First observe that a translation of the convolution vector α by an
arbitrary j0 ∈ Zd leaves the operator Hω unchanged up to unitary equivalence.
To see this, let us set α̃k := αk−j0 and denote by ũ(x) =

∑
k∈Γ+j0

α̃k w(x−k)
the associated single site potential of generalised step-function form. It gives
rise to an alloy type potential

Ṽω(x) =
∑
j∈Zd

ωj

∑
k∈Γ+j0

α̃k w(x− k − j)

which equals∑
j∈Zd

ωj

∑
k∈Γ+j0

αk−j0 w(x− k − j) =
∑
j∈Zd

ωj

∑
l∈Γ

αl w(x− l − j0 − j)

=
∑
j∈Zd

ωj

∑
k∈Γ

αk w((x− j0)− k − j) = Vω(x− j0) = (Uj0VωU∗
j0)(x)
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where Uj0 denotes the unitary translation operator by j0. Note that the peri-
odic part H0 commutes with Uj0 .

On the other hand, supp α̃ = supp α+ j0 and the symbol of ã is given by

sα̃(θ) = e−i〈j0,θ〉sα(θ)

By the product rule for winding numbers we obtain

wn(sα̃) = wn(sα)− j0. (5.26)

Now choose j0 = wn(sα). Then the winding number of sα̃ vanishes and the
corresponding alloy type model H0 + Ṽω is unitarily equivalent to the original
alloy type model Hω. ��
Recall that in our situation the total potential energy Vper + Vω is relatively
bounded with respect to the Laplace operator. This is expressed in a quanti-
tative way in (5.3) using the constant C0. Now we are ready to state the main
result of [301].

Theorem 5.5.9. Let Hω be as in Remark 5.5.2. If d ≤ 2 and sα(θ) �= 0 for
all θ ∈ [−π, π[d, then there is a constant C independent of E, l, and f such
that for all ε ≥ 0 we have

E {Tr P l
ω([E − ε,E])} ≤ C eE+C0‖f‖Var ε ld (5.27)

Proof. By Theorem 5.5.5 it is sufficient to show that there exists an exhaustion
Θ1 ⊂ Θ2 ⊂ . . . of Zd such that ‖BΘn

‖1 ≤ CB for all n ∈ N. In Sect. 5.6 it is
shown that such an exhaustion always exist, if d ∈ {1, 2} and the symbol sα

has no zeros on [−π, π[d and has vanishing winding number. Without loss of
generality we can drop the last condition by Remark 5.5.8. ��
Remark 5.5.10. It seems that Theorem 5.5.9 holds for arbitrary dimension.
This result requires a modification of the proof: instead of finite truncations
AΘ of A one uses (multi-dimensional) circulant matrices. They have bet-
ter invertibility properties than approximands obtained by the finite section
method.

Now we relax the hypotheses on the convolution vector α, respectively its
symbol sα, further. There is a set of conditions under which the methods of
[301] are not strong enough to establish the Lipschitz continuity of the inte-
grated density of states, but only a weaker form of Wegner estimate. Still, this
may be useful to prove localisation for certain alloy-type random potentials
with single site functions u of changing sign, cf. the discussion in Sect. 3.2 and
Theorem 4 in [301].

This regime concerns convolution vectors whose symbol sα does vanish,
but is sectorial and has the property that its real part has only a finite number
of nodal points. We infer from [301] without proof the following result. Let us
just mention that the arguments of the proof heavily rely on Sect. 8 in [54].
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Theorem 5.5.11. Let Hω be as in Remark 5.5.2. Assume that the symbol sα

associated to u is sectorial and Re sα has at most finitely many zeros. Then
there exist C, b ∈ R such that for all E ∈ R, l ∈ N and ε ≥ 0

E {Tr P l
ω([E − ε,E])} ≤ C eE+C0‖f‖Var ε lbd (5.28)

holds, where C is a constant independent of f .

Remark 5.5.12 (Anderson model). For the discrete Anderson model hω = h0+
Vω there is a result analogous to Theorem 5.5.5. Here h0 is the finite difference
Laplacian on �2(Zd) and (Vωψ)(n) = Vω(n)ψ(n), ∀n ∈ Zd, a multiplication
operator as in the continuum case. This is not surprising, since the arguments
in Sects. 5.2 and 5.3 rely only on abstract functional analysis. If fact, as we
mentioned earlier, Kotani and Simon were motivated in their treatment [306]
of the alloy type model by its discrete counterpart. Moreover, since on �2(Zd)
the trace can be expressed using the canonical basis as

Tr[P l
ω(I)] =

∑
j∈Λ̃l

〈δj , P
l
ω(I)δj〉

the use of a trace regularising function is not necessary. Here P l
ω denotes the

spectral projection of the truncation hl
ω of the Anderson model hω. More

precisely, hl
ω is the finite matrix {〈δj , hωδk〉}j,k∈Λ̃l

.
Note that in the discrete case χj is just δj . Under the assumptions of

Theorem 5.5.5 on the coupling constants {ωj}j and the single site potential
u we have the following Wegner estimate for the Anderson model:

E
{
Tr[P l

ω(I)
} ≤ CB‖f‖Var |I| |Λ̃l| (5.29)

Remark 5.5.13. Theorems 5.5.4 and 5.5.5 can also be understood as a Wegner
estimate for the alloy type potential

Vη(x) =
∑
k∈Zd

ηk χk

where the coupling constants {ηj}j are not any more independent, but corre-
lated, satisfying certain conditions. See Sect. 4.2 in [482] for a precise formu-
lation. Wegner estimates for correlated coupling constants can also be found
in [96] (cf. [223], too).

The use of the common density F , respectively k, in the proof of Theorem
5.5.4 is conceptually new. One could try to use conditional densities instead
by considering the indefinite potential Vω in its representation VBη as an alloy
type potential with dependent coupling constants. However, this would require
to have uniform upper bounds on the conditional densities, cf. [96, 223]. They
do not seem to be easy to establish for the model considered in this section,
and in fact sometimes fail to hold as can be seen in the following example.
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Example 5.5.14. It is sufficient to consider only one space dimension d = 1.
Let the density function be f = χ[0,1] and the single site potential u = χ[0,1]−
αχ[1,2] with −α ∈] − 1, 0[. To this model the results of Theorem 5.5.5 and
Lemma 5.5.6 apply.

We analyse the restriction of Hω to an interval of length l. Instead of Λl =
]−1/2, l−1/2[ we consider the translation thereof Λl+ l

2 =]0, l[. The restricted
Schrödinger operator H

]0,l[
ω depends only on the coupling constants ωj with

indices j ∈ {−1, . . . , l − 1} =: Λ+
l . They are transformed by the Toeplitz

matrix A into new random variables ηj , j ∈ {−1, . . . , l− 1}, as in the proof of
Theorem 5.5.4. Here the convolution vector is given by α0 = 1, α1 = −α.

The conditional density ρj(η) = ρl
j(η) of the variable ηj with respect

to the remaining coupling constants η⊥j = (ηk)k∈Λ+
l \j in Λ+

l is given by

ρj(η) = k(η)
gj(η) . Here gj(η) =

∫
k(η)dηj denotes the marginal density. The

question is whether supj ρ(η) is finite.
One calculates the common density to be

k(η) =
l−1∏

k=−1

χ[0,1](
k∑

ν=−1

αk−νην)

For ηj+1 ∈ [0, 1], ηk = 0,∀k �= j + 1 we have

k(η) =
l−1∏

k=−1

χ[0,1](αk−j−1ηj+1) = 1.

The marginal density

gj(η) =
j−1∏

k=−1

χ[0,1]

(
k∑

ν=−1

αk−νην

) ∫ l−1∏
k=j

χ[0,1]

(
k∑

ν=−1

αk−νην

)
dηj

≤
∫

dηj

j+1∏
k=j

χ[0,1]

(
k∑

ν=−1

αk−νην

)

has for ηj+1 ∈ [0, 1], ηk = 0,∀k �∈ {j, j + 1} the upper bound∫ 1

0

χ[0,1](αηj + ηj+1)dηj ≤ α−1(1− ηj+1)

In particular, gj(η)↘ 0 for ηj+1 ↗ 1 and thus

sup
η

ρj(η) =∞

Therefore, proofs of a Wegner estimate which require the conditional density
to be bounded cannot be applied to this alloy type potential. See also Sect. 4.3
of [482] for another example.
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5.6 The Finite Section Method for Multi-Level Laurent
Matrices

In this section we collect certain results which are used in Sect. 5.5. They
concern the theory of finite sections for multi-level Laurent matrices. In fact,
the finite section operators of a Laurent matrix are the same as the ones of the
Toeplitz matrix generated by the same convolution vector. We are concerned
with criteria for (uniform) bounded invertibility of the finite section operators.
These questions have a long history of research in the one dimensional case.
For an accessible introduction to this subject see for instance [199], [56], and
for a detailed account [55]. In the higher-dimensional case, i.e. for multi-level
Laurent or Toeplitz matrices much less is known. Results of the type which
are relevant for us can be found in [309, 308, 307, 310, 311, 54], see also [134].

Throughout this section we use the notation of Definition 5.5.1. We need
some further notions to formulate the results.

Definition 5.6.1. A subset M ⊂ Zd is called a canonical discrete half-space if
M and Zd \M are sub-semigroups of Zd. A set M is called discrete half-space
if there exists j ∈ Zd such that M + j is a canonical discrete half-space.

Let F ⊂ Zd be finite and F̃ its convex hull in Rd. Then the set F̃ ∩ Zd is
called a convex lattice polygon.

Denote by Br(x) ⊂ Rd an open ball of radius r centred at the point x.
Let M(r,R) be the set of all convex lattice polygons Θ in Zd satisfying the
following conditions

(i) for any x ∈ Rd there is a discrete half-space M such that

Θ ∩Br(x) = M ∩Br(x)

(ii) Θ ⊃ BR(0) ∩ Zd.

Here is a special case of the main result of the paper [311].

Theorem 5.6.2. Let A be a multi-level Laurent matrix on �p(Zd), p ∈ [1,∞[
with non-vanishing symbol s(θ). If s(θ) is a trigonometric polynomial and its
topological index is zero, then there exist positive numbers r, R, and Cr,R

such that for any Θ ∈M(r,R) the associated truncated Toeplitz matrix AΘ is
invertible and its inverse satisfies ‖A−1

Θ ‖ ≤ Cr,R.

If we apply the theorem to two different values of allowed radii R = R1

and R = R2, such that R1 ≤ R2, we may chose the constants appearing in
Theorem 5.6.2 to obey Cr,R2 ≤ Cr,R1 , since

M(r,R1) ⊃M(r,R2) (5.30)

To be able to use Theorem 5.6.2 in the context of Sect. 5.5, one has to
settle the question whether for a pair r,R > 0 as in Theorem 5.6.2 the set
M(r,R) contains an exhaustion of Zd. By (5.30), such an exhaustion exists
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if for arbitrary r,R > 0 the set M(r,R) is non-empty. For d ≥ 3 this seems
to be an open question. In one space dimension, M(r,R) contains all discrete
intervals Θ ⊃ BR(0) of diameter greater or equal to 2r. By a discrete interval
we mean the intersection of an ordinary interval with Z. For the case d = 2
the following fact has been stated in [311] and proven in [301].

Proposition 5.6.3. If d = 2, then for any r > 0 and R > 0 the set M(r,R)
is non-empty.

Thus in dimensions one or two an exhaustion sequence Θ1 ⊂ Θ2 ⊂ . . . of
discrete lattice polygons in M(r, 1), r > 0 exists and the corresponding trun-
cated Toeplitz matrices AΘn

have inverses BΘn
which are uniformly bounded

in �p(Zd). Thus we have proven the assumptions required for Theorem 5.5.5.
Let us give one historical comment. For one space dimension a criterion on

uniformly bounded invertibility of finite section Toeplitz operators in �1(Z)
was proven in [36], see also Theorem III.2.1 in [199]: For a convolution vector
α ∈ c0(Z) whose symbol sα does not vanish anywhere on [−π, π[ and has zero
winding number there exist a constant CB ∈ R such that

‖B‖ ≤ CB , sup
n∈N

‖BΘn
‖ ≤ CB (5.31)

where Θn = {−n,−n + 1, . . . , n}. This result may be seen as a special case of
the above Theorem 5.6.2.

5.7 Unbounded Coupling Constants and Magnetic Fields

Motivated by certain physical applications, e.g. the study of the quantum hall
effect (see for instance [41, 377, 174, 425, 241, 146]), it is desirable to extend
the results on the (Lipschitz) continuity of the IDS to include Hamiltonians
with magnetic fields. This is, for instance, done in the papers [97, 213, 223, 91].

We discuss here the results on alloy type potentials obtained in [223] by
Hupfer, Leschke, Müller, and Warzel, since they are build on the method pre-
sented in Sects. 5.1–5.4. Moreover, their result allows the coupling constants to
be unbounded, as long as very negative fluctuations are exponentially rare. Ac-
tually, the primary interest of their research are Hamiltonians with Gaussian
random potentials, so they need to cope with unbounded fluctuations of the
potential. The proof is based on earlier techniques from [168] — which in
turn use [89] — and Dirichlet-Neumann bracketing for magnetic Schrödinger
operators, as discussed in Appendix A of [223]. The results concerning alloy
type potentials are summarised in Sect. 4.1 of their paper, which we review
shortly.

Let A : Rd → Rd be a measurable vector potential with the property |A|2 ∈
L1

loc(R
d). Denote by HA the selfadjoint closure of

∑d
i=j(i∂j +Aj)2 defined on

smooth functions with compact support. The alloy type Schrödinger operator
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Hω = HA + Vω now incorporates a magnetic field. In [223] it is proven that
Theorem 5.0.1 essentially remains true if the magnetic field is included. (Their
conditions on the single site potential are slightly different.)

Moreover, two cases are discussed, where the coupling constants are un-
bounded random variables, and the theorem still remains true. In the first
one, it is assumed that ω0 is non-negative and a certain moment condition is
satisfied, roughly E {ω2d+2

0 } <∞.
The second one concerns the case where ω0 is distributed according to the

Laplace distribution: P{ω0 ∈ I} = 1
a

∫
I
dx e|x|/a. Note that the probability

that ω0 assumes very negative values is exponentially small. In fact, in [223]
it is noted, that this is a necessary requirement for their techniques to work.
The reason for this is that they use r(x) = e−tx as the trace regularising
function, cf. Definition 5.1.1. A different choice of r would allow for more
general distributions with support unbounded from below.

For the study of spectral properties of random Schrödinger operators with
or without magnetic fields the spectral shift function (SSF) is a convenient
tool. In Appendix A.3 and A.4 we derive bounds on the SSF for Schrödinger
operators which may include rather general magnetic vector potentials. See
also the survey article [403].

We conclude this section by listing further literature on random Hamilto-
nians with magnetic fields. Works treating the regularity of the IDS of random
Schrödinger operators with magnetic field include [488, 33, 490, 227, 213, 218,
91], while the question of the (in)dependence of the IDS on boundary con-
ditions for these models has been treated in [375, 125, 223, 222]. A related
problem is the analysis of the semigroup kernels of magnetic operators [65, 66].
In [261, 404, 67, 63] the behaviour of the IDS in a strong magnetic field is
identified.

The asymptotic behaviour of the IDS near the boundaries of the spectrum
in the presence of random magnetic fields was the object of study of the
articles [373, 374, 376] which prove high energy and Lifshitz asymptotics for
certain models. The high energy asymptotics has been analysed already in
[358, 475].

For Schrödinger operators with constant magnetic field and random po-
tential generated by a Poissonian process the different possible behaviours of
the IDS at the bottom of the spectrum are analysed in [64, 155, 225, 226,
156, 492, 220]. An analogous study for Landau Hamiltonians plus alloy type
random potentials is carried out in [289].

The analysis of Landau Hamiltonians in the single band approximation is
done in [130, 131, 395, 396, 227]. Examples of localisation proofs which allow
for magnetic fields can be found in [130, 90, 131, 132, 489, 33, 183, 133, 170,
396, 187, 6]. For a result on delocalisation in this context, see [192].





A

Properties of the Spectral Shift Function

In this appendix certain properties of the spectral shift function which are
relevant for the study of the integrated density of states are collected. Let us
note that this function is sometimes called Lifshitz-Krein SSF since Lifshitz
and Krein were the first to devote attention to it, see e.g. the discussion in
the introduction of [50].

For an exposition of the theory of the spectral shift function (SSF) see
[50, 293].

An survey of the role played by the SSF in scattering theory can be found
in the last chapter of [499]. The SSF has proven useful in the study of random
operators, particularly in problems related to surface models, e.g. the defini-
tion of the density of surface states [82, 83, 297, 298]. In [443] it is used in the
analysis of rank one perturbations of operators, in particular in the random
context. More recently, it has found applications in the study of quantum
graphs, cf. [299, 209, 295, 210].

Various of the properties of the SSF are discussed in the literature:
monotonicity and concavity [182, 193, 294], the asymptotic behaviour in the
large coupling constant limit [400, 418, 401] and semiclassical limit [372], and
some other bounds [397, 398, 399]. For magnetic Schrödinger operators the
SSF is analysed in [68, 164, 67, 402, 403].

A.1 The SSF for Trace Class Perturbations

For two selfadjoint operators A,B such that the difference A−B is trace class
the SSF ξ(·, A,B) may be defined (up to an additive constant) by the formula

Tr(ρ(A)− ρ(B)) =
∫

ρ′(λ) ξ(λ,A,B) dλ (A.1)

for all functions ρ ∈ C1(R) such that ρ′ is the Fourier transform of a complex
measure on R with finite total variation, cf. Theorem 3.2 in [50] or Theorem
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8.3.3 in [499]. Actually, the assumption that ρ is in the Besov space B1
∞,1(R)

is sufficient to guarantee that ρ(A)− ρ(B) is trace class and that the relation
(A.1) holds, see [391] for details. Equality (A.1) is called Krein trace formula.
If the operators A,B are semi-bounded, the mentioned additive constant can
be normalised to be equal to zero, and thus the SSF becomes unique.

The SSF is related to the perturbation determinant from scattering theory
by the formula

ξ(λ,A,B) =
1
π

lim
ε↘0

arg det[1 + (A−B)(B − λ− iε)−1)] (A.2)

for almost all values of λ ∈ R. For the right side to be well defined it is
actually sufficient to assume only that (A−B)(B + i)−1 is trace class. So one
can interpret (A.2) as an extension of the definition of the SSF to the class of
relative trace class perturbations.

The SSF can be bounded in terms of Schatten-von Neumann ideal prop-
erties of A−B, namely

‖ξ(·, A,B)‖1 ≤ ‖A−B‖J1 (A.3)

Here J1 denotes the ideal of trace class operators and ‖ · ‖J1 the trace norm.
In particular, for trace class perturbations A−B, the SSF ξ is in L1(R). On
the other hand, if A−B is finite rank

‖ξ(·, A,B)‖∞ ≤ rank(A−B) (A.4)

Since we have an estimate on ξ in the L1 and L∞-norms, it is natural to ask
whether an estimate for the Lp-norm, p ∈]1,∞[, may be derived. This indeed
turns out to be true and can be understood as an interpolation result, cf. the
proof of Theorem 2.1 in [97].

To formulate this bound we have to introduce ideals of ‘better than trace
class’ operators, defined in terms of summability properties of singular values.
Recall that the singular values of a compact operator C are the square-roots of
the eigenvalues of C∗C. We enumerate them in non-increasing order µ1(C) ≥
µ2(C) ≥ · · · ≥ µn(C) · · · ≥ 0, n ∈ N counting multiplicities. If C is trace class,
the sum of the singular values is finite and equals ‖C‖J1 . We denote by Jβ

the class of compact operators such that

‖C‖Jβ
:=
(∑

n∈N

µn(C)β
)1/β

<∞ (A.5)

The theory of such operators is classical for β ≥ 1, see for instance [437].
However, since we want to interpolate between (A.3) and (A.4), we need to
consider operators whose singular values converge not slower, but faster than
an �1-sequence to zero. This leads us to consider operators such that ‖C‖Jβ

is
finite, for β smaller than one. In particular, all such operators are trace class,
which explains why they are sometimes called super-trace class operators.
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It follows that the SSF may be defined for perturbations of this type. The
classes Jβ , β < 1 have been studied in [200, 46, 48], while their relevance in
the context of random operators was recognised in [97].

From these sources we infer the following properties of Jβ . For any com-
pact operator A and bounded B the singular values of the products obey the
relation

µn(AB) ≤ ‖B‖µn(A) and µn(BA) ≤ ‖B‖µn(A) (A.6)

If we assume that B is also compact, the Ky-Fan inequalities [158, 437] es-
tablish for the singular values of the sum A + B the bounds

µn+m+1(A + B) ≤ µn+1(A) + µm+1(B) for all n,m = 0, 1, 2, . . . (A.7)

In particular the set Jβ is a two-sided ideal in the algebra of bounded operators
for all β > 0. For β ≥ 1 the functional A �→ ‖A‖Jβ

is a norm, which is not
true for β < 1. More precisely, in the latter case we have only

‖A + B‖βJβ
≤ ‖A‖βJβ

+ ‖B‖βJβ

This property implies that ‖ · ‖Jβ
is a quasi-norm and that

distβ(A,B) = ‖A−B‖βJβ

is a well defined metric on Jβ . The pair (Jβ ,distβ) forms a complete, separable,
linear metric space, in which the finite rank operators form a dense subset.

In [97] the following Lp-bound on the SSF was proven.

Theorem A.1.1. Let p ≥ 1 and A,B be selfadjoint operators whose difference
is in Jβ, where β = 1/p. Then the spectral shift function ξ(·, A,B) is in Lp(R)
and

‖ξ(·, A,B)‖Lp ≤ ∥∥A−B
∥∥β

Jβ
(A.8)

A sharp bound on the SSF was proven by Hundertmark and Simon in [221],
which in fact includes Theorem A.1.1 as a special case.

Theorem A.1.2. Let F : [0,∞[→ [0,∞[ be a convex function such that
F (0) = 0. Let A,B be bounded and C a non-negative compact operator such
that for all N ∈ N

∞∑
n=N

µn(|A−B|) ≤
∞∑

n=N

µn(C) (A.9)

Then∫
F
(|ξ(λ,A,B)|)dλ ≤

∫
F
(|ξ(λ,C, 0)|)dλ =

∑
n∈N

[
F (n)−F (n−1)

]
µn(C)



102 A Properties of the Spectral Shift Function

Condition (A.9) is in particular satisfied if |A − B| ≤ C. Of course, to be
able to apply Theorem A.1.2 one needs to have appropriate estimates on the
singular values of the operator C. In the context of Schrödinger operators such
estimates are derived in Sect. A.2.

In certain situations one can show that an operator C belongs to a
Schatten-von Neumann class Jβ by writing it as a product of operators
C1, . . . , CN for which one already knows that they belong to a larger class
Jα with α > β. Then the product C = C1 · · ·CN will enjoy much better
summability properties than the individual factors.

For this purpose it is useful to note that the Hölder inequality extends
also to the case of exponents smaller than one: let ai : N → C, i = 1, . . . , N
be such that |ai(n)|pi is summable, where pi > 0 for all i = 1, . . . , N , and set
1
r :=
∑N

i=1
1
pi

. Then the pointwise product
∏N

i=1 ai is in �r(N) and

∥∥∥ N∏
i=1

ai

∥∥∥
r
≤

N∏
i=1

‖ai‖pi

By applying this to the sequence of singular values of compact operators, we
obtain the following

Lemma A.1.3. Let Ci ∈ Jpi
for i = 1, . . . , N , then

∏N
i=1 Ci is in Jr where

1
r :=
∑N

i=1
1
pi

and ∥∥∥ N∏
i=1

Ci

∥∥∥
Jr

≤
N∏

i=1

‖Ci‖Jpi
(A.10)

See also [48], Corollary 11.11.

A.2 The SSF for Schrödinger Operators
and the Invariance Principle

We want to apply the formalism of the SSF to Schrödinger operators. In
this setting we cannot use the results of the previous section on trace class
perturbations, since any potential given by a proper function is not in this
class of operators.

It turns out that the SSF can be defined easily for a pair of selfad-
joint, lower bounded operator with purely discrete spectrum. This would
cover Schrödinger operators restricted to finite cubes Λ. In the application
in Sect. 4.2 we use only the SSF for this type of operators. However, since
we are not only interested in the existence of the SSF as a function, but also
on upper bounds, we have to resort to more powerful techniques, which then
allow us along the way to define the SSF for a pair of Schrödinger operators
on the whole of Rd, under the assumption that they differ by a compactly
supported potential.
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For a selfadjoint, lower bounded operator H with purely discrete spec-
trum the eigenvalue counting function N (H,E) := #{n | λn(H) ≤ λ} is well
defined. Here λn(H), n ∈ N enumerates the spectrum of H, counting multi-
plicities, in increasing order. Thus for two such operators H1,H2 the SSF can
be defined as the difference of the eigenvalue counting functions,

ξ(λ,H2,H1) := N (H2, E)−N (H1, E)

If the difference H2 −H1 happens to be trace class, this definition produces
(almost everywhere) the same function ξ as (A.1). To see this, one chooses in
(A.1) a sequence ρε of switch functions which converges to the step function
χ]−∞,E] as ε→ 0.

Now we consider the case that the operators H1 and H2 are selfadjoint
and lower bounded, but we neither assume that the difference H2 − H1 is
trace class nor that the operators H1 and H1 have purely discrete spectrum.
Let g : R → [0,∞[ be a C2-function such that g′ is everywhere negative. In
particular, the function g is bounded on the spectra of H1 and H2 and thus
g(H2) − g(H1) is a bounded operator. Assume that g(H2) − g(H1) is trace
class. Then the SSF for the operator pair g(H1), g(H2) is well defined by (A.1)
and we may set

ξ(λ,H2,H1) := −ξ
(
g(λ), g(H2), g(H1)

)
(A.11)

This definition is independent of the choice of g, as long as it has the above-
mentioned properties, see e.g. [50, Sect. 1.4]. Formula (A.11) is called the in-
variance principle in analogy to the relation in scattering theory. This last
definition will be sufficiently general to cover the type of Schrödinger opera-
tors we are considering. Natural candidates for the function g are the following
families of functions

g(x) = (x + C)−k, N � k >
d

2
+ 2, C > − inf σ(H)

corresponding to powers of resolvents, respectively

g(x) = exp(−tx), t > 0 (A.12)

corresponding to semigroups of Schrödinger operators. Of course we will still
have to impose certain regularity assumptions on the Schrödinger operators
H1,H2 such that g(H2) − g(H1) really turns out to be trace class. In the
remainder of the appendix we choose the function g as in (A.12).

A.3 Singular Value Estimates

There is a short and transparent way to prove the super-trace class estimates
needed for the bound of the SSF. It uses the decay of singular values of certain
auxiliary operators. The basic observation is that the singular values of the
difference of two Schrödinger semigroups decay almost exponentially and the
semigroup difference is therefore in any super-trace class ideal. There are
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essentially two ingredients in the proof of this statement: a Weyl-type bound
on eigenvalues and exit time estimates for Brownian motion. We follow here
the presentation from the paper [218] by Hundertmark, Killip, Nakamura,
Stollmann and the author.

Weyl’s law gives the asymptotic behaviour of the nth eigenvalue of the
Laplacian on an open ball B for large n. For our purposes it is necessary to
have a lower bound of this type valid for all eigenvalues. It is provided in the
following lemma which applies for rather general Schrödinger operators with
electromagnetic field.

We consider magnetic Schrödinger operators

H = HA + V, HA = (−i∇−A)2 (A.13)

acting on Rd with magnetic potential A and electric potential V = V+ − V−,
where V+ := max(0, V ) and V− := max(0,−V ).

Lemma A.3.1. Let H be as in (A.13). Assume that each component of A is
in L2

loc(R
d), that V+ ∈ L1

loc(R
d), and that V− is −∆ bounded with relative

bound δ < 1. Furthermore, let HU be the Dirichlet restriction of H to an
arbitrary open set U ⊂ Rd with finite volume |U|. Then there exists a constant
C, such that the nth eigenvalue of HU satisfies

λn ≥ 2π(1− δ)d
e

( n

|U|
)2/d

− C for all n ∈ N (A.14)

Under these assumptions on the vector and scalar potential, H can be
defined by the use of quadratic forms, see for instance Sect. 2 of [222]. The
Dirichlet restriction HU to the set U is defined in the same way. If A and
V− vanish, we have already used this way to define Schrödinger operators in
Remark 2.2.3.

Proof. Since the Sobolev space with Dirichlet b.c. W 1,2
0 (U) is a natural sub-

set of W 1,2(Rd), V− is also relatively form bounded w.r.t. −∆U , the Dirichlet
Laplacian on U , with relative bound δ. The diamagnetic inequality, cf. [436],
then implies that V− is also relatively form bounded with respect to the
Dirichlet restriction HU

A of HA to U . In other words, there exists a constant
C ∈ R such that

V− ≤ δHU
A + C

in the sense of quadratic forms. In particular, since V+ is non-negative,

HU ≥ HU
A − V− ≥ (1− δ)HU

A − C

which implies the bound

Tr(e−2tHU
) ≤ e2tCTr(e−2t(1−δ)HA) = e2tC‖e−t(1−δ)HA‖2HS

= e2tC

∫∫
U×U
|e−t(1−δ)HA(x, y)|2dx dy
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where ‖ · ‖HS denotes as before the Hilbert-Schmidt norm. Using once more
the diamagnetic inequality for Schrödinger semigroups, e.g., [436, 222], one
obtains the pointwise bound |e−t(1−δ)HA(x, y)| ≤ et(1−δ)∆U

(x, y). In parti-
cular,

‖e−t(1−δ)HA‖2HS ≤ ‖et(1−δ)∆U ‖2HS = Tr(e2t(1−δ)∆U
) ≤ |U| (8πt(1− δ)

)−d/2

In the last line we used that by domain monotonicity the kernel of the Dirichlet
semigroup eβ∆U

on the diagonal is bounded by the heat kernel on the whole
of Rd, i.e.,

eβ∆U
(x, x) ≤ eβ∆(x, x) = (4πβ)−d/2 for all β > 0 and x ∈ U

Thus
Tr(e−2tHU

) ≤ |U| (8πt(1− δ)
)−d/2 (A.15)

Let NU (λ) := #{n | λn(HU ) ≤ λ} be the number of eigenvalues of HU

smaller or equal to λ. By Čebyšev’s inequality and (A.15),

NU (λ) ≤ e2tλ

∫ λ

−∞
e2tsdNU (s) ≤ e2tλTr(e−2tHU

)

≤ |U| (8π(1− δ))−d/2 t−d/2e2t(λ+C)

for arbitrary t > 0. The last expression is for t := d
4(λ+C) equal to

|U|
( e(λ + C)

2π(1− δ)d

)d/2

This estimate implies together with n ≤ NU (λn) the lower bound

λn ≥ 2π(1− δ)d
e

(
n

|U|
)2/d

− C

on the eigenvalues. ��
In the next theorem we consider a pair Schrödinger operators which obey

slightly stronger assumptions regarding the negative part V− of their scalar
potential. More precisely, we assume that V− is in the Kato class. A general
discussion of the Kato-class can be found in [102]. For its relevance to the
Feynman-Kac formula see, e.g., [12, 65, 438]. In particular, V− is in the Kato-
class, if it is in Lp

loc,unif(R
d) for p = 1, if d = 1 and p > d/2, if d ≥ 2,

cf. Sect. 1.2. Under these hypotheses, one may define H via the corresponding
quadratic form with core C∞

c (Rd), similarly as in Remark 2.2.3. By the same
method, one can define the Dirichlet restriction H l of H to the cube Λl =
]− l/2, l/2[d, l ≥ 1.

Let H1 be a Schrödinger operator of the form just described and let H2 =
H1 + u. Assume that u = u+ − u− has compact support, that u+ ∈ L1

loc(R
d)
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and that u− is in the Kato class. Our aim is to obtain an estimate on the
singular values of Veff := e−H1 − e−H2 and on the corresponding object in the
finite volume case, namely V l

eff := e−Hl
1 − e−Hl

2 .

Theorem A.3.2. There exists a constant c depending only on the dimension
d, and a constant C depending on the Kato-class norms of u−, V− and on the
diameter of the support of u+ such that the singular values of the operators
Veff and V l

eff obey for all n ∈ N and l ≥ 1 the relations

µn(Veff) ≤ C e−cn1/d

and µn(V l
eff) ≤ C e−cn1/d

(A.16)

Remark A.3.3. (i) Note that the estimate (A.16) depends on the positive
part of u only through suppu. Thus, for u = κũ where ũ ≥ 0 and κ
is a non-negative coupling constant, the estimate is independent of the
choice of κ.

(ii) Actually, u may be taken to +∞ on its support. In this case H2 equals
the restriction of H1 to Rd \ supp u with Dirichlet boundary conditions,
provided the boundary of supp u obeys some mild regularity conditions,
see for instance [455].

(iii) Similarly, H1,H2 may be defined on a set strictly smaller than Rd: Let
U ⊂ Rd be open, HU

A the Dirichlet restriction of HA on U , and H1 =
HU

A +V , H2 = HU
A +V +u where V and u satisfy the same conditions as

before. In this case H l
j is the Dirichlet restriction of Hj , j = 1, 2 to the

set Λl ∩ U .

Remark A.3.4. The decay estimate in (A.16) is almost optimal with respect to
the exponent. In [405] Raikov and Warzel analyse the perturbation of the free
Schrödinger operator with a constant magnetic field in two dimensions, i.e. the
Landau Hamiltonian, by a compactly supported potential. The results in [405]
(and similarly those in [359]) show that for general magnetic Schrödinger
operators one cannot obtain a faster decay than

µn(Veff) ≤ C e−cn2/d

This is explained in some detail in the first Section of [218]. See also Remark
A.4.2.

Proof (of Theorem A.3.2). We give the proof for Veff , the adaption to V l
eff

requires only minor changes. We will use the symbols c and C for constants
that vary from line to line; however, their dependence on H1 and H2 will
always be as stated in the Theorem.

Without loss of generality, we can assume that the origin is contained in the
support of u. We will estimate the nth singular value by Dirichlet decoupling
at an n-dependent radius R. To this end, let R be sufficiently large so that
suppu is contained strictly inside the ball of radius R centred at the origin,
which we will denote by BR.
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Let HR
j (j = 1 or 2) be the Dirichlet restriction of Hj to the ball BR,

and let
AR := e−HR

2 − e−HR
1 and DR := Veff −AR. (A.17)

As any Kato-class potential is relatively form bounded with respect to the
Laplacian with relative bound zero, we may apply Lemma A.3.1 to deduce
that µn(e−Hn

j ) ≤ C exp(−cn2/dR−2) for both j = 1 and j = 2. Since AR

is the difference of two non-negative operators by the min-max theorem its
singular values obey the same type of bound:

µn(AR) ≤ C exp(−cn2/dR−2) (A.18)

If Dn is bounded, then µn(Veff) ≤ µn(AR) + ‖Dn‖. We now proceed to
estimate the norm of Dn by using the Feynman-Kac-Itô formula for magnetic
Schrödinger semigroups with Dirichlet boundary conditions, see [65, 436].

Let Ex and Px denote the expectation and probability for a Brownian
motion, bt starting at x. Let τR = inf{t > 0|bt �∈ BR} denote the exit time
from the ball BR and set τn := τRn

. Then

(Dnf)(x) = Ex

[
e−iSA(b)

(
e−
∫ 1
0 (V +u)(bs)ds − e−

∫ 1
0 V (bs)ds

)
χ{τn≤1}(b)f(b1)

]
where St

A is real valued stochastic process corresponding to the purely mag-
netic part of the Schrödinger operator. Actually, for this representation one
first chooses a suitable gauge, for instance divA = 0, and then uses gauge
invariance for the general case, see [322].

By taking the modulus and using the triangle inequality, one sees that the
magnetic vector potential can be eliminated:

|Dnf |(x) ≤ Ex

[
e−
∫ 1
0 V (bs)ds

∣∣e− ∫ 10 u(bs)ds − 1
∣∣χ{τn≤1}(b)|f(b1)|

]
Moreover, only Brownian paths which both visit suppu and leave BRn

within
one unit of time contribute to the expectation. Thus if τu is the hitting time
for suppu and B = {τn ≤ 1, τu ≤ 1}, then

|Dnf |(x) ≤ Ex

[
e−
∫ 1
0 V (bs)ds

∣∣e− ∫ 10 u(bs)ds − 1
∣∣χB(b)|f(b1)|

]
so, applying Hölder’s inequality,

|Dnf |(x) ≤
(
Ex

[
e−8

∫ 1
0 V (bs)ds

])1/8(
Ex

[∣∣e− ∫ 10 u(bs)ds − 1
∣∣8)1/8

·
(
Ex

[
χB(b)

])1/4(
Ex

[|f(b1)|2
])1/2

Since V− and u− are in the Kato class, Kashminskii’s lemma implies that the
first two terms are bounded uniformly in x, see for instance [12, 438].

Levy’s inequality combined with elementary estimates imply Px=0{τR ≤
1} ≤ 2Px=0{|b1| ≥ R} ≤ Ce−R2/4. As any path in B must cover the distance
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r between supp u and the complement of the ball BR, we can deduce that
Px(B) ≤ Ce−r2/4 ≤ Ce−R2/8 where we chose without loss of generality r ≥
R/
√

2. Thus

|Dnf |(x) ≤ Ce−R2/32
{
Ex|f(b1)|2

}1/2 = Ce−R2/32
{
(e∆|f |2)(x)

}1/2

in particular, using the fact that e∆ is an L1 contraction,

‖Dnf‖2 ≤ Ce−R2/32
∥∥(e∆|f |2)∥∥1/2

1
≤ Ce−R2/32‖f2‖1/2

1 = Ce−R2/32‖f‖2
To balance the two bounds obtained for µn(AR) and ‖Dn‖ one chooses Rn :=
n1/2d, which leads to (A.16). ��

A.4 Bounds on the SSF for Schrödinger Operators

Let H1,H2 be as in the last Section. Theorem A.3.2 implies in particular that
Veff and V l

eff are trace class. Thus the SSF for the operator pair H1,H2 is well
defined by formula (A.11) with the choice g(x) = e−x.

The explicit estimates obtained in Theorem A.3.2 for the singular val-
ues of Schrödinger semigroups differences together with the abstract results
from Sect. A.1 allow us to infer the desired bounds on the SSF for a pair of
Schrödinger operators. The results and the presentation in this section are
taken from the paper [218] by Hundertmark, Killip, Nakamura, Stollmann
and the author.

Theorem A.4.1. Let ξ be the spectral shift function for the pair H1,H2 or
H l

1,H
l
2. There exists constants K1,K2 depending only on d, diam supp u+

and the Kato class norms of V−, u−, such that for any bounded compactly
supported function f ,∫

f(λ) ξ(λ) dλ ≤ K1eb + K2 {log(1 + ‖f‖∞)}d‖f‖1 (A.19)

with b = sup supp f .

Remark A.4.2. (i) Theorem A.4.1 implies that the spectral shift function
can have at most logarithmic local singularities. One might think that,
at least for smooth compactly supported perturbations, the SSF should
always be locally bounded. However, this is not the case. In the paper
[405] already mentioned in Remark A.3.4, Raikov and Warzel consider
the free Schrödinger operator with a constant magnetic field in dimen-
sion two. For a perturbation of this operator by a compactly supported
potential they showed that the SSF diverges at each Landau level λq like

|ξ(λq + λ)| ∼
( | ln(λ)|

ln | ln λ|
)d/2

as λ ↓ 0 (A.20)

See [359] for the generalisation to even dimensions.
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(ii) An example without magnetic fields, where the SSF shows unexpected
divergencies, was given by Kirsch in [246, 248]. Denote by ∆l the Laplace
operator on the cube Λl with Dirichlet b.c. For λ > 0, u : Rd → R

a non-negative, bounded function with compact support, which is not
identically equal to zero, and a function a : [0,∞[→]0,∞[, set ξl(·) :=
ξ(·,−∆l, (−∆ + a(l)u)l). Then lim supl→∞ ξl(λ) =∞, for any λ, a and u
as above. This result relies on the high degeneracy of eigenvalues of the
pure Dirichlet Laplacian on a cube. In this respect it is related to the
example in Remark (i) with the Landau Hamiltonian which has infinitely
degenerate eigenvalues. Kirsch shows that there is, however, a set of full
measure E ⊂ R with dense complement such that

lim
N�l→∞

ξl(λ) = 0, for all λ ∈ E , if a(l) ≤ l−k, k > 3

(iii) In contrast to the above unboundedness results, Sobolev, [449] showed
that for the pair H1 = −∆ and H2 = −∆ + u with |u(x)| ≤ const. (1 +
|x|)−α and α > d, the spectral shift function ξ is, indeed, locally bounded.
However, this type of result seems to require very strong hypotheses
on H1, for example, a trace-class limiting absorption principle and in
particular, that H1 has absolutely continuous spectrum on the positive
real axis.

(iv) For certain alloy type Schrödinger operators Combes, Hislop and Klopp
obtain in Theorem 2.1 of [92] a local boundedness result for an associated
averaged SSF.

Proof (of Theorem A.4.1). Let the two Schrödinger operators H2 = H1 + u
be as in the statement of the Theorem.

For t > 0 define Ft : [0,∞[→ [0,∞[ by

Ft(x) =
∫ x

0

(exp(ty1/d)− 1) dy (A.21)

As the integrand is increasing, Ft is a convex function. We show first that
there exists a constant K1, depending on t, such that for small enough t > 0,∫ T

−∞
Ft(|ξ(λ)|) dλ ≤ K1eT <∞ (A.22)

for all T < ∞. To see this, we use the invariance principle and a change of
variables, to obtain∫ T

−∞
F (|ξ(λ,H2,H1)|) dλ =

∫ T

−∞
F (|ξ(e−λ, e−H2 , e−H1)|) dλ

≤ eT

∫ ∞

e−T

F (|ξ(s, e−H2 , e−H1)|) ds

By Theorem A.1.2 the integral on the right hand side is bounded by
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−∞
F (|ξ(s, e−H2 , e−H1)|) ds ≤

∞∑
n=1

µn(Veff)(F (n)− F (n− 1))

≤
∞∑

n=1

µn(Veff)
∫ n

n−1

(ets1/d − 1)ds ≤ C

∞∑
n=1

e(t−c)n1/d

which is finite, if we chose t smaller than the constant c from Theorem A.3.2.
Thus we have proven (A.22).

Now we deduce the bound (A.19) from (A.22) with the help of Young’s
inequality for an appropriate pair of functions. Note that Ft is non-negative,
convex with F ′

t (0) = 0 and hence its Legendre transform G is well defined and
satisfies

G(y) := sup
x≥0
{xy − F (x)} ≤ y

( log(1 + y)
t

)d

for all y ≥ 0

Thus, by the very definition of G, Young’s inequality holds: yx ≤ F (x)+G(y).
So, with b = sup supp f ,∫

f(λ)ξ(λ) dλ ≤
∫ b

−∞
F (|ξ(λ)|) dλ +

∫
G(|f(λ)|) dλ (A.23)

Using the estimate (A.22), the first integral is bounded by K1eb. For the
second integral in (A.23), we estimate∫

G(|f(λ)|) dλ ≤
∫
|f(λ)|

( log(1 + |f(λ)|)
t

)d

dλ ≤ t−d| log(1 + ‖f‖∞)|d ‖f‖1

This finishes the proof of Theorem A.4.1. ��
To apply Theorem A.4.1 in the situation of Sect. 4.2, we take f to be the

the derivative of a smooth, monotone switch function ρE,ε : R → [−1, 0]. By
a switch function we mean that for a positive ε ≤ 1/2 it has the following
properties: ρE,ε ≡ −1 on ]−∞, E− ε], ρE,ε ≡ 0 on [E + ε,∞[ and ‖ρ′E,ε‖∞ ≤
1/ε, similarly as in Sect. 4.1. Theorem A.4.1 and the Krein trace formula (A.1)
imply

Corollary A.4.3. Let H1,H2 and ρE,ε be as above. There is a constant CE

depending only on E, d, diam supp u+ and the Kato class norms of V−, u−,
such that

Tr [ρE,ε(H2)− ρE,ε(H1)] ≤ CE | log ε|d (A.24)

The function E �→ CE is monotone and continuous.

The estimate (A.24) improves upon a bound derived by Combes, Hislop
and Nakamura in [97]. They prove that for any exponent α < 1, there is a
constant C̃E(α) depending only on d, C0, diam suppu, E + ε and α such that

Tr [ρE,ε(H2)− ρE,ε(H1)] ≤ C̃E(α) ε−α (A.25)
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Remark A.4.4. In the context of random Schrödinger operators H1 and H2

appear as particular members of a random family {Hω}ω. If two configurations
ω, ω′ ∈ Ω differ only in one coordinate ωj �= ω′

j and coincide in all the others,
i.e. ωk = ω′

k for all k ∈ Zd \ {j}, then the pair H1 = Hω, H2 = Hω′ differs
only by a single site potential. If this is compactly supported, the pair H1,H2

fits in the framework considered in this and the preceding sections.
Specialising further, one is often interested in the case that on the lattice

site j ∈ Zd one of the operators, say H1, has a coupling constant taking the
lowest possible value, i.e.

ωj = ω− = inf suppµ

where µ denotes as before the distribution of ωj , and the other operator H2

has at this site a coupling constant with the largest possible value, i.e.

ω′
j = ω+ = sup suppµ

Let Λl ⊂ Rd be a cube such that j ∈ Λ+
l . Then we can write the two

operators H1 and H2 as

H1 = H l
ω(ωj = min) := H l

ω + (ω− − ωj)u(· − j) (A.26)

H2 = H l
ω(ωj = max) := H l

ω + (ω+ − ωj)u(· − j)

and consequently the difference H2 −H1 = (ω+ − ω−)u(· − j) is a compactly
supported potential. Note that in the formulae (A.26) it is possible to express
the two operators H1 and H2 using only one of the two configurations ω
and ω′.

The upshot of this considerations is that the trace

Tr
[
ρ[H l

ω(ω, j = max)− E]− ρ[H l
ω(ω, j = min)− E]

]
(A.27)

can be estimated by Corollary A.4.3. It is precisely for such a pair of operators
that this corollary is used in the proof of Theorem 4.2.4.



References

1. T. Adachi. A note on the Følner condition for amenability. Nagoya Math. J.,
131:67–74, 1993.

2. T. Adachi and T. Sunada. Density of states in spectral geometry. Comment.
Math. Helv., 68(3):480–493, 1993.

3. S. Agmon. Lectures on exponential decay of solutions of second-order elliptic
equations: bounds on eigenfunctions of N-body Schrödinger operators. Prince-
ton University Press, Princeton, N.J., 1982.

4. M. Aizenman. Localization at weak disorder: some elementary bounds. Rev.
Math. Phys., 6(5A):1163–1182, 1994.

5. M. Aizenman. Localization at weak disorder: some elementary bounds. In The
state of matter (Copenhagen, 1992), volume 20 of Adv. Ser. Math. Phys., pages
367–395. World Sci. Publishing, River Edge, NJ, 1994.

6. M. Aizenman, A. Elgart, S. Naboko, J. H. Schenker, and G. Stolz. Moment
analysis for localization in random Schrödinger operators. Invent. Math.,
163(2):343–413, 2006. http://www.ma.utexas.edu/mp arc/03-377.

7. M. Aizenman and G. M. Graf. Localization bounds for an electron gas. J. Phys.
A, 31(32):6783–6806, 1998. http://www.ma.utexas.edu/mp arc/97-540.

8. M. Aizenman, H. Kesten, and C. M. Newman. Uniqueness of the infinite cluster
and continuity of connectivity functions for short and long range percolation.
Comm. Math. Phys., 111(4):505–531, 1987.

9. M. Aizenman and S. Molchanov. Localization at large disorder and at extreme
energies: an elementary derivation. Comm. Math. Phys., 157(2):245–278, 1993.

10. M. Aizenman, J. H. Schenker, R. M. Friedrich, and D. Hundertmark. Construc-
tive fractional-moment criteria for localization in random operators. Phys. A,
279(1-4):369–377, 2000.

11. M. Aizenman, J. H. Schenker, R. M. Friedrich, and D. Hundertmark. Finite-
volume fractional-moment criteria for Anderson localization. Comm. Math.
Phys., 224(1):219–253, 2001.

12. M. Aizenman and B. Simon. Brownian motion and Harnack inequality for
Schrödinger operators. Commun. Pure Appl. Math., 35:209–273, 1982.

13. M. Aizenman, R. Sims, and S. Warzel. Absolutely continuous spectra of quan-
tum tree graphs with weak disorder. Comm. Math. Phys., 264:371, 2006.
doi:10.1007/s00220-005-1468-5.



114 References

14. M. Aizenman, R. Sims, and S. Warzel. Fluctuation-based proof of the stability
of ac spectra of random operators on tree graphs. In Quantum graphs and their
applications, volume 415 of Contemp. Math., pages 1–14. Amer. Math. Soc.,
Providence, RI, 2006.

15. M. Aizenman, R. Sims, and S. Warzel. Fluctuation based proof of the stability
of ac spectra of random operators on tree graphs. In Recent advances in dif-
ferential equations and mathematical physics, volume 412 of Contemp. Math.,
pages 1–14. Amer. Math. Soc., Providence, RI, 2006.

16. M. Aizenman and S. Sims, R.and Warzel. Stability of the absolutely continuous
spectrum of random Schrödinger operators on tree graphs. Probab. Theory
Related Fields, 136(3):363–394, 2006.

17. M. A. Akcoglu and U. Krengel. Ergodic theorems for superadditive processes.
J. Reine Angew. Math., 323:53–67, 1981.

18. N. I. Akhiezer and I. M. Glazman. Theory of linear operators in Hilbert space.
Vol. I, volume 9 of Monographs and Studies in Mathematics. Pitman, Boston,
Mass., 1981.

19. N. I. Akhiezer and I. M. Glazman. Theory of linear operators in Hilbert space.
Vol. II, volume 10 of Monographs and Studies in Mathematics. Pitman, Boston,
Mass., 1981.

20. P. Anderson. Absence of diffusion in certain random lattices. Phys. Rev.,
109:1492, 1958.

21. K. Ando, A. Iwatsuka, M. Kaminaga, and F. Nakano. The spectrum of
Schrödinger operators with Poisson type random potential. Ann. Henri
Poincaré, 7(1):145–160, 2006.
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55. A. Böttcher and B. Silbermann. Analysis of Toeplitz Operators. Springer, 1990.
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267. W. Kirsch and I. Veselić. Existence of the density of states for one-dimensional
alloy-type potentials with small support. In Mathematical Results in Quan-
tum Mechanics (Taxco, Mexico, 2001), volume 307 of Contemp. Math., pages
171–176. Amer. Math. Soc., Providence, RI, 2002. http://arxiv.org/abs/math-
ph/0204030.



References 127
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413. A. Režnikova. The central limit theorem for the spectrum of the random one-
dimensional Schrdinger operator. J. Stat. Phys., 25:291–308, 1981.

414. R. D. Rio, S. Jitomirskaya, Y. Last, and B. Simon. What ist localization? Phys.
Rev. Lett., 75:117–119, 1995.
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483. I. Veselić. Integrated density of states and Wegner estimates for random
Schrödinger operators. Contemp. Math., 340:98–184, 2004. http://arXiv.org/
math-ph/0307062.
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doubling property, see Tempelman
property

effective Hamiltonian on a manifold, 15

equivariance, 18

ergodic, 1

— action, 4

— operator, 6

— potential, 5, 6

— theorem, 14, 37, 40

pointwise —, 24

exhaustion, 24, 25

admissible —, 24–25

extended state, see scattering state

extension

Friedrichs —, 19

— property, 42

extra-potential, 15

Følner sequence, 23

Feynman-Kac formula, 31

finite propagation speed, 36

finite rank, 100, 101

finite total variation, see total variation

finite volume integrated density of
states, see normalised eigenvalue
counting function

fluctuation boundaries of the spectrum,
10

form-bounded, 4

fractional moment method, 50

fundamental domain, 19

Γ -trace, 22, 48

generalised step function, 87

Gronwall’s Lemma, 70

Hölder continuity
— of IDS, 46, 61
— of coupling constants, 72

heat equation, 34
fundamental solution of —, 32
— kernel, 30, 32

off-diagonal decay of —, 31
Heisenberg group, 20
Hellmann-Feynman formula, 59, 66, 69
Hilbert-Schmidt class, 8, 105
holomorphic family of operators, 58
hyperbolic space, 25

IDS, see integrated density of states
infinitesimally bounded, 4, 80
initial scale estimate, 51
integrated density of states, 14, 26
interlacing theorem, 71

Kato-Rellich Theorem, 4
Krein trace formula, 100
Ky-Fan inequalities, 101

Landau Hamiltonian, 48, 61, 62, 97, 106
Laplace transform, 14, 38
Laplace-Beltrami operator, 16, 18, 48
Laurent matrix, 87, 88
Legendre transform, 110
level statistics, 50
Lifshitz tails, 10, 11, 42, 97
limiting absorption principle, 109
Lipschitz continuity, 46, 69, 79
localisation, 92

Anderson —, 7, 50
dynamical —, 8
exponential —, 8
— interval, 8
spectral —, 7

log-Hölder continuity, 48, 72, 73
long range

— correlations, 8
— single site potentials, 75

magnetic field, see magnetic potential
magnetic potential, 43, 61, 62, 75, 96,

104, 106
maximum principle, 34
measurability, 26
measurable family of operators, 27
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measure preserving transformations, 5
metric graphs, 26, 63, 69, 73, 99
mobility edge, 9, 45
multiscale analysis, 8, 47, 50, 51, 72,

74–76

non-randomness of spectra, 21
normalised eigenvalue counting

function, 13, 38, 42, 49, 62

one-electron Hamiltonian, 1
operator domain, 3

partial integration formula, 73
Pastur-Shubin convergence criterion, 38
Pastur-Shubin trace formula, 14, 26
percolation, 49
periodic

— operator on manifold, 26
— potential, 2, 11, 48, 61, 65

points of increase, 23
polyhedral domain, 19
principle of not feeling the boundary, 31
pure point spectrum, 7, 50

quadratic form, 19, 28–30, 86, 104, 105
— domain, 28

quantum
— graphs, see metric graphs
— percolation model, 49
— waveguides, 15, 20

quasi-norm, 101

RAGE theorem, 7
random metric, 17
relatively bounded, 4, 92, 104
resonance, 54
Ricci curvature, 17

scattering state, 7
Schatten-von Neumann class, 100, 102
Schrödinger equation, 6
Schrödinger operator

— on manifold, 15
random —, 1, 18
semigroup generated by —, 103

self-averaging, 14

semigroup, 30, 31, 34, 38
contraction —, 31
heat —, 36
— kernel, 31, 97
Markov —, 31
positivity preserving —, 31
Schrödinger —, 103
ultracontractive —, 31

Shulman property, 23
single site

— distribution, 5, 51
— potential, 4, 51

— of changing sign, 74
— of long range, 75
convolution vector of —, 87

singular values, 100, 102, 103
spectral

— averaging, 57, 83
— gaps, 16, 20
— measure, 23
— projection, 8, 57
— shift function, 63, 71, 97, 99

averaged —, 109
— localisation, 7

stationary stochastic process, 5
Stone’s formula, 84
subadditive process, 14, 40
super-trace class, 100
superadditive process, 14, 40
symbol, see symbol of a Toeplitz matrix

Tempelman property, 23
tempered sequence, 24
Toeplitz matrix, 95

finite section method for a —, 95, 96
symbol of a —, 91

sectorial —, 91
Toeplitz operator, see Toeplitz matrix
topological index, 91
total variation, 71

finite —, 88, 89, 99
trace, 82

— class, 58, 81, 99
— regularising, 80, 83, 97

uniform convergence, 26
unique continuation property, 47, 50,

61, 62, 74
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van Hove property, 24–26, 36
vector potential, see magnetic potential
volume

— comparison theorem, 33
— density, 18

von Neumann algebra, 22

Wegner constant, 46
Wegner estimate, 45, 51, 52
Weyl asymptotics, 40, 51, 53, 60, 104
winding number, 91

Young’s inequality, 110
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