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Preface

The Department of Statistics at The George Washington University (GWU) was a
hotbed of activity in randomization during the 1980s. L. J. Wei was on the faculty
during the early eighties, and drew Bob Smythe into his randomization research
with some interesting asymptotics problems. At the same time, John Lachin was
working on his series of papers on randomization for Controlled Clinical Trials that
appeared in 1988. He, too, was influenced by Wei, and began advocating the use
of Wei's urn design for clinical trials at The Biostatistics Center, which he directed
at that time, and now co-directs. I studied at GWU from 1986-1992, taking many
classes from Lachin, Smythe, and also the late biostatistician Sam Greenhouse. I
wrote my doctoral thesis under the direction of Smythe, on asymptotic properties of
permutation tests and response-adaptive randomization, topics covered in the latter
chapters of this book. I also worked on clinical trials at The Biostatistics Center from
1990-1995 under the great clinical trialist Ray Bain (now at Merck). Needless to
say, I was well indoctrinated in the importance of randomization to protect against
biases, and the importance of incorporating the particular randomization design into
analyses.

I currently continue my research on randomization and adaptive designs at Univer-
sity of Maryland, Baltimore County, where I teach several graduate-level courses in
biostatistics and serve as a biostatistician for clinical trials data and safety monitoring
boards for the the National Institutes of Health, the Veteran's Administration and
industry. One of my graduate courses is the design of clinical trials, and much of this
book is based on the notes from teaching that course.

xiii
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The book fills a niche in graduate-level training in biostatistics, because it combines
both the applied aspects of randomization in clinical trials along with a probabilistic
treatment of properties of randomization. Although the former has been covered
in many books (albeit sparsely at times), the latter has not. The book takes an
unabashedly non-Bayesian and nonparametric approach to inference, focusing mainly
on the linear rank test under a randomization model, with some added discussion on
likelihood-based inference as it relates to sufficiency and ancillarity. The strong focus
on randomization as a basis for inference is another unique aspect of the book.

Chapters 1-12 represent the primary focus of the book, while Chapters 13-15
present theoretical developments that will be interesting for Ph.D. students in statistics
and those conducting theoretical research in randomization. The prerequisites for
Chapters 1-12 is a course in probability and mathematical statistics at the advanced
undergraduate level. The probability in those chapters is presented at the level of
Sheldon Ross's Introduction to Probability Models, and a thorough knowledge of
only the first three chapters of that book will allow the student to get through the
text and problem sets of those chapters (with the exception of Section 3.6, which
requires material on Markov chains from Chapter 4 of Ross). Chapters 13-15 require
probability at the level of K. L. Chung's A Course in Probability Theory. Chapter 13
excerpts the main results needed in large-sample theory for Chapters 14 and 15.

Problem sets are given at the end of each chapter; some are short theoretical
exercises, some are short computer simulations that can be done efficiently in SAS,
and some are questions that require a lot of thinking on the part of students about
ethics and statistical philosophy, and are useful for inspiring discussion. I have
found that students love to read some of the great discussion papers on such topics
as randomization-based inference, the ECMO controversy, and ethical dilemmas in
clinical trials. I try to have two or three debates during a semester's course, in which
every student is asked to present and defend a viewpoint. Some students are amazed,
for instance, that there is any question about appropriate techniques for inference,
because they have been presented a single viewpoint in their mathematical statistical
course, and have basically taken their instructor's lecture notes as established fact.

One wonderful side-benefit of teaching randomization is the opportunity to meld
the concepts of conditional probability and stochastic processes into real-life applica-
tions. Too often probability is taught completely independently of applications, and
applications are taught completely independently of probability and statistical theory.
As each randomization sequence forms a stochastic process, exploring the proper-
ties of randomization is an exercise in exploring the properties of certain stochastic
processes. I have used these randomization sequences as illustrations when teaching
stochastic processes.

This book can be used as a text for a one-quarter or one-semester course in the
design of clinical trials. In our one-semester course, I supplement this material
with a unit on sequential monitoring of data. I assume that students already have a
basic knowledge of survival analysis, including the logrank family of tests and hazard
functions. Computational problems can be done in SAS, or in any other programming
language, such as MATLAB, but I anticipate students would be facile in SAS before
taking such a course.
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I also hope that this book will be quite useful for statisticians and clinical trialists
working in the pharmaceutical industry. Based on my many conversations and
collaborations with statisticians in industry and government, I believe the fairly new
techniques of response-adaptive randomization are attractive to industry and also to
the Food and Drug Administration. This book will be the first clinical trials book
to devote a substantial portion to these techniques. However, this book should not
be construed as a book on "adaptive designs". Adaptive design has become a major
subdiscipline of experimental design over the past two decades, and the breadth of
this subdiscipline make a book on the subject very difficult to write. In this book, we
focus on adaptive designs only as they relate to the very narrow area of randomized
clinical trials.

Finally, the reader will note many "holes" in the book, representing open prob-
lems. Many of these concern randomization-based inference for covariate-adaptive
and response-adaptive randomization procedures, and also some for more standard
restricted randomization, in areas of group sequential monitoring and large sample
theory. I hope this book will be a catalyst for further research in these areas.

Acknowledgments: I am grateful for the help and comments of Boris Alemi, Steve
Coad, Susan Groshen, Janis Hardwick, Karim Hirji, Kathleen Hoffman, Feifang
Hu, Vince Melfi, Connie Page, Anindya Roy, Andrew Rukhin, Bob Smythe, and
Thomas Wanner. Yarning Hang researched sections of Chapter 14 during a one-year
research assistantship. During the writing of this book, I was supported by generous
grants from the National Institute of Diabetes and Digestive and Kidney Diseases
and the National Cancer Institute. Large portions of the book were written during
the first semester of my sabbatical spent at The EMMES Corporation, a clinical
trials coordinating center in Rockville, MD. I am grateful to EMMES, in particular
Ravinder Anand, Anne Lindblad, and Don Stablein, for their support of this research
and their kindness in allowing me to use their office resources. On the second
semester of my sabbatical, I was able to "test" a draft of the book while teaching
Biostatistics 219 in the Department of Biostatistics, UCLA School of Public Health.
I thank Bill Cumberland and Weng Kee Wong for arranging a visiting position there
and the students of that course for finding a good number of errors.

W. F. R.

Baltimore, Maryland
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1 joined the Biostatistics Center of the George Washington University in 1973,
one year after receiving my doctorate, to serve as the junior staff statistician for
the National Institutes of Health (NIH) funded multi-center National Cooperative
Gallstone Study (NCGS). Jerry Cornfield and Larry Shaw were the Director and Co-
Director of the Biostatistics Center, and the Principal Investigator and Co-Principal
Investigator of the NCGS coordinating center. Among my initial responsibilities
for the NCGS were to determine the sample size and to generate the randomization
sequences. Since I had not been introduced to these concepts in graduate school, I
started with a review of the literature that led to a continuing interest in both topics.

While Jerry Cornfield thought of many problems from a Bayesian perspective, in
which randomization is ancillary, he thought that randomization was one of the central
characteristics of a clinical trial. In fact he once remarked that the failure of Bayesian
theory to provide a statistical justification for randomization was a glaring defect.
Thus in 1973-1974, Larry Shaw and I approached the development of randomization
for the NCGS with great care. Larry and I agreed that we should employ a procedure
as close to complete randomization (toss of a coin) as possible and decided to use a
procedure that Larry had previously employed in trials he organized while a member
of the Veterans Administration Cooperative Studies Program. That technique has
since come to be known as the "big stick" procedure.

Later, around 1980, I served as the Principal Investigator for the statistical co-
ordinating centers for the NIH-funded Lupus Nephritis Collaborative Study and the
Diabetes Control and Complications Trial. Both were unmasked studies. In the late
seventies I first met L. J. Wei while he was on sabbatical leave at the National Cancer
Institute. He later joined the faculty at George Washington University and we became
close friends and colleagues. Thus when it came time to plan the randomization for
these two studies, I was drawn to Wei's urn design because of its many favorable
properties. Later, I organized a workshop "The Role of Randomization in Clinical
Trials" for the 1986 meeting of the Society for Clinical Trials. The papers from that
workshop, co-authored with John Matts and Wei were then published in Controlled
Clinical Trials in 1988. In 1990-19911 had a sabbatical leave, during which I began
to organize material from these papers and other research into a book.

In 1991-1992 I taught a course on clinical trials in which I used the material
from the draft chapters and my 1988 papers. One of the students auditing that
course was Bill Rosenberger. Bill was concurrently writing his dissertation on large
sample inference for a family of response-adaptive randomization procedures under
the direction of Bob Smythe. Bob had conducted research with Wei and others on
randomization-based inference for the family of urn designs. Bill went on to establish
a strong record of research into the properties of response-adaptive randomization
procedures.

In 1998 I again took sabbatical leave that I devoted to the writing of my 2000
text Biostatistical Methods: The Assessment of Relative Risks. During that time Bill
suggested that we collaborate to write a text on randomization. This book is the
result.

In writing this text we have tried to present the statistical theoretical foundation
and properties of randomization procedures, and also provide guidance for statistical
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practice in clinical trials. While the book deals largely with the theory of randomiza-
tion, we summarize the practical significance of these results throughout, and some
chapters are devoted to practical issues alone. Thus we hope this text will be of use
to those interested in the statistical theory of the topic, as well as its implementation.

Acknowledgments: I especially wish to thank L. J. Wei and Bob Smythe for their
friendship and collaboration over the years, and Naji Younes for assistance. I also
wish to thank those many statisticians who worked with me to implement randomiza-
tion procedures for clinical trials, and the many physicians who collaborated in the
conduct of these studies. Thank you for vesting the responsibility for these studies
with me, and for taking randomization as seriously as do I.

J. M. L.

Rockville, Maryland





1
Randomization and the

Clinical Trial

1.1 INTRODUCTION

The goal of any scientific activity is the acquisition of new knowledge. In empirical
scientific research, new knowledge or scientific results are generated by an investiga-
tion or study. The validity of any scientific results depends on the manner in which
the data or observations are collected, i.e., on the design and conduct of the study,
as well as the manner in which the data are analyzed. Such considerations are often
the areas of expertise of the statistician. Statistical analysis alone is not sufficient to
provide scientific validity, because the quality of any information derived from a data
analysis is principally determined by the quality of the data itself. Therefore, in the
effort to acquire scientifically valid information, one must consider all aspects of a
study: design, execution, and analysis.

This book is devoted to a time-tested design for the acquisition of scientifically
valid information - the randomization of study units to receive one of the study
treatments. One can trace the roots of the randomization principle to Sir R. A. Fisher
(e.g., 1935), the founder of modern statistics, in the context of assigning "treatments"
to blocks or plots of land in agricultural experiments. The principle of randomization
is now a fundamental feature of the scientific method and is employed in many
fields of empirical research. Much of the theoretical research into the principles
and properties of randomization has been conducted in the domain of its application
to clinical trials. A clinical trial is basically an experiment designed to evaluate
the beneficial and adverse effects of a new medical treatment or intervention. In a
clinical trial, often subjects sequentially enter a study and are randomized to one of
two or more study treatments. Clinical trials in medicine differ in many respects from

1



2 RANDOMIZATION AND THE CLINICAL TRIAL

randomized experiments in other disciplines, and clinical trials in humans involve
complex ethical issues which are not encountered in other scientific experiments.
The use of randomization in clinical trials has not been without controversy, as we
shall see, and statistical issues for randomized clinical trials can be very different
from those in other types of studies. Thus this book shall address randomization in
the context of clinical trials.

Randomization is an issue in each of the three components of a clinical trial:
design, conduct, and analysis. This book will deal with all three elements; however,
we will focus principally on the statistical aspects of randomization in the clinical trial,
which are applied in the design and analysis phases. Other, more general books are
available on the proper conduct of clinical trials [see, for example, Tygstrup, Lachin,
and Juhl (1982), Buyse, Staquet, and Sylvester (1984), Pocock (1984), Piantadosi
(1997), Friedman, Furberg, and DeMets (1998), Chow and Liu (1998), Matthews
(2000)]. These references also give a less detailed development of randomization.

1.2 CAUSATION AND ASSOCIATION

Empirical science consists of abody of three broad classes of knowledge: descriptions
of phenomena in terms of observable characteristics of elements or events; descrip-
tions of associations among phenomena; and, at the highest level, descriptions of
causal relationships between phenomena. The various sciences can be distinguished
by the degree to which each contains knowledge of the three classes. For example,
physics and chemistry contain large bodies of knowledge on causal relationships.
Epidemiology, the study of disease incidence, its risk factors, and its prevention, con-
tains large bodies of knowledge on phenomenologic and associative relationships.
Although a major goal of epidemiologists is to determine causative relationships, for
example, causal relationships between risk factors and disease that can potentially
lead to disease prevention, the leap from association to causation is a difficult one.
Jerome Cornfield's (1959) treatise on "Principles of Research" gives a beautifully
written account of the history of biomedical studies and the emergence of principles
underlying epidemiological research.

Cornfield points to a mass inoculation against tuberculosis in Lubeck, Germany,
in 1926. A ghastly episode occurred where 249 babies were accidentally inoculated
with large numbers of virulent bacilli. In a follow-up of those babies, 76 had died, but
173 were still free of tuberculosis when observed 12 years later. If the tuberculosis
bacilli cause tuberculosis, why didn't all the children develop the disease? The
answer, of course, is the dramatic variability in human response to even large doses
of a deadly agent. Thus, as we all know, tuberculosis bacilli cause tuberculosis,
but causation in such cases does not mean that all those exposed to a pathogen will
experience the ill effects.

Similarly, one can ask the famous question, why doesn't everyone who smokes
develop lung cancer? One possible answer that would please the tobacco industry
is that there is a hormonal imbalance that both causes lung cancer and causes an
insatiable craving for cigarettes. An alternative answer is that there are competing
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risks: something else kills them first. The most probable answer is that not all those
who smoke will develop cancer, due to biological or genetic variation.

Humans have such a complex and varied physiology; they are exposed to so
many different environmental conditions; their health is also deeply tied to complex
mental states. How can a scientist possibly sift through all the associations one
can find between health and these other factors to find causes or cures for disease?
One of the oldest principles of scientific investigation is that new information is
obtained from a comparison of alternate states. Thus a controlled clinical trial is an
experiment designed to determine if a medical innovation (e.g., therapy, procedure,
or intervention) alters the course of a disease by comparing the results of those
undertaking the innovation with those of a group of subjects not undertaking the
innovation.

Perhaps the first comparative study of record is the biblical account of Daniel
(Chapter 1) in approximately 605 B.C.E., on the effects of a vegetarian diet on the
health of Israelites. Rather than be placed on the royal diet of food and wine of the
Babylonian court, Daniel requested that his people be placed on a diet of vegetables.

Test us for ten days,' he said, '...then compare us with the young men who are
eating the food of the royal court, and base your decision on how we look....'
When the time was up, they looked healthier and stronger than all those who had
been eating the royal food.

Another famous example of a controlled intervention study is Lind's account of
the effects of different elixirs on scurvy among British seamen in 1753. His study
showed the beneficial effects of citrus, and led (50 years after the study) to the Royal
Navy's decision to store citrus on long voyages.

While the idea of comparing those on the innovative treatment with a control
group sounds obvious to us today, historically it was not always entirely clear whom
to include in the innovation and control groups. At the turn of the twentieth century, an
anti-typhoid inoculation movement created controversy between Sir Almroth Wright,
a famous immunologist, and Karl Pearson, who, along with Fisher, was a founder
of modern statistics. Sir Wright gave the inoculation to anyone who wanted it and
compared the subsequent incidence of typhoid with a group of men who refused
the inoculation. Here is Pearson's first writing on the subject (Cornfield (1959, pp.
244-245)):

Assuming that the inoculation is not more than a temporary inconvenience it
would seem possible to call for volunteers, but while keeping a register of all
men who volunteered only to inoculate every second volunteer. In this way any
spurious effect really resulting from a correlation between immunity and caution
would be got rid of.

Four years later, Pearson's opinion was even stronger:

Further the so-called controls cannot be considered true controls, until it is
demonstrated that the men who are most anxious and particular about their own
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health, the men who are most likely to be cautious and run no risk, are not
the very men who will volunteer to be inoculated.... Clearly what is needed is
the inoculation of one half only of the volunteers, equal age incidence being
maintained if we are to have a real control.

Pearson recognized what the immunologist did not: that human response to infec-
tious, preventive, or therapeutic agents is variable and is positively related to patient
characteristics, such as a willingness to volunteer to receive a new treatment. Thus
positive steps must be taken in the design and conduct of a study to eliminate sources
of incomparability between those treated and the controls. The inoculated group
cannot be compared to any arbitrary control group. The control group must be com-
parable to the treated group with respect to immune background, hygiene, age, etc.
Such factors are called confounding variables, because incomparability of the groups
with respect to any such factors may confound the results and influence the answer
to the research hypothesis.

These considerations play a major role in the design, conduct, and analysis of
epidemiologic studies today. In an observational epidemiologic study, naturally
occurring populations are studied to identify factors associated with some outcome.
Since such studies do not employ a randomized design, the results are subject to
various types of bias [cf. Breslow and Day (1980, 1987), Rosenbaum (1995), Selvin
(1996), Kelsey, Whittemore, Evans, el al. (1996), among others]. In a retrospective
study, these populations consist of cases that develop the disease and controls that do
not, so that a direct comparison can be made. Just as Pearson noted that there should
be equal age incidence in both the inoculated and control groups, epidemiologists
may also use matching on important variables (covariates or prognostic factors) that
may confound the outcome. Matching is usually done, for instance, on important
demographic factors, such as gender, age, and race. Each "case subject" will have a
"control subject" with similar characteristics on matched covariates. This allows for
greater comparability between the comparison groups. However, it is impossible to
match on all known covariates that may influence outcome. Therefore, the leap from
association to causation is again tenuous.

The most famous epidemiologic studies were those that demonstrated that smoking
causes lung cancer. In 1964, the Report of the Advisory Committee to the Surgeon
General was issued that led to warning labels on cigarette packages and restrictions
on advertising. The report summarized the evidence from numerous studies that
had shown an association between smoking and increased risk of lung cancer and
other diseases. Despite any randomized controlled experiments, and based only
on observational studies, the Committee concluded that the epidemiologic evidence
showed that smoking was indeed a cause of lung cancer. The establishment of a
causal relationship between tobacco smoking and cancer created much controversy
(and does to this day in some circles). The Surgeon General's report on 'The Health
Consequences of Smoking" clarified the issue with a definitive statement on what
types of evidence from observational studies can lead to a determination of a causal
relationship. The Committee (1982, p. 17) stated:
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The causal significance of an association is a matter of judgment which goes
beyond any statement of statistical probability (sic).... An entire body of data
must exist to satisfy specific criteria;... when a scientific judgment is made that
all plausible confounding variables have been considered, an association may be
considered to be direct (causal)....

The Committee stated that the following five criteria must be satisfied:

1. Consistency of the association. Diverse methods of approach should provide
similar conclusions. The association should be found in replicated experiments
performed by different investigators, in different locations and situations, at different
times, and using different study methods.
2. Strength of the association. Measures of association (e.g., relative risk, mortality
ratio) should be large, indicating a strong relationship between the etiologic agent
and the disease.
3. Specificity of the association. Specificity refers to the precision with which one
component of an associated pair predicts the occurrence of the other component in the
same individual. For instance, how precisely will smoking predict the occurrence of
cancer in an individual? The researcher must consider that agents may be associated
with multiple diseases and that diseases may have multiple causes. A single naturally
occurring substance in the environment may cause the disease. A single factor can
also be a vehicle for several different substances (e.g., tar and nicotine in tobacco),
and these may have synergistic or antagonistic effects. There is also no reason to
believe that one factor has the same relationship with a different disease with which it
is associated. For example, smoking is also associated with heart disease, but perhaps
in conjunction with dietary factors that are not important in lung cancer.
4. Temporal relationship of the association. Exposure to the etiologic agent must
always precede the disease.
5. Coherence of the association. The association must make sense in light of our
knowledge of the biology and natural history of the disease.

The nine largest studies cited in the Surgeon General's report comprised almost 2
million patients with 17.5 million patient-years of exposure. Based on these data and
the convergence of evidence from other sources, one can be confident that smoking
"causes" lung cancer, even though the precise causal agent has not been identified
(i.e., tar, nicotine, or other agents), and even though no randomized experiment of
the effects of smoking and lung cancer has ever been performed.

The overriding question in determining causality in such instances is whether the
design or analysis has controlled or "adjusted" for all possible extraneous variables
that might account for higher incidence of the disease. Some would say that only
a randomized study can ensure adequate control for such factors. It is instructive
to note that Fisher, the father of randomization, was never convinced of the link
between smoking and lung cancer, and perhaps equally instructive to note that he
was a dedicated smoker. Today, almost all epidemiologists and biostatisticians will
accept consistent, replicated, careful observational evidence, and few would argue
the potency of the evidence against tobacco.
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However, it is rare that an adequate body of evidence is amassed from epidemio-
logic studies alone to assert the above conditions. The number of studies, patients,
and extent of exposure required to establish a definite cause by epidemiologic inves-
tigation is far greater, and the results ultimately less compelling, than those obtained
from a randomized clinical trial, when such trials are possible.

1.3 RANDOMIZED CLINICAL TRIALS

In this book, we will refer to clinical trials which are prospective comparisons of two
or more treatments, one or more of which is a new innovation under test, and one
or more of which is a control. The most common is a therapeutic trial, in which a
new therapy, such as a pharmaceutical agent (drug) is compared to a conventional
therapy. In a placebo-controlled clinical trial of a new pharmaceutical agent, a group
of drug-treated subjects may be compared to a group who receive a placebo control
[a placebo being a drug preparation (e.g., pill) that is identical to the active therapy,
but with inert (inactive) ingredients]. When an established therapy already exists, the
new drug may be compared to an active control, where the control group receives the
established therapy. Therapeutic pharmaceutical clinical trials are often called phase
HI clinical trials, because they represent the third phase of a four-phase process in
investigating a promising new therapy. From development of a new pharmaceutical
agent to its approval, there is often a phase I clinical trial, a small trial to determine
the potential toxicity of different dose levels of a drug, and a phase II clinical trial,
a preliminary study of toxicity and efficacy. A phase IV clinical trial involves post-
approval follow-up of patient status. These phases are particularly seen in the study
of cancer chemotherapeutic agents [see Buyse, Staquet, and Sylvester (1984)], and
the four-phase process is often streamlined in other specializations of medicine.

The innovation, however, need not be a simple drug. In some cases a new
procedure is evaluated. An example is the Lupus Nephritis Collaborative Study that
desired to assess the effects of plasmapheresis on the progression of lupus nephritis,
or kidney disease associated with lupus erythimatosis (Lewis, Hunsicker, Lan, et
al., 1992). Patients in the plasmapheresis group were hospitalized for a month to
undergo daily plasma filtration and exchange, followed by the initiation of standard
immunosuppressive therapy consisting of cytoxan and prednisone, the dose of the
latter tapered when the patient responded favorably. The patients in the control group
received comparable immunosuppresive therapy without initial plasmapheresis.

In other cases a new intervention or an entire treatment regimen of multiple ther-
apies is compared to a control regimen. An example is the Diabetes Control and
Complications Trial, which was designed to assess whether a program of intensive
therapy aimed at maintaining near-normal levels of blood glucose in subjects with
type I diabetes mellitus would prevent or retard the progression of microvascular
complications associated with diabetes. Patients in the intensive treatment group
received aggressive insulin therapy with frequent monitoring of glucose levels, in
conjunction with dietary counseling and exercise. Patients in the conventional treat-
ment group received conventional therapy aimed at maintaining general well-being.
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While intensive therapy greatly reduced the risks of complications compared to con-
ventional therapy, such an overall comparison alone cannot identify the mechanism
by which the treatment had its effects (Diabetes Control and Complications Trial
Research Group, 1993). Subsequent analyses, however, indicated that the effects
of intensive treatment were indeed wholly accounted for by the reductions in blood
glucose levels.

Some call such trials pragmatic trials because the innovation consists of two or
more possible agents or procedures used in combination, such that the overall group
comparisons alone can not identify the mechanism by which the innovation produces
its effects. However, the pragmatist would argue that conclusive evidence that the
innovation is indeed beneficial in practice is adequate for its adoption even when the
mechanism of the effect is unknown.

The pivotal component of phase III clinical trials is randomization, or random
assignment of patients to receive either the experimental treatment(s) or control.
Cornfield (1959, p. 245) summarized the importance of randomization:

1. It controls the probability that the treated and control groups differ more than
a calculable amount in their exposure to disease, in immune history, or with
respect to any other variable, known or unknown to the experimenter, that may
have a bearing on the outcome of the trial. This calculable difference tends to
zero as the size of the two groups increase.
2. It makes possible, at the end of the trial, the answer to the question "In
how many experiments could a difference of this magnitude have arisen by
chance alone if the treatment truly has no effect?" It may seem mysterious that
a mathematician could actually predict the course of future experiments. All
you have to do is compute what would happen if a given set of numbers were
randomly allocated in all possible ways between the two groups. Randomization
allows this.

The first property of randomization is that it promotes comparability among the
study groups. Such comparability can only be attempted in observational studies by
adjusting for or matching on known covariates, with no guarantee or assurance, even
asymptotically, of control for other covariates. Randomization, however, extends a
high probability of comparability with respect to unknown important covariates as
well. The second property is that the act of randomization provides a probabilistic
basis for an inference from the observed results when considered in reference to all
possible results. This randomization approach to inference is very different from
the usual testing of unknown parameters arising from an independent and identically
distributed sample from a known distribution. Later we will deal in detail with these
and other precise statistical properties of randomization.

In Cornfield's first point, we come to the root importance of the randomized clinical
trial. As scientists are interested in descriptions of phenomena, association among
phenomena, and then mechanisms of causation, then the biomedical studies for
each require increasing standards of evidence. Basic science research often involves
the description of phenomena, observational studies lead to the determination of
associations among phenomena, and randomized clinical trials lead to definitive
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statements on causative effects of agents or regimens on disease processes. As
we have seen, despite the fact that consistent, replicated observational studies can
also lead us to determine causality, there may always be questions as to whether
we have controlled for all factors relating to incidence and prognosis of a disease.
The randomized clinical trial allows this control, and hence represents the highest
standard of evidence among biomedical studies.

Among the first clinical trials, as we know them today, were the trials performed
under the direction of Sir Bradford Hill in the 1940s by the Medical Research Council.
These were the first medical trials to employ randomization to individual patients,
and constituted a major advance. They led to important findings in many of the
persistent diseases of the day, such as whooping cough and tuberculosis. In every
respect they were similar to the most rigorous trials conducted today.

The polio vaccine trial of 1954 changed the face of public health worldwide [see
Francis (1955)]. Approximately 400,000 children were randomized to receive either
the vaccine or a saltwater injection. The results showed a relative risk of 2.5, in favor
of the vaccine group. The success of this study belies the controversy among study
participants about the need for a controlled, randomized study. In fact, in a quotation
attributed to Jonas Salk, it appears Salk was not convinced of the need for a placebo
control in the polio trial (source unknown):

In talks with many people in our own group ... and others as well, I found but
one person who rigidly adhered to the idea of a placebo control and he is a
bio-statistician who, if he did not adhere to this view, would have had to admit
his own purposelessness in life.

In the end, randomized controls were felt necessary because of the variability of
incidence of polio from year to year. It was largely due to trials like the polio
vaccine trial that convinced the medical community of the value of the randomized
clinical trial. Today, it is often considered the "gold standard" among techniques of
ascertaining medical evidence.

A good example of the benefits of randomization can be seen in the National
Cancer Institute's clinical trial of 62,000 women covered by the Health Insurance
Plan (HIP) of Greater New York, commonly known as the HIP trial (see Cairns,
1985). The women were randomized into a "test" group, who were offered a free
annual physical examination and mammography for early detection of breast cancer
and a "control" group who were given no special encouragement to be examined. The
trial was designed to determine if the act of offering free mammography examinations
reduces deaths from breast cancer. The results were encouraging. Among the test
group, there were 2.9 deaths per 1,000 women in the first nine years, and among
the control group there were 4.1 deaths per 1,000 women. The two groups were
comparable in their incidence of breast cancer and in terms of general mortality
from causes other than cancer, as should be the case because the experiment was
randomized. But the results of the trial were also interesting because, among the test
group, those who refused examination had a lower death rate due to breast cancer
(2.8 per 1,000) than those who accepted the mammography (3.0 per 1,000). This
demonstrates the danger of accepting observational data at face value, as one might
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have concluded that mammography was not effective. The acceptance and rejection
groups within the test group were self-selected, and hence subject to confounding due
to incomparability with respect to important covariates. In this case, Cairns (1985)
believes the confounding variable to be education level. Since better-educated women
are known to be more likely to have breast cancer, and less well-educated women are
more likely to have less interest in their health, and consequently are more likely to
reject examination, the observational component of this study was biased in favor of
the rejection group. [For an instructive set of homework problems on the HIP data,
see Freedman, Pisani, and Purves (1998), Problems 9 and 10, pp. 22, 23.]

1.4 ETHICS OF RANDOMIZATION

Randomized clinical trials use probability as a method of assigning treatments to
patients. Many have argued that probability has no role in medicine, and that only
a physician can decide which treatment a patient should receive, using his or her
best judgment. However, clinical trials present a unique situation in which new
innovations, such as investigational drugs, are being tested for efficacy and safety.
Until a drug is proven to be effective and adequately safe, or ineffective or harmful, or
just ineffective, the physician is in a state of equipoise: a state of genuine uncertainty
about which experimental therapy is more effective. Most ethicists would agree, in
principle, with the concept that it is ethical to employ randomization in a state of
true equipoise, provided the patient consents to be a study participant and is fully
informed about the potential benefits and risks of the treatments to be compared in
the study.

However, ethics involving human experimentation are seldom so simplistic. On
the one hand, a clinical trial gives the patient a chance of being assigned to a potentially
beneficial therapy that would not be obtainable elsewhere. But that therapy may also
be highly toxic. There is also a chance that a patient will be assigned to a placebo,
in effect being denied a therapy that may later prove to be very beneficial (or, on the
other hand, harmful). Decisions to enroll in a clinical trial are difficult ones, for this
reason, and the patient must often be willing to make a sacrifice for the benefit of our
public health.

These considerations exemplify the delicate balance between individual ethics
and collective ethics [see Palmer and Rosenberger (1999)]. Individual ethics dictate
what is best for the individual patient, while in collective ethics, we consider the
advancement of public health through careful scientific experimentation. In a broad
sense, collective ethics leads to individual ethics, as it is only when careful scientific
experimentation has yielded a universal standard of care for a given disorder that
physicians will be fully informed and will have a scientific basis for the assignment of
the best therapy to an individual patient. Although experimentation may lead to many
patients being assigned an inferior therapy prior to the determination of the standard of
care, this is the price an informed society must pay to obtain the evidence necessary
to support informed therapeutic decisions. Such ethical dilemmas are naturally
controversial, and are the subject of many treatises and texts (e.g., Engelhardt, 1996).
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Some would argue that equipoise is rarely present at the beginning of a phase III
clinical trial. Animal studies and phase I and II clinical trials data, plus information
on the biological action of the innovation (e.g., drug), combine to create in the mind
of many physicians a belief in the effectiveness of one therapy over another. But such
confidence may often be premature. The literature is replete with results of negative
studies, where promising therapies were shown to be ineffective or even terribly
harmful. If equipoise is defined in the confines of a single physician's "hunches"
or intuition about a therapy rather than in a global standard of evidence based on
randomized controlled studies, there will be no advancement of medical science.
This is not to say that careful, replicated, consistent observational studies, as defined
in Section 1.2, are not useful and cannot be convincing. But randomization adds an
additional component that mitigates contention, and the National Institutes of Health
and U. S. Food and Drug Administration now consider a well-conducted, randomized
clinical trial to be of vital importance in demonstrating the efficacy and safety of a
new therapy.

Some have also argued that randomized controls are unnecessary and unethical
in studies where there are some data already available on the natural history and
progression of the disease studied. Rather, they propose that a current cohort of
experimentally treated patients might just as well be compared with a past cohort of
patients receiving an earlier or no treatment, i.e., a cohort of historical controls. In
cases where one observes a complete dramatic reversal of the course of a disease, such
as the effects of penicillin on a bacterial infection, such evidence may be convincing.
However, most therapies yield modest effects and historical controls are subject to
various biases that may easily skew the study results. The basic problem is that the
historical control group might have very different characteristics from experimental
cohort that may bias the study. Such factors might include patient selection criteria,
diagnostic methods, the nature of follow-up observations, the criteria for response,
and the extent of administration of concomitant medications. A difference between
groups in any one of these factors or other factors could result in differences between
groups with respect to study outcomes.

While most of today's scientists have embraced the randomized clinical trial, oc-
casionally particular clinical trials arise that elicit passionate opposition on ethical
grounds. A prime example is the recent clinical trials program in third-world countries
on the benefits of short-term zidovudine (AZT) therapy in reducing maternal-infant
HIV transmission. In a landmark clinical trial, Connor, Sperling, Gelber, et al.
(1994) show that six weeks of AZT therapy in pregnant women with HIV reduced
the transmission to the infant by two-thirds. The results of this trial were hailed in
the medical community, and six weeks of antiretroviral therapy quickly became the
standard of care for HIV-positive pregnant women in the United States. Unfortu-
nately, the prohibitive cost of zidovudine has prevented developing countries from
implementing what is now the standard regimen in the United States. Consequently,
a large group of scientists determined that clinical trials should be conducted in these
countries using a shorter, less costly regimen of antiretroviral therapy, and such trials
were begun with funding from the U. S. government. In an editorial, Lurie and Wolfe
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(1997) argue that placebo-controlled trials in developing countries are unacceptable,
since an effective therapy had already been found in the United States:

... On the basis of the [Connor, Sperling, Gelber, et al. data], knowledge about
the timing of perinatal transmission, and pharmacokinetic data, the researchers
should have had every reason to believe that well-designed shorter regimens
would be more effective than placebo. These findings seriously disturb the
equipoise ... necessary to justify a placebo-controlled trial on ethical grounds.

In addition, they argue that, since the standard of care in developing countries (i.e., not
providing therapy) is not based on consideration of alternate treatments or clinical
data, and rather is based on economic considerations, researchers have an ethical
responsibility to provide treatment that conforms with the standard of care in the
sponsoring country (i.e., the U. S.).

This editorial led to much debate in the medical literature. Several of the re-
searchers on these clinical trials in developing countries responded with their own
editorial [Halsey, Sommer, Henderson, et al (1997)]. They argue that a placebo
control arm is necessary in order to determine if the short course of zidovudine is
effective in these countries. Furthermore, they state that providing the same level of
care routinely provided to mothers and their infants in the U. S. would violate the
guideline to avoid undue inducements for participation in research and would make
the research totally impractical.

If these unsustainable services were provided on a temporary basis what would
happen when the research project ended and local practitioners could no longer
provide diagnostic tests, infant monitoring, and intensive care units necessary to
support the regimen?

They close by noting that many dramatic interventions in developing countries could
have been prevented had such "medical and ethical imperialism" been imposed on
participants in international studies.

The Declaration of Helsinki was revised in October 2000, adding the following
statement:

The benefits, risks, burdens and effectiveness of a new method should be tested
against those of the best current prophylactic, diagnostic, and therapeutic meth-
ods.

Although this does not exclude the use of placebo in studies where no proven prophy-
lactic, diagnostic, or therapeutic method exists, this new directive is very controversial
since some interpret it to mean that a placebo should never be used whenever effective
therapy is available.

At issue, however, is not the act of randomization but rather the choice of the control
treatment, either placebo or an active control (when the latter exists). Randomization
of treatments to patients is now considered the seminal element of a clinical trial for the
evaluation of a new innovation in medical care. The purpose of this book is to describe
the theoretical basis for the various types or approaches to randomization commonly
employed, to describe their statistical properties, and to describe considerations in
their practical implementation.
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1.5 PROBLEMS

1.1 From a recent issue of any major medical journal (e.g., New England Journal
of Medicine, Journal of the American Medical Association), select an article which
presents results of a controlled clinical trial involving at least 50 patients. The study
should focus on a clinical result (i.e., effectiveness or safety of a treatment) rather
than physiologic results (e.g., laboratory or physical measurements).

(i) Give a detailed description of the study design.
(ii) Provide a critique of the study design in regard to the potential for bias in the
study results or conclusions. Did the authors describe the choice of study design well
and describe possible pitfalls of the design?
(in) Based on this study, if you were the statistician for a new study (either for a new
treatment for the same disease or a study confirming results of the study), describe
how you would design a study using randomized controls.
(iv) Alternatively, describe how you would design a study using non-randomized
controls.
(v) Discuss the implications for a randomized versus a non-randomized study on the
interpretation of the results. Which would be preferable?

1.2 From a recent issue of a medical or epidemiologic journal, select an article
that presents the results of a non-randomized observational study of a risk factor
associated with an increase or decrease in the risk of a disease or adverse disease
outcome.

(i) Give a detailed description of the study design.
(ii) Provide a critique of the study design in regard to the potential for bias in the
study results or conclusions. Did the authors describe the choice of study design well
and describe possible pitfalls of the design? Which possible biases are cited by the
authors and what steps were taken, if any, to address them? Can you identify other
possible sources of bias?
(in) Based on this study, if you were the statistician for a new study (either for a new
treatment for the same disease or a study confirming results of the study), describe
how you would design a study using randomized controls, if possible.
(iv) Alternatively, describe how you would design a study using non-randomized
controls.

1.3 If you were the statistician on a steering committee which is deciding whether to
participate in a placebo-controlled clinical trial of maternal-infant HIV transmission
and short-term AZT in a developing country, where the country has no access to
the standard-of-care therapy in the United States (i.e., long-term AZT therapy), what
would your stance be? Prepare a five minute position paper for a classroom debate.
You are asked to respond to the following questions:

(i) Are such trials necessary and ethical?
(ii) Should any placebo-controlled study be adopted?
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(Hi) Are studies with historical controls reasonable?
(iv) What are alternatives?

1.4 Are the considerations of individual and collective ethics the same in all clinical
trials? Suppose you cross-classified a disease with respect to severity and incidence.
For instance, you could have a 4-by-4 table with ordinal categories ranging from 1
to 4. For severity, the categories could range from 1 = mild to 4 = life-threatening.
Similarly, incidence could range from 1 = very rare to 4 = very common. Within
each cell of the cross-classification, determine the relative importance of individual
versus collective ethics. (Palmer and Rosenberger, 1999)
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2
Issues in the Design of

Clinical Trials

2.1 INTRODUCTION

Whereas laboratory science is performed in a carefully controlled and monitored
environment, clinical trials are experiments which are conducted in the workplace
of medicine: physician's offices, clinics, or hospitals, as opposed to laboratories.
Many clinical trials are multi-center, that is, they are performed by a group of
participating clinics or care units, and hence are conducted by a large network of
nurses, research coordinators, and physicians. Large amounts of data on study
subjects are recorded and computerized. To complicate matters even further, study
subjects are human beings, who are often asked to self-administer study treatments
at home. So clinical trials are a complex, collaborative effort involving physicians,
nurses, computer scientists, data managers, and statisticians. And guiding everyone
in this collaborative effort is the study protocol, a document that describes the aims,
procedures, and official policies of the scientific endeavor. The importance of the
protocol cannot be understated: a study participant who violates protocol may bias
the study and make any conclusions invalid. In this chapter, we will discuss design
issues in clinical trials that every protocol should address.

2.2 STUDY OUTCOMES

The ultimate basis for any scientific investigation is the statement of its objectives. For
a clinical trial, the specific aims should be stated so as to define the target population,
the time course of observation and, perhaps most important to the statistician, the
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outcome measures. Such polemics are easily stated, but unfortunately are difficult
to implement. This stage is crucial, however, because all other design features stem
from the statement of objectives, including the statistical analysis plan.

In general, short-term, fixed-duration clinical trials tend to be focused on direct
estimation of a treatment effect in terms of the difference of means, rates, or pro-
portions, for example, between the group assigned to the experimental innovation
(the treated group) versus the control group. Longer-term variable follow-up trials
are often focused on the time to some event, such as death, or some measure of
disease progression. Such trials are called survival trials, a generic term that is used
to describe time-to-event outcomes, where the event need not be death, such as time
to disease progression, or to remission or even to healing in some cases.

In virtually any disease there are defined stages of worsening (or improvement) of
severity which are used in clinical research, if not in clinical practice, to describe the
stages of disease progression. To the extent possible, the objectives of the clinical
trial, and hence its outcome measures, should be defined in terms of clinically relevant
indices of disease progression, or clinical effectiveness.

The statistician's responsibility is to help the investigators to frame the statement
of objectives in such a manner that a clinically relevant primary outcome measure
and a testable statistical hypothesis are specified, from which the primary statistical
analysis is also specified. This primary outcome analysis will drive the design of
the study: its length, the number of subjects to be randomized (see Section 2.6),
and the statistical analysis plan. Leading a group of investigators to a single primary
hypothesis may be one of the greatest challenges that a statistician ever faces. It should
be noted that clinical trials are often large enough to answer many other interesting
secondary hypotheses, including the effects on secondary outcome measures, or
the effectiveness of treatments within subgroups. However, the design should be
impelled by a single primary outcome measure of clinical effectiveness.

It is tempting, but dangerous, to plan a clinical trial to only elicit information on
the biological activity of a therapy (e.g., the effect of a drug on tumor size in cancer
or CD4 levels in AIDS). Such information can be elicited quickly and easily. But
biological activity is only a surrogate outcome for a meaningful outcome of interest in
a clinical trial that reflects clinical effectiveness. Clinical effectiveness unequivocally
affects patients in a tangible way; for example, by lengthening life (survival time) or
increasing quality of life. These outcomes take much longer to ascertain, but a valid
clinical trial should be able to determine the true clinical outcome of patients on a
therapy.

Prentice (1989) proposed a set of statistical criteria that should be satisfied for
concluding that a treatment would favorably affect a clinical outcome based on
demonstration of a treatment effect on a biological surrogate outcome. Based on
these and other considerations, Fleming and DeMets (1996) present four models in
which a surrogate outcome is inappropriate in determining clinical effectiveness:

Model 1. The disease affects the surrogate and the true clinical outcome, but inde-
pendently. For example, smoking causes yellow fingers and causes lung cancer and
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death, but an intervention that reverses yellow fingers (the surrogate outcome) may
do nothing to reduce premature deaths due to smoking (clinical effectiveness).

Model 2. The disease affects the true outcome via the surrogate, and the intervention
bypasses the surrogate. For example, a drug may indeed improve survival (clinical
effectiveness) but not have any impact on CD4 counts in AIDS (surrogate).

Model 3. The disease affects the true outcome via a surrogate, but an intervention
targeting the surrogate outcome causes adverse effects with respect to the clinical
outcome. The literature is replete on drugs that have an effect on biological activity,
but have been shown to have no effect or a deleterious effect on survival or other
clinical outcome. For example, encainide and flecainide reduced arrhythmias, but
relative to placebo, tripled the death rate (Echt, Liebson, Mitchell, el al, 1991).

Model 4. The disease affects the true outcome via a surrogate, but intervention
targeting the clinical outcome has no effect on the surrogate. For example, gamma
interferon contributed to a 70 percent reduction, relative to placebo, in infections in
children with chronic granulomatous disease, yet had no effect on killing bacteria
(International Chronic Granulomatous Disease Cooperative Study Group, 1991).

Fleming and DeMets give two criteria for evaluating the relevance of a surrogate
outcome in a clinical trial. First, it must be correlated with the clinical outcome.
Second, it must fully capture the net effect of the treatment on the clinical outcome.
The second criterion is often difficult to determine. Validating a surrogate requires a
comprehensive understanding of causal path of disease process and the intervention's
intended and unintended effect. Therefore, measures of biological activity should be
used with caution as outcomes in clinical trials.

Nevertheless, some definitive outcomes in chronic diseases, such as death, may
occur so far in the future that the clinical outcome is not logistically ascertainable.
As an example, consider the study of captopril, an angiotensin converting enzyme
(ACE) inhibitor, in progressive diabetic nephropathy or kidney disease, one of the
complications of diabetes mellitus. The earliest stage of nephropathy is the leakage
of tiny amounts of albumin into urine. When the leakage reaches the level that can be
detected using an ordinary "dip stick" in urine, about 300 mg/24 hours, the subject
has developed overt proteinuria at which point nephropathy is well established. The
process will ultimately lead to total destruction of all of the functioning glomeruli
that are the biological filters in the kidney and the patient enters renal failure. Life
can then be sustained either by dialysis or a renal transplant. Animal studies showed
that captopril might reduce the rate of progression to renal failure among patients
with proteinuria. This process, however, could take many years, and a clinical trial
designed to demonstrate an effect on the incidence of renal failure was considered
unfeasible.

In clinical practice, the concentration of creatinine in serum (mg/dL) is universally
employed as a simple measure of renal function and to monitor the decline in renal
function over time. When the glomerlular filtration rate (GFR) falls below the normal
range the level of serum creatinine begins to rise. Although it might be tempting
to perform a fixed duration trial to compare the mean rise in serum creatinine from
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baseline between the treatment groups, such an analysis would deal only with group
means, rather than individual response to therapy. A more appropriate design would
be to employ an outcome that is the time to a specific "event" of clinical relevance
in individual patients. Such a design would provide a better description of clinical
progression in the population than would a simple comparison of means. Further,
since each patient is followed to the time of an outcome that represents clinical
progression in that individual, consequently the outcome of the trial represents the
treatment effect on the incidence of a clinically relevant outcome.

Earlier studies had shown that the inverse creatinine declined linearly over time in
patients with established nephropathy (proteinuria). Thus the study was designed to
detect a treatment effect on the time to doubling of the baseline serum creatinine, or
the time to a 50 percent reduction in the GFR. While no studies were available to show
that the Prentice or Fleming-DeMets criteria were satisfied, virtually all physicians
would agree that a treatment effect on this outcome is highly meaningful. The trial
demonstrated a 48 percent reduction (p < 0.007) in the incidence (hazard) of renal
progression using this outcome (Lewis, Hunsicker, Bain, et al., 1993). Despite the
smaller number of events, a 50 percent reduction was observed in the risk of death
or renal transplant (p < 0.006).

2.3 SOURCES OF BIAS

The objective of any clinical trial is to provide an unbiased comparison of the differ-
ences between two treatments. As we shall see in the next chapter, the randomization
of subjects between the treatment groups is the paramount statistical element that
allows one to claim that a study is unbiased. However, randomization alone does not
provide an unbiased study. As Lachin (2000) points out, randomization is necessary,
but alone is not sufficient. Two other requirements are (i) the outcome assessments
should be obtained in a like and unbiased manner for all patients; and (ii) data that are
missing, if any, from randomized patients do not bias the comparison of the treatment
groups. Point (i) reflects the importance of standardization and masking and point
(ii) the importance of the statistical analysis philosophy

2.3.1 Standardization and masking

All clinical trials should employ a standard system of outcome evaluations in all
patients randomized. The objective is to ensure that all subjects are evaluated in an
unbiased and precise manner regardless of treatment assignment and the response
to treatment. This is most readily achieved by employing a uniform schedule of
outcome assessments for all patients with a single central unit for the evaluation of
the outcome evaluations in all patients.

To the extent possible, all trials should also be double-masked, meaning that
neither the patient nor physician are aware of the treatment randomly assigned to
the patient. Under no circumstance should the masking be broken, unless there is a
serious adverse event that requires knowledge of the assigned treatment. Although
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it is clear that the patient should not know the treatment assignment, it is often
questioned why the physician or care-giver should not be informed. If the physician
knows or can guess what treatment will be assigned next, he or she could bias the
study by selecting a patient more likely to benefit from the treatment. The physician
may also treat patients differently according to which treatment the patient is taking.
In these ways, subtle biases can influence the results. These biases can be mitigated
by double-masking.

Complete double-masking may not be possible in some clinical trials, for example,
clinical trials of surgical procedures where the surgeon must know which procedure
to perform. In this case, it is then preferable that outcome evaluations be masked to
treatment assignment to the extent possible, where the evaluator is unaware of the
treatment assignment. For example, in a clinical trial of laser therapy for glaucoma,
the outcome might be a deterioration in the visual field. The visual field tests,
however, could then be forwarded to a central reading facility where the readers
are masked to the treatment assignments of individual eyes. Another example of
a clinical trial in which double-masking was impossible is the Diabetes Control
and Complications Trial, where patients were randomly assigned to receive either
conventional or intensive blood glucose control management. However, investigators
who evaluated principal outcome measures were masked to treatment assignments.
While complete masking of treatment may not be possible, the evaluation of outcomes
can almost always be masked. This is one reason that many trials employ a central
laboratory or reading center. Another reason is that it is easier to control the accuracy
and precision of measurements (i.e., quality control) of a central laboratory than those
of multiple laboratories.

In such trials where the randomization is unmasked to the recruiting physician
or care-giver, if the randomization procedure is predictable, it is possible for the
physician or care-giver to bias the composition of the treatment groups by attempting
to predict the next assignment and choosing a patient the physician would prefer to
receive that treatment. In Chapter 6, we examine a model for selection bias (Blackwell
and Hodges, 1957) which quantifies the bias resulting from an experimenter's trying
to guess the treatment assignments. There we show that different randomization
procedures have different susceptibility to such bias. Further, if treatment assignments
are generated by a simple independent Bernoulli sequence (i.e., coin-tossing), then it
is impossible to predict the treatment to be assigned and the selection bias potential
is zero.

Another related consideration is the implementation of the study treatment reg-
imens and the clinical management of patients under follow-up. By definition, a
clinical trial entails the treatment of patients (or healthy individuals) under scientific
conditions. In order for the results to have an impact on the practice of medicine,
the treatment procedures employed must be precisely described. For the results to
be scientifically rigorous, all aspects of the treatment and clinical management of
patients should be standardized as much as possible. These considerations are espe-
cially important in a multi-center trial in which it is important that each clinical team
ideally should treat and manage patients in an identical manner. This is also important
statistically. Virtually everything that happens to a patient after randomization into
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the trial is a potential outcome measure, especially clinical events which reflect pro-
gression of a patient's disease, or events which reflect an adverse effect of treatment.
For these reasons, to the extent possible, the trial should define and standardize all
aspects related to the administration of the study treatments, the ascertainment of
clinical events, and clinical management.

2.3.2 Statistical analysis philosophy

There are two prevailing philosophies in the analysis of clinical trials, especially in
studies of Pharmaceuticals (drugs). On one side is the pharmacologist who wishes to
assess the pharmacologic efficacy of the regimen. In this sense, an efficacy analysis is
performed using the subset of patients who are able to tolerate the drug, are adequately
compliant, and to whom the agent is effectively administered. The basic strategy
is to examine the experience of the patients entered into the trial, and then to select
the subset of these patients that meet the desired efficacy criteria for inclusion into
the analysis. On the other side is the clinician or regulatory scientist who wishes
to assess the overall clinical effectiveness, meaning the outcomes of all patients for
whom the treatment is initially prescribed, irrespective of potential side effects or
incomplete administration. Although compliance is an important determinant of
ultimate effectiveness, the therapeutic question is to assess the effectiveness of the
treatment in a population of ordinary subjects with variable degrees of compliance.
Such an analysis is called intention to treat, because the outcome is compared between
two samples that are initially assigned to receive different treatments, regardless of
the level of tolerance or compliance. Such an analysis attempts to assess the long-
term effects in the population of an initial treatment decision to adopt one regimen
versus another. In order to conduct an intention to treat analysis, therefore, all
subjects randomized into the study must be evaluated as scheduled during follow-up,
regardless of the extent of compliance with the treatment protocol or the occurrence
of adverse effects.

Following Lachin (2000), is easy to see how bias might enter the study under an
efficacy analysis. If one starts a study with 100 patients who are randomized equally
between two treatment groups, but at the end of the study outcome assessments are
obtained in only 60 of these, then those 60 patients may not be unbiased. This is
because the observations missing for the 40 patients may not be missing completely
at random (MCAR), meaning that the presence or absence of an observation occurs
purely by chance. For example, a patient on placebo may choose to be noncompliant
because he or she feels the treatment is not effective. Likewise, a patient who begins
to feel better on an experimental therapy may opt to discontinue medication during the
course of the study. In these cases, missingness depends on the outcome of interest,
and the remaining subset analysis ignores important information on effectiveness of
the treatment in missing patients. Consequently, the only incontrovertibly unbiased
study is one in which all randomized patients are evaluated and included in the
analysis, and this is the essence of the intent-to-treat philosophy. It should be
very clear that final outcome ascertainment should be the investigator's goal for each
individual patient enrolled in the study, regardless of their level of active participation
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in the trial. Thus the essence of the intention to treat design is to ensure that every
patient randomized is followed and evaluated as scheduled until either death or the
end of the trial.

Thus the core tenet of the intent-to-treat principle is an intent-to-treat design in
which all subjects randomized are followed as specified under the original protocol,
regardless of compliance with the treatment regimens, or adverse effects, or what-
ever; the only exceptions being death, a clinical proscription against the follow-up
procedure, or withdrawal of patient consent.

2.3.3 Losses to follow-up and noncompliance

Various authors have used the terms "losses to follow-up," "dropouts," and "noncom-
pliance" interchangeably. In this book, we use the term lost to follow-up to describe
patients who do not continue follow-up visits for primary outcome assessments. Such
patients may have moved away or may no longer be willing to participate in the study
for various reasons. Provided that the reason lost to follow-up is not related to the
outcome of the study, the data on these patients are MCAR, and should not bias the
study. Every effort should be made to ascertain the reason these patients dropped
out of the study, and if it is at all treatment-related. Adjustments to the number of
patients randomized are usually built into the study to accommodate a small number
of losses to follow-up, as we will see in Section 2.6.4. By noncompliance, we refer to
less than maximally effective treatment in a patient who continues follow-up. These
patients should be included in an intention to treat analysis, to avoid bias.

Even when placebo controls are used to implement double-masking, some drugs,
for example, have a known adverse effect profile, such as where the drug is known to
induce mild hepatotoxicity, or gastrointestinal disturbances, etc. In such cases, sub-
stantial biases may be introduced if subjects who experience such adverse effects are
terminated from further follow-up. In such cases the resulting missing observations
are not missing at random and it is not possible to argue that the resulting observed
measures are unbiased.

2.3.4 Covariates

When comparing two groups in the context of a medical therapy, it is critical that the
two groups be comparable with respect to important covariates. These covariates may
be known in advance or unknown, and treatment imbalances with respect to these
covariates can bias the study. When there are known covariates, then strategies can
be used to force the randomization procedure to balance the distribution of covariates
among groups, or to promote balance. These techniques will be discussed in Chapter
4. However, it is still possible that imbalances may occur with unknown covariates,
which would lead to what is commonly referred to as accidental bias. Randomization
can mitigate accidental bias, and the randomization procedures can be distinguished,
at least theoretically, by the susceptibility to such accidental covariate imbalances, or
accidental bias. This is discussed in Chapter 5.
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In addition to assessing or describing the "balance" of the randomization with re-
spect to known covariates, measured covariates are also used to assess the association
of covariate values with the outcome of the study, and also to assess the treatment
group effect as a function of covariate values, such as separately between men and
women; we call these treatment by covariate interactions. Randomization has no
impact on whether treatment by covariate interactions will exist since these are true
characteristics of the phenomena under study, not the result of chance.

The Diabetes Prevention Program (Diabetes Prevention Program Research Group,
2002) showed that treatment with the drug metformin versus placebo provides a 31
percent reduction (p < 0.001) in the risk of developing type 2 diabetes in individuals
with impaired glucose intolerance. Among the important analyses was an assess-
ment of this treatment effect among subjects stratified into subgroups defined by the
baseline level of body mass index (BMI) in kg/cm2. Among those with BMI < 30,
metformin provided only a 3 percent risk reduction versus placebo, whereas the risk
reduction was 16 percent among those with 30 < BMI < 35, and 53 percent among
those with BMI > 35. The heterogeneity of treatment effect among these BMI sub-
groups was significant at p < 0.05. Thus, balancing treatment groups on the level of
BMI would not alone lead to correct conclusions: that the drug was effective only
in a certain subgroup of patients and not in another subgroup. If such a subgroup
analysis is known to be important in advance, studies can be powered accordingly to
detect a treatment by covariate interaction, but in practice, studies often do not have
enough power to detect such interactions, and such subgroups may not be known in
advance. Consequently, it is important to remember that, while randomization tends
to induce independence between the treatment effect and unobserved covariates by
eliminating accidental bias, it does not eliminate interactions.

2.4 EXPERIMENTAL DESIGN

The essence of a clinical trial is the comparison of the effects of the experimental
treatment to those of a control treatment. For example, in a therapeutic trial to compare
a stated dose of a drug versus a placebo, if the other aspects of the trial are rigorous
with regard to controlling bias, then a sharp comparison can be made to discern the
clinical effects of the drug. Although there may be multiple factors that contribute
to the effectiveness of an experimental treatment, trials are not usually designed to
elucidate those precise factors, but only to determine if the treatment is effective. In
most trials, therefore, the experimental design is quite simple. Usually only two or
more groups are employed to compare two or more treatments. The treatment effect
can, for example, be estimated from a simple one-way group comparison.

While factorial designs [cf. Cochran and Cox (1957)] are frequently employed in
other sciences, they are rarely used in clinical trials. The exception is the consideration
of combination therapies, where a 2-way factorial design may be employed. An
analysis of variance strategy is then employed, where treatment A and treatment B
are main effects and there is an interaction term for treatments A and B. The test
of interaction assesses whether the combination has effects above and beyond each
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treatment individually. However, such studies are often designed with the assumption
that there is no interaction, and are then underpowered for a test of interaction. If an
interaction is later observed, then the effects of each level of A depend on the level
of B and vice versa. In this case, the study also is underpowered for the detection
of nested effects of factor A within each level of B and vice versa. In addition,
if a binary or time to event outcome analysis is employed, even when there is no
interaction but a marginal treatment effect on one factor is present, the power for the
assessment of the treatment effect on the other factor will be reduced. Rarely are
higher order factorial designs employed.

Short-term clinical trials of chronic, but stable, conditions will sometimes employ
a crossover design [cf. Jones and Kenward (1989)], whereby each patient will receive
one of two treatments initially, and then, after a washout period of withdrawal from
the treatment, the patient receives the other treatment. For the analysis of this design,
the results of treatment A are compared to those of treatment B in aggregate over
all patients. Thus, the marginal statistic for treatment A actually consists of the
effect of treatment A during the first period of administration plus the residual effect
of treatment A during the second period of administration (after having received
treatment B during the first period). So one must assume that there are no residual
carryover effects from the first period of administration to the second period of
administration. The advantage of crossover trials is that they employ half as many
patients, since each patient serves as his or her own control. However, the condition
of no carryover effect is difficult to satisfy, and consequently they are rarely used in
long-term clinical trials which are designed to assess the effects of treatment on the
clinical course of a disease.

In conclusion, the most widely employed design for clinical trials is the simple
two-group comparison design. Therefore, it is in this context that this book will
address the randomization of subjects to receive one of the study treatments.

2.5 RECRUITMENT AND FOLLOW-UP

In a typical clinical trial, patients are identified for screening and consideration
for entry into the trial over a period of time, often years. The interval is called
the recruitment period during which patients are screened, and if found eligible,
are then randomized to one of the study treatments. Eligibility requirements are
agreed upon by the investigators before the trial begins and are recorded in the study
protocol. Eligibility requirements are designed to ensure that a homogeneous strain
of patients is recruited for the trial. If eligibility criteria are changed or relaxed at
any point in the trial, shifts in patient characteristics may occur, which can cause
problems in the statistical analysis. Likewise, if protocol violations occur where an
investigator randomizes an ineligible patient, serious biases may result. The process
of recruitment of patients over an interval of time results in what is termed staggered
entry, because all patients do not enter the trial simultaneously at a given point in
calendar time. The clinical trial then systematically collects observations over time
according to a follow-up schedule. The follow-up schedule specifies the duration of



24 ISSUES IN THE DESIGN OF CLINICAL TRIALS

treatment of each patient and the precise times during follow-up at which specific
procedures are performed and measurements obtained.

The two common plans for the design of clinical trials are either fixed or variable
follow-up duration. Each provides for a period of recruitment in calendar time of
length R, where time 0 is the calendar date at which the first patient enters the trial
and time R is the subsequent date on which the last patient is randomized. The trial
is then continued until calendar time T, T > R, which provides for the follow-up of
the last patient entered. The difference between the time a subject enters a trial and
follow-up is completed is the study time of that subject. In a fixed follow-up duration
trial, each patient is followed for the same prescribed period of time, regardless of
when that patient was entered into the study. Thus, each patient's study time is the
same, and the study cannot be concluded until each patient completes that study time.
Fixed duration trials are often employed to assess short-term objectives, such as when
each patient is treated with a drug for a two-month interval. Many long-term studies
employ variable follow-up duration, where patients are followed until a common
closing date, regardless of when they were randomized. Thus, a patient's study time
depends on the date the patient entered the trial. For example, in a five-year trial
(T = 5) with a two-year recruitment period (R = 2), the first patient entered would
be followed for all T = 5 years, whereas the last patient entered would be followed
for T — R = 3 years. Assuming recruitment follows a uniform distribution, average
duration of follow-up would be 4 years with a standard deviation of 0.57 years.

Uniform recruitment assumes the distribution function G of patient entry times is
linear over [0 ,R] . It is not unusual, though, for G to be convex or concave. Convexity
implies that recruitment is initially faster than expected under uniform entry and then
declines; concavity implies that recruitment is initially slower than expected and then
increases. One possible model is the truncated exponential distribution, where we
assume patient entry times Z1,..., Zn are independent and identically distributed with
density function

If 7 > 0, G is convex, and if 7 < 0, G is concave. Under model (2.1), average
duration of follow-up is given by

with a standard deviation of

In our example with R = 2 and T = 5, if 7 = 1, average duration of follow-up is
4.31 years with a standard deviation of 0.53 years. If 7 = -1, average duration of
follow-up is 3.69 years with a standard deviation of 0.53 years (note the symmetry).
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With either fixed duration or variable follow-up, the duration of follow-up should
be based on the period of time needed to assess the trial's objectives. The frequency of
follow-up visits is usually based on conventional clinical practice for the treatment and
follow-up of the condition under study. However, in other instances, the frequency
of assessment may be based on other considerations, such as the frequency required
to chart the incidence of an event or a change in a characteristic over time, or to
safeguard patient safety by toxicity screens. During these visits, ascertainment of the
study outcome, medical assessments to determine safety of the therapy, determination
of compliance with the study's treatment regimen, and any other medical procedures
dictated by the standard-of-care for the condition will be performed. In so far as
possible, clinical trials should mimic usual clinical practice.

2.6 DETERMINING THE NUMBER OF RANDOMIZED SUBJECTS

In the planning stages of a randomized clinical trial, it is necessary to determine the
numbers of subjects to be randomized. While the exact final number that contribute to
any analysis will be unknown, due to losses to follow-up and staggered entry, it is still
desirable to determine a target sample size based on some model. This sample size
estimate will then allow estimates of the total cost of the trial, the number of clinics
required, and target recruitment numbers, etc. Typically, the number of subjects is
computed to provide a fixed level of power under a specified alternative hypothesis
[see, for example, Lachin (1981) and Donner (1984)]. The alternative hypothesis
usually represents a minimal, clinically-meaningful treatment effect. Power (1—
probability of a type II error) is an important consideration for several reasons. Low
power can cause a truly beneficial therapy to be rejected. However, too much power
may make results statistically significant that are not clinically significant. Standard
regulatory criteria for clinical trials often lead to specifying the probability of type
I error (a) to be 0.05 and power to be 0.80 to 0.90. However, such specifications
belie the consideration of the relative cost of a type I or type II error in a particular
study. There are examples of studies where investigators determined that a type II
error was so much more costly than a type I error, that a was fixed far from 0.05 [see,
for example, Samuel-Calm and Wax (1986)].

Tests of the treatment effect in clinical trials are typically two-sided, for two
principal reasons: first, it is usually relevant if the placebo or standard therapy is
more efficacious than the experimental therapy; and, second, even if only a one-sided
hypothesis is really of interest, a two-sided test requires a more stringent 0.025-level
test which gives added protection from a type I error.

2.6.1 Development of the main formula

Under this framework of power considerations, it is necessary to assume a population
model. Let n be the total number of subjects randomized in the trial and let ni be
the number randomized to treatment group i. For two treatments i = A, B, say,
n = nA + nB. We assume here that the allocation proportions are known in advance,
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Fig. 2.1 Distribution of a test statistic T under the null and alternative hypotheses, with the
rejection region of size a and a type II error rate of size b. (Lachin (2000, p. 64); reprinted
with permission of John Wiley and Sons.)

i.e., that Q — nA /n and 1 — Q = n B /n are predetermined. This will not be
the case under adaptive randomization, as we will see later in the book. Under a
population model, it is assumed that responses YIJ, j = 1,..., n,, are independently
and identically distributed according to some known distribution G(yij | q i ) , where qi

is possibly a vector-valued parameter associated with the ith population. For example,
if qi is a single parameter representing an outcome associated with treatment, a
standard hypothesis test would be H0 : qA = qB versus H1 : qA ^ qB- Let Sn be
a statistic to test a hypothesis regarding the equality of one or more members of 6.
Based on the distribution of the measurements, Yij ~ G(yij |q;), it is usually easy to
derive the distribution of a statistic Sn under H0 and H1 . The central limit theorem
will usually lead to a normal distribution under H0 and H1 , such as the following:

where m0 and m1 are functions of qi and S0 and S1 are functions of n and qi.
This provides a large sample test of H0 of the form Tn — (Sn — /m0)/S0, which
is asymptotically distributed as standard normal under H0. With this test, H0 is
rejected at level a if |Tn| > za/2 (two-sided) or Tn > za (one-sided), where za is
the standard normal deviate; i.e., if Z is a standard normal variate, Pr(Z > za) = a.
The power of the test Z is given by 1 - b. Figure 2.1 shows the relationship between
a and b for the standard hypothesis testing problem.
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The basic relationship used to derive n, based on values of b and a under a
specified alternative hypothesis can be derived as follows. Under the distributional
assumption in (2.4), for a one-sided alternative (m1 > m0),

where Z is a standard normal variate. This implies that that

Simple algebra then leads to the equation

For a two-sided test, (2.5) is given by

For more than two groups, formulas can be adjusted accordingly, and a Bonferroni
correction is standardly used for more than two hypothesis tests. For example, in the
NIH-sponsored benign prostatic hyperplasia clinical trial, patients were randomized
to one of four groups: placebo, finasteride, doxazosin, or finasteride and doxazosin.
Each of the active therapy groups was to be compared to the placebo group, for a
total of three hypothesis tests. Hence, for a two-sided test, a Bonferroni adjustment
led to the term za/6 in equation (2.6).

2.6.2 Example

Consider a comparison of two means. Here we assume YiJ ~ N(v i , s i
2) , i =

A,B,j — l,...,ni,nA = Qn. Assume s2
A =s2

B = s2, and s2 is known. Then
qi — (vi, s

2). We wish to test H0 : vA = VB versus HA : VA ^ VB, so that m0 = 0
and m1 = VA - VB, using the statistic Sn = yA- VB, where yi = Sni

j=1 yij/ni.
Then S2

0 = S2
1 = [Q(l - Q)]-1 s2/n, and equation (2.6) becomes

or
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Similar expressions can be derived for differences of binomial probabilities or Poisson
rates (Problems 2.4 and 2.5).

This example presents the statistician with two dilemmas: s2 is assumed to be
known, which is always an unreasonable assumption, and we can only compute the
required number of subjects under a specified alternative. For both problems, the
statistician must rely on the physician who is familiar with the natural history of the
disease under no treatment (in the case of a placebo-controlled trial) or under the stan-
dard therapy (in a trial comparing a new and existing therapy). The physician must
provide an estimate of s2 using information from previous studies or from his or her
experience. The particular alternative specified should represent the minimal clini-
cally significant difference for which the physician would declare the experimental
therapy to be successful or worthwhile in practice.

2.6.3 Survival trials

In a survival trial where the study objective is to compare a time-to-event outcome
between two treatment groups, equation (2.6) can be used to derive the number of
randomized subjects under a parametric failure-time model. Lachin and Foulkes
(1986) assume an exponential model for testing the equality of two hazard functions,
lA and lB. Since the logrank test for equality of hazard (survival) functions over time
is known to be the asymptotically most efficient test under a proportional hazards
model, and since the exponential distribution is the special case of proportional
constant hazards, the exponential model leads to estimates of the sample size and
power function of the logrank test. If the actual hazard in the control group fluctuates
over time, calculations based on the exponential model will still be adequate provided
that the expected number of events in the control group under the model agrees with
the actual expected value. If not, then alternate methods, such as those of Lakatos
(1988) are preferred.

For the test H0 : lA = lB versus HA : lA ^ lb, Sn — lA — lb, the
maximum likelihood estimator of m1 = lA — lB. Let l = QlA + (1 - Q)lb-
Under H0, the asymptotic distribution is N(0, S2

0), and under H1, the asymptotic
distribution is N(m1,S

2
1), where S2

0, = f(l)/nQ(l-Q)and S2
1 = ( ( i - Q ) f ( l A ) +

Qf(lB))/nQ(l — Q). The function f will depend on the patient entry distribution
and losses to follow-up. Substituting into equation (2.6), we obtain

One would use za in place of za/2 for a one-sided test. Note that this equation requires
specification of lA and lB , which can be estimated if one knows something about the
cumulative incidence functions on treatments A and B. The hazard function can be
computed from the incidence rate over Tyears,p, by the formula l = - log( l—p) /T .
If B is placebo, we can compute an estimate of lB based on knowledge of the
cumulative incidence of the disease on no therapy, and then compute the hazard rate
lA on the experimental treatment assuming a specific reduction in risk. For instance,
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if \B is estimated to be 0.05, then if we wish to detect a 33 percent reduction in risk,
lA = (0.67)(0.05) = 0.0335.

Under uniform recruitment over [0, R] and variable follow-up over (T — R, T]
with no losses to follow-up, Lachin (1981) shows that

In this and subsequent expressions, Pr(event) R, T, l) is the probability of the event
in a cohort recruited over R years and followed over T years with hazard rate A. Thus
the power of the test and the required sample size depends on these probabilities.
When substituted into (2.8), this yields the required sample size needed to provide a
given number of events in each group. These required numbers of events are virtually
identical for other study plans specified by the values of R and T.

Lachin and Foulkes (1986) derive the expression with an adjustment for losses to
follow-up under the assumption that losses to follow-up are random in each group and
time to loss to follow-up is independent of the survival or event times. They consider
the special case where losses are exponentially distributed with hazard rates hA and
hB for groups A and B, respectively. Assuming uniform recruitment, equation (2.8)
becomes

where

and

Note that, when h = 0, (2.10) reduces to (2.9).
Now suppose that patient entry times are distributed as truncated exponential, as

in (2.1). Lachin and Foulkes (1986) show that this entry distribution yields

If we employ the exponential entry distribution in conjunction with exponentially
distributed losses to follow-up, we obtain
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Equation (2.12) reduces to (2.11) if h - 0.
Of course, survival may not follow an exponential distribution; other failure

distributions include the Weibull and lognormal, for instance. Similar formulas could
have been derived under other failure time distributions. However, it is unlikely that
the investigators will have some knowledge of the form of the survival distribution a
priori, and hence these computations can only be considered an approximation based
on our current knowledge.

2.6.4 Adjustment for noncompliance

As we discussed in Section 2.3.2, compliance is not an issue if one is interested in
the clinical effectiveness of a therapy, i.e., the effectiveness in the general population
that includes subjects who may not comply with their prescribed regimen. If a study
is of pharmacologic efficacy, such noncompliant subjects are often terminated from
further follow-up, or their data exluded from analysis. Of course this admits the strong
potential for bias. However, if the objective of the study is true effectiveness, then
under an intent-to-treat design, all such noncompliant subjects would continue to be
followed and their outcome data used in all analyses. In this case, noncompliance can
severely compromise power relative to an intent-to-treat effectiveness trial in which
all patients are fully compliant. Similar considerations apply when inappropriate
patients are entered into the trial, such as those who may be misdiagnosed, who
would not benefit from treatment even if the patient were fully compliant.

To see this, let Q — 0.5 and let the proportion of noncompliant or inappropriate
patients in the experimental group be w and let the hazard rate be lA . These
noncompliant patients are then assumed to have the same hazard rate as the control
group. Also, assume that noncompliant patients in the control group (e.g., placebo)
will continue to have the same hazard rate (e.g., there is no placebo effect), given
by lB. Then m1* is the expected treatment effect under noncompliance, given by
m1* = (1 — w)lA + wlb — lB = (1 — w)m1. Assuming that the asymptotic variances
are similar in the two groups, we obtain the following adjustment from equation (2.8):

Note that this is quite a substantial adjustment. A noncompliance rate of 10 percent
will require randomizing 23 percent more patients, Note again that this assumes that
all n subjects are followed and scheduled.

In most clinical trials, the hazards specified, and the corresponding risk reduction,
are specified in terms of the overall rates in the general population, recognizing that
some fraction will be noncompliant. In that case, noncompliance is already allowed
for in the estimates. In other cases, however, it may be desirable to specify the hazards
and the risk reduction assuming 100 percent compliance. Then an adjustment such as
the above could be used to factor for noncompliance, assuming complete follow-up.
However, this is a severe adjustment because it assumes that a noncompliant subject
has the same hazard as a control subject, regardless of how long the subject may have
actually complied before becoming noncompliant, and assuming that biologically any
exposure to the experimental treatment short of complete 100 percent compliance
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has no effect. These are implausible assumptions and thus the above is a worst case
adjustment.

2.6.5 Additional considerations

While sample size calculations are a required element of proposals and protocols for
randomized clinical trials, it is important to note the deficiencies of this approach.
First, the formulas derived depend on unknown parameters whose values must be
guessed. While the objective is to describe the sample size required to provide
a desired level of power to detect a difference between groups that is clinically
relevant, the actual computation requires specification of other unknown parameters.
For example, in the case of two normal means, we must rely on a specification of
the variance; in the case of a survival trial, we must specify the incidence of death or
progression in the control group. In the latter case, for a placebo-controlled clinical
trial, a substantial placebo effect might be present, and so these guesses are likely
to be wrong. For example, suppose the hazard rate in the placebo is expected to
be 0.05, but is really 0.04 due to a positive placebo effect, and we wished to detect
m1 = 0.02. With the placebo effect, we would really need to detect m1 = 0.01, which
would require a four-fold increase in sample size to detect with the same power. If
our guesses are too far off, we could severely overestimate power and wind up with
negative results for an effective experimental therapy. It is important to emphasize
that such guesses should be conservative and calculations should be conducted over
a range of values. Although it might be tempting to be as economical as possible in
determining the number of subjects for an expensive clinical trial, this approach is
foolhardy.

Second, these computations rely on a population model whereby individuals are
assumed to be sampled at random from respective populations. Later, we introduce
another approach to conducting a test of significance that is based on a randomization
model that considers the probabilities of treatment assignment and their covariances,
if any. Randomization models have advantages over population models, and if a
randomization model is to be adopted for the final analysis of a trial, then sample size
calculations based on a population may not be correct and should be viewed only as
an approximation. But one can consider every aspect of sample size computation an
approximation, because one must guess the underlying distribution and the underlying
variability. In later chapters we will discuss the distinction between population and
randomization models for the randomized clinical trial and how this might affect
power.

2.7 PROBLEMS

2.1 Write a protocol for a hypothetical clinical trial. The trial will consist of a
new therapy for a known disease versus a placebo. Search the medical literature
for information on similar studies on the disease. Such studies should provide
information on estimated incidence rates, loss to follow-up rates, information on
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primary outcome measures, and follow-up schedule. The protocol should include
eligibility criteria, primary and secondary outcomes, study time and considerations
of fixed versus variable duration, statistical analysis philosophy, and numbers of
subjects randomized.

2.2 Derive equations (2.2) and (2.3) from equation (2.1).

2.3 Prove equation (2.6) from first principles. Give an intuitive explanation as to why
the zb term is unaffected for a two-sided test.

2.4 Consider independent and identically distributed observations from a Poisson
distribution with rate parameter A. The maximum likelihood estimator of A is
A = T/n, where T is the total number of events in n units, such as T epileptic
seizures in n patient-years of exposure. Now consider two groups with parameters
\A and \B with sample sizes Qn and (1 - Q)n, respectively, 0 < Q < 1.
a. Derive the basic expression relating sample size and power for the test of difference
between the two groups, using the formula in (2.6).
b. Consider a study to compare a drug versus placebo in the treatment of epileptics.
What parameter will have to be estimated from prior knowledge?

2.5 Consider the case of two simple proportions with expectations pA and pb . We
wish to plan a study to assess healing with an investigational drug (A) and placebo
(B).
a. Derive the basic expression relating sample size and power for the two-sided test
of difference of probabilities of healing between the two groups. Assume nA = Qn
and nB = (1 - Q)n.
b. Prior studies suggest that the control healing rate is on the order of 20 percent.
Investigators believe that a minimal, clinically-meaningful increase in healing on the
experimental therapy is 5 percent. For 80 percent power, compute the number of
patients needed, assuming equal allocation (Q = 0.5).
c. From part (b), investigate the changes in n that occur with changing the allocation
proportions.

2.6 For a clinical trial comparing two normal means, as presented in Section 2.6.2,
suppose the standard deviation on treatment A is sA and the standard deviation on
treatment B is sB, where sA ^ sB. Show that, for fixed n, the value of Q that
maximizes power is given by Q* = sA/(sA + sB). (Allocating according to the
ratio of the standard deviations is called Neyman allocation. This result implies that
equal allocation does not maximize power when the two treatments have different
standard deviations.)

2.7 The benign prostatic hyperplasia trial is a variable follow-up trial with R = 2
and T = 6, designed with four treatment groups: placebo (group I), finasteride
(group II), doxazosin (group III), and combination finasteride and doxazosin (group
IV). The primary outcome is three comparisons: I versus II, I versus III, and I
versus IV with respect to a time-to-progression outcome. Compute the number of
randomized subjects needed for these comparisons for a 50 percent reduction in risk,
when the incidence rate over 5 years is assumed to be 25 percent. Make the following
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assumptions: a = 0.05 (two-sided), 80 percent power, exponential incidence, and
uniform recruitment. Build in a 10 percent exponential loss to follow-up rate over
the five years.
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3
Randomization for

Balancing Treatment
Assignments

3.1 INTRODUCTION

Thus far we have talked quite loosely about randomization as the toss of a fair coin,
but simple coin-tossing is rarely employed in a clinical trial. One can distinguish four
classes of randomization procedures: complete randomization, restricted random-
ization, covariate-adaptive randomization, and response-adaptive randomization.

Let TI, ..., Tn be a sequence of random treatment assignments, where Ti = 1 if
the patient is assigned to treatment A and Ti = 0 if the patient is assigned to treat-
ment B, i = 1,..., n. Complete randomization is simple coin-tossing, in which case,
T1,...,Tn are independent and identically distributed Bernoulli random variables
withp = Pr(Ti = 1) = 1/2, i = 1, ...,n. In restricted randomization procedures,
T1, ...,Tn are dependent, with variance-covariance matrix given by ST / (1/4)I.
Restricted randomization is employed when it is desired to have equal numbers of
patients assigned to each treatment group (i.e., balancing the treatment assignments),
and this will be the topic of this chapter. Covariate-adaptive randomization is used
when it is desired to ensure balance between treatment arms with respect to certain
known covariates. Treatment assignments will depend on the covariate values of pa-
tients. Finally, response-adaptive randomization is used when ethical considerations
make it undesirable to have equal numbers of patients assigned to each treatment
arm. In response-adaptive randomization, the treatment assignments depend upon
previous patient responses to treatment. Covariate-adaptive and response-adaptive
randomization will be treated in later chapters. The four types of randomization
procedures are progressively more complicated, from a statistical point of view, due
to the increased complexity of the dependence structure.

35



36 RANDOMIZATION FOR BALANCING TREATMENT ASSIGNMENTS

In this chapter, we discuss complete randomization and restricted randomization
procedures for balancing treatment assignments. Friedman, Furberg, and DeMets
(1981, p. 41) present two main arguments for equal allocation to treatment groups.
The first is that power is maximized when allocation is equal. The second is that
equal allocation is consistent with the concept of equipoise that should exist at
the beginning of the trial. Many clinical trialists disagree, in principle, with these
arguments, and we will explore alternative arguments in later in chapters on response-
adaptive randomization. However, it should be noted that most clinical trials today do
employ restricted randomization procedures to achieve balance, and these arguments
have become rooted, to some extent, in the culture of clinical trials.

We now present the principal randomization tools to achieve balance among
the treatment groups. A thorough probabilistic analysis of these randomization
procedures is required. In particular, the conditional expectation of assignment, given
all previous assignments, will define the procedure. The unconditional variance-
covariance structure of the treatment assignments is used to develop the theoretical
susceptibility to bias of each procedure (Chapters 5 and 6) as well as to determine
the distribution of randomization-based inferential tests (Chapter 7).

3.2 THE BALANCING PROPERTIES OF COMPLETE
RANDOMIZATION

When treatment assignments are independent Bernoulli random variables with suc-
cess probability 1/2, we have complete randomization. Complete randomization has
some very nice properties, in that certain types of bias are minimized. For example,
there can be no selection bias with complete randomization, since it is equally likely
to guess the next treatment assignment correctly or incorrectly. However, there is a
disadvantage to complete randomization that makes it unattractive in practice: there
is a non-negligible probability of some imbalances between treatments and a small
probability of severe imbalances. In fact, the theory of probabilities of large devia-
tions should serve as a warning when using Bernoulli sequences for randomization
in small to moderate samples.

Let NA( i) = Si
j=1 Tj,i= l,...,n so that NA(I) is the number of patient

randomized to treatment A after i patients have been randomized. Let N B ( i ) =
i — -NA(I). Then by the central limit theorem for a binomial random variable, NA (n)
is asymptotically normal with mean n/2 and asymptotic variance n/4. Letting
Dn — NA(n) — NB(n) = 2NA(n) — n, we see that Dn is asymptotically normal
with mean 0 and variance n. We can use |Dn| as one measure to describe the degree
of imbalance between treatment groups. For r > 0,

where F is the standard normal distribution function. One can use this formula to
determine the degree to which complete randomization is subject to imbalances of
size r, for a large sample trial with n patients (see Problem 3.2). Table 3.1 gives
percentiles of the distribution of |Dn| for various values of n. For example, when
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Table 3.1 Percentiles of the distribution of |Dn | for complete randomization.

n

50
100
200
400
800

0.33

6.9
9.7

13.8
19.5
27.6

0.25

8.1
11.5
16.3
23.0
32.5

0.10

11.6
16.5
23.3
32.9
46.5

0.05

13.9
19.6
27.7
39.2
55.4

0.025

15.9
22.4
31.7
44.8
63.4

n = 50, there is a five percent chance of an imbalance of ±13.9 or worse. This
corresponds to an excess of 6.95 beyond the expected 25 in either group, or an
imbalance of 36.1 percent versus 63.9 percent. When n = 400 there is a five percent
chance of an imbalance of ±39.2, corresponding to a degree of imbalance of 45.1
percent versus 54.9 percent. To many, an imbalance of this degree would be of no
concern.

While some imbalances will likely occur, apart from cosmetic concerns, the
important question is whether these imbalances compromise the statistical properties
of the study. Regardless of the final sample sizes, balanced or not, the resulting
estimate of the treatment group difference will still be unbiased. While an imbalance
will decrease the precision of the estimator, this effect will be slight for moderate
imbalances.

Likewise, an imbalance will decrease the power of statistical test, but again, the
effect is slight for moderate imbalances. For example, consider the example of
Section 2.6.2, the comparison of two normal means with equal variances. Power can
be computed using equation (2.7). We draw the power curves across values of Q for
n = 50,100,200 in Figure 3.1, where a = 1 and |m1| = 0.5. For large n, the curve
flattens at the top, indicating that there is little loss of power for Q between 0.30 and
0.70. As shown in Table 3.1, the probability of a large imbalance following complete
randomization is very small. It is even smaller with restricted randomization designs.

3.3 RANDOM ALLOCATION RULE

Because there is a significant probability of an imbalance between treatments for
clinical trials employing complete randomization, one may wish to impose a restric-
tion that the final allocation be exactly equal between the two treatment groups. This
can be accomplished by using a random allocation rule [cf. Lachin (1988)], provided
that the investigator has control over the total number of subjects to be randomized.
While this is feasible in animal studies or small phase II studies, it is not always
possible in a phase III clinical trial.
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Fig. 3.1 Power curves for the comparison of two normal means across values of Q.

Let Fn be the set of treatment assignments through the first n stages of the ran-
domization process, i.e., Fn = {T1,..., Tn}. [For a formal mathematical treatment,
Fn is a sigma-algebra and F0 is the trivial sigma algebra. See Chapters 13-15.]
Note that Pr(Tn = 1) = E(Tn). Then the random allocation rule is defined by the
following allocation probabilities:

and .E(T1) = 1/2. For example, if patient 50 is ready to be randomized in a clinical
trial of n = 100 patients, and thus far the allocation has been 28 to A and 21 to B.
Then patient 50 will receive treatment A with probability 22/51.

One can immediately see some problems with this rule. First, once n/2 patients
have been assigned to one treatment, all further treatment allocations are determinis-
tic, and hence absolutely predictable, and selection bias can result. Second, at some
stage in the middle of the trial, there could be significant treatment imbalances. If
patients entering the trial are heterogeneous with respect to some important covariate
related to outcome (e.g., if there is a time trend), then imbalances between treatment
groups with respect to that covariate may result. For example, suppose n1 < n pa-
tients have been randomized in the clinical trial. Conditional on n1, NA (n1) follows a
hypergeometric distribution with mean n1 /2 and variance n1 (n - n1 )/4(n — 1). The
exact probability of imbalance of NA (n1) to NB (n 1 ) can be obtained from Fisher's
exact test for the resulting 2x2 table with cells N A (n 1 ) , NB(n1)),n/2 - NA(n1),
and n/2-NB(n1). Asymptotically, the distribution of NA(n1) can be approximated
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by a normal distribution. Let Dn1,n - NA (n1) -NB (n1). Forr > 0,

Clearly, this function is maximized when the n1/n = 0.5, or only half the planned
allocations are completed.

One can think of the random allocation rule in terms of an urn model. Suppose
an urn contains n/2 balls of type A and n/2 balls of type B. Each time a patient
is ready to be randomized, a ball is drawn and not replaced, and the corresponding
treatment is assigned. This continues until the urn is depleted. One can easily see
that this leads to the allocation rule in (3.2).

With the urn formulation, we can see thai random allocation rule produces
( n \
I /0 I equally likely permutations of n/2 A's and n/2 B's. Therefore, the
V nl* J
unconditional probability of treatment assignment, given by E(Tj), can be found

by thinking of the jth element of the f ,„ 1 permutation sequences. Of those

sequences, half of the jth elements are A and half are B. Since each sequence is
equally likely,

Since T2
j = Tj, it follows that Var(Tj) = E(Tj) - {E(Tj)}2 = 1/4, as for complete

randomization. The differences between complete randomization and restricted
randomization are completely specified by cov(Ti,Tj), which is 0 for complete
randomization. For the random allocation rule, we can compute, for i < j,

Consequently,

3.4 TRUNCATED BINOMIAL DESIGN

An alternate way of assigning exactly n/2 patients to each treatment is to randomly
allocate each according to the toss of a coin until one treatment has been assigned
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n/2 times; all subsequent patients will receive the opposite treatment. Blackwell and
Hodges (1957) refer to this as the truncated binomial design. We can describe the
design by the rule

for n even. As in the random allocation rule, the tail of the randomization sequence
will be entirely predictable and there can be serious imbalances during the course of
the trial.

We can quantify the number of subjects in the tail whose treatment assignment is
deterministic using discrete distribution theory (Blackwell and Hodges, 1957). Let
X be the random number of subjects in the tail. Then X — x can occur if the n/2th
A assignment or the n/2th B assignment occurs for patient n — x, for n even. These
events have probability

according to the negative binomial distribution. Therefore,

a truncated negative binomial distribution. From this distribution, one can derive

and

(Problem 3.3). The results (3.6) and (3.7) will be needed later in Chapter 6.
We now compute the unconditional mean, variance, and covariance of the treat-

ment assignment indicators. This can be accomplished by conditioning on the
random variable r — min{i : max(7VJ4(i),ATB(i)) = n/2}. It is clear that
PT(NA(T) = n/2) = Pr(A^(r) = n/2) = 1/2. Conditional on NA(T) = n/2, we
compute the probability of assignment to A as follows:

Similarly, conditional on NB(T) — n/2, we compute
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Since (3.8) and (3.9) each have probability 1/2, we compute the unconditional
expectation as

Therefore, Var(Tj) = 1/4.
It remains to compute cov(T, , T j ) . Again, we break the problem into two pieces

by conditioning first on NA(T) = n/2. For i < j,

Similarly, conditioning on NB(T) = n/2, we obtain

Unconditioning, we see that

Consequently,

The distribution of r comes from (3.5), as Pr(X = x) = Pr(r = n — x}, and hence

Note that cov(Ti5 Tj) = 0 if i < (n + 2)/2.
While the truncated binomial design and the random allocation rule both yield

( n \
I /0 I permutations of As and Bs, the sequences will not be equiprobable for the
\ n f * )
truncated binomial design. This is demonstrated in Table 3.2 for n = 4.

3.5 PERMUTED BLOCK DESIGNS

Complete randomization, the random allocation rule, and the truncated binomial
design can all result in severe imbalances at some point during the trial. This is
particularly undesirable if there is a time-heterogeneous covariate that is related to
treatment outcome, because imbalances in treatment assignments can then lead to
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Table 3.2 Six permutation sequences for n = 4 with probabilities under truncated binomial
randomization (each sequence has probability 1/6 under random allocation).

Sequence

AABB
ABAB
ABBA
BABA
BAAB
BBAA

Probability

1/4
1/8
1/8
1/8
1/8
1/4

imbalances in those important covariates. To avoid this, permuted block designs are
often used to ensure balance throughout the course of the clinical trial, by imposing a
balance restriction at various stages in the trial. Permuted block designs are reviewed
by Zelen (1974).

For the permuted block design, we establish M blocks containing m = n/M
patients, where M and n/M are positive integers, and within block i, m/2 patients
are assigned to treatment A and m/2 patients are assigned to treatment B. To ensure
balance, a random allocation rule is typically used within each block (although one
could also use a truncated binomial design), where the total number of patients is m
instead of n. When permuted blocks are used, at M stages during the course of the
trial, we achieve balanced allocation. The maximum imbalance at any time during
the trial is given by maxj |Dj| = m/2.

One could also use a truncated binomial design to achieve complete balance within
each block. In this case the underlying assignment sequence probabilities, and the
covariance matrix of the assignments, would be different from those of a random
allocation rule.

In the extreme case, M = n/2 and every pair randomized is balanced. However,
this procedure requires every even randomization to be deterministic, and hence
selection bias is easy to occur, unless the pairs are first identified and then randomized
as a set. For these reasons, block sizes larger than 2 are generally employed, and
investigators should be masked to the block size selected.

Some biostatisticians advocate a variable block design in which block sizes are
selected randomly. In this case each of the M blocks has mi patients, i — 1,..., M,
where the size of the ith block is selected at random. The motivation for selecting
random block sizes is to reduce the chance of selection bias. However, in Chapter
6 we will see that under a commonly used model for selection bias, use of random
block sizes yields virtually no reduction in such bias.
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3.6 EFRON'S BIASED COIN DESIGN

Efron (1971) developed the biased coin design in order to balance treatment assign-
ments. Let Dn be an increasing function of NA (n) such that Dn = 0 if NA (n) = n/2
[for example, Dn = NA (n) - NB (n) = 2NA (n) -n]. He suggests allocating with
the following rule. Define a constant p 6 (0.5,1].

We can use a symmetry argument to determine the unconditional probability of
assignment to A, E(Tj). By symmetry (and since D0= 0), we have

and both equal 1/2 if j — 1 is odd. Hence, for j — 1 odd, we have

For j — 1 even, we have

and hence

Using the theory of random walks, we can measure the degree of imbalance,
|Dn| = |2NA (n) - n|. We have the following transition probabilities:

and, for a positive integer j,

This yields the following random walk matrix for |Dn|:
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We can solve the steady-state equations, by solving for the left eigenvector of P [cf.
Karlin and Taylor (1975, p. 86)]. These equations are given by

and p0 + p1 + p2 +...= 1. The solution is

where r = p/(l - p) (Problem 3.4). Since |Dn|can take only odd or even values
as n is odd or even, the Markov chain has period 2, and the p'S must be doubled [cf.
Ross (1983, p. 111)]. We can obtain the limiting balancing property as

(Note that for odd n, the minimum imbalance is 1.) Obviously, as p -> 1, we
achieve perfect balance, but such a procedure is deterministic. When p = 2/3, we
have probability of 1/2 of achieving perfect balance for even n and probability 3/4
with odd n for large n.

Soares and Wu (1982) modified Efron's procedure by considering a level of
imbalance that would be unacceptable, and then imposing a deterministic treatment
assignment (by setting p = 0) to counter the imbalance. Their design, which they
named the big stick rule, is given by

The degree of imbalance is given by the constant c, which is fixed in advance. A sim-
ilar procedure, originally developed by Larry Shaw, was used in the National Coop-
erative Gallstone Study in which a proportionate degree of imbalance, D j - 1 / ( j -1),
was employed in lieu of an absolute difference to define the acceptable degree of
imbalance in the above expression (Lachin, Marks, Schoenfield, et al., 1981).

Chen (1999) introduced a hybrid of the big stick rule and Efron's biased coin
design, calling it the biased coin design with imbalance intolerance. The rule is
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given by

The design induces a random walk on the state space {0,..., c} with reflecting barriers
0 and c. Asymptotic balancing properties for this stochastic process are derived in
Chen (1999).

3.7 WEI'S URN DESIGN

Using Efron's biased coin design, the bias of the coin, p, is constant, regardless of the
degree of imbalance. Wei (1977, 1978) developed an adaptive biased coin design,
where the probabilities of assignment adapt according to the degree of imbalance.
One convenient model that adapts these probabilities is an urn model. A review of
urn randomization is found in Wei and Lachin (1988).

For the urn design, initially an urn contains a balls of each of two types, A and
B. When a patient is ready to be randomized, a ball is drawn and replaced. If the
ball is type A, treatment A is assigned to the patient and (3 type B balls are added
to the urn. If the ball is type B, treatment B is assigned to the patient and b type A
balls are added to the urn. In this way, the urn composition is skewed to increase the
probability of assignment to the treatment that has been selected least often thus far.
As with other designs, the sequence of assignments can be conducted in advance of
patient enrollment. The urn design is denoted U D ( a , b ) , and has the allocation rule

If a = 0, the first treatment assignment occurs with probability 1/2. Note that
the UD(a , 0 ) design is complete randomization. For the UD(0,1), we have the
following simple allocation rule:

We can show that the unconditional probability of assignment to A is 1/2 using
induction, using (3.14). First note that E(T1) = E{N A (1}} - 1/2. Assume
E { N A ( j - 1 ) } = ( j - 1 ) / 2 - T h e n
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Thus E(Tj) = 1/2.
We can examine the transition probabilities for the degree of imbalance, |Dn|, of

the U D ( a , b ) as follows. Without loss of generality, assume NA(n) - N B ( n ) = j,
for positive integer j. Then, since NA(n) - NB(n) = n, we have NA(n) = (j+n)/2.
So

So, asymptotically, UD(a, b) tends to complete randomization. Wei (1977) uses the
recursive formula

to find the unconditional distribution of |Dn|. Wei (1977, p. 384) tabulates these
values for j < 10.

Wei (1978b) shows that N A ( n ) is asymptotically normal with mean n/2 and
asymptotic variance (a + b)n/4(3/3 - a), provided 3b > a. Consequently, Dn is
asymptotically normal with mean 0 and asymptotic variance (a + b)n/(3b - a).
We can then compute, for integer .r,

This can be compared directly with equation (3.1) for complete randomization. In
Table 3.3, we evaluate percentiles of the asymptotic imbalance distribution for the
urn design. We see that, for the UD(0,1), the urn design has a lower probability of
imbalance than complete randomization asymptotically (the entries in Table 3.1 are
simply divided by \/3). The same is true for any value of b when a = 0. Note that
when a = b, the asymptotic probability of imbalance is the same as for complete
randomization.

Other urn designs have been proposed in the literature for use in randomized clini-
cal trials. Several will be discussed in the context of response-adaptive randomization
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Table 3.3 Percentiles of the distribution of\Dn\for Wei's urn design.

(«,/5)

(0,1)
(0,1)
(0,1)
(0,1)
(0,1)
(1,3)
(1,3)
(1,3)
(1,3)
(1,3)

n

50
100
200
400
800
50
100
200
400
800

0.33

4.0
5.6
8.0
11.2
15.9
4.9
6.9
9.7
13.8
19.5

0.25

4.7
6.6
9.4
13.3
18.8
5.8
8.1
11.5
16.3
23.0

0.10

6.7
9.5
13.4
19.0
26.9
8.2
11.6
16.4
23.3
32.9

0.05

8.0
11.3
16.0
22.6
32.0
9.8
13.9
19.6
27.7
39.2

0.025

9.2
12.9
18.3
25.9
36.6
11.2
15.8
22.4
31.7
44.8

in later chapters. Another restricted randomization design for achieving balance is
the Ehrenfest urn model proposed by Chen (2000). In this urn, c (even) balls are
arranged in two urns, labelled A and B, with c/2 balls in each urn. The c balls
are equally likely to be drawn. One draws one of the c balls at random. If the ball
came from urn A, treatment A is assigned and the ball is replaced in urn B. If it
came from urn B, treatment B is assigned and it is replaced in urn A. Balancing is
achieved because it is more likely to draw a ball from the urn which contains more
balls, thus reducing the composition of that urn by 1. Unlike Wei's urn, the Ehrenfest
urn maintains a constant number of balls.

The Ehrenfest urn was originally proposed in physics to obtain equilibrium be-
tween two isolated bodies. The urn induces a Markov chain on the state space
{0, ...,c} with reflecting barriers at 0 and c, and, as such, is directly comparable to
Efron's biased coin design with imbalance control described in the previous section.
Chen (2001) does a comparison in terms of asymptotic balancing properties, and
finds that the Ehrenfest urn is more effective than the biased coin design with imbal-
ance control (where c is the same value in both) when, for the biased coin design,
1/c < p < 1/2. When 0 < p < l/c , the biased coin design has better balancing
properties.

3.8 GENERALIZED BIASED COIN DESIGNS

Wei's urn design and Efron's biased coin design can be thought of as special cases of
a more general framework which we will call generalized biased coin designs [see
Smith (1984)]. Define a function (f>(j) = 4>(NA(j], NB(j)) such that
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The function f ( j ) describes a large class of designs including Efron's, which takes
the form

and Wei's, which can be written in the form

Wei (1978a) generalized (3.17), proposing

where p is a nonincreasing function satisfying p(x) + p(—x) = I. Smith (1984)
proposed a class of designs depending on a positive parameter p, given by

This rule corresponds to

in equation (3.18). If p = 1, we have Wei's urn design with a = 0. lip = 0, we have
complete randomization (f(j) = 1/2 for all j). Smith favors the design with p = 5.

3.9 COMPARISON OF BALANCING PROPERTIES

Table 3.4 gives a simulation comparison of four designs used for balance: complete
randomization, Efron's biased coin design (p = 2/3), Wei's UD(0,1), and Smith's
design with p = 5. One can see that complete randomization does not balance as well
as the three restricted randomization procedures, and Efron's and Smith's designs are
very close in terms of the bias and variability. Wei's is slightly more variable.

3.10 K > 2 TREATMENTS

For clinical trials of more than two treatments, most of these randomization proce-
dures generalize quite readily. Complete randomization becomes a simple multino-
mial probability generator with K equally likely outcomes. The random allocation
rule can be thought of as an urn with n/K balls representing each treatment. Trun-
cated binomial randomization becomes a multi-stage process whereby k-treatment
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Table 3.4 Simulated mean and variance of NA(n)/n for four different randomization se-
quences, n = 50, based on 10,000 replications.

Randomization procedure

Complete
BCD(2/3)
UD(0,1)
Smith (p = 5)

E ( N A ( n ) / n )

0.5004
0.4998
0.5001
0.4999

Var(NA(n)/n)

0.0049
0.0004
0.0016
0.0005

complete randomization is used, and each treatment is subsequently dropped when
the n/Kth patient is assigned to that treatment, until only one treatment is left. All
subsequent patients are then assigned to that treatment.

Efron's biased coin design does not generalize so easily. Since allocation is based
on the value of Dn, some generalized measure of imbalance among the K treatments
would have to be developed. Wei's urn design admits an easier generalization. For
the U D ( a , b) design, the urn contains a balls representing each treatment initially.
Then (3 balls are added for each other treatment after an assignment is made. For the
UD(0,1), the probability that the jth assignment is to treatment i, given the previous
j — 1 assignments is given by

This reduces to (3.14) when K = 2.
Wei, Smythe, and Smith (1986) describe a wide class of designs for K treatments

that are an extension of (3.18). Suppose the desired allocation proportions for the K
groups is x = (x1, ...,xk) (with all xi = 1/K equal unless one wishes unbalanced
allocation; see Section 3.11). Let p = (p1(x),...,pK-1 (x)) be continuous functions
of some (K - 1) x 1 vector x, where pi is the probability that patient j will be

Tf 1

assigned to treatment i and PK — l-]Cfc=^ Pk- Let N(j) = (N1(j),..., N K - I ( j ) )
be the number of patients assigned to treatment i = 1,..., K — 1 after j patients have
been assigned. Then typically, P1,...,PK will be a function of x = N(j — 1 ) / ( j — I).
The p1,...,PK are assumed to satisfy the following relationship:

For some special cases of this general procedure, consider first complete random-
ization. Here pi(x) = 1/K for all i, so that future assignments are independent
of previous assignments. For the generalization of Wei's um in (3.20), we have
Pi(x) = (1 — X i ) / ( K — 1). Note that Efron's biased coin design is not a special case
of (3.21) because p is not continuous for each i.
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We have the following important limiting result from Wei, Smythe, and Smith
(1986):

in probability, as j -> oo, for i — 1, ...,K. So this general rule for K treatments
tends asymptotically to the desired allocation.

3.11 RESTRICTED RANDOMIZATION FOR UNBALANCED
ALLOCATION

Some statisticians [e.g., Peto (1978)] have advocated that, under certain conditions,
clinical trials should randomize with fixed unequal allocation probabilities. For
example, one might allocate in a 2:1 ratio of intervention to control. Sometimes
favoring the experimental therapy is warranted in trials of potentially great public
health benefit, such as when testing a new AIDS therapy, where patients may be
reluctant to have only a 50 percent chance of receiving the new therapy. Such
unequal allocation procedures can improve recruitment. One must remember that
the experimental therapy may also be harmful, and hence unequal allocation could
subject more patients to a harmful therapy. There are also cases where widespread
knowledge about the control therapy exists and more understanding is needed about
the experimental therapy. Although the study may lose some sensitivity, there may
be gain in terms of information about the toxicity and patient responses to the
experimental therapy. This argument was used to justify 2:1 allocation in an oncology
trial (Cocconi, Bella, Zironi, et al., 1994). Such decisions could be controversial and
should be made in the context of careful power assessments.

In some cases, an optimal allocation ratio different from 1 : 1 will maximize power
(see, for example, Problem 2.6). This is discussed further in Chapter 10. Another
instance where an unbalanced design is statistically desirable is when the principal
analysis is a set of multiple comparisons of K — 1 treatments versus a single control
using the Dunnett (1955) procedure. In this case, the square-root rule provides an
optimal set of allocation ratios (K — I)1/2 : 1 : 1 : • • • : 1. For three treatments,
the allocation proportions are (0.414,0.293,0.293). Rarely, however, is the subset
of K — 1 comparisons employed as the principal analysis in lieu of an overall test of
equality of treatment means.

Generally, an unbalanced design, if employed, is justified on the grounds of ethics
or cost. In later chapters, we describe the use of response-adaptive randomization,
which dynamically alters the allocation probabilities to reflect the accruing data on
the trial, putting more patients on the treatment performing better thus far. While
different from fixed unbalanced allocation, where the allocation probabilities are
determined in advance of the trial, the rationale for response-adaptive randomization
is much the same.

In practice, restricted randomization can be altered to produce a fixed unbalanced
allocation. For complete randomization and the truncated binomial design, a biased
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coin can be tossed with the desired allocation proportion for treatment A. For the
random allocation rule, let the urn initially contain the desired proportion of balls of
each treatment. While Efron's biased coin design does not readily admit a simple
generalization, we can modify Wei's urn design to allow for unequal allocation. Let
the desired allocation for A be 0 < Q < 1. Then the urn initially contains Qa balls
representing treatment A and (1 — Q)a balls representing treatment B. If a type A
ball is drawn, (1 - Q}(3 balls are added of type B. If a type B ball is drawn, Q(3
balls of type A are added.

3.12 PROBLEMS

3.1 Repeat Figure 3.1 for the standard Z-test of a difference of two proportions.

3.2 Analyze the balancing property of complete randomization and Wei's urn design
(a = 0, (3 = 1) theoretically using the normal approximations given in equations
(3.1) and (3.16). For imbalances Pr(\Dn\/n > r/n), and r/n = 0.05,0.10,0.20,
graph the probability of imbalance versus sample size (for n = 1 to 100) with
graphics software. Superimpose the three curves (for the three values of r/n) for
each procedure. Interpret and compare results with Table 3.4.

3.3 Derive equations (3.6) and (3.7).

3.4 Derive the solution to the steady-state equations for Efron's biased coin design,
given in equations (3.12).
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4
Balancing on Known

Covariates

4.1 INTRODUCTION

Chapter 1 pointed out the likelihood of confounders in biomedical studies. In any
clinical trial, there are covariates or prognostic factors of interest besides the treat-
ment effect. Some covariates are known in advance to be important risk factors
that are associated with the outcome of a patient. For instance, in trials of heart
disease, relevant covariates may be cholesterol, blood pressure, age, or gender. In a
randomized study, the objective is to equalize the distribution of such factors within
each treatment group so as to minimize biases due to covariate imbalances. The most
common covariate causing such concern in multi-center clinical trials is the clini-
cal center, since clinics usually differ with respect to the demographic and clinical
characteristics of their patient populations, and adherence to the protocol and various
procedures. Thus an imbalance in the numbers randomized to each group within a
clinic, such as 60% to A in clinic 1 and 30% to A in clinic 2, may bias the results of
the study. The goal is to balance allocation of treatments within each clinic. By so
doing, the distribution of the covariate (clinic in this case) is equalized within each
treatment group. Other covariates often known in advance to be important include
gender, age, race, and medical baseline measurements important in the assessment
of the disease.

Although randomization tends to mitigate the possibility of serious covariate
imbalances among the treatment groups, it is not unusual for imbalances to occur
in practice. In this event, stratified analyses or regression modelling can be used
to adjust for important covariates in a post hoc analysis. Another alternative is to
implement a design that ensures balance on specified covariates in the trial. In this

53
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chapter we discuss randomization techniques that tend to balance treatments within
the discrete levels, or strata, of known covariates. We describe the relative merits
of stratified randomization. We then describe other approaches that are designed to
systematically control or prevent covariate imbalances.

4.2 STRATIFIED RANDOMIZATION

In a randomized study, stratification has interchangeably been used to refer to either
a stratified randomization (often termed pre-stratification), or a stratified-adjusted
analysis (often termed post-stratification) with or without a stratified randomization.
To avoid ambiguity, the distinction is drawn between a stratified randomization and
a stratified-adjusted analysis, each as described below.

In a stratified randomization (pre-stratification), subjects are grouped according
to covariate values prior to randomization, and subjects are then randomized within
strata. Within each stratum, a separate randomization sequence is employed. For
example, consider a study stratified by clinic (say 5 in number) and gender, with
10 total strata defined jointly by the covariates clinic with 5 categories and gender
with 2. In this case, a separate randomization sequence would be employed for each
gender and for each clinic, 10 sequences in all. A female subject recruited by clinic
3 would be randomized using the "clinic 3 and female" randomization sequence. If
a restricted randomization sequence is employed, such as an urn design, then the
probability of assignment of this subject would depend only on the number of prior
assignments to A and B among females recruited by clinic 3, and not on the prior
treatment assignments to males recruited by clinic 3, nor on the prior assignments to
males or females recruited by other clinics. In this case, the randomization sequences
within the 10 strata would be accomplished by using 10 separate urns.

Stratification is also used to refer to post-randomization stratification in the analysis
whereby the subjects are grouped within strata or subgroups according to one or more
patient characteristics. In the above example, the analysis might be performed using
the 10 strata defined on the joint basis of the covariates "clinic" and "gender". The
first stage of the analysis is to compare treatments A versus B separately within each
strata. This is also called a subgroup analysis. In the second stage, various methods
might then be used to perform a combined test, by pooling the results of all the strata
or subgroups in some way, so as to provide an aggregate test over strata or subgroups.

For the above example of a randomization stratified by clinic and gender, consider
the simplest case of two treatment groups A versus B and a binary response (e.g.
"healed" versus "not healed"). Within each clinic-gender stratum, a 2 x 2 table can
be formed to assess the treatment-response association within that stratum, expressed
as an odds ratio. To then assess the aggregate treatment-response association over
all 10 strata combined, the Mantel-Haenszel procedure could be applied. This
provides a stratified-adjusted estimate of the common odds ratio, obtained as a linear
combination of the within-strata odds ratios; and an aggregate stratified-adjusted test
of association. The analysis effectively adjusts for the stratum effects since treatments
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A and B are compared within strata and then the results are combined over strata [cf.
Lachin (2000)].

An alternate strategy is to simply combine patients and responses over all strata
into a single 2 x 2 table for which A and B are then compared in a single analysis,
ignoring any strata, even those used as a basis for a stratified randomization. In this
case, the stratified randomization is effectively ignored in the analysis. This pooled
analysis is also called a combined, unstratified, or unadjusted analysis.

Note that a stratified-adjusted analysis can be performed for any groupings of
subjects regardless of whether the randomization was stratified according to those
groupings. Conversely, an unstratified analysis can be performed, even though the
randomization may have been stratified by other factors. Thus an initial consideration
might be the relative efficiency of a stratified-adjusted analysis with a stratified
versus non-stratified randomization, and the relative efficiency of a stratified versus
unstratified analysis of a study that employed stratified randomization. These will be
explored in detail in Chapter 8.

The gains from stratification were early recognized in sample surveys where it
was shown that a stratified analysis improves the precision of estimators. However,
it is principally the stratified analysis which eliminates bias, for which a stratified
randomization is not necessary. Thus, it should not be surprising that a stratified
randomization tends to improve the efficiency of estimators and power of tests in a
small trial, say for n < 100, but has negligible advantage in large trials. This issue
has been discussed by various authors using various models.

Stratification is often considered to be an essential feature of randomization (cf.
Zelen (1974)), but there has been significant controversy as to the relative statistical
merits of stratified randomization versus a stratified analysis following unstratified
randomization. With unstratified randomization, the probability of covariate imbal-
ances decreases as the sample size increases and is usually of little consequence.
Also, for moderate to large sample sizes, unstratified randomization affords slightly
less statistical power than does stratified randomization, but the difference is negligi-
ble. The main consideration is that a stratified analysis, not a stratified randomization,
adjusts for any bias due to a covariate imbalance. Thus, it is often recommended
that the randomization for a clinical trial should be stratified only on those factors
considered absolutely necessary to ensure the integrity of the study [cf. Friedman,
Furburg and DeMets (1985), Peto, Pike, Armitage, et al. (1976)].

In many studies, differences among clinics are the major source of heterogeneity
in the outcome measures. Further, since a clinic frequently may withdraw (or be
dropped) from a study, it is desirable that such withdrawal should not affect the
validity of the overall randomization plan. For these reasons, it is also generally
advocated that randomization in a multi-center trial should be stratified by clinic.
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4.3 TREATMENT IMBALANCES IN STRATIFIED TRIALS

A common misconception is that stratified randomization promotes greater balance
between the numbers of treatment assignments to A and B within each stratum and
thus overall. Unfortunately, this is not always so.

Since some randomization procedures, including complete randomization, Efron's
biased coin design, and Wei's urn, do not force balance between treatments (except
asymptotically), there is a positive probability that imbalances will occur within indi-
vidual strata when stratified randomization is performed. Let NiA be the number of
patients assigned to treatment A in stratum i, i = 1,..., s Then NA (n) — S8

i=1 NiA.
Asymptotically, N A ( n ) should be approximately n/2. However, for finite samples,
with a large number of small strata, imbalances are additive across strata, and can
result in an overall imbalance of some significance. This is less likely to occur when
there are small numbers of large strata.

Often a permuted block design is used within each stratum to ensure balance.
This is called stratified blocked randomization. With the random allocation rule or
permuted block design, there is no imbalance within strata or in aggregate as long as
all blocks are filled. However, if some blocks are not filled, a treatment imbalance can
occur. Since an unstratified randomization risks at most one unfilled block, whereas
a s-strata randomization risks at most s unfilled blocks, the probability of a treatment
imbalance is greater in a clinical trial with stratified randomization.

In stratified blocked randomization, one must be careful to limit the stratification
variables and the number of strata within each to a minimum, representing only the
most important variables and levels. For instance, in a multi-center trial with 15
participating institutions, stratifying by clinic, gender, race (3 levels), and age (2
levels) leads to 1 5 x 2 x 3 x 2 = 180 strata. Unless the trial is extremely large, some
strata will have very few patients.

Hallstrom and Davis (1988) describe the probability of aggregate imbalances in a
trial when using stratified blocked randomization. Suppose n patients are assigned
with equal probability to treatments A and B, within s strata. Each of the s strata are
balanced by using permuted blocks, and the block size in the ith stratum is bi, i =
1,..., s. Let Ni be the number of patients assigned in the last block of stratum i, and Ai
be the number assigned to treatment A, 1 < Ai < Ni < b*. Define D{ = Nt - 2Ai
to be the imbalance in the ith stratum. Conditional on Ni, Ai has a hypergeometric
distribution, with expectation JVj/2 and variance Ni(bi — JVt)/4(6j - 1). Then
E(Di\Ni) = 0 and E(Di) = 0. We can then derive

(see Problem 4.1). Summing over independent strata, the total imbalance in the trial
is given by
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Using equation (4.1), we can determine the effect of block size and the number of
strata on the variability of D, provided we have some information on the distribution
of Ni. Hallstrom and Davis (1988) consider two models. The first model assumes that
the expected number of patients in each stratum is large relative to the block size. In
this case, it is reasonable to assume that N{ follows a discrete uniform distribution on
the support {!,...,&,}. ThenE(Ni) = (bi + l)/2andE(N?) = (6i + l)(26i + l)/6.
From (4.1), we can compute Var(.Dt-) — (&,- + l)/6. So, under the uniform model,
we have

The normal approximation can be used to compute

for various values of 6j. Such an exercise is useful in planning studies.
For example (see Hallstrom and Davis (1988, p. 378)), the Cardiac Arrhythmia

Suppression Trial (CAST) was planned with a total of 4200 patients and 270 strata.
Using equation (4.2) with b{ = 4, we find that Var(D) = 225. Then by equation
(4.3), we can compute Pr(|D| > 30) = 0.05. Such a difference is small compared
to the number of patients, and would not be of concern. The maximum imbalance is
££i&</2 = 540.

One can perform similar analyses if Wei's urn is used instead of a permuted block
design, using asymptotic formulas for the variance of an imbalance given in Section
3.7.

4.4 COVARIATE-ADAPTIVE RANDOMIZATION

In the previous sections, we have assumed that a set of s strata is defined on the
basis of one or more covariates and a separate randomization is performed within
each stratum. An entirely different approach would be to determine the treatment
assignment of a new subject to minimize the covariate imbalances within treatment
groups. This approach has been called adaptive stratification or covariate-adaptive
randomization.

4.4.1 Zelen's rule

Zelen's (1974) rule uses a pre-assigned randomization sequence (which could be gen-
erated by complete randomization or some restricted randomization design) ignoring
strata. Let A^j-(n) be the number of patients in stratum % — 1,..., S on treatment
k = 1,2 (1 = A, 2 = B). When patient n +1 in stratum i is ready to be randomized,
one computes Di(n] — Nn(n) - -/Vi2(n). For an integer c, if |^t(n)| < c, then
the patient is randomized according to schedule, otherwise, the patient receives the
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opposite treatment. Zelen proposes c = 2,3, or 4. He also proposes randomizing the
value of c for each new patient.

4.4.2 The Pocock-Simon procedure

In a similar vein to Zelen's rule, Pocock and Simon (1975) proposed a covariate-
adaptive randomization procedure. Let Nijk(n),i = l,...,/,j = l , . . . ,nj , fc =
1,2(1 = A, 2 = B), be the number of patients in stratum j of covariate i on treatment

k after n patients have been randomized. (In our previous notation, n»=i ni = s lf>
the total number of strata in the trial.) Suppose the (n + l)th patient to be randomized
is a member of strata TI,..., r/ of covariates 1,...,/. Again, we define D to be a
difference metric; in this case, let Di(ri) = Nirii(ri) - Niri2(n). We then take a
sum over weighted strata defined by D(n) — £)£=! WiDi(ri), where wi are weights
chosen depending on which covariates are deemed of greater importance. If D (n) is
less than 1/2, then the weighted difference measure indicates that B has been favored
thus far for that set, r\,..., r/, of strata and the patient n + 1 should be assigned with
higher probability to treatment A, and vice-versa, if D(n) is greater than 1/2. Pocock
and Simon suggest biasing a coin with

and implementing the following rule: if D(ri) < 1/2, assign the next patient to
treatment A with probability p; if D(n) > 1/2, assign the next patient to treatment
A with probability 1 — p; and if D(ri) = 1/2, assign the next patient to treatment A
with probability 1/2, where c* G [1/2,1].

Note that if c* = 1, we have a rule very similar to Efron's biased coin design of
Section 3.6. If c* — 2, we have the deterministic minimization method proposed by
Taves (1974) (see also Simon (1979)). Many other rules could be considered, all
derivatives of Zelen's rule and Taves's minimization method with a biased coin twist
to give added randomization; Efron (1980) describes one such rule and applies it to
a clinical trial in ovarian cancer.

Pocock and Simon generalize their covariate-adaptive randomization procedure
for more than two treatments by considering a general metric -D*(n), k = 1,..., K,
which could be the standard deviation of the Nirik(ny?>, and a weighted sum
Dk(n] = X)j=i WiD^(n). The £>fc's are then ordered from smallest to largest,
and a corresponding set of probabilities p\ > P2 > • • • > PK is determined such that
ZlfcLi Pk — 1- The value p&, k = 1,..., K, is then the probability that patient n + 1
with strata ri,..., r/ will be assigned to treatment k. Pocock and Simon suggest the
following functional form:

Note that (4.5) reduces to (4.4) for K = 2.
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4.4.3 Wei's marginal urn design

Wei (1978) described the use of an urn model for covariate-adaptive randomization.
When the number of covariates is such that the resulting number of strata is large
and the stratum sizes are small, using a separate urn in each stratum can result
in imbalances in treatment assignments within strata. Let ni be the number of
categories for the zth of/ stratification factors considered jointly, such that there are
s — nj=i ni unique strata. Instead of using s urns, one for each unique stratum,
Wei proposed using an urn for each category of each covariate, for a total of Y^i=i ni
urns. For a given new subject with covariate values r (1),..., r(/), the treatment group
imbalances within each of the corresponding urns is examined. The one with the
greatest imbalance is used to generate the treatment assignment. A ball from that urn
is chosen and then replaced. Then (3 balls representing the opposite treatment are
added to the urns corresponding to that patient's covariate values. Wei called this a
marginal urn because it tends to balance treatment assignments within each category
of each covariate marginally, and thus also jointly.

4.5 OPTIMAL DESIGN BASED ON A LINEAR MODEL

The rules of Zelen and Pocock and Simon in the preceding sections are arbitrary
in the sense that they are developed intuitively rather than based on some optimal
criterion. While one can simulate these procedures for different parameter values and
find appropriate designs to fit certain criteria, none of the designs has been shown to
be optimal. Instead of concerns about balance of treatment assignments across strata,
one can take an entirely different approach and find an allocation rule that minimizes
the variance of the estimated treatment effect in the presence of covariates. Such a
rule would necessarily require the specification of a model linking the covariates and
the treatment effect. Begg and Iglewicz (1980) and Atkinson (1982) select a standard
linear regression model. Here we follow Atkinson's development. We begin with
the classical regression model, given by

where the IV s are independent responses with Var(y) — a2! and xi includes a
treatment indicator and selected covariates of interest. Then Var(/3) = a2 ( X ' X ) ~l,
where X'X is the p x p dispersion matrix from n observations.

For the construction of optimal designs, we wish to find the n points of experi-
mentation at which some function is optimized (in our case we will be finding the
optimal sequence of n treatment assignments). The dispersion matrix evaluated at
these n points is given by M(£n) = X'X/n, where £„ is the n-point design. It is
convenient, instead of thinking of n points, to formulate the problem in terms of a
measure £ (which in this case a frequency distribution) over a design region E.

Since an important goal of clinical trials is to estimate a treatment effect, possibly
adjusting for important covariates, Atkinson formulates the optimal design problem
as a design that minimizes, in some sense, the variance of A' ft, where A is an s x p
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matrix of contrasts, s < p. One possible criterion is Sibson's (1974) .D^-optimality
that maximizes

Other criteria could also be applied. Atkinson compares the DA criterion to stan-
dard D-optimality, which maximizes the log determinant of M. Ball, Smith, and
Verdinelli (1993) investigate the Bayesian D-optimality criterion, where a Bayesian
prior distribution is assumed for /3, and the procedure maximizes the expectation
(with respect to the prior distribution) of the log determinant of M.

For any multivariable optimization problem, we compute the directional derivative
of the criterion. In the case of the DA criterion in (4.6), we can derive the directional
(Frechet) derivative as

By the classical equivalence theorem of Kiefer and Wolfowitz (1960), the optimal
design £* that maximizes the criterion (4.6) then satisfies the following equations:

and

[Kiefer and Wolfowitz (1960); see Atkinson and Donev (1992) for further details.]
In the model with covariates, we have

where x\ is the treatment indicator vector and x2 is a vector of important covariates.
In this case, if we are interested in estimating the treatment effect in the presence
of covariates, A1 = [A( : 0] with AI identifying the treatment differences. This
formulation can be simplified with two treatments, but the optimal design that satisfies
(4.7) and (4.8) must be determined numerically.

Such a design is optimal for estimating linear contrasts of {3, but the solution will
provide only an allocation ratio on each of K treatments, without incorporating the
sequential nature of a clinical trial. Assume n patients have already been allocated,
and the resulting n-point design is given by £„. Atkinson proposes a sequential
design which allocates the (n + l)th patient to the treatment k = 1,..., K for which
d.A(k, fn) is a maximum. However this design is deterministic.

In order to randomize the allocation, Atkinson suggests biasing a coin with prob-
abilities
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and allocating to treatment k with the corresponding probability. With two treatments,
k = 1,2 (1 = A, 2 = B), we have s = 1, A' = [-1,1], and the probability of
assigning treatment A is given by

With no covariates in the model, the model becomes E(Y) = /?&, k — 1,2, and the
equations in (4.7) and (4.8) can be solved analytically. We can write (4.10) as

where NA(U} and NB(H) are the numbers of patients assigned to treatments A and
B, respectively, through n patients (Problem 4.4). Note that this is the design in
equation (3.19) with p = 2. In a similar vein, Ball, Smith, and Verdinelli (1993) and
Atkinson (1998a) investigate Bayesian optimality criteria.

Atkinson (1998b, 1999) compares his rule in (4.9) to Efron's biased coin, complete
randomization, and stratified blocked randomization in terms of the variance of the
estimated treatment effect by simulating four independent normal covariates and four
correlated normal covariates. He concludes that the less randomized the design, the
smaller the variance, but the greater the potential biases.

While Atkinson's approach has the advantage of incorporating a formal optimality
criterion in the problem of randomizing in the presence of important covariates, it
has several disadvantages. First, he relies on a linear model deals with continuous
homogeneous responses, whereas many clinical trials deal with binary or surival
endpoints. However, transformations can be a useful tool in establishing approxi-
mately normal responses. If not, his results are likely to be applicable for generalized
linear models as well, although this has not been addressed formally, as far as we
know. Second, the algorithm is computationally intensive when dealing with several
covariates. Finally, Atkinson's approach is concerned with minimizing the variance
of treatment contrasts in the presence of important covariates. This is not the same
goal as balancing over covariates to mitigate biases. An interesting dialog on the
relative importance of these goals can be found in the discussion following Atkinson
(1999).

4.6 CONCLUSIONS

Stratified blocked randomization has become quite popular in today's randomized
clinical trials. However, one should be aware that such designs can, in some cases,
result in treatment imbalances in the trial, due to incomplete blocks in some strata.
Stratification can also quickly become overwhelming if there are many important
covariates in the trial. Consequently, covariate-adaptive randomization procedures
have been proposed, which are variants on Efron's biased coin design. Adaptive strat-
ification is used to ensure balance without requiring separate randomization within
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prespecified strata. However, such designs are largely ad hoc and have numerous
parameters that must be specified. Simulation is a good tool to investigate the re-
lationship of these parameters to potential biases (see Problem 4.3). Alternatively,
one could employ Atkinson's optimal design approach if there is time to implement
numerical optimization procedures. However, the optimal design approach relies on
a specific linear model which may not be appropriate for some trials, and the goal
of the procedure is to minimize the variance of the treatment effect estimator in the
presence of covariates, rather than to balance over known covariates.

4.7 PROBLEMS

4.1 Derive equation (4.1).

4.2 Refer to the CAST example in Section 4.3. Suppose each clinic contains four
hospitals, so that the number of strata becomes 270 x 4 = 1080. Determine the
probability than an imbalance greater than 30 will result and the maximum possible
imbalance assuming that Ni is uniform. Comment on the appropriateness of stratified
blocks in this setting (Hallstrom and Davis, 1988).

43 Suppose you are planning a clinical trial with n = 2400 patients to be randomized
in 12 clinical centers. Assume the probability that a sequentially entered patient is
randomized in a particular clinical center is 1/12 for each center. Simulate the
balancing property D = 2JV^(n) - n for the following randomization procedures:
(0 permuted blocks with 6, = 10 in each stratum;
(«) Zelen's rule with c = 2;
(iif) The Pocock-Simon procedure with c* = 0.50,0.75,1.00.
a. Which method is better in terms of E(D) and Var(D)?
b. How does the value of c affect the covariate-adaptive procedure?
c. Compute Var(D) using equation (4.2). How does it compare to the simulated
value?
d. Suppose three clinics are poor recruiters, and the probability that a patient is
recruited in clinics 1, 2, or 3 is 1/30 in each and 1/10 in each of clinics 4,..., 12.
How do the results change?

4.4 Derive equation (4.11).
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5
The Effects of Unobserved

Covariates

5.1 INTRODUCTION

In Chapter 4, we stressed the importance of advance planning in mitigating the effects
of certain known covariates that influence the primary outcome. However, the human
physiology is so complex that it is simply impossible to identify every covariate that
may be related to treatment outcome. One can certainly adjust for any covariates
collected during the clinical trial in a post-hoc analysis, but it is likely that some
important covariates may not have been collected. This is one of the great benefits
of randomization: randomization tends to balance treatment assignments on these
unknown covariates.

Some statisticians have argued that randomization is unnecessary. However, a
simple example, adapted from Berry (1989), demonstrates its benefits. Suppose one
wishes to compare the time it takes to drive to work on two different routes. Does
it make a difference in our conclusions if we drive five times consecutively on one
route and then five times consecutively on the other route, or if we flip a coin for
10 days to randomly to select the route? One can quickly respond that, yes, it does
matter, if it snowed the first five days and there was good weather on the latter five
days. Intuitively, it would seem that randomizing the route would make it more likely
to have similar numbers of days of bad weather for both routes. This is the concept
that randomization tends to balance treatment assignments on unknown covariates
that may be related to treatment. This intuition is correct, but only asymptotically.
For small samples, there is still a significant probability that an imbalance will result.
For the extreme case, randomizing the experiment still leads to a probability that one
route is taken only in bad weather of 1/252. Consequently, believers in randomization

65
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will talk only about "mitigating" covariate imbalances. In fact, everyone who has
participated in a randomized clinical trial has witnessed covariate imbalances among
treatment groups, even with carefully conducted randomization and relatively large
numbers of randomized subjects. It can be presumed that such phenomena provide
non-believers with some degree of satisfaction.

In this chapter, we explore some of the theoretical properties of randomization
in mitigating biases from unknown covariates. We begin with simple probability
statements on covariate imbalances and then examine Efron's more sophisticated
model for accidental bias.

5.2 A BOUND ON THE PROBABILITY OF A COVARIATE
IMBALANCE

The simplest method to analyze the probability of a covariate imbalance is to use
Chebyshev's inequality. Suppose 7\,..., Tn are randomly assigned treatment indica-
tors (again T{ = 1 if treatment A and 0 if treatment B) and let Tn - {1\,..., Tn}.
Assume UA = ZlILi Ti ™ fixe^ in advance, and UA = Qn,Q e (0,1). Sup-
pose Z is some covariate of interest, and Zi,...,Zn are independent and identi-
cally distributed with mean p, and variance a1. Then ZA = X)ILi TiZi/riA and
ZB = £)£=! (1 - Ti)Zif(n — HA). A covariate imbalance between treatment groups
would be represented by a tangible difference between ZA and ZB. Using a condi-
tioning argument, we can then derive the following:

and

Then by an application of Chebyshev's inequality, for any e > 0,

Note that we have had to assume fixed allocation proportions, which do not
arise from complete randomization. Fixed allocation proportions can be obtained
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from a restricted randomization procedure such as the random allocation rule. The
Chebyshev bound does not work under complete randomization, i.e., Ji,...,Tn ~
i.i.d. 6(p),p € (0,1) (see Problem 5.1.).

5.3 ACCIDENTAL BIAS

The development in Section 5.2 focuses on the probability of a covariate imbalance,
but does not address the effect that such an imbalance may have on the results of
the clinical trial. Efron (1971) introduced the term accidental bias to describe a
measure of the bias in the treatment effect induced by an unobserved covariate.
Consider the normal error linear model, from which we will estimate the treatment
effect by the ordinary least squares method. Here we modify notation from Chapter
3 slightly. Let T — (Ti,...,Tn)' be centered treatment indicators, i.e., TI = 1
if treatment A and TI = —1 if treatment B, i = 1, ...,n. We will assume that
E(T) = 0. (Note that all the randomization procedures in Chapter 3 have this
property.) Let Y — (Y\,..., Yn)' be a vector of responses to treatment. Suppose we
fit a standard normal error regression model, where the mean response, conditional
onT = t = (ii,...,£„)', is given by

where e = (1,1,..., 1)'. Under (5.1), the design matrix is

and hence

Then

However, we have ignored a covariate, z = (zi,...,zn)', that is important in the
model. Without loss of generality, assume z'e = 0 and z'z = 1. Then the correctly
specified model is given by

Taking the expectation with respect to Y when model (5.2) is correct, we obtain



68 THE EFFECTS OF UNOBSERVED COVARIATES

The squared bias term is then given by

It is clear that we should desire e't = 0, or that the treatment assignments be
balanced to minimize accidental bias. If that is accomplished, the degree to which
we are subject to accidental bias is controlled by the term (z't)2, which is zero if
z is orthogonal to t. Since t is a realization of T, we can obtain the unconditional
expectation, by taking E(z'T)2 for a fixed vector z, and we obtain

where ET = Var(T). By a result of Rao (1973, p. 62), z'ETz cannot exceed
the maximum eigenvalue of ET, and the inequality is sharp if the corresponding
eigenvector is orthogonal to e. So Efron uses the maximum eigenvalue of ET as a
criterion to define the degree to which a randomization procedure is subject to acci-
dental bias. This yields a minimax criterion when used as the basis for determining
a randomization procedure Ti,..., Tn that minimizes the maximum possible value of
z'ETz.

5.4 MAXIMUM EIGENVALUE OF ET

Note that, for complete randomization, ET = /, and hence the maximum eigenvalue
is one. This is the smallest possible value for the maximum eigenvalue of ET (see
Problem 5.2). For restricted randomization, it is usually not a trivial exercise to
derive the variance-covariance structure of the treatment assignments. In Chapter
3, we were able to derive the covariances for the random allocation rule and the
truncated binomial design. We will now explore the behavior of the maximum
eigenvalue, denoted Amax, for these two designs.

For the random allocation rule, we have from (3.4) that cov (7}, Tj) — -1 / (n -1)
(the factor 4 in the denominator disappears when the treatment assignments are 1 and
—1), sothatETisoftheforma/+6J, wherea = l + l/(n — l)and& = -l/(n —1).
Then we can derive

So as n -> oo, the accidental bias becomes negligibly small compared to complete
randomization. From this result we also obtain the maximum eigenvalue for the
random allocation rule within a permuted block of size m = n/M as

(Problem 5.3).
The truncated binomial design is far more complicated. From (3.10), we have

cov(Ti,Tj) = Pr(r < «), and the probability statement involves the truncated
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negative binomial distribution in (3.11). For n even, define H(k) = £)j=i Pr(r —
n/2 4-1 — 1). Since cov(Ti, 7}) — 0 if i < (n + 2)/2, we can write the variance-
covariance matrix in a block structure:

where C is an n/2 x n/2 matrix with elements (1 - 6ij)H(mm(i,j)) + Sij (% is
the Kronecker delta). Rosenberger and Rukhin (2002) then prove that

so that \max grows like n1/2. It is the determinism of the tail sequence that induces
correlations that drive the accidental bias to infinity as n —> oo. Consequently, the
truncated binomial design is not protective against accidental bias.

5.5 ACCIDENTAL BIAS FOR THE BIASED COIN DESIGNS

The computation of the exact variance-covariance structure for Efron's (1971) biased
coin design and its generalizations is not feasible. For his biased coin design, Efron
examined the sequence Tft+i,..., T^+n, where h and n tend to infinity and computed
the autocovariance function

From graphical evidence, he conjectured that the maximum eigenvalue of this long-
range variance-covariance structure is \max = 1 + (2p - I)2. Steele (1980) later
proved the result formally. When p = 2/3, for example, the degree of accidental bias
is 10/9, equivalent to that of the permuted block design with m = 10.

Smith (1984) shows that Efron's solution may be unsatisfactory when there are
short-range dependencies in the data. Consider the case where the covariate vector
is given by z\ = 2"1/2, z% = -2"1/2, and z3,..., zn = 0. Then, for the biased coin
design,

(Problem 5.4). Hence, certain choices of z can behave far worse than Efron's solution
ignoring short-range dependencies would suggest.

Smith performs a formal spectral analysis of the generalized biased coin design,
given in (3.19), assuming that zi,...,zn form a weakly stationary process. He
concludes that the vulnerability to accidental bias is of the order

When p = 1, we have Wei's urn design, and (5.4) reduces to

These values are tabulated for various values of n in Table 5.1.
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Table 5.1 Accidental bias for Wei's urn design (UD), ignoring terms ofO(n l ),/or various
values ofn.

n Bias

25 1.09
50 1.05
100 1.03
200 1.02
400 1.00

5.6 SIMULATION RESULTS

The above model, first proposed by Efron, provides theoretical results which describe
the maximum susceptibility of a randomization procedure to accidental covariate
imbalances. However, this is a "worst case" model, which may not describe the
relative properties of each randomization procedure in practice. To explore the
practical susceptibility to covariate imbalances, we simulated the probability of a
covariate imbalance for various randomization procedures.

For n = 100, let Z\,..., Zn be covariate values with mean ZA on treatment A and
ZB on treatment B. We computed the probabilities

fore = 0.5 and 1.0, where Zi,..., Zn are (1) independently and identically distributed
as ]V(0,1); (2) subject to a drift over time, ranging from -2 to 2 plus a N(0,1)
random variable; and (3) autocorrelated. Under model (1), the standard error of
the mean difference is 0.20 with perfect balance, larger with an imbalance. Each
simulation involved 10,000 replications. For randomization sequences, we used
complete randomization (CR), random allocation rule (RAR), truncated binomial
design (TBD), permuted blocks with m = 10 using the random allocation rule
within blocks (PB-RAR) and the truncated binomial design within blocks (PB-TBD),
Efron's biased coin design with p = 2/3 (BCD), and Wei's urn design £/.D(0,1)
(UD). Results are shown in Table 5.2.

It is clear that for a simple stream of independent and identically distributed contin-
uous covariate values, there is very little probability of a covariate imbalance, as seen
theoretically in Section 5.2. However, the probability increases dramatically when
we have a drift in covariate values or autocorrelation. In either case, the truncated
binomial design results in the most drastic covariate imbalances, particularly when
there is a linear drift, with nearly three times the probability of a covariate imbalance
with e = 0.5. This matches the theory well. When there is a covariate drift, one can
see that blocking minimizes the probability of an imbalance, while the biased coin is
nearly as good. Wei's urn design is not quite as good as the biased coin design, but
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Table 5.2 Simulated probabilities of a covariate imbalance for three different types of co-
variate streams, n = 100, 10,000 replications.

Random! zatic

Zi,...,2

CR
RAR
TBD
PB-RAR
PB-TBD
BCD
UD

Covarial

CR
RAR
TBD
PB-RAR
PB-TBD
BCD
UD

Covariate moi

CR
RAR
TBD
PB-RAR
PB-TBD
BCD
nn

m Pr(\ZA-

e = 0.5

rn ~ i.i.d. N\

0.0123
0.0115
0.0109
0.0129
0.0117
0.0109
0.0119

te model with

0.1020
0.1090
0.2880
0.0129
0.0124
0.0264
0.0563

del with auto*

0.0795
0.0790
0.0890
0.0642
0.0804
0.0652
n fY7fU

ZB\>e}

€-1.0

(0,1)

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

drift

0.0011
0.0010
0.0269
0.0000
0.0000
0.0001
0.0002

correlation

0.0005
0.0005
0.0007
0.0004
0.0005
0.0004
nnnm

the differences are negligible. We can also note that the probability of a covariate
imbalance for the permuted block design are nearly identical whether the random
allocation rule or the truncated binomial design were used.



72 THE EFFECTS OF UNOBSERVED COVARIATES

5.7 CONCLUSIONS

While accidental imbalances on covariates, either known or unknown, is a con-
cern, Efron's model describes the potential for severe imbalances. Since a restricted
randomization procedure aimed at achieving balance increases the likelihood of peri-
odicity in the sequence of assignments, it also increases the likelihood of periodicity
in the sequence of covariate values which resonates with the treatment assignments,
resulting in a covariate imbalance. Such situations, however, are extremely rare. In
practice it is unlikely that there is a substantial difference in the likelihood of co-
variate imbalances with any of the restricted procedures considered herein when the
sequence of covariate values can be viewed as being drawn from some homogeneous
population, perhaps with drift or autocorrelation. The one exception is the truncated
binomial design which can result in severe imbalances.

Whether to force balance on known covariates using some form of covariate-
adaptive randomization (as discussed in Chapter 4) or to allow the randomization
procedure to achieve balancing on its own has been a source of contention among
clinical trialists. With respect to a non-randomized covariate-adaptive procedure
such as Taves's minimization method, Rosenbaum (1995) takes the view that using
such a design to balance on known covariates does not ensure that other unmeasured
variables would be similarly balanced. Aickin (2001) takes the view that such
nonrandomized covariate-adaptive procedures are acceptable because (i) as noted
by Taves (1974), the procedure still incorporates a stochastic element, since the
treatment assignments are random variables determined by the stochastic process of
incoming covariates; (ii) simulation studies show that covariate-adaptive procedures
can improve balance on unknown covariates as well as known covariates; and (iii)
selection bias is not an issue with non-randomized studies provided the investigators
are masked to the allocation procedure and the allocation sequence is produced at a
central core facility.

Our approach is that randomization should be used whenever possible, and
covariate-adaptive randomization, such as the Pocock-Simon procedure, are an attrac-
tive alternative to Taves's minimization method. However, with respect to randomized
covariate-adaptive procedures, to our knowledge, there has been little research done
on the effect of such procedures on the balancing of unknown covariates or their
susceptibility to selection bias.

To conclude, accidental bias does not appear to be a serious problem for any of
the restricted randomization procedures discussed in Chapter 3, with the exception
of the truncated binomial design. Similar balancing results can be achieved using
the random allocation rule, permuted block design, Efron's biased coin design with
p = 2/3, or Wei's urn design.

5.8 PROBLEMS

5.1 As in Section 5.2, assume that Z\,..., Zn are independent and identically dis-
tributed random variables with mean p, and variance a2. Let Ti,..., Tn be independent
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and identically distributed Bernoulli random variables with parameterp £ (0,1). Use
Chebyshev's inequality to show that

which does not tend to zero.

5.2 Show that 1 is the smallest possible value for the maximum eigenvalue of ET
whenTj = 1 or —1.

53 a. Show that the variance-covariance matrix for treatment allocation in permuted
block randomization using the random allocation rule (within a block i of size
m = n/M) is given by a block diagonal matrix with diagonal elements

where I is the identity matrix and J is a matrix of 1's.
b. Show that the maximum eigenvalue of ET is given by

c. Graph the vulnerability to accidental bias versus values of m.

5.4 Prove equation (5.3).
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6
Selection Bias

6.1 INTRODUCTION

Selection bias refers to biases that are introduced into an unmasked study because an
investigator may be able to guess the treatment assignment of future patients based
on knowing the treatments assigned to the past patients. Patients usually enter a trial
sequentially over time. Staggered entry allows the possibility for a study investigator
to alter the composition of the groups by attempting to guess which treatment will
be assigned next. Based on whichever treatment is guessed to be assigned next, the
investigator can then choose the next patient scheduled for randomization to be one
whom the investigator considers to be better suited for that treatment. One of the
principal concerns in an unmasked study is that a study investigator might attempt
to "beat the randomization" and recruit patients in a manner such that each patient
is assigned to whichever treatment group the investigator feels is best suited to that
individual patient.

This type of guessing in an unmasked trial could introduce a bias in the composition
of the treatment groups which in turn could bias the study results. In principle,
randomization is employed to mitigate this bias, and indeed this is a compelling
reason to have randomized clinical trials. But the investigator may still be able to guess
future treatment assignments with high probability, depending on the randomization
procedure employed. As noted in Chapter 3, selection bias arises most frequently
in the context of permuted block designs with fixed block sizes, as some treatment
assignments will necessarily be deterministic to ensure balance within each block.
The unmasking of the sequence of past treatment assignments can allow accurate
prediction of future treatment assignments in the same block.
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Classic scenarios for selection bias are part of the clinical trialist's folklore. An
investigator for a pharmaceutical company, very anxious to see the company's latest
pharmaceutical product succeed, guesses the randomization sequence and randomizes
patients he or she deems more likely to respond positively to the new therapy when he
believes the new therapy to be next in the sequence. A sympathetic nurse coordinator
tries to assign a favorite patient to the new therapy rather than placebo. These
scenarios are likely to be more the result of subconscious preferences than deliberate
dishonesty. Also, any deliberate guessing is likely to be inaccurate, as randomization
procedures can be complicated and the investigator may not understand fully the
subtleties of the particular procedure used. However, as Smith (1984) points out, they
do not have to be right all the time: it is sufficient that they make more right guesses
than wrong guesses. While multi-center trials may make it difficult to determine
what is going on in other centers, stratification within clinical center eliminates this
protection.

The great clinical trialist Chalmers (1990) was convinced that the elimination of
selection bias is the most essential requirement for a good clinical trial. He was
especially concerned that there are too many loopholes in eligibility criteria and
in the rejection of patients during the screening phase, during which the physician
could project his or her doubts to the patients while seeking consent. Even when
the randomization sequences are intended to be masked, it is not unusual for patients
to be unmasked during the course of the trial, due to either adverse events known
to be highly associated with one of the treatments, life-threatening emergencies
requiring unmasking, or distinguishing features of the masked treatment, such as
taste. Regardless of how it arises, selection bias results in inflated type I error rates
(Proschan, 1994; Berger and Exner, 1999).

In this chapter, we examine a simple model for susceptibility to selection bias,
developed by Blackwell and Hodges (1957), for randomization procedures that are
intended to promote balance, such as the random allocation rule and Wei's urn design.
We then adjust their model slightly, using Smith's (1984) suggestion, to explore the
probability of selection bias for generalized biased coin designs. The model assumes
that the investigator will guess the randomization sequence and attempt to put each
patient on the treatment that he or she believes is better for that patient.

6.2 THE BLACKWELL-HODGES MODEL

The Blackwell-Hodges model for selection bias assumes that random treatment as-
signment is independent of the patient characteristics and responses, meaning that
an adaptive procedure is not employed. Suppose the primary outcome of a trial is a
random variable Y, and the null hypothesis is true; that is, E(Y\A) = E(Y\B) = p,.
The experimenter wishes to bias the study by selecting a patient with a higher value
of E(Y) when he guesses that A is the next treatment, designated as the guess a,
and a lower value of E(Y) when he guesses that B is the next treatment, designated
as the guess b. Let E(Y\a) — p, + A be the expected value of the response when
the experimenter guesses a and let E(Y\b) = n — A be the expected value of the
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Fig. 6.1 The Blackwell-Hodges model for selection bias.

response when the experimenter guesses 6. Of course, the experimenter's guess may
be wrong. The accuracy of guessing is described by the parameters (a,/?), which
represent the probabilities of correct guesses of treatment A and B, respectively. For
illustration, assume that n is even, and the number assigned to each treatment is fixed
at n/2 (the model will also apply when the limiting proportions are 1/2). Then the
expected numbers of guesses, and the expected values of each, are represented in
Figure 6.1.

Let G be the total number of correct guesses, and let YA and Yjg be the treatment
group means among those randomized to A and B, respectively. Then from Figure
6.1, the expected number of correct guesses is E(G) = (a + 0)n/2. The possible
bias introduced by correct guesses is represented by the expected treatment group
means among those randomized to each treatment. These are

Then the expected treatment difference is given by

In (6.1), the investigator's bias 2A is the quantity introduced by attempts to beat the
randomization. If A = 0, we have no bias, and hence the investigator cannot bias the
study since there is truly no differential treatment effect between the groups guessed
to be assigned to A and the groups guessed to be assigned to B. The expected bias
factor is the remaining term

If the experimenter guesses completely at random, then a = ft = l/2andjEJ(F) = 0.
These results also apply to unbalanced randomization (Problem 6.1).

Blackwell and Hodges (1957) show that the optimal strategy for the experimenter
upon randomizing the jth patientis to guess treatment A when NA(J-!) < NB (j—1)
and guess treatment B when NA(J — 1) > NB(J - 1). When there is a tie, the
experimenter guesses with equal probability. Blackwell and Hodges call this the
convergence strategy.
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We see from (6.1) that the expected bias factor E(F) for a randomization procedure
where the experimenter employs the convergence strategy can be obtained as follows.
For the jth patient, the experimenter guesses treatment A when NA (j — 1) < NB (j —
1) and guess treatment B when NA (j — 1) > NB (j -1). Among these guesses, now
call a correct guess a hit and an incorrect guess a mm. If NA(J — 1) = NB (j - 1)
(i.e. we have a tie), then the investigator has no basis for a guess and arbitrarily
chooses either A or B systematically. Let H, M, and T denote the total number of
hits, misses, and ties, in an n-patient randomization stream, respectively. For ties, by
chance, T/2 are expected to be guessed correctly. Therefore, from the above,

Since n = E(H + M + T), we have

Equation (6.2) allows us to assess the expected bias factor for any given sequence of
random assignments.

For any double-masked randomization, regardless of the method of treatment
assignment, since NA and NB are unknown to the investigator, the expected number
of correct guesses E(G) is simply n/2, in which case E(F) = 0. The issue,
however, is the potential for selection bias in an unmasked study. With complete
randomization, E(F) = 0 because there is a fixed probability of 1/2 of assignment
to A for all allocations, and thus future random assignments are not in any way
predictable based on past assignments. Thus, complete randomization eliminates the
expected potential for selection bias. However, this is not the case with restricted
randomization procedures which are designed to eliminate or reduce the probability
of treatment imbalances. Such sequences are to some degree predictable, and thus
are subject to selection bias. In the following sections, the precise expressions for
E(F) are presented for various restricted randomization designs.

Stigler (1969) (see also Wei, 1978a) describes the Blackwell-Hodges model in
terms of a minimax strategy: they wish to find a design that minimizes the maximum
risk, as given by E(F). Stigler proposes that, rather than bias the experiment by A on
each trial, assume that the investigator picks a subject with expected response between
^ — A and p, + A. Thus the investigator may choose not to bias the experiment at
all (selecting a subject with expected response /^), or, at worst, choose according
to the Blackwell-Hodges model. Stigler's justification for this more conservative
model is that investigators will tend to be timid in realistic situations. He offers
the proportional convergence strategy to express this timidity. If the investigator
observes, after i trials, jf treatment A assignments and i — j treatment B assignments,
he will then select a subject with expected response
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6.3 SELECTION BIAS FOR THE RANDOM ALLOCATION RULE

We can show that, for the random allocation rule, when the convergence strategy is
employed,

as follows.
Think of the random allocation rule as a random walk on a plane starting at point

(0,0) and terminating at (n/2, n/2), moving one unit to the right when A is chosen
and one unit up when B is chosen. When the walk hits the diagonal, NA = NB, and
the experimenter guesses at random. Away from the diagonal, when the convergence
strategy is employed, the experimenter always guesses that the walk moves toward
the diagonal. Since the walk begins and ends on the diagonal, it follows that the
walk moves toward the diagonal exactly n/2 times. Consequently, the experimenter
is right at least n/2 times. In addition, the experimenter is right, on average, half the
time the walk is on the diagonal. Let T be the number of ties. Then

It remains to find E(T}. The distribution of T was given by Feller (1950), (but
apparently not in later editions):

Using (6.5), one can derive

(Problem 6.2), and (6.4) follows immediately.

6.4 SELECTION BIAS FOR THE TRUNCATED BINOMIAL DESIGN

The truncated binomial design of Chapter 3 was proposed by Blackwell and Hodges
as an alternative to the random allocation rule that would provide less susceptibility
to selection bias. For this design, the optimal strategy is to guess the same treatment
until n/2 of one treatment have been assigned. Then the experimenter should switch
to the treatment arm that has less than n/2 since all future assignments are known
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with certainty. We can use the distribution of the number of deterministic selections
in the tail, X, given (3.5), to determine E(F). Since the total number of correct
guesses under the truncated binomial design is G = (n — X)/2 + X, we therefore
have

Substituting equation (3.6) into (6.7) gives the result

It turns out that, while the results of Chapter 5 show that the truncated binomial
design has a high degree of accidental bias, it always has a smaller value of E(F)
than the random allocation rule, which we now demonstrate (although the random
allocation rule does better than the truncated binomial design when used under
Stigler's (1969) proportional convergence strategy in (6.3)). By (6.4) and (6.8), we
must show that

or, equivalently,

for n > 0, even. For n = 2, one can see that the inequality is sharp. Assume (6.9)
holds. Then we must show

Noting that

the left-hand side of (6.10) is equal to

The first term is < 0 by (6.9). For the second term,
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Fig. 6.2 Expected bias factor for the random allocation rule (RAR) and the truncated bino-
mial design (TBD) across values ofn.

by a similar induction argument.
Figure 6.2 plots the expected bias factor for the random allocation rule (6.4) and

the truncated binomial design (6.8).

6.5 SELECTION BIAS IN A PERMUTED BLOCK DESIGN

It also follows from the above result that the permuted block design will have less
potential for selection bias when allocations are made using a truncated binomial
than when using a random allocation rule. The explicit relationships follow.

6.5.1 Permuted blocks using the random allocation rule

Under the original Blackwell-Hodges model, each of the M blocks in a permuted-
block design has a potential selection bias equal to that of a random allocation rule
of the same size. Thus, from (6.4), the expected bias factor, for a permuted-block
design with M blocks of equal size m — n/M is
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Fig. 6.3 Expected bias factor for the permuted block design with block sizes m = 2,4,6,8,10
for across values ofn.

Comparing (6.11) to (6.4), it follows that the expected bias factor for a permuted
block randomization with M > 1 is always greater than that for the random allocation
rule (where M = 1). For example, if n — 100, then for a random allocation rule
E(F) = 5.78, whereas for a permuted-block design with five blocks of size 20,
E(F) = 11.69.

Figure 6.3 shows the total expected bias factor for increasing n for various block
sizes of m = 2,4,6,8 or 10.

6.5.2 Variable block design

One strategy which has been widely used in an effort to reduce the potential for
selection bias with the permuted-block design is to employ a variable block design
with random block sizes. Unfortunately, this strategy still yields a substantial potential
for selection bias in an unmasked study that is approximately equal to that associated
with the average block size.

In general, for a permuted-block design with possibly unequal block sizes rrii,i =
1,2,...,M, the overall expected selection bias factor is the sum of the individual
block selection biases:



SELECTION BIAS IN A PERMUTED BLOCK DESIGN 83

Since this result applies under the convergent guessing strategy, it is irrelevant whether
the investigator is masked or unmasked to the block sizes, or the sequence of block
sizes.

Thus, the use of random block sizes does not decrease or eliminate the potential for
selection bias. A design employing multiple block sizes has an expected bias factor
equal to the sum of the expected bias factors over all blocks. This will approximately
equal the expected bias factor associated with M blocks of average block size. For
example, the expected bias factor for a sequence where equiprobable random block
sizes of 6 and 10 is approximately the same as that for a common block size of 8.

In order to mitigate selection bias, Berger, Ivanova, and Knoll (2002) describe
an alternative to the variable block design. They eliminate certain sequences from
a fixed block design using a random allocation rule within blocks. Thinking of the
random allocation rule as a random walk on a plane (see Section 6.3), within each
block, they establish a bound on the distance the random walk can take from the
diagonal. The bound is determined by the maximum block size in the variable block
design, were that used. They then eliminate all permutation sequences of m/2 As
and m/2 JBs that exceed this bound, and create a discrete uniform distribution across
the restricted set of sequences. Consequently, there is more balance throughout the
course of the trial, and less predictability than for a variable block design.

6.5.3 Permuted blocks with truncated binomial randomization

An alternative strategy to lessen the susceptibility to selection bias of a permuted
block design is to generate the assignments within each block using a truncated
binomial design. For a permuted-block design with block size m^ which is known
to the investigator, the expected selection bias due to predictions which can be made
with certainty under truncated binomial sampling is the sum of the bias factors for
each block, which from (6.8) yields.

Figure 6.4 compares the expected bias factor across fixed block sizes and n = 100,
using the random allocation rule and the truncated binomial rule. One can see that the
truncated binomial rule results in smaller expected bias than the random allocation
rule when used in permuted blocks.

6.5.4 Conclusions

When using a permuted block design, selection bias can be effectively reduced
by employing the truncated binomial randomization procedure within blocks rather
than the random allocation rule. However, as pointed out in Chapter 5, the risk of
accidental bias is much higher for truncated binomial randomization.

It should be noted that the susceptibility to selection bias under either of these
models arises because patients are randomized as they arrive. Therefore, the potential
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Fig. 6.4 The effect of block size on the expected bias factor for the permuted block design
with n = 100, comparing the random allocation rule (RAR) and the truncated binomial design
TED.

for selection bias is completely eliminated if patients are randomized as a block, rather
than as they arrive for entry. This is known as block-simultaneous randomization. In
many trials this will be feasible, especially with small block sizes.

6.6 SELECTION BIAS FOR EFRON'S BIASED COIN DESIGN

Efron (1981) derived the expected selection bias under the convergence strategy.
Using the notation in Section 3.6, the probability of a correct guess for the nth
allocation is given by

As n -^ oo, we see that

by (3.12), where r = p/(l — p). We can then compute a measure of the asymptotic
expected bias factor in n assignments as
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6.7 WEI'S URN DESIGN

For the urn randomization, UD(a,0), the probability of assignment to treatment
A fluctuates around 1/2 to a degree proportional to the extent of imbalance. Since
NO -»• n/2 as n -^ oo, the degree of fluctuation around 1/2 decreases as n increases.
Thus, future assignments are more predictable early in the sequence of assignments,
and the predictability of assignments decreases as n increases. In turn, the potential
for selection bias increases initially but then converges to an asymptote as n increases.

Wei (1977) derives the expected bias factor for the urn design. The imbalance after
n assignments is Dn = TV^n) - NB(TI). For any value \Dn\ = d, 0 < d < n, the
probability of a correct guess on the (n 4- l)th allocation, conditional on \Dn\ = d,
is denoted

Therefore, unconditionally, the probability of a correct guess on the (n + l)th
assignment is denoted

where E(\Dn\) = Y^d=o dPr(|Dn| = d] can be obtained by the recursive relation-
ship in (3.15). Therefore, the expected bias factor after n assignments for

For comparison, Figure 6.5 presents the expected bias factor for the permuted
block design of block size 2m = 10 using (6.11), the BCD (2/3) (asymptotic) using
(6.12), and the 17.0(0, 1) using (6.13) for n = 50 to 100. The urn design has the least
potential bias.

6.8 GENERALIZED BIASED COIN DESIGNS

Smith (1984a) considers the limiting value of the selection bias for the class of
generalized biased coin designs, given in (3.18), since they do not ensure that exactly
n/2 patients will be assigned to each treatment. His measure of selection bias is
given by

Under this definition, the random allocation rule and truncated binomial designs each
have expected selection bias of order O(n~1/2) (Problem 6.3).
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Fig. 6.5 Expected bias factor for the permuted block design (PBD) with m = 5, the biased
coin design (BCD) withp = 2/3 (asymptotically), and Wei's urn design t/Z)(0, 1).

Using the notation of Section 3.8, the probability of a correct guess for the (j +1) th
patient, using the convergence criterion, is given by

and therefore the expected number of correct guesses minus the expected number of
incorrect guesses in n patients is

Then the expected selection bias is

Smith (1984b) shows that (6.15) is approximately

as n —> oo, where p is defined in (3.19). As with the random allocation rule and the
truncated binomial design, this result is O(n-1/2). Using this result, we can directly
compare generalized biased coin designs for various values of p. For example, when
p = 2, we have approximately 1.55 times the bias of Wei's urn design with a = 0

(P = l).
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6.9 CONTROLLING SELECTION BIAS IN PRACTICE

Berger and Exner (1999) describe several measures that can be taken in a randomized
clinical trial to avoid selection bias. Among these are:

1. Maintain a registry of all screened patients, along with a unique identifier, date and
time of screening, well-documented rationale for enrollment decisions, and baseline
measurements. Having the date and time of screening allows one to determine the
treatment group to which the patient would have been enrolled had he or she been
randomized.

2. If a treatment code is unmasked for a patient before the completion of enrollment
in that patient's block, redefine the block to consist of only those patients enrolled
at the time of the unmasking and cease enrollment to the block. Proceed to the next
block, possibly appending additional blocks to ensure adequate enrollment.

3. Consider excluding from enrollment decisions investigators who evaluate patients.

4. Do not reuse patient numbers for those patients who have dropped out, and do not
bypass new randomization by giving the same treatment to a replacement patient.

We would add that using the truncated binomial design within blocks results in less
chance of selection bias than using the random allocation rule, under the Blackwell-
Hodges model.

Berger and Exner also suggest testing for unobservable selection bias by examin-
ing, within each treatment group, the effect on the response variable of the probability
that a patient receives the active treatment. The latter is computed according to the
patient's position in the block. This approach complements testing for baseline
comparability because it can detect selection bias even when none of the measured
baseline variables is imbalanced. If data are collected on patients screened but not
randomized, then one can study the joint relationship among baseline covariates, the
expected likelihood of a patient to receive the active treatment, and the decision to
randomize a patient or not, using regression techniques. If selection bias is detected
by these methods, one could then perform a between-group analysis including only
those patients for whom selection bias did not compromise the randomization. These
patients include those for whom there was complete allocation concealment and the
likelihood of receiving the active treatment was 0.5.

6.10 PROBLEMS

6.1 Derive the expected bias factor from the Blackwell-Hodges model when there is
fixed unbalanced allocation.

6.2 Derive equation (6.6) from (6.5) (Blackwell and Hodges, 1957).
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63 Use Stirling's formula to show that E(F)/n for the random allocation rule and
truncated binomial design is of order O(n-1/2).

6.4 Plot the expected selection bias, E(F}/n, versusp for Efron's biased coin design.
Is p = 2/3 a reasonable choice?
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7
Randomization as a Basis

for Inference

7.1 INTRODUCTION

In Chapters 4 through 6 we described several types of bias that can result in biomed-
ical studies, and showed how randomization can mitigate these biases. The second
major contribution of randomization is that it can be used as a basis for inference at
the conclusion of the trial. Analyses based on a randomization model are completely
different from traditional analyses using hypotheses tests of population parameters
under the Neyman-Pearson paradigm. In this chapter, we will explore the differ-
ences between the randomization model and the population model. In so doing,
we will develop the principles of randomization-based inference using permutation
tests, originally proposed in the early part of the last century by Fisher (e.g., 1971). A
warning to the reader: the Fisher randomization test has contributed to much contro-
versy in the statistical world over recent years. In fact, Fisher himself was somewhat
contradictory in his later writings on the subject. For an entertaining and heated
debate on the subject, the interested reader is referred to Basu (1980). It should be
clear that the authors of this book support randomization-based inference, and the
reader should be thus informed. We feel that randomization-based inference is a
useful alternative to, or complement to, traditional population model-based methods.

7.2 THE POPULATION MODEL

The most commonly used basis for the development of a statistical test is the concept
of a population model, where it assumed that the sample of patients is representative

89
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of a reference population and that the patient responses to treatment are independent
and identically distributed from a distribution dependent on unknown population
parameters. In the population model, HA and HB patients are randomly sampled
from an infinite population of patients on treatment A and treatment B, respectively.
Then the nt-, i — A, B patient responses (Yn,..., Yjni) can be treated as independent
and identically distributed according to some probability distribution G(y\0i) having
parameter 0;. The population model is shown on the left side of Figure 7.1. Under this
assumed distribution, it is then a direct matter to construct hypothesis tests comparing
the treatment effects, under the Neyman-Pearson lemma, such as

if Oi is a scalar. It can also be vector-valued, such as the case where G is normally
distributed and Oi = (//j,<72). For this example, the t-test is the uniformly most
powerful test of

Many of the standard statistical tests and estimators based on a population model
are developed from the likelihood. We now show that the randomization mechanism
is ancillary to the likelihood based on a population model. Let t^ = (ti,...,tj) and
y(j~) = (yi,..., yj) be the realized treatment assignments and responses from patients
1,..., j, respectively. Let 6 be the parameter of interest. Then the likelihood of the
data after n patients, denoted £„, is given by

Since the responses depend only on the treatment assigned and are independent and
identically distributed under a population model, we have

Also under complete or restricted randomization, the treatment assignments are
independent of patient responses, and consequently of 6 (this will not be the case for
response-adaptive randomization discussed in later chapters). Hence

This likelihood reflects the specific restricted randomization procedure employed
and the resulting dependence of tn on t^n~^. Combining (7.1), (7.2), and (7.3), we
obtain
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Since C(ti\t^~^) is independent of 9, we have

Note that the likelihood in (7.5) is identical to that arising from a non-randomized
design at fixed design points £1, ...,£„, i.e., for any arbitrary sequence of treatment
assignments, including non-random sequences. Consequently, a Bayesian,* or be-
liever in the likelihood principle could use (7.5) to justify an analysis ignoring the
randomization mechanism. It is critical to point out that if we followed this approach
to inference in this book, we could eliminate all chapters on inference, as the particu-
lar randomization procedure used would not matter in our analyses. Any biostatistics
textbook would then cover the necessary population-based tests for clinical trials.

Unfortunately, clinical trials do not employ samples of patients that are drawn
at random from infinitely large populations of patients on treatment A or treatment
B. In fact, there may be no patients at all on treatment A or B to sample from,
if the treatments are experimental. Rather, patients are recruited into a clinical
trial from various sources by a nonrandom selection of clinics in a nonrandom
selection of locations. Clinics are selected because of their expertise, their ability to
recruit patients, and their budgetary requirements. From these clinics, a nonrandom
selection of eligible and consenting patients is performed, and these patients are then
randomized to either treatment A or treatment B.

Nevertheless, it has been argued that these samples of HA and UB patients each
are, in fact, representative of some larger undefined patient populations, even though
they were not truly sampled at random. Arguing in this way, a population model can
then be invoked as the basis for data analysis, with the assumption that Y^- ~ G(y \ QI ).
The invoked population model is shown on the right side of Figure 7.1. It is important
to note that in performing the simplest f-test following a randomized clinical trial, a
population model is being invoked.

Even if one could justify an invoked population model, we have discussed only
homogeneous population models, where each patient is assumed to have the same
underlying response distribution, depending only on the treatment assigned. Usually,
the characteristics vary according to some underlying characteristics, or vary over
time. Therefore, even if patient selection for a trial could be viewed as representative
sampling from an unspecified population, often the population would have to be
viewed as heterogeneous. In the case of time-heterogeneity, the underlying popu-
lation model would likely have to incorporate changes over time in some unknown
manner.

*The Bayesian view on randomization is considerably more complex than this sentence suggests. The
role of randomization in Bayesian inference will not be discussed in this book. Some excellent references
are Rubin (1978) and Kadane and Seidenfeld (1990).
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Fig. 7.1 The population model versus the invoked population model for a clinical trial
(Lachin (1988, p. 295), reprinted with permission of Elsevier Science, Inc.).

In conclusion, as stated by Lachin (1988, p. 296):

The invocation of a population model for the analysis of a clinical trial becomes a matter
of faith that is based upon assumptions that are inherently untestable.

7.3 THE RANDOMIZATION MODEL

As we have seen in Section 7.2, due to the lack of a formal sampling basis, there is
no formal statistical foundation for the application of population models to clinical
trials. The randomization model is presented in Figure 7.2. Fortunately, the use of
randomization provides the basis for an assumption-free statistical test of the equality
of the treatments among the n patients actually enrolled and studied. These are known
as permutation tests or randomization tests.

The null hypothesis of a permutation test is that the assignment of treatment A
versus B had no effect on the responses of the n patients randomized in the study.
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Fig. 7.2 The randomization model for a clinical trial (Lachin( 1988, p. 295), reprinted with
permission of Elsevier Science, Inc.).

This randomization null hypothesis is very different from a null hypothesis under
a population model, which is typically based on the equality of parameters from
known distributions. The essential feature of a permutation test is that, under the
randomization null hypothesis, the set of observed responses is assumed to be a set
of deterministic values that are unaffected by treatment. That is, under the null, each
patient's observed response is what would have been observed regardless of whether
treatment A or B had been assigned. Then the observed difference between the
treatment groups depends only on the way in which the n patients were randomized.
One then selects an appropriate measure of the treatment group difference, or the
treatment effect, which is used as the test statistic. The test statistic is then computed
for all possible permutations of the randomization sequence. One then sums the
probabilities of those randomization sequences whose test statistic values are at least
as extreme as what was observed. This total is then the probability of obtaining
a result at least as extreme as the one that was observed, which, by definition, is
precisely the p-value of the test. A very small p-value (less than some a, say), then
indicates that our observed value is quite extreme compared to the reference set of
other possible randomization sequences, and gives strong evidence to conclude that
there is a difference between treatments. Permutation tests are assumption-free, but
depend explicitly on the particular randomization procedure used.

The simplicity of this approach to inference is often surprising to those rooted
in the formal Neyman-Pearson theory of statistical hypothesis testing, and demands
some comment. In a sense, it is a direct contradiction to statistical hypothesis testing
of a population parameter, because here we treat the outcome variable of interest
as fixed and the treatment assignments (design points) as random; in a population
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model we traditionally treat the variable of interest as random affixed values of the
design points. An easy way to think of this is as follows: patients enter the clinical
trial with their outcome at the end of the trial pre-stamped on their foreheads, but
the outcome is covered. After randomization, the cover is removed and the outcome
noted. The only randomness is in the treatment assigned to the patient. If the null
hypothesis is true, the outcome values should be evenly distributed across the As and
theBs.

Many statisticians have been convinced of the simple logic behind permutation
tests. The following is a quotation attributed to Brillinger, Jones, and Tukey:

If we are content to ask about the simplest null hypothesis, that our treatment has
absolutely no effect in any instance, then the randomization, that must form part of our
design, provides the justification for a randomization analysis of our observed result.
We need only choose a measure of extremeness of result, and learn enough about the
distribution of the result for the observed results held fixed [and] for re-randomizations
varying as is permitted by the specification of the designed process of randomization. If
p percent of the values obtained by calculating as if a random re-randomization had been
made are more extreme than (or equally extreme as) the value associated with the actual
randomization, then p percent is an appropriate measure of the unlikeliness of the actual
result. Under this very tight hypothesis, this calculation is obviously logically sound.
[Report of the Statistical Task Force to the Weather Modification Advisory Board, 1978.]

However, a number of questions immediately arise. First, what measure of ex-
tremeness, or test statistic, should be used? The most general family of permutation
tests is the family of linear rank tests (e.g., Lehmann, 1975). Linear rank tests
are used often in clinical trials, and the family includes such tests as the traditional
Wilcoxon rank-sum test and the logrank test, to name a few. We will focus almost
exclusively on linear rank tests in this book.

Second, which set of permutations of the randomization sequence should be used
for comparison? If we use all possible permutations, the sequences AAAA • • • AA
and BBBB • • • BB are included, and these sequences offer no information about the
differences between treatments. In fact, if we used a randomization procedure that
forces balances between treatments, shouldn't we compare to only those sequences
with n/2 As and n/2 .Bs? We will discuss these first two questions in the next two
sections.

Third, we have not discussed specific alternative hypotheses or error rates. Without
error rates, how can one compute the power of the test? Power can only be determined
under an invoked population model. However power and sample size computations
under a population model, as shown in Section 2.6, must be considered a crude
approximation at best, with measures of variability determined in some sense by
"best guesses". It is not unreasonable, therefore, to base sample size computations in
planning a study on another "best guess" - an invoked population model, while still
relying on a permutation test for analysis.

Fourth, if the analysis of a clinical trial is based on a randomization model that
does not in any way involve the notion of a population, how can results of the trial
be generalized to determine the best care for future patients? Berger (2000) argues
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that the difficulty in generalizing to a target population is a weakness not of the
permutation test, but of the study design. If it were suspected by investigators that
patient experience in a particular clinical trial could not be generalized, there would
be no reason to conduct the clinical trial in the first place. Thus we hope that the
results of a randomized clinical trial will apply to the general population as well as to
the patients in the trial. However, the study design only provides a formal assessment
of the latter, not the former. By ensuring validity of the treatment comparison within
the trial conducted, by limiting bias and ensuring strict adherence to the protocol, it
is more likely that a generalization beyond the trial can be attained.

Lachin (1988) takes the approach that statistical inference in a clinical trial must
be viewed as a two-step process. The first step is to determine whether there is a
difference between treatments A and B among the n patients actually entered into
the trial. The permutation test provides an assumption-free locktight test of this
question. The second step is to ascertain the extent to which the observed results can
be applied to an invoked population: the hypothetical population from which these
n patients arose. For this, it is necessary to invoke a population model. However,
this cannot be done with any statistical formalism. Rather, the only recourse is to
precisely define the eligibility criteria adopted and then to present distributions of
important baseline characteristics in order to describe the hypothetical population
from which the study participants arose. The invoked population model then allows
the construction of point estimates and confidence intervals and tests of the assumed
population parameters.

7.4 PERMUTATION TESTS

The reference set of a permutation test is the set of all permutations of randomization
sequences that are used to evaluate the tail probability p-value in the comparison with
our observed test statistic. An unconditional reference set is the set of all possible
permutations, including those where all n assignments are to only one treatment A
or JB, or n — 1 to only one treatment, etc. This is to be contrasted with a conditional
reference set which includes only those sequences with the same number of treatments
assigned to A and B as were obtained in the particular randomization sequence
employed. Let HA be the observed number of patients assigned to treatment A, i.e.,
the realization of NA(TI). Let fi be the cardinality of the reference set, with Hu and
fic the cardinality of the unconditional and conditional reference sets, respectively.
The unconditional reference set will be substantially larger, having

elements, while the conditional reference set will contain only
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elements. The conditional reference set is traditionally used because it excludes
highly improbable sequences with large imbalances. As we have mentioned, the
unconditional reference set contains two sequences (all As and all Bs) that give no
information at all about treatment differences and many other sequences with large
imbalances that have very little information about treatment differences. Using the
conditional reference set is analogous to the traditional argument for conditioning in
a population model wherein NA(n) is an ancillary statistic which provides no infor-
mation regarding the true treatment difference in the population. In later chapters,
when we discuss response-adaptive randomization, NA (n) is no longer an ancillary
statistic, and the same arguments do not apply.

When the random allocation rule or the truncated binomial design is used, there is
no distinction between the unconditional and conditional reference sets, as we force
NA(TI) = HA = n/2. While the reference sets for the two designs are the same,
the sequences in the reference sets have different probabilities. Also, the conditional
reference set for complete randomization is equivalent to the reference set for the
random allocation rule only on those occasions when we obtain UA = n/2 following
complete randomization.

Let 5 be the test statistic of interest, which can be any measure of the difference
between the treatment groups. Define Si to be the value of 5 for sequence /, / =
!,...,£} and define S0i,8. to be our observed test statistic. Let L record realizations of
particular randomization sequences; L has a probability distribution depending on the
particular randomization procedure employed. Then the p-value of the unconditional
permutation test is given by

and the conditional permutation test is given by

where /(•) is the indicator function.
These p-values are one-sided. One rejects the null hypothesis of no difference

among the treatments for the n patients studied when p < a for some a € (0,1).
The logic of including the observed sequence in the reference set has been argued
extensively for exact tests, and compromises such as the mid p-value, where only half
the probability of the observed sequence is included in the sum, have been suggested.
The discreteness of the p-value becomes less relevant as the sample size becomes
larger. The reader is referred to Agresti (1990) for more details.

7.5 LINEAR RANK TESTS

A special beauty of the permutation test is that any desired measure of a difference
between treatments can be selected, such as difference of means or proportions, etc.
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One need never formally describe the distribution or moments of a test statistic, as
the randomization-based inference is completely determined by a p-value. However,
this presumes that the entire reference set can be enumerated so that the permutation
p-value can be computed. This is a tall order, even with today's computing, for even
moderate sample sizes (see Section 7.8).

The family of linear rank tests is often used as the basis for a permutation test.
Most standard nonparametric tests fall in this family, and these tests tend to have well-
defined asymptotic distributions (see Chapter 14), and hence provide a nonparametric
method for large-sample inference. Let Yi,..., Yn be the outcomes of the n patients
and define a score function djn to be some score of the jth patient out of n patients,
with arithmetic mean an. Let 7}, j — 1,..., n be 1 if patient j was assigned to A and
0 if B. Then the linear rank statistic is given by

The particular linear rank test is determined by the choice of a score function. For
example, if the {%•„} are simple ranks, the linear rank statistic is the well-known
Wilcoxon rank-sum test.

As an illustration, consider a clinical trial of four treatments with observed se-
quence ABBA. Suppose the patient outcomes were YI = 3, Y% = 1, y3 = 4,
>4 = 5. Then the simple ranks are {2,1,3,4}. Under complete randomization, Ta-
ble 7.1 gives a complete enumeration of the unconditional and conditional reference
sets and the associated values of the Wilcoxon rank-sum test. From (7.6), we see that
pu = 1/4 and from (7.7), we see thatpc = 1/3.

Now suppose we were using Wei's UD(Q, 1) design. Now the sequences are
not equiprobable, and the respective probabilities are shown in Table 7.2. Here we
compute pu = 1/4 andpc = 1/4.

For binary response data, one can assign binary scores ajn = 1 or 0. Under a
population model, the resulting linear rank test is algebraically equivalent to the usual
Mantel-Haenszel chi-square test for the 2 x 2 contingency table under a conditional
complete randomization model (see Section 8.2).

For survival data, the logrank test can be obtained using Savage scores (Kalbfleisch
and Prentice, 1980). In the usual notation of survival analysis, TI, ...,rn are the event
times of patients 1,..., n, and in the simplest case of no ties or censoring, we have n
distinct ordered survival times T^), ...,T(n) corresponding to treatment assignments
T( i),..., T(n). Then the linear rank statistic can be written as

where
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Table 7.1 Unconditional and conditional reference sets for computation of the linear rank
test from complete randomization (Lachin (1988, p. 298), reprinted with permission ofElsevier
Science, Inc.).

Unconditional (Ctu — 16)

Sequence (/)

AAAA
AAAB
AABA
AABB
ABAA
ABAB
ABBA
ABBB
BAAA
BAAB
BABA
BABB
BBAA
BBAB
BBBA
BBBB

Pr(L = I)

1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16

Si

0.0
-1.5
-0.5
-2.0

1.5
0.0
1.0

-0.5
0.5

-1.0
0.0

-1.5
2.0
0.5
1.5
0.0

Conditional (fic = 6)

Sequence (/)

AABB
ABAB
ABBA
BAAB
BABA
BBAA

Pr(L - /)

1/6
1/6
1/6
1/6
1/6
1/6

Si

-2.0
0.0
1.0

-1.0
0.0
2.0

which is equivalent to the logrank statistic. We can also write the scores in (7.9) as

where -X"(i),..., X^ are the order statistics from a unit exponential (Prentice, 1978;
Kalbfleisch and Prentice, 1980, p. 79).

With censored data, let Ci,..., Cn be the censoring times and Z>i,..., Dn be the
event times of patients 1,..., n. For the jth patient, we can only observe data pairs
(Yj,6j), where Yj = min(Dj,Cj) and 6j = I(Dj < Cj), where / is the indicator
function. Assume that the censoring mechanism is the same in both treatment groups
and that there are no ties. Let T(I) < T(2) < • • • < T(M) denote the M ordered
distinct event times with Rm the number of study patients at risk just prior to T(m),
m = 1,...,M. Then for the patient with an event at T(m),&/ = landl} = T(m). For
a censored patient, Sj = 0 and T(m) < Yj < r(m+i). Then for the logrank test, the
appropriate scores are given by
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Table 7.2 Unconditional and conditional reference sets for computation of the linear rank
test from the UD(Q, 1) (Wei and Lachin (1988, p. 352), reprinted with permission ofElsevier
Science, Inc.).

Unconditional (fJu = 16)

Sequence (0

AAAA
AAAB
AABA
AABB
ABAA
ABAB
ABBA
ABBB
BAAA
BAAB
BABA
BABB
BBAA
BBAB
BBBA
BBBB

Pr(L = /)

0
0
0
0

1/12
1/6
1/6
1/12
1/12
1/6
1/6
1/12

0
0
0
0

Si

0.0
-1.5
-0.5
-2.0

1.5
0.0
1.0

-0.5
0.5

-1.0
0.0

-1.5
2.0
0.5
1.5
0.0

Conditional (Qc = 6)

Sequence (/)

AABB
ABAB
ABBA
BAAB
BABA
BBAA

Pr(L = 0

0
1/4
1/4
1/4
1/4
0

Si

-2.0
0.0
1.0

-1.0
0.0
2.0

if Sj — 1 and

if 6j = 0. If there are tied event times, the scores are calculated as though there were
no ties, and then each of the patients with tied times is assigned the average of their
scores.

7.6 VARIANCE OF THE LINEAR RANK TEST

The variance of the linear rank test can either be described with respect to the
unconditional reference set or the conditional reference set of permutations. The
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unconditional variance of the linear rank test can be computed directly from (7.8) as

For complete randomization and the random allocation rule, Var(Tj) and cov(Tj, Tj)
do not depend on i or j, and (7.11) reduces to

We can compute this quantity directly from ST. For complete randomization, from
(7.12), we have

For the random allocation rule, using (3.4) and (7.12), we obtain

The truncated binomial design variance is given by

the derivation is left as an exercise. For most other randomization procedures, an
exact form of Var(5) is intractable, such as for Efron's biased coin design and Wei's
urn design because the exact form of ET is unknown.

The conditional variance with respect to the conditional reference set, is defined as
Var(5|NA (n) = HA). Note that cov(Tj, Tj>) is no longer 0 for complete randomiza-
tion. In fact, TJ, j = 1,..., n, are then dependent Bernoulli indicators with parameter
riA/n, so that Var(Tj) = n^n^/n2, where UB = n — HA- To find cov(Ti,Tj), we
compute, for,;' > i,
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Then

Finally we compute

Note that (7.15) reduces to (7.13) when HA = n/2.
It is instructive to compare the variance of the linear rank test under a random-

ization model with the variance that would be obtained under a population model.
For in a population model, one would assume that t\,..., in are deterministic treat-
ment indicators and A\n,..., Ann are independent and identically distributed random
scores. The linear rank test under a population model can then be written as

and

We immediately see that the conditional linear rank test for complete randomization
under a randomization model has a variance (7.15) that is a consistent estimator of
the variance of the linear rank test under a population model, as given in (7.16).
This observation gives more insight into the differences between the randomization
and population models. If, in fact, we can assume that patient response are inde-
pendent and identically distributed, then, at least in very large trials using complete
randomization or the random allocation rule, the variance of the test statistic will be
equivalent under the two models. However, other randomization procedures do not
have this property, and as we have said, the assumption of a homogeneous population
model may not be appropriate.

7.7 OPTIMAL RANK SCORES

In their classic text, Hajek and Siddk (1967) provide a general approach to the
development of a nonparametric test for the comparison of two or more populations.
They show the form of the optimal score generating function when it is desired to test
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the null hypothesis against a location or scale shift when sampling from a specific
distribution. The resulting test is optimal in the sense of maximizing the Fisher's
information in the data, and thus is asymptotically fully efficient. For example, simple
rank (Wilcoxon) scores are optimal to detect a location shift when sampling from
a logistic distribution, while van der Waerden scores (see Problem 7.4) are optimal
for a normal distribution. Likewise, Savage scores are optimal to detect a scale shift
in an exponential distribution. This theory was also used by Peto and Peto (1972)
and by Prentice (1978) to derive the optimal rank scores for censored data under
a proportional hazards and proportional odds alternative, the logrank and modified
Wilcoxon scores, respectively. Thus, there are a wide variety of score functions
{a,jn} that could be employed.

Under the randomization model, the responses are treated as fixed quantities,
likewise the rank scores {%„}. Since the population model concept of sampling at
random from two population distributions does not apply, the concept of efficiency
does not strictly apply to the family of linear rank tests with a randomization-based
distribution. However, one can still think about the average behavior of the test in
repeated similar experiments. In this case the expected properties of the observed
responses might be relevant in the choice of the rank scores employed in the analysis.
For example, if one thinks that the data from similar experiments are more likely to
satisfy a proportional hazards alternative with censored data than a proportional odds
alternative, one would choose to employ logrank scores in the analysis rather than
modified Wilcoxon scores.

For simple quantitative responses, there is a greater range of choices. Among these,
simple rank scores are most commonly employed, in part due to the Mann-Whitney
representation of the test, under a population model, as a function of P(YA > YB)
where YA represents a random observation from group A and YB likewise from group
B. The Wilcoxon test statistic provides an estimate of this "proversion" probability,
a useful quantity under a population model regardless of the underlying distributions.
While the "average" behavior of any one score function over a range of alternatives
has not been thoroughly explored, it is reasonable to expect that the simple rank
scores will yield a test that is in general robust to a location shift in any distribution.

Of course, the score function to be employed in any analysis must be prespecified.
To compute multiple tests using different scores, or to examine the properties of the
data to choose the "best" score function would be cheating. Another approach would
be to use a score-robust test that provides good power, in a population model sense,
over a range of possible alternatives. One such test is the Gastwirth (1966) maximin
efficient robust test. This test is a convex combination of the standardized test (Z)
values from the "extreme" pair in the set of tests considered. The extreme pair is
determined by the estimated asymptotic relative efficiency of each pair of tests, which
is equivalent to the square of the correlation of each pair. This approach could also
be employed with the families of tests herein.

Consider two different tests using scores a,jn and bjn, such as Wilcoxon scores
and Savage scores. Let a = (a inj - - -?f lnn) ' and b = (bin,-.-,bnny refer to the
corresponding vectors of scores and let ET refer to the covariance matrix of the
vector of treatment assignments (Ti, ...,Tn). Then the covariance of the two test
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statistics is simply o'Erb, from which the correlation between the two tests is
obtained. Based on the resulting correlations between each pair of tests in the family
of tests under consideration, the combination of tests is selected so as to maximize the
minimum asymptotic relative efficiency relative to whichever test in the family would
actually be optimal, if such were known in advance. See Lachin (2000, Sec. 4.9.2)
for the required expressions. This approach, however, is only applicable to those
randomization designs for which the ET is known explicitly. This includes complete
randomization, the truncated binomial design, the random allocation rule, and the
permuted block design, but not Efron's biased coin design or Wei's urn designs, or
their generalizations, for which ET is not known.

7.8 CONSTRUCTION OF EXACT PERMUTATION TESTS

Even for conditional tests, enumerating all possible permutations in the reference
set becomes prohibitively large as n gets larger than around 15. Mehta, Patel, and
Wei (1988) give a computational algorithm which is effective for computing the exact
distribution of permutation tests following restricted randomization procedures. Even
so, such algorithms are probably only reasonable for sample sizes less than 50 unless
parallel processing is used.

The basic networking algorithm is as follows. LetPj+i(n>i) = E(Tj+i\NA(j) =
nAj), so that the algorithm applies to all restricted randomization procedures for
which the (j + l)th treatment assignment depends on the previous treatment assign-
ments only through NA(J) (this applies to the restricted randomization designs in
Chapters). LetT = (Tit ...,Tn) and let 17nA = {T : NA(n) = nAn}. One does not
have to enumerate every sequence in ftnA in order to compute the exact distribution
of the test statistic. The networking algorithm begins with a single node (0,0). For
j = l,...,n - 1, each node (j,nAj) generates nodes (j + l,nAj+i) ending in a
single terminal node (n, nAn}. To each distinct subpath

assign a rank length

with associated probability

Some of the rank lengths will not be unique; suppose there are l(nAj) distinct
rank lengths, and denote them as Sji,l — 1,..., l(nAj). Let TT^ be the sum of the
probabilities for those paths that have the same rank length. Then the set 17(j, nAj) =
{ ( S j i , i r j i , l = 1, ...,l(nAj}} is the probability distribution of 5,- — £)i=i a,nTi
given NA (j) = nAj • One can then obtain each set 17 (j +1, nAj+i) recursively from
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tt(j, nAj). The degree of computational efficiency gained by eliminating redundant
sequences with the same rank length will of course depend on the scores a,jn- For
the simple rank scores, this number increases as O(n2). However, for the logrank
test, the algorithm increases exponentially with n. Hollander and Pena (1988) give
an algorithm for exact enumeration when there are K > 2 treatments using Markov
chain techniques.

The Monte Carlo approach has become popular in computing permutation tests
(see, for example, Good, 1994 and Edgington, 1995). Here a sample of the possible
permutations is drawn at random, and this sample is used in place of the complete
reference set. The Monte Carlo approach yields approximatep-values, that are largely
based on how large and representative the sampling procedure is. Numerical analysis
algorithms, such as the branch and bound algorithm from combinatoric optimization
can also be used to eliminate the need to enumerate each permutation.

There has been little literature on randomization-based inference following covariate-
adaptive randomization, such as the Pocock-Simon procedure (Section 4.4.2). Simon
(1979, p. 508) advocates a randomization analysis using simulation:

It is possible, though cumbersome, to perform the appropriate permutation test gener-
ated by a nondeterministic adaptive stratification design. One assumes that the patient
responses, covariate values, and sequence of patient arrivals are all fixed. One then sim-
ulates on a computer the assignment of treatments to patients using the [Pocock-Simon
procedure] and the treatment assignment probabilities actually employed. Replication
of the simulation generates the approximate null distribution of the test statistic adopted,
and the significance level. One need not make the questionable assumption that the
seqeuence of patient arrivals is random.

7.9 LARGE SAMPLE PERMUTATION TESTS

While the Monte Carlo and numerical analysis approaches can be implemented fairly
quickly with appropriate software, because most phase ni clinical trials involve large
numbers of patients, the asymptotic distribution of the linear rank test has been most
often employed in practice. In fact, large-sample approximations to the linear rank
test from complete randomization and Wei's urn design are quite accurate, even for
samples as small as n = 20 (Mehta, Patel, and Wei, 1988).

In general, one would presume that test statistics of the form

should follow a standard normal distribution for large samples, based on our knowl-
edge of the central limit theorem. In many cases this will be true, but the theory
is complicated because the treatment assignments are correlated under the particu-
lar restricted randomization procedure. Chapter 14 gives the necessary theoretical
developments.
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The main condition for asymptotic normality is a Lindeberg-type condition on the
scores, requiring that

While this condition looks complicated, it essentially says that no individual absolute
score can grow too large relative to the sum of all the absolute scores. For example, we
could not use the actual data values from a continuous unbounded random variable.
It is easy to see, for instance, that the simple ranks satisfy (7.17), as

as n —t oo, at a rate O(l/n). Many other common score functions satisfy (7.17) as
well (see Problem 14.1). If the scores satisfy the condition, then the unconditional
test

will be asymptotically standard normal. In particular, (7.18) is the correct form of
the test statistic under complete randomization, the random allocation rule, and Wei's
urn design. However, this has not been proved for the truncated binomial design or
Efron's biased coin design, and these are still open problems, as is the large sample
distribution of the linear rank test following covariate-adaptive randomization.

For the conditional test, conditional on NA (n) = HA, under complete randomiza-
tion, the test statistic

has an asymptotic standard normal distribution, where 7 is defined by the additional
assumption that

For example, with continuous observations, defining the scores as a/n = rjn/(n +1)
where Tjn are the simple ranks, (7.20) is satisfied, and we have 7 = 12 if there are
no ties (Problem 14.4). Note that the addition to the sum of squares when there are
ties is asymptotically negligible, provided the number of ties does not grow with n.
However, this could be problem for some outcomes, such as ordinal measures or
continuous measures that are truncated to integer values (e.g., age). If there are many
ties, one could substitute the observed value of (7.20) for 7 in (7.19).
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The above tests should be easy to compute in any statistical software package. In
SAS, one could use the RANK procedure to compute the score function.

While these tests are simple to compute, under UD(a, 0) randomization, the form
of the conditional test statistic is complicated. Define a sequence of modified scores

and let the {%•„} sequence be normalized so that £)"=i tijn = 1. Also define another

sequence of modified scores, denoted {bjn}, which are computed by substituting
o-jn — a>n = n"1/2 for all j into (7.21). Define

Then, conditional on Dn = ̂ (n) - JVJB(ra) = dn, the test is given by

While it may be tempting to employ the form of the test in (7.19), in this case
simulations show that the test is slightly anti-conservative, and the more complicated
form is more appropriate. SAS code to compute this test is given in Appendix B of
this chapter. The program accepts binary indicator variables to designate treatment
group, but the code is based on expressions developed in Chapter 14.

The asymptotic form of the conditional test for Efron's biased coin design is an
open problem.

Table 7.3 gives results of a sample data analysis of cholesterol data from the
Diabetes Control and Complications Trial on 50 patients. The data can be found
in Table 7.4 in Appendix A of this chapter. Since these are "baseline" data, the
null hypothesis applies. We also generate a single pass simulation of 50 treatment
assignments, under complete randomization, the random allocation rule, and Wei's
UD(Q, I ) . Using the simple rank scores, we compute the values of the linear rank
statistic and associated p-values in Table 7.3. We see that the values of the tests
are quite different, depending on the particular randomization procedure used and
whether the conditional or unconditional test is employed.

7.10 GROUP SEQUENTIAL MONITORING

In many clinical trials, it is desirable to establish a sequential monitoring plan,
whereby the test statistic is computed at an interim point or points in the trial and a
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Table 7.3 Values of the test statistic andp-valuesfor the linear rank test (simple rank scores)
for the data in Table 7.4.

Randomization Procedure

Complete unconditional
Complete conditional
Random allocation
£7£>(0, 1) unconditional
UD(Q, 1) conditional

Test Value

-0.510
-0.503

0.265
0.098
0.118

p- value (2-sided)

0.610
0.614
0.791
0.922
0.906

decision is made whether to stop early due to evidence of treatment efficacy, while
preserving the overall type I error rate. When the test statistic is computed and
decisions are made after groups of patients have responded to treatment, such a plan
is called group sequential monitoring. There is a large literature on group sequential
monitoring of population-based inference procedures; see Jennison and Turnbull
(2000) for a comprehensive overview of the subject. We are unaware of literature
on group sequential monitoring of permutation tests. Here, consider just a single
interim monitoring point after n\ patients have responded; the basic formulation can
be extended to any number of inspections. Let

be the computed linear rank statistic after n\ patients and let

be the computed statistic at the end of the trial, where a'm = (aini — ani,..., onini —
am),< = (oin -on,...,onn -an),T'ni = (ri,...,Tni),andT/

n = (Ti,...,rn).
It is necessary to find the joint probability distribution of (5ni, 5n). This could be

computed exactly, as in Lin, Wei, and DeMets (1991) or using the asymptotic joint
distribution. Using the approach of Slud and Wei (1982), we are interested in finding
constants c\ and c2 such that

and

where ai + a? = a and a is the overall desired size of the test. Alternatively, the
spending Junction approach of Lan and DeMets (1983) requires specifying a strictly
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increasing continuous function a* (t), t e [0,1] such that a* (0) = 0 and ex* (I) = a.
Then we find constants d\ and d® such that

and

where t\ represents the fraction of information available, with respect to total infor-
mation accrued in the entire clinical trial, after n\ patients.

In the usual case where the test statistic is a sum of independent and identically
distributed random variables, we could write 5n = 5ni + 5na, where Sni and 5n2

are independent. This simplifies the distribution theory dramatically. Unfortunately
for the linear rank test, the first n\ elements of {a.jn} are not necessarily the same as
{ajni}, and hence the linear rank statistic cannot be decomposed. Even if it could
be decomposed in this way, 5ni and 5na would not be independent, except under
complete randomization.

If unconditional inference is used, we can easily compute the covariance of the
test statistics as follows. Let Eni = Var(Tni) and En = Var(Tn) Assuming that
(5ni, Sn) are jointly asymptotically normal and En does not depend on n, we can
see that Var(5ni) = o'ni Eni ani, Var(5n) = <Enan and

The probabilities in (7.22) and (7.23) can be computed using this covariance under
the correct asymptotic joint distribution.

For conditional inference, the variance-covariance structure of Ti,..., Tni, XJni,
will be determined conditional on NA (ni) = UA\ , say, and this will no longer be
a submatrix of En, since it will be a function of UA\ • In this case, the variance-
covariance matrix of treatment assignments among the first n\ allocations with the
vector of n allocations is more complicated than for the unconditional test. Note
that this approach is applicable only to those designs for which the unconditional
variance-covariance matrix of treatment assignments can be described explicitly:
namely, complete randomization, the permuted block design, the random allocation
rule, and the truncated binomial design.

While a general procedure for developing the theory for a sequential monitoring
strategy is apparent from the above discussion, it should be clearly stated that this
problem has not been addressed in the literature. Finding the joint asymptotic distri-
bution of sequentially computed linear rank statistics under different randomization
procedures using given score functions is an open topic. From (7.24), it is clear that
in many cases the test statistics do not have independent increments.

If we use the Slud and Wei approach, we can select any ai and a2 that satisfies
Q! + <*2 = a. One must be careful in its implementation though. It is preferable
that the number of interim inspections (K) and the sequence {ai, ...,C*K} be pre-
specified, so that the selection of ctj will not depend on the data.
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The spending function approach allows for any arbitrary sequence of interim
inspections, and unplanned inspections can be added by simply computing a* (t) for
the given information at the additional interim inspection. For the spending function
approach, we must determine the fraction of total information accrued in the trial
after n\ patients. Under a population model, the information attained by ni would
be defined according to the Fisher's information for the estimator of the parameter
of interest, which is asymptotically equivalent to the inverse of the variance of the
estimator (to first order). For an estimation-based test, constructed as the ratio of the
estimator to its standard error, then the variance of the test is decreasing in n, and
information increasing. However, for such tests expressed as a partial sum rather
than a mean, the expression for the information is proportional to the variance of the
sum, with both increasing in n.

Since the linear rank test involves the sum of the scores, this suggests that the
variance of the test could be used as a measure of the information in the data. Thus,
even though we are not operating under a population model, the information fraction
at ni is given by

In general, while Sn will be known for some randomization procedures, we will
not know an. Thus it is necessary to employ a surrogate measure of information,
as in Lan and Lachin (1990). Let nA(t\) and ns(t\] be the number of patients
assigned to treatment A and B, respectively, at the time of the interim inspection and
let n(ti) — riA(ti) + riB(t\). Since the trial will have a target sample size in each
group, UA and HB, where n = riA+nB, then one possible surrogate could be

where #1 = n,A(ti)/n(ti) and q — UAJn. This is the information fraction from the
usual i-test. Then the spending function can be computed with respect to the I values.
See Lan and Lachin (1990) for more details on the appropriateness of using surrogate
measures of information when the true information fraction cannot be computed.

7.11 PROBLEMS

7.1 Verify equations (7.1) and (7.4).

7.2 Read Basu (1980) and the ensuing discussion (including that of the venerable
discussant, the late Oscar Kempthorne). Prepare a five minute position paper ex-
pressing your views on permutation tests. Present your paper in a classroom debate
with fellow students. Focus on the following issues:

(i) Did Fisher contradict himself or change positions on the role of permutation tests?
(ii) Does Basu make a convincing argument in his example of the scientist and the
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statistician?
CHI) Is there a middle ground?

73 For the examples in Table 7.1 and 7.2, compute the following:
a. the unconditional and conditional p-values if Efron's biased coin design had been
used with p = 2/3;
b. the p-value if the truncated binomial design had been used (see Table 3.2);
c. the conditional p-value for the UD(Q,1) if the actual randomization sequence had
been ABAA instead of ABBA.

7.4 Let Tjn be the simple rank scores. The van der Waarden scores are defined as

(Lehmann (1975, p. 97)), where $ is the standard normal distribution function.
Recompute the example in Table 7.1 using the van der Waarden scores instead of
simple rank scores.

7.5 Verify equation (7.12).

7.6 Derive the variance in (7.14).

7.7 Verify (7.24).

7.9 Redo the data analysis in Table 7.3 using the van der Waarden scores (Problem
7.4) for cholesterol values in Table 7.4.
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7.13 APPENDIX A: DCCT DATA

Table 7.4 gives data from the Diabetes Control and Complications Trial used in the
data analysis example in Section 7.9.

Table 7.4 Cholesterol levels from 50 patients and simulated randomization sequences under complete
randomization, random allocation rule (RAR), truncated binomial (TBD), and UD(0,1).

Patient Cholesterol Complete RAR C/D(0, 1)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

132
195
157
196
190
228
191
150
154
147
207
113
174
210
144
217
167
229
123
248
146
193
182
116
189
215
211
252
206
151
232
238
201
174
151

1
1
0
1
0
1
1
1
1
0
1
0
1
0
1
1
0
0
1
1
0
0
0
1
0
0
1
0
0
1
1
1
0
0
0

1
1
1
0
1
0
0
1
0
0
0
0
1
1
1
1
0
0
1
0
0
0
1
1
1
1
1
1
1
0
1
0
0
0
0

1
0
1
0
1
0
0
1
0
0
0
1
1
1
1
1
0
0
1
0
0
0
1
1
1
1
1
1
1
0
1
0
0
0
0
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Patient Cholesterol Complete

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

150
221
232
179
167
213
153
122
204
196
168
196
185
235
143

1
0
0
1
1
1
1
1
1
1
0
0
0
1
1

RAR t/D(0,l)

0
1
1
1
0
0
0
0
0
1
1
1
0
0
1

0
1
1
1
0
0
0
0
0
1
1
1
0
0
0

7.14 APPENDIX B: SAS CODE FOR CONDITIONAL UD(Q, 1)
LINEAR RANK TEST

Here we provide SAS code to compute the asymptotic conditional linear rank test for
UD(Q, 1) randomization, based on data in Table 7.4.

*Enter data - $j$ is patient number;
data dcct;
input j cholest treat;
treat=2*treat-1;
cards;
1 132 1
2 195 0
3 157 1
4 196 0

>

*Find simple ranks;

proc rank data=dcct out=a;
ranks simrank;

var cholest;
*Compute mean of ranks;
proc means data=a noprint;
var simrank;

output out=b mean=meanrank n=numobs;
*Compute $D_n$;
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proc means data=a noprint;
var treat;
output out=c sum=dn;
*Compute centered ranks;
data two;
set a;
if _N_=1 then set b;
if _N_=1 then set c;
cenrank=simrank-meanrank;
keep j cenrank treat dn numobs;
*Find the scaling factor;
data three;
set two;
if j > 2 then term=cenrank/((j-l)*(j-2));
else term=0;

proc sort; by descending j;
proc iml;
use three;
read all var {j term} into x;
n = nrow(x);
sum = j (n , l ,0) ;
sum[l] = x[l,2];
sum[2:n] = cusum(x[l:n-l,2]);
x = x| |sum;
varn={j term cusum};
create data from x(Icolname=varn|);
append from x; close data;
quit;
data four;
merge three data; by descending j;
bjn=cenrank-(j-l)*lag(cusum);
if bjn=. then bjn=cenrank;
bjnsq=bjn**2;
proc means noprint data=four;
var bjnsq;
output out=five sum=bjnsqsum;
data six;
set four;
if _N_=1 then set five;
scaled=cenrank/sqrt(bjnsqsum);
if j > 2 then newterm=scaled/((j-l)*(j-2));
else newterm=0;
keep j scaled treat newterm dn numobs;
*Compute $b_{jn}$'s and $\tilde{b}_{jn}$'s, $s$, and $x$;
proc iml;
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use six;
read all var {j newterm} into x;
n = nrow(x);
sum = j(n,l,0);
sum[lj = x[l,2];
sum[2:n] = cusum(x[l:n-l,2]);
x = x||sum;
varn={j newterm cusum};
create newdata from x(|colname=varn|);
append from x;
close newdata;
quit;
data seven;
merge six newdata; by descending j;
bjn=scaled-(j-l)*lag(cusum);
if bjn=. then bjn=scaled;
bjntilde=(j-1)/((numobs-1)*sqrt(numobs));
prod=bjn*bjntilde;
num=scaled*treat;
ssq=l/3;
x=dn/sqrt(numobs);
*Compute $\rho$ and $S_n$;
proc means data=seven noprint;
var prod num;
output out=rho sum=sumprod sn;
*Compute the test statistic;
data eight;
set seven;
if _N_=1 then set rho;
rhosq=sumprod**2;
testnum=sn-(sumprod*x/ssq);
testden=sqrt(1-(rhosq/ssq));
test=2*testnum/testden;
pvalue=2*(l-probnorm(abs(test)));
data nine;
set eight;
if _N_=1;

proc print data=nine;
var test pvalue;
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8
Infe rence fo r Stra lifted,

Blocked, and
Covariate-Adjusted

Analyses
8.1 INTRODUCTION

As described in Chapter 4, in many studies a stratified or blocked analysis is desired.
Under a randomization model, the proper analysis for any stratified or blocked ran-
domization is a like-stratified analysis. Methods for stratified analysis of proportions,
or means, or lifetables have been derived under population model sampling, such as
the Mantel-Haenszel test for a stratified analysis of 2x2 tables. These methods can
also be applied under a randomization model, using the appropriate randomization
model variances.

It is tempting, however, to avoid the computational complications of such an anal-
ysis in favor of the simpler unstratified analysis, an analysis that is inherently simpler
to describe. Such an unstratified analysis can be justified under a homogeneous
population model, meaning that within all strata or blocks all subjects were drawn at
random from a single homogeneous population. Of course this assumption may be
untenable in a multi-center clinical trial stratified by clinic, or in trials stratified by
gender or age, as common examples. One question, therefore, is whether any loss is
incurred whenever the stratified/blocked analysis is appropriate, but the unstratified
analysis is performed. Thus we also examine the difference between a stratified
versus an unstratified analysis under both a population and a randomization model.

In some studies it is also desired to conduct an analysis that is "adjusted" for other
covariates. Such an adjusted analysis can be performed using post-stratification,
meaning stratification by a factor that was not also employed in the pre-stratification
of the randomization. Alternately a regression model could be used to describe the

117
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Fig. 8.1 Notation for the Mantel-Haenszel procedure for two-group comparisons in a 2 x 2
contingency table.

association between post-hoc covariates and to compute covariate-adjusted values,
and covariate-adjusted rank scores. Examples of both approaches are presented.

8.2 STRATIFIED ANALYSIS

8.2.1 The Mantel-Haenszel procedure

Perhaps the simplest, and most common, instance of a stratified analysis is the Mantel-
Haenszel test for multiple independent 2x2 tables (Mantel and Haenszel, 1959). The
principle of the Mantel-Haenszel stratified test also generalizes to other settings, such
as the analysis of variance (cf. Fleiss, 1986). We first describe the test for a single
2x2 table under a population model, and then under a randomization model. We
then generalize the test to the case of / 2x2 tables.

Within a single 2x2 table, the frequencies and the corresponding probabilities
under a population model can be expressed in Figure 8.1. Under a population model,
HA, UB, and n are fixed. Additionally, if we condition on the total number of
responses S = s (cf. Lachin, 2000), then under the null hypothesis HQ : TTA — KB,
the only randomness in the table is the upper left cell, the number of responses in
group A, SA, with realization SA- Then SA is distributed as a central hypergeometric
distribution with expectation

and variance

Under H0, asymptotically for large n,
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and thus

is asymptotically distributed as x2 on 1 degree of freedom, under H0.
This same test can also be derived as a special case of the linear rank test under a

simple randomization model. Assume that the treatment assignments are generated by
complete randomization and that we condition on the numbers assigned to each group,
which are now random (NA = HA,NB = HB). Then the randomization distribution
of the linear rank test with binary scores can be derived. This test can be expressed
only in terms of SA, the number of events on treatment A, and this is asymptotically
normally distributed with expectation and variance that are identical to the expressions
(8.1) and (8.2) obtained under a population model. Equivalent expressions are also
obtained for the conditional randomization distribution based on a random allocation
rule for which the total sample sizes are fixed and equal such that UA = nB = n/2.
Further, SA, suitably normalized, is asymptotically normally distributed under a
randomization model with mean s/2 and variance s(n - s)/4(n - 1).

Now consider the case of / independent strata or blocks. Within the ith stratum of
size HI (i = 1, ... , /), the 2x2 table contains positive frequencies {s^, SJB} with
marginal totals HI A, nfs, s,, rij - Si. Under a population model, again conditioning
on both margins fixed (cf. Lachin, 2000), under the null hypothesis HQI. TTIA = KIB,
the number of responses on A within the ith stratum S^ is distributed as a central
hypergeometric distribution with expectation

and variance

Under HM asymptotically for large U{ within the ith stratum,

Since the strata are independent, then for fixed /, under the joint null hypothesis H^:
T*iA = KiB, I = 1, ...,/,

Since this is the sum of asymptotically normally distributed stratum-specific variates,
then the stratified-adjusted Mantel-Haenszel test is
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and asymptotically Xg is distributed as x2 on 1 degree of freedom as HI -> oo for
all i. The asymptotic distribution can also be demonstrated for the case where the
sample size within each stratum is small but the number of strata increases indefinitely
(Breslow, 1981).

This stratified-adjusted test can also be derived under a simple randomization
model. Within each stratum, assume that the treatment assignments are generated by
complete randomization and that we condition on the numbers assigned to each group
NjA,NiB as before. Then under the null hypotheses HQI within the ith stratum, the
randomization distribution of the number of events in the first group can be derived
and SiA is asymptotically normal with expectation and variance (8.4) and (8.5) as
obtained under a population model.

Equivalently, under a random allocation rule for which the total sample sizes are
fixed and equal such that HIA = niB = nj/2, the randomization distribution of SIA
is distributed as central hypergeometric with

and within each stratum Si A — E(S{A) is asymptotically normally distributed.
Therefore, for fixed /, the stratified test Xg in (8.6) is also asymptotically dis-

tributed as x2 °n 1 degree of freedom under either a population model, or a ran-
domization model conditionally following complete randomization, or following a
random allocation rule, within each stratum.

The stratified test, therefore, would be appropriate for any study that employed
complete randomization or a random allocation rule within each of / strata, or a
randomization that employed such assignments within permuted blocks, with fixed
or permuted block sizes. This would also apply to a study that employed such
permuted blocks within strata, such as clinics, in which case / is the total number of
blocks employed in all strata combined. For studies that employ other randomization
procedures, such as the urn design, it is more convenient to describe an analysis in
terms of the linear rank test of Chapter 7.

8.2.2 Linear rank test

A more general linear rank test can be applied to data on any scale (quantitative,
ordinal, nominal) and for survival data as shown in Section 7.5. For the case of a
single stratum or block of size n, the linear rank statistic with centered scores is then
defined as

where Tj = 1 or 0, and we have suppressed the dependence of the scores on n for
convenience. As noted in Section 7.9, under conditions on the scores for certain
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randomization procedures, W is asymptotically distributed as standard normal under
the null hypothesis of no treatment effect.

The variance of the statistic can either be estimated under a population or a
randomization model, as described in Chapter 7. Under a randomization model, the
scores {a,} are considered fixed. The random component, therefore, is the sequence
of treatment assignments {Tj}. Under this model the variance expression V depends
on the covariance matrix of the treatment assignments.

For binary scores, a,j — 1 or 0, it is readily shown that this test using the conditional
variance following complete randomization, or the variance for a random allocation
rule, is equivalent to the Mantel-Haenszel test X^ in (8.3) for a single 2x2 table
(Problem 8.1).

For the random allocation rule, from (7.13), the statistic using the randomization
variance is

The extension of the linear rank test for a prospectively stratified randomization
within each of/ strata is rather straightforward. For the jth patient in the ith stratum
of total size n^ let Tj^ refer to the randomized treatment assignment and aj^ refer
to the rank score, j — 1, ... , n», i = 1, ... , /. The scores a^ are a function
only of the responses among the n^ patients in the ith pre-randomization stratum, and
not patients randomized within other strata. Then let 5, be the corresponding test
statistic with variance V{, using stratum-specific mean-centered scores (flj(i) — a»),
with stratum-specific mean Oj. If asymptotically, under the null hypothesis, 5j is
normally distributed within each stratum, for large n,-, then any linear combination
W = X^WjSi based on weights {a>j} is asymptotically normally distributed with
mean zero and variance £^ u;?Vi, and therefore,

where u>i is the weight for stratum i.
For the case of a permuted block randomization in a clinical trial with n patients,

using a random allocation rule with block size ra = n/M within each of M blocks,
then the blocked rank test is

Based on the permuted-block randomization, WB is asymptotically distributed as a
standard normal under the null hypothesis. To allow for unfilled blocks, the equivalent
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expression is

Note that in a stratified randomization using permuted blocks, M is the total number of
blocks for all strata combined, and the randomization analysis is as above summing
over all blocks in all strata. When the block sizes are small the block-specific
components individually may not be normally distributed. However, as M —»
oo, using the developments in Breslow (1981), the statistic WB is asymptotically
normally distributed.

The choice of weights {u^} in the stratified (blocked) test may be arbitrary, or
may be based on efficiency considerations derived from a population model. For
Wilcoxon scores, van Elteren (1960) showed that the optimal stratum weights are
Mi = (ni + 1) in the sense that these weights maximize the asymptotic efficiency of
the stratified test under a local alternative with a common shift between groups under
a specific population model. Thus, with equal stratum sizes, or block lengths, the
uj{ cancel from the numerator and denominator in (8.8). Puri (1965) similarly shows
the form of the optimal weights for other rank scores, such as the Savage or van der
Waerden scores, under a local alternative.

An appropriate set of weights for any test under a population model can also be
derived as follows. Note that the rank statistic Si is the difference between groups
in the partial sums of the scores in the ith stratum. Then, assuming HIA and UIB are
fixed and the scores {Aj} are random with realizations {CLJ}, it is readily shown that

where AIA is the mean score within group A in the ith stratum, and AIB is the mean
score within group B. Thus

with variance

Under a population model assuming a common difference in mean scores, using
weighted least squares, it is well known that the weights inversely proportional to
these variances yield a minimum variance linear estimator (MVLE) of the common
mean difference. Thus the optimal linear combination of the mean differences is
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in the sense that the variance of the linear combination of the corresponding differ-
ences in mean scores is minimized. This implies that the "optimal" linear combination
of the S{ uses MVLE weights, given by

which yield an optimal linear combination of the Si, under a population model.
Weights may also be generated under other criteria. Rather than assuming a

common mean difference in the scores as the alternative hypothesis of interest, one
might consider a less restrictive alternative of stochastic ordering which specifies
that the difference in mean scores is in the same direction for all strata. Wei and
Lachin (1984) suggested a simple test of stochastic ordering that has been shown to be
optimal (cf. Lachin (2000)). Their test is based on an unweighted combination of the
mean differences over strata. Given the relationship in (8.11), this yields stochastic
ordering test weights

In general the degree of evidence against the null hypothesis, as represented by
the Z-test statistic, will increase with the sample size. Thus rather than weight
the test statistics (the numerators Si), an alternate approach would be to weight the
stratum-specific Z statistics, i.e., the Wi, where Wi = Sj/V/ , such as

where Ww is distributed as 7V(0,1) under HQ. For simple rank scores then one
might simply weight by ui = n,. In the analysis of survival times using logrank
scores, one might weight by Ui = DI where Dj is the number of deaths (events) in
the ith stratum, which provides the degree of information in such data.

In each case, under the null hypothesis, the aggregate stratified-adjusted linear
rank test in (8.8) will have type I error level a when the rejection region is based on
the one or two-sided 1 — a critical values, regardless of the set of weights employed.
However, the result will depend on the chosen weights when the alternative hypothesis
is true. In this case, the set of weights that yields the largest test value is that which
is based on the alternative hypothesis best reflected in the data. Since the nature of
the alternative hypothesis is unknown, then the optimal weights are also unknown. It
would be cheating to conduct preliminary tests to select the weights that maximize
the test. Lachin (2000, Section 4.9) presents a discussion of these issues.

The discussion in Chapter 7 regarding the relative merits of conditional and un-
conditional inference is also relevant in the context of stratified analyses. For a
conditional test, one conditions on the ancillary statistic JV>i(n). In the stratified
test, one conditions on the number of treatments assigned to A within each stratum.
Flyer (1988) compares the power of a stratified test under a conditional randomiza-
tion model and an unconditional randomization model and finds significant gains
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in power for the unconditional test. Nevertheless, many find the conditional test
more appealing intuitively since the observed results are evaluated with reference
to other random sequences with the same sample sizes as those obtained under the
randomization employed in the study.

8.2.3 Small strata

In most trials the randomization is stratified by clinical center, and often there is a
large disparity in the size of the strata, with some clinics recruiting a small number
of subjects. In many instances, these small strata are pooled to form one strata of
size comparable to that of other clinics. However, there is no randomization basis
for doing so, and as we show in the following section, a test ignoring the strata
employed in the randomization, if anything, is likely to be anti-conservative. Further,
small strata still contribute to the test of the group difference, provided that at least
one subject in each stratum is assigned to each group. In the case that no subjects
are assigned to a group within a stratum, then that stratum cannot contribute to a
comparison of treatments under a randomization model and should be discarded.

8.3 STRATIFIED VERSUS UNSTRATIFIED TESTS WITH
STRATIFIED RANDOMIZATION

If one adopts a randomization basis for inference, then one should conduct the proper
large-sample randomization-based test according to the particular randomization
procedure used. For example, for a stratified randomization by clinic, the proper
randomization analysis is also stratified by clinic. Such a stratified analysis will
likely yield a test statistic which is different from that obtained by a simple aggregate
analysis ignoring strata under either a population or randomization model.

The question now arises as to the difference, if any, between a simple unstratified
analysis when the randomization was in fact blocked or stratified. This issue most
commonly arises in the analysis of a study in which a permuted block design was
employed, but where the analysis conducted ignores the blocking in computing the
test statistic.

Assume that a permuted block design is employed with M blocks of assignments
with a random allocation rule using block sizes m = n/M. If the analysis conducted
ignores the blocking, the unblocked linear rank test statistic is

where a,j is the rank score of the jth subject in the ith stratum with respect to the
scores of all n subjects, and a is the total mean of all n scores. Thus Oy ^ a^j
in (8.9). If the random allocation design had been used in a single block with total
n = mM, then this statistic would asymptotically be distributed as a standard normal
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Table 8.1 Sum of squares and degrees of freedom (df)for a blocked analysis of variance with
response variable yj(i) for the jth patient in stratum i.

Effect

Between blocks
Within blocks

Total

Sum of Squares

E£i"»(fc-y)2

v— > M \r~\tn /2^=1 2^=1 MM
Tr~\M \—>77l /

Li=i2^j=iUfj(0

-yi)2

-y?

df

M- l
mM —
mM -

M
1

as shown in (8.7) above. However, under the permuted block design, the distribution
of (8.14) is not necessarily the standard normal.

Squaring (8.9) and (8.14), their ratio yields

When the blocked and unblocked scores are the same, aij = Oj(»), then ]Cij(ay ~
d)Tj(j) = X)ij(aj(i) ~~ Qi)Tj(i). This applies, for example, to binary scores in which
case W$ = Xjj in (8.3) and W% = X| (8.6). Then, noting that the sum of squares
total equals the sum of squares blocks plus the sum of squares within blocks, as
shown in Table 8.1, the relationship between the two statistics can be expressed as

where MSB is the block mean square of the aij and MSW is the within block mean
square of the a^ from an analysis of variance with just these two sources of variability.
For large M, the above expression is the intrablock correlation coefficient, expressed
as

Under both a population model and a randomization model, Matts and Lachin
(1988) show that equivalent results apply to an analysis of variance of mean val-
ues when the proper blocked (stratified) chi-squared or .F-test is compared to the
unstratified test.

Thus, in the comparison of a blocked (stratified) versus unblocked Mantel-
Haenszel analysis of 2x2 tables, or an analysis of variance, whether the unblocked
test with Xjj is conservative, anti-conservative, or the same, when compared to the
blocked test X%, depends on whether the value of the intrablock correlation coeffi-
cient R is positive, negative, or zero, respectively. If R is zero, the two linear rank
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statistics are identical and thus the statistic which ignores the blocking (X^) is also
asymptotically distributed as x2 on 1 degree of freedom under the permuted block
design.

If R is negative, then Xy is stochastically larger than Xg, in which case the
unblocked statistic Xfj will be anti-conservative. In this case the distribution of X^
is stochastically larger than the x2 distribution on 1 degree of freedom and, as a
result, both the type I error and power are inflated relative to the proper test Xg.

If R is positive, the Xfj will be conservative or stochastically smaller than X^.
In this case the distribution of X^ is stochastically smaller than the x2 distribution
on 1 degree of freedom and, as a result, both the type I error probability and power
are deflated relative to the proper test X^.

The range of possible values of the intrablock correlation is-I/(m-1) < R < 1.
With a block size of m = 2, the lower bound for # is -1. With a block size of
four, the lower bound is -0.33. As the block size increases, the lower bound for .R
approaches zero. Thus, as the block size increases, it is increasingly likely that an
unblocked test will result in either a similar or a conservative test compared to the
proper blocked permutation test.

An intrablock correlation of 0 would arise when patient responses are uniformly
distributed over all subjects from 1 to n. A positive intrablock correlation would
arise, for example, if the patients recruited early in a trial are healthier than those
recruited later, or vice versa. A negative correlation would arise when the two
treatment groups had time trends that were opposite, such as one having increasing
values and the other decreasing values. With randomization this would be highly
unlikely. Thus, a positive correlation, if any, is likely to occur in most trials, in which
case the stratified blocked analysis should be performed to obtain a test of the proper
size.

8.4 EFFICIENCY OF STRATIFIED RANDOMIZATION IN A
STRATIFIED ANALYSIS

In Section 8.5 to follow, we will consider post-stratification in the analysis on the
basis of a covariate that was not employed in the stratification or blocking of the
initial randomization, and the subsequent analysis. One question that often arises
in the planning of a clinical trial is whether a stratified randomization will increase
the precision of a stratified analysis. The relative efficiency of a stratified test with
stratified randomization versus without stratified randomization was assessed by
Grizzle (1982) using a homogeneous population model, and by Matts and McHugh
(1978) using a randomization model. Essentially identical results were obtained.

Following Grizzle's treatment, assume that the subjects arise from a homogeneous
population over time within each stratum. For example, if patient gender is the
covariate of interest, whether in a study with randomization stratified by gender or
one unstratified, we assume that the likelihood that a male will enter the study is
a constant over time. This assumption is equivalent to assuming that the covariate
values are independently and identically distributed within each stratum.
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Grizzle assessed this issue as follows. Consider the simplest case of two treatments
(A; — A or B] and two strata (i = 1,2) in a simple additive linear model

forj = l,...,njfc subjects on treatment A; in stratum i. As usual, the errors are assumed
to be independent and identically distributed with Efajk) = 0 and Var(e;jfc) = u2.
The effect of the kth treatments //&, and thatof the ith stratum is /%, with fa +/32 = 0.
The treatment effect is 9 = n\ — /z2. It is important to note that there is no
treatment-stratum interaction. Thus, treatment effects within strata are assumed to
be homogeneous, thus maximizing the gains in power from a stratified analysis.

In the case of a stratified randomization, it is assumed that the sample sizes
allocated to each treatment are always equal, either in total or within strata. That is,
we assume that the stratified randomization was 100 percent effective in eliminating
covariate imbalances on the stratifying covariate(s). This is guaranteed if a random
allocation rule or permuted-block randomization is employed (with all blocks filled),
and is the expectation with the other randomization procedures (complete or urn
randomization).

Now consider the case of an unstratified randomization. Let <j% = n^/n^, k =
A,B, be the proportion of subjects randomized to the kth group who are also
members of the first stratum (i = 1), and 1 - <j% be the proportion of those in the kth
group who are members of the second stratum (i = 2). A covariate imbalance occurs
when qA ^ QB- Conversely, with 100 percent-effective stratified randomization, it
is assumed that the covariate stratum fractions are fixed and equal, QA = QB, so that
there is no covariate imblance.

Now consider the efficiency of an estimator of 0. Denote the variance of the
estimator with stratified randomization (r) and stratified analysis (a), such that
QA — QB, as a2,/ *. Likewise, denote the variance of the estimator with unstratified

randomization but with a subgroup analysis as &g(a\- When UA = KB, the relative
efficiency of the estimators is then

Using the least squares estimator from (8.17), Grizzle (1982) shows that

Then with stratified randomization, taking QA = QB in (8.18), we obtain

The relative efficiency is then given by
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Table 8.2 Relative efficiency of estimators for stratified randomization and stratified analysis
versus stratified analysis only, for various values O/QA and QB-

QA

0.3
0.5
0.5
0.7
0.7
0.7
0.9
0.9
0.9
0.9

QB

0.1
0.1
0.3
0.1
0.3
0.5
0.1
0.3
0.5
0.7

R.E.

0.938
0.857
0.821
0.625
0.840
0.958
0.360
0.625
0.810
0.938

Note that R.E. < 1 and R.E. = 1 when q^ = qB. This relative efficiency of the
estimators is also proportional to the relative power of a statistical test of H0 : 0 = 0
using a post-hoc stratified analysis versus a stratified randomization and a stratified
analysis. (Grizzle (1982) also gives the relative error for the case where HA ^ UB.)
From equation (8.19), Table 8.2 can be computed which gives the relative efficiencies
for various values of QA and QB ranging from 0.10 to 0.90. Lachin (2000, Section
3.5.4) presents an equivalent model for the analysis of binary data.

Now, suppose that QA and qs are binomial random variables with E(QA) =
E(qs) = 7- For a given value 7, we can use the normal approximation to compute
the probability that their absolute difference exceeds some value r. This is given by

For various values 7 ranging from 0.1 to 0.9, and for various sample sizes n, Table
8.3 gives the limits of imbalance which would occur with probability 0.05 and 0.01.
These imbalances can then be used with Table 8.2 to assess the loss of efficiency due
to non-stratification.

For example, for n = 25and7 = 0.5, an imbalance of 0.7 and 0.3 could occur with
p = 0.05, which would result in an efficiency of 0.84 with unstratified randomization.
However, for n = 100, there is probability < 0.01 of covariate imbalances which
would result in a relative efficiency of 0.9 or less.

The above results apply regardless of the method of randomization or treatment
assignment employed because a homogeneous population model is assumed. A
randomization-based analysis of this same issue was explored by Matts and McHugh
(1978) assuming that a random allocation rule was employed with and without
stratification. Again, note that the random allocation rule guarantees equal sample
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Table 8.3 Limits of imbalance occurring with probability 0.05 and 0.01, for various values
ofn and 7.

n

25
25
25
50
50
50
100
100
100
200
200
200

7

0.1
0.3
0.5
0.1
0.3
0.5
0.1
0.3
0.5
0.1
0.3
0.5

0.05

0.235
0.359
0.392
0.166
0.254
0.277
0.116
0.180
0.196
0.083
0.127
0.139

0.01

0.309
0.472
0.515
0.219
0.334
0.364
0.154
0.236
0.258
0.109
0.167
0.182

sizes within each group in total and within each stratum. Matts and McHugh also
use a simple linear model like (8.17), but allow for more than two treatment groups
and an arbitrary number of strata.

For the case of only two equal sized groups, they show that the relative efficiency
for a study of size n, with s strata of equal size HI = n/s, is obtained as

Clearly, as n increases relative to s, R.E. -> 1. Solving for n in (8.20) and ignoring
the asymptotically negligible term {(s — T)/s}n, we obtain

For example, for s — 10 a stratified analysis with unstratified randomization will yield
90 percent of the efficiency of a stratified randomization with a stratified analysis for
a sample size of n = 162 or greater. For 5 — 10, 95 percent efficiency is provided
by n = 342 or greater.

Therefore, under two entirely different approaches, it has been shown that a strat-
ified randomization will have non-negligible effects on the efficiency of a stratified
analysis with small sample sizes, but that as the sample size increases, there are
miniscule gains in efficiency from a stratified randomization relative to a simple
post-hoc stratified analysis. Unfortunately, as discussed in Chapter 4, even though
stratification has greatest merit in small trials, it is usually not feasible to stratify on
more than one or two factors due to the small within-stratum cell sizes.
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8.5 POST-HOC STRATIFIED AND SUBGROUP ANALYSES

In addition to the overall comparison of treatments A and B, it may also be desired to
compare treatments separately among those patients who are members of a subgroup
defined post-hoc on the basis of a covariate, usually a baseline (pre-randomization)
characteristic not used as a basis for stratification in the randomization. Such post-
stratified analyses are used to obtain a stratified-adjusted assessment of the overall
treatment effect. For example, the treatments might be compared separately among
men and separately among women in a study where the randomization was not
stratified by gender. A covariate-adjusted test of treatment effect might then be
obtained by combining the separate tests for men and women.

While such stratified analyses may in fact be specified a priori (in fact, such
specification is preferred), such analyses are post-hoc with respect to the generation
of the randomization. Any such analysis specified after examination of the data could
be criticized unless the basis for the analysis were specified a priori. For example,
the protocol might specify that a post-hoc stratified analysis would be conducted to
adjust for any covariates on which the groups differed significantly by chance.

In order to perform a valid analysis among the subsets of patients within such
subgroups, it is sufficient to assume that the randomly assigned treatment indicator
variable values {Tj} are statistically independent of the covariate values {Xj} among
the n patients randomized. We refer to this as the covariate independence assumption,
which specifically assumes that E(Tj\Fj-i,Xj) = E(Tj\Fj-i) where Tj-\ is the
history of prior allocations, as would apply to a restricted randomization procedure.
Clearly this assumption is satisfied for any baseline covariate when there is no
potential for selection bias. It does not apply to covariate-adaptive randomization
procedures.

For complete randomization, since the probability of treatment assignment to A
is E(Tj] = 1/2 independently for all patients, the permutation test can be performed
within any subgroup as though a separate randomization had been performed within
that subgroup. Further, the test statistics within each of multiple strata will be
statistically independent, and thus can be combined using (8.8), exactly as though
stratified randomization had been performed. For any other randomization procedure,
since the probabilities of assignment are not independent and identically distributed,
the validity of such analyses rests on the covariate independence assumption. For
example, this assumption could be violated if the randomization is open to selection
bias.

There are two ways that a post-stratified analysis could be performed. For sim-
plicity assume that the original randomization was unstratified (later we also consider
the case of a pre-stratified randomization). In a stratum-centered scores analysis the
scores a,j are computed for all n subjects according to the original randomization; i.e.
unstratified in this case. Then these scores are used to compare groups within strata
by computing a sum of deviations from the within-stratum mean and using the sum
of squares about that mean in the variance. For example if there are four subjects
in a stratum with unstratified rank scores (2,5,8,13), then these values with mean 7
could be used to compute a rank statistic within that stratum. If we use an indicator
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variable vtj — 1 or 0 to denote patient j in the fth stratum, t = 1,..., L, then the rank
statistic within that stratum would be of the form

where the {0^} are the unstratified rank scores (for notational simplicity, we drop the
dependence on n) and at is the mean score within stratum I. This construction would
mimic a post-stratified analysis of mean values in an analysis of variance wherein
the response values are unchanged, but a within stratum or block mean correction is
employed in computing the sums of squares.

However, if the randomization had been pre-stratified by a factor, then the appro-
priate approach would be to compute rank scores within each stratum as in (8.8).
This stratum-specific scores analysis can also be applied to strata defined post-hoc
whereby the rank scores are computed separately within each stratum. In this case
the post-stratified rank scores for the above example would be (1,2,3,4) with mean
2.5.

Clearly either approach is valid and the relative merits of one versus the other have
not been explored, to our knowledge. Lachin (1988) and Matts and Lachin (1988)
employ a stratum-specific analysis following compete randomization (conditionally)
and a random allocation rule design, as well as permuted blocks. Wei and Lachin
(1988) employ a stratum-centered scores analysis following Wei's urn design.

8.5.1 Complete randomization

Without any loss of generality, assume that unstratified complete randomization was
employed to assign treatments A versus B to n patients in a clinical trial. A post-hoc
stratified analysis is then performed within each of L multiple mutually exclusive
subgroups (strata) defined post-hoc on the basis of a covariate. Here we use L to
denote the number of post-hoc strata in distinction to the number of pre-hoc strata
denoted previously by /. The following is based on developments in Lachin (1988).

For simplicity, consider the case of two strata with indicator variables v\j and
1/2j to indicate membership in stratum 1 (y\j = 1, z/2j = 0) or in stratum 2 (i/ij —
0,1/2j — 1) for the jth patient, j = 1, ... , n. Note that v\j + i/2j = 1 and that
v\jVij — 0 for all j. For the jth patient, the stratum-specific rank score is defined
as some function of the responses among members of that patient's subgroup, most
generally as

These scores are equivalent to those that would have been computed had the ran-
domization been stratified by this factor as described in Section 8.2.2. However a
different notation is employed to distinguish post-stratified scores from pre-stratified
scores o^).

In keeping with the principles of the randomization model, we assume that sub-
group membership is deterministic, as are the scores. The only randomness is in the
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treatment assignments {Tj}. For the fth subgroup (t — 1,2), the total sample size
is nt — Y^J=I vij-> °f whom NIA = X^"=i vtjTj are assigned to treatment A, and
NIB — nt — NIA are assigned to treatment B, The above generalizes naturally for
the case of L > 2 strata. Then the linear rank statistic within the M subgroup can
be written as

where

and where

for i — 1,2. It is straightforward to verify that E(Si) = 0 since £"=i vtj (cj - Q) =
0, and that

Suppose that nt grows large as n grows large. Then from Section 14.2.1, the following
condition will ensure asymptotic normality of Wt\

Now let us examine the conditional permutation test, conditional on NIA- Then
EfajTjlNiA) = NtA/nt and

Since Var(i/^-Tj|A^>i) = NtA^tBfn^, and for i ̂  j,

we have from (8.26) that
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These expressions then provide for a post-hoc randomization-based test of HQI
within the &h subgroup using a subgroup specific statistic. By the results of Section
14.2.2, if ni -> oo as n ->• oo, if (8.25) holds, and if

for a constant 7, then

is asymptotically standard normal.
We also wish to conduct an aggregate post-hoc stratified adjusted test of signif-

icance. To do so requires that we first explore the covariance matrix of the set of
subgroup-specific statistics. Without loss of generality consider the case of L = 2
subgroups or post-hoc defined strata. We now show that the covariance between the
rank statistics Si and £2 is zero, and therefore, that the statistics are independent.
This is clear for the unconditional test, since Si and S2 depend on only on the un-
conditional distribution of the treatment assignments, and each treatment assignment
can appear only in Si or S2.

Over the conditional reference set, we can compute

The first term is zero since v\jV^j = 0. The second term is zero since

as treatments are independent in different strata. The latter will not be the case for
some restricted randomization schemes, as we will discuss later.

Consequently, it is possible to perform a post-stratified covariate-adjusted com-
bined test using a slight modification of (8.8) with t used to index strata rather than
i. For the unconditional test, the aggregate test

where V( is defined by (8.24) and with weights ut, is asymptotically normal, provided
(8.25) holds. For the conditional test,
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will be asymptotically normal if (8.25) and (8.28) hold. Here the weights MI are
specific to each post-hoc specified subgroup and may be chosen in a similar manner
as for a stratified analysis following stratified randomization.

8.5.2 Random allocation rule

For the random allocation rule, the probabilities of assignment within a given se-
quence are a function of the prior assignments. However, because the sample sizes
are fixed a priori, usually as n/2 to each group, then each permutation within the
reference set is equiprobable. Likewise, if it is assumed that subgroup membership
has equal probabilities in each treatment group, then conditional on the sample sizes
(NIA and NIB) within the £th subgroup, each permutation within the reduced ref-
erence set for that subgroup is also equiprobable. That is, all possible permutations
of HI out of n patients are equally likely, as are all possible permutations of NIA
out of nt assignments to treatment A. Therefore, the randomization variance within
the £th subgroup is also given by (8.29). Further, since the conditional complete
randomization variance-covariance structure also applies to assignments generated
from a random allocation rule, then the statistics Si and S2 are independent. Thus
all the above developments also apply to a post-hoc stratified analysis following
assignments using the random allocation rule (cf. Lachin, 1988).

Post-hoc stratified analysis following a truncated binomial design has not been
explored.

8.5.3 Permuted block randomization with a random allocation rule

Under the covariate independence assumption, a permutation test can likewise be per-
formed with a random allocation rule permuted-block design using only the responses
from patients within each block who are members of the designated subgroup. For
binary observations, Matts and Lachin (1988) show that a block-stratified Mantel-
Haenszel subgroup analysis will provide a test equivalent to the permutation test. For
quantitative observations, the blocked analysis of variance using responses only from
members of the subgroup will provide an F-test which is asymptotically equivalent
to the permutation test.

For the family of linear rank tests, the proper permutation test within a subgroup
under the covariate-treatment independence assumption is a generalization of (8.29).
Conditional on the pattern of subgroup indicators within each block i/uj, for stratum
t = 1, ...,L, block i = 1,...,M, each of size m, and patient j = l,...,n. The
stratum-specific scores {GJJ} are defined as in (8.22) as a function of the responses
Yij within each block, and the stratum means are given by c«. Then the variance
of the rank statistic for the ith subgroup within a block is the same as that for the
random allocation rule. Therefore, conditional on the pattern of subgroup indicators
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within the entire trial, the linear rank test within the ith subgroup becomes

where NUA = Z)"=i vtijTjft and HU = £"=1 "/y are the numbers of subgroup
members in group A and in total in block i who belong to subgroup t, respectively,
Tij is the treatment assignment of the jfth patient in the zth block, and uu is a weight
associated with the block. Note that the weights may differ for each block and each
subgroup depending on the sample sizes and the nature of the weights and scores
for each subgroup within each block. The asymptotic theory follows from Sections
8.5. land 8.5.2 for large M.

In the event that multiple mutually exclusive subgroups are defined on the basis of
a covariate, then under the covariate independence assumption, it then follows that
the rank statistics for each subgroup are statistically independent. Thus, a combined,
covariate-adjusted test can be performed as in (8.29).

Post-hoc stratified analysis following permuted block randomization using a trun-
cated binomial design has not been explored.

8.5.4 Wei's urn design

While the development of post-hoc stratified analyses for complete randomization
and the random allocation rule (with extension to permuted block designs) has been
straightforward, the literature has largely not addressed more complicated restricted
randomization procedures, such as the truncated binomial design and Efron's biased
coin design. Davis (1986) develops the theory for a post-hoc stratified unconditional
test following Wei's urn design. The form of the conditional test statistic and its
distribution theory appears to be an open problem. In this section, we address the
unconditional test for Wei's urn design. The main additional complication with these
more complicated restricted randomization procedures is that stratum-specific linear
rank tests will not be independent.

While Davis (1986) develops the test using the more complicated expression
for the asymptotic variance described in Section 14.6, it is clear from simulations
presented there that the form of the variance from complete randomization can be
substituted without any serious departures from normality. Hence the form of the
stratum-specific test in (8.23) should be appropriate for the unconditional stratum-
specific test.

The distribution of the post-hoc stratified tests follows from developments in Davis
(1986). Let Vj — (i/^-, ...,VLJ)' and let GJ — ct be the centered scores, which may
be stratum-specific scores or stratum-centered scores. Further, let bj = Vj(cj - C().
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Then we define an L x L matrix

Let S = (Si,..., SL) be the vector of stratum-specific linear rank statistics, where

Then under the condition

we have that A */2 S is asymptotically multivariate normal with mean 0and variance-
covariance matrix I. This provides a separate test of HQe within the subgroup of the
form We = Si J \/Vi, where Vt = A#.

Furthermore, if there is no obvious interaction between treatment and strata,
then the {Si} can be combined in a linear fashion using a vector of weights u; =
(o>i ... UL)' in

in order to make an overall inference about the treatment difference.
As before, the choice of the weights would depend on the alternative of interest in

some respect. In this case, since the Si are correlated, then the weights are different
from those described in Section 8.2.2. If it is assumed that there is a common
difference in the mean scores over strata, then the generalized least squares weighted
combination uses a weight vector

where C is a diagonal matrix with elements

Conversely, a test directed to the alternative of stochastic ordering would use weights
as in (8.13) substituting i for i.

8.5.5 Pre- and post-stratified analyses

The preceding methods can be generalized in an obvious manner to a post-stratified
analysis on one factor (say F) with L levels in a trial that employed a randomization
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stratified by another factor (say G) with / levels. In this case, the post-stratified
analysis on F is conducted separately within each level of G, to generate a rank
statistic St(j) for the ith level of F within the ith level of G, with variance V^ using
generalizations of the above. Then the results are pooled over levels of F and/or G
as appropriate.

For complete randomization or a random allocation rule, including permuted
blocks, a test of the treatment effect within the ^th level of F is obtained as

which is a generalization of (8.29) or (8.30) with weights u^ for the ith level of F
within the ith level of G. Then to obtain an overall stratified-adjusted test, adjusting
for both F and G, the St and Vt in (8.33) are employed in (8.29). The expression in
(8.31) for a permuted block randomization is a special case of this general approach.

For Wei's urn design, within the ith level of the pre-randomization stratifica-
tion factor G, the post-hoc stratified analysis yields a vector of statistics Sj =
(Sn ... SLI)' with L x L covariance matrix Aj, for i = 1, . . . , / . Then these
vectors can be combined over strata using a symmetric weight matrix Jlj such that

with variance-covariance matrix

These can then be employed in (8.32) with an appropriate weight vector to provide a
stratified-adjusted test of H0.

Using the developments in Section 8.2.2, an appropriate weight matrix for the ith
stratum is

where Ci is a diagonal matrix with elements

for i = 1, . . . , / . The NUA,NUB and nu are the sample sizes within each group
and total within the l\h level of F and the ith level of G.

The above construction provides a separate test within each joint stratum defined
by levels of F and G jointly, aggregate tests within pre-randomization strata, and then
aggregate tests over all strata combined. If the latter test is the only test of interest,
then an alternate approach would be to construct one large vector S consisting of the
IL stratum specific statistics. These could then be combined in one step to provide
a jointly stratified test. This approach is left to a problem.
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8.6 ANALYSES WITH MISSING DATA

A related concern is the validity of an analysis when responses {Yj} for some
patients are missing. Often patients with missing data are simply excluded and
the analysis is based only on the subset of patients with complete data. Under a
population model, such an analysis can be justified when it can be assumed that
the missing data are missing-completely-at-random (MCAR), or that missingness
is statistically independent of the observable response (cf. Little and Rubin, 1987).
Under a randomization model an analogous assumption is the covariate independence
assumption, as defined in Section 8.5, where the post-hoc covariate is defined as
having two categories: missing or observed.

Let Yj be the potentially observable response, and let Vj be an indicator variable
to denote whether the response of the j\h patient is observed (yj — 1) or missing
(vj = 0). Since we will only conduct an analysis within the subgroup with observed
data, only one subgroup indicator variable is employed.

Under a population model, the treatment assignments Tj are deterministic and
under the MCAR assumption, the responses {Yj} are statistically independent of
the {vj}. Under a randomization model, however, the responses Yj are fixed and it
is assumed that the treatment assignments {Tj} are statistically independent of the
{i/j} (see Lachin, 1988). This implies that the expected probability of treatment
assignment is the same for those patients with observed data and those with missing
data.

Unfortunately, under either a population model with the MCAR assumption, or a
randomization model with the independence assumption, there is no possible direct
test for the required assumptions. These assumptions can only be assessed indirectly,
such as by examining the observed characteristics of those patients with missing data
versus those with observed data. For this reason, it is important that the incidence of
missing data be kept to a minimum.

When no observations are missing, the rank score Q.J can be written as some
function a, = /(Yi, ... , Yn). In the presence of missing data, however, analogous
to (8.22) the rank score is defined as GJ = f(v\, YI , ... , i/n, Yn); i.e., GJ is defined
as a function of the complete observations only and is undefined if Yj is missing.
The numerator of the linear rank test then becomes 5 = ]Cj=i vj (ci ~ c}Tj where

c — (ICjLi vjcj)l^j=\ vj} ^d me denominator involves V = Var(S).
With complete randomization, a randomization using a random allocation rule,

or Wei's urn design, the statistical considerations are the same as for a subgroup
analysis since the subset of patients with observed data is exactly such a post-hoc
defined subgroup.

As described by Matts and Lachin (1988), with a permuted-block randomization
any missing data can be viewed as a special case of an unfilled block. In this design it is
statistically valid to exclude a block from the analysis due to operational deficiencies,
such as missing data (unrelated to treatment effects), or incomplete recruitment (an
unfilled block). This is termed a complete-block randomization analysis. Exclusion
of such incomplete blocks will not affect the integrity of the remaining complete
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blocks, for which the resulting aggregate test statistic (with blocking) still has the
usual randomization distribution. Thus, an unbiased and valid randomization analysis
can be performed using the subset of complete blocks without the need to invoke any
additional assumptions.

However, fewer patients would contribute to a complete-block randomization
analysis than would contribute to a complete-data randomization analysis, thus
potentially resulting in a loss in efficiency. Further, such a complete-block random-
ization analysis strictly should only be interpreted to apply to the collection of patients
in the complete blocks. In order to apply the results to the original collection of n
patients randomized, it is necessary to invoke the assumption of independent missing
data. Under this assumption, a valid randomization analysis can also be performed
using the subset of patients with complete data as a post-hoc subgroup. In this case
the blocked subgroup analysis should be performed as described in (8.31) ignoring
the subscript t.

In some instances response measures are informatively missing for reasons that
are obviously not random in a population model sense, or independently in a ran-
domization model sense. A common example is where the outcome measure {Yj}
is a measure of quality of life or disease severity but where some subjects die during
the study. In this case, the fact that the subject died indicates the worst possible
quality of life or disease severity. For such cases, Lachin (1999) describes a worst
rank analysis in which subjects who die are assigned a common value more extreme
than that of the observed values, such that all deaths share a tied worst rank. Lachin
(1999) also describes a method for assigning rank scores in a time to event analysis
such that the deaths have untied worst scores.

8.7 COVARIATE-ADJUSTED ANALYSES

A stratified-adjusted analysis is one approach to adjust for any bias introduced by
an uncontrolled covariate, or to increase the efficiency by accounting for a highly
influential covariate. This approach, however, is only applicable to qualitative co-
variates, or discretized quantitative covariates, and few in number. In many respects
it is more natural to perform an adjustment using a regression model that allows
for both qualitative and quantitative covariates simultaneously. While a regression
model is usually developed under a population model, it is straightforward to apply
a randomization analysis following the fit of a model. Conceptually the basic steps
are to first fit a model to baseline covariates, other than treatment group. Then the
residuals from the model can be viewed as a set of pre-ordained responses, regardless
of which treatment is assigned. The residuals {ej} can then be employed in lieu of
the responses {Yj} as the basis for computing a rank score.

Under a population model, the responses {Yj } are independent but the residuals are
no longer exchangeable. However, under a randomization model the {Yj } and their
corresponding residuals {ej } are considered fixed constants, and thus the permutation
test remains valid. Also note that since the rank scores of the {Yj} are functions
of the complete set of n responses, and thus can not be observed until the complete



140 INFERENCE FOR STRATIFIED ANALYSES

set has been randomized, so also the rank scores of the residuals {ej} can not be
observed until the complete set is observed.

Another advantage of the randomization analysis of the residuals is that the validity
of the test in no way depends on the validity of the model assumptions used to fit
the model. Thus, if a simple normal errors model is used as the basis for computing
the residuals, then the validity of a t or F-test between groups depends on the
homoscedastic normal errors assumption. However, the permutation test comparing
the randomly assigned groups in no way depends on this assumption. Thus the
permutation test can be viewed as a robust test in situations where the regression
model may be misspecified.

For a normal errors model, the simple residual is readily obtained as ej = (yj - yj)
where yj = a + x^/3 for the jth subject with covariate vector Xj, as a function of
the intercept a and coefficient vector /3. In a logistic regression model the {Y,-}
are binary indicator variables for a positive (1) versus negative (0) outcome, with
conditional expectation

Then the simple residual is tj = (yj — TT,-). The Pearson residual, defined as the root
of the contribution to the Pearson chi-square goodness of fit, would be computed as

The logistic regression model is a member of the family of generalized linear
models based on a conditional error distribution that is a member of the exponential
family. In these models the conditional expectation n(x) of Y\x is expressed as a
linear function of the covariates through a link function such that g[n(x)} = a 4- x^/3
and jj(x) = g~l [a + xJ/3]. Then the error distribution specifies that the conditional
variance is some function of the mean, expressed as a2[/i(x)j. The corresponding
Pearson residual is

Alternately, the deviance residual can be computed as the contribution of the jth
observation to the model deviance, the form of which is specific to each model. The
expressions are given in many standard texts on linear models such as McCullagh
and Nelder( 1989).

For the analysis of survival data using a proportional hazards model, Therneau,
Grambsch, and Fleming (1990) describe martingale residuals which examine the
difference between the event counting process and the cumulative hazard which is
the compensator for the process (cf. Fleming and Harrington, 1991). Let tj refer to
the observed time of death (or the event) for the jth subject, in which case 6j = 1, or
the time up to which the subject was known to be alive (or event free) in which case
6j = 0. Then the martingale residual, defined at time tj, is computed as
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where AQ(S) is the background hazard function. In this model AQ(S) replaces the
intercept in the preceding linear models and the function must be estimated in order
to compute the martingale residuals. A positive residual represents an individual
who "died too soon" and a negative residual one "who survived too long" relative to
others with the same covariate values. The deviance residual is a transformation of
the martingale residual (Fleming and Harrington, 1991).

In the case of a blocked randomization, one approach to a regression model
adjustment would be to simply add a block indicator covariate to the regression
model. However, this leads to the inclusion of a large number of nuisance parameters
in the model. An alternative would be to use a conditional regression model, such
as a conditional logistic regression model or a stratified proportional hazard model,
conditioning or stratifying on block. In a population model analysis, the model
would only include treatment group and the adjusting covariates. In a randomization
model analysis, one would fit the model using the adjusting covariates, compute the
appropriate residuals, and then conduct a randomization analysis of the residuals.

8.8 EXAMPLE 1: THE NEONATAL INHALED NITRIC OXIDE
STUDY

8.8.1 A Blocked Randomization and Analysis

The Neonatal Inhaled Nitric Oxide Study (Neonatal Inhaled Nitric Oxide Study
Group, 1997) employed a permuted-block randomization and a random allocation
rule within blocks to assign neonates requiring oxygen to receive either inhaled nitric
oxide or placebo. The goal was to assess the effects of therapy on the need to
apply extracorporeal membrane oxygenation (ECMO) or death, a combined primary
outcome. The published analysis employed a simple population model analysis
with a test for two proportions. Within 120 days following randomization, 64%
of the control group versus 46% of the nitric oxide group died or required ECMO,
p < 0.006. Herein we present a randomization-based analysis. The data from this
study are available from the authors.

A total of 235 neonates were randomized (114 treated, 121 control) within 85
blocks of random length 2 or 4, with the exception of some Canadian clinics in
which blocks of length 6 were also employed. Of these, 11 blocks contained subjects
assigned to only one of the two treatments (4 treated, 7 control) and thus do not
contribute to the blocked analysis. The unblocked analysis yields a Mantel-Haenszel
chi-square test value X\, = 8.48 (p < 0.0037). The blocked analysis using a separate
stratum for each block yields a stratified-adjusted Mantel-Haenszel chi-square test
value Xg = 8.54 (p < 0.0036). This is equivalent to the stratified linear rank test in
(8.10) using binary scores (a,jn = I or 0) with unit weights (a;, = 1) and allowing for
incomplete blocks. The fact that the two test values are virtually identical indicates
that the intrablock correlation is virtually zero. Thus subjects randomized within a
block tend to be no more alike than subjects entered in different blocks.
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For reference, the weighted test using the MVLE-like weights in (8.12) yields a
chi-square value W^ = 6.40 (p < 0.0115), and that using the stochastic ordering-
like weights in (8.13) yields W% = 7.99 (p < 0.0048). This should not be taken
to indicate that unit weights will in general provide a larger test value. The Mantel-
Haenszel test is known to be optimal, in the sense of asymptotic efficiency, when
there is a common odds ratio among strata in the population, or when the data show
random variation about a common value. When the data arise from a population with
a common relative risk then a different set of weights provides an optimal test. See
Lachin (2000) for a discussion of these issues. While we present different weighted
tests for illustration herein, in practice it is necessary that a single test, and weighting
procedure, be specified beforehand.

The partial pressure of arterial oxygen (Pa02) was a secondary outcome. Values
were missing from 8 subjects (2 treated, 6 control). Nevertheless, the analysis is
readily conducted under the independence assumption discussed in Section 8.5. The
unblocked conditional test using rank scores yields a chi-square test value Xy =
22.83 (p < 0.0001). In a blocked analysis, 15 blocks contained subjects assigned to
only one of the two treatments and did not contribute to the analysis. The remaining
70 blocks contained 211 subjects, 106 assigned to the treated group and 105 to
control. The unweighted blocked analysis using a separate stratum for each block
yields a stratified-adjusted chi-square test value W% = 9.07 (p < 0.0026). The test
using the MVLE-like weighted test yields W% = 9.61 (p < 0.0020), and that using
the stochastic ordering-like weights yields WQ = 10.07 (p < 0.0016). In this case,
the fact that the blocked analyses yield smaller test values than the unblocked analysis
indicates that the intrablock correlation of these measures is negative.

8.8.2 A Post-Stratified Blocked Analysis

As an illustration of a post-stratified blocked analysis, consider the analysis of the
PaO2 levels, stratified by an Apgar score < 2 versus a score > 2. Due to the small
block sizes (2, 4 or 6), when the blocks are further stratified by Apgar score, a total
of 49 stratified blocks do not contribute to the analysis, constituting 52 observations,
including 27 in the treated group and 25 in the control group. Thus one reason why
this stratified-adjusted analysis differs from the analyses presented previously is the
difference in sample sizes.

Table 8.4 presents the p-value for the blocked test using rank scores within Apgar
score strata, and combined, using different weighted tests. Within the Apgar < 2
subgroup, the tests have equivalent results. However, within the Apgar > 2 stratum,
and combined, the MVLE-weighted test provides a somewhat larger p- value.

A similar post-stratified adjusted analysis can be readily applied to the primary
outcome. Creating blocks defined jointly by the Apgar score strata and the random-
ization blocks within center, the jointly stratified/blocked-adjusted Mantel Haenszel
chi-square test value is WQ = 7.096 (p < 0.0077), slightly less significant than the
analysis not stratified by Apgar score. This is equivalent to a stratified-combined
blocked linear rank test with unit weights.
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Table 8.4 Post-stratified analysis of the Neonatal Inhaled Nitric Oxide Study using different
weighting schemes.

Subgroup

Apgar < 2
Apgar > 2
Combined

Hi

29
146
175

n>iA

14
71
85

Wi = l

0.1206
0.0033
0.00097

MVLE Stochastic Ordering

0.1199
0.0114
0.0121

0.1152
0.0049
0.0030

8.8.3 Covariate-Adjusted Blocked Analysis

A further analysis was conducted using regression models to adjust for the influence
of baseline covariates. For the analysis of the primary outcome, a binary variable,
a logistic regression was fit with the baseline level of PaC>2, birth weight, gender
and Apgar score. The model entropy R2 is 0.093. Of the original 85 blocks, 17
blocks containing 19 subjects (6 treated, 13 control) were eliminated because they
contained subjects assigned to only one of the treatment groups, leaving 61 blocks
containing 187 subjects (91 treated, 96 control). A rank analysis was then applied
to the Pearson residuals (8.38). The unweighted blocked analysis chi-square test
yields W^ - 6.33 (p < 0.012). The test using the MVLE-like weights yields VF|
= 6.92 (p < 0.0086), and that weighted by the stochastic ordering-like weights
yields VF| = 7.17 (p < 0.0075). All p-values are much smaller than the unadjusted
blocked analysis.

For the analysis of PaO2 a regression model adjusted for the baseline level of
PaO2, birth weight, gender and Apgar score explained 22 percent of the variation
in the post-treatment level of Pa02. In addition to the 8 subjects with a missing
post-treatment PaO2, an additional 27 subjects were eliminated from the analysis
due to missing values of the covariates. Further, 20 blocks containing 22 subjects
(8 treated, 14 control) were eliminated because they contained subjects assigned
to only one of the treatment groups. The rank analysis of the residuals from the
regression model adjustment was then applied to the remaining 61 blocks containing
178 subjects (88 treated, 90 control). The unweighted blocked analysis chi-square
test yields VF| - 21.06 (p < 0.0000045). The test using the MVLE-like weights
yields Wg = 21.40 (p < 0.0000038), and that weighted by the stochastic ordering-
like weights yields W% = 22.93 (p < 0.0000017). All p-values are much smaller
than the unadjusted blocked analysis.
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Table 8.5 Sample sizes, numerators, denominators, and Z-test results by stratum for the
DCCT unconditional and conditional analyses.

i

1
2
3
4
5
6
7
8
9
10
11
12
13
14

ni

31
22
29
27
28
29
27
23
29
28
32
23
15
18

nAi

17
13
15
15
11
14
15
11
14
11
18
8
7
9

Un

Si

-33.5
-14.5
34.5
-26.0
-1.5
-9.0
14.5
-17.5
-12.0
23.0
6.0

-32.5
1.5
7.0

conditi

vt
612.1
218.1
499.8
404.8
452.4
499.4
402.6
251.1
506.1
445.6
679.9
248.0
68.4
120.6

onal

Zi

-1.354
-0.983
1.543
-1.292
-0.071
-0.403
0.723
-1.104
-0.533
1.090
0.230
-2.064
0.181
0.637

Cc

Si

-1.211
-0.776
1.511
-1.272
-0.074
-0.378
0.683
-1.080
-0.497
1.155
0.233
-1.823
0.274
0.602

Hiditior

Vi

0.984
0.978
0.998
1.000
1.000
0.998
0.999
0.995
0.995
0.997
1.000
0.989
0.951
0.996

id

Zt

-1.221
-0.785
1.513
-1.272
-0.074
-0.379
0.683
-1.082
-0.499
1.157
0.233
-1.833
0.281
0.603

8.9 EXAMPLE 2: THE DIABETES CONTROL AND
COMPLICATIONS TRIAL

8.9.1 A Stratified Urn Randomization and Analysis

As described subsequently in Section 9.8.3, the Diabetes Control and Complications
Trial (DCCT) employed Wei's urn design with a = 0, /3 = 1 to randomize subjects
to receive either intensive or conventional therapy within each of 25 clinical centers.
The randomization was also stratified by primary versus secondary cohorts defined
by the absence or presence, respectively, of pre-existing complications. One of the
principal outcomes of the DCCT was the level of albumin excretion rate (AER) which
is an indication of the extent of nephropathy (Diabetes Control and Complications
Trial Research Group, 1995). For these analyses a random subset of 7 clinics is
employed containing 361 subjects, 178 treated intensively and 183 conventionally.
Complete data were available in the cohort at year 1, but at subsequent years there
were missing values, principally due to staggered entry leading to administrative
censoring. While the actual randomization was a bit more complicated than a simple
f/£>(0,1), herein we present analyses assuming that a simple f/D(0,1) had been
employed within each stratum (i). These data are available from the authors.

Table 8.5 presents the linear rank test using simple rank scores within each of the
14 strata defined on the basis of the clinical center and primary versus secondary
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Table 8.6 Overall tests using different MVLE-like weights and stochastic ordering (SO)
weights for results in Table 8.5.

Analysis Weights 5 V W% p <

Unconditional MVLE -1.113 1.662 0.745 0.389
SO -10.291 123.7 0.856 0.355

Conditional MVLE -15.963 582.5 0.437 0.509
SO -0.443 0.398 0.494 0.483

cohort. The test statistic, variance and Z-value are presented for the unconditional
analysis and the conditional analysis within each stratum. The unconditional and
conditional Z-values are similar in all strata.

Of course we are principally interested in an overall test of the treatment effect,
rather than the tests within strata. Table 8.6 presents the stratified-combined statistic
(numerator of (8.8)) and variance, the test and Z-value using the MVLE-like weights
and using the stochastic ordering (SO) weights. The tests using either the MVLE
or stochastic ordering weights are virtually identical in this analysis. Further, the
unconditional test Z-value is slightly greater than the conditional test for these data.

8.9.2 Urn Analysis with Missing Data

The year 1 AER values were employed in the preceding analyses because there are
no missing values. However, at subsequent years some subject values were missing,
principally due to administrative censoring. Among this subset of clinics, the AER at
5 years was observed in 305 of the 361 subjects (148 intensive, 157 conventional), and
missing in 56 subjects. Nevertheless, it is straightforward to conduct a randomization
analysis of these data. Essentially the non-missing data comprise a subgroup among
those entered. Unconditionally the analysis can be conducted using the simple
complete randomization variance as described in Section 8.5.4. Since there is only
one subgroup of interest within each clinic (those not missing), the unconditional
variance is simply the sum of squares of the centered scores divided by 4. The test
using the MVLE-like weights yields W^ = 5.30 (p < 0.022), and that weighted by
the stochastic ordering-like weights yields W^ = 4.93 (p < 0.027).

The post-stratified conditional linear rank test for an urn design has not been
studied.

8.9.3 Covariate-Adjusted Urn Analysis

A further analysis of the AER at 1 year was conducted to adjust for baseline covariates.
A linear regression model was fit to the log(AER) at 1 year using covariates: log(AER)
at baseline, gender, duration of diabetes, body mass index, mean blood pressure,
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HbAic (a measure of blood glucose exposure) and c-peptide (a measure of residual
insulin secretion). The model accounted for 24 percent of the variation in the year
1 values. The adjusted unconditional analysis yielded results that were similar to
the unadjusted analyses presented previously. For the unconditional analysis, the
stratified-combined statistic using the MVLE-like weights is W^ — 0.419 (p <
0.518). The stratified-combined statistic using the stochastic ordering weights is
W% = 0.540 (p < 0.463). Again the tests are similar.

These adjusted analyses yield a larger p-value than the unadjusted analyses, 0.389
and 0.376, respectively. A similar effect is observed in population model-based
normal errors analyses wherein the unadjusted group effect yields p < 0.737, whereas
the adjusted effect yields p < 0.846. This is due to slight covariate imbalances
between groups at baseline.

8.10 CONCLUSIONS

The conditions under which the randomization-based analysis will in general yield
p-values less than population model based analyses, whether adjusted or not, has
not been explored. If a randomization analysis is to be conducted, then in order
to preserve the type I error rate at the desired level, one should analyze exactly as
one randomized. If a permuted-block randomization was employed, this entails an
analysis stratified by block. In this case, small block sizes, as in the nitric oxide
study, will lead to exclusion of blocks that only contain subjects assigned to one of
the two groups.

For a randomization-based analysis, pre-stratification has several advantages.
First, one can discard strata based on a priori operational criteria without affect-
ing the randomization stream. This is particularly relevant for pre-stratification by
clinic in multi-center clinical trials, where a clinic may later be discarded in the
analysis, such as when a clinic's participation is terminated due to lack of recruit-
ment. Second, pre-stratification allows for a very simple stratified analysis by simply
summing the numerator and denominator of the test statistic over the independent
strata, possibly with stratum-specific weights. However, it should be clear from the
developments in Section 8.4 that pre-stratification does not result in any benefits in
terms of relative efficiency for a stratified analysis in large sample clinical trials.

In some cases a post-stratified analysis may be desired for covariates not considered
in the pre-stratification process. One option is to conduct such an analysis with a
separate test of treatment effects within strata. For the urn design, this induces
correlations across strata that complicate the analysis, but these complications are
not insurmountable, as discussed in Section 8.5. The within-stratum tests can then
be combined to provide an overall stratified-adjusted assessment of the difference
between the treatment groups.

If the objective of post-stratification is to provide an adjusted assessment of treat-
ment effect, a simpler approach is to conduct a randomization-based test in a modeling
setting, as discussed in Section 8.7. This also has the advantage that a randomization-
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based test can be conducted after adjusting for multiple covariates, including quanti-
tative covariates.

Every trial includes confirmatory analyses of primary, and often secondary, ob-
jectives. For such analyses it is important that the principal method of analysis be
specified a priori, whether randomization-based or population-based, whether ad-
justed for other covariates, and, if so, how the covariates are to be selected and how
the adjustment is to be performed. However, after a trial has been conducted, a variety
of exploratory analyses are conducted to address objectives beyond those explicitly
stated in the protocol. Such analyses could be performed either under a randomiza-
tion model or under an invoked population model, and many statisticians would favor
a population model for covariate-adjusted regression analyses when considering such
hypotheses.

8.11 PROBLEMS

8.1 Consider binary response data, where Oj = 1 or 0.
a. Under complete randomization, show that the linear rank test is algebraically
equivalent to the Mantel-Haenszel test for a 2 x 2 table with mean (8.1) and variance
(8.2).
b. Under the random allocation rule where UA — ns = n/2, show that the linear
rank test is algebraically equivalent to the Mantel-Haenszel test for a 2 x 2 table with
mean s/2 and variance s(n — s)/4(n - 1).

8.2 Derive (8.15) and (8.16).

83 Derive (8.27).

8.4 Consider a randomization pre-stratified on a factor G of I levels and post-stratified
on factor F of L levels. Derive an aggregate test over the IL strata by constructing
a vector S consisting of the IL stratum-specific statistics.
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9
Randomization in Practice

9.1 INTRODUCTION

Each method of randomization has properties that are better suited to specific ap-
plications than others. Thus the choice of a randomization procedure and its im-
plementation depend in part on the design features of the study. In this chapter, we
outline the basic steps in determining an appropriate randomization procedure to use,
generating the randomization sequence, and implementing the randomization in the
clinical trial.

The paramount objective of randomization is to provide an unbiased comparison
of the treatment groups. However, if not carefully implemented, the randomization
procedure can be subverted, even in a double-masked study. Also, randomization
procedures in an unmasked study are susceptible to varying degrees to subtle biases
introduced by the investigators (selection bias), and to subtle biases introduced in any
study by non-random sequential entry of subjects over time (accidental bias). Models
for the assessment of these types of bias are presented in the preceding chapters.

Another objective of randomization is to permit a randomization-based analysis
based on the exact or large sample probability distribution of a test statistic over
the reference set of possible randomization permutations. Whereas power is the
usual criterion for the selection of sample size, and its analogue relative efficiency is
used to choose a most powerful test under a specific alternative, power as a statistical
property only applies indirectly to permutation tests. Thus power or efficiency is not a
useful criterion for distinguishing a permutation test based on different randomization
procedures. Herein we principally consider the different randomization procedures
from the perspective of the control of bias.

149
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It is important to remember, as discussed in Chapter 2, that randomization alone
is not sufficient to provide an unbiased comparison of groups. Two other criteria
(Lachin, 2000a) are required to ensure that a study result is unbiased. The first is
that missing data from any randomized subjects, if any, do not bias the comparison
of groups. This can be achieved by an intent-to-treat design in which all randomized
subjects are followed so long as alive, able, and consenting. Second, the outcome
assessments must be obtained in an equivalent and unbiased manner for all patients.
The latter is obtained by double-masking, or single-masking those who conduct the
outcome assessments.

9.2 STRATIFICATION

The initial considerations in the design of a study stem from the study objectives.
These should be stated in such a manner that specifies the target population, the
number of treatment groups, the treatment regimens to be compared, the principal
outcome measure to be used to compare the effects of treatment, the sample size per
group, and the duration of follow-up. Given these, the first step in the implementation
of randomization is to determine the number of strata, if any, to be employed in the
randomization.

Methods of stratified analysis under a randomization model are discussed in Chap-
ter 8. Standard methods may also be applied under a population model, such as the
Mantel-Haenszel stratified analysis of multiple 2 x 2 tables (cf. Lachin, 2000b). In
Chapter 8 we showed that, while stratification of the randomization on a covariate will
promote balance of that covariate within each randomized group, the statistical gains
in efficiency resulting from the stratified randomization are indeed small compared
to a stratified analysis using the same strata but without a stratified randomization.
Thus stratification must be justified on other grounds.

In most multi-center clinical trials, the greatest source of patient heterogeneity
with respect to covariates for the particular disease under study is the clinical center
in which the subjects are recruited. Further, there is often a wide range of numbers
randomized within the various clinical centers. In addition, in some trials poor per-
forming clinics may actually be dropped from the study and it would be desirable that
the elimination of the patients from one clinic not affect the integrity of the random-
ization in the remaining clinics. For all these reasons it is generally recommended
that the randomization be stratified by clinical center or randomization site. (See
Section 4.2.)

It may also be argued that one should also stratify on other major covariates.
The motivation is to ensure that a major imbalance in such a covariate does not
occur by chance among the treatment groups. However, as shown in Chapter 5,
the probability of treatment imbalances is small, and any chance imbalances that do
occur can effectively be adjusted for in the analysis. This assumes, however, that
such covariate imbalances are due to chance among the cohort initally randomized
and that there is complete follow-up of the randomized cohort. However, imbalances
among groups selected from among those randomized, such as due to incomplete
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follow-up, cannot be adjusted for, with or without initial stratified randomization,
without special unverifiable assumptions.

When stratification is deemed necessary for a large number of covariates, or if
the total strata sizes are small, a covariate-adaptive randomization procedure can be
employed. The Pocock-Simon procedure described in Chapter 4 has the benefit of
being fully randomized, but very little is known about its theoretical properties.

9.3 CHARACTERISTICS OF RANDOMIZATION PROCEDURES

In this section, we restrict consideration to the randomization procedures evaluated
in Chapters 3, 5, and 6. As shown therein, the basic issue is a tradeoff between
the desire to promote or guarantee balance in the numbers of treatment assignments
versus the susceptibility to either selection bias in an unmasked study, or accidental
covariate imbalances.

While Efron's maximum eigenvalue assessment of accidental bias is of academic
interest, in practice it is likely not a useful concept because it quantifies the magnitude
of a severe bias, not its risk. Perhaps the only method that would be disfavored by
Efron's accidental bias criterion is the truncated binomial design, without blocks
or strata, since for this design the maximum bias increases in n. However, our
simulations show that when used in permuted blocks, the truncated binomial design
yields a distribution of covariate imbalances comparable to those of the permuted
block design with a random allocation rule within blocks. In our view, susceptibility
to accidental bias is not the most useful criterion for choosing one randomization
procedure over another.

Rather, in an unmasked study, or one with the potential for unmasking, the principal
concern is the potential for introduction of selection bias. From our experience, it is
human nature to try to arrange for a patient whom one feels is better suited to receive
treatment A(B) to be more likely to receive that treatment. This could be done, for
example, by scheduling the randomization visit when one thinks it is more likely that
the next assignment will be A(B). Susceptibility to selection bias is a major concern.

9.3.1 Consideration of selection bias

In a double-masked study, there is no susceptibility to selection bias. The only
remaining considerations are the extent to which balance should be promoted, and the
implications for data analysis. Given the stratum sample sizes, one should evaluate
the probability of imbalances within strata and in aggregate with each procedure
under consideration. In so doing one should note that minor imbalances, such as
55 : 45 within strata or in aggregate, have little impact on the statistical properties of
the study (although there may be ethical consequences). Although such imbalances
may be of cosmetic concern, this alone should not require consideration of more
aggressive restricted randomization procedures to ensure or promote balance. Other
reasons, however, which may justify such an aggressive approach are when the agent
is a new drug therapy for which it is desired to ensure that approximately half the
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subjects are assigned to the active therapy to accrue the required patient years of
exposure for the assessment of side effects; or where the experimental therapy is very
expensive or staff intensive and for budgetary reasons balance is desired. In such
studies with a small sample size in total, or within strata, complete randomization or
urn designs may not be acceptable because there is a modest probability of such minor
imbalances. Efron's biased coin design tends to have the best balancing properties
among those designs that do not force perfect balance.

In an unmasked study, the potential for selection bias becomes a major concern. As
shown in Chapter 6, the more predictable the sequence of assignments, or the higher
the correlation among successive assignments, the greater the potential for clinic
site staff to influence the composition of the treatment groups by scheduling patients
for randomization visits so as to try to "beat" the randomization. The procedure
most susceptible to such bias is the permuted block design with small block sizes.
Under the Blackwell-Hodges model, under a convergent guessing strategy, random
permuted blocks has no effect on the potential for such bias. Under this model, the
potential bias is a constant regardless of the current imbalance between groups, or
the magnitude of the probability of the next assignment. Matts and Lachin (1988)
explored an alternate model in which bias is introduced only when the block size is
known and the investigator can predict with certainty, or identify those assignments
in the tail of a block where the probability of assignment to A or B is 1. In this case,
the use of variable block sizes will substantially reduce this potential for bias.

In practice, neither model for selection bias is particularly accurate. In our
experience, the greater the imbalance, the greater the temptation to attempt to beat the
randomization. This leads to a model like that proposed by Stigler (1969). However,
most of the different randomization procedures have not been studied under such a
model. Regardless it is clear that in an unmasked study, it is a temptation to try to
beat the randomization, and during the course of a study, many clinic staff succumb.
Thus it is prudent to avoid blocked randomization unless the stratum or aggregate
sample sizes are small. Although the use of variable block sizes may not help avoid
bias, it would not hurt.

Some additional advantage might be accrued by using a truncated binomial pro-
cedure rather than a random allocation rule to generate the assignments within each
block. As shown in Chapter 6, sequences with lower potential for selection bias
under the Blackwell-Hodges model have higher probability of occurrence using the
truncated binomial than the random allocation rule. However, there are also the se-
quences with a longer tail of assignments with certainty; e.g., the AABB sequence.
Although not studied, one would conclude that the truncated binomial design would
have greater potential for selection bias under the Matts-Lachin model of predictions
with certainty when the block size is known. Thus if the truncated binomial design
is employed, use of variable block sizes would be prudent.

With moderate stratum or total sample sizes, however, the urn design is markedly
preferred to the blocked designs due to the much lower susceptibility to selection
bias. This approach has been used in a number of large-scale, unmasked multi-center
trials with stratum sample sizes of 30 and higher including the Diabetes Control and
Complications Trial (The Diabetes Control and Complications Trial Research Group,
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1986) and The Diabetes Prevention Program (Diabetes Prevention Program Research
Group, 1999).

9.3.2 Implications for analysis

In Chapters 7 and 8, we describe methods of analysis based on the randomization
distribution of a family of linear rank statistics with respect to the probabilities
associated with each of the multitude of possible permutations. Such a randomization-
based analysis has the advantage that it requires no assumptions other than the fact
that a specific randomization procedure was employed and all observations were
obtained in an unbiased manner. This is markedly different from the usual methods
of analysis such as a £-test for means or a chi-square test for proportions, which rely
on the concept of sampling at random from a homogeneous population.

If it is planned that all analyses will be justified under population model assump-
tions, then the method of randomization is irrelevant to the choice of an analytic
strategy or procedure. This is the approach most often taken in the analysis of a clin-
ical trial, and usually without controversy. However, in many instances, the variance
of a test statistic can be markedly larger under population model assumptions than
under randomization-based assumptions, and the resulting p-value higher.

Of course, the two approaches are assessing different questions. The random-
ization analysis addresses the probability that a difference at least as large as that
observed among the n subjects randomized into the trial could have occurred by
chance under the null hypothesis. The population model analysis addresses the prob-
ability that such a difference could have been observed in samples of HA and HB
subjects drawn at random from their respective populations. Thus the randomization
analysis allows a conclusion about the effects of treatment among the n patients stud-
ied, whereas the population model analysis allows a conclusion, through confidence
interval estimation, about the effects of the treatment in the general populations from
which the n patients were drawn.

As we stated in Chapter 7, in our opinion both approaches have value. We think
it prudent to specify in the protocol that a randomization analysis would be used
to conduct a test of the treatment group effect on the primary outcome, and that a
population model analysis would be used to estimate the effect within the general
population.

9.4 CHOICE OF RANDOMIZATION PROCEDURE

Lachin, Matts and Wei (1988) present a review of the properties of each of these
non-adaptive randomization procedures and recommendations for their applications.
They also discuss the role of covariate-adaptive randomization. The following is a
summary of the potential applications of each method.
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9.4.1 Complete randomization

Complete randomization provides optimal protection against various experimental
biases such as selection and accidental bias. It also provides a randomization analysis
that is asymptotically equivalent to the usual population model analysis, in most
situations. However, it also provides the greatest potential for an imbalance in the
number of treatment group assignments. In a large study, this may be simply a
cosmetic concern.

9.4.2 Forced-balance designs

The random allocation rule and the truncated binomial design each impose strict
balance on the numbers of assignments to each group provided that the complete
sequence of allocations is filled. However, there is a potential for sizable imbalances at
some points during the course of the trial. In an unmasked study both are susceptible to
selection bias, with the random allocation rule more susceptible under the Blackwell-
Hodges model. The truncated binomial is most susceptible to Efron's accidental
bias, the possibility for an extreme covariate imbalance increasing in n. The random
allocation rule allows a simple large sample randomization analysis, but the truncated
binomial design does not (see Chapter 14).

9.4.3 Permuted block design

The most common application of a forced-balance design is through the use of
permuted blocks to ensure balance after each block of assignments is filled. Within
each block either the random allocation rule or the truncated binomial design can be
used. For small to moderate block sizes, simulations show that the two approaches are
equally susceptible to covariate imbalances, no more so than other designs. However,
in an unmasked study, the truncated binomial is less susceptible to selection bias under
the Blackwell-Hodges model than is the random allocation rule. Thus, if permuted
blocks are to be used in an unmasked study, the assignments should preferably be
generated using a truncated binomial rather than random allocation rule. In either
case, variable block lengths are also recommended to prevent investigators from
discerning the nature of the assignments.

Because balanced assignments to the treatment groups is assured within complete
blocks, this design is most attractive with small studies, or studies with many small
strata. For a double-masked study this approach is fine. However, for an unmasked
study, even with the truncated binomial and random block lengths, an additional strat-
egy could be considered. Rather than conduct the randomization sequentially as each
patient is recruited, all biases can be eliminated by waiting until a set of patients have
been recruited to fill a block, and then conduct all assignments simultaneously. Such
block simultaneous randomization completely eliminates the potential for selection
bias in an unmased study.

The proper randomization analysis with a permuted block design is a little more
complicated since the analysis must be blocked (see Chapter 8). Whereas it is
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tempting to ignore the blocking in the analysis, to do so may substantially sacrifice
power. Matts and Lachin (1988) show that the ratio of common tests with and without
blocking is a function of the intrablock correlation, the loss of power increasing as
the correlation increases. For example, in the extreme case of a block size of 2, then
in effect the proper analysis is a matched-pairs analysis. Ignoring the blocking thus
provides the wrong analysis.

The permuted block design analysis also provides a unique approach to account
for any bias introduced by incomplete data. As described in Chapter 8, when data are
missing for some subjects, a randomization analysis among the observed subjects can
be justified as a special case of a post-hoc subgroup analysis under the assumption
that missing data arises due to an independent random process, analogous to "missing
completely at random" (MCAR) in a population model. However, a permuted block
design allows an unbiased analysis even when the independence assumption is not
plausible. In this case, missing data within a block may bias the comparison of
treatment assignments within that block, but not within other blocks with complete
data. Thus, a complete block subset analysis will provide an unbiased assessment of
the differences between treatment groups. If this type of analysis is planned, then
this would suggest that small block sizes should be employed, to reduce the numbers
of subjects eliminated from the analysis due to missing data from another subject in
that same block.

9.4.4 Biased coin-type designs

Efron's biased coin design, Wei's urn design, and generalizations, provide randomiza-
tion sequences that control the likelihood of treatment imbalances without imposing
strict balance. As such, they are less predictable than the blocked designs, and less
susceptible to selection bias in an unmasked study. The urn design promotes balance
early in the sequence of assignments, but approaches complete randomization as the
sample size increases. Thus these designs are attractive in an unmasked study with a
moderate or large sample size in total, or within strata. A conditional large-sample
randomization-based analysis is a little more tedious to compute with Wei's urn
design, but the analysis is readily programmed. Large-sample properties of random-
ization tests following Efron's biased coin design have not yet been established (see
Chapter 14).

9.5 GENERATION AND CHECKING OF SEQUENCES

Standard computer packages such as SAS and S-Plus have built in random number
generators that can be used to prepare the randomization sequence for a clinical
trial. Using the notation of Chapter 3, a loop over the n patients will generate
the assignments plus increment the function NA(J),J — 1, ••- , n. For all restricted
randomization rules described, the probability of assignment to A, given by PAJ =
E(Tj \Fj-i), is simply a function of NA (j — 1). For each patient, a uniform random
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data urn;
nb=0;
do j=l to 50;

x=ranuni(seed);
if j=l then p=l/2;
else p=nb/(j-l);
if x < p then t= 'A' ;
else t='B';
if t='B' then nb+1;
output;

end;
run;
proc print;

var j t;
run;

Fig. 9.1 SAS code to generate a randomization sequence for n = 50 using the f/D(0,1)
randomization procedure.

number Uj e [0,1] is generated, and the following rule is applied:

IfUj < PAJ, assign treatment A

Uj > PAJ, assign treatment B.

It should be noted that randomization sequences are only as good as the random
number generator. One should test any random number generator used with appro-
priate goodness-of-fit statistics. Some popular tests for random number generators
are given, for example, in Law and Kelton (1982, Sec. 6.4) and Rukhin, Soto, Nech-
vatal, et al (2000). The RANUNI function in SAS is highly regarded as a reliable
random number generator. Figure 9.1 gives the SAS code to generate a sequence of
50 treatment assignments from Wei's £/D(0,1) procedure.

For the case of three groups, say A, B and C, this approach generalizes by
determining the desired probability of each treatment allocation. Let the probability
that patient j will be assigned to A be denoted PAJ and the probability that patient j
will be assigned to B be denoted PBJ . Based on the random uniform number Uj, the
jth subject is then assigned as follows:

A if Uj<pAj\
B if pAj < Uj < (PAJ + PBJ}]
C if Uj> (PAJ+PBJ)-

This approach immediately generalizes to the case of any number of treatments.
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A random number should be specified as the seed to initialize the sequence. The
random number seed and the edition/version of the random number generator should
be documented so that the sequence can be regenerated and replicated if need be.

One frequent question from experimenters is whether one need actually draw a
random permutation as the basis for the randomization, as opposed to simply writing
down an "attractive" sequence of assignments, or using a systematic sequence such
as ABAB•••. While the answer should be clear from the preceding chapters, it
is helpful to explore the historical views on this. It has long been recognized that
such "attractive" sequences are likely to be somewhat systematic, if not formally
so, and that systematic sequences are susceptible to systematic biases. That is, the
characteristics of the sample units differ in a systematic way which corresponds to the
systematic differences in assignments, resulting in substantial bias. More importantly,
due to their non-randomness, such designs often fail to provide an accurate measure
of residual error, or an accurate reflection of the unexplained random variation. In
R.A. Fisher's 1935 treatise The Design of Experiments that many consider the basis
for formal randomization in experimentation, he first points out (p. 63) that

... the results of using arrangements which differ from the random arrangement... are thus
in one way or another undesirable since they will tend to underestimate or overestimate
the true residual error.

Then in a discussion of a sytematic versus random Latin squares, he states (p. 77)
that

The failure of systematic arrangements came not from recognizing that the function of
the experiment was not only to make an unbiased comparison, but to supply at the same
time a valid test of its significance. This is vitiated equally whether the components
affecting the comparisons are larger or smaller than those on which the estimate of error
is based.

Despite the desire to achieve true "randomness", it is common practice that ran-
domization sequences are examined and perhaps rejected and replaced if the sequence
is considered undesirable. If the only consideration were the cosmetic properties of
a sequence, then such rejection and re-randomization would be warranted. However,
this practice violates the assumptions required for a randomization-based analysis
which is based on the probabilistic structure over the complete reference set of pos-
sible permutations. If classes of random assignments could be pre-specified that are
acceptable for cosmetic reasons, and those unacceptable, then the proper plan would
be to state those specifications a priori, generate a single sequence of assignments
that is acceptable, and then use the reference set of acceptable permutations as the
basis for an inference. This is the approach taken by Berger, Ivanova, and Knoll
(2002). However, the theory to support large-sample inference from a restricted
reference set of permutations does not exist.

In his 1958 text Planning of Experiments, D. R. Cox states (p. 87), in reference
to a table of random numbers, or equivalently to a sequence of random assignments,
that
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Randomness is a property of the table as a whole, thus we should talk about permutations
produced by a random method, rather than random permutations... whether or not [any
permutations are] legitimate random permutations is to be decided by the methods by
which they were produced, and not by inspecting them as individuals... The best plan is,
if possible, to decide which arrangements are to be rejected before randomization. It is
difficult to give general advise about which arrangements to reject, but the best rule is
to have no hesitation in rejecting any arrangement that seems on general common-sense
grounds to be unsatisfactory.

In general, the two elements one might inspect in a sequence of assignments are the
maximal imbalance between groups at any point in the sequence, either as an absolute
or a percentage difference, and the maximal length of a run of assignments to one
treatment. Neither is a concern with a permuted-block randomization, with modest
or small block sizes, but either could be a concern with complete randomization, an
unblocked random allocation rule or truncated binomial design, or with a biased coin
or urn design.

If one is to inspect a sequence using either criteria, then the most appropriate
procedure would be to prespecify the acceptable limits before generating a candidate
sequence and then applying the criteria. The criteria should be specified indepen-
dently of treatment assignment so that an excess of either A or B assignments, or a
run of either A or B assignments, each of fixed magnitude, would lead to rejection
of the sequence. In this way it can be argued the restrictions of the reference set
of possible permutations is symmetric, meaning that for every AB sequence elimi-
nated, the mirror BA sequence is eliminated. One would need to carefully consider
the impact that such a rejection rule would have on inferential procedures under a
randomization model. How to do this is not clear.

9.6 IMPLEMENTATION

In most instances the random assignments are generated prior to the start of re-
cruitment into a study and then a system specified for the implementation of the
randomization as the subjects are recruited. This system of randomization will also
provide for the single- or double-masking of the assignments.

9.6.1 Packaging and labeling

For a double-masked pharmaceutical trial it necessary that a supply of placebo ma-
terial be provided that is indistinguishable from the active agent with respect to
appearance, consistency, touch, weight, taste, smell, etc. Patients or their compan-
ions are often tempted to open a capsule or crush a pill to see if they can detect the
presence/absence of the active agent. During clinic visits patient may compare the
weight of their medication supplies. The same also applies to clinic staff. Thus the
placebo and active material should be as equivalent as possible in all respects other
than the active agent.
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In a clinical trial of a surgical or intervention procedure, masking is implemented
by use of a sham procedure for those randomized to the control group. In the extreme
case of a major surgical procedure, this would include a trip to the operating room
with anesthetization, incision, and wound closure. Clearly in most cases this would
be considered unethical. In other less extreme cases, such as a minor procedure under
local anesthesia, or an infusion, or use of radiation, etc., a sham may be acceptable.

Randomization in pharmaceutical trials is implemented differently from inter-
vention or surgical trials because of differences in the nature of the therapies. The
simplest method for the implementation of a pharmaceutical trial is to employ ran-
domization by lots or supplies. In this case the physician or pharmacist has two lots of
material labeled 1 or 2. If a patient is assigned to A (or B} then a supply of medication
is drawn from lot 1 (or 2) and provided to the patient, or the physician/practicioner,
for administration. This approach is fine for an unmasked study. However, this is a
poor approach for a masked study because if any one patient's treatment assignment
is unmasked, due to an adverse event, or overdose, or whatever, then the entire study
is unmasked. A variation would be to use a blocked-lot procedure, such as random-
ization by lots within clinical centers. In this case unmasking of an individual study
subject would unmask the assignments within that block, but not necessarily unmask
the entire study, provided that the lot 1 and 2 contents were varied within sites.

The most secure way of implementing a double-masked randomization for a
pharmaceutical trial is to provide a unique supply of medication, pre-packaged and
labeled, for each individual subject. This could be bottles of medication (or other
containers) with pre-assigned patient numbers, or supply numbers. One approach
is to assign each patient a unique randomization number at the time of random-
ization, and to have a prepared supply of medication for that randomization ready
for dispensation or administration at the time of randomization. For example, in a
multi-center trial, patient numbers might be assigned of the form ccxxx where cc is
the clinical site number (01,02,...) and xxx is the patient number within clinical site
(001,002,003,...). When the patient is randomized, and assigned a unique random-
ization number, a unique supply of study material is assigned to that patient. In this
way emergency or inadvertent unmasking of a single patient has no impact on the
integrity of the masking of other patients.

This system, however, requires that each study subject be identified by two study
numbers. Prior to randomization subjects undergo a period of screeing to assess
eligibility to enter the study, and perhaps even a trial period of treatment with a placebo
to assess compliance with the medication regimen. In some cases patient must also be
withdrawn from pre-existing medications or be stabilized using a specified regimen.
Thus a study number is assigned at the initiation of screening and another number
assigned at the time of randomization.

A variation on this approach is to simply have a set of study supplies packaged and
labeled according to one numbering scheme and a system to assign a supply number to
a patient at the time of randomization. In this case a patient might be assigned a study
screening number at the time of the initial screening visit, and then a study supply
number at the time of randomization. This technique is useful for covariate-adaptive
randomization and response-adaptive randomization (to be discussed in Chapter 10),
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where the randomization sequence cannot be generated in advance, and depends on
either the individual patient's characteristics or previous patient responses. However,
the number of A and B supplies required is unknown in advance, and so there must
be an oversupply of drug available.

For an unmasked trial pharmaceutical trial a pharmacist can administer the med-
ication using a supply of the active material, those assigned to control receiving
nothing. For a surgical or intervention trial, the clinic staff need only know whether
a subject is assigned to the experimental or control arms. In such cases subjects are
assigned a study number at the time of initial screening and then later assigned to
treatment A or B.

9.6.2 The actual randomization

The treatment assignment can be conveyed to the clinical sites in a variety of ways.
The oldest type of system, and in some respects the least favorable, is a system of
sealed envelopes. Envelopes labeled by study patient number are distributed to the
sites and as each successive patient is randomized, the next envelope is opened and
the enclosed study supply, or intervention group is assigned to that patient. This
system should never be used because it allows all the envelopes to be opened in
advance, thus potentially unmasking the sites to the sequence of assignments and
opening the study to extreme selection bias.

Rather a system should be implemented which guarantees that future assignments
remain unknown. One approach is to employ central randomization where the clinical
site contacts a central center to either verify the randomization in a double-masked
study, or to provide the treatment assignment in an unmasked study. In either case
it is advisable that there be central verification of the randomization process. It is
recommended that prior to actual randomization the central office verify that the
subject meets the entrance eligibility criteria (with no exclusions), has consented to
randomization and full study participation, and is ready to administer the treatment
immediately. Even in the case where a pre-packaged supply of medication or study
material is ready for assignment in the clinic, it is advisable that central verification
be employed. In studies without these checks, patients have been randomized who
did not meet all eligibility criteria, who did not consent or who did not ever receive
any study medication. This is inexcusable. In a simple pharmaceutical trial, the
recommended procedure is that the clinical site call a central office, verify that the
patient is eligible and consenting, then have that patient's supply of medication ready
for administration. The physician then meets with the patient, opens the bottle,
removes a pill, hands the patient a glass of water and asks the patient to swallow the
pill. If the patient balks then the patient is not randomized into the study. In this
case the bottle of medication can be returned to the pharmacy for destruction, but the
same patient number (supply) is assigned to the next willing patient.

Such central verification can be provided by a telephone call to central staff or by
a central computer facility. In the latter case, the program asks the site to answer
a series of questions using the key pad and then verifies or provides the random
assignment. Another approach is to provide an interactive web site for this purpose.
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Finally there must also be some system for post-randomization emergency un-
masking. In most pharmaceutical trials, separate patient supplies of medication are
prepared by a central distribution pharmacy based on the randomization sequence
generated by the study statistician. The pharmacy should have operating procedures
to ensure that each treatment (e.g., active versus placebo) is processed in a manner
to ensure that the randomization is executed as specified. This could include random
selection of the packaged material for testing by a simple technique such as a litmus
test. The central pharmacy should also provide a 24-hour answering service to answer
any questions about the contents of each medication supply, and all supplies should
be labeled with information about this service. In some studies the pharmacy may
be instructed to notify a study monitor, such as the study medical monitor, of the
unmasking.

9.7 SPECIAL SITUATIONS

The above discussion applies to a simple two (or more) group study design. There
are studies, however, that present additional considerations.

In some studies, two (or more) active agents are to be used, such as where a new
agent is compared to an active control, often manufactured or supplied by a different
company. In this case it is not possible to provide an identical formulation for the
two agents such that the study material is identical with respect to appearance, taste,
etc., for each group. Then in order to maintain masking, a double placebo approach
is necessary. Supplies of each active agent and a placebo for each agent are prepared,
and each subject is asked to take two pills, one from bottle A and another from bottle
B. If the patient is assigned to receive active treatment A (or J9) then the supply of
medication labeled A (or B) contains the active agent and the supply for the other
agent labeled B (or A) contains the placebo. The patient takes two pills at a time,
one containing active agent, the other a placebo.

This technique might be necessary in a two-group, positive controlled effectiveness
trial, or an equivalence trial. A generalization is a 2 x 2 factorial design where patients
are assigned to receive either control, A alone, B alone, or A and B in combination.
In this case the A and B bottles contain placebo A and placebo B, active A and
placebo B, placebo A and active B, and active A and active B, respectively.

In some cases, the A and B supplies also differ in form. For example, the A therapy
may be administered orally as a capsule and the B agent by infusion. Regardless,
masking can be preserved by administration of the matching placebo of the other
agent to patients in either group.

In some cases one may have a design with an untreated control group and two
active therapy groups where each therapy has a different formulation, requiring a
double placebo approach to maintain complete double-masking. However, if one of
the agents is administered orally, and the other by infusion, then a complete double
placebo implementation may not be ethical. For example suppose that m subjects are
assigned to each of treatments A (active oral), B (active infusion), and C (neither).
Patients and local Institutional Review Boards may object to the administration of a
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sham (placebo) infusion to the 2m subjects assigned to treatments A or C. However,
incomplete double-masking may be obtained by randomly assigning half the control
patients to receive the A placebo, and half to receive the sham B infusion. In this
manner m subjects receive A and m/2 the A placebo, and m subjects receive B and
ra/2 the B sham. This would be implemented by a two-stage randomization. First
patients are randomly assigned to receive treatments A, B or C. Then those assigned
to receive C are randomly assigned to also receive either the A placebo or the sham
B infusion. Note that there are only three groups for purposes of statistical analysis:
the subjects who receive the A placebo and the sham B infusion combine to form the
C control group.

Finally, randomization procedures may be implemented so as to "share" controls
in multiple parallel protocols. For example, suppose that a study is launched using
A versus A placebo. Later another study is initiated in an identical population using
identical procedures to compare B versus B placebo. For the period while the two
studies overlap, an incompletely double-masked, three-arm randomization could be
employed as above, where half the subjects assigned to the "control" group are then
randomly assigned to receive the A placebo and half the B placebo. However, all
subjects assigned to group C during the period of overlap would be included in the
analysis of the A versus control in the A study, and also in the analysis of the B
versus control in the B study. Thus the subjects in group C are contained in the
control group for both the A study and also the B study.

Consider the case where study A alone is recruiting over some period, followed by
the simultaneous recruitment to the A and B studies during a second period, followed
by the close of recruitment to study A and continued recruitment to study B during
a third period. During the first and third periods, a simple two group randomization
is employed. In the middle period a three group randomization is employed to A,
B or C. In order to maintain total double-masking, half those assigned to receive C
during this middle period could then be assigned to receive either the A placebo or B
placebo via a supplemental randomization. This three-group randomization should
be implemented in such a way that the parallel two-group randomizations are not
affected.

For a permuted block design with m assignments to each treatment per block,
where m may vary among blocks, then during the first and third periods balanced
blocks of length 2m are employed, while during the second period blocks of length
3m are employed. Let HA^B, and nc represent the number of patients assigned
to A, B, and C, respectively. For a biased coin design the two group randomization
in the A study would assign to group A with probability PA when nc > HA and
likewise in the B study to group B with probability PB when nc > ns • For example,
consider the case where PA = PB = 2/3 so that the biased coin allocations are in
either a 2:1 or 1:2 ratio, depending on whether the excess allocations in the past are
to control or active, respectively. Then during the second period when the allocations
for the A and B studies are performed simultaneously, the possible settings and
the corresponding allocation ratios are shown in Table 9.1. These allocations will
preserve the desired 2:1 ratio for assignments to A versus C and for B versus C, but
there is no control over A versus B imbalance during the period of joint allocations.
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Table 9.1 Biased coin allocation ratios to A, B and C such that the probability of assignment
to A is PA = 2/3, and to B is PB = 2/3, when there is an excess number of prior allocations
lo C.

Imbalance

HA> TIB > nc
TIA> nc > UB
UB > HA > nc
HB > nc > nA
nc > nA > TIB
nc > nB > nA

A : L

1
1
1
4
2
2

? : C

1 2
4 2
1 2
1 2
2 1
2 1

A similar strategy can be employed for an urn UD(a, 1) design. Initially, for the
first period where only the A study is recruiting, the urn contains a. balls of type A
and of type C. At the end of this period, at the start of the second period, let n\A
and n\c refer to the numbers of allocations to A and to C, respectively. Thus the urn
contains a + n\c balls of type A, and a + U\A balls of type C. Then to initialize the
randomization to also include study B, a + n\A balls of type B are also added to the
urn. This equals the number of C balls in the urn so that B and C are allocated with
equal probability on the next draw. After each draw, a ball is added to the urn for
each of the two types other than that drawn. At the end of the second period, at the
conclusion of recruitment to study A, the urn contains a + U\A + n-iA + n^c balls
of type B, and a + niA + n2A + n^B balls of type (7, where UIA, n-iB, and n2c
are the numbers of allocations made to each treatment during the second period. At
this point, all A balls are removed from the urn, as well as the excess B and C balls
from the initial period and due to the A allocations during the second period, leaving
a 4- ri2C balls of type B and a + H^B balls of type C, These are the numbers of
balls that would have been in the urn had one started with randomization only to B
and C which produced n^B allocations to B and n%c to C. For a UD(a, 0} design,
the above 'Vvalues would be multiplied by (3.

This design would also tend to balance the A to B allocations during the second
phase, in addition to balancing the A to C and B to C allocations. This approach
would also be used to continue allocations in a multi -group study after one of the arms
has been discontinued, such as due to adverse events, as illustrated in the Diabetes
Prevention Program example below.
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9.8 SOME EXAMPLES

9.8.1 The Optic Neuritis Treatment Trial

Fifteen clinical centers enrolled 457 patients using a permuted-block design with a
separate sequence for each clinical center. Patients were randomly assigned to one of
three treatment regimens: intravenous methylprednisolone, oral prednisone, or oral
placebo. Whereas the patients in the oral-prednisone and placebo groups were not
informed of their treatment assignments, those in the intravenous-methylprednisolone
group were aware of their assignments. The primary outcome was the development
of multiple sclerosis, there being a significant reduction in risk among those assigned
to steroids. (See Beck, Cleary, Trobe, et al., 1993.)

9.8.2 Vesnarinone in congestive heart failure

In a preliminary study of the drug vesnarinone in the treatment of congestive heart
failure, two clinics each recruited 40 subjects who were assigned to receive double-
masked vesnarinone versus placebo. A permuted block design with block size of two
was used. The study showed a reduction in mortality among these 80 subjects. (See
Feldman, Bristow, Parmley, et al., 1993.)

9.8.3 The Diabetes Control and Complications Trial

The Diabetes Control and Complications Trial (DCCT) enrolled 1441 subjects with
type 1 (juvenile) diabetes within 29 clinical centers who were randomly assigned to
receive either intensive versus conventional therapy for the control of blood glucose
levels. The study showed that the intensive group, which maintained lower levels
of blood glucose, had significantly reduced risk of microvascular complications of
diabetes (Diabetes Control and Complications Trial Research Group, 1986, 1993).
The DCCT enrollment was conducted in two stages. In the initial feasibility stage
a total of 278 patients were recruited in 23 clinics during 1983-1998. The random-
ization was stratified by adults versus adolescents within each clinical center, 46
strata total. Due to the small sample size per clinic, and the requirement that each
clinic enroll at least four adolescents, an initial permuted block of four subjects were
assigned within each stratum, followed by a t/D(0,1) randomization. In the second
stage of recruitment from 1984-1989, six new clinics were added and the random-
ization was stratified by a primary prevention cohort (no pre-existing retinopathy)
versus a secondary intervention cohort (some pre-existing mild retinopathy, among
other differences) within clinical center, 58 strata total. To initialize the urns for
each strata within the original 23 clinics, the 278 assignments were post-stratified by
primary/secondary cohort and clinical center. Then the appropriate number of balls
of each type were placed in the urn for each stratum. For example, if there were
four intensive and three conventional patients within the primary cohort of a given
clinic from the feasibility phase, then three intensive and four conventional balls were
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placed in the urn for that stratum. The sequences allowing for 50 subjects within each
of the 58 strata were then generated with a specified seed. For the six new clinics
the sequences started with zero balls in each of their 12 strata. Each sequence was
inspected to ensure that there were no long runs of assignments to either treatment.
In one stratum a run of 9 As was followed by a run of 7 Bs. One element from each
run was randomly selected to be changed to the other treatment. Of the 1441 patients
randomized into the study, in the primary prevention cohort 378 were assigned to
receive conventional therapy, 348 intensive therapy; and in the secondary intervention
cohort 352 were assigned to receive conventional therapy, 363 intensive therapy.

9.8.4 Captopril in diabetic nephropathy

Thirty clinical centers recruited 409 subjects with pre-existing diabetic nephropathy.
Using a f/Z)(0,1) procedure stratified by clinical center, a total of 207 were assigned
to receive double-masked captopril and 202 to receive placebo. The risk of further
progression of diabetic nephropathy was reduced by 48 percent with captopril. (See
Lewis, Hunsicker, Bain, etal., 1993.)

9.8.5 The Diabetes Prevention Program

In the Diabetes Prevention Program (DPP), a total of 27 clinical centers recruited
3234 adult subjects with impaired glucose tolerance who were followed to observe
the incidence of type 2 diabetes. Using a UD(Q,1) procedure stratified by clinical
center, subjects were assigned to receive either lifestyle intervention aimed at weight
loss through diet and exercise, or conventional lifestyle management plus the drug
troglitazone, or conventional management plus the drug metformin, or conventional
management plus placebo. The lifestyle treatment was unmasked. In order to
maintain masking among the three medication treatment groups, a double placebo
technique was employed where each subject took two pills daily containing either one
of the active agents or placebo. The troglitazone arm was terminated due to adverse
effects after 585 patients had been randomized to receive troglitazone. These patients
were unmasked and their treatment terminated. The remaining subjects were then
told only to take their assigned pills from the metformin bottle, half containing active
agent, half placebo. At that point, the composition of the urn was modified to shift
from a four arm randomization to a three arm randomization. All the troglitazone
balls were removed from the urn, as well as the 585 balls of each other type added
due to these prior troglitazone allocations. At the end of the study, 1079 subjects
had been assigned to lifestyle therapy, 1073 to metformin and 1082 to metformin-
placebo. The study showed that lifestyle intervention achieved approximately a
58 percent reduction in the risk of developing diabetes versus placebo, whereas
metformin yields a 31 percent risk reduction. (See Diabetes Prevention Program
Research Group, 1999.)
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9.8.6 Adjuvant chemotherapy for locally invasive bladder cancer

In an ongoing multicenter clinical trial of patients with locally invasive bladder
cancer, who have undergone a radical cystectomy with lymph node dissection, and
whose tumors demonstrate p53 abnormalities, 190 patients are to be randomized to
either adjuvant chemotherapy (95 patients) or routine follow-up (95 patients) after
surgery. The primary outcome is time to recurrence. Because of the large number
of stratification variables, it was decided that the Pocock-Simon procedure would be
used (see Section 4.4.2). Stratification variables were age (dichotomized at 65 years),
stage (dichotomous), grade (dichotomous), and p21 status (dichtomous). The value
of p in (4.4) was set to 0.75 (c* = 1.25). In the first 54 patients randomized, the
overall balance has been quite good with no imbalances greater than 2. (Personal
communication, Susan Groshen.)

9.9 PROBLEMS

9.1 Using each of the following procedures, generate a separate randomization se-
quence for 50 random allocations to two groups:

(i) complete randomization;
(ii) random allocation rule;
(Hi) truncated binomial design;
(iv) permuted blocks with M = 5;
(v) Efron's biased coin with p = 2/3;
(vi) Wei's urn design with a = 0 and /3 = 1;
(vii) Smith's procedure with p = 5.

Provide the sequence and a copy of your program for each of the five procedures.

9.2 For each of the examples in Section 9.8, discuss the properties of the random-
ization procedure employed with respect to the potential for selection bias accidental
covariate imbalance or other biases, and the implications for a randomization versus
population model analysis.

9.3 Would complete randomization, with or without stratification as appropriate, be
an acceptable approach in the DCCT? Justify your answer.

9.4 In each of the following cases, describe the randomization procedure you would
employ and justify your answer. Generate the procedure and describe the resulting
sequence.

(i) An investigator is planning a phase II trial with only 100 patients recruited in
10 clinical centers, with a range of 8-12 expected per center. The study will be
double-masked and employ an active treatment versus control.
(ii) Consider an equivalent study but where the treatments by nature must be admin-
istered in an unmasked manner.
(Hi) Now consider a Phase III study where 1000 patients are to be recruited in 20
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clinical centers, with a range of 30-70 within each center. The trial will be double-
masked and employ an active treatment versus control.
(iv) Consider an equivalent study but where the treatments by nature must be admin-
istered in an unmasked manner.
(v) Now consider a Phase III study where 1000 patients are to be recruited in 50
clinical centers, with a range of 10-30 within each center. The trial will be double-
masked and employ an active treatment versus control.
(vi) Consider an equivalent study but where the treatments by nature must be admin-
istered in an unmasked manner.

9.5 In the vesnarinone study, since the block size used was two, subjects were
randomly assigned within pairs. Would a randomization using a larger block size be
acceptable? Justify your answer.

9.6 In the captopril study in diabetic nephropathy, approximately 25 percent of
subjects entered the study with significant loss of renal function as represented by a
serum creatinine exceeding 1.5 mg/dL. A stratified analysis was planned among those
with such high values and among those with lower values. Should the randomization
have also been stratified by high versus low initial creatinine values? Justify your
answer.

9.7 As is now mandated for all major studies launched by the National Institutes of
Health, one of the objectives of the Diabetes Prevention Program was to assess the
effects of treatment among ethnic subgroups, both genders, and the elderly. The
study recruitment targets included the recruitment of 50 percent ethnic minorities,
including African Americans, Native Americans, Asian-Americans, and Hispanics;
both genders, and 20 percent of subjects of at least 60 years of age. Should the
randomization have also been stratified by any of these factors? Justify your answer.
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10
Response-Adap tive

Randomization

10.1 INTRODUCTION

We now revisit a topic mentioned in Chapter 3: the reasons behind equal allocation to
the experimental and control therapies. Recall that two reasons were given, namely,
power is maximized, and equal allocation reflects the view of equipoise that must
exist at the start of the trial. Let us examine these two arguments afresh.

First, power is determined by the information accrued in the clinical trial, and
under the traditional concept of statistical information, this is directly related to the
variance of the test. If responses to the treatments have equal variability, power
will be maximized under equal allocation. If they do not, power will be maximized
using unbalanced allocation, with more patients allocated to the more variable treat-
ment. For binary response problems, variability is directly related to the treatment
effectiveness, whereas it will not be related for normal responses. In the latter case,
one might have some indication at the beginning of the trial that one treatment is
more variable than the other, and sample sizes can begin unbalanced. As the trial
progresses, estimates of the variability could be obtained that would indicate that
unequal allocation would result in more power. In the former case, since we are in a
state of equipoise (and are essentially operating under the null hypothesis), we would
not have any cause to employ unequal allocation, but this again may change as we
accrue information on the treatment effect. So the power issue is considerably more
complex than the oft-heard statement "unequal allocation results in a loss of power."

Similarly, should our view of equipoise at the beginning of the trial be fixed
throughout the course of the trial, or could we use accruing data to dynamically
alter the allocation probabilities to favor the treatment performing best thus far? It

169
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would seem that patients would then benefit by having less allocations to an "inferior"
treatment (or at least inferior based on the data accrued thus far).

These are important practical and ethical questions that have been prominent in
the literature since the 1950's; so prominent has been the debate that it is surprising
that the need for equal allocation is nearly unquestioned in clinical trials of today.

In this chapter, we deal with response-adaptive randomization, in which the proba-
bility of being assigned to a treatment is changed throughout the trial according to data
which have already accrued about the treatment effect. The goal of response-adaptive
randomization is to assign more patients to the "better" treatment. These techniques
fall under the broad category of adaptive designs (distinguished from response-
adaptive randomization, which refers to randomized adaptive designs). Adaptive
designs are useful in many disciplines (e.g., Flournoy and Rosenberger (1995)) and
have been proposed for clinical trials for many decades. Initial adaptive designs
for clinical trials arose from considerations of optimal decision theory, including
bandit problems, and of sequential stopping boundaries, and most of these designs
were deterministic. We briefly review these designs from a historical perspective.
We then discuss techniques for response-adaptive randomization, which affords the
protections offered by all randomized experiments.

10.2 HISTORICAL NOTES

Adaptive designs in the clinical trials context were first formulated as solutions to
optimal decision-making questions: Which treatment is better? What sample size
should be used before determining a "better" treatment to maximize the total number
receiving the better treatment? How do we incorporate prior data or accruing data
into these decisions? The preliminary ideas can be traced back to Thompson (1933)
and Robbins (1952) and led to a flurry of work in the 1960s by Anscombe (1963),
Colton (1963), Zelen (1969) and Cornfield, Halperin, and Greenhouse (1969), among
others. Perhaps the simplest of these adaptive designs is the play-the-winner rule
originally explored by Robbins (1952) and later by Zelen (1969), in which a success
on one treatment results in the next patient's assignment to the same treatment, and
a failure on one treatment results in the next patient's assignment to the opposite
treatment.

10.2.1 Roots in bandit problems

Consider a slot machine with two arms and a payoff that is observed immediately.
To maximize the total payoff, which arm does one choose to play each time? In the
context of clinical trials, the arms are the two treatments, and we desire to optimize
some single objective, such as the mean squared error of an estimate of the treatment
effect or the expected number of treatment failures. Such optimization problems are
called bandit problems (cf. Berry and Fristedt, 1985; Gittins, 1989; Hardwick, 1995)
and were originally proposed by Thompson (1933) and Robbins (1952).
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Ideally one would like to switch back and forth from one treatment to the other
any number of times to obtain the optimal sequence of treatment assignments. This
is an extremely difficult problem even in the binary response case, because in order
to find the optimal sequence, we have to specify a treatment to be used in each of
the 4" possible paths in a clinical trial with sample size n (i.e., at each allocation,
we could have a success on A, failure on A, success on B, failure on B). These
problems also involve unknown parameters, and Bayesian and minimax approaches
have been employed; see Berry and Fristedt (1985, Chapter 1) for a review of these
techniques.

Discrete bandit problems can be solved using dynamic programming (Bellman,
1956). In the past, dynamic programming algorithms for even moderate sample sizes
were computationally infeasible, but the advent of parallel processing and faster
workstations has allowed some researchers to begin exploring both the feasibility of
using this approach and the properties of this approach. Much of the seminal work
in developing computational algorithms has been done by Hardwick and Stout (cf.
1995,1999).

The difficulty in finding the optimal sequence using dynamic programming led
some researchers to find alternative adaptive allocation procedures (e.g., Berry, 1978).
Most of these procedures are myopic strategies, in which the allocation rule attempts
to optimize the treatment assignment for the current patient, by allocating to the
treatment that has the has performed best thus far in the trial. It is well known that
myopic strategies are not necessarily globally optimal (Berry (1986, p. 4)). Bandit
solutions have the advantage that they balance the myopic goal (the patient at hand)
with future rewards.

Optimal sequences from bandit solutions are deterministic. There has been very
little literature on randomized bandit solutions. Berry and Eick (1995, p. 232)
suggest the following:

Assignment bias can be avoided... by introducing an unbalanced randomization in which
the treatment opposite from the one assigned by the procedure is used with probability
sufficiently great to ensure blindness but not so large that the advantage of the adaptive
procedure is lost - perhaps this probability can be between 1/10 and 1/3.

Hardwick and Stout (personal communication) have recently begun incorporating
randomization into dynamic programming equations and have found that the degree
of randomization degrades the performance of the optimal strategy, but not quite
linearly. We recently became aware of a paper that gives a detailed treatment of
randomized multi-armed bandit problems (Yang and Zhu, 2002).

10.2.2 Roots in sequential stopping problems

The previous discussion involved a fixed sample size. Others have examined adaptive
designs in the context of a random number of patients N, in conjunction with an
appropriate stopping boundary. The early papers taking this approach were Chernoff
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and Roy (1965), Flehinger and Louis (1971), Robbins and Siegmund (1974), Louis
(1975), and Hayre (1979), among others.

In the Robbins and Siegmund (1974) model, assume that responses x\,..., xm and
7/1,..., yn are realizations of random variables that are independent and identically
distributed as N ( H I , 1) and JV(/x2,1), respectively, and it is desired to test the hy-
pothesis H0 : p,i > //2 versus HI : Hi < /z2. After each response, we observe the
test statistic

Zm,n — '.(yn %m)-m + n

Let b > 0 be a constant; we stop the trial as soon as zm,n & (—b,6) and declare H0 is
true if zm>n < -b and HI is true if zm>n > b. Under an appropriate choice of b, we
have Wald's sequential probability ratio test with fixed error probabilities a and (3. If
we wish to minimize the expected number of observations on the treatment with the
smaller mean (i.e., the expected number of patients on the inferior treatment), it is
logical to assume that equal allocation is preferable when zmin is close to 0, and when
zm,n is close to b or -6, most observations should be taken from the x population
or the y population, respectively. Robbins and Siegmund propose the following rule.
Let c > b. Having observed x\,..., xm and y\,..., yn, the next observation should be
2/n+i if

n-m zmtn_

m + n ~ c '
otherwise, the next observation should be xm+i. The authors give some guidelines as
to the choice of c and conclude that the error probabilities are essentially independent
of the sampling scheme.

Other rules, other response models, and other types of hypotheses are explored by
Flehinger and Louis (1971), Louis (1975), and Coad (1991), among others.

As in the decision theory approach, most of these approaches to adaptive designs
have used nonrandomized allocation rules. As Rosenberger (2002) points out,

Surprisingly, the link between [response-adaptive randomization] and sequential analysis
has been tenuous at best, and this is perhaps the logical place to search for open research
topics.

10.2.3 Roots in randomization

Both the bandit and sequential approaches discussed are fully adaptive designs,
in that they select future treatments on the basis of all past information about that
treatment. However, they have generally been developed for deterministic allocation,
and hence are subject to biases that may be present in nonrandomized studies. In
particular, Bather (1995) found that, for both the Robbins and Siegmund procedure
and other adaptive designs, "selection bias can have a substantial effect in distorting
the results of comparative experiments" (p. 32). Selection bias, as discussed in
Chapter 6, is a serious problem for nonrandomized studies. But much of the recent
research in adaptive designs has involved fully randomized designs. Response-
adaptive randomization alters the allocation probabilities to reflect the current trend
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of the data, so that patients are assigned to the most "successful" treatment with
probability less than 1.

Wei and Durham (1978) were perhaps the first to discuss response-adaptive ran-
domization, in their famous randomizedplay-the-winner rule paper. The rule can be
described as follows. An urn contains a balls representing treatment A and a balls
representing treatment B. A ball is drawn and replaced. If the ball was type i = A, B,
treatment i is assigned. A success on one treatment results in the addition of 13 balls
representing that treatment, for a positive integer /?. A failure on one treatment results
in the addition of /? balls representing the opposite treatment. Hence, unlike Zelen's
model, we skew the probability of assignment to favor the treatment performing
"better" (i.e., less failures/more successes), rather than switching deterministically
between treatments. This design is usually designated RPW(a, 0).

Urn models are only one approach to accomplish response-adaptive randomiza-
tion. We discuss these varied approaches in the remaining portions of this chapter.
Because this book is about randomization, we will future discussion will principally
focus on fully randomized adaptive designs.

10.3 OPTIMAL ALLOCATION

In this chapter we will explore (1) response-adaptive randomization that is based
on optimal allocation targets, where a specific criterion is optimized based on a
population response model, and (2) design-driven response-adaptive randomization,
where myopic rules are established that have intrinsic intuitive motivation and can
be completely nonparametric, but are not optimal in a formal sense. Let us begin
with determining optimal allocation targets. Because these targets typically depend
on unknown parameters of a response-distribution, they cannot be implemented in
practice without some form of estimation. Hardwick and Stout (1995) review several
criteria that one may wish to optimize, including expected number of treatment
failures, expected number of successes lost, expected number of patients assigned
to the inferior treatment, the total expected sample size, the probability of correct
selection, or total expected cost. When the goal is to maximize the experience of
individual patients in a clinical trial, the first three criteria are often used. One can
argue their relative merits; for example, expected number of treatment failures takes
into account the randomness inherent in the response model in that some patients
may not benefit from the superior treatment, whereas expected number of patients
assigned to the inferior treatment ignores this randomness and focuses on what the
scientist can actually control. Of course, the first two criteria, expected failures
and expected successes lost, refer to binary response trials where we have a clearly
defined "success" and "failure".

These optimal allocation rules are derived under simple homogeneous population
models, in which responses of patients assigned to the same treatment are assumed to
follow the same distribution. This may be an unreasonable assumption, for example
when there are important covariates that effect response or time trends. But it provides
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a simple working model to explore properties of response-adaptive randomization.
In Chapter 12 we discuss the heterogeneity issue from a practical standpoint.

The general optimization approach we will employ derives from the approach
of Jennison and Turnbull (2000), and can be traced back to ideas of Hayre (1979).
The idea is to fix the variance of the test statistic to be constant and then to find an
optimal allocation ratio R* from the possible values of R = HA/KB according to
our particular criterion. In Jennison and Turnbull's approach, let YA% arise from a
N(HA,O\} distribution and YBI arise from a JV(//B,a|) distribution, i = 1,2,...,
and a\ and cr^ are known. Then the denominator of the usual Z-test is the square
root of the variance of YA — YB, given by

and we set this equal to a constant, say K. Let n — HA + TIB be a fixed number of
patients in a clinical trial. Then we can write HA = Rn/(I+R)andriB = n/(I+R),
and we obtain

Let S = HA - P>B be the true treatment effect. We wish to find the value of R that
minimizes

where u and v are appropriately chosen functions of 6. Because we wish to put
more patients on treatment A if 0 > 0 and more patients on treatment B if 0 < 0,
Jennison and Turnbull explore functions where u and v are strictly positive, and u(G)
is decreasing in 0 for 9 < 0 and v(9) is increasing in 0 for 0 > 0. See Jennison and
Turnbull (2000, p. 328) for details on choosing these functions. Substituting (10.1)
into (10.2), we obtain

Taking the derivative with respect to R and equating to zero, we achieve a minimum
at

An interesting case arises. If u = v = 1, then we have R* = CTA/CTB, which
is simply Neyman allocation (see Problem 2.6), and maximizes the power of the
usual Z-test. Note that this formulation also presents an alternate, but equivalent,
interpretation. When u = v = l, (10.2) is finding the optimal allocation to minimize
the total sample size for a fixed variance of the test.
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The general formulation with binary response was considered by Hayre and Turn-
bull (1981) in the context of sequential estimation. Rosenberger, Stallard, and
Ivanova, et al (2001) also deal with binary responses. If we let the responses on
treatment A follow a Bernoulli distribution with parameter PA and the responses on
treatment B follow a Bernoulli distribution with parameter p#, we can formulate an
optimality criterion as in (10.2), however now the variances depend on PA and PB.
We also have a dilemma as to which measure of the treatment effect we wish to use.
LetqA = 1 —PA sand QB = \-PB- We could take the simple difference, 0 — PA—PB,
the relative risk of failure, 9 = QB/QA, or the odds ratio, 9 = PAQB/PBQA- In any
event, if we wish to minimize the expected number of treatment failures, (10.2) can be
written with u(9] — QA andi;(0) — QB. The simple difference measure is analogous
to the difference of means in the normal case above, and hence we obtain

by (10.3). This differs from Neyman allocation, given by

If we use the other measures, we obtain different allocations. Consider the relative
risk measure QB/QA- We can use the delta method to write the asymptotic variance
as

Substituting HA = Rn/(l + K) and HB = n/(l + R) and equating to K, we obtain

Then our optimization criterion becomes finding the value of R to minimize

Taking the derivative with respect to R and equating to zero, we obtain

Table 10.1 gives the asymptotic variances and optimal allocation for the three types
of measures.

The selection of appropriate measure would normally be dictated by the choice of
test statistic. The most common is the simple Z test based on the simple difference;
see Lachin (2000, Problem 2.9) for asymptotically equivalent tests based on smooth
functions of PA and PB. Rosenberger, Stallard, Ivanova, et al. (2001) discuss tests
based on the pooled versus the separate variance estimators.
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Table 10.1 Asymptotic variances and optimal allocation for minimizing expected number of
failures at a fixed variance, for three measures of the treatment effect from binary response
trials.

Measure

Simple difference

Relative risk

Odds ratio

10.4 RESPONSE-ADAPTIVE RANDOMIZATION TO TARGET H*

Since the optimal allocation involves unknown parameters of the population model,
we cannot implement it in practice, unless we implement it under the null hypothesis,
resulting in equal allocation, or under some other "best guess" of the parameter
values. In this section we discuss two sequential methods, the sequential maximum
likelihood procedure and the doubly-adaptive biased coin design.

10.4.1 Sequential maximum likelihood procedure

As the trial progresses, perhaps the most logical approach would be to substitute
current values of parameter estimates for the unknown parameters; i.e., if R* (0) is a
function of an unknown parameter 0, after j — 1 patients, substitute 0(j — 1) for 9.
Then we can impose the following allocation rule. Let Tn — (T\,..., Tn, FI ,..., Yn),
where TI ,..., Tn assume the value 1 if treatment A and 0 if treatment B, and Y\,..., Yn

are the first n responses to treatment. Then, using similar notation as in Chapter 3,
the allocation rule is given by

While the 9 can be any estimator, it is usual to employ the maximum likelihood
estimator of the assumed population model. Then the allocation rule in (10.6) is
called the sequential maximum likelihood procedure.

For example, let us assume the simple binomial model where YI = 1 if there
is a treatment success and Y{ = 0 if there is a treatment failure, i = 1, ...,n. The
allocation rule for minimizing the expected number of treatment failures under binary
response with the simple difference measure, from (10.4), is given by
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Table 10.2 Simulated values of expected allocation proportions, JE7(A/U(n)/n) (standard
deviation), for the sequential maximum likelihood procedure targeting (10.4) (A), the sequen-
tial maximum likelihood procedure targeting Neyman allocation (N), and equal allocation
(E), 5000 replications (Rosenberger, Stallard, Ivanovo, et al., (2001, p. 911), reprinted with
permission of International Biometric Society).

PA

0.1
0.1
0.1
0.4
0.6
0.7
0.8

PB

0.2
0.3
0.4
0.6
0.9
0.9
0.9

n

526
162
82
254
82
162
526

A

0.42 (0.04)
0.39 (0.06)
0.38 (0.07)
0.45 (0.04)
0.45 (0.06)
0.47 (0.04)
0.48 (0.02)

N

0.43 (0.04)
0.42(0.05)
0.42 (0.06)
0.50 (0.03)
0.58 (0.06)
0.58 (0.05)
0.57 (0.04)

E

0.50 (0.02)
0.50 (0.04)
0.50 (0.05)
0.50 (0.03)
0.50 (0.05)
0.50 (0.04)
0.50 (0.02)

where

Similarly we can define a sequential maximum likelihood procedure for Neyman
allocation, from (10.5), using

where QA(J - 1) = 1 - PA(J - 1) and qs(j - 1) = 1 - PB(J - 1). Properties
of the sequential maximum likelihood procedure targeting Neyman allocation are
explored by Melfi and Page (1995) and Melfi, Page, and Geraldes (2001). Properties
of the sequential maximum likelihood procedure targeting (10.4) are explored in
Rosenberger, Stallard, Ivanova, et al (2001).

In the latter paper, a simulation was conducted to compare equal allocation, se-
quential maximum likelihood procedure targeting Neyman allocation, and sequential
maximum likelihood procedure targeting (10.4). Results are given in Table 10.2 (the
sample sizes were selected to give approximately 90 percent power for the usual Z-
test under equal allocation). One can see that the Neyman allocation places too many
patients on the inferior treatment for large values of PA and PB (see also Problem
10.4). Note that the allocation rule for minimizing expected treatment failures does
put fewer patients on the inferior treatment, it is more variable than equal allocation.
In general, this will be the case with sequential maximum likelihood procedures, and
the variability is induced by the correlation among the treatment assignments. We
will reflect on this more when we discuss power in the next chapter.
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In what way does the sequential maximum likelihood procedure target the optimal
allocation? It seems intuitively reasonable, since maximum likelihood estimators are
typically consistent, to assume that R*(9(ri)) -* R*(0), and that

and hence we attain optimal allocation in the limit. However, we no longer have
independent data because of the response-adaptive randomization, and the proof is
considerably more complicated. This issue is addressed in detail in Chapter 15. It
turns out that, under very mild conditions, (10.7) is true, and hence the sequential
maximum likelihood procedure is asymptotically optimal. The reader is referred to
Chapter 15 for mathematical details.

For the difference of normal means, Jennison and Turnbull (2000) propose a
group sequential adaptive design. Suppose there are K interim inspections of the
data. At stage k,k = l,...,jfiT, the optimal allocation ratio is determined from
(10.3) by substituting the current estimates of 0, 0(k — 1), from the previous stages
into u(9) and v(9). Then the next group will have size riAk + n>Bk = "•&, where
riAk and UBk are determined by the estimated optimal allocation proportions (to an
integer approximation) and n* is a function of the amount of information accrued.
This is a deterministic rule; Jennison and Turnbull mention that one could set a
minimum sample size n* for both arms to preserve at least some "randomization" in
the treatment allocation and maintain an element of masking. One could alternatively
establish a sequential maximum likelihood procedure that randomizes patients one-
by-one using the estimated optimal allocation as the allocation probability. In this
case, one must estimate both the mean and variance, unless one assumes known
variances, as do Jennison and Turnbull (2000).

10.4.2 Doubly-adaptive biased coin design

Eisele (1994) and Eisele and Woodroofe (1995) propose a more complicated design
to achieve the desired allocation proportion R*. They refer to this design as the
doubly-adaptive biased coin design. Let t be a function from [0,1]2 to [0,1] such
that the following four conditions hold: (i) t is jointly continuous; (ii) £(o, a) = a,
(iii) t(a,b) is strictly decreasing in a and strictly increasing in 6; and (iv) t has
bounded derivatives in both arguments. The function t will represent a measure of
the difference between NA (j)/j and R* (0(j)). Then we allocate to treatment A with
probability

The properties of this design will depend largely on the function t used. Eisele and
Woodroofe (1995) show that (10.7) holds, but under somewhat restrictive conditions.
Melfi, Page, and Geraldes (2001) point out that the example in the last section of
Eisele (1994) does not satisfy the requisite conditions, so one must be careful to
choose t carefully.
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10.5 URN MODELS

The preceding optimal allocation rules are based on parametric models and response-
adaptive randomization that targets the optimal allocation are based on maximum
likelihood estimates. A design-driven approach to the problem has been developed
on an independent track from the optimal allocation approach. The basic idea is to
use an intuitive rule to adapt the allocation probabilities as each patient enters the
trial. While these rules do not have any optimal properties, we can determine limiting
properties of the design, which may be attractive in their own right. One approach
involves urn models, which include the randomized play-the-winner rule as a special
case; designs based on urn models are completely nonparametric.

10.5.1 The generalized Friedman's urn model

A typical urn model for response-adaptive randomization is the generalized Fried-
man'sum model [Athrey a and Karlin( 1968)]. Initially a vector Vi = (Zu,...,ZiK)
of balls of type 1,..., K are placed in an urn. Patients sequentially enter the trial.
When a patient is ready to be randomized, a ball is drawn at random and replaced.
If it was type i, the ith treatment is assigned. We then wait for a random variable
£ (whose probability distribution depends on i) to be observed. An additional dij
balls are added to the urn of type j — 1,..., K, where <%(£) is some function on the
sample space of £. The algorithm is repeated through n stages.

Let Zn = (Zni,..., ZnK) be the urn composition when the nth patient arrives to
be randomized. Then the probability that the patient will be randomized to treatment
j is given by Znj/\Zn\, where \Zn\ = ^f=1 Zni.

Let D(£) = ((dij)}, i,j — 1,..., K. First order asymptotics for the generalized
Friedman's urn are determined by the generating matrix of the urn, given by H =
E{D(£)}. Under certain regularity conditions (H is positive regular and Pr{dtj =
O V j } = Oforall i) ,

î
j — 1,...,.K", where v = (V\,...,VK) is the normalized (i.e., Y^>j=i vi — 1) ^ft
eigenvector corresponding to the maximal eigenvalue of H [Athreya and Karlin
(1967)].

The generalized Friedman's urn is a natural design for clinical trials of K treat-
ments. Wei (1979) proposed the following simple example of a rule for K treatments.
Suppose £ is a binary outcome, success or failure, and let d^ = (K — l)6ij if success
on treatment i, and d^ = (1 - <%) if failure on treatment i, where 5jj is the Kronecker
delta. Assuming that £ is immediately observable after the patient is randomized, we
have|ZB| = |Zi| + (JK--l)(n- l) .
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10.5.2 The randomized play-the-winner rule

When K — 2, and for Z\ = (a, a), we have the randomized play-the-winner rule
described in Section 10.2.3. This has been the most-studied urn model in the response-
adaptive randomization literature. We can explore some of its properties,under a
simple population model by letting PA and PB be the probabilities of success on
treatments A and B, respectively, and QA = I—PA,QB = 1 — QB • We can write the
matrix H for the RPW(Q, 1) rule as

The maximal eigenvalue of this matrix (since it is stochastic) is 1, and the normalized
left eigenvector corresponding to the eigenvalue 1 is QB/(QA +QB)- Thus, by (10.8),
we obtain

almost surely, or that

almost surely. Consequently, in the limit, the RPW(Q, 1) rule allocates according to
the relative risk of failure. While this is not optimal in the sense of Section 10.3, this
is an intuitively appealing limit.

While finite sample results are intractable for most urn models, the jRPW(a, /?) is
simple enough that one can obtain E(NA (n)) and VQT(NA (n)) exactly. A recursion
can be developed to determine E(NA(n)) as follows. Again, let Y\,...,Yn be
the responses of the n patients, where Yj\ = 1 if success and 0 if failure. Let
TI, ...,!Tn be the treatment assignments, Tj = 1 if A and 0 if B and define 7n =
(Y^...^^...^). Note that

Also we can show that

(Problem 10.6). The probability of selecting a type A ball is simply the proportion
of balls of type A in the urn. After n - 1 patients, we have 2a + @(n — 1) total balls
in the urn, and the number of type A balls is the starting number, a, plus the number
of successes on A, plus the number of failures on B. Hence, we have
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Taking another expectation, we obtain unconditionally

using (10.11) and (10.12). Noting that

we can write this as

We see that we have a recursion of the form

with AI — C\ = 1/2. The solution to this recursion is

Consequently, we have shown that

(Rosenberger and Sriram (1997)). The form of Var(]V>i(n)) is more complicated,
and is given in Matthews and Rosenberger (1997), requiring at least half a page. They
also show that, if PA +PB > 3/2, the variance depends on the initial urn composition
in the limit. This is an undesirable property of urn models for response-adaptive
randomization, because the initial urn composition is generally difficult to select
in practice, and one would hope that, at least for large samples, that the limiting
allocation would be invariant to the starting values. We will discuss the selection of
a and j3 in Chapter 12.

Table 10.3 gives E(NA(n}jn} and S. D.(7V,4(n)/n) for the randomized play the
winner rule with n — 25. One can see that the variability is quite large for large
values of PA and PB • Variability is reduced substantially when a = 5, but the
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Table 10.3 Exact values of E(NA(n)fn} (standard deviation) for n = 25 for the
RPW(l,l) rule and the RPW(5,1) rule (Rosenberger (1999, p. 334), reprinted with
permission ofElsevier Science, Inc.).

PA

0.1
0.1
0.1
0.1
0.3
0.3
0.3
0.5
0.5
0.7

PB

0.3
0.5
0.7
0.9
0.5
0.7
0.9
0.7
0.9
0.9

a = l

0.44 (0.09)
0.38(0.10)
0.29(0.10)
0.19(0.10)
0.43 (0.12)
0.35(0.13)
0.24(0.13)
0.41 (0.16)
0.30(0.17)
0.38 (0.21)

a = 5

0.46 (0.09)
0.42 (0.09)
0.36(0.10)
0.31 (0.10)
0.45(0.10)
0.40(0.11)
0.34(0.11)
0.45(0.13)
0.39(0.13)
0.44(0.15)

Table 10.4 Simulated values of expected allocation proportions, E(NA(n)/n) (standard
deviation), for the RPW(l, 1) procedure, 5000 replications (Rosenberger, Stallard, Ivanovo,
et al, (2001, p. 911), reprinted with permission of International Biometric Society).

PA

0.1
0.1
0.1
0.4
0.6
0.7
0.8

PB

0.2
0.3
0.4
0.6
0.9
0.9
0.9

n

526
162
82
254
82
162
526

RPW(1,1)

0.47 (0.02)
0.44 (0.04)
0.40 (0.05)
0.40 (0.05)
0.29(0.13)
0.32(0.13)
0.38(0.12)

adaptive nature of the design is dampened by less extreme allocation to the superior
treatment.

Table 10.4 gives the simulated mean allocation proportions (standard deviation)
for the RPW(l, 1) rule, which is useful for direct comparison with Table 10.2. It is
clear that the rule is more variable than the sequential maximum likelihood procedure
for large values of PA andps, but is less variable (but also more conservative) for
small values of PA andp^.
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10.5.3 Ternary urn models

Another class of urn models for clinical trials of two treatment is the ternary urn, de-
scribed by Ivanova and Flournoy (2001). Suppose there are three possible outcomes,
A, B, and C. A ball is drawn and replaced, and the appropriate treatment assigned.
If the patient's outcome is A at treatment i,i = 1,..., K, a type i ball is added to
the urn; if the outcome is B, nothing is done; if the outcome is C, a type i ball is
removed. When this model is reduced to only two outcomes, we have three types
of urn models. For two outcomes A and B, we have Durham and Yu's (1990) urn,
where a ball is added if there is a success and the urn remains unchanged if there
is a failure. For outcomes A and C, we have the birth and death urn of Ivanova,
Rosenberger, Durham, et al. (2000), where a ball is added if there is a success and a
ball is removed if there is a failure. Finally, if we have outcomes B and C, we have
the drop-the-loser rule (e.g., Ivanova (2002)), in which a ball is removed if there is a
failure, and the um remains the same if there is a success.

It can be shown that the limiting composition of Durham and Yu's urn will contain
only balls representing the best treatment (Durham, Flournoy, and Li (1998), provided
there is a single best treatment (i.e., for success probabilitiesp\, ...,PK, there exists a
unique maximump* £ (p\, ...,px))- The almost sure limiting allocation is given by

The birth and death urn has the following limiting allocation. If p* < 1/2,

If p* > 1/2, we obtain the same limiting allocation as for Durham and Yu's urn. The
limiting allocation of the drop-the-loser rule is given by

For K — 2, this is the same limiting allocation as for the randomized play-the-winner
rule, given in (10.10).

Urn models that remove balls have a positive probability that certain types of balls
will become extinct. In order to eliminate this possibility, Ivanova, Rosenberger,
Durham, et al. introduced immigration balls that replenish the urn according to a
Poisson immigration process. This is equivalent to introducing an additional type of
ball in the urn, immigration balls. An urn contains balls of K+l types, representing K
treatments, and ball type K +1 representing immigration balls. If ball types 1,..., K
are drawn, the appropriate rule (birth and death or drop-the-loser) is implemented. If
an immigration ball is drawn, the ball is returned to the urn along with K additional
balls, one of each of types 1,..., K.
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For K = 2, Ivanova and Rosenberger (2001) demonstrate that the drop-the-loser
rule, induces less variability when PA and PB are large. Since the randomized play-
the-winner rule and drop-the loser rule have identical limiting allocations, but the
randomized play-the-winner rule is quite variable for large values of PA and PB, it
seems reasonable to conclude that the drop-the-loser rule is preferable for highly
successful treatments in binary response trials, in terms of variability.

Many other urn models have been suggested for response-adaptive randomization.
The interested reader is referred to Andersen, Paries, and Tamura (1994), Bandyopad-
hyay and Biswas (2000), and Bai, Hu, and Shen (2002). These and other urn models
are reviewed in Rosenberger (2002).

10.6 TREATMENT EFFECT MAPPINGS

Rosenberger (1993) introduced the idea of a treatment effect mapping, in which
allocation probabilities are some function of the current treatment effect. Let g :
ft ->• [0,1], continuous, such that#(0) = 1/2, g(x) > 1/2 if x > 0, and g(x] < 1/2
if x < 0. Let 5 € H be some measure of the true treatment effect, and let Sj be the
observed value of the treatment effect measure after j responses, where Sj = 0 if the
treatments are equal, Sj > 0 if A is better than B, and Sj < 0 if A is worse than B.
Then we allocate to treatment A with probability

One would presume that such a procedure would have limiting allocation

but this has not yet been proved formally for general functions g and treatment effect
5.

For continuous outcomes, Rosenberger (1993) developed a treatment effect map-
ping for the linear rank test, using g(x) — 0.5(1 -f x}, where 5 is the normalized
(centered and scaled) linear rank statistic. Bandyopadhyay and Biswas (2001) used
the mapping g(x) = $(x), where $ is the normal distribution function, and 5 is the
usual two-sample i-test.

For survival outcomes, Rosenberger and Seshaiyer (1997) use the mapping g(x) =
0.5(1 + x) where S is the a centered and scaled logrank test. Yao and Wei (1996)
suggest using

where S is the standardized Gehan Wilcoxon test and r is a constant reflecting the
degree to which one wishes to adapt the trial.
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The intuitive appeal of the treatment effect mapping approach is that we allocate
according to the magnitude of the treatment effect thus far in the trial. While this is an
intuitively attractive allocation procedure, the limiting allocation is not optimal, and
hence this is a design-driven response-adaptive randomization procedure. Because
um models tend to be relevant for binary and multinomial responses, treatment
effect mappings have been proposed for more general outcomes, such as continuous
outcomes and survival outcomes. One can also use a covariate-adjusted treatment
effect instead of the marginal treatment effect so that the adaptation is based not only
on patient responses, but also on their covariates. Covariate-adjusted treatment effect
mappings were described in Rosenberger, Vidyashankar, and Agarwal (2001) and
BandyopadhyayandBiswas (2001).

10.7 PROBLEMS

10.1 Use the delta method to derive the expressions for the asymptotic variance of
the relative risk and odds ratio measures, given in Table 10.1.

10.2 Show that the optimal allocation for the odds ratio measure using the criterion
of Section 10.3 is given by

103 For PA = 0.1,0.5,0.9, draw plots superimposing the following allocations
across values of PB'
(0 optimal allocation for the simple difference given in Table 10.1;
(K) optimal allocation for the relative risk given in Table 10.1;
(in) optimal allocation for the odds ratio given in Table 10.1;
(iv) limiting allocation for the randomized play-the-winnerrule, given in (10.10).
Interpret.

10.4 Show that Neyman allocation assigns more patients to the inferior treatment
whenp,4 > qB.

10.5 a. Show (10.9).
b. Show that the normalized left eigenvector corresponding to the eigenvalue 1 in
(10.9) is given by qB/(qA + QB)-

10.6 Show (10.12).

10.7 Show that the solution to the recursion

with AI = C\ = 1/2 is given by
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10.8 Generate a randomization sequence for n = 50 for a binary response trial
with PA = 0.5 and PB = 0.7 using the following response-adaptive randomization
procedures:
(i) the sequential maximum likelihood procedure targeting R* = (p^/ps)1/2;
(iX)RPW(U).

10.8 REFERENCES

AGRESTI, A. (1990). Categorical Data Analysis. Wiley, New York.
ANDERSON, J., PARIES, D., AND TAMURA, R. N. (1994). A randomizedplay-

the-winner design for multi-armed clinical trials. Communications and
Statistics - Theory and Methods 23 309-323.

ANSCOMBE, F. J. (1963). Sequential medical trials. Journal of the American Sta-
tistical Association 58 365-384.

ATHREYA, K. B. AND KARLIN, S. (1967). Limit theorems for the split times of
branching processes. Journal of Mathematics and Mechanics 17 257-277.

ATHREYA, K. B. AND KARLIN, S. (1968). Embedding of urn schemes into
continuous time Markov branching processes and related limit theorems.
Annals of Mathematical Statistics 39 1801-1817.

BAI, Z. D., Hu, F., AND SHEN, L. (2002). An adaptive design for multi-armed
clinical trials. Journal of Multivariate Analysis, in press.

BANDYOPADHYAY, U. AND BISWAS, A. (2000). A class of adaptive designs.
Sequential Analysis 19 45-62.

BANDYOPADHYAY, U. AND BISWAS, A. (2001). Adaptive designs for normal
responses with prognostic factors. Biometrika 88 409-419.

BATHER, J. (1995). Response adaptive allocation and selection bias. In Adaptive
Designs(FLOURNOY, N. AND ROSENBERGER, W. F., EDS.).Institute
of Mathematical Statistics, Hay ward, pp. 23-35.

BELLMAN, R. (1956). A problem in the sequential design of experiments. Sankhya
A 16 221-229.

BERRY, D. A. (1978). Modified two-armed bandit strategies for certain clinical
trials. Journal of the American Statistical Association 73 339-345.

BERRY, D. A. AND EICK, S. G. (1995). Adaptive assignment versus balanced
randomization in clinical trials: a decision analysis. Statistics in Medicine
14231-246.

BERRY, D. A. AND FRISTEDT, B. (1986). Bandit Problems: Sequential Alloca-
tion of Experiments. Chapman and Hall, London.

CHERNOFF, H. AND ROY, S. N. (1965). A Bayes sequential sampling inspection
plan. Annals of Mathematical Statistics 36 1387-1407.

GOAD, D. S. (1991). Sequential tests for an unstable response variable. Biometrika
78113-121.

COLTON, T. (1963). A model for selecting one of two medical treatments. Journal
of the American Statistical Association 58 388^*00.

CORNFIELD, J., HALPERIN, M., AND GREENHOUSE, S. W. (1969). An adap-



REFERENCES 187

live procedure for sequential clinical trials. Journal of the American Statis-
tical Association 64 759-770.

DURHAM, S. D., FLOURNOY, N., AND Li, W. (1998). Sequential designs for
maximizing the probability of a favorable response. Canadian Journal of
Statistics 3 479^95.

DURHAM, S. D. AND Yu, C. F. (1990). Randomized play-the-leader rules for
sequential sampling from two populations. Probability in the Engineering
and Information Sciences 4 355-367.

EISELE, J. R. (1994). The doubly adaptive biased coin design for sequential clinical
trials. Journal of Statistical Planning and Inference 38 249-261.

EISELE, J. R. AND WOODROOFE, M. B. (1995). Central limit theorems for
doubly adaptive biased coin designs. Annals of Statistics 23 234-254.

FLOURNOY, N. AND ROSENBERGER, W. F., EDS. (1995). Adaptive Designs.
Institute of Mathematical Statistics, Hayward.

FLEHINGER, B. J. AND Louis, T. A. (1971). Sequential treatment allocation in
clinical trials. Biometrika 58 419^426.

GITTINS, J. C. (1989). Multi-Armed Bandit Allocation Indices. Wiley, Chichester.
HARDWICK, J. (1995). A modified bandit as an approach to ethical allocation in clin-

ical trials. In Adaptive Designs (FLOURNOY, N. AND ROSENBERGER,
/W. F., EDS.). Institute of Mathematical Statistics, Hayward, pp. 223-237.

HARDWICI£, J. AND STOUT, Q. F.( 1995). Exact computational analysis for adap-
tive designs. In Adaptive Designs (FLOURNOY, N. AND ROSENBERGER,
W. F., EDS.). Institute of Mathematical Statistics, Hayward, pp. 65-87.

HARDWICK, J. AND STOUT, Q. F. (1999). Using path induction for evaluating
sequential allocation procedures. SIAM Journal of Scientific Computing 21
67-87.

HAYRE, L. S. (1979). Two-population sequential tests with three hypotheses.
Biometrika 66 465-474.

HAYRE, L. S. AND TURNBULL, B. W. (1981). Estimation of the odds ratio in
the two-armed bandit problem. Biometrika 68 661-668.

IVANOVA, A. V. (2002). A play-the-winner type urn model with reduced variability.
Metrika, in press.

IVANOVA, A. AND FLOURNOY, N. (2001). A birth and death urn for ternary out-
comes: stochastic processes applied to urn models. In Probability and Sta-
tistical Models with Applications (CHARALAMBIDES, C. A., KOUTRAS,
M. V., AND BALAKRISHNAN, N., EDS.). Chapman and Hall/CRC, Boca
Raton, pp. 583-600.

IVANOVA, A. V., ROSENBERGER, W. F., DURHAM, S. D., AND FLOURNOY,
N. (2000). A birth and death urn for randomized clinical trials: Asymptotic
methods. Sankhya B 62 104-118.

JENNISON, C. AND TURNBULL, B. W. (2000). Group Sequential Methods with
Applications to Clinical Trials. Chapman and Hall/CRC, Boca Raton.

LACHIN, J. M. (2000). Biostatistical Methods: The Assessment of Relative Risks.
Wiley, New York.

Louis, T. A. (1975). Optimal allocation in sequential tests comparing the means



188 RESPONSE-ADAPTIVE RANDOMIZATION

of two Gaussian populations. Biometrika 62 359-369.
MATTHEWS, P. C. AND ROSENBERGER, W. F. (1997). Variance in randomized

play-the-winner clinical trials. Statistics and Probability Letters 35 233-
240.

MELFI, V. AND PAGE, C. (1995). Variability in adaptive designs for estimation
of success probabilities. In New Developments and Applications in Experi-
mentalDesign(FLOURNOY, N., ROSENBERGER, W. F., AND WONG,
W. K., EDS.). Institute of Mathematical Statistics, Hayward, pp. 106-114.

MELFI, V. F., PAGE, C., AND GERALDES, M. (2001). An adaptive randomized
design with application to estimation. Canadian Journal of Statistics 29
107-116.

ROBBINS, H. (1952). Some aspects of the sequential design of experiments. Bulletin
of the American Mathematical Society 58 527-535.

ROBBINS, H. AND SIEGMUND, D. O. (1974). Sequential tests involving two
populations. Journal of the American Statistical Association 69 132-139.

ROSENBERGER, W. F. (1993). Asymptotic inference with response-adaptive treat-
ment allocation designs. Annals of Statistics 21 2098-2107.

ROSENBERGER, W. F. (1999). Randomized play-the-winner clinical trials: review
and recommendations. Controlled Clinical Trials 20 328-342.

ROSENBERGER, W. F. (2002). Randomized urn models and sequential design.
Sequential Analysis, in press (with discussion).

ROSENBERGER, W. F. AND SESHAIYER, P. (1997). Adaptive survival trials.
Journal of Biopharmaceutical Statistics 7 617-624.

ROSENBERGER, W. F. AND SRIRAM, T. N. (1997). Estimation for an adaptive
allocation design. Journal of Statistical Planning and Inference 59 309-
319.

ROSENBERGER, W. F., STALLARD, N., IVANOVA, A., HARPER, C. N., AND
RICKS, M. L. (2001). Optimal adaptive designs for binary response trials.
Biometrics 57 909-913.

ROSENBERGER, W. F., VIDYASHANKAR, A. N., AND AGARWAL, D. K.
(2001). Covariate-adjusted response-adaptive designs for binary response.
Journal of Biopharmaceutical Statistics 11 227-236.

SIMONS, G. (1989). A random horizon model for sequential clinical trials. Sequential
Analysis 8 27-49.

THOMPSON, W. R. (1933). On the likelihood that one unknown probability exceeds
another in the view of the evidence of the two samples. Biometrika 25 275-
294.

WEI, L. J. (1979). The generalized Polya's urn design for sequential medical trials.
Annals of Statistics 7 291-196.

WEI, L. J. AND DURHAM, S. D. (1978). The randomized play-the-winner rule in
medical trials. Journal of the American Statistical Association 73 840-843.

YANG, Y. AND ZHU, D. (2002). Randomized allocation with nonparametric esti-
mation for a multi-armed bandit problem with covariates. Annals of Statis-
tics 30100-121.

YAO, Q. AND WEI, L. J. (1996). Play the winner for phase II/III clinical trials.



REFERENCES 189

Statistics in Medicine 15 2413-2423.
ZELEN, M. (1969). Play the winner and the controlled clinical trial. Journal of the

American Statistical Association 64 131-146.



This page intentionally left blank 



11
Inference for

Response-Adaptive
Randomization

11.1 INTRODUCTION

Inference for response-adaptive randomization is very complicated because both
the treatment assignments and responses are correlated. This leads to nonstandard
problems and new insights into conditioning. We first examine likelihood-based
inference and then randomization-based inference. Most of the work on inference
for response-adaptive randomization has focused on urn models. Extension to other
response-adaptive designs is certainly feasible, but many of these extensions are open
problems. While we mention large sample inference briefly in this chapter, the main
results in large sample inference for response-adaptive randomization are proved in
Chapter 15.

11.2 POPULATION-BASED INFERENCE

11.2.1 The likelihood

As in Section 7.2, we can use conditioning arguments to derive the likelihood for a
response-adaptive randomization. Let t® = (ti,...,tj) and yW = (yi,...,yj) be
the realized treatment assignments and responses from patients 1,..., j, respectively.
Let 0 be the parameter vector of interest. Unlike the restricted randomization case,
here (*i,...,£n) depend on 9. However, we have additional data arising from the
experiment: the adaptive mechanism. For the urn model, let z^ = (ZQ,...,ZJ-\)
be the history of the urn composition, where ZQ is the initial urn composition and Zi
is the urn composition after i stages. Then the likelihood of the data after n patients,

191
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denoted £„, is given by

Since the responses depend only on the treatment assigned and are independent and
identically distributed under a population model, we have

Now the treatment assignments will depend only on the current urn composition at
the time of assignment. This means that

Noting that the urn composition at stage n — 1 is completely determined by the urn
composition at stage n — 2 and the treatment assignment and response of the n — 1th
patient, we see that

Combining (11.1)-(11.4), we obtain

Since £,(ti\Zi-\) is independent of 0, we have

(Rosenberger, Flournoy, and Durham, 1997).
Note that (11.5) is identical to the likelihood from restricted randomization, in

(7.5). However, this only means that the likelihoods look the same. The distribution
of the sufficient statistics is quite different in response-adaptive randomization than
in restricted randomization, as we shall see.

For the case where there are K treatments, let Sji = lifti = j,j = I,...,K, and
0 otherwise. When we have binary responses and Pr(Yf — l|Tj = j) = PJ, we can
write the likelihood as
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where 8j(n) = S?=i If«^j« anci nj(n) = Z)"=i ^j«- L61 ̂ '(n) ^d ^j(n) be toe
random analogs of s j (ri) and rij (n), respectively. Note that the maximum likelihood
estimator of PJ is pj = Sj(n)/Nj(n). Under certain regularity conditions, the
maximum likelihood estimators are consistent and asymptotically normal. The details
are given in Chapter 15.

11.2.2 Sufficiency

We can determine the sufficient statistics for $ from the likelihood. Here is where we
must carefully distinguish between restricted and response-adaptive randomization.
For restricted designs, Nj (n) does not depend onpj, and hence is an ancillary statistic.
It follows that Sj(n) is a complete sufficient statistic for PJ. By Basu's Theorem
(Lehmann (1983, p. 46)), this implies that 5j(n) and Nj(n) are independent.

In contrast, for response-adaptive randomization, Nj (n) does carry information
about PJ, and therefore is not ancillary. In fact, the statistics (5i(n),...,SK-(n),
NI (TI),...,NK~I (ri)) are jointly sufficient for (pi,...,£>/<•)• This brings up the inter-
esting dilemma that if we condition on Nj(n) when we do inference, we lose extensive
information. Thus response-adaptive randomization requires unconditional tests.

11.2.3 Bias of the maximum likelihood estimators

Because of the dependence structure induced by response-adaptive randomization,
the maximum likelihood estimators, although they are typically consistent, are biased.
Coad and Ivanova (2001) derive the bias factor as follows. LetSxIn), S#(n), NA(TI),
NB (ri) be the number of success on A, successes on B, number of patients on A,
patients on B, respectively. Let PPA,PB be the probability measure on the sequences
of treatment responses determined by PA and PB and EPA)PB be the expectation with
respect to that measure. Then dPPA IPB is given by

and the first derivative is given by

We can write
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Assuming that EPAtpB is continuous in PJ, we may differentiate under the integral
sign to obtain

Using (11.7), we can write the bias as

Clearly this is zero if we do not have response-adaptive randomization.
The delta method will allow us to obtain a suitable approximation to (11.8). We

can write

(Problem 11.1). For specific response-adaptive randomization procedures, if we can
compute the variance of -/V»(n), we can obtain an approximate bias correction using
(11.8) and (11.9).

As an example, consider the randomized play-the-winner rule with two treatments,
where QA = 1 — PA and QB = 1 - PB- It is known that

and that, when PA+PB < 3/2,

(Matthews and Rosenberger, 1997). Then we can obtain the following approximation
for the bias:

If we ignore the term of order 0(n~2), we obtain

This correction is reasonably accurate for small sample sizes. Similar bias corrections
are given for other um designs in Coad and Ivanova (2001).
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11.2.4 Confidence interval procedures

Confidence interval procedures have been proposed for response-adaptive randomiza-
tion. These include exact binomial confidence intervals for the randomized play-the-
winner rule and a bootstrap procedure for a general response-adaptive randomization
procedure of K treatments with binary responses. Coad and Woodroofe (1997) and
Coad and Govindarajulu (2000) construct confidence intervals following sequential
adaptive designs for censored survival data and binary responses, respectively.

We outline the basic procedure for the computation of exact confidence intervals.
Wei, Smythe, Lin, et al (1990) derived exact binomial confidence intervals for differ-
ence measures of PA andps, such as the simple difference &=PA—PB following a
clinical trial using the randomized play-the-winner rule. The exact distribution will
depend on A and a nuisance parameter, pB. One popular approach for dealing with
a nuisance parameter is to condition on a sufficient statistic. Wei, Smythe, Lin, et
al chose to maximize over the possible values of PB- Let SA, SB, NA, NB be the
number of successes on treatments A and B and the numbers of patients on A and
B, respectively, with realizations SA, SB, n^, HB, and let A = SA/KA — SB/HB.

Then if UA^B > 0, the exact unconditional confidence interval (A, A) can be

computed according to the formulas

A- inf {&:[maxPT(SA/NA-SB/NB>&,NA>Q,NB>Q)]>ai},
— — 1<A<1 PB

A = sup {A : [maxPr(SA /NA - SB/NB >&,NA> 0, NB > 0)] > «2},
-1<A<1 PB

for fixed constants c*i and a2- These confidence intervals can be computationally
intensive, and rely on the networking algorithm approach. Wei, Smythe, Lin, et al.
compare their unconditional confidence interval to the conditional confidence interval
and found that the unconditional intervals tend to be shorter and more efficient than
the conditional counterparts for the randomized play-the-winner rule.

Rosenberger and Hu (1999) derived bootstrap confidence intervals following a
general response-adaptive randomization procedure of K treatments, using a simple
rank ordering. The algorithm is as follows:

1. Obtain the observed data, p = (pi,..., PK) and N = (JVi,..., NK), the vector of
observed success proportions and sample sizes.
2. Simulate the adaptive allocation rule B times, using p as the underlying response
probabilities, obtaining B sequences of treatment assignments and responses.
3. Compute p*,..., p*B and N*,..., NB from the simulations. These are the bootstrap
estimates of the response probabilities and sample sizes.
4 OrHprn*1 f>*B fnr7 — 1 K as n*^ ,fi*(B)<4. uruerpj ^..^ , ror i — i, ...,/v aspt- , - - - > P i

The simplest 100(1 - a)% bootstrap confidence interval approximation for pi is
given by
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Rosenberger and Hu show that this simple confidence interval provides near perfect
coverage. The same techniques can be used for measures of treatment differences,
and can incorporate delayed response and staggered entry in the simulation phase 2.

11.3 POWER

Response-adaptive randomization induces additional correlation among the responses,
and this leads to an increase in the variance of the test statistic. This increased vari-
ance contributes to a decrease in power for standard tests based on a population
model. In general, for clinical trials of two treatments, power of the test will be
intimately linked to Var(JV>i(n)/n). One can see this quite readily when examining
the noncentrality parameter for the test of the simple difference in binary response
trials (Hu and Rosenberger, 2002).

Suppose we have a fixed target proportion p, for instance, p could be based on
some optimization criterion, or the limiting allocation of an urn design, as discussed
in Chapter 10. For this case, we can calculate the noncentrality parameter for the
Z-test as follows:

which can be rewritten as

Now define a function

We have the following expansion:

After some calculation, we obtain

and
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Thus, we have that the noncentrality parameter of the test is given by

The first term in (11.10) is determined by p, which represents the noncentrality
parameter for the fixed design. The second term in (11.10) represents the bias of
the randomized design from the target proportion. With the design shifting to a
different side from the target proportion p, the noncentrality parameter will increase
or decrease according the coefficient

To control the power, it may be desired to have this coefficient be 0. It is interesting
to see that this coefficient equals 0 if and only ifp^cj^l - p)2 - psqsp2 — 0, that
is

i.e., Neyman allocation!
For response-adaptive randomization procedures, we can consider the expectation

of the noncentrality parameter. If E(JV^(n)/n - p) = 0, at least to order o(l/n),
then the average power lost of the response-adaptive randomization procedure is then
a function of

which fully represents the variability of the design. So we have now have the
precise link between power and the variation of the design. Thus we can use the
variance of jy^(n)/n to compare response-adaptive randomization procedures with
same allocation limit or the variance and bias if they do not have the same limiting
allocation.

Unfortunately, finding the asymptotic variance of NA(n)/n is a difficult task
for most response-adaptive randomization procedures. Matthews and Rosenberger
(1997) present an expression for the randomized play-the-winner rule, and Bai and Hu
(1999) extend this to all generalized Friedman's urns, but their expression takes more
than a full page to describe. Hu and Zhang (2002) have derived the asymptotic vari-
ance for the doubly-adaptive biased coin design when targeting p = qs/(QA +qs),
the limiting allocation for the randomized play-the-winner rule and conclude that
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Table 11.1 Simulated power and expected number of failures for the standard Z-test of
two proportions under the sequential maximum likelihood procedure targeting (10.4) (A), the
sequential maximum likelihood procedure targeting Neyman allocation (N), the randomized
play-the-winner allocation (R), and equal allocation (E), 5000 replications (Rosenberger,
Stallard, Ivanovo, et al. (2001, p. 912), reprinted with permission of International Biometric
Society).

PA

0.1

0.1
0.1
0.4
0.6
0.7
0.8

PB

0.2
0.3
0.4
0.6
0.9
0.9
0.9

n

526
162
82

254
82
162
526

A

0.89
0.89
0.89
0.89
0.90
0.91
0.90

Povs

N

0.89
0.90
0.90
0.89
0.90
0.90
0.90

fer

R

0.90
0.89
0.89
0.89
0.86
0.87
0.88

E

0.90
0.90
0.90
0.89
0.90
0.90
0.90

A

443
126
58.
124
19.
31.
78.

E:

.0

.2
5
.4
3
5
3

spected 1

N

444.0
127.0
59.4
126.9
22.4
35.2
82.5

failures

R

445.6
127.7
59.0
121.9
15.3
26.6
72.6

E

447.1
129.6
61.5
127.0
20.5
32.4
78.9

the doubly-adaptive biased coin design is always less variable than the random-
ized play-the-winner rule. Specifically how this influences power has not yet been
investigated.

A few researchers have explored power of response-adaptive randomization pro-
cedures using simulation. Rosenberger, Stallard, Ivanova, et al. (2001) explore the
differences in power and expected number of treatment failures for the randomized
play-the-winner rule, the sequential maximum likelihood procedure targeting p = R*
in (10.4), the sequential maximum likelihood procedure targeting Neyman allocation,
and equal allocation for the simple difference of proportions test. Results are given
in Table 11.1. One can see that for alternatives where PA andp# are small (less than
0.5), the sequential maximum likelihood procedure targeting (p^/ps)1/2 is the best,
with similar power and fewer treatment failures. It should be noted that sequential
Neyman allocation is almost as good, with differences of only about one treatment
failure. As PA and PB get larger, there is little difference between the sequential
maximum likelihood procedure and equal allocation, and Neyman allocation results
in too many treatment failures. While the randomized play-the-winner rule results in
fewer failures, it also is highly variable, and results in power losses of 2-4 percent.
When one increases the sample size to equate the power of equal allocation and
the randomized play-the-winner rule, the expected failures are worse than for equal
allocation.

So for small success probabilities, the sequential maximum likelihood procedure
targeting the optimal allocation is the desired randomization procedure. However, it
does not result in much of an advantage over equal allocation for highly successful
treatment. Ivanova and Rosenberger (2001) show that the drop-the-loser rule results
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in a very powerful test based on the asymptotic distribution of the odds ratio, when
PA andpjg are large.

For the treatment effect mapping procedure using the logrank test under staggered
entry and censoring, Rosenberger and Seshaiyer (1997) found that the power of
the test was always within 1 percent of that for equal allocation, and reductions in
expected treatment failures was considerable. Similar favorable results were found
by Yao and Wei (1996) using a treatment effect mapping with the Gehan Wilcoxon
test and by Hallstrom, Brooks, and Peckova (1996), using other types of allocation
procedures with the logrank test. However, for a mapping of the difference of normal
means, Bandyopadhyay and Biswas (2001) found significant losses in power. In
clinical trials of K > 2 treatments, Ivanova and Rosenberger (2000) found that the
birth and death urn with immigration required increased numbers of patients to have
the same power as equal allocation, but the expected number of treatment failures is
still less using the urn allocation.

Power for sequential tests in a clinical trial using a sequential monitoring scheme
with randomized play-the-winner randomization is explored by simulation in Coad
and Rosenberger (1999) and by computing exact distributions using a networking
algorithm in Stallard and Rosenberger (2002). While the former paper found a
slight advantage for the randomized play-the-winner rule over equal allocation for a
sequential test, the latter paper found the randomized play-the-winner rule does not
improve expected treatment successes when used in conjunction with a particular
sequential monitoring scheme.

In general, the properties of response-adaptive randomization in conjunction with
sequential tests based on an early stopping boundary have been sorely lacking in
the literature. This is a fundamental area of research that must be tackled before
response-adaptive randomization can enjoy popular use in sequentially-monitored
clinical trials.

11.4 RANDOMIZATION-BASED INFERENCE

As with restricted randomization procedures, randomization-based inference can be
performed following a response-adaptive randomization procedure using the family
of linear rank tests. These tests are completely nonparametric, and depend only on
the way the n patients were randomized for fixed values of the patient scores. When
K = 2, we are interested in the linear rank test given by

where the ajn's are fixed constants and Tj = l i f treatment A was assigned and 0 if
treatment B. In the case of binary response, we can let a,jn be 1 if success and 0 if
failure. In this case, letting SA (n) and SB (n) be the number of successes on A and
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Table 11.2 Unconditional reference set for computation of the linear rank test following
RPW(1,1) randomization.

Sequence (/)

AAAA
AAAB
AABA
AABB
ABAA
ABAB
ABBA
ABBB
BAAA
BAAB
BABA
BABB
BBAA
BBAB
BBBA
BBBB

Pr(L = /)

1/15
1/10
1/10
1/15
3/40
1/20
1/30
1/120
1/120
1/30
1/20
3/40
1/15
1/10
1/10
1/15

Si

0.0
-0.5

0.5
0.0
0.5
0.0
1.0
0.5

-0.5
-1.0

0.0
-0.5

0.0
-0.5

0.5
0.0

B, respectively, a little algebra shows that (11.11) is equivalent to

Table 11.2 shows the computation of the exact test under RPW(\,1) randomiza-
tion for n = 4 when the patient's responses were %•„ = {1,0,0,1} and the observed
allocation was Tj = {A, A, B, B}. Then the observed test statistic is W = 0. The
unconditional p-value is computed by summing the probabilities of each sequence
where Sj > 0. This yields pu = 0.6833.

Wei (1988) proposed a version of this test with uncentered scores, given by

This test generated much controversy, which was recorded in the paper by Begg
(1990) with ensuing discussion. The test in (11.12) certainly lends itself to a more
straightforward interpretation in terms of the observed treatment difference.

As described in Section 7.8, computational algorithms can be developed to com-
pute the exact distribution of permutation tests if samples are not too large. Hardwick
and Stout (1998) give the general approach for developing software to find exact dis-
tributions with adaptive designs. They have usually been successful using parallel
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processing for samples up to n = 200. The approach for urn models is described
in Ivanova and Rosenberger (2000) and was initially proposed by Wei (1988). The
techniques are similar as for restricted randomization, but one must track not only
the numbers of patients assigned to each treatment, but also the number of successes.

Let Nn = (Ni (n),..., NK (n)) be the number of patients assigned after n draws
for treatments 1,..., K, andSn = (Si(n),...,SjRr(ra)) be the number of successes on
treatments 1,..., K. Consider a network at the (n + l)th stage. At stage n, it is a set
of nodes of the form (Nn,Sn,P(Nn, Sn)), where P(N"n, Sn) is the probability of
a realization of (Nn, Sn). Let fln be the set of all triples (Nn, 5n, P(Nn, 5>n))
with distinct (Nn, Sn). The set fJn+i can be obtained recursively from fln. Given
(Nn, Sn), one can then determine the number of balls of each type in the urn after n
draws, and hence the respective probability of being assigned to treatments 1,..., K.
Starting with fi0 = (0,0,1), we can obtain tln+i moving recursively through draws
1,..., n. Records with the same (Ni, Si) are merged into one when moving from
the ith stage to the (i + l)th. In this way, one can obtain the exact distribution of
Nn and Sn. From this, we can determine the exact distribution of W in (11.12).

The large sample distribution of the linear rank test has been derived for the
randomized play-the-winner rule and one other response-adaptive randomization
procedure. These are discussed in Chapter 15. In general, there is very little literature
related to randomization-based inference for response-adaptive randomization.

11.5 PROBLEMS

11.1 Use the delta method to show (11.9).

11.2 Read Wei (1988) and Begg (1990), along with the ensuing discussion. Write a
short paper summarizing the various methods discussed and points for and against
each (from Begg and the discussants). What are your views on inference following
a response-adaptive randomization procedure?
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Response-Adaptive

Randomization in Practice

12.1 BASIC ASSUMPTIONS

In this chapter we explore practical considerations in the use of response-adaptive
randomization. It should be clear from Chapters 10 and 11 that there are three basic
assumptions underlying the use of these types of designs.

First, one must assume that it is feasible to identify the "better" treatment with high
probability. This, in turn, will depend on the target sample size for the trial and the
treatment effect anticipated. Usually the designed treatment effect is modest, since
studies are designed to detect the minimal clinically relevant difference in treatments.
The smaller the designed effect, the larger the sample size needed to provide a high
probability that the better of the two treatments is so identified.

Second, we must assume that the "better" treatment is not associated with any
potential severe toxicity, short or long-term. Otherwise the design will be assigning
the majority of patients to an unsafe therapy. In fact, some have suggested the
importance of at least beginning the trial with equal allocation until some experience
is gained that the treatments are safe, before beginning adaptive randomization.

Third, some patient data on the primary outcome of the trial must be accrued
prior to randomizing most of the patients. This immediately eliminates long-term
survival trials with limited recruitment and a follow-up extending years. In many
of those trials, outcome data become evident only after the recruitment phase has
ended. While long-term survival trials represent a large portion of major multi-center
clinical trials, there are many shorter duration trials in which the recruitment period
can be extended to provide data for the adaptation of future allocation probabilities.
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These criteria, particularly the second, would tend to preclude use of response-
adaptive randomization in most phase II trials of new drugs where the safety of the
agent has yet to be established. However, response-adaptive randomization could
be ideal in phase II studies of an established safe agent in a new patient population.
Likewise, this would preclude the use of response-adaptive randomization in phase
III trials of agents in which animal toxicology or phase II studies have raised the
possibility of short- or long-term adverse effects. However, response-adaptive ran-
domization could be ideal for studies of competing agents for a given indication, all
of which were previously documented to be safe, or for a phase HI compound that is
a member of a family of drugs, the safety of which has already been established.

While most of the models examined in Chapter 10 assume that patient responses
are ascertainable immediately before the next patient is randomized, that assumption
is used only to simplify the probabilistic properties of the response-adaptive random-
ization rules. In practice, one can "adapt" at certain fixed points in the trial using
grouped data already accrued, or one can factor in a delayed response by just using
the data available. In the latter setting, one would update the urn (for urn models)
or update the maximum likelihood estimators (for sequential maximum likelihood
procedures) as each patient responds. Simulation studies have shown that (at least for
urn models), whereas the allocation probabilities are not as extreme as for immediate
response trials, response-adaptive randomization with delayed response still reduces
the expected number of failures and puts more patients on the better treatment when
there is delayed response (Rosenberger, 1999).

While certainly a minority of clinical trials are performed with a primary outcome
that is ascertainable immediately, a good number of such trials are conducted. Often
these are clinical trials of surgical interventions or other medical procedures with
an easily ascertainable "success" or "failure" outcome, which is known before the
next patient undergoes the procedure. One example is the prevention of hypotension
associated with spinal anesthesia for Cesarean section. Rout, Rocke, Levin, et al
(1993) describe such a trial of crystalloid preload versus placebo, using Zelen's
play-the-winnerrule (Section 10.2.1) to allocate treatments.

12.2 BIAS, MASKING, AND CONSENT

Because response-adaptive randomization procedures are randomized, they enjoy
many of the same benefits of other randomization procedures in terms of mitigation
of bias. However, there are several ways that bias can enter a trial using response-
adaptive randomization procedures.

As with any randomization procedure, the clinical trial should, whenever possi-
ble, be double-masked. The current allocation probabilities should be kept strictly
confidential by the statistician responsible for randomization, as knowledge of the
allocation probabilities is tantamount to knowledge of the current treatment effect.
Even in unmasked studies, response-adaptive randomization procedures offer some
protection from selection bias provided that the responses of previously entered pa-
tients are masked. If the responses are unmasked, and their corresponding treatment
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assignments also unmasked, then one would expect that such designs afford less
protection against selection bias than restricted randomization procedures, if the shift
in probability of assignment to A away from 0.5 is larger for response-adaptive ran-
domization when one treatment is superior than for restricted randomization when
there is a treatment imbalance.

These procedures also provide some protection against accidental bias, provided
that one assumes that all subjects arise at random from an underlying homogeneous
population, such that the probability of the covariates, and also patient responses, are
identical over time. For example, consider the following simple scenario. Assume
that a simple two-stage adaptive procedure is employed with the same number of
subjects recruited in the first and second stages. In the first stage, the probability of
assignment to A is 0.5 and the probability of recruiting a male subject is 0.5. Then at
the second stage, based on the finding of more beneficial response with A during the
first stage, the probability of assignment to A is modified to 0.8. Now also assume that
by chance or due to a change in recruitment strategies the probability of recruiting a
male subject during the second stage is 0.7. Thus, during the second stage, it is more
likely that a patient will be male than female, and more likely that the patient will be
assigned to A rather than B. This will result in a covariate imbalance, in which 62.3
percent of those assigned to A will be male, versus 55.7 percent of those assigned
to B. If the probability of treatment response differed greatly between males and
females, this would also introduce a bias into the results of the study. One could
also evaluate by simulation the susceptibility of response-adaptive randomization to
the trend of a covariate, qualitative or quantitative, over time. However, this simple
example, with an extreme shift in the assignment probabilities, and an extreme shift in
the covariate distribution, still results in a degree of imbalance that would be readily
adjusted for in a post-hoc stratification or a regression adjustment, as described in
Chapter 8.

Rosenberger and Lachin (1993) suggest that consent forms should state that partic-
ipants will receive one of two treatments and the probability of treatment assignments
will depend on the relative merits of the two treatments based on responses of pre-
viously treated volunteers. Such a statement should make the trial more attractive
to participants than simply telling them that they are equally likely to receive either
treatment. It should also be made clear that the treatment performing better thus
far may not, in fact, be the better treatment overall, because the study has not been
completed and there are not enough patients currently to make that evaluation.

Informing the patient of the nature of the response-adaptive randomization in this
way may lead to a different kind of bias, coined accrual bias by Rosenberger (1996),
in which volunteers may wish to be recruited later in the trial so as to benefit from
the full impact of previous outcomes, and thereby have a better chance to receive
the better treatment. Rosenberger (1999) recommends that patients be masked to
their sequence number in the trial to prevent accrual bias; whether such masking
is acceptable to patients and physicians has not been investigated. Accrual bias is
irrelevant in trials dealing with emergency therapies, such as emergency surgical
procedures.
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12.3 LOGISTICAL ISSUES

There are two main differences between the implementation of response-adaptive
randomization and the implementation of other randomization procedures. These
differences become magnified as the complexity of the trial increases, particularly
in the multi-center situation. First, as pointed out by Paries, Tamura, and Andersen
(1995), response-adaptive randomization requires much more communication among
the sponsor or coordinating center and the investigators in a multi-center clinical trial.
In particular, the randomization procedure must be updated as each patient response is
received. Paries, Tamura, and Andersen found that some investigators did not always
call in response data after a patient was randomized, and clinical trials personnel
had to prompt investigators for missing data in order to update the randomization.
Secondly, since the randomization must be dynamically updated, it is not possible
to generate the randomization sequence in advance. The investigator cannot assign
packaged drug sequentially and must contact the coordinating center or sponsor
for the proper packages (if they are prepackaged) for each individual patient. As
discussed in Section 9.6.1, since we do not know exactly the number of patients to
be assigned to each treatment, there will need to be some oversupply in packaging.
Paries, Tamura, and Andersen found that the system worked reasonably well in
adaptive clinical trials they ran, but it required additional resources. They had two
research associates on-call at all times since some investigators randomized patients
on weekends and after hours and called in to get the randomization assignment.

Stratification is straightforward with response-adaptive randomization, as it is with
restricted randomization procedures. One simply produces a separate randomization
sequence within each of the strata. In particular, for urn models, one can run a
separate urn within each stratum.

Paries, Tamura, and Andersen (1995, p. 5) concluded that

... We feel that the only way to gain experience [with response-adaptive randomization]
is to conduct such trials and learn from our successes and failures. We encourage our
clinical colleagues in the biopharmaceutical industry to do the same.

12.4 SELECTION OF A PROCEDURE

Choosing to implement a response-adaptive randomization procedure will require
additional time and effort from the statistician both to select an appropriate random-
ization procedure and to fuel understanding by scientific colleagues in the clinical
trial. In many clinical trials where there is a rush to determine an appropriate proto-
col, the effort required cannot be reasonably accomplished. Selection of a procedure
requires simulation of the procedure under various possible clinical trial conditions.
There are several aspects that the statistician should investigate:

1. Under a realistic model of the patient responses, will the response-adaptive ran-
domization procedure work as intended? Will more patients, on average, be assigned
to the superior treatment? Is the variability of the procedure within reasonable limits?
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2. What is the required sample size to maintain a reasonable level of power for the
study? If this sample size is larger than that required for equal allocation, are there
really any savings in terms of expected numbers of treatment failures or expected
numbers of patients assigned to the inferior treatment?
3. What if there is a drift in patient characteristics over time? Will this affect the
adaptation adversely or introduce a covariate imbalance?

When simulating sample size and power, we have found that the easiest way is to
compute the sample size n* required for a standard clinical trial with equal allocation
under an alternative reflective of the clinically relevant treatment effect, as discussed
in Section 2.6. Then the response-adaptive randomization procedure is simulated A;
times with n* patients, and the proportion of the k times the test statistic rejects the
null hypothesis is then the simulated power of the procedure. If the procedure is
less powerful than equal allocation, one then increases n* and reruns the simulation
until the power is similar. One then also simulates the expected number of treatment
failures or the expected number assigned to the inferior treatment and compares this
value to that obtained with equal allocation.

By using sophisticated data structures, such as priority queues, one could also
incorporate delayed response into the simulation, by assuming arrivals are staggered,
perhaps according to a uniform distribution, as discussed in Section 2.5, and response
is delayed according to some time-to-event distribution. Patient entries and responses
are then followed through a queuing system; this can be programmed using a priority
queue (see, for example, Rosenberger and Seshaiyer (1997); Rosenberger and Hu
(1999)).

For binary response trials with fairly immediate response, the sequential maximum
likelihood procedure targeting R*, discussed in Section 10.4.1, appears to be the most
powerful procedure with the maximum savings of patients, when PA andp# are less
than 0.5. The variability in the doubly-biased coin design has been found to be smaller
than that of the sequential maximum likelihood procedure, but its impact on power has
not yet been investigated. If treatments are suspected to be more successful than 0.5,
then the drop-the-loser rule in Section 10.5.3 has proven to be the most powerful. The
randomized play-the-winner rule is particularly variable when PA + PB > 3/2 and
resultant losses in power make it unattractive. For survival outcomes, the treatment
effect mapping approach has proven quite successful in terms of power and expected
number of treatment failures (see Section 10.6).

12.5 BENEFITS OF RESPONSE-ADAPTIVE RANDOMIZATION

The potential benefits of adaptive allocation for clinical trials was recognized quite
early. In 1969, Cornfield, Halperin, and Greenhouse (p. 760) wrote:

Application of these results might ease the ethical problem involved in trials on human
subjects. The usual ethical justification for not administering an agent of possible efficacy
to all patients is the absence of definite information about its effectiveness. However
satisfactory this justification may be before the trial starts it rapidly loses cogency as
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evidence for or against the agent accumulates during the course of the trial. But any
solution ... which permits adaptive behavior ... at least reduces this ethical problem.

Weinstein's (1974) special article in New England Journal of Medicine strongly
advocated adaptive allocation as an alternative to traditional treatment assignment
rubrics (pp. 1279,1284):

... Any decision rule for allocating patients to clinical procedures in any way other than
according to the best interest of the subject at hand does entail a sacrifice on the part of
the subject .... Adaptive methods should be used as a matter of course. It never pays
to commit oneself to a protocol under which information available before the study or
obtained during its course is ignored in the treatment of a patient.

Byar, Simon, Friedewald, el al. (1976) responded to Weinstein's article by pointing
out many of the subtle problems with adaptive designs. The comments are extremely
cogent, especially in light of the limited existing literature on the subject at the time.
They point out the potential for biases with time-heterogeneity, the potential loss of
power due to unequal sample sizes, and the difficulty of applying the methodology
to long-term trials of chronic diseases.

Other authors have argued heatedly against any form of response-adaptive ran-
domization. Royall (1991, p. 58) writes:

... The ethical problems are clear: after finding enough evidence favoring [treatment] A
to require reducing the probability of [treatment] B, the physician ... must see that the
next patient gets A, not just with high probability, but with certainty.

This point was argued extensively in discussion to RoyalFs paper; see particularly
the response of Byar. Simon (1991) writes:

[I do] not find it attractive to approach a patient saying that I do not know which treatment
is better, but treatment A is doing better therefore I will give you a greater than 50 percent
chance of getting it.

While response-adaptive randomization does not eliminate the ethical problem of
randomizing patients to the inferior treatment, it mitigates it by making the probability
of assignment to the inferior treatment smaller. We find this to be an attractive
alternative to the usual 50 : 50 randomization procedures for certain clinical trials.
We believe patients and physicians will find it attractive too. Many clinical trials
have used balanced allocation to multiple treatment arms as a successful recruitment
tool; for example, a trial of three experimental therapies versus a placebo or a trials
with a combination therapy arm, two single-therapy arms, and a placebo. In such
cases one can advertise that patients have a 75 percent chance of being assigned to
an experimental arm. Response-adaptive randomization can be used similarly as a
recruitment tool. In truth, patients do not enter clinical trials in order to be on a
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placebo (although many patients would prefer to be assigned to the placebo in cases
where there may be some risk of adverse events).

While Royall's point advocates deterministic assignments based on an adaptive
procedure, such studies are prone to the biases of nonrandomized studies. We prefer
to maintain the benefits of randomization while increasing the number of patients
assigned to the superior treatment, if it exists. Tamura, Paries, Andersen, et al. (1994,
p. 775) give the following reason for the controversy around response-adaptive
randomization:

We believe that because [response-adaptive randomization] represents a middle ground
between the community benefit and the individual patient benefit, it is subject to attack
from either side.

Following an adaptive clinical trial on fluoxetine for depression, (see Section
12.6.2), the investigators reported (Tamura, Paries, Andersen, et al. (1994, p. 775)):

We were encouraged by the cooperation and willingness of our clinical research col-
leagues and our investigators to design, implement, and report on such a trial.... This has
encouraged us to continue research efforts into both the implementation and analysis of
adaptive trials.

12.6 SOME EXAMPLES

12.6.1 The Extracorporeal Membrane Oxygenation trial

The randomized play-the-winner rule was used in a clinical trial of extracorporeal
membrane oxygenation (ECMO; Bartlett, Roloff, Cornell, et al., 1985), a surgical
procedure for newborns with respiratory failure. The technique had been used when
infants were moribund and unresponsive to conventional treatment (ventilation and
pharmacologic therapy). Early trials on safely and efficacy had indicated that the
ECMO technique was safe and had an overall success rate of 56 percent, compared to
a success rate of about 20 percent for conventional therapy. Bartlett, Roloff, Cornell,
et al. (1985, p. 480) state that the RPW(1,1) rule was chosen for the following
reasons:

(1) the outcome of each case [was] known soon after randomization, making it possible
to use; (2) [it was] anticipated that most ECMO patients would survive and most control
patients would die, so significance could be reached with a modest number of patients;
[and] (3) it was a reasonable approach to the scientific/ethical dilemma.

In the randomization scheme, the first patient was assigned to ECMO and survived,
changing the urn composition to 2 ECMO balls and 1 control ball. The second patient
was assigned to conventional therapy and died, leading to 3 ECMO balls and 1 control
ball. Each subsequent randomization was to ECMO, and each of the patients survived.
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The trial was stopped after 12 total patients, using a stopping rule given described by
Cornell, Landenberger, and Bartlett (1986).

Serious questions arose about the validity of such a trial. The foremost question
raised is whether two treatments can adequately be compared when only one patient
was assigned to one of the treatments. The validity of clinical trials with a sample size
of 12 has also been questioned. In any event, the clinical trials were not convincing
and led to at least two other clinical trials of the same therapy (O'Rourke, Crone,
Vacanti, et al (1989); see also Ware (1989); UK Collaborative ECMO Trial Group
(1996)).

What went wrong? We know from Chapter 10 that the RPW(l, 1) rule is highly
variable, particularly when PA + PB > 3/2, when the variance depends on the
initial composition of the urn. In retrospect, starting with more than one ball of
each type should have resulted in more patients on the control arm, and a minimum
sample size should have been set in advance. To this day, some investigators use
the ECMO example as a reason not to perform response-adaptive randomization at
all. This is unfortunate because we think this is exactly the type of trial for which
response-adaptive randomization would be particularly advantageous.

12.6.2 The fluoxetine trial

The RPW(1,1) rule was employed in a clinical trial of fluoxetine versus placebo
for depressive disorder. The trial was stratified by normal and shortened rapid eye
movement latency (REML), so two urns were used in the randomization. In order
to avoid and ECMO-like situation with too few controls, the first six patients in
each stratum were assigned using a permuted block design. The primary outcome,
a reduction of 50 percent or greater on the Hamilton Depression Scale between
baseline and final active visit after a minimum of three weeks of therapy could only
be ascertained after approximately eight weeks. Determining that this was too long
a period in which to run an adaptive trial, investigators used a surrogate outcome to
update the urn. They defined a surrogate responder as a patient exhibiting a reduction
greater than 50 percent on the Hamilton Depression Scale in two consecutive vistis
after at least three weeks of therapy. The trial was stopped after 61 patients had
responded in accordance with the surrogate criterion; the trial randomized a total of
89 patients: 21 fluoxetine patients and 20 placebo patients in the shortened REML
stratum; 21 fluoxetine and 21 placebo patients in the normal REML stratum. Six
patients did not have a final outcome status. A significant treatment effect was
found in the shortened REML category, but not the normal REML stratum. The
primary outcome was analyzed using a Monte-Carlo randomization-based analysis.
Although there was a significant treatment effect in the shortened REML stratum,
the randomization did not favor the treatment arm. The investigators found that the
randomization sequence tended to assign patients to placebo when the probability of
allocation to fluoxetine was higher. They found that the probability of their particular
sequence, given the allocation probabilities, was about 22 percent. (See Tamura,
Paries, Andersen, et al, 1994.)
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12.7 CONCLUSIONS

Response-adaptive randomization procedures require more work to implement, in
that the randomization procedure must be programmed and the program must update
the allocation probabilities after each patient response. They also require much
work on the part of the statistician in the design phase of the trial. We recommend
that extensive simulations be run to ascertain the operating characteristics of the
procedure, to determine sample size requirements, and to assess the potential benefits
of using response-adaptive randomization. The fluoxetine trial is an example of a
well-conducted and thoughtfully designed clinical trial. However, the added benefit
to patients was minimal, because the allocation was close to equal even in the stratum
where there was a treatment effect.

Rosenberger (1999) discusses conditions under which the use of response-adaptive
randomization is reasonable. We note some of them here:

1. The therapies have been evaluated previously for toxicity. This is important to
ensure that the response-adaptive randomization does not place more patients on a
highly toxic treatment.
2. Delay in response is moderate, allowing the adaptation to take place.
3. Duration of the trial is limited and recruitment can take place during most or all
of the trial.
4. The trial is carefully planned with extensive simulations run under different
models.
5. The experimental therapy is expected to have significant benefits to the public
health.
6. Modest gains in terms of treatment successes are desirable from an ethical
standpoint.

Few areas of statistics have contributed to more controversy than response-adaptive
randomization (see Problem 12.1). However, the extra effort required to design
and implement clinical trials using response-adaptive randomization could result in
significant benefits to patients and clinical medicine in general.

12.8 PROBLEMS

12.1 a. Familiarize yourself with the two famous ECMO trials by looking at the
original papers (Bartlett, Roloff, Cornell, et al., 1985; O'Rourke, Crone, Vacanti, et
a/., 1989).
b. Now read about the controversy that ensued in the following papers and attendant
discussions (Ware, 1989; Royall, 1991).
c. Now familiarize yourself with the 1996 UK Collaborative ECMO Trial and read
the accompanying editorial (UK Collaborative ECMO Trial Group, 1996).
d. Write a 15 minute position paper to be presented in a class debate on the three
ECMO trials. Focus on the following issues:
(i) Were the three trials necessary? If not, what were the appropriate alternatives?
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(ii) Should an adaptive design have been used for this type of trial? If so, which one
and why?
(Hi) Should adaptive designs ever be used? Under what conditions?
Civ) Is randomization necessary? Are clinical trials ethical? Focus in particular on
the interchange between Royall and Byar in the Roy all (1991) paper.
(v) Was the 1995 UK Collaborative Trial ethical?

12.2 Find a clinical trial in a major medical journal (e.g., New England Journal of
Medicine, Journal of the American Medical Association, Lancet) for which response-
adaptive randomization would be appropriate. Write a short paper explaining why this
would be an appropriate trial, and describing procedures and statistical considerations
in redesigning the trial using response-adaptive randomization.

123 For the randomization procedure in Problem 12.2, find, by simulation, the
sample size necessary to attain 90 percent power for a specific alternative of interest.

12.4 For the scenario described in Section 12.2, wherein the probability of assignment
to treatment A shifts from 0.5 to 0.8 in the first and second stages of recruitment, and
the probability of recruiting a male shifts from 0.5 to 0.7, for equal numbers recruited
in both stages show that the probability of a male is 0.623 in treatment group A and
0.557 in treatment group B.
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13
Some Useful Results in

Large Sample Theory

13.1 SOME USEFUL CENTRAL LIMIT THEOREMS

In this chapter we provide some useful large sample theory from the probability
literature that will be useful Chapters 14 and 15.* In later sections we will deal with
martingale theory which is necessary to deal with the dependence structure of most
of the ranodmization procedures. In this section, we begin with some useful central
limit theorems that do not require martingale theory.

The linear rank statistic under complete randomization is a sum of independent,
but not identically distributed, random variables. The usual central limit theorem
dealing with this case is the Lindeberg-Feller Central Limit Theorem (e.g., Laha and
Rohatgi(1979,p. 282)).

Lindeberg-Feller Theorem. Let {Xn} be a sequence of independent random variables
with E(Xn) = an and Var(Xn) = a\ < oo,n = 1,2,.... Let Sn = £"=1 Xj and
let Fn be the distribution function of Xn. If the following condition holds for every

*The prerequisite for this chapter is a graduate-level probability text, such as Chung (1974). With the
exception of the well-known Lindeberg-Feller Central Limit Theorem, there is no convention on the names
of the theorems in this chapter. We simply label them according to the literature from which they were
extracted, for convenience in later chapters. Such a labeling scheme may ignore the historical roots and
originators of the theory on which these theorems are based.
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e > 0 :

then

in law, as n -» co.

We can use the Lindeberg-Feller theorem to derive the asymptotic distribution of
the unconditional linear rank test under complete randomization. For the conditional
test, we need a conditional central limit theorem (Hoist, 1979). The following is a
adaptation of Hoist's Theorem 3 (p. 555) that is useful in Chapter 14.

Hoist's Theorem. Let (ain, ...,ann) be real constants satisfying the following:

and

Let {Xn} be independent and identically distributed random variables with E(X) =
6 and Var(JT) = er2 (6) satisfying the following:

and for every e > 0 there exists Ke < 1 such that, for e < \t\ < 1,

If (13.3)-(13.7)hold, andzn/n -»• 9 as n ->• oo, then
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conditional on X)?=i Xj — xn, converges in law to a standard normal variate as
n -> oo.

The third central limit theorem of interest is an adaptation of Theorem 4A from
Hajek (1969, p. 14). It is useful in proving asymptotic normality of the linear rank
test when the random allocation rule is employed.

Hdjek's Theorem. Let {-Rin, ...,Rnn} have a uniform distribution over the n, per-
mutations of (1,..., n). Consider a statistic of the form

where vn ^ 0, ̂  is nondecreasing on (0,1), and /0 (ip(t) - iltfdt e (0,oo) (V> =

Jo ij>(t)dt). Then if

where cn = n l £)£=! ctn> we have

in law, as n -» oo.

13.2 MARTINGALES AND SUMS OF DEPENDENT RANDOM
VARIABLES

In a general sense, let {Fn} be an increasing sequence of sigma-algebras and let
Zn € ?n be a sequence of random variables such that E\Zn\ < oo. Then if

E(Zn\Fm) = Zm, almost surely, for all m < n, (13.10)

then Zn is a martingale with respect to Fn (Hall and Heyde (1980, p. 1)). In
particular, since the sigma-algebras are nested, we can rewrite (13.10) as

In most of our applications, we are concerned with sums of dependent random
variables, so that 5n = J^=1 Xj and Tn = a{Xi,...,Xn}. Assume that E\Xn\ <
oo for all n. Note that Tn is increasing. Any sum of dependent random variables can
be transformed into a martingale by letting Zn — £"=1 (Xj - E(Xj\Fj-i)). This
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is because

We thus gain two important insights into sums of dependent random variables. First,
to verify if Y^J=I Xj is a martingale, it suffices to show only that E(Xn\Fn_i) = 0.
Second, any sum of dependent random variables can be turned into a martingale
by subtracting its compensator, E(Xj\Fj-.i) termwise. It is easy to see, for in-
stance, that sums of independent zero-mean random variables form a martingale, as
E(Xn\Fn-i)=E(Xn) = Q.

We are interested in martingales because similar limit theorems as for sums of
independent random variables are available in the literature, such as the weak law
of large number and the central limit theorem. For the martingale weak law, let
Sn = Y^J=I Xj be a zero-mean martingale (i.e., already compensated). Then if

we have

in probability. To see this, simply use Chebyshev's inequality:

For the right-hand side,

For i > j,
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So

by (13.12), and hence (13.13) holds (Hall and Heyde, 1980).
Billingsley (1961, p. 52) provides a very simple central limit theorem for sums of

dependent random variables.

Billingsley's Theorem. Let Sn = £)£=i Xj be a zero mean martingale with respect
to ?n. Under the following two conditions:

and

almost surely, for positive constants 6 and /32, then

in law, as n —»• oo.
Another useful result in this context is the Crame'r-Wold Device (e.g., Billingsley,

1968), which allows us to extend central limit results from scalars to vectors.

The Cramer-Wold Device. Define vectors of random variables Xn = (Xni,..., Xn8)
wdX = (Xl,...,X8). If

in law, as n —t oo, for any arbitrary sequence of constants ot\,..., a8, then Xn —>• X
in law.

13.3 MARTINGALES AND TRIANGULAR ARRAYS

Billingsley's Theorem is not broad enough for some of our purposes. We require, in
particular for proving the asymptotic normality of linear rank statistics, a martingale
central limit theorem for triangular arrays. For each j = 1, ...,n, let Snk be a
martingale with respect to nested sigma-algebras Fnk- (By nested we mean Tn\, C
Fn+i,k,k = l,...,n,n > 1.) Let Xnk = Snk - Sn>k-i, SnQ = 0, denote the
martingale differences. Then {Snk,Fnk}, for k — 1, ...,n,n > 1 is a double
sequence of triangular arrays, called a martingale array (Hall and Heyde (1980,
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p. 52)). For example, in (14.12), Wkn forms a martingale array with Tnh =
*{7i,...,rfc}.

We have the following central limit theorem for martingale arrays {Snk,Fnk}
(Hall and Heyde (1980, p. 58)).

Hall and Heyde's Theorem. Let rf be a positive constant. If the following three
conditions hold:

in probability, as n -t oo;

in probability, as n -> oo;

is bounded in n, then

in law, as n -* oo. The theorem also holds if we replace (13.17) and (13.19) with

in probability, as n -> oo, for all e > 0, and we replace (13.18) with

in probability, as n -* oo.

13.4 ASYMPTOTIC NORMALITY OF MAXIMUM LIKELIHOOD
ESTIMATORS

We can use the weak law of large numbers and central limit theorem for martingales
to show consistency and asymptotic normality of the maximum likelihood estimators
for dependent data (see Hall and Heyde (1980, Section 6.2) for the scalar case).
In particular, this is useful in Chapter 15, where we wish prove the asymptotic
normality of maximum likelihood estimators from a response-adaptive randomization
procedure.
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13.4.1 The likelihood

Following Rosenberger, Durham, and Flournoy (1997), let 0 be a vector-valued
parameter of s dimensions. Define £„ (6) = Prn (xi,..., xn; 0) to be the likelihood of
the data (xi,...,arn), where £Q = 1- Assume that Prn(xi,...,a;n;0) can be partially
differentiated twice (with respect to 9} and that integration and differentiation can be
interchanged. Then the first derivative of the loglikelihood can be written as

j = l,...,s, where Lt(0) = log(£j(0)/£j_i(0)). Let Tn be the sigma algebra
generated by the stochastic process through stage n, with F0 the trivial sigma algebra.

We first show that the first derivative of the loglikelihood is a martingale with
respect to Tn. Since it can be expressed as a sum of dependent random variables via
(13.23), we need show only that

This follows since

Since the first derivative is a martingale, and is just a sum of dependent random
variables, we can use the weak law and Billingsley's Theorem from Section 13.2 to
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prove consistency and asymptotic normality of the maximum likelihood estimator 0.
The proof follows basically the same format as for the independent and identically
distributed case, and the reader is referred to Lehmann (1983, Section 6.4) for details.
Essentially, the likelihood is expanded in a Taylor series, with the first derivative of
the loglikelihood, suitably normalized, converging in law to a normal distribution
and the second derivatives converging to Fisher's information.

13.4.2 Basic conditions for consistency and asymptotic normality

Assume the following standard regularity conditions hold:

1. There exists an open subset u; of the parameter space ft containing the true pa-
rameter 0°.
2. The first partial derivatives of the loglikelihood have finite moments of order 2 + 6
for some 6 > 0.
3. The likelihood £n(0) admits all third partial derivatives, and the absolute val-
ues of the third partials (with respect to 0j,9k, and #i) arc bounded by functions
Mjfei(zi,...,zn) for all 0 e u;, where E0o (Mjfcj(^i,...,Xn)) < oo.

These regularity conditions will be trivially satisfied for the applications in this book.
Under the following three conditions, forj = 1,..., s, k = 1,..., s,:

in probability, for all 0 € u>, as n -> oo;

in law, for all 0 e u;, as n -t oo, where F(0) = ((7^));

in probability, for all 0 € u, as n -t oo, we have that a consistent maximum
likelihood estimator 0 exists, and the vector (for j = 1,..., s) given by

is asymptotically multivariate normal with mean zero and variance-covariance matrix
(T(0))~l, provided the inverse exists (Rosenberger, Flournoy, and Durham, 1997).

13.4.3 Alternative conditions

For most applications, it is not necessary to show (13.24)-(13.26) directly, and it is
instructive to explore each of these conditions further. Let us first examine condition
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(13.24), which is just a weak law for martingales. From (13.12) and (13.13), we
require that

Note that this is trivially satisfied if the first derivatives are bounded in i.
For condition (13.25), we can apply Billingsley's Theorem and the Cramer-Wold

Device from Section 13.2. In fact, we now show that, under the following two
conditions, (13.25) holds:

almost surely, as n -> oo; and

almost surely, as n -> oo.
To show this, define arbitrary constants <*i,..., as. Then

is a martingale. Checking condition (13.14) of Billingsley's Theorem, we have

almost surely, as n -> oo, by (13.28). Checking condition (13.15), we see that
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where

by the Cauchy-Schwartz inequality. We have the following inequality from Chung
(1974, p. 48). I fp> l ,

Using this inequality, we see that

almost surely, as n -» oo, by (13.29). Thus, by Billingsley's Theorem,

in law. Employing the Cramer-Wold Device, we see that (13.25) holds.
Now let us explore condition (13.26) further. First we define

Now consider the following two conditions:

as n -> oo and

as n ->• oo. It can be shown (Problems 13.3 and 13.4) that (13.30) implies (13.31)
and that (13.28), together with (13.31), implies (13.26).
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13.4.4 Conclusions

From results of Section 13.4.3, we have the following theorem:

Rosenberger, Flournoy, and Durham's Theorem. Assume the three regularity con-
ditions of Section 13.4.2 hold. Then if either the set of conditions (13.27), (13.28),
(13.29), and (13.26) or the set of conditions (13.27), (13.28), (13.29), and (13.30)
hold, we have that a consistent estimator 0 exists and

provided T 1 exists. Furthermore, if the first and second partial derivatives are
bounded in i for each j = 1,..., s, we require only condition (13.28) for (13.32) to
hold.

The last sentence is an important addendum which will be put to good use in
Chapter 15. Finally, a substitute condition for (13.28) can be gleaned from Problem
13.2.

13.5 PROBLEMS

13.1 Show the equivalence of (13.10) and (13.11).

13.2 Assume that Prn (xi,..., xn; 0) can be partially differentiated twice (with respect
to 9) and that integration and differentiation can be interchanged.Show that

133 Show that (13.30) implies (13.31).

13.4 Show that (13.28), together with (13.31), implies (13.26). (Hint: Find an
appropriate compensator and apply the weak law for martingales.)
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14
Large Sample Inference for

Complete and Restricted
Randomization

14.1 INTRODUCTION

In this chapter, we examine the large-sample distribution of linear rank tests under the
randomization procedures discussed in Chapter 3. This distribution will necessarily
be determined by two components: (i) a condition on the scores {ajn} and (ii) the
particular randomization procedure used.

As in Chapter 4, it will be convenient to redefine the treatment assignments by
letting Tj = 1 or — 1, j = l,...,n to indicate treatments A and B, respectively.
Note that this differs from the development in Section 7.9, where the treatment
assignments are coded as 1/0. For the most part, this only makes a difference by a
constant multiple of 2, but the theoretical developments in this chapter are simpler
using the I/ — 1 coding. Then we define (slightly different from Chapter 7) the linear
rank test under a randomization model as

Under the usual central limit arguments, one might expect that

would converge in law to a standard normal distribution. This is often, but not always,
the case. In the case of complete randomization, ET — /, and the independence of
Ti ,..., Tn can be used with standard central limit theory arguments to obtain the an

227
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asymptotic normal distribution. However, for restricted randomization procedures,
ET is not diagonal, and so Sn represents the sum of dependent random variables. In
some cases, we will have to rely on martingale theory (see Chapter 13 for prerequisite
material) in order to prove normality of sums of dependent random variables. We now
explore the asymptotic distribution of linear rank tests for each of the randomization
procedures given in Chapter 3. We also use simulation to verify the asymptotic
distribution for n = 50. It is known that permutation tests tend to be conservative
when restricted randomization is employed (see Kalish and Begg, 1987).

14.2 COMPLETE RANDOMIZATION

14.2.1 The unconditional test

For complete randomization, (14.1) represents a sum of independent, but not identi-
cally distributed random variables

Since the a,jn are assumed constants and Var^-) = 1,

Then

So one would conjecture that

in law, as n —» oo.
We can use the Lindeberg-Feller central limit theorem (Section 13.1) to prove

asymptotic normality of the linear rank test under the assumption that

Asymptotic normality is then assured by the Lindeberg condition, given in (13.1),
which can be written as
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for all e > 0, where Fj (x) is the distribution function of (djn — an)Tj. To show this,
the left-hand side of (14.5) is

where / is the indicator function. From (14.4), for all e > 0,there exists an no(e)
such that for n > no,

for all j. This implies that

as n -* oo. Hence (14.5) holds. By (13.2), we thus obtain that, under complete
randomization, (14.3) holds, provided (14.4) holds.

The simple ranks and other considerably more complicated ranking schemes, such
as the van der Waarden scores (defined 'n Problem 7.4) satisfy (14.4) (Problem 14.2).
From Smythe and Wei (1983, Remark 2), if ajn = E(X^), where X(1), ...,X(n)

are order statistics of a random sample from a distribution that has finite (2 + 6)th
absolute moment for S > 0, then (14.4) holds. Hence the logrank statistic, where the
scores are defined in (7.10), is asymptotically normal.

14.2.2 The conditional test

Now we are interested in the asymptotic distribution of the conditional linear rank
test; i.e., the asymptotic distribution of 5n conditional on ̂ (n) = n^n. Hoist's
Theorem (Section 13.1) can be applied to show the asymptotic normality of the
conditional test. Since (13.3) is trivially true, the main conditions on the scores for
asymptotic normality are, from (13.4) and (13.5), (14.4) and

where 7 > 0 is a constant. Condition (14.6) holds, for example, if

where {r/n} are the simple ranks.
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We then apply the theorem with Xj = (Tj + l)/2. Then 0 = 1/2, a 2 (8) =
0(1 — 6), and xn/n = UAnfn -» 0. Condition (13.6) is true. For the other non-
trivial condition, (13.7), one must show that for all e > 0, there exists a Ke < 1 such
that, for e<\t\< TT,

for all j. Since

then for all e > 0, there exists a Kf = cos(e/2) such that, for e < \t\ < TT,

for all j. Thus (14.8) is true.
We conclude from Hoist's Theorem that, if (14.4) and (14.6) hold, then the

conditional distribution of

given NA(TI) = n^n, is asymptotically standard normal.

14.2.3 Simulation results

Simulations are based on population models, and therefore one might hesitate to
discuss the simulation of tests computed under a randomization model. In fact, for a
given set of scores from a data set, an appropriate simulation procedure would be to
generate m replicates of n treatment assignments under the particular randomization
strategy and then compute the test statistic with the observed scores, for a total of
m simulated test statistics. But one would be interested in properties of the test
for more general sets of scores, and to simulate these properties, one must generate
the scores from some population-based mechanism. We have simulated the test for
m = 10,000 replications assuming that the scores arose from ranking responses from
either a standard normal or a Cauchy distribution. One could argue that it is more in
keeping with the principles of randomization by taking one set of scores from a single
pass simulation and m sets of treatment assignments. We generated 10,000 sets of
both in our simulations, principally so we could compare with a population-based
test, the standard Student's i-test.

Table 14.1 presents simulation results from complete randomization using the
unconditional test in (14.3) and the conditional test in (14.9). Ten thousand test
statistics using simple ranks were generated with n = 50 and the tail probabilities
of the standard normal distribution are reported. One can see that the sample size is
certainly large enough to conclude that the test statistic is indeed standard normal,
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Table 14.1 Tail probabilities of the normal distribution for the unconditional (U) and con-
ditional (C) linear rank test (LRT) with simple rank scores and the t-test under complete
randomization, n = 50. Results based on 10,000 simulations with responses generated from
standard normal and Cauchy distributions.

Left Tail

Test

LRT
LRT
LRT
LRT
£-test
Mest

U/C

U
U
C
C

Dist.

Normal
Cauchy
Normal
Cauchy
Normal
Cauchy

0.005

0.004
0.006
0.003
0.005
0.006
0.001

0.025

0.024
0.024
0.024
0.023
0.029
0.013

0.050

0.054
0.047
0.050
0.047
0.055
0.031

0.100

0.106
0.098
0.100
0.097
0.109
0.089

0.100

0.103
0.101
0.099
0.098
0.105
0.098

Right Tail

0.050

0.052
0.050
0.050
0.048
0.054
0.036

0.025

0.024
0.025
0.023
0.023
0.028
0.013

0.005

0.004
0.005
0.005
0.005
0.006
0.001

although the tests are slightly conservative in the extreme tails. The size of the
test is between 0.047 and 0.049 in all cases. The test is invariant to the underlying
distribution of responses.

The £-test is clearly only appropriate with standard normal responses, as one would
expect. We report results with Cauchy response just to illustrate how inappropriate
the test is in non-normal settings. With normal responses, the test tends to have
slightly inflated size (0.059). One can conclude the the linear rank test will provide a
slightly conservative normal test for samples as small as 50, and the test is invariant
to any underlying distribution of the patient responses.

14.3 RANDOM ALLOCATION RULE

Asymptotic normality of the linear rank test when a random allocation rule is used
can be demonstrated using Hajek's Theorem (Section 13.1). It turns out that (14.3)
holds under the identical condition as for complete randomization.

Consider a statistic of the form in (13.8). In our case, we let Cjn = a>jn — an,
un = 0, vn = 1 and

We immediately see that i/j is nondecreasing on (0,1),^> = O.and/gM*)-^)2^ =
1. Then
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Table 14.2 Tail probabilities of the normal distribution for the linear rank test (LRT) with
simple rank scores and the t-test under the random allocation rule, n — 50. Results based on
10,000 simulations with responses generated from standard normal and Cauchy distributions.

Left Tail Right Tail

Test Dist. 0.005 0.025 0.050 0.100 0.100 0.050 0.025 0.005

LRT Normal 0.005 0.026 0.053 0.106 0.105 0.050 0.024 0.004
LRT Cauchy 0.005 0.024 0.045 0.098 0.102 0.051 0.024 0.004
t-test Normal 0.008 0.030 0.057 0.105 0.104 0.054 0.027 0.006
t-test Cauchy 0.001 0.011 0.032 0.098 0.094 0.032 0.012 0.001

has a uniform distribution on all possible permutations of n/2 1's and n/2 —1's.
Therefore, (14.10) has the same distribution as (Ti,..., Tn) under the random alloca-
tion rule. Hence

Then under condition (14.4), we have from Hajek's Theorem that

in law, as n -» oo. By (13.9), using (7.13), we conclude that, if condition (14.4)
holds, then

is asymptotically standard normal, which is asymptotically equivalent to (14.3).
Table 14.2 gives simulation results for the random allocation rule, under the same

setting as Table 14.1. One can see that the results are very similar to complete
randomization, and that the linear rank test has size between 0.048 and 0.05 and that
the t-test under normal response has inflated size of 0.057.

14.4 TRUNCATED BINOMIAL DESIGN

Finding the asymptotic form and distribution of the linear rank statistic for truncated
binomial randomization is an open problem. We can see by simulation if the statistic
is asymptotically normal ignoring the randomization procedure. In Table 14.3, we
simulate the linear rank test under truncated binomial randomization, assuming the
complete randomization variance in (14.3) The linear rank test does not deviate from
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Table 14.3 Tail probabilities of the normal distribution for the linear rank test (LRT) with
simple rank scores and the t-test under the truncated binomial design, n = 50, and variance
computed assuming complete randomization. Results based on 10,000 simulations with
responses generated from standard normal and Cauchy distributions.

Left Tail Right Tail

Test Dist. 0.005 0.025 0.050 0.100 0.100 0.050 0.025 0.005

LRT Normal 0.005 0.027 0.052 0.107 0.105 0.051 0.026 0.006
LRT Cauchy 0.004 0.025 0.051 0.105 0.107 0.056 0.026 0.005

normality too much; it is slightly anticonservative with the size of the test 0.051
and 0.053. Hence the variance of the test is slightly smaller than it should be, which
accounts for our ignoring the extreme correlation in the tail of the truncated binomial.

14.5 EFRON'S BIASED COIN DESIGN

The biased coin design does not necessarily produce an asymptotically normal linear
rank statistic, even under condition (14.4) (Smythe and Wei, 1983). For a simple
counterexample, for n even, let

Then (ojn - an)2 = 1 and

as n -^ oo. Then

say, where |Dn| is a recurrent Markov chain on the nonnegative integers. As shown
in Section 3.6, \Dn\ converges to a stationary distribution on the nonnegative integers
as n -> oo. Therefore, Sn does not have a normal limit.
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Table 14.4 Tail probabilities of the normal distribution for the unconditional linear rank
test (LRT) with simple rank scores (calculated with complete randomization variance) and the
t-test under the biased coin design (p = 2/3), n = 50. Results based on 10,000 simulations
with responses generated from standard normal and Cauchy distributions.

Left Tail Right Tail

Test Dist. 0.005 0.025 0.050 0.100 0.100 0.050 0.025 0.005

LRT Normal 0.005 0.024 0.054 0.106 0.109 0.055 0.027 0.006
LRT Cauchy 0.005 0.026 0.055 0.105 0.102 0.052 0.025 0.004
i-test Normal 0.007 0.029 0.056 0.104 0.108 0.057 0.030 0.007
Mest Cauchy 0.001 0.013 0.033 0.098 0.092 0.035 0.013 0.002

For the conditional test, Hollander and Pefia (1988) noted that the exact permu-
tation test for n = 50 and 70 demonstrated non-normal behavior for Efron's biased
coin design. They conjecture that the conditional linear rank test has a non-normal
limit, and leave this as an open problem. Halpern and Brown (1986) simulated the
behavior of the chi-square statistic for binary responses following randomization
using Efron's biased coin design. They found that the traditional analysis ignoring
the randomization procedure generally was satisfactory, except in cases where the
binary responses had long sequences of runs, in which case the traditional analysis
was conservative.

While the unconditional test is not always normal, at least for the linear rank
test with simple rank scores, simulations in Table 14.4 suggest that it is. We used
the naive variance from complete randomization in the simulations. The linear rank
test appears to be normal with the correct size. Proving this rigorously is an open
problem. Again the f-test has inflated size.

14.6 WEI'S URN DESIGN

Smythe and Wei (1983) derive the asymptotic distribution of the unconditional linear
rank test for Wei's UD(a, 0} design. The key of the proof is to equate Sn with a
martingale difference array and then apply the martingale central limit theorem. The
form of the test statistic is then

where {bjn} is a modified score sequence, to be defined below in (14.14).
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We use this new set of constants {&_/„}, j = 1,..., n to define a new test statistic

where f(j) = -p/(2a + pj), by (3.13). Then Wkn,k = 1, ...,n is a martingale
array (see Section 13.3).

We wish to choose the constant sequence {bjn} so that Sn = Wnn. Then applying
the martingale central limit theorem to Wnn will show the asymptotic normality of
5n. We can write the equations

as

where Bn = {6ln,..., 6nn}', An = {(am - an),..., (ann - an)}', and

The unique solution is obtained by inverting F, noting the relationship 1 + f(j) =
/(j)//0'-l). We obtain

(Problem 14.5).
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We can now apply Hall and Heyde's Theorem for martingale arrays (Section 13.3)
to Wkn Assume the following:

Then conditions (13.17) and (13.19) follow immediately. For condition (13.18), we
must show that

in probability. This follows since Z)j=i ^j'/n -* 0 in probability by (3.22), and
hence, for large j,

Hence (14.16) holds. We conclude from (13.20) that if (14.15) holds,

is asymptotically standard normal, and hence (14.11) converges in law to a standard
normal distribution as n -> oo.

However, we desire an easily verified condition on the original score sequence
{ajn} rather than on the transformed sequence {bjn}. While Smythe and Wei (1983)
were unable to show the equivalence of (14.4) and (14.15), it was later shown by
Wei, Smythe, and Smith (1986). The proof is not difficult, but rather tedious. The
interested reader is referred to the paper for details. It is interesting to note that
the variance of the test statistic in (14.11) is quite complicated compared to that of
complete randomization. Smythe and Wei (1983, Remark 6) report a simulation
study, using an uncentered version of the linear rank statistic, in which significance
levels were considerably overestimated if the analysis of a UD(a,/3) design is
performed using a linear rank test with the variance computed assuming complete
randomization.

Table 14.5 gives simulation results for the f/D(0,1) under the same settings as
Tables 14.1-14.4. However, we also compare the linear rank test using the correct
variance against the test using the naive variance from complete randomization.
The evidence here shows that they are almost identical, and this calls into question
whether it is necessary to use the more complicated scores based on the {bjn}
sequence. Table 14.6 repeats the results for n = 25 and finds that the size of the test
is 0.49 for the correct variance and 0.56 for the complete randomization variance,
somewhat validating their result. We suspect that for moderate to large samples,
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Table 14.5 Tail probabilities of the normal distribution/or the unconditional linear rank test
(LRT) with simple rank scores (with the variance computed assuming complete randomization
and urn randomization) and the t-test under UD(Q, 1) randomization, n = 50. Results
based on 10,000 simulations with responses generated from standard normal and Cauchy
distributions.

Left Tail Right Tail

Test Var Dist. 0.005 0.025 0.050 0.100 0.100 0.050 0.025 0.005

LRT urn Normal 0.005 0.023 0.048 0.101 0.103 0.046 0.024 0.004
LRT urn Cauchy 0.005 0.025 0.049 0.099 0.096 0.046 0.023 0.004
LRT complete Normal 0.005 0.025 0.051 0.104 0.107 0.049 0.026 0.005
LRT complete Cauchy 0.006 0.026 0.052 0.103 0.098 0.049 0.025 0.005
Mest Normal 0.006 0.027 0.054 0.104 0.108 0.052 0.027 0.006
t-test Cauchy 0.002 0.013 0.035 0.099 0.092 0.032 0.012 0.001

Table 14.6 Tail probabilities of the normal distribution for the unconditional linear rank test
(LRT) with simple rank scores (with the variance computed assuming complete randomization
and urn randomization) under UD(Q, 1) randomization, n = 25. Results based on 10,000
simulations with responses generated from standard normal distribution.

Left Tail Right Tail

Var 0.005 0.025 0.050 0.100 0.100 0.050 0.025 0.005

urn 0.003 0.021 0.047 0.099 0.097 0.054 0.028 0.005
complete 0.004 0.024 0.053 0.101 0.098 0.057 0.032 0.006

the two variances are virtually equivalent, with small differences evident at smaller
sample sizes. Again the i-test has inflated size, and the linear rank tests seem to
perform very well for n = 50.

The conditional test for the UD(a,0) is a special case of the conditional tests
derived for the family of generalized biased coin designs, which we will discuss in
the next section.
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14.7 WEI, SMYTHE, AND SMITH'S GENERAL ALLOCATION
RULES

14.7.1 The unconditional test for K > 2 treatments

The asymptotic distribution of the unconditional linear rank test for the general
^-treatment allocation rules defined in (3.21) was derived in Wei, Smythe, and
Smith (1986) using techniques similar to those used in Section 14.6. The principal
assumption on the function p is that it be twice continuously differentiable with
bounded second derivatives.

For a constant 0, define

where 6ki is the Kronecker delta. Define the sequence of modified scores to be

(where by convention Hl
k=j = 1 if / < t). Note when K = 2 for the [/£>(0,1),

(14.18) reduces to (14.14), as

Let Tij = 1 if treatment i is assigned to patient j, and TV,- = 0 otherwise (note
that the centering no longer applies). Then we can define the K -treatment linear rank
statistic as 5n = (5in,..., Sjo,)', where

Then we have the following result. If (14.4) holds, then

where £ has elements an = &(1 — &) and aik = — &£*, k / i. The proof is similar
to that of Wei and Smythe (1983), but carries with it the resultant complications of
moving from K = 2 to general K.

14.7.2 The conditional test for two treatments

When K = 2, Smythe (1988) proves the analogous result for the conditional linear
rank test, using a theorem of Heckman (1985). Asymptotic normality seems to
require a stronger condition than (14.4). In fact, it is sufficient that
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for each n, where C is a constant. Smythe (personal communication) conjectures
that (14.21) is not necessary, and can probably be relaxed to (14.4); this is an open
problem. Smythe's proof assumes that the scores {djn} are scaled so that

where {bjn} is defined in (14.18). In practice, since {bjn} is a linear combination of
{a,jn — an}, we can compute « = Z)"=i tfn and then scale a,jn by taking

One also needs to define another sequence of modified scores, denoted {bjn},
which are computed by substituting o/n - an = n"1/2 for all j into (14.18). For
example, for the C7D(0,1), from (14.14), we have

(Problem 14.6). Define

From (14.22), for the UD(Q, 1), s2 = 1/3 (Problem 14.6). We require the following
additional condition:

The conditional central limit theorem will be conditional on Dn = NA(n) —
NB(n) = dn = 2riAn — n, where {dn} is a sequence of integers with the property
that

for integer x. Then

conditional on Dn = dn, is asymptotically standard normal. In practice, one substi-
tutes dn/x/nforx.
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Table 14.7 Tail probabilities of the normal distribution for the conditional linear rank test
(LRT) with simple rank scores under UD(Q, 1) randomization, n = 50. Results based on
10,000 simulations with responses generated from standard normal and Cauchy distributions.
The last line is computed using the test statistic in (14.9), assuming complete randomization.

Left Tail

Dist.

Normal
Cauchy
Normal

0.005

0.005
0.005
0.006

0.025

0.022
0.025
0.028

0.050

0.047
0.048
0.054

0.100

0.100
0.098
0.108

0.100

0.101
0.094
0.111

Right Tail

0.050

0.046
0.045
0.051

0.025

0.024
0.023
0.028

0.005

0.004
0.004
0.005

Table 14.7 simulates the conditional test for the UD(Q, 1), and can be directly
compared to Table 14.5. The conditional and unconditional tests have similar
properties for n = 50. However, if we ignore the more complicated form of the test
statistic in (14.25) and instead use the form of the conditional test under complete
randomization in (14.9), the test is anti-conservative, as seen in the last line of Table
14.7. Hence, unlike the unconditional test under UD(Q, 1) randomization, we cannot
use a simpler form of the test statistic ignoring the randomization when computing
the conditional test statistic.

14.8 CONCLUSIONS

Table 14.8 gives the different forms of the asymptotic variance for the various ran-
domization procedures, as well as conditions for asymptotic normality. One can
see that for complete randomization and the random allocation rule, the tests are
computed in the same way. It is when we come to more complicated randomization
procedures, such as Wei's urn design, that the variance is more complicated, but
simulation results indicate that it may not be necessary to use the more complicated
form of the variance, except for the conditional test.

14.9 PROBLEMS

14.1 Show that condition (14.4) does not hold when
<i)ajn=q>,0<q?l't
(ii)ajn = I/j.(mpk,l969)

14.2 Show that condition (14.4) holds for the van der Waarden scores, defined in
Problem 7.4, at a rate O(ln n/n).
(Hints:
(a) Use the approximation to the normal distribution function 1 - $(x) ~ <j>(x)/x as
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Table 14.8 Conditions required for asymptotic normality and the form of the denominator of
Sn for conditional (C) and unconditional ( U) linear rank tests under the various randomization
procedures.

Randomization Procedure

Complete
Complete
Random allocation
Truncated binomial
Biased coin
Biased coin
UD(a,0)
UD(Q,1)

C/U

U
C

same
same

U
C
U
C

Conditions

(14.4)
(14.4), (14.6)
(14.4)
open problem
can be non-normal
conjectured non-normal
(14.4)
(14.21), (14.23), (14.24)

x -> oo, where (j>(x) is the normal density function (e.g., Feller (1968, p. 175));
(b) Use the approximation on ~ /0 $~l (u)du.)

143 Prove or give a counterexample to the following statement: "Any continuous
function of the simple ranks satisfies (14.4)."

14.4 Show that, for the simple rank scores given in (14.7), the value of 7 in (14.6) is
12.

14.5 Show that (14.14) is the solution to (14.13).

14.6 For the UD(Q, 1) conditional test, verify (14.22) and that s2 = 1/3.
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15
Large Sample Inference for

Response-Adaptive
Randomization

15.1 INTRODUCTION

In this chapter we prove the asymptotic normality of maximum likelihood estimators
from a response-adaptive randomization procedure. We also explore the large sample
distribution of the linear rank test under a randomization model following response-
adaptive randomization.

15.2 MAXIMUM LIKELIHOOD ESTIMATION

15.2.1 Asymptotic normality of the maximum likelihood estimator: Urn

models

Rosenberger, Flournoy, and Durham's Theorem (Section 13.4.4) can be used to prove
the consistency and asymptotic normality of maximum likelihood estimators from
a response-adaptive randomization procedure when E(5ji\y:i-i} converges almost
surely to a constant. While the theorem is appropriate for continuous outcomes, we
will focus on the product binomial likelihood in (11.6). In particular, this methodol-
ogy applies to the generalized Friedman's urn models introduced in Chapter 10.

Using the notation of Chapter 13, the first derivative of the loglikelihood incre-
ments is given by

243
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Since |(Ti - pj)Sji\ < 1, we immediately see that (13.27) and (13.29) hold. Taking
the second derivative, which is nonzero only for j = k, we see that the summands
is again bounded, and so (13.30) holds. It remains only to show (13.28). Again, for
j — k, we have

Using a conditioning argument, we can show that

(Problem 15.1).
Consider the generalized Friedman's urn model. Since

almost surely, for large i, by Athreya and Karlin (1967), where Vj is defined in (10.8),
we have that

almost surely, as n ->• oo. By (13.32), we conclude that p= (PI,...,PK) is consistent
for p = (pi, ...,pK) and that

in law, where £ is a diagonal matrix with elements CTJJ = pj(l - PJ)/VJ. Note that
pi, ...,PK are asymptotically independent. This is the same result we would obtain
under an independent sampling scheme if (v\, ...,VK) were fixed in advance. We
can therefore set up the usual chi-square tests of K — 1 treatment comparisons to a
control, or other suitable multivariate tests.

An extension to covariate-adjusted models, under the framework of generalized
linear models, is straightforward but messy. See Rosenberger and Hu (2001) for
details.

15.2.2 Delayed response

Bai, Hu, and Rosenberger (2002) evaluated the effects of delayed response on the
asymptotic distribution of the maximum likelihood estimators. Let the entry time
of the nth be denoted rn and assume the entry times have independent increments;
that is, {rn - rn_i} are independent and identically distributed for all n. Let the
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response time of the nth patient be denoted rn(j, /), j = 1,..., K, I = 1,2, where j
indexes the treatment assignment and / indexes the response. Assume that rn(j,l]
has distribution pjj, so that the time to response distribution can potentially depend
on both the treatment assigned and the patient's response.

The question arises, under what conditions on rn and rn(j,l) will the limiting
results in (10.8) still hold? It turns out that one needs only ensure that the probability
that m additional patients will arrive prior to a patient's response is of order o(m~c)
for c e (0,1]. While this result cannot be easily verified in practice, it satisfies our
intuition that the delay cannot be very large relative to the entry stream. In practice,
we can verify this by examining the following conditions on rn and rn(j, /):

Assuming these two conditions hold, the maximum likelihood estimators will
have the same asymptotic distribution as in (15.2) because the likelihood under the
population model is the same as in (11.5) (Problem 15.2).

15.2.3 Likelihood ratio test for K treatments

For binary response trials of K treatments, one would like a test of the null hypothesis
HQ : pi = •• -PR = Po versus an alternative that at least one differs. For the birth
and death urn, Ivanova, Rosenberger, Durham, et al. (2000) derive the asymptotic
distribution of the likelihood ratio test statistic, given by

where pn is the maximum likelihood estimator under the null hypothesis and pn is
the maximum likelihood estimator under the whole parameter space. They prove
that — 21og/n has the usual asymptotic chi-square distribution on K — 1 degrees
of freedom under the null hypothesis. They also derive the noncentrality parameter
under the alternative hypothesis, but can only prove the result for po < 1/2. The
distribution under the alternative forpo > 1/2 is an open problem.

15.2.4 Asymptotic properties of sequential maximum likelihood
procedures

Melfi and Page (2000) provide a very powerful result on strong consistency of param-
eter estimators from a response-adaptive randomization procedure for two treatments.
This result is particularly useful for the sequential maximum likelihood procedure,
but can also be used for urn designs as well. Following a general adaptive randomiza-
tion procedure, let BA and OB be some estimators of 9A and OB, respectively, where
BA is the parameter of interest for treatment A and OB is the parameter of interest for
treatment B. Suppose the following two conditions are true:
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(1) If the treatment responses were actually generated as a sequence of independent
and identically distributed random variables, then 9A and OB would be strongly
consistent for 6A and QB, respectively.
(2) Under the adaptive allocation procedure, NA(n) -> oo and JVjg(n) -+ oo almost
surely, as n -> oo.

Then for any adaptive randomization procedure, 6A and QB are strongly consistent
for 6A and OB, respectively.

While this is a result of major importance, condition (2) is not typically easy to
prove. In the simplest case with binary responses, let p be of the form f(pA)/(f(pA)+
/(PB)}, for / : [0,1] -» [0, oo). We will show that NA(n) ->• oo almost surely if

for constant C. More generally, we could also impose

We leave the proof for NB(U) to the interested reader. First, we must ensure that
f(pA(k)) is never zero, where pA(k) = SA(k)/NA(k) andpB(k) = SB(k)/NB(k)
are the maximum likelihood estimators of pA and PB after k = 1,..., n patients. In
general, this will not be the case if /(O) = 0, as the number of successes, 5^ (k) and
SB (k), have positive probability of being 0, as do the number of patients allocated,
NA (k) and NB(fc), In practice, we would add some small constant to SA (k}, SB (k),
NA(k), and Afe(fc) to account for this. Melfi, Page, and Geraldes (2001) suggest
taking SA(k) + 0.5, SB(k) + 0.5, NA(k) + 1, and NB(k) + I.

To prove the result, note that NA(k) is nondecreasing in k. Consider the comple-
ment of the divergent set. We have

which imples

Let U\, f/2,... be a sequence of uniform random numbers on [0,1]. Then
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since /(R4)(m) — f(PA)(j) on the set in question. Now by (15.3), we have

By (15.4), this implies that

and hence -/V^(fe) -»• oo almost surely, as k -> oo.
In addition, under conditions (1) and (2) above, Melfi, Page, and Geraldes (2001)

prove that

almost surely, as n -> oo. This result can then be used to prove asymptotic normality
of the maximum likelihood estimators using the techniques in Section 13.4.

15.3 LARGE SAMPLE LINEAR RANK TESTS

As far as we know, there has been no work on asymptotic properties of linear rank tests
for covariate-adaptive randomization and only one paper deriving the large sample
distribution of the linear rank test for response-adaptive randomization. This would
certainly be an fertile area for future research.

Rosenberger (1993) gives the form of the permutation test for the randomized play-
the-winner rule. The basic idea is similar to developing a large sample permutation
test for Wei's urn design, given in Section 14.6. As in Chapter 14, let Ti = 1 if
treatment A is assigned and Tj = -I if treatment B is assigned, and ain = 1 if the
treatment was a success and afn = 0 if failure. We wish to prove the asymptotic
normality of the test statistic

under RPW(a, 1) randomization. To do this, we equate Sn to a martingale by
selecting a sequence of scores 6fn, i = 1,..., n so that the martingale array formed by
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satisfies Wnn = 5n. In this case, from (10.13), we have

Equating like terms of &,-„, we see that

i — 1, ...,n - 1 (Problem 15.5). We now employ Hall and Heyde's Theorem for
martingale arrays (Section 13.3) to show that Wnn, suitably normalized, and hence
5n, is asymptotically standard normal.

Under the following two conditions,

and

in probability, as i -> oo, we have that

in law, as n -> oo. Note that conditions (13.17), (13.19), along with (13.21) are
all satisfied under condition (15.6). It is easier to show (13.22) than (13.18), and it
results immediately from (15.6) and (15.7). (See Problem 15.6.) Now let us examine
condition (15.7) more carefully. We can rewrite the condition as

in probability, as i -4 oo, or that

in probability, as n -> oo.
It is not possible to ensure that (15.6) and (15.9) will hold for all possible observed

sequences of Ojn. In fact, if all a,jn = 1, neither condition holds; Y%=i ajnTj/n in
fact converges to a beta random variable almost surely (e.g., Athreya and Ney (1972,
p. 220)). At the other extreme, if all a,jn = 0, asymptotic normality of Sn is well
known (e.g., Freedman (1965)). To determine how a "typical" response sequence
might behave, Rosenberger (1993) assumes that the %•„ arose as Bernoulli random
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variables with parameter p. If p < 3/4, he shows that both conditions (15.6) and
(15.7) hold. Consequently, if the sequence of responses can be considered to be a
realization from a Bernoulli sequence, provided p < 3/4, we can conclude that (15.8)
holds.

Rosenberger (1993) also explored the large sample distribution of a linear rank
statistic for continuous outcomes, following response-adaptive randomization using
a treatment effect mapping of the linear rank statistic outlined in Section 10.6. The
test is more complicated than that for the randomized play-the-winner rule, and the
reader is referred to Rosenberger (1993) for details.

15.4 PROBLEMS

15.1 Verify (15.1).

15.2 Verify that the likelihood under the delayed response model in Section 15.2.2
is identical to that when there is immediate response. Let r^ = (TI ,..., TJ) be the
entry times and r^ = (ri,..., TJ) be the response times of patients 1,...,.;. Show,
by appropriate conditioning that

reduces to (11.5).

153 Use Melfi and Page's approach in Section 15.2.4 to show that the maximum like-
lihood estimators PA and PB from the randomized play-the-winner rule are strongly
consistent.

15.4 Consider a sequential maximum likelihood randomization procedure for binary
response designed to target an allocation

the optimal allocation for minimizing expected failures for the odds ratio measure.
Let & = PAQB/PBQA be the odds ratio with estimator Bn = PAQB/PBQA- Find the
asymptotic distribution of \/n(Bn — 0).

15.5 Derive the scores in (15.5).

15.6 Show that (15.6) and (15.7) imply (13.21) and (13.22).
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