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Preface

Volume 1 was dedicated first (Part I) to a general understanding of the cost forecast-
ing, generally called “cost estimating”, and then to the important concept of data nor-
malization (Part II), which is a prerequisite for comparing cost data, as it was
reminded that the only way the human mind found for forecasting the future was to
extrapolate the results of previous “experiences”, which implies the necessity to com-
pare them. Such a comparison can only be made on comparable, or normalized, data.

Then (Part III) introduced the concept of what we called “general” models and
eventually (Part IV) the use of models in the cost-estimating process. Taking into
account the “risk” in cost forecasting was an important chapter of this Part IV.

By “general models”we mean that these models can estimate the cost of anything –
at least in a given “class” of product, a class representing an industrial sector. These
models, of which number is limited, are difficult to build; they represent, if they are
really general, a large investment.

This volume (Volume 2) deals with the building of “specific” cost estimating
models (sometimes also called “in-house models”). A specific cost model explicitly
refers to a “product family”, which is a set of products fulfilling the same func-
tion(s) and manufactured about the same way.

A short word at the history of science helps illustrate the fundamental differ-
ences between specific and general models.

Any science first looks at the facts and records them: in our modern language,
any science starts by building databases. In the domain of astronomy the fantastic
amount of data accumulated by great observers, such as Copermic, Tycho Brahé, …
deserves our admiration.

The second step – not necessarily carried out by the same persons – is to try to
establish and quantify correlations between variables which, apparently, may seem
different. Once a good correlation has been demonstrated between these variables –
this involves what is called in this volume “data analysis” – it is rather tempting a
build a mathematical relationship between these variables; these relationships do
not “explain” anything; they are just a tentative to group in a few equations what we
know about the facts. The nice thing about them is that they make us able to predict
values of one variable when the other one(s) is (are) known, as long as the previ-
sionist remains in the same area (we would say, in the domain of cost, in the same
“product family”). These relationships are called “laws” (we would say in the cost
domain cost-estimating relationships (CERs)). There are plenty of such relation-
ships in all sciences; just remember: the three Kepler laws, the Kirchoff laws, the
Van der Walls law, the law of light emission by the black body, etc. The authors of
these laws did not know the regression analysis and generally work by curve fitting,
but the idea is the same.
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The third step is far more recent; it implies to look “below the facts” in order to
understand them (which means explaining by investigation things more in depth
and finding reasons for their behavior).1 This is done by finding abstract concepts
(such as the forces in the description of motion, the fields in electrodynamics, the
entropy in thermodynamics, the quanta in light emission, etc.) from which the facts
could be “explained”. The mathematical support then becomes a must, as it is the
only way the human mind can work with abstract concepts. The great names (the
“giants” to cite a word used by Newton)2 in this respect are Newton, Maxwell,
Boltzman, Planck, Einstein, etc. The set of equations they developed, generally a
very limited set from which all phenomena can be predicted,3 is generally called a
“theory”.

In the cost domain, the abstract concept that throws a powerful light on the cost
behavior is the “product structure”.This concept was described by Lucien Géminard
in France and maybe others. This concept, which is developed in Part III of Volume
1, helped create a general “theory” of cost behavior. But it is the only time I will use
this term of “theory” in our domain and for three reasons:

1. The first reason is that human behavior is far less predictable than natural phe-
nomena in the physical sciences. Therefore the fantastic level of precision often
attained in the physical sciences cannot be obtained in the domain of cost. The
word “theory” in the domain of cost could therefore be misleading and rejected,
although it correctly describes the human look at the things.

2. The second reason is that – as it was said by Karl Popper – a theory can neither
be considered as finished: it has always to be checked with the results of nature
and just one phenomenon which does not fit with the theory seriously questions
its validity: remember the experience carried out by Morley and Michelson, or
the advance of Mercury perihelion. One single experience can force people to
adopt another theory. But in the current language, theory is considered as the
truth and, again, the common word could be misleading in the domain of cost.

3. The third reason is related to semantics: in the ordinary language, the word “the-
ory” has two opposite meanings. First of all it is used, with great respect, to qualify
the work of the giants who preceded us. But the second usage is rather dangerous:
if you arrive in a meeting with a cost estimate adding that it was prepared with
such or such theory, you may be sure that somebody will demolish your estimate,
saying it is just a “theoretical” approach … . The word “model” is much more
accepted than the word “theory” and we will use it.

As the techniques for building such models are now well understood (even if they
can still be improved), preparing these models can be done by any company, and the
cost analyst has just to follow the documented procedures. This does not mean that
the process can be fully automated: during his/her work, the cost analyst will have to
make decisions, which require a good understanding of these procedures.

1 It is well known that we never “understand” nature fully, by a step-by-step analysis requiring less and
less hypothesis: understanding nature really means reducing the number of the hypotheses which are
necessary for predictions.
2 If I could see farther than the other ones, it is because I was sitting on the shoulders of the giants who
preceded me.
3 This illustrates the power of both the concepts and the mathematics which use them!



The major advantage of these specific models is that they are built from the com-
pany own data (this obviously requires that the company was organized for capturing
and saving its data, and this is the major constraint). Therefore:

1. The cost analyst can choose the variables, or “parameters”, he/she wants to
include in the model, depending on the purpose of it (for instance he/she may
prefer to use functional or physical variables).

2. The credibility (and credibility is an important concept in cost forecasting!) of a
cost forecast prepared by a specific model is higher that any forecast made by a
general model, because the source of the forecast is clear.

3. The way the forecast was prepared is easy to explain to a decision-maker, even if
only a few minutes are available.

For these reasons cost estimators are strongly encouraged to start parametric
cost estimating following this path.

Using general models should come afterwards, for instance for cost estimating new
products for which no comparison is possible with existing products (“first of a
kind”), and therefore no specific model is available or even possible.

Understanding the procedures is the key word for creating successful specific mod-
els. For this reason all these procedures are fully described in this volume. Classical
methods and new ones (such as the “Bootstrap”) will be described and illustrated.

Cost estimating requires 30% of data, 30% of tools and 40% of judgment and
thinking, with a minimum of 80% in total. EstimLab™ – with which most of the
computations which illustrate this book have been performed – was designed to
get all these 30% of tools with a minimum of effort, freeing time for collecting data
and making use of judgment, which is always the most important component in
cost estimating.

Paris Pierre Foussier
February 2005
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Introduction

What Are We Looking For?

Our company wants to buy (or design) a new product and we are asked by the pro-
curement department (or the design department), for budgeting or negotiating
purposes, to deliver a reliable cost estimate for this new product. This new product
mass is 3.5 kg (we consider in this example one parameter only).

It happens that this product belongs to an existing product family (the concept of
product family is defined in Chapter 1). This is rather fortunate and looking in our
records, or in our database, we find the (normalized) cost and the mass of several
products belonging to the same product family; the values are displayed in Figure 1.

These values are unfortunately rather scattered and this scattering forbids us to
easily estimate the cost of the new product.

What we would like to present is a cost represented by the small square noted A.
However, it is clear that, from the data we have, the cost could as well be between B
and C (Figure 2).

If the data were not scattered at all, the trend (how the cost changes with the mass)
would be very easy to find out: point A would be well defined and the difference
between B and C would be negligible. But this is not the case and we have to cope
with these values.
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Figure 1 The available data: cost and mass of several products belonging to same product family (mass
in abscissa, cost in ordinate).
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Nevertheless, values B and C appear – intuitively – less likely than A, because
these values are “supported” by few values of our database (only the extreme values do
support them), whereas A seems to be supported by much more values. Consequently
it appears natural to propose:

● First of all what can be called a “nominal cost” which can be defined as the most
likely cost, in the sense it is supported by most of the data. It is represented by the
small square noted A. It is the cost which could be expected if the data were not
so scattered.

● The values B and C which could be considered as the “extreme”values of the cost;
the costs are rather unlikely, but they are not impossible if we look at all the data
of our database.

We have therefore to find out this “nominal cost”, plus the extreme values: these
values constitute the result, for a particular product of mass equal to 3.5 kg, of a
“specific model”, the word “specific” meaning that this “model” is dedicated to this
product family and cannot be used for any other family.

Values A, B and C are, in this example, related to our product of which mass is
3.5 kg. But a new product belonging to this product family may have any mass. In
such a case A,B and C will be defined as three curves,one for each value,as illustrated
in Figure 3.

These three lines can be anything, and we will see that deciding about the shape
of these lines will be one of the most important decision the cost analyst will have
to make. Very often straight lines are selected, not because they are the best ones,
but because their computation can easily made4 by theorems based on the linear
algebra which has been developed for centuries by mathematicians, Karl Friedrich
Gauss being one of them.

B
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Figure 2 The available data: extreme values of cost (mass in abscissa, cost in ordinate).

4 And also because the human mind prefers simple things each time it seems possible.
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Most often only the full line (called the “nominal cost”) is computed, the two
other lines being only represented by what will be called the “confidence interval”,
but full computations can nowadays be easily performed.

What Is a Specific Model?

A specific model is the result of these computations. It can be defined by the fol-
lowing way.

A specific model is a mathematical tool of which purpose is to help the cost esti-
mator to prepare an estimate for a product belonging to a product family.

A specific model is a set of two things:

● A formula which gives the evolution of the nominal cost (this formula is gener-
ally called a “CER” which stands for “cost-estimating relationship”).

● The confidence interval around the formula.

Both things really constitute the specific model (whereas many cost analysts
consider only the first one); the formula will compute a “nominal cost”, the distri-
bution of the residuals around the formula will define its level of confidence.

We will use very rarely the word “CER”, just to avoid the frequent confusion
between a model and what is just a part of it.

How Is a Specific Model Built?

A specific model is traditionally built in two steps: first of all the formula is com-
puted, then the distribution of the residuals (which are the deviations of our existing

7654321
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Figure 3 The three lines we are looking for.



data around this formula) are globally computed. In this paragraph we just com-
ment on the way the formula is computed.

First of all a comment about the shape of the formula: there is no procedure to
automatically find out the most appropriate formula. Among several data points
there is an infinite number of curves which can be drawn. Consequently, let us
repeat it, the shape of the formula is always a decision made by the cost analyst.
Most analysts prefer to use a straight line but this is a choice which has no theoretical
background: we will discover that other relationships generally give better results,
from the cost analyst point of view.

Once the formula shape has been decided on, it has to be adjusted to the actual
data. For this reason the selected formula always include several “coefficients” and
the cost analyst’s job is to find out the coefficients which give the best fit between the
curve and the data points.

What does this mean? Here also there are several ways to find out the best fit. The
most common reasoning is the following one: the purpose of the formula is to replace
any value such as P (see Figure 4),related to product i,by value Q given by this formula.
This value Q will be considered as the “nominal cost”of this product i; we obviously do
not want this nominal cost to be too far away from the actual cost P.This means that we
would like that the deviation, or residual, ei � Q � P to be as small as possible.

As we do not want to favor any particular data point, we must find out a way such
as the curve will be as close as possible to all data points. The natural solution would
be to try minimizing the sum of all the deviations. However – and this was men-
tioned by Carl Friedrich Gauss – the sum of deviations is something difficult to
mathematically work with, whereas the sum of the squares of the deviations is
much more convenient (because minimizing such a sum of squares leads, when the
selected curve is a straight line, to linear equations of which solution was discov-
ered two centuries ago). Consequently the traditional solution is to find out the
coefficients just mentioned by minimizing the sum:

ei
i

2∑

xxii Introduction

7
600

800

1000

1200

1400

P

Q

product i

1 2 3 4 5 6

Figure 4 Adjusting the curve to the data points.



The general solution is logically called the “least squares method”.
When the selected curve is a straight line, this procedure is known as the “linear

regression”. The word “linear” comes from the fact that the selected curve is a
straight line, the word “regression” being explained later on.

This procedure has several mathematical properties that were studied by Gauss.
However, it has also mathematical drawbacks that will appear in the following
chapters. The use of computers allows now to search for more efficient curves and
there is no reason to be contrived by old solutions.

These solutions will be studied in details in the following chapters.

A Preliminary Study

Before trying to work on the data in order to build a formula, it is very important
to analyze the data: an algorithm – and building a formula, although in very simple
situations it could be done on a piece of paper, will nowadays always use an algo-
rithm – will always provide a result.

Some tests will be made to check the quality of a model. But, even if the results of
these tests are positive, you will be confident about the result (the cost estimate you
will compute from it) if you are confident in the quality of the data it is built from.

Your opinion about the data is based on the seriousness of the normalization and
the analysis of these data. The first subject was dealt with in Volume 1. It is sup-
posed from now on that this process has been carried out and that you are satisfied
with the results.

You are now ready to analyze these data and to prepare a specific model.
We will do that in this volume with the same rigor as the processes we developed

in the first volume.
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Notations

Cost estimation handles information.
This information is generally presented into tables of figures. In order to discuss

about these tables, to analyze their structure, to establish relationships between
them, etc., it is convenient to use symbols to represent them. The definition of these
symbols is given in this section. We try to use symbols which are – by using simple
rules – easy to remember.Most of them are common with the majority of the authors;
a few of them, when experience showed the symbols generally used in the literature
maybe confusing, are different.

Information is relative to objects or products (or “individuals”in statistical books).
It is conveyed by variables.

The sample is the set of objects for which we know the value of the variables. The
population is the set of objects, of which number is supposed to be infinite, for
which we want to get a cost estimate and from which the sample is supposed to be
“extracted”.

The “Individuals” or Products

The methods developed in this book can be applied to any set of objects. An ele-
ment of a set is called an “individual” (the term reminds that statistical methods
were developed for studying populations).

However, as its title mentions it, this book is principally dedicated to cost ana-
lysts and cost estimators. The subject of interest of these persons will be called
“products”.

The term “product” is therefore used here to designate anything we are inter-
ested in. It can be a piece of hardware, a system, a software, a tunnel, a bridge, a
building, etc. Generally speaking, it is something which has to be designed and/or
produced and/or maintained and/or decommissioned.

Products generally have names. In order to remain as general as possible, one
will assign a letter to each one: they will be designated by capital letters such as A1,
A2, A3, … , Ai, … , AI (A for “article”) the index5 “i” being reserved for the products.

The number of products we may have to deal with simultaneously (the meaning
of this adverb will become clear in the following chapters) will be called I.

A product is characterized by a set of variables.

5 When indexes are used, it is very convenient – and easy to remember – to use a small letter for the cur-
rent index and the same letter – this time in capital – for the upper limit of this index.



The Variables

A variable is something which can be quantified (in such a case it is called a “quan-
titative” variable, the quantity being a number such as 27, or 34.5 or even –12.78) or
on which one can affect an attribute (in such a case it is called a “qualitative” vari-
able; the quality being an adjective such as superior, good, poor or even a sentence,
such as made by machine C, machine D, … , or even sometimes an integer);6 the
attribute can be “objective” (if it expresses a fact, such as the material used, or the
manufacturer) or “subjective” if it expresses an opinion (such as little complex, very
complex … the adjective “complex”, or sometimes “difficult”, being rather frequent
for expressing an opinion about the nature of a product).

A quantitative variable must have a unit (such as kilogram,meter, inch,euro,dollar,
or simply “quantity”, generally simplified in “qty”). A limit can be imposed on the set
of values it may take. It is supposed to be continuous, even it is not really, such as qty.

A qualitative variable refers to a limited set of attributes or modalities such as (man-
ufactured by A or B) or (blue, green, yellow) or (very low, medium, high, very high).

A variable will always be symbolized by a capital V. This capital V will only be
used to represent the variable as such (e.g. one can say V represents the product
mass; sometimes one can even say – it is not really correct but generally accepted –
V “is” the mass), not its value.

Several variables will have to be used. Each variable has a name, such as the mass,
or the power, or the speed, … ; for practical reasons they will nevertheless be repre-
sented by the capital letter V with an index, such as V0, … , Vj, … , VJ the index “j”
being reserved for the variables. In this book, dedicated to forecasting a value (in
principle the cost, but the methods can be applied to practically anything), two types
of variables must be distinguished:7

1. The “explicative” or “causal” variables, which are the variables that are known
when a forecast has to be made; these variables are generally called “parame-
ters”. They will be represented by an index equal or superior to 1. Example: V2.
The number of these variables will be called J. V0 will be used for a constant, as
cost may have a constant part, which has of course also to be determined.

2. The “dependent” or “explained” variable, which is the one that we want to fore-
cast. In order to clearly distinguish it from the causal variables its name will be
called Y. There is only one such variable in any particular treatment of the data.
However, it is quite possible to have different cost values for the same product:
for instance you may have the cost of development, the cost of manufacturing,
the cost of materials, etc. And you may be interested to find out a correlation
between the development cost and the production cost. In such a case, you will
have to define, for each treatment, which is the “dependent” variable, and which
are the causal variables.

The Observed Values

A value is a figure (for a quantitative variable) or an attribute (for a qualitative vari-
able) observed on a product. Values for products belonging to the sample will

xxvi Notations

6In such a case it must not be confused with a quantitative variable: we can attribute the integer “1” to the
sentence “made by machine C”, etc., which does not mean that such attributes may be added or multiplied.
7 We return to this important subject – from a methodological point of view – in Chapter 1.
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always be represented by small letters, capital letters being reserved for products of
the population.

For the Dependent Variable

As previously mentioned, there is only one dependent variable per product. The
table of the values for the I products therefore takes the form of a vector:

or simply y
r

(column vector). yi represents the cost of product i.

Centered and Scaled Variables

The values, once centered, are noted cyi; once centered and scaled are noted csyi. The
definition of these values requires the knowledge of the arithmetic mean, noted y

u
,

and the standard deviation, noted sy which are defined in Chapter 2. Then:

Other notations for the sample.
Notations for the sample always use small letters:

● Arithmetic mean – or simply “mean”: y
u
.

● Median: y%.
● Dynamic center (the term is defined in Chapter 11) in general: ŷ, and its value

for product Ai: ŷi.
● When data point i (one product) is eliminated from the sample: y

r
(i) represents

the set of all values less yi.

Residuals and Euclidian Distances

Residuals are an important concept in this book; it quantifies, for a given product,
the “distance” between the dynamic center and the cost value.As several “distances”
may be defined, one distinguishes ei� defined by ei� � yi � ŷi, ei∗ defined by
ei∗�(yi/ŷi), ei� defined by ei∗ � (yi/ŷi) � 1.

The Euclidian distance used in a sample is represented by �i
A normalized residual is noted e∗

i� (defined only for additive residuals).
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xxviii Notations

For the Independent or Causal Variables

An observed value for a variable is always represented by a small x. One can say: we
measured x � 17.5 kg.

An observed value always refers to a variable and a product: it is the value
observed for product i when variable j is considered. In order to make this clear, an
observed value, when there is more than one causal variable, must always have two
indexes. These indexes will always be in the following order: product number, vari-
able number, both being separated by a comma. The value observed for product i
on variable j will therefore be represented by xi,j:

observed value: xproduct_number, variable_number

Observed values are generally arranged in tables. Tables will play an important
role in this book. They must therefore be fully understood.

Such a table – the mathematical term of “matrix” will generally be used – will be
represented by a letter inside two sets of two small bars, just to remind the reader it
is a special entity, such as ||x|| for the observed values.8

||x|| is the basic matrix or set of observed values. An element of this matrix is
marked by two indexes giving its row number and its column number, both num-
bers starting at 1. The following basic rule will be always applied:

element of matrix ||x||: xrow_number, column_number

This means that a row is dedicated to an object,a column being dedicated to a variable.
||x|| contains the raw data directly given by the observations (the sample). However,

several matrices, derived from this raw matrix, will have to be used in the compu-
tations. They will be referred to by a pre-index or exponent:

● ||�x|| is derived from ||x|| by adding a first column filled with 1. This column
represents a constant value which is “observed” on all objects.
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A row is dedicated to a product:
it gives the values of all variables
observed for this particular product

A column is dedicated to a variable:
it gives the values observed on all the
products for this particular variable

⇒

⇓

Example:

8 Symbol X (in capital letters) is generally used in most textbooks, sometimes in bold or italic characters.
If you are not very familiar with matrices computations, it makes the reading confusing. To facilitate this
reading for all cost analysts, the small vertical bars were added in this book.



Notations xxix

● ||cx|| is derived from ||x|| by “centering” all the quantitative data. This centering
proceeds column per column (centering has no meaning for the rows), each col-
umn being dealt with independently from the other ones:
– the mean or average value of column j is computed; it can be called x–•,j, the

little hat reminding it is an average,
– this mean value is subtracted from each value of the column.

● ||sx|| is derived from ||x|| by “scaling” the data. This scaling proceeds column per
column (scaling has no meaning at all for the rows), each column being dealt
with independently from the other ones:
– the standard deviation of column j is computed; it can be called s•,j,
– each value of the column is divided by this standard deviation.
Such a matrix is very rarely used, the data, before scaling being nearly always
first centered.

● ||csx|| is derived from ||x|| by centering and then scaling all the quantitative data.
In this process an element xi,j becomes:

The major advantage of this process is that now all the variables have the same
unit, whatever they represent (mass, energy, speed, etc.).

These pre-indexes can be used together. For instance matrix ||�csx|| represents
the matrix derived from ||x|| by adding a first column of 1, centering and scaling the
quantitative data. Note: In the centering and scaling process, the column of 1 – as
well as the qualitative variables – remains unchanged: it is not concerned by these
two processes.

We may have to use matrices from which a row (a product) or a column (a variable)
is deleted. The following symbols will be used:

● ||x[i,•]|| represents the matrix ||x|| when row i is deleted.
● ||x[•, j]|| represents the matrix ||x|| when column j is deleted.

Mathematical Symbols

log or log10,sometimes used for the sake of clarity,represents the logarithm in base 10.
ln represents the natural logarithm (base e � 2.71828).
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What You Need to Know About Matrices Algebra

You do not need to know so much …
If you want to study the subject in depth, one can recommend Pettofrezzo [45] as

an introduction, Lichnerowicz [36] and Golub and Van Loan [31] as full – some-
times complex – developments.

Matrices Are First a Stenography

Matrices are first used because they are a very simple and powerful stenography: it
is always easier to mention the set of values as ||x||, instead of displaying the whole
table of these values.

Matrices, in this book, always contain real – or ordinary – numbers. The set of all
these real numbers is represented by the symbol � (another stenography), the set of
all positive numbers being noted ��. A matrix has a size given by its number of
rows, let us call it I, and the number of columns, let us call it J (or J � 1 if a column
of 1 is added); it therefore contains I � J elements.All matrices containing this number
of elements (which are real numbers) are said belonging to the set �I�J. A particular
matrix of this size is therefore said to belong to �I�J, or simply to be a matrix �I�J,
I being the number of lines, J the number of columns.

General Properties About Matrices

The row “rank” of a matrix is the largest number of linearly independent rows; the
column “rank” is the largest number of linearly independent columns. It can be
demonstrated that for any matrix both ranks are equal: so one can speak only
about the rank of the matrix.

A square matrix is said to be “full” rank if its rank is equal to the smallest of I or
J (as J � I). A square matrix (the notion of singularity applies to square matrices
only) is said to be singular if it is not full rank; its determinant is then equal to 0.

A matrix of which determinant is close or equal to 0 is said to be “ill conditioned”.

Particular Matrices

A matrix such as I � 1 and J � 1 (it has just one element) is a scalar. We will con-
sider it as an ordinary number.



A matrix such as J � 1 (one column then) is said to be a column-vector, or simply
a vector; an example was given by the set of the yi (the list of the costs for a set of
products). It is represented either by ||yi|| or more commonly by y

r
.

A matrix such as I � 1 (just one row then) is said to be a row-vector.An example
is given by the values of all the variables observed for a particular product. If we call
z these values, such a row-vector is represented by:

Neither confuse a column-vector and a row-vector. They are different entities, as
the examples given illustrate: the column-vector groups homogeneous values
(costs for instance), whereas the row-vector groups inhomogeneous values (for
instance: mass, power, material, etc.). The product of y

r
by z

s
has a meaning (if the

number of elements is the same) whereas the products of y
r

by u
r

or v
s

by w
s

have no
meaning at all, even if they have the same number of elements.

A matrix having the same number of rows and columns is said “square”, or �I�I.
A diagonal matrix is a matrix of which all the elements are 0 except the elements

in the first diagonal. The following example illustrates what the first diagonal is:

One can also define bidiagonal or tridiagonal matrices, but you do not need them,
except if you want to compute by yourself the SVD (which stands for “singular values
decomposition” of a matrix).

The “trace” of a square matrix is the sum of the elements of its first diagonal. For

the matrix just defined, the trace is equal to .
A triangular superior matrix is a matrix of which only all the elements of the

superior triangle are different from 0, as for instance the following matrix:

A symmetric matrix is a matrix of which values are symmetrical in respect to the
first diagonal.

An orthogonal matrix is a matrix of which the inverse is equal to its transpose
(both terms are defined later on): ||M||�1 � ||M||t.

An idempotent matrix is a matrix of which square (the product – the term is
defined below – of the matrix by itself) is equal to it: ||M||2 � ||M|| ⊗ ||M|| � ||M||.
An idempotent matrix has special properties:

● The trace of an idempotent matrix is equal to its rank.
● Its eigenvalues are only 0 and 1.
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Algebra of Matrices

We are still in the domain of stenography. Here we just need rules.
The inverse of || f || ∈ �I�J is the matrix noted || f ||�1 ∈ �J�I (notice the dimen-

sions) which is such that:

|| f || ⊗ || f ||�1
� ||1|| with here ||1||∈ �I�I

An important theorem about inverse is that the inverse of a product is given by the
inverse of each matrix, the product being taken in the reverse order (this is obvious
to save the rule about the matrices dimensions):

(|| f || ⊗ ||g||)�1
� ||g||�1 ⊗ || f ||�1

The transpose of a matrix || f || ∈ �I�J is a matrix noted || f ||t ∈ �J�I obtained
by interchanging the rows and columns: column 1 of || f || becomes row 1 of || f ||t, etc.

An important theorem about transposition is that the transpose of a product is
given by the transpose of each matrix, the product being in the reverse order (this
is obvious to save the rule about the matrices dimensions):

(|| f || ⊗ ||g||)t
� ||g||t ⊗ || f ||t

With the rule given for transposition, the transpose a row-vector is a column-
vector, and the reciprocal. This is an important application of the transposition.

Operations on Two Matrices

Two operations can be defined on matrices: addition and multiplication. Addition
will use the symbol ⊕, multiplication the symbol ⊗; these symbols are just there to
recall the reader that these operations are not “ordinary” operations.

You can add two matrices ONLY IF they have the same �I�J type (the same size).
The sum of two matrices is a matrix of the same type, of which element i,j is the sum
of the corresponding elements of the original matrices: the operation ||u|| ⊕ ||v||
gives a matrix ||w|| with the simple rule wi,j � ui,j � vi,j. The “neutral” matrix for the
addition is the matrix, noted ||0||, of which all elements are equal to 0:

||u|| ⊕ ||0|| � ||u||

if, of course ||u|| and ||0|| have the same type.
You can multiply two matrices ONLY IF the number of lines of the second matrix

is equal to the number of columns of the first one: the product || f || ⊗ ||g|| in this
order where || f || ∈ �I�K and ||g|| ∈ �K�J gives a matrix ||h|| ∈ �I�J: the
mnemonic rule is that, when you write the matrices in the order you want to mul-
tiply them, the indexes which are “in the middle” (here K) must be equal and disap-
pear in the operation. Note that the multiplication is not commutative (||g|| ⊗ || f ||
if it is possible, is different from || f || ⊗ ||g||): both operations are of course possible
if both matrices are square and of the same size. The element hi,j (row i, column j)

What You Need to Know About Matrices Algebra xxxiii



of the matrices product is given by the sum of the products, term to term, of the ele-
ments of row i of matrix || f || by the elements of column j of matrix ||g||:

Maybe it is easier to remember the rule with a graph (Figure 5).
The “neutral” element for the product of two matrices is, for the matrix

||f|| ∈ �I�J, the diagonal matrix ||1|| ∈ �J�J. One can write, if the dimensions are
respected, || f || ⊗ ||1|| � || f ||.

An important theorem about multiplication of matrices is that this operation is
associative:

||a|| ⊗ (||b|| ⊗ ||c||)� (||a|| ⊗ ||b||)⊗ ||c|| � ||a|| ⊗ ||b|| ⊗ ||c||

So, the parenthesis may be deleted.

An Exception

A scalar was defined as a matrix belonging to �1�1.With this definition it is impossi-
ble to make the product of a matrix by a scalar (the dimensions rule is not satisfied).
Therefore the product of a matrix || f || ∈ �I�J by a scalar a is specially defined by a
matrix belonging to �I�J where all elements of the first one are multiplied by a.
This is a small defect in the stenography!

Decompositions of a Matrix

A matrix can take different forms and mathematicians worked a lot about trans-
forming forms. The advantages of these other forms are to present, in a simple way,
interesting characteristics of a matrix. The most useful decompositions are the QR
and the SVD.

Assume the matrix we are interested in belongs to �I�J.

h f g f g f g fi j i j i j i k k j i K, , , , , , , ,� � � � � �1 1 2 2⋅ ⋅ ⋅L L ⋅⋅ ⋅g f gK j i k k j
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Figure 1 Multiplying two matrices.



The QR decomposition is the fact that any matrix can be written as the product
of two matrices, the first one, noted ||Q||, being orthogonal and the second one,
noted ||R||, being triangular superior.

The SVD decomposition is the fact that any matrix can be written as the product
of three matrices:

1. The first one is orthogonal and belongs to �I�J. It is generally called ||U||.
2. The second one is diagonal and belongs to �J�J. It is generally called ||D||. It is a

square matrix which has as many lines and columns as the number of para-
meters. The values which are in the diagonal matrix are called the “singular val-
ues” of the matrix; they are represented by the symbol dj.

3. The third one is also orthogonal and belongs to �J�J. It is generally called ||V||T.

Norm of a Matrix

There are several definitions of a matrix norm. The most frequently used is given by:

where q � 2 is the most common. This norm is then based on the usual norm of the
vectors, defined as:

A quick definition of the matrix norm is the norm of the largest vector which can
be obtained by applying the matrix to a unit vector.

Matrices, as Mathematical “Objects”, Also Have Special Properties

These properties come from looking at matrices as operators. This simply means
that a matrix can be seen as an operator which transforms a vector into another
vector; we write:

According to the multiplication rule, if ||M|| ∈ �I�J, then g
r

must have J rows
(type �J�1) and f

r
will be a vector with I rows (type �I�1).

Eigenvalues and Eigen Vectors of a Square Matrix ||M||∈�J�J

Eigen vectors (also called “characteristic vectors”) are vectors which are transformed
by matrix ||M|| into vectors parallel to themselves: if E

r
is an eigen vector, then:
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where � is a scalar, called an eigenvalue (or a “latent root”, or “characteristic root 
or value”).

The Case of Full Rank, Symmetric, Matrices

These are the only matrices for which we are going to search the eigen vectors and
the eigenvalues.

For these matrices:

● there are J different eigen vectors;
● these eigen vectors are orthogonal;
● the eigenvalues are real;
● the sum of the eigenvalues is equal to the trace of the matrix, and their product is

equal to its determinant (consequently if an eigenvalue is very small, the determi-
nant of the matrix may be small as well and its inverse may be quite large).

If ||M|| is non singular, the eigenvalues of ||M||�1 are the inverse (1/�j) of its
eigenvalues.

Relationships with the Singular Values

The eigenvalues are the squares of the singular values:

One advantage of the singular values on the eigenvalues is that the search for the
singular values does not require the inversion of the matrix, whereas it is necessary
for the search of the eigenvalues: if the matrix ||M|| is ill conditioned, the latter may
not exist, when the first ones always do.

� j jd� 2
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Part Contents

Chapter 1 From the Sample to the Population
A few definitions
The distribution of the cost variable inside the population
The only information we have is given by a sample
Going from the sample to the population

Chapter 2 Describing the Population
Center
Spread
Shape

Chapter 3 Typical Distributions
This chapter is just a reminder of several well-known distributions which are often used.

Our domain of interest is all the products, or objects, or “things”, whatever the name you
want to use, made by man. These things can be anything, such as roads, or bridges, or houses,
or cars, or cameras, or software, etc.

It can also be the activities carried out by man, as activities can be dealt with exactly the
same way as products.

The set of all these products or activities can be seen, from our point of view, as potentially
infinite. In this set, we follow, for cost estimating them, the common practice of grouping
them in specific subsets and we will investigate each subset independently of all the other
ones.

A subset we are interested in is called a “population”. This term will be defined in Chapter 1.
Presently consider a “population” as the set of all the objects we would intuitively consider
together for comparisons purposes. As you will certainly not compare together bridges and
cameras, a population can be here defined as either as a set objects fulfilling the same func-
tion(s), or a set of similar activities. In the first case, a population will therefore also be called
a “product family”, in the second case an “activity family”, the first term being used as a
generic term.

As we are not concerned by human population, we will generally use the words “product
family”: it clearly express what we have in mind, but the term “population” will still be used
from time to time. Potentially this product family is an infinite set of “similar” (we will insist
on the definition of this word in Chapter 1) products.

The “distribution” of the cost inside this product family is what we are interested in for
decision-making purposes. It is of course unknown.

In order to get an idea about it, we gathered in our database (statisticians would say: “we
draw a sample from the population”), a, sometimes small, set of products we consider belong-
ing to this product family.

This whole volume is dedicated to answering the question:

What can we infer about the product family from the knowledge of the sample?

This first chapter briefly explain the path we will follow to answer this question.
The basic idea is the following one: the distribution of the cost can be a function of a lot of

variables. Such a function will be very difficult to work with. Therefore our objective will be to
replace it by a distribution of just one variable, distribution which will be much more practical
for our objective.

The basic idea for attaining this end will be made in three steps:

1. We will look for the “center” of this distribution in the sample.
2. Once we know it we will study the distribution of the costs,always in the sample,around this

center. This distribution is much easier to study because it does not depend anymore on
many variable.



3. We will then extrapolate these results from the sample to the “population”(or product family).

To implement this idea it is important to start with the study of populations which do not
depend on any variable. This study will introduce most if the concepts we will extensively use
afterward.

This is the purpose of this Part I.
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1 From the Sample to the Population

Summary

An “object” in this book is something which has to be manufactured (for products)
or more generally realized by using a specific process. So the word “object” must be
understood in a very large way: it can be a part of an equipment (such a mechani-
cal part, or an electronic board, or even an electronic chip), the equipment itself
(such as a printer, or a reactor), the software, the system it belongs to (such as an
airplane), a building or part of it, a trench, a tunnel, etc. or even an activity (such as
boring a hole in a plate, painting a room or performing a surgical operation).

The term “population” is generally used for naming the whole set of objects the
statistician works on. The same name is kept in this book; however our populations
are very special: a population is the set of objects which constitute what will be
called a “product family”. Such a family must be as homogeneous as possible, the
degree of homogeneity being let to the cost analyst.

In a product family, objects may more or less differ, depending on the level of
homogeneity. Their differences are quantified, or more generally described, by
variables. A rule of the art is “the less homogeneous the product family, the more
variables you need”. At the minimum, the size of the objects – by their physical
size, or by their functional size – must be described. This chapter first presents 
a few definitions.

The purpose of this book is to forecast something about any object of a product
family (our population): it can be the cost of manufacturing it, or the time to do it,
or the tooling which is needed, or anything else. In order to be able to make this
forecast, we get a sample (it is the data we start from) from which we are going to
extract the information we need. The logic for doing it is exposed in Section 1.4
which is an important section of this chapter: it shows how the study of a complex
distribution of several variables can be solved by studying the distribution of one
variable only.

The concept of distribution of one variable will therefore be present in any part
of this book: it must be fully understood by the user and, for this reason, Chapter 2
presents different ways for describing such a distribution: the purpose of this
description is that it would be extremely difficult to continuously work with the full
distribution: it is much more easier to use a limited set of descriptors.

Chapter 3 is devoted to the description of several “standard” distributions, which
are very well known: if any of our distributions looks similar to ones of them, solu-
tions are immediately available.



1.1 The Population

A Few Basic Definitions

The term “product” is a generic term used to call any item we are interested in: it
can be an equipment, a spare part, a software, a building, a tunnel, etc.

A population1 is defined in this part as the set of products we are interested in.
The number of products which constitute a population can be finite or infinite;
most often it will be regarded as infinite for a reason which will appear later on.

A variable is one of the characteristics of the products belonging to this popula-
tion. To be really interesting this variable must be defined for all the products. The
number of variables attached to a product is finite: it can be the cost, the mass, the
material, the time to carry out an activity on the products, etc.

1.1.1 The Concept of Product Family

The concept of product family is one of the most important concepts when dealing
with data for preparing a tool for cost, or any other thing, forecasting.

A product family is a population constituted of homogeneous products. Products
are homogeneous if:

1. they fulfill the same function (homogeneous functionality),
2. they fulfill it about the same way (homogeneous design),
3. they are prepared about the same way (homogeneous preparation).

Consequently and ideally (but it will be shown that one can slightly deviate from
this ideal with the use of variables, quantitative, qualitative or subjective) a product
family is a set of products:

1. fulfilling the same function(s),
2. designed the same way,
3. manufactured from the same materials (for hardware products),
4. using the same manufacturing process,
5. and which, consequently, differ only by their size.

A formula (or CER, which stands for “cost-estimating relationship”) is, nowa-
days, an algorithm which can be used for cost estimating of all the products belong-
ing to the same product family. The formula is part of a “specific model”: a model
because its purpose is to mathematically modelize the behavior of a variable (the
cost for us), specific because it addresses one and only one product family.

The first characteristic of such a model is therefore its specificity, which means
that it deals with homogeneous products; the first consequence of this statement is
that a model can only be used for the product family it was built for.

Experience shows that many models give poor results because they were created
from heterogeneous data. The first responsibility of the cost analyst is then to check

6 Population and Sample

1 The word comes from the fact that statistics were, and still are, developed for the study of human pop-
ulations. For the same reason, the objects of the population are generally called “individuals”.



the homogeneity of the products he/she puts in a given product family. It is not
always as simple as it may look.

Figure 1.1 illustrates an ideal product family.
Using the same preparation (or manufacturing for hardware products) tech-

nique(s) – unless a dedicated variable is used for this purpose – is an important
condition: in a specific model one does not have to describe how the product is manu-
factured. This simplifies a lot the process of preparing the model: the idea is to com-
pare together products costs; this can only be done if costs are homogeneous; one
of the conditions of this homogeneity is that the manufacturing methods be about
the same.

The first, and important, consequence of working inside a product family is that it
is not possible to cross the product family border: one does not know how to go from
a product family to another one. The fact to have a specific model for bicycles, for
example, says nothing about washing machines. It is an important restriction to the
use of specific models: when you want to use such a model in order to estimate the
cost of another product, the first thing you must do is to check that this new product
really belongs to the product family the model was built for. It is not always so easy.

The first thing that the cost analyst must do is to make sure about the homo-
geneity of the products he/she wants to compare.

1.1.2 The Variables

The variables are the second important concept which has to be investigated in
order to build high-quality cost-estimating models.

The strict definition of the product family we gave in the previous section seri-
ously limits the potential use of a model. It is rare in the industrial world that 
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we can dispose of a set of completely homogeneous products.Variables are used to
overcome this problem.

The purpose of the variables (quantitative or qualitative), beyond the size
effect, is to palliate some inhomogeneities inside the product family.

This must be emphasized: the purpose of the variables is not to describe the
products in “absolute terms” as we did it when dealing with general models, but in
“relative terms”. This means that these variables are there to mention only the 
differences between the products.

Three different types of variables can be considered: quantitative, qualitative and
subjective.

Quantitative Variables

Quantitative variables are information which express the result of a measurement;
the mass of product, its volume, its power, its load, … can be measured: they are all
quantitative variables.

The result of a measurement is given by a number which can vary continuously:
the mass of a product can be 2 or 3.6 or 5.78 kg, etc. Consequently it will be consid-
ered in the computations that it is a continuous variable, which means that:

1. arithmetically the number may have as many decimal as the user wants,
2. mathematically it is possible to compute the derivative of the function giving the

relationship between the cost and these variables.

The idea of considering that a product family includes a potentially infinite
number of products comes from this assumption.

One must add that considering that the quantitative variables are continuous
greatly simplifies the computations …

Qualitative Variables

Experience shows that qualitative variables are not generally well understood by
cost estimators and even cost analysts.

A qualitative variable expresses a fact which cannot be measured. An equipment
can be made in steel, in aluminum,or in titanium: the material is a qualitative variable.
It can be produced by company A,or B,or C,…: the manufacturer is a qualitative vari-
able. The technology used can be mechanical machining, or electro-erosion, or chem-
ical erosion, or anything else: the manufacturing technology is a qualitative variable.

Since a qualitative variable cannot be measured:

1. Its value is given by a name or an adjective. In order to avoid the word “value”
which generally refers to a number, the name “modality” will be used in this
book. If for instance a manufacturer may work from three different types of
materials, we will say that the qualitative variable “material” has three modali-
ties: steel, aluminum, titanium for instance.

2. The set of modalities is finite and discrete. This is one of the major difference
between a quantitative variable and a qualitative one, difference which can be
used for discriminate these types of variables. The number of modalities is the
important input when defining qualitative variables.
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Two points must be added at this stage in order to avoid any confusion between
the variables types:

1. It is not because modalities of a variable can be expressed by numbers, as they
sometimes are, that such a variable is defined as quantitative.

2. Not all qualitative variables are qualitative by nature.

These points are commented on the two following examples.
Suppose you work with electrical engines and that you have in your database

engines with 4, 6 or 8 poles. The number of poles is obviously given by a number;
but, as it is not a continuous variable (you cannot have an engine with 4.7 poles),
it should be defined as a qualitative variable. You could of course define it as a 
quantitative variable; what we mean by that is the algorithms used for computing a
formula can very well work with integers (even if they do consider them as contin-
uous) and will therefore deliver a result. But we will see, in Chapter 5 dealing with
qualitative variables, that it is not the best solution from a cost-estimating point 
of view.

Let us take another example: if you work with two materials, for instance steel
and aluminum, you can only consider the material as a qualitative variable (named
“material”) if the products are entirely made out of steel or aluminum. But you may
very well have a product which is made 30% out of steel and 70% made out of
aluminum, another one made 60% out of aluminum and 40% out of steel, etc. In
such case you better consider other, quantitative, variables now named “amount of
steel” and “amount of aluminum”. Such a solution is theoretically possible, but may
not give good results if products are a mix of different technologies: it could be dif-
ficult to compare two products – even if the percentages of steel and aluminum are 
the same – if for one product the steel is used for low-technology parts and for the
other one for high-technology parts. The conclusion is of course that the cost 
analyst should have some information about the products and decide accord-
ingly: defining a variable as quantitative or qualitative is sometimes a question of
judgment.

Let us conclude this section by saying that a variable is often not qualitative by
nature, but by decision of the cost analyst; his/her decision rests on the fact that
he/she considers that the variable for all the products – existing or potentially exist-
ing – in the studied product family can only take a few vales; the fact that these val-
ues can be associated with a number (such as the example with the poles) or an
adjective (such as high quality or not) is not relevant to this decision.

Subjective Variables

This is a special type of quantitative or qualitative variables.
They are different by the fact that they do not express “facts” but “judgment” or

“opinion”. A good example is given by the word “complexity” which tends to be
widely used by some cost analysts. It can be defined as a continuous variable and
quantified as such (the complexity of this product is 7.3 for instance) or as a dis-
crete variable (with a few modalities such as from “very complex” to “very simple”).
The important thing about this complexity – unless it is derived from an algorithm,
which is another question – is that it does not describe a fact such as “steel”, or 
“aluminum” but tries to quantify a judgment.
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Using such a variable has two important consequences.

1. First of all it can be considered as an attempt to mix, in the same product family,
heterogeneous, sometimes very heterogeneous, products. To readdress the exam-
ple given earlier on bicycles and washing machines, one may try to aggregate both
in the same family, saying that bicycles have a “complexity” of 2.3 and washing
machines a “complexity”of 3.5. This could be possible if we were sure that the way
the cost changes the same way with the size, let us say the mass. But the purpose
of using the data we have is precisely to discover that. Handling these data the
conventional way will force this change to be the same; we are not discovering
something: we are just trying to force nature to enter in a narrow corridor.

2. The difficulty about the judgments is that we are never sure, even when they are
made by the same person, about their consistency. When they are made by dif-
ferent persons, we are never sure if these persons apply the same set of, generally
informal, rules for going from the product description to this complexity;
the main problem comes from the fact that complexity takes into account a lot 
of hidden variables, and that we are not sure if everybody considers the same
variables, if they understand them the same way and if they aggregate them the
same way.

There are some procedures which may alleviate this difficulty, such as the Delphi
method. One is discussed in Chapter 6 of Volume 1. But the problem must not be
overlooked.

This type of variables should be avoided as much as possible. If you cannot avoid
them, prepare a list of “sub-parameters” to be used (it does not solve the problem if
these sub-parameters also are subjective but allows to discuss between experts on
more homogeneous territories),and the way the notations on each will be aggregated
(What is the “weight”of such or such sub-parameter?). The minimum is to get a scale
of complexity with several well-known examples positioned on this scale.

When using subjective variables, try to avoid to use quantitative values on them:
judgment or opinion cannot be easily quantified …

1.1.3 Formula or Analogy?

What are the advantages of using a formula instead of analogy?
Conceptually the major advantage comes from the fact that cost estimating using

a formula is built on all the data present in the family, whereas analogy is built on the
two or three data which are in the vicinity of the product to be estimated: the foun-
dations of the estimate based on a formula are much more stronger.

Practically:

● A formula is easy to prepare,once the analysis of the data has been seriously made.
● It is, and this may be the most important point, an extremely powerful tool for

communication. The person who receives the information immediately under-
stands its validity if the way the cost changes with the parameter(s) is displayed
to him/her. Other examples of communication are for instance:
– looking for products of which cost seems abnormal,
– comparing our products to the competition,
– choosing between several possible solutions, etc.
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● It is also an excellent tool to visualize the quality of an estimate.When one param-
eter only is involved, displaying the curve of the nominal cost – what will be called
the “dynamic center” – with the data makes immediately appear the level of con-
fidence we may have in an estimate. If several parameters are involved, computing
the standard deviation of the residuals may be more informative.

1.1.4 Breaking the Symmetry

Data analysis deals with variables: it makes comparisons, studies dependencies, etc.
Mathematically speaking all quantitative variables play the same role. Practically,

we break the symmetry by deciding which is the “dependent” variable, which are
the “causal” variables. Once again such a decision has nothing to do with the theory,
it is only made for practical reasons: very briefly we are interested in forecasting the
cost when the mass (of a new product inside the product family) is known, not to
estimate the mass when the cost is known!

It must be added that, when the design to cost started to be implemented in vari-
ous companies, some people, starting with the cost objective, tried to estimate the
size of the product. If this size is defined by the mass, this effort has little interest; but
if the size is defined by the technical specifications of the product, it might be a good
process. Nevertheless in such a case, the symmetry was not really restored: the basic
relationship was prepared to relate the cost to some functions of the other variables,
and this relationship was simply “inverted”in order to compute a mass from the cost.

Breaking the symmetry has importance consequences.
It allows us to define the cost (or anything else) as the “dependent” variable, and to

speak about the other variables as “causal” – commonly called “parameters”, or “cost
drivers” (all these terms are synonymous) by the cost analysts. These terms are not
accepted by the mathematicians who say that nothing allows us to decree what is
dependent and what is not.Let us hope that they will forgive us “this language abuse”.

In order to make this break very clear, the dependent variable will always be
called2 Y, and the values it takes noted in the population Y1, Y2, … , Yi, … whereas
the causal variables are called V1, V2, … , Vj, … and the values they take for a specific
product belonging to the product family Xi,j (value of variable Vj for product Ai).
The name V0 will represent a constant, if it is needed.

Causal variables – quantitative, qualitative or subjective – will be called “para-
meters”, or “cost drivers”. The dependent variable will be generally called the cost
in this book, but it may be anything else such as the duration, or even the mass if
you are trying to estimate the mass from technical specifications.

Note About the Word “Parameter”

Be careful about the word “parameter”: it is used in different disciplines with dif-
ferent meanings. This is particularly the case in statistics, which is a domain very
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close to ours. In statistics a parameter is a characteristic of a distribution3, such as
the arithmetic mean, the standard deviation, etc. A distribution of which the shape
is known – for instance to be normal, or log-normal – is said to be “parametric”. In
mathematics, a parameter is just an auxiliary variable.

In this book, a “parameter” means a variable the cost analyst considers as rele-
vant to his/her study. But the name will be avoided as much as possible.

1.1.5 What Could, Should, be the Causal Variables?

Consequently we have three types of variables:

1. One, and only one, dependent variable (the cost in general for us).
2. One or several quantitative causal variables.
3. Zero or several qualitative causal variables.

First of all, and this is obvious – even if it may be overlooked by cost analysts –
variables are choosen in order to be known when an estimate is requested: it does
not serve any purpose to work on a variable that has a very limited chance to be
known when it will be requested.

Among the quantitative variables, there is one which has nearly always to be
there: it is the object size; the size answers the question: Is it small or large? Except
in extremely rare circumstances a product family contains different products of
different sizes and the size is nearly always one of the most important cost drivers.
Some cost analysts try to use a quantitative “complexity” – which, as explained
upward, is a subjective parameter – without taking into account the size, the logic
being that this complexity includes the size. Experience shows that, even in this
case, using the size always improve the quality of the model.

An interesting question is often: Should we use functional or physical descrip-
tors? A functional descriptor is a variable which is interesting for the object user;
examples are given by the power, the capacity, the number of seats, the range, the
tolerances, etc. A physical descriptor is a variable seen by the object designer, such
as the mass, the volume, the number of parts, etc. Our recommendation will be to
capture both:

● Functional variables will be really helpful at the early stages of a project on one
hand (at these stages these variables are the only one to be known), for the man-
agers on the other hand: managers are not especially interested in the object
mass, but they have to understand the relationship between functional charac-
teristics and cost in order to carry out trade-offs analysis and so are able to offer
the best compromise between these characteristics and the cost.

● Physical variables may be helpful later on when the design is more advanced: at
this time these variables may be known and they will help the design engineers
to reduce the manufacturing cost, and sometimes the development cost.

This discussion means that the cost analyst should always think, when developing
a cost model, to develop two cost models at the same time, one using functional vari-
ables, the other one physical variables. Both will be helpful during the project life.
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1.2 The Distribution � of Y for the Population

Being able to tell the cost of any product belonging to the population is equivalent
to knowing the distribution of the cost variable Y for the entire population. This
distribution is called �.

This distribution is of course unknown to the cost analyst.
To each product are associated the values of quantitative and maybe modalities of

qualitative variables.The challenge is then to use this known information to get some
knowledge – not a complete one but a sufficient one – about this distribution �.

If the parameters are properly selected, they will be known at the time we want
to make an estimate for a new product.

The way we can do that is based on a belief about cost.

What Do We Believe in?

We believe in two things:

1. Cost does not arrive by chance, even if there is a small randomness in human
activity.

2. Cost depends on a lot of variables.

The consequence of these beliefs is the following one: if we were able to know all the
variables which influence the cost, its value could be forecasted with a great accuracy.

Any scientific research is based on the assumption that there is a relationship
between the dependent variable Y and something else (the variables or cost drivers).
In other words, the value of this variable Y is not a random value, arriving just by
chance.To be completely exact the assumption is that the order of magnitude (for the
time being, just consider the current sense of the terms) of this variable is not ran-
dom, as some uncontrollable events may add some randomness around this order of
magnitude, this randomness being small compared to the order of magnitude.

This belief sounds reasonable when we deal with cost. It is the foundation of our
studies.

But we have to go one step further: we believe that there is a relationship between
this variable Y and some parameter(s) belonging to the product. As strange as it
may seem once we are used to study these relationships, this belief is not shared by
everybody: many people still think that the only way to make a cost estimate of
something is to go in many details. As it is impossible to convince anyone by argu-
ing, we may only recommend to these persons to try it.

But for the time being, it is only a belief. A very strong belief, based on all the
results which have been accumulated for years, but nevertheless a belief.

This belief is nowadays expressed by a mathematical relationship: we believe
there is a relationship (capital italic letters are used for the population):

Y � F(X1, X2, … ; B0, B1, …)

where X1, X2, … are the values of what we call the parameters or the “cost drivers”
we are supposed to know, and B0, B1, …, some coefficients which, for the present
time, we do not know. These coefficients are specific to the product family (our
population).
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Do not be afraid by the apparent complexity of the relationship: we will need
very rarely so many variables and coefficients: it was just written to be as general as
possible.

1.3 Drawing a Sample from the Population

The way to find out:

1. the shape of function F(),
2. the values of the coefficients B0, B1, … 

is to make some observations and to “extract” them from these observations.
The observations – the ones we already got from the database for our product

family – is, in statistics, called the “sample”.
A sample is characterized:

1. By its size (the number of individuals extracted from the population), which is
called I;

2. By the distribution of the cost values, distribution noted �. This distribution is as
complex as the distribution � of the population and cannot therefore be used
without some work on it.

Many things have already been written on sampling in order to test a relation-
ship (as it is the case when a new medicine is discovered and tested for example) or
to find out some characteristics of a population (as it is the case before an election).
These things can be grouped into two sets:

1. How to choose a sample which will not give biased results?
2. How to go from the values observed in the sample to the values we are interested

in for the whole population (the coefficients B0, B1, B2, …)?

The first set is of no interest to us. It would be nice to, randomly, sample the cost
of a few products (the theory could help us to select the “right” sample), but this is
clearly impossible.We have to accept the data as they are (once they are normalized):
they are our sample. We generally have no way to select another sample – from the
same population or product family – or, most often, even to add another data to our
sample. Either it is impossible, or it would cost too much: we have to be happy with
what we have and infer from it.

However the second set is extremely important to us: it is our objective in saving
our data. This volume will explore some of the most important concepts derived by
mathematicians and statisticians in order to achieve this result. How it is done
practically will be developed in the following chapters; these chapters will use all
the concepts introduced here.

A Preliminary Warning

You will learn in these chapters that most of these concepts – and of course the results
we arrive at when applying them to real situations – are only true if the sample is
really randomly selected from a population. For this reason, we want to warn you
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that care should always be taken before accepting some statistical results from
computations made on your sample: maybe they are based on hypotheses which
are not satisfied in this sample. As everybody knows (but it has to be recalled):

Before accepting the results of a computation check if the hypotheses on which
it is based are satisfied.

This is the basis of science, but it is often overlooked when dealing with cost. It
often happens that some computations are used because they are the only ones
available, on the first look, without checking if they are relevant.We will insist often
in this volume on this subject; for the present time, do not consider that the result
given by an algorithm found in a book is true without checking when it can be
accepted as such.

Independent Observations

Independence is a very useful concept in the theory of probability: two events are
said to be independent (Ref. [49], p. 32) if they do not mutually interact or are not
jointly influenced by other events. Independence greatly simplifies the computa-
tions when dealing with probabilities.

Observations put in a sample are always assumed to be independent. This is gen-
erally the case, in the cost domain, when a sample includes products manufactured
by different companies, or made by different departments of the same company, or,
at different times, inside the same department.

However similar products manufactured at the same time by the same company are
probably not independent: if a problem occurred during the manufacturing of one of
them, we can reasonably expect that the same problem occurred for all of them.

Dependent observations may introduce a bias in the relationship we want to
establish, or produce an autocorrelation between the residuals.

1.4 Using the Sample Values

1.4.1 The Three Possibilities

The only reason for collecting values (which constitute our sample) is to use them
for estimating the costs of new products belonging to the same product family.

There are three ways4 and probably only three ways, very different, to use the
sample data for our purpose. They are called: the “CBR”, the “frequentist”
approach, and the “Bayesian” approach. The present section reminds the founda-
tions on which they are built and describes the basis of their application.

The “CBR” or “Case Based Reasoning”

The axiom of the CBR is the following one: there is no difference between the sam-
ple and the population: the population is the sample. There is no need to build a
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specific model for this population, because we already know the cost of each indi-
vidual of the population.

Any new product – what is to be estimated – is a “foreigner”: it does not belong
to the population and, consequently, we cannot apply to it any model which could
be built on the population value. Nevertheless this foreigner is described by the
same variables or parameters as any member of the population.

What can then be done for this “foreigner”? We can do something about it if it is
not too different from someone belonging to the population. In order to see if it is
not too different, we have to quantify a “distance” between the individuals, distance
which will be applied to the foreigner.

A distance is not too difficult to define if only quantitative variables are used:
there are several possibilities which will be described in Chapter 3.1. But what can
we do if we have a mix of quantitative and qualitative variables?

The “distance” will be used for finding the individual of the population which
can be considered as the most similar to the foreigner: starting from the variables
which describe the foreigner, we will search the individual of which the set of vari-
ables – considered as a whole – are as the most similar to the ones of the foreigner.
If this set of variables include qualitative ones, we will limit the search to the subset
of the same qualitative variables.

How should this search be organized: if the qualitative variables include 
five modalities, called A, B, C, D and E, should we start the search with A or with B,
etc. … The answer to this question can only be found by a reorganisation of the
data base according to the degree of significance of each modality. This is the major
difficulty of the CBR. Generally this degree is found by using the concept of entropy.

The “Frequentist” Approach

The frequentist approach is based on the following axiom: the sample was ran-
domly from a population in which the dependent variable Y (the cost for us) is
linked to the causal variables by a relationship:

Y � F(X1, X2, …; B0, B1, B2, …)

in which the coefficients B0, B1, B2,… are fix, well defined, values.
Of course we do not know these values. In order to find at least an approximate

value of them (we will call them “estimates” of the true values) we will look at the
frequencies the cost values in the sample change with them: the name of the
approach comes from this strategy.

This is the classical solution.

The “Bayesian” Approach

The Bayesian is based on the same axiom: the sample was randomly from a popu-
lation in which the dependent variable Y (the cost for us) is linked to the causal
variables by a relationship:

Y � F(X1, X2, …; B0, B1, B2, …)

but now the coefficients B0, B1, B2, … are defined as random variables. This means
that they may – slightly – change from one individual to another one.
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This approach, still rather unconventional, does make sense: how can we be sure
that the coefficients have fix values inside a product family? We saw in Volume 1
that the cost of a product, due to the way, we, as humans, work may fluctuate (we
call it “chance” in Chapter 18 of this Volume 1): one way of expressing this “chance”
is to consider that the coefficients may slightly change from one product to another
one. The Bayesian approach is therefore more closer to the reality than the fre-
quentist approach.

But this is not all: we said in Chapter 17 that any experienced cost estimator has
a preconceived idea about what a product should cost. Pushing the analogy a little
bit farther, we can say that any experienced cost analyst has a preconceived idea
about the value of (maybe only some of them) the coefficients B0, B1, B2, … . How
can we express this preconceived idea: very simply – because this cost estimator
has only a limited knowledge about the product family – by saying that this person
has an “a priori” knowledge of the distribution of the these random coefficients;
this shape of this distribution is generally “normal”.

How does the Bayesian approach works then? The cost analyst starts from this a
priori distribution of the coefficients and use the sample to see if it confirms it or
not. More precisely the sample values are used, taking into account the a priori dis-
tribution, to compute a “a posteriori” distribution. This approach uses Bayes’ theo-
rem, well known in the theory of probabilities.

Experience shows that the confidence interval of a cost estimate will be generally
smaller with a Bayesian approach than with the frequentist approach, the logic
being that information is added to the information contained in the sample.

This book is dedicated to the conventional “frequentist” approach: we believe it
has to be known by the cost analyst, before other approaches can be investigated. It
is therefore a good start. Other approaches will be dealt with in another volume.

1.4.2 The Logic of the “Frequentist” Approach

Working with the distribution � of the cost in the sample would be difficult.
The logic is to replace for both the sample and the population the costs distribu-

tions5 by a set of two things:

1. A relationship (� for the sample, � for the population) related to the center of
these distributions. This relationship quantifies how the center changes with the
variables: for this reason it will be called a “dynamic” center.

2. The scattering of the costs around this center: the relevant distributions are
called � for the sample, 
 for the population.

The work will be done into two distinct phases: the first phase works with the
sample, the second “extrapolates”, the results observed in the sample to the whole
population.

We therefore work in two steps:
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1. We substitute to w two things which are easier to handle:
● The center of this distribution. This center will be a fix number, called ŷ, if

no parameter is considered: it will then be called a “static center”. It will be a
“dynamic center”, called ŷi (the symbol y reminding it is a cost, or more 
generally, the value of a dependent variable, the index reminding it is a value 
computed for a particular product and the little “hat” it is the center we are
looking for).

The computation of ŷi may be rather complex. It will be made, at its turn, in
two steps:
– A decision on the form of the assumed relationship F(). No algorithm is

available for automatically finding this form: the cost analyst will have to
make a decision, based on his/her experience, on the shape of the data (for
this reason being able to visualize the data is an important part of the data
analysis) and maybe on the theoretical relationship between the cost and
the parameters (if a theory is available for the studied product family).

More exactly, as the reader will see, the decision is made for function f(),
based for instance on the shape of the data, and then the same function will
be used for the population.

This assumed relationship may include several coefficients, called B0, B1,
B2, … . The value for product Ai is of course ŷi.

– The values of these coefficients for the sample – they will be represented by
small letters, such as b0, b1, b2, … – will be computed by minimizing the
“distances” between yi and ŷi.

Computing these distances will require the definition of a metric – 
which is only the way distances are computed, as there are several ways to
do it.

● The distribution � of what is left when this value ŷi is “removed” from the cost
yi of product Ai. This “what is left” will be called the residual corresponding to
this product Ai. Residuals can be expressed in several forms:
– An additive form:

ei� � yi � ŷi

– A multiplicative form:

– Or any other form such as (ŷi/yi) � 1 or anything else.
The reader must pay attention to the fact that residuals and distances are two
different concepts. It may happen that the same values are used, but it is not the
general case and certainly not a reason to confound them.

2. When this is done, the results (ŷi and �) will be applied to the whole population,
resulting in two things:
● A formula F(), based of course on the f() relationship.
● The distribution 
 of the deviations of the true values of the costs in the popu-

lation from the relationship F().
Note that the model is the sum of these two things.

The reader may note that the word “residual” is used for the sample, the word
“deviation” being preferred for the population. This preference has three 
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reasons: the first one is not to confuse what is done for the sample and what is
done for the population; the second one is that we try to develop f() from the
sample data, but, as this operation cannot take all the information existing in the
sample, some “residuals” do exist; the third one comes from the fact that we
believe that the relationship F() is, on the average, the right one, but that individ-
ual products may deviate from this average relationship.

Figure 1.2 synthesizes the approach.
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Figure 1.2 The logic of the work.

6This is the reason why we are always very skeptical about models built on a sample when we know that
several products were removed from the sample: by removing data which are considered as trouble
makers, you can prove anything! If a data has to be removed, the reason for its removal must be com-
pletely explained …

1.5 How Do Probabilities Creep into Our Business?

Basic probabilities will be often used in this volume.What do they have to do in our
business which is so far away from randomness and probabilities?

We are so used at using probabilities that we rarely ask ourselves the question:
How do probabilities come into the picture?

The answer to this question is here rather simple: you have certainly noticed that the
word “random” or “randomly” has already been used several times. This is how prob-
abilities penetrate our domain: we consider that the data we have (our sample) were
randomly selected among an infinite population (we know this is not exactly true, but
there is at least a part of truth: let us say that we happened to know the cost of several
products, and these products were not selected with an objective in our mind6 from
the set of products we have inside the product family belonging to our database).

If the sample was randomly selected, we could have observed (always for the
time being in the same population) other products and probably different costs.
From these observations we would have drawn different conclusions for our coeffi-
cients B0, B1, B2, …



Different yes! But how much different? All the mathematics developed for manip-
ulating random numbers could probably be useful to answer this question and that
will be shown.

And, from now on, probabilities are here to stay …

1.6 Conclusion

The beautiful thing about this approach is to be able to replace something which
might be very difficult to handle by something much easier to handle:

● A formula.
● The distribution of one quantity only (the residuals for the sample or the devia-

tions for the population) around this formula. Even if several variables or param-
eters are attached to the products, this distribution plays with one variable only.

This makes the approach extremely useful for practical purposes.
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2 Describing the Population

Summary

An “object” is in this book something which has to be manufactured (for products)
or more generally realized by using a specific process. So the word “object” must 
be understood in a very large sense: it can be a part of an equipment (such a
mechanical part, or an electronic board, or even an electronic chip), the equipment
itself (such as a printer, or a reactor), the software, the system it belongs to (such 
as an airplane), a building or part of it, a trench, a tunnel, etc. or even an activity
(such as boring a hole in a plate, painting a room or performing a surgical 
operation).

The term “population” is generally used for naming the whole set of objects the
statistician works on. The same name is kept in this book; however, our populations
are very special: a population is the set of objects which constitute what will be
called a “product family”. Such a family must be as homogeneous as possible, the
degree of homogeneity being let to the cost analyst.

In a product family, objects may more or less differ, depending on the level of
homogeneity. Their differences are quantified, or more generally described, by
variables. A rule of the art is “the less homogeneous the product family, the more
variables you need”.At the minimum, the size of the objects – by their physical size,
or by their functional size – must be described.

This chapter first presents a few definitions.
The purpose of this book is to forecast something about any object of a product

family (our population): it can be the cost of manufacturing it, or the time to do it,
or the tooling which is needed, or anything else. In order to be able to make this
forecast, we get a sample (it is the data we start from) from which we are going to
extract the information we need. The logic for doing it is exposed in Section 4 of
Chapter 1 which is an important section of this book: it shows how the study of a
complex distribution of several variables can be solved by studying the distribu-
tion of one variable only.

The concept of distribution of one variable will therefore be present in any part
of this book: it must be fully understood by the user and, for this reason, this chap-
ter presents different ways for describing such a distribution: the purpose of this
description is that it would be extremely difficult to continuously work with the full
distribution: it is much more easier to use a limited set of descriptors.

The next chapter is devoted to the description of several “standard” distribu-
tions, which are very well known: if any of our distributions looks similar to one of
them, solutions are immediately available.



Distributions of values of one variable only play an important role in this book:
as explained in the previous chapter, what we are trying to do is to replace complex
distributions involving several variables by a mono-variable distribution.

Several characteristics of these distributions will be frequently used. We found it
convenient to group them in one chapter.

A distribution is defined here as a set of I values that takes a variable here called
z. These values will be called z1, z2, …, zi, …, zI.

Such a set is difficult to handle. To simplify computations based on the sample,
mathematicians found a few concepts that can be substituted to it. The purpose of
these concepts is to describe the distribution by a few characteristics; for most of
the applications, these few characteristics describe this distribution with a suffi-
cient accuracy for practical purposes. Therefore, most of the computations can be
made on them instead of the distribution itself.

There are two ways to build these concepts. The first one can be defined as 
“analytic”, the second one as “global”. There are obviously relationships between
these two ways.

One Example

For illustrating the discussion of the different approaches, we will use the following
example:
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3.4
4.2
6.3
8.2
9.9

16.3
21.2
35.9
46.5
64.5
84.5

The approach works step by step. It analyzes the distribution into two 
components:

1. Its center on one hand.

2. The scattering of the values around this center, on the other hand. This scattering
can be, in its turn, studied in two complementary ways:
– The general spread of the values (How much are,generally speaking,scattered the

values around the center?).
– The shape of this spread (Is it symmetrical around the center for instance?).

Generally speaking, two characteristics only are considered as sufficient to
describe this shape.

A distribution can therefore be characterized either by the information it contains
or by four characteristics (quite often the first two are only used).



2.1 The Center of a Distribution

Note: 1. This chapter is just an introduction to the subject.A detailed analysis of the
concept is postponed to Part III, which describes, from a mathematical
point of view, this concept.

Note: 2. When dealing with one variable only, the center should be called the “static
center” in order not to confuse it with the “dynamic center” developed in
Part III.

Note: 3. In order to simplify the notations, the center will be generally written as ẑ,
would it be static or dynamic.

The first important characteristic of any distribution is its center ẑ; it has therefore
to be determined with care. You may have an intuitive perception of what the cen-
ter of a distribution is. This is nice, but in order to work with it (calculate it and use
it), we need a formal definition of what the center is.You will then discover that the
concept of center is far from obvious and that it is impossible to define the center
in an unambiguous way: there are as many centers as you may think of, and each
center has a special purpose.

The general definition of the center of a distribution can be the following one: the
center is “a value which is as close as possible to all values present in the database”.

2.1.1 A First Approach

What do we mean by “close”? Two definitions of the word can be given at this stage
(more comments will be done on this concept in Part III) ẑ can be said to be close to
zi if the difference of their values is close to 0, or if the ratio of the values is close to 1.

Using the Differences: The Arithmetic Mean or “Expected Value”

If the differences are used, the center is the value for which the sum of all the 
differences between this center and all the data is equal to 0:

The value can be then immediately computed as:

which is called the “arithmetic mean” or the “arithmetic average”.As it is very often
used, it is generally called just the “mean” and receives a particular symbol: z–. For
the example given at the beginning of this chapter, z– � 27.355.

The expected value of a random variable, defined by:

● for a discrete variable E(z) � �
i

zi P(zi) where P(zi) is the probability to get the value
zi (if all the values are different, as it is generally the case in a sample, then
P(zi) � 1/I);

ẑ
I

zi
i

�
1 ∑

(ẑ zi
i

� �) 0∑
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● for a continuous variable (which is generally the case for the populations)
E(z) � ���

��
z f(z)dz where f(z) is the probability density function;

is equivalent to the arithmetic mean. This explains why this mean is so often used
for defining the center of a distribution.

What Happens to the Arithmetic Mean When the Variable Is Transformed by a Linear Relationship?
Suppose we make a linear transformation of the variable. Let us assume that zi is
replaced by:

if for instance we translate the scale and change the unit (for instance replacing €
by k€). If k � z

u
and r � 1, the variable z′ is said to be “centered”; it will be noted czi.

If k � z
u

and r � sz (sz is the standard deviation of the distribution, defined below)
the variable z� is said to be “centered and scaled”; it will be noted cszi. These vari-
ables are often used in the computations.

It is easy to show that

which means that the value of the center is divided by the change in the unit (this is
normal) and translated by the translation expressed in the new unit (this is also
understandable).

Using the Ratio: The Geometric Mean

If the ratios are used, the center is the value for which the product of all the ratios
between the center value gẑ and all the data is equal to 1:

Here also the value is immediately computed as:

which is called the “geometric mean”; as this value is little used, there is no need to
give it a special symbol. In the given example gẑ � 16.39.

These values are rather different! But both can legitimately be called the “center”
of the distribution. It is a first perception of the fact that the center is a value which
results from conventions, or from a deliberate choice.

For our purpose this procedure for finding the center is a bit “rough”, as – due to
the sign effect in the first case, to the quotient effect in the second case – values may
compensate each other. We would like to define the center with more flexibility in
order to adjust it to the particular problems we have to solve.
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2.1.2 Other Approaches

Several other measures for the center of a distribution have been defined and are
widely used.

The Median

The median – often symbolized, due to its importance, by the symbol z% – is a very
important characteristic when working with scattered data. One of reasons is that
this characteristic is much more “robust” than the arithmetic mean (the concept of
robustness is defined and largely used in Part III).

The median is defined as the value which has as many values in the sample
greater than it as it has values smaller that it. For a odd number of data, the median
receives a value belonging to the sample (in our example z% � 16.3); if this number
is even, we choose the half sum of the values close to it for instance deleting the
value 84.5 in the example will give a median equal to 13.1.

When the data are scattered – and it is not rare in the domain of cost – the
median gives a more intuitive idea of the center of a distribution: just look at 
the data and decide where you would like the center of the distribution to be! The
problem with the mean is that it is very sensitive to values which are away from 
the center of the distribution. For instance, if the data point 84.5 is deleted in the
example, the mean goes from 27.4 to 21.6: a change of about 6, whereas the median
sees a change of about 3.

We will therefore have to return to the median when dealing with cost distributions.

The Harmonic Mean

The harmonic mean is defined as:

This value is rarely used (the reader will find in Ref. [49], p. 88 examples of usages)
in the domain of cost. For the example, the harmonic mean is equal to 10.01.

The Mode

In a continuous distribution, the mode is the value which appears the most fre-
quently. In a discrete distribution, especially when each value appears only once,
another definition must be found. In order to find one, the range of the values is
divided in a few intervals of equal size and the mode is defined as the middle of the
interval which has the maximum number of data points.

What can be the width of an interval? A rule due (quoted in Ref. [49], p. 97) to
Sturges suggests to take

R
I1� 3.32 log

1 1
ẑ I zii

�
1∑
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where R is the range (the difference between the maximum and the minimum 
values). This gives for the example 18.19.We therefore have six intervals given below.
The mode of this distribution would be the middle of the first interval, or 14.

26 Population and Sample

Interval Quantity

3.4–24.6 7
24.6–39.8 1
39.8–57.9 1
57.9–76.2 1
76.2–94.4 1

2.1.3 Conclusion

One can define many centers for a distribution; the following figure illustrates the
different values computed. As said earlier, all of these values may pretend to be the
center of the distribution. The choice could therefore be a matter of personal
choice; but it is mainly dictated by the easiness of computations and by the mathe-
matical properties of the selected value.

This explains why the mean is so often used, despite its defects in our domain,
where, as it will be illustrated below, the median would certainly be more appropriate.

3.4

4.2

6.3

8.2

9.9

16.3

21.2

35.9

46.5

64.5

84.5

harmonic mean
mode
median
geometric mean

arithmetic mean

You can see in this figure how scattered are the various centers of the distribu-
tion, and especially that the arithmetic mean is “far away” from the intuitive center.

2.2 The Spread of a Distribution Around the Center

The center is an interesting piece of information, but it does not reveal a lot of
things about a distribution. What can be done now is to study the scattering of the



data around this center: the word “around” is a very important word that we will
often meet in this book. The spread is not defined in absolute terms but in respect
to the center, which could now take a value of 0 as it does not play a role anymore
(data translated for having a center equal to 0 are said to be “centered”).

We start by quantifying the spread in the most frequent way, through the stan-
dard deviation and will then mention a few other measures of the spread.

2.2.1 The Standard Deviation

The standard deviation is defined by the formula, which clearly indicates that the
spread is measured around the mean:

The standard deviation is then equal to the square root of the average of the square 
of the distances to the mean; it clearly uses the Minkowski metric with � � 2 (this
metric will be mentioned in Part III) and is therefore consistent with the usage of the
mean; its unit is the same as the one of the data and therefore its interpretation is easy.

The standard deviation uses the symbol s, always with an index reminding the
variable from which it is computed: the usage of the standard deviation is so largely
used that an index is a must. It is certainly the most used measure of the spread
around the mean.

Pay attention to the fact that some authors define the standard deviation as:

This comes from the fact that this s� is used as an estimate of the standard devi-
ation of all the products that could be incorporated in the same product family (the
population), standard deviation we will name S, with a capital letter. It is possible to
demonstrate that s is a biased estimator for this S, whereas s� is not. But this is true
when only one parameter is used and we do not see any reason to get away from the
definition of a distance average for such a particular case.

The square of the standard deviation is called the variance:

Its unit is the square of the unit of the data.
Variance is often defined as the second “moment” around the mean. The

moments are defined in more details in Chapter 18 of Volume 1; we just need here
the definition of the moments around the mean, also called “centered moments”.
The centered moment of order k is given, for a discrete variable (the definition can
easily be extended to continuous variables), by
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From this definition, it is clear that s2
z � �k � E((z � z–)2).

An important theorem about variances is related to the variance of a sum of two
random variables z and w. This theorem requires the definition of the covariance of
random variables.The covariance expresses the fact that two variables do vary in the
same direction together (more is given in Chapter 5 of this volume, paragraph 3.1.):

Then the variance of a sum of two random variables is given by:

What Happens to the Standard Deviation When the Variable Is Transformed by a Linear Relationship?
Suppose we make a linear transformation of the variable:

It is then easy to show that:

The variance is divided by the square of the scaling factor.

2.2.2 Other Measures of the Spread

The range, equal to the difference between the highest and the lowest value, is very
sensitive to “outliers”.

The interquartile range is more stable than the range. A 25% quartile is a value
which has 25% of the data smaller than it; a 50% quartile corresponds to the
median; a 75% quartile is a value which has 25% of the data higher than it. The
interquartile range is the difference between the 75% and the 25% quartile.

The average absolute range is defined by:

It is the average distance of the data to the mean.
The average deviation around the median is defined by:

This measure of the spread uses the Minkowski distance (defined in Chapter 8)
with � � 1. It is therefore consistent with the use of the median: if you use the
median as the value of the center of a distribution, you should use D% as the measure
of the spread.
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2.3 The Shape of the Distribution

The standard deviation quantifies the spread of a distribution, but does not say if it
is symmetrical around the mean, or more or less flat. The skewness and kurtosis fill
this gap.

Both characteristics are easily defined from the centered moments defined upwards:

2.3.1 The Level of Asymmetry (Skewness)

Both distributions represented below have the same mean and the same standard
deviation, but they are not identical.

The skewness of a distribution is given by (the notations are standard):

This skewness is equal to 0 for a symmetrical distribution; if the left part of the 
distribution is more extended than the right part (as it is for the dotted line in
Figure 2.1), the distribution is said to have a positive skewness: the probability of
finding a value higher than the mean is greater than the probability of finding a
value below the mean. A good example is given by the log normal distribution (see
Chapter 3).

2.3.2 The Level of Flatness (Kurtosis)

It is defined as:
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The “reference” of kurtosis is given by the normal distribution for which �2 � 3.
A distribution of which �2  3 is less peaked than the Normal distribution: a good
example is given by the Student’s distribution (see Chapter 3); this distribution is
always flatter than the Normal distribution and therefore has a kurtosis greater
than 3. Note that some authors define the kurtosis as �2 � 3 in order to have a 0
kurtosis for the normal distribution (the reference): with such a definition, they say
that a more peaked distribution has a negative kurtosis.

2.3.3 Using Higher Moments

It would be possible to use moments of higher order than 4 in order to get a more
precise representation of a distribution, but it is never done in practice, as the
amount of information they would provide is negligible.

2.4 The Concept of Degrees of Freedom

In the three-dimensional space, a point has 3 degrees of freedom: its three coordi-
nates may take independently all the values. If it has to remain on a surface, one
degree disappears because the three coordinates are linked by the equation of the
surface: if two coordinates are randomly selected, the third one is automatically
computed; it is said to have 2 degrees of freedom. If it has to remain on a curve, then 
2 degrees of freedom disappear because its coordinates are linked by two equations.

A similar idea is used in statistics. A sample of size I has I degrees of freedom,
and so has any value, such as the mean, computed only from the data themselves.
Now in the formula:

z– is supposed to remain constant, as we are computing the spread around the mean.
Due to that, the I values zi are not now totally free, because their sum must keep the
same value. The variance therefore has I � 1 degrees of freedom: it has less “liberty”
to move than the mean.

Generally speaking, the degrees of freedom of the result of the computation
based on a sample of size I is equal to I minus the degrees of freedom “absorbed”
by the values which are included in its formula.A formula which includes the mean
and the variance has I � 2 degrees of freedom.
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3 Typical Distributions

Summary

This chapter presents a few distributions which are often used in statistical analy-
sis. More details are given in specialized manuals and the purpose of this presenta-
tion is only to facilitate the reading of this book.

All the distributions reminded here deal with one variable only.
The reasons for these reminders are the following:

● Several of these distributions are useful for discovering some properties of the
extrapolations of the values computed for the sample to the whole population.

● Several characteristics of these distribution are very useful: they will be imme-
diately available to the reader.

● If the distribution you use is similar to one of these typical distributions, you
will find easily the response to some of the questions you ask.

● Several mathematical packages allow to write a formula and compute from it.
Using the formulae as described in this chapter will allow you to easily calculate.

The reader will find more information about these distributions in most books
on statistics.

3.1 The “Normal”, or Laplace–Gauss, Distribution

The Laplace–Gauss distribution, often called the “normal” law, is certainly the most
frequently used distribution (this does not mean that other distributions are abnor-
mal …). Its principal interest is that if a stable phenomenon which gives one output
value at each run (for instance the cost of same part machined on a repetitive
process) is subject to many small independent perturbations, each one being unable
to modify in a sensible way the phenomenon, then the distribution of the output val-
ues follows a normal distribution.

3.1.1 Mathematical Expression

The general expression is given by:
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The main characteristics of this distribution are its mean, m, its variance, s2, its skew-
ness, 0, and its kurtosis equal to 3.

The “normalized” expression (with a mean equal to 0 and a variance equal to 1)
is given by:

3.1.2 Geometrical Perspective

The distribution is represented in Figure 3.1.

3.1.3 Cumulative Distribution CN(x, 0, 1)

This is the most useful distribution; it gives the area under the curve from �� to x
(Figure 3.2).

Important Values for the Cumulative Distribution

CN(�1.96) � 0.025
CN(�1.6449) � 0.05
CN(�1.2816) � 0.10
CN(0) � 0.50
CN(1.2816) � 0.90
CN(1.6449) � 0.95
CN(1.96) � 0.975
Consequently 95% of the area is included between �1.96 and �1.96, and 90% of the
area between �1.645 and �1.645. These values are the most frequently used when
dealing with cost.
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Figure 3.1 Normal distribution.



3.1.4 Other Moments

Centered moments of order k are given by:

● if k is odd, �k � 0
● if k is even, �k � (k � 1) � (k � 3) � … � 3 � 1 � sr.

3.2 The Log-Normal Distribution

This is the distribution of a positive x variable such as its LN – let us call it � – 
follows a normal distribution N(�, 	). The distribution of � is then given by:

3.2.1 Mathematical Expression

The distribution of x depends on the two parameters � and 	; it is given by (pay
attention to the x in the denominator):

Its mean equals x– � e��(	2/2) and its variance s2 � e2�+	2

� (e	2

� 1) . Its mode is
given by e��	2

and its median by x~ � e�. The median is here an important charac-
teristic of this distribution, because it is not symmetrical.
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Figure 3.2 The cumulative normal distribution.



3.2.2 Geometrical Perspective

The distribution is represented1 in Figure 3.3, for � � 0 and 	 � 1 (full line) and,
	 � 0.5 (dotted line).
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Figure 3.3 The log-normal distribution.

3.2.3 About the Moments

The multiplicative moment of order k is given by:

From this formula the skewness and the kurtosis can be computed:

● Skewness � (e	2

� 2) � (e	2

� 2): this distribution is always skewed (and the
skewness is always positive), as the skewness can only be 	 � 0.

● Kurtosis � e4	2

� 2e3	2

� 3e2	2

� 3.

3.3 The �2 Distribution

3.3.1 Definition

There are two definitions of the �2 distribution:

1. Suppose we have a population with a variance S2.From this population is extracted a
sample of size I of which variance is noted s2.Then the random variable ((I � 1)s2)/S2

follows an �2 distribution with 
 � I � 1 degrees of freedom.
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1 This distribution is especially important for us with � � 0. For the full line, the mean is equal to e0.5 or
1.65, the mode to 0.37 and the median to 1.



2. Suppose you have now � independent “standard” normal variables N(0, 1), named
z1, z2, …, z�. Then the sum �


i�1 z2
i follows a �2

(�) distribution with � degrees of
freedom.

3.3.2 Mathematical Expression

The �2 distribution has one parameter, �, called the number of degrees of freedom.
It is defined for x � 0. The mathematical expression is given by:

The coefficient of skewness is given by 22/3v�1/2 and the kurtosis by 3 � (12/v).
The multiplicative moment of order k is equal to Mk � 2k � [�(k �

(v/2))]/[�(v/2)].

3.3.3 Geometrical Perspective

The distribution is given by Figure 3.4 for � � 4 (full line) and for � � 10 (dotted line).

3.3.4 Important Properties

Characteristics

The arithmetic mean is equal to � and the variance to 2�.
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Additivity

If two independent random variables have �2 distributions with �1 and �2 degrees
of freedom, then their sum also follows a �2 distribution with � � �1 � �2 degrees
of freedom.

3.4 The F-Distribution

3.4.1 Definition

There are two definitions of the F-distribution:

1. Suppose you have two populations normally distributed. Two samples, of sizes 
n1 and n2, are extracted from these populations; these samples show variances s2

1
and s1

2. Then the random variable x � s1
2/s2

2 follows an F-distribution with
�1 � n1 � 1 and �2 � n2 � 1 degrees of freedom.

2. If you have two �2 distribution noted �2
[�1] and �2

[�2], the ratio x � �2
[�1]/�1/�2

[�2]/�2
follows a F-distribution.

3.4.2 Mathematical Expression

The mathematical expression is a bit complex:

The mean value equals �2/(�2 � 2) and the variance is 

3.5 The Student Distribution

This is an important distribution for the practical use of specific models.

3.5.1 Definition

Suppose you have two variables:

1. x1 following a normal distribution N(x1, 0, 1).
2. x2 following a � 2

� distribution.
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Then the variable t � x1/(�x2/v� ) follows a Student distribution. The mean equals 0,
the variance is �/(� � 2) (which tends toward 1 if n is large), the skewness is 0 and
the kurtosis 3 ((� � 2)/(� � 4)). � is called the number of degrees of freedom.
These values show that the Student distribution tends toward the normal one when
� becomes large.

3.5.2 Mathematical Expression

The Student distribution is given by:

The moments are given by complex formulae; as they are never used, they are not
given for this distribution.

3.5.3 Geometrical Perspective

The shape of the distribution is given in Figure 3.5 for � � 3 (full line) and � � 20
(dotted line).
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3.5.4 Cumulative Distribution

The following table gives the values of x corresponding to the cumulative distribu-
tion starting from ��:

Cumulative
Number of degrees of freedom

value 5 10 20 �

0.025 �2.571 �2.228 �2.086 �1.960
0.05 �2.015 �1.812 �1.725 �1.645
0.10 �1.476 �1.372 �1.325 �1.282
0.50 0 0 0 0
0.90 1.476 1.372 1.325 1.282
0.95 2.015 1.812 1.725 1.645
0.975 2.571 2.228 2.086 1.960

This table gives the value of x for a given cumulative value: for instance if the num-
ber of degrees of freedom is equal to 10, and x � �1.812, then the area under the
curve on the left of this value is equal to 0.05, which means that the area on the right
is equal to 0.95 (the total area being normalized to 1). If the number of degrees of
freedom is very large (column “�”), the Student distribution is equivalent to the
Normal distribution; from the values of the table, one can clearly see that as soon as
the degree of freedom exceeds about 10, the Student distribution can, for practical
purpose in our domain, be replaced by the Normal distribution.

The values of the table are said to be “one tail”. If you want the range – symmet-
rical around 0 – in which x must be in order to get 90% of the surface, it means that
each tail must have a surface of 5%, which means that x must be inside the range
[�1.725, � 1.725] or |x| � 1.725.

3.6 The Beta Distribution

3.6.1 Definition

The beta distribution is a unimodal distribution defined between two values l and
h. It depends on two parameters called � and �, thanks to which the distribution
can take a lot of different forms. The easiness with which these forms can be writ-
ten makes this distribution often used when the range of the variable is limited.

3.6.2 Mathematical Expression

It is given by:

where �(u) � ���
o tu�1e�t dt generalizes the factorial function: when u is an integer,

then �(u � 1) � u!
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If we normalize the interval of variation to [0, 1], the function is easily written as:

where the constant �(� � �)/�(�)�(�) is there just to insure that the area under
the curve is equal to 1.

The main characteristics of the normalized distribution are given by:

mean �

variance �

mode �

The multiplicative moment of order k is given by .

3.6.3 Geometrical Perspective

The following graph shows the distribution for different values of � and � (Figure 3.6).
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Part II
Data Analysis Precedes the Search for 
a Specific Model



Part Contents

Introduction
The main steps for carrying out a data analysis.

Chapter 4 Data Analysis on One Variable Only
Only one variable is considered; this variable can only be the cost (or the specific cost, or any
other thing) of several products belonging to the same product family.

This is a simple case, of which purpose is mainly to introduce several concepts.
As there is only one variable to consider, only steps 1 and 3 are relevant.

Chapter 5 Data Analysis on Two Variables
Each variable can here be investigated independently of the other one.

But it is also important to consider both variables simultaneously. In this domain three
steps are now relevant: steps 1, 3 and 4.

Chapter 6 Simultaneous Data Analysis on J � 1 Quantitative Variables
The variables are now the cost, or any other thing, plus J �1 quantitative parameters.

This is the general case: all the steps are now relevant.

Chapter 7 Working with Qualitative Variables
Qualitative variables are important in cost estimating, because it is extremely rare that 
a product family is homogeneous enough to avoid them.

Therefore, they have to be studied as well.

Summary

A sample is a collection of normalized data, the normalization process being there
in order to make the data comparable. But this process does not guarantee that no
mistake was made during the data collection or that any problem will not occur
during the following steps of which purpose will be to “extract” from the data the
information which can be used for cost-estimating new products belonging to the
same product family.

Never start building a specific model without making first an analysis of your data.
This step is especially important when dealing with several quantitative variables.

The logic for the data analysis is triple:

1. checking for any mistake or “abnormal” data;
2. detecting, before any other computation is made, any potential problem;
3. obtaining an understanding of the data structure in order to be able to decide on

the work that can be done on the data and the results which can be expected.

Generally speaking an analysis of a set of data drawn from a product family must
always follow the following steps:

1. Search for outliers (the definition of an outlier is given in p. 43).
2. Search for possible multi-collinearities between the causal variables (collinearity

between the causal variables and the cost is what we are looking for and there-
fore is not dealt with here).



3. Visualization of the data, in order to understand their structure, which means
answering some questions such as:
– Is the set of data homogeneous enough, or should we split it into sub-families?

If, for instance, we find that the distribution has two modes (it is then said
“bimodal”), then the product family should probably be broken into two “sub-
families”.

– Are there any outlier that step 1 could not detect? Some outliers are for
instance detected in step 1 with an algorithm based on the distance; but dis-
tant points are not necessarily outliers.

– How are the data related (if at least two variables are simultaneously checked)?
– Finding a standard distribution curves (the most frequent distribution curves

are listed in Chapter 3) that may usefully be used instead of the real distribu-
tion. The advantage of doing so is that all the characteristics of these standard
distributions have already been computed: this simplifies the work. For
instance a distribution curve may look very similar to a normal distribution.
As this normal distribution is very important, you will find in Chapter 15
some tests allowing to check the “normality” of a given distribution.

4. Quantification of the perceived relationships between the variables. If we per-
ceive relationships between the variables, it is convenient to quantify these rela-
tionships in order to decide on the future use of these data.

This chapter describes how these steps may be carried out, depending on the
number of variables which the cost analyst considers relevant. The description is
here limited to quantitative variables only; other information for other cases will be
given in the dedicated chapters.

Introduction

You have collected data; these data have been normalized and are organized in a
database; now you want to use the data for preparing your future cost estimates.

The starting point of this part is a product family, as it is described in Chapter 1.
You believe that the products inside this product family are homogeneous enough
to be dealt with simultaneously; simultaneously being the key word: you are not
going to consider – inside the product family – each “data point” independently of
the other ones, but consider all the data points together.

Data analysis must precede any attempt to build a specific model. It is extremely
important; unfortunately many cost estimators forget about it.

The purpose of the analysis is to “discover” your data in order to prepare, in the
most efficient way, their treatment.

This implies to distinguish the dependent and the causal variable(s): any rela-
tionship between the first one and any other one is a good thing (it is what we are
looking for!). Any relationship between the causal variables can be dangerous.

Analyzing the data generally involves four major steps:

1. Discovering if there is some “abnormal” data: Abnormal data – frequently called
“outliers” – are data, of which quantity is very limited (otherwise they would 
not be “abnormal”), which by their sole presence may seriously modify any rela-
tionship between the “normal” data. The seriousness will of course have to be
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quantified: what do we mean by serious? And the potential damage will have to
be quantified.

2. Dealing with a possible multi-collinearity between the data: Of course, this con-
cerns only data involving several independent variables. It is, in such a case, one
of the major problem of data analysis, because it may produce instabilities in the
relationship between the dependent variable and the causal ones.

3. Visualizing the data: This is something important.An algorithm will always pro-
duce a result – except in rare circumstances (for instance if a matrix is ill condi-
tioned) – but this result must be interpreted.We do possess a wonderful “sensor”
for interpretation: the eye! As often as we can it is always extremely useful to
present the data in a visual form: the human brain is rather poor in interpreting
a table of figures; it is extremely powerful at interpreting a figure. The purpose is
to find out the relationships between the data.

4. Quantifying these relationships: The human eye is a very interesting sensor for
possible relationship, but our mind is rather poor for quantifying them. The pur-
pose of this quantification is to compare them. This quantification will produce
a few figures which will:
– confirm the impression given by the visualization;
– make the data set as a whole easy to handle: it is always easier to handle a few

“summary figures” than the whole set of data.

Once this is done, you will be well prepared to establish a quantified relationship
that will be used for cost predictions.

Once you have finished this part, you have not yet any tool for making a cost esti-
mate. You are only confident that the data you have for the product family you are
working with are homogeneous, reliable, sufficient and proper to extract some-
thing that will become your cost-estimating tool for this family. The process by
which you will extract this something will be fully discussed later on.
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4 Data Analysis on One Variable Only

Summary

This chapter is just an introduction to the subject: when dealing with a distribution
involving just one variable, data analysis is rather straightforward!

Nevertheless some algorithms may be useful when the number of data becomes
large.

These algorithms deal with two subjects:

1. Search for outliers.
2. Visualization of the data, in order to understand their structure, which means

answering some questions such as:
– Is the set of data homogeneous enough, or should we split it into sub-families?

If, for instance, we find that the distribution has two modes (it is then said
“bimodal”), then the product family should probably be broken into two 
“sub-families”.

– Are there any outlier that step 1 could not detect? Some outliers are for
instance detected in step 1 with an algorithm based on the distance; but 
distant points are not necessarily outliers.

– Finding a standard distribution curves (the most frequent distribution curves
are listed in Chapter 3) that may usefully be used instead of the real distribu-
tion. The advantage of doing so is that all the characteristics of these standard
distributions have already been computed: this simplifies the work. For
instance a distribution curve may look very similar to a normal distribution.

When a population is defined by one variable only, this variable is the one we are
interested in, the one which was defined as the “dependent” variable, even if here it
is considered that it does not depend on anything. Most often it is for us the cost,
but it can be the specific cost or anything else.

It is labelled Y and the observed values are called yi, the index i varying from 1 to
I (I being the number of products). This “empirical” distribution, which is the 
distribution of the values inside the sample, is named �.

Working with just one variable rests on the assumption that this variable does
not depend, in the studied domain, on another variable. A sample of data is 
collected in order to answer these questions:

1. Is this assumption valid?
2. What is the distribution of the values of this variable, distribution which will 

be used to forecast the value of a new product belonging to the same product
family?



The answer to these questions will be given in Chapter 8. Before we answer them
from the data collected in the sample, we must analyze these data in order to 
prepare these answers.

Let us give a few technical examples of situations where a population can be
defined by just one variable:

● the duration to accomplish several times the same task (as for going from your
home to work);

● cost (more exactly price) proposals made by different companies for the same
work;

● cost of the same product made several times, etc.;
● plus a frequent situation in cost estimating: the wish, or the will, to use the 

specific cost (a discussion about the use of the specific cost is postponed to Part V)
for making a forecast. The specific cost is the cost per unit of size, such as the
cost per kilogram for mechanical or even electronic equipment, the cost 
per square meter for apartments, the cost per instruction for software (or its
opposite which is called the “productivity” which is the number of instructions
performed per unit of time), etc. Many people still believe it is constant.

This chapter deals with the analysis of the empirical distribution � (the sample).
This analysis will be used, in Chapter 15, for establishing results valid for the whole
population from which the sample is drawn, which means for establishing some
properties of the distribution � of the whole product family.

The theory will be here illustrated with the set of data of the Table 4.1 or Example
A; it is representative of values which can be observed when measuring a relatively
stable phenomenon.
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Table 4.1 The set of data used for
illustration (Example A).

Data number Value

1 11.60
2 12.10
3 10.20
4 12.60
5 11.10
6 12.15
7 11.65
8 12.90
9 11.20

10 11.65
11 12.40
12 13.30
13 11.25
14 11.70
15 12.45
16 11.80
17 12.50
18 11.40
19 11.84
20 11.90



4.1 Looking for Outliers

Definition of an Outlier

An outlier is a value which, by its sole presence, profoundly changes the character-
istics of the distribution. Such a concept is easy to illustrate when two variables are
considered: refer to Figure 5.5 for a clear example. Here it designates a data point
(this group of words will be used as a synonymous of “product” or “observed
value”) which is far away from the other data. The only question is to define what
we mean by “far away”.

An Algorithm

Sprent and Smeeton ([53], p. 409) after writing that many tests for outliers lack
robustness, recommend to compute the “median absolute deviation” (MAD) of the
distribution:

The word “median” is defined in Chapter 2 of this volume: if you sort the data in
ascending order, it is the data which has as many values under it than over it. In the
example given in Table 4.2, the median is equal to 11.82 (when the number of data is
even, the median is the arithmetic average of the values which framed the median).

The absolute deviations around the median are here given by the second column
in Table 4.2; they are sorted in the third column of the same table. The median of
this new set equals 0.495, which is the MAD.

MAD median median� �y yi i( )
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Table 4.2 Potential outliers.

Values sorted Values less median Values less median sorted

10.20 1.62 0.02
11.10 0.72 0.02
11.20 0.62 0.08
11.25 0.57 0.12
11.40 0.42 0.17
11.60 0.22 0.17
11.65 0.17 0.22
11.65 0.17 0.28
11.70 0.12 0.33
11.80 0.02 0.42

11.84 0.02 0.57
11.90 0.08 0.58
12.10 0.28 0.62
12.15 0.33 0.63
12.40 0.58 0.68
12.45 0.63 0.72
12.50 0.68 0.78
12.60 0.78 1.08
12.90 1.08 1.48
13.30 1.48 1.62

Median line



They then propose to consider as potential outliers the data which are at more
than 5 MAD from the median. In the example, this means that the data outside the
interval [9.345, 14.295] should be viewed as outliers. According to this procedure,
there is no outlier here.

This algorithm for detecting potential outliers looks conservative enough for our
purpose: the risk to consider as an outlier a reasonable value is very limited.

Note

Instead of the value proposed by Sprent and Smeeton [53], we sometimes use the
MAD defined from the mean:

which is easier to compute. The result is very similar.

4.2 Visualizing the Distribution

The purpose of the visualization is to use our eyes, which are – with our brain – a
fantastic device for capturing information from a picture, in order to discover
potential problem in our data.

The visualization of a distribution is different if it is discrete or continuous. As
both distributions are present in our analysis (the distribution of the sample values
is discrete, whereas the distribution of the population, supposed to be infinite in
size, is continuous), both visualizations must be considered.

4.2.1 Visualizing a Discrete Distribution

The data can be presented in values or in cumulative form.

In Values

Instead of the values themselves, it is usual to display their relative frequency.
If the set of possible values is limited, the bar graph is the obvious representation

of the data. For instance if you play with a dice (six values only are possible), you
may observe the number of occurrences in a set of 300 trials in Table 4.3.

In order to normalize the values (the purpose being to compare this distribution
with others), it is usual to display the relative frequencies, as in Table 4.4.

As the number of possible values is very limited, the eye is here able to get a gen-
eral picture; but it becomes difficult to get this general picture if this number is
larger than 10. A bar graph, as the one displayed in Figure 4.1 (pay attention to the
scale selected for the ordinates axis: it enlarges the visual differences between the
relative frequencies), and helps to grasp the major features of this distribution.

MAD median mean� �y yi i( )
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If the set of the values depends on the sample, and if, as it is generally the case in
cost analysis, each value occurs only once, such a graph cannot be used. The idea is
then to group the data in a limited number of intervals and to compute the number
of data in each interval. The choice of the interval side depends on the desired 
precision and of the number I of data points. Sturges (quoted by Sachs [49], p. 53)
suggested the following number of intervals:

For example given in Table 4.1, one can use the following intervals: (10.0–10.5),
(10.5–11.0) (11.0–11.5), (11.5–12.0), (12.0–12.5), (12.5–13.0) (13.0–13.5), and
(13.5–14.0), with the rule that the upper side of the interval belongs to it, but not the
lower side. For instance 11.5 belongs to the interval (11.0–11.5).

Our table takes now the form given in Table 4.5.
The distribution can now be easily displayed,as in the previous section (Figure 4.2).

number of intervals 1 10� � �3 32. log I
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Table 4.3 Values and number of occurrences.

Values Number of occurrences

1 47
2 49
3 55
4 52
5 49
6 48

Table 4.4 Relative frequencies.

Values Number of occurrences

1 0.1566
2 0.1633
3 0.1833
4 0.1733
5 0.1633
6 0.1600
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Figure 4.1 Bar graph: showing relative frequencies.



In Totals

A first way to get an overview of the cumulative distribution is straightforward. It is
illustrated on Figure 4.3 established from the values computed in Table 4.6.

A second way is to compute the “percentiles”. Percentiles are based on ranks: a
value which has p data lower then it is said to be at percentile 100(p/I) (I being
always the number of data). For instance in the data displayed in Table 4.1 and
sorted in Table 4.2, value 11.2 is at percentile 10, value 11.40 at percentile 20, etc.

Percentiles, because our number of data is generally limited, are often too detailed
and we prefer to use quartiles. The first quartile corresponds to percentile 251 (11.50
in the example), the second to percentile 50 (it is also called the median), etc.

An information which sometimes useful is the “interquartile range”: it is defined
as the interval from percentile 25 to percentile 75 and therefore includes 50% of the
data centered around the median. In our example, the interquartile range extends
from 11.50 to 12.425; its value is 0.975.
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Figure 4.2 Bar graph: percentage of data (in values) in each interval.

Table 4.5 Percentage of data (in values) in each interval.

Interval Number of data %

(a) 10.0–10.5 1 5
(b) 10.5–11.0 0 0
(c) 11.0–11.5 4 20
(d) 11.5–12.0 7 35
(e) 12.0–12.5 5 25
(f) 12.5–13.0 2 10
(g) 13.0–13.5 1 5

Total 20 100

1 This percentile is sometimes called a “hinge”, for instance by Mosteller and Tukey [43], as well as 
percentile 75.



4.2.2 Visualizing a Continuous Distribution

A continuous distribution is obviously represented by a curve, as illustrated on
Figure 4.4.

The total area under the curve is normalized to a value of 1. Consequently the
area between two values, such as a and b, gives the relative frequency of values that
can be found between these two limits.

Obviously the cumulative distribution can also be drawn: the shape is similar to
the one illustrated on Figure 4.3, but is “smooth”.
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Figure 4.3 Bar graph: percentage of data (in total) in each interval.

Table 4.6 Percentage of data (in total) in each interval.

Values sorted Values added %

10.20 10.20 0.0429
11.10 21.30 0.0896
11.20 32.50 0.1367
11.25 43.75 0.1841
11.40 55.15 0.2320
11.60 66.75 0.2808
11.65 78.40 0.3298
11.65 90.75 0.3789
11.70 101.75 0.4281
11.80 113.55 0.4777
11.84 125.39 0.5275
11.90 137.29 0.5776
12.10 149.39 0.6285
12.15 161.54 0.6796
12.40 173.94 0.7318
12.45 186.39 0.7842
12.50 198.89 0.8368
12.60 211.49 0.8898
12.90 224.39 0.9440
13.30 237.69 1.0000
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Figure 4.4 Distribution curve for a continuous variable.



5 Data Analysis on Two Variables1

Summary

This chapter deals with a set of data containing the values of two variables, one 
of which being the “dependent” or “explained” variable (for us, generally the 
cost) designated by the letter y. In this set, the analyst thinks there is a linear corre-
lation between the variables, or at least wants to check the possibility of such 
a correlation.

What do we mean by “linear”? Let us remember what we are looking for: we are
looking, in our sample, for a relationship which can be written:

where y represents the value of the dependent variable, x the value of the causal
variable (unique in this chapter) and 

r
b a set of numeric constants, called the “coef-

ficients”, conveniently represented by a vector.
In most statistical books, “linear” means that the function f is a linear function 

of the elements of
r
b. In other words a relationship such as:

is called “linear” and there is some logic in this appellation, as we will discover in
the following chapters.

But it is not our definition of linearity at this stage: we are looking for a relation-
ship which is linear in x. It is just a question of definition, because it will also be 
linear in terms of the coefficients; such a relationship can be called “bilinear”:

and such bilinear relationships are the subject of this chapter.
In order to be able to develop a bilinear relationship, we have to study the distri-

bution – generally called the “empirical distribution” � – of the dependent variable.
This chapter is the first necessary step towards this direction.

y b b x� �0 1

y b b x b x� � �0 1 2
2

y f b x� ( , )
r

1 All the computations made in this chapter were performed with EstimLab™.



Analysis of a distribution of two variables must always follow the following steps:

1. search of outliers,
2. visualization of the data,
3. quantification of the perceived relationship between the variables.

All these steps will be discussed in detail one after the other in this chapter.

5.1 Looking for Outliers

Let us recall the definition of an outlier: it is a data point that, by its sole presence,
seriously changes the relationship we try to establish between y and x.

The following example (unfortunately real) clarifies the idea:
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x

y
P

Figure 5.1 What is an outlier?

2 Such an exponential or quadratic relationship would certainly better fit with the data as they are. For
selecting such a relationship we have to be sure that:

1. P is a realistic data,
2. it does make sense, technically speaking.

Suppose we are looking (because we have a preconceived idea about the rela-
tionship between x and y, as we would think differently if we were looking for an
exponential or a quadratic relationship2) for a linear relationship between x and y:

● When data point P is present, the relationship may take the form of the dotted line.
● When it is absent, the relationship takes the form of the full line.

It is clear that point P, by its sole presence, profoundly modifies the considered
(bilinear) relationship between x and y: it is a potential outlier.

Note that we call it a “potential outlier”, first of all because we have a precon-
ceived idea about the relationship, second because, if we are extremely confident
about its value, maybe some of the other points are “true outliers”.

Always remember that this visual approach and even the computations only give
a symptom which must be corroborated by your judgment.

This Figure 5.1 allows distinguishing two kinds of outliers, that we call “outliers
by position” and “outliers by cost”.



An “outlier by position” is a data point of which the causal variable is “far away”
from the bulk of the data. For instance on Figure 5.1, data P is an outlier by position
because the value of its causal variable is away from the other data points. Outliers
by position only can be an excellent thing for the cost analyst, because it can confirm
a general trend given by the bulk of the data. However, the attention of the cost ana-
lyst should be drawn to these data: Is it normal that in our database we have a data
so far away, as far its causal variable is concerned, from the other data? Is it not due
to a typing mistake?

An “outlier by cost” only is a data point of which the dependent variable is “far
away” from the bulk of the data, although its causal variable does not differ so
much from the other data. Such a data point is probably a true outlier and it should
be carefully checked by the cost analyst. Outliers by cost are most often more 
dangerous than outliers by position: they can completely damage the searched 
relationship between cost and the causal variable.

Data point P in Figure 5.1 is an outlier both by position and by cost. Such data
points, if the analysis reveals that the values are correct, are interesting because they
suggest that the linear relationship we are looking for is probably not the right one.
In the case of Figure 5.1, one would certainly prefer the “correction by constant” for-
mula that will be explained later on in this book (Chapter 12 in Part III). Figure 5.1
clearly shows the interest of the graph for deciding on what to do with the outliers.

5.1.1 A First Approach: Looking at the Graph

The first way to search for outliers is consequently to look at the graph displaying
the values of y as a function of x. It is simple but is more useful to detect errors 
(if most of the data are not too much scattered) than to find “true” outliers.

However, it may sometimes be difficult to use, as the following example 
illustrates.

Let us assume that our data have the following values (Example C) which are
defined as matrices in Table 5.1.

The graph of these data is reproduced in Figure 5.2. The data points are rather
scattered, but it so happens from time to time. Is it possible to decide, on this 
simple graph, what are the best candidates for being outliers? Probably not,
although points E and F may appear as good candidates.

Clearly the eye, as powerful as it is, cannot sometimes decide between several
potential outliers. Some computational aids are required; this is the purpose of the
following paragraphs.
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Table 5.1 The set of data used
in Example C.

|| || || ||y x� �
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00
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700



Three different directions can be taken:

● The first one looks only at the causal variable, which means it attempts to detect
“outliers by position”. This idea is that if one value of the causal variable is “far
away” from the other ones, we may have some doubt about the belongingness of
the related product to the product family we put it in. Are we sure that the same
technology was used for manufacturing this particular product? Quite often
when the size (when one causal variable only is used, it generally quantifies the
size of the product) of a product does increase too much, a different technology
may have to be used.

● The second one looks at the dependent variable, which means it attempts to detect
“outliers by cost”. Looking at the values of this variable, we may ask the question:
Is not one value,compared to the other ones and taking into account the difference
in size, too large or too small? The difference may be due to a typing error, or to 
a change in the technology, or anything else, but it has to be noticed.

● The third one looks at both variables at the same time; it is based on the preci-
sion with which the coefficients b0 and b1 will be computed, precision which
depends at the same time on the dependent and the causal variables; we can
expect that, in the presence of outliers, this precision will be degraded.

The three directions are successively investigated.

5.1.2 Looking at the Causal Variable: Introduction to the “HAT” Matrix

The “HAT” matrix delivers a lot of useful information about the causal variable and
only about it. This matrix is defined as

|| || || || || || || || || ||h x x x xt t� � � �
�

�⊗ ⊗ ⊗( ) 1
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Figure 5.2 The data points (Example C).



where ||�x|| represents the causal values matrix ||x|| to which a column of 1 was
added (unless we force the intercept to be 0, which is rather rare in the domain of
cost), and ||�x||t its transpose (see the section called “What you need to know about
matrices algebra?” located at the beginning of this volume). This “HAT” matrix is a
square �I�I matrix (I represents the number of data points) entirely defined by the
causal variables.

For the example presently studied, the ||�x|| matrix is defined as Table 5.2 and its
“HAT” matrix is computed as (note it is a square matrix with seven lines and seven
columns) displayed on Figure 5.3.

For clarity purpose, the diagonal elements, which are the values we are interested
in, of this matrix are placed between two straight lines.

How can we interpret these numbers?
The computation of one element of this matrix is relatively easy in the present

case when there is only one causal variable:
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0.396

0.093

�0.044

�0.136

0.322

0.047

0.322

0.27

0.108

9.927 � 10�3

�0.055
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0.108

0.153

0.18
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0.162
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�0.136
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0.198
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Figure 5.3 The “HAT” matrix for Example C (the values between the two dotted lines are the diagonal
elements).

Table 5.2 (Example C).

|| ||� �x

1 320
1 400
1 650
1 800
1 900
1 400
1 700



and therefore the diagonal elements are given by:

From this expression, it is clear that, when there is only one causal variable Σi hi,i � 2,
the sum of diagonal elements of this matrix is equal to 2.

At this stage these diagonal elements hi,i are particularly interesting. The denom-
inator of its expression is equal to the variance of x multiplied by I, if we represent
this variance by the symbol s2

x one can write:

Therefore Ihi,i � 1 can be interpreted as a “normalized – Euclidian – distance”between
product Pi and the “average product”, average product which can conveniently be
represented by the symbol P

u
.

This point is interesting for our search for outliers: when looking at the causal
variable, we are interested in data points which are far away from the “average
product” as Figure 5.1 illustrated.

How far can we consider that a product is an outlier? If the distribution of the x
is normal (this is a strong assumption!), Belsley, Kuh and Welsh remind [14] that
the expression:

follows a F1,I�2 distribution, with 1 and I � 2 degrees of freedom. This distribution
is briefly presented in Chapter 3 of this volume. From that distribution a threshold
can be computed.

Illustration

Returning to Example C, one should note first that the average value of the hi,i is
given by 2/I or 0.286. We expect the values for all the products to be in the vicinity
of this value: Figure 5.3 shows they are not far from it.

We can go one step further by computing, for each data point, the expressions
defined upwards and checking their distribution. These expressions are displayed
in Table 5.3 for each product, with I � 7.
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Table 5.3 Values of hi,i and of the expression.

hi,i Expression

0.396 2.096
0.270 0.871
0.153 0.060
0.282 0.969
0.451 2.806
0.270 0.871
0.179 0.220



The value of F1,5 which has a probability of 0.1 to be over passed is equal to 4.06.
Consequently for this example no product could be considered “too far away” from
the average product.

5.1.3 Looking at the Dependent Variable

We turn now to the search of data points for which the dependent variable takes 
a value which seems to be abnormally large or small. This search must take into
account the fact that, as presented at the beginning of this section, the value of
dependent variable is linearly related to the causal variable: its abnormality must
then be checked taking into account the change in the size.

This is done, for each data point, by computing the expected change of the
dependent variable with the size. The concept of the “dynamic center”3 does that.

The search for potential outliers now proceeds in three steps: the results for
Example C (data points are labelled in the order in which they appear in Table 5.1)
are presented in Figure 5.4:

1. The “dynamic center” is computed with all data points being present. The resid-
uals for the data points are computed (second column, called “Residual 1”) as
well as their standard deviation (not printed).

2. Then the “dynamic center” is recomputed without one of the data point. The new
residual (“Residual 2”) for the same data point is recomputed. This is done 
I times, successively for each data point.

3. For each data point, the difference between both residuals gives an information
on how much the dynamic center is changed when this data point is present or
not. For a normalization purpose, this information is divided by the standard
deviation mentioned in step 1 (above), multiplied by a factor which can be chosen
by the analyst (the default value of this factor is 1, which means that a change in
the residuals of �1 standard deviation is not considered as abnormal). It is then
multiplied by 100 to be read as a percentage. As an outlier is defined as a data
which, by its sole presence, profoundly changes the relationship we are looking at,
we expect that this percentage will be small for most of the data points, except for
the outliers.A threshold can be set for detecting potential outliers; in the following
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 53.588 
 17.148 
 251.558 

�16.506
�435.464
�345.970
 299.013

 11.746 
 2.567 
 21.278 

�2.576
�108.745

�51.798
 29.659

0.542
0.569
0.643
0.566
0.781
0.567
0.637

Residual 1 Residual 2 Relative variationName

A
B
C
D
E
F
G

 32.389 
 12.514 
 213.157 

�11.858
�239.201
�252.486
 245.485

R2

Figure 5.4 Looking at the changes in the residuals (Example C).

3 The concept of the “dynamic center” is developed Part III. For the time being, assume it is the result of
a linear regression.



Figure 5.4 the threshold has been set at 100% for the example: the potential out-
liers are indicated by values displayed in grey.

For Example C, only data point E is, according to this computation, a potential
outlier.

4. Simultaneously, the value of the coefficient (this coefficient is defined in Chapter 16
(Part V)) of determination (R2) is computed
– first of all when all points are present: its value for Example C equals 0.603,
– then when each data point is successively deleted in the computation.

For Example C, one immediately remarks that this R2 dramatically changes when
data point E is removed, as its value goes up to 0.78, whereas its average value when
the other data points are deleted is around 0.6. This means that removing data
point E improves considerably the quality of the formula we can compute: this data
point is certainly an outlier.

This example shows that these rather simple computations are a very efficient
tool for detecting the “true” outliers.

What happens when data point E is deleted in the computations?
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Residual 1 Residual 2 Relative variationName

A
B
C
D
F
G

 91.646 
 36.527 
 127.032 
�164.065
�228.473
 137.333

R2

 53.588 
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�345.970
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 �26.490
�13.489

 86.675 
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�81.783
112.535

0.542
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0.566
0.567
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Figure 5.5 Search for outliers when data point E is deleted.

Residual 1 Residual 2 Relative variationName
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G

R2

   0.113
   0.049 
   0.17
�0.013
�0.188
�0.317
   0.185

 0.21
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 0.204
    �0.017
    �0.303
    �0.427
 0.23

 55.733 
 9.708 
 19.529

�2.77
�65.898
�62.817
 25.857

0.65
0.637
0.661
0.616
0.736
0.722
0.646

Figure 5.6 Search for outliers on log values.

Now data points D and A appear as potential outliers. This is quite understandable
when looking at Figure 5.2. However note that there is no dramatic change in the R2

any more.
Simultaneously, the same analysis can be done on the logarithms of the values, in

order to see if results can be improved, as this will suggest to use a “multiplicative
formula” for the “dynamic center”. The results are given in Figure 5.6.

The residuals, based now on the logarithms of the values, are obviously much
smaller. The interesting point is that now no outlier was detected by the procedure;
you may notice at the same time, that the R2 were improved. Both results are a
strong incentive, when a specific model will have to be built, to look for a “multi-
plicative formula” instead of an “additive” one.



5.1.4 Looking at the Variance of the Coefficients

We turn now to an analysis which takes into account both the dependent and the
causal variables.

The purpose of this section is to compute a formula such as:

in which b0 and b1 will be computed from the data contained in the sample we have.
An important question will be related to the precision with which these coeffi-

cients will be computed: if the data are scattered, it is obvious that this precision
will be low. Similarly, one can expect that the presence of outlier(s) may degrade
this precision. One way to express this precision is the variance of these coeffi-
cients; intuitively the variance expresses the “fuzziness” of a coefficient.

Anticipating on the results given in Chapter 15, the variances are given, always in
the linear relationship hypothesis, plus other hypotheses, by:

where I is the number of products, S the standard deviation of the deviations inside
the population (the meaning of these terms will be developed in Chapter 15) and x

u

the arithmetic mean of the causal variable.
It is clear, at least for var(b1), that their values depend:

● On the causal variable, via the standard deviation of its values: the larger this
standard deviation, which is closely related to Σ(xi � x

u
)2, the smaller will be the

variances (this is logic: if you measure a slope – and b1 quantifies a slope –
between points distant by 10 cm and points distant by 1 m, the precision of your
measurement will be better in the second case than in the first one, if the points
are known with the same precision).

● On the dependent variable via the term S. Presently this term is unknown, but we
will see in Chapter 15 that an estimated value can be made from the standard devi-
ation of the residuals in the sample; both values are proportional. Consequently
the more the values of the dependent variable are scattered around the dynamic
center, the greater will be the variances.

These variances could therefore be used as an global indicator of the presence or
the absence of outliers: one should study what happens to them when each data
point is successively deleted from the computations. This could take some time.

A shortcut is possible: it uses the variance–covariance matrix (this matrix will be
discussed in Chapter 6 of this part) of which terms are these variances, plus their
covariances (the term is explained thereafter). The idea for comparing these (square)
matrices when a data point is deleted is to look on the change of their determinants;
this is not really a perfect comparison,but it is sufficient for our purpose.An easy way
to quantify this change is to make the ratio of these determinants.

Consequently the ratio of the determinants of the variance–covariance matrices
with and without a data point is an easy way to search for outliers.
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For Example C, these ratios are given by Figure 5.7.
We will see in Chapter 6 of this part that it is possible to compute, in the framework

of some hypotheses of course, an interval outside which a ratio can be considered as
abnormal. For this example, the interval is equal to [0.391–3.646]. According to this
computation, only product E is considered as a possible outlier. Looking at Figure 5.2
reveals that it is a good candidate indeed.

5.1.5 A Synthesis

It is interesting at this stage to compare the results proposed by the three different
ways for detecting the outliers. This is easily displayed on Figure 5.8.
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Name
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Figure 5.7 Change of the determinants of the variance–covariance matrix.

Name

A
B
C
D
E
F
G

Search for outliers based on

The dependent variable The causal variable Both variables

X X

Figure 5.8 Synthesis of the outliers detection.

For Example C, the same outlier was detected by two procedures, but not by the
second one, using the “HAT” matrix. Why did this last procedure not detect this data
point E: the reason for, that is, as we previously said, that the “HAT”matrix procedure
is only concerned by the values of the causal variable. A look at Figure 5.2 clearly
shows that the mass (the causal variable) for data point E is not really “far away”from
the bulk of the other masses. Consequently this data point could not be seen as an
outlier by this procedure.

This data point E could only be detected by a procedure which uses either 
the dependent variable only, or both variables. The result confirms that these 
procedures correctly found it.



5.1.6 Conclusion

When looking for outliers, pay attention to two points:

1. The procedure dealing with the “HAT” matrix only looks at the causal vari-
able: the dependent variable is not considered at all.

2. The other algorithms look for outliers from a linear relationship point of view
between the causal and the dependent variable; linearity is a very important
hypothesis, not always met in cost behavior. A data, considered by the algorithms
as an outlier, may very well reveal that the linearity hypothesis is not the right one:
this was suggested in the comments for Figure 5.1. The consequence is: never con-
sider that a data point detected as a possible outlier by the last two algorithms
without checking if the hypothesis of linearity is correct.

The three approaches,the use of the “HAT”matrix,the change in the residuals when
one data point is removed, and the change in the variances–covariances matrix, are
complementary. The recommended approach is therefore the following one:

● Start with studying the “HAT” matrix. This study will reveal the data points of
which the causal variables are far away from the bulk of the data. If there are
some, check with the other algorithms if the related costs are really disturbing
the linear relationship (if this linear relationship is the relevant one). The data
which satisfy all criteria are very likely outliers; otherwise the data points which
are far away from the bulk of the data are rather interesting and should be kept.

● Check then for all the other data points in order to see if their costs do not cause
any trouble, in which case the data points which cause trouble are very likely
potential outliers.

It is always a good practice to delete the potential outliers from the procedures
and to redo the computation. New phenomena can be disclosed and the analyst
must check if these phenomena cause serious problems or not. A modern software
(such as EstimLab™) does these computations so quickly that there is no reason
not to perform them.

What to Do About Outliers?

The algorithms mentioned here only signal “potential” outliers. It is up to the cost
analyst to decide what to do with them. He/she may:

● Return to the source of information in order to get a confirmation of the value,
or to get a corrected figure.

● Unselect the candidates for future computations.
● Keep them and maintain the linear hypothesis.This can be the case for Figure 5.1

for instance if the small values are not very reliable4 whereas the high value is
considered as really representative, and if future cost estimates will be in the
vicinity of this data point P; this obviously assumes that you are very confident
about its value.

● Keep them, disregard the linear hypothesis and chose another one. An easy 
way to do it is to make the same search on the log values instead on the values

Data Analysis on Two Variables 63

4 It is well known by most cost analysts that the costs for small products are generally more scattered
than costs for large products. This is due to the cost measurement process.



themselves (but not on the HAT matrix for which it has no purpose). This can
of course be automated; it has been in EstimLab™.

5.2 Visualization of the Data

With only two variables, the visualization of the data is very easy as Figure 5.1
demonstrates.

Visualization has here four aims:

1. Confirming or invalidating the outliers. Outliers have been found in Section 5.1.2
with an algorithm based on the distance; but distant points are not necessarily
outliers.

2. Testing visually the linearity of the relationship between y and x, and investigat-
ing if a non-linear relationship would be more satisfactory (a quick check can be
made, e.g. on the graph if the user can quickly choose between linear or loga-
rithmic scales for the coordinates, but do not forget that true linear and linear
based on log are not the only relationships to be tested).

3. Checking the homogeneity of the product family. If, for instance, we find that the
distribution has two modes (it is then called “bimodal”), then the family should
probably be broken into two “sub-families”.

4. Getting an idea on the scattering of the data and then on the accuracy that can be
expected from a model based on these data points.

Other graphs, which are presented in Chapter 6 in the case of several causal vari-
ables, can also be used for one causal variable, as illustrated on the Figure 5.9 with
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Figure 5.9 The star diagram.



the “star diagram”.However, the simple graph,Figure 5.1 conveys all the information;
nevertheless using other diagrams with just one causal variable is a good way to get
used with them.

5.3 Quantification of the Perceived Relationship

Once the data have been looked at, it is interesting to quantify the visual impres-
sions. The purpose is then to find a single characteristic value that will give a global
idea on how well y and x vary together, how well the variations are correlated.

Generally speaking the inventors of such characteristics always try to get a number
in the interval [�1, �1], �1 meaning that y and x vary in complete relationship
together, �1 they vary exactly in opposite direction, 0 that they are completely 
independent, any other value suggesting some correlation.

5.3.1 The Covariance and the Bravais–Pearson Correlation Coefficient

The covariance is a first step in this direction. It is defined by:

where cxi and cyi represent the “centered” coordinates (meaning the distance from
the arithmetic mean) as illustrated (on another example) in Figure 5.10.

The logic of the covariance is very easy to understand: it is based on the sum of the
products cxi � cyi. Each time cxi and cyi are in quadrants 1 or 3 (see Figure 5.11), this
product is necessarily positive and contributes to increase sxy; it is the contrary for
data points which are in quadrants 2 or 4. The covariance is all the more important as
data points are all located in opposite quadrants. Let us consider now the average:
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Figure 5.10 Simultaneous evolution of the centered coordinates c xi and cyi.



of all these products. It is clear that if this average is positive, the majority of the
data points are in quadrants 1 and 3, whereas, if it is negative, the majority is in
quadrants 2 and 4. If it is equal to 0, this means that there are about as many data
points in all quadrants: data appear as very scattered.

What Can be Said About the Size of the Covariance?
For data sets using the same units (e.g. the size being given by the mass in kilogram
and the cost in euros), the value of the covariance will be higher if the sign of all the
products is the same and if the value of the data is larger (in kilograms and in
euros). In such a case, the larger the covariance, the more the variables change in
the same direction: the word “covariance” is well chosen indeed.

In our example, the covariance amounts to 99 809.3€ � kg (a strange unit!).

The Bravais–Pearson Correlation Coefficient

The covariance is difficult to handle because its value depends on the units in 
which the values are given: consequently two covariances computed on different
populations or samples cannot be compared.

The correlation coefficient was built by Bravais and Pearson to avoid this 
problem. It is defined by:

where csxi and csyi represent the centered and scaled coordinates.
The covariance appears in the numerator, the denominator being used for nor-

malization of the result: sx and sy are the standard deviation of the variables. For
our example sx � 27.33, sy � 3677.3 and consequently r � 0.99308. There is of
course no unit.

Note that the correlation coefficient is nothing else that the covariance of the
centered and scaled data. This correlation coefficient varies between �1 (perfect
anti-correlation) and �1 (perfect correlation), the value 0 corresponding to no 
correlation at all.
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A Coefficient to be Used with Care
The Bravais–Pearson correlation coefficient is an interesting characteristic but
should be used with care:

● It uses the same metric as the mean and suffers from the same inconveniences:
it is very sensitive to data points which are far away from the means x

u
and y

u
, the

data close to these means having little or even very little influence. We will say
that this characteristic is not “robust”, in the sense that it is too sensitive to 
outliers.

● Consequently it may give a false feeling of comfort: for instance for Example C
given in Section 5.1.1 of this chapter, a value of 0.777 is found: this “high” value,
rather unexpected on a first look on the graph, is explained by the fact that the
data are all in quadrants 1 and 3 and are away from the means (represented in
Figure 5.12 by dotted lines).

● It is also well known that it measures not the correlation between the variables,
but the linear correlation between them: variables may be highly correlated (for
instance y � 10 � x2 is a perfect correlation) and produce a low Bravais–Pearson
correlation. The reason for that is explained in Chapter 4.

The message is always the same: always look at the graph in order to interpret
this global characteristic.

5.3.2 More General Correlation Coefficients

The Bravais–Pearson correlation coefficient quantifies a linear correlation between
our variables. This may be a drawback when costs are concerned, because non-
linearities frequently appear in the cost domain. Other correlations, able to quantify
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non-linear relationships, have therefore been developed:

● The correlation coefficient of Spearman.
● The correlation coefficient of Kendall.
● The correlation around the medians.
● The coefficient of monotony.

The Spearman Correlation Coefficient

This coefficient is, as the previous one, computable for a set of data defined by 
two quantitative variables. The data are sorted, for example, according to the 
x values (the causal variable). The objective is then to examine if the y values grow
simultaneously with the x values, disregarding the rate of growth; one can also 
say that we are looking if the ranks of y follows the same path that the ranks of x.
This means that we are not interested anymore with the linearity concept. This
allows to introduce a more general correlation coefficient: it is quite possible to
have a low Bravais–Pearson coefficient associated with a high Spearman correla-
tion coefficient.

In order to quantify it, one looks at the couples of variables (xi, yi) sorted in two
different ways:

1. First with the increasing xi: the rank of each couple is noted �1,i, starting with the
rank i � 1.

2. Then with the increasing yi: the rank of each couple is noted �2,i, starting with the
rank i � 1.

Then the difference of the ranks di � |�1,i � �2,i| is computed for the same data,
according to both sorts. The Spearman correlation coefficient is then given by:

This coefficient has been built by Spearman in order to vary between �1 and �1.
It is equal to 0 if no correlation between the ranks does exist.

It is clear that this correlation coefficient is more general than the previous one. A
strong difference between both should attract the attention of the cost analyst: it cer-
tainly means, if both x and y increase together, that their relationship is not linear.

The Kendall Coefficient of Concordance

This coefficient is only concerned by the “concordances” and “discordances” between
two sets of data: it is not really a coefficient of correlation and therefore less interesting
in the domain of cost than the previous ones.It is nevertheless mentioned here in order
to show to the reader that it is possible to look at the data from different points of view.

Data are sorted according to x. Then the y values are looked at:

● One start from y1 and the values of two new variables called n1c and n1d
(number of concordances and of discordances) are initialized to 0. One examines
then y2. If y2  y1 (which is logic if there is a correlation between x and y) one
says there is a concordance between both variables and one notes n1c :� n1c � 1
(the symbol “:�” is used to mean “takes the value of”); otherwise one says there

r
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�

1
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3
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is a discordance and one notes n1d :� n1d � 1. One goes on with y3, y4, … to find
out the total number of concordances and discordances: n1c and n1d.

● One starts then from y2 and one computes n2c and n2d, etc.

At the end of the process, one computes two synthetic variables:

The Kendall coefficient of concordance is then given by:

This coefficient varies between �1 and �1, the value 0 meaning there are as many
concordances as there are discordances: there is no link between x and y.

The Correlation Around the Medians

The median plays a more and more important role in the analysis of data for cost-
estimating purposes and the reader is advised to look at this type of correlation.

First of all the medians of both x and y are computed: Mx et My. These values are
plotted on Figure 5.13.

The number of data in each quadrant is computed (data which are exactly equal
to the medians are ignored): a, b, c and d. Then one computes:

which also varies between �1 and �1.
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Figure 5.13 Displaying the data around the medians.



This coefficient does not provide a “rich” information. Its main advantage is that it
is completely disconnected from any type of relationship between the x and the y.

The Coefficient of Monotony

The four coefficients described up to now are built for detecting if the variables
grow in the same direction or not. Low values do not necessarily indicate a lack of
correlation: a strong quadratic correlation will produce a Bravais–Pearson and,
sometimes, a Spearman correlation coefficients rather low. Once again having a
look at the graph is highly recommended.

In order to at least partly solve the question of non-linear correlations, we built a
coefficient which only indicates if one variable changes in a monotonic way (not
necessarily linear or even in the same direction) with another variable.Such a coeffi-
cient is adequate for all the major relationships in the domain of cost: log, expo-
nential, correction by a constant or even parabolic (if it does make sense).

In order to build this coefficient, data (xi, yi) are sorted according to the xi. Then
for i  2 one looks at the variation of the yi:

● if yi  yi�1, one notes �1,
● otherwise one notes �1.

A table of notes is then created. In this table, the number of �1 (noted n�1) and 
the number of �1 (n�1) is computed. A coefficient mf can then be created with the
following constraints:

1. mf � �1 if all the notes are equal to �1,
2. mf � �1 if all the notes are equal to �1,
3. mf � 0 if there is a continuous change from �1 to �1.

Between these key values, the number of changes is counted: let � be this number.
Such an analysis assumes, of course, there are at least three data points. The maxi-
mum number of changes is equal to �max � I � 1. The coefficient of monotony is
then given by:

the sign being given by the majority of notes.
The major advantage of this coefficient is that it gives a high value to any type of

correlation, linear or not.
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6 Simultaneous Data Analysis on 
J � 1 Quantitative Variables

Summary

The purpose of this chapter is to analyze the data when the cost and several quan-
titative parameters are known. This is the most complete situation.

The four steps of analysis can now be completely investigated:

1. Search for outliers. In the case of several quantitative variables we must rely on
algorithms, as looking to a table of figures does not generally reveal anything of
that sort.

2. Search for possible collinearities between the causal variables (collinearity between
the causal variables and the cost is what we are looking for and therefore is not dealt
with here). This search is very important: when dealing with several quantitative
variables the most serious problems are associated with such collinearities.

3. Visualization of the data, in order to understand their structure, which means
answering some questions such as:
– Is the set of data homogeneous enough, or should we split it into sub-families?

If, for instance, we find that the distribution has two modes (it is then said
“bimodal”), then the product family should probably be broken into two 
“sub-families”.

– Are there any outlier that step 1 could not detect? Some outliers are for
instance detected in step 1 with an algorithm based on the distance; but dis-
tant points are not necessarily outliers.

– How are the data related (if at least two variables are simultaneously checked)?
– Does the visualization suggest a kind of relationship?

4. Quantification of the perceived relationships between the variables. If we per-
ceive relationships between the variables, it is convenient to quantify these rela-
tionships in order to decide on the future use of these data.

Each step will be studied one after the other.

A New Example

In this section we will apply the techniques which will be introduced on the follow-
ing example.



This example, related to an electronic equipment, presents a cost column (which is
a vector) and four quantitative variables1 (grouped in a matrix, of which name is ||x||).
It includes 13 products.As illustrated on the Figure 6.1,one line describes one product.

From these values two matrices are established: the first one – which is also
called a “vector” – is related to the cost (or the dependent variable), the second one
to the causal variables.

For reasons which are explained in Chapter 15, the matrix of the causal variables
must generally (unless we want to force the intercept to be 0) be written with the
addition of a column of 1. This new matrix is noted ||�x||, the � sign reminding the
addition of one column (Figure 6.2).

Analysis dealing with one (the cost for instance) or two variables (the cost and
the size for instance) can be made by using the graphs. It is of course impossible
when dealing with 4 or 10 variables for instance. In such a case, the cost analyst
must rely nearly exclusively on algorithms.2

We will however see that the eye can still be used, the question being to find a
presentation which can easily be interpreted by our brain.

6.1 Looking for Outliers

Looking for outliers in the linear case, for quantitative variables, has been largely
studied by different authors. This section gives the major results which can interest
the cost analyst.
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5
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7
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V1 V2 V3 V4

One product is described,
inside the product family,
by a row giving the value of its
four variables, plus its cost

V1: represents the mass
V2: the number of components
V3: the number of connections
V4: the number of boards

Figure 6.1 Example D.

1 Mass in kilogram, number of components, number of connections and number of boards.
2 All the computations and figures were generated by EstimLab™.



We limit the search here to individual outliers. One could also search for couples
of data which, as a group, are outliers. The logic is the same.

As we saw it in the previous chapter, which was an introduction to this one, there
are several ways to look for potential outliers:

● The first procedure looks only to the causal variables, the purpose being to see
if there are one or several products of which definition is far away from the bulk
of the other products definition.

● The second one is not concerned by the causal variables: it looks only at the
dependent value of each product in order to see if one such value does not
change a lot the relationship between the causal variables and the dependent
variable.

● The third one uses the values of both sets of variables.

6.1.1 Looking at the Causal Variables

The HAT matrix was defined in the previous chapter; its definition is recalled 
here:

As it was said in this previous chapter, the HAT matrix is very good at detecting
outliers purely at looking at the causal variables: it completely disregards the cost
values. The diagonal elements of this matrix, emphasized by a dotted line in Figure
6.3, are somehow related to the “distances” of each data points from the bulk of the
data. The HAT matrix for the example is displayed on Figure 6.3: this is a square,
symmetrical, matrix with 13 lines and columns (the number of lines of the ||�x||
matrix).

|| || || || || || || || || ||1h x x x xt t� � � � � �⊗ ( ⊗ ) ⊗
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Figure 6.2 The matrix generally used in the computations.



It is not difficult to show that this matrix is idempotent (the definition of this
term is given in the introduction to this volume), because:

By definition of the inverse of a matrix:

and therefore ||h||2 � ||h||. Consequently the trace of the matrix (the sum of its
diagonal element) is equal to its rank. Assuming this matrix is full rank, its trace is
equal to the number of columns: J � 1 (J, if the intercept is forced to be 0).

Then we have Σhi,i � J � 1, or 5 in our example.
One would expect, if the causal variables of the data points are not too far away

from the other ones, that each data point should received an equal or “fair” share of
this total. This share should be equal to:

where J is the number of causal variables and I the number of products. In the
example the “fair share” amounts to 0.3846 (or 5/13).

But we however can admit some deviations around this value, the problem being
to decide how large could be the deviations, or, in other words, from which value an
hi,i could signal a possible outlier. Belsley et al. [14], based on theoretical computa-
tions (which assume3 that the causal variables are independent and distributed as
multivariate normal variables), recommend to pay attention to all the values for
which:

The value of this threshold is, for our example, 0.769.

h
J

Ii i, 
�

2
1

J
I
�1

|| || || || || || || || || ||� � � � � �x x x xt t⊗ ⊗ ( ⊗ ) 1 1

|| || || || || || || || || || ||h x x x xt t2 1� � � � � �⊗ ( ⊗ ) ⊗ ⊗ �� � � � �x x xt|| || || || || ||⊗ ( ⊗ ) ⊗1
1 2444444 3444444

xx t||

74 Data Analysis Precedes the Search for a Specific Model

�0.051

0.128

0.054

0.023

0.128

0.185

0.091

0.014

0.056

0.107

0.016

0.104

0.145

�0.125

 0.145 

 0.089 

 0.091 

 0.145 

 0.152 

�0.153

 0.018 

�0.066

 0.154 

 0.022 

 0.238 

 0.29

�0.069

 0.107 

 0.038 

 0.017 

 0.107 

 0.055 

�0.041

 0.157 

 0.185 

 0.166 

�0.02

 0.145 

 0.154

�0.051

0.128

0.054

0.023

0.128

0.185

0.091

0.014

0.056

0.107

0.016

0.104

0.145

 0.214 

 0.054 

 0.21 

 0.229 

 0.054 

 0.053 

 0.06 

 0.123 

�0.133

 0.038 

�0.077

 0.086 

 0.089

 0.283 

 0.023 

 0.229 

 0.291 

 0.023 

�0.02

�0.032

 0.122 

�0.182

 0.017 

 0.043 

 0.113 

 0.091

  �0.103

  0.185 

  0.053 

�0.02

  0.185 

  0.413 

  0.302

  �0.184

�0.081

  0.055 

�7.357 � 10�3

0.049

  0.152

 0.186 

 0.091 

 0.06 

�0.032

 0.091 

 0.302 

 0.648 

 0.044 

 0.129 

 0.041 

 0.051 

�0.186

�0.153

0.165

0.014

0.123

0.122

0.014

�0.184

�0.044

0.437

0.289

0.157

�0.194

0.083

0.018

0.496

�0.051

0.214

0.283

�0.051

�0.103

0.186

0.165

�0.047

�0.069

0.148

�0.046

�0.125

     0.148 

     0.016 

�0.077

     0.043 

     0.016 

�7.357 � 10�3

�0.051

  �0.194

     0.124 

�0.02

     0.895 

     0.087 

     0.022

�0.047

   0.056 

�0.133

�0.182

   0.056 

�0.081

   0.129 

   0.289 

   0.673 

   0.185 

   0.124 

�1.822 � 10�3

�0.066

�0.046

   0.104 

   0.086 

   0.113 

   0.104 

   0.049 

�0.186

   0.083 

�1.822 � 10�3

0.145

   0.087 

   0.223 

   0.238

Figure 6.3 The HAT matrix of the example.

3 These assumptions are standard but rather strong in the domain of cost.



All the objects which “consume” an unfair share of the total �ihi,i are considered as
potential outliers. In this example product K distinguishes itself (Figure 6.4).

Note: The reader will pay attention to the fact that this search based on the
“HAT” matrix deals only with the causal variables, whereas, even if the causal vari-
ables of a product may help suspect an outlier, a true outlier is also concerned by
the dependent variable.

6.1.2 Looking at the Dependent Variable

It is useful to introduce here a frequently used notation:4 ||�x(�i,•)|| represents the
matrix ||�x|| where row i (corresponding to object i) is deleted, the dot reminding
the reader that the number of columns does not change. This matrix has the same
number of columns than ||�x||, but I � 1 lines or products compared to this matrix.

Looking for residuals aims at computing what the residual of each product
becomes when the dynamic center5 of the cost distribution is computed from ||�x||
and ||�x(�i,•)||.

The result of the computation is given in Figure 6.5.
The first column gives the name of the products, the second one the residuals

when all products are used for computing the dynamic center and the third one the
residuals when each product is successively discarded. Figure 6.6 gives a visual
presentation of the changes in the residuals.
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Figure 6.4 The diagonal elements of the HAT matrix.

4 The reason for this notation is the following one: we deal with rectangular matrices; the first index
refers to the row and the second one to the column. When an index is placed between parentheses, it
means that the whole row is involved. The minus sign means that the whole row is deleted; a dot for the
column index means nothing is changed about the columns.
5 The term is defined in Chapter 8.



From this set of figures, two values can be computed:

1. The conventional approach just looks at the difference, given in percentage, of
both residuals. But this mere difference, once divided by one value, cannot be a
good indicator if this value is close to 0.

2. The proposed approach therefore looks at the differences of both residuals 
but considers that some differences are quite acceptable and consequently dis-
plays the differences divided by k times the standard deviation of the first 
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Figure 6.5 The change in the residuals once each product is removed.
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Figure 6.6 The change in the residuals related to each product when this product is removed (gray bar)
or not (white bar) from the regression algorithm.
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residuals: this standard deviation value is, in this example, 52.25. The logic is that
the change in the residuals should not be more that one time the standard devi-
ation, the value 1 being used for an experiment.

The results are given in Figure 6.5.
A simple look at this table would suggest, using this last approach, that data

points A, F and G are potential, but not “serious” outliers.Why not serious? It is true
that their deviations become large but we do not see a large change in the values of
the R2 when the considered data points are there (then R2 � 0.926) or not.

The use of the conventional approach would suggest that data point K could be
an outlier, but this comes from the fact that its first deviation is very small: dividing
any value by a small quantity will always produce a great value.

Looking at Figure 6.1 which gives the data, it is difficult to see why these data
points A, F and G are potential outliers: it is true that some values are a bit high or
a bit low, but it is very difficult to get a definite conclusion. This is the advantage of
using an algorithm.

It might be interesting to look at the results when data points A, F and G are dis-
carded from the computations. The result appears on Figure 6.7 with the same
value of the coefficient k.
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Figure 6.7 The change in the residuals when products A, F and G are discarded.

The result, looking at the variation of the residuals columns, does not appear fan-
tastic. This is due to two facts:

1. The deviations in the first column are much smaller than in the previous com-
putation – with the exception of product J (also note that discarding this object
improves the R2). As we start from lower values – and therefore a smaller stan-
dard deviation – we can expect larger values in column 4.

2. The number of data is seriously reduced: this means that the regression has,
when one data point is removed from the computation, more possibilities to
change.

The cost analyst, when analyzing the data should keep in mind all these com-
ments, without forgetting that the results obtained here take only into account the
dependent variable.



6.1.3 Looking at All Variables

We saw in the previous chapter that the variances–covariances matrix can help to
get a general picture of the data as far as the outliers are concerned. This matrix is
defined as:

where S2 is the variance of the deviations inside the whole population. As this 
value is not known, it is replaced by an estimated value noted $S2 as described in 
Part IV.

Its name comes from the fact that its elements give, on the diagonal, the variances
of the coefficients B0, B1, …, Bj, … which appear in the model, plus the covariances
of these coefficients. As an outlier, according to its definition, may seriously change
the model, we may expect that it will change both the formula itself (this was the
subject of Section 6.1.2) and the variance – which means “how well they are 
defined” – of its coefficients. It therefore deserves our attention.

The idea is the same as the one which was developed in Section 6.1.2. We com-
pute this matrix when all products participate to the construction of the formula,
and look to what happens to this matrix when each product is successively
removed from this computation. When all data points are present we have:

and when data point i is discarded we have:

How can be compared these two square matrices? The easiest way is to compare
their determinants by computing their ratio:

There are of course as many such ratios as there are products.
If there is no change in the variances–covariances matrices, the ratio will be

equal to 1 of course. Nevertheless a change generally occurs, small or large; the
larger the change, the more we can consider the related product (the product 
which has been removed from the computation) as a potential outlier. What could
be the interval in which we consider the change is too small for considering the
product as a potential outlier? Belsley et al. [14] recommend a formula for this
interval.

In Example D we get the following results displayed on Figure 6.8; the computed
interval is (0.203, 8.499). Values outside this interval signal data points which are
potential outliers; in this example: A, F and J.
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6.1.4 Conclusion

As we have several ways to detect potential outliers, it is useful to prepare a synthe-
sis of the detections (Figure 6.9).
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Figure 6.9 Synthesis of the detection of potential outliers.

Looking for outliers requires now some judgment:

● according to the change in the residuals, products A, F and G are potential outliers;
● according to the “HAT” matrix, product K is a good candidate;
● according to the change in the variances–covariances matrix, products A, F and

J are also good candidates.



The reason for K being selected by the “HAT” matrix is due to the fact that its causal
variables are a bit far away from the bulk of the data, mainly on account of its high
value of the number of boards. This is the purpose of the “HAT” matrix to detect
such data; it does not mean that its presence changes a lot the formula which may
be computed – as both other procedures do not show that.

Data points A and F are probably “true outliers”: their causal variables are inside
the bulk of the data, but their costs are probably too high, as a detailed examination
of Figure 9.1 may reveal.

The conclusion of the search for outliers is that the cost analyst should not rely
on one algorithm only before deleting one data.

The reader must also not forget that the last two algorithms are based on an
assumed linear relationship between cost values and the causal variables and that,
consequently, the search for outliers may also be considered as a check of this
assumed linearity.

6.2 Dealing with Multi-Collinearities

6.2.1 What Is the Problem?

The fact that two or more parameters are correlated is the most serious problem in
preparing a specific model with several quantitative variables. Saying that two
parameters are correlated means that they quantify about the same characteristic
of the products: a trivial example of correlated parameters is given by – generally
but not always – the mass and the volume.

Figure 6.10 gives a geometrical illustration of two correlated parameters: V1
and V2, which are the causal variables, are correlated as their values on the plane
(V1, V2) shows it.

In this example, but it does not appear every time like that, the correlation implies
that line “ab” is well defined, but the intercept – represented by small squares – is 
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Figure 6.10 The geometric perspective when two parameters are correlated.



not: this means that a small change either of the value of one causal variable or even
of the cost can completely change the plane we are looking for. This means also that
the formula, which will be given by the equation of the plane, could be used if the
correlation between the cost drivers is satisfied in the inputs, because, in such a case,
the plane is in fact reduced to the straight line “ab”.

However the plane itself, defined by line “ab” and its intercept, is not well defined
at all. This means that the estimated value for a new product – if variables V1 and
V2 are defined independently – will be extremely unstable.

Multi-collinearity can therefore be a very serious problem when several param-
eters are used.

What Are the Symptoms?

The first symptom which alerts the cost analyst is that the relationship he/she estab-
lishes does not really make sense. If, for instance, a multiplicative relationship has
been selected, the data given in the example lead to the following formula:

cost � 69.7 � mass�0.004 � boards0.123 � connections0.295 � components0.062

Nobody will believe that, if the mass is increased keeping constant the value of the
other parameters, the cost will go down!

But the situation is not always so obvious. The same data, if an additive relation-
ship is selected, give the formula:

cost � 479 � 13.6mass � 7.5boards � 0.39connections � 0.052components

where nothing particularly attracts the attention, unless you are familiar with this
type of equipment and expect, from your experience, something else.

The mathematical reason for this situation is that, in the presence of multi-
collinearities, it may be very difficult for the algorithms to distinguish the influence of
some variables,or more exactly to discriminate between them: the algorithms do what
they can but if two parameters are strongly correlated it does not “know”exactly what
is due to one and what is due to the second one. Consequently a coefficient may be
computed too low and another one too large: the error on both may be quite large.

The second symptom is the fact that the standard errors (for the time being, con-
sider that this term quantifies the accuracy with which the coefficients are com-
puted) associated with the cost drivers are poor. If, for instance the standard errors
of the coefficients are computed for the additive formula just presented, the follow-
ing values are found (see Table 6.1).

Let us examine the values related to the mass: the coefficient is 13.6 and the stan-
dard error 30.4! Working with a number when we know that its standard error is
more than the double of its value is not a comfortable situation!
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Table 6.1 The standard errors of coefficients.

Parameter Coefficient Standard error

Constant 479 52.6
Mass 13.6 30.4
Components 0.052 0.036
Connections 0.39 0.180
Boards 7.5 8.521



The third symptom is the extreme sensitivity of some coefficients to the values 
of costs which are observed for the products entered in the database: a small
change in one value – it does happen that we get a better information about one
product and want to update the relationship – may completely change the formula.
This is unfortunate if you presented to a large audience the result of your work 
a few days ago! One generally expects that all data contribute equally to the formula
and that, consequently, a change in one data will only produce a small change of the
formula.

As these symptoms are not always obvious,a detection procedure is recommended
for checking the capacity of the data to generate a satisfactory relationship. We then
need first such a procedure; this is the purpose of Section 6.2.2.

Once multi-collinearities have been found, it is necessary to decide on what to do
about them; this will be dealt with in Section 6.2.3.

6.2.2 Detection of the Multi-Collinearities

Correlations between parameters here means there exists a linear relationship
between two or more parameters; a non-linear correlation is not really damaging
when we look for a linear formula (nevertheless it should be taken into account 
when using the formula); this correlation may be more or less strong, but it does
exist.

This section assumes that the standard linear least squares algorithm is used for
establishing the formula giving the dynamic center; this standard algorithm is
defined in Part III. The residuals between the formula and the data points are
defined to be additive and therefore noted as e�.

Introducing the Subject

The coefficients of the linear formula we are interested in can be represented by a
vector which is written in the general case of J parameters (each coefficient is
related to a parameter, b0 being a constant which would disappear if one decides to
force the intercept to be 0):

Anticipating on the results developed in Chapter 15, let us admit that the variance
of the coefficients can be – in the framework of several hypotheses – found by the
following formula:
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where

(unless we force the intercept to be 0, in which case the “�1” disappears) is an 
estimated value of the variance of the population deviations. It must be noted 
first that Johnston [34] established that this term ̂S2 should not be seriously affected
by the multi-collinearities effect. Consequently we must concentrate on the matrix:

The variance of each coefficient is then given by the relevant diagonal element of
this matrix (underlined by a straight line on Figure 6.11), the standard error being
given by the square root of each diagonal element; the other terms of the matrix give
the covariances between the coefficients. This is the way the standard errors given in
Table 6.1 were computed, the var(

r
b) having for our example the following form (the

reader will check that the square roots of the diagonal elements are equal to the
standard error written in this table).
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�210.379
       1.592
       0.165
    �0.697
     72.604

   0.137
�4.554

      �2.666 � 10�3

�0.697
   0.032

�1.009
   0.109

1.3 � 10�3

�2.666 � 10�3

   0.165

 6.834
926.214
 0.109
 �4.554
 1.592

2.768 � 103

       6.834
    �1.009
       0.137
�210.379

Figure 6.11 The variance–covariance matrix of our example.

We mentioned, at the beginning of this section, the fact that multi-collinearities
have two major consequences:

1. damaging the variances of the coefficients,
2. destabilizing the formula.

Both phenomena must be studied:

1. Section “Examining the coefficients variances” will examine the coefficients
variances and answer to the following questions: are the variances really high?
Are the multi-collinearities really the cause of their high values?

2. Section “Studying the stability of the formula” will investigate the stability of the
formula.

Examining the Coefficients Variances
The variances were computed in the previous section. Let us display on a table the
values we found for the various coefficients for our example (Table 6.2).



The reader will recognize that the variances are the values which appear on main
diagonal of the variances–covariances matrix.

Are the Variances Really High? Table 6.2 is difficult to interpret: a large variance can cor-
respond to a very large coefficient and being then quite reasonable. Consequently,
it seems more useful to display the ratio between the coefficients values and their
standard error; such a ratio is generally called “t”, which was the symbol used by
Gosset when he studied it (this will be explained in more details in Chapter 15).
Such a presentation is illustrated on Figure 6.12:
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Figure 6.12 The “t” values and the Bravais–Pearson correlations.

Table 6.2 Values of the variances.

Coefficient of Variance

Intercept b0 2738
Mass b1 926.2
Number of components b2 0.0013
Number of connections b3 0.032
Number of boards b4 72.6

● The upper part of the figure gives the value of the coefficients (computed for an
additive relationship in this example, but it could also be computed for a multi-
plicative relationship) and their “t” values, which is simply the ratio between the
value of each coefficient and its standard error.

● Simultaneously the lower part of the figure displays all the Bravais–Pearson cor-
relation coefficients between the couples of variables. These correlation coeffi-
cients are defined in Chapter 5.

The first thing which appears on this table is the large differences between the “t”
values: one would expect that these values, given the data, would be rather similar.
This is an important symptom that something did happen.



Now about the values themselves: the “t” value should be – as it will be explained
in Chapter 15 – larger than 2 in order to get usable coefficients. One can immedi-
ately see on the figure that the “t” values of the mass and the number of boards are
not satisfactory at all. The “t” value for the components is also not very good.

In order to decide if the low “t” values may come from multi-collinearities prob-
lems and therefore if we must go on with this study, it is useful to have an immedi-
ate look at the correlation coefficients between all couples of variables. This
information appears on the symmetric table visible at the bottom of Figure 6.12 (it
is symmetric because the correlation between mass and connections for instance is
of course equal to the correlation between connections and mass). One immedi-
ately notices that both mass and number of boards are strongly correlated with the
number of connections; this may help explain the poor “t” of these coefficients and
encourages to go on with the study.

Breaking Down the Variances Let us recall the way the variances are computed:

In order to investigate why some variances are quite high, it is necessary to have a
look at both parts of this formula.

There is nothing that we can do about the term Ŝ2: it comes from the values of the
residuals around the dynamic center of the distribution � of the costs in the sam-
ple. Maybe changing the formula would slightly reduce it, but we decided in this
chapter to use the standard linear regression.

We have then to turn to the second term, which is the matrix:

Computations being easier if the data are centered and scaled, it may be interesting
to do so.

What happens on these variances if the data are centered? Centering the data is
geometrically equivalent to moving the coordinate’s axis parallel to themselves
until their center coincides with the center of the data.Vector 

r
b� which can be com-

puted from the centered data is exactly the same as vector
r
b except that6 centering

the data forces the intercept to be 0. On data centered and scaled, the variances of
the coefficients are given by:

where

This analysis bears on a matrix ||R||�1 which is the inverted of matrix ||R|| built on
the data centered and scaled.
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6 We will see in Part III that one of property of the linear regression is that the dynamic center necessar-
ily passes through the center of the data.



Returning to the formula:

the variance of each bj is given by (Ŝ2/I)Rjj, where Rjj is the diagonal element corre-
sponding to bj.

If all parameters were orthogonal (which is synonymous to “uncorrelated”),
then the variances of all elements would be equal to ̂S2/I; this is the reason why Rjj is
called the “variance inflation factor” (VIF) associated with coefficient j; it is often
noted as VIFj. The link with the correlations comes from the fact that:

where R2
j is the square of the multiple correlation factor between variable j and the

J � 1 other variable. This proves that correlation “damages” the variance of the coeffi-
cients: the closer Rj will be to 1, the more damaging will the effect be.

Illustration

Let us return to our example.
The VIF of each coefficient is displayed on Figure 6.13.
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Figure 6.13 Computations of the VIF for all coefficients.
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VIF

1.569

3.236

2.951

Figure 6.14 Computations of the VIF when mass is deleted.

One can see that the variance of the coefficient related to the mass is multiplied
by 8 due to the effect of multi-collinearities: this explains its low “t”.

Just as an experience, let’s delete the mass and look to what happens to the VIFs:
the results are given on Figure 6.14. On this figure it appears that the VIFs are much



smaller, but nevertheless that the VIF on the number of connections is still a bit
high. This is due to the fact that the correlation between the connections and the
boards is not negligible (0.723): there is still an important correlation between the
number of connections and the number of boards.

What does happen if the number of boards is, at its turn, deleted (we prefer not
to delete the number of connections because this parameter is highly correlated
with the mass and therefore carries an important information about the products
size). The results appear on Figure 6.15.

Simultaneous Data Analysis on J Quantitative Variables 87

7 The index 2 reminds, as several norms can be defined, that it is the Euclidian norm (see Ref. [31], p. 54).

Variable

Components

Connections

VIF
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Figure 6.15 Computations of the VIF if the mass and the number of boards are deleted.

Now the VIF, close to 1, are nearly perfect (the slight difference with 1 comes
from the slight correlation between these two variables: 0.319): it means that the
variances of the coefficients are minimized.

Studying the Stability of the Formula
We turn now to the second effect of the multi-collinearities: the lack of stability of
the coefficients when a slight change is made to one data point. As previously indi-
cated, we expect the formula to be equally built on all the data points: a small
change of one data point should only slightly change the coefficients. Is it true in
the presence of multi-collinearities?

When using the standard linear regression, it will be established in Chapter 9 that
the coefficients of the formula are given by (note that we find again the variance–
covariance matrix in this formula):

The question therefore is: how does a slight change of matrix ||�x|| affects 
r
b?

About the Matrix Norm The response to this question supposes an understanding of the
concept of matrix norm. The matrix norm is related to square matrices being used as
operators, which means for transforming a vector into another vector; the norm of a
matrix gives an information on how different will be the transformed vector from the
original vector. Suppose a vector 

r
A is transformed into a vector 

r
B by a square matrix

||M||; we write:

In order to quantify the norm of matrix ||M|| we look at the size (their Euclidian norm
noted |

r
B |) of all the vectors 

r
B which can be obtained when vector 

r
A takes all possible

values but keeping a norm equal to 1. The norm of matrix ||M|| is therefore given:7
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The norm of a square matrix can therefore be defined as its “expansion rate” of
transforming a vector into another vector.

The norm obeys to two relations:

●

●

Is it possible to easily quantify this norm? Fortunately yes, using the so-called sin-
gular value decomposition (SVD) of matrix ||M||. The SVD of a matrix means that
any matrix can be decomposed8 into a set of three matrices, called ||U ||, ||S|| and
||V ||,where ||U || and ||V|| are orthogonal matrices,and ||S|| a diagonal matrix of which
elements are noted s1, s2, … and called “singular values” of matrix ||M||:

Among the singular values we select the maximum and the minimum ones, called
smax and smin. If one or some si are null, then smin � 0.

Now we have two interesting properties linking the singular values and the norm
of a matrix ||M||: the norm of ||M|| is equal to smax, and the norm of ||M||�1 is equal
to 1/smin.

The quotient smax/smin is called the condition number of ||M|| and noted (||M||).
It can go from 1 to �, depending mainly of the value of smin. The larger (||M||) the
worst conditioned is said matrix ||M|| to be, which means it will be difficult to
invert. Consequently it appears that smin is a very important information regarding
the structure of a data matrix.

The purpose of this study is still to study the variances of the formula coeffi-
cients or more exactly to investigate the origin of the high variance computed for
some coefficients, when this origin is due to multi-collinearities – and not to a large
scattering of the cost values.

The variances of the coefficients are given by the diagonal elements of the matrix
(the other terms being equal to the covariances between the coefficients):

The set of the coefficients we are looking for, when looking for a linear relation-
ship between the cost and the parameters, is here defined as a vector 

r
b. In the 

case of our example, this vector will have five components, the first one being the
“intercept” (a constant value), the other ones being related to the different cost
drivers.

The computation of this vector is postponed to Part III. What we do here is to
analyze the variance of each component of this vector; the result of the analysis is

var || || || ||( ) ˆ ( )
r
b S x xt� � � � �2 1⊗

|| || || || || || || || with || ||M U S V S
s

st� �⊗ ⊗
1

2

0
0

L
L

LL L L

|| || || || || || || ||M Q M Q⊗ ⊗�

|| || || || | |M A M A⊗
r r

� �

88 Data Analysis Precedes the Search for a Specific Model

8 See Ref. ([31], p. 70). The SVD decomposition of a matrix is rather difficult to obtain; the interesting
thing is that the procedure does not need the matrix inversion, which means that the SVD always 
exists.



presented in Figure 6.16 (proportions of the variances are given in percentages): for
instance 83.15% of the variance of the coefficient of the mass is related to the
singular value s5 and this singular value is “responsible” for 96.1% of the variance of
the coefficient of the number of connections!

When, on a single line, more than 50% of two or more variances are related to the
same singular value, then it is interesting to see how much the related variables are
correlated. A regression analysis made on these two variables shows that the value
of one could be forecasted with a good accuracy from the other one.

It is generally recognized that a condition index higher than 10 signals a poten-
tial problem; the higher this value, the more serious is the problem.

6.2.3 What Are the Solutions?

In the presence of multi-collinearities, several solutions are possible, between
which the cost analyst must decide.

Doing Nothing

This is of course the easiest solution! You may do it if the damages are small, which
means that the level of collinearities (quantified by the Bravais–Pearson correlation
coefficients) are small.

This decision means that you want – for any reason – to keep the parameters 
in the list of the variables on which the formula of the dynamic center is built; the first
price you agree to pay is a loss of accuracy of the estimates you will do in the future.

The second price you will have to pay when using the specific model built on the
formula is that you cannot choose the values of the parameters as if they were inde-
pendent: when quantifying these values you must take into account the fact they
are, at least a bit, correlated. In particular do not change the value of one parameter
without changing the values of the parameters which are correlated to it.

This solution must however be strictly avoided if the level of correlation is too
high.
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Figure 6.16 Breaking down the variances according to the singular values.



Adding a New Data Point

This might be difficult in the domain of cost, as generally speaking, data are not
easy to find. However, a short discussion about this possibility will add some light
on the SVD algorithm. This discussion anticipates on the principal component
analysis (PCA) which is the subject of Section 6.2.3.

The SVD, by analyzing the data matrix, quantifies in a very detailed way the dam-
ages caused by multi-collinearities. That is fine, but what can you do about it?
Fortunately enough the singular values are closely related to the eigenvalues of the
matrix: more exactly the singular values are the squares of these eigenvalues.

The PCA defines new axes, or new variables; to each axis is attached an eigen-
value (also called a “root value”). When the eigenvalue related to an axis is small, it
shows that this axis is not precisely defined, due to the multi-collinearities effect as
determined by its singular value.

Consequently if a new data point is added it should, if it is possible (other way it
will not really help solve the problem), located along the axis for which the eigen-
value is the minimum. Johnston [34] demonstrated that, in such a case, it is effec-
tively possible to increase the value of the relevant singular value without
modifying the other ones. That would theoretically solve the problem but we shall
not discuss this problem any further as its application is so rare (rather inexistent)
in the domain of cost.

Deleting One Parameter

After all, saying that two parameters are correlated means they quantify about the
same thing.

As it is the case, you may delete one of them and build a formula without it.
When you will estimate the cost of a future product with the specific model built

on the new formula, you better check that the correlation you observed in the sam-
ple is still true. It may really happen that this correlation is just an artefact and does
not exist in the whole population: this is the reason why you must always check if
the correlation found in the sample is “statistically significant”. This concept is
studied in Chapter 15.

Create a New Variable

Let us explain the subject on one example.
We had in the past to prepare a model for an optical sensor. Engineers who

worked on the subject were convinced that three parameters are sufficient to
“explain” its cost:

1. the sensitivity;
2. the aperture (in what solid angle could an object be detected without moving the

sensor?);
3. the accuracy (what should be the angular distance between two objects we want

to separate?).

They gave us data about several sensors built in the past, at different periods.
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The analysis of the data showed that these three parameters were highly corre-
lated, thing that the engineers could not understand, because technically they were
clearly different. The solution could not be found until we realized that, in the past,
due to the technological progress, these three parameters always move together. As
the engineers – as they all do – always tried to get the best from the sensors, they
always chose what the technology could offer and the progress for the three param-
eters went hand in hand.

The solution was then to create a new variable – here the technological year of
the sensor – in order to replace the three previously considered.

As it often happens in this type of analysis, the solution worked well for the sam-
ple, but we are never sure that the same rate of change will go on in the future when
the relationship will be applied.

This solution may be a good one, but sometimes we want to get something more
detailed.

Changing the Coordinates System

It may happen that you absolutely want to keep all the cost drivers. In such a situa-
tion, a first solution is given by changing the coordinate system.

The purpose of changing the coordinates system is to keep all the variables, and
to look for combinations of these variables which would not be correlated. It means
looking for new variables – which would be linear combinations of the natural vari-
ables – which could be used for building a formula with no collinearity problem, as
they will be uncorrelated.

It may look artificial, but it is not. It is exactly what does the PCA which will be
the subject of Section 6.3.

There is a small difference between the classical PCA and what we are trying to
do here:

● The purpose of the standard PCA is to analyze the set of the causal variables
only, without the cost, in order to understand the shape of this set: how scat-
tered it is? Are there any outliers?

● The purpose of what we are trying to do here is to find new,uncorrelated variables.

In other words the classical PCA does not worry too much about the cost,which is dealt
with afterwards, whereas in this section the cost is just a variable as the other ones.

Let us carry the study on our example.
First of all we make a PCA on the five “old” variables centered and scaled: cost

(Y), mass (V1), components (V2), connections (V3) and boards (V4). This analysis9

delivers five new vectors which are defined as a linear combination of the old ones:

U1 � �0.517Y � 0.506V1 � 0.179V2 � 0.520V3 � 0.418V4

U2 � �0.094Y � 0.027V1 � 0.875V2 � 0.013V3 � 0.474V4

U3 � �0.042Y � 0.492V1 � 0.396V2 � 0.215V3 � 0.744V4

U4 � �0.621Y � 0.669V1 � 0.208V2 � 0.278V3 � 0.216V4

U5 � �0.580Y � 0.234V1 � 0.050V2 � 0.778V3 � 0.011V4

Simultaneous Data Analysis on J Quantitative Variables 91

9 EstimLab™ does that within a couple of seconds.



of which extensions (the term is defined in Section 6.3.3) are 70.9%, 22.1%, 4.6%,
1.6% and 0.8%. This shows that the first two new variables “explain” 93% of the
cost. Consequently the formula giving the dynamic center could be written:
U3 � U4 � U5 � 0.

The reader may easily check that these new vectors are normalized (their
Euclidian norm is equal to 1) and orthogonal as it can be, for instance, controlled
on the product:

It may be thought that this solution solves the multi-collinearities problem,
because, as we saw it, the new variables are uncorrelated, etc. But this is not exactly
correct: when we will use the formula for estimating the nominal cost of a new
product, the previous relationships will have to be taken into account.

The Ridge Regression

The Ridge regression, introduced by Hoerl and Kennard, is based on a simple idea:
the problem when dealing with variables more or less correlated comes from the
fact that the matrix:

is, as we saw it in Section 6.2.2, “ill conditioned” and cannot be easily inverted
because its determinant is too close to 0 (inverting a matrix needs to use this deter-
minant as a divisor).

One way to solve the problem is to invert the matrix:

where a small element (the matrix ||1|| is a matrix having all its elements equal to 0,
except for the elements of the main diagonal which are equal to 1) was added in
order not to get the determinant of this matrix too close to 0. Then the matrix can
be easily inverted.

The price to pay (there is always one!) is a slight bias in the value of the coeffi-
cients. For this reason a factor k was introduced in the matrix: the job of the cost
analyst is then to choose a value of k as small as possible to make the matrix invert-
ible with the minimum bias of the coefficients.

This Ridge regression is presented in more details in Part III.

6.3 Visualization of the Data

Visualization of the data is important: the eye is a very powerful sensor for trans-
mitting to the brain a lot of information, if this information is presented in a suitable
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way. When only one or two variables are involved, the usual graph is a very good
tool; when several variables coexist, something must be prepared in order to make
the relevant information readable.

Three tools can be proposed:

1. The “star diagram”, the simplest one.
2. The step-by-step analysis, one of the most powerful way to visually analyze 

the data.
3. The PCA, a classical tool in data analysis.

6.3.1 The Star Diagram

It is the simplest way to present, on one piece of paper, a synthetic view10 of the avail-
able information. It deals with quantitative parameters. The relationship between
the cost and the parameters does not necessarily have to be linear.

It requires two steps.

Preparation of the Graph

The support of the information is a circle. For preparing the graph, a set of J � 1 (as
many as there are parameters, plus the cost) diameters are drawn on the circle; each
diameter is dedicated to one variable. In order to make full use of the circle:

● the minimum and the maximum value of each parameter is computed;
● and each diameter is graduated from one end to the other one (not from the cir-

cle center), from the minimum to the maximum.

When this is done, a symbol representing the value of each product is displayed on
the relevant diameter: Figure 6.17 illustrates.

In our example, we have four parameters, plus the cost: consequently, five diam-
eters are drawn.

Needless to say, the figure is difficult to interpret: it is just displayed here in order
to explain how the diagram is prepared.

This is the reason why a second graph has to be drawn.

Synthesis of the Information

On this second graph each product is represented by one point which is the center of
gravity (or barycentre) of the J � 1 points displayed on the previous graph.Figure 6.18
illustrates.
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10 The star diagram, as it is presented here, has been proposed by Xavier Apolinarski, engineer in the
CEA (Commissariat à l’Energie Atomique) in France.



94 Data Analysis Precedes the Search for a Specific Model

0%

Connections

Boards

Components

Mass

Cost

Boards

Connections

Components

Mass

Cost

A

B

C

D

E

F

G

H

I

J

K

L

M

100%

80%

60%

40%

20%

Figure 6.17 Preparation of the star diagram.

A

B

C

D

E

F

G

H

I

J

K

L

M

Figure 6.18 The star diagram.



The main purposes of this graph are as follows:

1. To look for outliers, if the outliers previously detected were kept, or if new ones
can be discovered. In our example, product K clearly appears as an outlier. This
product was detected as a possible outlier with the variances–covariances matrix
analysis.

2. To confirm if the hypothesis of a linear relationship between variables, which is
the basis of this whole chapter, is confirmed or not. Looking at our example, we
have no reason to reject this hypothesis.

3. To have a broad view of the scattering of the data. In our example the data appear
a bit scattered, but not too much if product K is eliminated.

4. To detect if the product family we are working with is composed or not of two
sub-families. In our example, it does not seem so, even if products H and J seem
globally slightly different from the family; none of these products was detected
as a potential outlier. It would however be interesting to compute a dynamic cen-
ter of the data without these products, in order to see if their absence improves
the quality of the model.

6.3.2 The Step-By-Step Analysis

As we cannot see anything in a multi-dimensional space, the idea here is to present
several two-dimensional diagrams, each diagram being dedicated to one variable.
The basic idea, if we are interested in variable Vj, is the following one:

1. We search first how well all the variables but Vj “explain” the dependent variable
Y. The best way to quantify this explanation is to look at the residuals of a regres-
sion of this dependent variable Y and these J � 1 variables. These residuals are
the values of the dependent variable “cleaned” from the influence of these J � 1
variables: they are the “cleaned Y”.

2. We look now to variable Vj. As this variable may be correlated to the other causal
variables, we decide to also “clean”Vj from the influence of these variables.A good
way to do that is to regress Vj to these variables: the residuals of this regression
constitute the “cleaned Vj”.

3. Now we search how the “cleaned Vj” can explain the “cleaned Y”. The best way to
do it is to regress both set of residuals and to look on a graph at the results: if the
residuals of this third regression are small, this means that the cleaned variable
Vj explains very well the dependent and cleaned variable Y.

This procedure may look a bit difficult at the first approach, but it is a very power-
ful tool for analyzing a set of data: it is therefore recommended. The following of
this section details it.

Let us start with V1. We start by making two linear regressions:

● The first one regresses (the algorithm is the standard linear regression which will
be explained in Part III) the cost Y against all the variables except V1, the result
of this regression is the value of the dynamic center of the data, when variable V1
is deleted. The equation giving this dynamic center can be written, the notation
[1] reminding the reader that variable V1 was removed from the computation:

ˆ
[ ] [ ] [ ] [ ]y b b x b x1 0 1 2 1 2 3 1 3� � � � L
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From this equation, the residuals can be computed; they are labeled, for product i:

These residuals can be called (Theil [56], p. 183): “values of the dependent vari-
able corrected for the effect of all other variables” (all variables less V1). As, in
the linear regression, the sum of the residuals is equal to 0, the arithmetic mean
of un[1] is equal to 0.

● We want now to investigate the relationship between variable V1 and the other
variables. Therefore, we regress V1 against all the other variables (note that the
cost is not involved in this regression). The equation giving the result of this
regression can be written:

The residuals can be as usual computed; they are labeled, for product i:

For the same reason as mentioned upwards, the arithmetic mean of the vi,1
equals 0.

We have now two sets of residuals which are labeled:

1. Values ui[1] of the dependent variable corrected (“cleaned”) from the effect of all
other variables.

2. Values of the causal variables V1 corrected (“cleaned”) from the effect of all other
causal variables: vi,1.

As the set of residuals ui[1] does not take into account the effect of V1, it is interest-
ing to check if the use of this variable V1 could not reduce these residuals. However,
we should not use V1 itself because there is a relationship between V1 and the 
other variables, and these other variables have already been taken into account 
in the computation of ui[1]: we should not count twice the influence of the other
variables.

In order to see if variable V1 can help explain ui[1] we must use the value of V1 cor-
rected for the effect of the other variables; we already know this value: it is the vi.

Consequently, the first thing we can do is to display the couples (vi,1, ui[1]). This is
done, for our example, in Figure 6.19.

What can we observe on this figure?

1. About the vertical axis, giving the values of the dependent variables corrected for
the effect of all other variables, one can see that the range which was for the cost
about 600 is reduced to 180 (from 100 to �80). The “other” variables explain 70%
of the cost variation, which is positive.

2. About the horizontal axis, the original range of 5.6 is now reduced to 2.5: the
other variables explain 55% of the variable V1. This clearly shows there is some
correlation between V1 and these other variables.

3. Now the important question is: would the inclusion of V1 reduce the remaining
range of variation of the cost? This is rather unlikely and can be seen making a

v x c c x c xi i i i, , ,1 0 2 2 3 3� � � � �L

x̂ c c x c x1 0 2 2 3 3� � � �L

u y b b x b xi i i i[ ] [ ] [ ] [ ] ,1 0 1 2 1 2 3 1 3� � � � �, L
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regression between the residuals ui and vi. The equation of the regression is
given by:

which is displayed on the graph and the corresponding straight line (which has 
to go through the point [0, 0] because both arithmetical means of these variables
are 0) is also plotted on the graph. The slope of this equation is small (this is
obvious on the graph) and, consequently, we cannot expect inclusion of variable
V1 to have a great power to reduce the remaining residuals (after correction by
the other variables) of the cost.

Let us examine now the “power” of the number of connections (Figure 6.20).
Note that the range of vi,3 is small compared to the range of the number of con-

nections (1148); this is due to the correlation between this number of connections
and the other variables. Also note that the slope of the regression line is great: this
variable, even cleaned from the influence of the other variables is an interesting
cost driver.

This analysis should be done on all the variables.

A Useful Remark

An interesting point of this step-by-step analysis is that the coefficient of the
regression of the residuals vi,j on ui[j] (0.393 in the example of Figure 6.20) is exactly
equal to the coefficient of variable Vj in the regression of Y on all the variables. It
very clearly indicates the origin of this coefficient, which otherwise seems to come
from just the result of a computation: this remark shows the logic of it.

u vi i� �13 654.
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Figure 6.19 Partial regression of vi,1 against ui[1].



This step-by-step analysis – also called “partial regressions” – is therefore a pow-
erful visual tool for understanding and interpreting the data.

6.3.3 The PCA (Theil [56], p. 46)

The PCA is a very powerful tool for displaying a lot of information about data. Its
origin is easy to explain on an example: look at Figure 6.21 and try to answer the
question: What is this equipment? It could be a ladder for the firemen, an artistic
candle, or anything else.
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Figure 6.20 Partial regression of ui[3] against vi,3.

Figure 6.21 What is this machine? (What is this equipment?)



Look now at Figure 6.22: it is the same machine and we are sure you recognize it
immediately.

Why do you recognize the second one and probably not the first one? Because, on
this second one, the equipment is represented by a projection on a plane, the plane
being chosen to get the maximum extension of the picture. Another example? You
cannot – unless you are an expert in fishing – recognize a fish when you see it in
front, and it is certainly easier to recognize it when you see it laterally, under its
maximum extension.

In a three-dimensional space, we are accustomed to see pictures of an object
seen from three different places: this is the basis of industrial drawing. Images 
of the object are projections of this object on three different planes. The planes
should be, as much as possible, chosen in order to see the object under its maxi-
mum extensions.

This can be extended to a several dimensions space (the number of variables)
and this is the basis of the PCA.

How can this idea be implemented? Let us discuss this question with only two
causal variables V1 and V2, plus of course the cost Y: using only two causal variables
makes it possible to represent the set of the data points (labeled E) in the three-
dimensional space (Figure 6.23).

The Starting Point

Figure 6.23 represents this set of data, the cost being plotted on the vertical axis.

On Which Variables Must We Carry Out a PCA?
There are two types of PCA:

1. The “full” PCA which works with all the variables, including the dependent vari-
able (the cost). In such a case, we works with the set E.

2. The “partial” PCA which works with the causal variables only. The relevant set is
then E�. Once this set is analyzed, the dependent variable can then be added and
correlations between this dependent variable and the new variables U�1 and U�2
are then looked for.
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Figure 6.22 What is this machine?



The choice is let to the cost analyst. However, in the cost domain, the first procedure
is not recommended. The reason for that comes from the fact, explained below, that
we are looking for new variables that will be linear combinations of existing vari-
ables: linear combinations between cost and causal variables do not generally help
the cost analyst. However, if other subjects that cost are studied, the “full” PCA may
sometimes help.

Do We Have to Prepare the Values?
A PCA is always made on the centered values: this means that the origin of the
coordinates system is always transferred to the center of the data set.

Therefore the choice is between:

● Making a PCA on the values only centered: the advantage is, on the graphs, to
correctly represent the data, but to make the visual search of the correlations
between the variables nearly impossible, due to the different scales which are
used for these variables.

● Making a PCA on the values centered and scaled (which means that the values
are divided by their standard deviation; this eliminates the scaling problem).
Then the variables are not correctly represented, but the correlations are much
easier to perceive.

The solution we prefer is the second one, in order to be able to look at these corre-
lations. But both solutions must be available.

The data matrix, once the data are centered and scaled, will be represented 
here by ||csx||. This matrix gives the centered and scaled values of the informa-
tion relevant to each product (as the data are centered, there is no need for a 
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column of 1):

where mj and sj are the arithmetic mean and the standard deviation of all values in
the column j.As a product i is described by all the figures belonging to a row, the set
of its values can be represented by the (row) ||csxi,:|| vector.11

The Computations

The computations will be shortly described in a two-dimensional space (Figure
6.24): this means that each product is defined by its values for two causal variables.
The procedure can then easily be extended to any number of dimensions (the same
number as the causal variables).

Let us consider the product Ai. In the “old” system of variables, it is defined by the
two values of row i of the data matrix (xi,1, xi,2) which is the vector ||xi,:||.

The objective is to find out new variables, here called U1, U2, … that will replace the
existing variables V1, V2, … These new variables will be linear combinations of the
existing ones. Each new variable can then be represented by a vector, for instance U

r
1.

|| ||cs cs ,x
x m

s
xi j j

j
i j�

�
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,
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11 Using the colon notation is common in the literature about matrices.
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Figure 6.24 Representation of data defined by two causal variables.



As previously said, the procedure consists in searching variables for which the
data set has the maximum extension. Let us start by finding the vector 

r
U1: the

“extension” of data point i on  
r
U1 is given by the scalar product.12

of which length is given by the square of this product, conveniently represented by:13

Consequently
r
U1 will be given by maximizing the sum of the projections of all the

products:

given the constraint Ut
1 ⊗ U1 � 1 because we want also all these vectors to have a

length equal to 1.
The problem of maximizing a quadratic form given a quadratic constraint is

solved by the use of the Lagrange multipliers.Consequently
r
U1 is an eigen vector of the

symmetrical matrix ||x||t ⊗ ||x||. The same is true for all other
r
Uj.

The set of new variables is therefore the set of the eigen vectors of this matrix.As
this matrix is symmetrical, we know – it is a theorem in the matrix algebra – that all
the vectors of this set are orthogonal: they, together, constitute a basis of the space.

The fact they are orthogonal is very important: it means that the new variables
are NOT correlated at all. This result will be used later on.

Another Interesting Feature
To each eigen vector is associated an eigenvalue, called �1, �2, … of which sum is
equal to the trace14 of the matrix ||x||t ⊗ ||x||. It can be shown that each ratio such
as �p/trace represents the extension of the data set along the vector

r
Up; it is gener-

ally given in percentage.
This result will help interpret the results of the PCA.

The Results15

Let us return to the example in order to illustrate the results provided by the PCA.
Many interesting data and graphs are provided by the PCA: they give a lot of light
on the structure of the data.
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12 We assume that the space is equipped with an Euclidian metric. Do not forget that the first term is a
row vector, the second a column vector and that, consequently, the product is consistent with the rules
of matrix multiplication.
13 The transpose of a product is equal to the product of the transposes in the opposite order.
14 The trace of a matrix is equal to the sum of its diagonal terms.
15 All the pictures are extracted from EstimLab™.



The First Thing to Look at
Figure 6.25 gives:

● the extension along the four new axes,
● the data (centered and scaled) given in the new coordinate system.
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Centered and scaled data coordinates on new axis

A
B
C
D
E
F
G
H
I
J
K
L
M

Copy

1
2
3
4
5
6
7
8
9
10
11
12
13

Axis 1 Axis 2 Axis 3 Axis 4

 2.698
�0.945
�0.129
 0.556
�0.945
�0.985
 1.205
�0.852
 0.045
�1.387
 3.821
�1.197
�1.886

 0.211
 0.100
 �0.142
�0.745
 0.100
 0.801
 2.599
 0.181
 0.978
�0.212
�1.574
�1.211
�1.086

�0.109
�0.053
�0.200
�0.203
�0.053
�0.309
�0.171

0.308
0.619
0.146
0.116
0.004

�0.096

�0.749
 0.250
�0.483
�0.577
�0.250
 0.637
 0.201
�0.793
 0.210
 0.047
 0.769
 0.037
 0.200

Extensions explained for
each axis in %

65.490
27.293
5.784
1.433

Figure 6.25 Extension and new values of the data.

New variables

U1
U2
U3
U4

0.031
0.900
0.069

�0.428

�0.623
�0.105

�0.143
0.762

�0.512
0.384

�0.227
0.734

0.591
0.175
0.602
0.507

Mass (cs) Components (cs) Connections (cs) Boards (cs)

Figure 6.26 The composition of the new variables.“cs” means “centered and scaled”.

The extension table (Figure 6.25) shows that three new axes are enough to correctly
represent the data: they represent 98.6% of the data, whereas the fourth axis has an
extension of only 1.4%: it can therefore be neglected. Considering the three major
axes, it is easy to see that, viewed from the appropriate direction of space (the one
which is defined by the new axis), the data set has the form of an elliptic pancake
(the extension of the first two axes are 65.5% and 27.3%) with a small thickness
(5.8%). It means that the first two axes only are able to represent 92.8% of the data!

The values of the data on the new axes are given for information only: their inter-
est is limited and the following graphs are easier for interpretation.

What Do Represent the New Variables?
As said earlier, the new variables are linear functions of the old ones; these func-
tions are easily displayed on a screen (Figure 6.26).

It can be seen on this graph that the new variable U1 is a mix, with about the same
proportions of the mass, the number of connections and the number of boards. It
can therefore be interpreted as a “size” of the equipment. The second important
new variable, U2, represents about the same thing as the number of components; it
may be interpreted as the “complexity” of the equipment.



The Projection of the Data on the Planes U1 and U2
The purpose of the PCA being to represent the data, one can try to project these
data on the planes built by the axes. On Figure 6.27, the plane made with axes U1
and U2 is used.
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Figure 6.27 Graph showing projection of the data on the planes U1 and U2.
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Figure 6.28 Projection of the data on the planes U1 and U2.

Data are represented by different symbols which express how far from the plane
are the data: the distance is computed for a data A as the angle � between line OA
with the plane (on the figure, crosses indicate that this angle is less than 30°, squares
that this angle is between 30° and 60°, and circles that this angle exceeds 60°). This
helps the interpretation of the figure: for instance point 3 which looks close to the
center of the graph, may be, in fact, far away on axis U3 (Figure 6.28).

The distances between these data points and the planes can really be viewed on
a projection of the data on the planes U1 and U3 which is perpendicular to the pre-
vious ones (Figure 6.29).

The purpose of these graphs is always the same:

● Looking for possible outliers (here data number 11 seems far away from the
bulk of the data – it corresponds to data K – and therefore the analyst should
pay attention to it).



● Looking to the possible existence of two sub-families inside the family (it does
not seem the case here).

● Looking to the extension of the values (here axis U1 is far more extended than
axis U2 or U3) and searching why (here it comes primarily from one data point).

Correlations Between the Two Set of Variables
Figure 6.30 displays the composition of the new variables from the old ones.
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Figure 6.29 Projection of the data on the planes U1 and U3.
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Figure 6.30 Correlation circle on planes U1 and U2.

Another graph may be useful to understand the links between the new and the
old variables; it is called the “correlation circle”. The idea is to display the projection
of the old variables – of which composition in terms of the new variables can be
computed – on the new variables: Figure 6.30 illustrates.



On this figure we get the representation of an old variables on the planes U1 and
U2: if these two new variables completely represent an old variable, its dedicated
symbol will be on the circle (the name of the graph comes from this fact). Otherwise
another variable, such as U3, may be needed. On the figure it is clear that U1 correctly
nearly (we say “nearly”because a third component may have to be added) represents
both the mass and the number of connections, as well as the number of boards 
but to a lesser extent (another new variable is required for describing it completely);
U2 is a partial representation of the number of components.

It is possible to quantify the visual perception: a value in the table below gives the
correlation between the values of the data in the old coordinates system and the
values computed in the new coordinates system.

In Figure 6.31 one can see, on a look to the “sum of squares”, that the observed
plane represents well – as expected from the extensions seen upwards – most of the
old variables. This is an interesting point which shows that the two variables U1 and
U2 would be sufficient to build a rather good cost-estimating relationship (CER)!

It is also possible to represent the cost on the same plane, as it is done on 
Figure 6.32.

It is clear from this picture that the new axis U1 gives a very good representation
of the cost, as the cost is collinear with it.

What to Do Afterward?

When the information provided by the PCA has been studied, a decision may be
taken: should we go on and compute a formula for the dynamic center of the data
with the data themselves or compute a formula based on the new variables?

We may here compute such a formula16 on the new variables.

A First Method
The first method is rather standard: it uses the result of an analysis in principle
components (ACP) made on all the variables but the cost, as explained on Figure
6.33: the ACP is made on the space E�.
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Correlation with U1

Name

0.957

0.283

0.974

0.821

0.032

0.941

0.072

�0.448

91.723

96.52

95.473

87.417

Value

0.916

0.08

0.95

0.674

Square Value

0.001

0.885

0.005

0.2

Square Sum of squares (%)

Correlation with U2

Mass (cs)

Components (cs)

Connections (cs)

Boards (cs)

Figure 6.31 Correlation table on planes U1 and U2.

16 Note that this computation is completely different from what we did in section “Changing the coordi-
nates system” (“rotating the axis”). In this section we made a PCA on all the variables, including the
dependent variable which provided directly a formula. Here we have to make a regression on the new
variables.
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Figure 6.32 Correlation circle, with the cost added, on planes U1 and U2.

Name Cost U1 U2 U3 U4

A
B
C
D
E
F
G
H
I
J
K
L
M

1278
724
809
920
772
877

1064
865
961
856

1293
717
648

363.57
�29.43

�207.73
�469.98

�29.43
457.15

1719.83
�209.49

606.06
�324.18
�146.92
�867.17
�862.29

509.84
�218.06
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0.77

�0.04
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0

6.77E�05
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0.001
�0.002

Correlation
coefficient

Figure 6.33 Data (not scaled) transformed in the new coordinates system.

The first step to do that is to redo a PCA now on the variables not scaled, but only
centered.17 The values of the database now expressed with the new variables are
given in Figure 6.33; the cost information, which is not transformed, has been

17 This is not compulsory but helps understand the process.



repeated for convenience. It is easy to check that the correlations between these
new variables are negligible (as displayed values are limited in precision, an exact
zero cannot be all the times expected).

It clearly appears on the table in Figure 6.33 that the axis 4 (U4) practically con-
veys no information and that axis 3 (U3) conveys so little that it can be discarded.

The cost analyst may then decide to build a formula with the first two variables
only. The result is:

cost � 906.462 � 0.144 � U1 � 0.513 � U2

For using this formula, it is now necessary to rebuild it with the old variables. The
analysis on these centered data gives the following answer:

U1 � 0.001cx1 � 0.978cx2 � 0.209cx3 � 0.000cx4

U2 � 0.005cx1 � 0.209cx2 � 0.978cx3 � 0.100cx4

In these formulae the centered values appear; these centered values are defined as:

cx1 � x1 � 3.299

cx2 � x2 � 1015.154

cx3 � x3 � 699.385

cx4 � x4 � 7.231

After all the computations (which can easily be automated) we get:

It is clear on this example that the mass and the number of boards are not really
“cost drivers”! If we use the following set of data:

● x1 � 4
● x2 � 1000
● x3 � 500
● x4 � 7

the estimated cost is equal to 793, whatever the unit.
How does this formula differ from the one that would be computed with the

standard linear regression on the old variables? We get:

which is rather different: due to the multi-collinearity effect, the weight given to the
various cost drivers is very different. The algorithm does its best to “explain” the
cost but is unable to properly discriminate between the variables.

ˆ . . . . .y x x x x� � � � �479 275 13 654 0 052 0 393 7 5471 2 3 4

ˆ . . . . .y x x x� � � � �493 1064 0 0026 0 0336 0 5318 0 051 2 3 113 4x
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The cost computed with the same set of data is equal to 835. The difference is not so
large because the set of data corresponds about to the bulk of the data. Nevertheless
the first result, for reasons already explained, should be preferred.

A Second Method
The second method starts with a PCA on all the pre-selected variables, including
the cost.

From the analysis of the data we may decide to select the number of components
V2 and the number of connections V3.We therefore make a PCA on the variables Y,
V2 and V3 centered and scaled; this PCA provides us with three new variables U1, U2
and U3.

The extensions along these new axes are, respectively, 72.482, 26.069 and 1.449.
This means that the first two axes represents about 98.5% of the data. Consequently
the formula will be given by writing that:

Returning to the normal values this formula can be written:

An application of this formula to this set of data: x2 � 500, x3 � 500 gives an esti-
mated value of 780.

The standard linear regression gives:

which, for the same set of data, gives an estimated cost of 783. The difference here
is rather small because the correlation coefficient between the cost and the selected
variable is quite good (0.958), but could be higher if the data were more scattered.

The difference here does not really come from the collinearity between both cost
drivers (their Bravais–Pearson coefficient of correlation is only 0.319), but to the
bias introduced by the linear regression. This bias is discussed in Chapter 9.

6.4 Quantification of the Perceived Relationships

Several correlations coefficients can be computed. We start, in the next section, by
this Bravais–Pearson correlation coefficient.

6.4.1 Quantification Between the Couples of the Causal Variables

This section considers all the couples of variables and quantifies the correlations
inside each couple. It considers only the Bravais–Pearson correlation coefficients.

One could very well use the results obtained in Chapter 5 about the correlation
coefficients between two variables, but it is easier to generalize the process. This
generalization is described here.

ˆ . . .y x x� � �500 977 0 033 0 5322 3

ˆ . . .y x x� � �486 297 0 02996 0 55732 3

U y x x3 2 30 719 0 072 0 691 0� � � �. . .cs cs cs
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As we are here only concerned by the causal variables, we start here with the
matrix ||x|| of the causal variables, each variable being described by the values of
one column (whereas a line is dedicated to a product). Note that we are not using in
this section the matrix ||�x||.

The result we want to get is a symmetrical matrix called ||R|| containing all the
Bravais–Pearson correlation coefficients for all the couples of variables:

This matrix is symmetrical because rj,j � 1 and rj,k � rk,j by definition, all rj,k being
defined by:

with the following notations:

● represents the average value of variable Vj on the I products.

● the standard deviation of variable Vj.

● csVj represents the centered and scaled variable Vj of which values are given by
the vector, derived from the corresponding column of matrix ||x||:
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How is it possible to define ||R|| from ||x||?
In order to do that, we compute first a vector ||g|| or 

r
g defined as the coordinates, in

the I dimensional space,of the center of “gravity”of the variables V1,V2, …, Vj, … ,VJ.
Its components are:

where ||1/I|| is defined as a diagonal matrix RI�I of which the diagonal elements
are all equal to 1/I and 

r
1 a vector RI of which all components are equal 

to 1.
From this vector it is possible to get the matrix RI�J of the centered data:

Now the matrix RJ�J of the variances and covariances of the data can be com-
puted as:

If we define now ||(�1)s|| the diagonal RJ�J matrix of which the diagonal elements
are given by the inverse 1/sj of the standard deviations of the variables, one can
write:

Illustration

Let us illustrate these computations with our example. First of all the coordinates of
the center of gravity is computed:

r
g �

�

3 299

1 015 10

699 385

7 231

3

.

.

.

.

|| || || || || || || ||R s V s�
� �( ) ( )1 1⊗ ⊗

|| || || || || ||c cV x
I

xt� ⊗ ⊗1

|| || || ||c x x gt� �
r r
1 ⊗

r r
g

x
x

x

x

x
Ij

J

t� �

•

•

•

•

⊗ ⊗

,

,

,

,

1

2
1

1…

…

|| ||

Simultaneous Data Analysis on J Quantitative Variables 111



and then the matrix of the centered data:

The symmetrical matrix of the variances and covariances of the data is given by:

and eventually, from this matrix, the matrix of the linear correlations between all
parameters is computed:

6.4.2 Quantification of the Other Correlations Inside the Couples

There is no way to compute directly from the matrix of the data the various corre-
lations coefficients which were described in Chapter 5 dedicated to the analysis of
a pair of variables. The only solution is to apply the algorithms to all the pairs of
variables.

Here are the Spearman correlation coefficients for all couples (Figure 6.34).
Most of the Spearman correlation coefficients are rather similar the Bravais–

Pearson ones,with the exception of the couple “connections–boards”.A simple look at
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the diagram between these variables (Figure 6.35) explains this result: there is a – small –
correlation between these variables, but it clearly appears that the correlation
between the ranks is not high.

The Kendall correlation coefficients may also be computed (Figure 6.36).
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Figure 6.34 The Spearman correlation coefficients.
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6.4.3 Partial Correlations

The previous sections studied the correlation coefficients between two variables,
independently of the other variables. Let us call ri,j the Bravais–Pearson correlation
coefficient between variables Vi and Vj. For instance we found for our example
r1,2 � rmass,components � 0.26 whatever the values of the other variables. The ques-
tion may be asked if this coefficient remains the same if another variable is kept 
constant.

The reason for investigating this point is that the correlation between V1 and V2
may be due to another variable, although V1 and V2 are not really correlated.18

Let us assume we know the value of variable V3: What is then the correlation
coefficient between V1 and V2? It can be demonstrated19 that:

This can be generalized to more known variables.

Numerical Application

In the example, we write:

which means that the correlation between V1 and V2 now changes its sign (but is so
low that it can probably be inferred that there is no correlation at all)!

It is always interesting to have a look at these partial correlations in any study
involving several quantitative variables. If it happens that two variables are highly
correlated but that this correlation disappears – or, more exactly, nearly disappears –
when a third variable is kept constant, then the best solution may be to delete these
two variables and to keep only the first one.

This may happen for instance when two characteristics of an equipment (such as
the sensitivity and the accuracy of a sensor) evolve at about the same – slow – pace
with time, due to engineering efforts. In such a case both variables appear as corre-
lated, but this correlation disappears when the time is kept constant. This is rather
frequent for high-technology items, as the technical progress often goes simulta-
neously for several characteristics. The solution can be to delete both variables and
to keep only the time (for instance the year of design).
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18 A well-known example is the study of the three variables “average personal income”,“sales of personal
computers” and “alcoholic consumption”. The study may show that “sales of personal computers” and
“alcoholic consumption” are very well correlated! However, if we recompute this correlation coefficient
keeping the “average of personal income” constant, then the correlation disappears: it was due to the fact
that when the personal income increases, then both the “sales of personal computer” as well as the “alco-
holic consumption” increase.
19 The notation r1,2|3 means: correlation between V1 and V2, given V3.



6.4.4 Multiple Correlations Between Variables

Up to now we investigated only the correlations between two variables, plus the
possibility that this correlation may be due to another variable.

It is also possible to investigate the correlation between one variable and two
other ones, in order to see if one variable can be explained by the simultaneous val-
ues of these two variables. The corresponding coefficient is called “multiple corre-
lation coefficient” and is often represented by a capital R, the variables concerned
being set as indices. For instance the multiple correlation coefficient between vari-
able V1 and the set of V2 plus V3 is named R1.23, the dot in the index being used for
clarity.

This multiple correlation coefficient is easily computed from the individual 
correlations:

6.4.5 Multiple Linear Correlation

The multiple correlation coefficient looks at the link between the dependent vari-
able and the J causal, quantitative, variables.

It is computed (Saporta [50], p. 139) as the greatest value of the correlation
between this dependent variable and any linear combination between the causal
variables.

This formula implies that 0 � Rm � 1. We will find again this value when the linear
regression will be studied; this formula will be obtained when the intercept is
forced to 0.

If we call:

● ||cx|| the data matrix with centered values,
● ||cy|| the vector of the centered values of the dependent variable:
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7 Working with Qualitative Variables

Summary

The introduction of qualitative variables is a bit disturbing, because everything we
have been doing up to now was dedicated to quantitative variables.

However, it is possible to use the same logic once a slight change is made to the
cost. This change implies a preliminary computation of the influence of the quali-
tative variables.

Once this is done the same data analysis can be carried out on the quantitative
cost drivers and the modified cost:

1. search for outliers,
2. investigating the possible collinearities,
3. visualization of the data, in order to understand their structure,
4. quantification of the perceived relationships. Nothing has to be changed for 

the quantitative variables. One can also investigate the correlation between 
quantitative and qualitative variables, and even between qualitative variables.
This will help understand the structure of the data and prepare future 
computations.

Using qualitative variables is a very important concept in cost estimating: the
cost analyst should therefore be able to interpret them.

The quantitative variables are for instance the cost and the product size, the
qualitative variable(s) being anything as previously indicated, such as the material,
or the manufacturer, or the quality level, etc.

We are now going to illustrate the concepts with the following data; these data
refer to electrical engines: column 1 gives the product name, column 2 its price (the
unit is irrelevant), column 3 the mass (kg) and column 4 a qualitative variable
which describes the way these engines were designed; here the change in design is
given by the number of poles (0 means 2 poles, 1 means 6 poles). Values 0 and 1
should not be confused with quantitative variables; one could have named them
“engine with 2 poles” and “engines with 6 poles” (Figure 7.1).

The analysis of the data, in the presence of qualitative variables, is about the
same as with quantitative variables only.

However, most of the algorithms which were developed for the search of outliers
and for the study of multi-collinearities, use the results of linear algebra, algebra
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which is only able to handle quantitative values. Consequently some preliminary
work has to be done in order to use its procedure.

Name

a
b
q
r
c
d
e
g
h
i
s
j
t
k
u
l
v
m
w
n
x
o
p
y

819
934
934
983

1038
1212
 1403 
1643
2049
2474
2807
2830
3540
3726
4315
4710
5462
6883
7211
8742
9877

10402
12357
12739

4.5
5.5
5.0
5.5
6.5
9.0

10.0
13.0
16.0
21.0
27.0
25.0
39.0
37.0
46.0
42.0
54.0
76.0
79.0
85.0
93.0
95.0

120.0
145.0

0
0
1
1
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1

Price Mass Poles

Figure 7.1 An other example.

A qualitative variable only translates
the intercept by a value �

Size

Cost

Figure 7.2 The role of a quantitative variable in the case of an additive formula.

What can be proposed is the following treatment. This treatment anticipates on the
results of Chapter 10. We will see in this chapter that the qualitative variables only
“translates”the formulae parallel to the cost axis by a value � as illustrated in Figure 7.2
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in the case of an additive formula with two modalities only (the result is also true for
the other types of formulae). The idea is then to compute, for each modality of the
qualitative parameter, the amount of translation and to remove this amount from the
cost of the relevant product. This procedure provides “adjusted” costs which are not
anymore influenced by the qualitative parameters: it is then possible to proceed with
the quantitative variables only.

If outliers or other problems are detected on these adjusted costs and if you
decide that a product or even a variable must be deleted, the whole process must be
redone without this product or this variable. Of course it is a little more time con-
suming that the treatment of pure quantitative variables, but the treatment is so
quick that it is still worth doing it (it can be – and has been – automatized).

7.1 Looking for Outliers

The procedures described in the previous chapters can all be used. The result
depends on the presence or the absence of the qualitative variable: column 2 gives
the list of the potential outliers if the analyst does not care about the qualitative
variable (no correction is made for the change of intercepts), whereas column 3
adjusts the cost data according to this change (Figure 7.3).

Procedure Potential outliers detected

With no qualitative With qualitative

Looking for residuals y y

Looking to the “HAT” matrix p and y y

Changes of the covariance matrix o and y o, x and y

Figure 7.3 Potential outliers detected.

The potential outliers are about the same, but some differences can be noticed.
Our preference goes to the third column results, as we consider that qualitative
variables should be taken into account.

7.2 Dealing with Multi-Collinearities

The procedure is exactly the same as described earlier. No example is given here
due to the presence of one quantitative variable only.

7.3 Visualization of the Data

The visualization of the data should not take into account the qualitative 
variable, in order to clearly see their interest. This interest immediately appears 
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on the “star diagram” as illustrated: two trends are seen which shows that 
qualitative information should be taken into account when preparing the formula
(Figure 7.4).

The question is slightly different for the principal component analysis (PCA):
the standard use of the PCA is only interested in the relative position of the quanti-
tative variables. So there is no use of it for the qualitative variable, of which unique
function is to adjust the cost.

However, new visualization can be introduced in order to get a representation of
the independence or the relationship between one quantitative and one qualitative
variable, or even between two qualitative ones.

Visualize One Quantitative Variable and a Qualitative One
The solution which can be proposed in order to give to the eye a general picture of
the data is illustrated on Figure 7.5: using a graph on which both axis refer to the
quantitative variable. Then the data points are all on the bisector of the graph. In
order to distinguish the qualitative variable a different symbol is used depending
on the value of the modalities.

For the example given, no relationship seems to exist: the modalities seems to be
randomly distributed among the values of the quantitative variable.

Visualize Two Qualitative Variables
It is possible to visualize two qualitative variables simultaneously in order to look
at the possible correlation between these variables.
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Figure 7.4 The star diagram.
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The following example illustrates the idea; it displays the possible relationship
between two qualitative variables used by Barry Boehm (Ref. [8], p. 496):

● Type of software: business application, process control, human–machine inter-
actions, scientific application, support software, system software.

● Programing language.

It immediately appears that:

● Cobol is practically only used for business applications (this was expected).
● Fortran and high-order language were (COCOMO database refers to software

made in the 1970s) the most used languages.
● Fortran was primarily used for scientific applications (this was expected too).
● Human–machine interactions applications are the software with the greatest

diversity of language (Figure 7.6).
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Figure 7.5 Visualization of the relationship between a quantitative variable and a qualitative one.
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7.4 Quantification of the Perceived Relationships

This section deals only with the analysis with at least one qualitative variable.

7.4.1 Correlation Between One Quantitative Variable and 
One Qualitative

This section analyzes the possible correlation between a quantitative variable
(which may be the cost or any quantitative parameter: it will be noted z to remain
general) and a qualitative one, inside the sample, the objective being to see if both
variables express or not the same idea.

The sample includes I products, for which the average value of the quantitative
variable is z– and the standard deviation sz.

Let us assume that the qualitative variable has M modalities, numbered from 1 to
M. This allows splitting the data into M subsets, each subset corresponding to one
modality. Inside each subset m:

● the number of products is called Im,
● the average value of the quantitative variable is called z

u
m (this is the arithmetic

mean).
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Figure 7.6 Visualization of the relationships between a type of application and programing language.
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The correlation coefficient between both variables is given by Saporta ([50], p. 148):

It is clear that �2 � 0 if z–1 � z–2 � … � z–m � … � z–M � z– (there is absolutely
no correlation between both variables) and that �2 � 1 if all the products present-
ing the same modality have the same value of z (the correlation is the perfect).
�2, therefore has the properties of a correlation coefficient.

Example

For the example given the correlation coefficient takes the value 0.222: this is 
practically no correlation between the mass and the number of poles, result which
confirms the visual perception we had about these variables.

7.4.2 Correlation Between Two Qualitative Variables1

Let us consider two qualitative variables:

● the first one has M modalities noted from 1 to M,
● the second has L modalities noted from 1 to L.

The objective is always to see if they express the same idea or not.
In order to answer this question, the “contingency table”is computed: it gives in cell

l, m (row l, column m) the number of products which have both modalities l and m:
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means that the values rated to this index were added):

n n n nl l m
m

m l m
l

, , , ,� �
� �∑ ∑and

1 See Saporta ([50], p. 150).



The contingency coefficient is given by K. Pearson2:

with

It is clear that d2 � 0 when both variables are independent.

Example

Returning to the data displayed in Figure 7.6, one computes a value for the contin-
gency coefficient equal to 0.74.

This quantification shows that, as it is appeared in a qualitative way on the graph,
that languages are not uniformly spread on all types of software, and that pro-
gramers who work for different applications have a trend to select a language as a
function of the software (and the contingency coefficient quantifies this trend).
This is certainly obvious for people in the software industry, although the impor-
tance of the trend may not be known, but probably not for the cost analyst who 
discovers this business.
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Part III
Finding the Dynamic Center of a 
Multi-Variables Sample



Part Contents

Chapter 8 Finding the Center of the Cost Distribution for Choosing a Metric
Choosing a metric is one of the first choice a cost analyst has to make. He/she must then
understand the properties of the major ones.

Chapter 9 Looking for the Dynamic Center: The Bilinear Cases
The bilinear case is the most used solution for discovering the dynamic center of a cost dis-
tribution. It has been studied by many authors because it uses many concepts of the linear
algebra.

In this chapter only one parameter is considered.

Chapter 10 Using Several Quantitative Parameters: The Linear Cases
This chapter expands the results of the previous one to the simultaneous use of several
parameters.

Chapter 11 Using Qualitative Variables
This use is generally a must when dealing with cost.

Chapter 12 Non-Linear Relationships
These relationships must sometimes be used by the cost analyst. Two sets are considered: the
linearizable relationships and the truly non-linear ones.

Once the data analysis has been properly carried out, it is time to investigate the purpose
of this book, which is the construction of a specific model, specific meaning “dedicated to a
proper family”.

As explained in Part I, the procedure for doing so is to replace the complex (because many
variables may be involved) distribution of the cost by something simpler. This is achieved by
removing from the cost values the influence of all the variables. What remains once this has
been done is a simple distribution which does not depend anymore on any variable.

The remains are called the “residuals”: it is what is left over when the influence of all the
variables has been removed.

The purpose of this part is to find out the “best” way to do this removal.As a matter of fact
you will discover there is no best way! Several ways are possible and cost analysts use one or
the other depending on the data or their personal preference.

But no solution is perfect; the cost analyst should therefore know them (more exactly sev-
eral of them, because there is potentially an infinite number of ways) in order to select the
one which is adequate for the data he/she has to work with.

These ways are called “metric”, for a reason which will appear in this chapter: it is the way
the “distance” between two values is defined and computed.

Several metrics will be investigated for two reasons:

1. The first reason is to convince the cost analyst that he/she has to make a choice, because
no metric is really perfect under all circumstances.

2. The second is to let him/her know the advantages and the inconveniences of all of them.

An important consequence of this choice is that two cost analysts, working with the
same data, may propose two different formulae, which may differ more especially as
the data are more scattered: there is nothing such as a unique formula.



8 Finding the Center of the Cost Distribution for 
Choosing a Metric

Summary

This chapter is an important one of this book. It is an introduction to the algo-
rithms that have to be used for finding a specific model.

In this chapter we study the distribution of the cost without using any other vari-
able; the purpose is to see how the center of this distribution can be found.

Generally speaking the distribution of a quantitative variable can be described
(see Chapter 2) as a set of two things:

1. The value of the “center” of this distribution.
2. How the “residuals” (the differences between the values of the variable and the

center just found) are scattered around this center.

Splitting a distribution into these two terms is extremely useful and is the basis
of the work the cost analyst has to carry out. When trying to extract from the data
a specific cost model for forecasting the cost of future products, the center of the
distribution will lead to what can be called the cost-estimating relationship (or
CER) from which the “nominal cost” of these future products will be computed.

The “residuals” are what is left from the data when the value of the center has
been removed from the cost values.

This part deals only with the search of the center as the definition of the metric
to be used is a prerequisite toward this end. Part IV will study the residuals.

The question of finding the center of a distribution is completely independent of
the formula type that can be chosen by the cost analyst. The answer to it can be
used whatever this type: this is the reason of its importance.

Choosing the algorithm which will be used for finding the center of a distribu-
tion is one of the most important decision that the cost analyst has to make (the
second one being the formula type). For this reason the different algorithms which
can be used will be explored in order for the cost analyst to understand the advan-
tages and disadvantages of each. The reader will discover that no one solution is
theoretically better than the other ones and imposes itself to the cost analyst.

The distributions which are studied here use one variable only. Consequently the
“centers”are quantified with one value only.When we study the distribution involv-
ing two or more variables, the center cannot be one value anymore: we will intro-
duce, in this Part III, the concept of the “dynamic center”. This concept will use all
the developments made in this chapter.



8.1 Introduction

This chapter introduces the most important concepts for using the data for cost
estimating.

Let us start with the concept of “distribution”; it is a very important one and the
reason is obvious: we are looking for the cost of a new product. This product
belongs to a product family. Consequently its cost will be known if the distribution
of the cost of all the products belonging to this product family is known.

Inside a product family several figures (cost and parameters, quantitative or
qualitative) are attached to a product.

The distribution of the cost data inside a product family is the set of all the costs,
each one being related to one product. As the number of products is potentially
infinite, this distribution may be extremely complex and unmanageable.

The idea which was found in order to manage these data is to replace this 
distribution by the couple made of:

1. a “center”, which contains, hopefully, most of the information included in
the data.

2. distribution of the residuals around this center.

The interest of this idea is to replace something which could be extremely diffi-
cult to handle by something very manageable. In other words, a multi-variable dis-
tribution is replaced, once the center has been found, by a one variable distribution,
the distribution of the residuals around the center.

The center will give birth to the formula which we are looking for. The distribu-
tion of the residuals – which is, for the cost analyst, as important as the formula
itself – will be used to provide some useful information about the quality of the for-
mula in order to answer the question: “don’t we loose too much information when
we replace the distribution of the cost by a simple formula?”

The price to pay for going from complex to simple is twofold: it requires some
work for:

1. establishing the value of this center,
2. studying the residuals around this center, this subject being postponed to Part IV.

This price is far from negligible: many statistical books have been written on these
subjects, without giving a definite answer, at least in the domain of cost. The reason
for that, as the reader will discover, is that there cannot be a definite answer. He/she
will realize that it is impossible to define one unique center. The cost analyst has to
choose the type of center he/she wants to use for his/her own purpose.Practically this
means that two persons, working with the same data, will generally (unless the data
perfectly fit with the formula type he/she selects) obtain different values for this cen-
ter,and the reader will notice that the differences increase with the spread of the data.

This creates a very serious problem, because it means that these two persons,
although working with the same data, will not estimate the same cost for the same
new product. For this reason, if you have to share formulae with somebody else, it
is highly recommended that the formulae will be accompanied by the procedure
which was used to compute it.

At this stage it must be remembered that:

There is nothing such as a unique formula for a CER even if the formula type
is imposed because there is nothing such as a unique center for a distribution.
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As it is a very important subject for cost estimating, this whole chapter is dedicated
to it. It must be considered as an introduction to the subject.

As an introduction, this chapter deals with one variable only (generally speaking
the cost). It is not expected – unless you want to carry out special studies such 
as the costs, proposed by several manufacturers, for the same product, or the 
specific cost (cost per size unit, such as the cost per kilogram or per square meter)
for a product family – that you will work often with one variable only. The pur-
pose of this chapter is not to suggest that you should do it, but to introduce on 
simple distributions some very important concepts; all these concepts will be 
used when “serious” matters will be considered: building a formula for preparing 
a CER.

Searching for the center generally supposes that some preliminary work has
been performed. This preliminary work, which is described in the previous chap-
ters, is supposed to have been performed.

One Example

For illustrating the discussion of the different approaches, we will use the following
example (which is the same as the one used in Chapter 2):

3.4
4.2
6.3
8.2
9.9

16.3
21.2
35.9
46.5
64.5
84.5

This example uses one variable only. It may be the cost of the same product, or
any other observations of the same phenomenon (for instance the speeds of vehi-
cles which cross a signal at a given moment of the day). Of course these data are
rather scattered, but they help understand what the problems are.

We will make an extensive use of such a distribution when we study the distri-
bution of the residuals around the distribution center. The present example was
selected for this purpose: it appears rarely when studying a phenomenon, but it is
a representative example of what may happen for the residuals.

The first important characteristic of any distribution is its center; it has therefore
to be determined with care. In Chapter 2 a preliminary discussion was carried out
about this center; we need now to have a full discussion of it.You may have an intu-
itive perception of what the center of a distribution is. This is nice, but in order to
work with it (calculate it and use it), we need a formal definition of what the center
is.You will then discover that the concept of center is far from obvious and that it is
impossible to define the center in an unambiguous way: there are as many centers
as you may think of, and each center has a special purpose.

The general definition of the center of a distribution – in the present case when
dealing with just one variable – can be the following one: the center is “a value
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which is as close as possible to all values present in the database”. This value 
will be generally represented by ŷ; left indices (such as bŷ or mŷ) can be used for
representing different types of centers; however the very common notation y

u
will

be kept in order to represent the arithmetic mean.

A First Attempt: Trying a Global Approach

The global approach was introduced in Chapter 2 because it was needed as an
introduction to the center of a distribution. It is reminded here; it will be shown in
the following pages of this chapter that this approach is just a particular case of
more general metrics.

The global approach is rather straightforward. It consists in saying that the cen-
ter ŷ of the distribution will be the value computed in the following ways.

Using the Differences
If the differences are used (two data are said to be close to each other if their dif-
ference is close to 0), the center is the value for which the sum of all the differences
between this center and all the data is equal to zero:

The value can be then immediately computed as:

which is called the “arithmetic mean”. Let us remind the reader that, because it is
largely used, it is generally just called the “mean” and receives a particular symbol:
y
u
. For the example given, y

u
� 27.355.

Using the Ratio
If the ratios are used (two data are close together if the ratio of their values is close
to 1), the center is the value for which the product of all the ratios between the cen-
ter value and all the data is equal to 1:

Here also the value is immediately computed as:

which is called the “geometric mean”, generally represented by the symbol g ŷ. For
the example given, g ŷ � 16.39.
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ŷ
I

yi
i

�
1 ∑

( ˆ )y yi
i

� �∑ 0

130 Finding the Dynamic Center of a Multi-Variables Sample



These values are rather different! But both can legitimately be called the “center”
of the distribution. It is a first perception of the fact that the center is a value which
results from conventions, or from a deliberate choice.

For our purpose this procedure for finding the center is a bit “rough”, as – due to
the sign effect in the first case, to the quotient effect in the second case – values may
compensate each other. We would like to define the center with more flexibility in
order to adjust it to the particular problem we have to solve.

8.2 Defining the Distance Between Two Values: Choosing a Metric

The definition of the center given in the introduction to this chapter is perfect if we
are able to define what we mean by “close”. In order to make such a definition oper-
ational, we have to decide on the way the closeness will be measured, which means
we have to choose a “metric”.1

Without starting from the mathematical axioms, we can simply say that a dis-
tance between two numbers a and b or d(a, b) is a number attached to the two val-
ues a and b having the following properties:

1. d(a, b) � 0
2. if a � b, then d(a, b) � 0
3. d(a, b) � d(b, c) � d(a, c).

There are obviously many different ways to define such a distance; to start with,
one can consider the following metrics:

● Using the difference: we can say two values are close together if their difference
is in the vicinity of 0. In order to express this difference, we will use d(a, b) �
|a � b|; for adding some flexibility in this definition, we prefer to use d(a, b) �
|a � b|�, � being a value chosen by the cost analyst.

● Using the ratio: two values are close together if their ratio is in the vicinity of 1.
The ratio itself cannot be used as a distance, because property 2 is not satisfied.
The distance must then be defined as:

, or preferably .

These two ways (using the difference or the ratio) express of course the same idea:
saying that a is close to b means that a � b � 0 which means that a � (1�(b/a)) � 0

d a b
b
a

( , ) � �1
a

d a b
b
a

( , ) � �1
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1 According to the “Webster’s New Collegiate Dictionary”, a metric is defined either as a standard of
measurement or a mathematical function that associates with each pair of elements of a set a real non
negative number constituting their distance and satisfying the conditions that the number is 0 only if
the two elements are identical, the number is the same regardless of the order in which the two elements
are taken, and the number associated with one pair of elements plus that associated with one member
of the pair and a third element is equal or greater than the number associated with the other member of
the pair and the third element. This is exactly the definition we use here.



and therefore (b/a) � 1. But the mathematical computations – and some of the
results – are different.

Instead of the ratio itself, we could use its log and define d(a,b) � |log(b/a)|�

which now fulfills property 2. This is an interesting metric.
At this stage it is not possible to decide what is the best choice between these dif-

ferent metrics: they have to be investigated. Figure 8.1 gives the list of the different
metrics we will investigate.

This list is not exhaustive: the number of algorithms which could be used for
quantifying the distances is potentially infinite. The list gives the major ones.

The “global” approach is the one we first considered. We saw that this “global”
approach is too rough for our purpose; then we turn now to the “local” approach.
The rest of this chapter is dedicated to the investigation of the metrics which were
just defined.

About the weighted approaches: giving a “weight” to each product of the sample
data may help solve several problems which appear for searching for a center; for
example, it allows to decrease the influence of outliers that we prefer (because their
values are considered, at least partly, as reliable) not to delete. Such weights could
be manually entered for each product, but one can prefer to have an automatic
weighting process. Several processes have been proposed by different authors, the
most interesting being the biweight: so the discussion about the weighting process
will be limited to this procedure.
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“Global” approach

“Local” approach

Using the difference

yi

ŷ
�1

Using the ratio
yi

ŷ
�1

yi

ŷ
log

No weight

Weighted Using the biweight

Using the difference Using the ratio 

a

a

a

a

y � yiˆ

Figure 8.1 The main distances generally used for searching the center ŷ.



Abbreviations and Other Metrics

The difference yi � ŷ is sometimes called the “additive error” (although we do not
like the term “error” as it is used here: we prefer to use the term “residual”) and
noted e�i because yi � ŷ � e�i.

The metric based on the squared differences |ŷ � yi|2 is generally called the
Euclidian metric, or the “ordinary least squares”, or “OLS”. When the difference of
the log is used instead, it becomes the “OLS on logs” or “OLSL”.

The ratio yi/ŷ is often called the “multiplicative error” and noted e�i, because
yi � ŷ � e�i.

The quantity ((yi/ŷ)�1) � (yi�ŷ)/ŷ is often called the “percentage error” (it can
be multiplied by 100 without changing anything) and noted e%i. The metric based
on its square ((yi�ŷ)/ŷ)2 is then called the “minimum percent error” or “MPE”.

One can also define other metrics which are similar to the previous one, plus a
constraint. For instance one may want to use the metric defined by (( yi�ŷ)/ŷ)2

with the constraint ∑i((yi� ŷ)/ŷ) � 0. As such a sum is sometimes called the “bias”
(although the term is not correct, as the bias is generally defined as an asymptotic
property), such a metric is sometimes called “MPE with 0 bias” or “ZMPE”.

One can immediately note here that the OLS automatically generates a 0 bias,
because, as we will see it, for this metric ∑i(yi� ŷ) � 0.

8.3 A First Approach: Using the Differences

8.3.1 Definition

The distance (this is sometimes called the Minkowski’s distance) between yi and ŷ
is given by:

Figure 8.2 presents, on an example (yi � 20, ŷ � 30, or the opposite because the for-
mula is symmetric), the value of the distance as a function of � the range of � will
be limited from 1 to 2, which is the generally accepted range (the distance still
decreases when � becomes lower than 1).

As expected, the distance becomes greater and greater when � increases. This is
intuitive, and just need to be reminded.

Figure 8.3 shows, for three given values of �, how this distance changes when 
ŷ goes from 10 to 30. The curves are symmetrical around ŷ � 20 – as is the formula.
Two points must be noticed:

1. When ŷ is close to yi by about �10%, the value of the distances are rather simi-
lar, whatever the value of �.

2. But this distance grows extremely fast with � when ŷ is at more than 20% 
of yi. This explains that, when using � � 2 in a sum including small and 
high differences, the small differences have a very little “weight” in the sum,
which is dominated by the large differences: the center is “attracted” by large 
values.

d y y y yi i( , ˆ) ˆ� �| |a
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8.3.2 Computing the Center According to This Metric

In order to find the center ŷ of this distribution, let us try to compute the value
which minimizes the sum – which is a function of � and ŷ – of the distances:

sum( , ˆ) | ˆ |a ay y yi
i

� �∑
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Figure 8.2 How does the distance change with � computations made with yi � 20, ŷ � 30 and � from 
1 to 2.
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Figure 8.3 How does the distance change with ŷ (from 10 to 30) for three different values of �: � � 1
(full line); � � 1.5 (dotted line) and � � 2 (dashed line).



The computation must be made step by step: one chooses a value for �, computes
the sum for various values of ŷ and determine the minimum values. This is repre-
sented in Figure 8.4 for � � 1.5.With the set of values listed on this figure, the mini-
mum is obtained for ŷ � 22.076 which is the center of the distribution for this metric.

An interesting feature of this curve is that the minimum is rather well defined:
the curve is not very flat in the vicinity of the minimum.

How does this value change with �?
The same type of computation allows to find the change of the center when 

� is changed. Results are given in Figure 8.5. Two important values must be 
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Figure 8.4 Searching ŷ for minimizing the sum for � � 1.5.
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Figure 8.5 How does this center ŷ change with �?



noted: ŷ � 27.355 for � � 2 (this the Euclidian metric), ŷ � 16.3 for � � 1.The first
value corresponds to the usual “arithmetic mean” or simply the mean y

u
, the second

to the median y%. This result shows that these values are just particular cases of
using the Minkowski’s distance.

Let us briefly demonstrate the first one. We already saw the mean when working
on the global approach; we work now with a second definition. The mean y– can also
be defined as the value which is the closest to all values according to the Euclidian
metric: the value sum � ∑i( y

u
� yi)2 will reach a minimum for (∂sum/∂y

u
) �

2∑i( y
u

� yi) � 0 which gives the usual result y
u

� (1/I)∑i yi.
The mean therefore has interesting properties, as it is the center of the distribu-

tion either when it is computed globally, or locally (with � � 2). This is one of the
reasons of the success of this characteristic.

Using the concept of distances as the difference between the values affected by an
exponent enables to find out the two frequently used centers of a distribution: the
mean and the median.Other values of � are practically never used (but they could be!).

Sensitivity Analysis

How do these values compare together? First of all it is clear that the higher �, the
more the center is “attracted” by the largest values (this is logic). Consequently the
mean – although the most used value for the center of a distribution – has one seri-
ous drawback: it is sensitive to the extreme values (and consequently to the outliers
if there are some). We say it lacks “robustness”. The mean goes down to 27.35 if the
3.4 value is changed to 1, and to 28.76 if the 84.5 is changed to 100.

This obviously comes from the fact that the difference |ŷ � yi| becomes large
when yi is very different from ŷ, the result being symmetrical.

The major advantage of the median as the center of a distribution is its relative
insensitivity to extreme values: the value of one outlier may change dramatically
without any change of the median; in the given example, the value 84.5 could change
from 17 to infinite without changing the median. The median is a “robust” charac-
teristic; this is an interesting quality when the data are rather scattered.

8.3.3 Study of the Influence

The previous section studied the different values which can be computed when the
differences are used as a base for determining the distances.

A small sensitivity analysis was carried out.
A more general study of a metric can be done using the concept of influence.

This idea is to see what happens to the center when a new data is added to the exist-
ing data set: how does this new data modifies the value of the center?

In order to explore this concept, we will add a new data of which value can
change from �100 to �200, this large interval being used to investigate the influ-
ence of the outliers. The procedure is straightforward:

● A new value is added.
● The new center is computed.
● The way the center changes is displayed on a curve, called the “influence curve”.
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Using the Median

When the added value is present, the “center” takes the value given in Figure 8.6, as
a function of this value.

The result is straightforward, as it can be expected: the median does not change
as long as the added value is lower than 9.9, then climbs smoothly to 18.75 when the
new value reaches 21.2 and does not change afterwards.

As expected the “center” is completely insensitive to outliers: it is a very robust
characteristic of the distribution.

Note
Be careful if you try to draw this graph with a simple algorithm working with 
iterations, because the minimum value of the sum computed to get the median 
presents a flat minimum, as it can be seen in Figure 8.7: the minimum of the sum is
not defined between 9.9 and 16.3. The algorithm may then display any value in the
flat range, depending on the approximate value of the center you start from.

Using the Mean

It is clear from Figure 8.8 that the mean is sensitive to new data, but in a rather
moderate way.

The relationship between a new data is normal: the mean changes linearly with
its value.
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Figure 8.6 How a supplementary data influence the median.
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Figure 8.8 How a supplementary data influence the mean.

8.4 Using the First Type of Ratio: The Center Appears 
as the Numerator

8.4.1 Definition

We turn now to the distance given by:
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Figure 8.7 Value of the sum of which the minimum is looked for in order to get the median (in this
example, the value added is – 10).



When ŷ is at the numerator of the formula, the change in the distance between yi
and ŷ with � is given by Figure 8.9.

Two points must be noted:

1. the distance seems to – and does in this example – decrease with �. This comes
from the fact that, in this example, ( ŷ/yi) � 1 � 0.5 � 1 is raised at a power
larger than 1. If we had chosen ŷ � 2yi we would have found that the distance
does not change with �; if we had chosen ŷ  2yi, we would have drawn an oppo-
site conclusion.

2. the distance does not change so much if the values of yi and ŷ are not too far
away: it is far less sensitive to � than with the metric using the difference.

If we look now at the way the distance changes when ŷ is modified, we get the results
in Figure 8.10. The interesting point is that the distance does not change too much
with �, except of course if ŷ becomes very large.

The point to be noticed here is that the change in the distance is symmetrical
around yi.

8.4.2 Computing the Center According to This Metric

The center is now given by the value r1 ŷ which minimizes the sum:

sum( , )
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Figure 8.9 How does the distance change with � computations made with yi � 20, ŷ � 30 and � from 
1 to 2 ( ŷ is the numerator of the fraction).
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Figure 8.10 How does the distance change with ŷ (from 10 to 50) for three different values of �: � � 1
(full line); � � 1.5 (dotted line) and � � 2 (dashed line).
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Figure 8.11 How does this center r1ŷ change with �?

Minimizing this sum leads, in our example, to values of r1 ŷ which depend on �; the
results, according to the values of �, are plotted in Figure 8.11.

We still used here the same example as given in the beginning of this chapter; it
is reproduced here for easiness.



There is always a minimum for each value of � and this minimum does not
change so much with �.

3.4
4.2
6.3
8.2
9.9

16.3
21.2
35.9
46.5
64.5
84.5

Two important comments have to be mentioned:

1. The center value is much smaller than the mean and even the median (of course
the “much” comes to the fact that the data are intentionally rather scattered in
order to make the characteristics of this metric clearly appear). It can be said
that, for this metric, the center is “attracted” by the low values.

2. This center does not change a lot with the value of �. For this reason, the value
� � 2 is generally adopted by cost analysts who want to use this metric. We will
now limit the investigation to this value.

Sensitivity Analysis

Starting from r1 ŷ � 5.466 (for � � 2), the center goes down to 1.619 if the 3.4 value
is changed to 1, and to 5.458 if the 84.5 is changed to 100. This shows the “attrac-
tion” exerted by low values but it is not representative of the quality of the formula
because 0 is a singular point.

8.4.3 Study of the Influence

For studying the influence curve, we add to the previous set of data one new 
data and observe what happens when this new value goes from �100 to 200 
(Figure 8.12).

The center is nearly completely insensitive to the new data point, as long as the
new data point value is clearly different from 0; this is understandable.

Where does that come from? The sum we are now investigating is given by
(“new” represents the data which is added)

with r1 ŷ rather small; as soon as the new value becomes higher than r1 ŷ, the last term
of the expression becomes negligible and does not influence the value of the sum.

sum
newc( , )

ˆ ˆ
a

a a

y
y

y
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8.5 Using the Second Type of Ratio: The Center Appears 
as the Denominator

8.5.1 Definition

The metric now is:

The difference between the first ratio may look negligible, because we think that
yi and ŷ play the same role. This is not true for our purpose because, in our compu-
tations, yi will remain constant (it will be represented by our data, which are fixed),
whereas ŷ will be the center we are looking for. It means that we will have to 
modify ŷ until we find its value: it is not the same if the value we change is at the
numerator or the denominator of the fraction.

Figure 8.13 illustrates what happens when the value at the denominator is
smaller than the value at the numerator.

The conclusions are the same as in the previous section.
Here again the value which is raised at the power � is equal to 0.333 � 1. This

explains the shape of the curve.
Let us have a look now on how this distance changes with the value ŷ (which, let

us remind it, appears at the denominator of the fraction). The result is given in
Figure 8.14.

The graph is now not symmetrical of both sides of ŷ: distances are computed
greater when yi is larger than ŷ than it is in the opposite situation. This dissymme-
try will have to be taken into account.

d y y
y
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i( , ˆ)

ˆ
� �1

a
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Figure 8.12 How does this center r1ŷ change according to the value of a new data?



8.5.2 Computing the Center According to This Ratio

The center of the distribution will now be given by the value r2 ŷ which minimizes
the sum:

sum c( , )
ˆ
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y
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Figure 8.13 How does the distance change with � computations made with ŷ � 20, yi � 30 and � from
1 to 2 (ŷ is the denominator of the fraction).
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Figure 8.14 How does the distance change with ŷ (from 10 to 50) for three different values of �: � � 1
(full line); � � 1.5 (dotted line) and � � 2 (segmented line).



Minimizing this sum leads, for our example, to values of r2 ŷ which depend on �; the
results, according to the values of �, are plotted in Figure 8.15.

One immediately notices that the position of the center is now completely differ-
ent from the position which was computed when using the previous ratio: about 53
compared to 6! The reason for that is clear: from the definition of the center, it can be
seen that a large value of r2 ŷ will – up to a certain point – decrease the value of the sum.

For � � 2 the center has, with this metric, a value of 52.18, which is this time
much higher than the mean, and considerably higher than the previous metric. The
center is now “attracted” by the high values.Very clearly this metric has a behavior
opposite to the previous one.

It can also be noticed here that the value of the center does not really depends on
� as soon as �  1.1.

Sensitivity Analysis

Starting from r1ŷ � 52.18 (for � � 2), the center goes down to 52.564 if the 3.4 value is
changed to 1, and to 58.662 if the 84.5 is changed to 100. Two comments can be made:

1. This metric is rather insensitive to low values (which confirms the previous
remark). Notice nevertheless that the change, although it is small, goes in the
direction opposite to what could be expected: decreasing a data increases the
value of the center.

2. But it is sensitive to high values and the difference is not negligible.

8.5.3 Study of the Influence

The sum to be minimized is now given by:

sum
new

( , ˆ)
ˆ ˆ
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Figure 8.15 How does this center r2 ŷ change with �?



The interesting fact here is that the value of the center always goes up as soon as the
new value becomes different from the original center, whatever the change: this
algorithm is very sensitive to outliers and should therefore be used when the out-
liers have been properly detected and possibly eliminated (Figure 8.16).

Another interesting fact is that the presence of a new data, if it is inside the range
of the other data, does not really change the value of the center.

8.6 Using the Log of the Ratio

8.6.1 Definition

The formula is now given by

where yi and ŷ have a symmetrical role: it is not therefore necessary to study the log
of yi/ŷ.

As usual, Figure 8.17 displays the change in the distance as a function of �. Due
to the log effect, the value of the distances are small, but this is not important: what
is important is the change in the distances.

Here we find again, for the same reason, that the distance decreases when �
grows. Should we have taken ŷ � 20 instead, the result would have been different (a
horizontal line) and of course also for ŷ  20.

Figure 8.18 displays, for three different values of � how the distance between two
points changes as a function of their values.

Distances are now slightly “biased” toward values of yi larger than values of ŷ,
but this bias is limited.
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8.6.2 Computing the Center According to This Metric

We are now looking for a center l ŷ which minimizes the sum

Figure 8.19 displays the value of this center as a function of �.
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Figure 8.18. How does the distance change with ŷ (from 10 to 50) for three different values of �: � � 1
(full line); � � 1.5 (dotted line) and � � 2 (line).
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Figure 8.17 How does the distance change with � computations made with yi � 20, ŷ � 30 and � from
1 to 2.



It is interesting to note that this center changes very little with the value of �.
Furthermore the algorithm produces a value which is very close to the median and
even equal to the median as soon as � � 1.3.

This is an interesting fact and such a center should deserve more attention than
it does.

Sensitivity Analysis

Starting from r1y � 16.392 (for � � 2), the center goes down to 14.666 (�10.5%) if
the 3.4 value is changed to 1 (�70%), and to 16.645 (�1.5%) if the 84.5 is changed
to 100 (�18.3%). Two comments must be made:

1. The changes go in the right direction: the center goes down if a value is lowered,
it goes up if a value is increased.

2. This center is rather robust, as the changes are moderate. The level of robustness
is comparable to the use of the differences.

8.6.3 Study of the Influence

We introduce now a new value and investigate – for � � 2 – how the minimum of
the sum:

changes with the new value. The result is displayed in Figure 8.20.
It obviously appears that new � 0 is a singularity. If this value is eliminated, the

value of the center grows slowly with the value of new: having an outlier is not a
problem as its sensitivity is not really a problem.
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Using this metric – for positive values – seems to be a satisfactory solution to the
search for a center value.

8.7 Using the Biweight

8.7.1 Definition

Associating a “weight” to each data point is a common way to solve some problems.
The problem we try to solve here is to reduce the influence, on the center, of data
points which are far away from this center. The idea is that a formula should be
based on the “bulk” of the data, without considering rare outliers, or, more exactly,
to reduce gradually their influence as soon as their distance – here measured by
something based on the differences – to the bulk increases.

In order to implement this gradual influence, the idea is to give to each data point
a weight which decreases as soon as the data becomes distant from this bulk.

Immediately a problem appears: the weight depends on the distance of the cen-
ter, but the center depends on the distances. Obviously a step by step process will be
required.

Let us introduce the subject gradually. In this section the way the weight is
defined is investigated.

Suppose we know the center of the distribution computed by the biweight2 algo-
rithm; let us call:

● w ŷ, the formula giving the center.
● s, the standard deviation of the data around this center.
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● wi, the weight attached to data point yi.
● y0, the cut-off value. This cut-off value is the distance from the center from

which we want the data to have a 0 weight (which means completely removing
the influence of the data which are farther than this value from the center).
What could be the value of this cut-off value? It is let to the choice of the cost
analyst, depending on how his/her data are scattered. Mosteller and Tukey rec-
ommend (Ref. [43], p. 353) to use 3 times the interquartile range, which corre-
sponds to about 4s (for a normal distribution). The example will be carried out
with this 4s value, because it is easier to compute than the interquartile range.
The ratio e�i /y0 � (yi � w ŷ)/y0 could be called the “normalized” difference
between the data yi and the center wŷ.

The biweight procedure uses weights given by

How does this weight changes with the difference e�i between the center and the
data value?
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Figure 8.21 Weight computed for the biweight as a function of the difference between w ŷ � 20 and yi
(y0 � 20 corresponds to the cut-off value).

The answer to this question appears in Figure 8.21. The weight starts with a value
of 1 when both values are close together and decreases slowly when the data becomes
distant from the center, until it reaches the cut-off value (20 in the example): starting
from this value the weight equals 0. The double square is needed to get a smooth
transition with the weight 0 when yi is close to the cut-off value (a cosine could also
have been used).

This weight clearly satisfies our needs.



8.7.2 Computing the Center According to This Metric

There could be of course many ways to use the weights, depending on the metric
which is selected. Due to the fact that the weight has no interest with the ratio of
type 1 or with the log of the ratio (as the influence curves showed it) and that the
type 2 ratio is rarely used, we limit here the discussion to the use of the metric
based on the differences.

For this metric we know that if � � 1, we have nothing to fear with the outliers.
Consequently we limit here the discussion to the case � � 2; the center of the dis-
tribution is then given by the arithmetic mean.

Once the cut-off value has been decided, the process starts with an estimated value
of the center w ŷ(0) (the arithmetic mean is a good starting point), the exponent (0)
reminding that it is just a starting point of the iterations; from this value, the weights
of all the values can be computed and a new center wŷ(1) is computed with the formula:

which is the standard formula used to compute a mean with weighted values. From
this value new weights are computed, which gives a w ŷ(2) value for the center from
which new weights are computed, etc. A set of values w ŷ(0), w ŷ(1), …, w ŷ(k), … is
therefore established. The process stops when w ŷ(k�1) � w ŷ(k) at a predefined level
of precision. The last value w ŷ(k) is the required center value.

Two approaches may be tested: the first one uses a cut-off value equal to
4s � 104.4, the second one 2s � 52.2.

Using the first value (4s � 104.4) produces a center of 23.289,whereas the standard
mean – computed with all the weights equal to 1 – was equal to 27.355. This comes
from the fact that the weights which correspond to the center are given by the vector:

From this vector, it appears that the two “strong” values 64.5 and 84.5 have decreas-
ing weights, which decrease their influence for computing the mean and therefore
move the new center toward lower values.

:

.

.

.

.

.

.

.

.

.

0 929

0 934

0 948

0 959

0 967

0 991

0 999

0 971

0 9903

0 712

0 429

.

.

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

w

i i
i

i
i

y
w y

y
ˆ( )1 �

∑
∑

150 Finding the Dynamic Center of a Multi-Variables Sample



Using the second value (2s � 52.2) produces a center of 14.102. This comes from
the fact that the weights which correspond to this center are now given by the vec-
tor displayed below. Now the last two values have a very small weight (the last one
being 0) and even the value 46.5 has a weight equal to 0.378. All that “pushes” the
center toward the low values.

It is quite possible that you think that the cut-off value is, in this last case, too
small. You are probably right. The discussion was presented here to demonstrate
the concept of the weighted values – of which the biweight is certainly the best
implementation – in order to make it clear that the choice of the cut-off value is an
important choice that you have to make. The “standard” value of 4s is probably here
a more reasonable option.

We return to this point downwards.

The major interest of using this biweight is to have a much better focus of what may
appear to be the real center of the distribution, the values too far away from it being
eliminated or at least seeing their influence strongly reduced.

The biweight does accomplish, for the selected metric, the purpose for which it
was created: the center being more representative of the focus of the distribution.
Note that its value is not far from the median.

8.7.3 Study of the Influence

Now a new value is introduced in order to examine how the center is going to move
when this new value goes from �200 to �300. The center of the distribution is still
given by the weighted mean:

the weight being computed according to the same formula. As the weight still
depends on the center and the center on the mean, iterations are necessary.
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We examine in the following section how the influence curve changes as a func-
tion of the cut-off value y0.

y0 � 4s

The example will show that this cut-off value is not necessarily the best choice.
The center was computed for several values of the new data point; the results are

given in Figure 8.22.
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Figure 8.22 Center computed for the biweight as a function of the new value (cut-off value � 4s).

The result is not exactly what was expected for two reasons:

1. the high value of the new data point is still taken into account, even if it is larger
than 100,

2. inside the range of the starting point, the center is slightly lower than the mean,
represented by the dashed line.

The reason for that is that the new data changes substantially the value of the stan-
dard deviation which increases with its value: therefore its weight never goes to 0.

Let us try something else.

y0 � 4MAD

MAD stands for “median of absolute deviations”. It is computed the following way
as soon as a center is computed: one calculates the deviations around this center,
takes their absolute values and then computes their median. It is obvious, as
demonstrated in Section 8.3.3, that this value is less sensitive to outliers.

The principle of the computation is about the same:

● a starting center w ŷ(0) is chosen,
● the MAD is computed,
● the cut-off value is taken at y0 � 4MAD,
● from this value the weights are computed,
● as well as the estimated center.



A new starting center is chosen as long as the estimated center is not equal to this
starting point: the iteration is rather long to do it manually.

The influence curve of the center as the new data moves from �200 to �200 is
given in Figure 8.23.
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Figure 8.23 Center computed for the biweight as a function of the new value (cut-off value � 4MAD).
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Figure 8.24 Center computed for the biweight as a function of the new value (cut-off value � 9MAD).

The result is improving for one part (when the new value is too high the center
“returns” to the previous value), but not for the other part (the changes in the cen-
ter is too steep in the vicinity of the center).

y0 � 9MAD

The cut-off value is now higher.



The result is satisfactory: outliers have no influence on the center and, inside the
range of the previous data, the change of the center follows about the change of the
mean (dashed line).

8.7.4 Conclusion

If you decide to use the biweight, you should avoid using a cut-off value related to
the standard deviation: this measure of distribution spread is not robust enough
for this purpose.

Using 9 times the MAD appears to be, at this stage, the best choice.

8.8 What Is the Center of a Distribution?

Figure 8.25 summarizes the value of the center computed by different algorithms.
Note that all values are – largely – different, although all values can pretend to rep-
resent the distribution center.

It is clear that there is nothing such as one and only one center for a distribution.
The choice of the center value to be used depends first on the problem to look at:
for instance for computing the center of a set of values when each one is computed
from the previous one (such as growth rate computed per period), the geometric
mean is the most appropriate.

It also depends on the properties of the value: the arithmetic mean has interest-
ing properties – that will be discovered later on – which explains why it is so often
retained as the value of the center. It is certainly the most appropriate when the data
have a very low dispersion.
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Figure 8.25 The set of center values for the example.



The major interest of the median is its insensitivity to outliers: it should there-
fore be preferred when the data are scattered.

Most of the values are in the set [16.3, 27.3], between the median and the mean,
the difference being nearly equal to the MAD around the mean (12.1).

The ratios create a problem: ratio of type 1 is “attracted” by small values, whereas
ratio of type 2 is attracted by large values.The reader must be interested by two points:

1. The difference between both centers computed by the ratios is rather large.
2. Both values are “far away” from the traditional centers.

Consequently both metrics must be used carefully.

Selecting a Value

The center of a distribution will be used in the following chapters to compute the
“nominal” cost estimate of a new product: it is therefore very important to make a
proper selection.

On what can be based this selection?
Suppose the values given in the example are the speeds of the last 11 vehicles

observed on a road.You have this information and you are asked the question: what
is your best guess for the speed of the next vehicle?

As you have no other information, you are certainly inclined to look for some
value in the middle. Which value? Think about the subject and decide. Personally, I
would probably choose the median: that there are as many vehicles with a speed
lower than it, there are with a speed higher than it and therefore I think it is a good
choice, when no other information is available of course.

My opinion would certainly change if I have other information: for instance if I
know (this is not part of the experiment, but it can be a previous information I
have) that the 3.4 and even the 4.2 are extremely rare because these vehicles proba-
bly had an engine problem, my decision would be different.

This example shows that the knowledge of previous information or of previous
experience is an important guide for selecting the way the center should be com-
puted. Returning to the cost, you may for instance know that, if you measure 11 
different values for the cost of the same product, the distribution of these costs
generally follows a normal curve: in such a case, you should probably prefer to use
the arithmetic mean as the value of the center. If you know from experience that
this distribution is always skewed to the right (higher values are more likely to
occur than lower values), you should choose some kind of a ratio.

Of course the spread of the distribution used in the example is very large and we
hope you will not meet such distributions when you have to make an estimate. The
purpose here was to make the results clearly appear. The conclusions will remain
the same if the spread is reduced by 2 or 3, but the result will be less visible.

Nevertheless such distributions may be found for the distribution of the residu-
als around the center of a cost distribution: as the nominal cost depend on mini-
mizing some sum of these residuals, the knowledge of the various metrics is a must.
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Summary

In the previous chapter, we studied the information � in a sample containing just
one variable (the cost or more often the specific cost, which is the cost per unit of
“size”, such as the cost per kilogram or the cost per square meter) and established
that this information can be conveniently represented by:

● a center, called ŷ,
● the distribution � of the “residuals” around this center.

For computing the value of the center, the concept of metric was introduced and
several metrics were investigated. We saw that using different metrics leads to 
different values for this center, but that all of them could legitimately pretend to be
the center.

If no other information is available, this center ŷ will be used for estimating the
cost of a new product belonging to the same family of product. This is what is done
when the cost-estimating method based on the “ratios” is used.

For the present time the distribution � of the residuals (mainly its mean and its
standard deviation) can be used for quantifying the quality of the cost estimates
which can be done with this method: the larger the standard deviation, the less
accurate will of course be a cost estimate based on ŷ only.

If we have more information, we can try to reduce the standard deviation of �.
In this chapter we study information of a sample containing several variables,

one of them being of course the dependent variable, the other ones being the causal
variables.

We assume that the analysis of the sample data (according to the procedures
described in Chapter 2) was carried out:

1. The potential problems related to possible outliers and/or multi-collinearities
between the causal variables were discovered and solved.

2. An “interesting” linear correlation (measured by the Bravais–Pearson correla-
tion coefficient) between the dependent variable and the (selected) causal 
variable(s) was found, which legitimates to devote some effort to go on with this
sample.
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This chapter tries to use this correlation to carry out the analysis of the sample,
the purpose being to get a better understanding of the distribution �. The presence
of the correlation suggests that we can reduce the importance of the residuals by
adopting a better value for the center.

The idea is rather simple: as there is a correlation between the dependent vari-
able and the causal variable(s), it would be interesting, instead of using a “static
center” ŷ (the one we studied in the previous chapter) to use a center which would
depend on the causal variable(s). This new center will be called the “dynamic cen-
ter” of the distribution �. It will be represented, for simplifying the notations, by
the same symbol ŷ : ŷ � f(x1, x2, …, xP); as this dynamic center changes with the
values of the causal variables, the value it will take for a particular product, let us
say Pi, will be called ŷi, the difference between ŷi and the “observed” value yi being
called the “residual”:

if it is defined as additive.
The purpose of this analysis must be clearly understood:

We will compute a dynamic center of � for the purpose of “improving” the dis-
tribution � of the residuals (which means here reducing its standard deviation).

Another way of expressing the same view is the following one: we want to replace
the complex distribution of the yi by the distribution of the ei, this second distribu-
tion being “cleaned” from the “pollution” brought along by the causal variables; it
will therefore be easier to handle.

The word “linear” was underlined. This chapter assumes that there is a linear
correlation between the dependent variable and the causal variable(s): this means
that we are looking for a dynamic center which will be a linear function of these
variables.

In most statistical books,“linear” means that the function we are looking for in
the sample, y � f(b

r
, x), is a linear function of the coefficients b

r
; in other words a

function such as:

is said to be linear. This is not our definition in this chapter: what we are looking for
is a relationship which is linear in x. It so happens here that the relationship will
also be linear in terms of the coefficients: it must therefore be called “bilinear” and
this is the reason of the title of this chapter.

This hypothesis will be deleted in Chapter 12.
There are several ways to establish this function, the most commonly used being

called the “linear regression”. For this reason it will be studied first. As it is largely
developed in most statistical books, the discussion will be limited to its more
important features, with no demonstration.

This “linear regression” is not the best tool which can be used in the domain 
of cost. Consequently other methods will be investigated and the results 
compared.

This chapter will investigate the use of one causal variable – or parameter – only.
The next chapter will use several parameters.

y b b x b x� � �0 1 2
2

e y yi i i�
� � ˆ
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9.1 The Classical Approach: The Ordinary Least Square or the 
“Linear Regression”

In this first section,

1. We use one causal variable only.
2. The metric is limited to the use to square of the differences; this means that the

distance between two values ya and yb is defined by |ya � yb|2. This metric is
known as the “Euclidian metric” or the “ordinary least squares” (OLS). Other
metrics will be studied in the following section.

3. The analysis of the sample revealed that the correlation between the dependent
variable and the causal variable is linear, or about linear. More exactly, whatever the
correlation,the cost analyst decides to investigate the interest of a linear relationship.

4. The residuals are defined to be additive.

As in the other chapters the two variables are named Y (for the dependent vari-
able, generally the cost) and V1 (for the causal variable).

Both variables can be studied independently as we did in Chapter 2: it is possible
to look for the center of the distribution of each variable. However, in the presence
of two variables, when the study (see Chapter 5, Paragraph 2.3) has shown that a
relationship exists between both, it is reasonable to search if some improvement
can be done. This chapter investigates such an improvement, when a linear rela-
tionship, quantified by the Bravais–Pearson correlation coefficient, has been found.

This chapter is therefore devoted to the use of the revealed correlation between
both variables for improving the future cost estimates.

The text uses the logic described in Chapter 1.
In the previous chapter the set � of the values {y1, y2, …, yi, …, yI} was replaced by

the value ŷ of the center, plus the distribution � of the residuals around this center.
The distribution � is now defined as a set of couples of two variables among

which there exists a linear correlation {�y1, x1�, �y2, x2�, …, �yi, xi�, …, �yI, xI�}. The
existence of a correlation between values y and x suggests that we can “clean” the
distribution of the yi by removing the influence of the causal variable; for this pur-
pose, we will consider that the center ŷ is now a function of x: this center now
becomes a “dynamic” – with x – center; as no confusion may arise, the same sym-
bol ŷ will be used.

This chapter assumes that the correlation between y and x is bilinear. For this
reason we are looking for a dynamic center defined by the following formula:

b0 and b1 being called the coefficients of the formula; b0 is called the intercept (the
value of the dynamic center when x � 0), b1 being the slope (how much the
dynamic center changes with x).

We do not expect (except in exceptional circumstances) that all yi will be exactly
equal to ŷi. The difference between both values is called the residual related to yi.
This is what is meant when we said that the residuals are defined in an additive way:
yi can therefore be written:

where the b0, b1 and all e�i are, for the time being, unknown.

y y e b b x ei i i i i� � � � �
� �

ˆ
0 1

ŷ b b x� �0 1
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In this process, instead of studying the complex distribution of the yi, we will
only have to study the simpler, because it does not (hopefully) anymore depends on
the x, distribution of the e�i. Experience shows that we can win a lot by doing so.

An Example

In this chapter we will study the following data drawn from a sample (Figure 9.1).

Mass (kg)

6.83
2.18
3.80
4.55
2.18
2.11
4.67
2.81
2.55
1.68
6.30
1.98
1.25

A
B
C
D
E
F
G
H
I
J
K
L
M

Name

1278
724
809
920
772
877

1064
865
961
856

1293
717
648

Cost

Figure 9.1 The sample.

Residuals

 371 . 54
 �182 . 46
 �97 . 46
 13 . 54
 �134 . 46
 �29 . 46
 157 . 54
 �41 . 46
 54 . 54
 �50 . 46
 386 . 54
 �189 . 46
 �258 . 46

Figure 9.2 The residuals around the center y
u
.

The characteristic of the distribution of each variable is given by:

● for the cost: arithmetic mean: 906.462, standard deviation: 192.979;
● for the mass: arithmetic mean 3.299, standard deviation: 1.720.

If we decide not to use any parameter, we would use, for estimating the cost of a
new product – assuming we use the Euclidian metric, which delivers the arithmetic
mean – the mean value of 906.462. The residuals around this center are then given
in Figure 9.2.



The distribution c of these residuals is here simply described by:

● Its mean, equal to 0 (which is normal when using the mean as the center of a
distribution).

● Its standard deviation, equal to 192.979, which is obviously – because, for going
from the cost values to the residuals, we only translated the values – the same as
the standard deviation of the cost values.

Due to this high level of the residuals we cannot expect to get an accurate estimate
for the cost of a new product by just using this mean value of the cost.

The question is now: Can we reduce this amount of residuals by introducing a
parameter? This parameter will be used to create, instead of the simple arithmetic
mean, a dynamic mean.

The Matrix Form
The ||�x|| matrix (the matrix of the parameter) for this example will be written as:

Why using a column of “1”? It is of course for finding the intercept. Let us explain
why: the formula giving the dynamic center should be written:

where x0 is the value of a variable V0 which will take the same value for all the prod-
ucts: it is a constant which partly explains the cost. Any number could have been
chosen for its value, for instance the arithmetic mean we used upwards; in such a
case the value found for b0 would have, of course, to be adjusted accordingly. The
value of 1 is generally used, just because it is the simplest one!

The cost analyst is not forced to use such a matrix: he/she can simply use the
matrix ||x|| without a column of 1. As the general form used in regression analysis
when dealing with cost includes such a column, we will say, in this case, that the
intercept is “forced” to be 0.

ŷ b x b x� �0 0 1 1

|| ||

1 6.83

1 2.18

1 3.80

1 4.55

1 2.18

1 2.11

1 4.67

1

� �x

22.81

1 2.55

1 1.68

1 6.30

1 1.98

1 1.25
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9.1.1 Looking for the Center of the Y Distribution: The Concept of the 
Dynamic Center

Y is the dependent variable, the one we will try to forecast: generally for the cost
analyst, it is the cost. Its values are denoted y1, y2, …, yi, …, yI in the sample.

In a tentative to understand the behavior of this variable, and to prepare future
forecasts, its distribution must be studied. As we did when it was the only variable,
this study has to be split in two phases:

1. Finding the center of the distribution.
2. Examining the distribution of the (additive here) residuals e1, e2, …, ei, …, eI

around this center.

This section is devoted to the first phase, the study of the residuals being postponed
to Part IV.

The center y
u

of variable Y, considered alone, has here a limited interest!
Correlation, studied in the previous chapter, reveals that the values yi are influ-
enced by the values xi: the distribution of the values of Y is certainly “disturbed” by
V1. In other words studying this distribution without taking into account the influ-
ence of V1 would be too complex.

The idea is then the following one: let us remove the disturbance generated by V1
before studying the distribution of Y.

How can we do that?
When we studied the distribution of Y in Chapter 4 (Y considered alone), we

started by finding out its center before we computed the other values which really
describe it: variance – or standard deviation – skewness and kurtosis. The compu-
tation of all these values starts by removing the influence of the distribution center.
Refer to all the formulae of this chapter: they are all based on the differences yi � y

u
.

Any analysis of a distribution is carried out by observing what happens “around
the center”.

The same logic can be used here. However, in order to remove the disturbance
generated by V1, it would be a good idea to remove not y

u
, but also preferably the

“disturbing effect” of V1. We will do that by removing not a center value, but a
“dynamic”center, a center which moves with V1! The idea is therefore to replace the
fix center previously used by a center which is a function of V1.

What is this function? There is no way to find out, by an algorithm, this function.
It is then given a priori: it is the result of a decision made by the cost analyst.

Let us start with the easiest one (we will certainly not say the best one, because at
this stage we do not know), which is the subject of this chapter: we assume a linear
relationship between Y and V1 and write that the “dynamic center” of Y, which is
called ŷ, is linearly dependent on V1:

where b0 and b1 are constant – but presently unknown – values. They are called the
“coefficients” of the relationship.

This idea is very simple, and will appear very powerful.
How can we find out b0 and b1? Exactly as we did in the previous chapter, the

dynamic center will be defined by the b0 and b1 which together minimize, in this
section, the sum of the distances between ŷi and yi. As we decide to use the metric

dynamic center of 1_ _ _Y y b b x� � �ˆ
0
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defined by the square of the differences, we have to minimize:

9.1.2 Computing the Formula Giving the Dynamic Center

No hypothesis is necessary to carry out the computations: the computation aims at
finding b0 and b1 which together minimize the sum:

As it is well known the values of b0 and b1 will be given by the couple which equals
to 0 the partial derivatives:

These two equations are linear equations in b0 and b1 of which solutions is easily
computed:

this is called the slope

this is called the intercept

Note that the value of b1 is proportional to the covariance between x and y (this is
rather logic), and inversely proportional to the variance of x; it means that for the
same covariance, the slope will be higher when the spread of x is smaller (this is
intuitive). About the units? If y is a cost in euros and x is the mass in kilograms, the
unit of b1 is in €/kg, the unit of b0 being in €.

This procedure is generally known under the name of “least squares method”
(because its purpose is to minimize the sum of the squares of the deviations
between the dynamic center and the observed values), or, for a reason which will
appear below, the “linear regression”. The abbreviation OLS – which stands for
“ordinary least squares” – is sometimes used.

These expressions can take many forms, as found in the literature. For instance
when using the means:

b
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Changing the Scales

It is sometimes necessary to change the scales: What does happen if we change the
scales of x and y?

● Let us change the scale of x (for instance expressing x in kilogram instead of
tons): all x values are multiplied by a factor kx – 1000 in the example. Then b1 is
divided by kx. This is logic: if the value of x are multiplied by 1000, geometri-
cally, the line representing the dynamic center will be much more horizontal
than before. Quite obviously the intercept must be changed accordingly, in
order for the dynamic center to pass through the data point {x

u
, y
u
}.

● If the scale of y is changed by a factor ky (for instance if y is given in euros
instead of thousand euros), then both the slope and the intercept are multiplied
by ky. This comes from the fact that the relationship between b0 and b1 on one
hand, y on the other hand is linear as it can immediately be seen from the above
relationships. This is interesting to remember if you have to change the cur-
rency unit in which the costs are given.

Consequently if both scales are simultaneously changed, the slope is multiplied by
the ratio of the change (ky/kx) and if both scales are multiplied by the same factor,
the slope does not change; this is geometrically obvious.

If the change of scale is just a translation, then the slope does not change, but the
intercept does. A useful application of this is what happens if we use centered data
(translation of x by �x

u
, of y by �y

u
which is geometrically equivalent to trans-

ferring the center of the coordinates axes to the arithmetic mean values). Then the
coefficients cb0, cb1 computed on the centered data will be given by:

the value of the slope does not change

the value of the intercept does change

Note that this expression shows that, when using the OLS procedure with an inter-
cept not forced to be 0, the dynamic center passes exactly through the center of the
data values. This is not the case when the intercept is forced to be 0.

If we now use centered and scaled values (the centered values are divided 
by the standard deviation sx and sy), then the slope csb1 is multiplied by the ratio
(sx/sy):

As the logic does not really change, it is sometimes easier to work with centered
and scaled values instead of direct values.
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cs i cs i
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If the OLSs is used on these centered and scaled values, one can return to the
normal coefficients by using the first equation for the slope:

The intercept can easily be computed from the fact that the dynamic center must
pass through the center of the data:

Example
Using this metric on this sample, we found the formula giving the dynamic mean
of this sample (Figure 9.3):

9.1.3 What Did We Win by Using This Dynamic Center?

The purpose of using the dynamic center – here the dynamic arithmetic mean which
could be noted y

û
– instead of the mere arithmetic mean y

u
was to reduce the amount

of the residuals around this center.
Let us check on the example what we won by this process.
The distribution � around y

u
was computed at the beginning of this chapter: we

found that its standard deviation was 192.979.
The distribution � of the residuals around the dynamic center ŷ is now given in

Figure 9.4.
The mean value of these residuals is 0 (this is a property of the linear regression

when we use an intercept different from 0) and its standard deviation 83.805.

cost Mass� � �572 972 101 081. .

b y b x0 � � 1

b
s

s
by

x
cs1 1�

The dynamic
center

1 2 3 4 5 6 7
600

800

1000

1200

1400

The center of the values

Figure 9.3 The dynamic center computed by the OLS.
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The residuals are therefore considerably reduced as this clearly appears in Figure
9.5. Residuals are the distance (measured parallel to the y-axis) between the data
points – represented by small circles – and either the horizontal line representing
the distribution center of these data points or the inclined line representing the
dynamic mean. This will allow to make much better estimates by using ŷ instead y

u
.

We won something!

9.1.4 Using the Matrix Notation

In order to prepare the more complex case of more than two quantitative variables,
the matrix notation is developed here for the reader who is not familiar with this
notation. It will of course give the same result, but in a more concise form.

 Name Residuals

 A 14.644
 B �69.328
 C �148.080
 D �112.891
 E �21.328
 F 90.747
 G 18.980
 H 7.990
 I 130.272
 J 113.212
 K 83.217
 L �56.112
 M �51.323

Figure 9.4 The residuals around the dynamic center.

600
1 2 3 4 5 6 7

800

1000

1200

1400

The center of the
y values

The dynamic
center

Figure 9.5 Comparing both centers.



The matrix we need derives from the ||x|| matrix to which a column of 1 is added
(in order to compute the intercept). In general terms, assuming the database
includes I products, we have:

We also introduce a vector b
r

of which components are

As we write (in order to conform with the matrix algebra because b
r

∈�2�1 and
||�x|| ∈�I�2):

this vector 
r
b is computed by the linear regression algorithm as:

Let us develop, just for once, this expression. First of all we have:

of which the inverse must be computed. In order to compute this inverse, we need
the determinant “det” of this matrix:

which is I times the denominator of the value previously computed for b1. This
determinant will play in the future an important role: it is clear that it has to be dif-
ferent from 0 and one of the major problems when dealing with several variables
will be to make sure that it is different from 0.

Let us go on with the computations:
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The product of this �2�2 matrix by a �2�I matrix will generate another �2�I

matrix which is given by:

and the product of this  �2�I matrix by a  �I�1 matrix will produce a  �2 �1 matrix
which is the b

r
vector:

Taking into account that �xi � I � x
u

and �yi � I � y
u

we can write for b1 (the compu-
tation of b0 can also be done but is more complex):

which is, of course, exactly what was computed earlier.
This detailed computation will not be repeated anymore. It was made just once

in order to become familiar with the matrix computations which are rather simple
when you are used to it.

Computations for Example A

We get, with five significant digits:

The product gives a matrix with two rows and seven
columns, of which only the first three ones are written below:

�

�

0 22606 0 17297 0 033951

0 091834 0 029111 0

. . .

. . .

…
0013025 …
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and eventually

This solution may appear complex (as indeed is the case) but it becomes so 
simple – compared to the normal computations – when there are several variables
that it cannot be avoided.

9.1.5 A Word of Caution

The expressions are always valid, unless of course x has a constant value (the deter-
minant “det” and therefore the denominator of b1 is then equal to 0; but in such a
case, it is useless to look for a dynamic center!).

Another related case may happen when the range of the x values is small; in such
a case, the standard deviation of x may be very small, which may give an “enor-
mous” value to b1 (it may happen that this will produce an overflow of your com-
puter). The result is mathematically correct, but is useless if your computer has an
overflow!

Let us illustrate with one example. Consider the data (the standard deviation of
x is 0.02) in Figure 9.6.

|| || || || || || || ||� �
�

� � �x x x y bt t⊗ ⊗ ⊗( ) 1 572 97

1

.

001 08.

1060

1050

1040

1030

1020

1010

1000

10.06

10.05

10.04

10.03

10.02

10.01

10.00

�y and �x

Figure 9.6 Data values for Example B.

A dynamic center can be easily computed, and it is perfect (see Figure 9.7):

If the formula is not wrong, one would probably prefer (people who receive the for-
mula may object to the high-negative intercept!) to get a formula such as:

with �x � (x � 10) � k. For instance taking k � 100 will generate the formula:

which is more comfortable and will never produce an overflow.
This situation is rare when using a linear relationship, but may happen more fre-

quently when using a “multiplicative” dynamic center. This will require to take the

ŷ x� � � �1000 10

ŷ b b x� � � �′ ′
0 1

ŷ x� � � �9000 1000
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logarithm of the x values: the standard deviation might, in such a case, be extremely
small (because it is based on logarithms) and will certainly produce an overflow.

It is, of course, possible to automatically detect such a situation and to display a
warning explicitly displaying the determinant which appears in the computations:

when it is lower than 1. The user may go on or change the x variable accordingly.

9.1.6 The Characteristics of the Linear Regression

The linear regression has, at this stage1, four important properties:

1. The dynamic center, when the intercept is not “forced” to 0, passes exactly
through the center of the data, the center being defined as an hypothetical data
point with values y

u
and x

u
. This is obvious from the expression giving b0:

The dynamic center is then written as:

and therefore ŷ � y
u

when x � x
u
.
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Figure 9.7 The dynamic mean for Example B.

1 Other characteristics – related to the variances of the coefficients – are dealt with in Chapter 15.
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Note that is not true if we force the intercept to be equal to 0, which means we
want to find a moving center such as ŷ � b1x. When minimizing the distances as
they were previously used, we find the following solution:

which will not gives y
u

when x � x
u
.

2. The sum of the residuals is equal to 0: �ie�i � 0. It is sometimes said that this
implies that the coefficients giving the dynamic center are not biased. But the
concept of “bias” is something different; it will be studied in Chapter 15.

3. The value of b1 is not symmetrical in x and y. This fact has important conse-
quences which are developed in the next section.

4. b0 and b1 are strictly correlated. This is also obvious from the expression giving
b0: the intercept is a linear function of the slope.

ŷ
x y

x
x

i i
i

i
i

�

∑

∑ 2

Line 1

Line 2

Figure 9.8 Correlation between b0 and b1.

Geometrically this result is obvious (Figure 9.8): starting from solution given by
line 1, if another solution is found which increases the value of the slope, then the
intercept has to decrease, for line 2 must also go through the center of the data.

The linear regression is extensively used by the community of cost analysts.
We would like, however, attract at this stage the attention of the cost analyst to

two major problems that frequently occur when dealing with cost:

1. The first problem appears when the data are rather scattered (and it is generally
the case with cost data, as previously explained): then the linear regression intro-
duces a bias which can be very detrimental.

2. The second problem occurs when the range of costs exceeds – let us say – a ratio
higher than 3: then the linear regression gives a high “weight” to large cost val-
ues, sometimes seriously disregarding the low-cost values.

Solutions to these problems will be presented.
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9.1.7 Problems, When Dealing with Cost, with the OLS

This book is dedicated to cost estimating. It is therefore necessary to investigate if
the OLS procedure is the best tool for this purpose.

Unfortunately it is not! The question is not at this stage to accept the hypothesis
of a linear relationship between the causal variable and the dynamic center, but,
when this hypothesis can be considered as correct, to look at potential problems.
We do not pretend that the linear regression is imperfect in all the domains, but to
limit this discussion to cost applications.

A First Serious Probem: The Linear Regression is Biased!

Assessing the Problem
This problem was well known to Karl Friedrich Gauss2: the name of “regression
analysis”, often given the OLSs procedure refers to this problem.

Let us introduce this question geometrically: in the plane x–y, the data can be rep-
resented by a set of points, all of them being included inside an ellipsis E (Figure 9.9).
When you look for the dynamic center, you naturally expect, in the hypothesis of a
not negligible linear correlation between x and y, to find the line represented by AB.

E

B

A

C

D

x

y

Figure 9.9 What do we mean by “regression”?

2 He said that any other (different from trying to minimize the sum of the squares of the differences
between the observed values and the values of the dynamic center) method for computing the coeffi-
cients of the straight line corresponding to the dynamic center would involve very complex computa-
tions. He was right; other methods can only be used practically thanks to the computer.

Is it the case? No in most of the situations! The line we found out is something
such as CD (depending on your data, as it is quantified below): the dynamic center
“regresses” towards the arithmetic mean y

u
.

An illustration of the phenomenon can be given in making two regressions: y to x
on one hand, x to y on the other hand. You may consider that looking for the size x
when the cost y is known does not really make sense: you are not going to estimate,
but this is quite possible, the size of a product when you know its cost. But forget for
the moment the logic and concentrate on the mathematical aspects of the question.
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Let us illustrate the point on the example given at the beginning of this chapter:

● The dynamic center line generated by making a regression of y to x is given by:

● Whereas the dynamic center line generated by making a regression of x to y is
given by:

which gives

Both lines are displayed on Figure 9.10; the difference in the vicinity of the center
〈 y
u
, x
u 〉 of the data is negligible but it becomes important when the x value is away

from x
u

.
It is interesting to note that the product of both slopes is equal to the square of the

Bravais–Pearson correlation coefficient: if one labels b1(y/x) the slope of the regression
of y on x and b1(x/y) the slope of the regression of x on y, then it can be written that:

For the present example:

What Is the Origin of This Phenomenon? Algebraically this is caused by the fact, already
mentioned in Section 9.1.2. of this chapter, that the value of b1 is not symmetrical
in x and y.
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Geometrically, it comes from the fact we are minimizing “deviations” and not
“distances”. Refer to Figure 9.11, where P represents a data point and the solid line
the linear relationship we are interested in.When we make a regression of y to x we
compute b0 and b1 by minimizing �i�i

2 , whereas when we make a regression of x to
y we compute the coefficients by minimizing �i�i

2. It is obvious that there is
absolutely no reason to obtain the same values for these coefficients.

Some Comments You may find in the literature people who seem to be happy with the
situation. An example is given by psychologists3: suppose, they say, that x repre-
sents the note in English, y the note in mathematics for the same student. Data 
were plotted as in Figure 9.12. Let us assume we have a student who got a note in
English higher than the mean x

u
. What can we forecast for his note in mathematics?

You could expect a note on the main axis of ellipsis. No, they say: this note would be
too optimistic, we prefer to forecast a note closer to the mean y

u
: his note should

“regress” towards this mean.

Regression line
P

ε

κ 

x

y

Figure 9.11 Geometric interpretation of the regression analysis.

Note in french

Note in mathematics

x

y

x1

M1

M2

Regression line

Figure 9.12 The two regression lines.

3 See Thomas H. Wonnacott and Ronald J. Wonnacott. [60], 4th French edition. p. 556.
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The logic of the comment is not clear to us.
Galton was also very pleased with the phenomenon: observing that tall fathers

have tall sons but not so tall as their fathers (the same observation is true for small
fathers), he concluded that the sons’ sizes “regress” towards the mean size of the
population (it seems he coined the word “regression”).

This “regression”might be an advantage in some sciences,but in the domain of cost
we have no reason to be pleased with this fact: after all the facts are there: a forecast
which does not follow the facts presents a problem! We do not see any reason why the
cost of a new product (maybe made by another manufacturer) should regress towards
the mean of the cost of other products belonging to the same family, just because data
are a bit scattered (as, if there is no scattering, there is no regression!).

Quantification of the Damage How serious is the damage?
First of all, it is clear that, if the residuals are all in the vicinity of 0, then line CD is
very close to line AB and therefore the problem does not really exist. Unfortunately
this is rather rare when dealing with cost.

Let us compute the damage: using the centered data (centering the data simplifies
the computations without changing the slopes), the first regression line is given by:

whereas the second one is given by:

or

The ratio of the slopes is easily computed: it is equal to:

which is nothing else than the square of the correlation coefficient r2 (this value 
is now symmetrical in x and y).A correlation coefficient equal to 0.901, as it appears
in the example (and which is rather good in the domain of cost) leads to a ratio 
of 0.811 between the slopes, about 20% (this can easily be checked by the figure
which appears upwards); it is easy to imagine the error that will be done if one
extrapolates the dynamic center far away from the arithmetic mean x

u
of the causal

variable!
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One could object – and some authors do – to this reasoning that we interchange
“causal” and “dependent” variables. This is true, but:

1. As Lothar Sachs says (Ref. [49], p. 393):“hypothesis on causation must come from
outside, not from statistics”. The work of statistics – as we do it here – is simply
to quantify a relationship between two variables, without deciding on which
causes the other one.

2. We are interested in the quality of predictions. Whatever can be said, a predic-
tion based on line AB (Figure 9.9) is, in the domain of cost, better than one based
on line CD.

Conclusion The linear regression is often not the best solution when dealing with cost!
Another comment about the Bravais–Pearson correlation coefficient: the angle

(Figure 9.10) between both lines becomes exactly equal to 0 when r � 1. In such a
case there is a perfect linear correlation between x and y. This is the reason why this
correlation coefficient is said to quantify a linear correlation, as we mentioned it in
Chapter 5.

Solutions
There are three ways to solve this problem:

1. Averaging the regressions of y to x and of x to y.
2. Using the euclidian distance.
3. Rotating the axes.

A First Solution: Averaging the Regressions y/x and x/y Let us go on with the example: averag-
ing both formulae leads to the following formula for the moving center:

which is displayed as a mixed line of Figure 9.13.

ˆ . .y xi i� � �534 216 112 828
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Figure 9.13 Averaging slopes.
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What are the characteristics of the residuals related to this average formula. One
can easily compute that the mean of the distribution � of residuals equals 7 � 10�5,
very close to 0, and its standard deviation equals 86.205, very close from what was
computed for the standard regression analysis (83.805).

The conclusion at this stage is that, for a very limited loss of precision for the
future estimates, we get a formula which will give much better values when the
causal variable is away from its centered value x

u
.

This procedure can obviously be easily automated, and has been.

A Second Solution:Using the Euclidian Distance We saw in a previous section that the cause of
the bias was the fact we tried to minimize �i�i

2. We can instead try to minimize the
sum of the Euclidian distances between the data points and the searched moving
center.

The computation requires several steps.
The Euclidian distance between two points P1 and P2 defined by their coordi-

nates (x1, y1 for data point P1, x2, y2 for data point P2) is given by:

Let now (Figure 9.14):

be the equation of the line D we are looking for.

y b b x� � �0 1

� � � � �1 2
2 2( ) ( ), x x y y1 2

2
1 2
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P2

H

y � b0 � b1x

D

Figure 9.14 Computing the Euclidian distance.

The square of the distance between these points P1 and P2 points, when P2 is on
the line D is given by:

This distance will be minimum for a particular position of point P2 corresponding
to the abscissa of point H, defined by the fact that P1H is perpendicular to D.

d x x y b b x1 2
2

2
2

1 0, � � � � �( ) ( )1 1 2
2



For this value we will have:

The coordinates of point H will therefore given by:

Now it is possible to compute the Euclidian distance �1 (equal to P1H) from P1 to
line D. We compute:

Using now our set of data points, we look for the line D which goes as closer as pos-
sible from all these data points, “close” being quantified by the Euclidian distance.
This means we want to compute the couple b0, b1 which minimizes the sum:

Let us demonstrate that this line goes necessarily through the center 〈y
u

, x
u 〉 of the

set: this Sum will be minimum when the two equalities are simultaneously satisfied:

Let us develop the second one:

which will be satisfied when:

The center of the set, defined as the point of which coordinates are (x
u

, y
u

), satisfies
the equation of the line: the line passes through this point.
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Minimizing Sum is difficult to do. But the problem may be solved by standard
linear algebra: it suffices to note that Euclidian distances are invariant by a translation
and/or a rotation of the axes. Therefore the center of the axes can be transferred to
the point (x

u
, y
u

), which means that we can more easily work with centered values
(Figure 9.15):

Now one can write, for each data point P (cf. Figures 9.14 and 9.15):

Consequently for all the data:

In this expression �icPiO
—–2 is a constant (in respect to b1). To the minimum of �i�

2
i will

therefore corresponds a maximum of �i�i
2.

The problem is then to find b1 which will maximize �i�i
2. Have we made any

progress? Yes, because this problem is already solved by theorems of linear algebra.
It is the way the principal component analysis (PCA) works, as it is reminded in the
following paragraph.

A Third Solution: Rotating the Axes The third solution can easily be explained in a figure
(Figure 9.16.): we are looking for a straight line defined by the fact that the sum of
the Euclidian distances is minimized. If we succeed to make a rotation of angle � of
the coordinates axes, transforming x in U1 and y in U2, in such a way that axis U1
will be parallel to the line we are looking for, the Euclidian distances will be very
easy to compute: they will be equal to the residuals!

The question is then: What should be the value of angle �? The question is not so
difficult to answer: we expect, once the axis is turned off, that the extension of the
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Figure 9.15 Solving the problem.
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values on U2 will be far less than the extensions on U1. The problem is then to find
axis U1 on which data have the maximum extension.

This is exactly what the PCA does (see Chapter 6).
The solution is then to make a PCA. Immediately note that the PCA makes a

computation such as axes U1 and U2 are orthogonal: this means that the correlation
between the new values (computed on the axes U1 and U2) is 0.

The equation of the line will then obviously be, in the coordinates system defined
by U1 and U2:

Let us apply it to our example. The PCA works on centered and scaled values
defined by:

and the new variables are defined as:

Note that these formula are standard when working on two variables centered and
scaled: it means that the axis have been rotated by 45°. This is obvious because, due
to the scaling effect, both variables have the same normalized scale.

Writing U2 � 0 and returning to the original variables gives the equation of the line:

which is very close to the equation we found by taking the average of the regres-
sions of y on x and x on y.

ˆ . .y x� � �536 324 112 197

U y x

U y
cs cs

cs cs

1 � � � �

� � � �

0 707 0 707

0 707 0 7072

. .

. . xx

cs
x

cs
y

x
x x

s
x

y
y y

s
y

�
�

�
�

�
�

�
�

3 299
1 720

906 462
19

.
.

.
22 979.

U2 � 0

U1U2

x

y � b0 � b1x

y

u

Figure 9.16 Rotation of the axis.
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No complex computation is therefore required when working with two variables
only. Just compute the mean and standard deviation of both variables and write:

The equation of the line is computed in 30 s!
The residuals are easily computed: their arithmetic mean amounts to �0.026,

very small indeed, and their standard deviation to 85.952.

Conclusion The three solutions, to be used when, let us say, the Bravais–Pearson cor-
relation coefficient is less than 0.9 (unless you want to estimate far away from the
center point (x

u
, y
u

) in which case start using it when this coefficient is smaller than
0.95) give very similar results, the third one being obviously the simplest one.

A Second Serious Problem: The “Weight” Given to High-Cost Values

As previously stated, the linear regression is based on the minimization of the
squares of the deviations between the cost values y and the searched dynamic cen-
ter. Let us remind the reader that absolutely no hypothesis is required for the com-
putation; using a linear relationship and the metric based on the differences are
decisions, not hypotheses.

This section tries to answer the following question: Are the data points 
considered, when preparing a formula with the linear regression algorithm, on an
equal basis?

This is true in absolute terms: the algorithm tries to minimize the sum of the
square of the deviations, and no difference is made between the data points.

Is that still true in relative terms? The question must be asked4 because, in the
cost domain, the accuracy of the cost values are always known in percentages: one
can say that the costs are, for instance, known with an accuracy of 5%. This means
that a cost of 10k€ is known with an absolute accuracy of 0.5k€, whereas a cost of
1000k€ is known with an absolute accuracy of 50k€.

It may happen that the cost figures you have in your database may represent a
large range, for instance from 10k€ to 1000k€ corresponding to size in a range from
about 1 to 100, whatever the unit.

The linear regression algorithm tries to minimize the absolute deviations – not
the relative ones. This means that the residuals which will be discarded by the mov-
ing center once it is computed can very well represent an average of 2k€ for all
costs. Consequently the dynamic center will pass much more closely – in relative
terms – to the high-cost values than to the low ones.

This can be:

● Either interesting, if, for instance, you will have to estimate in the future figures
close to the high costs: the relative deviation will be rather small, 0.2% in the
given example. After all it can be appreciated to estimate the high costs with a
very good – relative – accuracy.

● Or an inconvenience if, for instance, you have to produce 1000 items of low cost.
In the given example the total cost will be 10M€, estimated with an accuracy of
2M€, which is rather poor!

cs csy x�

4 Stephen A. Book and Philp H. Youngs mention this point in their paper.
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This problem has only to be solved if the cost range exceeds a ratio of, let us say,
about 3; it becomes a serious question if this range exceeds a ratio of 10. The cost ana-
lyst should be aware of this problem: it helps explain why some analysts may decide to
use other metrics, such as the dynamic median or the “multiplicative” residuals which
are defined by the ratio yi/ŷi . These metrics will be analyzed in the following section.

This discussion, once again, shows that several dynamic centers can be com-
puted from the same data and that the linear is only one of them, maybe not the
best one, depending on the circumstances.

A Related Problem: The Lack of Homoscedasticity in the Cost Domain

The term “homoscedasticity” of the residuals comes from the Greek and means
“similar spread” which means that the dispersion of the residuals is supposed to be
the same, whatever the value of x.

The lack of homoscedasticity (also called the presence of heteroscedasticity) is
not a problem when computing a formula – except the one described in the previ-
ous section – because, as it was said, no hypothesis is required for making it.
However, as we will see it in Part IV, such a hypothesis is required, when dealing, in
the classical way, with the residuals.

In the domain of costs, the lack of homoscedasticity is obvious. For this reason
some authors, such as Saporta [50] (p. 370) suggest to mitigate the problem by
replacing the cost in the formula by the ratio of the cost to the causal variable (this
ratio, when using the mass as the descriptor of the size, is the cost per kilogram).

The usual presentation:

can be written

which becomes if:

This formula, if the e�i are proportional to the size, satisfies the hypothesis of
homoscedasticity.

It is solved as usual; returning to the original formula is simple, as the slope and
the intercept have just to be switched.

9.2 Using Other Metrics

The first part of this chapter dealt with the most common metrics (the OLS or
Euclidian metrics): the square of the differences of two values. We now investigate
the use of the metrics defined in Chapter 8.
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There is some correlation between the metric and the way the residuals are
defined for the computations: it was mentioned at the beginning of Section 9.1 of
this chapter that, when using the usual metric (the square of the differences), the
residuals were defined as to be “additive” as we wrote:

where the symbol e� is used to remind the user that the residuals are defined in an
additive way. We then decided that b0 and b1 should be such as to minimize the 

sum �ie2
�i of the squares of the additive residuals.

In general terms, two solutions may be tested:

1. Choosing another definition.
2. Selecting another function to be minimized.

9.2.1 Choosing Another Definition of the Residuals

The residuals can also be defined as being “multiplicative”, if, for instance, we
define them from the formula:

as we used it for the second ratio. Dealing with such residuals is a bit special
because these residuals should have a mean in the vicinity of 1.

For this reason, some authors (including Stephen A. Book and Philip H. Young)
prefer to use a formula such as:

where the residuals e% are now defined in order to get a mean of these residuals in
the vicinity of 0, which is more familiar:

They can also be defined in a completely different manner, as for instance:

which has the advantage of having a mean in the vicinity of 0:

y yi i
e i� �ˆ 10 •

e
y

yi
i

i
• � log

ˆ

e
y

y

y y

yi
i

i

i i

i
% � � �

�
1

ˆ

ˆ

ˆ

y y ei i i� � �ˆ ( )%1

y y ei i i� �
�

ˆ

y y e b b x ei i i i i� � � �
�

ˆ + +0 1



9.2.2 Selecting Another Function to be Minimized

As explained in Chapter 8,although a lot of functions could be used, the function to be
minimized is generally limited, whatever the way the residuals are defined, to either:

or, when working with e�:

The exponent � can take, as illustrated in Chapter 8, a lot of values, but the most com-
mon one is 2, except when looking for the median (in which case it takes the value 1).

Standardization, for Comparison Purposes, of the Residuals

It would not be useful to use different metrics if we were not able to compare the
results. This comparisons can be based on two points:

1. The way the dynamic center is computed. This type of comparison is mostly
based on judgment or subjective criteria.

2. The distribution of the residuals (mean, standard deviation, and – why not? –
skewness and kurtosis).

The residuals used in the minimization functions cannot be compared. In order
to be able to compare the results given by different metrics, the residuals have to be
“normalized”. As we are primarily interested in the differences between the
observed costs and the values computed for the dynamic center, the residuals, only
for comparisons purposes, will be recomputed as:

whatever the metric which is used. So we do not compare the residuals used to
build the formula giving the dynamic center of the distribution �, but the absolute
difference between the actual costs and the costs given by the dynamic center.

As the reader may be also interested in relative residuals, the residuals will also,
be computed as:

The residuals: could also be computed if necessary.

A Preliminary Comment
The linear regression uses the only metric for which analytic procedures are avail-
able. The other procedures can only be computed, not analytically, but by succes-
sive iterations. Consequently it is not possible to present, as we did for the linear
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regression, formulae from which practical examples could be dealt with. On the
contrary each example has to be studied as a particular subject.

Therefore all the other metrics will be presented with the example which was intro-
duced at the beginning of this chapter. For each metric the formula giving the
dynamic center will be given, plus the four characteristics of the distribution � of the
residuals: the arithmetic mean,the standard deviation, the skewness and the kurtosis.

9.2.3 Using the Metric Based on Differences with � � 2:
The Standard Regression

This is a reminder of the previous section.
This metric aims at minimizing �i|e�i|2.

The Absolute Residuals

The characteristics of the residuals e�i distribution are given by:

● Arithmetic mean: 0. This is a characteristic of the standard regression analysis.
● Standard deviation: 83.805.
● Skewness: 0.219.
● Kurtosis: 1.952.

The Relative Residuals

One finds for e�i:

● Arithmetic mean: 1.001. As a value different from 1 for the arithmetic mean of
the relative residuals is sometimes considered as a “bias”of the formula, one can
say that the formula is not biased.

● Standard deviation: 0.097.
● Skewness: 0.219.
● Kurtosis: 1.916.

9.2.4 Using the Metric Based on Differences with � � 1:
The Dynamic Median

The dynamic median is an interesting formula when the data are a bit scattered, for
reasons explained in Chapter 8.

When using the median, the residuals are still defined to be additive. But we
decide that b0 and b1 should be such as to minimize the sum �i|e�i| of the absolute
values of the residuals.

The formula is then given by:

which is different from the formula found by the linear regression and has the
major advantage to be extremely robust.

ˆ . .y x� � �521 563 114 880



The Absolute Residuals

The characteristics of the residuals e�i distribution are given by:

● Arithmetic mean: 5.883. As a value different from 0 for the arithmetic mean of
the absolute residuals is sometimes considered as a “bias” of the formula (do
not confuse this bias with the bias of the coefficients which will be introduced
in Chapter 8), one can say that the formula is (very) slightly biased; slightly
compared to the intercept or to the average value of the cost (906.4).

● Standard deviation: 87.4.
● Skewness: 0.045.
● Kurtosis: 2.325.

The Relative Residuals

One finds for e�i:

● Arithmetic mean: 1.013. As a value different from 1 for the arithmetic mean of
the relative residuals is sometimes considered as a “bias” of the formula (do not
confuse this bias with the bias of the coefficients which will be introduced in
Chapter 8), one can say that the formula is (very) slightly biased: 1.3%.

● Standard deviation: 0.103.
● Skewness: 0.399.
● Kurtosis: 2.327.

9.2.5 Using the Metric “Product” �ie�i � 1

This metric tries to directly minimize �ie�i � 1
The formula is then given by:

The Absolute Residuals

The characteristics of the residuals e�i distribution are given by:

● Arithmetic mean: 3.84. One can say that the formula is slightly biased.
● Standard deviation: 83.829.
● Skewness: �0.049.
● Kurtosis: 1.833.

The Relative Residuals

One finds for e�i:

● arithmetic mean: 1.005,
● standard deviation: 0.097,

ˆ .y x� � �572 966 99.919
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● skewness: 0.208,
● kurtosis: 1.89.

9.2.6 Using the Metric Based on the First Ratio

When using this metric, the residuals are defined to be multiplicative: we write:

As we expect er1i to be in the vicinity of 1, we decide that b0 and b1 should be such
as to minimize the sum:

�i(er1i �1)2 � �i(( ŷi/yi) �1)2

of the squares of these (multiplicative) residuals � 1.
The formula is then given by:

The Absolute Residuals

The characteristics of the residuals e�i distribution are given by:

● Arithmetic mean: 16.435. As a value different from 0 for the arithmetic mean of
the absolute residuals is sometimes considered as a “bias” of the formula (do
not confuse this bias with the bias of the coefficients which will be introduced
in Chapter 8), one can say that the formula is slightly biased.

● Standard deviation: 84.031.
● Skewness: 0.054.
● Kurtosis: 1.826.

The Relative Residuals

One finds for e�i

● arithmetic mean: 0.991,
● standard deviation: 0.095,
● skewness: 0.052,
● kurtosis: 1.893.

ˆ .y x� � �568 355 97.499
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9.2.7 Using the Metric Based on the Second Ratio

When using this metric, the residuals are defined to be divider: it is the counterpart
of the previous ratio. It may look strange (and it is very rarely used!) but we are
interested here in its properties only:

As we expect er2i to be in the vicinity of 1, we decide that b0 and b1 should be such
as to minimize the sum:

�i(er2i �1)2 � �i((yi/ŷi) �1)2 � �ie2
%i

of the squares of the (divider) residuals �1.
The formula is then given by:

The Absolute Residuals

The characteristics of the residuals e�i distribution are given by:

● arithmetic mean: �7.622,
● standard deviation: 84.045,
● skewness: 0.054,
● kurtosis: 1.823.

The Relative Residuals

One finds for e�i:

● arithmetic mean: 0.991,
● standard deviation: 0.095,
● skewness: 0.154,
● kurtosis: 1.757.

9.2.8 Using the Metric Based on the Log of the Ratio

Distances between two values are now defined as the square of the log of their ratio.
In other words the residuals are defined as:
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The coefficients which minimize the sum of these residuals are given by:

The Absolute Residuals

The characteristics of the residuals e�i distribution are given by:

● arithmetic mean: 4.472,
● standard deviation: 84.007,
● skewness: �0.054,
● kurtosis: 1.833.

The Relative Residuals

One finds for e�i:

● arithmetic mean: 1.005,
● standard deviation: 0.097,
● skewness: 0.177,
● kurtosis: 1.813.

9.2.9 Using the Metric Based on the Biweight

As we did in Chapter 8 when introducing this metric, we will limit its description to
its use combined with the linear regression.

The reader is reminded that a “weight” (between 1 and 0) is attached to each
product and that this weight is used to decrease the influence of data points which
are too far away from the bulk of the other data. It was said in the same part that the
center, now the dynamic center, of the y distribution depends on the weights and
the weights, at their turn, depends on the center. Therefore an iterative computation
is necessary. These iterations allow to analyze this metric in a few steps.

The formulae necessary to compute the coefficients of the formula giving the
dynamic center are described in the Section 9.1 of this chapter.

Initialization

The procedure has to start from a preliminary formula, called ŷ(0), for the dynamic
center. This formula is computed with the classical regression analysis:

and from this formula, residuals are computed as e(0)
�i � yi � ŷi

(0). The results are
given in Figure 9.17.

Figure 9.18 displays the residuals values, according to their rank.

ˆ . .( )y x0 572 972 101 081� � �

ˆ . .y x� � �579 661 97 698
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Step 1

First a cut-off value has to be chosen: we selected, although it is not the best one,
here a cut-off value equal to four times the standard deviation of the residuals. This
cut-off value amounts to 335.2; it is also displayed on Figure 9.17.

The residuals allow then to compute a preliminary value for the “weight” given to
each product, according to the formula presented in Section 8.7.1. The list of these
weights is displayed on Figure 9.19.

In the presentation situation, the residuals are not very large: nevertheless high
values (corresponding to the ranks 3 and 9) receive a weight different from 1.

Given these “weights” a new formula for the dynamic center is computed:

which is different from the first one.

ˆ . .( )y x1 564 721 103 678� � �

e_0 �

 14 . 644
 �69. 328
 �148.08
 �112.891
 �21.328
 90 .747
 18 .98
 7 .99
 130 .272
 113 .212
 83 .217
 �56.112
 �51.323

Figure 9.17 Residuals values according to rank.
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Figure 9.18 Residuals – according to their ranks – and cut-off values.
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Other Steps

From this new formula, new weights can be computed and the process goes on as
many times it is needed to “stabilize” the formula.

After step 4 (generally speaking four to five steps only are required), the final for-
mula is computed:

The result is not very different from the formula computed with the classical linear
regression because the residuals are not too much scattered. But suppose that the
cost value y9 for product number 9 becomes 2800. Such an outlier should have been
detected in the procedures developed in Chapter 5 or 6, but suppose that for any
reason it was not. The linear regression then computes the formula:

which is very different from the previous one and the difference is due only to one
data: it shows that the linear regression is not robust at all!

This formula produces the following residuals (Figure 9.20) where e�9 is now
very close to the cut-off value. Also note that this cut-off value is not robust also;
using several times the median absolute deviation (MAD), defined in Chapter 4,
would have given a more robust cut-off.

New “weights” can now be computed; product 9 receives now a weight of only
0.076. Then, after 4 steps, we get the following formula:

which is not far from the previous one: the problem has been corrected.

Conclusion

The biweight is an easy way to make the linear regression very robust. It computes,
for the given example, a formula which is between the ordinary regression and the
median.

ˆ . .( )y x4 558 586 103 101� � �

ˆ . .( )y x0 832 668 65 244� � �

ˆ . .( )y x4 563 278 104 098� � �

w_0 �

0.996
0.916
0.648
0.786
0.992
0.859
0.994
0.999
0.721
0.785
0.881
0.945
0.954

Figure 9.19 First values of the “weights” given to the products.
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In case of rather scattered data, using either the median or the biweight is there-
fore the recommended procedure.

The distribution of the residuals was not computed at this stage, because the
biweight is not done for this purpose, but for, by elimination of the outliers, com-
puting a more robust formula for the dynamic center.

9.2.10 Comparison of the Distribution of the e�i Based on 
the Various Metrics

An Algebraic Perspective

The following table summarizes the distribution of the residuals:

2 4 6 8 10 12
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0

1000
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Figure 9.20 Formula showing residuals and cut-off values.

Use of Mean Standard Skewness Kurtosis
deviation

Median 5.883 87.100 0.045 2.325
Least squares 0 83.805 �0.045 1.952
Product 3.84 83.829 �0.049 1.833
Ratio type 1 16.435 84.031 �0.054 1.826
Ratio type 2 �7.622 84.045 �0.054 1.823
Log 4.472 84.007 �0.054 1.823

A look at the values of this table shows that:

● All metrics, except the least squares, present a small (less than 2% of the aver-
age cost value) “bias”, the ratio type 1 having the larger one.
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● The least square method presents the smaller standard deviation of the residu-
als. This is an important point (often mentioned as a criteria for using this met-
ric) but which must be tempered by the fact other metrics have just a very small
increase of this standard deviation: compared to the standard deviation of the
residuals, this point can be considered as negligible for practical purposes.

● The skewness are very small for all metrics.
● The kurtosis are about the same with a minor exception for the median for which

the distribution � of the residuals is a bit more “normal” than the other ones.

The conclusion at this stage is that the distribution of the residuals does not pro-
vide a criteria for choosing one or the other metric. The choice must be based on
other criteria, such as the robustness (which gives a preference for the median and
the biweight) and/or the need to avoid the bias introduced by the linear regression
(criteria which gives a definite advantage to the median).

A Geometric Perspective

The coefficients of the dynamic center are displayed on the following table:

Use of Intercept Slope

Median 521.563 114.880
Least squares 572.972 101.081
Product 572.966 99.919
Ratio type 1 568.355 97.499
Ratio type 2 592.765 97.392
Log 579.661 97.698
Biweight 563.278 104.098

The slopes appear rather similar, with the exception of the median which has the
larger slope. It is interesting to see that this slope is very close to the one we found
when averaging the linear regressions of y/x and x/y (112.828).

The same conclusions can be drawn when looking at the intercepts (the average
of the linear regressions of y/x and x/y being equal to 534.216). One can add that the
least squares metric (linear regression) presents an intercept in the middle of those
of the two ratios, whereas the slopes of these two ratios do not change so much: a
problem does appear.

Let us present now the results on two figures, the least squares, as it is the most fre-
quently used metric, being used as the Ariane thread to compare the dynamic center:

● In Figure 9.21 presents the dynamic center for three different metrics: least squares
as a thick full line, median as a thick dotted line and log as thin broken line. It
appears that the log curve is very close to the least squares (and remember that
the median is very close to the average least squares).

● In Figure 9.22 presents the dynamic center for three different metrics: least squares
as a thick full line, ratio 1 as a thick dotted line and ratio 2 as a thin broken line.

Two points must be noticed:

1. As the three lines in Figure 9.22 have about the same slope, they suffer of the
same “bias” as the linear regression,
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2. The intercepts of both ratios are, compared to the least squares, biased, but in
opposite directions. Ratio 1 metric gives a dynamic center lower than the least
squares (for the average mass of 3.299, least squares computes a dynamic center
equal to 906.4, whereas ratio 1 computes a value of 890.0 – a difference of 16.4,
exactly equal to the difference of the mean of the residuals). This can easily be
understood by looking at the figure: one can say that this metric is “attracted” by
small values. The reverse is true for ratio 2 (for the same average mass, ratio 2
computes a value equal to 914.1 – a difference of 7.7).
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Figure 9.21 The dynamic center computed from the following metrics. Thick full line: least squares;
thick dotted line: median; thin broken line: log.
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Figure 9.22 The dynamic center computed from the following metrics. Thick full line: least squares;
thick dotted line: ratio 1; thin broken line: ratio 2.
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9.2.11 Comparison of the Distribution of the e�i Based on the 
Various Metrics

The following table summarizes the distribution of these residuals:

Use of Mean Standard Skewness Kurtosis
deviation

Median 1.013 0.103 0.399 2.327
Least squares 1.001 0.097 0.219 1.916
Product 1.005 0.097 0.208 1.893
Ratio type 1 0.991 0.095 0.052 1.890
Ratio type 2 0.991 0.095 0.154 1.757
Log 1.005 0.097 0.177 1.813

A look at the values of this table shows that:

● The “bias” for these residuals is in the vicinity of 1%, which is very small.
● The standard deviations have the same order of magnitude.
● The skewness and kurtosis do not seem really abnormal. The reader will refer

to Part IV for a more detailed discussion about these characteristics.

Therefore, at this stage, no solution clearly appears “better” than any other, from a
pure mathematical point of view. Selection of a solution must often be based on
more subjective criteria.

9.3 What Conclusion(s) at This Stage?

This section studied the consequences of choosing such or such metric on the
results, the results being, as usual, the formula for the dynamic center on one hand,
the distribution � of the residuals on the other hand.

Using different metrics produces, as expected, different results.
We noticed that the dynamic center is not the same, and we called “bias” in this

section the differences with the linear regression. But it must be noted that these
“biases” in the intercepts and the slopes are not dramatic, as the distribution of the
residuals shows it: if they were dramatic we would have seen it on the distribution of
these residuals. The biases are very well “contained “ inside the range of the data;
more precisely, they are much smaller than the standard deviations of the residuals:
their impact on the accuracy of future cost estimates will therefore be very limited.

Is it possible at this stage to recommend a particular metric? Yes and no as it
depends on the future use of the results.

First of all this discussion has an interest only when the data are scattered. If the
data are not scattered, all metrics give identical responses and the easiest one to use
should be selected. However, the more scattered the data, the more the cost analyst
should be concerned by selecting the “right” metric; unfortunately this is very fre-
quent in the domain of cost.
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9.3.1 You Have to Estimate Within the Range of the Causal Variable

If the Range Is Small

By “small” we mean that the range goes between a ratio (between the maximum
and the minimum of the values of the causal variable) of about 3 and certainly less
than 10.

As a general comment, all metrics do their best: those which have the greatest
slope “compensate” by smaller intercepts and vice versa: this is very logic. On the
average the results are rather similar, the differences between the formulae being
well inside the standard deviation of the residuals around the dynamic center.
Maybe the ratio type one could be avoided as it is “attracted” by low values and
therefore give lower estimates.

If the scattering of the data is small, choose the easiest procedure which is cer-
tainly the linear regression, available in all the statistical manuals. Do not worry too
much about the procedure and spend the time available to improve the data, if it is
possible.

If the scattering is large, prefer the median or the biweight, or – at least – the average
between the regressions y/x and x/y which is so easy to compute.

Let us compute the cost estimates by the various formulae at both end of the
range (1.25, 6.83 kg):

Use of 1.25 kg 6.83 kg

Median 665.2 1306
Least squares 699.3 1263
Product 697.9 1255
Ratio type 1 690.2 1234
Ratio type 2 714.5 1258
Log 701.8 1247

For the small mass the cost values go from 665.2 to 714.5, a difference of 49.3; for
the high mass, from 1234 to 1306, a difference of 72. The differences are still inside
one standard deviation of the residuals, but they start not to be negligible (about
6%). Do not forget these differences have nothing to do with the accuracy of the
estimate: they all are “nominal” costs computed with a formula established by dif-
ferent algorithms which can all pretend they are right!

If the Range Is Large

In the previous example the range is limited, but you may expect something larger
if the range becomes large. In such a case the important thing is not to give too
much “weight” to the high values.

Unless you have to estimate in the future in the vicinity of the large values of the
causal variable, prefer the metric given by the ratio 2 : all data will have a simi-
lar “weight” in the formula. But the median could also be used in order to avoid 
any bias.



9.3.2 You Have to Estimate Outside the Range of the Causal Variable

Now the important thing is to get the best slope as possible: if you have to estimate
outside the range, the choice of the metric becomes very important.

The real problem is when you want to estimate at the limits of the range of the
existing data and, a fortiori, outside this range even if you are confident in the sta-
bility of the technology outside this range (this is another problem). As the slopes
are rather different (even if, in the range, the intercepts bring some compensation)
cost estimates may differ in an important way as a function of the metric: the 
differences in the values of the intercept is unable to compensate outside this 
range. The important thing at this stage is to have confidence in the value of the
slope.

Generally speaking our preference – when dealing with cost – goes to the use of
the median, for the following reasons:

● The dynamic center computed by the median is very well in line with the aver-
age of the two linear regressions which can be made on y/x and on x/y. This can
be very important if the data are very much scattered (we demonstrated that the
“bias” of the linear regression is related to the poor correlation between the
dependent variable and the causal variable: the less the correlation, the larger
the bias).

● The median is a very robust metric: it is nearly completely insensitive to 
outliers.

● The median is insensitive on the accuracy of the cost: the dynamic center com-
puted by the median does not care about the exact values of the costs, but about
their rank. The fact that cost accuracy is relative and not absolute is irrelevant
here.

● Consequently it automatically solves the “weight” given, in the standard linear
regression, to large cost values and therefore, can be used even if the range of
costs becomes very large.

● Intuitively, unless we do have other information, the median is, as explained in
Section 8.7, the best choice.

The second choice, always when data are rather scattered, to be considered is the
biweight used in conjunction with the linear regression.

Many cost analysts still prefer to use the linear regression, because Gauss
demonstrated some characteristics which seem to be very interesting, completely
forgetting that Gauss had to make hypotheses (mostly on the distribution of the
residuals) to be able to carry out these demonstrations; we will see in Chapter 15
that we are never sure if these hypotheses are valid in the domain of cost.

Laplace used the linear regression for small deviations.
What we are interested in is the quality of the estimates we will make from our

data: the median is certainly the first metric to be investigated for this purpose.
The characteristics of the dynamic center is probably not “optimal” in terms of

pure mathematics. But the differences with the optimum is, as we saw it, so small
that it cannot be an objection to the use of this metric.

In the domain of cost adding some constraints on the metric, such forcing the
bias to be 0 when using the ratio 2, is, in our opinion, interesting from an academic
perspective but irrelevant for practical applications: you better concentrate on the
data (normalizations, corrections, checking the homogeneity of the product family,
looking for outliers, etc.).
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9.3.3 A Last Remark

No algorithm can improve poor data!

If your data are poor, which means here very scattered, it is clear that no algorithm
can improve the level of confidence you will get in the validity of the dynamic center.

Therefore the solution, instead of looking for algorithms, should concentrate on
the data:

1. Add variables (parameters): most often the scattering of the data comes from a
poor “description” of the products. You cannot expect to get a reliable formula if
you mix – and sometimes you have no other choice, due to the rareness of the
data – inside the same product family inhomogeneous products (for instance
differing in the material they are manufactured from, or using different produc-
tion technologies, or developed – for advanced products – at different times, or
composed of a widely different number of components or parts5, etc.) described
by only their size (the mass generally speaking).

2. Analyze carefully your data. This is the reason why a whole part was dedicated to
this analysis: it is more important to spend a lot of time on this analysis, than to
try to improve a solution by “playing” with mathematics.

3. And never forget that mathematics are there to quantify a solution, rarely, but
this happens nevertheless sometimes especially when many data are available,
something which is rather rare in the domain of cost, to find it!

5 One of the first thing you learnt, when you follow a course on cost reduction in products manufactur-
ing, is: “reduce the number of parts”. This number is often a significant cost driver.



10 Using Several Quantitative Parameters:
The Linear Cases

Summary

In the previous chapter, we studied the information � in a sample containing two
variables (the cost and one parameter) between which a bilinear relationship was
looked for.

In this chapter we study information of a sample containing several variables,
one of them being of course the dependent variable, the other ones being the
causal, quantitative, variables.

We assume that the analysis of the sample data (according to the procedures
described in Chapter 6) was carried out:

1. The potential problems related to possible outliers and/or multi-collinearities
between the causal variables were discovered and solved.

2. An “interesting” linear correlation (measured by the Bravais–Pearson correla-
tion coefficient) between the dependent variables and the (selected) causal vari-
able(s) was found, which legitimates to devote some effort to go on with this
sample. This chapter tries to use this correlation to carry out the analysis of the
sample, the purpose being to get a better understanding of the cost distribution �.
The presence of the correlation between the cost and the other variables suggests
that we can reduce the importance of the residuals by adopting a better value for
the dynamic center.

The relationship we are looking for is not necessarily bilinear,as a formula such as:

is perfectly acceptable, x2
1 being considered as another variable.

The relationship we are looking for is a linear one between the cost and the coeffi-
cients b0, b1, b2, … . This means that, geometrically, we are looking for a hyper-plane
(just an ordinary plane if only two parameters are involved) which passes, in the
best possible way, through the data. In order to do that we will of course need one of
the metric previously defined.

This chapter is limited to the basic points for finding this relationship:

● We discuss only the “additive” residuals defined by:

e y yi i i�
� � ˆ

ŷ b b x b x� � �0 1 1 2 1
2
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The reader can easily extrapolate the results to other residuals.

● Only the ordinary least squares (OLS) procedure is described, based on the met-
ric of the squares of the differences. Other metrics can also be used with several
parameters. Computations are then made by iterations, starting from the least
squares procedures.

The purpose of this analysis must be clearly understood: we will compute a
dynamic center of � for the purpose of “improving” the distribution � of the residu-
als (which means here reducing its standard deviation).

This chapter presents the most important algorithms for finding the dynamic
center and reminds the properties of the OLS.

It then introduces other procedures for computations. These procedures put some
light on the OLS.

Eventually it describes on an example the “Ridge” regression.

10.1 Introduction

The same hypotheses as described at the beginning of Chapter 9 apply here, with
the exception of the first one: several quantitative variables are going to be used.

Using several quantitative parameters is a very important concept in cost 
estimating for the following reason: we said earlier that a specific model is related
to a product family and we added that the more homogeneous a product family is,
the more efficient will the model be. It may happen that you have to work inside 
a homogeneous product family; in such a case using just one parameter – it is 
then the product size – may be sufficient. But most often, according to our experi-
ence, cost analysts manipulate much more frequently non-purely homogeneous
product families; then they have to compensate these inhomogeneities by the intro-
duction of other parameters. As we said, this is the only purpose for adding other
parameters.

These added parameters can be quantitative or qualitative. The first ones are dealt
with here; the second ones will be discussed in the following chapter.

About the Variables

Using several quantitative variables is a natural extension of the case studied in the
previous section. These variables are represented by the symbols V1, V2, …, Vj, …,
VJ: there are J such variables.

It is assumed that the variables are strictly non-collinear; the analysis developed
in Chapter 6 is supposed to have been done. We do not expect that the variables are
“completely” non-collinear, but that the amount of collinearity, which can be
caused just by chance, is limited. This does not mean they are independent: for
instance it quite acceptable to use V 2 � V2

1 if we think that the link between the
dependent variable and variable V1 is quadratic.

Due to the number of variables involved, a concise notation is necessary, as well
as the computations based on matrices.
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About the Relationship

As the relationship we are searching in this chapter for the dynamic center is supposed
to be linear (in terms of the coefficients), we write that the value of the dynamic
center corresponding to product i (the word “dynamic” meaning that the center has
a different value for each product) is given by:

Let us remind for the reader who is not familiar with this notation that:

● the first index of xi,j represents the product number (it varies from 1 to I);
● the second index represents the variable number (it varies from 1 to J);
● consequently xi,j represents the value taken by variable Vj for product i:

Why Adding Variables?

In the previous section we saw that replacing the static center by a dynamic one was
a powerful tool to reduce the standard deviation of the residuals around the
(dynamic) center of the distribution � of the costs in the sample.

The logic is exactly the same here: other variables are introduced for the purpose
of still reducing, if it is possible, this standard deviation. We do that because we
believe that the product family we are working with is not homogeneous enough
for using one parameter only; as other parameters are introduced for mitigating
the inhomogeneities, we have to look at their influence on the cost.

If the scattering of the data is not due to this inhomogeneity, but for any other
reason – such as working with price information instead of cost – we may have
some doubt about the result of adding parameters. But we have to try this solution.

As we already said it, we try to replace the complex distribution � of the cost by
something simpler to handle: the distribution � of the residuals; adding parameters is
generally a good way to do it.The first criteria for saying that � is easier to handle than
� is the reduction of its standard deviation; therefore it will be the first value to look at.

Example

The algorithms will be illustrated in Figure 10.1.
The first three columns are the same as the one we used in the previous section.

10.2 Computing the Solution

10.2.1 The Basic Computation

The solution can only be written with the matrix notation. It uses the matrix ||�x||
of the J (see four parameters in the example) causal variables – to which is added a

x xi, j � product number variable number_ , _

ˆ
, , , ,y b b x b x b x b x b bi i i j i j J i J� � � � � � � � �0 1 1 2 2 0L L jj i j

j
x ,∑
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column of 1 for computing the intercept if it is needed – and the vector y
r

of the cost.
||�x||∈�I�(J�1) unless we force the intercept to be 0.

The solution, which is the vector b
r

∈�(J�1)�1 of the coefficients of the causal
variables in the formula, is given in all elementary books of statistics:

and the formula giving the value of the dynamic center as a function of the causal
variables is then written as:

The solution does not require making any hypothesis. If we replace in this last for-
mula the vector b

r
by its value, we have:

where:

is the HAT matrix we met in Chapter 6.
As it appears, the solution has to invert the matrix (||�x||t ⊗ ||�x||). This solution

will therefore exist only if this inversion is possible. It is a well-known theorem in
the matrix algebra that a matrix which has the values of two columns proportional
cannot be inverted.All the discussion we had in Chapter 6 about multi-collinearities
problems refers to this question. This problem is here supposed to have been
solved; nevertheless the solution of the “Ridge” regression, for the cost analyst who
wants to keep collinear variables, is presented in Section 10.5.

|| || || || || || || || || ||h x x x xt t� � � �
�

�⊗ ⊗( ) ⊗
1

ŷ x x x x yt t� �� � �
�

�|| || || || || || || || |⊗ ⊗( ) ⊗ ⊗
1 r

|| ||h y⊗
r

ŷ x b� �|| || ⊗
r

r r
b x x x yt t� � �

�
�|| || || || || ||⊗( ) ⊗ ⊗

1

Name

A
B
C
D
E
F
G
H
I
J
K
L
M

Cost

1278
724
809
920
772
877

1064
865
961
856

1293
717
648

Mass

6.83
2.18
3.80
4.55
2.18
2.11
4.67
2.81
2.55
1.68
6.30
1.98
1.25

Components

1264
1032

812
516

1032
1548
2722

807
1598

737
715
186
228

Connections

1274
480
656
786
480
394
942
671
872
450

1400
430
257

Boards

10
6
6
8
6
6
6
3
6
5

19
7
6

Figure 10.1 Example with several parameters.
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Examples

Let us see on the example how much we win by adding parameters.
We saw in the previous section that, when only the first parameter is used, the

following formula was found:

The residuals having a standard deviation equal to 83.805.

Example with Two Parameters
With two parameters we get:

The residuals having a standard deviation equal to 76.67. Adding one parameter
was a successful process: the standard deviation of the distribution � of the resid-
uals was reduced.

Example with Three Parameters
With three parameters the formula becomes:

The residuals having a standard deviation equal to 68.025. Adding a third parame-
ter was also a successful process: the standard deviation of the distribution � of the
residuals was reduced.

Example with Four Parameters
With four parameters:

with this time a standard deviation of the residuals equal to 52.25.
In this example using up to four parameters significantly improved the result, as

the standard deviation of the residuals went always down. This is not always the case,
and we will see in Chapter 16 a method for selecting the most interesting parameters,
as far the cost-estimating process is concerned.

You certainly have noticed that the coefficients do change when a new parameter
is added; this is due:

1. to the fact that the influence of one parameter (for instance the mass,of which coeffi-
cient goes from 101.08 to 95.79,68.58 and 13.15) is now replaced by other variables.

2. to the correlation between the variables, as previously explained. This correlation
reduces the accuracy with which the coefficients are computed.

It shows that reducing the standard deviation of the residuals is not the only
thing to consider when preparing a specific model: the precision with which the
coefficients are determined also is an important subject, which will be discussed in
Chapter 15.

ˆ . . . .y � � � � � �479 28 13 15 0 052 0 393mass components �� � �connections boards7 55.

ˆ . . . .y � � � � � �477 61 68 98 0 084 16 01mass components �� boards

ˆ . . .y � � � � �535 27 95 79 0 054mass components

ˆ . .y � � �572 97 101 08 mass



204 Finding the Dynamic Center of a Multi-Variables Sample

10.2.2 How Does Each Observation Influence the Coefficients?

The formula giving the vector b
r

(the coefficients of the linear regression) uses all
the data of the sample.We expect that all the data contribute, about, equally to these
coefficients.It may be therefore interesting to see how much each data point influences
them, the idea being to check if one data point has not a too large influence.

In order to do that, we must define a “distance” Di between the value b
r

computed
for the coefficients when all data points are present and the value b

r
(i) when data

point i is removed. The procedure is similar to the one which was used to detect
potential outliers (Chapter 6) and the objective is about the same, except we now
directly compare the vectors.

R. D. Cook1 proposed to use the distance defined by:

which is, as the reader can easily check, a scalar. R. D. Cook indicates that a distance
Di larger than 1 generally shows an abnormal influence.

Draper and Smith (Ref. [20], p. 170) mention a formula that is easier to compute:

where the HAT matrix appears once more. This formula attracts the reader’s atten-
tion to the value of hi,i: the closer these values are to 1, the larger will the distance
be: the diagonal elements of the HAT matrix are therefore interesting to observe.
Pay attention nevertheless to the fact that the HAT matrix only considers the values
of the parameters: a data point can be far away from the other ones (its hi,i will be
close to 1) without creating a problem if its residual is small.

Example

The procedure can be applied to the example. Using the four parameters leads to
the following vector:

The diagonal elements of the HAT matrix are given in Figure 10.2.
The distances between vectors b

r
and b

r
(i) are now computed; the results appear in

Figure 10.3. The average distance is equal to 0.119, with a standard deviation of 0.142.

r
b �
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7 547
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1 R. D. Cook. Technometrics Volume 19, 1977.
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This standard deviation is rather high compared to the average value, this effect
being due to the data points A, F and G; these data points are not really “abnormal”
but they should be verified.

Referring to Chapter 6, one can observe that these three data points were already
discovered as potential outliers when looking at the dependent variable. Let us say
that this new approach is another interesting way to confirm a first “impression”.

0 2 10 12 14
0

0.2

0.4

0.6

0.8

1

i

0.496

0.128

0.21

0.291

0.128

0.413

0.648

0.437

0.673

0.166

0.895

0.223

0.29 4 6 8

0

0.1

0.2

0.3

0.4

0.5

0.357

0.04

0.069

8.002 � 10�3

4.583 � 10�3

0.424

0.302

0.023

0.164

0.109

0.036

7.206 � 10�3

1.089 � 10�3
0 2 10 12 14

i

4 6 8

Figure 10.2 The diagonal elements of the HAT matrix.

Figure 10.3 Change of b
r

when each point is successively deleted.
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10.2.3 The “Weighted” Least Squares

In a set of data, you sometimes think that some of them are less reliable than others.
In such a case you would certainly like that the formula be less dependent on these
data. The way you can deal with this problem is to weight each data according to its
level of reliability.

We saw in Chapter 8 an automatic way to compute these weight. This section
proposes a manual weighting procedure, based on your own analysis of the data.

The weight given to product i is called wi.From all the weights,a “weight”(diagonal)
matrix can be created:

We have now to minimize:

or

The new vector b
r

of the coefficients is then given (Ref. [20], p. 109) by:

and its variance by:

10.3 The Properties of the Classical Solution

10.3.1 The Basic Properties

These properties are the same as the ones mentioned for the case of one parameter
only:

1. The dynamic center, now defined as an hyper-plane, passes exactly through the
center of the data, defined as y–, x–1, x–2, …, x–j, …, x–J.

2. The sum of the residuals is equal to 0 (when the intercept is not forced to 0).
3. The value of the coefficients are not symmetrical.
4. These values are strictly correlated.

var( ) || || || || || || || ||
r
b S x x x Wt t� � � �

�
�2

1
⊗( ) ⊗ ⊗ ⊗⊗ ⊗ ⊗( )|| || || || || ||� � �

�
x x xt

1

r r
b x W x x W yt� � �

�
�|| || || || || || || || || ||⊗ ⊗( ) ⊗ ⊗ ⊗

1

r r
e W e⊗ ⊗|| ||w ei

i
i∑ 2

|| ||W

w

w
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�

1
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0 0 0
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10.3.2 The Difficulties with This Metric

The difficulties, in the domain of cost, are exactly the same as the ones we found
with one parameter only (see Chapter 9):

● The linear regression is biased.
● Large costs receive too much “weight”.

About the Bias

In Chapter 9 we proposed three solutions:

1. Averaging the regression of y on x and of x on y.
2. Using the euclidian distance.
3. Rotating the axis (using the results of the principal component analysis, PCA).

The first two solutions would be here either impossible (for the fist one) or rather
complex. Consequently only the third one has therefore to be investigated.

The investigation was carried out in Chapter 9. The reader must not forget that,
for solving the problem, the PCA must be done on all the variables, including cost.

The computations are not difficult and there is consequently no reason not to 
use them.

About the “Weight” Given to Large Costs

The problem is of course exactly the same as the one discussed about the use of
only one parameter, and the same solution can be applied.

10.4 Introduction to the Other Forms

10.4.1 Introduction to the “Canonical” Form

The “canonical” form of the linear regression is not described here for solving the
equations – it is not simpler than the standard matrix analysis described in Section
10.2 – but because it spreads a very interesting light on the problem in general and
on the multi-collinearities in particular.

According to the singular values analysis, the matrix ||cx|| of the centered data 
(it is easier here to use the centered data, as the intercept disappears without chang-
ing anything about the multi-collinearities problem) can be written as the product
of three matrices:

with ||U|| ∈ �I�J, ||K|| ∈ �J�J and ||V|| ∈ �J�J, matrices ||U|| and ||V|| being
orthogonal. ||K|| is a diagonal matrix of which elements are the singular values di of
matrix ||cx||.

|| || || || || || || ||cx U K V t� ⊗ ⊗
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The example given at the beginning of this section leads to the following matri-
ces (the centered data do not need a column of 1 for computing the intercept):

Starting from the previous relationship given in Section 10.1:

and using the properties of orthogonal matrices, one can write:

if we note ||Z|| � ||cx|| ⊗ ||V|| ∈ �I�J and c
r

� ||V||t ⊗ b
r

∈ �J�1.
The expression y

r
� ||Z|| ⊗ cr � e

r
� is exactly the same as the one we started from

in order to compute b
r

in the previous section. A similar computation gives:

This expression can be simplified if one notices2 that:

1. ||Z||t ⊗ ||Z|| � ||V||t ⊗ ||cx||t ⊗ ||cx|| ⊗ ||V||.
2. ||cx||t ⊗ ||cx|| � ||V|| ⊗ ||S|| ⊗ ||U||t ⊗ ||U|| ⊗ ||S|| ⊗ ||V||t � ||V|| ⊗ ||S||2 ⊗ ||V||t.
3. Consequently ||Z||t ⊗ ||Z|| � ||S||2.

r r
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2 You just have to remember that the transpose of a product of matrices is equal to the product of the
transposes written in opposite order, plus the properties of the orthogonal matrices.
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Then we can write:

The expression giving the variance of c
r

is particularly interesting. As we have:

We see a direct correlation between the singular values of the data matrix ||cx|| and
the variances of the components of c

r
: in the presence of collinearities between the

variables, some singular values are going to be small and this will produce high
variances for some components. These high variances will of course produce high
variances for some components of b

r
.

This analysis shows that the singular values of the data matrix convey very use-
ful information about this matrix. This explains why, in Chapter 6, the analysis of
the variances based on the singular values was introduced for understanding the
damage which can be caused by multi-collinearities.

10.4.2 Using the QR Decomposition

Previous computations of b
r

uses the computations based on inverting the matrix
||�x||T ⊗ ||�x||. Another type of computation, which does not involve matrix inver-
sion, is possible. It is based on the QR decomposition of the matrix ||�x||. It is pre-
sented succinctly here because you may find it in other books, but it is not necessary
for usual computations.

Any matrix (Ref. [31], p. 223) such as3 ||�x||∈RI�(J�1) can be written as the prod-
uct of two matrices ||Q||∈RI�I and ||R||∈RI�(J�1) where ||Q|| is orthogonal and ||R||
is upper triangular. This is the basis of the QR decomposition.

The procedure goes along with the following steps:

1. From matrix ||R|| one extracts the upper triangle, which gives the matrix
||R1||∈R(J�1)�(J�1).

2. One then computes the vector c
r

� ||Q||t ⊗ y
r

from which the J � 1 first rows gen-
erate a vector c

r
1∈�(J�1)�1.

3. The coefficients of the formula are given by the vector b
r

� ||R1||�1 ⊗ cc
r

1.

This procedure provides a very elegant solution to the linear regression analysis.
Obviously the most difficult part of it is the QR decomposition. If you ever try it,
keep a lot of significant numbers in your computations: this decomposition uses a
lot of iterations and lost figures in the first ones will entail a loss of precision.
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Example

Let us do a very simple example with 11 products and one parameter only (but 
the procedure can be used with any number of parameters). The data are the fol-
lowing ones:

The matrix ||Q|| is computed as:

and the matrices ||R|| and ||R1|| as:

From the product ||Q||t ⊗ y
r

vectors c
r
1 and b

r
are computed:

The result is of course the same as the one computed by the ordinary procedure.
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10.5 A Particular Case: The “Ridge” Regression

The Ridge regression was introduced by Hoerl and Kennard as a way for solving
the problems caused by multi-collinearities.

Let us remind the origin of these problems. As we saw it in Section 10.2.1 of this
chapter, finding the coefficients of the linear regression, and then the variances of
these coefficients, involves inverting the matrix (||�x||t ⊗ ||�x||). Inverting a matrix
implies to compute its determinant which will be used as a divisor. If this determi-
nant is very small – the matrix is said to be “ill conditioned” – the result of the divi-
sion will give very high values: the coefficients will then be very imprecise.

The idea of Hoerl and Kennard is simple: if the matrix (||�x||t ⊗ ||�x||) is ill con-
ditioned, let us improve its conditioning by adding to it a small value; this small value
will render its determinant clearly different from 0. Then its inverse will be properly
defined.

There is obviously a “price to pay”; this price is a, slight, bias.
We will demonstrate this Ridge regression on an example.

Example

Let us an extreme example (Figure 10.4) for showing the power of the method:
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Figure 10.4 Example for demonstrating the “Ridge regression”.

This example, built on two variables V1 and V2, plus the cost values, uses centered
and scaled variables: the sum of each column values is equal to 0. The correlation
between V1 and V2 is extremely high: 0.999996! And nevertheless the procedure
works!
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10.5.1 The Result of the Standard Regression Analysis

A standard linear regression on these values provides the following relationship for
the dynamic center:

A simple look at this formula reveals that it is not acceptable: both variables being
extremely well correlated, we expect them to have nearly the same coefficients in
the formula. But these coefficients differ widely and the signs are opposite! Clearly
the influence of both variables compensate each other by a very large extent.

What are the variances of these coefficients? Both values are the same and
amount to 2433! This means that their standard error is 49.3, extremely high com-
pared to the coefficients values; the “t”-values are of course very low: 0.158 for the
first one, 0.176 for the second one. Clearly this formula, even if it has no bias, can-
not be used for predictions.

10.5.2 Making the Matrix Better Conditioned

The matrix to be inverted is given by:

of which determinant is equal to 1.187 � 10�3.
The singular values of matrix ||x|| are: 5.099 and 6.758 � 10�3. This means that

this matrix is ill conditioned, the condition factor being given by 754!
Let us introduce a small correction to this matrix; as (||�x||t ⊗ ||�x||) ∈ �2�2 the

correction will be the unit matrix belonging to �2�2 multiplied by a constant k. The
matrix becomes:

which we have now to invert. Figure 10.5 shows how the determinant of this matrix
depends on the value of k.

Let us compute it for k � 1. This computation gives the following result for the
vector of the coefficients:

which is very good: now, as expected, both variables influence the cost nearly the
same way.

About Their “t”

Does this operation improve the “t” of the coefficients? The variances–covariances
matrix is computed the usual way; it gives a “t”-value of 6.85 for the first one, 6.862
for the second one, values which are quite acceptable.
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About Their Bias

We said earlier that the price to pay for improving the “t”-values was a bias in the
value of these coefficients. What is the value of this bias? It is given by:

bias || || || || || ||��
�

k x x kt ⊗ ⊕ ⊗( )1
1

0 0.2 0.4 0.6 0.8 1
0

10

20

30

Figure 10.5 Value of the determinant according to k.

1�10�4 1�10�3 0�01 0�1
�4

�2
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8

Figure 10.6 Results of the Ridge regression. Coefficient b1 (full line); its “t”-value (dotted line); its bias
(mixed line).



which gives here a value of 0.518 for both. Compared to their values this bias is here
rather large. The reader must pay attention to the fact that the bias does not mean
that the computed value is not correct: the bias is an asymptotic property.

Can we improve it? We should because the bias is directly proportional to the
constant k we introduced. Figure 10.6 displays, as a function of k, the values of:

● the coefficient b1: its value is nearly stabilized as soon as k is greater than about
3.10�3;

● its “t”: this value becomes “reasonable as soon as k is greater that 0.02;
● its bias: which is also stabilized as soon as k is greater than about 3.10�3.

An acceptable value of k for this example is 0.02. This does not really decrease the
bias (which still is about 0.5) but the bias is not the most important characteristic,
the standard error (measured here by its “t”-value) being more important: intro-
ducing the Ridge regression moves the “t”-value from �0.158 to 3.143.
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11 Using Qualitative Variables

Discussion about qualitative variables was postponed up to this chapter, because it
requires a preliminary understanding of the role of quantitative variables.

A model can very well include qualitative variables, the variables which are not
quantifiable.

The first section of this chapter gives examples of such variables.
Then we insist on the major constraint when using this type of variable which is

that the slope (for an additive formula) or the exponent (for a multiplicative for-
mula) remains the same whatever the value of the qualitative variables. This is very
important in order to avoid frequent mistakes: qualitative variables do not allow to
work outside homogeneous product families; they are not there to escape this con-
straint, but to better “describe” similar products in the family. One can say that it
slightly expands the accepted level of non-homogeneity in this family.

Before working with qualitative variables, the cost analyst should first check if
they improve the quality of the model: it may happen that this quality is in fact
degraded. A simple test is proposed to do that.

Then we briefly explain how to structure the data in order to be able to compute
with the qualitative variables. This uses the concept of “dummy” variables.

The use of the quantitative variables is briefly presented: it uses algorithms
already developed and the slight modifications they require is just mentioned.

11.1 Preparing the Qualitative Variables

11.1.1 What Are Qualitative Variables and Why Use Them?

Qualitative variables are very important in the way we think about products and
consequently in cost estimating.

When you think about a product, it is probably the first variable which comes up
to your mind. When you buy an airplane ticket for going from Paris to Chicago, the
first question is: do you want first class, business class or economy. If you want to go
to a restaurant, the first choice is: fast food, traditional, luxury, etc. All these
variables are qualitative.

If it is not the first variable, it is very likely the second one. When you want to buy
a house, the size of the floor is certainly the first (quantitative) variable you consider.
Then come a lot of qualitative variables from the style (modern, traditional, etc.), the
distance to the schools (it could be a quantitative variable, but you do not care
about the exact distance and your choice could be: at a short walking distance, at a



longer one,or far enough to impose driving the children to school), the distance to the
shopping places or to the railway station (same comment), the type of neighborhood
(which is purely qualitative), etc.

Qualitative variables are so important in cost estimating that we are very reluc-
tant to use a model which does not include at least one qualitative variable. This
comes from the fact we rarely believe that product families are homogeneous
enough to avoid employing such variables.

Let us take examples in the industry:

● The quality level is a very common qualitative variable: we saw an example with
the airplane tickets, but this can be applied to cars, houses, software, etc.

● The type of rock in which a tunnel has to be bored can be described by a quali-
tative variable (soft, hard, very hard, etc.)

● You are working with a set of products fulfilling the same function, but at differ-
ent levels. Some of these products are not made from the same material as the
other ones. A qualitative variable must be used to take into account this differ-
ence of material.

● In the product family you are working with, some products have slight changes
in design that you want to take into account.

● Inside the same product family, you know that some products may have or not a
particular function: the “Yes” or “No” is a qualitative variable.

● You want to work with the specific cost. You noticed that this specific cost does
change with the product size, but you are still unwilling to use a quantitative
variable to “describe” this size, or you know that, at certain thresholds, technol-
ogy has to change due to the increased size (existing machines cannot cope with
a largest size and/or another process must be used). In such a case, you can
define different intervals, called for instance A, B and C. To each product is
assigned an interval: this is a qualitative variable.

● When you buy the same types of products (that you consider belonging to the
same product family) from different suppliers, it is sometimes very useful – and
interesting – to use the supplier’s name as a qualitative variable. This may help a
lot the procurement officer.

● You work inside a project for modifying a railway and a road, for instance for
installing a crossing. Should the traffic on the railway and/or the road to be
maintained or not? This qualitative variable has obviously a major impact on the
project cost.

Qualitative variables are therefore extremely useful to properly distinguish the
products inside a family: they should be largely used. This explains our reluctance
to use a model in which no qualitative variable appears.

Another Possible Application?

When dealing with cost (and sometimes with other data) we know quite well that
the level of confidence we have about the data is not uniform: we generally consider
that some information are more reliable than others.

The solution which is generally recommended for dealing with this question is to
attribute a “weight” to each data: to a data we are very confident in, we attribute a
weight of 1; to another one we are less confident in we attribute a weight of 0.7 and
to another one we may attribute a weight of 0.5. It is possible to carry out the search
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of the dynamic center on these weighted variables. This solution is detailed in
Chapter 10.

But this procedure presents two inconveniences:

1. The first one is the necessity to quantify our level of confidence. This may be diffi-
cult, as this level of confidence is more often an “opinion” than a “certainty”: How
can we say that we are 10 times more confident in this value than in another value?

2. The second one is that this quantification does not allow to indicate if we believe
that such a value is probably too low, another one probably too high.

Consequently the use of qualitative variables seems sometimes more convenient
for dealing the reliability of an information, as it solves both problems at the same
time. For instance, using a qualitative variables with five modalities (but three can
be sufficient) such as:

A: the value is probably much too low,
B: the value is probably too low,
C: the value can be considered as normal,
D: the value seems too high,
E: the value is probably much too high,

does not force the user to quantify the level of confidence and allows to indicate if
the cost analyst believes that the value is too low or too high.

But what is going to be the result of the computations? As previously said, the
algorithm will generate five straight lines (if an additive formula is used), each line
corresponding to each modality. Therefore you will get formula for “too low cost”,
“low cost”, etc., plus of course the “nominal” cost. This might be helpful, but
requires further analysis and has to be interpreted for preparing a cost estimate.
Nevertheless it gives very valuable information about the scattering of the cost.

This procedure might be sometimes recommended if your level of confidence is
difficult to quantify: the equation giving the dynamic center will convey this level
and will therefore be more reliable.

11.1.2 Definition and Constraints About the Use of Qualitative Variables

What Is a Qualitative Variable?

A qualitative variable is a variable which can take a finite number of non quantita-
tive nature. Each qualitative variable is therefore described by a set of “attributes”,
for instance “good, medium, low”, or “aluminium, steel”,“A, B, C, D”. Each attribute
is called a “modality” of the qualitative variable.

There is no theoretical limit to the size of this set, but it must be finite. This distin-
guishes the qualitative variable from the quantitative one: quantitative variables are
generally continuous, which means they can theoretically take an infinite number of
values.

Breaking the Family into Sub-Families?
It is a question which is frequently asked: Why include all the products in the same
family – which sometimes forces to use quantitative variable(s) – instead of creating
as many “sub-families” as there are modalities, the sub-families being dealt with
independently?
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As usual there is no definite answer to this question and we can only give some hints:

● If you can built sub-families each having a number of products large enough to
produce reliable models (the questions about reliability are dealt with in
Volume 1), do so.

● If you have a limited number of data points – which is unfortunately often the
case for cost estimating – prefer to use just one product family and use possibly
qualitative variable(s). The reason for this choice is that, in this case, all products
help together to build the rate of change of cost with the quantitative variable(s):
the reliability of this rate of change will be much higher with this solution than
working with small, sometimes very small, product families. Just make sure,
before using this solution that it is the correct one.

The Major Constraint

The major constraint when using qualitative variables is that you assume that the
way the dependent variable – the cost – changes with the quantitative variables is
always the same, independent of the qualitative variables.

Geometrically it means that, if you use one quantitative variable only, the cost,
when you change the qualitative variable, moves on parallel lines, or parallel planes –
or parallel hyper-planes – if you use several quantitative variables. This constraint
is illustrated in Figure 11.1: to each modality corresponds one straight line parallel
to the other ones.

This constraint is extremely important: many difficulties when using qualitative
variables come from forgetting about this constraint.

Example
Look at the following data set (Figure 11.2): it gives the price (the unit is irrelevant)
and the power (in W) of electrical engines designed with 2 or 6 poles (the qualita-
tive variable then takes the value 0 or 1).

This looks nice until we look at the graph displaying the price according to the
power (Figure 11.3). This figure clearly shows that the change in cost with the power
does not follow the same rate depending on the value of the qualitative variable:
when the number of poles is equal to 6, the cost increases more severely when the
power changes than when this number is equal to 2.

This is a very important rule when using a qualitative variable:

When you use one (or several) qualitative variable(s), you always assume that
the rate of change with the quantitative variable(s) remains the same, irrespec-
tive of the qualitative variables.

In other words, the graph should display here two parallel straight lines: the only
change in the graph when going from one modality to the other one is the intercept.

Never forget about that! One may say that a qualitative variable is not there to say
“this is a bicycle, this is a washing machine” (that will never work, unless you are
lucky),but to say “this is a bicycle without a changing gear, this is a bicycle with one”.

A Comment
If the scales of the previous graph are changed from linear to logarithmic, the
graph becomes the one of Figure 11.4.
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Figure 11.2 The set of price and power values.
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Figure 11.3 The linear scale representation of price and power values.
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● Or using one non-linear (establishing non-linear moving centers is described in
Chapter 12.) relationship:

where the “intercept” changes with the attribute of the qualitative variable.

The Consequence of This Constraint

The constraint about the use of qualitative variables is described in the previous
section: the relationship between the dependent variable (the cost) and the quantitative
variable(s) must be the same (the slope for the additive model, the exponent for the
multiplicative model, the constant for which the quantitative variable is the expo-
nent for the exponential model).

The fact that this constraint is fulfilled by our data must therefore be checked: it
is really the first thing to check when you want to use qualitative variables. A test
has to be designed for this purpose.

The Logic of the Test
The logic of this test is based on the fact that the use of the qualitative variables is
made in order to improve the quality of the equation giving the value of the dynamic
center. This quality will be here based on the reduction of the residuals we would like
to find when using these qualitative variables.

There are three major ways of using qualitative variables:

1. We can disregard the qualitative variables and use only the quantitative ones.
2. We can use them the standard way, by computing the formula giving the dynamic

center, the qualitative variables being there just to change the value of the inter-
cept (if we use linear relationships). This assumes that the constraint is fulfilled.

3. We may decide that the constraint does not seem to be fulfilled: in such a case, we
may consider that the qualitative variables allow to distinguish several “sub-families”
inside the family. Then each family will be dealt with independently of the other
ones: each one will have its own dynamic center.

How can we compare the results? These three ways will produce three different
vectors 

r
e�, each component e�i of each vector being attached to a particular pro-

duct.An easy way to compare both vectors is to compare their euclidian norm, sim-
ply given by Σie2

�i.

Going One Step Further
As we are dealing with this test, we can go one step further and answer the following
question: Does the use of qualitative variable really help? Should we really bother with
these variables?

Consequently three analysis are recommended:

1. In the first one, called �, we do not care about the qualitative variables. We will
look for the dynamic center. The euclidian norm of the residuals is named
(because it follows a �2 distribution) �2

�.

log logˆ ( ( ))y b f power� �0
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2. In the second one, called �, we consider that the constraints are fulfilled and we
dealt the normal way (explained in Chapter 7) with the qualitative variables. The
euclidian norm of the residuals is named �2

�.
3. In the third one, called �, we consider that the constraints are not fulfilled (the

relationship between the cost and the quantitative variable(s) may depend on 
the qualitative variables) and we consider we have different sub-families depend-
ing on the qualitative variables; each sub-family is dealt with independently. The
euclidian norm of the residuals is named �2

�.

Of course, if several qualitative variables are present, each one with its own set of
modalities, such an analysis must be carried out on each variable.

Illustration
In order to illustrate the procedure, let us consider the example given in Figure 11.5.
This example uses one quantitative variable (the mass of the product) and one
qualitative one with three modalities (the quality level).

Name Cost Mass Quality
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C
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D1

Figure 11.5 The set of values for the example.
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As we are using just one quantitative variable, it is easy to display these data on a
chart: this is done in Figure 11.6.

On this figure, it clearly appears that the slopes of the dynamic center depend on
the modalities of the qualitative variable and no computation – except for quanti-
fying the phenomenon – is really required. But the situation is sometimes more
complex, especially if several quantitative variables are involved: in such a case a
computational procedure is required.

For this example this procedure gives the following values:

� 2
� � 119 904.39

�2
� � 19 268.89

�2
� � 2719.64

It is clear on this example that solution � is much better than solution �: the resid-
uals are considerably reduced. But in fact qualitative modalities should be dealt with
independently: solution � which considers three sub-families is much better than
solution �.

If the graphical representation can be considered as sufficient when using just
one quantitative variable, it cannot be used when there are several. In such a case
you have to rely on the algorithms.

A Comment
The previous discussion is just a part of the story. Another point of view has to be
considered: it is the precision with which the coefficients are known when we
transfer the results found in the sample to the population for which the specific
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model is built; we will see in Chapter 15 that this precision depends on the number
of data points on which the formula is built (this is logic). Consequently we should
also have a look on what happens to this precision when the family is split into 
sub-families.

For the time being, let us consider how the “deviations” for the whole population
behave.

Let us, for that, return to the example of the electrical engines in order to illustrate
another test. In the test we have just described, we are only interested in the sample:
the procedure only uses the Σie2

�i. This solution can be considered as satisfactory
from the sample point of view, but is it still valid from the population point of
view? We will see in Chapter 15, dedicated to the population, that an estimate of the
euclidian norm of the deviations for the whole population is given by:

where I is the number of data points in the sample, J the number of quantitative
parameters and K the number of modalities of the qualitative parameters (which
include the intercept).

Does working on the sample or on the population changes the conclusion?
If we work from the sample point of view, we get the following values:

�2
� � 5 400 000

�2
� � 4 636 000

�2
� � 3 574 000

The third solution � (considering two independent families) should be preferred.
If we work from the population point of view, then the following values are

found:

�2
� � 234 800

�2
� � 210 700

�2
� � 362 800

Solution � (working normally with the qualitative parameters) is now the most
interesting.

So the point of view changes completely the situation. As we are mainly con-
cerned by the population (the sample is there just to help us), the second point of
view should be preferred.

11.1.3 From Qualitative to “Dummy” Variables

It is quite possible to work with a qualitative variable defined by its attributes: you
saw examples in Chapter 7 when, for instance, you wanted to quantify the possible
correlation between a quantitative variable and a qualitative one.

Ŝ
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When it goes to cost prediction, it is generally much more convenient to quantify
the qualitative variables: that will allow us to use existing algorithms. Such a quan-
tification produces what is generally called “dummy variables”; a dummy variable
is a variable which can only take a value of 0 or 1.

The logic for going from a qualitative variable to a set of dummy variables is sim-
ple, but requires a minimum of precaution.

Quantification of One Qualitative Variable with Only Two Attributes
Let us start with a qualitative variable having only two attributes A and B. The first
idea could be to create two variables, named x1 and x2 and to say: if the attribute of
a product is A, then x1 � 1, otherwise 0; if the attribute is B, then x2 � 1 otherwise 0.
You can do that if you force the intercept to be 0, which means that you work with
the “pure” ||x|| matrix, which could have the form (for five products only):

As most cost-estimating software work with the ||�x|| matrix, we would have to
work with the following matrix:

This must be avoided due to a simple mathematical theorem, the matrix:

is such that the first column is a linear combination of columns 2 and 3. In such a case
(see the introduction to this volume on “what you need to know about matrices”) this
matrix is singular: its determinant is equal to 0, and therefore the inverse:

does not exist.

Therefore the logic is to work with just one dummy variable; which takes the 1 
if the attribute is A, the value 0 if it is B. Note this is possible because we have an
intercept: the value of the intercept then corresponds to the value x1 � 0. The conver-
sion table is given by:

Attribute x1

A 1
B 0 Corresponds to the intercept

|| || || ||� �
�

x xt ⊗( ) 1

|| || || ||� � �x xt ⊗
6 3 3
3 3 0
3 0 3

|| ||� �x

1 1 0
1 0 1
1 1 0
1 1 0
1 0 1

|| ||x �

1 0
0 1
1 0
1 0
0 1
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Quantification of One Qualitative Variable with Several Attributes

Let us now look at a qualitative variable with three attributes: A, B and C. It is not
possible to use just one quantitative variable taking the values 0, 1 and 2, because
this will force the mathematical routine to consider that attribute C represents two
times attribute B, which does not really make sense.

Force is to use two quantitative variables in order to describe these three attrib-
utes x1 and x2; x1 will be used as previously indicated, whereas x2 will be used if the
attribute is C: it takes the value 0 for attribute A or B, and 1 for attribute C, in which
case x1 must be at 0. The table of conversion is now as follows:

Attribute x1 x2

A 1 0
B 0 0 Corresponds to the intercept
C 0 1

The conclusion is, when dealing with three attributes, that we use three combina-
tions between two variables which can take only the values 0 and 1: two each set of
the couple (x1, x2) corresponds one and only one attribute.

What about four attributes? It is impossible to add a new line to the previous
table: this will give the new table.

Attribute x1 x2

A 1 0
B 0 0 Corresponds to the intercept
C 0 1
D 1 1

and then D is a linear combination of A and C: the matrix of the data will be singular.
As we already used all the possibilities available with two variables x1 and x2 we

have to add a third variable, giving the conversion table.

Attribute x1 x2 x3

A 1 0 0
B 0 0 0 Corresponds to the intercept
C 0 1 0
D 0 0 1

The conclusion is obvious: if the number of modalities of one qualitative vari-
able is equal to k, we need k � 1 quantitative variables – taking only the values 0 or
1 – to represent them.

Quantification of Several Qualitative Variables Each One Having Several Attributes

Suppose we have two qualitative variables K1 and K2 (for example the quality level
and the supplier): K1 may have two attributes and K2 three of them.
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Note now that we have necessarily one attribute for K1 and one attribute for K2: we
cannot have K1 or K2 alone. Therefore the value of the intercept corresponds to a
couple (K1,K2).For quantifying the five remaining attributes,we need four variables.

Consequently for quantifying two independent qualitative variables with each k1
and k2 attributes, we need only k1 � k2 � 2 variables.

The conversion table can take the following form:

Modality x1 x2 x3

A1 1 0 0
B1 0 0 0   	 Corresponds to the interceptA2 0 0 0
B2 0 1 0
C2 0 0 1

Interactions

The basic idea in the previous section is that the influences of variables K1 and K2
are independent: if B1 and C2 are simultaneously present, then the influence on the
dynamic center will be the sum of the response to B1 on one hand, to C2 on the
other hand.

But other situations are possible: suppose, to take an example, that we are inter-
ested in the prices of refrigerators and that K1 is the variable for the presence or not
some feature, K2 (with three modalities) being the quality level. Using only three
dummy variables assumes that the price of the refrigerators is the sum of the price
of the quality � the price of the feature. But it may happen that the price of the fea-
ture for a high-quality refrigerator is higher than the price of a standard feature:
there is what is called an “interaction” between the qualitative variables.

It is quite possible to take into account these interactions of qualitative variables.
In the case where we think that only the presence of B1 and C2 may interact (the
other variables do not and the response of a couple is expected to be the sum of the
individual responses), we have to add another variable x4 which will be defined as
the product (Ref. [34] p. 182) of x1 and x2.

Q1 Q2 x1 x2 x3 x4

A1 A2 1 0 0 0
A1 B2 1 1 0 1
A1 C2 1 0 1 0
B1 A2 0 0 0 0 Corresponds to the intercept
B1 B2 0 1 0 0
B1 C2 0 0 1 0

This is rather rare in the domain of cost, but may happen.

11.1.4 The Matrix of the Data

What is the form of the matrix data now?
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If we keep the intercept (which is the value when all dummy variables are 0) the
matrix has the following form (for illustration purposes only):

intercept dummy quantitative 
variables variables

This matrix is still called ||�x|| because dummy variables are true variables.

11.2 Defining the Variables

11.2.1 Working with Dummy Variables Only

You define the number of dummy variables you need; suppose there is only two,
taking the values 0 (corresponding to attribute A of the qualitative variable) or 1
(corresponding to attribute B of the qualitative variable).Applying the results given
in the previous section will provide a dynamic center such as:

But generally the results – due to the fact that x1 can only take the value 0 or 1 – are
not given this way but according to the following way:

This illustrates the idea that, when working with qualitative variables only, the
dynamic center takes only discrete values.

For this reason, the use of only qualitative variables is not taken into account by
this procedure: in such a case, it is easier to compute the center of the distribution
of the dependent variable corresponding to attribute A, then the center of the dis-
tribution of the dependent variable for attribute B, etc.

The real interest of the qualitative variable is when they are used with at least one
quantitative variable. This is the focus of the rest of this chapter.

11.2.2 Using a Quantitative or a Qualitative Variable?

It may happen that you have a choice, when you work with two causal variables of
which one, which describes a change in design, could be defined as a quantitative or
a qualitative variable.
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Let us take an example.You are working with a product family: electrical engines,
the mass Wt being used for quantifying the engines sizes.You have also three slightly
different designs: some of the engines have 2 poles, some have 4 poles and the
remaining 6 poles; you do not expect to have a different number of poles. Then you
have a choice for taking the number of poles into account:

● You may use a quantitative variable of which the value is the number of poles: 2,
4 or 6.

● Or you may use a qualitative variable (two as a matter of fact because you have
three possible modalities).

What solution should you choose?
Instinctively we would prefer to select the second option: after all the number of

poles is a design alternative and there is a limited – discrete – choice of them. It so
happens here that this design change is described by a number, but it does not
change its true nature. If you select this option, you may find the following dynamic
centers (the slope is the same for all the centers):

If you select the first option (the use of several quantitative variables is described
in Chapter 10), you may find the following dynamic center:

Let us compare both solutions:

● In the first option, when you go from 2 poles to 4 poles, you increase the cost by
12; then going to 6 poles increases the cost by 8. This gives an average of 10 when
you increase the number of poles by 2 units.

● In the second option, increasing the number of poles by 2 units always gives an
increase of the cost of 10.

On an average basis, both solutions give the same result, but in the second option
you force the change in cost to be always the same, whereas in the first solution, the
change is much more precise.

The conclusion is to be very careful to use a quantitative variable when there is
only a limited set of discrete options: experience shows that it is generally better to
use a qualitative variable in this respect.

11.2.3 Solving the Problem

Once the set of quantitative and qualitative variables has been converted in the new
set of “quantitative � intercept � dummy variables”, the data matrix looks, for the
example of the electrical engines, as indicated earlier.

ŷ Wt� � � � �254 32 5 poles

2 poles 26
4 poles
6 pol

ˆ
ˆ
y Wt
y Wt

� � �
� � �

2 32
274 32

ees ŷ Wt� � �282 32
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Looking for an Additive Formula

The solutions presented in Chapter 10 for multiple variables can be directly
applied. For instance the conventional or ordinary least squares (OLS) gives:

For example we have:

and consequently, returning to the quantitative variable:

● for 2 poles cost � 152.669 � 94.213 � masskg
● for 6 poles cost � 529.647 � 94.213 � masskg

because, for the second case, we must add the value found for the second column of
the matrix (the dummy variable) to the intercept.

As previously mentioned, the reader will note that the slope is the same (94.213
per kg), both formulae differing only by the intercept.

The problems with the OLS are here the same as the problems previously men-
tioned, including the bias. The solutions are the same.
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Figure 11.7 The data including a qualitative variable with two modalities.



Looking for a Multiplicative Formula

Anticipating on the results of the next chapter, we can also look for a multiplica-
tive formula. In such a case, the data matrices ||�x|| and 

r
y must be transformed by

the logarithms of the quantitative variables only (not for the dummy variable),
including 

r
y (Figure 11.7).

The algorithm computes:

Due to the fact that 102.342 � 219.7 and 100.00979 � 1.023, we get the following formulae:

● for 2 poles cost � 219.7 � masskg
0.808

● for 6 poles cost � 224.7 � masskg
0.808

Looking for Other Formulae

The same procedure can be applied to find out an exponential formula in the presence
of qualitative variables.

It is not however usable for non-linearizable formulae, which are found by itera-
tions. A special program should therefore be built for these types of formulae.

r
b � � �

2 342
9 794 10

0 808
3

.
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.
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12 Non-Linear Relationships

Summary

It has been said (introduction to this volume) that the shape of the relationship 
between the dependent variable and the cost drivers (the parameters) results from
a choice from the cost analyst.

A large proportion of these persons selects a linear relationship – and very often
a bilinear relationship – linear meaning here that the dependent variable depends
linearly of the variables – and of the coefficients in the bilinear case. However, as 
it is sometimes said,“nature is not linear”, or more exactly the assumed linearity is
an approximation of the true relationship. It is therefore important to study the
non-linear relationships.

There is potentially an infinite number of non-linear relationships and we do not
expect the cost analyst to test an infinite number of such relationships. Therefore,
we will limit our investigation to the most standard ones. These standard forms can
be classified into two sets:

1. The relationships that can be linearized by a change of the variable(s). These
relationships can be – once the change of the variable has been accomplished –
dealt with as linear relationships, with the procedures which were developed in
the previous chapters. This chapter, for clarity purposes, divides these relation-
ships into two subsets: relationships based on one variable only (this is the most
frequent use of non-linear relationships) and relationships based on several
variables. For the first subset several relationships are presented, starting by 
the most frequently used: the “multiplicative” formula and the “exponential”
formula.

2. The relationships that cannot be linearized: these ones are the truly non-linear
relationships. Studying these relationships is much more difficult; examples
using one variable only are presented. A general solution is discussed for com-
puting the value of the coefficients. Its application to the most important rela-
tionship of this type – called the “correction-by-constant” formula – will be
developed.

In addition we show that using any type of relationship – linear or not linear –
when a non-additive metric is selected has to be solved with the same tools as a
purely non-linear relationship. A general solution is presented.



12.1 Linearizable Relationships

12.1.1 The “Multiplicative” Formula

The multiplicative formula is much in favor for cost analysis purposes, as soon as
the size becomes large enough. In many industries this formula is so much used
that it can really be called the “standard” formula; a few examples are given in
Chapter 9 of Volume 1.

Generally speaking – and unless the size is defined by a length or a surface – one
finds values of the exponent b1 lower than 1.This is called the “economy of scale”: the
larger an object, the more expensive it costs, but the less expensive it is per unit of
size. This is a general law of nature which is true for all mechanical objects and for
building but is not true for software.Some exceptions are known, the most important
being the polishing of mirrors: in such a case the cost grows faster than the size.

The order of magnitude of the exponent varies from about 0.6 to 0.9 depending
on the technology. For most purely mechanical items used on the ground it is in the
vicinity of 0.7, up to the point that this “standard” formula is known as the law in
2/3 power of the equipment mass. The interesting feature is that this value corre-
sponds to the ratio “surface/volume”. What is that so? A basic example illustrates
the fundamental reason:

● Suppose you manufacture an object of which mass is 1 kg (it would be exactly
the same if you prefer 1 ton) and that the breakdown of the cost is given by:
– Raw material: €5
– Machining: €20
– Giving a total cost of €25.

● Suppose now you enlarge this object, doubling all its dimensions: the mass
becomes 23 � 8 kg. What about the cost?
– The cost of the slug becomes €40.
– And the cost of machining 22 � 20 � €80 (because the machining effort is

related to the surface of the thing, not its mass).
– Giving a total cost of €120.
– Therefore when the mass goes from 1 to 8 kg, the cost goes from €25 to €120,

which is an increase given by 80.75 (this power is higher than 2/3 because fix
charges were not taken into account).

Consequently the origin of this power 2/3 comes from the fact that cost depends for
one part on the volume, for another part on the surface of the object (it is the sur-
face which is machined, not the volume): the power has to be less than 1. This is also
true – but to a lesser extent – for electronic equipments: if you double the sizes of
an electronic board, its weight is multiplied by 4 (this is a first approximation, not
taking into account the fact that you may have to increase slightly the number of
layers): the most important part of the cost – the electronic components – is also
doubled and so is the cost of integration; therefore, one can expect a power in the
vicinity of 1. But it has to be less than 1, due to the fix charges.

A more in depth explanation of this phenomenon is given in Chapter 13 of
Volume 1.

An interesting paper was published by Donald McKenzie on the subject; we will
return to it in the next chapter dealing with the residuals.
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Using One Causal Variable Only

The multiplicative formula gets its name from the general formula in which all
variables appear in a multiplicative form.

When dealing with one causal variable only, the formula giving the dynamic cen-
ter is written as:

where x is, as usual, the causal variable, b0 and b1 the coefficient and the exponent,
respectively.

The shape of this relationship is illustrated in Figure 12.1 for three values of b1:
for b1 � 1, the curve is a straight line, for b1 � 1, the curve grows slower than the
straight line and it is the contrary for b1  1.

How Are the Residuals Defined?
As usual, the residuals can be defined in different form, such as:

● Additive, if one writes

● Multiplicative, if one writes

● A ratio, if one writes

● Or any other.
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Figure 12.1 The shape of the multiplicative formula for three different values of b1.



The most common definition, when using a multiplicative formula, is to the second
one. This simplifies a lot the computations. Other definitions must be dealt with the
procedures dedicated to the non-linearizable formulae.

Therefore in this section, the residuals are defined as:

where the e�i having of course an average value of 1.

Linearization
In order to use the algorithms defined for the linear case, it is convenient to rede-
fined the variables and the residuals by using the logarithms:

The e∗
�i are precisely the ones which was studied in Chapter 10.

The Metric
Working with the e∗

i , y∗
i and ŷ∗

i (the asterisks reminding the reader that the values
are in fact logarithms of the true values) allows now to use the procedures already
established: the problem has been linearized. Using these procedures means that
we try to minimize:

These procedures computes the coefficients:

Returning to the True Values
The formula is now written as:

where “10” being replaced by e if natural logarithms were used.
Note that for the multiplicative formula b1 is not affected by the linearization

process.

ŷ xi
b

i
b

� 10 0 1
∗

b
x x y y

x x

b y b x

i i
i

i
i

1 2

0 1

�

� �

�

� �

( )( )

( )

∗ ∗ ∗ ∗

∗ ∗

∗ ∗ ∗

∑

∑
∗∗

( ) (log )e ei
i

i
i

� �
�∗∑ ∑2 2

ˆ log logy b b x b b xi i i
∗ ∗ ∗� � � �0 1 0 1

e e
y

y
y y y yi i

i

i
i i i i� �

� � � � � �∗ ∗ ∗log log
ˆ

log log ˆ ˆ

e
y

yi
i

i
�

�
ˆ

236 Finding the Dynamic Center of a Multi-Variables Sample



The General Multiplicative Formula

This procedure can easily be extended to any number of variables, the dynamic
center becoming:

The results can easily be extrapolated from the bilinear relationship with several
causal variables: taking the log of both sides gives:

which is now a linear relationship.

Using Qualitative Parameters

Qualitative causal variables can – and should – very well be used with the multi-
plicative formula. It was seen that the use of qualitative parameters inside an addi-
tive formula consisted in adding columns with 0 or 1 in the data matrix ||�x||.

The same idea can be used here, these columns being of course added once the
change of variables is done, which means that the new matrix about the data is now
defined as ||�x∗||. The result of the computation will provide values of the constant
b0 which depends on the qualitative variable.

Using the Level of Confidence

The level of confidence is not a causal variable. It can therefore used here for solv-
ing the equations giving the coefficients.

Here again the “weight” matrix ||W|| must be introduced when ||�x∗|| have been
computed.

12.1.2 The “Exponential” Formula

This formula can help solve some problems: compared to the multiplicative one it
grows less rapidly for low values of the causal variable, and then faster.

Of course it grows very fast when this variable becomes large and should there-
fore be used with caution.

The formula giving the dynamic center is given, in the case of one causal variable
only, by:

of which graph is illustrated in Figure 12.2 for two values of b1, keeping constant
b0 � 1.

This formula can easily be linearized by taking the logarithms:
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and using the same kind of change of variables, and the multiplicative error:

Using the same metric as in the previous section, one gets the formula for the
dynamic center:

This formula can easily be extended to any number of causal variables and to the
use of qualitative variables, and of the level of confidence.

12.1.3 Mono-Variable: Other Relationships

Linearizable relationships are relationships which, by a change of the variable(s),
can be transformed to linear relationships. There is obviously an infinite set of lin-
earizable relationships, even with one parameter only; the presentation is here lim-
ited to one causal variable, but the idea can be extended to several such variables.

Choosing the type of relationship can be done in three ways:

1. There might be theoretical reasons – if the relationship between the dependent
variable and the cost driver is well understood – for selecting a particular 
relationship.

2. Looking at the distribution of the data points on a graph may suggest such or
such type of relationship. It has already been said that the eye is a powerful inves-
tigator for discovering “hidden” links in a set of not too much scattered data.

3. Several different relationships may be tested, one after the other, until the “best
one” can be selected. This procedure is generally used when the data are too
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Figure 12.2 The shape of the exponential formula for two different values of b1.



much scattered for suggesting a particular relationship. This solution is rather
artificial and should be avoided, especially if the relationship will be used for
cost-estimating new products of which the cost driver value is outside the range
of the present parameter: in the presence of scattered data, it is often quite pos-
sible to improve the “quality” (measured by the R2 for instance) of the relation-
ship, but – unless the shape of the relationship can be explained – there is
absolutely no guarantee that the relationship remains true outside the range of
the data points.

Using One Quantitative Causal Variable

For the cost analyst who has no preconceived idea about the relationship (point 1),
the second solution is generally used. For this reason, a few useful relationships are
displayed below, with their behavior (in order to help the cost analyst for selecting
an appropriate one) and the change of variable which can be used for linearization.
The new variables will be called y∗ for the dependent variable and x∗ for the causal
variable (Figure 12.3).
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When dealing with cost, decreasing curves with x may be useful when working
with the specific cost, whereas increasing curves with x are useful when working
with the cost, at least in a limited interval (Figures 12.4 and 12.5).



This formula can also be considered as a particular case of the more general 
formula:
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Figure 12.6 a � 1.2 and b � 0.1.

dealt with as a formula containing two causal variables x1 � x and x2 � x2. Both
new variables, although strictly correlated are not linearly correlated; therefore, the
formula is perfectly usable (Figures 12.6–12.8).

A lot of formulae are therefore possible and they cannot be here all studied in
detail: one could add power, division, etc. The reader will note that sometimes the
coefficients are also modified; for instance in the second example, the coefficients
which appear in the linearized formula are ln a and b.

Once the change of the variables is done, finding the values of the modified coef-
ficients is simple as it uses the results of Chapter 9.



Adding Qualitative Variables

Linearizable formulae are always solved by looking for a linearized formula, which
means are solved by linear algebra. Consequently the use of qualitative variables is
always possible and will be used for filling added columns once the variables trans-
formation has been made. Of course the final result may not be a simple change of
the intercept (and there may be no intercept anymore).

Let us take an example with the desired formula:

which is found by solving the linear formula y∗ � a � bx∗ where:

If we add quantitative variables, the result will be that two – to limit the example,
but it can be more than two – values of a, such as 1 and 2. The graph displaying this
formula for b � 1 is given in Figure 12.9.

It is clear that no intercept is involved; the curve can be called “parallel”, but not
in the Euclidian meaning.
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12.2 Strictly Non-Linear Cases

The algorithms for solving strictly non-linear cases are important in two domains:

● First of all for studying “pure” non-linear formulae, or formulae that cannot be
linearized.

● Second for studying linear (or non-linear) relationships when you decide to use
a metric which cannot be solved algebraically.An example is given by the metric:

First of all, several strictly non-linear formulae are presented. Then the way these
relationships can be computed is described. Eventually the use of another proce-
dure for solving nearly any type of relationship when a metric different from the
simple one (y � ŷ)2 is described.

12.2.1 Examples of Strictly Non-Linear Formulae

In this section we introduce the case of the formulae which cannot be linearized.
This introduction is limited to the use of one causal variable only (as such formu-
lae are the only ones which are practically used in the domain of cost): x is, as usual,
the causal variable, y being the dependent variable.

There is obviously an infinite set of non-linear relationships, even if we limit our-
selves to the use of one variable only. This section presents a few of them which are
sometimes used to describe the cost behavior or, more exactly, to represent the
dynamic center of a cost distribution ŷ .

Around this dynamic center, the distribution of the residuals can be, as usual,
studied.
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The “Correction-By-Constant” Relationship

This is the most frequently used strictly non-linear relationship. Its general shape
is given by:

where b1, b2 and b3 are the coefficients.An example of this relationship is illustrated
on Figure 12.10.

On this figure the relationship ŷ � 20 � 15x0.7 is displayed with a full line, the
dotted line representing the function 15x0.7.

When using such a formula, x has to be the product size, whatever the way it is
defined. It can be applied to any domain, because it describes properly the way, we,
as humans, work.

Such a formula is very interesting for describing the cost behavior for the fol-
lowing reasons:

● This formula is the sum of two terms which can easily be interpreted as:
– A constant term b1 giving the set-up cost; the preparation of the work to be

done (for instance tuning the machine, setting the raw material, etc.) is rela-
tively independent of the product size.

– The other term represents the machining cost. It obviously depends on the
product size.

● The upper side of the curve – the “multiplicative” formula – is very often used
for describing the cost behavior of products as soon as the size becomes large
enough, as it was seen at the beginning of this chapter.

● When the product size becomes large, the “fix” cost becomes negligible com-
pared to the “variable” cost. This explains why for large enough products, the
second term of the formula is then only used.

ŷ b b xb
� � �1 2

3
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Figure 12.10 Example of a formula including a “correction-by-constant”.



This formula describes then the cost behavior in a very large range of sizes; obvi-
ously it should grow up on the left part of the graph, when the size becomes very
small, but such products should be dealt with independently: there is no reason, at
this stage, to search for a relationship which could cover inside the same product
family product sizes from 1 �g to 100 ton!

The “Sigmoidal” Model

The sigmoidal model is quite often used by people studying the growth of vegeta-
bles. In our domain it can conveniently describe some phenomena such as the pro-
ductivity: it can for instance be a substitute to the learning curve introduced in
Chapter 8 of Volume 1.

Several models were described by different authors. One of the simplest is
known as the “logistic” model:

of which one example (b1 � 100, b2 � 1 and b3 � 0.5) is given on Figure 12.11.

ŷ
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Figure 12.11 Example of the sigmoidal curve.

This curve presents a stable maximum (b1) for large values of x. This maximum is
reached, from a start (for x � 0), more or less rapidly depending on the value of b3.

The Full Cost Production Model

Chapter 9 of Volume 1 introduced the modelization of the full production cost
depending on the manufacturing load for a given production capacity. The model
can conveniently be represented by the following relationship:

ŷ b xb b xb

� � �
�

1
2 3

4
e



This relationship requires four coefficients: this high number just reflects the com-
plexity of the curve we try to modelize:

● b1 corresponds to the true “fix” cost associated with no production at all (x � 0);
● b2 is used to describe the first part of the curve;
● the last term of the relationship takes into account the second part of the 

curve.

An example is given in Figure 12.12 with the following coefficients: b1 � 2, b2 � 0.4,
b3 � 0.001 and b4 � 1.47.
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Figure 12.12 The full production cost.

12.2.2 Computation of the Coefficients

The Theory

The theory is known as the Newton, or Newton–Raphson, method (see for instance
Ref. [32], p. 619). However, this method had to be improved (Ref. [47], p. 39) in order
to take into account the values corresponding to several inputs.

Let us call y
r ∈ ℜI�1 the set of the values of the dependent variable y1, y2, …, yi, …, yI

corresponding to the set of the causal variable x1, x2, …, xi, …, xI.
Let us now consider a purely non-linear formula for the dynamic center of the 

y-distribution; this formula can generally be defined as:

where b1, b2, …, bp, …, bP are the unknown coefficients of the formula; this set of
coefficients can also be written as a vector b

r
∈ ℜP�1. The values computed for the

different x using this formula can also be defined as a vector 
r
y ∈ ℜI�1.

ˆ ( , , )y f b b x� 1 2 …,



In order to find out the values of the coefficients, we will have to minimize some
function related to the “residuals” between the dynamic center of the cost distribu-
tion and the costs.

In this section we chose the additive residuals defined as:

but any other residual could of course be selected. The function to be minimized
for simplicity purposes will be the sum of the squares of the deviations:

Let us call � this sum. It can be conveniently written using the vector notation as:

How can we find out the values of the b1, b2, …, bp, …, bP? The idea is the follow-
ing one:

● Let us start from a set of initial values, selected as close as possible from the 
true values (graphs are extremely useful for estimating these values). Let us 
call b1

(1), b2
(1), … or b

r
(1) this set; this set cannot – except in rare circumstances 

(as the one illustrated in section “Finding initial values for the ‘correction-by-
constant’ formula” of this chapter) be found algebraically. The value of � corre-
sponding to this set is called �(1); it is the starting point.

● Now we add increments to these values, called �
r

(1) ∈ ℜP�1, carefully selected in
order to decrease �(1).

● The new values of the coefficients are called b
r

(2) � b
r

(1) � �
r

(1) and the new value
of the sum of the squares of the deviations �(2).

● Then we add another increments to the �
r

(2), etc., until we cannot decrease 
anymore �.

Finding the Increments �
r

(1)

How can the �
r

(1) be selected? Let us suppose they are small enough to use a linear
approximation of ŷ � f (b1, b2, …, x) around the set b

r
(1). This linear approximation

is given by the development in Taylor’s polynomial (Ref. [17], p. 609). For a partic-
ular value xi one can write:

We have, for the different values of x, I such relationships. We can use the “matrix
stenography” for representing all these relationships. If we create the matrix 
||J|| ∈ ℜI�P, called the Jacobian matrix, as (the set of b1, b2, … has not been written
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in the f parenthesis for the sake of clarity):

where the (∂ f/∂b1), (∂f /∂b2), … are the partial derivatives of the function f, we can
write:

where ||J(1)|| is the value of the Jacobien ||J|| for b
r

� b
r

(1).
The value of �(2) is then given by:

It is possible to analyze this expression:

from which the vector �
r
(1) can be found by writing:

This allows to get new values b1
(2), b2

(2), … with which the process will go on.
The major problem with this procedure is the ability to find “good” starting val-

ues b
r

(1) for the coefficients. Otherwise the procedure may diverge very quickly; this
comes from the fact that the Taylor’s series, based on a linear approximation of the
function, suppose that the increments are small: if it is not the case the series gives
a non-valid approximation which can lead to anything.

Finding Initial Values for the “Correction-By-Constant” Formula

The correction-by-constant formula is a formula which is especially interesting 
in the cost domain. It is always possible to find satisfactory initial values by 
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looking at the graph: this is a major advantage when working with one causal vari-
able only.

Another solution can be found by a simple computation. Such a solution was
proposed1 by Winklehaus and Michel. Their procedure uses four steps:

1. Using x∗ � ln x, a linear regression allows to find the coefficients �, � and � of
the following formula:

where the asterisk on ŷ∗ just reminds the reader that the regression works on the
log of x.

2. Now we try to get a different expression of this relationship by developing the
Taylor’s series of z � xb3 � exp(b3 � x∗) in the vicinity of:

This gives another development of ŷ∗. Equating both developments produces the
following equations:

of which ratio gives a starting value of b3:

3. From this value the procedure described in the previous section could be used.
In order to avoid – in this particular case – its instability, it is better to use a 
linear regression in order to find out the values b1

(1) and b2
(1) which, without

changing b3
(1), minimize the sum:

4. Now we can try by iterations, by slightly changing the value of b3, to reduce this
sum until no improvement is possible.
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1 See Ref. [7]. However, their article was full of typing mistakes. It had to be completely recomputed and
demonstrated.



A quick drawing using a log–log scale reveals that the correction-by-constant could
be used (Figure 12.13):

the problem being to find out values for b1, b2 and b3. A look at the graph suggests 
to start with b1 � 100, b2 � 110, b3 � 1, which gives �(1) � 1.272 � 106. The first
iteration gives b1 � 153.174, b2 � 147.525, b3 � 0.905 and �(2) � 3.696 � 105; the
second one b1 � 142.033, b2 � 157.966, b3 � 0.900 and �(3) � 313.901; the third
one b1 � 142.001, b2 � 158.000, b3 � 0.900 and �(3) � 4.869 � 10�5. The iterations
may stop here.

The procedure, of which convergence is very fast, eventually gives the following
relationship:

ˆ .y x� � �142 158 0 9

ˆ ( , , )y f b b b b b xb
� � � �1 2 3 1 2

3
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An Example
The data:

Name Cost Mass (kg)

A 161.89 0.1
B 300.00 1.0
C 1168.69 8.0
D 1949.75 15.0
E 3515.39 30.0
F 5484.32 50.0
G 7373.78 70.0
H 10 111.13 100.0

100.00

1000.00

10 000.00

0.1 1.0 10.0 100.0

Mass (kg)

C
os

t

Figure 12.13 The data.



12.2.3 Using Different Metrics

You have seen in the preceding chapter that different metrics can be used. It is obvi-
ous that the use of these metrics cannot be done algebraically. The only solution is
to “guess” an initial set of values for the coefficients and then proceed by iterations;
in the present situation, the conventional regression analysis (ordinary least
squares, OLS) can provide this initial set.

How can we proceed afterward? The Newton–Raphson method as described in
the previous section cannot be used because it is based on the minimization of:

which means that it uses the results of the linear algebra.
Minimizing the sum:

where ŷi is defined by a simple linear relationship: ŷi � a � bxi (so written in order
to simplify the notations) is strictly non-linear: another solution has to be found.

A Geometric Perspective

In the expression of S, all the yi and the xi are known (they are our data); therefore,
S is only a function of a and b, and we write S(a, b). Geometrically S(a, b) defines a
surface in the three-dimensional space,2 as illustrated on Figure 12.14. The values
of the initial set (a0, b0) defines a value S(a0, b0) from which we want to find the set
(a, b) which will minimize this function.

Starting from (a0, b0), the idea is then to find out the direction d
r

in which S(a, b)
decreases the more rapidly: this will be approximately the direction of (a, b). This
direction is characterized by two increments (�a, �b); in order to find the direction,
we will force these increments to satisfy the relationship:

which means that the point (a0 � �a, b0 � �b) will be on the circle of radius k
drawn around the point (a0, b0). The value of k must be chosen in order to go not
too far, if, by chance, we start in the vicinity of (a, b).

The point:
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2 If the expression giving ŷ includes more than two coefficients, this can be generalized to more 
dimensions.



will give a new value S(a1, b1) from which the procedure can restart until we get a
minimum value.

Algebraically

In the vicinity of (a0, b0) the value of S(a, b) can be given by the Taylor’s polynomial:

If the values (�a, �b) are small enough (this depends on the value of k) the first
order terms gives a sufficient approximation.

Writing

the problem is to compute (�a, �b) which maximizes (with the right sign!) the sum
A�a � B�b with the constraint �a2 � �b2 � k2. The solution of this problem is well
known and uses the Lagrange’s multiplier �. We define a function:
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Figure 12.14 A geometric perspective.



that has to be maximized. Notice that A, B and k are here constants. The solution is
therefore given by writing the three partial derivatives are null:

Eliminating �a and �b allows to compute �:

the sign having to be chosen in order to decrease S(a, b). Once � is known, �a and
�b are immediately given:

and the process can go on starting now from(a0 � �a, b0 � �b), gradually reducing
the value of k as soon as one gets closer from (a, b).

Practically

The computations are not very complex. However, finding A and B may seem to be a
formidable task! However it is not: we do not need an algebraic value of these terms,
but only their numerical values. S(a, b) is a function of all yi, xi, which are constant
values,and of (a,b).Returning to the definition of the derivative,we can get an excellent
approximation of A and B by giving small increments �a to a and �b to b and write:

The rest of the computations is very straightforward.

12.2.4 Using a Metric Including a Constraint

We already saw such a metric with the biweight in Chapter 8. We also mentioned in
the same chapter that some cost analysts sometimes imposed a constraint they
called “with zero bias”.

For instance the metric we saw in the previous section defined by:
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or minimum percentage error (MPE) can also be used with the constraint:

called “with zero bias”. This metric is then called minimum unbiased percentage
error (MUPE).

How can this constraint be taken into account?
As we saw it in the section dealing with the biweight, the general procedure is

also to work by iterations, but using a slightly different approach: the usual itera-
tion, at step n, tries to minimize, for the example given, the sum:

In the presence of a constraint we try to minimize the sum:

where the previous iteration is used at the denominator.3

As mentioned by Book and Young, “the percentage error of a MUPE cost-
estimating relationship will naturally be larger (than with the MPE), but its bias
will be less, exactly 0 in the case of a linear functional form and apparently asymp-
totically 0 in other cases”.

As we mentioned it upwards in this volume, this is an interesting academic exer-
cise but it is not going to improve the relationship we are looking for. Once again we
recommend to concentrate instead on the data, their normalizations, the solutions
for potential problems, etc.
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mating relationships”. DoD Cost Analysis Symposium. Leesburg 1994.



Part IV
Studying the Residuals Is as Important
as Finding the Formula



Part Contents

Chapter 13 Studying the Additive Residuals
Additive residuals are the most frequently used residuals. Their investigation is therefore
made in details.

Chapter 14 The Other Residuals
Among the other residuals, multiplicative ones are sometimes used, generally in conjunction
with a multiplicative formula. An interesting property of these residuals, at least in the
domain of cost, is presented in this chapter.
This chapter deals with the residuals in the classical way.

However, the cost is a very special subject and “laws” found for other subjects do not nec-
essarily apply to cost. It must not be forgotten for instance that the linear regression was cre-
ated by Gauss for finding the best parameters of the ellipsis that a planet should follow when
several astronomical observations were made; these observations were subjected to “errors”
(which was a good term) and Gauss was looking for the ellipsis which would go as well as
possible through the observations. The hypotheses on which he based his computations
were realistic for solving this problem.

Can we build a “theory” which would be more realistic for the cost domain? The modern
approach, based on the Bootstrap – or the Jackknife when the number of available data
points is large enough – need no hypothesis to be used. Consequently we are not forced at 
all to look for a normal distribution of the residuals (or their log) as it will be done in this
chapter.

Practically considering that the distribution of the deviations from the dynamic center
should be symmetrical is not realistic in our domain for the following reason: if it is always
possible to add costs (and therefore an infinite right side of the distribution can be kept), the
infinite left side of this distribution is not realistic at all: in order to make something there is
certainly an absolute minimum cost under which it is impossible to go. Of course this mini-
mum cost, as the 0 K, cannot be achieved: but it is an “absolute” barrier.

We therefore look for a non-symmetrical distribution with one infinite side on the right
and a minimum value on the left. There are several candidates among the “available” distri-
butions, such as the log normal one, or the �2.

This is still a domain of research, the problem being that the data are not too numerous.
One interesting consequence of this approach is that, once the distribution has been found,
the “absolute” minimum cost for doing something would be computable. And we strongly
believe that there is such a minimum.

The Bootstrap – and sometimes the Jackknife – should be the normal way to deal with the
residuals in the domain of cost. They will be investigated in some details in Chapter 15.

The Bootstrap can also easily be used for using other metrics (for which the Gauss’ hypo-
theses are certainly not valid) for instance the median, which remains, as said upwards, one
of the most interesting metric when no other – meaning beyond the sample – information 
is available.

But let us start with the conventional approach, which must be known by the cost analyst.

Definition

The residuals are “What is left when the values of the dynamic center are removed from each
cost value?” Residuals should not be called “errors”. The point of view the cost analyst should
adopt when studying the residuals is that residuals are caused, in this order, by:

1. A lack of homogeneity in the products aggregated in the product family. As previously
indicated, this lack of homogeneity should be compensated by the addition of parameters,



but we recognize it is not always possible theoretically (when the number of data points is
limited)1 or practically (when the information is missing). Experience nevertheless shows
that many cost analysts use a very limited number of parameters – most often one (it has
to be the size) – and they are strongly advised to improve the definition of their products
instead of trying to improve the quality of the model by beautiful but counterproductive
mathematical procedures.

2. A lack of knowledge about the production environment. Many things may have happened
during the production which can make the costs more or less erratic: change in materials,
change in material procurement cost, change in the manufacturing process, modifications,
etc.All these things are very difficult to grasp; at least if the cost analyst works with internal
production costs, he/she should try to know something about them.

3. A lack of proper normalization: refer to Part II of Volume 1 for a detailed investigation of the
normalization. The normalization process should also check if the cost figures include the
same things (part of the development cost, tooling, transport,packing,guarantee,etc. ).This
is especially true if price figures are used instead of cost figures, but it must be recognized
that this situation is difficult to remedy to, as the pricing policy of the companies is difficult
to perceive. In such a case the cost analyst should make a preliminary correction to the costs
from what he/she knows about the market, or use the quantitative information called the
“confidence level” he/she may have in the figures.

4. And, eventually, the measurement process or the human behavior which adds random fluc-
tuations to the cost.

All these considerations are well known to most cost analysts and it must be recognized that
it is often difficult to improve the situation. As previously mentioned, the quality of the
model could be improved – which does not necessarily mean by reduction of the residuals –
by finding the most realistic dynamic center through the data.

There are several ways to define the residuals; these ways are theoretically independent on
the metric which was used to build the formula, even if the definition of the residuals is gen-
erally associated with this metric:

● A frequent definition of the residuals is the “additive” form:

This form is generally used with the metric defined by the difference, as its purpose is to
minimize the sum whatever the value of �. It is called additive because the
observed cost of product is given by:

● Another definition is defined as “multiplicative” by the ratio:

which is very often used with the “multiplicative formula” with:
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● still another definition, a “mixed” form or percentage form, is given by:

with the cost given as:

● and a log form could also be used:

with

In these formulae
– yi represents the value of the dependent variable associated with product Ai of the 

sample,
– ŷi represents the value of the dynamic center of the cost distribution in the sample, cor-

responding to product Ai.
The formula giving ŷi is irrelevant here: we are just studying the residuals. The purpose of
the analysis is nevertheless to make a judgment, based on these residuals, on the interest of
using the dynamic center for cost-estimating purposes.

The distribution of the residuals in the sample is represented by the letter �. Studying this
distribution � is as important as the search we made for finding an interesting dynamic cen-
ter of the cost. The reader must never forget that the distribution of the cost in the sample is
replaced by:

● the dynamic center ŷ on one hand,
● the distribution � on the other hand.

Up to now the search we made was mainly an attempt to reduce the standard deviation of
this distribution �, not taking too much in consideration the other characteristics of it. In
this chapter we will study only this distribution in order to improve, if it is possible, the qual-
ity of our future cost-estimating model.

A Recommendation

Whatever the metric, it is recommended, once the computation of the formula is made, to
recompute the residuals as additive (or any other form, the question being to get always the
residuals under the same form). Working this way will allow you to make comparisons
between the different solutions and use many tools developed for this kind of residuals.
Otherwise you cannot really compare a multiplicative formula (which is generally associated
with multiplicative residuals) with, for instance, an additive formula (for which the additive
residuals are nearly always used).

y y ei i i� �ˆ exp •

e
y

yi
i

i
• � log

ˆ

y y ei i i� � �ˆ ( )%1

e
y

y

y y

yi
i

i

i i

i
% � � �

�

ˆ

ˆ

ˆ
1

258 Studying the Residuals Is as Important as Finding the Formula



Example

We will use in this chapter, the same example as the one which was introduced in Chapter 2.
The values are repeated here for the sake of convenience:

Cost V1 V2 V3 V4

V1: represents the mass
V2: the number of connections
V3: the number of components
V4: the number of boards

1278
724
809
920
772
877

1064
865
961
856
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13 Studying the Additive Residuals

Summary

This chapter is an introduction to the analysis of the residuals, the residuals being
what is left over, in the sample, when the value of the dynamic center is removed
from all data points.

This analysis is important because:

1. the idea for selecting a formula type, for adding parameters, etc. was based on a
tentative for reducing these residuals;

2. studying the residuals may reveal problems about the data;
3. studying the residuals may suggest new formula, to look for other cost drivers, in

order to improve the formula;
4. all we can do to estimate the quality of a specific cost model is based on the 

values of the residuals;
5. the confidence we may have about an estimate is highly correlated to these 

values.

Studying the residuals is therefore an important step in building a specific model.
This chapter, after redefining what we call “residuals”, investigates first the clas-

sical approach with the most important – meaning those you are probably to use
often – residuals: the additive ones. It shows that the simple display of these resid-
uals is important as it can reveal interesting features, such as new (undetected up to
now) outliers, a bad choice for the formula, or a trend in their values.

It then mentions the question of homoscedasticity and the sign test, to be used
in particular circumstances.

The study of the residuals in the bilinear case, so often presented in most manu-
als, is developed. We mention the autocorrelation problem, even if it is rather rare
in the cost domain, except if a wrong formula type was selected.

An interesting comment, mentioned by Mosteller and Tukey [43], allows, when a
trend – even modest – in the residuals is apparent, to considerably improve the pre-
dictive capacity of the formula.

Multiplicative residuals are afterwards studied.
Eventually the modern approach based on the Bootstrap – and sometimes on the

Jackknife – is briefly presented. It allows for using a more realistic, in the cost
domain, distribution of the residuals and for computing the absolute minimum
cost for doing something.



It also allows for using different metrics, among which the median is especially
interesting.

13.1 Introduction

This chapter, which is as important as the chapters dedicated to the search of the
dynamic center, deals with the additive residuals. These residuals are important,
not so much due to their natural interest, but because they are mainly used by cost
analysts (when they study the residuals).

Additive residuals are not at all specific to additive formulae, even if they are
generally used in such circumstances. They can be, and should be, applied to any
relationship.

Definition

Additive residuals are what is left, whatever the nature of the formula which was
used for building the dynamic center, from the values yi of the dependent variable
(the cost) when the value ŷi of the center (the dynamic center when causal variables
are involved, whatever the way it is computed) is removed from them:

It is common practice to consider the set of the residuals as a vector
r
e� defined by

its components, these components being the values for each product belonging to
the sample.

The values of the example considered in the previous part (Chapter 10) with 
an additive formula using the four parameters give the following vector for the
residuals:

r
e

�
�

�
�
�
�
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72 522
67 422
17 514
24 522
88 48

.
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13.2 Studying the Additive Residuals in General

13.2.1 The Distribution of the e�i

Residuals are values which, in principle, do not depend on any parameter: they are
supposed to be random.

The basic study of these residuals can therefore be dealt with according to the
data analysis described in Chapter 4 for “one variable only”, the variable being of
course the value of the residuals:

● Looking for outliers: if the search for outliers has been studied for the data sam-
ple, there should not be any outlier in the residuals. But it is always a good idea
to check it.

● Visualization of the distribution: this visualization is very important for discover-
ing several potential problems.When several causal variables are involved it is rec-
ommended to visualize, on a two dimensions graph, the behavior of the residuals
with each quantitative variable, one at its turn. The things you must look at are:
– Is there any trend?
– Are there abnormal values?
– Do the residuals appear correlated?

Basic Values

There are three basic values for quickly getting an idea of the residuals importance:

1. The arithmetic mean. If the ordinary least squares (OLS) method is used, then
this mean is exactly equal to 0. Otherwise it can be slightly different from 0.

2. The average of the absolute values of relative residuals (multiplied by 100 if you
prefer to work with percentages), defined either as “locally” by:

or “globally” (this is preferred by some cost analysts) by:

of which results are about the same, except in rare circumstances: for our exam-
ple, the values are 4.8% and 4.6%. The main interest of this value is that it is so
easy to understand, even if it is not a generally considered statistical property:
knowing that your data points are, on the average, at 5% of the dynamic center is
easier to interpret than many statistical tests! The second reason for computing
it is that, in the domain of cost, precisions are always given in percentages, not in
absolute values: this value is therefore easy to compare with other information.

3. The spread of the residuals around their average value, spread classically given by
their standard deviation. For the example, this standard deviation equals 52.25.
The reader will note that the ratio of this standard deviation to the average cost
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equals 5.76% has the same order of magnitude that the previous ratios: both
convey the same idea.

Visual Examination of the Residuals

This is the first thing to examine: residuals can be displayed on graphs, the first
concern being the choice of the variable to be used for the abscissas.

This choice is based on the response to the question: What are we looking for? As
a matter of fact we are looking for several things:

● Is there any trend with the cost value? The utility of this search comes from the
fact that one of the most common assumption about the residuals is what is
called the homoscedasticity – from the Greek ó�o�, equal, and ����������, to
spread: it means that the spread of the residuals is the same whatever the cost
value (see Figure 13.1).
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Figure 13.1 Residuals according to the cost values.
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Figure 13.2 Residuals according to the relative cost values.

In Figure 13.1 the dynamic center was computed as a function of two vari-
ables only: the number of components and the number of connections. On this
graph the trend line of the residuals was computed (it is represented by the dotted
line): it shows a slight lack of homoscedasticity, as the values of the residuals
increase with the cost values. This is not due to higher cost values because it
remains if the residuals are expressed in relative values (Figure 13.2).

● Is there a trend with any variable used for establishing the formula giving the
dynamic center? In the presence of several variables, each variable should be
successively tested. On the following figure the number of components is used
for abscissas: no trend does appear (the trend line, the dotted line, is exactly on
the x-axis) (Figure 13.3).



● Are the residuals autocorrelated? Residuals are said to be autocorrelated if the
e�i value depends on the e�i�k value whatever the value of k.The discussion about
autocorrelation is made in Section 13.3.5. There are mathematical procedures
for determining the level of autocorrelation, but, for the time being, the eye can
reveal, on any graph, a problem of this type.

In the previous figure, no autocorrelation clearly appears. But let us take
another set of data and use a linear formula for the dynamic center of the distri-
bution of the sample values. The plot of the residual values is given in Figure 13.4.
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Figure 13.3 Residuals according to the number of components.
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Figure 13.4 Another set of residuals based on a linear formula.
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Figure 13.5 The same set of residuals based on a corrected-by-constant formula.

In this figure,one can see that the residuals are correlated: their shape is given by
some inverted parabola. What is the origin of this correlation? In order to under-
stand it, let us use, instead of a linear formula, the formula called “correction-
by-constant”, always defining the residuals as additive (Figure 13.5).



Two things can be observed on the second curve: first of all the values of
the residuals are smaller (although the R2 is about the same: it goes from 
0.993 to 0.999); second the correlation between the residuals seems to have
vanished.

In conclusion, and from our experience, when dealing with cost, the autocor-
relation generally comes from a wrong choice of the formula. This is a good
motivation to look at these graphs because not so may tests disclose this infor-
mation about the choice of the formula type: the R2 is about the same, the “t”
values for the second formula are worse than those for the first formula. The
average of the absolute values is an indicator, as it goes down from 8.9% to 2.1%,
but it does not reveal the real cause of the improvement.

Another cause of such correlated residuals may come from the fact that an
important variable is missing. If the cost analyst is convinced that the linear
relationship is the right one, he/she should re-study the data for discovering,
what is the variable which is missing.

● Are some residuals “far away” from the other ones? Such residuals may reveal
outliers which should have been discovered earlier (see Chapter 6 for the search
of outliers). If such data points were given a low confidence level, or if the
biweight algorithm was used, these points did not cause any damage to the for-
mula giving the dynamic center. Otherwise they might have.

Statistical Analysis of the Distribution !

The basic results are, are always, given by:

● the center,
● the standard deviation,
● the skewness,
● the kurtosis.

These values will be used in the next chapter in a test about the “normality” of the
deviations in the whole population.

The Center of This Distribution
The center can be computed, as we saw it in Chapter 8 in different ways, but we con-
centrate here on the arithmetic mean.

As the dynamic center can also be computed in different ways, this mean is not
necessarily equal to 0 (this is the case when the least squares, also called the linear
regression, is used). The mean of the residuals distribution takes, generally speak-
ing, a small value, sometimes called the “bias” although this word is not correct
here.

The Standard Deviation Around the Center
For the present example, the standard deviation of the residuals is 52.25 which is
small but not negligible as it amounts to about 5% of the cost (do not forget that the
standard deviation of a distribution is not the full spread of its values: here this full
spread is 173.5).
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The Skewness
The level of asymmetry is equal to 0.652, which is reasonable.

The Kurtosis
Its level is equal to 2.401.

The distribution of the residuals is not, from these observations, too far away from a
normal distribution.This does not prove the homoscedasticity of these residuals,as the
parameters are global information, whereas homoscedasticity is a local observation.

13.2.2 Testing the Homoscedasticity

Many authors1 have studied this property and the influence of a lack of it on the
other tests.

The tests are generally built in creating two groups of data and comparing the
sum of the squares of their residuals (this is a way to get a “local” information):
Goldfeld and Quandt make two simple regressions on the first I/2 data points and
the last I/2 data points: then the ratio S2/S1 of the squares of their deviations has an
F-distribution and can therefore be used as a test.

However, it is very difficult to estimate the damages caused by heteroscedastic
data, and in the cost domain, the number of data is generally too small to make a
realistic test on this subject.

What can easily be done is a simple test in order to see if the residuals are about
equally distributed. This test divides the range of costs in four intervals and looks
at the residuals (their mean and the average of their absolute value):

Interval Average of Average of their 
the residuals absolute value

600–775 �31.1 31.1
775–950 �35.3 69.0
950–1125 �29.9 30.0
1125–1300 �30.3 33.4

Nothing looks abnormal in these values: the average of the absolute values is rather
regular. There is a “peak” in the second interval, which seems mainly due to the fact
that this interval contains more data points than any other interval.

It is also interesting to look at the relative values of the residuals, as we did in
Figure 13.2. On this figure it seems that these relative values decrease from going
from left to right; it is not generally the case when dealing with cost (one generally
observes that the relative values remains about constant) and it seems to be mainly
due to data points F and J, which, by the way, were found (with data point A) as
potential outliers by the algorithms based on the variances–covariances matrix.

13.2.3 The Sign Test

We expect the residuals to be distributed randomly around their center.
Consequently we should have about as many positive as we have negative values; it
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should be detrimental to have, for instance, a few large positive values and a lot of
small negative values.

The sign test is there to check. This information completes the one given by the
test of normality and may help explain some discrepancies from normality.

In order to use the sign test, the number of positive values, noted I�, and the
number of negative values, noted I�, are counted, the total being of course equal to
the number I of products. As we expect to have as many positive and negative val-
ues (the probability P to get a positive value is therefore P � 0.5), the number of
positive values has a binomial distribution with P � 0.5.

The binomial distribution is defined the following way (the general definition is
here simplified because the probabilities to get a positive and a negative value are
equal to 0.5): the probability to get exactly I� from a set of I residuals is given by:

where

with I! � 1 � 2 � 3 � … � I.
For instance, if I � 13, the probabilities to find different values of I� are given by

Figure 13.6.
As expected the highest probability is given for I� equal to 6 or 7, but the proba-

bility distribution is rather flat. With the data of our example, we get four positive
values and nine negative values; the probability to get such a result, assuming that
the signs are randomly distributed is 0.087. This is not bad and this value is consis-
tent with a random distribution of the signs (this type of conclusion is studied in
Part V).
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13.3 Studying the Residuals in the Bilinear Case

As the bilinear formula is the most used by cost analysts, studying these residuals
has to be developed more in details.

13.3.1 Computing the Residuals in the Bilinear Case

The additive residuals for the linear formula based on the OLS or “linear regres-
sion”, are computed as:

where

The “HAT” matrix is defined in Chapter 6 as:

It is a square, symmetrical, �I�I matrix entirely defined by the causal variables only
(I is the number of products in the sample). Its element are called hrow,column.

This matrix related to the example is computed and displayed in Chapter 6.
The important thing to remember at this stage is that the sum of its diagonal ele-

ments is equal to the number of variables I � 1 when the intercept is not forced to
0. From this expression, it is clear that, when there is only one causal variable,

: the sum of diagonal elements of this matrix is equal to 2.

13.3.2 Statistical Analysis of the Distribution C

The Center of This Distribution

In the bilinear case, the arithmetic mean of the residuals is equal to 0. This comes
from the fact that using the standard regression analysis, as we wrote it in Chapter 9:

The Variance of This Distribution

It can be noted that the variance of the residuals depends only, whatever the num-
ber of variables, on the variance of the cost and the correlation between the cost
and the causal variables. This is easily demonstrated ([50], p. 366):
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with

As a rule of thumb, it can be said that the variance of the residuals is equal to the
variance of the yi, reduced by the difference between the square of the correlation
coefficient and 1. This is an interesting result to remember (and it is quite logic):
the closer the correlation coefficient is to 1, the less the residuals are scattered.

It is an interesting relationship because it immediately reveals, without effec-
tively computing the formula, what can be expected once the distribution of the yi
and the r2 have been computed. Both computations are required anyway when
analysing the data. It also shows that, if several causal variables are available and if
a formula with just one variable is considered, the choice of the variable to be used
depends only on its r2.

13.3.3 Other Measures Related to the Residuals

Some authors, instead of the variance for indicating the dispersion of the residuals,
prefer to use other measures.

The “standard error2” is defined as:

where dof stands for “degrees of freedom”, equal to the number of data points I less
the number of coefficients in the formula, including the intercept. When the stan-
dard linear regression is used, as eu � 0, this SE is closely related to the variance of
the residuals; more precisely it is exactly how is estimated the standard deviation S
for the population. This “standard error” is then an estimate of the standard devia-
tion of what we call the deviations3. This will be explained in the next part.

The “standard percent error” is defined as:

where the percentage residuals replace the residuals.

13.3.4 Normalization of the Residuals

Sometimes it is useful to compare the distribution of the e�i for two different prod-
uct families. In order to make this comparison easier, it is convenient to normalize
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3 Deviation is the term used for the population, residual being reserved for the sample.



their e�i. This normalization consists in dividing each residual by its standard
error: it therefore requires to compute all the standard errors.

It has been shown ([56], p. 195) that given the Gauss’ hypotheses (these hypothe-
ses will be discussed in Chapter 15), the variances–covariances matrix of the resid-
uals is given by the matrix:

where

● S2 is the variance of the deviations for the whole population (this characteristic
will be introduced in Chapter 15),

● ||1|| a diagonal matrix containing the value 1 in all its main diagonal,
● ||hat|| the “HAT” matrix.

The variances–covariances matrix contains, as usual, in its main diagonal the vari-
ances hi,i of the e�i, all other non-diagonal elements quantifying the covariances
between the e�i and the e�k.

As S2 is unknown at the time the data analysis is performed, an estimate of its
value is needed. This will be discussed in the next part. For the time being we use:

where I is the number of products and J the number of causal variables.
This normalization process replaces each e�i by e∗

�i defined by:

Example

As an example, Figure 13.7 gives the normalized residuals computed for the exam-
ple, according to the cost values: the graph must be compared to Figure 13.1.

The shape of the distribution is about the same, but the range is completely 
different.

The Use of the Normalized Residuals

When I is large, the normalized residuals should remain between �2 and �2.
The purpose of the normalization is not to “improve”the residuals, but only to be

able to compare them, if different computations are carried out on the same prod-
uct family, for instance. The normalized residuals are very convenient for compar-
ing data because they have equal variances: a high value for a data point suggests
that this data point is certainly an outlier (which does not mean that all outliers
have necessarily a large normalized residual).
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13.3.5 The Autocorrelation

The autocorrelation problem has only been studied for the bilinear case. It should
nevertheless be studied for all the formulae.

All the values encountered so far (the yi, e�i, …) but not the xi, are defined as real-
izations of random variables. So are the residuals. Consequently each one has its
own distribution and residuals can be correlated. Correlation between residuals is a
natural phenomenon: we saw in the section “The variance of this distribution” in
Section 13.3.2 that the variances–covariances matrix of the residuals was given by:

The non-diagonal terms refer to the covariances between the residuals. The ques-
tion is: Are these correlations not too high? Correlations between residuals are
generally called “autocorrelation”.

Autocorrelation was studied by several econometrists: these persons often study
the change of data (for instance the consumption or the savings) according to time
and correlation between the residuals can be expected. However, it is rarely a seri-
ous problem in cost analysis, especially for cost analysts who have to deal with costs
or prices coming from various sources; however, the concept must be known to the
cost analyst as it may happen in special circumstances. Therefore we will limit the
discussion here to some basic points.

Autocorrelation between the residuals means that the residuals observed for dif-
ferent products are not independent: the value of e�i depend on e�k. Auto correla-
tion is said to be the first order if k � i � 1, whatever may be i.

The general consequences of the autocorrelation are:
● It increases the variance of the coefficients. However, in the presence of auto-

correlation, these variances are underestimated by the usual formulae of the
standard regression analysis, which means we do not know exactly where we
are anymore (do not trust too much these formulae!).

var || || || ||2( )e S hati�
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● And this, of course, produces larger imprecision in the cost estimates that can
be done using the formula.

Testing for Autocorrelation

As the off-diagonal elements of the variances–covariances matrix cannot be
expected to be 0 (as example shows it), the ei� are “naturally” correlated: the corre-
lation between e�i and e�k is given by:

It is interesting to note that the correlation coefficients depends mainly on the ||�x||
matrix, the cost effect appearing only through the term S as a multiplication factor:
the correlation depend on the relative position of the data parameters.

Several authors have studied the question, limiting their investigation to the
first-order autocorrelation, which they call “serial correlation”. The best-known
tests are:

● A test based on the sign test: it is clear that if the sign of the residuals is negative
for low values of the residuals according to one parameter and positive for large
values, a strong correlation does exist. Consequently the number of sign
changes is the important point to consider.4

● The test elaborated by Durbin and Watson. It is based on hypothesis testing, the
H0 hypothesis being that the correlation is 0. In order to test this hypothesis, the
following value is computed:

Tables for using this value for these tests were published by the authors; they appear
in most books of statistics (For instance Draper and Smith [20], p. 164).

Practically the best way for a first approach of checking the possible autocorre-
lations is the graphs. This is why it is important to be able to display the distribu-
tion of the residuals according to all the parameters, as it is indicated upwards.

Assessing the Damages

J. Johnston ([34], p. 247), studying the first-order autocorrelation (writing that
e�i�1 � � � e�i � � where � is the correlation coefficient), established that the
variance of the coefficients should be multiplied by:
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4 See Draper and Smith [20], p. 158 for a detailed explanation, plus a table based on this number.



which produces a correction of 4% for I � 20 and � � 0.5, which is a quite high cor-
relation. The consequence is that, in most situations, the cost analysts should not
worry too much about the phenomenon.

Correction

Draper and Smith suggest ([34], p. 156) to use the “weight matrix”defined in Chapter
10, the question being of course to establish this matrix: they give some hints for
doing so.

As this problem of autocorrelation is marginal in the vast majority of the prob-
lems of cost estimating, we will not discuss this point any further.

13.3.6 Analysis of Variance

The standard analysis of variance (ANOVA) has a limited interest because it is valid
only in the bilinear case and does not reveal many things about the formula. It
should nevertheless be known to the cost analyst.

This analysis starts with a quantity proportional to the variance of the data; this
quantity is generally called in the literature as “sum of squares” or SS. The starting
point is:

If one considers that the average value y
u

does not convey any information (if all yi
are equal to y

u
we cannot progress in the analysis of our data and one could say that

our data does not convey any useful information), then SS0 can be called5 the level
of “usable information” contained in the sample (it has I � 1 degrees of free-
dom) whereas can be called the level of “available information”.

It can be demonstrated that, only in the bilinear case solved by the conventional
regression analysis:

where SS2 can be considered as the information “captured” in the formula, whereas
SS1 is the information remaining in the residuals, information which is lost when the
sample values are replaced by the formula. The fact that some information is lost
advocates the fact of considering that the formula as such is NOT the model and that
the true model is the formula plus the distribution of the residuals around it.
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5 We use here the word “information” in a very general meaning. It has nothing to do with the informa-
tion as defined by Shannon and is used just to make the ANOVA easy to understand.



13.4 Improving the Forecasting Capabilities by Studying the Residuals

Is there anything we can do for improving the forecasting capabilities of our for-
mula by studying the residuals? One can think about using them in the following
circumstances: suppose you believe that two causal variables should be used for
“explaining” the behavior of the cost inside a product family. However, you have a
limited number of data points and consider that using these two variables immedi-
ately will not give you a reliable information about the quality of the model. What
can be done is to start with one variable only and then to try “explain” the residuals
with the other variable. This is very close to what is called in Chapter 6 the step-by-
step analysis; it will be easy to use if the variables are not correlated.

Mosteller and Tukey made an interesting and different approach in Ref. [43].
Their idea is first to find out if there is any trend in the residuals, second to use this
trend to improve the relationship. It will be introduced on our example.

13.4.1 Preparing the Data

The question is to find out some trend somewhere. As the residuals are rather
scattered, Mosteller and Tukey use a smoothing process in order to discover some
possible interesting phenomena.

First of all they decide to use the estimates as the “causal variable” (they explain
why using the observed values can be misleading).

Second they smooth the residuals: the smoothing process consists in several steps:

● Data are sorted according to the values of the causal variable.
● Each residual value is compared with the preceding and the following values; its

value is changed by the median of the three values. For instance, referring to
Figure 13.8, the second residual (�18.88) is replaced by the median of the set
{2.77, �18.88, 115.33) which is 2.77.

● This process is continued until there is no change (experience shows that no
more than two smoothing actions are necessary).

Figure 13.8 Computing “new estimates”.

Name Estimates Residuals

1st 2nd

M
L
F
J
B
E
C
H
D
I
G
A
K

645.23
735.88
761.67
764.70
790.39
790.39
876.77
884.58
936.16

1017.62
1091.95
1220.46
1269.37

2.77
�18.88
115.33

91.30
�66.39
�18.39
�67.77
�19.58
�16.16
�56.62
�27.95

57.54
23.63

2.775
2.775

91.302
91.302

�18.393
�66.393
�18.393
�19.580
�19.580
�27.947
�27.947

23.628
23.628

2.775
2.775

91.302
91.302

�18.393
�18.393
�19.580
�19.580
�19.580
�27.947
�27.947

23.628
23.628

648.00
738.65
852.97
856.00
772.00
772.00
857.19
865.00
916.58
989.67

1064.00
1244.09
1293.00

Smoothing process New estimates
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Third “new estimates” are computed by adding to the estimates the “smoothed
residuals”.

Let us illustrate on our example, using only two variables: the number of con-
nections and the number of components. Figure in Part IV introduction gives the
result of the computations.

13.4.2 Finding a Trend

The easiest way to find a trend between the new estimates and the first estimates is
now to display the values on a graph (Figure 13.9).

The graph shows that a slight trend does occur: the shape of the data shows an
upwards curvature, except for data points F and J which appear as outliers. It is
therefore logic to find out the formula of this trend. Mosteller and Tukey use an
exponential formula (this choice appears logic when the graph is considered), of
which result is here, after eliminating data points F and J:

New estimate � 327.11697 � 1.00109first estimate

276 Studying the Residuals Is as Important as Finding the Formula

1300

1200

1100

1000

900

800

700

600
600 700 800 900 1000 1100 1200 1300

A

K

G

I

D

H

C

J
F

E

L

M

Figure 13.9 Plotting “new estimates” against first estimates.



The graph of this function appears in Figure 13.10 on a log–log scale.
Does the process really help? Figure 13.11 presents the cost figures as they appear

in the database, the first estimates as they were computed by the regression analy-
sis and the residuals as they appear after the correction: the average absolute value
in the first case is 44.8, which becomes 23.7. It shows that the procedure really helps,
as this absolute value is about divided by 2! Note that even the residuals for F and J
have been considerably improved, although they were not considered in the process.
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Figure 13.10 New estimates as a function of first estimates.

Name Cost First estimates First residuals Final estimates

M
L
F
J
B
E
C
H
D
I
G
A
K

648
717
877
856
724
772
809
865
920
961

1064
1278
1293

645.2
735.9
761.7
764.7
790.4
790.4
876.8
884.6
936.2

1017.6
1091.9
1220.5
1269.4

2.8
�18.9
115.3
91.3

�66.4
�18.4
�67.8
�19.6
�16.2
�56.6
�27.9

57.5
23.6

662.7
731.4
828.4
831.2
758.5
758.5
832.3
839.4
887.9
961.5

1042.6
1268.6
1338.0

�14.7
�14.4

48.6
24.8

�34.5
13.5

�23.3
25.6
32.1

�0.5
21.4
9.4

�45.0

Final residuals

Figure 13.11 Does the procedure really help?



The price to pay is, as it was guessed, that the average value of the residuals was
0 in the first case and 3.3 in the second case: this is a very low price indeed.

This example shows that the formula we use for building all models are, gener-
ally speaking, a “first-order approximation” of the true formula: it can be easily
improved, most of the time. But obviously the formula we eventually get is a little
bit more complex than the first one.

Conclusion: If there is a trend in the residuals, it is a good practice to exploit it in
order to improve the process. This is the reason why the trend is always displayed
on the graphs (see Figures 13.1–13.5).
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14 The Other Residuals

Summary

This chapter presents a brief introduction to the use of residuals computed in a dif-
ferent way.

The discussion is however limited to the use of multiplicative residuals, because
their use, in conjunction with the multiplicative formula, offers some potential
interest to the cost analyst.

The reader is reminded on the fact that, whatever, the type of residuals used, com-
parison between formulae can only be done if the residuals are expressed the same way.

The previous chapter investigated the residuals defined as additive.
Let us remind the reader that the way residuals are defined has nothing to do with

the choice of the metric, even if, most often, cost analysts select the additive residu-
als with the additive formula, the multiplicative residuals with the multiplicative or
the exponential formulae, etc.

This chapter investigates other residuals, but limit the discussion to the multi-
plicative ones, because they present an interesting properties in the cost domain
when they are used with the multiplicative formula.

14.1 Definition

Multiplicative residuals are defined as:

which means that yi � ŷi � e�i, formula from which these residuals take their name.
These residuals can be used for any type of formula,but they are mainly considered

for the multiplicative and the exponential formulae:

for the obvious reason that the logarithms allow for linearizing both the formulae
and their residuals.
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14.2 Returning to the Additive Formula

In the previous section, we have looked for an additive – or bilinear – formula and
computed the residuals defined as er�. But the same formula can be used for com-
puting multiplicative residuals.

Let us use the simple example given in Chapter 9 (Figure 9.1). Trying to minimize 

the sum (which is the ordinary least squares or OLS) produces the formula:

and the residuals have a mean equal to 0 and standard deviation equal to 193.

One could also try, with an additive formula, to minimize with
e�i � (yi)/(ŷi). The result is then given by:

very close to the previous one.
But let us keep the previous formula which minimizes the sum of the squares of

the residuals and express now these residuals as multiplicative. The values are dis-
played in Figure 14.1; their average value is 1.00063, very close to 1, as expected.
These values could very well be used instead of the e�i.
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Figure 14.1 The residuals defined as multiplicative.

14.3 The Multiplicative Formula

The multiplicative residuals are however practically only used with the multiplica-
tive formula defined as:

y b x ei i
b

i� �
�0

1



because taking the log of both parts produces a linear relationship:

where y∗ � ln y, b0
∗ � ln b0, etc.

14.3.1 The Distribution of the Multiplicative Residuals

Figure 14.2 presents the multiplicative residuals e�i (second column) and their
logarithms.

y b b x ei i i
∗ ∗ ∗ ∗� � �

�0 1
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Cost Multiplicative residual log (base e)

1278
724
809
920
772
877

1064
865
961
856

1293
717
648

1.084
0.879
0.912
0.976
0.938
1.101
1.000
1.053
0.953
1.105
1.021
0.981
1.037

0.081
�0.129
�0.093
�0.024
�0.064

0.096
0.000
0.052

�0.048
0.100
0.021

�0.019
0.036

Median
Average
Standard deviation

1.000454
0.000796
0.072318

Figure 14.2 Multiplicative residuals e�i and their log (neperian).

It clearly appears that the multiplicative residuals are centered around 1 (here
the median is the important characteristic, as explained below), which is logic. It 
is possible to make on the log e�i the same analysis that were done on the additive
residuals.

It is also interesting to discover what the Gauss’ hypotheses mean for the true
residuals e�i. These hypotheses are relative to log e�i: all the computations about
the multiplicative residuals are made on these values.

We refer here to Gauss’hypotheses which will be mentioned in the next part.These
hypotheses were proposed in order to allow to use for the multiplicative formula the
results which were demonstrated for the additive (bilinear) formula; one of the most
important one is that, for the whole population, the deviations1 should be distributed
according to the normal law. If we want – but this is not compulsory – to use these
results here, it means that the e*

�i should be distributed according to the same law.

1 We use the word “deviation” instead of “residual” for the population.



The Distribution of the e� i

We know that ln e�i follows a normal distribution, centered around 0 (if the
Euclidian metric was used for establishing the formula, otherwise the center is
called m) and a standard deviation 	. In the example given 	 � 0.072318.

Generally speaking, as we saw it, the average m is – whatever the metric – so close
to 0 that it can be neglected for practical computations.

Referring to Chapter 3, one can say that the e�i themselves follow a log-normal
distribution given by the expression:

This could be embarrassing because, as it can be seen in Chapter 3, this distribu-
tion is rather complex and should be difficult to handle for practical cost estimates.
However – and fortunately – 	 is generally very small (do not forget that it is the
standard deviation of the log of the multiplicative residuals: even a residual of 1.5 –
which means that the cost value is at 50% of the dynamic center! – gives a Neperian
log of 0.4) and the distribution appears simple, as illustrated with the values of the
example.
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Figure 14.3 The distribution of the e�i with 	 � 0.0723.

This distribution has the following characteristics:

● It is, as expected, nearly centered around 1. More exactly its mode (the e�i value
corresponding to the maximum of the distribution) is equal to e�	2

(0.995 for
our example), its mean to e�2/2 (1.003 for our example) and its median to 1.

● The variance is given by s2 � e	2

� (e	2

� 1): 0.00526 for our example, to which
correspond a standard deviation of 0.0725.

● The skewness by (e	2

� 2) � (e	2

� 1): 0.0157 for our example, very close to 0.
● The kurtosis by e4	2

� 2e3	2

� 3e2	2

� 3: 3.0854 for our example.



This distribution, for practical purposes, can therefore be very well 
approximated by a normal distribution with mean 1 and standard deviation 
s � 
�e	2 �� �(e	2

� 1)��� , where 	 is the standard deviation of the log of the multiplica-
tive residuals. This will make the computations easier!

As 	 is always a small number, an approximate value of s can be found with the
power series: as e	2 � 1 � 	2 � etc., one can write s � �. For our example this gives
a value of 0.723 instead of 0.725, very close indeed. Therefore, for practical compu-
tations, we can very well use this approximation.

14.3.2 An Interesting and Important Comment

In the example, one can see that the e�i are small and centered around 1. It is then
possible to develop them in a Taylor polynomial:

where � is a random variable centered around 0. Therefore one can write:

which means that the multiplicative formula automatically produces an additive
deviation which is proportional to the cost. This is a satisfactory result for cost stud-
ies: the deviations in these studies are known in percentages, which means that their
value is proportional to the cost; the subject is mentioned in Chapter 9.

So the multiplicative formula automatically solves this problem.

14.3.3 Looking at the Additive Residuals

Although the formula is defined as multiplicative, it quite possible – and it is rec-
ommended at least to be able to compare both solutions – to recompute, once the
formula is found, the residuals as additive. The purpose of this computation is to
compare them with the residuals computed from an additive formula.

For the example, the results are given in Figure 14.4.
The second column is a copy of the table given in Section 1 of Chapter 13,

reproduced here for convenience; for the additive formula the deviations average is
0, the average absolute relative residuals being 4.81%. When the formula becomes
multiplicative, the deviations average – computed here in an additive way – is 2.56,
the average absolute relative residuals being 5.89%. From this point of view, the
multiplicative formula is, for this example, slightly inferior to the additive 
formula.

These computations were made just to illustrate that the only way one can com-
pare formulae is to compute the residuals the same way.
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14.4 Are Multiplicative Residuals Interesting?

Donald MacKenzie in a recent paper2 made a lot of regressions using a multiplica-
tive formula ŷ � b0xb1 – where x quantifies the mass – and found that the residuals
“appear to be log-normally distributed and proportional to cost magnitude for a
wide range of space hardware box types”. This is a good reason to use this type of
multiplicative formula when the mass is used as the cost driver.
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2 Donald MacKenzie. Cost-estimating relationship regression variance study.

Cost Additive residual Cost Additive residual

1278
724
809
920
772
877

1064
865
961
856

1293
717
648

63.64
�72.52
�67.42
�17.51
�24.52

88.49
�35.76

19.10
�24.02
100.94
�3.11

�20.82
�6.48

1278
724
809
920
772
877

1064
865
961
856

1293
717
648

98.12
�99.81
�79.32
�23.27
�51.81

80.08
�0.37
42.95

�48.03
81.10
25.42

�14.38
22.68

Average
Average of

absolute deviation

0
4.81

2.56
5.89

Additive formula Multiplicative formula

Figure 14.4 Comparing additive residuals on both the formulae.



Part V
Building a Specific Model



The first four parts of this book was developed in order to prepare this one.
In Parts I and II, data were collected (this is the sample) and then analyzed.
Then a convenient way was investigated in order to replace – in the sample – all the data

by something much more convenient to be used. The information available in the sample
was split into two parts of equal importance:

1. The (dynamic) center of the data on one hand (Part III).
2. The spread of the information around this center on the other hand (Part IV).

The sample is now well understood and the information conveniently presented to the cost
analyst.

The important part is now the capacity to answer the question: how can these information
be used for estimating the cost of a new product not belonging to the sample? This new
product will be considered as being part of the whole population from which the sample is
drawn.

This Part V deals with this question.

Part Contents

Chapter 15 From Sample to Population
This chapter is an important one, for both theoretical and practical points of view. It explains
how the results found in the sample can be extrapolated to the whole population the cost
analyst is interested in.

This will allow him/her afterwards to estimate the cost of any new product belonging to
the population, which implies computing a confidence level for his/her estimate.

Chapter 16 Building the Model
This chapter summarizes all the results found up to now: it can be considered of a summary
of what must be known in order to build a specific model.

It insists on the decisions the cost analyst has to make, in supplement to the computations.



15 From Sample to Population

Summary

Up to now we studied only the sample and the results we obtained are only valid for
this sample.

It is time to see now what can be said about the population as a whole, which
means for any object of the population.After all, our purpose is to be able to estimate
any object of the population . . .

The chapter starts by developing the principles on which are based the extrapo-
lations of what was found on the sample to the population. It first reminds the cost
analyst that the shape of the relationship between the dependent variable and the
parameters or cost drivers is a choice he/she has to make. From the sample we want
then to compute estimators of the coefficients which appear in the formula giving
the dynamic center of the cost distribution for the whole population. The qualities
expected for these estimators are mentioned.

The important question is: how far can be the estimators derived from the sam-
ple to the true value of the coefficients? Two solutions are generally proposed,
based on hypothesis testing on one hand, confidence interval on the other hand,
both being the different faces of the same coin.

Then the way the perceived relationships – in the sample – can be extrapolated
to the population is investigated: two solutions are possible:

1. The classical solution is illustrated with the correlation coefficient: if a correla-
tion has been found in the sample between two variables, what can be said about
these variables for the population?

2. The modern approach, based on the Bootstrap, or its “little brother” the
Jackknife.

In order to introduce the solutions on a simple case, the principles are first applied
to the simple problem of a cost distribution with no cost driver: this is a basic idea,
for instance, for the opinion surveys. One shows how, classically, the center of the
cost distribution – always for the population – and its spread can be estimated. The
important “t” variable is explained. Then the modern approach is illustrated and
the results of both approaches compared.

The case of a distribution using one cost driver is then presented, followed by the
case involving several quantitative parameters and qualitative parameters.



15.1 The Principles

This chapter is dedicated to the population. Let us remind our definition of the
population: the population is the set – potentially infinite – of all objects that can be
part of the product family we previously defined. This product family is – in prin-
ciple – supposed to be homogeneous, the size being the only characteristic which
distinguishes the products inside the population. However we can accept a few
inhomogeneities between the products, these few inhomogeneities being taken
care of by a small set of variables, quantitative or qualitative. The names of these
variables, including the size, are called V1, V2, …, Vj, …, VJ.

A product to be estimated, drawn out from the population, is defined by its val-
ues of the variables. These values are called1 X1, X2, …, Xj, …, XJ. From these values
we want to be able to estimate its cost.

The question is: How can we do that?

15.1.1 About the Population

Everything starts from a belief !
We believe that there is a set of variables, of which number is J � K from which a

fully determined – which means that the cost is totally determined, with no “devia-
tion” – relationship between the values of the variables and the cost, called Y:

where B0, B1, … are constants. These coefficients are also called the “characteristics”
of the population, because, with the function F, they characterized this population.

Note that the set of the variables may be larger than the set of the variables
known in the sample.

Such a belief is based on the fact we think that costs do not come by chance;
if the costs are deterministic there should be such a relationship, which may
include the type of machines, the names of the operators, the management of the
company, etc.

What Is the Shape of the Relationship F()?

It is very simple to answer this question: we do not know! As well as we do not know
the list of the variables which should be included in it.

Theoretically it should be possible, if we knew the whole population, to find out
a polynomial that would fit exactly with all the data (this is generally called “curve
fitting”) and there are powerful algorithms (see Ref. [10]) to do that. But we are not
interested in this solution which could be far too complex for practical purposes.

The first decision is therefore to limit, in the study, the number of variables to a
reasonable small set. It is not yet the set of the variables which will be really
included in the formula: this set will be a subset of the theoretical set of variables

Y F X X X X X X B Bj J J J K�
� �

( , , , , , , , , ; , , )1 2 1 0 1… … … …
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1 We use capital letters for any object extracted from the population, small letters being reserved to
objects which are part of the sample.



(see Chapter 16). To make the process very clear, there are three sets of parameters:

1. The theoretical set, from which everything could be described with no deviation.
2. The set we decide to use in the studies.
3. The set which will be eventually included in the formula (this will be the object

of another decision).

For the simplicity of notation we will keep the same variables names X1, X2, …,
Xj, …, XJ for all sets, although it is clear that the sets of variables we consider can be
a very small set of the “theoretical” variables. Let us consider here the second set
only.

Now we know that, due to this decision, some “fluctuations”, due to the unknown
variables which should have been included, will occur and confuse a little bit (we
hope!) the issue.

The relationship F() can therefore be split in two terms:

1. A function Ŷ(X1, X2, …, Xj, …, XJ) which will be called the “dynamic center” of the
cost distribution for the whole population.

2. Deviations, called E, from this function. These deviations can be expressed as
additive or multiplicative – or as any other form – to Ŷ; they will be represented
for convenience as additive, but the reader can convert it to other forms. The dis-
tribution of these deviations – which are NOT “residuals”, because they result
from a deliberate choice – will be called 
.

The conclusion of this introduction is that the model we are looking for is a set of
two things: the function Ŷ and the distribution 
.

What can be said at this stage about the function Ŷ? It is the subject of a second
decision.

The relationship Ŷ(X1, X2, …, Xj, …, XJ) is selected on an a priori basis.
The benefit is getting something easy to handle.
The price to pay is some loss of information.

Choosing a priori 2 the type of relationship does not mean that several relation-
ships will not be tried until we are happy with the results. At that time, we want to
insist on the following points:

● Choosing the wrong relationship – and the linear relationship so often used is
quite often a wrong relationship – is the first cause of poor cost estimates.

● It is always highly recommended to check if the price we pay – for loosing infor-
mation, due to the selection of a small set of parameters – is not too large. This
is the second cause of poor relationships.

These are not the only causes: we will discover other ones in due course.
The relationship Ŷ(X1, X2, …, Xj, …, XJ) includes some constants, or coefficients,

called B0, B1, B2, … which are of course unknown and will remain forever unknown.
What can be done about them?

15.1.2 What Are We Going to Do with Our Sample? Looking for “Estimators”

The data contained in our sample (our observations) will be used to get approxi-
mate values of the coefficients B0, B1, B2, …
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“Approximate” is a very important adjective: the exact values of these coefficients
will never be known. In order to know them, we should know the information for
any possible object of the population,3 which is, by definition, impossible, as the
population is infinite (and if it finite but large it will be too costly).

In order to explicitly recall the reader that the values we obtain from the sample
are just approximations of the real values, we will use the following symbol4 B̂0, B̂1,
B̂2, …, the little “hat” reminding what they really are (estimates of true values).

Of course, as you may expect, we need an answer to the question: how close are
these B̂0, B̂1, B̂2, … from the true values B0, B1, B2, …? This is one of the most important
question when using our data for estimating the cost of a new product: if these values
are far away from the true values, we can expect that our estimates will be completely
wrong. This question will therefore come out quite often in the following section.

The beautiful thing with statistics is that this distance can often be estimated!
How is that possible? As you will discover, the whole logic to estimate this distance
is based on the following principle (the adverb “randomly” being the key word):

Our sample was randomly selected among the available data. As this sample was ran-
domly selected, another one could have been selected as well.

There are nowadays two solutions to estimate this distance:

1. The “classical” approach, which was discovered by Carl Friedrich Gauss and is
purely analytical, but needs very stringent hypotheses.

2. The “modern” approach, which is more recent (about 1980) and palliate the
drawbacks of the first one.

Randomly selecting a sample is, for the “classical” approach, not sufficient: the pop-
ulation from which it is selected must also have some properties (these are the
hypotheses just mentioned). These properties will have to be carefully examined in
order to check if they apply to the population we are interested in. Consequently
classical statistics offer sometimes a limited help in our domain (cost estimating).
What can be said at this stage is the following:

● Elementary statistics can compute this distance if some hypotheses – and
sometimes very severe ones – are met. And these hypotheses are rarely verified
in our domain.

● More advanced statistical concepts (such as “non parametric” statistics5) are
often much more suited to our domain.

● In some cases we will have to find out another way to compute these distances
which does not require these hypotheses. Recent developments in statistics
allow to do that; they will be explained later on in Section 15.3.2 of this chapter
under the name of “modern approach”.

This section is primarily devoted to these “elementary statistics”: understanding
them is a prerequisite for understanding most of the manuals on the subject and
more advanced methods.

The numerical values of the constants,b0,b1,b2,… computed from the information
we get in the sample, are logically called “estimators” of the true values B0, B1, B2, …
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4 Which is very common in books of statistics.
5 The word “non parametric” clearly refers here to statistics, not to “parametric cost estimating” as it was
defined in Chapter 1 of Volume 1.



15.1.3 What Are the Qualities Expected for an Estimator?

In order to be really useful, an estimator should present some qualities that are
briefly commented here; all these qualities are not compulsory to practically used
estimators, but they must be known. Let B be a coefficient – or a characteristic – of
the population and B̂ an estimator of B, estimator “extracted” from the sample.

These qualities are given below.

Lack of Bias
In order to define what is meant by this term, let us suppose we can select K differ-
ent samples of the same size I (the number of products included in the sample).
From these samples we compute – using here the same algorithm – different values of
our estimator; let us call them B̂(1), B̂(2), …, B̂(k), …, B̂(K). We will say our estimator is
unbiased – it should be said to be correct: “the algorithm we use for computing 
the estimator is unbiased” – if the average value of this set B̂(1),B̂(2), …, B̂(k), …,
B̂(K) is mathematically equal to the true value of the coefficient:

(this notation is standard: a flat hat represents the average value). Of course, as we
only have one sample, we cannot check that and it has to be demonstrated mathe-
matically. For instance it can be shown that, in order to estimate the average value
of a population Z (its arithmetic mean Z

u
), the sample mean z

u
is an unbiased esti-

mator; but the sample variance s, which can be used for estimating the variance S of
the population, is a biased value. We will return to that in the next section.

Efficiency
The idea here is: let us assume we have several ways (several different algorithms) to
estimate B. These N different algorithms will give us several values for B̂ from the
same sample. Let us call them (1)B̂, (2)B̂, …, (n)B̂, …, (N)B̂. Suppose we can do all these
computations on K different samples; the first algorithm will give a set of K values,
labeled for instance (1)B̂(1) for sample 1, (1)B̂(2) for sample 2, etc. …; the second 
algorithm will also generate another set of K values, labeled (2)B̂(1) for sample 1, (2)B̂(2)

for sample 2, etc. … It is possible to compute the variance6 of the values 
provided by each algorithm on the different samples; for algorithm n we have

The algorithm which gives the estimator with the least variance will be said the
most efficient. It can be shown that, for instance, the sample mean z

u 
is the most effi-

cient estimator of the population mean Z
u

(this does not mean that this mean is the
best value estimator of the “center” of the population).

Consistency
Consistency is an “asymptotic” property. An estimator is said to be consistent if,
when the sample size I grows indefinitely, the value of the estimator trends towards
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the value of the true characteristic:

Sufficiency
An estimator is said to be sufficient if no other algorithm may provide more infor-
mation about the characteristic we are interested in. In other words the estimator
contains all the information the sample may provide – about the characteristic it is
an estimator of. This quality is rather hard to demonstrate; but it has been proven
that – if the population follows a “normal” distribution with a known variance 
S – that the sample mean z

u
is a sufficient estimator of the population mean Z

u
.

Robustness
Robustness has two definitions which depend on what we are interested in. This
deserves some explanation. An estimator is based on an algorithm using the
observed values of the sample; it is possible to define robustness when looking at
the algorithm (its logic), or when looking at the values (of course the quality always
refers to the algorithm, but this distinction helps explain what we are looking for):

● If we look at the logic of the algorithm: an algorithm, in order to give a reliable
value for the estimator, is based on some assumptions (for instance, quite often,
it assumes that the population from which the sample is drawn is “normal”). It
is said to be robust if its qualities are rather insensitive from any departure from
these assumptions; as it can be expected, the stronger the assumptions it is
based on, the less robust it will be.

● if we look at the data, an estimator is said to be robust if it is insensitive to a small
change of one observed value. Of course we want the estimator to be sensitive to
“normal” changes of the values, but not too much. It was the purpose of the
search of “outliers” to find out the samples values which may change to a large
extent the value of the estimator. The median was shown to be a very robust
characteristic, whereas the arithmetic mean was discovered as not robust at all.

In conclusion an estimator is said to be robust if it is insensitive either to small
departures on the assumptions it is based on, or to the data it uses.

All these qualities are interesting7 from a theoretical point of view. From a prac-
tical point of view, two qualities are especially important. The lack of bias is impor-
tant but not fundamental. Robustness, from the cost estimator point of view, is
certainly the most important quality. This is the reason why it has been so much
investigated in Part III.

What Is the Logic for Establishing the Qualities of an Estimator?

Estimators of the coefficients we are looking for are computed by some mathemat-
ical algorithm which delivers a value. How is it possible to discuss the quality of
such a value?

lim B̂ B
I→�

�
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7 Rao ([46], p. 314) devotes 20 pages to the “minimum variance unbiased estimation”. The interested
reader will find there many interesting theorems.



The logic refers to the principle which has just been mentioned: the data from
which the values are computed constitute our sample; this sample is assumed to be
drawn randomly from the population. Theoretically we could therefore have
“drawn” another sample: in other words, if it were possible, we could have observed
the cost of different products – from the same population or product family – or
even the cost of the same products made under different circumstances. These
costs may have given values different from the ones we have: they would constitute
another sample.We – always theoretically – could have repeated the process several
times and so get different samples.

The qualities of the descriptors should normally be based on the different results
observed from these different samples: if all these samples would produce about
the same values for the descriptors, we would estimate their quality very high; oth-
erwise we will consider them carefully before using them!

As it is impossible, we have to find out another way to quantify the quality of our
estimators. We already mentioned there are several of them. Whatever the method,
it is always be based on the following hypothesis:

Sample values are randomly extracted from the population we study.

15.2 How to Get Values for Our Estimators from the Sample?

Two methods may be proposed: a theoretical one and a practical one.

15.2.1 The Method of Maximum Likelihood

This is the theoretical method, proposed by Fisher. It is based on the following
hypothesis: the population from which the sample data were drawn is parametric;
this means that the shape of its distribution is known (for instance it can be normal
or �2 or anything else) but its characteristics (the constants which characterize it)
are not. Let us call � this distribution.

Let us suppose for the simplicity of the text that just one characteristic – let us
call it � – is unknown. In order to have an estimator �̂ of it, we draw a sample of size
I: x1, x2, …, xi, …, xI.

The idea is the following one: the probability of drawing the particular sample
from a population of which distribution is �(x; �) is equal to the product of the
probability of drawing each xi. As this probability is equal to �(x; �), the probabil-
ity of drawing this sample is given by:

which is a function of � (as all the xi are known). As we actually drew this sample,
we look for a value of � which maximizes L(�); this value will be the estimator �̂
we are looking for.

As an example, suppose we study a population of a variable X and we know that
the distribution of these X follows a normal law. It can be for instance the time
required to go by car from point A to point B: we know, from experience, that this
time follows a normal law. Suppose we also know the standard deviation S of this

L xi
i

( )p j p� ( ; )∏
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distribution: also from experience, we know that, in this area, the driving time has
a standard deviation S � 10 min. What we are looking for is the average time X

u
for

this travel. In order to get this value, we do 10 times the travel and observe 10 dif-
ferent values x1, x2, …, x10.

We are therefore looking for the value of X
u

which maximizes the function:

The computation is not difficult: this function is maximum for Σ(xi � X
u

) � 0. This
means that the estimator of X

u
is given by:

which is the arithmetic mean of the sample! This computation explains why the
sample mean is so often used for estimating the center of a distribution. But
remember the hypotheses: the distribution follows a normal law and the standard
deviation is known.

15.2.2 The Practical Method: The Plug-in Principle

Practically we are looking for two things:

1. The formula giving the value of the dynamic center of the distribution of the
costs in the population we are studying.

2. The distribution 
 of the deviations around this dynamic center.

The study of the sample revealed that the dynamic center was a computed function
of the variables ŷ(x1, x2, …, xj, …, xJ) with computed coefficients b0, b1, …, and that
the distribution � of the residuals around this dynamic center was a computed 
distribution.

The plug-in principle is the following one: we decide that:

1. The function giving the dynamic center of the population has the same form as
it had in the sample:

This means that we decide that:

2. The distribution 
 of the deviations inside the population has the same shape as dis-
tribution � of the residuals in the sample, with, however, different characteristics.

This is the basic of the results we will use for estimating the distribution of the costs
in the population, and therefore to estimate the cost of any product belonging to
this population.
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As the distribution ŷ is already computed from the sample, the only problem we
still have to solve is to establish the characteristics of the distribution 
.

There are two ways to solve the problem:

1. Estimating the characteristics of the distribution 
 around the static or the
dynamic center of the distribution of the costs in the population.

2. Estimating the reliability of the estimators B̂0, B̂1, … from which the position of
the center can be computed.

These two ways are the two faces of the same coin: they express the same thing.
Generally the second one is preferred because it is easier to use, but the first one
probably reveals more about the distribution of the cost.

15.3 Extrapolating One Characteristic from the Sample 
to the Population

This section deals with an important question: we found one characteristic value
for the distribution of the cost values inside the sample (for instance its arithmetic
mean, or the correlation between the size and the cost, etc.). What does this mean
for the population as a whole? Can we extrapolate this value to the population? How
far could be the value observed in the sample from the value of the same charac-
teristic for the population?

How Do We Compute the Value of the Characteristic in the Sample?

The characteristic we are interested in for the population is theoretically computed
by an algorithm: for instance the arithmetic mean for the whole population is
defined, for an infinite population, as:

where g(Y) is the continuous distribution of the values Y.
The way it is computed in the sample uses the same algorithm; this is called the

“plug-out principle” and is the counterpart of the “plug-in principle”.

15.3.1 What Are We Looking for?

We found a value for characteristic A in the sample of size I, which may be – and is
often in the cost domain – small. This sample comes from a random drawing (this
is our basic hypothesis) inside the population. Is this value representative for the
whole population?

Maybe we have been lucky in our random drawing, or we have been unlucky, or
the sample is a fair representation of the population: we do not know. In the current
life, your experience is a great help to qualify the representativity of a sample. For
instance if you observe the speed of 10 cars on a freeway on which the speed is lim-
ited to 130 km/h and found a set of values such as 50, 65, 58, … with an average of

Y Y g Y Y� ( )d∫
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62 km/h, can you conclude that all the people drive at this average speed on this
freeway? Your experience contradicts this conclusion.

It is exactly the same in the cost domain, except we have generally no experience
about the family we are studying. The only thing we can do then is to turn to
computation.

In the language of statistics, we want to know if the value we found in the sample
is “statistically significant”, which means it can reasonably be applied to the popu-
lation; the word “reasonably” has been mentioned on purpose: the statistician can
never say “the result can be applied to the population”. More exactly the property
can be applied to the population with a given “level of confidence”, but we cannot
be completely sure about the value.

Let us take an example – on which we will return: we found, in the sample, a cor-
relation of 0.7 between one causal variable and the dependent variable. The statisti-
cian can maybe say: there is – with a probability to be wrong of 0.05 (this is the level
of confidence) – really a correlation between these variables in the population – the
correlation is statistically significant – but we cannot be sure it takes the value 0.7.

Once we have found the value of an estimator, the next question we ask therefore
is: How reliable is this value Â? This will of course become a crucial question when
we will use it for estimating the cost of a new product.

Two techniques, closely related, have been developed for answering this ques-
tion; they are called “hypothesis testing” on one hand, and “confidence interval” on
the other hand.

1. Hypothesis testing starts from a assumption: we think (this is our hypothesis)
that the true value of the characteristic A has a preconceived value – let us call it
A0.We just want to check if our idea is right or wrong. In order to do that we draw
a sample from which we compute a value a; according to the plug-in principle we
write Â � a. We have now to answer the question: does this value confirm or
infirm our hypothesis?

2. Confidence interval does not require a preliminary assumption. It aims to answer
the question: “How far can be the true value A from our estimator Â?”

Both tests are based on the hypothesis: the sample was randomly drawn from the
population.

Both tests are the two faces of the same coin: what you see depends on the face
you look at.

15.3.2 Hypothesis Testing

What we are interested in is the value of A, supposed to exist, for the whole popula-
tion. In order to achieve this goal, the first strategy is the following one:

1. We make an hypothesis about the characteristic of the population we are inter-
ested in: let us say we assume that A has the value A0. This hypothesis is gener-
ally called H0, the alternative hypothesis being called H1.

2. As we are not sure about this value, we draw a sample of size I and, from this
sample, using for instance the plug-in principle, we obtain an estimator of which
value is Â(I) (the index I reminding us about the size of the sample it is computed
from).

The question is now: does this value Âvalidates our hypothesis or not?
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Suppose this value Â(I) is close to A0; we may reasonably think that it is a good
hint that the hypothesis is validated. But we know that our sample was randomly
selected: so this fortunate result might very well be a happy result and the true
value of A might be very different from A0, this result being just an artefact!

Suppose now it is quite different from A0. Can we make the conclusion that
hypothesis H0 is not true? Maybe, but we can also make the same statement: the true
value of A may be close to A0 and this unfortunate result is only due to bad luck.

This example shows that, from the values of the sample, we can make two differ-
ent mistakes:

1. Rejecting H0 when it is true, just because the result was bad (due to bad luck).
This is generally called Type I error.

2. Accepting H0 when it is wrong, just because the result was good (due to luck).
This is generally called Type II error.

Can we be more specific and quantify the risk of making an error?

The Classical Approach

The classical approach requires to make hypotheses about the population.
The logic of the quantification will be based on the following reasoning: as the

sample is randomly selected and due to the fact we know something about the pop-
ulation, we must be able to compute the probability of, if hypothesis H0 is true,
obtaining the result Â(I) from a population in which A � A0.

This quantification will therefore be based on two assumptions:

1. the sample is really randomly selected,
2. we know something about the population.

So what we need to know about the population is enough information to be able to
compute this probability. Going from this information to this probability may be
extremely difficult – mathematically speaking – and this is, in most cases, impossi-
ble. It is however possible in a few cases, the most frequent one being the assumption
that the population follows a normal distribution. This is a very strong assumption
rarely met in practice in the domain of cost . . . Nevertheless it is still often being
assumed – generally implicitly – in order to be able to compute something.

As testing hypothesis allows to introduce important concepts, and as it is men-
tioned in several manuals, we will go on with the subject, even if its application for
cost purposes is limited. The theory is explained in this section; examples will illus-
trate it in the following ones.

It is important at this stage to understand that the computation will never be able
to give a final and definite answer to the question: “Is H0 true?” (or false). The com-
putation can only give a probabilistic answer: the probability to make an error – in
accepting or rejecting H0 – is so much. This probability is called the “level of confi-
dence” and is symbolized by the Greek letter �.

� is generally given a priori: when we say “I want, when I base my decision on the
result of this sample, to make a mistake less than 10% of the time”, it means that we
want �  0.9. It is quite possible to compute, when we found a value Â(I), the exact
probability of making such an error; authors call this probability value the P-value.
Due the limited use of hypothesis testing in the domain of cost, it is probably not
worth the effort.
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Reasoning on H0
So, we have drawn a sample of size I from our population of which distribution is
known and

● made the hypothesis called H0,
● chosen a confidence level, let us say 0.9.

From the assumptions already mentioned, we are able to draw a curve giving the
probability of obtaining – if H0 is true – the value Â � a from our sample. This
curve is reproduced on Figure 15.1. Obviously the mode of this distribution (corre-
sponding the greatest probability) is equal to Â. This curve is the theoretical distri-
bution of a, distribution we should observe if we were able to draw a lot of samples
of size I from the population (assuming of course that A � A0).
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Figure 15.1 Probability to compute from the sample a value Â(I) for the estimator, given hypothesis H0
(A � A0): theoretical distribution of a.

8 The Jackknife – which does not allow repetitions and is therefore limited to the “creation” of N different
samples – is the “small brother” of the Bootstrap; this can be mathematically demonstrated.

Two small lines are drawn on the figure, corresponding to a1 and a2. These values are
computed in such a way as the area under the probability curve on the left of a1 is equal
to 0.05 and the probability on the right of a2 is also equal to 0.05.As the total area under
the probability curve equals 1, it means that the area between a1 and a2 equals 0.9.

What are our conclusion if we observe a value a in the sample?

1. If a1 � a � a2: the sample does not invalidate the hypothesis H0 and we keep the
value A0. The probability to make a wrong decision (a Type II error) is 0.1.

2. If a � a1 or a  a2: now we consider that the sample invalidate hypothesis H0
which therefore we reject. The probability to make a wrong decision (a Type I
error) is also 0.1.

The Modern Approach

The modern approach uses the Jackknife8 (if the sample size is large enough) or,
more frequently, the Bootstrap.



The Bootstrap is able to directly draw the distribution of Â(I) without making any
hypothesis on the distribution of the cost in the population. The idea is to “extract”
all the information available in the sample. In the classical approach the sample is
only used to compute the value of the characteristic: a. This is a very poor use of the
information! In order to extract all the information the Bootstrap “says”: this sam-
ple was randomly drawn from the population; this means that another sample
could have been drawn as well. It then simulates other samples9 of the same size I
by randomly selecting values – with repetition – from the sample.

A large number of samples – all of them could have be drawn – can so be gener-
ated (400 is a usual number); each one is called a replicate of the sample. For each
sample characteristic a is computed. From these 400 values of a, its distribution
curve can be computed – the BETA distribution is frequently used, due to its high
flexibility, for this purpose – and the interval ⎣a1, a2 also computed. After that, the
reasoning is the same.

15.3.3 Confidence Interval g

Looking for the confidence interval is another way of solving the problem.
The idea is to say: we observe in the sample a value a for the characteristic we 

are interested in and ask the question: How far could be the true value A for the
same characteristic in the population? This distance is defined by a “confidence
interval”.

As usual in statistics, the confidence interval cannot be determined in a definite
manner: the only thing we can look for the interval in which A has a given proba-
bility – for instance 0.9 (called the level of confidence) – to be. Obviously the better
the desired level of confidence, the larger the interval: at one extreme, the probabil-
ity of finding A in the interval a � � is equal to 1.

In this section, we do not make any hypothesis about the true value of the char-
acteristic. We know an estimate Â(I) � a, computed from our sample of size I. The
question is now: keeping Â(I) constant, where can be A?

It is impossible to answer directly this question: it has to be rephrased: is it pos-
sible that A be far away from Â(I)? After all Â(I) was computed on a sample from the
population and we may guess that A should not be too different from Â(I).

What is the meaning of “not too different?”
To quantify this assertion, we must compute, for different values of A, the proba-

bility of finding Â(I), the logic being that if A is very different from Â(I), then the
probability of finding Â(I) is very small. The probability distribution of Â(I) can be
drawn and this curve will tell us, how far can be A from Â(I).

This curve is the counterpart of the one we studied in the previous paragraph:

● In the previous section, we kept A constant, equal to A0, and looked for the prob-
ability in finding different values for a.

● In this section, we keep a constant and compute the probability distribution of
the values of A which could produce such a value a in the sample.
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15.3.4 Introducing the Standard Error of an Estimate

Suppose we were able to draw several samples from the population. They will gen-
erate a set of K estimators called Â(1)

(I), Â(2)
(I), …, Â(k)

(I), …, Â(K)
(I). It is possible to compute the

mean and the standard deviation of this set:

This standard deviation of the set of estimators is precisely what is called the stan-
dard error of the estimator. Do not confuse:

● The standard deviation s (in small letters) of the values of the sample.
● The standard error of the estimate. This standard error refers to the estimator

and consequently to the population. For this reason it will be labeled SÊ; the lit-
tle hat comes from the fact this value is in fact an estimate of the true SE, the one
we could find if the number K of samples could grow indefinitely.

How can SÊ be Estimated?

It may seem strange that we can, from just one sample, estimate the value of the
characteristic we are looking for and the standard deviation of the estimate!
Nevertheless there are two major ways to estimate SÊ.

The Classical Way
The classical way, which analytically solves the question, is mathematically impos-
sible if some hypotheses are not made, as we saw it in the previous section.

The logic is the same.

The Modern Way
It so happens that the Bootstrap – and to a lesser extent the Jackknife – does create
the samples we need: they therefore solve the problem in a natural way.

15.4 Extrapolation of the Perceived Relationships from the 
Sample to the Population

This section illustrates the concepts introduced in the previous section.
When studying the relationship between two variables, it appeared that an

important characteristic was the Bravais–Pearson correlation coefficient. We will
use two logics: the test of hypothesis for the classical approach, the confidence
interval for the modern approach.
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15.4.1 The Classical Approach

A correlation was found in the sample between the dependent and the causal vari-
ables; its value was quantified in the “Bravais–Pearson correlation coefficient”.

The data for this example are shown in Figure 15.2.
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Figure 15.2 The graph of the sample data for the example.

In the example, the value rB � 0.901 was found in accordance with the graph.
Can we infer from this value, observed in the sample, that there is really a corre-

lation between these variables for the whole population?
Let us make the hypothesis – called H0 – that the sample was drawn (randomly) from

a population in which there is really no correlation at all between these variables. The
relationship we thought have found is then just due to chance; in fact both variables are
independent. Does the correlation we observed in the sample validate this hypothesis?

If this hypothesis is true, one can expect to find, in the sample, a correlation coef-
ficient rB close to 0. However the random sampling of the observations may pro-
duce, just by chance, a coefficient different from 0. In such a case, we could conclude
that the correlation inside the whole population is different from 0 (this is called a
“second type” error) whereas it is not.

How can we make a conclusion? The best way is to study, in the case of this
hypothesis H0, the distribution we could observe for rB if we were able to draw sev-
eral samples of the same size I (13 in this example).

Let us assume it is possible. If the hypothesis H0 is true, how the value of rB would
be distributed?

Such a distribution is extremely difficult to compute without a hypothesis on the
distribution of the data in the whole population. We will therefore make a very
strong hypothesis about it: this distribution is “binormal” which means that both
V0 and V1 are normally distributed. In our sample, the distribution is not normal
for the observed couples in the sample, but this is irrelevant.

In the case of this hypothesis, the distribution f(rB) of rB can be computed. It is
given by:
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where B(p, q) is given by �(p)�(q)/(�(p � q)), with �(t) � �0
�e�xxt�1 dx (see

Chapter 3). It looks a bit complex, but you will not have to compute it.
Note that this distribution is not defined for I � 4. For I � 4, rB follows a uniform

distribution: all the values are equally probable. For I  4 the distribution has a bell
shape. It is represented in Figure 15.3 for I � 4 and I � 13 (our example).

For large I the distribution becomes close to the normal one (with a mean equal
to 0 and a standard deviation equal to 1/��I ��1).

Let us give now a level of confidence of 95% (both sides). It is not too difficult to
compute the interval values of rB for which the area under the distribution curve
will be equal to 0.95, which means that the area outside this interval will be 0.025 on
both sides: the interval is (�0.554, 0.554); this is illustrated in Figure 15.4. If the
sample provides us with a value outside this interval, we can say – with a level of
confidence of 95% – that there is really a correlation between both variables inside
the whole population; this is the case in our example. Consequently for the popula-
tion studied, we can reject hypothesis H0.

As a matter of fact, as Figure 15.4 shows it, the level of confidence is much higher
than 95%: computation shows – this is the P-value already mentioned – that it
reaches the level of 99.998%. Practically, we are sure there is such a correlation!

Pay attention to the fact that the method “demonstrates” – or not – that there is a
correlation between the variables inside the whole population, but does not guar-
antee at all the level of correlation equals the one we found in the sample values.

The comment we can make is only that the correlation coefficient found in the
sample is “statistically significant”.

The previous computation was made in the H0 hypothesis: we assume that there
was no correlation inside the population and use the sample value in order to check
this hypothesis, with the added hypothesis that the population was binormal.

Is this hypothesis about binormality reasonable? We do not know the popula-
tion, so we cannot have a direct judgment. However we have a sample and we may
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ask the question: can we consider that this sample was drawn from a binormal pop-
ulation? We present below two tests:

1. The first one is based on the characteristics of a normal distribution: it skewness
equals 0 and its kurtosis equals 3. The characteristics for the sample are:
– for the dependent variables: skewness � 0.850, kurtosis � 2.734,
– for the causal variable: skewness � 0.840, kurtosis � 2.424.

As the sample was randomly drawn, we cannot, even if it is drawn from a
binormal population, expect that its distributions will be both exactly normal:
small deviations from normality can be expected. How small? Using the logic
developed upwards (about testing hypothesis), computations show that, for a
sample of size 13, we cannot reject the hypothesis that the population is binor-
mal if (given an average level of confidence):

– both skewness are lower than 0.858,
– both kurtosis are in the interval [1.869, 4.114].

Both conditions are nearly fulfilled here, even if the skewnesses are a bit high.
2. The second one is due to Kolmogoroff and Smirnoff: a value is computed 

which should be – always for a sample of size 13 and an average level of
confidence – lower than 0.229. For both variables the computed value is equal 
to 0.115.

Both tests are positive here; note that we cannot be sure that the population from
which the sample is drawn is binormal: the only thing we can say is: “we cannot
reject the hypothesis it is binormal” and this is different from saying: “the popula-
tion is binormal”. Due to the result of the tests, we therefore conclude that the fact
there is a correlation in the population is statistically significant, even if we are not
really sure about the value the Bravais–Pearson correlation coefficient may have in
the population.
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Is it possible to make the same computation starting from another hypothesis,
for instance rB � � in the population? The computation is possible, but difficult
(Ref. [50], p. 136). An approximation of the distribution of rB gives:

● A mean equal to � � (�(1 � �2))/2I.
● A standard deviation equal to (1��2)/ .

Let us apply these formulae to our example, starting from the hypothesis � � 0.9 in
the population. In such a case, the computation shows that the distribution of rB in
a sample of size 13 would have a mean value equal to 0.893 and a standard devia-
tion equal to 0.055. The value found in the sample – 0.901 – does not invalidate this
hypothesis.

Can we hope to get a value equal to 0.95 for the population? Then the distribu-
tion of rB for the sample would give a mean equal to 0.946 and a standard deviation
equal to 0.028. The value found in the sample is at 1.607 standard deviation of the
mean value; this gives a level of confidence (P-value) equal to 5.4% (one side only),
leaving little hope that the correlation in the population is really equal to 0.95.

This discussion illustrates the classical approach of using a sample statistic for
determining the value of a characteristic of a population.Do not forget the hypothesis:

● The population is binormal.

15.4.2 The Modern Approach

The modern approach uses the Bootstrap and does not make any hypothesis about
the population. As previously said, we start by making 400 replicates, randomly
selected with repetitions, which are randomly prepared as indicated in Figure 15.5.

I �1
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For each replicate, the Bravais–Pearson correlation coefficient is computed; then
its average and its standard error are computed. The results are:

● coefficient of correlation: 0.871,
● standard error: 0.010.

Obviously, due to the fact that the establishment of the replicates is random,
if you make a second computation, you will not get exactly the same values. For
instance, making 4 Bootstrap computations gives the following set for the coeffi-
cient: 0.883, 0.877, 0.876, 0.879. There is nothing bad about that, as long as the val-
ues stay in a reasonable range, which is the case if the number of replicates is high
enough.

The nice thing about this modern approach is that it gives immediately the stan-
dard error of the coefficient of correlation.

The Jackknife is the “little brother” of the Bootstrap: it also makes replicates of
the sample, but without repetition. This means that, with a sample of size I, it can
make only I such replicates of size I � 1. This is not a problem when the sample size
is large, but it is so rare in the domain of cost that the Bootstrap is generally 
preferred.

15.4.3 Conclusion

It is of course impossible to decide, between the classical approach and the modern
approach, which one is the right one! However one can notice that the values are
rather close and that the standard error is small. The analytical value is at 3 stan-
dard error of the result computed by the Bootstrap; due to the rather small size of
the sample and the hypothesis made to compute analytically the coefficient, such a
difference is not abnormal.

15.5 The Case of One Variable (No Causal Variable)

This section deals with populations described by one variable only, which will be
called Y. This variable takes values we call y in the sample and Y in the population.

This variable can be anything; it can be, for our purpose:

● The dimension of a machined part, measured on several hundred identical
parts.

● The cost or the duration of any activity which is repeated several times, as it
occurs frequently in production.

● The cost of the same product made by different manufacturers.
● Etc.
● Including the residuals mentioned in Part IV.
● Or the specific cost of several different products belonging to the same product

family. The specific cost is the product cost divided by its size; the most frequent
example is given by the cost per kilogram (or the cost per cubic meter, etc.) so
frequently – without any justification – used by many people.

This comment about the specific cost will deserve some explanation.
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The Center Value Is an Important Information

If you are looking for a reliable forecast, the center value of the population is some-
thing important in cost analysis because it used as a reference value.

For the statistician, the center value of a distribution is also a very important
concept, for two reasons:

1. It is the simplest “model” of a population and the easiest computation which can
be done from the sample values.

2. It is far more efficient to study the distribution of the values around the center
value than to study it globally.

In the following sections, we will introduce variables in order to get a better model.
We will see when preparing the quality tests of the models that the reference is
always the simplest “model” given by the center value. In other words the quality
tests always try to answer the question: does the introduction of a variable really
improve our “reference” model?

Consequently it is necessary to be able to estimate, from the sample values, this
center value for the whole population.

15.5.1 Introduction

We study a population, supposed to be infinite in size because the values we are
interested in are continuous (such as $ or €), described by one variable Y. Let us
remind the reader that capital letters are used for anything related to the popula-
tion, small letters for anything related to the sample drawn from this population.

The distribution – called �() – of the values Y taken by this variable may be
unknown or known; both cases will be discussed. If it is unknown we will see in the
following pages if we must nevertheless make some hypothesis about it in order to
be able to estimate any characteristic.

What we are interested in is this distribution �(), for estimating purposes.
Therefore we would like to determine some characteristics of this population. As
indicated in Part I:

The distribution of the values of one variable is described by a few set of
characteristics:
– its center Y

u
or Y, or anything else, which is probably the most important,

– its standard deviation S, or anything else, which is the second in order of
importance,

– and its shape (skewness �1 and kurtosis �2).

In an attempt to get some information about these characteristics, we drew a sam-
ple of size I from this population; the values are labelled y1, y2, …, yi, …, yI accord-
ing to our usual notation scheme.

The characteristics of the sample distribution, named �(), are called:

● Its arithmetic mean y
u

� Σiyi/I.
● Its median y.
● Its standard deviation Sy � [Σi(yi � y–)2/I]0.5.
● Its skewness and kurtosis given by (the name of the variable is not repeated in

the symbol of the skewness and kurtosis in order to simplify the notation and
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because these characteristics are rarely used):

The question we try to answer to in this chapter is:

What can be said about the population from the sample values?

Two approaches are possible:

1. The classical approach which generally requires strong hypotheses for answering
the question.

2. The modern approach which is much more efficient.

15.5.2 The Classical Approach

The classical approach is purely mathematically oriented: it tries, by making hypothe-
ses and computing from them, to establish some properties of the population.

The way these properties are demonstrated is the inverse one: starting from
hypotheses about the population, the mathematician tries to forecast properties for
any sample (not specifically the one we know) drawn from this population. From
these properties, some characteristics of the population are inferred.

The Center of the Distribution �

What can be said about the center of the distribution � when we know the center
of the sample distribution �?

As it was seen in Chapter 4, there are two main measures of the center of a distri-
bution: the (arithmetic) mean Ŷ and the median Y, other ones being rarely used.

The Arithmetic Mean

Characteristics of the Arithmetic Mean The arithmetic mean has very interesting properties
(the first three ones were demonstrated by Carl Friedrich Gauss):

● This value has the maximum likelihood if the population distribution is nor-
mal. This should not be a surprise for you because Gauss precisely built this
“normal” law in order to get this property.

● The value is not biased, which means that �(y
u

� Y
u

).
● From all the linear (in the yi) estimators it is the one which has the minimum

variance.
● This property has been afterwards extended to all unbiased estimators, linear

or not.
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● Jerzy Neyman, Egon S. Pearson and Abraham Wald demonstrated that it was the
more globally precise of all estimators, biased or not (globally means whatever
the value y

u
, as other estimators could be more precise locally, which means for a

particular value of y
u
).

Note that all these properties are demonstrated for the normal curve. The distribu-
tions we have to work with are not always normal.

The Stein’s Paradox If you have to estimate the mean of one population distribution,
the best choice is of course to use the sample arithmetic mean.

If you have to estimate the means of two independent population distributions,
the same result stands.

The Stein’s paradox (Pour la Science no. 11) starts when the number K of means
to estimate exceeds 3. Suppose you have to estimate the specific costs – assumed to
be constant – for several different and independent product families, named A
(making a trench), B (building a construction), C (manufacturing a bicycle), etc.
You draw three samples from these families and compute their arithmetic means:
y
u

A, y
u

B, y
u

C, …
According to Stein, your best estimate for the product family ŶA for instance (the

same is true for the other estimates) is not y–A but something such as (this is the
James–Stein theorem):

where y= is the general arithmetic mean: [y= � (y
u

A � y
u

B � y
u

C)/3] and cA a factor
smaller than 1. This equation means that:

● if cA � 0, then all estimators have the same value: the general mean y�,
● if cA � 1, then Y–̂A � y

u
A, the usual estimator,

● if 0 � cA � 1, then Y–̂A “regresses” toward the general mean.

James and Stein propose the following value for cA (for K  3):

where K is the number of product families and s2
A the variance of the values in the

sample A. One can observe from this equation that:

● The larger the number of product families, the more Y
û

a regresses toward the
general mean.

● The smaller the standard deviation inside a sample, the less Y
û

a regresses
towards the general mean for this product family (this sounds logical).

● In order to avoid a strong regression towards the general mean,Σ(y
u

k � y=)2 should
be as large as possible, which means that all the individual means y

u
k should be as

different as possible (the equation has a problem if all the y
u

k are identical).

The strange thing about this theorem is that the product families can be completely
different.Also note that it seems to favour the regression towards the mean we crit-
icized in Chapter 9: the truth is decidedly difficult to discover, but the question here
is of a different nature.
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As the mean is an important characteristic of the distribution �, our attention
must be, at this stage, devoted to establish its values from the sample values. We
start here by establishing some properties which are true whatever the shape of the
population distribution.Afterwards we will see how these properties can be improved
if the shape of the population is known.

What Can be Said About the Mean Y
–

When the Distribution F() Is Unknown? If nothing is known
about the distribution of the population, the information which can be given is
rather general, as the reader may expect.

In order to understand how it is developed, suppose we are able to draw a large
number of different samples of size I from the population. Sample number k delivers
a set of values that we call, in order to clearly distinguish them (k)y1, (k)y2, …, (k)yi, …,
(k)yI, the index placed in front of a value referring to the sample number k. It is possible
to compute the mean value (k)y

u
of this sample.

The set of samples then produces a set of arithmetic means that we call (1)y
u
,

(2)y
u
, …, (k)y

u
, …, (K)y

u
.

Let us now compute the mean of all these values (k)y
u
; this is called the mathemat-

ical expectation of these y
u

and written �((k)y
u
). It could also be written, because it is

a mean of means, y�. The important result – which can be demonstrated – is that the
mathematical expectation of the mean of all these means is equal to the mean of
the population.

If we return now to our unique sample, we can say we get a first result, not very
strong one maybe, but nevertheless usable: the population mean Y

–
should be “in

the vicinity” of the sample mean y–.

How Far Could be Y– from y
u

? If we know nothing about the population (this distribution
could be completely “strange”), the only piece of information we can add is proba-
bilistic in nature (Ref. [50], p. 267):

We are not going to discuss here the way the series (k)y
u

converges towards Y
–

: it is a
pure mathematical subject which has a limited interest for the cost analyst. Only
the consequence of this convergence is of interest to him/her. The consequence is
based on the central limit theorem:

The theorem “central limit”
If y1, y2, …, yk, …, yK is a set of random variables with the same expectation

Y
–

and standard deviation S, then

This is called the law of large numbers. Let us express it in our case (we know – this
is our basic hypothesis when studying a sample – that the values are drawn from
the same population): if I values y1, y2, …, yI are drawn from a population of
which mean is Y

u
and the standard deviation is S, when I → � (which means when

1
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the sample size grows indefinitely), then:

In other words, the mean y
u

follows, when I is large, a normal distribution centered
on Y

u
(the population arithmetic mean) with a standard deviation S/�––I (the popu-

lation variance divided by the square root of the sample size).
This law is often expressed the following way: if a variable (here y

u
) is the sum of

a large number of small causes, then its distribution is normal. This is quite fre-
quent in human activity: such an activity is the sum of hundred additive micro-
activities; consequently it is reasonable to consider that the cost of an activity is
distributed according to a normal law. It explains what was said earlier that the cost
of one activity is a random variable and what is measured when we measure it is
just a cost among a lot of possible costs distributed according to a normal law.

Note that this is the theoretical distribution of the y
u
, theoretical in the sense that

it cannot be observed as it would require to draw several samples of the same size
from the same population, which is something which is excluded. It has nothing to
do with the distribution of the sample.

We learnt something about the distribution of the arithmetical mean y
u

of a sam-
ple of size I: the distance of this mean to the population mean will increase with the
population standard deviation S and will decrease with the sample size. All sounds
to be logical.

But this does not give us any information about how far could a particular y
u

value be from Y–, until we know something about S. We then have to wait until an
estimate of S is found out.

Nevertheless y– can be used as an estimator of Y– but we do not know how reliable
it is if the population standard deviation S is unknown.

What Can be Said About the Mean y– When the Distribution �() Is Known but Not Normal? Knowing the
distribution �() means that we know its standard deviation S, plus maybe its skew-
ness �1 and its kurtosis �2. Of course the arithmetic mean Y

u
is not known, other-

wise no sample would be necessary! This situation is not as theoretical as one may
think: we may know, from experience, that the standard deviation of the tolerances
of a machine tool or of the specific cost could have a given value and could be
slightly skewed. We draw a sample in order to get a good idea of its mean.

We use here the same technique: we compute, from what we know about �(),
some characteristics of the distribution of the (k)y

u
. Afterwards we will see what we

can infer from the sample for the population.
The knowledge of S, �1 and �2 allows to get a better understanding of the distri-

bution of the (k)y
u
. It can be demonstrated (Ref. [50], p. 267) that:

● The variance of this distribution is given by var((k)y
u
) � S2/I. This result is logic:

if we draw just one sample from a population of which variance S2 is small, the
values y1, y2, …, yi, …, yI we draw should very rarely be far away from Y

u
and so

will be their mean.
● Its skewness is given by �1((k)y

u
) � (�1(Y))/�––

I .
● And its the kurtosis by �2((k)y

u
) � 3 � ((�2(Y) � 3)/I).

Let us return to what we can infer from the sample characteristics.

y Y

S I
N

� → ( , )0 1
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An estimate of the population mean is still given by Y–̂ � y
u

and we know the
“standard error” of this estimate sê � S/�––

I, plus the fact that it follows, if the sam-
ple size is large enough, a normal distribution. Compared to the preceding section
“What can be said about the mean Y– when the distribution F() is unknown?”, we
can now be more specific and give an interval estimation, at least if the sample size
is large enough: we know that in this case the distribution of the y– is nearly normal,
which means that 90% of the time (this is the confidence level) the true value Y– will
be in the interval [y

u
� 1.165 � sê, y

u
� 1.165 � sê], or 95% of the time in the inter-

val [y
u

� 1.96 � sê, y
u

� 1.96 � sê].
Note that the variance of the distribution of the (k)y

u
decreases with the sample

size; it follows that the standard error will decrease with the square root of the sam-
ple size. Therefore we can expect that the accuracy with which Y– will be estimated
will decrease only slowly with the sample size: in order to double the accuracy
(which will mean to divide by 2 its confidence interval) the sample size will have to
be multiplied by 4: the accuracy is costly!

Also note that, when I increases indefinitely, then sê →I→� 0. This confirms that y
u

then converges towards Y– and quantifies the speed of this convergence.
What can be inferred from the knowledge of the skewness and the kurtosis of the

distribution of the (k)y
u
? It is obvious that, if the sample size I grows indefinitely, then:

which shows that the distribution of all the means we can compute from various
samples of large sizes is normal (as its skewness becomes 0 and its kurtosis
becomes 3). This confirms and quantifies what was said in the previous section.

About the Standard Error

Suppose we are interested in the means y
u 

of several samples drawn from the
population of which we known the standard deviation S.

These means will have an expected value E((k)y
u
) � Y– and a certain spread.

This spread can be quantified by the y– standard deviation. This spread is called
the “standard error” of the mean we can observe from one sample drawn from
this population.

It is noted sê(y
u
) and has the same dimension as y

u
: if y

u
is given in €, sê(y

u
) will

also be in €.

Notice that:

– sê(y
u
) has nothing to do with the standard deviation s of the values yi of the

sample.
– It is also NOT an estimate of the population standard deviation.

From what is written in the previous page, if the population standard deviation
S is known, then

What Can be Said About the Mean Y
u

When the Distribution �() Is Normal? Here again we start by
computing what is the distribution of the y

u
under this hypothesis.

se y
S

I
ˆ( ) �

g g1 20 3( ) ( )( ) ( )k ky y→ →and
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Now all the values yi sampled from the population are random variables with a
normal distribution. So is their sum; consequently, the mean y

u
follows a normal

distribution whatever the sample size, of which it can be demonstrated (Ref. [50],
p. 273) that the standard deviation is still S/�––I.

Are not we in the same situation, as the standard deviation of the population S
has to be known? Fortunately not because it can be shown that:

where s is the sample standard deviation, follows a Student distribution with I – 1
degrees of freedom.

The demonstration of this very important formula – very important because it
does not depend on the population standard deviation – rests on the fact that the
Student distribution11 is defined the following way: if A represents a random vari-
able following a normal law N(0,1) and B a random variable following a 
� 2

q distribution12 (with q degrees of freedom: see Chapter 2), then the ratio A/�–––
(B/q

–
)

follows a Student distribution with q degrees of freedom.
It so happens (from what has been said in the second paragraph of this section)

here that [(y
u

� Y
u

)/(S/��I )] follows a N(0,1) distribution and that (I � s2)/(S2) fol-
lows a �2

I�1 distribution (see below); in the division of these two quantities, S and I
disappear!

Returning now to what can be inferred from the values of our sample, it is 
now possible to give a confidence interval for Y– which is based only on the sample
values:

where tI�1,�/2 is the value of the Student distribution with I � 1 degrees of freedom
which lets on the right and of the left �/2 of the total area, 1 � � being the level of
confidence.

The area on the left of �t�/2 and on the right of t�/2 represents 2.5% of the total
area under the curve (the distribution is symmetrical): the area external to the
interval therefore represents 5% of the curve. This is this result which allows to say
that Y– will be inside this interval 95% of the time (Figure 15.6).

Let us take an example: we observed a sample of size I � 10, for which y– takes the
value 15 and s the value 2. Let us choose a confidence level 1 � � � 95%. For the
Student curve with 9 degrees of freedom t0.025 � 2.262 which gives t�/2(s/�——

I�1) 1.508;
one may say that Y– will be inside the interval [13.492, 16.508] 95% of the time.

Note that, compared to the previous section when the population standard devi-
ation was supposed to be known, the formula uses the value I � 1 and not I any-
more. This comes from the fact we lost one degree of freedom when computing s.

About the Degree of Freedom A characteristic of a distribution is a random variable, as its
value will change from one sample to another sample.This variable is computed from
the sample values; if it happens that this computation involves several coefficients
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11 The Student distribution is presented in Chapter 3.
12 The �2 distribution is presented in Chapter 3.



also computed from the sample values, these coefficients “absorb” some information
of the sample. Then the characteristic gets less information from the sample.

The degree of freedom of a random variable is equal to the number of data avail-
able to compute it, less the number of the coefficients included in its formula. For
instance the sample mean computed on a sample of size I has I degrees of freedom,
whereas the variance – which uses the sample mean – only has I � 1.

About the Variable t

The variable t is used quite often in the manuals about formulae building.

It is often said, for getting a reliable estimate, that t must be at least equal to
2. Where does this rule come from?

The following table gives the values of t�/2 for several degrees of freedom 
� – equal, as previously mentioned, to I � 1. It is clear from this table that:

● Even with a small sample, a reasonable level of confidence of 90% (both
sides) can be reached as soon as t is in the vicinity of 2; of course this level of
confidence improves (this means that a larger sample standard deviation s
becomes acceptable) if the degrees of freedom increase. For instance a value
of t equal to 2 for 10 degrees of freedom puts the level of confidence to 92%.

● But if you need a better level of confidence of 95% (both sides), the sample
must be rather large.
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Y will be 95% of the time inside this interval

0.5

0.4

0.3

0.2

0.1

0
�4 �2 0 2 4

St (x,9)

�ta/2 �ta/2
x

Figure 15.6 The Student distribution for 9 degrees of freedom and � � 0.05.


 �/2 � 0.05 �/2 � 0.025

5 2.02 2.57
10 1.81 2.23
20 1.73 2.10
30 1.70 2.04
� 1.65 1.96

Student distribution: Values of t for obtaining the level of confidence 1 � � (both sides) as a function of
the degree of freedom (
 � � corresponds to the normal distribution).



The conclusion is that, if t � 2, then even with a small sample the level of
confidence of 10% (both sides) is easily obtained. This is quite sufficient in
practice in the domain of cost: the rule comes from this computation.

The Median
Unfortunately the classical approach does not help for finding the confidence inter-
val for Y if the population distribution is not normal.

We limit therefore ourselves to simple rules.

What Can be Said About the Median Y


When the Distribution �() Is Normal? If the distribution �()
is normal, then the median is equal to the mean: Y � Y

u
… Then the median can be

estimated equal to y–.
The variance of this estimate can be approximated13 by �/2 S2/I.

About the Spread of the Distribution �()

We try to answer here the same question that we asked about the population dis-
tribution center: what is, from the information we have in the sample, the best
guess for S?

What Can be Said About S When the Distribution F() Is Unknown?

Here again we suppose that it is possible to draw a lot of samples from the popula-
tion. The variance of sample k is called kS2 � (1/I)[Σ(k yi � ky–)2].

It can be demonstrated,14 as we did for the mean, that ks2 converges towards S2

and that the mathematical expectation of ks2 is given by E(s2) � [(I � 1)/I]S2.
Therefore an unbiased estimate of S2 is given by

which is very frequently used. The division by I � 1 instead of I comes from the fact
that we lost one degree of freedom for computing s.

Using s2 as an estimate of S2 would introduce a bias equal to s2/I.
The fact that the estimate of S is not biased is made at the detriment of its accu-

racy. For instance Rao15 shows that: [Σi(yi � y–)2]/(I � 1) could also be used as an
estimate of S2; this estimate has a smaller variance, but it is biased. This shows that
the compromise between the lack of bias and the accuracy is rarely obvious and
depends on what is looking for.

What Can be Said About S When the Distribution �() Is Known but Not Normal?
By “known”, we mean here that we know the value of S and the fourth central
moment U4 of �().
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13Ref. [50], p. 275.
14Ref. [50], p. 269.
15Ref. [56], p. 316.



Can we give more information about this estimate? One can establish16 that the
variance of ks2 is given (this equation requires the knowledge of the moment U4 of
the population distribution) by

which does not really helps the cost analyst!

What Can be Said About S When the Distribution �() Is Normal?
It can be shown that the classical estimate Ŝ � s
�I/(�I ��1)� is very slightly biased.
Theoretically one demonstrates that:

● If the population mean Y
u

is known, then   

is an unbiased estimator of S, with a minimum variance. Notice that the last
term of the expression if not the standard deviation of the sample, because Y

u
is

used instead of y–.
● If the population mean is not known, then   

is an unbiased estimator of S, with also a minimum variance.

The following question is now: how far could be this estimate Ŝ of the true value
S? The answer can be done by finding a confidence interval of S (the population
variance) around this value Ŝ or around s (the sample variance); this second solu-
tion is easier: it has been demonstrated that

● If the population mean Y
u

is known, then

follows a distribution discovered by I. J. Bienaymé and now known under the
term “�2 distribution with I degrees of freedom” and consequently17 frequently
referred to as �2

(I).
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● If the population mean is not known, then I(s2/S2) follows a �2
(I�1) distribution

(we loose one degree of freedom due to the use of s).

These expressions are nice but a bit too complex for the cost analyst. Let’s then con-
centrate on the second point, which is the only interesting point to us (as we never
know the population mean Y

u
), and let us try to get an approximate confidence

interval, interval which will be sufficient for our studies.
As I(s2/S2) follows a �2

(I�1) distribution – distribution which has a mean equal to
I�1 and a variance equal to 2(I�1) – a sufficient approximation for practical pur-
poses is given by:

where k depends on the level of confidence you want (generally speaking, as previ-
ously mentioned, k in the vicinity of 2 is selected)

or

as soon as I is large enough (we do not need a precise value of this confidence inter-
val!). Consequently

which gives an easy way to get an approximate value of the confidence interval of S.

�s2/�2I is the “standard error” of S around s.

About the Skewness and the Kurtosis of the Distribution �()

The skewness and the kurtosis are computed in the sample.
The classical approach is unable to compute what these values could be for the

population when the values for the sample are computed. The only information
which is available is given for the:

● skewness �(�1) � 0 with a variance of 6/I,
● kurtosis �(�2) � 3 with a variance of 24/I.

This information is not really helpful for the cost analyst.

15.5.3 The Modern Approach

The classical approach is a powerful one, as it is able to demonstrate very important
properties. However it needs several hypotheses which may sometimes be difficult
to accept.
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This modern approach was briefly introduced in Section 15.4.2. Its purpose is
NOT to improve the value of the required characteristic, but to easily compute its
standard error. We will limit the discussion here to the population mean and vari-
ance, but the method can very well be used for the skewness and the kurtosis, as the
example in Section 15.4.2 illustrates.

Two modern approaches are possible: the Jackknife and the Bootstrap, the former
being the “little brother” of the second one. Both are based on the generation of several
replicates of the sample,which are defined as the samples which could have been drawn,
assuming that the sample was randomly drawn. Starting from a sample of size I:
● The Jackknife generates I replicates of size I � 1, by removing, in each one, just

one product at a time.
● The Bootstrap generates a large number of replicates of size I, by randomly

selecting, with replacement, I products among the I available. The number K of
replicates is let to the cost analyst, 400 being a common one.

The Jackknife requires a rather large value of I in order to get a sufficient number
of replicates. As it is rarely the case in cost estimating, we will concentrate here on
the Bootstrap.

Once the replicates have been generated, the required characteristic – here the
mean and the standard deviation of the sample – is computed for each. At the end
of this process, we get 400 – if this figure was selected – different values of this char-
acteristic. From these values its distribution can be computed; this means for us the
center (here the arithmetic mean is always used), the standard deviation, the skew-
ness and the kurtosis.

The validity of this method has mathematically been proved (Bootstrap): see, for
instance Ref. [31].

About the Bootstrap

The general procedure starts with the randomly created replicates. For each repli-
cate k the characteristic z is computed on the replicate values; let us call it (k)z.

Then the estimator of the characteristic Z for the whole population can be taken as
the z value from the original sample, or as the mean z– � (1/K)Σ

k (k)z of all (k)z. But,
more important its standard error is classically computed as:

About the Jackknife

The logic is the same, but the standard error of the estimator is computed in a dif-
ferent way:
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where I is the sample size.
These formulae can be applied to any characteristic.

15.5.4 Comparing the Approaches

Let us do that on an example.
Suppose you get this set of values in your sample:

What can we say, from this sample about the mean and the standard deviation of
the whole population from which this sample was (randomly) drawn?

The results are given in Figure 15.7.

1278
724
809
920
772
877

1064
865
961
856

1293
717
648
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Mean of the population
Standard deviation
around the mean

EstimatedEstimated

Classical computation 906.462 192.979 37.846

Jackknife 906.462 53.523

55.708

191.927 41.908

Bootstrap 908.742 52.929 181.52 37.065

 Standard error Standard error

Figure 15.7 Comparing the solutions.

How do the standard error compare? This is a satisfactory result. It shows that
each time the classical computation is valid, the Jackknife and the Bootstrap com-
pute about the same values. But if the hypotheses on which the classical computa-
tion is based are not fulfilled, then the result of this computation may be wrong.

15.6 The Case of Two Variables (One Parameter)

The two variables are the dependent variable on one hand, a causal variable – 
generally related to the object size – on another hand.



The presentation is here limited to the classical approach: the modern approach
does not differ from what has previously been said.

Example

In this section, we will use the example defined in Figure 15.2.

15.6.1 Extension to the Population of the Perceived Relationships 
in the Sample

The analysis of the sample revealed some correlations (mainly Bravais–Pearson,
Spearman) between both variables (the causal and the dependent) and we must ask
the question: are these correlations valid for the whole population?

This question was dealt with in Section 15.4 of this chapter, for both the classical
and the modern approaches.

Now, in the sample, we found that the distribution of the cost – called � – could
conveniently be described as the sum of a “dynamic center” and the distribution –
called � – of the residuals around this dynamic center.

The question is now: How can be use this information for the whole population?

15.6.2 Using Additive Deviations for Studying the Distribution of the Cost

We are now dealing with the population as a whole and from the understanding we
have about the population, and/or the results we found in the previous section, we
assume that the distribution � of the dependent variable Y can be described by the
sum of two terms (capital letters are always used for values of the population):

A dynamic center Ŷ which is related to the causal variable X by a linear 
relationship:

A random deviation, that will be noted E�, around the dynamic center. Its distri-
bution is called 
.

So that a particular value of the dependent variable can be written:

All terms B0, B1 and the distribution of E� are unknown. The purpose of studying
the sample was to get some information about these terms.

The reader probably already knows the results of the classical approach.
Mathematically speaking these results are quite nice. We will nevertheless repro-
duce them, not so much for them than for recalling the hypotheses on which they
are based: the purpose is to let the reader decide on his/her right to use these results
in the practical situation he/she works for.

No demonstration is given, as these results appear in most books on statistics
(see for instance Refs [38], [50], . . .).

Y B B X Ei i i� � �
�0 1

Ŷ B B X� �0 1
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Assumptions About the Population

The classical approach is unable to make any statement without making some
assumptions about the population from which the sample is drawn and for which
we expect to estimate some of its characteristics.

Not all assumptions are required to demonstrate everything: the assumptions
which are strictly required will be stated in due course for each property.

Assumptions13 that can be made on the population

1. The average of 
 is 0 (the mathematical expectation of E� is 0).
2. The distribution 
 does not depend on X (assumption called “homoscedastic-

ity”) and its variance, called S2
E� or simply14 S2, does exist.

3. Deviations E�i, E�j relative to two values Xi, Xj are mutually independent.
4. The distribution 
 is normal.
5. The distribution of X has a finite average X– and a finite variance S2

X.
6. No a priori information is available on B0 and B1.

The Dynamic Center of the Population

Estimating B0 and B1
The best thing we can do is to consider that the values we computed from the sam-
ple can be used as estimators of B0, B1 and of the distribution of E�. We then write
(this is the “plug-in principle”):

This is an important statement: it shows we are confident in the values we get in our
sample and in the computations we made for finding b0, b1. The values we get from
our particular sample are reminded here:

● When we decide to have an intercept different from 0:

● When we decide to have an intercept equal to 0 (there is no B̂0 anymore):
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From now on, we will study the first case only, the reader being able to convert, if
necessary, the result for the second case.

Now, even if we are confident in the work we did up to now, we know that these
values were computed from one sample of size I and that forces some constraints in
the confidence we may have in these values.

The purpose of this section is to quantify this level of confidence. Quantifying
this level of confidence is a statistical property: it has no meaning for the particular
sample we have; we return to this question later on in this chapter. What we can do
at this stage is to derive the statistical properties of the B̂0 and B̂1. If we were able to
draw a lot of samples of the same size from the population: what would be the dis-
tribution of these values?

The Distributions of the B̂0 and B̂1
B̂0 and B̂1 are values computed from a particular sample; in order to avoid any con-
fusion between these particular values and the values you could observe from dif-
ferent samples, we will call them B̂

–
0 and B̂

–
1. As this sample was supposed to be

randomly drawn, we may have drawn a different sample: as a matter of fact, if we
were able to draw several samples of size I, we would certainly compute different
values for them.

The question is then: what confidence can we have about the values we have just
computed? Or, if you prefer another way of saying the same thing: what is the dis-
tribution of B̂0 and B̂1?

What we can do is then to estimate the distribution of these values, distribution
we could observe if we were able to draw many samples of the same size. As a mat-
ter of fact, we are not interested in the distribution of these random variables, but
in the distribution of the differences – which are also random variables – of B0 � B̂0
on one hand, of B1 � B̂1 on the other hand, the purpose being to answer the ques-
tion: are these differences small enough for considering we get a good knowledge
of the population?

As usual the distribution of these variables is studied by computing their center,
their standard deviation, their skewness and their kurtosis.

The Center of the Distributions of B0 � B̂0 and B1 � B̂1 If Assumption 1 is accepted, then both
centres equal 0.

This property, which can also be written �(B0 � B̂0) � �(B1 � B̂1) � 0 where �
means “expected value”, is often called “lack of bias” because it means that the aver-
age values of B̂0 and B̂1 equal B0 and B1, which are the true values of the coefficients:

B̂0 and B̂1 – are unbiased linear estimators of B0 and B1

“linear” meaning that they are both linear functions of the yi, “unbiased” meaning
that their expected values are equal to B0 and B1.

Never forget it is a statistical property: it does not say anything about the partic-
ular values of the B̂0 and B̂1 you extrapolated from the sample.

The Variances of the Distributions of B0 � B̂0 and B1 � B̂1 As B0 is a fix quantity, the variance of
B0 � B̂0 is equal to the variance of B̂0, the same being true for B̂1; it is therefore eas-
ier to simply speak about the variances of B̂0 and B̂1.
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If Assumptions 1, 2 and 3 are accepted, then the variances of the distributions of
B̂0 and B̂1 which could be observed on a lot of samples of size I, are given by:

their covariance being given by:

In order to prepare the case with several quantitative variables, it is interesting to
mention here the matrix “stenography”. Let us first consider the product:

This product of a matrix of type �2�I by a matrix of type �I�2 gives a matrix of
type �2�2: this is a square symmetric matrix with two rows and two columns. It can
be developed as:

Let us now compute the inverse of this matrix. In order to do so, we need first to
compute its determinant. It is given by:

Therefore the inverse of ||�x||t ⊗ ||�x|| will be given by:
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If you compare the elements of this matrix with the previous relationships, you
understand why the matrix:

is called the “covariance matrix” of the data observed in the sample: the diagonal
elements give the variances of B̂0 and B̂1, and the other element (this matrix is sym-
metrical) gives their covariance: it is a useful stenography!

Can We Say More About the Distribution of B
–

0 and B
–

1? Yes, if new hypotheses are introduced.
These hypotheses are first hypothesis numbered 4, second15 that the x values are

fix and that only the y values were random. This means that we are supposed to be
able to prepare several products described by the same x values and that we observed
their costs; these costs are random values. This is certainly unrealistic in the cost
domain. However Johnston (Ref. [34], p. 29) shows that this constraint can be relaxed.

Given these hypotheses, and replacing in the formula giving B̂0 and B̂1 all the yi
by their value:

It is clear that B̂0 and B̂1 are only functions of these E�i and are therefore random
numbers with a normal distribution.

Consequently it can be said that B̂0 and B̂1 both follow normal distributions with
the variances computed upwards. In other words (B0 � B̂0)/(var0.5(B0)) and
(B1 � B̂1)/(var0.5(B1)) follow a normal N(0,1) distribution.

The conclusion is therefore that the skewness of the random variables B0 � B̂0
and B1 � B̂1 is 0 and that their kurtosis is equal to 3.

Can we be more specific?
Unfortunately both variables include the term S2

E� which is unknown. But 
we will see in Section “The distributions of the B̂0 and B̂1” that an estimate of it can
be computed, let us call it Ŝ2

E�, and that (I � 2)/(S2
E�) � Ŝ2

E� follows a �2
I�2 distribu-

tion. Therefore, as explained in Section 2.2.1 of this chapter, it appears that:

and

follow a Student distribution with I � 2 degrees of freedom. The conclusion in
Section 5.2.1 can therefore be applied.
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This explains why the “t” values, defined as: B̂0/var̂0.5(B̂0) and B̂1/var̂0.5(B̂1), are
often computed. As previously explained, they should be about greater that 2 to get
some confidence (level of confidence 90%) about the estimated values.

Properties of the Estimators B
–

0 and B
–

1

B̂0 and B̂1 are the Best Linear Unbiased Estimators An interesting result, due to Gauss and
Markoff is that, if hypotheses 1, 2 and 6 (above cited assumptions) are satisfied,
then B̂0 and B̂1 are the best linear unbiased estimators of B0 and B1; all the words
are important. Gauss and Markov never demonstrated that these values were the
best unbiased estimators, but that they were the best linear (linear meaning they lin-
ear in xi and yi) unbiased estimators. It is quite possible that other estimators – non
linear and/or biased – could be better estimators.

Malinvaud (Ref. [38], p. 95) insists on the fact that hypothesis 4 is not used in the
demonstration: it does assume nothing about the distribution of the deviations in
the population. He adds that “contrary to the belief sometimes held, the assump-
tion of normality of the deviations E� inside the population is not of basic impor-
tance for the theory”.

This demonstration is a bit long, but available in many books on statistics.

If Assumptions 1,2,3,and 5 Are Valid,Then B̂0 and B̂1 Are Consistent This means (see Ref. Malinvaud
[38], p. 88) that when I → � (the sample size increases indefinitely), then the vari-
ances of both B̂0 and B̂1 tend to 0, which means that:

This is an interesting result, but which, as usual, does not prove anything about the
particular values you got from the particular sample you are interested in.

If Assumptions 1, 2, 3 4 and 6 Are Valid,Then B̂0 and B̂1 Are Sufficient This nice property is demon-
strated by Malinvaud (Ref. [38], p. 99). Note that now the hypothesis of normality is
required.

Studying the Deviations Around the Dynamic Center for the Population

In Section “The dynamic center of the population” we studied the first part of the
decomposition of the cost distribution in the population: its dynamic center. We
found, without forgetting we had to make some hypotheses, interesting results.

It is time now to study the second part of it: the distribution of the deviations E�

around this dynamic center. This is also important because, in order to practically
apply the results found in the previous section, we need an estimate of their vari-
ances S2

E�.

About the Center of the Distribution of the E�
This center cannot be estimated from the sample: it is an hypothesis we have to
make: it is hypothesis 1:

�( )E
�

� 0

ˆ
ˆ
B B
B B

0 0

1 1
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→
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Of course the fact that the sum of the residuals in the sample is, in the classical
approach using the standard linear regression, equal to 0 is a hint in this direction,
but is does not prove anything about the individuals E�.

Estimating the Variance of the E� Around this Center
When studying a sample, the word “residual” was used: it designated the informa-
tion that could not be included in the dynamic center, due to observation errors, or
due to lack of luck in the sampling process, or due to missing variables, or due to
the wrong choice of the moving center, etc.

For the population, assuming – this is our hypothesis – a linear relationship
between the variables, we will use the terms “deviation”: in the population as a whole,
there is no “error” in the value of the variable Y and there is no sampling bad luck.
Therefore the differences between the “true”dynamic center (up to now we have only
been able to find an estimate of it) may only be due to:

● scattering due to human activities (if you are working on cost) or to inconsistent
cost accounting system,

● lack of variables.

The differences are then true deviations, the word “residual” being inappropriate.
It can be noted that the variance of the residuals (in the sample then) depends

only – whatever the number of variables – on the variance of the cost and the cor-
relation between the cost and the causal variables. This was established in Part IV.

Studying the variance of this distribution is a statistical property: it assumes we
were able to draw a lot of samples of the same size from the population. After that,
some computations are required.

These computations require making an hypothesis: this hypothesis, called 2
(assumption cited above), is that the distribution of E� around its center is normal
with a constant variance called S2

E�.
At this stage we can investigate two points: is this hypothesis 2 realistic or not?

Can we estimate this variance?

Checking Hypothesis 2 We would like this to be true, as the relationships we wrote
assume it is. Can we check it? As the only information which is available is the infor-
mation contained in the sample, we have to use it to confirm it or not.As usual when
dealing with a sample, the answer can never be a definite yes or no, but either “it is
very likely so” or “it is unlikely”, the likeliness depending on the required level of
confidence.

Technically the problem can be described as the following one: from the distri-
bution of the residuals e�i in the sample, can we infer they were drawn from a nor-
mal distribution of the E�?

Different authors built what is called tests of normality, some of them are simple
(such as just plotting the data on a normal probability paper) or rather complex
(Ref. Sachs [49], p. 322). Two tests are presented here.

Hypothesis H0 is: the distribution of E� is normal.

Test on Skewness and Kurtosis It is well known that the normal distribution presents a
skewness equal to 0 and a kurtosis equal to 3. Departure from these values may
witness a lack of normality.
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How much departure is allowed? As usual it depends on the level of confidence
you require. Tables were prepared and are available in statistical text books (Ref.
Sachs [49], p. 326).

Test of Kolmogoroff–Smirnoff The test of Kolmogoroff–Smirnoff is logic and interesting:
the idea is to compare the distribution of the e�i with what could be expected if they
were drawn from a normal distribution. This test works well for small samples,
which is quite often the case in cost estimating. It involves the following steps:

● The arithmetic mean e–� and the standard deviation se� of the residuals are
computed: this is rather easy if the standard least squares regression was used,
as then e–� � 0.

● Then the data (residuals) are centered and scaled: let us call them as usual cse�i (this
will allows to use the standard normal curve with mean 0 and standard deviation 1):

● Data (residuals) are grouped into classes of equal size; let w be this size. Refer to
Chapter 2 for deciding on the width w of the classes:

where R � emax �emin represents the range and I the total number of data points.
● The center of class k is referred to as ck and the number of data point for this

class as Ik.
● Then, for each class, this number is compared to what it should have been if the

distribution were normal.

From this comparison, a characteristic is computed and compared to tabulated
values (Ref. Sachs [49], p. 330).

Estimating the Variance S2
E� S2

E� is the variance of the true cost values in the population
(what we call the “deviations”) around their dynamic center.

The variance of the ei is in the sample, as usual, computed as:

It can be used for estimating the variance of the population by computing its expec-
tation. The result, of assumptions 1, 2 and 3 are considered as valid, gives:

The factor (I � 2) comes from the number of degrees of freedom of this distribu-
tion when the intercept is different from 0. It should be changed to (I � 1) if the
intercept is forced to 0.

An estimate of the population variance is therefore given by:
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It can be demonstrated (see Ref. Theil [56], p. 114) that this value is an unbiased
estimator of S2 and corresponds to the maximum likelihood estimator (see Ref.
[56], p. 126).

How Accurate is this Variance Estimate Ŝ2
E�? With the same hypotheses, one can establish that

the ratio:

has a �2
I�2 distribution. From this result a confidence interval for S2

E� can be com-
puted, for a given confidence level.

Example

Using the example mentioned at the beginning of this section, we find the follow-
ing vector of the residuals:

from which we compute se� � 83.805, ŜE� � 91.105 and the variances–covariances
matrix:

and therefore

B̂0 �572.972 with a variance equal to 2988
B̂1 � 101.081 with a variance equal to 215.887

The “t” values of these estimates are given by:

They give a satisfactory level of confidence about these estimated values.
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15.6.3 Using Multiplicative Deviations

Using multiplicative deviations is a simple application of the additive deviations.
Starting from the formula y � b0xb1 for the sample, we get for the population:

with B̂0 � b0 and B̂1 � b1. Their variances are given by:

where

is the estimated variance of the deviations of the cost logarithms around their
dynamic center in the population and:

If ln B̂0 follows a normal distribution with the computed variance, then B̂0 follows a
log-normal distribution of which the standard deviation is given by:

15.7 Using J Quantitative Variables

Using several quantitative variables is very similar – for the classical as well the
modern approach – to the case of two variables. The only difference is the general
use of matrices. This section just introduces the subject.

The set of data in the sample is therefore represented by two matrices: one is the
vector y

r
of the values taken for different products by the dependent variable Y, the

second one being the set of the values taken by the causal variables V1, V2, …, Vj, …,
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VP for the same products; if the intercept is not forced to 0 (which is the general
case), a column of 1, corresponding to a constant V0 must be added:

Let us remind for the sake of clarity, the conventions:

● There are J causal variables (or “parameters”), numbered from 1 to J, the current
number being j. In the matrix ||�x|| a column – except the first one which bears
the number 0 – is attributed to a causal variable. The variables are here either
quantitative or qualitative.

● There are I products, numbered form 1 to I, the current number being i. In the
matrix ||�x|| a line is dedicated to a product.

● The indexes always follow the rule xproduct,variable or xline_number,column_number.
● Small letters always refer to the sample values, capital letters being reserved for

the population.

In the analysis of the sample, it was showed (Part III) that the distribution of the
dependent variable could be split into two terms:

● A dynamic center of which – in the present linear case – formula was estab-
lished as:

where the b0 could take different values as a function of the qualitative variables.
● A set of “residuals” which took a value e�i for product I, if the additive formula

is used.

The advantage of this formulation is to replace a complex distribution, depending
on several variables, by just a formula, plus the distribution of one new variable.

We limit the presentation here to the classical approach; the modern approach
does not differ from what is previously explained.

The data are now represented by matrices.

15.7.1 Extension to the Population of Various Concepts

The hypothesis we start from is that there is, in the population, an approximately
true linear relationship between the dependent variable and the J causal variables.
The dynamic center of the dependent variable in the population, which expresses
this relationship, is then assumed to be:
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As the relationship between the cost Y and the causal variables is not perfect, we
write that for a particular object of the population:

where the Xi,1, Xi,2, …, Xi,j, …, Xi,J are the values of the parameters for this particu-
lar object , B

r
being the set of the Bj (with a first line B0 if the intercept is not forced

to 0) and E�i the deviation of the cost Yi for this particular object from the value of
the dynamic center Ŷi always for this object. It must be clear that for a particular
object of this population E�i is not random: it has a definite value, which of course
we do not know.

When we consider now all the objects in the population, the only thing we can
say about the E� is that this variable has a random behaviour because we are com-
pletely unable to forecast its value. From our perspective, it seems to randomly fluc-
tuate from one object to another one.

For the distribution of this variable we can make hypotheses, the first one being
that its expected value �(E�) � 0, meaning that the values of E� observed on a
large number of objects drawn from the population is equal to 0.

In the sample, we also admit that there is a similar relationship and we write for
each object of the sample:

and we were able, when trying to minimize the sum Σie2
�i, to establish that:

no hypothesis being required. From that an estimate of B
r

is considered (this was
called the “plug-out” principle):

15.7.2 What Can be Said About This Estimate B
r

?

The variances of the coefficients are given by the diagonal elements of the variances-
covariances matrix:

where SE� is the standard deviation of the deviations from the formula for the
whole population; it can be estimated by:
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where e
r

represents the vector of the I residuals relative to the I products (and therefore
e
rt
� ⊗ e

r
� � Σie2

�i) and J the number of quantitative parameters; the “minus 1” at the
denominator comes from the presence of the intercept: it would disappear if the inter-
cept is forced to be 0 (in such a case the data matrix has no column of 1). These equa-
tions need to make several hypotheses; these hypotheses were previously discussed.

How Far Is This Estimate from the True Value?

We are interested in the difference or error B
r̂

� B
r

between our estimate and its true
value. In order to compute it, we replace in the formula giving B

r̂
the vector y

r
(the set of

all the costs of our sample, which are the “true” costs of our products) by its definition:

which can be written since

or

Of course we cannot compute this expression because we do not know E
r

�. However
this expression shows that, whatever E

r
�, the error B

r̂
� B

r
is proportional to the

matrix (||�x||t ⊗ ||�x||)�1 we already met when studying the multi-collinearities
problems.We noticed that this matrix, if it is ill conditioned,could produce large val-
ues which will damage the variances and covariances of B

r̂
. The interesting point

here is that – always in the presence of multi-collinearities – it can also seriously
damage the error B

r̂
� B

r
. Of course we do not know – always because E

r
� is unknown –

for which component of B
r̂

this happens, but it certainly happens! This explains, as
we noticed it when studying the multi-collinearities problems, that some coeffi-
cients may be “illogical”, even it is not always so obvious as in the example we used.

What Are the Properties of the Estimate B
r̂

Under the same ordinary least squares (OLS) hypotheses already mentioned when
using one parameter only, the same properties can be demonstrated. Computations
are not difficult using the matrix notations.

The variances–covariances of the estimators are given by:

an estimate of SE� being given by:
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15.8 Using Qualitative Parameters

As already mentioned, qualitative parameters are most often required for finding
the dynamic centres. Before using them, we must nevertheless check if they are
useful or not.

When dealing with the sample, we found that, in order to do that, we had to check if
the important constraint (the relationship between the dependent variable and the
quantitative causal variable(s) is the same whatever the modalities of the qualitative
parameters) is fulfilled or not.Suppose the test was positive and that,consequently, the
equation giving the dynamic center of the sample includes qualitative parameters.

In order to use this equation for the population as a whole, we have now to check is
the positive result we got for the sample was not an artifact; if the test is positive this
equation will deliver estimates for the coefficients usable for the whole population.

In order to make the check for the sample, we made three analysis:

1. In the first one, called �, we do not care about the qualitative variables. We will
look for the dynamic center. The euclidian norm of the residuals is named, for a
reason which is explained in Chapter 11 �2

�.
2. In the second one, called �, we consider that the constraints are fulfilled and we

dealt the normal way with the qualitative variables. The euclidian norm of the
residuals is named �2

�.
3. In the third one, called �, we consider that the constraints are not fulfilled (the

relationship between the cost and the quantitative variable(s) may depend on the
qualitative variables) and we consider we have different sub-families depending
on the qualitative variables; each sub-family is dealt with independently. The
euclidian norm of the residuals is named �2

�.

Let us call, as usual, J the number of quantitative parameters, I the number of prod-
ucts and C the number of used modalities for all the qualitative parameters; to each
modality corresponds a different intercept (if we are using linear equations).

We now have to make hypotheses in order to go on. These hypotheses are quite
familiar:

● All the residuals computed in the three analysis are independent.
● Their distribution is normal with mean equal to 0 and the same variance (this is

the classical homoscedasticity hypothesis).

The fact that these hypotheses are familiar does not mean they are always satisfied.
They are reasonable and, if they were not, the BOOTSTRAP could help solve the
problem but we are only interested in the concepts here without entering into too
much complexity.

Distribution of the Euclidian Norms of the Residuals Vectors

Assuming these hypotheses are valid, the three �2
�, �2

� and �2
� then follow, according

to its definition, �2 distributions of which the number of degrees of freedom df�, df�,
and df� must be computed:

df I J
df I J C
df I C J
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What we win in the Euclidian norms of the residuals when we go from � to � (from
computing the dynamic center with no qualitative parameter to computing it with
all the qualitative parameters) can be written as:

because – due to an important property of the �2 distribution – it also follows a �2

distribution, of which the number of degrees of freedom is equal to df��� � C � 1.
On the same way, what we win in the euclidian norms of the residuals when we

go from � to � (from computing the dynamic center with all the qualitative param-
eters to computing C independent dynamic centres) can be written as:

which also follows a �2 distribution, of which the number of degrees of freedom is
equal to df��� � C � ( J � 1) � C � J.

Testing a First Hypothesis
We may have noticed in the sample that the gain �2

��� is important.
This means that the different intercepts we compute when using the qualitative

parameters are different for the sample. We want to be sure it is not an artifact: is it
reasonable to expect the same situation for the population?

What we can do in order to check it is to consider and test this H0 hypothesis: let
us suppose that all the intercepts are the same in the population. Is it realistic, then,
to compute the gain �2

��� in the sample?
Using one of the definitions of the F-distribution (see Chapter 3), we know that

the ratio

follows an F-distribution with [df���, df�] degrees of freedom.
If all the intercepts are equal (this is the H0 hypothesis), we expect that this ran-

dom variable takes a value equal to 0 for the population (we gain nothing in con-
sidering the intercepts are different). If it is different from 0 for the sample, we can
compute, for a given level of confidence, if we can or not reject the null hypothesis.

Working on an Example Let us take the same example as the one which was presented
in Chapter 11. The following values were computed: �2

� � 119904.39 (with df� � 28
degrees of freedom) and �2

� � 19268.89 which gives a �2
��� with df��� � 2 degrees

of freedom.
F��� � 11.75 consequently follows an F-distribution with [2,28] degrees of free-

dom. Looking at the F-distribution tables, we find that, given the levels of freedom
and the H0 hypothesis (all intercepts are identical):

● The probability that a value equal or higher than 19.5 be found is 0.05.
● The probability that a value equal or higher than 9.45 be found is 0.1.
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The computed value for the sample (11.75) has therefore a low – but not negligible –
probability to be found given the H0 hypothesis. The conclusion is that this hypoth-
esis can be rejected with a low risk: the intercepts can be considered as different.

Testing a Second Hypothesis
Given the conclusions about the first test, it is also interesting to check if different
formulae for the dynamic center have to be considered or not. This is equivalent to
check if it is reasonable or not to consider that the slopes (in the case of linear rela-
tionships) are equal?

The null hypothesis H0 is now: all the slopes are identical (this is the usual way to
deal with qualitative variables). In order to make this test, we made the analysis �
and found �2

� � 2719.64. Here again the gain is important and amounts to �2
���

with df��� � 2 degrees of freedom. Does this value favour accepting or rejecting
hypothesis H0?

We compute now:

As df� � 24, F��� � 10.31 follows an F-distribution with [2,24] degrees of freedom.
Looking at the F-distribution tables, we find that, given the levels of freedom and
the H0 hypothesis (all the slopes are identical):

● The probability that a value equal or higher than 19.5 be found is 0.05.
● The probability that a value equal or higher than 9.45 be found is 0.1.

We are here in a controversial situation: the probability to find a value of 10.31
under the hypothesis of all the slopes being identical is not far from 0.1. It is up to
the cost analyst to decide on what to do. Due to the fact that considering that the
slopes are identical is simpler, we would prefer not to reject the hypothesis.

Note: Generally speaking, when using qualitative variables a different result is
expected: we expect to find out that hypothesis H0 cannot be clearly rejected which
means that the constraint “all the slopes are equal” is acceptable. The example was
chosen in order to show that the contrary may happen and that therefore the test is
important and that the decision is always in the hand of the cost analyst.
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16 Building the Model

Summary

This chapter closes this part dedicated to the construction of a specific model.
It first tries to motivate the reader of the interest of building such a model.
Of course model building assumes that data are available, that they have been

analyzed in order to discover any potential problem, that correlations have been
studied, etc.

It also assumes that the difference between “sample” and “population” has been
clearly understood.

Once everything has been studied, model building is a rather easy task. The role
of the model builder is then to make several decisions.

All decisions are based on what is expected for the formula: When it is going to
be used? What is the precision which is looked for? Is the information available in
terms functional or physical?, etc.

The first decision refers to the variables that should be included in the model.
Some comments are made in this chapter, in addition to everything which has been
already said.

The second decision is the kind of formula which has to be selected. Among the
infinite number of types of formulae, the best compromise has to be found between
a complex formula which completely describes the data and the simple one which
is easy to handle.

The third decision is the choice of the metric to be used. This choice depends on
several things from an a priori knowledge of the scattering of the data.

When the formula has been built, its quality should be checked and quantified,
one of the reasons for this quantification being to be able to compare different solu-
tions. The second one, maybe more important, is to communicate the information
to potential users.

We insisted several times on the fact that several characteristics of a model have to
be decided by the cost analyst: data analysis helps a lot in this decision-making
process, but nevertheless the real decision is in the hand of the model builder. For
instance one may quote:

● What are the variables which have to be selected?
● How many variables should be kept?
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● What form should take the formula?
● What metric should be used?

The procedure is sometimes called “specification analysis”.
This chapter starts with some comments about the so-called specific cost.
It goes on with establishing some criteria for specification decision.

16.1 Why Should We Build a Specific Model?

This is obviously the first question to answer to. After all many people seem to be
quite happy with the use of the specific cost. Why should we then bother making
something more complex?

About the Specific Cost

The “specific cost” is the cost per unit of size: the cost per kilogram for mechanical
items, the cost per meter or square meter in the building industry, the cost per
cubic meter for excavation, the productivity (the inverse of the man∗day per
instruction) for software, etc.

Many people believe in the stability of the specific cost – inside a product family
of course, but sometimes also across product families, for product manufactured
by some similar technology.

In the vicinity of one data point, the use of the specific cost may seem reasonable,
unless of course a change of technology is required. Mathematically this could be
demonstrated with Taylor’s polynomial: in the vicinity of this data point (defined
by its size), the cost for an increment in size is given by the relationship:

However, there is no reason to believe that the derivative (∂cost/∂size) (which can be
called the “incremental cost”) should be equal to the ratio (cost/size), as Figure 16.1
geometrically illustrates.

Of course the incremental cost is more difficult to compute than the specific cost:
this may be the reason why the second one is more used than the first one! However,
if you want to use the specific cost for estimating purposes, checking it first is a
good practice.

The specific cost is largely used by many people, particularly by managers as a
quick test for making a judgment about a quotation. It is also sometimes used by
project managers for budgetary purposes. The reason may be that it is easy to
understand (the human mind thinks linearly!) and very easy to use.

The fact it is largely used, plus the fact it is potentially wrong, deserve some
comment.

Where does the use of this specific cost come from? The specific price is deeply
engraved in our culture: since our first childhood purchases, we learnt that apples,
meat, butter, etc. are sold at a specific price.Why is it so? Certainly not because their
specific cost is constant (we will return to it), but because it is convenient: imagine
how shopping would be difficult if the specific cost would depend on the quantity
you buy! It sometimes happens that retailers propose goods at a specific cost which

cost(size size) cost(size)
cost
size
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decreases with the bought quantity, but it seems to be more an appeal than a true
application of the variation of this cost.

It is not difficult to indicate, not to demonstrate, why the specific cost cannot be
constant: suppose you produce a piece of material weighting 1 kg and that the cost
is broken down into two components:

1. The raw material costing, let us say, €10.
2. The machining of this part, costing €100.

The specific cost is obviously 110 €/kg. Suppose now you double all the dimensions
of this piece of material. The new mass will amount to 23 � 8 kg and the cost can
still be broken into two parts:

1. The raw material, which will cost €80 , assuming that the cost of the raw mate-
rial increases linearly with the mass (it is not exactly the case in industrial 
procurement: the larger the quantity you buy, the better you are able to negotiate
the price, but let us forget this effect here).

2. The machining of the part. What is machined is not the mass but the surface of
the part; a first order of magnitude of the cost, assuming that the thickness of
metal to be removed is the same, could be proportional to the surface: €400 .

The cost of this new piece now amounts to €480 and its specific cost shifts from 110
to 60 €/kg. Note that the cost changes with the mass at the exponent of 0.7, not far
from the laws sometimes used by the people working in the engineering business.

This is a first “explanation” of the decrease of the specific cost with the size. But
there are others.

A second “explanation”, already mentioned when the “correction-by-constant
formula” was discussed, deals with the production of something. For machining a
part, or making a trench, or making anything such as boring a hole in your wall,
two costs have to be considered:

1. A cost for preparing the work, which can be considered, once again it is just a
first order of magnitude, as independent of the size of the work or slightly
dependent on it.

Cost given by
Taylor’s approximation

Cost given when using
the specific cost

True relationship

Size

Cost

Figure 16.1 The specific cost is generally not the incremental cost.
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2. A cost for making this work, which can be considered as proportional to its size,
if the size is properly defined (for instance the surface for machining a part, or
the volume for excavation).

This result in a non-linear behavior of the total cost.
A third,more basic,explanation was given in Chapter 13 of Volume 1: we show that

when the size is increased, for example, the proportion of “low” technologies in the
product increases faster than “high” technologies. As low technologies are cheaper
than high technologies, the product cost CANNOT grow linearly with the size.

A fourth “explanation” is linked to the industrial practice: if you have to dig a
trench of 10 m3 and another one of 10 000 m3, you will certainly not use the same
machine to do it. For the second one you will use a much more powerful and effi-
cient machine: it will produce the trench at a lower specific cost than the first one.

It is not too difficult to convince people that the specific cost should at least be
limited to a product family: after all the cost per kg of apples is different from the
cost per kg of pears.

It is more difficult to convince them that the relationship between cost and size
is not linear.

When discussing the subject with managers,1 they eventually agree on the sec-
ond “explanation”. For instance they take the example of the taxi driver who
charges first a fix price, and adds to it a price proportional to the distance – and
quite often the time – of the journey.

Most of the people know this effect and, in order to keep the specific cost they
believe in, decide to use different specific costs for different sizes: this is a first step
towards true relationships.

What is the risk of quoting at a fix specific cost? The risk is not difficult to assess:
you loose all the time!

Let us use Figure 16.2 as an example: the small circles represent the data points,
the full line the average specific cost which may be computed from them, the dotted
line the true change with the size of this specific cost. Both lines intersect for a size M.
If you decide to use the average value as the specific cost for your quotations:

● If you quote for a project size smaller than M, you will win the contract (your
competitors will use a higher specific cost) but you will lose money on it,
because your cost is too low.

● If you quote for a project size larger than M, you will loose the competition
(your competitors will use a smaller specific cost).

● Only if you quote for a project of size in the vicinity of M you can expect to win
the contract.

Two conclusions at this stage:

1. Check, with the methods developed in this book, how does the cost change with
the size.

2. If you want to use a constant specific cost, do it. But at least use a constant specific
cost inside a limited range and be careful.

1 It is true, in many companies, that the cost of materials appear to the project managers to have a con-
stant specific cost. The procurement department negotiates with the manufacturer a price which
depends on the quantity the company is going to buy for the following year. Once this is done, this
department “resells” the materials to the project managers at a fix specific cost, whatever the quantity
they need: for them it appears that the specific cost is constant – at least during a year and probably
much longer if the company always buys about the same quantity per year.
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16.2 How Many Variables?

If the specific cost is not considered reliable enough to make a cost estimate, the idea
is then to create a “specific” model which means a model that can be used for a 
dedicated product family.

The first question to answer to is then: How many variables should be kept for
building such a model? And what variables, if there is a choice?

The answer to this question is sometimes linked with the type of formula which
will be selected. It may happen that the “best” variables for building an additive for-
mula are not the best one for building a multiplicative one. It means that the choice
of the variables may have to be made several times, with different formula types.

We assume here a linear relationship is investigated.

Qualitative Comments

Before any choice might be done, some qualitative comments can be made:

1. The formula must make sense.What we mean is that it has to be acceptable from
an engineer’s point of view. We already saw this problem when dealing with
collinear variables (Chapter 6). Another point of view to be considered is when
engineers strongly believe that such or such variable should be included: the for-
mula has to be used by people; it is sometimes better to build a formula slightly
less satisfactory than the one the cost analyst would prefer, than to build one that
the potential users would reject.

2. This question has a more fundamental background: must we use any preliminary
information that does not appear itself when working with the sample? We
believe so. As it was several times reminded, a sample is just (supposed to be) the
result of a random drawing from a population and it is quite possible that an

Size

Average specific cost

True specific cost

Specific cost

M

Figure 16.2 The danger of using a fix specific cost.
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interesting phenomenon, due to bad luck, escaped from the drawing process.
After all engineers may have good reason to consider that one variable must be
part of the formula. It is always better of course to check their statement, if we can.

3. Although it is obvious, it must be recalled that the variables which are included
in the formula must be known at the time the formula will be used. It serves no
purpose to build a “perfect” formula which cannot be used.

4. Functional or physical variables? This question was already mentioned but is
worth repeating. Functional variables are variables which describe the product
from the user’s point of view: What can he/she expect from the product (examples:
power,flow, load,etc.)? Physical variables describe the product from the engineer’s,
the manufacturer’s, point of view: mass, number of parts, materials, etc. The cost
analyst should remember that:
– the formula must fit the needs of the people who uses it,
– the user of the formula may be more interested, depending on his/her needs at

a particular time, in the capacity of making trade-off analysis than on just get-
ting a cost. Trade-offs analysis have to be based mainly on functional variables.

Functional characteristics are especially useful in the early phases of a project,
physical ones becoming more interesting when some definition of the product is
already available. Therefore the choice of the variables depends on the time the
cost estimate with the formula will have to be done. Generally speaking it is often
a good idea to build two different formulae, one using functional characteristics,
the other one physical characteristics.

5. How many variables should be included in the formula? Keeping in mind what
has already been said, there is always a trend to add as many variables as possi-
ble, with the hope they will improve the quality of the cost forecast. This is some-
times true, if variables are not collinear. But one may always ask the question: Is
it worth it to keep variables which bring only a marginal improvement of the qual-
ity, as measured for instance by the R2?

This point is strongly correlated with the number of data points you have. It
must not be forgotten that a specific cost model is a set of two things: a formula
giving the dynamic center plus the distribution of the deviations around this
dynamic center. The variance of this distribution is estimated from the sum of
the squares of the residuals in the sample, divided by I � J, where I represents the
number of data points and J the number of causal variables, quantitative or qual-
itative (including the intercept, if any). When J becomes closer and closer to I,
then this variance increases very quickly. This means that you will get imprecise
coefficients or even that you will not be able to quantify the model quality.

We all know that, in the cost domain, the number of data points is always limited.
A practical rule of thumb is therefore to get, if it possible, at least 5 data points per
variable. This means that if you want to use 2 variables, try to get at least 10 data
points. This rule can be alleviated when the number of variables increases, but not
too much. That being said, you may have to work with less data points but be care-
ful about the formula you get, except if you are completely confident in the cost val-
ues of the database you use.

6. For deciding about the variables to be included as “cost drivers”, one might think
it is a good idea to get some information about the manufacturing process.
Of course it is difficult to oppose to this formulation. Nevertheless as the title 
of the book reminds it, the purpose of a specific model is to be able to cost esti-
mate before the operations sheets ate prepared; this means from the product
description (functional or physical). However, it is sometimes a good idea to
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check the consistency of the detailed cost estimating process by building models
from the information available in these sheets; some people even think that one
the primary purpose of specific – or even general – models is to do it and also to
“debug” database. Why not, of course? And models are very powerful to do it, but
it is a slightly different problem.

Let us comment a bit more about this subject, because it sets a limit to the 
specific – or even the general – modelization process. Suppose you have a set of
costs for products you consider as similar enough to be considered as belonging
to a product family. You try to build a model from these costs but it does not
work properly. Investigating the question you discover that some products were
machined on a new, very efficient, machine because it was available, whereas
other ones were made on more conventional machines. You also discover that
small products were machined several at a time because their size allows it; etc.
The obvious conclusion, if we are to build one model from data, is that the man-
ufacturing process should be about the same or to add other parameters.

7. The number of parameters to be included in a formula depends also on the
homogeneity of the product family. In a very homogeneous one, one variable is
enough (the product size), but it is rather rare in the cost domain.

Using qualitative variables is an interesting subject which should be consid-
ered. If you do it, check about the right use of these variables.

8. Try to avoid, as much as possible, subjective variables. Refer to the comments we
made in Chapter 1 about this subject.

16.2.1 A Simple Selection: The “Stair Case” Analysis

A simple procedure for deciding about the variables to be included in the formula con-
sists in computing all possible formulae, using from one to all variables. If the number
of variables does not exceed three, this solution can still be done manually although it
represents already the computation of seven formulae. If more variables are existing,
this becomes time consuming: it is then possible to automatize the process.

The procedure involves 6 steps:

1. The cost analyst selects the formula he/she thinks is suitable.
2. He/she selects the criterion from which the procedure will compare the results:

the procedure has to make some choices and it must “know” on which criterion
the choice has to be based.

3. The procedure then, using just one variable, makes all the computations and,
according to the selected criterion, decides what is the parameter which gives the
best results.

4. Now using two variables by adding, one at a time, a new variable to the already sel-
ected variable, it determines what is the best couple, always according to the same
criterion.

5. It then searches for the third important variable, then the fourth, etc.
6. Until it cannot improve the results.

The procedure is fast and efficient. It can be improved by starting, at step 3, by
using two variables simultaneously: it may happen that, in a couple, no variable is
particularly interesting but that, as a couple, both variables are a good choice. But
this is rather rare, but we already saw it happen.
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This can be easily implemented. The result, for the example we previously used,
detecting the R2 as the criterion, appears in Figure 16.3:

● The most interesting parameter is the number of connections: used alone, it
provides an R2 equal to 0.907.

● The second more interesting is the number of components: added to the num-
ber of connections, the R2 goes to 0.918.

● The third one is the number of boards (R2 goes to 0.925).
● Whereas the use of the mass gives a very marginal increase, as R2 goes only to

0.927 only (and do not forget that the mass is strongly correlated to several
other variables).

From this result it is possible to conclude that, assuming of course that all the
parameters are known at the time the estimate is needed, the mass can be discarded.

16.2.2 A Logic Approach Based on “Partial” Regressions

This section illustrates what can be done for parameters selection. It is also based
on the increase of the coefficient of determination R2, but on a more “in depth”
analysis. It uses the step-by-step analysis already developed in Chapter 6, about
visualization.

We have to select quantitative parameters.This requires computing how much each
parameter does contribute to the R2. The procedure consists to work in 3 steps:

1. A linear regression (ordinary least square, OLS) is made for y on all the variables –
the intercept being considered as a variable – except one, let us say xj (one column
of the ||�x|| matrix), which is therefore removed from this matrix. The new matrix
is called ||�x[•,j]||.

2. Then a regression is made for xj on the same “reduced” matrix.
3. And eventually the residuals of these two regressions are simultaneously com-

pared.These residuals are obviously “parents”as they are based on variables on the
same matrix. Suppose the residuals are about the same: this means that xj contains
information which could be very useful for explaining the residuals of y.

Introducing Some Notations

For making the computations, in order to make the presentation as clear as possible,
we need to introduce some notation.

We investigated in Chapter 3 two linear regressions for each variable Vj:

● y
r

on ||�x[•,j]|| on one hand. We call e
r
(y, x[•, j]) the residuals of this regression:

the symbols between parenthesis reminds us where these residuals originate

0.907 Connections

Connections–components

Connections–components–boards

0.918

0.925

Figure 16.3 A stair case analysis.



Building the Model 343

(the vector and matrix notations are removed from this parenthesis in order to
alleviate the notation). Note that the coefficients bk,x[•,j], related to variables Vk
(k # j), of this regression are not generally equal to the coefficients of the full
regression, up to now called bj; it is the case only if all variables are orthogonal.
The multiple correlation coefficient of this regression is noted Rj.

● x
r

k on ||�x[•,j]|| on the other hand, and we call its residuals e
r
(xk, x[•,j]). This is the

regression of parameter j on all the other parameters. We found that:
– the slope of this regression is equal to bj which is the coefficient of the full

regression of yy
r

on ||�x||,
– and its residuals are the residuals of the full regression of yy

r
on ||�x||.

Now we have to investigate how much these residuals are related.
Theil investigated ([56], p. 171) the correlation of these residuals e

r
(y, x[•,j]) and

e
r
(xk, x[•,j]). He called rk this partial correlation coefficient and demonstrated the

interesting relationship:

From this relation, it is clear that the contribution of variable Vj to the coefficient of
determination is given by:

One Example

Let us work on the example presented in Chapter 6. We have five variables: the
intercept, the mass, the number of connections, the number of components and the
number of boards (Figure 16.4).

A regression of y on all the variables leads to R2 � 0.927. The following figure
presents the results of the computations on partial regressions.

R R r Rj j j
2 2 2 2(1 )� � � �

1� � � � �R R rj j
2 2 21 1( ) ( )

Omitted variable
( j )

Intercept 0.166

Mass 0.925

Number of components 0.908 0.205 0.019

Number of connections 0.883 0.374 0.044

Number of boards 0.920 0.089 0.007

0.7510.901

0.0020.025

R2
j

r 2
j

Contribution
R2 � R2

j

Figure 16.4 The multiple and partial correlations for the example.

What conclusions can be drawn from these computations?

1. The contributions follow exactly the hierarchy found in the simple solution. The
advantage of this logic solution is that the intercept is added.
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2. This intercept explains a lot of the residuals in the full regression. This probably
comes from the fact that the slopes are rather small.

3. A high value of rj
2 which quantifies the correlation between the residuals 

ee
r
(y, x[•,j]) and e

r
(xj, x[•,j]) is an interesting feature: it shows that the residuals on 

y when parameter j is not selected can largely by explained by this param-
eter, which is therefore probably a very important parameter: large rj

2 must be
looked at.

4. When Rj
2 is large (which is another way to look at the correlations between param-

eters), one cannot expect an important contribution of parameter j to the R2: the
formula given on the previous page quantifies it and the example illustrates.

5. When rj
2, the correlation between the residuals are small; this means that param-

eter j does not really “explains” the variations of y. This is the case, for instance,
of the mass.

6. You may have noticed that the sum of the contributions, here 0.823, is not equal
to R2. This comes from the fact that, in the computation of R2, the number of
products and the number of parameters should be taken into account in order to
produce the “adjusted R2”:

16.2.3 The “Press” Procedure

This procedure was proposed2 by D. M.Allen. It is based on the deletion of products.
When product i is deleted from the observations, the new value of the residual

for this product i is given by:

where hi,i is the diagonal element of the HAT matrix, corresponding to product i.
The “press” value, which stands for “prediction sum of squares”, is given by:

should be as small as possible, the logic being that the residuals should be as small
as possible, even when one data point is deleted.

Allen recommends to make all the regressions, using one, then two, etc. variables
and then to keep the solution which gives the less press. Of course the amount of
computations is rather high!
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2 Allen. Technical Report No. 23. Department of Statistics, University of Kentucky, 1971.
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16.2.4 The Residual Variance Criterion

Suppose we have two sets of causal variables and that we make regressions on both
sets; one set is the correct one, the other one being the incorrect one. Theil showed
([56], p. 543) that, given some hypotheses, on the average, the residual variance esti-
mator of the incorrect set exceeds that of the correct one.

He concludes that this justify the selection of the set with the smallest residual
variance estimate. This is an interesting result, but which is true only on the aver-
age (which means the mathematical expectation) and therefore says nothing about
your particular case study.

16.2.5 What to Do with a Limited Set of Data?

We already insisted several times about adding variables to get as most as possible
a complete description of the products gathered for preparing a specific model.

The first thing to do is obviously to get as many products as possible in the prod-
uct family for which you want to build a model. But there are circumstances, which
are not rare, where the number of products is limited. You should nevertheless get
a good description of these products; consequently you may have several variables
you would like to use in order to “explain” the cost.

A good rule of thumb already mentioned is to get about at least five products per
parameter. You could, mathematically speaking, build a model including as many
products as you have parameters. The inconvenience is that you do not have the
faintest idea of the validity of this model.

Another solution is to use a step-by-step analysis:

1. First build the formula for the dynamic center of the cost distribution with just
one variable and no more than two coefficients, whatever the formula type. This
variable should be related to the products size:

2. Then compute the residuals around this dynamic center. These residuals should
be, whatever the formula, the additive ei�.

3. Try afterwards to correlate these residuals with another variable; as you have 
as many residuals you have products, this remains possible. For doing so you
compute the correlation between these residuals and all the remaining variables
and select the one which presents the highest correlation (do not forget that you
can establish, if it is needed, a correlation between a quantitative variable – the
residuals – and a qualitative parameter).

4. Establish the formula giving the dynamic center of these residuals according to
this second variable:
– if this variable is quantitative, you get a second relationship such as:

e g b b x ei i i� �
� �(1)

3 4 2
(2)( , , ),

y f b b x ei i i� �
�
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– if it is qualitative, you may group your products into sub-families, as far as the
qualitative variable is concerned and decide about a constant for each modal-
ity of the qualitative variable:

5. As you were using additive residuals, you may now write if variables V1 and V2
are not correlated:

You can of course go on,“explaining”, one after the other the residuals with new
variables. This procedure is of course a little time consuming, although modern
software can prepare that very easily. The main advantage of it is that you keep a
complete visibility of the process and you see immediately how adding a variable
allows to improve the quality of the model.

If V1 and V2 are correlated, you should, before going to step 4,“decorrelate” them.
For doing that, follow the procedure described in Chapter 2 under the name “step-
by-step” analysis:

● You establish the formula giving the dynamic center of y as a function of V1 as,
for instance, if the correlation is linear:

where zi is the residual of the operation.
● Then you establish the link between V1 and V2:

Using such a formula is not difficult: you just have to follow the procedure 
backwards.

16.3 What Kind of Formula?

This is an important step when developing the formula to find out the “dynamic
center” of the cost distribution in the sample.

Introduction

Throughout the chapters of this volume, we mentioned analyzing the data with the
purpose of building a model consisting in the sum of one formula (the “dynamic
center”) and the distribution of the residuals.

But a cost-estimating model might be more complex than that: it can include
several formulae, organized in a chain, each formula computing the value of an
intermediate variable that will be entered in the following formula. If the variables
are independent and can be computed from other independent variables, this solu-
tion presents no difficulty at all.

But the situation might be more complex, as the following example illustrates:
suppose you are interested in the development cost of products belonging to a
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product family. You have data and would like to use them; however these data are
“polluted” by another variable, let us call it “experience”, which is a continuous
variable. You can of course attribute an experience value to each product (from 0,
meaning no experience at all, to 1, meaning the designers will just have to copy an
existing design), but doing so you force the model to apply to the variable “experi-
ence” the same law as the other variables (for instance a law in power), whereas the
influence of the experience may not follow at all such a law.

Another solution is possible; it consists in several steps. Suppose you decide that
you want to build a model based on what the cost should be for a development
when no experience is available; then the level of experience will be used to reduce this
“0 experience development cost” to the expected cost taking into account this level.
The steps are then the following ones:

1. You build a scale of experience, for instance from 0 to 1. This scale – which, to
start with, is very subjective – gives examples of what is meant by several levels
of experience. It is then applied to each product in the database.

2. You “guess” what the relationship for taking into account the level of experience
should be, for instance, a linear or sinusoidal relationship going from 1 when no
experience is available, to 0.1 (or any other figure you can estimate when inter-
viewing people who met this situation before) when a full experience is available.

3. You use this formula to normalize the cost to a 0 experience cost.
4. You then create a dynamic center, where the experience does not appear any

more, linking the normalized cost to other variables. This dynamic center gener-
ates a set of residuals.

5. You compute the correlation between the level of experience and these residuals.
Ideally no correlation should exist, but it is generally not the case immediately.
Analyzing this correlation should suggest how to improve the relationship men-
tioned in step 2; as you are dealing with one variable only, the use of the graph is
the right tool to be used. This analysis may suggest:
– checking the level of experience attributed to each product: after all, you may

have been too optimistic or pessimistic for such or such product;
– rebuilding the scale or, preferably,“reguessing” the relationship mentioned in

step 2.
6. You restart the process several times until a satisfactory output appears.

This procedure allows to combine subjective ideas and computations in a way
that is clear: computations allow to remove a lot of subjectivity from the ideas.

Building a Formula

It has been repeated that the selection of the formula type is a decision, as no algo-
rithm can be used to automatize it. The choice may be based on previous experi-
ence, preconceived ideas or testing different kinds of formulae. Nevertheless it
must not be forgotten that a formula can very well fit with the data available in the
sample but this does not prove it is really valid for the whole population.

For this reason we always recommend to check the formula type with experienced
people: if, for example,a linear formula is selected,does linearity make sense with such
or such variable? It can very well happen that an interesting potential formula can be:

ŷ b b x b xb
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which is not easy to establish (looking at the residuals on a preliminary formula
might help) but quite possible.

The cost analyst should never forget that the mathematical treatments are there
to establish the values of the formula coefficients, not to decide about the shape of
the relationship.

Now, let us remind the cost analyst that there are four “basic” formulae:

1. Linear, or additive: This formula is very basic but rarely the best one when deal-
ing with cost; however, it must be considered for small product sizes:

2. Multiplicative: This formula can be chosen as soon as the product size is not small:

3. With a correction by a constant: This formula synthesizes both linear and multi-
plicative formulae; it should therefore be considered when the product sizes goes
from small to large values:

4. Exponential: This formula may give better results in some circumstances,but should
be used with extreme care outside the domain of definition of the product size:

The cost analyst must also not forget that variables are there in order to palliate
inhomogeneities in the product family. In this respect, the use of qualitative vari-
ables is, when dealing with cost, very often compulsory.

16.4 Selecting the Metric

If your data are not scattered (you are lucky!) you may use any kind of metric. In
such a case use the simplest one: the linear regression (OLS).

But it is rarely the case in the cost domain: selection of the metric becomes
important when the data start to be scattered, let us say when R2 becomes less than
0.9, which means the correlation coefficient less than 0.95. It becomes critical when
this R2 is less than 0.8 (or the correlation coefficient less than 0.9).

The question is dealt with in Part III. Generally speaking:

1. consider using the metric defined by the median;
2. if you want to use the standard linear regression,do not forget to correct for its bias;
3. if the range of your product sizes is large (let us say larger than 3 and, at fortiori,

10) the metric defined by a ratio should be preferred, the most common one being:

with � generally equal to 2.
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4. if a few data points are far from the main set, you may prefer, if you want to keep
them in the formula, to use the metric defined by the biweight.

And never forget that building a formula must be preceded by a careful data
analysis, a search for potential outliers and the resolution of problems which may
be caused by multicollinearities.

16.5 Quantifying the Quality of the Formula

16.5.1 Introduction

No algorithm can tell the cost analyst about the real, or predictive, quality of a cost
model. The cost analyst is the only person who may say that “the model does make
sense”, which is eventually the most important thing about a cost model.

Once it has been decided that the model does make sense, algorithms can help
give some information about the precision with which future estimates can be
made. These algorithms are all based on the analysis of the residuals; this is the rea-
son why this analysis is an important step in establishing a formula: the smaller the
residuals, the better the estimates.

Therefore the standard error of an estimate is an important piece of information
about the quality of a specific model. It can be directly computed, as it is explained
in Part IV of Volume 1.

However, it is time consuming and one would prefer to get a synthetic informa-
tion about this quality. A very good information is provided by the variance of the
formula coefficients; these variances are of course strongly correlated to the stan-
dard error of the estimate. They have been computed in details.

What about having just a number which could quantify the quality of a specific
model and which could easily be used for comparing different formulae? This sec-
tion is devoted to the search of such a number.

16.5.2 Numbers Directly Based on the Residuals

There are a lot of numbers which can be built. This section proposes several ones
and you can certainly build your own: the best numbers are the ones you are used to.

Numbers Directly Based on the Sample Values

One could start by computing the sum of the residuals �ie�i or their average absolute
value �i|e�i|/I. However, in the cost domain (as previously mentioned) relative
residuals are more indicative than their values, especially if the cost range is large.
We therefore turn towards relative values.

The easiest number to compute is the total percentage – if it is expressed in 
percentage – of relative residuals (TRR) (sometimes called “total bias” but this
appellation has not our preference) defined as:

TRR 100 100� �
�
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where e�i are the additive residuals. A very low value tells that the built dynamic
center goes very well “in the middle” of the data points, at least for our purpose.

But this number is difficult to understand, because it depends on the number of
data points on one hand and because negative values can very well be compensated
by positive values, giving an illusion a high quality model: a dynamic center can
very well go exactly in the middle (the value of the TRR is then 0) of the data points
but the model may have a very low predictive quality.

The simplest value we prefer is the ARR or “Average of Relative Residuals”
defined as (in percentage):

This value is very easy to understand: if you find a value of 5%, it means that, on the
average, your data points are at 5% of the dynamic center. There is no need to be
trained on statistics to understand it. It should nevertheless be checked with a view
on the graph of the residuals: a small value may hide the fact that you have a lot of
very small values and a few high ones (are not these data outliers?): the sign test
may also help discover that.

The drawback is that it has no statistical property: it is, generally speaking, very
difficult to compute with absolute values. For this reason statisticians prefer to
work with the e2

�i: we will find them in the next sections.

Numbers Based on Estimated Values for the Population

You want to be sure that the model you built is satisfactory for the whole popula-
tion: if it is satisfactory for the sample, it is a cause of satisfaction, but what about
the population?

You have no way to check if the dynamic center you computed goes exactly
through the distribution of the costs for the whole population. We established in
Chapter 15 that, given some hypotheses, the coefficients of the formula have no
bias. This is fine, but it is a statistical property which does not say anything about
the particular formula you just built.

So we are not completely sure about the center (static or dynamic) of the cost
distribution for the population.

However, we saw that the variance of the distribution of the deviations, always
given some hypotheses, around this center can be estimated by:

where I is the number of data points, J is the number of parameters (not including
the intercept). Some model builders, in order to work with relative deviations, pre-
fer to use:
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from which the “standard error” of the deviations, also called the standard error of
the estimate which means the same thing, can easily be computed as:

in percentage.

16.5.3 The Coefficient of Determination R2

The R2 is one of the most frequently used global test about the quality of a specific
model. Many cost analysts look first at this “coefficient of determination” for quan-
tifying the quality of the formula.

This R2 is easy to understand using the additive residuals; this is one of the rea-
son we advocated, whatever the way the residuals are computed, to always, at the
end of the process, compute the additive form of the residuals.

Let us remind the notations: the dynamic center of the cost distribution is given
by ŷ. For a particular product of the database we write:

when the residuals e�i are defined as additive.An important value is given by �ie2
�i.

For a Linear Formula Using the Ordinary Regression Analysis (OLS)

Using the standard linear regression, �ie2
�i is precisely the quantity we tried to

minimize and from the minimization process 3 the values of b0 and b1 were com-
puted (in the case of one parameter only):

Once the regression is made, what remains is given by:
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3 For simplicity purposes, the discussion here is based on one parameter only. It can obviously be
extended to any number of parameters.
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As this value is not dimension free and as we wanted – as we are used to when com-
puting correlation coefficients – to get a value between 0 and 1, with 1 being syn-
onymous to something good – we may define R2 as:

This expression does not require any hypothesis and therefore is always valid. It
can be used for any formula, built from any metric, as soon as the additive residu-
als were computed (which does not mean that the sum of their squares was mini-
mized by the metric: this is something different).

Let us get another expression of this formula. One can write:

In the second expression the first parenthesis is the difference between the cost val-
ues and their average, the second being, because (this is valid only for the linear
regression):

and therefore 
u
ŷ �

u
y, the difference between the nominal cost and their average. Let

us develop this second expression:

Fortunately enough (this is only true also for the linear regression), the third term
of the second expression is equal to 0, as the reader may prove it by developing it
and using the values of b0 and b1. We then have a second expression of this R2:

which is generally the way the R2 is defined. Notice that this presentation is only
valid if the linear regression (OLS) was used for computing the values of ŷ (other-
wise the square term of the preceding expression does not vanish).

A third expression can be found in developing it. We find:

R

x x y y

x x y y

i i
i

i
i

i
i

2 �

� �

� �

( )( )

( ) ( )

2

2 2

∑

∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∑∑

R
y y

y y

i
i

i
i

2

2

2)
�

�

�

( ˆ )

(

∑

∑

[ ˆ ] ˆ( ) ( ) ( ) ( ) (2 2y y y y y y y yi i
i

i
i

i
i

� � � � � � � �2 2∑ ∑ ∑ yy y y yi i
i

� �)( )ˆ∑

ˆ ( )y b b x y b x b x y� � � � � �0 1 1 1

e y y y y y yi i i
ii

i i
i

�
� � � � � �2 2( ) (ˆ [( ) ˆ )]∑∑ ∑ 2

R
e

y y

i
i

i
i

2

2

2( )
� �

�

�

1
∑

∑



Building the Model 353

which is precisely the square of the correlation coefficient between x and y (see
Chapter 5).

An Easy Interpretation of the R2

All the formulae presented upwards do not give an intuitive interpretation of the
coefficient of determination R2. The following paragraph, even if it lacks mathe-
matical rigor, allows for such an easy interpretation.

Statisticians generally consider that the average value 
u
y does not convey any

information for the simple reason that, if all the data points have the same value of
the dependent variable whatever the value of the causal variables, no correlation
can be established with any other variable: they consider they know nothing (about
possible relationships between variables) and they are unable to “explain” the value
of this dependent variable.

Let us then define the level of information which is available in the sample as4

�i( yi �
u
y)2: it is the square of the differences between the observed values and their

average; if all observed values are identical to the average, then this level of infor-
mation is 0, as mentioned in the previous paragraph. The level of information
which is lost when the set of observed values is replaced by the dynamic center of
the distribution is therefore given by:

or

and the level of information which is saved in the dynamic center by �i( ŷi �
u
y)2.

According to the formula given upwards, we can write:

information available in the sample � information saved in the dynamic
center � information lost in the residuals

which gives a convenient interpretation of the formula:

Consequently if you multiply R2 by 100, you may say that it represents the per-
centage of available information which is incorporated in the dynamic center, or
that 1 � R2 represents the ratio of the information lost on the available informa-
tion. The obvious consequence is that, as we want to incorporate as much as possi-
ble of the available information as possible in the model, we wish to get R2 as close
as possible to 1 for this model, whatever the model or the metric.

Application to the Population
The value of R2 is of course computed for the sample. Is it reasonable to apply its
value to the whole population? Let us call5R̂2 the estimated value of the coefficient
for the population.
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4 We know we depart from Shannon definition of information. Our purpose is not to build a theory of
information, but to give some perspective in the real meaning of the coefficient of determination.
5 The purpose is always to distinguish between the sample and the population.
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As explained in Chapter 15 we cannot respond directly to this question. The only
thing we can do is to test the H0 hypothesis R̂2 � 0 (Y and V1 are independent in the
population). If it is the case, what can be the distribution of the R2 observed in a
sample of size I? If the distribution of Y and V1 are both normal6 (which is a strong
hypothesis!), then:

follows a Student distribution with I � 2 degrees of freedom.
The center of this distribution is of course equal to 0. If we accept a level of con-

fidence of 90%, it can easily be computed that:

● for I � 10, we will reject the hypothesis if R2  0.3;
● for I � 20, we will reject the hypothesis if R2  0.27.

Do not forget that says nothing about the true value of R2 in the population.

A Correction
A correction can be used to estimate the value of R̂2 for the population. It can be
built from the same formula as the R2 taking into account the following modifica-
tions (based on the average information per product):

● An estimated value of the variance of the deviations in the population is given
by (where I � J � 1 becomes I � J if the intercept is forced to be 0):

This represents the average amount of information lost per product.

● The average amount of information per product is given by:

The term I � 1 comes from the lost of one degree of freedom due to the compu-
tation of

u
y.

Then we can write:

If I � J � 1, then necessarily �i e2
�i � 0 and R̂2 is not definite, which is normal (the

division 0/0 is not defined).
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What Does R2 Says About the Values of B0 and B1?
Not that much. Malinvaud ([38], p. 91) wrote that “this coefficient is not particularly
interesting” adding that for small samples, which is often the case in cost estimat-
ing, R2 can be high although the variances of B̂0 and B̂1 may be high, whereas for a
large sampleB̂0 andB̂1 may give exact values of B0 and B1, although R2 remains fairly
low. Consequently R2 must really be seen as the information contained in the
formula, not a test about the coefficients.

Nevertheless one can easily demonstrate that:

which means that the closer R2 is to 1, the less is the variance of the slope (this is
logic).

For Any Formula Not Using the Standard Regression Analysis

When the standard regression analysis is not used, the equality:

is not valid anymore because the cross term:

does not vanish: using this formula may lead to values of R2 higher than 1, which is
rather embarrassing!

However, the formula:

which uses only the residuals and the level of information which is available in the
sample, is still valid and can be used as an image of the information which is incor-
porated in the model. For this reason we always define the R2 with this expression,
whatever the formula type and the metric used.

16.5.4 The Fisher Test

The Fisher test (F-test) has a very limited interest for the cost analyst. But it is part
of the panoply of statistician’s tools and therefore deserves a comment.
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For a Linear Formula Using the Standard Regression Analysis

The F-test is a test of the steepness of the slope b1 in the relationship between 
Y and V1.

The interest of this test comes from the fact that the statisticians do not know
what they are looking for: they get a lot of data, with a lot of variables, and they try
to find out some correlation between these variables, whatever they are. So they
compute the dynamic center of the distribution of their data and find some slope
b1 (if only one parameter is used).

If this slope is large, they conclude that the causal variable they are investigating
has an important influence on the dependent variable: they may be on the path of a
discovery.

If, however, this slope is small, they consider that this causal variable has very lit-
tle influence on the dependent variable and can be discarded: the dependent vari-
able is more or less scattered around the average value 

u
y: the sample does not

contain for them, as we mentioned it earlier, any really usable information.
Therefore they decided to prepare a test for checking the importance of this

slope. This test is based on the H0 hypothesis of b1 � 0 in the population. The sam-
ple is then used to validate or invalidate it.

The construction of the F-test follows about the same logic as the one indicated
for the construction of the coefficient of determination R2. It starts from the level of
information which is available in the sample and decompose it:

which can be simplified, due to the fact that the square term is equal, for a linear
formula built from the standard regression analysis, to 0; therefore we can write:

which can be read the following way: the information available in the sample is
equal to the information incorporated in the formula, plus the information lost.

An interesting figure to be computed in then the ratio of these two figures:

The higher this quotient, the more pleased we are. It would then be interesting to
use this quotient to test the H0 hypothesis of b1 � 0. In order to do that, we must
make a small modification to it in order to use a well-known distribution:

● First it can be shown that:
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(where 1 is the number of degrees of freedom of the numerator and S2 the variance
of the deviations inside the population) follows a �2 distribution with 1 degree of
freedom.
● Second it was already shown that:

also follows a �2 distribution with I � J � 1 degrees of freedom.
These two variables being independent, their ratio follows a F(1, I � J � 1) distri-
bution if b1 � 0. The F distribution is defined in Chapter 3.

To test the hypothesis we compute the value of this ratio: if the value is higher
than a threshold, then we conclude, with a given level of confidence, that this value
has little chance to be found in a sample drawn from a population with b1 � 0 and
we reject this hypothesis. For example, with a confidence level of 90%:

● if I � 10, we will reject the null hypothesis if the ratio exceeds 3.46,
● if I � 20, if the ratio exceeds 3.01.

For a similar scattering of the yi around the dynamic center ŷi, the value of the
quotient will be greater if the “distances” between the dynamic center and the cost
average is high: this is the reason why the F-test can be called a test of the “steep-
ness of the formula”.

This steepness has not a great interest in the domain of cost, especially when we
try to correlate the specific cost (the cost per unit of size) to the size: this specific
cost generally has a limited steepness. Consequently the F-test will always appear
poor in such situations.

A last word about this test: obviously there is a correlation between the distribu-
tion of the R2 and the F-test, as it can easily be shown that the quotient we used for
defining the F-test is equal ([50], p. 368) to:

For Any Formula Not Using the Standard Regression Analysis

A similar discussion can be done: the F-test cannot anymore be interpreted as the
amount of available information divided by the lost information, due to the fact
that the cross term does not vanish in the computation, but nevertheless the same
test can be used: after all it gives an idea about it.
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